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Preface

This book arouse from notes of courses in Algebraic Geometry that I gave at the
University of Roma Tor Vergata during several years. It basically consists of two
parts. The first includes Chapters 1–14, and it is devoted to an introduction to basic
concepts in Algebraic Geometry. The main objects of interest in this part are affine
and projective varieties, some of their main attributes (like irreducibility, dimen-
sion, regular and rational functions, morphisms, products, degree, etc.) and basic
examples (hypersurfaces, Veronese varieties, Segre varieties, blow-ups,
Grassmannians, etc.). One of the leading themes in this first part is elimination
theory, to which several sections of the book are dedicated, and which is at the basis
of some important applications like Hilbert’s Nullstellensatz and basic intersection
theory of varieties with Bezout’s Theorem. The second part of the book, which
includes Chaps. 15–20, is devoted to the theory of curves. A basic preliminary is in
Chap. 15 with formal power series, which constitute the main tool for the study of
local properties of curves. Then Chaps. 16 and 17 are devoted to the study of affine
and projective plane curves, respectively. Chapter 18 contains the proof of reso-
lution of singularities of curves. Chapter 19 is devoted to the classical theory of
linear equivalence of divisors and linear series on a curve. Finally, Chap. 20 con-
tains the Riemann–Roch and Riemann–Hurwitz Theorems.

The approach in this book is purely algebraic, so no analysis or differential
geometry is needed. The main tool is commutative algebra from which we recall the
main results we need, in most cases with proofs. The prerequisites consist in the
knowledge of basics in affine and projective geometry (in particular, conics and
quadrics in three-dimensional space), basic algebraic concepts regarding rings,
modules, fields, linear algebra and basic notions in the theory of categories. A few
elementary facts of topology are needed in Chap. 4.

The book can be used as a textbook for a basic undergraduate course in
Algebraic Geometry. The users of the book are not necessarily intended to become
algebraic geometers but may be simply interested students or researchers who want
to have a first smattering in the topic. Chapter 14 is not essential for the rest and can
be skipped in a first reading. For a short introductory course, one can focus on the
first thirteen chapters only.
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The book contains several exercises, in which there are more examples and parts
of the theory which are not fully developed in the text. Some exercises are marked
with an asterisk, which means either that they are a bit more difficult than the
average, or that they are needed for the sequel of the book. Of some exercises, there
are the solutions at the end of each chapter.

What readers will not find in this book are (at least) two main things. The first is
sheaf theory, cohomology, schemes, etc. For this, the classical references are [4]
and, in part, the second volume of [7]. The second is a computational approach to
Algebraic Geometry, which is a very interesting topic for which I recommend [2].

I am indebted for inspiration to several sources, for instance [3, 6, 7, 8].

Rome, Italy Ciro Ciliberto
October 2020

vi Preface



Contents

1 Affine and Projective Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Affine Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Graded Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Projective Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Projective Closure of Affine Sets . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.4 Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.5 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.6 Product Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Basic Notions of Elimination Theory and Applications . . . . . . . . . . 25
2.1 The Resultant of Two Polynomials . . . . . . . . . . . . . . . . . . . . . 25
2.2 The Intersection of Two Plane Curves . . . . . . . . . . . . . . . . . . . 28
2.3 Kronecker Elimination Method: One Variable . . . . . . . . . . . . . 30
2.4 Kronecker Elimination Method: More Variables . . . . . . . . . . . . 32
2.5 Hilbert Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Zariski Closed Subsets and Ideals in the Polynomials Ring . . . . . . 39
3.1 Ideals and Coordinate Rings . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 The Twisted Cubic . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



4 Some Topological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Irreducible Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Noetherian Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Topological Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Regular and Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Regular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Local Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Integral Elements over a Ring . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Subvarieties and Their Local Rings . . . . . . . . . . . . . . . . . . . . . 59
5.6 Product of Affine Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 The Definition of Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Which Maps Are Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Affine Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 The Veronese Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Rational Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1 Definition of Rational Maps and Basic Properties . . . . . . . . . . . 85
7.2 Birational Models of Quasi-projective Varieties . . . . . . . . . . . . 91
7.3 Unirational and Rational Varieties . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Product of Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1 Segre Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3 The Blow–up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 More on Elimination Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.1 The Fundamental Theorem of Elimination Theory . . . . . . . . . . 115
9.2 Morphisms on Projective Varieties Are Closed . . . . . . . . . . . . . 117
9.3 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Finite Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.1 Definitions and Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2 Projections and Noether’s Normalization Theorem . . . . . . . . . . 125
10.3 Normal Varieties and Normalization . . . . . . . . . . . . . . . . . . . . 128
10.4 Ramification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.5 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 133

viii Contents



11 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1 Characterization of Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . 137
11.2 Intersection with Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 138
11.3 Morphisms and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.4 Elimination Theory Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.5 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12 The Cayley Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.1 Definition of the Cayley Form . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.2 The Degree of a Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
12.3 The Cayley Form and Equations of a Variety . . . . . . . . . . . . . . 160
12.4 Cycles and Their Cayley Forms . . . . . . . . . . . . . . . . . . . . . . . . 162
12.5 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 164

13 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.1 Plücker Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.2 Grassmann Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.3 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 182

14 Smooth and Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.2 Some Properties of Smooth Points . . . . . . . . . . . . . . . . . . . . . . 190

14.2.1 Regular Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.2.2 System of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 191
14.2.3 Auslander–Buchsbaum Theorem . . . . . . . . . . . . . . . . . 192
14.2.4 Local Equations of a Subvariety . . . . . . . . . . . . . . . . . 195

14.3 Smooth Curves and Finite Maps . . . . . . . . . . . . . . . . . . . . . . . 198
14.4 A Criterion for a Map to Be an Isomorphism . . . . . . . . . . . . . . 200
14.5 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 201

15 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
15.1 Formal Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
15.2 Congruences, Substitution and Derivatives . . . . . . . . . . . . . . . . 207

15.2.1 Conguences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
15.2.2 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15.2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15.3 Fractional Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
15.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 216

16 Affine Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
16.1 Multiple Points and Principal Tangent Lines . . . . . . . . . . . . . . . 219
16.2 Parametrizations and Branches of a Curve . . . . . . . . . . . . . . . . 221
16.3 Intersections of Affine Curves . . . . . . . . . . . . . . . . . . . . . . . . . 224

16.3.1 Intersection Multiplicity and Resultants . . . . . . . . . . . . 225
16.3.2 Order of a Curve at a Branch and Intersection

Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Contents ix



16.3.3 More Properties of Branches and of Intersection
Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

16.3.4 Further Interpretation of the Intersection
Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

16.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 245

17 Projective Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
17.1 Some Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

17.1.1 Recalling Some Basic Definitions . . . . . . . . . . . . . . . . 247
17.1.2 The Bézout Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 247
17.1.3 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

17.2 M. Noether’s Af þBg Theorem . . . . . . . . . . . . . . . . . . . . . . . . 250
17.3 Applications of the Af þBg Theorem. . . . . . . . . . . . . . . . . . . . 254

17.3.1 Pascal’s and Pappo’s Theorems . . . . . . . . . . . . . . . . . . 254
17.3.2 The Group Law on a Smooth Cubic . . . . . . . . . . . . . . 255

17.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 258

18 Resolution of Singularities of Curves . . . . . . . . . . . . . . . . . . . . . . . 267
18.1 The Case of Ordinary Singularities . . . . . . . . . . . . . . . . . . . . . 267
18.2 Reduction to Ordinary Singularities . . . . . . . . . . . . . . . . . . . . . 270

18.2.1 Statement of the Main Theorem . . . . . . . . . . . . . . . . . 270
18.2.2 Standard Quadratic Transformations . . . . . . . . . . . . . . 270
18.2.3 Transformation of a Curve via a Standard

Quadratic Transformation . . . . . . . . . . . . . . . . . . . . . . 271
18.2.4 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . 275

19 Divisors, Linear Equivalence, Linear Series . . . . . . . . . . . . . . . . . . 279
19.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
19.2 Linear Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
19.3 Fibres of a Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
19.4 Linear Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
19.5 Linear Series and Projective Morphisms . . . . . . . . . . . . . . . . . . 290
19.6 Adjoint Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
19.7 Linear Systems of Plane Curves and Linear Series . . . . . . . . . . 297
19.8 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 298

20 The Riemann–Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
20.1 The Riemann–Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 301
20.2 Consequences of the Riemann–Roch Theorem . . . . . . . . . . . . . 307
20.3 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

20.3.1 Algebraic Background . . . . . . . . . . . . . . . . . . . . . . . . 310
20.3.2 Differentials and Canonical Divisors . . . . . . . . . . . . . . 314
20.3.3 The Riemann–Hurwitz Theorem . . . . . . . . . . . . . . . . . 318

20.4 Solutions of Some Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 319

x Contents



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Contents xi



Chapter 1
Affine and Projective Algebraic Sets

1.1 Affine Algebraic Sets

Let K be a field that throughout the whole book will be assumed to be algebraically
closed. This will be the base field over which we will consider all the geometric
objects we will construct in this book.

We will denote by A
n
K
, or simply by A

n , the n–dimensional numerical affine
space on K, i.e., the set Kn of all ordered n–tuples of elements of K. An element
P = (p1, . . . , pn) of An will be called a point and p1, . . . , pn will be called the
coordinates of P . The numerical vector p = (p1, . . . , pn) on K will be called the
coordinate vector of P and wemaywrite P = (p). The point O with zero coordinate
vector 0 is called the origin of An .

Let x = (x1, . . . , xn) be an n–tuple of variables onK. We will denote by AK,n , or
simply by An , the polynomial ring K[x] = K[x1, . . . , xn].

Any element f ∈ An can be regarded as an application f : A → K. The subset
Za( f ) = f −1(0) of An will be called the zero set of f . More generally, if F ⊆ An ,
the subset

Za(F) :=
⋂

f ∈F
Za(F)

is called the zero set of F . The subscript a in Za(F) stays for affine, in order to
distinguish this notion from the analogousprojectiveversionwhichwill be introduced
in Sect. 1.4. If there is no danger of confusion we will write Z( f ) instead of Za(F).

Note that
F ⊆ G =⇒ Z(G) ⊆ Z(F). (1.1)

Hence, if (F) is the ideal of An generated by F , one has Z((F)) ⊆ Z(F). It is easy
to see that actually Z(F) = Z((F)) (see Exercise 1.1.2). Moreover, since An is a
Noetherian ring, the Hilbert basis theorem holds in An , namely every ideal of An

is finitely generated. Therefore there are finitely many f1, . . . , fm ∈ F such that
(F) = ( f1, . . . , fm). Then (see Exercise 1.1.3)
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Affine and Projective Algebraic Sets

Z(F) = Z( f1, . . . , fm) (1.2)

where Z( f1, . . . , fm) stays for Z({ f1, . . . , fm}). If (1.2) holds, one says that

fi (x1, . . . , xn) = 0, 1 � i � m

is a system of equations of Z(F).
A subset Z of An is called an affine algebraic set if there is a subset F of An

such that Z = Z(F). This is equivalent to say that there is an ideal I ⊆ An such that
Z = Z(I ). We will denote by An the set of all affine algebraic sets of An . We leave
as an exercise to the reader (see Exercise 1.1.4) to prove the following

Proposition 1.1.1 An is the set of all closed sets of a topology of An.

The topology whose closed sets are the elements of An is called the Zariski
topology of An . If X is a non–empty subset of X we will think of it as endowed with
the induced topology, which will be called the Zariski topology of X .

Exercise 1.1.2 Prove (1.2). Prove that for any subset F ⊆ An one has Za(F) = Za((F)).

Exercise 1.1.3 Prove that if B is a basis of the ideal I of An (i.e., it is a system of generators),
then Z(I ) = Z(B).

Exercise 1.1.4 Prove Proposition 1.1.1.

1.2 Projective Spaces

Let V be a vector space of finite dimension n + 1 on K. Define the following pro-
portionality relation on V \ {0}:

x ∼ y ⇐⇒ ∃t ∈ K
∗ := K \ {0} : y = tx

This is an equivalence relation. We denote by [x] the proportionality equivalence
class of the vector x ∈ V \ {0}. The quotient set P(V ) = V \ {0}/ ∼ is called the
projective space associated to the vector space V and n = dim(V ) − 1 is called
the dimension of P(V ), denoted by dim(P(V )). The empty set is the projective
space of dimension −1 associated to the zero vector space. The elements of P(V )

are called points. A projective space of dimension 1 is called a (projective) line, a
projective space of dimension 2 is called a (projective) plane.Wewill use the notation
pV : x ∈ V \ {0} → [x] ∈ P(V ) and we may write p instead of pV if no confusion
arises.

In particular we can consider the numerical vector space Kn+1 on K. The asso-
ciated vector space is denoted by P

n and is called the numerical projective space of
dimension n on K. If x = (x0, . . . , xn) is a non–zero numerical vector, its propor-
tionality class is denoted by [x] or by [x0, . . . , xn]. We will, say that (x0, . . . , xn) is a
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vector of homogeneous coordinates of the point [x]. The homogeneous coordinates
of a point are not all zero and defined up to a non–zero numerical factor. The points
Pi of Pn whose homogeneous coordinates are all zero except the one at place i ,
with 0 � i � n, are called the vertices of the fundamental pyramid of Pn . The point
Pn+1 with homogeneous coordinates [1, . . . , 1] is called the unitary point of Pn . The
points Pi with 0 � i � n + 1 are called the fundamental points of Pn .

A map ϕ : P(V ) → P(W ) is called a projectivity if there is an injective linear
map f : V → W such that pW ◦ f = ϕ ◦ pV , i.e., if for every x ∈ V \ {0} one
has ϕ([x]) = [ f (x)]. Note that if there is a projectivity ϕ : P(V ) → P(W ), then
dim(P(V )) � dim(P(W )). Moreover the composition of two projectivities is still a
projectivity.

If one wants to stress that the projectivity ϕ depends on the linear map f , one
writes ϕ = ϕ f . Denote by Hom(V,W ) the vector space of all linear maps from V
to W . It is easy to verify that

ϕ f = ϕg ⇐⇒ [ f ] = [g] in P(Hom(V,W )) (1.3)

(see Exercise 1.2.1). Hence the set Pr(P(V ),P(W )) of all projectivities of P(V ) to
P(W ) can be identified with the subset of P(Hom(V,W )) whose points are equiv-
alence classes of injective linear maps. In particular Pr(P(V ),P(V )) is a group for
the composition of applications. It is denoted by PGL(V ) and it is the image of
the group GL(V ) of the automorphisms of the vector space V via the map pEnd(V ),
where End(V ) = Hom(V, V ). Of course V andW are isomorphic if and only if there
is a surjective projectivity ϕ : P(V ) → P(W ), then we say that P(V ) and P(W ) are
projectively equivalent. In that case GL(V ) and PGL(V ) are respectively isomorphic
to GL(W ) e PGL(W ).

If V = K
n+1, the groups GL(V ) and PGL(V ) are denoted by GL(n + 1, k) and

PGL(n + 1, k). The former can be identified with the group of square matrices of
order and rank n + 1, the latter with the quotient of the former by the subgroup of
scalar matrices, i.e., matrices of the form t In+1 where t ∈ K

∗ and In+1 is the unitary
matrix of order n + 1.

If V has dimension n + 1, a projectivity ϕ : Pn → P(V ) is bijective. It assignes
to a point P ∈ P(V ) a proportionality class [p0, . . . , pn] of numerical vectors. We
can think of ϕ : Pn → P(V ) as a way of introducing a system of homogeneous coor-
dinates in P(V ). In this system the fundamental points of P(V ) are the images of the
fundamental points of Pn via ϕ. In order to denote that P ∈ P(V ) has homogeneous
coordinates [p0, . . . , pn] in this system, we write P = [p0, . . . , pn]. Of course Pn

has a natural system of coordinates induced by the identity map id : Pn → P
n .

If we introduce two systems of coordinates ϕ : Pn → P(V ) and ψ : Pn → P(V )

in P(V ), there is a square matrix A of order and rank n + 1 such that for every point
P ∈ P(V ) which has in the two systems of coordinates the coordinate vectors x e y,
one has

y = x · A
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and this is called the formula for the change of coordinates in passing from one to
the other of the two systems. The matrix A is defined up to a non–zero scalar factor
and [A] determines the projectivity ψ−1 ◦ ϕ ∈ PGL(n + 1, k).

For our future purposes we will consider as equivalent the consideration of two
projective spaces if they are projectively equivalent. Therefore in what follows we
will mainly focus on numerical projective spaces Pn .

Exercise 1.2.1 Prove (1.3).

Exercise 1.2.2 Letφ : P(V ) → P(W )be aprojectivity.Assume that dim(P(V )) = n, dim(P(W )) =
m. Introduce systems of coordinates in P(V ) and P(W ). Prove that there is a matrix A, of type
(n + 1) × (m + 1) and rank m + 1, defined up to a non–zero factor, such that φ(P) = P ′ if and
only if P = [x] e P ′ = [y] in the two systems and y = x · A. This is called an equation of the
projectivity in the given coordinate systems.

1.3 Graded Rings

Let S be a ring which, as all the rings we will consider in this text, is commutative
and with unity. Moreover let G(+) be an abelian group. The ring S will be said to
be G–graded or endowed with a G–grading (or simply a graded ring, or a ring with
a grading, when G = Z) if there is a decomposition

S =
⊕

g∈G
Sg

as a direct sum of abelian subgroups of the additive group of S, such that 1 ∈ S0 and
for any pair (g, h) ∈ G × G one has Sg · Sh ⊆ Sg+h , where, if A and B are subsets
of S, we set

A · B = {ab : a ∈ A, b ∈ B}

and similarly for A + B. The group Sg is called the part of degree g of S. The
elements of Sg are called the homogeneous elements of degree g of S. If F is a non–
empty subset of S, we set Fg = F ∩ Sg for all g ∈ G and we denote by H(F) the set⋃

g∈G Fg of all homogeneous elements in F .
The following properties are an immediate consequence of the definition:

(a) every f ∈ S can be written in a unique way as a finite sum

f = fg1 + · · · + fgn (1.4)

with fgi ∈Sgi for 1�i � n and g1, . . . , gn ∈ G distinct. One says that fg1 , . . . , fgn
are the homogeneous components of f and (1.4) is called the decomposition of
f in homogeneous components;
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(b) S0 is a subring of S and Sg is an S0–module for all g ∈ G. In particular, if S0 is
a field, then Sg is a S0–vector space;

(c) if G = Z, we set, for every integer n, S>n = ⊕
d>n Sd . If Sd = {0} for all d < 0,

then S>n is an ideal of S for all integer n, moreover S = S>−1,
⋂

n∈N S>n = {0}
and S>0 will be denoted with the symbol S+ and is called the irrelevant ideal of
S.

An ideal I of S is said to be homogeneous if I = ⊕
g Ig , i.e., if f ∈ I if and only

if all homogeneous components of f are in I .
The proof of the following propositions are left as exercises to the reader (see

Exercises 1.3.5 and 1.3.7).

Proposition 1.3.1 If S is a G–graded ring and I is an ideal of S, then I is homoge-
neous if and only if it is generated by a set of homogeneous elements.

Proposition 1.3.2 If S is a G–graded ring and I1, I2 are homogeneous ideals of S,
then I1 · I2, I1 ∩ I2, I1 + I2, and the ideal generated by I1 ∪ I2, are homogeneous
ideals. If moreover G = Z and I is a homogeneous ideal of S, then:

(i) the radical of I , i.e.,

rad(I ) = { f ∈ S : ∃r ∈ N : f r ∈ I }

is homogeneous;
(ii) I is prime if and only if for every pair ( f, g) ∈ H(S) × H(S) such that f g ∈ I ,

either f ∈ I or g ∈ I .

Let S be a G–graded ring and S′ a H–graded ring, and suppose we have a homo-
morphism φ : G → H . A homomorphism f : S → S′ is said to be φ–homogeneous,
if for all g ∈ G one has f (Sg) ⊆ S′

φ(g). If f and φ are isomorphisms then the inverse
of f is still a homomorphism of graded rings, hence f is a isomorphism of graded
rings. If G = H , a idG–homogeneous homomorphism f : S → S′ will be said to be
homogeneous of degree 0. A homogeneous isomorphism of degree 0 will be simply
called a isomorphism.

If G = H = Z and f : S → S′ is homogeneous, then φ : Z → Z is the multipli-
cation by an integer d, hence f (Sg) ⊆ S′

dg for all g ∈ G. In this case we will say that
f is homogeneous of weight d. A homogeneous homomorphism of weight 1 is of
degree 0.

One gives in a similar manner the definition of a graded module over a graded
ring. If S is a G–graded ring, an S–module M will be said to be graded if there is a
decomposition

M =
⊕

g∈G
Mg
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as a direct sum of abelian subgroups of the additive group of M , such that for all
pairs (g, h) ∈ G × G one has Sg · Mh ⊂ Mg+h , where, if A ⊆ S and B ⊆ M , we set

A · B = {ab : a ∈ A, b ∈ B}.

For example a homogeneous ideal of S is a gradedmodule on S.We use for graded
modules definitions, terminology and symbols analogous to the ones we introduced
for graded rings.

Given S a G–graded ring, M and N graded S–modules and an element h ∈ G, a
homomorphism f : M → N is said to be homogeneous of degree h, if for all g ∈ M
one has f (Mg) ⊆ Ng+h .

Note that we can change the grading of a S–module M in the following way. Fix
and h ∈ G and set

M(h) =
⊕

g∈G
M(h)g where M(h)g := Mh+g.

It is clear that M(h) is still a graded S–module isomorphic to M as an S–module,
but in general not isomorphic to M as a graded S–module (see Exercise 1.3.14).

Example 1.3.3 Let V be aK–vector space of dimension n + 1 � 1. The symmetric
algebra on V

Sym(V ) :=
⊕

d∈N
Symd(V )

is a graded ring which we will denote by S(V ), and we have

Nn,d := dim(Symd(V )) =
(
n + d

d

)
.

The grading is in Z but S(V )d = 0 for all d < 0. In this case S(V )0 ∼= K and S(V )

is generated as a K–algebra by S(V )1. If f ∈ S(V )d , we write d = deg( f ).
Let us fix a reference system of V , i.e., an order basis (e0, . . . , en). One has the

dual reference system (e0, . . . , en) of V̌ ∼= Hom(V,K), where

ei (e j ) = e j (ei ) = δi j

where δi j is the Kronecker symbol. We set ei = xi and ei = ∂i , for 0 � i � n. Then
S(V̌ ) can be identified with SK,n = K[x0, . . . , xn], also denoted by Sn ifK is under-
stood. By denoting it with Sn instead of An+1, wewant to stress its structure of graded
ring, in which the homogeneous part Sn,d of degree d is the vector space of homo-
geneous polynomials, or forms, of degree d, i.e., those polynomials in which appear
only monomials of degree d (the 0 polynomial is considered to be homogeneous of
every degree).
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The ring S(V ) can be identified with the ring of differential operators Dn =
K[∂0, . . . , ∂n], which is isomorphic to Sn as a graded ring. The homogenous part Dn,d

of degree d is the vector space of the homogeneous differential operators of degree
d, i.e., those operators in which appear only monomials of degree d in ∂0, . . . , ∂n
(again the 0 operator is considered to be homogeneous of any degree). Note that
S(V ) is somehow the dual of S(V̌ ), in the sense that Dn,d and Sn,d are dual to each
other.

We set x = (x0, . . . , xn). Let i = (i0, . . . , in) ∈ N
n+1 be a multiindex. We will

denote by |i| = i0 + · · · + in the length of themultiindex.Wewill set xi = xi00 · · · xinn .
Hence a homogeneous polynomial of degree d in x0, . . . , xn can be written as

f (x) =
∑

|i|=d

fixi

with fi ∈ K the coefficient of the monomial xi. Similar notation can be used for
differential operators.

A polynomial f ∈ Sn is homogeneous of degree d if and only if

f (tx) = td f (x), ∀t ∈ K (1.5)

(see Exercise 1.3.9). Differentiating (1.5) with respect to t and then setting t = 1 one
has

d f (x) =
n∑

i=0

∂ f

∂xi
(x) (1.6)

The Eq. (1.6) is called the Euler formula.

Example 1.3.4 Let Vi , for 1 � i � h, K–vector spaces of dimensions ni + 1.
Set V = ⊗h

i=1 Vi . The ring S(V ) has the grading introduced in Example 1.3.3.
It has however also another grading in Z

h , in which the graded part of degree
d = (d1, . . . , dh) is

⊗h
i=1 Sym(Vdi ), if di � 0 for all i = 1, . . . , h, and it is {0} oth-

erwise. So actually the grading is in N
h . When we want to stress that this is the

grading, we write S(V1, . . . , Vh) rather than S(V ) and the part of degree d is denoted
by S(V1, . . . , Vh)d.

If, as in Example 1.3.3, we introduce reference systems in Vi , for 1 � i � h, then
S(V̌1, . . . , V̌h)may be indentified with the ring of polynomialsK[x1, . . . , xh], where
xi = (xi0, . . . , xini ) for i = 1, . . . , h. This ring is denoted by Sn1,...,nh or by Sn with
n = (n1, . . . , nh). Its homogeneous part Sn,d of degree d = (d1, . . . , dh) is the vector
space of plurihomogeneous polynomials of degree d in the variables x1, . . . , xh , i.e.,
those homogeneous polynomials of degree di in the variables xi = (xi0, . . . , xini ),
for all i ∈ {1, . . . , h}. One has

Nn,d := dim(Sn,d) =
h∏

i=1

(
ni + di

di

)
.
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Similarly S(V1, . . . , Vh) may be identified with the ring of differential operators
K[∂1, . . . , ∂h] (where ∂ i = (∂i0, . . . , ∂ini )), which is denoted by Dn1,...,nh or by Dn,
whose part of degree d is denoted by Dn,d and it is the vector space of pluriho-
mogeneous differential operators of degree d = (d1, . . . , dh) acting on the variables
x1, . . . , xh .

With the notation introduced in Example 1.3.3, a plurihomogeneous polynomial
in Sn,d may be written as

f =
∑

|i1|=d1,...,|ih |=dh

fi1,...,ih

h∏

j=1

xi jj

with an obvious meaning of the symbols. Analogous notation for the plurihomoge-
neous differential operators.

Exercise 1.3.5 * Prove Proposition 1.3.1.

Exercise 1.3.6 Verify that the radical of an ideal is also an ideal.

Exercise 1.3.7 * Prove Proposition 1.3.2.

Exercise 1.3.8 * Let S be a G–graded ring, let I be an ideal and consider the canonical surjective
morphismπ : S → S/I . Prove that for all g ∈ G one hasπ(Sg) ∼= Sg/Ig , hence S/I ∼= +g∈G Sg/Ig .
Prove that this sum is a direct sum if and only if I is homogeneous. In that case, if we set (S/I )g =
Sg/Ig for all g ∈ G, then also S/I has a G–grading induced by the one of S.

Exercise 1.3.9 * Prove that f ∈ Sn is homogeneous of degree d if and only if (1.5) holds.

Exercise 1.3.10 Prove that a polynomial f (x1, . . . , xh) in the variables xi =
(xi0, . . . , xini ), with i = 1, . . . , h, is plurihomogeneous of degrees d = (d1, . . . , dh) if and only if

f (t1x1, . . . , thxh) = td11 · · · tdhh f (x1, . . . , xh)

for all t1, . . . , th ∈ K.

Exercise 1.3.11 * Let gi (y) ∈ Sm,d , 0 � i � n, be homogeneous polynomials of degree d. Set
g(y) := (g0(y), . . . , gn(y)). Prove that the map

f (x) ∈ Sn → f (g(y)) ∈ Sm

is a homogeneous homomorphism of weight d. We will say that it is obtained by the homogeneous
substitution of variables x = g(y) of degree d.

Exercise 1.3.12 * Prove that a homogeneous substitution of variables of degree d as in Exercise
1.3.11 is an isomorphism if and only if n = m, d = 1, and gi (y) ∈ Sn,1, 0 � i � n, are linearly
independent. Prove that all homogeneous isomorphisms Sn → Sn are of this form.

Exercise 1.3.13 * Prove that if f, g ∈ Sn , if f is homogeneous and g divides f , then g is also
homogeneous.

Exercise 1.3.14 Let M be a graded S–module. Consider M(h) with h ∈ G. Prove that M(h) is
still a graded S–module, which is isomorphic to M as an S–module. Give an example in which
M(h) is not isomorphic to M as a graded S–module.
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Exercise 1.3.15 Let M, N be graded Z–modules and let f : M → N be a homogeneous homo-
morphism of degree d, i.e., f (Mn) ⊆ Nn+d for all n ∈ Z. Prove that f : M(−d) → N and
f : M → N (d) are of degree 0.

Exercise 1.3.16 Let f ∈ Sn,d be a non–zero homogeneous polynomial of degree d, so that ( f )
is a homogeneous ideal. Prove that the map g∈Sn → g f ∈ ( f ) is a degree d isomorphism of
Sn–modules hence Sn(−d) → ( f ) is a degree 0 isomorphism.

1.4 Projective Algebraic Sets

Consider the projective space P
n of dimension n and let us fix a homogeneous

element f ∈ Sn,d . If P = [p] ∈ P
n , one has that f (p) = 0 if and only if f (tp) = 0

for all t ∈ K
∗. Hence, although f cannot be considered as a function on Pn , it makes

however sense to say that f vanishes at a point P = [p] ∈ P
n: this is the case if and

only if f vanishes on any vector of homogeneous coordinates of P . In this case we
say that P is a zero of f .

Hence, given f ∈ Sn,d , it makes sense to consider the set Z p( f ) of zeroes of f .
If F ⊆ Sn , the subset

Z p(F) :=
⋂

f ∈H(F)

Z p(F)

is called the zero set of F . The subscript p for Z p(F) stays for projective, in order to
distinguish this notion from the analogous affine one introduced in Sect. 1.1. How-
ever, if there is no danger of confusion, we may write Z( f ) rather than Z p(F).

Of course Z(F) = Z(H(F)). Moreover (1.1) holds. Hence Z((H(F))) ⊆ Z(F)

and it is easy to see that Z(F) = Z((H(F))). Note that (H(F)) is a homogeneneous
ideal (see Proposition 1.3.1). Moreover there are finitely many f1, . . . , fm ∈ H(F)

such that (H(F)) = ( f1, . . . , fm), hence (1.2) holds, and

fi (x0, . . . , xn) = 0, 1 � i � m

is called a system of equations of Z(F).
A subset Z of Pn is called an algebraic projective set if there is a subset F of Sn

such that Z = Z(F). We will denote by Pn the set of all algebraic projective sets of
P
n .
As in Proposition 1.1.1, one proves that:

Proposition 1.4.1 Pn is the set of closed subsets of a topology.

The topology of Pn whose closed sets are the elements of Pn is called the Zariski
topology of Pn . If X is a non–empty subset of Pn we will think of X as a topological
space with the induced topology, called the Zariski topology of X .

Proposition 1.4.2 A projectivity φ : Pn → P
m is continuous for the Zariski topolo-

gies of Pn and P
m. In particular, if φ is bijective, it is a homeomorphism.
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Proof Let f : Kn+1 → K
m+1 be an injective linear map which determines φ. Then

there is a rank n + 1 matrix A of type (n + 1) × (m + 1) such that if x ∈ K
n+1 and

y = f (x), then
y = x · A = ( f0(x), . . . , fm(x)),

where f0(x), . . . , fm(x) are independent forms of degree 1 spanning Sn,1. Then we
have the homogeneous substitution of variables

y = ( f0(x), . . . , fm(x))

of degree 1, which determines the degree 0 homomorphism

τ f : g(y) ∈ Sm → g( f0(x), . . . , fm(x)) ∈ Sn

(see Exercise 1.3.11). For each homogeneous polynomial g ∈ Sm one has φ−1

(Z(g)) = Z(τ f (g)), and this implies that φ is continuous. �

1.5 Projective Closure of Affine Sets

For all i ∈ {0, . . . , n}, consider in P
n the closed subset Hi = Z p(xi ). We denote by

Ui the open subset Pn \ Hi . For all i ∈ {0, . . . , n}, consider the well defined map

φi : P = [p0, . . . , pn] ∈ Ui → (
p0
pi

, . . . ,
pi−1

pi
,
pi+1

pi
, . . . ,

pn
pi

) ∈ A
n.

We introduce the following maps

α : f (x0, . . . , xn) ∈ Sn → f (1, x1, . . . , xn) ∈ An

which is called the dehomogenizing operator, and

β : g(x1, . . . , xn) ∈ An → xd0 g(
x1
x0

, . . . ,
xn
x0

) ∈ Sn where d := deg(g)

which is called the homogenizing operator.

Lemma 1.5.1 One has:

(i) α is a homomorphism, whereas β is not, but β is multiplicative, i.e., β(gh) =
β(g)β(h) and it is also additive, i.e., β(g + h) = β(g) + β(h) if g, h and g + h
have the same degree;

(ii) for any g ∈ An of degree d, β(g) is homogeneous of degree d;
(iii) α ◦ β = idAn ;
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(iv) x0 does not divide f if and only if α( f ) has the same degree of f ;
(v) for every homogeneous polynomial f ∈ Sn, if xm0 is the maximal power of x0

dividing f , then β(α( f )) = f
xm0
.

Proof Parts (i), (iii) and (iv) are obvious. As for part (ii) apply (1.5). To prove (v), it
suffices to do it when x0 does not divide f , verifying that in this case β(α( f )) = f .
To prove this, taking into account (iv), it is enough to observe that for all monomials h
of degree d, one has xd0 h(1, x1

x0
, . . . , xn

x0
) = h, and then apply this to every monomial

appearing in f . �

Proposition 1.5.2 The map φi is an homeomorphism for all i ∈ {0, . . . , n}.
Proof We treat the case i = 0, the other cases being analogous. Set φ0 = φ and
U0 = U . It is clear that φ is bijective. We have to prove that φ and φ−1 are closed.

To prove that φ is closed, it suffices to prove that φ(Z p( f ) ∩U ) is closed
for all f ∈ H(Sn). This is clear, because φ(Z p( f ) ∩U ) = Za(α( f )). Similarly,
φ−1(Za(g)) = Z p(β(g)) ∩U , hence also φ−1 is closed. �

For every subset X ⊂ P
n ,wewill set Xi = X ∩Ui , for 0 � i � n. Then {Xi }0�i�n

is an open covering of X . If X is closed, then this is a covering of X with open subsets
each homeomorphic to closed affine sets.

Often we will identify A
n with U0 via the map φ0. In this case H0 is called the

hyperplane at infinity and its points are called points at infinity of An . If X ⊂ A
n =

U0 ⊂ P
n , its closure X̄ p in P

n will be called the projective closure of X . One sets
X∞ = X̄ p ∩ H0 and this is called the set of points at infinity of X .

Remark 1.5.3 One has

X̄ p =
⋂

f ∈H(S):X⊂Za(α( f ))

Z p( f ).

Hence An is dense in P
n . Indeed, An ⊂ Za(α( f )) if and only if α( f ) = 0. We can

write
f (x0, . . . , xn) = f0x

d
0 + f1x

d−1
0 + . . . + fd with fi ∈ Sn−1,i

hence
α( f ) = f0 + f1 + . . . + fd

where f0, . . . , fd are the homogeneous components of α( f ). Thus α( f ) = 0 implies
f0 = · · · = fd = 0 and so f = 0.

Exercise 1.5.4 Prove that, if Z ⊂ A
n is closed, then Z̄ p = Z ∪ Z∞. Hence every closed set of An

is the intersection of a closed set and an open set of Pn . The intersection of a closed set and an open
set in a topological space is called a locally closed set.
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1.6 Examples

1.6.1 Points

In the Zariski topology ofAn the points are closed. In fact, if P = (p1, . . . , pn), then
{P} = Z(x1 − p1, . . . , xn − pn).

Similarly, the points of Pn are closed. For example, if P = [p0, . . . , pn] ∈ P
n ,

and if pi �= 0 for i = 0, . . . , n, then {P} = Z(pi x0 − p0xi , . . . , pi xn − pnxi ).
Thus, in the Zariski topology, all finite sets are closed. These are the only proper

closed subsets of A1 and of P1. To prove this, it suffices to prove that every subset of
the type Za( f ) [resp. Z p( f )] with f ∈ A1 [resp. with f ∈ H(S1)] not zero is finite.

Since K is algebraically closed, by Ruffini’s theorem, any non–zero f ∈ A1 =
K[x] of degree d can be written in a unique way as

f (x) = c
h∏

i=1

(x − pi )
mi

where c ∈ K
∗ is the leading coefficient of f , p1, . . . , ph are the distinct roots of f ,

and m1, . . . ,mh are the corresponding multiplicities, and one has

d = m1 + . . . + mh .

In particular, if d = 0, one has f = c and Z( f ) = ∅. If d > 0 one has Za(F) =
{p1, . . . , ph} ⊂ A

1.
In the projective case, consider a non–zero f ∈ S1, that is homogeneous of degree

d. If d = 0, again Z p( f ) = ∅. If d > 0, f can be written as

f (x0, x1) = a0x
d
0 + a1x

d−1
0 x1 + . . . + adx

d
1 .

If ad �= 0, i.e., if f is not divisible by x0, then P0 = [0, 1] /∈ Z p( f ), and for any
[p0, p1] ∈ Z p( f ) one has p0 �= 0. Hence wemay assume p0 = 1 and p1 is a solution
of the equation

f (1, x) = a0 + a1x + . . . + adx
d = 0.

Since this equation has only finitely many solutions, then also Z p( f ) is finite. If ad =
0, f is divisible by x0, and we can write f = xm0 g with m > 0 and g homogeneous
of degree d − m, not divisible by x0. Then Z p( f ) = {P0} ∪ Z p(g). Since Z p(g) is
finite, then also Z p( f ) is finite.

Remark 1.6.1 It is convenient to make a further remark. One has

f (x0, x1) = xd0 f

(
1,

x1
x0

)
.



1.6 Examples 13

The polynomial f (1, x) has degree d ′ � d and the equality holds if and only if
ad �= 0. The polynomial

g(x0, x1) = xd
′

0 f

(
1,

x1
x0

)

is homogeneous of degree d ′, as we see by applying (1.5). Moreover we have

f (1, x) = c
h∏

i=1

(x − pi )
mi

with c ∈ K
∗ and p1, . . . , ph distinct roots of f (1, x), with their multiplicities

m1, . . . ,mh so that d ′ = m1 + . . . + mh . Thus

g(x0, x1) = cxd
′

0

h∏

i=1

(
x1
x0

− pi

)mi

= c
h∏

i=1

(x1 − pi x0)
mi .

In conclusion we have

f (x0, x1) = cxd−d ′
0

h∏

i=1

(x1 − pi x0)
mi .

Hence every homogeneous polynomial of degree d in x0, x1 on K can be written as

f (x0, x1) =
h∏

i=1

(qi x1 − pi x0)
mi

with d = m1 + . . . + mh , and this expression is unique up to a non–zero multi-
plicative constant. The non–zero solutions of the equation f = 0 are (qi , pi ), for
1 � i � h, up to a proportionality factor, and m1, . . . ,mh are called their multiplic-
ities. The set Z p( f ) consists of the points with homogeneous coordinates [qi , pi ],
for 1 � i � h.

Exercise 1.6.2 Let k be any field and f, g ∈ Ak,1 polynomials of degree at most d. Prove that if
there are d + 1 elements of K where f and g take the same value, then f = g.

Exercise 1.6.3 * Let k be any infinite field and f ∈ Ak,n a polynomial. Let Σ ⊆ A
1
k be an infinite

subset and assume that f is zero on Σn ⊆ A
n
k . Then f is the zero polynomial.

1.6.2 Projective Subspaces

A subset P(W ) of P(V ), withW a vector subspace of dimensionm + 1 of the vector
space V of dimension n + 1, is called a linear or projective subspace, or simply a
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subspace, of P(V ) of dimension m (in symbols dim(P(W )) = m) and codimension
c = n − m (in symbols codim(P(W )) = n − m). The empty set, corresponding to
W = (0), is the unique subspace of dimension −1. The points are the subspaces of
dimension 0. The subspaces of codimension 1 are called hyperplanes.

Let us focus on the case of Pn . The following properties are applications of basic
notions of linear algebra:

1. Z ⊆ P
n is a subspace if and only if Z = Z( f1, . . . , fh), with f1, . . . , fh linear

forms;
2. if f, f1, . . . , fh are linear forms, then Z( f1, . . . , fh) ⊆ Z( f ) if and only if f

linearly depends from f1, . . . , fh ;
3. Z( f1, . . . , fh) = Z(g1, . . . , gk) if and only if f1, . . . , fh and g1, . . . , gk span the

same vector subspace of Sn,1;
4. Z( f1, . . . , fh) = Z( fi1 , . . . , fic), where ( fi1 , . . . , fic) is a basis of the vector

subspace of Sn,1 spanned by f1, . . . , fh and c is the codimension of the subspace;
5. the intersection of a family of subspaces is a subspace;
6. if Z is a subset of Pn , it makes sense to consider the minimum subspace of

P
n containing Z . It is denoted by 〈Z〉 and it is called the subspace spanned

or generated by Z . One says that Z is non–degenerate if 〈Z〉 = P
n , otherwise

it is called degenerate. If Z1, . . . , Zh are subspaces, one writes Z1 ∨ . . . ∨ Zh

instead of 〈Z1 ∪ . . . ∪ Z2〉;
7. the Grassmann formula holds, i.e., if Z1, Z2 are subspaces of Pn , one has

dim(Z1) + dim(Z2) = dim(Z1 ∨ Z2) + dim(Z1 ∩ Z2);

8. Sn,1 can be interpreted as the dual ofKn+1 and the points ofP(Sn,1), which is also
denoted by P̌n and is called the dual of Pn , can be interpreted as the hyperplanes
of Pn;

9. if Z ⊆ P
n is a subspace, one sets Z⊥ = {[ f ] ∈ P̌

n : Z ⊆ Z( f )}. This is a sub-
space of P̌n , that is called the orthogonal of Z , and its dimension equals the
codimension of Z ;

10. one has

(Z⊥)⊥ = Z , (Z1 ∨ Z2)
⊥ = Z⊥

1 ∩ Z⊥
2 , (Z1 ∩ Z2)

⊥ = Z∨
1 ∩ Z⊥

2 .

Proposition 1.6.4 A projectivity φ : Pn → P
m is a homeomorphism of Pn onto its

image which is a subspace of dimension n of Pm.

Proof Let f : Kn+1 → K
m+1 be an injective linear map determining φ. Set V =

f (Kn+1), which is a subspace of dimension n + 1 of Km+1. Then the image of φ

is the subspace Z = P(V ) of Pm . By proposition 1.4.2, it suffices to prove that φ is
closed. Consider themap τ f introduced in the proof of the Proposition 1.4.2. It is easy
to see, and left to the reader as an exercise, that τ f is surjective. If h ∈ H(Sn) there
is a g ∈ H(Sm) such that τ f (g) = h. Since φ−1(Z(g)) = Z(τ f (g)) = Z(h) (see the
proof of Proposition 1.4.2), we have φ(Z(h)) = Z(g) ∩ Z , and this implies that φ

is closed. �
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If Z = P(W ) is a subspace of dimension m of Pn , we can construct a projectivity
φ : Pm → Z as follows. Consider a basis v0, . . . , vm of W . Then the points Pi =
[vi ] ∈ P

n , for 0 � i � m, are said to be linearly independent, and this definition is
well posed. Moreover Z = P0 ∨ . . . ∨ Pm . More precisely we can consider the map

φ : [λ0, . . . , λm] ∈ P
m → [λ0v0 + · · · + λmvm] ∈ Z .

This is a projectivity, and it sends the fundamental points of P
m to the points

P0, . . . , Pm and the unity point to the point [v0 + · · · + vm]. This projectivity is
also called a parametric representation of the subspace Z .

Exercise 1.6.5 * Let U by a non–empty open subset of AK
n or of PK

n . Prove that if U ⊂ Z( f )
then f is the zero polynomial.

Exercise 1.6.6 Prove that projectivities send homeomorphically subspaces to subspaces of the
same dimension.

Exercise 1.6.7 Prove the properties listed on Sect 1.6.2.

Exercise 1.6.8 Let φ : P(V ) → P(W ) be a bijective projectivity determined by the isomorphism
f : V → W . The projectivity φt : P(W̌ ) → P(V̌ ) determined by the transpose map f t : W̌ → V̌
is called the transpose of φ. Prove that for any subspace Z of P(V ), one has φt (Z⊥) = (φ−1(Z))⊥.

Exercise 1.6.9 * Prove the fundamental theorem of projectivities, which says the following. Let
P1, P2 be projective spaces of the same dimension n. Let (P0, . . . , Pn+1) e (Q0, . . . , Qn+1) two
(n + 2)–tuples of distinct points ofP1 eP2 respectively, and suppose they are ingeneral position, i.e.,
any (n + 1)–tuple of points contained in them consists of linearly independent points, namely, they
span P1 e P2 respectively. Then there is a unique projectivity φ : P1 → P2 such that φ(Pi ) = Qi ,
for 0 � i � n + 2.

Exercise 1.6.10 Let P1, . . . , P4 be distinct points on a projective line P(V ). By Exercise 1.6.9,
there is a unique homogeneous coordinate system on P(V ) such that P1 = [1, 0], P2 = [0, 1], P3 =
[1, 1]. In this system one has P4 = [p, q], where p and q are not zero and q �= p. The cross ratio
(P1, P2, P3, P4) of P1, . . . , P4 is, by definition [p, q] or q

p ∈ K. Note that the cross ratio is never
0 or 1. The 4–uple (P1, P2, P3, P4) will be said to be harmonic if (P1, P2, P3, P4) = −1.

Prove that two quadruples of distinct points P1, P2, P3, P4 of the lineP(V ) and Q1, Q2, Q3, Q4
of the line P(W ) are projective, i.e., there is a projectivity φ : P(V ) → P(W ) such that φ(Pi ) = Qi ,
for 1 � i � 4, if and only if (P1, P2, P3, P4) = (Q1, Q2, Q3, Q4).

Exercise 1.6.11 Supposewe have four distinct points Pi = [pi , qi ] onP1, with i = 1, . . . , 4. Prove
that

(P1, P2, P3, P4) = (p1q4 − p4q1)(p2q3 − p3q2)

(p2q4 − p4q2)(p1q3 − p3q1)
.

Exercise 1.6.12 * Let P(V ) be a projective space of dimension n and Z a subspace of codimension
c. Prove that, if we introduce a homogeneous coordinate system in P(V ), there is a matrixA onK of
type (n + 1) × c and rank c such that Z is the set of points of P(V ) with homogeneous coordinates
[x] verifying the matrix equation x · A = 0, which is equivalent to a system of c independent
homogeneous linear equations in the indeterminates x. This is called a system of equations of Z in
the given coordinate system. Conversely, every set of this type is a subspace of codimension c.

If P(V ) = P
n , one usually considers the natural coordinate system.
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Exercise 1.6.13 * Let P(V ) be a projective space of dimension n and Z a subspace of dimension
m. Prove that, if we introduce a homogeneous coordinate system in P(V ), there is a matrix A onK
of type (m + 1) × (n + 1) of rankm + 1 such that Z is the set of points of P(V )with homogeneous
coordinates [x] of the form x = λ · A, with [λ] variable in Pm . Conversely any set of this form is a
subspace of dimension m.

Exercise 1.6.14 * Consider a hyperplane H in an n–dimensional projective space P. Let U =
P \ H . Prove that U is homeomorphic to An .

1.6.3 Affine Subspaces

Let us think toAn as the open subsetU0 of Pn . A non–empty subset Z ofAn is called
an affine subspace, or simply a subspace ofAn , of dimension m and codimension c =
n − m if there is a projective subspace Z ′ of Pn of dimension m such that Z = Z ′ ∩
A

n = Z ′ ∩U0. The empty set is considered as the only subspace of dimension −1.
The subspaces of codimension 1 are called hyperplanes, the subspaces of dimension
1 lines, those of dimension 2 planes.

If Z ′ has equations
a10x0 + . . . + a1nxn = 0

. . .

ac0x0 + . . . + acnxn = 0

(1.7)

(see Exercise 1.6.12), then the independent equations of Z are

a11x1 + . . . + a1nxn + a10 = 0

. . .

ac1x0 + . . . + acnxn + ac0 = 0

(1.8)

that, in matrix form can be written as

x · A + a = 0

where A = (ai j )i=1,...,n; j=1,...,c is a matrix of type n × c on K with rank c and a =
(a10, . . . , ac0).

The system obtained by adding the equation x0 = 0 to the system (1.7) defines
the subspace Z ′ ∩ H0 of dimension m − 1 which is called the direction space of Z .
Let ξ 0 be a solution of the system (1.8), i.e., the coordinate vector of a point P0 of
Z . Let ξ 1, . . . , ξm be independent solutions of the homogeneous system associated
to (1.8). We can consider the bijective map

φ0 : (λ1, . . . , λm) ∈ A
m → ξ 0 + λ1ξ 1 + · · · + λmξm ∈ Z .
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This is the restriction to A
m of the map φ : Pm → Z ′ obtained as in Sect. 1.6.2 by

choosing in Z ′ the m + 1 points P0, P1, . . . , Pm with the homogeneous coordinates
[1, ξ 0], [0, ξ i ],with 1 � i � m.Henceφ0 is a homeomorphismofAm on Z . It is called
a parametric representation of Z , and can be interpreted as a way of introducing a
coordinate system in Z , with the origin at the point P0.

By Remark 1.5.3 it follows that Z ′ is the projective closure of Z , hence Z∞ =
Z ′ ∩ H0 is the set of points at infinity of Z .

Exercise 1.6.15 Let n � m, consider m integers 0 < i1 < i2 < . . . < im � n, and the map

φi1,...,im : (x1, . . . , xm) ∈ A
m → xiei1 + · · · + xmeim ∈ A

n .

where ei ∈ K
n is the numerical vector with all entries 0 except the i–th entry which is 1, for

i = 1, . . . , n. Prove that φi1,...,im is the parametric representation of a subspace of An of dimension
m. This is called the (xi1 , . . . , xim )–coordinate subspace (coordinate axis if m = 1).

Exercise 1.6.16 If Z1, Z2 are affine subspaces of An , prove that Z1 ∩ Z2 is again a subspace. If
Zi = Z ′

i ∩ A
n , with Z ′

i projective subspaces ofP
n , with 1 � i � m, one defines the joining subspace

or their span as Z1 ∨ . . . ∨ Zm = (Z ′
1 ∨ . . . ∨ Z ′

m) ∩ A
n . Prove that in general Grassmann formula

does not hold in the affine setting and give conditions in order that it holds.

Exercise 1.6.17 * A map ψ : An → A
m , con n � m, is called an affinity, if there is a projectivity

ψ : Pn → P
m such that its restriction to A

n coincides with ψ . Prove that an affinity is a homeo-
morphism on its image and carries affine subspaces into affine subspaces of the same dimension.

Exercise 1.6.18 Prove that ψ : An → A
m is an affinity if and only if there is a matrix A on K of

type n × m and rank n, and there is a point a ∈ A
m such that for every x ∈ A

n one has

ψ(x) = x · A + a. (1.9)

Exercise 1.6.19 * Fix a matrix A on K of type n × m and a point a ∈ A
m . Consider the map

ψ : An → A
m defined via (1.9). It is called an affine map. Prove that such a map is continuous

and it is injective if and only if it is an affinity. Prove that it carries subspaces to subspaces, but in
general it does not preserve the dimension.

Exercise 1.6.20 Let n � m and consider m integers 0 < i1 < i2 < . . . < im � n, and the map

πn
i1,...,im : (x1, . . . , xn) ∈ A

n → (xi1 , . . . , xim ) ∈ A
m .

Prove that this is a surjective affine map, it is called the projection of An onto Am from the space at
infinity of the variables j1, . . . , jn−m where { j1, . . . , jn−m} = {1, . . . , n} \ {i1, . . . , im}. What are
the counterimages of the points of Am?

Exercise 1.6.21 Prove that the affinities of An in itself form a group, called he affine group of An .

Exercise 1.6.22 Prove that an affine map ψ : An → A
m is a homomorphism of Kn to K

m if and
only if ψ(0) = 0.

1.6.4 Hypersurfaces

Let f ∈ An be a non–zero polynomial. The set Z( f ) ⊂ A
n is called a hypersurface

and f = 0 is an equation of it. Note that the empty set is a hypersurface with equation
1 = 0, which is called the 0–hypersurface.
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Two non–zero polynomials f1, f2 ∈ An are said to be essentially distinct if there
is no element t ∈ K

∗ such that f1 = t f2, and are called essentially equal otherwise.
If f1 and f2 are essentially equal one has Z( f1) = Z( f2). Let us see when it is the
case that Z( f1) = Z( f2).

Since An is a unique factorization domain (abbreviated in UFD), for every non–
zero polinomial f ∈ An , one has

f = f r11 · · · f rhh (1.10)

where f1, . . . , fh are irreducible polynomials, pairwise essentially distinct, r1, . . . , rh
are positive integers, and (1.10) is essentially unique, i.e., in two expressions of f of
this sort the fi can change only by the product by an element of K∗, but the integers
r1, . . . , rh cannot change. The polynomials f1, . . . , fh are called the irreducible
factors of f and r1, . . . , rh are the corresponding multiplicities. The Eq. (1.10) is
called the decomposition of f into irreducible factors, and we have

deg( f ) = r1 deg( f1) + · · · + rh deg( fh). (1.11)

One has

Z( f ) =
h⋃

i=1

Z( fi )

hence if s1, . . . , sh are positive integers, we still have Z( f s11 · · · f shh ) = Z( f ). In
particular f1 · · · fh = 0 is still an equation of Z( f ), which is called the reduced
equation of Z( f ) and the polynomial f1 · · · fh is said to be reduced.

Hilbert’s Nullstellensatz, which we will prove later (see Theorem 2.5.2 below),
implies the:

Proposition 1.6.23 (Study’s Principle) If f ∈ An is an irreducible, non–zero poly-
nomial and g ∈ An is a polynomial such that Z( f ) ⊆ Z(g), then f divides g.

Therefore Z( f ) = Z(g) if and only if they have the same irreducible factors,
which can differ only for the multiplicities. Hence the reduced equation of a hyper-
surface Z( f ), with f as in (1.10), is essentially unique. The hypersurfaces Z( fi )
are called the irreducible components of the hypersurface Z( f ), and this is said to
be irreducible if it has a unique irreducible component. The degree of the reduced
equation of the hypersurface Z is called the degree of Z , it is denoted by deg(Z),
and it is the sum of the degrees of its irreducible components. The hypersurfaces
of degree 1 are the hyperplanes (points if n = 1, lines if n = 2, planes if n = 3).
The hypersurfaces of degree 2 are called quadrics (pairs of points if n = 1, conics
if n = 2). The hypersurfaces of degree 3, 4, etc. are called cubics, quartics, etc. For
n = 2 the hypersurfaces are called curves, for n = 3 surfaces.

Suppose now that f ∈ Sn is homogeneous and non–zero. The closed subset
Z( f ) ⊂ P

n is called a hypersurface of Pn . Note that, for a change of variables,
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this polynomial changes for an invertible linear substitution of variables, which is a
homogeneous isomorphism of Sn into itself.

Consider now that factorization (1.10). Since f is homogeneous, the factors
f1, . . . , fh are homogeneous as well (see Exercise 1.3.13). From this it follows
that all what we said about the hypersurfaces in An can be repeated verbatim for the
hypersurfaces in a projective space, and for them we will use an analogous termi-
nology.

1.6.5 Divisors

Let X be an affine space An or a projective space Pn . We will denote by Div(X) the
free abelian group generated by the set H of irreducible hypersurfaces of X . Every
element of Div(X) is of the form D = ∑

Z∈H rZ Z where the rZ are integers that are
different from 0 only for a finite number of elements Z ∈ H. Such a D is called a
divisor of X , rZ is called the multiplicity of Z in D and the Z such that rZ �= 0 are
called the irreducible components of D. The hypersurface Supp(D) := ⋃

rZ �=0 Z is
called the support of D and it is sometimes identified with the divisor

∑
rZ �=0 Z . If

rZ ∈ {−1, 0, 1} for all Z ∈ H, then D is called reduced. We define the degree of D
as deg(Z) = ∑

Z∈H rZ deg(Z). The divisor D = ∑
Z∈H rZ Z is called effective, or a

generalised hypersurface (or simply a hypersurface if no confusion arises), if rZ � 0
for all Z ∈ H.

An effective divisor has non–negative degree and it has degree 0 if and only if it
is the zero divisor, i.e., the 0 element of the group Div(X). An effective divisor D
consisting of a unique Z ∈ H is said to be irreducible.

If fZ = 0, with fZ irreducible, is an equation of Z ∈ H, which is uniquely defined
up to a constant factor, then given the effective divisor D = ∑

Z∈H rZ Z and set
fD = ∏

Z∈H f rZZ , we say that fD = 0 is an equation of D. By the Nullstellensatz
(see Theorem 2.5.2 below), one has that if f = 0 and g = 0 are equations of D then
f and g are essentially equal.
Let us now focus on the case X = P

n . Let D be an effective divisor and let Π

be a subspace of dimension m of Pn . Suppose that D has equation f = 0 and that
Π has a parametric representation as x = λ · A, where A is a matrix of type (m +
1) × (n + 1) and rank m + 1, x = (x0, . . . , xn) and λ = (λ0, . . . , λm) (see Exercise
1.6.13). The polynomial f (λ · A) is zero if and only if Π ⊆ Supp(D). In this case
we say that D contains Π . If this is not the case, then the equation f (λ · A) = 0
defines a divisor DΠ in Π , which is called intersection of Π with D, and one has
deg(DΠ) = deg(D). The definition of DΠ is well posed (see Exercise 1.6.28).

In the case X = A
n , we can make the same considerations and give the same

definitions. The only difference is that deg(DΠ) � deg(D) and strict inequality can
hold.

Hence we have:
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Proposition 1.6.24 (Bézout Theorem for linear sections) Let D be an effective divi-
sor in an affine or projective space, and let Π be a subspace. Then either Π is
contained in D or D intersects Π in an effective divisor of degree at most equal to
deg(D), and exactly equal to deg(D) in the projective case.

Example 1.6.25 If we are in the projective case, D has degree d and � is a line
not contained in D, then D� = m1P1 + · · · + mh Ph , with Pi distinct points of �

and mi positive integers, with 1 � i � h. One has d = m1 + · · · + mh . The positive
integermi is called the intersection multiplicity of � and D at Pi , and it is denoted by
mPi (D, �), for i = 1, . . . , h.We setmP(D, �) = 0 if P /∈ Supp(D�) andmP(D, �) =
∞ for all P ∈ �, if � is contained in D.

Let us consider again the case X = P
n . Fix a positive integer d and let us consider

the setLn,d of all effective divisors of degree d of Pn . One hasLn,d = P(Sn,d), hence

dim(Ln,d) =
(
n + d

n

)
− 1.

If the divisor D ∈ Ln,d has equation f = 0 with f a form, uniquely determined up to
a non–zero constant factor, of the type

f (x) =
∑

|i|=d

fixi

then [ fi]|i|=d (the indices are lexicographically ordered) are in a natural way homo-
geneous coordinates of D in Ln,d .

A subspace of dimension r of Ln,d is called a linear system of divisors, or simply
of hypersurfaces, of degree d in P

n . A linear system of dimension 0 is a unique
divisor, a system of dimension 1 is called a pencil, a system of dimension 2 is called
a net. The empty system has dimension −1.

Example 1.6.26 One has dim(Ln,1) = n and the points ofLn,1 are in 1:1 correspon-
dence with the hyperplanes of Pn . Then Ln,1 is denoted by P̌n and it is called the
dual of Pn . A line in P̌n corresponds to the set of hyperplanes containing a fixed
subspace of codimension 2. This is called a pencil of hyperplanes. Similarly, a plane
in P̌n corresponds to a net of hyperplanes containing a subspace of codimension 3.

Let L ⊆ Ln,d be a linear system of dimension r . If D0, . . . , Dr ∈ L are linearly
independent divisors, with equations fi = 0, for 0 � i � r , in the given coordinate
system, then a divisor D sits in L if and only if it has equation of the form λ0 f0 +
· · · + λr fr = 0, with [λ0, . . . , λr ] ∈ P

r . Note that Z( f0, . . . , fr ) = ⋂
Z∈L Z . This is

called the base locus of the linear system L and it is denoted by Bs(L). If P ∈ P
n ,

we will denote by L(−P) the set of all divisors in Lwith support containing P . One
has L(−P) = L if and only if P ∈ Bs(L). If P /∈ Bs(L), then L(−P) is a linear
system of codimension 1 in L (see Exercise 1.6.31).
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Example 1.6.27 A linear system L of dimension n of L1,d is called a linear series
of degree d and dimension n and it is denoted with the symbol gnd . The series is
complete if L = L1,d , i.e., if n = d.

There is a unique complete g11, formed by all effective divisors of degree 1 on the
line, and they can be identified with the points of the line.

Let us determine all linear series g12. There are two homogeneous, non–
proportional degree 2 forms f0, f1 in x0, x1 such that the elements of the g12 are
precisely the divisors defined by an equation of the form λ0 f0 + λ1 f1 = 0, with
λ0, λ1 not both zero.

The two divisors Di with equations fi = 0, for 0 � i � 1, cannot have the same
support, otherwise the polynomials f0, f1 would be proportional. A first case is the
one in which D1 and D2 have a common point P . Then P is a base point of the g12,
and the divisors of the g12 are the ones of the form P + Q with Q varying on P

1.
Suppose next that D1, D2 have disjoint supports, i.e., the g12 has no base points.

Then the g12 is formed by divisors of the form P1 + P2 such that for any point P of
P
1 there is a unique point Q such that P + Q ∈ g12. Then the g12 determines a map

σ : P1 → P
1 which sends a point P ∈ P

1 to the aforementioned point Q. The map
σ is bijective and it is an involution, i.e., σ−1 = σ . For this reason the base point free
linear series g12 are called involutions.

The map σ is a projectivity and conversely any involutory projectivity of P1 is of
this type (see Exercise 1.6.33).

Exercise 1.6.28 Prove that the definition of DΠ does neither depend on the parametric represen-
tation of Π nor on the homogeneous coordinate system.

Exercise 1.6.29 Give an example of an effective divisor D in A
n such that its intersection with a

subspace Π has degree strictly smaller than deg(D).

Exercise 1.6.30 Prove that the linear systems of dimension m of hyperplanes in a projective space
of dimension n are precisely the sets of all hyperplanes containing a given projective subspace of
dimension n − m − 1.

Exercise 1.6.31 * Prove that if P /∈ Bs(L), then L(−P) is a linear system of codimension 1 in L.

Exercise 1.6.32 * Let L be a linear system of dimension r of divisors of Pn . Let Z be a subset of
P
n . Set L(−Z) = {D ∈ L : Z ⊂ Supp(D)}. Prove that L(−Z) is a sublinear system of L and that

L(−Z) = L if and only if Z ⊆ Bs(L).
Prove that if Z = {P1, . . . , Ph}, thendim(L(−Z)) � r − h (L(−Z) is also denotedbyL(−P1 −

· · · − Ph)). Prove that for all positive integers h there are distinct points P1, . . . , Ph such that
dim(L(−P1 − · · · − Ph)) = max{−1, r − h}.
Exercise 1.6.33 * Considering the Example 1.6.27, prove that the map σ determined by a base
point free g12 is an involutory projectivity and that all involutory projectivities are of this form.

Deduce that, if char(K) �= 2, there are exactly two distinct points P1, P2 on P1 such that 2Pi ∈
g12, for 1 � i � 2. They are called ramification points of the g12.

Prove also that Q = σ(P) if and only if (P1, P2, P, Q) = −1, i.e., if and only if P1, P2, P, Q
is a harmonic quadruple.
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1.6.6 Product Topology

The affine space An+m coincides with A
n × A

m (with n,m > 0). Hence An+m has
the Zariski topology but also the product topology of the Zariski topologies ofAn and
A

m . The latter topology is less fine than the former. Indeed, if Z1 ⊆ A
n and Z2 ⊆ A

m

are closed subsets, then Z1 × Z2 is closed inAn+m . In fact, suppose that Z1 = Z(F1),
with Fi ∈ An = K[x1, . . . , xn] and Z2 = Z(F2), with F2 ∈ Am = K[y, . . . , ym]. We
have the inclusions

An = K[x1, . . . , xn] → An+m = K[x1, . . . , xn, y1, . . . , ym]

An = K[y1, . . . , yn] → An+m = K[x1, . . . , xn, y1, . . . , ym]

hence F1 ∪ F2 can be considered as a subset of An+m and we have Z1 × Z2 =
Z(F1 ∪ F2).

If Z ⊂ A
n is a closed subset, Z × A

m is called the cylinder with directrix Z .

Exercise 1.6.34 Prove that the Zariski topology on A
2 is strictly finer than the product topology.

Similarly for An+m .

Exercise 1.6.35 Prove that if Z1 ⊆ A
n and Z2 ⊆ A

m , the topology inducedby the product topology
on Z1 × {P} = Z1, with P ∈ Z2 is the Zariski topology on Z1.

1.7 Solutions of Some Exercises

1.1.4 One has ∅ = Z(1) andAn = Z(0). If Zi = Z(Fi ), for 1 � i � 2, then Z1 ∪ Z2 = Z(F1 · F2)
where F1 · F2 := { f1 f2 : f1 ∈ F1, f2 ∈ F2}. If Zi = Z(Fi ) is a family of closed subsets depending
on i ∈ I, then ⋂

i∈I Zi = Z(
⋃

i∈I Zi ).
1.3.5 One of the implications is obvious. As for the other, let { f�}�∈L be a family of homo-
geneous generators of I . If f ∈ I then f = ∑

�1,...,�m
f�1,...,�m f�1 · · · f�m with f�1,...,�m ∈ S.

Consider the decomposition in homogeneous components f�1,...,�m = ∑
i f�1,...,�m ,i . Then f =∑

�1,...,�m

∑
i f�1,...,�m ,i f�1 · · · f�m is the decomposition in homogeneous components of f , and

each of such components is in I .
1.3.7 The first part of the assertion follows from Proposition 1.3.1. As for (i), suppose that f r ∈ I
with r a positive integer. Consider the decomposition in homogeneous components f = f� + o(�),
with o(�) ∈ S>�. Then f r = f r� + o(r�). Hence f r� is a homogeneous component of f r . Since I is
homogeneous, one has f r� ∈ I , thus f� ∈ rad(I ). The assertion is proved by iterating this argument.
The proof of (ii) is similar.
1.3.9 One implication is obvious. As for the other, suppose that (1.5) holds. Let f = fd1 + . . . +
fdh be the decomposition in homogeneous components of f , with fdi ∈ Sdi \ {0} for 1 � i �
h and d1, . . . , dh ∈ N distinct. Then td f (x) = f (tx) = fd1 (tx) + . . . + fdh (tx) = td1 fd1 (x) +
. . . + tdh fdh (x) for t ∈ K. This is a polynomial identity in x0, . . . , xn and t . The assertion fol-
lows.
1.3.13 If f = gh, write g = ga + m(a) and h = hb + m(b), where ga [resp. hb] is the homogeneous
component of maximum degree of g [resp. of h] and m(a) [resp. m(b)] stays for a polynomial of
degree smaller than a [resp. than b]. Then f = gahb + m(a + b). Since f is homogeneous, one
has f = gahb hence m(a) = m(b) = 0.
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1.3.14 The first part of the exercise is trivial. As for the required example, consider Sn as a module
over itself. Consider Sn(1). One has Sn(1)d = Sn,d+1. Then Sn is not isomorphic to Sn(1) because
dim(Sn,d ) �= dim(Sn(1)d ).
1.5.4 One has Z = Z̄ p ∩ A

n .
1.6.3 Proceed by induction on the number n of variables. If n = 1 the assertion follows by Ruffini’s
Theorem. Suppose n > 1. If f does not depend on any of the variables x1, . . . , xn , the asser-
tion is clear. So we may assume that f depends of the variable x1. Fix c ∈ Σ . The polynomial
f (c, x2, . . . , xn) vanishes on Σn−1 and, by induction, it is zero. Then f (x1, x2, . . . , xn), as a
polynomial in x1 over the field k(x2, . . . , xn) has infinitely many solutions, so it is zero, as wanted.
1.6.5 Consider the affine case, the projective one is analogous. If U = A

n the assertion follows by
the Identity Principle of polynomials. If U ⊂ A

n is a proper open subset, it suffices to show that
U ⊆ Z( f ) implies that An ⊆ Z( f ). If P ∈ A

n −U , consider a line � passing through P which
intersectsU . Then the restriction of f to � vanishes on a non–empty open subset of �which consists
of infinitely many points, hence it vanishes on � and therefore on P . The assertion follows.
1.6.11 Consider the projectivity ω : P1 → P

1 such that ω([x0, x1]) = [y0, y1], with
y0 = (p2x1 − x0q2)(p1q3 − p3q1), y1 = (p1x1 − x0q1)(p2q3 − p3q2). Remark
that ω sends P1 to [1, 0], P2 to [0, 1], P2 to [1, 1], and therefore P4 to (P1, P2, P3, P4).
1.6.33 We treat the case char(K) �= 2, the case char(K) = 2 can be treated in a similar way, but it
requires a bit more care, and is left to the reader. Suppose a g12 is determined by the two polyno-
mials f0(x0, x1) = a0x20 + a1x0x1 + a2x21 , f1(x0, x1) = b0x20 + b1x0x1 + b2x21 which have no
common solution. So the g12 is the family of divisors with equations

(λa0 + μb0)x
2
0 + (λa1 + μb1)x0x1 + (λa2 + μb2)x

2
1 = 0 (1.12)

with [λ,μ] ∈ P
1. Among these divisors there is certainly at least one which is non–reduced. In fact

such a non–reduced divisor corresponds to [λ,μ] such that (1.12) has a solution with multiplicity
2, and this happens if and only if

(λa1 + μb1)
2 − 4(λa0 + μb0)(λa2 + μb2) = 0 (1.13)

which certainly has some solution in λ,μ. So, up to a change of coordinates, wemay assume that for
instance f0 = x20 , so that (1.13) becomes μ(μ(b21 − 4b0) − 4λ) = 0. This has the solution μ = 0,
which corresponds to f0 and the solution μ = 4, λ = b21 − 4b0 (up to a factor), which corresponds
to another polynomial. So, up to a new change of coordinates, we may assume that f1 = x21 , and
the g12 is the set of divisors defined by the equation

λx20 + μx21 = 0. (1.14)

In this situation it is immediate to see that the map σ sends the point P = [p, q] to the point
Q = [−p, q], which proves that σ is an involutory projectivity.

Conversely, let σ be an involutory projectivity different from the identity. Then if σ([x0, x1]) =
[y0, y1], there are a, b, c, d ∈ K such that y0 = ax0 + bx1, y1 = cx0 + dx1, with ad − bc �=
0. It is easy to see that the involutory condition is equivalent to a + d = 0. Using this, one sees that
for an involutory projectivity on P1 there are exactly two distinct points P such that σ(P) = P . By
changing coordinates one may assume that these points are P1 = [1, 0] and P2 = [0, 1], in which
case the projectivity has the form σ([x0, x1]) = [−x0, x1]. Then the divisors of the type P + σ(P)

have Eq. (1.14) with [λ,μ] ∈ P
1 varying, so they form a g12 .

The final assertion is a direct verification with P1 = [1, 0], P2 = [0, 1], P = [p, q], Q =
[−p, q].
1.6.34 The line with equation x1 + x2 = 0 is not closed in the product topology.



Chapter 2
Basic Notions of Elimination Theory and
Applications

2.1 The Resultant of Two Polynomials

Let k be any, not necessarily algebraically closed, field. We will denote by K its
algebraic closure. A system of algebraic equations

fi (x1 . . . , xn) = 0, fi ∈ Ak,n, i ∈ I

is said to be compatible if
⋂

i∈I Z( fi ) �= ∅ in An
K
.

Let
f (x) = a0xn + · · · + an, g(x) = b0xm + · · · + bm (2.1)

be non–zero polynomials on k. The system

f = 0, g = 0 (2.2)

is compatible if and only if the greatest common divisor D of f and g has positive
degree. Since D ∈ k[x], we have:
Lemma 2.1.1 The system (2.2) is compatible if and only if f and g have some
common divisor of positive degree in k[x].

This implies the:

Lemma 2.1.2 (Euler Lemma) Suppose that either a0 �= 0 or b0 �= 0. Then the sys-
tem (2.2) is compatible if and only if there are non–zero polynomials p(x), q(x) ∈
k[x], with deg(p) < m and deg(q) < n, such that

p f = qg. (2.3)

Proof If (2.2) is compatible, one has

f = φq, g = φp
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with φ ∈ k[x] of positive degree. Hence p, q verify the assertion.
Conversely, suppose that (2.3) holds with deg(p) < m and deg(q) < n. Suppose,

for example, a0 �= 0. If f has no common factor of positive degree with g, then f
has to divide q, and this is impossible because deg(q) < n = deg( f ). �

The existence of the polynomials p, q verifying (2.3) is equivalent to the existence
of n + m elements of k

ci , 0 � i � m − 1, not all zero, di , 0 � i � n − 1, not all zero

such that

(c0xm−1 + · · · + cm−1) f (x) = (d0xn−1 + · · · + dn−1)g(x), (2.4)

i.e., satisfying the system of n + m equations

a0c0 = b0d0
a1c0 + a0c1 = b1d0 + b0d1
. . .

ancm−1 = bmdn−1

(2.5)

Note that, if c0, . . . , cm−1, d0, . . . , dn−1 verify (2.4), or equivalently, (2.5), and are
not all zero, then neither c0, . . . , cm−1, nor d0, . . . , dn−1, are all zero. In conclu-
sion, if either a0 �= 0 or b0 �= 0, the system (2.2) is compatible if and only if the
homogeneous linear system (2.5) of n + m equations in the n + m indeterminates
c0, . . . , cm−1, d0, . . . , dn−1 has a non–trivial solution. This happens if and only if the
matrix of the system has zero determinant, i.e., if and only if

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 . . . 0

. . .

0 . . . 0 0 a0 a1 . . . an

b0 b1 . . . bm 0 0 . . . 0
0 b0 b1 . . . bm 0 . . . 0

. . .

0 . . . 0 0 b0 b1 . . . bm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.6)

where the block where a0, . . . , an appear consists of m rows and the one in which
b0, . . . , bm appear consists of n rows. The first member of (2.6) is called the Sylvester
determinant of f and g. Its vanishing is equivalent either to a0 = b0 = 0 or to the
system (2.2) being compatible.

Consider now a0, . . . , an, b0, . . . , bm as indeterminates on the fundamental field
F of k, which is Q if char(k) = 0, and the finite field Fp with p elements if
char(k) = p. Then the Sylvester determinant can be considered as a polynomial
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R(a0, . . . , an, b0, . . . , bm) = R(a,b) in F[a,b]. This polynomial is called the resul-
tant polynomial of type (n, m).

Proposition 2.1.3 The resultant polynomial R(a,b) belongs to the ideal generated
by f and g. Precisely, there are polynomials A, B ∈ F[a,b, x] with degrees at most
m − 1 and n − 1 in x respectively, such that

A f + Bg = R (2.7)

Proof One has the relations

xm−1 f (x) = a0xn+m−1 + · · · + an xm−1

xm−2 f (x) = a0xn+m−2 + · · · + an xm−2

. . .

f (x) = a0xn + · · · + an

xn−1g(x) = b0xn+m−1 + · · · + bm xn−1

xn−2g(x) = b0xn+m−2 + · · · + bm xn−2

. . .

g(x) = b0xm + · · · + bm

By multiplying each of these by the cofactor of the corresponding element of the last
column of R, and then adding up, one obtains (2.7). �
Exercise 2.1.4 Consider two homogeneous polynomials on k

f (x0, x1) = a0xn
0 + . . . + an xn

1 , g(x0, x1) = b0xm
0 + . . . + bm xm

1 .

Prove that R(a,b) = 0 if and only if Z p( f, g) �= ∅ in P1
K
.

Exercise 2.1.5 Prove that R(a,b) is bihomogeneous of degree m in a and of degree n in b.

Exercise 2.1.6 * Consider the polynomials (2.1) with indeterminate coefficients on the fundamen-
tal field F and letα1, . . . ,αn [resp. β1, . . . ,βm ] be the roots of f [resp. of g] in the algebraic closure
of F[a], [resp. in the algebraic closure of F[b]]. Consider

S := am
0 bn

0

n∏

i=1

m∏

j=1

(αi − β j ) = am
0

n∏

i=1

g(αi ) = (−1)nmbn
0

m∏

j=1

f (β j )

which can be considered as a polynomial on F[a0,α1, . . . ,αn] in the variables b, or as a polynomial
on F[b0,β1, . . . ,βm ] in the variables a.

Prove that S belongs to F[a,b] and it is homogeneous of degree m in the a and of degree n in
the b.

Exercise 2.1.7 * Continuing the previous exercise, prove that S is prime with a0b0.

Exercise 2.1.8 * Continuing the previous exercise, prove that S is irreducible.

Exercise 2.1.9 * Continuing the previous exercise, prove that if T ∈ F[a,b] is a bihomogeneous
polynomial which vanishes if (2.2) is compatible, then S divides T .



28 2 Basic Notions of Elimination Theory and Applications

Exercise 2.1.10 * Continuing the previous exercise, prove that R = S.

Exercise 2.1.11 * Prove that R is isobaric of weight nm, i.e., if ai0
0 . . . ain

n b j0
0 . . . b jm

m is any mono-
mial appearing in R with a non–zero coefficient, then

∑n
h=1 hih + ∑m

h=1 hjh = nm.

Exercise 2.1.12 Let p, q be positive integers. Prove that if we make in R(a,b) a substitution of
the variables ai with homogeneous polynomials of degree i + p in some variables y and of the
variables b j with homogeneous polynomials of degree j + q in the variables y, then R(a(y),b(y))
is a polynomial of degree nm + pm + qn in the variables y.

2.2 The Intersection of Two Plane Curves

Consider two affine or projective curves. We make here a first treatment of the
problem of determining their intersection. We will prove the following:

Theorem 2.2.1 The intersection of two plane affine or projective curves is the union
of a (may be empty) affine or projective curve and of a finite set of points.

An immediate consequence is:

Corollary 2.2.2 In the Zariski topology, the proper closed subsets of the affine or
projective plane are the finite unions of curves and points.

We start by considering the affine case. Consider two curves Z( f ), Z(g) with
non–constant f, g ∈ A2. If f and g have a common factor h of positive degree, the
curve Z(h) is contained in the intersection Z( f, g) of the two curves. Hence we can
assume that f and g have no non–constant common factor. We will prove that in this
case Z( f, g) is a finite set, and this will prove Theorem 2.2.1 in the affine case.

If f and g have degrees n and m respectively in x2, we have:

f (x1, x2) = a0(x1)xn
2 + · · · + an(x1), g(x1, x2) = b0(x1)xm

2 + · · · + bm(x1),

with ai (x1), b j (x1) ∈ A1, for 1 � i � n, 1 � j � m. Consider the polynomial

R(x1) = R(a0(x1), . . . , an(x1), b0(x1), . . . , bm(x1)).

Lemma 2.2.3 The polynomial R(x1) is not zero.

Suppose, for the time being, that this Lemma holds. Then if (p, q) ∈ Z( f, g),
we have R(p) = 0. Since R is not zero, p can assume at most finitely many values.
Exchanging the roles of x1 and x2, we see that also q can assume at most finitely
many values, and this implies that Z( f, g) is finite.

To prove Lemma 2.2.3, we need a preliminary. Let A be a UFD and let Q(A) be
its quotient field. If f ∈ Q(A)[x] is non–zero, then we can write f as f = c f · f1,
with c f ∈ Q(A) and f1 ∈ A[x], with the coefficients of f1 having invertible greatest
common divisor, and this expression is unique up to multiplying c f for an invertible
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element in A (see Exercise 2.2.7). Moreover c f1 is invertible in A. If f ∈ A[x] and
c f is invertible, one says that f is primitive.

Lemma 2.2.4 If f, g ∈ Q(A)[x] are not zero, then c f g = c f cg .

Proof One has f g = c f cg f1g1, and wemay assume c f1 = cg1 = 1. Hence it suffices
to prove that if f and g (polynomials in A[x]) are primitive, also f g is primitive. Let

f (x) = a0xn + · · · + an, g(x) = b0xm + · · · + bm,

with a0b0 �= 0. For every p ∈ A non–invertible, p does not divide all the coefficients
of f . Hence we can consider the minimum integer r such that p does not divide ar .
Similarly, let s be the minimum integer such that p does not divide bs . Consider the
coefficient of xn+m−r−s in f g, which is

c = ar bs + ar+1bs−1 + · · · + ar−1bs+1 + · · ·

Then p does not divide ar bs but it divides all the other summands in c, hence p does
not divide c. This proves the assertion. �

Theorem 2.2.5 (Gauss Lemma) If a polynomial f ∈ A[x] factors as f = gh,
with g, h ∈ Q(A)[x], then it factors in A[x] as f = c f g1h1, with c f ∈ A, deg(g) =
deg(g1) and deg(h) = deg(h1).

Proof By Lemma 2.2.4, one has f = gh = cgchg1h1 = c f g1h1 and c f ∈ A. �

We can now give the:

Proof (of Lemma 2.2.3) Suppose, by contradiction, that R(x2) is zero. Then
f (x1, x2) and g(x1, x2) would have a common factor of positive degree in k(x1)[x2].
But then, by Gauss Lemma 2.2.5, f, g would have a common factor in A2, against
the hypothesis. �

This ends the proof of Theorem 2.2.1 in the affine case. The projective case is a
consequence of the affine case, and can be left as an exercise (see Exercise 2.2.9).

We explicitely remark that, as a consequence of the results of this section, we
have the:

Theorem 2.2.6 (Bézout Theorem, weak form) Let Z1, Z2 be plane affine or projec-
tive curves, with equations f = 0, g = 0 respectively. If φ is the greatest common
divisor of f and g, then Z1 ∩ Z2 = Z(φ) ∪ Z3 where Z3 is a finite set.

Exercise 2.2.7 * Suppose A is a UFD. Prove existence and uniqueness (up to the product with
a non–zero element in Q(A)) of the expression f = c f f1 for any non–zero f ∈ Q(A)[x], with
c f ∈ Q(A) and f1 ∈ A[x], and the coefficients of f1 with invertible greatest common divisor.

Exercise 2.2.8 * Prove that if Za( f ) is an affine curve, its projective closure is Z p(β( f )).

Exercise 2.2.9 * Prove Theorem 2.2.1 in the projective case.
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2.3 Kronecker Elimination Method: One Variable

Consider the polynomials

fi (x) = ai0xni + · · · + aini , i = 1, . . . , m (2.8)

on the field k and the system

fi (x) = 0, i = 1, . . . , m. (2.9)

Let us set α = (αi j )1�i�m;1� j�ni , where αi j are indeterminates on k and a =
(ai j )1�i�m;1� j�ni ,

Consider the polynomials

φi (x) = αi0xni + · · · + αini , i = 1, . . . , m (2.10)

on F = k(α). The polynomials in (2.10) are polynomials on the field F(α), where F
is the fundamental subfield of k and reduce to the polynomials (2.8) if α = a, hence
the system

φi (x) = 0, i = 1, . . . , m (2.11)

reduces to the system (2.9) for α = a.
Let us set n = max{ni , 1 � i � m}. The system

xn−ni φi (x) = 0, (1 − x)n−ni φi (x) = 0, i = 1, . . . , m (2.12)

is equivalent to the system (2.11), i.e., the two systems have the same solutions, and,
for α = a, it reduces to the system

xn−ni fi (x) = 0, (1 − x)n−ni fi (x) = 0, i = 1, . . . , m (2.13)

which is equivalent to the system (2.9).
We denote, for brevity, by

gi (x) = 0, i = 1, . . . , h (2.14)

the system (2.12). One has:

(i) the coefficients of the polynomials gi ∈ F[x], with i = 1, . . . , h, are linear com-
binations of the coefficients of the polynomials in (2.10) with coefficients in
the fundamental subfield;

(ii) the polynomials gi , i = 1, . . . , h, have the same degree n in x , and the set of
their leading coefficients (i.e., of the coefficients of xn) coincides with the one
{αi0, 1 � i � m} of the polynomials (2.10);

(iii) the system (2.14), for α = a, is equivalent to the system (2.9).
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Let us set u = (uts)1�t�2,1�s�h and ut = (uts)1�s�h , 1 � t � 2, where uts are inde-
terminates on F , and consider the two polynomials of degree n

Ut (x) =
h∑

s=1

utsgi (x) =
n∑

�=0

λt�xn−�, 1 � t � 2

on the field F(u). Note that:

(iv) the coefficients λt� of Ut are elements of F[α,u];
(v) the leading coefficients of U1, U2 are linear combinations, with coefficients

entries of u, of the leading coefficients of the polynomials gi (x), i = 1, . . . , h,
i.e., of the polynomials (2.10).

Set λ = (λt�)1�t�2,1���n . Consider the Sylvester determinant R(λ) of U1, U2. By
(iv), R can be interpreted as an element in k[α,u]. Let R̄(u) be the polynomial
obtained by setting α = a in R.

Lemma 2.3.1 R̄ is zero if and only if either the system (2.9) is compatible or ai0 = 0,
1 � i � m.

Proof The polynomial R̄ is zero if and only if either the system

Ū1 = Ū2 = 0 (2.15)

obtained byU1 = U2 = 0 forα = a, is compatible, or the leading coefficients of the
two polynomials appearing in it are zero. By (v), this happens if and only if ai0 = 0,
for 1 � i � m (see (ii)). On the other hand if (2.9) is compatible, then (2.15) is
compatible as well, because of (iii). Conversely, if (2.15) is compatible, let ξ be a
solution, which is an element of the algebraic closure of k(u). Of course ξ belongs
to the intersection of the algebraic closures of k(ut ), for 1 � t � 2, and this is K.
Hence (2.9) is compatible. �

Let
Rq(α) ∈ k[α], 1 � q � N (2.16)

be the coefficients of R as a polynomial in the variables u. The polynomials (2.16)
are called the resultant polynomials of the polynomials (2.10). One has

Rq(a) = 0, 1 � q � N (2.17)

if and only if either (2.9) is compatible, or ai0 = 0, for 1 � i � m. The expressions
Rq(a) ∈ k appearing in (2.17) are called the resultants of the system (2.9).

Proposition 2.3.2 The resultant polynomials (2.16) belong to the ideal generated
by the polynomials (2.10) in k[α].
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Proof The assertion holds for m = 2 (see Proposition 2.1.3). If m > 2, again by
Proposition 2.1.3 we have a relation of the form R = AU1 + BU2, with A, B ∈
k[α,u]. The assertion follows by equating the coefficients of the entries of u in such
a relation. �

2.4 Kronecker Elimination Method: More Variables

Next we extend the considerations of Sect. 2.4 to the case of more variables. Consider
a system of equations

fi (x1, . . . , xn) = 0, 1 � i � m (2.18)

with fi ∈ k[x1, . . . , xn] not zero and n � 2.
Let us set R = k[x2, . . . , xn] and let us consider the polynomials appearing in

(2.18) as elements in R[x1]. Hence the polynomials fi are of the form (2.8), where
x = x1, ai j ∈ R and the leading coefficients ai0 are non–zero inR. Hence the resul-
tant polynomials Rq(a), 1 � q � N , can be regarded as elements Rq(x2, . . . , xn) of
R. They are called resultants of the polynomials appearing in (2.18) by the elimina-
tion of the variable x1 and the system

Rq(x2, . . . , xn) = 0, 1 � q � N (2.19)

is called the resultant system of (2.18) obtained by eliminating the variable x1.

Lemma 2.4.1 One has Rq = 0 for 1 � q � N, if and only if the polynomials
appearing in (2.18) have a greatest common divisor of positive degree in x1.

Proof Let

D(x1, . . . , xn) = b0xh
1 + . . . + bh, bi ∈ R, 0 � i � h (2.20)

be the greatest common divisor of the polynomials in (2.18), and assume that
h > 0 and b0 �= 0. Let U be the non–empty set of An−1

K
which is the complement

of Z(b0, ai0)1�i�m . For any (a2, . . . , an) ∈ U , there are solutions of the equation
D(x1, a2, . . . , an) = 0 in x1, and these are also solution of the system

fi (x1, a2 . . . , an) = 0, 1 � i � m. (2.21)

But then the Rq(a2, . . . , an), 1 � q � N , that are the resultants of the system (2.21),
are all zero. ThusU ⊆ Z(Rq)1�q�N , hence the polynomials Rq(x2, . . . , xn) are zero
(see Exercise 1.6.5).

Conversely, if the polynomials Rq(x2, . . . , xn) are zero, the system (2.18) is com-
patible over Q(R), hence the polynomials appearing in (2.18) have a greatest com-
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mon divisor of positive degree in x1 on Q(R)[x1]. The assertion follows by Gauss
Lemma (see Theorem 2.2.5). �

The above Lemma enables us to discuss the compatibility of the system (2.18). Let
D be the greatest common divisor of the polynomials appearing in (2.18), and let us
set fi = Dgi , 1 � i � m. In An

K
we have Z( f1, . . . , fm) = Z(D) ∪ Z(g1, . . . , gm).

As for the solutions of D = 0, if D is a constant, there is no solution. Then we
may assume that D depends on x1, i.e., that D is as in (2.20). Let U be the non–
empty subset of An−1

K
which is the complement of Z = Z(bi )0�i�h−1. For every

(a2, . . . , an) ∈ U , there are solutions in x1 of the equation D(x1, a2, . . . , an) =
0, hence this determines the points (a1, a2, . . . , an) ∈ Z(D) with (a2, . . . , an) ∈
U . If (a2, . . . , an) ∈ Z ∩ Z(bh), then the polynomial D(x1, a2, . . . , an) is zero,
hence any (a1, a2, . . . , an) with (a2, . . . , an) ∈ Z ∩ Z(bh) sits in Z(D). Finally, if
(a2, . . . , an) ∈ Z \ (Z ∩ Z(bh)), then D(x1, a2, . . . , an) is a non–zero constant and
there is no point (a1, a2, . . . , an) in Z(D), with (a2, . . . , an) ∈ Z \ (Z ∩ Z(bh)). In
conclusion, the search for the solutions of D = 0 reduces to the search of the solutions
of equations with a lower set of variables.

It remains to determine Z( f1, . . . , fm), and we may assume that f1, . . . , fm are
coprime. Consider the resultant system (2.19) obtained from (2.18) by eliminating
the variable x1. By Lemma 2.4.1 this system is non–trivial, i.e., not all polynomials
appearing in it are zero. If (a1, a2, . . . , an) is a solution of (2.18) then (a2, . . . , an)

is a solution of (2.19). Conversely, if (a2, . . . , an) is a solution of (2.19), then:

(i) either (a2, . . . , an) does not belong to Z(ai0)1�i�m and then there is a finite
number of solutions (a1, a2, . . . , an) of (2.18), whose first coordinate can be
obtained by solving equations in one variable;

(ii) or (a2, . . . , an) ∈ Z(ai0)1�i�m , then one has to solve the system in one variable
fi (x1, a2, . . . , an) = 0, 1 � i � m, which could be non–compatible.

In any event, in order to understand Z( f1, . . . , fm) one has to solve equations in
one variable and determine Z(Rq)1�q�N , where we have a similar problem, but with
one less variable. Proceeding inductively, we see that in order to solve the system
(2.18) one has to compute resultants and solve equations in one variable.

Remark 2.4.2 A polynomial f ∈ k[x1, . . . , xn] of degree d is said to be regular in
the variable xi if in f the monomial xd

i appears with a non–zero coefficient. It is
clear that f is regular in xi if and only if its homogeneous component of degree d
is regular in xi , and this happens if and only if fd(0, . . . , 0, 1, 0, . . . , 0) �= 0 (here 1
appears only in the i–th component).

Suppose f of degree d > 0 is non–regular in one of the variables, for instance in
x1, so that fd(1, 0, . . . , 0) = 0. Suppose that k is an infinite field. Then there is some
point a = (a1, . . . , an) ∈ A

n
k such that a1 �= 0 and fd(a) �= 0 (apply Exercise 1.6.3).

Consider the affinity

σ : (x1, . . . , xn) ∈ A
n
k → (a1x1, a2x1 + x2, . . . , an x1 + xn) ∈ A

n
k ,
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that is also an automorphism of k–vector spaces, and the homogeneous linear sub-
stitution of variables, which is a homogenous automorphism (see Exercises 1.3.11,
1.3.12)

τ : g(x) ∈ k[x1, . . . , xn] → g(σ(x)) ∈ k[x1, . . . , xn].

One has Z( f ) = σ−1(Z(τ ( f )). Hence studying the equation f = 0 is equiva-
lent to studying the equation τ ( f ) = 0. Moreover τ ( f ) is regular in x1, since
τ ( f )d(1, 0. . . . , 0) = τ ( fd)(1, 0. . . . , 0) = fd(a) �= 0.

In conclusion: in order to study the compatibility of the system (2.18), we can
replace it with a system of equations on the same field k, such that at least one of the
polynomials appearing in it is regular with respect to at least one variable. Then the
system is said to be regular with respect to that variable.

Assuming the system (2.18) regular with respect to a variable, e.g., respect to x1,
simplifies the solution of the system. In fact in this case also the greatest common
divisor D of the polynomials in (2.18) is regular with respect to x1, hence the solution
of the equation D = 0 simplifies. For all (a2, . . . , an) ∈ A

n−1
k , there is a finite number

of solutions in x1 of the equation D(x1, a2, . . . , an) = 0, and this determines all the
points of Z(D).

Moreover, if (a2, . . . , an) is a solution of the resultant system (2.19), then there
is a finite number of solutions (a1, a2, . . . , an) of (2.18), whose first coordinate can
be computed by solving equations in one variable, and all solutions of (2.18) can be
obtained in this way.

If k is not infinite, we can still proceed in the same way, substituting to k its
algebraic closure K, which is infinite. In this case we can still replace (2.18) with a
regular system in one variable, but it is now defined, in general, on K and not on k.

Exercise 2.4.3 Interpret geometrically the Kronecker elimination process in more variables over
an algebraically closed field.

2.5 Hilbert Nullstellensatz

Here we assume that the field k = K is algebraically closed. The crucial step for the
proof of the Hilbert Nullstellensatz is the following:

Theorem 2.5.1 (Incompatibility Criterion) The system (2.18) is incompatible if and
only if AK,n = ( f1, . . . , fm).

Proof We prove only the non–trivial implication. By the discussion in Sect. 2.4,
f1, . . . , fm are coprime and the resultant system (2.19) is also incompatible.
If n = 1, the polynomials in (2.19) are constant and at least one of these constants

is not zero. The assertion follows from Proposition 2.3.2. Let us now proceed by
induction on n. Since (2.19) is incompatible, the polynomials appearing in it generate
An−1. By Proposition 2.3.2 these polynomials sit in the ideal ( f1, . . . , fm). The
assertion follows. �
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We can now prove the:

Theorem 2.5.2 (Hilbert Nullstellensatz) If f ∈ An and I ⊆ An is an ideal, such
that Z(I ) ⊆ Z( f ) then f ∈ rad(I ).

Proof We can assume that f is not zero. Moreover we can assume that I =
( f1, . . . , fm). Let z be an indeterminate on Q(An). Consider the system obtained
by adding to (2.18) the equation 1 − z f (x) = 0. This system is incompatible, and,
for the Incompatibility Criterion 2.5.1, we have an expression of the sort

1 = A(x, z)(1 − z f (x)) +
m∑

i=1

Ai (x, z) fi (x).

By setting z = 1
f (x) and eliminating the denominators, which are powers of f (x), we

get the assertion. �

As a consequence we have the:

Theorem 2.5.3 (Homogeneous Nullstellensatz) If f ∈ Sn, if f is homogeneous,
not constant and if I ⊆ Sn is a homogeneous ideal such that Z p(I ) ⊆ Z p( f ) then
f ∈ rad(I ).

Proof By the hypotheses, one has also Za(I ) ⊆ Za( f ) and the assertion follows by
applying the Hilbert Nullstellensatz. �

Exercise 2.5.4 An ideal of a ring is said to be radical if it coincides with its radical. Prove that a
prime ideal is radical.

Exercise 2.5.5 * Prove that a maximal ideal is radical.

Exercise 2.5.6 * Prove that the radical of an ideal I of the ring A is the intersection of all prime
ideals of A that contain I .

Exercise 2.5.7 Let A be a ring. Prove that rad((0)) is the set of all nilpotent elements of A. This
ideal is called the nilradical of A and is denoted by nilrad(A).

2.6 Solutions of Some Exercises

2.1.6 Looking at the righmost expression of S, it is clear that S is a homogeneous polynomial of
degree m in the variables a, with coefficients polynomials in b0 and β1, . . . ,βm . We prove that
these coefficients can be expressed as homogeneous polynomials of degree n in the variables b,
with coefficients in F. The number of these coefficients is N = (n+m

n

)
. To compute themwe proceed

in the following way. Consider the identity

am
0

n∏

i=1

g(αi ) = (−1)nmbn
0

m∏

j=1

f (β j ). (2.22)
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Give arbitrary values at the variables a inF, and accordingly toα1, . . . ,αn in the algebraic closure if
F. Then we get, on the right hand side of (2.22), a linear combination of the coefficients in question,
which equals the left hand side of (2.22) that is a homogeneous polynomial of degree n in the
variables b. Consider, as it is certainly possible, N linearly independent such relations. By solving
the corresponding linear system of equations we obtain the required expressions of the coefficients
in question.
2.1.7 We have

S(a0, 0, . . . , 0; b0, . . . , bm) = am
0

n∏

i=1

g(0) = am
0 bn

m ,

so in S there is the monomial am
0 bn

m and this is the only one which contains am
0 . Similarly S contains

the monomial (−1)nmbn
0am

n , which is the only one that contains bn
0 . Therefore S is prime with a0b0.

2.1.8 By Exercise 2.1.7, S is irreducible if and only if

S′ = S

am
0 bn

0
= S(1, a′

1, . . . , a′
n; 1, b′

1, . . . , b′
m)

is irreducible in the variables a′
i = ai

a0
, b′

j = b j
b0
, with i = 1, . . . , n and j = 1, . . . , m. Suppose that

S′ = P ′ · Q′, with P ′ a non–constant polynomial in a′
1, . . . , a′

n, b′
1, . . . ,

b′
m . Express a′

1, . . . , a′
n, b′

1, . . . , b′
m as elementary symmetric functions in α1, . . . ,

αn,β1, . . . ,βm . Then P ′ is a symmetric function in α1, . . . ,αn , β1, . . . ,βm . Since P ′ divides

S′ =
n∏

i=1

m∏

j=1

(αi − β j )

then P ′ contains one of the factors αi − β j . But, since P ′ is a symmetric function in
α1, . . . ,αn,β1, . . . ,βm , it contains all the factors αi − β j , which implies that Q′ is constant,
hence S′ is irreducible, so it is S.
2.1.9 Suppose T is a bihomogeneous polynomial of degree p in the variables a and of degree q in the
variables b, which vanishes if αi = β j , with i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. Then T ′ = T

a p
0 bq

0
is a

polynomial in a′
1, . . . , a′

n, b′
1, . . . , b′

m , hence it is a symmetric function in α1, . . . ,αn,β1, . . . ,βm .
So T ′ is divisible by all factors αi − β j , hence it is divisible by S′. This implies that S divides T .
2.1.10 By Exercise 2.1.9, S divides R, and since S and R have the same degree in the variables a
and b, they can differ only by a non–zero constant factor. This factor is 1, because both polynomials
contain the monomial am

0 bn
m with coefficient 1.

