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Preface

0.1. Algebraic geometry

As the name suggests, algebraic geometry is the linking of algebra to geometry.

For example, the circle, a geometric object, can also be described as the points

0-1:circle

(1, 0)

(0, 1)

Figure 1. The unit circle centered at the origin

(x, y) in the plane satisfying the polynomial

x2 + y2 − 1 = 0,

an algebraic object. Algebraic geometry is thus often described as the study of

those geometric objects that can be described by polynomials. Ideally, we want a

complete correspondence between the geometry and the algebra, allowing intuitions

from one to shape and influence the other.

The building up of this correspondence is at the heart of much of mathematics

for the last few hundred years. It touches area after area of mathematics. By now,

despite the humble beginnings of the circle

(x2 + y2 − 1 = 0),

algebraic geometry is not an easy area to break into.

v
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Hence this book.

0.2. Overview

Algebraic geometry is amazingly useful, and yet much of its development has

been guided by aesthetic considerations: some of the key historical developments

in the subject were the result of an impulse to achieve a strong internal sense of

beauty.

One way of doing mathematics is to ask bold questions about concepts you

are interested in studying. Usually this leads to fairly complicated answers having

many special cases. An important advantage of this approach is that the questions

are natural and easy to understand. A disadvantage is that, on the other hand, the

proofs are hard to follow and often involve clever tricks, the origin of which is very

hard to see.

A second approach is to spend time carefully defining the basic terms, with

the aim that the eventual theorems and their proofs are straightforward. Here,

the difficulty is in understanding how the definitions, which often initially seem

somewhat arbitrary, ever came to be. And the payoff is that the deep theorems are

more natural, their insights more accessible, and the theory is more aesthetically

pleasing. It is this second approach that has prevailed in much of the development

of algebraic geometry.

By an equivalence problem we mean the problem of determining, within a

certain mathematical context, when two mathematical objects are the same. What

is meant by the same differs from one mathematical context to another. In fact,

one way to classify different branches of mathematics is to identify their equivalence

problems.

A branch of mathematics is closed if its equivalence problems can be easily

solved. Active, currently rich branches of mathematics are frequently where there

are partial but not complete solutions. The branches of mathematics that will only

be active in the future are those for which there is currently no hint for solving any

type of equivalence problem.

To solve, or at least set up the language for a solution to an equivalence problem

frequently involves understanding the functions defined on an object. Since we will

be concerned with the algebra behind geometric objects, we will spend time on

correctly defining natural classes of functions on these objects. This in turn will

allow us to correctly describe what we will mean by equivalence.

Now for a bit of an overview of this text. In Chapter One, our motivation will

be to find the natural context for being able to state that all conics (all zero loci of

second degree polynomials) are the same. The key will be the development of the

complex projective plane ℙ2. We will say that two curves in this new space ℙ2 are
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the “same” (we will use the term “isomorphic”) if one curve can be transformed

into the other by a projective change of coordinates (which we will define).

Chapter Two will look at when two cubic curves are the same in ℙ2 (meaning

again that one curve can be transformed into the other by a projective change of

coordinates). Here we will see that there are many, many different cubics. We will

further see that the points on a cubic have incredible structure; technically we will

see that the points form an abelian group.

Chapter Three turns to higher degree curves. From our earlier work, we still

think of these curves as “living” in the space ℙ2. The first goal of this chapter

is Bezout’s theorem. If we stick to curves in the real plane ℝ2, which would be

the naive first place to work in, one can prove that a curve that is the zero loci

of a polynomial of degree d will intersect another curve of degree e in at most de

points. In our claimed more natural space of ℙ2, we will see that these two curves

will intersect in exactly de points, with the additional subtlety of needing to also

give the correct definition for intersection multiplicity. We will then define on a

curve its natural class of functions, which will be called the curve’s ring of regular

functions.

In Chapter Four we look at the geometry of more complicated objects than

curves in the plane ℙ2. We will be treating the zero loci of collections of polynomials

in many variables, and hence looking at geometric objects in ℂn. Here the exercises

work out how to bring much more of the full force of ring theory to bear on geometry;

in particular the function theory plays an increasingly important role. With this

language we will see that there are actually two different but natural equivalence

problems: isomorphism and birationality.

Chapter Five develops the true natural ambient space, complex projective n-

space ℙn, and the corresponding ring theory.

Chapter Six moves up the level of mathematics, providing an introduction to

the more abstract (and more powerful) developments in algebraic geometry in the

nineteen fifties and nineteen sixties.

0.3. Problem book

This is a book of problems. We envision three possible audiences.

The first audience consists of students who have taken a courses in multivariable

calculus and linear algebra. The first three chapters are appropriate for a semester

long course for these people. If you are in this audience, here is some advice. You are

at the stage of your mathematical career of shifting from merely solving homework

exercises to proving theorems. While working the problems ask yourself what is the

big picture. After working a few problems, close the book and try to think of what

is going on. Ideally you would try to write down in your own words the material
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that you just covered. What is most likely is that the first few times you try this,

you will be at a loss for words. This is normal. Use this as an indication that you

are not yet mastering this section. Repeat this process until you can describe the

mathematics with confidence, ready to lecture to your friends.

The second audience consists of students who have had a course in abstract

algebra. Then the whole book is fair game. You are at the stage where you know

that much of mathematics is the attempt to prove theorems. The next stage of

your mathematical development is in coming up with your own theorems, with the

ultimate goal being to become creative mathematicians. This is a long process.

We suggest that you follow the advice given in the previous paragraph, with the

additional advice being to occasionally ask yourself some of your own questions.

The third audience is what the authors referred to as “mathematicians on an

airplane.” Many professional mathematicians would like to know some algebraic

geometry. But jumping into an algebraic geometry text can be difficult. For the

pro, we had the image of them taking this book along on a long flight, with most of

the problems just hard enough to be interesting but not so hard so that distractions

on the flight will interfere with thinking. It must be emphasized that we do not

think of these problems as being easy for student readers.

0.4. History of book

This book, with its many authors, had its start in the summer of 2008 at the

Park City Mathematics Institute’s Undergraduate Faculty Program on Algebraic

and Analytic Geometry. Tom Garrity led a group of mathematicians on the the

basics of algebraic geometry, with the goal being for the participants to be able to

teach an algebraic geometry at their own college or university.

Since everyone had a Ph.D. in math, each of us knew that you cannot learn

math by just listening to someone lecture. The only way to learn is by thinking

through the math on ones own. Thus we decided to try to write a new beginning

text on algebraic geometry, based on the reader solving many, many exercises. This

book is the result.

0.5. An aside on notation

Good notation in mathematics is important but can be tricky. It is often the

case that the same mathematical object is best described using different notations

depending on context. For example, in this book we will sometimes denote a curve

by the symbol C while at other time denote the curve by the symbol V (P ), where

the curve is the zero loci of the polynomial P (x, y). Both notations are natural and

both will be used.
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0.6. Thanks

There are going to be many people and organizations for which the authors are

grateful. We would like to thank the Institute for Advanced Study and the Park

City Mathematics Institute for their support.

The authors would like to thank the students at Georgia College and State

University who will course-test this manuscript and provide many great suggestions.





conics

zero set

CHAPTER 1

Conics

Linear algebra studies the simplest type of geometric objects, such as straight

lines and planes. Straight lines in the plane are the zero sets of linear, or first

degree, polynomials, such as {(x, y) ∈ ℝ2 : 3x+4y−1 = 0}. But there are far more

plane curves than just straight lines.

We start by looking at conics, which are the zero sets of second degree polyno-

mials. The quintessential conic is the circle:

{(x, y) ∈ ℝ2 : x2 + y2 − 1 = 0}.

x2 + y2 − 1 = 0

(1, 0)

(0, 1)

Despite their seeming simplicity, an understanding of second degree equations and

their solution sets are the beginning of much of algebraic geometry. By the end of

the chapter, we will have developed some beautiful mathematics.

1.1. Conics over the Reals
1.1:Conics:OverR

The goal of this section is to understand the properties and to see how to graph

conics in the real plane ℝ2.

For second degree polynomials, you can usually get a fairly good graph of the

corresponding curve by just drawing it “by hand”. The first series of exercises will

lead you through this process. Our goal is to develop basic techniques for thinking

about curves without worrying about too many technical details.

We start with the polynomial P (x, y) = y− x2 and want to look at its zero set

C = {(x, y) ∈ ℝ2 : P (x, y) = 0}.

We also denote this set by V (P ).

1
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parabola Exercise 1.1.1. Show that for any (x, y) ∈ C, then we also have

(−x, y) ∈ C.

Thus the curve C is symmetric about the y-axis.

Solution. Let (x, y) ∈ C, so y − x2 = 0. Then y − (−x)2 = y − x2 = 0. Thus

(−x, y) ∈ C also.

Exercise 1.1.2. Show that if (x, y) ∈ C, then we have y ≥ 0.

Solution. If (x, y) ∈ C, then y − x2 = 0. Thus y = x2 ≥ 0, since x ∈ ℝ.

Exercise 1.1.3. For points (x, y) ∈ C, show that if y goes to infinity, then

one of the corresponding x-coordinates also approaches infinity while the other

corresponding x-coordinate must approach negative infinity.

Solution. Let (x, y) ∈ C. Then x = +
√
y or x = −√

y. As y → ∞, we have

+
√
y −→ ∞ and −√

y −→ −∞.

These two exercises show that the curve C is unbounded in the positive and

negative x-directions, unbounded in the positive y-direction, but bounded in the

negative y-direction. This means that we can always find (x, y) ∈ C so that x is

arbitrarily large, in either the positive or negative directions, y is arbitrarily large

in the positive direction, but that there is a number M (in this case 0) such that

y ≥M (in this case y ≥ 0).

Exercise 1.1.4. Sketch the curve C = {(x, y) ∈ ℝ2 : P (x, y) = 0}. (The reader
is welcome to use Calculus to give a more rigorous sketch of this curve.)

Solution. {(x, y) ∈ ℝ2 : y − x2 = 0}

1

2

3

4

1 2−1−2

Conics that have these symmetry and boundedness properties and look like

this curve C are called parabolas. Of course, we could have analyzed the curve

{(x, y) : x − y2 = 0} and made similar observations, but with the roles of x and y
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reversed. In fact, we could have shifted, stretched, and rotated our parabola many

ways and still retained these basic features.

We now perform a similar analysis for the plane curve

C = {(x, y) ∈ ℝ2 :

(
x2

4

)
+

(
y2

9

)
− 1 = 0}.

Exercise 1.1.5. Show that if (x, y) ∈ C, then the three points (−x, y), (x,−y),
and (−x,−y) are also on C. Thus the curve C is symmetric about both the x and

y-axes.

Solution. Let (x, y) ∈ C, so x2

4 + y2

9 − 1 = 0. Then (−x)2
4 + y2

9 − 1 = 0 so

(−x, y) ∈ C, and x2

4 + (−y)2
9 − 1 = 0 so (x,−y) ∈ C, and (−x)2

4 + (−y)2
9 − 1 = 0 so

(−x,−y) ∈ C.

Exercise 1.1.6. Show that for every (x, y) ∈ C, we have ∣x∣ ≤ 2 and ∣y∣ ≤ 3.

Solution. Let (x, y) ∈ C. Then x = ±2
√

1− y2

9 , and since y2 ≥ 0, we know

1 − y2

9 ≤ 1. So 2
√
1− y2

9 ≤ 2, while −2 ≤ −2
√

1− y2

9 . Thus −2 ≤ x ≤ 2. Also

y = ±3
√

1− x2

4 , and since x2 ≥ 0, and hence 1− x2

4 ≤ 1, we have −3 ≤ y ≤ 3.

This shows that the curve C is bounded in both the positive and negative x

and y-directions.

Exercise 1.1.7. Sketch C = {(x, y) ∈ ℝ2 :

(
x2

4

)
+

(
y2

9

)
− 1 = 0}.

Solution. {(x, y) ∈ ℝ2 :

(
x2

4

)
+

(
y2

9

)
− 1 = 0}

1

2

3

−1

−2

−3

1 2−1−2
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ellipse Conics that have these symmetry and boundedness properties and look like this

curve C are called ellipses.

There is a third type of conic. Consider the curve

C = {(x, y) ∈ ℝ2 : x2 − y2 − 4 = 0}.

Exercise 1.1.8. Show that if (x, y) ∈ C, then the three points (−x, y), (x,−y),
and (−x,−y) are also on C. Thus the curve C is also symmetric about both the x

and y-axes.

Solution. Let (x, y) ∈ C, so x2 − y2 − 4 = 0. Then (−x)2 − y2 − 4 = 0 so

(−x, y) ∈ C, and x2 − (−y)2 − 4 = 0 so (x,−y) ∈ C, and (−x)2 − (−y)2 − 4 = 0 so

(−x,−y) ∈ C.

hypertwocomponents Exercise 1.1.9. Show that if (x, y) ∈ C, then we have ∣x∣ ≥ 2.

Solution. For (x, y) ∈ C, we have x = ±
√

4 + y2. Also
√
4 + y2 ≥

√
4 ≥ 2,

while −
√
4 + y2 ≤ −

√
4 = 2. Thus x ≤ −2 or x ≥ 2.

This shows that the curve C has two connected components. Intuitively, this

means that C is composed of two distinct pieces that do not touch.

Exercise 1.1.10. Show that the curve C is unbounded in the positive and

negative x-directions and also unbounded in the positive and negative y-directions.

Solution. If (x, y) ∈ C, then x = ±
√
4 + y2. As y → ∞, we have +

√
4 + y2 −→

∞ and −
√

4 + y2 −→ −∞. Also, y = ±
√
x2 − 4, and as x → ∞, we have

+
√
x2 − 4 −→ ∞ and −

√
x2 − 4 −→ −∞.

Exercise 1.1.11. Sketch C = {(x, y) ∈ ℝ2 : x2 − y2 − 4 = 0}.

Solution. {(x, y) ∈ ℝ2 : x2 − y2 − 4 = 0}
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hyperbola

1

2

3

4

−1

−2

−3

−4

1 2 3 4 5−1−2−3−4−5

Conics that have these symmetry, connectedness, and boundedness properties

are called hyperbolas.

In the following exercise, the goal is to sketch many concrete conics.

Exercise 1.1.12. Sketch the graph of each of the following conics in ℝ2. Iden-

tify which are parabolas, ellipses, or hyperbolas.

(1) V (x2 − 8y)

(2) V (x2 + 2x− y2 − 3y − 1)

(3) V (4x2 + y2)

(4) V (3x2 + 3y2 − 75)

(5) V (x2 − 9y2)

(6) V (4x2 + y2 − 8)

(7) V (x2 + 9y2 − 36)

(8) V (x2 − 4y2 − 16)

(9) V (y2 − x2 − 9)

Solution. (1) V (x2 − 8y)

1

2

3

1 2 3 4−1−2−3−4
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(2) V (x2 + 2x− y2 − 3y − 1)

1

2

3

−1

−2

−3

1 2−1−2−3−4

(3) V (4x2 + y2)

1

−1

1−1

b

(4) V (3x2 + 3y2 − 75)

1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4 5−1−2−3−4−5

(5) V (x2 − 9y2)
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1

2

−1

−2

1 2 3 4 5−1−2−3−4−5

(6) V (4x2 + y2 − 8)

1

2

3

−1

−2

−3

1 2−1−2

(7) V (x2 + 9y2 − 36)

1

2

−1

−2

1 2 3 4 5 6−1−2−3−4−5−6

(8) V (x2 − 4y2 − 16)
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1

2

−1

−2

1 2 3 4 5 6−1−2−3−4−5−6

(9) V (y2 − x2 − 9)

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

1 2 3 4 5−1−2−3−4−5

A natural question arises in the study of conics. If we have a second degree

polynomial, how can we determine whether its zero set is an ellipse, hyperbola,

parabola, or something else in ℝ2. Suppose we have the following polynomial.

P (x, y) = ax2 + bxy + cy2 + dx+ ey + ℎ

What are there conditions on a, b, c, d, e, ℎ that determine what type of conic V (P )

is? Whenever we have a polynomial in more than one variable, a useful technique

is to treat P as a polynomial in a single variable whose coefficients are themselves

polynomials.
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Exercise 1.1.13. Express the polynomial P (x, y) = ax2+bxy+cy2+dx+ey+ℎ

in the form

P (x, y) = Ax2 +Bx+ C

where A, B, and C are polynomial functions of y. What are A, B, and C?

Since we are interested in the zero set V (P ), we want to find the roots of

Ax2 + Bx + C = 0 in terms of y. As we know from high school algebra not all

quadratic equations in a single variable have real roots. The number of real roots

is determined by the discriminant Δx of the equation, so let’s find the discriminant

of Ax2 +Bx+ C = 0 as a function of y.

Exercise 1.1.14. Show that the discriminant of Ax2 +Bx+ C = 0 is

Δx(y) = (b2 − 4ac)y2 + (2bd− 4ae)y + (d2 − 4aℎ).

Exercise 1.1.15.

(1) Suppose Δx(y0) < 0. Explain why there is no point on V (P ) whose

y-coordinate is y0.

(2) Suppose Δx(y0) = 0. Explain why there is exactly one point V (P ) whose

y-coordinate is y0.

(3) Suppose Δx(y0) > 0. Explain why there are exactly two points V (P )

whose y-coordinate is y0.

This exercise demonstrates that in order to understand the set V (P ) we need

to understand the set {y ∣ Δx(y) ≥ 0}.

Exercise 1.1.16. Suppose b2 − 4ac = 0.

(1) Show that Δx(y) is linear and that Δx(y) ≥ 0 if and only if y ≥ 4aℎ− d2

2bd− 4ae
,

provided 2bd− 4ae ∕= 0.

(2) Conclude that if b2 − 4ac = 0 (and 2bd − 4ae ∕= 0) , then V (P ) is a

parabola.

Notice that if b2 − 4ac ∕= 0, then Δx(y) is itself a quadratic function in y,

and the features of the set over which Δx(y) is nonnegative is determined by its

quadratic coefficient.

Exercise 1.1.17. Suppose b2 − 4ac < 0.

(1) Show that one of the following occurs: {y ∣ Δx(y) ≥ 0} = ∅, {y ∣ Δx(y) ≥
0} = {y0}, or there exist real numbers � and �, � < �, such that {y ∣
Δx(y) ≥ 0} = {y ∣ � ≤ y ≤ �}.

(2) Conclude that V (P ) is either empty, a point, or an ellipse.

Exercise 1.1.18. Suppose b2 − 4ac > 0.
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(1) Show that one of the following occurs: {y ∣ Δx(y) ≥ 0} = ℝ and Δx(y) ∕=
0, {y ∣ Δx(y) = 0} = {y0} and {y ∣ Δx(y) > 0} = {y ∣ ∣y∣ > y0}, or there
exist real numbers � and �, � < �, such that {y ∣ Δx(y) ≥ 0} = {y ∣ y ≤
�} ∪ {y ∣ y ≥ �}.

(2) Show that if there exist real numbers � and �, � < �, such that {y ∣
Δx(y) ≥ 0} = {y ∣ y ≤ �} ∪ {y ∣ y ≥ �}, then V (P ) is a hyperbola.

Above we decided to treat P as a function of x, but we could have treated P as

a function of y, P (x, y) = A′y2+B′y+C ′ each of whose coefficients is a polynomial

in x.

Exercise 1.1.19. Show that the discriminant of A′y2 +B′y + C ′ = 0 is

Δy(x) = (b2 − 4ac)x2 + (2be− 4cd)x+ (e2 − 4cℎ).

Note that the quadratic coefficient is again b2 − 4ac, so our observations from

above are the same in this case as well. In the preceding exercises we were inten-

tionally vague about some cases. For example, we do not say anything about what

happens when b2−4ac = 0 and 2bd−4ae = 0. This is an example of a “degenerate”

conic. We treat degenerate conics later in this chapter, but for now it suffices to

note that if b2 − 4ac = 0, then V (P ) is not an ellipse or hyperbola. If b2 − 4ac < 0,

then V (P ) is not a parabola or hyperbola. And if b2 − 4ac > 0, then V (P ) is not

a parabola or ellipse. This leads us to the following theorem.

1.1classifytheorem Theorem 1.1.20. Suppose P (x, y) = ax2+ bxy+ cy2+ dx+ ey+ℎ. If V (P ) is

a parabola in ℝ2, then b2 − 4ac = 0; if V (P ) is an ellipse in ℝ2, then b2 − 4ac < 0;

and if V (P ) is a hyperbola in ℝ2, then b2 − 4ac > 0.

In general, it is not immediately clear whether a given conic V (ax2 + bxy +

cy2 + dx+ e+ ℎ) is an ellipse, hyperbola, or parabola, but if the coefficient b = 0,

then it is much easier to determine whether C = V (ax2 + cy2 + dx+ ey + ℎ) is an

ellipse, hyperbola, or parabola.

1.1classifycorollary Corollary 1.1.1. Suppose P (x, y) = ax2 + cy2 + dx + ey + ℎ. If V (P ) is a

parabola in ℝ2, then ac = 0; if V (P ) is an ellipse in ℝ2, then ac < 0, i.e. a and

c have opposite signs; and if V (P ) is a hyperbola in ℝ2, then ac > 0, i.e. a and c

have the same sign.

1.2. Changes of Coordinates

The goal of this section is to sketch intuitively how, in ℝ2, any ellipse can be

transformed into any other ellipse, any hyperbola into any other hyperbola, and

any parabola into any other parabola.
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Here we start to investigate what it could mean for two conics to be the “same”;

thus we start to solve an equivalence problem for conics. Intuitively, two curves

are the same if we can shift, stretch, or rotate one to obtain the other. Cutting or

gluing however is not allowed.

Our conics live in the real plane, ℝ2. In order to describe conics as the zero

sets of second degree polynomials, we first must choose a coordinate system for the

plane ℝ2. Different choices for these coordinates will give different polynomials,

even for the same curve. (To make this concrete, have 10 people separately go to

a blank blackboard, put a dot on it to correspond to an origin and then draw two

axes. There will be 10 quite different coordinate systems chosen.)

Consider the two coordinate systems: There is a dictionary between these

1-2:coord

u

v

x

y

Figure 1. xy and uv-coordinate systems

coordinate systems, given by

u = x− 3,

v = y − 2.

Then the circle of radius 4 has either the equation

u2 + v2 − 4 = 0

or the equation

(x− 3)2 + (y − 2)2 − 4 = 0,

which is the same as x2 − 6x + y2 − 4y + 9 = 0. These two coordinate systems

differ only by where you place the origin. Coordinate systems can also differ in

their orientation. Consider two coordinate systems where the dictionary between

the coordinate systems is:

u = x− y

v = x+ y.

Coordinate systems can also vary by the chosen units of length. Consider two
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affine change of

coordinates

1-3:circle_u-v

u

v

4−4

4

−4

Figure 2. Circle of radius 4 centered at the origin in the uv-

coordinate system

1-4:u-vcoord2

x

y

u

v

Figure 3. xy and uv-coordinate systems with different orientations

coordinate systems where the dictionary between the coordinate systems is:

u = 2x

v = 3y.

All of these possibilities are captured in the following.

Definition 1.2.1. A real affine change of coordinates in the real plane, ℝ2, is

given by

u = ax+ by + e

v = cx+ dy + f,



DRAFT COPY: Complied on February 4, 2010. 13

1-5:u-vcoord3

x

y

u

v

11

1

1

Figure 4. xy and uv-coordinate systems with different units

where a, b, c, d, e, f ∈ ℝ and

ad− bc ∕= 0.

In matrix language, we have
(
u

v

)
=

(
a b

c d

)(
x

y

)
+

(
e

f

)
,

where a, b, c, d, e, f ∈ ℝ, and

det

(
a b

c d

)
∕= 0.

Exercise 1.2.1. Show that the origin in the xy-coordinate system agrees with

the origin in the uv-coordinate system if and only if e = f = 0. Thus the constants

e and f describe translations of the origin.

Solution. The origin (0, 0)xy in the xy-system corresponds to the point (e, f)uv

in the uv-system. Thus, if e = f = 0, the origin (0, 0)xy agrees with (0, 0)uv. Con-

versely, if (0, 0)xy agrees with (0, 0)uv, then (e, f)uv = (0, 0)uv, so e = f = 0.

realaffineinverse Exercise 1.2.2. Show that if u = ax+ by+ e and v = cx+ dy+ f is a change

of coordinates, then the inverse change of coordinates is

x =

(
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

y =

(
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af).

This is why we require that ad − bc ∕= 0. There are two ways of working this

problem. One method is to just start fiddling with the equations. The second is to

translate the change of coordinates into the matrix language and then use a little

linear algebra.
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Solution. The inverse of the matrix

(
a b

c d

)
is

(
1

ad− bc

)(
d −b
−c a

)
. Solv-

ing for

(
x

y

)
in the matrix equation

(
u

v

)
=

(
a b

c d

)(
x

y

)
+

(
e

f

)

gives the inverse transformation
(
x

y

)
=

(
1

ad− bc

)(
d −b
−c a

)[(
u

v

)
−
(
e

f

)]
.

