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Preface

This book arouse from notes of courses in Algebraic Geometry that I gave at the
University of Roma Tor Vergata during several years. It basically consists of two
parts. The first includes Chapters 1-14, and it is devoted to an introduction to basic
concepts in Algebraic Geometry. The main objects of interest in this part are affine
and projective varieties, some of their main attributes (like irreducibility, dimen-
sion, regular and rational functions, morphisms, products, degree, etc.) and basic
examples (hypersurfaces, Veronese varieties, Segre varieties, blow-ups,
Grassmannians, etc.). One of the leading themes in this first part is elimination
theory, to which several sections of the book are dedicated, and which is at the basis
of some important applications like Hilbert’s Nullstellensatz and basic intersection
theory of varieties with Bezout’s Theorem. The second part of the book, which
includes Chaps. 15-20, is devoted to the theory of curves. A basic preliminary is in
Chap. 15 with formal power series, which constitute the main tool for the study of
local properties of curves. Then Chaps. 16 and 17 are devoted to the study of affine
and projective plane curves, respectively. Chapter 18 contains the proof of reso-
lution of singularities of curves. Chapter 19 is devoted to the classical theory of
linear equivalence of divisors and linear series on a curve. Finally, Chap. 20 con-
tains the Riemann—Roch and Riemann—-Hurwitz Theorems.

The approach in this book is purely algebraic, so no analysis or differential
geometry is needed. The main tool is commutative algebra from which we recall the
main results we need, in most cases with proofs. The prerequisites consist in the
knowledge of basics in affine and projective geometry (in particular, conics and
quadrics in three-dimensional space), basic algebraic concepts regarding rings,
modules, fields, linear algebra and basic notions in the theory of categories. A few
elementary facts of topology are needed in Chap. 4.

The book can be used as a textbook for a basic undergraduate course in
Algebraic Geometry. The users of the book are not necessarily intended to become
algebraic geometers but may be simply interested students or researchers who want
to have a first smattering in the topic. Chapter 14 is not essential for the rest and can
be skipped in a first reading. For a short introductory course, one can focus on the
first thirteen chapters only.



vi Preface

The book contains several exercises, in which there are more examples and parts
of the theory which are not fully developed in the text. Some exercises are marked
with an asterisk, which means either that they are a bit more difficult than the
average, or that they are needed for the sequel of the book. Of some exercises, there
are the solutions at the end of each chapter.

What readers will not find in this book are (at least) two main things. The first is
sheaf theory, cohomology, schemes, etc. For this, the classical references are [4]
and, in part, the second volume of [7]. The second is a computational approach to
Algebraic Geometry, which is a very interesting topic for which I recommend [2].

I am indebted for inspiration to several sources, for instance [3, 6, 7, §].

Rome, Italy Ciro Ciliberto
October 2020
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Chapter 1 ®)
Affine and Projective Algebraic Sets oo

1.1 Affine Algebraic Sets

Let K be a field that throughout the whole book will be assumed to be algebraically
closed. This will be the base field over which we will consider all the geometric
objects we will construct in this book.

We will denote by A%, or simply by A", the n—dimensional numerical affine
space on K, i.e., the set K" of all ordered n—tuples of elements of K. An element
P = (pi1,..., pp) of A" will be called a point and py, ..., p, will be called the
coordinates of P. The numerical vector p = (p1, ..., p,) on K will be called the
coordinate vector of P and we may write P = (p). The point O with zero coordinate
vector 0 is called the origin of A".

Letx = (x, ..., X,) be an n—tuple of variables on K. We will denote by Ax ,, or
simply by A,, the polynomial ring K[x] = K[x, ..., x,].

Any element f € A, can be regarded as an application f : A — K. The subset
Z.(f) = f‘1 (0) of A" will be called the zero set of f. More generally, if F C A,
the subset

Zo(F) = () Za(F)

feF

is called the zero set of F. The subscript a in Z,(F) stays for affine, in order to

distinguish this notion from the analogous projective version which will be introduced

in Sect. 1.4. If there is no danger of confusion we will write Z( f) instead of Z,(F).
Note that

F CG= Z(G) C Z(F). (1.1)

Hence, if (F) is the ideal of A,, generated by F, one has Z((F)) € Z(F). Itis easy
to see that actually Z(F) = Z((F)) (see Exercise 1.1.2). Moreover, since A, is a
Noetherian ring, the Hilbert basis theorem holds in A,, namely every ideal of A,

is finitely generated. Therefore there are finitely many fi, ..., f,, € F such that
(F)=(f1,..., fm). Then (see Exercise 1.1.3)
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 1
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Z(F)=Z(fi....\ fu) (1.2)
where Z(f1. ..., fu) stays for Z({f1, ..., fu}).If (1.2) holds, one says that
fitxi, oo x) =0, 1<i<m

is a system of equations of Z(F).

A subset Z of A" is called an affine algebraic set if there is a subset F' of A,
such that Z = Z(F). This is equivalent to say that there is an ideal / € A,, such that
Z = Z(I). We will denote by A, the set of all affine algebraic sets of A”. We leave
as an exercise to the reader (see Exercise 1.1.4) to prove the following

Proposition 1.1.1 A, is the set of all closed sets of a topology of A".

The topology whose closed sets are the elements of A4, is called the Zariski
topology of A" If X is a non—empty subset of X we will think of it as endowed with
the induced topology, which will be called the Zariski topology of X.

Exercise 1.1.2 Prove (1.2). Prove that for any subset F' C A, one has Z,(F) = Z,((F)).

Exercise 1.1.3 Prove that if B is a basis of the ideal I of A, (i.e., it is a system of generators),
then Z(I) = Z(B).

Exercise 1.1.4 Prove Proposition 1.1.1.

1.2 Projective Spaces

Let V be a vector space of finite dimension n + 1 on K. Define the following pro-
portionality relation on V \ {0}:

X~y<=JFreK :=K\{0}:y=r1x

This is an equivalence relation. We denote by [x] the proportionality equivalence
class of the vector x € V \ {0}. The quotient set P(V) = V \ {0}/ ~ is called the
projective space associated to the vector space V and n = dim(V) — 1 is called
the dimension of P(V), denoted by dim(PP(V)). The empty set is the projective
space of dimension —1 associated to the zero vector space. The elements of P(V)
are called points. A projective space of dimension 1 is called a (projective) line, a
projective space of dimension 2 is called a (projective) plane. We will use the notation
pyv :x € V\ {0} — [x] € P(V) and we may write p instead of py if no confusion
arises.

In particular we can consider the numerical vector space K"*! on K. The asso-
ciated vector space is denoted by P” and is called the numerical projective space of
dimension n on K. If x = (xo, ..., x,,) iS a non—zero numerical vector, its propor-
tionality class is denoted by [x] or by [xo, . . ., x,]. We will, say that (xp, ..., x,)isa
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vector of homogeneous coordinates of the point [x]. The homogeneous coordinates
of a point are not all zero and defined up to a non—zero numerical factor. The points
P; of P" whose homogeneous coordinates are all zero except the one at place i,
with 0 < i < n, are called the vertices of the fundamental pyramid of P". The point
P, with homogeneous coordinates [1, .. ., 1] is called the unitary point of P". The
points P; with 0 < i < n + 1 are called the fundamental points of P".

A map ¢ : P(V) - P(W) is called a projectivity if there is an injective linear
map f:V — W such that py o f = ¢ o py, ie., if for every x € V \ {0} one
has ¢([x]) = [f(x)]. Note that if there is a projectivity ¢ : P(V) — P(W), then
dim(P(V)) < dim(P(W)). Moreover the composition of two projectivities is still a
projectivity.

If one wants to stress that the projectivity ¢ depends on the linear map f, one
writes ¢ = ¢ . Denote by Hom(V, W) the vector space of all linear maps from V
to W. It is easy to verify that

¢r =@y <= [f1=1[g] in P(Hom(V,W)) (1.3)

(see Exercise 1.2.1). Hence the set Pr(P(V), P(W)) of all projectivities of P(V) to
P(W) can be identified with the subset of P(Hom(V, W)) whose points are equiv-
alence classes of injective linear maps. In particular Pr(P(V), P(V)) is a group for
the composition of applications. It is denoted by PGL(V) and it is the image of
the group GL(V) of the automorphisms of the vector space V via the map pgna(V),
where End(V) = Hom(V, V). Of course V and W are isomorphic if and only if there
is a surjective projectivity ¢ : P(V) — P(W), then we say that P(V) and P(W) are
projectively equivalent. In that case GL(V') and PGL (V') are respectively isomorphic
to GL(W) e PGL(W).

If V = K"*!, the groups GL(V) and PGL(V) are denoted by GL(n + 1, k) and
PGL(n + 1, k). The former can be identified with the group of square matrices of
order and rank n + 1, the latter with the quotient of the former by the subgroup of
scalar matrices, i.e., matrices of the form 71,,,| where r € K* and I,,;, is the unitary
matrix of order n + 1.

If V has dimension n + 1, a projectivity ¢ : P" — P(V) is bijective. It assignes
to a point P € P(V) a proportionality class [po, ..., p,] of numerical vectors. We
can think of ¢ : P" — P(V) as a way of introducing a system of homogeneous coor-
dinates in P(V). In this system the fundamental points of P(V) are the images of the
fundamental points of " via ¢. In order to denote that P € P(V') has homogeneous
coordinates [po, ..., p,] in this system, we write P = [po, ..., p,]. Of course P
has a natural system of coordinates induced by the identity map id : P* — P".

If we introduce two systems of coordinates ¢ : P* — P(V) and ¢ : P* — P(V)
in P(V), there is a square matrix A of order and rank n + 1 such that for every point
P € P(V) which has in the two systems of coordinates the coordinate vectors x e y,
one has

y=x-A
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and this is called the formula for the change of coordinates in passing from one to
the other of the two systems. The matrix A is defined up to a non—zero scalar factor
and [A] determines the projectivity ¥ ~! o ¢ € PGL(n + 1, k).

For our future purposes we will consider as equivalent the consideration of two
projective spaces if they are projectively equivalent. Therefore in what follows we
will mainly focus on numerical projective spaces P".

Exercise 1.2.1 Prove (1.3).

Exercise 1.2.2 Let¢ : P(V) — P(W)beaprojectivity. Assume thatdim(P(V)) = n,dim(P(W)) =
m. Introduce systems of coordinates in P(V) and P(W). Prove that there is a matrix A, of type
(n+ 1) x (m + 1) and rank m + 1, defined up to a non—zero factor, such that ¢(P) = P’ if and
only if P =[x] e P’ = [y] in the two systems and y = x - A. This is called an equation of the
projectivity in the given coordinate systems.

1.3 Graded Rings

Let S be a ring which, as all the rings we will consider in this text, is commutative
and with unity. Moreover let G(+) be an abelian group. The ring S will be said to
be G—graded or endowed with a G—grading (or simply a graded ring, or a ring with
a grading, when G = Z) if there is a decomposition

SZ@SH

geG

as a direct sum of abelian subgroups of the additive group of S, such that 1 € Sy and
for any pair (g, h) € G x G one has S, - S C Sg4p, Where, if A and B are subsets
of S, we set

A-B={ab:ae€ A, b€ B}

and similarly for A 4+ B. The group S, is called the part of degree g of S. The
elements of S, are called the homogeneous elements of degree g of S. If F is a non—
empty subset of S, we set F;, = F' N S, forall g € G and we denote by H (F) the set
U,ec Fy of all homogeneous elements in F.

The following properties are an immediate consequence of the definition:

(a) every f € S can be written in a unique way as a finite sum

=T+ + 1o (1.4)

with f,, €S, for1<i <nandgi, ..., g, € G distinct. One says that f,,, ..., fj,
are the homogeneous components of f and (1.4) is called the decomposition of
f in homogeneous components;
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(b) S is a subring of S and §,, is an Sp—module for all g € G. In particular, if Sy is
a field, then S, is a Sp—vector space;

(c) if G = Z, we set, for every integer n, S, = D, Sq. If S¢ = {0} foralld < 0,
then S-, is an ideal of § for all integer n, moreover S = S._j, ﬂneN S.. = {0}
and S-o will be denoted with the symbol S, and is called the irrelevant ideal of
S.

Anideal I of § is said to be homogeneous if I = @g I,,ie., if f € I if and only
if all homogeneous components of f are in /.

The proof of the following propositions are left as exercises to the reader (see
Exercises 1.3.5 and 1.3.7).

Proposition 1.3.1 If S is a G-graded ring and I is an ideal of S, then I is homoge-
neous if and only if it is generated by a set of homogeneous elements.

Proposition 1.3.2 If S is a G—graded ring and 1, I, are homogeneous ideals of S,
then I - I, I N I, I} + I, and the ideal generated by I, U I, are homogeneous
ideals. If moreover G = Z and I is a homogeneous ideal of S, then:

(i) theradical of I, i.e.,
rad(l)={feS:IreN: f el}

is homogeneous;
(ii) 1 is prime if and only if for every pair (f, g) € H(S) x H(S) such that fg € 1,
either f € l org € I.

Let S be a G—graded ring and §" a H-graded ring, and suppose we have a homo-
morphism¢ : G — H.Ahomomorphism f : S — S’ is said to be ¢p—homogeneous,
if forall g € G one has f(S,) € S:P(g)' If f and ¢ are isomorphisms then the inverse
of f is still a homomorphism of graded rings, hence f is a isomorphism of graded
rings. If G = H, aidg-homogeneous homomorphism f : § — S will be said to be
homogeneous of degree 0. A homogeneous isomorphism of degree 0 will be simply
called a isomorphism.

IfG=H=~%Zand f : S — § is homogeneous, then ¢ : Z — Z is the multipli-
cation by an integer d, hence f(S,) € S, , forall g € G. In this case we will say that
f is homogeneous of weight d. A homogeneous homomorphism of weight 1 is of
degree 0.

One gives in a similar manner the definition of a graded module over a graded
ring. If S is a G—graded ring, an S—module M will be said to be graded if there is a

decomposition
M =D,
geG
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as a direct sum of abelian subgroups of the additive group of M, such that for all
pairs (g, h) € G x Gonehas S, - M}, C M, where,if A C Sand B C M, we set

A-B={ab:ae€ A,b e B}.

For example a homogeneous ideal of S is a graded module on S. We use for graded
modules definitions, terminology and symbols analogous to the ones we introduced
for graded rings.

Given S a G—graded ring, M and N graded S—modules and an element 2 € G, a
homomorphism f : M — N is said to be homogeneous of degree h, if for all g € M
one has f(My) C Ngyp.

Note that we can change the grading of a S—module M in the following way. Fix
and & € G and set

M(h)y =P M(h), where M(h), := Mj,.

geG

It is clear that M (h) is still a graded S—module isomorphic to M as an S—module,
but in general not isomorphic to M as a graded S—module (see Exercise 1.3.14).

Example 1.3.3 Let V be a K—vector space of dimension n + 1 > 1. The symmetric
algebraon 'V
Sym(V) := @) Sym*(V)
deN

is a graded ring which we will denote by S(V'), and we have

d
Ny g i= dim(Sym?(V)) = (" Z )
The grading is in Z but S(V); = 0 for all d < 0. In this case S(V)o = K and S(V)
is generated as a K—algebra by S(V),.If f € S(V),, we write d = deg(f).
Let us fix a reference system of V, vi.e., an order basis (e, ..., €,). One has the
dual reference system (€, ..., e") of V= Hom(V, K), where

e'(e;) =e;(e) =34

where §;; is the Kronecker symbol. We set e = x;ande; = 9;, for 0 <i < n. Then
S (17) can be identified with Sk , = K[xo, ..., x,], also denoted by S, if K is under-
stood. By denoting it with S, instead of A, |, we want to stress its structure of graded
ring, in which the homogeneous part S, ; of degree d is the vector space of homo-
geneous polynomials, or forms, of degree d, i.e., those polynomials in which appear
only monomials of degree d (the O polynomial is considered to be homogeneous of
every degree).



1.3 Graded Rings 7

The ring S(V) can be identified with the ring of differential operators D, =
K[dp, ..., d,], which is isomorphic to S, as a graded ring. The homogenous part D,, 4
of degree d is the vector space of the homogeneous differential operators of degree
d, i.e., those operators in which appear only monomials of degree d in 9y, ..., d,
(again the O operator is considered to be homogeneous of any degree). Note that
S(V) is somehow the dual of S(V), in the sense that D, ; and S, 4 are dual to each
other.

We set X = (xg, ..., %,). Leti= (o, ..., i,) € Nt be a multiindex. We will
denote by |i| = iy + - - - + i,, the length of the multiindex. We will set xt = x(’)" .- x,’,
Hence a homogeneous polynomial of degree d in xo, .. ., x,, can be written as

[ =) fixt
li=d

with f; € K the coefficient of the monomial x!. Similar notation can be used for
differential operators.
A polynomial f € §, is homogeneous of degree d if and only if

fax) =1’ f(x), vteK (1.5)

(see Exercise 1.3.9). Differentiating (1.5) with respect to ¢ and then setting = 1 one
has

n 8
dfx) =Yy a_f-(") (1.6)

i=0
The Eq. (1.6) is called the Euler formula.

Example 1.3.4 Let V;, for 1 <i < h, K—vector spaces of dimensions n; + 1.
Set V = ®f.'=1 Vi. The ring S(V) has the grading introduced in Example 1.3.3.
It has however also another grading in Z", in which the graded part of degree
d=(d,...,dy)is ®fl:l Sym(Vy,),ifd; > Oforalli =1, ..., h, and it is {0} oth-
erwise. So actually the grading is in N”. When we want to stress that this is the
grading, we write S(V1, ..., V},) rather than S(V') and the part of degree d is denoted
by S(Vl, ey Vh)d~

If, as in Example 1.3.3, we introduce reference systems in V;, for 1 <i < h, then
S(I71 e ‘V/h) may be indentified with the ring of polynomials K[xj, ..., x;], where
X; = (X0, ..., Xin;) fori = 1,..., h. This ring is denoted by S, ., or by S, with
n = (ny, ..., n,).Itshomogeneous part S, 4 of degreed = (dy, ..., dj) is the vector
space of plurihomogeneous polynomials of degree d in the variables xi, ..., X;, i.e.,
those homogeneous polynomials of degree d; in the variables X; = (Xjo, .. ., Xin,),
foralli € {1, ..., h}. One has

h

. n; +d
Nna = dim(Spa) =] | ( } )

i=1
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Similarly S(Vy, ..., V,) may be identified with the ring of differential operators
K[dy, ..., d,] (where 9; = (90, ..., 0in,)), Which is denoted by D, . ,, or by Dy,
whose part of degree d is denoted by D, g4 and it is the vector space of pluriho-
mogeneous differential operators of degree d = (dy, . . ., d;,) acting on the variables
X1y ..y Xp.

With the notation introduced in Example 1.3.3, a plurihomogeneous polynomial
in Sp g may be written as

[ir[=di,.... [In|=dy Jj=1

with an obvious meaning of the symbols. Analogous notation for the plurihomoge-
neous differential operators.

Exercise 1.3.5 * Prove Proposition 1.3.1.

Exercise 1.3.6 Verify that the radical of an ideal is also an ideal.

Exercise 1.3.7 * Prove Proposition 1.3.2.

Exercise 1.3.8 * Let S be a G—graded ring, let / be an ideal and consider the canonical surjective
morphismz : § — S/I.Provethatforallg € Gonehasn(Sy) = S,/I,,hence S/1 = +4ecSy/1,.
Prove that this sum is a direct sum if and only if / is homogeneous. In that case, if we set (S/1), =

Sy/1, forall g € G, then also /I has a G—grading induced by the one of S.

Exercise 1.3.9 * Prove that f € S, is homogeneous of degree d if and only if (1.5) holds.

Exercise 1.3.10 Prove that a polynomial f(x,...,X;) in the variables x; =
(Xi0, - .-, Xjn;), withi =1, ..., h, is plurihomogeneous of degrees d = (dy, ..., dp) if and only if
FOxi, Xy =1 L xn)

forallzy,...,t € K.

Exercise 1.3.11 * Let g;(y) € Sm,a, 0 < i < n, be homogeneous polynomials of degree d. Set
g(y) := (go(y), - .., gu(y)). Prove that the map

fX) €S — f(gy) € Sm

is a homogeneous homomorphism of weight d. We will say that it is obtained by the homogeneous
substitution of variables x = g(y) of degree d.

Exercise 1.3.12 * Prove that a homogeneous substitution of variables of degree d as in Exercise
1.3.11 is an isomorphism if and only if n =m, d =1, and g¢;(y) € Sy,1, 0 < i < n, are linearly
independent. Prove that all homogeneous isomorphisms S, — S, are of this form.

Exercise 1.3.13 * Prove that if f, g € S,,, if f is homogeneous and g divides f, then g is also
homogeneous.

Exercise 1.3.14 Let M be a graded S—module. Consider M (k) with 4 € G. Prove that M (h) is
still a graded S—module, which is isomorphic to M as an S—module. Give an example in which
M (h) is not isomorphic to M as a graded S—module.
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Exercise 1.3.15 Let M, N be graded Z-modules and let f : M — N be a homogeneous homo-
morphism of degree d, i.e., f(M,) € Nyyq for all n € Z. Prove that f: M(—d) — N and
f M — N(d) are of degree 0.

Exercise 1.3.16 Let f € S, 4 be a non—zero homogeneous polynomial of degree d, so that (f)
is a homogeneous ideal. Prove that the map geS, — ¢gf € (f) is a degree d isomorphism of
S,—modules hence S, (—d) — (f) is a degree 0 isomorphism.

1.4 Projective Algebraic Sets

Consider the projective space P* of dimension n and let us fix a homogeneous
element f € S, 4. If P = [p] € P", one has that f(p) = 0 if and only if f(rp) =0
forall € K*. Hence, although f cannot be considered as a function on P", it makes
however sense to say that f vanishes at a point P = [p] € P": this is the case if and
only if f vanishes on any vector of homogeneous coordinates of P. In this case we
say that P is a zero of f.

Hence, given f € §, 4, it makes sense to consider the set Z,( f) of zeroes of f.
If F C S, the subset

Z,(F):= () Z,(F)

fEH(F)

is called the zero set of F. The subscript p for Z,(F) stays for projective, in order to
distinguish this notion from the analogous affine one introduced in Sect. 1.1. How-
ever, if there is no danger of confusion, we may write Z( f) rather than Z,(F).

Of course Z(F) = Z(H(F)). Moreover (1.1) holds. Hence Z((H (F))) € Z(F)
and itis easy to see that Z(F') = Z((H (F))). Note that (H (F')) is ahomogeneneous
ideal (see Proposition 1.3.1). Moreover there are finitely many fi, ..., f,, € H(F)
such that (H(F)) = (f1, ..., fu), hence (1.2) holds, and

ﬁ('x()a"'vxn):oa lglgm

is called a system of equations of Z(F).

A subset Z of P" is called an algebraic projective set if there is a subset F' of S,
such that Z = Z(F). We will denote by P, the set of all algebraic projective sets of
P,

As in Proposition 1.1.1, one proves that:

Proposition 1.4.1 P, is the set of closed subsets of a topology.

The topology of P whose closed sets are the elements of P, is called the Zariski
topology of P". If X is a non—empty subset of P we will think of X as a topological
space with the induced topology, called the Zariski topology of X.

Proposition 1.4.2 A projectivity ¢ : P" — P"™ is continuous for the Zariski topolo-
gies of P" and P™. In particular, if ¢ is bijective, it is a homeomorphism.
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Proof Let f : K" — K”*! be an injective linear map which determines ¢. Then
there is a rank 7 4 1 matrix A of type (n + 1) x (m + 1) such that if x € K**! and

y = f(x), then
y = X'A = (fO(X)1 ) fm(x))y

where fy(X), ..., fm(X) are independent forms of degree 1 spanning S, ;. Then we
have the homogeneous substitution of variables

y=(fox),.... fu(X)

of degree 1, which determines the degree 0 homomorphism

Tr 1 9(y) € Sw = g(fo(X), ..., fu(X) € Sy

(see Exercise 1.3.11). For each homogeneous polynomial g € S,, one has ¢~!
(Z(g)) = Z(z¢(g)), and this implies that ¢ is continuous. O

1.5 Projective Closure of Affine Sets

Foralli € {0, ..., n}, consider in P" the closed subset H; = Z,(x;). We denote by
U, the open subset P" \ H;. Foralli € {0, ..., n}, consider the well defined map

¢,-:P=[p0,...,pn]€U,~—>(@,...,E,@,...,&)GA".
Di Di Pi Di

We introduce the following maps
a: f(xe,...,x0) €8, —> f(,x1,...,x,) € Ay

which is called the dehomogenizing operator, and

B:igxi,...,x,) €A, — xgg(ﬂ,..., ﬁ) € S, where d:=deg(g)
X0 X0

which is called the homogenizing operator.

Lemma 1.5.1 One has:

(i) o is a homomorphism, whereas  is not, but § is multiplicative, i.e., 8(gh) =
B(g)B(h) and it is also additive, i.e., B(g + h) = B(g) + B(h) ifg, hand g+ h
have the same degree;

(ii) forany g € A, of degree d, B(g) is homogeneous of degree d;
(iii) oo B =idy,;
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(iv) xo does not divide f if and only if a(f) has the same degree of f;
(v) for every homogeneous polynomial f € S,, if xg' is the maximal power of xo
dividing f, then B(a(f)) = %

Proof Parts (i), (iii) and (iv) are obvious. As for part (ii) apply (1.5). To prove (v), it
suffices to do it when x( does not divide f, verifying that in this case B(x(f)) = f.
To prove this, taking into account (iv), it is enough to observe that for all monomials %

of degree d, one has x{)’h(l, i—(‘), R ;—(”)) = h, and then apply this to every monomial
appearing in f. ([
Proposition 1.5.2 The map ¢; is an homeomorphism for all i € {0, ..., n}.

Proof We treat the case i = 0, the other cases being analogous. Set ¢y = ¢ and
Uy = U. Itis clear that ¢ is bijective. We have to prove that ¢ and ¢! are closed.
To prove that ¢ is closed, it suffices to prove that ¢(Z,(f) N U) is closed
for all f € H(S,). This is clear, because ¢(Z,(f) NU) = Z,(a(f)). Similarly,
o 1(Zi(9) = Z,(B(g)) N U, hence also ¢~ is closed. O

Forevery subset X C P",wewillsetX; = X N U;,for0 <i < n.Then{X;}o<i<n
is an open covering of X. If X is closed, then this is a covering of X with open subsets
each homeomorphic to closed affine sets.

Often we will identify A" with Uy via the map ¢y. In this case Hj is called the
hyperplane at infinity and its points are called points at infinity of A" If X C A" =
Uy C P, its closure X p in P will be called the projective closure of X. One sets
Xoo = X, N Hy and this is called the set of points at infinity of X .

Remark 1.5.3 One has
X, = N Z,(f).
fEH(8):XCZy(a(f))

Hence A" is dense in P". Indeed, A" C Z,(«x(f)) if and only if «(f) = 0. We can
write

F oy ey x0) = fox@ + fixd ™+ ..+ fo with fi €S,y

hence

a(f)=fo+t fit+...+ fa
where fy, ..., fg are the homogeneous components of a( ). Thus «(f) = 0implies
fo=---=fas=0andso f =0.

Exercise 1.5.4 Prove that, if Z C A" is closed, then Z p = Z U Zy. Hence every closed set of A"
is the intersection of a closed set and an open set of P". The intersection of a closed set and an open
set in a topological space is called a locally closed set.
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1.6 Examples

1.6.1 Points

In the Zariski topology of A” the points are closed. In fact, if P = (py, ..., p»), then
{P}=Z(x1 —p1,..., X0 — Pn)-

Similarly, the points of P" are closed. For example, if P = [py, ..., p,] € P",
andif p; #0fori =0,...,n,then {P} = Z(pixo — poXi, ..., PiXn — PnXi)-

Thus, in the Zariski topology, all finite sets are closed. These are the only proper
closed subsets of A' and of P'. To prove this, it suffices to prove that every subset of
the type Z,(f) [resp. Z,(f)] with f € A, [resp. with f € H(S;)] not zero is finite.

Since K is algebraically closed, by Ruffini’s theorem, any non-zero f € A} =
K[x] of degree d can be written in a unique way as

h

fe =c[ex—pym

i=1

where ¢ € K* is the leading coefficient of f, pi, ..., p; are the distinct roots of f,
and my, ..., my, are the corresponding multiplicities, and one has

d=m|+...+my.

In particular, if d =0, one has f =c and Z(f) =@. If d > 0 one has Z,(F) =

{pl, ...,ph} C Al.
In the projective case, consider a non—zero f € S, that is homogeneous of degree

d. Ifd =0, again Z,(f) =9.1f d > 0, f can be written as
S (xo, x1) = aoxg —i—alxg*lxl +... —i—adxf.

If a; #0, i.e, if f is not divisible by x¢, then Py = [0, 1] ¢ Z,(f), and for any
[po, p1l € Z,(f) one has py # 0. Hence we may assume pg = 1 and p; is a solution
of the equation

f,x) =a0+a1x+...+adxd =0.

Since this equation has only finitely many solutions, then also Z, ( f) is finite. If a; =
0, f is divisible by xo, and we can write f = xg'g with m > 0 and g homogeneous
of degree d — m, not divisible by xo. Then Z,(f) = {Po} U Z,(g). Since Z,(g) is
finite, then also Z,( f) is finite.

Remark 1.6.1 It is convenient to make a further remark. One has

Flox) = xdf (1, ﬁ)
X0
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The polynomial f(1,x) has degree d’ < d and the equality holds if and only if
ay # 0. The polynomial

g(xo, x1) = x f (1, ﬂ)
X0

is homogeneous of degree d’, as we see by applying (1.5). Moreover we have

h
fax) =c[]ex—p™

i=l1

with ¢ € K* and py, ..., p, distinct roots of f(1,x), with their multiplicities
my,...,mysothatd =m; + ...+ my. Thus

h my h
d X1 ;
g(xo, x1) = cxy l_! <x_0 - Pi) = Cn(xl — pixp)™.
1= 1=

In conclusion we have

h

fxo,x1) = exg ™ [T = pixo)™.

i=l

Hence every homogeneous polynomial of degree d in x¢, x; on K can be written as

n
£ o, x1) = [ [(qixi — pixo)™
i=1

with d = m; + ...+ my, and this expression is unique up to a non-zero multi-
plicative constant. The non—zero solutions of the equation f = 0 are (g;, p;), for
1 < i < h, up to a proportionality factor, and my, ..., m;, are called their multiplic-
ities. The set Z,(f) consists of the points with homogeneous coordinates [g;, p;],
forl <i <h.

Exercise 1.6.2 Let k be any field and f, g € Ax 1 polynomials of degree at most d. Prove that if
there are d + 1 elements of K where f and g take the same value, then f = g.

Exercise 1.6.3 * Let k be any infinite field and f € Ay, a polynomial. Let ¥ C A}{ be an infinite
subset and assume that f is zero on X" C AJ. Then f is the zero polynomial.

1.6.2 Projective Subspaces

A subset P(W) of P(V), with W a vector subspace of dimension m + 1 of the vector
space V of dimension n + 1, is called a linear or projective subspace, or simply a
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subspace, of P(V') of dimension m (in symbols dim(P(W)) = m) and codimension
¢ =n —m (in symbols codim(P(W)) = n — m). The empty set, corresponding to
W = (0), is the unique subspace of dimension —1. The points are the subspaces of
dimension 0. The subspaces of codimension 1 are called hyperplanes.

Let us focus on the case of P". The following properties are applications of basic
notions of linear algebra:

1. Z C P"is asubspace if and only if Z = Z(f1, ..., fn), with f1, ..., f, linear
forms;

2. if f, fi,..., fn are linear forms, then Z(fy, ..., fn) € Z(f) if and only if f
linearly depends from fi, ..., fn;

3. Z(f1, ..o, fu) = Z(g1, ..., gr)ifandonly if f1, ..., frand gy, ..., gi span the
same vector subspace of S, |;

4. Z(fi, ..o fu) = Z(fiys - ., fi.), where (f;,,..., fi.) is a basis of the vector
subspace of S, | spanned by fi, ..., f, and c is the codimension of the subspace;

5. the intersection of a family of subspaces is a subspace;

6. if Z is a subset of P”, it makes sense to consider the minimum subspace of
P" containing Z. It is denoted by (Z) and it is called the subspace spanned
or generated by Z. One says that Z is non—degenerate if (Z) = P", otherwise
it is called degenerate. If Z,, ..., Z; are subspaces, one writes Z; V ...V Z,
instead of (Z; U ... U Z,);

7. the Grassmann formula holds, i.e., if Z;, Z, are subspaces of P, one has

dim(Z,) + dim(Z,) = dim(Z; Vv Z) +dim(Z; N Z,);

8. Sp.1 canbe interpreted as the dual of K™*! and the points of P(S,, 1), which s also
denoted by [P" and is called the dual of P, can be interpreted as the hyperplanes
of P";

9. if Z C IP’"vis a subspace, one sets Z+ = {[f] e Pz C Z(f)}. This is a sub-
space of P", that is called the orthogonal of Z, and its dimension equals the
codimension of Z;

10. one has

ZHt=2z, ZvZ)t=2ZiNnzZy, (ZiNZ)t=Z/NZ5.

Proposition 1.6.4 A projectivity ¢ : P" — P" is a homeomorphism of P" onto its
image which is a subspace of dimension n of P™.

Proof Let f : K™ — K”*! be an injective linear map determining ¢. Set V =
F(K"1), which is a subspace of dimension n 4 1 of K”*!. Then the image of ¢
is the subspace Z = P(V) of P". By proposition 1.4.2, it suffices to prove that ¢ is
closed. Consider the map 7 introduced in the proof of the Proposition 1.4.2. Itis easy
to see, and left to the reader as an exercise, that 7 is surjective. If & € H(S,) there
isag € H(S,,) such that t;(g) = h. Since o '(Z(g) = Z(t7(g)) = Z(h) (see the
proof of Proposition 1.4.2), we have ¢ (Z(h)) = Z(g) N Z, and this implies that ¢
is closed. O
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If Z = P(W) is a subspace of dimension m of P", we can construct a projectivity
¢ : P" — Z as follows. Consider a basis vy, ..., v, of W. Then the points P; =
[vi] € P", for 0 < i < m, are said to be linearly independent, and this definition is
well posed. Moreover Z = Py Vv ...V P,. More precisely we can consider the map

¢ [roy .oy Apl €P" — [AgVo+ -+ + AVl € Z.

This is a projectivity, and it sends the fundamental points of P™ to the points
Py, ..., P, and the unity point to the point [vg + - - - 4 v,,]. This projectivity is
also called a parametric representation of the subspace Z.

Exercise 1.6.5 * Let U by a non—empty open subset of Ag” or of Px". Prove that if U C Z(f)
then f is the zero polynomial.

Exercise 1.6.6 Prove that projectivities send homeomorphically subspaces to subspaces of the
same dimension.

Exercise 1.6.7 Prove the properties listed on Sect 1.6.2.

Exercise 1.6.8 Let ¢ : P(V) — P(W) be a bijective projectivity determined by the isomorphism
f: V. — W. The projectivity ¢’ : P(W) — P(V) determined by the transpose map f’: W — V
is called the transpose of ¢. Prove that for any subspace Z of P(V'), one has ¢ (Z b= (¢*] 2)*t.

Exercise 1.6.9 * Prove the fundamental theorem of projectivities, which says the following. Let
Py, P> be projective spaces of the same dimension n. Let (Py, ..., Py+1) € (Qo, ..., Ont+1) tWo
(n + 2)—tuples of distinct points of | e IP; respectively, and suppose they are in general position, i.e.,
any (n + 1)—tuple of points contained in them consists of linearly independent points, namely, they
span P; e P, respectively. Then there is a unique projectivity ¢ : Py — P» such that ¢ (P;) = Q;,
forO0<i<n+2.

Exercise 1.6.10 Let P, ..., P4 be distinct points on a projective line P(V). By Exercise 1.6.9,
there is a unique homogeneous coordinate system on P(V') such that P; = [1,0], P = [0, 1], P3 =
[1, 1]. In this system one has P4 = [p, ¢], where p and g are not zero and ¢ # p. The cross ratio
(P1, P>, P3, Py) of Py, ..., Py4is, by definition [p, g] or % € K. Note that the cross ratio is never
0 or 1. The 4—uple (P;, P>, P3, P4) will be said to be harmonic it (Py, P2, P3, P4) = —1.

Prove that two quadruples of distinct points Py, P», P3, P4 of theline P(V) and Q1, Q2, 03, Q4
of the line P(W) are projective, i.e., there is a projectivity ¢ : P(V) — P(W) suchthat¢(P;) = Q;,
for 1 <i <4,ifand only if (Py, P2, P3, P1) = (Q1, Q2, O3, O4).

Exercise 1.6.11 Suppose we have four distinct points P; = [p;, gi]JonP!, withi =1, ..., 4.Prove
that
(P194 — p4q1)(P2g3 — P3q2)

(P1, Py, P3, Py) = .
(p2q4 — P4q2)(P193 — P3q1)

Exercise 1.6.12 * Let P(V') be a projective space of dimension n and Z a subspace of codimension
c. Prove that, if we introduce a homogeneous coordinate system in P(V), there is a matrix A on K of
type (n + 1) x ¢ and rank ¢ such that Z is the set of points of P(V) with homogeneous coordinates
[x] verifying the matrix equation x - A = 0, which is equivalent to a system of ¢ independent
homogeneous linear equations in the indeterminates x. This is called a system of equations of Z in
the given coordinate system. Conversely, every set of this type is a subspace of codimension c.

If P(V) = P", one usually considers the natural coordinate system.
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Exercise 1.6.13 * Let P(V) be a projective space of dimension n and Z a subspace of dimension
m. Prove that, if we introduce a homogeneous coordinate system in P(V), there is a matrix A on K
of type (m + 1) x (n + 1) of rank m + 1 such that Z is the set of points of P(V) with homogeneous
coordinates [x] of the form x = A - A, with [A] variable in P"*. Conversely any set of this form is a
subspace of dimension .

Exercise 1.6.14 * Consider a hyperplane H in an n—dimensional projective space P. Let U =
P\ H. Prove that U is homeomorphic to A".

1.6.3 Affine Subspaces

Let us think to A" as the open subset Uj of P". A non—-empty subset Z of A" is called
an affine subspace, or simply a subspace of A", of dimension m and codimension ¢ =
n — m if there is a projective subspace Z’ of P" of dimension m such that Z = Z' N
A" = Z' N Uy. The empty set is considered as the only subspace of dimension —1.
The subspaces of codimension 1 are called hyperplanes, the subspaces of dimension
1 lines, those of dimension 2 planes.
If Z’ has equations
apxo+...+apx, =0

(1.7)
acxo+ ...+ aepx, =0
(see Exercise 1.6.12), then the independent equations of Z are
apxy+...+apux, +apn=0
(1.8)

ae1xg+ ...+ aepXx, + a0 =0
that, in matrix form can be written as
x-A+a=0

where A = (a;j)i=1,...n: j=1
(a10, . .-, aco).

The system obtained by adding the equation xo = O to the system (1.7) defines
the subspace Z’ N Hy of dimension m — 1 which is called the direction space of Z.
Let &, be a solution of the system (1.8), i.e., the coordinate vector of a point Py of
Z.Leté&,,..., &, beindependent solutions of the homogeneous system associated
to (1.8). We can consider the bijective map

¢ 1s a matrix of type n x ¢ on K with rank ¢ and a =

.....

do: (A, A) € A" > Eg+ME 1+ -+ A € Z.
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This is the restriction to A™ of the map ¢ : P" — Z’ obtained as in Sect. 1.6.2 by
choosing in Z’ the m + 1 points Py, Py, ..., P, with the homogeneous coordinates
[1,&0],10, &;],with 1 < i < m.Hence ¢ isahomeomorphism of A” on Z. Itis called
a parametric representation of Z, and can be interpreted as a way of introducing a
coordinate system in Z, with the origin at the point Py.

By Remark 1.5.3 it follows that Z’ is the projective closure of Z, hence Z,, =
Z' N Hj is the set of points at infinity of Z.

Exercise 1.6.15 Letn > m, consider m integers 0 < i| < iy < ... < i;; < n, and the map
Bitosim - 1o ooy X)) €A™ — xie5 + -+ xp€;, € A",

where e; € K" is the numerical vector with all entries 0 except the i—th entry which is 1, for
i =1,...,n Provethat ¢; ;. isthe parametric representation of a subspace of A" of dimension
m. This is called the (x;,, ..., x;,, )—coordinate subspace (coordinate axis if m = 1).

Exercise 1.6.16 If Z|, Z, are affine subspaces of A", prove that Z; N Z, is again a subspace. If
Z; = Z] N A", with Z] projective subspaces of P, with 1 < i < m, one defines the joining subspace
ortheirspanas Z; v ...V Z,, = (Z/1 V...V Z; )N A" Prove that in general Grassmann formula
does not hold in the affine setting and give conditions in order that it holds.

Exercise 1.6.17 * Amap ¢ : A" — A™ conn < m, is called an affinity, if there is a projectivity
Y P" — P™ such that its restriction to A" coincides with . Prove that an affinity is a homeo-
morphism on its image and carries affine subspaces into affine subspaces of the same dimension.

Exercise 1.6.18 Prove that ¢ : A" — A" is an affinity if and only if there is a matrix A on K of
type n x m and rank n, and there is a point a € A™ such that for every x € A" one has

Y(x)=x-A+a. (1.9)

Exercise 1.6.19 * Fix a matrix A on K of type n x m and a point a € A”. Consider the map
¥ A" — A" defined via (1.9). It is called an affine map. Prove that such a map is continuous
and it is injective if and only if it is an affinity. Prove that it carries subspaces to subspaces, but in
general it does not preserve the dimension.

Exercise 1.6.20 Letn > m and consider m integers 0 < i} < iz < ... < i;; < n, and the map
7! l-m:(xl,...,xn)EA"—>(x,-l,...,x,-m)eAm.

Prove that this is a surjective affine map, it is called the projection of A" onto A™ from the space at
infinity of the variables ji, ..., ju—m Where {j1, ..., ju—m} ={1,...,n}\ {i1, ..., in}. What are
the counterimages of the points of A™?

Exercise 1.6.21 Prove that the affinities of A" in itself form a group, called he affine group of A".

Exercise 1.6.22 Prove that an affine map v : A" — A™ is a homomorphism of K" to K™ if and
only if ¥ (0) = 0.

1.6.4 Hypersurfaces

Let f € A, be a non—zero polynomial. The set Z(f) C A" is called a hypersurface
and f = Ois an equation of it. Note that the empty set is a hypersurface with equation
1 = 0, which is called the O-hypersurface.
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Two non-zero polynomials fi, f> € A, are said to be essentially distinct if there
is no element ¢t € K* such that f; = /5, and are called essentially equal otherwise.
If f1 and f; are essentially equal one has Z(f}) = Z(f2). Let us see when it is the
case that Z(f1) = Z(f>).

Since A, is a unique factorization domain (abbreviated in UFD), for every non—
zero polinomial f € A,, one has

f=f-f (1.10)

where f1, ..., fj areirreducible polynomials, pairwise essentially distinct, r, . .., 1y
are positive integers, and (1.10) is essentially unique, i.e., in two expressions of f of
this sort the f; can change only by the product by an element of K*, but the integers
ri, ..., r, cannot change. The polynomials fi, ..., f, are called the irreducible
factors of f and ry, ..., r, are the corresponding multiplicities. The Eq. (1.10) is
called the decomposition of f into irreducible factors, and we have

deg(f) = rideg(fi) + -+ + rydeg(fn). (1.11)
One has ,
z(H =z
i=1
hence if s;, ..., s, are positive integers, we still have Z(fls‘ ,f”) =Z(f). In

particular f;--- f; = 0 is still an equation of Z(f), which is called the reduced
equation of Z(f) and the polynomial f; - - - f}, is said to be reduced.

Hilbert’s Nullstellensatz, which we will prove later (see Theorem 2.5.2 below),
implies the:

Proposition 1.6.23 (Study’s Principle) If f € A, is an irreducible, non—zero poly-
nomial and g € A,, is a polynomial such that Z(f) € Z(g), then f divides g.

Therefore Z(f) = Z(g) if and only if they have the same irreducible factors,
which can differ only for the multiplicities. Hence the reduced equation of a hyper-
surface Z(f), with f as in (1.10), is essentially unique. The hypersurfaces Z( f;)
are called the irreducible components of the hypersurface Z( f), and this is said to
be irreducible if it has a unique irreducible component. The degree of the reduced
equation of the hypersurface Z is called the degree of Z, it is denoted by deg(Z),
and it is the sum of the degrees of its irreducible components. The hypersurfaces
of degree 1 are the hyperplanes (points if n = 1, lines if n = 2, planes if n = 3).
The hypersurfaces of degree 2 are called quadrics (pairs of points if n = 1, conics
if n = 2). The hypersurfaces of degree 3, 4, etc. are called cubics, quartics, etc. For
n = 2 the hypersurfaces are called curves, for n = 3 surfaces.

Suppose now that f € S, is homogeneous and non-zero. The closed subset
Z(f) C P" is called a hypersurface of P". Note that, for a change of variables,
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this polynomial changes for an invertible linear substitution of variables, which is a
homogeneous isomorphism of S, into itself.

Consider now that factorization (1.10). Since f is homogeneous, the factors
fi, ..., fn are homogeneous as well (see Exercise 1.3.13). From this it follows
that all what we said about the hypersurfaces in A" can be repeated verbatim for the
hypersurfaces in a projective space, and for them we will use an analogous termi-
nology.

1.6.5 Divisors

Let X be an affine space A" or a projective space P". We will denote by Div(X) the
free abelian group generated by the set H of irreducible hypersurfaces of X. Every
element of Div(X) is of the form D = )", _, r;Z where the r; are integers that are
different from O only for a finite number of elements Z € H. Such a D is called a
divisor of X, rz is called the multiplicity of Z in D and the Z such that r; # 0 are
called the irreducible components of D. The hypersurface Supp(D) := UrZ AT
called the support of D and it is sometimes identified with the divisor Zrz 20Z. If
rz € {—1,0, 1} for all Z € H, then D is called reduced. We define the degree of D
asdeg(Z) = ), 4,7z deg(Z). The divisor D = )", _;, rzZ is called effective, or a
generalised hypersurface (or simply a hypersurface if no confusion arises), ifrz; > 0
forall Z € H.

An effective divisor has non—negative degree and it has degree O if and only if it
is the zero divisor, i.e., the 0 element of the group Div(X). An effective divisor D
consisting of a unique Z € H is said to be irreducible.

If f; = 0, with f7 irreducible, is an equation of Z € H, which is uniquely defined
up to a constant factor, then given the effective divisor D =) zen YzZ and set
fo =1lzen > we say that fp = 0 is an equation of D. By the Nullstellensatz
(see Theorem 2.5.2 below), one has that if f = 0 and g = 0 are equations of D then
f and g are essentially equal.

Let us now focus on the case X = P". Let D be an effective divisor and let IT
be a subspace of dimension m of P". Suppose that D has equation f = 0 and that
IT has a parametric representation as X = A - A, where A is a matrix of type (m +
Dx@m+1)andrankm + 1, x = (xg, ..., x,) and A = (A, ..., A,,) (see Exercise
1.6.13). The polynomial f (A - A) is zero if and only if /T € Supp(D). In this case
we say that D contains 7. If this is not the case, then the equation f(A-A) =0
defines a divisor Dy in I1, which is called intersection of IT with D, and one has
deg(Dp) = deg(D). The definition of Dy is well posed (see Exercise 1.6.28).

In the case X = A", we can make the same considerations and give the same
definitions. The only difference is that deg(D;) < deg(D) and strict inequality can
hold.

Hence we have:
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Proposition 1.6.24 (Bézout Theorem for linear sections) Let D be an effective divi-
sor in an affine or projective space, and let Il be a subspace. Then either II is
contained in D or D intersects I1 in an effective divisor of degree at most equal to
deg(D), and exactly equal to deg(D) in the projective case.

Example 1.6.25 If we are in the projective case, D has degree d and ¢ is a line
not contained in D, then Dy = m P + --- + my Py, with P; distinct points of £
and m; positive integers, with 1 < i < h.One hasd = m + - - - + my,. The positive
integer m; is called the intersection multiplicity of £ and D at P;, and it is denoted by
mp (D, ), fori =1,...,h.Wesetmp(D, £) = 0if P ¢ Supp(D,)andmp (D, ) =
oo for all P € ¢, if £ is contained in D.

Let us consider again the case X = P". Fix a positive integer d and let us consider
the set £, 4 of all effective divisors of degree d of P". One has £, 4 = P(S,.4), hence

dim(L,.q) = <” + d) L
n

If the divisor D € L, ; has equation f = O with f a form, uniquely determined up to
a non—zero constant factor, of the type

f =) fix

lil=d

then [ filij=¢ (the indices are lexicographically ordered) are in a natural way homo-
geneous coordinates of D in £, 4.

A subspace of dimension r of £, 4 is called a linear system of divisors, or simply
of hypersurfaces, of degree d in P". A linear system of dimension O is a unique
divisor, a system of dimension 1 is called a pencil, a system of dimension 2 is called
a net. The empty system has dimension —1.

Example 1.6.26 One has dim(L, ;) = n and the points of £,, | arein 1:1 correspon-
dence with the hyperplanes of P". Then £, ; is denoted by P and it is called the
dual of P". A line in P" corresponds to the set of hyperplanes containing a fixed
subspace of codimension 2. This is called a pencil of hyperplanes. Similarly, a plane
in P" corresponds to a net of hyperplanes containing a subspace of codimension 3.

Let £ € L, 4 be a linear system of dimension r. If Dy, ..., D, € L are linearly
independent divisors, with equations f; = 0, for 0 < i < r, in the given coordinate
system, then a divisor D sits in £ if and only if it has equation of the form Ao fo +
-+ A fr =0, with [Ag, ..., A,] € P".Notethat Z(fy, ..., fr) = (), Z. Thisis
called the base locus of the linear system £ and it is denoted by Bs(L). If P € P",
we will denote by £(— P) the set of all divisors in £ with support containing P. One
has L(—P) = L if and only if P € Bs(£). If P ¢ Bs(£L), then L(—P) is a linear
system of codimension 1 in £ (see Exercise 1.6.31).
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Example 1.6.27 A linear system L of dimension n of £, 4 is called a linear series
of degree d and dimension n and it is denoted with the symbol gj. The series is
complete if L =L 4,1.e.,ifn =d.

There is a unique complete g}, formed by all effective divisors of degree 1 on the
line, and they can be identified with the points of the line.

Let us determine all linear series gi. There are two homogeneous, non—
proportional degree 2 forms fy, f1 in xo, x; such that the elements of the g% are
precisely the divisors defined by an equation of the form ¢ fy + A, fi = 0, with
Ao, A1 not both zero.

The two divisors D; with equations f; = 0, for 0 < i < 1, cannot have the same
support, otherwise the polynomials fj, f; would be proportional. A first case is the
one in which Dy and D, have a common point P. Then P is a base point of the gé,
and the divisors of the g% are the ones of the form P 4+ Q with Q varying on P'.

Suppose next that Dy, D, have disjoint supports, i.e., the g3 has no base points.
Then the g} is formed by divisors of the form P; + P, such that for any point P of
P! there is a unique point Q such that P + Q € gi. Then the g} determines a map
o : P! — P! which sends a point P € P! to the aforementioned point Q. The map
o is bijective and it is an involution, i.e., o ~' = o . For this reason the base point free
linear series g1 are called involutions.

The map o is a projectivity and conversely any involutory projectivity of P! is of
this type (see Exercise 1.6.33).

Exercise 1.6.28 Prove that the definition of D7 does neither depend on the parametric represen-
tation of /7 nor on the homogeneous coordinate system.

Exercise 1.6.29 Give an example of an effective divisor D in A" such that its intersection with a
subspace IT has degree strictly smaller than deg(D).

Exercise 1.6.30 Prove that the linear systems of dimension m of hyperplanes in a projective space
of dimension n are precisely the sets of all hyperplanes containing a given projective subspace of
dimensionn —m — 1.

Exercise 1.6.31 * Prove thatif P ¢ Bs(L), then £(—P) is a linear system of codimension 1 in L.

Exercise 1.6.32 * Let £ be a linear system of dimension r of divisors of P". Let Z be a subset of
P".Set L(—Z) ={D € L : Z C Supp(D)}. Prove that L(—Z) is a sublinear system of £ and that
L(—Z) = Lif and only if Z € Bs(£).

Provethatif Z = {Py, ..., Py}, thendim(L(—Z)) > r — h (L(—Z)isalsodenoted by L(—P; —
.-+ — Py)). Prove that for all positive integers & there are distinct points Pp, ..., P, such that
dim(L(—Py — -+ — Py)) = max{—1,r — h}.

Exercise 1.6.33 * Considering the Example 1.6.27, prove that the map o determined by a base
point free gé is an involutory projectivity and that all involutory projectivities are of this form.
Deduce that, if char(K) # 2, there are exactly two distinct points P, P> on P! such that 2P; €
gé, for 1 < i < 2. They are called ramification points of the gz'.
Prove also that Q = o (P) if and only if (P;, P>, P, Q) = —1,i.e,, if and only if Py, P>, P, O
is a harmonic quadruple.
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1.6.6 Product Topology

The affine space A" coincides with A" x A™ (with n, m > 0). Hence A"™ has
the Zariski topology but also the product topology of the Zariski topologies of A" and
A™ . The latter topology is less fine than the former. Indeed, if Z; € A" and Z, C A™
are closed subsets, then Z; x Z, is closed in A"*  In fact, suppose that Z;, = Z(Fy),
with F; € A, =K[xy,...,x,]and Z, = Z(F,),with F, € A,, = K[y, ..., yu]. We
have the inclusions

AnZK[xlv--wxn]_)An+mZK[xlv--',xn»)’l»--',ym]

An:K[ylv--wyn]_)An+m:K[xlv--~sxnvylv--~aym]

hence F; U F, can be considered as a subset of A,.,, and we have Z; x Z, =
Z(FiUF,).
If Z C A" is a closed subset, Z x A™ is called the cylinder with directrix Z.

Exercise 1.6.34 Prove that the Zariski topology on A is strictly finer than the product topology.
Similarly for A"+,

Exercise 1.6.35 Provethatif Z; € A" and Z, € A", the topology induced by the product topology
on Z; x {P} = Z;, with P € Z; is the Zariski topology on Z;.

1.7 Solutions of Some Exercises

1.1.40nehas ¥ = Z(1) and A" = Z(0).1f Z; = Z(F;),for1 <i < 2,thenZ U Zy = Z(F - F»)
where Fi - Fp :={f1f2: f1 € F1, f» € F2}.If Z; = Z(F;) is afamily of closed subsets depending
oni € Z,then ez Zi = Z(Ujez Zi)-

1.3.5 One of the implications is obvious. As for the other, let {fy}¢cr be a family of homo-
geneous generators of /. If f e[ then f = Z[l_m_[m Sfer,tm fo, -+ fo,, With fo, o €S.
Consider the decomposition in homogeneous components f¢, .. ¢, = Z[ Sfer,.t,.i- Then f =
Zzl """" . i ferotm,ifey -+ fe, is the decomposition in homogeneous components of f, and
each of such components is in /.

1.3.7 The first part of the assertion follows from Proposition 1.3.1. As for (i), suppose that f" € I
with r a positive integer. Consider the decomposition in homogeneous components f = f; + o({),
witho(€) € S-¢. Then f" = f; + o(r£). Hence f; is a homogeneous component of f”. Since [ is
homogeneous, one has f; € I, thus f; € rad(I). The assertion is proved by iterating this argument.
The proof of (ii) is similar.

1.3.9 One implication is obvious. As for the other, suppose that (1.5) holds. Let f = f4, + ...+
fa, be the decomposition in homogeneous components of f, with f; € Sg, \ {0} for 1 <i <

h and d,...,d, € N distinct. Then ¢ f(x) = f(1X) = fu, (t%) + ...+ f4, (%) =t f, (%) +
R f4,(x) for t e K. This is a polynomial identity in xo, ..., x, and ¢. The assertion fol-
lows.

1.3.131f f = gh,writeg = g, + m(a) and h = hy, + m(b), where g, [resp. h;] is the homogeneous
component of maximum degree of g [resp. of h] and m(a) [resp. m(b)] stays for a polynomial of
degree smaller than a [resp. than b]. Then f = g,hp + m(a + b). Since f is homogeneous, one
has f = g,hp hence m(a) = m(b) = 0.
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1.3.14 The first part of the exercise is trivial. As for the required example, consider S, as a module
over itself. Consider S, (1). One has S,,(1)g = S, 4+1. Then S, is not isomorphic to S, (1) because
dim(Sy,q) # dim(Sy(1)q).

1.540nehas Z = Z, N A",

1.6.3 Proceed by induction on the number n of variables. If n = 1 the assertion follows by Ruffini’s
Theorem. Suppose n > 1. If f does not depend on any of the variables xi, ..., x,, the asser-
tion is clear. So we may assume that f depends of the variable x;. Fix ¢ € ¥. The polynomial
f(c, x2,...,x,) vanishes on -1 and, by induction, it is zero. Then f(xy,x2,...,x,), as a
polynomial in x; over the field k(x2, ..., x,) has infinitely many solutions, so it is zero, as wanted.
1.6.5 Consider the affine case, the projective one is analogous. If U = A" the assertion follows by
the Identity Principle of polynomials. If U C A" is a proper open subset, it suffices to show that
U C Z(f) implies that A" C Z(f). If P € A" — U, consider a line £ passing through P which
intersects U. Then the restriction of f to £ vanishes on a non—empty open subset of £ which consists
of infinitely many points, hence it vanishes on ¢ and therefore on P. The assertion follows.

1.6.11 Consider the projectivity w:P! — P! such that w([x,x1]) = [yo,y1], Wwith
Yo = (pax1 — x092)(P193 — p3q1), Y1 = (p1x1 — x0q1)(p2g3 — P3q2). Remark
that w sends Pj to [1, 0], P, to [0, 1], P» to [1, 1], and therefore P4 to (P, P2, P3, Py).

1.6.33 We treat the case char(K) # 2, the case char(K) = 2 can be treated in a similar way, but it
requires a bit more care, and is left to the reader. Suppose a g; is determined by the two polyno-
mials fp(xp, x1) = aoxg + ajxpxi + alez, fi(xo, x1) = boxg + bixpx) + ble2 which have no
common solution. So the gé is the family of divisors with equations

(Aap + pbo)x§ + (rar + puby)xoxy + (Aaz + pby)xi = 0 (1.12)

with [A, ] € P'. Among these divisors there is certainly at least one which is non—reduced. In fact
such a non—-reduced divisor corresponds to [, ] such that (1.12) has a solution with multiplicity
2, and this happens if and only if

(rar + pub1)* — 4(hag + pbo) (Aaz + puby) = 0 (1.13)

which certainly has some solutionin A, . So, up to a change of coordinates, we may assume that for
instance fp = xg, so that (1.13) becomes u(u(b% — 4bg) — 4)) = 0. This has the solution & = 0,
which corresponds to fp and the solution u = 4, A = b% — 4bg (up to a factor), which corresponds
to another polynomial. So, up to a new change of coordinates, we may assume that f; = xlz, and
the gzl is the set of divisors defined by the equation

axd 4 pxd =0. (1.14)

In this situation it is immediate to see that the map o sends the point P = [p, g] to the point
Q = [—p, q], which proves that o is an involutory projectivity.

Conversely, let o be an involutory projectivity different from the identity. Then if o ([xo, x1]) =
[y0, y11, there are a, b, ¢, d € K such that yo = axg + bx;, y; =cxo+dx;, with ad — bc #
0. It is easy to see that the involutory condition is equivalent to a + d = 0. Using this, one sees that
for an involutory projectivity on P! there are exactly two distinct points P such that o (P) = P. By
changing coordinates one may assume that these points are P; = [1, 0] and P, = [0, 1], in which
case the projectivity has the form o ([xg, x1]) = [—x0, x1]. Then the divisors of the type P + o (P)
have Eq.(1.14) with [A, u] € P! varying, so they form a g%.

The final assertion is a direct verification with P =[1,0], P, =[0,1], P =[p,q], O =
[—p,ql
1.6.34 The line with equation x; + x2 = 0 is not closed in the product topology.



Chapter 2 ®)
Basic Notions of Elimination Theory and | o
Applications

2.1 The Resultant of Two Polynomials

Let k£ be any, not necessarily algebraically closed, field. We will denote by K its
algebraic closure. A system of algebraic equations

filxi...,x,) =0, fi€Ar,, i€l

is said to be compatible if (;.; Z(f;) # ¥ in Af.
Let
f) =aox" +---+an, g&x)=Dbox" +---+by (2.1)

be non—zero polynomials on k. The system
=0 g=0 2.2)
is compatible if and only if the greatest common divisor D of f and g has positive

degree. Since D € k[x], we have:

Lemma 2.1.1 The system (2.2) is compatible if and only if f and g have some
common divisor of positive degree in k[x].

This implies the:

Lemma 2.1.2 (Euler Lemma) Suppose that either ay # 0 or by # 0. Then the sys-
tem (2.2) is compatible if and only if there are non—zero polynomials p(x), q(x) €
k[x], with deg(p) < m and deg(q) < n, such that

rf =qg. (2.3)

Proof 1f (2.2) is compatible, one has

f=d¢q, g=0op
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with ¢ € k[x] of positive degree. Hence p, g verify the assertion.

Conversely, suppose that (2.3) holds with deg(p) < m and deg(g) < n. Suppose,
for example, ay # 0. If f has no common factor of positive degree with g, then f
has to divide ¢, and this is impossible because deg(q) < n = deg(f). O

The existence of the polynomials p, g verifying (2.3) is equivalent to the existence
of n 4+ m elements of k

¢, 0<i<m-—1, notallzero, d;, 0<i<n-—1, notallzero
such that
(cox" '+ F e ) f(X) = (dox" " + -+ dy_1)g(x), 24
i.e., satisfying the system of n + m equations
aoco = body
aico + apcy = bidy + bod
1€0 + doCy 1dp + body 2.5)
anCm—1 = bmdnfl
Note that, if co, ..., cm—1,do, . .., dy— verify (2.4), or equivalently, (2.5), and are
not all zero, then neither cg, ..., ¢,—1, nOr dy, ..., d,_;, are all zero. In conclu-
sion, if either ay # O or by # 0, the system (2.2) is compatible if and only if the
homogeneous linear system (2.5) of n + m equations in the n 4+ m indeterminates

€0y« Cn—1,4do, - - -, dy—1 has a non—trivial solution. This happens if and only if the
matrix of the system has zero determinant, i.e., if and only if

a ay ...a, 0 0...0

0aya ...a, 0...0

0...0 O avay...an|

byby ...b, 0 0...0 =0 (2.6)

0 by by ...b, 0...0

0...0 O byby...b,
where the block where ay, . .., a, appear consists of m rows and the one in which
by, . .., b, appear consists of n rows. The first member of (2.6) is called the Sylvester

determinant of f and g. Its vanishing is equivalent either to ayp = by = 0 or to the
system (2.2) being compatible.

Consider now ay, ..., ay, by, ..., b, as indeterminates on the fundamental field
F of k, which is Q if char(k) =0, and the finite field F, with p elements if
char(k) = p. Then the Sylvester determinant can be considered as a polynomial
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R(ay, ...,a,, b, ...,b,) = R(a,b)in[F[a, b]. This polynomial is called the resul-
tant polynomial of type (n, m).

Proposition 2.1.3 The resultant polynomial R(a, b) belongs to the ideal generated
by f and g. Precisely, there are polynomials A, B € F[a, b, x] with degrees at most
m — 1 and n — 1 in x respectively, such that

Af+Bg=R 2.7)
Proof One has the relations
xmflf(x) — anI‘H»mfl 4+ anxmq
xmfo(x) — aoxﬂ+m72 4+t an.xm72
f(x) = apx" + -+ -+ a,
lg) = box" T 4 by
X'Pgx) = box"T" T byx"
g(x) = box™ + -+ + by,

By multiplying each of these by the cofactor of the corresponding element of the last
column of R, and then adding up, one obtains (2.7). (]

Exercise 2.1.4 Consider two homogeneous polynomials on k
fxo,x1) = aoxf + ...+ anx], g(xo,x1) = boxy + ...+ buxi".
Prove that R(a, b) = 0 if and only if Z,,(f, g) # ¥ in P}.
Exercise 2.1.5 Prove that R(a, b) is bihomogeneous of degree m in a and of degree n in b.

Exercise 2.1.6 * Consider the polynomials (2.1) with indeterminate coefficients on the fundamen-
tal field Fand let oy, . . ., oy, [resp. B, - . ., B ] be the roots of f [resp. of g] in the algebraic closure
of [F[a], [resp. in the algebraic closure of F[b]]. Consider

S = aj' b} l_[ l_[(a,- - 6j) =ag l_[g(ai) = (—1)""b} l_[ fB))
i=1j=1 i=1 j=1

which can be considered as a polynomial on F[ag, a, ..., o, ] in the variables b, or as a polynomial
on F[bg, 51, ..., 3] in the variables a.

Prove that S belongs to F[a, b] and it is homogeneous of degree m in the a and of degree n in
the b.

Exercise 2.1.7 * Continuing the previous exercise, prove that S is prime with agbg.
Exercise 2.1.8 * Continuing the previous exercise, prove that S is irreducible.

Exercise 2.1.9 * Continuing the previous exercise, prove that if T € F[a, b] is a bihomogeneous
polynomial which vanishes if (2.2) is compatible, then S divides 7.
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Exercise 2.1.10 * Continuing the previous exercise, prove that R = S.

Exercise 2.1.11 * Prove that R is isobaric of weight nm, i.e., if ag’ La) béo b s any mono-
mial appearing in R with a non—zero coefficient, then Y _, hi, + Y j_, hjn = nm.

Exercise 2.1.12 Let p, g be positive integers. Prove that if we make in R(a, b) a substitution of
the variables a; with homogeneous polynomials of degree i + p in some variables y and of the
variables b; with homogeneous polynomials of degree j + ¢ in the variables y, then R(a(y), b(y))
is a polynomial of degree nm + pm + gn in the variables y.

2.2 The Intersection of Two Plane Curves

Consider two affine or projective curves. We make here a first treatment of the
problem of determining their intersection. We will prove the following:

Theorem 2.2.1 The intersection of two plane affine or projective curves is the union
of a (may be empty) affine or projective curve and of a finite set of points.

An immediate consequence is:

Corollary 2.2.2 [n the Zariski topology, the proper closed subsets of the affine or
projective plane are the finite unions of curves and points.

We start by considering the affine case. Consider two curves Z(f), Z(g) with
non—constant f, g € A,. If f and g have a common factor £ of positive degree, the
curve Z(h) is contained in the intersection Z( f, g) of the two curves. Hence we can
assume that f and g have no non—constant common factor. We will prove that in this
case Z(f, g) is a finite set, and this will prove Theorem 2.2.1 in the affine case.

If f and g have degrees n and m respectively in x,, we have:

flr, x) =ao(x)xy + -+ ay(x1), gxi,x2) =bo(x)xy" + -+ by (x1),
with a; (x1), b;j(x1) € Ay, for1 <i <n,1 < j < m. Consider the polynomial
R(x1) = R(ao(x1), ..., an(x1), bo(x1), ..., by (x1)).

Lemma 2.2.3 The polynomial R(x;) is not zero.

Suppose, for the time being, that this Lemma holds. Then if (p, ¢) € Z(f, g),
we have R(p) = 0. Since R is not zero, p can assume at most finitely many values.
Exchanging the roles of x; and x,, we see that also ¢ can assume at most finitely
many values, and this implies that Z( f, ¢) is finite.

To prove Lemma 2.2.3, we need a preliminary. Let A be a UFD and let Q(A) be
its quotient field. If f € Q(A)[x] is non—zero, then we can write f as f =cy - f1,
withcy € Q(A) and f; € A[x], with the coefficients of f| having invertible greatest
common divisor, and this expression is unique up to multiplying ¢ s for an invertible
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element in A (see Exercise 2.2.7). Moreover cy, is invertible in A. If f € A[x] and
c is invertible, one says that f is primitive.

Lemma 2.2.4 If f, g € Q(A)[x] are not zero, then c sy = cycy.

Proof Onehas fg = cycy fig1, and we may assume c, = ¢, = 1. Hence it suffices
to prove that if f and g (polynomials in A[x]) are primitive, also f g is primitive. Let

f&x)=apx" +---+a,, gx)=byx"+---+b,,

with apby # 0. For every p € A non—invertible, p does not divide all the coefficients
of f. Hence we can consider the minimum integer r such that p does not divide a,.
Similarly, let s be the minimum integer such that p does not divide b;. Consider the
coefficient of x"*~"~5 in fg, which is

¢ =aybs + ar+lbsfl +---+ arflstrl + -

Then p does not divide a, b, but it divides all the other summands in ¢, hence p does
not divide c. This proves the assertion. ]

Theorem 2.2.5 (Gauss Lemma) If a polynomial f € Alx] factors as f = gh,
with g, h € Q(A)[x], then it factors in Alx] as f = crgihy, withcy € A, deg(g) =
deg(g;) and deg(h) = deg(hy).

Proof By Lemma 2.2.4, one has f = gh = c4cpgihy = crgihy and ¢y € A. (]
We can now give the:

Proof (of Lemma 2.2.3) Suppose, by contradiction, that R(x;) is zero. Then
f(x1, x2) and g(x;, x») would have a common factor of positive degree in k (x{)[x2].
But then, by Gauss Lemma 2.2.5, f, g would have a common factor in A,, against
the hypothesis. U

This ends the proof of Theorem 2.2.1 in the affine case. The projective case is a
consequence of the affine case, and can be left as an exercise (see Exercise 2.2.9).

We explicitely remark that, as a consequence of the results of this section, we
have the:

Theorem 2.2.6 (Bézout Theorem, weak form) Let Z, Z, be plane affine or projec-
tive curves, with equations f = 0, g = 0 respectively. If ¢ is the greatest common
divisor of f and g, then Z1 N\ Zy = Z(¢) U Z3 where Zj3 is a finite set.

Exercise 2.2.7 * Suppose A is a UFD. Prove existence and uniqueness (up to the product with
a non—zero element in Q(A)) of the expression f = cy fi for any non—zero f € Q(A)[x], with
cr € Q(A) and f1 € A[x], and the coefficients of f1 with invertible greatest common divisor.

Exercise 2.2.8 * Prove that if Z,(f) is an affine curve, its projective closure is Z,(3(f)).

Exercise 2.2.9 * Prove Theorem 2.2.1 in the projective case.
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2.3 Kronecker Elimination Method: One Variable

Consider the polynomials
fix) =aiox" +---+ap, i=1,....m (2.8)
on the field £ and the system
fix)=0, i=1,...,m. (2.9)

Let us set o = (a;j)1<i<m;1<j<n» Where «;; are indeterminates on k and a =

(@ij)1<i<m<j<n»
Consider the polynomials

Gi(x) = aox™ + -+, i=1,....m (2.10)

on F = k(). The polynomials in (2.10) are polynomials on the field F(cx), where F
is the fundamental subfield of k and reduce to the polynomials (2.8) if & = a, hence
the system

oix)=0, i=1,....,m (2.11)

reduces to the system (2.9) for « = a.
Let us set n = max{n;, | <i < m}. The system

NG ) =0, (=2 G0 =0, i=1...m (212

is equivalent to the system (2.11), i.e., the two systems have the same solutions, and,
for o = a, it reduces to the system

X" i) =0, 1-x)""fi(x)=0, i=1,...,m (2.13)

which is equivalent to the system (2.9).
We denote, for brevity, by

g(x)=0, i=1,....h (2.14)

the system (2.12). One has:

(i) the coefficients of the polynomials g; € F[x],withi =1, ..., h, are linear com-
binations of the coefficients of the polynomials in (2.10) with coefficients in
the fundamental subfield;

(ii) the polynomials g;, i = 1, ..., h, have the same degree n in x, and the set of
their leading coefficients (i.e., of the coefficients of x™) coincides with the one
{aio, 1 < i < m} of the polynomials (2.10);

(iii) the system (2.14), for o = a, is equivalent to the system (2.9).
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Letussetu = (uss)1<i<2,1<s<ch and wy, = () 1<s<hy 1 < ¢ < 2, where u, are inde-
terminates on F, and consider the two polynomials of degree n

h n
Ui(¥) =) ttrsgi(x) = ) Aux" 1< <2
s=1 =0
on the field F(u). Note that:

(iv) the coefficients \;; of U, are elements of F[cx, u];

(v) the leading coefficients of U;, U, are linear combinations, with coefficients
entries of u, of the leading coefficients of the polynomials g;(x),i =1, ..., h,
i.e., of the polynomials (2.10).

Set A = (Ae)1<r<2.1<e<n- Consider the Sylvester determinant R(A) of Uy, U,. By
(iv), R can be interpreted as an element in k[c, u]. Let R(u) be the polynomial
obtained by setting o« = a in R.

Lemma 2.3.1 R iszero ifand only if either the system (2.9) is compatible or a;o = 0,
1<i <m.

Proof The polynomial R is zero if and only if either the system

U,=0,=0 (2.15)

obtained by U; = U, = 0 for o = a, is compatible, or the leading coefficients of the
two polynomials appearing in it are zero. By (v), this happens if and only if ¢;o = 0,
for 1 <i < m (see (ii)). On the other hand if (2.9) is compatible, then (2.15) is
compatible as well, because of (iii). Conversely, if (2.15) is compatible, let £ be a
solution, which is an element of the algebraic closure of k(u). Of course £ belongs
to the intersection of the algebraic closures of k(u,), for 1 < ¢ < 2, and this is K.
Hence (2.9) is compatible. U

Let
Ry(a) €ekla], 1<g<N (2.16)

be the coefficients of R as a polynomial in the variables u. The polynomials (2.16)
are called the resultant polynomials of the polynomials (2.10). One has

R,@) =0, 1<g<N 2.17)

if and only if either (2.9) is compatible, or a;o = 0, for 1 < i < m. The expressions
R,(a) € k appearing in (2.17) are called the resultants of the system (2.9).

Proposition 2.3.2 The resultant polynomials (2.16) belong to the ideal generated
by the polynomials (2.10) in k[cx].
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Proof The assertion holds for m = 2 (see Proposition 2.1.3). If m > 2, again by
Proposition 2.1.3 we have a relation of the form R = AU, + BU,, with A, B €
k[, u]. The assertion follows by equating the coefficients of the entries of u in such
a relation. (]

2.4 Kronecker Elimination Method: More Variables

Next we extend the considerations of Sect. 2.4 to the case of more variables. Consider
a system of equations

filxt, ..., x) =0, 1<i<m (2.18)
with f; € k[x,...,x,] notzero and n > 2.
Let us set R = k[x,, ..., x,,] and let us consider the polynomials appearing in

(2.18) as elements in R[x;]. Hence the polynomials f; are of the form (2.8), where
X = x1, a;; € R and the leading coefficients a;( are non—zero in R. Hence the resul-
tant polynomials R, (a), 1 < g < N, can be regarded as elements R, (x, ..., x,) of
fR. They are called resultants of the polynomials appearing in (2.18) by the elimina-
tion of the variable x| and the system

Ry(x2,...,x,) =0, 1<g<N (2.19)

is called the resultant system of (2.18) obtained by eliminating the variable x,.

Lemma 2.4.1 One has R, =0 for 1 < q < N, if and only if the polynomials
appearing in (2.18) have a greatest common divisor of positive degree in x;.

Proof Let
D(x1, ..., %) =box! +...4+by,, bieR, 0<i<h (2.20)

be the greatest common divisor of the polynomials in (2.18), and assume that
h > 0 and by # 0. Let U be the non—empty set of A?K_l which is the complement
of Z(by, ajo)1<i<m- For any (ay, ..., a,) € U, there are solutions of the equation
D(xy,ay, ...,a,) = 0in xy, and these are also solution of the system

fitxi,az...,a,) =0, 1<i<m. 2.21)

Butthenthe R, (a2, ..., a,), 1 < g < N, that are the resultants of the system (2.21),
are all zero. Thus U € Z(R,)1<4<n» hence the polynomials R, (x, ..., x,) are zero
(see Exercise 1.6.5).

Conversely, if the polynomials R, (x2, . .., x,) are zero, the system (2.18) is com-
patible over Q(R), hence the polynomials appearing in (2.18) have a greatest com-
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mon divisor of positive degree in x; on Q($R)[x;]. The assertion follows by Gauss
Lemma (see Theorem 2.2.5). (I

The above Lemma enables us to discuss the compatibility of the system (2.18). Let
D be the greatest common divisor of the polynomials appearing in (2.18), and let us
set fi = Dg;, 1 <i <m.InAy wehave Z(fi, ..., fu) = Z(D)U Z(g1, ..., gm)-

As for the solutions of D = 0, if D is a constant, there is no solution. Then we
may assume that D depends on xy, i.e., that D is as in (2.20). Let U be the non—
empty subset of Aﬁ’{l which is the complement of Z = Z(b;)o<;i<n—1. For every
(az,...,ay) € U, there are solutions in x; of the equation D(xy,a,...,a,) =
0, hence this determines the points (a;, as, ..., a,) € Z(D) with (az,...,a,) €
U. If (a,...,a,) € ZN Z(by), then the polynomial D(xy,as,...,a,) is zero,
hence any (ay, az, ..., a,) with (az, ..., a,) € Z N Z(by) sits in Z(D). Finally, if
(az,...,ay) € Z\ (Z N Z(by)), then D(xy, ay, ..., a,) is a non—zero constant and
there is no point (a;, ay, ..., a,) in Z(D), with (az, ..., a,) € Z\ (Z N Z(by)). In
conclusion, the search for the solutions of D = 0 reduces to the search of the solutions
of equations with a lower set of variables.

It remains to determine Z(f, ..., fu), and we may assume that fi, ..., f,, are
coprime. Consider the resultant system (2.19) obtained from (2.18) by eliminating
the variable x;. By Lemma 2.4.1 this system is non—trivial, i.e., not all polynomials
appearing in it are zero. If (a;, as, . .., a,) is a solution of (2.18) then (as, ..., a,)
is a solution of (2.19). Conversely, if (as, ..., a,) is a solution of (2.19), then:

(i) either (ay, ..., a,) does not belong to Z(a;o)i1<i<m and then there is a finite
number of solutions (a;, as, ..., a,) of (2.18), whose first coordinate can be
obtained by solving equations in one variable;

(ii) or (ay, ..., a,) € Z(a;j0)1<i<m» then one has to solve the system in one variable
fitxy,az,...,a,) =0,1 < i < m, which could be non—compatible.

In any event, in order to understand Z(fi, ..., f,) one has to solve equations in
one variable and determine Z(R,)<,<n, Where we have a similar problem, but with
one less variable. Proceeding inductively, we see that in order to solve the system
(2.18) one has to compute resultants and solve equations in one variable.

Remark 2.4.2 A polynomial f € k[xy, ..., x,] of degree d is said to be regular in
the variable x; if in f the monomial xid appears with a non—zero coefficient. It is
clear that f is regular in x; if and only if its homogeneous component of degree d
is regular in x;, and this happens if and only if f;(0,...,0,1,0,...,0) % 0 (here 1
appears only in the i—th component).

Suppose f of degree d > 0 is non—regular in one of the variables, for instance in
x1,sothat f;(1,0,...,0) = 0. Suppose that k is an infinite field. Then there is some
pointa = (ay, ..., a,) € A} suchthata; # 0and f;(a) # 0 (apply Exercise 1.6.3).

Consider the affinity

. n n
o (X1,...,x0) €AY = (arxy, apxy + X, ..., apx) + X)) € AL,
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that is also an automorphism of k—vector spaces, and the homogeneous linear sub-
stitution of variables, which is a homogenous automorphism (see Exercises 1.3.11,
1.3.12)

T:9(X) € k[x1,...,x,] > g(06(X)) € k[x1,...,x,].

One has Z(f) = o~ '"(Z(7(f)). Hence studying the equation f =0 is equiva-
lent to studying the equation 7(f) = 0. Moreover 7(f) is regular in x;, since
7(f)a(1,0....,0) =7(f2)(1,0....,0) = fa(a) #0.

In conclusion: in order to study the compatibility of the system (2.18), we can
replace it with a system of equations on the same field k, such that at least one of the
polynomials appearing in it is regular with respect to at least one variable. Then the
system is said to be regular with respect to that variable.

Assuming the system (2.18) regular with respect to a variable, e.g., respect to xy,
simplifies the solution of the system. In fact in this case also the greatest common
divisor D of the polynomials in (2.18) is regular with respect to x|, hence the solution
of the equation D = 0 simplifies. Forall (ay, ..., a,) € AZ*I, there is a finite number
of solutions in x; of the equation D(xy, ay, ..., a,) = 0, and this determines all the
points of Z(D).

Moreover, if (ay, ..., a,) is a solution of the resultant system (2.19), then there
is a finite number of solutions (ay, ay, ..., a,) of (2.18), whose first coordinate can
be computed by solving equations in one variable, and all solutions of (2.18) can be
obtained in this way.

If k is not infinite, we can still proceed in the same way, substituting to k its
algebraic closure K, which is infinite. In this case we can still replace (2.18) with a
regular system in one variable, but it is now defined, in general, on K and not on %.

Exercise 2.4.3 Interpret geometrically the Kronecker elimination process in more variables over
an algebraically closed field.

2.5 Hilbert Nullstellensatz

Here we assume that the field k = K is algebraically closed. The crucial step for the
proof of the Hilbert Nullstellensatz is the following:

Theorem 2.5.1 (Incompatibility Criterion) The system (2.18) is incompatible if and
OI’lly ifA]K,n = (f17 s fm)-

Proof We prove only the non—trivial implication. By the discussion in Sect.2.4,
fi, ..., fm are coprime and the resultant system (2.19) is also incompatible.

If n = 1, the polynomials in (2.19) are constant and at least one of these constants
is not zero. The assertion follows from Proposition 2.3.2. Let us now proceed by
induction on n. Since (2.19) is incompatible, the polynomials appearing in it generate
A,_;. By Proposition 2.3.2 these polynomials sit in the ideal (fj, ..., fi,). The
assertion follows. ]
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We can now prove the:

Theorem 2.5.2 (Hilbert Nullstellensatz) If f € A, and I C A, is an ideal, such
that Z(I) € Z(f) then f € rad([).

Proof We can assume that f is not zero. Moreover we can assume that [ =
(f1, .-, fm). Let z be an indeterminate on Q(A,). Consider the system obtained
by adding to (2.18) the equation 1 — zf (x) = 0. This system is incompatible, and,
for the Incompatibility Criterion 2.5.1, we have an expression of the sort

1=AX, 2)(1 —zf(x)) + ZAi(x, 2) fi(x).
i=1
1

By setting z = ¥ and eliminating the denominators, which are powers of f(x), we

get the assertion. (]
As a consequence we have the:

Theorem 2.5.3 (Homogeneous Nullstellensatz) If f € S,, if f is homogeneous,
not constant and if I C S, is a homogeneous ideal such that Z,(1) € Z,(f) then
f erad(]).

Proof By the hypotheses, one has also Z,(I) € Z,(f) and the assertion follows by
applying the Hilbert Nullstellensatz. (I

Exercise 2.5.4 An ideal of a ring is said to be radical if it coincides with its radical. Prove that a
prime ideal is radical.

Exercise 2.5.5 * Prove that a maximal ideal is radical.

Exercise 2.5.6 * Prove that the radical of an ideal I of the ring A is the intersection of all prime
ideals of A that contain /.

Exercise 2.5.7 Let A be a ring. Prove that rad((0)) is the set of all nilpotent elements of A. This
ideal is called the nilradical of A and is denoted by nilrad(A).

2.6 Solutions of Some Exercises

2.1.6 Looking at the righmost expression of S, it is clear that S is a homogeneous polynomial of
degree m in the variables a, with coefficients polynomials in by and i, ..., §,,. We prove that
these coefficients can be expressed as homogeneous polynomials of degree n in the variables b,
with coefficients in IF. The number of these coefficients is N = (" J;m) To compute them we proceed
in the following way. Consider the identity

' [Tgten = =0 vy [T 18- (2.22)
j=1

i=1
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Give arbitrary values at the variables a in I, and accordingly to cvq, . . . , a, in the algebraic closure if
F. Then we get, on the right hand side of (2.22), a linear combination of the coefficients in question,
which equals the left hand side of (2.22) that is a homogeneous polynomial of degree n in the
variables b. Consider, as it is certainly possible, N linearly independent such relations. By solving
the corresponding linear system of equations we obtain the required expressions of the coefficients
in question.

2.1.7 We have

n
(a0, 0, ..., 0: bo, ... by) = af [ 9(0) = ag'b}s.
i=1
soin S there is the monomial g by, and this is the only one which contains agj'. Similarly S contains
the monomial (—1)""bgaj,’, which is the only one that contains bfj. Therefore S is prime with agby.
2.1.8 By Exercise 2.1.7, § is irreducible if and only if

S

S =
mipn
ag' by

:S(l,aﬂ,...,a;;l,b/,...,b,/n)

is irreducible in the variables a; = Z—(‘)b; = Z—g, withi = 1,...,nand j = 1, ..., m. Suppose that

S'=P.Q, with P’ a  non—constant  polynomial in  af,...,a,, b},...,
! ! / / / . . .
b,,. Express aj,...,a,,b|,...,b, as elementary symmetric functions in az,...,

oy, B1, ..., Bm. Then P’ is a symmetric function in ay, ..., ay, B1, ..., Bn. Since P’ divides

S =T]]]-8n

i=1j=1

then P’ contains one of the factors «; — 3 ;. But, since P’ is a symmetric function in
at, ..., 0, B1, ..., By, it contains all the factors a; — 3, which implies that Q' is constant,
hence §’ is irreducible, so it is S.

2.1.9 Suppose T is a bihomogeneous polynomial of degree p in the variables a and of degree ¢ in the
variables b, which vanishes if a; = 8;, withi € {1,...,n}, j € {1,..., m}. Then T = ﬁ is a
polynomial ina}, ..., aj,, b}, ..., b, hence it is a symmetric functionin av, ..., o, B, ..., Bm.
So T' is divisible by all factors oy; — 3}, hence it is divisible by S’. This implies that S divides 7.
2.1.10 By Exercise 2.1.9, § divides R, and since S and R have the same degree in the variables a
and b, they can differ only by a non—zero constant factor. This factor is 1, because both polynomials
contain the monomial ag' b}, with coefficient 1.

2.1.11 In R = S we make the following substitution &; = fc; and Bj =tfj,fori=1,...,n
and j =1, ..., m. This implies that ao, ..., a, and b, ..., b, are substituted by a; = t"ay, and
151 = l’bl, withh =0,...,nand/ =0, ..., m. With these substitutions R becomes

R=1"R
and we must have identically
R(ag, tai, ..., t"ay; by, thy, ..., t"by) = t""R(ag, ai, ..., an; bo, by, ..., by).

By comparing the degrees in ¢ the assertion follows.
2.1.12 If we make the substitution indicated in the exercise, then R becomes a form in the new
indeterminates y of degree
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D (h+piin+ Y U+ =

h=0 1=0
n n m m
= Zhih +pZih +le1 +qu1 =mn + pm +qn.
h=0 h=0 1=0 1=0

2.2.7 Find the minimum common denominator a of the coefficients of f. Then ¢y = % where b is
the greatest common divisor of the numerators of the coefficients of af € A[x].

2.2.8 It suffices to reduce to the case in which f is irreducible. One has Z,(f) € Z,(B8(f)),
hence Z,(f) S Z,(B(f)). If g is a homogeneous polynomial such that Z,(f) € Z,(g), then
Z,(f) € Zp(a(g)). Then f divides a(g), thus 3(f) divides 3(a(g)), that in turn divides g. In

conclusion Z,(8(f)) € Z,(g), hence Z,(f) = Z,(B(f)).

2.2.9If Z is a closed subset of P2 we have Z = Z; U Z,, with Z; = Z N Ug and Z» = Z N Hp.
Then Z, is a closed subset of P! = Hy hence either it is the whole of Hy or it is a finite set. Moreover
Z N Up is a closed subset of Uy = A2, hence it is the union of a finite subset and of an affine curve.
Then apply Exercise 2.2.8 to conlcude.