2.1.11 In R = S we make the following substitution ᾱi = tαi and β̄ j = tβ j , for i = 1, . . . , n
and j = 1, . . . , m. This implies that a0, . . . , an and b0, . . . , bm are substituted by āh = thah and
b̄l = t l bl , with h = 0, . . . , n and l = 0, . . . , m. With these substitutions R becomes

R̄ = tnm R

and we must have identically

R(a0, ta1, . . . , tnan; b0, tb1, . . . , tmbm) = tnm R(a0, a1, . . . , an; b0, b1, . . . , bm).

By comparing the degrees in t the assertion follows.
2.1.12 If we make the substitution indicated in the exercise, then R becomes a form in the new
indeterminates y of degree
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n∑

h=0

(h + p)ih +
m∑

l=0

(l + q) jl =

=
n∑

h=0

hih + p
n∑

h=0

ih +
m∑

l=0

l jl + q
m∑

l=0

jl = mn + pm + qn.

2.2.7 Find the minimum common denominator a of the coefficients of f . Then c f = b
a where b is

the greatest common divisor of the numerators of the coefficients of a f ∈ A[x].
2.2.8 It suffices to reduce to the case in which f is irreducible. One has Za( f ) ⊆ Z p(β( f )),
hence Za( f ) ⊆ Z p(β( f )). If g is a homogeneous polynomial such that Za( f ) ⊆ Z p(g), then
Za( f ) ⊆ Z p(α(g)). Then f divides α(g), thus β( f ) divides β(α(g)), that in turn divides g. In
conclusion Z p(β( f )) ⊆ Z p(g), hence Za( f ) = Z p(β( f )).
2.2.9 If Z is a closed subset of P2 we have Z = Z1 ∪ Z2, with Z1 = Z ∩ U0 and Z2 = Z ∩ H0.
Then Z2 is a closed subset ofP1 = H0 hence either it is the whole of H0 or it is a finite set. Moreover
Z ∩ U0 is a closed subset of U0 = A

2, hence it is the union of a finite subset and of an affine curve.
Then apply Exercise 2.2.8 to conlcude.
2.5.6 It is clear that rad(I ) is contained in any prime ideal containing I . Conversely, let x be
an element contained in all prime ideals containing I . Consider the multiplicatively closed set
S = {xn, n ∈ N − {0}}. If S ∩ I �= ∅, then x ∈ rad(I ) andwe are done. Sowe argue by contradiction
and assume S ∩ I = ∅. Let J be the set of all ideals J such that I ⊆ J and S ∩ J = ∅. The set J is
non–empty, because I ∈ J . Moreover J is partially ordered by the inclusion. If {Jh}n∈N is a chain
of ideals in J , then

⋃
h Jh ∈ J . By Zorn’s lemma, there is an ideal P ∈ J which is maximal by

the inclusion. We claim that P is prime. Indeed, suppose the contrary holds, i.e., we have ab ∈ P
but a, b /∈ P . Then (a, P) and (b, P) properly contain P , so they do not lie in J . Since they both
contain I , this means that (a, P) ∩ S �= ∅ and (b, P) ∩ S �= ∅. This means we have relations of the
sort

xn = ya + p, xm = zb + q, with p, q ∈ P.

Multiplying the above relations and taking into account that ab ∈ P , we deduce that xn+m ∈ P , a

contradiction. Then P is prime, but this implies that x ∈ P , again a contradiction.



Chapter 3
Zariski Closed Subsets and Ideals in the
Polynomials Ring

3.1 Ideals and Coordinate Rings

Let X be a subset ofAn .Wewill denote byIa(X) the ideal of An of all the polynomials
f ∈ An such that X ⊆ Za( f ). Then Ia(X) is called the ideal of X . The ring A(X) :=
An/Ia(X) is called the (affine) coordinate ring of X . Similarly, if X is a subset of
P
n we define the ideal of X to be the homogeneous ideal Ip(X) of Sn which is

generated by all homogeneous polynomials f ∈ Sn such that X ⊆ Z p( f ). The ring
S(X) := Sn/Ip(X) is called the (homogeneous) coordinate ring of X .

Proposition 3.1.1 One has:

(a) if F1, F2 are subsets of An such that F1 ⊆ F2 then Za(F2) ⊆ Za(F1);
(b) if X1, X2 are subsets of An such that X1 ⊆ X2 then Ia(X2) ⊆ Ia(X1);
(c) if X1, X2 are subsets of An, one has Ia(X1 ∪ X2) = Ia(X1) ∩ Ia(X2);
(d) For all subsets X of An, one has Za(Ia(X)) = X̄ .

Analogous properties hold for subsets of Pn and of Sn.

Proof Properties (a), (b) and (c) are obvious and we leave the proof to the reader.
As for (d), note that X ⊆ Za(Ia(X)), hence X̄ ⊆ Za(Ia(X)). Let now W = Za(I)

be a closed subset of An , with I an ideal of An , and suppose that X ⊆ W . From (b)
we have Ia(W ) = Ia(Za(I)) ⊆ Ia(X), hence I ⊆ Ia(Za(I)) ⊂ Ia(X). By (a) we
have W = Za(I) ⊇ Za(Ia(X)), whence the assertion follows. �

The following is an immediate consequence of Hilbert Nullstellensatz 2.5.2:

Corollary 3.1.2 If I is an ideal of An, then rad(I ) = Ia(Za(I)).

Hence the map
Ia : X ∈ An → Ia(X) ∈ R(An),

is a bijection ofAn on the setR(An) of radical ideals of An . The same does not hold
in the projective case, as the following remark shows.
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Remark 3.1.3 The ambient is the projective space Pn . The irrelevant ideal S>0 of
Sn is maximal, hence it is radical (see Exercise 2.5.5). However Ip(Z p(S>0)) =
Ip(∅) = Sn . Hence Corollary 3.1.2 does not hold in the projective setting and the
map

Ip : X ∈ PV → Ip(X) ∈ R(Sn)

is not surjective on the set of radical ideals.

Lemma 3.1.4 Let I ⊆ Sn be a homogeneous ideal. The following are equivalent:

(a) Z p(I) = ∅;
(b) either rad(I) = Sn or rad(I) = S>0;
(c) there is a positive integer d such that Sn,d ⊆ I.
Proof It is clear that Z p(I) = p(Za(I \ {0}), where p : An+1 \ {0} → P

n is, as
usual, the natural projection. Hence if (a) holds, then either Za(I) = ∅ or Za(I) =
{0}. From this, and from Corollary 3.1.2, (b) follows. Suppose then (b) holds. If
rad(I) = Sn then I = Sn and (c) holds. If rad(I) = S>0, there are positive integers
i0, . . . , in such that x

i j
j ∈ I for j = 0, . . . , n. If d � i0 + · · · + in then any mono-

mial of degree d in x0, . . . , xn belongs to I, so (c) holds. It is finally clear that (c)
implies (a).

In order to obtain, in the projective case, a result similar to Corollary 3.1.2, one
has to use the Homogeneous Nullstellensatz 2.5.3, which implies the following:

Corollary 3.1.5 If I ⊆ Sn is a homogeneous ideal with Z p(I) 
= ∅, then rad(I) =
Ip(Z p(I)).

From this it follows that the map Ip is a bijection between PV and the set of
radical homogeneous ideals of Sn which are different from the irrelevant ideal S>0.

Exercise 3.1.6 Let f be a non–constant polynomial which has the distinct irreducible factors
f1, . . . , fh . Prove that rad( f ) = ( f1 · · · fh). Hence the ideal of Z = Za( f ) is ( f1 · · · fh). The
same in the projective setting.

Exercise 3.1.7 Let Z ⊆ A
n be a closed set and let Z̄ be its projective closure. Prove that Ip(Z̄) is

the homogeneous ideal generated by β(Ia(Z)). In particular if Z = Za( f ) ⊂ A
n is a hypersurface,

its projective closure Z̄ is the hypersurface with equation β( f ) = 0.

Exercise 3.1.8 Let Z be a subspace of Pn of codimension c < n + 1 and let Z = Z p( f1, . . . , fc)
with f1, . . . , fc independent linear forms. Prove that Ip(Z) = ( f1, . . . , fc). Prove an analogous
result for affine subspaces of An .

3.2 Examples

3.2.1 Maximal Ideals

Let m be a maximal ideal of An . By Proposition 3.1.1, Za(m) is a minimal closed
subset of An , which is not empty by Corollary 3.1.2. Hence Za(m) is a point P =
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(a1, . . . , an). Since m is radical (see Exercise 2.5.5), one has m = Ia(Za(m)) =
Ia({P}) = (x1 − a1, . . . , xn − an). The last equality follows from the fact that, for
every polynomial f ∈ An , one has f (x) = f (a + (x − a)) = f (a) + g(x), where
g(x) ∈ (x1 − a1, . . . , xn − an).

Exercise 3.2.1 Consider the two polynomials

f (x1, x2) = x21 + x22 − 1, g(x1, x2) = x1 − 1.

Prove that Ia(Za( f, g)) 
= ( f, g).

3.2.2 The Twisted Cubic

Let Z ⊂ A
3 be the subset Z = {(t, t2, t3), t ∈ K}, i.e., the image of the map

φ : t ∈ A
1 → (t, t2, t3) ∈ A

3.

This application is clearly a homeomorphism of A1 onto Z . Since Z = Za(x21 −
x2, x31 − x3), Z is a closed subset of A3 that is called the affine twisted cubic. Set
f (x1, x2, x3) = x21 − x2, g(x1, x2, x3) = x31 − x3. One has A3/( f, g) ∼= A1, the iso-
morphism being the following

ϕ : [h(x1, x2, x3)] ∈ A3/( f, g) → h(x, x2, x3) ∈ A1

where we denoted by [h(x1, x2, x3)] the class of h(x1, x2, x3) ∈ A3 in A3/( f, g): the
reader will verify that ϕ is well defined and is indeed an isomorphism (see Exercise
3.2.2). Then the ideal ( f, g) is prime, hence it is radical (see Exercise 2.5.5), and
therefore Ia(Z) = ( f, g).

Consider now the map

ψ : [λ,μ] ∈ P
1 → [λ3, λ2μ, λμ2, μ3] ∈ P

3

which is a homeomorphism of P1 onto its image. If we identify, as usual, A3 with
the open subset U0 of P3 (see Sect. 1.5), we have ψ(P1) = Z ∪ {P}, where P =
[0, 0, 0, 1]. If h ∈ S3 is a homogeneous polynomial such that Z ⊆ Z p(h), one has
h(1, t, t2, t3) = 0 for all t ∈ K, hence one has h(λ3, λ2μ, λμ2, μ3) = 0 for allμ ∈ K

and λ ∈ K \ {0}, thus for all λ ∈ K. Hence Z ∪ {P} ⊆ Z̄ . On the other handψ(P1) =
Z ∪ {P} = Z p( f0, f1, f2), with

f0 = x1x3 − x22 , f1 = x1x2 − x0x3, f2 = x0x2 − x21 ,

is a projective closed subset, that is called the projective twisted cubic. It follows that
ψ(P1) = Z ∪ {P} = Z̄ .
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The equations that define Z̄ are obtained by equating to zero the order two minors
of the matrix

A =
(
x0 x1 x2
x1 x2 x3

)
. (3.1)

One also says that Z̄ is defined by the matrix equation rank(A) < 2.
Note that, though f and g generate Ia(Z), β( f ) and β(g) do not generate Ip(Z̄),

actually Z̄ 
= Z p(β( f ), β(g)). Indeed it is easy to check that Z p(β( f ), β(g)) =
Z̄ ∪ Z p(x0, x1).

More generally, one defines affine twisted cubic [resp. projective twisted cubic]
any image of Z [resp. of Z̄ ] via an affinity [resp. a projectivity].

Exercise 3.2.2 Let f (x1, x2, x3) = x21 − x2, g(x1, x2, x3) = x31 − x3. Prove that the map

ϕ : [h(x1, x2, x3)] ∈ A3/( f, g) → h(x, x2, x3) ∈ A1

is well defined and it is an isomorphism.

Exercise 3.2.3 * Prove that the minors of the matrix A in (3.1) generate the ideal of the projective
twisted cubic.

Exercise 3.2.4 Prove that the (affine or projective) twisted cubic is non–degenerate, namely it is
not contained in any plane (of A3 or P3).

Exercise 3.2.5 Prove that any plane of P3 intersects the twisted cubic in at most three distinct
points.

Exercise 3.2.6 Prove that there is no line in P
3 intersecting the twisted cubic in more than two

distinct points.

Exercise 3.2.7 Prove that an affine twisted cubic of A3 is the set of points of A3 of the form

xi = ai + ai1t + ai2t
2 + ai3t

3, t ∈ K, i = 1, 2, 3,

where the matrix (ai j )i, j=1,2,3 is of maximal rank.

Exercise 3.2.8 Prove that a projective twisted cubic of P3 is the set of points of P3 of the form

xi = ai0λ
3 + ai1λ

2μ + ai2λμ2 + ai3μ
3, [λ,μ] ∈ P

1, i = 0, 1, 2, 3,

where the matrix (ai j )i, j=0,1,2,3 is of maximal rank, defined up to a multiplicative constant.

3.2.3 Cones

Let Z ⊆ P
n be a non–empty closed subset. The subset C(Z) = p−1(Z) ∪ {0} of

A
n+1 is called the affine cone on Z with vertex 0. Note that C(Z) is a closed subset

of An+1. Indeed, if Z = Z p( f1, . . . , fm), with f1, . . . , fm ∈ Sn homogeneous, then
C(Z) = Za( f1, . . . , fm). It is clear that Ip(Z) ⊆ Ia(C(Z)), but since Za(Ip(Z)) =
C(Z) and since Ip(Z) is radical, we actually have Ip(Z) = Ia(C(Z)).
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Now think of An+1 as embedded in P
n+1, so that Pn can be regarded as the

hyperplane at infinity of An+1. Then we can consider the projective closure C(Z),
which is closed inPn+1 and is called the projective cone on Z with vertex 0. Of course
one has C(Z) ∩ P

n = C(Z)∞ = Z . Moreover Ip(C(Z)) = Ip(Z), where the latter
is considered as an ideal of Sn+1.

More generally, any transformed of an affine or projective cone as above via an
affinity or a projectivity respectively, is still called a cone.

Let finally Z be any subset of Pn . Set C(Z) = p−1(Z) ∪ {0}. If C(Z) is closed
in An+1, then Z is closed in Pn . In fact, it is clear that Z = C(Z)∞.

From the above considerations it follows that themap p : An+1 \ {0} → P
n is con-

tinuous, and actually the Zariski topology ofPn is the quotient topology of the Zariski
topology of An+1 \ {0} with respect to the equivalence relation of proportionality.
Exercise 3.2.9 * Consider in Pn a hypersurface V with equation f (x1, . . . , xn−1) = 0 with f not
depending on xn . Prove that it is a cone with vertex P = [0, . . . , 0, 1].
Exercise 3.2.10 * Consider any quadric X in P

n whose matrix A has rank smaller than n + 1.
Prove that X is a cone with vertex any point P = [p] such that p · A = 0.

3.3 Solutions of Some Exercises

3.1.7 If f ∈ Ip(Z̄), one has α( f ) ∈ Ia(Z). On the other hand β(α( f )) divides f .
3.1.8 It suffices to prove that ( f1, . . . , fc) is a radical ideal. Complete f1, . . . , fc to a basis
f1, . . . , fn+1 of Sn,1. Consider the automorphism f : Sn → Sn of a K–algebra, which is obtained
by extending by linearity the automorphism f of S1 such that f (xi ) = fi , for i = 1, . . . , n + 1.
Then f maps the radical ideal (x1, . . . , xc) to ( f1, . . . , fc), and this proves that ( f1, . . . , fc) is
radical.

The affine case is analogous.
3.2.3 What one has to prove is that, for every integer d � 2, the map of K–vector spaces

φd : (g0, g1, g2) ∈ S3,d−2 ⊕ S3,d−2 ⊕ S3,d−2 → g0 f0 + g1 f1 + g2 f2 ∈ Ip(Z̄)d

is surjective.
Let Kd−2 be the kernel of φd : the elements in Kd−2 are called syzygies of degree d − 2 of

( f0, f1, f2). It is clear that a1 = (x0, x1, x2) and a2 = (x1, x2, x3) are syzygies of degree 1. Hence
for every positive integer d we have a linear map

ψd : (a, b) ∈ S3,d−3 ⊕ S3,d−3 → aa1 + ba2 ∈ Kd−2.

Let us prove that ψd is an isomorphism. Let (g0, g1, g2) ∈ Kd−2. Then we have
∣∣∣∣∣∣
g0 g1 g2
x0 x1 x2
x1 x2 x3

∣∣∣∣∣∣ = 0 (3.2)

hence the rows of the determinant appearing in (3.2) are linearly dependent on K(x0, x1, x2, x3).
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Since the rows of A are linearly independent, because f0, f1, f2 are not zero, there are rational
functions a1

a0
, b1
b0

∈ K(x0, x1, x2, x3), with GCD(a0, a1) = GCD(b0, b1) = 1, such that

g0 = a1
a0

x0 + b1
b0

x1 = a1b0x0 + a0b1x1
a0b0

g1 = a1
a0

x1 + b1
b0

x2 = a1b0x1 + a0b1x2
a0b0

g2 = a1
a0

x2 + b1
b0

x3 = a1b0x2 + a0b1x3
a0b0

.

Since the left hand sides are polynomials, then in the right hand sides the numerator is divided by
the denominator. If p is a prime divisor of a0, then p has to divide b0x0, b0x1, b0x2, hence p divides
b0. By iterating this argument and exchanging the roles of a0 and b0, we see that we may assume
that a0 = b0. Hence we have

g0 = a1x0 + b1x1
b0

g1 = a1x1 + b1x2
b0

g2 = a1x2 + b1x3
b0

thus b0 divides
α0 = a1x0 + b1x1

α1 = a1x1 + b1x2

α2 = a1x2 + b1x3.

Then b0 divides
x1α0 − x0α1 = −b1 f2

x2α0 − x0α1 = b1 f1

x2α1 − x1α2 = −b1 f0

and since f0, f1, f2 are irreducible and distinct, we have that b0 divides b1, hence we may assume
that b0 = a0 = 1.

Set now a = a1 and b = b1 and let us prove that (a, b) ∈ S3,d−3 ⊕ S3,d−3. Indeed, if i 
= d − 3
and ai , bi are the homogeneous components of degree i of a and b, from the relations

g0 = ax0 + bx1

g1 = ax1 + bx2

g2 = ax2 + bx3

we get that
ai x0 + bi x1 = 0

ai x1 + bi x2 = 0

ai x2 + bi x3 = 0

which, arguing as above, implies that ai , bi = 0. All this proves the bijectivity of the map ψd . Then
we have

dim(im(ψd )) = 3

(
d + 1

3

)
− 2

(
d

3

)
.

Let us compute the dimension of Ip(Z̄)d . Consider, for every positive integer, theK–linear map

rd : f (x0, x1, x2, x3) ∈ S3,d → f (λ3, λ2μ, λμ2, μ3) ∈ S1,3d
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which is easily proven to be surjective and its kernel is Ip(Z̄)d . One has then

dim(Ip(Z̄)d ) =
(
d + 3

3

)
− (3d + 1) = 3

(
d + 1

3

)
− 2

(
d

3

)

whence the surjectivity of ψd follows.



Chapter 4
Some Topological Properties

4.1 Irreducible Sets

Let X be a topological space. A subset of X is said to be irreducible if it cannot
be expressed as the union of two proper closed subsets. A subset of X which is not
irreucible is said to be reducible. The empty set is considered to be reducile.

Example 4.1.1 Every non–empty subsetU of P
1 is irreducible: indeed,U is infinite

and the only closed subsets ofP1 are finite. The only irreducible proper closed subsets
of P

1 are the points. The same for A
1.

Example 4.1.2 If Z1 ⊆ A
r and Z2 ⊆ A

s are closed irreducible subsets, then Z1 ×
Z2 is closed (see Sect. 1.6.6) and irreducible.

Indeed, suppose we have Z1 × Z2 = W1 ∪ W2, with W1, W2 closed subsets. For
every point P ∈ Z1 we have that {P} × Z2 is homeomorphic to Z2 (see Exercise
1.6.35), so it is closed and irreducible. Then either {P} × Z2 ⊆ W1 or {P} × Z2 ⊆
W2. Let us set

Z1,i = {P ∈ Z1 : {P} × Z2 ⊆ Wi }, for i = 1, 2,

and let us prove that Z1,1, Z1,2 are closed subsets of Z1. For every point Q ∈ Z2, set

Zi
1(Q) = {P ∈ Z1 : (P, Q) ∈ Wi }, for i = 1, 2.

We have
(Z1 × {Q}) ∩ Wi = Zi

1(Q) × {Q}, for i = 1, 2,

hence Zi
1(Q) is closed for i = 1, 2. Since

Z1,i =
⋂

Q∈Z2

Zi
1(Q), for i = 1, 2,
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we have that Z1,i is closed, for i = 1, 2. Since Z1 is irreducible, we have either
Z1 = Z1,1 or Z1 = Z1,2, and therefore, either Z1 × Z2 = W1 or Z1 × Z2 = W2.

Proposition 4.1.3 Let X be a topological space and let Y be a subset of X. Then:

(a) Y is irreducible if and only if for every pair of distinct points P1, P2 of Y , there
is an irreducible subset of Y containing P1 and P2;

(b) if Y is irreducible and U is a non–empty open subset of Y , then U is dense in Y ;
(c) Y is irreducible if and only if Ȳ is irreducible;
(d) Y is irreducible if and only if every non–empty open subset of Y is irreducible.

Proof Part (a) is obvious and can be left to the reader.
Let us prove (b). If U were not dense, we would have Y = Ū ∪ (Y − U ), with Ū

and Y − U proper closed subsets of Y , a contradiction.
Let us prove (c). Suppose first Y irreducible. Assume Ȳ = Y1 ∪ Y2, with Y1,Y2

closed subsets. Since Y = (Y ∩ Y1) ∪ (Y ∩ Y2), we must have either Y ⊆ Y1 or Y ⊆
Y2 and therefore either Ȳ ⊆ Y1 or Ȳ ⊆ Y2. Suppose, conversely, that Ȳ is irreducible,
and assume Y = Y1 ∪ Y2, with Y1,Y2 proper closed subsets of Y . Then there are
closed subsets X1, X2 of X such that Yi = Y ∩ Xi , for i = 1, 2. Then Y ⊆ X1 ∪ X2.
Thus Ȳ ⊆ X1 ∪ X2 = X1 ∪ X2. This implies that either Ȳ ⊆ X1 or Ȳ ⊆ X2, hence
either Y ⊆ X1 or Y ⊆ X2 and therefore either Y = Y1 or Y = Y2.

Finally, let us prove (d). One implication is trivial. As for the other, assume Y is
irreducible and let U ⊆ Y be a non–empty open subset. Let Y1,Y2 closed subsets of
Y such thatU = (U ∩ Y1) ∪ (U ∩ Y2). Then we have Y = (Y \ U ) ∪ (Y1 ∪ Y2) and,
by the irreducibility of Y , we have either Y = Y1 or Y = Y2, hence either U ⊆ Y1 or
U ⊆ Y2. �

Example 4.1.4 Every non–empty open subset of P
n is irreducible. By (d) of Propo-

sition 4.1.3, it suffices to prove that P
n is irreducible. To prove this apply (a) of

Proposition 4.1.3: given two distinct points P1, P2 of P
n , there is the line P1 ∨ P2,

homeomorphic to P
1 hence irreducible by Example 4.1.1, containing P1 and P2.

The following proposition gives an irreducibility criterion for affine or projective
closed subsets:

Proposition 4.1.5 One has:

(a) Z ⊆ A
n is a closed irreducible non–empty subset if and only if Ia(Z) is a prime

proper ideal, i.e., if and only if A(Z) is a domain;
(b) Z ⊆ P

n is a closed irreducible non–empty subset if and only if Ip(Z) is a prime
proper ideal, i.e., if and only if S(Z) is a domain.

Proof We prove only (a), the proof of (b) being analogous. Let Z ⊆ A
n be a closed

irreducible non–empty subset. If f g ∈ Ia(Z), then ( f g) ⊆ Ia(Z) and therefore Z =
Za(Ia(Z)) ⊆ Za( f g) = Za( f ) ∪ Za(g), hence either Z ⊆ Za( f ) or Z ⊆ Za(g),
thus either f ∈ Ia(Z) or g ∈ Ia(Z).

Conversely, if Ia(Z) is a prime proper ideal and Z = Z1 ∪ Z2 with Z1, Z2 closed
subsets, then Ia(Z) = Ia(Z1) ∩ Ia(Z2), so either Ia(Z) = Ia(Z1) or Ia(Z) =
Ia(Z2), hence either Z = Z1 or Z = Z2. �
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In what follows we will call quasi–projective variety (defined over the fieldK), or
simply variety, every locally closed irreducible subset of a projective space, i.e., an
irreducible set which is the intersection of a closed and an open subset of a projective
space. We will call projective variety an irreducible closed subset of a projective
space, affine variety an irreducible closed subset of an affine space.

Exercise 4.1.6 Prove that X is irreducible if and only if there is no expression of the sortU1 ∩ U2 =
∅, with U1,U2 open, non–empty subsets of X .

Exercise 4.1.7 * Let X, Y be topological spaces, assume X is irreducible and that f : X → Y is
a continuous surjective map. Prove that Y is irreducible.

Exercise 4.1.8 Prove that the projective [resp. affine] subspaces of a projective space [resp. of an
affine space] are irreducible.

Exercise 4.1.9 Prove that an affine or projective twisted cubic is irreducible.

Exercise 4.1.10 Let Z ⊆ P
n be a closed set. Prove that Z is irreducible if and only if C(Z) [resp.

C(Z)] is irreducible.

Exercise 4.1.11 Let Z ⊆ P
n be a hypersurface ofAn or ofPn , with reduced equation f1 · · · fh = 0.

Prove that Z is irreducible if and only if h = 1. The hypersurfaces with equations fi = 0, for
i = 1, . . . , h, are called the irreducible components of Z .

4.2 Noetherian Spaces

A topological space X is called a noetherian space if it verifies the condition of
descending chains of closed subsets, i.e., for every chain of closed subsets

X1 ⊇ X2 ⊇ . . .

there is an integer r such that Xn = Xr for all n � r .
The following proposition relates the notion of irreducibility with noetherianity,

and extends to any noetherian space the decomposition in irreducible components
that we saw for affine and projective hypersurfaces in Exercise 4.1.11:

Theorem 4.2.1 Let X be a noetherian topological space and let Y be a non–empty
closed subset of X. Then Y can be expressed as a finite union Y = Y1 ∪ . . . ∪ Yh

of closed irreducible subsets. This decomposition is unique under the condition of
being irredundant, i.e., one has Y j � Yi , for every i 
= j and i, j ∈ {1, . . . , h}. In
this case Y1, . . . ,Yh are called the irreducible components of Y .

Proof First we prove the existence of the decomposition of Y . If the assertion were
false, then Y would be reducible and therefore we would have Y = Y1 ∪ Y ′

1. with
Y1,Y ′

1 proper closed subsets of Y and the assertion would be false either for Y1 or
for Y ′

1. Let us suppose it would be false for Y1. By repeating the argument we would
construct a sequence of closed subsetsY � Y1 � Y2 � . . ., and this is in contradiction
with the noetherianity of X .
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Next let us prove the uniqueness. Let Y = ⋃h
i=1 Yi and Y = ⋃k

j=1 Y ′
j be two

irredundant decompositions. One has

Yi = Yi ∩ Y =
k⋃

j=1

(Y ′
j ∩ Yi ),

hence there exists a j ∈ {1, . . . , k} such that Yi ⊆ Y ′
j . Similarly there exists a i ′ ∈

{1, . . . , h} such that Y ′
j ⊆ Yi ′ , hence Yi ⊆ Y j ⊆ Yi ′ . Then the irredundancy of Y =

⋃h
i=1 Yi implies i = i ′ and Yi = Y ′

j . This proves the assertion. �

Exercise 4.2.2 Prove that X is noetherian if and only if it verifies the condition of ascending open
subsets.

Exercise 4.2.3 Prove that affine and projective spaces are noetherian.

Exercise 4.2.4 Prove that any subspace of a noetherian space is noetherian.

Exercise 4.2.5 Prove that any noetherian space is compact.

Exercise 4.2.6 Prove that the irreducible components of Z p(x21 − x0x2, x31 − x0x3) are the skew
cubic and the line x0 = x1 = 0 (see Sect. 3.2.2). This example shows that, in general, the intersection
of two varieties is not a variety. Indeed, the two polynomials x21 − x0x2, x31 − x0x3 are irreducible.

4.3 Topological Dimension

Let X be a topological space. We define the topological dimension, denoted by
dimtop(X), of X as the supremum of the integers n such that there is a chain

Z0 � Z1 � . . . � Zn (4.1)

of distinct closed irreducible subsets of X . It is clear that if X is noetherian, dimtop(X),
is themaximumof the topological dimensionof its irreducible components.Anoethe-
rian space X is said to be pure if all of its irreducible components have the same
topological dimension. It is also clear that if X is irreducible and noetherian and
every point of X is closed then:

(a) dimtop(X) = 0 if and only if X consists of only one point;
(b) dimtop(X) = 1 if and only if the proper closed subsets are its finite subsets.

We will call curve any pure closed algebraic set of topological dimension 1. For
example the twisted cubics are irreducible curves.

Proposition 4.3.1 Let X be a topological space and Y a subset of X. Then:

(a) dimtop(Y ) � dimtop(X); hence if dimtop(X) is finite, the same happens for
dimtop(Y ), and dimtop(X) − dimtop(Y ) � 0 is called the (topological) codimen-
sion of Y in X and it is denoted by codimtop,X(Y );
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(b) if {Ui }i∈I is an open covering of X, then dimtop(X) = supi∈I {dimtop(Ui )};
(c) if X is irreducible, dimtop(X) is finite, Y is closed in X and codimtop,X(Y ) = 0,

then X = Y .

Proof Part (a) can be left as an exercise for the reader (look at Exercise 4.2.4: with
the notation of its solution, note that if Yi is irreducible, we can assume that also Xi

is irreducible, for i = 1, 2).
Let us prove (b). It follows from (a) and from the fact that if (4.1) is a chain

of distinct irreducible closed subsets of X and if P ∈ Z0, there is an i ∈ I such
that P ∈ Ui . Then for all j ∈ {0, . . . , n}, one has Ui ∩ Z j 
= ∅. Moreover by the
irreducibility of Z j+1, one has Ui ∩ Z j � Ui ∩ Z j+1, because Ui ∩ Z j = Z j .

Let us prove (c). If (4.1) is a maximal chain of distinct irreducible closed subsets
of Y , it is also a maximal chain of distinct irreducible closed subsets of X . Then
Zn = X ⊆ Y and Y = X . �

Let A be a ring andI ⊆ A a prime ideal.We call height ofI, denoted by height(I ),
the supremum of the integers n such that there is a chain

I0 � I1 � . . . � In = I

of distinct prime ideals of A. One calls Krull dimension of A, denoted by dimK (A),
the supremum of heights of its prime ideals. From Propositions 3.1.1 and 4.1.5 it
follows that if Z is an affine closed subset one has dimtop(Z) = dimK (A(Z)).

Exercise 4.3.2 Prove that affine and projective lines have topological dimension 1.

Exercise 4.3.3 Prove that (affine or projective) plane curves have topological dimension 1.

Exercise 4.3.4 Prove that (affine or projective) planes have topological dimension 2.

Exercise 4.3.5 Prove that dimtop(A
n) = dimtop(P

n) and that dimtop(A
n) � n.

Exercise 4.3.6 Prove that any bijection between two curves is a homeomorphism.

4.4 Solutions of Some Exercises

4.2.3 By Proposition 3.1.1, the noetherianity of affine and projective spaces is equivalent to the
noetherianity of the ring of polynomials.
4.2.4 It follows from the following simple remark. Let X be a topological space and Y a subset
of X . Let Y1 � Y2 be closed subsets of Y . Then there are closed subsets X1 � X2 of X , such that
Yi = Y ∩ Xi , for i = 1, 2.
4.2.5 Let {Ui }i∈I be an open covering of X and suppose we cannot extract from it a finite covering.
Then there would be a sequence {in}n∈N of elements of I and a sequence {Pn}n∈N of points of X
such that Pn /∈ ⋃n

h=1 Uih , whereas Pn−1 ∈ ⋃n
h=1 Uih . This contradicts the condition of ascending

chains of open subsets.
4.3.4 Apply Corollary 2.2.2.

4.3.5Toprove that dimtop(A
n) = dimtop(P

n) applyProposition4.3.1, (b). Toprove that dimtop(A
n) �

n, note that there is a chain of length n + 1 of distinct closed irreducible subsets of A
n formed by

affine subspaces.



Chapter 5
Regular and Rational Functions

5.1 Regular Functions

Let V ⊆ P
n be a locally closed subset. Let f : V → K be a function and let P be a

point of V . We will say that f is regular at P if there is an open neighborhood U of
P in V and there are homogeneous polynomials of the same degree g, h ∈ Sn , with
Z p(h) ∩ U = ∅, such that the restriction of f to U coincides with the restriction of
g
h to U (note that g

h , as a function of P
n \ Z p(h) to K, is well defined). We will say

that f is regular in V if it is regular at any point of V . Note that any set V which is
locally closed in A

n is also locally closed in P
n , if we consider A

n as identified with
the open set U0 of P

n . The reader will verify that in this case a function f : V → K

is regular at P ∈ V if and only if there is an open neighborhood U of P in V and
there are polynomials g, h ∈ An , with Za(h) ∩ U = ∅ such that f coincides with the
restriction of g

h to U (see Exercise5.1.2). Note that constant functions are regular.
Let V ⊆ P

n be a locally closed subset and let U be a non–empty open subset of
V . We will denote byOV (U ) (or simply byO(U ) if V is intended), the set of regular
functions on U . If f, g ∈ O(U ), the functions

f + g : P ∈ U → f (P) + g(P) ∈ K, f g : P ∈ U → f (P) · g(P) ∈ K,

are regular. Then O(U ), with the above two operations, is a K–algebra which is
called the algebra of regular functions in U . Let U ′ ⊆ U be two open subsets of V .
There is a natural map

rU
U ′ : f ∈ O(U ) → f|U ′ ∈ O(U ′),

where f|U ′ is the restriction of f to U ′. This map is called the restriction map and it
is a homomorphism of K–algebras. If f ∈ O(U ) we will write ZU ( f ) (or Z( f ) if
U is intended) to denote f −1(0), and we will call ZU ( f ) the zero locus of f in U .
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Proposition 5.1.1 One has:

(a) if V ⊆ P
n is a locally closed subset and f ∈ O(V ), then f is continuous in the

Zariski topologies of V and of K = A
1;

(b) if V is irreducible and f, g ∈ O(V ) are such that there is a non–empty open
subset of V such that f|U = g|U , then f = g.

Proof To prove (a) it suffices to prove that for all a ∈ K, f −1(a) = ZV ( f − a) is
closed in V . This can be verified locally (see Exercise5.1.3). Let P ∈ V and let U
be an open neighborhood of P in V such that f − a = g

h on U , with g, h ∈ Sn of
the same degree and Z p(h) ∩ U = ∅. Then ZV ( f − a) ∩ U = Z p(g) ∩ U , which is
closed in U .

As for (b), note that, by part (a), ZV ( f − g) is closed and it contains the open
dense subset U (see Proposition 4.1.3, (b)). �

ByProposition5.1.1, if f ∈ O(V ) then ZV ( f ) is closed andUV ( f ) = Z \ ZV ( f )
(also denoted byU ( f ) ifV is intended) is an open subset,which is called theprincipal
open set associated to f . In U ( f ) the function 1

f is well defined and regular.

Exercise 5.1.2 Let V be a locally closed subset of A
n . Prove that a function f : V → K is regular

in P ∈ V if and only if there is an open neighborhood U of P in V and there are polynomials
g, h ∈ An , with Za(h) ∩ U = ∅ such that f coincides with the restriction of g

h to U .

Exercise 5.1.3 * Let X be a topological space and Y ⊆ X . Prove that Y is closed if and only if for
any point P ∈ X there is an open neighborhood U of P in X such that U ∩ Y is closed in U .

Exercise 5.1.4 Let V be a quasi–projective variety and W a subvariety of V . Prove that if f ∈
O(V ), then f|W ∈ O(W ). Prove that the map f ∈ O(V ) → f|W ∈ O(W ) is a homomorphism of
K–algebras called restriction map.

Exercise 5.1.5 Let V be a quasi–projective variety. Prove that O(V ) is a domain.

Exercise 5.1.6 * Let V be a quasi–projective variety. Prove that the principal open subsets of V
are a basis for the Zariski topology of V .

5.2 Rational Functions

Let V be a quasi–projective variety. Let us consider the setK(V ) formed by all pairs
(U, f ) where U is a non–empty open subset of V and f ∈ O(U ). Let us define in
K(V ) the following relation R

(U, f )R(U ′, f ′) if and only if f|U∩U ′ = f ′
|U∩U ′ .

Note that, since V is irreducible, U ∩ U ′ �= ∅. The relation R is an equivalence
relation (see Exercise5.2.1). We will denote by K (V ) the quotient setK(V )/R. Any
element of K (V ) is called a rational function on V . TheR–equivalence class of the
pair (U, f ) is denoted by [U, f ], or with f if U is intended.
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Now we will endow K (V ) with the structure of a field, which will be called the
field of rational functions of V . Let [U, f ] and [U ′, f ′] be elements of K (V ). We
define

[U, f ] + [U ′, f ′] = [U ∩ U ′, fU∩U ′ + f ′
U∩U ′ ], [U, f ] · [U ′, f ′] = [U ∩ U ′, fU∩U ′ · f ′

U∩U ′ ].

By Proposition5.1.1, (b), these definitions are well posed and K (V )(+, ·) is an
extension of K. The immersion of K in K (V ) is given by

a ∈ K → [V, a] ∈ K (V ).

The inverse of [U, f ] �= 0 is given by [U, f ]−1 = [U \ ZU ( f ), 1
f ]. Note that for

every non–empty open subset U of V , K (V ) is an extension of the algebra O(U ),
where the immersion of O(U ) in K (V ) is given by

rU : f ∈ O(U ) → [U, f ] ∈ K(V ).

Exercise 5.2.1 * Prove that the relation R in K(V ) is an equivalence relation.

Exercise 5.2.2 * Let V be a quasi–projective variety and let [U, f ] be a rational function on V .
Prove that there exists a pair (Ũ , f̃ ) ∈ K(V ) such that [Ũ , f̃ ] = [U, f ] and for each pair (U ′, f ′) ∈
K(V ) such that [U ′, f ′] = [U, f ], one has U ′ ⊆ Ũ . The open set Ũ is called the definition set of
[U, f ].

5.3 Local Rings

In this section we introduce the concept of a local ring, which will play an important
role in the sequel.

A ring A is called a local ring if it has a unique maximal ideal m, and we will
express this by saying that (A,m) is a local ring. The ring A/m has no non–trivial
ideals, hence it is a field, called the residue field of (A,m).

Proposition 5.3.1 Let A be a ring and m ⊂ A be an ideal. Then (A,m) is a local
ring if and only if A \ m coincides with the set of invertible elements in A.

Proof Suppose (A,m) is local. Then if x ∈ A is invertible, then (x) = A and there-
fore x /∈ m. On the other hand, if x /∈ m, then (x) is not contained inm hence (x) = A
and x is invertible.

Conversely, assume that A \ m coincides with the set of invertible elements in A.
If I � A is an ideal of A, no element of I is invertible, hence I ⊆ m, hencem is the
maximal ideal of A. �

There is a standard construction, called localization, producing local rings starting
with any ring.
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Let A be a ring and letS be a subset of A which is multiplicatively closed, i.e., if
s, t ∈ S, then st ∈ S. Moreover assume that S contains 1 and does not contain 0.
In A × S define the following relation:

(a, s) ≡ (b, t) if and only if there is a u ∈ S such that u(at − bs) = 0.

This is an equivalence relation. The equivalence class of (a, s) is usually denoted
by a

s and the set A × S/ ≡ is denoted by AS. In AS one introduces the following
operations

a

s
+ b

t
= at + bs

st
,

a

s
· b

t
= ab

st
,

which are easily seen to be well defined and AS, with these two operations, is a
unitary, commutative ring as well as A. The ring AS is called the localization of A
with respect to S.

There is a natural homomorphism

j : a ∈ A → a

1
∈ AS

which in general is not injective, but it is so if A is a domain. In this case we will
identify A with j (A) and AS will be identified with a subring of the quotient field
Q(A) of A.

If A is a graded ring and S is, as above, a multiplicatively closed set such that
S contains 1 and does not contain 0, then we will denote by A(S) the subset of AS

consisting of fractions a
s such that a, s are homogeneous of the same degree. Then

A(S) is a subring of AS, called the homogeneous localization of A with respect toS.

Example 5.3.2 Let A be a ring and I a proper prime ideal of A. ThenS = A \ I is
multiplicatively closed, contains 1 and does not contain 0. Then we can consider the
localization AS, which is also denoted by AI and it is called the localization of A
with respect to I. Considerm the ideal generated by j (I) in AI . It is clear that a

s /∈ m
if and only if a /∈ I, thus if and only if s

a = ( a
s )

−1 ∈ AI . It follows that (AI,m) is
a local ring (see Proposition5.3.1). The residue field of (AI,m) is Q(A/I).

In the above setting, if A is graded, we can consider A(S), which is also denoted
by A(I), and it is called the homogeneous localization of A with respect to I. It is
clear that A(I) is local with maximal ideal m ∩ A(I).

If A is a domain and I = (0), one has AI = Q(A). If A is graded, A(I) is a
subfield of Q(A) which is denoted by Q(A)0.

Example 5.3.3 Let A be a ring and f ∈ A a non–nilpotent element, i.e., f is such
that for all positive integers i , one has f i �= 0. ThenS = { f i }i∈N is multiplicatively
closed, contains 1 = f 0 and does not contain 0. We can consider AS, which is also
denoted by A f . Note that

A f = A
[ 1

f

]
= A[x]/( f x − 1).
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If A is graded and f is homogeneous, we write A( f ) instead of A(S).

If I is an ideal of A, we will denote by Ie := IAS the ideal generated by j (I)
in AS, i.e., the ideal formed by all fractions of the form a

s with a ∈ I. It is called
the extension of I to AS. Since I = j−1( j (A) ∩ Ie), it is clear that all ideals in AS

are extended ideals. Moreover it is easy to see that Ie is a proper ideal of AS if and
only if I ∩ S = ∅ (see Exercise5.3.7).

Let now J be an ideal of AS. We set

J c =
{

a ∈ A : a

s
∈ I for some s ∈ S

}
.

This is an ideal of A, called the contraction of J to A. It is clear that:

(a) for every ideal I of A one has I ⊆ (Ie)c;
(b) for every ideal J of AS one has J = (J c)e.

Proposition 5.3.4 Let A be a ring and let S be a multiplicatively closed subset of
A containing 1 and not containing 0. One has:

(a) if I is a prime ideal of A such that I ∩ S = ∅, then Ie is a prime ideal of AS;
(b) if I is a prime ideal of A such that I ∩ S = ∅, then (Ie)c = I;
(c) there is a 1:1 correspondence between prime ideals of AS and prime ideals of

A with empty intersection with S, given by contraction and extension of ideals.

Proof Let us prove (a). If a
s · b

t = ab
st ∈ Ie, then there is u ∈ S such that uab ∈ I.

Since u /∈ I and I is prime, one has ab ∈ I. Since I is prime, we conclude that
either a

s or b
t is in Ie, proving that Ie is prime.

As for (b), if b ∈ (Ie)c, there are a ∈ I, s, t ∈ S, such that a
s = b

t . Then there
is u ∈ S such that uta = usb. Since uta ∈ I and us ∈ S is not in I, then b ∈ I,
proving the assertion.

Finally, it is clear that if J is a prime ideal of AS, then J c is a prime ideal of A.
Whence (c) follows, by taking into account (a) and (b). �

Exercise 5.3.5 * Prove that the relation ≡ in A × S is an equivalence relation.

Exercise 5.3.6 * Prove that the operations +, · in AS are well defined and AS, with these two
operations, is a unitary, commutative ring.

Exercise 5.3.7 Prove that Ie is a proper ideal of AS if and only if I ∩ S = ∅.
Exercise 5.3.8 Prove that:

(a) for every ideal I of A one has I ⊆ (Ie)c;
(b) for every ideal J of AS one has J = (J c)e.

Exercise 5.3.9 Let A be a ring and I a prime ideal of A. Prove that extension and contraction
provide a 1:1 correspondence between the prime ideals of AI and the prime ideals of A contained
in I.



58 5 Regular and Rational Functions

5.4 Integral Elements over a Ring

Let A be a domain and B a domain containing A. An element x ∈ B is said to be
integral on A if x is a root of a monic polynomial with coefficients in A, i.e., if there
are elements a1, . . . , an ∈ A such that

xn + a1xn−1 + · · · + an = 0.

Lemma 5.4.1 The following are equivalent:

(a) x ∈ B is integral on A;
(b) A[x] is a finitely generated A–module.

Proof It is clear that (a) implies (b). Conversely, assume that A[x] is generated
by y1, . . . , yn as an A–module. Then we have xyi = ∑n

j=1 ai j y j , with ai j ∈ A and
i = 1, . . . , n. Hence the homogenous linear system

(a11 − x)x1 + a12x2 + · · · + a1n xn = 0

. . .

an1x1 + an2x2 + · · · + (ann − x)xn = 0

in x1, . . . , xn with coefficients in B has some non–trivial solution. Thus the deter-
minant of the matrix of the system is zero, which implies that x is integral
on A. �

If x, y ∈ B are integral on A, then A[x, y] is a finitely generated A[x]–module,
which in turn is a finitely generated A–module. Hence A[x, y] is a finitely gen-
erated A–module and A[x ± y] and A[xy] are contained in A[x, y]. By applying
Exercise5.4.5, one sees that x ± y and xy are integral on A. Hence the set of ele-
ments of B which are integral on A is a subring of B (which contains A), that is
called the integral closure of A in B. The integral closure of A in Q(A) is called the
integral closure of A and A is called integrally closed if it coincides with its integral
closure.

Exercise 5.4.2 Let k be a field and let a ∈ k. Prove that the ring k[x](x−a) is integrally closed.

Exercise 5.4.3 * Let A be a UFD. Prove that A is integrally closed.

Exercise 5.4.4 *Let A be a ring, M a finitely generated A–module,I an ideal of A andφ : M → M
an endomorphism of A–modules such that φ(M) ⊆ IM . Prove that φ verifies an equation of the
form

φn + a1φ
n−1 + · · · + an = 0, with a1, . . . , an ∈ I.

Exercise 5.4.5 * Let A be a ring. An A–module M is said to be faithful if Ann(M) = (0), i.e., if
for any a ∈ A such that aM = (0), one has a = 0.

Let A, B be domains, with A ⊆ B. Prove that the following propositions are equivalent:

(a) x ∈ B is integral over A;
(b) A[x] is contained in a subring C of B such that C is a finitely generated A–module;
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(c) there is a faithful A[x]–module M which is finitely generated as an A–module.

Exercise 5.4.6 * Let A, B be domains, with A ⊆ B. Prove that if B is a finitely generated as an
A–module, then any element x ∈ B is integral over A.

Exercise 5.4.7 * Let A, B be finitely generated K–algebras, with A ⊆ B and B integral over A.
Prove that B is finitely generated as an A–module.

Exercise 5.4.8 * Let A ⊆ B ⊆ C be noetherian domains, and assume that B is integral over B and
C integral over B. Prove that C is integral over A. Deduce that if A ⊆ B are domains and C is the
integral closure of A in B, then C is integrally closed in B.

5.5 Subvarieties and Their Local Rings

Let V be a quasi–projective variety and let W be an irreducible, locally closed subset
of V . Then W , as well as V , is a quasi–projective variety, that wewill call a subvariety
of V . Given a rational function [U, f ] ∈ K (V ), we will say that it is defined on
W , if there is (U ′, f ′) ∈ K(V ) such that (U ′, f ′)R(U, f ) and U ′ ∩ W �= ∅. Then
[U ′ ∩ W, f ′

|U ′∩W ] is a rational function on W that is uniquely determined by [U, f ]
(see Exercise5.5.4) and it is called the restriction of [U, f ] to W .

We will denote byOV,W the set of rational functions on V that are defined on W .
Note that OV,V = K (V ). The irreducibility of W implies that OV,W is a subring of
K (V ). Moreover O(V ) is a subring of OV,W . Let us consider the subset mV,W of
OV,W (also denoted bymW if V is intended) formed by the rational functions whose
restrictions to W are zero. It is clear that mV,W is an ideal of OV,W .

Proposition 5.5.1 Let V be a quasi projective variety and let W be a subvariety of
V . Then (OV,W ,mV,W ) is a local ring with residue field K (W ).

Proof Let [U, f ] ∈ OV,W \ mV,W , with U ∩ W �= ∅. Then ZU ( f ) ∩ W is a proper
closed subset ofU ∩ W . SetU ′ = U \ ZU ( f ) and consider inU ′ the function, which
is there well defined, f ′ = 1

f . It is clear that f ′ ∈ O(U ′) and that

U ′ ∩ W = (U \ ZU ( f )) ∩ W = (U ∩ W ) \ (ZU ( f ) ∩ W ) �= ∅,

so that [U, f ]−1 = [U ′, f ′] ∈ OV,W , i.e., [U, f ] is invertible. By Proposition5.3.1,
this proves that (OV,W ,mV,W ) is a local ring.

Let us consider the residue field KV,W of OV,W , and consider the map

φV,W : [U, f ] + mV,W ∈ KV,W → [U ∩ W, f|U∩W ] ∈ K (W ).

It is clear that this map is well defined and it is injective. Let us prove it is surjective.
Let [U ′, f ′] ∈ K (W ) and let P ∈ U ′. Then there is an open neighborhoodU ′′ of P in
U ′, such that in U ′′ one has f = g

h with g, h homogeneous polynomials of the same

degree and h non–zero onU ′′. Let Ũ be an open subset of P
n such that Ũ ∩ W = U ′′
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and Ũ ∩ Z p(h) = ∅. Let us set U = Ũ ∩ V which is not empty, and in U consider
the regular function f = g

h . It is clear that φV,W ([U, f ] + mV,W ) = [U ′, f ′]. This
proves the assertion. �

The local ring (OV,W ,mV,W ) is called the local ring of W in V .
Let V and W be as above, and let U be an open subset of V such that W ′ :=

U ∩ W �= ∅. Then it makes sense to consider the local ring OU,W ′ .

Lemma 5.5.2 In the above setting, one has OV,W
∼= OU,W ′ . In particular K (V ) ∼=

K (U ).

Proof If [U ′, f ′] ∈ OU,W ′ , then [U ′, f ′] can be also considered as an element of
OV,W , hence we have an injective homomorphism

[U ′, f ′] ∈ OU,W ′ → [U ′, f ′] ∈ OV,W .

It is also surjective. In fact, if [U ′′, f ′′] ∈ OV,W , it comes from [U ∩ U ′′, f ′′
|U∩U ′′ ] ∈

OU,W ′ . �

Before proceeding, we introduce a notation which will be useful in the sequel.
If V ⊆ A

n is an affine variety, we will abuse notation and we will still denote by
x1, . . . , xn the images in A(V ) of x1, . . . , xn via the canonical epimorphism An →
A(V ). Then A(V ) is generated, as a K–algebra, by x1, . . . , xn . Similarly, if V ⊆ P

n

is a projective variety, we will denote by x0, . . . , xn the images in S(V ) of x0, . . . , xn

via the canonical epimorphism Sn → S(V ). Then S(V ) = ⊕
d∈N S(V )d and S(V )d

is generated, as a K–vector space, by the monomials of degree d in x0, . . . , xn . So,
if f (x1, . . . , xn) ∈ An , its image in A(V )will still be denoted by f (x1, . . . , xn), and
similarly in the projective case.

We can now prove the basic:

Theorem 5.5.3 Let V ⊂ A
n be an affine variety. Then:

(a) O(V ) = A(V );
(b) if W is a subvariety of V , then

IW (V ) = { f ∈ O(V ) : W ⊆ ZV ( f )}

is a prime ideal of O(V ) and every prime ideal of O(V ) is obtained in this way;
moreover IW (V ) is maximal if and only if W is a point;

(c) if W is a subvariety of V , then OV,W = O(V )IW (V ); in particular K (V ) =
Q(A(V )).

If V ⊆ P
n, then:

(d) O(V ) = K;
(e) if W is a subvariety of V and Ip,W (V ) is the image ideal of Ip(W ) via the

canonical epimorphism π : Sn → S(V ), then Ip,W (V ) is a homogeneous prime
ideal of S(V ) and every homogeneous non–irrelevant prime ideal of S(V ) is
obtained in this way; moreover Ip,W (V ) is maximal if and only if W is a point;
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(f) OV,W = S(V )(Ip,W (V )).

Proof Every polynomial f ∈ An defines a regular function on V , so there is a natu-
ral homomorphism An → O(V ), whose kernel is Ia(V ). Hence there is an injective
homomorphism α : A(V ) → O(V ). From Sect. 3 we know that there is a 1:1 corre-
spondence betweenmaximal ideals of A(V ) and points ofV . Precisely, by identifying
elements of A(V )with regular functions via α, the ideal corresponding to a point P ,
is mP = { f ∈ A(V ) : f (P) = 0}. Note now that there is a natural homomorphism

αP : A(V )mP → OV,P

defined in the following way. If f
g

∈ A(V )mP , let U be the principal open neighbor-
hood of P in V associated to g. Then we set

αP

(
f

g

)
=

[
U,

f

g

]
,

where f, g are considered as polynomials in An . Since α is injective, then also αP is
injective. Moreover αP is also surjective, because every regular function is locally
of the form f

g
, with f, g polynomials. Hence we have A(V )mP

∼= OV,P . Note now
that O(V ) ⊆ ⋂

P∈V OV,P , and this implies that

A(V ) ⊆ O(V ) ⊆
⋂
P∈V

OV,P =
⋂
m

A(V )m (5.1)

where the last intersection is over all maximal ideals of A(V ). Now the rightmost
and leftmost terms in (5.1) are equal (see Exercise5.5.9). Then (a) follows.

Part (b) follows by the results of Sect. 3. Part (c) has been proved if W is a point.
The general case is completely analogous.

Next let us move to the projective case. Let i ∈ {0, . . . , n} be such that Vi =
V ∩ Ui �= ∅ (notation as in Sect. 1.5). Let us start by proving that A(Vi ) ∼= S(V )(xi ).
Let us assume, to fix the ideas, that i = 0, and consider the homomorphism

φ : f (x1, . . . , xn) ∈ An → f
( x1

x0
, . . . ,

xn

x0

)
∈ (Sn)(x0).

It is clear that φ is an isomorphism that sends Ia(V0) to Ip(V )(Sn)(x0), hence, passing
to the quotient, φ induces an isomorphism φ̄ : A(V0) → S(V )(x0).

Next let W be a closed subvariety of V and let us choose an i ∈ {0, . . . , n} such
that Wi = W ∩ Ui �= ∅. Assume again i = 0. ThenOV,W

∼= OV0,W0 by Lemma5.5.2.
Moreover, by part (c) we haveOV0,W0

∼= O(V0)IW0 (V0). Also A(V0) = O(V0), by part
(a) and IW0(V0) corresponds to the ideal Ia,W0(V0) of A(V0), which is the image of
Ia(W0) via the canonical epimorphism of An to A(V0). Finally φ̄ maps Ia,W0(V0) to
Ip,W (Sn)(x0). In conclusion
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OV,W
∼= OV0,W0

∼= O(V0)IW0 (V0)
∼= A(V0)Ia,W0 (V0)

∼= (
(Sn)(x0)

)
Ip,W (V )

,

and, since x0 /∈ Ip,W (V ), one has

(
(Sn)(x0)

)
Ip,W (V )

= (Sn)(Ip,W (V )),

proving (f). Part (e) is an immediate consequence of the results on Sect. 3.
Finally we are left to prove (d). Let f ∈ O(V ). For every i ∈ {0, . . . , n} such that

Vi �= ∅, we have fi := f|Vi ∈ O(Vi ) ∼= A(Vi ) ∼= S(V )(xi ). Hence fi = gi

x
mi
i
, where

gi ∈ S(V ) is homogeneous of degree mi � 0. Let us look at O(V ), K (V ), S(V ) as
subrings of Q(S(V )). There one has f = fi and xmi

i f = xmi
i fi ∈ S(V )mi . Such a

relation trivially holds even if Vi = ∅. Now, let us choose an integer m �
∑n

i=0 mi .
Then S(V )m is generated as a K–vector space, by the monomials of degree m in
x0, . . . , xn , and each such monomial has to contain at least a xi raised to a power
with exponent at leastmi . Hence S(V )m · f ⊆ S(V )m . By iterating, we have S(V )m ·
f q ⊆ S(V )m , for all integers q � 1. In particular, if x0 �= 0 on V we have xm

0 f q ∈
S(V ) for all positive integers q, and this proves that S(V )[ f ] is contained in x−m

0 ·
S(V ), which is a finitely generated S(V )–module. Since S(V ) is noetherian, S(V )[ f ]
is a finitely generated S(V )–module (see [1, Prop. 6.5, p. 76]), hence f is integral
over S(V ) by Lemma5.4.1. So there are a1, . . . , ak ∈ S(V ) such that

f k + a1 f k−1 + · · · + ak = 0.

Recall that f ∈ K (V ) = S(V )((0)), hence f = g
h , with g, h ∈ S(V ) homogeneous

of the same degree. Then we have

gk + aig
k−1h + · · · + akhk = 0

and in such a relation we can replace a1, . . . , ak with their homogenous components
of degree 0. Since S(V )0 = K, it follows that f is algebraic over K and, since K is
algebraically closed, one has f ∈ K. �

A first important consequence of Theorem5.5.3 is that if V is a quasi–projective
variety, K (V ) is a finite type extension of K. Indeed, K (V ) = K (V̄ ), where V̄ is the
projective closure of V , and K (V̄ ) is contained Q(S(V )), which is generated over K

by x0, . . . , xn . The transcendence degree of K (V ) over K is called the transcendent
dimension of V and it is denoted by dimtr(V ). If U is a non–empty subset of V ,
one has dimtr(U ) = dimtr(V ). Varieties with transcendent dimension 0 are points.
Varieties with transcendent dimension 1 are called curves, those with transcendent
dimension 2 are called surfaces.

Exercise 5.5.4 Let V be a quasi–projective variety and let W be a subvariety. Prove that if [U, f ] ∈
OV,W then its restriction to W is well defined.

Exercise 5.5.5 Let V be a quasi–projective variety and let W be a subvariety. Prove that OV,W is
a subring of K (V ).
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Exercise 5.5.6 Let V be a quasi–projective variety, let W be a subvariety and let U be an open
subset of V such that U ∩ W �= ∅. Consider the map

ρU : f ∈ O(U ) → [U, f ] ∈ OV,W .

Prove that ρU is an injective homomorphism of K algebras and that IU (W ) := ρ−1
U (mV,W ) is the

ideal of O(U ) formed by all functions f ∈ O(U ) such that U ∩ W ⊆ ZU ( f ).

Exercise 5.5.7 * Let V be a quasi–projective variety, let W be a subvariety. Prove that there is a
1:1 correspondence between the prime ideals ofOV,W and the closed subvarieties of V containing
W .

Exercise 5.5.8 Let V be a quasi–projective variety, let W be a subvariety. Prove that Q(OV,W ) =
K (V ).

Exercise 5.5.9 * Let A be a domain. Prove that A = ⋂
m Am, where the intersection is over all

maximal ideals of A, and all Am are contained in Q(A).

Exercise 5.5.10 Prove that if the variety V consists of one point, one has O(V ) = K (V ) = K.
Prove that if V is a variety and P ∈ V a point, then the residue field of OV,P is K.

Exercise 5.5.11 Prove that O(An) = An and K (An) = K (Pn) = Q(An) =
K(x1, . . . , xn), hence dimtr(An) = dimtr(P

n) = n.

Exercise 5.5.12 Consider the affine plane curve V with equation x1x2 = 1, which is clearly irre-
ducible. Prove that A(V ) = K[x1, x−1

1 ] = (A1)x1 , and that K (V ) = K(x1).

Exercise 5.5.13 Consider the affine plane curve V with equation x31 = x22 , which is irreducible.
Then A(V ) = K[x1, x2]/(x31 − x22 ). Prove that every element f ∈ A(V ) can be written in a unique
way as f = P(x1) + Q(x1)x2, with P, Q ∈ A1.

Exercise 5.5.14 (Hilbert Nullstellensatz for affine varieties) Let V be an affine variety, let
f, g1, . . . , gm ∈ O(V ) and suppose that

⋂g
i=1 ZV (gi ) ⊆ ZV ( f ). Prove that f ∈ rad(g1, . . . , gm).

Make a similar statement for projective varieties.

Exercise 5.5.15 Prove that if V is an irreducible (projective or affine) plane curve, then dimtr(V ) =
1.

Exercise 5.5.16 Let V be a quasi–projective variety and W a subvariety of V . Prove thatOV,W =
OV,W̄ , where W̄ is the closure of W in V .

Exercise 5.5.17 Prove that if P ∈ P
1 is any point, then the ring OP1,P is integrally closed.

Exercise 5.5.18 Assume char(K) = 0. Let K be an extension of K of finite transcendence degree
on K. Prove that there is an affine variety V such that K (V ) = K .

5.6 Product of Affine Varieties

Here we prove the following:

Proposition 5.6.1 Let V1 ⊆ A
r and V2 ⊆ A

s be affine varieties. Then A(V1 × V2) ∼=
A(V1) ⊗K A(V2).
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Proof Consider the bilinear map

a : ( f, g) ∈ Ar × As → f g ∈ Ar+s

which verifies that a(Ia(V1) × As) and a(Ar × Ia(V2)) are both contained in
Ia(V1 × V2). For this reason, a induces a bilinear map

b : A(V1) × A(V2) → A(V1 × V2).

Note that the minimal subalgebra of Ar+s containing a(Ar × As) is Ar+s , thus
every element of A(V1 × V2) is of the form

h =
∑

i j

ci j fig j , with ci j ∈ K, fi ∈ A(V1), g j ∈ A(V2). (5.2)

We claim that h as in (5.2) is zero if and only if we can re–arrange the expression
of h in (5.2) so that for every pair (i, j), one has either ci j = 0, or fi = 0 in A(V1),
or g j = 0 in A(V2). One implication is clear, let us prove the other. We argue by
contradiction and suppose that h = 0 but that there is in the expression (5.2) some
pair (i, j), for which ci j �= 0, fi �= 0 and g j �= 0. We can extract a maximal system
of linearly independent elements on K from the set { fi } of elements of A(V1), then
we can express all the elements of { fi } as linear combinations of the elements of such
a system and substitute in the expression of h. This re–arranges the expression in
(5.2) so that the set { fi } consists of linearly independent elements. The same for the
set {g j }. If in the new expression as in (5.2) we have found, for every pair (i, j) one
has either ci j = 0, or fi = 0 or g j = 0 we are done. Otherwise we have some pair
(i, j), for which ci j �= 0, fi �= 0 and g j �= 0, and we can consider in the summation
only these pairs, because the others give 0 contribution. One has

h =
∑

i

⎛
⎝∑

j

ci jg j

⎞
⎠ fi = 0.

For all i ,
∑

j ci jg j ∈ A(V2) is non–zero, hence there is a point Q ∈ V2 such that

∑
j

ci jg j (Q) �= 0

for some i . On the other hand we have

∑
i

⎛
⎝∑

j

ci jg j (Q)

⎞
⎠ fi = 0,

hence we have a contradiction. This proves our claim.



5.6 Product of Affine Varieties 65

The claim implies that if h = 0, we can re–arrange the expression of h as in
(5.2) so that for each pair (i, j) such that ci j �= 0, one has either fi = 0 or g j = 0.
This is the same as saying that Ia(V1 × V2) is generated by α(Ia(V1) × As) and by
α(Ar × Ia(V2)).

Let now M be a K–vector space and let γ : A(V1) × A(V2) → M be a bilinear
map. There is then a unique homomorphism of K–vector spaces δ : A(V1 × V2) →
M such that γ = δ ◦ b. It is defined in the following way. If h = ∑

i j ci j fig j ∈
A(V1 × V2), one sets δ(h) = ∑

i j ci jγ( fi , g j ). From the above discussion, it follows
that δ is well defined, that it is linear, and it is uniquely determined by b and γ.
By the universal property of the tensor product we conclude that A(V1 × V2) ∼=
A(V1) ⊗K A(V2). �

As a consequence, we have:

Proposition 5.6.2 Let V1 ⊆ A
r and V2 ⊆ A

s be affine varieties. Then dimtr(V1 ×
V2) = dimtr(V1) + dimtr(V2).

Proof The ring A(V1) is a quotient of Ar = K[x1, . . . , xr ], so it is generated as a
K–algebra by x1, . . . , xr , hence K (V1) is generated on K by x1, . . . , xr , and we
can extract from them a maximal system of algebraically independent elements, say
x1, . . . , xn ,withn = dimtr(V1). Similarly, A(V2) is a quotient of As = K[y1, . . . , ys],
and we can assume that y1, . . . , ym , with m = dimtr(V2), is a maximal system
of algebraically independent elements of y1, . . . , ys on K. By Proposition5.6.1,
we have that x1, . . . , xr , y1, . . . , ys generate A(V1 × V2) and this implies that
K (V1 × V2) is generated on K by x1, . . . , xn, y1, . . . , ym . We are left to prove that
x1, . . . , xn, y1, . . . , ym are algebraically independent. Suppose, by contradiction, that
there is a non–zero polynomial F(t1, . . . , tn, u1, . . . , um)with coefficients in K such
that F(x1, . . . , xn, y1, . . . , ym) = 0. By the algebraic independence of y1, . . . , ym ,
we have that any coefficient a(x1, . . . , xn) of F(x1, . . . , xn, u1, . . . , um) = 0, as a
polynomial in u1, . . . , um , is zero. On the other hand, by the algebraic independence
of x1, . . . , xn , we have that a(t1, . . . , tn) is identically zero. This implies that F is
zero, contrary to the assumption. �

5.7 Solutions of Some Exercises

5.2.2 The assertion is a consequence of the following remark. Let [U ′, f ′] = [U ′′, f ′′]. Thenwe can
consider the function f ′′′ defined in U ′ ∪ U ′′ such that f ′′′(P) = f ′(P) if P ∈ U ′, and f ′′′(P) =
f ′′(P) if P ∈ U ′′. This function is well defined because f ′ and f ′′ coincide on U ′ ∩ U ′′. Moreover
it is regular, because so it is in U ′ and U ′′.

5.4.3 Let f
g ∈ Q(A) be integral over A with f, g coprime. One has a relation of the form

( f

g

)n + a1
( f

g

)n−1 + · · · + an = 0,

with a1, . . . , an ∈ A. Eliminating the denominators, we see that g divides f n , hence it divides f ,
so that g is invertible.
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5.4.4 The proof is similar to the one of Lemma5.4.1. Let y1, . . . , yn be a set of generators of M as
an A–module. Then φ(yi ) = ∑n

j=1 ai j y j , with ai j ∈ I and i = 1, . . . , n. So

n∑
j=1

(δi j φ − ai j )y j = 0, for i = 1, . . . , n.

Fix any h = 1, . . . , n. If we multiply the i th of the above relations for the cofactor of the element
of place (i, h) of the matrix (δi j φ − ai j )i, j=1,...,n and then add up on i , we see that D = det(δi j φ −
ai j )i, j=1,...,n annihilates yh for h = 1, . . . , n, so multiplication by D is the 0–endomorphism of M .
By expanding the determinant, one finds the required expression.

5.4.5 (a) implies (b): by Lemma5.4.1 it suffices to take C = A[x].
(b) implies (c): it suffices to take M = C . Indeed C is faithful because yC = (0), implies

y = y · 1 = 0.
(c) implies (a): apply Exercise5.4.4 taking φ : M → M equal to the multiplication by x (note

that x M ⊆ M because M is an A[x] module) and I = A. Since M is faithful, we have a relation
of the form

xn + a1xn−1 + · · · + an = 0, with a1, . . . , an ∈ A,

which proves that x is integral over A. Then (a) follows by Lemma5.4.1.

5.4.6 It suffices to apply Exercise5.4.5: for all x ∈ B, A[x] is contained in B which is a finitely
generated as an A–module; then (b) of Exercise5.4.5 is verified and therefore x is integral over A.

5.4.7 Let b1, . . . , bn be a set of generators of B as a K–algebra. By Lemma5.4.1, A[b1] is a finitely
generated A–module. Similarly, A[b1, b2] is a finitely generated A[b1]–module, hence it is a finitely
generated A–module. By iterating this argument, we see that A[b1, . . . , bn] is a finitely generated
A–module. But A[b1, . . . , bn] = B and we are done.

5.4.8 Let x be an element of C . Then we have a relation of the form

xn + b1xn−1 + · · · + bn = 0, with bi , . . . , bn ∈ B.

Then x is integral over B ′ = A[b1, . . . , bn], so B ′[x] is finitely generated over B ′. On the other
hand, B ′ is finitely generated over A, so B ′[x] is finitely generated over A and therefore also A[x]
is finitely generated over A (see [1, Prop. 6.5, p. 76]). This implies that x is integral over A by
Lemma5.4.1.

5.5.7 First of all reduce to the case that V is affine and W is closed in V . Then apply Theorem5.5.3,
the properties of localization and the results of Sect. 3.

5.5.8 Reduce to the affine case and apply Theorem5.5.3.

5.5.9 It is clear that A ⊆ ⋂
m Am. Let us prove the opposite inclusion. Let x ∈ Q(A). We consider

the ideal of denominators of x so defined

D(x) = {a ∈ A : ax ∈ A}.
One has x ∈ A if and only if D(x) = A and x ∈ Am, with m a maximal ideal, if and only if D(x)
is not contained in m. Hence, if x /∈ A, then D(x) is a proper ideal of A and therefore there is a
maximal ideal m of A such that D(x) ⊆ m, so that x /∈ Am. The assertion follows.

5.5.14 Suppose that Ia(V ) = ( f1, . . . , fh). By the Nullstellensatz, there is a positive integer r such
that f r ∈ (g1, . . . , gm , f1, . . . , fh) in An . The assertion follows by modding out by Ia(V ).
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5.5.15We can reduce to the affine case. Then V has an equation of the form f (x1, x2) = 0, with f ∈
A2 irreducible. Then A(V ) = A2/( f ) and K (V ) =
K(x1, x2), with x1, x2 linked by the relation f (x1, x2) = 0. It is moreover clear that x1, x2 are
not both algebraic over K, otherwise they would be constant and V would be a point. The assertion
follows.

5.5.17 It suffices to prove that if P ∈ A
1 is any point, thenOA1,P is integrally closed. This follows

from Exercise5.4.2.



Chapter 6
Morphisms

6.1 The Definition of Morphism

Let V,W be quasi-projective varieties. A map φ : V → W is called a morphism
if it is continuous and if, for every open subset U ⊆ W such that φ−1(U ) is not
empty, and for every regular function O(U ), the function fφ = f ◦ φ is regular on
φ−1(U ). We will denote by M(V,W ) the set of all morphisms from V to W . It is
clear that the identity is a morphism and the composition of two morphisms is a
morphism. So it makes sense to consider the category in which the objects are the
quasi-projective varieties and the morphisms are the ones we defined above. In this
category a morphism φ : V → W is an isomorphism if it has the inverse, i.e., if and
only if there is a morphism ψ : W → V such that ψ ◦ φ = idV ,φ ◦ ψ = idW .

If φ ∈ M(V,W ), for every open subset U ⊆ W such that φ−1(U ) is not empty,
one has a map

φU : f ∈ O(U ) → fφ ∈ O(φ−1(U ))

which is easily seen to be a homomorphism of K-algebras. If φ is a isomorphism,
φU is a isomorphism of K-algebras, its inverse being (φ−1)φ

−1(U ). In particular, if V
and W are isomorphic, then O(V ) ∼= O(W ).

If φ ∈ M(V,W ) and φ(V ) = W , we say that φ is dominant. In this case we have
a natural map

φ′ : (U, f ) ∈ K(W ) → (φ−1(U ), fφ) ∈ K(V ).

In fact, if φ is dominant, for any non-empty open subsetU ofW , then φ−1(U ) is also
non-empty, hence it is dense in V . It is clear thatφ′ is compatible with the equivalence
relations R in K(V ) and in K(W ), hence φ′ induces a field homomorphism

φ∗ : [U, f ] ∈ K (W ) → [φ−1(U ), fφ] ∈ K (V ).
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The map φ∗ is not zero because it is the identity on K, hence it is injective. In
particular, if V and W are isomorphic, we have K (V ) ∼= K (W ).

Let again φ ∈ M(V,W ). Let V ′ be a subvariety of V and W ′ a subvariety of W ,
such that φ(V ′) ⊆ W ′. Consider the map φ′ = φ|V ′ : V ′ → W ′. It is easy to check
that φ′ ∈ M(V ′,W ′). Moreover, as we constructed the map φ∗ above, we have a
homomorphism of local rings

φ∗
V ′ : [U, f ] ∈ OW,W ′ → [φ−1(U ), fφ] ∈ OV,V ′

in the hypothesis that φ(V ′) is dense in W ′, i.e., if φ′ : V ′ → W ′ is dominant. In
particular, if V andW are isomorphic and if this isomorphism induces a isomorphism
of V ′ onto W ′, then OV,V ′ ∼= OW,W ′ .

Exercise 6.1.1 Prove that any constant map is a morphism.

Exercise 6.1.2 Let V be a quasi-projective variety. Prove that regular functions on V coincide with
morphisms of V to A

1 = K.

Exercise 6.1.3 Let V1, V2 be affine varieties. Consider the projection maps pi : V1 × V2 → Vi ,
with i = 1, 2. Prove they are morphisms.

Exercise 6.1.4 Let φ ∈ M(V,W ). Let V ′ be a subvariety of V and W ′ a subvariety of W , such
that φ(V ′) ⊆ W ′. Prove that φ′ = φ|V ′ : V ′ → W ′ is a morphism.

Exercise 6.1.5 Let V be a quasi-projective variety and W be a subvariety of V . Prove that the
inclusion i : W → V is a morphism, called the immersion of W in V .

Exercise 6.1.6 *Let V,W, Z be quasi-projective varieties, with Z a subvariety of W . Prove that a
map φ : V → Z is a morphism if and only if φ : V → W is a morphism.

6.2 Which Maps Are Morphisms

It is useful to have criteria for maps between varieties to be morphisms. Here is one:

Proposition 6.2.1 Let V be a quasi-projective variety. A map φ : V → A
n is a

morphism if and only if for all i ∈ {1, . . . , n}, the composite map φi = pi ◦ φ is
regular, where pi : A

n → A
1 = K is the projection on the i th factor.

Proof We prove the only non-trivial implication. If f ∈ An , then f ′ = f (φ1, . . . ,

φn) ∈ O(V ), hence ZV ( f ′) is closed in V . This proves that φ is continuous. Let
U ⊆ A

n be an open subset, and let f ∈ O(U ). For each point P ∈ U , there is an
open neighborhoodU ′ of P inU where f = P

Q , where P, Q ∈ An and ZU ′(Q) = ∅.
Hence f ◦ φ = P(φ1,...,φn)

Q(φ1,...,φn)
is a regular function on φ−1(U ′). This proves that φ is a

morphism. �
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As an application of the previous proposition we have the following important:

Theorem 6.2.2 Let V be a quasi-projective variety and W an affine variety. The
map

α : M(V,W ) → φW ∈ Hom(A(W ),O(V ))

is bijective (hereHom(A(W ),O(V )) denotes the set ofK-algebra homomorphisms).

Proof Let h ∈ Hom(A(W ),O(V )). Suppose thatW ⊆ A
n . Then A(W )=K[x1, . . . ,

xn]/Ia(W ), hence ξi := h(xi ) ∈ O(V ), for all i = 1, . . . , n. Consider the map

φh : P ∈ V → (ξ1(P), . . . , ξn(P)) ∈ A
n,

which is a morphism by Proposition 6.2.1. Let us prove that φh(V ) ⊆ W , and this
will imply that φh ∈ M(V,W ) (see Exercise 6.1.6). Indeed, if f ∈ Ia(W ), for all
P ∈ V one has

f (φh(P)) = f (ξ1(P), . . . , ξn(P)) = f (h(x1)(P), . . . , h(xn)(P)).

Since h is a K-algebras homomorphism, one has

f (h(x1), . . . , h(xn)) = h( f (x1, . . . , xn))(P) = 0

because f = 0 in A(W ), hence h( f ) = 0. This proves that φh(V ) ⊆ W , as wanted.
Finally, the map

h ∈ Hom(A(W ),O(V )) → φh ∈ M(V,W )

is clearly the inverse of α. �

As a consequence we have:

Corollary 6.2.3 One has:

(a) if V,W are affine varieties, V is isomorphic to W if and only if A(V ) ∼= A(W )

as K-algebras;
(b) the contravariant functor V → O(V ), from the category of quasi-projective

varieties to the category of K-algebras with no zero divisors, induces an equiv-
alence of categories between the category of affine varieties and the category of
finitely generated K-algebras with no zero divisor.

Proof The only thing that we are left to prove is that any finitely generatedK-algebra
with no zero divisors A is the coordinate ring of an affine variety. Let t1, . . . , tn be
generators of A. The map

f ∈ An → f (t1, . . . , tn) ∈ A
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is a surjective K-algebras homomorphism, whose kernel is a prime ideal I of An . By
the results of Sect. 3, 4, there is a variety V ⊆ A

n such that Ia(V ) = I. The assertion
follows. �

Next we can give a criterion for maps between quasi-projective varieties to be
morphisms. We start by proving the:

Lemma 6.2.4 For all i = 0, . . . , n, the map φi : Ui → A
n (see Sect. 1.5) is an iso-

morphism.

Proof We already know that φi is a homeomorphism, so the only thing to prove is
that the regular functions are the same on A

n and Ui , which follows from the very
definition of regular functions (details are left to the reader). �

Proposition 6.2.5 Let V ⊆ P
n be a quasi-projective variety. A map φ : V → P

m is
a morphism if and only if for every point P ∈ V there is an open neighborhood U of
P in V and m + 1 homogeneous polynomials of the same degree f0, . . . , fm ∈ Sn
such that for every point P ′ ∈ U there is an i ∈ {0, . . . ,m} such that fi (P ′) 
= 0 and
φ(P ′) = [ f0(P ′), . . . , fm(P ′)].
Proof Let φ : V → P

m be a morphism. Given P ∈ V , set Q = φ(P). Then there
is an i ∈ {0, . . . ,m} such that Q ∈ Ui : to fix ideas, let us assume that i = 0. Set
U := φ−1(U0),which is anopenneighborhoodof P inV . Thenφ induces amorphism
φ′ : U → U0. By identifying U0 with A

m via the map φ0 in Lemma 6.2.4, applying
Proposition 6.2.1 and may be restricting U , we can ensure the existence of m pairs
of homogenous polynomials of the same degree ( f1, f1,0), . . . , ( fm, fm,0), such that
for every point P ′ ∈ U , fi,0(P ′) 
= 0 for all i ∈ {1, . . . ,m}, and such that

φ′(P) =
( f1(P ′)
f1,0(P ′)

, . . . ,
fm(P ′)
fm,0(P ′)

)
.

By reducing the fractions f1
f1,0

, . . . ,
fm
fm,0

to minimum common denominator, we may
assume that f1,0 = · · · = fm,0 = f0, that f0, . . . , fm have the same degree, and that
f0(P ′) 
= 0 for all P ′ ∈ U . Since φ′(P ′) = [ f0(P ′), . . . , fm(P ′)], we have the asser-
tion.

Let us prove that the condition on φ is sufficient for φ to be a morphism. First we
note that, up to restricting U , we may assume that there is an i ∈ {0, . . . ,m} such
that fi (P ′) 
= 0. To fix ideas, suppose that i = 0. Then φ|U maps U to U0 and, by
Proposition 6.2.1, it determines a morphism φ′, because for every P ′ ∈ U , one has

φ′(P ′) =
( f1(P ′)
f0(P ′)

, . . . ,
fm(P ′)
f0(P ′)

)
.

If j is the immersion of U0 in P
m , one has that φ|U = j ◦ φ′, so it is a morphism.

Since the notion of morphism is clearly local, the assertion is proved. �
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Proposition 6.2.6 Let V,W be quasi-projective varieties and φ,ψ ∈ M(V,W ),
such that there is a non-empty open subset U of V such that φ|U = ψ|U . Then φ = ψ.

Proof If U = V there is nothing to prove. So we assume U 
= V . Suppose, by con-
tradiction that there is a point P ∈ V \U such that φ(P) 
= ψ(P). We can consider
W as embedded in a projective space P

n and actually we can reduce ourselves to
the case W = P

n (see Exercise 6.1.6). Moreover, up to a projectivity (see Exercise
6.2.12), we may assume that both φ(P) and ψ(P) belong to the affine open subset
U0

∼= A
n . Finally, working inφ−1(U0) ∩ ψ−1(U0) ∩U , that is an open neighborhood

of P in U , we can even assume W = A
n . Then we can apply Proposition 6.2.1 and

Proposition 5.1.1 and conclude that φ = ψ, reaching a contradiction. �

Exercise 6.2.7 *Prove that affine maps are morphisms. Prove that affinities are isomorphisms onto
their images. Affinities between affine spaces of the same dimension can be considered as changes
of coordinates.

Exercise 6.2.8 Prove that all automorphism of A
1 are affinities.

Exercise 6.2.9 Let φ : A
n → A

n be a morphism. Prove that there are polynomials P1, . . . , Pn ∈
An , such that φ(x) = (P1(x), . . . , Pn(x)). Prove that if φ is an automorphism, then the jacobian
determinant

Jφ(x) = det
(∂Pi

∂x j

)
i=1, j=1,...,n

is an element Jφ of K \ {0}.
Exercise 6.2.10 Consider the group Gn of all automorphisms of An . Prove that the map J : φ ∈
Gn → Jφ ∈ K \ {0} is a group homomorphism.

Exercise 6.2.11 Give an example of an automorphism of A
n , with n � 2, which is not an affinity.

Exercise 6.2.12 *Prove that projectivities are isomorphisms onto their images. Prove that all pro-
jective spaces of the same dimension are isomorphic. Projectivities of P

n to itself can be considered
as changes of homogeneous coordinates.

Exercise 6.2.13 *Let V be a quasi-projective variety. Prove that a map f : V → P
n is a morphism

if and only if for every point P ∈ V there is an open neighborhoodU of P in V and there are regular
functions f0, . . . , fn ∈ O(U ), such that for any point Q ∈ U one has ( f0(Q), . . . , fn(Q)) 
= 0 and
f (Q) = [ f0(Q), . . . , fn(Q)].
Exercise 6.2.14 Prove that the affine [resp. projective] twisted cubic is isomorphic to A

1 [resp. to
P
1].

Exercise 6.2.15 Consider the affine conic V with equation x2 = x21 , called a
parabola. Consider the homomorphism of K-algebras

π∗ : x1 ∈ A1 → x1 ∈ A(V ) = K[x1, x2]/(x2 − x21 )

corresponding to the restriction π to V of the projection from the point at infinity of the x2-axis of
A
2 on A

1, identified with the x1-axis. Prove that π∗ is an isomorphism, so that π is an isomorphism.

Exercise 6.2.16 Consider the affine conic W with equation x1x2 = 1, called a hyperbola. Prove
that A(W ) ∼= (A1)x1 . Prove that A(W ) is not isomorphic to A1, hence W is not isomorphic to A

1.
Prove that W is isomorphic to A

1 \ {0}.
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Exercise 6.2.17 *Let Z be any irreducible conic in A
2
K
with K of characteristic different from

2. Prove that there is an affinity of A
2 which either maps Z to V = Za(x2 − x21 ) or maps Z to

W = Za(x1x2 − 1): in the former case Z is called a parabola, in the latter case it is called and
hyperbola.

Exercise 6.2.18 Suppose that char(K) 
= 2. Let f ∈ A2 be an irreducible polynomial of degree 2.
Prove that either A2/( f ) is isomorphic to A1 or it is isomorphic to (A1)x1 .

Exercise 6.2.19 *Suppose that char(K) 
= 2. Prove that given two irreducible conics in P
2, there

is a projectivity of P
2 which maps the former to the latter.

Exercise 6.2.20 *Suppose that char(K) 
= 2. Prove that any irreducible conic in P
2 is isomorphic

to P
1.

Exercise 6.2.21 Let Z1 ⊆ A
r , Z2 ⊆ A

s be affine varieties. Let P ∈ Z1 and Q ∈ Z2. Consider the
maps

P ′ ∈ Z1 → (P ′, Q) ∈ Z1 × {Q}, Q′ ∈ Z2 → (P, Q′) ∈ {P} × Z2.

Prove they are isomorphisms of Z1, Z2 respectively to Z1 × {Q}, {P} × Z2, which are subvarieties
of Z1 × Z2 (intersections of Z1 × Z2 with the subspaces A

r × {Q}, {P} × A
s ).

Exercise 6.2.22 Let Z be a subvariety of A
n . Consider the subset �Z = {(P, P) : P ∈ Z} ⊂

Z × Z , called the diagonal of Z × Z . Prove that �Z is a subvariety of Z × Z isomorphic to Z .

Exercise 6.2.23 *Let Z1, Z2 be subvarieties of A
n . Then �An ∩ (Z1 × Z2) is a closed subset in

Z1 × Z2. Consider the map

ι : P ∈ Z1 ∩ Z2 → (P, P) ∈ �An ∩ (Z1 × Z2).

Prove that ι is an isomorphism of any irreducible component of Z1 ∩ Z2 onto its image.

Exercise 6.2.24 *Let V,W be affine varieties, let φ : V → W be a morphism and φ∗ : A(W ) →
A(V ) the corresponding K-algebras homomorphism. Prove that φ is dominant if and only if φ∗ is
injective.

Exercise 6.2.25 Let U = A
1 \ {a1, . . . , an}, with a1, . . . , an distinct, be a proper open subset of

A
1. Prove that U is an affine variety, which is not isomorphic to A

1, but it is homeomorphic to A
1.

Exercise 6.2.26 Let V ⊆ A
n be an affine variety. Prove that V is isomorphic to a projective variety

if and only if V is a point.

Exercise 6.2.27 Prove that any morphism of a projective variety to an affine variety is constant.

Exercise 6.2.28 Consider the morphism

φ : t ∈ A
1 → (t2, t3) ∈ V ⊂ A

2,

where V ⊂ A
2 is the curve with equation x31 = x22 . Prove that it is an homeomorphism, but is is not

an isomorphism. Prove however that its restriction to A
1 \ {0} is an isomorphism onto V \ {0}.

Exercise 6.2.29 *Suppose char(K) = p > 0. Consider the morphism

F : [x0, . . . , xn] ∈ P
n → [x p

0 , . . . , x p
n ] ∈ P

n

which is well defined and induces a morphism

F : (x1, . . . , xn) ∈ A
n → (x p

1 , . . . , x p
n ) ∈ A

n .

These morphisms are called Frobenius morphisms. Prove that they are homeomorphisms, but not
isomorphisms.
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Exercise 6.2.30 *Prove that A
2 \ {0} is not an affine variety.

Exercise 6.2.31 *Let H be a subspace of P
n of codimension 2. Prove that O(Pn \ H) = K.

Exercise 6.2.32 Corollary 6.2.3, (b) characterizes the K-algebras that are the coordinate rings of
affine varieties. Prove that a K-algebra is the coordinate ring of an affine closed subset if and only
if it is finitely generated and with no nilpotent elements.

6.3 Affine Varieties

Lemma 6.2.4 says that P
n has an open covering of varieties isomorphic to affine

varieties. This is a particular case of a more general situation, which we will now
explain. First of all let us give a definition: given a quasi-projective variety V we
will say that V is affine, if it is isomorphic to an affine variety. An open subset U of
a quasi-projective variety V is said to be affine if it is itself an affine variety.

Lemma 6.3.1 Let Z be the hypersurface ofAn with equation f = 0, with f (x1, . . . ,
xn) ∈ An a non-constant polynomial. Then the open set A

n \ Z is isomorphic to the
irreducible hypersurface of A

n+1 with equation

xn+1 f (x1, . . . , xn) − 1 = 0.

In particular A
n \ Z is affine and O(An \ Z) ∼= (An) f .

Proof It is clear that xn+1 f (x1, . . . , xn) − 1 is an irreducible polynomial. Moreover
the map

φ : (a1, . . . , an+1) ∈ Za(xn+1 f − 1) → (a1, . . . , an) ∈ A
n \ Z ⊂ A

n

is a morphism because of Proposition 6.2.1, and it is clearly bijective. Its inverse

φ−1 : (a1, . . . , an) ∈ A
n \ Z →

(
a1, . . . , an,

1

f (a1, . . . , an)

)
∈ Za(xn+1 f − 1)

is again a morphism by Proposition 6.2.1. Thus φ is an isomorphism. One has

O(An \ Z) ∼= A(Za(xn+1 f − 1)) ∼= (An+1)/(xn+1 f − 1) ∼= (An) f ,

so the assertion is proved. �

Now we are able to prove the:

Proposition 6.3.2 Let V be any quasi-projective variety. There is a basis for the
Zariski topology of V consisting of affine open subsets.

Proof We have to prove that for any point P ∈ V and for any open neighborhoodU
of P in V , there is an affine open neighborhoodU ′ of P in V such thatU ′ ⊆ U . Since
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U is a quasi-projective variety, we may actually assumeU = V . Moreover since any
quasi-projective variety is covered byquasi-affine open subsets,we can assume thatV
is quasi-affine inA

n . Let us denote by V̄ the closure of V inA
n . Then Z = V̄ \ V is a

closed subset inA
n . Since P /∈ Z , there is a polynomial f ∈ Ia(Z) such that f (P) 
=

0 so that P ∈ V \ V ∩ Za( f ). Since Z ⊆ V̄ ∩ Za( f ), we have that V \ V ∩ Za( f )
is closed in A

n \ Za( f ): indeed, on one side we have V \ V ∩ Za(F) ⊆ V̄ ∩ (An \
Za( f )); on the other side V̄ ∩ (An \ Za( f )) = V̄ \ (V̄ ∩ Za( f )) ⊆ V̄ \ Z = V , so
that V̄ ∩ (An \ Za( f )) ⊆ V \ (V ∩ Za( f )), hence V \ (V ∩ Za( f )) = V̄ ∩ (An \
Za( f )). Finally the open set V \ (V ∩ Za( f )) of V is also a closed subset of the
affine variety A

n \ Za( f ), hence it is affine. �
Finally we give a useful characterization of the isomorphisms:

Proposition 6.3.3 Let φ : V → W be a morphism between quasi-projective vari-
eties. Then:

(a) φ is dominant if and only if for all P ∈ V , the map φ∗
P : OW,φ(P) → OV,P is

injective;
(b) φ is an isomorphism if and only if it is a homeomorphism and for all P ∈ V ,

the map φ∗
P : OW,φ(P) → OV,P is an isomorphism.

Proof Let us prove (a). Suppose φ is dominant. Let P ∈ V and set Q = φ(P). Let
[U, f ] ∈ OW,Q be such that φ∗

P [U, f ] = [φ−1(U ), f ◦ φ] = 0. Then we have

φ(V ) = φ(φ−1(U )) ⊆ φ(φ−1(U )) ⊆ ZU ( f ).

Since φ is dominant, we have ZU ( f ) = W . But then ZU ( f ) = ZU ( f ) ∩U = W ∩
U = U and f = 0 proving that φ∗

P is injective.
Suppose, conversely, that there is a P ∈ V such that φ∗

P is injective. By
Proposition 6.3.2 we may assume that both V and W are affine varieties. Hence
we have OV,P

∼= A(V )mP , OW,Q
∼= A(W )mQ , where Q = f (P) and mP and mQ

are the maximal ideals in A(V ) and A(W ) respectively, corresponding to the points
P and Q. Then the homomorphism φ∗

P : A(W )mQ → A(V )mP induces the homo-
morphism φ∗ : A(W ) → A(V ) and, if φ∗

P is injective, then also φ∗ is injective. Then
φ is dominant (see Exercise 6.2.24).

Let us prove (b). Suppose φ is an isomorphism. Then it is a homeomorphism.
Moreover if f (P) = Q, then (φ∗

P)−1 = (φ−1)∗Q . This proves the assertion. Con-
versely, suppose φ is a homeomorphism and φ∗

P is an isomorphism for all P ∈ V .
Let P ∈ V and set again Q = φ(P). Let [U, f ] ∈ OV,P . By the surjectivity of φ∗

P ,
there is [U ′, g] ∈ OW,Q such that

[U, f ] = φ∗
P [U ′, g] = [φ−1(U ′), g ◦ φ].

Hence there is an open neighborhood U ′′ of P in U ∩ φ−1(U ′) such that f|U ′′ =
g ◦ φ|U ′′ , i.e., f|U ′′ ◦ φ−1

|φ(U ′′) = g|U ′′ . This proves that φ−1 is a morphism, hence φ is
an isomorphism. �



6.3 Affine Varieties 77

Remark 6.3.4 In proving (a) of Proposition 6.3.3, we proved that:

(a) if φ is dominant, then φ∗
P is injective for all P ∈ V ;

(b) if there is a P ∈ V such that φ∗
P is injective, then φ is dominant.

So there is a P ∈ V such that φ∗
P is injective if and only if φ∗

P is injective is
injective for all P ∈ V .

Exercise 6.3.5 Prove that the morphism φ in the proof of Lemma 6.3.1, interpreted as a morphism
of Za(xn+1 f − 1) to A

n , corresponds to the inclusion An → (An) f .

Exercise 6.3.6 *Let V be an affine variety and f ∈ A(V ) \ {0} a regular function. Prove that
UV ( f ) is an affine open subset of V and O(UV ( f )) = A(V )[ 1f ] = A(V ) f .

6.4 The Veronese Morphism

Let n, d be positive integers and set N (n, d) = (n+d
d

) − 1. Then N (n, d) + 1 is the

number of distinct monomials xi00 · · · xinn , with i0 + · · · + in = d, of degree d in n + 1
variables x0, . . . , xn . We will consider the projective space P

N (n,d), whose points
have homogeneous coordinates which we will denote by [vi0...in ]i0+···+in=d , that we
can considered as order with the lexicographic order. Then we can consider the
morphism

vn,d : [x0, . . . , xn] ∈ P
n → [xi00 · · · xinn ]i0+···+in=d ∈ P

N (n,d)

that is called the Veronese morphism of type (n, d). We will set Vn,d = vn,d(P
n).

Proposition 6.4.1 One has:

(a) Vn,d is a subvariety of P
N (n,d) called the Veronese variety of type (n, d);

(b) vn,d is an isomorphism between P
n and Vn,d .

Proof Consider the K-algebras homomorphism

ϑn,d : f (vi0...in ) ∈ K[vi0...in ]i0+···+in=d → f (xi00 · · · xinn ) ∈ K[x0, . . . , xn]

and interpret K[vi0...in ]i0+···+in=d as the coordinate ring of P
N (n,d) and K[x0, . . . , xn]

as the coordinate ring of P
n . Note that im(ϑn,d) is the graded subring [Sn]d :=⊕∞

a=0(Sn)da of Sn = K[x0, . . . , xn]. Moreover ϑn,d is a homogeneous homomor-
phism of weight d (recall Sect. 1.3). This implies that In,d := ker(ϑn,d) is a homo-
geneous, prime ideal of K[vi0...in ]i0+···+in=d . Let us prove that Vn,d = Z p(In,d).

It is clear that Vn,d ⊆ Z p(In,d). On the other hand In,d contains all polynomials
of the type

v
α0
i00...i0n

· · · vα�

i�0...i�n
= v

β0
j00... j0n

· · · vβ�

j�0... j�n
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with

α0i0μ + · · · + α�i�μ = β0 j0μ + · · · + β� j�μ, for all μ = 0, . . . , n. (6.1)

From this follows that if [vi0...in ] ∈ Z p(In,d), then at least one of the coordinates
v0...0d0...0 is not zero. Indeed, from (6.1), one has

vd
i0...in = v

i0
d0...0v

i1
0d...0 · · · vin

0...0d .

If for example vd0...0 
= 0, set

x0 = 1, x1 = vd−1,10...0

vd0...0
, . . . , xn = vd−1,0...01

vd0...0
. (6.2)

By (6.1) we have

vi0...inv
d−1
d0...0 = v

i0
d0...0v

i1
d−1,10...0 · · · vin

d−10...01,

hence
vi0...in = vd0...0x

i0
0 · · · xinn

so that
[vi0...in ] = vn,d([x0, . . . , xn]).

This proves part (a), and shows also that S(Vn,d) = [Sn]d .
Let us now prove part (b). It is clear that vn,d is a bijective map from P

n to Vn,d ,
whose inverse is still a morphism, since it is locally defined by formula (6.2) or by
analogous formulae. This proves the assertion. �

We will still call Veronese variety of type (n, d) every variety which is projec-
tively equivalent to Vn,d . We already met some Veronese varieties, for instance the
projective twisted cubics are projectively equivalent to V1,3, the irreducible conics are
projectively equivalent to V1,2. The varieties V1,n are called rational normal curves,
the varieties V2,n are called Veronese surfaces of type n, in particular V2,2 is simply
called Veronese surface.

Next we want to give a geometric interpretation of the construction of Veronese
varieties. Consider, for every positive integers n, d, the projective space Ln,d =
P(Sn,d) of dimension N (n, d) = (n+d

d

) − 1, whose points, as we saw in Sect. 1.6.5,
are in 1:1 correspondence with effective divisors of degree d in P

n . Recall that there
is a natural system of coordinates in Ln,d by assigning to the class of a polynomial∑

i0+···+in=d vi0...in x
i0
0 · · · xinn the homogeneous coordinates [vi0...in ]i0+···+in=d lexico-

graphically ordered. This way Ln,d can be identified with P
N (n,d), which we will

constantly do in what follows. Recall that Ln,1 identifies with the dual P̌
n of P

n .
Consider the following map
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ṽn,d : H ∈ P̌
n → dH ∈ Ln,d

which associates to any hyperplane H of P
n the degree d divisor dH , consisting of

H with multiplicity d. This map is called the Veronese map of type (n, d).