This is matrix language for the given change of coordinates.

We frequently go back and forth between using a change of coordinates and its

inverse. For example, suppose we have the ellipse V (x2 + y2 − 1) in the xy-plane.

Under the real affine change of coordinates

u = x+ y

v = 2x− y,

this ellipse becomes V (5u2−2uv+2v2−9) in the uv-plane (verify this). To change

coordinates from the xy-plane to the uv-plane we replace x and y with u
3 + v

4 and
2u
3 − v

3 , respectively. In other words to change from the xy-coordinate system to

the uv-coordinate system, we use the inverse change of coordinates

x =
1

3
u+

1

3
v

y =
2

3
u− 1

3
v.

Since any affine transformation has an inverse transformation, we will not worry too

much about whether we are using a transformation or its inverse in our calculations.

When the context requires care, we will make the distinction.

It is also common for us to change coordinates multiple times, but we need

to ensure that a composition of real affine changes of coordinates is a real affine

change of coordinates.

realaffinecomposition Exercise 1.2.3. Show that if

u = ax+ by + e

v = cx+ dy + f

and
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s = Au+By + E

t = Cu+Dy + F

are two real affine changes of coordinates from the xy-plane to the uv-plane and

from the uv-plane to the st-plane, respectively, then the composition from the xy-

plane to the st-plane is a real affine change of coordinates.

Exercise 1.2.4. For each pair of ellipses, find a real affine change of coordinates

that maps the ellipse in the xy-plane to the ellipse in the uv-plane.

(1) V (x2 + y2 − 1), V (16u2 + 9v2 − 1)

(2) V ((x− 1)2 + y2 − 1), V (16u2 + 9(v + 2)2 − 1)

(3) V (4x2 + y2 − 6y + 8), V (u2 − 4u+ v2 − 2v + 4)

(4) V (13x2 − 10xy + 13y2 − 1), V (4u2 + 9v2 − 1)

Solution. (1) x = 4u, y = 3v

(2) x = 4u+ 1, y = 3(v + 2)

(3) x = 1
2 (u− 2), y = v + 2

(4) x = 1
2 (u+ v), y = 1

2 (u− v)

We can apply a similar argument for hyperbolas.

Exercise 1.2.5. For each pair of hyperbolas, find a real affine change of coor-

dinates that maps the hyperbola in the xy-plane to the hyperbola in the uv-plane.

(1) V (xy − 1), V (u2 − v2 − 1)

(2) V (x2 − y2 − 1), V (16u2 − 9v2 − 1)

(3) V ((x− 1)2 − y2 − 1), V (16u2 − 9(v + 2)2 − 1)

(4) V (x2 − y2 − 1), V (v2 − u2 − 1)

(5) V (8xy − 1), V (2u2 − 2v2 − 1)

Solution. (1) x = u+ v, y = u− v

(2) x = 4u, y = 3v

(3) x = 4u+ 1, y = 3(v + 2)

(4) x = u, y = v

(5) x = 1
2 (u+ v), y = 1

2 (u− v)

intuitiveellihyper Exercise 1.2.6. Give an intuitive argument, based on number of connected

components, for the fact that no ellipse can be transformed into a hyperbola by a

real affine change of coordinates.

Solution. An affine change of coordinates maps a connected set to a connected

set. No affine change of coordinates can map an ellipse, which has one connected

component, to a hyperbola, which has two connected components.
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Now we move on to parabolas.

Exercise 1.2.7. For each pair of parabolas, find a real affine change of coor-

dinates that maps the parabola in the xy-plane to the parabola in the uv-plane.

(1) V (x2 − y), V (9v2 − 4u)

(2) V ((x− 1)2 − y), V (u2 − 9(v + 2))

(3) V (x2 − y), V (u2 + 2uv + v2 − u+ v − 2).

(4) V (x2 − 4x+ y + 4), V (4u2 − (v + 1))

(5) V (4x2 + 4xy + y2 − y + 1), V (4u2 + v)

Solution. (1) x = 3u, y = 4v

(2) x = u+ 1, y = 9(v + 2)

(3) x = u+ v, y = u− v + 2

The preceding three problems suggest that we can transform ellipses to ellipses,

hyperbolas to hyperbolas, and parabolas to parabolas by way of real affine changes

of coordinates. This turns out to be the case. Suppose C = V (ax2+bxy+cy2+dx+

ey + ℎ) is a smooth conic in ℝ2. Our goal in the next several exercises is to show

that if C is an ellipse, we can transform it to V (x2+ y2− 1); if C is a hyperbola, we

can transform it to V (x2 − y2 − 1); and if C is a parabola, we can transform it to

V (x2 − y). We will pass through a series of real affine transformations and appeal

to Exercise
realaffinecomposition
1.2.3. This result ensures that the final composition of our individual

transformations is the real affine transformation we seek. This composition is,

however, a mess, so we won’t write it down explicitly. We will see in Section
conicsvialinear
1.10

that we can organize this information much more efficiently by using tools from

linear algebra.

We begin with ellipses. Suppose C = V (ax2 + bxy + cy2 + dx + ey + ℎ) is an

ellipse in ℝ2. Our first transformation will be to remove the xy term, i.e. to find a

real affine transformation that will align our given curve with the coordinate axes.

By Theorem
1.1classifytheorem
1.1.20 we know that b2 − 4ac < 0.

Exercise 1.2.8. Explain why if b2 − 4ac < 0, then ac > 0.

ellipsealignment Exercise 1.2.9. Show that under the real affine transformation

x =

√
c

a
u+ v

y = u−
√
a

c
v

C in the xy-plane becomes an ellipse in the uv-plane whose defining equation is

Au2 + Cv2 + Du + Ev + H = 0. Find A and C in terms of a, b, c. Show that if

b2 − 4ac > 0, then A ∕= 0 and C ∕= 0.
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Now we have a new ellipse V (Au2 + Cv2 +Du+ Ev +H) in the uv-plane. If

our original ellipse already had b = 0, then we would have skipped the previous

step and gone directly to this one.

Exercise 1.2.10. Complete the square two times on the left hand side of the

equation

Au2 + Cv2 +Du+ Ev +H = 0

to rewrite this in the factored form

A(u−R)2 + C(v − S)2 − T = 0.

Express R, S, and T in terms of A,C,D,E, and H.

To simplify notation we revert our notation to x and y instead of u and v,

but we keep in mind that we are not really still working in our original xy-plane.

This is a convenience to avoid subscripts. Without loss of generality we can assume

A,C > 0, since if A,C < 0 we could simply multiply the above equation by −1

without affecting the conic. Note that we assume that our original conic is an

ellipse, i.e. it is nondegenerate. A consequence of this is that T ∕= 0.

elliequiv Exercise 1.2.11. Suppose A,C > 0. Find a real affine change of coordinates

that maps the ellipse

V (A(x−R)2 + C(y − S)2 − T ),

to the circle

V (u2 + v2 − 1).

Hence, we have found a (composition) real affine change of coordinates that

transforms any ellipse V (ax2+ bxy+ cy2+dx+ ey+ℎ) to the circle V (u2+v2−1).

We can repeat this process in the case of parabolas.

Suppose C = V (ax2+bxy+cy2+dx+ey+ℎ) is an parabola in ℝ2. By Theorem
1.1classifytheorem
1.1.20 we know that b2 − 4ac = 0. As before our first task is to eliminate the xy

term. Suppose first that b ∕= 0. Since b2 > 0 (b ∈ ℝ) and 4ac = b2 we know ac > 0,

so we repeat Exercise
ellipsealignment
1.2.9.

Exercise 1.2.12. Consider the values A and C found in Exercise
ellipsealignment
1.2.9. Show

that if b2 − 4ac = 0, then either A = 0 or C = 0, depending on the signs of a, b, c.

[Hint: Recall,
√
�2 = −� if � < 0.]

Since either A = 0 or C = 0 we can assume C = 0 without loss of generality, so

our transformed parabola is V (Au2+Du+Ev+H) in the uv-plane. If our original

parabola already had b = 0, then we also know, since b2 − 4ac, that either a = 0 or

c = 0, so we could have skipped ahead to this step.
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Exercise 1.2.13. Complete the square on the left hand side of the equation

Au2 +Du+ Ev +H = 0

to rewrite this in the factored form

A(u−R)2 + E(v − T ) = 0.

Express R and T in terms of A,D, and H.

As above we revert our notation to x and y with the same caveat as before.

paraequiv Exercise 1.2.14. Suppose A,B ∕= 0. Find a real affine change of coordinates

that maps the parabola

V (A(x−R)2 − E(y − T )),

to the parabola

V (u2 − v).

Hence, we have found a (composition) real affine change of coordinates that

transforms any parabola V (ax2+bxy+cy2+dx+ey+ℎ) to the parabola V (u2−v).
Finally, suppose C = V (ax2 + bxy + cy2 + dx + ey + ℎ) is a hyperbola in ℝ2. By

Theorem
1.1classifytheorem
1.1.20 we know that b2− 4ac > 0. Suppose first that b ∕= 0. Unlike before

we could have ac > 0, ac < 0, or ac = 0.

Exercise 1.2.15. Suppose ac > 0. Use the real affine transformation in Exer-

cise
ellipsealignment
1.2.9 to transform C to a conic in the uv-plane. Find the coefficients of u2 and

v2 in the resulting equation and show that they have opposite signs.

Exercise 1.2.16. Suppose ac < 0. Use the real affine transformation

x =

√
− c

a
u+ v

y = u−
√

−a
c
v

to transform C to a conic in the uv-plane. Find the coefficients of u2 and v2 in the

resulting equation and show that they have opposite signs.

Exercise 1.2.17. Suppose ac = 0 (so b ∕= 0). Since either a = 0 or c = 0 we

can assume c = 0. Use the real affine transformation

x = u+ v

y = u− 2a

b
v

to transform C = V (ax2 + bxy + dx+ ey + ℎ) to a conic in the uv-plane. Find the

coefficients of u2 and v2 in the resulting equation and show that they have opposite

signs.
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In all three cases we find the C is transformed to V (Au2−Cv2+Du+Ev+H)

in the uv-plane. We can now complete the hyperbolic transformation as we did

above with parabolas and ellipses.

Exercise 1.2.18. Complete the square two times on the left hand side of the

equation

Au2 − Cv2 +Du+ Ev +H = 0

to rewrite this in the factored form

A(u−R)2 − C(v − S)2 − T = 0.

Express R, S, and T in terms of A,C,D,E, and H.

hyperequiv Exercise 1.2.19. Suppose A,C > 0. Find a real affine change of coordinates

that maps the hyperbola

V (A(x−R)2 − C(y − S)2 − T ),

to the hyperbola

V (u2 − v2 − 1).

We have now shown that in ℝ2 we can find a real affine change of coordinates

that will transform any ellipse to V (x2 + y2 − 1), any hyperbola to V (x2 − y2 − 1),

and any parabola to V (x2− y). Thus we have three classes of smooth conics in ℝ2.

Our next task is to show that these are distinct, that is, that we cannot transform

an ellipse to a parabola and so on.

intuitiveellihyper2 Exercise 1.2.20. Give an intuitive argument, based on number of connected

components, for the fact that no ellipse can be transformed into a hyperbola by a

real affine change of coordinates.

Exercise 1.2.21. Show that there is no real affine change of coordinates

u = ax+ by + e

v = cx+ dy + f

that transforms the ellipse V (x2 + y2 − 1) to the hyperbola V (u2 − v2 − 1).

intuitiveellipara Exercise 1.2.22. Give an intuitive argument, based on boundedness, for the

fact that no parabola can be transformed into an ellipse by a real affine change of

coordinates.

Exercise 1.2.23. Show that there is no real affine change of coordinates that

transforms the parabola V (x2 − y) to the circle V (u2 + v2 − 1).
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change of

coordinates!equivalent

intuitivehyperpara Exercise 1.2.24. Give an intuitive argument, based on the number of con-

nected components, for the fact that no parabola can be transformed into a hyper-

bola by a real affine change of coordinates.

Exercise 1.2.25. Show that there is no real affine change of coordinates that

transforms the parabola V (x2 − y) to the hyperbola V (u2 − v2 − 1).

Definition 1.2.2. The zero loci of two conics are equivalent under a real affine

change of coordinates if the defining polynomial for one of the conics can be trans-

formed via a real affine change of coordinates into the defining polynomial of the

other conic.

Combining all of the work in this section, we have just proven the following

theorem.

realequiv Theorem 1.2.26. Under a real affine change of coordinates, all ellipses in ℝ2

are equivalent, all hyperbolas in ℝ2 are equivalent, and all parabolas in ℝ2 are

equivalent. Further, these three classes of conics are distinct; no conic of one class

can be transformed via a real affine change of coordinates to a conic of a different

class.

In Section
conicsvialinear
1.10 we will revisit this theorem using tools from linear algebra.

This approach will yield a cleaner and more straightforward proof than the one

we have in the current setting. The linear algebraic setting will also make all of

our transformations simpler, and it will become apparent how we arrived at the

particular transformations.

1.3. Conics over the Complex Numbers
conics

The goal of this section is to see how, under a complex affine changes of coordinates,

all ellipses and hyperbolas are equivalent, while parabolas are still distinct.

While it is certainly natural to begin with the zero set of a polynomial P (x, y)

as a curve in the real plane ℝ2, polynomials also have roots over the complex

numbers. In fact, throughout mathematics it is almost always easier to work over

the complex numbers than over the real numbers. This can be seen even in the

solutions given by the quadratic equation, as seen in the following exercises:

Exercise 1.3.1. Show that x2+1 = 0 has no solutions if we require x ∈ ℝ but

does have the two solutions, x = ±i, in the complex numbers ℂ.

Solution. The square of any real number is always nonnegative and can never

equal −1. The complex number i was created so that

i2 = −1.
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We then also have

(−i)2 = (−1)2i2 = −1.

Exercise 1.3.2. Show that the set

{(x, y) ∈ ℝ2 : x2 + y2 = −1}

is empty but that the set

C = {(x, y) ∈ ℂ2 : x2 + y2 = −1}

is not empty. If fact, show that given any complex number x that there must exist

a y ∈ ℂ such that

(x, y) ∈ C.

Then show that if x ∕= ±i, then there are two distinct values y ∈ ℂ such that

(x, y) ∈ C, while if x = ±i, there is only one such y.

Solution. Whenever x, y ∈ ℝ, we have

x2 ≥ 0, y2 ≥ 0

and hence

x2 + y2 ≥ 0.

Thus {(x, y) ∈ ℝ2 : x2 + y2 = −1} must be empty.

Now let x, y ∈ ℂ. We want to look at the solutions for

x2 + y2 + 1 = 0.

Think of this as a one-variable polynomial in the y-coordinate, treating the x as a

constant. Then we can use the quadratic equation to find the roots:

±
√
−4(x2 + 1)

2
.

If x = ±i, then

y =
±
√

−4(i2 + 1)

2
= 0,

a unique solution for y. If x ∕= ±1, then

√
−4(x2 + 1) ∕= 0,

giving us two different solutions for y.

Thus if we only allow a solution to be a real number, some zero sets of second

degree polynomials will be empty. This does not happen over the complex numbers.
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Exercise 1.3.3. Let

P (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0,

with a ∕= 0. Show that for any value y ∈ ℂ, there must be at least one x ∈ ℂ, but
no more than two such x’s, such that

P (x, y) = 0.

[Hint: Write P (x, y) = Ax2 + Bx + C as a function of x whose coefficients A, B,

and C are themselves functions of y, and use the quadratic formula. This technique

will be used frequently.]

Solution. We have

P (x, y) = ax2 + bxy + cy2 + dx+ ey + f

= ax2 + (by + d)x+ (cy2 + ey + f).

Given any y ∈ ℂ, we have that

x =
−(by + d)±

√
(by + d)2 − 4a(cy2 + ey + f)

2a
.

This gives as at least one solution x and exactly two solutions, unless

(by + d)2 − 4a(cy2 + ey + f) = 0

Thus for any second order polynomial, its zero set is non-empty provided we

work over the complex numbers.

But even more happens. We start with:

Exercise 1.3.4. Let C = V
((

x2

4

)
+
(
y2

9

)
− 1
)

⊂ ℂ2. Show that C is un-

bounded in both x and y. (Over the complex numbers C, being unbounded in x,

say, means, given any numberM , there will be point (x, y) ∈ C such that ∣x∣ > M .)

Solution. For any (x, y) ∈ C, we must have that
(
x2

4

)
+

(
y2

9

)
− 1 = 0,

and hence, by solving for x,

x = ±
√

16−
(
4y2

9

)

If we were working over the real numbers, then we could only allow y’s such that

16−
(
4y2

9

)
≥ 0,

but since we are working now over the complex numbers, where square roots are

always defined, there is a solution x ∈ ℂ for any y ∈ ℂ, no matter how large is ∣y∣.
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The same argument works for showing that we can let ∣x∣ be arbitrarily large.

Hyperbolas in ℝ2 come in two pieces. In ℂ2, it can be shown that hyperbolas

are connected, meaning there is a continuous path from any point to any other

point. The following shows this for a specific hyperbola.

Exercise 1.3.5. Let C = V (x2−y2−0) ⊂ ℂ2. Show that there is a continuous

path on the curve C from the point (−1, 0) to the point (1, 0), despite the fact that

no such continuous path exists in ℝ2. (Compare this exercise with Exercise
hypertwocomponents
1.1.9.)

Solution. We explicitly find the path. For any point (x, y) ∈ C, we have that

y = ±
√
x2 − 1.

For any real number −1 < x < 1, we have that x2 − 1 < 0 and hence that y is

purely imaginary. Define the map

 : [−1, 1] → C

by setting

(t) = (t, i
√

1− x2).

We have that (−1) = (−1, 0), (1) = (1, 0) and, for any −1 < t < 1,

(t, i
√

1− x2) ∈ C.

Since  is a continuous function, we are done.

These two exercises demonstrate that in ℂ2 ellipses are unbounded (just like

hyperbolas and parabolas) and suggest the true fact that hyperbolas are connected

(just like ellipses and parabolas). Thus the intuitive arguments in Exercises
intuitiveellihyper
1.2.6,

intuitiveellipara
1.2.22, and

intuitivehyperpara
1.2.24 no longer work in ℂ2. We have even more.

ellihyper Exercise 1.3.6. Show that if x = u and y = iv, then the circle {(x, y) ∈ ℂ2 :

x2 + y2 = 1} transforms into the hyperbola {(u, v) ∈ ℂ2 : u2 − v2 = 1}.

Solution. This is a straightforward substitution. With x = u and y = iv, we

have

1 = x2 + y2

= u2 + (iv)2

= u2 − v2,

as desired
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change of

coordinates!complex

Definition 1.3.1. A complex affine change of coordinates in the complex plane

ℂ2 is given by

u = ax+ by + e

v = cx+ dy + f,

where a, b, c, d, e, f ∈ ℂ and

ad− bc ∕= 0.

ellihyper Exercise 1.3.7. Show that if u = ax+ by+ e and v = cx+ dy+ f is a change

of coordinates, then the inverse change of coordinates is

x =

(
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

y =

(
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af).

This proof should look almost identical to the solution of Exercise
realaffineinverse
1.2.2.

Solution. This is either a delightful or brutal calculation, depending on one’s

mood.

We assume that

x =

(
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

y =

(
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af).

For these values of x and y, we must show that u = ax+ by+ e and v = cx+dy+f

.

We start with u. Consider

ax+ by + e = a

((
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

)

+b

((
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af)

)

+e

=

(
adu

ad− bc

)
−
(

abv

ad− bc

)

−
(

ade

ad− bc

)
+

(
abf

ad− bc

)

−
(

bcu

ad− bc

)
+

(
abv

ad− bc

)

+

(
bce

ad− bc

)
−
(

abf

ad− bc

)
+ e

= u,

as desired.
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change of

coordinates!equivalent

The argument for v is similar.

Definition 1.3.2. The zero loci of two conics are equivalent under a complex

affine change of coordinates if the defining polynomial for one of the conics can be

transformed via a complex affine change of coordinates into the defining polynomial

for the other conic.

Exercise 1.3.8. Use Theorem
realequiv
1.2.26 together with the new result of Exercise

ellihyper
1.3.7 to conclude that all ellipses and hyperbolas are equivalent under complex

affine changes of coordinates.

Solution. We know that any ellipse is equivalent to the circle x2 + y2 = 1

under a real affine change of coordinates and that any hyperbola is equivalent to

the hyperbola x2 − y2 = 1 under a real affine change of coordinates. All real affine

changes of coordinates are also complex affine changes of coordinates. Finally

we have explicitly found a complex affine change of coordinates from the circle

x2 + y2 = 1 to the hyperbola x2 − y2 = 1. Thus given any ellipse, first map it to

the circle, then map the circle to x2 − y2 = 1 and finally map this hyperbola to

any other hyperbola. Since we know that compositions of complex affine changes

of coordinates are still complex affine changes of coordinates, we are done.

Parabolas, though, are still different:

Exercise 1.3.9. Show that {(x, y) ∈ ℂ2 : x2 + y2 − 1 = 0} is not equivalent

under a complex affine change of coordinates to the parabola {(u, v) ∈ ℂ2 : u2−v =

0}.

Solution. We assume that there is a complex affine change of coordinates

x = au+ bv + e

y = cu+ dv + f,

for some constants a, b, c, d, e, f ∈ ℂ with ad − bc ∕= 0 that takes the points on

the parabola the parabola {(u, v) ∈ ℂ2 : u2 − v = 0} to the points on the circle

{(x, y) ∈ ℂ2 : x2 + y2 − 1 = 0}, and then derive a contradiction.

We have

1 = x2 + y2

= (au+ bv + e)2 + (cu+ dv + f)2

= (a2u2 + b2v2 + e2 + 2abuv + 2aeu+ 2bev)

+(c2u2 + d2v2 + f2 + 2cduv + 2cfu+ 2dfv).
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We now use that u2 = v to put all of the above in terms of the variable u alone, to

get

1 = (b2 + d2)u4 + (2ab+ 2cd)u3 + (a2 + c2 + 2be+ 2df)u2

+(2ae+ 2cf)u+ e2 + f2

This looks like a polynomial in one variable of degree of at most four, meaning that

there will at most four solutions u, which is absurd, as there are an infinite number

of points on both curves. The only way that this could happen if all on the above

coefficients, except for e2 + f2, are zero. In particular, we would need:

b2 + d2 = 0

ab+ cd = 0.

We will show that if these are true, then ad− bc = 0, giving us our contradiction.

Now b2 + d2 = 0 means that either d = ib or d = −ib. This means that if b = 0

then d = 0, which in turn means that ad− bc = 0, which cannot happen. Thus we

can assume b ∕= 0.

Assume that d = ib. Then we have

0 = ab+ cd

= ab+ ibc

= b(a+ ic),

which means that we must have a+ ic = 0, or, in other words,

c = ia.

Then we have

ad− bc = iab− iab = 0,

which is forbidden. Then we must have d = −ib, which means that

0 = ab+ cd

= ab− ibc

= b(a− ic).

In this case,

c = −ia,
giving us

ad− bc = −iab+ iab = 0,

which is still forbidden. Thus there is no complex affine change of coordinates

taking u2 = v to x2 + y2 − 1 = 0.
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We now want to look more directly at ℂ2 in order to understand more clearly

why the class of ellipses and the class of hyperbolas are different as real objects but

the same as complex objects. We start by looking more closely at ℂ. Algebraic

geometers regularly use the variable x for a complex number. Complex analysts

more often use the variable z, which allows a complex number to be expressed in

terms of its real and imaginary parts.

z = x+ iy,

where x is the real part of z and y is the imaginary part.

1-6:complexplane

x

y

1

1

ℂ

b
2 + i

b

−3− 2i

b

−3 + 4i

Figure 5. Points in the complex plane

Similarly, an algebraic geometer will usually use (x, y) to denote points in the

complex plane ℂ2 while a complex analyst will instead use (z, w) to denote points

in the complex plane ℂ2. Here the complex analyst will write

w = u+ iv.

There is a natural bijection from C2 to ℝ4 given by

(z, w) = (x+ iy, u+ iv) → (x, y, u, v).

In the same way, there is a natural bijection from ℂ2∩{(x, y, u, v) ∈ ℝ4 : y = 0, v =

0} to the real plane ℝ2, given by

(x+ 0i, u+ 0i) → (x, 0, u, 0) → (x, u).

Likewise, there is a similar natural bijection from ℂ2 = {(z, w) ∈ ℂ2}∩{(x, y, u, v) ∈
ℝ4; y = 0, u = 0} to ℝ2, given this time by

(x+ 0i, 0 + vi) → (x, 0, 0, v) → (x, v).
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One way to think about conics in ℂ2 is to consider two dimensional slices of

ℂ2. Let

C = {(z, w) ∈ ℂ2 : z2 + w2 = 1}.