2.5.6 It is clear that rad(/) is contained in any prime ideal containing /. Conversely, let x be
an element contained in all prime ideals containing /. Consider the multiplicatively closed set
S={x",ne N={0}}.If SN I # @, thenx € rad(/) and we are done. So we argue by contradiction
and assume S N I = (. Let 7 be the set of all ideals J such that / € J and S N J = . The set J is
non—empty, because / € 7. Moreover 7 is partially ordered by the inclusion. If {J;},en is a chain
of ideals in 7, then | J,, J5 € J. By Zorn’s lemma, there is an ideal P € 7 which is maximal by
the inclusion. We claim that P is prime. Indeed, suppose the contrary holds, i.e., we have ab € P
buta,b ¢ P. Then (a, P) and (b, P) properly contain P, so they do not lie in 7. Since they both
contain I, this means that (a, P) N S # W and (b, P) N S # @. This means we have relations of the
sort

x"=ya+p, x"=zb+gq, with p,q € P.

Multiplying the above relations and taking into account that ab € P, we deduce that "™ € P, a
contradiction. Then P is prime, but this implies that x € P, again a contradiction.



Chapter 3 ®)
Zariski Closed Subsets and Ideals in the gesey
Polynomials Ring

3.1 Ideals and Coordinate Rings

Let X be asubset of A”. We will denote by Z, (X) the ideal of A, of all the polynomials
f € Aysuchthat X € Z,(f). ThenZ,(X) is called the ideal of X. Thering A(X) :=
A,/Z,(X) is called the (affine) coordinate ring of X. Similarly, if X is a subset of
P" we define the ideal of X to be the homogeneous ideal Z,(X) of S, which is
generated by all homogeneous polynomials f € S, such that X C Z,(f). The ring
S(X) := S,/Z,(X) is called the (homogeneous) coordinate ring of X.

Proposition 3.1.1 One has:

(a) if F1, F» are subsets of A, such that F\ C F, then Z,(F,) C Z,(F);
(b) if X1, X, are subsets of A" such that X, C X, then Z,(X,) C Z,(Xy);
(c) if X1, X, are subsets of A", one has T,(X1 U X,) = Z,(X) NZ,(X>,);
(d) For all subsets X of A", one has Z,(Z,(X)) = X.

Analogous properties hold for subsets of P" and of S,,.

Proof Properties (a), (b) and (c) are obvious and we leave the proof to the reader.
As for (d), note that X C Z,(Z,(X)), hence X C Z,(Z,(X)). Let now W = Z,(T)
be a closed subset of A", with 7 an ideal of A,,, and suppose that X C W. From (b)
we have Z,(W) =1,(Z,(Z)) € Z,(X),hence Z € 7,(Z,(2)) C Z,(X). By (a) we
have W = Z,(Z) 2 Z,(Z,(X)), whence the assertion follows. O

The following is an immediate consequence of Hilbert Nullstellensatz 2.5.2:
Corollary 3.1.2 IfT is an ideal of A, thenrad(l) = Z,(Z,(T)).
Hence the map
I,: X e Ay — Zy(X) € R(Ay),
is a bijection of A,, on the set 93(A,) of radical ideals of A,,. The same does not hold
in the projective case, as the following remark shows.
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Remark 3.1.3 The ambient is the projective space P". The irrelevant ideal S. of
S, is maximal, hence it is radical (see Exercise 2.5.5). However Z,(Z,(S-0)) =
Z,(¥) = S,. Hence Corollary 3.1.2 does not hold in the projective setting and the
map

Z,: X € Py = L,(X) € R(Sp)

is not surjective on the set of radical ideals.

Lemma 3.1.4 Let T C S, be a homogeneous ideal. The following are equivalent:

(a) Z,(I) =9;
(b) eitherrad(Z) = S, orrad(Z) = S-o;
(c) there is a positive integer d such that S, 4  T.

Proof 1t is clear that Z,(Z) = p(Z,(Z \ {0}), where p : A"\ {0} — P" is, as
usual, the natural projection. Hence if (a) holds, then either Z,(Z) =@ or Z,(Z) =
{0}. From this, and from Corollary 3.1.2, (b) follows. Suppose then (b) holds. If
rad(Z) = S, then Z = §,, and (c) holds. If rad(Z) = S., there are positive integers
10y .+ vsin suchthatx;’ eZfor j=0,...,n.Ifd > ip+---+i, then any mono-
mial of degree d in x, ..., x, belongs to Z, so (c) holds. It is finally clear that (c)
implies (a).

In order to obtain, in the projective case, a result similar to Corollary 3.1.2, one
has to use the Homogeneous Nullstellensatz 2.5.3, which implies the following:

Corollary 3.1.5 If1 C S, is a homogeneous ideal with Z ,(1) # @, then rad(Z) =
Ip(Zp(D)).

From this it follows that the map Z, is a bijection between Py and the set of
radical homogeneous ideals of S, which are different from the irrelevant ideal S-.
Exercise 3.1.6 Let f be a non—constant polynomial which has the distinct irreducible factors

floooe, fn. Prove that rad(f) = (f1--- fn). Hence the ideal of Z = Z,(f) is (f1--- fn). The
same in the projective setting.

Exercise 3.1.7 Let Z C A” be a closed set and let Z be its projective closure. Prove that Z » (Z)is
the homogeneous ideal generated by 8(Z,(Z)). In particular if Z = Z,(f) C A" is a hypersurface,
its projective closure Z is the hypersurface with equation S(f) = 0.

Exercise 3.1.8 Let Z be a subspace of P" of codimension ¢ < n + landlet Z = Z,(f1, ..., fc)
with f1, ..., fc independent linear forms. Prove that Z,(Z) = (f1, ..., fe). Prove an analogous
result for affine subspaces of A”.

3.2 Examples

3.2.1 Maximal Ideals

Let m be a maximal ideal of A,. By Proposition 3.1.1, Z,(m) is a minimal closed
subset of A", which is not empty by Corollary 3.1.2. Hence Z,(m) is a point P =
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(ai,...,a,). Since m is radical (see Exercise 2.5.5), one has m = Z,(Z,(m)) =
IZ.({P}) = (xy —ay, ..., x, — a,). The last equality follows from the fact that, for
every polynomial f € A,, one has f(x) = f(a+ (x —a)) = f(a) + g(x), where
gx) e (xy—ay,...,x, —ay).

Exercise 3.2.1 Consider the two polynomials
f(x1,x2) =x12 +x§ -1, glx,x)=x—1.

Prove that Z,(Z, (fa g)) 7é (fv 8-

3.2.2 The Twisted Cubic

Let Z c A® be the subset Z = {(z, 12, %), t € K}, i.e., the image of the map
¢:teA - 1,121 e A3,

This application is clearly a homeomorphism of A! onto Z. Since Z = Z,(x? —
X2, x13 — x3), Z is a closed subset of A3 that is called the affine twisted cubic. Set
f(x1,x2,x3) = )cl2 — X2, g(x1, X2, X3) = x13 — x3.One has A3/(f, g) = Ay, the iso-
morphism being the following

@ [h(x1, x2,x3)] € A3/(f, &) — h(x,x*,x°) € A

where we denoted by [/ (x1, x2, x3)] the class of h(x1, x2, x3) € A3 in A3z/(f, g): the
reader will verify that ¢ is well defined and is indeed an isomorphism (see Exercise
3.2.2). Then the ideal (f, g) is prime, hence it is radical (see Exercise 2.5.5), and
therefore Z,(Z) = (f, g).

Consider now the map

VoD pl e P 23 0%, au?, 1] e PP

which is a homeomorphism of P! onto its image. If we identify, as usual, A® with
the open subset Uy of P? (see Sect.1.5), we have ¥ (P') = Z U {P}, where P =
[0,0,0,1]. If & € S3 is a homogeneous polynomial such that Z C Z,(h), one has
h(l,t,t,t3) = Oforallt € K, hence one has h (A3, A, Ap?, ) = Oforallu € K
and A € K\ {0}, thusforall A € K.Hence Z U {P} C Z.On the other hand ¢ (P') =
ZU{P} = Z,(fo, f1, f2), with

2 2
Jo=x1x3 — x5, fi=x1x2—x0x3, Jf2 = Xox2 — X7,

is a projective closed subset, that is called the projective twisted cubic. It follows that
v(PHY=2ZuU{P}=Z.
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The equations that define Z are obtained by equating to zero the order two minors

of the matrix
A= (’“0 % xz) . (3.1)
X1 X2 X3

One also says that Z is defined by the matrix equation rank (A) < 2. B
Note that, though f and g generate Z,(Z), B(f) and B(g) do not generate Z,(Z),

actually 7+ Z,(B(f), B(g)). Indeed it is easy to check that Z,(B(f), B(g)) =
Z U Z,(xo, X1)-

More generally, one defines affine twisted cubic [resp. projective twisted cubic]
any image of Z [resp. of Z] via an affinity [resp. a projectivity].

Exercise 3.2.2 Let f(x1, x2, x3) = xl2 — x2, g(x1, X2, x3) = x13 — x3. Prove that the map
¢ [h(x1, x2, x3)] € As/(f, @) = hix, x*,x7) € Ay
is well defined and it is an isomorphism.

Exercise 3.2.3 * Prove that the minors of the matrix A in (3.1) generate the ideal of the projective
twisted cubic.

Exercise 3.2.4 Prove that the (affine or projective) twisted cubic is non—degenerate, namely it is
not contained in any plane (of A3 or P3).

Exercise 3.2.5 Prove that any plane of P? intersects the twisted cubic in at most three distinct
points.

Exercise 3.2.6 Prove that there is no line in P? intersecting the twisted cubic in more than two
distinct points.

Exercise 3.2.7 Prove that an affine twisted cubic of A3 is the set of points of A® of the form
X; = a; + a1t +a,~2t2 +a,~3t3, tekK, i=1,2,3,
where the matrix (a;;);, j=1,2,3 is of maximal rank.
Exercise 3.2.8 Prove that a projective twisted cubic of P? is the set of points of P* of the form
xi = aior +anAp + apip® +anp’, uleP!, i=0,1,2,3,

where the matrix (a;;);, j=0,1,2,3 is of maximal rank, defined up to a multiplicative constant.

3.2.3 Cones

Let Z € P* be a non—empty closed subset. The subset C(Z) = p~'(Z) U {0} of
A" is called the affine cone on Z with vertex 0. Note that C(Z) is a closed subset
of A"*!. Indeed, if Z = Z,(fi1,..., fu), with fi, ..., fu € S, homogeneous, then
C(Z) = Zs(f1,..., fw)-Itisclearthat Z,(Z) € Z,(C(Z)), butsince Z,(Z,(Z2)) =
C(Z) and since Z,(Z) is radical, we actually have 7,(Z) = Z,(C(2)).



3.2 Examples 43

Now think of A"*! as embedded in P"*!, so that P" can be regarded as the
hyperplane at infinity of A"*!. Then we can consider the projective closure C(Z),
which is closed in P**! and is called the projective cone on Z with vertex 0. Of course
one has C(Z) NP" = C(Z)o = Z. Moreover 1,(C(Z)) = 1,(Z), where the latter
is considered as an ideal of S, ;.

More generally, any transformed of an affine or projective cone as above via an
affinity or a projectivity respectively, is still called a cone.

Let finally Z be any subset of P". Set C(Z) = p~'(Z) U {0}. If C(Z) is closed
in A", then Z is closed in P". In fact, it is clear that Z = C(Z) .

From the above considerations it follows that the map p : A"*!\ {0} — P"is con-
tinuous, and actually the Zariski topology of P" is the quotient topology of the Zariski
topology of A"+!\ {0} with respect to the equivalence relation of proportionality.

Exercise 3.2.9 * Consider in P" a hypersurface V with equation f(xy, ..., x,—1) = 0 with f not
depending on x,,. Prove that it is a cone with vertex P = [0, ..., 0, 1].

Exercise 3.2.10 * Consider any quadric X in P" whose matrix A has rank smaller than n + 1.
Prove that X is a cone with vertex any point P = [p] such thatp - A = 0.

3.3 Solutions of Some Exercises

3.1.7If f € I,,(Z), one has a(f) € Z,(Z). On the other hand B(«(f)) divides f.
3.1.8 It suffices to prove that (f1,..., f.) is a radical ideal. Complete fi,..., fo to a basis
f1s -y fug1 of S, 1. Consider the automorphism f : S, — S, of a K—algebra, which is obtained
by extending by linearity the automorphism f of S; such that f(x;) = f;,fori =1,...,n+ 1.
Then f maps the radical ideal (xi, ..., x;) to (f1,..., fc), and this proves that (f1,..., f¢) is
radical.

The affine case is analogous.
3.2.3 What one has to prove is that, for every integer d > 2, the map of K—vector spaces

ba:(80.81,82) € S30—2® S30-2® S30-2 — gofo+ g fi+gfr€Ip(Za

is surjective.

Let K;—» be the kernel of ¢,: the elements in K;_, are called syzygies of degree d — 2 of
(fo, f1, f2).Itis clear thata; = (xo, x1, x2) and ap = (x1, x2, x3) are syzygies of degree 1. Hence
for every positive integer d we have a linear map

Yq:(a,b) € S34-3® 834-3 — aa; +bay € Ky—.
Let us prove that ¥4 is an isomorphism. Let (go, g1, 82) € Kg—2. Then we have

80 81 82
xp x1 x2| =0 (3.2)

X1 X2 X3

hence the rows of the determinant appearing in (3.2) are linearly dependent on K(xo, x1, x2, x3).
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Since the rows of A are linearly independent, because fy, f1, f> are not zero, there are rational
functions Z—(‘), Z—(‘) € K(xg, x1, x2, x3), with GCD(ag, a;) = GCD(bg, by) = 1, such that

ay by a1boxg + agbx1
go=—x0+—x=———

ap bo aopbg

aj by ayboxy + agbyxz
g1l=—x1+—x=—-—"7"-——-

ao bo aobo

aj by arboxy + apb1x3
H=—X+—X3=—.

aop bo apbo

Since the left hand sides are polynomials, then in the right hand sides the numerator is divided by
the denominator. If p is a prime divisor of ag, then p has to divide boxg, box1, box2, hence p divides
bp. By iterating this argument and exchanging the roles of ap and by, we see that we may assume
that ag = bg. Hence we have
aixo + b1x

by
aixi + bixy

bo
ayxz +bixz

bo

80 =

82 =
thus by divides
ap = arxg + b1xg
o] = ayx; + bixy
oy = ayxy + bixs.
Then bq divides
xiop — Xoat1 = —b1 f>
X200 — X1 = b1 fi
X201 — X100 = —b1 fo

and since fo, f1, f> are irreducible and distinct, we have that by divides b, hence we may assume
that bg = ag = 1.

Setnow a = a1 and b = b; and let us prove that (a, b) € S3,4-3 ® S3,4—3. Indeed, ifi #d —3
and a;, b; are the homogeneous components of degree i of a and b, from the relations

8o = axo + bx;
g1 =ax| +bx;
g =axy +bxz

we get that
aijxo+bix; =0
aixy +bix; =0
ajxy +bix3 =0

which, arguing as above, implies that a;, b; = 0. All this proves the bijectivity of the map ;. Then

we have
. d+1 d
dim(im(yy)) = 3( 3 ) - 2(3).

Let us compute the dimension of Z), (Z)4. Consider, for every positive integer, the K-linear map

ra: f(x0,x1,%2,%3) € S3.0 — f3, 220, ap?, 1) € Si34
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which is easily proven to be surjective and its kernel is Z, P(Z )d. One has then

dim(Z,(Z)q) = (d ;r 3) —@d+1) = 3<d ;r 1) — 2(‘31

whence the surjectivity of ¥4 follows.

)
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Chapter 4 ®
Some Topological Properties ez

4.1 Irreducible Sets

Let X be a topological space. A subset of X is said to be irreducible if it cannot
be expressed as the union of two proper closed subsets. A subset of X which is not
irreucible is said to be reducible. The empty set is considered to be reducile.

Example 4.1.1 Every non—empty subset U of P! is irreducible: indeed, U is infinite
and the only closed subsets of P! are finite. The only irreducible proper closed subsets
of P! are the points. The same for A!.

Example 4.1.2 If Z; € A" and Z, C A’ are closed irreducible subsets, then Z; x
Z, is closed (see Sect. 1.6.6) and irreducible.

Indeed, suppose we have Z; x Z, = W; U W,, with W;, W, closed subsets. For
every point P € Z; we have that {P} x Z, is homeomorphic to Z, (see Exercise
1.6.35), so it is closed and irreducible. Then either {P} x Z, C W or {P} x Z, C
W,. Let us set

Zl’iI{Pezll{P}X22gWi}, for i=1,2,
and let us prove that Z; 1, Z, , are closed subsets of Z;. For every point Q € Z,, set
ZWQ)={(PeZ :(P,Q)eW)}, for i=1,2.

We have ,
(Zy x{QHNW; = Z1(Q) x {Q}, for i=1,2,

hence Z’i(Q) is closed fori = 1, 2. Since

Zii= ﬂ Zi(Q), for i=1,2,

Q€Z,
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we have that Z; ; is closed, for i = 1, 2. Since Z, is irreducible, we have either
Zy = Z,,or Zy = Z), and therefore, either Z| x Z, = W or Z; x Z, = W,.

Proposition 4.1.3 Let X be a topological space and let Y be a subset of X. Then:

(a) Y isirreducible if and only if for every pair of distinct points Py, P, of Y, there
is an irreducible subset of Y containing Py and P;

(b) ifY isirreducible and U is a non—empty open subset of Y, then U is dense in Y ;

(c) Y is irreducible if and only if Y is irreducible;

(d) Y isirreducible if and only if every non—empty open subset of Y is irreducible.

Proof Part (a) is obvious and can be left to the reader.

Let us prove (b). If U were not dense, we would have ¥ = UU Y —U),withU
and Y — U proper closed subsets of Y, a contradiction.

Let us prove (c). Suppose first Y irreducible. Assume ¥ = Y; U Y,, with ¥}, V>
closed subsets. Since Y = (Y NY;) U (Y NY,), we must have either Y C Yy orY C
Y, and therefore either Y C Y or Y C Y>. Suppose, conversely, that Y isirreducible,
and assume Y = Y, U Y,, with Yy, ¥, proper closed subsets of Y. Then there are
closed subsets X, X, of X suchthatY; =Y N X;,fori =1,2. ThenY C X; U X>.
Thus ¥ € X, U X, = X; U X,. This implies that either Y C X, or Y C X,, hence
either Y C X or Y C X, and therefore either Y = Y, or Y = Y,.

Finally, let us prove (d). One implication is trivial. As for the other, assume Y is
irreducible and let U C Y be a non—empty open subset. Let Y7, Y, closed subsets of
YsuchthatU = (UNY;)U (U NY,).ThenwehaveY = (Y \ U) U (Y; UY>) and,
by the irreducibility of Y, we have either Y = Y; or Y = Y;, hence either U C Y, or
UCY,. O

Example 4.1.4 Every non—empty open subset of P" is irreducible. By (d) of Propo-
sition 4.1.3, it suffices to prove that P" is irreducible. To prove this apply (a) of
Proposition 4.1.3: given two distinct points Py, P, of P", there is the line P; VvV P,
homeomorphic to P! hence irreducible by Example 4.1.1, containing P; and P.

The following proposition gives an irreducibility criterion for affine or projective
closed subsets:

Proposition 4.1.5 One has:

(a) Z C A" isa closed irreducible non—empty subset if and only if Z,(Z) is a prime
proper ideal, i.e., if and only if A(Z) is a domain;

(b) Z C P" is aclosed irreducible non—empty subset if and only if T,(Z) is a prime
proper ideal, i.e., if and only if S(Z) is a domain.

Proof We prove only (a), the proof of (b) being analogous. Let Z € A" be a closed
irreducible non—empty subset. If fg € 7,(Z), then (fg) € Z,(Z) and therefore Z =
Z.,(Z,(Z2)) C Z,(fg) =Z,(f)U Z,(g), hence either Z C Z,(f) or Z C Z,(g),
thus either f € Z,(Z) or g € Z,(Z).

Conversely, if Z,(Z) is a prime proper ideal and Z = Z; U Z, with Z;, Z, closed
subsets, then Z,(Z2) =Z1,(Z,) N1,(Z;), so either Z,(Z) =1,(Z,) or Z,(Z) =
T.(Z>), hence either Z = Z| or Z = Z,. [l
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In what follows we will call quasi—projective variety (defined over the field K), or
simply variety, every locally closed irreducible subset of a projective space, i.e., an
irreducible set which is the intersection of a closed and an open subset of a projective
space. We will call projective variety an irreducible closed subset of a projective
space, affine variety an irreducible closed subset of an affine space.

Exercise 4.1.6 Prove that X is irreducible if and only if there is no expression of the sort Uy N Uy =
@, with Uy, U, open, non—empty subsets of X.

Exercise 4.1.7 * Let X, Y be topological spaces, assume X is irreducible and that f : X — Y is
a continuous surjective map. Prove that Y is irreducible.

Exercise 4.1.8 Prove that the projective [resp. affine] subspaces of a projective space [resp. of an
affine space] are irreducible.

Exercise 4.1.9 Prove that an affine or projective twisted cubic is irreducible.

Exercise 4.1.10 Let Z C P" be a closed set. Prove that Z is irreducible if and only if C(Z) [resp.
C(Z)] is irreducible.

Exercise 4.1.11 Let Z C P" be ahypersurface of A" or of P"*, with reduced equation f} - - - f, = 0.
Prove that Z is irreducible if and only if # = 1. The hypersurfaces with equations f; = 0, for
i =1,...,h,are called the irreducible components of Z.

4.2 Noetherian Spaces

A topological space X is called a noetherian space if it verifies the condition of
descending chains of closed subsets, i.e., for every chain of closed subsets

X12X,D...

there is an integer r such that X,, = X, foralln > r.

The following proposition relates the notion of irreducibility with noetherianity,
and extends to any noetherian space the decomposition in irreducible components
that we saw for affine and projective hypersurfaces in Exercise 4.1.11:

Theorem 4.2.1 Let X be a noetherian topological space and let Y be a non—empty
closed subset of X. Then Y can be expressed as a finite union Y =Y, U...UY),
of closed irreducible subsets. This decomposition is unique under the condition of
being irredundant, i.e., one has Y; L Y;, for every i # j and i, j € {1,..., h}. In
this case Yy, ..., Yy, are called the irreducible components of Y.

Proof First we prove the existence of the decomposition of Y. If the assertion were
false, then Y would be reducible and therefore we would have ¥ = Y; U Y. with
Yy, Y| proper closed subsets of ¥ and the assertion would be false either for ¥; or
for Y|. Let us suppose it would be false for Y;. By repeating the argument we would
construct a sequence of closed subsets Y 2 Y, 2 Y, 2 .. .,and this is in contradiction
with the noetherianity of X.
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k

Next let us prove the uniqueness. Let ¥ = Uf’zl Yiand Y = i1 Y; be two
irredundant decompositions. One has
k
vi=viny =Jwn,

j=1
hence there exists a j € {1, ..., k} such that ¥; C Yj’.. Similarly there exists a i’ €
{1, ..., h} such that ij C Yy, hence Y; C Y; C Y. Then the irredundancy of ¥ =
Uf.‘zl Y; implies i =i’ and ¥; = Y. This proves the assertion. |

Exercise 4.2.2 Prove that X is noetherian if and only if it verifies the condition of ascending open
subsets.

Exercise 4.2.3 Prove that affine and projective spaces are noetherian.
Exercise 4.2.4 Prove that any subspace of a noetherian space is noetherian.
Exercise 4.2.5 Prove that any noetherian space is compact.

Exercise 4.2.6 Prove that the irreducible components of Z, ()cl2 — X0X2, x? — xox3) are the skew
cubic and the line xg = x; = 0 (see Sect. 3.2.2). This example shows that, in general, the intersection
of two varieties is not a variety. Indeed, the two polynomials x12 — X0X2, x? — xox3 are irreducible.

4.3 Topological Dimension

Let X be a topological space. We define the topological dimension, denoted by
dimp (X), of X as the supremum of the integers n such that there is a chain

20S215...C 2, 4.1)

of distinct closed irreducible subsets of X. Itis clear thatif X is noetherian, dim, (X),
is the maximum of the topological dimension of its irreducible components. A noethe-
rian space X is said to be pure if all of its irreducible components have the same
topological dimension. It is also clear that if X is irreducible and noetherian and
every point of X is closed then:

(a) dimp(X) = 0if and only if X consists of only one point;
(b) dimy,,(X) = 1if and only if the proper closed subsets are its finite subsets.

We will call curve any pure closed algebraic set of topological dimension 1. For
example the twisted cubics are irreducible curves.

Proposition 4.3.1 Let X be a topological space and Y a subset of X. Then:

(a) dimyp(Y) < dimop(X); hence if dimyp(X) is finite, the same happens for
dimyop (Y), and dimye, (X) — dimyp (Y) 2 0 is called the (topological) codimen-
sion of Y in X and it is denoted by codimp x (Y);
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(b) if {U;}icr is an open covering of X, then dimyp(X) = sup; ¢, {dimp (U;)}s
(c) if X is irreducible, dim, (X) is finite, Y is closed in X and codimp x(Y) = 0,
then X =Y.

Proof Part (a) can be left as an exercise for the reader (look at Exercise 4.2.4: with
the notation of its solution, note that if Y; is irreducible, we can assume that also X;
is irreducible, fori =1, 2).

Let us prove (b). It follows from (a) and from the fact that if (4.1) is a chain
of distinct irreducible closed subsets of X and if P € Z, there is an i € I such
that P € U;. Then for all j € {0,...,n}, one has U; N Z; # ). Moreover by the
irreducibility of Z; 1, onehas U;N Z; S Ui N Z; 4, because U; N Z; = Z;.

Let us prove (c). If (4.1) is a maximal chain of distinct irreducible closed subsets
of Y, it is also a maximal chain of distinct irreducible closed subsets of X. Then
Z,=XCYandY = X. O

Let AbearingandZ C A aprime ideal. We call height of 7, denoted by height (1),
the supremum of the integers n such that there is a chain
Ty € I, ; .G, =1
of distinct prime ideals of A. One calls Krull dimension of A, denoted by dimg (A),

the supremum of heights of its prime ideals. From Propositions 3.1.1 and 4.1.5 it
follows that if Z is an affine closed subset one has dim,,(Z) = dimg (A(Z)).

Exercise 4.3.2 Prove that affine and projective lines have topological dimension 1.
Exercise 4.3.3 Prove that (affine or projective) plane curves have topological dimension 1.
Exercise 4.3.4 Prove that (affine or projective) planes have topological dimension 2.
Exercise 4.3.5 Prove that dimop(A") = dimyop (P") and that dimop (A") > n.

Exercise 4.3.6 Prove that any bijection between two curves is a homeomorphism.

4.4 Solutions of Some Exercises

4.2.3 By Proposition 3.1.1, the noetherianity of affine and projective spaces is equivalent to the
noetherianity of the ring of polynomials.

4.2.4 It follows from the following simple remark. Let X be a topological space and Y a subset
of X. Let Y| 2 Y, be closed subsets of Y. Then there are closed subsets X 2 X, of X, such that
Yl' ZYHX,',fOI‘i = 1,2‘

4.2.5 Let {U; }ie be an open covering of X and suppose we cannot extract from it a finite covering.
Then there would be a sequence {i, },en of elements of I and a sequence {P, },eN of points of X
such that P, ¢ UZ:] U;,, whereas P,_| € UZ:1 U;, . This contradicts the condition of ascending
chains of open subsets.

4.3.4 Apply Corollary 2.2.2.

4.3.5 To prove that dimyop (A" ) = dimyep (P") apply Proposition4.3.1, (b). To prove that dimg,, (A") >
n, note that there is a chain of length n + 1 of distinct closed irreducible subsets of A” formed by
affine subspaces.



Chapter 5 ®)
Regular and Rational Functions e

5.1 Regular Functions

Let V € P” be a locally closed subset. Let f : V — K be a function and let P be a
point of V. We will say that f is regular at P if there is an open neighborhood U of
P in V and there are homogeneous polynomials of the same degree g, h € S, with
Z,(h) N U = ¥, such that the restriction of f to U coincides with the restriction of
% to U (note that %, as a function of P" \ Z,(h) to K, is well defined). We will say
that f is regular in V if it is regular at any point of V. Note that any set V which is
locally closed in A" is also locally closed in P", if we consider A" as identified with
the open set Uy of P". The reader will verify that in this case a function f : V — K
is regular at P € V if and only if there is an open neighborhood U of P in V and
there are polynomials g, h € A,, with Z,(h) N U = ¥ such that f coincides with the
restriction of % to U (see Exercise5.1.2). Note that constant functions are regular.

Let V C P be a locally closed subset and let U be a non—empty open subset of
V. We will denote by Oy (U) (or simply by O(U) if V is intended), the set of regular
functions on U. If f, g € O(U), the functions

fH+g:PeU— f(P)+gP)eK, fg:PelU— f(P) g(P)ekK,

are regular. Then O(U), with the above two operations, is a K—algebra which is
called the algebra of regular functions in U. Let U’ C U be two open subsets of V.
There is a natural map

rg s f e OU) — fiyr € OWU),

where fjy is the restriction of f to U’. This map is called the restriction map and it
is a homomorphism of K-algebras. If f € O(U) we will write Zy (f) (or Z(f) if
U is intended) to denote f ~1(0), and we will call Zy (f) the zero locus of f in U.
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Proposition 5.1.1 One has:

(a) if V. C P"isalocally closed subset and f € O(V), then f is continuous in the
Zariski topologies of V and of K = A';

(b) if V is irreducible and f, g € O(V) are such that there is a non—empty open
subset of V such that fiy = gy, then f = g.

Proof To prove (a) it suffices to prove that for all a € K, f~'(a) = Zy(f — a) is
closed in V. This can be verified locally (see Exercise5.1.3). Let P € V and let U
be an open neighborhood of P in V such that f —a = ¥ on U, with g, h € S, of
the same degree and Z,(h) N U = @. Then Zy(f —a) N U = Z,(g) N U, which is
closed in U.

As for (b), note that, by part (a), Zy (f — g) is closed and it contains the open
dense subset U (see Proposition 4.1.3, (b)). O

By Proposition5.1.1,if f € O(V)then Zy (f)isclosedand Uy (f) = Z \ Zy (f)
(alsodenoted by U ( f) if V isintended) is an open subset, which is called the principal
1

open set associated to f. In U (f) the function 7 is well defined and regular.

Exercise 5.1.2 Let V be alocally closed subset of A”. Prove that a function f : V — Kis regular
in P € V if and only if there is an open neighborhood U of P in V and there are polynomials
g,h € A,, with Z,(h) N U = @ such that f coincides with the restriction of % toU.

Exercise 5.1.3 * Let X be a topological space and Y C X. Prove that Y is closed if and only if for
any point P € X there is an open neighborhood U of P in X such that U N'Y is closed in U.

Exercise 5.1.4 Let V be a quasi—projective variety and W a subvariety of V. Prove that if f €
O(V), then fijw € O(W). Prove that the map f € O(V) — fiw € O(W) is a homomorphism of
K-algebras called restriction map.

Exercise 5.1.5 Let V be a quasi—projective variety. Prove that O(V) is a domain.

Exercise 5.1.6 * Let V be a quasi—projective variety. Prove that the principal open subsets of V
are a basis for the Zariski topology of V.

5.2 Rational Functions

Let V be a quasi—projective variety. Let us consider the set (V') formed by all pairs
(U, f) where U is a non—empty open subset of V and f € O(U). Let us define in
KC(V) the following relation R

U, HYRW', f) ifandonlyif fiynw = fiyny:-

Note that, since V is irreducible, U N U’ # ¥. The relation R is an equivalence
relation (see Exercise 5.2.1). We will denote by K (V) the quotient set (V) /R. Any
element of K (V) is called a rational function on V. The R—equivalence class of the
pair (U, f) is denoted by [U, f], or with f if U is intended.
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Now we will endow K (V) with the structure of a field, which will be called the
field of rational functions of V. Let [U, f] and [U’, f'] be elements of K (V). We
define

W, F1+1U, f1=1W0N0U", fynur + Fpgd W, F1-W0 F1=10N0U, funur - flap)-

By Proposition5.1.1, (b), these definitions are well posed and K(V)(+, -) is an
extension of K. The immersion of K in K (V) is given by

acK— [V,a]l e K(V).

The inverse of [U, f] # 0 is given by [U, IV =[U\ Zy(f), lf]. Note that for
every non—empty open subset U of V, K (V) is an extension of the algebra O(U),
where the immersion of O(U) in K (V) is given by

ry: feOWU) — [U, fle K(V).

Exercise 5.2.1 * Prove that the relation R in /C(V') is an equivalence relation.

Exercise 5.2.2 * Let V be a quasi-projective variety and let [U, f] be a rational function on V.
Prove that there exists a pair (U, f) € (V) such tllat [U, f1=1U, f] and for each pair (U, f') €
K (V) such that [U’, f'1 = [U, f1, one has U’ C U. The open set U is called the definition set of
[, 11

5.3 Local Rings

In this section we introduce the concept of a local ring, which will play an important
role in the sequel.

A ring A is called a local ring if it has a unique maximal ideal m, and we will
express this by saying that (A, m) is a local ring. The ring A/m has no non—trivial
ideals, hence it is a field, called the residue field of (A, m).

Proposition 5.3.1 Let A be a ring and m C A be an ideal. Then (A, m) is a local
ring if and only if A \ m coincides with the set of invertible elements in A.

Proof Suppose (A, m) is local. Then if x € A is invertible, then (x) = A and there-
fore x ¢ m. On the other hand, if x ¢ m, then (x) is not contained inm hence (x) = A
and x is invertible.

Conversely, assume that A \ m coincides with the set of invertible elements in A.
IfZ C Aisanideal of A, no element of 7 is invertible, hence Z € m, hence m is the
maximal ideal of A. |

There is a standard construction, called localization, producing local rings starting
with any ring.
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Let A be aring and let G be a subset of A which is multiplicatively closed, i.e., if
s,t € G, then st € &. Moreover assume that S contains 1 and does not contain 0.
In A x G define the following relation:

(a,s) = (b,t) ifandonlyifthereisa u € & suchthat u(at —bs) =0.

This is an equivalence relation. The equivalence class of (a, s) is usually denoted
by ¢ and the set A x &/ =is denoted by Ag. In Ag one introduces the following
operations

a b_at+bs a b ab
B st st

’

st

which are easily seen to be well defined and Ag, with these two operations, is a
unitary, commutative ring as well as A. The ring Ag is called the localization of A
with respect to G.

There is a natural homomorphism

j:aeA—>%leA6

which in general is not injective, but it is so if A is a domain. In this case we will
identify A with j(A) and As will be identified with a subring of the quotient field
Q(A) of A.

If A is a graded ring and & is, as above, a multiplicatively closed set such that
G contains 1 and does not contain 0, then we will denote by A(e) the subset of Ag
consisting of fractions ¢ such that a, s are homogeneous of the same degree. Then
A(@) is asubring of Ag, called the homogeneous localization of A with respectto .

Example 5.3.2 Let A be aring and 7 a proper prime ideal of A. Then & = A\ T is
multiplicatively closed, contains 1 and does not contain 0. Then we can consider the
localization Ag, which is also denoted by Az and it is called the localization of A
with respect to Z. Consider m the ideal generated by j(Z) in Az. Itis clear that ¢ ¢ m
if and only if @ ¢ Z, thus if and only if & = (?)‘1 € Az. It follows that (A7, m) is
a local ring (see Proposition 5.3.1). The residue field of (A7, m) is Q(A/Z).

In the above setting, if A is graded, we can consider Ag), which is also denoted
by A7), and it is called the homogeneous localization of A with respect to Z. It is
clear that A7) is local with maximal ideal m N A 7.

If A is a domain and 7 = (0), one has Az = Q(A). If A is graded, A7) is a
subfield of Q(A) which is denoted by Q(A)o.

Example 5.3.3 Let A be aring and f € A a non-nilpotent element, i.e., f is such
that for all positive integers i, one has f' # 0. Then & = {f'};cy is multiplicatively
closed, contains 1 = f° and does not contain 0. We can consider A, which is also
denoted by A ;. Note that

A= A[%] — Alxl/(fx —1).
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If A is graded and f is homogeneous, we write A () instead of A(g).

If 7 is an ideal of A, we will denote by Z¢ := 7 Ag the ideal generated by j(Z)
in Ag, i.e., the ideal formed by all fractions of the form ¢ with a € Z. It is called
the extension of Zto Ag. Since Z = j 1(} (A)NZ®,itis clear that all ideals in Ag
are extended ideals. Moreover it is easy to see that Z° is a proper ideal of Ag if and
only if ZN & = @ (see Exercise 5.3.7).

Let now J be an ideal of Ag. We set

j”:{aeA:geI for some se6}.
N

This is an ideal of A, called the contraction of J to A. It is clear that:

(a) for every ideal Z of A one has 7 C (Z°)¢;
(b) for every ideal J of Ag one has J = (J°)°.

Proposition 5.3.4 Let A be a ring and let G be a multiplicatively closed subset of
A containing 1 and not containing 0. One has:

(a) if L is a prime ideal of A such that T N S = 0, then ¢ is a prime ideal of As;

(b) if T is a prime ideal of A suchthat T NG =@, then (Z¢)° =T

(c) thereis a 1:1 correspondence between prime ideals of As and prime ideals of
A with empty intersection with S, given by contraction and extension of ideals.

Proof Let us prove (a). If § - ? = % € ¢, then there is u € © such that uab € 7.
Since u ¢ 7 and Z is prime, one has ab € 7. Since 7 is prime, we conclude that
either ¢ or 'lﬂ is in Z°, proving that Z° is prime.

As for (b), if b € (Z°)°, there are a € Z, s, t € &, such that § = ? Then there
is u € G such that uta = usb. Since uta € 7 and us € S isnotin Z, then b € Z,
proving the assertion.

Finally, it is clear that if 7 is a prime ideal of Ag, then 7€ is a prime ideal of A.

Whence (c) follows, by taking into account (a) and (b). U
Exercise 5.3.5 * Prove that the relation = in A x & is an equivalence relation.

Exercise 5.3.6 * Prove that the operations +, - in Ag are well defined and Ag, with these two
operations, is a unitary, commutative ring.

Exercise 5.3.7 Prove that Z¢ is a proper ideal of Ag if and only if 7N & = ¢.

Exercise 5.3.8 Prove that:

(a) for every ideal Z of A one has 7 C (Z¢)¢;
(b) forevery ideal J of As one has J = (J°)°.

Exercise 5.3.9 Let A be a ring and 7 a prime ideal of A. Prove that extension and contraction
provide a 1:1 correspondence between the prime ideals of Az and the prime ideals of A contained
inZ.
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5.4 Integral Elements over a Ring

Let A be a domain and B a domain containing A. An element x € B is said to be
integral on A if x is a root of a monic polynomial with coefficients in A, i.e., if there
are elements ay, ..., a, € A such that

X" Hax" '+ +a,=0.

Lemma 5.4.1 The following are equivalent:

(a) x € B isintegral on A;
(b) Alx] is a finitely generated A—module.

Proof 1t is clear that (a) implies (b). Conversely, assume that A[x] is generated
by yi, ..., ¥, as an A—-module. Then we have xy; = Z’j’.zl a;jyj, with g;; € A and
i =1,...,n. Hence the homogenous linear system

(a1 —x)x; +apxy +---+apx, =0

an x| + apaxy + -+ (@ — x)x, =0

in xq, ..., x, with coefficients in B has some non-trivial solution. Thus the deter-
minant of the matrix of the system is zero, which implies that x is integral
on A. (]

If x, y € B are integral on A, then A[x, y] is a finitely generated A[x]-module,
which in turn is a finitely generated A-module. Hence Al[x, y] is a finitely gen-
erated A—module and A[x & y] and A[xy] are contained in A[x, y]. By applying
Exercise 5.4.5, one sees that x £+ y and xy are integral on A. Hence the set of ele-
ments of B which are integral on A is a subring of B (which contains A), that is
called the integral closure of A in B. The integral closure of A in Q(A) is called the
integral closure of A and A is called integrally closed if it coincides with its integral
closure.

Exercise 5.4.2 Let k be a field and let a € k. Prove that the ring k[x]x—q) is integrally closed.
Exercise 5.4.3 * Let A be a UFD. Prove that A is integrally closed.

Exercise 5.4.4 *Let A bearing, M afinitely generated A—module, Z anidealof Aand ¢ : M — M
an endomorphism of A—modules such that ¢(M) € ZM. Prove that ¢ verifies an equation of the
form

" +a1¢"71 +---4a, =0, with ay,...,a, €Z.

Exercise 5.4.5 * Let A be aring. An A—module M is said to be faithful if Ann(M) = (0), i.e., if
for any a € A such thataM = (0), one has a = 0.
Let A, B be domains, with A € B. Prove that the following propositions are equivalent:

(a) x € B isintegral over A;
(b) Alx] is contained in a subring C of B such that C is a finitely generated A—module;
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(c) there is a faithful A[x]-module M which is finitely generated as an A—module.

Exercise 5.4.6 * Let A, B be domains, with A C B. Prove that if B is a finitely generated as an
A-module, then any element x € B is integral over A.

Exercise 5.4.7 * Let A, B be finitely generated K-algebras, with A C B and B integral over A.
Prove that B is finitely generated as an A—module.

Exercise 5.4.8 *Let A C B C C be noetherian domains, and assume that B is integral over B and
C integral over B. Prove that C is integral over A. Deduce that if A € B are domains and C is the
integral closure of A in B, then C is integrally closed in B.

5.5 Subvarieties and Their Local Rings

Let V be a quasi—projective variety and let W be an irreducible, locally closed subset
of V. Then W, as well as V, is a quasi—projective variety, that we will call a subvariety
of V. Given a rational function [U, f] € K(V), we will say that it is defined on
W, if there is (U’, f") € K(V) such that (U’, fYR(U, f) and U' N W # @. Then
[U'nw, fl’U,mW] is a rational function on W that is uniquely determined by [U, f]
(see Exercise 5.5.4) and it is called the restriction of [U, f]to W.

We will denote by Oy the set of rational functions on V that are defined on W.
Note that Oy y = K (V). The irreducibility of W implies that Oy y is a subring of
K (V). Moreover O(V) is a subring of Oy . Let us consider the subset my y of
Oy.w (also denoted by my if V is intended) formed by the rational functions whose
restrictions to W are zero. It is clear that my w is an ideal of Oy, w.

Proposition 5.5.1 Let V be a quasi projective variety and let W be a subvariety of
V. Then (Oy,w, my.w) is a local ring with residue field K (W).

Proof Let [U, f1€ Oyw \ myw, withU N W £ (. Then Zy (f) N W is a proper
closed subsetof U N W.SetU’ = U \ Zy(f) and consider in U’ the function, which
is there well defined, f' = % It is clear that f € O(U’) and that

UnNnW=U\Zy(NHNW=UNW\(Zy(f)NW) £,

so that [U, 17! = [U’, f'] € Oy.w, i.e., [U, f]is invertible. By Proposition5.3.1,
this proves that (Oy w, my w) is a local ring.
Let us consider the residue field Ky w of Oy w, and consider the map

ovw U, fl+myw € Kyw — [UNW, flunwl € K(W).

It is clear that this map is well defined and it is injective. Let us prove it is surjective.
Let[U’, f'] € K(W)andlet P € U’. Then there is an open neighborhood U” of P in
U’, such thatin U” one has f = { with g, h homogeneous polynomials of the same

degree and i non—zero on U”. Let U be an open subset of P" such that U N W = U”



60 5 Regular and Rational Functions

and U N Z,(h)y=0.Letusset U = U NV which is not empty, and in U consider
the regular function f = % It is clear that ¢y w ([U, f1+ my w) = [U’, f’']. This
proves the assertion. ]

The local ring (Oy,w, my,w) is called the local ring of W in V.
Let V and W be as above, and let U be an open subset of V such that W’ :=
U N'W # @. Then it makes sense to consider the local ring Oy w.

Lemma 5.5.2 In the above setting, one has Oy w = Oy w. In particular K (V) =
KU).

Proof 1f [U’, '] € Oy.w', then [U’, f’] can be also considered as an element of
Oy.w, hence we have an injective homomorphism

(U, f1€Ouyw — [U, f'1€Oyw.

It is also surjective. In fact, if [U", f”] € Oy w, it comes from [U N U”, fl/[mu,,] €
OU’W’. |:|

Before proceeding, we introduce a notation which will be useful in the sequel.
If V € A" is an affine variety, we will abuse notation and we will still denote by
X1, ..., X, the images in A(V) of xy, ..., x, via the canonical epimorphism A, —
A(V). Then A(V) is generated, as a K—algebra, by x1, ..., x,,. Similarly, if V C P"
is a projective variety, we will denote by xo, . .., x, the images in S(V) of xg, ..., x,
via the canonical epimorphism S, — S(V). Then S(V) = @, S(V)4 and S(V),
is generated, as a K—vector space, by the monomials of degree d in xy, . .., x,. So,
if f(x1,...,x,) € A,,itsimage in A(V) will still be denoted by f(x1, ..., x,), and
similarly in the projective case.

We can now prove the basic:

Theorem 5.5.3 Let V C A" be an affine variety. Then:

(a) OV)=A);
(b) if W is a subvariety of V, then

Iw(V)={feOWV):WCZy(f)}

is a prime ideal of O(V') and every prime ideal of O(V) is obtained in this way;
moreover Ly (V) is maximal if and only if W is a point;
(c) if W is a subvariety of V, then Oy w = O(V)z,(v); in particular K(V) =
QA(V)).
IfV C P", then:

(d) OV)=Kk;

(e) if W is a subvariety of V and I, w(V) is the image ideal of 1,(W) via the
canonical epimorphism 7 : S, — S(V), then I, w (V) is a homogeneous prime
ideal of S(V) and every homogeneous non—irrelevant prime ideal of S(V) is
obtained in this way, moreover L, w (V') is maximal if and only if W is a point;
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(f) Oviw =SV, vy

Proof Every polynomial f € A, defines a regular function on V, so there is a natu-
ral homomorphism A, — O(V), whose kernel is Z, (V). Hence there is an injective
homomorphism « : A(V) — O(V). From Sect. 3 we know that there is a 1:1 corre-
spondence between maximal ideals of A(V') and points of V. Precisely, by identifying
elements of A(V') with regular functions via «, the ideal corresponding to a point P,
ismp ={f € A(V): f(P) = 0}. Note now that there is a natural homomorphism

ap : A(V)n, = Oy p

defined in the following way. If % € A(V)wm,, let U be the principal open neighbor-
hood of P in V associated to g. Then we set

o(§)-104]

where f, g are considered as polynomials in A, . Since « is injective, then also ap is
injective. Moreover ap is also surjective, because every regular function is locally
of the form %, with f, g polynomials. Hence we have A(V )y, = Oy p. Note now
that O(V) € () pey Ov,p, and this implies that

AV)SOW) € () Ovp =[AV)n (5.1)

PeVv m

where the last intersection is over all maximal ideals of A(V). Now the rightmost
and leftmost terms in (5.1) are equal (see Exercise 5.5.9). Then (a) follows.

Part (b) follows by the results of Sect. 3. Part (c) has been proved if W is a point.
The general case is completely analogous.

Next let us move to the projective case. Let i € {0, ..., n} be such that V; =
V N U; # @ (notation as in Sect. 1.5). Let us start by proving that A(V;) = S(V)(x,)-
Let us assume, to fix the ideas, that i = 0, and consider the homomorphism

X1 Xn
) e S

X0 X0

qz&:f(xl,...,x,,)eAn—>f<

Itis clear that ¢ is an isomorphism that sends Z, (Vo) to Z,(V)(S,) (x,)» hence, passing
to the quotient, ¢ induces an isomorphism q} tAVo) = S(V)(xy)-

Next let W be a closed subvariety of V and let us choose ani € {0, ..., n} such
that W; = W N U; # @. Assume againi = 0. Then Oy w = Oy, w, by Lemma5.5.2.
Moreover, by part (c) we have Oy, w, = O(VO)IW(J vo)- Also A(Vp) = O(V), by part
(a) and Zy, (Vy) corresponds to the ideal Z, w, (Vo) of A(Vp), which is the image of
Z,(Wp) via the canonical epimorphism of A, to A(Vj). Finally é maps Z, w, (Vo) to
Zp,w(S) (x,)- In conclusion
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Ov,w = Ovyw, = OVo) 1y, (ve) = AN, vy (Vo) = ((Sn)(xo))zpw(v)a
and, since xo ¢ Z, w(V), one has
(San)z, vy = S @, vy

proving (f). Part (e) is an immediate consequence of the results on Sect. 3.

Finally we are left to prove (d). Let f € O(V).Foreveryi € {0, ..., n} such that
V; # @, we have f; := fiy, € O(V;) = A(V;) = S(V)(y,. Hence f; = X(’T, where
g; € S(V) is homogeneous of degree m; > 0. Let us look at O(V), K(V)', S(V) as
subrings of Q(S(V)). There one has f = f; and x;" f = x!"' f; € S(V),,. Such a
relation trivially holds even if V; = (. Now, let us choose an integer m > Y -_ m;.
Then S(V),, is generated as a K—vector space, by the monomials of degree m in
X0, - - -, Xp, and each such monomial has to contain at least a x; raised to a power
with exponent at least m;. Hence S(V),, - f € S(V),,. By iterating, we have S(V),, -
f? < S(V), for all integers g > 1. In particular, if xq # 0 on V we have x' f7 €
S(V) for all positive integers ¢, and this proves that S(V)[ f] is contained in x, " -
S(V), which s afinitely generated S(V )—-module. Since S(V) is noetherian, S(V)[ f]
is a finitely generated S(V)-module (see [1, Prop. 6.5, p. 76]), hence f is integral
over S(V) by Lemma5.4.1. So there are ay, ..., a; € S(V) such that

ffrafleta =0

Recall that f € K(V) = S(V)(o0)), hence f = %, with g, h € S(V) homogeneous
of the same degree. Then we have

F+agd'h+- +aht =0

and in such a relation we can replace aj, . . ., a; with their homogenous components
of degree 0. Since S(V)y = K, it follows that f is algebraic over K and, since K is
algebraically closed, one has f € K. (]

A first important consequence of Theorem 5.5.3 is that if V is a quasi—projective
variety, K (V) is a finite type extension of K. Indeed, K (V) = K (V), where V is the
projective closure of V, and K (V) is contained Q(S(V)), which is generated over K
by xo, ..., x,. The transcendence degree of K (V') over K is called the transcendent
dimension of V and it is denoted by dim (V). If U is a non—empty subset of V,
one has dimy(U) = dim (V). Varieties with transcendent dimension 0 are points.
Varieties with transcendent dimension 1 are called curves, those with transcendent
dimension 2 are called surfaces.

Exercise 5.5.4 Let V be a quasi—projective variety and let W be a subvariety. Prove thatif [U, f]
Oy, w then its restriction to W is well defined.

Exercise 5.5.5 Let V be a quasi—projective variety and let W be a subvariety. Prove that Oy w is
a subring of K (V).
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Exercise 5.5.6 Let V be a quasi—projective variety, let W be a subvariety and let U be an open
subset of V such that U N W # . Consider the map

pu: feOWU) —[U, fleOyw.

Prove that py is an injective homomorphism of K algebras and that Zy (W) := pal (my, w) is the
ideal of O(U) formed by all functions f € O(U) suchthat U N W C Zy (f).

Exercise 5.5.7 * Let V be a quasi—projective variety, let W be a subvariety. Prove that there is a
1:1 correspondence between the prime ideals of Oy w and the closed subvarieties of V containing
w.

Exercise 5.5.8 Let V be a quasi—projective variety, let W be a subvariety. Prove that Q(Ovy w) =
K(V).

Exercise 5.5.9 * Let A be a domain. Prove that A = (), Am, where the intersection is over all
maximal ideals of A, and all A, are contained in Q(A).

Exercise 5.5.10 Prove that if the variety V consists of one point, one has O(V) = K (V) = K.
Prove that if V is a variety and P € V a point, then the residue field of Oy p is K.

Exercise 5.5.11 Prove that OA,) = A, and K(A) =K@ =Q(A,) =
K(xy, ..., x,), hence dimy (A,) = dimy (P") = n.

Exercise 5.5.12 Consider the affine plane curve V with equation xjx; = 1, which is clearly irre-
ducible. Prove that A(V) = K[x, xfl] = (A1)x,, and that K (V) = K(x1).
Exercise 5.5.13 Consider the affine plane curve V with equation x? = x%, which is irreducible.

Then A(V) = Kl[xy, x2]/ ()cl3 — x%). Prove that every element f € A(V) can be written in a unique
way as f = P(x1) + Q(x1)x2, with P, Q € Ay.

Exercise 5.5.14 (Hilbert Nullstellensatz for affine varieties) Let V be an affine variety, let
915 -, gm € O(V) and suppose that ﬂ'?:l Zy(gi) € Zy(f). Prove that f € rad(gy, ..., gm)-
Make a similar statement for projective varieties.

Exercise 5.5.15 Prove thatif V is anirreducible (projective or affine) plane curve, then dimg (V)
1.

Exercise 5.5.16 Let V be a quasi—projective variety and W a subvariety of V. Prove that Oy w =
Oy y» where W is the closure of WinV.

Exercise 5.5.17 Prove that if P € P! is any point, then the ring Op: _p is integrally closed.

Exercise 5.5.18 Assume char(K) = 0. Let K be an extension of K of finite transcendence degree
on K. Prove that there is an affine variety V such that K (V) = K.

5.6 Product of Affine Varieties

Here we prove the following:

Proposition 5.6.1 LetVy C A" and V, C A’ be affine varieties. Then A(Vy x V,) =
A(V1) ®x A(V2).
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Proof Consider the bilinear map
a:(fvg)EArXAx_)fQEAH—X

which verifies that a(Z,(V;) x Ay) and a(A, x Z,(V»)) are both contained in
Z,(Vy x V,). For this reason, a induces a bilinear map

b:A(V)) x A(Va) = A(V x V).

Note that the minimal subalgebra of A, containing a(A, x Ay) is A4y, thus
every element of A(V; x V) is of the form

]’l:ZC,‘jfigj, with Cij GK,fl‘ EA(Vl),gj EA(Vz) (52)

i

We claim that /4 as in (5.2) is zero if and only if we can re—arrange the expression
of h in (5.2) so that for every pair (i, j), one has either ¢;; = 0, or f; = 0in A(V}),
or g; = 0 in A(V2). One implication is clear, let us prove the other. We argue by
contradiction and suppose that 7 = 0 but that there is in the expression (5.2) some
pair (i, j), for which ¢;; # 0, f; # 0 and g; # 0. We can extract a maximal system
of linearly independent elements on K from the set { f;} of elements of A(V}), then
we can express all the elements of { f;} as linear combinations of the elements of such
a system and substitute in the expression of /. This re—arranges the expression in
(5.2) so that the set { f;} consists of linearly independent elements. The same for the
set {g;}. If in the new expression as in (5.2) we have found, for every pair (i, j) one
has either ¢;; =0, or f; =0 or g; = 0 we are done. Otherwise we have some pair
(@, j), for which ¢;; #0, f; # 0and g; # 0, and we can consider in the summation
only these pairs, because the others give O contribution. One has

h=Y "> cjgi| fi=0.
i\ J

Foralli, )" jCijgj € A(V>) is non—zero, hence there is a point Q € V, such that

D gy (Q) #0

J
for some i. On the other hand we have
YD i@ | fi=0.
i J

hence we have a contradiction. This proves our claim.
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The claim implies that if # = 0, we can re—arrange the expression of & as in
(5.2) so that for each pair (7, j) such that ¢;; # 0, one has either f; =0or g; =0.
This is the same as saying that Z,(V; x V,) is generated by «(Z,(V}) x A;) and by
a(Ar x Za(V2)).

Let now M be a K—vector space and let v : A(V}) x A(V,) — M be a bilinear
map. There is then a unique homomorphism of K—vector spaces § : A(V| x V,) —
M such that v = ¢ o b. It is defined in the following way. If h = Zl-j cijfigj €
A(V) x V,), one sets §(h) = Zij ¢ijy(fi, g;). From the above discussion, it follows
that 0 is well defined, that it is linear, and it is uniquely determined by b and .
By the universal property of the tensor product we conclude that A(V| x V,) =
A(V1) ®k A(V2). U

As a consequence, we have:

Proposition 5.6.2 Let V|, C A" and V, € A be affine varieties. Then dimy (V) X
V2) = dim (V) + dimg (V2).

Proof The ring A(V)) is a quotient of A, = K[xy, ..., x,], so it is generated as a
K-algebra by xi, ..., x,, hence K (V) is generated on K by x, ..., x,, and we
can extract from them a maximal system of algebraically independent elements, say
X1y ..., Xy, Wwithn = dim (V7). Similarly, A(V,) isaquotientof A, = K[y, ..., s,
and we can assume that yi, ..., y,, with m = dimy(V,), is a maximal system
of algebraically independent elements of y;, ..., y; on K. By Proposition5.6.1,
we have that xi,...,x,, y,...,ys generate A(V, x V,) and this implies that
K (V| x V,) is generated on K by x1, ..., Xy, ¥1, ..., Y- We are left to prove that
Xls-vvsXn, Y1, - .-, ¥m are algebraically independent. Suppose, by contradiction, that
there is a non—zero polynomial F (¢, ..., t,, uy, ..., u,) with coefficients in K such
that F(xy, ..., X4, Y1,..., ym) = 0. By the algebraic independence of yi, ..., yu,
we have that any coefficient a(xy, ..., x,) of F(x1,..., X, Uy,...,uy) =0,asa
polynomial in uy, ..., u,, is zero. On the other hand, by the algebraic independence
of xi,...,x,, we have that a(ty, ..., t,) is identically zero. This implies that F' is
zero, contrary to the assumption. (I

5.7 Solutions of Some Exercises

5.2.2 The assertion is a consequence of the following remark. Let [U’, f'] = [U”, f"]. Then we can
consider the function f” defined in U’ U U"” such that f”(P) = f/(P)if P € U’, and f"”(P) =
f"(P)if P € U”. This function is well defined because f’ and f” coincide on U’ N U”. Moreover
it is regular, because so it is in U’ and U".

5.4.3 Let % € Q(A) be integral over A with f, g coprime. One has a relation of the form
N\ n—1
(1) +a1(£) bota, =0,
g g

with ay, ..., a, € A. Eliminating the denominators, we see that g divides f”, hence it divides f,
so that g is invertible.
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5.4.4 The proof is similar to the one of Lemma5.4.1. Let yy, ..., y, be a set of generators of M as
an A-module. Then ¢(y;) = Z’;‘:l aijyj, witha;j € Zandi =1,...,n.So

n
Z(éij(b*aij))’j =0, for i=1,...,n.
j=1

Fix any h = 1, ..., n. If we multiply the ith of the above relations for the cofactor of the element
of place (i, h) of the matrix (;;¢ — a;;);,j=1,....» and then add up on i, we see that D = det(d;;¢ —
a;j)i, j=1,..,n annihilates y, for h = 1, ..., n, so multiplication by D is the 0—endomorphism of M.

By expanding the determinant, one finds the required expression.

5.4.5 (a) implies (b): by Lemma5.4.1 it suffices to take C = A[x].

(b) implies (c): it suffices to take M = C. Indeed C is faithful because yC = (0), implies
y=y-1=0.

(c) implies (a): apply Exercise5.4.4 taking ¢ : M — M equal to the multiplication by x (note
that xM C M because M is an A[x] module) and Z = A. Since M is faithful, we have a relation
of the form

MHax™ o 4a, =0, with ai,...,a, € A,

which proves that x is integral over A. Then (a) follows by Lemma5.4.1.

5.4.6 It suffices to apply Exercise5.4.5: for all x € B, A[x] is contained in B which is a finitely
generated as an A—module; then (b) of Exercise 5.4.5 is verified and therefore x is integral over A.

5.4.7Letby, ..., b, be asetof generators of B as a K—algebra. By Lemma5.4.1, A[b] is a finitely
generated A—module. Similarly, A[b}, b] is a finitely generated A[b|]-module, hence it is a finitely
generated A—module. By iterating this argument, we see that A[by, ..., b,] is a finitely generated
A-module. But A[bq, ..., b,] = B and we are done.

5.4.8 Let x be an element of C. Then we have a relation of the form
X" b x4 b, =0, with b;,..., b, €B.

Then x is integral over B’ = A[by, ..., b,], so B'[x] is finitely generated over B’. On the other
hand, B’ is finitely generated over A, so B’[x] is finitely generated over A and therefore also A[x]
is finitely generated over A (see [1, Prop. 6.5, p. 76]). This implies that x is integral over A by
Lemma5.4.1.

5.5.7 First of all reduce to the case that V is affine and W is closed in V. Then apply Theorem 5.5.3,
the properties of localization and the results of Sect. 3.

5.5.8 Reduce to the affine case and apply Theorem 5.5.3.

5.5.9 Itis clear that A € (1), Am. Let us prove the opposite inclusion. Let x € Q(A). We consider
the ideal of denominators of x so defined

D(x)={aeA:ax € A}.

One has x € A if and only if D(x) = A and x € Ay, with m a maximal ideal, if and only if D(x)
is not contained in m. Hence, if x ¢ A, then D(x) is a proper ideal of A and therefore there is a
maximal ideal m of A such that D(x) C m, so that x ¢ Ay,. The assertion follows.

5.5.14 Suppose that Z, (V) = (fi, ..., fn). By the Nullstellensatz, there is a positive integer r such
that " € (91, ---» 9m> f1,---, fn) in A,. The assertion follows by modding out by Z, (V).
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5.5.15 We can reduce to the affine case. Then V has an equation of the form f(x1, x2) = 0, with f €
Ao irreducible. Then A(V) = A2/(f) and K({V)=
K(x1, x2), with x1, xo linked by the relation f(xi,x) = 0. It is moreover clear that x;, x, are
not both algebraic over K, otherwise they would be constant and V would be a point. The assertion
follows.

5.5.17 It suffices to prove that if P € A! is any point, then O, _p is integrally closed. This follows
from Exercise 5.4.2.



Chapter 6 )
Morphisms i

6.1 The Definition of Morphism

Let V, W be quasi-projective varieties. A map ¢ : V — W is called a morphism
if it is continuous and if, for every open subset U € W such that gb_l (U) is not
empty, and for every regular function O(U), the function f; = f o ¢ is regular on
¢~ (U). We will denote by M(V, W) the set of all morphisms from V to W. It is
clear that the identity is a morphism and the composition of two morphisms is a
morphism. So it makes sense to consider the category in which the objects are the
quasi-projective varieties and the morphisms are the ones we defined above. In this
category a morphism ¢ : V. — W is an isomorphism if it has the inverse, i.e., if and
only if there is a morphism ¢ : W — V such that ¢ o ¢ = idy, ¢ 0 ¥ = idy.

If ¢ € M(V, W), for every open subset U € W such that ¢~ (U) is not empty,
one has a map

oV f e OWU) — fy € O~ (U))

which is easily seen to be a homomorphism of K-algebras. If ¢ is a isomorphism,
¢V is a isomorphism of K-algebras, its inverse being (¢~1)¢" ©). In particular, if V
and W are isomorphic, then O(V) = O(W).

Ifp e M(V, W) and ¢(V) = W, we say that ¢ is dominant. In this case we have
a natural map

¢ (U, f) e KW) — (¢~ '(U), fs) € K(V).

In fact, if ¢ is dominant, for any non-empty open subset U of W, then ¢~ (U) is also
non-empty, hence itis dense in V. Itis clear that ¢’ is compatible with the equivalence
relations R in (V') and in IC(W), hence ¢’ induces a field homomorphism

¢* U, fle K(W) — [¢7'(U), fs] € K(V).
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The map ¢* is not zero because it is the identity on K, hence it is injective. In
particular, if V and W are isomorphic, we have K (V) = K(W).

Let again ¢ € M(V, W). Let V' be a subvariety of V and W’ a subvariety of W,
such that ¢(V’) € W’. Consider the map ¢' = ¢y : V' — W'. It is easy to check
that ¢ € M(V’, W’). Moreover, as we constructed the map ¢* above, we have a
homomorphism of local rings

v (U, f1€ Oww — [¢71(U), f5] € Oy v

in the hypothesis that ¢(V’) is dense in W', i.e., if ¢/ : V' — W’ is dominant. In
particular, if V and W are isomorphic and if this isomorphism induces a isomorphism
of V' onto W/, then Oy v = Oy .

Exercise 6.1.1 Prove that any constant map is a morphism.

Exercise 6.1.2 Let V be a quasi-projective variety. Prove that regular functions on V coincide with
morphisms of V to Al = K.

Exercise 6.1.3 Let V|, V; be affine varieties. Consider the projection maps p; : Vi x Vo — V;,
with i = 1, 2. Prove they are morphisms.

Exercise 6.1.4 Let ¢ € M(V, W). Let V' be a subvariety of V and W’ a subvariety of W, such
that ¢(V’) € W’. Prove that ¢/ = ¢y» : V' — W' is a morphism.

Exercise 6.1.5 Let V be a quasi-projective variety and W be a subvariety of V. Prove that the
inclusion i : W — V is a morphism, called the immersion of W in V.

Exercise 6.1.6 *Let V, W, Z be quasi-projective varieties, with Z a subvariety of W. Prove that a
map ¢ : V — Z is amorphism if and only if ¢ : V — W is a morphism.

6.2 Which Maps Are Morphisms

It is useful to have criteria for maps between varieties to be morphisms. Here is one:

Proposition 6.2.1 Let V be a quasi-projective variety. A map ¢ :V — A" is a
morphism if and only if for all i € {1, ..., n}, the composite map ¢; = p; o ¢ is
regular, where p; : A" — A! = K is the projection on the ith factor.

Proof We prove the only non-trivial implication. If f € A, then f' = f(¢y, ...,
¢n) € O(V), hence Zy (f') is closed in V. This proves that ¢ is continuous. Let
U C A" be an open subset, and let f € O(U). For each point P € U, there is an
open neighborhood U’ of P in U where f = g, where P, Q € A, and Zy (Q) = 0.

Hence f o ¢ = % is a regular function on ¢~'(U’). This proves that ¢ is a

morphism. O
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As an application of the previous proposition we have the following important:

Theorem 6.2.2 Let V be a quasi-projective variety and W an affine variety. The
map
a: MV, W) — ¢" € Hom(A(W), O(V))

is bijective (here Hom(A(W), O(V)) denotes the set of K-algebra homomorphisms).

Proof Leth € Hom(A(W), O(V)).Supposethat W C A”. Then A(W)=K|[xy, ...,
Xn1/Za(W), hence &; := h(x;) € O(V), foralli =1, ..., n. Consider the map

Gp: P eV — (&G(P),....&L(P) e A",

which is a morphism by Proposition 6.2.1. Let us prove that ¢, (V) € W, and this
will imply that ¢, € M(V, W) (see Exercise 6.1.6). Indeed, if f € Z,(W), for all
P € V one has

F@n(P)) = f(&(P),....&u(P)) = f(h(x))(P), ..., h(x,)(P)).

Since h is a K-algebras homomorphism, one has

Jh(x1), ..o h(xn)) = h(f(x1, ... X)) (P) =0

because f = 0in A(W), hence h(f) = 0. This proves that ¢, (V) C W, as wanted.
Finally, the map

h € Hom(A(W), O(V)) = ¢ € M(V, W)

is clearly the inverse of a. (]
As a consequence we have:

Corollary 6.2.3 One has:

(a) if V, W are affine varieties, V is isomorphic to W if and only if A(V) = A(W)
as K-algebras;

(b) the contravariant functor V.— O(V), from the category of quasi-projective
varieties to the category of K-algebras with no zero divisors, induces an equiv-
alence of categories between the category of affine varieties and the category of
finitely generated K-algebras with no zero divisor.

Proof The only thing that we are left to prove is that any finitely generated K-algebra
with no zero divisors A is the coordinate ring of an affine variety. Let ¢, ..., 7, be
generators of A. The map

feA, — ft,....,tn) EA
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is a surjective K-algebras homomorphism, whose kernel is a prime ideal Z of A,,. By
the results of Sect. 3, 4, there is a variety V € A" such that 7, (V) = Z. The assertion
follows. O

Next we can give a criterion for maps between quasi-projective varieties to be
morphisms. We start by proving the:

Lemma 6.2.4 Foralli =0, ..., n, the map ¢; : Uy — A" (see Sect. 1.5) is an iso-
morphism.

Proof We already know that ¢; is a homeomorphism, so the only thing to prove is
that the regular functions are the same on A" and U;, which follows from the very
definition of regular functions (details are left to the reader). O

Proposition 6.2.5 Let V C P" be a quasi-projective variety. Amap ¢ : V. — P™ is
a morphism if and only if for every point P € V there is an open neighborhood U of
P in V and m + 1 homogeneous polynomials of the same degree fy, ..., fn € Su
such that for every point P’ € U thereisani € {0, ..., m} such that f;(P’) # 0 and
S(P) = [fo(P'), ..., fu(P)].

Proof Let ¢ : V — P be a morphism. Given P € V, set O = ¢(P). Then there
isan i € {0,...,m} such that Q € U;: to fix ideas, let us assume that i = 0. Set
U := ¢~!(Uy), which s an open neighborhood of P in V. Then ¢ induces a morphism
¢’ : U — Uy. By identifying Uy with A” via the map ¢ in Lemma 6.2.4, applying
Proposition 6.2.1 and may be restricting U, we can ensure the existence of m pairs
of homogenous polynomials of the same degree (fi, fi.0),-- -, (fm, fm.0), such that
for every point P’ € U, f;o(P’) #0foralli € {1, ..., m}, and such that

fi(P) S (P")
9Py = (= ).
Sr.0(P) Smo(P)
By reducing the fractions %, R 7—0 to minimum common denominator, we may
assume that fio=--- = f,,v,yo = fo, that fo, - .., fm have the same degree, and that

fo(P") #0forall P’ € U.Since ¢'(P’) = [fo(P'), ..., fm(P")], we have the asser-
tion.

Let us prove that the condition on ¢ is sufficient for ¢ to be a morphism. First we
note that, up to restricting U, we may assume that there is an i € {0, ..., m} such
that f;(P’) # 0. To fix ideas, suppose that i = 0. Then ¢,y maps U to U, and, by
Proposition 6.2.1, it determines a morphism ¢’, because for every P’ € U, one has

Ji(P) fm(P’)>_

'(P') = RN
v (fo(P/) Jo(P")

If j is the immersion of Uy in P™, one has that ¢,y = j o ¢/, so it is a morphism.
Since the notion of morphism is clearly local, the assertion is proved. (I
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Proposition 6.2.6 Let V, W be quasi-projective varieties and ¢, € M(V, W),
such that there is a non-empty open subset U of V such that ¢,y = {\y. Then ¢ = 1).

Proof 1f U = V there is nothing to prove. So we assume U # V. Suppose, by con-
tradiction that there is a point P € V \ U such that ¢(P) # 1)(P). We can consider
W as embedded in a projective space P" and actually we can reduce ourselves to
the case W = P (see Exercise 6.1.6). Moreover, up to a projectivity (see Exercise
6.2.12), we may assume that both ¢(P) and 1 (P) belong to the affine open subset
Uy = A". Finally, working in ¢~ (Uy) N ¢ ~' (Uy) N U, that is an open neighborhood
of P in U, we can even assume W = A". Then we can apply Proposition 6.2.1 and
Proposition 5.1.1 and conclude that ¢ = 1), reaching a contradiction. ]
Exercise 6.2.7 *Prove that affine maps are morphisms. Prove that affinities are isomorphisms onto
their images. Affinities between affine spaces of the same dimension can be considered as changes

of coordinates.

Exercise 6.2.8 Prove that all automorphism of A! are affinities.

Exercise 6.2.9 Let ¢ : A" — A" be a morphism. Prove that there are polynomials Py, ..., P, €
A, such that ¢(x) = (P (X), ..., P,(x)). Prove that if ¢ is an automorphism, then the jacobian
determinant
‘ — det <6Pi>
o) = de Ox;j/i=1,j=1,...n

is an element J, of K \ {0}.

Exercise 6.2.10 Consider the group G,, of all automorphisms of A,,. Prove that the map J : ¢ €
G, — Jy € K\ {0} is a group homomorphism.

Exercise 6.2.11 Give an example of an automorphism of A", with n > 2, which is not an affinity.

Exercise 6.2.12 *Prove that projectivities are isomorphisms onto their images. Prove that all pro-
jective spaces of the same dimension are isomorphic. Projectivities of P" to itself can be considered
as changes of homogeneous coordinates.

Exercise 6.2.13 *Let V be a quasi-projective variety. Prove thatamap f : V — P”" is a morphism
if and only if for every point P € V there is an open neighborhood U of P in V and there are regular
functions fy, ..., f, € O(U), such that for any point Q € U one has (fo(Q), ..., fn(Q)) # 0and
(@) =1fo(D), ..., fu(D]

Exercise 6.2.14 Prove that the affine [resp. projective] twisted cubic is isomorphic to A! [resp. to
P.

Exercise 6.2.15 Consider the affine conic V with equation xp :xlz, called a
parabola. Consider the homomorphism of K-algebras

7 x1 € Al > x1 € A(V) = K[x1, x21/(x2 —xlz)

corresponding to the restriction 7 to V' of the projection from the point at infinity of the x;-axis of
A2 on Al, identified with the x;-axis. Prove that 7* is an isomorphism, so that 7 is an isomorphism.

Exercise 6.2.16 Consider the affine conic W with equation x;x, = 1, called a hyperbola. Prove
that A(W) = (A1)y, . Prove that A(W) is not isomorphic to Ay, hence W is not isomorphic to Al
Prove that W is isomorphic to A \ {0}.



74 6 Morphisms

Exercise 6.2.17 *Let Z be any irreducible conic in AH2< with K of characteristic different from
2. Prove that there is an affinity of A2 which either maps Z to V = Z,(xy — xlz) or maps Z to
W = Z,(x1x — 1): in the former case Z is called a parabola, in the latter case it is called and
hyperbola.

Exercise 6.2.18 Suppose that char(K) # 2. Let f € A; be an irreducible polynomial of degree 2.
Prove that either A, /(f) is isomorphic to A; or it is isomorphic to (A1)y, .

Exercise 6.2.19 *Suppose that char(K) # 2. Prove that given two irreducible conics in P2, there
is a projectivity of P2 which maps the former to the latter.

Exercise 6.2.20 *Suppose that char(K) # 2. Prove that any irreducible conic in P? is isomorphic
to P!,

Exercise 6.2.21 Let Z; C A", Z, C A be affine varieties. Let P € Z and Q € Z;. Consider the
maps
PleZ — (P,Q)eZ x{Q}, Q €Zy— (P,Q)e{P}xZ.

Prove they are isomorphisms of Z1, Z; respectively to Z1 x {Q}, {P} x Z,, which are subvarieties
of Z1 x Z; (intersections of Z; x Z, with the subspaces A" x {Q}, {P} x A*).

Exercise 6.2.22 Let Z be a subvariety of A”. Consider the subset Az = {(P,P): P € Z} C
Z x Z, called the diagonal of Z x Z. Prove that Az is a subvariety of Z x Z isomorphic to Z.

Exercise 6.2.23 *Let Z;, Z, be subvarieties of A". Then Ag» N (Z) X Z3) is a closed subset in
Z1 x Zj. Consider the map

t:PeZiNZy— (P,P) e Agn N (Z1 X Z7).
Prove that ¢ is an isomorphism of any irreducible component of Z; N Z; onto its image.

Exercise 6.2.24 *Let V, W be affine varieties, let ¢ : V — W be a morphism and ¢* : A(W) —
A(V) the corresponding K-algebras homomorphism. Prove that ¢ is dominant if and only if ¢* is
injective.

Exercise 6.2.25 Let U = A! \{ai,...,a,}, with ay, ..., a, distinct, be a proper open subset of
Al Prove that U is an affine variety, which is not isomorphic to A', but it is homeomorphic to A!.

Exercise 6.2.26 Let V C A" be an affine variety. Prove that V is isomorphic to a projective variety
if and only if V is a point.

Exercise 6.2.27 Prove that any morphism of a projective variety to an affine variety is constant.
Exercise 6.2.28 Consider the morphism
d:te Al > (@23 eV cA?

where V C A? is the curve with equation x% = x%. Prove that it is an homeomorphism, but is is not

an isomorphism. Prove however that its restriction to Al \ {0} is an isomorphism onto V \ {0}.

Exercise 6.2.29 *Suppose char(K) = p > 0. Consider the morphism
F:[xp,...,xp] €P" — [x(’)’,...,x,‘,”] e P
which is well defined and induces a morphism
Fi(xr,....,xp) € A" - (... xd) e A"

These morphisms are called Frobenius morphisms. Prove that they are homeomorphisms, but not
isomorphisms.
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Exercise 6.2.30 *Prove that A% \ {0} is not an affine variety.
Exercise 6.2.31 *Let H be a subspace of P" of codimension 2. Prove that O(P" \ H) = K.

Exercise 6.2.32 Corollary 6.2.3, (b) characterizes the K-algebras that are the coordinate rings of
affine varieties. Prove that a K-algebra is the coordinate ring of an affine closed subset if and only
if it is finitely generated and with no nilpotent elements.

6.3 Affine Varieties

Lemma 6.2.4 says that P" has an open covering of varieties isomorphic to affine
varieties. This is a particular case of a more general situation, which we will now
explain. First of all let us give a definition: given a quasi-projective variety V we
will say that V is affine, if it is isomorphic to an affine variety. An open subset U of
a quasi-projective variety V is said to be affine if it is itself an affine variety.

Lemma 6.3.1 Let Z be the hypersurface of A" with equation f = 0, with f(xy, ...,
Xn) € A, anon-constant polynomial. Then the open set A" \ Z is isomorphic to the
irreducible hypersurface of A" with equation

Xp1 f(xq, .o, x,) — 1 =0.
In particular A" \ Z is affine and O(A" \ Z) = (A,)y.

Proof 1tis clear that x,, 41 f(x1, ..., x,) — 1 is an irreducible polynomial. Moreover
the map

o:(ay,...,a041) € Zo(xpir1 f — 1) — (a1, ...,a,) €e A"\ Z C A"

is a morphism because of Proposition 6.2.1, and it is clearly bijective. Its inverse

¢*1:(a1,...,a,,)eA"\z—>(al,..., )eZa(xn+1f—1)

ay, ——————————————
flai, ... an)
is again a morphism by Proposition 6.2.1. Thus ¢ is an isomorphism. One has
OA"\ Z2) = A(Zo(nr f = D) = (Ap) /G f = D) = (An)y,
so the assertion is proved. a

Now we are able to prove the:

Proposition 6.3.2 Let V be any quasi-projective variety. There is a basis for the
Zariski topology of V consisting of affine open subsets.

Proof We have to prove that for any point P € V and for any open neighborhood U
of P in V, there is an affine open neighborhood U’ of P in V suchthat U’ C U. Since
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U is a quasi-projective variety, we may actually assume U = V. Moreover since any
quasi-projective variety is covered by quasi-affine open subsets, we can assume that V
is quasi-affine in A”. Let us denote by V the closure of V in A”. Then Z = V \ Visa
closed subsetin A”. Since P ¢ Z, thereis a polynomial f € Z,(Z) suchthat f(P) #
Osothat P € V\ VN Z,(f).Since Z C V N Z,(f), we have that V \ V N Z,(f)
is closed in A" \ Z,(f): indeed, on one side we have V \ V N Z,(F) € V N (A" \
Z4(f)); on the other side V N (A" \ Z,(f) = V\(VNZ,(f) SV\Z=V,s0
that V N (A" \ Z,(f)) SV \ (VN Zu(f)), hence V \ (VN Zy(f)) =V N (A"
Z,(f)). Finally the open set V \ (V. N Z,(f)) of V is also a closed subset of the
affine variety A" \ Z,(f), hence it is affine. (Il

Finally we give a useful characterization of the isomorphisms:

Proposition 6.3.3 Let ¢ : V — W be a morphism between quasi-projective vari-
eties. Then:

(a) ¢ is dominant if and only if for all P € V, the map ¢} : Ow ¢py = Oy, p is
injective;

(b) ¢ is an isomorphism if and only if it is a homeomorphism and for all P € V,
the map ¢} : Ow, gpy = Oy, p is an isomorphism.

Proof Let us prove (a). Suppose ¢ is dominant. Let P € V and set Q = ¢(P). Let
[U, f1 € Ow.g be such that ¢%[U, f]1=[¢~'(U), f o ¢] = 0. Then we have

(V) = ¢~ (U)) S o6~ (U)) S Zy(f).

Since ¢ is dominant, we have Zy (f) = W. Butthen Zy(f) = Zy(f)NU =W N
U = U and f = 0 proving that ¢ is injective.

Suppose, conversely, that there is a P € V such that ¢} is injective. By
Proposition 6.3.2 we may assume that both V and W are affine varieties. Hence
we have Oy p = A(V)n,, Ow,g = A(W)n,, where Q = f(P) and mp and my
are the maximal ideals in A(V) and A(W) respectively, corresponding to the points
P and Q. Then the homomorphism ¢% : A(W)n, — A(V)y, induces the homo-
morphism ¢* : A(W) — A(V) and, if ¢}, is injective, then also ¢* is injective. Then
¢ is dominant (see Exercise 6.2.24).

Let us prove (b). Suppose ¢ is an isomorphism. Then it is a homeomorphism.
Moreover if f(P) = Q, then (¢})~" = (¢7")}. This proves the assertion. Con-
versely, suppose ¢ is a homeomorphism and ¢} is an isomorphism for all P € V.
Let P € V and set again Q = ¢(P). Let [U, f] € Oy, p. By the surjectivity of ¢%,
there is [U’, g] € Ow, ¢ such that

U, f1=¢5lU", gl =[¢~"(U), g o ¢l.

Hence there is an open neighborhood U” of P in U N ¢~!'(U’) such that fiy» =
go o, ie., fluro (bl;l(u,,) = gy This proves that ¢~ is a morphism, hence ¢ is
an isomorphism. O



6.3 Affine Varieties 77

Remark 6.3.4 In proving (a) of Proposition 6.3.3, we proved that:

(a) if ¢ is dominant, then @3, is injective for all P € V;
(b) ifthereisa P € V such that ¢} is injective, then ¢ is dominant.

So there is a P € V such that ¢}, is injective if and only if ¢}, is injective is
injective forall P € V.

Exercise 6.3.5 Prove that the morphism ¢ in the proof of Lemma 6.3.1, interpreted as a morphism
of Z,(xu41f — 1) to A", corresponds to the inclusion A, — (A,) .

Exercise 6.3.6 *Let V be an affine variety and f € A(V) \ {0} a regular function. Prove that
Uy (f) is an affine open subset of V and O(Uy (f)) = A(V)[%] =AWV)y.

6.4 The Veronese Morphism

Let n, d be positive integers and set N (n, d) = ("?:d) — 1. Then N(n, d) + 1 is the

number of distinct monomials xé" . -le",with io+---+i, =d,ofdegreedinn + 1
variables xo, ..., x,. We will consider the projective space PN4) whose points
have homogeneous coordinates which we will denote by [v;, ., liy+-+i,=d» that we
can considered as order with the lexicographic order. Then we can consider the
morphism

. i in N(n,d
Una © [X0s ooy Xp] €P" =[x -+ - XY gpiyma € PNOD

that is called the Veronese morphism of type (n, d). We will set V,, 4 = v, 4(P").

Proposition 6.4.1 One has:

(a) V.4 is a subvariety of PN"® called the Veronese variety of type (n, d);
(b) v,.q is an isomorphism between P" and V, 4.

Proof Consider the K-algebras homomorphism

n,d - 10...0Ipn 0.y dip+--+i,=d (l) e 111 0y «ccsn
gt fu.i) € Klv ] = fxy--xm) e Klx Xn]

and interpret K[v;,__; liy+..+i,=a as the coordinate ring of P¥*9 and K[xy, ..., x,]
as the coordinate ring of P". Note that im(¢J, 4) is the graded subring [S,]s :=
@2’;0(5")@ of S, = Klxo, ..., x,]. Moreover ¢, ; is a homogeneous homomor-

phism of weight d (recall Sect. 1.3). This implies that Z,, ; := ker(¥,, 4) is a homo-
geneous, prime ideal of K[v;,_;, lij+-..+i,=a- Let us prove that V,, s = Z,(Z, 4).

Itis clear that V,, y € Z,(Z, 4). On the other hand Z, 4 contains all polynomials
of the type

Qo 7 Bo a0

. . v . = . v .
200---L0n Lg0---Len J00--- Jon Jeo---Jen
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with
Oé()i(]p, +---+ O‘Zilu = BOjO/L +---+ ﬂ@jl/u for all n= O, <o, . (61)

From this follows that if [vj,. ;] € Z,(Z,.4), then at least one of the coordinates
V0..040...0 18 not zero. Indeed, from (6.1), one has

d

_ o i -
Yig...ip. = Ya0...0%0d...0 """ Vo...04

If for example vgo. o # O, set

Vd—1,10...0 Vd—1,0...01
xo=1,x = ————, ..., x, = ———. (6.2)
Vdo0...0 Vdo0...0

By (6.1) we have

o.d=1 o i . in
Vig...in V40...0 = Vq0..0Yd-1,10..0 " Va—10...01°

hence |
Vig...iy, = Udomox(l)o o -x}’q"
so that
[iy..i,] = Vn.a([X0s - - -, X]).

This proves part (a), and shows also that S(V,, z) = [Sul4-

Let us now prove part (b). It is clear that v, 4 is a bijective map from P" to V,, 4,
whose inverse is still a morphism, since it is locally defined by formula (6.2) or by
analogous formulae. This proves the assertion. O

We will still call Veronese variety of type (n, d) every variety which is projec-
tively equivalent to V,, ;. We already met some Veronese varieties, for instance the
projective twisted cubics are projectively equivalent to V; s, the irreducible conics are
projectively equivalent to V) . The varieties V; , are called rational normal curves,
the varieties V, , are called Veronese surfaces of type n, in particular V; 5 is simply
called Veronese surface.

Next we want to give a geometric interpretation of the construction of Veronese
varieties. Consider, for every positive integers n, d, the projective space L, =
P(S,.q4) of dimension N(n,d) = ("jd) — 1, whose points, as we saw in Sect. 1.6.5,
are in 1:1 correspondence with effective divisors of degree d in P". Recall that there
is a natural system of coordinates in £, 4 by assigning to the class of a polynomial
Zi0+--~+in=d viom,'nx(')0 . -x;'l“ the homogeneous coordinates [vj,.. i, lij+-+i,=d l€Xico-
graphically ordered. This way £, 4 can be identified with PN"4  which we will
constantly do in what follows. Recall that £, ; identifies with the dual P" of P,

Consider the following map
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v dZHGIP’”—)dHEEn,d

which associates to any hyperplane H of P” the degree d divisor d H, consisting of
H with multiplicity d. This map is called the Veronese map of type (n, d).

Lemma 6.4.2 The Veronese map v, 4 is a morphism.

Proof Suppose H = [ug, ..., u,] € ]f"”, i.e., H has equation wugxg+ -- -+ uyx,
= 0. Then d H has equation

d! .
(uoxo + -+ + tpxy)? = E ,—“0 u"‘xo ceex =0,
io+-Ain=d o: ’

Hence

. —— b i

Up,a([ug, ..., i) = .,—.'Mo Uy s

gt -1yt iottin=d

which proves the assertion. (]

Now we consider two cases:
(a) char(K) = 0. Consider the projectivity of PN given by

d!

) Nn.d ! Nnd

w : [Vig..i, Vigttipea € PV — [— - 'Uio...in:ll - ephed
ig+--+ip=d

l()! coclp
whose matrix is diagonal with non-zero entries. One has v, ; = w o v, 4. Hence
in this case v, 4 is an isomorphism of P" onto its image which is a Veronese
variety of type (n, d);

(b) char(K) = p # 0. Then it can happen that some of the integers ; , 7 are 0
modulo p. In this case what we said in (a) is no longer valid, and one has to
examine the situation case by case.