Lemma 6.4.2 The Veronese map ṽn,d is a morphism.

Proof Suppose H = [u0, . . . , un] ∈ P̌
n , i.e., H has equation u0x0 + · · · + unxn

= 0. Then dH has equation

(u0x0 + · · · + unxn)
d =

∑
i0+···+in=d

d!
i0! · · · in!u

i0
0 · · · uinn xi00 · · · xinn = 0.

Hence

ṽn,d([u0, . . . , in]) =
[ d!
i0! · · · in!u

i0
0 · · · uinn

]
i0+···+in=d

,

which proves the assertion. �

Now we consider two cases:

(a) char(K) = 0. Consider the projectivity of P
N (n,d) given by

ω : [vi0...in ]i0+···+in=d ∈ P
N (n,d) →

[ d!
i0! · · · in!vi0...in

]
i0+···+in=d

∈ P
N (n,d)

whosematrix is diagonal with non-zero entries. One has ṽn,d = ω ◦ vn,d . Hence
in this case ṽn,d is an isomorphism of P̌n onto its image which is a Veronese
variety of type (n, d);

(b) char(K) = p 
= 0. Then it can happen that some of the integers d!
i0!···in ! are 0

modulo p. In this case what we said in (a) is no longer valid, and one has to
examine the situation case by case.

We can consider one more map, which is called the dual Veronese map

v̌n,d : P
n → Ľn,d

which sends a point P ∈ P
n to the hyperplane of Ln,d consisting of all divisors of

degree d in P
n whose support contains P .

Lemma 6.4.3 The dual Veronese map coincides with the Veronese morphism of P
n

to Ľn,d .

Proof Let P = [p0, . . . , pn] and consider an effective divisor D of degree d in P
n ,

which has equation
∑

i0+···+in=d vi0...in x
i0
0 · · · xinn = 0. Then D contains P if and only

if
∑

i0+···+in=d vi0...in p
i0
0 · · · pinn = 0, and this equation defines v̌n,d(P) ∈ Ľn,d . So in

conclusion v̌n,d(P) = v̌n,d([p0, . . . , pn]) = [pi00 · · · pinn ]i0+···+in=d , as wanted. �
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Exercise 6.4.4 Give another proof of (b) of Proposition 6.4.1 based on Proposition 6.3.3, (b).

Exercise 6.4.5 *(Steiner construction)Consider two distinct points P, Q ∈ P
2. Let (P) [resp. (Q)]

be the pencil of lines passing through P [resp. through Q]. Consider a projectivity ω : (P) → (Q),
such that ω(P ∨ Q) 
= P ∨ Q. Consider the following set of points of P

2

V = {P = r ∩ ω(r), r ∈ (P)}.
Prove that V is an irreducible conic.

Exercise 6.4.6 Prove that Veronese varieties are non-degenerate.

Exercise 6.4.7 Consider in P
n the set V of points [x0, . . . , xn] such that

rank

(
x0 x1 . . . xn−1
x1 x2 . . . xn

)
= 1.

Prove that V is a rational normal curve.

Exercise 6.4.8 Prove that a hyperplane intersects a rational normal curve V1,n in no more than n
points, and there are hyperplanes which intersect V1,n in exactly n distinct points.

Exercise 6.4.9 Prove that a rational normal curve Vn is the image of a morphism

[x0, x1] ∈ P
1 → [ f0(x0, x1), . . . , fn(x0, x1)] ∈ P

n (6.3)

where f0, . . . , fn is a basis of S1,n .

Exercise 6.4.10 Let g(x0, x1) = ∏n
i=0(μi x0 − νi x1) be a homogeneous polynomial of degree n +

1 in x0, x1, which has n + 1 distinct roots (up to a proportionality factor), i.e., the points [νi ,μi ] ∈ P
1

are distinct, for i = 0, . . . , n. Prove that the polynomials fi (x0, x1) = g(x0,x1)
μi x0−νi x1

, for i = 0, . . . , n,
form a basis of S1,n .

Exercise 6.4.11 Continuing the Exercise 6.4.10, consider the rational normal curve V given by
(6.3) with fi (x0, x1), for i = 0, . . . , n, as in Exercise 6.4.10. Assume that μi 
= 0 and νi 
= 0, for
i = 0, . . . , n. Then prove that V contains the vertices of the fundamental pyramid and the two
distinct points [ 1

μ0
, . . . , 1

μn
] and [ 1

ν0
, . . . , 1

νn
]. On the whole these are n + 3 distinct points of P

n in
general position (see Exercise 1.6.9).

Exercise 6.4.12 *Consider n + 3 distinct points of P
n in general position. Prove that there is a

rational normal curve containing them.

Exercise 6.4.13 Let V be a divisor of degree d in P
n . Prove that there is a hyperplane H ⊂ P

N (n,d)

such that vn,d (V ) = H ∩ Vn,d .

Exercise 6.4.14 Let V be a hypersurface of degree d in P
n . Prove that P

n \ V is an affine variety.

Exercise 6.4.15 *Let X ⊆ P
n be a variety which is not a point and let V ⊂ P

n be a hypersurface.
Prove that X ∩ V 
= ∅.
Exercise 6.4.16 Prove the following complement to the weak formulation of Bézout Theorem
2.2.6: two projective plane curves have non-empty intersection.

Exercise 6.4.17 Prove that A
2 and P

2 are not homeomorphic.

Exercise 6.4.18 *Prove that the coordinate ring of a projective variety is not invariant under iso-
morphisms.
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6.5 Solutions of Some Exercises

6.2.8 An automorphism of A
1 is a map φ : x ∈ A

1 → P(x) ∈ A
1, where P ∈ A1. Then φ−1 : x ∈

A
1 → Q(x) ∈ A

1 with Q ∈ A1, and one has the identity x = Q(P(x)). This implies that P and
Q have degree 1.

6.2.11 Consider the map

φ : (x1, x2) ∈ A
2 → (x1, x2 + P(x1)) ∈ A

2

where P ∈ A1 is any polynomial. These are automorphisms of A
2 which form a group isomorphic

to the additive group of A1.

6.2.14 We consider the projective case only, the affine one being trivial. Let Z̄ be the projective
twisted cubic. We have the homeomorphism ψ : P

1 → Z̄ considered in Sect. 3.2.2, which is a
morphism. Its inverse sends [x0, x1, x2, x3] ∈ Z̄ to [x0, x1] if x0 
= 0, or to [x2, x3] if x3 
= 0, hence
it is also a morphism.

6.2.17 This is a standard theorem in elementary affine geometry.

6.2.19 This is a standard theorem in elementary projective geometry, or, if you wish, in the classi-
fication of quadratic forms over an algebraically closed field K with char(K) 
= 2.

6.2.20 It suffices to prove the assertion for the conic Z with equation x22 = x0x1. In this case an
isomorphism with P

1 is given by the map

φ : [λ,μ] ∈ P
1 → [λ2,λμ,μ2] ∈ Z .

6.2.24 If f ∈ ker(φ∗) is non-zero, then f ◦ φ is zero in A(V ). Then φ(V ) ⊆ ZW ( f ) � W and
φ(V ) is a proper closed subset of W . Conversely, if φ(V ) is a proper closed subset of W , there is a
polynomial f such that φ(V ) ⊆ Za( f ), with f /∈ Ia(W ). Then f determines a non-zero function
such that f ∈ ker(φ∗).

6.2.25 If f ∈ O(U ) ⊆ K (A1) ∼= K(x1), then f = h(x1)
g(x1)

, where Za(g)⊆{a1, . . . , an}. In particular

x1 − ai and (x1 − ai )−1 are both inO(U ); for all i = 1, . . . , n. Since x1 − ai is non-constant, this
proves that U is not isomorphic to A

1.

6.2.26 Since V is isomorphic to a projective variety, then O(V ) = A(V ) = K. This implies that
Ia(V ) is a maximal ideal, hence V is a point.

6.2.27 Let V be a projective variety and W an affine variety. Then φ ∈ M(V,W ) corresponds to
the K-algebras homomorphism φW : A(W ) → O(V ) = K. If A(W ) = K[x1, . . . , xn]/Ia(W ), set
φW (xi ) = ai ∈ K, for i = 1, . . . , n. Then for all P ∈ V one has φ(P) = (a1, . . . , an) ∈ W .

6.2.28 The morphism φ corresponds to the K-algebras homomorphism

φ∗ : f (x1, x2) ∈ A(V ) → f (t3, t2) ∈ A1

which is not surjective because t /∈ im(φ∗). The inverse of φ restricted to V \ {0} is the map
(x1, x2) �→ x2

x1
, so its is a morphism.

6.2.29 Consider the map
φ : x ∈ K → x p ∈ K.

This is an isomorphism, called the Frobenius isomorphism. It fixes all the points of the fundamental
field Fp ⊂ K. If f (x1, . . . , xn) ∈ An , we denote by fφ(x1, . . . , xn) the polynomial obtained by
applying φ to all the coefficients of f . In this way we get a map

φ̄ : f ∈ An → fφ ∈ An
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which is a ring (but not aK-algebra) isomorphism.Moreover φ̄ preserves degrees and homogeneous
polynomials. Sinceφ is bijective, also theFrobeniusmorphisms F are bijective.Moreover, if f ∈ Sn ,
one has

f (x p
1 , . . . , x p

n ) =
(
φ̄−1( f )(x1, . . . , xn)

)p
,

hence, if f is homogeneous, one has F−1(Z p( f )) = Z p(φ̄
−1( f )) and F(Z p( f )) = Z p(φ̄( f )).

So F is a homeomorphism. To see that F is not an isomorphism, it suffices to see it is not an
isomorphism on A

n . The map F corresponds to the homomorphism

F∗ : f (x1, . . . , xn) ∈ An → f (x p
1 , . . . , x p

n ) ∈ An

which is clearly not surjective.

6.2.30 By Corollary 6.2.3, (b), it suffices to show that O(A2 \ {0}) = A2. To see this, remark that
the inclusion A

2 \ {0} ⊂ A
2, determines an inclusion A2 ⊆ O(A2 \ {0}). We want to see that also

the opposite inclusion holds. One has O(A2 \ {0}) ⊆ K (A2) = Q(A2). So, if f ∈ O(A2 \ {0}),
we can write f = g

h , with g, h ∈ A2 which we can assume to be coprime. If h ∈ K \ {0}, then
f ∈ A2 as wanted. Assume h /∈ K \ {0}. If P ∈ Za(h) \ {0}, there is an open neighborhood U of

P in A
2 \ {0}, such that in U the function f writes as f = g′

h′ , with h′(Q) 
= 0, for all Q ∈ U . In

U \ (U ∩ Za(h)) one has g
h = g′

h′ , hence we have there also gh′ = hg′, and then this relation holds
in the whole of A

2. Since g is prime with h, then h divides h′, hence h′(P) = 0, a contradiction.
This prove that h ∈ K \ {0} and we are done.

6.2.31 The argument is very similar to the one for the solution of Exercise 6.2.30.

6.2.32 If Z ⊆ A
n is a closed subset, then A(Z) = An/Ia(Z) is finitely generated with no nilpotent

elements because Ia(Z) is radical. The converse is proved as in Corollary 6.2.3, (b).

6.3.6 Imitate the proof of Lemma 6.3.1.

6.4.4 If f (vi0...in ) ∈ K[vi0 ...in ]i0+···+in=d is a homogeneous polynomial, then f d ∈ [Sn]d , hence
there is a polynomial g(vi0...in ) ∈ K[vi0 ...in ]i0+···+in=d such that f d = ϑn,d (g). Then vn,d (Z p( f )) =
Vn,d ∩ Z p(g), and this proves that vn,d is closed, so it is a homeomorphism. It remains to prove
that for any point P ∈ P

n , the map (vn,d )
∗
P is an isomorphism, i.e., by Proposition 6.3.3, (a), that it

is surjective. If [U, f ] ∈ OPn ,P , we may assume that f = g
h , with g, h homogenous polynomials

of the same degree a and h non-zero in U . If k is a homogenous polynomial of degree αd − a,
with α � 0, non-zero in P , in a suitable neighborhood of P we have g

h = gk
hk . On the other hand

there are polynomials G, H ∈ K[vi0 ...in ]i0+···+in=d , both homogenous of degree α, such that gk =
ϑn,d (G) and hk = ϑn,d (H), so that [U, f ] = (vn,d )

∗
P [Vn,d \ (Vn,d ∩ Z p(H)), G

H ], which proves
the required surjectivity.

6.4.10 Suppose we have a relation
∑n

j=0 λ j f j = 0. Computing at (νi ,μi ) we get λi
∏

j 
=i (μ jνi −
ν jμi ) = 0, which implies λi = 0.

6.4.12 By applying the fundamental theorem of projectivities (see Exercise 1.6.9) we may assume
that the points in question are the vertices of the fundamental pyramid, the unitary point and another
point [p0, . . . , pn], with p0, . . . , pn non-zero and not equal. Then the rational normal curve in
question is the one constructed as in Exercise 6.4.12, where μ0 = . . . = μn = 1 and νi = 1

pi
, for

i = 0, . . . , n.

6.4.14 One has that P
n \ V is isomorphic to Vn,d \ (Vn,d ∩ V ′) ⊆ P

N (n,d) \ V ′ ∼= A
N (n,d). (see

Exercise 6.4.14).

6.4.16 If X ∩ V = ∅ then, by Exercise 6.4.14, X would be isomorphic to an affine variety, and then
it would be a point by Exercise 6.2.26.

6.4.17 Remark that there are affine plane curves (which are closed subsets with topological dimen-
sion 1) which do not intersect. Then apply Exercise 6.4.16.
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6.4.18 For example P
n and Vn,d , with d > 1, are isomorphic but S(Pn) = Sn whereas S(Vn,d ) =

[Sn]d are not isomorphic as K-algebras, since they have a different minimal number of generators

as K-algebras.



Chapter 7
Rational Maps

7.1 Definition of Rational Maps and Basic Properties

Let V,W be quasi-projective varieties. Let us denote byK(V,W ) the set of all pairs
(U,φ), whereU is a non-empty open subset of V and φ ∈ M(U,W ). We define the
following relationR in K(V,W ):

(U,φ)R(U ′,φ′) if and only if φ|U∩U ′ = φ′
|U∩U ′ .

It is easy to verify, taking into account Proposition 6.2.6, that R is an equivalence
relation. The set K(V,W )/R is denoted by K (V,W ) and its elements are called
rational maps of V in W . The equivalence class of (U,φ) is denoted by [U,φ].
Proceeding as in Exercise 5.2.2, one sees that for any pair (U,φ) ∈ K(V,W ), there
is a pair (Ũ , φ̃) ∈ K(V,W ), such that (U,φ)R(Ũ , φ̃), and for any pair (U ′,φ′) such
that (U,φ)R(U ′,φ′), one has thatU ′ ⊆ Ũ . Then Ũ is called the definition set of the
rational map. The rational map determined by the pair (U,φ) ∈ K(V,W ) is often
denoted as φ : V ��� W .

There is an obvious injective map

θ : φ ∈ M(V,W ) → [V,φ] ∈ K (V,W ).

The image of this map is the set of rational maps whose definition set coincides with
V . We will identify these maps with the morphisms of which they are the images via
θ.

A rational map [U,φ] ∈ K (V,W ) is said to be dominant if φ : U → W is domi-
nant. This definition is well posed (see Exercise 7.1.6). Similarly one sees that given
[U,φ] ∈ K (V,W ), then φ(U ) is a closed subvariety of W which depends uniquely
from [U,φ] and not from the pair (U,φ). We say that φ(U ) is the image of the
rational map φ : V ��� W , and it is denoted by im(φ). Of course φ : V ��� W is
dominant onto im(φ).
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If V ′ ⊆ V is a subvariety, the rational map [U,φ] ∈ K (V,W ) is said to be defined
on V ′, if there is a pair (U ′,φ′) such that (U ′,φ′)R(U,φ) and V ′ ∩U ′ �= ∅. In this
case the rational map [V ′ ∩U ′,φ′

|V ′∩U ′ ] ∈ K (V ′,W ) is well defined and it is called
the restriction of [U,φ] to V ′. If K (V ′, V,W ) is the set of all rational maps of V to
W which are defined on V ′, we have the obvious restriction map

rV ′ : K (V ′, V,W ) → K (V ′,W )

which, for morphisms, coincides with the restriction.
Let Z be again a variety and consider [U,φ] ∈ K (V,W ), [U ′,ψ] ∈ K (im(φ),W,

Z). Since φ(U ) ∩U ′ �= ∅, one has also φ(U ) ∩U ′ �= ∅, hence φ−1(φ(U ) ∩U ′) =
U ′′ is a non-empty open subset ofU , where the morphism ψ ◦ φ is defined. It is easy
to check that [U ′′,ψ ◦ φ] is a well defined element of K (V, Z) which is called the
rational map composed of [U,φ] and [U ′,ψ]. Note that dominant rational maps can
be always composed. Hence it makes sense to consider the category whose objects
are quasi-projective varieties and the morphism are dominant rational maps. Two
varieties which are isomorphic in this category are said to be birationally equivalent
or simply birational and the isomorphisms in this category are called birational
maps or birational transformations. So a birational transformation between the quasi-
projective varieties V andW is a dominant rational map φ : V ��� W such that there
is a dominant rational map ψ : W → V such that ψ ◦ φ = idV and φ ◦ ψ = idW .
Then one writes ψ = φ−1.

Let again V,W be quasi-projective varieties and let V ′ [resp. W ′] a subvariety
of V [resp. of W ]. Let φ : V ��� W which is defined in V ′ and the image of φ|V ′ =
rV ′(φ) containsW ′. Let f ∈ OW,W ′ ⊆ K (W ).We can consider the composed rational
function of φ and f , which we denote as f ◦ φ. Then f ◦ φ ∈ K (V ), but it is clear
that it is defined on V ′, so that f ◦ φ ∈ OV,V ′ . This way we have a map

φ∗ : OW,W ′ → OV,V ′

and it is easy to see that this is aK-algebras homomorphism. If V = W and V ′ = W ′
and φ = idV then φ∗ = idOV,V ′ . Finally, if Z is a third variety, Z ′ is a subvariety of
Z and ψ : W ��� Z is such that

ψ∗ : OZ ,Z ′ → OW,W ′

can be considered, then, as it is easy to check, one has φ∗ ◦ φ∗ = (ψ ◦ φ)∗.

Lemma 7.1.1 In the above setting, if W ′ coincides with the image of φ|V ′ , then

φ∗(mW,W ′) ⊆ mV,V ′ .

Proof By Lemma 5.5.2 and Proposition 6.3.2 we may assume that V, V ′,W,W ′ are
all affine and φ is a morphism. Then φ corresponds to a K-algebras homomorphism
φ∗ : A(W ) → A(V ) and φ|V ′ corresponds to the homomorphism (φ|V ′)∗ : A(W ) →
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A(V ′) = A(V )/IV (V ′), which is composed of φ∗ and of the canonical map π :
A(V ) → A(V ′). On the other hand, since φ(V ′) = W ′, we have that φ|V ′ can be
interpreted as a dominant morphism of V ′ onto W ′, and this implies that (φ|V ′)∗
factors through the canonical map π′ : A(W ) → A(W ′) = A(W )/IW (W ′). Hence
φ∗(IW (W ′)) ⊆ IV (V ′). Since

φ∗ : OW,W ′ = A(W )IW (W ′) → OV,V ′ = A(V )IV (V ′)

is induced by φ∗ : A(W ) → A(V ), the assertion follows. �

In particular, ifφ is dominant and V = V ′ andW = W ′, one has a homomorphism
of fields φ∗ : K (W ) → K (V ), which, being non-zero, is injective. If φ is birational,
then φ∗ : K (W ) → K (V ) is an isomorphism, hence the field of rational functions is
invariant under birational transformations.

Theorem 7.1.2 Let V,W be quasi-projective varieties, V ′,W ′ subvarieties of V,W
respectively, and let

α : OW,W ′ → OV,V ′

be a K-algebra homomorphism such that

α(mW,W ′) ⊆ mV,V ′ . (7.1)

Then there is a unique rational map φ : V ��� W, defined on V ′ and inducing on V ′
a dominant rational map onto W ′ such that α = φ∗. Moreover α is injective if and
only if φ is dominant.

Proof Let U ′ be an affine open subset of W such that U ′ ∩ W ′ �= ∅. Then A(U ′)
is a finitely generated K-algebra, and let ξ1, . . . , ξn be a set of generators of A(U ′).
Since A(U ′) ⊆ OW,W ′ ∼= OU ′,U ′∩W ′ , we may interpret α(ξ1), . . . ,α(ξn) as rational
functions on V defined on V ′. Let U be an open affine subset of V such that U ∩
V ′ �= ∅, on which α(ξ1), . . . ,α(ξn) are all defined. So α determines a K-algebras
homomorphism α′ : A(U ′) → A(U ), hence a morphism φ : U → U ′ (see Theorem
6.2.2), thus we have a rational map φ : V ��� W defined on V ′.

Note that

OW,W ′ ∼= A(U ′)IU ′ (W ′∩U ′), OV,V ′ ∼= A(U ′)IU (V ′∩U ),

and α comes, as an obvious extension, from α′ and it is just equal to φ∗. Hence if α
is injective, so is also α′, thus φ is dominant (see Exercise 6.2.24); conversely, if φ
is dominant, then α′ is injective and α is injective as well.

Let now f ∈ mW,W ′ . By (7.1), α′ sends f to a function regular on U , which
vanishes on U ∩ V ′: this implies that φ(V ′ ∩U ) ⊆ W ′ ∩U ′. Let us prove that the
restriction of φ to V ′ is dominant onto W ′. For this, note that φ|V ′∩U corresponds
a homomorphism φ∗

|V ′∩U : A(U ′ ∩ W ′) → A(U ∩ V ′), where we can assume that
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both V ′,W ′ are closed. On the other hand, by (7.1), α induces an injective homo-
morphism of the residue field K (W ′) of OW,W ′ to the residue field K (V ′) of OV,V ′ .
This homomorphism extends φ∗

|V ′∩U , which is therefore injective, and this proves
that φ|V ′ is dominant onto W ′.

Let us prove finally the uniqueness of φ. If φ′ : V ��� W is such that α = (φ′)∗,
then, repeating the above argument,we see thatφ′ coincideswithφonU and therefore
φ = φ′. �

Corollary 7.1.3 Let V,W, V ′,W ′ be as in the statement of Theorem 7.1.2. The fol-
lowing are equivalent:

(a) there is a birational map φ : V ��� W, defined on V ′ such that φ|V ′ induces a
birational transformation of V ′ onto W ′;

(b) OV,V ′ and OW,W ′ are isomorphic as K-algebras;
(c) there is an open subset U of V such that U ∩ V ′ �= ∅, an open subset U ′ of W

such thatU ′ ∩ W ′ �= ∅, andan isomorphismφ : U → U ′ such thatφ(U ∩ V̄ ′) =
U ′ ∩ W̄ ′.

Proof It is clear that (a) implies (b). Theorem 7.1.2 implies that (b) implies (a). It is
again obvious that (c) implies (a). Let us prove that (a) implies (c).

Let [U0,φ] be a birational map of V onto W , defined on V ′, such that U0 ∩
V ′ �= ∅ and such that [U0 ∩ V ′,φ|U0∩V ′ ] is a birational map of V ′ onto W ′. Let
[U ′

0,ψ] be the inverse of φ, so that ψ ◦ φ is represented by [U0 ∩ φ−1(U ′
0),ψ ◦ φ]

andφ ◦ ψ by [U ′
0 ∩ ψ−1(U0),φ ◦ ψ]. Sinceψ ◦ φ = idV andφ ◦ ψ = idW , thenψ ◦ φ

is the identity on U0 ∩ φ−1(U ′
0) and φ ◦ ψ is the identity on U ′

0 ∩ ψ−1(U0). Let us
set U = φ−1(U ′

0 ∩ ψ−1(U0)) and U ′ = ψ−1(U0 ∩ φ−1(U ′
0)). One has φ(U ) ⊆ U ′

0 ∩
ψ−1(U0). If P ∈ U ′

0 ∩ ψ−1(U0) one has φ(ψ(P)) = P , hence P ∈ ψ−1(φ−1(U ′
0)),

and therefore

P ∈ ψ−1(φ−1(U ′
0)) ∩ ψ−1(U0) = ψ−1(φ−1(U ′

0) ∩U0) = U ′.

So φ(U ) ⊆ U ′. Similarly ψ(U ′) ⊆ U , and clearly φ and ψ induce isomorphisms
betweenU andU ′. Moreover φ|U∩V ′ is a birational morphism ofU ∩ V ′ toU ′ ∩ W̄ ′.
Since φ(U ∩ V ′) is dense in U ′ ∩ W̄ ′ and φ is closed on U , the final part of (c)
follows. �

Corollary 7.1.4 The correspondence that to any variety V associates the field K (V )

and to any dominant rational map φ : V ��� W associates the K-algebra injective
homomorphismφ∗ : K (W ) → K (V ), is a contravariant functor, which is an equiva-
lence of categories between the category of varieties and the category of fields which
are finitely generated extensions of K.

Proof ByTheorem 7.1.2 and Corollary 7.1.3 applied to V = V ′ andW = W ′, hence
OV,V ′ = K (V ) and OW,W ′ = K (W ), it suffices to prove that the functor in ques-
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tion is surjective. Let K be a finitely generated extension of K, and let ξ1, . . . , ξn
be a set of generators of K . Then K = Q(K[ξ1, . . . , ξn]), and on the other hand
K[ξ1, . . . , ξn]) = A(V ) for some affine variety V ⊆ A

n . The assertion follows by
Theorem 5.5.3, (c). �

The birational transformations of a variety V to itself form, with the operation of
composition, a group which is denoted by Bir(V ), and it contains, as a subgroup,
the group of automorphisms of V , i.e., the isomorphisms of V to itself. In particular
Bir(Pn) is called the Cremona group of Pn and its elements are called Cremona
transformations of Pn .

Exercise 7.1.5 Prove that R is an equivalence relation in K(V,W ).

Exercise 7.1.6 Prove that the definition of dominant rational map is well posed.

Exercise 7.1.7 *Let V be a quasi-projective variety. Prove that a rational function f ∈ K (V ) can
be interpreted as a rational function f : V ��� P

1.

Exercise 7.1.8 *Prove that any quasi-projective variety is birationally equivalent to any of its
non-empty open subsets.

Exercise 7.1.9 Let V,W, V ′,W ′ be quasi-projective varieties, α : V ��� V ′, β : W ��� W ′ bira-
tional maps, φ : V ��� W a dominant rational map. Prove that there is a unique dominant rational
map φ′ : V ′ → W ′ such that φ′ ◦ α = β ◦ φ.

Exercise 7.1.10 *Prove that any rational map φ : P1 ��� P
n is everywhere defined, hence it is a

morphism.

Exercise 7.1.11 *Let A be a non-zero matrix on K of type (n + 1) × (m + 1) of rank r with
1 � r � n + 1. The set of points [x] ∈ P

n such that x · A = 0 is a subspace of dimension n − r that
we will denote by PA. The map

τA : [x] ∈ P
n \ PA → [x · A] ∈ P

m

is well defined and it is amorphism from the open setUA = P
n \ PA toPn , that determines a rational

map τA : Pn ��� P
m , which is called a generalized projectivity. This is an actual projectivity if

r = n + 1, in which case PA = ∅. If r � n, the map is also called a degenerate projectivity with
centre PA.

Prove that a degenerate projectivity is dominant onto a subspace of Pm of dimension r − 1.
Prove that if r = 1 then τA is constant, hence it is everywhere defined. Prove that if r > 1 the

definition set of τA is UA.

Exercise 7.1.12 *Let P1 be a subspace of dimension n − r , with r � 1 of Pn , and let P2 be another
subspace of Pn of dimension r − 1, which are skew, i.e., such that P1 ∩ P2 = ∅. By Grassmann for-
mula, one has thenP1 ∨ P2 = P

n . For every point P ∈ P
n \ P1, the subspaceP1 ∨ P has dimension

n − r + 1 which, again by Grassmann formula, intersects P2 in a point P ′. Consider the map

τ : P ∈ P
n \ P1 → P ′ = (P1 ∨ P) ∩ P2 ∈ P2

called projection of Pn onto P2 with centre P1. Prove that this is a degenerate projectivity which
is surjective onto P2. Prove that given two points P, Q ∈ P

n \ P1, then τ (P) = τ (Q) = P ′ if and
only if P ∨ P1 = Q ∨ P1 = P ′ ∨ P1.
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Exercise 7.1.13 *Prove that if τA : Pn ��� P
m is a degenerate projectivity with A of rank r , then

there are two projectivities α : Pn → P
n and β : Pm → P

m , and a projection σ : Pn ��� P2 ∼=
P
r−1 ⊆ P

m such that τ = β ◦ σ ◦ α.

Exercise 7.1.14 *Consider An as embedded in P
n and consider the projection τ of Pn onto P2,

of dimension r − 1 � 0, from a centre P1 of dimension n − r . Suppose that P2 is not contained
in the hyperplane at infinity of An , so that A2 := P2 \ (P2)∞ is an affine subspace of dimension
r − 1 of An . The restriction of τ to A

n \ (An ∩ P1) is called projection of A
n on A2 with centre

A1 = A
n ∩ P1 if A1 �= ∅, or projection of An on A2 parallel to the direction of P1, if A1 = ∅ (see

Exercise 1.6.20 for a special case of this situation). Prove that the latter projection is a surjective
morphisms onto A2.

Exercise 7.1.15 *Prove that any affine map between affine spaces is the composite of parallel
projections and affinities.

Exercise 7.1.16 *Consider a projection of An on A2 with centre A1 = A
n ∩ P1 with A1 �= ∅.

Prove that this is a rational map which is not a morphism, unless r = 1, in which case it is constant.

Exercise 7.1.17 Consider the rational function f = x1
x0

on P
2. What is its definition set? We can

consider x1
x0

also as a rational map f : P2 ��� P
1, by writing it as f [x0, x1, x2] = [x0, x1]. As a

rational map of P2 to P1, what is its definition set?

Exercise 7.1.18 Consider V an affine or projective variety. The restriction to V of a projection on
a given subspace P2 from a certain centre P1 not containing V is a rational map of V in P2, still
called projection of V to P2 with centre P1. Prove with an example that the definition set of such a
projection can be bigger than V \ P1.

Exercise 7.1.19 Consider the following rational map

φ : [x0, x1, x2] ∈ P
2 ��� [x1x2, x0x2, x0x1] =

[ 1

x0
,
1

x1
,
1

x2

]
∈ P

2.

Prove that this is a involutoryCremona transformation, i.e.,φ = φ−1. It is called a standardquadratic
transformation of P2, together with all its composition with a projectivity of P2.

Exercise 7.1.20 Continue Exercise 7.1.19. Set A = [1, 0, 0], B = [0, 1, 0],C = [0, 0, 1] and a =
B ∨ C, b = A ∨ C, c = A ∨ B. Set U = P

2 \ {a, b, c}. Prove that φ is an isomorphism of U to
itself, and φ2 = idU .

Exercise 7.1.21 Continue Exercise 7.1.20. Prove that φ(a \ {B,C}) = A, φ(b \ {A,C}) = B,
φ(c \ {A, B}) = C . This is expressed by saying that φ contracts the lines a, b, c to the points
A, B,C respectively, and the points A, B,C are blown-up to the lines a, b, c respectively. Set
U ′ = P

2 \ {A, B,C}. Prove that U ′ is the set of definition of φ.

Exercise 7.1.22 Continue Exercise 7.1.21. Consider a line r containing the point A different from b
and c, with equation λx1 + μx2 = 0. Prove that φ(r \ {A}) is the line with equation μx1 + λx2 = 0,
which cuts the line a in the point R = [0,−λ,μ]. Prove that the mapwhich sends the line r different
from b and c through A to the point R in a, and the lines b, c to the points B, C respectively, is a
projectivity from the pencil (A) of lines through A (considered as a line in P̌2), and the line a.

Similar discussion can be made for the point B [resp. C] in relation with the line b [resp. c].

Exercise 7.1.23 Continue Exercise 7.1.22. Consider a line r which does not pass through any
of the points A, B,C , so that it has equation of the form αx0 + βx1 + γx2 = 0, with α,β, γ not
zero. Prove that the image of r is the conic � with equation αx1x2 + βx0x2 + γx0x1 = 0 passing
through the points A, B,C . Prove that the tangent lines to the conic � at A, B,C correspond in the
projectivities considered in Exercise 7.1.22 to the intersection points of r with the lines a, b, c.
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Exercise 7.1.24 Continue Exercise 7.1.23. Prove that any irreducible conic � passing through the
points A, B,C , hence with equation αx1x2 + βx0x2 + γx0x1 = 0 is such that φ(� \ {A, B,C}) is
the line r with equation αx0 + βx1 + γx2 = 0.

Exercise 7.1.25 Prove that Bir(P1) = Aut(P1).

Exercise 7.1.26 *Prove that Aut(P1) coincides with the group of projectivities of P1 to itself.

Exercise 7.1.27 *Prove that any automorphism of the field K(x) as a K-algebra is obtained by
extending byK-linearity the map which sends x to an element of the type a+bx

c+dx , with ad − cb �= 0.

Exercise 7.1.28 Prove that ifφ : P1 \ {P1, . . . , Pr } → P
1 \ {Q1, . . . , Qs} is an isomorphism,with

P1, . . . , Pr and Q1, . . . , Qs distinct, then s = r .

Exercise 7.1.29 Prove that there is always an isomorphism φ : P1 \ {P1, . . . , Pr } →
P
1 \ {Q1, . . . , Qr }, with P1, . . . , Pr and Q1, . . . , Qr distinct, if r � 3. Prove that this is not always

the case if r � 4.

Exercise 7.1.30 Let L ⊆ Ln,d be a linear system of dimension m with base locus not containing
any divisor. Consider the map

φL : Pn \ Bs(L) → Ľ ∼= P
m

that sends a point P ∈ P
n \ Bs(L) to the hyperplane L(−P) of L (notation as in Sect. 1.6.5). Prove

that φL determines a rational map φL : Pn ��� P
m such that the image of φL is non-degenerate.

Prove that for any rational map φ : Pn ��� P
m such that the image of φ is non-degenerate there is

a positive integer d and a linear system L ⊆ Ln,d of dimension m such that φ = φL.

7.2 Birational Models of Quasi-projective Varieties

In this section we will prove a basic theorem which says any any quasi-projective
variety is birationally equivalent to a hypersurface in affine or projective space.Before
that we need the following results of algebra:

Lemma 7.2.1 Let k be an infinite field and let k(α1,α2) be an algebraic extension
with α2 separable on k. Then there exists an α ∈ k(α1,α2) such that k(α1,α2) =
k(α).

Proof Let f1(x), f2(x) be the minimal polynomials, of degrees n,m of α1,α2

respectively, and let α11 = α1, . . . ,α1n , α21 = α2, . . . ,α2m , be the roots of the two
polynomials in the algebraic closure of k. If m = 1 there is nothing to prove. So we
assumem > 1. Since α2 is separable, α21 = α2, . . . ,α2m are all distinct, so it makes
sense to consider the elements

α1i − α11

α21 − α2 j
, for i = 1, . . . , n, j = 2, . . . ,m,

and we can choose a ∈ k distinct from all these elements. So one has

α1i + aα2 j �= α11 + aα21 = α1 + aα2, for i = 1, . . . , n, j = 2, . . . ,m.
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Set α = α1 + aα2 and let us prove that k(α1,α2) = k(α). It is clear that k(α) ⊆
k(α1,α2) so we need to prove that k(α1,α2) ⊆ k(α). And it suffices to prove that
α2 ∈ k(α), because α1 = α − aα2.

Note that f2(α2) = 0 and f1(α1) = f1(α − aα2) = 0, so that the twopolynomials
f2(x) and f1(α − ax) have a common root, hence they have a greatest common
divisor f (x) of positive degree in k(α)[x], which we can suppose to be monic. Now
f (x) has the root α2 and it does not have multiple roots, because α2 is separable.
Let us prove that f (x) has the only root α2 which will prove the assertion. If f (x)
had another root, this would be one among α22, . . . ,α2m , but none of these is also a
root of f1(α − ax), because α − aα2 j �= α1i , for i = 1, . . . , n, j = 2, . . . ,m. �

As an immediate consequence we have the:

Theorem 7.2.2 (Abel’s Theorem of the Primitive Element) If k is an infinite field
and k ⊆ k ′ is a separable, finite extension, then it is simple, i.e., there is an element
α ∈ k ′ such that k ′ = k(α).

Now we can prove the announced result:

Theorem 7.2.3 Every quasi-projective variety of transcendent dimension n is bira-
tionally equivalent to an irreducible hypersurface in An+1 or in Pn+1.

Proof By taking into account Exercise 7.1.8 it suffices to prove the assertion for
affine varieties, proving that such a variety is birationally equivalent to an affine
hypersurface.

So, let V ⊆ A
r be an affine variety with dimtr(V ) = n and consider K (V ) which

is finitely generated on K, with system of generators x1, . . . , xr , from which we
can extract a maximal system of algebraically independent elements over K, which
we may suppose to be x1, . . . , xn . We may also assume r > n, otherwise the asser-
tion is trivially true. Then every element y ∈ K (V ) algebraically depends on K

from x1, . . . , xn , i.e., there is a non-zero, irreducible polynomial f (t1, . . . , tn+1) ∈
K[t1, . . . , tn+1] such that f (x1, . . . , xn, y) = 0. Let y = xn+1. Let us prove that for
the corresponding polynomial f , there is an i = 1, . . . , n + 1, such that ∂ f

∂ti
�= 0.

Indeed, if this were not the case, then the polynomial f would be of the form

f (t1, . . . , tn+1) =
∑

i1...in+1

ai1...in+1 t
pi1
1 . . . t pin+1

n+1

with p = char(K). Then, if we set ai1...in+1 = bp
i1...in+1

and

g(t1, . . . , tn+1) =
∑

i1...in+1

bi1...in+1 t
i1
1 . . . t in+1

n+1

we would have f = g p against the irreducibility of f .
Suppose now that ∂ f

∂ti
�= 0. Then x1, . . . , xi−1, xi+1, . . . , xn+1 are algebraically

independent on K. Note in fact that xi algebraically depends on x1, . . . , xi−1, xi+1,



7.2 Birational Models of Quasi-projective Varieties 93

. . . , xn+1 because ti actually appears in f . Then if x1, . . . , xi−1, xi+1, . . . , xn+1 were
not algebraically independent on K, then the transcendence degree of K (V ) on K

would be smaller than n, a contradiction. By changing name to the variables, we
may assume that ∂ f

∂tn+1
�= 0, which shows that xn+1 is separable over K(x1, . . . , xn).

Since xn+2 is algebraic over this field, Theorem 7.2.2 implies that there is a
y ∈ K(x1, . . . , xn+2) ⊆ K (V ) such that K(x1, . . . , xn+2) = K(x1, . . . , xn, y). Iter-
ating this argument we see that finally K (V ) = K(z1, . . . , zn+1), where z1, . . . , zn
are algebraically independent over K and there is an irreducible polynomial f ∈
K[t1, . . . , tn+1], with ∂ f

∂tn+1
�= 0, such that f (z1, . . . , zn+1) = 0. If W = Za( f ) ⊂

A
n+1, it is now clear that K (W ) = K(z1, . . . , zn+1) = K (V ), so that, by Corollary

7.1.4, V is birational to W , as wanted. �
Exercise 7.2.4 *Let V ⊆ A

r be an affine varietywith dimtr(V ) = n. Prove that there is a projection
τ ofAr ontoAn+1 such that the restriction of τ toV is a birationalmorphismofV onto a hypersurface
of An+1.

7.3 Unirational and Rational Varieties

A variety V of transcendent dimension n is said to be unirational if there is a dom-
inant rational map φ : Pn ��� V . This is equivalent to say that there is an algebraic
extension K (V ) ⊆ K(x1, . . . , xn), where x1, . . . , xn are transcendent over K. The
variety V of transcendent dimension n is said to be rational if it is birationally equiva-
lent to Pn , i.e., if K (V ) ∼= K(x1, . . . , xn)with x1, . . . , xn transcendent overK. Every
rational variety is unirational, but the converse is not always true. A classical problem
in algebraic geometry is the one of understanding if and when unirationality implies
rationality. This problem is called Lüroth’s problem, in honor of J. Lüroth who in
1880 proved the following important theorem which we will prove in a while:

Theorem 7.3.1 (Lüroth Theorem) Any unirational curve is also rational.

There is a similar, much more difficult, result by Castelnuovo (1894) for surfaces
in characteristic zero: any unirational surface is rational. Only more recently it has
been proved that in general unirationality does not imply rationality for varieties of
transcendent dimension n � 3.

Let us focus on the proof of Lüroth Theorem 7.3.1. First we need the following
algebraic lemma:

Lemma 7.3.2 Let x be transcendent over a field k. Let θ = g(x)
h(x) ∈ k(x) \ k, with

GCD(g, h) = 1. Then x is algebraic over k(θ) of degree d = max{deg(g), deg(h)}.
Proof Let z be transcendent over k(x). Consider the polynomial

F(z) = h(z) − θg(z) ∈ k[θ, z]

which has degree d in z. One has F(x) = 0. Let us prove that F(z) is irreducible over
k(θ), which will imply the assertion. Note that θ is transcendent over k. Moreover
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cF = 1, with F as polynomial in z (see Sect. 2.1 for the definition of cF ). Hence by
Gauss Lemma 2.2.5, we have that F(z) is irreducible over k(θ) if and only if it is
irreducible over k[θ, z]. Suppose F(z) is reducible in k[θ, z]. Since F(z) has degree
1 in θ, we have F(z) = p(θ, z) · q(z), hence q(z) divides both h and g hence it is a
constant. �

We can now prove Lüroth Theorem in the following algebraic formulation:

Theorem 7.3.3 (LürothTheorem, algebraic formulation)Let x be transcendent over
a field k. Let L be a field transcendent over k and such that k ⊂ L ⊆ k(x). Then there
is an element θ ∈ L, transcendent over k, such that L = k(θ).

Proof The assertion is trivial if L = k(x). So we assume L �= k(x). First of all we
remark that k(x) is algebraic over L . Indeed, if β ∈ L \ k, then β ∈ k(x) \ k hence
k(x) is algebraic over k(β) ⊆ L (see Lemma 7.3.2). Let now z be an indeterminate
over L and consider the minimal polynomial of x over L

f (z) = a0 + a1z + . . . + zn ∈ L[z].

We have ai = gi (x)
hi (x)

, with gi , hi ∈ k[x] such that hi �= 0 (and also gi �= 0 if ai �= 0),
and gi , hi coprime, with i = 0, . . . , n − 1. Since x is transcendent over k, at least
one ai is not in k, for i = 0, . . . , n − 1. Let θ = g(x)

h(x) such a coefficient of f (z). We
will show that L = k(θ).

Let us multiply f (z) for the least common multiple of h0, . . . , hn−1. Then we
get a polynomial f (x, z) ∈ k[x, z], and one has c f = 1, with f as a polynomial in
(k[x])[z]. Consider the polynomial

p(z) = g(z) − θh(z) ∈ k[θ, z] ⊆ k(x)[z].

One has p(x) = 0, hence p(z) is divided by f (z) in k(θ)[z], hence also in k(x)[z].
Then the polynomial

�(x, z) = h(x)g(z) − g(x)h(z) ∈ k[x, z]

is divided by f (x, z) in k(x)[z]. Since c f = 1, byGauss Lemma 2.2.5 the polynomial
f (x, z) divides �(x, z) even in k[x, z], i.e., we have �(x, z) = f (x, z)q(x, z) with
q(x, z) ∈ k[x, z]. Now note that �(x, z) = −�(z, x), hence � has the same degree in
x and in z. This is also the degree of p(z), and it is d = max{deg(g), deg(h)}.

The degree of f (x, z) in x is at least d, because g and h are factors of coefficients
of f (x, z) of different powers of z. Since f divides �, we have that q ∈ k[z]. On the
other hand, since GCD(g, h) = 1, we have q ∈ k, thus � = f up to a constant factor.
Therefore deg(�) = deg( f ) both with respect to x and z. But [k(x) : L] = deg( f ),
[k(x) : k(θ)] � deg(p) = deg(�) = deg( f ). In conclusion we have [L : k(θ)] = 1,
as wanted. �
Remark 7.3.4 We notice that in the proof of Lüroth Theorem we do not need the
base field k to be algebraically closed.
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Exercise 7.3.5 *Consider in A
n , with n � 2, an irreducible hypersurface Z of degree d � 2 with

reduced equation of the form

fd−1(x1, . . . , xn) − fd (x1, . . . , xn) = 0

where fd−1, fd are non-zero homogeneous polynomials of degrees d − 1, d respectively. Note
that, being Z irreducible, fd−1, fd are coprime. Then we say that Z is a monoid with vertex 0. Any
hypersurface which is transformed of Z by an affinity is still called a monoid. Also the projective
closure of a monoid is called a (projective) monoid. Prove that every monoid is rational.

Exercise 7.3.6 Prove that the projection of a projective monoid Z in P
n from its vertex to a

hyperplane is a morphism (i.e., it is everywhere defined) if Z is an irreducible conic. The projection
of a projective monoid from its vertex to a hyperplane is called stereographic projection of the
monoid.

Exercise 7.3.7 Continue Exercise 7.3.5. Prove that if n � 3 then the stereographic projection of a
projective monoid Z from its vertex is not defined at the vertex.

Exercise 7.3.8 Consider a projective monoid Z with vertex P . Consider two distinct points
P1, P2 ∈ Z \ {P}. Let φ be the stereographic projection of Z from P . Then φ(P1) = φ(P2) if
and only if the line r = P1 ∨ P2 contains P and is contained in Z , and for all points Q ∈ r \ {P},
one has φ(Q) = φ(P1) = φ(P2).

Exercise 7.3.9 Continue Exercise 7.3.8. Suppose the projective monoid Z has equation

x0 fd−1(x1, . . . , xn) − fd (x1, . . . , xn) = 0.

and vertex P = [1, 0, . . . , 0]. Prove that if n � 3, the union of lines in Z through P is non-empty
and it has equation fd = fd−1 = 0. Prove that if n � 3 the inverse of the stereographic projection
from P is not a morphism.

Exercise 7.3.10 Prove that any irreducible quadric in Pn is a monoid, and it is therefore rational.

7.4 Solutions of Some Exercises

7.1.6 Suppose [U,φ] ∈ K (V,W ) is such that φ : U → W is dominant. Assume [U,φ] = [U ′,φ′].
Then

φ′(U ′) ⊇ φ′(U ′ ∩U ) = φ(U ′ ∩U ) ⊇ φ((U ∩U ′) ∩U ) = φ(U ).

The assertion follows.

7.1.7We can assume thatV ⊆ A
n is affine. Let f ∈ K (V ). Then f ∈ Q(A(V )) (seeTheorem5.5.3),

so f = g
h with g, h the classes in A(V ) of polynomials in An , with h /∈ Ia(V ). LetU = V \ ZV (h)

which is a non-empty open subset ofV . Then f determines themorphism P ∈ U → [h(P), g(P)] ∈
P
1, which in turn determines a rational function, still denoted by f , of V in P1.

7.1.9 This follows from Corollary 7.1.4. In fact, φ corresponds to an injective homomorphism
φ∗ : K (W ) → K (V ), α and β to isomorphisms α∗ : K (V ′) → K (V ) and β∗ : K (W ′) → K (W ),
soφ′ is uniquely determined since it corresponds to the injective homomorphismα∗ ◦ φ∗ ◦ (β∗)−1 :
K (W ′) → K (V ′).

7.1.10 There is a non-empty open subset U of P
1 in which φ is of the form φ([x0, x1]) =

[ f0(x0, x1), . . . , fn(x0, x1)], with f0, . . . , fn ∈ S2 homogeneous polynomials of the same degree
whichwe can assume to be coprime and for all [x0, x1] ∈ U , one has ( f0(x0, x1), . . . , fn(x0, x1)) �=
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0. Let now P = [y0, y1] be any point of P1. Then there is an i = 0, . . . , n such that fi (y0, y1) �= 0,
otherwise for all i = 0, . . . , n, we have that fi is divisible by x0y1 − x1y0, contrary to the assump-
tion that f0, . . . , fn are coprime. This implies that φ is everywhere defined.

7.1.11 The dominance onto a subspace ofPm of dimension r − 1 is clear. The cases r = 1, n + 1 are
trivial. Assume 1 < r < n + 1. If τA is defined in P ∈ P

n , then there exists an open neighborhood
U of P in Pn , and there are homogeneous polynomials of the same degree f0, . . . , fm ∈ Sn , not all
zero, such that

τA(Q) = [ f0(Q), . . . , fm(Q)], for all Q ∈ U.

If a0, . . . , am are the columns of A, we set gi (x) = x · ai , for i = 0, . . . ,m. Then in U ∩UA we
have also

τA(Q) = [g0(Q), . . . , gm(Q)],
hence in U ∩UA we have

rank

(
f0 f1 . . . fm
g0 g1 . . . gm

)
= 1. (7.2)

Since U ∩UA is a non-empty open subset of Pn , (7.2) holds everywhere in P
n . Fix now an i =

0, . . . ,m. Since r � 2, there is a j = 0, . . . ,m such that λgi �= g j for all λ ∈ K. Since fig j = f jgi ,
if gi = 0 then also fi = 0. If gi �= 0 then fi is divisible by gi . In any event, for all i = 0, . . . ,m if
gi (Q) = 0 then also fi (Q) = 0. This proves the assertion.

7.1.12Wecan change coordinates and assume thatP1 has equations x0 = · · · = xr−1 = 0 andP2 has
equations xr = · · · = xn = 0, so thatP2 canbe identifiedwithPr−1 with coordinates [x0, . . . , xr−1].
Then τ [x0, . . . , xn] = [x0, . . . , xr−1] and the assertions follow.

7.1.13 Given τ : Pn ��� P
m , one can change coordinates so that it has equations of the form

τ [x0, . . . , xn] = [x0, . . . , xr−1].
7.1.14 We can change coordinates in P

n and assume that P1 has equations x0 = · · · = xr−1 = 0,
P2 has equations xr = · · · = xn = 0, and A

n is the open set U0. Then A2 is still defined by the
equations xr = · · · = xn = 0 and the parallel projection is defined as

(x1, . . . , xn) ∈ A
n → (x1, . . . , xr−1, 0, . . . , 0) ∈ A2.

7.1.15 The affine map is of the form

τ : x ∈ A
n → a + x · A ∈ A

m

with A a matrix of type n × m and rank �. It suffices to remark that we can change coordinates in
A
n and A

m and assume that A is of the form
(

I� 0�,m−�

0n−�,n 0n−�,m−�

)

with obvious meaning of the symbols.

7.1.16We can find explicit equations for this projection. First of all change coordinates inAn so that
A2 is the subspace with equations xr = . . . = xn = 0. Note that there is a unique hyperplane Hr
containing A1 and parallel toA2, i.e., such that its projective closure intersects Ā2 = P2 in (A2)∞.
Suppose that this hyperplane has equation fr (x1, . . . , xn) = 0. Note that this hyperplane does not
pass through the origin, hence in fr there is a constant term, which we can suppose to be 1, in this
way fr is uniquely determined. Note also that the system fr = xr = . . . = xn = 0 is incompatible,
so in fr the variables x1, . . . , xr−1 do not appear.

Consider now, for any i = 1, . . . , r − 1, the unique hyperplane Hi containing A1 and the sub-
space with equations xi = xr = . . . = xn = 0, and let fi (x1, . . . , xn) = 0 be an equation of Hi .
The hyperplane Hi passes through the origin, so fi is homogeneous of degree 1. Moreover the
variable xi appears in fi , whereas the variables x j with j < r and j �= i do not appear in fi .
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Indeed, fi (x1, . . . , xr−1, 0, . . . , 0) = 0 has the same solutions as xi = xr = . . . = xn = 0. Hence
we may assume that fi = xi − gi (xr , . . . , xn), with gi homogeneous, for i = 1, . . . , r − 1, and in
this way also fi is uniquely determined. Now H1, . . . , Hr are linearly independent hyperplanes
which intersect in A1. Moreover, if P = (p1, . . . , pn) /∈ Hr , then fr (p1, . . . , pn) �= 0 and we can
consider the system of linear equations

xi − gi (xr , . . . , xn) − pi − gi (pr , . . . , pn)

fr (p1, . . . , pn)
fr (x1, . . . , xn) = 0, i = 1, . . . , r − 1.

They are linearly independent, vanish on P and on A1 and define the affine subspace which joins
P with A1. Its intersection with A2 is the image of P , which therefore has coordinates

fi (p1, . . . , pn)

fr (p1, . . . , pn)
for i = 1, . . . , r − 1, and 0 for i = r, . . . , n.

Hence the projection is defined in the following way

(x1, . . . , xn) ∈ A
n \ Hr →

( f1(x1, . . . , xn)

fr (x1, . . . , xn)
, . . . ,

fr−1(x1, . . . , xn)

fr (x1, . . . , xn)
, 0, . . . , 0

)
∈ A2

and it is not defined on Hr .

7.1.17 As a rational map on P
2, the definition set of f is P2 \ Z p(x0). As a rational map of P2 to

P
1 this can be interpreted as the projection from P = [0, 0, 1], hence the definition set is P2 \ {P}.

7.1.18 Consider the projection P
n ��� P

n−1 of Pn to an hyperplane from a point P . Consider a
rational normal curve V containing P . The restriction of the projection to V is defined in P . Indeed,
V is isomorphic to P

1 and then apply Exercise 7.1.10.

7.1.25 This immediately follows by Exercise 7.1.10.

7.1.26 Suppose φ : P1 → P
1 is an automorphism. Then there are two non-constant, coprime, homo-

geneous polynomials f0(x0, x1), f1(x0, x1) of the same degree n > 0 such that φ([x0, x1]) =
[ f0(x0, x1), f1(x0, x1)]. There are also two non-constant, coprime, homogeneous polynomials
g0(x0, x1), g1(x0, x1) of the same degreem > 0 such that φ−1([x0, x1]) = [g0(x0, x1), g1(x0, x1)].
Consider the two homogeneous polynomials

Pi (x0, x1) = fi (g0(x0, x1), g1(x0, x1)), i = 0, 1

of the same degree nm. Since φ−1 ◦ φ = idP1 , we have

det

(
P0 P1
x0 x1

)
= 0

which implies that there is a homogeneous polynomial P(x0, x1) of degree nm − 1 such that
Pi = xi P , for i = 0, 1. We claim that P is constant. Suppose in fact P is of positive degree and let
(a0, a1) be a non-trivial solution of the equation P(x0, x1) = 0. Then

Pi (a0, a1) = fi (g0(a0, a1), g1(a0, a1)), i = 0, 1.

However (g0(a0, a1), g1(a0, a1)) �= (0, 0) because g0, g1 have no common factor. Moreover it can-
not be the case that fi (g0(a0, a1), g1(a0, a1)) = 0, for i = 0, 1, because also f0, f1 have no common
factor. This proves that P is constant and therefore nm = 1, hence n = m = 1, which implies that
φ is a projectivity.

7.1.27 By Exercise 7.1.27 any birational transformation of P1 is a projectivity, which is of the type

φ : [x0, x1] ∈ P
1 → [cx0 + dx1, ax0 + b1x1] ∈ P

1
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with

det

(
a b
c d

)
�= 0.

By interpreting, as usual, A1 as the open subset U0 of P1, the map φ corresponds to the birational
transformation

φ : x ∈ A
1 ��� a + bx

c + dx
∈ A

1

and this in turn corresponds to the automorphism of K(x) ∼= K (A1) which is K-linear and maps
x to a+bx

c+dx . Conversely, any automorphism of K(x) as a K-algebra, corresponds to a birational

transformation of A1, that determines a birational transformation of P1, which is a projectivity as
above.

7.2.4 Keep the notation of the proof of Theorem 7.2.3. We have that K (V ) = K(x1, . . . , xr ) is
isomorphic to K (W ) = K(z1, . . . , zn+1). By the proof of the Theorem of the Primitive Element, we
have relations of the type zi = ∑r

j=1 ci j x j , for i = 1, . . . , n + 1.Hence the isomorphism K (W ) →
K (V ) is induced by the K-algebras homomorphism

τ∗ : K[z1, . . . , zn+1] → K[x1, . . . , xr ]
which associates to zi the polynomial

∑r
j=1 ci j x j , for i = 1, . . . , n + 1. This in turn corresponds

to an affine map Ar → A
n+1 that, up to a change of coordinates, is a projection.

7.3.5 Consider Z̄ the projective closure of Z . The projection of Z̄ ⊂ P
n to the hyperplane H0 =

Z p(x0) from the point P = [1, 0, . . . , 0] is birational. To see this it suffices to prove that there is a
dominant rational map ψ : H0 ��� Z̄ which is the inverse of the projection

φ : [x0, . . . , xn] ∈ Z̄ \ {P} → [x1, . . . , xn] ∈ H0.

Consider the closed subsets Z1 = Z p( fd−1), Z2 = Z p( fd ) of H0 = P
n−1, and the non-empty open

subset U = H0 \ (Z1 ∩ Z2). Define ψ as follows:

ψ : [x1, . . . , xn] ∈ U → [ fd (x), x1 fd−1(x), . . . , xn fd−1(x)] ∈ Z̄ .

It is easy to verify that φ and ψ are inverse of each other.

7.3.6 If Z̄ is an irreducible conic, then, up to projectivity, Z̄ has equation of the form x0x1 − x22 = 0
which is a monoid with vertex P = [1, 0, 0], and the projection from P is a morphism by Exercise
7.1.10 (because the conic is a rational normal curve and, as such, it is isomorphic to P

1).

7.3.7 Keep the notation of the solution to Exercise 7.3.5. If Q ∈ X = Z1 \ (Z1 ∩ Z2), thenψ(Q) =
P . Since fd−1, fd are coprime, there are certainly points in X and such points are infinitely many
if n > 2. In this case φ cannot be defined at the vertex.

7.3.8 If φ(P1) = φ(P2) it is clear that r = P1 ∨ P2 contains P . We may assume that P =
[1, 0, . . . , 0] and that we are projecting on the hyperplane H0 = Z p(x0). Then if P1 = [a0, . . . , an],
P2 = [b0, . . . , bn], we may assume that ai = bi for i = 1, . . . , n. Suppose Z has equation

x0 fd−1(x1, . . . , xn) − fd (x1, . . . , xn) = 0.

We have the relations

a0 fd−1(a1, . . . , an) − fd (a1, . . . , an) = 0, b0 fd−1(b1, . . . , bn) − fd (b1, . . . , bn) = 0.

Multiplying the first relation by λ and the second by μ, and adding up, we obtain

(λa0 + μb0) fd−1(a1, . . . , an) − fd (a1, . . . , an) = 0
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which proves that the line r is all contained in Z . The last assertion is obvious.

7.3.9 Any point in Z p( fd , fd−1) is clearly contained in Z . The same proof of Exercise 7.3.7
implies that the points in Z p( fd , fd−1) lie on lines in Z passing through the vertex P . As for the
final assertion, note that the intersection of the set of points Z p( fd , fd−1) with the hyperplane
H0 = Z p(x0) on which we project, are certainly points where the inverse of the stereographic
projection cannot be defined.

7.3.10 First prove that there is a point P on the quadric X such that there is another point Q ∈ X such

that the line P ∨ Q is not contained in X . Then change coordinates and assume P = [1, 0, . . . , 0].
Then the equation of X becomes x0 f1(x1, . . . , xn) + f2(x1, . . . , xn) = 0, with f1, f2 non-zero,

coprime homogeneous polynomials of degrees 1, 2 respectively. Then X is a monoid with vertex

P .



Chapter 8
Product of Varieties

8.1 Segre Varieties

The product of two affine spaces is an affine space and the product of affine varieties
is in a natural way an affine variety. By contrast, the product of projective spaces is
not a projective space. In this chapter we will give a structure of a projective variety
on the product of projective spaces, which will make it possible to define the general
concept of product of quasi–projective varieties.

Let n, m be non–negative integers, and consider A(n+1)(m+1), whose points can
be identified with matrices w = (wi j )i=0,...,n, j=0,...,m of type (n + 1) × (m + 1) on
the field K. Accordingly, the points of Pnm+n+m , quotient of A(n+1)(m+1) \ {0} by
proportionality, can be identified with proportionality equivalence classes [w] of
non–zero matrices of type (n + 1) × (m + 1) on K.

Now consider the set

Segn,m = {[w] ∈ P
nm+n+m : rank(w) = 1}

which is well defined and it is a closed subset of Pnm+n+m . Indeed Segn,m is the set of
points [w] ∈ P

nm+n+m such that all order 2 minors ofw vanish, i.e., Segn,m is defined
by the homogeneous degree 2 equations

wi jwk� = wk jwi�, i, k = 0, . . . , n, j, � = 0, . . . , m.

Let [x] ∈ P
n and [y] ∈ P

m . The matrix xt · y (here xt denotes the (n + 1) × 1
matrix transpose of the vector x) is of type (n + 1) × (m + 1), the point [xt · y] ∈
P

nm+n+m is well defined (i.e., it depends only on [x] ∈ P
n and [y] ∈ P

m), and the
rank of xt · y is 1. Hence [xt · y] ∈ Segn,m .

Finally, given a matrix w of type (n + 1) × (m + 1) on K and rank 1, there
are vectors x, y of length n + 1 and m + 1 respectively, such that w = xt · y (see
Exercise8.1.3). This implies that the map
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σn,m : ([x], [y]) ∈ P
n × P

m → [xt · y] ∈ Segn,m

is well defined and surjective. It is also easy to see that it is injective (see Exer-
cise8.1.4).

In conclusion the closed subset Segn,m is in 1:1 correspondence with Pn × P
m via

the map σn,m . We will often interpret this 1:1 correspondence as an identification.

Proposition 8.1.1 The closed set Segn,m is irreducible.

Proof Consider the K–algebras homomorphism

σ ∗
n,m : Snm+n+m → Sn+m+1

defined in the following way. Let us interpret Snm+n+m as the coordinate ring of
P

nm+n+m , so that Snm+n+m = K[wi j ]i=0,...,n, j=0,...,m and set Sn+m+1 = K[x0, . . . ,
xn, y0, . . . , ym]. Then we define σ ∗

n,m by extending by K–linearity the map which
associates to wi j the monomial xi y j , for i = 0, . . . , n, j = 0, . . . , m. Note that σ ∗

n,m
is a homogeneous homomorphism of weight 2 and In,m := ker(σ ∗

n,m) is a homoge-
neous ideal (see the proof of Proposition6.4.1). It is moreover clear, by the bijectivity
of σn,m , that In,m = Ip(Segn,m).

Let now f, g be homogeneous polynomials in Snm+n+m , with f /∈ In,m and f g ∈
In,m . Then f (xi y j ) is a polynomial which is not identically zero in Sn+m+1, whereas
f (xi y j )g(xi y j ) is identically zero. This implies that g(xi y j ) is identically zero, i.e.,
g ∈ In,m . Hence In,m is a prime ideal and accordingly Segn,m is irreducible. �

So Segn,m is a subvariety of Pnm+n+m , which is called the Segre variety of type
(n, m). Sometimes we denote it by P

n × P
m , thinking to the identification given by

the map σn,m . In this way P
n × P

m is endowed with the Zariski topology. We will
also call a Segre variety any transformed of Segn,m via a projectivity of Pnm+n+m .

We can understand the Zariski topology of Pn × P
m intrinsically, in the following

way. Let us take a more general viewpoint. Consider a polynomial f (x1, . . . , xh) in
the variables xi = (xi0, . . . , xini ), for all i ∈ {1, . . . , h}, which is plurihomogeneous
of degreed = (d1, . . . , dh) (seeExample1.3.4). Let (P1, . . . , Ph) ∈ P

n1 × · · · × P
nh ,

with Pi = [pi ] = [pi0, . . . , pini ], i = 1, . . . , h. We say that (P1, . . . , Ph) is a zero of
f , and we write f (P1, . . . , Ph) = 0 if f (p1, . . . ,ph) = 0. By Exercise1.3.14 this
definition is well posed. The subset

Zs( f ) = {(P1, . . . , Ph) ∈ P
n1 × · · · × P

nh : f (P1, . . . , Ph) = 0}

is called the zero set of f . If F ⊆ Sn, with n = (n1, . . . , nh), one sets

Zs(F) =
⋂

f ∈F p

Zs( f ),

where F p is the set of plurihomogeneous polynomials in F . One has Zs(F) =
Zs((F p)), and there are plurihomogeneous polynomials f1, . . . , fm ∈ (F p) such
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that
Zs(F) = Zs( f1) ∩ · · · ∩ Zs( fm).

If this holds one says that

fi (x1, . . . , xh) = 0, i = 1, . . . , m

is a system of equations for Zs(F).
Consider now the family Cn

s of subsets of Pn1 × · · · × P
nh of type Zs(F), with

F ⊆ Sn as above. As we saw in Chap.1 in the affine and in the projective case, one
verifies that Cn

s can be considered as the family of closed subsets of a topology, which
is called the Zariski topology of Pn1 × · · · × P

nh .

Proposition 8.1.2 If we identify P
n × P

m with Segn,m via the map σn,m then the
Zariski topology of Pn × P

m coincides with the Zariski topology of Segn,m.

Proof Let f ∈ K[wi j ]i=0,...,n, j=0,...,m be a homogeneous polynomial of degree d.
Then f ′(x, y) = f (xi y j ) ∈ K[x0, . . . , xn, y0, . . . , ym] = S(n,m) is a bihomogeneous
polynomial of degree (d, d), and one has Zs( f ′) = σ−1(Z p( f )).

On the other hand, if f ′(x, y) = f ′(x0, . . . , xn, y0, . . . , ym) is bihomogeneous of
degree (d1, d2) and, for instance, d1 � d2, if we set e = d2 − d1, then f ′

i = xe
i f ′,

with i = 0, . . . , n, is bihomogeneous of degree (d2, d2). Since σ ∗
n,m is surjective

on the subalgebra
⊕

d∈N S(n,m),(d,d) of Sn+m+1, there are homogeneous polynomials
fi ∈ Snm+n+m,d2 such that f (xi y j ) = f ′

i , for i = 0, . . . , n. Then one has

σn,m(Zs( f ′)) = σn,m(Zs( f ′
1, . . . , f ′

n)) = Z p( f1, . . . , fn) ∩ Segn,m .

This implies the assertion. �
Exercise 8.1.3 Prove that given a matrix w of type (n + 1) × (m + 1) onK with rank 1, there are
vectors x, y of length n + 1 and m + 1 respectively, such that w = xt · y.
Exercise 8.1.4 Prove that the map σn,m is injective.

Exercise 8.1.5 Prove that Segre varieties Sn,m are non–degenerate, i.e., they are not contained in
any hyperplane of Pnm+n+m .

Exercise 8.1.6 * Prove that given projectivities ω1 : Pn → P
n and ω2 : Pm → P

m , there is a pro-
jectivity ω : Pnm+n+m → P

nm+n+m such that for all points (P, Q) ∈ Segn,m , one has ω(P, Q) =
(ω1(P), ω2(Q)).

8.2 Products

We start with the following:

Proposition 8.2.1 If V ⊆ P
n and W ⊆ P

m are quasi–projective varieties, then V ×
W ⊆ P

n × P
n is also a subvariety of Pn × P

n. If V, W are projective varieties, then
V × W is also projective.
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Proof We start by proving the final assertion. Suppose V = Z p( f1, . . . , fa) and
W = Z p(g1, . . . , gb), with fi (x) ∈ Sn , g j (y) ∈ Sm homogeneous, for i = 1, . . . a,

j = 1 . . . , b. Then we can consider fi , g j as homogeneous elements of S(n,m) and
fi = 0, g j = 0, with i = 1, . . . a, j = 1 . . . , b, is a system of equations for V × W
in Pn × P

n . The fact that V × W is irreducible can be proved as in Example4.1.2.
Let us now consider the general case. Suppose that V = V0 \ V1, W = W0 \ W1,

with V0, V1, W0, W1 closed subsets with V0, W0 irreducible. Then V × W = V0 ×
W0 \ (V0 × W1 ∪ V1 × W0), and, taking into account the first part of the proof, this
proves the assertion, since V0 × W0 is irreducible. �

If V, W are quasi–projective varieties, the variety V × W is called the product of
V and W . We recall that for affine varieties we already considered their product in
Example4.1.2 and in Sect. 8. As we shall soon see, the two notions coincide, up to
isomorphism.

Given V, W quasi–projective varieties us consider the two canonical projections

p1 : V × W → V, p2 : V × W → W.

Lemma 8.2.2 Given V, W quasi–projective varieties, the two projections p1, p2

are morphisms.

Proof It suffices to reduce to the case V = P
n , W = P

m and consider the first
projection p1. If ([x], [y]) ∈ P

n × P
m and if, for instance x0 	= 0 and y0 	= 0, then

([x], [y]), as a point of Segn,m has homogeneous coordinates [w], withw00 	= 0. Then
p1([x], [y]) = [w00, w10, . . . , wn0]. This proves the assertion by Proposition6.2.5.�

Let Z be a third quasi–projective variety and let f : Z → V and g : Z → W be
maps. Then we have a unique map

f × g : P ∈ Z → ( f (P), g(P)) ∈ V × W

such that p1 ◦ ( f × g) = f and p2 ◦ ( f × g) = g.

Lemma 8.2.3 In the above setting, f, g are morphisms if and only if f × g is a
morphism.

Proof If f × g is amorphism, then also f, g aremorphisms because of Lemma8.2.2.
Suppose that f, g aremorphisms. Let P be a point of Z . By Proposition6.2.5 there

is an open neighborhoodU of P in Z ⊆ P
r , and there are homogeneous polynomials

f0, . . . , fn ∈ Sr of the same degree and homogeneous polynomials g0, . . . , gm ∈ Sr

of the same degree, the former and the latter not all zero in U , such that for every
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Q ∈ U one has

f (Q) = [ f0(Q), . . . , fn(Q)] ∈ V ⊆ P
n, g(Q) = [g0(Q), . . . , gm(Q)] ∈ W ⊆ P

m .

Then for all Q ∈ U one has

f × g(Q) = [ fi (Q)g j (Q)]i=0,...,n, j=0,...,m ∈ V × W ⊆ P
nm+n+m,

where fig j are homogeneous polynomials of the same degree not all zero in U , for
i = 0, . . . , n, j = 0, . . . , m. Again by Proposition6.2.5, the assertion follows. �

From the two previous lemmas, we have the following:

Theorem 8.2.4 Let V, W be quasi–projective varieties, and let X be a quasi–
projective variety with two morphisms π1 : X → V , p2 : X → W , such that for any
quasi–projective variety Z and for any pair of morphisms f : Z → V , g : Z → W ,
there is a unique morphism φ : Z → X such that π1 ◦ φ = f , π2 ◦ φ = g, then there
is a unique isomorphism a : X → V × W such that π1 = p1 ◦ a and π2 = p2 ◦ a.

Proof By Lemma8.2.3, the morphism a = π1 × π2 is such that π1 = p1 ◦ a and
π2 = p2 ◦ a. Let us prove that a is an isomorphism. Because of the hypotheses,
there is a morphism b : V × W → X such that p1 = π1 ◦ b and p2 = π2 ◦ b. Then
b ◦ a : X → X is such that π1 = π1 ◦ (b ◦ a) and π2 = π2 ◦ (b ◦ a). Hence, by the
hypotheses, one has b ◦ a = idX . Similarly one verifies that a ◦ b = idV ×W , and this
proves the assertion. �

The previous theorem expresses the so called universal property of the product
of two varieties.

Corollary 8.2.5 The product of affine varieties defined in Example4.1.2 and in
Sect.8 coincides with the product we defined in this chapter.

Proof Let V, W be affine varieties and let X be the product V × W as defined in
Example4.1.2 and in Sect. 8. Recall that X is the affine variety corresponding to
the finitely generated K–algebra A(V ) ⊗K A(W ). Let π1 : X → V and π2 : X →
W be the projections, which are the morphisms corresponding to the K–algebras
homomorphisms

π∗
1 : f ∈ A(V ) → f ⊗ 1 ∈ A(V ) ⊗K A(W ),

π∗
2 : g ∈ A(W ) → 1 ⊗ g ∈ A(V ) ⊗K A(W ).

If Z is a quasi–projective variety and ( f, g) ∈ M(Z , V ) × M(Z , W ), then f, g cor-
respond to K–algebras homomorphisms

f ∗ : A(V ) → O(Z), g∗ : A(W ) → O(Z).
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Then, by the properties of the tensor product, there is a unique homomorphism of
K–algebras

f ∗ ⊗ g∗ :
∑

i, j

ai ⊗ b j ∈ A(V ) ⊗K A(W ) →
∑

i, j

f ∗(ai )g
∗(b j ) ∈ O(Z)

such that f ∗ = ( f ∗ ⊗ g∗) ◦ π∗
1 and g

∗ = ( f ∗ ⊗ g∗) ◦ π∗
2 . Then f ∗ ⊗ g∗ corresponds

to a unique morphism φ : Z → X such that f = π1 ◦ φ and g = p2 ◦ φ. Thus the
assertion is a consequence of Theorem8.2.4. �

Exercise 8.2.6 Prove that if V, W are quasi projective varieties then dimtr(V × W ) = dimtr(V ) +
dimtr(W ).

Exercise 8.2.7 * Prove the following properties of products:

(a) if V, W, V ′, W ′ are quasi–projective varieties, with V [resp. W ] isomorphic to V ′ [resp. to
W ′], then V × W is isomorphic to V ′ × W ′;

(b) if V, W are quasi–projective varieties, then V × W is isomorphic to W × V ;
(c) if V, W, Z are quasi–projective varieties, then (V × W ) × Z is isomorphic to V × (W × Z);

this variety is denoted by V × W × Z and is called the product of V, W and Z ;
(d) more generally, if V1, . . . , Vn are quasi–projective varieties, it is well defined their product

V1 × · · · × Vn as the variety (· · · ((V1 × V2) × V3) × · · · ) × Vn , which is isomorphic to Vi1 ×
· · · × Vin , where (i1, . . . , in) is any permutation of (1, . . . , n); the reader may state and prove
the analogue of Theorem8.2.4 for more than two factors;

(e) if V, W are quasi projective varieties and p1 : V × W → V and p2 : V × W → W are the
projections, then for any point P ∈ V [resp. any point Q ∈ W ] one has that p−1

1 (P) [resp.
p−1
2 (Q)] is isomorphic to W [resp. to V ];

(f) if V, W, Z are quasi–projective varieties and p1 : V × W → V and p2 : V × W → W are
the projections, a map f : Z → V × W is a morphism if and only if pi ◦ f are morphisms,
for i = 1, 2.

Exercise 8.2.8 Prove that Segre varieties Sn,m are rational.

Exercise 8.2.9 * Consider Pn with homogeneous coordinates [x0, . . . , xn] and A
m with coordi-

nates (y1, . . . , ym). Prove that the closed subsets of Pn × A
m are the subsets of Pn × A

m which are
formed by the pairs of points ([x0, . . . , xn], (y1, . . . , ym)) that are solutions of systems of equations
of the form

fi (x0, . . . , xn, y1, . . . , ym) = 0, i = 1, . . . , h

with fi polynomials, which are homogeneous in the variables x0, . . . , xn .

Exercise 8.2.10 Let V be a quasi–projective variety. Consider�V = {(P, P) ∈ V × V } the diag-
onal of the product. Prove that �V is a closed subset of V × V isomorphic to V .

Exercise 8.2.11 * Let V, W, Z be quasi–projective varieties and let f : V → Z , g : W → Z be
morphisms. Denote by V ×Z W the so called fibred product of V and W over Z , i.e., the subset
of V × W consisting of all pairs (P, Q) ∈ V × W such that f (P) = g(Q). Prove that V ×Z W is
closed in V × W . Give some example in which V ×Z W is not irreducible.

Exercise 8.2.12 * Continuing Exercise8.2.11, consider the case in which W = Z and g = idZ .
Then V ×Z W is the set of pairs (P, Q) ∈ V × W such that Q = f (P), i.e., this is the graph � f
of the function f . Prove that � f is isomorphic to V .
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Exercise 8.2.13 Consider the projective spaces P
n1 , . . . ,Pnr , in which we have homogeneous

coordinates [xi ] = [xi,0, . . . , xi,ni ], for i = 1, . . . , r . Consider the map

σn1,...,nr :([x1], . . . , [xr ]) ∈ P
n1 × · · · × P

nr →
→ [x1,i1 · · · xr,ir ]i1=0,...,n1,...,ir =0,...,nr ∈ P

(n1+1)···(nr +1)−1,

where the points of P(n1+1)···(nr +1)−1 have homogeneous coordinates

[wi1,...,ir ]i1=0,...,n1,...,ir =0,...,nr .

Prove that:

(a) the map σn1,...,nr is injective: via σn1,...,nr we will identify P
n1 × · · · × P

nr with its image
denoted by Segn1,...,nr

;
(b) Segn1,...,nr

is an irreducible closed subset of P(n1+1)···(nr +1)−1 called the Segre variety of type
(n1, . . . , nr ) (as well as any variety transformed of it via a projectivity);

(c) the Zariski topology in P
n1 × · · · × P

nr coincides with the inverse image via σn1,...,nr of the
Zariski topology on Segn1,...,nr

;
(d) Segn1,...,nr

is non–degenerate in P(n1+1)···(nr +1)−1.

Exercise 8.2.14 Continue Exercise8.2.13. Fix Pj ∈ P
n j for a given j = 1, . . . , r . Consider the

j th projection
p j : Pn1 × · · · × P

nr → P
n j .

Prove that σn1,...,nr (p−1
j (Pj )) is a Segre variety of type (n1, . . . , n j−1, n j+1, . . . , nr ).

Exercise 8.2.15 Work out a theory, analogous to the one in Chap.3, about the relations between
the closed subsets of Pn1 × · · · × P

nr and the ideals of S(n1,...,nr ). Prove in particular that a closed
subset Z of Pn1 × · · · × P

nr is irreducible if and only if the corresponding plurihomogeneous ideal
Is(Z) generated by the plurihomogeneous polynomials f ∈ S(n1,...,nr ) such that Z ⊆ Zs( f ), is a
prime ideal.

Exercise 8.2.16 Suppose that char(K) 	= 2. Prove that Seg1,1 is a maximal rank quadric in P
3,

i.e., it is such that its matrix has maximal rank 4. It is well known that for any two maximal rank
quadrics in P

3 there is a projectivity which sends one to the other. Prove that given any maximal
rank quadric X in P3, there are two distinct morphisms p1 : X → P

1, p2 : X → P
1, such that their

fibres, i.e., the counterimages of the points of P1, are lines in X . We set �i,x = p−1
i (x), with x ∈ P

1,
for i = 1, 2. Hence X has two families of lines Li = {�i,x }x∈P1 , i = 1, 2. Prove that two distinct
lines of the same family Li do not intersect, whereas any line of L1 and any line of L2 intersect at
one point. Prove that, although X is rational, it is not isomorphic to P2.

Exercise 8.2.17 Prove that if Z is a closed subset of Seg1,1 ⊂ P
3 in general it is not the case that

S(Z) is K–isomorphic to S(1,1)/Is(Z).

Exercise 8.2.18 Identify Seg1,1 and P
1 × P

1. Then find the equations in P
1 × P

1 of the conics
which are the intersections of Seg1,1 with the planes of P

3.

Exercise 8.2.19 Prove that the Zariski topology of Pn × P
m is strictly finer than the product topol-

ogy if n, m � 1.

8.3 The Blow–up

Consider Pn with homogeneous coordinates [x0, . . . , xn] and P
n−1 with homoge-

neous coordinates [y1, . . . , yn]. Consider in P
n × P

n−1 the closed subset P̃n with
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equations
xi y j = yi x j , i, j = 1, . . . , n.

Consider the map
σ : P̃n → P

n,

where σ is the restriction of the projection p1 : Pn × P
n−1 → P

n to P̃
n . Let P =

[1, 0, . . . , , 0] ∈ P
n . The closed set P̃n , endowedwith themap σ is called the blow–up

ofPn at P .Wewill study themain properties of the pair (P̃n, σ ).We set E := σ−1(P),
that is a closed subset of P̃n , called the exceptional locus of the blow–up.

Proposition 8.3.1 P̃
n \ E is a quasi–projective variety that is isomorphic to P

n \
{P} via the map σ .

Proof Let Q = [q0, . . . , qn] ∈ P
n , with Q 	= P . Hence there is an i ∈ {1, . . . , n}

such that qi 	= 0. If [y1, . . . , yn] ∈ σ−1(Q), one has

y j = yi
q j

qi
, j = 1, . . . , n, (8.1)

whence we deduce yi 	= 0, otherwise we would have y j = 0 for all j = 1, . . . , n, a
contradiction. Sowe can take yi = qi 	= 0, and then from (8.1)we deduce y j = q j for
all j = 1, . . . , n. Hence σ−1(Q) = {[q0, . . . , qn], [q1, . . . , qn]}. Consider the map

τ : Q ∈ P
n \ {P} → σ−1(Q) ∈ P

n × P
n−1.

By Exercise8.1.6, (f), we have that τ is a morphism. Moreover τ(Pn \ {P}) = P̃
n \

E , hence this set, which is locally closed in P
n × P

n−1, is also irreducible (see
Exercise4.1.7), thus it is a quasi–projective variety. Finally σ|P̃n\E is a morphism and
τ = (σ|P̃n\E )−1, which proves the assertion. �

Next we want to study the set E . Note that E = σ−1(P) = p−1
1 (P) ∼= P

n−1. We
want to give a geometric interpretation to the isomorphism E ∼= P

n−1. To do this,
consider the set (P) of all lines of Pn containing P .

Lemma 8.3.2 The set (P) can be regarded in a natural way as a projective space
of dimension n − 1.

Proof Consider in the dual projective space P̌n the hyperplane HP which consists
of all points of P̌n corresponding to hyperplanes of Pn containing P . We claim that
there is a natural bijection

ϕ : (P) → ȞP

so that, by identifying (P) with ȞP via ϕ, (P) inherits the structure of projective
space of dimension n − 1 of ȞP . The map ϕ is so defined. Take a line r ∈ (P) and
send it via ϕ to the set (r) of the hyperplanes of Pn that contain r . This is a hyperplane
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in HP and so it defines the point ϕ(r) in ȞP . The reader will easily check that ϕ is
bijective. �

Let now r ∈ (P) be a line, locus of points of Pn with homogeneous coordinates

x0 = λ, xi = μqi , [λ,μ] ∈ P
1, i = 1, . . . , n.

The map τ , restricted to r \ {P}, acts in the following way

τ [λ,μq1, . . . , μqn] = ([λ,μq1, . . . , μqn], [q1, . . . , qn]), with μ ∈ K \ {0}.

So we can extend τ to P on r (see Exercise7.1.10) by setting

τ|r (P) = ([1, 0, . . . , 0], [q1, . . . , qn])

and in this way we have a morphism τ|r : r = P
1 → P̃

n . We denote by r̃ the image
of r via τ|r . We have τ|r (P) = r̃ ∩ E . This way we have a map

ω : r ∈ (P) ∼= P
n−1 → τ|r (P) ∈ E ∼= P

n−1.

Proposition 8.3.3 The map ω is a projectivity.

Proof The map ω sends r , that we may assume to have homogeneous coordinates
[q1, . . . , qn] ∈ (P), to the point τ|r (P) that in E has coordinates [q1, . . . , qn]. This
proves the assertion. �

The previous proposition gives the geometric interpretation of E wewere seeking
for: E is in 1:1 projective correspondence with the set of all lines issuing from P .

Proposition 8.3.4 P̃
n is irreducible.

Proof It suffices to prove that any point on E is in the closure of some subset of
P̃

n \ E . Note, indeed, that for any line r ∈ (P), τ(r \ {P}) ∼= r \ {P} is a quasi–
projective subvariety of P̃n \ E , whose closure in Pn × P

n−1 is r̃ . This follows from
the fact that τ(r \ {P}) sits in p−1

2 (ω(r)) ∼= P
n , where p2 : Pn × P

n−1 → P
n−1 is the

projection to the second factor. Hence τ(r \ {P}) is isomorphic to the line r̃ minus
the point ω(r). �

Remark 8.3.5 In the above setting we may identify Pn−1 with (P). Then P̃n can be
seen as the set of all pairs (P ′, r) ∈ P

n × (P) = P
n × P

n−1 such that P ′ ∈ r .
More generally, we can fix any point Q ∈ P

n and we can consider the set

P̃
n
Q = {(P ′, r) ∈ P

n × (Q) = P
n × P

n−1 : P ′ ∈ r}.

If α : Pn → P
n is a projectivity such that α(P) = Q, it is clear that α induces a

projectivity
ᾱ : r ∈ (P) → α(r) ∈ (Q).
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Then we have an isomorphism

α × ᾱ : Pn × (P) = P
n × P

n−1 → P
n × (Q) = P

n × P
n−1

and it is clear that α × ᾱ(P̃n) = P̃
n
Q . So P̃

n
Q is a projective variety isomorphic to P̃n .

We denote by α′ the restriction of α × ᾱ to P̃n . Consider

σQ : P̃n
Q → P

n

the restriction to P̃
n
Q of the projection to the first factor of Pn × (Q). Then we have

σQ ◦ α′ = α ◦ σ . The variety P̃
n
Q , endowed with the map σQ , is called the blow–up

of Pn at Q. By the above, it behaves exactly as σ : P̃n → P
n .

Let V ⊆ P
n be a quasi–projective variety and let Q be a point of V and assume

V 	= {Q}. The locally closed subsetσ−1
Q (V ) of P̃n is called the total transform ofV on

P̃
n
Q .Wedenote byV ′

Q the closure ofσ−1
Q (V \ {Q}) in P̃n

Q .We set ṼQ = V ′
Q ∩ σ−1

Q (V ).

Since V is locally closed in Pn and irreducible, and since V ′
Q is closed in P̃n , then ṼQ

is locally closed in P̃
n and irreducible. Moreover ṼQ \ (ṼQ ∩ E) is isomorphic to

V \ {Q} via σQ . The variety ṼQ , endowed with the morphism σV,Q = σQ|ṼQ
: ṼQ →

V , is called the blow–up of V at Q, and also the proper transform or strict transform
of V on P̃

n . Note that σV,Q is a birational morphism.

Exercise 8.3.6 Referring to the proof of Lemma8.3.2, consider any hyperplane H of Pn not con-
taining P , and consider the map

φH,P : Q ∈ H → P ∨ Q ∈ (P).

prove that φH,P is a projectivity. Let H1, H2 be two such hyperplanes. Consider the map

φH1,H2,P := φ−1
H2,P ◦ φH1,P : H1 → H2.

Prove that φH1,H2,P is a projectivity called the perspective of H1 to H2 with center P . Prove that
the points of H1 ∩ H2 are fixed by φH1,H2,P .

Exercise 8.3.7 Consider An and a point P ∈ A
n . Denote again by (P) the set of all lines in A

n

containing the point P . Prove that (P) has a natural structure of projective space of dimension
n − 1. Consider the set

Ã
n
P = {(Q, r) ∈ A

n × (P) = A
n × P

n−1 : Q ∈ r}

endowed with the map σP : Ãn
P → A

n restriction of the projection to the first factor. Set E =
σ−1

P (P). Prove that:

(a) Ã
n
P is an irreducible, closed subvariety of An × (P) = A

n × P
n−1;

(b) σP |Ãn
P \E : Ãn

P \ E → A
n \ {P} is an isomorphism;

(c) E is isomorphic to (P) and its points can be identified with the lines in An issuing from P;
(d) identified, as usual, An with the open subset U0 of Pn , then Ã

n
P embeds as an open subset of

P̃
n
P .
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Moreover, suppose that P = (p1, . . . , pn). Let r be a line in (P) so that r has parametric
equations xi = pi + t yi , for i = 1, . . . , n, where (y1, . . . , yn) 	= 0. Prove that [y1, . . . , yn] can
be assumed to be homogeneous coordinates of r in (P) = P

n−1. Prove that Ã
n
P is the set

of points ((x1, . . . , xn), [y1, . . . , yn]) ∈ A
n × (P) such that (xi − pi )y j = (x j − p j )yi , for all

i, j = 1, . . . , n.
The variety Ãn

P endowed with the map σP is called the blow–up of An at P . The closed subset
E = σ−1

P (P) = (P) ∼= P
n−1 is called the exceptional locus of the blow–up.

Exercise 8.3.8 Continuing the Exercise8.3.7, let V be a locally closed subvariety of An . Make
sense of the notion of proper transform of V on Ã

n
P and of the blow–up of V at P .

Exercise 8.3.9 Let us consider the blow–up σ : Ã2 → A
2 of A2 at the origin. Prove that Ã2 can

be covered by two affine subsets each isomorphic to a quadric of A3 which in turn is isomorphic to
A
2.

Exercise 8.3.10 Let us consider the two curves C1, C2 ⊂ A
2 with respective equations

x21 = x32 , x22 − x21 = x31 .

Describe the proper transforms of C1 and C2 on the blow–up of A2 at the origin.

Exercise 8.3.11 Let Π ⊂ P
n be a subspace of dimension m < n and let P ∈ Π . Prove that the

proper transform of Π in the blow–up of Pn at P equals the blow–up of Π at P .

Exercise 8.3.12 Let Π ⊂ P
n be a subspace of dimension m < n. Consider the set (Π) of all

subspaces of Pn of dimension m + 1 containing Π . Prove that there is a natural identification of
(Π) with a projective space of dimension n − m − 1.

Exercise 8.3.13 Extend the construction of the blow–up in the following way. Let Π ⊂ P
n be a

subspace of dimension m < n. Consider the set

P̃
n
Π = {(P, �) ∈ P

n × (Π) : P ∈ �}

with the projection σΠ : P̃n
Π → P

n . Prove that P̃n
Π is a closed subvariety of Pn × (Π) ∼= P

n ×
P

n−m−1, called the blow–up of Pn along Π . Prove that σΠ is a morphism. Set E = σ−1
Π (Π), called

the exceptional locus of the blow–up. Prove that σΠ induces an isomorphism between P̃n
Π \ E and

P
n \ Π . Prove that for all points P ∈ Π , σ−1

Π (P) ∼= P
n−m−1. Make sense of the notions of total

transform and strict transform a subvariety V of Pn not contained in Π .

Exercise 8.3.14 * Consider the linear system L ⊂ L2,2 of conics in P
2 containing two distinct

points P, Q ∈ P
2. Prove that L has dimension 3. Consider the rational map φL : P2 ��� Ľ ∼= P

3

(see Exercise7.1.30). Let π : P̃ → P
2 be the blow–up of P2 at P and Q. Prove that there is a

morphism φ : P̃ → P
3 such that φ = φL ◦ π . Prove that φ is birational onto its image, which is a

quadric of rank 4 in P3.

8.4 Solutions of Some Exercises

8.1.3 There are two square matrices A,B of order n + 1 and m + 1 respectively, and of maximal
rank, such that



112 8 Product of Varieties

A · w · B =

⎛

⎜⎜⎝

1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .

0 0 . . . 0

⎞

⎟⎟⎠ = (1, 0, . . . , 0)t · (1, 0, . . . , 0).

Then take x = (1, 0, . . . , 0) · (A−1)t and y = (1, 0, . . . , 0) · (B−1)t .

8.1.4 Referring to the solution of Exercise8.1.3, the assertion follows from the fact that the matrix
of type (n + 1) × (m + 1) ⎛

⎜⎜⎝

1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .

0 0 . . . 0

⎞

⎟⎟⎠

can be expressed as the product xt · y only if x=(x, 0, . . . , 0) and y=(x−1, 0, . . . , 0) with x ∈ K
∗.

8.1.5 It is immediate to see that there is no polynomial of degree 1 in In,m .

8.1.6 Use the universal property of the product.

8.2.9 Identify P
n × A

m with an open subset of Pn × P
m and note that closed subsets of Pn × A

m

are intersection with closed subsets of Pn × P
m .

8.2.10 To prove that the diagonal of V is closed it suffices to reduce to the case V = P
n . A point

([x0, . . . , xn], [y0, . . . , yn]) ∈ P
n × P

n sits in �Pn if and only if xi y j = x j yi , i.e., if and only if
wi j = w j i , for i, j = 0, . . . , n. Hence

�Pn = Segn,n ∩ Z p(wi j − w j i )i, j=0,...,n,

i.e., �Pn is the intersection of Segn,n with a linear subspace of Pn2+2n , thus it is a closed subset.
To prove that�V is isomorphic to V , apply Theorem8.2.4 with V = W , Z = V and f, g = idV .

8.2.11 That V ×Z W is closed follows from V ×Z W = ( f × g)−1(�Z ), where

f × g : (P, Q) ∈ V × W → ( f (P), g(P)) ∈ Z × Z

is clearly a morphism.
Next, suppose that V, W are subvarieties of Z and f : V → Z and g : W → Z the immersions.

Then the projection onto V [or onto W ] maps V ×Z W isomorphically to V ∩ W , which in general
is not irreducible.

8.2.12 The projection p1 : V × W → V induces an isomorphism of � f to V . In fact the inverse of
p1|� f is the map idV × f .

8.2.14 Let Pj = [p j,0, . . . , p j,n j ]. Set N (n1, . . . , nr ) = (n1 + 1) · · · (nr + 1) − 1 and assume that

the points of PN (n1,...,n j−1,n j+1,...,nr ) have homogeneous coordinates [wi1,...,i j−1,i j+1,...,ir ], with ih =
0, . . . , nh , for h = 1, . . . , j − 1, j + 1, . . . , r . Consider the map

ωPj :[wi1,...,i j−1,i j+1,...,ir ] ∈ P
N (n1,...,n j−1,n j+1,...,nr ) →

→ [p j,i j wi1,...,i j−1,i j+1,...,ir ] ∈ P
N (n1,...,nr ).

It is easy to verify that this is a projectivity which embeds PN (n1,...,n j−1,n j+1,...,nr ) into P
N (n1,...,nr )

and sends Segn1,...,n j−1,n j+1,...,nr
into σn1,...,nr (p−1

j (Pj )).

8.2.17 If Z = Seg1,1, then S(1,1)/Is(Z) = S(1,1) = S3, whereas S(Z) = S3/Ip(Z), which is not
isomorphic to S3.

8.3.9 Recall that Ã2 has in A2 × P
1 equation x1y2 = x2y1, where (x1, x2) ∈ A

2 and [y1, y2] ∈ P
1.

Consider the two open subsets Ui = {[y1, y2] ∈ P
1 : yi 	= 0} ∼= A

1, with i = 1, 2. Then A
2 × P

1
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can be covered with the two open subsets Vi = A
2 × Ui ∼= A

3, i = 1, 2. We can see Ã
2 ∩ Vi as

a closed subvariety of Vi ∼= A
3 for i = 1, 2. For example in V1 we have coordinates (x1, x2, t),

where t = y2
y1
. Then Ã2 ∩ V1 has in V1 the equation x2 = x1t . This is a quadric Q1 in A3, which is

isomorphic to A2, via the isomorphism (x1, t) ∈ A
2 → (x1, x1t, t) ∈ Q1. Similarly, in V2 we have

coordinates (x1, x2, s), where s = y1
y2
. Then Ã2 ∩ V2 has in V2 the equation x1 = x2s and we can

repeat the same argument as before. Note that both in V1 and V2 the exceptional locus has equations
x1 = 0, x2 = 0.

8.3.10 First we look at the total transform of C1 on Ã
2. Let us look at what happens in the open

subset V1 (see solution of Exercise8.3.9, fromwhich we keep the notation). Here the total transform
of C1 has equations

x21 = x32 , x2 = x1t.

This system is equivalent to
x2 = x1t, x21 (x1t3 − 1) = 0

which in turn is equivalent to the union of the two systems

x21 = 0, x2 = 0 and x2 = x1t, x1t3 = 1.

The solutions to the first of the two systems are the set of point of the exceptional locus E . The
presence of this locus in the total transform of C1 is obvious. The solutions to the second system
are the set of points of the strict transform C̃1 of C1 on V1. In this open set C̃1 does not intersect E ,
because there is no solution to the second system with x1 = 0.

Let us look now to what happens in the open subset V2. Here the total transform of C1 has
equations

x21 = x32 , x1 = x2s.

This system is equivalent to
x1 = x2s, x22 (x2 − s2) = 0

which in turn is equivalent to the union of the two systems

x1 = 0, x22 = 0 and x1 = x2s, x2 = s2.

Again the solutions to the first of the two systems fill up the exceptional locus E . The solutions to
the second system are the strict transform C̃1 of C1 on V2. In this open set C̃1 intersects E (which
has equation x1 = x2 = 0) at one point, namely the point x1 = x2 = s = 0.

The analysis in the case of C2 is similar.



Chapter 9
More on Elimination Theory

9.1 The Fundamental Theorem of Elimination Theory

Let us consider the projective space Ln,d of dimension

N (n, d) =
(
n + d

n

)
− 1

whose points are in 1:1 correspondence with effective divisors of degree d of Pn ,
or, equivalently, with proportionality equivalence classes of non–zero homogeneous
polynomials of degree d in the variables x0, . . . , xn (see Sect. 1.6.5). Given the pos-
itive integers d1, . . . , dh we will set

Ln,d1,...,dh = Ln,d1 × · · · × Ln,dh .

Then we will denote by Z(n; d1, . . . , dh) the subset of Ln,d1,...,dh formed by all h–
tuples (F1, . . . , Fh) ∈ Ln,d1,...,dh such that supp(F1) ∩ · · · ∩ supp(Fh) �= ∅. This is
the same as looking at the set of h–tuples ( f1, . . . , fh) of non–zero homogeneous
polynomials of degrees d1, . . . , dh in the variables x0, . . . , xn such that the system

f1(x0, . . . , xn) = 0, . . . , fh(x0, . . . , xn) = 0 (9.1)

has some non–trivial solution.

Theorem 9.1.1 (Fundamental Theorem of Elimination Theory) The set
Z(n; d1, . . . , dh) is closed in Ln,d1,...,dh .