Exercise 1.3.10. Give a bijection from

C ∩ {(x+ iy, u+ iv) : x, u ∈ ℝ, y = 0, v = 0}

to the real circle of unit radius in ℝ2. (Thus a real circle in the plane ℝ2 can be

thought of as real slice of the complex curve C.)

Solution. We want to find a one-to-one onto map from C∩ {(x+ iy, u+ iv) :

x, u ∈ ℝ, y = 0, v = 0} to the circle

{(x, u) ∈ ℝ2 : x2 + u2 = 1}.

Now we have

1 = z2 + w2

= (x+ 0i)2 + (u+ 0i)2

= x2 + u2,

Thus the desired map is the straightforward

(x+ i0, u+ i0) → (x, u).

Taking a different real slice of C will yield not a circle but a hyperbola.

Exercise 1.3.11. Give a bijection from

C ∩ {(x+ iy, u+ iv) ∈ ℝ4 : x, v ∈ ℝ, y = 0, u = 0}

to the hyperbola (x2 − v2 = 1) in ℝ2.

Solution. We have

1 = z2 + w2

= (x+ 0i)2 + (o+ iv)2

= x2 − u2,

Thus the desired map is the straightforward

(x+ i0, 0 + iv) → (x, u).

Thus the single complex curve C contains both real circles and real hyperbolas.
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1.4. The Complex Projective Plane ℙ2

The goal of this section is to introduce the complex projective plane ℙ2, the natural

ambient space (with its higher dimensional analog ℙn) for much of algebraic geom-

etry. In ℙ2, we will see that all ellipses, hyperbolas and parabolas are equivalent.

In ℝ2 all ellipses are equivalent, all hyperbolas are equivalent, and all parabolas

are equivalent under a real affine change of coordinates. Further, these classes

of conics are distinct in ℝ2. When we move to ℂ2 ellipses and hyperbolas are

equivalent under a complex affine change of coordinates, but parabolas remain

distinct. The next step is to understand the “points at infinity” in ℂ2.

We will give the definition for the complex projective plane ℙ2 together with

exercises to demonstrate its basic properties. It may not be immediately clear what

this definition has to do with the “ordinary” complex plane ℂ2. We will then see

how ℂ2 naturally lives in ℙ2 and how the “extra” points in ℙ2 that are not in ℂ2

are viewed as points at infinity. In the next section we will look at the projective

analogue of change of coordinates and see how we can view all ellipses, hyperbolas

and parabolas as equivalent.

Definition 1.4.1. Define a relation ∼ on points in ℂ3 − {(0, 0, 0)} as follows:

(x, y, z) ∼ (u, v, w) if and only if there exists � ∈ ℂ − {0} such that (x, y, z) =

(�u, �v, �w).

Exercise 1.4.1. Show that ∼ is an equivalence relation.

Solution. We must show ∼ is reflexive, symmetric, and transitive.

For any point (x, y, z) ∈ ℂ3 − {(0, 0, 0)} we have (x, y, z) = (�x, �y, �z) with

� = 1, thus ∼ is reflexive.

To see that ∼ is symmetric, suppose (x, y, z) ∼ (u, v, w) so that (x, y, z) =

(�u, �v, �w) for some � ∕= 0. Then (u, v, w) = ( 1�x,
1
�y,

1
�z), thus (u, v, w) ∼

(x, y, z).

Next assume (x, y, z) ∼ (u, v, w) and (u, v, w) ∼ (r, s, t). Then there are �, � ∈
ℂ− {0} such that (x, y, z) = (�u, �v, �w) and (u, v, w) = (�r, �s, �t). Substituting

we obtain (x, y, z) = (��r, ��s, ��t) where �� ∈ ℂ−{0}. This shows that (x, y, z) ∼
(r, s, t) and therefore ∼ is transitive. Thus ∼ is an equivalence relation.

Exercise 1.4.2.

(1) Show that (2, 1 + i, 3i) ∼ (2− 2i, 2, 3 + 3i).

(2) Show that (1, 2, 3) ∼ (2, 4, 6) ∼ (−2,−4,−6) ∼ (−i,−2i,−3i).

(3) Show that (2, 1 + i, 3i) ∕∼ (4, 4i, 6i).

(4) Show that (1, 2, 3) ≁ (3, 6, 8).
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Solution. (1) We need to find � with (2, 1+ i, 3i) = (�(2−2i), �2, �(3+

3i)). Using the first component to solve for � we find

2 = �(2− 2i) ⇒ � =
2

2− 2i
=

1 + i

2
.

We then check that

1 + i =

(
1 + i

2

)
2 and 3i =

(
1 + i

2

)
(3 + 3i)

thus (2, 1 + i, 3i) ∼ (2− 2i, 2, 3 + 3i).

(2) We have

(1, 2, 3) = (
1

2
⋅ 2, 1

2
⋅ 4, 1

2
⋅ 6) = (−1

2
⋅ 2,−1

2
⋅ 4,−1

2
⋅ 6) = (

i

2
⋅ 2, i

2
⋅ 4, i

2
⋅ 6).

(3) We show this by contradiction. Suppose (2, 1 + i, 3i) = (�4, �4i, �6i) for

some � ∕= 0. From the first coordinate � = 1
2 , but 1 + i ∕= 1

2 ⋅ 4i.
(4) We proceed by contradiction. Suppose (1, 2, 3) = (�3, �6, �8). The first

(and second) coordinates imply that � = 1
3 , but then the equality fails in

the third coordinate.

Exercise 1.4.3. Suppose that (x1, y1, z1) ∼ (x2, y2, z2) and that x1 = x2. Show

then that y1 = y2 and z1 = z2.

Solution. We assume (x1, y1, z1) ∼ (x2, y2, z2), thus (x1, y1, z1) = (�x2, �y2, �z2)

for some non-zero �. Then x1 = �x2. If x1 = x2, � = 1. Thus y1 = y2 and z1 = z2.

Exercise 1.4.4. Suppose that (x1, y1, z1) ∼ (x2, y2, z2) with z1 ∕= 0 and z2 ∕= 0.

Show that

(x1, y1, z1) ∼
(
x1
z1
,
y1
z1
, 1

)
∼
(
x2
z2
,
y2
z2
, 1

)
∼ (x2, y2, z2).

Solution. If z1 ∕= 0, then we can set � = z1 and we have

(x1, y1, z1) =

(
z1
x1
z1
, z1

y1
z1
, z1 ⋅ 1

)

thus (x1, y1, z1) ∼
(
x1

z1
, y1z1 , 1

)
.

By the same argument, (x2, y2, z2) ∼
(
x2

z2
, y2z2 , 1

)
. Since (x1, y1, z1) ∼ (x2, y2, z2),

by transitivity,
(
x1

z1
, y1z1 , 1

)
∼
(
x2

z2
, y2z2 , 1

)
.

Let (x : y : z) denote the equivalence class of (x, y, z), i.e. (x : y : z) is the

following set.

(x : y : z) = {(u, v, w) ∈ ℂ3 − {(0, 0, 0)} : (x, y, z) ∼ (u, v, w)}

Exercise 1.4.5.

(1) Find the equivalence class of (0, 0, 1).
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projective!plane(2) Find the equivalence class of (1, 2, 3).

Solution. (1) The equivalence class of (0, 0, 1) is

{
(u, v, w) ∈ ℂ3 − {(0, 0, 0)} : (0, 0, 1) ∼ (u, v, w)

}

= {(u, v, w) : (0, 0, 1) = (�u, �v, �w) for some � ∕= 0}
= {(u, v, w) : u = 0, v = 0} = {(0, 0, w) : w ∕= 0}

(2) The equivalence class of (1, 2, 3) is

{
(u, v, w) ∈ ℂ3 − {(0, 0, 0)} : (1, 2, 3) ∼ (u, v, w)

}

= {(u, v, w) : (1, 2, 3) = (�u, �v, �w) for some � ∈ ℂ− {0}}

=

{(
1

�
,
2

�
,
3

�

)
: � ∕= 0

}

Exercise 1.4.6. Show that the equivalence classes (1 : 2 : 3) and (2 : 4 : 6) are

equal as sets.

Solution. We will prove that each set is a subset of the other. First let

(x, y, z) ∈ (1 : 2 : 3), so that (x, y, z) ∼ (1, 2, 3). By Exercise 1.4.2(2), we know

that (1, 2, 3) ∼ (2, 4, 6). By transitivity of ∼, we have (x, y, z) ∼ (2, 4, 6), thus

(x, y, z) ∈ (2 : 4 : 6). This proves that (1 : 2 : 3) ⊆ (2 : 4 : 6).

A similar argument will prove the converse. Assume (x, y, z) ∈ (2 : 4 : 6),

so that (x, y, z) ∼ (2 : 4 : 6). Since (1, 2, 3) ∼ (2, 4, 6) by symmetry we have

(2, 4, 6) ∼ (1, 2, 3). Again using transitivity we see that (x, y, z) ∼ (1, 2, 3). Thus

(x, y, z) ∈ (1 : 2 : 3), so we have shown that (2 : 4 : 6) ⊆ (1 : 2 : 3).

Therefore (1 : 2 : 3) = (2 : 4 : 6).

Definition 1.4.2. The complex projective plane, ℙ2(ℂ), is the set of equiva-

lence classes of the points in ℂ3 − {(0, 0, 0)}. That is,

ℙ2(ℂ) =
(
ℂ3 − {(0, 0, 0)}

)/
∼ .

The set of points {(x : y : z) ∈ ℙ2(ℂ) : z = 0} is called the line at infinity. We will

write ℙ2 to mean ℙ2(ℂ) when the context is clear.

Let (a, b, c) ∈ ℂ3 − {(0, 0, 0)}. Then the complex line through this point and

the origin (0, 0, 0) can be defined as all points, (x, y, z), satisfying

x = �a, y = �b, and z = �c,

for any complex number �. Here � can be thought of as an independent parameter.

Exercise 1.4.7. Explain why the elements of ℙ2 can intuitively be thought of

as complex lines through the origin in ℂ3.
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Solution. An element of ℙ2 is an equivalence class (a : b : c), the set whose

elements have the form (x, y, z) ∈ ℂ3 − {(0, 0, 0)} with x = �a, y = �b, z = �z for

some complex number � ∕= 0. These elements correspond to the points, other than

(0, 0, 0), on the line through (a, b, c) and the origin.

Exercise 1.4.8. If c ∕= 0, show, in ℂ3, that the line x = �a, y = �b, z = �c

intersects the plane {(x, y, z) : z = 1} in exactly one point. Show that this point of

intersection is
(
a
c ,

b
c , 1
)
.

Solution. We assume c ∕= 0 and (x, y, z) is a point on both the line x =

�a, y = �b, z = �c and the plane z = 1. Then z = �c = 1 and solving for the

parameter � we obtain � = 1
c . Substituting this parameter value back into our

equations for the line we have (x, y, z) = (ac ,
b
c , 1).

In the next several exercises we will use

ℙ2 = {(x : y : z) ∈ ℙ2 : z ∕= 0} ∪ {(x : y : z) ∈ ℙ2 : z = 0}

to show that ℙ2 can be viewed as the union of ℂ2 with the line at infinity.

affinebijection1 Exercise 1.4.9. Show that the map � : ℂ2 → {(x : y : z) ∈ ℙ2 : z ∕= 0} defined

by �(x, y) = (x : y : 1) is a bijection.

Solution. We want to show that � is one-to-one and onto. To show this

map is one-to-one, suppose �((a, b)) = �((c, d)). Then (a : b : 1) = (c : d : 1).

For these two equivalence classes to be equal, there must be a non-zero � with

(a, b, 1) = (�c, �d, �). Therefore � = 1, so we have a = c, b = d and (a, b) = (c, d).

Thus � is one-to-one.

To show that � is onto, let (a : b : c) ∈ {(x : y : z) ∈ ℙ2 : z ∕= 0}. Then c ∕= 0,

so we may set � = 1
c and write (ac : bc : 1) = (a : b : c). We then have (ac ,

b
c ) ∈ ℂ2

and �((ac ,
b
c )) = (a : b : c). Thus � is also onto.

affinebijection2 Exercise 1.4.10. Find a map from {(x : y : z) ∈ ℙ2 : z ∕= 0} to ℂ2 that is the

inverse of the map � in Exercise
affinebijection1
1.4.9.

Solution. By Exercise
affinebijection1
1.4.9, � is a bijection so we know that an inverse

exists. Starting with a point (a : b : c) ∈ {(x : y : z) ∈ ℙ2 : z ∕= 0} we can write

(a : b : c) = (ac : bc : 1) as in the proof that � is onto. Then �−1((a : b : c)) = (ac ,
b
c ).

The maps � and �−1 in Exercises
affinebijection1
1.4.9 and

affinebijection2
1.4.10 show us how to view ℂ2

inside ℙ2. Now we show how the set {(x : y : z) ∈ ℙ2 : z = 0} corresponds to

directions towards infinity in ℂ2.

Exercise 1.4.11. Consider the line ℓ = {(x, y) ∈ ℂ2 : ax+ by + c = 0} in ℂ2.

Assume a, b ∕= 0. Explain why, as ∣x∣ → ∞, ∣y∣ → ∞. (Here, ∣x∣ is the modulus of

x.)
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homogeneous
coordinates

Solution. Let (x, y) be a point on the line ℓ, so we may write y =
−ax− c

b
.

Then ∣y∣ = 1
∣b∣ ∣ax+ c∣. As ∣x∣ → ∞, ∣ax+ c∣ → ∞, thus ∣y∣ → ∞.

Exercise 1.4.12. Consider again the line ℓ. We know that a and b cannot

both be 0, so we will assume without loss of generality that b ∕= 0.

(1) Show that the image of ℓ in ℙ2 under � is the set

{(bx : −ax− c : b) : x ∈ ℂ}.

(2) Show that this set equals the following union.

{(bx : −ax− c : b) : x ∈ ℂ} = {(0 : −c : b)} ∪
{(

1 : −a
b
− c

bx
:
1

x

)}

(3) Show that as ∣x∣ → ∞, the second set in the above union becomes

{(1 : −a
b
: 0)}.

Thus, the points (1 : −a
b : 0) are directions toward infinity and the set {(x : y : z) ∈

ℙ2 : z = 0} is the line at infinity.

Solution. (1) As in the previous problem we can write (x, −ax−cb ) for

an arbitrary point on ℓ. Then

�((x,
−ax− c

b
)) = (x :

−ax− c

b
: 1) = (bx : −ax− c : b)

since b ∕= 0. Therefore

�(ℓ) = {(bx : −ax− c : b) : x ∈ ℂ}.

(2) Let (bx : −ax − c : b) ∈ �(ℓ) and first suppose x = 0. Then substituting

gives (bx : −ax− c : b) = (0 : −c : b).
Otherwise x ∕= 0; since b ∕= 0 we have (bx : −ax − c : b) = (1 :

−a
b − c

bx : 1
x ). Thus

{(bx : −ax− c : b) : x ∈ ℂ} = {(0 : −c : b)} ∪
{(

1 : −a
b
− c

bx
:
1

x

)}

(3) As ∣x∣ → ∞, ∣ 1x ∣ → 0, thus
(
1 : −a

b
− c

bx
:
1

x

)
→ (1 : −a

b
: 0).

If a point (a : b : c) in ℙ2 is the image of a point (x, y) ∈ ℂ2 under the map

from ℂ2 �−→ ℙ2, we say that (a, b, c) ∈ ℂ3 are the homogeneous coordinates for (x, y).

Notice that the homogeneous coordinates for a point (x, y) ∈ ℂ2 are not unique.

For example, the coordinates (2 : −3 : 1), (10 : −15 : 5), and (2−2i : −3+3i : 1− i)
are all homogeneous coordinates for (2,−3).

In order to consider zero sets of polynomials in ℙ2, a little care is needed. We

start with:
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homogeneous Definition 1.4.3. A polynomial is homogeneous if every monomial term has

the same total degree, that is, if the sum of the exponents in every monomial is

the same. The degree of the homogeneous polynomial is the degree of one of its

monomials. An equation is homogeneous if every nonzero monomial has the same

total degree.

Exercise 1.4.13. Explain why the following polynomials are homogeneous,

and find each degree.

(1) x2 + y2 − z2

(2) xz − y2

(3) x3 + 3xy2 + 4y3

(4) x4 + x2y2

Solution. In parts 1 and 2, every term in the polynomial has degree two, thus

these are homogeneous of degree two. In part 3 each term has degree three, and

each term in the polynomial of part 4 has degree four.

Exercise 1.4.14. Explain why the following polynomials are not homogeneous.

(1) x2 + y2 − z

(2) xz − y

(3) x2 + 3xy2 + 4y3 + 3

(4) x3 + x2y2 + x2

Solution. (1) Since the first terms have degree two and the last term

has degree one, x2 + y2 − z is not homogeneous.

(2) xz has degree two while y has degree one, so xz − y is not homogeneous.

(3) x2 has degree two, 3xy2 and 4y3 have degree three, and 3 has degree zero.

(4) x3 has degree three, x2y2 has degree four, and x2 has degree two.

ex-homogeneous Exercise 1.4.15. Show that if the homogeneous equation Ax+ By + Cz = 0

holds for the point (x, y, z) in ℂ3, then it holds for every point of ℂ3 that belongs

to the equivalence class (x : y : z) in ℙ2.

Solution. We assume Ax + By + Cz = 0 and let (a, b, c) ∈ (x : y : z).

Then a = �x, b = �y, c = �z for some � ∈ ℂ − {0}. We have Aa + Bb + Cc =

A�x+B�y + C�z = �(Ax+By + Cz) = 0.

ex2-homogeneous Exercise 1.4.16. Show that if the homogeneous equation Ax2 +By2 +Cz2 +

Dxy + Exz + Fyz = 0 holds for the point (x, y, z) in ℂ3, then it holds for every

point of ℂ3 that belongs to the equivalence class (x : y : z) in ℙ2.

Solution. We assume Ax2 + By2 + Cz2 + Dxy + Exz + Fyz = 0 and let

(a, b, c) ∈ (x : y : z). Then a = �x, b = �y, c = �z for some � ∈ ℂ− {0}. Then

Aa2 +Bb2 + Cc2 +Dab+ Eac+ Fbz =
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A�2x2 +B�2y2 + C�2z2 +D�2xy + E�2xz + F�2yz

= �2(Ax2 +By2 + Cz2 +Dxy + Exz + Fyz) = 0

Exercise 1.4.17. State and prove the generalization of the previous two exer-

cises for any degree n homogeneous equation P (x, y, z) = 0.

Solution. If the degree n homogeneous equation P (x, y, z) = 0 holds for

the point (x, y, z) in ℂ3, then it holds for every point of ℂ3 that belongs to the

equivalence class (x : y : z) in ℙ2.

Proof. Suppose P is a homogeneous polynomial of degree n such that P (x, y, z) =

0 holds for the point (x, y, z). Let (a, b, c) ∈ (x : y : z) with a = �x, b = �y, c = �z

for some � ∈ ℂ− {0}. Since P is homogeneous, we can write

P (x, y, z) =
∑

�ijkx
iyjzk

where the sum is taken over all triples i, j, k where 0 ≤ i, j, k ≤ n and i+ j+k = n.

Substituting (a, b, c) into P (x, y, z), we have

P (a, b, c) =
∑

�ijk(�x)
i(�y)j(�z)k =

∑
�ijk�

i+j+k(xiyjzk) = �n
∑

�ijkx
iyjzk.

Thus

P (a, b, c) = �nP (x, y, z) = 0.

□

Exercise 1.4.18. Consider the non-homogeneous equation P (x, y, z) = x2 +

2y + 2z = 0. Show that (2,−1,−1) satisfies this equation, but not all other points

of the equivalence class (2 : −1 : −1) satisfy the equation.

Solution. P (2,−1,−1) = 4 − 2 − 2 = 0. Take, for example, (−2, 1, 1) ∈ (2 :

−1 : −1). We have P (−2, 1, 1) = 4 + 2 + 2 = 8.

More generally, a point in the equivalence class (2 : −1 : −1) will have the form

(2�,−�,−�) for some non-zero complex number �. Substituting into P (x, y, z) we

have P (2�,−�,−�) = 4�2 − 2�− 2� = 4�(�− 1) ∕= 0 when � ∕= 0, 1.

Thus the zero set of a non-homogeneous polynomials is not well- defined in ℙ2.

These exercises demonstrate that the only polynomials that are well-defined on ℙ2

(and any projective space ℙn) are homogeneous polynomials.

In order to study the behavior at infinity of a curve in ℂ2, we would like

to extend the curve to ℙ2. In order for the zero set of a polynomial over ℙ2 to

be well-defined we must, for any given a polynomial on ℂ2, replace the original

(possibly non-homogeneous) polynomial with a homogeneous one. For any point

(x : y : z) ∈ ℙ2 with z ∕= 0 we have (x : y : z) ∼
(
x
z : yz : 1

)
which we identify, via

�−1 from Exercise
affinebijection2
1.4.10, with the point

(
x
z ,

y
z

)
∈ ℂ2. This motivates our procedure

to homogenize polynomials.
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We start with an example. With a slight abuse of notation, the polynomial

P (x, y) = y − x − 2 maps to P (x, y, z) = y
z − x

z − 2. Since P (x, y, z) = 0 and

zP (x, y, z) = 0 have the same zero set if z ∕= 0 we clear the denominator and

consider the polynomial P (x, y, z) = y−x−2z. The zero set of P (x, y, z) = y−x−2z

in ℙ2 corresponds to the zero set of P (x, y) = y − x − 2 = 0 in ℂ2 precisely when

z = 1.

Similarly, the polynomial x2 + y2 − 1 maps to
(
x
z

)2
+
(
y
z

)2 − 1. Again, clear

the denominators to obtain the homogeneous polynomial x2 + y2 − z2, whose zero

set, V (x2 + y2 − z2) ⊂ ℙ2 corresponds to the zero set, V (x2 + y2 − 1) ⊂ ℂ2 when

z = 1.

Definition 1.4.4. Let P (x, y) be a degree n polynomial defined over ℂ2. The

corresponding homogeneous polynomial defined over ℙ2 is

P (x, y, z) = znP
(x
z
,
y

z

)
.

Exercise 1.4.19. Homogenize the following equations. Then find the point(s)

where the curves intersect the line at infinity.

(1) ax+ by + c = 0

(2) x2 + y2 = 1

(3) y = x2

(4) x2 + 9y2 = 1

(5) y2 − x2 = 1

Solution. (1) The curve ax+ by + cz = 0 intersects the line at infinity

z = 0 in the point (−b : a : 0).

(2) x2 + y2 = z2 intersects the line at infinity at the points (i : 1 : 0) and

(−i : 1 : 0).

(3) yz = x2 intersects the line at infinity at the point (0 : 1 : 0).

(4) x2 + 9y2 = z2 intersects the line at infinity at the points (3i : 1 : 0) and

(−3i : 1 : 0).

(5) y2 − x2 = z2 intersects the line at infinity at the points (1 : 1 : 0) and

(−1 : 1 : 0).

Exercise 1.4.20. Show that in ℙ2, any two distinct lines will intersect in a

point. Notice, this implies that parallel lines in ℂ2, when embedded in ℙ2, intersect

at the line at infinity.

Solution. We know in the affine plane, two distinct lines are either parallel

or intersect in a point. Thus we need to show that parallel affine lines will meet in

the projective plane. Let ax+ by + c = 0 and dx+ ey + f = 0 be two affine lines,

which homogenize to ax+ by+ cz = 0 and cx+ dy+ ez = 0 in the projective plane.
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Since the affine lines are parallel, either b = e = 0 or a
b = c

d . The projective lines

will intersect at (0 : 1 : 0) in the first case, and at (−b : a : 0) in the second.

Exercise 1.4.21. Once we have homogenized an equation, the original vari-

ables x and y are no more important than the variable z. Suppose we regard x

and z as the original variables in our homogenized equation. Then the image of the

xz-plane in ℙ2 would be {(x : y : z) ∈ ℙ2 : y = 1}.
(1) Homogenize the equations for the parallel lines y = x and y = x+ 2.

(2) Now regard x and z as the original variables, and set y = 1 to sketch the

image of the lines in the xz-plane.

(3) Explain why the lines in part (2) meet at the x−axis.

Solution. (1) The homogeneous equations for these lines are y = x and

y = x+ 2z.

(2) In the y = 1 plane the affine equations are x = 1 and x+ 2z = 1.

z

x
b

x = 1

x+ 2z = 1

(3) The lines x = 1 and x+ 2z = 1 intersect at the point x = 1, z = 0 on the

x-axis in the xz-plane. The x-axis, z = 0 in this affine plane, corresponds

to the line at infinity in the projective plane.