We can consider one more map, which is called the dual Veronese map
{)ﬂ,d . Pn — En,d

which sends a point P € P" to the hyperplane of £, ; consisting of all divisors of
degree d in P" whose support contains P.

Lemma 6.4.3 The dual Veronese map coincides with the Veronese morphism of P"
to En,d-

Proof Let P = [py, ..., p,] and consider an effective divisor D of degree d in P",
which has equation Zio totiy=d Vio.. iXg i" = 0. Then D contains P if and only
i) i —a Vigd, pf)o -+ pin = 0, and this equation defines ¥, 4(P) € En 4-Soin
conclusion v, 4(P) = Vp.q([po, - --» Pnl) = [pO c Pt =d» @s wanted. a
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Exercise 6.4.4 Give another proof of (b) of Proposition 6.4.1 based on Proposition 6.3.3, (b).

Exercise 6.4.5 *(Steiner construction) Consider two distinct points P, Q € P2 Let (P) [resp. (Q)]
be the pencil of lines passing through P [resp. through Q]. Consider a projectivity w : (P) — (Q),
such that w(P v Q) # P Vv Q. Consider the following set of points of P>

V={(P=rnw(),re(P))}
Prove that V is an irreducible conic.
Exercise 6.4.6 Prove that Veronese varieties are non-degenerate.

Exercise 6.4.7 Consider in P" the set V of points [xo, ..., x,] such that

Prove that V is a rational normal curve.

Exercise 6.4.8 Prove that a hyperplane intersects a rational normal curve Vi , in no more than n
points, and there are hyperplanes which intersect Vi , in exactly n distinct points.

Exercise 6.4.9 Prove that a rational normal curve V,, is the image of a morphism
[x0, x1] € P! — [fo(x0, x1), .-, fou(x0, x1)] € P (6.3)
where fo, ..., f, is a basis of S .

Exercise 6.4.10 Let g(xg, x1) = ]_[;'=0 (pixo — vix1) be ahomogeneous polynomial of degree n +

linxp, x1, whichhasn + 1 distinct roots (up to a proportionality factor), i.e., the points [v;, ;] € P!
9(x0.X1)

e fori =0,...,n,

are distinct, fori = 0, ..., n. Prove that the polynomials f; (xg, x;) =
form a basis of Sy .

Exercise 6.4.11 Continuing the Exercise 6.4.10, consider the rational normal curve V given by
(6.3) with f;(xg, x1), fori =0, ..., n, as in Exercise 6.4.10. Assume that 1; # 0 and v; # 0, for
i =0,...,n. Then prove that V contains the vertices of the fundamental pyramid and the two
distinct points [i, e, /%n] and [%, cey 171,,]' On the whole these are n + 3 distinct points of P" in
general position (see Exercise 1.6.9).

Exercise 6.4.12 *Consider n + 3 distinct points of P" in general position. Prove that there is a
rational normal curve containing them.

Exercise 6.4.13 Let V be a divisor of degree d in P". Prove that there is a hyperplane H ¢ PN (4)
such that v, 4 (V) = HNV, 4.

Exercise 6.4.14 Let V be a hypersurface of degree d in P". Prove that P \ V is an affine variety.

Exercise 6.4.15 *Let X € P” be a variety which is not a point and let V C P" be a hypersurface.
Prove that X NV # @.

Exercise 6.4.16 Prove the following complement to the weak formulation of Bézout Theorem
2.2.6: two projective plane curves have non-empty intersection.

Exercise 6.4.17 Prove that A2 and P? are not homeomorphic.

Exercise 6.4.18 *Prove that the coordinate ring of a projective variety is not invariant under iso-
morphisms.
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6.5 Solutions of Some Exercises

6.2.8 An automorphism of Al isamap ¢ : x € A! — P(x) € A!, where P € A;. Then ¢! : x €
Al - Q(x) € Al with O € Ay, and one has the identity x = Q(P(x)). This implies that P and
0 have degree 1.

6.2.11 Consider the map
¢ (1, x2) € A7 = (v, x2 + P(x) € A?

where P € Ay is any polynomial. These are automorphisms of A2 which form a group isomorphic
to the additive group of Aj.

6.2.14 We consider the projective case only, the affine one being trivial. Let Z be the projective
twisted cubic. We have the homeomorphism ¢ : P! — Z considered in Sect. 3.2.2, which is a
morphism. Its inverse sends [xg, x1, X2, x3] € Z to [xg, x1]if xo # 0, or to [x2, x3] if x3 # 0, hence
it is also a morphism.

6.2.17 This is a standard theorem in elementary affine geometry.

6.2.19 This is a standard theorem in elementary projective geometry, or, if you wish, in the classi-
fication of quadratic forms over an algebraically closed field K with char(K) # 2.

6.2.20 It suffices to prove the assertion for the conic Z with equation x% = xox1. In this case an

isomorphism with P! is given by the map
¢l e P! > N, 'l € Z.

6.2.24 If f € ker(¢*) is non-zero, then f o ¢ is zero in A(V). Then ¢(V) € Zw (f) C W and
¢(V) is a proper closed subset of W. Conversely, if ¢(V) is a proper closed subset of W, there is a
polynomial f such that (V) € Z,(f), with f ¢ Z,(W). Then f determines a non-zero function
such that f € ker(¢™).

6.2.251f f € O(U) € K(A") = K(x)), then f = ’g’g;; , where Z,(¢)Clai, . . ., an}. In particular
x1 —a; and (x] — ;)" are both in O(U); foralli = 1, ..., n. Since x; — a; is non-constant, this
proves that U is not isomorphic to Al

6.2.26 Since V is isomorphic to a projective variety, then O(V) = A(V) = K. This implies that
Z,(V) is a maximal ideal, hence V is a point.

6.2.27 Let V be a projective variety and W an affine variety. Then ¢ € M(V, W) corresponds to
the K-algebras homomorphism oV AW) > O(V) =K. IFAW) = K[xy, ey Xn1/Za (W), set
d)W(x,-) =a; €K, fori =1,...,n. Then forall P € V one has ¢(P) = (ay,...,a,) € W.

6.2.28 The morphism ¢ corresponds to the K-algebras homomorphism
0" flr ;) € A(V) = f(,1%) € Ay

which is not surjective because ¢ ¢ im(¢*). The inverse of ¢ restricted to V \ {0} is the map

(x1,x2) +> 32, 50 its is a morphism.

6.2.29 Consider the map
¢p:x e K— x? e K.

This is an isomorphism, called the Frobenius isomorphism. It fixes all the points of the fundamental
field ¥, CK.If f(xy,...,x,) € Ay, we denote by fs(x1,...,x,) the polynomial obtained by
applying ¢ to all the coefficients of f. In this way we get a map

o:feA, — fp A,
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which is a ring (but not a K-algebra) isomorphism. Moreover ¢ preserves degrees and homogeneous
polynomials. Since ¢ is bijective, also the Frobenius morphisms F are bijective. Moreover, if f € S,,,
one has
p -1 p

PGy = (3716 a)
hence, if f is homogeneous, one has F~'(Z,(f)) = Z,(¢~'(f)) and F(Z,(f)) = Z,(d(f)).
So F is a homeomorphism. To see that F is not an isomorphism, it suffices to see it is not an
isomorphism on A”. The map F corresponds to the homomorphism

F*: f(x1,...,x0) € Ay > f(xP, .. xf) € Ay

which is clearly not surjective.

6.2.30 By Corollary 6.2.3, (b), it suffices to show that O(A? \ {0}) = A». To see this, remark that
the inclusion A2 \ {0} C A2, determines an inclusion A, € O(A? \ {0}). We want to see that also
the opposite inclusion holds. One has O(AZ \ {0}) C K (A?) = Q(Ay). So, if f € O(A?\ {0}),
we can write f = % with g, h € Ay which we can assume to be coprime. If & € K\ {0}, then
f € A as wanted. Assume h ¢ K\ {0}. If P € Z,(h) \ {0}, there is an open neighborhood U of
P in A%\ {0}, such that in U the function f writes as f = % with 1/ (Q) # 0, forall Q € U. In

U\ (UN Z,(h)) one has % = %, hence we have there also gh’ = hg’, and then this relation holds

in the whole of A2. Since g is prime with £, then & divides &', hence h'(P) = 0, a contradiction.
This prove that 7 € K \ {0} and we are done.

6.2.31 The argument is very similar to the one for the solution of Exercise 6.2.30.

6.2.321f Z € A" is a closed subset, then A(Z) = A,,/Z,(Z) is finitely generated with no nilpotent
elements because Z,(Z) is radical. The converse is proved as in Corollary 6.2.3, (b).

6.3.6 Imitate the proof of Lemma 6.3.1.

6.44 If f(viy..i,) € Klvig...iy lig+--+i,=a 15 @ homogeneous polynomial, then fd € [S,]a, hence
thereis a polynomial g(vj,...;,) € K[vjy..i, lig+---+i,=a Such that f" = Up,4(g9). Thenv, 4(Z,(f)) =
Va.a N Z,(g), and this proves that vy, 4 is closed, so it is a homeomorphism. It remains to prove
that for any point P € IP", the map (vy,,¢)p is an isomorphism, i.e., by Proposition 6.3.3, (a), that it
is surjective. If [U, f] € Opr p, we may assume that f = %, with g, h homogenous polynomials
of the same degree a and h non-zero in U. If k is a homogenous polynomial of degree ad — a,
with a > 0, non-zero in P, in a suitable neighborhood of P we have % = %. On the other hand
there are polynomials G, H € K[vj,. i, lig+---+i,=d> both homogenous of degree «, such that gk =
Yn.a(G) and hk = 9, 4(H), so that [U, f1= Wn.a)p[Vaa \ Vaa N Z,(H)), %], which proves
the required surjectivity.

6.4.10 Suppose we have a relation Z?‘:o Ajfj = 0. Computing at (v;, pu;) we get A; [ ], (ujvi —
vjpi) = 0, which implies \; = 0.

6.4.12 By applying the fundamental theorem of projectivities (see Exercise 1.6.9) we may assume
that the points in question are the vertices of the fundamental pyramid, the unitary point and another

point [po, ..., pnl, With po, ..., p, non-zero and not equal. Then the rational normal curve in
question is the one constructed as in Exercise 6.4.12, where o = ... =p, =l and v; = pi for

1
i=0,...,n.

6.4.14 One has that P" \ V is isomorphic to V, 4\ (V,a NV’ C PN G.d) \V/ = AN@.d), (see
Exercise 6.4.14).

6.4.16 If X NV = ¢ then, by Exercise 6.4.14, X would be isomorphic to an affine variety, and then
it would be a point by Exercise 6.2.26.

6.4.17 Remark that there are affine plane curves (which are closed subsets with topological dimen-
sion 1) which do not intersect. Then apply Exercise 6.4.16.
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6.4.18 For example P and V,, 4, with d > 1, are isomorphic but S(P") = S,, whereas S(V,, 4) =
[S»]q are not isomorphic as K-algebras, since they have a different minimal number of generators
as K-algebras.



Chapter 7 ®)
Rational Maps e

7.1 Definition of Rational Maps and Basic Properties

Let V, W be quasi-projective varieties. Let us denote by KC(V, W) the set of all pairs
(U, ¢), where U is a non-empty open subset of V and ¢ € M (U, W). We define the
following relation R in IC(V, W):

(U, »)RWU', ¢) ifandonlyif ¢uny = Plyny:-

It is easy to verify, taking into account Proposition 6.2.6, that R is an equivalence
relation. The set IC(V, W)/R is denoted by K(V, W) and its elements are called
rational maps of V in W. The equivalence class of (U, ¢) is denoted by [U, ¢].
Proceedlng as in Exercise 5.2.2, one sees that for any pair (U, ¢) € K(V, W), there
is a pair U, ¢) € K(V, W), such that (U, QS)R(U ¢), and for any pair (U’, ¢') such
that (U, ¢)R(U’, ¢'), one has that U’ C U. Then U is called the definition set of the
rational map. The rational map determined by the pair (U, ¢) € K(V, W) is often
denotedas ¢ : V --» W.
There is an obvious injective map

0:6e MV, W)— [V,d] € K(V, W).

The image of this map is the set of rational maps whose definition set coincides with
V. We will identify these maps with the morphisms of which they are the images via
0.

A rational map [U, ¢] € K(V, W) is said to be dominant if ¢ : U — W is domi-
nant. This definition is well posed (see Exercise 7.1.6). Similarly one sees that given
[U, ¢] € K(V, W), then ¢(U) is a closed subvariety of W which depends uniquely
from [U, ¢] and not from the pair (U, ¢). We say that ¢(U) is the image of the
rational map ¢ : V --» W, and it is denoted by im(¢). Of course ¢ : V --» W is
dominant onto im(¢).
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If V' C V is a subvariety, the rational map [U, ¢] € K(V, W) is said to be defined
on V', if there is a pair (U’, ¢') such that (U’, ¢)R(U, ¢) and V' N U’ # @. In this
case the rational map [V' N U’, \/v'me] € K(V’, W) is well defined and it is called
the restriction of [U, ¢] to V'. If K(V', V, W) is the set of all rational maps of V to
W which are defined on V', we have the obvious restriction map

ry s K(V,V,W) > KV, W)

which, for morphisms, coincides with the restriction.

Let Z be again a variety and consider [U, ¢] € K(V, W), [U’, ¥] € K(im(¢), W,
Z). Since ¢(U) N U’ # @, one has also ¢(U) N U’ # @, hence ¢~ (¢(U)NU’) =
U" is a non-empty open subset of U, where the morphism 1) o ¢ is defined. It is easy
to check that [U”, ¢ o ¢] is a well defined element of K(V, Z) which is called the
rational map composed of [U, ¢] and [U’, 1]. Note that dominant rational maps can
be always composed. Hence it makes sense to consider the category whose objects
are quasi-projective varieties and the morphism are dominant rational maps. Two
varieties which are isomorphic in this category are said to be birationally equivalent
or simply birational and the isomorphisms in this category are called birational
maps or birational transformations. So a birational transformation between the quasi-
projective varieties V and W is a dominant rational map ¢ : V --» W such that there
is a dominant rational map ¢ : W — V such that ¥ o ¢ = idy and ¢ o Y = idy.
Then one writes 1) = ¢~

Let again V, W be quasi-projective varieties and let V' [resp. W'] a subvariety
of V [resp. of W]. Let ¢ : V --» W which is defined in V' and the image of ¢, =
ry:(¢) contains W'.Let f € Ow w S K(W). We can consider the composed rational
function of ¢ and f, which we denote as f o ¢. Then f o ¢ € K(V), but it is clear
that it is defined on V', so that f o ¢ € Oy y/. This way we have a map

¢*: Oww — Ov,vr
and it is easy to see that this is a K-algebras homomorphism. If V.= Wand V' = W’
and ¢ = idy then ¢* = ido, ,,. Finally, if Z is a third variety, Z’ is a subvariety of
Z and ¢ : W --» Z is such that

V' O0z.2 — Ow,w
can be considered, then, as it is easy to check, one has ¢* o ¢* = (¢ 0 ¢)*.
Lemma 7.1.1 In the above setting, if W’ coincides with the image of v, then

¢ (mw,w) S my y.
Proof By Lemma 5.5.2 and Proposition 6.3.2 we may assume that V, V', W, W' are

all affine and ¢ is a morphism. Then ¢ corresponds to a K-algebras homomorphism
¢* : A(W) — A(V) and ¢y corresponds to the homomorphism (¢yy)* : A(W) —
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A(V') = A(V)/Zy(V'), which is composed of ¢* and of the canonical map 7 :
A(V) = A(V’'). On the other hand, since ¢(V’') = W', we have that ¢y can be
interpreted as a dominant morphism of V' onto W', and this implies that (¢y/)*
factors through the canonical map n' : A(W) — A(W') = A(W)/Zw (W’). Hence
¢*(Iw (W) € Iy (V'). Since

¢" : Oww = AW)z,(wy = Ovv = A(V) 1, (v

is induced by ¢* : A(W) — A(V), the assertion follows. O

In particular, if ¢ is dominantand V = V' and W = W’, one has ahomomorphism
of fields ¢* : K(W) — K (V), which, being non-zero, is injective. If ¢ is birational,
then ¢* : K(W) — K (V) is an isomorphism, hence the field of rational functions is
invariant under birational transformations.

Theorem 7.1.2 Let V, W be quasi-projective varieties, V', W' subvarieties of V, W
respectively, and let
« OW,W’ — Ovyvf

be a K-algebra homomorphism such that
a(my,w) S my . (7.1)

Then there is a unique rational map ¢ : V --» W, defined on V' and inducing on V'
a dominant rational map onto W' such that o« = ¢*. Moreover « is injective if and
only if ¢ is dominant.

Proof Let U’ be an affine open subset of W such that U' N W’ # (. Then A(U’)
is a finitely generated K-algebra, and let &y, .. ., &, be a set of generators of A(U’).
Since A(U") C Ow.w = Oy .unw, we may interpret a (&), ..., a(&,) as rational
functions on V defined on V’. Let U be an open affine subset of V such that U N
V' #£ @, on which (&), ..., a(,) are all defined. So « determines a K-algebras
homomorphism o/ : A(U’) — A(U), hence a morphism ¢ : U — U’ (see Theorem
6.2.2), thus we have a rational map ¢ : V --» W defined on V.
Note that

~ / ~ 4 —
Oww = AU )Iu/(WU’)’ Oy v =AU )IU(V’ﬂU)’

and « comes, as an obvious extension, from o’ and it is just equal to ¢*. Hence if «
is injective, so is also ¢/, thus ¢ is dominant (see Exercise 6.2.24); conversely, if ¢
is dominant, then ¢’ is injective and « is injective as well.

Let now f € my . By (7.1), o sends f to a function regular on U, which
vanishes on U N V': this implies that (V' N U) € W/ N U’. Let us prove that the
restriction of ¢ to V' is dominant onto W'. For this, note that ¢yny corresponds
a homomorphism ¢y, AU NW) - AU N V'), where we can assume that
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both V’, W are closed. On the other hand, by (7.1), « induces an injective homo-
morphism of the residue field K (W’) of Oy, - to the residue field K (V') of Oy y.
This homomorphism extends ¢jy,,, which is therefore injective, and this proves
that ¢y- is dominant onto W’.

Let us prove finally the uniqueness of ¢. If ¢’ : V --» W is such that a = (¢)*,
then, repeating the above argument, we see that ¢’ coincides with ¢ on U and therefore

p=9. O

Corollary 7.1.3 Let V, W, V', W' be as in the statement of Theorem 7.1.2. The fol-
lowing are equivalent:

(a) there is a birational map ¢ : V --» W, defined on V' such that ¢y induces a
birational transformation of V' onto W';

(b) Oy.y: and Oy ' are isomorphic as K-algebras;

(c) there is an open subset U of V such that U N V' # @, an open subset U' of W
suchthatU' N W' # @, and anisomorphism ¢ : U — U’ suchthat p(U N V') =
unw'.

Proof 1t is clear that (a) implies (b). Theorem 7.1.2 implies that (b) implies (a). It is
again obvious that (c) implies (a). Let us prove that (a) implies (c).

Let [Uy, ¢] be a birational map of V onto W, defined on V', such that Uy N
V' # ¥ and such that [Uy N V', ¢y,nv] is a birational map of V' onto W’. Let
(U}, 11 be the inverse of ¢, so that 1) o ¢ is represented by [Uy N ¢! Uy, ¢ o ¢l
and ¢ o by [Uj N Y1 (Uy), ¢ o ]. Since ) o ¢ = idy and ¢ o ¢ = idy, thenp o ¢
is the identity on Uy N ¢’1(U6) and ¢ o v is the identity on Uj N =1 (Up). Let us
setU = ¢~ { (U, N~ (Up)) and U’ = ¢~ (Uy N ¢~ (U()). One has ¢(U) € Uy N
Y1 (Up). If P € U; Ny~ (Uy) one has ¢p(1)(P)) = P, hence P € =" (¢~ (U))),
and therefore

P ey (¢ WU N~ Uo) = ¢ (o7 (U) NTy) = U

So ¢(U) C U'. Similarly ¢(U") C U, and clearly ¢ and v induce isomorphisms
between U and U’. Moreover ¢,yny- is a birational morphism of U N V' to U’ N w'.
Since (U N'V’) is dense in U’ N W’ and ¢ is closed on U, the final part of (c)
follows. O

Corollary 7.1.4 The correspondence that to any variety V associates the field K (V')
and to any dominant rational map ¢ : V --» W associates the K-algebra injective
homomorphism ¢* : K(W) — K (V), is a contravariant functor, which is an equiva-
lence of categories between the category of varieties and the category of fields which
are finitely generated extensions of K.

Proof By Theorem 7.1.2 and Corollary 7.1.3 appliedto V = V' and W = W', hence
Oy.y = K(V) and Oy w = K (W), it suffices to prove that the functor in ques-
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tion is surjective. Let K be a finitely generated extension of K, and let i, ..., &,
be a set of generators of K. Then K = Q(K[{y, ..., &,]), and on the other hand
K[y, ..., &]) = A(V) for some affine variety V € A”. The assertion follows by
Theorem 5.5.3, (c). O

The birational transformations of a variety V to itself form, with the operation of
composition, a group which is denoted by Bir(V), and it contains, as a subgroup,
the group of automorphisms of V, i.e., the isomorphisms of V to itself. In particular
Bir(P*) is called the Cremona group of P" and its elements are called Cremona
transformations of P".

Exercise 7.1.5 Prove that R is an equivalence relation in IC(V, W).
Exercise 7.1.6 Prove that the definition of dominant rational map is well posed.

Exercise 7.1.7 *Let V be a quasi-projective variety. Prove that a rational function f € K(V) can
be interpreted as a rational function f : V --» P!,

Exercise 7.1.8 *Prove that any quasi-projective variety is birationally equivalent to any of its
non-empty open subsets.

Exercise 7.1.9 Let V, W, V', W’ be quasi-projective varieties, o : V --» V', 3 : W --» W’ bira-
tional maps, ¢ : V --» W a dominant rational map. Prove that there is a unique dominant rational
map ¢’ : V' — W’ such that ¢’ o = 3 o ¢.

Exercise 7.1.10 *Prove that any rational map ¢ : P! --» P is everywhere defined, hence it is a
morphism.

Exercise 7.1.11 *Let A be a non-zero matrix on K of type (n 4+ 1) x (m + 1) of rank r with
1 < r < n+ 1. The set of points [x] € P such thatx - A = 0 is a subspace of dimension n — r that
we will denote by P5. The map

A [X] € P"\ Py — [x-A]l € P”

is well defined and it is a morphism from the open set Uy = P"* \ P4 to P, that determines a rational
map 7a : P" --» P, which is called a generalized projectivity. This is an actual projectivity if
r =n+ 1, in which case Py = . If r < n, the map is also called a degenerate projectivity with
centre Py.
Prove that a degenerate projectivity is dominant onto a subspace of P”* of dimension r — 1.
Prove that if » = 1 then 74 is constant, hence it is everywhere defined. Prove that if » > 1 the
definition set of 75 is Ua.

Exercise 7.1.12 *Let P; be a subspace of dimensionn — r, withr > 1 of P,;, and let [P, be another
subspace of P of dimension r — 1, which are skew, i.e., such that Py N P, = ¢J. By Grassmann for-
mula, one has then Py v P, = P". Forevery point P € P" \ [P, the subspace P; v P has dimension
n — r + 1 which, again by Grassmann formula, intersects P; in a point P’. Consider the map

T:PEPn\Pl—>P,=(IP)1\/P)QP2€P2

called projection of P" onto P, with centre P1. Prove that this is a degenerate projectivity which
is surjective onto . Prove that given two points P, Q € P" \ Py, then 7(P) = 7(Q) = P’ if and
onlyiva]Pl = Q\/]P)l = P/\/[P)l.
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Exercise 7.1.13 *Prove that if 7o : P" --» P is a degenerate projectivity with A of rank r, then
there are two projectivities o : P" — P" and §: P — P", and a projection o : P" --» Pp =
P'~! CP" suchthatT = Boooa.

Exercise 7.1.14 *Consider A" as embedded in P" and consider the projection 7 of P" onto P,
of dimension r — 1 > 0, from a centre P; of dimension n — r. Suppose that [P, is not contained
in the hyperplane at infinity of A", so that Ay := P> \ (IP2) is an affine subspace of dimension
r — 1 of A". The restriction of 7 to A" \ (A" NIP)) is called projection of A" on Ay with centre
Ay = A"NPyif Ay # 0, or projection of A" on Ay parallel to the direction of Py, if A; = 0 (see
Exercise 1.6.20 for a special case of this situation). Prove that the latter projection is a surjective
morphisms onto Aj.

Exercise 7.1.15 *Prove that any affine map between affine spaces is the composite of parallel
projections and affinities.

Exercise 7.1.16 *Consider a projection of A" on A, with centre A} = A" NPy with A} # @.
Prove that this is a rational map which is not a morphism, unless » = 1, in which case it is constant.

Exercise 7.1.17 Consider the rational function f = % on P2. What is its definition set? We can
consider ﬁ—(" also as a rational map f : P2 -5 P!, by writing it as f[xo, x1, X2] = [x0, x1]. As a
rational map of P2 to P!, what is its definition set?

Exercise 7.1.18 Consider V an affine or projective variety. The restriction to V' of a projection on
a given subspace P, from a certain centre P; not containing V is a rational map of V in P», still
called projection of V to P, with centre Pj. Prove with an example that the definition set of such a
projection can be bigger than V \ P;.

Exercise 7.1.19 Consider the following rational map

1 1 1
¢ : [x0, x1,x2] € P* —-» [x1x2, xox2, Xox1] = [*, —, *] e P2
X0 X1 X2
Prove that this is ainvolutory Cremona transformation, i.e., p = ¢~ ! Itis called a standard quadratic
transformation of P2, together with all its composition with a projectivity of P2.

Exercise 7.1.20 Continue Exercise 7.1.19.Set A = [1,0,0], B =1[0,1,0],C =1[0,0, 1]anda =
BVvC,b=AVvC,c=AV B. Set U =P? \ {a, b, c}. Prove that ¢ is an isomorphism of U to
itself, and ¢* = idy .

Exercise 7.1.21 Continue Exercise 7.1.20. Prove that ¢(a \ {B,C}) = A, ¢(b\ {A,C}) = B,
¢(c \ {A, B}) = C. This is expressed by saying that ¢ contracts the lines a, b, ¢ to the points
A, B, C respectively, and the points A, B, C are blown-up to the lines a, b, ¢ respectively. Set
U’ =P?\ {A, B, C}. Prove that U’ is the set of definition of ¢.

Exercise 7.1.22 Continue Exercise 7.1.21. Consider a line r containing the point A different from b
and ¢, with equation Ax| + pux, = 0. Prove that ¢(r \ {A}) is the line with equation pux; + Axp = 0,
which cuts the line @ in the point R = [0, —\, p]. Prove that the map which sends the line r different
from b and ¢ through A to the point R in a, and the lines b, ¢ to the points B, C respectively, is a
projectivity from the pencil (A) of lines through A (considered as a line in ]13’2), and the line a.
Similar discussion can be made for the point B [resp. C] in relation with the line b [resp. c].

Exercise 7.1.23 Continue Exercise 7.1.22. Consider a line r which does not pass through any
of the points A, B, C, so that it has equation of the form axg + Bx; + vx2 = 0, with «, /3, v not
zero. Prove that the image of r is the conic I" with equation axxz + Sxox2 + yxox; = 0 passing
through the points A, B, C. Prove that the tangent lines to the conic I at A, B, C correspond in the
projectivities considered in Exercise 7.1.22 to the intersection points of r with the lines a, b, c.
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Exercise 7.1.24 Continue Exercise 7.1.23. Prove that any irreducible conic I" passing through the
points A, B, C, hence with equation axyxy + Bxox2 + yxox; = 0is such that (" \ {A, B, C}) is
the line r with equation axg + Bx) + yx2 = 0.

Exercise 7.1.25 Prove that Bir(P!) = Aut(P').

Exercise 7.1.26 *Prove that Aut(P') coincides with the group of projectivities of P! to itself.

Exercise 7.1.27 *Prove that any automorphism of the field K(x) as a K-algebra is obtained by
extending by K-linearity the map which sends x to an element of the type 42X, with ad — cb # 0.

c+dx’
Exercise 7.1.28 Provethatif¢ : P!\ {P,..., P,} = P'\ {01, ..., Q,}isanisomorphism, with
Pi,...,Prand Q1, ..., Qg distinct, then s = r.
Exercise 7.1.29 Prove that there is always an isomorphism ¢ :P'\{P,..., P} —
P! \{Q1,..., O/}, with P, ..., P.and Qy, ..., O, distinct, if » < 3. Prove that this is not always

the case if r > 4.

Exercise 7.1.30 Let £ C L, 4 be a linear system of dimension m with base locus not containing
any divisor. Consider the map 5
¢ P"\Bs(L) - L=P"

that sends a point P € P" \ Bs(£) to the hyperplane £(— P) of £ (notation as in Sect. 1.6.5). Prove
that ¢, determines a rational map ¢, : P* --» P such that the image of ¢ is non-degenerate.
Prove that for any rational map ¢ : P" --» P™ such that the image of ¢ is non-degenerate there is
a positive integer d and a linear system £ C £, 4 of dimension m such that ¢ = ¢ .

7.2 Birational Models of Quasi-projective Varieties

In this section we will prove a basic theorem which says any any quasi-projective
variety is birationally equivalent to a hypersurface in affine or projective space. Before
that we need the following results of algebra:

Lemma 7.2.1 Let k be an infinite field and let k(c, ) be an algebraic extension
with o, separable on k. Then there exists an o € k(a, ap) such that k(ay, ap) =
k().

Proof Let fi(x), fo(x) be the minimal polynomials, of degrees n,m of oy,

respectively, and let oy = a, ..., a1y, Q21 = (o, ..., G2y, be the roots of the two
polynomials in the algebraic closure of k. If m = 1 there is nothing to prove. So we
assume m > 1. Since «, is separable, o) = ay, .. ., ay, are all distinct, so it makes

sense to consider the elements

ayl; — aqy . .
—, for i=1,...,n,j=2,...,m,
Qo1 — Qpj

and we can choose a € k distinct from all these elements. So one has

i +aoj #F oy +aocn = +acy, for i=1,...,n,j=2,...,m.
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Set o = a1 + aa and let us prove that k(a, ap) = k(). Itis clear that k(o) €
k(ay, ap) so we need to prove that k(ay, ap) € k(). And it suffices to prove that
an € k(a), because a; = a — aa;.

Notethat f>(ap) = Oand f (o)) = fi(a — aay) = 0, sothat the two polynomials
f2(x) and f)(a — ax) have a common root, hence they have a greatest common
divisor f(x) of positive degree in k(a)[x], which we can suppose to be monic. Now
f(x) has the root «; and it does not have multiple roots, because o is separable.
Let us prove that f(x) has the only root ar; which will prove the assertion. If f(x)
had another root, this would be one among «,, . . ., a;,,, but none of these is also a
root of fi(o — ax), because o — acy; # oy, fori =1,...,n,j=2,...,m. U

As an immediate consequence we have the:

Theorem 7.2.2 (Abel’s Theorem of the Primitive Element) If k is an infinite field
and k C k' is a separable, finite extension, then it is simple, i.e., there is an element
o € k' such that k' = k(o).

Now we can prove the announced result:

Theorem 7.2.3 Every quasi-projective variety of transcendent dimension n is bira-
tionally equivalent to an irreducible hypersurface in A" or in P"+!,

Proof By taking into account Exercise 7.1.8 it suffices to prove the assertion for
affine varieties, proving that such a variety is birationally equivalent to an affine
hypersurface.

So, let V € A’ be an affine variety with dim (V) = n and consider K (V') which
is finitely generated on K, with system of generators xi, ..., x,, from which we
can extract a maximal system of algebraically independent elements over K, which
we may suppose to be xi, ..., x,. We may also assume r > n, otherwise the asser-
tion is trivially true. Then every element y € K (V) algebraically depends on K
from xy, ..., x,, i.e., there is a non-zero, irreducible polynomial f (¢, ..., % 1) €
K[z, ..., ty+1] such that f(xy,...,x,,y) =0.Let y = x,41. Let us prove that for
the corresponding polynomial f, there is an i =1,...,n + 1, such that g—tf # 0.
Indeed, if this were not the case, then the polynomial f would be of the form

pii Pinyi
flt, .. ) = E iy ity T

iyedntl

p

[ P and

with p = char(K). Then, if we seta;, ;,,, =

Gt .o tag1) = Z [ L

ieedpy1

we would have f° = g” against the irreducibility of f.
Suppose now that g—f # 0. Then xy, ..., x;_1, Xit+1, ..., X,41 are algebraically
independent on K. Note in fact that x; algebraically depends on xy, ..., x;_1, Xit1,
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., X,+1 because t; actually appears in f. Thenifxy, ..., xi—1, Xj+1, ..., Xp4+1 Were
not algebraically independent on K, then the transcendence degree of K (V) on K
would be smaller than n, a contradiction. By changing name to the variables, we
may assume that ;é 0, which shows that x,, ;| is separable over K(x, ..., x,).
Since x4, 1s algebra1c over this field, Theorem 7.2.2 implies that there is a
y € K(xy, ..., x,42) € K(V) such that K(xy, ..., x,42) = K(x1, ..., x,, ). Iter-
ating this argument we see that finally K (V) = K(zy, ..., z,41), Where z;, ..., 2,
are algebraically independent over K and there is an irreducible polynomial f €
K[z, ..., thet], w1th 7é 0, such that f(zy,...,2,41) =0. If W = Z,(f) C
A" it is now clear that K(W) =K(zy, ..., zu+1) = K(V), so that, by Corollary
7.1.4, V is birational to W, as wanted. O

Exercise 7.2.4 *LetV C A’ be an affine variety with dim (V') = n. Prove that there is a projection
7 of A” onto A"+ such that the restriction of 7 to V is a birational morphism of V onto a hypersurface
of A"F1,

7.3 Unirational and Rational Varieties

A variety V of transcendent dimension 7 is said to be unirational if there is a dom-
inant rational map ¢ : P" --» V. This is equivalent to say that there is an algebraic

extension K (V) C K(xy, ..., x,), where xi, ..., x, are transcendent over K. The
variety V of transcendent dimension 7 is said to be rational if it is birationally equiva-
lentto P*ie.,if K(V) = K(xy, ..., x,) withxy, ..., x, transcendent over K. Every

rational variety is unirational, but the converse is not always true. A classical problem
in algebraic geometry is the one of understanding if and when unirationality implies
rationality. This problem is called Liiroth’s problem, in honor of J. Liiroth who in
1880 proved the following important theorem which we will prove in a while:

Theorem 7.3.1 (Liiroth Theorem) Any unirational curve is also rational.

There is a similar, much more difficult, result by Castelnuovo (1894) for surfaces
in characteristic zero: any unirational surface is rational. Only more recently it has
been proved that in general unirationality does not imply rationality for varieties of
transcendent dimension n > 3.

Let us focus on the proof of Liiroth Theorem 7.3.1. First we need the following
algebraic lemma:

Lemma 7.3.2 Let x be transcendent over a field k. Let § = % € k(x) \ k, with

GCD(g, h) = 1. Then x is algebraic over k(6) of degree d = max{deg(g), deg(h)}.

Proof Let z be transcendent over k(x). Consider the polynomial
F(2) = h(z) — 0g(z) € k[0, z]

which has degree d in z. One has F (x) = 0. Let us prove that F (z) is irreducible over
k(0), which will imply the assertion. Note that 6 is transcendent over k. Moreover
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cr = 1, with F as polynomial in z (see Sect. 2.1 for the definition of c¢f). Hence by
Gauss Lemma 2.2.5, we have that F(z) is irreducible over k(6) if and only if it is
irreducible over k[0, z]. Suppose F'(z) is reducible in k[0, z]. Since F(z) has degree
1in 6, we have F(z) = p(0, z) - g(z), hence ¢(z) divides both & and g hence itis a
constant. ([l

We can now prove Liiroth Theorem in the following algebraic formulation:

Theorem 7.3.3 (Liiroth Theorem, algebraic formulation) Let x be transcendent over
afieldk. Let L be a field transcendent over k and such thatk C L C k(x). Then there
is an element 0 € L, transcendent over k, such that L = k(0).

Proof The assertion is trivial if L = k(x). So we assume L # k(x). First of all we
remark that k(x) is algebraic over L. Indeed, if 5 € L \ k, then 8 € k(x) \ k hence
k(x) is algebraic over k(3) C L (see Lemma 7.3.2). Let now z be an indeterminate
over L and consider the minimal polynomial of x over L

f@=a+az+...+7" € L[z].

We have q; = 551((3’ with g;, h; € k[x] such that ; # 0 (and also g; # 0 if a; # 0),
and g;, h; coprime, with i =0, ..., n — 1. Since x is transcendent over k, at least
one q;isnotink, fori =0,...,n —1.Let0 = % such a coefficient of f(z). We
will show that L = k(6).

Let us multiply f(z) for the least common multiple of Ay, ..., h,—;. Then we
get a polynomial f(x, z) € k[x, z], and one has ¢y = 1, with f as a polynomial in
(k[x])[z]. Consider the polynomial

p(2) = g(z) — Oh(z) € k[0, z] S k(x)[z].

One has p(x) = 0, hence p(z) is divided by f(z) in k(8)[z], hence also in k(x)[z].
Then the polynomial

€(x, 2) = h(x)g(z) — g(x)h(z) € k[x, z]

isdivided by f(x, z) ink(x)[z]. Since ¢y = 1, by Gauss Lemma 2.2.5 the polynomial
f(x, z) divides £(x, z) even in k[x, z], i.e., we have £(x, 7) = f(x, 2)q(x, z) with
q(x, z) € k[x, z]. Now note that £(x, z) = —€(z, x), hence £ has the same degree in
x and in z. This is also the degree of p(z), and it is d = max{deg(g), deg(h)}.

The degree of f(x, z) in x is at least d, because g and & are factors of coefficients
of f(x, z) of different powers of z. Since f divides £, we have that g € k[z]. On the
other hand, since GCD(g, h) = 1, we have g € k, thus £ = f up to a constant factor.
Therefore deg(¢) = deg(f) both with respect to x and z. But [k(x) : L] = deg(f),
[k(x) : k(0)] < deg(p) = deg(¢) = deg(f). In conclusion we have [L : k(6)] = 1,
as wanted. [

Remark 7.3.4 We notice that in the proof of Liiroth Theorem we do not need the
base field k to be algebraically closed.
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Exercise 7.3.5 *Consider in A", with n > 2, an irreducible hypersurface Z of degree d > 2 with
reduced equation of the form

Ja—1(xr, oo x0) = fa(xr, oo, x,) =0

where fy—1, fy are non-zero homogeneous polynomials of degrees d — 1, d respectively. Note
that, being Z irreducible, fy_1, fg are coprime. Then we say that Z is a monoid with vertex 0. Any
hypersurface which is transformed of Z by an affinity is still called a monoid. Also the projective
closure of a monoid is called a (projective) monoid. Prove that every monoid is rational.

Exercise 7.3.6 Prove that the projection of a projective monoid Z in P" from its vertex to a
hyperplane is a morphism (i.e., it is everywhere defined) if Z is an irreducible conic. The projection
of a projective monoid from its vertex to a hyperplane is called stereographic projection of the
monoid.

Exercise 7.3.7 Continue Exercise 7.3.5. Prove that if n > 3 then the stereographic projection of a
projective monoid Z from its vertex is not defined at the vertex.

Exercise 7.3.8 Consider a projective monoid Z with vertex P. Consider two distinct points
Py, P, € Z\ {P}. Let ¢ be the stereographic projection of Z from P. Then ¢(P)) = ¢p(Py) if
and only if the line r = P; v P, contains P and is contained in Z, and for all points Q € r \ { P},

one has ¢(Q) = ¢(P1) = ¢(P2).
Exercise 7.3.9 Continue Exercise 7.3.8. Suppose the projective monoid Z has equation
X0 fa—1(x1, ..., X)) = fa(xr, ..., xn) = 0.

and vertex P = [1,0, ..., 0]. Prove that if n > 3, the union of lines in Z through P is non-empty
and it has equation f; = f;—1 = 0. Prove that if n > 3 the inverse of the stereographic projection
from P is not a morphism.

Exercise 7.3.10 Prove that any irreducible quadric in P is a monoid, and it is therefore rational.

7.4 Solutions of Some Exercises

7.1.6 Suppose [U, ¢] € K(V, W) is such that ¢ : U — W is dominant. Assume [U, ¢] = [U’, ¢'].
Then

YU 26U NU)=aU'NU) 29(UNU)NU) = pU).
The assertion follows.

7.1.7We canassume that V C A" is affine. Let f € K(V).Then f € Q(A(V)) (see Theorem 5.5.3),
so f = % with g, i the classes in A(V) of polynomialsin A,, withh ¢ Z,(V).LetU =V \ Zy (h)
whichis anon-empty open subset of V. Then f determines the morphism P € U — [h(P), g(P)] €
P!, which in turn determines a rational function, still denoted by f,of V in Pl

7.1.9 This follows from Corollary 7.1.4. In fact, ¢ corresponds to an injective homomorphism
¢* : K(W) — K(V), aand 3 to isomorphisms o* : K(V’) — K(V) and §* : K(W') — K(W),
50 ¢ is uniquely determined since it corresponds to the injective homomorphism o* o ¢* o (3*)~!
KW' — K(V').

7.1.10 There is a non-empty open subset U of P! in which ¢ is of the form ¢([xp, x1]) =
[fo(x0, x1), .-, fu(x0, x1)], with fy, ..., f, € S> homogeneous polynomials of the same degree
which we can assume to be coprime and for all [xq, x1] € U, one has (fo(xo, x1), . .., fu(x0, X1)) #
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0. Letnow P = [yg, y;] be any point of P!. Then there isani = 0, ..., n such that fio, y1) # 0,
otherwise foralli = 0, ..., n, we have that f; is divisible by xoy; — xyo, contrary to the assump-
tion that fy, ..., f, are coprime. This implies that ¢ is everywhere defined.

7.1.11 The dominance onto a subspace of P"* of dimension r — 1 isclear. The casesr = 1, n + 1 are
trivial. Assume 1 <7 < n + 1. If 7 is defined in P € PP", then there exists an open neighborhood
U of P in P, and there are homogeneous polynomials of the same degree fy, ..., fi, € S, notall
zero, such that

TA(Q) = Lo(D), ..., fu(Q)], forall QeU.

Ifa%, ..., a™ are the columns of A, we set gi(x)=x- a',fori =0,...,m. Thenin U N Uy we
have also

TA(Q) = [90(QD). - ... gm (D)].

rank(f0 Sree fm) =1. (7.2)
go g1 --- 9m

Since U N Uy is a non-empty open subset of P, (7.2) holds everywhere in P". Fix now an i =
0,...,m.Sincer > 2,thereisa j =0, ..., msuchthat \g; # g; forall A € K. Since f;g; = f;gi,
if g; = O then also f; = 0. If g; # O then f; is divisible by g;. In any event, foralli =0, ..., m if
gi(Q) = 0 then also f;(Q) = 0. This proves the assertion.

hence in U N Ux we have

7.1.12 We can change coordinates and assume that | has equations xg = - - - = x,—1 = 0and P, has
equations x, = - - - = x,, = 0, sothat[P, can be identified with P ~! with coordinates [xg, . . . , xy—1]-
Then 7[xg, ..., x,] = [x0, ..., x,—1] and the assertions follow.

7.1.13 Given 7 : P" --» IP"", one can change coordinates so that it has equations of the form
Tlxo, ..., xa] = [x0, ..., Xr—1].

7.1.14 We can change coordinates in P" and assume that | has equations xo = -+ = x,_1 =0,
P has equations x, = --- = x, = 0, and A" is the open set Uy. Then A is still defined by the
equations x, = --- = x, = 0 and the parallel projection is defined as

(X1, .., Xn) e A" — (X1,y...,%-1,0,...,0) € Ay.

7.1.15 The affine map is of the form
T:xeA" >a+x-AcA”

with A a matrix of type n x m and rank £. It suffices to remark that we can change coordinates in
A" and A™ and assume that A is of the form

Il Of,mfﬁ
On—l,n On—é,m—l

with obvious meaning of the symbols.

7.1.16 We can find explicit equations for this projection. First of all change coordinates in A" so that
Ay is the subspace with equations x, = ... = x, = 0. Note that there is a unique hyperplane H,
containing A and parallel to Ay, i.e., such that its projective closure intersects Az =P in (A2)o.
Suppose that this hyperplane has equation f(xy, ..., x,) = 0. Note that this hyperplane does not
pass through the origin, hence in f;, there is a constant term, which we can suppose to be 1, in this
way f; is uniquely determined. Note also that the system f, = x, = ... = x, = 0 is incompatible,
so in f the variables x1, ..., x,_; do not appear.

Consider now, for any i = 1, ..., r — 1, the unique hyperplane H; containing A and the sub-
space with equations x; = x, =...=x, =0, and let f;(x1,...,x,) =0 be an equation of H;.
The hyperplane H; passes through the origin, so f; is homogeneous of degree 1. Moreover the
variable x; appears in f;, whereas the variables x; with j < r and j # i do not appear in f;.
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Indeed, f;(x1,...,x,—1,0,...,0) = 0 has the same solutions as x; = x, = ... = x, = 0. Hence
we may assume that f; = x; — g;(x,, ..., x,), with g; homogeneous, fori = 1,...,r — 1, and in
this way also f; is uniquely determined. Now Hj, ..., H, are linearly independent hyperplanes

which intersect in A ;. Moreover, if P = (p1, ..., pn) € H,, then f.(p1, ..., pn) % 0 and we can
consider the system of linear equations

xifgi(xr,...,xn)fMﬂ(m,...,xn):& i=1,....,r—1.
fr(Pln-an)

They are linearly independent, vanish on P and on A; and define the affine subspace which joins
P with A . Its intersection with A is the image of P, which therefore has coordinates

fi(l’lv---»l?n)

for i=1,...,r—1, and 0 for i=r,...,n.
fr(pis - Pn)
Hence the projection is defined in the following way

Sy, ..o, x0) Sr—1(x1, ..., xp)
fr(-x17~~'7-xn)’.." frxn, oo, xn)

(xl,..,,xn)eA”\H,—>( ,0,.‘.,0>EA2

and it is not defined on H,.

7.1.17 As a rational map on P2, the definition set of fis P2 \ Z,(x0). As a rational map of P? to
P! this can be interpreted as the projection from P = [0, 0, 1], hence the definition set is P2 \ {P}.

7.1.18 Consider the projection P* --» P"~! of P” to an hyperplane from a point P. Consider a
rational normal curve V containing P. The restriction of the projection to V is defined in P. Indeed,
V is isomorphic to P! and then apply Exercise 7.1.10.

7.1.25 This immediately follows by Exercise 7.1.10.

7.1.26 Suppose ¢ : P! — P! is an automorphism. Then there are two non-constant, coprime, homo-
geneous polynomials fo(xg, x1), f1(x0,x1) of the same degree n > 0 such that ¢([xo, x1]) =
[ fo(xo0, x1), f1(x0, x1)]. There are also two non-constant, coprime, homogeneous polynomials
90(x0, x1), g1(x0, x1) of the same degree m > 0 such that ¢~ ! ([x0, x1]) = [g0(x0, x1), g1 (X0, x1)].
Consider the two homogeneous polynomials

P;(x0, x1) = fi(go(xo, x1), g1(x0,x1)), i=0,1

of the same degree nm. Since o lop= idp1, we have

det (P o P 1) =0
X0 X1
which implies that there is a homogeneous polynomial P(xg,x;) of degree nm — 1 such that

P; = x; P,fori =0, 1. We claim that P is constant. Suppose in fact P is of positive degree and let
(ap, a1) be a non-trivial solution of the equation P (xp, x1) = 0. Then

Pi(ap, a1) = fi(go(ao. a1), g1(ao,ar)), i=0,1

However (go(ao, a1), g1(ao, ar)) # (0, 0) because gg, g1 have no common factor. Moreover it can-
not be the case that f; (go(ao, a1), 91(ag, a1)) = 0,fori = 0, 1, becausealso fy, f; have nocommon
factor. This proves that P is constant and therefore nm = 1, hence n = m = 1, which implies that
¢ is a projectivity.

7.1.27 By Exercise 7.1.27 any birational transformation of P! is a projectivity, which is of the type

¢ [x0, x1] € P! — [cxo + dx1, axo + bix1] € P!
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ab
det (C d) # 0.
By interpreting, as usual, A! as the open subset Uy of P!, the map ¢ corresponds to the birational
transformation

with

a—+ bx
c+dx

and this in turn corresponds to the automorphism of K(x) = K (A!) which is K-linear and maps

x to ‘C’ié’i Conversely, any automorphism of K(x) as a K-algebra, corresponds to a birational

transformation of A!, that determines a birational transformation of P!, which is a projectivity as
above.

d:xeAl -os e Al

7.2.4 Keep the notation of the proof of Theorem 7.2.3. We have that K (V) = K(xy, ..., x,) is
isomorphic to K (W) = K(zy, ..., zy+1)- By the proof of the Theorem of the Primitive Element, we
have relations of the type z; = > _; ¢;jxj,fori = 1,...,n + 1. Hence the isomorphism K (W) —
K (V) is induced by the K-algebras homomorphism

T Klzt, - zop1] = Klxg, oo, xr]
which associates to z; the polynomial er=1 cijxj,fori =1,...,n+ 1. This in turn corresponds
to an affine map A” — A"*! that, up to a change of coordinates, is a projection.

7.3.5 Consider Z the projective closure of Z. The projection of Z C P" to the hyperplane Hy =
Z,(x0) from the point P = [1,0, ..., 0] is birational. To see this it suffices to prove that there is a
dominant rational map v : Hy --» Z which is the inverse of the projection

¢ [x0, ..., %] € Z\{P} = [x1,...,x4] € Hyp.

Consider the closed subsets Zy = Z,(fy—1), Z2 = Z,(fa) of Hy = P*=1 and the non-empty open
subset U = Hy \ (Z1 N Z3). Define v as follows:

Yilxt, .o xn] €U = [fa(X), X1 fam1(X), ..o, Xn fam1(X)] € Z.

It is easy to verify that ¢ and v are inverse of each other.

7.3.6If Z is an irreducible conic, then, up to projectivity, Z has equation of the form xox; — x% =0
which is a monoid with vertex P = [1, 0, 0], and the projection from P is a morphism by Exercise
7.1.10 (because the conic is a rational normal curve and, as such, it is isomorphic to Ph.

7.3.7 Keep the notation of the solution to Exercise 7.3.5.If Q € X = Z; \ (Z1 N Z3),theny(Q) =
P. Since fy_1, fg are coprime, there are certainly points in X and such points are infinitely many
if n > 2. In this case ¢ cannot be defined at the vertex.

7.3.8 If ¢(P1) = ¢(P>) it is clear that r = P; vV P, contains P. We may assume that P =
[1,0,...,0]and that we are projecting on the hyperplane Hy = Z, (xo). Thenif P = [ao, ..., a,],
P, = [bog, ..., b,], we may assume that a; = b; fori = 1, ..., n. Suppose Z has equation

x0 fa—1(x1, -, xp) — fa(xi, ..., xn) = 0.
We have the relations
agfa—1(ay, ...,an) — fa@ay,...,an) =0, bofa_1(b1,...,bn) — fa(b1,...,by) =0.
Multiplying the first relation by A and the second by p, and adding up, we obtain

(Aag + pbo) fa—1(ai, ..., ap) — falar, ..., a,) =0
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which proves that the line r is all contained in Z. The last assertion is obvious.

7.3.9 Any point in Z,(fa, fa—1) is clearly contained in Z. The same proof of Exercise 7.3.7
implies that the points in Z, (f4, fa—1) lie on lines in Z passing through the vertex P. As for the
final assertion, note that the intersection of the set of points Z,(fs, fa—1) with the hyperplane
Hy = Z,(xp) on which we project, are certainly points where the inverse of the stereographic
projection cannot be defined.

7.3.10 First prove that there is a point P on the quadric X such that there is another point Q € X such
that the line P Vv Q is not contained in X. Then change coordinates and assume P = [1,0, ..., 0].
Then the equation of X becomes xo f1(x1, ..., Xn) + fa(x1,...,x,) =0, with f], f> non-zero,
coprime homogeneous polynomials of degrees 1, 2 respectively. Then X is a monoid with vertex
P.



Chapter 8 ®)
Product of Varieties Geda

8.1 Segre Varieties

The product of two affine spaces is an affine space and the product of affine varieties
is in a natural way an affine variety. By contrast, the product of projective spaces is
not a projective space. In this chapter we will give a structure of a projective variety
on the product of projective spaces, which will make it possible to define the general
concept of product of quasi—projective varieties.

Let n, m be non—negative integers, and consider A@TDO+D whose points can
be identified with matrices w = (w;;)io,....n, j=0,...m Of type (n +1) x (m + 1) on
the field K. Accordingly, the points of P+ quotient of A®+D+D\ (0} by
proportionality, can be identified with proportionality equivalence classes [w] of
non-zero matrices of type (n + 1) x (m + 1) on K.

Now consider the set

Seg, ,, = {[w] € """ : rank(w) = 1}

which is well defined and it is a closed subset of P"""*"*" Indeed Seg,, , is the set of
points [w] € P+ guch that all order 2 minors of w vanish, i.e., Seg,, ,, is defined
by the homogeneous degree 2 equations

WijWre = WrjWig, L, k=0,...,n, j€=0,...,m.

Let [x] € P" and [y] € P". The matrix x’ -y (here x’ denotes the (n + 1) x 1
matrix transpose of the vector x) is of type (n + 1) x (m + 1), the point [x - y] €
prmtatm g well defined (i.e., it depends only on [x] € P* and [y] € P™), and the
rank of X' - y is 1. Hence [x - y] € Seg,, ,.

Finally, given a matrix w of type (n + 1) x (m 4+ 1) on K and rank 1, there
are vectors x,y of length n + 1 and m + 1 respectively, such that w = x’ - y (see
Exercise 8.1.3). This implies that the map
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Onm : (X1, [yD) € P" x P" — [x' -y] € Seg, ,,

is well defined and surjective. It is also easy to see that it is injective (see Exer-
cise 8.1.4).

In conclusion the closed subset Seg,, ,, is in 1:1 correspondence with P x P via
the map o, ,,. We will often interpret this 1:1 correspondence as an identification.

Proposition 8.1.1 The closed set Seg, ,, is irreducible.
Proof Consider the K—algebras homomorphism

* .
Oinym . Snm-‘rn+m g Srt+1n+1

defined in the following way. Let us interpret S,,+n+m as the coordinate ring of
]P;nm+n+m’ so that Snm+n+m = K[w[j]izo,...,n,jzo ..... m and set Sn+m+1 = K[X(), ey
Xns Y05 - - -» ym]. Then we define o, by extending by K-linearity the map which
associates to w;; the monomial x;y;,fori =0,...,n, j =0, ..., m. Note that o:m
is a homogeneous homomorphism of weight 2 and Z, ,, := ker(o,/,,) is a homoge-
neous ideal (see the proof of Proposition 6.4.1). It is moreover clear, by the bijectivity
of 0y, that Z,, ,, = Z,(Seg, ,,)-

Let now f, g be homogeneous polynomials in Sy4y+m, With f ¢ 7, ,, and fg €
Z,.m-Then f(x;y;) is a polynomial which is not identically zero in S, 1,41, Whereas
S (xiyj)g(x;iy;) is identically zero. This implies that g(x;y;) is identically zero, i.e.,
g € L, . Hence 7, ,, is a prime ideal and accordingly Seg,, ,, is irreducible. O

So Seg,, ,, is a subvariety of P""*+"*" which is called the Segre variety of type
(n, m). Sometimes we denote it by P x [P, thinking to the identification given by
the map o, ,,. In this way P" x P is endowed with the Zariski topology. We will
also call a Segre variety any transformed of Seg, ,, via a projectivity of P""+"+

We can understand the Zariski topology of P* x P intrinsically, in the following

way. Let us take a more general viewpoint. Consider a polynomial f(x, ..., X;) in
the variables x; = (x;o, ..., Xi,), foralli € {1, ..., h}, which is plurihomogeneous
ofdegreed = (dy, ..., dy) (seeExample 1.3.4). Let(Py, ..., P,) € P x --. x P,

with P; = [p;]1 = [pio, .-+, Pin, 1,0 = 1,..., h. We say that (Py, ..., P,) is azero of
f, and we write f(Py,..., P,) =0if f(pi,...,pr) = 0. By Exercise 1.3.14 this
definition is well posed. The subset

Z(f)={(Pr,...., P eP" x - xP": f(Py,..., P) =0}

is called the zero set of f.If F C Sy, withn = (ny, ..., ny), one sets

Z(F) = () Z«(5),

feFP

where F7? is the set of plurihomogeneous polynomials in F. One has Z (F) =
Zs((FP)), and there are plurihomogeneous polynomials fi, ..., f, € (F?) such
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that
Zs(F) = Zs(fl) n---N Zs(fm)~

If this holds one says that
f,'(Xl,...,Xh)ZO, i = 1,...,1’)1

is a system of equations for Z;(F).

Consider now the family C' of subsets of P"! x --- x P of type Z,(F), with
F C §, as above. As we saw in Chap. 1 in the affine and in the projective case, one
verifies that C' can be considered as the family of closed subsets of a topology, which
is called the Zariski topology of P x - -+ x P,

Proposition 8.1.2 If we identify P" x P™ with Seg, ,, via the map oy, then the
Zariski topology of P" x P™ coincides with the Zariski topology of Seg, ..

Proof Let f € Klwjjli=o,.. n j=0,. » be a homogeneous polynomial of degree d.
Then f'(x,y) = f(xiy;) € K[x0, ..., Xn, Yo, - - - » Ym] = S(u,m) is @ bihomogeneous
polynomial of degree (d, d), and one has Z;(f') = o ! (Z,(f).

On the other hand, if f'(x,y) = f'(x0, ..., Xn, Yo, - - - » Ym) is bihomogeneous of
degree (d|, d>) and, for instance, d| < d, if we set e = dy —dj, then f/ = x{ f',
with i =0, ..., n, is bihomogeneous of degree (d,, d»). Since O',T,m is surjective
on the subalgebra &P den St,m),d.d) Of Sutm+1, there are homogeneous polynomials
fi € Spmtn+m,a, sSuch that f(x;y;) = fi/, fori =0, ..., n. Then one has

Gn,m(zs(f/)) = Gn,m(Zs(fl/’ RN} fy:)) = Zp(flv cee fn) N Segn,m'

This implies the assertion. O

Exercise 8.1.3 Prove that given a matrix w of type (n + 1) x (m + 1) on K with rank 1, there are
vectors X, y of length n + 1 and m + 1 respectively, such that w = x’ - y.

Exercise 8.1.4 Prove that the map o, ,, is injective.

Exercise 8.1.5 Prove that Segre varieties S, ;,, are non—degenerate, i.e., they are not contained in
any hyperplane of P +m+m,

Exercise 8.1.6 * Prove that given projectivities w; : P* — P" and w; : P — P™, there is a pro-
jectivity e : Prmtntm s prmttntin gueh that for all points (P, Q) € Seg,, ,,, one has (P, Q) =

(w1(P), @2(Q)).

8.2 Products

We start with the following:

Proposition 8.2.1 IfV C P" and W C P™ are quasi—projective varieties, then V X
W C P" x P" is also a subvariety of P" x P". If V, W are projective varieties, then
V x W is also projective.
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Proof We start by proving the final assertion. Suppose V = Z,(fi,..., f,) and
W=2Z,aqi,...,g), with fi(x) € S,, g;j(y) € S,, homogeneous, fori =1,...a,
J =1...,b. Then we can consider f;, g; as homogeneous elements of S, ) and
fi=0,9;=0,withi=1,...a,j=1...,b,is asystem of equations for V x W
in P" x P". The fact that V x W is irreducible can be proved as in Example4.1.2.
Let us now consider the general case. Suppose that V. =V, \ Vi, W = Wy \ Wy,
with Vy, Vi, Wy, W, closed subsets with Vy, W, irreducible. Then V x W =V, x
Wo \ (Vo x W1 U V) x W), and, taking into account the first part of the proof, this
proves the assertion, since Vy x W is irreducible. O

If V, W are quasi—projective varieties, the variety V x W is called the product of
V and W. We recall that for affine varieties we already considered their product in
Example4.1.2 and in Sect. 8. As we shall soon see, the two notions coincide, up to
isomorphism.

Given V, W quasi—projective varieties us consider the two canonical projections

pr:VxW—=V, pp:VxW-—=W.

Lemma 8.2.2 Given V, W quasi—projective varieties, the two projections pi, p»
are morphisms.

Proof 1t suffices to reduce to the case V =P", W = P" and consider the first
projection p;. If ([x], [y]) € P" x P and if, for instance xo # 0 and yy # 0, then
([x1, [y]), as a point of Seg,, ,, has homogeneous coordinates [w], with wgy # 0. Then
p1([x], [y]) = [woo, W10, - - - » Wyo]- This proves the assertion by Proposition6.2.5.

Let Z be a third quasi—projective variety and let f : Z — Vandg: Z — W be
maps. Then we have a unique map

fxg:PeZ— (f(P),gP)eVxW

such that py o (f x g) = fand pro (f X g) = g.

Lemma 8.2.3 In the above setting, f, g are morphisms if and only if f X g is a
morphism.

Proof 1If f x gisamorphism, thenalso f, g are morphisms because of Lemma 8.2.2.

Suppose that f, g are morphisms. Let P be a point of Z. By Proposition 6.2.5 there
is an open neighborhood U of P in Z € IP", and there are homogeneous polynomials
fo, -, fn € S, of the same degree and homogeneous polynomials gy, . .., gn € Sy
of the same degree, the former and the latter not all zero in U, such that for every
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Q € U one has

FQ) =1fo(D),.... fa(@1eV S P, g(Q)=1[g0(D),....,gm(Q)] € W S P".

Then for all Q € U one has

[ x9(Q) = [fi(@)g;(D]i=o...n.j=0...m € V x W S PHmHHm,

where f;g; are homogeneous polynomials of the same degree not all zero in U, for
i=0,...,n,j=0,...,m. Again by Proposition 6.2.5, the assertion follows. [

From the two previous lemmas, we have the following:

Theorem 8.2.4 Let V, W be quasi—projective varieties, and let X be a quasi—
projective variety with two morphisms t; : X — V, p» : X — W, such that for any
quasi—projective variety Z and for any pair of morphisms f : Z — V,g: Z - W,
there is a unique morphism ¢ : Z — X suchthatm; o ¢ = f, mp o ¢ = g, then there
is a unique isomorphisma : X — V x W such that 1y = pyoa and m, = p oa.

Proof By Lemmag.2.3, the morphism a = m; X m, is such that 7; = p; oa and
7, = pp oa. Let us prove that a is an isomorphism. Because of the hypotheses,
there is a morphism b : V x W — X such that p; = 7 o b and p, = 7, o b. Then
boa: X — Xissuchthat my = m o (boa) and my = m; o (b o a). Hence, by the
hypotheses, one has b o a = idy. Similarly one verifies thata o b = idy »y, and this
proves the assertion. ]

The previous theorem expresses the so called universal property of the product
of two varieties.

Corollary 8.2.5 The product of affine varieties defined in Example4.1.2 and in
Sect. 8 coincides with the product we defined in this chapter.

Proof Let V, W be affine varieties and let X be the product V x W as defined in
Example4.1.2 and in Sect.8. Recall that X is the affine variety corresponding to
the finitely generated K—-algebra A(V) @x A(W).Letm; : X — Vandm, : X —
W be the projections, which are the morphisms corresponding to the K-algebras
homomorphisms

i feAlV) = f®1eAV)®x AW),
75:9€ AW) > 1®ge€ A(V) @k A(W).

If Z is a quasi—projective variety and (f, g) € M(Z, V) x M(Z, W), then f, g cor-
respond to K—algebras homomorphisms

f*AV) > OZ), ¢*: AW) = O(2).
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Then, by the properties of the tensor product, there is a unique homomorphism of
K-algebras

Frog:Y aeb e AV) @ AW) = 3 fr@)g (b)) € O2)

ij ij

suchthat f* = (f* ® g*) or{and ¢* = (f* ® ¢g*) o ;. Then f* ® g* corresponds
to a unique morphism ¢ : Z — X such that f = m; o ¢ and g = p; o ¢. Thus the
assertion is a consequence of Theorem 8.2.4. (I

Exercise 8.2.6 Prove thatif V, W are quasi projective varieties then dimy (V x W) = dimy (V) +
dimg (W).

Exercise 8.2.7 * Prove the following properties of products:

(a) if V, W, V', W are quasi—projective varieties, with V [resp. W] isomorphic to V' [resp. to
W’], then V x W is isomorphic to V' x W’;

(b) if V, W are quasi—projective varieties, then V x W is isomorphic to W x V;

(c) if V, W, Z are quasi—projective varieties, then (V x W) x Z is isomorphicto V x (W x Z);
this variety is denoted by V x W x Z and is called the product of V, W and Z;

(d) more generally, if Vi, ..., V, are quasi—projective varieties, it is well defined their product
Vi x --- x Vyasthevariety (- -- (V1 x V2) x V3) x --+) x V,, whichis isomorphic to V;; x
-+« x Vi, where (i1, ..., i,) is any permutation of (1, ..., n); the reader may state and prove

the analogue of Theorem 8.2.4 for more than two factors;

(e) if V, W are quasi projective varieties and p; : V. x W — V and p; : V x W — W are the
projections, then for any point P € V [resp. any point Q € W] one has that pl_l(P) [resp.
p;l(Q)] is isomorphic to W [resp. to V];

(f) if V, W, Z are quasi—projective varieties and p; : V. x W — Vand pp : V x W — W are
the projections, amap f : Z — V x W is a morphism if and only if p; o f are morphisms,
fori =1, 2.

Exercise 8.2.8 Prove that Segre varieties S, ,, are rational.

Exercise 8.2.9 * Consider P" with homogeneous coordinates [xg, ..., x,] and A™ with coordi-
nates (y1, ..., ym). Prove that the closed subsets of P" x A™ are the subsets of P" x A" which are
formed by the pairs of points ([xo, ..., x,], (V1, - . ., ym)) that are solutions of systems of equations
of the form

fixo, - s X, Y1 Ym) =0, i=1,...,h

with f; polynomials, which are homogeneous in the variables xo, ..., x,.

Exercise 8.2.10 Let V be a quasi—projective variety. Consider Ay = {(P, P) € V x V}the diag-
onal of the product. Prove that Ay is a closed subset of V x V isomorphic to V.

Exercise 8.2.11 * Let V, W, Z be quasi—projective varieties and let f : V — Z, g: W — Z be
morphisms. Denote by V xz W the so called fibred product of V and W over Z, i.e., the subset
of V x W consisting of all pairs (P, Q) € V x W such that f(P) = g(Q). Prove that V xz W is
closed in V x W. Give some example in which V xz W is not irreducible.

Exercise 8.2.12 * Continuing Exercise8.2.11, consider the case in which W = Z and g = idz.
Then V xz W is the set of pairs (P, Q) € V x W such that Q = f(P), i.e., this is the graph I'
of the function f. Prove that I' y is isomorphic to V.
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Exercise 8.2.13 Consider the projective spaces P!, ..., P"7 in which we have homogeneous
coordinates [x;] = [X;,0,...,Xi ], fori =1, ..., r. Consider the map
Ony,...,ny :([Xl]v ey [Xr]) € P x ..o x P —

1) (1) —1
g [xl,il o 'xr,ir]il:0,.4.,n1,.4.,ir:0...4.nr € P(nl ) (1) s

where the points of P¢1+D -+ D=1 have homogeneous coordinates

[wi.....i; Jiy=0....n1....ir=0, .0, -

Prove that:
(a) the map oy, ., is injective: via oy, ., we will identify P"! x ... x P" with its image
denoted by Seg,,| .3
(b) Seg,, ., isanirreducible closed subset of P+ (1r+D=1 called the Segre variety of type
(ny, ..., n,) (as well as any variety transformed of it via a projectivity);
(c) the Zariski topology in P*! x ... x P coincides with the inverse image via o,,, .. ,, of the
Zariski topology on Seg,, ., ;

(d) Seg,, ., isnon-degenerate in P+ +h=1,

r

Exercise 8.2.14 Continue Exercise8.2.13. Fix P; € P/ for a given j = 1,...,r. Consider the
Jjth projection

pj P X x P P
Prove that o, .., (pj_l(Pj)) is a Segre variety of type (n1,...,1nj_1,nj41,...,1;).

Exercise 8.2.15 Work out a theory, analogous to the one in Chap. 3, about the relations between
the closed subsets of P"! x - .. x P"" and the ideals of S(,, ... s,). Prove in particular that a closed
subset Z of P! x - .. x P is irreducible if and only if the corresponding plurihomogeneous ideal
Zs(Z) generated by the plurihomogeneous polynomials f € S(,,...n,) such that Z C Z;(f), is a
prime ideal.

Exercise 8.2.16 Suppose that char(K) # 2. Prove that Seg; | is a maximal rank quadric in P3,
i.e., it is such that its matrix has maximal rank 4. It is well known that for any two maximal rank
quadrics in IP3 there is a projectivity which sends one to the other. Prove that given any maximal
rank quadric X in IP3, there are two distinct morphisms p; : X — P!, p» : X — P!, such that their
fibres, i.e., the counterimages of the points of P!, are lines in X. We set iy = pi’l (x),withx € P!,
for i =1, 2. Hence X has two families of lines £; = {€; v}, cp1, i = 1, 2. Prove that two distinct
lines of the same family £; do not intersect, whereas any line of £ and any line of £, intersect at
one point. Prove that, although X is rational, it is not isomorphic to P2

Exercise 8.2.17 Prove that if Z is a closed subset of Seg; | C PP3 in general it is not the case that
S(Z) is K—isomorphic to S1,1)/Zs(Z).

Exercise 8.2.18 Identify Seg; ; and P! x P!. Then find the equations in P! x P! of the conics
which are the intersections of Seg, ;| with the planes of P3.

Exercise 8.2.19 Prove that the Zariski topology of P" x P is strictly finer than the product topol-
ogyifn,m > 1.

8.3 The Blow-up

Consider P with homogeneous coordinates [xo, ..., x,] and P"~! with hgmoge-
neous coordinates [yi, ..., y,]. Consider in P" x P! the closed subset P" with
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equations
Xiyj = YiXj, i,j = 1,...,1’!.

Consider the map

o P — P,

where o is the restriction of the projection p; : P* x P*~! — P" to P". Let P =
[1,0,...,,0] € P". The closed set pr ,endowed with the map o is called the blow—up
of P" at P. We will study the main properties of the pair (P, 0).Weset E := o' (P),
that is a closed subset of If””, called the exceptional locus of the blow—up.

Proposition 8.3.1 P \ E is a quasi—projective variety that is isomorphic to P" \
{P} via the map o.

Proof Let QO =[qo,...,q,] € P", with Q # P. Hence there is ani € {1,...,n}
such that ¢; # 0. If [y1, ..., y.] € 0~ '(Q), one has

q; .
yi=vi-+, j=1...n, (8.1)
qi
whence we deduce y; # 0, otherwise we would have y; =0 forall j =1,...,n,a
contradiction. So we can take y; = ¢; # 0, and then from (8.1) we deduce y; = ¢g; for
all j =1,...,n. Hence 0 7'(Q) = {[q0, - . .» qul, [q1, - . ., gu]}. Consider the map

1:QeP'\{P}—> o' (Q) eP" xP" L

By Exercise 8.1.6, (f), we have that t is a morphism. Moreover 7 (P" \ {P}) = Pr \
E, hence this set, which is locally closed in P* x P"~!, is also irreducible (see
Exercise4.1.7), thus it is a quasi—projective variety. Finally 0}5., . is a morphism and

T = (a‘]@n\ E)’l, which proves the assertion. (I

Next we want to study the set E. Note that E = o~'(P) = p;'(P) = P"~!. We
want to give a geometric interpretation to the isomorphism E = P"~!. To do this,
consider the set (P) of all lines of P" containing P.

Lemma 8.3.2 The set (P) can be regarded in a natural way as a projective space
of dimension n — 1.

Proof Consider in the dual projective space P" the hyperplane Hp which consists
of all points of P" corresponding to hyperplanes of P containing P. We claim that
there is a natural bijection 5

¢:(P)— Hp

so that, by identifying (P) with Hp via @, (P) inherits the structure of projective
space of dimension n — 1 of Hp. The map ¢ is so defined. Take a line r € (P) and
send it via ¢ to the set (r) of the hyperplanes of P that contain r. This is a hyperplane
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in Hp and so it defines the point ¢(r) in Hp. The reader will easily check that ¢ is
bijective. O

Let now r € (P) be a line, locus of points of P with homogeneous coordinates
Xo=A, X;i=uqi, [’ u] eP', i=1,...,n.
The map t, restricted to r \ { P}, acts in the following way

T[A, mqi, ..., mgnl = (A, pwqi, - wgnl, [qi1, - ... qanl), with p e K\ {0}.

So we can extend 7 to P on r (see Exercise 7.1.10) by setting
7 (P) = ([1,0,...,01, [g1, ..., g:]

and in this way we have a morphism 7, : r = P! — P". We denote by 7 the image
of r via 7,. We have 1), (P) =7 N E. This way we have a map

w:reP)=P! 5 g (P)e ExZPL,

Proposition 8.3.3 The map w is a projectivity.

Proof The map w sends r, that we may assume to have homogeneous coordinates
[g1, ..., qux] € (P), to the point 7). (P) that in E has coordinates [qy, ..., g,]. This
proves the assertion. (I

The previous proposition gives the geometric interpretation of £ we were seeking
for: E is in 1:1 projective correspondence with the set of all lines issuing from P.

Proposition 8.3.4 P" is irreducible.

Proof 1t suffices to prove that any point on E is in the closure of some subset of
P \ E. Note, indeed, that for any line r € (P), t(r \ {P}) =r \ {P} is a quasi—
projective subvariety of P" \ E, whose closure in P" x P"~! is 7. This follows from
the factthat t (r \ {P}) sitsin pz_l(a)(r)) =~ P*, where p, : P* x P"~! — P"listhe
projection to the second factor. Hence t(r \ {P}) is isomorphic to the line 7 minus
the point w (7). O

Remark 8.3.5 In the above setting we may identify P*~! with (P). Then P" can be
seen as the set of all pairs (P, r) € P" x (P) = P" x P"~! such that P’ e r.
More generally, we can fix any point Q € P" and we can consider the set

Py ={(P.r)eP" x(Q)=P"xP"": P erh.
If o : P" — P" is a projectivity such that «(P) = Q, it is clear that « induces a

projectivity
a:re(P)—alr) e (Q).
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Then we have an isomorphism
axa@:P'x(P)=P"'xP'"' 5 P x (Q)=P" x P!

and it is clear that o« x a(P") = If"”Q. So ]fD”Q is a projective variety isomorphic to P

We denote by o' the restriction of @ x & to P". Consider
og : Py — P*

the restriction to I@”’Q of the projection to the first factor of P" x (Q). Then we have
0g o’ = o 0. The variety P , endowed with the map oy, is called the blow—-up
of P" at Q. By the above, it behaves exactly as o : P — Pr,

Let V C P" be a quasi—projective variety and let Q be a point of V and assume
V # {Q}. Thelocally closed subset oy "(V)of [P" is called the total transform of V on

IP’” We denote by VQ the closure ofaQ v\ {@h 1nIP’" We set VQ = VQ N 0_1 V).
Smce V islocally closed in " and irreducible, and since V/ is closed in P, then Vo

is locally closed in P and irreducible. Moreover Vy \ (VQ N E) is isomorphic to
V \ {Q} viaoy. The variety V), endowed with the morphism oy o = TV, Vo —
V, is called the blow—up of V at Q, and also the proper transform or strict transform
of V on P". Note that o is a birational morphism.

Exercise 8.3.6 Referring to the proof of Lemma8.3.2, consider any hyperplane H of P" not con-
taining P, and consider the map

¢H,pIQ€H—>PVQ€(P)A

prove that ¢y p is a projectivity. Let H, H> be two such hyperplanes. Consider the map

. -1 .
OH Hy,P =g, p o Suy,p P Hi > Ha.

Prove that ¢y, p,, p is a projectivity called the perspective of H to Hy with center P. Prove that
the points of H| N H, are fixed by ¢n, , p.

Exercise 8.3.7 Consider A" and a point P € A”". Denote again by (P) the set of all lines in A"
containing the point P. Prove that (P) has a natural structure of projective space of dimension
n — 1. Consider the set

AL ={(Q,r) e A" x (P)=A"xP"1: Qer}

endowed with the map op : A’,‘, — A" restriction of the projection to the first factor. Set £ =
a;l (P). Prove that:

(a) A’I‘) is an irreducible, closed subvariety of A" x (P) = A" x Pl
(b) IAVE A’}; \ E — A"\ {P} is an isomorphism;
(c) E isisomorphic to (P) and its points can be identified with the lines in A" issuing from P;
(d) identified, as usual, A" with the open subset Uy of P", then A’;, embeds as an open subset of
I'@n
-
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Moreover, suppose that P = (py, ..., py). Let r be a line in (P) so that r has parametric
equations x; = p; +ty;, for i =1, ..., n, where (y1, ..., y,) # 0. Prove that [y, -+, yn] can
be assumed to be homogeneous coordinates of r in (P) = P"~!. Prove that A’ is the set
of points ((x1, ..., X)), [Y1,..., ya]) € A" x (P) such that (x; — p;)y; = (xj — p;)yi, for all
ihj=1,...,n.

The variety A’,’, endowed with the map op is called the blow—up of A" at P. The closed subset
E = a;' (P) = (P) = P"! is called the exceptional locus of the blow—up.

Exercise 8.3.8 Continuing the Exercise8.3.7, let V be a locally closed subvariety of A". Make
sense of the notion of proper transform of V on A’ and of the blow—up of V at P.

Exercise 8.3.9 Let us consider the blow—up o : A2 — A2 of A2 at the origin. Prove that A2 can
be covered by two affine subsets each isomorphic to a quadric of A3 which in turn is isomorphic to
A2,

Exercise 8.3.10 Let us consider the two curves Cy, C» C A? with respective equations

2_ .3 2 2_ .3
X{ =Xx3, X3 —X{ =Xx7.

Describe the proper transforms of C1 and C on the blow—up of A? at the origin.

Exercise 8.3.11 Let /T C P" be a subspace of dimension m < n and let P € I1. Prove that the
proper transform of I7 in the blow—up of P"* at P equals the blow—up of IT at P.

Exercise 8.3.12 Let I7T C P" be a subspace of dimension m < n. Consider the set (/T) of all
subspaces of P" of dimension m + 1 containing I7. Prove that there is a natural identification of
(IT) with a projective space of dimensionn —m — 1.

Exercise 8.3.13 Extend the construction of the blow—up in the following way. Let IT C P" be a
subspace of dimension m < n. Consider the set

PL={((P,Z)eP"x(T): P X}

with the projection oy : 1@77 — P". Prove that 1@77 is a closed subvariety of P x (IT) = P" x
Pr—m=1 called the blow—up of P" along IT. Prove that o7 is a morphism. Set E = O’El (1), called
the exceptional locus of the blow—up. Prove that o7 induces an isomorphism between IF’”H \ E and

P* \ I1. Prove that for all points P € IT, aﬁl (P) = P""~1 Make sense of the notions of total
transform and strict transform a subvariety V of P"* not contained in I7.

Exercise 8.3.14 * Consider the linear system £ C £, 5 of conics in P? containing two distinct
points P, Q € P2. Prove that £ has dimension 3. Consider the rational map ¢, : P2 --» £ = P3
(see Exercise7.1.30). Let 7 : P — P? be the blow—up of P? at P and Q. Prove that there is a
morphism ¢ : P — P3 such that ¢ = ¢ o 7. Prove that ¢ is birational onto its image, which is a
quadric of rank 4 in P3.

8.4 Solutions of Some Exercises

8.1.3 There are two square matrices A, B of order n + 1 and m + 1 respectively, and of maximal
rank, such that



112 8 Product of Varieties

10 ...0
AwB=|20 %1 _qo. . 0. ao0. 0.
00 ... 0

Then take x = (1,0, ...,0)- (A" D! andy = (1,0,...,0) - B~

8.1.4 Referring to the solution of Exercise 8.1.3, the assertion follows from the fact that the matrix
of type (n + 1) x (m + 1)

1 0...0
0 0...0
0 0...0

can be expressed as the product x’ -y only if x=(x, 0, ..., 0) and y:(x_l, 0,...,0) withx € K*.
8.1.5 It is immediate to see that there is no polynomial of degree 1 in Z,, ;,.
8.1.6 Use the universal property of the product.

8.2.9 Identify P" x A” with an open subset of P x P"* and note that closed subsets of P" x A™
are intersection with closed subsets of P" x P,

8.2.10 To prove that the diagonal of V is closed it suffices to reduce to the case V = P". A point
([x0, -+ s X2 1, [Y0s - -, yu]) € P" x P" sits in Apn if and only if x;y; = x;y;, i.e., if and only if
w;j = wj;, fori, j =0,...,n. Hence

Apn = Seg, , N Zp(wij — wji)i, j=0....n>
i.e., Apn is the intersection of Segnﬁn with a linear subspace of IP’”ZH", thus it is a closed subset.
To prove that Ay is isomorphic to V, apply Theorem 8.2.4 withV = W,Z = V and f, g = idy.
8.2.11 That V xz W is closed follows from V xz W = (f x g)~'(Az), where

fxg:(P,Q)eVXW— (f(P),g(P))eZxZ

is clearly a morphism.

Next, suppose that V, W are subvarietiesof Zand f : V — Zand g : W — Z the immersions.
Then the projection onto V' [or onto W] maps V xz W isomorphically to V N W, which in general
is not irreducible.

8.2.12 The projection p; : V. x W — V induces an isomorphism of I' s to V. In fact the inverse of
pur, is the map idy x f.
8.2.14Let Pj = [pj o0, ...,pmj]. SetN(ny,...,n;) =(my+1)---(n, +1) — 1 and assume that

the points of PN #1:-+j=1.1j+1,-:1r) haye homogeneous coordinates [w, .
0,...,np,forh=1,...,j—1,j+1,...,r. Consider the map

ok jo s 41 seir 1> With T =

wp, i,] c ]P)N(n],“.,nj_l.nj_,_l ,,,,, ny) s

i :[wil,.

..,ij,] ,i!ur] ey

eI
= [P Wit oot i i) € PY O,

It is easy to verify that this is a projectivity which embeds PN (41:-1j -1 jt1,e0r) jngo PN 11,-nr)

,,,,,,,,,,

8.2.17 If Z = Seg, ;, then Sq1,1)/Zs(Z) = S(1,1) = S3, whereas S(Z) = S3/I,(Z), which is not
isomorphic to S3.

8.3.9 Recall that A2 has in A2 x P! equation x1y2 = x2y1, where (x1, x2) € A? and [y1, 2] € Pl
Consider the two open subsets U; = {[y{, y2] € P! : y; # 0} = Al, with i = 1, 2. Then A2 x P!
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can be covered with the two open subsets V; = A2 x U; = A3, i =1,2. We can see AZn V; as
a closed subvariety of V; = A3 for i =1, 2. For example in V| we have coordinates (x1, x2, 1),
where t = % Then AZ N V; has in V; the equation x, = x;t. This is a quadric Q; in A3, which is
isomorphic to A2, via the isomorphism (x1, t) € A? (x1,x1t,t) € Q1. Similarly, in V, we have
coordinates (x1, x2, s), where s = ;—; Then A2 N V, has in V; the equation x| = x5 and we can
repeat the same argument as before. Note that both in V; and V; the exceptional locus has equations
x1 =0,x=0.

8.3.10 First we look at the total transform of C; on A2, Let us look at what happens in the open
subset Vj (see solution of Exercise 8.3.9, from which we keep the notation). Here the total transform
of C1 has equations

This system is equivalent to
X2 = X1t, xlz(xll3 —1)=0

which in turn is equivalent to the union of the two systems
2 _ _ _ 3 _
x7=0,x2=0 and x; =xt,x17 =1.

The solutions to the first of the two systems are the set of point of the exceptional locus E. The
presence of this locus in the total transform of C; is obvious. The solutions to the second system
are the set of points of the strict transform C 1 of C1 on V. In this open set C 1 does not intersect E,
because there is no solution to the second system with x; = 0.

Let us look now to what happens in the open subset V. Here the total transform of C; has
equations

xl2 = xg, X| = X28.
This system is equivalent to
X1 = x2S, x%(xz — s2) =0

which in turn is equivalent to the union of the two systems
_ 2 _ _ _ 2
x1=0,x,=0 and x| =x28,x2 =5".

Again the solutions to the first of the two systems fill up the exceptional locus E. The solutions to
the second system are the strict transform C 1 of C1 on V5. In this open set C 1 intersects E (which
has equation x; = x, = 0) at one point, namely the point x; = x, =5 = 0.

The analysis in the case of C; is similar.



Chapter 9 ®)
More on Elimination Theory e

9.1 The Fundamental Theorem of Elimination Theory

Let us consider the projective space L, 4 of dimension

Nn.d) = (":d> —1

whose points are in 1:1 correspondence with effective divisors of degree d of P”,
or, equivalently, with proportionality equivalence classes of non—zero homogeneous
polynomials of degree d in the variables xo, . .., x, (see Sect. 1.6.5). Given the pos-
itive integers dy, . . ., d, we will set

[/n,dl,....dh = Eﬂ,d] X e X £71,d/,'

Then we will denote by Z(n; d,, ..., dy) the subset of L, 4, . 4, formed by all h—
tuples (Fi, ..., Fy) € Ly.4,....4, such that supp(F;) N --- N supp(Fy) # . This is
the same as looking at the set of A—tuples (fi, ..., fi) of non—zero homogeneous
polynomials of degrees dj, . .., dj in the variables xy, . .., x,, such that the system

fitxo, oy x0) =0,..., falxg, ..., x,) =0 9.1)
has some non-trivial solution.

Theorem 9.1.1 (Fundamental Theorem of Elimination Theory) The set
Z(n;dy, ..., dp)isclosedin L, 4, 4

h*

Proof Firstof all recall (see Sect. 3.1) that the system (9.1) has no non—trivial solution
if and only if there is a d € N\ {0} such that 7 = (fi, ..., fi) 2 S,.4. Let M,,
a=0,...,N(n,d) be the monomials of degree d in xg, ..., x,. Then S, s € 7 is
equivalent to say that we have relations of the sort
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h
My =) fi(®)Fai(x), for a=0,...,N(@n,d),

i=1

where X = (xo, ..., x,) and F, ;(X) are homogeneous polynomials of degree d — d;
if d —d; > 0, or zero if d < d;. Let us denote by N;,, the monomials of degree
d—d; in xo,...,x,,1fd—d; >0, with @q; =0,..., M(n,d — d;). Then to say
that S, 4 € 7 is equivalent to say that the polynomials f;N;, span S, as a K-

vector space, withi =1,...,hand a; =0, ..., M(n,d — d;). Conversely, to say
that S, 4 is not contained in 7 is equivalent to say that the polynomials f;N;, do
not span S, 4 as a K—vector space, withi =1, ..., handa; =0, ..., M(n,d — d;),

i.e., they form a system of rank r < N(n, d). Let us order the coefficients of the
polynomials f;N;, withi =1,...,handa; =0, ..., M(n,d — d;) in a matrix A
of type Zf‘zl(N(n, d—d)+1)x (N(n,d)+1),whereweset N(n,d — d;) = —1
if d < d;. Then the condition that S, ; is not contained in 7 is equivalent to say that
all the minors of order N (n, d) + 1 of the matrix A are zero. On the other hand, each
of these minors is in turn a polynomial function of the coefficients of fi, ..., f;.
If we replace f; with A f;, each of these minors is multiplied by AN (d=d)+1 Thig
shows that there are polynomials

gai(@ay,...,ay), i=1,...,mg,

where (a;) are the coefficients of the polynomial f; (i.e., they are the homogeneous

coordinatesin £, 4,i = 1, ..., h),thatare homogeneous of degree N (n,d — d;) + 1
in each set of variables a; for i =1, ..., h, and the closed subset T, of L, 4,. .4,
with equations

gai(@r,...,a,) =0, i=1,...,mg,
is formed by all h—tuples (fi, ..., fi) such that S, ; is not contained in the ideal

I="(f1,..., fn).Since Z(n; dy,...,dy) = ﬂdeN\{O} T4, the assertion follows. [

From the proof of Theorem9.1.1, it follows that the polynomials g, ; have coef-
ficients in the fundamental field F of K. Since Z(n; d, . .., d;) has equations

ga: =0, for d e N\{0}, i=1,...,my,

it follows that there is a finite set gy, ..., g, of plurihomogeneous polynomials in
ap, ..., ay such that
gi@p,...,a) =0, i=1,...,¢ 9.2)
is a necessary and sufficient condition for the system (9.1) to have a non-trivial
solution, where fi, ..., f; have coefficients ay, ..., a.
The plurihomogeneous ideal Z(n; dy, ..., dy) = Z,(Z(n; dy, ..., dy)) is called
the resultant ideal of h polynomials in n 4 1 variables of degrees di, ..., dj.