Proof First of all recall (see Sect. 3.1) that the system (9.1) has nonon–trivial solution
if and only if there is a d ∈ N \ {0} such that I = ( f1, . . . , fh) ⊇ Sn,d . Let Ma ,
a = 0, . . . , N (n, d) be the monomials of degree d in x0, . . . , xn . Then Sn,d ⊆ I is
equivalent to say that we have relations of the sort
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Ma =
h∑

i=1

fi (x)Fa,i (x), for a = 0, . . . , N (n, d),

where x = (x0, . . . , xn) and Fa,i (x) are homogeneous polynomials of degree d − di
if d − di � 0, or zero if d < di . Let us denote by Ni,ai the monomials of degree
d − di in x0, . . . , xn , if d − di > 0, with ai = 0, . . . , M(n, d − di ). Then to say
that Sn,d ⊆ I is equivalent to say that the polynomials fi Ni,ai span Sn,d as a K–
vector space, with i = 1, . . . , h and ai = 0, . . . , M(n, d − di ). Conversely, to say
that Sn,d is not contained in I is equivalent to say that the polynomials fi Ni,ai do
not span Sn,d as aK–vector space, with i = 1, . . . , h and ai = 0, . . . , M(n, d − di ),
i.e., they form a system of rank r � N (n, d). Let us order the coefficients of the
polynomials fi Ni,ai with i = 1, . . . , h and ai = 0, . . . , M(n, d − di ) in a matrix A
of type

∑h
i=1(N (n, d − di ) + 1) × (N (n, d) + 1), wherewe set N (n, d − di ) = −1

if d < di . Then the condition that Sn,d is not contained in I is equivalent to say that
all the minors of order N (n, d) + 1 of the matrixA are zero. On the other hand, each
of these minors is in turn a polynomial function of the coefficients of f1, . . . , fh .
If we replace fi with λ fi , each of these minors is multiplied by λN (n,d−di )+1. This
shows that there are polynomials

gd,i (a1, . . . , ah), i = 1, . . . ,md ,

where (ai ) are the coefficients of the polynomial fi (i.e., they are the homogeneous
coordinates inLn,di , i = 1, . . . , h), that are homogeneous of degree N (n, d − di ) + 1
in each set of variables ai for i = 1, . . . , h, and the closed subset Td of Ln,d1,...,dh
with equations

gd,i (a1, . . . , ah) = 0, i = 1, . . . ,md ,

is formed by all h–tuples ( f1, . . . , fh) such that Sn,d is not contained in the ideal
I = ( f1, . . . , fh). Since Z(n; d1, . . . , dh) = ⋂

d∈N\{0} Td , the assertion follows. �

From the proof of Theorem9.1.1, it follows that the polynomials gd,i have coef-
ficients in the fundamental field F of K. Since Z(n; d1, . . . , dh) has equations

gd,i = 0, for d ∈ N \ {0}, i = 1, . . . ,md ,

it follows that there is a finite set g1, . . . , gt of plurihomogeneous polynomials in
a1, . . . , ah such that

gi (a1, . . . , ah) = 0, i = 1, . . . , t (9.2)

is a necessary and sufficient condition for the system (9.1) to have a non–trivial
solution, where f1, . . . , fh have coefficients a1, . . . , ah .

The plurihomogeneous ideal I(n; d1, . . . , dh) = Is(Z(n; d1, . . . , dh)) is called
the resultant ideal of h polynomials in n + 1 variables of degrees d1, . . . , dh .

Exercise 9.1.2 Study Z(1; n,m). One has to understand when the system
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a0x
n
0 + a1x

n−1
0 x1 + · · · + anx

n
1 = 0

b0x
m
0 + b1x

m−1
0 x1 + · · · + bmx

m
1 = 0

has a non–trivial solution. Here [a0, . . . , an] have to be seen as homogeneous coordinates in L1,n
and [b0, . . . , bm ] as homogeneous coordinates in L1,m . Prove that Z(1; n,m) is defined by the
vanishing of the Sylvester determinant, i.e., by the equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 . . . 0

. . .

0 . . . 0 0 a0 a1 . . . an
b0 b1 . . . bm 0 0 . . . 0
0 b0 b1 . . . bm 0 . . . 0

. . .

0 . . . 0 0 b0 b1 . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

9.2 Morphisms on Projective Varieties Are Closed

An important application of the Fundamental Theorem of the Theory of Elimination,
is the following:

Theorem 9.2.1 Morphism are closed maps on projective varieties.

Proof Let V ⊆ P
n be a projective variety,W a quasi–projective variety, f : V → W

a morphism. Let us recall that the graph � f is closed in V × W (see Exercises8.2.11
and 8.2.12), and f (V ) = p2(� f ), where p2 : V × W → W is the projection to the
second factor. So, in order to prove the assertion it suffices to prove that p2 is a closed
map. To prove this it suffices to reduce to the case V = P

n , because V × W is closed
in Pn × W and if Z is closed in V × W it is also closed in Pn × W . Moreover, since
the concept of being closed is local (see Exercise5.1.3), and since W is covered by
affine open subsets, we can reduce to the caseW is affine. Finally, arguing as we did
before, we can actually assume that W = A

m .
Let Z be a closed subset of Pn × A

m , so that it is defined by a system of equations
of the form

fi (x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , h (9.3)

where the polynomials fi are homogeneous of degrees di in the variables x0, . . . , xn
for i = 1, . . . , h (see Exercise8.2.9). Note that (p1, . . . , pm) ∈ A

m belongs to p2(Z)

if and only if the system

fi (x0, . . . , xn; p1, . . . , pm) = 0, i = 1, . . . , h

has a non–trivial solution. Let

ai = (ai,0(y1, . . . , ym), . . . , ai,N (n,di )(y1, . . . , ym))
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be the vector of the coefficients of fi as a homogeneous polynomial of degree di
in x0, . . . , xn , for i = 1, . . . , h. Then the system (9.3) has non–trivial solution in
x0, . . . , xn if and only if one has

g j (ai,0(y1, . . . , ym), . . . , ai,N (n,di )(y1, . . . , ym)) = 0, j = 1, . . . , t (9.4)

where the plurihomogeneous polynomials g j are the ones in (9.2). Hence p2(Z) is
defined by the system of equations (9.4) in y1, . . . , ym . The assertion follows. �

Exercise 9.2.2 Let V ⊆ P
n be a projective variety and consider the image of V via a projection to

a subspace from a centre which does not intersect V . Prove that the image of V via this projection is
a projective variety, which is called the projection of V to the given subspace from the given centre.

Exercise 9.2.3 Prove that a proper non–empty open subset of Pn is not isomorphic to a projective
variety.

Exercise 9.2.4 Let V,W be varieties, V projective and let f : V → W be a dominant morphism.
Prove that f is surjective.

Exercise 9.2.5 * Consider in Ln,d the set Rn,d of reducible divisors. Prove that Rn,d is a proper
closed subset of Ln,d . Prove also that the subset R̄n,d of Ln,d of points corresponding to divisors
having some multiple component is closed in Ln,d .

9.3 Solutions of Some Exercises

9.2.5 For every positive integer i < d consider the map

φi : (F1, F2) ∈ Ln,i × Ln,d−i → F1 + F2 ∈ Ln,d .

It is easy to see that this is a morphism. Then its image Rn,d;i is a closed subset of Ln,d . Then

Rn,d = ⋃d−1
i=1 Rn,d;i is closed. The second assertion is proved in a similar way.



Chapter 10
Finite Morphisms

10.1 Definitions and Basic Results

Let V,W be affine varieties and let f : V → W be a dominant morphism, hence
f ∗ : A(W ) → A(V ) is an injective homomorphism of K-algebras. Via f ∗ we may
identify A(W ) as a sub-ring of A(V ). We will say that f is a finite morphism if
any element of A(V ) is integral over A(W ), in which case we will say that A(V ) is
integral over A(W ).

Example 10.1.1 Let V be an irreducible hypersurface of An of degree d with equa-
tion

f (x1, . . . , xn) = xdn + xd−1
n f1(x1, . . . , xn−1) + · · · + fn(x1, . . . , xn−1) = 0

with fi polynomial of degree at most i in x1, . . . , xn−1, for i = 1, . . . , n, so that
the projective closure of V does not pass through the point at infinity of the xn
axis. Consider the projection p of V from the point at infinity of the xn axis to the
hyperplane xn = 0, which can be identified with A

n−1, i.e.,

p : (x1, . . . , xn) ∈ V → (x1, . . . , xn−1) ∈ A
n−1.

This is amorphismwhich is clearly surjective, hence dominant, and the counterimage
of any point ofAn−1 has atmost order d. Themorphism p corresponds to the injective
homomorphism

p∗ : An−1 → A(V ) = K[x1, . . . , xn]/( f )

such that p∗(xi ) = xi for all i = 1, . . . , n − 1. Hence A(V ) is obtained by adding
xn to A(W ) and, since xn is integral over A(W ), then A(V ) is integral over A(W ),
hence p is a finite morphism.
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In order to prove some important properties of finite morphisms, we need an
algebraic lemma:

Lemma 10.1.2 Let B be a ring which is a finitely generated module over a subring
A. Let I be a proper ideal of A. Then IB �= B.

Proof Let b1, . . . , bn be a set of generators of B over A. IfIB = B, we have relations
of the form

bi =
n∑

j=1

ai j b j , with ai j ∈ I and i = 1, . . . , n,

i.e.,
n∑

j=1

(ai j − δi j )b j = 0 for i = 1, . . . , n, (10.1.1)

where δi j is the Kronecker symbol. Let d be the determinant of the matrix (ai j −
δi j )i, j=1,...,n . From (10.1.1) one easily deduces that dbi = 0, for i = 1, . . . , n (see
the solution of Exercise 5.4.4), hence we have dB = {0} and therefore d = 0. But
then, expanding the determinant d, we see that 1 ∈ I, so I = A. �

We are now able to prove the following:

Theorem 10.1.3 A finite morphism between affine varieties has the following prop-
erties:

(a) it has finite fibres;
(b) it is surjective;
(c) it is a closed map.

Proof Let f : V → W be a finite morphism and take Q ∈ W . Suppose V ⊆ A
n .

To prove (a) it suffices to prove that every coordinate xi , i = 1, . . . , n, takes a finite
number of values on the set f −1(Q). For every i = 1, . . . , n, we have a relation of
the type

xmi
i + bi1x

mi−1
i + · · · + bimi = 0,

with bi j ∈ A(W ) and i = 1, . . . , n, j = 1, . . . ,mi . If P = (p1, . . . , pn) ∈ f −1(Q),
we have

pmi
i + bi1(Q)pmi−1

i + · · · + bimi (Q) = 0, with i = 1, . . . , n

and this proves that pi can take only finitelymany values for all i = 1, . . . , n, proving
(a).

Let us prove (b). Let Q ∈ W ⊆ A
m , and suppose Q = (q1, . . . , qm). Let (y1, . . . ,

ym)be the coordinates inAm . Let f ∗(yi ) = fi (x1, . . . , xn) ∈ A(V ), for i = 1, . . . ,m.
Then P = (p1, . . . , pn) belongs to f −1(Q) if and only if fi (p1, . . . , pn) = qi , for
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i = 1, . . . ,m. If mQ = (y1 − q1, . . . , ym − qm) is the maximal ideal of A(W ) cor-
responding to the point Q, then P ∈ f −1(Q) if and only if g(P) = 0 for every
g ∈ J = mQ A(V ). If f −1(Q) = ∅, we would have J = A(V ), since there would
be no maximal ideal of A(V ) containing J . Then by Exercise 5.4.7 and Lemma
10.1.2 we would have a contradiction.

Finally, let us prove (c). To prove this it suffices to prove that if Z ⊆ V is an
irreducible closed subset, then f (Z) is closed in W . Consider the map f̄ = f|Z :
Z → f (Z).We claim this map is finite.We have the following commutative diagram

A(W )
β−→ A( f (Z))

f ∗ ↓ ↓ f̄ ∗

A(V )
α−→ A(Z)

where α and β are clearly surjective. If g ∈ A(Z) and G ∈ A(V ) is such that g =
α(G), we have that G is integral over A(W ), i.e., we have a relation of the type

Gh + f ∗(a1)Gh−1 + · · · + f ∗(ah) = 0

with a1, . . . , ah ∈ A(W ). Hence

gh + α( f ∗(a1))gh−1 + · · · + α( f ∗(ah)) = 0.

Because of the commutativity of the diagram, this reads

gh + f̄ ∗(β(a1))gh−1 + · · · + f̄ ∗(β(ah)) = 0

and this proves that g is integral over A( f (Z)). But then by (b) themap f̄ is surjective,
hence f (Z) = f (Z). �

The following theorem proves that finiteness is a local property:

Theorem 10.1.4 Let V,W be affine varieties and f : V → W a morphism. The
following propositions are equivalent:

(a) f is a finite morphism;
(b) for every point P ∈ W there is an open affine neighborhood U of P in W such

that U ′ = f −1(U ) is affine and f : U ′ → U is a finite morphism.

Proof Clearly (a) implies (b). Let us prove the converse. First of all, by taking
into account Exercises 5.1.6, 6.3.6 and 10.1.8 below, we may assume that for every
point P ∈ W there is a principal open affine neighborhood U of P in W such that
U ′ = f −1(U ) is principal affine and f : U ′ → U is a finite morphism. So, since W
is compact, there are finitely many, non-zero elements of A(W ), g1, . . . , gn , such
that the morphisms induced by f

fi : U ′
i = UV ( f

∗(gi )) → Ui = UW (gi ), i = 1, . . . , n,
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are finite and {Ui }i=1,...,n form a cover of W . Note that

O(Ui ) = A(UW (gi )) = A(W )
[ 1

gi

]
, O(U ′

i ) = A(UV ( f
∗(gi )) = A(V )

[ 1

gi

]
,

for i = 1, . . . , n, (see Lemma 6.3.1), where, as usual, we may think to the injective
map f ∗ as an identification, so that

f ∗
i : A(W )

[ 1

gi

]
→ A(V )

[ 1

gi

]
, i = 1, . . . , n,

is the map naturally induced by f ∗. By the hypotheses and by Exercise 5.4.7,
A(V )[ 1

gi
] has a finite basisωi j over A(W )[ 1

gi
], for i = 1, . . . , n, j = 1, . . . , ni , where

wemay suppose that ωi j ∈ A(V ). We now show that {ωi j }i=1,...,n, j=1,...,ni is a basis of
A(V ) over A(W ), which will imply the assertion by Exercise 5.4.6. Let b ∈ A(V ).
For all i = 1, . . . , n we have

b =
ni∑

j=1

ai j
gmi
i

ωi j ,

withm j suitable positive integers andai j ∈ A(W ). Since
⋂n

i=i ZV (g
mi
i ) = ∅, because

{U ′
i }i=1,...,n is an open cover of V , there is no maximal ideal of A(W ) containing

I = (gm1
1 , . . . , gmn

n ), hence I = A(W ). So there are h1, . . . , hn ∈ A(W ) such that

n∑

i=1

hig
mi
i = 1.

Then we have

b = b
( n∑

i=1

hig
mi
i

)
=

n∑

i=1

hig
mi
i b =

n∑

i=1

mi∑

j=1

ai j hiωi j ,

which proves the assertion. �

Theorem 10.1.4 suggests the way of extending the notion of finite morphism to
morphisms between quasi-projective varieties. LetV,W be quasi-projective varieties
and f : V → W a morphism. We will say that f is affine if for every point P ∈ W
there is an open neighborhood U of P in W , such that U ′ = f −1(U ) is affine. If,
in addition f|U ′ : U ′ → U is finite, one says that f is finite. Of course Theorem
10.1.3 still holds for finite morphisms as defined above. Finally, let φ : V ��� W be
a rational map (in particular a morphism). One says that φ is generically finite if
there are non-empty open subsets U of W and U ′ of V such that φ induces a finite
morphism φ|U ′ : U ′ → U .
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Theorem 10.1.5 Let φ : V ��� W be a dominant rational map between quasi-
projective varieties. Then φ is generically finite if and only if the homomorphism φ∗ :
K (W ) → K (V ) is an algebraic extension, i.e., if and only if dimtr(V ) = dimtr(W ).

Proof It suffices to prove the assertion in the case in which V,W are affine and φ
is a morphism. If φ is generically finite, it is clear that φ∗ : K (W ) → K (V ) is an
algebraic extension and then dimtr(V ) = dimtr(W ). Let us prove the converse. Let
g ∈ K (V ), so that g is algebraic over K (W ), hence over A(W ). In particular, every
g ∈ A(V ) is algebraic over A(W ), so that we have a relation of the sort

a0g
n + a1g

n−1 + · · · + an = 0,

with a0, . . . , an ∈ A(W ) and a0 �= 0. Then we have

an0g
n + a1a

n−1
0 gn−1 + · · · + ana

n−1
0 = 0

hence a0g is integral over A(W ). Let b1, . . . , bm be a system of generators of A(V )

as a K-algebra and let a1, . . . , am ∈ A(W ) such that aibi is integral over A(W ),
for i = 1, . . . ,m. Set F = a1 · · · am and let U = UW (F) and U ′ = UV (φ

∗(F)). In
relation with the morphism φ|Y ′ : U ′ → U we have the inclusion which extends φ∗

φ̄∗ : A(W )
[ 1

F

]
→ A(V )

[ 1

F

]
.

Anelement of A(V )[ 1
F ] is of the form c = b

Fh , withb ∈ A(V ) and h a positive integer.
Since b1, . . . , bm are integral over A(W )[ 1

F ], because a1, . . . , am are invertible in
A(W )[ 1

F ], and since b is a combination of products of b1, . . . , bm with coefficients
inK, it follows that A(V )[ 1

F ] is integral over A(W )[ 1
F ], which proves the assertion.

�

We finish this section with the following:

Theorem 10.1.6 Let f : V → W beadominantmorphismbetweenquasi-projective
varieties. Then f (V ) contains a non-empty open subset of W .

Proof It suffices to reduce to the case in which both V,W are affine. Then K (V ) is
an extension of K (W ). Let u1, . . . , ur be a transcendence basis of K (V ) over K (W )

and we may assume u1, . . . , ur ∈ A(V ). Then we have the chain of inclusions

A(W )
α→ A(W )[u1, . . . , ur ] β→ A(V )

such that f ∗ = β ◦ α. Note that A(W )[u1, . . . , ur ] is isomorphic to A(W ) ⊗K Ar ,
hence A(W )[u1, . . . , ur ] = A(W × A

r ), and α corresponds to the projection p1 of
W × A

r to the first factor. Then β corresponds to a generically finite morphism g :
V → W × A

r . By Theorem 10.1.5 there is a non-empty open subset U of W × A
r ,
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such thatU ⊆ g(V ). We may assume thatU is a principal set, i.e.,U = UW×Ar (F),
with

F =
∑

i1...ir

gi1...ir u
i1
1 · · · uirr , with gi1...ir ∈ A(W ) not all zero.

Let P ∈ W which does not belong to
⋃

i1...ir
ZW (gi1...ir ). Then there is some Q ∈

W × A
r such that F(Q) �= 0, so that Q ∈ U and P = p1(Q) ∈ p1(U ). Therefore

p1(U ) ⊇ W \ ⋃
i1...ir

ZW (gi1...ir ) so that

f (V ) = p1(g(V )) ⊇ p1(U ) ⊇ W \
⋃

i1...ir

ZW (gi1...ir )

and W \ ⋃
i1...ir

ZW (gi1...ir ) is a non-empty open subset of W because at least one of
the functions gi1...ir is non-zero. �

Exercise 10.1.7 * Let A, B be finitely generated K-algebras, suppose that A ⊆ B and that B is
integral over A. Let x ∈ Q(B) be integral over B. Prove that x is also integral over A.

Exercise 10.1.8 * Let V,W be affine varieties and f : V → W a finite morphism. Let g ∈
A(W ) \ {0} and UW (g) be the principal (affine) open subset associated to g (see Sect. 5.1). Prove
that f −1(UW (g)) is also a principal (affine) open subset of V and that the map f| f −1(UW (g)) :
f −1(UW (g)) → UW (g) is a finite morphism.

Exercise 10.1.9 *LetV be ahypersurface inAn and consider the projection p ofV to anhyperplane
from a point at infinity which is not in the projective closure of V . Prove that p is a finite map.

Exercise 10.1.10 Consider an irreducible quadric of An with equation

f (x1, . . . , xn) = xn f1(x1, . . . , xn−1) + f2(x1, . . . , xn−1) = 0

where fi is a polynomial of degree at most i in x1, . . . , xn−1, for i = 1, 2, with f1 non-zero and
not dividing f2. Consider the projection p of V from the point at infinity of the xn axis to the
hyperplane xn = 0 identified with A

n−1. Prove that p is a finite morphism if and only if f1 is a
non-zero constant.

Note that in this case p is finite if and only if p is surjective.

Exercise 10.1.11 * Prove that the composition of two finite morphisms between affine varieties is
finite.

Exercise 10.1.12 * Let V,W be affine varieties and f : V → W a finite morphism. Prove that
dimtr(V ) = dimtr(W ).

Exercise 10.1.13 Give an example of a morphism which is surjective, closed and with finite fibres
which is not finite.

Exercise 10.1.14 * Prove that the restriction of a finite morphism between affine varieties to a
closed subvariety is still finite onto its image.

Exercise 10.1.15 Prove that any morphism between affine varieties is affine.

Exercise 10.1.16 Prove that the composition of finite morphisms between quasi-projective vari-
eties is finite.
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Exercise 10.1.17 Prove that if V,W are quasi-projective varieties and f : V → W is a finite
morphism, then dimtr(V ) = dimtr(W ).

Exercise 10.1.18 Prove that there are morphisms which are not affine.

Exercise 10.1.19 * Let V ⊂ P
n be an irreducible hypersurface of degree d, let P be a point which

does not belong to V and H a hyperplane not containing P . Consider the restriction p to V of the
projection of Pn to H from P . Prove that p is a finite morphism.

Exercise 10.1.20 Prove that an irreducible ipersurface of An or of Pn has transcendent dimension
n − 1.

Exercise 10.1.21 Let V be an irreducible ipersurface of Pn , let P ∈ V and consider the projection
p of V to a hyperplane H from P , that is a rational map. Prove that p is generically finite, unless
V is a cone with vertex P .

10.2 Projections and Noether’s Normalization Theorem

Let V ⊆ P
n be a projective variety and let P1,P2 be two subspaces of Pn of dimen-

sions r and n − r − 1 respectively, which are skew. Suppose that P1 ∩ V = ∅. We
can then consider the projection

p : V → P2

of V to P2 from P1 (see Exercise 7.1.12), which is a morphism and whose image
V ′ = p(V ) is a projective subvariety of P2 by Theorem 9.2.1. The projection p is
called an external projection of V .

Theorem 10.2.1 An external projection p : V → V ′ is a finite morphism.

Proof We use the above notation, and assume that p is the projection of V ⊆ P
n

from P1, of dimension r , to P2 of dimension n − r − 1, with P1 ∩ V = ∅. We
fix homogeneous coordinates [y0, . . . , yn−r−1] on P2 and, as usual, we denote
by Ui

∼= A
n−r−1 the open subset of P2 where yi �= 0, and we set V ′

i = Ui ∩ V ′
for all i = 0, . . . , n − r − 1 and Vi = p−1(V ′

i ), for i = 0, . . . , n − r − 1. For all
i = 0, . . . , n − r − 1, both Vi and V ′

i are affine varieties. To prove the assertion we
will prove that p|Vi : Vi → V ′

i is a finite morphism, for all i = 0, . . . , n − r − 1. We
will consider the case i = 0, because the other cases are analogous.

We may suppose that the morphism p is given by relations of the type

yi = fi (x0, . . . , xn), for i = 0, . . . , n − r − 1

where [x0, . . . , xn] are homogeneous coordinates in Pn and f1, . . . , fn−r−1 are linear
forms. Since P1 ∩ V = ∅, the system

f0 = · · · = fn−r−1 = 0 (10.2.1)
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has no non-trivial solution on V .
Let g ∈ A(V0). We want to prove that g is integral over A(V ′

0). The function g is
the restriction to V0 of a function of the form

G(x0, . . . , xn)

f0(x0, . . . , xn)m

wherem is a suitable positive integer and G is a homogeneous polynomial of degree
m.

Consider the map q : V → P
n−r given by the formulas

zi = f mi , for i = 0, . . . , n − r − 1, and zn−r = G.

where [z0, . . . , zn−r ] are homogeneous coordinates inPn−r . Since the system (10.2.1)
has no solution on V , the map q is a morphism, and we set V ′′ = q(V ), which is a
closed subvariety of Pn−r . We let h1, . . . , hl be a basis of the ideal Ip(V ′′).

Since the system (10.2.1) has no solution onV , the point P = [0, . . . , 0, 1] ∈ P
n−r

does not belong to V ′′. This means that the system

z0 = · · · = zn−r−1 = h1 = · · · = hl = 0

has no non-trivial solutions. Then there is an integer d > 0 such that the ideal
(z0, . . . , zn−r−1, h1, . . . , hl) contains Sn−r,d (see Sect. 3.1), in particular zdn−r
∈ (z0, . . . , zn−r−1, h1, . . . , hl), i.e., we have a relation of the form

zdn−r =
n−r−1∑

i=0

zi Pi +
l∑

i=1

hi Qi

with P1, . . . , Pn−r−1, Q1, . . . , Ql suitable homogeneous polynomials of the appro-
priate degrees, in particular P1, . . . , Pn−r−1 have degree d − 1. Then

H(z0, . . . , zn−r ) = zdn−r −
n−r−1∑

i=0

zi Pi

vanishes on V ′′. The homogeneous polynomial H of degree d is a monic polynomial
in zn−r and we can write

H = zdn−r −
d−1∑

i=0

ai (z0, . . . , zn−r−1)z
i
n−r

with ai (z0, . . . , zn−r−1) homogeneous polynomial of degree d − i for i = 0, . . . ,
d − 1. From the fact that H vanishes on V ′′ we deduce that
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H( f m0 , . . . , f mn−r−1,G) = 0 on V .

Dividing this relation by f md
0 we find the required integral dependence relation

gd −
d−1∑

i=0

ai (1, ξ1 . . . , ξn−r−1)g
i = 0

where ξi = yi
y0

∈ A(V ′
0), for i = 1, . . . , n − r − 1. �

An interesting consequence of this result is the:

Corollary 10.2.2 Let V ⊆ P
n be a projective variety. Let f0, . . . , fh ∈ Sn,d be lin-

early independent polynomials such that V ∩ Z p( f0, . . . , fh) = ∅. Then the mor-
phism

φ : P ∈ V → [ f0(P), . . . , fh(P)] ∈ P
h

is a finite morphism onto its image.

Proof Consider the dual Veronese morphism

v̌n,d : Pn → Ľn,d

(see Sect. 6.4), that is an isomorphism of Pn onto its image. Let us set V ′ = v̌n,d(V ).
The polynomials f0, . . . , fh are the images via the homomorphism ϑn,d (see Sect.
6.3) of linearly independent linear forms F0, . . . , Fh in SN (n,d),1, so that we have to
prove that the morphism

ψ : P ∈ V ′ → [F0(P), . . . , Fh(P)] ∈ P
h

is finite onto its image. So we are reduced to the case d = 1. In this case φ is the
restriction to V of a degenerate projectivity τ (see Exercise 7.1.11) with centre P1

such that P1 ∩ V = ∅. On the other hand τ is composed of a projection and of
projectivities (see Exercise 7.1.13). The assertion follows from Theorem 10.2.1. �

Remark 10.2.3 By taking into account the proof of Theorem 10.2.1, we see that
Corollary 10.2.2 says more than stated. The full result is that, if [x0, . . . , xh] are
homogeneous coordinates in P

h and if Ui
∼= A

h is the open subset of Ph where
xi �= 0, for i = 0, . . . , h, then the morphism φ|φ−1(Ui ) : φ−1(Ui ) → φ(V ) ∩Ui is a
finite morphism of affine varieties.

Corollary 10.2.4 Let V ⊆ P
n be a projective variety of transcendent dimension m.

Then there is a finite morphism p : V → P
m.

Proof It suffices to compose external projections. �
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Remark 10.2.5 Let us keep the notation of Corollary 10.2.4 and setm = dimtr(V ).
Then Corollary 10.2.4 asserts that there is a subspace P1 of Pn of dimension n − m −
1 such that P1 ∩ V = ∅, such that the projection of V from P1 to a skew subspace
P2 of dimension m is finite.

Corollary 10.2.6 Let V ⊆ P
n be a projective variety of transcendent dimension m.

Let r � −1 be the maximum integer such that there are subspaces of Pn of dimension
r with empty intersection with V . Then r = n − m − 1.

Proof By Remark 10.2.5, there are subspaces of dimension n − m − 1 with empty
intersection with V . To finish we have to prove that if r > n − m − 1, any subspace
with dimension r has non-empty intersection with V . Let us argue by contradiction.
Suppose there is subspaceP1 with dimension r > n − m − 1with empty intersection
with V . Let us fix a subspace P2 of dimension n − r − 1 < m and let us consider
the external projection of V to P2 from P1. Then this would be a finite morphism to
its image, whose dimension would be at most n − r − 1 < m = dimtr(V ), a contra-
diction. �

Another consequence of Corollary 10.2.4 is the following result:

Corollary 10.2.7 (Emmy Noether’s Normalization Theorem) Let V be an affine
varietywithdimtr(V ) = m.Then there is a finitemorphismof V ontoAm. In algebraic
terms, given any finitely generatedK-algebra A with no zero divisors such thatQ(A)
has transcendence degreem onK, there is an injective homomorphism Am → A such
that A is integral over Am.

Proof One proceeds as in the projective case, by projecting from points at infinity
which do not belong to the projective closure of V . �

10.3 Normal Varieties and Normalization

Let V be a quasi-projective variety and let P ∈ V . One says that V is normal at P if
the ring OV,P is integrally closed. One says that V is normal if V is normal at any
point P ∈ V . In order to explain the meaning of this definition, we need some results
of algebra.

Lemma 10.3.1 Let A, B be rings with A a subring of B and let C be the integral
closure of A in B. Let S be a multiplicatively closed subset of A. Then CS is the
integral closure of AS in BS.

Proof It is easy to see that CS is integral over AS . If b
s ∈ BS is integral over AS , we

have a relation of the type

(b
s

)n + a1
s1

(b
s

)n−1 + · · · + an
sn

= 0
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with ai ∈ A, si ∈ S, i = 1, . . . , n. Set t = s1 · · · sn , and multiply both members of
the above relation by (st)n . Then bt ∈ C and b

s = bt
st ∈ CS . �

Lemma 10.3.2 Let A be a domain. The following are equivalent:

(a) A is integrally closed;
(b) for every prime ideal I ⊆ A, the ring AI is integrally closed;
(c) for every maximal ideal m ⊆ A, the ring Am is integrally closed.

Proof By Lemma 10.3.1, (a) implies (b). Moreover (b) trivially implies (c). Let us
prove that (c) implies (a). This follows from the fact that A = ⋂

Am, where the
intersection is made on all the maximal ideals of A (see Exercise 5.5.9). �

Proposition 10.3.3 Let V be a quasi-projective variety:

(a) if V is affine, then V is normal if and only if A(V ) is integrally closed;
(b) V is normal if and only if there is an open cover {Ui }i∈I of normal affine subsets

of V .

Proof Part (a) follows from Lemma 10.3.2. Part (b) is obvious. �

Let now V be a quasi-projective variety. We will say that the pair (V ′,φ) is a
normalization of V , if V ′ is a normal variety and φ : V ′ → V is a birational, finite
morphism. Often one says that V ′ is a normalization of V , when φ is understood.

Let us state the following result of algebra, for which see [9, Theorem 9, p. 267]:

Theorem 10.3.4 (Finiteness of Integral Closure) Let A be a finitely generated K-
algebra with no zero divisors and let K be a finite extension of Q(A). The integral
closure of A in K is an A-module of finite type and it is also a finitely generated
K-algebra.

This theorem implies the following:

Theorem 10.3.5 Let V be an affine variety. Then:

(a) there is a normalization (V ′,φ) of V with V ′ affine, which has the following
properties:

(a1) if W is an affine variety and g : W → V is a finite birational morphism,
then there is a unique morphism h : V ′ → W such that φ = g ◦ h;

(a2) if W is a normal affine variety and g : W → V is a dominant morphism,
then there is a unique morphism h : W → V ′ such that g = φ ◦ h;

(b) if (V ′′,ψ) is still a normalization of V , there is an isomorphism g : V ′ → V ′′
such that φ = ψ ◦ g.

Proof FromTheorem10.3.4 it follows that the integral closure B of A(V ) is a finitely
generated K-algebra with no zero divisors. Hence there is an affine variety V ′ such
that B = A(V ′), and accordingly there is a finite, birational morphism φ : V ′ → V .
Hence (V ′,φ) is a normalization of V . If W verifies the hypotheses of (a1), there is
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an inclusion A(V ) ⊆ A(W ) ⊆ K (V ). Since A(W ) is integral on A(V ), we have an
inclusion A(W ) ⊆ B = A(V ′) and accordingly we have the morphism h : V ′ → W
such that φ = g ◦ h. Finally, if W is a variety verifying the hypotheses of (a2), we
have K (V ) ⊆ K (W ) and A(V ) ⊆ A(W ). If f ∈ B = A(V ′), then f ∈ K (W ) and
it is integral over A(V ), so it is integral over A(W ), thus f ∈ A(W ). Then we
have A(V ′) ⊆ A(W ) and accordingly we have a morphism h : W → V ′ such that
g = φ ◦ h. Part (b) follows from (a1) and (a2). �

Exercise 10.3.6 Prove that An , Pn and the Segre varieties are normal.

Exercise 10.3.7 Suppose that char(K) �= 2. Prove that any irreducible quadric in P3 is normal.

Exercise 10.3.8 Prove that the projective plane curves with equations x0x21 = x3 and x22 x0 =
x21 (x1 + x0) are not normal.

Exercise 10.3.9 A projective variety V is said to be projectively normal if S(V ) is integrally
closed. Prove that Pn , the Veronese varieties, the Segre varieties are projectively normal. Prove that
a projectively normal variety is normal.

Exercise 10.3.10 * Prove that there are isomorphic projective varieties one of which is projectively
normal the other is not, so that projective normality is not an intrinsic property, but depends on the
immersion in projective space.

Exercise 10.3.11 Consider the affine plane curves V and V ′ with equations x21 = x3 and x22 =
x21 (x1 + 1), which are not normal (see Exercise 10.3.8). Consider the morphisms

φ : t ∈ A
1 → (t3, t2) ∈ V, φ′ : t ∈ A

1 → (t2 − 1, t3 − t) ∈ V ′.

Prove that (A1,φ) and (A1,φ′) are normalizations of V and V ′ respectively.

Exercise 10.3.12 * Let V be a quasi-projective variety. Prove that the set N (V ) of points P of V
such that V is not normal in P is a proper closed subset of V .

10.4 Ramification

In this section we will look at the following question: given a finite morphism φ :
V → W , what is the degree of the fibres of φ? We start with a definition. Let φ :
V ��� W be a generically finite rational map between quasi-projective varieties.
Then φ∗ : K (W ) → K (V ) is an algebraic extension. We define degree of φ, denoted
by deg(φ), the degree of the field extension φ∗ : K (W ) → K (V ). Moreover we will
say thatφ is separable or inseperable if so is the field extensionφ∗ : K (W ) → K (V ).

In order to prove our next result, we need some algebraic preliminaries.

Lemma 10.4.1 Let A be a noetherian subring of a domain B and letC be the integral
closure of A in B. Let f, g ∈ B[x] be monic polynomials such that f g ∈ C[x]. Then
f, g ∈ C[x].
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Proof In the algebraic closure of Q(B) we have

f (x) =
n∏

i=1

(x − ξi ), g(x) =
m∏

i=1

(x − ηi ).

Now ξi , η j , i = 1, . . . , n, j = 1, . . . ,m, are roots of f (x)g(x), hence they are inte-
gral over C . So the coefficients of f (x) and g(x), which are polynomial expressions
in the ξi and in the η j respectively, are elements of B integral over C , so they belong
to C (see Exercise 5.4.8). �

Proposition 10.4.2 Let A ⊆ B be noetherian domains with A integrally closed and
B integral on A. Then the extensionQ(A) → Q(B) is algebraic and for every element
b ∈ B, its minimal polynomial over Q(A) has coefficients in A.

Proof Let b ∈ B and let f (x) ∈ A[x] be a monic polynomial of minimal degree
which has b as a root. If f (x) is not the minimal polynomial of b on Q(A), there
are monic polynomials g, h ∈ Q(A)[x] with deg(g), deg(h) both positive, such that
f = gh. By Lemma 10.4.1 with B = Q(A) and C = A, we have that g, h ∈ A[x],
and this is a contradiction. �

Theorem 10.4.3 Let f : V → W be a finite morphism between quasi-projective
varieties, with W normal. Then for all P ∈ W, the fibre f −1(P) consists of at most
deg( f ) distinct points.

Proof We can reduce to the case in which both V,W are affine. Set A = A(V ), B =
A(W ), K = Q(A) = K (V ), L = Q(B) = K (W ) andn = deg( f ) = [K : L]. Ifa ∈
A ⊆ K , since A is integral on B and B is integrally closed, then by Proposition 10.4.2
the minimal polynomial of a over L has coefficients in B. Let us set f −1(P) =
{Q1, . . . , Qm} and let us choose an element a ∈ A such that a(Q1), . . . , a(Qm) are
distinct elements of K.

The existence of a is proved by showing that, if V ⊆ A
n , there is a polynomial

F ∈ An which takes different values on Q1, . . . , Qm . This is trivial ifm = 1. Ifm > 1
one proceeds by induction on m. Let F1 be such a polynomial for Q1, . . . , Qm−1.
If F1(Qm) is different from F1(Q1), . . . , F1(Qm−1), we take F = F1. If F1(Qm)

is equal to one of the values F1(Q1), . . . , F1(Qm−1), let G be a polynomial,
which certainly exists, such that G(Qi ) = 0 for i = 1, . . . ,m − 1 and G(Qm) �= 0.
Then take F = F1 + hG, with h suitable in K

∗. Indeed F(Qi ) = F1(Qi ), for i =
1, . . . ,m − 1, arem − 1distinct values inK,whereas F(Qm) = F1(Qm) + hG(Qm)

takes infinitely many values ofK, when h varies. So we can choose h so that F(Qm)

is different from F(Qi ) for i = 1, . . . ,m − 1.
Let now P(T ) ∈ B[T ] be the minimal polynomial of a. Of course l = deg(P(T ))

� [K : L] = n. If

P(T ) = T l + a1T
l−1 + · · · + al , ai ∈ B,

let us consider the polynomial on K
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P̄(T ) = T l + a1(P)T
l−1 + · · · + al(P), ai ∈ B,

which has the m roots a(Q1), . . . , a(Qm), so that m � l � n. �

A finite morphism f : V → W of quasi-projective varieties is said to be not
branched at P ∈ W , if the fibre f −1(P) consists exactly of deg( f ) distinct points.
If this is not the case, one says that f is branched at P , and P is called a branch
point for f .

Theorem 10.4.4 Let f : V → W be a finite morphism between quasi-projective
varieties, with W normal. Then:

(a) if f is inseparable, then f is branched at all points of W;
(b) if f is separable, the branch points for f in W form a proper closed subset of

W .

Proof We keep the notation of the proof of Theorem 10.4.3. Let Q be a point
of W where f is not branched. Then l = n and P̄(T ) has n distinct roots. This
means that the discriminant D(P̄) of P̄(T ), i.e., the resultant of P̄(T ) and of the
derivative P̄ ′(T ), is not zero. Consider the discriminant D(P) ∈ B of P(T ). Since
D(P̄) = D(P)(Q), we have D(P) �= 0. If f is inseparable, this is impossible, and
this proves (a). If f is separable, since D(P)(Q) �= 0, there is an open neighborhood
U of Q in W , such that for all Q′ ∈ U one has D(P)(Q′) �= 0. The solutions of the
equation

T l + a1(Q
′)T l−1 + · · · al(Q′) = 0

are exactly the values that a assumes at the points of f −1(Q′), it follows that f
is not branched in all points of U . It remains to be proved that if f is separable,
there are points of W in which f is not branched. Note that the extension L → K is
separable. So, for the Theorem of the Primitive Element 7.2.2, there is anα ∈ B such
that K = L(α). If P(T ) is the minimal polynomial of α, one has deg(P(T )) = n
and D(P) �= 0 for the separability of the extension. Hence there is a Q ∈ W such
that D(P)(Q) �= 0 and Q is not a branch point for f . �

Exercise 10.4.5 Prove that Theorem 10.4.3 no longer holds if W is not normal.

Exercise 10.4.6 * Prove that if A ⊆ B are noetherian rings and C is the integral closure of A in
B, then C[x] is the integral closure of A[x] in B[x].
Exercise 10.4.7 * Prove that if (W,φ) is a normalization of the affine variety V , then (W ×
A
n,φ × idAn ) is a normalization of V × A

n . In particular, if V is normal, so is V × A
n , hence also

V × P
n , for all positive integers n.
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10.5 Solutions of Some Exercises

10.1.7 Use Lemma 5.4.1.

10.1.8 Consider the inclusion f ∗ : A(W ) → A(V ), so via f ∗ we will consider A(W ) as a subring
of A(V ). As for the first assertion note that f −1(UW (g)) = UV (g). Moreover

O(UW (g)) = A(W )
[1
g

]
, O(UV (g)) = A(V )

[1
g

]

and f| f −1(UW (g)) corresponds to the inclusion A(W )
[
1
g

]
→ A(V )

[
1
g

]
. Since f is finite, A(V ) is

a finitely generated A(W )-module (see Exercise 5.4.7), then also A(V )
[
1
g

]
is a finitely generated

A(W )
[
1
g

]
-module, and we are done by Exercise 5.4.6.

10.1.10 If f1 is non-constant, it suffices to prove that xn = f2
f1

is not integral over An−1. Suppose

by contradiction that f2
f1
is integral over An−1. We would have a relation of the type

( f2
f1

)n + a1
( f2
f1

)n−1 + · · · + an = 0,

with a1, . . . , an ∈ An−1. This implies

f n2 + a1 f
n−1
2 f1 + · · · + an f

n
1 = 0,

which yields that f1 divides f2, a contradiction.
The final assertion is easy.

10.1.12 Every element of A(V ) is integral over A(W ), so it is algebraic over A(W ). Hence every
element of K (V ) is algebraic over K (W ). Thus K (V ) and K (W ) have the same transcendence
degree over K.
10.1.13 Consider for instance the projection of the plane curve x1x22 + x1 − x2 = 0 on the x1 axis
from the point at infinity of the x2 axis.
10.1.14 Suppose we have a finite morphism f : V → W of affine varieties. Let V ′ ⊆ V be a closed
subvariety and let W ′ = f (V ′) be its image. Let x ∈ A(V ′) be any element. Then x comes as the
image of an element y via the surjective homomorphism A(V ) → A(V ′). Since f is finite, we have
a relation of the form

yn + a1y
n−1 + · · · + an = 0,

with a1, . . . , an ∈ A(W ). Then mapping to A(W ′) via the homomorphism A(W ) → A(W ′)we get

xn + b1x
n−1 + · · · + bn = 0,

with b1, . . . , bn ∈ A(W ′) the images of a1, . . . , an ∈ A(W ).
10.1.15The principal open subset form a basis for the Zariski topology of an affine variety.Moreover
the counterimage of a principal open subset is an open principal subset, so it is affine.
10.1.18 For example the projection p1 : P1 × P

1 → P
1 is not affine.

10.1.21 We can assume that P = [0, . . . , 0, 1] and H = Z p(xn). If V has degree d it has equation
of the sort

f = xan fd−a(x0, . . . , xn−1) + · · · + fd (x0, . . . , xn−1) = 0

with fi homogenous polynomials of degree i in the variables x0, . . . , xn−1, for i = d − a, . . . , d, for
some non-negative integer a < d, and fd−a �= 0. If a = 0, then the variable xn does not appear in f
and V is a conewith vertex P = [0, . . . , 0, 1] (see Exercise 3.2.9), and p(V \ {P}) = Z p( fd ) ⊂ H ,
so that p is not dominant. If a > 0, then p(V \ {P}) contains H \ Z p( fd−a), and p is dominant.
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10.3.6 To see that An is normal apply Proposition 10.3.3, (a) and Exercise 5.4.3. Since Pn and the
Segre varieties can be covered by open sets isomorphic to affine spaces, their normality follows by
Proposition 10.3.3, (b).
10.3.7 If the matrix of the quadric has rank 4, then the quadric is isomorphic to the Segre variety
Seg1,1 (see Exercise 8.2.16) so it is normal by Exercise 10.3.6. Consider the case in which the
matrix of the quadric has rank 3, in which case the quadric is a cone (see Exercise 3.2.10). It is well
known that any such quadric is projectively equivalent to the one V with equation x21 + x22 = x23 .
Let us prove that this quadric is normal. We claim that S(V ) = S3/(x21 + x22 − x23 ) is integrally
closed. Then the normality of V follows by Theorem 5.5.3 and Lemma 10.3.1. To prove that S(V )

is integrally closed, note that Q(S(V )) is obtained by adding to K(x0, x1, x2) the roots of the
polynomial X2 − (x21 + x22 ) in the variable X , which is irreducible overK(x0, x1, x2) (see Lemma
2.2.4 and Gauss Lemma 2.2.5). Then any element of Q(S(V )) can be written in a unique way as
u + vx3, with u, v ∈ K(x0, x1, x2). Similarly, any element of S(V ) can be written in a unique way
as u + vx3, with u, v ∈ K[x0, x1, x2], so that S(V ) is a finitely generated K[x0, x1, x2]-module,
hence S(V ) is integral overK[x0, x1, x2]. Now let a = u + vx3 ∈ Q(S(V )) be integral over S(V ).
Then a is integral over K[x0, x1, x2] (see Exercise 10.1.14), and its minimal polynomial is

(X − u − vx3)(X − u + vx3) = X2 − 2uX +
(
u2 − v2(x21 + x22 )

)
.

Thereforeu ∈ K[x0, x1, x2] andv2(x21 + x22 ) ∈ K[x0, x1, x2] and this implies thatv ∈ K[x0, x1, x2],
so that a ∈ S(V ), as wanted.
10.3.8 For instance, consider the first curve V . Its affine part has equation x21 = x32 . Now A(V ) is not
integrally closed, because x1

x2
is solution of the equation X2 − x2 = 0with coefficients in A(V ), but it

does not lie in A(V ). Then V is not normal by Proposition 10.3.3. Similarly, the second curve V ′ has
affine equation x22 = x21 (x1
+ 1) and A(V ′) is not normal because x2

x1
verifies the equation X2 − (x1 + 1) = 0 but is does

not lie in A(V ′).
10.3.9 It is clear that Pn is projectively normal. As for Veronese varieties Vn,d , note that S(Vn,d ) =⊕

a∈N Sn,ad and this ring is easily seen to be integrally closed. Similar arguments for the Segre
verities. The final assertion follows by Theorem 5.5.3 and Lemma 10.3.1.
10.3.10 Consider the rational normal curve V = V1,4 which is the image of the morphism

v1,4 : [x0, x1] ∈ P
1 → [x40 , x30 x1, x20 x21 , x0x31 , x41 ] ∈ P

4

and consider its projection to the hyperplane x2 = 0 form the point [0, 0, 1, 0, 0]. This projec-
tion is an isomorphism onto its image V ′. Indeed one can verify that the inverse morphism is
given by assigning to a point [a0, a1, a3, a4] ∈ V ′ the point v1,4(a0, a1) ∈ V if a0 �= 0, and the
point v1,4(a3, a4) ∈ V if a4 �= 0. By Exercise 10.3.9 we know that V is projectively normal. By
contrast V ′ is not projectively normal. Indeed, assuming the homogeneous coordinates in P3 to be
[y0, y1, y2, y3], in S(V ′)wehave the relation (y0y2)2 = y0y21 y3, and this implies that y0 y2

y1
is integral

over S(V ′). However y0 y2
y1

does not lie in S(V ′). In fact, if y0 y2
y1

∈ S(V ′), since S(V ′) is graded, we
would have y0y2 = y1 f with f homogeneous of degree 1, i.e., f = a0y0 + a1y1 + a2y2 + a3y3.
Then we would have a quadric with equation

y0y2 = y1(a0y0 + a1y1 + a2y2 + a3y3)

containing V ′, which is not the case. We would have in fact that for any [x0, x1] ∈ P
1, there is a

relation
x20 x

2
1 = a0x

4
0 + a1x

3
0 x1 + a2x0x

3
1 + a3x

4
0 ,

which is not possible.
10.3.11 It is not difficult to see that both φ,φ′ are birational, in particular they are dominant, so they
correspond to inclusions
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φ∗ : A(V ) → K[t], (φ′)∗ : A(V ′) → K[t],
which induce isomorphisms K (V ) ∼= K(t) ∼= A(V ′). Now K[t] is integral over A(V ). Indeed,
t = x1

x2
which, as we saw in the solution to Exercise 10.3.8, is integral over A(V ). Similarly, in the

case of V ′, t = x2
x1

which is integral over A(V ′). This implies that the maps φ and φ′ are finite.
Finally K[t] is integrally closed because it is a unique factorization domain (see Exercise 5.4.3).
This implies that (A1,φ) and (A1,φ′) are normalizations of V and V ′ respectively.
10.3.12 Let U be a non-empty open affine subset of V and let (U ′,φ) be a normalization of U .
Then there are two non-empty open subsets ofU andU ′ which are isomorphic, and this implies that
there are points of U which are normal for U , hence there are normal points of V . Let P ∈ V be a
normal point. Let again U be an open neighborhood of P in V and let (U ′,φ) be a normalization
of U . Let P ′ ∈ U be any point such that φ(P ′) = P . Then φ∗ : OU,P → OU ′,P ′ is injective and
Q(OU,P ) = Q(OU ′,P ′ ) = K (V ) and OU ′,P ′ is integrally closed. Then φ∗ is an isomorphism. By
Corollary 7.1.3, there is an open subset of U containing P and an open subset of U ′ containing P ′
such that φ induces an isomorphism between them. Hence there is a whole open neighborhood of
P in V consisting of normal points. This proves the assertion.
10.4.5 Consider for example the affine plane curve W with equation x31 = x22 − x21 . We know that
it is not normal (see Exercise 10.3.11) and its normalization is A1. So we have a finite birational
morphism φ′ : A1 → W (see again Exercise 10.3.11), which has degree 1, but the counterimage of
the point (0, 0) consists of two distinct points.
10.4.6 Let f ∈ B[x] be integral over A[x]. We have a relation of the sort

f m + g1 f
m−1 + · · · + gm = 0 with g1, . . . , gm ∈ A[x].

Let r be an integer which is larger than the degrees of g1, . . . , gm , and set f1 = f − xr . Hence we
have

( f1 + xr )m + g1( f1 + xr )m−1 + · · · + gm = 0,

which implies a relation of the form

f m1 + h1 f
m−1
1 + · · · + hm = 0 with h1, . . . , hm ∈ A[x],

hence
(− f1)( f

m−1
1 + h1 f

m−2
1 + · · · + hm−1) = hm .

If r � 0, then hm is monic and so is also f1, hence also f m−1
1 + h1 f

m−2
1 + · · · + hm−1 is monic.

By applying Lemma 10.4.1, we have f1 ∈ C[x] hence f ∈ C[x]. Conversely, if f ∈ C[x], then
f is integral over over A[x]. Indeed, if a0, . . . , an are the coefficients of f , then (A[x])[ f ] ⊆
(A[a0, . . . , an])[x] which is finitely generated over A[x], since A[a0, . . . , an] is finitely generated
on A.

10.4.7 It suffices to prove the assertion forn = 1.ThenwemayapplyExercise 10.4.6 to the following

situation: A = A(V ), B = K (V ), C = A(W ), with W a normalization of V . Then A(V × A
1) =

A[x], K (V × A
1) = B(x), and A(W × A

1) = C[x], and Exercise 10.4.6 implies that A(W × A
1)

is the integral closure of A(V × A
1) in K (V )[x]. But, since K (V )[x] is a unique factorization

domain and K (V )(x) = Q(K (V )[x]), then K (V )[x] is integrally closed in K (V )(x) = B(x). In

conclusion A(W × A
1) is the integral closure of A(V × A

1) in K (V × A
1).



Chapter 11
Dimension

11.1 Characterization of Hypersurfaces

As we know, any hypersurface of A
n or P

n has transcendent dimension n − 1 (see
Exercise 10.1.20). As a first result of this chapter, we invert this result. We start with
the following:

Lemma 11.1.1 Let V,W be quasi-projective varieties with W ⊆ V . Then dimtr

(W ) ≤ dimtr(V ). If, in addition, W is closed in V and dimtr(W ) = dimtr(V ), then
V = W.

Proof It suffices to reduce to the case in which V and W are affine. Then we
may assume W ⊆ V ⊆ A

n , so that A(V ) and A(W ) are generated, as K-algebras,
by x1, . . . , xn . Let m = dimtr(V ). Then any (m + 1)-tuple (xi1 , . . . , xim+1) of ele-
ments of {x1, . . . , xn} is algebraically dependent. This implies that there is a non-
zero polynomial F ∈ K[Ti1 , . . . , Tim+1 ], such that F(xi1 , . . . , xim+1) = 0 in A(V ).
Namely, F(xi1 , . . . , xim+1) ∈ Ia(V ) ⊆ Ia(W ). Hence F(xi1 , . . . , xim+1) = 0 also in
A(W ), i.e., (xi1 , . . . , xim+1) are algebraically dependent on A(W ). This implies that
dimtr(W ) ≤ m = dimtr(V ).

Assume now also dimtr(W ) = m, withW closed in V . We want to show that V =
W , i.e., that Ia(V ) = Ia(W ). We argue by contradiction and assume that Ia(V ) �=
Ia(W ).

Since dimtr(W ) = m, it is possible to choose m elements in {x1, . . . , xn} which
are algebraically independent over K. We may assume these are x1, . . . , xm . By
the same argument we made before, we see they are algebraically independent also
as elements of A(V ). Take now f ∈ Ia(W ) \ Ia(V ). Then f (x1, . . . , xn) can be
considered as a non-zero element of A(V ) and, as such, it algebraically depends on
x1, . . . , xm , i.e., there is a relation of the form

a0(x1, . . . , xm) f l + · · · + al(x1, . . . , xm) = 0 (11.1)
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where the polynomial appearing in the left hand side of (11.1) can be supposed to
be non-zero and irreducible, in particular we may assume that al(x1, . . . , xm) �= 0 in
A(V ) hence in An . The relation (11.1) holds also in A(W ), which is the quotient of
A(V ) modulo IV (W ). Since in A(W ) one has f = 0, we get al(x1, . . . , xm) = 0 in
A(W ). But in A(W ) the elements x1, . . . , xm are algebraically independent, so we
would have al = 0 in An , a contradiction. This implies that Ia(V ) = Ia(W ), so that
V = W . �

Theorem 11.1.2 Any variety of transcendent dimension n − 1 in A
n or P

n is an
irreducible hypersurface.

Proof It suffices to consider the affine case. Take a subvariety V of dimension n − 1
inA

n . There is an irreducible polynomial f ∈ Ia(V ), where Ia(V ) is a prime ideal of
An . Then V ⊆ Za( f ), and Za( f ) is an irreducible variety of transcendent dimension
n − 1, with V closed in Za( f ). Then apply Lemma 11.1.1. �

11.2 Intersection with Hypersurfaces

The next step is to consider the intersection of an affine or projective variety with a
hypersurface. We start with the following algebraic lemma:

Lemma 11.2.1 Let A beadomain containing An and integral over An. Let x, y ∈ An

be non-zero, coprime elements and let z ∈ A be such that x divides yz in A. Then
there is a positive integer m such that x divides zm in A.

Proof Suppose we have xw = yz in A and let

F(T ) = T l + b1T
l−1 + · · · + bl

be the minimal polynomial of w over Q(An). By Proposition 10.4.2 we have
b1, . . . , bl ∈ An . Since z = x

yw and x
y ∈ Q(An), the minimal polynomial of z on

Q(An) has also degree l, and one has

0 = F(w) = F
( y

x
z
)

=
( y

x

)l
zl + b1

( y

x

)l−1
zl−1 + · · · + bl ,

so that the minimal polynomial of z is

G(T ) =
( x
y

)l
F

( y

x
T

)
= T l + x

y
b1T

l−1 + · · · +
( x
y

)l
bl .

Again by Proposition 10.4.2, we have ( xy )
i bi ∈ An for i = 1, . . . , l. Since x, y are

coprime, then yi divides bi for i = 1, . . . , l. From the relation G(z) = 0 we deduce
that x divides zl . �
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Theorem 11.2.2 Let V ⊆ P
m be a projective variety with n = dimtr(V ) ≥ 1, and let

H be a hypersurface not containing V . Then each irreducible component of V ∩ H
has transcendent dimension n − 1.

Proof Set V1 = V ∩ H . Then V1 is a non-empty algebraic set (see Exercise 6.4.15).
There is a hypersurface H1 which does not contain any of the irreducible components
of V1. Then V2 = V1 ∩ H1 is an algebraic set which is either empty, or any of its
irreducible components is strictly contained in some component of V1. By repeating
this argument, we obtain a sequence of algebraic sets

V := V0 � V1 � V2 � . . . � Vi � Vi+1 � . . .

such that Vi+1 = Vi ∩ Hi , where Hi is a hypersurface which does not contain any
component of Vi . Let now ni be the maximum dimension of the irreducible compo-
nents of Vi . By Lemma 11.1.1 we have

n := n0 > n1 > n2 > . . . > ni > ni+1 > . . .

so that certainly Vn+1 = ∅, i.e., V ∩ H ∩ H1 ∩ . . . ∩ Hn = ∅. Let f0 = 0, f1 =
0, . . . , fn = 0 be the equations of H, H1, . . . , Hn . We claim we may suppose that
f0, f1, . . . , fn have the same degree. More precisely, given any positive integer d
we can assume f1, . . . , fn of the same degree d, because, for any i = 1, . . . , n, Hi

has simply to satisfy the hypothesis of not containing any component of Vi . Then we
can choose f1, . . . , fn of the same degree of f0. Since Z p( f0, . . . , fn) ∩ V = ∅, the
morphism

φ : P ∈ V → [ f0(P), . . . , fn(P)] ∈ P
n

is finite onto its image (see Corollary 10.2.2). Then φ(V ) is a closed subset of P
n

and dimtr(φ(V )) = dimtr(V ) = n, so that φ(V ) = P
n by Lemma 11.1.1. Now, if

we had n1 < n − 1, we would have Vn = ∅, hence V ∩ H ∩ H1 ∩ . . . ∩ Hn−1 = ∅,
namely Z p( f0, . . . , fn−1) ∩ V = ∅. This would imply that [0, . . . , 0, 1] /∈ φ(V ), a
contradiction. This proves that n1 = n − 1, hence there is some component of V1 of
dimension n − 1.

To finish the proof we have to show that every irreducible component of V1

has dimension at least n − 1. To do this, consider in P
n the open subset Uj

∼= A
n ,

where x j �= 0, for j = 0, . . . , n and set V j = φ−1(Uj ). We will show that, for every
j = 0, . . . , n, every irreducible component of V1 ∩ V j has transcendent dimension
at least n − 1, which will prove the assertion. It suffices to do this for j = n, the
proof being analogous in the other cases. Let us set ai+1 = fi

fn
, for i = 0, . . . , n − 1

and consider the restriction of φ to V n given by

φ : P ∈ V n → (a1(P), . . . , an(P)) ∈ A
n
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which is a finite morphism (see Remark 10.2.5). Let us prove that the restriction of
a2, . . . , an to each of the components of V1 ∩ V n = ZVn (a1), are algebraically inde-
pendent. To do this, consider P(T2, . . . , Tn) ∈ K[T2, . . . , Tn] a non-zero polynomial.
We have to prove that P(a2, . . . , an) is non-zero on any component of ZVn (a1). To
see this it suffices to prove that, if for Q ∈ A(V n) one has Q · P(a2, . . . , an) = 0
on V1 ∩ V n , then Q = 0 on V1 ∩ V n . Indeed, if P(a2, . . . , an) would be zero on
some component X of V1 ∩ V n , it would suffice to take Q zero on all other com-
ponents of V1 ∩ V n but not on X , and then we would have Q · P(a2, . . . , an) = 0
on V1 ∩ V n but Q would not be zero on V1 ∩ V n . So assume Q · P(a2, . . . , an) = 0
on V1 ∩ V n . By applying the Nullstellensatz (see the version in Exercise 5.5.14), we
have that a1 divides (Q · P(a2, . . . , an))l in A(V n), for some positive integer l > 0.
We claim that there is an m > 0 such that a1 divides Qm in A(V n), so that Q = 0 on
V1 ∩ V n , as needed. This follows by Lemma 11.2.1, by taking A = A(V n), x = a1,
y = P(T2, . . . , Tn)l and z = Ql . �

The previous theorem has some remarkable consequences:

Corollary 11.2.3 Let V ⊆ P
m be a projective variety with dimtr(V ) = n and let

f1, . . . , fr be homogeneous polynomials in Sm. Then every irreducible component
of V ∩ Z p( f1, . . . , fr ) has transcendent dimension at least max{n − r, 0}. In par-
ticular if r ≤ n, then V ∩ Z p( f1, . . . , fr ) �= ∅. If V is quasi-projective, then every
irreducible component of V ∩ Z p( f1, . . . , fr ) has transcendent dimension at least
n − r provided V ∩ Z p( f1, . . . , fr ) �= ∅.
Proof If V is projective, the assertion follows by iterated applications of Theorem
11.2.2. If V is quasi-projective, then V is open in V̄ . One has V ∩ Z p( f1, . . . , fr ) =
(V̄ ∩ Z p( f1, . . . , fr )) ∩ V . Then, either V ∩ Z p( f1, . . . , fr ) = ∅ or every
irreducible component of V ∩ Z p( f1, . . . , fr ) is a non-empty open subset of V̄ ∩
Z p( f1, . . . , fr ) and we may apply the result in the projective case. �

Corollary 11.2.4 Let V,W ⊆ P
r be quasi-projective varieties of respective tran-

scendent dimensions n,m, with r ≤ n + m. Then, if V ∩ W �= ∅, for every irre-
ducible component Z of V ∩ W one has dimtr(Z) ≥ n + m − r .

Proof It suffices to reduce to the case in which V,W are affine. Then V ∩ W =
(V × W ) ∩ Δ, where Δ is the diagonal of A

r × A
r (see Exercise 6.2.23). On the

other hand Δ is defined in A
r × A

r = A
2r by r linear equations. Then it suffices to

apply Corollary 11.2.3. �

Corollary 11.2.5 Let V be a quasi-projective variety of transcendent dimension n.
Then there are on V subvarieties of any transcendent dimension s with 0 ≤ s ≤ n.

Proof Obvious. �

Corollary 11.2.6 Let V be a quasi-projective variety. Then dimtr(V ) = dimtop(V ).

Proof From the proof of Theorem 11.2.2 it follows that if n = dimtr(V ), then there
is a chain of subvarieties
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V := V0 � V1 � V2 � . . . � Vn

with Vn consisting of a point. Hence dimtop(V ) ≥ n = dimtr(V ). On the other hand,
Lemma 11.1.1 immediately implies that dimtop(V ) ≤ n = dimtr(V ). �

From now on if V is a quasi-projective variety we will set dim(V ) := dimtr(V ) =
dimtop(V ) and dim(V ) will be simply called the dimension of V . If Z is a locally
closed subset of V , we will say that the dimension of Z , denoted by dim(Z), is the
maximum dimension of the irreducible components of Z . If W is a subvariety of
V , then dim(V ) − dim(W ) will be called the codimension of W in V , denoted by
codimV (W ).

Corollary 11.2.7 Let V ⊆ P
m be a quasi-projective variety of dimension n and let

W ⊆ V be a subvariety of codimension r. Then there is a chain of subvarieties

V := V0 � V1 � V2 � . . . � Vr = W.

Proof If V = W there is nothing to prove. Otherwise, there is a hypersurface H of
P
m such that W ⊆ H but V is not contained in H . Let V1 be one of the irreducible

components of V ∩ H containing W . One has dim(V1) = n − 1. The assertion fol-
lows by iterating this argument. �

Corollary 11.2.8 Let V ⊆ P
m be a quasi-projective variety of dimension n and let

W ⊆ V be a subvariety of codimension r. Then dimK (OV,W ) = r .

Proof The assertion follows from the definition of the Krull dimension of a ring (see
Sect. 4.3), from Exercise 5.5.7 and by Corollary 11.2.7. �

Exercise 11.2.9 Let V ⊆ P
n be a quasi-projective variety and let Z ⊆ V be an algebraic subset

of V such that any irreducible component of Z has codimension r in V . One says that Z is a set-
theoretic complete intersection in V if there are homogeneous polynomials f1, . . . , fr in Sn such
that Z = V ∩ Z p( f1, . . . , fr ). If V ⊆ P

n (resp. V ⊆ A
n) is a projective (resp. affine) variety and

Z ⊆ V is like above, one says that Z is a complete intersection in V if Ip,Z (V ) (resp. IZ (V )) is
generated by r elements of S(V ) (resp. of A(V )).

Prove that any complete intersection is also a set-theoretic complete intersection.

Exercise 11.2.10 Let Z ⊂ P
2 be the set consisting of three non-collinear points. Prove that Z is

not a complete intersection in P
2.

Exercise 11.2.11 Prove that the reducible curve inA
3 consisting of the union of the three coordinate

axes is not a complete intersection.

Exercise 11.2.12 *Let Z ⊂ A
2 be a finite set. Prove that Z is a set-theoretic complete intersection

in A
2.

Exercise 11.2.13 *Let Z ⊂ P
2 be a finite set. Prove that if P ∈ P

2 is any point not in Z and not
lying on any line joining a pair of distinct points of Z , then Z ∪ {P} is a set-theoretic complete
intersection in P

2.
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Exercise 11.2.14 Let Z ⊂ P
2 be a finite set of points for which there is a point P ∈ Z such that

there is no pair of distinct points of Z \ {P} such that P lies on the line joining that pair of points.
Deduce from Exercise 11.2.13 that Z is a set-theoretic complete intersection in P

2. In particular
if Z consists of three distinct non-collinear points, then Z is a set-theoretic complete intersection.
Note that a set-theoretic complete intersection is not necessarily a complete intersection.

Exercise 11.2.15 Prove that the projective twisted cubic is not a complete intersection in P
3.

Exercise 11.2.16 Prove that the affine twisted cubic is a complete intersection in A
3.

Exercise 11.2.17 *Consider a matrix

A =
⎛
⎝
a11 . . . a1n

. . .

an1 . . . ann

⎞
⎠

over a field k. Set

A1 =
⎛
⎝

a11 . . . a1,n−1
. . .

an−1,1 . . . an−1,n−1

⎞
⎠ ,A2 =

⎛
⎝

a11 . . . a1n
. . .

an−1,1 . . . an−1,n

⎞
⎠ ,A3 =

⎛
⎝
a11 . . . a1,n−1

. . .

an1 . . . an,n−1

⎞
⎠ .

Prove that if det(A) = det(A1) = 0, then either rk(A2) < n − 1 or rk(A3) < n − 1.

Exercise 11.2.18 *Prove that the twisted cubic in P
3 is a set-theoretic complete intersection. Note:

it is an open problem to see if any curve in P
3 is a set-theoretic complete intersection.

Exercise 11.2.19 *Consider the image V of the morphism

φ : t ∈ A
1 → (t3, t4, t5) ∈ A

3.

Prove that V is an irreducible affine curve in A
3, which is not a complete intersection.

Exercise 11.2.20 Let F ⊂ P
n be an irreducible hypersurface and let V ⊂ F be a subvariety of

codimension 1 in F which is a complete intersection in P
n . Prove that V is a complete intersection

in F if and only if we can assume that one of the generators of Ip(V ) coincides with a reduced
equation of F .

Deduce that if Q is an irreducible quadric in P
3 and L is a line on Q, then L is not a complete

intersection on Q.

Exercise 11.2.21 Let Q be an irreducible quadric cone in P
3 and let L be a line on Q. Prove that

Q is a set theoretic intersection on Q.

Exercise 11.2.22 *Let Q be an irreducible quadric in P
3 which is not a cone (so it is projectively

equivalent to the quadric x0x1 − x2x3 = 0) and let L be a line on Q. Prove that Q is not a set
theoretic intersection on Q.

Exercise 11.2.23 *Let H be a closed algebraic subset in the Veronese variety Vn,d , such that all
irreducible components of H have codimension 1 in Vn,d . Prove that H is a set theoretic complete
intersection on Vn,d .

Exercise 11.2.24 Let V ⊆ P
n be a quasi-projective variety of dimension n and let f1, . . . , fr ∈

O(V ). Prove that, if ZV ( f1, . . . , fr ) �= ∅, then any of its irreducible components has dimension
at least max{n − r, 0}. In particular, if f ∈ O(V ) \ K, then all irreducible components of ZV ( f )
have codimension 1 in V .

Exercise 11.2.25 Let A be a domain which is also a finitely K-algebra. Prove that:
(a) dimK (A) equals the transcendence degree of Q(A) over K;
(b) for every prime ideal I of A one has

height(I) + dimK (A/I) = dimK (A).
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11.3 Morphisms and Dimension

In this section we investigate what is the behavior of the dimension with respect to
morphisms between varieties. We have the following basic:

Theorem 11.3.1 Let V,W be quasi-projective varieties of dimensions n,m respec-
tively and let f : V → W be a dominant morphism. Then we have:

(a) n ≥ m and for any point P ∈ f (V ) every irreducible component of the fibre of
f over P, i.e., of VP := f −1(P), has dimension at least n − m;

(b) there is a non-empty open subset U of f (V ) such that for every point P ∈ U
every irreducible component of VP has dimension n − m.

Proof Let us prove (a). To prove that n ≥ m, we may assume that V and W
are affine. Then f ∗ : A(W ) → A(V ) is injective, and this extends to the injective
homomorphism f ∗ : K (W ) → K (V ). Whence immediately follows that dim(V ) =
dimtr(V ) ≥ dimtr(W ) = dim(W ).

Let now P ∈ f (V ). Since the problem is of a local nature, wemay suppose thatW
is affine, i.e., W ⊆ A

r . By the proof of Theorem 11.2.2 and by Corollary 11.2.7 and
after may be shrinkingW to an open affine principal neighborhhod of P , we can find
polynomials f1, . . . , fm ∈ Ar such that {P} = W ∩ Za( f1, . . . , fm). Then, if we set
gi = f ∗( fi ) = fi ◦ f ∈ O(V ), for i = 1, . . . ,m, one has VP = ZV (g1, . . . , gm). So
the second assertion of (a) follows from Exercise 11.2.24.

Let us now prove (b). Let us start by assuming V,W to be affine varieties. From
the injective homomorphism f ∗ : K (W ) → K (V ) we have that K (V ) has tran-
scendence degree n − m over K (W ). So if t1, . . . , th are generators of A(V ) as a
K-algebra, among t1, . . . , th there are (n − m)-tuples of elements which are alge-
braically independent over K (W ), hence on A(W ). Let ti1 , . . . , tin−m be one of these
(n − m)-tuples. Then we have non-zero polynomials

Fi1,...,in−m ;i (T ) ∈ A(W )[ti1 , . . . , tin−m ][T ], i = 1, . . . , h,

with i �= i j for j = 1, . . . , n − m, such that Fi1,...,in−m ;i (ti ) = 0. Set

Fi1,...,in−m ;i (T ) = a0,i (ti1 , . . . , tin−m )T li + · · · + ali ,i (ti1, . . . , tin−m ),

and we may assume that a0,i (ti1, . . . , tin−m ) ∈ A(W )[ti1 , . . . , tin−m ] is not zero.
Consider the closed subset Xi1,...,in−m ;i in W formed by the points P ∈ W such

that the polynomials ā0,i (ti1 , . . . , tin−m ) ∈ K[ti1 , . . . , tin−m ] obtained from a0,i (ti1 , . . . ,
tin−m ) by computing its coefficients in P , are identically zero. Then Xi1,...,in−m ;i is a
proper closed subset of W and the same happens for X = ⋃

Xi1,...,in−m ;i , where the
union is taken over all indices i and over all (n − m)-tuples of generators of A(V )

which are algebraically independent on A(W ). Set U = f (V ) ∩ (W \ X) which is
a non-empty open subset of f (V ). Take P ∈ U and let Z be an irreducible compo-
nent of VP . Let t̄i be the image of ti in A(Z) for all i = 1, . . . , h. Then t̄1, . . . , t̄h
generate A(Z) as a K-algebra. By (a), there are at least n − m elements among



144 11 Dimension

t̄1, . . . , t̄h which are algebraically independent over K, and we may suppose they
are t̄1, . . . , t̄n−m . Then t1, . . . , tn−m are algebraically independent in A(V ). Since the
polynomials ā0,i (ti1 , . . . , tin−m ) are non-zero in P , we have ā0,i (t̄1, . . . , t̄n−m) �= 0,
so that F1,...,n−m;i (t̄i ) = 0, with F1,...,n−m;i �= 0. This implies that dim(Z) ≤ n − m.
Then (a) implies the assertion.

As for the general case, let U1 be a non-empty affine open subset of W and
let {U1,i }i=1,...,s be a covering with affine open subsets of f −1(U1). For every i =
1, . . . , s, there is a non-empty open subset U ′

i ⊆ U1 ∩ f (V ), such that for every
P ∈ U ′

i , every irreducible component of VP ∩U1,i has dimension n − m. If we set
U = ⋂s

i=1U
′
i , then U ∩ f (V ) verifies the assertion. �

This theorem has a couple of important corollaries:

Corollary 11.3.2 Let V,W beprojective varieties of respective dimensions n,m and
let f : V → W be a surjective morphism. Then for all integers l = n − m, . . . , n,
the subsets Wl of W formed by all points P ∈ W such that VP has a component of
dimension at least l, are closed subsets of W .

Proof By Theorem 11.3.1, we have Wn−m = W and there is a proper closed sub-
set X of W such that Wl ⊆ X for l > n − m. Suppose l > n − m and Wl �= ∅. In
order to show that Wl is closed it suffices to prove that its intersection with any irre-
ducible component of X is closed. Then we may assume X to be irreducible and let
Y1, . . . ,Yh be the irreducible components of f −1(X) such that fi = f|Yi : Yi → X is
dominant, hence surjective since V is projective. If l ≤ dim(Yi ) − dim(X) for some
i = 1, . . . , h, by Theorem 11.3.1 we have Wl = X . If for any i = 1, . . . , h one has
l > dim(Yi ) − dim(X), then Wl is contained in a proper closed subset of X . The
assertion follows by iterating the above argument. �

Corollary 11.3.3 Let V,W be projective varieties and f : V → W amorphism. Let
Z be a closed subset of V such that f (Z) = W and for any P ∈ W, ZP := VP ∩ Z is
irreducible of constant dimension n as P varies. Then Z is irreducible of dimension
dim(Z) = dim(W ) + n.

Proof Setm = dim(W ). Let Z = Z1 ∪ . . . ∪ Zh be an irredundant decomposition of
Z into irreducible components. Since f (Z) = W , there are irreducible components
of Z , we may assume they are Z1, . . . , Zl , such that f (Zi ) = W for i = 1, . . . , l,
whereas f (Zi ) is a proper closed subset of W if i = l + 1, . . . , h. Let U be the
non-empty open subset U = W \ (

⋃h
l+1 f (Zi )). For i = 1, . . . , l and any P ∈ U ,

we denote by ni (P) the maximal dimension of an irreducible component of VP ∩ Zi ,
and let ni be the minimum of ni (P) as P varies in U . By Theorem 11.3.1, there is
a non-empty open subset U ′ of U such that for all P ∈ U ′ one has ni = ni (P), for
i = 1, . . . , l. Moreover, if P ∈ U , one has ZP = (VP ∩ Z1) ∪ . . . ∪ (VP ∩ Zl), so
that there is an i = 1, . . . , l, such that ZP = VP ∩ Zi , and we may suppose that this
happens for i = 1. Then n1 = n, so that dim(Z1) = n + m. For every P ∈ W the
dimension of every component of VP ∩ Z1 is at least n. On the other hand, since
VP ∩ Z1 ⊆ ZP and n = dim(ZP), the dimension of every component of VP ∩ Z1 is
exactly n. This implies that Z1 = Z , proving the assertion. �
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Exercise 11.3.4 Let V ⊆ P
n be a projective variety and let p be the projection of V to a subspace

P2 from a centre P1 such that P1 ∩ V = ∅. We know that p is a finite morphism, so that p(V ) is a
closed subvariety of P2 with dim(V ) = dim(p(V )). The closed subset W := p−1(p(V )) is called
(projective) cone on V with vertex P1. Prove that W = ⋃

P∈V (P1 ∨ P) = ⋃
P∈p(V )(P1 ∨ P) and

W is irreducible. Prove also that dim(W ) = dim(V ) + dim(P1) + 1.

Exercise 11.3.5 If V is an affine variety, one has dim(V ) = dimK (A(V )) (see Sect. 4.3 and Corol-
lary 11.2.6). Prove that instead, if V is a projective variety, one has dim(V ) = dimK (S(V )) − 1.

Exercise 11.3.6 *Let f (x1, . . . , xr ) be a non-constant plurihomogeneous irreducible polynomial
in the variables xi = (xi0, . . . , xini ), with i = 1, . . . , r . Consider the zero set V = Zs( f ) in P

n1 ×
. . . × P

nr . Prove that V is irreducible of dimension n1 + · · · + nr − 1.

Exercise 11.3.7 *Consider a codimension 1 irreducible closed subset V of P
n1 × . . . × P

nr .
Prove that there is a non-constant plurihomogeneous irreducible polynomial in the variables
xi = (xi0, . . . , xini ), with i = 1, . . . , r , such that V = Zs( f ).

Exercise 11.3.8 *Let X ⊆ P
r be a projective variety of dimension n. Consider the Zariski closure

Sec(X) of the union of all lines in P
r joining distinct points of X . Prove that Sec(X) is a closed

subset of P
r of dimension m ≤ 2n + 1, which is called the secant variety of X .

11.4 Elimination Theory Again

In this section we apply the results of the previous sections to give some interesting
complement to elimination theory.

First of all recall the notation introduced inSect. 9.1, and let us prove the following:

Proposition 11.4.1 The closed subset Z(n; d1, . . . , dh) of L(n; d1, . . . , dh) is irre-
ducible and

codimLn,d1 ,...,dh
(Z(n; d1, . . . , dh)) ≥ h − n (11.2)

Proof Consider the subsetΓ (n; d1, . . . , dh) ofLn,d1,...,dh × P
n consisting of all pairs

((H1, . . . , Hh), P) such that P ∈ H1 ∩ . . . ∩ Hh . It is easy to check (we leave the
details to the reader) that Γ (n; d1, . . . , dh) is closed in Ln,d1,...,dh × P

n . Moreover
we have the second projection p2 : Ln,d1,...,dh × P

n → P
n , whose restriction p to

Γ (n; d1, . . . , dh), is clearly surjective. For every point P ∈ P
n , consider the hyper-

planeLn,di (P) ofLn,di consisting of all H ∈ Ln,di such that P ∈ H , for i = 1, . . . , h.
It is the clear that p−1(P) = Ln,d1(P) × · · · × Ln,dh (P). So for all P ∈ P

n , one has
that p−1(P) is irreducible, of dimension N (n, d1) + · · · + N (n, dh) − h. By Corol-
lary 11.3.3, we deduce that Γ (n; d1, . . . , dh) is irreducible of dimension N (n, d1) +
· · · + N (n, dh) + n − h. Since Z(n; d1, . . . , dh) = p(Γ (n; d1, . . . , dh)) we have
that Z(n; d1, . . . , dh) is irreducible and dim(Z(n; d1, . . . , dh)) ≤
dim(Γ (n; d1, . . . , dh)) = N (n, d1) + · · · + N (n, dh) + n − h, as wanted. �

Corollary 11.4.2 If h ≤ n one has Z(n; d1, . . . , dh) = Ln,d1,...,dh . If h > n then the
equality holds in (11.2).
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Proof If h ≤ n, the assertion follows by Corollary 11.2.3. Suppose next that h > n.
By Theorem 11.3.1, to prove the assertion it suffices to prove that there is a point
(H1, . . . , Hh) ∈ Z(n; d1, . . . , dh) such that q−1(H1, . . . , Hh) is a finite subset of
Γ (n; d1, . . . , dh), where q is the restriction to Γ (n; d1, . . . , dh) of the projection to
Ln,d1,...,dh . In other words, it suffices to find h homogeneous polynomials of degrees
d1, . . . , dh such that their system has finitely many non-trivial solutions. A set of
such polynomials is xd11 , . . . , xdnn , xdn+1

n , . . . , xdhn , whose only non-trivial solution is
(1, 0, . . . , 0). �

We will now restrict our attention to the first non-trivial case h = n + 1, where
Z(n; d1, . . . , dn+1) has codimension 1 in Ln,d1,...,dn+1 .

Let xi be the natural homogeneous coordinates in Ln,di , for i = 1, . . . , n + 1. By
Exercise 11.3.7, there is an irreducible, non-constant, plurihomogeneous polynomial
R(x1, . . . , xn+1) in the variables xi , for i = 1, . . . , n + 1, defined up to a non-zero
multiplicative constant, such that Z(n; d1, . . . , dn+1) = Zs(R). The polynomial R
is called the resultant polynomial of n + 1 homogeneous polynomials of degrees
d1, . . . , dn+1 in n + 1 variables, with indeterminate coefficients. Its vanishing is a
necessary and sufficient condition in order that the system of such polynomials has
a non-trivial solution.

Fix now an index i ∈ {1, . . . , n + 1} and consider the projection

pi : Z(n; d1, . . . , dn+1) → Ln,d1,...,di−1,di+1,...,dn .

We will consider the case i = n + 1, because the other cases are analogous, and
we will set pn+1 = π. The morphism π is surjective. In fact, if we fix a point
(H1, . . . , Hn) ∈ Ln,d1,...,dn , byCorollary 11.2.3wehave H1 ∩ . . . ∩ Hn �= ∅. Then for
every point P ∈ H1 ∩ . . . ∩ Hn , π−1(H1, . . . , Hn), as a subset of {(H1, . . . , Hn)} ×
Ln,dn+1

∼= Ln,dn+1 contains the hyperplane Ln,dn+1(P), and so it is non-empty. More-
over we have the following two possibilities:

(a) H1 ∩ . . . ∩ Hn = {P1, . . . , Pl} is a finite set, then π−1(H1, . . . , Hn) coincides
with

⋃l
i=1 Ln,dn+1(Pi ), which is a divisor in Ln,dn+1 ;

(b) H1 ∩ . . . ∩ Hn has some component of positive dimension, and then π−1

(H1, . . . , Hn) = Ln,dn+1 by Exercise 6.4.15.

Since dim(Z(n; d1, . . . , dn+1)) − dim(Ln,d1,...,dn ) = dim(Ln,dn+1) − 1, by Theo-
rem 11.3.1 we have that there is a non-empty open subset U ⊆ Ln,d1,...,dn such that
for all (H1, . . . , Hn) ∈ U case (a) and not case (b) occurs.

Theorem 11.4.3 Let r, n be a positive integers with r ≤ n. Then there is a non-empty
open subset U of Ln,d1,...,dr such that for all (H1, . . . , Hr ) ∈ U, every irreducible
component of H1 ∩ . . . ∩ Hr has dimension n − r .

Proof The case r = n follows from the above considerations. To prove the assertion
for r < n we proceed by descending induction. Suppose the assertion holds for
Ln,d1,...,dr+1 and let U ′ be the non-empty open subset of Ln,d1,...,dr+1 such that for all
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(H1, . . . , Hr+1) ∈ U ′, every component of H1 ∩ . . . ∩ Hr+1 has dimension n − r −
1. Since the projection

q : Ln,d1,...,dr+1 → Ln,d1,...,dr

is surjective, we have that q|U ′ is dominant to Ln,d1,...,dr , hence there is a non-
empty open subset U ⊆ Ln,d1,...,dr such that U ⊆ q(U ′) (see Theorem 10.1.6). For
all (H1, . . . , Hr ) ∈ U , there is an Hr+1 ∈ Ln,dr+1 such that every component of
H1 ∩ . . . ∩ Hr+1 has dimension n − r − 1. Then every component of H1 ∩ . . . ∩ Hr

has dimension n − r by Corollary 11.2.3. �

Le us now go back to the study of Z(n; d1, . . . , dn+1) and of R(x1, . . . , xn+1).

Proposition 11.4.4 The polynomial R(x1, . . . , xn+1) is not constant with respect to
any set of variables xi , for i = 1, . . . , n + 1.

Proof We prove that R is not constant with respect to the variables xn+1, the proof
for i = 1, . . . , n being analogous. We keep the notation introduced in Theorem
11.4.3 and before. Let U ⊂ Ln,d1,...,dn be the non-empty open subset for which case
(a) above occurs for all (H1, . . . , Hn) ∈ U . Suppose Hj has homogeneous coor-
dinates [a j ] in Ln,d j for j = 1, . . . , n. Then the equation R(a1, . . . , an, xn+1) = 0

defines the divisor
∑l

i=1 Ln,dn+1(Ph), where H1 ∩ . . . ∩ Hn = {P1, . . . , Pl}. Hence
R(a1, . . . , an, xn+1) is not constant, proving the assertion. �

Let αi be the degree of R with respect to the variables xi , for i = 1, . . . , n + 1.

Corollary 11.4.5 In the above setting one has that, for all i = 1, . . . , n + 1, αi

is bounded below by the maximum of the order of a finite set of points which is the
intersection of n hypersurfaces of degrees d1, . . . , di−1, di+1, . . . , dn+1. In particular
one has

αi ≥ d1 · · · di−1 · di+1 · · · dn+1. (11.3)

Proof The first part of the assertion is an immediate consequence of the proof of
Proposition 11.4.4. As for the final part, we note that if we take Hj reducible in
d j suitable distinct hyperplanes for j = 1, . . . , i − 1, i + 1, . . . , n + 1, then H1 ∩
. . . ∩ Hi−1 ∩ Hi+1 ∩ . . . ∩ Hn+1 consists of d1 · · · di−1 · di+1 · · · dn+1 distinct points
(we leave the details to the reader). �

We can be more precise:

Theorem 11.4.6 Equality holds in (11.3).

Proof We will prove the assertion for i = n + 1, the proof being analogous in the
other cases.

We need some preliminaries.We fix a positive integer d and considerLn,d0,...,dN (n,d)

with di = d for i = 0, . . . , N (n, d). Let x be the obvious coordinates inLn,d , so that x
is a non-zero vector of order N (n, d) + 1 onK. If (H0, . . . , HN (n,d)) ∈ Ln,d0,...,dN (n,d)

,
and if Hi = [xi ], the matrix
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M =
⎛
⎝

x0
. . .

xN (n,d)

⎞
⎠

is a square matrix of order N (n, d) + 1, and its determinant Δ(n, d) is a polynomial
in x0, . . . , xN (n,d) which is linear in each of these sets of variables, i.e., Δ(n, d)

is a plurihomogeneous polynomial of degree 1 in x0, . . . , xN (n,d), which is clearly
irreducible. We will denote by D(n, d) the zero locus of Δ(n, d) in Ln,d0,...,dN (n,d)

,
which is a subvariety of codimension 1 in Ln,d0,...,dN (n,d)

. Then D(n, d) represents the
(N (n, d) + 1)-tuples of divisors of degree d in P

n that, as points of Ln,d , are not
linearly independent, i.e., they are contained in some proper projective subspace of
Ln,d .

Let us now go back to the study of R(n; d1, . . . , dn+1). Set d = d1 + · · · + dn+1 −
n and let us remark that the distinct monomials with coefficient 1 of degree d in
x0, . . . , xn enjoy the property that in each of them at least one of the variables xi
appears with degree at least di+1. Then these monomials can be all obtained, only
once, under the form xdi+1

i μi , with i = 0, . . . , n, where μi is a monomial of degree
d − di+1 such that:

(a) if i = 0 does not satisfy any other condition;
(b) if i = 1 contains x0 at degree at most d1 − 1;
(c) if i = 2 contains x j at degree at most d j+1 − 1, for j = 0, 1, etc.

Note that the number of monomials of type μn+1 is d1 · · · dn . Let νi be the number
of monomials μi , for i = 0, . . . , n + 1. One has

ν0 + · · · + νn = N (n, d) + 1.

Denote by Mi, j , for j = 1, . . . , νi , the monomials of type μi , for i = 0, . . . , n. Let
Hi, j be the divisor of P

n of degree d − di+1 with equation Mi, j = 0. Finally consider
the morphism

ψ : Ln,d1,...,dn+1 → LN (n,d)+1
n,d

that maps (H1, . . . , Hn+1) ∈ Ln,d1,...,dn+1 to

(H1 + H0,1, . . . , H1 + H0,ν0 , . . . , Hn+1 + Hn,1, . . . , Hn+1 + Hn,νn ).

If Hi = [ai ] ∈ Ln,di , for i = 1, . . . , n + 1, then

ψ([a1], . . . , [an+1]) = ([x0], . . . , [xN (n,d)])

where the vectors xi are linear functions of a1, . . . , an+1, and we will write xi =
xi (a1, . . . , an+1).

Now ψ−1(D(n, d)) is a closed subset of Ln,d1,...,dn+1 , which is defined by the
equation
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Δn := Δ(n, d)(x0(x1, . . . , xn+1), . . . , xN (n,d)(x1, . . . , xn+1) = 0.

This equation is not identically zero, becauseψ−1(D(n, d)) is not equal toLn,d1,...,dn+1 .
Note in fact that if Hi has equation x

di
i−1, for i = 1, . . . , n + 1, then clearly (H1, . . . ,

Hn+1) /∈ ψ−1(D(n, d)). On the other hand it is clear that Z(n; d1, . . . , dn+1)

⊆ ψ−1(D(n, d)), hence R divides Δn . This polynomial has degree νi in xi , in par-
ticular it has degree νn+1 = d1 · · · dn in xn+1. This implies that αn ≤ d1 · · · dn , as
wanted. �

As an immediate consequence of the previous arguments we have:

Corollary 11.4.7 The maximum number of finitely many points in common to n
divisors of degrees d1, . . . , dn in P

n is d1 · · · dn.
The arguments in the proof of Theorem 11.4.6 imply the following:

Corollary 11.4.8 (Lasker’s Theorem) Suppose that (H1, . . . , Hn+1) /∈ Z(n; d1,
. . . , dn+1) and that Hi has equation fi = 0 for i = 1, . . . , n + 1, then the ideal
( f1, . . . , fn+1) contains Sn,d for every d ≥ d1 + · · · + dn+1 − n.

Proof We keep the notation of the proof of Theorem 11.4.6. Let Δ0, . . . , Δn−1 be
the polynomials obtained as Δn by exchanging the roles of the variables x0, . . . , xn .
Then R coincides with the largest common divisor D of Δ0, . . . , Δn . Indeed, R
divides D and it has degree not smaller than the degree of D in each set of variables.
Then if R �= 0 there is some i = 0, . . . , n such thatΔi �= 0 and the assertion follows
by taking into account the geometric interpretation of the loci Zs(Δi ). �

Let now H1, . . . , Hn be divisors in P
n of degrees d1, . . . , dn with finitely many

common points {P1, . . . , Ph}, with Hi having coordinates ai inLn,di for i = 1, . . . , n
and Pj = [p j0, . . . , p jn] for j = 1, . . . , h. Consider Z(n; d1, . . . , dn, 1), with equa-
tion R(x1, . . . , xn,u) = 0, with u = (u0, . . . , un). The zero set of the equation
R(a1, . . . , an,u) = 0 consists of the union of the hyperplanes Ln,1(Pi ), for i =
1, . . . , h, so that there are positive integers r1, . . . , rh such that

R(a1, . . . , an,u) = α

h∏
j=1

(p j0u0 + · · · + p jnun)
r j ,

where α ∈ K
∗. The integer ri is called the intersection multiplicity of H1, . . . , Hn at

Pi and it is denoted by i(Pi ; H1, . . . , Hn), for i = 1, . . . , h. Since the degree of R
in the variables u is d1 · · · dn , we have

h∑
i=1

i(Pi ; H1, . . . , Hn) = d1 · · · dn. (11.4)

Wewill set i(P; H1, . . . , Hn) = 0 if P /∈ H1 ∩ . . . ∩ Hn .Wewill say thatH1, . . . , Hn

intersect transversally at P if i(P; H1, . . . , Hn) = 1. In conclusion we have the:
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Theorem 11.4.9 (Bézout Theorem) Let H1, . . . , Hn be divisors of P
n of degrees

d1, . . . , dn respectively, having only finitely many common points {P1, . . . , Ph}.
Then (11.4) holds. Accordingly h ≤ d1 · · · dn and the equality holds if and only if
H1, . . . , Hn intersect transversally at any of their common points.

In particular, if H1, . . . , Hn have more than d1 · · · dn distinct points in common,
their intersection has an irreducible component of positive dimension.

If H1, . . . , Hn are divisors in P
n such that P ∈ H1 ∩ . . . ∩ Hn and H1 ∩ . . . ∩ Hn

has a component of positive dimension containing P , then one says that the intersec-
tion multiplicity of H1, . . . , Hn at P is infinite and one writes i(P; H1, . . . , Hn) =
∞.

Exercise 11.4.10 Prove that D(n, 1) coincides with Z(n; 1, . . . , 1) and Δ(n, 1) coincides with
R(n; 1, . . . , 1); where 1 is repeated n + 1 times.

Exercise 11.4.11 Prove that R(1; n,m) coincides with the Sylvester determinant, which is there-
fore irreducible.

Exercise 11.4.12 *Assume K of characteristic 0. Consider the divisor H of P
n of degree d > 1

with equation f (x0, . . . , xn) = 0. Consider the polynomials fi = ∂ f
∂xi

, for i = 0, . . . , n. Consider
the set D(n, d) ⊆ Ln,d consisting of all divisors H with equation f = 0 such that the system
f0 = . . . = fn = 0 has some non-trivial solution. Prove that D(n, d) is a proper subset of Ln,d .

Exercise 11.4.13 *Continuing Exercise 11.4.12, prove that D(n, d) is a closed codimension 1
subset of Ln,d whose equation is

D(n, d)(x) = R(x′
0, . . . , x

′
n)

where R is the resultant polynomial of n + 1 homogeneous polynomials of degree d − 1 and
[x] are the obvious homogeneous coordinates in Ln,d and x′

i is the vector of the coefficients of the
polynomial fi , where f is a polynomial such that f = 0 is the equation of H = [x]. The polynomial
D(n, d) is called the discriminant of homogenous polynomials of degree d in n + 1 variables. The
locus D(n, d) is called the discriminant hypersurface in Ln,d .

Exercise 11.4.14 Continuing Exercise 11.4.13, note that the coordinates in Ln,2 are of the form
[A] where A is a non-zero symmetric matrix of order n + 1 on K. Prove that

D(n, d)(A) = det(A).

So the discriminant hypersurface in Ln,2 consists of quadrics not of maximal rank.

Exercise 11.4.15 *Continuing Exercise 11.4.13, prove that D(1, d) consist of the set of non-
reduced effective divisors of degree d on P

1.

Exercise 11.4.16 Continuing Exercise 11.4.13, prove that if n > 1 and H ∈ Ln,d is reducible, then
H ∈ D(n, d).

Exercise 11.4.17 *Let H1, . . . , Hn be divisors of P
n such that H1 ∩ . . . ∩ Hn consists of finitely

manypoints. Let (i1, . . . , in)be anypermutationof the set {1, . . . , n}. Prove that i(P; H1, . . . , Hn) =
i(P, Hi1 , . . . , Hin ) for all points P ∈ H1 ∩ . . . ∩ Hn .
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11.5 Solutions of Some Exercises

11.2.10 By locating the three points at [1, 0, 0], [0, 1, 0], [0, 0, 1], one sees that there are three
independent homogeneous quadratic polynomials in Ip(Z). Whence we deduce that Ip(Z) cannot
be generated by two elements.

11.2.12 Suppose Z consists of n distinct points P1, . . . , Pn . Up to a change of coordinates, we may
assume that Pi = (ai , bi ), for i = 1, . . . , n, with a1, . . . , an all distinct. Consider the polynomial
f (x1) = ∑n

i=1 biqi (x1), where

qi (x1) = (x1 − a1) · · · (x1 − ai−1)(x1 − ai+1) · · · (x1 − an)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
,

for i = 1, . . . , n. Show that Z = Za(x2 − f (x1),
∏n

i=1(x1 − ai )).
11.2.13 Look, as we can, at Z \ {P} as a subset of A

2 ⊂ P
2. Then, as we saw in the solu-

tion of Exercise 11.2.12, up to a change of coordinates in A
2 we have that Z \ {P} is a set-

theoretic complete intersection Z \ {P} = Za(x2 − f (x1),
∏n

i=1(x1 − ai )) in A
2. Note now that

Z p(β(x2 − f (x1)),
∏n

i=1(x1 − ai x0)) = Z \ {P} ∪ {[0, 0, 1]}, where β is the homogenizing oper-
ator (see Sect. 1.5). Moreover notice that the point [0, 0, 1] can be chosen arbitrarily, provided it
does not lie on any line joining a pair of distinct points of Z \ {P}. In particular we can choose
P = [0, 0, 1]. This proves the assertion.
11.2.15 Argue as in Exercise 11.2.10.
11.2.17 Suppose that rk(A2) = n − 1. Then the homogeneous linear system

a11x1 + . . . + a1nxn = 0

. . .

an1x1 + . . . + annxn = 0

is equivalent to the one formed by the first n − 1 equations, which has a unique solution, up to a
factor, consisting of the maximal minors ofA2 with alternate signs. Since det(A1) = 0, this solution
is of the form (b1, . . . , bn−1, 0), hence we have

a11b1 + . . . + a1,n−1bn−1 = 0

. . .

an1b1 + . . . + an,n−1bn−1 = 0

with b1, . . . , bn−1 not all zero. This implies that rk(A3) < n − 1.
11.2.18 Consider the matrix

A =
⎛
⎝
x0 x1 x2
x1 x2 x3
x2 x3 f

⎞
⎠

where f is any homogeneous polynomial of degree 1. With the same notation as in Exercise
11.2.17, if in a point of P

3 one has det(A) = det(A1) = 0, at that point one has either rk(A2) < 2
or rk(A3) < 2. But A2 and A3 are equal, up to transposition and rk(A2) < 2 is just the matrix
equation of the projective twisted cubic (see Sect. 3.2.2). So the projective twisted cubic is the
set-theoretic intersection of the two surfaces with equations det(A) = 0 and det(A1) = 0.
11.2.19 V is the affine part of the image of the morphism

ψ : [λ,μ] ∈ P
1 → [λ3μ2,λ4μ,λ5,μ5] ∈ P

3,

and this proves it is an affine curve in A
3. To prove that it it not a complete intersection, argue as

follows. First, observe that V is non-degenerate, i.e., it does not lie on any hyperplane inA
3. Indeed,

if a hyperplane with equation
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a0 + a1x1 + a2x2 + a3x3 = 0

contains V , we would have
a0 + a1t

3 + a2t
4 + a3t

5 = 0

for all t ∈ K, and this would imply a0 = a1 = a2 = a3 = 0. Similarly verify that the unique
quadratic polynomial in Ia(V ) is F = x22 − x1x3. Verify in addition that every polynomial in Ia(V )

has no constant and linear terms. Suppose now, by contradiction, that V is a complete intersection,
so that Ia(V ) = ( f, g). We have the following decompositions in homogeneous components

f = f2 + f3 + · · · , g = g2 + g3 + · · · .