1.5. Projective Change of Coordinates

The goal of this section is to define a projective change of coordinates and then

show that all ellipses, hyperbolas and parabolas are equivalent under a projective

change of coordinates.

Earlier we described a complex affine change of coordinates from ℂ2 with points

(x, y) to ℂ2 with points (u, v) by setting u = ax+ bx+ e and v = cx+ dy + f . We

will define the analog for changing homogeneous coordinates (x : y : z) for some

ℙ2 to homogeneous coordinates (u : v : w) for another ℙ2. We need the change of

coordinates equations to be both homogeneous and linear:
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change of

coordinates!projective

Definition 1.5.1. A projective change of coordinates is given by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

where the aij ∈ ℂ and

det

⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ ∕= 0.

In matrix language ⎛
⎜⎝
u

v

w

⎞
⎟⎠ = A

⎛
⎜⎝
x

y

z

⎞
⎟⎠ ,

where A = (aij), aij ∈ ℂ, and detA ∕= 0.

Definition 1.5.2. Two conics in ℙ2 are equivalent under a projective change

of coordinates, or projectively equivalent, if the defining homogeneous polynomial

for one of the conics can be transformed into the defining polynomial for the other

conic via a projective change of coordinates.

Exercise 1.5.1. For the complex affine change of coordinates

u = ax+ by + e

v = cx+ dy + f,

where a, b, c, d, e, f ∈ ℂ and ad− bc ∕= 0, show that

u = ax+ by + ez

v = cx+ dy + fz

w = z

is the corresponding projective change of coordinates.

This means that if two conics in ℂ2 are equivalent under a complex affine

change of coordinates, then the corresponding conics in ℙ2 will still be equivalent,

but now under a projective change of coordinates.

Solution. Let A =

⎛
⎜⎝
a b e

c d f

0 0 1

⎞
⎟⎠. Then

⎛
⎜⎝
u

v

w

⎞
⎟⎠ = A

⎛
⎜⎝
x

y

z

⎞
⎟⎠ and upon dehomog-

enizing by setting z = 1 we obtain the corresponding affine change of coordinates.

Furthermore, detA = ad− bc ∕= 0 as required.
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Exercise 1.5.2. Let C1 = V (x2 + y2 − 1) be an ellipse in ℂ2 and let C2 =

V (u2 − v) be a parabola in ℂ2. Homogenize the defining polynomials for C1 and

C2 and show that the projective change of coordinates

u = ix

v = y + z

w = y − z

transforms the ellipse in ℙ2 into the parabola in ℙ2.

Solution. The homogenized polynomials are f1 = x2+y2−z2 and f2 = u2−vw
respectively. If we solve the above system for x, y and z we have

x =
u

i
= −ui

y =
v + w

2

z =
v − w

2

If we substitute these variables into f1, we have

x2 + y2 − z2 = (−ui)2 +
(
v + w

2

)2

−
(
v − w

2

)2

= −u2 + 1

4

(
v2 + 2vw + w2 − (v2 − 2vw + w2)

)

= −u2 + vw = −(u2 − vw)

Exercise 1.5.3. Use the results of Section
conics
1.3 together with the above problem

to show that, under a projective change of coordinates, all ellipses, hyperbolas, and

parabolas are equivalent in ℙ2.

Solution. We have seen in Section
conics
1.3 that ellipses and hyperbolas are equiv-

alent under complex affine changes of coordinates. We may homogenize the affine

change of coordinates to obtain a projective change of coordinates. The previous

exercise shows that an ellipse is equivalent to a parabola under a projective change

of coordinates. Therefore all ellipses, hyperbolas and parabolas are projectively

equivalent.

1.6. The Complex Projective Line ℙ1

The goal of this section is to define the complex projective line ℙ1 and show that it

can be viewed topologically as a sphere. In the next section we will use this to show

that ellipses, hyperbolas, and parabolas are also spheres in the complex projective

plane ℙ2.

We start with the definition of ℙ1:
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projective!line Definition 1.6.1. Define an equivalence relation ∼ on points in ℂ2 − {(0, 0)}
as follows: (x, y) ∼ (u, v) if and only if there exists � ∈ ℂ− {0} such that (x, y) =

(�u, �v). Let (x : y) denote the equivalence class of (x, y). The complex projective

line ℙ1 is the set of equivalence classes of points in ℂ2 − {(0, 0)}. That is,

ℙ1 =
(
ℂ2 − {(0, 0)}

)/
∼ .

The point (1 : 0) is called the point at infinity.

The next series of problems are direct analogs of problems for ℙ2.

uniquess inproj Exercise 1.6.1. Suppose that (x1, y1) ∼ (x2, y2) and that x1 = x2 ∕= 0. Show

that y1 = y2.

Solution. Since (x1, y1) ∼ (x2, y2), there exists a non-zero complex number

� such that

x1 = �x2

y1 = �y2.

Since we know that x1 = x2 ∕= 0, it must be the case that � = 1, giving us our

result.

Exercise 1.6.2. Suppose that (x1, y1) ∼ (x2, y2) with y1 ∕= 0 and y2 ∕= 0.

Show that

(x1, y1) ∼
(
x1
y1
, 1

)
∼
(
x2
y2
, 1

)
∼ (x2, y2).

Solution. The non-zero complex number � that works to show that (x1, y1) ∼(
x1

y1
, 1
)
is y1, since

x1 = y1

(
x1
y1

)

y1 = y1 ⋅ 1

In the same way, the non-zero complex number � that works to show that (x2, y2) ∼(
x2

y2
, 1
)
is y2. Since we know that (x1, y1) ∼ (x2, y2) and since ∼ is an equivalence

relation, we are done.

Exercise 1.6.3. Explain why the elements of ℙ1 can intuitively be thought of

as complex lines through the origin in ℂ2.

Solution. Let (a, b) ∈ ℂ2−{(0, 0)}. Then the complex line through this point

and the origin (0, 0) can be described as all points (x, y) satisfying

x = �a, y = �b
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for any complex number �. Here � can be thought of as an independent parameter.

The point (a : b) ∈ ℙ1 corresponds to the points (�a, �b)ℂ2, which are indeed

precisely the actual points on the line through the point (a, b) and the origin (0, 0),

as desired.

Exercise 1.6.4. If b ∕= 0, show, in ℂ2, that the line x = �a, y = �b will

intersect the plane {(x, y) : y = 1} in exactly one point. Show that this point of

intersection is
(
a
b , 1
)
.

Solution. We want to find the point of intersection of the line x = �a, y = �b

with the plane {(x, y) : y = 1}. Thus we must find the number � so that

1 = y = �b,

and thus we have

� =
1

b
.

Then the point of intersection is

(�a, �b) =

(
1

b
a,

1

b
b

)
=
(a
b
, 1
)
,

as desired.

We have that

ℙ1 = {(x : y) ∈ ℙ1 : y ∕= 0} ∪ {(1 : 0)}.

affinebijection3 Exercise 1.6.5. Show that the map � : ℂ→ {(x : y) ∈ ℙ1 : y ∕= 0} defined by

�(x) = (x : 1) is a bijection.

Solution. We must show that � is one-to-one and onto. For one-to-oneness,

suppose that

�(x1) = �(x2).

Then

(x1 : 1) = (x2 : 1),

and hence by exercise
uniquess inproj
1.6.1, we have that

x1 = x2,

meaning that � is one-to-one.

Now let (a : b) ∈ {(x : y) ∈ ℙ1 : y ∕= 0}. Since b ∕= 0, we have

�
(a
b

)
=
(a
b
: 1
)
= (a : b),

meaning that � is also onto.

affinebijection4 Exercise 1.6.6. Find a map from {(x : y) ∈ ℙ1 : y ∕= 0} to ℂ that is the

inverse of the map � in Exercise
affinebijection3
1.6.5.
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homeomorphism Solution. Define

� : {(x : y) ∈ ℙ1 : y ∕= 0} → ℂ

by setting

�(x : y) =
x

y
.

We first must show that this map is well-defined. Since (x : y) describes the same

point as (�x : �y), with � ∕= 0, we must show that

�(x : y) = �(�x : �y).

This can be easily shown, since

�(x : y) =
x

y
=
�x

�y
= �(�x : �y),

as desired.

Now to show we can identify � with the inverse �−1. We must show that

� ∘ �(x) = x for all x ∈ ℂ and that � ∘ �(x : y) = (x : y) for all (x : y) ∈ {(x : y) ∈
ℙ1 : y ∕= 0}.

But these are true since

� ∘ �(x) = �(x : 1) =
x

1
= x

and

� ∘ �(x : y) = �

(
x

y

)
=

(
x

y
: 1

)
= (x : y).

The maps � and �−1 in Exercises
affinebijection3
1.6.5 and

affinebijection4
1.6.6 show us how to view ℂ inside

ℙ1. Now we want to see how the extra point (1 : 0) will correspond to the point at

infinity of ℂ.

inverse of the map in the previous problem.

Exercise 1.6.7. Consider the map � : ℂ → ℙ1 given by �(x) = (x : 1). Show

that as ∣x∣ → ∞, we have �(x) → (1 : 0).

Solution. We have

lim
∣x∣→∞

�(x) = lim
∣x∣→∞

(x : 1)

= lim
∣x∣→∞

(
1 :

1

x

)

= (1 : 0)

Hence we can think of ℙ1 as the union of ℂ and a single point at infinity. Now

we want to see how we can regard ℙ1 as a sphere, which means we want to find a

homeomorphism between ℙ1 and a sphere. A homeomorphism is a continuous map

with a continuous inverse. Two spaces are topologically equivalent, or homeomor-

phic, if we can find a homeomorphism from one to the other. We know that the
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points of ℂ are in one-to-one correspondence with the points of the real plane ℝ2,

so we will first work in ℝ2 ⊂ ℝ3. Let S2 denote the unit sphere in ℝ3 centered at

the origin. This sphere is given by the equation

x2 + y2 + z2 = 1.

stereographic Exercise 1.6.8. Let p denote the point (0, 0, 1) ∈ S2, and let ℓ denote the line

through p and the point (x, y, 0) in the xy-plane, whose parametrization is given

by

(t) = (1− t)(0, 0, 1) + t(x, y, 0),

i.e.

l = {(tx, ty, 1− t) ∣ t ∈ ℝ}.

(1) ℓ clearly intersects S2 at the point p. Show that there is exactly one other

point of intersection q.

(2) Find the coordinates of q.

(3) Define the map  : ℝ2 → S2 − {p} to be the map that takes the point

(x, y) to the point q. Show that  is a continuous bijection.

(4) Show that as ∣(x, y)∣ → ∞, we have  (x, y) → p.

Solution. We want to find the values of the real parameter t such that (t) ∈
S2. Now the coordinates of the points on the line are given by

((tx, ty, (1− t)) ∈ ℓ.

Thus we must find the real numbers t such that

(tx)2 + (ty2) + (1− t)2 = 1,

where x and y are fixed real numbers. Thus we must solve the quadratic

(x2 + y2 + 1)t2 − 2t = 0

and thus find the roots of

t(((x2 + y2 + 1)t− 2) = 0.

Certainly t = 0 is a root, which is the point p = (0, 0, 1). The other root is a solution

of

(x2 + y2 + 1)t− 2 = 0

and is hence

t =
2

x2 + y2 + 1
.
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Thus the other point of intersection is

(t) = 

(
2

x2 + y2 + 1

)

=

((
2

x2 + y2 + 1

)
x,

(
2

x2 + y2 + 1

)
y, 1−

(
2

x2 + y2 + 1

))

=

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

We thus define  : ℝ2 → S2 − {p} by setting

 (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

Since each of the components of  is continuous, the map  is continuous.

For part (4), we have

lim
(x,y)→(∞,∞)

2x

x2 + y2 + 1
= 0

lim
(x,y)→(∞,∞)

2y

x2 + y2 + 1
= 0

since both of the numerators grow linearly in x and y while the denominators grow

quadratically in x and y. Also, we have

lim
(x,y)→(∞,∞)

x2 + y2 − 1

x2 + y2 + 1
= lim

(x,y)→(∞,∞)

1− 1
x2+y2

1 + 1
x2+y2

= 1.

Thus as ∣(x, y)∣ → ∞, we have  (x, y) → p = (0, 0, 1).

This map from S2 − (0, 0, 1) → ℝ2 is called the stereographic projection from

the sphere to the plane. Note that the south pole (0, 0,−1) on S2 maps to the

origin (0, 0) in ℝ2. Also, there is an analogous map from S2 − (0, 0,−1) → ℝ2,

where here it is the north pole (0, 0, 1) on S2 that maps to the origin (0, 0) in ℝ2.

Exercise 1.6.9. Use Exercise
stereographic
1.6.8 to show that ℙ1 is homeomorphic to S2.

Solution. We know that ℙ1 = {(z : 1) ∈ ℙ1 : z ∈ ℂ} ∪ {(1 : 0)}. Define

� : ℙ1 → S2,

using the notation of the previous exercise, by setting

�(1 : 0) = p

where p = (0, 0, 1) and

�(z : 1) = �(x+ iy : 1) =  (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

From the previous exercises, we know that this is our desired homeomorphism.
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The above argument does establish a homeomorphism, but it relies on coordi-

nates and an embedding of the sphere in ℝ3. We now give an alternative method

for showing that ℙ1 is a sphere that does not rely as heavily on coordinates.

If we take a point (x : y) ∈ ℙ1, then we can choose a representative for this

point of the form
(
x
y : 1

)
, provided y ∕= 0, and a representative of the form

(
1 : yx

)
,

provided x ∕= 0.

Exercise 1.6.10. Determine which point(s) in ℙ1 do not have two represen-

tatives of the form (x : 1) = (1 : 1
x ).

Solution. There are two such points, namely (1 : 0) and (0 : 1).

Our constructions needs two copies of ℂ. Let U denote the first copy of ℂ,

whose elements are denoted by x. Let V be the second copy of ℂ, whose elements

we’ll denote y. Further let U∗ = U − {0} and V ∗ = V − {0}.

patching Exercise 1.6.11. Map U → ℙ1 via x→ (x : 1) and map V → ℙ1 via y → (1 :

y). Show that there is a the natural one-to-one map U∗ → V ∗.

Solution. The desired map � : U∗ → V ∗ is

�(x) =
1

x
.

Note that � is the composition of:

x→ (x : 1) =

(
1 :

1

x

)
→ 1

x
.

The next two exercises have quite a different flavor than most of the problems

in the book. The emphasis is not on calculations but on the underlying intuitions.

Exercise 1.6.12. A sphere can be split into a neighborhood of its northern

hemisphere and a neighborhood of its southern hemisphere. Show that a sphere

can be obtained by correctly gluing together two copies of ℂ.

1-7:gluingsphere

ℂ

ℂ

Figure 6. gluing copies of ℂ together
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parameterization!rational Solution. We can identify

S2 − north pole

with ℝ2, which in turn can be identified with ℂ. The origin of ℂ will map to the

south pole. Similarly we also can identify

S2 − south pole

with ℝ2, which of course can be identified with another copy of ℂ. Here the origin

of ℂ will map to the north pole of S2.

Exercise 1.6.13. Put together the last two exercises to show that ℙ1 is topo-

logically equivalent to a sphere.

Solution. From
patching
1.6.11 , we have a bijective map U → ℙ1 via x → (x : 1)

and a bijective map V → ℙ1 via y → (1 : y). But we also have a bijective map

from U to S2 −north pole and a bijective map from V to S2 − south pole. Putting

these maps together gives us our result. Note that the south pole will correspond

to (0 : 1) and the north pole with (1 : 0).

1.7. Ellipses, Hyperbolas, and Parabolas as Spheres
1.7:Conics:Spheres

The goal of this section is to show that there is always a bijective polynomial

map from ℙ1 to any ellipse, hyperbola, or parabola. Since we showed in the last

section that ℙ1 is topologically equivalent to a sphere, this means that all ellipses,

hyperbolas, and parabolas are spheres.

1.7.1. Rational Parameterizations of Smooth Conics. We start with

rational parameterizations of conics. While we will consider conics in the complex

plane ℂ2, we often draw these conics in ℝ2. Part of learning algebraic geometry

is developing a sense for when the real pictures capture what is going on in the

complex plane.

Consider a conic C = {(x, y) ∈ ℂ2 : P (x, y) = 0} ⊂ ℂ2 where P (x, y) is a second

degree polynomial. Our goal is to parametrize C with polynomial or rational maps.

This means we want to find a map � : ℂ → C ⊂ ℂ2, given by �(�) = (x(�), y(�))

such that x(�) and y(�) are polynomials or rational functions. In the case of a

parabola, for example when P (x, y) = x2 − y, it is easy to find a bijection from ℂ

to the conic C.

Exercise 1.7.1. Find a bijective polynomial map from ℂ to the conic C =

{(x, y) ∈ ℂ2 : x2 − y = 0}.

Solution. � → (�, �2), one-to-one: if (�, �2) = (�, �2) then � = �, onto: if

(x, y) ∈ C then y = x2 so x→ (x, y).
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On the other hand, it may be easy to find a parametrization but not a rational

parametrization.

Exercise 1.7.2. Let C = V (x2 + y2 − 1) be an ellipse in ℂ2.

(1) Find a trigonometric parametrization of C.

(2) For any point (x, y) ∈ C, express the variable x as a function of y involving

a square root. Use this to find another parametrization of C.

The exercise above gives two parameterizations for the circle but in algebraic geom-

etry we restrict our maps to polynomial or rational maps. We develop a standard

method, similar to the method developed in Exercise
stereographic
1.6.8, to find such a parame-

terization below.

elliparametrization Exercise 1.7.3. Consider the ellipse C = V (x2+y2−1) ⊂ ℂ2 and let p denote

the point (0, 1) ∈ C.

(1) Parametrize the line segment from p to the point (�, 0) on the complex

line y = 0 as in Exercise
stereographic
1.6.8.

(2) This line segment clearly intersects C at the point p. Show that if � ∕= ±i,
then there is exactly one other point of intersection. Call this point q.

(3) Find the coordinates of q ∈ C.

elliparamdegenerate (4) Show that if � = ±i, then the line segment intersects C at p only.

Solution. (1) The slope of the line is −1
� so the equation of the line is

y = −1
� x + 1. A parameterization for the line segment is then (t, −1

� t + 1

with t running from 0 to �.

(2) Substitute y = −1
� x+1 into x2+y2−1 = 0 and solve for x to find that one

solution is x = 0 which corresponds to the point p and the other solution

is x = 2�
�2+1 .

(3) Solve for the y value to find the coordinates of q: ( 2�
�2+1 ,

�2−1
�2+1 ).

(4) If � = ±i when we substitute y = −1
� x + 1 into x2 + y2 − 1 = 0 we’ll

find −2�x = 0 and so the only solution is x = 0 which corresponds to the

point p.

Define the map  ̃ : ℂ→ C ⊂ ℂ2 by

 ̃(�) =

(
2�

�2 + 1
,
�2 − 1

�2 + 1

)
.

But we want to work in projective space. This means that we have to homog-

enize our map.

Exercise 1.7.4. Show that the above map can be extended to the map  :

ℙ1 → {(x : y : z) ∈ ℙ2 : x2 + y2 − z2 = 0} given by

 (� : �) = (2�� : �2 − �2 : �2 + �2).
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Solution. Restrict  to the affine chart � = 1 and scale the point in ℙ2 that

results by 1
�2+1 . We obtain

(� : 1) →
(

2�

�2 + 1
:
�2 − 1

�2 + 1
: 1

)

which agrees with the map  ̃ on the affine copy of ℂ that corresponds to � = 1.

projectiveelliparam Exercise 1.7.5.

(1) Show that the map  is one-to-one.

(2) Show that  is onto. [Hint: Consider two cases: z ∕= 0 and z = 0. For

z ∕= 0 follow the construction given above. For z = 0, find values of � and

� to show that these point(s) are given by  . How does this relate to Part
elliparamdegenerate
4 of Exercise

elliparametrization
1.7.3?]

Solution. (1) Assume 2�� = 2�̄�̄, �2 − �2 = �̄2 − �̄2, and �2 − �2 =

�̄2 − �̄2. Solve the first equation to obtain � = �̄�̄
� . Substitute this into

the second two equations and solve for �: � = ±�̄. Solve for � to find

� = ±�̄. Thus, we have either (� : �) = (�̄ : �̄) or (� : �) = (±�̄ : ±�̄) but
in projective (�̄ : �̄) = (±�̄ : ±�̄) and so  is one-to-one. If either � or �

is zero one shows similarly (but much more easily) that  is one-to-one.

(2) If z ∕= 0 set x = 2��, y = �2 − �2, and z = �2 + �2. Solve for � and

� to find � =
√

z+y
2 and � =

√
z−y
2 . It is easy confirm that the point

(
√

z+y
2 :

√
z−y
2 ) maps to a point on C.

Since we already know that every ellipse, hyperbola, and parabola is projec-

tively equivalent to the conic defined by x2+ y2− z2 = 0, we have, by composition,

a one-to-one and onto map from ℙ1 to any ellipse, hyperbola or parabola.

But we can construct such maps directly. Here is what we can do for any conic

C. Fix a point p on C, and parametrize the line segment through p and the point

(x, 0). We use this to determine another point on curve C, and the coordinates of

this point give us our map.

Exercise 1.7.6. For the following conics, for the given point p, follow what we

did for the conic x2 + y2 − 1 = 0 to find a rational map from ℂ to the curve in ℂ2

and then a one-one map from ℙ1 onto the conic in ℙ2.

(1) x2 + 2x− y2 − 4y − 4 = 0 with = (0,−2).

(2) 3x2 + 3y2 − 75 = 0 with p = (5, 0).

(3) 4x2 + y2 − 8 = 0 with p = (1, 2).

Solution. (1) We find the map from ℂ to C: � →
(

−2�2

�2−4 ,
−2�2−4�+8

�2−4

)
.

The map from ℙ1 to the curve C in ℙ2 is then (� : �) →
(
−2�2 : −2�2 − 4��+ 8�2 : �2 − 4�2

)
.
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Pythagorean Theorem(2) Use the point (0, �) to find the parameterization � →
(

5�2−125
�2+25 , 50�

�2+25

)

and (� : �) → (5�2 − 125�2 : 50�� : �2 + 25�2).

1.7.2. Links to Number Theory. The goal of this section is to see how

geometry can be used to find all primitive Pythagorean triples, a number theory

problem.

Overwhelmingly in this book we will be interested in working over the complex

numbers. But if instead we work over the integers or the rational numbers, some

of the deepest questions in mathematics appear. We want to see this approach in

the case of conics.

In particular we want to link the last section to the search for primitive Pythagorean

triples. A Pythagorean triple is a triple, (x, y, z), of integers that satisfies the equa-

tion

x2 + y2 = z2.

Exercise 1.7.7. Suppose (x0, y0, z0) is a solution to x2 + y2 = z2. Show that

(mx0,my0,mz0) is also a solution for any scalar m.

Solution. (mx0)
2 +(my0)

2 = m2x20 +m2y20 = m2(x20 + y20) = m2z20 = (mz0)
2

A primitive Pythagorean triple is a Pythagorean triple that cannot be obtained

by multiplying another Pythagorean triple by an integer.

The simplest example, after the trivial solution (0, 0, 0), is (3, 4, 5). These triples

get their name from the attempt to find right triangles with integer length sides,

x, y, and z. We will see that the previous section gives us a method to compute all

possible primitive Pythagorean triples.

We first see how to translate the problem of finding integer solutions of x2+y2 =

z2 to finding rational number solutions to x2 + y2 = 1.

Exercise 1.7.8. Let (a, b, c) ∈ ℤ3 be a solution to x2 + y2 = z2. Show that

c = 0 if and only if a = b = 0.

Solution. If a = b = 0 then c2 = 0 and so c = 0. If c = 0 then a2 + b2 = 0

and since we are working over ℤ clearly a = b = 0.

This means that we can assume c ∕= 0, since there can be only one solution

when c = 0.

Exercise 1.7.9. Show that if (a, b, c) is a Pythagorean triple, with c ∕= 0, then

the pair of rational numbers
(
a
c ,

b
c

)
is a solution to x2 + y2 = 1.

Solution. If a2 + b2 = c2, divide by c2 and we have
(
a
c

)2
+
(
b
c

)2
= 1.
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Exercise 1.7.10. Let
(
a
c1
, bc2

)
∈ ℚ2 be a rational solution to x2 + y2 = 1.

Find a corresponding Pythagorean triple.

Solution. Multiply by (c1c2)
2 to find the triple (a2c22, b

2c21, c
2
1c

2
2).

Thus to find Pythagorean triples, we want to find the rational points on the

curve x2 + y2 = 1. We denote these points as

C(ℚ) = {(x, y) ∈ ℚ2 : x2 + y2 = 1}.