Exercise 9.1.2 Study Z(1; n, m). One has to understand when the system
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apxy + alx(’)’*lxl +-4apx] =0
boxy' + blx(')"*lxl +-F+bux(' =0
has a non-trivial solution. Here [ay, ..., a,] have to be seen as homogeneous coordinates in £

and [bo, ..., by] as homogeneous coordinates in L ,,. Prove that Z(1; n, m) is defined by the
vanishing of the Sylvester determinant, i.e., by the equation

apay ...a, 0 0 ... 0
0 aa ...a, 0 ... 0

9.2 Morphisms on Projective Varieties Are Closed

An important application of the Fundamental Theorem of the Theory of Elimination,
is the following:

Theorem 9.2.1 Morphism are closed maps on projective varieties.

Proof LetV C P" be aprojective variety, W a quasi—projective variety, f : V — W
amorphism. Let us recall that the graph I' s is closed in V x W (see Exercises 8.2.11
and 8.2.12), and f(V) = po(I'y), where p, : V. x W — W is the projection to the
second factor. So, in order to prove the assertion it suffices to prove that p; is a closed
map. To prove this it suffices to reduce to the case V = P", because V x W is closed
inP* x Wandif Z is closedin V x W itis also closed in " x W. Moreover, since
the concept of being closed is local (see Exercise 5.1.3), and since W is covered by
affine open subsets, we can reduce to the case W is affine. Finally, arguing as we did
before, we can actually assume that W = A",

Let Z be a closed subset of P" x A™, so that it is defined by a system of equations
of the form

fitxos s X3 V1, ooy y) =0, i=1,...,h (9.3)
where the polynomials f; are homogeneous of degrees d; in the variables xy, . .., x,
fori =1, ..., h(see Exercise 8.2.9). Note that (py, ..., pn) € A" belongs to p>(Z)
if and only if the system

fitxo, -y Xns Ply - Pw) =0, i=1,...,h

has a non—trivial solution. Let

a, = (@0 Ym)s s GNmd) V15 - o3 Ym))
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be the vector of the coefficients of f; as a homogeneous polynomial of degree d;
in xg, ..., Xy, fori = 1,..., h. Then the system (9.3) has non—trivial solution in
Xo, - - - » X, if and only if one has

gj(ai,o(y1$"'1ym)7"'3ai,N(n,d,)(y17"'1ym))=07 j=19"'1t (9'4)

where the plurihomogeneous polynomials g; are the ones in (9.2). Hence p,(Z) is
defined by the system of equations (9.4) in yy, ..., y,. The assertion follows. [l

Exercise 9.2.2 Let V C P" be a projective variety and consider the image of V via a projection to
a subspace from a centre which does not intersect V. Prove that the image of V' via this projection is
a projective variety, which is called the projection of V to the given subspace from the given centre.

Exercise 9.2.3 Prove that a proper non—empty open subset of P" is not isomorphic to a projective
variety.

Exercise 9.2.4 Let V, W be varieties, V projective and let f : V — W be a dominant morphism.
Prove that f is surjective.

Exercise 9.2.5 * Consider in £, 4 the set R, 4 of reducible divisors. Prove that R, 4 is a proper

closed subset of £, 4. Prove also that the subset Ién,d of £, 4 of points corresponding to divisors
having some multiple component is closed in £, 4.

9.3 Solutions of Some Exercises

9.2.5 For every positive integer i < d consider the map
@i (F1, F2) € Lpi X Lna—i > Fi+ F2 € Ly gq.

It is easy to see that this is a morphism. Then its image R, 4.; is a closed subset of L, 4. Then
Rya= Uflz_ll R, 4:i is closed. The second assertion is proved in a similar way.
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Finite Morphisms oo

10.1 Definitions and Basic Results

Let V, W be affine varieties and let f : V — W be a dominant morphism, hence
f* 1 A(W) — A(V) is an injective homomorphism of K-algebras. Via f* we may
identify A(W) as a sub-ring of A(V). We will say that f is a finite morphism if
any element of A(V) is integral over A(W), in which case we will say that A(V) is
integral over A(W).

Example 10.1.1 Let V be an irreducible hypersurface of A" of degree d with equa-
tion

F@nx) =+ x il ) e S X)) =0

with f; polynomial of degree at most i in xy, ..., x,—1, fori =1,...,n, so that
the projective closure of V does not pass through the point at infinity of the x,
axis. Consider the projection p of V from the point at infinity of the x, axis to the
hyperplane x,, = 0, which can be identified with A1 e,

pix, .. x) €V = (x1,...,x_1) € A"

This is a morphism which is clearly surjective, hence dominant, and the counterimage
of any point of A”~! has at most order d. The morphism p corresponds to the injective
homomorphism

pr A = AV) =Klxy, .. x1/(f)

such that p*(x;) = x; foralli =1,...,n — 1. Hence A(V) is obtained by adding
X, to A(W) and, since x,, is integral over A(W), then A(V) is integral over A(W),
hence p is a finite morphism.
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In order to prove some important properties of finite morphisms, we need an
algebraic lemma:

Lemma 10.1.2 Let B be a ring which is a finitely generated module over a subring
A. Let T be a proper ideal of A. Then IB # B.

Proof Letb,, ..., b,beasetof generators of B over A.If 7B = B, we have relations
of the form

n
b= ajb;, with a;€Z and i=1,....n,
j=1

ie.,

> (aij = 6ipb; =0 for i=1,....n, (10.1.1)
j=1

where §;; is the Kronecker symbol. Let d be the determinant of the matrix (a;; —
0ij)i,j=1,...n. From (10.1.1) one easily deduces that db; =0, fori =1, ..., n (see
the solution of Exercise 5.4.4), hence we have d B = {0} and therefore d = 0. But
then, expanding the determinant d, we see that 1 € Z,s0 Z = A. O

We are now able to prove the following:

Theorem 10.1.3 A finite morphism between affine varieties has the following prop-
erties:

(a) it has finite fibres;
(b) it is surjective;
(c) itis a closed map.

Proof Let f:V — W be a finite morphism and take Q € W. Suppose V C A",

To prove (a) it suffices to prove that every coordinate x;,i = 1, ..., n, takes a finite
number of values on the set f~1(Q). Foreveryi = 1, ..., n, we have a relation of
the type

X x4 by, =0,
withb;; € AW)andi=1,...,n,j=1,....m.f P = (p1,..., px) € f7(Q),
we have

Pl b (@) T 4 A b (Q) =0, with i=1,...,n

and this proves that p; can take only finitely many values foralli = 1, ..., n, proving
().

Letus prove (b). Let O € W € A™, and suppose Q = (g1, --.,qm)-Let (y1, ...,
vm) bethe coordinatesin A™. Let f*(y;) = fi(x1,...,x,) € A(V),fori =1,...,m.
Then P = (p1, ..., pn) belongs to f~'(Q) if and only if fi(p1, ..., p,) = g;, for
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i=1,....mIfmyg=(1—qi...,Ym — qgn) is the maximal ideal of A(W) cor-
responding to the point Q, then P € f~!(Q) if and only if g(P) = 0 for every
geJ =mpA(V). If F1(Q) = ¥, we would have J = A(V), since there would
be no maximal ideal of A(V) containing J. Then by Exercise 5.4.7 and Lemma
10.1.2 we would have a contradiction.

Finally, let us prove (c). To prove this it suffices to prove that if Z C V is an
irreducible closed subset, then f(Z) is closed in W. Consider the map f = fiz -
Z — f(Z).We claim this map is finite. We have the following commutative diagram

aw) 5 A @)
S L
AV) 5 A2

where « and  are clearly surjective. If g € A(Z) and G € A(V) is such that g =
a(G), we have that G is integral over A(W), i.e., we have a relation of the type

G"+ f*@)G" '+ + f*an) =0
with ay, ..., a, € A(W). Hence
9" +a(f*@)g"™ + -+ alf (@) =0.
Because of the commutativity of the diagram, this reads
9"+ Fr(Ba)g" ™ + -+ fH(Blan) =0

and this proves that g is integral over A(f(Z)). But then by (b) the map f is surjective,
hence f(Z) = f(Z). (Il

The following theorem proves that finiteness is a local property:

Theorem 10.1.4 Let V, W be affine varieties and f : V. — W a morphism. The
following propositions are equivalent:

(a) f is a finite morphism;
(b) for every point P € W there is an open affine neighborhood U of P in W such
that U' = f~'(U) is affine and f : U' — U is a finite morphism.

Proof Clearly (a) implies (b). Let us prove the converse. First of all, by taking
into account Exercises 5.1.6, 6.3.6 and 10.1.8 below, we may assume that for every
point P € W there is a principal open affine neighborhood U of P in W such that
U’ = f~'(U) is principal affine and f : U’ — U is a finite morphism. So, since W
is compact, there are finitely many, non-zero elements of A(W), g1, ..., g,, such
that the morphisms induced by f

fi:U =Uv(f*(g)) > U =Uw(g), i=1,....n,
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are finite and {U;};—; ., form a cover of W. Note that

1 , 1
OW) = AUy (g = AW ], OW) = AWy (g = AV)[ ]
fori =1,...,n, (see Lemma 6.3.1), where, as usual, we may think to the injective
map f* as an identification, so that

fi*:A(W)[l]eA(V)[i], i=1,....n,

gi gi

is the map naturally induced by f*. By the hypotheses and by Exercise 5.4.7,
A(V)[ ]hasaﬁmtebasmw,j overA(W)[ ],fori =1, ,n,j=1,...,n;,where
we may suppose thatw;; € A(V). We now show that {w,j}, 1., j=1,...,n; 1S @ basis of
A(V) over A(W), which will imply the assertion by Exercise 5.4.6. Let b € A(V).
Foralli =1,...,n we have

nj

b= Z;U Wij,

j=1

withm ; suitable positive integers and a;; € A(W). Since(")/_; Zy (g;"") = ¥, because
{U!}i=1,..n is an open cover of V, there is no maximal ideal of A(W) containing
= (g;"‘, ..., gy), hence Z = A(W). So there are hy, ..., h, € A(W) such that

n
Zhig,"ni =
i—1

Then we have

n

:b(Zhig;"") Z ig lm‘b_ZZa,jh Wi,
i=1

i=1 i=1 j=I1
which proves the assertion. O

Theorem 10.1.4 suggests the way of extending the notion of finite morphism to
morphisms between quasi-projective varieties. Let V, W be quasi-projective varieties
and f : V — W a morphism. We will say that f is affine if for every point P € W
there is an open neighborhood U of P in W, such that U’ = f “1(U) is affine. If,
in addition fjyr : U’ — U is finite, one says that f is finite. Of course Theorem
10.1.3 still holds for finite morphisms as defined above. Finally, let ¢ : V --» W be
a rational map (in particular a morphism). One says that ¢ is generically finite if
there are non-empty open subsets U of W and U’ of V such that ¢ induces a finite
morphism ¢y : U' — U.
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Theorem 10.1.5 Let ¢ : V --+ W be a dominant rational map between quasi-
projective varieties. Then ¢ is generically finite if and only if the homomorphism ¢*
K (W) — K (V) is an algebraic extension, i.e., if and only if dimy (V) = dimg(W).

Proof 1t suffices to prove the assertion in the case in which V, W are affine and ¢
is a morphism. If ¢ is generically finite, it is clear that ¢* : K(W) — K (V) is an
algebraic extension and then dim (V) = dim,(W). Let us prove the converse. Let
g € K(V), so that g is algebraic over K (W), hence over A(W). In particular, every
g € A(V) is algebraic over A(W), so that we have a relation of the sort

aog" +arg" +---+a, =0,
with ag, ..., a, € A(W) and a9 # 0. Then we have
ayg" + ala(')’_lg”_l +. 4+ a,,ag_l =0
hence ayg is integral over A(W). Let by, ..., b, be a system of generators of A(V)
as a K-algebra and let ay, ..., a, € A(W) such that g;b; is integral over A(W),

fori=1,...,m.Set F=a;---a, and let U = Uy (F) and U’ = Uy (¢*(F)). In
relation with the morphism ¢y: : U" — U we have the inclusion which extends ¢*

& - A(W)[%] > A(V)[%].

An element of A(V)[%] isof the form ¢ = %, withb € A(V)andh apositive integer.

Since by, ..., b, are integral over A(W)[%], because ay, ..., a,, are invertible in
A(W)[%], and since b is a combination of products of by, ..., b, with coefficients
in KK, it follows that A(V)[%] is integral over A(W)[%], which proves the assertion.

O

We finish this section with the following:

Theorem 10.1.6 Let f : V — W be adominant morphism between quasi-projective
varieties. Then f (V) contains a non-empty open subset of W.

Proof 1t suffices to reduce to the case in which both V, W are affine. Then K (V) is
an extension of K(W). Letuy, ..., u, be atranscendence basis of K (V) over K (W)
and we may assume uy, ..., u, € A(V). Then we have the chain of inclusions

AWY S AW)[uy, . u] 2 AV

such that f* = (8 o a. Note that A(W)[uy, ..., u,] is isomorphic to A(W) ®Qk A,,
hence A(W)[uy, ..., u,] = A(W x A"), and « corresponds to the projection p; of
W x A’ to the first factor. Then (3 corresponds to a generically finite morphism g :
V — W x A". By Theorem 10.1.5 there is a non-empty open subset U of W x A",
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such that U C g(V). We may assume that U is a principal set, i.e., U = Uy xar (F),
with ' .
F = Z g,-,___,-ru’,' <oeuy, with g, € A(W) not all zero.
I1...1

Let P € W which does not belong to Ui,...i, Zw(gi,..i,)- Then there is some Q €
W x A" such that F(Q) # 0, so that Q € U and P = p;(Q) € p;(U). Therefore
p10) 2 WAU;, i Zw(gi,...,) so that

FV)=pig(V) 2 pi@) 2 WA | Zw(gi.i,)

i1y

and W\ Uil...i, Zw(gi,..i,) s a non-empty open subset of W because at least one of
the functions g;, _; is non-zero. O

Exercise 10.1.7 * Let A, B be finitely generated K-algebras, suppose that A C B and that B is
integral over A. Let x € Q(B) be integral over B. Prove that x is also integral over A.

Exercise 10.1.8 * Let V, W be affine varieties and f : V — W a finite morphism. Let g €
A(W) \ {0} and Uw (g) be the principal (affine) open subset associated to g (see Sect. 5.1). Prove
that f~'(Uw (g)) is also a principal (affine) open subset of V and that the map Sir-1wwn

=Y Uw(g9)) = Uw/(g) is a finite morphism.

Exercise 10.1.9 *Let V be ahypersurfacein A" and consider the projection p of V to an hyperplane
from a point at infinity which is not in the projective closure of V. Prove that p is a finite map.

Exercise 10.1.10 Consider an irreducible quadric of A" with equation

fOer o x) =x 10, ) F+ fo(xn, . x1) =0

where f; is a polynomial of degree at most i in xy, ..., x,—_1, fori = 1,2, with f; non-zero and
not dividing f>. Consider the projection p of V from the point at infinity of the x, axis to the
hyperplane x,, = 0 identified with A"~!. Prove that p is a finite morphism if and only if f; is a
non-zero constant.

Note that in this case p is finite if and only if p is surjective.

Exercise 10.1.11 * Prove that the composition of two finite morphisms between affine varieties is
finite.

Exercise 10.1.12 * Let V, W be affine varieties and f : V — W a finite morphism. Prove that
dimy (V) = dimg (W).

Exercise 10.1.13 Give an example of a morphism which is surjective, closed and with finite fibres
which is not finite.

Exercise 10.1.14 * Prove that the restriction of a finite morphism between affine varieties to a
closed subvariety is still finite onto its image.

Exercise 10.1.15 Prove that any morphism between affine varieties is affine.

Exercise 10.1.16 Prove that the composition of finite morphisms between quasi-projective vari-
eties is finite.
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Exercise 10.1.17 Prove that if V, W are quasi-projective varieties and f : V — W is a finite
morphism, then dimy (V) = dim(W).

Exercise 10.1.18 Prove that there are morphisms which are not affine.

Exercise 10.1.19 *Let V C P" be an irreducible hypersurface of degree d, let P be a point which
does not belong to V and H a hyperplane not containing P. Consider the restriction p to V of the
projection of P" to H from P. Prove that p is a finite morphism.

Exercise 10.1.20 Prove that an irreducible ipersurface of A" or of P" has transcendent dimension
n—1.

Exercise 10.1.21 Let V be an irreducible ipersurface of P”, let P € V and consider the projection
p of V to a hyperplane H from P, that is a rational map. Prove that p is generically finite, unless
V is a cone with vertex P.

10.2 Projections and Noether’s Normalization Theorem

Let V € P” be a projective variety and let P, P, be two subspaces of P" of dimen-
sions r and n — r — 1 respectively, which are skew. Suppose that P; NV = (J. We
can then consider the projection

p:V->DP

of V to P, from P, (see Exercise 7.1.12), which is a morphism and whose image
V' = p(V) is a projective subvariety of P, by Theorem 9.2.1. The projection p is
called an external projection of V.

Theorem 10.2.1 An external projection p : V. — V' is a finite morphism.

Proof We use the above notation, and assume that p is the projection of V C P"
from Py, of dimension r, to P, of dimension n —r — 1, with PNV =@. We
fix homogeneous coordinates [yo, ..., yo—r—1] on P, and, as usual, we denote
by U; = A""~! the open subset of ’, where y; # 0, and we set vi=UnVv’
foralli=0,...,.n—r—1and V; :p’l(Vi/), fori =0,...,n—r — 1. For all
i=0,...,n—r —1,both V; and W are affine varieties. To prove the assertion we
will prove that pyy, : V; — V/ is a finite morphism, foralli =0,...,n —r — 1. We
will consider the case i = 0, because the other cases are analogous.
We may suppose that the morphism p is given by relations of the type

vi = fi(x0,...,%,), for i=0,...,.n—r—1

where [xo, . . ., X, ] are homogeneous coordinates in P” and fi, ..., f,—,— are linear
forms. Since P NV = {J, the system

fo=-=fuiirm1=0 (10.2.1)
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has no non-trivial solution on V.
Let g € A(Vp). We want to prove that g is integral over A(V}j). The function g is
the restriction to Vj of a function of the form

G (xo, ..., Xn)

fO(XO, MR ] xn)m

where m is a suitable positive integer and G is a homogeneous polynomial of degree
m.
Consider the map g : V — P"~" given by the formulas

zi=f", for i=0,....n—r—1, and z,_, =G.

where [z, . . ., 2,—r] are homogeneous coordinates in P*~". Since the system (10.2.1)
has no solution on V, the map ¢ is a morphism, and we set V" = ¢(V), which is a
closed subvariety of P"~". We let A1, ..., h; be a basis of the ideal Z,(V").

Since the system (10.2.1) hasno solutionon V, the point P = [0, ..., 0, 1] € P"7"
does not belong to V”. This means that the system

= =Znr1=h=-=h=0
has no non-trivial solutions. Then there is an integer d > 0 such that the ideal
(20«5 Zn—r—1,>h1, ..., ;) contains S,_,4 (see Sect. 3.1), in particular z;’ﬂ
€ (20y -+ +s Zn-r—1, 11, ..., hy),i.e., we have a relation of the form
n—r—1 1

2 = Z i P +ZhiQi
i=0 i=1

with P, ..., P,_,_1, Q1, ..., Q; suitable homogeneous polynomials of the appro-
priate degrees, in particular Py, ..., P,_,_; have degree d — 1. Then
n—r—1

d
H(Z09~-~»Zn—r) =2,y — Z ZiPi
i=0

vanishes on V". The homogeneous polynomial H of degree d is a monic polynomial
in z,_, and we can write

d—1
_.d § i
H = Ln—yp — ai (ZO» s Zn—r—l)zn_r
i=0

with a;(zo, ..., Z,—r—1) homogeneous polynomial of degree d —i fori =0,...,
d — 1. From the fact that H vanishes on V" we deduce that
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H( ..., [ G)=0 on V.

n—r—1°

Dividing this relation by 6”d we find the required integral dependence relation

d—1
9" =Y @& br)g =0
i=0

wherefizi%;eA(VO’),forizl,...,n—r—l. O
An interesting consequence of this result is the:

Corollary 10.2.2 Let V C IP" be a projective variety. Let fy, ..., fn € Sy.q be lin-
early independent polynomials such that V. N\ Z,(fo, ..., fr) = V. Then the mor-
phism

d:PeV = [fo(P),..., fu(P)leP"

is a finite morphism onto its image.

Proof Consider the dual Veronese morphism
Upa . P" — Evn,d

(see Sect. 6.4), that is an isomorphism of P” onto its image. Let us set V' = v, 4(V).
The polynomials fy, ..., f;, are the images via the homomorphism 9, 4 (see Sect.
6.3) of linearly independent linear forms Fy, ..., Fj, in Sy@.4).1, S0 that we have to
prove that the morphism

v:PeV - [Fy(P),..., Fy(P)]eP"

is finite onto its image. So we are reduced to the case d = 1. In this case ¢ is the
restriction to V of a degenerate projectivity 7 (see Exercise 7.1.11) with centre PP
such that Py NV = @. On the other hand 7 is composed of a projection and of
projectivities (see Exercise 7.1.13). The assertion follows from Theorem 10.2.1. [J

Remark 10.2.3 By taking into account the proof of Theorem 10.2.1, we see that
Corollary 10.2.2 says more than stated. The full result is that, if [xo, ..., x;] are
homogeneous coordinates in P* and if U; = A" is the open subset of P" where
x; #0, fori =0, ..., h, then the morphism ¢4,y : ¢~ (U;) = ¢(V)NU; is a
finite morphism of affine varieties.

Corollary 10.2.4 Let V C IP" be a projective variety of transcendent dimension m.
Then there is a finite morphism p : V. — P™.

Proof 1t suffices to compose external projections. (I
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Remark 10.2.5 Let us keep the notation of Corollary 10.2.4 and set m = dim (V).
Then Corollary 10.2.4 asserts that there is a subspace P; of P"* of dimensionn — m —
1 such that P; NV = §J, such that the projection of V from P; to a skew subspace
P, of dimension m is finite.

Corollary 10.2.6 Let V C P" be a projective variety of transcendent dimension m.
Letr > —1 be the maximum integer such that there are subspaces of P" of dimension
r with empty intersection with V. Thenr = n —m — 1.

Proof By Remark 10.2.5, there are subspaces of dimension n — m — 1 with empty
intersection with V. To finish we have to prove that if » > n — m — 1, any subspace
with dimension r has non-empty intersection with V. Let us argue by contradiction.
Suppose there is subspace IP; with dimensionr > n — m — 1 with empty intersection
with V. Let us fix a subspace P, of dimension n —r — 1 < m and let us consider
the external projection of V to P, from P;. Then this would be a finite morphism to
its image, whose dimension would be at mostn — r — 1 < m = dim(V), a contra-
diction. O

Another consequence of Corollary 10.2.4 is the following result:

Corollary 10.2.7 (Emmy Noether’s Normalization Theorem) Let V be an affine
variety withdimy (V) = m. Then there is a finite morphism of V onto A™. In algebraic
terms, given any finitely generated K-algebra A with no zero divisors such that Q(A)
has transcendence degree m on K there is an injective homomorphism A,, — A such
that A is integral over A,,.

Proof One proceeds as in the projective case, by projecting from points at infinity
which do not belong to the projective closure of V. d

10.3 Normal Varieties and Normalization

Let V be a quasi-projective variety and let P € V. One says that V is normal at P if
the ring Oy p is integrally closed. One says that V is normal if V is normal at any
point P € V. In order to explain the meaning of this definition, we need some results
of algebra.

Lemma 10.3.1 Let A, B be rings with A a subring of B and let C be the integral
closure of A in B. Let S be a multiplicatively closed subset of A. Then Cg is the
integral closure of Ag in Bs.

Proof 1t is easy to see that Cg is integral over Ag. If ls—’ € By isintegral over Ag, we
have a relation of the type

b\n ay /b\n-1 a,
()50 e
s S| \§ Sn
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witha; € A,s; € S,i=1,...,n. Sett =sy---5,, and multiply both members of
the above relation by (s¢)". Then bt € C and f = f—f € Cy. (Il

Lemma 10.3.2 Let A be a domain. The following are equivalent:

(a) A isintegrally closed;
(b) for every prime ideal T C A, the ring Az is integrally closed;
(c) for every maximal ideal m C A, the ring Ay, is integrally closed.

Proof By Lemma 10.3.1, (a) implies (b). Moreover (b) trivially implies (c). Let us
prove that (c) implies (a). This follows from the fact that A = () Ay, where the
intersection is made on all the maximal ideals of A (see Exercise 5.5.9). (Il

Proposition 10.3.3 Let V be a quasi-projective variety:

(a) ifV is affine, then V is normal if and only if A(V) is integrally closed;
(b) V is normal if and only if there is an open cover {U;};c1 of normal affine subsets
of V.

Proof Part (a) follows from Lemma 10.3.2. Part (b) is obvious. ([l

Let now V be a quasi-projective variety. We will say that the pair (V', ¢) is a
normalization of V, if V' is a normal variety and ¢ : V' — V is a birational, finite
morphism. Often one says that V' is a normalization of V, when ¢ is understood.

Let us state the following result of algebra, for which see [9, Theorem 9, p. 267]:

Theorem 10.3.4 (Finiteness of Integral Closure) Let A be a finitely generated K-
algebra with no zero divisors and let K be a finite extension of Q(A). The integral
closure of A in K is an A-module of finite type and it is also a finitely generated
K-algebra.

This theorem implies the following:

Theorem 10.3.5 Let V be an affine variety. Then:

(a) there is a normalization (V', ¢) of V with V' affine, which has the following
properties:

(al) if W is an affine variety and g : W — V is a finite birational morphism,
then there is a unique morphism h : V' — W such that ¢ = g o h;

(a2) if W is a normal affine variety and g : W — V is a dominant morphism,
then there is a unique morphism h : W — V' such that g = ¢ o h;

(b) if (V") is still a normalization of V, there is an isomorphism g : V' — V"
such that ¢ = o g.

Proof From Theorem 10.3.4 it follows that the integral closure B of A(V) is a finitely
generated K-algebra with no zero divisors. Hence there is an affine variety V' such
that B = A(V’), and accordingly there is a finite, birational morphism ¢ : V' — V.
Hence (V’, ¢) is a normalization of V. If W verifies the hypotheses of (al), there is
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an inclusion A(V) € A(W) € K(V). Since A(W) is integral on A(V'), we have an
inclusion A(W) € B = A(V’) and accordingly we have the morphismh : V' — W
such that ¢ = g o h. Finally, if W is a variety verifying the hypotheses of (a2), we
have K(V) C K(W) and A(V) C A(W).If f € B= A(V’'), then f € K(W) and
it is integral over A(V), so it is integral over A(W), thus f € A(W). Then we
have A(V') € A(W) and accordingly we have a morphism 4 : W — V’ such that
g = ¢ o h. Part (b) follows from (al) and (a2). O

Exercise 10.3.6 Prove that A", P" and the Segre varieties are normal.

Exercise 10.3.7 Suppose that char(K) # 2. Prove that any irreducible quadric in P3 is normal.

Exercise 10.3.8 Prove that the projective plane curves with equations xoxl2 =x3 and x%xo =

x12 (x1 4 xp) are not normal.

Exercise 10.3.9 A projective variety V is said to be projectively normal if S(V) is integrally
closed. Prove that P!, the Veronese varieties, the Segre varieties are projectively normal. Prove that
a projectively normal variety is normal.

Exercise 10.3.10 * Prove that there are isomorphic projective varieties one of which is projectively
normal the other is not, so that projective normality is not an intrinsic property, but depends on the
immersion in projective space.

Exercise 10.3.11 Consider the affine plane curves V and V' with equations x12 = x3 and x% =

xlz(xl + 1), which are not normal (see Exercise 10.3.8). Consider the morphisms
d:teA 5> @B, eV, ¢ireAl s> -1,7-nevV.
Prove that (A!, ¢) and (A!, ¢) are normalizations of V and V’ respectively.

Exercise 10.3.12 * Let V be a quasi-projective variety. Prove that the set N (V) of points P of V
such that V' is not normal in P is a proper closed subset of V.

10.4 Ramification

In this section we will look at the following question: given a finite morphism ¢ :

V — W, what is the degree of the fibres of ¢? We start with a definition. Let ¢ :

V --» W be a generically finite rational map between quasi-projective varieties.

Then ¢* : K(W) — K(V) is an algebraic extension. We define degree of ¢, denoted

by deg(¢), the degree of the field extension ¢* : K(W) — K (V). Moreover we will

say that ¢ is separable or inseperable if so is the field extension ¢* : K(W) — K (V).
In order to prove our next result, we need some algebraic preliminaries.

Lemma 10.4.1 Let A be anoetherian subring of adomain B and let C be the integral
closure of Ain B. Let f, g € B[x] be monic polynomials such that fg € C[x]. Then

frg € Clx].
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Proof In the algebraic closure of Q(B) we have
fo=[Jec-&. g =]]«-n.
i=1 i=1

Now &, m;,i=1,...,n,j=1,...,m,areroots of f(x)g(x), hence they are inte-
gral over C. So the coefficients of f(x) and g(x), which are polynomial expressions
in the & and in the n); respectively, are elements of B integral over C, so they belong
to C (see Exercise 5.4.8). U

Proposition 10.4.2 Let A C B be noetherian domains with A integrally closed and
B integral on A. Then the extension Q(A) — Q(B) is algebraic and for every element
b € B, its minimal polynomial over Q(A) has coefficients in A.

Proof Let b € B and let f(x) € A[x] be a monic polynomial of minimal degree
which has b as a root. If f(x) is not the minimal polynomial of b on Q(A), there
are monic polynomials g, h € Q(A)[x] with deg(g), deg(h) both positive, such that
f = gh. By Lemma 10.4.1 with B = Q(A) and C = A, we have that g, h € A[x],
and this is a contradiction. O

Theorem 10.4.3 Let f : V — W be a finite morphism between quasi-projective
varieties, with W normal. Then for all P € W, the fibre f~'(P) consists of at most
deg(f) distinct points.

Proof We can reduce to the case in which both V, W are affine. Set A = A(V), B =
AW),K =Q(A)=K(V),L =Q(B) = K(W)andn = deg(f) = [K : L].Ifa €
A C K,since A isintegral on B and B is integrally closed, then by Proposition 10.4.2
the minimal polynomial of a over L has coefficients in B. Let us set f~'(P) =
{01, ..., O} and let us choose an element a € A such that a(Q,), ..., a(Q,,) are
distinct elements of K.

The existence of a is proved by showing that, if V C A", there is a polynomial
F € A, whichtakes different valueson Qy, ..., Q,,. Thisistrivialifm = 1.Ifm > 1
one proceeds by induction on m. Let F; be such a polynomial for Q1,..., Q,_1.
If F1(Q,,) is different from F;(Q1), ..., F1(Q,_1), we take F = F. If F;(Q.,)
is equal to one of the values Fi(Q;),..., F1(Qu-1), let G be a polynomial,
which certainly exists, such that G(Q;) =0fori =1,...,m — 1 and G(Q,,) # 0.
Then take F' = F| + hG, with h suitable in K*. Indeed F(Q;) = F1(Q;), fori =
1,...,m — 1,arem — 1distinct values in K, whereas F(Q,,) = Fi(Q,,) + hG(Q.,)
takes infinitely many values of K, when & varies. So we can choose & so that F(Q,,)
is different from F(Q;) fori =1,...,m — 1.

Letnow P(T) € B[T]be the minimal polynomial of a. Of course ! = deg(P(T))
<[K:Ll=nlIf

PT)=T+aT""+---+a, a B,

let us consider the polynomial on K
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PT)=T +a;(P)T " +---4+a(P), a; € B,

which has the m roots a(Q1), ..., a(Q,),sothatm <[ < n. O

A finite morphism f : V — W of quasi-projective varieties is said to be not
branched at P € W, if the fibre f~'(P) consists exactly of deg(f) distinct points.
If this is not the case, one says that f is branched at P, and P is called a branch
point for f.

Theorem 10.4.4 Let f : V — W be a finite morphism between quasi-projective
varieties, with W normal. Then:

(a) if f is inseparable, then f is branched at all points of W;
(b) if f is separable, the branch points for f in W form a proper closed subset of
w.

Proof We keep the notation of the proof of Theorem 10.4.3. Let Q be a point
of W where f is not branched. Then / = n and P(T) has n distinct roots. This
means that the discriminant D(P) of P(T), i.e., the resultant of P(T) and of the
derivative P’(T), is not zero. Consider the discriminant D(P) € B of P(T). Since
D(P) = D(P)(Q), we have D(P) # 0. If f is inseparable, this is impossible, and
this proves (a). If f is separable, since D(P)(Q) # 0, there is an open neighborhood
U of Q in W, such that for all Q’ € U one has D(P)(Q’) # 0. The solutions of the
equation
T'+a (T +--a(Q) =0

are exactly the values that a assumes at the points of f~'(Q"), it follows that f
is not branched in all points of U. It remains to be proved that if f is separable,
there are points of W in which f is not branched. Note that the extension L — K is
separable. So, for the Theorem of the Primitive Element 7.2.2, there is an o € B such
that K = L(«). If P(T) is the minimal polynomial of «, one has deg(P(T)) =n
and D(P) # 0 for the separability of the extension. Hence there is a Q € W such
that D(P)(Q) # 0 and Q is not a branch point for f. O

Exercise 10.4.5 Prove that Theorem 10.4.3 no longer holds if W is not normal.

Exercise 10.4.6 * Prove that if A C B are noetherian rings and C is the integral closure of A in
B, then C[x] is the integral closure of A[x]in B[x].

Exercise 10.4.7 * Prove that if (W, ¢) is a normalization of the affine variety V, then (W x
A", ¢ x idpn) is a normalization of V' x A". In particular, if V is normal, sois V x A", hence also
V x P", for all positive integers n.
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10.5 Solutions of Some Exercises

10.1.7 Use Lemma 5.4.1.

10.1.8 Consider the inclusion f* : A(W) — A(V), so via f* we will consider A(W) as a subring
of A(V). As for the first assertion note that f*1 (Uw(g)) = Uy (g). Moreover

1 1
OWwig) =aW[ ] oW = A ]

and ﬁf—l(uw(g)) corresponds to the inclusion A(W)[%] — A(V)[é]. Since f is finite, A(V) is

a finitely generated A(W)-module (see Exercise 5.4.7), then also A(V)[é] is a finitely generated

A(W) [ﬂ—module, and we are done by Exercise 5.4.6.

10.1.10 If f; is non-constant, it suffices to prove that x,, = % is not integral over A, _;. Suppose
yi3

by contradiction that 7

is integral over A,_1. We would have a relation of the type

() en() =

withay, ..., a, € A,—1. This implies
BAafy it tanff =0,

which yields that fj divides f3, a contradiction.

The final assertion is easy.
10.1.12 Every element of A(V) is integral over A(W), so it is algebraic over A(W). Hence every
element of K (V) is algebraic over K(W). Thus K (V) and K (W) have the same transcendence
degree over K.
10.1.13 Consider for instance the projection of the plane curve x lxg + x1 — xp = 0 on the x| axis
from the point at infinity of the x, axis.
10.1.14 Suppose we have a finite morphism f : V — W of affine varieties. Let V' C V be a closed
subvariety and let W' = f(V’) be its image. Let x € A(V’) be any element. Then x comes as the
image of an element y via the surjective homomorphism A(V) — A(V’). Since f is finite, we have
a relation of the form

Yiray" '+ 4a, =0,

withay, ..., a, € A(W). Then mapping to A(W’) via the homomorphism A(W) — A(W’) we get
X"+ bpx" by =0,

with by, ..., b, € A(W’) the images of ay, ..., a, € A(W).
10.1.15 The principal open subset form a basis for the Zariski topology of an affine variety. Moreover
the counterimage of a principal open subset is an open principal subset, so it is affine.
10.1.18 For example the projection p; : P! x P! — P! is not affine.
10.1.21 We can assume that P = [0, ..., 0, 1]and H = Z,(x,). If V has degree d it has equation
of the sort

f=x5facaxo, ..., X)) + -+ falxo, ..., xp—1) =0

with f; homogenous polynomials of degree i in the variables xg, ..., x,—1,fori =d —a, ..., d,for
some non-negative integera < d, and fy_, 7# 0.1f a = 0, then the variable x,, does not appear in f
and V isacone with vertex P = [0, ..., 0, 1] (see Exercise 3.2.9),and p(V \ {P}) = Z,(fs) C H,
so that p is not dominant. If @ > 0, then p(V \ {P}) contains H \ Z,(f4—), and p is dominant.
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10.3.6 To see that A" is normal apply Proposition 10.3.3, (a) and Exercise 5.4.3. Since P" and the
Segre varieties can be covered by open sets isomorphic to affine spaces, their normality follows by
Proposition 10.3.3, (b).

10.3.7 If the matrix of the quadric has rank 4, then the quadric is isomorphic to the Segre variety
Seg; | (see Exercise 8.2.16) so it is normal by Exercise 10.3.6. Consider the case in which the
matrix of the quadric has rank 3, in which case the quadric is a cone (see Exercise 3.2.10). It is well
known that any such quadric is projectively equivalent to the one V with equation xl2 + x% = x32,
Let us prove that this quadric is normal. We claim that S(V) = S3/(x12 + x% — x32) is integrally
closed. Then the normality of V follows by Theorem 5.5.3 and Lemma 10.3.1. To prove that S(V)
is integrally closed, note that Q(S(V)) is obtained by adding to K(xg, x1, x2) the roots of the
polynomial X - ()c]2 + x%) in the variable X, which is irreducible over K(xg, x1, x2) (see Lemma
2.2.4 and Gauss Lemma 2.2.5). Then any element of Q(S(V)) can be written in a unique way as
u + vx3, with u, v € K(xg, x1, x2). Similarly, any element of S(V') can be written in a unique way
as u + vxz, with u, v € K[xg, x1, x2], so that S(V) is a finitely generated K[xo, x1, x2]-module,
hence S(V) is integral over K[xg, x1, x2]. Now leta = u 4+ vx3z € Q(S(V)) be integral over S(V).
Then a is integral over K[xp, x1, x2] (see Exercise 10.1.14), and its minimal polynomial is

X —u = vx) (X = u -+ vxg) = X* = 2uX + (= 0} + D).

Thereforeu € K[xg, x1, x2]and 1)2()c12 + x%) € Klxg, x1, x2] and thisimplies that v € K[xg, x1, x2],
so that a € S(V), as wanted.

10.3.8 For instance, consider the first curve V. Its affine part has equation xl2 = x*g. Now A(V)isnot
integrally closed, because % is solution of the equation X 2 _ x, = Owithcoefficientsin A(V), butit
does not lie in A(V). Then V is not normal by Proposition 10.3.3. Similarly, the second curve V' has

affine equation x% = xlz(xl

+ 1) and A(V’) is not normal because ;—f verifies the equation X2 — (x; + 1) = 0 but is does

not lie in A(V').

10.3.9 It is clear that " is projectively normal. As for Veronese varieties V, 4, note that S(V,, 4) =
D e Sn,aa and this ring is easily seen to be integrally closed. Similar arguments for the Segre
verities. The final assertion follows by Theorem 5.5.3 and Lemma 10.3.1.

10.3.10 Consider the rational normal curve V = V) 4 which is the image of the morphism

V1.4 [x0, x1] € P! - [xg, xgxl, x%xlz,xox%,xf] eP*

and consider its projection to the hyperplane xo = 0 form the point [0, 0, 1, 0, 0]. This projec-
tion is an isomorphism onto its image V’. Indeed one can verify that the inverse morphism is
given by assigning to a point [ag, aj, a3, a4] € V' the point vy 4(ap, a1) € V if ag # 0, and the
point vy 4(asz, as) € V if as # 0. By Exercise 10.3.9 we know that V is projectively normal. By
contrast V' is not projectively normal. Indeed, assuming the homogeneous coordinates in P3 to be
[¥0, ¥1, ¥2, ¥31,in S(V’) we have the relation (yoy2)% = yo y12 y3, and this implies that y%z isintegral

over S(V'). However % does not lie in S(V’). In fact, if y;’% € S(V'), since S(V’) is graded, we
would have ygy, = y; f with f homogeneous of degree 1, i.e., f = apyo + a1y +axy2 + azys.

Then we would have a quadric with equation

Yoy2 = y1(aoyo + ary1 + axy> + azys)

containing V', which is not the case. We would have in fact that for any [xg, x1] € P!, there is a
relation

x(%xlz = aoxg + a1x8x1 + agxox% + a3xg,
which is not possible.
10.3.11 It is not difficult to see that both ¢, ¢ are birational, in particular they are dominant, so they
correspond to inclusions



10.5 Solutions of Some Exercises 135

¢" L A(V) = Klrl, (@)1 A(V) — K[1],

which induce isomorphisms K (V) = K(r) = A(V’). Now K][¢] is integral over A(V). Indeed,
t = % which, as we saw in the solution to Exercise 10.3.8, is integral over A(V). Similarly, in the
case of V', r = 32 which is integral over A(V’). This implies that the maps ¢ and ¢’ are finite.
Finally K[¢] is integrally closed because it is a unique factorization domain (see Exercise 5.4.3).
This implies that (AL, ¢) and (Al ¢') are normalizations of V and V'’ respectively.

10.3.12 Let U be a non-empty open affine subset of V and let (U’, ¢) be a normalization of U.
Then there are two non-empty open subsets of U and U’ which are isomorphic, and this implies that
there are points of U which are normal for U, hence there are normal points of V.Let P € V be a
normal point. Let again U be an open neighborhood of P in V and let (U’, ¢) be a normalization
of U. Let P’ € U be any point such that $(P’) = P. Then ¢* : Oy, p — Oy p is injective and
Q(Oy,p) = Q(Oy,p) = K(V) and Oy p is integrally closed. Then ¢* is an isomorphism. By
Corollary 7.1.3, there is an open subset of U containing P and an open subset of U’ containing P’
such that ¢ induces an isomorphism between them. Hence there is a whole open neighborhood of
P in V consisting of normal points. This proves the assertion.

10.4.5 Consider for example the affine plane curve W with equation x]3 = x% — x12. We know that
it is not normal (see Exercise 10.3.11) and its normalization is A'. So we have a finite birational
morphism ¢ : Al — W (see again Exercise 10.3.11), which has degree 1, but the counterimage of
the point (0, 0) consists of two distinct points.

10.4.6 Let f € B[x] be integral over A[x]. We have a relation of the sort

g " g =0 with g1,...,gm € Alx].

Let r be an integer which is larger than the degrees of g1, ..., g, and set f; = f — x". Hence we
have
Sr+x)"+a(fi+x)"" 4 4 g, =0,

which implies a relation of the form
T 4 by =0 with ki, by € Alx],

hence
(_fl)(flm7] +h1f1m72+"'+hm—l) = hp.

If r > 0, then h,, is monic and so is also f}, hence also flmf1 + hlfl"“2 + .-+ hy,— is monic.
By applying Lemma 10.4.1, we have f; € C[x] hence f € C[x]. Conversely, if f € C[x], then

f is integral over over A[x]. Indeed, if ag, ..., a, are the coefficients of f, then (A[x])[f] C
(Alag, . .., an])[x] which is finitely generated over A[x], since Alay, ..., a,] is finitely generated
on A.

10.4.7 It suffices to prove the assertion for n = 1. Then we may apply Exercise 10.4.6 to the following
situation: A = A(V), B = K(V), C = A(W), with W a normalization of V. Then A(V x A!) =
Alx], K(V x Al) = B(x), and A(W x Al) = C[x], and Exercise 10.4.6 implies that A(W x Al)
is the integral closure of A(V x Al) in K(V)[x]. But, since K(V)[x] is a unique factorization
domain and K (V)(x) = Q(K (V)[x]), then K (V)[x] is integrally closed in K (V)(x) = B(x). In
conclusion A(W x Al) is the integral closure of A(V x Al in K(V x A).



Chapter 11 ®)
Dimension Becit

11.1 Characterization of Hypersurfaces

As we know, any hypersurface of A" or P" has transcendent dimension n — 1 (see
Exercise 10.1.20). As a first result of this chapter, we invert this result. We start with
the following:

Lemma 11.1.1 Ler V, W be quasi-projective varieties with W C V. Then dimy
(W) < dimg (V). If, in addition, W is closed in V and dimy (W) = dim(V), then
V=Ww.

Proof 1t suffices to reduce to the case in which V and W are affine. Then we
may assume W C V C A", so that A(V) and A(W) are generated, as K-algebras,
by xi, ..., x,. Let m = dimy (V). Then any (m + 1)-tuple (x;,, ..., x;, ) of ele-
ments of {xi,...,x,} is algebraically dependent. This implies that there is a non-
zero polynomial F € K[T;,, ..., T, 1, such that F(x;,...,x;,,,)=0in A(V).
Namely, F(x;,, ..., x;,.,) € Z,(V) € Z,(W). Hence F(x;,...,x;,,,) =0 also in
A(W),ie., (x;,...,x;,,,, ) are algebraically dependent on A(W). This implies that
dim, (W) < m = dimy (V).

Assume now also dimg (W) = m, with W closed in V. We want to show that V =
W, i.e., that Z,(V) = Z,(W). We argue by contradiction and assume that Z,(V) #
Z,(W).

Since dimy (W) = m, it is possible to choose m elements in {x, ..., x,} which
are algebraically independent over K. We may assume these are xi, ..., X,. By
the same argument we made before, we see they are algebraically independent also
as elements of A(V). Take now f € Z,(W)\ Z,(V). Then f(xiy,...,x,) can be
considered as a non-zero element of A(V) and, as such, it algebraically depends on

X1, ..., Xn, 1.€., there is a relation of the form
ao(xty . xm) i ar(xr, ..., xm) =0 (11.1)
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where the polynomial appearing in the left hand side of (11.1) can be supposed to
be non-zero and irreducible, in particular we may assume that a;(x, ..., x,;,) # 0in
A(V) hence in A,,. The relation (11.1) holds also in A(W), which is the quotient of
A(V) modulo Zy (W). Since in A(W) one has f = 0, we get ;(xy, ..., Xx,) =0in

A(W). But in A(W) the elements x, ..., x,, are algebraically independent, so we
would have ¢; = 0in A,,, a contradiction. This implies that Z,(V) = Z,(W), so that
V=W. O

Theorem 11.1.2 Any variety of transcendent dimension n — 1 in A" or P" is an
irreducible hypersurface.

Proof 1t suffices to consider the affine case. Take a subvariety V of dimensionn — 1
in A", There is an irreducible polynomial f € Z,(V), where Z,(V) is a prime ideal of
A,. ThenV C Z,(f),and Z,(f) is an irreducible variety of transcendent dimension
n — 1, with V closed in Z,(f). Then apply Lemma 11.1.1. ]

11.2 Intersection with Hypersurfaces

The next step is to consider the intersection of an affine or projective variety with a
hypersurface. We start with the following algebraic lemma:

Lemma 11.2.1 Let A be adomain containing A, andintegral over A,. Letx,y € A,
be non-zero, coprime elements and let z € A be such that x divides yz in A. Then
there is a positive integer m such that x divides 7" in A.

Proof Suppose we have xw = yz in A and let
F(I)=T'+bT7 " +---+b
be the minimal polynomial of w over Q(A,). By Proposition 10.4.2 we have

by,...,b € A,. Since z = ’T‘,w and f € Q(A,), the minimal polynomial of z on
Q(A,) has also degree /, and one has

0=Fa) =F(te) = (%)lzl +b, (f)Hzl—l b th,

so that the minimal polynomial of z is

1 1
G(T) = (f) F(XT) =T+ p T 4t (f) by.
y X y y
Again by Proposition 10.4.2, we have (’;‘)ibi € A, fori =1,...,[. Since x, y are

coprime, then yi divides b; fori =1, ..., /. From the relation G(z) = 0 we deduce
that x divides z'. O
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Theorem 11.2.2 Let V C P” be a projective variety withn = dim (V) > 1, and let
H be a hypersurface not containing V. Then each irreducible component of V N H
has transcendent dimension n — 1.

Proof Set Vi = V N H.Then V) is a non-empty algebraic set (see Exercise 6.4.15).
There is a hypersurface H; which does not contain any of the irreducible components
of Vi. Then V, = V| N H is an algebraic set which is either empty, or any of its
irreducible components is strictly contained in some component of V;. By repeating
this argument, we obtain a sequence of algebraic sets
Vi=WoVioWwho...2Vi2Viag2...

such that V;;; = V; N H;, where H; is a hypersurface which does not contain any
component of V;. Let now n; be the maximum dimension of the irreducible compo-
nents of V;. By Lemma 11.1.1 we have

ni=ng>ny >Ny >...>n; >Njy > ...

so that certainly V,,1 =0, ie., VNHNH N...NH,=0. Let fo, =0, fi =

0,..., f, = 0 be the equations of H, Hy, ..., H,. We claim we may suppose that
fos f1, ..., fn have the same degree. More precisely, given any positive integer d
we can assume f, ..., f, of the same degree d, because, foranyi = 1,...,n, H;

has simply to satisfy the hypothesis of not containing any component of V;. Then we
can choose fi, ..., f, of the same degree of fy. Since Z,(fo, ..., f,) NV =0, the
morphism

p:PeV = [fo(P),..., fu(P)]eP"

is finite onto its image (see Corollary 10.2.2). Then ¢(V) is a closed subset of P”
and dimg(¢(V)) = dimy(V) = n, so that ¢(V) =P" by Lemma 11.1.1. Now, if
wehadn; <n—1,wewouldhave V,, =@, hence VNHNH N.. NH,_1 =0,
namely Z,(fo, ..., fu—1) NV = @. This would imply that [0,...,0, 1] ¢ ¢(V), a
contradiction. This proves that n; = n — 1, hence there is some component of V| of
dimension n — 1.

To finish the proof we have to show that every irreducible component of V),
has dimension at least n — 1. To do this, consider in " the open subset U; = A",
where x; # 0,for j = 0,...,nandset V/ = ¢~!(U;). We will show that, for every

j =0,...,n, every irreducible component of V| N V/ has transcendent dimension
at least n — 1, which will prove the assertion. It suffices to do this for j = n, the
proof being analogous in the other cases. Let us set a; | = %, fori =0,...,n—1

and consider the restriction of ¢ to V" given by

¢:PeV"— (a;(P),...,a,(P)) € A"
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which is a finite morphism (see Remark 10.2.5). Let us prove that the restriction of
as, ..., a, to each of the components of V| N V* = Zy.(a;), are algebraically inde-
pendent. To do this, consider P(7>, ..., T,) € K[T>, ..., T,] anon-zero polynomial.
We have to prove that P(a, ..., a,) is non-zero on any component of Zy»(a;). To
see this it suffices to prove that, if for Q € A(V") one has Q - P(az,...,a,) =0
on ViNV"* then Q =0 on V; N V", Indeed, if P(ay,...,a,) would be zero on
some component X of V; N V" it would suffice to take Q zero on all other com-
ponents of V; N V" but not on X, and then we would have Q - P(az,...,a,) =0
on Vi N V" but Q would not be zeroon V; N V", So assume Q - P(ay,...,a,) =0
on V; N V". By applying the Nullstellensatz (see the version in Exercise 5.5.14), we
have that a, divides (Q - P(aa, ..., a,))! in A(V"), for some positive integer [ > 0.
We claim that there is an m > 0 such that a; divides Q™ in A(V"), so that Q = 0 on
Vi N V", as needed. This follows by Lemma 11.2.1, by taking A = A(V"), x = ay,
y=P(D,...,T) and z = Q' O

The previous theorem has some remarkable consequences:

Corollary 11.2.3 Let V C P be a projective variety with dimy(V) = n and let
fis ..., fr be homogeneous polynomials in S,,. Then every irreducible component
of VNOZ,(fi,..., fr) has transcendent dimension at least max{n — r, 0}. In par-
ticular if r < n, then VO Z,(f1, ..., f) # 0. If V is quasi-projective, then every
irreducible component of V N Z,(f1, ..., fr) has transcendent dimension at least
n—rprovided VO Z,(fi,..., f;) #0.

Proof 1f V is projective, the assertion follows by iterated applications of Theorem
11.2.2. If V is quasi-projective, then V is open in V. One has V N Zy(f1,..., fr) =
(\7 NZ,(fi,..., ;)NV. Then, either VNZ,(f1,...,f;) =90 or every
irreducible component of V N Z,(fi, ..., f;) is a non-empty open subset of VN
Z,(f1, ..., fr) and we may apply the result in the projective case. (]

Corollary 11.2.4 Let V, W C P be quasi-projective varieties of respective tran-
scendent dimensions n, m, with r <n +m. Then, if VW # @, for every irre-
ducible component Z of VN W one has dimy(Z) >n+m —r.

Proof 1t suffices to reduce to the case in which V, W are affine. Then VN W =
(V x W)N A, where A is the diagonal of A" x A" (see Exercise 6.2.23). On the
other hand A is defined in A” x A" = A by r linear equations. Then it suffices to
apply Corollary 11.2.3. O

Corollary 11.2.5 Let V be a quasi-projective variety of transcendent dimension n.
Then there are on V subvarieties of any transcendent dimension s with 0 < s < n.

Proof Obvious. U
Corollary 11.2.6 Let V be a quasi-projective variety. Then dimy (V) = dim,p (V).

Proof From the proof of Theorem 11.2.2 it follows that if n = dim(V'), then there
is a chain of subvarieties
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VZ=V02V12V22...2Vn
with V,, consisting of a point. Hence dim,, (V) > n = dim (V). On the other hand,
Lemma 11.1.1 immediately implies that dimp(V) < n = dimy (V). O

From now on if V is a quasi-projective variety we will set dim(V) := dim, (V) =
dimp (V) and dim(V) will be simply called the dimension of V. If Z is a locally
closed subset of V, we will say that the dimension of Z, denoted by dim(Z), is the
maximum dimension of the irreducible components of Z. If W is a subvariety of
V, then dim(V) — dim(W) will be called the codimension of W in V, denoted by
codimy (W).

Corollary 11.2.7 Let V C P™ be a quasi-projective variety of dimension n and let
W C V be a subvariety of codimension r. Then there is a chain of subvarieties

VI=V02V12V22...2V,=W.

Proof 1f V = W there is nothing to prove. Otherwise, there is a hypersurface H of
P such that W C H but V is not contained in H. Let V; be one of the irreducible
components of V N H containing W. One has dim(V;) = n — 1. The assertion fol-
lows by iterating this argument. (]

Corollary 11.2.8 Let V C P™ be a quasi-projective variety of dimension n and let
W C V be a subvariety of codimension r. Then dimg (Oy w) =r.

Proof The assertion follows from the definition of the Krull dimension of a ring (see
Sect. 4.3), from Exercise 5.5.7 and by Corollary 11.2.7. ]

Exercise 11.2.9 Let V C P" be a quasi-projective variety and let Z C V be an algebraic subset
of V such that any irreducible component of Z has codimension r in V. One says that Z is a set-
theoretic complete intersection in 'V if there are homogeneous polynomials f1, ..., f, in S, such
that Z =V NZ,(f1,..., fr). fV CP" (resp. V € A") is a projective (resp. affine) variety and
Z C 'V is like above, one says that Z is a complete intersection in V if T, z(V) (resp. Zz(V)) is
generated by r elements of S(V) (resp. of A(V)).

Prove that any complete intersection is also a set-theoretic complete intersection.

Exercise 11.2.10 Let Z C P? be the set consisting of three non-collinear points. Prove that Z is
not a complete intersection in P2.

Exercise 11.2.11 Prove that the reducible curve in A3 consisting of the union of the three coordinate
axes is not a complete intersection.

Exercise 11.2.12 *Let Z C A be a finite set. Prove that Z is a set-theoretic complete intersection
in A2,

Exercise 11.2.13 *Let Z C P? be a finite set. Prove that if P € P? is any point not in Z and not
lying on any line joining a pair of distinct points of Z, then Z U {P} is a set-theoretic complete
intersection in P2,
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Exercise 11.2.14 Let Z C P? be a finite set of points for which there is a point P € Z such that
there is no pair of distinct points of Z \ { P} such that P lies on the line joining that pair of points.
Deduce from Exercise 11.2.13 that Z is a set-theoretic complete intersection in P2, In particular
if Z consists of three distinct non-collinear points, then Z is a set-theoretic complete intersection.
Note that a set-theoretic complete intersection is not necessarily a complete intersection.

Exercise 11.2.15 Prove that the projective twisted cubic is not a complete intersection in P3.
Exercise 11.2.16 Prove that the affine twisted cubic is a complete intersection in A3.

Exercise 11.2.17 *Consider a matrix

ay ... a
A=
Anl --. Qnn
over a field k. Set
al ... Qaip—1 a ... ap aip ... dinp—1
A= LAy = LAy =
dap—1,1 +-- AGpn—1,n—1 ap—1,1 - AGn—1,n dpl ... Apn—1

Prove that if det(A) = det(A|) = 0, then either rk(A,) <n — 1 ortk(A3) <n — 1.

Exercise 11.2.18 *Prove that the twisted cubic in IP? is a set-theoretic complete intersection. Note:
it is an open problem to see if any curve in P is a set-theoretic complete intersection.

Exercise 11.2.19 *Consider the image V of the morphism
b:te Al > 3,14, P) e A3
Prove that V is an irreducible affine curve in A3, which is not a complete intersection.

Exercise 11.2.20 Let F C P" be an irreducible hypersurface and let V C F be a subvariety of
codimension 1 in F which is a complete intersection in IP". Prove that V is a complete intersection
in F if and only if we can assume that one of the generators of Z, (V) coincides with a reduced
equation of F.

Deduce that if Q is an irreducible quadric in P3 and L is a line on Q, then L is not a complete
intersection on Q.

Exercise 11.2.21 Let Q be an irreducible quadric cone in P3 and let L be a line on Q. Prove that
Q is a set theoretic intersection on Q.

Exercise 11.2.22 *Let Q be an irreducible quadric in P? which is not a cone (so it is projectively
equivalent to the quadric xpx; — x2x3 = 0) and let L be a line on Q. Prove that Q is not a set
theoretic intersection on Q.

Exercise 11.2.23 *Let H be a closed algebraic subset in the Veronese variety V), 4, such that all
irreducible components of H have codimension 1 in V,, 4. Prove that H is a set theoretic complete
intersection on V,, 4.

Exercise 11.2.24 Let V C P" be a quasi-projective variety of dimension n and let fi, ..., f, €
O(V). Prove that, if Zy (f1, ..., fr) # ¥, then any of its irreducible components has dimension
at least max{n — r, 0}. In particular, if f € O(V) \ K, then all irreducible components of Zy (f)
have codimension 1in V.

Exercise 11.2.25 Let A be a domain which is also a finitely K-algebra. Prove that:

(a) dimg (A) equals the transcendence degree of Q(A) over K;
(b) for every prime ideal Z of A one has

height(Z) 4+ dimg (A/Z) = dimg (A).
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11.3 Morphisms and Dimension

In this section we investigate what is the behavior of the dimension with respect to
morphisms between varieties. We have the following basic:

Theorem 11.3.1 Let V, W be quasi-projective varieties of dimensions n, m respec-
tively and let f : V — W be a dominant morphism. Then we have:

(a) n > m and for any point P € f (V) every irreducible component of the fibre of
f over P, i.e., of Vp := f~'(P), has dimension at least n — m;

(b) there is a non-empty open subset U of f(V) such that for every point P € U
every irreducible component of Vp has dimension n — m.

Proof Let us prove (a). To prove that n > m, we may assume that V and W
are affine. Then f*: A(W) — A(V) is injective, and this extends to the injective
homomorphism f* : K(W) — K (V). Whence immediately follows that dim(V) =
dimy (V) > dimg (W) = dim(W).

Letnow P € f (V). Since the problem is of alocal nature, we may suppose that W
is affine, i.e., W C A". By the proof of Theorem 11.2.2 and by Corollary 11.2.7 and
after may be shrinking W to an open affine principal neighborhhod of P, we can find
polynomials fi, ..., fi € A, suchthat{P} =W N Z,(f1, ..., fn)- Then, if we set
gi=f*(f))=fiofeOW),fori=1,...,monehas Vp = Zy (g1, ..., &n)- SO
the second assertion of (a) follows from Exercise 11.2.24.

Let us now prove (b). Let us start by assuming V, W to be affine varieties. From
the injective homomorphism f*: K(W) — K(V) we have that K (V) has tran-
scendence degree n — m over K(W). So if #,, ..., ;, are generators of A(V) as a
K-algebra, among ¢, ..., t; there are (n — m)-tuples of elements which are alge-
braically independent over K (W), hence on A(W). Let ¢, ..., , beone of these
(n — m)-tuples. Then we have non-zero polynomials

F,, (Ty e AW)[t;,,....t; NT], i=1,....h,

seeesln—m;3l

withi #ijforj=1,...,n—m,suchthat F; _; . (t;) =0.Set

Fipvoiyonii(T) = a0, (i, 1, DT+ a8,
and we may assume that ag ; (t;,, ..., %, ,) € AW)[t;,, ..., t, ,]is not zero.
Consider the closed subset X;, _; ..; in W formed by the points P € W such
that the polynomials ag ; (i, ..., t, ,) € K[#,, ..., t, ,]obtained fromag; (#,, . . .,
t;, ) by computing its coefficients in P, are identically zero. Then X;, _;, ,.iisa
proper closed subset of W and the same happens for X = | J X;,....;,_,..i» where the

union is taken over all indices i and over all (n — m)-tuples of generators of A(V)
which are algebraically independent on A(W). Set U = f(V) N (W \ X) which is
a non-empty open subset of f(V). Take P € U and let Z be an irreducible compo-
nent of Vp. Let f; be the image of #; in A(Z) foralli =1,...,h. Thenty,..., 1
generate A(Z) as a K-algebra. By (a), there are at least n — m elements among
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f1, ..., which are algebraically independent over K, and we may suppose they
aref|,...,t,_n. Thenty, ..., t,_, are algebraically independent in A(V). Since the
polynomials do ; (;,, ..., f;,_,) are non-zero in P, we have dg;(f1, ..., ly—m) 7% 0,
sothat Fy__ i () = 0, with Fy __,_.; # 0. This implies that dim(Z) < n — m.
Then (a) implies the assertion.

As for the general case, let U; be a non-empty affine open subset of W and

yeeey

......

1,...,s, there is a non-empty open subset U/ € U; N f(V), such that for every
P € U}, every irreducible component of Vp N U;; has dimension n — m. If we set
U =);,_, U/, then U N f(V) verifies the assertion. O

This theorem has a couple of important corollaries:

Corollary 11.3.2 Let V, W be projective varieties of respective dimensions n, m and
let f:V — W be a surjective morphism. Then for all integers | =n —m, ...,n,
the subsets W; of W formed by all points P € W such that Vp has a component of
dimension at least I, are closed subsets of W.

Proof By Theorem 11.3.1, we have W,_,, = W and there is a proper closed sub-
set X of W such that W, € X for ! > n —m. Suppose [ > n —m and W; # ¢J. In
order to show that W is closed it suffices to prove that its intersection with any irre-
ducible component of X is closed. Then we may assume X to be irreducible and let
Y1, ..., Y, betheirreducible components of f~!(X) such that f; = fir. Y — Xis
dominant, hence surjective since V is projective. If / < dim(Y;) — dim(X) for some
i=1,...,h, by Theorem 11.3.1 we have W; = X. If forany i = 1, ..., h one has
[ > dim(Y;) — dim(X), then W, is contained in a proper closed subset of X. The
assertion follows by iterating the above argument. ]

Corollary 11.3.3 Let V, W be projective varieties and f : V. — W amorphism. Let
Z be a closed subset of V such that f(Z) = W andforany P € W, Zp := Vp N Z is
irreducible of constant dimension n as P varies. Then Z is irreducible of dimension
dim(Z) = dim(W) + n.

Proof Setm = dim(W).LetZ = Z, U...U Z;, be anirredundant decomposition of
Z into irreducible components. Since f(Z) = W, there are irreducible components
of Z, we may assume they are Zi, ..., Z;, such that f(Z;) =W fori=1,...,1,
whereas f(Z;) is a proper closed subset of W if i =1+ 1,...,h. Let U be the
non-empty open subset U = W \ (U?_H f(Z)).Fori=1,...,land any P € U,
we denote by n; (P) the maximal dimension of an irreducible component of Vp N Z;,
and let n; be the minimum of n; (P) as P varies in U. By Theorem 11.3.1, there is
a non-empty open subset U’ of U such that for all P € U’ one has n; = n;(P), for
i=1,...,1. Moreover, if P € U,one has Zp = (VpNZ)U...U(VpNZ),so
that thereisani = 1, ..., [, such that Zp = Vp N Z;, and we may suppose that this
happens for i = 1. Then n; = n, so that dim(Z,) = n + m. For every P € W the
dimension of every component of Vp N Z; is at least n. On the other hand, since
Vp NZ) € Zp and n = dim(Zp), the dimension of every component of Vp N Z; is
exactly n. This implies that Z; = Z, proving the assertion. O
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Exercise 11.3.4 Let V C [P be a projective variety and let p be the projection of V to a subspace
P> from a centre P; such that P; NV = @. We know that p is a finite morphism, so that p(V) is a

closed subvariety of P, with dim(V) = dim(p(V)). The closed subset W := p~1(p(V)) is called
(projective) cone on V with vertex 1. Prove that W = (Jpoy (P vV P) = UPEp(V)(]P] Vv P) and
W is irreducible. Prove also that dim(W) = dim(V) + dim(P) + 1.

Exercise 11.3.5 If V is an affine variety, one has dim(V) = dimg (A(V)) (see Sect. 4.3 and Corol-
lary 11.2.6). Prove that instead, if V' is a projective variety, one has dim(V) = dimg (S(V)) — 1.

Exercise 11.3.6 *Let f (x!, ..., x") be a non-constant plurihomogeneous irreducible polynomial
in the variables X' = (x;0, ..., Xin;), withi = 1, ..., r. Consider the zero set V = Z;(f) in P"! x
... x P" . Prove that V is irreducible of dimensionny + --- +n, — 1.

Exercise 11.3.7 *Consider a codimension 1 irreducible closed subset V of P"! x ... x P,
Prove that there is a non-constant plurihomogeneous irreducible polynomial in the variables
X' = (Xj0, ..., Xin;), Withi =1,...,r,such that V = Z;(f).

Exercise 11.3.8 *Let X C P" be a projective variety of dimension n. Consider the Zariski closure
Sec(X) of the union of all lines in P joining distinct points of X. Prove that Sec(X) is a closed
subset of P" of dimension m < 2n + 1, which is called the secant variety of X.

11.4 Elimination Theory Again

In this section we apply the results of the previous sections to give some interesting
complement to elimination theory.
First of all recall the notation introduced in Sect. 9.1, and let us prove the following:

Proposition 11.4.1 The closed subset Z(n; d,, ..., dy) of L(n; d,, ..., d,) is irre-
ducible and

codim (Zn:idy,....dy) >h—n (11.2)

nodyed)y
Proof Considerthe subset I"(n; dy, ..., dy) of L, 4,...a, ¥ P" consisting of all pairs
((Hy, ..., Hy), P) such that P € Hy N...N Hy. It is easy to check (we leave the
details to the reader) that I'(n; d,, ..., dy) is closed in L, 4,4, x P". Moreover
we have the second projection p; : L, 4.4, X P" — P", whose restriction p to
I'(n; dy, ..., dy), is clearly surjective. For every point P € P", consider the hyper-
plane £, 4, (P) of L, 4 consistingofall H € L, 4 suchthat P € H,fori =1, ..., h.
It is the clear that p~'(P) = L,.4,(P) X - -+ X L,.4,(P). So for all P € P", one has
that p~!(P) is irreducible, of dimension N (n, d;) + - - - + N(n, dy) — h. By Corol-
lary 11.3.3, we deduce that I"(n; dy, . . ., dy) is irreducible of dimension N (n, d;) +
---+ N(n,dy) +n—h. Since Z(n;d,,...,dy) = p(I'(n;dy,...,d,)) we have
that Z(n;dy, ..., dy) is irreducible and dim(Z(n; dy, ..., dy)) <
dim(I"(n;d,,...,dy)) = N(n,dy) +---+ N(n,d,) +n — h, as wanted. O

Corollary 11.4.2 [fh <none has Z(n;d,, ...,dy) = L, 4,
equality holds in (11.2).

d,- If h > n then the

.....
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Proof 1f h < n, the assertion follows by Corollary 11.2.3. Suppose next that 4 > n.
By Theorem 11.3.1, to prove the assertion it suffices to prove that there is a point
(Hy\,...,Hy) € Z(n; dy, ...,d,) such that q’l(Hl, ..., Hy) is a finite subset of
I'(n;dy, ...,d,), where g is the restriction to I'(n; dy, ..., dy) of the projection to
L 4,.....a,- In other words, it suffices to find # homogeneous polynomials of degrees
di, ..., dy such that their system has finitely many non-trivial solutions. A set of
such polynomials is xf‘, R x,f" , x,‘,i““, e, xff”, whose only non-trivial solution is
(1,0,...,0). O

We will now restrict our attention to the first non-trivial case 2 = n + 1, where
Z(n;dy, ..., dy41) has codimension 1in L, 4, 4,.,-

Let x; be the natural homogeneous coordinates in £, 4, fori = 1,...,n + 1. By
Exercise 11.3.7, there is an irreducible, non-constant, plurihomogeneous polynomial
R(xy,...,X,41) in the variables x;, fori = 1,...,n + 1, defined up to a non-zero
multiplicative constant, such that Z(n; dy, ..., d,+1) = Z;(R). The polynomial R
is called the resultant polynomial of n 4+ 1 homogeneous polynomials of degrees
di,...,dyy1 in n + 1 variables, with indeterminate coefficients. Its vanishing is a
necessary and sufficient condition in order that the system of such polynomials has
a non-trivial solution.

Fix now an index i € {1, ..., n 4 1} and consider the projection

pi: Z(n;dy, ..., dn-‘rl) g ‘C”lsdl,nndi—lad[Jrl ~~~~~ dy -

We will consider the case i = n + 1, because the other cases are analogous, and
we will set p,.; = w. The morphism 7 is surjective. In fact, if we fix a point
(Hy,...,Hy) € Ly4,.. 4,,byCorollary 11.2.3wehave H; N ... N H, # #. Thenfor
every point P € HiN...N H,, 7~ \(Hy, ..., H,), as asubset of {(Hj, ..., Hy)} x
Ln.d,,, = Ly,a,, contains the hyperplane £, 4,,, (P), and so it is non-empty. More-
over we have the following two possibilities:

(@ HN...NH,={Py,..., P} is a finite set, then 7' (H|, ..., H,) coincides
with J!_, L,.4,., (P;), which is a divisor in £,, 4, ;

(b) HiN...N H, has some component of positive dimension, and then 7~
(Hy, ..., H) =L, 4, by Exercise 6.4.15.

Since dim(Z(n; dy, ..., dy1)) —dim(L, 4, . 4,) = dim(L, 4,,,) — 1, by Theo-
rem 11.3.1 we have that there is a non-empty open subset U € L, 4,4, such that
forall (H;, ..., H,) € U case (a) and not case (b) occurs.

1

Theorem 11.4.3 Letr, n be a positive integers withr < n. Then there is a non-empty
open subset U of L, 4,...a, such that for all (Hy, ..., H,) € U, every irreducible
component of Hy N ... N H, has dimensionn — r.

Proof The case r = n follows from the above considerations. To prove the assertion
for r < n we proceed by descending induction. Suppose the assertion holds for
Ly.d,...a4.,, andlet U’ be the non-empty open subset of £, 4, 4,.,, such that for all
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(Hy, ..., H1) € U, every component of H; N...N H,, has dimensionn — r —
1. Since the projection
q:Lud,..de = Lnd,..d,

is surjective, we have that gy is dominant to L, 4, .4, hence there is a non-
empty open subset U € L, 4,..4 such that U € gq(U’) (see Theorem 10.1.6). For

all (Hy,...,H;)eU, there is an H,y, € L, 4, such that every component of
HyN...N H,; has dimension n — r — 1. Then every component of H; N...N H,
has dimension n — r by Corollary 11.2.3. (]

Le us now go back to the study of Z(n; dy, ..., d,+1) and of R(Xy, ..., Xy41)-

Proposition 11.4.4 The polynomial R(Xy, ..., Xn+1) is not constant with respect to
any set of variables x;, fori = 1,...,n+ 1.

Proof We prove that R is not constant with respect to the variables Xx,, 1, the proof
for i =1,...,n being analogous. We keep the notation introduced in Theorem
11.4.3 and before. Let U C L, 4,....a, be the non-empty open subset for which case
(a) above occurs for all (Hy, ..., H,) € U. Suppose H; has homogeneous coor-
dinates [a;] in ,C,,,dj for j =1, ..., n. Then the equation R(aj, ..., a,,X,+;) =0
defines the divisor Zﬁ;l Lya,. (Py), where HHN...N H, ={Py,..., P;}. Hence

n+1
R(ay, ..., a,, X,,1) is not constant, proving the assertion. U

Let o; be the degree of R with respect to the variables x;, fori = 1,...,n + 1.

Corollary 11.4.5 In the above setting one has that, for alli =1,...,n+ 1, o;
is bounded below by the maximum of the order of a finite set of points which is the
intersection of n hypersurfaces of degrees d,, . ..,di—1,d;+1, . .., dy+1. In particular
one has

o >dy - dimy - digr - dpgr. (11.3)

Proof The first part of the assertion is an immediate consequence of the proof of
Proposition 11.4.4. As for the final part, we note that if we take H; reducible in
d; suitable distinct hyperplanes for j =1,...,i — 1,i+1,...,n+1, then H; N
...NH_1NHy N...N Hyyconsistsofd; --- di—y - djy; - - - dy4 distinct points
(we leave the details to the reader). O

We can be more precise:
Theorem 11.4.6 Equality holds in (11.3).

Proof We will prove the assertion for i = n 4 1, the proof being analogous in the
other cases.

We need some preliminaries. We fix a positive integer d and consider L, 4, ...dyo.0
withd; = dfori =0, ..., N(n,d).Letx be the obvious coordinates in £, 4, so that x
is anon-zero vector of order N (n, d) + 1 on K. If (Ho, ..., Hvm.a)) € Ln.do,...dyuma
and if H; = [x;], the matrix
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Xo

XN (n,d)

is a square matrix of order N (n, d) + 1, and its determinant A(n, d) is a polynomial
in Xo, ..., Xym.q) Which is linear in each of these sets of variables, i.e., A(n, d)
is a plurihomogeneous polynomial of degree 1 in X, ..., Xy(.q4), Which is clearly
irreducible. We will denote by D(n, d) the zero locus of A(n,d) in Ly 4,....dye.-
which is a subvariety of codimension 1 in £, 4,.....dy..,- Then D(n, d) represents the
(N (n,d) + 1)-tuples of divisors of degree d in P" that, as points of £, 4, are not
linearly independent, i.e., they are contained in some proper projective subspace of
Ly.a-

Let us now go back to the study of R(n; dy, ..., dyy1).Setd =dy + - - - + dp+1 —
n and let us remark that the distinct monomials with coefficient 1 of degree d in
Xo, - - - » X, enjoy the property that in each of them at least one of the variables x;
appears with degree at least d;;;. Then these monomials can be all obtained, only
once, under the form xid i, with i =0, ..., n, where y; is a monomial of degree
d — d; 1 such that:

(a) if i = 0 does not satisfy any other condition;
(b) if i = 1 contains xq at degree at most d; — 1;
(c) if i = 2 contains x; at degree at mostd; | — 1, for j =0, 1, etc.

Note that the number of monomials of type p,+1 is d; - - - d,,. Let v; be the number
of monomials y;, fori =0, ...,n + 1. One has

vw+---+v,=N0n,d) + 1.

Denote by M, ;, for j =1, ..., v;, the monomials of type y;, fori =0, ..., n. Let
H; ; be the divisor of P" of degree d — d; 4+ with equation M; ; = 0. Finally consider
the morphism

Y Lnd,,.dp = E,[,V,Egn’d)ﬂ

that maps (Hy, ..., Hy+1) € Log,...a

1 1O

(Hy+ Hoy, ..., Hi+Hopys ooy Hopt + Hy 1y ooy Hyyy + Hy ).
IfH =la;]]eLyg,fori=1,...,n+1,then
Yv([al, ..., [a+1]) = (Xol, - .-, Bve.a])

where the vectors x; are linear functions of ay, ..., a,+1, and we will write x; =
x,-(al, ey a,H_l).

equation
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An = A(I’l, d)(X()(X[, ey Xn+]), ey XN(n.d)(Xl, ey Xn+l) =0.
This equation is notidentically zero, because "' (D(n, d)) isnotequal to L,, 4, . 4,.,-
Note in fact that if H; has equation xfjll, fori =1,...,n+ 1,thenclearly (Hy, ...,
H,.1) ¢ v~ "(D(n,d)). On the other hand it is clear that Z(n;d, ..., dy41)
C ¥~ (D(n, d)), hence R divides A,. This polynomial has degree 1; in x;, in par-
ticular it has degree v,.; =d, - - -d, in X, 4. This implies that o, < d ---d,, as
wanted. O

As an immediate consequence of the previous arguments we have:

Corollary 11.4.7 The maximum number of finitely many points in common to n
divisors of degrees d,, ...,d, inP" isd; - - - d,.

The arguments in the proof of Theorem 11.4.6 imply the following:

Corollary 11.4.8 (Lasker’s Theorem) Suppose that (H,, ..., H,+\) ¢ Z(n; d,,
.., dyt1) and that H; has equation f; =0 for i =1,...,n+ 1, then the ideal
(fl, s fl‘l+1) contains Sn,dfor every d = dl + -+ dnJrl —n.

Proof We keep the notation of the proof of Theorem 11.4.6. Let Ay, ..., A,—; be
the polynomials obtained as A, by exchanging the roles of the variables x, . .., x,.
Then R coincides with the largest common divisor D of Ay, ..., A,. Indeed, R
divides D and it has degree not smaller than the degree of D in each set of variables.
Then if R # O thereissomei = 0, ..., n such that A; # 0 and the assertion follows
by taking into account the geometric interpretation of the loci Z;(A;). (]

Let now Hj, ..., H, be divisors in P" of degrees dy, ..., d, with finitely many
common points { Py, ..., Py}, with H; having coordinates a; in £,, 4 fori = 1,...,n
and P; =[pjo,..., pjulfor j =1,..., h.Consider Z(n; dj, ..., d,, 1), with equa-
tion R(xq,...,X,,u) =0, with u = (ug, ..., u,). The zero set of the equation
R(a;,...,a,,u) =0 consists of the union of the hyperplanes £, ;(P;), for i =
1, ..., h, so that there are positive integers ry, . .., r; such that

h

R(ay,...,a,,u) = al_[(Pjouo + o pintn),
=1

where o € K*. The integer r; is called the intersection multiplicity of H,, ..., H, at
P; and it is denoted by i (P;; Hy, ..., H,), fori =1, ..., h. Since the degree of R
in the variables wis d; - - - d,,, we have
h
> i(PiHy.....H)=d d,. (11.4)
i=1
Wewillseti(P; Hy, ..., H,) =0ifP ¢ H N...N H,.Wewillsaythat Hy, ..., H,

intersect transversally at P if i (P; Hy, ..., H,) = 1. In conclusion we have the:
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Theorem 11.4.9 (Bézout Theorem) Let Hy, ..., H, be divisors of P" of degrees
di, ..., d, respectively, having only finitely many common points {Py, ..., P}.
Then (11.4) holds. Accordingly h < d, - - - d,, and the equality holds if and only if
Hy, ..., H, intersect transversally at any of their common points.

In particular, if Hy, ..., H, have more than d; - - - d,, distinct points in common,
their intersection has an irreducible component of positive dimension.

If Hy,..., H, are divisors in P" suchthat P € HyN...N H,and H; N...N H,
has a component of positive dimension containing P, then one says that the intersec-

tion multiplicity of Hy, ..., H, at P is infinite and one writes i (P; Hy, ..., H,) =
0.

Exercise 11.4.10 Prove that D(n, 1) coincides with Z(n; 1,...,1) and A(n, 1) coincides with
R(n; 1,...,1); where 1 is repeated n + 1 times.

Exercise 11.4.11 Prove that R(1; n, m) coincides with the Sylvester determinant, which is there-
fore irreducible.

Exercise 11.4.12 *Assume K of characteristic 0. Consider the divisor H of P" of degree d > 1
with equation f(xg, ..., x,) = 0. Consider the polynomials f; = ng, fori =0, ..., n. Consider
the set ®(n,d) € L, 4 consisting of all divisors H with equation f = 0 such that the system
fo =...= fu = 0 has some non-trivial solution. Prove that ®(n, d) is a proper subset of £, 4.

Exercise 11.4.13 *Continuing Exercise 11.4.12, prove that ©(n, d) is a closed codimension 1
subset of £, 4 whose equation is

D(n,d)(x) = R(xg, ..., X))

where R is the resultant polynomial of n + 1 homogeneous polynomials of degree d — 1 and
[x] are the obvious homogeneous coordinates in £, 4 and x; is the vector of the coefficients of the
polynomial f;, where f is a polynomial such that f = 01is the equation of H = [x]. The polynomial
D(n, d) is called the discriminant of homogenous polynomials of degree d in n + 1 variables. The
locus D (n, d) is called the discriminant hypersurface in L, 4.

Exercise 11.4.14 Continuing Exercise 11.4.13, note that the coordinates in £, » are of the form
[A] where A is a non-zero symmetric matrix of order n + 1 on K. Prove that

D(n, d)(A) = det(A).
So the discriminant hypersurface in £,, > consists of quadrics not of maximal rank.

Exercise 11.4.15 *Continuing Exercise 11.4.13, prove that ©(1, d) consist of the set of non-
reduced effective divisors of degree d on P!

Exercise 11.4.16 Continuing Exercise 11.4.13, prove thatifn > 1 and H € £, 4 isreducible, then
H e ®(n,d).

Exercise 11.4.17 *Let Hy, ..., H, be divisors of P" such that H; N ... N H, consists of finitely
many points. Let (i1, ..., i,) be any permutation of the set {1, . . ., n}. Prove thati(P; Hy, ..., H,) =
i(P,H,..., H;,) forall points P € H N ...N Hy.
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11.5 Solutions of Some Exercises

11.2.10 By locating the three points at [1, 0, 0], [0, 1, 0], [0, O, 1], one sees that there are three
independent homogeneous quadratic polynomials in Z),(Z). Whence we deduce that 7,,(Z) cannot
be generated by two elements.

11.2.12 Suppose Z consists of n distinct points Py, ..., P,. Up to a change of coordinates, we may
assume that P; = (a;, b;), fori =1, ...,n, withay, ..., a, all distinct. Consider the polynomial

fx) =07 bigi(x1), where

(1 —ap) - —ai—)(x1 —aiy1) - (1 — an)
(@i —ap)--- (@ —ai—)(ai —aiy1) -~ (@ — a)

qi(x1) =

fori =1,...,n.Show that Z = Z,(x2 — f(x1), []/2; (x1 — ai)).

11.2.13 Look, as we can, at Z \ {P} as a subset of A? c P2. Then, as we saw in the solu-
tion of Exercise 11.2.12, up to a change of coordinates in A% we have that Z \ {P} is a set-
theoretic complete intersection Z \ {P} = Z,(xp — f(x1), ]_[l'-’:1 (x1 — a;)) in A2. Note now that
Z,(B(x2 — f(x1)), [T'=, (&1 — aixo)) = Z \ {P}U{[0, 0, 11}, where 3 is the homogenizing oper-
ator (see Sect. 1.5). Moreover notice that the point [0, 0, 1] can be chosen arbitrarily, provided it
does not lie on any line joining a pair of distinct points of Z \ {P}. In particular we can choose
P = [0, 0, 1]. This proves the assertion.

11.2.15 Argue as in Exercise 11.2.10.

11.2.17 Suppose that rk(A,) = n — 1. Then the homogeneous linear system

ajxy + ... +apx, =0

an1X1 + ...+ apxp =0

is equivalent to the one formed by the first n — 1 equations, which has a unique solution, up to a
factor, consisting of the maximal minors of A, with alternate signs. Since det(A ) = 0, this solution
is of the form (by, ..., b,—1, 0), hence we have

ajtby +...+ayu—1by—1 =0

antby + ...+ apn-1by—1 =0

with by, ..., by—1 not all zero. This implies that tk(A3) < n — 1.
11.2.18 Consider the matrix
X0 X1 X2
A= |x x2x3
x2 x3 f

where f is any homogeneous polynomial of degree 1. With the same notation as in Exercise
11.2.17, if in a point of IP? one has det(A) = det(A) = 0, at that point one has either rk(Aj) < 2
or tk(A3) < 2. But Ay and A3 are equal, up to transposition and rk(Aj) < 2 is just the matrix
equation of the projective twisted cubic (see Sect. 3.2.2). So the projective twisted cubic is the
set-theoretic intersection of the two surfaces with equations det(A) = 0 and det(A;) = 0.

11.2.19 V is the affine part of the image of the morphism

¥\ pl e P — [N M, V0, i’ e PP

and this proves it is an affine curve in A3. To prove that it it not a complete intersection, argue as
follows. First, observe that V is non-degenerate, i.e., it does not lie on any hyperplane in A3. Indeed,
if a hyperplane with equation
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ap + ayjx; +axxp +azx3 =0

contains V, we would have

ap + a1t3 +a2t4 +a3t5 =0
for all r € K, and this would imply ap = a; = a» = a3 = 0. Similarly verify that the unique
quadratic polynomial inZ, (V) is F = x% — x1x3. Verify in addition that every polynomial in Z, (V)
has no constant and linear terms. Suppose now, by contradiction, that V is a complete intersection,
so that Z, (V) = (f, g). We have the following decompositions in homogeneous components

f=h+hA+, g=g+tg+ .

Note that the polynomials _
f=fH+-, §=g+--
must be proportional. Indeed, we have

F=Af + Bg (11.5)

with A, B suitable polynomials. Since F is homogeneous, we claim that A and B are constant. In
fact we have

F=Aof + Bog+ (A—Ag)f + (B — By)g

with Ao, By the constant terms in A, B, and (A — Ag) f + (B — Bp)g has only homogeneous
components of degree larger than 2, so that A = Ag and B = By. On the other hand, if A, B verify
(11.5), then ~

F=Af+Bg+Af+Bg

and, A, B being constant, we have A f + Bg = 0 for the same reasons as above, so that f and g
are proportional. We can then assume that one of the two polynomials f, g is equal to f> or g2,
namely equal to F'. So we may assume that g = F. Note now that in Z, (V') there are the degree 3
polynomials G = x12x2 — x32, H = xpx3 — x%. Since

G=Af+Bg=Aofo+ BoF +---
with A, B suitable polynomials, and the dots stay for higher order terms, we must have
_ .2 2
Ao f2 = —x3 — Bo(xy — x1x3).