Note that the polynomials
f̃ = f3 + · · · , g̃ = g3 + · · ·

must be proportional. Indeed, we have

F = A f + Bg (11.5)

with A, B suitable polynomials. Since F is homogeneous, we claim that A and B are constant. In
fact we have

F = A0 f + B0g + (A − A0) f + (B − B0)g

with A0, B0 the constant terms in A, B, and (A − A0) f + (B − B0)g has only homogeneous
components of degree larger than 2, so that A = A0 and B = B0. On the other hand, if A, B verify
(11.5), then

F = A f2 + Bg2 + A f̃ + Bg̃

and, A, B being constant, we have A f̃ + Bg̃ = 0 for the same reasons as above, so that f̃ and g̃
are proportional. We can then assume that one of the two polynomials f, g is equal to f2 or g2,
namely equal to F . So we may assume that g = F . Note now that in Ia(V ) there are the degree 3
polynomials G = x21 x2 − x23 , H = x2x3 − x31 . Since

G = A f + Bg = A0 f2 + B0F + · · ·
with A, B suitable polynomials, and the dots stay for higher order terms, we must have

A0 f2 = −x23 − B0(x
2
2 − x1x3).

We have in addition
H = A′ f + B ′g = A′

0 f2 + B ′
0F + · · ·

so that x2x3 should be a linear combination of F and of f2, which is clearly impossible.
11.2.22 Suppose L is a complete intersection on Q, so that L = Q ∩ Z p( f ). Let L ′ be another line
on Q that does not intersect L (see Exercise 8.2.16). Prove that there is a projective transformation
which fixes Q and maps L to L ′, so that also L ′ is a set theoretic complete intersection on Q. Then
L ′ = Q ∩ Z p( f ′). Then Q ∩ Z p( f, f ′) = ∅, contrary to Corollary 11.2.3.
11.2.23 It suffices to consider the case in which H is irreducible. Then v−1

n,d (H) is an irreducible
hypersurface H ′ of a certain degree m in P

n , and let f = 0 be an equation of H , with f a homoge-
neous polynomial of degreem. By the proof of Proposition 6.4.1, there is a homogeneous polynomial
F ∈ K[vi0...in ]i0+···+in=d of degree m such that θn,d (F) = f d and H = Vn,d ∩ Z p(F).
11.2.24 This is an immediate consequence of Corollary 11.2.3. Indeed, locally, one has fi =
Pi
P0
, for i = 1, . . . , r , with P0, . . . , Pr homogeneous polynomials of the same degree, so that

ZV ( f1, . . . , fr ) can be locally written as V ∩ Z p(P1, . . . , Pr ).
11.3.4 It is clear thatW = ⋃

P∈V (P1 ∨ P) = ⋃
P∈p(V )(P1 ∨ P). Consider the blow-upπ : P̃ → P

n

of P
n along P

1 (see Exercise 8.3.13) and take W̃ the proper transform of W . Use Corollary 11.3.3
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to show that W̃ is irreducible of dimension dim(V ) + dim(P1) + 1. Deduce that W is irreducible
of dimension dim(V ) + dim(P1) + 1.
11.3.5 Suppose V ⊆ P

n is a projective variety. Let us think to P
n as embedded in P

n+1 as the
hyperplane at infinity of A

n+1. Consider the affine cone V ′ with vertex the origin over V , whose
closure in P

n+1 is the projective cone. By Exercise 11.3.4 we have dim(V ′) = dim(V ) + 1. But
A(V ′) = S(V ) because Ia(V ′) = Ip(V ) (see Sect. 3.2.3), and the assertion follows.
11.3.6 The irreducibility of V is clear. Let us prove the dimensional statement. Since f is not
constant, in f really appear the variables of at least one of the sets x1, . . . , xr . We may assume
that f is not constant in the variables xr . Consider the projection p : V → P

n1 × . . . × P
nr−1 . If

P = ([a1], . . . , [ar−1]) ∈ P
n1 × . . . × P

nr−1 , then the fibre VP is the subset of {P} × P
nr ∼= P

nr ,
with equation f (a1, . . . , ar−1, xr ) = 0 in P

nr , so that we have the three possibilities:

(i) VP = {P} × P
nr ;

(ii) VP is a divisor in {P} × P
nr ∼= P

nr ;
(iii) VP = ∅.

Case (i) happens if and only if f (a1, . . . , ar−1, xr ) is identically 0, and, by the assumptions we
made on f , this may occur only if P belongs to a proper closed subset of P

n1 × . . . × P
nr−1 . Case

(iii) occurs only if f (a1, . . . , ar−1, xr ) is a non-zero constant, which cannot happen under the given
assumptions for f . So, if P varies in a non-empty open subset of P

n1 × . . . × P
nr−1 only case (ii)

can occur. Then by Theorem 11.3.1 the assertion follows.
11.3.7 This can be proved as Theorem 11.1.2.
11.3.8 Consider the set

I = {(P, Q, R) ∈ (X × X \ Δ) × P
r : R ∈ 〈P, Q〉}

where Δ is the diagonal in X × X . One sees that this is a closed subset in (X × X \ Δ) × P
r , of

dimension 2n + 1 (use Theorem 11.3.1). Therefore its closure Ī in X × X × P
r also has dimension

2n + 1. Then Sec(X) is the image of Ī via the projection of X × X × P
r on P

r . The assertion
follows.
11.4.12 For example the divisor with equation xd0 + · · · + xdn = 0 does not lie in D(n, d).



Chapter 12
The Cayley Form

12.1 Definition of the Cayley Form

Let V be a projective variety of dimension m in P
n . We can associate to V a variety

of codimension 1 in Lm+1
n,1 in the following way. Set Ṽ = Lm+1

n,1 × V and consider

the two projections p : Ṽ → Lm+1
n,1 and q : Ṽ → V . Consider the subset W of Ṽ

defined in the following way

W = {(H0, . . . , Hm, P) ∈ Ṽ : P ∈ H0 ∩ . . . ∩ Hm}.

Lemma 12.1.1 W is a closed subset of Ṽ .

Proof Ṽ is a closed subset of Lm+1
n,1 × P

n , so it suffices to show that there is a closed

subset W ′ of Lm+1
n,1 × P

n such that W = W ′ ∩ Ṽ . Let us set

W ′ = {(H0, . . . , Hm, P) ∈ Lm+1
n,1 × P

n : P ∈ H0 ∩ . . . ∩ Hm}.

One has W = W ′ ∩ Ṽ . Moreover W ′ is closed in Lm+1
n,1 × P

n since it is defined by
the equations

u00x0 + · · · + u0nxn = 0

. . .

um0x0 + · · · + umnxn = 0

where [ui0, . . . , uin] are the homogeneous coordinates in the (i + 1)th factor of
Lm+1
n,1 , for i = 0, . . . ,m and [x0, . . . , xn] are the homogeneous coordinates in P

n . �
Lemma 12.1.2 W is irreducible of dimension n(m + 1) − 1.

Proof For every point P ∈ V , the hyperplanes ofP
n containing P form a hyperplane

Ln,1(P) in Ln,1. It is then clear that
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W ∩ q−1(P) = Ln,1(P)m+1 × {P},

hence W ∩ q−1(P) is isomorphic to Ln,1(P)m+1 ∼= (Pn−1)m+1, so that it is irre-
ducible of dimension (m + 1)(n − 1). By applying Corollary 11.3.3, we see that W
is irreducible of dimension

dim(V ) + (m + 1)(n − 1) = m + (m + 1)(n − 1) = n(m + 1) − 1.

�

Lemma 12.1.3 In the above setting, p(W ) is an irreducible variety of codimension
1 in Ln,1(P)m+1.

Proof By applying Theorem 11.3.1 it suffices to show that there are points Q ∈
W such that W ∩ p−1(p(Q)) is a finite set. By iterated applications of Theorem
11.2.2 we see that for any point P ∈ V we can find (H0, . . . , Hm) ∈ Lm+1

n,1 such that
V ∩ H0 ∩ . . . ∩ Hm = {P} and the assertion follows. �

Wewill setCV = p(W ) ⊂ Lm+1
n,1

∼= (Pn)m+1 and we will callCV theCayley vari-
ety of V . Then there is an irreducible plurihomogeneous polynomial FV (u0, . . . ,um)

in the variables ui = (ui0, . . . , uin), for i = 0, . . . ,m, such that CV = Zs(FV ). Of
course FV is determined up to a non-zero multiplicative constant. We will say that
FV is the Cayley form of V . We will denote by di the degree of FV in the variables
ui = (ui0, . . . , uin), for i = 0, . . . ,m.

Lemma 12.1.4 One has d0 = · · · = dm.

Proof Let 0 ≤ i < j ≤ m and consider the map

φi j : (H0, . . . , Hi , . . . , Hj . . . , Hm) ∈ Lm+1
n,1 → (H0, . . . , Hj , . . . , Hi . . . , Hm) ∈ Lm+1

n,1

which is an isomorphism. It is clear that φi j maps CV to itself. The assertion
follows. �

Thus, given V , we have the polynomial FV , determined up to a non-zero multi-
plicative constant, which is plurihomogeneous of degree d = d0 = · · · = dm in each
set of variables ui = (ui0, . . . , uin), for i = 0, . . . ,m. The positive integer d is called
the degree of the variety V , and it is denoted by deg(V ).

Consider now Vn,m,d the set of all projective varieties of dimension m and degree
d in P

n . Moreover set Pn,m,d := P(Sn,d) where n is the vector with m + 1 entries
(n, . . . , n) andd is the vectorwithm + 1 entries (d, . . . , d). Thenwe have theCayley
map

γn,m,d : V ∈ Vn,m,d → [FV ] ∈ Pn,m,d .

Theorem 12.1.5 The Cayley map γn,m,d is injective for all n,m, d.
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Proof Consider V ∈ Vn,m,d . If P ∈ P
n \ V , by Theorem 11.2.2 we can find a point

(H0, . . . , Hm) ∈ Lm+1
n,1 , such that P ∈ H0 ∩ . . . ∩ Hm with H0 ∩ . . . ∩ Hm ∩ V = ∅.

ConsiderV ′ ∈ Vn,m,d withV ′ 
= V , so that there is a point P ∈ V ′ with P /∈ V . By the
previous observation, we can find a point (H0, . . . , Hm) ∈ CV ′ but (H0, . . . , Hm) /∈
CV , proving the assertion. �

Theorem 12.1.5 says that any variety V can be reconstructed from its Cayley
form. Actually, given FV , hence CV , V is the set of points P ∈ P

n such that for all
(H0, . . . , Hm) ∈ Ln,1(P)m+1 one has (H0, . . . , Hm) ∈ CV .

Exercise 12.1.6 Let V ⊆ P
n be a variety, let FV be its Cayley form and let τ : P

n → P
n be a

projectivity, defined by a matrix A ∈ GL(n + 1, K). Prove that

Fτ (V )(u0, . . . ,un) = FV (u0 · B, . . . ,un · B)

where B = (At )−1. This proves that the theory related to the Cayley form is invariant by change of
variables or projectivities.

Exercise 12.1.7 Determine the Chow form of a point P ∈ P
n .

Exercise 12.1.8 More generally, determine the Chow form of a linear subspace of P
n and deduce

that the linear subspaces have degree 1.

12.2 The Degree of a Variety

Next we interpret geometrically the notion of degree of a variety. By Corollary 10.2.6
and by Theorem 11.2.2, given a variety V of dimension m and degree d in P

n , there
are projective subspaces Π of P

n of dimension n − m such that Π ∩ V is a finite
set. Hence it is not empty the subset ΣV of Lm

n,1 of points (H1, . . . , Hm) ∈ Lm
n,1

such that H1 ∩ . . . ∩ Hm ∩ V is a finite set of points {P1, . . . , Ph}. We set Pi =
[pi0, . . . , pin], for i = 1, . . . , h, and Hj = [a j ] = [a j0, . . . , a jn], for j = 1, . . . ,m.
Let FV (u0, . . . ,um) be the Cayley form of V . The set of zeros inLn,1 of the equation

FV (u0, a1 . . . , am) = 0

is the union of the h hyperplanes Ln,1(Pi ), for i = 1, . . . , h, which have equation

u00 pi0 + · · · + u0n pin = 0, for i = 1, . . . , n.

Hence we have

FV (u0, a0, . . . , am) = α

h∏

i=1

(u00 pi0 + · · · + u0n pin)
ri (12.1)

where α ∈ K
∗ and r1, . . . , rh are suitable positive integers such that r1 + · · · + rh =

d, in particular h ≤ d. If Π is the (n − m)-dimensional subspace Π = H1 ∩ . . . ∩
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Hm ,wewill say that the positive integer ri is the intersectionmultiplicity ofΠ andV at
Pi and it is denoted by i(Pi ; V,Π), for i = 1, . . . , h. This number only depends onΠ

and not on the choice of the hyperplanes H1, . . . , Hm such that Π = H1 ∩ . . . ∩ Hm

(see Exercise 12.2.4). We will set i(P; V,Π) = 0 if P /∈ Π ∩ H and we will say
that Π and V intersect transversally at P if i(P; V,Π) = 1. If P ∈ Π ∩ V and
Π ∩ V has some positive dimensional component containing P , one says that the
intersection multiplicity ofΠ and V at P is infinite and one writes i(P; V,Π) = ∞.

One has:

Proposition 12.2.1 If H1, . . . , Hm are hyperplanes of P
n such that V ∩ H1 ∩ . . . ∩

Hm is a finite set of points of order h, then h ≤ deg(V ). More precisely, if Π is a
linear subspace ofPn of dimension n − m such thatΠ ∩ V is a finite set {P1, . . . , Ph}
then deg(V ) equals the sum of the intersection multiplicities of V andΠ at the points
P1, . . . , Ph.

We can be more precise. For this we need an algebraic preliminary:

Lemma 12.2.2 Let F(x, y) ∈ K[x, y] be an irreducible polynomial in the vari-
ables x = (x1, . . . , xn), y = (y1, . . . , ym). Then either there is some point a =
(a1, . . . , am) ∈ A

m such that F(x, a) has no multiple factor, or there is a polyno-
mial G(x, y) ∈ K[x, y] such that

F(x1, . . . , xn, y) = G(x p
1 , . . . , x p

n , y)

where p > 0 is the characteristic of K. In particular, if K has characteristic 0, only
the first alternative occurs.

Proof It clearly suffices to consider only the case n = 1. If ∂F
∂x1

= 0, then it is imme-
diate that the characteristic of K is p > 0 and there is a polynomial G(x1, y) such
that F(x1, y) = G(x p

1 , y). Suppose next that ∂F
∂x1


= 0. Then Za(F, ∂F
∂x1

) is a proper

closed subset of Za(F) ⊂ A
m+1, hence each component of Za(F, ∂F

∂x1
) has dimen-

sion h < m. The projection of Za(F, ∂F
∂x1

) from the point at infinity of the x1 axis to
the hyperplane x1 = 0 is dominant on a closed subset Z any component of which has
dimension l < m. By contrast, the projection of Za(F) from the point at infinity of
the x1 axis to the hyperplane x1 = 0 is dominant because F depends on the variable
x1. Hence there are points a = (a1, . . . , am) ∈ A

m such that for any point b ∈ K such
that F(b, a) = 0 one has ∂F

∂x1
(b, a) 
= 0. The assertion follows. �

We can now prove the:

Theorem 12.2.3 Let V ⊆ P
n be a projective variety of dimension m and degree d.

The two subsets U1 ⊆ U2 of Lm
n,1 respectively formed by the m-tuples (H1, . . . , Hm)

such that V ∩ H1 ∩ . . . ∩ Hm consists of d distinct points and of finitely many points,
are non-empty open subsets of Lm

n,1.
In particular there are subspaces Π of P

n of dimension n − m intersecting V
transversally in d distinct points.
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Proof The set U2 consists of all m-tuples (H1, . . . , Hm), with Hi = [ai ], i =
1, . . . ,m, such that FV (u0, a1, . . . , am) 
= 0. It is the clear that U2 is a non-empty
open subset of Lm

n,1. Moreover we have a morphism

φ : U2 → L̄n,d ,

where L̄n,d is the projective space whose points represent the divisors of degree d of
Ln,1, which maps (H1, . . . , Hm), with Hi = [ai ], i = 1, . . . ,m, to the divisor with
equation FV (u0, a1, . . . , am) = 0. LetU be the non-empty open subset of L̄n,d whose
points represent the hypersurfaces with no multiple components (see Exercises 9.2.5
and 11.4.15). One has U1 = φ−1(U), hence U1 is open.

Finally we have to prove that U1 is non-empty. By Lemma 12.2.2, this is clear if
char(K) = 0. If char(K) = p > 0, by Lemma 12.2.2 this is still clear, unless there
is a polynomial G(u0) such that

FV (u0, a1, . . . , am) = G(u p
00, . . . , u

p
0n).

Since FV (u0, . . . ,um) is symmetric with respect to the variables u0, . . . ,um (see the
proof ofLemma12.1.4), Thiswould imply that there is a polynomialGV (u0, . . . ,um)

such that
FV (u0, . . . ,um) = GV (u p

00, . . . , u
p
0n, . . . , u

p
m0, . . . , u

p
mn)

But this implies that FV is the p–power of a polynomial, hence it is reducible, a
contradiction. �
Exercise 12.2.4 *Let V be a projective variety of dimensionm inP

n , letΠ be a projective subspace
of P

n of dimension n − m such that Π ∩ V is a finite set. Let P be a point in Π ∩ V . Prove that
i(P; V,Π) depends only on Π and not on the choice of the hyperplanes H1, . . . , Hm such that
Π = H1 ∩ . . . ∩ Hm .

Exercise 12.2.5 *Prove that if V ⊆ P
n is a subvariety of dimension m and degree 1, then V is a

linear subspace.

Exercise 12.2.6 *Let V ⊆ P
n be a variety of dimension m which is the set–theoretic complete

intersection of n − m hypersurfaces Hm+1, . . . , Hn of respective degrees dm+1, . . . , dn . Prove that
deg(V ) ≤ dm+1 · · · dn .
Exercise 12.2.7 *Let H ⊆ P

n be an irreducible hypersurface of degree d. Prove that deg(H) = d.

Exercise 12.2.8 *Let H ⊆ P
n be an irreducible hypersurface of degree d. Find the Cayley form

of H .

Exercise 12.2.9 *Let H ⊆ P
n be ahypersurface of degreed with equation f (x) = f (x0, . . . , xn) =

0, where f is a homogeneous polynomial of degree d. Let L be a line not contained in H so that
L ∩ H is a finite set {P1, . . . , Ph}, with Pi = [pi ] for i = 1, . . . , h. Let P = [p], Q = [q] be distinct
points of L , so that L is parametrically represented by

x = λp + μq, with [λ,μ] ∈ P
1.

Then for all i = 1, . . . , h, we have pi = λip + μiq for suitable [λi ,μi ] ∈ P
1. Then the non-trivial

solutions of the equation f (λp + μq) = 0 in (λ,μ) are exactly (λi ,μi ) up to a multiplicative
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constant, for i = 1, . . . , h. This means that there is a constantα ∈ K
∗ and there are positive integers

s1, . . . , sh such that

f (λp + μq) = α

h∏

i=1

(λμi − μλi )
si .

Prove that, for all i = 1, . . . , h, one has si = i(Pi ; L , H).

Exercise 12.2.10 Prove that the Veronese variety Vn,d in P
N (n,d) has degree dn (see Corollary

11.4.7).

Exercise 12.2.11 *Prove that the Segre variety Segn,1 has degree n + 1.

Exercise 12.2.12 *Let V ⊆ P
n be a projective subvariety of dimension m and let P be a point of

V . Suppose that for any point Q ∈ V \ {P} the line P ∨ Q is contained in V . Prove that V is a
cone with vertex P over a variety W of dimension m − 1 contained in a hyperplane H ∼= P

n−1 of
P
n non passing through P . Prove that deg(V ) = deg(W ).

Exercise 12.2.13 *Let V ⊆ P
n be a projective subvariety of dimension m and let P be a point of

V . Suppose that there is a point Q ∈ V \ {P} such that the line P ∨ Q is not contained in V . Then
the projection of P

n from P to a hyperplane H ∼= P
n−1 not containing P induces a rational map

φ : V ��� H which is dominant to a variety W ⊆ H . Prove that W has also dimension m and that
deg(W ) < deg(V ).

Exercise 12.2.14 Let V ⊆ P
n be a projective subvariety of dimension m and let P be a point not

on V . Prove that the cone W with vertex P over V has degree deg(W ) ≤ deg(V ).

Exercise 12.2.15 Let V � P
n be a projective subvariety of dimension m < n and degree 2. Prove

that V is contained in a subspace Π of dimension m + 1 and it is a quadric in Π .

Exercise 12.2.16 *Let V ⊆ P
n be a non-degenerate variety of degree d and dimension m. Prove

that
d ≥ n − m + 1. (12.2)

Varieties for which the equality holds in (12.2) are called varieties of minimal degree. Examples
of varieties of minimal degree are quadrics, the Veronese surface V2,2, the rational normal curves,
cones over rational normal curves.

Exercise 12.2.17 *Prove that any variety of minimal degree is rational.

Exercise 12.2.18 Prove that there is a non-empty open subset U of Ln,d1,...,dn such that for all
(H1, . . . , Hn) ∈ U the intersection of H1 . . . , Hn consists of d1 · · · dn distinct points.

12.3 The Cayley Form and Equations of a Variety

In this section we see that from the Cayley form of a variety V ⊆ P
n of dimensionm

wecan reconstruct finitelymanyhomogeneous polynomials f1, . . . , fh in x0, . . . , xn ,
such that V = Z p( f1, . . . , fh).

Let FV (u0, . . . ,un) be the Cayley form of V . Given P = [p0, . . . , pn] ∈ P
n , we

have that P ∈ V if and only if for any (H0, . . . , Hm) ∈ Ln,1(P)m+1, with Hi = [vi ],
with i = 0, . . . ,m, one has FV (v0, . . . , vm) = 0.
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Let us express the condition for a hyperplane H ∈ Ln,1 with equation

u0x0 + · · · + unxn = 0

to belong to Ln,1(P).

Lemma 12.3.1 In the above setting H belongs to Ln,1(P) if and only if there is a
non-zero antisymmetric matrix S = (si j )i, j=0,...,n of order n + 1 on K such that

ui =
n∑

j=0

si j p j , for i = 0, . . . , n

Proof The condition is sufficient, because

n∑

i=0

ui pi =
n∑

i=0

n∑

j=0

si j p j pi = 0

since S is antisymmetric. Let us prove that the condition is also necessary. Let
P1, . . . , Pn−1 be points of H such that P1, . . . , Pn−1, P are linearly independent.
Suppose Pi = [pi0, . . . , pin], for i = 1, . . . , n − 1. Then (u0, . . . , un) is a solution
of the system

u0 p0 + . . . + un pn = 0

u0 p10 + . . . + un p1n = 0

. . .

u0 pn−1,0 + . . . + un pn−1,n = 0

So (u0, . . . , un) is proportional to the minors of maximal order of the matrix

⎛

⎜⎜⎝

p0 . . . pn
p01 . . . p0n

. . .

pn−1,1 . . . pn−1,n

⎞

⎟⎟⎠

taken with alternate signs. So we can write an equation of H in the form

∣∣∣∣∣∣∣∣∣∣

x0 . . . xn
p0 . . . pn
p01 . . . p0n

. . .

pn−1,1 . . . pn−1,n

∣∣∣∣∣∣∣∣∣∣

= 0. (12.3)

If we expand the determinant in (12.3) with the Laplace rule applied to the first two
rows, we have that (12.3) can be written as
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∑

0≤i< j≤n

(xi p j − x j pi )p
i j = 0

where pi j is the determinant of the matrix obtained from the last n − 1 rows of
the determinant in (12.3) by deleting the i th and j th columns, taken with the sign
(−1)i+ j . We will set p ji = −pi j , so we give sense to p ji even if j > i . Then we
have

∑

0≤i< j≤n

(xi p j − x j pi )p
i j =

∑

0≤i< j≤n

xi p j p
i j +

∑

0≤i< j≤n

xi p j p
ji =

∑

i, j=0,...,n

xi p j p
i j .

Then the assertion follows by setting si j = ρpi j with ρ a suitable non-zero factor. �

Let us introduce now m + 1 antisymmetric matrices (shi j )i, j=0,...,n , h = 0, . . . ,m,
with entries indeterminates on K. If P = [x0, . . . , xn] ∈ P

n , we set

uhi (x) =
n∑

j=0

shi j x j , for i = 0, . . . , n, h = 0, . . . ,m,

and uh = (uh0(x), . . . , u
h
n(x)) for h = 0, . . . ,m. Then P belong to V if and only if

FV (u0, . . . ,um) ≡ 0. (12.4)

The left hand side of (12.4) is a polynomial in the variables shi j and x j . This polynomial
is identically zero if and only if are zero all the coefficients of the independent
monomials in the variables shi j . These coefficients are homogeneous polynomials in
x, so by equating to zero these coefficients one gets a set of equations for V .

12.4 Cycles and Their Cayley Forms

In this section we extend the notion of Cayley form to not necessarily irreducible
algebraic closed subset of projective space.

Let V ⊆ P
n be a pure closed subset, so that all of its irreducible components

V1, . . . , Vh have the same dimensionm (see Sect. 5.5). The set CV ⊂ Lm+1
n,1 of points

(H0, . . . , Hm) such that H0 ∩ . . . ∩ Hm ∩ V 
= 0 clearly coincides with CV1 ∪ . . . ∪
CVh , and actually CV1 , . . . ,CVh are the irreducible components of CV . We will set
FV = FV1 · · · FVh . The equation FV = 0 defines CV in Lm+1

n,1 and it is the minimal
degree equation defining CV in Lm+1

n,1 . We call FV the Cayley form of V , and we
define degree of V the degree of FV . With this definition the analogues of Theorems
12.1.5 and 12.2.3 still hold.

We can further extend this definition. Let Dn,m be the free group generated by the
varieties of dimension m in P

n , whose elements will be called m-dimensional cycles
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of P
n (if m = 0, the cycle is called a 0-cycle). An element of Dn,m is either zero

or of the form V = ∑h
i=1 miVi , where V1, . . . , Vh are distinct varieties of dimen-

sion m in P
n which are called the irreducible components of V , and m1, . . . ,mh

are non-zero integers which are called the multiplicities of V1, . . . , Vh for V . The
integer

∑h
i=1 md deg(Vi ) is called the degree of V and is denoted by deg(V ). If

V = ∑h
i=1 miVi , then the closed subset

⋃h
i=1 Vi is called the support of V . If either

V = 0 or mi > 0 for all i = 1, . . . , h, then V is called effective. We say that the
effective cycle V = ∑h

i=1 miVi is irreducible if h = 1 and m1 = 1, so that V can
be identified with the variety V1. The cycle 0 is assumed to be reducible. We will
denote by D+

n,m the semigroup of effective cycles of P
n . Note that for m = n − 1

these definitions coincide with the ones of divisors in projective space we gave in
Sect. 1.6.4.

Given a non-zero effective cycle V = ∑h
i=1 miVi we define its Cayley form to be

FV = Fm1
V1

· · · Fmh
Vh

. Again, the analogues of Theorems 12.1.5 and 12.2.3 still hold.
This extension of the concept of Cayley form is useful in various circumstances,

for instance in the intersection of varieties. For example, let V ⊆ P
n be a variety

of dimension m and let H be a hyperplane not containing V , so that V ′ = H ∩ V
is pure of dimension m − 1 with distinct components V1, . . . , Vh . The set {H} ×
CV ′ ⊂ Lm+1

n,1 coincides with the set of points (H, H1, . . . , Hm) ∈ Lm+1
n,1 such that

H ∩ H1 ∩ . . . ∩ Hm ∩ V 
= ∅. If H = [v] inLn,1 and if FV (u0, . . . ,um) is theCayley
form of V , it is clear that FV (v,u1, . . . ,um) is an equation of CV ′ in Lm

n,1. We have
that

FV (v,u1, . . . ,um) = Fm1
V1

· · · Fmh
Vh

where m1 . . . ,mh are suitable positive integers. So FV (v,u1, . . . ,um) is the Cayley
form of the cycle

∑h
i=1 miVi . This cycle is denote by H · V and it is called the

intersection cycle of H with V . The integer mi is called the intersection multiplicity
of H and V along Vi , for i = 1, . . . , h. Note that deg(V ) = deg(H · V ).

Even more generally, if V = ∑h
i=1 miVi is an effective non-zero cycle of dimen-

sion m in P
n , and H is a hyperplane which does not contain any of its components,

let Vi,1, . . . , Vi,ki be the distinct irreducible (m − 1)-dimensional components of
H ∩ Vi , for i = 1, . . . , h. We will define the intersection cycle of H with V and
denote it still with H · V , as the cycle

∑h
i=1 mi

∑k j

j=1 mi j Vi, j , wheremi j is the inter-
section multiplicity of H with Vi along Vi j , for i = 1, . . . , h and j = 1, . . . , ki .
Again we have deg(V ) = deg(H · V ).

Similarly, let V ⊆ P
n be an m-dimensional variety, and let H0, . . . , Hi with 1 ≤

i < m be independent hyperplanes such thatΠ = H0 ∩ . . . ∩ Hi is a linear subspace
of dimension n − i − 1. Assume that Π ∩ V is pure of dimension m − i − 1 with
distinct irreducible components V1, . . . , Vh . Suppose Hi = [vi ] in Ln,1. Then

FV (v0, . . . , vi ,ui+1, . . . ,um) = 0

is an equation of CΠ∩V in Lm−i
n,1 . Then we have

FV (v0, . . . , vi ,ui+1, . . . ,um) = Fm1
V1

· · · Fmh
Vh

.
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It is easy to see that m1, . . . ,mh only depend on Π . As above, we define Π · V =∑h
i=1 miVi and we have deg(Π · V ) = deg(V ).

12.5 Solutions of Some Exercises

12.1.7 If P = [p0, . . . , pn], then the Chow form FP depends on a unique set of variables u0, . . . , un
and it is given by

FP (u0, . . . , un) = p0u0 + · · · + pnun

whose zero locus CP in Ln,1 is the hyperplane Ln,1(P).

12.1.8 Let Π ⊆ P
n be a linear subspace of dimension m defined by the independent system of

equations
am+1,0x0 + . . . + am+1,nxn = 0

. . .

an,0x0 + . . . + an,nxn = 0

Consider (H0, . . . , Hm) ∈ Lm+1
1,n with Hi = [ui ] = [ui,0, . . . , uin], for i = 0, . . . ,m.

Then (H0, . . . , Hm) ∈ CΠ if and only if the linear system

u0,0x0 + . . . + u0,nxn = 0

. . .

um,0x0 + . . . + um,nxn = 0

am+1,0x0 + . . . + am+1,nxn = 0

. . .

an,0x0 + . . . + an,nxn = 0

has non-trivial solutions, hence if and only if one has

∣∣∣∣∣∣∣∣∣∣∣

u0,0 . . . u0,n
. . .

um,0 . . . um,n
am+1,0 . . . am+1,n

. . .

an,0 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣

= 0. (12.5)

The determinant in (12.5) is the Cayley form of Π since it is irreducible, because it is linear in each
set of variables ui , for i = 0, . . . ,m. Hence deg(Π) = 1.
12.2.4 The assertion is trivial if m = 1. So assume m > 1. Keep the notation of Sect. 12.2.
Consider the polynomial FV (u0, a1 . . . , am), in the variables u0 = (u00, . . . , u0n), where [a j ] =
[a j0, . . . , a jn] are the homogeneous coordinates inLn,1 ofm independent hyperplanes H1, . . . , Hm
intersecting along Π . We know that (12.1) holds, with {P1, . . . , Ph} = Π ∩ V . As H1, . . . , Hm
vary among all the infinitely many m-tuples of independent hyperplanes intersecting along Π ,
the polynomial FV (u0, a1 . . . , am) varies in an algebraic way, i.e., its coefficents in the vari-
ables u0 = (u00, . . . , u0n) vary as polynomials in the variables a1 . . . , am . From (12.1) we see
that the only thing that can algebraically vary in FV (u0, a1 . . . , am) is α ∈ K

∗, whereas the integers
r1, . . . , rh have to stay constant. The assertion follows.
12.2.5 The assertion is trivial if m = 0, n, so assume 0 < m < n. Let us prove that for all pairs of
distinct points P, Q ∈ V the line P ∨ Q is contained in V . Whence the assertion follows.

By the definition of the degree, the assertion is trivial if m = 1, n − 1, so we may assume
1 < m < n − 1. Suppose that for P, Q distinct points in V , the line P ∨ Q is not contained in
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V . Then (P ∨ Q) ∩ V = F is a finite set. Set r = n − m − 1 ≥ 1 and let us prove that for all
i = 1, . . . , r , there is a linear subspace Σi of dimension i such that P ∨ Q ⊆ Σi and Σi ∩ V = F .
The case m = n − 2 implies i = 1 and the assertion is trivially true. So let us assume m ≤ n − 3
and let us start with the case i = 2. Let us fix a linear subspace Σ of dimension n − 2 skew with
P ∨ Q and consider the morphism

φ : P ′ ∈ V \ F → (P ′ ∨ P ∨ Q) ∩ Σ ∈ Σ.

Since m ≤ n − 3, then φ is not surjective, and this implies that there is some plane Σ2 containing
P ∨ Q and such that Σ2 ∩ V = F . If we iterate this argument, we prove the existence of Σi for
i > 2. Let us now fix a subspace Σ ′ of dimension n − r − 1 = m skew with Σr and consider the
morphism

ψ : P ′ ∈ V \ F → (P ′ ∨ Σr ) ∩ Σ ′ ∈ Σ ′.
Since for every point Q′ ∈ Σ ′, the subspace Q′ ∨ Σr has at least two points in common with V ,
then it has infinitely many points in common with V , and so infinitely many points in common with
V \ F . This implies that ψ is surjective, and moreover that any fibre of ψ has some component of
positive dimension, which leads to a contradiction.
12.2.6 Suppose that Hi = [ai ] in Ln,di for i = 1, . . . , n − m. Consider the variety
Z(n; 1, . . . , 1, dm+1, . . . , dn), where 1 is repeated m + 1 times, and consider its equation
R(u0, . . . ,um , xm+1, . . . , xn) = 0, which defines CV , hence FV (u0, . . . ,um) divides
R(u0, . . . ,um , am+1, . . . , an). Since the degree of R(u0, . . . ,um , am+1, . . . , an) with respect to
the variables u0, . . . ,um is dm+1 · · · dn , the assertion follows.
12.2.7 Suppose that H has equation f (x0, . . . , xn) = 0, where f is an irreducible homogeneous
polynomial of degreed. ByExercise 12.2.6weknow that deg(H) ≤ d. So it suffices to find some line
intersecting H in exactly d distinct points. Up to a change of coordinateswemay assume that H does
not contain anyof the vertices of the fundamental pyramid. Passing to affine coordinates, the equation
of H becomes F(x1, . . . , xn) = f (1, x1, . . . , xn) = 0, and by the hypothesis in F(x1, . . . , xn) all
the variables appear with degree d. We claim that there is an i ∈ {1, . . . , n} such that

∂F

∂xi

= 0. (12.6)

In fact, if this is not the case, then there is a polynomial G(x1, . . . , xn) such that

f (1, x1, . . . , xn) = F(x1, . . . , xn) = G(x p
1 , . . . , x p

n ) = g(x1, . . . , xn)
p,

with p the characteristic of K that divides d and g a suitable polynomial of degree d
p . But then we

have
f (x0, x1, . . . , xn) = xd0 F

( x1
x0

, . . . ,
xn
x0

)
=

= xd0G
(( x1

x0

)p
, . . . ,

( xn
x0

)p) = xd0 g
( x1
x0

, . . . ,
xn
x0

)p
,

and this implies that f is reducible, against the hypothesis. So we can assume that (12.6) holds
for i = 1. By the proof of Lemma 12.2.2 we can find a point (a2, . . . , an) ∈ A

n−1 such that
F(x1, a2, . . . , an) = 0 has d distinct roots. This implies that the line ofP

n with equations xi = ai x0,
with i = 2, . . . , n has exactly d distinct points in common with H , as wanted.
12.2.8 Suppose that H has equation f (x0, . . . , xn) = 0, where f is an irreducible homogeneous
polynomial of degree d. Consider the matrix of type n × (n + 1)

U =
⎛

⎝
u0
. . .

un−1

⎞

⎠
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whereui = (ui0, . . . , uin), for i = 0, . . . , n − 1.We denote by u0, . . . , un themaximalminors ofU
taken with alternate signs. We claim that FH = f (u0, . . . , un). First of all note that f (u0, . . . , un)
has degree d in each set of variables ui , for i = 0, . . . , n − 1. So it suffices to prove that FH
and f (u0, . . . , un) have the same zero set. To see this, take a point (H0, . . . , Hn−1) ∈ Ln

n,1, with
Hj = [v j ] for j = 0, . . . , n − 1. We consider the matrix

V =
⎛

⎝
v0
. . .

vn−1

⎞

⎠

and we denote by v0, . . . , vn the maximal minors ofV taken with alternate signs. Then we have the
following possibilities:

(a) one has v0 = . . . = vn = 0, and then f (v0, . . . , vn) = 0; on the other side H0, . . . , Hn−1 are
linearly dependent, so that H0 ∩ . . . ∩ Hn−1 contains a line, so H ∩ H0 ∩ . . . ∩ Hn−1 
= ∅ and
FV (v0, . . . , vn) = 0;

(b) one has (v0, . . . , vn) 
= 0, then H0 ∩ . . . ∩ Hn−1 = {P}, with P = [v0, . . . , vn], hence again
f (v0, . . . , vn) = 0 implies FV (v0, . . . , vn) = 0.

This shows that f (u0, . . . , un) and FV have the same zero locus, hence they are equal up to a
multiplicative constant.
12.2.9 First we note that the definition of the integers si , for i = 1, . . . , h, is invariant by change
of coordinates and also by the choice of the point P, Q on L . This is easy to check and can be left
to the reader. Then we may change coordinates and we may assume that the line L has equations
xi = 0, for i = 2, . . . , n. By the definition of intersection multiplicity and by Exercise 12.2.8, to
compute the intersection multiplicities of L with H at their intersection points, we have to solve
the equation f (u0, . . . , un) = 0, where u0, . . . , un are the maximal minors with alternate signs of
the matrix ⎛

⎜⎜⎜⎝

u0,0 u0,1 u0,2 . . . u0,n
0 0 1 . . . 0

. . .

0 0 0 . . . 1

⎞

⎟⎟⎟⎠

namely u0 = u0,1, u1 = −u0,0, ui = 0, for i = 2, . . . , n. So f (u0, . . . , un) = 0 is equivalent to
f (u0,1,−u0,0, 0, . . . , 0) = 0, where u0,1, u0,0 are variables. On the other hand the line L is para-
metrically represented by x0 = λ, x1 = μ, xi = 0, for i = 2, . . . , n. So the integers si are obtained
by solving the equation f (λ,μ, 0, . . . , 0) = 0. So we see that the two equations are the same (up
to the name of variables) and we are done.
12.2.10 The degree of Vn,d equals the order of the maximum number of points in common to n
hypersurfaces of degree d in P

n , which is dn

12.2.11 Consider first in general the case of Segn,m , whose degree is the maximum number of
finitely many solutions of a system of equations of the form

f1(x, y) = 0

. . .

fn+m(x, y) = 0

(12.7)

where x = (x0, . . . , xn), y = (y0, . . . , ym) and f1, . . . , fn+m are bihomogeneous of degree 1 in the
variables x and y. Suppose n ≥ m, and set

fi (x, y) = fi,0(y)x0 + · · · + fi,n(y)xn, for i = 1, . . . , n + m.
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The system (12.7) has non-trivial solutions if and only if

rank

⎛

⎝
f1,0(y) . . . f1,n(y)

. . .

fn+m,0(y) . . . fn+m,n(y)

⎞

⎠ ≤ n. (12.8)

So we are led to compute the maximum number of finitely many solutions of a determinantal
equation of the form (12.8). One can prove that this number is

(n+m
n

)
, which is therefore the degree

of Segn,m . In particular, in the case m = 1 the equation (12.8) reduces to

∣∣∣∣∣∣

f1,0(y0, y1) . . . f1,n(y0, y1)
. . .

fn+1,0(y0, y1) . . . fn+1 n(y0, y1)

∣∣∣∣∣∣
= 0 (12.9)

and the determinant appearing in left hand side of (12.9) is a homogeneous polynomial of degree
n + 1 in y0, y1 and any such polynomial can clearly be obtained in this way. So the maximum
number of finitely many solutions of the equation (12.9) is n + 1 which is also the degree of Segn,1.
12.2.12 The assertion that V is a cone is trivial. It is also obvious that deg(W ) ≤ deg(V ). Let us
prove the opposite inequality. There is a linear subspace Π of P

n of dimension n − m such that
Π ∩ V consists of d := deg(V ) distinct points. By Theorem 12.2.3 we may assume that P /∈ Π .
This implies that two distinct points in Π ∩ V are not aligned with P . Then the projection of Π

from P to H is a linear subspace of H of dimension n − m which cuts W in d distinct points,
namely the projections of the points of Π ∩ V . This proves that d = deg(V ) ≤ deg(W ) as wanted.
12.2.13 The map φ : V ��� W is generically finite, hence dim(W ) = dim(V ). Let nowU be a non-
empty open subset of W (existing because φ is generically finite) such that for all points Q ∈ U
the line P ∨ Q is not contained in V so it intersects V in a finite set. Let Π be a linear space of
dimension n − m − 1 contained in H which intersects W in δ = deg(W ) distinct points, which we
may assume to be all contained inU . Then P ∨ Π is a linear space of dimension n − m in P

n which
cuts V in more than δ distinct points, hence deg(V ) ≥ δ + 1 > deg(W ).
12.2.15 Proceed by induction on m. Let m = 1. The assertion is clear if n = 2. If n > 2 consider
three independent points of V . Then all hyperplanes containing these three points contain V , hence
V is contained in the plane spanned by the three points, concluding the proof. Suppose next m > 1
and the assertion true for m − 1. Fix P ∈ V . If for any point Q ∈ V \ {P} the line P ∨ Q is
contained in V , then V is a cone over a variety W of dimension m − 1 contained in a hyperplane
H of P

n , and deg(W ) = deg(V ) = 2 (see Exercise 12.2.12). Then by inductionW is a quadric in a
linear subspace Π of dimension m of H . Thus V sits in the (m + 1)-dimensional subspace P ∨ Π

and it is a quadric there. If there is a point Q ∈ V \ {P} such that the line P ∨ Q is not contained
in V , then the image W of the projection of V from P is contained in a hyperplane H , and W
has dimension m and degree deg(W ) < 2 (see Exercise 12.2.13), hence deg(W ) = 1. Then W is a
linear subspace of dimension m (see Exercise 12.2.5), thus V sits in the linear subspace P ∨ W of
dimension m, as wanted.
12.2.16 To prove (12.2) one proceeds by induction on the codimension n − m of V in P

n . If V is a
hypersurface, it is clear that d ≥ 2. If n − m > 1, note that there is some point P ∈ V such that the
projection φ of V from P to a hyperplane H ∼= P

n−1 not containing P is generically finite onto its
imageW . Indeed, if this is not the case, then for any pair of distinct points P, Q ∈ V the line P ∨ Q
is contained in V , and V would be a linear subspace ofP

n , contradicting the non-degeneracy of V . If
φ is generically finite, by Exercise 12.2.13 we have deg(W ) < deg(V ) = d. On the other hand, by
induction, we have deg(W ) ≥ (n − 1) − m + 1 = n − m, hence d ≥ deg(W ) + 1 ≥ n − m + 1,
as wanted.
12.2.17 This can be proved by induction on the codimension n − m. If m = n − 1, then V is a
quadric in P

n and therefore it is rational (see Exercise 7.3.10). Assume n − m ≥ 2. Arguing as in
the solution of Exercise 12.2.16 one proves that there is a point P of V such that the projection of
V from P to a hyperplane H ∼= P

n−1 not containing P is birational onto its image W , which is
again a variety of minimal degree, with lower codimension. Then the assertion follows by applying
induction.



Chapter 13
Grassmannians

In all this chapter we will assume that K has characteristic p �= 2.

13.1 Plücker Coordinates

Let Π ⊆ P
n be a subspace of dimension m, defined by the system of independent

equations
am+1,0x0 + . . . + am+1,nxn = 0

. . .

an,0x0 + . . . + an,nxn = 0

(13.1)

As we saw in the solution to Exercise 12.1.8, given (H0, . . . , Hm) ∈ Lm+1
1,n with

Hi = [ui ] = [ui,0, . . . , uin], for i = 0, . . . ,m, (H0, . . . , Hm) ∈ CΠ if and only if
the linear system

u0,0x0 + . . . + u0,nxn = 0

. . .

um,0x0 + . . . + um,nxn = 0

am+1,0x0 + . . . + am+1,nxn = 0

. . .

an,0x0 + . . . + an,nxn = 0

has non-trivial solutions, hence if and only if one has
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u0,0 . . . u0,n
. . .

um,0 . . . um,n

am+1,0 . . . am+1,n

. . .

an,0 . . . an,n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (13.2)

The determinant in (13.2) is the Cayley form of Π .
We want to write the Cayley form FΠ more explicitly. Consider the matrix of type

(n − m) × (n + 1)

A =
⎛

⎝

am+1,0 . . . am+1,n

. . .

an,0 . . . an,n

⎞

⎠ .

If (i0, . . . , in−m−1) is a (n − m)-tuple of elements of {0, . . . , n}, we will set

pi0,...,in−m−1 =
∣
∣
∣
∣
∣
∣

am+1,i0 . . . am+1,in−m−1

. . .

an,i0 . . . an,in−m−1

∣
∣
∣
∣
∣
∣

.

Of course pi0,...,in−m−1 = 0 if two indices are equal. So we will assume that the indices
are all distinct. Moreover we will assume that i0 < i1 < · · · < in−m−1. With this
assumption we may consider the non-zero vector

p̌ = (pi0,...,in−m−1)0≤i0<i1<···<in−m−1≤n

with lexicographically ordered entries. The length of this vector is
(n+1
n−m

) = (n+1
m+1

)

.
The vector p̌ is called the vector of dual Plücker coordinates ofΠ . It has an interpre-
tation in terms of multilinear algebra. Consider An+1 as a vector space V̌ of dimen-
sion n + 1 onK, generated by the independent vectors e0 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1). Then ∧n−mV̌ is a vector space of dimension

(n+1
n−m

) = (n+1
m+1

)

over K,
which has as a basis the set of vectors

ei0,...,in−m−1 = ei0 ∧ . . . ∧ ein−m−1 , with 0 ≤ i0 < i1 < · · · < in−m−1 ≤ n. (13.3)

If we interpret the rows of the matrix A as vectors am+1, . . . , an in V̌, then p̌ is just
the vector of the components of am+1 ∧ . . . ∧ an with respect to the basis (13.3),
namely

am+1 ∧ . . . ∧ an =
∑

pi0,...,in−m−1ei0,...,in−m−1

where the sum is made over all sets of indices i0, . . . , in−m−1 such that 0 ≤ i0 < i1 <

· · · < in−m−1 ≤ n.
Next we consider the point [p̌] of PM(m,n), where M(m, n) = (n+1

m+1

) − 1 and we
point out two facts:
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(a) [p̌] does not depend on the particular set of equations (13.1) defining Π ;
(b) [p̌] determines Π , i.e., if Π ′ �= Π is another subspace of dimension m of Pn

with dual Plücker coordinates p̌′, then [p̌] �= [p̌′].
Both facts follow from the following circumstance. If we expand the determinant

in (13.2) with the Laplace rule applied to the first m + 1 rows, we have

FΠ =
∑

pi0,...,in−m−1u j0,..., jmεi0,...,in−m−1 (13.4)

where the sum is made over all sets of indices i0, . . . , in−m−1 such that 0 ≤ i0 <

i1 < · · · < in−m−1 ≤ n, one has { j0, . . . , jm} = {0, . . . , n} \ {i0, . . . , in−m−1} with
j0 < · · · < jm , εi0,...,in−m−1 equals 1 or−1 according to the fact that i0 + · · · + in−m−1

is even or odd, and u j0,..., jm is the maximal minor of the matrix

U =
⎛

⎝

u0,0 . . . u0,n
. . .

um,0 . . . um,n

⎞

⎠

determined by the columns of order j0, . . . , jm . In conclusion FΠ is determined by
[p̌], and this proves (a) and (b) above by Theorem 12.1.5.

To get the same conclusions as above, we may argue in a slightly different way.
Given the subspace Π ⊆ P

n of dimension m, we can choose m + 1 independent
points Pi = [pi ], i = 0, . . . ,m of Π . Let (H0, . . . , Hm) ∈ Lm+1

n,1 with Hi = ui , for
i = 0, . . . ,m. Set

ai j = ui × p j , for i, j = 0, . . . ,m.

Then (H0, . . . , Hm) ∈ CΠ if and only if det(ai j )i, j=0,...,m = 0, hence

FΠ = det(ai j )i, j=0,...,m .

On the other hand, the square matrix (ai j )i, j=0,...,m of orderm + 1 is the product rows
by columns of the two matrices U and Pt , where

P =
⎛

⎝

p0,0 . . . p0,n
. . .

pm,0 . . . pm,n

⎞

⎠ (13.5)

If 0 ≤ j0 < · · · < jm ≤ n we set

p j0,··· , jm =
∣
∣
∣
∣
∣
∣

p0, j0 . . . p0, jm
. . .

pm, j0 . . . pm, jm

∣
∣
∣
∣
∣
∣

(13.6)

and
p = (p j0,··· , jm )



172 13 Grassmannians

with lexicographically ordered entries, a non-zero vector of order
(n+1
m+1

)

.
The vector p has again an interpretation in terms of multilinear algebra. Namely

p is the vector of the components of p0 ∧ . . . ∧ pm in the
(n+1
m+1

)

-dimensional vector

space ∧m+1V (with V dual of V̌) with respect to the basis

e j0,..., jm = e j0 ∧ . . . ∧ e jm

with (e1, . . . , en) dual basis of (e1, . . . , en).
The vector p is called the vector of Plücker coordinates of Π . For [p] the same

properties (a) and (b) as above hold. Indeed by expanding FΠ = U · Pt , we have

FΠ(u0, . . . ,um) =
∑

p j0,··· , jm u
j0,..., jm (13.7)

where the sum is made over all indices such that 0 ≤ j0 < · · · < jm ≤ n. From this
and from (13.4) we get the following:

Proposition 13.1.1 With the above notation consider the square matrix of order
n + 1

M =
(

P
A

)

.

Then the maximal minors of A [resp. of P] are proportional to their cofactors inM.

13.2 Grassmann Varieties

Let us fix the non-negative integers n,m with m < n and consider the set G(m, n)

of all subspaces of dimension m of Pn . Given an element Π ∈ G(m, n), we have the
non-zero vectors of order

(n+1
m+1

)

of its Plücker coordinates p = (p j0,..., jm ) and of its
dual Plücker coordinates p̌ = (pi0,...,in−m−1), which are defined up to a non-zero factor
and are proportional. We have the two coinciding injective maps

gm,n : Π ∈ G(m, n) → [p] ∈ P
M(m,n)

and
ǧm,n : Π ∈ G(m, n) → [p̌] ∈ P

M(m,n).

The image setG(m, n)of gm,n (or of ǧm,n) is bijectivewithG(m, n), and it is called, for
reasonswhichwill be soon clear, theGrassmann variety or theGrassmannian of type
(m, n). The same name will have any transformation ofG(m, n) via a projectivity of
P
M(m,n). By abuse of notation, wewill identify a pointπ ∈ G(m, n)with the subspace

Π ∈ G(m, n) such that π = gm,n(Π).
Given Π ∈ G(m, n), we have the subspace Π⊥ of dimension m − m − 1 of

Ln,1 = P̌
n which consists of all the hyperplanes containing Π . The dual Plücker
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coordinated of Π coincide with the Plücker coordinated of Π⊥. This implies that
G(m, n) = G(n − m − 1, n).

It is also useful to have in mind the following algebraic interpretation ofG(m, n).
As we did in Sect. 13.1, consider An+1 has a vector space V of dimension n + 1 on
K. Then ∧m+1V is a vector space of dimension M(m, n) + 1 over K. A non-zero
tensor T ∈ ∧m+1V is said to be indecomposable if there are p0, . . . ,pm ∈ V such
that T = p0 ∧ . . . ∧ pm . The indecomposable tensors generate∧m+1V as aK-vector
space. Note that G(m, n) can be interpreted as the set of all vector subspaces of
dimension m + 1 of V. So, given Π ∈ G(m, n), and given a basis p0, . . . ,pm of Π ,
we have the indecomposable tensor p0 ∧ . . . ∧ pm ∈ ∧m+1V. If we change basis in
Π , this indecomposable tensor varies, but it is easy to check that it changes only by
the product of a non-zero element ofK (namely, the determinant of the matrix of the
basis change). Hence, if we set PM(m,n) = P(∧m+1V), we have the map

γm,n : Π ∈ G(m, n) → [p0 ∧ . . . ,∧pm] ∈ P
M(m,n)

which clearly coincides with gm,n . Hence G(m, n) can be interpreted as the set of
points of P(∧m+1V) corresponding to proportionality equivalence classes of inde-
composable tensors. From this description it follows thatG(m, n) is non-degenerate
in PM(m,n).

Next we want to prove that G(m, n) is a subvariety of PM(m,n). This is trivial if
m = 0 or m = n − 1. Indeed G(0, n) = P

n and G(n − 1, n) = Ln,1 = P̌
n . To see

this in general we need a number of preliminaries.
Let Π ∈ G(m, n) with Plücker coordinates p = [p j0,..., jm ]. If we chose m + 1

independent points Pi = [pi ], i = 0, . . . ,m of Π , the Plücker coordinates of Π are
given by the minors of maximal order of the matrix P in (13.5).Note that, in the
above notation we have 0 ≤ j0 < · · · < jm ≤ n. However we want to make sense of
the symbol p j0,..., jm in the more general case in which { j0, . . . , jm} is any disposition
(with perhaps repetitions) ofm + 1 elements in the set {0, . . . , n}. Preciselywe define
p j0,..., jm as in (13.6). Note then that {p j0,..., jm } is an alternating set, namely

p j0,..., jm = εp j ′0,..., j ′m

where ε = 1 or ε = −1 whenever the (m + 1)-tuple ( j ′0, . . . , j ′m) is obtained from
( j0, . . . , jm)with an even or odd number of transpositions. In particular p j0,..., jm = 0
if two of the indices in ( j0, . . . , jm) are equal.

Fix now (i1, . . . , im) a disposition with repetitions of m elements in the set
{0, . . . , n}. If the columns of the matrix P of order i1, . . . , im are linearly dependent,
we have pi,i1,...,im = 0, for all i = 0, . . . , n. Suppose by contrast that the columns of
thematrixP of order i1, . . . , im are linearly independent. Then, since thematrixP has
rankm + 1, the vector (p0,i1,...,im , . . . , pn,i1,...,im ) is non-zero and we can consider the
point Pi1,...,im = [p0,i1,...,im , . . . , pn,i1,...,im ] ∈ P

n . Of course Pi1,...,im does not depend
on the ordering (i1, . . . , im), so that we may suppose 0 ≤ i1 < · · · < im ≤ n.
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Lemma 13.2.1 In the above setting the point Pi1,...,im is the unique intersection point
of Π with the subspace Πi0,...,im with equations

xi1 = · · · = xim = 0.

Proof A point P = [p] belongs to Π if and only if there are λ0, . . . ,λm in K such
that

p = λ0p0 + · · · + λmpm,

hence P belongs to Πi0,...,im if and only if

λ0 p0,i1 + . . . + λm pm,i1 = 0

. . .

λ0 p0,im + . . . + λm pm,im = 0

(13.8)

Since the columns of P of order i1, . . . , im are linearly independent, the relations
(13.8) uniquely determine [λ0, . . . ,λm], i.e., λ0, . . . ,λm are proportional to themax-
imal minors with alternate signs of the matrix

⎛

⎝

p0,i1 . . . pm,i1
. . .

p0,im . . . pm,im

⎞

⎠ .

Then we have
pi = λ0 p0i + · · · + λm pmi =

=

∣
∣
∣
∣
∣
∣
∣
∣

p0,i . . . pm,i

p0,i1 . . . pm,i1
. . .

p0,im . . . pm,im

∣
∣
∣
∣
∣
∣
∣
∣

= pi,i1,...,im

as wanted. �

Consider now the matrix

Pi1,...,im =

⎛

⎜
⎜
⎝

p0,i1,...,im . . . pn,i1,...,im
p0,0 . . . p0,n

. . .

pm,0 . . . pm,n

⎞

⎟
⎟
⎠

.

By Lemma 13.2.1, we have that Pi1,...,im has rank m + 1, thus all its maximal minors
vanish. So if (i0, j0, . . . , jm) is a disposition (with perhaps repetitions) of m + 2
elements in the set {0, . . . , n}, we have
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∣
∣
∣
∣
∣
∣
∣
∣

pi0,i1,...,im p j0,i1,...,im . . . p jm ,i1,...,im
p0,i0 p0, j0 . . . p0, jm

. . .

pm,i0 pm, j0 . . . pm, jm

∣
∣
∣
∣
∣
∣
∣
∣

= 0

which reads

pi0,i1,...,im p j0, j1,..., jm − p j0,i1,...,im pi0, j1,..., jm + · · · + (−1)m p jm ,i1,...,im pi0, j0,..., jm−1 = 0

or equivalently

pi0,i1,...,im p j0, j1,..., jm = p j0,i1,...,im pi0, j1,..., jm+
+ p j1,i1,...,im p j0,i0,..., jm + · · · + p jm ,i1,...,im p j0,..., jm−1,i0 .

These relations,which hold for every (i0, . . . , im) and ( j0, . . . , jm), are calledPlücker
relations.

Now we introduce the M(m, n) + 1 indeterminates xi0,...,im , with 0 ≤ i0 < · · · <

im ≤ n. We also introduce symbols x j0,..., jm in the more general case in which
{ j0, . . . , jm} is any disposition (with perhaps repetitions) of m + 1 elements in the
set {0, . . . , n}. As usual we define

x j0,..., jm = εxi0,...,im

where ε = 1 or ε = −1 whenever the (m + 1)-tuple ( j0, . . . , jm) is obtained from
(i0, . . . , im) with 0 ≤ i0 < · · · < im ≤ n with an even or odd number of transposi-
tions. Moreover we define x j0,..., jm = 0, if two indices among j0, . . . , jm are equal.
With this notation, we see that G(m, n) is contained in the closed subset of PM(m,n)

defined by the set of equations

xi0,i1,...,im x j0, j1,..., jm = x j0,i1,...,im xi0, j1,..., jm+
+ x j1,i1,...,im x j0,i0,..., jm + · · · + x jm ,i1,...,im x j0,..., jm−1,i0 .

(13.9)

for every (i0, . . . , im) and ( j0, . . . , jm). These equations are identically zero if m =
0, n − 1 because in these cases G(0, n) = P

n = P
M(0,n) and G(n − 1, n) = P̌

n =
P
M(n−1,n). So we will assume from now on that 1 ≤ m ≤ m − 2. In this case we can

choose i2 = j2, . . . , im = jm and we set i0 = i , i1 = j , j0 = h, j1 = k. Then (13.9)
become

xi, j,i2,...,im xh,k,i2,...,im = xh,i,i2,...,im xi,k,i2,...im + xh, j,i2,...,im xh,i,i2,...,im (13.10)

which are not identically zero if i, j, h, k are all distinct and different from i2, . . . , im
as it is possible if 1 ≤ m ≤ m − 2. The equations (13.10) are called the three terms
Plücker relations.

Now we can prove the:
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Theorem 13.2.2 G(m, n) is a closed subset of PM(m,n), which is proper if and only
if 1 ≤ m ≤ m − 2.

Proof We already saw thatG(0, n)=P
n=P

M(0,n) andG(n − 1, n)=P̌
n = P

M(n−1,n).
So wemay assume that 1 ≤ m ≤ m − 2. SinceG(m, n) verifies the Plücker relations
(13.9) and among these there are the three terms relations (13.10) which are not
identically zero, then G(m, n) is a proper subset of PM(m,n) if 1 ≤ m ≤ m − 2. In
order to show that G(m, n) is a closed subset, we will prove that it is defined by the
Plücker relations (13.9).

Suppose that (pi0,...,im ) is non-zero and verifies the Plücker relations. To fix the
ideas, let us suppose that p0,...,m �= 0. Then it makes sense to consider the following
points of Pn

P0 = [pi,1,...,m]i=0,...,n, P1 = [p0,i,2,...,m]i=0,...,n, . . . , Pm = [p0,...,m−1,i ]i=0,...,n.

They are linearly independent. Indeed a matrix that has as rows the homogeneous
coordinates of these points is given by

⎛

⎜
⎜
⎝

p0,1,...,m 0 . . . 0 pm+1,1,...,m . . . pn,1,...,m

0 p0,1,...,m . . . 0 p0,m+1,...,m . . . p0,n,...,m

. . .

0 0 . . . p0,1,...,m p0,...,m−1,m . . . p0,...,m−1,n

⎞

⎟
⎟
⎠

whose minor determined by the first m + 1 columns is pm+1
0,1,...,m �= 0. Hence P0, . . . ,

Pm span a linear space Π ∈ G(m, n). Let now (πi0,...,im ) be the vector of Plücker
coordinates of Π . We will conclude the proof by showing that the vector (πi0,...,im ) is
proportional to (pi0,...,im ), more precisely, we will show that for all (i0, . . . , im) one
has

πi0,...,im = pm0,1,...,m pi0,...,im . (13.11)

First we show that (13.11) holds if only one of the indices i0, . . . , im is larger than
m. Indeed, if m < i ≤ n, one has

π0,...,l−1,i,l+1,...,m =

∣
∣
∣
∣
∣
∣
∣
∣

p0,...,m 0 . . . pi,1,...,m . . . 0
0 p0,...,m . . . p0,i,...,m . . . 0

. . .

0 0 . . . p0,...,m−1,i . . . p0,...,m

∣
∣
∣
∣
∣
∣
∣
∣

where the column (pi,1,...,m, p0,i,...,m, . . . , p0,...,m−1,i )
t appears at the lth place, and

from this we see that π0,...,l−1,i,l+1,...,m = pm0,1,...,m p0,...,l−1,i,l+1,...,m .
Then we proceed by induction, supposing that (13.11) holds if i0, . . . , im contain

ν numbers greater thatm, and we show that (13.11) holds if i0, . . . , im contain ν + 1
numbers greater that m. Since Plücker relations hold for (pi0,...,im ), we have
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p0,...,m pi0,...,im = pi0,1,...,m p0,i1,...,im+
+ pi1,1,...,m pi0,0,i2m...,im + · · · + pim ,1,...,m pi0,...,im−1,0.

(13.12)

On the right hand side of (13.12) the only non-zero terms may be the ones of the
form pih ,1,...,m pi0,...,ih−1,0,ih+1,...,im with ih > m, where we assume, as it is possible, that
0 /∈ {i0, . . . , ih}. By multiplying both members of (13.12) by p2m0,...,m and applying
induction, we have

π0,...,m p
m
0,...,m pi0,...,im = πi0,1,...,mπ0,i1,...,im + · · · + πim ,1,...,mπi0,...,im−1,0.

On the other hand, Plücker relations hold for (πi0,...,im ), hence we have

π0,...,mπi1,...,im = πi0,1,...,mπ0,i1,...,im + · · · + πim ,1,...,mπi0,...,im−1,0

whence (13.11) holds because π0,...,m �= 0. This end the proof of the Theorem. �

Consider now (Pn)m+1 and let [xi ] = [xi0, . . . , xin], for i = 0, . . . ,m, the homo-
geneous coordinates in the (i + 1)th factor of the product (Pn)m+1. Consider the
subset Z(m, n) of (Pn)m+1 consisting of all (m + 1)-tuples (P0, . . . , Pm), with
Pi = [pi ] = [pi0, . . . , pin], for i = 0, . . . ,m, such that P0, . . . , Pm are linearly
dependent in Pn . ThenZ(m, n) is a proper closed subset of (Pn)m+1 which is defined
by the matrix equation

rank

⎛

⎝

x0
. . .

xm

⎞

⎠ < m + 1.

We set D(m, n) = (Pn)m+1 \ Z(m, n). We have the map

φm,n : (P0, . . . , Pm) ∈ D(m, n) → gm,n(P0 ∨ . . . ∨ Pm) ∈ G(m, n) ⊆ P
M(m,n).

Lemma 13.2.3 The map φm,n : D(m, n) → P
M(m,n) is a morphism and its image is

G(m, n).

Proof The fact that the image of φm,n is G(m, n) is obvious. To show that φm,n is
a morphism, note that φm,n sends the point ([p0], . . . , [pm]) ∈ D(m, n) to the point
[pi0,...,im ] where (pi0,...,im ) are the Plücker coordinates of P0 ∨ . . . ∨ Pm , hence are
the minors of maximal order of the matrix

⎛

⎝

p0
. . .

pm

⎞

⎠

and these minors are polynomials in the coordinates of P0, . . . , Pm . �

Theorem 13.2.4 G(m, n) is irreducible of dimension (n − m)(m + 1).
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Proof The irreducibility follows from the surjectivity of φm,n and the fact that
D(m, n) is irreducible, being an open set of (Pn)m+1. Let now Π ∈ G(m, n). Then

φ−1
m,n(gm,n(Π)) = Πm+1 ∩ D(m, n)

which has dimension m(m + 1). Then, by Theorem 11.3.1, we have

dim(G(m, n)) = n(m + 1) − m(m + 1) = (n − m)(m + 1).

�

Theorem 13.2.5 G(m, n) is rational.

Proof Consider the set

I(m, n) = {(Π,Π ′) ∈ G(m, n) × G(n − m, n),Π ∨ Π ′ �= P
n},

which is a proper closed subset of G(m, n) × G(n − m, n). In fact, if Π = P0 ∨
. . . ∨ Pm and Π ′ = Pm+1 ∨ . . . ∨ Pn+1, with Pi = [pi ], for i = 0, . . . , n + 1, then
(Π,Π ′) ∈ I(m, n) if and only if

rank

⎛

⎝

p0
. . .

pn+1

⎞

⎠ < n + 1, (13.13)

i.e., if and only if all maximal minors of the matrix in (13.13) vanish. Expanding
these minors with Laplace rule applied to the firstm + 1 rows, one obtains algebraic
relations (of degree 1) between the Plücker coordinates of Π and Π ′, which are
necessary and sufficient conditions in order that (Π,Π ′) ∈ I(m, n).

Let p1 : I(m, n) → G(m, n) and p2 : I(m, n) → G(n − m, n)be the projections
to the two factors. If we fix Π ′

0 ∈ G(n − m, n), we set

G(m, n,Π ′
0) = p1(p

−1
2 (Π ′

0)).

It is clear that G(m, n,Π ′
0) is a proper closed subset of G(m, n). Fix now Π ∈

G(m, n), fix P0, . . . , Pm independent points in Π , and take Π ′
0, . . . ,Π

′
m ∈ G(n −

m, n) such that {Pi } = Π ∩ Π ′
i for all i = 0, . . . ,m. Set

U = G(m, n) \
m

⋃

i=0

G(m, n,Π ′
i )

which is an open dense subset of G(m, n), and let U ′ be the dense open subset
D(m, n) ∩ (Π ′

0 × . . . × Π ′
m) of Π ′

0 × . . . × Π ′
m . Consider the map

ψ : P ∈ U → (P ∩ Π ′
0, . . . , P ∩ Π ′

m) ∈ Π ′
0 × . . . × Π ′

m
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which is a morphism. In fact, if P ∈ U , suppose that P has equations

u00x0 + . . . + u0nxn = 0

. . .

un−m−1,0x0 + . . . + un−m−1,nxn = 0

Suppose now Π ′
0 has equations

un−m,0x0 + . . . + un−m,nxn = 0

. . .

un−1,0x0 + . . . + un−1,nxn = 0

From the definition of U it follows that the matrix

M =
⎛

⎝

u0,0 . . . u0,n
. . .

un−1,0 . . . un−1,n

⎞

⎠

hasmaximal rank n and the coordinates of the point P ∩ Π ′
0 are given by themaximal

minors of M with alternate signs. These minors are polynomials of degree 1 in the
dual Plücker coordinates of P . The same argument holds for the coordinates if the
points P ∩ Π ′

i , for i = 1, . . . ,m. This proves thatψ is amorphism,which determines
a rational map

ψ : G(m, n) ��� Π ′
0 × . . . × Π ′

m .

We have also the map

φ : (Q0, . . . , Qm) ∈ U ′ → Q0 ∨ . . . ∨ Qm ∈ G(m, n)

which is also a morphism because it is the restriction to U ′ of φm,n . Since clearly
φ−1(φ(P0, . . . , Pm)) = (P0, . . . , Pm), and since dim(Π ′

0 × . . . × Π ′
m) = (m + 1)

(n − m) = dim(G(m, n)), the map φ is dominant because of Theorem 11.3.1, so
it determines a dominant rational map

φ : Π ′
0 × · · · × Π ′

m ��� G(m, n).

Take now P ∈ U such that ψ(P) ∈ U ′. Then one has φ(ψ(P)) = P . Similarly,
if (Q0, . . . , Qm) ∈ U ′ and φ(Q0, . . . , Qm)∈U , then ψ(φ(Q0, . . . , Qm))=(Q0, . . . ,

Qm). Hence φ and ψ are birational transformations one inverse to the other. Since
Π ′

0 × . . . × Π ′
m is rational, the assertion follows. �

Exercise 13.2.6 *Let τ : Pn → P
n be a projectivity. Prove that there is a projectivityωτ ofPM(m,n),

fixing G(m, n), such that for any point Π ∈ G(m, n) one has ωτ (Π) = τ (Π).
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Exercise 13.2.7 Prove that G(1, 3) is a quadric in P5, having Plücker equation

x01x23 + x12x03 − x13x02 = 0.

Prove that the determinant of the matrix of this quadric is non-zero. This is called theKlein quadric.

Exercise 13.2.8 Fix a point P ∈ P
n and H ⊂ P

n a hyperplane not containing P . Consider the map

gP : Q ∈ H ∼= P
n−1 → P ∨ Q ∈ G(1, n).

Prove that gP is a projectivity of H onto a subspace of dimension n − 1 contained in G(1, n).

Exercise 13.2.9 Exercise 13.2.8 can be generalised in the following way. Let Π0 be a subspace of
P
n of dimension h, and fix m ≥ h + 1. Consider the subset of G(m, n)

G(Π0,m) = {Π ∈ G(m, n) : Π0 ⊂ Π}.
Prove that G(Π0,m) is a closed subset of G(m, n) isomorphic to G(n − m − 1, n − h − 1).

Exercise 13.2.10 This is similar to Exercise 13.2.9. Let Π0 be a subspace of Pn of dimension h,
and fix m < h. Consider the subset of G(m, n)

G(m,Π0) = {Π ∈ G(m, n) : Π ⊂ Π0}.
Prove that G(m,Π0) is a closed subset of G(m, n) isomorphic to G(m, h).

Exercise 13.2.11 Prove that on the Klein quadricG(1, 3) there are two families Σ1,Σ2 of planes,
the former containing the planes corresponding to the lines passing through a given point of P3

(these are called stars), the latter containing the planes corresponding to the lines contained in a
fixed plane of P3 (these are called ruled planes). Prove that two planes of the same family intersect
each other in a point, whereas two planes of two different families intersect each other either in the
empty set or along a line.

Exercise 13.2.12 Let r = [pi j ] and s = [qi j ] be two distinct points ofG(1, 3). Prove that the line
r ∨ s is contained in G(1, 3) if and only if

p01q23 + q01 p23 + p12q03 + q12 p03 − p13q02 − q13 p02 = 0.

Prove that this happens if and only if the lines r and s intersect at a point, i.e, if and only if they are
coplanar. Conclude that r, s are coplanar if and only if the line r ∨ s is contained in G(1, 3).

Exercise 13.2.13 Let r be a line in P
3. Let Qr be the subset of G(1, 3) consisting of r and of

all lines distinct from r which are coplanar with r . Prove that Qr is the section of G(1, 3) with a
hyperplane Hr ∼= P

4 and it is a quadric cone with vertex r in Hr .

Exercise 13.2.14 Prove that any line contained inG(1, 3) is the intersection of a plane of Σ1 with
a plane in Σ2.

Exercise 13.2.15 Prove that any plane contained in G(1, 3) is either in Σ1 or in Σ2.

Exercise 13.2.16 *Fix positive integers n,m, d with m ≤ n and consider the set

I(m, n, d) = {(Π, Z) ∈ G(m, n) × Ln,d : Π ⊆ Z}.
Prove that I(m, n, d) is an irreducible closed subset ofG(m, n) × Ln,d of codimension N (m, d) +
1 = (m+d

d

)

.
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Exercise 13.2.17 Prove that if N (m, d) + 1 > (m + 1)(n − m), then there is a non-empty open
subset U ⊂ Ln,d such that for any hypersurface Z ∈ U , Z contains no subspace Π ∈ G(m, n).

Exercise 13.2.18 Prove that if Z ∈ Ln,d , the set

G(m, Z) = {Π ∈ G(m, n) : Π ⊆ Z}
is a closed subset of G(m, n). This is called the family of m-dimensional subspaces of Z .

Exercise 13.2.19 *From Exercises 13.2.16 and 13.2.17 it follows that if d ≥ 4, the surfaces of
degree d inP3 containing some line forma proper irreducible closed subsetZ(1, 3, d) ofL3,d , which
is the image of I(1, 3, d) via the projection q to the second factor. Prove that dim(Z(1, 3, d)) =
dim(I(1, 3, d)) = N (3, d) − (d − 3).

Exercise 13.2.20 Prove that any cubic surface in P
3 contains at least a line and there is a dense

open subset U in L3,3 such that for any Z ∈ U , Z has finitely many lines.

Exercise 13.2.21 An irreducible surface Z in P3 is said to be a scroll if it contains infinitely many
lines, i.e., ifG(1, Z) ⊂ G(1, 3) has a component of dimension at least 1. For example, according to
this definition, a plane is a scroll. Prove that if Z is a cone of degree d > 1, it is a scroll andG(1, Z)

is a curve of degree d contained in the plane of Σ1 corresponding to the star of lines containing the
vertex of Z . Moreover G(1, Z) is isomorphic to a plane section of Z with a plane not containing
the vertex of Z .

Prove that, conversely, if C is an irreducible curve in a plane of Σ1 corresponding to the star of
lines through the point P ∈ P

3, then there is a cone Z with vertex P such that C = G(1, Z).

Exercise 13.2.22 *Prove that any irreducible quadric Q in P3 is a scroll. If Q is a cone we have the
same situation as in Exercise 13.2.21, andG(1, Q) is a conic sitting the plane of Σ1 corresponding
to the star of lines containing the vertex of Q. Prove that if Q is not a cone, then G(1, Q) consists
of two irreducible, disjoint conics Γ1, Γ2. The lines corresponding to points in Γi are pairwise
skew, for i = 1, 2, whereas the lines corresponding to points of Γ1 intersect in one point each line
corresponding to a point of Γ2.

Exercise 13.2.23 *Continuing Exercise 13.2.22, prove that if we fix three distinct lines r1, r2, r3 of
Γ1, the plane in which Γ2 sits is the intersection of the three hyperplanes Hr1 , Hr2 , Hr3 introduced
in Exercise 13.2.13. The same if we exchange Γ1 withΓ2. Deduce from this the well known fact that
a quadric in P

3 which is not a cone is the locus of all lines which are coplanar with three pairwise
skew lines.

Exercise 13.2.24 *Suppose that the surface Z ⊂ P
3 is a scroll. Prove that Z is a plane if and only

if G(1, Z) has a component of dimension n ≥ 2.

Exercise 13.2.25 Let V ⊆ P
n be a variety of dimension m. Consider the set GV = {Π ∈ G(n −

m − 1, n) : Π ∩ V �= ∅}. Prove that GV is an irreducible closed subset of G(n − m − 1, n) of
codimension 1.

Exercise 13.2.26 Let V ⊆ P
n be a variety of degree d and dimension m. Prove that the two sets

UV = {Π ∈ G(n − m, n) : V ∩ Π consists of ddistinct points} and
U ′
V = {Π ∈ G(n − m, n) : V ∩ Πconsists of finitely many points}, are opendense subsets ofG(n −

m, n).
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13.3 Solutions of Some Exercises

13.2.6 Suppose that τ has matrix equation x′ = A · x, where A is a non-degenerate square matrix
of order n + 1. Take Π ∈ G(m, n). Choose m + 1 independent points Pi = [pi ], i = 0, . . . ,m of
Π . The Plücker coordinates of Π are given by the minors of maximal order of the matrix P in
(13.5). Then the Plücker coordinates of τ (Π) are given by the minors of maximal order of the
matrix A · Pt in (13.5). By expanding the minors of maximal order of A · Pt , we see that these are
linear combinations of the minors of maximal order of P with coefficients depending on the entries
of A. These linear combinations define a projective transformation ωτ of PM(m,n) enjoying the
required property. The projective transformation is a projectivity because it is bijective onG(m, n)

and G(m, n) is non-degenerate in P
M(m,n).

13.2.8 We may assume P = [1, 0, . . . , 0] and H with equation x0 = 0. Then given
Q = [0, x1, . . . , xn], the Plücker coordinates of P ∨ Q are all zero, except

p1i = xi , for i = 1, . . . , n.

This proves the assertion.
13.2.9 The proof is analogous to the one of Exercise 13.2.8 and can be left to the reader.

13.2.16 Take (Π0, Z0) ∈ I(m, n, d) and let us suppose that Π0 has Plücker coordinates [p0i0,...,im ].
We may assume, with no loss of generality, that p00,...,m �= 0. Then there is an open neigh-
borhood U of (Π0, Z0) in G(m, n) × Ln,d such that same happens for every (Π, Z) ∈ U . So
for every (Π, Z) ∈ U a set of m + 1 linearly independent points of Π is given by the points
Pj = [p0,..., j−1,i, j+1,...,m ]i=0,...,n , for j = 0, . . . ,m. The points of Π have homogeneous coordi-
nates [x0, . . . , xn] given by

xi =
m

∑

j=0

λ j p0,..., j−1,i, j+1,...,m , , for i = 0, . . . , n

with [λ0, . . . ,λm ] ∈ P
m . If Z has equation f (x0, . . . , xn) = 0 in P

n , then (Π, Z) is in I(m, n, d)

if and only if the polynomial

f (. . . ,
m

∑

j=0

λ j p0,..., j−1,i, j+1,...,m , . . . , )

in (λ0, . . . ,λm) is identically zero. The coefficients of this polynomial are of the form

φh(. . . a j0,..., jn . . . , . . . pi0,...,im . . .), for h = 0, . . . , N (m, d)

where a j0,..., jn are the coefficients of f and (pi0,...,im ) are the Plücker coordinates of Π . So U ∩
I(m, n, d) is defined by the equations φh = 0, and it is therefore a closed subset. This proves that
I(m, n, d) is closed, because the notion of being closed is local.

Consider the projection
p : I(m, n, d) → G(m, n)

to the first factor. To prove the rest of the assertion we apply Corollary 11.3.3 and prove that
for any Π ∈ G(m, n), p−1(V ) identifies with the set of all hypersurfaces in Ln,d containing Π ,
which is irreducible of codimension N (m, d) + 1 in Ln,d . Let in fact I(n, d,Π) be such a subset
of Ln,d , which is of course closed. It is clear that I(n, d,Π) is a subspace of Ln,d . In order to
determine the dimension ofI(n, d,Π)we can reduce ourselves to the case inwhichΠ has equations
xm+1 = . . . , xn = 0. In this case the hypersurface with equation f (x0, . . . , xn) = 0 contains Π if
and only if the polynomial f (x0, . . . , xm , 0, . . . , 0) in x0, . . . , xm is identically zero, i.e., if and
only if in f do not appear the N (m, d) + 1 monomials in x0, . . . , xm . This proves the assertion.
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13.2.17 Consider the projection
q : I(m, n, d) → Ln,d

to the second factor, and let R(m, n, d) be its image, which is a closed subset of Ln,d of dimen-
sion dim(R(m, n, d)) ≤ dim(I(m, n, d)) = (m + 1)(n − m) + N (n, d) − N (m, d) − 1. If (m +
1)(n − m) + N (n, d) − N (m, d) − 1 < dim
(Ln,d ) = N (n, d), i.e., if N (m, d) + 1 > (m + 1)(n − m), then dim(R(m, n, d)) < dim(Ln,d ),
hence R(m, n, d) is a proper closed subset of Ln,d . Then U = Ln,d \ R(m, n, d) is the required
open subset.
13.2.19 To prove the assertion it suffices to verify that there are surfaces Z ∈ L3,d such that q−1(Z)

is finite, i.e., such that Z contains a finite number of lines. Consider the irreducible surface of degree
d of A3 with equation xd−2

1 x2x3 = 1. This surface does not contain any affine line. Indeed, such a
line has parametric equations of the form

xi = ai + tbi , with i = 1, 2, 3 and t ∈ K

with (b1, b2, b3) �= 0. For this line to be contained in the surface, the polynomial

(a1 + tb1)
d−2(a2 + tb2)(a3 + tb3) − 1

in t should be identically zero, which is easily seen to be impossible. On the other hand the projective
closure of this surface has exactly three lines on the plane at infinity.
13.2.20 Same argument as in the solution of Exercise 13.2.19.
13.2.22 It is well known that all quadrics Q in P

3 which are not cones are projectively equivalent,
so we can argue on one specific of them, e.g., the quadric Q with equation x0x1 = x2x3. We know
(see Exercise 8.2.16) that Q has two families of lines L1 = {LP }P∈P1 , L2 = {MP }P∈P1 , with
P = [λ,μ] ∈ P

1, where LP has equations

λx0 = μx2, μx1 = λx3

and MP has equation
λx0 = μx3, μx1 = λx2.

The lines in Li are pairwise skew, for i = 1, 2, whereas the lines in L1 intersect in one point each
line in L2. One can see, with a direct computation, that the two maps

ω1 : P ∈ P
1 → LP ∈ L1 ⊂ G(1, Q), ω2 : P ∈ P

1 → MP ∈ L2 ⊂ G(1, Q),

are morphisms whose respective images Γ1 and Γ2 are two disjoint irreducible conics.

13.2.24 If Z is a plane, one has G(1, Z) ∼= P
2 so it has dimension 2. Suppose conversely that Z is

an irreducible surface that G(1, Z) has an irreducible component V of dimension n ≥ 2. Consider

the set Ṽ = {(P, r) ∈ Z × V : P ∈ r}, which is easily proved to be a closed subset of Z × V . The

projection to the second factorV is surjective and the fibres are lines, so Ṽ is irreducible of dimension

n + 1. Consider the projection to the first factor Z . This is also surjective, and therefore the fibre of

any point P ∈ Z has dimension n + 1 − 2 = n − 1 ≥ 1. This means that there are infinitely many

lines of V containing any point of Z . This implies that Z is a cone with vertex any point P ∈ Z . As

a consequence one has that given any two distinct points P, Q ∈ Z , the line P ∨ Q is contained in

Z , and this implies that Z is a plane.



Chapter 14
Smooth and Singular Points

14.1 Basic Definitions

Let V ⊆ A
n be an affine variety, with Ia(V ) = ( f1, . . . , fm) and let P = (p1, . . . ,

pn) be a point of V . Let r be a line passing through P , so that r has parametric
equations of the form

xi = pi + λi t, with t ∈ K for i = 1, . . . , n, and (λ1, . . . ,λn) �= 0.

The polynomial system in t

fi (t) := fi (p1 + λ1t, . . . , pn + λnt) = 0, i = 1, . . . ,m

has the solution t = 0. If the polynomials f1(t), . . . , fm(t) are all identically 0,
this means that r is contained in V . Otherwise, the greatest common divisor of the
polynomials f1(t), . . . , fm(t) is a non-zero polynomial of the form

f (t) = αt c
h∏

i=1

(t − αi )
ci (14.1)

whereα,α1, . . . ,αh ∈ K
∗ withα1, . . . ,αh all distinct, and c, c1, . . . , ch are positive

integers, with c � 1. The integer c is said to be the intersection multiplicity of r and
V at P , and it is denoted by i(P; r, V ). One sets i(P; r, V ) = ∞ if r ⊆ V . One says
that the line r touches V in P if i(P; r, V ) > 1, and in that case one says that r is
tangent to V at P . The definition of tangency of a line to the variety V is independent
on the basis f1, . . . , fm of Ia(V ) (see Exercise 14.1.6).

Lemma 14.1.1 The set of all lines tangent to V at P is an affine subspace TP(V )

of A
n.
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Proof We keep the notation introduced above. Let f (x1, . . . , xn) ∈ An be a polyno-
mial which vanishes at P . By expanding f in Taylor series with initial point P , we
have

f (x1, . . . , xn) =
n∑

i=1

∂ f

∂xi
(P)(xi − pi ) + o(2)

where o(2) ∈ m2
P , with mP = (x1 − p1, . . . , xn − pn) the maximal ideal corre-

sponding to P . We set

dP f (x1, . . . , xn) =
n∑

i=1

∂ f

∂xi
(P)(xi − pi )

hence dP f is a linear polynomial which vanishes at P , i.e., it belong tomP . We have

fi (t) = dP fi (λ1t, . . . ,λnt) + o(2) = tdP fi (λ1, . . . ,λn) + o(2), i = 1, . . . ,m,

where, in o(2), t appears at least with exponent 2. It is clear that r is tangent to V at
P if and only if dP fi (λ1, . . . ,λn) = 0 for i = 1, . . . ,m. Therefore the union of the
tangent lines to V at P is defined in A

n by the equations

dP fi = 0, i = 1, . . . ,m,

which are linear and therefore define an affine subspace of A
n . �

The affine subspace TP(V ), considered as a vector space with zero at P , is called
the (Zariski) tangent space of V at P . Looking at the proof of Lemma 14.1.1, we see
that

dim(TP(V )) = n − ρP ,

where

ρP = rank
( ∂ fi
∂x j

(P)
)

i=1,...,m; j=1,...,n
.

Let�P be the vector space of dimension n of all linear polynomials which vanish
at P . Consider the map

dP : f ∈ An → dP f ∈ �P

which is linear and verifies the Leibnitz rule

dP( f g) = dP f · g(P) + dPg · f (P).

Taking this into account, we see that dP induces a homomorphism

dP : f ∈ A(V ) → dP f ∈ TP(V )∨
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(where TP(V )∨ is the dual of TP(V )), which is clearly surjective. Since dP takes the
value 0 on the constants, the map

dp : mV,P → TP(V )∨

(wheremV,P is themaximal ideal of P in A(V )) is still surjective.Moreover, because
of the Leibnitz rule, m2

V,P is contained in the kernel of dP , so that we have the map

dP : mV,P/m2
V,P → TP(V )∨. (14.2)

Lemma 14.1.2 The map dP in (14.2) is an isomorphism.

Proof It suffices to prove that the map dP in (14.2) is injective. Let g ∈ mV,P be
such that dPg = 0. Suppose that g is induced by a polynomial G ∈ An . Then dPG
vanishes on TP(V ) and then we have a relation of the form

dPG = λ1dP f1 + · · · + λmdP fm with λ1 . . . ,λm ∈ K.

Set G ′ = G − λ1 f1 − · · · − λm fm . Then G ′ vanishes at P and it has no terms of
degree 1 in x1 − p1, . . . , xn − pn , hence G ′ ∈ (x1 − p1, . . . , xn − pn)2. Further-
more G ′

|V = G |V = g, hence g ∈ m2
V,P as wanted. �

In conclusion dP induces an identification

TP(V ) = (mV,P/m2
V,P)∨. (14.3)

This identity suggests that we can extend the notion of Zariski tangent space to any
quasi-projective variety. Indeed, if V is such a variety and P ∈ V is a point, we define
the Zariski tangent space TP(V ) to V at P as the vector space on K = OV,P/mP

given by (14.3).
In case V is projective, this vector space can be identified with an affine subspace

of the projective space in which V sits, and its projective closure TV,P is called the
(projective) tangent space to V at P .

Next we want to understand what is the dimension of the Zariski tangent space.
Consider again an affine variety V ⊆ A

n and consider in V × A
n the closed subset

T (V ) consisting of all pairs (P, Q) ∈ V ⊆ A
n , with Q = (x1, . . . , xn) such that

dP f1(x1, . . . , xn) = · · · = dP fm(x1, . . . , xn) = 0,

i.e., this is the set of all pairs (P, Q) ∈ V ⊆ A
n such that Q ∈ TP(V ). This closed

set is called the tangent fibration to V : the fibres of the projection of T (V ) to the
first factor V are just the Zariski tangent spaces to V at its points. Consider the rank
ρ of the matrix

J =
( ∂ fi
∂x j

)

i=1,...,m; j=1,...,m
.
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where its elements are considered modulo Ia(V ), i.e., as elements of A(V ). Let
F1(x1, . . . , xn), . . . , Fh(x1, . . . , xn) be its minors of order ρ, that are not identically
zero. Hence

Sing(V ) := ZV (F1, . . . , Fh) = V ∩ Za(F1, . . . , Fh)

is a proper closed subset of V . If P ∈ V \ Sing(V ), the rank of J , computed at P is
ρ, and therefore dim(TP(V )) = n − ρ. If P ∈ Sing(V ) the rank of J computed at P
is strictly smaller that ρ and therefore dim(TP(V )) > n − ρ. The points in Sing(V )

are called singular of multiple points for V , whereas the points in V \ Sing(V ) are
called smooth points or also simple points of V . Note that the smooth points of V
fill up a dense open subset of V , whereas the singular points fill up a proper closed
subset of V . A variety with no singular points is said to be smooth.

As for the determination of ρ, we have the following:

Theorem 14.1.3 In the above setting one has ρ = n − dim(V ), i.e., in any smooth
point P ∈ V one has dim(TP(V )) = dim(V ), whereas in a singular point
dim(TP(V )) > dim(V ).

Proof We start by remarking that the assertion holds for affine hypersurfaces (see
Exercise 14.1.8). The assertion follows from the fact that any variety is birational to
an affine hypersurface (see Theorem 7.2.3). �
Exercise 14.1.4 Prove that A

n and P
n are smooth.

Exercise 14.1.5 Prove that the blow-up of P
n along a subspace is smooth.

Exercise 14.1.6 Prove that the polynomial f (t) in (14.1.1) is the greatest common divisor of all
polynomials of the form

g(p1 + λ1t, . . . , pn + λnt)

with g ∈ Ia(V ).

Exercise 14.1.7 Prove that if� is an affine subspace ofA
n , then it coincides with its tangent space

at any of its points.

Exercise 14.1.8 LetV be an irreducible hypersurface ofAn with reduced equation f (x1, . . . , xn) =
0 and let P = (p1, . . . , pn) be a point of V . Prove that TP (V ) is:

(a) the whole space A
n if and only if ∂ f

∂xi
(P) = 0 for all i = 1, . . . , n;

(b) the hyperplane of A
n with equation

n∑

i=1

∂ f

∂xi
(P)(xi − pi ) = 0

if the gradient grad f (P) = (
∂ f
∂x1

(P), . . . ,
∂ f
∂xn

(P)) of f at P is non-zero.

Prove that there is a dense open subset of V such that case (b) occurs.

Exercise 14.1.9 *Let H be an irreducible hypersurface in P
n and let P be a point of H . Prove that

P is a smooth point for H if and only if there is some line passing through P having with H at P
intersection multiplicity 1. Prove that in this case the tangent hyperplane to H at P is the locus of
all lines passing through P having with H at P intersection multiplicity at least 2.
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Exercise 14.1.10 *Let H be an irreducible hypersurface in P
n and let P be a point of H . The

point P is said to have multiplicity m (or P is said to be a m-tuple point for H ), and one writes
m = mP (H), if every line passing through P has with H at P intersection multiplicity at least
m and there is some line through P having with H at P intersection multiplicity exactly m. In
particular a point P is smooth for H if and only if it has multiplicity 1. Prove that if P is a m-tuple
point for H , the union of lines having with H at P intersection multiplicity larger thanm is a divisor
of degree m, which is a cone with vertex P , called the tangent cone to H at P . It is denoted by
TCH,P .

Exercise 14.1.11 *Let H be a divisors in P
n with equation f (x0, . . . , xn) = 0. One can extend to

H the notions of simple and multiple point in an obvious way: P is said to have multiplicity m (or
P is said to be am-tuple point for H ), and one writesm = mP (H), if every line passing through P
has with H at P intersection multiplicity at least m and there is some line through P having with
H at P intersection multiplicity exactly m. A simple point is a point with multiplicity m = 1.

Prove that P is a point of multiplicity m for H if and only if all derivatives of f of order
i � m − 1 vanish at P whereas not all derivatives of order m of f vanish at P . Prove that if P is a
point of multiplicitym for H , then the union of all lines having with H at P intersectionmultiplicity
larger than m form a divisor (which is a cone with vertex P), with equation

∑

i1+...+in=m

∂m f

∂xi00 · · · ∂xinn
(P)xi00 · · · xinn = 0. (14.4)

This is called again the tangent cone to H at P and denoted by TCH,P . If m = 1 the tangent cone
is a hyperplane, called the tangent hyperplane and denoted by TH,P .

Exercise 14.1.12 *Let H be a divisor of degree d with equation f (x1, . . . , xn) = 0 in A
n and let

P = (p1, . . . , pn) be a point of H . Expand the polynomial f in Taylor series with initial point P .
Then we have

f = f1 + f2 + · · · + fd

where

fi =
∑

j1+···+ jn=i

∂i f

∂x j1
1 · · · ∂x jn

n

(P)(x1 − p1)
j1 · · · (xn − pn)

jn

is a homogeneous polynomial of degree i in x1 − p1, . . . .xn − pn , for i = 1, . . . , d. One defines P
to be a point of multiplicity m for H , and one writes m = mP (H), if and only if f1, . . . , fm−1 are
identically zero, whereas fm is not identically zero. Prove that P is a point of multiplicity m for H
if and only if all derivatives of f of order i � m − 1 vanish at P , whereas there is some derivative
of f of order m at P which is non-zero. Prove that P has multiplicity m for H if and only if every
line passing through P has with H at P intersection multiplicity at least m and there is some line
through P having with H at P intersection multiplicity exactly m. Prove that P is smooth for H if
and only if m = 1. Prove that P has multiplicity m for H if and only if it has multiplicity m for the
projective closure of H in P

n . Prove that if P is a point of multiplicity m for H then the projective
closure of the affine hypersurface with equation fm = 0 is the tangent cone to H at P . The affine
hypersurface with equation fm = 0 is also called the tangent cone to H at P . Prove that this is the
union of all lines having with H at P intersection multiplicity larger than m.

Exercise 14.1.13 *Let H ⊂ A
n be a divisor with equation f (x1, . . . , xn) = 0 and let P be any

point of H . For all i = 1, . . . , n consider the hypersurface Hi with equation ∂ f
∂xi

= 0. Prove that
mP (Hi ) � mP (H) − 1. Prove an analogous result for projective hypersurfaces.

Exercise 14.1.14 *Prove that an irreducible affine or projective curve has finitely many singular
points.
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Exercise 14.1.15 Prove that if the hypersurfaceH inP
n has components ofmultiplicitiesm1, . . . ,mh ,

then any point in the intersection of these components has multiplicity at leastm = m1 + · · · + mh
for H .

Exercise 14.1.16 Prove that the multiplicity of a point of a hypersurface of degree d cannot be
higher than d. Prove that a hypersurface H in P

n of degree d is a cone with vertex P if and only if
P is a point of multiplicity d for H . In that case H = TCH,P .

Exercise 14.1.17 *Prove that an affine or projective hypersurface V of degree d is a monoid of
vertex P (see Exercise 7.3.5) if and only if P has multiplicity d − 1 for V .

Exercise 14.1.18 Suppose that char(K) �= 2. Consider an irreducible quadric Q in P
n , having

equation ∑

0�i� j�n

ai j xi x j = 0,

with symmetric matrixA = (ai j )0�i� j�n . Prove that Q is smooth if and only if det(A) �= 0. More
generally, prove that Sing(Q) is the linear space with equations

n∑

j=0

ai j x j = 0, for i = 0, . . . , n.

Exercise 14.1.19 Prove that there is a non-empty open subset U of Ln,d such that for all H ∈ U ,
H is a smooth, irreducible hypersurface.

Exercise 14.1.20 Prove that Segre varieties are smooth.

Exercise 14.1.21 Prove that Grassmann varieties are smooth.

Exercise 14.1.22 *Let f : X → Y be a morphism of varieties, let P ∈ X and Q = f (P). Prove
that there is a natural linear map

d fP : TP (X) → TQ(Y )

induced by the map f ∗ : OY,Q → OX,P . The map d fP is called the differential of f at P .

Exercise 14.1.23 *Let X ⊆ P
r be a smooth projective variety of dimension n. Let Tan(X) be the

union of all projective tangent spaces to X at its points. Prove that Tan(X) is a variety of dimension
m � 2n. It is called the tangential variety of X .

14.2 Some Properties of Smooth Points

14.2.1 Regular Rings

Let V be a quasi-projective variety of dimension n and let P be a point of V . Recall
that dimK (OV,P) = n. Hence P is a smooth point if and only if

dim(mV,P/m2
V,P) = dimK (OV,P).
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This suggests to give the following algebraic definition. The local ring (A,m) is
said to be regular if and only if

dimA/m(m/m2) = dimK (A).

So P ∈ V is smooth if and only if (OV,P ,mV,P) is regular.

14.2.2 System of Parameters

Let V be a quasi-projective variety of dimension n and let P ∈ V be a smooth point.
Given u1, . . . , un ∈ mV,P , one says that u1, . . . , un is a system of parameters of V
at P , if the classes of u1, . . . , un generate mV,P/m2

V,P .
We need the following result of algebra:

Lemma 14.2.1 (Nakayama’s Lemma) Let (A,m) be a local domain and let M be
a finitely generated A-module. Let u1, . . . , um ∈ M. Then u1, . . . , um generate M if
and only if their classes generate M/mM.