Recall, from the last section, the parameterization  ̃ : ℚ → {(x, y) ∈ ℚ2 :

x2 + y2 = 1} given by

�
 ̃−→
(

2�

�2 + 1
,
�2 − 1

�2 + 1

)
.

Exercise 1.7.11. Show that the above map  ̃ sends ℚ→ C(ℚ).

Solution. If � ∈ ℚ then clearly
(

2�
�2+1 ,

�2−1
�2+1

)
∈ ℚ2. Substitute the point

(
2�
�2+1 ,

�2−1
�2+1

)
into the equation x2 + y2 = 1 to see that the point lies on the curve.

Extend this to a map  : ℙ1(ℚ) → C(ℚ) ⊂ ℙ2(ℚ) by

(� : �) 7→ (2�� : �2 − �2 : �2 + �2),

where �, � ∈ ℤ.
Since we know already that the map  is one-to-one by Exercise

projectiveelliparam
1.7.5, this give

us a way to produce an infinite number of integer solutions to x2 + y2 = z2.

Exercise 1.7.12. Show that � and � are relatively prime if and only if  (� : �)

is a primitive Pythagorean triple.

Thus it makes sense for us to work in projective space since we are only inter-

ested in primitive Pythagorean triples.

We now want to show that the map  is onto so that we actually obtain all

primitive Pythagorean triples.

Exercise 1.7.13.

(1) Show that  : ℙ1(ℚ) → C(ℚ) ⊂ ℙ2(ℚ) is onto.
(2) Show that every primitive Pythagorean triple is of the form (2��, �2 −

�2, �2 + �2), where �, � ∈ ℤ are relatively prime.

Exercise 1.7.14. Find a rational point on the conic x2 + y2 − 2 = 0. Develop

a parameterization and conclude that there are infinitely many rational points on

this curve.
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Diophantine equationSolution. Use the point (1, 1) on the curve and the point (�, 0) to find the

line y = x−1
1−� + 1. Substitute this into the equations that defines the curve to find

points of intersection 1 and −�2−4�+2
�2−2�+2 . The second point is rational when � is. The

corresponding y-coordinate is �2−2
�2−2a+2 .

Exercise 1.7.15. By mimicking the above, find four rational points on each of

the following conics.

(1) x2 + 2x− y2 − 4y − 4 = 0 with p = (0,−2).

(2) 3x2 + 3y2 − 75 = 0 with p = (5, 0).

(3) 4x2 + y2 − 8 = 0 with p = (1, 2).

Solution. (1) We’ll use the point (�, 0) to find a parameterization. We

find the points
(
− 2�2

�2−4 ,− 2�2−4�−8
�2−4

)
. To find four rational points chose

values for �. For example, if � = 1 we find the point ( 23 ,− 2
3 ).

(2) This time we’ll use the point (0, �). We find the point
(

5(�2−25)
�2+25 , 50�

�2+25

)
.

If � = 1 we find the point
(
− 60

13 ,
25
13

)
.

(3) We find the parameterization
(

�2−8
�2−4�+8 ,− 2�2−16�+16

�2−4�+8

)
. For example, � =

1 gives the point
(
− 7

5 ,− 2
5

)
.

Exercise 1.7.16. Show that the conic x2 + y2 = 3 has no rational points.

Solution. Suppose there is a solution (a/b, c/d). We clear denominators to

see this gives (ad)2 + (bc)2 = 3b2d2. This implies there exists an integer solution

to m2 + n2 ≡ 0 (mod 3). However, we check all possibilities to see the m2 + n2 is

never congruent to 0 modulo 3.

Diophantine problems are those where you try to find integer or rational solu-

tions to a polynomial equation. The work in this section shows how we can approach

such problems using algebraic geometry. For higher degree equations the situation

is quite different and leads to the heart of a great deal of the current research in

number theory.

1.8. Degenerate Conics - Crossing lines and double lines.

The goal of this section is to extend our study of conics from ellipses, hyperbolas

and parabolas to the “degenerate” conics: crossing lines and double lines.

Let f(x, y, z) be any homogeneous second degree polynomial with complex

coefficients. The overall goal of this chapter is to understand curves

C = {(x : y : z) ∈ ℙ2 : f(x, y, z) = 0}.
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Most of these curves will be various ellipses, hyperbolas and parabolas. But consider

the second degree polynomial

f(x, y, z) = (−x+ y + z)(2x+ y + 3z) = −2x2 + y2 + 3z2 + xy − xz + 4yz.

Exercise 1.8.1. Dehomogenize f(x, y, z) by setting z = 1. Graph the curve

C(ℝ) = {(x : y : z) ∈ ℙ2 : f(x, y, 1) = 0}

in the real plane ℝ2.

Solution. We have

f(x, y, 1) = (−x+ y + 1)(2x+ y + 3) = −2x2 + y2 + 3 + xy − x+ 4y.

From the factored from we see that the graph is two crosses lines: y = x − 1 and

y = −2x− 3.

The zero set of a second degree polynomial could be the union of crossing lines.

Exercise 1.8.2. Consider the two lines given by

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0,

and suppose

det

(
a1 b1

a2 b2

)
∕= 0.

Show that the two lines intersect at a point where z ∕= 0.

Solution. Consider the matrix

(
a1 b1 c1

a2 b2 c2

)
. Since det

(
a1 b1

a2 b2

)
∕= 0

it is easy to see this matrix will have full rank and hence non-trivial solution. In

particular z will be the free variable. More explicitly if we perform row reduction we

find the reduced row echelon form of the matrix is

(
1 0 −c2b2+b1c2

b2a1−a2b1
0 1 c2a1−a2c1

b2a1−a2b1

)
. Notice

the non-zero determinant appears in the denominator of the entries in the third

column. It is a simple matter to find the intersection for any value of z ∕= 0.

Exercise 1.8.3. Dehomogenize the equation in the previous exercise by setting

z = 1. Give an argument that, as lines in the complex plane ℂ, they have distinct

slopes.

Solution. The slope of the line a1x+b1y+c1 = 0 is −a1
b1
. The slope of the line

a2x+ b2y + c2 = 0 is −a2
b2
. If −a1

b1
= −a2

b2
then a1b2 − a2b1 = 0 but by assumption

the determinant is non-zero.
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Exercise 1.8.4. Again consider the two lines

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0,

where at least one of a1, b1, or c1 is nonzero and at least one of a2, b2, or c2 is

nonzero. (This is to guarantee that (a1x + b1y + c1z)(a2x + b2y + c2z) is actually

second order.) Now suppose that

det

(
a1 b1

a2 b2

)
= 0

and that

det

(
a1 c1

a2 c2

)
∕= 0 or det

(
b1 c1

b2 c2

)
∕= 0.

Show that the two lines still have one common point of intersection, but that this

point must have z = 0.

Solution. Suppose det

(
a1 c1

a2 c2

)
∕= 0 For convenience we’ll rearrange the

variables and consider the matrix

(
a1 c1 b1

a2 c2 b2

)
. The reduced row echelon

form is

(
1 0 −c1b2+b1c2

c2a1−a2c1
0 1 b2a1−a2b1

c2a1−a2c1

)
which by assumption equals

(
1 0 −c1b2+b1c2

c2a1−a2c1
0 1 0

)
.

Since we have rearranged the variables, we see that z = 0. Still, there are solutions

for any value of x ∕= 0. Of course, the other case is analogous.

There is one other possibility. Consider the zero set

C = {(x : y : z) ∈ ℙ2 : (ax+ by + cz)2 = 0}.

As a zero set, the curve C is geometrically the line

ax+ by + cz = 0

but due to the exponent 2, we call C a double line.

Exercise 1.8.5. Let

f(x, y, z) = (a1x+ b1y + c1z)(a2x+ b2y + c2z),

where at least one of a1, b1, or c1 is nonzero and at least one of the a2, b2, or c2 is

nonzero. Show that the curve defined by f(x, y, z) = 0 is a double line if and only

if

det

(
a1 b1

a2 b2

)
= 0, det

(
a1 c1

a2 c2

)
= 0, and det

(
b1 c1

b2 c2

)
= 0.
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Solution. If f is a double line then a1 = ka2, b1 = kb2, and c1 = kc2 for

some non-zero value of k. Clearly all the indicated determinants are then zero.

Conversely if all three determinants are zero then a1
a2

= b1
b2

= c1
c2

= k for some non-

zero value of k. Then we can write f(x, y, z) = (a1x+ b1y + c1z)(a2x+ b2y + c2z)

as f(x, y, z) = k(ax+ by + cz)2.

We now want to show that any two crossing lines are equivalent under a pro-

jective change of coordinates to any other two crossing lines and any double line is

equivalent under a projective change of coordinates to any other double line. This

means that there are precisely three types of conics: the ellipses, hyperbolas, and

parabolas; pairs of lines; and double lines.

For the exercises that follow, assume that at least one of a1, b1, or c1 is nonzero

and at least one of a2, b2, or c2 is nonzero.

Exercise 1.8.6. Consider the crossing lines

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0,

with

det

(
a1 b1

a2 b2

)
∕= 0.

Find a projective change of coordinates from xyz-space to uvw-space so that the

crossing lines become

uv = 0.

Solution. We want to find a matrix M such that

M ⋅

⎛
⎜⎝

u

v

w

⎞
⎟⎠ =

⎛
⎜⎝

x

y

w

⎞
⎟⎠

gives a1x+ b1y + c1z = u and a2x+ b2y + c2z = v with this change of variables. If

you write this out you’ll see this amounts to solving 3 systems of 2 equations each.

If d = det

(
a1 b1

a2 b2

)

we find

M =
1

d
⋅

⎛
⎜⎝

b2 − c1b2 + b1c2 −b1 − c1b2 + b1c2 −c1b2 + b1c2

−a2 − c2a1 + a2c1 a1 − c2a1 + a2c1 −c2a1 + a2c1

d d d

⎞
⎟⎠ .

Exercise 1.8.7. Consider the crossing lines (a1x+b1y+c1z)(a2x+b2y+c2z) =

0, with

det

(
a1 c1

a2 c2

)
∕= 0.
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Find a projective change of coordinates from xyz-space to uvw-space so that the

crossing lines become

uv = 0.

Solution. Similarly, let d = det

(
a1 c1

a2 c2

)
, then the transformation matrix is

M =
1

d

⎛
⎜⎝

c2 − b1c2 + c1b2 −c1 − b1c2 + c1b2 −b1c2 + c1b2

d d d

−a2 − b2a1 + a2b1 a1 − b2a1 + a2b1 b2a1 − a2b1

⎞
⎟⎠ .

Exercise 1.8.8. Show that there is a projective change of coordinates from

xyz-space to uvw-space so that the double line (ax + by + cz)2 = 0 becomes the

double line

u2 = 0.

Solution. The tricky part here is finding a transformation matrix whose de-

terminant is non-zero. If two of a, b, c are zero then simply rename the appropriate

variable u. Assume then that two of a, b, c are non-zero, without loss of generality

we’ll assume a and c are non-zero. Solving systems similar to the two previous

exercises we’ll have two free variables this time. One possible transformation is
⎛
⎜⎝

1
a − b

a − c
a − b

a − c
a 1

1 1 1

1 1 −a
c − b

c

⎞
⎟⎠ ⋅

⎛
⎜⎝

u

v

w

⎞
⎟⎠ =

⎛
⎜⎝

x

y

z

⎞
⎟⎠ .

The determinant of this matrix is −a+b+c
ac . If a+ b+ c = 0 then there are two cases.

If b = 0 then ax + by + cz = a(x − z) and we rename x − z, u. If b ∕= 0 find a

matrix analogous to the one given above, but with the assumption that a and b are

non-zero.

Exercise 1.8.9. Argue that there are three distinct classes of conics in ℙ2.

Solution. From section 5 of this chapter we has seen that ellipses, parabola,

and hyperbola are equivalent under projective transformations. In this section we

have seen that crossed lines are double lines are distinct.

1.9. Tangents and Singular Points

The goal of this section is to develop the idea of singularity. We’ll show that all

ellipses, hyperbolas, and parabolas are smooth, while crossing lines and double lines

are singular, but in different ways.

Thus far, we have not explicitly needed Calculus; to discuss singularities we will

need to use Calculus. We have been working over both real and complex numbers
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curve!singular throughout. For all of our differentiation we will use the familiar differentiation

rules from real calculus, but we note that the underlying details involved in complex

differentiation are more involved than in the differentiation of real-valued functions.

See the appendix on complex analysis for further details.

Let f(x, y) be a polynomial. Recall that if f(a, b) = 0, then the normal vector

for the curve f(x, y) = 0 at the point (a, b) is given by the gradient vector

∇f(a, b) =
(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
.

A tangent vector to the curve at the point (a, b) is perpendicular to ∇f(a, b)
and hence must have a dot product of zero with ∇f(a, b). This observation shows

that the tangent line is given by

{(x, y) ∈ ℂ2 :

(
∂f

∂x
(a, b)

)
(x− a) +

(
∂f

∂y
(a, b)

)
(y − b) = 0}.

1-9:gradient
x

y

f(x, y) = 0

a

b

∇f(a, b)

b

Figure 7. gradient versus tangent vectors

Exercise 1.9.1. Explain why if both ∂f
∂x (a, b) = 0 and ∂f

∂y (a, b) = 0 then the

tangent line is not well-defined at (a, b).

Solution. If both ∂f
∂x (a, b) = 0 and ∂f

∂y (a, b) = 0, then every vector is orthog-

onal to ∇. Thus the direction of the tangent line is not unique, thus the tangent

line cannot be well-defined.

This exercise motivates the following definition.

Definition 1.9.1. A point p = (a, b) on a curve C = {(x, y) ∈ ℂ2 : f(x, y) = 0}
is said to be singular if

∂f

∂x
(a, b) = 0and

∂f

∂y
(a, b) = 0.
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curve!smoothA point that is not singular is called smooth. If there is at least one singular point

on C, then curve C is called a singular curve. If there are no singular points on C,

the curve C is called a smooth curve.

Exercise 1.9.2. Show that the curve

C = {(x, y) ∈ ℂ2 : x2 + y2 − 1 = 0}

is smooth.

Solution. We have ∂f
∂x = 2x and ∂f

∂y = 2y. To be singular, we need both
∂f
∂x = 0 and simultaneously ∂f

∂y = 0. This occurs when x = 0 and y = 0. However,

(0, 0) /∈ C. Since there is no point where C is singular, C is smooth.

Exercise 1.9.3. Show that the pair of crossing lines

C = {(x, y) ∈ ℂ2 : (x+ y − 1)(x− y − 1) = 0}

has exactly one singular point. [Hint: Use the product rule.] Give a geometric

interpretation of this singular point.

Solution. We have ∂f
∂x = (x − y − 1) + (x + y − 1) = 2x − 2 and ∂f

∂y =

(x− y − 1)− (x+ y − 1) = −2y. This system has solution x = 1 and y = 0. Since

(1, 0) ∈ C, this is a singular point on the curve. This point is where the two lines

cross.

Exercise 1.9.4. Show that every point on the double line

C = {(x, y) ∈ ℂ2 : (2x+ 3y − 4)2 = 0}

is singular. [Hint: Use the chain rule.]

Solution. Let f(x, y) = (2x+ 3y − 4)
2
and (a, b) ∈ C. Then ∂f

∂x = 2(2x +

3y − 4) ⋅ 2 and ∂f
∂y = 2(2x + 3y − 4) ⋅ 3. For every (a, b) ∈ C, f(a, b) = 0, so every

point is singular.

These definitions can also be applied to curves in ℙ2.

Definition 1.9.2. A point p = (a : b : c) on a curve C = {(x : y : z) ∈ ℙ2 :

f(x, y, z) = 0}, where f(x, y, z) is a homogeneous polynomial, is said to be singular

if
∂f

∂x
(a, b, c) = 0,

∂f

∂y
(a, b, c) = 0, and

∂f

∂z
(a, b, c) = 0.

We have similar definitions, as before, for smooth point, smooth curve, and singular

curve.
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Exercise 1.9.5. Show that the curve

C = {(x : y : z) ∈ ℙ2 : x2 + y2 − z2 = 0}

is smooth.

Solution. We have ∂f
∂x = 2x, ∂f

∂y = 2y and ∂f
∂z = −2zy. This occurs when

x = 0, y = 0 and z = 0. However, this point is not in ℙ2. Since there is no point

where C is singular, C is smooth.

Exercise 1.9.6. Show that the pair of crossing lines

C = {(x : y : z) ∈ ℙ2 : (x+ y − z)(x− y − z) = 0}

has exactly one singular point.

Solution. We have ∂f
∂x = (x − y − z) + (x + y − z) = 2x − 2z, ∂f

∂y = (x −
y − z)− (x+ y − z) = −2y and ∂f

∂z = −(x− y − z)− (x+ y − z) = 2z − 2x. This

system has solution y = 0 and x = z. We can scale this so that the singular point

is (1 : 0 : 1).

Exercise 1.9.7. Show that every point on the double line

C = {(x : y : z) ∈ ℙ2 : (2x+ 3y − 4z)2 = 0}

is singular.

Solution. We have ∂f
∂x = 4(2x + 3y − 4z), ∂f

∂y = 6(2x + 3y − 4z) and ∂f
∂z =

−8(2x+3y− 4z). Every point on the curve satisfies the equation 2x+3y− 4z = 0,

so every point is singular.

For homogeneous polynomials, there is a clean relation between f, ∂f∂x ,
∂f
∂y and

∂f
∂z , which is the goal of the next few exercises.

Exercise 1.9.8. For

f(x, y, z) = x2 + 3xy + 5xz + y2 − 7yz + 8z2,

show that

2f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

Solution. Let f(x, y, z) = x2 + 3xy + 5xz + y2 − 7yz + 8z2. Then

∂f

∂x
= 2x+ 3y + 5z

∂f

∂y
= 3x+ 2y − 7z

∂f

∂z
= 5x− 7y + 16z
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This means

x
∂f

∂x
= 2x2 + 3xy + 5xz

y
∂f

∂y
= 3xy + 2y2 − 7yz

z
∂f

∂z
= 5xz − 7yz + 16z2

And we have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= 2x2 + 6xy + 10xz + 2y2 − 14yz + 16z2 = 2f(x, y, z)

Exercise 1.9.9. For

f(x, y, z) = ax2 + bxy + cxz + dy2 + eyz + ℎz2,

show that

2f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

Solution. Let f(x, y, z) = ax2 + bxy + cxz + dy2 + eyz + ℎz2. Then

∂f

∂x
= 2ax+ by + cz

∂f

∂y
= bx+ 2dy + ez

∂f

∂z
= cx+ ey + 2ℎz

This means

x
∂f

∂x
= 2ax2 + bxy + cxz

y
∂f

∂y
= bxy + 2dy2 + eyz

z
∂f

∂z
= cxz + eyz + 2ℎz2

And we have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= 2f(x, y, z)

eulerformula Exercise 1.9.10. Let f(x, y, z) be a homogeneous polynomial of degree n.

Show that

n f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

(This problem is quite similar to the previous two, but to work out the details takes

some work.)
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Solution. From the rules of differentiation, we only need to verify this for

monic monomials. Consider this with a monomial of the form xjykzl, where j +

k + l = n. Computing the partial derivatives yields

∂f

∂x
= jxj−1ykzl

∂f

∂y
= kxjyk−1zl

∂f

∂z
= lxjykzl−1

This means

x
∂f

∂x
= jxjykzl

y
∂f

∂y
= kxjykzl

z
∂f

∂z
= lxjykzl

Therefore, x∂f∂x + y ∂f∂y + z ∂f∂z = (j + k + l)xjykzl = nf(x, y, z)

Exercise 1.9.11. Use Exercise
eulerformula
1.9.10 to show that if p = (a : b : c) satisfies

∂f

∂x
(a, b, c) =

∂f

∂y
(a, b, c) =

∂f

∂z
(a, b, c) = 0,

then p ∈ V (f).

Solution. We have f(x, y, z) = 1
n

(
x∂f∂x + y ∂f∂y + z ∂f∂z

)
. Thus, f(p) = 0.

The notion of smooth curves and singular curves certainly extends beyond the

study of conics. We will briefly discuss higher degree curves here. Throughout, we

will see that singular corresponds to not having a well-defined tangent.

Exercise 1.9.12. Graph the curve

f(x, y) = x3 + x2 − y2 = 0

in the real plane ℝ2. What is happening at the origin (0, 0)? Find the singular

points.

Solution. Picture! We have ∂f
∂x = 3x2 + 2x and ∂f

∂y = −2y. Any singular

points would have y = 0 and 3x2 + 2x = 0, which occurs when x = 0 or x = −2
3 .

Since
(−2

3 , 0
)
/∈ C, the only singular point is (0, 0).

Exercise 1.9.13. Graph the curve

f(x, y) = x3 − y2 = 0

in the real plane ℝ2. What is happening at the origin (0, 0)? Find the singular

points.
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Solution. Picture!We have ∂f
∂x = 3x2 and ∂f

∂y = −2y. Any singular points

would have y = 0 and x = 0. Therefore, the only singular point is (0, 0).

For any two polynomials, f1(x, y) and f2(x, y), let f(x, y) = f1(x, y)f2(x, y) be

the product. We have

V (f) = V (f1) ∪ V (f2).

The picture of these curves is:

1-10:intersection2curves
x

y
{f1 = 0}

{f2 = 0}

Figure 8. curves f1 and f2

From the picture, it seems that the curve V (f) should have singular points at

the points of intersection of V (f1) and V (f2).

crosssing Exercise 1.9.14. Suppose that

f1(a, b) = 0, and f2(a, b) = 0

for a point (a, b) ∈ ℂ2. Show that (a, b) is a singular point on V (f), where f = f1f2.

Solution. Let f(x, y) = f1f2 and let (a, b) ∈ ℂ2 with f1(a, b) = 0 = f2(a, b).

Now ∂f
∂x = ∂f1

∂x f2+f1
∂f2
∂x . We have ∂f

∂x (a, b) =
∂f1
∂x ∣(a,b)f2(a, b)+f1(a, b)

∂f2
∂x ∣(a,b) = 0.

Similarly, ∂f∂y = 0. Therefore, every point on the intersection of the two curves is a

singular point.

While it is safe to say for higher degree curves and especially for higher di-

mensional algebraic geometric objects that “singularness” is far from understood,

that is not the case for conics. A complete description is contained in the following

theorem.

singularclassification Theorem 1.9.15. All ellipses, hyperbolas and parabolas are smooth curves.

All conics that are crossing lines have exactly one singular point, namely the point

of intersection of the two lines. Every point on a double line is singular.
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We have seen specific examples for each of these. The proof of the theorem

relies on the fact that under projective transformations there are three distinct

classes of conics. We motivated the idea of “projective changes of coordinates” as

just the relabeling of coordinate systems. Surely how we label points on the plane

should not effect the lack of a well-defined tangent line. Hence a projective change

of coordinates should not affect whether or not a point is smooth or singular. The

next series of exercises proves this.

Consider a projective change of coordinates from xyz-space to uvw-space given

by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

where aij ∈ ℂ and

det

⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ ∕= 0.

In ℙ2, with homogeneous coordinates (u : v : w), consider a curve C = {(u : v :

w) : f(u, v, w) = 0}, where f is a homogeneous polynomial. The (inverse) change

of coordinates above gives a map from polynomials in (u : v : w) to polynomials in

(x : y : z):

f(u, v, w) → f(a11x+ a12y + a13z, a21x+ a22y + a23z, a31x+ a32y + a33z) = f̃ .

The curve C corresponds to the curve C̃ = {(x : y : z) : f̃(x, y, z) = 0}.

Exercise 1.9.16. Consider the curve

C = {(u : v : w) ∈ ℙ2 : u2 − v2 − w2 = 0}.

Suppose we have the projective change of coordinates given by

u = x+ y

v = x− y

w = z.

Show that C corresponds to the curve

C̃ = {(x : y : z) ∈ ℙ2 : 4xy − z2 = 0}.

In other words, if f(u, v, w) = u2 − v2 − w2, then f̃(x, y, z) = 4xy − z2.
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Solution. We have

u2 − v2 − w2 = (x+ y)2 + (x− y)2 − z2

= x2 + 2xy + y2 − (x2 − 2xy + y2)− z2

= 4xy − z2

Therefore f(u, v, w) = f̃(x, y, z).

Exercise 1.9.17. Suppose we have the projective change of coordinates given

by

u = x+ y

v = x− y

w = x+ y + z.

If f(u, v, w) = u2 + uw + v2 + vw, find f̃(x, y, z).

Solution.

u2 + uw + v2 + vw = (x+ y)2 + (x+ y)(x+ y + z) + (x− y)2 + (x− y)(x+ y + z)

= x2 + 2xy + y2 + 2x(x+ y + z) + x2 − 2xy + y2

= 2x2 + 2y2 + 2x2 + 2xy + 2xz

= 4x2 + 2xy + 2y2 + 2xz

Exercise 1.9.18. Given a general projective change of coordinates given by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

and a polynomial f(u, v, w), describe how to find the corresponding f̃(x, y, z).