We have in addition

H=Af+Bg=Ayfr+B\F+--
so that xpx3 should be a linear combination of F' and of f>, which is clearly impossible.
11.2.22 Suppose L is a complete intersection on Q, sothat L = Q N Z,(f). Let L’ be another line
on Q that does not intersect L (see Exercise 8.2.16). Prove that there is a projective transformation
which fixes Q and maps L to L', so that also L’ is a set theoretic complete intersection on Q. Then
L'=0nNZ,(f). Then Q N Z,(f, f') = @, contrary to Corollary 11.2.3.
11.2.23 It suffices to consider the case in which H is irreducible. Then U,ZL(H) is an irreducible
hypersurface H' of a certain degree m in P", and let f = 0 be an equation of H, with f a homoge-
neous polynomial of degree m. By the proof of Proposition 6.4.1, there is a homogeneous polynomial
F e Klvjy...i, lig+--+in=a of degree m such that 6, 4(F) = fd and H =V, g N Zy(F).
11.2.24 This is an immediate consequence of Corollary 11.2.3. Indeed, locally, one has f; =
%, fori=1,...,r, with Py, ..., P, homogeneous polynomials of the same degree, so that
Zy(fi,..., fr) canbe locally writtenas VN Z,(Py, ..., Py).

11.3.41tisclearthat W = |Jpoy (P vV P) = UPEP(V)(IPH v P).Consider the blow-up 7 : P — P
of P" along P! (see Exercise 8.3.13) and take W the proper transform of W. Use Corollary 11.3.3
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to show that W is irreducible of dimension dim(V) + dim(P;) + 1. Deduce that W is irreducible
of dimension dim(V) + dim(P;) + 1.

11.3.5 Suppose V C P" is a projective variety. Let us think to P" as embedded in P*t! as the
hyperplane at infinity of A"*!. Consider the affine cone V' with vertex the origin over V, whose
closure in P"*! is the projective cone. By Exercise 11.3.4 we have dim(V’) = dim(V) + 1. But
A(V'") = 8(V) because Z, (V') = Z,(V) (see Sect. 3.2.3), and the assertion follows.

11.3.6 The irreducibility of V is clear. Let us prove the dimensional statement. Since f is not
constant, in f really appear the variables of at least one of the sets x', ..., x". We may assume
that f is not constant in the variables x". Consider the projection p : V. — Pl x ... x P-1 If
P=(a'l,...,[a""']) € P" x...x P, then the fibre Vp is the subset of {P} x P = P,
with equation f(al, ...,a" 71 x") = 0in P, so that we have the three possibilities:

@) Vp ={P}xP";

(ii) Vpisadivisorin {P} x P = P"r;
(iii)) Vp =90.
Case (i) happens if and only if f(a', ..., a" !, x") is identically 0, and, by the assumptions we
made on f, this may occur only if P belongs to a proper closed subset of P! x ... x P~ Case
(iii) occurs only if f(a',...,a"~!, x") is a non-zero constant, which cannot happen under the given
assumptions for f. So, if P varies in a non-empty open subset of P"! x ... x P ! only case (ii)
can occur. Then by Theorem 11.3.1 the assertion follows.
11.3.7 This can be proved as Theorem 11.1.2.
11.3.8 Consider the set

I={(P,0,R)e (X xX\A)xP :Re (P, 0)}

where A is the diagonal in X x X. One sees that this is a closed subset in (X x X \ A) x P", of
dimension 2n + 1 (use Theorem 11.3.1). Therefore its closure / in X x X x [P also has dimension
2n 4 1. Then Sec(X) is the image of I via the projection of X x X x " on IP". The assertion
follows.

11.4.12 For example the divisor with equation xg +-+ xff = 0 does not lie in D(n, d).



Chapter 12 ®)
The Cayley Form e

12.1 Definition of the Cayley Form

Let V be a projective variety of dimension m in P”. We can associate to V a variety
of codimension 1 in EZ’,TI in the following way. Set V = Efﬁrl x V and consider

the two projections p : V — E;”ffl and ¢ : V — V. Consider the subset W of V
defined in the following way

W ={(Ho,...,Hn,P)eV:P e HyN...N Hy,}.

Lemma 12.1.1 W is a closed subset of V.

Proof V is a closed subset of Ly Tl x IP", so it suffices to show that there is a closed

subset W' of £)'T" x P" such that W = W' N V. Let us set
W' ={(Ho,....Hs, P) € L}T' xP": P € HyN...N Hy}.

One has W = W' N V. Moreover W' is closed in Efﬁrl x IP" since it is defined by
the equations
uooXo + -+ - + ugx, =0

UmoXo + -« + UmnXn = 0

where [u;o, ..., u;,] are the homogeneous coordinates in the (i + 1)th factor of
EZ?,J{', fori =0,...,m and [xg, ..., x,] are the homogeneous coordinates in P". [

Lemma 12.1.2 W is irreducible of dimension n(m + 1) — 1.

Proof Forevery point P € V, the hyperplanes of P containing P form a hyperplane
L,1(P)in L, ;. It is then clear that
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156 12 The Cayley Form
W g™ (P) = Lua(P)"" x (P,

hence W N¢~'(P) is isomorphic to £, (P)"+! = (P"~1)"*! 5o that it is irre-
ducible of dimension (;m + 1)(n — 1). By applying Corollary 11.3.3, we see that W
is irreducible of dimension

dm(V)+m+ 1D - =m+@m+Dn—1)=nm+1)— 1.
O

Lemma 12.1.3 [n the above setting, p(W) is an irreducible variety of codimension
Lin L, (P)"*1.

Proof By applying Theorem 11.3.1 it suffices to show that there are points Q €
W such that W N p~'(p(Q)) is a finite set. By iterated applications of Theorem
11.2.2 we see that for any point P € V we can find (Hy, ..., H,) € Eﬂf such that
VNHyN...N H, = {P} and the assertion follows. ([l

We will set Cy = p(W) C EZ’,TI = (P*)"+! and we will call Cy the Cayley vari-
ety of V. Then there is an irreducible plurihomogeneous polynomial Fy (uy, ..., W,,)
in the variables u; = (u;q, ..., 4in), fori =0, ..., m, such that Cy = Z;(Fy). Of
course Fy is determined up to a non-zero multiplicative constant. We will say that
Fy is the Cayley form of V. We will denote by d; the degree of Fy in the variables
u, = (u,-o,...,ui,,),fori =0,...,m.

Lemma 12.1.4 One hasdy = --- = d,,,.

Proof Let0 <i < j < m and consider the map
Gijt (Ho.....Hp. ... Hj... Hyp)eLlT! > (Ho.... Hj.... Hi.... Hpy) el

which is an isomorphism. It is clear that ¢;; maps Cy to itself. The assertion
follows. 0

Thus, given V, we have the polynomial Fy, determined up to a non-zero multi-
plicative constant, which is plurihomogeneous of degree d = dy = - - - = d,, in each
set of variablesu; = (u;o, ..., u;in),fori =0, ..., m. The positive integer d is called
the degree of the variety V, and it is denoted by deg(V).

Consider now V, ,, 4 the set of all projective varieties of dimension m and degree
d in P". Moreover set P, , 4 := IP(Sy,4) Where n is the vector with m 4 1 entries
(n, ..., n)anddisthe vector withm + 1 entries (d, ..., d). Then we have the Cayley
map

Yaomd *V € Vama —> [Fv] € Pyma.

Theorem 12.1.5 The Cayley map y, .4 is injective for all n, m, d.
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Proof Consider V € V, 4. If P € P"\ V, by Theorem 11.2.2 we can find a point
(Ho, ..., Hy) € L' suchthat P € HyN...N Hy, with HyN...N H, NV = 7.
Consider V' € Vn,m,yd with V/ # V, sothatthereisapoint P € V' with P ¢ V.Bythe
previous observation, we can find a point (Hy, ..., H,) € Cy but (Hy, ..., H,) ¢

O

Cy, proving the assertion.

Theorem 12.1.5 says that any variety V can be reconstructed from its Cayley
form. Actually, given Fy, hence Cy, V is the set of points P € P” such that for all
(Ho, ..., Hy) € L, 1(P)"*" one has (Hy, ..., H,) € Cy.

Exercise 12.1.6 Let V C P" be a variety, let Fy be its Cayley form and let 7 : P" — P" be a
projectivity, defined by a matrix A € GL(n + 1, K). Prove that

Frvy(Quo, ..., uy) = Fy(up-B, ..., u, -B)

where B = (A")~!. This proves that the theory related to the Cayley form is invariant by change of
variables or projectivities.

Exercise 12.1.7 Determine the Chow form of a point P € P".

Exercise 12.1.8 More generally, determine the Chow form of a linear subspace of P"* and deduce
that the linear subspaces have degree 1.

12.2 The Degree of a Variety

Next we interpret geometrically the notion of degree of a variety. By Corollary 10.2.6
and by Theorem 11.2.2, given a variety V of dimension m and degree d in P, there
are projective subspaces IT of P" of dimension n — m such that IT NV is a finite
set. Hence it is not empty the subset Xy of L)', of points (Hi, ..., Hy) € £},
such that Hy N...N H, NV is a finite set of points {Py, ..., P,}. We set P, =
[pio,...,p,-n],fori = 1, ...,h,ande = [a‘,»] = [ajo,...,aj,,],forj = 1, cee,m.
Let Fy (uy, . .., u,,) be the Cayley form of V. The set of zeros in £, ; of the equation

Fy(ug,a;...,a,)=0
is the union of the & hyperplanes £, | (P;), fori = 1, ..., h, which have equation
uoopio + -+ +uoupin =0, for i=1,...,n.

Hence we have

h
Fy(ug,agp,...,a,) = al_[(uoopio + - uonpin)” (12.1)

i=1
where o € K* and ry, . . ., ry, are suitable positive integers such thatr; +--- +r, =

d, in particular h < d. If II is the (n — m)-dimensional subspace IT = HN...N
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H,,, we will say that the positive integer r; is the intersection multiplicity of IT and V at
P; anditisdenotedbyi(P;; V, IT),fori = 1, ..., h. This number only depends on I7
and not on the choice of the hyperplanes Hi, ..., H, suchthat [T = Hy N ...N H,
(see Exercise 12.2.4). We will set i(P; V,I1) =0 if P ¢ I1 N H and we will say
that IT and V intersect transversally at P if i(P; V,II) =1.If P e [I NV and
IT NV has some positive dimensional component containing P, one says that the
intersection multiplicity of IT and V at P is infinite and one writes i (P; V, IT) =
One has:

Proposition 12.2.1 If Hy, ..., H,, are hyperplanes of P" such that V "N H; N ...N
H,, is a finite set of points of order h, then h < deg(V). More precisely, if I1 is a
linear subspace of P" of dimensionn — m such that I1 NV is a finite set { Py, . .., Py}
then deg(V') equals the sum of the intersection multiplicities of V and I at the points
Py, ..., Py

We can be more precise. For this we need an algebraic preliminary:

Lemma 12.2.2 Let F(x,y) € K[x, y] be an irreducible polynomial in the vari-
ables x = (x1,...,%,),Y = V1, ..., Ym). Then either there is some point a =
(ai, ...,an) € A™ such that F(x, a) has no multiple factor, or there is a polyno-
mial G(x,y) € K[x, y] such that

F(xi, ..., X0, Y) =Gl ..., xly)

where p > 0 is the characteristic of K. In particular, if K has characteristic 0, only
the first alternative occurs.

Proof 1t clearly suffices to consider only the case n = 1. If 8)‘: = 0, then it is imme-
diate that the characteristic of K is p > 0 and there is a polynomlal G(xl, y) such
that F(x1,y) = G(x{,y). Suppose next that dF # 0. Then Z, (F ) 1S a proper

closed subset of Z,(F) C A™*! hence each component of Z,(F, 3 F ) has dimen-

sion i < m. The projection of Z,(F, ,BXF] ) from the point at infinity of the x; axis to
the hyperplane x; = 0 is dominant on a closed subset Z any component of which has
dimension / < m. By contrast, the projection of Z,(F) from the point at infinity of
the x; axis to the hyperplane x; = 0 is dominant because F' depends on the variable
x1. Hence there are pointsa = (ay, . .., a,) € A" such that for any point b € K such
that F (b, a) = 0 one has dF (b,a) ;é 0. The assertion follows. O

We can now prove the:

Theorem 12.2.3 Let V C P" be a projective variety of dimension m and degree d.
The two subsets Uy € U of L} | respectively formed by the m-tuples (Hy, ..., Hy)
suchthat V.0 H; N ...N H, consists of d distinct points and of finitely many points,
are non-empty open subsets of Ly}

In particular there are subspaces Il of P" of dimension n — m intersecting V
transversally in d distinct points.
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Proof The set U, consists of all m-tuples (Hy,..., H,), with H; = [a;], i =
1, ..., m, such that Fy(ug, ay, ..., a,) # 0. It is the clear that U, is a non-empty
open subset of £;",. Moreover we have a morphism

(b : U2 - E_n,dv
where £, 4 is the projective space whose points represent the divisors of degree d of
L1, which maps (Hy, ..., Hy), with H; = [a;],i = 1, ..., m, to the divisor with
equation Fy (ug, ay, ..., a,) = 0.Let! be the non-empty open subset of £,, ; whose

points represent the hypersurfaces with no multiple components (see Exercises 9.2.5
and 11.4.15). One has U; = ¢~ (), hence U, is open.

Finally we have to prove that U is non-empty. By Lemma 12.2.2, this is clear if
char(K) = 0. If char(K) = p > 0, by Lemma 12.2.2 this is still clear, unless there
is a polynomial G (ug) such that

Fy(ug,ai,...,a,) = Guby, ..., ub).

Since Fy (uy, ..., u,) is symmetric with respect to the variables uy, . . ., u,, (see the
proof of Lemma 12.1.4), This would imply that there is a polynomial Gy (ug, . . . , u,,)
such that

Fy(uo, ...,uy,) =Gyl ... ub ...oulo, oo ul)
But this implies that Fy is the p—power of a polynomial, hence it is reducible, a
contradiction. (]

Exercise 12.2.4 *Let V be a projective variety of dimension m in P, let IT be a projective subspace
of P" of dimension n — m such that IT NV is a finite set. Let P be a point in I7 N V. Prove that
i(P; V,IT) depends only on IT and not on the choice of the hyperplanes H, ..., H, such that
II=H N...N0Hy.

Exercise 12.2.5 *Prove that if V C P” is a subvariety of dimension m and degree 1, then V is a
linear subspace.

Exercise 12.2.6 *Let V C P" be a variety of dimension m which is the set-theoretic complete
intersection of n — m hypersurfaces Hy,+1, .. ., H, of respective degrees dy;+1, - . . , d,. Prove that
ng(V) < dm+l e dn~

Exercise 12.2.7 *Let H C P" be an irreducible hypersurface of degree d. Prove that deg(H) = d.

Exercise 12.2.8 *Let H C P" be an irreducible hypersurface of degree d. Find the Cayley form
of H.

Exercise 12.2.9 *Let H C P" be ahypersurface of degree d withequation f(x) = f(xg, ..., x,) =
0, where f is a homogeneous polynomial of degree d. Let L be a line not contained in H so that
LN Hisafiniteset{Py, ..., Py}, with P; = [p;]fori = 1,..., h.Let P = [p], O = [q] be distinct
points of L, so that L is parametrically represented by

X=Ap+puq, with [\ pleP'.

Then foralli =1, ..., h, we have p; = \;p + piq for suitable [\;, ;] € P!. Then the non-trivial
solutions of the equation f(Ap+ pq) =0 in (A, u) are exactly (\;, i;) up to a multiplicative
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constant, fori = 1, ..., h. This means that there is a constant & € K* and there are positive integers

S1, ..., S, such that
h

FOP+p@) = a [ [ — pro)".
i=1

Prove that, foralli = 1,...,h,onehass; =i(P;; L, H).

Exercise 12.2.10 Prove that the Veronese variety V,, 4 in PV d) has degree d" (see Corollary
11.4.7).

Exercise 12.2.11 *Prove that the Segre variety Seg,, | has degree n + 1.

Exercise 12.2.12 *Let V C P" be a projective subvariety of dimension m and let P be a point of
V. Suppose that for any point Q € V \ {P} the line P v Q is contained in V. Prove that V is a
cone with vertex P over a variety W of dimension m — 1 contained in a hyperplane H = P"~! of
P" non passing through P. Prove that deg(V) = deg(W).

Exercise 12.2.13 *Let V C P" be a projective subvariety of dimension m and let P be a point of
V. Suppose that there is a point Q € V \ { P} such that the line P v Q is not contained in V. Then
the projection of P* from P to a hyperplane H = P"~! not containing P induces a rational map
¢ : V --» H which is dominant to a variety W € H. Prove that W has also dimension m and that
deg(W) < deg(V).

Exercise 12.2.14 Let V C P” be a projective subvariety of dimension m and let P be a point not
on V. Prove that the cone W with vertex P over V has degree deg(W) < deg(V).

Exercise 12.2.15 Let V C P" be a projective subvariety of dimension m < n and degree 2. Prove
that V is contained in a subspace I7 of dimension m + 1 and it is a quadric in I7.

Exercise 12.2.16 *Let V C P" be a non-degenerate variety of degree d and dimension m. Prove
that
d>n—m+1. (12.2)

Varieties for which the equality holds in (12.2) are called varieties of minimal degree. Examples
of varieties of minimal degree are quadrics, the Veronese surface V; 5, the rational normal curves,
cones over rational normal curves.

Exercise 12.2.17 *Prove that any variety of minimal degree is rational.

Exercise 12.2.18 Prove that there is a non-empty open subset U of L, 4,,... 4, such that for all
(Hy, ..., Hy) € U the intersection of H; ..., H, consists of dj - - - d,, distinct points.

12.3 The Cayley Form and Equations of a Variety

In this section we see that from the Cayley form of a variety V C P" of dimension m
we can reconstruct finitely many homogeneous polynomials fi, ..., f,inxog, ..., X,,
suchthat V.= Z,(fi, ..., fu).

Let Fy (uy, ..., u,) be the Cayley form of V. Given P = [po, ..., p.] € P*, we
have that P € V if and only if for any (Ho, ..., H,,) € L, {(P)"!, with H; = [v;],
withi =0, ..., m,one has Fy(vg,...,v,) =0.
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Let us express the condition for a hyperplane H € £, ; with equation
Upxg + -+ uyx, =0

to belong to L, 1 (P).

Lemma 12.3.1 In the above setting H belongs to L, 1 (P) if and only if there is a
non-zero antisymmetric matrix S = (s;;)i, j=o,...n of order n + 1 on K such that

.....

n
ui:E sijpj, for i=0,...,n
Jj=0

Proof The condition is sufficient, because

n n n
Zuipi = Zzsijpjpi =0
i=0

i=0 j=0

since S is antisymmetric. Let us prove that the condition is also necessary. Let
Py, ..., P, be points of H such that P, ..., P,_;, P are linearly independent.
Suppose P; = [pjo, ..., pinl, fori =1,...,n — 1. Then (uy, ..., u,) is a solution
of the system

uopo+ ...+ uyp, =0

uopio+ ... +uUppin = 0

Uopp—1,0+ ... +uppu_1n =0

So (u, - .., u,) is proportional to the minors of maximal order of the matrix
Po Dn
Po1 Pon
pn—l,l pn—l,n

taken with alternate signs. So we can write an equation of H in the form

X0 oo Xy
Po ... Dn
por ... pon |=0. (12.3)

pn—l,l .. pn—l,n

If we expand the determinant in (12.3) with the Laplace rule applied to the first two
rows, we have that (12.3) can be written as
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Z (xip; —xjp)p” =0

O<i<j<n

where p'/ is the determinant of the matrix obtained from the last n — 1 rows of
the determinant in (12.3) by deleting the ith and jth columns, taken with the sign

(—1)I*/. We will set p/i = —pi/, so we give sense to p/' even if j > i. Then we
have

Y Gipi—xipdp? = Y wpip+ Y xipipl = Z xzp,p
O<i<j<n O<i<j<n O<i<j<n i,j=0,...,

Then the assertion follows by setting s;; = pp"/ with p a suitable non-zero factor. [J

Let us introduce now m + 1 antisymmetric matrices (sihj)," =0, h=0,...,m,
with entries indeterminates on K. If P = [xq, ..., x,] € P", we set

n
uf‘(x):i sihjxj, for i =0,...,n,h=0,...,m,

andu” = (ug(x), R uﬁ (x)) forh =0, ..., m. Then P belong to V if and only if
Fy@®, ...,u") =0. (12.4)

The left hand side of (12.4) is a polynomial in the variables sihj and x ;. This polynomial
is identically zero if and only if are zero all the coefficients of the independent
monomials in the variables s . These coefficients are homogeneous polynomials in
X, so by equating to zero these coefficients one gets a set of equations for V.

12.4 Cycles and Their Cayley Forms

In this section we extend the notion of Cayley form to not necessarily irreducible
algebraic closed subset of projective space.
Let V € P" be a pure closed subset, so that all of its irreducible components

Vi, ..., V, have the same dimension m (see Sect. 5.5). The set Cy C ET{I of points
(Ho, ..., Hy)suchthat HyN...N H, NV # 0 clearly coincides with Cy, U... U
Cy,, and actually Cy,, ..., Cy, are the irreducible components of Cy. We will set
Fy = Fy, - . The equatlon Fy = 0 defines Cy in E’”“ and it is the minimal

degree equatlon deﬁmng Cy in Lm‘H We call Fy the Cayley form of V, and we
define degree of V the degree of Fy . W1th this definition the analogues of Theorems
12.1.5 and 12.2.3 still hold.

We can further extend this definition. Let D, ,, be the free group generated by the
varieties of dimension m in P, whose elements will be called m-dimensional cycles
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of P" (if m = 0, the cycle is called a 0-cycle). An element of D, ,, is either zero
or of the form V = Z?zl m;V;, where Vi, ..., V), are distinct varieties of dimen-
sion m in P" which are called the irreducible components of V, and my, ..., my,
are non-zero integers which are called the multiplicities of Vy, ..., V), for V. The
integer Zfl:l mg deg(V;) is called the degree of V and is denoted by deg(V). If
V = 3" m;V;, then the closed subset | J/"_, V; is called the support of V. If either
V=0orm; >0foralli =1,...,h, then V is called effective. We say that the
effective cycle V = Zle m;V; is irreducible if h = 1 and m; = 1, so that V can
be identified with the variety V;. The cycle 0 is assumed to be reducible. We will
denote by D;7, the semigroup of effective cycles of P". Note that for m =n — 1
these definitions coincide with the ones of divisors in projective space we gave in
Sect. 1.6.4.

Given a non-zero effective cycle V = Zf’zl m;V; we define its Cayley form to be
Fy = Fy' - Fy". Again, the analogues of Theorems 12.1.5 and 12.2.3 still hold.

This extension of the concept of Cayley form is useful in various circumstances,
for instance in the intersection of varieties. For example, let V C P" be a variety
of dimension m and let H be a hyperplane not containing V, so that V' = H NV

is pure of dimension m — 1 with distinct components Vi, ..., V,. The set {H} x
Cy C EZTTI coincides with the set of points (H, Hy, ..., H,) € ET{] such that
HNH N...NH,NV #£@.IfH = [v]in L, ; andif Fy (uy, . .., u,) is the Cayley
form of V, it is clear that Fy (v, uy, ..., u,) is an equation of Cy: in Efﬁl. We have
that

Fy(v,up,...,u,) = F"/'f1 ---F"}:”
where m ..., my are suitable positive integers. So Fy (v, uy, ..., u,) is the Cayley

form of the cycle Z?:l m;V;. This cycle is denote by H - V and it is called the
intersection cycle of H with V. The integer m; is called the intersection multiplicity
of H and V along V;, fori =1, ..., h. Note that deg(V) = deg(H - V).

Even more generally, if V = Zﬁ;l m; V; is an effective non-zero cycle of dimen-
sion m in P", and H is a hyperplane which does not contain any of its components,
let Vi1,..., Viy, be the distinct irreducible (m — 1)-dimensional components of
HNV;, fori=1,..., h. We will define the intersection cycle of H with V and
denote it still with H - V, as the cycle Zf:l m; Zf’;l m;;V; j, where m;; is the inter-
section multiplicity of H with V; along V;;, fori =1,...,hand j=1,... k.
Again we have deg(V) = deg(H - V).

Similarly, let V € P” be an m-dimensional variety, and let Hy, ..., H; with 1 <
i < m be independent hyperplanes such that IT = Hy N ... N H; is a linear subspace
of dimension n — i — 1. Assume that IT N V is pure of dimension m — i — 1 with
distinct irreducible components Vi, ..., V}. Suppose H; = [v;] in £, ;. Then

Fy(vo, ..., Vi, Wiqq,...,u,) =0
is an equation of Cpyny in £']". Then we have

I A0 my
Fv(V(),...,V,‘,ll,‘_;,_],...,llm)—FVl "-th .
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It is easy to see that m, ..., m; only depend on I1. As above, we define [T - V =
Z?:l m;V; and we have deg(IT - V) = deg(V).

12.5 Solutions of Some Exercises

12.1.7If P = [po, - - -, pnl, then the Chow form Fp depends on a unique set of variables ug, . .., u,
and it is given by

Fp(ug, ..., un) = pouo + -+ + pulty
whose zero locus Cp in £, 1 is the hyperplane £,, 1 (P).

12.1.8 Let IT € IP" be a linear subspace of dimension m defined by the independent system of
equations
Ap+1,0X0 + .o+ A 1,0Xn = 0

ap,0X0 + ...+ apnxn = 0

Consider (Hyp, ..., Hy) € £’I'T with  H; = [w;] = [ui0,...,uin), for i=0,...,m.
Then (Hy, ..., Hy) € Cpy if and only if the linear system

10,0%0 + ... + uo.nxy =0

Um 0X0 + ...+ UmpXp =0
Ap+1,0X0 + ... + At-1,0Xn = 0

an,0X0 + ...+ apnx, =0

has non-trivial solutions, hence if and only if one has

uo,0 ... Uon
u /]
m0 e Uma | g (12.5)
aAm+1,0 -+ - Am+1,n
an,0 ... dun

The determinant in (12.5) is the Cayley form of IT since it is irreducible, because it is linear in each

set of variables u;, fori =0, ..., m. Hence deg(/T) = 1.

12.2.4 The assertion is trivial if m = 1. So assume m > 1. Keep the notation of Sect. 12.2.
Consider the polynomial Fy (ug, a; ..., ay), in the variables wo = (uqo, ..., uo,), where [a;] =
[ajo, ..., aj,]are the homogeneous coordinates in £, | of m independent hyperplanes Hj, ..., Hy,

intersecting along /7. We know that (12.1) holds, with {Py,..., Py} =1 NV.As Hy,...,H,
vary among all the infinitely many m-tuples of independent hyperplanes intersecting along I7,

the polynomial Fy (ug,aj...,a,) varies in an algebraic way, i.e., its coefficents in the vari-
ables ug = (uqo, - .., Up,) vary as polynomials in the variables a; ..., a,,. From (12.1) we see
that the only thing that can algebraically vary in Fy (ug, a; ..., a,) is « € K*, whereas the integers
r1, ..., rp have to stay constant. The assertion follows.

12.2.5 The assertion is trivial if m = 0, n, so assume 0 < m < n. Let us prove that for all pairs of
distinct points P, Q € V the line P Vv Q is contained in V. Whence the assertion follows.

By the definition of the degree, the assertion is trivial if m = 1,n — 1, so we may assume
1 <m < n — 1. Suppose that for P, Q distinct points in V, the line P Vv Q is not contained in
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V. Then (PVv Q)NV = F is a finite set. Set r =n —m — 1 > 1 and let us prove that for all
i =1,...,r,thereis alinear subspace X; of dimensioni suchthat Pv Q C ¥;and X; NV = F.
The case m = n — 2 implies i = 1 and the assertion is trivially true. So let us assume m <n — 3
and let us start with the case i = 2. Let us fix a linear subspace X of dimension n — 2 skew with
P Vv Q and consider the morphism

¢:PPeV\F—> (PPVPvQNXecX.

Since m < n — 3, then ¢ is not surjective, and this implies that there is some plane X» containing
P v Q and such that ¥, NV = F. If we iterate this argument, we prove the existence of X; for
i > 2. Let us now fix a subspace X’ of dimension n — r — 1 = m skew with X, and consider the
morphism

Y:P eV\F—> (PPvZ)nXeXx.

Since for every point Q' € X', the subspace Q' v X, has at least two points in common with V/,
then it has infinitely many points in common with V', and so infinitely many points in common with
V' \ F. This implies that ¢ is surjective, and moreover that any fibre of 1) has some component of
positive dimension, which leads to a contradiction.

12.2.6 Suppose that H; =[a;] in L,4 for i=1,...,n—m. Consider the variety
Zn; 1, ..., 1,dys1,...,dy), where 1 is repeated m + 1 times, and consider its equation
R(ug, ..., 0y, Xy41,...,X,) =0, which defines Cy, hence Fy(up,...,u,) divides
R(ug, ..., Wy, ay41,...,4a,). Since the degree of R(ug, ..., Wy, ap+1, ..., a,) with respect to
the variables ug, ..., Wy is dj41 - - - dy, the assertion follows.

12.2.7 Suppose that H has equation f(xg, ..., x,) = 0, where f is an irreducible homogeneous
polynomial of degree d. By Exercise 12.2.6 we know thatdeg(H) < d. Soitsuffices to find some line
intersecting H in exactly d distinct points. Up to a change of coordinates we may assume that H does
not contain any of the vertices of the fundamental pyramid. Passing to affine coordinates, the equation

of H becomes F(xy,...,x,) = f(1,x1,...,x,) =0, and by the hypothesis in F(xy, ..., x,) all
the variables appear with degree d. We claim that there isan i € {1, ..., n} such that
OF
—— #£0. (12.6)
Ox;
In fact, if this is not the case, then there is a polynomial G(xy, ..., x,) such that

Fxr, o x) = Fxi . x) =GOl xlh) = g, .o x)?,

with p the characteristic of K that divides d and g a suitable polynomial of degree % But then we
have

X1 X
f(XO,m,...,xn)=x6’F<—,...,—"> =
X0 X0

X1\P? Xn\P X1 Xn\P
:xdG(<—> ,...,<—n> ):xdg(—,...,—n) s
0 0
X0 X0 X0 X0

and this implies that f is reducible, against the hypothesis. So we can assume that (12.6) holds
for i = 1. By the proof of Lemma 12.2.2 we can find a point (az,...,a,) € A"~ such that
F(xy,a,...,a,) = 0hasd distinctroots. This implies that the line of P" with equations x; = a; xo,
withi = 2, ..., n has exactly d distinct points in common with H, as wanted.

12.2.8 Suppose that H has equation f(xo, ...,x,) = 0, where f is an irreducible homogeneous
polynomial of degree d. Consider the matrix of type n x (n + 1)
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wherew; = (u;q, ..., Uip),fori =0,...,n — 1. Wedenote by uy, ..., u, the maximal minors of U
taken with alternate signs. We claim that Fy = f(uo, ..., uy). First of all note that f (ug, ..., u,)
has degree d in each set of variables u;, for i =0,...,n — 1. So it suffices to prove that Fy
and f(uo, ..., u,) have the same zero set. To see this, take a point (Hy, ..., H,—1) € L‘,Z 1» with
Hj =[vj]for j =0,...,n— 1. We consider the matrix
Yo
v=| ...

Viu—1

and we denote by vy, . . ., v, the maximal minors of V taken with alternate signs. Then we have the

following possibilities:

(a) onehas vy =...=v, =0, and then f(vo, ..., v,) = 0;on the other side Hy, ..., H,_ are
linearly dependent, so that Hy N ... N H,_; contains aline,so H N HyN...N H,_1 # Y and
Fy(vo,...,v,) =0;

(b) one has (vg,...,vy) #0,then HyN...N H,_1 = {P}, with P = [vg, ..., v,], hence again
f o, ..., vy) =0implies Fy (v, ..., v,) =0.

This shows that f(uo, ..., u,) and Fy have the same zero locus, hence they are equal up to a
multiplicative constant.
12.2.9 First we note that the definition of the integers s;, fori = 1, ..., h, is invariant by change

of coordinates and also by the choice of the point P, Q on L. This is easy to check and can be left
to the reader. Then we may change coordinates and we may assume that the line L has equations

x; =0, fori =2,...,n. By the definition of intersection multiplicity and by Exercise 12.2.8, to
compute the intersection multiplicities of L with A at their intersection points, we have to solve
the equation f(uo, ..., u,) = 0, where uo, ..., u, are the maximal minors with alternate signs of
the matrix
10,0 40,1 10,2 --- UO,n

o 0 1 ... 0

0O 0 0 ... 1
namely uo = uo,1, u1 = —uo,0,u; =0, fori =2,...,n. So f(uo,...,u,) =0 is equivalent to
f(uo.1, —u0,0,0, ...,0) =0, where ug 1, ug, o are variables. On the other hand the line L is para-
metrically represented by xo = A, x; = p, x; = 0, fori =2, ..., n. So the integers s; are obtained
by solving the equation f (A, i, 0, ..., 0) = 0. So we see that the two equations are the same (up

to the name of variables) and we are done.

12.2.10 The degree of V,, 4 equals the order of the maximum number of points in common to n
hypersurfaces of degree d in P", which is d"

12.2.11 Consider first in general the case of Seg, ,,, whose degree is the maximum number of
finitely many solutions of a system of equations of the form

fix,y) =0
. 12.7)
Sorm(x,y) =0
where x = (xo, ..., X4),y = ()0, ..., ym) and f1, ..., fuim are bihomogeneous of degree 1 in the

variables x and y. Suppose n > m, and set

fi(x, Y) = fi,()(y)xO + - +fi,n(y)xns for i=1,....,n+m.
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The system (12.7) has non-trivial solutions if and only if

fio® o fiay)
rank <n. (12.8)

fn+m,0(y) fn+m,n (y) -

So we are led to compute the maximum number of finitely many solutions of a determinantal
equation of the form (12.8). One can prove that this number is (”:"’), which is therefore the degree
of Seg,, ,,- In particular, in the case m = 1 the equation (12.8) reduces to

SroGo.y) .. fra(o.y»)
—0 (12.9)
Sat1,0000, Y1) -+ fut1n(Yo5 Y1)

and the determinant appearing in left hand side of (12.9) is a homogeneous polynomial of degree
n+11in yp, y; and any such polynomial can clearly be obtained in this way. So the maximum
number of finitely many solutions of the equation (12.9) is n + 1 which is also the degree of Seg,, ;.
12.2.12 The assertion that V is a cone is trivial. It is also obvious that deg(W) < deg(V). Let us
prove the opposite inequality. There is a linear subspace /7T of P" of dimension n — m such that
IT NV consists of d := deg(V) distinct points. By Theorem 12.2.3 we may assume that P ¢ I1.
This implies that two distinct points in /7 NV are not aligned with P. Then the projection of IT
from P to H is a linear subspace of H of dimension n — m which cuts W in d distinct points,
namely the projections of the points of /7 N V. This proves that d = deg(V) < deg(W) as wanted.
12.2.13 The map ¢ : V --» W is generically finite, hence dim(W) = dim(V'). Let now U be a non-
empty open subset of W (existing because ¢ is generically finite) such that for all points Q € U
the line P Vv Q is not contained in V so it intersects V in a finite set. Let T be a linear space of
dimension n — m — 1 contained in H which intersects W in § = deg(W) distinct points, which we
may assume to be all contained in U. Then P V [T is a linear space of dimension n — m in P" which
cuts V in more than ¢ distinct points, hence deg(V) > § + 1 > deg(W).

12.2.15 Proceed by induction on m. Let m = 1. The assertion is clear if n = 2. If n > 2 consider
three independent points of V. Then all hyperplanes containing these three points contain V', hence
V is contained in the plane spanned by the three points, concluding the proof. Suppose next m > 1
and the assertion true for m — 1. Fix P € V. If for any point Q € V \ {P} the line P Vv Q is
contained in V, then V is a cone over a variety W of dimension m — 1 contained in a hyperplane
H of P", and deg(W) = deg(V) = 2 (see Exercise 12.2.12). Then by induction W is a quadric in a
linear subspace [T of dimension m of H. Thus V sits in the (m + 1)-dimensional subspace P Vv IT
and it is a quadric there. If there is a point Q € V \ { P} such that the line P Vv Q is not contained
in V, then the image W of the projection of V from P is contained in a hyperplane H, and W
has dimension m and degree deg(W) < 2 (see Exercise 12.2.13), hence deg(W) = 1. Then W is a
linear subspace of dimension m (see Exercise 12.2.5), thus V sits in the linear subspace P v W of
dimension m, as wanted.

12.2.16 To prove (12.2) one proceeds by induction on the codimensionn —m of V inP". If V isa
hypersurface, it is clear that d > 2. If n — m > 1, note that there is some point P € V such that the
projection ¢ of V from P to a hyperplane H = P"~! not containing P is generically finite onto its
image W. Indeed, if this is not the case, then for any pair of distinct points P, Q € V theline P v Q
is contained in V, and V would be a linear subspace of P, contradicting the non-degeneracy of V. If
¢ is generically finite, by Exercise 12.2.13 we have deg(W) < deg(V) = d. On the other hand, by
induction, we have deg(W) > (n —1) —m+1=n—m, hence d > deg(W)+1>n—-—m+1,
as wanted.

12.2.17 This can be proved by induction on the codimension n —m. If m =n — 1, then V is a
quadric in P" and therefore it is rational (see Exercise 7.3.10). Assume n — m > 2. Arguing as in
the solution of Exercise 12.2.16 one proves that there is a point P of V such that the projection of
V from P to a hyperplane H = P"~! not containing P is birational onto its image W, which is
again a variety of minimal degree, with lower codimension. Then the assertion follows by applying
induction.



Chapter 13 ®)
Grassmannians Check for

In all this chapter we will assume that K has characteristic p # 2.

13.1 Pliicker Coordinates

Let IT € P" be a subspace of dimension m, defined by the system of independent
equations
Amy1,0%0 + -+ Ay 10Xy =0

(13.1)

anoXxo+ ... +ap,x, =0

As we saw in the solution to Exercise 12.1.8, given (Hy, ..., H,) € E’l’fj{l with
H; =[w]=1luio,...,uinl, for i =0,...,m, (Hy, ..., H,) € Cp if and only if
the linear system

Up,0xX0 + ...+ UgpXxy, = 0

l'tm’().)(o + . + um,,,xn = 0
an+1,0X0 +...+ An+1,nXn = 0
Ay 0X0 + ...+ Ay pXy = 0

has non-trivial solutions, hence if and only if one has
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I/t(),() Lt(),n

Um0 wee Mmn | _ (13.2)

am+l,0 e am+l,11
Cl,l,() Cln,n

The determinant in (13.2) is the Cayley form of 7.
We want to write the Cayley form F; more explicitly. Consider the matrix of type
m—m)yxm+1)
Am+1,0 -+ - An+l,n

A=
ap0 ... Qpn
If (o, . . ., in—m—1) 1s a (n — m)-tuple of elements of {0, ..., n}, we will set
Am4-1,g -« Am+1,iy_
pi()snn,in—m—] —
Anip +++ Onipm
Of course p'oin-n-1 = 0 if two indices are equal. So we will assume that the indices

are all distinct. Moreover we will assume that ip <i; < --- < i,,_,;,—1. With this
assumption we may consider the non-zero vector

~ in O . —1
P = (P """ )o<ig<iy <o <inmr<n

with lexicographically ordered entries. The length of this vector is (!*!) = (1*)).

The vector p is called the vector of dual Pliicker coordinates of IT. 1t has an interpre-
tation in terms of multilinear algebra. Consider A"*! as a vector space V of dimen-

sion n + 1 on K, generated by the independent vectors ey = (1,0, ...,0),...,e, =
(0,...,0,1). Then A"~™V is a vector space of dimension (:jril) = (r';:ll) over K,
which has as a basis the set of vectors

€ inmy = €ig N NG with 0 <ip<iy < - <ip_pmo1 <n. (13.3)
If we interpret the rows of the matrix A as vectors a,,41, ..., a, in \7, then P is just

the vector of the components of a,, .| A ... A a, with respect to the basis (13.3),
namely

10seeesin—m—
A1 N ANQ = E P lel‘O,--win—m—l

where the sum is made over all sets of indices iy, ..., i,_,—; suchthat0 < iy < i; <
- < in—m—l =n.
Next we consider the point [p] of PM®" where M (m,n) = (
point out two facts:

n+1

m+1) — 1 and we
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(a) [p] does not depend on the particular set of equations (13.1) defining I7;
(b) [p] determines I7, i.e., if IT" # IT is another subspace of dimension m of P"
with dual Pliicker coordinates p’, then [p] # [P].

Both facts follow from the following circumstance. If we expand the determinant
in (13.2) with the Laplace rule applied to the first m 4+ 1 rows, we have

Fp = § pi()anwinfmf]uj(] ----- jmsi(]v---vinfmfl (13.4)
where the sum is made over all sets of indices ig, ..., i,—n—1 such that 0 < iy <
il <--- < in—m—l =< n, one has {j()v D) ]m} = {Ov L) n} \ {i07 D) in—m—l} with

Jo < 0 < jpm,e0in-t equals 1 or —1 according to the fact thatig 4 - - - 4+ iy—pm—1
is even or odd, and u/°-~/= is the maximal minor of the matrix

Uo,0 --- Uo,n
U=
Un,0 -+ Un,n
determined by the columns of order jy, ..., j,. In conclusion Fj is determined by

[p], and this proves (a) and (b) above by Theorem 12.1.5.

To get the same conclusions as above, we may argue in a slightly different way.
Given the subspace IT € P" of dimension m, we can choose m + 1 independent
points P; = [p;],i =0,...,m of IT. Let (Hy, ..., H,) € LT with H; = u;, for
i=0,...,m.Set

aij =u; Xpj, for i,j:O,...,m.
Then (Hy, ..., H,) € Cpy if and only if det(a;;); j—o,..,» = 0, hence

44444

Fr = det(a;j)i, j=o0,....m-

yeees

On the other hand, the square matrix (a;;);, jo,...m Of order m + 1 is the product rows
by columns of the two matrices U and P, where

P00 --- Po,n
P= L (13.5)
Pm,0 --- Pm.n
IfO < jyo<--- < j. <nweset
p07j0 cte pO’j/ll
Pjojm = .. (13.6)
DPmjo =+ Pm,j

and
P = (Pjo.ju)
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with lexicographically ordered entries, a non-zero vector of order (:;11)

The vector p has again an interpretation in terms of multilinear algebra. Namely
p is the vector of the components of py A ... A p,, in the (”H)-dimensional vector

m+1
space A"V (with V dual of V) with respect to the basis

with (e', ..., e") dual basis of (e, ..., e,).
The vector p is called the vector of Pliicker coordinates of I1. For [p] the same
properties (a) and (b) as above hold. Indeed by expanding F7 = U - P’, we have

Fr(ug,...,u,) = ijn,m,jmuju ..... Jm (13.7)

where the sum is made over all indices such that 0 < jy < --- < j,, < n. From this
and from (13.4) we get the following:

Proposition 13.1.1 With the above notation consider the square matrix of order

n+1
P
m= (1)

Then the maximal minors of A [resp. of P] are proportional to their cofactors in M.

13.2 Grassmann Varieties

Let us fix the non-negative integers n, m with m < n and consider the set G(m, n)
of all subspaces of dimension m of P". Given an element IT € G(m, n), we have the
non-zero vectors of order (:;111) pf its Pliicker coordinates p = (pj,....j,) and of its
dual Pliicker coordinates p = (p'o:~»-=-1), which are defined up to a non-zero factor

and are proportional. We have the two coinciding injective maps

yeeey

G 2 T € G@m,n) — [p] € pM(m.n)

and
Jmn I € G(m, n) — [p] € PMmm.

The image set G(m, n) of g,, , (or of g,, ) is bijective with G(m, n), and it is called, for
reasons which will be soon clear, the Grassmann variety or the Grassmannian of type
(m, n). The same name will have any transformation of G(m, n) via a projectivity of
PMm.n) By abuse of notation, we will identify apoint 7w € G(m, n) with the subspace
I € G(m, n) such that T = g, ,(IT).

Given IT € G(m, n), we have the subspace IT+ of dimension m —m — 1 of
Ly = " which consists of all the hyperplanes containing I7. The dual Pliicker
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coordinated of I7 coincide with the Pliicker coordinated of I7+. This implies that
Gm,n) =Gmn—m —1,n).

It is also useful to have in mind the following algebraic interpretation of G(m, n).
As we did in Sect. 13.1, consider A"t has a vector space V of dimension n + 1 on
K. Then A"tV is a vector space of dimension M (m, n) + 1 over K. A non-zero
tensor T € A"V is said to be indecomposable if there are py, ..., pn € V such
that 7 = po A ... A pn. The indecomposable tensors generate ALY a5 a K-vector
space. Note that G(m, n) can be interpreted as the set of all vector subspaces of
dimension m + 1 of V. So, given IT € G(m, n), and given a basis py, . . ., pn of 11,
we have the indecomposable tensor po A ... APy € ATV I we change basis in
I1, this indecomposable tensor varies, but it is easy to check that it changes only by
the product of a non-zero element of K (namely, the determinant of the matrix of the
basis change). Hence, if we set PM" = P(A"+1V), we have the map

Ymn 2 IT € Gm,n) = [Po A ..., Apn] € PMO)

which clearly coincides with g, ,. Hence G(m, n) can be interpreted as the set of
points of P(A"+1V) corresponding to proportionality equivalence classes of inde-
composable tensors. From this description it follows that G(m, n) is non-degenerate
in PM0mm,

Next we want to prove that G(m, n) is a subvariety of P¥®"", This is trivial if
m=0orm=n—1. Indeed G(0,n) =P" and G(n — 1,n) = L, ; = P". To see
this in general we need a number of preliminaries.

Let IT € G(m, n) with Pliicker coordinates p = [pj,,.. ;.]- If we chose m + 1
independent points P; = [p;],i =0, ..., m of 1, the Pliicker coordinates of IT are
given by the minors of maximal order of the matrix P in (13.5).Note that, in the
above notation we have 0 < jo < --- < j,, < n. However we want to make sense of
the symbol pj ; inthe more general case in which {jo, ..., j,} is any disposition
(with perhaps repetitions) of m + 1 elementsintheset {0, ..., n}. Precisely we define
jn} 18 an alternating set, namely

.....

where € = 1 or ¢ = —1 whenever the (m + 1)-tuple (j;, ..., j,,) is obtained from
(jo, - - -+ jm) with an even or odd number of transpositions. In particular p;, _; =0
if two of the indices in (jo, .. ., j) are equal.

Fix now (ij,...,i,) a disposition with repetitions of m elements in the set
{0, ..., n}. If the columns of the matrix P of order iy, . .., i,, are linearly dependent,

.....

.....

the matrix P of order iy, .. ., i,, are linearly independent. Then, since the matrix P has
rank m + 1, the vector (po i,....in» - - - » Pn.ir.....i,, ) 1S NON-zero and we can consider the
point Pi, i = 1[Poi. ins---» Pniy....iy] € P". Of course P, _; does not depend
on the ordering (i, ..., i,), so that we may suppose 0 <i; < --- < i, <n.
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Lemma 13.2.1 Inthe above setting the point P;,
of I1 with the subspace I, with equations

i, IS the unique intersection point

..... in

..... im
xi1 = "':xim :0

Proof A point P = [p] belongs to I7 if and only if there are Ao, ..., A, in K such
that
P=Xopo+ -+ AuPms

hence P belongs to IT;, if and only if

----- Im

Xopoi, + oo+ AppPmi, =0

... (13.8)
Aopoi, + -+ AmPmi, =0
Since the columns of P of order iy, ..., i, are linearly independent, the relations
(13.8) uniquely determine [Ag, . .., Ay, 1.€., Ao, - .., Ay are proportional to the max-
imal minors with alternate signs of the matrix
Poiy -+ Pmii
Poiy -+ Pm,iy,
Then we have
Pi = Aopoi + -+ AuPmi =
Poi -+ Pm,i
= |Poiv e Pmiv) Diiy....in
Po.i,, -+ Pm,i,
as wanted. O
Consider now the matrix
PO0it, i =+ Pritein
P, = pPoo ... Pon
Pmo --- Pmn
By Lemma 13.2.1, we have that P;_; hasrank m + 1, thus all its maximal minors
vanish. So if (ig, jo, ..., jm) 1S a disposition (with perhaps repetitions) of m + 2

elements in the set {0, ..., n}, we have
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Pig,it,esim Pjosivsecsim =+ + Pjmsit,cssim
Po.iy Do, jo s Do, ji, =0
pmjt) pmJ‘O e pmsjm

which reads

m —
Pivsitseeosin Piosjtecsin = Pionitseosin Piosjtrin T F (D" Djit i Pig,jososjm s = 0

or equivalently

DPio,ityeesim Pjosjiseesjm = Pjositseesim Pio,jisene, jm+
F Pjrsitsensin Piosivsesjm T F Pjnsitssin Poseeesjmt o

These relations, which hold for every (i, . . ., i,;) and (jo, - . ., jm), are called Pliicker
relations.

Now we introduce the M (m, n) 4+ 1 indeterminates x;, . ; , with0 < iy < --- <
im <n. We also introduce symbols xj, _; in the more general case in which
{jo, ..., jm} is any disposition (with perhaps repetitions) of m + 1 elements in the
set {0, ..., n}. As usual we define

im>

where € = 1 or ¢ = —1 whenever the (m + 1)-tuple (jo, ..., jn) is obtained from
{0y ... 0m) With 0 < iy < --- < i, < n with an even or odd number of transposi-
tions. Moreover we define x;, ;. =0, if two indices among jo, ..., j, are equal.
With this notation, we see that G(m, n) is contained in the closed subset of PM "
defined by the set of equations

KXigsitseensim® oo jrseeesm = KjositseosimXio jioeens jm+ (13.9)

F X it ensin X josioseesjm T T X itcensin X oy 1 si0 -

for every (ig, ..., i,) and (jo, ..., jm). These equations are identically zero if m=
0,n — 1 because in these cases G(0, n) = P* = PMOM and G(n — 1,n) =P =
PMn—1.n) So we will assume from now on that 1 < m < m — 2. In this case we can
choose iy = j,...,im = jm and we setiog =i, i1 = j, jo = h, j1 = k. Then (13.9)
become

Xi, iz eorim XKooy = KRz XK, iy T X, i X i (13.10)

which are not identically zero if i, j, &, k are all distinct and different from iy, .. ., i,
as it is possible if 1 < m < m — 2. The equations (13.10) are called the three terms
Pliicker relations.

Now we can prove the:



176 13 Grassmannians

Theorem 13.2.2 G(m, n) is a closed subset of PM"" which is proper if and only
ifl<m<m-2.

Proof We already saw that G(0, n)=P"=PM O and G(n — 1, n)=P" = PM@-1.n)
So we may assume that 1 < m < m — 2. Since G(m, n) verifies the Pliicker relations
(13.9) and among these there are the three terms relations (13.10) which are not
identically zero, then G(m, n) is a proper subset of P¥"" if | <m <m — 2. In
order to show that G(m, n) is a closed subset, we will prove that it is defined by the
Pliicker relations (13.9).

Suppose that (p;,, .. ;) is non-zero and verifies the Pliicker relations. To fix the
ideas, let us suppose that py__,, # 0. Then it makes sense to consider the following
points of P

.....

Py =1[pin,..mli=0,..n> Pt = [P0,i2,..m)i=0,...n> - - - » Pu = [P0,...m—1,i)i=0,....n-

They are linearly independent. Indeed a matrix that has as rows the homogeneous
coordinates of these points is given by

pot..m O oo 0 Puiiim--r Pnlm
0 pPol,..m - 0 Pom+1,....om -+ PO.n,...m
0 0 --- Po.1,...m PO,...m—1m -+ PO,...m—1n

whose minor determined by the first m + 1 columns is p(')'ff_l__ym # 0. Hence Py, ...,
P,, span a linear space IT € G(m, n). Let now (m;,,. ;) be the vector of Pliicker
coordinates of /7. We will conclude the proof by showing that the vector (7, __;, ) is

proportional to (p;,....i,), more precisely, we will show that for all (i, ..., i,) one
has

Ty eeirim — P(’;fl,m,mpio ..... ime (13.11)

First we show that (13.11) holds if only one of the indices i, . . ., iy, is larger than

m. Indeed, if m < i < n, one has

where the column (p; 1._m, Poi....m»---» Do...m—1.;)" appears at the /th place, and
from this we see that mo__1—1.i1+1,..m = P01, mDO....1=1il+1,...om-

Then we proceed by induction, supposing that (13.11) holds if iy, . . ., i,, contain
v numbers greater that m, and we show that (13.11) holds if iy, . . ., i,, contain v 4 1
numbers greater that m. Since Pliicker relations hold for (p;,,...;, ), we have

yeeey
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Do....m Pig,....in, = Pig,1,....m P0,iy,...iy T

(13.12)
+ Pii1,om Pig,0,iam..ig T * 0 F Pin1oosm Pig,ooyim—1,0-

On the right hand side of (13.12) the only non-zero terms may be the ones of the
form p;, 1,...m Pio,....in_1,0,insr,....in Withip > m, where we assume, as it is possible, that
0 ¢ {ig, ..., i,}. By multiplying both members of (13.12) by p(z)fff'_nl and applying
induction, we have

mPiososim = Tig 1m0,y ooig T 20 Wi 1,om Mg, osim1,0+

On the other hand, Pliicker relations hold for (7;, ;). hence we have

yeeey

..... it eeesim = T Lm0 iy T T Lm0

whence (13.11) holds because 7 _._,, 7 0. This end the proof of the Theorem. [

....

Consider now (P*)"+! and let [x;] = [xj0, . .., Xin], fori =0, ..., m, the homo-
geneous coordinates in the (i 4 1)th factor of the product (P")”*!. Consider the
subset Z(m, n) of (P*)"+! consisting of all (m + 1)-tuples (P, ..., Py), with
P, =[p:]1=1pio,---, pin), for i =0, ..., m, such that Py, ..., P, are linearly
dependent in P". Then Z(m, n) is a proper closed subset of (P")”*! which is defined
by the matrix equation

X0
rank | ... | <m+ 1.
Xin

We set D(m, n) = (P")"*+!' \ Z(m, n). We have the map
Gt (Po, ..., Py) €D(m,n) = Guu(PoV ...V Py) € G(m,n) € PM.

Lemma 13.2.3 The map ¢y, : D(m, n) — PM" is a morphism and its image is
G(m, n).

Proof The fact that the image of ¢y, , is G(m, n) is obvious. To show that ¢y, , is
a morphism, note that ¢,, , sends the point ([po], ..., [Pn]) € D(m, n) to the point
[pi,.....i,,] where (pj,...i,) are the Pliicker coordinates of Py Vv ...V P,, hence are
the minors of maximal order of the matrix

Po
P
and these minors are polynomials in the coordinates of Py, ..., Py,. (Il

Theorem 13.2.4 G(m, n) is irreducible of dimension (n — m)(m + 1).
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Proof The irreducibility follows from the surjectivity of ¢,,, and the fact that
D(m, n) is irreducible, being an open set of (P"y"*!. Let now IT € G(m, n). Then

Sty (G (1) = ™+ A D(m, n)
which has dimension m(m 4 1). Then, by Theorem 11.3.1, we have

dim(G@m,n)) =nm+1)—mm+1)=mn —m)(m + 1).

Theorem 13.2.5 G(m, n) is rational.

Proof Consider the set
Zm,n)={U1,1T") € G(m,n) x Gn —m,n), [1 Vv I’ £P"},

which is a proper closed subset of G(m, n) x G(n — m, n). In fact, if IT = Py v
o.VPyand I = Py V...V Py, with P, = [p;], fori =0,...,n+ 1, then
(11, IT") € Z(m, n) if and only if

Po
rank ... <n+1, (13.13)

Pn+1

i.e., if and only if all maximal minors of the matrix in (13.13) vanish. Expanding
these minors with Laplace rule applied to the first m 4+ 1 rows, one obtains algebraic
relations (of degree 1) between the Pliicker coordinates of IT and I1’, which are
necessary and sufficient conditions in order that (17, I1") € Z(m, n).

Letp; : Z(m,n) — G(m,n)and p, : Z(m,n) — G(n — m, n) be the projections
to the two factors. If we fix 17(/) € G(n — m, n), we set

GOm,n, IMy) = pi(py " (ITy)).
It is clear that G(m, n, I1j) is a proper closed subset of G(m, n). Fix now IT €

G(m,n), fix Py, ..., P, independent points in T, and take T}, ..., 1, € G(n —
m, n) such that {P;} = IT N [T/ foralli =0, ..., m. Set

U = G(m, n) \ UG(ma n, Hi/)
i=0

which is an open dense subset of G(m, n), and let U’ be the dense open subset
D(m,n) N T) x ... x II,)of [T} x ... x I, . Consider the map

v:PeU— (PNI,...,PNIT)eljx...xIT,
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which is a morphism. In fact, if P € U, suppose that P has equations

UeoXo + ... + UopXy = 0

Un—m—1,0X0 +...+ Upn—m—1,nXn = 0
Suppose now [T has equations

Up—m,0X0 +...+ Up—mnXn = 0

Up—1,0X0+ ... T Up_1 Xy = 0
From the definition of U it follows that the matrix

uo,o --.- Uon
M=

Up—-1,0 --- Un—1n

has maximal rank  and the coordinates of the point P N [T are given by the maximal
minors of M with alternate signs. These minors are polynomials of degree 1 in the
dual Pliicker coordinates of P. The same argument holds for the coordinates if the
points P N 17,./ ,fori =1, ..., m.This proves that is a morphism, which determines
a rational map

Y :Gm,n) --» IT) x ... x ).

We have also the map

&:(Q0s--»Om)eU — QogV...VQ, €G(m,n)

which is also a morphism because it is the restriction to U’ of ¢,, ,. Since clearly
¢ (Pp(Po, ..., Pu)) = (Po, ..., Py), and since dim([1) x ... x IT))) = (m + 1)
(n —m) = dim(G(m, n)), the map ¢ is dominant because of Theorem 11.3.1, so
it determines a dominant rational map

¢: My x - x I --» G(m,n).

Take now P € U such that ¢)(P) € U’. Then one has ¢(¢)(P)) = P. Similarly,
if (Qo, ..., Ow) € U'and ¢(Qo, - .., Q) €U, then Y(9(Qo, - - -, Om))=(Qo; - - -,
O.). Hence ¢ and v are birational transformations one inverse to the other. Since
IT) x ... x IT, is rational, the assertion follows. O

Exercise 13.2.6 *Lett : P" — P be a projectivity. Prove that there is a projectivity w, of PM (1)
fixing G(m, n), such that for any point IT € G(m, n) one has w,(IT) = 7(I1).
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Exercise 13.2.7 Prove that G(1, 3) is a quadric in P>, having Pliicker equation
X01X23 + X12%03 — X13x02 = 0.

Prove that the determinant of the matrix of this quadric is non-zero. This is called the Klein quadric.
Exercise 13.2.8 Fixapoint P € P" and H C P" ahyperplane not containing P. Consider the map
gp: Qe H=P"! 5 PvQeGU,n).

Prove that gp is a projectivity of H onto a subspace of dimension n — 1 contained in G(1, n).

Exercise 13.2.9 Exercise 13.2.8 can be generalised in the following way. Let I1 be a subspace of
P" of dimension #, and fix m > h + 1. Consider the subset of G(m, n)

Gy, m) ={IT € G(m,n) : [Ty C IT}.
Prove that G(ITp, m) is a closed subset of G(m, n) isomorphicto G(n —m — 1,n —h — 1).

Exercise 13.2.10 This is similar to Exercise 13.2.9. Let Iy be a subspace of P of dimension /,
and fix m < h. Consider the subset of G(m, n)

G(m, I[y) = {IT € G(m, n) : IT C Iy}.
Prove that G(m, Ip) is a closed subset of G(m, n) isomorphic to G(m, h).

Exercise 13.2.11 Prove that on the Klein quadric G(1, 3) there are two families X', X of planes,
the former containing the planes corresponding to the lines passing through a given point of P3
(these are called stars), the latter containing the planes corresponding to the lines contained in a
fixed plane of P? (these are called ruled planes). Prove that two planes of the same family intersect
each other in a point, whereas two planes of two different families intersect each other either in the
empty set or along a line.

Exercise 13.2.12 Letr = [p;;] and s = [g;;] be two distinct points of G(1, 3). Prove that the line
r V s is contained in G(1, 3) if and only if

Po1g23 + qo1 p23 + P12903 + q1203 — p13q02 — q13po2 = 0.

Prove that this happens if and only if the lines r and s intersect at a point, i.e, if and only if they are
coplanar. Conclude that r, s are coplanar if and only if the line r V s is contained in G(1, 3).

Exercise 13.2.13 Let r be a line in P3. Let Q, be the subset of G(1, 3) consisting of r and of
all lines distinct from r which are coplanar with r. Prove that Q, is the section of G(1, 3) with a
hyperplane H, = IP* and it is a quadric cone with vertex r in H,.

Exercise 13.2.14 Prove that any line contained in G(1, 3) is the intersection of a plane of X' with
a plane in X.

Exercise 13.2.15 Prove that any plane contained in G(1, 3) is either in X'| or in X,.
Exercise 13.2.16 *Fix positive integers n, m, d with m < n and consider the set
Zm,n,d)={U1,Z) e G(m,n) x L, q:11 C Z}.

Prove that Z(m, n, d) is an irreducible closed subset of G(m, n) x L, 4 of codimension N (m, d) +

1= ("59),
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Exercise 13.2.17 Prove that if N(m,d) + 1 > (m + 1)(n — m), then there is a non-empty open
subset U C L, 4 such that for any hypersurface Z € U, Z contains no subspace IT € G(m, n).

Exercise 13.2.18 Prove thatif Z € £, 4, the set
G(m, Z)={I1 € G(m,n) : I1 C Z}
is a closed subset of G(m, n). This is called the family of m-dimensional subspaces of Z.

Exercise 13.2.19 *From Exercises 13.2.16 and 13.2.17 it follows that if d > 4, the surfaces of
degree d in P? containing some line form a proper irreducible closed subset Z(1, 3, d) of £3 4, which
is the image of Z(1, 3, d) via the projection ¢ to the second factor. Prove that dim(Z(1, 3,d)) =
dim(Z(1,3,d)) = N(3,d) — (d — 3).

Exercise 13.2.20 Prove that any cubic surface in P> contains at least a line and there is a dense
open subset U in £3 3 such that for any Z € U, Z has finitely many lines.

Exercise 13.2.21 An irreducible surface Z in IP3 is said to be a scroll if it contains infinitely many
lines, i.e., if G(1, Z) € G(1, 3) has a component of dimension at least 1. For example, according to
this definition, a plane is a scroll. Prove that if Z is a cone of degree d > 1, itis a scroll and G(1, Z)
is a curve of degree d contained in the plane of X'| corresponding to the star of lines containing the
vertex of Z. Moreover G(1, Z) is isomorphic to a plane section of Z with a plane not containing
the vertex of Z.

Prove that, conversely, if C is an irreducible curve in a plane of X' corresponding to the star of
lines through the point P € IP3, then there is a cone Z with vertex P such that C = G(1, Z).

Exercise 13.2.22 *Prove that any irreducible quadric Q in P3 is a scroll. If Q is a cone we have the
same situation as in Exercise 13.2.21, and G(1, Q) is a conic sitting the plane of X'| corresponding
to the star of lines containing the vertex of Q. Prove that if Q is not a cone, then G(1, Q) consists
of two irreducible, disjoint conics I, I2. The lines corresponding to points in [} are pairwise
skew, for i = 1, 2, whereas the lines corresponding to points of I} intersect in one point each line
corresponding to a point of /.

Exercise 13.2.23 *Continuing Exercise 13.2.22, prove that if we fix three distinct lines rq, o, r3 of
Iy, the plane in which I sits is the intersection of the three hyperplanes H,,, H,,, H,, introduced
in Exercise 13.2.13. The same if we exchange I'1 with I>. Deduce from this the well known fact that
a quadric in P3 which is not a cone is the locus of all lines which are coplanar with three pairwise
skew lines.

Exercise 13.2.24 *Suppose that the surface Z C P3 is a scroll. Prove that Z is a plane if and only
if G(1, Z) has a component of dimension n > 2.

Exercise 13.2.25 Let V € P" be a variety of dimension m. Consider the set Gy = {IT € G(n —
m—1,n) : [1NV # (#}. Prove that Gy is an irreducible closed subset of G(n —m — 1, n) of
codimension 1.

Exercise 13.2.26 Let V < P" be a variety of degree d and dimension m. Prove that the two sets
Uy={TeGmn—m,n):VNII consists of ddistinct points} and
Uy, ={IT € G(n —m, n) : V N IIconsists of finitely many points}, are open dense subsets of G (n —
m,n).
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13.3 Solutions of Some Exercises

13.2.6 Suppose that 7 has matrix equation X’ = A - x, where A is a non-degenerate square matrix
of order n + 1. Take IT € G(m, n). Choose m + 1 independent points P; = [p;],i =0, ..., m of
I1. The Pliicker coordinates of IT are given by the minors of maximal order of the matrix P in
(13.5). Then the Pliicker coordinates of 7(/T) are given by the minors of maximal order of the
matrix A - P! in (13.5). By expanding the minors of maximal order of A - P, we see that these are
linear combinations of the minors of maximal order of P with coefficients depending on the entries
of A. These linear combinations define a projective transformation w, of PM("") enjoying the
required property. The projective transformation is a projectivity because it is bijective on G(m, n)
and G(m, n) is non-degenerate in pMm.n)

13.2.8 We may assume P =][1,0,...,0] and H with equation xop=0. Then given
Q0 =0, xq, ..., x,], the Pliicker coordinates of P v Q are all zero, except

pii=x;, for i=1,...,n.

This proves the assertion.
13.2.9 The proof is analogous to the one of Exercise 13.2.8 and can be left to the reader.

13.2.16 Take (I1y, Zy) € Z(m, n,d) and let us suppose that ITy has Pliicker coordinates [ plo
We may assume, with no loss of generality, that p0 m 7 0. Then there is an open neigh-
borhood U of (ITy, Zy) in G(m, n) x L, 4 such that same happens for every (I1, Z) € U. So
for every (I1, Z) € U a set of m + 1 linearly independent points of IT is given by the points
Pj =1po...j-1., L mli=0....n, for j =0, ..., m. The points of IT have homogeneous coordi-
nates [xq, ..., X,] g1ven by

ZA]I)O 44444 J=Lij+1,..ms ,for i =0,...,n

with [Ag, ..., Ap] € P If Z has equation f(xg, ...,x;) = 0in P", then (I1, Z) is in Z(m, n, d)
if and only if the polynomial

Z)‘jp() ,,,,, Jj— llj+1,.“,ma~~'7)

in (Ao, ..., Ap) is identically zero. The coefficients of this polynomial are of the form
(bh(...a_,‘() ..... Jn cees oo Piga, im ), for h =O, ...,N(m,d)
where aj, .. j, are the coefficients of f and (pj,....;,) are the Pliicker coordinates of IT. So U N

Z(m,n,d) is defined by the equations ¢, = 0, and it is therefore a closed subset. This proves that
Z(m,n,d) is closed, because the notion of being closed is local.
Consider the projection
p:Z@m,n,d) — G(m,n)

to the first factor. To prove the rest of the assertion we apply Corollary 11.3.3 and prove that
for any IT € G(m, n), p*' (V) identifies with the set of all hypersurfaces in £, 4 containing I7,
which is irreducible of codimension N (m, d) + 1 in L, 4. Let in fact Z(n, d, IT) be such a subset
of L, 4, which is of course closed. It is clear that Z(n, d, IT) is a subspace of £, 4. In order to
determine the dimension of Z (n, d, IT) we can reduce ourselves to the case in which I7 has equations
Xm+1 = ..., Xp = 0. In this case the hypersurface with equation f(xo, ..., x,) = O contains [T if
and only if the polynomial f(xo,...,x;,0,...,0) in x, ..., x,, is identically zero, i.e., if and
only if in f do not appear the N (m, d) + 1 monomials in xo, . .., x,,. This proves the assertion.
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13.2.17 Consider the projection

q:Z(m,n,d) — Lya
to the second factor, and let R(m, n, d) be its image, which is a closed subset of £, 4 of dimen-
sion dim(R(m, n,d)) < dim(Z(m,n,d)) = (m + 1)(n —m) + N(n,d) — N(m,d) — 1. If (m +
D(n—m)+ N(n,d) — N(m,d) —1 < dim
(Lng)=N(n,d), ie., if Nim,d)+ 1> (m + 1)(n —m), then dim(R(m, n,d)) < dim(L, 4),
hence R(m, n, d) is a proper closed subset of £, 4. Then U = L,, 4 \ R(m, n, d) is the required
open subset.
13.2.19 To prove the assertion it suffices to verify that there are surfaces Z € L3 4 such that q*l (Z)
is finite, i.e., such that Z contains a finite number of lines. Consider the irreducible surface of degree
d of A® with equation xf_zxzxg = 1. This surface does not contain any affine line. Indeed, such a
line has parametric equations of the form

x; =a; +th;, with i =1,2,3 and reK
with (b1, ba, b3) # 0. For this line to be contained in the surface, the polynomial
(a1 + th1)* (a2 + thy) (a3 + th3) — 1

in ¢ should be identically zero, which is easily seen to be impossible. On the other hand the projective
closure of this surface has exactly three lines on the plane at infinity.

13.2.20 Same argument as in the solution of Exercise 13.2.19.

13.2.22 Tt is well known that all quadrics Q in P> which are not cones are projectively equivalent,
so we can argue on one specific of them, e.g., the quadric Q with equation xgx; = xpx3. We know
(see Exercise 8.2.16) that Q has two families of lines £ = {Lp}pcpt, L2 = {Mp}pcpt, With
P=[\pule P!, where L p has equations

Axg = pxp, pX] = Ax3

and M p has equation
AXQ = pX3, [X] = AXp.

The lines in £; are pairwise skew, for i = 1, 2, whereas the lines in £; intersect in one point each
line in £,. One can see, with a direct computation, that the two maps

wi:PePl>LpelicG, Q) w:PeP' - MperL,cG(,Q),

are morphisms whose respective images /1 and I are two disjoint irreducible conics.

13.2.24 If Z is a plane, one has G(1, Z) = P? so it has dimension 2. Suppose conversely that Z is
an irreducible surface that G(1, Z) has an irreducible component V of dimension n > 2. Consider
the set V = {(P,r) € Z x V : P er}, which is easily proved to be a closed subset of Z x V. The
projection to the second factor V is surjective and the fibres are lines, so V is irreducible of dimension
n + 1. Consider the projection to the first factor Z. This is also surjective, and therefore the fibre of
any point P € Z has dimension n + 1 —2 = n — 1 > 1. This means that there are infinitely many
lines of V containing any point of Z. This implies that Z is a cone with vertex any point P € Z. As
a consequence one has that given any two distinct points P, Q € Z, the line P Vv Q is contained in
Z, and this implies that Z is a plane.



Chapter 14 ®)
Smooth and Singular Points oo

14.1 Basic Definitions

Let V € A" be an affine variety, with Z,(V) = (f1, ..., fu) andlet P = (py, ...,
pn) be a point of V. Let r be a line passing through P, so that r has parametric
equations of the form

x;=pi+Nt, with teK for i=1,...,n, and (A1, ..., \,) #0.
The polynomial system in ¢

fi@t) = filpr+Mt,....pn+N)=0, i=1,...,m

has the solution ¢t = 0. If the polynomials fi(¢), ..., f,(t) are all identically O,
this means that r is contained in V. Otherwise, the greatest common divisor of the

polynomials fi(¢), ..., f,(¢) is a non-zero polynomial of the form
h
(1) = at l—[(t — )¢ (14.1)
i=1
where a, a, ..., o € K*withay, ..., o4 all distinct, and ¢, ¢y, . . ., ¢;, are positive

integers, with ¢ > 1. The integer c is said to be the intersection multiplicity of r and
V at P, and itis denoted by i (P; r, V).Onesets i (P;r, V) = coif r C V. One says
that the line r touches V in P if i(P;r, V) > 1, and in that case one says that r is
tangent to V at P. The definition of tangency of a line to the variety V' is independent
on the basis fi, ..., fi, of Z,(V) (see Exercise 14.1.6).

Lemma 14.1.1 The set of all lines tangent to V at P is an affine subspace Tp(V)
of A"
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Proof We keep the notation introduced above. Let f(xy, ..., x,) € A, be a polyno-
mial which vanishes at P. By expanding f in Taylor series with initial point P, we
have

|
G x) =Y 8—){(P>(xi —p)+o()
i=1 !

where 0(2) € m%,, with mp = (x; — p1, ..., X, — py) the maximal ideal corre-
sponding to P. We set

.9
dp f(x1,...,%,) = Za_)]:.(P)(xi - pi)
i=1 7t

hence dp f is a linear polynomial which vanishes at P, i.e., it belong to m». We have
fi@®)=dpfit, ..., ) +0Q2) =tdpfi(A1, ..., \) +02), i=1,...,m,

where, in 0(2), t appears at least with exponent 2. It is clear that r is tangent to V at
P ifandonly if dp f; (A1, ..., A\y) =0fori =1, ..., m. Therefore the union of the
tangent lines to V at P is defined in A" by the equations

dpfi=0, i=1,....m,

which are linear and therefore define an affine subspace of A”. O

The affine subspace Tp(V'), considered as a vector space with zero at P, is called
the (Zariski) tangent space of V at P. Looking at the proof of Lemma 14.1.1, we see
that

dim(Tp(V)) =n — pp,

where of
= rank (—l P )
Pop 8xj( ) i=1,...mj=1
Let ©2p be the vector space of dimension n of all linear polynomials which vanish
at P. Consider the map
dplfGA,,—)dprQP

which is linear and verifies the Leibnitz rule

dp(fg) =dpf-g(P)+dpg- f(P).

Taking this into account, we see that dp induces a homomorphism

dp : f (S A(V) — dpf (S TP(V)V
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(where Tp (V)Y is the dual of Tp(V)), which is clearly surjective. Since dp takes the
value 0 on the constants, the map

dp My p —> TP(V)\/

(where my p is the maximal ideal of P in A(V)) s still surjective. Moreover, because
of the Leibnitz rule, m%,q p 1s contained in the kernel of dp, so that we have the map

dp :my p/mj , — Tp(V)". (14.2)

Lemma 14.1.2 The map dp in (14.2) is an isomorphism.

Proof 1t suffices to prove that the map dp in (14.2) is injective. Let g € my p be
such that dpg = 0. Suppose that g is induced by a polynomial G € A,. Then dpG
vanishes on 7Tp (V) and then we have a relation of the form

dpG = Mdp fi + -+ Andp fn With A..., Ay € K.

Set G' =G — A1 fi — -+ — Ap fm. Then G’ vanishes at P and it has no terms of
degree 1 in x; — py,..., X, — p,, hence G’ € (x; — p1, ..., X, — p,,)z. Further-
more GTV =Gy =g, hence g € m%,qp as wanted. (]

In conclusion dp induces an identification
Tp(V) = (my p/my p)". (14.3)

This identity suggests that we can extend the notion of Zariski tangent space to any
quasi-projective variety. Indeed, if V is such a variety and P € V is a point, we define
the Zariski tangent space Tp(V) to V at P as the vector space on K = Oy p/mp
given by (14.3).

In case V is projective, this vector space can be identified with an affine subspace
of the projective space in which V sits, and its projective closure Ty p is called the
(projective) tangent space to V at P.

Next we want to understand what is the dimension of the Zariski tangent space.
Consider again an affine variety V € A" and consider in V x A" the closed subset
T (V) consisting of all pairs (P, Q) € V C A", with Q = (xy, ..., x,,) such that

dp filx1, ..., xp) = =dp fr(x1,...,x,) =0,

i.e., this is the set of all pairs (P, Q) € V € A" such that Q € Tp(V). This closed
set is called the rangent fibration to V': the fibres of the projection of T (V) to the
first factor V are just the Zariski tangent spaces to V at its points. Consider the rank
p of the matrix

J= (%

axj>i:1 ..... m;j=1,..., m.
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where its elements are considered modulo Z,(V), i.e., as elements of A(V). Let
Fi(xi,....x4), ..., Fp(xy, ..., x,) beits minors of order p, that are not identically
zero. Hence

Sing(V) := Zy(Fi, ..., F)) = VN Z.(Fy, ..., Fy)

is a proper closed subset of V. If P € V' \ Sing(V), the rank of J, computed at P is
p, and therefore dim(7p(V)) = n — p. If P € Sing(V) the rank of J computed at P
is strictly smaller that p and therefore dim(7»(V)) > n — p. The points in Sing(V)
are called singular of multiple points for V, whereas the points in V \ Sing(V') are
called smooth points or also simple points of V. Note that the smooth points of V
fill up a dense open subset of V, whereas the singular points fill up a proper closed
subset of V. A variety with no singular points is said to be smooth.
As for the determination of p, we have the following:

Theorem 14.1.3 In the above setting one has p = n — dim(V), i.e., in any smooth
point P €V one has dim(Tp(V)) = dim(V), whereas in a singular point
dim(Tp(V)) > dim(V).

Proof We start by remarking that the assertion holds for affine hypersurfaces (see
Exercise 14.1.8). The assertion follows from the fact that any variety is birational to
an affine hypersurface (see Theorem 7.2.3). ]

Exercise 14.1.4 Prove that A" and P" are smooth.
Exercise 14.1.5 Prove that the blow-up of P" along a subspace is smooth.

Exercise 14.1.6 Prove that the polynomial f(z) in (14.1.1) is the greatest common divisor of all
polynomials of the form
g(p1r+ Mit, ..., pn+ Aal)

with g € Z,(V).

Exercise 14.1.7 Prove that if IT is an affine subspace of A", then it coincides with its tangent space
at any of its points.

Exercise 14.1.8 Let V be anirreducible hypersurface of A" with reduced equation f (x1, ..., x,) =

Oandlet P = (py, ..., py) be apoint of V. Prove that Tp (V) is:

(a) the whole space A" if and only if ng(P) =O0foralli =1,...,n;
(b) the hyperplane of A" with equation

)
> af (P)xi = pi) =0
o X

if the gradient grad f (P) = (5L.(P)..... #L.(P)) of £ at P is non-zero.
Prove that there is a dense open subset of V such that case (b) occurs.

Exercise 14.1.9 *Let H be an irreducible hypersurface in P” and let P be a point of H. Prove that
P is a smooth point for A if and only if there is some line passing through P having with H at P
intersection multiplicity 1. Prove that in this case the tangent hyperplane to H at P is the locus of
all lines passing through P having with H at P intersection multiplicity at least 2.
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Exercise 14.1.10 *Let H be an irreducible hypersurface in P" and let P be a point of H. The
point P is said to have multiplicity m (or P is said to be a m-tuple point for H), and one writes
m = mp(H), if every line passing through P has with H at P intersection multiplicity at least
m and there is some line through P having with H at P intersection multiplicity exactly m. In
particular a point P is smooth for H if and only if it has multiplicity 1. Prove that if P is a m-tuple
point for H, the union of lines having with H at P intersection multiplicity larger than m is a divisor
of degree m, which is a cone with vertex P, called the tangent cone to H at P. It is denoted by
TCu,p.

Exercise 14.1.11 *Let H be a divisors in P with equation f (xp, ..., x,) = 0. One can extend to
H the notions of simple and multiple point in an obvious way: P is said to have multiplicity m (or
P is said to be a m-tuple point for H), and one writes m = m p (H), if every line passing through P
has with H at P intersection multiplicity at least m and there is some line through P having with
H at P intersection multiplicity exactly m. A simple point is a point with multiplicity m = 1.

Prove that P is a point of multiplicity m for H if and only if all derivatives of f of order
i < m — 1 vanish at P whereas not all derivatives of order m of f vanish at P. Prove that if P is a
point of multiplicity m for H, then the union of all lines having with H at P intersection multiplicity
larger than m form a divisor (which is a cone with vertex P), with equation

> _rf —(P)x0 - xln = 0. (14.4)

io o iy
i14otin=m OXg - Oy

This is called again the tangent cone to H at P and denoted by TCpy p. If m = 1 the tangent cone
is a hyperplane, called the tangent hyperplane and denoted by Ty p.

Exercise 14.1.12 *Let H be a divisor of degree d with equation f(x,...,x,) = 0in A" and let
P = (pi1, ..., pn) be a point of H. Expand the polynomial f in Taylor series with initial point P.
Then we have

f=h+fa++fa

where )
af : ;
fi= Y e (P = p)T e = )
irtn=i OXT - 0%
is a homogeneous polynomial of degree i in x; — py,....x, — py,fori =1, ..., d. One defines P
to be a point of multiplicity m for H, and one writes m = mp(H), if and only if fi, ..., f,,—1 are

identically zero, whereas f,, is not identically zero. Prove that P is a point of multiplicity m for H
if and only if all derivatives of f of order i < m — 1 vanish at P, whereas there is some derivative
of f of order m at P which is non-zero. Prove that P has multiplicity m for H if and only if every
line passing through P has with H at P intersection multiplicity at least m and there is some line
through P having with H at P intersection multiplicity exactly m. Prove that P is smooth for H if
and only if m = 1. Prove that P has multiplicity m for H if and only if it has multiplicity m for the
projective closure of H in P". Prove that if P is a point of multiplicity m for H then the projective
closure of the affine hypersurface with equation f;, = 0 is the tangent cone to H at P. The affine
hypersurface with equation f;,, = 0 is also called the tangent cone to H at P. Prove that this is the
union of all lines having with H at P intersection multiplicity larger than m.

Exercise 14.1.13 *Let H C A" be a divisor with equation f(xi,...,x,) =0 and let P be any
point of H. For all i = 1, ..., n consider the hypersurface H; with equation % = 0. Prove that
mp(H;) > mp(H) — 1. Prove an analogous result for projective hypersurfaces.

Exercise 14.1.14 *Prove that an irreducible affine or projective curve has finitely many singular
points.
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Exercise 14.1.15 Prove thatif the hypersurface H in P" has components of multiplicities my, ..., my,
then any point in the intersection of these components has multiplicity at leastm = m| + - - - +my,
for H.

Exercise 14.1.16 Prove that the multiplicity of a point of a hypersurface of degree d cannot be
higher than d. Prove that a hypersurface H in P" of degree d is a cone with vertex P if and only if
P is a point of multiplicity d for H. In thatcase H = TCpq p.

Exercise 14.1.17 *Prove that an affine or projective hypersurface V of degree d is a monoid of
vertex P (see Exercise 7.3.5) if and only if P has multiplicity d — 1 for V.

Exercise 14.1.18 Suppose that char(K) # 2. Consider an irreducible quadric Q in P", having
equation
Z ajjxixj =0,

Oisjsn

with symmetric matrix A = (a;j)o<i<j<n- Prove that Q is smooth if and only if det(A) # 0. More
generally, prove that Sing(Q) is the linear space with equations

n
Zaijx]- =0, for i:O,...,I’l.
Jj=0

Exercise 14.1.19 Prove that there is a non-empty open subset U of £, 4 such that forall H € U,
H is a smooth, irreducible hypersurface.

Exercise 14.1.20 Prove that Segre varieties are smooth.
Exercise 14.1.21 Prove that Grassmann varieties are smooth.
Exercise 14.1.22 *Let f : X — Y be a morphism of varieties, let P € X and Q = f(P). Prove

that there is a natural linear map
dfp : Tp(X) — To(Y)

induced by the map f* : Oy, g — Ox,p. The map dfp is called the differential of f at P.

Exercise 14.1.23 *Let X € PP" be a smooth projective variety of dimension n. Let Tan(X) be the
union of all projective tangent spaces to X at its points. Prove that Tan(X) is a variety of dimension
m < 2n. It is called the tangential variety of X.

14.2 Some Properties of Smooth Points

14.2.1 Regular Rings

Let V be a quasi-projective variety of dimension » and let P be a point of V. Recall
that dimg (Oy, p) = n. Hence P is a smooth point if and only if

dim(my, p/mj, p) = dimg (Oy p).
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This suggests to give the following algebraic definition. The local ring (A, m) is
said to be regular if and only if

dim 4 /m (m/m?) = dimg (A).

So P € V is smooth if and only if (Oy p, my p) is regular.

14.2.2 System of Parameters

Let V be a quasi-projective variety of dimension n and let P € V be a smooth point.
Given uy, ..., u, € my p, one says that uy, ..., u, is a system of parameters of V
at P, if the classes of u1, ..., u, generate mv'p/m%,yp.

We need the following result of algebra:

Lemma 14.2.1 (Nakayama’s Lemma) Ler (A, m) be a local domain and let M be
a finitely generated A-module. Let uy, ..., u,, € M. Thenuy, ..., u,, generate M if
and only if their classes generate M /mM.

Proof One implication is obvious. We prove only the other.

Let us start proving that if M = mM then M = 0. Indeed, if M is not zero, let
ui,...,u, be amnimal set of generators of M. Then we have u, = aju; +--- +
a,u,, with ay, ..., a, € m. Hence

(1 - Cl,,)l/tn =aju;+---ap—1Up—1
and 1 — a, ¢ m, so that it is invertible. Hence we have

Uy =biuy + - -by_1uy_y

with b, = lf_a,’ fori =1,...,n — 1, a contradiction.

It follows thatif N C M is a finitely generated submodule of M, thenmM + N =
M implies that M = N. In fact it suffices to apply what we proved above to M /N
and remark that m(M/N) = (mM + N)/N.

Finally, if N is the submodule generated by uy, ..., u,, one has that mM + N =

M, and we conclude by what we proved above. (]
As an immediate consequence we have:

Theorem 14.2.2 Let V be a quasi-projective variety of dimensionn andlet P € V be
a smooth point. Given uy, ..., u, € my p, thenuy, ..., u, is a system of parameters
of V in P if and only if they generate my p.
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14.2.3 Auslander—Buchsbaum Theorem

We state the following famous result:

Theorem 14.2.3 (Theorem of Auslander—Buchsbaum) Any regular local ring is
UFD.

As an immediate consequence we have:

Corollary 14.2.4 Let V be a quasi-projective variety and P € V a smooth point.
Then Oy _p is a UFD. Hence V is also normal.

Proof Immediate consequence of Theorem 14.2.3, and the fact that any UFD is
integrally closed (see Exercise 5.4.3). O

For the proof of Theorem 14.2.3, we defer the reader to [5, Chapt. 7], or to [7, p.
101 and foll.]. Here we will content ourselves to prove Theorem 14.2.3 in the case
the ring has Krull dimension 1, hence Corollary 14.2.4 in the case of curves.

We start with the following:

Theorem 14.2.5 (Krull’s Theorem) If A is a noetherian domain and T is a proper
ideal of A, then [,y Z" = (0).

Proof We argue by contradiction and assume we have a € (1), Z" non-zero.
Let a;,...,a, be a set of generators of Z. For every n € N there is a homo-
geneous polynomial F, € A[xy, ..., x,], such that a = F,(ay, ..., a,). The ideal
generated by {F,},ey is finitely generated, hence there is an m € N such that
(F)peny = (F1, ..., F,). Thus we have

Fuii=G Fi+- -+ GuFy
with Gy, ..., G, € Alxy, ..., x,] homogeneous of the appropriate degrees. Then
a=G(a,...,a)a+- -+ Gyla,...,a)a

hence
1:Gl(al’-~-aar)+"'+Gm(al’---sar)

therefore 1 € Z, a contradiction. O

Now we have the following result which proves Theorem 14.2.3 in the 1-
dimensional case:

Theorem 14.2.6 Let (A, m) be a local noetherian, regular domain of dimension 1.
Then A has principal ideals, hence it is a UFD. More precisely one has m = (u)
with the class of u a generator of m/m?, and all non-zero proper ideals of A are of
the formm" = (u"), withn € N.
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Proof By Nakayama’s Lemma (see also Theorem 14.2.2) we have that m = («) with
the class of u a generator of m/m?. Let Z be a non-zero proper ideal of A. Then there
is a positive integer n such that Z € m" = (u") and Z C m"*!. Then u "7 is an ideal
which is not contained in m, hence u™"Z = A, thus Z = (") = m". O

It is useful to go deeper into the study of local noetherian, regular domains of
dimension 1. Let us first make a definition. Let k be a field. A discrete valuation on
k is a surjective map

vik*=k\{0} > Z

such that:

(a) for all x,y € k* one has v(xy) = v(x) + v(y), namely v : k*(-) = Z(+) is a
homomorphism;
(b) v(x +y) = min{v(x), v(y)}.