Proof One implication is obvious. We prove only the other.
Let us start proving that if M = mM then M = 0. Indeed, if M is not zero, let

u1, . . . , un be a minimal set of generators of M . Then we have un = a1u1 + · · · +
anun , with a1, . . . , an ∈ m. Hence

(1 − an)un = a1u1 + · · · an−1un−1

and 1 − an /∈ m, so that it is invertible. Hence we have

un = b1u1 + · · · bn−1un−1

with bi = ai
1−an

, for i = 1, . . . , n − 1, a contradiction.
It follows that if N ⊆ M is a finitely generated submodule ofM , thenmM + N =

M implies that M = N . In fact it suffices to apply what we proved above to M/N
and remark that m(M/N ) = (mM + N )/N .

Finally, if N is the submodule generated by u1, . . . , un , one has that mM + N =
M , and we conclude by what we proved above. �

As an immediate consequence we have:

Theorem 14.2.2 Let V beaquasi-projective variety of dimensionn and let P ∈ V be
a smooth point. Given u1, . . . , un ∈ mV,P , then u1, . . . , un is a system of parameters
of V in P if and only if they generate mV,P .
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14.2.3 Auslander–Buchsbaum Theorem

We state the following famous result:

Theorem 14.2.3 (Theorem of Auslander–Buchsbaum) Any regular local ring is
UFD.

As an immediate consequence we have:

Corollary 14.2.4 Let V be a quasi-projective variety and P ∈ V a smooth point.
Then OV,P is a UFD. Hence V is also normal.

Proof Immediate consequence of Theorem 14.2.3, and the fact that any UFD is
integrally closed (see Exercise 5.4.3). �

For the proof of Theorem 14.2.3, we defer the reader to [5, Chapt. 7], or to [7, p.
101 and foll.]. Here we will content ourselves to prove Theorem 14.2.3 in the case
the ring has Krull dimension 1, hence Corollary 14.2.4 in the case of curves.

We start with the following:

Theorem 14.2.5 (Krull’s Theorem) If A is a noetherian domain and I is a proper
ideal of A, then

⋂
n∈N In = (0).

Proof We argue by contradiction and assume we have a ∈ ⋂
n∈N In non-zero.

Let a1, . . . , ar be a set of generators of I. For every n ∈ N there is a homo-
geneous polynomial Fn ∈ A[x1, . . . , xr ], such that a = Fn(a1, . . . , ar ). The ideal
generated by {Fn}n∈N is finitely generated, hence there is an m ∈ N such that
(Fn)n∈N = (F1, . . . , Fm). Thus we have

Fm+1 = G1F1 + · · · + GmFm

with G1, . . . ,Gm ∈ A[x1, . . . , xr ] homogeneous of the appropriate degrees. Then

a = G1(a1, . . . , ar )a + · · · + Gm(a1, . . . , ar )a

hence
1 = G1(a1, . . . , ar ) + · · · + Gm(a1, . . . , ar )

therefore 1 ∈ I, a contradiction. �

Now we have the following result which proves Theorem 14.2.3 in the 1-
dimensional case:

Theorem 14.2.6 Let (A,m) be a local noetherian, regular domain of dimension 1.
Then A has principal ideals, hence it is a UFD. More precisely one has m = (u)

with the class of u a generator of m/m2, and all non-zero proper ideals of A are of
the form mn = (un), with n ∈ N.
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Proof ByNakayama’s Lemma (see also Theorem 14.2.2) we have thatm = (u)with
the class of u a generator ofm/m2. Let I be a non-zero proper ideal of A. Then there
is a positive integer n such that I ⊆ mn = (un) and I � mn+1. Then u−nI is an ideal
which is not contained in m, hence u−nI = A, thus I = (un) = mn . �

It is useful to go deeper into the study of local noetherian, regular domains of
dimension 1. Let us first make a definition. Let k be a field. A discrete valuation on
k is a surjective map

v : k∗ = k \ {0} → Z

such that:

(a) for all x, y ∈ k∗ one has v(xy) = v(x) + v(y), namely v : k∗(·) → Z(+) is a
homomorphism;

(b) v(x + y) � min{v(x), v(y)}.

Sometimes one sets v(0) = ∞.
If v is a discrete valuation on k, then A = {0} ∪ {x ∈ k∗ : v(x) � 0} is a ring,

which is called the ring of the valuation v. A domain A is called a discrete valuation
ring (briefly DVR) if there is a discrete valuation v on k = Q(A) such that A is the
ring of the valuation v.

Lemma 14.2.7 If A is a DVR with respect to the valuation v on Q(A), then A is a
local ring with maximal ideal m = {x ∈ A : v(x) > 0}.
Proof It is clear that m is an ideal. It is immediate that v(1) = 0 so that 1 /∈ m,
so m is a proper ideal. Moreover it is also obvious that for all x ∈ Q(A)∗ one has
v(x) = −v(x−1), hence if x ∈ A \ m, one has v(x) = 0, then also v(x−1) = 0,which
implies that x−1 ∈ A, so x is invertible. This proves the assertion (see Proposition
5.3.1). �

Lemma 14.2.8 If A is a DVR with respect to the valuation v on Q(A), then given
x, y ∈ A such that v(x) = v(y), one has (x) = (y).

Proof If v(x) = v(y), then v(xy−1) = 0, so that a = xy−1 ∈ A is invertible (by
Lemma 14.2.7), hence x = ay and therefore (x) = (y). �

Lemma 14.2.9 If A is a DVR with respect to the valuation v on Q(A), there is an
element u ∈ m such that v(u) = 1 and any such element is such that (u) = m.

Proof Since the valuation map is surjective, it is clear that there is some u ∈ A such
that v(u) = 1 and then u ∈ m. Let x ∈ m. Then v(x) = n > 0. We have v(un) = n,
so v(un) = v(x) and therefore (un) = (x). This implies that (u) = m. �

Lemma 14.2.10 If A is a DVR with respect to the valuation v on Q(A), then the
only non-trivial ideals of A are powers of m. As consequences, A is noetherian with
dimK (A) = 1 and moreover A has principal ideals, hence it is a UFD.
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Proof Given a non-trivial ideal I, there is a minimal positive integer n such that
v(x) = n for x ∈ I. Let u be such that v(u) = 1. Then with the same argument
as in the proof of Lemma 14.2.9, we have (x) = (un). Moreover, if y is such that
v(y) = m � n, then the usual argument implies that (y) = (xum−n). This yields that

I = {y ∈ A : v(y) � n} = mn

as wanted. �

Next we prove the following basic:

Theorem 14.2.11 Let (A,m) be a local noetherian domain of Krull dimension 1,
with k = A/m. The following propositions are equivalent:

(a) A is a DVR;
(b) A is integrally closed;
(c) m is principal;
(d) (A,m) is regular, i.e., dimk(m/m2) = 1;
(e) every non-trivial ideal of A is a power of m;
(f) there is u ∈ A such that every non-zero ideal of A is of the form (un), with n ∈ N.

Proof (a) implies (b) because if A is a DVR, then it is UFD and this implies that it
is integrally closed (see Exercise 5.4.3).
(b) implies (c). First we need a couple of preliminaries.

Claim A: Let I be an ideal of A. Then rad(I) = m.

In fact, since dimK (A) = 1, then m is the only non-zero prime ideal of A. Since
rad(I) is the intersection of all prime ideals containing I (see Exercise 2.5.6), the
Claim follows.
Claim B: If A is a noetherian ring, then any ideal I of A contains a power of its
radical.

Let x1, . . . , xh be a set of generators of rad(I), so that we have relations of the sort
xnii ∈ I, with ni suitable positive integers, for i = 1, . . . , h. Setm = ∑h

i=i (ni − 1) +
1. Then rad(I)m is generated by products of the form xr11 · · · xrhh , with

∑h
i=1 ri = m.

From the definition of m, we have that there is at least an index i = 1, . . . , h such
that ri � ni , so that each of the above products belongs to I, hence rad(I)m ⊆ I.

To prove the implication, take u ∈ m with u �= 0. By Claims A and B there is a
positive integer n such that mn ⊆ (u) but mn−1

� (u). Take v ∈ mn−1 with v /∈ (u),
in particular v �= 0. Set x = u

v
∈ Q(A). One has x−1 /∈ A, because v /∈ (u). Hence

x−1 is not integral on A. Then we claim that x−1m � m. Indeed, if x−1m ⊆ m,
then m would be an A[x−1]-module which is finitely generated as an A-module. If
x1, . . . , xh is a system of generators of x−1m, we would have relations of the sort

xi x
−1 = ai1x1 + · · · + aihxh, for i = 1, . . . , h,
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with ai j ∈ A, for i, j = 1, . . . , h. With an argument we already made in the proof of
Lemma 5.4.1, this would imply that x−1 is integral over A, a contradiction. On the
other hand x−1m = v

um ⊆ A, because v ∈ mn−1, hence vm ⊆ mn andmn ⊆ (u). So
in conclusion x−1m = A, hence m = x A = (x), as wanted.
(c) implies (d): suppose thatm = (u), then u generatesm/m2 andm/m2 is non-zero
because of Krull’s Theorem 14.2.5. Thus dimk(m/m2) = 1.
(d) implies (e): Let I �= (0) be a proper ideal of A. By Krull’s Theorem, there is
a positive integer n such that I ⊆ mn but I � mn+1. By Nakayama’s Lemma m is
principal, i.e., m = (u) for a suitable u. So there a y ∈ I such that y = aun , with
a /∈ (u) = m, hence a is invertible. So un ∈ I. Then mn = (un) ⊆ I ⊆ mn , hence
I = mn , as wanted.
(e) implies (f): by Krull’s Theorem there is u ∈ m such u /∈ m2. By the hypothesis
(e), one has (u) = mr , for some r � 1 and therefore r = 1. Thenm = (u) and every
non-zero ideal is of the form mn = (un), with n ∈ N.
(f) implies (a): By Krull’s Theorem we have (un) �= (un+1) for all non-negative
integers n. So if a ∈ A \ {0}, there is a unique non-negative integer n such that
(a) = (un). We set v(a) = n. Then we extend the definition of v to Q(A) by set-
ting v( ab ) = v(a) − v(b), with b �= 0. This defines a discrete valuation and A is a
DVR. �

As a consequence we have:

Corollary 14.2.12 A curve C is smooth if and only if it is normal.

Remark 14.2.13 Theorem 14.2.11 and its proof have an important consequence
concerning the local behaviour of rational maps on smooth curves. Let V be a curve
and P ∈ V a smooth point. Since the question we want to treat is local, we may
assume that V is affine. Consider a non-zero rational function f on V . Theorem
14.2.11 tells us that there is a discrete valuation vP defined on K (V ), such that
(OV,P ,mP) is the DVR of vP . Then f is defined at P if and only if vP( f ) � 0,
and f (P) = 0 if and only if vP( f ) > 0. In this case we will say that P is a zero
of f and vP( f ) will be called the order of zero of f at P . If vP( f ) = 0, then f is
defined at P , it is not zero at P , and it is invertible at P . Finally, suppose that f is
not defined at P , hence vP( f ) < 0. We will then say that f has a pole at P . In this
case vP( f −1) = −vP( f ) > 0 and f −1 is defined at P and it has order of zero equal
to −vP( f ) at P . This will be called the order of pole of f at P .

If f has a zero of order m at P , then f −1 has a pole of order m at P . If f has
a pole of order m at P , and g is a non-zero rational function with a zero at P , then
vP( f gm) = vP( f ) + mvP(g) � 0, so that f g is defined at P .

14.2.4 Local Equations of a Subvariety

Let V be a quasi-projective variety, let P be a point of V and letW be a closed subset
of V containing P . Take f1, . . . , fm ∈ OV,P . We say that f1 = · · · = fm = 0 is a
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system of equations forW in P , if there is an affine open neighborhoodU of P in V
in which f1, . . . , fm are all defined, and such that f1, . . . , fm generate in O(U ) the
ideal of W ′ = W ∩U . It is also well defined the ideal IV,W,P of OV,P consisting of
all functions f ∈ OV,P which are zero on W in a neighborhood of P . Note that if V
is an affine variety, then

IV,W,P = {u
v

: u, v ∈ A(V ), u ∈ Ia(W )/Ia(V ), v(P) �= 0}.

Lemma 14.2.14 In the above setting, given f1, . . . , fm ∈ OV,P , f1 = · · · = fm = 0
is a system of equations of W in P if and only if IV,W,P = ( f1, . . . , fm).

Proof Since the question is local, we may and will assume that V is affine.
Suppose f1 = · · · = fm = 0 is a system of equations of W in P . Up to shrinking

V , we may assume that f1, . . . , fm are all defined in V , and they generate the ideal
of W in A(V ). Then it is clear that IV,W,P = ( f1, . . . , fm).

Suppose conversely that IV,W,P = ( f1, . . . , fm), with f1, . . . , fm ∈ OV,P , and let
Ia(W )/Ia(V ) = (g1, . . . , gh), with g1, . . . , gh the classes of elementsG1, . . . ,Gh ∈
A(V ). Since gi ∈ IV,W,P for i = 1, . . . , h, we have relations of the sort

gi =
m∑

j=1

ai j f j , for i = 1, . . . , h. (14.5)

The functions f j , ai j are all regular in some principal open neighborhood U of P in
V , for i = 1, . . . , h, j = 1, . . . ,m. Then (14.5) implies that

(g1, . . . , gh) = (Ia(W )/Ia(V ))A(U ) ⊆ ( f1, . . . , fm).

Next we will prove that (Ia(W )/Ia(V ))A(U ) coincides with the ideal I of W ′ =
W ∩U in A(U ). Whence it follows that I ⊆ ( f1, . . . , fm), but we may assume that
fi ∈ I, for i = 1, . . . ,m, and this implies the assertion of the lemma.
We are left to prove that

I = (Ia(W )/Ia(V ))A(U ).

The inclusion
(Ia(W )/Ia(V ))A(U ) ⊆ I

is clear. Let us prove the opposite inclusion. Suppose U = UV (v) for some v ∈
A(V ) \ {0}. Then A(U ) = A(V )v (see Exercise 6.3.6) consists of elements of the
form u

vl
, with u ∈ A(V ) and l ∈ N. Take x ∈ I. Then x = u

vl
, with u ∈ A(V ), hence

u = xvl andu∈Ia(W )/Ia(V ). Since 1
vl

∈A(U ), then x = u
vl

∈ (Ia(W )/Ia(V ))A(U )

as wanted. �
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We can now prove the:

Theorem 14.2.15 If V is a quasi-projective variety, P ∈ V is a simple point for V
and W is a subvariety of codimension 1 of V containing P, then W has a unique
local equation at P, i.e., IV,W,P is principal.

Proof The proof is quite similar to the one of Theorem 11.1.2.
Since the question is local, we may assume that V is affine. Let f ∈ OV,P that

vanishes on W in a neighborhood of P . SinceOV,P is UFD by Corollary 14.2.4, we
can factor f into prime factors. Since W is irreducible, one prime factor g of f has
to vanish on W . Let us prove that g = 0 is a local equation of W . Replacing V with
a smaller open affine neighborhood of P we may assume that g is regular on V .

Since W ⊆ ZV (g), and since both W and ZV (g) have codimension 1 in V , we
may write ZV (g) = W ∪ W ′, where eitherW ′ is empty or it is different fromW and
also of codimension 1. Let us assume the latter thing happens. If P ∈ W ′, then we
can find functions h, h′, with h vanishing on W and not on W ′, h′ vanishing on W ′
and not on W , both vanishing at P , such that hh′ vanishes on ZV (g) but neither one
of h and h′ vanishes on ZV (g). Therefore g divides (hh′)l in A(V ) for some positive
integer l, hence g divides (hh′)l also in OV,P . Since OV,P is UFD, then either g
divides h or it divides h′. Thus either h or h′ vanishes on ZV (g) in a neighborhood
of P and, by passing to a smaller neighborhood of P we may assume it vanishes on
the whole of ZV (g). This is a contradiction. So we conclude that either W ′ is empty
or P /∈ W ′. In this latter case, by further reducing the neighborhood of P we may
assume thatW ′ = ∅, so ZV (g) = W . If now h is a function vanishing onW , we have
that g divides hl in A(V ) for some positive integer l, and then g divides hl in OV,P .
It follows that g divides h in OV,P . This implies that IV,W,P = (g), as wanted. �

As a consequence of Theorem 14.2.11 we have the next basic:

Theorem 14.2.16 Let V be a smooth quasi-projective variety and let φ : V ��� P
n

be a rational map. Then the closed set of points of V where φ is not defined has
codimension at least 2.

In particular, if V is a smooth curve, then φ is a morphism.

Proof Recall that the set of points Z where φ is not defined is a closed subset of
V . If Z is empty, there is nothing to prove. Otherwise, fix a point P ∈ Z . Since
the question is local, we may assume that V is affine. By applying Proposition
6.2.5, we know that there are rational functions f0, . . . , fn on V such that φ(Q) =
[ f0(Q), . . . , fn(Q)] and f0, . . . , fn are all defined and not all zero in all points
Q ∈ V \ Z . Now f0, . . . , fn ∈ Q(OV,P) and, without changing φ, we can multiply
f0, . . . , fn by a common factor so that f0, . . . , fn ∈ OV,P . Moreover, again without
changing φ we may assume that f0, . . . , fn are coprime in OV,P (remember that
OV,P is UFD since V is smooth). Since P ∈ Z , then f0, . . . , fn all vanish at P . So
the local equations of Z in a neighborhood of P are f0 = . . . = fn = 0. Now we
claim that no subvarietyW of V of codimension 1 can be contained in the locuswhere
f0 = . . . = fn = 0. Indeed, if W has codimension 1, then by Theorem 14.2.11 we
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have that W is defined by an equation g = 0 in a neighborhood of P , and therefore
f0, . . . , fn would all be divisible by g, a contradiction. �

Corollary 14.2.17 If two smooth projective curves are birationally equivalent they
are isomorphic.

Proof LetC,C ′ be two smooth projective curves and letφ : C ��� C ′ be a birational
map. By Theorem 14.2.15, both φ and φ−1 are morphisms, and clearly one is inverse
of the other, so they are isomorphisms. �

14.3 Smooth Curves and Finite Maps

In this section we prove an important result which relates smoothness and finiteness
of maps in the case of curves. We start with the following:

Theorem 14.3.1 Let V,W be varieties and f : V → W a birational morphism.
Given a point P ∈ V assume that Q = f (P) is smooth for W and that the inverse
map g = f −1 is not defined at Q. Then there is a subvariety Z ⊂ V of codimension
1 in V , containing P, such that f (Z) has codimension at least 2 at Q on W.

Proof We may replace V with an affine neighborhood of P , so we may suppose
that V is affine. So assume that V ⊆ A

n , with coordinates (x1, . . . , xn). There are
rational functions g1, . . . , gn ∈ K (W ), such that g = f −1 is given by the equations
xi = gi , for i = 1, . . . , n. Since g is not defined at Q, at least one of the functions
g1, . . . , gn is not defined at Q. We may suppose that g1 is not defined at Q. So we
may write g1 = u

v
with u, v ∈ OW,Q and v(Q) = 0. Since W is smooth at Q, the

ring OW,Q is a UFD, so we may assume that u, v have no common factor.
The map f induces an isomorphism f ∗ : K (W ) → K (V ), and we have

x1 = f ∗(g1) = f ∗
(u

v

)
= f ∗(u)

f ∗(v)

therefore we have
f ∗(v)x1 = f ∗(u). (14.6)

Moreover f ∗(v)(P) = v(Q) = 0. Set Z = ZV ( f ∗(v)). Then P ∈ Z , so Z is non-
empty. By Exercise 11.2.24, Z has codimension 1 in V . From (14.6) we see that
f ∗(u) is zero on Z . So we have that u, v are both zero on f (Z).
We are left to prove that f (Z) has codimension at least 2 at Q. Suppose by

contradiction this is not the case. Then f (Z) has a component Z ′ of codimension 1
at Q. Then by Theorem 14.2.16, Z ′ has a local equation h = 0 at Q. But then, since
u and v vanish on Z ′, then h divides both u and v, contrary to the assumption that u
and v have no common factor. �
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Corollary 14.3.2 Let V,W be two curves with W smooth and let f : V → W be a
birational morphism. Then f (V ) is open in W and f induces an isomorphism from
V to f (V ).

Proof Since f : V → W is a birational morphism, there are two non-empty open
subsets U ⊆ V , U ′ ⊆ W , such that f induces an isomorphism between U and U ′
(see Corollary 7.1.3). Since U ′ = f (U ) is obtained by subtracting finitely many
points from W , the same is true for f (V ) hence f (V ) is open in W . Now look
at the morphism f : V → f (V ). If this were not an isomorphism, we would get a
contradiction by Theorem 14.3.1, since there would be some point in V mapped by
f to the empty set. �

Theorem 14.3.3 Let V be a smooth, irreducible, projective curve and let f : V →
W be a surjective morphism with W a curve. Then f is finite.

Proof Take any non-empty affine subset U in W . Set B = A(U ) and note that
Q(B) = K (W ). The morphism f induces an inclusion f ∗ : K (W ) → K (V ). So we
may view B as a subring of K (V ). Let A be the integral closure of B in K (V ). We
claim that Q(A) = K (V ). The inclusion Q(A) ⊆ K (V ) is obvious. Let us prove the
opposite inclusion. Take f ∈ K (V ). Since the field extension f ∗ : K (W ) → K (V )

is algebraic, we have a relation of the form

f n + g1 f
n−1 + · · · + gn = 0, with g1, . . . , gn ∈ K (W ) = Q(B). (14.7)

We can write gi = bi
ai
, with ai , bi ∈ B, and ai �= 0, for i = 1, . . . , n. Set a =

a1 · · · an �= 0. If we multiply both sides of (14.7) by an , we have a relation of the
sort

(a f )n + c1(a f )
n−1 + · · · + cn = 0, with c1, . . . , cn ∈ B,

hence a f ∈ A, and therefore f ∈ Q(A), as wanted.
By Theorem 10.3.4, A is a finitely generated B-module. So we may set A =

A(Z), with Z a suitable affine normal (hence smooth) curve. Since K (Z) = Q(A) =
K (V ), then Z is birational to V , we have a birational map g : Z ��� V , which is a
morphism because Z is smooth. Then by Corollary 14.3.2, we may assume that g is
an isomorphism of Z onto g(Z)which is an open subset of V .Wewill identify Z with
g(Z) via g. The inclusion B ⊆ A tells us that f induces a morphism f|V : Z → U ,
which is finite. We claim that Z = f −1(U ). This will prove the finiteness assertion.

To prove this last claim, we argue by contradiction and assume there is a point
P ∈ U forwhich there is a point Q /∈ Z such that f (Q) = P . Take a rational function
g /∈ OV,Q , but g is regular and vanishes at all (finitely many) points Q′ ∈ Z such
that g(Q′) = P (the existence of this function is easily proved and we leave it as
an exercise for the reader). Suppose g has poles at Q1, . . . Qm ∈ Z . Then, by the
above assumptions on g, f (Qi ) := Pi �= P , for i = 1, . . . ,m.We can find a function
h ∈ B = A(U ) such that h(P) �= 0 and gh ∈ OZ ,Qi , for i = 1, . . . ,m. For this, it
suffices to take a sufficiently high power of a function in B that does not vanish at P



200 14 Smooth and Singular Points

but vanishes at P1, . . . , Pm (see Remark 14.2.13). Then 0 �= y := gh ∈ A = A(Z),
so it is integral over B, namely we have a relation of the sort

yn + b1y
n−1 + · · · + bn = 0, with b1, . . . , bn ∈ B

whence

y = −b1 − b2
y

− · · · − bn
yn−1

. (14.8)

Remember that y /∈ OV,Q and therefore y−1 ∈ mV,Q . But then from (14.8) we get
a contradiction, because the right hand side member belongs to OV,Q , but the left
hand side does not. �

14.4 A Criterion for a Map to Be an Isomorphism

In this section we will prove a useful criterion for a finite morphism to be an isomor-
phism.

Theorem 14.4.1 Let f : V → W be a finite morphism between two varieties. Then
f is an isomorphism if an only if f is bijective between V and W and the differential
of f (see Exercise 14.1.22) is injective at each point of V .

Proof Set g = f −1. The assertion will be proved if we prove that g is a morphism.
The problem is local in the following sense. Fix a point Q ∈ W and take the unique
point P ∈ V such that f (P) = Q. Choose affine neighborhoods U of P and U ′ of
Q such that f (U ) = U ′ and A(U ) is integral over A(U ′). It suffices to prove that,
for suitable choices of U and U ′, f : U → U ′ is an isomorphism, because g is then
a morphism at Q.

We have the injectivemap f ∗ : OW,Q → OV,P . The hypothesis on the differential
of f is equivalent to say that the induced map

f ∗ : mQ/m2
Q → mP/m2

P

is surjective. SupposemQ = (u1, . . . , uk). Then f ∗(ui ) + m2
P , for i = 1, . . . , k, gen-

erate mP/m2
P . By applying Nakayama’s Lemma 14.2.1 to mP as an OV,P -module,

we have that mP = ( f ∗(u1), . . . , f ∗(uk)), namely

mP = f ∗(mQ)OV,P . (14.9)

Next we claim that OV,P is a finite module over OW,Q . Since A(U ) is a finite
module over A(U ′), and since every element of OV,P is of the form u

v
with u, v ∈

A(U ) and v /∈ mP , to prove the claim it suffices to show that every element ofOV,P

is of the form h
f ∗(z) , with h ∈ A(U ) and z ∈ A(U ′), with z /∈ mQ . To prove this it

suffices to prove the following other claim: for every v ∈ A(U ), with v /∈ mP , there
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is a z ∈ A(U ′), with z /∈ mQ and a w ∈ A(U ), such that f ∗(z) = vw. In fact, if this
is the case, then

u

v
= uw

f ∗(z)
= h

f ∗(z)
, with h = uw.

To prove this final claim, note that, since f is finite, hence closed by Theorem 10.1.3,
we have that Z = f (ZU (v)) is closed inU ′ and since f is bijective, then Q /∈ Z . So
there is t ∈ A(U ′), such that t = 0 on Z and t (Q) �= 0. Then f ∗(t) = 0 on ZU (v)

and f ∗(t)(P) �= 0. By the Nullstellensatz, there is a positive integer n such that
f ∗(t)n = vw for some w ∈ A(U ). We can set z = tn and we are done with the
claim.

Now we can apply Nakayama’s Lemma toOV,P as anOW,Q-module. The (14.9)
shows that

OV,P/ f ∗(mQ)OV,P
∼= OV,P/mP = K

so it is generated by 1. Then Nakayama’s Lemma implies that OV,P = f ∗(OW,Q).
Finally, let a1, . . . , al be a basis of A(U ) as a A(U ′)-module. We have ai ∈

OV,P = f ∗(OW,Q), for i = 1, . . . , l. Thenwecanfind a functionb ∈ A(U ′) such that
U ′′ = U ′ \ ZV (b) is an open affine neighborhood of Q, a1, . . . , al are in f ∗(A(U ′′))
and ( f ∗)−1(ai ) are regular inU ∗ = U \ ZU ( f ∗(b)), for i = 1, . . . , l. Then it is clear
that A(U ∗) is generated by a1, . . . , al over f ∗(A(U ′′)). On the other hand, a1, . . . , al
are in f ∗(A(U ′′)), so A(U ∗) ∼= A(U ′′), so f : U ∗ → U ′′ is an isomorphism, as
wanted. �
Exercise 14.4.2 *Let V ⊆ P

r be a projective variety and let P be a point of P
r such that any line

through P intersects V in at most one point and that P does not sit on any (projective) tangent space
to V . Prove that the projection of V from P to P

r−1 is an isomorphism of V onto its image.

Exercise 14.4.3 *Let V be a smooth projective variety of dimension n. Prove that there is a
morphism f : V → P

2n+1 which is an isomorphism of V onto its image.

Exercise 14.4.4 Find zero and poles, with their orders, of the rational functions

x2 − 2x + 1

x − 3
, x3 − x

on P
1 on the field of complex numbers.

14.5 Solutions of Some Exercises

14.1.5 We prove the assertion for the blow-up of P
2 at P = [1, 0, 0], the proof in general being

similar. Fix coordinates [x0, x1, x2] in P
2 and [y1, y2] in P

1, and recall that the blow-up P̃
2 of P

2

at P = [1, 0, 0] sits in P
2 × P

1 and it is defined there by the equation

x1y2 = x2y1.

The projection to the first factor σ : P̃
2 → P

2 is an isomorphism between P̃
2 \ E and P

2 \ {P},
where E = σ−1(P) ∼= P

1 is the exceptional locus of the blow-up. By the smoothness of P
2, we
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have that P̃2 is smooth at all points not on E . It remains to prove that the points of E are also smooth
for P̃

2. Let us consider the affine open subsetU1 ∼= A
1 of P

1 where y1 �= 0. So we may assume that
y1 = 1. Since we are on E = σ−1(P) we may also work in the open subset U ∼= A

2 of P
2 where

x0 = 1. So in the open subset U ×U1 ∼= A
3 the blow-up has equation

f (x1, x2, y2) = x2 − x1y2 = 0.

Then we have to compute the rank of the matrix

( ∂ f

∂x1
,

∂ f

∂x2
,

∂ f

∂y2

)
= (−y2, 1,−x1)

which is always 1. This implies that all points of E in this open set are smooth for P̃
2. A similar

computation works in the open subset U2 ∼= A
1 of P

1 where y2 �= 0.

14.1.10 Suppose that H has degree d and equation f (x0, . . . , xn) = 0 (with f irreducible) and P =
[p0, . . . , pn]. Take a point Q = [q0, . . . , qn] different from P and consider the line r = 〈P, Q〉,
which has parametric equations

xi = λpi + μqi , i = 0, . . . , n,

with [λ,μ] ∈ P
1. The the intersection of r with H is governed by the equation

f (λp0 + μq0, . . . ,λpn + μqn) = 0 (14.10)

in λ,μ. We can expand the polynomial in (14.10) in Taylor series with initial point (λp0, . . . ,λpn)
and increments (μq0, . . . ,μqn). One gets

f (λp0 + μq0, . . . , λpn + μqn) = λd f (P) + · · · + λd−iμi

i ! �i
Q f (P) + · · · + μd f (Q)

where

�i
Q f (P) :=

(
q0

∂

∂x0
+ · · · + qn

∂

∂xn

)(i)
f (p0, . . . , pn)

where (i) stays, as usual, for the symbolic power.
The intersection multiplicity of r with H at P is at least k if and only if

f (P) = �1
Q f (P) = . . . = �k−1

Q f (P) = 0.

So P has multiplicity m if and only if �1
Q f (P) = . . . = �m−1

Q f (P) = 0 for all Q, whereas there
is some point Q such that �m

Q f (P) �= 0, and the union of the lines having intersection multiplicity
larger than m with H at P is the set of all points Q such that �m

Q f (P) = 0, and this is an equation
in the variables q0, . . . , qn . Note that �m

Q f (P) has degree m in q0, . . . , qn . Moreover the divisor
with equation �m

Q f (P) = 0 is a cone with vertex P because it is union of lines passing through P .

14.1.11 With the same notation as in the solution of Exercise 14.1.10, note that P is a point of
multiplicitym for H if and only if�1

Q f (P) = . . . = �m−1
Q f (P) = 0 identically in Q and�m

Q f (P)

is not identically zero in Q. The assertion immediately follows, by taking in account that (14.4) is
the same as �m

Q f (P) = 0, by setting qi = xi , for i = 0, . . . , n.

14.1.12 This is proved by passing to affine coordinates in the Exercises 14.1.10 and 14.1.11. The
details may be left to the reader.

14.1.15 Suppose that the components of H of multiplicities m1, . . . ,mh have reduced equations
f1, . . . , fh , and P verifies f1(P) = . . . = fh(P) = 0. The equation of H is then of the form f =
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f m1
1 · · · f mh

h g, with g not divisible by f1, . . . , fh . If we compute the derivatives of order i of f at
P , we see that they vanish if i � m − 1, which proves the assertion.

14.1.16 The first assertion is trivial. As for the second assertion, if H is a cone of degree d with
vertex P , then it is clear that any line through P either belongs to H or it intersects H only at P , so
it has intersection multiplicity d with H at P , so that P has multiplicity d for H and H = TCH,P .

Conversely, if H has degree d and it has a point P of multiplicity d, then any line containing P
and a point Q ∈ H \ {P} is contained in H , so H is a cone with vertex in P . It is then clear that
H = TCH,P .

14.1.19 The open U in question is the complement of the discriminant D(n, d), see Exercises
11.4.12 and 11.4.13.

14.1.20 Consider a Segre variety Segn,m (the argument is similar for the Segre varieties with more
indices). By Exercise 8.1.6, there is a group of projectivities of P

nm+n+m which acts transitively on
Segn,m . This proves that all points of Segn,m have isomorphic local ring. This proves the assertion.

14.1.21 The proof is similar to the one of Exercise 14.1.20, by taking into account Exercise 13.2.6.

14.1.23 Use a strategy analogous to the one in the solution of Exercise 11.3.8.

14.4.2 Apply Theorem 14.4.1.

14.4.3 We may suppose that X ⊆ P
r . If r � 2n + 1 the assertion is trivially true. Assume r >

2n + 1. Since Sec(X) has dimension at most 2n + 1 and Tan(X) has dimension al most 2n, we can

find a point P ∈ P
r off Sec(X) and Tan(X). Then any line through P intersects X in at most one

point and P does not sit on any tangent space to X . So by Exercise 14.4.2 we may project X to

P
r−1 and the projection is an isomorphism of X onto its image. Then repeat this argument till we

prove the assertion.



Chapter 15
Power Series

In this chapter we introduce some algebraic tools which will be essential in what
follows for the local study of curves.

15.1 Formal Power Series

A formal power series on the field k in the indeterminate x is an expression of the
form

∑∞
i=0 anx

n with an ∈ k, for any n ∈ N. The elements an ∈ k, for n ∈ N, are
called the coefficients of the series

∑∞
i=0 anx

n . The set of all power series on k is
denoted by k[[x]]. Of course k[x] ⊂ k[[x]]. Addition and multiplication of power
series can be defined so that k[[x]] is a domain. To be precise, one sets

∞∑

i=0

anx
n +

∞∑

i=0

bnx
n =

∞∑

i=0

(an + bn)x
n

and ∞∑

i=0

anx
n ·

∞∑

i=0

bnx
n =

∞∑

i=0

cnx
n

where
c0 = a0b0
c1 = a0b1 + a1b0
c2 = a0b2 + a1b1 + a2b0
. . .

cn = a0bn + a1bn−1 + · · · + anb0
. . .
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We use the symbol f (x) (or simply f ) to denote a power series
∑∞

i=0 anx
n . We can

make sense of f (0) by setting f (0) = a0. In addition, if f (x) ∈ k[x] and g(x) ∈
k[[x]], it makes sense to consider f (g(x)) ∈ k[[x]].
Lemma 15.1.1 The power series f (x) = ∑∞

i=0 anx
n is invertible in k[[x]] if and

only if f (0) = a0 �= 0.

Proof If a0 �= 0 we inductively define the series g(x) = ∑∞
i=0 bnx

n so that the fol-
lowing relations hold

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

. . .

a0bn + a1bn−1 + · · · + anb0 = 0

. . .

Then one has f g = 1. Conversely, if there is a series g(x) = ∑∞
i=0 bnx

n such that
f g = 1, then a0b0 = 1, and a0 �= 0. ��
Lemma 15.1.1 implies that k[[x]] is a local domain with maximal ideal m = (x),

which contains all series of the form
∑∞

i=1 anx
n .

We will denote by k((x)) the quotient field Q(k[[x]]).
Lemma 15.1.2 Any element of the quotient field k((x)) can be written in the form

f (x)

xh
,

where f is a suitable power series and h a suitable positive integer.

Proof Suppose we have an element of k((x)) which is of the form

∑∞
i=0 bnx

n

∑∞
i=0 cnx

n

with
∑∞

i=0 cnx
n �= 0. Let h be the minimum integer such that ch �= 0. Consider the

series
∑∞

i=h cnx
n−h . Since ch �= 0 this series is invertible, with inverse

∑∞
i=0 dnx

n .
So we have

∑∞
i=0 bnx

n

∑∞
i=0 cnx

n
= (

∑∞
i=0 bnx

n)(
∑∞

i=0 dnx
n)

(
∑∞

i=0 cnx
n)(

∑∞
i=0 dnx

n)
= (

∑∞
i=0 bnx

n)(
∑∞

i=0 dnx
n)

xh

as wanted. ��
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By Lemma 15.1.2, every non–zero element of k((x)) can be uniquely written as

f = xh ·
∞∑

i=0

anx
n

with a0 �= 0 and h a suitable integer, which is called the order of f and is denoted
by o( f ). One sets o(0) = ∞. The order function

o : k((x)) \ {0} → Z

is a valuation, and it is clear that k[[x]] is the DVR related to this valuation. As a
consequence k[[x]] is a UFD, and factorization in k[[x]] is very easy: a non zero f
divides g if and only if o( f ) � o(g).

15.2 Congruences, Substitution and Derivatives

15.2.1 Conguences

In the ring k[[x]] we can consider the equivalence relation determined by the ideal
mn , with n a positive integer. This is called congruence modulo xn . One has that f
and g are congruent modulo xn , and one writes f ≡ g mod xn , if f − g ∈ mn , or,
which is the same, if f − g is divisible by xn , or if o( f − g) = n, or also if the first
n coefficients of f and g coincide.

Lemma 15.2.1 One has:

(a) let f1, f2 and g1, g2 be power series such that f1 ≡ f2, g1 ≡ g2 mod xn, then

f1 ± f2 ≡ g1 ± g2 mod xn, f1 f2 ≡ g1g2 mod xn;

(b) let f, g be power series such that f ≡ g mod xn for n 
 0, then f = g;
(c) let f1(x), f2(x) be two polynomials and g1(x), g2(x) two power series such

that o(g1), o(g2) > 0. If f1 ≡ f2, g1 ≡ g2 mod xn, then f1(g1(x)) ≡ f2(g2(x))
mod xn;

(d) if we have a sequence ( fn)n∈N\{0} of power series such that

fn+1 ≡ fn mod xn for all n ∈ N \ {0},

then there is a unique power series f such that
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f ≡ fn mod xn for all n ∈ N \ {0}.

Proof Parts (a) and (b) are easy and left to the reader.
Proof of (c). Write f1 = f2 + xn f3, with f3 a polynomial. By applying (a), we

have
f1(g1(x)) ≡ f2(g2(x)) + g2(x)

n f3(g2(x)), mod xn .

Since
o(g2(x)

n f3(g2(x))) = no(g2) + o( f3(g2(x))) � n

the assertion follows.
Proof of (d). One has

f1 = a10 + a11x + a12x
2 + · · ·

f2 = a10 + a21x + a22x
2 + · · ·

f3 = a10 + a21x + a32x
2 + · · ·

. . .

fn = a10 + a21x + a32x
2 + · · · + annx

n + · · ·
. . .

So we set
f = a10 + a21x + a32x

2 + · · · + an+1,nx
n + · · ·

Then f ≡ fn mod xn for all n ∈ N. If g is another series such that g ≡ fn mod xn

for all n ∈ N, then g ≡ f mod xn for all n ∈ N and then f = g by part (b). ��

15.2.2 Substitution

Let f, g be formal power series in k[[x]], with o(g) > 0. For all positive integers n,
we will denote by fn and gn the truncations of f and g at the n–th term, i.e., fn and
gn are the polynomials of degree at most n − 1 obtained by taking the sum of the
first n terms of f and g. Then, for all positive integers n we have

fn+1 ≡ fn, gn+1 ≡ gn mod xn

hence, by Lemma 15.2.1, (c), we have

fn+1(gn+1) ≡ fn(gn) mod xn .

By Lemma 15.2.1, (d), there is a unique power series h ∈ k[[x]] such that
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h ≡ fn(gn) mod xn

for all n ∈ N. The series h is said to be obtained by substitution of g in f , and it is
denoted by h = f (g).

Lemma 15.2.2 Let g, h ∈ k[[x]] be such that o(g) > 0 and o(h) > 0. Then for any
f ∈ k[[x]], substituting h in f (g) is the same as substituting g(h) in f .

Proof Set m = f (g) and l = g(h). Let fn, gn, hn be the truncations of f, g, h at the
n–th term, and set mn = fn(gn) and ln = gn(hn). For all n ∈ N \ {0}, one has

mn(hn) = fn(ln).

Moreover
m ≡ mn, h ≡ hn, f ≡ fn, l ≡ ln mod xn

for all n ∈ N \ {0}, and therefore

mn(hn) ≡ m(h), fn(ln) ≡ f (l) mod xn,

whence
m(h) ≡ f (l) mod xn .

Since this is true for all n ∈ N \ {0}, one has m(h) = f (l) (Lemma 15.2.1, (b)), as
wanted. ��
Lemma 15.2.3 Let g, f ∈ k[[x]] be such that o(g) = 1 and set h = f (g). There
exists an l ∈ k[[x]] with o(l) = 1 such that f = h(l).

Proof Suppose
g = a1x + a2x

2 + · · · , with a1 �= 0.

We search for a
l = b1x + b2x

2 + · · · , with b1 �= 0

such that g(l) = 1. We have

g(l) = a1b1x + (a1b2 + a2b
2
1)x + (a1b3 + 2a2b1b2 + a3b

3
1)x

3 + · · ·
+ (a1bn + Fn(a2, . . . , an, b1, . . . , bn−1))x

n + · · ·

where Fn is a suitable polynomial in a2, . . . , an, b1, . . . , bn−1. The required series l
is obtained by defining b1 = a−1

1 and bn recursively by the formula

bn = −a−1
1 Fn(a2, . . . , an, b1, . . . , bn−1).

The conclusion follows by Lemma 15.2.2. ��
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15.2.3 Derivatives

Given a formal power series f (x) = ∑∞
n=0 anx

n , we define the derivative of f as

f ′(x) =
∞∑

n=0

nanx
n−1.

Lemma 15.2.4 Let f, g be formal power series. One has

( f + g)′ = f ′ + g′, ( f g)′ = f g′ + f ′g.

Proof The linearity of derivative with respect to the sum is obvious. Let us prove
the assertion for the product (i.e., the derivative of the product verifies Leibnitz rule).
Note first that if f ≡ g mod xn , then f ′ ≡ g′ mod xn−1.

With the usual notation, we have

f ≡ fn, g ≡ gn mod xn

for all n ∈ N \ {0}. Then f g ≡ fngn mod xn for all n ∈ N \ {0, 1} and therefore

( f g)′ ≡ ( fngn)
′ mod xn−1 =

= fng
′
n + f ′

ngn ≡ f g′ + f ′g mod xn−1

and since this is true for all n ∈ N \ {0, 1}, the assertion follows. ��
Exercise 15.2.5 Suppose that

f = a0 + a1x + a2x
2 + · · · , g = b1x + b2x

2 + · · · .

Prove that
f (g) = a0 + a1g + a2g

2 + · · · =
= a0 + a1b1x + (a1b2 + a2b

2
1)x2+

+ (a1b3 + 2a1b1b2 + a3b
3
1)x

3 + · · ·
Exercise 15.2.6 Let g ∈ k[[x]] be such that o(g) > 0 and let f ∈ k[[x]] be non–zero. Prove that
o( f (g)) = o( f ) · o(g). In particular, if o(g) = 1, then o( f (g)) = o( f ).

Exercise 15.2.7 Let g ∈ k[[x]] be such that o(g) > 0. Prove that the map

f ∈ k[[x]] → f (g) ∈ k[[x]]
is a homomorphism. Prove in addition that if o(g) = 1 the above map is an automorphism of k[[x]]
which is order preserving. Prove that conversely any order preserving automorphism of k[[x]] is of
this kind.
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15.3 Fractional Power Series

Let us introduce the symbol x
1
n , with x an indeterminate over the field k, and n ∈ N

non–zero. We use the following conventions

x0 = 1, x
1
1 = x, (x

1
mn )m = x

1
n , x

m
n = (x

1
n )m

for every n,m ∈ N \ {0}. From this it follows that

x
rm
rn = x

m
n

for every r, n,m ∈ N, with r, n �= 0.
From (x

1
rn )r = x

1
n , it follows that k((x

1
n )) ⊆ k((x

1
rn )). So we can consider the

union k{x} of all the fields k((x
1
n )), for n ∈ N. If ξ, η ∈ k{x}, there are n,m ∈ N

such that ξ ∈ k((x
1
n )) and η ∈ k((x

1
m )). Hence ξ, η ∈ k((x

1
nm )), and so their sum,

product and quotient (if η �= 0), also belong to k((x
1
nm )) and therefore to k{x}. Thus

k{x} is in a natural way a field.
If

ξ = a1x
m1
n1 + a2x

m2
n2 + · · · ∈ k{x}

with m1

n1
<

m2

n2
< · · · , and a1 �= 0,

we define the order o(ξ) of ξ to be o(ξ) = m1
n1
. The set of elements with non–negative

order of k{x} is a domain, which we denote by k〈x〉. If ξ ∈ k〈x〉, the coefficient of
x0 = 1 in ξ is denoted by ξ(0).

In order to prove or main result on the field K{x} with K algebraically closed,
which is Theorem 15.3.2 below, we need some preliminaries concerning solutions
of equations with coefficients in k{x}. Start with a polynomial f (x, y) ∈ k{x}[y]
which is not constant, i.e., f (x, y) /∈ k{x}. We set

f (x, y) = a0 + a1y + · · · + an y
n (15.1)

with a0, . . . , an ∈ k{x}, n > 0, an �= 0. We will set αi = o(ai ), for i = 0, . . . , n. If
ai �= 0, we have

ai = ai x
αi + · · · , and ai �= 0, (15.2)

for i = 0, . . . , n.
Suppose that there is η ∈ k{x} \ {0} such that f (x, η) = 0. Then we can write

η = b1x
γ1 + b2x

γ1+γ2 + b3x
γ1+γ2+γ3 + · · ·

with b1, b2, b3, . . . (which can be finitely many or not) all non–zero and γ2, γ3, . . .

all positive rational numbers. We set
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η = xγ (b + η1)

where we put γ = γ1, b = b1, and

η1 = b2x
γ2 + b3x

γ2+γ3 + · · · .

Then we have

0 = f (x, η) = a0 + a1x
γ (b + η1) + · · · + anx

nγ (b + η1)
n =

= a0 + ba1x
γ + · · · + bnanx

nγ + g(x, η1),

where g contains all the terms in which η1 appears. Since o(η1) = γ2 > 0, all terms
appearing in g have order greater than the order of some of the terms biai x iγ , for
i = 0, . . . , n. We can summarize the contents of these remarks in the following:

Lemma 15.3.1 In the above setting we have:

(a) at least two of the elements biai x iγ , with i = 0, . . . , n, have the same order,
which is less than or equal to the order of any other biai x iγ . In other terms there
are two distinct integers j, k ∈ {0, . . . , n} such that

o(b ja j x
jγ ) = o(bkak x

kγ ) � o(biai x
iγ ), for i = 0, . . . , n,

namely
α j + jγ = αk + kγ � αi + iγ for i = 0, . . . , n; (15.3)

(b) the coefficients of all terms of lowest order must cancel out, i.e.,

∑
ahb

h = 0 (15.4)

where the sum is made over all indices h such that αh + hγ = α j + jγ .

In relation with (15.3), we introduce the so–called Newton polygonal of f (x, y).
To do so, we fix a system of orthogonal Cartesian coordinates (u, v) in the Euclidean
plane and we mark the points Pi with coordinates u = i, v = αi , for i = 0, . . . , n,
provided αi < ∞. Condition (15.3) says that there is a β such that all points Pi ,
i = 0, . . . , n, lie above or on the line rγ,β with equation v + γ u = β and at least
two of the points Pi do lie on rγ,β . Now we join the point P0 to the point Pn with a
convex polygonal, with vertices points in the set {P0, . . . , Pn} in such a way that no
point Pi lies below the polygonal. This is the Newton polygonal of f (x, η). Then
the only possible lines rγ,β , hence the only values of γ , are the ones determined by
the segments of the polygonal and by their slopes. Once one of the above segments
has been chosen, so that γ has been determined by its slope, then b has to satisfy
(15.4), where the sum is extended to the indices h of points Ph lying on the segment
in question.
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In this way we have given necessary conditions for b1 and γ1 appearing in η. To
proceed to finding analogous conditions for b2 and γ2, one defines

f1(x, y1) = x−β f (x, xγ1(b1 + y1))

and consider the root η1 of f1(x, y1) = 0 in the variable y1. Note that since γ2 > 0,
only segments of the Newton polygonal can be considered. Then one repeats the
above considerations for f1(x, η1) = 0, and finds necessary conditions for b2 and
γ2. This can be continued to give necessary conditions for bn and γn for all n ∈ N.

From now on we assume k = K to be algebraically closed and we now prove the
main result about K{x}:
Theorem 15.3.2 K{x} is an algebraically closed field.

Proof We keep all notation we introduced above. The proof consists in showing that
the process we indicated above can be carried out on any polynomial of the form
(15.1), to construct a root of the equation f (x, y) = 0, where f (x, y) is given by
(15.1). In order to see this, we have three basic facts to verify:

(a) at each step the Eq. (15.4) has a non–zero solution;
(b) after the first step, the Newton polygonal has some segment with negative slope;
(c) after a certain step all the γi s have a common denominator.

Property (a) is easy to verify. Indeed, since the segments of the Newton polygonal
contain at least two points Pi , the left hand side of (15.4) has at least two non–
zero terms, hence (15.4) has certainly a non–zero solution (remember that K is an
algebraically closed field).

As for property (b), we need to make a deeper analysis of the Newton polygonal.

First of all for all i = 0, . . . , n, there is a positive integer ni such that ai ∈ K{x 1
ni }.

Then we can find a positive integer m such that ai ∈ K{x 1
m }, for all i = 0, . . . , n. So

we have
αi = mi

m
, for all i = 0, . . . , n.

Let now Pj and Pk , with j < k, be the left and right end of the segment� of slope
γ1 lying on the line rγ1,β1 with equation v + γ1u = β1, of the Newton polygonal we
have chosen. Then we have

α j + jγ1 = αk + kγ1,

which implies

γ1 = α j − αk

k − j
= m j − mk

m(k − j)

and so we can write
γ1 = p

mq
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with p, q coprime and q > 0. If Ph is on the segment �, one has

p

mq
= γ1 = α j − αh

h − j
= m j − mh

m(h − j)

and therefore
q(m j − mh) = p(h − j).

Since p, q are coprime, we have that q divides h − j and therefore h = j + tq,
where t is a non–negative integer. Thus (15.4), which is an equation in b, has the
form

b jφ(bq) = 0

where φ(z) is a polynomial such that φ(0) �= 0. Since the degree of the polynomial
appearing in (15.4) is k, then the polynomial φ(z) has degree k− j

q � k − j .
Suppose now b1 �= 0 is a root of φ(zq) = 0, with multiplicity r � 1, so that

φ(zq) = (z − b1)
rψ(z), with ψ(b1) �= 0.

Note that

r � k − j

q
� k − j. (15.5)

Now, as we indicated above, we consider the polynomial

f1(x, y1) = x−β1 f (x, xγ1(b1 + y1)) =
= x−β1 [a0 + a1x

γ1(b1 + y1) + · · · + anxnγ1(b1 + y1)
n] =

= x−β1
∑

ahx
hγ1(b1 + y1)

h + x−β1
∑

al x
lγ1(b1 + y1)

l

where the first sum runs over the indices h of points Ph lying on the segment �, the
second sum on the indices l of the remaining points. Recalling the expressions (15.2)
of the ai , for i = 0, . . . , n, we have

f1(x, y1) = x−β1
∑

ahx
αh+hγ1(b1 + y1)

h+
+ x−β1

∑
(ah − ah)x

hγ1(b1 + y1)
h + x−β1

∑
al x

lγ1(b1 + y1)
l .

Since for the indices h of points lying on�wehaveαh + hγ1 = β1, the first summand
in the above expression of f1(x, y1) coincides with

∑
ah(b1 + y1)

h = (b1 + y1)
jφ((b1 + y1)

q) = yr1(b1 + y1)
jψ(b1 + y1).

Now notice that o(ah − ah) > αh and o(al xlγ1) = αl + lγ1 > β1 for the indices l in
the second summation. So we can write
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f1(x, y1) = c1y
r
1 + c2y

r+1
1 + · · · + g(x, y1)

where c1, c2, . . . are constants, with c1 = b j
1ψ(b1) �= 0, and we collected in g(x, y1)

all terms in which each power of y1 has a coefficient of positive order. In conclusion
we can write

f1(x, y1) = c0 + c1y1 + · · · + cn y
n
1 ,

with c0, . . . , cn ∈ K{x}, and

o(ci ) � 0, for i = 0, . . . , n

o(ci ) > 0, for i = 0, . . . , r − 1

o(cr ) = 0.

Now suppose first that c0 = 0. In this case the equation f1(x, y1) = 0 has the root
η1 = 0 and this implies that η = b1x

γ

1 is a solution of f (x, y) = 0. If instead c0 �= 0,
then for the Newton polygonal of f1(x, y1) the point P0 has u coordinate equal
to zero and positive v coordinate, whereas Pr has positive u coordinate and the v

coordinate is 0. Then since in the next step we have to take positive values of γ2,
this is actually obtained from a segment in the arch which goes from P0 to Pr in
the Newton polygonal of f1(x, y1). This proves (b) in making the second step. The
proof for the following steps is the same.

Finally we have to prove (c). This will be done if we prove that, with the above
notation, after a certain number of steps the value of q is constantly equal to 1. To
see this proceed as follows. Recall first (15.5). Moreover, as we saw, the horizontal
length of the segment of the Newton polygonal to be taken in the next step is at most
r . Hence r ′, the value of r to be taken in the subsequent step, is such that 0 � r ′ � r .
Since r is an integer, after a finite number of steps the value of r stabilizes, so that
r = r0 for large number of steps. By taking into account (15.5) this implies that q
also stabilizes to the value 1, as needed. ��

The following corollary is now immediate:

Corollary 15.3.3 Given the equation f (x, y) = 0where f (x, y) is as in (15.1)with
a0, . . . , an ∈ K{x}, n > 0, an �= 0, there are distinct elements η1, . . . ηh ∈ K{x} and
positive integers n1, . . . , nh such that

f (x, y) = an

h∏

i=1

(y − ηi )
ni (15.6)

with n1 + · · · + nh = n. Such an expression of f (x, y) is uniquely determined.
If o(ai ) � 0 for i = 0, . . . , n and an = 1, then o(η j ) � 0 for all j = 1, . . . , h.

Proof The only non–trivial assertion is the last one. Let us prove it. Let η be one of
the η j , with j = 1, . . . , h, and assume that o(η) < 0. One has
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f (x, η) = a0 + a1η + · · · + an−1η
n−1 + ηn = 0

Then o( f (x, η)) = no(η) < 0 which contradicts f (x, η) = 0. ��
Exercise 15.3.4 Prove that if ξ ∈ k〈x〉, then ξ(0) �= 0 if and only if o(ξ) = 0.

Exercise 15.3.5 Find the first terms of a solution of the equation

f (x, y) = (−x3 + x4) − 2x2y − xy2 + 2xy4 + y5 = 0

in y over the complex field. This exercise is taken form [8, p. 102].

Exercise 15.3.6 Find the first terms of a solution of the equation

f (x, y) = x + (1 − x)y + (3x + x2)y2.

in y over the complex field.

Exercise 15.3.7 * Looking at Corollary 15.3.3, prove that if o(an) � o(ai ), for i = 1, . . . , n − 1,
then η1, . . . , ηh belong to K〈x〉.
Exercise 15.3.8 * Continuing Exercise 15.3.7, prove that if o(an) = 0, o(a0) > 0 and o(ai ) � 0,
for i = 1, . . . , n − 1, then there is a j = 1, . . . , h such that o(η j ) > 0.

Exercise 15.3.9 * Let f (x, y) ∈ K[x, y] be such that it has no factor not involving y. Prove that
f has a multiple factor in K[x, y] if and only if f (x, y) = 0 has a multiple root in K{x}. Prove
that if f has a multiple factor of multiplicity n in K[x, y] depending on y then f (x, y) = 0 has a
multiple root of multiplicity at least n in K{x}.

15.4 Solutions of Some Exercises

15.3.5 To draw theNewton polygonal of f (x, y)we have to plot the points P0, . . . , P5 (the degree of
f in y is 5). We have P0 = (0, 3), P1 = (1, 2), P2 = (2, 1), P3 is indeterminate, P4 = (4, 1), P5 =
(5, 0). So the Newton polygonal consists of two segments, the one joining P0 and P2, then contains
also P1, and the one joining P2 and P5 which contains no other point. The point P4 is above the
polygonal. For the first segment we have

γ1 = 1, β1 = 3, p = q = 1.

Equation (15.4) becomes −1 − 2b − b2 = 0, so that it has the only solution b1 = −1 with multi-
plicity r = 2.

Having determined b1 and γ1, we have to go to the second step. So we define

f1(x, y1) = x−3 f (x, x(−1 + y1)) = (x + x2) − 3x2y1 + (−1 + 2x2)y21 + 2x2y31 − 3x2y41 + x2y51 .

The Newton polygonal of f1(x, y1) consists of only one segment, the one joining P0 = (0, 1) with
P2 = (2, 0). So here we have

γ2 = 1

2
, β2 = 1, p = 1, q = 2.

Equation (15.4) becomes 1 − b22 = 0, with solutions b2 = ±1, with multiplicity 1 and we may
choose b2 = 1.
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Then we have to make the next step. We set

f2(x, y2) = x−1 f1(x, x
1
2 (1 + y2)) =

= (x − 3x
3
2 + · · · ) + (−2 − 3x

3
2 + 4x2 + · · · )y2+

+ (−1 + 2x2 + · · · )y22 + · · · .

Now we are at the point where r = p = q = 1, so from now on r stabilizes to the value 1 so that

η2 becomes a power series in x
1
2 . Rather than continuing with the Newton polygonal algorithm, we

now set
η2 = b3x

1
2 + b4x + b5x

3
2 + · · ·

and f2(x, η2) = 0, and from this equation we iteratively compute b3, b4, b5, . . .. We find

f2(x, η2) = (x − 3x
1
2 + · · · ) + (−2 − 3x

3
2 + 4x2 + · · · )(b3x 1

2 + b4x + b5x
3
2 + · · · )+

+ (−1 + 2x2 + · · · )(b3x 1
2 + b4x + b5x

3
2 + · · · )2 + · · · =

= −2b3x
1
2 + (−2b4 + 1 − b23)x + (−2b5 − 3 − 2b3b4)x

3
2 + · · · = 0

whence

b3 = 0, b4 = 1

2
, b5 = −3

2
, . . .

Taking into account that we found b1 = −1, b2 = 1, we have for a root η of f (x, y) = 0 the
expression

η = −x + x
3
2 + 1

2
x

5
2 − 1

3
x3 + · · · .

15.3.7 Suppose the equation f (x, y) = 0 has n distinct roots η1, . . . , ηn , the argument is similar
otherwise. Then by expanding (15.6), we see that an−1 = −an(η1 + · · · + ηn). If an−1 �= 0, this
implies that o(ηi ) � 0 for all i = 0, . . . , n as wanted. If an−1 = 0, we have η1 + · · · + ηn = 0. On
the other hand an−2 = an

∑
1�i< j�n ηiη j . Suppose that an−2 �= 0, This implies that o(ηiη j ) � 0

for all 1 � i < j � n. Then one has 0 � o(η1(η2 + · · · + ηn)) = o(η21), which yields o(η1) � 0.
Similarly one finds o(ηi ) � 0 for all i = 1, . . . , n as wanted. If an−2 = 0, one repeats this argument.
15.3.8 Again we pretend the equation f (x, y) = 0 has n distinct roots η1, . . . , ηn , the argument is
similar otherwise. By Exercise 15.3.7, η1, . . . , ηn are such that o(ηi ) � 0 for all i = 1, . . . , n. We
have a0 = anη1 · · · ηn . If o(ηi ) = 0 for all i = 1, . . . , n, we would have o(a0) = 0, a contradiction.
15.3.9 One implication is trivial. Let us prove the other one. Suppose that f (x, y) = 0 has amultiple
root in K{x}. Then the resultant R of f (x, y) and ∂ f

∂y after elimination of y is non–zero. But the

resultant of f (x, y) and ∂ f
∂y is the same independently of the fact that we consider the polynomials

inK{x}[y] or inK[x, y]. So this means that f (x, y) and ∂ f
∂y have a non–trivial common factor g in

K[x, y], and g depends on y. We claim this is a multiple factor for f . In fact, suppose the factor
in question g is not multiple. Let us assume also that g is irreducible. Then we may write f = gh,
with h not divisible by g. Then g has to divide also ∂ f

∂y = ∂g
∂y h + ∂h

∂y g, hence it has to divide ∂g
∂y h.

Since g does not divide h it has to divide ∂g
∂y . Since the degree of

∂g
∂y in y is smaller than the degree

of g in y, this is possible only if ∂g
∂y = 0, i.e., if and only if g does not depend on y, which is a

contradiction.

The final assertion is obvious.



Chapter 16
Affine Plane Curves

16.1 Multiple Points and Principal Tangent Lines

Let X ⊂ A
2 be a effective divisor of degree d, which we will call from now on

an affine plane curve of degree d. We will use coordinates (x, y) in A
2 hence X

has equation of the form f (x, y) = 0. Let P = (a, b) be a point of X , consider the
expansion of f in Taylor series with initial point P , which is

f = f1 + · · · + fd

with fi homogeneous of degree i in x − a, x − b, for i = 1, . . . , d. Recall that P is
a point of multiplicity m for X if and only if fi = 0 for i = 1, . . . ,m − 1, whereas
fm = 0 defines the tangent cone to X at P (see Exercise 14.1.12). We will write
mP(X) = mP( f ) = m. The homogeneous polynomial fm(ξ, η) of degree m can be
written as

fm(ξ, η) =
h∏

i=1

(ξηi − ηξi )
mi

where (ξi , ηi ) are the non–zero distinct solutions of the equation fm = 0, up to a
proportionality factor, and mi are positive integers such that

m1 + · · · + mh = m.

Then the equation fm = 0 of the tangent cone can be written as

h∏

i=1

((x − a)ηi − (y − b)ξi )
mi = 0

which defines the h distinct lines r1, . . . , rh containing P with equations
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(x − a)ηi = (y − b)ξi , i = 1, . . . , h.

The lines r1, . . . , rh are called the principal tangent lines to X at P , and the integers
m1, . . . ,mh are called the multiplicities of these lines. So X has in P just mP(X)

principal tangent lines, provided each tangent line is counted with its multiplicity.
Note that if m = 1, then P is smooth for X and the unique principal tangent line to
X at P is just the tangent line to X at P . The point P is called an ordinary point
of multiplicity m if X has in P exactly m distinct principal tangent lines, each with
multiplicity 1. A double point P for X , i.e., mP(X) = 2, is called a node, if it is an
ordinary point of multiplicity 2. A curve X of degree d with a point P of multiplicity
d coincides with its tangent cone at P and therefore it is a union of d lines through
P , each line to be counted with its multiplicity.

All the above definitions are invariant by affinities and by change of coordinates.
Recall that P ∈ X is smooth for X if and only if OX,P is a DVR.

Theorem 16.1.1 Let X be an affine plane curve with equation f = 0 and let P be
a smooth point of X. Let r be a line passing through P, with equation g = 0. If r is
not tangent to X at P, then the class of g inOX,P generates the maximal idealmX,P

hence it is a local parameter at P.

Proof Since r contains P , then g vanishes at P and therefore the class of g inOX,P

sits in mX,P . We need to prove that it generates mX,P . After a change of coordinates
we may assume that P = (0, 0) and that the tangent line to X at P is the x axis, with
equation y = 0. Hence the equation of X is of the form

f = y + o(1) = 0

where o(1) stays for terms of degree larger than 1. Moreover we may assume that r
is the y axis with equation x = 0. Now we can write

f (x, y) = yG − x2H

where H ∈ K[x] and G = 1 + o(1). Then in OX,P we have the relation

yG = x2H

where we abuse notation and denote the classes in OX,P of the polynomials with
the same symbols denoting the polynomials. Moreover G /∈ OX,P , because G is not
zero in P , so G is invertible in OX,P and we have

y = x2HG−1

in OX,P . So y ∈ (x) in OX,P . Since OX,P = (x, y), the assertion follows. ��
Exercise 16.1.2 Prove that the affine plane curve X with equation f = 0 has a node at P if and
only if grad f (P) = 0 and
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∂2 f

∂x∂y
(P) �= ∂2 f

∂x2
(P) · ∂2 f

∂y2
(P).

Exercise 16.1.3 Let X be an affine plane curve and let P be a point of X which lies on an irreducible
component Y of X of multiplicity h. Prove that mP (X) � h and the equality holds if and only if P
is smooth for Y and P does not belong to any other irreducible component of X .

16.2 Parametrizations and Branches of a Curve

Let X be a reduced affine plane curve with equation f (x, y) = 0. Let ξ(t), η(t) ∈
K[[t]] be formal power series, not both belonging to K. We will say that

x = ξ(t), y = η(t)

(or simply (ξ(t), η(t))) is a parametrization of X if f (ξ(t), η(t)) = 0. The point
P = (p, q) with p = ξ(0) and q = η(0), is called the centre of the parametrization
and it belongs to X . Note that the notion of parametrization and of centre of a
parametrization is invariant by change of coordinates. Note also that if g ∈ K[[τ ]]
is such that o(g) > 0, we can substitute ξ(τ ) = ξ(g(τ )) and η(τ ) = η(g(τ )) and
(ξ(τ ), η(τ )) is still a parametrization of X with the same centre. It is said to be
obtained from (ξ(t), η(t)) with a change of parameter. If o(g) = 1 one says that the
change of parameter is regular. If two parametrizations differ by a regular change
of parameters they are said to be equivalent. By taking into account the properties
substitutions (see Sect. 15.2.2) one sees that this is in fact an equivalence relation
between parametrizations. If (ξ(t), η(t)) is a parametrization of the curve X , and
ξ(t), η(t) ∈ K[[th]], with h > 1, the parametrization, or one equivalent to it, is said
to be reducible. In this case, if h is maximum so that ξ(t), η(t) ∈ K[[th]], we may
replace th with a new variable τ , so that (ξ(t), η(t)) becomes a new parametrization
(ξ(τ ), η(τ )), which is now irreducible and with the same centre as (ξ(t), η(t)). We
will mainly deal with parametrizations that are irreducible and we will soon give an
irreducibility criterion for parametrizations.

Lemma 16.2.1 Any parametrization of a curve is equivalent, up to a suitable choice
of coordinates, to one of the form

x = tn, y = a1t
n1 + a2t

n2 + · · · (16.1)

with a1, a2, . . . non zero, n > 0, 0 < n1 < n2 < · · · .
Proof First of all we can put the centre of the parametrization at the origin of the
coordinate system. Then the parametrization takes the form

x = tn(b0 + b1t + · · · ), x = tm(c0 + c1t + · · · )

where n,m > 0 and b0, c0 �= 0. Now we make a substitution
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t = d1τ + d2τ
2 + · · ·

with d1 �= 0 and try to determine d1, d2, . . . in such a way that after the substitution
the parametrization takes the form (16.1). After substituting we have

x = τ n(d1 + d2τ + · · · )n[b0 + b1(d1 + d2τ + · · · ) + · · · ] =
= τ n[dn

1 b0 + (ndn−1
1 d2b0 + dn+1

1 b1)τ + · · ·+
+ (ndn−1

1 dib0 + Pi (b1, . . . , bi , d1, . . . , di−1))τ
i + · · · ],

where Pi is a suitable polynomial in its arguments. We define recursively d1, d2, . . .
in the following way

d1 = b−1
0 ,

d2 = −(ndn−1
1 b0)

−1dn+1
1 b1,

di = −(ndn−1
1 b0)

−1Pi (b1, . . . , bi , d1, . . . , di−1), i � 3.

With these definitions we have x = τ n , as wanted. ��
A parametrization of the type (16.1) is said to be in standard form.
Next we give the announced irreducibility criterion:

Lemma 16.2.2 A parametrization of a curve in standard form (16.1) is reducible if
and only if the integers n, n1, n2, . . . have a common factor larger than 1.

Proof One implication is obvious. We prove the other.
Suppose that there is a substitution t = f (τ ), with o( f ) = 1 such that after the

substitution we have x = ξ(τ ), y = η(τ ), with ξ(τ ), η(τ ) ∈ K[[τ h]], with h > 1.
We first claim that f (τ )

τ
∈ K[[τ h]]. In fact, if this is not the case, since o( f ) = 1

we have
f (τ ) = τ (b0 + b1τ

h + · · · + blτ
lh + cτ k + · · · ),

with b0 �= 0, c �= 0, and h does not divide k. Then

x = ξ(τ ) = τ n[(b0 + b1τ
h + · · · + blτ

lh) + cτ k + · · · ]n =
= τ n(b0 + b1τ

h + · · · + blτ
lh)n + ncτ n+k(b0 + b1τ

h + · · · + blτ
lh)n−1 + · · · .

Since ξ(τ ) ∈ K[[τ h]], we have that h divides n because ξ(τ ) starts with b0τ n . Then
ξ(τ ) − τ n(b0 + b1τ h + · · · + blτ lh)n ∈ K[[τ h]], but

ξ(τ ) − τ n(b0 + b1τ
h + · · · + blτ

lh)n = ncbn−1
0 τ n+k + · · ·

and h does not divide n + k because it does not divide k. So we have a contradiction
which proves our claim. Then we can write f (τ ) = τg(τ ), with g(τ ) ∈ K[[τ h]].
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Next we prove the assertion of the lemma. Note that the above argument proves
that h divides n. We want to prove that also n1, n2, . . . are all divisible by h. We
argue by contradiction and assume this is not the case. Suppose that n1, . . . , ns are
divisible by h but ns+1 is not divisible by h. Then

η(τ ) − (a1τ
n1g(τ )n1 + · · · + asτ

nsg(τ )ns ) =
= as+1τ

ns+1(b0 + b1τ
h + · · · )ns+1 + · · · = as+1b

ns+1
0 τ ns+1 + · · · .

The left hand side belongs to K[[τ h]] because η(τ ), g(τ ) ∈ K[[τ h]] and n1, . . . , ns
are all divisible by h, whereas the right hand side does not belong toK[[τ h]] because
it starts with as+1b

ns+1
0 τ ns+1 , and ns+1 is not divisible by h. This is a contradiction,

which proves that n1, n2, . . . are all divisible by h. ��
An equivalence class of irreducible equivalent parametrizations of X is called a

branch of X . A branch is determined by any of the equivalent parametrizations which
represent it. All parametrizations of the same branch have the same centre belonging
to X , which is called the centre of the branch.

Proposition 16.2.3 Consider f (x, y) ∈ K[x, y] an irreducible polynomial. To each
root η(x) ∈ K{x} of f (x, y) = 0 such that o(η) > 0 corresponds a unique branch
of the curve X with equation f (x, y) = 0 with centre the origin. Conversely, to
any branch (ξ, η) of X with centre the origin correspond o(ξ) roots η(x) ∈ K{x} of
f (x, y) = 0, with o(η) > 0.

Proof Let η(x) ∈ K{x} be a root of f (x, y) = 0 with o(η) > 0. Let n be the
minimum such that η ∈ K(x

1
n ), so that we can write η = η(x

1
n ). Then if we set

ξ = tn, η = η(t), then (ξ, η) is parametrization with centre the origin of X . More-
over by the definition of n and by Lemma 16.2.2, this parametrization is irreducible,
so that it defines a branch of the curve X with centre the origin.

Conversely, consider an irreducible parametrization (ξ, η) of X with centre the ori-
gin, and assume that o(ξ) = n > 0 and o(η) > 0. By Lemma 16.2.1 this parametriza-
tion is equivalent to a standard one like (16.1). Clearly two parametrizations like this
can only differ by substitution of t with εt , where εn = 1, so that there are n distinct
such parametrizations. We will prove that each of them determines a different root
of f (x, y) = 0. Indeed, consider two distinct values ε1 and ε2 of the n–th root of
unity ε. The values of η corresponding to ε1 and ε2 are

η1 = a1ε
n1
1 tn1 + a2ε

n2
1 tn2 + · · · and η2 = a1ε

n1
2 tn1 + a2ε

n2
2 tn2 + · · · .

Suppose that η1 = η2, which implies

εni1 = εni2 for i = 1, 2, . . . . (16.2)

Since the integers n, n1, n2, . . . have no common factor larger than 1 (see Lemma
16.2.2), we can find a positive integer m such that the greatest common divisor of
n, n1, n2, . . . , nm is 1, so that there are integers λ,λ1,λ2, . . . ,λm such that
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1 = λn + λ1n1 + λ2n2 + · · · + λmnm .

Taking into account (16.2) and εn1 = εn2 = 1, we find the relation

ε1 = ελn+λ1n1+λ2n2+···+λmnm
1 = ελn+λ1n1+λ2n2+···+λmnm

2 = ε2

which is a contradiction. Hence for each of the distinct roots εi of εn = 1, we have
different series ηi , for i = 1, . . . , n. Each of them gives rise to a root of f (x, y) = 0
of the form

y = a1x
n1
n + a2x

n2
n + · · ·

as desired. ��
Now we are in a position to prove the fundamental:

Theorem 16.2.4 Given an irreducible affine plane curve X, every point of X is the
centre of at least one branch of X.

Proof Let P be any point of X and assume that X has degree d. Up to appropriately
choosing the coordinates, we may assume that P is the origin and that the projective
closure of X does not pass through the point at infinity of the y axis. Then the equation
of X is of the form

f (x, y) = a0(x) + a1(x)y + · · · + yd

with a0(0) = 0. By Exercise 15.3.8, there is at least one solution η of f (x, y) = 0 as
an equation in y, such that o(η) > 0. By Proposition 16.2.3 it determines a branch
of X with centre P . ��
Remark 16.2.5 The notions of parametrization and of branch can be extended in
a natural way to the case in which X has multiple components. Suppose X has
equation f (x, y) = 0 with f with no factor not depending on y, namely X has
no line component parallel to the y axis (we may achieve this by an appropriate
choice of coordinates). By Exercise 15.3.9 we have that f (x, y) = 0 has a multiple
root in K{x} if and only if f has a multiple factor. We extend the correspondence
between roots of f (x, y) and branches of X by saying that a root of f (x, y) = 0 with
multiplicity n corresponds to a branch of X of multiplicity n. Then every branch of
an irreducible component of X of multiplicity m counts with multiplicity at least m.

16.3 Intersections of Affine Curves

Let X,Y ⊂ A
2 be two affine plane curves of degrees n,m. We can look at their

projective closures X̄ , Ȳ . If X and Y have no common component, then also X̄ and
Ȳ have no common components and, according to Bezout Theorem, they have only
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finitely many points in common, and the number of these points is nm, provided we
count each point P ∈ X̄ ∩ Ȳ with its intersection multiplicity i(P; X̄ , Ȳ ).

For any point P ∈ A
2 we define the intersection multiplicity of X and Y at P as

i(P; X,Y ) := i(P; X̄ , Ȳ ).
If X and Y have equations f (x, y) = 0 and g(x, y) = 0 respectively, one sets

i(P; f, g) := i(P; X,Y ).
In this section we will interpret the intersection multiplicity of two affine curves

at a common point in various ways which will be useful for our further purposes.

16.3.1 Intersection Multiplicity and Resultants

First of all we want to go back to the general definition of intersection multiplicity
given in Sect. 11.4, and provide a more flexible and computable interpretation of it
in the curve case. InterpretingA2 as usual as the open subsetU0 of P2 (see Sect. 1.5),
in P2 we have homogeneous coordinates [x0, x1, x2] such the point (x, y) of A2 has
homogeneous coordinates [1, x, y].

Consider the two affine curves X,Y with equations f (x, y) = 0 and g(x, y)=0
respectively, with no common components. Their projective closures X̄ , Ȳ have
equations β( f ) = 0 and β(g) = 0 where β is the homogenizing operator defined in
Sect. 1.5. To ease notation we set from now on β( f ) = fh and similarly β(g) = gh .
Supposewe have an intersection point P = [p0, p1, p2] of X̄ and Ȳ . Then recall from
Sect. 11.4 that i(P; X̄ , Ȳ ), is the multiplicity which the factor u0 p0 + u1 p1 + u2 p2
has in the resultant of the system of polynomals

fh(x0, x1, x2), gh(x0, x1, x2), u0x0 + u1x1 + u2x2. (16.3)

Note that the equation
u0x0 + u1x1 + u2x2 = 0 (16.4)

where u0, u1, u2 are indeterminate, represents an indeterminate line � of P2. This
can be also represented in a different way. Take two points A = [α] = [α0,α1,α2]
and B = [β] = [β0,β1,β2] of P2, with indeterminate coordinates, and consider the
line � = 〈A, B〉, which can be parametrically represented by

xi = λαi + μβi , i = 0, 1, 2. (16.5)

The line � can be represented as well by the equation (16.4) where u0, u1, u0 are
proportional to the maximal minors with alternate signs of the matrix

(
α0 α1 α2

β0 β1 β2

)
. (16.6)
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Let us plug (16.5) in fh(x0, x1, x2) and gh(x0, x1, x2). In this way we obtain two
homogeneous polynomials inλ,μ andwe can consider their resultant R(α,β)which
is a polynomial in α and β. This resultant vanishes if and only if the line � = 〈A, B〉
contains one of the intersection points P = [p] = [p0, p1, p2] of X̄ and Ȳ , i.e., it
vanishes if and only if

(α,β,p) :=
∣∣∣∣∣∣

α0 α1 α2

β0 β1 β2

p0 p1 p2

∣∣∣∣∣∣
= 0

which by the way is equivalent to u0 p0 + u1 p1 + u2 p2 = 0, if u0, u1, u2 are the
minors of maximal order of the matrix (16.6) with alternate signs. This implies that
we have a decomposition

R(α,β) = c
∏

(α,β,p)rP (16.7)

where c �= 0 and the product runs over all points P ∈ X̄ ∩ Ȳ . Taking into account that
each factor of the form (α,β,p) appearing in R is also of the form u0 p0 + u1 p1 +
u2 p2, it is clear that R(α,β) is nothing else than the resultant of the polynomials in
(16.3), and therefore the exponent rP is just the intersection multiplicity of X̄ and Ȳ
at P .

In order to make it easier to compute the intersection multiplicities, it is useful
to make some specializations. For instance, we take A = [1, u, 0], B = [0, v, 1],
λ = 1,μ = t , so that (16.5) becomes

x0 = 1, x1 = u + tv, x2 = t

and R(α,β) becomes a polynomial N (u, v) which is called the Netto’s resolvent
of f and g. This is nothing but the resultant of fh(1, u + tv, t) = f (u + tv, t) and
gh(1, u + tv, t) = g(u + tv, t) with respect to t . By taking into account (16.7), we
have

N (u, v) = c
∏

(up0 − p1 + vp2)
rP

Again the product runs over all the intersection points of X̄ and Ȳ .
Next we specialize further setting v = 0, provided X̄ and Ȳ do not both pass

through the point at infinity of the y axis which has coordinates [0, 0, 1]. In this case
we have the resultant R(u) of the polynomials f (u, t), g(u, t) with respect to t and

R(u) := N (u, 0) = c
∏

(up0 − p1)
rP

This form applies well to the intersection points P = (p, q) of X and Y in A
2, for

which p0 = 1, p1 = p. Then we have

R(u) = c
∏

(u − p)rP
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and the product runs over all the intersection points of X and Y . So the factor u − p
appears in R(u) in correspondence to all intersection points of X and Y with the
same x–coordinate p, and the exponent with which u − p appears in R(u) is the
sum of the intersection multiplicities of X and Y at their common points with first
coordinate p.

In conclusion we can summarize what we have proved in this:

Theorem 16.3.1 Let X and Y be affine plane curves, with no common component,
with equations f (x, y) = 0 and g(x, y) = 0 respectively and such that their projec-
tive closures do not both pass through the point at infinity of the y axis. Let R(x) be
the resultant of f and g with respect to y. Then the solutions of the equation R(x) = 0
are the x–coordinates of the intersection points of X and Y and their multiplicities
are the sums of the intersection multiplicities of X and Y at the common points with
the same x–coordinate.

In particular, if no common points of X and Y are aligned on lines with equa-
tions x = const., then the solutions of the equation R(x) = 0 are the x–coordinates
of the intersection points of X and Y and their multiplicities are the intersection
multiplicities of X and Y at the unique common point with the corresponding first
coordinate.

We can add a useful remark given by the following:

Proposition 16.3.2 Let X and Y be affine plane curves, with no common compo-
nent, with equations f (x, y) = 0 and g(x, y) = 0 respectively and such that their
projective closures do not both pass through the point at infinity of the y axis. Let
R(x) be the resultant of f and g with respect to y. Then R(x) is not identically 0.
Moreover there is no common branch to X and Y .

Proof The fact that R(x) is not identically 0 follows from Theorem 16.3.1, since the
equation R(x) = 0 has as solutions the x–coordinates of the finitely many intersec-
tion points of X and Y .

As for the other assertion, suppose that X and Y have a common branch. We may
assume that the centre of the branch is the origin, and that the branch has a standard
parametrization of the type

x = tn, y =
∞∑

i=1

ai t
i

so that

f

(
tn,

∞∑

i=1

ai t
i

)
= 0, g

(
tn,

∞∑

i=1

ai t
i

)
= 0.

Then we have

f

(
x,

∞∑

i=1

ai x
i
n

)
= 0, g

(
x,

∞∑

i=1

ai x
i
n

)
= 0.
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so that ξ = ∑∞
i=1 ai x

i
n is a common root of the equations f (x, y) = 0 and g(x, y) =

0 in the variable y. This implies that R(x) = 0, a contradiction. ��

16.3.2 Order of a Curve at a Branch and Intersection
Multiplicities

Consider a branch γ of an affine plane curve determined by a parametrization
(ξ(t), η(t)). Let X be any affine plane curve curve, with equation f (x, y) = 0.
We define the order of X (or of f ) at γ, denoted by oγ(X) = oγ( f ), to be ∞ if
f (ξ(t), η(t)) = 0 (i.e., if γ is a branch of Y ), or otherwise the order of the power
series f (ξ(t), η(t)) in t . It is a simple verification, that we leave to the reader, that this
definition does not depend on the single parametrization that determines the branch,
moreover it is independent of affinities or change of coordinates. It is also easy to
verify that, for any pair of polynomials f (x, y), g(x, y) and any branch γ one has

oγ( f g) = oγ( f ) + oγ(g), oγ( f ± g) � min{oγ( f ), oγ(g)}.

One has oγ(X) > 0 if and only if X contains the centre of γ.

Theorem 16.3.3 Let X, Y be affine plane curves with equations f (x, y) = 0,
g(x, y) = 0 respectively, with no common component. Suppose that the point P
is contained in X ∩ Y . Then the sum of the orders of X at the branches of Y with
centre P (counted with their multiplicities, see Remark 16.2.5) equals the sum of the
orders of Y at the branches of X with centre P (counted with their multiplicities),
and this number equals i(P; X,Y ).

Proof Wecan choose the coordinates in such away that P is the origin, the projective
closures of X and Y do not contain the point at infinity of the y axis, and no other
intersection point of X and Y sits on the y axis. Then the coefficient of the highest
power of y appearing in f and g can be assumed to be 1, and by Corollary 15.3.3
we have

f (x, y) =
n∏

i=1

(y − ξi ), g(x, y) =
m∏

j=1

(y − η j )

for some ξi , η j ∈ K[[x 1
h ]], for a suitable h, and i = 1, . . . , n, j = 1, . . . ,m. Consider

an i = 1, . . . , n such that o(ξi ) > 0, so that ξi corresponds to a branch γ of X with
centre the origin (see Proposition 16.2.3), that is represented by a parametrization of
the type

x = tr , y =
∞∑

i=1

ai t
i .

Then we have
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g

(
tr ,

∞∑

i=1

ai t
i

)
= btk + · · · , with b �= 0, (16.8)

where k = oγ(g) is not ∞ by Proposition 16.3.2.
Now γ has equivalent parametrizations of the form

x = tr , y =
∞∑

i=1

εij ai t
i .

where ε j , for j = 1, . . . , r , is any r–th root of the unity. Each of these parametriza-
tions gives rise to a different root

ξ j =
∞∑

i=1

εij ai x
i
r , j = 1, . . . , r

of the equation f (x, y) = 0 in y. By (16.8) we have

g(x, ξ j ) = bεk x
k
r + · · ·

hence
r∏

j=1

g(x, ξ j ) = cxk + · · · , with c �= 0.

Applying the same argument to any branch γ of X with centre the origin, we find

o

( u∏

l=1

g(x, ξl)

)
=

∑

γ

oγ(g)

where the product on the left hand side is on all roots ξ1, . . . , ξu of f (x, y) such that
o(ξl) > 0 for i = 1, . . . , u (see Proposition 16.2.3), and the sum on the right hand
side is made on all branches of X with centre the origin.

Let now η1, . . . , ηv be the roots of g(x, y) with positive order, and η′
1, . . . , η

′
v′ the

roots of g(x, y) with zero order. Then we have

∑

γ

oγ(g) =
u∏

l=1

g(x, ξl) = o

( ∏

l=1,...,u,r=1,...,v

(ξl − ηr ) ·
∏

l=1,...,u,r=1,...,v′
(ξl − η′

r )

)
=

= o

( ∏

l=1,...,u,r=1,...,v

(ξl − ηr ) · h(x)

)

where o(h) = 0. Therefore
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∑

γ

oγ(g) = o

( u∏

l=1

g(x, ξl)

)
= o

( ∏

l=1,...,u,r=1,...,v

(ξl − ηr )

)
. (16.9)

On the other hand, by exchanging the roles of f and g in the above argument, we
have ∑

γ′
oγ( f ) = o

( ∏

l=1,...,u,r=1,...,v

(ηr − ξl)

)
(16.10)

where the sum on the left hand side is made over all branches γ′ of g with centre the
origin. From (16.9) and (16.10), we have

∑

γ′
oγ( f ) =

∑

γ

oγ(g).

Let us now denote by ξ′
1, . . . , ξ

′
u′ the roots of f (x, y) such that o(ξ′

t ) = 0 for
t = 1, . . . , u′. Then, with the above notation, we have

f (x, y) =
∏

l=1,...,u

(y − ξl )
∏

t=1,...,u′
(y − ξ′

t ), g(x, y) =
∏

r=1,...,v

(y − ηr )
∏

s=1,...,v′
(y − η′

s).

If R(x) is the resultant of f (x, y) and g(x, y) by the elimination of y, we have (see
Exercise 2.1.6)

R(x) =
∏

l=1,...,u,r=1,...,v

(ξl − ηr )
∏

l=1,...,u,s=1,...,v′
(ξl − η′

r )·

·
∏

t=1,...,u′,r=1,...,v

(ξ′
t − ηr )

∏

t=1,...,u′,s=1,...,v′
(ξ′

t − η′
r ).

It is clear that

o

( ∏

l=1,...,u,s=1,...,v′
(ξl − η′

r )

)
= o

( ∏

t=1,...,u′,r=1,...,v

(ξ′
t − ηr )

)
= 0.

We claim that also

o

( ∏

t=1,...,u′,s=1,...,v′
(ξ′

t − η′
r )

)
= 0.

Indeed, if o((ξ′
l − η′

r ))) > 0 for some t = 1, . . . , u′, s = 1, . . . , v′, then ξ′
l and η′

r
would start with the same constant term d �= 0. The corresponding branches would
then have the same centre at the point with coordinates (0, d). But this is not possible
because we assumed that X and Y have only the origin as a common point on the y
axis. In conclusion we have
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o(R(x)) = o

( ∏

l=1,...,u,r=1,...,v

(ξl − ηr )

)

which, as we saw, equals
∑

γ′ oγ( f ) = ∑
γ oγ(g). On the other hand o(R(x)) is the

multiplicity of the root 0 for R(x), which is equal to the intersection multiplicity of
X and Y at the origin (see Theorem 16.3.1). This completes the proof of the theorem.

��

16.3.3 More Properties of Branches and of Intersection
Multiplicity

Lemma 16.3.4 Let γ be a branch of a curve with centre the point P. Consider the
integer

o(γ) = min{oγ(L) : L is a line containing P}.

Then for all lines L containing P, one has oγ(L) = o(γ), except for only one line
L0 containing P such that oγ(L0) > o(γ).

Proof Consider a parametrization

x = ξ(t) =
∞∑

i=0

ai t
i , y = η(t) =

∞∑

i=0

bi t
i (16.11)

of γ. Take any line L containing the centre P = (a0, b0) of γ. The equation of L is
of the form

�(x, y) = a(x − a0) + b(y − b0) = 0

with (a, b) �= (0, 0). We have

�(ξ(t), η(t)) =
∞∑

i=1

(aai + bbi )t
i .

If r is theminimum positive integer such that an, bn are not both zero, then oγ(L) = r
unless aar + bbr = 0. Thus the condition aar + bbr = 0 identifies the unique line
L0 through P such that oγ(L0) > r . ��

The positive integer o(γ) defined in the statement of Lemma 16.3.4, is called the
order of the branch γ. The branch is called linear if o(γ) = 1. The proof of Lemma
16.3.4 shows that a branch with parametrization (16.11) is linear if and only if either
a1 or b1 is non–zero. The unique line L0 in the statement of Lemma 16.3.4 is called
the tangent of the branch. The positive quantity c(γ) = oγ(L0) − o(γ) is called the
class of the branch.
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Proposition 16.3.5 Let X be a reduced affine plane curve. One has:

(a) if a point P ∈ X has multiplicity m then the sum of the order of the branches of
X with centre at P is m;

(b) a point P ∈ X is smooth for X if and only if it is the centre of a unique linear
branch;

(c) the principal tangents to X at a point P ∈ X coincide with the tangents to the
branches of X with centre P.

Proof (a) A line L through P , which is not tangent to any branch of X with centre
P , has intersection multiplicity i(P; L , X) = ∑

γ o(γ), where the sum is taken over
all branches γ with the centre at P . On the other hand i(P; L , X) = m, except for
the finitely many lines L which are principal tangent lines to X at P . This implies
m = ∑

γ o(γ).
Part (b) is an immediate consequence of (a).
(c) Let m be the multiplicity of P for X . By (a), we have m = ∑

γ o(γ), where
the sum is taken over all branches γ with the centre at P . A line L is a principal
tangent line to X at P if and only if i(P; L , X) > m. As we saw in the proof of
(a), a line L is tangent to one of the branches of X with centre at P if and only if
i(P; L , X) >

∑
γ o(γ) = m. This proves the assertion. ��

Proposition 16.3.6 Let γ be a branch of a reduced affine plane curve with centre
at P and let X be a reduced affine plane curve which has multiplicity n at P. Then
oγ(X) � no(γ) and the equality holds if and only if the tangent to γ at P is not one
of the principal tangents to X at P.

Proof The assertion is trivial if oγ(X) = ∞. So we will assume this is not the case.
Fix coordinates in such a way that P is the origin and the x and y axes are neither

tangent to γ nor among the principal tangents to X at P . Set m = o(γ). Then γ and
the branches γ1, . . . , γh of X at P may be assumed to have parametrizations given
by

x = tm, y = atm + · · · , and x = tmi , y = ai t
mi + · · · , i = 1, . . . , h

with a, ai �= 0, for i = 1, . . . , h and

m1 + · · · + ml = n.

So the tangent line to γ has equation y = ax and the tangent line to γi has equation
y = ai x , for i = 1, . . . , h. The corresponding fractional power series are

η j = ax + · · · , j = 1, . . . ,m

and
ηi,l = ai x + · · · , i = 1, . . . , h, l = 1, . . . ,mi
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where the indices j and l correspond to the m–th and mi–th roots of the unity. Let
f (x, y) = 0 be the equation of X . As we saw in the proof of Theorem 16.3.3, we
have

m∏

j=1

f (x, η j ) =
∏

j=1,...,m,i=1,...,h,l=1,...,mi

(η j − ηi,l)h(x) =

=
∏

j=1,...,m,i=1,...,h,l=1,...,mi

(
(a − ai )x + · · ·

)

=
∏

i=1,...,h,

(
(a − ai )

mmi xmmi + · · ·
)

,

where o(h) = 0. Thus oγ( f ) � m(m1 + · · · + ml) = mn. The equality holds if and
only if a is different from all of a1, . . . , ah , i.e., if and only if the tangent to γ at P
is not one of the principal tangents to X at P . ��

As an immediate consequence we have:

Corollary 16.3.7 Let X and Y be two reduced affine plane curves with no com-
mon components. Suppose P is a point of multiplicity n for X and m for Y . Then
i(P; X,Y ) � mn and the equality holds if and only if X and Y have no common
principal tangent line at P.

16.3.4 Further Interpretation of the Intersection Multiplicity

In this section we give another important interpretation of the intersection multi-
plicity of two curves. First of all we list the main properties that the intersection
multiplicity has:

(a) if X,Y are two affine plane curves and P ∈ A
2 is a point, then the intersection

multiplicity i(P; X,Y ) ∈ N ∪ {∞} and precisely i(P; X,Y ) = 0 if P /∈ X ∩ Y ,
i(P; X,Y ) ∈ N \ {0} if P ∈ X ∩ Y and X and Y have no common component
passing through P , i(P; X,Y ) = ∞ if P sits in a common component of X and
Y ;

(b) i(P; X,Y ) depends only on the components of X and Y containing P;
(c) i(P; X,Y ) is invariant under affinities, i.e., if τ : A2 → A

2 is an affinity then
i(P; X,Y ) = i(τ (P); τ (X), τ (Y ));

(d) i(P; X,Y ) = i(P; Y, X);
(e) i(P; X,Y ) � mP(X)mP(Y ) and the equality holds if and only if X and Y have

no principal tangents in common at P;
(f) if f = ∏

i=1,...,h f nii and g = ∏
j=1,...,k g

m j

j , then
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i(P; f, g) =
∑

i=1,...,h, j=1,...,k

nim j i(P; fi , g j );

(g) for every triple of polynomials f (x, y), g(x, y), h(x, y) one has

i(P; f, g) = i(P; f, g + h f ).

Most of these properties have been proved above. For property (f) see Exercise
16.3.16. Property (g) follows from Theorem 16.3.3.

To prove the main theorem of this section we need some preliminary results.

Lemma 16.3.8 Let I ⊆ An be an ideal. Then Za(I) is a finite set if and only if An/I
is a finitely generated K–vector space. If this is the case, then the number of points
in Za(I) is at most dim(An/I).

Proof Let P1, . . . , Pm be distinct points in Za(I). We can choose polynomials
f1, . . . , fm ∈ An such that fi (Pj ) = δi j for i, j = 1, . . . ,m, where δi j is the Kro-
necker symbol (we leave to the reader the easy task to prove that there are suchpolyno-
mials). Denote by f̄i the class of fi in An/I, for i = 1, . . . ,m. If

∑m
i=1 ti f̄i = 0, with

t1, . . . , tm ∈ K, then
∑m

i=1 ti fi ∈ I, so t j = ∑m
i=1 ti fi (Pj ) = 0, for all j = 1, . . . ,m.

This yields that f̄1, . . . , f̄m are linearly independent over K. Thus dim(An/I) � m,
and therefore dim(An/I) is infinite dimensional if Za(I) is not finite.

Suppose now Za(I) to be finite, consisting of the distinct points P1, . . . , Pm . Set
Pi = (pi1, . . . , pin) for i = 1, . . . ,m. Define

g j =
m∏

i=1

(x j − pi j ), for j = 1, . . . , n.

Then g j ∈ Ia(Za(I)), for j = 1, . . . , n. So by the Hilbert Nullstellensatz, there is
a positive integer h such that ghj ∈ I, for j = 1, . . . , n. Denote with an upper bar
the images of polynomials in An/I. We have that ḡhj = 0, hence x̄mh

j is a K–linear

combination of 1, x̄ j , . . . , x̄
mh−1
j , for j = 1, . . . , n. It follows that for any s � mh,

x̄ sj is aK–linear combination of 1, x̄ j , . . . , x̄
mh−1
j , for j = 1, . . . , n. This proves that

the set
{x̄ l11 , . . . , x̄ lnn : l1, . . . , ln < mh}

generates An/I. ��
Next we make a definition. Let A be a ring and let I and J be two ideals of A. In

general one has
IJ ⊆ I ∩ J . (16.12)

The ideals I e J are said to be comaximal if I + J = A.



16.3 Intersections of Affine Curves 235

Lemma 16.3.9 Let A be a ring and let I and J be two comaximal ideals of A. One
has:

(a) IJ = I ∩ J ;
(b) In and J m are comaximal for any pairs of positive integers n,m.

Moreover, if I1, . . . , Ih are ideals in A such that for any i ∈ {1, . . . , h} the ideals
Ii and Ji = ⋂

j �=i I j are comaximal, then for any positive integer n one has

In
1 ∩ . . . ∩ In

h = (I1 · · · Ih)n = (I1 ∩ . . . ∩ Ih)n.

Proof (a) Since A = I + J , we have

I ∩ J = (I ∩ J )A = (I ∩ J )(I + J ) =
= (I ∩ J )I + (I ∩ J )J ⊆ J I + IJ = IJ ,

which, with (16.12), proves the assertion.
(b) Since A = I + J we have a relation of the form 1 = u + v, with u ∈ I and

v ∈ J . Then 1 = 1n = (u + v)m and expanding the power we see that 1 ∈ I + J m ,
i.e., I and J m are comaximal. Hence we have 1 = u + v, with u ∈ I and v ∈ J m .
Again 1 = 1n = (u + v)n and expanding we see that 1 ∈ In + J m , hence In and
J m are comaximal.

To prove the last assertion, we proceed by induction on h. For h = 2 and for all
n, by (a) we have In

1 ∩ In
2 = In

1In
2 because In

1 and In
2 are comaximal by (b). On

the other hand we have the trivial identity In
1In

2 = (I1I2)n and finally In
1 ∩ In

2 =
(I1I2)n = (I1 ∩ I2)n .

Now we assume the assertion is true for a number of ideals smaller than h. We
have In

1J n
1 = In

1 ∩ J n
1 because In

1 and J n
1 are comaximal by the hypothesis and by

(b). For all i ∈ {2, . . . , h} we still have that Ii and ⋂
2� j �=i I j are comaximal. So we

can apply induction and we have

In
1J n

1 = In
1 (I2 ∩ · · · ∩ Ih)n = In

1 (I2 · · · Ih)n = (I1 · · · Ih)n.
On the other hand, again by induction, we have

In1J n
1 = In1 ∩ J n

1 = In1 ∩ (I2 ∩ . . . ∩ Ih)n = In1 ∩ (In2 ∩ . . . ∩ Inh ) = In1 ∩ . . . ∩ Inh .

Finally, by (a) we have

In
1J n

1 = (I1J1)
n = (I1 ∩ J1)

n = (I1 ∩ . . . ∩ Ih)n.