Solution. Make the substitution and simplify algebraically.

We now want to show, under a projective change of coordinates, that singular

points go to singular points and smooth points go to smooth points.

Exercise 1.9.19. Let

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

be a projective change of coordinates. Show that (u0 : v0 : w0) is a singular point

of the curve C = {(u : v : w) : f(u, v, w) = 0} if and only if the corresponding



64 Algebraic Geometry: A Problem Solving Approach

point (x0 : y0 : z0) is a singular point of the corresponding curve C̃ = {(x : y : z) :

f̃(x, y, z) = 0}. (This is an exercise in the multi-variable chain rule; most people

are not comfortable with this chain rule without a lot of practice. Hence the value

of this exercise.)

Solution. Since the inverse of a projective change of coordinates is also a pro-

jective change of coordinates, we can prove this for one direction and the converse

will follow. Let (u0 : v0 : w0) ∈ C be a singular point, so ∂f
∂u = 0, ∂f

∂v = 0 and
∂f
∂w = 0. Consider f̃(x, y, z). Now

∂f̃

∂x
=

∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
+
∂f

∂w

∂w

∂x

= a11
∂f

∂u
+ a21

∂f

∂v
+ a31

∂f

∂w
= 0

Similarly, we can compute ∂f̃
∂y = 0 and ∂f̃

∂z = 0. Therefore a singular point is

mapped to a singular point under a projective change of coordinates.

Exercise 1.9.20. Use the previous exercise to prove Theorem
realequiv
1.2.26.

Solution. If we have an ellipse, hyperbola or parabola, then we have seen

that they are projectively equivalent and there is no singular point on the curve.

In the case of two lines crossing, by Exercise
crosssing
1.9.14, there is one singular point,

which is where the lines cross. In the case of a double line, every point on the line

is singular.

1.10. Conics via linear algebra
conicsvialinear

The goal of this section is to show how to interpret conics via linear algebra. In fact,

we will see how, under projective changes of coordinates, all ellipses, hyperbolas

and parabolas are equivalent; all crossing line conics are equivalent; and all double

lines are equivalent follows easily from linear algebra facts about symmetric 3 × 3

matrices.

1.10.1. Conics via 3 × 3 symmetric matrices. We start by showing how

to represent conics with symmetric 3 × 3 matrices. Consider the second degree
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matrix!symmetrichomogeneous polynomial

f(x, y, z) = x2 + 6xy + 5y2 + 4xz + 8yz + 9z2

= x2 + (3xy + 3yx) + 5y2 + (2xz + 2zx) + (4yz + 4zy) + 9z2

=
(
x y z

)
⎛
⎜⎝
1 3 2

3 5 4

2 4 9

⎞
⎟⎠

⎛
⎜⎝
x

y

z

⎞
⎟⎠ .

By using seemingly silly tricks such as 6xy = 3xy + 3yx, we have written our

initial second degree polynomial in terms of the symmetric 3× 3 matrix

⎛
⎜⎝
1 3 2

3 5 4

2 4 9

⎞
⎟⎠ .

There is nothing special about this particular second degree polynomial. We

can write all homogeneous second degree polynomials f(x, y, z) in terms of sym-

metric 3× 3 matrices. (Recall that a matrix A = (aij) is symmetric if aij = aji for

all i and j. Since the transpose of A simply switches the row and column entries

AT = (aji), another way to say A is symmetric is A = AT .)

c1 Exercise 1.10.1. Write the following conics in the form

(
x y z

)
A

⎛
⎜⎝

x

y

z

⎞
⎟⎠ = 0.

That is, find a matrix A for each quadratic equation.

(1) x2 + y2 + z2 = 0

(2) x2 + y2 − z2 = 0

(3) x2 − y2 = 0

(4) x2 + 2xy + y2 + 3xz + z2 = 0

Solution. (1)

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠

(2)

⎛
⎜⎝
1 0 0

0 1 0

0 0 −1

⎞
⎟⎠

(3)

⎛
⎜⎝
1 0 0

0 −1 0

0 0 0

⎞
⎟⎠
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quadratic form

(4)

⎛
⎜⎝
1 1 3

2

1 1 0
3
2 0 1

⎞
⎟⎠

Symmetric matrices can be be used to define second degree homogeneous poly-

nomials with any number of variables.

Definition 1.10.1. A quadratic form is a homogeneous polynomial of degree

two in any given number of variables. Given a symmetric n × n matrix A and

X =

⎛
⎜⎜⎝

x1
...

xn

⎞
⎟⎟⎠ ∈ ℂn, then f(X) = XTAX is a quadratic form.

Thus conics are quadratic forms in three variables.

Exercise 1.10.2. Show that any conic

f(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + ℎz2

can be written as

(
x y z

)
A

⎛
⎜⎝
x

y

z

⎞
⎟⎠ ,

where A is a symmetric 3× 3 matrix.

Solution. Let A =

⎛
⎜⎝
a b

2
d
2

b
2 c e

2
d
2

e
2 ℎ

⎞
⎟⎠

1.10.2. Change of variables via matrices. We want to see that a projective

change of coordinates has a quite natural linear algebra interpretation.

Suppose we have a projective change of coordinates

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z.

The matrix

M =

⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠

that encodes the projective change of coordinates will be key.

Suppose f(u, v, w) is a second degree homogeneous polynomial and let f̃(x, y, z)

be the corresponding second degree homogeneous polynomial in the xyz-coordinate
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system. In the previous section, we know that there are two 3×3 symmetric matrices

A and B such that

f(u, v, w) =
(
u v w

)
A

⎛
⎜⎝
u

v

w

⎞
⎟⎠ , f̃(x, y, z) =

(
x y z

)
B

⎛
⎜⎝
x

y

z

⎞
⎟⎠ .

We want to find a relation between the three matrices M , A and B.

Exercise 1.10.3. Let C be a 3× 3 matrix and let X be a 3× 1 matrix. Show

that (CX)T = XTCT .

Solution. Let C =

⎛
⎜⎝
c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞
⎟⎠ andX =

⎛
⎜⎝
x

y

z

⎞
⎟⎠. Then CX =

⎛
⎜⎝
c11x c12y c13z

c21x c22y c23z

c31x c32y c33z

⎞
⎟⎠

and so (CX)T =

⎛
⎜⎝
c11x c21x c31x

c12y c22y c32y

c13z c23z c33z

⎞
⎟⎠. On the other hand, XT =

(
x y z

)
and

CT =

⎛
⎜⎝
c11 c21 c31

c12 c22 c32

c13 c23 c33

⎞
⎟⎠ and XTCT = (CX)T .

projmat Exercise 1.10.4. Let M be a projective change of coordinates

⎛
⎜⎝
u

v

w

⎞
⎟⎠ =M

⎛
⎜⎝
x

y

z

⎞
⎟⎠ ,

and suppose

f(u, v, w) =
(
u v w

)
A

⎛
⎜⎝
u

v

w

⎞
⎟⎠ , f̃(x, y, z) =

(
x y z

)
B

⎛
⎜⎝
x

y

z

⎞
⎟⎠ .

Show that

B =MTAM.

Solution. Since

⎛
⎜⎝
u

v

w

⎞
⎟⎠ =M

⎛
⎜⎝
x

y

z

⎞
⎟⎠ , taking the transpose yields

(
u v w

)
=

(
x y z

)
MT . Substituting these into the definition of f yields f(x, y, z) =

(
x y z

)
MTAM

⎛
⎜⎝
x

y

z

⎞
⎟⎠ . Therefore, B =MTAM .
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matrix!equivalence As a pedagogical aside, if we were following the format of earlier problems,

before stating the above theorem, we would have given some concrete exercises

illustrating the general principle. We have chosen not to do that here. In part, it

is to allow the reader to come up with their own concrete examples, if needed. The

other part is that this entire section’s goal is not only to link linear algebra with

conics but also to (not so secretly) force the reader to review some linear algebra.

Recall the following definitions from linear algebra.

Definition 1.10.2. We say that two n × n matrices A and B are equivalent,

A ∼ B, if there is an invertible n× n matrix C such that

A = C−1BC.

Definition 1.10.3. An n× n matrix C is orthogonal if C−1 = CT .

Definition 1.10.4. A matrix A has an eigenvalue � if Av = �v for some non-

zero vector v. The vector v is called an eigenvector with associated eigenvalue

�.

Exercise 1.10.5. Given a 3 × 3 matrix A, show that A has exactly three

eigenvalues, counting multiplicity. [For this problem, it is fine to find the proof in

a Linear Algebra text. After looking it up, close the book and try to reproduce the

proof on your own. Repeat as necessary until you get it. This is of course another

attempt by the authors to coax the reader into reviewing linear algebra.]

Solution. We can rewrite the definition of eigenvector as �v−Av = 0 for some

non-zero vector v. This is equivalent to v in the null space of A, which means that

the matrix �I3−A is not invertible. If we examine the characteristic polynomial of

A, we have det(xI3−A)v = 0, we have a polynomial of degree 3. The Fundamental

Theorem of Algebra implies that there are 3 solutions �1, �2, �3 to the characteristic

equation, which correspond to 3 eigenvalues, counting multiplicity.

matsym Exercise 1.10.6. (1) Let A and B be two symmetric matrices, neither

of which has as zero eigenvalue. Show there is an invertible 3× 3 matrix

C such that

A = CTBC.

(2) Let A and B be two symmetric matrices, each of which has exactly one

zero eigenvalue (with the other two eigenvalues being non-zero). Show

that there is an invertible 3× 3 matrix C such that

A = CTBC.
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(3) Now let A and B be two symmetric matrices, each of which has a zero

eigenvalue with multiplicity two (and hence the remaining eigenvalue must

be non-zero). Show that there is an invertible 3× 3 matrix C such that

A = CTBC.

(Again, it is fine to look up this deep result in a linear algebra text. Just make

sure that you can eventually reproduce it on your own.)

Solution. A symmetric n × n matrix A can be rewritten as A = QTDQ,

where Q is an orthogonal matrix and D is a diagonal matrix whose diagonal entries

are the eigenvalues of A. We can rewrite the equation as

QTDAQ = CTRTDBRC

where DA and DB are the diagonal matrix whose entries are the eigenvalues of A

and B, respectively.

Since QT = Q−1, we have

DA = QTCTRTDBRCQ = (RCQ)TDB(RCQ)

This means that we can restrict ourselves to converting a diagonal matrix to another

diagonal matrix. The matrix can be given by the projective change of coordinates

given in Exercise
projmat
1.10.4.

eigenconic Exercise 1.10.7. (1) Show that the 3×3 matrix associated to the ellipse

V (x2 + y2 − z2) has three non-zero eigenvalues.

(2) Show that the 3×3 matrix associated to the two lines V (xy) has one zero

eigenvalue and two non-zero eigenvalues.

(3) Finally show that the 3×3 matrix associated to the double line V ((x−y)2)
has a zero eigenvalue of multiplicity two and a non-zero eigenvalue.

Solution. (1) The matrix A1 =

⎛
⎜⎝
1 0 0

0 1 0

0 0 −1

⎞
⎟⎠ has characteristic poly-

nomial (x− 1)2(x+1), which leads to the eigenvalues 1 (with multiplicity

2) and −1 (with multiplicity 1).

(2) The matrix A2 =

⎛
⎜⎝
0 1

2 0
1
2 0 0

0 0 0

⎞
⎟⎠ has characteristic polynomial x3 + 1

4x,

which leads to the eigenvalues 0, 1
2 i and

−1
2 i.
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(3) Expanding give us x2−2xy+y2, whose matrix is given by

⎛
⎜⎝

1 −1 0

−1 1 0

0 0 0

⎞
⎟⎠.

The characteristic polynomial is x3 − 2x2, which has roots x = 0 of mul-

tiplicity 2 and x = 2 with multiplicity 1.

Exercise 1.10.8. Based on the material of this section, give another proof that

under projective changes of coordinates all ellipses, hyperbolas and parabolas are

the same, all “two line” conics are the same, and all double lines are the same.

Solution. We can combine the arguments in Exercise
matsym
1.10.6 and Exercise

eigenconic
1.10.7.

1.10.3. Conics in ℝ2. We have shown that all smooth conics can be viewed

as the same in the complex projective plane ℙ2. But certainly ellipses, hyperbolas

and parabolas are quite different in the real plane ℝ2, as we saw earlier. But there

is a more linear-algebraic approach that captures these differences.

Let f(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + ℎz2 = 0, with a, b, c, d, e, ℎ ∈ ℝ.
Dehomogenize by setting z = 1, so that we are looking at the polynomial

f(x, y) = ax2 + bxy + cy2 + dx+ ey + ℎ,

which can be written as

f(x, y) =
(
x y 1

)
⎛
⎜⎝
a b

2
d
2

b
2 c e

2
d
2

e
2 ℎ

⎞
⎟⎠

⎛
⎜⎝
x

y

1

⎞
⎟⎠ .

In ℙ2, the coordinates x, y and z all play the same role. That is no longer the

case, after setting z = 1. The second order term of f ,

ax2 + bxy + cy2

determines whether we have an ellipse, hyperbola, or parabola.

Exercise 1.10.9. Explain why we only need to consider the second order terms.

[Hint: We have already answered this question earlier in this chapter.]

Solution. We can eliminate the linear terms by completing the square in x

and y.

This suggests that the matrix
(
a b

2
b
2 c

)

might be worth investigating.
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discriminant

1-11:typesofconics

x

y

x

y

x

y

Figure 9. three types of conics

Definition 1.10.5. The discriminant of a conic over ℝ2 is

Δ = −4 det

(
a b

2
b
2 c

)

Exercise 1.10.10. Find the discriminant of each of the following conics:

(1) 9x2 + 4y2 = 1

(2) 9x2 − 4y2 = 1

(3) 9x2 − y = 0.

Solution. (1) Δ = −4 det

(
9 0

0 4

)
= −144

(2) Δ = −4 det

(
9 0

0 −4

)
= 144

(3) Δ = −4 det

(
9 0

0 0

)
= 0

Exercise 1.10.11. Based on the previous exercise, describe the conic obtained

if Δ = 0, Δ < 0, or Δ > 0. State what the general result ought to be. To rigorously

prove it should take some time. In fact, if you have not seen this before, this type

of problem will have to be spread out over a few days. (We do not mean for you

spend all of your time on this problem; no, we mean for you to work on it for a

thirty minutes to an hour, put it aside and then come back to it.)

Exercise 1.10.12. Consider the equation ax2 + bxy + cy2 = 0, where all co-

efficients are real numbers. Dehomogenize the equation by setting y = 1. Solve

the resulting quadratic equation for x. You should see a factor involving Δ in your

solution. How does Δ relate to the discriminant used in the quadratic formula?

Solution. The dehomogenized equation is ax2 + bx + c. This can be solved

using the quadratic formula: x = −b±
√
b2−4ac
2a . In this situation, x = −b

2a ±
√
Δ

2a .
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Exercise 1.10.13. The discriminant in the quadratic formula tells us how

many (real) solutions a given quadratic equation in a single variable has. Classify a

conic V (f(x, y)) based on the number of solutions to the dehomogenized quadratic

equation.

Solution. V (f(x, y)) is an ellipse if the dehomogenized equation has no real

roots, it is a parabola if the dehomogenized equation has one (repeated) root, and

it is a hyperbola if the dehomogenized equation has 2 distinct real roots.

1.11. Duality

1.11.1. Duality in ℙ2 between points and lines. The goal of this sub-

section is show that there is a duality between points and lines in the projective

plane.

Given a triple of points a, b, c ∈ ℂ, not all zero, we have a line

ℒ = {(x : y : z) ∈ ℙ2 : ax+ by + cz = 0}.

Exercise 1.11.1. Show that the line associated to a1 = 1, b1 = 2, c1 = 3 is the

same line as that associated to a2 = −2, b2 = −4, c2 = −6.

Solution. Let ℒ1 = {(x : y : z) ∈ ℙ2 : x + 2y + 3z = 0} and ℒ2 = {(x : y :

z) ∈ ℙ2 : −2x − 4y − 6z = 0}. If p = (x : y : z) ∈ ℒ1, then x + 2y + 3z = 0.

Multiplying this equation by −2 yields −2x− 4y − 6z = 0, so p ∈ ℒ2. Conversely,

if p ∈ ℒ2, then −2x− 4y − 6z = 0. Multiplying by 1
2 produces x+ 2y + 3z = 0 so

p ∈ ℒ1. Therefore ℒ1 = ℒ2.

Exercise 1.11.2. Show that the line associated to a1, b1, c1 is the same line

as the line associated to a2, b2, c2 if and only if there is a non-zero constant � ∈ ℂ
such that a1 = �a2, b1 = �b2, c1 = �c2.

Solution. Suppose a1 = �a2, b1 = �b2 and c1 = �c2 for some � ∕= 0 and let

ℒ = {(x : y : z) ∈ ℙ2 : a2x + b2y + c2z = 0}. Then ℒ = {(x : y : z) ∈ ℙ2 : �(a2x +

b2y+ c2z = 0)}, which is equivalent to ℒ = {(x : y : z) ∈ ℙ2 : a1x+ b1y+ c1z = 0}.
Conversely, consider the line given by ℒ = {(x : y : z) ∈ ℙ2 : a2x+ b2y + c2z =

0}. Then, for any � ∕= 0, the line may also be defined as ℒ = {(x : y : z) ∈ ℙ2 :

�a2x+ �b2y + �c2z = 0}.

Hence any representative in the equivalence class for (a : b : c) ∈ ℙ2 defines the

same line.

Exercise 1.11.3. Show that the set of all lines in ℙ2 can be identified with ℙ2

itself.
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Solution. Let ℒ = {(x : y : z) ∈ ℙ2 : ax + by + cz = 0}. Since not all three

coefficients are equal to 0, we may identify the line ℒ with the point (a : b : c) ∈ ℙ2.
The previous exercise shows that the line is determined up to a non-zero multiple

of the coefficients, this will also uniquely determine the point in projective space.

Even though the set of lines in ℙ2 can be thought of as another ℙ2, we want

notation to be able to distinguish ℙ2 as a set of points and ℙ2 as the set of lines.

Let ℙ2 be our set of points and let ℙ̃2 denote the set of lines in ℙ2. To help our

notation, given (a : b : c) ∈ ℙ2, let

ℒ(a:b:c) = {(x : y : z) ∈ ℙ2 : ax+ by + cz = 0}.

Then we define the map D : ℙ̃2 → ℙ2 by

D(ℒ(a:b:c)) = (a : b : c).

The D stands for duality.

Let us look for a minute at the equation of a line:

ax+ by + cz = 0.

Though it is traditional to think of a, b, c as constants and x, y, z as variables, this

is only a convention. Think briefly of x, y, z as fixed, and consider the set

ℳ(x:y:z) = {(a : b : c) ∈ ℙ̃2 : ax+ by + cz = 0.}

Exercise 1.11.4. Explain in your own words why, given a (x0 : y0 : z0) ∈ ℙ2,
we can interpret ℳ(x0:y0:z0) as the set of all lines containing the point (x0 : y0 : z0).

Solution. Let (x0 : y0 : z0) ∈ ℙ2 and ℳ(x0:y0:z0) = {(a : b : c) ∈ ℙ̃2 :

ax0+by0+cz0 = 0.} Then, for all (a : b : c) ∈ ℳ(x0:y0:z0), we have ax0+by0+cz0 = 0.

This is equivalent to the set of all (a : b : c) ∈ ℙ̃2 with ax0 + by0 + cz0 = 0, so

(x0 : y0 : x0) ∈ ℒ(a:b:c). This corresponds to the set of all lines ℒ through the point

(x0 : y0 : z0).

We are beginning to see a duality between lines and points.

Let

Σ = {((a : b : c), (x0 : y0 : z0)) ∈ ℙ̃2 × ℙ2 : ax0 + by0 + cz0 = 0}.

There are two natural projection maps:

�1 : Σ → ℙ̃2

given by

�1(((a : b : c), (x0 : y0 : z0))) = (a : b : c)

and

�2 : Σ → ℙ2
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given by

�2(((a : b : c), (x0 : y0 : z0))) = (x0 : y0 : z0).

Exercise 1.11.5. Show that both maps �1 and �2 are onto.

Solution. Let (a : b : c) ∈ ℙ̃2. If at least one of a, b or c is equal to 0, say

a = 0, then x0 = 1, y0 = 0 = z0 is a point in ℙ2 and (a : b : c)(1 : 0 : 0) ∈ Σ.

If none of a, b or c is equal to 0, then set x0 = −b, y0 = a and z0 = 0. Then

(a : b : c)(−b : a : 0) ∈ Σ.

The solution for �2 follows mutatis mutandis.

Exercise 1.11.6. Given a point (a : b : c) ∈ ℙ̃2, consider the set

�−1
1 (a : b : c) = {((a : b : c), (x0 : y0 : z0)) ∈ Σ}.

Show that the set �2(�
−1
1 (a : b : c)) is identical to a set in ℙ2 that we defined near

the beginning of this section.

Solution. Let (a : b : c) ∈ ℙ̃2 and consider �−1
1 (a : b : c) = {(x0 : y0 : z0) ∈

ℙ2 : ax0 + by0 + cz0 = 0}. In other words, this �−1
1 is the set of points on the line

defined by (a : b : c) and �2(�
−1
1 (a : b : c)) = ℒ(a:b:c).

In evidence for a type of duality, show:

Exercise 1.11.7. Given a point (x0 : y0 : z0) ∈ ℙ2, consider the set

�−1
2 (x0 : y0 : z0) = {((a : b : c), (x0 : y0 : z0)) ∈ Σ}.

Show that the set �1(�
−1
2 (x0 : y0 : z0)) is identical to a set in ℙ̃2 that we defined

near the beginning of this section.

Solution. We have �1(�
−1
2 (x0 : y0 : z0)) = ℳ(x0:y0:z0).

Exercise 1.11.8. Let (1 : 2 : 3), (2 : 5 : 1) ∈ ℙ̃2. Find

�2(�
−1
1 (1 : 2 : 3)) ∩ �2(�−1

1 (2 : 5 : 1)).

Explain why this is just a fancy way for finding the point of intersection of the two

lines

x+ 2y + 3z = 0

2x+ 5y + z = 0.

Solution. We have �2(�
−1
1 (1 : 2 : 3)) = ℒ(1:2:3) and �2(�

−1
1 (2 : 5 : 1)) =

ℒ(2:5:1). This system of equations can be solved by multiplying the first equation

by −2, yielding −2x− 4y− 6z = 0. If we add this equation to the second equation,

we are left with y − 5z = 0. We now set z = 1 and y = 5 into one of the original

equations and obtain �2(�
−1
1 (1 : 2 : 3)) ∩ �2(�−1

1 (2 : 5 : 1)) = (−13 : 5 : 1).
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As another piece of evidence for duality, show:

Exercise 1.11.9. Let (1 : 2 : 3), (2 : 5 : 1) ∈ ℙ2. Find

�1(�
−1
2 (1 : 2 : 3)) ∩ �1(�−1

2 (2 : 5 : 1)).

Explain that this is just a fancy way for finding the unique line containing the two

points (1 : 2 : 3), (2 : 5 : 1).

Solution. The computations give us �1(�
−1
2 (1 : 2 : 3)) ∩ �1(�−1

2 (2 : 5 : 1)) =

(13 : −5 : −1).

Principle 1.11.1. The duality principle for points and lines in the complex

projective plane is that for any theorem for points and lines there is a corresponding

different theorem obtained by interchanging words the “points” and “lines”.

Exercise 1.11.10. Use the duality principle to find the corresponding theorem

to:

Theorem 1.11.11. Any two distinct points in ℙ2 are contained on a unique

line.

Solution. Any two distinct lines in ℙ2 contain a unique point.

This duality extends to higher dimensional projective spaces.

The following is a fairly open ended exercise:

Exercise 1.11.12. For points (x0, y0, z0, w0), (x1, y1, z1, w1) ∈ ℂ4−{(0, 0, 0, 0)},
define

(x0, y0, z0, w0) ∼ (x1, y1, z1, w1)

if there exists a non-zero � such that

x0 = �x1, y0 = �y1, z0 = �z1, w0 = �w1.

Define

ℙ3 = ℂ4 − {(0, 0, 0, 0)}/ ∼ .

Show that the set of all planes in ℙ3 can be identified with another copy of ℙ3. Ex-

plain how the duality principle can be used to link the fact that three non-collinear

points define a unique plane to the fact three planes with linearly independent

normal vectors intersect in a unique point.

Solution. The mechanics of the solution are straightforward - just keep track

of one more variable. The mathematics can be extended to higher dimensions, but

the visualization can be challenging.
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1.11.2. Dual Curves to Conics. The goal of this subsection is to show

how to map any smooth curve in ℙ2 to another curve via duality.