Sometimes one sets v(0) = oo.

If v is a discrete valuation on k, then A = {0} U {x € k* : v(x) > 0} is a ring,
which is called the ring of the valuation v. A domain A is called a discrete valuation
ring (briefly DVR) if there is a discrete valuation v on k = Q(A) such that A is the
ring of the valuation v.

Lemma 14.2.7 If A is a DVR with respect to the valuation v on Q(A), then A is a
local ring with maximal ideal m = {x € A : v(x) > 0}.

Proof 1t is clear that m is an ideal. It is immediate that v(1) = 0 so that 1 ¢ m,
so m is a proper ideal. Moreover it is also obvious that for all x € Q(A)* one has

v(x) = —v(x~ "), henceifx € A \ m, onehas v(x) = 0, thenalsov(x~'") = 0, which
implies that x~! € A, so x is invertible. This proves the assertion (see Proposition
53.0). ]

Lemma 14.2.8 If A is a DVR with respect to the valuation v on Q(A), then given
X,y € A such that v(x) = v(y), one has (x) = ().

Proof 1If v(x) = v(y), then v(xy~!) =0, so that @ = xy~! € A is invertible (by
Lemma 14.2.7), hence x = ay and therefore (x) = (y). U

Lemma 14.2.9 [f A is a DVR with respect to the valuation v on Q(A), there is an
element u € m such that v(u) = 1 and any such element is such that (u) = m.

Proof Since the valuation map is surjective, it is clear that there is some u € A such
that v(u) = 1 and then u € m. Let x € m. Then v(x) = n > 0. We have v(u") = n,
so v(u") = v(x) and therefore (#") = (x). This implies that (z) = m. O

Lemma 14.2.10 If A is a DVR with respect to the valuation v on Q(A), then the
only non-trivial ideals of A are powers of m. As consequences, A is noetherian with
dimg (A) = 1 and moreover A has principal ideals, hence it is a UFD.
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Proof Given a non-trivial ideal Z, there is a minimal positive integer n such that
v(x) =n for x € Z. Let u be such that v(x#) = 1. Then with the same argument
as in the proof of Lemma 14.2.9, we have (x) = (u"). Moreover, if y is such that
v(y) = m = n, then the usual argument implies that (y) = (xu™~"). This yields that

T={yeA:v(y) >n}=m"
as wanted. O

Next we prove the following basic:

Theorem 14.2.11 Let (A, m) be a local noetherian domain of Krull dimension I,
with k = A/m. The following propositions are equivalent:

(a) AisaDVR;

(b) A isintegrally closed;

(c) wm is principal;

(d) (A,m) is regular, i.e., dim;(m/m?) = 1;

(e) every non-trivial ideal of A is a power of m;

(f) thereisu € A suchthat every non-zero ideal of A is of the form (u™), withn € N.

Proof (a) implies (b) because if A is a DVR, then it is UFD and this implies that it
is integrally closed (see Exercise 5.4.3).
(b) implies (c). First we need a couple of preliminaries.

Claim A: Let 7 be an ideal of A. Then rad(7) = m.

In fact, since dimg (A) = 1, then m is the only non-zero prime ideal of A. Since
rad(Z) is the intersection of all prime ideals containing Z (see Exercise 2.5.6), the
Claim follows.

Claim B: If A is a noetherian ring, then any ideal Z of A contains a power of its
radical.

Letxy, ..., x; be aset of generators of rad(Z), so that we have relations of the sort
xl."’ € 7, with n; suitable positive integers, fori = 1, ..., h.Setm = Zf’l:i (n; — 1)+
1. Then rad(Z)™ is generated by products of the form xj' - - - x;", with Zfl: (i =m.
From the definition of m, we have that there is at least an index i = 1, ..., & such
that r; > n;, so that each of the above products belongs to Z, hence rad(Z)” C 7.

To prove the implication, take # € m with u # 0. By Claims A and B there is a
positive integer n such that m" C (u) but m"~! C (u). Take v € m"~! with v ¢ (u),
in particular v # 0. Set x = { € Q(A). One has x~! ¢ A, because v ¢ (u). Hence
x~!is not integral on A. Then we claim that x~'m C m. Indeed, if x~'m C m,
then m would be an A[x~!]-module which is finitely generated as an A-module. If

X1, ..., Xy is a system of generators of x~'m, we would have relations of the sort

xix '=ajpx; - +apx,, for i=1,...,h,
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witha;; € A, fori, j =1, ..., h. With an argument we already made in the proof of
Lemma 5.4.1, this would imply that x~! is integral over A, a contradiction. On the
other hand x ~!m = ﬁm C A, because v € m"~!, hence vm € m" and m" C (u). So
in conclusion x 'm = A, hence m = xA = (x), as wanted.

(c) implies (d): suppose that m = (u), then u generates m/m? and m/m? is non-zero
because of Krull’s Theorem 14.2.5. Thus dimy (m/m?) = 1.

(d) implies (e): Let Z # (0) be a proper ideal of A. By Krull’s Theorem, there is
a positive integer n such that Z € m” but Z C m"*!. By Nakayama’s Lemma m is
principal, i.e., m = (u) for a suitable u. So there a y € 7 such that y = au”, with
a ¢ (u) = m, hence a is invertible. So u” € Z. Then m" = (#") € Z C m", hence
7 =m", as wanted.

(e) implies (f): by Krull’s Theorem there is u € m such u ¢ m2. By the hypothesis
(e), one has () = m", for some r > 1 and therefore r = 1. Then m = (u) and every
non-zero ideal is of the form m" = (u"), withn € N.

(f) implies (a): By Krull’s Theorem we have (u") # (u"*!) for all non-negative
integers n. So if a € A\ {0}, there is a unique non-negative integer n such that
(a) = (u™). We set v(a) = n. Then we extend the definition of v to Q(A) by set-
ting v(%) = v(a) — v(b), with b # 0. This defines a discrete valuation and A is a
DVR. O

As a consequence we have:
Corollary 14.2.12 A curve C is smooth if and only if it is normal.

Remark 14.2.13 Theorem 14.2.11 and its proof have an important consequence
concerning the local behaviour of rational maps on smooth curves. Let V be a curve
and P € V a smooth point. Since the question we want to treat is local, we may
assume that V is affine. Consider a non-zero rational function f on V. Theorem
14.2.11 tells us that there is a discrete valuation vp defined on K (V), such that
(Oy.p, mp) is the DVR of vp. Then f is defined at P if and only if vp(f) > 0,
and f(P) =0 if and only if vp(f) > 0. In this case we will say that P is a zero
of f and vp(f) will be called the order of zero of f at P. If vp(f) =0, then f is
defined at P, it is not zero at P, and it is invertible at P. Finally, suppose that f is
not defined at P, hence vp(f) < 0. We will then say that f has a pole at P. In this
case vp(f~!) = —vp(f) > 0and f~!is defined at P and it has order of zero equal
to —vp(f) at P. This will be called the order of pole of f at P.

If f has a zero of order m at P, then f~! has a pole of order m at P. If f has
a pole of order m at P, and g is a non-zero rational function with a zero at P, then
vp(fg™) = vp(f) +mvp(g) = 0, so that fg is defined at P.

14.2.4 Local Equations of a Subvariety

Let V be a quasi-projective variety, let P be a point of V and let W be a closed subset
of V containing P. Take fi,..., f, € Oy p. Wesay that fj =---= f,, =0is a
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system of equations for W in P, if there is an affine open neighborhood U of P in V
in which fi, ..., f;, are all defined, and such that fi, ..., f,, generate in O(U) the
ideal of W' = W N U. It is also well defined the ideal Zy _p of Oy p consisting of
all functions f € Oy p which are zero on W in a neighborhood of P. Note that if V
is an affine variety, then

Ivwp= {% tu,ve A(V),u e L,(W)/Z,(V), v(P) # 0}.

Lemma 14.2.14 Inthe above setting, given fi, ..., fu € Ov.p, fi=--= fu =0
is a system of equations of W in P if and only if Iy w p = (f1, ..., fu)-

Proof Since the question is local, we may and will assume that V is affine.
Suppose f; = --- = f,, = 0is asystem of equations of W in P. Up to shrinking
V, we may assume that fi, ..., f,, are all defined in V, and they generate the ideal
of Win A(V). Then itis clear that Zy w p = (fi1, ..., fin)-
Suppose conversely that Zy w p = (f1, ..., fw), With fi, ..., fin € Oy p,andlet
Z.W)Y/Z,(V)= (g1, ...,9n),Withg, ..., g, theclassesof elements Gy, ..., G, €
A(V). Since g; € Iy, w p fori =1, ..., h, we have relations of the sort

gizzaijfj’ for l=l,,h (145)

j=1

The functions f;, a;; are all regular in some principal open neighborhood U of P in
V,fori =1,...,h,j=1,...,m. Then (14.5) implies that

G1s -5 90) = W) /Lo (VI)AWU) € (f1s-- -, fn)-

Next we will prove that (Z,(W)/Z,(V))A(U) coincides with the ideal Z of W' =
W NUin A(U). Whence it follows that Z C (f1, ..., f), but we may assume that
fieZ fori =1,...,m,and this implies the assertion of the lemma.

We are left to prove that

1 = (Za(W)/Za(V)A).

The inclusion
Z.W)/L,(V)AWU) ST

is clear. Let us prove the opposite inclusion. Suppose U = Uy (v) for some v €
A(V)\ {0}. Then A(U) = A(V), (see Exercise 6.3.6) consists of elements of the
form &7, withu € A(V) and! € N. Take x € Z. Then x = 7, withu € A(V), hence
u = xv' andueZ,(W)/Z,(V). Since v—l,eA(U),thenx =€ (Z,(W)/Zy(V)AU)
as wanted. O
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We can now prove the:

Theorem 14.2.15 If'V is a quasi-projective variety, P € V is a simple point for V
and W is a subvariety of codimension 1 of V containing P, then W has a unique
local equation at P, i.e., Ly w,p is principal.

Proof The proof is quite similar to the one of Theorem 11.1.2.

Since the question is local, we may assume that V is affine. Let f € Oy p that
vanishes on W in a neighborhood of P. Since Oy p is UFD by Corollary 14.2.4, we
can factor f into prime factors. Since W is irreducible, one prime factor g of f has
to vanish on W. Let us prove that g = 0 is a local equation of W. Replacing V with
a smaller open affine neighborhood of P we may assume that g is regular on V.

Since W € Zy(g), and since both W and Zy (g) have codimension 1 in V, we
may write Zy (¢g) = W U W', where either W’ is empty or it is different from W and
also of codimension 1. Let us assume the latter thing happens. If P € W’, then we
can find functions &, k', with h vanishing on W and not on W', i’ vanishing on W’
and not on W, both vanishing at P, such that 2k’ vanishes on Zy (g) but neither one
of h and A’ vanishes on Zy (g). Therefore g divides (hh)!in A(V) for some positive
integer [/, hence g divides (k) also in Oy p. Since Oy p is UFD, then either g
divides A or it divides h’. Thus either 4 or A’ vanishes on Zy (g) in a neighborhood
of P and, by passing to a smaller neighborhood of P we may assume it vanishes on
the whole of Zy (g). This is a contradiction. So we conclude that either W’ is empty
or P ¢ W’. In this latter case, by further reducing the neighborhood of P we may
assume that W' = @, so Zy (g) = W.If now h is a function vanishing on W, we have
that g divides 4’ in A(V) for some positive integer /, and then g divides A’ in Oy p.
It follows that g divides & in Oy_p. This implies that Zy w p = (¢), as wanted. [J

As a consequence of Theorem 14.2.11 we have the next basic:

Theorem 14.2.16 Let V be a smooth quasi-projective variety and let ¢p : V --» P"
be a rational map. Then the closed set of points of V where ¢ is not defined has
codimension at least 2.

In particular, if V is a smooth curve, then ¢ is a morphism.

Proof Recall that the set of points Z where ¢ is not defined is a closed subset of
V. If Z is empty, there is nothing to prove. Otherwise, fix a point P € Z. Since
the question is local, we may assume that V is affine. By applying Proposition
6.2.5, we know that there are rational functions fy, ..., f, on V such that ¢(Q) =
[fo(D), ..., f,(Q)] and fy, ..., f, are all defined and not all zero in all points
Q € V\Z.Now fo,..., fn € Q(Oy p) and, without changing ¢, we can multiply
fo, - -+, fn by acommon factor so that fy, ..., f, € Oy p. Moreover, again without
changing ¢ we may assume that fy, ..., f, are coprime in Oy p (remember that
Oy, p is UFD since V is smooth). Since P € Z, then fy, ..., f, all vanish at P. So
the local equations of Z in a neighborhood of P are fy = ... = f, = 0. Now we
claim that no subvariety W of V of codimension 1 can be contained in the locus where
fo=...= fu, =0.Indeed, if W has codimension 1, then by Theorem 14.2.11 we
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have that W is defined by an equation g = 0 in a neighborhood of P, and therefore
fo, - .., fn would all be divisible by g, a contradiction. O

Corollary 14.2.17 If two smooth projective curves are birationally equivalent they
are isomorphic.

Proof Let C, C’ be two smooth projective curves and let ¢ : C --+ C’ be a birational
map. By Theorem 14.2.15, both ¢ and ¢! are morphisms, and clearly one is inverse
of the other, so they are isomorphisms. (]

14.3 Smooth Curves and Finite Maps

In this section we prove an important result which relates smoothness and finiteness
of maps in the case of curves. We start with the following:

Theorem 14.3.1 Let V, W be varieties and f : V — W a birational morphism.
Given a point P € V assume that Q = f(P) is smooth for W and that the inverse
map g = f~ is not defined at Q. Then there is a subvariety Z C V of codimension
1in V, containing P, such that f(Z) has codimension at least 2 at Q on W.

Proof We may replace V with an affine neighborhood of P, so we may suppose
that V is affine. So assume that V C A", with coordinates (x, ..., x,). There are
rational functions g, ..., g, € K(W), such that g = f —1is given by the equations
x; = g;, fori = 1,...,n. Since g is not defined at Q, at least one of the functions
g1, - - - » gn 1s not defined at Q. We may suppose that g; is not defined at Q. So we
may write g; = % with u, v € Oy o and v(Q) = 0. Since W is smooth at Q, the
ring Ow, ¢ is a UFD, so we may assume that #, v have no common factor.
The map f induces an isomorphism f* : K (W) — K(V), and we have

w=ran=r() =5
therefore we have
frxr = f*u). (14.6)

Moreover f*(v)(P) =v(Q)=0.Set Z = Zy(f*(v)). Then P € Z, so Z is non-
empty. By Exercise 11.2.24, Z has codimension 1 in V. From (14.6) we see that
f*(u) is zero on Z. So we have that u, v are both zero on f(Z).

We are left to prove that f(Z) has codimension at least 2 at Q. Suppose by
contradiction this is not the case. Then f(Z) has a component Z’ of codimension 1
at Q. Then by Theorem 14.2.16, Z’ has a local equation &7 = 0 at Q. But then, since
u and v vanish on Z’, then & divides both u and v, contrary to the assumption that u
and v have no common factor. (Il
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Corollary 14.3.2 Let V, W be two curves with W smooth and let f : V — W be a
birational morphism. Then f (V) is openin W and f induces an isomorphism from
Vito f(V).

Proof Since f : V — W is a birational morphism, there are two non-empty open
subsets U C V, U’ € W, such that f induces an isomorphism between U and U’
(see Corollary 7.1.3). Since U’ = f(U) is obtained by subtracting finitely many
points from W, the same is true for f(V) hence f(V) is open in W. Now look
at the morphism f : V. — f(V). If this were not an isomorphism, we would get a
contradiction by Theorem 14.3.1, since there would be some point in V mapped by
f to the empty set. (]

Theorem 14.3.3 Let V be a smooth, irreducible, projective curve and let f : V —
W be a surjective morphism with W a curve. Then f is finite.

Proof Take any non-empty affine subset U in W. Set B = A(U) and note that
Q(B) = K(W). The morphism f induces an inclusion f* : K(W) — K(V).Sowe
may view B as a subring of K (V). Let A be the integral closure of B in K (V). We
claim that Q(A) = K (V). The inclusion Q(A) € K (V) is obvious. Let us prove the
opposite inclusion. Take f € K (V). Since the field extension f*: K(W) — K (V)
is algebraic, we have a relation of the form

"o f" 4 49, =0, with gi,..., 9, € K(W)=Q(B). (14.7)
We can write g; = %, with a;,b; € B, and a; #0, for i =1,...,n. Set a =
ai - --a, # 0. If we multiply both sides of (14.7) by a”, we have a relation of the
sort
(af)" +ci(af)" ' 4+---4¢, =0, with c,...,¢, € B,

hence af € A, and therefore f € Q(A), as wanted.

By Theorem 10.3.4, A is a finitely generated B-module. So we may set A =
A(Z), with Z asuitable affine normal (hence smooth) curve. Since K (Z) = Q(A) =
K (V), then Z is birational to V, we have a birational map g : Z --» V, which is a
morphism because Z is smooth. Then by Corollary 14.3.2, we may assume that g is
an isomorphism of Z onto g(Z) which is an open subset of V. We will identify Z with
g(Z) via g. The inclusion B C A tells us that f induces a morphism fjy : Z — U,
which is finite. We claim that Z = f~!(U). This will prove the finiteness assertion.

To prove this last claim, we argue by contradiction and assume there is a point
P € U forwhich thereis apoint Q ¢ Z suchthat f(Q) = P.Take arational function
g ¢ Oy o, but g is regular and vanishes at all (finitely many) points Q' € Z such
that g(Q’) = P (the existence of this function is easily proved and we leave it as
an exercise for the reader). Suppose g has poles at Q, ... Q,, € Z. Then, by the
above assumptionson g, f(Q;) := P; # P,fori =1, ..., m. We can find a function
h € B= A(U) such that h(P) # 0 and gh € Oz p,, fori =1, ..., m. For this, it
suffices to take a sufficiently high power of a function in B that does not vanish at P



200 14 Smooth and Singular Points

but vanishes at Py, ..., P, (see Remark 14.2.13). Then 0 # y :=gh € A = A(Z),
so it is integral over B, namely we have a relation of the sort

V4 by '+ 4+b, =0, with by,...,b, €B

whence

y=—b =2 (14.8)

ynfl :

Remember that y ¢ Oy o and therefore y~' € my o. But then from (14.8) we get
a contradiction, because the right hand side member belongs to Oy g, but the left
hand side does not. O

14.4 A Criterion for a Map to Be an Isomorphism

In this section we will prove a useful criterion for a finite morphism to be an isomor-
phism.

Theorem 14.4.1 Let [ : V — W be a finite morphism between two varieties. Then
f is an isomorphism if an only if f is bijective between V and W and the differential
of f (see Exercise 14.1.22) is injective at each point of V.

Proof Set g = f~'. The assertion will be proved if we prove that g is a morphism.
The problem is local in the following sense. Fix a point Q € W and take the unique
point P € V such that f(P) = Q. Choose affine neighborhoods U of P and U’ of
Q such that f(U) = U’ and A(U) is integral over A(U’). It suffices to prove that,
for suitable choices of U and U’, f : U — U’ is an isomorphism, because g is then
a morphism at Q.

We have the injective map f* : Oy, o — Oy, p. The hypothesis on the differential
of f is equivalent to say that the induced map

fr :mQ/sz — mp/m>

is surjective. Suppose mg = (uy, ..., ux). Then f*(u;) + m%,,fori =1,...,k gen-
erate mp/m%. By applying Nakayama’s Lemma 14.2.1 to mp as an Oy, p-module,
we have that mp = (f*(uy), ..., f*(ur)), namely

mp = f*(mg)Oy p. (14.9)

Next we claim that Oy p is a finite module over Oy ¢. Since A(U) is a finite
module over A(U’), and since every element of Oy p is of the form % with u, v €
A(U) and v ¢ mp, to prove the claim it suffices to show that every element of Oy p
is of the form %, with h € A(U) and z € A(U’), with z ¢ my. To prove this it
suffices to prove the following other claim: for every v € A(U), with v ¢ mp, there
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isaz e A(U’), withz ¢ mgp and aw € A(U), such that f*(z) = vw. In fact, if this

is the case, then
uw

_ . h
o

with h = uw.

u
v

To prove this final claim, note that, since f is finite, hence closed by Theorem 10.1.3,
we have that Z = f(Zy (v)) is closed in U’ and since f is bijective, then O ¢ Z. So
there is t € A(U’), such that t =0 on Z and #(Q) # 0. Then f*(#) = 0 on Zy(v)
and f*(¢)(P) # 0. By the Nullstellensatz, there is a positive integer n such that
f*()" = vw for some w € A(U). We can set z =" and we are done with the
claim.

Now we can apply Nakayama’s Lemma to Oy p as an O, g-module. The (14.9)
shows that

Oy p/f*(mg)Oy p = Oy p/mp =K

so it is generated by 1. Then Nakayama’s Lemma implies that Oy p = f*(Ow,¢).
Finally, let a;, ..., a; be a basis of A(U) as a A(U')-module. We have q; €
Ovy.p = f*(Ow,g),fori =1, ..., 1. Then wecanfind afunctionb € A(U’) suchthat
U”" = U’ \ Zy(b) is an open affine neighborhood of Q, ay, ..., a; arein f*(A(U"))
and (f*)"!(a;) areregularin U* = U \ Zy (f*(b)),fori =1, ..., 1. Thenitis clear
that A(U*) is generated by ay, . . ., a; over f*(A(U")). On the other hand, ay, ..., q
are in f*(A(U")), so A(U*) = A(U"), so f:U* — U" is an isomorphism, as
wanted. (Il

Exercise 14.4.2 *Let V C PP" be a projective variety and let P be a point of " such that any line
through P intersects V in at most one point and that P does not sit on any (projective) tangent space
to V. Prove that the projection of V from P to P"~! is an isomorphism of V onto its image.

Exercise 14.4.3 *Let V be a smooth projective variety of dimension n. Prove that there is a
morphism f : V — P2*+! which is an isomorphism of V onto its image.

Exercise 14.4.4 Find zero and poles, with their orders, of the rational functions

x2—2x+1 3
P B
x—=3

on P! on the field of complex numbers.

14.5 Solutions of Some Exercises

14.1.5 We prove the assertion for the blow-up of P? at P = [1, 0, 0], the proof in general being
similar. Fix coordinates [xg, x1, x2] in P? and [y1, y2] in P!, and recall that the blow-up P? of P2
at P =[1, 0, 0] sits in P2 x P! and it is defined there by the equation

X1y2 = X2)1.

The projection to the first factor o : P2 — P2 is an isomorphism between P2 \ E and P2 \ {P},
where E = o~ !(P) = P! is the exceptional locus of the blow-up. By the smoothness of P2, we
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have that P2 is smooth at all points not on E. It remains to prove that the points of E are also smooth
for P2. Let us consider the affine open subset U; = A' of P! where y; # 0. So we may assume that
y1 = 1. Since we are on E = ¢~ !(P) we may also work in the open subset U = A” of P> where
xo = 1. So in the open subset U x Uy = A3 the blow-up has equation

fx,x2,2) = x2 —x1y2 =0.

Then we have to compute the rank of the matrix

of of o0fN_ B
(c’)xl' Oxy’ (')yz) = (2. L=x)

which is always 1. This implies that all points of E in this open set are smooth for P2. A similar
computation works in the open subset Uy = A! of P! where y, # 0.

14.1.10 Suppose that H has degree d and equation f (x, ..., x,) = 0 (with f irreducible) and P =
[pos ..., pnl. Take a point Q = [qo, .. ., g,] different from P and consider the line r = (P, Q),
which has parametric equations

Xi =Api +pugi, i=0,...,n,
with [\, ] € P'. The the intersection of r with H is governed by the equation
F(Apo~+ 1qo, - ... Apn + pign) =0 (14.10)

in A, . We can expand the polynomial in (14.10) in Taylor series with initial point (Apo, ..., Aps)
and increments (1qo, - - - , f1qn). One gets

)\d—i 'ui
i!

FOPO+ 1190, - Apn + pgn) = X f(P) + -+ + A f(PY+ -+ ()

where

; ) FANO!
NS (B) = (dog oo g =) Fpo s p)

where (i) stays, as usual, for the symbolic power.
The intersection multiplicity of r with H at P is at least & if and only if

F(PY=Apf(P)=...= A5 f(P)=0.

So P has multiplicity m if and only if Ale(P) =...= Azfl f(P) = 0 for all Q, whereas there
is some point Q such that A'éf(P) # 0, and the union of the lines having intersection multiplicity
larger than m with H at P is the set of all points Q such that A’gf(P) = 0, and this is an equation
in the variables gy, ..., g,. Note that A’g,f(P) has degree m in qq, . . ., g,. Moreover the divisor
with equation A”é f(P) = 01is acone with vertex P because it is union of lines passing through P.

14.1.11 With the same notation as in the solution of Exercise 14.1.10, note that P is a point of
multiplicity m for H if and only ifAle(P) =...= Ag_lf(P) = Oidenticallyin Q and A'é f(P)
is not identically zero in Q. The assertion immediately follows, by taking in account that (14.4) is
the same as A’gf(P) =0, by setting ¢; = x;, fori =0,...,n.

14.1.12 This is proved by passing to affine coordinates in the Exercises 14.1.10 and 14.1.11. The
details may be left to the reader.

14.1.15 Suppose that the components of H of multiplicities my, ..., m; have reduced equations
fi,..., fn,and P verifies f1(P) =...= f,(P) = 0. The equation of H is then of the form f =
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1”” e f;"”g, with g not divisible by fi, ..., f,. If we compute the derivatives of order i of f at
P, we see that they vanish if i < m — 1, which proves the assertion.

14.1.16 The first assertion is trivial. As for the second assertion, if H is a cone of degree d with
vertex P, then it is clear that any line through P either belongs to H or it intersects H only at P, so
it has intersection multiplicity d with H at P, so that P has multiplicity d for H and H = TCpq p.

Conversely, if H has degree d and it has a point P of multiplicity d, then any line containing P
and a point Q € H \ {P} is contained in H, so H is a cone with vertex in P. It is then clear that
H=TCy,p.

14.1.19 The open U in question is the complement of the discriminant D(n, d), see Exercises
11.4.12 and 11.4.13.

14.1.20 Consider a Segre variety Seg,, ,, (the argument is similar for the Segre varieties with more
indices). By Exercise 8.1.6, there is a group of projectivities of P+ which acts transitively on
Seg,, - This proves that all points of Seg, ,, have isomorphic local ring. This proves the assertion.

14.1.21 The proof is similar to the one of Exercise 14.1.20, by taking into account Exercise 13.2.6.
14.1.23 Use a strategy analogous to the one in the solution of Exercise 11.3.8.

14.4.2 Apply Theorem 14.4.1.

14.4.3 We may suppose that X € P". If r < 2n + 1 the assertion is trivially true. Assume r >
2n + 1. Since Sec(X) has dimension at most 2n + 1 and Tan(X) has dimension al most 2n, we can
find a point P € P" off Sec(X) and Tan(X). Then any line through P intersects X in at most one
point and P does not sit on any tangent space to X. So by Exercise 14.4.2 we may project X to
P"~! and the projection is an isomorphism of X onto its image. Then repeat this argument till we

prove the assertion.



Chapter 15 ®)
Power Series Creck for

In this chapter we introduce some algebraic tools which will be essential in what
follows for the local study of curves.

15.1 Formal Power Series

A formal power series on the field k in the indeterminate x is an expression of the
form Z?io a,x™ with a, € k, for any n € N. The elements a, € k, for n € N, are
called the coefficients of the series Y ;- a,x". The set of all power series on k is
denoted by k[[x]]. Of course k[x] C k[[x]]. Addition and multiplication of power
series can be defined so that k[[x]] is a domain. To be precise, one sets

o0 o0 o0
Za,,x” + anx” = Z(an +b,)x"
i=0 i=0 i=0

and
o0 o [o¢]
a3 b =Y e
i=0 i=0 i=0
where
co = dobo
¢1 = apby + arby
¢y = apby + a1b; + axby
Cn = aObn + albnfl +-+ anbO
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206 15 Power Series

We use the symbol f(x) (or simply f) to denote a power series > -, a,x". We can
make sense of f(0) by setting f(0) = ap. In addition, if f(x) € k[x] and g(x) €
k[[x]1], it makes sense to consider f(g(x)) € k[[x]].

Lemma 15.1.1 The power series f(x) = Z?io anx" is invertible in k[[x]] if and
only if f(0) = ag # 0.

Proof 1f ay # 0 we inductively define the series g(x) = Z?io b,x" so that the fol-
lowing relations hold

aobo =1
apb; + a1byg =0
apby + a1by + axby =0

aopb, +aib,_1 +---+a,bp =0

Then one has fg = 1. Conversely, if there is a series g(x) = Y - b,x" such that
fg = 1,then apby = 1, and ay # 0. O

Lemma 15.1.1 implies that k[[x]] is a local domain with maximal ideal m = (x),
which contains all series of the form )~ | a,x".
We will denote by k((x)) the quotient field Q(k[[x]]).

Lemma 15.1.2 Any element of the quotient field k((x)) can be written in the form

fx)

xh

where f is a suitable power series and h a suitable positive integer.

Proof Suppose we have an element of k((x)) which is of the form

Z?io byx"
Z?io CaX"

with Y72 c,x" # 0. Let h be the minimum integer such that ¢; # 0. Consider the
series Zf’ih ¢, x" ", Since ¢, = ( this series is invertible, with inverse Z?io d,x".
So we have

Yitobnx" QLo bax") (o dnx") (i bax™) (X2 dnx")
Z?io CuX" (Zioio Cnx™) (Z?io dpx") xh

as wanted. 0O
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By Lemma 15.1.2, every non—zero element of k((x)) can be uniquely written as

oo
f=x". E a,x"
i=0

with ag # 0 and / a suitable integer, which is called the order of f and is denoted
by o(f). One sets 0(0) = co. The order function

o:k((x)\{0} - Z

is a valuation, and it is clear that k[[x]] is the DVR related to this valuation. As a
consequence k[[x]] is a UFD, and factorization in k[[x]] is very easy: a non zero f
divides g if and only if o(f) < 0(g).

15.2 Congruences, Substitution and Derivatives

15.2.1 Conguences

In the ring k[[x]] we can consider the equivalence relation determined by the ideal
m”, with n a positive integer. This is called congruence modulo x". One has that f
and g are congruent modulo x", and one writes f = g mod x", if f — g € m”", or,
which is the same, if f — g is divisible by x”, or if o(f — g) = n, or also if the first
n coefficients of f and g coincide.

Lemma 15.2.1 One has:

(a) let fi, f» and gy, g» be power series such that f| = f>, g1 = g» mod x", then

it o=g+£g modx", fifs=g19 mod x";

(b) let f, g be power series such that f = g mod x" forn > 0, then f = g;
(c) let fi(x), fo(x) be two polynomials and g,(x), g»(x) two power series such
thato(g1), 0(g2) > 0.1If fi = f2, 1 = g» mod x", then fi(g1(x)) = f2(g2(x))

mod x";
(d) if we have a sequence ( f,)nenj0y Of power series such that

for1 = fu mod x" forall n e N\ {0},

then there is a unique power series f such that
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f=f, modx" forall neN\{0}.
Proof Parts (a) and (b) are easy and left to the reader.
Proof of (c). Write f; = f> + x" f3, with f3 a polynomial. By applying (a), we
have

fi(g1(x) = fr(2(x)) + 2(x)" f3(g2(x)), mod x".

Since
0(92(x)" f3(g2(x))) = no(g2) + o(f3(g2(x))) = n

the assertion follows.
Proof of (d). One has

2
fi=ap+anx+apx +---

2
fr=ai+anux+apx +---

2
fr=ap+ayux+apx +---

fn=a1()+azlx+a32x2+...+annxn+___
So we set
2
f=ap+anx +apx +---+appx"+ -

Then f = f, mod x" foralln € N.If g is another series such that g = f, mod x"
foralln € N, then g = f mod x" for all n € N and then f = g by part (b). O

15.2.2 Substitution

Let f, g be formal power series in k[[x]], with o(g) > 0. For all positive integers n,
we will denote by f, and g, the truncations of f and g at the n—th term, i.e., f, and
gn are the polynomials of degree at most n — 1 obtained by taking the sum of the
first n terms of f and g. Then, for all positive integers n we have

fov1 = fu, Gn41 =g, mod x"
hence, by Lemma 15.2.1, (c), we have

fn+](gl1+l) = fn(gn) mod x".

By Lemma 15.2.1, (d), there is a unique power series & € k[[x]] such that
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h= f,(g,) mod x"

for all n € N. The series 4 is said to be obtained by substitution of g in f, and it is
denoted by i = f(g).

Lemma 15.2.2 Let g, h € k[[x]] be such that o(g) > 0 and o(h) > 0. Then for any
f € kl[x]], substituting h in f(g) is the same as substituting g(h) in f.

Proof Setm = f(g) andl = g(h). Let f,, gu, h, be the truncations of f, g, h at the
n—th term, and set m,, = f,(g,) and [,, = g,,(h,). For all n € N\ {0}, one has

mn(hn) = fn(ln)

Moreover
m=m,, h=h, f=/f, =], modx"

for all n € N\ {0}, and therefore
my(hy,) =m(h), ful,) = f() mod x",

whence
m(h) = f(I) mod x".

Since this is true for all n € N\ {0}, one has m(h) = f(I) (Lemma 15.2.1, (b)), as
wanted. m|

Lemma 15.2.3 Let g, f € k[[x]] be such that o(g) = 1 and set h = f(g). There
exists an l € k[[x]] with o(l) = 1 such that f = h(l).

Proof Suppose
g=a1x+a2x2+~-~ , with a; #0.

We search for a
l=bx+byx*>+---, with by #0

such that g(/) = 1. We have

g(l) = atbix + (a1by + a:b})x + (arbs + 2asbyby + azb})x> + - - -
+(a]bn+Fn(a25"'7an5bl5"'7bn—1))xn+"'

where F), is a suitable polynomial in a, ..., a,, by, ..., b,—. The required series /
is obtained by defining b; = al_1 and b, recursively by the formula

bn = _a;IFn(a2’ "'7an’bls "'7bn71)'

The conclusion follows by Lemma 15.2.2. O
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15.2.3 Derivatives

Given a formal power series f(x) = ZZ‘;O a,x", we define the derivative of f as

fl(x) = Z na,x" '
n=0

Lemma 15.2.4 Let f, g be formal power series. One has
(f+9'=f+g. (fo)'=fd+/f9

Proof The linearity of derivative with respect to the sum is obvious. Let us prove
the assertion for the product (i.e., the derivative of the product verifies Leibnitz rule).
Note first that if f = g mod x”, then f' = ¢’ mod x"~'.

With the usual notation, we have

f=/fu, g=g, modx"

foralln € N\ {0}. Then fg = f,g9, mod x" foralln € N\ {0, 1} and therefore

(f9) = (fugn)! mod x" ! =
= fug + flg. = fg' + f'g mod x"!

and since this is true for all n € N\ {0, 1}, the assertion follows. 0O
Exercise 15.2.5 Suppose that
f=a +ax+ax’+---, g=bx+bx’+---.

Prove that 5
fl@=a+agtag +-- =

=ao+abix + (a1by + azb%)xz—i-
+ (a1b3 + 2a1b1by + azb})x® 4 - -

Exercise 15.2.6 Let g € k[[x]] be such that o(g) > 0 and let f € k[[x]] be non—zero. Prove that
o(f(9)) = o(f) - o(g). In particular, if o(g) = 1, then o(f (9)) = o(f).

Exercise 15.2.7 Let g € k[[x]] be such that o(g) > 0. Prove that the map
f ekllx]]l = f(g) € kllx]]

is a homomorphism. Prove in addition that if 0(g) = 1 the above map is an automorphism of k[[x]]
which is order preserving. Prove that conversely any order preserving automorphism of k[[x]] is of
this kind.
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15.3 Fractional Power Series

Let us introduce the symbol x %, with x an indeterminate over the field k, and n € N
non—zero. We use the following conventions

for every n, m € N\ {0}. From this it follows that

rm

n
Xm o =xn

forevery r,n,m € N, with r, n # 0.

From (x%)’ = x%, it follows that k((x%)) - k((xﬁ)). So we can consider the
union k{x} of all tk}le fields k((x%)),]for neN.If&ne k{)lc}, there are n,m € N
such that & € k((x#)) and n € k((x~)). Hence &, URS k((xw)), and so their sum,
product and quotient (if n 7~ 0), also belong to k((x = )) and therefore to k{x}. Thus
k{x} is in a natural way a field.

If

m

S:alx%] +ayx 4 - € kix}

with
n my
— < —<---, and a; #0,
ny np

we define the order o(&) of E tobe o(§) = %] The set of elements with non—negative
order of k{x} is a domain, which we denote by k(x). If £ € k(x), the coefficient of
x0 = 1 in & is denoted by £(0).

In order to prove or main result on the field K{x} with K algebraically closed,
which is Theorem 15.3.2 below, we need some preliminaries concerning solutions
of equations with coefficients in k{x}. Start with a polynomial f(x, y) € k{x}[y]
which is not constant, i.e., f(x, y) ¢ k{x}. We set

f,y)=a+ay+--+a)" (15.1)
with ag, ..., a, € k{x},n > 0, a, 0. We will set o; = o(a;), fori =0, ...,n. If
a; #= 0, we have

a;, = a,-x""' + ey and a; 75 O, (152)

fori =0,...,n.
Suppose that there is € k{x} \ {0} such that f(x, n) = 0. Then we can write

n= blx)/l + b2x}/l+)/2 + b3x71+)’2+}/3 + ...

with by, by, b3, ... (which can be finitely many or not) all non—zero and y», ys, ...
all positive rational numbers. We set
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n=x"{b+mn)
where we put y = y;, b = by, and
N = bax” +byxt 4.
Then we have

O=fG,m=a+ax’b+n)+-+ax""b+n) =
= a() +ba]xy + tet +bnanxﬂ)/ +g(x7 r]])a

where g contains all the terms in which 5, appears. Since o(n;) = y» > 0, all terms
appearing in g have order greater than the order of some of the terms b'a;x'”, for
i =0,...,n. We can summarize the contents of these remarks in the following:

Lemma 15.3.1 In the above setting we have:

(a) at least two of the elements bla;x", withi =0, ..., n, have the same order,
which is less than or equal to the order of any other b' a;x'Y. In other terms there
are two distinct integers j, k € {0, ..., n} such that

o(bjajx-/y) = o(b*aqx*") < o(b'a;x'), for i =0,...,n,

namely
aj+jy=o+ky <a;+iy for i=0,...,n; (15.3)

(b) the coefficients of all terms of lowest order must cancel out, i.e.,

> ab" =0 (15.4)

where the sum is made over all indices h such that o, + hy = a; + jy.

In relation with (15.3), we introduce the so—called Newton polygonal of f(x, y).
To do so, we fix a system of orthogonal Cartesian coordinates (u, v) in the Euclidean
plane and we mark the points P; with coordinates u =i, v = «;, fori =0, ..., n,
provided o; < oco. Condition (15.3) says that there is a 8 such that all points P;,
i =0,...,n, lie above or on the line r, g with equation v + yu = B and at least
two of the points P; do lie on r,, g. Now we join the point Py to the point P, with a
convex polygonal, with vertices points in the set { Py, ..., P,} in such a way that no
point P; lies below the polygonal. This is the Newton polygonal of f(x, ). Then
the only possible lines r, g, hence the only values of y, are the ones determined by
the segments of the polygonal and by their slopes. Once one of the above segments
has been chosen, so that y has been determined by its slope, then b has to satisfy
(15.4), where the sum is extended to the indices & of points P, lying on the segment
in question.
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In this way we have given necessary conditions for b, and y; appearing in 7. To
proceed to finding analogous conditions for b, and y», one defines

fiGe,y) =xPF,x" (b + )

and consider the root n; of fi(x, y;) = 0 in the variable y;. Note that since y, > 0,
only segments of the Newton polygonal can be considered. Then one repeats the
above considerations for fi(x, n;) = 0, and finds necessary conditions for b, and
y». This can be continued to give necessary conditions for b, and y,, for all n € N.

From now on we assume k = K to be algebraically closed and we now prove the
main result about K{x}:

Theorem 15.3.2 K{x} is an algebraically closed field.

Proof We keep all notation we introduced above. The proof consists in showing that
the process we indicated above can be carried out on any polynomial of the form
(15.1), to construct a root of the equation f(x,y) =0, where f(x, y) is given by
(15.1). In order to see this, we have three basic facts to verify:

(a) ateach step the Eq.(15.4) has a non—zero solution;
(b) after the first step, the Newton polygonal has some segment with negative slope;
(c) after a certain step all the y;s have a common denominator.

Property (a) is easy to verify. Indeed, since the segments of the Newton polygonal
contain at least two points P;, the left hand side of (15.4) has at least two non—
zero terms, hence (15.4) has certainly a non—zero solution (remember that K is an
algebraically closed field).

As for property (b), we need to make a deeper analysis of the Newton polygonal.

First of all for alli = 0, .. ., n, there is a positive integer n; such that a; € K{x" }.
Then we can find a positive integer m such that a; € K{xﬁ },foralli =0,...,n.So
we have .
o = —, forall i=0,...,n.
m

Letnow P; and P, with j < k, be the left and right end of the segment X of slope
y1 lying on the line r,, g, with equation v + yu = B, of the Newton polygonal we
have chosen. Then we have

aj+ jyi = o + kyi,
which implies

y aj — O m; — ny
1= = .
k—j  mk—j)

and so we can write
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with p, g coprime and g > 0. If P, is on the segment X, one has

P_y_Olj—Olh_mj—mh
— ="N= — = -
mq h—j m(h — j)

and therefore
q(m; —mp) = p(h — j).

Since p, g are coprime, we have that ¢ divides 4 — j and therefore h = j + tq,
where ¢ is a non—negative integer. Thus (15.4), which is an equation in b, has the

form '
b’'p (%) =0

where ¢ (z) is a polynomial such that ¢ (0) # 0. Since the degree of the polynomial
appearing in (15.4) is k, then the polynomial ¢ (z) has degree k;—/ <k—j.
Suppose now b; # 0 is a root of ¢ (z?) = 0, with multiplicity » > 1, so that

¢(7) = (z—b)"¥(2), with ¥ (b)) #0.

Note that k— i
r< <k (15.5)
q
Now, as we indicated above, we consider the polynomial
fite y) =27 f 2" B+ y) =
=x"Pag + ax” (b + y1) + - + auxnyi(by + y)'] =
=x Y by + )" Y by + )
where the first sum runs over the indices & of points P, lying on the segment X, the

second sum on the indices / of the remaining points. Recalling the expressions (15.2)
of the a;, fori =0, ..., n, we have

free, y) = x7PY " apx T by 4y +
+x7PY (an — a)x" by + )"+ " (B 4+ )

Since for the indices 4 of points lying on £ we have o, + hy; = fi, the first summand
in the above expression of f(x, y;) coincides with

Y anbi 4 y)" = B+ y1) (b1 + y)D) = ¥ (b1 + ) Y (b1 + y).

Now notice that o(a;, — a;) > o, and o(ax'"") = a; 4+ Iy; > B for the indices [ in
the second summation. So we can write
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fitx,y) =iy +eayt 44 glx, )

where ¢y, c,, . .. are constants, with ¢; = b{w(bl) # 0, and we collected in g(x, y1)
all terms in which each power of y; has a coefficient of positive order. In conclusion
we can write

fi,y) =co+ ey + -+ eyl
with ¢g, ..., ¢, € K{x}, and

o(¢;) 20, for i =0,...,n
o(¢;) >0, for i=0,...,r—1
o(c,) =0.

Now suppose first that ¢y = 0. In this case the equation fi(x, y;) = 0 has the root
n1 = 0 and this implies that n = blxly is a solution of f(x, y) = 0. If instead ¢y # O,
then for the Newton polygonal of f(x, y;) the point Py has u coordinate equal
to zero and positive v coordinate, whereas P, has positive u coordinate and the v
coordinate is 0. Then since in the next step we have to take positive values of y»,
this is actually obtained from a segment in the arch which goes from Py to P, in
the Newton polygonal of f;(x, y;). This proves (b) in making the second step. The
proof for the following steps is the same.

Finally we have to prove (c). This will be done if we prove that, with the above
notation, after a certain number of steps the value of ¢ is constantly equal to 1. To
see this proceed as follows. Recall first (15.5). Moreover, as we saw, the horizontal
length of the segment of the Newton polygonal to be taken in the next step is at most
r. Hence r’, the value of r to be taken in the subsequent step, is such that 0 < r’ < r.
Since r is an integer, after a finite number of steps the value of r stabilizes, so that
r = ro for large number of steps. By taking into account (15.5) this implies that g
also stabilizes to the value 1, as needed. O

The following corollary is now immediate:

Corollary 15.3.3 Given the equation f(x,y) = Owhere f(x, y) isasin (15.1) with

ap, ..., 0, € K{x}, n > 0, a, # 0, there are distinct elements ny, ...n, € K{x} and
positive integers ny, ..., n; such that
h
ey = [Jo—m)" (15.6)

i=1

withny + - - - + nj, = n. Such an expression of f(x, y) is uniquely determined.
Ifo(a;) 20fori =0,...,nanda, =1, theno(n;) =2 0forall j =1,...,h.

Proof The only non—trivial assertion is the last one. Let us prove it. Let n be one of
the n;, with j =1, ..., h, and assume that o(n) < 0. One has
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fem=a+an+-+a_n" +7" =0

Then o(f(x, n)) = no(n) < 0 which contradicts f(x, n) = 0. O
Exercise 15.3.4 Prove that if £ € k(x), then £(0) #~ 0 if and only if 0(§) = 0.

Exercise 15.3.5 Find the first terms of a solution of the equation
fa, =2 +xhH -2y —xyr+ 200 +y3 =0
in y over the complex field. This exercise is taken form [8, p. 102].

Exercise 15.3.6 Find the first terms of a solution of the equation
FOy) =x+ 1 =0y + G +a%)y%,

in y over the complex field.

Exercise 15.3.7 * Looking at Corollary 15.3.3, prove that if o(a,,) < o(a;),fori =1,...,n—1,
then 7y, ..., n, belong to K(x).

Exercise 15.3.8 * Continuing Exercise 15.3.7, prove that if o(a,) = 0, o(ap) > 0 and o(a;) > 0,
fori=1,...,n—1,thenthereisa j =1,..., h such thato(n;) > 0.

Exercise 15.3.9 * Let f(x, y) € K[x, y] be such that it has no factor not involving y. Prove that
f has a multiple factor in K[x, y] if and only if f(x, y) = 0 has a multiple root in K{x}. Prove
that if f has a multiple factor of multiplicity » in K[x, y] depending on y then f(x, y) = 0 has a
multiple root of multiplicity at least n in K{x}.

15.4 Solutions of Some Exercises

15.3.5 To draw the Newton polygonal of f (x, y) we have to plot the points Py, . .., Ps (the degree of
finyis5). Wehave Py = (0,3), P; = (1,2), P, = (2, 1), P3isindeterminate, Py = (4, 1), P5s =
(5, 0). So the Newton polygonal consists of two segments, the one joining Py and P,, then contains
also Pp, and the one joining P, and Ps which contains no other point. The point Py is above the
polygonal. For the first segment we have

=1 p1=3 p=qg=1

Equation (15.4) becomes —1 — 2b — b% = 0, so that it has the only solution b; = —1 with multi-
plicity r = 2.
Having determined b; and y;, we have to go to the second step. So we define

filx,y1) = x_Sf(x,x(fl +y)) = +x2) — 3x2y1 + (=14 2)62)))12 + 2x2yf — 3x2yf +x2yf.

The Newton polygonal of fi(x, y1) consists of only one segment, the one joining Py = (0, 1) with
P>, = (2,0). So here we have

1
n=5 k=1 p=1 q=2
Equation (15.4) becomes 1 — b% = 0, with solutions b, = %1, with multiplicity 1 and we may
choose by = 1.



15.4 Solutions of Some Exercises 217

Then we have to make the next step. We set

1
o, y) =x7 i, x2(1+ y2) =
= (=37 )+ (-2 322 44?4yt
F =122 )y

Now we are at the point where r = p = g = 1, so from now on r stabilizes to the value 1 so that

ies 1 1 I . )
n2 becomes a power series 1 x 2 . Rather than COntlnumg with the Newton polygonal algorlthm, we
now set ] 2
N2 =b3x2 +bgx +bsx2 +---

and f>(x, n2) = 0, and from this equation we iteratively compute b3, ba, bs, .... We find
1 3 1 3
Ham) =@ =322 4+--) + (=2 =327 +4x7 - )(b3x? +bax +bsx? +-- )+
+(—1+2x2+~~~)(b3x%+b4x+b5x%+-~~)2+~~~=

= —2b3x? + (—2bg + 1 — b2)x + (—2bs — 3 — 2bsbg)x} +--- =0
whence
b3 =0, by= ] bs = 3
3=0, ba=5, bs=—7,
Taking into account that we found b = —1, b, = 1, we have for a root n of f(x,y) =0 the
expression
I I S
=—x+x2 —X2 — =X
7 Y73
15.3.7 Suppose the equation f(x, y) = 0 has n distinct roots 1y, ..., n,, the argument is similar

otherwise. Then by expanding (15.6), we see that a,_; = —a, (9] + -+ n,). If a,—1 # 0, this
implies that o(n;) > Oforalli =0, ..., n as wanted. If a,,_; = 0, we have n; + --- + 1, = 0. On
the other hand a,,_» = a, Z1<i<j<n n;n;j. Suppose that a, 5 # 0, This implies that o(n;n;) > 0
forall 1 <i < j <n. ThenonehasO<o(n(m+---+n,))= o(n%), which yields o(n1) > 0.

Similarly one finds o(n;) > Oforalli =1, ..., naswanted. If a,_» = 0, one repeats this argument.
15.3.8 Again we pretend the equation f (x, y) = 0 has n distinct roots 1y, . .., n,, the argument is
similar otherwise. By Exercise 15.3.7, n1, ..., n, are such that o(n;) > O foralli = 1,...,n. We
have ag = a,ny -+ - ny. Ifo(n;) = 0foralli =1, ..., n, we would have o(ap) = 0, a contradiction.

15.3.9 One implication is trivial. Let us prove the other one. Suppose that f (x, y) = 0has a multiple
root in K{x}. Then the resultant R of f(x, y) and % after elimination of y is non—zero. But the

resultant of f(x, y) and % is the same independently of the fact that we consider the polynomials

in K{x}[y] or in K[x, y]. So this means that f(x, y) and 3—5 have a non-trivial common factor g in
K[x, y], and g depends on y. We claim this is a multiple factor for f. In fact, suppose the factor
in question g is not multiple. Let us assume also that g is irreducible. Then we may write f = gh,
with & not divisible by g. Then g has to divide also % = g—i’,h + % g, hence it has to divide %h'
Since g does not divide 4 it has to divide g—z. Since the degree of %]' in y is smaller than the degree
of g in y, this is possible only if g—ﬁ’, =0, i.e., if and only if g does not depend on y, which is a
contradiction. )

The final assertion is obvious.



Chapter 16 ®)
Affine Plane Curves Chack or

16.1 Multiple Points and Principal Tangent Lines

Let X C A2 be a effective divisor of degree d, which we will call from now on
an affine plane curve of degree d. We will use coordinates (x, y) in A? hence X
has equation of the form f(x, y) = 0. Let P = (a, b) be a point of X, consider the
expansion of f in Taylor series with initial point P, which is

f=h+-+/ta
with f; homogeneous of degree i inx —a,x — b, fori =1,...,d. Recall that P is
a point of multiplicity m for X if and only if f; =0fori =1,...,m — 1, whereas

Jfm = 0 defines the tangent cone to X at P (see Exercise 14.1.12). We will write
mp(X) = mp(f) = m. The homogeneous polynomial f,, (£, ) of degree m can be
written as

h
fm(g’ TI) = H(f’?l - 77§i)m’
i=1

where (&;, 7;) are the non—zero distinct solutions of the equation f,, =0, up to a
proportionality factor, and m; are positive integers such that

my+---+my =m.

Then the equation f,,, = 0 of the tangent cone can be written as

h
[T —am - =b)" =0
i=1

which defines the £ distinct lines 7, . . ., r;, containing P with equations
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x—am=W-5b&, i=1,...,h

The lines ry, . . ., r; are called the principal tangent lines to X at P, and the integers
my, ..., my, are called the multiplicities of these lines. So X has in P just mp(X)
principal tangent lines, provided each tangent line is counted with its multiplicity.
Note that if m = 1, then P is smooth for X and the unique principal tangent line to
X at P is just the tangent line to X at P. The point P is called an ordinary point
of multiplicity m if X has in P exactly m distinct principal tangent lines, each with
multiplicity 1. A double point P for X, i.e., mp(X) = 2, is called a node, if it is an
ordinary point of multiplicity 2. A curve X of degree d with a point P of multiplicity
d coincides with its tangent cone at P and therefore it is a union of d lines through
P, each line to be counted with its multiplicity.

All the above definitions are invariant by affinities and by change of coordinates.

Recall that P € X is smooth for X if and only if Ox p is a DVR.

Theorem 16.1.1 Let X be an affine plane curve with equation f = 0 and let P be
a smooth point of X. Let r be a line passing through P, with equation g = 0. If r is
not tangent to X at P, then the class of g in Ox p generates the maximal ideal my p
hence it is a local parameter at P.

Proof Since r contains P, then g vanishes at P and therefore the class of g in Oy p
sits in my p. We need to prove that it generates my p. After a change of coordinates
we may assume that P = (0, 0) and that the tangent line to X at P is the x axis, with
equation y = 0. Hence the equation of X is of the form

f=y+o)=0

where o(1) stays for terms of degree larger than 1. Moreover we may assume that r
is the y axis with equation x = 0. Now we can write

fx,y) =yG —x’H
where H € K[x] and G = 1 + o(1). Then in Ox p we have the relation
yG = x*H
where we abuse notation and denote the classes in Oy p of the polynomials with
the same symbols denoting the polynomials. Moreover G ¢ Oy p, because G is not
zero in P, so G is invertible in Oy, p and we have
y=x’HG™!

inOx p.Soy € (x) in Ox p. Since Ox p = (x, y), the assertion follows. O

Exercise 16.1.2 Prove that the affine plane curve X with equation f = 0 has a node at P if and
only if grad f(P) = 0 and
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Pf Pf Pf
axay D # gz ) gy (P

Exercise 16.1.3 Let X be an affine plane curve and let P be a point of X which lies on an irreducible
component Y of X of multiplicity /. Prove that m p (X) > h and the equality holds if and only if P
is smooth for Y and P does not belong to any other irreducible component of X.

16.2 Parametrizations and Branches of a Curve

Let X be a reduced affine plane curve with equation f(x,y) = 0. Let £(¢), n(¢) €
K[[#]] be formal power series, not both belonging to K. We will say that

x=£@1), y=n()

(or simply (£(¢), n(t))) is a parametrization of X if f(£(t), n(t)) = 0. The point
P = (p,q) with p = £(0) and g = 1(0), is called the centre of the parametrization
and it belongs to X. Note that the notion of parametrization and of centre of a
parametrization is invariant by change of coordinates. Note also that if g € K[[7]]
is such that o(g) > 0, we can substitute £(7) = £(g(7)) and 7(7) = n(g(7)) and
(&(1), n(7)) is still a parametrization of X with the same centre. It is said to be
obtained from (£(¢), n(¢)) with a change of parameter. If 0(g) = 1 one says that the
change of parameter is regular. If two parametrizations differ by a regular change
of parameters they are said to be equivalent. By taking into account the properties
substitutions (see Sect. 15.2.2) one sees that this is in fact an equivalence relation
between parametrizations. If (£(r), n(¢)) is a parametrization of the curve X, and
E@),n() € K[[#"]], with & > 1, the parametrization, or one equivalent to it, is said
to be reducible. In this case, if & is maximum so that £(¢), n(¢) € K[[¢"]], we may
replace t" with a new variable 7, so that (£(), 7(t)) becomes a new parametrization
(&(1), n(7)), which is now irreducible and with the same centre as (£(¢), n(¢)). We
will mainly deal with parametrizations that are irreducible and we will soon give an
irreducibility criterion for parametrizations.

Lemma 16.2.1 Any parametrization of a curve is equivalent, up to a suitable choice
of coordinates, to one of the form

x=t", y=ait" +ay"™ +--- (16.1)

withay,ay,...nonzeroon > 0,0 <ny <np, < ---

Proof First of all we can put the centre of the parametrization at the origin of the
coordinate system. Then the parametrization takes the form

x=t"(bp+bit+---), x=t"(co+cit+---)

where n, m > 0 and by, ¢y # 0. Now we make a substitution
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l=d17’+d27’2+”'

with d; # 0 and try to determine d}, d, . .. in such a way that after the substitution
the parametrization takes the form (16.1). After substituting we have

x=71"d +dor +---)'[bo+bi(d1 +daT+ )+ ] =
= 7"[d]'by + (nd} "' dobo + d{ ' b)T + - +
+ (nd}"'dibo + Py(by. ... bi.dy. ... di_))T 4],

where P; is a suitable polynomial in its arguments. We define recursively d;, dy, . . .
in the following way

dy =by',
dy = —(ndy"~bo)~'di" by,
di = —nd!"'bo) ' Pi(by, ... b dy, ..., diy), i>=3.

With these definitions we have x = 7", as wanted. O

A parametrization of the type (16.1) is said to be in standard form.
Next we give the announced irreducibility criterion:

Lemma 16.2.2 A parametrization of a curve in standard form (16.1) is reducible if
and only if the integers n, ny, na, . .. have a common factor larger than 1.

Proof One implication is obvious. We prove the other.
Suppose that there is a substitution ¢t = f(7), with o(f) = 1 such that after the
substitution we have x = £(7), y = n(7), with £(7), n(1) € K[[7"]], with h > 1.
We first claim that @ e K[[7"1]. In fact, if this is not the case, since o(f) = 1
we have
f@) =7l +bim" 4+ " +eth ),

with by # 0, ¢ # 0, and & does not divide k. Then

x=E6@) =7"lbo+bim" + - b7 f i ] =
=7"(bo 4+ b1 + - + b7 + ner" Kby + by 4 -+ by 4

Since £(7) € K[[7"]], we have that & divides n because £(7) starts with by7". Then
E(T) — T"(bo + by7" + - + BTy € K[[7"]], but

§r) = 7"(bo +br7" + -+ by = neby T T 4

and & does not divide n + k because it does not divide k. So we have a contradiction
which proves our claim. Then we can write f(7) = 7g(7), with g(7) € K[[7"].
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Next we prove the assertion of the lemma. Note that the above argument proves
that 4 divides n. We want to prove that also ny, n, ... are all divisible by 4. We
argue by contradiction and assume this is not the case. Suppose that ny, ..., n are
divisible by & but ny; is not divisible by /. Then

n(r) —@7"g(m" +--- +a7"g(r)") =
= A 7" (Do + by7" ) = A b T

The left hand side belongs to K[[7"]] because 1(7), g(7) € K[[7"]] and n1, . .., n
are all divisible by /, whereas the right hand side does not belong to K[[7"]] because
it starts with aH]bg‘“T””‘ , and ng is not divisible by k. This is a contradiction,
which proves that ny, ny, ... are all divisible by #. O

An equivalence class of irreducible equivalent parametrizations of X is called a
branch of X. A branch is determined by any of the equivalent parametrizations which
represent it. All parametrizations of the same branch have the same centre belonging
to X, which is called the centre of the branch.

Proposition 16.2.3 Consider f(x, y) € K[x, y] anirreducible polynomial. To each
root n(x) € K{x} of f(x,y) = 0 such that o(n) > 0 corresponds a unique branch
of the curve X with equation f(x,y) = 0 with centre the origin. Conversely, to
any branch (€, ) of X with centre the origin correspond o(§) roots n(x) € K{x} of
f(x,y) =0, witho(n) > 0.

Proof Let n(x) € K{x} be a root of f(x,y) =0 with o(n) > 0. Let n be the
minimum such that n € K(x ), so that we can write n = n(x n) Then if we set
& =1",n=n(), then (£, n) is parametrization with centre the origin of X. More-
over by the definition of n and by Lemma 16.2.2, this parametrization is irreducible,
so that it defines a branch of the curve X with centre the origin.

Conversely, consider an irreducible parametrization (£, ) of X with centre the ori-
gin, and assume thato(§) = n > Oand o() > 0. By Lemma 16.2.1 this parametriza-
tion is equivalent to a standard one like (16.1). Clearly two parametrizations like this
can only differ by substitution of ¢ with e, where " = 1, so that there are n distinct
such parametrizations. We will prove that each of them determines a different root
of f(x,y) = 0. Indeed, consider two distinct values £; and ¢, of the n—th root of
unity €. The values of 7 corresponding to €; and ¢; are

m=ae't" +aEPt"™ + -+ and m = a1yt + axe? ™ 4
Suppose that 77; = 1), which implies
el =gy for i=1,2 (16.2)
] y J2, .. .
Since the integers n, ny, n,, ... have no common factor larger than 1 (see Lemma

16.2.2), we can find a positive integer m such that the greatest common divisor of
n,ny, ny, ..., N, is 1, so that there are integers A\, A\;, Az, ..., A, such that
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l=Mn+ X \ng+ Xng + -+ \uny,.

Taking into account (16.2) and €] = &5 = 1, we find the relation

_ _dnthniont A g, _And ni+ ona A A,
g1 =€) =g

= 52

which is a contradiction. Hence for each of the distinct roots €; of €” = 1, we have
different series 7;, fori = 1, ..., n. Each of them gives rise to aroot of f(x,y) =0
of the form

ny ny
n

y=a1x" +dyxn +---
as desired. O

Now we are in a position to prove the fundamental:

Theorem 16.2.4 Given an irreducible affine plane curve X, every point of X is the
centre of at least one branch of X.

Proof Let P be any point of X and assume that X has degree d. Up to appropriately
choosing the coordinates, we may assume that P is the origin and that the projective
closure of X does not pass through the point at infinity of the y axis. Then the equation
of X is of the form

Fx,y) = ap(x) + a(x)y + -+ y*

with ag(0) = 0. By Exercise 15.3.8, there is at least one solution 7 of f(x, y) = 0 as
an equation in y, such that o() > 0. By Proposition 16.2.3 it determines a branch
of X with centre P. O

Remark 16.2.5 The notions of parametrization and of branch can be extended in
a natural way to the case in which X has multiple components. Suppose X has
equation f(x,y) =0 with f with no factor not depending on y, namely X has
no line component parallel to the y axis (we may achieve this by an appropriate
choice of coordinates). By Exercise 15.3.9 we have that f(x, y) = 0 has a multiple
root in K{x} if and only if f has a multiple factor. We extend the correspondence
between roots of f(x, y) and branches of X by saying that aroot of f(x, y) = 0 with
multiplicity n corresponds to a branch of X of multiplicity n. Then every branch of
an irreducible component of X of multiplicity m counts with multiplicity at least m.

16.3 Intersections of Affine Curves

Let X,Y C A% be two affine plane curves of degrees n, m. We can look at their
p_rojective closures X, Y. If X and Y have no common component, then also X and
Y have no common components and, according to Bezout Theorem, they have only
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finitely many points in common, and the number of these points is nm, provided we
count each point P € X NY with its intersection multiplicity i (P; X, ¥).

For any point P € A? we define the intersection multiplicity of X and Y at P as
i(P;X,Y):=i(P; X,Y).

If X and Y have equations f(x,y) =0 and g(x, y) = O respectively, one sets
i(P; f,g) :=i(P;X,Y).

In this section we will interpret the intersection multiplicity of two affine curves
at a common point in various ways which will be useful for our further purposes.

16.3.1 Intersection Multiplicity and Resultants

First of all we want to go back to the general definition of intersection multiplicity
given in Sect. 11.4, and provide a more flexible and computable interpretation of it
in the curve case. Interpreting AZ as usual as the open subset Uy of P? (see Sect. 1.5),
in P2 we have homogeneous coordinates [xg, x1, x2] such the point (x, y) of A? has
homogeneous coordinates [1, x, y].

Consider the two affine curves X, Y with equations f(x, y) = 0 and g(x, y)=0
respectively, with no common components. Their projective closures X, Y have
equations 5(f) = 0 and 3(g) = 0 where 3 is the homogenizing operator defined in
Sect. 1.5. To ease notation we set from now on 3(f) = f}, and similarly 5(g) = g.
Suppose we have an intersection point P = [py, p1, p2] of X and Y. Then recall from
Sect. 11.4 that i (P; X, Y), is the multiplicity which the factor uopo + u1 p1 + usp2
has in the resultant of the system of polynomals

Su(xo, x1, x2),  gn(xo, X1, X2),  uoxo + u1x;) + Usxs. (16.3)

Note that the equation
uoxo + u1x1 + uzx, =0 (16.4)

where ug, u1, up are indeterminate, represents an indeterminate line £ of P2. This
can be also represented in a different way. Take two points A = [a] = [ag, a1, o]
and B = [B] = [0o, 51, B-] of P2, with indeterminate coordinates, and consider the
line £ = (A, B), which can be parametrically represented by

Xi =My +pf, i=0,1,2. (16.5)

The line £ can be represented as well by the equation (16.4) where ug, u;, ug are
proportional to the maximal minors with alternate signs of the matrix

ap 1 O
(ﬁo 8 @) ‘ (16.6)
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Let us plug (16.5) in fj(xg, x1, x2) and g, (xo, X1, X2). In this way we obtain two
homogeneous polynomials in A, ¢ and we can consider their resultant R (o, 3) which
is a polynomial in « and 3. This resultant vanishes if and only if the line £ = (A, B)
contains one of the intersection points P = [p] = [po, p1, p2] of X and Y, i.e., it
vanishes if and only if

Qo ¥ 2

(o, 8,p) == |Bo 1 B2| =0
Pbo P1 P2

which by the way is equivalent to ugpg +u1py + uzpr =0, if ug, uy, up are the
minors of maximal order of the matrix (16.6) with alternate signs. This implies that
we have a decomposition

R(a,B) =c[](a 8. p)" (16.7)

where ¢ # 0 and the product runs over all points P € X N Y. Taking into account that
each factor of the form (c, 3, p) appearing in R is also of the form uypo + u;p; +
u, pa, it is clear that R(cx, 3) is nothing else than the resultant of the polynomials in
(16.3), and therefore the exponent rp is just the intersection multiplicity of Xand Y
at P.

In order to make it easier to compute the intersection multiplicities, it is useful
to make some specializations. For instance, we take A = [1,u, 0], B = [0, v, 1],
A =1, p=t,so that (16.5) becomes

xo=1, xy=u+tv, x,=t

and R(c, B) becomes a polynomial N (u, v) which is called the Netto’s resolvent
of f and g. This is nothing but the resultant of f;,(1, u +tv, 1) = f(u + tv,t) and
gn(L,u+tv,t) = g(u + tv, t) with respect to ¢. By taking into account (16.7), we
have

N(u,v) = c[ Jpo — pr+vp2)”

Again the product runs over all the intersection points of X and Y.

Next we specialize further setting v = 0, provided X and ¥ do not both pass
through the point at infinity of the y axis which has coordinates [0, O, 1]. In this case
we have the resultant R(u) of the polynomials f(u, t), g(u, t) with respect to ¢ and

R() :== N, 0) =c[ [(upo — p1)”

This form applies well to the intersection points P = (p, ¢) of X and Y in A2, for
which py = 1, p; = p. Then we have

R@) =c[Ja—py
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and the product runs over all the intersection points of X and Y. So the factor u — p
appears in R(u) in correspondence to all intersection points of X and Y with the
same x—coordinate p, and the exponent with which u — p appears in R(u) is the
sum of the intersection multiplicities of X and Y at their common points with first
coordinate p.

In conclusion we can summarize what we have proved in this:

Theorem 16.3.1 Let X and Y be affine plane curves, with no common component,
with equations f(x,y) = 0and g(x, y) = 0 respectively and such that their projec-
tive closures do not both pass through the point at infinity of the y axis. Let R(x) be
the resultant of f and g with respect to y. Then the solutions of the equation R(x) = 0
are the x—coordinates of the intersection points of X and Y and their multiplicities
are the sums of the intersection multiplicities of X and Y at the common points with
the same x—coordinate.

In particular, if no common points of X and Y are aligned on lines with equa-
tions x = const., then the solutions of the equation R(x) = 0 are the x—coordinates
of the intersection points of X and Y and their multiplicities are the intersection
multiplicities of X and Y at the unique common point with the corresponding first
coordinate.

We can add a useful remark given by the following:

Proposition 16.3.2 Let X and Y be affine plane curves, with no common compo-
nent, with equations f(x,y) = 0 and g(x,y) = 0 respectively and such that their
projective closures do not both pass through the point at infinity of the y axis. Let
R(x) be the resultant of f and g with respect to y. Then R(x) is not identically O.
Moreover there is no common branch to X and Y.

Proof The fact that R(x) is not identically 0 follows from Theorem 16.3.1, since the
equation R(x) = 0 has as solutions the x—coordinates of the finitely many intersec-
tion points of X and Y.

As for the other assertion, suppose that X and Y have a common branch. We may
assume that the centre of the branch is the origin, and that the branch has a standard
parametrization of the type

so that

Then we have
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sothat =) 72, a,'xﬁ is a common root of the equations f(x, y) = 0and g(x, y) =
0 in the variable y. This implies that R(x) = 0, a contradiction. O

16.3.2 Order of a Curve at a Branch and Intersection
Multiplicities

Consider a branch « of an affine plane curve determined by a parametrization
(&(t),n(t)). Let X be any affine plane curve curve, with equation f(x,y) = 0.
We define the order of X (or of f) at v, denoted by 0,(X) = 0,(f), to be oo if
f(&@),n()) =0 (.e., if v is a branch of Y), or otherwise the order of the power
series f(£(t), n(t)) int. Itis a simple verification, that we leave to the reader, that this
definition does not depend on the single parametrization that determines the branch,
moreover it is independent of affinities or change of coordinates. It is also easy to
verify that, for any pair of polynomials f(x, y), g(x, ¥) and any branch ~ one has

0,(f9) = 0,(f) +0,(9), 0y(f £ g) = min{o,(f), 0,(9)}.
One has 0,(X) > 0 if and only if X contains the centre of .

Theorem 16.3.3 Let X, Y be affine plane curves with equations f(x,y) =0,
g(x,y) = 0 respectively, with no common component. Suppose that the point P
is contained in X N'Y. Then the sum of the orders of X at the branches of Y with
centre P (counted with their multiplicities, see Remark 16.2.5) equals the sum of the
orders of Y at the branches of X with centre P (counted with their multiplicities),
and this number equals i (P; X, Y).

Proof We can choose the coordinates in such a way that P is the origin, the projective
closures of X and Y do not contain the point at infinity of the y axis, and no other
intersection point of X and Y sits on the y axis. Then the coefficient of the highest
power of y appearing in f and g can be assumed to be 1, and by Corollary 15.3.3
we have

fey=[lo-%, gx.n=[]o-n)
i=1 j=1

forsome&;, n; € K[[x%]],forasuitableh,andi =1,...,n,j=1,...,m.Consider
ani = 1,...,n such that o(&) > 0, so that &; corresponds to a branch v of X with
centre the origin (see Proposition 16.2.3), that is represented by a parametrization of

the type
oo
x=t, y=)Y at'
i=1

Then we have
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o

g<z’,2a,-z'> =btF+..., with b#£0, (16.8)
i=1

where k = 0,(g) is not co by Proposition 16.3.2.
Now ~ has equivalent parametrizations of the form

o0
x=t", y= E sj»aiti.
i=1

where ¢, for j =1, ..., r, is any r—th root of the unity. Each of these parametriza-
tions gives rise to a different root

o .
_ i B P
fj—E giaixr, j=1,...,r
i=1

of the equation f(x, y) = 0in y. By (16.8) we have
g(x, &) = bexr + -+

hence

Hg(x,fj)zcxk+--~, with ¢ # 0.

Jj=1

Applying the same argument to any branch v of X with centre the origin, we find

o(]‘[g(x@)) =Y 0,(9)
=1 ol

where the product on the left hand side is on all roots &, . . ., &, of f(x, y) such that
o(&) >0fori =1,...,u (see Proposition 16.2.3), and the sum on the right hand
side is made on all branches of X with centre the origin.

Letnow 7, ..., 7 be the roots of g(x, y) with positive order, and 1}, ..., )}, the
roots of g(x, y) with zero order. Then we have

Y o) =]]ox. &) = o( T @« J] @ —nL)) =
ol =1 = Jr= el /
_ 0< M @ ~h(x))
=

1,...u,r=1,..., v
where o(h) = 0. Therefore
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Y o9 = o(Hg(x, 5») = 0< [T «- m). (16.9)
=1

ol = I=1,..., u,r=l1,..., v

On the other hand, by exchanging the roles of f and g in the above argument, we
have
Do) = o( [ - &)) (16.10)
Y ,

where the sum on the left hand side is made over all branches ' of g with centre the
origin. From (16.9) and (16.10), we have

Do =) 0(9).

i
7 ¥

Let us now denote by &, ..., &, the roots of f(x,y) such that o(§) = 0 for
t =1,...,u'. Then, with the above notation, we have

fey= ] o-& ] o0- 9x.n= ] o-m) [ &-np.

=1,..., t=1,...,

u r=1,..., v s=1,...,v

If R(x) is the resultant of f(x, y) and g(x, y) by the elimination of y, we have (see
Exercise 2.1.6)

R =[] @&@-w» [ @&@-u-

0( [T «- ni)) = 0( [T «- m)) =0.
, ,

=1,...,u,s=1,..., v t=1,...u',r=1,..., v

0< I1 (£§—77,’-))=0.

Indeed, if o((§, —7n.))) > 0 for some t =1,...,u',s =1,...,v/, then § and 7,
would start with the same constant term d # 0. The corresponding branches would
then have the same centre at the point with coordinates (0, ). But this is not possible
because we assumed that X and Y have only the origin as a common point on the y
axis. In conclusion we have
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o(R(x)) = o( [T @- m))

I=1,...,u,r=1,.., v

which, as we saw, equals Zv’ 0,(f) = Zw 0(g). On the other hand o(R(x)) is the
multiplicity of the root O for R(x), which is equal to the intersection multiplicity of
X and Y at the origin (see Theorem 16.3.1). This completes the proof of the theorem.

O

16.3.3 More Properties of Branches and of Intersection
Multiplicity

Lemma 16.3.4 Let v be a branch of a curve with centre the point P. Consider the
integer
o(y) = min{o,(L) : L is a line containing P}.

Then for all lines L containing P, one has o,(L) = o(7), except for only one line
Lo containing P such that 0(Lo) > o(7).

Proof Consider a parametrization
oo [o¢]
x=E0) =) at'. y=nn)=) bt (16.11)
i=0 i=0

of . Take any line L containing the centre P = (ao, by) of . The equation of L is
of the form
Ux,y) =alx —ap) +b(y —bp) =0

with (a, b) # (0, 0). We have

LED, (1) =Y (aa; + bby)i'.

i=l1

If r is the minimum positive integer such that a,, b, are not both zero, then o, (L) = r
unless aa, + bb, = 0. Thus the condition aa, + bb, = 0 identifies the unique line
Lo through P such that 0, (Lo) > r. O

The positive integer o(7y) defined in the statement of Lemma 16.3.4, is called the
order of the branch . The branch is called linear if o(y) = 1. The proof of Lemma
16.3.4 shows that a branch with parametrization (16.11) is linear if and only if either
a; or by is non—zero. The unique line L in the statement of Lemma 16.3.4 is called
the tangent of the branch. The positive quantity c(y) = 0,(Lo) — 0o(y) is called the
class of the branch.
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Proposition 16.3.5 Let X be a reduced affine plane curve. One has:

(a) ifapoint P € X has multiplicity m then the sum of the order of the branches of
X with centre at P is m;

(b) a point P € X is smooth for X if and only if it is the centre of a unique linear
branch;

(c) the principal tangents to X at a point P € X coincide with the tangents to the
branches of X with centre P.

Proof (a) A line L through P, which is not tangent to any branch of X with centre
P, has intersection multiplicity i (P; L, X) = 27 o(7), where the sum is taken over
all branches y with the centre at P. On the other hand i (P; L, X) = m, except for
the finitely many lines L which are principal tangent lines to X at P. This implies
m= ZW o(7).

Part (b) is an immediate consequence of (a).

(c) Let m be the multiplicity of P for X. By (a), we have m = 27 o(vy), where
the sum is taken over all branches v with the centre at P. A line L is a principal
tangent line to X at P if and only if i(P; L, X) > m. As we saw in the proof of
(a), a line L is tangent to one of the branches of X with centre at P if and only if
i(P;L,X) > Zv o(y) = m. This proves the assertion. m|

Proposition 16.3.6 Let v be a branch of a reduced affine plane curve with centre
at P and let X be a reduced affine plane curve which has multiplicity n at P. Then
0,(X) = no(v) and the equality holds if and only if the tangent to vy at P is not one
of the principal tangents to X at P.

Proof The assertion is trivial if 0, (X) = oco. So we will assume this is not the case.
Fix coordinates in such a way that P is the origin and the x and y axes are neither
tangent to -y nor among the principal tangents to X at P. Set m = o(y). Then v and
the branches i, ..., v, of X at P may be assumed to have parametrizations given
by
x=t", y=at"+---, and x=t", y=agt™+---, i=1,...,h
witha,a; #0,fori =1,...,hand

my+---+m =n.

So the tangent line to y has equation y = ax and the tangent line to +; has equation
y=a;x,fori =1, ..., h. The corresponding fractional power series are

nj=ax+---, j=1,...,m

and
ni=ax+---, i=1...,hi=1...,m
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where the indices j and [ correspond to the m—th and m;—th roots of the unity. Let
f(x,y) =0 be the equation of X. As we saw in the proof of Theorem 16.3.3, we
have

[[renn= I (j — mDh(x) =
j=1 j=1,...m,i i

i
5
ii
=
T
E

— 1_[ <(Cl _ ai))nm;xr}'tlni + .. .)7

i=1,...,h,

where o(h) = 0. Thus 0, (f) = m(m + - - - +m;) = mn. The equality holds if and
only if a is different from all of a4, ..., ay, i.e., if and only if the tangent to ~ at P
is not one of the principal tangents to X at P. O

As an immediate consequence we have:

Corollary 16.3.7 Let X and Y be two reduced affine plane curves with no com-
mon components. Suppose P is a point of multiplicity n for X and m for Y. Then
i(P; X,Y) > mn and the equality holds if and only if X and Y have no common
principal tangent line at P.

16.3.4 Further Interpretation of the Intersection Multiplicity

In this section we give another important interpretation of the intersection multi-
plicity of two curves. First of all we list the main properties that the intersection
multiplicity has:

(a) if X, Y are two affine plane curves and P € A? is a point, then the intersection
multiplicity i (P; X, Y) € NU {oo} and precisely i (P; X,Y) =0if P ¢ X NY,
i(P;X,Y)e N\ {0}if P € XNY and X and Y have no common component
passing through P,i(P; X, Y) = oo if P sits in a common component of X and
Y,

(b) i(P; X, Y) depends only on the components of X and Y containing P;

(c) i(P; X,Y) is invariant under affinities, i.e., if 7 : A> — A? is an affinity then
(P X,Y) =i(T(P); 7(X), 7(Y));

(@) i(P; X, Y) =i(P; Y, X);

(e) i(P; X,Y) > mp(X)mp(Y) and the equality holds if and only if X and Y have
no principal tangents in common at P;

yeeny =l1,...,
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i(Pifogy= Y mmi(P; fi.gp):

(g) for every triple of polynomials f(x, y), g(x, y), h(x, y) one has

i(P; f,9) =i(P; f, g+ hf).

Most of these properties have been proved above. For property (f) see Exercise
16.3.16. Property (g) follows from Theorem 16.3.3.
To prove the main theorem of this section we need some preliminary results.

Lemma 16.3.8 LetZ C A, be anideal. Then Z,(T) is a finite set ifand only if A, /T
is a finitely generated K—vector space. If this is the case, then the number of points
in Z,(Z) is at most dim(A,, /7).

Proof Let Py, ..., P, be distinct points in Z,(Z). We can choose polynomials
fi,..., fm € A, such that f;(P;) = ¢;; fori, j =1,...,m, where ¢;; is the Kro-
necker symbol (we leave to the reader the easy task to prove that there are such polyno-
mials). Denote by f; the class of f; in A, /Z,fori =1, ..., m. Iy ", t; f; = 0, with
fyooosty € Kithen) /L t; f; € Z,s0t; =Y i t; f;(P;) = 0,forallj =1,...,m.
This yields that fi, ..., f, are linearly independent over K. Thus dim(A,, /) > m,
and therefore dim(A, /Z) is infinite dimensional if Z,(Z) is not finite.

Suppose now Z,(Z) to be finite, consisting of the distinct points Py, ..., P,. Set
P, = (pity..., pin) fori = 1,..., m. Define

m
gjzl_[(x]—p,]), for j=1,,n
i=l1

Then g; € Z,(Z,(1)), for j =1, ..., n. So by the Hilbert Nullstellensatz, there is

a positive integer & such that gi.‘ €Z, for j =1,...,n. Denote with an upper bar
the images of polynomials in A, /Z. We have that gj? = 0, hence )E;.”h is a K-linear
combination of 1, x, ..., )ETh_l, for j =1, ..., n. It follows that for any s > mh,
)Ej is a K-linear combination of 1, X;, ..., Fmh-l ,for j =1, ..., n. This proves that
the set

& E L L, < mh)
generates A, /7. O

Next we make a definition. Let A be aring and let Z and 7 be two ideals of A. In
general one has
IJ<CINYg. (16.12)

The ideals Z e J are said to be comaximal if T + J = A.
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Lemma 16.3.9 Let A be a ring and let T and J be two comaximal ideals of A. One
has:

(a) IJ=1NnJ;
(b) I" and J™ are comaximal for any pairs of positive integers n, m.

Moreover, if 1y, ..., I, are ideals in A such that for anyi € {1, ..., h} the ideals
Ziand J; =) i Z; are comaximal, then for any positive integer n one has

AN =TT =G N...NT)"
Proof (a) Since A =7 + J, we have

INg=A@NNA=ININIT+J) =
=@NDHI+INNHI <IIT+1J =1,

which, with (16.12), proves the assertion.

(b) Since A =7 + J we have a relation of the form 1 = u + v, with u € Z and
v e J.Then 1 = 1" = (u + v)" and expanding the power we see that 1 € 7 4+ J™,
i.e., Z and J™ are comaximal. Hence we have 1 = u + v, withu € Z and v € J™.
Again 1 = 1" = (u 4+ v)" and expanding we see that 1 € 7" + J™, hence 7" and
J™ are comaximal.

To prove the last assertion, we proceed by induction on 4. For 2 = 2 and for all
n, by (a) we have I7 NZ} = I11} because Z{ and Z7 are comaximal by (b). On
the other hand we have the trivial identity 7777 = (Z,Z,)" and finally 77 N1} =
@) = @ NI

Now we assume the assertion is true for a number of ideals smaller than #. We
have 77 J' = 17 N J|" because Z} and J|' are comaximal by the hypothesis and by
(b).Foralli € {2, ..., h} we still have that Z; and ﬂ2<j;éi Z; are comaximal. So we
can apply induction and we have

LI =L1Tn---NL)"' =T (@ - Ip)" = &y - Ip)".
On the other hand, again by induction, we have
O =0nd'=0n@N..0N'=1{n@ynN...nL)=2{N...NI;.
Finally, by (a) we have
NI =@a)" =@ ng)" =@ n...0nI)".
The assertion follows. O

Lemma 16.3.10 Let I be an ideal of A, such that Z,(Z) = {Py, ..., Py} is finite.
Set O; = Opn p, fori =1, ..., m. Then there is a natural isomorphism
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¢: AT —> []9:1/79;.

i=1
In particular

dimg (A,/T) = ) _ dimg(D;/T9;),

i=l
and, if Z,(1) = {P}, then A, /T is isomorphic to Opn p/IOpn p.

Proof Denote by m; the maximal ideal in A, corresponding to the point P;, for
i=1,...,m.SetR = A,/Zand R; = ;/Z9;,fori =1, ..., m. There are natural
homomorphisms ¢; : R — R;,fori =1, ..., m, and these induce a homomorphism
¢:R— [, R

By the Nullstellensatz, we have rad(Z) = (|-, m;. It is immediate that there is a
positive integer 4 such that ()/_, m;)" = rad(Z)" < Z.Moreover,leti € {1, ..., m}
and consider the ideals m; and () j+i m; which are clearly comaximal. Then, by
Lemma 16.3.9, we have

m m h
ﬂmfl:(ml"'mm)h:<ﬂmi> cI.
i=1 i=1

Now we proceed with the proof of the assertion. For each i = 1,...,m, fix a
polynomial f; € A, such that, forall j =1,...,m, one has f;(P;) = J;; (see the
proof of Lemma 16.3.8). We set g; =1 — (1 — fih)h, fori =1,...,m. We have
gi = fih pi, for some suitable polynomial p;, fori =1, ..., m. So we have g; € m’]’.
if 1 <i,j<mandi # j.Thus,if 1 <i,j <mandi # j we have

m
h
9i9; € ﬂmz cT
=1
Moreover, for every j = 1, ..., m, we have

m m

I_Zgi :(1_gj)_zgi eﬂm7 cT.
i—1

itj =1

Furthermore

m—ﬁ=mﬂ—ﬁﬁe(ﬂm®«ﬁ§l

i#]
So if we denote by g; the class of g; in R, fori =1, ..., m, we have g;g; = 0;;9;
and Y " g; = 1.
Now we claim that, if g € A, is such that g(P;) # O forsomei = 1, ..., m, then

there is a ¢ € R such that g; = g, where g is the class of g in R.
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To prove the claim, assume that g(P;) = 1.Setqg = 1 — gsothatg € m;. We have

6—-0q"=g60-¢") =g - +qg+---+¢" " =
=1 —q)gi+gq+-+95¢""=9(g+gq+ - +agq"™"

and g"g; € ML, mlh C 7. So in R we have the relation

g =g(g +gq+ - +aq"h

with q the class in R of ¢. The claim follows by setting t = g; + giq + - - - + giq" "
Finally we have to prove that ¢ is injective and surjective. First we prove that ¢
is injective.
Suppose we have a polynomial f € A, such that its class f in R is such that

¢(f) = 0. By the definition of localization this means that for any i =1, ..., m,
there is a polynomial u; € A,, such that u; (P;) # O and thatu; f € Z, sothatu;f =0
in R (again, u; is the class of u; in R). By the above claim, for everyi = 1,...,m,

we can find a #; € R such that g; = #;u;. Then we have

f=) af=) twf=0
i=1 i=1

as wanted.

Finally, let us prove the ¢ is surjective. Since g;(P;) =1 foralli =1, ..., m,
then ¢; (g;) is invertible in R;. As ¢;(g:)¢(g,) = ¢i(gig;) = 0, we have ¢;(g;) = 0,
fori, j=1,...,m withi # j. Thus

oi(gi) = & Zg; =¢i(1) =1.

j=1

Now take an element x = (x, ..., X,) € ]_[1'-”:l R;,sothatforalli =1,...,m we
may write x; = fT’, where 7); is the class of a polynomial e; such that e; (P;) # 0. We
will denote by r; an element in R such that ¢; (r;) = & (this is possible because ¢;
is clearly surjective foralli = 1, ..., m). By the claim, foralli = 1, ..., m, we can
find a#; € R such that g; = f;¢;, where ¢; is the class of ¢; in R. We have

Gitn = ¢i(tie;)) = gi(gi) =1, for i=1,...,m.

Then we have

X = é =&oi(t) = ¢i(tix;), for i=1,...,m.

l

and therefore
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l

= &i .
bi ijxjgj =¢i(tiy) =—=x;, for i=1,...,m.
=1

Hence ¢(3__, #;x,8;) = x, as desired. o

Lemma 16.3.11 Let V C A" be an affine variety, let P be a point of V and let
J C A, be an ideal containing T,(V). Let J' C A(V) be the image of J. There is
a natural homomorphism

¢: Opn p/TOpnp — Oy p/T Ov.p

which is an isomorphism.
In particular Opn p/Z,(V)Oun p is isomorphic to Oy p.