The assertion follows. ��
Lemma 16.3.10 Let I be an ideal of An such that Za(I) = {P1, . . . , Pm} is finite.
Set Oi = OAn ,Pi , for i = 1, . . . ,m. Then there is a natural isomorphism
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φ : An/I →
m∏

i=1

Oi/IOi .

In particular

dimK(An/I) =
m∑

i=1

dimK(Oi/IOi ),

and, if Za(I) = {P}, then An/I is isomorphic to OAn ,P/IOAn ,P .

Proof Denote by mi the maximal ideal in An corresponding to the point Pi , for
i = 1, . . . ,m. Set R = An/I and Ri = Oi/IOi , for i = 1, . . . ,m. There are natural
homomorphisms φi : R → Ri , for i = 1, . . . ,m, and these induce a homomorphism
φ : R → ∏m

i=1 Ri .
By the Nullstellensatz, we have rad(I) = ⋂m

i=1 mi . It is immediate that there is a
positive integer h such that (

⋂m
i=1 mi )

h = rad(I)h ⊆ I.Moreover, let i ∈ {1, . . . ,m}
and consider the ideals mi and

⋂
j �=i m j which are clearly comaximal. Then, by

Lemma 16.3.9, we have

m⋂

i=1

mh
i = (m1 · · ·mm)h =

(
m⋂

i=1

mi

)h

⊆ I.

Now we proceed with the proof of the assertion. For each i = 1, . . . ,m, fix a
polynomial fi ∈ An such that, for all j = 1, . . . ,m, one has fi (Pj ) = δi j (see the
proof of Lemma 16.3.8). We set gi = 1 − (1 − f hi )h , for i = 1, . . . ,m. We have
gi = f hi pi , for some suitable polynomial pi , for i = 1, . . . ,m. So we have gi ∈ mh

j
if 1 � i, j � m and i �= j . Thus, if 1 � i, j � m and i �= j we have

gig j ∈
m⋂

l=1

mh
l ⊆ I.

Moreover, for every j = 1, . . . ,m, we have

1 −
m∑

i=1

gi = (1 − g j ) −
∑

i �= j

gi ∈
m⋂

l=1

mh
l ⊆ I.

Furthermore

gi − g2i = gi (1 − f hi )h ∈
( ⋂

i �= j

mh
j

)
· mh

i ⊆ I.

So if we denote by gi the class of gi in R, for i = 1, . . . ,m, we have gig j = δi jgi
and

∑m
i=1 gi = 1.

Now we claim that, if g ∈ An is such that g(Pi ) �= 0 for some i = 1, . . . ,m, then
there is a t ∈ R such that gi = tg, where g is the class of g in R.
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To prove the claim, assume that g(Pi ) = 1. Set q = 1 − g so that q ∈ mi . We have

gi − gi q
h = gi (1 − qh) = gi (1 − q)(1 + q + · · · + qh−1) =

= (1 − q)(gi + gi q + · · · + gi q
h−1) = g(gi + gi q + · · · + gi q

h−1)

and qhgi ∈ ⋂m
l=1 m

h
l ⊆ I. So in R we have the relation

gi = g(gi + giq + · · · + giq
h−1)

with q the class in R of q. The claim follows by setting t = gi + giq + · · · + giq
h−1.

Finally we have to prove that φ is injective and surjective. First we prove that φ
is injective.

Suppose we have a polynomial f ∈ An such that its class f in R is such that
φ(f) = 0. By the definition of localization this means that for any i = 1, . . . ,m,
there is a polynomial ui ∈ An such that ui (Pi ) �= 0 and that ui f ∈ I, so that ui f = 0
in R (again, ui is the class of ui in R). By the above claim, for every i = 1, . . . ,m,
we can find a ti ∈ R such that gi = tiui . Then we have

f =
m∑

i=1

gi f =
m∑

i=1

tiui f = 0

as wanted.
Finally, let us prove the φ is surjective. Since gi (Pi ) = 1 for all i = 1, . . . ,m,

then φi (gi ) is invertible in Ri . As φi (gi )φ(g j ) = φi (gig j ) = 0, we have φi (g j ) = 0,
for i, j = 1, . . . ,m with i �= j . Thus

φi (gi ) = φi

⎛

⎝
m∑

j=1

g j

⎞

⎠ = φi (1) = 1.

Now take an element x = (x1, . . . , xm) ∈ ∏m
i=1 Ri , so that for all i = 1, . . . ,m we

may write xi = ξi
ηi
, where ηi is the class of a polynomial ei such that ei (Pi ) �= 0. We

will denote by xi an element in R such that φi (xi ) = ξi (this is possible because φi

is clearly surjective for all i = 1, . . . ,m). By the claim, for all i = 1, . . . ,m, we can
find a ti ∈ R such that gi = tiei , where ei is the class of ei in R. We have

φi (ti )ηi = φi (tiei ) = φi (gi ) = 1, for i = 1, . . . ,m.

Then we have

xi = ξi

ηi
= ξiφi (ti ) = φi (ti xi ), for i = 1, . . . ,m.

and therefore



238 16 Affine Plane Curves

φi

⎛

⎝
m∑

j=1

t j x jg j

⎞

⎠ = φi (ti xi ) = ξi

ηi
= xi , for i = 1, . . . ,m.

Hence φ(
∑m

j=1 t j x jg j ) = x , as desired. ��
Lemma 16.3.11 Let V ⊆ A

n be an affine variety, let P be a point of V and let
J ⊆ An be an ideal containing Ia(V ). Let J ′ ⊆ A(V ) be the image of J . There is
a natural homomorphism

φ : OAn ,P/JOAn ,P → OV,P/J ′OV,P

which is an isomorphism.
In particular OAn ,P/Ia(V )OAn ,P is isomorphic to OV,P .

Proof The map φ sends the class f̄ of a function f inOAn ,P/JOAn ,P in the class of
the same function inOX,P/J ′OX,P . The map is easily seen to be well defined, and to
be a surjective homomorphism. Let us prove that it is injective. Indeed, if φ( f̄ ) = 0,
this means that the class of f belongs to J ′OX,P , and this implies that the class of
f belongs to JOAn ,P , hence f̄ = 0. ��
We are now ready to prove the:

Theorem 16.3.12 Let X,Y be two affine plane curves with respective equations
f (x, y) = 0 and g(x, y) = 0 and let P ∈ A

2 be a point. Then

i(P; X,Y ) = dimK(OA2,P/( f, g)) (16.13)

where we abuse notation and denote by f and g their classes in OA2,P .

Proof The proof consists of two main steps. In the first step we prove uniqueness
of intersection multiplicity, i.e., that however given plane curves X,Y and a point
P ∈ A

2, there is a unique way to define i(P; X,Y ) so that properties (a)–(g) listed
above are verified. The second step consists in proving that if one defines i(P; X,Y )

as in (16.13), then properties (a)–(g) are verified.

We proceed with step 1. Suppose that, for every plane curves X,Y and a point
P ∈ A

2, we have the definition of a number i(P; X,Y ) so that properties (a)–(g) are
verified. We will see that i(P; X,Y ) is uniquely determined. First of all by property
(c) we may assume that P is the origin. If X and Y contain a component through
P , then i(P; X,Y ) = ∞ by (a). So we may assume that P sits in no common
component of X and Y . Then, still by (a), we have i(P; X,Y ) = 0 if and only if
P /∈ X ∩ Y . We argue by induction and suppose we uniquely determine the case in
which i(P; X,Y ) < n, for n ∈ N, andwe prove thatwe can uniquely determinewhen
i(P; X,Y ) = n. Consider the polynomials f (x, 0), g(x, 0) ∈ K[x] and assume their
respective degrees are r and s, where r or s are assumed to be 0 if the polynomial
vanishes. We may suppose that r � s by (d).
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Case 1: r = 0. Then y divides f , so we may write f = yh. By (f) we have

n = i(P; f, g) = i(P; y, g) + i(P; h, g).

Note that g(x, 0) cannot be identically 0, otherwise g is also divisible by y, and X
and Y have a common component, i.e., the x axis, passing through P . So we can
write

g(x, 0) = xl(a0 + a1x + · · · ), with a0 �= 0 and l > 0.

Then
i(P; y, g) = i(P; y, g(x, 0)) = l

by (b), (e), (f) and (g). Then i(P; h, g) = i(P; f, g) − i(P; y, g) = n − l < n, and
by induction we can uniquely define i(P; h, g), so we can uniquely define i(P; f, g).
Case 2: r > 0. Multiply f and g by constants so to make f (x, 0) and g(x, 0)monic.
Let h = g − xs−r f . Then

i(P; f, g) = i(P; f, h)

by (g). Moreover deg(h(x, 0)) := t < s. We can repeat this process finitely many
times, perhaps interchanging the role of f and g if t < r , so that we end up with
two polynomials v(x, y), w(x, y) such that i(P; v,w) = i(P; f, g) and v,w fall in
Case 1. This ends step 1.

Next we go to step 2. It is clear that (b), (c), (d) and (g) are satisfied. We may
again assume that P is the origin and that all components of X and Y pass through
P . To ease notation, we set O = OA2,P .

If X and Y have no common irreducible component Z , then by Lemma 16.3.10,
OA2,P/( f, g) is a finitely generated K–vector space. If X and Y have a common
component, then f and g have a non–constant irreducible factor h such that Z =
Za(h), so ( f, g) ⊂ (h). Hence there is a surjective homomorphism O/( f, g) →
O/(h). We show that O/(h) is infinite dimensional over K, which implies that also
O/( f, g) is infinite dimensional over K. By Lemma 16.3.11, O/(h) is isomorphic
toOZ ,P and A(Z) ⊆ OZ ,P . By Lemma 16.3.8, A(Z) is infinite dimensional overK,
as wanted. This proves (a).

To prove (f) it suffices to prove that, given polynomials f, g, h, we have

dimK(O/( f, gh)) = dimK(O/( f, g)) + dimK(O/( f, h)). (16.14)

We may assume that f and gh have no common non–constant factor, because oth-
erwise (16.14) is trivially true. We have a natural surjective homomorphism

φ : O/( f, gh) → O/( f, g).

Then we define the K–linear map
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ψ : O/( f, h) → O/( f, gh)

in the following way: given t ∈ O, we set ψ(t̄) = tg, where the bar denotes the class
modulo the appropriate ideals. We claim that ψ is injective and that im(ψ) = ker(φ).
This will imply (16.14).

Let us prove the claim. The proof that im(ψ) = ker(φ) is trivial. So we focus on
proving the injectivity of ψ. We keep the above notation and suppose that ψ(t̄) = 0,
i.e., tg = 0. This means that tg = u f + vgh, where u, v ∈ O. Fix a polynomial w ∈
A2 such that w(P) �= 0, and set a = wu, b = wv, c = wt , which can be considered
as polynomials in A2. Then we have g(c − bh) = a f in A2. Since f and g have no
common factor, f divides c − bh, hence we have a relation of the sort c − bh = d f .
Since w is invertible in O, we have

t = c

w
= h

b

w
+ d

w
f

so that t̄ = 0 as wanted.
Finally we prove that property (e) holds. We set m = mP(X), n = mP(Y ). Let

m = (x, y) be the maximal ideal in A2 corresponding to P which is the origin.
Consider the following linear maps of K–vector spaces

A2/m
n × A2/m

m λ−→ A2/m
m+n μ−→ A2/(m

m+n, f, g)

O/( f, g)
π−→ O/(mm+n, f, g)

and
A2/(m

m+n, f, g)
α−→ O/(mm+n, f, g)

where μ,π and α are the natural ring homomorphisms, and λ is defined by setting
λ(ā, b̄) = a f + bg, where a, b are polynomials in A2 and the bar denotes as usual
the class modulo the appropriate ideal. Note that μ and π are clearly surjective, and
α is an isomorphism by Lemma 16.3.10. It is moreover clear that im(λ) = ker(μ).
Then we have

dimK(A2/m
m) + dimK(A2/m

n) � dim(ker(μ))

with equality holding if and only if λ is injective. Moreover

dimK(A2/(m
m+n, f, g)) = dimK(A2/m

m+n) − dim(ker(μ)).

Hence we get
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dimK(O/( f, g)) � dimK(O/(mm+n, f, g)) =
= dimK(A2/(m

m+n, f, g)) �
� dimK(A2/m

m+n) − dimK(A2/m
m) − dimK(A2/m

n) = nm.

(16.15)
Indeed, for all positive integers h one has dimK(A2/m

h) = h(h+1)
2 . In fact for all

positive integers h we have a surjective homomorphism

rh : f ∈ A2 → f0 + · · · + fh−1 ∈ A2,h−1

where A2,h−1 is the vector space of polynomials in A2 of degree at most h − 1,
and f = f0 + f1 + · · · is the decomposition in homogeneous components. One has
ker(rh) = mh , hence A2/m

h is isomorphic to A2,h−1 whose dimension is h(h+1)
2 .

This proves the first part of property (e). One has dimK(O/( f, g)) = nm if and
only if both inequalities in (16.15) are equalities. The first inequality is an equality if
and only if π is an isomorphism, i.e., if and only if mn+mO ⊆ ( f, g)O. The second
is an equality if and only if λ is injective. We finish by proving the following:

Claim:

(i) if X and Y have no common principal tangent lines, thenmsO ⊆ ( f, g)O for all
s � n + m − 1;

(ii) λ is injective if and only if X and Y have distinct principal tangent lines.

Proof of (i). First of all we prove that if t � 0, then mtO ⊆ ( f, g)O. This is a
consequence ofHilbert’sNullstellensatz. In fact set Za( f, g) = {P, Q1, . . . , Ql}. Let
us choose a polynomial h such that h(P) �= 0 and h(Qi ) = 0 for i = 1, . . . , l. Then
xh and yh are in Ia(Za( f, g)), so there is a positive integer r such that (xh)r , (yh)r ∈
( f, g) ⊂ A2. Since h is invertible in O, then xr , yr are in ( f, g)O, and this implies
that m2rO ⊆ ( f, g)O.

Next we let r1, . . . , rm be equations of the principal tangents to X at P and
�1, . . . , �n be equations of the principal tangents to Y at P (in r1, . . . , rm and
�1, . . . , �n there could be repetitions). We set r0 = �0 = 1. Then we define ri for
all i > m by setting ri = rm and similarly � j = �n for all j > n. Then for all i, j � 0
we set si j = r1 · · · ri�1 · · · � j .

We claim that the set �d = {si j : i + j = d} is a basis for the vector space S1,d
of dimension d + 1 of all homogeneous polynomials of degree d in x, y. Since �d

consists of d + 1 elements it suffices to show that the elements of�d are independent.
Suppose we have a relation of the form

a0s0,d + a1s1,d−1 + · · · + adsd,0 = 0 with a0, . . . , ad ∈ K.

Since r1 appears as a factor of s1,d−1, . . . , sd,0, it has to divide a0s0,d . But since it
does not appear as a factor in s0,d , then a0 = 0. So the above relation reduces to

a1s1,d−1 + · · · + adsd,0 = 0
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and since r1 appears a factor of s1,d−1, . . . , sd,0, we have

a1
s1,d−1

r1
+ · · · + ad

sd,0

r1
= 0.

Nowwe have that r2 appears as a factor in
s2,d−1

r1
, . . . ,

sd,0

r1
, but not in s1,d−1

r1
. By arguing

as above, this implies that a1 = 0. Going on in this way we have a0 = · · · = ad = 0,
which proves the independence of the elements of �d .

Going back to the proof of (i), it suffices to prove that si j ∈ ( f, g)O (we abuse
notation here and denote by si j also its class inO), as soon as t = i + j � n + m − 1.
We do this by descending induction on t , given the fact that, as we saw, the assertion
is true for t � 0. So we assume that the assertion is true for t + ε, for all ε ∈ N \ {0}
and prove it for t .

Note that t = i + j � n + m − 1 implies that either i � m or j � n. Suppose
that i � m (the argument is the same otherwise). Then si j = sm0a, where a is a
homogeneous polynomial of degree i + j − m. Note that sm0 can be assumed to be
equal to the homogeneous component of minimal degree of f , hence f = sm0 + f ∗,
where all terms of f ∗ have degree at leastm + 1. Then si j = a( f − f ∗) = a f − a f ∗,
where each term of a f ∗ has degree at least (m + 1) + (i + j − m) = i + j + 1 =
t + 1. By induction we have that the class of a f ∗ is in ( f, g)O, hence si j ∈ ( f, g)O
as wanted for the proof of (i).

Finally we prove (ii). Suppose that λ(ā, b̄) = a f + bg = 0. This means that a f +
bg has only terms of degree at least n + m. Write a and b as the sum of their
homogeneous components

a = ar + ar+1 + · · · , b = bs + br+1 + · · · , with ar , bs �= 0.

We want to prove that r � n and s � m, because this implies that (ā, b̄) = (0, 0) as
wanted for the injectivity of λ. Suppose, to fix the ideas, that r < n (otherwise the
argument is similar). We have

a f + bg = ar fm + bsgn + · · ·

where · · · stay as usual for higher order terms. Since a f + bg has only terms of
degree at least n + m, and ar fm has degree r + m < n + m, we have r + m = s + n
and ar fm = −bsgn . But fm and gn have no common factor, so gn has to divide ar ,
which is impossible because r < n. So r � n and s � m as wanted.

Conversely, suppose there is a common principal tangent r = 0 to X and Y
at P . Then we may write fm = r f ′, gn = rg′. Then (ḡ′,− f̄ ′) is non–zero and
λ(ḡ′,− f̄ ′) = 0, so λ is not injective. This ends the proof of (ii) and the proof of
the theorem. ��

To state the next result, we first give a definition. Let (A,m) be a DVR, so that
there is a discrete valuation v defined onQ(A) and A is the valuation ring of v. Given
g ∈ A, one has v(g) = n ∈ N. We define n to be the order of g in A, and we write
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n = oA(g), or simply n = o(g) if there is no danger of confusion. Remember that
m = (u). By looking at the proof of Theorem 14.2.11, we see that n = o(g) is the
unique positive integer such that g = wun with w /∈ m.

If X is an affine plane curve and P ∈ X is a smooth point for X , then OX,P is a
DVR (see again Theorem 14.2.11). If g ∈ OX,P , we set

oX,P(g) := oOX,P (g).

If g ∈ K[x, y], then we will abuse notation and denote by g its class in OX,P .

Proposition 16.3.13 Let X be an irreducible affine plane curve with equation
f (x, y) = 0 and P a smooth point of X. Let Y be a curve with equation g(x, y) = 0.
Then

i(P; X,Y ) = oX,P(g).

Proof By Exercise 16.3.29 one has oX,P(g) = dimK(OX,P/(g)). On the other hand
we claim that

OX,P/(g) = OA2,P/( f, g) (16.16)

whence the assertion follows by Theorem 16.3.12. To prove (16.16), we first may
assume that P is the origin, then we note that

OX,P = A(X)mP

where mP is the maximal ideal of A(X) corresponding to P . One has A(X) =
K[x, y]/( f ) and mP = (x, y). So

OX,P = (K[x, y]/( f ))(x,y)
and it is easy to check that

(K[x, y]/( f ))(x,y) = (K[x, y](x,y))/( f ) = OA2,P/( f ).

The assertion follows. ��
Exercise 16.3.14 Consider the two affine plane curves X and Y with equations

f (x, y) = x3 + y2 − 2xy = 0, g(x, y) = x2 − x2y + y3 = 0.

Find the intersection multiplicity of X and Y at the origin and verify that it is equal to
∑

γ′ oγ( f ) =∑
γ oγ(g), where γ′ [resp. γ] runs through all branches of Y [resp. X ] at the origin.

Exercise 16.3.15 Consider the two affine plane curves X and Y with equations

f (x, y) = x3 + y3 − 2xy = 0, g(x, y) = 2x3 − 4x2y + 3xy2 + y3 − 2y2 = 0.

Find the intersections of X andY and the corresponding intersectionmultiplicities. Find the branches
at the origin of X and Y .
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Exercise 16.3.16 * Let X and Y be two affine plane curves and P ∈ A
2 a point. Let X1, . . . , Xh

[resp. Y1, . . . , Yk ] be the components of X of respective multiplicities n1, . . . , nh [resp. of Y of
respective multiplicities m1, . . . ,mk ] passing through P . Prove that

i(P; X, Y ) =
∑

i=1,...,h, j=1,...,k

nim j i(P; Xi , Y j ).

Exercise 16.3.17 Consider two affine plane curves X and Y of degrees n and m respectively, with
no common factor. Prove that the sum of the orders of X at all branches of Y is at most nm.

Exercise 16.3.18 Consider the affine plane curve X with equation

xn + ax − y = 0

with a ∈ K and n � 2. Prove that X is irreducible and smooth, passing through the origin and
compute the intersection multiplicity of X with its tangent line at the origin.

Exercise 16.3.19 Consider the affine plane curve X with equation

y = a0 + a1x + · · · + anx
n

with a0, . . . , an ∈ K, an �= 0 and n � 2. Prove that X is irreducible and smooth, passing through
the point P = (0, a0), and compute the intersection multiplicity of X with its tangent line at P .

Exercise 16.3.20 Consider the affine plane curve X with equation

(x2 + y2)2 − 4(x2 + y2)(15x2 + 11y2) + 36(25x2 + 13y2) = 0.

Determine its tangent lines at its intersection points with the y axis.

Exercise 16.3.21 A smooth point P of a curve X is said to be a flex if the linear branch of which
it is the centre has class n � 2, in which case it is called, more precisely, an (n − 1)–flex (if n = 2
it is called a simple flex).

Determine the flexes of the curve with equation

x3 − a(x2 − y2) = 0

with a ∈ K
∗.

Exercise 16.3.22 Consider the rational map

φ : t ∈ A
1 ���

( t

1 + t3
,

t2

1 + t3

)
∈ A

2.

Prove that φ is dominant on a curve X of degree 3. Determine the singular points of X , the principal
tangents there, and the flexes of X .

Exercise 16.3.23 Prove that the class of a branch γ is ∞ if and only if γ is a branch of a line.

Exercise 16.3.24 The branches of order 2 are called quadratic cusps. A quadratic cusp with class
1 is called an ordinary cusp, a quadratic cusp with class 2 is called a ramphoid cusp, a quadratic
cusp of class n � 1 is called an n–cusp. Write down standard parametrizations of an n–cusp with
centre the origin.

Exercise 16.3.25 * Let P be an ordinary n–tuple point for the curve X . Prove that P is the centre
of exactly n linear branches for X .
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Exercise 16.3.26 * Let X and Y be two reduced affine plane curves with no common components.
Suppose P is an ordinary point of multiplicity n for X , centre of the branches γ1, . . . , γn and there
is some positive integer m � n such that oγi (Y ) � m, for i = 1, . . . , n. Prove that P is a point of
multiplicity at least m for Y .

Exercise 16.3.27 * Let γ, γ′ be two branches. We define the intersection multiplicity of γ and γ′,
which will be denoted by i(γ, γ′), in the following way.

If γ, γ′ have distinct centres, we define i(γ, γ′) = 0, If γ = γ′, we define i(γ, γ′) = ∞. If γ, γ′
have the same centre but they are different, we proceed as follows. First we may assume that their
common centre is the origin. Then we may assume that they are given by parametrizations

x = tn, y = a1t + a2t
2 + · · · and x = tm , y = b1t + b2t

2 + · · · .

Consider the corresponding fractional power series

ξi =
∞∑

j=1

a jε
j
i x

j
n , with εni = 1, i = 1, . . . , n

and

ηl =
∞∑

j=1

b jη
j
l x

j
m , with ηml = 1, l = 1, . . . ,m.

Then we define i(γ, γ′) = o(
∏

i=1,...,n,l=1,...,m(ξi − ηl )).
Prove the following facts:

(a) if γ, γ′ have the same centre, then i(γ, γ′) � o(γ)o(γ′) and the equality holds if and only if
the two branches have distinct tangent lines;

(b) if X is an affine curve and γ is a branch, then oγ(X) equals the sum of i(γ, γ′), with γ′ varying
among all branches of X ;

(c) if X and Y are two reduced affine curves with no common components, and if P ∈ X ∩ Y ,
then i(P; X, Y ) is the sum of i(γ, γ′) with γ [resp. γ′] varying among all branches of X [resp.
of Y ] with centre P .

Exercise 16.3.28 Let P be a double point for a curve X . Prove that either P is the centre of a
unique quadratic cuspidal branch of order n � 1, or P is the centre of exactly two linear branches
which have intersection multiplicity n � 1. In the latter case, when n = 1, we have a node. If n > 1
we say that the point is a n–tacnode. If n = 2 one simply says it is a tacnode.

Write down the equation of an irreducible curve with a tacnode at the origin.

Exercise 16.3.29 * Let (A,m) be a DVR and take g ∈ A. Prove that oA(g) = dimA/m(A/(g)).

Exercise 16.3.30 *Let X ,Y be two affine plane curveswith equations f (x, y) = 0 and g(x, y) = 0
respectively, that have no common components. Prove that

∑

P∈X∩Y
i(P; X, Y ) = dim(A2/( f, g)).

16.4 Solutions of Some Exercises

16.3.16 Let f (x, y) = 0 be the equation of X and let fi (x, y) = 0 be the equation of Xi for
i = 1, . . . , h. For each j = 1, . . . , k consider the branches γ j,1, . . . , γ j,k j of Y j with centre P .
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Taking into account Exercise 15.3.9, we see that the branches of Y with centre P are γ jl , with
j = 1, . . . , k and l = 1, . . . , k j , each with multiplicity m j . By Theorem 16.3.3 we have

i(P; X, Y ) =
∑

j=1,...,k,l=1,...,ki

m j oγ jl ( f ) =

=
∑

j=1,...,k,l=1,...,ki

m j oγ jl ( f
n1
1 · · · f nhh ) =

=
∑

j=1,...,k,l=1,...,ki ,i=1,...,h

nim j oγ jl ( fi ) =

=
∑

i=1,...,h, j=1,...,k

nim j

( ∑

l=1,...,ki

oγ jl ( fi )
)

=

=
∑

i=1,...,h, j=1,...,k

nim j i(P; Xi , Y j )

as wanted.
16.3.26 Suppose by contradiction that P has multiplicity μ < m for Y . By
Proposition 16.3.6, the distinct tangent lines to γ1, . . . , γn at P must be also among the princi-
pal tangent lines to Y at P . This is a contradiction because Y , having multiplicity μ < m, can have
at most μ principal tangent lines at P .

16.3.30 Apply Lemma 16.3.10.



Chapter 17
Projective Plane Curves

17.1 Some Generalities

17.1.1 Recalling Some Basic Definitions

Let X ⊂ P
2 be an effective divisor of degree d, with equation f (x0, x1, x2) = 0,

where f is a homogeneous polynomial of degree d, which we will call a projective
plane curve or simply a curve. Recall from Sect. 1.6.5 that if we have the decompo-
sition in distinct irreducible components

f = f h1
1 · · · f hn

n

then the curves Xi = Z p( fi ), i = 1, . . . , n, are called the irreducible components of
X and one writes X = ∑n

i=1 hi Xi , where hi is called the multiplicity of Xi in X , for
i = 1, . . . , n. Recall form Exercises14.1.10 and 14.1.11 that if P is a point of X we
defined the multiplicity m P(X) of P for X . We defined also the tangent cone T CX,P

of X at P . This is the union of m = m P(X) lines through P , each counted with a
certain multiplicity, that are called the principal tangent lines to X at P .

If P ∈ U0
∼= A

2, then the affine equation of X0 = X ∩ U0 in U0 is

φ(x, y) = f (1, x, y) = 0,

and m P(X0) = m P(X). Moreover the projective closure of the tangent cone to X0

at P (see Exercise14.1.12) coincides with the tangent cone T CX,P of X at P .

17.1.2 The Bézout Theorem

Recall the Bezout Theorem, that says that if X, Y are curves in P
2 with no common

components, of degrees n and m, then
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nm =
∑

P∈X∩Y

i(P; X, Y ).

As for the notion of intersection multiplicity of two curves X, Y at a point P , we
may always assume that P ∈ U0

∼= A
2, consider the affine curves X0 = X ∩ U0,

Y0 = Y ∩ U0, and then
i(P; X, Y ) = i(P; X0, Y0)

andwecan carry over to i(P; X, Y ) all the considerationswemade in the affine case in
Sect. 16.3. As immediate consequences of the properties of intersection multiplicity,
we have the following:

Lemma 17.1.1 Let X, Y be projective plane curves of degrees n, m. Then:

(a) if X, Y have no common components, one has

nm �
∑

P∈X∩Y

m P(X)m P(Y );

(b) if X and Y intersect exactly in nm points, then these points are smooth for both
X and Y and X and Y intersect transversely there, i.e., they have no common
tangent line at those points;

(c) if X and Y have more than nm points in common, then they have a common
component.

17.1.3 Linear Systems

Recall from Sect. 1.6.5 the general notion of linear system, which applies to linear
systems of projective plane curves of degree d. Such a linear system of dimension r
is a projective subspace of dimension r of L2,d . Note that

dim(L2,d) = d(d + 3)

2
.

Projectivities send linear systems of plane curves of degree d to linear systems of the
same dimension of plane curves of the same degree d. Recall from Exercise1.6.31
that, if P is any point of P

2, the set L2,d(−P) of all plane curves of degree d
containing P is a linear systemof codimension 1 inL2,d (the notation adopted here for
L2,d(−P) is slightly different from the one introduced on Sect. 11.4). We also recall
from Exercise1.6.32, that if P1, . . . , Ph ∈ P

2 are distinct points and L2,d(−P1 −
· · · − Ph) is the set of all plane curves of degree d containing P1, . . . , Ph , then
L2,d(−P1 − · · · − Ph) is a linear system of codimension at most h, and that for any
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h ∈ N there are points P1, . . . , Ph such that

dim(L2,d(−P1 − . . . − Ph)) = max

{

−1,
d(d + 3)

2
− h

}

(recall that dimension −1 means empty system).
Now we want to extend these results. Fix a point P of P

2, fix a positive integer m
and consider the set L2,d(−m P) consisting of all curves of degree d in P

2 having in
P multiplicity at least m. Of course L2,d(−m P) is empty if m > d.

Lemma 17.1.2 In the above setting, if m � d then L2,d(−m P) is a linear system
of dimension

dim(L2,d(−m P)) = d(d + 3)

2
− m(m + 1)

2
.

Proof Acting with a projectivity we may assume that P = [1, 0, 0]. Then passing
to non-homogeneous coordinates the equation of an element of L2,d(−m P) is of the
form φ(x, y) = 0, where φ has homogeneous decomposition of the form

φ(x, y) = φm(x, y) + · · · + φd(x, y)

with φi (x, y) homogeneous of degree i , for i = m, . . . , d. Namely, all the homo-
geneous components of φ of degree i < m vanish. The linear combination of two
such polynomials is of the same type, so this proves that L2,d(−m P) is a linear
system. To prove the dimension statement, notice that for any i = 0, . . . , m − 1, the
polynomial φi has i + 1 coefficients. Therefore to be in L2,d(−m P) is equivalent to
the vanishing of

1 + 2 + · · · + m = m(m + 1)

2

distinct coefficients of φ. These coefficients can be interpreted as distinct homoge-
neous coordinates in L2,d , and this proves the assertion. �

Let now P1, . . . , Ph ∈ P
2 be distinct points, and let m1, . . . , mh be positive inte-

gers. We denote by L2,d(−m1P1 − · · · − mh Ph) the set of all curves of degree d
having at P1, . . . , Ph points of multiplicity at least m1, . . . , mh respectively. With
the same argument as in the proof of Lemma17.1.2 one proves that L2,d(−m1P1 −
· · · − mh Ph) is a linear system and it is easy to see (we leave it as a simple exercise
for the reader) that

dim(L2,d(−m1P1 − · · · − mh Ph)) � d(d + 3)

2
−

h∑

i=1

mi (mi + 1)

2
. (17.1)

We will need the following:
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Lemma 17.1.3 Let X be an irreducible curve of degree n in P
2. One has

(n − 1)(n − 2)

2
�

∑

P∈X

m P(X)(m P(X) − 1)

2
.

Proof By Exercise17.3.8 we have

r := (n − 1)(n + 2)

2
−

∑

P∈X

m P(X)(m P(X) − 1)

2
>

>
n(n − 1)

2
−

∑

P∈X

m P(X)(m P(X) − 1)

2
� 0.

Then there is a curve Y of degree n − 1 such that in each singular point P of X has
multiplicity at least m P(X) − 1 and moreover it passes through Q1, . . . , Qr further
distinct points of X . Since X is irreducible and Y has degree one less than the degree
of X , then X and Y have no common component, hence by the Bézout Theorem
applied to X and Y we have

n(n − 1) �
∑

P∈X

m P(X)(m P(X) − 1) + r �

�
∑

P∈X

m P(X)(m P(X) − 1)

2
+ (n − 1)(n + 2)

2

whence the assertion follows. �

Exercise 17.1.4 * Let P1, . . . , Ph ∈ P
2 be distinct points, and let m1, . . . , mh be positive integers.

Assume that

d �
( h∑

i=1

mi

)
− 1.

Then equality holds in (17.1).

17.2 M. Noether’s Af + Bg Theorem

In Sect. 12.4we introduced the notion of cycle of a variety and in particular of 0-cycle.
In the case of P

2 a 0-cycle is an element of the free abelian group D2,0 generated by
the points of P

2, i.e., it is an object of the form

C =
∑

P∈P2

nP P

with nP ∈ Z and nP �= 0 for only finitely many points P ∈ P
2. The integer
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deg(C) =
∑

P∈P2

nP

is called the degree of C. In D2,0 there is a partial ordering given by

∑

P∈P2

nP P �
∑

P∈P2

m P P if and only if nP � m P for all P ∈ P
2.

Given two curves X, Y in P
2 with no common components of degrees n and m,

we can define the intersection cycle of X and Y as

X · Y =
∑

P∈P2

i(P; X, Y )P.

The Bézout theorem says that deg(X · Y ) = nm.
The following properties are easy to verify:

(a) if the curves X and Y have no common components, then X · Y = Y · X ;
(b) if the curves X and Y + Z have no common components, X · (Y + Z) = X ·

Y + X · Z ;
(c) If the curves X, Y, Z have equations f = 0, g = 0, g + a f = 0 respectively, and

they have no common components, then X · Y = X · Z .

We want to treat now the following problem. Suppose we have three curves
X, Y, Z , with respective equations f = 0, g = 0, h = 0 in P

2, such that X has no
common component with Y or Z , and suppose that we have X · Z � X · Y . The
question is whether it is possible to find a curve V , with equation B = 0, with no
common component with X such that

X · Z = X · Y + X · V .

If this is the case, by the Bézout Theorem we have the relation

deg(Z) = deg(Y ) + deg(V ).

We find such a curve V if we are able to find homogeneous polynomials A, B such
that h = A f + Bg. Indeed in this case we have

X · Z = Z p( f ) · Z p(h) = Z p( f ) · Z p(A f + Bg) =
= Z p( f ) · Z p(g) + Z p( f ) · Z p(B) = X · Y + X · V .
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To attack the above problem, we first give a definition. Fix a point P ∈ P
2. We

may assume that P ∈ U0
∼= A

2. Let X and Y be two curves in P
2, with respective

equations f = 0 and g = 0, with no common components, containing P . Let Z
be a third curve in P

2 with equation h = 0. We will say that Z satisfies Noether’s
conditions at P with respect to X and Y , if h∗ ∈ ( f∗, g∗) in OA2,P , where the lower
asterisk denotes the dehomogenization of forms and we abuse notation identifying
f∗, g∗, h∗ with their classes in OA2,P . Note that OA2,P = OP2,P . We can now state
the:

Theorem 17.2.1 (M. Noether’s A f + Bg Theorem) Let X, Y, Z be projective plane
curves of degrees n, m, q, with respective equations f = 0, g = 0, h = 0, with X
and Y with no common components. There is a relation of the form h = A f + Bg,
with A, B homogeneous polynomials of degrees q − n and q − m respectively, if
and only if Z satisfies Noether’s conditions at every point P ∈ X ∩ Y , with respect
to X and Y .

Proof If h = A f + Bg, then dehomogenizing we have h∗ = A∗ f∗+B∗g∗∈( f∗, g∗),
hence h∗ ∈ ( f∗, g∗) in OA2,P for all points P ∈ X ∩ Y .

Let us prove the other implication. First we may assume that no point in X ∩ Y
sits on the line at infinity x0 = 0. If P1, . . . , Ph are the distinct intersection points
of X and Y , we set Oi = OA2,Pi . By dehomogenizing we get the three polynomials
f∗, g∗, h∗.We know that h∗ ∈ ( f∗, g∗) inOi for all i = 1, . . . , h.We setI = ( f∗, g∗).
We apply Lemma16.3.10, which tells us that we have an isomorphism

φ : A2/I →
h∏

i=1

Oi/IOi .

By the hypothesis, h∗ has zero class in Oi/IOi , for all i = 1, . . . , h. Hence h∗ has
zero class in A2/I, so we have a relation of the form

h∗ = a f∗ + bg∗

with a, b ∈ A2 suitable polynomials. By homogenizing we get a relation of the form

xr
0h = A′ f + B ′g

with A′, B ′ suitable homogeneous polynomials, and r a suitable positive integer.
Indeed by homogenizing f∗ and g∗ we obtain f and g because, by the hypothesis,
neither X nor Y contains the line at infinity. By Exercise17.3.5, multiplication by x0
is injective on Γ := S2/( f, g). Therefore, from the fact that the class of xr

0h is zero
in Γ , we deduce that the class of h is zero in Γ , and this implies that h = A f + Bg.
By taking the suitable homogeneous component of this relation, we get the assertion.

�
Theorem17.2.1 becomes useful only if we give conditions under which Noether’s

conditions are verified. This is the purpose of the next:
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Proposition 17.2.2 Let X, Y, Z be curves in P
2, with X and Y with no common

components. Let P ∈ X ∩ Y . Then Z verifies Noether’s conditions at P with respect
to X and Y if one of the following facts happens:

(a) i(P; X, Y ) = 1 and P ∈ Z;
(b) P is a smooth point for X and

i(P; X, Z) � i(P; X, Y ); (17.2)

(c) X and Y have distinct principal tangents at P and

m P(Z) � m P(X) + m P(Y ) − 1.

Proof Case (a) is a consequence of both (b) and (c), and it is also easy to be verified
directly, we leave it to the reader as an exercise.

Let us prove (b). Relation (17.2) means that

oX,P(h) � oX,P(g)

hence
h̄∗ ∈ (ḡ∗) ⊂ OX,P ,

where, as usual, the asterisk denotes dehomogenization and the bar denotes the class.
Now we claim that

OX,P/(ḡ∗) ∼= OA2,P/( f̄∗, ḡ∗). (17.3)

In fact we have an obvious surjective homomorphism

ρ : OA2,P → OX,P

whose kernel is clearly ( f̄∗), hence

OX,P
∼= OA2,P/( f̄∗)

whence (17.3) follows. Then, since h̄∗ is zero in OX,P/(ḡ∗), it is also zero in
OA2,P/( f̄∗, ḡ∗), as wanted.

Finally we prove (c). With the usual notation we have

m P(h∗) � m P( f∗) + m P(g∗) − 1.

This implies that
h∗ ∈ mm P ( f∗)+m P (g∗)−1.
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On the other hand part (i) of the Claim in the proof of Theorem16.3.12 tells us that
mm P ( f∗)+m P (g∗)−1OA2,P ⊆ ( f̄∗, ḡ∗)OA2,P , hence h̄∗ ∈ ( f̄∗, ḡ∗)OA2,P , as wanted. �

Corollary 17.2.3 If X, Y, Z are curves in P
2 with equations f = 0, g = 0, h = 0

respectively, X and Y with no common component, and if all points in X ∩ Y are
smooth for X, then X · Z � X · Y implies that there is a curve V such that

X · V = X · Z − X · Y.

Proof By (b) of Proposition17.2.2, we have that Z verifies Noether’s conditions at
all points of X ∩ Y . Then by Theorem17.2.1 there is a relation of the form h = A f +
Bg, with A, B homogeneous polynomials of degrees p − n and p − m respectively.
This implies that X · Z = X · Z p(B) + X · Y , and the assertion follows with V =
Z p(B). �

17.3 Applications of the Af + Bg Theorem

17.3.1 Pascal’s and Pappo’s Theorems

An exagon is an ordered sixtuple of distinct lines (�1, . . . , �6) in P
2 such that no

three of them pass through the same point. The lines �1, . . . , �6 are called the sides
of the exagon. Two sides �i , � j are said to be opposite if (i, j) = (1, 4), (2, 6), (3, 6).
We call vertices of the exagon the points Pi = �i ∩ �i+1, for i = 1, . . . , 6, where we
set �1 = �7. We will say that the exagon is inscribed in a curve X if the vertices
P1, . . . , P6 of the exagon lie on X and no side of the exagon is contained in X .

Theorem 17.3.1 (Pascals’s Theorem) If an exagon is inscribed in a conic, then the
opposite sides intersect in three collinear points.

Proof Let C be the conic in which the exagon (�1, . . . , �6) is inscribed. Let X =
�1 + �3 + �5, Y = �2 + �4 + �6. Then apply Exercise17.3.9 to the two cubics X and
Y . �

Corollary 17.3.2 (Pappo’s Theorem) Let r1, r2 be two distinct lines in P
2. Let

P1, P2, P3 ∈ r1 and Q1, Q2, Q3 ∈ r2 be distinct points and distinct also from r1 ∩ r2.
Let �i j = 〈Pi , Q j 〉, for i, j = 1, 2, 3. For every triple (i, j, k) such that {i, j, k} =
{1, 2, 3} set Rk = �i j ∩ � j i . Then R1, R2, R3 are aligned.

Proof The sextuple of lines (�12, �32, �31, �21, �23, �13) form an exagon, which is
inscribed in the conic r1 + r2. Then apply Pascal’s Theorem. �
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17.3.2 The Group Law on a Smooth Cubic

Let X be a smooth cubic curve in P
2. Assume K has characteristic zero. By Exer-

cise17.3.12, X certainly has some flex O . If t is the tangent line to X at O , we have
t · X = 3O . For every point P ∈ X distinct from O , let us denote by P ′ the point
such that the line r containing O and P is such that r · X = O + P + P ′. If P = O
we set O ′ = O . Note that it could be the case that P ′ = P . This happens if P = O ,
and for those points P �= O such that the tangent line to X at P contains O . Of
course P ′′ = (P ′)′ = P . Fix now two (not necessarily distinct) points P, Q ∈ X .
Consider the line r = 〈P, Q〉 if P �= Q, whereas r is the tangent line to X at P if
P = Q. Then r · X = P + Q + R. We define a sum operation ⊕ on X by setting

P ⊕ Q = R′.

Theorem 17.3.3 The operation ⊕ is a commutative group operation.

Proof It is easy to see that O is the zero for ⊕, that ⊕ is commutative and the
opposite of P is P ′. It is more complicated to check the associativity of ⊕. To prove
it, we argue as follows. Consider three (not necessarily distinct) points P, Q, R of
X . There are lines �1, �2, m1, m ′

1 such that

�1 · X = P + Q + A′, m1 · X = O + A + A′, so P ⊕ Q = A

�2 · X = A + R + T ′, m ′
1 · X = O + T + T ′, so (P ⊕ Q) ⊕ R = T .

Then there are lines �3, �
′
3 and m2, m3 such that

m2 · X = Q + R + U ′, �3 · X = O + U ′ + U, so Q ⊕ R = U

m3 · X = P + U + V, �′
3 · X = O + V + V ′, so P ⊕ (Q ⊕ R) = V ′.

To prove associativity we have to prove that T = V ′. For this set Y = �1 + �2 + �3
and Z = m1 + m2 + m3 and apply Exercise17.3.11. �

Exercise 17.3.4 * In this exercise and in the next two we will indicate a new proof of Bézout
Theorem in the case of projective plane curves.Wewill assume here that the intersectionmultiplicity
is given by formula (16.13).

Let X, Y be curves in P
2 with no common components of degrees n and m respectively, so that

X ∩ Y is a finite set. Suppose that X has equation f = 0, Y has equation g = 0. Moreover we may
assume that the line at infinity x0 = 0 does not contain any intersection point of X and Y . As usual
we will denote by h∗ the dehomogenization of a homogeneous polynomial h. For every P ∈ X ∩ Y
we have

i(P; f, g) = i(P; f∗, g∗)
hence ∑

P∈X∩Y

i(P; f, g) =
∑

P∈X∩Y

i(P; f∗, g∗).

Moreover, by Exercise16.3.30, we have
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∑

P∈X∩Y

i(P; f∗, g∗) = dimK(A2/( f∗, g∗)).

Recall that S2 = K[x0, x1, x2] and set

R = S2, Γ = R/( f, g), Γ∗ = A2/( f∗, g∗).

The rings R and Γ are graded and, as usual, we will denote by Rd and Γd their homogeneous parts
of degree d ∈ N. The Bézout Theorem will be proved by proving that

dim(Γd ) = nm and dim(Γ∗) = dim(Γd ) for d � n + m. (17.4)

In this exercise prove that dim(Γd ) = nm for d � n + m.

Exercise 17.3.5 * (Continue Exercise17.3.4) Consider the map

α : h̄ ∈ Γ → x0h ∈ Γ

where h ∈ R is a polynomial and h̄ is its class in Γ . Prove that α is injective.

Exercise 17.3.6 * (Continue Exercise17.3.4) Assume d � n + m and choose
A1, . . . , Anm ∈ Rd such that their classes a1, . . . , anm ∈ Γd are a basis of Γd . Consider the classes
αi of Ai∗ in Γ∗, for i = 1, . . . , nm. Prove that α1, . . . , αnm form a basis of Γ∗.

This ends the proof of (17.4) and therefore of the Bézout Theorem.

Exercise 17.3.7 Prove that any projective smooth curve in P
2 is irreducible. Prove that this not

always the case in A
2.

Exercise 17.3.8 Let X be an irreducible curve of degree n in P
2. Prove that

n(n − 1) �
∑

P∈X

m P (X)(m P (X) − 1).

Exercise 17.3.9 Let X, Y be cubics in P
2 with no common components, and let X · Y = ∑9

i=1 Pi ,
with P1, . . . , P9 smooth points for X . Let Z be a conic such that X · Z = ∑6

i=1 Pi . prove that there
is a line L such that X · L = P7 + P8 + P9.

Exercise 17.3.10 Prove the inverse of Pascal’s Theorem: if the opposite sides of an exagon intersect
in three collinear points, then the vertices of the exagon lie on a conic.

Exercise 17.3.11 * Let X be an irreducible cubic in P
2. Let Y, Z two more cubics. Suppose that

X · Y = ∑9
i=1 Pi , where P1, . . . , P9 are (not necessarily distinct) smooth points of X . Suppose that

X · Z = ∑8
i=1 Pi + Q. Prove that Q = P9.

Exercise 17.3.12 * Let X be a curve in P
2 of degree n with equation f = 0. According to Exer-

cise16.3.21, we say that a smooth point P ∈ X is a flex if the intersection multiplicity of the tangent
line to X at P with X is m � 3. The flex is simple if m = 3. If m > 3 we say we have a (m − 2)-flex.
Note that lines are characterized by the condition that all points on them are ∞-flexes.

Consider the Hessian polynomial of f , defined as

hess( f ) = det
( ∂2 f

∂xi ∂x j

)

i, j=0,1,2
.

Note that hess( f ) could be identically zero. If this is not the case, the curve of degree 3(n − 2)with
equation hess( f ) = 0 is called the Hessian of X , denoted by Hess(X).

Assume that K has characteristic zero. Prove that given a point P ∈ X , one has hess( f )(P) = 0
if and only if either P is singular for X or P is a flex of X .
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Exercise 17.3.13 * Assume that K has characteristic zero. Let X be a curve of degree n in P
2 with

equation f = 0 and P a m-flex of X . Prove that oP (hess( f )) = m and conversely.

Exercise 17.3.14 * Assume that K has characteristic zero. Let X be a reduced curve in P
2 with

equation f = 0. Prove that if there is an irreducible component of X such hess( f ) vanishes on it,
then this component is a line.

Exercise 17.3.15 Prove that a smooth cubic in P
2 has exactly 9 (simple) flexes.

Exercise 17.3.16 Prove that a line containing two flexes of a cubic contains a third flex.

Exercise 17.3.17 Prove that the flexes of a smooth cubic X are the points of order 3 of the group
law on the cubic and they form a group isomorphic to Z3 × Z3.

Exercise 17.3.18 Assume K of characteristic different form 2 and 3. Let X be a smooth cubic
curve in P

2. Prove that we can change coordinates so that X has affine equation of the type

y2 = x3 + ax + b, with a, b ∈ K (17.5)

with x3 + ax + b with no multiple roots. This is called Weierstrass normal form of the equation of
the cubic.

Exercise 17.3.19 Assume K of characteristic 2 or 3. Let X be a smooth cubic curve in P
2. Prove

that we can change coordinates so that X has affine equation of the type

y2 = x3 + ax2 + bx + c, with a, b, c ∈ K

if K has characteristic 3, and of the types

y2 + cy = x3 + ax + b, with a, b, c ∈ K

or
y2 + xy = x3 + ax + b, with a, b ∈ K

if K has characteristic 2.

Exercise 17.3.20 Prove that a point P of a smooth cubic X is a point of order 2 of the group law
on the cubic if and only if the tangent line to X at P pass through the zero given by the flex O .

Exercise 17.3.21 Assume K has characteristic zero. Let X in P
2 be a smooth cubic curve. Prove

that there are exactly four points of order 2 (including the zero) with respect to the group law with
zero at the flex O and that they form a group isomorphic to Z2 × Z2.

Exercise 17.3.22 AssumeK has characteristic zero. Let X in P
2 be a smooth cubic curve endowed

with its group law with neutral element a flex of X . Prove that the maps

(P, Q) ∈ X × X → P ⊕ Q ∈ X, P ∈ X → �P ∈ X

are morphisms.

Exercise 17.3.23 Let X be a projective variety which has an additive group law (X,⊕) such that
the maps

(P, Q) ∈ X × X → P ⊕ Q ∈ X, P ∈ X → �P ∈ X

are morphisms. Prove that X is smooth. Such an X is called an abelian variety.

Exercise 17.3.24 Assume K has characteristic zero. Prove that there are abelian varieties of any
dimension.
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Exercise 17.3.25 * Let X in P
2 be an irreducible curve which is not a line. Consider the map

μ : X ��� P̌
2, which sends any smooth point of X to its tangent line. Prove that μ is a rational map.

Prove that the closure X̌ of the image of the set of smooth points of X via μ is an irreducible curve
called the dual curve of X . Let m(X) be the degree of X̌ , also shortly denoted by m and called the
class of X . Prove that m is the maximum number of tangents in smooth points of X passing through
a given point P of P

2.

Exercise 17.3.26 * Let X in P
2 be an irreducible curve with equation f = 0. Given two points

P = [p0, p1, p2] and Q = [q0, q1, q2] of the plane, we set

fQ(P) =
2∑

i=0

∂ f

∂xi
(P)qi .

Prove that fQ(P) = 0 if either P is a singular point of X or if P is a smooth point of X and the
tangent line to X at P contains Q.

Given Q ∈ P
2, consider the polynomial

fQ =
2∑

i=0

∂ f

∂xi
qi

and consider the curve X ′
Q with equation fQ = 0. This is called the polar of X with respect to Q.

Prove that the tangent at a smooth point P of X contains Q if and only if P ∈ X ′
Q . Prove also that

all polars pass through the singular points of X .

Exercise 17.3.27 * Assume K has characteristic zero. Consider the irreducible plane curve X of
degree n and suppose that X has only nodes and ordinary cusps as singularities. Prove that

m(X) = n(n − 1) − 2δ − 3κ (17.6)

where δ is the number of nodes of X and κ the number of cusps. Relation (17.6) is called the first
Plücker formula.

Exercise 17.3.28 * Assume K has characteristic zero. Consider the irreducible plane curve X of
degree n > 1 and suppose that X has only nodes and ordinary cusps as singularities and it has only
simple flexes. Moreover let us assume that the nodes are simple: a node is simple if each branch at
the node is of class 1, i.e., the principal tangent lines at the node have intersection multiplicity 2
with the corresponding branch, and therefore 3 with the curve at the node.

Let i be the number of flexes of X , δ the number of (simple) nodes and κ the number of cusps.
Prove that

i = 3n(n − 2) − 6δ − 8κ (17.7)

Relation (17.7) is called the second Plücker formula.

17.4 Solutions of Some Exercises

17.1.4 First of all treat the case in which m1 = · · · = mh = 1, and make induction on h. The
case h = 1 is trivial. Next assume h > 1 and d � h − 1. Set Li = L2,d (−P1 − · · · − Pi ) for all
i = 1, . . . , h. By induction we may assume that

dim(Lh−1) = d(d + 3)

2
− h + 1.
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Since Lh has codimension at most 1 in Lh−1, it suffices to prove that Lh � Lh−1. Choose lines ri
such that Pi ∈ ri and Pi /∈ r j for j �= i , for i = 1, . . . , h and choose a line � not containing any of
the points P1, . . . , Ph . Then

X = r1 + · · · + rh−1 + (d − h + 1)�

is a curve of degree d containing P1, . . . , Ph−1 but not Ph , hence X ∈ Lh−1 \ Lh as required.
Next treat the general case and make induction on m := (

∑h
i=1 mi ) − 1. If m = 0, the asser-

tion is trivial. So assume m > 0. We may assume there is an i = 1, . . . , h such that mi > 1,
and we may actually assume that m1 > 1 and, by changing coordinates, that P1 = [1, 0, 0]. Set
L = L2,d (−(m1 − 1)P1 − m2P2 − · · · − mh Ph). Let f = 0 be the equation of a curve in L. Then,
passing to affine coordinates, the equation of this curve becomes φ(x, y) = f (1, x, y) = 0, and the
decomposition in homogeneous components is of the form

φ(x, y) = φm1−1(x, y) + · · · + φd (x, y)

and

φm1−1(x, y) =
m1−1∑

i=0

ai xi ym1−1−i .

Denote by Li the subspace of the curves in L such that, with the above notation, have the property
that a j = 0 for all j such that 0 � j � i � m1 − 1. Then we have

L ⊇ L0 ⊇ · · · ⊇ Lm1−1 = L2,d (m1P1 − m2P2 − · · · − mh Ph).

By induction we have

dim(L) = d(d + 3)

2
− m1(m1 − 1)

2
−

h∑

i=2

mi (mi + 1)

2
.

We claim that
L � L0 � · · · � Lm1−1. (17.8)

If this is the case then

dim(L2,d (m1P1 − m2P2 − · · · − mh Ph)) = dim(Lm1−1) �

� dim(L) − m1 = d(d + 3)

2
−

h∑

i=1

mi (mi + 1)

2
.

Since also the opposite inequality holds by (17.1), we have the equality as desired.
So let us prove (17.8). Set

Λ = L2,d (−(m1 − 2)P1 − m2P2 − · · · − mh Ph).

Similarly as before, ifψ(x, y) = 0 is the affine equation of a curve inΛwe have the decomposition
in homogeneous components

ψ(x, y) = ψm1−2(x, y) + · · · + ψd (x, y)

with

ψm1−2(x, y) =
m1−2∑

i=0

bi xi ym1−2− j .
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As before we define Λi to be the subspace of Λ of the curves for which b j = 0 for all j such that
0 � j � i � m1 − 2. We have

Λ := Λ−1 ⊇ Λ0 ⊇ · · · ⊇ Λm1−2 = L2,d−1(−(m1 − 1)P1 − m2P2 − · · · − mh Ph).

By induction we have

dim(Λ) = (d − 1)(d + 2)

2
− (m1 − 2)(m1 − 1)

2
−

h∑

i=2

mi (mi + 1)

2

dim(Λm1−2) = (d − 1)(d + 2)

2
− m1(m1 − 1)

2
−

h∑

i=2

mi (mi + 1)

2

so that
dim(Λ) − dim(Λm1−2) = m1 − 1.

Since we have
dim(Λi ) � dim(Λi−1) − 1, for i = 0, . . . , m1 − 2,

we deduce that
Λ � Λ0 � · · · � Λm1−2.

Finally, ifφi = 0 is the affine equation of a curve sitting inΛi but not inΛi+1, for i = −1, . . . , m1 −
3, then yφi = 0 is the equation of a curve sitting in Li but not in Li+1 (again we set L := L−1)
and, if φm1−2 = 0 is the equation of a curve in Λm1−2, then xφm1−2 = 0 is the equation of a curve
in Lm1−2 but not in Lm1−1. This proves (17.8) as wanted.

17.3.4 Let π : R → Γ be the natural surjective homomorphism, whose kernel is I := ( f, g).
Consider the homomorphisms

φ : (A, B) ∈ R × R → A f + Bg ∈ I, ψ : C ∈ R → (gC,− f C) ∈ R × R.

One easily proves that:

(a) ψ is injective;

(b) φ is surjective onto I;

(c) im(ψ) = ker(φ) (here one uses the fact that f and g have no common factor).

By restricting to homogeneous parts, one has the linear maps of vector spaces

φd,n,m : Rd−m × Rd−n → Id , ψd,n,m : Rd−n−m → Rd−m × Rd−n .

and again one has

(a) ψd,n,m is injective;

(b) φd,n,m is surjective onto Id ;

(c) im(ψd,n,m) = ker(φd,n,m).

This implies that

dim(Γd ) = dim(Rd ) − dim(Rd−m × Rd−n) − dim(Rd−n−m). (17.9)

Since
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dim(Rh) = (h + 1)(h + 2)

2
as soon as h � 0, the assertion follows from (17.9) with easy calculations.

17.3.5 The map α is a group homomorphism for the additive structure of Γ . So to prove injectivity
we have to prove that ker(α) = 0. Suppose we have an element h̄ such that x0h = α(h̄) = 0. We
want to prove that h̄ = 0, i.e., that h ∈ ( f, g). Since x0h = 0, we have that x0h ∈ ( f, g). Given any
polynomial p(x0, x1, x2) ∈ R, we set p0 = (0, x, y) ∈ A2. Since

x0h = A f + Bg

we have
A0 f0 = −B0g0.

The system f0 = g0 = 0 has no solutions since there is no point of X ∩ Y on the line at infinity
x0 = 0. Then f0 divides B0 and g0 divides A0, i.e., there is a polynomial C ∈ A2 such that

B0 = f0C, A0 = −g0C.

Set
A′ = A + Cg, B ′ = B − C f

and notice that
A′ f + B ′g = A f + Bg = x0h

and
A′
0 = B ′

0 = 0.

Then A′ and B ′ are divisible by x0, i.e.,

A′ = x0 A′′, B ′ = x0B ′′

for suitable polynomials A′′, B ′′. So we have

x0h = A′ f + B ′g = x0 A′′ f + x0B ′′g

and therefore
h = A′′ f + B ′′g ∈ ( f, g)

as wanted.

17.3.6 First we notice that the map α : Γ → Γ restricts to an isomorphism between Γd and
Γd+1, because it induces a linear injective map from Γd to Γd+1 and these are vector spaces of
the same dimension nm. Therefore, by iterating the application of α, we have that the classes of
xr
0 A1, . . . , xr

0 Anm give a basis of Γd+r for all d � n + m and r � 0.
Next we prove that α1, . . . , αnm generate Γ∗. Fix p̄ ∈ Γ∗ with p ∈ A2 and p̄ the class of p inΓ∗.

Recall that we denote by ph the homogenization of p. Then consider N ∈ N large enough so that
x N
0 ph is a homogeneous polynomial of degree d + r with r � 0. Then, since xr

0 A1, . . . , xr
0 Anm

are a basis of Γd+r , we have a relation of the form

x N
0 ph =

nm∑

i=1

λi xr
0 Ai + B f + Cg

with λ1, . . . , λnm ∈ K and B, C ∈ R. If we dehomogenize this relation, we get

p =
nm∑

i=1

λi Ai∗ + B∗ f∗ + C∗g∗
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whence

p̄ =
nm∑

i=1

λi αi

as wanted.
Finally we prove that α1, . . . , αnm are linearly independent. Suppose we have a relation of the

form
nm∑

i=1

λi αi = 0

with λ1, . . . , λnm ∈ K. This implies a relation of the form

nm∑

i=1

λi Ai∗ = B f∗ + Cg∗

with B, C ∈ A2 suitable polynomials. We homogenize the above relation getting

xr
0

nm∑

i=1

λi Ai = xs
0Bh f + xt

0Chg

for suitable positive integers r, s, t . Therefore we have

nm∑

i=1

λi xr
0 Ai = 0

in Γd+r (with the upper bar we denote, as usual, the class in Γd+r ). But xr
0 Ai , for i = 1, . . . , nm

form a basis of Γd+r , hence λi = 0 for i = 1, . . . , nm, as desired.

17.3.9 This is an immediate application of Corollary17.2.3.

17.3.11 Suppose by contradiction Q �= P9. Let r be a line through P9 not passing through Q. Let
r · X = P9 + R + S. Then

(r + Z) · X =
8∑

i=1

Pi + Q + P9 + R + S.

Since X · Y = ∑9
i=1 Pi , there is a line r ′ such that r ′ · X = R + S + Q. As r ′ contains R and S,

then r = r ′, and so Q = P9, a contradiction.

17.3.12 Suppose that P = [p] = [p0, p1, p2] is a smooth point for the curve X of degree n with
equation f = 0. Let Q = [q] = [q0, q1, q2] be any other point of the plane. By applying Taylor
formula we have

f (λp + μq) = f (p)λn +
2∑

i=0

∂ f

∂xi
(p)qi λ

n−1μ + 1

2

2∑

i, j=0

∂2 f

∂xi ∂x j
(p)qi q j λ

n−2μ2 + · · · .

(17.10)
We have f (p) = 0. Moreover the tangent line t to X at P has equation

2∑

i=0

∂ f

∂xi
(p)xi = 0. (17.11)

Consider the polynomial



17.4 Solutions of Some Exercises 263

2∑

i, j=0

∂2 f

∂xi ∂x j
(p)xi x j . (17.12)

From (17.10) it is clear that P is a flex for X if and only of the polynomial appearing in (17.11)
divides the polynomial in (17.12). Hence if P is a flex, then the polynomial in (17.12) is either zero
or reducible, and this implies that hess( f )(P) = 0.

To see the converse, let us assume that hess f (P) = 0. If the polynomial in (17.12) is identically
zero, then it is divisible by the polynomial in (17.11) and by (17.10) P is a flex. If the polynomial
in (17.12) is not identically zero, it defines a conic Q. By Euler’s formula (1.6), we have

2∑

i, j=0

∂2 f

∂xi ∂x j
(p)pi p j = n(n − 1) f (p) = 0

so Q contains P . Moreover t is tangent to Q at P , because this tangent has equation

2∑

i, j=0

∂2 f

∂xi ∂x j
(p)pi x j = 0

and by Euler’s formula this is

(n − 1)
2∑

j=0

∂ f

∂x j
(p)x j = 0.

So if hess( f )(P) = 0, the conic Q is reducible, hence it must contain t , so the polynomial in (17.12)
is divisible by the polynomial in (17.11) and by (17.10) the point P is a flex.

Finally it is clear that singular points of X lie on the Hessian curve of f .

17.3.13 We can assume that P ∈ U0 ∼= A
2 and in fact that P is the origin and that X has affine

equation φ(x, y) = f (1, x, y) = 0. By adjusting coordinates we may assume that the tangent line
to X at P is the x axis and that P is the centre of a branch with equations

x = ξ(t) = t, y = η(t) = tm+2 + · · · . (17.13)

It is easy to see that this implies that

φ(x, y) = y − xm+2 + g(x, y) (17.14)

where g contains no term in the only variable y. By Euler’s formula we have

x0
∂2 f

∂x0∂xi
= (n − 1)

∂ f

∂xi
− x1

∂2 f

∂x1∂xi
− x2

∂2 f

∂x2∂xi
, i = 0, 1, 2

x0
∂ f

∂x0
= n f − x1

∂ f

∂x1
− x2

∂ f

∂x2
.

Substituting in the Hessian determinant, and with easy computations, we have that

hess( f ) = (n − 1)2

x20
·

∣
∣
∣
∣
∣
∣
∣
∣

n
n−1 f ∂ f

∂x1
∂ f
∂x2

∂ f
∂x1

∂2 f
∂x21

∂2 f
∂x1∂x2

∂ f
∂x2

∂2 f
∂x1∂x2

∂2 f
∂x22

∣
∣
∣
∣
∣
∣
∣
∣

.

Passing to affine coordinates we have, up to a constant term
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h(x, y) := hess( f )(1, x, y) =

∣
∣
∣
∣
∣
∣
∣
∣

n
n−1φ

∂φ
∂x

∂φ
∂y

∂φ
∂x

∂2φ

∂x2
∂2φ
∂x∂y

∂ f
∂x2

∂2φ
∂x∂y

∂2φ

∂y2

∣
∣
∣
∣
∣
∣
∣
∣

.

Using (17.13) and (17.14), we find

h(ξ(t), η(t)) =

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 −(m + 2)tm+1 + ∂g
∂x (ξ(t), η(t)) 1 + ∂g

∂y (ξ(t), η(t))

−(m + 2)tm+1 + ∂g
∂x (ξ(t), η(t)) −(m + 2)(m + 1)tm + ∂2g

∂x2
(ξ(t), η(t)) ∂2g

∂x∂y (ξ(t), η(t))

1 + ∂g
∂y (ξ(t), η(t)) ∂2g

∂x∂y (ξ(t), η(t)) ∂2g
∂y2

(ξ(t), η(t))

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Moreover we have
0 = tm+2 + · · · − tm+2 + g(ξ(t), η(t))

so that o(g(ξ(t), η(t))) � m + 3. Differentiating twice with respect to t we find

o
( ∂g

∂x
(ξ(t), η(t)) + ∂g

∂y
(ξ(t), η(t))((m + 2)tm+1 + · · ·

)
� m + 2,

o
( ∂2g

∂x2
(ξ(t), η(t)) + 2

∂2g

∂x∂y
(ξ(t), η(t))((m + 2)tm+1 + · · · )+

+ ∂2g

∂y2
(ξ(t), η(t))((m + 2)tm+1 + · · · )+

+ ∂g

∂y
(ξ(t), η(t))((m + 1)(m + 2)tm + · · · )

)
� m + 1.

From these relations we deduce that o(
∂g
∂y (ξ(t), η(t)) � 1, o(

∂g
∂x (ξ(t), η(t)) � m + 2

and o(
∂2g
∂x2

(ξ(t), η(t))) � m + 1. With an easy computation it follows that h(ξ(t),
η(t)) = (m + 1)(m + 2)tm + · · · so that o(h(ξ(t), η(t))) = m as wanted.

Conversely, if P is a smooth point of X and oP (hess( f )) = m � 1, then P is a flex by Exer-
cise17.3.12, and it is an m-flex just because oP (hess( f )) = m.

17.3.14 Let Y be a component of X such that hess( f ) vanishes on Y . Let P be a smooth point of Y
and let γ be the branch of Y with centre P . We can assume that P ∈ U0 ∼= A

2 and in fact that P is
the origin. We may also suppose that γ is determined by a parametrization like (17.13). If m = ∞,
this means that y = 0, hence Y is a line, i.e., the x axis. If m is not ∞, then, with the notation of the
solutionofExercise17.3.13,wehave thato(h(ξ(t), η(t))) = m.On theother handoγ (h(x, y)) = ∞
by assumption. Since oγ (h(x, y)) = o(h(ξ(t), η(t))) = m we have a contradiction.

17.3.18 The curve X has a flex O . We can change coordinates assuming that O is the point at
infinity of the y axis and the tangent line at O is the line at infinity x0 = 0. With this choice of
coordinates the affine equation of X becomes of the form

φ(x, y) = y2 + y(α + βx) + f (x) = 0

where f (x) is a polynomial of degree 3 in the variable x . We have

∂φ

∂y
= 2y + α + βx

and we can change coordinates so that this is equal to y, hence α = β = 0. Then the affine equation
of X becomes of the type

y2 = Ax3 + Bx2 + Cx + D
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with A �= 0 because the curve has degree 3. We can then change coordinates by sending x to x

A
1
3
.

In this way we may assume that A = 1. Next we change again coordinates by sending x to x − B
3 .

It is easy to check that the equation then becomes of the form (17.5). The fact that x3 + ax + b
must have no multiple roots is equivalent to the curve being smooth, since we require that there is
no solution to the system of the equation of the curve and of the two derivatives

y = 0, 3x2 + a = 0.

17.3.19 Similar to the solution of Exercise17.3.18. The details can be left to the reader.

17.3.25 Consider the homogeneous coordinate ring S(X) = K[x, y, z]/( f ) of X . Consider
the classes ξ, η, ζ in S(X) of the polynomials ∂ f

∂x ,
∂ f
∂y ,

∂ f
∂z . Consider the homomorphism φ :

K[u, v, w] → S(X) obtained by sending u, v, w to ξ, η, ζ respectively. One easily checks that φ is
a homogeneous homomorphism and its kernel I is a homogeneous prime ideal. Hence Z := Z p(I)

is a closed irreducible subset of P̌
2. By the very definition of φ and by the equation of the tangent line

at a smooth point of X it follows that Z contains μ(S). Next one proves that Z is curve. Otherwise
Z would be a point [a, b, c], and therefore the fixed line with equation ax + by + cz = 0 would
be tangent to X at any of its simple points, so X would coincide with that line, a contradiction.
We set Z = X̌ . We have μ(S) ⊆ X̌ , and μ(S) is infinite, so the Zariski closure of μ(S) is a curve
contained in X̌ , so it coincides with X̌ because X̌ is irreducible. The rest of the assertion follows
from Theorem12.2.3.

17.3.27 By Exercise17.3.26 and Theorem12.2.3 there is an open subset U of P
2 such that for all

points Q ∈ U , the curve X ′
Q intersects X in exactly m points off the singular points of X . Since

X ′
Q has degree n − 1, we have that m = n(n − 1) + h, where h is the sum of the intersection

multiplicities of X ′
Q and X at the singular points of X . Let P be a node of X . We can change

coordinates and can put P at the origin and the principal tangent lines to X at P coinciding with
the coordinate axes. In this coordinate system the affine equation of X is of the form

φ(x, y) = xy + · · · = 0

where the dots stay for higher order terms. Among the polars of X we have all the curves with
equation

a
∂φ

∂x
+ a

∂φ

∂y
= ay + bx + · · · = 0.

This implies that there is a non-empty open subset UP of P
2 such that for Q ∈ UP the polar X ′

Q
passes through P simply, with tangent different from the principal tangents to X at P . For these
polars the intersection multiplicity with X at P is 2. Since we have finitely many nodes P1, . . . , Pδ ,
for Q in the open subset U ∩ UP1 ∩ · · · ∩ UPδ , the intersection multiplicity of X ′

Q with X at each
of the points P1, . . . , Pδ is 2, hence the contribution of these singularities to the number h is 2δ.

Let P ′ be a cusp of X . We can change coordinates in such a way that P ′ is the origin of the
coordinate system and the centre of a unique branch γ determined by an equation of the form

x = t2, y = at3 + · · · , with a �= 0.

Then the affine equation of X is of the form

φ(x, y) = y2 + · · ·
where the dots stay for higher order terms. Among the polars of X we have the curve

∂φ

∂y
= 2y + · · · = 0
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which has order 3 on γ . It is easy to check that this is the minimum order that a polar has with
γ , and therefore there is an open set UP ′ such that for all Q ∈ UP ′ the intersection multiplicity of
X ′

Q with X at P ′ is 3. Then with the same argument we made in the case of nodes we see that the
contribution of the κ cusps to the number h is 3κ , and this proves (17.6).

17.3.28 By Exercise17.3.13, the number of (simple) flexes is the number of intersections of the

Hessian curve Hess(X) of X , which has degree 3(n − 2) with X , off the singular points. Now,

with a direct calculation similar to the ones we performed in the solutions of Exercises17.3.13 and

17.3.27, one checks that this intersection multiplicity is exactly 6 at the nodes and 8 at the cusps.

Then (17.7) follows.



Chapter 18
Resolution of Singularities of Curves

In this chapter we will prove that in any birational equivalence class of irreducible
quasi-projective curves there is a smooth projective model. The process of passing
from a curve to a smooth model is called resolution of singularities.

18.1 The Case of Ordinary Singularities

In this sectionwe prove a preliminary important result. Let X be a projective, reduced,
irreducible curve in P2 of degree d, with equation f = 0, and we suppose that X has
only ordinary singularities at the points P1, . . . , Ph , with multiplicities m1, . . . ,mh .
We want to prove the following:

Theorem 18.1.1 In the above setting, consider the blow-up π : P̃2 → P
2 at the

points P1, . . . , Ph. Then the proper transform X̃ of X on P̃
2 is a smooth projective

curve and π|X̃ : X̃ → X is a birational morphism.

Proof Since P̃
2 is a projective variety and X̃ is closed in P̃

2, then X̃ is a pro-
jective curve. Moreover, since π : P̃2 → P

2 is an isomorphism between π−1(P2 \
{P1, . . . , Ph}) andP2 \ {P1, . . . , Ph}, it is clear thatπ|X̃ : X̃ → X is a birational mor-

phism. In addition, since X is smooth at the points of X \ {P1, . . . , Ph} then X̃ is
smooth at the points of X̃ ∩ π−1(P2 \ {P1, . . . , Ph}). So the only thing to be proved
is that X̃ is smooth at every point whose image via π is one of the points P1, . . . , Ph .
To prove this we proceed in the following way.

First, since the question is local at the points P1, . . . , Ph , we may assume that
there is only one singular point P for X , which is an ordinary point of multiplicity
m > 1. Moreover wemay assume that P ∈ U0

∼= A
2 and that actually P is the origin

of A2. We suppose that X has affine equation f (x, y) = 0 with the decomposition
in homogeneous components given by
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f (x, y) = fm(x, y) + fm+1(x, y) + · · · + fd(x, y)

where d is the degree of X . Moreover the homogeneous polynomial fm(x, y) has m
distinct roots, up to a proportionality factor, so that

fm(x, y) =
m∏

i=1

(bi x − ai y)

with (ai , bi ) �= (0, 0) non-proportional, for i = 1, . . . ,m. The principal tangents to
X at P have affine equations

bi x = ai y, i = 1, . . . ,m.

Next we blow-up A
2 at the origin, getting p : Ã2 → A

2, with Ã
2 contained in

A
2 × P

1, defined there by the equation xv = yu, where (x, y) are the coordinates in
A

2 and [u, v] are the coordinates in P1. In the open set A0
∼= A

1 of P1 where u �= 0,
we may assume that u = 1. Then in the open set B0 = A

2 × A0
∼= A

2 × A
1 = A

3

with coordinates (x, y, v), Ã0 := Ã
2 ∩ B0 has equation y = xv. This is a surface

isomorphic to A
2, an isomorphism being given by

(x, v) ∈ A
2 → (x, xv, v) ∈ Ã0.

We may identify Ã0 to A
2 via this map. The map p : Ã2 → A

2 restricts to Ã0, to
the map p0 : (x, y, v) ∈ Ã0 → (x, y) = (x, xv) ∈ A

2. If E = p−1(P) is the excep-
tional locus of the bow up, its intersection E0 = E ∩ Ã0 has equation x = 0.

Similarly, in the open set A1
∼= A

1 of P1 where v �= 0, wemay assume that v = 1.
Then in B1 = A

2 × A1
∼= A

2 × A
1 = A

3 with coordinates (x, y, u), Ã1 := Ã
2 ∩ B1

has equation x = yu. This is isomorphic to A2, an isomorphism being given by

(y, u) ∈ A
2 → (yu, y, u) ∈ Ã1.

Again we may identify Ã0 to A
2 via this map. The map p restricts to Ã1, to the

map p1 : (x, y, u) ∈ Ã1 → (x, y) = (yu, y) ∈ A
2. Finally E1 = E ∩ Ã1 has equa-

tion y = 0.
Let us now study Y := X̃ ∩ Ã

2, and more precisely, we study Yi = Y ∩ Ãi , for
i = 0, 1. First let us look at Y0. We consider the total transform p−1(X0) of X0 =
X ∩U0. In the open set Ã0 it is given by the equation f (x, vx) = 0. We have

f (x, xv) = fm(x, xv) + · · · + fd(x, xv) =
= xm fm(1, v) + · · · + xd fd(1, v) =
= xm( fm(1, v) + · · · + xd−m fd(1, v)).
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So f (x, xv) is reducible in the factor xm and in the factor fm(1, v) + · · · +
xd−m fd(1, v). This tells us that p−1(X0) ∩ Ã0 is also reducible: it contains the excep-
tional locus E0 with multiplicity m, plus the other component with equation

fm(1, v) + · · · + xd−m fd(1, v) = 0 (18.1)

which is nothing else than Y0. We are interested in the intersection points of Y0 with
E0, that are obtained from the system of (18.1) plus the equation x = 0, and this
system is equivalent to

x = 0, fm(1, v) =
m∏

i=1

(bi − aiv) = 0.

So the distinct solutions of this system are the m points Q1, . . . , Qm of E0 with
coordinate x = 0 and

v = bi
ai

, i = 1, . . . ,m

provided ai �= 0. If there is an i ∈ {1, . . . ,m} such that ai = 0, hencewemay assume
bi = 1, the degree of the polynomial fm(1, v) drops tom − 1 andwe have onlym − 1
solutions as above. Note however that we may have made a change of variables so
that none of the principal tangents to X at P is the y axis x = 0. In this case ai �= 0 for
all i = 1, . . . ,m and fm(1, v) = 0 has m distinct solutions as indicated above. Now
we want to prove that the intersection points Q1, . . . , Qm of E0 with Y0 are smooth
points of Y0. Take one of these points Qi , which has coordinates x = 0, v = bi

ai
, for

i = 1, . . . ,m. To make things easier, we may suppose to have chosen coordinates so
that the principal tangent line to X at P with equation bi x = ai y is the x axis with
equation y = 0, so that bi = 0 and we may assume ai = 1. So Qi in the A

2 with
coordinates (x, v) is the origin Q, and the equation of Y0 is of the form

ψ(x, v) = v

m−1∏

i=1

(bi − aiv) + x fm−1(1, v) + · · · + xd−m fd(1, v) = 0

where bi �= 0 for all i = 1, . . . ,m − 1. Now we have

∂ψ

∂v
(0, 0) =

m−1∏

i=1

bi �= 0

and this shows that Q is a smooth point for Y0. The analysis is identical in the
other open set Ã1. The conclusion is that in correspondence with the m principal
tangent lines to X at P , there are exactly m distinct intersection points of X̃ with the
exceptional locus E , and they are smooth for X̃ . This proves the assertion. �
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18.2 Reduction to Ordinary Singularities

18.2.1 Statement of the Main Theorem

In this section we prove the following fundamental result, that, together with Theo-
rem18.1.1, completes the reduction of singularities of curves:

Theorem 18.2.1 Let X be an irreducible curve in P2. There is a birational transfor-
mation ω : P2 ��� P

2 such that, restricted to X, induces a birational transformation
of X to a curve Y with only ordinary singularities.

As an immediate consequence we have the:

Corollary 18.2.2 In any birational equivalence class of irreducible quasi-projective
curves there is a unique smooth projective model. More precisely, let X be any pro-
jective irreducible curve. There is a projective smooth curve C, uniquely determined
up to isomorphism, with a birational morphism φ : C → X.

Proof The first assertion follows from the second, since any irreducible quasi-
projective curve is birational to a projective curve. Now, let X be any projective
irreducible curve. By Theorem7.2.3, X is birational to a projective curve Z in P

2.
By Theorem18.2.1, Z is birational to a projective curve Y with ordinary singularities.
ByTheorem18.1.1, there is a smooth curveC and a birationalmorphism f : C → Y .
According to Corollary14.2.12, such a curve is unique up to isomorphism. More-
over there is a birational map f : C ��� X . By Theorem14.2.16, f is a morphism,
proving the assertion.

For the proof of Theorem18.2.1 we need some preliminaries which we will make
now.

18.2.2 Standard Quadratic Transformations

First of all we briefly recall the contents of Exercises7.1.19–7.1.24. Consider P2

with homogeneous coordinates [x, y, z] and the fundamental triangle formed by the
three lines

(a) x = 0, (b) y = 0, (c) z = 0

which pairwise intersect at the vertices of the triangle

A = [1, 0, 0] = b ∩ c, B = [0, 1, 0] = a ∩ c, C = [0, 0, 1] = a ∩ b.

Set U = P
2 \ (a ∪ b ∪ c).Consider the rational map

ω : [x, y, z] ∈ P
2 ��� [yz, xz, xy] ∈ P

2.
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This is called the standard quadratic transformation based at the points A, B,C ,
which are also called the fundamental points of ω and the lines a, b, c are called the
exceptional lines of ω. We recall the main properties of ω:

(a) the definition set of ω is P2 \ {A, B,C};
(b) the restriction of ω to the line a [resp. to b and c] is the constant map whose

image is the point A [resp. the points B and C]. One says that ω contracts a
[resp. b and c] to the point A [resp. to the points B and C] or that it blows-up
the point A [resp. to the points B and C] to the line a [resp. b and c];

(c) ω2 = id, and ω induces an isomorphism of U to itself, so that ω is a birational
map;

(d) consider a line r containing A, with equation λy + μz = 0. Then the restriction
of ω to r maps r to the line with equation μy + λz = 0, which cuts the line a
in the point R = [0,−λ,μ]. The map which sends the line r through A to the
point R in a is a projectivity from the pencil (A) of lines through A to the line
a. The point R of a can be considered as the correspondent of the direction of
the line r in A. Similar considerations can be made for the point B [resp. C] in
relation with the line b [resp. c].

If τ : P2 → P
2 is a projectivity, the compositemapω ◦ τ : P2 ��� P

2 is still called
a standard quadratic transformation. It is based at the points τ−1(A), τ−1B), τ−1(C)

and its has the exceptional lines τ−1(a), τ−1(b), τ−1(c). All what holds for ω holds
also for an application of the form ω ◦ τ .

18.2.3 Transformation of a Curve via a Standard Quadratic
Transformation

Let X be a reduced curve in P
2 which does not contain any of the exceptional lines

of ω. We will assume that X is irreducible, though all what we will say applies to
reducible and reduced curves, not containing any of the exceptional lines of ω, with
essentially no change. Of courseU ∩ X is an open subset of X . Then ω(X ∩U ) is a
curve in U isomorphic to X ∩U . Its closure X ′ in P2 is called the proper transform
of X via ω. Clearly X ′ is irreducible and birational to X and (X ′)′ = X .

We want to determine the equation of X ′ starting from the equation of X . Suppose
that X has degree n with equation

f (x, y, z) = 0.

Then we can consider the curve with equation

fω(x, y, z) = f (yz, xz, xy) = 0.
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This curve, denoted by X ′
t is called the total transform of X via ω. Note that X ′

t has
degree 2n.

Lemma 18.2.3 In the above setting, suppose that mA(X) = r , mB(X) = s and
mC(X) = t . Then deg(X ′) = 2n − r − s − t .

Proof Since mA(X) = r , the equation of X is of the form

fr (y, z)x
n−r + · · · + fn(y, z) = 0

where we wrote f as a polynomial in x with coefficients homogeneous polynomials
in y, z of degree equal to the index, and fr (y, z) is not zero. We have

fω(x, y, z) = fr (xz, xy)(yz)
n−r + · · · + fn(xz, xy) =

= xr fr (z, y)(yz)
n−r + · · · + xn fn(z, y)

(18.2)

and therefore X ′
t contains the line a exactlywithmultiplicity r . Similarly, ifmB(X) =

s andmC(X) = t ,wehave that X ′
t contains the linesb and cwithmultiplicities exactly

s and t respectively. Then we have

fω(x, y, z) = xr ys zt f ′(x, y, z) (18.3)

and X ′ has equation f ′ = 0, and the assertion follows. �

Lemma 18.2.4 In the above setting we have

mA(X
′) = n − s − t, mB(X ′) = n − r − t, mC(X ′) = n − r − s.

Proof It suffices to prove only the first equality, since the others are proved in a
similar way. Taking into account (18.2), the equation of X ′ is of the form

n−r∑

i=0

fr+i (z, y)y
n−r−s−i zn−r−t−i x i = 0

hence the term with highest degree in x is

xn−r fn(z, y)y
−s z−t .

Now

n − r = (2n − r − s − t) − (n − s − t) = deg(X ′) − (n − s − t)

and fn(z, y)y−s z−t has to be a polynomial. This proves thatmA(X ′) = n − s − t . �
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Note that the previous two lemmas imply another proof of the fact, contained in
Exercises7.1.23 and 7.1.24, that ω maps the lines of the plane to conics through the
points A, B,C and viceversa.

Wewill say now that X is in good positionwith respect toω if none of the principal
tangents to X in A, B,C coincides with one of the exceptional lines.

Lemma 18.2.5 In the above setting, if X is in good position with respect to ω, then
also X ′ is in good position with respect to ω.

Proof Suppose X is in good position with respect toω and assume, by contradiction,
that the line a is among the principal tangents to X ′ at B. Then we have

i(B : X ′, a) > mB(X ′) = n − r − t. (18.4)

By taking into account (18.2) and (18.3), we see that the equation of X ′ is of the
form

fr (z, y)y
n−r−s zn−r−t + · · · + xn−r fn(z, y)y

−s z−t = 0.

Intersecting with x = 0, we get the equation

fr (z, y)y
n−r−s zn−r−t = 0. (18.5)

In this equation z appears with an exponent larger that n − r − t (and therefore (18.4)
holds), if and only if z divides fr (z, y), i.e., fr (1, 0) = 0, and this is equivalent to
say that the line b is one of the principal tangent lines to X at A, a contradiction. �

We notice that if X is in good position with respect to ω, and if P1, . . . , Ph are the
non-fundamental points of X ′ on a, then P1, . . . , Ph correspond to the directions of
the principal tangent lines to X at A. In particular, if X has in A an ordinary multiple
point of multiplicity r then h = r and P1, . . . , Pr correspond to the r tangent lines
to X at P .

Corollary 18.2.6 In the above setting, if X is in good position with respect to ω,
then

h∑

i=1

i(Pi ; X ′, a) = r (18.6)

and similarly for the lines b and c. In particular:

(a) if h = r , i.e., if X has in A an ordinary r-tuple point, then P1, . . . , Pr are all
smooth for X ′;

(b) if h > 1, one has

mA(X) > mPi (X
′), for all i = 1, . . . , h.
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Proof The intersections of X ′ with a are obtained solving the Eq. (18.5). By the good
position hypothesis, fr (z, y) is neither divisible by y nor for z, so the intersection
multiplicity of a with X ′ in B andC is n − r − t and n − r − s respectively, whereas
the sum of the remaining intersection multiplicities is the degree of fr , i.e., it is r .

As for the proof of (a), note that if h = r from (18.6) we have i(Pi ; X ′, a) = 1
for all i = 1, . . . , r , and the assertion follows.

For (b), since h > 1, we have

mA(X) = r > i(Pi ; X ′, a) � mPi (X
′), for all i = 1, . . . , h

whence the assertion. �

Next we say that C is in very good position with respect to ω and to A, if it is in
good position and moreover the line a intersects X in n distinct points not lying on
b and c, whereas b and c intersect X off A in n − r distinct points each.

Lemma 18.2.7 In the above setting, if X is in very good position with respect to ω

and A, then X ′ has the following singularities:

(a) the singular points in X ′ ∩U correspond to the singular points of X ∪U and
for them it is preserved the multiplicity and the fact that they are ordinary or
not;

(b) A, B,C are ordinary of multiplicities n, n − r and n − r respectively;
(c) the intersection of b [resp. of c] with X ′ are only at the fundamental points A

and C [resp. A and B]. If P1, . . . , Ph are the non-fundamental points on a, one
has

h∑

i=1

i(Pi ; X ′, a) = r.

Proof Part (b) follows from (a) of Corollary18.2.6. Part (c) follows from Corol-
lary18.2.6 and from the fact that X ′ has degree 2n − r , because s = t = 0, and b
and c intersect X ′ in two fundamental points of multiplicities n and n − r .

Let us prove part (a). Sinceω induces an isomorphismbetween X ∪U and X ′ ∩U ,
it is clear thatωmaps smooth points of X ∩U to smooth points of X ∩U and singular
points of X ′ ∩U to singular points of X ′ ∩U . It remains to show that ω|U preserves
the multiplicity of the singular points and the fact that they are ordinary o not.

To prove this, wemake the following argument. First we pass to affine coordinates
by setting z = 1, so that ω becomes the following birational map of A2

(x, y) ∈ A
2 →

( 1
x
,
1

y

)
∈ A

2.

The open set U coincides with the open set of A2 which is the complement of the
coordinate axes. Let us take a point P = (a, b) ∈ U , with a, b both non-zero. Set



18.2 Reduction to Ordinary Singularities 275

P ′ = ω(P) = ( 1a ,
1
b ). Consider a branch γ of curve with centre P . We may suppose

γ is determined by a parametrization

x = a + tn + · · · , y = b + ctm + · · ·

with n,m positive integers, with n � m and c �= 0. Note that the tangent to γ is the
line with equation y = b if m > n and is the line with equation c(x − a) = y − b if
n = m.

Then ω maps γ to the branch γ ′ determined by the parametrization

x = 1

a + tn + · · · = 1

a
− 1

a2
tn + · · · , y = 1

b + ctm + · · · = 1

b
− c

b2
tm + · · · .

The tangent to γ ′ is the line with equation y = 1
b if m > n and is the line with

equation c
b2 (x − 1

a ) = 1
a2 (y − 1

b ).
This shows that ω maps branches of a curve to branches of a curve, preserving the

order of the branch, and mapping branches with different tangents to branches with
different branches. The assertion follows by taking into account Proposition16.3.5.

�

18.2.4 Proof of the Main Theorem

In what follows we will apply standard quadratic transformations based at suitable
singular points of X . We will abuse notation and we will still denote these points by
A, B,C as if the transformation were ω. This makes no difference because we can
change coordinates and put any three non-collinear points in the points A, B,C .

Keeping the above notation, we say that X ′ has milder singularities than X if:

(a) either themaximummultiplicity of a non-ordinary singular point of X ′ is smaller
than the maximum multiplicity of a non-ordinary singular point of X ,

(b) or the number of non-ordinary singular points of X ′ with maximum multiplicity
is smaller than the number of non-ordinary singular points of X with maximum
multiplicity.

Suppose A is a non-ordinary singular point of X with maximum multiplicity.
Suppose that we are able to put X in very good position with respect to ω and A.
Then, by Lemma18.2.7 from which we keep the notation, if h > 1 the curve X ′ will
have milder singularities with respect to X . We will say that a singular point A of
X is a bad point, if h = 1 for it and for all the points deduced from it by iterated
applications of standard quadratic transformations as above. If we are able:

(i) to put the curves in very good position and
(ii) to exclude the existence of bad points,
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then iterated application of the procedure described above eventually leads to a curve
with only ordinary singularities and this will prove Theorem18.2.1. Therefore we
have to prove (i) and (ii) above.

First we deal with (ii). For this we introduce for any curve X of degree n the
following number

p(X) = (n − 1)(n − 2)

2
−

∑

P∈X

mP(X)(mP(X) − 1)

2

which is non-negative by Lemma17.1.3.

Lemma 18.2.8 In the above setting, suppose that X is in very good position with
respect to ω and A and that P1, . . . , Ph are the non-fundamental points of X ′ on the
line a. Then one has

p(X ′) = p(X) −
h∑

i=1

mPi (X
′)(mPi (X

′) − 1)

2
. (18.7)

Proof Suppose that the multiple points of X inU are Q1, . . . , Ql with multiplicities
m1, . . . ,ml . Let r be the multiplicity of X in A. By the very goodness assumption
there is no other singular point of X but A on a ∪ b ∪ c. Then we have

p(X) = (n − 1)(n − 2)

2
− r(r − 1)

2
−

l∑

i=1

mi (mi − 1)

2

whereas

p(X ′) = (2n − r − 1)(2n − r − 2)

2
−

l∑

i=1

mi (mi − 1)

2
−

−
h∑

i=1

mPi (X
′)(mPi (X

′) − 1)

2
− n(n − 1)

2
− 2

(n − r)(n − r − 1)

2
.

One finds

(2n − r − 1)(2n − r − 2)

2
− n(n − 1)

2
− 2

(n − r)(n − r − 1)

2
=

= (n − 1)(n − 2)

2
− r(r − 1)

2
,

whence (18.7) immediately follows. �

Corollary 18.2.9 Suppose we can put X and its transformed curves in very good
position, then there are no bad points for X.
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Proof This is an immediate consequence of Lemma18.2.8 and of the non-negativity
of p(X). �

Finally to conclude the proof of Theorem18.2.1, we need to deal with the very
good position issue (i). This is done in the following:

Lemma 18.2.10 Assume char(K) = 0. Let X be an irreducible plane curve, P a
point of X. Then we can choose a projectivity τ such that X is in very good position
with respect to ω ◦ τ and P.

Proof Let n be the degree of X and r the multiplicity at P . It suffices to find three
lines a, b, c such that b, c contain P and intersect X off P in n − r distinct points,
and a line a which intersects X in n distinct points which are neither on b nor on c.

First of all we choose a. In fact by Theorem12.2.3 there is a non-empty Zariksi
open subsetU of P̌2 such that for each a ∈ U , a intersects X in n distinct points. So
we can choose a in infinitely many ways.

To choose b and c we change coordinates and put P at the point at infinity of the
y axis and a in the x axis, so that X has equation of the form

yn−r fr (x) + · · · + fn(x) = 0 (18.8)

where fi (x) is a polynomial of degree at most i in x , for i = r, . . . , n, fr (x) is
not identically 0 and fn(x) = 0 has n distinct solutions h1, . . . , hn . The affine lines
through P have equation x = h, with h ∈ K, andwe need to find two such lineswhich
intersect X in n − r distinct points in A

2 \ {(h1, 0), . . . , (hn, 0)}. The line x = h
intersects X in A2 in the points having the y-coordinate solution of the equation

yn−r fr (h) + · · · + fn(h) = 0. (18.9)

Since fr (x) is not identically zero, the equation fr (x) = 0 has only finitely many
solutions, so we can choose h in the dense open Zariski subset U ′ of K = A

1 such
that fr (h) �= 0 and h is distinct from h1, . . . , hn . For these values of h, (18.9) is an
equation of degree n − r which does not have the solution y = 0 because fn(h) �= 0.
We want this equation to have n − r distinct solutions. This is not the case if and
only if the polynomial in (18.9) has some common solution with its derivative with
respect to y. Consider the system

yn−r fr (x) + · · · + fn(x) = 0

(n − r)yn−r−1 fr (x) + · · · + fn−1(x) = 0
(18.10)

formed by (18.8) and by its derivativewith respect to y, which, since the characteristic
of K is zero, is a non-zero polynomial. Since X is irreducible, the first polynomial
in (18.10) is irreducible. Hence the two polynomials in (18.10) have no common
factor, and therefore they have a finite set S of common solutions. If we take h in
the dense open subset U ′′ = U ′ \ (U ′ ∩ S), then the Eq. (18.9) has exactly n − r
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distinct solutions, none of them equal to 0. This implies that we can choose a, b, c
in infinitely many ways so that b, c contain P and intersect X off P in n − r distinct
points, and a intersects X in n distinct points which are neither on b nor on c. This
proves the assertion in this case. �

We can finally give the:

Proof (of Theorem18.2.1) The proof is complete if the characteristic of K is 0. To
conclude, we need to deal with the case in which char(K) = p > 0.

The argument in Lemma18.2.10 goes through, except that the derivative of (18.8)
with respect to y could be identically 0. In this case all the lines passing through P do
not intersect X in n − r distinct points off P and therefore a non-empty open subset
of the set (P) ⊂ P̌

2 of lines through P consists of tangent lines to X at smooth points.
Thenwe say that P is a nasty point of X . If this is the case p divides n − r . Moreover,
since the dual curve of X is irreducible (see Exercise17.3.25) and it has infinitely
many points in common with the line (P) of P2 then X̌ = (P) and this implies that
P can be the only nasty point of X .

We now show that we can eliminate the nasty point P by making a suitable
standard quadratic transformation. In fact make a standard quadratic transformation
based at a point A of multiplicity m = 0, 1 of X , which is not nasty for X , so we can
choose the line a intersecting X in n distinct points, and the lines b and c intersecting
X in n − m distinct points not on a ∩ X . The transformed curve X ′ has acquired
three more ordinary points of multiplicities n, n − m and n − m, and has the same
singularities as X besides them. So the image P ′ of P is still a point of maximum
multiplicity among the non-ordinary singularities of X ′. Note that X ′ has degree
n′ = 2n − m and P ′ has still multiplicity r . Then n′ − r = 2n − m − r and this is
congruent to n − m modulo p. So appropriately choosing m = 0, 1 we can avoid
that p divides n′ − r so P ′ is not nasty for X ′ and we can proceed. Repeating this
process, and applying all the above considerations, we get rid of all non ordinary
points, concluding the proof of the theorem. �

Exercise 18.2.11 * Let C be a smooth, projective, irreducible curve and let P be a point of C .
Prove that there is a plane, irreducible, projective curve X ⊂ P

2 with ordinary singularities such
that π : C → X is the smooth model of X , and π(P) is a smooth point of X .

Exercise 18.2.12 Analyze the singularities of the following projective curves over C and make a
transformation of each of them in a curve with ordinary singularities

zy2 = x3

(x2 + y2)2 − 4x2z2 − y2z2 = 0

y3(y − 2z) + x2z2 = 0

4x4 + x3y + xy2z − y2z2 = 0

(x2 + y2 − 2xz)2 − xy3 = 0

(x2 + y2 − 2xz)2 − x3z = 0



Chapter 19
Divisors, Linear Equivalence, Linear
Series

In this chapter X ⊂ P
2 will be an irreducible projective plane curve andwewill denote

by π : C → X its smooth birational model. A point P of C will be sometimes called
a place of X centered at the point Q = f (P).

19.1 Divisors

In this section we extend in the case of curves the concept of divisors already intro-
duced in another situation in Sect. 1.6.5.

Let C be a smooth projective curve. A divisor on C is a formal sum

D =
∑

P∈C
nP P, with nP ∈ Z

and nP = 0 except for a finite number of points of C . The integer nP is called the
multiplicity of D in P . The set of points P such that nP �= 0 is called the support of
D and denoted by Supp(D).

The divisors of C form an abelian group Div(C), which is the free abelian group
generated by the points ofC . The degree of D = ∑

P∈C nP P is the integer deg(D) =∑
P∈C nP and the map

deg : D ∈ div(C) → deg(D) ∈ Z

is a group homomorphism. A divisor D = ∑
P∈C nP P is said to be effective if

nP � 0 for all P ∈ C , and in this case one writes D � 0. An effective divisors
D = ∑

P∈C nP P is said to be reduced if nP � 1 for all P ∈ C . In this case one also
says that D consists of deg(D) distinct points.
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Given two divisors D, D′ one sets D � D′ if and only if D − D′ � 0. This is a
partial order relation in the group Div(C). If D � D′ � 0, one says that D contains
D′. If P ∈ C is a point and D � P , one writes P ∈ D and says that P belongs to D.