Let f(x, y, z) be a homogeneous polynomial and let

C = {(x : y : z) ∈ ℙ2 : f(x, y, z) = 0},

We know that the normal vector at a point p = (x0 : y0 : z0) ∈ C is

∇(f)(p) =

(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
.

Further the tangent line at p = (x0 : y0 : z0) ∈ C is defined as

Tp(C) = {(x : y : z) ∈ ℙ2 : x
∂f

∂x
(p) + y

∂f

∂y
(p) + z

∂f

∂z
(p) = 0}.

Recall from Section 1.9, that if f has degree n, then

nf(x, y, z) = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

Exercise 1.11.13. Show that for any p = (x0 : y0 : z0) ∈ C, we have

Tp(C) = {(x : y : z) ∈ ℙ2 : (x− x0)
∂f

∂x
(p) + (y − y0)

∂f

∂y
(p) + (z − z0)

∂f

∂z
(p) = 0}.

Solution. Since nf(x, y, z) = x∂f∂x + y ∂f∂y + z ∂f∂z ., we have

Tp(C) = {(x : y : z) ∈ ℙ2 : (x− x0)
∂f

∂x
(p) + (y − y0)

∂f

∂y
(p) + (z − z0)

∂f

∂z
(p) = 0}

= {(x : y : z) ∈ ℙ2 : 2f(x, y, z)− 2f(x0, y0, z0) = 0}
= {(x : y : z) ∈ ℙ2 : 2f(x, y, z) = 0}

Recall that p ∈ C is smooth if the gradient

∇f(p) ∕= (0, 0, 0).

Definition 1.11.1. For a smooth curve C, the dual curve C̃ is the composition

of the map, for p ∈ C,

p→ Tp(C)

with the dual map from last section

D : ℙ̃2 → ℙ2.

We denote this map also by D. Then

D(p) =

(
∂f

∂x
(p) :

∂f

∂y
(p) :

∂f

∂z
(p)

)
.

To make sense out of this, we of course need some examples.
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Exercise 1.11.14. For f(x, y, z) = x2 + y2 − z2, let C = V (f(x, y, z)). Show

for any (x0 : y0 : z0) ∈ C that

D(x0 : y0 : z0) = (2x0 : 2y0 : −2z0).

Show that in this case the dual curve C̃ is the same as the original C.

Solution. We shall compute this exercise using the composition to verify that

the normal vector technique is plausible. So, let f(x, y, z) = x2 + y2 − 0z2 and let

p = (x0 : y0 : z0) ∈ V (f). We have the map p→ Tp(C) given by x(2x0) + y(2y0) +

x(−2z0) = 0, which is the line ℒ(2x0:2y0:2z0). Then D(p) = (2x0 : 2y0 : 2z0).

Now, let’s compute the dual curve. We first notice that C is symmetric in

each of the coordinates; if (x0 : y0 : z0) ∈ C, then so is (±x0 : ±y0 : ±z0). If we

substitute the dual point into the original curve, then (2x0)
2 + (2y0)

2 − (2z0)
2 =

4(x20 + y20 − z20 = 0 is a point on the curve. In this case, the dual curve C̃ is the

same as the original C.

Exercise 1.11.15. Consider f(x, y, z) = x2 − yz = 0. Then for any (x : y :

z) ∈ C , where C = V (f), show that

D(x, y, z) =
(∂f
∂x

:
∂f

∂y
:
∂f

∂z

)

= (2x : −z : −y)

Show that the image is indeed in ℙ̃2 by showing that (2x : −z : −y) ∕= (0 : 0 : 0).

Let (u : v : w) = (2x : −z : −y). Using x2 − yz = 0 on C as a motivator, show that

u2 − 4vw = 4x2 − 4yz = 4(x2 − yz) = 0. Relabeling (u : v : w) as (x : y : z), show

that the curve C̃ is given by x2 − 4yz = 0. Note that here C̃ ∕= C.

Solution. We have D(x0 : y0 : z0) = (2x0 : −z0 : −y0). Since x0, y0 and

z0 cannot all be equal to 0, this shows that (2x0 : −z0 : −y0) ∈ ℙ2. Let’s try to

substitute this point into the original equation. This yields (2x0)
2 − (y0)(z0), or

4x20 − (y0)(z0). Since the point (x0 : y0 : z0) ∈ C, we have x20 − (y0)(z0) = 0. Thus

the curve can be simplified as 3x20. However, if x0 ∕= 0, such as the point (1 : 1 : 1),

then this point does not satisfy the original equation. However, this can be resolved

by taking (2x0)
2 − 4(y0)(z0) = 4(x20 − (y0)(z0) = 0. Therefore, C̃ = V (x2 − 4yz).

Exercise 1.11.16. For C = V (x2 + 4y2 − 9z2), show that the dual curve is

C̃ = {(x : y : z) ∈ ℙ2 : x2 +
1

4
y2 − 1

9
z2 = 0}.

Solution. We haveD = (2x : 8y : −18z). Suppose the dual curve has the form

x2+�y2+�z2 for some � and �. For (x0 : y0 : z0) ∈ C, we have (2x0)
2+�(8y0)

2+

�(−18z0)
2. This can be simplified as 4x20+64�y20+324�z20 = 4(x20+16�y20+81�z20 .

To use the relationship we have with the original curve, we need 16� = 4 and

−9 = 81�. So � = 1
4 and � = −1

9 . Therefore, C̃ = V (x2 + 1
4y

2 − 1
9z

2).



78 Algebraic Geometry: A Problem Solving Approach

Exercise 1.11.17. For C = V (5x2 + 2y2 − 8z2), find the dual curve.

Solution. We have D = (10x : 4y : −16z), so (10x)2 + �(8y)2 − �(−16z)2 =

100(x2 + .16�y2 − 2.56�z2). Comparing to the original equation gives us � = 25
2

and � = 25
8 , so C̃ = V (x2 + 25

2 y
2 − 25

8 z
2).

Exercise 1.11.18. For a line ℒ = {(x : y : z) ∈ ℙ2 : ax + by + cz}, find the

dual curve. Explain why calling this set the “dual curve” might seem strange.

Solution. We have D = (a : b : c), which is a single point in ℙ2. However,

the duality principle identifies this point with a line; in this case ℒ.
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CHAPTER 2

Cubic Curves and Elliptic Curves

Complied on February

4, 2010The goal of this chapter is to provide an introduction to cubic curves (smooth cubic

curves are also known as elliptic curves). Cubic curves have a far richer structure

than that of conics. Many of the deepest questions in mathematics still involve

questions about cubics. After a few preliminaries, we will show how each smooth

cubic curve is a group, meaning that its points can be added together. No other

type of curve has this property. We will then see that there are many different

cubics, even up to projective change of coordinates. In fact, we will see that there

are a complex numbers worth of different cubics. That is, we can parametrize cubics

up to isomorphism by the complex numbers. (This is in marked contrast to conics,

since all smooth conics are the same up to projective change of coordinates.). Next,

we will see that, as surfaces, all smooth cubics are toruses. Finally, we see how all

cubics can be viewed as the quotient ℂ/Λ, where Λ is a lattice in ℂ.

2.1. Cubics in ℂ2

A cubic curve V(P ) is simply the zero set of a degree three polynomial P . If

P is in two variables, then V(P ) will be a cubic in ℂ2 while if P is homogeneous in

three variables, then V(P ) is a cubic in the projective plane ℙ2.

cubics Exercise 2.1.1. Sketch the following cubics in the real plane ℝ2.

(1) y2 = x3

(2) y2 = x(x− 1)2

(3) y2 = x(x− 1)(x− 2)

(4) y2 = x(x2 + x+ 1)

Of course, we are only sketching these curves in the real plane to get a feel for

cubics.

Solution.

(1) y2 = x3

79



80 Algebraic Geometry: A Problem Solving Approach

1

2

3

−1

−2

−3

1 2 3−1

(2) y2 = x(x− 1)2

1

2

3

−1

−2

−3

1 2 3−1

(3) y2 = x(x− 1)(x− 2)
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1

2

3

−1

−2

−3

1 2 3−1

(4) y2 = x(x2 + x+ 1)

1

2

3

−1

−2

−3

1 2 3−1

Exercise 2.1.2. Consider the cubics in the above exercise.

(1) Give the homogeneous form for each cubic, which extends each of the

above cubics to the complex projective plane ℙ2.

(2) For each of the above cubics, dehomogenize by setting x = 1, and graph

the resulting cubic in ℝ2 with coordinates y and z.

Solution. We will answer both parts of the current exercise together for each

of the cubics in the previous exercise.
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(1) y2 = x3: The homogeneous form of y2 = x3 is y2z = x3, which extends the

cubic to the complex projective plane ℙ2. The dehomogenization obtained

by setting x = 1 is y2z = 1, whose graph is

1

2

3

−1

1 2 3−1−2−3

y

z

(2) y2 = x(x−1)2: The homogeneous form of y2 = x(x−1)2 is y2z = x(x−1)2.

The dehomogenization obtained by setting x = 1 is y2z = 0, whose graph

is

1

2

−1

−2

1 2−1−2

y

z

the pair of coordinate axes, where the z-axis is a double-line.

(3) y2 = x(x − 1)(x − 2): The homogeneous form of y2 = x(x − 1)(x − 2) is

y2z = x(x− 1)(x − 2). The dehomogenization obtained by setting x = 1

is again y2z = 0, whose graph is the pair of coordinate axes again.

(4) y2 = x(x2 + x + 1): The homogeneous form of y2 = x(x2 + x + 1) is

y2z = x(x2 + x+ 1). The dehomogenization obtained by setting x = 1 is

y2z = 3, whose graph is

1

2

3

−1

1 2 3−1−2−3

y

z

a vertically stretched version of the graph in part 1 above.



DRAFT COPY: Complied on February 4, 2010. 83

curve!singularRecall that a point (a : b : c) ∈ V(P ) on a curve is singular if

∂P

∂x
(a, b, c) = 0

∂P

∂y
(a, b, c) = 0

∂P

∂z
(a, b, c) = 0

If a curve has a singular point, then we call the curve singular. If a curve has no

singular points, it is smooth.

Exercise 2.1.3. Show that the following cubics are singular:

(1) V(xyz)

(2) V(x(x2 + y2 − z2))

(3) V(x3)

Solution. According to the definition, it is enough to demonstrate that there

is a point (a : b : c) on each curve such that all the first-order partials vanish at

this point.

(1) Let P (x, y, z) = xyz and consider the point (0 : 0 : 1) ∈ V(P ). Now
∂P

∂x
= yz, so

∂P

∂x
(0, 0, 1) = 0 ⋅ 1 = 0. Similarly,

∂P

∂y
= xz so

∂P

∂y
(0, 0, 1) =

0 ⋅ 1 = 0 as well. Finally,
∂P

∂z
= xy and

∂P

∂z
(0, 0, 1) = 0 ⋅ 0 = 0. Thus

there is a point on V(P ) where all of the first-order partials vanish, so

V(P ) = V(xyz) is singular.

(2) Let P (x, y, z) = x(x2 + y2 − z2) = x3 + xy2 − xz2 and consider the

point (0 : 1 : 1) ∈ V(P ). Then
∂P

∂x
= 3x2 + y2 − z2, so

∂P

∂x
(0, 1, 1) =

3[0]2 + [1]2 − [1]2 = 0. Next,
∂P

∂y
= 2xy so

∂P

∂y
(0, 1, 1) = 2[0][1] = 0.

Finally,
∂P

∂z
= −2xz, so

∂P

∂z
(0, 1, 1) = −2[0][1] = 0. Hence V(P ) =

V(x(x2 + y2 − z2)) is singular.

(3) Let P (x, y, z) = x3 and consider (0 : 1 : 1) ∈ V(P ). Then
∂P

∂x
= 3x2,

which implies that
∂P

∂x
(0, 1, 1) = 3[0]2 = 0, while both

∂P

∂y
= 0 and

∂P

∂z
= 0. Therefore, all three partial derivatives are 0 at (0 : 1 : 1) ∈ V(P ),

so V(P ) = V(x3 is singular.

The only singular conics are unions of two lines or double lines. The above

singular cubics are similar, in that they are all the zero sets of reducible polynomials

P (x, y, z). Unlike for conics, though, there are singular cubics that do not arise from

reducible P .



84 Algebraic Geometry: A Problem Solving Approach

Exercise 2.1.4. Sketch the cubic y2 = x3 in the real plane ℝ2. Show that the

corresponding cubic V(x3− y2z) in ℙ2 has a singular point at (0 : 0 : 1). Show that

this is the only singular point on this cubic.

Solution. We sketched y2 = x3 in the real plane in the first part of the first

exercise of this section.

1

2

3

−1

−2

−3

1 2 3−1

The homogenization of y2 = x3, as found in second exercise, is y2z = x3, so the

cubic curve in ℙ2 is given by V(x3 − y2z). Thus let P (x, y, z) = x3 − y2z. Then
∂P

∂x
= 3x2 implies

∂P

∂x
(0, 0, 1) = 3[0]2 = 0,

∂P

∂y
= −2yz implies

∂P

∂y
(0, 0, 1) =

−2[0][1] = 0, and
∂P

∂z
= −y2 implies

∂P

∂z
(0, 0, 1) = −[0]2 = 0. Hence V(P ) is

singular at (0 : 0 : 1).

It is evident that this is the only singular point on V(P ), for if all of the first-

order partial derivatives, Px, Py, Pz, of P must be 0 at a point (a : b : c), then

Px(a, b, c) = 0 implies 3a2 = 0, so that a = 0, while Pz(a, b, c) = 0 implies −b2 = 0,

so that b = 0. Thus the only point on V(P ) where the curve is singular is (0 : 0 : c)

and c ∕= 0, which does satisfy Py(a, b, c) = 0. That is, (0 : 0 : 1) is the only singular

point on V(P ) = V(x3 − y2z).

Exercise 2.1.5. Show that the polynomial P (x, y, z) = x3−y2z is irreducible,

i.e. cannot be factored into two polynomials. (This is a fairly brute force high-school

algebra problem.)

Solution. If P (x, y, z) = x3 − y2z is reducible, then we may write it as the

product of two polynomials, P (x, y, z) = f(x, y, z) ⋅g(x, y, z), where neither f nor g

is a constant polynomial. We may write f(x, y, z) = fn(y, z)x
n + fn−1(y, z)x

n−1 +

⋅ ⋅ ⋅ + f1(y, z)x + f0(y, z) and g(x, y, z) = gm(y, z)xm + gm−1(y, z)x
m−1 + ⋅ ⋅ ⋅ +
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g1(y, z)x+g0(y, z) for some polynomials fi(y, z), gj(y, z) ∈ ℂ[y, z], where fn(y, z) ∕=
0 and gm(y, z) ∕= 0. Then f(x, y, z) ⋅ g(x, y, z) = [fn(y, z)gm(y, z)]xn+m + ⋅ ⋅ ⋅ +
[f1(y, z)g0(y, z)+ f0(y, z)g1(y, z)]x+ [f0(y, z)g0(y, z)] must be equal to P (x, y, z) =

x3 − y2z, so n+m = 3 and, without loss of generality, 0 ≤ m < n ≤ 3. This leaves

two cases.

First, if m = 0 and n = 3, then equating coefficients of P (x, y, z) with those of

f(x, y, z)g(x, y, z) yields f3(y, z)g0(y, z) = 1, f2(y, z)g0(y, z) = 0, f1(y, z)g0(y, z) =

0 and f0(y, z)g0(y, z) = −y2z. The first of these equations implies that both f3(y, z)

and g0(y, z) are units in ℂ[y, z], so g0(y, z) must be constant. However, g(x, y, z) =

g0(y, z) in this case, so g(x, y, z) is constant. This contradicts our assumption that

f(x, y, z)g(x, y, z) is a non-trivial factorization of P (x, y, z). Hence m ∕= 0.

Second, ifm = 1 and n = 2, then equating coefficients of P (x, y, z) with those of

f(x, y, z)g(x, y, z) yields f2(y, z)g1(y, z) = 1, f2(y, z)g0(y, z) + f1(y, z)g1(y, z) = 0,

f1(y, z)g0(y, z)+ f0(y, z)g1(y, z) = 0 and f0(y, z)g0(y, z) = −y2z. The first of these
equations, f2(y, z)g1(y, z) = 1 implies f2(y, z) and g1(y, z) are constants, so we

may assume without loss of generality that f2(y, z) = g1(y, z) = 1. Then the sec-

ond equation, f2(y, z)g0(y, z) + f1(y, z)g1(y, z) = 0 becomes g0(y, z) + f1(y, z) =

0 or g0(y, z) = −f1(y, z). Using this in the next equation, f1(y, z)g0(y, z) +

f0(y, z)g1(y, z) = 0, yields −f1(y, z)2+f0(y, z) = 0, so f0(y, z) = f1(y, z)
2. Finally,

applying this to the final equation, f0(y, z)g0(y, z) = −y2z becomes f1(y, z)
2(−f1(y, z)) =

−f1(y, z)3 = −y2z. This requires that y2z is a perfect cube in ℂ[y, z], which it is

not, so the case m = 1 also leads to a contradiction. Therefore, the polynomial

P (x, y, z) is irreducible.

2.2. Inflection Points
2.3:Inflection points

The goal of this section is to show that every smooth cubic curve must have exactly

nine points of inflection.

2.2.1. Intuitions about Inflection Point. One of the strengths of algebraic

geometry is the ability to move freely between the symbolic language of algebra and

the visual capabilities of geometry. We would like to use this flexibility to convert

what initially is a geometric problem into an algebraic one. While we can sometimes

imagine what is happening geometrically, this will help us in situations that may

be difficult to visualize.

We have seen that a line will intersect a smooth conic in two points. If the

points are distinct, then the line will cut through the conic. However, there may

be a line which has only one point in common with the conic, namely the tangent

line. In this case, if we consider that the point of tangency is to be counted twice,

then the line will intersect the conic in “two” points.
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flex

inflection point

If we now consider a line intersecting a cubic, we may have more points of

intersection to consider. Intuitively, they can not cross in too many places. In fact,

the Fundamental Theorem of Algebra shows that a line intersects a cubic in at most

three points. As in the case of the conics, points may need to be counted more than

once. Since we may have more possible points of intersection, the number of times

a point in common to the line and cubic can be either one, two or three.

If a line intersects a cubic in a single point (counted thrice), we call such a

point a point of inflection or flex point. An inflection point of a curve V(P ) is a

non-singular point p ∈ V(P ) where the tangent line to the curve at p intersects

V(P ) with multiplicity 3 (or greater).

We define below what it means for the tangent line at a point to intersect the

curve with multiplicity 3 (or greater), but the idea can be illustrated with some

examples.

(1) Consider the cubic curve y = x3, that is, V(P ) where P (x, y) = x3 − y.

Let the point p be the origin, and consider the line y = �x, where � > 0.

This line intersects the curve in three distinct points no matter how small

� is, but as � approaches zero, the three points of intersection coalesce into

just one point. We say that the tangent line y = 0 intersects the cubic

y = x3 at the origin with multiplicity three.
y = x3

b

b

b

b

b

b

b

(2) If we look at the behavior of the quartic (fourth-degree) curve

y = (x− �)(x− �/3)(x+ �/3)(x+ �),

we see that the curve and the line y = 0 intersect at four points whenever

� > 0. But as � approaches zero, the four points of intersection become
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root

multiplicity!root

root!multiplicity

one point, the origin. Here we say that the tangent line y = 0 intersects

this curve at the origin with multiplicity four.

b b b bb b b bb b b b

�=1

�=0.8
�=0.5

y = (x− �)(x− �/3)(x+ �/3)(x+ �)

(3) We will see later that the tangent line ℓ to a curve V(P ) at a point p

always intersects the curve with multiplicity at least 2.

2.2.2. Multiplicity of Roots. For a moment we will look at one-variable

polynomials (which correspond to homogeneous two-variable polynomials).

Definition 2.2.1. Given a polynomial P (x), a root or zero is a point a such

that P (a) = 0.
I divided this

definition into parts,

first defining “roots”,

then exercises to get

the Factor Theorem,

followed by the

definition of

“multiplicity of a

root”? – DM (8/4/09)

Exercise 2.2.1. If (x− a) divides P (x), show that a is a root of P (x).

Solution. Suppose (x− a) divides P (x). Then there is some polynomial g(x)

for which P (x) = (x− a)g(x). Then P (a) = 0 ⋅ g(a) = 0, so a is a root of P (x) as

claimed.

Exercise 2.2.2. If a is a root of P (x), show that (x− a) divides P (x). [Hint:

use the Division Algorithm for polynomials.]

Solution. By the Division Algorithm for polynomials, write P (x) = (x −
a)q(x)+r(x) for polynomials q(x), r(x) where either r(x) = 0 or deg r(x) < deg(x−
a) = 1. Thus r(x) is a constant polynomial. Now P (a) = 0 ⋅ q(a) + r(a) = r(a)

is zero since a is a root of P (x). Therefore, r(x) = 0 since r(x) is a constant

polynomial. Hence (x− a) divides P (x).

Definition 2.2.2. Let a be a root of the polynomial P (x). This root has

multiplicity k if (x− a)k divides P (x) but (x− a)k+1 does not divide P (x).
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Exercise 2.2.3. Suppose that a is a root of multiplicity two for P (x). Show

there is a polynomial g(x) such that

P (x) = (x− a)2g(x)

with g(a) ∕= 0.

Solution. Let a be a root of multiplicity two for P (x). By definition, (x−a)2
divides P (x) but (x− a)3 does not. Therefore, since (x− a)2 divides P (x), there is

a polynomial g(x) such that P (x) = (x−a)2g(x). It remains to show that g(a) ∕= 0.

If, however, g(a) = 0, then a is a root of g(x), so we may write g(x) = (x− a)ℎ(x)

for some polynomial ℎ(x), in which case P (x) = (x − a)3ℎ(x), so (x − a)3 divides

P (x). This is a contradiction, so the assumption that g(a) = 0 must be false.

Therefore, g(x) is a polynomial with P (x) = (x− a)2g(x) and g(a) ∕= 0.

Exercise 2.2.4. Suppose that a is a root of multiplicity two for P (x). Show

that P (a) = 0 and P ′(a) = 0 but P ′′(a) ∕= 0.

Solution. Let a be a root of multiplicity two for P (x). Then P (a) = 0 since

a is a root of P (x). Moreover, by the previous exercise, there is a polynomial g(x)

such that P (x) = (x − a)2g(x) with g(a) ∕= 0. Now we’ll show that P ′(a) = 0

but P ′′(a) ∕= 0. To do so, we first must compute P ′(x) and P ′′(x) using the

product rule for derivatives. First, P ′(x) = [2(x − a)1]g(x) + (x − a)2[g′(x)] =

(x− a)[2g(x)+ (x− a)g′(x)]. Thus P ′(a) = 0 since (x− a) divides P ′(x). However,

P ′′(x) = [1] (2g(x) + (x− a)g′(x)) + (x − a) [2g′(x) + [1]g′(x) + (x− a)g′′(x)], so

P ′′(a) = (2g(a) + 0) + 0 = 2g(a) ∕= 0 since g(a) ∕= 0. Hence, if a is a root of

multiplicity two for P (x), then P (a) = P ′(a) = 0 but P ′′(a) ∕= 0.

Exercise 2.2.5. Suppose that a be a root of multiplicity k for P (x). Show

there is a polynomial g(x) such that

P (x) = (x− a)kg(x)

with g(a) ∕= 0.

Solution. Let a be a root of multiplicity k for P (x). By definition, (x− a)k

divides P (x) but (x−a)k+1 does not. Therefore, since (x−a)k divides P (x), there is
a polynomial g(x) such that P (x) = (x−a)kg(x). It remains to show that g(a) ∕= 0.

If, however, g(a) = 0, then a is a root of g(x), so we may write g(x) = (x− a)ℎ(x)

for some polynomial ℎ(x), in which case P (x) = (x − a)k+1ℎ(x), so (x − a)k+1

divides P (x). This is a contradiction, so the assumption that g(a) = 0 must be

false. Therefore, g(x) is a polynomial with P (x) = (x− a)kg(x) and g(a) ∕= 0.

Exercise 2.2.6. Suppose that a is a root of multiplicity k for P (x). Show that

P (a) = P ′(a) = ⋅ ⋅ ⋅ = P (k−1)(a) = 0 but that P (k)(a) ∕= 0.
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homogeneous

multiplicity!root

Solution. Let a be a root of multiplicity k for P (x). Then P (a) = 0 since a

is a root of P (x). Moreover, by the previous exercise, there is a polynomial g(x)

such that P (x) = (x − a)kg(x) with g(a) ∕= 0. Now we’ll show that P ′(a) = ⋅ ⋅ ⋅ =
P (k−1)(a) = 0 but P (k)(a) ∕= 0. To do so, we first must compute the derivatives

of P (x) using the product rule. We claim that the jth derivative of P (x) is of

the form P (j)(x) = (x − a)k−jgj(x) for some polynomial gj(x) with gj(a) ∕= 0

for j = 0, 1, 2, . . . , k. Clearly the claim is true for j = 0. By the product rule,

P ′(x) = [k(x − a)k−1]g(x) + (x − a)k[g′(x)] = (x − a)k−1[kg(x) + (x − a)g′(x)],

and g1(x) = kg(x) + (x− a)g′(x) is a polynomial satisfying g1(a) = kg(a) + 0 ∕= 0.