Proof The map ¢ sends the class f of a function f in Qg p/J Opn p in the class of
the same function in Oy _p/J’'Ox, p. The map is easily seen to be well defined, and to
be a surjective homomorphism. Let us prove that it is injective. Indeed, if ¢( f) = 0,
this means that the class of f belongs to J'Ox p, and this implies that the class of
f belongs to JOpn p, hence f = 0. O

We are now ready to prove the:

Theorem 16.3.12 Let X, Y be two affine plane curves with respective equations
f(x,y)=0and g(x,y) = 0and let P € A? be a point. Then

i(P; X, Y) =dimg(Op2,p/(f, 9)) (16.13)

where we abuse notation and denote by f and g their classes in Op2 p.

Proof The proof consists of two main steps. In the first step we prove uniqueness
of intersection multiplicity, i.e., that however given plane curves X, Y and a point
P e A?, there is a unique way to define i (P; X, Y) so that properties (a)—(g) listed
above are verified. The second step consists in proving that if one defines i (P; X, Y)
as in (16.13), then properties (a)—(g) are verified.

We proceed with step 1. Suppose that, for every plane curves X, Y and a point
P € A?, we have the definition of a number i (P; X, Y) so that properties (a)—(g) are
verified. We will see that i (P; X, Y) is uniquely determined. First of all by property
(c) we may assume that P is the origin. If X and Y contain a component through
P, then i(P; X,Y) = oo by (a). So we may assume that P sits in no common
component of X and Y. Then, still by (a), we have i (P; X, Y) = 0 if and only if
P ¢ X NY. We argue by induction and suppose we uniquely determine the case in
whichi(P; X,Y) < n,forn € N, and we prove that we can uniquely determine when
i(P; X, Y) = n.Consider the polynomials f(x, 0), g(x, 0) € K[x] and assume their
respective degrees are r and s, where r or s are assumed to be O if the polynomial
vanishes. We may suppose that r < s by (d).
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Case 1: r = 0. Then y divides f, so we may write f = yh. By (f) we have
n=1i(P; f,g) =i(P;y,g) +i(P:h,g).

Note that g(x, 0) cannot be identically 0, otherwise g is also divisible by y, and X
and Y have a common component, i.e., the x axis, passing through P. So we can
write

g(x,0) =x'(ap+arx+---), with a9 #0 and [ > 0.

Then
i(P;y,9)=i(P;y,g(x,0) =1

by (b), (e), (f) and (g). Then i(P; h,g) =i(P; f,g) —i(P;y,9) =n—1 <n,and
by induction we can uniquely define i (P; &, g), so we can uniquely define i (P; f, g).
Case 2: r > 0. Multiply f and g by constants so to make f(x, 0) and g(x, 0) monic.
Leth =g — x*7" f. Then

i(P; f,9) =i(P; f,h)

by (g). Moreover deg(h(x,0)) :=t < s. We can repeat this process finitely many
times, perhaps interchanging the role of f and g if t+ < r, so that we end up with
two polynomials v(x, y), w(x, y) such thati(P; v, w) = i(P; f, g) and v, w fall in
Case 1. This ends step 1.

Next we go to step 2. It is clear that (b), (c), (d) and (g) are satisfied. We may
again assume that P is the origin and that all components of X and Y pass through
P. To ease notation, we set O = Oy p.

If X and Y have no common irreducible component Z, then by Lemma 16.3.10,
Oa2.p/(f, g) is a finitely generated K—vector space. If X and Y have a common
component, then f and g have a non—constant irreducible factor / such that Z =
Z.(h), so (f,g) C (h). Hence there is a surjective homomorphism O/(f, g) —
£ /(h). We show that £/ (h) is infinite dimensional over K, which implies that also
9/(f, g) is infinite dimensional over K. By Lemma 16.3.11, ©/(h) is isomorphic
to Oz p and A(Z) € Oz p. By Lemma 16.3.8, A(Z) is infinite dimensional over K,
as wanted. This proves (a).

To prove (f) it suffices to prove that, given polynomials f, g, &, we have

dimg (O/(f, gh)) = dimg (D/(f, 9)) + dimg (O/(f, h)). (16.14)

We may assume that f and gh have no common non—constant factor, because oth-
erwise (16.14) is trivially true. We have a natural surjective homomorphism

¢ 9/(f. gh) = O/(f. 9).

Then we define the K—linear map
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V:O/(fih) — O/(f. gh)

in the following way: given ¢t € O, we set 1)(f) = 7g, where the bar denotes the class
modulo the appropriate ideals. We claim that v is injective and that im(¢)) = ker(¢).
This will imply (16.14).

Let us prove the claim. The proof that im () = ker(¢) is trivial. So we focus on
proving the injectivity of 1. We keep the above notation and suppose that 1 (7) = 0,
i.e.,7g = 0. This means that rg = uf + vgh, where u, v € O. Fix a polynomial w €
Aj such that w(P) # 0, and seta = wu, b = wv, ¢ = wt, which can be considered
as polynomials in A;. Then we have g(c — bh) = af in A,. Since f and g have no
common factor, f divides ¢ — bh, hence we have a relation of the sort ¢ — bh = df .
Since w is invertible in O, we have

c b d
t=—=h—+—f
w woow
so that f = 0 as wanted.
Finally we prove that property (e) holds. We set m = mp(X),n = mp(Y). Let
m = (x, y) be the maximal ideal in A, corresponding to P which is the origin.

Consider the following linear maps of K—vector spaces
Ax/m" x Ay/m™ 25 Ay/mmtn L Ay /(T f g)

O/(f, 9) —> O/m™ ™, £, g)

and
Ay /(@™ £ g) = O/ (m™ " £, g)

where p, m and « are the natural ring homomorphisms, and A is defined by setting
Aa, b) = af + bg, where a, b are polynomials in A, and the bar denotes as usual
the class modulo the appropriate ideal. Note that 1 and 7 are clearly surjective, and
« is an isomorphism by Lemma 16.3.10. It is moreover clear that im(\) = ker(u).
Then we have

dimg (Az/m™) + dimg (Az/m") > dim(ker(u))
with equality holding if and only if )\ is injective. Moreover

dimg (A2/(m"™", f, 9)) = dimg (A;/m" ™) — dim (ker ().

Hence we get
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dimg (O/(f, 9)) = dimg(O/m"*", f, g)) =
= dimg (A2/ ("™, £, 9)) =
> dimg (A, /m™™) — dimg (A, /m™) — dimg (A, /m") = nm.
(16.15)
Indeed, for all positive integers 4 one has dimg(4,/m") = h(hTH) In fact for all
positive integers & we have a surjective homomorphism

rh: f €Ay — fot+ -+ fao1 € Appn

where A j_; is the vector space of polynomials in A, of degree at most 7 — 1,
and f = fo+ f1 + --- is the decomposition in homogeneous components. One has
ker(ry) = m", hence A, /m” is isomorphic to A, ;_; whose dimension is @

This proves the first part of property (e). One has dimg (D/(f, g)) = nm if and
only if both inequalities in (16.15) are equalities. The first inequality is an equality if
and only if 7 is an isomorphism, i.e., if and only if m"*™ C (f, ¢)©O. The second
is an equality if and only if ) is injective. We finish by proving the following:

Claim:

(1) if X and Y have no common principal tangent lines, then m*9O C (f, g)O for all
s>n+m-—1;
(i) A is injective if and only if X and Y have distinct principal tangent lines.

Proof of (i). First of all we prove that if 7 >> 0, then m’O C (f, ¢)©O. This is a
consequence of Hilbert’s Nullstellensatz. In factset Z, (f, g) = {P, Oy, ..., O;}.Let
us choose a polynomial % such that #(P) # Oand 2(Q;) =0fori = 1,...,l. Then
xhand yh areinZ,(Z,(f, g)), so there is a positive integer r such that (xh)", (yh)" €
(f, 9) C A,. Since h is invertible in O, then x”, y" are in (f, g)9, and this implies
that m>* O C (f, 9)O.

Next we let ry, ..., r, be equations of the principal tangents to X at P and
£y, ...,¢, be equations of the principal tangents to Y at P (in ry,...,r, and
£y, ..., ¢, there could be repetitions). We set ro = £y = 1. Then we define r; for
alli > m by setting r; = r,, and similarly £; = ¢, forall j > n. Thenforalli, j > 0
we set s;; = | - ridy Ej

We claim that the set £; = {s;; : i + j = d} is a basis for the vector space S 4
of dimension d + 1 of all homogeneous polynomials of degree d in x, y. Since X,
consists of d + 1 elements it suffices to show that the elements of ¥, are independent.
Suppose we have a relation of the form

apso.q +aisi.a—1+---+agsq0 =0 with ag,...,as € K.

Since r; appears as a factor of sy 4_1, ..., S4.0, it has to divide agsp 4. But since it
does not appear as a factor in s¢ 4, then ap = 0. So the above relation reduces to

aySia—1 + -+ aqsq0 =0
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and since r; appears a factor of sy 4_1, ..., S4.0, Wwe have
S1,d-1 5d,0
ap +---4a;—— =0.
r r
Now we have that r» appears as a factor in ==, ..., *%, but not in ~:=. By arguing
as above, this implies that a; = 0. Going on in this way we have gy = - - = a5, = 0,

which proves the independence of the elements of ;.

Going back to the proof of (i), it suffices to prove that s;; € (f, 9)©O (we abuse
notation here and denote by s;; alsoits classin ), assoonast =i + j > n+m — 1.
We do this by descending induction on #, given the fact that, as we saw, the assertion
is true for ¢ > 0. So we assume that the assertion is true for ¢ + ¢, forall e € N\ {0}
and prove it for 7.

Note that t =i + j > n 4+ m — 1 implies that either i > m or j > n. Suppose
that i > m (the argument is the same otherwise). Then s;; = s,,0a, where a is a
homogeneous polynomial of degree i + j — m. Note that s, can be assumed to be
equal to the homogeneous component of minimal degree of f, hence f = s,,0 + [,
where all terms of f* have degree atleastm + 1. Thens;; = a(f — f*) =af —af™,
where each term of af* has degree atleast m + 1)+ (G +j—m)=i+j+1=
t + 1. By induction we have that the class of af* is in (f, )0, hence s;; € (f, 9)O
as wanted for the proof of (i).

Finally we prove (ii). Suppose that \(@, ) = af + bg = 0. This means thataf +
bg has only terms of degree at least n + m. Write a and b as the sum of their
homogeneous components

a=ar+ar+l+"'a b=bs+br+l+"'v with arabs#o-

We want to prove that » > n and s > m, because this implies that (a, 5) = (0,0) as
wanted for the injectivity of A. Suppose, to fix the ideas, that r < n (otherwise the
argument is similar). We have

af +bg=a, fn +bsgn + -

where - - - stay as usual for higher order terms. Since af + bg has only terms of
degree atleastn + m, and a, f,, hasdegreer +m < n +m,wehaver + m =s+n
and a, f,, = —bsg,. But f,, and g, have no common factor, so g, has to divide a,,
which is impossible because r < n. Sor > n and s > m as wanted.

Conversely, suppose there is a common principal tangent r =0 to X and Y

at P. Then we may write f,, =rf’, g, =rg'. Then (¢', —f') is non-zero and

Mg, —f") =0, s0 A is not injective. This ends the proof of (ii) and the proof of
the theorem. O

To state the next result, we first give a definition. Let (A, m) be a DVR, so that
there is a discrete valuation v defined on Q(A) and A is the valuation ring of v. Given
g € A, one has v(g) = n € N. We define n to be the order of g in A, and we write
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n = o04(g), or simply n = o(g) if there is no danger of confusion. Remember that
m = (u). By looking at the proof of Theorem 14.2.11, we see that n = o(g) is the
unique positive integer such that ¢ = wu” with w ¢ m.

If X is an affine plane curve and P € X is a smooth point for X, then Oy p is a
DVR (see again Theorem 14.2.11). If g € Oy p, we set

ox,.p(g9) = OO0y p (9).
If g € K[x, yl, then we will abuse notation and denote by g its class in Oy p.

Proposition 16.3.13 Let X be an irreducible affine plane curve with equation
f(x,y) = 0and P a smooth point of X. Let Y be a curve with equation g(x, y) = 0.
Then

i(P; X,Y) = ox,p(9)-

Proof By Exercise 16.3.29 one has oy, p(g) = dimg(Ox, p/(g)). On the other hand
we claim that

Ox.p/(9) = On2 p/(f, 9) (16.16)

whence the assertion follows by Theorem 16.3.12. To prove (16.16), we first may
assume that P is the origin, then we note that

Ox.p = A(X)m,

where mp is the maximal ideal of A(X) corresponding to P. One has A(X) =
Klx, y1/(f) and mp = (x, ). So

Ox.p = (KL%, 1/ (/) ey

and it is easy to check that

KLx, y1/( Ny = EKlx, yly) /() = Op2 p/(f).

The assertion follows. O
Exercise 16.3.14 Consider the two affine plane curves X and Y with equations
fan=x 4y =2y =0, g(x,y) =x"—x’y+y’ =0.

Find the intersection multiplicity of X and Y at the origin and verify that it is equal to 27, oy(f) =
Z"/ 0,(g), where ' [resp. -] runs through all branches of Y [resp. X] at the origin.

Exercise 16.3.15 Consider the two affine plane curves X and Y with equations
fa=x+y =2y =0, g(x,y) =2 =47y +3xy* +° =2y’ =0.

Find the intersections of X and Y and the corresponding intersection multiplicities. Find the branches
at the origin of X and Y.
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Exercise 16.3.16 * Let X and Y be two affine plane curves and P € AZa point. Let Xy, ..., X;
[resp. Y1, ..., Yx] be the components of X of respective multiplicities ny, ..., n; [resp. of ¥ of
respective multiplicities my, .. ., my] passing through P. Prove that
i(P;X,Y) = > nim;i(P; X;, Yj).
i=1,.,h,j=1,...k

Exercise 16.3.17 Consider two affine plane curves X and Y of degrees n and m respectively, with
no common factor. Prove that the sum of the orders of X at all branches of Y is at most nm.

Exercise 16.3.18 Consider the affine plane curve X with equation
X"+ax—y=0

with @ € K and n > 2. Prove that X is irreducible and smooth, passing through the origin and
compute the intersection multiplicity of X with its tangent line at the origin.

Exercise 16.3.19 Consider the affine plane curve X with equation
y=ao+aix +---+ax"

with ag, ..., a, € K, a, # 0 and n > 2. Prove that X is irreducible and smooth, passing through
the point P = (0, ag), and compute the intersection multiplicity of X with its tangent line at P.

Exercise 16.3.20 Consider the affine plane curve X with equation
(% + 9% — 4+ yH(A5x7 + 11y?) +36(25x% + 13y%) = 0.
Determine its tangent lines at its intersection points with the y axis.

Exercise 16.3.21 A smooth point P of a curve X is said to be a flex if the linear branch of which
it is the centre has class n > 2, in which case it is called, more precisely, an (n — 1)—flex (if n =2
it is called a simple flex).

Determine the flexes of the curve with equation

- a(x2 - yz) =0
witha € K*.

Exercise 16.3.22 Consider the rational map

1‘2

t
cte Al - 7,7>€A2.
¢ 9(1-1-t3 1413

Prove that ¢ is dominant on a curve X of degree 3. Determine the singular points of X, the principal
tangents there, and the flexes of X.

Exercise 16.3.23 Prove that the class of a branch + is oo if and only if y is a branch of a line.

Exercise 16.3.24 The branches of order 2 are called quadratic cusps. A quadratic cusp with class
1 is called an ordinary cusp, a quadratic cusp with class 2 is called a ramphoid cusp, a quadratic
cusp of class n > 1 is called an n—cusp. Write down standard parametrizations of an n—cusp with
centre the origin.

Exercise 16.3.25 * Let P be an ordinary n—tuple point for the curve X. Prove that P is the centre
of exactly n linear branches for X.
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Exercise 16.3.26 * Let X and Y be two reduced affine plane curves with no common components.
Suppose P is an ordinary point of multiplicity n for X, centre of the branches 71, ..., 7, and there
is some positive integer m < n such that 0, (Y) > m, fori =1, ..., n. Prove that P is a point of
multiplicity at least m for Y.

Exercise 16.3.27 * Let -y, 7' be two branches. We define the intersection multiplicity of ~ and «/,
which will be denoted by i (v, 7'), in the following way.

If 7y, v have distinct centres, we define i (7, 7') = 0, If v = 7/, we define i (7, 7') = oo. If v, v/
have the same centre but they are different, we proceed as follows. First we may assume that their
common centre is the origin. Then we may assume that they are given by parametrizations

x =1t", y=a1t+a2t2+-v- and x =1", y:b1t+b212+-~~ .

Consider the corresponding fractional power series
00 .
L — . .] L 3 n __ .
& = aje;xm, with ¢f =1, i=1,...,n
Jj=1

and

00 .
171:ijnljxﬁ, with o' =1, I=1,...,m.
j=1

Then we define i (v, v') = o([T;—;... 1=
Prove the following facts:

m&i —m)).

(a) if v, have the same centre, then i (y,7") > o(vy)o(7) and the equality holds if and only if
the two branches have distinct tangent lines;

(b) if X is an affine curve and  is a branch, then o, (X) equals the sum of i (y, 7'), with 4/ varying
among all branches of X

(c) if X and Y are two reduced affine curves with no common components, and if P € X NY,
then i (P; X, Y) is the sum of i (7, 7") with ~y [resp. 7'] varying among all branches of X [resp.
of Y] with centre P.

Exercise 16.3.28 Let P be a double point for a curve X. Prove that either P is the centre of a
unique quadratic cuspidal branch of order n > 1, or P is the centre of exactly two linear branches
which have intersection multiplicity n > 1. In the latter case, when n = 1, we have anode. If n > 1
we say that the point is a n—tacnode. If n = 2 one simply says it is a tacnode.

Write down the equation of an irreducible curve with a tacnode at the origin.

Exercise 16.3.29 * Let (A, m) be a DVR and take g € A. Prove that 04(g) = dima;m (A/(g)).

Exercise 16.3.30 *Let X, Y be two affine plane curves with equations f (x, y) = Oand g(x, y) =0
respectively, that have no common components. Prove that

> (P X, Y) =dim(A2/(f, 9)).

Pexny

16.4 Solutions of Some Exercises

16.3.16 Let f(x,y) =0 be the equation of X and let f;(x,y) =0 be the equation of X; for
i=1,...,h Foreach j=1,...,k consider the branches v; 1, e Vi of Y; with centre P.
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Taking into account Exercise 15.3.9, we see that the branches of ¥ with centre P are v;;, with
j=1,...,kandl =1,..., kj, each with multiplicity m ;. By Theorem 16.3.3 we have

i(P;X,Y) = > mjoy, (f) =

J=led =1,k

_ . n nhy _
= Z mjoy, (fy' - f') =

= Z nimjox; (fi) =

j=1,... kJ=1,...k;j,i=1,....,h
mim; (Y2 0y, (f)) =
i=l,...h,j=1,..k I=1,....k;

nimji(P; X;, Y;)

Il Il
g g

i=1,...hj=1,..k

as wanted.
16.3.26 Suppose by contradiction that P has multiplicity p<m for Y. By
Proposition 16.3.6, the distinct tangent lines to 71, ..., v, at P must be also among the princi-

pal tangent lines to Y at P. This is a contradiction because Y, having multiplicity < m, can have
at most p principal tangent lines at P.

16.3.30 Apply Lemma 16.3.10.



Chapter 17 ®)
Projective Plane Curves i

17.1 Some Generalities

17.1.1 Recalling Some Basic Definitions

Let X C P? be an effective divisor of degree d, with equation f(xo, x1, x2) = 0,
where f is a homogeneous polynomial of degree d, which we will call a projective
plane curve or simply a curve. Recall from Sect. 1.6.5 that if we have the decompo-
sition in distinct irreducible components

=R

then the curves X; = Z,(f;),i =1, ..., n, are called the irreducible components of
X and one writes X = Z?:l h; X;, where h; is called the multiplicity of X; in X, for
i =1,...,n.Recall form Exercises 14.1.10 and 14.1.11 that if P is a point of X we
defined the multiplicity m p(X) of P for X. We defined also the tangent cone 7Cyx p
of X at P. This is the union of m = mp(X) lines through P, each counted with a
certain multiplicity, that are called the principal tangent lines to X at P.

If P € Uy = A2, then the affine equation of Xg = X N Uy in Uy is

¢(x,y) = f(l,x,y) =0,

and mp(Xo) = mp(X). Moreover the projective closure of the tangent cone to X
at P (see Exercise 14.1.12) coincides with the tangent cone 7Cyx_p of X at P.

17.1.2 The Bézout Theorem

Recall the Bezout Theorem, that says that if X, Y are curves in P2 with no common
components, of degrees n and m, then
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 247
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nm = Z i(P;X,Y).

PeXny

As for the notion of intersection multiplicity of two curves X, Y at a point P, we
may always assume that P € Uy = A2, consider the affine curves Xy = X N Uy,
Yo = Y N Uy, and then

i(P; X,Y)=1i(P; Xo, Yo)

and we can carry overtoi (P; X, Y) all the considerations we made in the affine case in
Sect. 16.3. As immediate consequences of the properties of intersection multiplicity,
we have the following:

Lemma 17.1.1 Let X, Y be projective plane curves of degrees n, m. Then:

(a) if X, Y have no common components, one has

nm > Z mp(X)mp(Y);

PeXny

(b) if X and Y intersect exactly in nm points, then these points are smooth for both
X and Y and X and Y intersect transversely there, i.e., they have no common
tangent line at those points;

(c) if X and Y have more than nm points in common, then they have a common
component.

17.1.3 Linear Systems

Recall from Sect. 1.6.5 the general notion of linear system, which applies to linear
systems of projective plane curves of degree d. Such a linear system of dimension r
is a projective subspace of dimension r of £, 4. Note that

d(d +3)

dim (LZ,d) = )

Projectivities send linear systems of plane curves of degree d to linear systems of the
same dimension of plane curves of the same degree d. Recall from Exercise 1.6.31
that, if P is any point of P2, the set L, 4(—P) of all plane curves of degree d
containing P is alinear system of codimension 1 in £, 4 (the notation adopted here for
Ly 4(— P) is slightly different from the one introduced on Sect. 11.4). We also recall
from Exercise 1.6.32, that if P, ..., P, € P? are distinct points and L, 4(—P; —
.-+ — Pp) is the set of all plane curves of degree d containing P, ..., Py, then
Ly 4(—P) — -+ — Pp) is alinear system of codimension at most /, and that for any
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h € N there are points Py, ..., Py such that
dd+3
dim(Log(—Py — ... — Py)) =max{—1, % —h}

(recall that dimension —1 means empty system).

Now we want to extend these results. Fix a point P of P?, fix a positive integer m
and consider the set £, 4(—m P) consisting of all curves of degree d in IP? having in
P multiplicity at least m. Of course £, 4(—m P) is empty if m > d.

Lemma 17.1.2 In the above setting, if m < d then L, ;(—mP) is a linear system
of dimension
dd+3) mm+1)

2 2 '

dim(Ly 4(—mP)) =

Proof Acting with a projectivity we may assume that P = [1, 0, 0]. Then passing
to non-homogeneous coordinates the equation of an element of £, ;(—m P) is of the
form ¢ (x, y) = 0, where ¢ has homogeneous decomposition of the form

d(x,y) = Pm(x,y) + -+ dalx,y)

with ¢;(x, y) homogeneous of degree i, for i = m, ..., d. Namely, all the homo-
geneous components of ¢ of degree i < m vanish. The linear combination of two
such polynomials is of the same type, so this proves that £, ;(—m P) is a linear
system. To prove the dimension statement, notice that forany i =0, ..., m — 1, the
polynomial ¢; has i + 1 coefficients. Therefore to be in £, 4(—m P) is equivalent to
the vanishing of

m(m +1
1424 4+m= m(m + 1)
2
distinct coefficients of ¢. These coefficients can be interpreted as distinct homoge-
neous coordinates in £, 4, and this proves the assertion. O
Letnow Py, ..., P, € P? be distinct points, and let m, ..., my be positive inte-
gers. We denote by L, 4(—m Py — --- — m;, Py) the set of all curves of degree d
having at Py, ..., P, points of multiplicity at least m, ..., m; respectively. With

the same argument as in the proof of Lemma 17.1.2 one proves that £, ;(—m P —
.-+ —my, Pp) is a linear system and it is easy to see (we leave it as a simple exercise
for the reader) that

dd+3) imi(m,- +1)

dim(Ly g(=m Py — - - —my Pp)) 2> 3 >

(17.1)

i=1

We will need the following:
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Lemma 17.1.3 Let X be an irreducible curve of degree n in P>. One has

(n—D@m—-2) mp(X)(mp(X) — 1)
I

PeX

Proof By Exercise 17.3.8 we have

po ZDOED | me D0 1)

2 PeX 2
nn—1) mp(X)(mp(X) —1)
ST ; >0.

Then there is a curve Y of degree n — 1 such that in each singular point P of X has
multiplicity at least m p(X) — 1 and moreover it passes through Qy, ..., Q, further
distinct points of X. Since X is irreducible and Y has degree one less than the degree
of X, then X and Y have no common component, hence by the Bézout Theorem
applied to X and Y we have

nn—1 2 mp(X)mp(X) = 1) +r >

PeX
S Z mp(X)(mp(X) — 1) n (n—1n+2)
- 2 2
PeX
whence the assertion follows. O
Exercise 17.1.4 *Let Py, ..., P, € P2 be distinct points, and let my, ..., my, be positive integers.

Assume that
h

d> (Zmi> — 1.

i=1

Then equality holds in (17.1).

17.2 M. Noether’s Af + Bg Theorem

In Sect. 12.4 we introduced the notion of cycle of a variety and in particular of O-cycle.
In the case of P? a 0-cycle is an element of the free abelian group D, generated by
the points of P?, i.e., it is an object of the form

withnp € Z and np # 0 for only finitely many points P € P2. The integer
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deg(@) = ) np

PeP?

is called the degree of €. In D, there is a partial ordering given by

> npP =Y mpP ifandonlyif np>mp forall P eP.
PeP? PeP?

Given two curves X, Y in P?> with no common components of degrees n and m,
we can define the intersection cycle of X and Y as

XY= Zi(P;X, Y)P.
PeP?

The Bézout theorem says that deg(X - Y) = nm.
The following properties are easy to verify:

(a) if the curves X and Y have no common components, then X - ¥ =Y - X;

(b) if the curves X and Y + Z have no common components, X - (Y +Z2) = X -
Y+ X-Z

(c) Ifthecurves X, Y, Z have equations f = 0, g = 0, g + af = Orespectively, and
they have no common components, then X - ¥ = X - Z.

We want to treat now the following problem. Suppose we have three curves
X, Y, Z, with respective equations f =0, g =0, 2 =0 in P2, such that X has no
common component with ¥ or Z, and suppose that we have X - Z > X - Y. The
question is whether it is possible to find a curve V, with equation B = 0, with no
common component with X such that

X-Z=X-Y+X- V.
If this is the case, by the Bézout Theorem we have the relation
deg(Z) = deg(Y) + deg(V).

We find such a curve V if we are able to find homogeneous polynomials A, B such
that h = Af 4+ Bg. Indeed in this case we have

X-Z=2Z,(f) Zy(h)=Z,(f) - Z,(Af + Bg) =
=Z,(f) Z,(D+Z(f) - Z,(B)=X Y+ X V.
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To attack the above problem, we first give a definition. Fix a point P € P2. We
may assume that P € Uy = A%. Let X and Y be two curves in P2, with respective
equations f = 0 and g = 0, with no common components, containing P. Let Z
be a third curve in P? with equation 7 = 0. We will say that Z satisfies Noether’s
conditions at P with respect to X and Y, if h, € (fs, ¢.) in Op2 p, where the lower
asterisk denotes the dehomogenization of forms and we abuse notation identifying
Sx» G, hy with their classes in Oz p. Note that Op2 p = Op2 p. We can now state
the:

Theorem 17.2.1 (M. Noether’s Af 4+ Bg Theorem) Let X, Y, Z be projective plane
curves of degrees n, m, q, with respective equations f =0, g =0, h =0, with X
and Y with no common components. There is a relation of the form h = Af + Bg,
with A, B homogeneous polynomials of degrees q — n and q — m respectively, if
and only if Z satisfies Noether’s conditions at every point P € X N'Y, with respect
toX andY.

Proof 1f h = Af + Bg, then dehomogenizing we have h, = A, fu+Byg« €[, Gs),
hence h, € (fi, g.) in Op2 p for all points P € X NY.

Let us prove the other implication. First we may assume that no pointin X NY
sits on the line at infinity xo = 0. If Py, ..., P, are the distinct intersection points
of X and Y, we set O; = Op2 p. By dehomogenizing we get the three polynomials
Sfe» Gx» hy. Weknow that h, € (fy, g.)inO; foralli = 1,..., h. WesetZ = (fy, gs)-
We apply Lemma 16.3.10, which tells us that we have an isomorphism

h
(]5 : Az/I—) l_[Dl/ID,

i=1

By the hypothesis, &, has zero class in O;/Z9;, foralli =1, ..., h. Hence h, has
zero class in A, /Z, so we have a relation of the form

hy = afy + by,
with a, b € A, suitable polynomials. By homogenizing we get a relation of the form
xph=A'f+ B'g

with A’, B’ suitable homogeneous polynomials, and r a suitable positive integer.
Indeed by homogenizing f, and g, we obtain f and g because, by the hypothesis,
neither X nor Y contains the line at infinity. By Exercise 17.3.5, multiplication by x
isinjective on I" := S, /(f, g). Therefore, from the fact that the class of xjh is zero
in I, we deduce that the class of % is zero in I, and this implies that h = Af + Bg.
By taking the suitable homogeneous component of this relation, we get the assertion.

O

Theorem 17.2.1 becomes useful only if we give conditions under which Noether’s
conditions are verified. This is the purpose of the next:
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Proposition 17.2.2 Let X, Y, Z be curves in P2, with X and Y with no common
components. Let P € X NY. Then Z verifies Noether’s conditions at P with respect
to X and Y if one of the following facts happens:

(a) i(P;X,Y)=1land P € Z;
(b) P is a smooth point for X and

i(P;X,Z) 2i(P; X,Y); (17.2)
(c) X and Y have distinct principal tangents at P and
mp(Z) 2 mp(X) +mp(¥Y) — 1.
Proof Case (a) is a consequence of both (b) and (c), and it is also easy to be verified

directly, we leave it to the reader as an exercise.
Let us prove (b). Relation (17.2) means that

ox p(h) = ox p(9)

hence B
h* S (é*) C OX,Pv

where, as usual, the asterisk denotes dehomogenization and the bar denotes the class.
Now we claim that

Ox,p/(§+) = Opep/(fus §s)- (17.3)
In fact we have an obvious surjective homomorphism
p:0pp— Oxp
whose kernel is clearly ( f.), hence
Ox.p = Op2p/(f2)
whence (17.3) follows. Then, since h, is zero in Ox p/(gs), it is also zero in

Op2,p/(fi. G, as wanted.
Finally we prove (c). With the usual notation we have

mp(hy) = mp(fi) +mp(g) — 1.

This implies that

h, € mne (f+mp(g)—1
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On the other hand part (i) of the Claim in the proof of Theorem 16.3.12 tells us that
mMPUDFme@)=10 o b C (fi, Gx)Oaz.p, hence hy € (fu, Gu)Oaz p, as wanted. [

Corollary 17.2.3 If X, Y, Z are curves in P* with equations f =0, g =0, h =0
respectively, X and Y with no common component, and if all points in X N'Y are
smooth for X, then X - Z > X - Y implies that there is a curve V such that

X V=X-Z-X.Y.

Proof By (b) of Proposition 17.2.2, we have that Z verifies Noether’s conditions at
all points of X N Y. Then by Theorem 17.2.1 there is arelation of the formh = Af +
Bg, with A, B homogeneous polynomials of degrees p — n and p — m respectively.
This implies that X - Z = X - Z,(B) + X - Y, and the assertion follows with V =
Z,(B). ]

17.3 Applications of the Af + Bg Theorem

17.3.1 Pascal’s and Pappo’s Theorems

An exagon is an ordered sixtuple of distinct lines (£1, ..., £¢) in P2 such that no
three of them pass through the same point. The lines ¢y, .. ., £¢ are called the sides
of the exagon. Two sides ¢;, £; are said to be oppositeif (i, j) = (1,4), (2, 6), (3, 6).
We call vertices of the exagon the points P; = £; N {;+,fori =1, ..., 6, where we
set £; = £7. We will say that the exagon is inscribed in a curve X if the vertices
Py, ..., Ps of the exagon lie on X and no side of the exagon is contained in X.

Theorem 17.3.1 (Pascals’s Theorem) If an exagon is inscribed in a conic, then the
opposite sides intersect in three collinear points.

Proof Let C be the conic in which the exagon (¢, ..., £¢) is inscribed. Let X =
£y + €3+ €5, Y = £, + €4 + £6. Then apply Exercise 17.3.9 to the two cubics X and
Y. O

Corollary 17.3.2 (Pappo’s Theorem) Let ri,ry be two distinct lines in P?. Let
Py, P>, Py € ryand Q1, Q2, Q3 € ry be distinct points and distinct also fromr; N r,.
Let £;; = (P;, Q;), fori, j =1,2,3. For every triple (i, j, k) such that {i, j, k} =
{1,2,3} set Ry =£;; N L. Then Ry, Ry, R3 are aligned.

Proof The sextuple of lines (£12, €32, €31, €21, €23, £13) form an exagon, which is
inscribed in the conic r; + . Then apply Pascal’s Theorem. ([
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17.3.2 The Group Law on a Smooth Cubic

Let X be a smooth cubic curve in P2, Assume K has characteristic zero. By Exer-
cise 17.3.12, X certainly has some flex O. If ¢ is the tangent line to X at O, we have
t - X =30. For every point P € X distinct from O, let us denote by P’ the point
such that the line r containing O and P issuchthatr - X =0+ P+ P . If P = 0O
we set O’ = O. Note that it could be the case that P’ = P. This happens if P = O,
and for those points P # O such that the tangent line to X at P contains O. Of
course P’ = (P’) = P. Fix now two (not necessarily distinct) points P, Q € X.
Consider the line r = (P, Q) if P # Q, whereas r is the tangent line to X at P if
P =0Q.Thenr-X = P+ Q + R. We define a sum operation ¢ on X by setting

P®QO=FR.
Theorem 17.3.3 The operation @ is a commutative group operation.

Proof 1t is easy to see that O is the zero for @, that @ is commutative and the
opposite of P is P’. It is more complicated to check the associativity of &®. To prove
it, we argue as follows. Consider three (not necessarily distinct) points P, Q, R of
X. There are lines £, £, m, m/ such that

- X=P+0Q+A, m -X=0+A+A, so PHPO=A
6-X=A+R+T, m{ - X=0+T+T', so (P®Q)DR=T.

Then there are lines £3, £ and m,, m3 such that

my-X=Q+R+U, £6:-X=0+U+U, so QOR=U
my-X=P4+U+V, {4, X=0+V+V', so POQ®R)=V".

To prove associativity we have to prove that T = V'. For this set Y = €| + £, + {3
and Z = m + m, 4+ m3 and apply Exercise 17.3.11. (I

Exercise 17.3.4 * In this exercise and in the next two we will indicate a new proof of Bézout
Theorem in the case of projective plane curves. We will assume here that the intersection multiplicity
is given by formula (16.13).

Let X, Y be curves in P? with no common components of degrees n and m respectively, so that
X NY is afinite set. Suppose that X has equation f = 0, Y has equation g = 0. Moreover we may
assume that the line at infinity xo = 0 does not contain any intersection point of X and Y. As usual
we will denote by /.. the dehomogenization of a homogeneous polynomial /. Forevery P € X NY
we have

i(P; f,9) = i(P; fx, gs)

hence

Yo P fig= ) i(P; fuge)

PeXxny PeXxny
Moreover, by Exercise 16.3.30, we have
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D (P fe g4) = dimg(Az/(fi, g4))-

Pexny

Recall that S, = K[xq, x1, x2] and set

R=%, I'=R/(f,9), Ii=A2/(fs gs)-

The rings R and I" are graded and, as usual, we will denote by R; and I'; their homogeneous parts
of degree d € N. The Bézout Theorem will be proved by proving that

dim(Jy) =nm and dim(I}) =dim(y) for d > n+m. (17.4)
In this exercise prove that dim(/y) = nm ford > n + m.

Exercise 17.3.5 * (Continue Exercise 17.3.4) Consider the map
a:hel >xphel
where h € R is a polynomial and 7 is its class in I". Prove that « is injective.

Exercise 17.3.6 * (Continue  Exercise17.3.4) Assume d>n+m and  choose
Al . A ¢ R, such that their classes ay, ..., a,, € Iy are a basis of I';. Consider the classes
o; of Ai in Iy, fori =1,...,nm.Prove that oy, ..., a,, form a basis of I.

This ends the proof of (17.4) and therefore of the Bézout Theorem.

Exercise 17.3.7 Prove that any projective smooth curve in P2 is irreducible. Prove that this not
always the case in A2

Exercise 17.3.8 Let X be an irreducible curve of degree n in P2. Prove that

nn =1 > Y mpX)mp(X) —1).

PeX

Exercise 17.3.9 Let X, Y be cubics in P2 with no common components, and let X - ¥ = Z?:l P;,

with Py, ..., Py smooth points for X. Let Z be aconicsuchthat X - Z = Zf-’: 1 Pi. prove that there
isaline L suchthat X - L = P; + P3 + Py.

Exercise 17.3.10 Prove the inverse of Pascal’s Theorem: if the opposite sides of an exagon intersect
in three collinear points, then the vertices of the exagon lie on a conic.

Exercise 17.3.11 * Let X be an irreducible cubic in P?. Let ¥, Z two more cubics. Suppose that
XY= 21'9:1 P;,where Py, ..., Py are (not necessarily distinct) smooth points of X. Suppose that
X-Z=Y"% P+ Q. Provethat Q = Ps.

Exercise 17.3.12 * Let X be a curve in P2 of degree n with equation f = 0. According to Exer-
cise 16.3.21, we say that a smooth point P € X is a flex if the intersection multiplicity of the tangent
line to X at P with X ism > 3. The flex is simple if m = 3.1f m > 3 we say we have a (m — 2)-flex.
Note that lines are characterized by the condition that all points on them are co-flexes.

Consider the Hessian polynomial of f, defined as

2
hess(f):det([a f ) .
0x;0x;/i,j=0,1,2
Note that hess( f) could be identically zero. If this is not the case, the curve of degree 3(n — 2) with
equation hess(f) = 0 is called the Hessian of X, denoted by Hess(X).
Assume that K has characteristic zero. Prove that given a point P € X, one has hess(f)(P) =0
if and only if either P is singular for X or P is a flex of X.
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Exercise 17.3.13 * Assume that K has characteristic zero. Let X be a curve of degree 1 in P with
equation f = 0 and P a m-flex of X. Prove that op (hess(f)) = m and conversely.

Exercise 17.3.14 * Assume that K has characteristic zero. Let X be a reduced curve in P2 with
equation f = 0. Prove that if there is an irreducible component of X such hess(f) vanishes on it,
then this component is a line.

Exercise 17.3.15 Prove that a smooth cubic in P? has exactly 9 (simple) flexes.
Exercise 17.3.16 Prove that a line containing two flexes of a cubic contains a third flex.

Exercise 17.3.17 Prove that the flexes of a smooth cubic X are the points of order 3 of the group
law on the cubic and they form a group isomorphic to Z3 x Z3.

Exercise 17.3.18 Assume K of characteristic different form 2 and 3. Let X be a smooth cubic
curve in P2, Prove that we can change coordinates so that X has affine equation of the type

v =x}+ax+b, with a,becK (17.5)

with x3 + ax + b with no multiple roots. This is called Weierstrass normal form of the equation of
the cubic.

Exercise 17.3.19 Assume K of characteristic 2 or 3. Let X be a smooth cubic curve in P2. Prove
that we can change coordinates so that X has affine equation of the type

y2:x3+ax2+bx+c, with a,b,c e K
if K has characteristic 3, and of the types
y2+cy=x3+ax+b, with a,b,c e K

or
y2+xy =x3 +ax +b, with a,beK
if K has characteristic 2.

Exercise 17.3.20 Prove that a point P of a smooth cubic X is a point of order 2 of the group law
on the cubic if and only if the tangent line to X at P pass through the zero given by the flex O.

Exercise 17.3.21 Assume K has characteristic zero. Let X in P> be a smooth cubic curve. Prove
that there are exactly four points of order 2 (including the zero) with respect to the group law with
zero at the flex O and that they form a group isomorphic to Z, x Z,.

Exercise 17.3.22 Assume K has characteristic zero. Let X in P? be a smooth cubic curve endowed
with its group law with neutral element a flex of X. Prove that the maps

(P,Q)eXxX—>P®QeX, PeX—>0PcX
are morphisms.

Exercise 17.3.23 Let X be a projective variety which has an additive group law (X, @) such that
the maps
(P,Q)eXxX—>P®QeX, PeX—>0PecX

are morphisms. Prove that X is smooth. Such an X is called an abelian variety.

Exercise 17.3.24 Assume K has characteristic zero. Prove that there are abelian varieties of any
dimension.
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Exercise 17.3.25 * Let X in P? be an irreducible curve which is not a line. Consider the map
w:X --» P2, which sends any smooth point of X to its tangent line. Prove that y is a rational map.
Prove that the closure X of the image of the set of smooth points of X via u is an irreducible curve
called the dual curve of X. Let m(X) be the degree of X, also shortly denoted by m and called the
class of X. Prove that m is the maximum number of tangents in smooth points of X passing through
a given point P of P2,

Exercise 17.3.26 * Let X in P2 be an irreducible curve with equation f = 0. Given two points
P = [po. p1, p2land Q = [qo. q1. g2] of the plane, we set
2 .
of
fo(P) =" ——(P)q.
—~ Jx;
i=0
Prove that fo(P) = 0 if either P is a singular point of X or if P is a smooth point of X and the
tangent line to X at P contains Q.
Given Q € P2, consider the polynomial

2

a
fo=Y T){Qi

i=0 !

and consider the curve X ,Q with equation fg = 0. This is called the polar of X with respect to Q.
!’

Prove that the tangent at a smooth point P of X contains Q if and only if P € X|,. Prove also that
all polars pass through the singular points of X.

Exercise 17.3.27 * Assume K has characteristic zero. Consider the irreducible plane curve X of
degree n and suppose that X has only nodes and ordinary cusps as singularities. Prove that

m(X)=nn—1)—2§ — 3k (17.6)

where § is the number of nodes of X and « the number of cusps. Relation (17.6) is called the first
Pliicker formula.

Exercise 17.3.28 * Assume K has characteristic zero. Consider the irreducible plane curve X of
degree n > 1 and suppose that X has only nodes and ordinary cusps as singularities and it has only
simple flexes. Moreover let us assume that the nodes are simple: a node is simple if each branch at
the node is of class 1, i.e., the principal tangent lines at the node have intersection multiplicity 2
with the corresponding branch, and therefore 3 with the curve at the node.
Let i be the number of flexes of X, § the number of (simple) nodes and « the number of cusps.
Prove that
i =3n(mn—2)— 68— 8k (17.7)

Relation (17.7) is called the second Pliicker formula.

17.4 Solutions of Some Exercises

17.1.4 First of all treat the case in which m| = --- = mj; = 1, and make induction on 4. The
case h =1 is trivial. Next assume 27 > 1l andd > h — 1. Set £; = L3 4(—Py —--- — P;) for all
i =1,..., h. By induction we may assume that
dd+3
dimcy_y = 24+

2
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Since £, has codimension at most 1 in £;_1, it suffices to prove that £, C £;_;. Choose lines r;
suchthat P; € r; and P; ¢ rj for j #i,fori =1,..., h and choose a line £ not containing any of
the points Py, ..., Pj. Then

X=r+-+rma+d—-h+1)¢

is a curve of degree d containing P, ..., P, butnot Py, hence X € L1 \ £, as required.

Next treat the general case and make induction on m := (ZLI m;) — 1. If m = 0, the asser-
tion is trivial. So assume m > 0. We may assume there is an i = 1, ..., 4 such that m; > 1,
and we may actually assume that m; > 1 and, by changing coordinates, that P; = [1, 0, 0]. Set
L=1Lg(—(my —1)P1 —maPy —--- —my Pp). Let f = 0be the equation of a curve in £. Then,
passing to affine coordinates, the equation of this curve becomes ¢ (x, y) = f (1, x, y) = 0, and the
decomposition in homogeneous components is of the form

G, y) = Pm—1(x, )+ -+ Palx, y)
and
mp—1

Gy -1 (6, 3) = Y apxty™
=0

Denote by £; the subspace of the curves in £ such that, with the above notation, have the property
that a; = O for all j such that 0 < j <i < m — 1. Then we have

LD2Ly 228 -1=Lra(miPy—maPy— - —mpPp).

By induction we have

dd+3)  mi(mi— 1) _Xh:mi(mi'i‘l)

dim(L£) =
(L) 2 2 =R
We claim that
L2822 Lyt (17.8)
If this is the case then
dim(La g(my Py —maPy — -+ —my Py)) = dim(Ly, 1) <

< dim(L) — m

_dd+3) _Xh:mi(miJr 1
) — 2

Since also the opposite inequality holds by (17.1), we have the equality as desired.
So let us prove (17.8). Set

A=Lyg(—=(my —2)Py —maPy — - —mpPp).

Similarly as before, if ¥/ (x, y) = 01is the affine equation of a curve in A we have the decomposition
in homogeneous components

Y(x, ) = Ym—20x, y) + -+ Yalx, y)

with
myp—2

Y2 (x, ) = Y bix'y™ 2
=0
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As before we define A; to be the subspace of A of the curves for which b; = 0 for all j such that
0<j<i<m—2. Wehave

A=A 12480022 Apu—2=Lrg-1(=my — )P —ma Py — -+ —mpPp).

By induction we have

@—D@+2)  (mg=2)0m —1) i mi(mi +1)

dim(A) =
im(A) 2 2 2

i=2

(d—1)(d +2) ml(ml —1 iml(m, +1)

dim(Am]—Z) = B)

i=2
so that
dim(A) — dim(A,, —2) =m; — 1.

Since we have
dim(A;) > dim(A;—1) —1, for i =0,...,m —2,

we deduce that
A 2 AO ; 2 Am1—2-

Finally, if ¢; = 0is the affine equation of a curve sitting in A; butnotin A;1,fori = —1,...,m; —
3, then y¢; = 0 is the equation of a curve sitting in £; but not in £;4 (again we set £ := £_1)
and, if ¢,,, —> = 0 is the equation of a curve in A, 2, then x¢,,,—2 = 0 is the equation of a curve
in £, 2 but notin £, _1. This proves (17.8) as wanted.

17.34 Let w : R — I' be the natural surjective homomorphism, whose kernel is Z := (f, g).
Consider the homomorphisms

¢p:(A,B)e RxR—> Af+BgeZ, ¢Yy:CeR— (gC,—fC)e R XR.

One easily proves that:

(a)  is injective;
(b) ¢ is surjective onto Z;

(c) im(yr) = ker(¢) (here one uses the fact that f and g have no common factor).

By restricting to homogeneous parts, one has the linear maps of vector spaces
¢d,n,m : Rd—m X Rd—n — Ida wd.n,m : Rd—n—m - Rd—m x Rd—n-

and again one has

(@) Ya,nm is injective;
(b) @d.n.m is surjective onto Zy;

(© im(‘/fd,n,m) = ker(¢d‘n,m)~
This implies that

dim(Iy) = dim(Ry) — dim(Ry_,; X Rg—_p) — dim(Ry_n_m). (17.9)

Since
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(h+ Dk +2)
2
as soon as i > 0, the assertion follows from (17.9) with easy calculations.

dim(Ry) =

17.3.5 The map « is a group homomorphism for the additive structure of I". So to prove injectivity
we have to prove that ker(a) = 0. Suppose we have an element h such that xoh = a(h) = 0. We
want to prove that & = 0, i.e., that & € (f, g). Since xoh = 0, we have that xoh € (f, g). Given any
polynomial p(xg, x1, x2) € R, we set pg = (0, x, y) € A>. Since

xoh = Af + Bg
we have
Ao fo = —Bogo-
The system fo = go = 0 has no solutions since there is no point of X N'Y on the line at infinity
xo = 0. Then fy divides By and go divides Ay, i.e., there is a polynomial C € A such that
By = foC, Ao = —goC.
Set
A'=A+Cg, B=B-Cf
and notice that
A'f+B'g=Af + Bg = xoh

and

Then A’ and B’ are divisible by xo, i.e.,
A =x0A", B =xoB"
for suitable polynomials A”, B”. So we have
xoh = A'f 4+ B'g = x0A" f + x0B"g

and therefore
h=A"f+B"ge(f.9

as wanted.

17.3.6 First we notice that the map « : I" — I restricts to an isomorphism between I; and
I'y41, because it induces a linear injective map from I to ;41 and these are vector spaces of
the same dimension nm. Therefore, by iterating the application of o, we have that the classes of
x6A1, ..., XA give a basis of Iy, foralld > n+mandr > 0.

Next we prove that oq, . . . , &y, generate I'y. Fix p € I', with p € Aj and p the class of pin I'.
Recall that we denote by pj, the homogenization of p. Then consider N € N large enough so that
xév phr is a homogeneous polynomial of degree d + r with r >> 0. Then, since x6A1, coxp AT
are a basis of I, we have a relation of the form

nm
x pn :Z)»[x{)Ai +Bf +Cg

i=1
with A1, ..., Aym € Kand B, C € R. If we dehomogenize this relation, we get

nm

P =) kAL+ Bifet Cuga

i=1
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whence
nm
p= Z Ao
i=1
as wanted.
Finally we prove that «y, .. ., o, are linearly independent. Suppose we have a relation of the
form
nm
Z )\.,‘(X,‘ =0
i=1
with A1, ..., Aym € K. This implies a relation of the form

nm

> kAl = Bfs + Cys

i=1
with B, C € A; suitable polynomials. We homogenize the above relation getting

nm
X ZAiAi =x)Bnf +x5Cng

i=1

for suitable positive integers r, s, t. Therefore we have

nm
D hixfA =0
i=l1

in I'y4, (with the upper bar we denote, as usual, the class in I;4,). But ngi, fori=1,...,nm
form a basis of Iz4,, hence ,; =0 fori =1, ..., nm, as desired.

17.3.9 This is an immediate application of Corollary 17.2.3.

17.3.11 Suppose by contradiction Q # Py. Let r be a line through Py not passing through Q. Let
r-X=Py+ R+ S. Then

8
r+2)-X=) Pi+Q+P+R+S.

i=1

Since X - Y = Z?:] P;, there is a line r’ such that 7' - X = R+ S + Q. As ¥/ contains R and S,
then r = 7/, and so Q = Py, a contradiction.

17.3.12 Suppose that P = [p] = [po, p1, p2] is a smooth point for the curve X of degree n with
equation f = 0. Let Q = [q] = [q0, g1, 2] be any other point of the plane. By applying Taylor
formula we have

2 3f 1 2 32f
FOP+p@ = FEN +Y . =@ar"  ut 5 Y = —)aig A I
= 9 2 2o 9x;0x
(17.10)
We have f(p) = 0. Moreover the tangent line ¢ to X at P has equation
2
d
> Ly =o. 17.11)
i Oxi

Consider the polynomial
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2 2
Z Py -(P)XiXj. (17.12)
Py X;0x;

From (17.10) it is clear that P is a flex for X if and only of the polynomial appearing in (17.11)
divides the polynomial in (17.12). Hence if P is a flex, then the polynomial in (17.12) is either zero
or reducible, and this implies that hess(f)(P) = 0.

To see the converse, let us assume that hess f (P) = 0. If the polynomial in (17.12) is identically
zero, then it is divisible by the polynomial in (17.11) and by (17.10) P is a flex. If the polynomial
in (17.12) is not identically zero, it defines a conic Q. By Euler’s formula (1.6), we have

2 2
Z dx; 0x; ®pipj=nn—-1fp =0
1,]=0

so Q contains P. Moreover ¢ is tangent to Q at P, because this tangent has equation

2 82
E (p)pix; =0
P 0x;0x;

and by Euler’s formula this is
2 af
-1 — i =0.
(n—1 ;=0 o, (p)x;

Soifhess(f)(P) = 0, the conic Q is reducible, hence it must contain 7, so the polynomial in (17.12)
is divisible by the polynomial in (17.11) and by (17.10) the point P is a flex.
Finally it is clear that singular points of X lie on the Hessian curve of f.

17.3.13 We can assume that P € Uy = A? and in fact that P is the origin and that X has affine
equation ¢ (x, y) = f(1, x, y) = 0. By adjusting coordinates we may assume that the tangent line
to X at P is the x axis and that P is the centre of a branch with equations

x=En =t y=nn=1""4.... (17.13)
It is easy to see that this implies that
P(x,y) =y —x"" +g(x,y) (17.14)

where g contains no term in the only variable y. By Euler’s formula we have

92 B a2 a2
X0 f =(”—1)l—x1 f — X2 f , 1=0,1,2
0x00X; ax; 0x10Xx; 0x20X;
af p af af
xXo— =nf —x;]— —x3—.
0 axg ! 0x1 2 0x7

Substituting in the Hessian determinant, and with easy computations, we have that

g of  df
n—1 ax1 dxp
(n—1* |ar 2p o
hess(f) = ——— | 9x2 dx10x2
Yooy oy wy

dxp dx10x2 3)(3

Passing to affine coordinates we have, up to a constant term
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n_g4 09 9
n—1¢ ax dy

k) 92 92
h(x,y) = hess(f)(1,x,y) = | 32 ﬁ 33;
af 229 9%¢

)

xg dxdy dy
Using (17.13) and (17.14), we find

h(E@), n(1) =
0 —(m+ 2T dﬁ (S(r) (1)) 1+ 3”(&0) ()
= =+ 2"+ B (1), n (1)) —m + 2 (m + D + 24 5 @, 1) M‘ ED,n0) |

2
1+ §2E0, 0 s €0, rz(t)) W@“" n(0))

Moreover we have
0=1"" 4. — "2 4 g(E(0), n(1))

so that o(g(&(¢), n(t))) = m + 3. Differentiating twice with respect to r we find

0 il
oS EM NO) + Z2EW.NONm 420" ) > m 2,
X dy

azg 32q -
0<ﬁ(§(0’n([))+2m(§(t)777([))((m+2)t T

azg m+1
+W($(l),n(t))((m+2)t +o)+

+ %(s(r), 1) ((m + 1)(m + 21" + - -~)> >m+1.

From these relations we deduce that o(ag(é(t) n(t) =1, o(ag(g‘(t) n) =m+2

and 0(%(50), n())) >m+1. With an easy computation it follows that #h(&(z),
n) =@m+1)(m+2)t"™ + - -- sothat o(h(£(t), n(¢))) = m as wanted.

Conversely, if P is a smooth point of X and op(hess(f)) =m > 1, then P is a flex by Exer-
cise 17.3.12, and it is an m-flex just because op (hess(f)) = m.

17.3.14 Let Y be a component of X such that hess(f) vanishes on Y. Let P be a smooth point of Y
and let y be the branch of Y with centre P. We can assume that P € Uy = AZ? and in fact that P is
the origin. We may also suppose that y is determined by a parametrization like (17.13). If m = oo,
this means that y = 0, hence Y is a line, i.e., the x axis. If m is not oo, then, with the notation of the
solution of Exercise 17.3.13, we have thato(h(§(¢), 1(¢))) = m.Ontheotherhand o), (h(x, y)) = o0
by assumption. Since oy, (h(x, y)) = o(h(£(r), n(t))) = m we have a contradiction.

17.3.18 The curve X has a flex O. We can change coordinates assuming that O is the point at
infinity of the y axis and the tangent line at O is the line at infinity xo = 0. With this choice of
coordinates the affine equation of X becomes of the form

¢, y) =y’ +yl+px) + f() =0
where f(x) is a polynomial of degree 3 in the variable x. We have

il
—¢ =2y+a+ Bx
dy
and we can change coordinates so that this is equal to y, hence « = B = 0. Then the affine equation
of X becomes of the type
> = Ax> +Bx*+Cx+D
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with A # 0 because the curve has degree 3. We can then change coordinates by sending x to <.

A3
In this way we may assume that A = 1. Next we change again coordinates by sending x to x — %
It is easy to check that the equation then becomes of the form (17.5). The fact that X 4ax+b
must have no multiple roots is equivalent to the curve being smooth, since we require that there is
no solution to the system of the equation of the curve and of the two derivatives

y=0, 3x>4a=0.

17.3.19 Similar to the solution of Exercise 17.3.18. The details can be left to the reader.

17.3.25 Consider the homogeneous coordinate ring S (X ) = Kl[x, y,z]/(f) of X. Consider
the classes &,7n,¢ in S(X) of the polynomials g)C 3( s H7- Consider the homomorphism ¢ :
Klu, v, w] — S(X) obtained by sending u, v, w to &, n, ¢ respectively. One easily checks that ¢ is
a homogeneous homomorphism and its kernel Z is a homogeneous prime ideal. Hence Z := Z,(7)
is a closed irreducible subset of P2 By the very definition of ¢ and by the equation of the tangent line
at a smooth point of X it follows that Z contains 1(S). Next one proves that Z is curve. Otherwise
Z would be a point [a, b, c], and therefore the fixed line with equation ax + by + cz = 0 would
be tangent to X at any of its simple points, so X would coincide with that line, a contradiction.
We set Z = X We have ©(S) C X and wn(S) is mﬁmte so the Zariski closure of 1 (S) is a curve
contained in X, so it coincides with X because X is irreducible. The rest of the assertion follows
from Theorem 12.2.3.

17.3.27 By Exercise 17.3.26 and Theorem 12.2.3 there is an open subset U of P? such that for all
points Q € U, the curve X/, o intersects X in exactly m points off the singular points of X. Since
X’Q has degree n — 1, we have that m = n(n — 1) + h, where & is the sum of the intersection
multiplicities of X/Q and X at the singular points of X. Let P be a node of X. We can change
coordinates and can put P at the origin and the principal tangent lines to X at P coinciding with
the coordinate axes. In this coordinate system the affine equation of X is of the form

¢, y)=xy+---=0
where the dots stay for higher order terms. Among the polars of X we have all the curves with
equation
0 a
a—¢+a—¢_ay+bx+ =0.
ox ay

This implies that there is a non-empty open subset Up of P2 such that for Q € Up the polar X /Q
passes through P simply, with tangent different from the principal tangents to X at P. For these
polars the intersection multiplicity with X at P is 2. Since we have finitely many nodes Py, ..., Ps,
for Q in the open subset U N Up, N --- N Upy, the intersection multiplicity of X /Q with X at each
of the points Py, ..., Ps is 2, hence the contribution of these singularities to the number # is 24.
Let P’ be a cusp of X. We can change coordinates in such a way that P’ is the origin of the
coordinate system and the centre of a unique branch y determined by an equation of the form

x =12 y:at3+~~- , with a #0.
Then the affine equation of X is of the form
P y) =y 4

where the dots stay for higher order terms. Among the polars of X we have the curve

d
£:2y+...:0
dy
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which has order 3 on y. It is easy to check that this is the minimum order that a polar has with
y, and therefore there is an open set Ups such that for all O € Up: the intersection multiplicity of
X', with X at P’ is 3. Then with the same argument we made in the case of nodes we see that the
contribution of the « cusps to the number # is 3k, and this proves (17.6).

17.3.28 By Exercise 17.3.13, the number of (simple) flexes is the number of intersections of the
Hessian curve Hess(X) of X, which has degree 3(n — 2) with X, off the singular points. Now,
with a direct calculation similar to the ones we performed in the solutions of Exercises 17.3.13 and
17.3.27, one checks that this intersection multiplicity is exactly 6 at the nodes and 8 at the cusps.
Then (17.7) follows.



Chapter 18 ®)
Resolution of Singularities of Curves ez

In this chapter we will prove that in any birational equivalence class of irreducible
quasi-projective curves there is a smooth projective model. The process of passing
from a curve to a smooth model is called resolution of singularities.

18.1 The Case of Ordinary Singularities

In this section we prove a preliminary important result. Let X be a projective, reduced,
irreducible curve in P? of degree d, with equation f = 0, and we suppose that X has
only ordinary singularities at the points Py, ..., P,, with multiplicities m1, ..., my.
We want to prove the following:

Theorem 18.1.1 In the above setting, consider the blow-up 7 : P2 — P? at the
points Py, ..., Py. Then the proper transform X of X on IP? is a smooth projective
curve and wz © X — X is a birational morphism.

Proof Since P? is a projective variety and X is closed in P2, then X is a pro-
jective curve. Moreover, since 7 : P> — P? is an isomorphism between ! (P? \
{Py,..., Py)) and P? \{P1, ..., Pp},itis clearthatnp} : X — X isabirational mor-

phism. In addition, since X is smooth at the points of X \ {Py, ..., Py} then X is
smooth at the points of XN (P2 \ {Pi1, ..., Pp}). So the only thing to be proved
is that X is smooth at every point whose image via 7 is one of the points Py, . .., Pj.
To prove this we proceed in the following way.

First, since the question is local at the points Py, ..., P,, we may assume that
there is only one singular point P for X, which is an ordinary point of multiplicity
m > 1. Moreover we may assume that P € Uy = A? and that actually P is the origin
of A2. We suppose that X has affine equation f(x, y) = 0 with the decomposition
in homogeneous components given by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 267
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f(x’ y) = fm(xa Y)"‘fm+l(x, )’) +"'+fd(x’ y)

where d is the degree of X. Moreover the homogeneous polynomial f,(x, y) has m
distinct roots, up to a proportionality factor, so that

Fue,y) =[] bix — aiy)
i=1

with (a;, b;) # (0, 0) non-proportional, fori = 1, ..., m. The principal tangents to
X at P have affine equations

bix=ay, i=1,...,m.

Next we blow-up A? at the origin, getting p : A2 — A2, with A? contained in
A? x P!, defined there by the equation xv = yu, where (x, y) are the coordinates in
A? and [u, v] are the coordinates in P'. In the open set Ag = A' of P! where u # 0,
we may assume that u = 1. Then in the open set By = A* x Ag = A% x Al = A’
with coordinates (x, y, v), Ay := A2n By has equation y = xv. This is a surface
isomorphic to A2, an isomorphism being given by

(x,v) € A? (x,xv,v) € Ao.

We may identify A to A? via this map. The map p : A? > A? restricts to Ao, to
the map pg : (x, y,v) € Ag — (x,y) = (x, xv) € A2 If E = p~!(P) is the excep-
tional locus of the bow up, its intersection Ey = E N Ay has equation x = 0.
Similarly, in the open set A; = A' of P! where v # 0, we may assume that v = 1.
Thenin B; = A2 x A; = A2 x A' = A3 with coordinates (x, y, u), A; := A2 N B,
has equation x = yu. This is isomorphic to A2, an isomorphism being given by

(yau) GAz_) (yuvyau) GAL

Again we may identify Ay to A? via this map. The map p restricts to Ay, to the
map pp : (x, y,u) € A; > (x,y) = (yu, y) € A2 Finally E, = E N A, has equa-
tiony = 0.

Let us now study Y := XN Az’ and more precisely, we study ¥; =Y N A,-, for
i =0, 1. First let us look at ¥y. We consider the total transform p~—!(X) of Xo =
X N Uyp. In the open set Ay itis given by the equation f (x, vx) = 0. We have

F,x0) = fr(x, x0) + -+ + falx, xv) =
=x"fu(1,v) + - +x7 f4(1,0) =
=xX"(fu(1,0) + - +xT" f1(1, 0)).
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So f(x,xv) is reducible in the factor x™ and in the factor f,(l,v)+ -+
xd-m f4(1, v). This tells us that p~!(Xg) N Ay is also reducible: it contains the excep-
tional locus Ey with multiplicity m, plus the other component with equation

Sn(L0) 4+ x" fy(1,v) = 0 (18.1)
which is nothing else than Y,,. We are interested in the intersection points of Y, with

Ey, that are obtained from the system of (18.1) plus the equation x = 0, and this
system is equivalent to

x=0, fu(l,v)= ]_[(b,» — a;v) = 0.

So the distinct solutions of this system are the m points Qq, ..., Q, of Ey with
coordinate x = 0 and b
V= —L, i=1, . m
a;
provided a; # 0.Ifthereisani € {1, ..., m} suchthata; = 0, hence we may assume

b; = 1, the degree of the polynomial f,, (1, v) dropstom — 1 and we haveonlym — 1
solutions as above. Note however that we may have made a change of variables so
that none of the principal tangents to X at P is the y axis x = 0. In this case a; # 0 for
alli =1,...,mand f, (1, v) = 0 has m distinct solutions as indicated above. Now
we want to prove that the intersection points Qy, ..., Q,, of Ey with Y, are smooth
points of Yy. Take one of these points Q;, which has coordlnates x=0,v="2% for
i =1, ..., m.Tomake things easier, we may suppose to have chosen coordmates SO
that the pnnmpal tangent line to X at P with equation b;x = a;y is the x axis with
equation y = 0, so that b; = 0 and we may assume a; = 1. So Q; in the A? with
coordinates (x, v) is the origin Q, and the equation of Y} is of the form

m—1

Y, v) =v [ [0 —av) +xfua(lv) +- 4+ f4(1,0) =0

i=1

where b; # O foralli =1,...,m — 1. Now we have

(0 0) = l_[b £ 0

and this shows that Q is a smooth point for Y. The analysis is identical in the
other open set A,. The conclusion is that in correspondence with the m principal
tangent lines to X at P, there are exactly m distinct intersection points of X with the
exceptional locus E, and they are smooth for X. This proves the assertion. U
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18.2 Reduction to Ordinary Singularities

18.2.1 Statement of the Main Theorem

In this section we prove the following fundamental result, that, together with Theo-
rem 18.1.1, completes the reduction of singularities of curves:

Theorem 18.2.1 Let X be an irreducible curve inP*. There is a birational transfor-
mation w : P? —-» P2 such that, restricted to X, induces a birational transformation
of X to a curve Y with only ordinary singularities.

As an immediate consequence we have the:

Corollary 18.2.2 [n any birational equivalence class of irreducible quasi-projective
curves there is a unique smooth projective model. More precisely, let X be any pro-
Jective irreducible curve. There is a projective smooth curve C, uniquely determined
up to isomorphism, with a birational morphism ¢ : C — X.

Proof The first assertion follows from the second, since any irreducible quasi-
projective curve is birational to a projective curve. Now, let X be any projective
irreducible curve. By Theorem7.2.3, X is birational to a projective curve Z in P2,
By Theorem 18.2.1, Z is birational to a projective curve Y with ordinary singularities.
By Theorem 18.1.1, there is a smooth curve C and a birational morphism f : C — Y.
According to Corollary 14.2.12, such a curve is unique up to isomorphism. More-
over there is a birational map f : C --» X. By Theorem 14.2.16, f is a morphism,
proving the assertion.

For the proof of Theorem 18.2.1 we need some preliminaries which we will make
now.

18.2.2 Standard Quadratic Transformations

First of all we briefly recall the contents of Exercises7.1.19-7.1.24. Consider P?
with homogeneous coordinates [x, y, z] and the fundamental triangle formed by the
three lines
(@) x=0, b)) y=0, (¢) z=0
which pairwise intersect at the vertices of the triangle
A=[1,0,0]=bNn¢c, B=[0,1,0]=aNec, C=[0,0,1]=anb.

Set U = IP? \ (a U b U c).Consider the rational map

w:[x,y,z] € P? s [yz,xz,xy] € P2
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This is called the standard quadratic transformation based at the points A, B, C,
which are also called the fundamental points of w and the lines a, b, c are called the
exceptional lines of w. We recall the main properties of w:

(a) the definition set of w is P? \ {A, B, C};

(b) the restriction of w to the line a [resp. to b and c] is the constant map whose
image is the point A [resp. the points B and C]. One says that w contracts a
[resp. b and c] to the point A [resp. to the points B and C] or that it blows-up
the point A [resp. to the points B and C] to the line a [resp. b and c];

(¢) w? =id, and w induces an isomorphism of U to itself, so that w is a birational
map;

(d) consider a line r containing A, with equation Ay + pz = 0. Then the restriction
of w to r maps r to the line with equation pny + Az = 0, which cuts the line a
in the point R = [0, —A, u]. The map which sends the line » through A to the
point R in a is a projectivity from the pencil (A) of lines through A to the line
a. The point R of a can be considered as the correspondent of the direction of
the line r in A. Similar considerations can be made for the point B [resp. C] in
relation with the line b [resp. c].

If 7 : P> — P?isaprojectivity, the composite map w o 7 : P? --» P?is still called
a standard quadratic transformation. Itis based at the points ' (A), t~'B), t='(C)
and its has the exceptional lines t~!(a), t='(b), ! (¢). All what holds for w holds
also for an application of the form w o .

18.2.3 Transformation of a Curve via a Standard Quadratic
Transformation

Let X be a reduced curve in P?> which does not contain any of the exceptional lines
of w. We will assume that X is irreducible, though all what we will say applies to
reducible and reduced curves, not containing any of the exceptional lines of w, with
essentially no change. Of course U N X is an open subset of X. Thenw(X NU) isa
curve in U isomorphic to X N U. Its closure X' in P? is called the proper transform
of X via w. Clearly X’ is irreducible and birational to X and (X') = X.

We want to determine the equation of X’ starting from the equation of X. Suppose
that X has degree n with equation

fx,y,2) =0.

Then we can consider the curve with equation

folx,y,2) = f(yz,xz,xy) = 0.
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This curve, denoted by X is called the total transform of X via w. Note that X has
degree 2n.

Lemma 18.2.3 In the above setting, suppose that ma(X) =r, mp(X) = s and
mc(X) =t. Thendeg(X') =2n—r —s — 1.

Proof Since m4(X) = r, the equation of X is of the form
HO X"+t fu(y,2) =0

where we wrote f as a polynomial in x with coefficients homogeneous polynomials
in y, z of degree equal to the index, and f;(y, z) is not zero. We have

fox,y,2) = fr(xz, x) ()" 4+ -+ fulxz, xy) =

r n—r n (182)
=x"fi(@, )"+ 2" fulz, y)

and therefore X contains the line a exactly with multiplicity r. Similarly, if m g (X) =
sandm¢(X) = t, wehave that X contains the lines b and ¢ with multiplicities exactly
s and ¢ respectively. Then we have

folx,y,2) =x"y2 f'(x, y,2) (18.3)
and X’ has equation f’ = 0, and the assertion follows. O
Lemma 18.2.4 In the above setting we have
maXY=n—s—t, mpgX)=n—-r—t, mec(X)=n—r—s.

Proof 1t suffices to prove only the first equality, since the others are proved in a
similar way. Taking into account (18.2), the equation of X’ is of the form

3 rarla py T —
i=0
hence the term with highest degree in x is
X" fulz )y
Now

n—r=Q2Qn—-r—s—t)—m—s—1t)=deg(X)—(n—s—1)

and f,(z, y)y~*z~" has to be a polynomial. This proves that m4(X') =n —s — ¢t. O
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Note that the previous two lemmas imply another proof of the fact, contained in
Exercises 7.1.23 and 7.1.24, that @ maps the lines of the plane to conics through the
points A, B, C and viceversa.

We will say now that X is in good position with respect to w if none of the principal
tangents to X in A, B, C coincides with one of the exceptional lines.

Lemma 18.2.5 [n the above setting, if X is in good position with respect to w, then
also X' is in good position with respect to w.

Proof Suppose X is in good position with respect to @ and assume, by contradiction,
that the line a is among the principal tangents to X at B. Then we have

i(B:X',a)>mp(XY=n—r—1t. (18.4)

By taking into account (18.2) and (18.3), we see that the equation of X' is of the
form

fr@ )y T T X fu(z )y T =0,
Intersecting with x = 0, we get the equation
fr@ )y =0 (18.5)

In this equation z appears with an exponent larger thatn — r — ¢ (and therefore (18.4)
holds), if and only if z divides f,(z, y), i.e., f;(1,0) = 0, and this is equivalent to
say that the line b is one of the principal tangent lines to X at A, a contradiction. [

We notice that if X is in good position with respect to w, and if Py, ..., Py are the
non-fundamental points of X’ on a, then Py, ..., P, correspond to the directions of
the principal tangent lines to X at A. In particular, if X has in A an ordinary multiple
point of multiplicity r then 7 = r and Py, ..., P, correspond to the r tangent lines
to X at P.

Corollary 18.2.6 In the above setting, if X is in good position with respect to w,

then
h

Zi(P,-; X,a)=r (18.6)

i=1

and similarly for the lines b and c. In particular:

(a) ifh=r,ie.,if X has in A an ordinary r-tuple point, then Py, ..., P, are all
smooth for X';
(b) ifh > 1, one has

ma(X) > mp (X", foral i=1,... h.
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Proof The intersections of X’ with a are obtained solving the Eq. (18.5). By the good
position hypothesis, f,(z, y) is neither divisible by y nor for z, so the intersection
multiplicity of @ with X" in Band Cisn — r — t andn — r — s respectively, whereas
the sum of the remaining intersection multiplicities is the degree of f,, i.e., itis r.
As for the proof of (a), note that if 2 = r from (18.6) we have i (P;; X', a) =1
foralli =1, ..., r, and the assertion follows.
For (b), since 7 > 1, we have

ma(X)=r >i(P;X',a) 2mp(X'), foral i=1,...,h

whence the assertion. O

Next we say that C is in very good position with respect to @ and to A, if it is in
good position and moreover the line a intersects X in n distinct points not lying on
b and c, whereas b and c intersect X off A in n — r distinct points each.

Lemma 18.2.7 In the above setting, if X is in very good position with respect to w
and A, then X' has the following singularities:

(a) the singular points in X' N U correspond to the singular points of X U U and
for them it is preserved the multiplicity and the fact that they are ordinary or
not;

(b) A, B, C are ordinary of multiplicities n, n — r and n — r respectively;

(c) the intersection of b [resp. of c] with X' are only at the fundamental points A
and C [resp. A and B]. If Py, ..., P, are the non-fundamental points on a, one

has
h

Zi(P,-; X', a)=r.

i=1

Proof Part (b) follows from (a) of Corollary 18.2.6. Part (c) follows from Corol-
lary 18.2.6 and from the fact that X’ has degree 2n — r, because s =t = 0, and b
and c intersect X’ in two fundamental points of multiplicities n and n — r.

Letus prove part (a). Since w induces an isomorphism between X U U and X' N U,
itis clear that w maps smooth points of X N U to smooth points of X N U and singular
points of X’ N U to singular points of X’ N U. It remains to show that w;; preserves
the multiplicity of the singular points and the fact that they are ordinary o not.

To prove this, we make the following argument. First we pass to affine coordinates
by setting z = 1, so that w becomes the following birational map of A2

11

(x,y)€A2—><
Xy

)eAz.

The open set U coincides with the open set of A% which is the complement of the
coordinate axes. Let us take a point P = (a, b) € U, with a, b both non-zero. Set
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P =w(P) = (5, %). Consider a branch y of curve with centre P. We may suppose
y is determined by a parametrization

x=a+t"+---, y=b+ct"+---

with n, m positive integers, with n < m and ¢ # 0. Note that the tangent to y is the
line with equation y = b if m > n and is the line with equation c(x —a) =y — b if
n=m.

Then w maps y to the branch y’ determined by the parametrization

N S U O S N B
YTatr+ a4 & Y T b ran b B2 '

The tangent to y’ is the line with equation y = % if m > n and is the line with
equation 35 (x — %) = aiz(y — }7).

This shows that w maps branches of a curve to branches of a curve, preserving the
order of the branch, and mapping branches with different tangents to branches with
different branches. The assertion follows by taking into account Proposition 16.3.5.

]

18.2.4 Proof of the Main Theorem

In what follows we will apply standard quadratic transformations based at suitable
singular points of X. We will abuse notation and we will still denote these points by
A, B, C as if the transformation were w. This makes no difference because we can
change coordinates and put any three non-collinear points in the points A, B, C.
Keeping the above notation, we say that X" has milder singularities than X if:

(a) either the maximum multiplicity of a non-ordinary singular point of X’ is smaller
than the maximum multiplicity of a non-ordinary singular point of X,

(b) or the number of non-ordinary singular points of X’ with maximum multiplicity
is smaller than the number of non-ordinary singular points of X with maximum
multiplicity.

Suppose A is a non-ordinary singular point of X with maximum multiplicity.
Suppose that we are able to put X in very good position with respect to w and A.
Then, by Lemma 18.2.7 from which we keep the notation, if & > 1 the curve X’ will
have milder singularities with respect to X. We will say that a singular point A of
X is a bad point, if h =1 for it and for all the points deduced from it by iterated
applications of standard quadratic transformations as above. If we are able:

(i) to put the curves in very good position and
(ii) to exclude the existence of bad points,
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then iterated application of the procedure described above eventually leads to a curve
with only ordinary singularities and this will prove Theorem 18.2.1. Therefore we
have to prove (i) and (ii) above.

First we deal with (ii). For this we introduce for any curve X of degree n the
following number

(n—Dmn-2) 3 mp(X)(mp(X) — 1)

p(X) = > >

PeX
which is non-negative by Lemma 17.1.3.

Lemma 18.2.8 In the above setting, suppose that X is in very good position with
respect to w and A and that P, ..., P, are the non-fundamental points of X' on the
line a. Then one has

h

mp,(X)(mp(X') — 1)
X)) =pX) - : : . 18.7
pX") = p(X) ; 5 (18.7)
Proof Suppose that the multiple points of X in U are Qy, ..., Q; with multiplicities
mi, ..., m;. Let r be the multiplicity of X in A. By the very goodness assumption
there is no other singular point of X but A ona U b U c. Then we have
mn—-—0Dnr-2) rir-1) m;(m; — 1)
X) = — —
p(X) > 7 ; >
whereas
Cn—r—12n—r-=2) mi(m; — 1)
X)) = — _
p(X') > ; 5
B Z mp (X Ymp (X)) — 1) _ nn—1) 3 2(n —rnh—-r-1)
, 2 2 2 '
i=1
One finds
Cn—r—-1)2n—-r—-2) nn-1) 2(n—r)(n—r—l)_
2 2 2 B
(=D =2) r@r—-1
B 2 2 7
whence (18.7) immediately follows. U

Corollary 18.2.9 Suppose we can put X and its transformed curves in very good
position, then there are no bad points for X.
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Proof This is an immediate consequence of Lemma 18.2.8 and of the non-negativity
of p(X). O

Finally to conclude the proof of Theorem 18.2.1, we need to deal with the very
good position issue (i). This is done in the following:

Lemma 18.2.10 Assume char(K) = 0. Let X be an irreducible plane curve, P a
point of X. Then we can choose a projectivity T such that X is in very good position
with respect to w o T and P.

Proof Let n be the degree of X and r the multiplicity at P. It suffices to find three
lines a, b, ¢ such that b, ¢ contain P and intersect X off P in n — r distinct points,
and a line a which intersects X in n distinct points which are neither on b nor on c.

First of all we choose a. In fact by Theorem 12.2.3 there is a non-empty Zariksi
open subset U of P2 such that for each a € U, a intersects X in n distinct points. So
we can choose a in infinitely many ways.

To choose b and ¢ we change coordinates and put P at the point at infinity of the
y axis and a in the x axis, so that X has equation of the form

V'L 4+ fu(x) =0 (18.8)
where f;(x) is a polynomial of degree at most i in x, fori =r,...,n, f.(x) is
not identically 0 and f,(x) = 0 has n distinct solutions &y, ..., h,. The affine lines

through P have equation x = h, with# € K, and we need to find two such lines which
intersect X in n — r distinct points in A2\ {(41,0), ..., (h,,0)}. The line x = h
intersects X in A? in the points having the y-coordinate solution of the equation

V7)) 4 -+ fu(h) = 0. (18.9)

Since f,(x) is not identically zero, the equation f,(x) = 0 has only finitely many
solutions, so we can choose  in the dense open Zariski subset U’ of K = A! such
that f,(h) # 0 and h is distinct from Ay, ..., h,. For these values of &, (18.9) is an
equation of degree n — r which does not have the solution y = 0 because f;, (k) # 0.
We want this equation to have n — r distinct solutions. This is not the case if and
only if the polynomial in (18.9) has some common solution with its derivative with
respect to y. Consider the system

YR A+ () =0

I (18.10)

(n—r)y H) 4+ fumi () =0
formed by (18.8) and by its derivative with respect to y, which, since the characteristic
of K is zero, is a non-zero polynomial. Since X is irreducible, the first polynomial
in (18.10) is irreducible. Hence the two polynomials in (18.10) have no common
factor, and therefore they have a finite set S of common solutions. If we take £ in
the dense open subset U” = U’ \ (U’ N S), then the Eq.(18.9) has exactly n — r
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distinct solutions, none of them equal to 0. This implies that we can choose a, b, ¢
in infinitely many ways so that b, ¢ contain P and intersect X off P in n — r distinct
points, and a intersects X in n distinct points which are neither on b nor on c. This
proves the assertion in this case. (]

We can finally give the:

Proof (of Theorem 18.2.1) The proof is complete if the characteristic of K is 0. To
conclude, we need to deal with the case in which char(K) = p > 0.

The argument in Lemma 18.2.10 goes through, except that the derivative of (18.8)
with respect to y could be identically 0. In this case all the lines passing through P do
not intersect X in n — r distinct points off P and therefore a non-empty open subset
of the set (P) C P2 of lines through P consists of tangent lines to X at smooth points.
Then we say that P is a nasty point of X. If this is the case p divides n — r. Moreover,
since the dual curve of X is irreducible (see Exercise 17.3.25) and it has infinitely
many points in common with the line (P) of P? then X = (P) and this implies that
P can be the only nasty point of X.

We now show that we can eliminate the nasty point P by making a suitable
standard quadratic transformation. In fact make a standard quadratic transformation
based at a point A of multiplicity m = 0, 1 of X, which is not nasty for X, so we can
choose the line a intersecting X in n distinct points, and the lines b and ¢ intersecting
X in n — m distinct points not on a N X. The transformed curve X’ has acquired
three more ordinary points of multiplicities n, n — m and n — m, and has the same
singularities as X besides them. So the image P’ of P is still a point of maximum
multiplicity among the non-ordinary singularities of X’. Note that X’ has degree
n’ =2n —m and P’ has still multiplicity . Then n’ — r = 2n — m — r and this is
congruent to n — m modulo p. So appropriately choosing m = 0, 1 we can avoid
that p divides n’ — r so P’ is not nasty for X’ and we can proceed. Repeating this
process, and applying all the above considerations, we get rid of all non ordinary
points, concluding the proof of the theorem. O

Exercise 18.2.11 * Let C be a smooth, projective, irreducible curve and let P be a point of C.
Prove that there is a plane, irreducible, projective curve X C IP? with ordinary singularities such
that 7 : C — X is the smooth model of X, and 7 (P) is a smooth point of X.

Exercise 18.2.12 Analyze the singularities of the following projective curves over C and make a
transformation of each of them in a curve with ordinary singularities

oyt =

2+ 2?2 —ax?? — 22 =0
V3 —22)+x222=0

4x* + x3y + xyzz - yzz2 =0
(2+y* =22’ —xy3 =0

(2 +y?—2x2)2—x%2=0



Chapter 19 ®)
Divisors, Linear Equivalence, Linear e
Series

In this chapter X C P? will be an irreducible projective plane curve and we will denote
by 7 : C — X its smooth birational model. A point P of C will be sometimes called
a place of X centered at the point Q = f(P).

19.1 Divisors

In this section we extend in the case of curves the concept of divisors already intro-
duced in another situation in Sect. 1.6.5.
Let C be a smooth projective curve. A divisor on C is a formal sum

D= anp, with np € Z
PeC

and np = 0 except for a finite number of points of C. The integer np is called the
multiplicity of D in P. The set of points P such thatnp # 0 is called the support of
D and denoted by Supp(D).

The divisors of C form an abelian group Div(C), which is the free abelian group
generated by the points of C. The degree of D = ) ,_ np P is the integer deg(D) =
Y pec tp and the map

deg : D € div(C) — deg(D) € Z

is a group homomorphism. A divisor D =) ,_-npP is said to be effective if
np >0 for all P € C, and in this case one writes D > 0. An effective divisors
D= ZPec np P is said to be reduced if np < 1 forall P € C. In this case one also
says that D consists of deg(D) distinct points.
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Given two divisors D, D’ one sets D > D’ if and only if D — D’ > 0. This is a
partial order relation in the group Div(C). If D > D’ > 0, one says that D contains
D'.If P € Cisapointand D > P, one writes P € D and says that P belongs to D.

Consider X C P? an irreducible projective plane curve of degree n and we will
denote by 7 : C — X its smooth birational model. Since we will be interested in
questions that are invariant under birational transformations, we may assume that X
has only ordinary singularities. The process described in Sect. 18.1 shows that the
places of X are in 1:1 correspondence with the branches of X, which are all linear.

Let now Y be a plane curve of degree m with equation g = 0, which does not
contain X as a component. We define the effective divisor divy (¥) := divx(g) (also
denoted div(Y) or div(g) if there is no danger of confusion) on C in the following
way. Let P be a point of C and let yp be the linear branch of X corresponding to P.
Then we set

divy(Y) = Y 0,,(Y).

pPeC

This divisor is called the divisor cut out by Y on X. By Theorem 16.3.3, for any point
0 € X we have

(Q:X.Y)= > o0,(Y)
Pef~1(Q)

and by Bézout Theorem
deg(divyx (Y)) = nm.

Next consider a non-zero element ¢ € K(C) = K(X).Let P € C be a zero of ¢.
We will denote by ord(}, (¢) the order of zero of ¢ at P (see Remark 14.2.13). We set

(@)o = ) ord}(¢)

pPeC

and this is called the divisor of zeros of ¢. Similarly, if P € C is a pole of ¢, we
denote by ord3’(¢) the order of pole of ¢ at P, and we set

(@)oo = ) _ 0rd¥ ()

pPeC

and call it the divisor of poles of ¢.
Finally we set

div(¢) = (@) = (9o — (D)o
and call it the divisor of ¢. Divisors of this type are called principal divisors. The
map

div: ¢ € K(C) \ {0} — div(¢) € Div(C)

is a homomorphism for the multiplicative structure of K (C).



19.1 Divisors 281
Proposition 19.1.1 Forany ¢ € K(C) \ {0} we have
deg(div(¢)) = 0.

Proof Let X C P? be an irreducible curve with only ordinary singularities such that
7 : C — X is the smooth model. Any rational function ¢ € K(C) \ {0} = K(X) \
{0} can be written as ¢ = %, with g, h € S(X), g, h # 0, and g, h of the same degree
(see Theorem 5.5.3). Let G, H be homogeneous polynomials in S, of the same degree
whose classes in S(X) are g, h. Then (see Exercise 19.1.2) one has

div(¢) = div(G) — div(H)

whose degree is 0 because div(G) and div(H) have the same degree. O

Exercise 19.1.2 *Consider X C IP? an irreducible projective plane curve and let 7 : C — X be
its smooth birational model. Assume that X has only ordinary singularities. Let Z be a plane curve
with equation g = 0 which does not contain X as a component. Fix P € C and Q = f(P) and let
~vp be the linear branch of X with centre Q determined by P. The map f determines an injective
homomorphism

f* . OX’Q d OC,P~

We may assume that Q € Uy = A2, Let g, be, as usual, the dehomogenization of g. Interpret g, as
an element of Oy o. Prove that 0., (Z) equals the order of f*(g) as an element of the DVR O¢ p.

Exercise 19.1.3 *Let ¢ be a non-zero rational function on the smooth curve C. Prove that div(¢) =
0 if and only if ¢ € K*.

Exercise 19.1.4 *Let ¢, ¢’ be non-zero rational functions on the smooth curve C. Prove that
div(¢) = div(¢') if and only if there is A € K* such that ¢/ = \¢.

19.2 Linear Equivalence

Two divisors on the smooth projective curve C are said to be linearly equivalent,
and one writes D = D/, if and only if there is a function ¢ € K(C) \ {0} such that
D' = D + div(¢).