Consider X ⊂ P
2 an irreducible projective plane curve of degree n and we will

denote by π : C → X its smooth birational model. Since we will be interested in
questions that are invariant under birational transformations, we may assume that X
has only ordinary singularities. The process described in Sect. 18.1 shows that the
places of X are in 1:1 correspondence with the branches of X , which are all linear.

Let now Y be a plane curve of degree m with equation g = 0, which does not
contain X as a component. We define the effective divisor divX (Y ) := divX (g) (also
denoted div(Y ) or div(g) if there is no danger of confusion) on C in the following
way. Let P be a point of C and let γP be the linear branch of X corresponding to P .
Then we set

divX (Y ) =
∑

P∈C
oγP (Y ).

This divisor is called the divisor cut out by Y on X . By Theorem 16.3.3, for any point
Q ∈ X we have

i(Q; X,Y ) =
∑

P∈ f −1(Q)

oγP (Y )

and by Bézout Theorem
deg(divX (Y )) = nm.

Next consider a non-zero element φ ∈ K (C) = K (X). Let P ∈ C be a zero of φ.
We will denote by ord0P(φ) the order of zero of φ at P (see Remark 14.2.13). We set

(φ)0 =
∑

P∈C
ord0P(φ)

and this is called the divisor of zeros of φ. Similarly, if P ∈ C is a pole of φ, we
denote by ord∞

P (φ) the order of pole of φ at P , and we set

(φ)∞ =
∑

P∈C
ord∞

P (φ)

and call it the divisor of poles of φ.
Finally we set

div(φ) = (φ) = (φ)0 − (φ)∞

and call it the divisor of φ. Divisors of this type are called principal divisors. The
map

div : φ ∈ K (C) \ {0} → div(φ) ∈ Div(C)

is a homomorphism for the multiplicative structure of K (C).
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Proposition 19.1.1 For any φ ∈ K (C) \ {0} we have

deg(div(φ)) = 0.

Proof Let X ⊂ P
2 be an irreducible curve with only ordinary singularities such that

π : C → X is the smooth model. Any rational function φ ∈ K (C) \ {0} = K (X) \
{0} can be written as φ = g

h , with g, h ∈ S(X), g, h �= 0, and g, h of the same degree
(see Theorem5.5.3). LetG, H be homogeneous polynomials in S2 of the same degree
whose classes in S(X) are g, h. Then (see Exercise 19.1.2) one has

div(φ) = div(G) − div(H)

whose degree is 0 because div(G) and div(H) have the same degree. �

Exercise 19.1.2 *Consider X ⊂ P
2 an irreducible projective plane curve and let π : C → X be

its smooth birational model. Assume that X has only ordinary singularities. Let Z be a plane curve
with equation g = 0 which does not contain X as a component. Fix P ∈ C and Q = f (P) and let
γP be the linear branch of X with centre Q determined by P . The map f determines an injective
homomorphism

f ∗ : OX,Q → OC,P .

We may assume that Q ∈ U0 ∼= A
2. Let g∗ be, as usual, the dehomogenization of g. Interpret g∗ as

an element ofOX,Q . Prove that oγP (Z) equals the order of f ∗(g∗) as an element of the DVROC,P .

Exercise 19.1.3 *Let φ be a non-zero rational function on the smooth curveC . Prove that div(φ) =
0 if and only if φ ∈ K

∗.

Exercise 19.1.4 *Let φ,φ′ be non-zero rational functions on the smooth curve C . Prove that
div(φ) = div(φ′) if and only if there is λ ∈ K

∗ such that φ′ = λφ.

19.2 Linear Equivalence

Two divisors on the smooth projective curve C are said to be linearly equivalent,
and one writes D ≡ D′, if and only if there is a function φ ∈ K (C) \ {0} such that
D′ = D + div(φ).

Proposition 19.2.1 The linear equivalence has the following properties:

(a) it is an equivalence relation;
(b) if D ≡ D′, then deg(D) = deg(D′);
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(c) if D ≡ D′ and D1 ≡ D′
1, then D + D1 ≡ D′ + D′

1;
(d) D ≡ 0 if and only if there is a non-zero rational functionφ such that D = div(φ);
(e) if X ⊂ P

2 is an irreducible curve with only ordinary singularities such that
π : C → X is the smooth model, then two divisors D, D′ on C are linearly
equivalent if and only if there are two plane curves Y , Y ′ not containing X such
that

D + div(Y ) = D′ + div(Y ′).

Proof Parts (a)–(d) are easy and can be left to the reader as an exercise. As for part
(e), note that D ≡ D′ is equivalent to say that there is φ ∈ K (X) \ {0} such that
D = D′ + div(φ). Then φ = g

g′ with g, g′ ∈ S(X) homogeneous of the same degree
and g, g′ �= 0. Let G,G ′ ∈ S2 be homogeneous polynomials of the same degree
whose classes in S(X) are g, g′. We have

div(φ) = div(G) − div(G ′)

whence the assertion immediately follows. �

Exercise 19.2.2 *Verify parts (a)–(d) of Proposition 19.2.1.

Exercise 19.2.3 *Prove that two divisors on P1 are linearly equivalent if and only if they have the
same degree.

Exercise 19.2.4 *Let C be a smooth projective curve, let D be a divisor on C and S be a finite
subset of C . Prove that there is a divisor D′ ≡ D such that S ∩ Supp(D′) = ∅.

19.3 Fibres of a Morphism

Let f : C → C ′ be a surjective morphism between smooth, irreducible, projec-
tive curves. Let Q be a point on C ′ and suppose f −1(Q) = {P1, . . . , Ph}. Fix a
uniformizing parameter u in OC ′,Q . For all i = 1, . . . , h, we have an inclusion
f ∗ : OC ′,Q → OC,Pi . We set e f,Pi = oPi ( f

∗(u)), for i = 1, . . . , h. It is easy to see
that e f,Pi does not depend on the uniformizing parameter u. We define the fibre
divisor of f at Q as the divisor on C ′ given by

f ∗(Q) =
h∑

i=1

e f,Pi Pi .

More generally, let D = ∑
Q∈C ′ nQQ be a divisor on C ′. We define f ∗(D) =∑

Q∈C ′ nQ f ∗(Q), which is called the pull-back of D via f . One has Supp( f ∗(D)) =
f −1(Supp(D)).
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Recall that the degree of the morphism f : C → C ′ is the degree of the field
extension f ∗ : K (C ′) → K (C) (see Sect. 10.4). We will prove in Theorem 19.3.5
below that the degree of all fibre divisors of f : C → C ′ equals the degree of f . In
order to do so, we need some algebraic preliminaries.

Let C be a smooth, projective curve. If S is a finite subset of C , we will set

OC,S =
⋂

P∈S
OC,P ,

so that OC,S is the ring of rational functions on C which are defined at all points of
S.

Fix the surjective morphism f : C → C ′ of smooth, projective curves. If Q ∈
C ′ and S = f −1(Q), then OC ′,Q , identified with its image via the injection f ∗ :
K (C ′) → K (C), is a subring of OC,S .

Lemma 19.3.1 Let C be a smooth, projective curve. If S is a finite subset of C then:

(a) OC,S is a domain with principal ideals, therefore it is a UFD;
(b) if S = {P1, . . . , Ph}, there are elements t1, . . . , th ∈ OC,S such that

oPi (t j ) = δi j , for i, j = 1, . . . , h. (19.1)

Moreover t1, . . . , th are pairwise relatively prime in OC,S;
(c) if u ∈ OC,S and u �= 0, then

u = vtr11 · · · trhh
where ri = oPi (u), for i = 1, . . . , h, and v is invertible in OC,S.

Proof For each i = 1, . . . , h, fix a uniformizing parameter ui ∈ OC,Pi . Then
div(ui ) = Pi + Di , with Pi not appearing in Di , for i = 1, . . . , h. ByExercise 19.2.4,
we can find a rational function fi such that the support of the divisor Di + div( fi )
has empty intersection with S, for i = 1, . . . , h. Then (19.1) is verified for ti = fi ui ,
that sits in OC,S , with i = 1, . . . , h. This proves the first part of (b).

Let us prove (a). Let I be an ideal of OC,S . Set

ri = min{oPi (g), g ∈ I}, i = 1, . . . , h

and
f = tr11 · · · trhh .

Then one has u f −1 ∈ OC,S for all u ∈ I, hence I ⊆ ( f ). The us prove the opposite
inclusion. Consider the set J of all elements ofOC,S of the form u f −1 ∈ OC,S with
u ∈ I. It is clear that J is an ideal of OC,S . Moreover
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min{oPi (g), g ∈ J } = 0, for i = 1, . . . , h.

Hence, for all i = 1, . . . , h, we can find ui ∈ J such that oPi (ui ) = 0, i.e., ui (Pi ) �=
0. Consider the element

z =
h∑

i=1

ui t1 · · · t̂i · · · th ∈ J .

It is clear that oPi (z) = 0 for all i = 1, . . . , h, and therefore z−1 ∈ OC,S . Then 1 =
z−1z ∈ J , so J = OC,S . This immediately implies that ( f ) ⊆ I, as desired.

Next we finish the proof of (b), showing that t1, . . . , th are pairwise relatively
prime in OC,S . Suppose, for instance, that t1 = ws1, t2 = ws2, with w ∈ OC,S a
common factor. Since t1(Pi ) �= 0 for i = 2, . . . , h, then also, w(Pi ) �= 0 for i =
2, . . . , h. Similarly, since t2(Pi ) �= 0 for i = 1, 3, . . . , h, then also w(Pi ) �= 0, for
i = 1, 3, . . . , h. Sow(Pi ) �= 0 for i = 1, . . . , h, and thereforew is invertible inOC,S .

Finally we prove (c). Fix u ∈ OC,S \ {0}, set ri = oPi (u) and note that ri � 0
for i = 1, . . . , h. Set v = ut−r1

1 · · · t−rh
h . Then oPi (v) = 0 for i = 1, . . . , h, hence

v ∈ OC,S and also v−1 ∈ OC,S . This proves (c). �

Lemma 19.3.2 In the same setting as in Lemma 19.3.1, one has

dimK

(
OC,S/(t

ri
i )

)
= ri , for all i = 1, . . . , h.

Proof It suffices to prove the assertion for i = 1, the proof being analogous for i > 1.
Let us set P1 = P , t1 = t and r1 = r . Fix v ∈ OC,S . The assertion will be proved if
we prove that v can be uniquely written as

v = a0 + a1t + · · · + ar−1t
r−1 modulo tr

and a0, . . . , ar−1 ∈ K.We prove this by induction. Suppose we have a unique expres-
sion of the sort

v = a0 + a1t + · · · + as−1t
s−1 modulo t s

for a given s < r (certainly there is one for s = 1, the first step of the induction).
Then

w = t−s(v − a0 − a1t − · · · − as−1t
s−1) ∈ OC,S ⊂ OC,P .

We set w(P) = as ∈ K. Then oP(w − as) > 0 and from Lemma 19.3.1 it follows
that

w = a0 + a1t + · · · + ast
s modulo t s+1

in a unique way. �
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Lemma 19.3.3 Let f : C → C ′ be a surjective morphism of projective curves, with
C and C ′ smooth. Fix Q ∈ C ′ and set S = f −1(Q) = {P1, . . . , Ph}. Then OC,S is a
finite OC ′,Q-module.

Proof Recall that f is finite by Theorem 14.3.3. Then note that the problem is local.
So we may assume that C and C ′ are affine and we set A = A(C), B = A(C ′), with
B ⊆ A and A a finitely generated B-module. We claim that OC,S = AOC ′,Q . The
inclusion AOC ′,Q ⊆ OC,S is obvious, so we prove the opposite inclusion.

Take any non-zero φ ∈ OC,S , and let P̄1, . . . , P̄l be the poles of φ. Then f (P̄i ) =
Qi �= Q, for i = 1, . . . , l.We can find a function g ∈ B such that g(Q) �= 0, g(Qi ) =
0 and gφ ∈ OC,P̄i for i = 1, . . . , l. Hence gφ ∈ A.Moreover g−1 ∈ OC ′,Q , andweget
φ = (gφ)g−1 ∈ AOC ′,Q . This proves that OC,S ⊆ AOC ′,Q , as wanted for the claim.

Finally, a set of finitely many generators of A over B, gives a set of generators of
OC,S = AOC ′,Q over OC ′,Q , and the assertion is proved. �

Lemma 19.3.4 Let f : C → C ′ be a surjective morphism of smooth, projective
curves. Fix Q ∈ C ′ and set S = f −1(Q) = {P1, . . . , Ph}. ThenOC,S is a freeOC ′,Q-
module of rank n = deg( f ), i.e.,

OC,S
∼= O⊕n

C ′,Q .

Proof Since OC ′,Q is a DV R, it has principal ideals (see Theorem 14.2.6). By the
structure theorem of finitely generated modules over principal ideals domains, we
have thatOC,S is the direct sumof a freemodule and a torsionmodule. However,OC,S

is contained in the field K (C), so it has no torsion. Therefore OC,S is a free OC ′,Q-
module. We have to compute its rank, which is the maximum number m of elements
of OC,S that are linearly independent over OC ′,Q . This is the same as the maximum
number of elements of OC,S that are linearly independent over Q(OC ′,Q) = K (C ′).

Since the degree of K (C) on K (C ′) is n, we clearly have m � n. To finish we
prove thatOC,S contains n elements that are linearly independent over K (C ′). To see
this, take f1, . . . , fn ∈ K (C) that are a basis of K (C) as a K (C ′)-vector space. Let
r be the maximum order of poles of f1, . . . , fn at the points P1, . . . , Ph . Let u be a
uniformizing parameter in OC ′,Q . The f1ur , . . . , fnur ∈ OC,S and still are linearly
independent over K (C ′), proving the assertion. �

This is the promised result about the degree of fibre divisors:

Theorem 19.3.5 Let f : C → C ′ be a surjective morphism of smooth, projective
curves. For every point Q ∈ C ′, one has

deg( f ∗(Q)) = deg( f ).

Proof We set f −1(Q) = {P1, . . . , Ph} and n = deg( f ). Let u be a uniformizing
parameter at Q. By Lemma 19.3.1 we have u = vtr11 · · · trhh , with ri = oPi (u) for
i = 1, . . . , h and v is invertible in OC,S . By the definition of f ∗(Q) we have
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f ∗(Q) =
h∑

i=1

ri Pi , hence deg( f ∗(Q)) =
h∑

i=1

ri .

Consider now the obvious surjective linear map

φ : OC,S/(u) → ⊕h
i=1OC,S/(t

ri
i ).

Since t1, . . . , th are pairwise relatively prime in OC,S by Lemma 19.3.1, one imme-
diately sees that φ is also injective, so it is an isomorphism. By Lemma 19.3.2, we
have dim(OC,S/(u)) = ∑h

i=1 ri . On the other hand, by Lemma 19.3.4, we have

OC,S/(u) ∼= (OC ′,Q/(u))⊕n.

But (u) = mQ , thereforeOC ′,Q/(u) ∼= K, and so dim(OC,S/(u)) = n. In conclusion
we have

deg( f ) = n = dim(OC,S/(u)) =
h∑

i=1

ri = deg( f ∗(Q))

as wanted. �

Given a surjective morphism f : C → C ′, we can consider the family of effective
divisors of degree d = deg( f ) given by { f ∗(P)}P∈C ′ . This is called an involution of
divisors parametrized by C ′, and usually it is denoted by the symbol γ1

d . If Q ∈ C is
any point, there is a unique divisor D ∈ γ1

d such that P is contained in D. Moreover
there is no point P contained in all divisors of the γ1

d .

Exercise 19.3.6 *Let C,C ′ be smooth, irreducible, projective curves and f : C → C ′ a surjective
morphism, with ν = deg( f ). Prove that if f is separable (in particular if char(K) = 0), then there
is a non-empty open subset U of C ′ such that for all points P ∈ U the fibre divisor f ∗(P) consists
of d distinct points.

Exercise 19.3.7 Using Theorem 19.3.5 give another proof of Proposition 19.1.1.

Exercise 19.3.8 Every divisor is locally principal in the following sense. Let C be a smooth,
irreducible, projective curve and D = ∑

P∈C nP P a divisor on C . Prove that there is an open cover
{Ui }i∈I of C such that for any i ∈ I there is a non-zero rational function φi in Ui such that the
principal divisor of φi in Ui coincides with the restriction of D to Ui . Prove that for all pairs
(i, j) ∈ I × I such that Ui ∩Uj �= ∅, the function φi j = φi

φ j
is regular and never zero in Ui ∩Uj .

The family {(Ui ,φi )}i∈I is said to be compatible and determined by D.

Exercise 19.3.9 Suppose we have a compatible family {(Ui ,φi )}i∈I on C . Prove that there is a
unique divisor D on C , such that {(Ui ,φi )}i∈I is determined by D. In this case one says that D is
determined by {(Ui ,φi )}i∈I .
Exercise 19.3.10 Prove that if there are two compatible families {(Ui ,φi )}i∈I and {(U ′

j ,φ
′
j )} j∈J

on C , the two families determine the same divisor if and only if for all pairs (i, j) ∈ I × J such
that Ui ∩U ′

j �= ∅, the function φi
φ′
j
is regular and never zero in Ui ∩U ′

j .
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Exercise 19.3.11 Suppose we have a surjective morphism f : C → C ′ between two smooth, irre-
ducible projective curves. Let D be a divisor on C ′, and let {(Ui ,φi )}i∈I be a compatible family
determined by D. Consider the family {( f −1(Ui ),φi ◦ f| f −1(Ui )

)}i∈I . Prove that it is compatible
and that it determines the divisor f ∗(D).

Exercise 19.3.12 Suppose we have a surjective morphism f : C → C ′ of degree n between two
smooth, irreducible projective curves. Let D be a divisor onC ′. Prove that deg( f ∗(D)) = n deg(D).

19.4 Linear Series

Let D = ∑
P∈C nP P be a divisor on a smooth, projective curve C . We make the

following definition

L(D) = {φ ∈ K (C) : either φ = 0 or D + div(φ) � 0}.

We note that L(D) is a vector space over K. Indeed, if a ∈ K and φ ∈ L(D) it is
clear that aφ ∈ L(D). Moreover, if φ,ψ ∈ L(D), we have

D + div(φ) � 0, D + div(ψ) � 0

which means that for all P ∈ C we have

oC,P(φ) � −nP , oC,P(ψ) � −nP .

But
oC,P(φ + ψ) � min{oC,P(φ), oC,P(ψ)} � −nP ,

so hat φ + ψ ∈ L(D).
We will denote by �(D) the dimension of L(D), that, as we will soon see, is finite.

Lemma 19.4.1 If D � D′ then L(D) ⊆ L(D′) and

dim(L(D′)/L(D)) � deg(D′ − D). (19.2)

Proof The first assertion is trivial: if φ ∈ L(D), one has D + div(φ) � 0, then D′ +
div(φ) � 0 and φ ∈ L(D′).

To prove (19.2), it suffices to prove that

dim(L(D + P)/L(D)) � 1.

To see this, consider a uniformizing parameter u in OC,P . Let m be the multiplicity
of P in D. Consider the linear map

μ : L(D + P) → K
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which sends φ ∈ L(D + P) to μ(φ) := (um+1φ)(P). Since oC,P(φ) � −m − 1, the
function um+1φ is defined in P and so it makes sense to consider its value in P , and
the map μ is therefore well defined. We claim that ker(μ) = L(D). In fact μ(φ) = 0
means that (um+1φ)(P) = 0. Since oC,P(u) = 1, this means that oC,P(φ) � −m, as
wanted. Therefore

dim(L(D + P)/L(D)) � dim(K) = 1.

�

Lemma 19.4.2 One has L(0) = K and L(D) = {0} if deg(D) < 0.

Proof We have φ ∈ L(0) if and only if either φ = 0 or div(φ) � 0. This means that
φ has no poles, so it has also no zeros by Proposition 19.1.1, so div(φ) = 0 and φ is
constant (see Exercise 19.1.3).

If φ ∈ L(D) and φ �= 0, then D′ = D + div(φ) � 0 is linearly equivalent to D,
hence deg(D) = deg(D′) � 0. Thus if deg(D) < 0 then L(D) = {0}. �

Lemma 19.4.3 L(D) has finite dimension and precisely L(D) = {0} if deg(D) < 0
whereas if deg(D) � 0 then

�(D) � deg(D) + 1.

Proof If deg(D) < 0 the assertion follows from Lemma 19.4.2. If deg(D) = n � 0,
we fix a point P ∈ C andwe set D′ = D − (n + 1)P . Then L(D′) = {0}. By Lemma
19.4.1 we have

�(D) = dim(L(D)/L(D′)) � deg(D − D′) = n + 1

as wanted. �

Lemma 19.4.4 If D ≡ D′ then L(D) ∼= L(D′).

Proof There is a ψ ∈ K (X) \ {0} such that D′ = D + div(ψ). We consider the map

τ : φ ∈ L(D′) → φψ ∈ L(D).

This map is well defined. Indeed

D + div(φψ) = D + div(φ) + div(ψ) = D′ + div(φ) � 0.

It is moreover clear that τ is linear and bijective. �

Given the divisor D on C , we denote by |D| the set of all effective divisors that
are linearly equivalent to D. This is called the complete linear series determined by
D. If D′ ≡ D, then |D′| = |D|.
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Proposition 19.4.5 One has
|D| = P(L(D)).

Proof For every φ ∈ L(D) \ {0}, the divisor D′ = D + div(φ) belongs to |D|. The
same D′ is obtained from a ψ ∈ L(D) \ {0} if and only if there is a λ ∈ K \ {0} such
that ψ = λφ. Indeed, one has

D′ = D + div(φ) = D + div(ψ)

if and only if div(φ) = div(ψ) and this is the case if and only if there is a λ ∈ K
∗

such that ψ = λφ (see Exercise 19.1.4). Thus we have an application

ρ : P(L(D))) → |D|

which maps the proportionality class of a non-zero function φ ∈ L(D) to the divisor
D′ = D + div(φ). As we said, this map is injective. Moreover it is also surjective.
In fact, if D′ � 0 and D′ ≡ D, there is a non-zero rational function φ such that
D′ = D + div(φ) and φ ∈ L(D). �

So |D| is in a natural way a projective space of dimension r(D) := �(D) − 1. Any
linear subspace of dimension r of |D| is called a linear series onC of dimension r . A
linear series of dimension−1 is empty. Two effective divisors are linearly equivalent
if and only if they belong to a linear series. Two divisors belonging to the same linear
series, being linearly equivalent, have the same degree. This is also called the degree
of the linear series. A linear series of dimension r and degree d is usually denoted
by the symbol grd .

Given a linear series grd on C , suppose there is an effective divisor D of degree δ
that is contained in all divisors of the grd . Then one says that D is a base divisor of
the grd . If we remove D from all divisors of the grd we still obtain a linear series grd−δ

which is denoted by the symbol grd(−D).

Exercise 19.4.6 Consider a grd on the curve C , and let P ∈ C be a point which is not a base point
for the grd . Consider the set of all divisors of the grd containing P . Prove that this set is a linear
series gr−1

d which has P has a base point. By removing P from all divisors of this gr−1
d we obtain

a gr−1
d−1 which is again denoted by grd (−P).

Exercise 19.4.7 Consider a grd on the curve C , and let M be an effective divisor of degree m � r .
Prove that the set of divisors D ∈ grd containing M is non-empty and they form a linear series of
dimension at least r − m, having M in the base divisor. By removing M from the divisors of this
series, one obtains a gsd−m , with s � r − m, which is denoted by grd (−M).

Exercise 19.4.8 Given a surjective morphism f : C → P
1 of degree d, with C a smooth, irre-

ducible projective curve, prove that the corresponding involution γ1
d parametrized by P

1 is in fact
a g1d .
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19.5 Linear Series and Projective Morphisms

Let ξ = grd be a linear series on a smooth, projective curve C . It corresponds to an
(r + 1)-dimensional vector subspace V ⊆ L(D), with D ∈ ξ. Suppose that ξ has no
base points: we will then say that ξ is base point free. Then for every point P ∈ C ,
the series grd(−P) has dimension r − 1 (see Exercise 19.4.6). Hence grd(−P) can be
considered as a hyperplane in grd . Denote by ǧrd the dual projective space of grd . We
have a map

ωξ : P ∈ C → grd(−P) ∈ ǧrd
∼= P

r .

Proposition 19.5.1 In the above setting, the map ωξ is a morphism, which is said to
be determined by ξ.

Proof With the above notation, grd = P(V ) and therefore ǧrd = P(V̌ ). Fix a point
P ∈ C and a divisor D ∈ grd such that P is not contained in D: this is possible
because grd is base point free. For every g ∈ V \ {0}, we have

D + div(g) = D′ ∈ grd ,

therefore the divisor of poles of g is such that

D � (g)∞.

Fix a basis g0, . . . , gr of V , so that

D � (gi )∞, for all i = 0, . . . , r. (19.3)

On V̌ we have coordinates (λ0, . . . ,λr ) corresponding to the linear form mapping
gi in λi , for i = 0, . . . , r . Now grd(−P) corresponds to the subspace V (−P) of V
formed by 0 and by all non-zero functions g = μ0g0 + · · · + μrgr such that

D + div(g) � P.

This, by (19.3) and by the fact that P is not contained in D, happens if and only if
g(P) = 0, i.e., if and only if

μ0g0(P) + · · · + μrgr (P) = 0. (19.4)

Hence V (−P) is the linear subspace of V of codimension 1 having Eq. (19.4) in the
coordinates (μ0, . . . ,μr ) of V . Thus in V̌ it has coordinates

(g0(P), . . . , gr (P))

which are not all zero, because P is not a base point for the grd . In conclusion, in the
open neighborhood of P which is the complement of the support of D (containing
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all the poles of the functions g0, . . . , gr ), ω writes as

ω : P ∈ U = C \ Supp(D) → [g0(P), . . . , gr (P)] ∈ P
r (19.5)

where g0, . . . , gr are regular functions in U , which proves the assertion. �
We go on keeping the notation of the proof of Proposition 19.5.1. We observe

that, by the linear independence of the functions g0, . . . , gr , there is no hyperplane
of Pr containing the curve ω(C), which is therefore non-degenerate.

Conversely, suppose we are given a morphism

ω : C → P
r

so that ω(C) is non-degenerate. Given a hyperplane π of Pr , with equation

a0x0 + · · · + ar xr = 0 (19.6)

we define the divisor div(π) cut out by π on C in the following way. Set

div(π) =
∑

P∈C
nP P

and we define nP for all P ∈ C . Fix P ∈ C . Suppose C ⊂ P
s . In a neighborhood

U of P on C there are regular functions g0, . . . , gr on U , not all zero at any point
Q ∈ U , such that

ω(Q) = [g0(Q), . . . , gr (Q)], for all Q ∈ U

(see Exercise 6.2.13). Then we define nP to be the order of the function a0g0 + · · · +
argr at P . Divisors cut out by different hyperplanes on C are linearly equivalent. In
fact, if the hyperplane π has Eq. (19.6) and the hyperplane π′ has equation

a′
0x0 + · · · + a′

r xr = 0

then, with the above notation, one has

div(π) − div(π′) = div
(a0g0 + · · · + argr
a′
0g0 + · · · + a′

rgr

)
.

Actually the divisors cut out by all hyperplanes vary in a linear series ξ = grd with
no base point, and ω = ωξ .

In conclusion there is a 1:1 correspondence between base point free linear series
grd on C and morphisms ω : C → P

r up to projectivities of Pr , such that ω(C) is
non-degenerate.

Given a base point free ξ = grd on C , it is called simple if ωξ is birational onto
its image X . This is the same as saying that, except for finitely many pairs of points
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(P, Q) ∈ C × C , one has

dim(grd(−P − Q)) = r − 2. (19.7)

Suppose that the base point free linear series ξ = grd on C is non-simple, i.e.,
ωξ : C → X is not birational, where X = ωξ(C) is a non-degenerate curve in Pr . Let
π : C ′ → X be a smooth model of X . Then there is a rational map ψ = π−1 ◦ ωξ :
C ��� C ′, which is a morphism because C is smooth, and ωξ = π ◦ ψ. Then one
says that ωξ factors through ψ. Let ν = deg( f ). One says that ξ is composed with
the involution γ1

ν parametrized by C ′. In this case given any point P ∈ C , if D is
the unique divisor of the γ1

ν containing P , then D is contained in any divisor of
ξ containing P . This implies that d is divisible by ν and the birational morphism
π : C ′ → X ⊆ P

r is determined by a grd
ν

. So if ξ is base point free but non-simple, then

for anypoint P ∈ C there is somepointQ ∈ C such that dim(grd(−P − Q)) = r − 1.
Given a linear series ξ on the smooth, irreducible, projective curve C , ξ is said to

be very simple if it is base point free and moreover for all pairs of points (P, Q) ∈
C × C , (19.7) holds. The following is a basic result:

Theorem 19.5.2 Let ξ be a very simple linear series on the smooth, irreducible,
projective curve C. Then the morphism ωξ : C → P

r is an isomorphism of C onto
its image. In particular the image of C is smooth.

Proof LetC ′ be the image of f . Then f : C → C ′ is a finitemap byTheorem 14.3.3.
The map f : C → C ′ is bijective, because it is of course surjective and injective by
the very simplicity of ξ. Then we apply Theorem 14.4.1 and in order to do so we
have to prove that for any point P ∈ C , the differential of f is injective at P . If we
set Q = f (P), this is equivalent to say that

f ∗ : mQ/m2
Q → mP/m2

P

is surjective. Suppose by contradiction that this is not the case. Then this means that

f ∗(mQ) ⊆ m2
P ,

because, since C is smooth at P , one has dim(mP/m2
P) = 1. Then for any function

u ∈ mQ , we have oP( f ∗(u)) � 2. This implies that for any divisor D ∈ ξ such that
P ∈ D, then 2P � D. This contradicts the very simplicity of ξ. �
Exercise 19.5.3 *Prove that if ξ = grd on the smooth, projective curve C is base points free and
simple then the image of ωξ is a curve of degree d and there is a dense open subsetU of the grd such
that every divisor D ∈ U consists of d distinct points.

Exercise 19.5.4 *Assume char(K) = 0. Suppose that ξ = grd on the curve C is base point free
but not simple, so that ωξ : C → ωξ(C) = X ⊂ P

r is not birational. Let π : C ′ → X be a smooth
model of X and consider the morphism ψ = π−1 ◦ ωξ : C → C ′. Then ξ is composed with the γ1

ν

parametrized by C ′ determined by ψ : C → C ′. Prove that X has degree d
ν and that ωξ : C → X

has degree ν. Prove that again there is a dense open subset U of the grd such that every divisor
D ∈ U consists of d distinct points.
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19.6 Adjoint Curves

Let X ⊂ P
2 be an irreducible curve with only ordinary singularities and π : C → X

its smooth model. For any point P ∈ C with Q = f (P), we set

mP = mQ(X)

and we define the divisor
ΔX =

∑

P∈C
(mP − 1)P

that may be simply denoted by Δ if no confusion arises. We will call it the multiple
points divisor of X . Note that Δ = 0 if and only if X is smooth.

A plane curve Y is said to be adjoint to X if for any point Q ∈ X one hasmQ(Y ) �
mQ(X) − 1.

Proposition 19.6.1 Let X ⊂ P
2 be an irreducible curve with only ordinary singu-

larities. Then Y is adjoint to X if and only if either Y contains X or

divX (Y ) � ΔX .

Proof One implication is trivial, so we focus on the non-trivial implication. We will
argue as in Sect. 18.1. Suppose that P is a singular point of X with multiplicity m,
that P ∈ U0

∼= A
2 and that actually P is the origin of A2. Then the affine equation

of X is of the form

f (x, y) = fm(x, y) + fm+1(x, y) + · · · + fd(x, y) = 0

where d is the degree of X and fi (x, y) is a form of degree i , for i = m, . . . , d. The
form fm(x, y) has m distinct roots, up to a proportionality factor, so that

fm(x, y) =
m∏

i=1

(bi x − ai y)

with (ai , bi ) �= (0, 0) non-proportional, for i = 1, . . . ,m. The principal tangents to
X at P have affine equations

bi x = ai y, i = 1, . . . ,m.

By a change of coordinates we may assume that b1 = 0, so that one of the principal
tangents to X at P is the x axis. Let us blow-up the point P . We restrict our attention
to the open subset Ã0 of the blow-up, which is isomorphic to A

2 with coordinates
(x, v) and the blow-up map identifies with the map (x, v) → (x, xv). Let Z be the
intersection of the strict transform of X with Ã0, which is an open subset of the
smooth model C of X . The equation of Z in Ã0

∼= A
2 is
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fm(1, v) + · · · + xd−m fd(1, v) = 0, and fm(1, v) =
m∏

i=1

(bi − aiv) = 0.

Now let us consider a curve Y in P2 which has affine equation

g(x, y) = gr (x, y) + gr+1(x, y) + · · ·

where, as usual gr (x, y), gr+1(x, y), . . . are homogeneous polynomials of degree
equal to the index. The intersection of the total transform of Y with Ã0

∼= A
2 has

equation
xr (gr (1, v) + xgr+1(1, v) + · · · ) = 0

It contains with multiplicity r the exceptional locus of the blow-up, which has equa-
tion x = 0, and the proper transform has equation

gr (1, v) + xgr+1(1, v) + · · · = 0.

This tells us that for any point Q1, . . . , Qm of C in f −1(P), the multiplicity of
div(Y ) is at least r . Moreover we see that if Q1 = (0, 0) is the point corresponding
to the principal tangent y = 0 to X at P , the multiplicity of div(Y ) at Q1 is larger
than r if and only if the equation gr (1, v) = 0 in v has the solution v = 0, i.e. if and
only if one of the principal tangents to Y at P coincides with the x axis. The same
happens for every other point Q2, . . . , Qm . Hence, if r < m − 1, since Y has in P at
most r principal tangents, then there is an i ∈ {1, . . . ,m} such that the multiplicity
of div(Y ) in Qi is r < m − 1, so it does not happen that div(Y ) � ΔX . This proves
the assertion. �

The set Adjd(X) of all adjoint curves of degree d to X is a linear system. If d < n,
no curve in Adjd(X) contains X . If d � n, then Adjd(X) contains the subset Adj0d(X)

of all the adjoints containing X . They consist of X plus any curve of degree d − n.
So Adj0d(X) is a linear system and

dim(Adj0d(X)) = (d − n)(d − n + 3)

2
.

Now we are able to prove an important result:

Theorem 19.6.2 (M. Noether Restsatz) Let X ⊂ P
2 be an irreducible curve with

only ordinary singularities and π : C → X its smooth model. Let D, D′ be effective
divisors on C such that D ≡ D′. Suppose there is an adjoint curve Y of degree m
not containing X such that

div(Y ) = Δ + D + A

where A is an effective divisor. Then there is an adjoint curve Y ′ of degree m not
containing X such that
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div(Y ′) = Δ + D′ + A.

Proof Since D and D′ are linearly equivalent, there are curves Z , Z ′ of the same
degree such that

D + div(Z) = D′ + div(Z ′).

Then
div(Y + Z) = div(Y ) + div(Z) =

= Δ + D + A + D′ − D + div(Z ′) =
= Δ + A + D′ + div(Z ′) � div(Z ′) + Δ.

(19.8)

Now we make the following:

Claim (+): Let X ⊂ P
2 be an irreducible curve with an ordinary m-tuple point P .

Let Y, Z be curves with equations g = 0 and h = 0 respectively. Let γ1, . . . , γm be
the distinct linear branches of X with centre P . Then Z verifies at P the Noether
conditions with respect to X and Y if

oγi (h∗) � oγi (g∗) + m − 1, for all i = 1, . . . ,m

where, as usual, g∗ and h∗ denote the dehomogenizations of g and h.

Take this claim for granted for the moment, and let us finish the proof of the
theorem. By (19.8) it follows that Y + Z verifies Noether’s conditions with respect
to X and Z ′ in any multiple point P of X , hence, assuming that X and Z ′ have
equations f = 0 and h′ = 0 respectively, we have a relation of the sort

gh = ah′ + b f

with a, b suitable homogeneous polynomials. Then on C we have

div(gh) = div(ah′) = div(a) + div(h′)

hence
div(a) = div(Y + Z) − div(Z ′) = Δ + A + D′

so that, by Proposition 19.6.1, we may consider the adjoint curve Y ′ with equation
a = 0, as desired.

We are left to prove Claim (+). As usual we may put P in the origin of A2 and we
denote with a lower asterisk the dehomogenization of polynomials. Now Z verifies
at P the Noether conditions with respect to X and Y if and only if h∗ ∈ ( f∗, g∗) ⊂
OA2,P , where we abuse notation identifying f∗, g∗, h∗ with their classes in OA2,P .
This is equivalent to say that h̄∗ ∈ (ḡ∗) ⊂ OX,P , where the upper bar denotes the
class. But to say that h̄∗ ∈ (ḡ∗) ⊂ OX,P , is in turn equivalent to say that

h̄∗
ḡ∗ ∈ OX,P .
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Consider the smooth model C → X , let P1, . . . , Pm be the counterimages on C
of P and consider a rational function φ on C which is defined at P1, . . . , Pm and
oC,Pi (φ) � m − 1 for all i = 1, . . . ,m. Then we claim that φ ∈ OX,P ⊆ K (C) =
K (X). This clearly implies Claim (+).

To prove this final claim, consider an open neighborhood U of P in X such that
φ is defined for every P ′ ∈ U except perhaps in P . LetU ′ be the counterimage ofU
on C , where C as usual is obtained by blowing-up at P . If x = 0 is the equation of
the exceptional locus in the usual open set Ã0 of the blow-up, then oC,Pi (x) = 1 for
all i = 1, . . . ,m. Therefore φ

xm−1 ∈ O(U ′). The assertion follows from the fact that
xm−1O(U ′) ⊆ O(U ).

In fact the affine equation of X is

f∗(x, y) =
d∑

i+ j�m

ai j x
i y j = 0

with d the degree of X . We may suppose that, after making a change of coordinates,
we have a0m �= 0. With the usual notation, the equation of C in Ã0 is of the form

d∑

i+ j�m

ai j x
i+ j−mv j = 0.

Recalling that y = xv, we may write this equation in the form

d∑

i+ j�m

ai j y
i+ j−mvm−i = 0. (19.9)

The left hand side of (19.9) is a polynomial of degree m in v. Indeed, when i > m,
so that m − i < 0, we may write

yi+ j−mvm−i = xi−m y j .

The coefficient of vm (19.9) is
d∑

j�m

a0 j y
j−m (19.10)

which has constant term a0m �= 0. So (19.10) is non-zero inU , thus, up to shrinking
U , we may divide by (19.10), and the Eq. (19.9) becomes of the form

vm + b1v
m−1 + · · · + bm = 0

where b1, . . . , bm ∈ O(U ), so that O(U ′) = O(U )[1, v, . . . , vm−1]. But then
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xm−1v j = xm−1− j (xv) j = xm−1− j y j ∈ O(U ), for all j = 1, . . . ,m − 1.

Hence xm−1O(U ′) ⊆ O(U ) as desired.
In conclusion

φ = xm−1 · φ

xm−1
∈ xm−1O(U ′) ⊆ O(U ) ⊆ OX,P

proving Claim (+) and the theorem. �

19.7 Linear Systems of Plane Curves and Linear Series

Let X ⊂ P
2 be an irreducible curve with only ordinary singularities and let π : C →

X be its smooth model. Let L be a linear system of dimension r of curves of degree
d in P2, such than no curve in L contains X . Then we can consider the set of divisors

LC = {div(Y ) : Y ∈ L}.

The divisors in LC are all linearly equivalent (see Proposition 19.2.1, (e)). Actually
LC is a linear series of dimension r that, as a projective space, is projectively equiv-
alent to L. In fact, let V ⊂ S2,d be the vector space such that dim(V ) = r + 1 and
L = P(V ). Fix f ∈ V \ {0} and consider the divisor D = div( f ) onC . Consider the
vector space W ⊂ K (C) of all rational functions of the form g

f with g ∈ V . Clearly
V ∼= W , hence dim(W ) = r + 1. We claim that W ⊆ L(D). In fact, for all g

f ∈ W ,
we have

D + div
( g

f

)
= D + div(g) − div( f ) = div(g) � 0.

Therefore W corresponds to the linear series of dimension r given by P(W ), and
this clearly coincides with LC . Since P(W ) ∼= P(V ) = L, this series is projectively
equivalent to L. The linear series LC is called the series cut out by L on C (or on
X ).

Suppose next that L contains curves containing X . Let L0 be the subset of L
formed by such curves. This is a sublinear system of L whose dimension we denote
by s. In L, which is a projective space of dimension r , we can consider a subspace
L′ of maximal dimension r − s − 1 such that L′ ∩ L0 = ∅. We can the consider the
linear series L′

C cut out by L′ on C , because no curve in L′ contains X .

Lemma 19.7.1 In the above setting, if Y ∈ L is any curve not containing X, then
there is a unique curve Y ′ ∈ L′ such that

div(Y ) = div(Y ′). (19.11)
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Proof Consider the subspace 〈L0,Y 〉 of L. Since Y /∈ L0, then 〈L0,Y 〉 has dimen-
sion s + 1. If X and Y have equations f = 0 and g = 0 respectively, all curves in
〈L0,Y 〉 have equation of the form

λg + μh = 0, with (λ,μ) ∈ K
2 \ {(0, 0)},

with h = 0 the equation of a curve in L0 and therefore h is divisible by f . If λ �= 0,
we have

div(λg + μh) = div(g) = div(Y )

so all curves in 〈L0,Y 〉 not containing X cut out on C the same divisor. On the other
hand, by Grassmann formula, 〈L0,Y 〉 intersect L′ in a unique point Y ′ for which
(19.11) holds. �

In conclusion, the linear series cut out byL′ onC , which has dimension r − s − 1,
coincides with the set of all divisors cut out on C by curves in L not containing X .
So this series is independent of L′, it is still denoted by LC and it is called the series
cut out by L on C (or on X ).

If D is an effective divisor contained in all divisors of LC , we can subtract D for
all divisors of LC and obtain a new linear series which is said to be the series cut out
by L on C (or on X) off D.

In particular, we can consider the linear system Adjd(X). This linear system cuts
out on C a linear series all of whose divisors contain the multiple point divisor Δ.
Thus Adjd(X) cuts out on C off Δ a linear series that we denote by adjd(X). The
Restsatz Theorem 19.6.2 implies that:

Theorem 19.7.2 For every positive integer d, the linear series adjd(X) is a complete
linear series. Moreover all complete linear series are cut out on C by sublinear
systems of adjoint curves of a sufficiently high degree d which cut out on C a fixed
divisor A (off Δ).

Exercise 19.7.3 Given any effective divisor D with deg(D) � 3 on a smooth plane cubic or on a
plane quartic with two nodes, determine the dimension of the complete linear series |D|.
Exercise 19.7.4 Given any effective divisor D with deg(D) = 3 on a smooth plane quartic, deter-
mine the dimension of the complete linear series |D|.
Exercise 19.7.5 Given any effective divisor D with deg(D) = 3 on a plane quartic, with a single
node, determine the dimension of the complete linear series |D|.

19.8 Solutions of Some Exercises

19.1.2Wemay assume that Q ∈ U0 ∼= A
2 and that Q is the origin ofA2.Wemay assume in addition

that γP is determined by a parametrization of the form

x = t, y = atn + · · · ,
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with n � 2 and a �= 0. We may assume also that C is obtained, as in Sect. 18.1, by blowing-up at
the singular points of X . So in particular we blow-up Q. As in Sect. 18.1, from which we keep the
notation, we can restrict our attention to the open subset Ã0 of the blow-up, which is isomorphic
to A

2 with coordinates (x, v) and the blow-up map identifies with the map (x, v) → (x, xv). Let
Y be the intersection of the strict transform of X with Ã0, which is an open subset of the smooth
model C of X . The point P coincides with the point with coordinates (0, 0) in Ã0 ∼= A

2. The linear
branch γ̃ of Y with centre P is determined by the parametrization obtained by the equations

x = t, xv = y = atn + · · · , hence v = atn−1 + · · · .

Now oγP (Z) is the order of the power series g∗(t, atm + · · · ) (as usual g∗ denotes dehomoge-
nization). We can consider the decomposition in homogeneous components

g∗(x, y) = gm(x, y) + gm+1(x, y) + · · ·
so

g∗(t, atn + · · · ) = tm
(
gm(1, atn−1 + · · · ) + tgm+1(1, at

n−1 + · · · ) + · · ·
)

and therefore the order of g∗(t, atm + · · · ) is m plus the order of the power series

gm(1, atn−1 + · · · ) + tgm+1(1, at
n−1 + · · · ) + · · · . (19.12)

By Propositions 16.3.2 and 16.3.13, to compute the order of f ∗(g∗) inOC,P , it suffices to compute
the order of f ∗(g∗) on γ̃. Now f ∗(g∗) is the function

g∗(x, xv) = xm(gm(1, v) + xgm+1(1, v) + · · · )
and the order of f ∗(g∗) on γ̃ is the order of the power series

tm(gm(1, atn−1 + · · · ) + tgm+1(1, at
n−1 + · · · ) + · · · )

which is m plus the order of the power series (19.12). This computation shows that oγP (Z) equals
oOC,P ( f ∗(g∗)), as desired.

19.2.3 Suppose we have two divisors D1, D2 of the same degree n on P
1. Write

Di = Di1 − Di2, with Di1, Di2 effective and with no common points, for i = 1, 2.
The divisor D1 − D2 = (D11 + D22) − (D12 + D21) has degree 0, hence deg(D11 + D22) =
deg(D12 + D21).Write Di j = mi j,1Pi j,1 + · · ·mi j,hi j Pi j,hi j and set Pi j,l = [ai j,l , bi j,l ], for (i, j) ∈
{1, 2}2 and l = 1, . . . , , hi j . Consider the rational function

φ =
∏h11

l=1(x0b11,l − x1a11,1)m11,l · ∏h22
l=1(x0b22,l − x1a22,1)m22,l

∏h12
l=1(x0b12,l − x1a12,1)m12,l · ∏h21

l=1(x0b21,l − x1a21,1)m21,l
.

One has div(φ) = D1 − D2.

19.2.4 It suffices to prove the assertion if D = ±P with P ∈ S. We treat the case D = P , the case
D = −P being similar. By Exercise 18.2.11 there is a curve X ⊂ P

2 with ordinary singularities
such that π : C → X is the smooth model of X , and Q = π(P) is a smooth point of X . Consider a
line r in P2 which avoids any point in π(S) and a line s passing through Q, not tangent to X at Q,
and avoiding any other point of π(S). Let f = 0 be the linear equation of r and g = 0 the linear
equation of s and consider the rational function φ = f

g . Then P + div(φ) is linearly equivalent to
P and misses all points of S.

19.3.6 It follows from Theorem 10.4.4.

19.5.3 Let X be the image of ωξ . Since ξ is simple, then ωξ : C → X is birational. Let U ⊂ X be
a non-empty open subset such that ωξ induces an isomorphism between ω−1

ξ (U ) and U . We can
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assume that U consists only of smooth points for X . Then S = X \U is a finite set of X . Consider
the following set

I = {(P,π) ∈ U × P̌
r : TX,P ⊆ π}.

The first projection p1 : I → U is surjective and for each point P ∈ U , p−1
1 (P) is a projective

space of dimension r − 2. This implies that I has dimension r − 1 (see Theorem 11.3.1). Then
also the closure of I in X × P̌

r has dimension r − 1 and therefore the image of the projection
p2 : Ī → P̌

r to the second factor is a proper closed subset Z of P̌r . Consider the open subset A of
P̌
r consisting of the complement of the union of Z plus the set of hyperplanes passing through one

of the finitelymany points of S. Let π be a hyperplane in A.We claim that π intersects X in d distinct
points. This will prove both assertions in the Exercise. First we notice that π intersects X only in
points of the open subset U . Let P be one of these points. We may assume that P ∈ U0 ∼= A

r . Let
f (x1, . . . , xr ) = 0 be the linear affine equation of π. In a neighborhood of P we may identify X
with C . The hyperplane π contains P but it does not contain the tangent line to X at P . This means
that f can be interpreted as a non-zero linear map on the Zariski tangent space (mP/m2

P )∨ of X
at P (where mP denotes the maximal ideal of OX,P ). This implies that f ∈ mP but f /∈ m2

P , so
oX,P ( f ) = 1. Since P is any point of π ∩U = π ∩ X , we have that div(π) on C is reduced, so it
consists of d distinct point, as wanted.

19.5.4 It follows from Exercises 19.5.3 and 19.3.6.



Chapter 20
The Riemann–Roch Theorem

20.1 The Riemann–Roch Theorem

In this sectionwewill prove theRiemann–Roch Theorem, which computes the dimen-
sion of a complete linear series in terms of the degree of the series and of an invariant
of the curve called the genus.

Let us consider an irreducible curve X ⊂ P
2 of degree n with only ordinary multi-

ple points P1, . . . , Ph with multiplicities m1, . . . , mh respectively. We will consider,
as usual, its smooth model π : C → X .

Let us set

g(X) = (n − 1)(n − 2)

2
−

h∑

i=1

mi (mi − 1)

2
,

which is often simply denoted by g if there is no danger of confusion. This number
a priori depends on X , namely, if Y is again a projective, irreducible curve Y ⊂ P

2

with only ordinary multiple points and if its smooth model is again π′ : C → Y , it is
not a priori clear that g(X) = g(Y ). Actually we will see later that g(X) = g(Y ), so
that g(X) depends only on C , it will be denoted by g(C) and called the genus of C .

For the moment we note that g(X) � 0 by Lemma 17.1.3. For instance, if X is a
line or a conic, we have g = 0, if X is a smooth cubic we have g = 1, if C is a cubic
with a node we have g = 0, etc.

If g � 1, the complete linear series adjn−3(X) is called the canonical series on C
determined by X . Again, a priori this series depends on X but, as we will see later,
it does not. The divisors linearly equivalent to the divisors of this series are called
canonical divisors. Usually a canonical divisor on C is denoted by the symbol KC or
simply by K , so that the canonical series is denoted by |KC |. Every effective divisor
contained in some canonical divisor is said to be a special divisor, and the complete
linear series determined by such a divisor will be called a special linear series. In
particular, the canonical linear series is special.
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Lemma 20.1.1 If g = g(X) � 1 the canonical series has degree 2g − 2 and dimen-
sion r � g − 1.

Proof The degree of the canonical series is

n(n − 3) − deg(Δ) = n(n − 3) −
h∑

i=1

mi (mi − 1) = 2g − 2.

The dimension of the canonical series equals the dimension r of Adjn−3(X) and we
have

r � n(n − 3)

2
−

h∑

i=1

mi (mi − 1)

2
= g − 1.

�

Example 20.1.2 In this example X is again an irreducible curve in P2 with at most
ordinary singularities.

(a) If X is a smooth cubic one has g = 1, then Adjn−3(X) is the linear system of
curves of degree 0 and the canonical series consists of the only 0 divisor, so it is
a g00.

(b) If X is a quartic with g = 1, then X has two nodes P1, P2. There is a unique
adjoint curve of degree n − 3 = 1, i.e., the line 〈P1, P2〉, which cuts, off Δ, the
0 divisor. Again the canonical series is a g00.

(c) If X is a quartic with g = 2, then X has only one node P . The systemAdjn−3(X)

is the pencil of lines through P , and it cuts, off Δ the canonical g12.
(d) If X is a quartic with g = 3, then X is smooth and the canonical series is cut out

on X by the lines of the plane, so it is a g24.

Proposition 20.1.3 In the above setting, let D be an effective divisor on C with
deg(D) = g + 1. Then dim(|D|) � 1.

Proof Let n = deg(X) = 1, so that n is a line and g = 0. Then D consists of a unique
point P , and the complete linear series |P| is cut out on X by the lines of the plane,
so it is a g11, and the assertion holds.

Next assume n � 2. Set

m = n(n − 1) −
h∑

i=1

mi (mi − 1)

which is the degree of adjn−1(X). We have
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m − 2g = (n(n − 1) −
h∑

i=1

mi (mi − 1))−

− ((n − 1)(n − 2) −
h∑

i=1

mi (mi − 1)) = 2(n − 1) > 0,

hence
m − g � g + 1.

The linear system Adjn−1(X) has dimension

r � (n − 1)(n + 2)

2
−

h∑

i=1

mi (mi − 1)

2
= m − g � g + 1

and therefore there is some adjoint curve of degree n − 1 which cuts on C , off Δ, a
divisor containing D (see Exercise 19.4.7). If Y is such an adjoint we have

div(Y ) = Δ + D + A

with deg(A) = m − g − 1. From the Restsatz Theorem 19.6.2, the adjoint curves of
degree n − 1 that cut, offΔ, a divisor containing A, form a linear systemof dimension

r ′ � r − (m − g − 1) � 1,

and cut out, off Δ and A, the complete linear series |D|. The assertion follows. �

Corollary 20.1.4 If g = 0, then C is isomorphic to P
1, i.e., C and X are rational.

Proof Let P ∈ C be a point and consider the divisor D = P . By applying Propo-
sition 20.1.3, we have that |P| = g11. This linear series ξ determines a morphism
ωξ : C → P

1, which is surjective (because ω(C) is non-degenerate). Moreover ξ is
clearly simple. So ωξ is birational and the assertion follows. �

For reasons that we will later understand, if g = 0, so that C ∼= P
1, all (linearly

equivalent, see Exercise 19.2.3) divisors of degree −2 on C are called canonical
divisors.

Theorem 20.1.5 (M. Noether Reduktionsatz) Let X be an irreducible curve with
only ordinary singularities and let π : C → X be its smooth model. Let D be a
special divisor on C and let P ∈ C be a point such that π(P) = Q is a smooth point
which is not a nasty point of X and P does not belong to all canonical divisors
containing D. Then

dim(|D|) = dim(|D + P|),

i.e., P is a base point for the series (|D + P|.
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Proof Let h = 0 be the linear equation of a line r passing through Q, such that

div(h) = P + P2 + · · · + Pn, with n = deg(X), (20.1)

with P, P2, . . . Pn distinct (which exists because Q is not nasty for X ). Let moreover
φ = 0 be the equation of an adjoint curve of degree n − 3 such that

div(φ) = Δ + D + D′

with P /∈ D′, which exists by the hypotheses. Then we have

div(hφ) = Δ + D + P + P2 + · · · + Pn + D′.

By the Restsatz Theorem 19.6.2, the linear series D + P is cut out on C by the
linear system of the adjoint curves of degree n − 2 that cut out on C the divisor
Δ + P2 + · · · + Pn + D′, off this divisor. Since the curves of this system have degree
n − 2 and contain P2 + · · · + Pn which are distinct points of the line r , all these
curves contain r . Because of (20.1), P belongs to all these curves, hence it is a base
point of |D + P|. �

Let D be an effective divisor o C . We can consider the subseries of the canonical
series |KC | consisting of all divisors of |KC | containing D. One sets i(D) to be
the dimension of this series plus 1, i.e., i(D) = dim(|KC − D|) + 1 = �(KC − D)

and i(D) is called the index of speciality of D. Hence i(D) � 0 and i(D) > 0 if
and only if D is special. Note that if deg(D) > 2g − 2 certainly D is non-special,
hence i(D) = 0. By contrast, if deg(D) � g − 1, by Lemma 20.1.1 the divisor D is
certainly special and

i(D) � g − deg(D). (20.2)

Theorem 20.1.6 (Riemann–Roch Theorem) Let D be an effective divisor on a
smooth projective curve C. Then

dim(|D|) = deg(D) − g + i(D). (20.3)

Proof As usual we assume π : C → X to be a birational morphism, with X ⊂ P
2 a

curve of degree n with only ordinary singularities.
Let us start by proving the theorem for non-special divisors. We proceed by

induction on dim(|D|). So we first assume dim(|D|) = i(D) = 0. By (20.2) we
have deg(D) � g. If we have deg(D) > g, we can take an effective divisor D′ � D
with deg(D′) = g + 1. By Proposition 20.1.3 we have dim(|D|) � dim(|D′|) � 1,
a contradiction. Hence we have deg(D) = g, proving (20.3) in this case.

Now suppose that (20.3) holds for all effective divisors D′ such that i(D′) = 0 and
dim(|D′|) = r � 0. Let D be an effective divisor such that i(D) = 0 and dim(|D|) =
r + 1. Let P ∈ C be not a base point for |D|, such that π(P) = Q is a smooth point
for X and not a nasty point for X (recall that there is at most one nasty point for X ,
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see the proof of Theorem 18.2.1). Certainly there are divisors in |D| that contain P .
So we can find some effective divisor D′ such that D′ + P ∈ |D|, and

dim(|D′|) = dim(|D|) − 1 = r.

We have also i(D′) = 0. Suppose to the contrary i(D′) > 0. Since i(D) = 0, no
canonical divisor containing D′ contains also P . Then by the Reduktionsatz 20.1.5,
P would be a base point for |D| a contradiction. So we can apply the induction
hypothesis to D′ and we get

r + 1 = dim(|D|) = dim(|D′|) + 1 =
= deg(D′) − g + 1 = deg(D) − g

proving (20.3) also in this case.
Next we proceed by induction on i(D). Suppose the theorem proved for any

effective divisor D′ such that i(D′) = i � 0. Let us take an effective divisor D such
that i(D) = i + 1. The adjoint curves of degree n − 3 that cut out on C a divisor
containingΔ + D, cut out off this divisor a linear series ξ of dimension i(D) − 1 = i .
Let P be a point of C such that Q = π(P) is smooth for X , not nasty and not a base
point for ξ. Then we have i(D + P) = i . By induction we have

dim(|D + P|) = deg(D + P) − g + i(D + P) =
= deg(D) + 1 − g + i = deg(D) − g + i(D).

On the other hand, by the Reduktionsatz we have

dim(|D|) = dim(|D + P|),

and this proves (20.3) also in this case. �

Corollary 20.1.7 The canonical series has dimension g − 1.

Proof If g = 0, the canonical series is empty, because it has degree 2g − 2 = −2 <

0. So the assertion is true in this case. If g � 1, the canonical series has dimension
at least g − 1 � 0 (see Lemma 20.1.1). Moreover i(K ) = 1 and therefore

dim(|K |) = deg(K ) − g + i(K ) = 2g − 2 − g + 1 = g − 1

as wanted. �

Theorem 20.1.8 Let X, X ′ be irreducible, projective, plane curves with ordinary
singularities. If X and X ′ are birationally equivalent then g(X) = g(X ′).

Proof Let π : C → X and π′ : C ′ → X ′ be smooth birational models. Then C is
birational to C ′ so it is isomorphic to C ′. For every effective divisor D on C we
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have dim(|D|) � deg(D), so it makes sense to consider the non-negative integer
p(D) = deg(D) − dim(|D|), and we set

p(C) = sup
D�0

{p(D)}.

Of course p(C) is invariant under isomorphisms. On the other hand Riemann–Roch
Theorem implies that p(C) = g(X), and therefore g(X ′) = p(C ′) = p(C) = g(X)

and the assertion follows. �

This theorem proves that, as announced, if π : C → X is a smooth model of the
plane curve X with ordinary singularities, then g(X) depends only on C . If X is any
curve, we will define its genus to be the genus of a smooth projective model of X .

Corollary 20.1.9 Given a smooth, projective curve C of genus g � 1, the canonical
series is the only g

g−1
2g−2 on C, therefore it is a birational invariant.

Proof Let D be an effective divisor on C such that deg(D) = 2g − 2. Then either
D is special, in which case it is a canonical divisor and then |D| = |K | = g

g−1
2g−2, or

D is non-special, in which case |D| = g
g−2
2g−2. �

Exercise 20.1.10 Compute g(X) for each of the following curves X ⊂ P
2 over C:

x2y2 − z2(x2 + y2) = 0

(x3 − y3)(x2 + z2) + x3y2 + x2y3 = 0

(x + y)4 + z4 − 2x2(x + y − z)2 = 0

and for the curves in Exercise 18.2.12.

Exercise 20.1.11 *Compute the index of speciality of any effective divisor if X is a smooth quartic
or a quartic with a node.

Exercise 20.1.12 *Prove that if D is any divisor on a smooth, projective, irreducible curve C of
genus g such that deg(D) � g, then �(D) � 1.

Exercise 20.1.13 *Prove the following general form of Riemann–Roch Theorem: let D be any
divisor on C of genus g, then

�(D) = deg(D) − g + �(KC − D) + 1. (20.4)

Exercise 20.1.14 Prove that if D is any divisor on C of genus g such that deg(D) � 2g − 1, then
dim(|D|) = deg(D) − g.

Exercise 20.1.15 Prove that a curve X is rational if and only if its genus is 0.

Exercise 20.1.16 Prove that a smooth projective curveC is isomorphic toP1 if and only if it carries
a complete gn

n , for some n � 1.

Exercise 20.1.17 Prove that for any n � 1, P1 carries a unique complete gn
n . Prove that this series

is base point free and very simple and that the image of P1 via such a series is a rational normal
curve of degree n in in Pn .
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Exercise 20.1.18 Let C be a smooth, projective, irreducible curve of genus g. Let D be a divisor of
degree d � 2g + 1. Prove that the complete series |D| = g

d−g
g is base point free and very simple.

Exercise 20.1.19 Let C be a smooth, projective, irreducible curve of genus g. Prove that g = 1 if
and only if for any effective divisor D with deg(D) = n � 1 one has dim(|D|) = n − 1.

Exercise 20.1.20 Let C be a smooth, projective, irreducible curve of genus 1. Prove that it is
isomorphic to a smooth plane cubic.

20.2 Consequences of the Riemann–Roch Theorem

In this section we list some consequences of the Riemann–Roch Theorem.

Theorem 20.2.1 (Reciprocity Theorem) Let D, D′ be effective divisors such that
D + D′ is a canonical divisor. Then

deg(D) − deg(D′) = 2
(
dim(|D|) − dim(|D′|)

)
.

Proof We have dim(|D′|) = i(D) − 1, hence

dim(|D|) − dim(|D′|) = deg(D) − g + 1.

Moreover
deg(D) + deg(D′) = 2g − 2

hence

dim(|D|) − dim(|D′|) = deg(D) − 1

2
(deg(D) + deg(D′))

whence the assertion follows. �

Theorem 20.2.2 If C is a smooth curve of genus g � 1, the canonical series is base
point free.

Proof If P is a base point of the canonical series, we have i(P) = g, and then

dim(|P|) = deg(P) − p + i(P) = 1

so that |P| = g11. Then by the argument we made in the proof of Corollary 20.1.4, C
would be isomorphic to P1, hence we would have g = 0, a contradiction. �

Theorem 20.2.2 tells us that the canonical series |KC | determines a morphism

κC : C → P
g−1
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also simply denoted by κ if there is no danger of confusion. This is called the
canonical map of C . The curve κ(C) is called the canonical image or, if g � 2, the
canonical curve of C .

If g = 1, the canonical map is constant and does not give any interesting infor-
mation on C . For g � 2 we have the following:

Theorem 20.2.3 Let C be a smooth, projective curve of genus g � 2. Let D =
P + Q be an effective divisor of degree 2 on C. Then either

dim(|K − D|) = g − 3

or
dim(|K − D|) = g − 2

in which case |D| = g12 , and the canonical series is composed with this involution.

Proof We have

dim(|D|) = deg(D) − g + i(D) = 2 − g + i(D).

We have dim(|D|) < 2 otherwise we would have a g22 on C and C would be isomor-
phic to P

1 (see Exercise 20.1.16) thus g = 0, a contradiction. Hence we either have
dim(|D|) = 0 or dim(|D|) = 1. In the former case we have i(D) = g − 2, hence
dim(|K − D|) = g − 3. In the latter we have |D| = g12, and i(D) = g − 1, hence
dim(|K − D|) = g − 2. In this case for any divisor D′ = P ′ + Q′ ∈ |D|, we have

dim(|K − D′|) = g − 2

which means that any canonical divisor containing P ′ also contains Q′. On the other
hand, for any point P ′ ∈ C there is a point Q′ ∈ C such that D′ = P ′ + Q′ ∈ |D|.
This proves the assertion. �

A curve of genus g � 2 with a g12 is called hyperelliptic. If g = 2 certainly the
curve is hyperelliptic because the canonical series is a g12.

Theorem 20.2.3 tells us that there is the following dichotomy. If C is a smooth,
projective, irreducible curve of genus g � 2, then:

(a) either the canonical series is very simple, and therefore the canonical image of
C is a smooth curve of degree 2g − 2 in P

g−1 isomorphic to C (see Theorem
19.5.2 and Exercise 19.5.3);
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(b) or C is hyperelliptic, in which case the canonical series is composed with a
uniquely determined g12, and each effective canonical divisor is the sum of g − 1
divisors of the g12. The g12 determines a morphism ω : C → P

1 of degree 2. Then
|K | consists of the pull-backs to C via ω of the divisors of the g

g−1
g−1 on P

1. This
shows that X = κ(C) is a rational normal curve of degree g − 1 in P

g−1 (see
Exercise 20.1.17), and that κ : C → X ∼= P

1 is the g12.

Theorem 20.2.4 (Clifford’s Theorem) Let D be a special divisor on C. Then

deg(D) � 2 dim(|C |)

Proof By definition of i(D), the codimension of |K − D| in |K | is g − i(D). This
codimensions is also called the number of conditions that D imposes to |K |. The
same holds for any D′ ∈ |D|. Let r = dim(|D|), and let P1, . . . , Pr be arbitrary
points on C . Then there is a divisor of |D| containing P1, . . . , Pr . Since P1, . . . , Pr

are arbitrary, we may chose P1, . . . , Pr so that

dim(|K − (P1 + . . . + Pr )|) = g − 1 − r.

On the other hand

g − i(D) = dim(|K |) − dim(|K − D|) �
� dim(|K |) − dim(|K − (P1 + . . . + Pr )|) = r

because
dim(|K − D|) � dim(|K − (P1 + . . . + Pr )|).

But
dim(|D|) = deg(D) − g + i(D)

and therefore

deg(D) − dim(|D|) = g − i(D) � r = dim(|D|)

as wanted. �

Exercise 20.2.5 Consider a non-hyperelliptic canonical curve C of genus g in P
g−1. Given an

effective divisor D on C , let 〈D〉 be the span of D, i.e., the subspace of Pg−1 that is the intersection
of all hyperplanes π ofPg−1 such that div(π) � D. Prove the following geometric form of Riemann–
Roch Theorem: let D be an effective divisor on C , then dim(|D|) = deg(D) − 1 − dim(〈D〉).
Exercise 20.2.6 Let C be a smooth, projective, irreducible curve of genus g � 1 and let D, D′ be
effective divisors of degree g − 1 such that D + D′ is a canonical divisor. Prove that |D| and |D′|
have the same dimension.

Exercise 20.2.7 *Let C be a smooth, projective, irreducible curve of genus g � 4. Prove that if C
has a g24 , then C is hyperelliptic, and the g24 is composed with the g12.
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Exercise 20.2.8 Let C be a smooth, projective, irreducible curve of genus g � 1 and P any point
of C . Prove that |KC + P| has P as a base point.

Exercise 20.2.9 Let C be a smooth, projective, irreducible, hyperelliptic curve and P any point of
C . Let P, Q ∈ C be such that P + Q ∈ g12. Prove that |KC + P + Q| is composed with the g12.

Exercise 20.2.10 LetC be a smooth, projective, irreducible, non-hyperelliptic curve. Let P, Q ∈ C
be any two points. Prove that |KC + P + Q| is simple but not very simple.

Exercise 20.2.11 Prove that a non-hyperelliptic curve of genus 3 is isomorphic to a smooth plane
quartic and viceversa. What is the canonical image of a hyperelliptic curve of genus 3?

Exercise 20.2.12 Prove that a non-hyperelliptic canonical curve of genus 4 is the complete inter-
section of a quadric and a cubic hypersurface.

Exercise 20.2.13 Prove that any curve of genus 4 has a g13. Prove that a non-hyperelliptic curve of
genus 4 has one or two series g13 .

Exercise 20.2.14 Prove that a non-hyperelliptic canonical curve of genus 5 is contained in three
independent quadrics.

Exercise 20.2.15 *Prove that any curve of genus 5 has a g14 .

Exercise 20.2.16 *Prove that there are hyperelliptic curves of any genus g � 2.

Exercise 20.2.17 *Prove that for any g � 3 there are non-hyperelliptic curves of genus g.

Exercise 20.2.18 Prove that not every projective irreducible curve is isomorphic to a smooth plane
curve.

Exercise 20.2.19 Prove that a hyperelliptic curve has a unique g12.

20.3 Differentials

20.3.1 Algebraic Background

Let A be a ring containing a field k and let M be an A-module.We define a derivation
of A to M over k to be a k-linear map D : A → M such that the Leibnitz rule
D(xy) = x D(y) + y D(x) holds for all (x, y) ∈ A × A.

Lemma 20.3.1 If D is a derivation of A to M over k then:

(a) D(x) = 0 for all x ∈ k;

(b) if f (x1, . . . , xn) ∈ k[x1, . . . , xn], then for all a1, . . . , an ∈ A we have

D( f (a1, . . . , an)) =
n∑

i=1

∂ f

∂xi
(a1, . . . , an)D(ai ).
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Proof Let x ∈ A be any element and let n be a positive integer. One has

D(xn) = nxn−1D(x).

Indeed, this trivially holds for n = 1. Then proceed by induction on n. Assume n > 1.
We have

D(xn) = D(x · xn−1) = xn−1D(x) + x D(xn−1) =
= xn−1D(x) + x · (n − 1)xn−2D(x) = nxn−1D(x).

Then (b) follows right away. To prove (a), it suffices to prove that D(1) = 0. To prove
this note that for any positive integer n one has

D(1) = D(1n) = nD(1)

which implies D(1) = 0. �

Lemma 20.3.2 Let A be a domain containing a field k and M an A-module that is
a vector space over Q(A). Then any derivation D : A → M over k extends uniquely
to a derivation D̄ : Q(A) → M.

Proof Supposewe have the derivation D̄. Let x ∈ Q(A) so that x = a
b , with a, b ∈ A

and b 	= 0. Then a = xb and therefore D(a) = bD̄(x) + x D(b). Hence

D̄(x) = 1

b
· (D(a) − x D(b)). (20.5)

This shows that D̄ is uniquely determined. If we define D̄ with the formula (20.5),
it is easy to see that D̄ is a derivation from Q(A) to M . �

Let A be a domain containing a field k. For a ∈ A we define the symbol [a] and
we consider the free A-module P on the set {[a], a ∈ A}. Consider the submodule
N of P generated by the elements of the form:

(a) [a + b] − [a] − [b], for all a, b ∈ A;

(b) [ka] − k[a], for all a ∈ A and k ∈ k;
(c) [ab] − a[b] − b[a], for all a, b ∈ A.

We set Ωk(A) = P/N and we denote by da the image of [a] in Ωk(A) for a ∈ A,
and call it the differential of a. Then we define d : A → Ωk(A) the k-linear map that
takes a to da, for all a ∈ A. The module Ωk(A) is called the module of differentials
of A over k with derivation d.

Lemma 20.3.3 For any domain A containing a field k, any A-module M and any
derivation D : A → M over k, there is a unique homomorphism of A-modules μ :
Ωk(A) → M such that D(a) = μ(da), for all a ∈ A.
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Proof Keeping the notation introduced above, we define the homomorphism

ν :
h∑

i=1

ai [bi ] ∈ P →
h∑

i=1

ai D(bi ) ∈ M.

It is immediate to see that N is contained in ker(ν), hence ν determines a homomor-
phism μ : Ωk(A) = P/N → M , which verifies the assertion. �

In the above setting, if f (x1, . . . , xn) ∈ k[x1, . . . , xn], and a1, . . . , an ∈ A we
have

d( f (a1, . . . , an)) =
n∑

i=1

∂ f

∂xi
(a1, . . . , an)dai .

If A is generated by a1, . . . , an , then Ωk(A) is generated by da1, . . . , dan . If x ∈
Q(A) so that x = a

b , with a, b ∈ A and b 	= 0, then we have

dx = d(ab−1) = b−1da + ad(b−1) = b−1da − ab−2db = b−1da − b−1xdb.

So, if Q(A) = k(a1, . . . , an) with a1, . . . , an ∈ A then Ωk(Q(A)) is a vector space
on Q(A) generated by da1, . . . , dan .

Proposition 20.3.4 Suppose X is an irreducible curve (over the algebraically closed
field K). Then ΩK(K (X)) is a 1-dimensional vector space over K (X). Moreover,
if char(K) = 0 and if ξ ∈ K (X) \ K, then dξ is non-zero, hence it is a basis of
ΩK(K (X)) over K (X).

Proof We may assume that X is an affine plane curve with equation f (x, y) = 0,
with f and irreducible polynomial. Then A := A(X) = K[x, y]/( f ). We denote by
ξ and η the classes of x and y in A. Then K := K (X) = Q(A) = K(ξ, η). By an
argument we already made in the proof of Theorem 7.2.3, we have that one of the
derivatives of f with respect to x and y is non-zero. We may suppose that ∂ f

∂y 	= 0.

So f does not divide ∂ f
∂y and therefore ∂ f

∂y (ξ, η) 	= 0 in K . We know that ΩK(K ) is
generated by dξ and dη over K . However, since f (ξ, η) = 0 in K , we have

0 = d( f (ξ, η)) = ∂ f

∂x
(ξ, η)dξ + ∂ f

∂y
(ξ, η)dη

so

dη = −
∂ f
∂x (ξ, η)

∂ f
∂y (ξ, η)

dξ

thus dξ generates ΩK(K ) over K .
To prove that ΩK(K ) has dimension 1, we must show that ΩK(K ) is non-zero.

By Lemmas 20.3.2 and 20.3.3 it suffices to prove that there is a non-zero derivation
D : A → K . Let g(x, y) ∈ K[x, y] and let ḡ be its class in A. Then we set
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D(ḡ) = ∂g

∂x
(ξ, η) −

∂ f
∂x (ξ, η)

∂ f
∂y (ξ, η)

∂g

∂y
(ξ, η).

It is an easy verification that this is awell defined derivation. Sincewe have D(ξ) = 1,
we are done. We want to stress that the above argument actually proves that dξ is
non-zero, hence it is a basis of ΩK(K ) over K .

We prove now the final assertion. Since ξ /∈ K, then K(ξ) has transcendence
degree 1 overK, and therefore the extensionK(ξ) ⊆ K is algebraic. By the Primitive
Element Theorem 7.2.2, there is a η ∈ K such that K = K(ξ, η). So K is the quotient
field of the domain K[x, y]/( f ), where f (x, y) is an irreducible polynomial and
∂ f
∂y 	= 0. The same argument we made to prove the first assertion shows that dξ is
non-zero, as desired. �

If we assume char(K) = 0, and we fix f, t ∈ K = K (X), with t /∈ K, there is a
unique g ∈ K such that d f = gdt . One writes g = d f

dt , and we call it the derivative
of f with respect to t .

Lemma 20.3.5 Let (A,m) be a DVR with quotient field K , and suppose k is a
subfield of A such that A/m ∼= k and the composite map k → A → A/m is an
isomorphism. Let u be a uniformizing parameter in A and take g ∈ A. For any
positive integer n there are λ0, . . . ,λn−1 ∈ k and h ∈ A such that

g =
n−1∑

i=0

λi u
i + hun. (20.6)

Proof We proceed by induction on n. For n = 1, consider the image λ0 of g in
A/m = k. Then g − λ0 ∈ m, so there is an h ∈ A such that g − λ0 = hu, as wanted.

Next assume the result is true for n − 1 � 1. Then we have a relation of the sort

g =
n−2∑

i=0

λi u
i + zun−1 with z ∈ A and λ0, . . . ,λn−2 ∈ k.

On the other hand we have

z = λn + hu, with h ∈ A and λn ∈ k.

Putting together the last two relations one gets (20.6). �

Lemma 20.3.6 Let C be a smooth, irreducible, projective curve and let P ∈ C.
Let u be a uniformizing parameter for OC,P at P. Then for all g ∈ OC,P , one has
dg
du ∈ OC,P .

Proof Wemay assume that there is an irreducible curveY ⊂ P
2 such thatπ : C → Y

is the smoothmodel ofY andπ(P) = Q is a smooth point ofY (seeExercise 18.2.11).
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We may suppose that Q ∈ U0
∼= A

2 and that actually Q is the origin of A2. We will
denote by X the affine curve Y ∩ U0. Then OC,P = OX,Q .

We use now the same notation we used in the proof of Proposition 20.3.1. Namely
X has equation f (x, y) = 0, A(X) = K[x, y]/( f ), ξ and η are the classes of x and
y in A(X) so that A(X) = K[ξ, η], K = K(ξ, η). Choose an integer n large enough
so that

oX,Q

(dx

du

)
� −n, oX,Q

(dy

du

)
� −n.

If h ∈ A(X) we have

dh

du
= ∂h

∂x
(ξ, η)

dx

du
+ ∂h

∂y
(ξ, η)

dy

du

so that oX,Q( dh
du ) � −n.

Take g ∈ OX,Q . By Lemma 20.3.5 we can write g as in (20.6). Then

dg

du
=

n−1∑

i=0

iλi u
i−1 + nhun−1 + un dh

du
. (20.7)

Since oX,Q( dh
du ) � −n, each term in the sum (20.7) is in OX,Q , so

dg
du ∈ OX,Q , as

wanted. �

20.3.2 Differentials and Canonical Divisors

Throughout this section we assume char(K) = 0.
Let C be a smooth, irreducible projective curve and let K = K (C). We set ΩC =

ΩK(K ) (and alsoΩC = ΩX for any birational model X ofC). Its elements are called
the differentials on C (or on any birational model of C).

Let ω ∈ ΩC \ {0} and let P be a point of C . We define the order of ω at P , and
denote it by oP(ω), in the following way. We fix a uniformizing parameter u ∈ OC,P

and write ω = gdu, with g ∈ K . Then we set oP(ω) = oP(g). This is well defined.
Indeed, if v ∈ OC,P is another uniformizing parameter, and if gdu = hdv, then by
Lemma 20.3.6 we have

g

h
= dv

du
∈ OC,P

and, by the same token, we have also h
g

∈ OC,P . This means that g
h is invertible in

OC,P , hence oP(g) − oP(h) = oP(
g
h ) = 0, as wanted.

If ω ∈ ΩC \ {0}, we define the divisor of ω as

div(ω) =
∑

P∈C

oP(ω)P.
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We will see in a moment that this definition is well posed, i.e., oP(ω) 	= 0 only
for finitely many points P ∈ C . We note that two divisors of differentials are lin-
early equivalent. Indeed, if ω and ω′ are two non-zero differentials, there is a g ∈ K
such thatω′ = gω. Hence div(ω′) = div(g) + div(ω), so that div(ω′) ≡ div(ω). Con-
versely, for any divisor D that is linearly equivalent to div(ω) for someω ∈ ΩC \ {0},
there is an ω′ ∈ ΩC \ {0} such that D = div(ω′). Indeed, if D = div(g) + div(ω) for
some g ∈ K , then D = div(gω). In conclusion the divisors of differentials form a
complete linear equivalence class of divisors. If ω ∈ ΩC \ {0} is such that div(ω) is
effective, we will say that ω is a differential of the first kind on C .

The following result identifies the linear equivalence class of the divisors of dif-
ferentials.

Theorem 20.3.7 The divisors of differentials on C are linearly equivalent to canon-
ical divisors on C.

Proof We first examine the genus 0 case, i.e., C = P
1. Consider homogeneous coor-

dinates [x0, x1] on P1 and on U0
∼= A

1 we pass to the affine coordinate x = x1
x0
. Con-

sider the differential dx . For all points P ∈ U0, we have oP(dx) = 0. So we have to
understand what is the order of dx at the point at infinity P∞ = [0, 1]. Now we pass
to affine coordinates on U1

∼= A
1, where we have x1 	= 0. Here we have the affine

coordinate y = x0
x1

= 1
x and P∞ becomes the origin in this coordinate. Moreover

dx = d
(1

y

)
= −y−2dy

so thatoP∞(dx) = −2.Thus div(dx) = −2P∞, and this proves the assertion, because
on P1 the canonical divisors have degree −2.

Next we suppose g � 1. We may assume to have a projective, irreducible, plane
curve X ⊂ P

2 of degree d with ordinary singularities such that π : C → X is the
smooth model of X . We can fix homogeneous coordinates [x0, x1, x2] in P2 so that:

(a) the line at infinity �∞ with equation x0 = 0 intersects X in d distinct points
P1, . . . , Pd , which implies that no multiple point of X lies on �∞;

(b) the point Px = [0, 1, 0] at infinity of the x axis does not sit on X ;
(c) no principal tangent line in a multiple point of X contains Px .

We let f (x0, x1, x2) = 0 be the equation of X , so that f is homogeneous of degree
d. We set D∞ = P1 + · · · + Pd the divisor cut out on C by �∞. By the definition of
the canonical series we need to prove that, if ω is a non-zero differential on C , one
has

div(ω) ≡ (d − 3)D∞ − Δ (20.8)

where Δ, as usual, denoted the multiple points divisor of X .
We can pass to affine coordinates x = x1

x0
, y = x2

x0
inU0

∼= A
2 and we consider the

affine equation g(x, y) = f (1, x, y) = 0 of X . We have
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∂g

∂x
= ∂ f

∂x1
(1, x, y),

∂g

∂y
= ∂ f

∂x2
(1, x, y)

hence

∂ f

∂x1
(x0, x1, x2) = xd−1

0

∂g

∂x

( x1
x0

,
x2
x0

)
,

∂ f

∂x2
(x0, x1, x2) = xd−1

0

∂g

∂y

( x1
x0

,
x2
x0

)
.

Consider the differential ω = dx and the rational function

φ =
∂ f
∂x2

xd−1
0

= ∂g

∂y

( x1
x0

,
x2
x0

)
.

To prove (20.8), we will prove that

div(ω) = (d − 3)D∞ − Δ + div(φ). (20.9)

As

div(φ) = div
( ∂ f

∂x2

)
− (d − 1)D∞

then (20.9) is equivalent to

div(ω) − div
( ∂ f

∂x2

)
= −2D∞ − Δ. (20.10)

Since
∂g

∂x
dx + ∂g

∂y
dy = 0

we have

ω = dx = −
∂g
∂y
∂g
∂x

dy = −
∂ f
∂x2
∂ f
∂x1

dy

hence for all points P ∈ C we have

oP(ω) − oP

( ∂ f

∂x2

)
= oP(dy) − oP

( ∂ f

∂x1

)
. (20.11)

Suppose P ∈ C is such that π(P) = Pi , for i = 1, . . . , d. Then y−1 = x0
x2

is a
uniformizing parameter in OX,Pi = OC,P and

dy = −y−2d(y−1)

so oP(dy) = −2. We claim that ∂ f
∂x1

(Pi ) 	= 0, for all i = 1, . . . , d. In fact, for i =
1, . . . , d, we have Pi = [0, pi1, pi2] and pi2 	= 0 because Px does not sit on X . By
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Euler’s relation we have

0 = d · f (Pi ) = ∂ f

∂x1
(Pi )pi1 + ∂ f

∂x2
(Pi )pi2

and if ∂ f
∂x1

(Pi ) = 0, we would have also ∂ f
∂x2

(Pi ) = 0. Then �∞ would be tangent to X
at Pi , a contradiction because �∞ intersects X in d distinct points. So from (20.11),
we see that both sides of (20.10) have order −2 at P .

Now we come at points in U0. So assume that P ∈ C is a point such that π(P) =
Q ∈ U0

∼= A
2. We can change coordinates and assume that Q is the origin of A2.

Suppose first that the x axis is tangent to X at Q. By the hypothesis (c), Q is
a smooth point for X . Then x is a uniformizing parameter at Q and ∂ f

∂x2
(Q) 	= 0.

Therefore by (20.11), we see that both sides of (20.10) have order 0 at P .
Suppose finally that the x axis is not tangent to X at Q. Then y is a uniformizing

parameter at P , so that oP(dy) = 0. Moreover we claim that oP(
∂ f
∂x1

) = m Q(X) − 1.
If so, again by (20.11), we see that both sides of (20.11) have order m Q(X) − 1 at
P and we are done.

So, to finish we have to prove the above claim. Set m = m Q(X). The equation
g(x, y) = 0 of X is of the form

g(x, y) =
m∏

i=1

(x − ai y) + gm+1(x, y) + · + gd(x, y) = 0,

with a1, . . . , am distinct, where we indicated the homogeneous components of g.
With an appropriate choice of coordinates we may assume that a1, . . . , am are all
distinct from 0.

The point P corresponds to a linear branch γ which we may suppose to be deter-
mined by a parametrization of the type

y = t, x = a1t + · · · . (20.12)

To compute oP(
∂ f
∂x1

) we have to compute oγ(
∂g
∂x ). Now

∂g

∂x
=

m∑

i=1

∏

j 	=i

(x − ai y) + · · · (20.13)

where the dots stay for higher order terms. Then oγ(
∂g
∂x ) is the order of the series

obtained by substituting (20.12) in (20.13). The lower order term of this series is

m∑

i=2

∏

j 	=i

(a1 − ai )t

which has order m − 1, as desired. �
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20.3.3 The Riemann–Hurwitz Theorem

We still assume that char(K) = 0 in this section. Let C, C ′ be two smooth, projec-
tive, irreducible curves and f : C → C ′ a surjective morphism of degree n, which
determines a γ1

n . Then there is a dense open subset U of C ′ such that for all Q ∈ C ′
the fibre divisor f ∗(Q) is reduced of order n (see Exercise 19.3.6).

Take P ∈ C with f (P) = Q, and let e f,P be the multiplicity of P in f ∗(Q), also
denoted by eP is no confusion arises. Then we have f ∗(Q) = ∑

f (P)=Q e f,P P and
n = ∑

f (P)=Q e f,P . We set r f,P = e f,P − 1, and call it the ramification index of f at
P . One has rP = 0 for all but finitely many points of C . We set R f = ∑

P∈C r f,P P .
This is called the ramification divisor of f on C , whose degree we denote by r f .
We set B f = ∑

P∈C r f,P f (P), which is a divisor on C ′, that has the same degree∑
P∈C r f,P as R f and is called the branch divisor of f . The points in the support of

R f [resp. of B f ] are called ramification points [resp. branch points] of f . IfC ′ = P
1,

then f : C → P
1 is a base point free g1n and we talk about branch, ramification points

and divisors of the g1n .
We want to compute the degree of the ramification (or of the branch) divisor, in

terms of the genera of C and C ′, and of the degree of f .

Theorem 20.3.8 (Riemann–Hurwitz Theorem) Assume char(K) = 0. Let C, C ′ be
two smooth, projective, irreducible curves of genera g and g′ respectively and f :
C → C ′ a surjective morphism of degree n. Then

KC ≡ f ∗(KC ′) + R f

and accordingly
2g − 2 = (2g′ − 2)n + r f .

Proof We have an inclusion f ∗ : K (C ′) → K (C). This yields on obvious inclusion
f ∗ : ΩC ′ → ΩC . Fix a non zeroω ∈ ΩC ′ .Wewant to compare the canonical divisors
div(ω) on C ′ and div( f ∗(ω)) on C .

Let P be a point of C and Q = f (P) ∈ C ′. We have the inclusion f ∗ : OC ′,Q →
OC,P . Let u be a uniformizing parameter inOC ′,Q . Then there is a positive integer m
such that f ∗(u) ∈ mm

P but f ∗(u) ∈ mm+1
P . Hence there is a uniformizing parameter

v in OC,P such that f ∗(u) = avm , with a invertible in OC,P . Since u = 0 is a local
equation of Q, it is clear from the definition of the pull back divisor f ∗(Q) that
m = e f,P .

Given a non-zero ω ∈ ΩC ′ , there is a rational function g ∈ K (C ′) such that ω =
gdu. Then

f ∗(ω) = f ∗(g)d(avm) = f ∗(g)(mvm−1adv + vmda).

Comparing the order of the two members and taking into account that m = e f,P , we
have

KC ≡ div( f ∗(ω)) = R f + f ∗(div(ω)) ≡ R f + f ∗(KC ′),

as wanted. �
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Exercise 20.3.9 Let C be a smooth, projective, irreducible curve of genus g. Prove that the differ-
entials of the first kind on C form a K-vector space of dimension g.

Exercise 20.3.10 Prove that any base point free g1n on a curve of genus g, with n � 2 has 2n +
2g − 2 > 0 branch points (to be counted with their multiplicities).

Exercise 20.3.11 Prove that the ramification and branch divisors of a γ1
2 are reduced.

Exercise 20.3.12 LetC, C ′ be two smooth, projective, irreducible curves of genera g and g′ respec-
tively and f : C → C ′ a surjective morphism of degree n. Prove that g � n(g′ − 1) + 1 and the
equality holds if and only if there are no ramification points for f .

Exercise 20.3.13 Fix a line r in the projective plane P2 and consider in L2,2 the set X of all conics
that have intersection multiplicity at least 2 with r at some point. Prove that X is a quadric in
L2,2 ∼= P

5.

Exercise 20.3.14 Prove that, given two different linear series g12 on P
1, there is a unique divisor

that belongs to both of them.
Prove that, given two different linear series g12 on a smooth curve C of genus 1, there is no

divisor that belongs to both of them. Are there different linear series g12 on a smooth curve C of
genus 1?

Exercise 20.3.15 Identify the g22 on P
1 with P

2. Prove that the set � of non-reduced divisors in
the g22 is an irreducible conic. Prove that the series g12 with a base point correspond exactly to the
lines in g22 which are tangent to �.

Exercise 20.3.16 Find another proof of Lüroth Theorem 7.3.3 based on Riemann–Hurwitz Theo-
rem 20.3.8.

20.4 Solutions of Some Exercises

20.1.12 Write D = D1 − D2 with D1, D2 effective divisors with no common support. Then
deg(D1) � g + deg(D2). By Riemann–Roch Theorem we have

�(D1) � deg(D1) − g + 1 � deg(D2) + 1

so we can certainly find divisors in |D1| containing D2, which proves the assertion.
20.1.13 The assertion is proved by Riemann–Roch Theorem (20.1.6) if �(D) > 0. So it suffices
to prove (20.4) when �(D) = 0. First we do the case �(D) = �(KC − D) = 0. Then by Exercise
20.1.12 we have that deg(D) � g − 1 and deg(KC − D) � g − 1, whence deg(D) = g − 1, which
proves (20.4) in this case. Assume next �(D) = 0 and �(KC − D) > 0. Applying Theorem 20.1.6
to KC − D, we get

�(KC − D) = deg(KC − D) − g + �(D) + 1 = g − 1 − deg(D)

which again proves (20.4) in this case.
20.2.16 Suggestion: take irreducible plane curves of degree g + 2 with an ordinary multiple point
of multiplicity g and no other singularity.

20.2.17 Suggestion: take irreducible plane curves of degree n � 4 with an ordinary multiple point

of multiplicity n − 3 and no other singularity or with at most a further node.
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Affine map, 17
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Affine plane curve, 219
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Algebraic projective set, 9
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B
Bad point, 275
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Base point, 21
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Branch, 223
Branched, 132
Branch point, 132, 318

C
Canonical curve, 308
Canonical divisor, 301
Canonical image, 308
Canonical map, 308
Canonical series, 301
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Cayley form, 156
Cayley map, 156
Cayley variety, 156
Centre of a branch, 223
Centre of a parametrization, 221
Change of parameter, 221
Class, 258
Class of a branch, 231
Codimension, 14, 141
Comaximal, 234
Compatible family, 286
Compatible system, 25
Complete intersection, 141
Complete linear series, 288
Cone, 145
Congruence, 207
Contraction, 57
Coordinate axis, 17
Coordinate ring, 39
Coordinate subspace, 17
Coordinate vector, 1
Cremona group, 89
Cremona transformations, 89
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D
Definition set, 55, 85
Degenerate, 14, 42
Degenerate projectivity, 89
Degree, 18, 130, 156, 163
Degree of a divisor, 279
Degree of a linear series, 289
Derivation, 310
Derivative of formal power series, 210
Diagonal, 74, 106
Differential, 311
Differential, of a morphism at a point, 190
Differential of the first kind, 315
Differential operator, 7
Differentials, on a curve, 314
Dimension, 14, 141
Dimension, Krull, 51
Dimension, topological, 50
Dimension, transcendent, 62
Direction space, 16
Discrete valuation, 193
Discrete valuation ring, 193
Discriminant, 132, 150
Divisor, 19, 279
Divisor of a rational function, 280
Divisor of poles, 280
Divisor of zeros, 280
Dominant, 69, 85
Double point, 220
Dual, 20
Dual curve, 258
Dual projective space, 14
Dual Veronese map, 79

E
Effective, 163
Effective divisor, 19, 279
Elimination of a variable, 32
Equivalence of parametrizations, 221
Equivalent system of polynomials, 30
Euler relation, 7
Exagon, 254
Exceptional lines, 271
Exceptional locus, 108, 111
Extension, 57
External projection, 125

F
Faithful, 58
Fibre, 107, 143
Fibre divisor, 282

Fibre product, 106
Finite morphism, 119
Flex, 244, 256
Form, 6
Formal power series, 205
Frobenius isomorphism, 81
Frobenius morphism, 74
Fundamental field, 26
Fundamental points, 271
Fundamental theorem of projectivities, 15
Fundamental triangle, 270

G
Generalised hypersurface, 19
Generalized projectivity, 89
General position, 15
Generically finite, 122
Genus, 301
Good position, 273
Graded module, 5
Graded ring, 4
Gradient, 188
Grading, 4
Graph, 106
Grassmann formula, 14
Grassmannian, 172
Grassmann variety, 172

H
Height, 51
Hessian polynomial, 256
Hilbert basis theorem, 1
Homogeneous components, 4
Homogeneous coordinates, 3
Homogeneous substitution of variables, 8
Hyperbola, 73
Hyperelliptic, 308
Hyperplane, 14
Hyperplane at infinity, 11
Hypersurface, 17

I
Ideal of denominators, 66
Immersion, 70
Indecomposable, antisymmetric tensor, 173
Index of speciality, 304
Inseparable, 130
Integral, 58
Integral closure, 58
Intersection cycle, 163, 251



Index 325

Intersection multiplicity, 20, 149, 158, 163,
185

Intersectionmultiplicity of affine curves, 225
Intersection multiplicity of branches, 245
Involution, 21, 286
Irreducible, 47
Irreducible components, 18, 49
Irreducible factor, 18
Irredundant decomposition, 49
Irrelevant ideal, 5
Isobaric, 28
Isomorphism, 69

J
Jacobian determinant, 73
Joining subspace, 17

K
Klein quadric, 180
Kronecker symbol, 120, 234

L
Leibnitz rule, 186, 210, 310
Linear branch, 231
Linear equivalence, 281
Linear series, 21, 289
Linear system, 20
Localization, 55, 56
Localization, homogeneous, 56
Locally closed, 11
Local ring, 55
Lüroth’s problem, 93
Lüroth Theorem, 93

M
Module of differentials, 311
Monoid, 95
Morphism, 69
Multiple point, 188
Multiple point divisor, 293
Multiplicity, 12, 18, 163, 189, 279

N
Nasty point, 278
Net, 20
Netto’s resolvent, 226
Newton polygonal, 212
Nilpotent, 35
Node, 220

Noetherian space, 49
Noether’s conditions, 252
Non–degenerate, 14
Normal, 128
Normalization, 129
Number of conditions, 309
Numerical projective space, 2

O
Order, 207, 228
Order of a branch, 231
Order, of a differential at a point, 314
Order, of an element of a DVR, 242
Order, of pole, 195
Order, of zero, 195
Ordinary point, 220
Orthogonal subspace, 14

P
Parabola, 73
Parameters, 191
Parametric representation, 17
Parametrization, 221
Parametrization, irreducible, 221
Parametrization, reducible, 221
Pencil, 20
Perspective, 110
Place, 279
Plücker coordinates, 170, 172
Plücker formulas, 258
Plücker relations, 175
Plurihomogeneous polynomial, 7
Point at infinity, 11
Polar, 258
Pole, 195
Primitive element, 92
Principal divisor, 280
Principal lines, 247
Principal open set, 54
Principal tangent lines, 220
Product, 104
Projection, 17
Projective closure, 11
Projective cone, 43
Projective line, 2
Projectively normal, 130
Projective plane, 2
Projective space, 2
Projective tangent space, 187
Projective variety, 49
Projectivity, 3



326 Index

Proper transform, 110, 271
Proportionality relation, 2
Pull-back, 282
Pure, 50

Q
Quadratic transformation, 90, 271
Quasi–projective variety, 49

R
Radical, 5
Ramification divisor, 318
Ramification index, 318
Ramification point, 21, 318
Rational, 93
Rational function, 54
Rational map, 85
Rational normal curves, 78
Reduced, 279
Reduced equation, 18
Reduced polynomial, 18
Reducible, 47
Reference system, 6
Regular, 191
Regular change of parameter, 221
Regular, function, 53
Resolution of singularities, 267
Restriction map, 54
Resultant, 146
Resultant ideal, 116
Resultant polynomials, 27, 31
Resultant system, 32
Riemann–Roch Theorem, 301
Riemann–Roch Theorem, geometric form,

309
Root, 12
Ruffini’s theorem, 12
Ruled planes, 180

S
Scalar matrix, 3
Scroll, 181
Secant variety, 145
Segre variety, 102
Separable, 130
Series cut out, 297
Set-theoretic complete intersection, 141
Simple linear series, 291
Simple node, 258
Simple point, 188
Simple, very, 292

Singular point, 188
Skew, 89
Smooth point, 188
Span, 17, 309
Special divisor, 301
Special linear series, 301
Standard form, 222
Star, 180
Stereographic projection, 95
Strict transform, 110
Subspace, 13
Substitution, 209
Subvariety, 59
Support, 19, 163, 279
Surface, 18
Sygygy, 43
Sylvester determinant, 26
Symbolic power, 202
Symmetric algebra, 6
System of equations, 2, 196

T
Tacnode, 245
Tangent cone, 189
Tangent fibration, 187
Tangential variety, 190
Tangent to a branch, 231
Total transform, 110, 272
Transpose projectivity, 15
Transversally, 149, 158
Transversely, 248
Truncation, 208
Twisted cubic, 41

U
Unirational, 93

V
Varieties of minimal degree, 160
Variety, affine, 75
Veronese map, 79
Veronese morphism, 77
Veronese surface, 78
Veronese variety, 77
Very good position, 274

W
Weierstrass normal form, 257
Weight, of a homomorphism, 5
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Z
Zariski tangent space, 186
Zariski topology, 2, 9, 103
Zero, 195

0-cycle, 163, 250

Zero, of a polynomial, 9

Zero set, 1, 9
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