Proposition 19.2.1 The linear equivalence has the following properties:

(a) itis an equivalence relation;
(b) if D = D/, then deg(D) = deg(D’);
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(c) if D= D"and D, = D, then D + D; = D' + D;
(d) D = 0ifandonlyifthere is a non-zero rational function ¢ such that D = div(¢);
(e) if X C P? is an irreducible curve with only ordinary singularities such that
w: C — X is the smooth model, then two divisors D, D" on C are linearly
equivalent if and only if there are two plane curves Y, Y' not containing X such
that
D +div(Y) = D' + div(Y").

Proof Parts (a)—(d) are easy and can be left to the reader as an exercise. As for part
(e), note that D = D’ is equivalent to say that there is ¢ € K(X) \ {0} such that
D = D’ + div(¢). Then ¢ = -g‘—], with g, ¢ € S(X) homogeneous of the same degree
and g, ¢’ # 0. Let G, G’ € S, be homogeneous polynomials of the same degree
whose classes in S(X) are g, g’. We have

div(¢) = div(G) — div(G")

whence the assertion immediately follows. (]
Exercise 19.2.2 *Verify parts (a)—(d) of Proposition 19.2.1.

Exercise 19.2.3 *Prove that two divisors on P! are linearly equivalent if and only if they have the
same degree.

Exercise 19.2.4 *Let C be a smooth projective curve, let D be a divisor on C and S be a finite
subset of C. Prove that there is a divisor D’ = D such that S N Supp(D’) = @.

19.3 Fibres of a Morphism

Let f:C — C’ be a surjective morphism between smooth, irreducible, projec-

tive curves. Let Q be a point on C’ and suppose 7Y@ ={P:, ..., P,). Fix a
uniformizing parameter u in O¢ . For all i =1,..., h, we have an inclusion
f*:0c,0— Ocp.Wesetesp =op(f*(u),fori =1,...,h. Itis easy to see

that e p, does not depend on the uniformizing parameter u. We define the fibre
divisor of f at Q as the divisor on C’ given by

h
Q) =) eppPi
i=1

More generally, let D = ZQec,nQQ be a divisor on C’. We define f*(D) =
ZQec, ng f*(Q), whichis called the pull-back of D via f.One has Supp(f*(D)) =

f~"(Supp(D)).
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Recall that the degree of the morphism f : C — C’ is the degree of the field
extension f*: K(C') — K(C) (see Sect. 10.4). We will prove in Theorem 19.3.5
below that the degree of all fibre divisors of f : C — C’ equals the degree of f. In
order to do so, we need some algebraic preliminaries.

Let C be a smooth, projective curve. If S is a finite subset of C, we will set

Oc,s = m Oc,p,

PeS

so that O¢ g is the ring of rational functions on C which are defined at all points of
S.

Fix the surjective morphism f : C — C’ of smooth, projective curves. If Q €
C’ and S = f~1(Q), then O¢ o, identified with its image via the injection f*:
K(C") = K(C), is a subring of O¢ g.

Lemma 19.3.1 Let C be a smooth, projective curve. If S is a finite subset of C then:

(a) Oc.s is a domain with principal ideals, therefore it is a UFD;

(b) if S={P,..., Py}, there are elements ty, ..., t, € Oc s such that
OR([j)I(Sij, fOV l,]:l,,]’l (19.1)
Moreover ty, . .., t;, are pairwise relatively prime in O¢ s;

(c) ifue€ Ocgsandu # 0, then
r '
u=uvt]"1

where r; = op,(u), fori =1, ..., h, and v is invertible in O¢ .

Proof For each i =1,...,h, fix a uniformizing parameter u; € Oc p,. Then
div(u;) = P; + D;,with P, notappearingin D;,fori = 1, ..., h. By Exercise 19.2.4,
we can find a rational function f; such that the support of the divisor D; + div(f;)
has empty intersection with S, fori = 1, ..., h. Then (19.1) is verified for ¢; = fiu;,
that sits in O¢ g, withi = 1, ..., h. This proves the first part of (b).

Let us prove (a). Let Z be an ideal of O¢ . Set

ri =min{op(g),g€I}, i=1,...,h

and
r '
f = l‘1 o th .

Then one has uf ~' € Oc¢ s forall u € Z, hence Z C (f). The us prove the opposite
inclusion. Consider the set 7 of all elements of O¢ s of the form u f -le Oc.s with
u € 7. 1Itis clear that 7 is an ideal of O¢ 5. Moreover
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min{op (g9),g € J} =0, for i=1,..., 5.

Hence, foralli =1, ..., h, wecanfindu; € J suchthatop (u;) =0, 1i.e., u;(P;) #
0. Consider the element

It is clear that op,(z) = O foralli =1, ..., h, and therefore 7' €Ocs.Then 1 =
7 lz7eJ,50T = Oc.s. This immediately implies that (f) C Z, as desired.

Next we finish the proof of (b), showing that 7, ..., t; are pairwise relatively
prime in O¢ s. Suppose, for instance, that t; = ws;, r, = wsy, with w € O¢ s a
common factor. Since #(P;) # 0 for i =2, ..., h, then also, w(P;) # 0 for i =
2, ..., h. Similarly, since ,(P;) # 0 fori = 1,3, ..., h, then also w(P;) # 0, for
i=1,3,...,h.Sow(P;) # 0fori =1, ..., h,and therefore w is invertible in O¢ g.

Finally we prove (c). Fix u € O¢ s \ {0}, set r; = op (1) and note that r; > 0
fori=1,...,h. Set v=ut;" ---1,"". Then op,(v) =0 for i = 1,..., h, hence
v € Oc.s and also v~! € Oc_g. This proves (c). O

Lemma 19.3.2 [n the same setting as in Lemma 19.3.1, one has
dimg (OC,S/(t{f)) —r, forall i=1,... h.

Proof Tt suffices to prove the assertion fori = 1, the proof being analogous fori > 1.
Letusset Py = P,t; =t and r; =r. Fix v € Oc¢ . The assertion will be proved if
we prove that v can be uniquely written as

v=ao+at+--+a_t""" modulo ¢

and ay, ..., a,—; € K. We prove this by induction. Suppose we have a unique expres-
sion of the sort

s—1

v=ag+ait+---+ag_t modulo ¢*

for a given s < r (certainly there is one for s = 1, the first step of the induction).
Then
w=t" Ww—ay—ayt—--—a_ 1) eOcs C Oc.p.

We set w(P) = a; € K. Then op(w — a;) > 0 and from Lemma 19.3.1 it follows
that

w=ap+at+--+a;* modulo 't

in a unique way. O
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Lemma 19.3.3 Let f : C — C’ be a surjective morphism of projective curves, with
C and C' smooth. Fix Q € C' and set S = f~1(Q) ={Py, ..., Pp}. Then Oc s is a
finite O¢r g-module.

Proof Recall that f is finite by Theorem 14.3.3. Then note that the problem is local.
So we may assume that C and C’ are affine and we set A = A(C), B = A(C’), with
B C A and A a finitely generated B-module. We claim that O¢ s = AO¢ . The
inclusion AO¢/, o € Oc,s is obvious, so we prove the opposite inclusion.

Take any non-zero ¢ € O¢ s, and let Py, ..., P, bethe poles of ¢. Then f(l_’,-) =
Q; # Q,fori =1,...,l. Wecanfindafunctiong € B suchthatg(Q) # 0,9(Q;) =
Oandg¢p € O¢ p fori =1, ...,1.Hence g¢ € A.Moreoverg~!' € O¢' o, and we get
¢ = (g0)g~' € AO¢' . This proves that Oc s € AO¢. g, as wanted for the claim.

Finally, a set of finitely many generators of A over B, gives a set of generators of
Oc,s = AO¢, g over O¢ g, and the assertion is proved. O

Lemma 19.3.4 Let f: C — C' be a surjective morphism of smooth, projective
curves. Fix Q € C'andset S = f~1(Q) = (P, ..., Py}. Then Oc¢ s is a free Oc¢ o-
module of rank n = deg(f), i.e.,

Oc.s = O,

Proof Since O¢' ¢ is a DV R, it has principal ideals (see Theorem 14.2.6). By the
structure theorem of finitely generated modules over principal ideals domains, we
have that O¢ g is the direct sum of a free module and a torsion module. However, O¢ g
is contained in the field K (C), so it has no torsion. Therefore O¢ s is a free O¢ -
module. We have to compute its rank, which is the maximum number m of elements
of Oc¢,s that are linearly independent over O¢ . This is the same as the maximum
number of elements of Oc g that are linearly independent over Q(O¢ o) = K(C').

Since the degree of K (C) on K(C’) is n, we clearly have m < n. To finish we
prove that O¢ g contains n elements that are linearly independent over K (C’). To see
this, take fi, ..., f, € K(C) that are a basis of K (C) as a K(C')-vector space. Let

r be the maximum order of poles of fi, ..., f, at the points Pj, ..., P,. Letu be a
uniformizing parameter in O¢ . The fiu”, ..., fuu" € O¢ s and still are linearly
independent over K (C’), proving the assertion. ([

This is the promised result about the degree of fibre divisors:

Theorem 19.3.5 Let f : C — C’ be a surjective morphism of smooth, projective
curves. For every point Q € C’, one has

deg(f*(Q)) = deg(f).

Proof We set f~'(Q) ={P,..., Py} and n = deg(f). Let u be a uniformizing
parameter at Q. By Lemma 19.3.1 we have u = vt} ---1,", with r; = op, (u) for
i =1,...,hand v isinvertible in O¢ s. By the definition of f*(Q) we have
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h

h
f*(Q@) =) riP;, hence deg(f*(Q) =) ri.
i=1

i=1

Consider now the obvious surjective linear map
¢ Oc.s/ ) — &, Oc.s/(1]).

Since 71, .. ., t;, are pairwise relatively prime in O¢ g by Lemma 19.3.1, one imme-
diately sees that ¢ is also injective, so it is an isomorphism. By Lemma 19.3.2, we
have dim(O¢ s/ (1)) = Z?:l r;. On the other hand, by Lemma 19.3.4, we have

Oc,s/(u) = (Ocr o/ (u)®".

But (1) = myg, therefore O¢' o /(1) = K, and so dim(Oc¢,s/(u)) = n. In conclusion
we have

h
deg(f) =n = dim(Oc.s/(w)) = Y _ ri = deg(f*(Q))

i=1
as wanted. O

Given a surjective morphism f : C — C’, we can consider the family of effective
divisors of degree d = deg(f) given by { f*(P)} pec’. This is called an involution of
divisors parametrized by C’, and usually it is denoted by the symbol fygl,. IfQecCis
any point, there is a unique divisor D € ~} such that P is contained in D. Moreover
there is no point P contained in all divisors of the 701,.

Exercise 19.3.6 *Let C, C’ be smooth, irreducible, projective curves and f : C — C’ a surjective
morphism, with v = deg(f). Prove that if f is separable (in particular if char(K) = 0), then there
is a non-empty open subset U of C” such that for all points P € U the fibre divisor f*(P) consists
of d distinct points.

Exercise 19.3.7 Using Theorem 19.3.5 give another proof of Proposition 19.1.1.

Exercise 19.3.8 Every divisor is locally principal in the following sense. Let C be a smooth,
irreducible, projective curve and D = ) p .~ np P adivisor on C. Prove that there is an open cover
{U;}iez of C such that for any i € 7 there is a non-zero rational function ¢; in U; such that the
principal divisor of ¢; in U; coincides with the restriction of D to U;. Prove that for all pairs
(i, j) € T x T such that U; N U; # ¢, the function ¢;; = g—; is regular and never zero in U; N U;.
The family {(U;, ¢;)}ic7 is said to be compatible and determined by D.

Exercise 19.3.9 Suppose we have a compatible family {(U;, ¢;)}iez on C. Prove that there is a
unique divisor D on C, such that {(U;, ¢;)}ic7 is determined by D. In this case one says that D is
determined by {(U;, ¢i)}iez-

Exercise 19.3.10 Prove that if there are two compatible families {(U;, ¢;)}icz and {(U", (/yj)} jeg
on C, the two families determin§: the same divisor if and only if for all pairs (i, j) € Z x J such
that U; N U; # 0, the function %,’ is regular and never zero in U; N UJ(.

J
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Exercise 19.3.11 Suppose we have a surjective morphism f : C — C’ between two smooth, irre-
ducible projective curves. Let D be a divisor on C’, and let {(U;, ¢;)}icz be a compatible family
determined by D. Consider the family {(f*] (Ui), @i o _ﬁf_l(Ui))},-Ez, Prove that it is compatible
and that it determines the divisor f*(D).

Exercise 19.3.12 Suppose we have a surjective morphism f : C — C’ of degree n between two
smooth, irreducible projective curves. Let D be a divisor on C’. Prove thatdeg(f*(D)) = n deg(D).

19.4 Linear Series

Let D =), - npP be adivisor on a smooth, projective curve C. We make the
following definition

L(D)={pe K(C): either ¢ =0 or D +div(¢) > 0}.

We note that L(D) is a vector space over K. Indeed, if « € K and ¢ € L(D) it is
clear that a¢p € L(D). Moreover, if ¢, ¢ € L(D), we have

D +div(¢) >0, D+div@y) >0
which means that for all P € C we have

oc,p(¢) = —np, oc,p()) = —np.

But
oc,p(¢ + ) = min{oc p($), oc,p(Y)} = —np,

so hat ¢ + 1 € L(D).
We will denote by £(D) the dimension of L (D), that, as we will soon see, is finite.

Lemma 19.4.1 If D < D’ then L(D) C L(D') and
dim(L(D')/L(D)) < deg(D' — D). (19.2)
Proof The first assertion is trivial: if ¢ € L(D), one has D + div(¢) > 0, then D" +
div(¢) > 0 and ¢ € L(D').
To prove (19.2), it suffices to prove that

dim(L(D + P)/L(D)) < 1.

To see this, consider a uniformizing parameter u in O¢ p. Let m be the multiplicity
of P in D. Consider the linear map

uw:L(D+P)—-K
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which sends ¢ € L(D + P) to u(¢) := "' ¢)(P). Since oc p(¢) > —m — 1, the
function u™+1¢ is defined in P and so it makes sense to consider its value in P, and
the map p is therefore well defined. We claim that ker(p) = L (D). In fact u(¢) = 0
means that (u”*'¢)(P) = 0. Since oc, p(u) = 1, this means that oc_p(¢) > —m, as
wanted. Therefore

dim(L(D + P)/L(D)) < dim(K) = 1.

Lemma 19.4.2 One has L(0) = K and L(D) = {0} if deg(D) < O.

Proof We have ¢ € L(0) if and only if either ¢ = 0 or div(¢) > 0. This means that
¢ has no poles, so it has also no zeros by Proposition 19.1.1, so div(¢) = 0 and ¢ is
constant (see Exercise 19.1.3).

If p € L(D) and ¢ # 0, then D' = D + div(¢) > 0 is linearly equivalent to D,
hence deg(D) = deg(D’) > 0. Thus if deg(D) < 0 then L(D) = {0}. ([l

Lemma 19.4.3 L (D) has finite dimension and precisely L(D) = {0} ifdeg(D) < 0
whereas if deg(D) > 0 then

(D) < deg(D) + 1.
Proof If deg(D) < O the assertion follows from Lemma 19.4.2. If deg(D) =n > 0,
we fixapoint P € Candweset D' = D — (n + 1) P. Then L(D’) = {0}. By Lemma
19.4.1 we have
(D) = dim(L(D)/L(D")) < deg(D— D) =n+1
as wanted. (]
Lemma 19.4.4 If D = D’ then L(D) = L(D').
Proof Thereisa1 € K(X) \ {0} such that D’ = D + div(¢)). We consider the map
T:¢ e L(D)— ¢ € L(D).
This map is well defined. Indeed

D + div(¢y)) = D + div(¢) + div(y)) = D' + div(¢) > 0.

It is moreover clear that 7 is linear and bijective. (]

Given the divisor D on C, we denote by | D] the set of all effective divisors that
are linearly equivalent to D. This is called the complete linear series determined by
D.If D' = D, then |D'| = |D|.
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Proposition 19.4.5 One has
|D| = P(L(D)).

Proof For every ¢ € L(D) \ {0}, the divisor D’ = D + div(¢) belongs to | D|. The
same D’ is obtained from a¢) € L(D) \ {0} if and only if thereisa A € K \ {0} such
that 1) = A\¢. Indeed, one has

D' = D +div(¢) = D + div(y)

if and only if div(¢) = div(¥)) and this is the case if and only if there is a A € K*
such that ¢ = A\¢ (see Exercise 19.1.4). Thus we have an application

p: P(L(D))) — |D|

which maps the proportionality class of a non-zero function ¢ € L(D) to the divisor
D’ = D + div(¢). As we said, this map is injective. Moreover it is also surjective.
In fact, if D’ > 0 and D’ = D, there is a non-zero rational function ¢ such that
D' = D + div(¢) and ¢ € L(D). ([l

So | D|isin a natural way a projective space of dimension r (D) := £(D) — 1. Any
linear subspace of dimension r of | D| is called a linear series on C of dimension r. A
linear series of dimension —1 is empty. Two effective divisors are linearly equivalent
if and only if they belong to a linear series. Two divisors belonging to the same linear
series, being linearly equivalent, have the same degree. This is also called the degree
of the linear series. A linear series of dimension » and degree d is usually denoted
by the symbol g;.

Given a linear series g/, on C, suppose there is an effective divisor D of degree §
that is contained in all divisors of the g/;. Then one says that D is a base divisor of
the g);. If we remove D from all divisors of the g/, we still obtain a linear series g/;_;
which is denoted by the symbol g/, (—D).

Exercise 19.4.6 Consider a g, on the curve C, and let P € C be a point which is not a base point
for the g, . Consider the set of all divisors of the g, containing P. Prove that this set is a linear

series g:fl which has P has a base point. By removing P from all divisors of this g:fl we obtain

a g[,jll which is again denoted by g/;(—P).

Exercise 19.4.7 Consider a g; on the curve C, and let M be an effective divisor of degree m < r.
Prove that the set of divisors D € g/, containing M is non-empty and they form a linear series of
dimension at least r — m, having M in the base divisor. By removing M from the divisors of this
series, one obtains a gf,_m, with s > r — m, which is denoted by g(’l(—M ).

Exercise 19.4.8 Given a surjective morphism f : C — P! of degree d, with C a smooth, irre-
ducible projective curve, prove that the corresponding involution 7011 parametrized by P! is in fact

1
ag,.
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19.5 Linear Series and Projective Morphisms

Let £ = g/, be a linear series on a smooth, projective curve C. It corresponds to an
(r + 1)-dimensional vector subspace V C L(D), with D € £. Suppose that £ has no
base points: we will then say that £ is base point free. Then for every point P € C,
the series g;(— P) has dimension r — 1 (see Exercise 19.4.6). Hence g);(— P) can be
considered as a hyperplane in gj;. Denote by §/; the dual projective space of g;. We
have a map

we:PeC— gy(—P)e g, =P

Proposition 19.5.1 In the above setting, the map we is a morphism, which is said to
be determined by &.

Proof With the above notation, g;; = P(V) and therefore ¢, = P(‘;). Fix a point
P € C and a divisor D € g such that P is not contained in D: this is possible
because g, is base point free. For every g € V \ {0}, we have

D +div(g) = D' € ¢,

therefore the divisor of poles of g is such that

D 2 (9.
Fix a basis gy, ..., g, of V, so that
D > (gi)eo, forall i =0,...,r. (19.3)
On V we have coordinates (Ao, - -+, Ar) corresponding to the linear form mapping

gi in \;, fori =0, ...,r. Now g/, (—P) corresponds to the subspace V(—P) of V
formed by 0 and by all non-zero functions g = pggo + - - - + 1 g» such that

D +div(g) > P.

This, by (19.3) and by the fact that P is not contained in D, happens if and only if
g(P) =0, 1i.e., if and only if

togo(P) 4 -+ + prgr(P) = 0. (19.4)

Hence V(—P) is the linear subspace of V' of codimension 1 having Eq. (19.4) in the
coordinates (i, . .., 4y) of V. Thus in V it has coordinates

(gO(P)v cee 9gr(P))

which are not all zero, because P is not a base point for the g;. In conclusion, in the
open neighborhood of P which is the complement of the support of D (containing
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all the poles of the functions gy, . .., g,), w writes as
w:PeU=C\Supp(D) = [go(P),...,g9,(P)] €P" (19.5)
where gy, . .., g, are regular functions in U, which proves the assertion. O

We go on keeping the notation of the proof of Proposition 19.5.1. We observe
that, by the linear independence of the functions g, .. ., g, there is no hyperplane
of P containing the curve w(C), which is therefore non-degenerate.

Conversely, suppose we are given a morphism

w:C—P
so that w(C) is non-degenerate. Given a hyperplane 7 of P", with equation
apxo+ -+ +ax, =0 (19.6)

we define the divisor div(w) cut out by 7 on C in the following way. Set

div(r) = anp

peC

and we define np for all P € C. Fix P € C. Suppose C C P’. In a neighborhood
U of P on C there are regular functions gy, ..., g- on U, not all zero at any point
Q € U, such that

w(Q) =1[90(Q), ..., 9,(Q)], forall QeU

(see Exercise 6.2.13). Then we define n p to be the order of the function apgy + - - - +
arg, at P. Divisors cut out by different hyperplanes on C are linearly equivalent. In
fact, if the hyperplane 7 has Eq. (19.6) and the hyperplane 7" has equation

agxo+---+a.x, =0
then, with the above notation, one has
div(m) — div(7)) = div(w).
apggo + -+ a.gr

Actually the divisors cut out by all hyperplanes vary in a linear series { = g}, with
no base point, and w = we.

In conclusion there is a 1:1 correspondence between base point free linear series
gy on C and morphisms w : C — P up to projectivities of IP", such that w(C) is
non-degenerate.

Given a base point free £ = g/, on C, it is called simple if w is birational onto
its image X. This is the same as saying that, except for finitely many pairs of points
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(P, Q) € C x C, one has
dim(g:i(—P —0)=r-2. (19.7)

Suppose that the base point free linear series £ = g; on C is non-simple, i.e.,
we : C — X is not birational, where X = w¢(C) is a non-degenerate curve in P". Let
7 : C' — X be a smooth model of X. Then there is a rational map 1) = 7! o w; :
C --» C’, which is a morphism because C is smooth, and we = mo . Then one
says that w¢ factors through 1. Let v = deg(f). One says that £ is composed with
the involution . parametrized by C’. In this case given any point P € C, if D is
the unique divisor of the ~! containing P, then D is contained in any divisor of
& containing P. This implies that d is divisible by v and the birational morphism
m:C'— X C P"isdetermined by a ¢, . Soif € is base point free but non-simple, then

forany point P € C thereis somepointVQ € Csuchthatdim(g,(—P — Q)) =r — 1.

Given a linear series £ on the smooth, irreducible, projective curve C, £ is said to
be very simple if it is base point free and moreover for all pairs of points (P, Q) €
C x C, (19.7) holds. The following is a basic result:

Theorem 19.5.2 Let & be a very simple linear series on the smooth, irreducible,
projective curve C. Then the morphism we : C — P is an isomorphism of C onto
its image. In particular the image of C is smooth.

Proof Let C’betheimageof f.Then f : C — C’isafinite map by Theorem 14.3.3.
The map f : C — C’ is bijective, because it is of course surjective and injective by
the very simplicity of £. Then we apply Theorem 14.4.1 and in order to do so we
have to prove that for any point P € C, the differential of f is injective at P. If we
set O = f(P), this is equivalent to say that

[*img/my — mp/mp
is surjective. Suppose by contradiction that this is not the case. Then this means that
2
f*(mQ) - mp,

because, since C is smooth at P, one has dim(mp /m%) = 1. Then for any function
u € mgp, we have op(f*(u)) > 2. This implies that for any divisor D € £ such that
P € D, then 2P < D. This contradicts the very simplicity of . O

Exercise 19.5.3 *Prove that if { = g/, on the smooth, projective curve C is base points free and
simple then the image of w¢ is a curve of degree d and there is a dense open subset U of the g7; such
that every divisor D € U consists of d distinct points.

Exercise 19.5.4 *Assume char(K) = 0. Suppose that { = g/, on the curve C is base point free
but not simple, so that we : C — we(C) = X C P" is not birational. Let 7 : C’ — X be a smooth
model of X and consider the morphism t) = 7! o wg : C — C’. Then £ is composed with the v
parametrized by C’ determined by 1) : C — C’. Prove that X has degree % and that we : C — X
has degree v. Prove that again there is a dense open subset U of the g} such that every divisor
D € U consists of d distinct points.
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19.6 Adjoint Curves

Let X C P? be an irreducible curve with only ordinary singularities and 7 : C — X
its smooth model. For any point P € C with Q = f(P), we set

np = mQ(X)

and we define the divisor

Ay = Z(mp —-1nHpP

PeC

that may be simply denoted by A if no confusion arises. We will call it the multiple
points divisor of X. Note that A = 0 if and only if X is smooth.

A plane curve Y is said to be adjoint to X if for any point Q € X onehasmy(Y) >
mo(X) — 1.

Proposition 19.6.1 Let X C P? be an irreducible curve with only ordinary singu-
larities. Then Y is adjoint to X if and only if either Y contains X or

leX(Y) 2 Ax.

Proof One implication is trivial, so we focus on the non-trivial implication. We will
argue as in Sect. 18.1. Suppose that P is a singular point of X with multiplicity m,
that P € Uy = A? and that actually P is the origin of A%, Then the affine equation
of X is of the form

F@,y) = fule, y) + fopr (e, 9) +---+ falx, y) =0

where d is the degree of X and f;(x, y) is a form of degree i, fori = m, ..., d. The
form f,,(x, y) has m distinct roots, up to a proportionality factor, so that

fue,y) = [ [bix — aiy)
i=1

with (a;, b;) # (0, 0) non-proportional, fori = 1, ..., m. The principal tangents to
X at P have affine equations

bix=ay, i=1,...,m.

By a change of coordinates we may assume that b; = 0, so that one of the principal
tangents to X at P is the x axis. Let us blow-up the point P. We restrict our attention
to the open subset Ay of the blow-up, which is isomorphic to A% with coordinates
(x, v) and the blow-up map identifies with the map (x, v) — (x, xv). Let Z be the
intersection of the strict transform of X with Ao, which is an open subset of the
smooth model C of X. The equation of Z in Ay = A?is



294 19 Divisors, Linear Equivalence, Linear Series
m
Fu(Lw) - 297 fy(1Lv) =0, and £, (1,v) = [ [ — a;v) = 0.
i=1

Now let us consider a curve Y in P? which has affine equation

gx,y) =g-(x,y) + grp1(x, y) + -+

where, as usual g,(x, y), g,+1(x, ¥), ... are homogeneous polynomials of degree
equal to the index. The intersection of the total transform of Y with A = A? has
equation

x"(gr(1,v) + xgr1(Lv) +---) =0

It contains with multiplicity r the exceptional locus of the blow-up, which has equa-
tion x = 0, and the proper transform has equation

9-(1,v) +xg,11(1,0) +--- = 0.

This tells us that for any point Qy, ..., Q,, of C in f~'(P), the multiplicity of
div(Y) is at least r. Moreover we see that if Q; = (0, 0) is the point corresponding
to the principal tangent y = 0 to X at P, the multiplicity of div(Y) at Q, is larger
than 7 if and only if the equation g, (1, v) = 0 in v has the solution v = 0, i.e. if and
only if one of the principal tangents to ¥ at P coincides with the x axis. The same
happens for every other point Qo, ..., Q,. Hence,if r < m — 1,since Y hasin P at
most r principal tangents, then there is an i € {1, ..., m} such that the multiplicity
of div(Y) in Q; isr < m — 1, so it does not happen that div(Y) > Ax. This proves
the assertion. (]

The set Adj,(X) of all adjoint curves of degree d to X is alinear system. If d < n,
no curve in Adj,; (X) contains X.If d > n, then Adj,(X) contains the subset Adjg (X)
of all the adjoints containing X. They consist of X plus any curve of degree d — n.
So Adjg(X ) is a linear system and

(d—n)d—n+3)

dim(Adj5(X)) = 5

Now we are able to prove an important result:

Theorem 19.6.2 (M. Noether Restsatz) Let X C P? be an irreducible curve with
only ordinary singularities and 7w : C — X its smooth model. Let D, D’ be effective
divisors on C such that D = D'. Suppose there is an adjoint curve Y of degree m
not containing X such that

divY)=A+D+ A

where A is an effective divisor. Then there is an adjoint curve Y' of degree m not
containing X such that
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div(Y)Y=A+ D'+ A.

Proof Since D and D’ are linearly equivalent, there are curves Z, Z' of the same
degree such that
D +div(Z) = D' +div(Z)).

Then
div(Y 4+ Z) = div(Y) + div(Z) =
=A+D+A+D —D+div(Z) = (19.8)
=A+A+D +div(Z) > div(Z') + A.

Now we make the following:

Claim (+): Let X C P? be an irreducible curve with an ordinary m-tuple point P.
Let Y, Z be curves with equations g = 0 and # = 0 respectively. Let vy, ..., 7, be
the distinct linear branches of X with centre P. Then Z verifies at P the Noether
conditions with respect to X and Y if

04, (hy) 2 04,(gs) +m —1, forall i=1,...,m

where, as usual, g, and &, denote the dehomogenizations of g and /.

Take this claim for granted for the moment, and let us finish the proof of the
theorem. By (19.8) it follows that Y 4 Z verifies Noether’s conditions with respect
to X and Z’ in any multiple point P of X, hence, assuming that X and Z’ have
equations f = 0 and &’ = 0 respectively, we have a relation of the sort

gh = ah’ + bf
with a, b suitable homogeneous polynomials. Then on C we have
div(gh) = div(ah’) = div(a) + div(h')

hence
div(a) =div(Y + Z2) —div(Z) = A+ A+ D’

so that, by Proposition 19.6.1, we may consider the adjoint curve Y’ with equation
a = 0, as desired.

We are left to prove Claim (+). As usual we may put P in the origin of A and we
denote with a lower asterisk the dehomogenization of polynomials. Now Z verifies
at P the Noether conditions with respect to X and Y if and only if 4, € (fs, g+) C
Oz, p, where we abuse notation identifying f, ¢, i, with their classes in Op2 p.
This is equivalent to say that &, € (g,) C Ox.p, where the upper bar denotes the

class. But to say that hy € (g«) C Ox, p, isin turn equivalent to say that ;ﬁ € Ox. p.
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Consider the smooth model C — X, let Py, ..., P, be the counterimages on C
of P and consider a rational function ¢ on C which is defined at P, ..., P, and
oc,p(¢) 2m —1foralli =1,...,m. Then we claim that ¢ € Ox p € K(C) =
K (X). This clearly implies Claim (+).

To prove this final claim, consider an open neighborhood U of P in X such that
¢ is defined for every P’ € U except perhaps in P. Let U’ be the counterimage of U
on C, where C as usual is obtained by blowing-up at P. If x = 0 is the equation of
the exceptional locus in the usual open set AO of the blow-up, then o¢ p,(x) = 1 for
alli =1, ..., m. Therefore Xf,—il € O(U’). The assertion follows from the fact that
x" 1O’y <€ OW).

In fact the affine equation of X is

d
fulx,y) = Z ai;jx'y! =0

i+jzm

with d the degree of X. We may suppose that, after making a change of coordinates,
we have ag,, % 0. With the usual notation, the equation of C in A is of the form

d
E a;jx't "M = 0.
itjzm

Recalling that y = xv, we may write this equation in the form

d
> aiy ™ T =0, (19.9)

itj=m

The left hand side of (19.9) is a polynomial of degree m in v. Indeed, when i > m,
so that m — i < 0, we may write

i+j—m, m—i i—m_ j

y VT =Xy
The coefficient of v™ (19.9) is

d
Zaojyf*'" (19.10)

jzm

which has constant term ag,, # 0. So (19.10) is non-zero in U, thus, up to shrinking
U, we may divide by (19.10), and the Eq. (19.9) becomes of the form

Vb b, =0

where by, ..., b, € OU), so that O(U’) = OU)[1, v, ..., v ']. But then
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X"yl =y (xv) = x" Ty e OW), forall j=1,...,m—1.

Hence x”"~'OU’) € O(U) as desired.
In conclusion

p=x""". il ex"'OWU") € OU) € Ox,p
xl‘ﬂ—
proving Claim (+) and the theorem. (]

19.7 Linear Systems of Plane Curves and Linear Series

Let X C P? be an irreducible curve with only ordinary singularities and let 7 : C —
X be its smooth model. Let £ be a linear system of dimension r of curves of degree
d in P2, such than no curve in £ contains X. Then we can consider the set of divisors

Lc={div(Y):Y € L}.

The divisors in L¢ are all linearly equivalent (see Proposition 19.2.1, (e)). Actually
L is a linear series of dimension r that, as a projective space, is projectively equiv-
alent to L. In fact, let V C S, 4 be the vector space such that dim(V) = r + 1 and
L =P(V).Fix f € V \ {0} and consider the divisor D = div(f) on C. Consider the
vector space W C K (C) of all rational functions of the form % with g € V. Clearly
V = W, hence dim(W) = r 4+ 1. We claim that W C L(D). In fact, for all % ew,
we have ‘
D+ div(%) — D +div(g) — div(f) = div(g) > 0.

Therefore W corresponds to the linear series of dimension r given by P(W), and
this clearly coincides with L¢. Since P(W) = P(V) = L, this series is projectively
equivalent to £. The linear series L is called the series cut out by £ on C (or on
X).

Suppose next that £ contains curves containing X. Let £ be the subset of £
formed by such curves. This is a sublinear system of £ whose dimension we denote
by s. In £, which is a projective space of dimension », we can consider a subspace
L' of maximal dimension r — s — 1 such that £’ N £° = . We can the consider the
linear series L. cut out by £ on C, because no curve in £’ contains X.

Lemma 19.7.1 In the above setting, if Y € L is any curve not containing X, then
there is a unique curve Y’ € L' such that

div(Y) = div(Y"). (19.11)
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Proof Consider the subspace (£°, Y) of £. Since Y ¢ L£°, then (£°, Y) has dimen-
sion s + 1. If X and Y have equations f = 0 and g = O respectively, all curves in
(£°, Y) have equation of the form

Ag+puh =0, with (\ p)eK?\{(0,0)),

with 4 = 0 the equation of a curve in £° and therefore 4 is divisible by f.If A # 0,
we have
div(Ag + ph) = div(g) = div(Y)

so all curves in (£°, Y) not containing X cut out on C the same divisor. On the other
hand, by Grassmann formula, (£0,Y) intersect £ in a unique point Y’ for which
(19.11) holds. a

In conclusion, the linear series cut out by £’ on C, which has dimensionr — s — 1,
coincides with the set of all divisors cut out on C by curves in £ not containing X.
So this series is independent of £, it is still denoted by L¢ and it is called the series
cut out by L on C (or on X).

If D is an effective divisor contained in all divisors of L., we can subtract D for
all divisors of L and obtain a new linear series which is said to be the series cut out
by L on C (oron X) off D.

In particular, we can consider the linear system Adj,(X). This linear system cuts
out on C a linear series all of whose divisors contain the multiple point divisor A.
Thus Adj,;(X) cuts out on C off A a linear series that we denote by adj,(X). The
Restsatz Theorem 19.6.2 implies that:

Theorem 19.7.2 For every positive integer d, the linear series adj,;(X) is a complete
linear series. Moreover all complete linear series are cut out on C by sublinear
systems of adjoint curves of a sufficiently high degree d which cut out on C a fixed
divisor A (off A).

Exercise 19.7.3 Given any effective divisor D with deg(D) < 3 on a smooth plane cubic or on a
plane quartic with two nodes, determine the dimension of the complete linear series |D|.

Exercise 19.7.4 Given any effective divisor D with deg(D) = 3 on a smooth plane quartic, deter-
mine the dimension of the complete linear series |D|.

Exercise 19.7.5 Given any effective divisor D with deg(D) = 3 on a plane quartic, with a single
node, determine the dimension of the complete linear series | D]|.

19.8 Solutions of Some Exercises

19.1.2 We may assume that Q € Uy = A and that Q is the origin of A%. We may assume in addition
that yp is determined by a parametrization of the form

x=t, y=at"+---,



19.8 Solutions of Some Exercises 299

with n > 2 and a # 0. We may assume also that C is obtained, as in Sect. 18.1, by blowing-up at
the singular points of X. So in particular we blow-up Q. As in Sect. 18.1, from which we keep the
notation, we can restrict our attention to the open subset A of the blow-up, which is isomorphic
to AZ with coordinates (x, v) and the blow-up map identifies with the map (x, v) — (x, xv). Let
Y be the intersection of the strict transform of X with A, which is an open subset of the smooth
model C of X. The point P coincides with the point with coordinates (0, 0) in A = A2 The linear
branch 7 of ¥ with centre P is determined by the parametrization obtained by the equations

x=t, xv=y=at"+---, hence v=a"""4...

Now 0, (Z) is the order of the power series g, (¢, at™ + - - -) (as usual g, denotes dehomoge-
nization). We can consider the decomposition in homogeneous components

9x(x,¥) = gm (X, ) + gm+1(x, y) + -

so
ge(t,at" +--) = t"’(g,,,(l,at”_l +oo ) Ftgm (a4 +>

and therefore the order of g, (¢, at™ + - - -) is m plus the order of the power series
gn(Lat"™ 4 ) rgm (a4 ) (19.12)

By Propositions 16.3.2 and 16.3.13, to compute the order of f*(g.) in Oc, p, it suffices to compute
the order of f*(g.) on 7. Now f*(gy) is the function
G (x, x0) = X" (gm (1, V) + xgm1 (L, v) +--+)

and the order of f*(g,) on 7 is the order of the power series

" (gm(Loat"™ " ) g (a4 )
which is m plus the order of the power series (19.12). This computation shows that 0,, (Z) equals
00¢.p (f*(gx)), as desired.

19.2.3 Suppose we have two divisors D, D, of the same degree n on P'. Write
D; = D;1 — Dj», with Djj, Dj5 effective and with no common points, for i=1,2.
The divisor D1 — Dy = (D11 + D22) — (D12 + D31) has degree 0, hence deg(D11 + D) =
deg(Dlz + D31). Write D,‘j = mij,IPijA,l =+ .- TMij hy; Pij,hi,- and set Pij,/ = [a,-qu, biqu],for (i,j) e
{1, 2}2 and/ =1, ...,, h;;. Consider the rational function

h h
T2 Geobing = xian, )™ - T2 (obaa,t — x1a20,1)™22

- h h .
[T2 (obi2, — xpar, )™z - T2 (xoba1,s — x1a21,1)™2M

One has div(¢) = Dy — D».

¢

19.2.4 It suffices to prove the assertion if D = £ P with P € S. We treat the case D = P, the case
D = —P being similar. By Exercise 18.2.11 there is a curve X C P? with ordinary singularities
such that 7 : C — X is the smooth model of X, and Q = 7 (P) is a smooth point of X. Consider a
line r in P? which avoids any point in 7(S) and a line s passing through Q, not tangent to X at Q,
and avoiding any other point of 7(S). Let f = 0 be the linear equation of r and g = 0 the linear
equation of s and consider the rational function ¢ = 5. Then P + div(¢) is linearly equivalent to
P and misses all points of S.

19.3.6 It follows from Theorem 10.4.4.

19.5.3 Let X be the image of we. Since & is simple, then w¢ : C — X is birational. Let U C X be
a non-empty open subset such that we induces an isomorphism between Wg_ Y(U) and U. We can
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assume that U consists only of smooth points for X. Then S = X \ U is a finite set of X. Consider
the following set
I={P,m)elUxP . Tx,p C 7}

The first projection p; : I — U is surjective and for each point P € U, pl_l(P) is a projective
space of dimension r — 2. This implies that / has dimension r — 1 (see Theorem 11.3.1). Then
also the closure of I in X x P’ has dimension r — 1 and therefore the image of the projection
pril— IP" to the second factor is a proper closed subset Z of IP". Consider the open subset A of
P consisting of the complement of the union of Z plus the set of hyperplanes passing through one
of the finitely many points of S. Let 7 be a hyperplane in A. We claim that 7 intersects X in d distinct
points. This will prove both assertions in the Exercise. First we notice that 7 intersects X only in
points of the open subset U. Let P be one of these points. We may assume that P € Uy = A". Let
f(x1,...,x-) = 0 be the linear affine equation of 7. In a neighborhood of P we may identify X
with C. The hyperplane 7 contains P but it does not contain the tangent line to X at P. This means
that f can be interpreted as a non-zero linear map on the Zariski tangent space (mp /m%;)v of X
at P (where mp denotes the maximal ideal of Ox p). This implies that f € mp but f ¢ m%,, SO
ox,p(f) = 1. Since P is any point of 7 N U = 7 N X, we have that div(7) on C is reduced, so it
consists of d distinct point, as wanted.

19.5.4 It follows from Exercises 19.5.3 and 19.3.6.



Chapter 20 ®)
The Riemann-Roch Theorem Coeck o

20.1 The Riemann-Roch Theorem

In this section we will prove the Riemann—Roch Theorem, which computes the dimen-
sion of a complete linear series in terms of the degree of the series and of an invariant
of the curve called the genus.

Let us consider an irreducible curve X C P? of degree n with only ordinary multi-

ple points Py, ..., P, with multiplicities m, . .., m, respectively. We will consider,
as usual, its smooth model 7 : C — X.
Let us set

g(X) =

(n—D@m-2) ’Z mi(m; — 1)
2 , 2 '
i=1
which is often simply denoted by g if there is no danger of confusion. This number
a priori depends on X, namely, if Y is again a projective, irreducible curve ¥ C P?
with only ordinary multiple points and if its smooth model is again 7’ : C — Y, itis
not a priori clear that g(X) = g(Y). Actually we will see later that g(X) = g(Y), so
that g(X) depends only on C, it will be denoted by ¢g(C) and called the genus of C.

For the moment we note that g(X) > 0 by Lemma 17.1.3. For instance, if X is a
line or a conic, we have g = 0, if X is a smooth cubic we have g = 1, if C is a cubic
with a node we have g = 0, etc.

If g > 1, the complete linear series adj,_;(X) is called the canonical series on C
determined by X. Again, a priori this series depends on X but, as we will see later,
it does not. The divisors linearly equivalent to the divisors of this series are called
canonical divisors. Usually a canonical divisor on C is denoted by the symbol K¢ or
simply by K, so that the canonical series is denoted by |K¢|. Every effective divisor
contained in some canonical divisor is said to be a special divisor, and the complete
linear series determined by such a divisor will be called a special linear series. In
particular, the canonical linear series is special.
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Lemma 20.1.1 Ifg = g(X) > 1 the canonical series has degree 2g — 2 and dimen-
sionr =2 g— 1.

Proof The degree of the canonical series is

h
n(n —3) — deg(A) = n(n —3) = > mi(m; — 1) =29 — 2.

i=I

The dimension of the canonical series equals the dimension » of Adj,_;(X) and we
have

n(n —3) mi(m; — 1)
Sz hmiimi 7
g 2 ; 2 g

O

Example 20.1.2 In this example X is again an irreducible curve in P? with at most
ordinary singularities.

(a) If X is a smooth cubic one has g = 1, then Adj,_;(X) is the linear system of
curves of degree 0 and the canonical series consists of the only 0 divisor, so it is
ag.

(b) If X is a quartic with g = 1, then X has two nodes P;, P,. There is a unique
adjoint curve of degree n — 3 = 1, i.e., the line (P;, P»), which cuts, off A, the
0 divisor. Again the canonical series is a gj.

(c) If X is aquartic with g = 2, then X has only one node P. The system Adj,,_;(X)
is the pencil of lines through P, and it cuts, off A the canonical g%.

(d) If X is a quartic with g = 3, then X is smooth and the canonical series is cut out
on X by the lines of the plane, soitis a gf.

Proposition 20.1.3 In the above setting, let D be an effective divisor on C with
deg(D) = g + 1. Then dim(|D|) > 1.

Proof Letn = deg(X) = 1,sothatnisalineand g = 0. Then D consists of aunique
point P, and the complete linear series | P| is cut out on X by the lines of the plane,
soitis a g]I , and the assertion holds.

Next assume n > 2. Set

h
m=nm—1) =Y mim—1)

i=1

which is the degree of adj,_;(X). We have
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h
m—29g=mn-—1)— Zmi(mi —-1)—-

i=1

h
—((n =D =2) —Zmi(mz- - D)) =2r-1) >0,

i=1

hence
m—g=g+1.

The linear system Adj,_, (X) has dimension

L m-Dn+2) _Zmi(mi -1

r > ) m-—gzg+

i=1

and therefore there is some adjoint curve of degree n — 1 which cuts on C, off A, a
divisor containing D (see Exercise 19.4.7). If Y is such an adjoint we have

div(Y) = A+ D+ A

with deg(A) = m — g — 1. From the Restsatz Theorem 19.6.2, the adjoint curves of
degree n — 1 thatcut, off A, adivisor containing A, form a linear system of dimension

rr>r—m-g-—1 >1,

and cut out, off A and A, the complete linear series | D|. The assertion follows. [
Corollary 20.1.4 If g = 0, then C is isomorphic to P, i.e., C and X are rational.

Proof Let P € C be a point and consider the divisor D = P. By applying Propo-
sition 20.1.3, we have that |P| = g}. This linear series ¢ determines a morphism
we: C— P!, which is surjective (because w(C) is non-degenerate). Moreover ¢ is
clearly simple. So wy is birational and the assertion follows. (]

For reasons that we will later understand, if g = 0, so that C = P!, all (linearly
equivalent, see Exercise 19.2.3) divisors of degree —2 on C are called canonical
divisors.

Theorem 20.1.5 (M. Noether Reduktionsatz) Let X be an irreducible curve with
only ordinary singularities and let w: C — X be its smooth model. Let D be a
special divisor on C and let P € C be a point such that m(P) = Q is a smooth point
which is not a nasty point of X and P does not belong to all canonical divisors
containing D. Then

dim(|D|) = dim(|D + P|),

i.e., P is a base point for the series (|D + P|.
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Proof Let h = 0 be the linear equation of a line r passing through Q, such that
divi(h)=P+ P, +---+ P,, with n = deg(X), (20.1)

with P, P,, ... P, distinct (which exists because Q is not nasty for X). Let moreover
¢ = 0 be the equation of an adjoint curve of degree n — 3 such that

div(p) =A+D+ D’
with P ¢ D', which exists by the hypotheses. Then we have
div(h$) =A+D+P+P,+---+ P, + D

By the Restsatz Theorem 19.6.2, the linear series D + P is cut out on C by the
linear system of the adjoint curves of degree n — 2 that cut out on C the divisor
A+ P, +---+ P, + D', off this divisor. Since the curves of this system have degree
n — 2 and contain P, + --- 4+ P, which are distinct points of the line r, all these
curves contain r. Because of (20.1), P belongs to all these curves, hence it is a base
point of |D + P|. O

Let D be an effective divisor o C. We can consider the subseries of the canonical
series | K¢| consisting of all divisors of |K¢| containing D. One sets i(D) to be
the dimension of this series plus 1, i.e., i(D) = dim(|K¢c — D|) + 1 = €(K¢ — D)
and i (D) is called the index of speciality of D. Hence i(D) > 0 and i(D) > 0 if
and only if D is special. Note that if deg(D) > 2g — 2 certainly D is non-special,
hence i (D) = 0. By contrast, if deg(D) < g — 1, by Lemma 20.1.1 the divisor D is
certainly special and

i(D) = g —deg(D). (20.2)

Theorem 20.1.6 (Riemann—Roch Theorem) Let D be an effective divisor on a
smooth projective curve C. Then

dim(|D]) = deg(D) — g + i(D). (20.3)

Proof As usual we assume 7 : C — X to be a birational morphism, with X C P? a
curve of degree n with only ordinary singularities.

Let us start by proving the theorem for non-special divisors. We proceed by
induction on dim(|D]). So we first assume dim(|D|) = i(D) = 0. By (20.2) we
have deg(D) > g. If we have deg(D) > g, we can take an effective divisor D’ < D
with deg(D’) = g + 1. By Proposition 20.1.3 we have dim(|D[) > dim(|D’|) > 1,
a contradiction. Hence we have deg(D) = g, proving (20.3) in this case.

Now suppose that (20.3) holds for all effective divisors D’ such thati (D) = 0 and
dim(|D’|) = r > 0.Let D be an effective divisor such that i (D) = 0 and dim(|D|) =
r 4+ 1. Let P € C be not a base point for | D], such that 7(P) = Q is a smooth point
for X and not a nasty point for X (recall that there is at most one nasty point for X,
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see the proof of Theorem 18.2.1). Certainly there are divisors in | D| that contain P.
So we can find some effective divisor D’ such that D' + P € |D|, and

dim(|D'|) = dim(|D]) = 1 = r.

We have also i(D’) = 0. Suppose to the contrary i(D’) > 0. Since i(D) = 0, no
canonical divisor containing D’ contains also P. Then by the Reduktionsatz 20.1.5,
P would be a base point for |D| a contradiction. So we can apply the induction
hypothesis to D’ and we get

r+1=dim(|D|) =dim(|D'|) + 1 =
=deg(D’) —g+1=deg(D)—g

proving (20.3) also in this case.

Next we proceed by induction on i(D). Suppose the theorem proved for any
effective divisor D’ such that i (D) =i > 0. Let us take an effective divisor D such
that i (D) =i + 1. The adjoint curves of degree n — 3 that cut out on C a divisor
containing A + D, cut out off this divisor a linear series £ of dimensioni (D) — 1 = i.
Let P be a point of C such that Q = w(P) is smooth for X, not nasty and not a base
point for €. Then we have i (D + P) = i. By induction we have

dim(|D + P|) =deg(D+ P)—g+i(D+ P) =
=deg(D)+1—g+i=deg(D)—g+i(D).

On the other hand, by the Reduktionsatz we have
dim(| D) = dim(|D + P|),
and this proves (20.3) also in this case. O

Corollary 20.1.7 The canonical series has dimension g — 1.

Proof 1f g = 0, the canonical series is empty, because it has degree 2g —2 = -2 <
0. So the assertion is true in this case. If g > 1, the canonical series has dimension
atleast g — 1 > 0 (see Lemma 20.1.1). Moreover i (K) = 1 and therefore

dim(|K|) =deg(K) —g+i(K)=29g—2—g+1=9g—1
as wanted. O

Theorem 20.1.8 Let X, X' be irreducible, projective, plane curves with ordinary
singularities. If X and X' are birationally equivalent then g(X) = g(X’).

Proof Let m: C — X and ' : C' — X' be smooth birational models. Then C is
birational to C’ so it is isomorphic to C’. For every effective divisor D on C we
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have dim(|D|) < deg(D), so it makes sense to consider the non-negative integer
p(D) = deg(D) — dim(|D|), and we set

p(C) = Su%{P(D)}-

D>

Of course p(C) is invariant under isomorphisms. On the other hand Riemann—Roch
Theorem implies that p(C) = g(X), and therefore g(X') = p(C’) = p(C) = g(X)
and the assertion follows. ([l

This theorem proves that, as announced, if 7 : C — X is a smooth model of the
plane curve X with ordinary singularities, then g(X) depends only on C. If X is any
curve, we will define its genus to be the genus of a smooth projective model of X.

Corollary 20.1.9 Given a smooth, projective curve C of genus g > 1, the canonical
series is the only gggjz on C, therefore it is a birational invariant.

Proof Let D be an effective divisor on C such that deg(D) = 2g — 2. Then either
D is special, in which case it is a canonical divisor and then |D| = |K| = gé’g_jz, or

D is non-special, in which case |D| = gg(]__zz. [l
Exercise 20.1.10 Compute g(X) for each of the following curves X C P over C:
22024y =0
B+ D)+ 45 =0
G+ 4+t -2 4+y—22=0
and for the curves in Exercise 18.2.12.

Exercise 20.1.11 *Compute the index of speciality of any effective divisor if X is a smooth quartic
or a quartic with a node.

Exercise 20.1.12 *Prove that if D is any divisor on a smooth, projective, irreducible curve C of
genus g such that deg(D) > g, then £(D) > 1.

Exercise 20.1.13 *Prove the following general form of Riemann—Roch Theorem: let D be any
divisor on C of genus g, then

¢(D) = deg(D) — g+ ¢(K¢c — D) + 1. (20.4)

Exercise 20.1.14 Prove that if D is any divisor on C of genus g such that deg(D) > 2g — 1, then
dim(| D) = deg(D) — g.

Exercise 20.1.15 Prove that a curve X is rational if and only if its genus is 0.

Exercise 20.1.16 Prove that a smooth projective curve C is isomorphic to P! if and only if it carries
a complete g, for some n > 1.

Exercise 20.1.17 Prove that for any n > 1, P! carries a unique complete gy, Prove that this series
is base point free and very simple and that the image of P! via such a series is a rational normal
curve of degree n in in P".
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Exercise 20.1.18 Let C be a smooth, projective, irreducible curve of genus g. Let D be a divisor of
degree d > 2g + 1. Prove that the complete series |D| = gZﬁg is base point free and very simple.

Exercise 20.1.19 Let C be a smooth, projective, irreducible curve of genus g. Prove that g = 1 if
and only if for any effective divisor D with deg(D) = n > 1 one has dim(|D|) =n — 1.

Exercise 20.1.20 Let C be a smooth, projective, irreducible curve of genus 1. Prove that it is
isomorphic to a smooth plane cubic.

20.2 Consequences of the Riemann—Roch Theorem

In this section we list some consequences of the Riemann—Roch Theorem.

Theorem 20.2.1 (Reciprocity Theorem) Let D, D’ be effective divisors such that
D + D’ is a canonical divisor. Then

deg(D) — deg(D') = 2<dim(|D|) - dim(|D/|)).
Proof We have dim(|D’|) = i(D) — 1, hence
dim(|D|) — dim(|D'|) = deg(D) — g + 1.

Moreover
deg(D) +deg(D’) =29 — 2

hence !
dim(|D|) — dim(|D'|) = deg(D) — E(deg(D) + deg(D"))
whence the assertion follows. O

Theorem 20.2.2 If C is a smooth curve of genus g > 1, the canonical series is base
point free.

Proof If P is a base point of the canonical series, we have i (P) = g, and then
dim(|P|) =deg(P) — p+i(P)=1

so that | P| = g{. Then by the argument we made in the proof of Corollary 20.1.4, C
would be isomorphic to P!, hence we would have g = 0, a contradiction. O

Theorem 20.2.2 tells us that the canonical series | K| determines a morphism

ke C — P91
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also simply denoted by & if there is no danger of confusion. This is called the
canonical map of C. The curve x(C) is called the canonical image or, if g > 2, the
canonical curve of C.

If g = 1, the canonical map is constant and does not give any interesting infor-
mation on C. For g > 2 we have the following:

Theorem 20.2.3 Let C be a smooth, projective curve of genus g > 2. Let D =
P + Q be an effective divisor of degree 2 on C. Then either

dim(K — D) =g —3

or
dim(K —= D)) =g —2

in which case |D| = g%, and the canonical series is composed with this involution.

Proof We have
dim(|D|) = deg(D) —g+i(D) =2—g+i(D).

We have dim(| D|) < 2 otherwise we would have a g% on C and C would be isomor-
phic to P! (see Exercise 20.1.16) thus g = 0, a contradiction. Hence we either have
dim(|D]) = 0 or dim(|D|) = 1. In the former case we have i(D) = g — 2, hence
dim(|K — D|) = g — 3. In the latter we have |D| = g%, and i(D) = g — 1, hence
dim(|K — D|) = g — 2. In this case for any divisor D’ = P’ 4+ Q' € | D|, we have

dim(K = D) =g—2

which means that any canonical divisor containing P’ also contains Q’. On the other
hand, for any point P’ € C there is a point Q' € C such that D' = P’ 4+ Q' € |D|.
This proves the assertion. (]

A curve of genus g > 2 with a g} is called hyperelliptic. If g = 2 certainly the
curve is hyperelliptic because the canonical series is a g..

Theorem 20.2.3 tells us that there is the following dichotomy. If C is a smooth,
projective, irreducible curve of genus g > 2, then:

(a) either the canonical series is very simple, and therefore the canonical image of
C is a smooth curve of degree 2g — 2 in P9~! isomorphic to C (see Theorem
19.5.2 and Exercise 19.5.3);
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(b) or C is hyperelliptic, in which case the canonical series is composed with a
uniquely determined g%, and each effective canonical divisor is the sum of g — 1
divisors of the g1. The g} determines a morphismw : C — P! of degree 2. Then

| K| consists of the pull-backs to C via w of the divisors of the g_g:ll on P'. This

shows that X = x(C) is a rational normal curve of degree g — 1 in P9~! (see
Exercise 20.1.17), and that x : C — X = P! is the g3.

Theorem 20.2.4 (Clifford’s Theorem) Let D be a special divisor on C. Then
deg(D) > 2dim(C])

Proof By definition of i (D), the codimension of |[K — D] in K| is g — i (D). This
codimensions is also called the number of conditions that D imposes to |K|. The
same holds for any D’ € |D|. Let r = dim(|D|), and let Py, ..., P, be arbitrary
points on C. Then there is a divisor of | D| containing P, ..., P,. Since Py, ..., P,
are arbitrary, we may chose Py, ..., P, so that

dim(|K —(Pi+...+P))=9g—1—r.
On the other hand
g —i(D) =dim(|K|) —dim(|K — D|) >
> dim(|K|) —dim(|K — (P + ...+ P))=r

because
dim(|K — D|) < dim(|K — (P; + ...+ P))]).

But
dim(|D[) = deg(D) — g +i(D)

and therefore
deg(D) —dim(|D|) = g — i(D) = r = dim(|D|)

as wanted. O

Exercise 20.2.5 Consider a non-hyperelliptic canonical curve C of genus g in P9~!. Given an
effective divisor D on C, let (D) be the span of D, i.e., the subspace of P9~! that is the intersection
of all hyperplanes  of P9~! such that div(w) > D. Prove the following geometric form of Riemann—
Roch Theorem: let D be an effective divisor on C, then dim(|D|) = deg(D) — 1 — dim((D)).

Exercise 20.2.6 Let C be a smooth, projective, irreducible curve of genus g > 1 and let D, D’ be
effective divisors of degree g — 1 such that D + D’ is a canonical divisor. Prove that |D| and |D’|
have the same dimension.

Exercise 20.2.7 *Let C be a smooth, projective, irreducible curve of genus g > 4. Prove that if C
has a gf, then C is hyperelliptic, and the gi is composed with the g%.



310 20 The Riemann—Roch Theorem

Exercise 20.2.8 Let C be a smooth, projective, irreducible curve of genus g > 1 and P any point
of C. Prove that | K¢ + P| has P as a base point.

Exercise 20.2.9 Let C be a smooth, projective, irreducible, hyperelliptic curve and P any point of
C.Let P,Q € Cbesuchthat P+ Q € gé. Prove that |K¢ + P + Q| is composed with the g;.

Exercise 20.2.10 Let C be asmooth, projective, irreducible, non-hyperelliptic curve. Let P, Q € C
be any two points. Prove that |K¢ + P + Q| is simple but not very simple.

Exercise 20.2.11 Prove that a non-hyperelliptic curve of genus 3 is isomorphic to a smooth plane
quartic and viceversa. What is the canonical image of a hyperelliptic curve of genus 3?

Exercise 20.2.12 Prove that a non-hyperelliptic canonical curve of genus 4 is the complete inter-
section of a quadric and a cubic hypersurface.

Exercise 20.2.13 Prove that any curve of genus 4 has a q{ Prove that a non-hyperelliptic curve of
genus 4 has one or two series 931.

Exercise 20.2.14 Prove that a non-hyperelliptic canonical curve of genus 5 is contained in three
independent quadrics.

Exercise 20.2.15 *Prove that any curve of genus 5 has a .‘1411-
Exercise 20.2.16 *Prove that there are hyperelliptic curves of any genus g > 2.
Exercise 20.2.17 *Prove that for any g > 3 there are non-hyperelliptic curves of genus g.

Exercise 20.2.18 Prove that not every projective irreducible curve is isomorphic to a smooth plane
curve.

Exercise 20.2.19 Prove that a hyperelliptic curve has a unique g%.

20.3 Differentials

20.3.1 Algebraic Background

Let A be aring containing a field k and let M be an A-module. We define a derivation
of A to M over k to be a k-linear map D : A — M such that the Leibnitz rule
D(xy) = xD(y) + yD(x) holds for all (x, y) € A x A.

Lemma 20.3.1 [f D is a derivation of A to M over k then:

(a) D(x)=0forallx €k;

(b) if f(x1,...,x,) € k[x1,...,x,), thenforallay,...,a, € Awe have

"0
D(f(ar,....an) =) 3—){@1, -y an) D(ay).
i=1 !
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Proof Let x € A be any element and let n be a positive integer. One has
D(x") = nx""'D(x).

Indeed, this trivially holds for n = 1. Then proceed by induction onn. Assumen > 1.
We have

D" =D(x-x")=x""'Dx) +xD(x""") =
=x"'D(x)+x-(n—Dx"2D(x) = nx""'D(x).

Then (b) follows right away. To prove (a), it suffices to prove that D(1) = 0. To prove
this note that for any positive integer n one has

D(1) = D(1") = nD(1)

which implies D(1) = 0. ([

Lemma 20.3.2 Let A be a domain containing a field k and M an A-module that is
avector space over Q(A). Then any derivation D : A — M over k extends uniquely
to a derivation D : Q(A) — M.

Proof Suppose we have the derivation D.Letx € Q(A)sothatx = %, witha,b € A
and b # 0. Then a = xb and therefore D(a) = bD(x) + xD(b). Hence

_ 1
D) = - (D(@) = xD(b). (20.5)

This shows that D is uniquely determined. If we define D with the formula (20.5),
it is easy to see that D is a derivation from Q(A) to M. [l

Let A be a domain containing a field k. For a € A we define the symbol [a] and
we consider the free A-module P on the set {[a], a € A}. Consider the submodule
N of P generated by the elements of the form:

(a) [a + b] — [a] — [b], foralla,b € A;

(b) [ka] — k[a], foralla € A and k € k;
(¢) [ab] — a[b] — bla], foralla, b € A.

We set §£2,(A) = P/N and we denote by da the image of [a] in £24(A) fora € A,
and call it the differential of a. Then we defined : A — §2;(A) the k-linear map that
takes a to da, for all a € A. The module £2;(A) is called the module of differentials
of A over k with derivation d.

Lemma 20.3.3 For any domain A containing a field k, any A-module M and any
derivation D : A — M over k, there is a unique homomorphism of A-modules |1 :
£2;(A) — M such that D(a) = p(da), for all a € A.
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Proof Keeping the notation introduced above, we define the homomorphism

v Za,[b]e P — Za,D(b) eM.

= i=1

It is immediate to see that N is contained in ker(v), hence v determines a homomor-

phism p : 2, (A) = P/N — M, which verifies the assertion. (]
In the above setting, if f(xi,...,x,) € k[x1,...,x,], and ay,...,a, € A we
have

ap
@ an =Y L. anda.
i=1

If A is generated by ay, ..., a,, then §2;(A) is generated by day, ...,da,. If x €
Q(A) sothat x = %, witha, b € A and b # 0, then we have

dx =d@ab ™"y =b"'da+ad™") = b 'da — ab™2db = b~'da — b~ xdb.

So, if Q(A) = k(ay, ..., a,) withay, ...,a, € A then £2,(Q(A)) is a vector space
on Q(A) generated by day, ..., da,.

Proposition 20.3.4 Suppose X is an irreducible curve (over the algebraically closed
field K). Then 2x(K (X)) is a I-dimensional vector space over K (X). Moreover,
if char(K) =0 and if £ € K(X)\ K, then d§ is non-zero, hence it is a basis of
k(K (X)) over K (X).

Proof We may assume that X is an affine plane curve with equation f(x, y) =0,
with f and irreducible polynomial. Then A := A(X) = K[x, y]/(f). We denote by
& and 7 the classes of x and y in A. Then K := K(X) = Q(A) = K(&, ). By an
argument we already made in the proof of Theorem 7.2.3, we have that one of the
derivatives of f with respect to x and y is non-zero. We may suppose that ﬂ # 0.

So f does not d1v1de /" and therefore Of (f 1) # 0 in K. We know that .QK(K ) is
generated by d¢ and dn over K. However since f(&£,n) = 0in K, we have

0 0
0=d(fE&m) = 3—5(57 mdg + a—J;(ﬁ, mdn

SO

a—f(é )
ay Lg,m)

dg¢

thus d¢ generates 2k (K) over K.

To prove that £2x (K) has dimension 1, we must show that 2k (K) is non-zero.
By Lemmas 20.3.2 and 20.3.3 it suffices to prove that there is a non-zero derivation
D:A— K.Letg(x,y) € K[x, y] and let g be its class in A. Then we set
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oy, Femwag
D(g) = P & mn 2—5(5, = ay(ﬁ, n).

Itis an easy verification that this is a well defined derivation. Since we have D(§) = 1,
we are done. We want to stress that the above argument actually proves that d¢ is
non-zero, hence it is a basis of 2k (K) over K.

We prove now the final assertion. Since ¢ ¢ K, then K(§) has transcendence
degree 1 over K, and therefore the extension K(§) C K is algebraic. By the Primitive
Element Theorem 7.2.2, thereisan € K suchthat K = K(&, ). So K is the quotient
field of the domain K[x, y]/(f), where f(x, y) is an irreducible polynomial and
% # 0. The same argument we made to prove the first assertion shows that d¢ is
non-zero, as desired. O

If we assume char(K) = 0, and we fix f,t € K = K(X), with ¢t ¢ K, there is a
unique g € K such that df = gdt. One writes g = %, and we call it the derivative
of f with respect to 7.

Lemma 20.3.5 Ler (A, m) be a DVR with quotient field K , and suppose k is a
subfield of A such that A/m = k and the composite map k — A — A/m is an
isomorphism. Let u be a uniformizing parameter in A and take g € A. For any
positive integer n there are Xy, ..., \y—1 € k and h € A such that

n—1
g= Z Nl + hu”. (20.6)
i=0

Proof We proceed by induction on n. For n = 1, consider the image )¢ of g in
A/m = k. Then g — Ao € m,sothereisan h € A suchthat g — A\g = hu, as wanted.
Next assume the result is true for n — 1 > 1. Then we have a relation of the sort

n—2
g= Zx\iui +zu"! with ze A and M, ..., \is € k.
i=0

On the other hand we have
z=M +hu, with he A and )\, €k.

Putting together the last two relations one gets (20.6). (]

Lemma 20.3.6 Let C be a smooth, irreducible, projective curve and let P € C.
Let u be a uniformizing parameter for Oc p at P. Then for all g € Oc¢ p, one has

dg
Tu (S] C)C!p.

Proof We may assume that there is an irreducible curve Y C P? suchthatw : C — Y
is the smooth model of Y and 7(P) = Q is asmooth pointof Y (see Exercise 18.2.11).
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We may suppose that Q € Uy = A? and that actually Q is the origin of A%, We will
denote by X the affine curve ¥ N Uy. Then O¢ p = Oy .

We use now the same notation we used in the proof of Proposition 20.3.1. Namely
X has equation f(x, y) =0, A(X) = K[x, y]/(f), £ and 7 are the classes of x and
yin A(X) so that A(X) = K[¢, n], K = K(&, ). Choose an integer n large enough

so that
(dx) = (dy) =
0 —)>-n, o =) > —n.
x.0 du X.0 du

If h € A(X) we have

dh  oh dx Oh dy

i a(fv U)E + a—y(fa TDE

so that ofo(j—ﬁ) > —n.
Take g € Ox o. By Lemma 20.3.5 we can write g as in (20.6). Then

n—1

d : dh

_di =D ihu ™t b (20.7)
i=0

Since OX,Q(%) > —n, each term in the sum (20.7) is in Oy o, so % € Oy, o, as
wanted. U

20.3.2 Differentials and Canonical Divisors

Throughout this section we assume char(K) = 0.

Let C be a smooth, irreducible projective curve and let K = K(C). We set £2¢ =
2k (K) (and also £2¢ = $2x for any birational model X of C). Its elements are called
the differentials on C (or on any birational model of C).

Let w € £2¢ \ {0} and let P be a point of C. We define the order of w at P, and
denote it by op (w), in the following way. We fix a uniformizing parameter u € Oc¢ p
and write w = gdu, with g € K. Then we set op(w) = op(g). This is well defined.
Indeed, if v € Oc¢,p is another uniformizing parameter, and if gdu = hdv, then by

Lemma 20.3.6 we have p
g v
==—e0O
hodu - ©F

and, by the same token, we have also % € O¢ p. This means that % is invertible in
Oc,p, hence 0p(g) — op(h) = 0p() =0, as wanted.
Ifw e 2¢ \ {0}, we define the divisor of w as

div(w) = Z op(W)P.

PeC
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We will see in a moment that this definition is well posed, i.e., op(w) # 0 only
for finitely many points P € C. We note that two divisors of differentials are lin-
early equivalent. Indeed, if w and w’ are two non-zero differentials, thereisa g € K
such thatw’ = gw.Hence div(w’) = div(g) + div(w), so thatdiv(w’) = div(w). Con-
versely, for any divisor D that is linearly equivalent to div(w) for somew € £2¢ \ {0},
thereisanw’ € 2¢ \ {0} such that D = div(w'). Indeed, if D = div(g) + div(w) for
some g € K, then D = div(gw). In conclusion the divisors of differentials form a
complete linear equivalence class of divisors. If w € £2¢ \ {0} is such that div(w) is
effective, we will say that w is a differential of the first kind on C.

The following result identifies the linear equivalence class of the divisors of dif-
ferentials.

Theorem 20.3.7 The divisors of differentials on C are linearly equivalent to canon-
ical divisors on C.

Proof We first examine the genus O case, i.e., C = P!. Consider homogeneous coor-
dinates [xo, x;] on P! and on Uy = A! we pass to the affine coordinate x = i—; Con-
sider the differential dx. For all points P € Uy, we have op(dx) = 0. So we have to
understand what is the order of dx at the point at infinity P», = [0, 1]. Now we pass
to affine coordinates on U; = A', where we have x; # 0. Here we have the affine
coordinate y = i—? = % and P, becomes the origin in this coordinate. Moreover

dx = d(%) =—y2dy

sothatop_(dx) = —2.Thusdiv(dx) = —2 Py, and this proves the assertion, because
on P! the canonical divisors have degree —2.

Next we suppose g > 1. We may assume to have a projective, irreducible, plane
curve X C PP? of degree d with ordinary singularities such that 7 : C — X is the
smooth model of X. We can fix homogeneous coordinates [xq, x1, x2] in P2 5o that:

(a) the line at infinity €+, with equation xo = O intersects X in d distinct points
Py, ..., P;, which implies that no multiple point of X lies on £;

(b) the point P, = [0, 1, 0] at infinity of the x axis does not sit on X;

(c) no principal tangent line in a multiple point of X contains P,.

We let f(xg, x1, x2) = 0be the equation of X, so that f is homogeneous of degree
d.Weset Do = Py + - - - + P, the divisor cut out on C by £.,. By the definition of
the canonical series we need to prove that, if w is a non-zero differential on C, one
has

diviw) =(d —3)Ds — A (20.8)

where A, as usual, denoted the multiple points divisor of X.
We can pass to affine coordinates x = ;‘—(‘J, y= j‘c—g in Uy = A? and we consider the
affine equation g(x, y) = f(1,x,y) = 0 of X. We have
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g—i = g—;(lw,y} g—i = g—i(l,x, y)
hence
ng(xo,xl,xz) _ - lgz (;1) iz) oL Goxiox = 2 lgz (;1) ﬁ)
Consider the differential w = dx and the rational function
5= x%l gg (x1 xz)
0 Y \Xo  Xo
To prove (20.8), we will prove that
diviw) = (d — 3) Do — A + div(9). (20.9)
As of
div(¢) = div(a—xz) —(d—-1)Dy,
then (20.9) is equivalent to
div(w) — div(?—é) — 2D, — A. (20.10)
Since 99 99
8_d x+ 8_d =0
we have 3 a7
w=dx = —Z—Zdy dxz dy
ax axl
hence for all points P € C we have
0p (W) —0p<g—){2) — op(dy) —()p(g—){l). (20.11)

Suppose P € C is such that 7(P) = P;, fori =1,...,d. Then y‘1 = ;‘—‘2’ is a
uniformizing parameter in Ox p, = O¢ p and

dy=—-y2d(y™"

so op(dy) = —2. We claim that (P) #0, foralli =1, ,d. In fact, for i =
1,...,d, we have P; = [0, p;1, p,z] and p;» # 0 because P, does not sit on X. By
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Euler’s relation we have

0 0
O0=d-f(P)= (“)_)i(Pi)pil + a—xfz(Pi)Piz

dxy
at P;,a contradiction because £, intersects X in d distinct points. So from (20.11),

we see that both sides of (20.10) have order —2 at P.

Now we come at points in Uy. So assume that P € C is a point such that 7(P) =
Q € Uy = A?. We can change coordinates and assume that Q is the origin of A2,

Suppose first that the x axis is tangent to X at Q. By the hypothesis (c), Q is
a smooth point for X. Then x is a uniformizing parameter at Q and g—xc(Q) # 0.
Therefore by (20.11), we see that both sides of (20.10) have order O at P.

Suppose finally that the x axis is not tangent to X at Q. Then y is a uniformizing
parameter at P, so that op(dy) = 0. Moreover we claim thatoP(df ) =mo(X) — 1.
If so, again by (20.11), we see that both sides of (20.11) have order mo(X)—1at
P and we are done.

So, to finish we have to prove the above claim. Set m = m(X). The equation
g(x,y) = 0 of X is of the form

and if 2L (P;) = 0, we would have also g—){z (P;) = 0. Then £+, would be tangent to X

m

90, y) =[G = @) + gnsr (6, ¥) + -+ ga(x, y) =0,
i=1

with ay, ..., a, distinct, where we indicated the homogeneous components of g.
With an appropriate choice of coordinates we may assume that ay, . .., a,, are all
distinct from 0.

The point P corresponds to a linear branch v which we may suppose to be deter-
mined by a parametrization of the type

y=t, x=ait+---. (20.12)
To compute o P(g—){]) we have to compute o, (%). Now
= [fa-an+-- (20.13)
i=1 j#i

where the dots stay for higher order terms. Then ov(d”) is the order of the series
obtained by substituting (20.12) in (20.13). The lower order term of this series is

> T]@ —ant

i=2 ji

which has order m — 1, as desired. O
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20.3.3 The Riemann—Hurwitz Theorem

We still assume that char(K) = 0 in this section. Let C, C’ be two smooth, projec-
tive, irreducible curves and f : C — C’ a surjective morphism of degree n, which
determines a 7. Then there is a dense open subset U of C’ such that for all Q € C’
the fibre divisor f*(Q) is reduced of order n (see Exercise 19.3.6).

Take P € C with f(P) = Q, and let e p be the multiplicity of P in f*(Q), also
denoted by ep is no confusion arises. Then we have f*(Q) = Zf( Py=0 € r,pP and
n=73 rp=gerr Wesetryp =eyp — 1,and call it the ramification index of f at
P. One has rp = 0 for all but finitely many points of C. Weset Ry =), rspP.
This is called the ramification divisor of f on C, whose degree we denote by r;.
We set By = ZPGC r¢p f(P), which is a divisor on C’, that has the same degree
Y pec TP as Ry and is called the branch divisor of f. The points in the support of
R [resp. of By] are called ramification points [resp. branch points] of f.If C' = P!,
then f : C — P'isabase point free g and we talk about branch, ramification points
and divisors of the g.

We want to compute the degree of the ramification (or of the branch) divisor, in
terms of the genera of C and C’, and of the degree of f.

Theorem 20.3.8 (Riemann—Hurwitz Theorem) Assume char(K) = 0. Let C, C’ be
two smooth, projective, irreducible curves of genera g and g’ respectively and f :
C — C’ a surjective morphism of degree n. Then

Kc = f"(Kc) + Ry

and accordingly
20-2=Q2¢ —2)n—+ry.

Proof We have an inclusion f* : K(C’) — K(C). This yields on obvious inclusion
f*:82¢ — 2¢.Fixanonzerow € §2¢.. We want to compare the canonical divisors
div(w) on C" and div(f*(w)) on C.

Let P be apointof C and Q = f(P) € C’. We have the inclusion f* : O¢' o —
Oc, p. Let u be a uniformizing parameter in O¢' . Then there is a positive integer m
such that f*(u) € m’; but f*(u) € m"1§+l. Hence there is a uniformizing parameter
v in O¢ p such that f*(u) = av™, with a invertible in O¢ p. Since u = 0 is a local
equation of Q, it is clear from the definition of the pull back divisor f*(Q) that
m=efrp.

Given a non-zero w € §2¢, there is a rational function g € K(C’) such that w =
gdu. Then

[iw) = fH(@d@™) = f*(g)(mv" adv +v"da).

Comparing the order of the two members and taking into account thatm = ey p, we
have
Kc = div(f* W) = Ry + f*(divw)) = Ry + f*(Ke),

as wanted. O
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Exercise 20.3.9 Let C be a smooth, projective, irreducible curve of genus g. Prove that the differ-
entials of the first kind on C form a K-vector space of dimension g.

Exercise 20.3.10 Prove that any base point free g, on a curve of genus g, with n > 2 has 2n +
2g — 2 > 0 branch points (to be counted with their multiplicities).

Exercise 20.3.11 Prove that the ramification and branch divisors of a 'yzl are reduced.

Exercise 20.3.12 Let C, C’ be two smooth, projective, irreducible curves of genera g and ¢’ respec-
tively and f : C — C’ a surjective morphism of degree n. Prove that g > n(g’ — 1) + 1 and the
equality holds if and only if there are no ramification points for f.

Exercise 20.3.13 Fix a line 7 in the projective plane P? and consider in £, 5 the set X of all conics
that have intersection multiplicity at least 2 with r at some point. Prove that X is a quadric in
Lon =P,

Exercise 20.3.14 Prove that, given two different linear series g% on P!, there is a unique divisor
that belongs to both of them.

Prove that, given two different linear series g2l on a smooth curve C of genus 1, there is no
divisor that belongs to both of them. Are there different linear series gzl on a smooth curve C of
genus 1?

Exercise 20.3.15 Identify the g% on P! with P2, Prove that the set I' of non-reduced divisors in
the g% is an irreducible conic. Prove that the series g; with a base point correspond exactly to the
lines in g% which are tangent to I".

Exercise 20.3.16 Find another proof of Liiroth Theorem 7.3.3 based on Riemann—Hurwitz Theo-
rem 20.3.8.

20.4 Solutions of Some Exercises

20.1.12 Write D = Dy — D, with Dy, D, effective divisors with no common support. Then
deg(D;) > g + deg(D>). By Riemann—Roch Theorem we have

€(D1) > deg(D1) — g+ 1 > deg(D2) + 1

so we can certainly find divisors in | D | containing D>, which proves the assertion.

20.1.13 The assertion is proved by Riemann—Roch Theorem (20.1.6) if £(D) > 0. So it suffices
to prove (20.4) when ¢(D) = 0. First we do the case £(D) = £(K¢ — D) = 0. Then by Exercise
20.1.12 we have that deg(D) < g — 1 anddeg(K¢ — D) < g — 1, whence deg(D) = g — 1, which
proves (20.4) in this case. Assume next £(D) = 0 and £(K¢c — D) > 0. Applying Theorem 20.1.6
to K¢ — D, we get

U(Kc —D)=deg(Kc —D)—g+4(D)+1=g—1—deg(D)

which again proves (20.4) in this case.
20.2.16 Suggestion: take irreducible plane curves of degree g + 2 with an ordinary multiple point
of multiplicity g and no other singularity.

20.2.17 Suggestion: take irreducible plane curves of degree n > 4 with an ordinary multiple point
of multiplicity » — 3 and no other singularity or with at most a further node.
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A

Abelian variety, 257
Adjoint, 293

Affine algebraic set, 2
Affine cone, 42

Affine group, 17
Affine line, 16

Affine map, 17

Affine morphism, 122
Affine plane, 16

Affine plane curve, 219
Affine space, 1

Affine subspace, 16
Affine variety, 49
Affinity, 17

Algebraic projective set, 9
Automorphism, 89

B

Bad point, 275

Base divisor, 289

Base locus, 20

Base point, 21

Base point free, 290
Basis, of an ideal, 2
Birationally equivalent, 86
Birational map, 86

Birational transformation, 86

Blow—up, 108, 111
Branch, 223
Branched, 132
Branch point, 132, 318

C

Canonical curve, 308
Canonical divisor, 301
Canonical image, 308
Canonical map, 308
Canonical series, 301
Category, 69

Cayley form, 156

Cayley map, 156

Cayley variety, 156
Centre of a branch, 223
Centre of a parametrization, 221
Change of parameter, 221
Class, 258

Class of a branch, 231
Codimension, 14, 141
Comaximal, 234
Compatible family, 286
Compatible system, 25
Complete intersection, 141
Complete linear series, 288
Cone, 145

Congruence, 207
Contraction, 57
Coordinate axis, 17
Coordinate ring, 39
Coordinate subspace, 17
Coordinate vector, 1
Cremona group, 89
Cremona transformations, 89
Curve, 18, 50

Cusp, 244

Cusp, ordinary, 244

Cusp, ramphoid, 244
Cycle, 162
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D Fibre product, 106
Definition set, 55, 85 Finite morphism, 119
Degenerate, 14, 42 Flex, 244, 256

Degenerate projectivity, 89 Form, 6

Degree, 18, 130, 156, 163 Formal power series, 205
Degree of a divisor, 279 Frobenius isomorphism, 81
Degree of a linear series, 289 Frobenius morphism, 74
Derivation, 310 Fundamental field, 26
Derivative of formal power series, 210 Fundamental points, 271
Diagonal, 74, 106 Fundamental theorem of projectivities, 15
Differential, 311 Fundamental triangle, 270

Differential, of a morphism at a point, 190
Differential of the first kind, 315

Differential operator, 7 G

Differentials, on a curve, 314 Generalised hypersurface, 19
Dimension, 14, 141 Generalized projectivity, 89
Dimension, Krull, 51 General position, 15
Dimension, topological, 50 Generically finite, 122
Dimension, transcendent, 62 Genus, 301

Direction space, 16 Good position, 273
Discrete valuation, 193 Graded module, 5

Discrete valuation ring, 193 Graded ring, 4
Discriminant, 132, 150 Gradient, 188

Divisor, 19, 279 Grading, 4

Divisor of a rational function, 280 Graph, 106

Divisor of poles, 280 Grassmann formula, 14
Divisor of zeros, 280 Grassmannian, 172
Dominant, 69, 85 Grassmann variety, 172
Double point, 220

Dual, 20

Dual curve, 258 H

Dual projective space, 14 Height, 51

Dual Veronese map, 79 Hessian polynomial, 256

Hilbert basis theorem, 1
Homogeneous components, 4

E Homogeneous coordinates, 3
Effective, 163 Homogeneous substitution of variables, 8
Effective divisor, 19, 279 Hyperbola, 73

Elimination of a variable, 32 Hyperelliptic, 308
Equivalence of parametrizations, 221 Hyperplane, 14

Equivalent system of polynomials, 30 Hyperplane at infinity, 11
Euler relation, 7 Hypersurface, 17

Exagon, 254

Exceptional lines, 271

Exceptional locus, 108, 111 1

Extension, 57 Ideal of denominators, 66
External projection, 125 Immersion, 70

Indecomposable, antisymmetric tensor, 173
Index of speciality, 304

F Inseparable, 130
Faithful, 58 Integral, 58
Fibre, 107, 143 Integral closure, 58

Fibre divisor, 282 Intersection cycle, 163, 251
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Intersection multiplicity, 20, 149, 158, 163,
185

Intersection multiplicity of affine curves, 225

Intersection multiplicity of branches, 245

Involution, 21, 286

Irreducible, 47

Irreducible components, 18, 49

Irreducible factor, 18

Irredundant decomposition, 49

Irrelevant ideal, 5

Isobaric, 28

Isomorphism, 69

J
Jacobian determinant, 73
Joining subspace, 17

K
Klein quadric, 180
Kronecker symbol, 120, 234

L

Leibnitz rule, 186, 210, 310
Linear branch, 231

Linear equivalence, 281
Linear series, 21, 289
Linear system, 20
Localization, 55, 56
Localization, homogeneous, 56
Locally closed, 11

Local ring, 55

Liiroth’s problem, 93
Liiroth Theorem, 93

M

Module of differentials, 311
Monoid, 95

Morphism, 69

Multiple point, 188

Multiple point divisor, 293
Multiplicity, 12, 18, 163, 189, 279

N

Nasty point, 278

Net, 20

Netto’s resolvent, 226
Newton polygonal, 212
Nilpotent, 35

Node, 220
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Noetherian space, 49
Noether’s conditions, 252
Non-degenerate, 14

Normal, 128

Normalization, 129

Number of conditions, 309
Numerical projective space, 2

(0]

Order, 207, 228

Order of a branch, 231

Order, of a differential at a point, 314
Order, of an element of a DVR, 242
Order, of pole, 195

Order, of zero, 195

Ordinary point, 220

Orthogonal subspace, 14

P

Parabola, 73

Parameters, 191

Parametric representation, 17
Parametrization, 221
Parametrization, irreducible, 221
Parametrization, reducible, 221
Pencil, 20

Perspective, 110

Place, 279

Pliicker coordinates, 170, 172
Pliicker formulas, 258
Pliicker relations, 175
Plurihomogeneous polynomial, 7
Point at infinity, 11

Polar, 258

Pole, 195

Primitive element, 92
Principal divisor, 280
Principal lines, 247

Principal open set, 54
Principal tangent lines, 220
Product, 104

Projection, 17

Projective closure, 11
Projective cone, 43

Projective line, 2

Projectively normal, 130
Projective plane, 2

Projective space, 2

Projective tangent space, 187
Projective variety, 49
Projectivity, 3
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Proper transform, 110, 271
Proportionality relation, 2
Pull-back, 282

Pure, 50

Q

Quadratic transformation, 90, 271
Quasi—projective variety, 49

R

Radical, 5

Ramification divisor, 318
Ramification index, 318
Ramification point, 21, 318
Rational, 93

Rational function, 54
Rational map, 85

Rational normal curves, 78
Reduced, 279

Reduced equation, 18
Reduced polynomial, 18
Reducible, 47

Reference system, 6

Regular, 191

Regular change of parameter, 221
Regular, function, 53
Resolution of singularities, 267
Restriction map, 54
Resultant, 146

Resultant ideal, 116
Resultant polynomials, 27, 31
Resultant system, 32
Riemann—-Roch Theorem, 301

Riemann—-Roch Theorem, geometric form,

309
Root, 12
Ruffini’s theorem, 12
Ruled planes, 180

S

Scalar matrix, 3
Scroll, 181

Secant variety, 145
Segre variety, 102
Separable, 130
Series cut out, 297

Set-theoretic complete intersection, 141

Simple linear series, 291
Simple node, 258
Simple point, 188
Simple, very, 292

Singular point, 188

Skew, 89

Smooth point, 188

Span, 17, 309

Special divisor, 301

Special linear series, 301
Standard form, 222

Star, 180

Stereographic projection, 95
Strict transform, 110
Subspace, 13

Substitution, 209
Subvariety, 59

Support, 19, 163, 279
Surface, 18

Sygygy, 43

Sylvester determinant, 26
Symbolic power, 202
Symmetric algebra, 6
System of equations, 2, 196

T

Tacnode, 245

Tangent cone, 189
Tangent fibration, 187
Tangential variety, 190
Tangent to a branch, 231
Total transform, 110, 272
Transpose projectivity, 15
Transversally, 149, 158
Transversely, 248
Truncation, 208

Twisted cubic, 41

U

Unirational, 93

v

Varieties of minimal degree, 160

Variety, affine, 75
Veronese map, 79
Veronese morphism, 77
Veronese surface, 78
Veronese variety, 77
Very good position, 274

A

Weierstrass normal form, 257
Weight, of a homomorphism, 5
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V/

Zariski tangent space, 186
Zariski topology, 2, 9, 103
Zero, 195

O-cycle, 163, 250
Zero, of a polynomial, 9

Zeroset, 1,9
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