Suppose now that P (j−1)(x) = (x − a)k−(j−1)gj−1(x) with gj−1(a) ∕= 0 for some

j ≤ k. Then P (j)(x) = [(k − j + 1)(x − a)k−j ]gj−1(x) + (x − a)k−j+1[g′j−1(x)] =

(x−a)k−j [(k−j+1)gj−1(x)+(x−a)g′j−1(x)], where gj(x) = (k−j+1)gj−1(x)+(x−
a)g′j−1(x) is a polynomial and gj(a) = (k−j+1)gj−1(a)+0 ∕= 0 since j ≤ k implies

k − j + 1 ∕= 0 and gj−1(a) ∕= 0 by hypothesis. Therefore, for all j = 0, 1, 2, . . . , k,

we have P (j)(x) = (x − a)k−jgj(x) for some polynomial gj(x) with gj(a) ∕= 0.

Therefore, P (j)(a) = 0 so long as k− j > 0, for then (x− a) divides P (j)(x). Hence

P (a) = P ′(a) = ⋅ ⋅ ⋅ = P (k−1)(a) = 0. However, P (k)(a) = gk(a) ∕= 0 as desired.

The homogeneous version is the following.

Definition 2.2.3. Let P (x, y) be a homogeneous polynomial. A root or zero

is a point (a : b) ∈ ℙ1 such that P (a, b) = 0. If (a : b) is a root of P (x, y), then

(bx− ay) divides P (x, y). This root has multiplicity k if (bx− ay)k divides P (x, y)

but (bx− ay)k+1 does not divide P (x, y).
Old problem was false:

(1 : 0) is a root of

multiplicity two for

P (x, y) = x3y2, but

both Pxx = 6xy2 and

Pxy = 6x2y vanish at

(1 : 0). – DM

(8/4/09)

Exercise 2.2.7. Suppose that (a : b) is a root of multiplicity two for P (x, y).

Show that

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = 0,

but at least one of the second partials does not vanish at (a : b).

Solution. Let (a : b) be a root of multiplicity two for P (x, y). Thus P (x, y) =

(bx − ay)2g(x, y) for some polynomial g(x, y) such that (bx − ay) does not divide

g(x, y). Therefore g(a, b) ∕= 0, for otherwise (bx − ay) would divide g(x, y) and

(a : b) would be a root of multiplicity three for P (x, y), while P (a, b) = (b[a] −
a[b])2g(a, b) = 0. Now

∂P

∂x
(x, y) = [2(bx− ay)b]g(x, y) + (bx− ay)2

∂g

∂x
(x, y).

Thus (bx− ay) divides
∂P

∂x
(x, y), so

∂P

∂x
(a, b) = 0. Similarly

∂P

∂y
(x, y) = (bx− ay)[−2ag(x, y) + (bx− ay)

∂g

∂y
(x, y)],
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so
∂P

∂y
(a, b) = 0. Now

∂2P

∂x2
(x, y) = [b][2bg(x, y) + (bx− ay)

∂g

∂x
] + (bx− ay)[3b

∂g

∂x
+ (bx− ay)

∂2g

∂x2
]

so
∂2P

∂x2
(a, b) = [2b2g(a, b) + 0] + 0 ∕= 0 if b ∕= 0. If b = 0, then a ∕= 0 since (a : b) is

a point in ℙ1, and

∂2P

∂y2
(x, y) = [−a][−2ag(x, y) + (bx− ay)

∂g

∂y
] + (bx− ay)[−3a

∂g

∂y
+ (bx− ay)

∂2g

∂y2
]

has value
∂2P

∂y2
(a, b) = 2a2g(a, b) + 0 ∕= 0 since a ∕= 0 and g(a, b) ∕= 0. Therefore, at

least one of the second order partial derivatives does not vanish at (a, b) if (a : b)

is a root of multiplicity two for P (x, y).

Same problem as the

previous exercise -

changed to “at least

one does not” as

above. – DM (8/4/09)

multiplicitypartials Exercise 2.2.8. Suppose that (a : b) is a root of multiplicity k for P (x, y).

Show that

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = ⋅ ⋅ ⋅ = ∂k−1P

∂xi∂yj
(a, b) = 0,

where i+ j = k − 1 but that

∂kP

∂xi∂yj
(a, b) ∕= 0,

for at least one pair i + j = k. This means that the first partials, second partials,

etc. up to the k − 1 partials all vanish at (a : b), but that at least one of the kth

partials does not vanish at (a : b).

Solution. Let (a : b) be a root of multiplicity k for P (x, y). Thus P (x, y) =

(bx − ay)kg(x, y) for some polynomial g(x, y) such that (bx − ay) does not divide

g(x, y). Therefore g(a, b) ∕= 0, for otherwise (bx − ay) would divide g(x, y) and

(a : b) would be a root of multiplicity k + 1 for P (x, y). Clearly P (a, b) = (b[a] −
a[b])2g(a, b) = 0. Now we claim that

∂i+jP

∂xi∂yj
(x, y) = (bx − ay)k−(i+j)gi,j(x, y) for

some polynomial gi,j(x, y) with gi,j(a, b) ∕= 0 whenever i+ j ≤ k. When i+ j = 0,

this is the given form of P (x, y), so our claim is true in this case. Suppose that

i + j < k and that
∂i+jP

∂xi∂yj
(x, y) = (bx − ay)k−(i+j)gi,j(x, y) where gi,j(a, b) ∕= 0.

Then

∂i+j+1P

∂xi+1∂yj
(x, y) = [(k − i− j)(bx− ay)k−(i+1)−jb]gi,j(x, y) + (bx− ay)k−i−j

∂gi,j
∂x

= (bx− ay)k−(i+1)−j [(k − i− j)bgi,j(x, y) + (bx− ay)
∂gi,j
∂x

],
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and gi+1,j(x, y) = (k − i − j)bgi,j(x, y) + (bx − ay)
∂gi,j
∂x

is a polynomial satisfying

gi+1,j(a, b) = (k−i−j)bgi,j(a, b)+0 ∕= 0 since i+j < k and gi,j(a, b) ∕= 0. Similarly,

∂i+j+1P

∂xi∂yj+1
(x, y) = [(k − i− j)(bx− ay)k−i−(j+1)(−a)]gi,j(x, y) + (bx− ay)k−i−j

∂gi,j
∂y

= (bx− ay)k−i−(j+1)[−(k − i− j)agi,j(x, y) + (bx− ay)
∂gi,j
∂y

]

where gi,j+1(x, y) = −(k − i − j)agi,j(x, y) + (bx − ay)
∂gi,j
∂y

is a polynomial with

gi,j+1(a, b) = −(k − i − j)agi,j(a, b) + 0 ∕= 0 since i + j < k and gi,j(a, b) ∕=
0. Therefore our formula is established. With this in hand, we easily find that
∂i+jP

∂xi∂yj
(a, b) = 0 whenever i+ j < k, so

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = ⋅ ⋅ ⋅ = ∂i+jP

∂xi∂yj
(a, b) = 0

where i + j = k − 1. However, if b ∕= 0, then
∂kP

∂xk
(a, b) = k!bkg(a, b) + 0 ∕= 0. If

b = 0, then a ∕= 0 and
∂kP

∂yk
(a, b) = (−1)kk!akg(a, b) + 0 ∕= 0. Thus, at least one of

the kth partial derivatives of P (x, y) does not vanish at (a : b).
2.2:Lines and cubics

2.2.3. Inflection Points. Let P (x, y, z) be a homogeneous polynomial. We

want to understand what it means for a line to intersect V(P ) in a point with

multiplicity three or more. Let

l(x, y, z) = ax+ by + cz

be a linear polynomial and let ℓ = V(l) be the corresponding line in ℙ2. We are I altered this: l is now

a linear polynomial and

not a line, while ℓ is

the line in ℙ2. – DM

(8/4/09)

tacitly assuming that not all of a, b, c are zero. We might as well assume that b ∕= 0.

That is, by a projective change of coordinates we may assume that b ∕= 0. We

can multiply l by any nonzero constant and still have the same line, meaning that

for � ∕= 0, we have V(l) = V(�l). So, we can assume that b = −1. The reason

for the −1 is that we now know that all points on the line have the property that

y = ax+ cz.

2-2:Inflection:3to2variable Exercise 2.2.9. Let (x0 : y0 : z0) ∈ V(P ) ∩V(l). Show that (x0 : z0) is a root

of the homogeneous two-variable polynomial P (x, ax+cz, z) and that y0 = ax0+cz0.

Solution. Let (x0 : y0 : z0) be a point in V(P )∩V(l). This means P (x0, y0, z0) =

0 and l(x0, y0, z0) = 0. However, l(x0, y0, z0) = ax0−y0+ cz0, so ax0−y0+ cz0 = 0

or y0 = ax0+ cz0. Substituting this for y0 in P (x0, y0, z0), we find that P (x0, ax0+

cz0, z0) = 0. Finally, observing that y0 = ax0 + cz0, we conclude that not both of

x0 and z0 can be zero, for then y0 = 0 too. Hence at least one of x0, z0 must be
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multiplicity!intersection non-zero, so (x0 : z0) is a point in ℙ1 and it is a root of the two-variable polynomial

P (x, ax+ cz, z) as claimed.

Definition 2.2.4. The intersection multiplicity of V(P ) and V(l) at (x0 : y0 :

z0) is the multiplicity of the root (x0 : z0) of P (x, ax+ cz, z).

Exercise 2.2.10. Let P (x, y, z) = x2 − yz and l(x, y, z) = �x− y. Show that

the intersection multiplicity of V(P ) and V(l) at (0 : 0 : 1) is one when � ∕= 0 and

is two when � = 0.

Solution. As l(x, y, z) = �x−y, the intersection multiplicity of V(P ) and V(l)

at (0 : 0 : 1) is equal to the multiplicity of the root (0 : 1) of P (x, �x, z) = x2−(�x)z.

If � ∕= 0, then P (x, �x, z) = x(x − �z), so x divides P (x, �x, z) but x2 does not.

Hence (0 : 1) is a root of multiplicity one when � ∕= 0. If � = 0, however, then

P (x, �x, z) = P (x, 0, z) = x2, so clearly (0 : 1) is a root of multiplicity two in this

case.

The key to the definition above is that, when b = −1, the system x = x, y =

ax + cz, z = z gives a parametrization of the line V(l) and the intersection multi-

plicity of V(P ) and V(l) at (x0 : y0 : z0) is found by considering P evaluated as a

function of these two parameters. The next exercise proves the important fact that

the intersection multiplicity is independent of the choice of parametrization of the

line V(l) used.

I added this exercise

to show intersection

multiplicity is

well-defined. – DM

(8/10/09)

Exercise 2.2.11. Let (x0 : y0 : z0) ∈ V(P ) ∩ V(l). Let x = a1s + b1t, y =

a2s + b2t, z = a3s + b3t and x = c1u + d1v, y = c2u + d2v, z = c3u + d3v be two

parametrizations of the line V(l) such that (x0 : y0 : z0) corresponds to (s0 : t0)

and (u0 : v0), respectively. Show that the multiplicity of the root (s0 : t0) of

P (a1s + b1t, a2s + b2t, a3s + b3t) is equal to the multiplicity of the root (u0 : v0)

of P (c1u+ d1v, y = c2u+ d2v, z = c3u+ d3v). Conclude that our definition of the

intersection multiplicity of V(P ) and V(l) is independent of the parametrization of

the line V(l) used.

Solution. Let V(l) have the parametrizations

⎛
⎜⎝
x

y

z

⎞
⎟⎠ = L(s, t) =

⎛
⎜⎝
a1 b1

a2 b2

a3 b3

⎞
⎟⎠
(
s

t

)
and

⎛
⎜⎝
x

y

z

⎞
⎟⎠ =M(u, v) =

⎛
⎜⎝
c1 d1

c2 d2

c3 d3

⎞
⎟⎠
(
u

v

)
,

such that (x0 : y0 : z0) = L(s0, t0) = M(u0, v0). Observe that s = 1, t = 0 gives

the point (a1 : a2 : a3) and s = 0, t = 1 gives the point (b1 : b2 : b3) on V(l). Thus

there are values u1, v1 such that (a1 : a2 : a3) = M(u1, v1) and values u2, v2 such
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that (b1 : b2 : b3) =M(u2, v2). Then

U =

(
u1 v1

u2 v2

)

is a change of coordinates between the two parametrizations. That is, L(s, t) =

M(U(s, t)).

Now (t0s − s0t) is a factor of P (L(s, t)) if and only if (s0 : t0) is a root of

P (L(s, t)). Since L(s, t) = M(U(s, t)), this is true if and only if U(s0, t0) is a root

of P (M(U(s, t))), or, equivalently, if and only if (u0 : v0) is a root of P (M(u, v)).

Hence, (t0s − s0t) is a factor of P (L(s, t)) if and only if (v0u − u0v) is a factor of

P (M(u, v)). Repeating this argument on the quotients P (L(s, t))/(t0s − s0t) and

P (M(u, v))/(v0u− u0v) as needed, we conclude that the multiplicity of (s0 : t0) as

a root of P (L(s, t)) must equal the multiplicity of (u0 : v0) as a root of P (M(u, v))

as claimed.

By definition, the intersection multiplicity of V(P ) and V(l) at (x0 : y0 : z0) is

the multiplicity of the root (x0 : z0) of P (x, ax+ cz, z). If (x : y : z) = L(s, t) is any

other parametrization of V(l) with (x0 : y0 : z0) = L(s0, t0), then the multiplicity

of the root (s0 : t0) of P (L(s, t)) is equal to the multiplicity of the root (x0 : z0) of

P (x, ax+cz, z), since x = x, y = ax+cz, z = z and L(s, t) are two parametrizations

of V(l). Thus the intersection multiplicity of V(P ) and V(l) at (x0 : y0 : z0) is the

same regardless of the manner in which V(l) is parametrized. In particular, if

l(x, y, z) = ax+ by+ cz, the definition of the intersection multiplicity of V(P ) with

V(l) is independent of our choice of which nonzero coefficient of l(x, y, z) we use to

reduce to a two-variable situation.

Exercise 2.2.12. Let P (x, y, z) = x2+2xy−yz+z2. Show that the intersection

multiplicity of V(P ) and any line ℓ at a point of intersection is at most two.

Solution. We first observe that V(P ) is a non-degenerate conic, as the 3× 3

matrix associated to V(P ) has three non-zero eigenvalues. (Recall from Section

1.10 that the matrix associated to the conic P (x, y, z) = x2 + 2xy − yz + z2 is

⎛
⎜⎝
1 1 0

1 0 −1/2

0 −1/2 1

⎞
⎟⎠ ,

whose eigenvalues are 1,
1±

√
6

2
.) Thus V(P ) has no line components.

Suppose (x0 : y0 : z0) is a point of intersection of V(P ) and a line ℓ. Let

(x : y : z) = L(s, t) = (a1s + b1t : a2s + b2t : a3s + b2t) be a parametrization of ℓ

with (x0 : y0 : z0) = L(s0, t0). Then the intersection multiplicity of V(P ) and V(l)

at (x0 : y0 : z0) is equal to the multiplicity of the root (s0 : t0) for the homogeneous
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two-variable polynomial P (L(s, t)). Since V(P ) has no line components, P (L(s, t))

is not identically zero, so this multiplicity is equal to the exponent k such that

(t0s−s0t)k divides P (L(s, t)) but (t0s−s0t)k+1 does not. Let k be the multiplicity

and write P (L(s, t)) = (t0s− s0t)
kg(s, t) for some homogeneous polynomial g(s, t).

Then the homogeneous degree of P (a1s+b1t : a2s+b2t : a3s+b2t) = (a1s+b1t)
2+

2(a1s+b1t)(a2s+b2t)−(a2s+b2t)(a3s+b3t)+(a3s+b3t)
2, which is 2 because V(P )

has no line components, must equal the homogeneous degree of (t0s− s0t)
kg(s, t),

which is k + deg g(s, t). Therefore, k + deg g(s, t) = 2, so k ≤ 2.

Exercise 2.2.13. Let P (x, y, z) be an irreducible second degree homogeneous

polynomial. Show that the intersection multiplicity of V(P ) and any line ℓ at a

point of intersection is at most two.

Solution. Suppose (x0 : y0 : z0) is a point of intersection of V(P ) and a

line ℓ. Let (x : y : z) = L(s, t) be a parametrization of ℓ with (x0 : y0 : z0) =

L(s0, t0). Then the intersection multiplicity of V(P ) and V(l) at (x0 : y0 : z0)

is equal to the multiplicity of the root (s0 : t0) for the homogeneous two-variable

polynomial P (L(s, t)), which is not identically zero since P is irreducible, so has no

line components. This multiplicity is equal to the exponent k such that (t0s−s0t)k
divides P (L(s, t)) but (t0s− s0t)

k+1 does not. Let k be the multiplicity and write

P (L(s, t)) = (t0s− s0t)
kg(s, t) for some homogeneous polynomial g(s, t). Then the

homogeneous degree of P (L(s, t)), which is 2 because P (L(s, t)) is not identically

zero for V(P ) has no line compoents, must equal the homogeneous degree of (t0s−
s0t)

kg(s, t), which is k + deg g(s, t). Therefore, k + deg g(s, t) = 2, so k ≤ 2.

2-2:Inflection:CircleTangentMult Exercise 2.2.14. Let P (x, y, z) = x2 + y2 + 2xz − yz.

(1) Find the tangent line ℓ = V(l) to V(P ) at (−2 : 1 : 1).

(2) Show that the intersection multiplicity of V(P ) and ℓ at (−2 : 1 : 1) is

two.

Solution. In general the tangent line to V(P ) at a point (a : b : c) in ℙ2 is

given by the equation
(
∂P

∂x
(a, b, c)

)
x+

(
∂P

∂y
(a, b, c)

)
y +

(
∂P

∂z
(a, b, c)

)
z = 0.

(1) To find the tangent line to V(P ) at (−2 : 1 : 1), we must first compute

the partial derivatives of P (x, y, z), which are

∂P

∂x
= 2x+ 2z,

∂P

∂y
= 2y − z,

∂P

∂z
= 2x− y.

Hence the tangent line to V(P ) at (−2 : 1 : 1) is given by ℓ = V(l), where

l(x, y, z) = (2[−2] + 2[1])x+ (2[1]− [1]) y + (2[−2]− [1]) z = −2x+ y − 5z

or y = 2x+ 5z.
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(2) To compute the intersection multiplicity of V(P ) and ℓ, we need to deter-

mine the order k such that (x+2z)k divides P (x, 2x+5z, z) but (x+2z)k+1

does not. Yet P (x, 2x + 5z, z) = x2 + (2x + 5z)2 + 2xz − (2x + 5z)z =

x2 + 4x2 + 20xz + 25z2 + 2xz − 2xz − 5z2 = 5x2 + 20xz + 20z2 =

5(x2 + 4xz + 4z2) = 5(x+ 2z)2. Therefore the intersection multiplicity of

V(P ) and ℓ at (−2 : 1 : 1) is k = 2.

2-2:Inflection:CubicTangentMult Exercise 2.2.15. Let P (x, y, z) = x3 − y2z + z3.

(1) Find the tangent line to V(P ) at (2 : 3 : 1) and show directly that the

intersection multiplicity of V(P ) and its tangent at (2 : 3 : 1) is two.

(2) Find the tangent line to V(P ) at (0 : 1 : 1) and show directly that the

intersection multiplicity of V(P ) and its tangent at (0 : 1 : 1) is three.

Solution. In both parts, we will need to know the partial derivatives of

P (x, y, z), which are

∂P

∂x
= 3x2,

∂P

∂y
= −2yz,

∂P

∂z
= −y2 + 3z2.

(1) The tangent line to V(P ) at (2 : 3 : 1) is V(l), where

l(x, y, z) =
(
3[2]2

)
x+ (−2[3][1]) y +

(
−[3]2 + 3[1]2

)
z = 12x− 6y − 6z.

Equivalently, V(l) = V(2x− y − z), so we on the tangent line to V(P ) at

(2 : 3 : 1) we have y = 2x− z. Thus the intersection multiplicity of V(P )

and its tangent line at (2 : 3 : 1) is the exponent k such that (x − 2z)k

divides P (x, 2x− z, z) but (x− 2z)k+1 does not. Now

P (x, 2x− z, z) = x3 − (2x− z)2z + z3 = x3 − 4x2z + 4xz2

= x(x2 − 4xz + 4z2) = x(x− 2z)2.

Therefore, k = 2 is the intersection multiplicity of V(P ) and its tangent

line at (2 : 3 : 1).

(2) The tangent line to V(P ) at (0 : 1 : 1) is V(l), where

l(x, y, z) =
(
3[0]2

)
x+ (−2[1][1]) y +

(
−[1]2 + 3[1]2

)
z = −2y + 2z.

Equivalently, V(l) = V(−y + z), so we on the tangent line to V(P ) at

(0 : 1 : 1) we have y = z. Thus the intersection multiplicity of V(P ) and

its tangent line at (0 : 1 : 1) is the exponent k such that (x)k divides

P (x, z, z) but (x)k+1 does not. Now

P (x, z, z) = x3 − (z)2z + z3 = x3 − z3 + z3 = x3.

Therefore, k = 3 is the intersection multiplicity of V(P ) and its tangent

line at (0 : 1 : 1).
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Exercise 2.2.16. Redo the previous two exercises using Exercise
multiplicitypartials
2.2.8. This problem is longer

than needed if it is

intended to redo
2-2:Inflection:CircleTangentMult
2.2.14

and both parts

of
2-2:Inflection:CubicTangentMult
2.2.15. I propose

only asking to redo

both parts of
2-2:Inflection:CubicTangentMult
2.2.15. –

DM (8/10/09)

Solution.

(1) Consider P (x, y, z) = x2+y2+2xz−yz at the point (−2 : 1 : 1). To show

that the intersection multiplicity of V(P ) with its tangent line V(−2x +

y−5z) at (−2 : 1 : 1) is equal to 2, we must prove that (−2 : 1) is a root of

multiplicity two for P (x, 2x+5z, z) = x2+(2x+5z)2+2xz−(2x+5z)z =

5x2+20xz+20z2. By Exercise
multiplicitypartials
2.2.8, this is equivalent to showing that this

polynomial of x, z along with its first order partials with respect to x and

z all vanish at (−2 : 1) but that at least one of the second order partials is

not zero at (−2 : 1). Now P (−2, 1, 1) = 0 implies that 5x2 + 20xz + 20z2

vanishes at (−2 : 1) as required. Next,
∂

∂x
[5x2+20xz+20z2] = 10x+20z,

and 10[−2]+20[1] = 0. Similarly,
∂

∂z
[5x2+20xz+20z2] = 20x+40z, and

20[−2] + 40[1] = 0, so the polynomial and both of its first order partial

derivatives vanish at (−2 : 1). However,
∂2

∂x2
[5x2 + 20xz + 20z2] = 10,

so this second order partial derivative does not vanish at (−2 : 1), and

hence the multiplicity of (−2 : 1) as a root of P (x, 2x+ 5z, z) is equal to

2, which agrees with our result from Exercise
2-2:Inflection:CircleTangentMult
2.2.14.

(2) Consider P (x, y, z) = x3 − y2z + z3 at the point (2 : 3 : 1). To show that

the intersection multiplicity of V(P ) with its tangent line V(2x−y−z) at
(2 : 3 : 1) is equal to 2, we must prove that (2 : 1) is root of multiplicity

two for P (x, 2x−z, z) = x3−(2x−z)2z+z3 = x3−(4x2−4xz+z2)z+z3 =

x3 − 4x2z + 4xz2. Following Exercise
multiplicitypartials
2.2.8, this is the same as showing

this polynomial of x, z and its two first order partial derivatives vanish at

(2 : 1) but that at least one of its second order partials does not. Now

P (2, 3, 1) = 0 since (2 : 3 : 1) ∈ V(P ), so x3 − 4x2z + 4xz2 is equal

to 0 at (2 : 1). Also,
∂

∂x
[x3 − 4x2z + 4xz2] = 3x2 − 8xz + 4z2, and

3[2]2 − 8[2][1] + 4[1]2 = 12 − 16 + 4 = 0, and
∂

∂z
[x3 − 4x2z + 4xz2] =

−4x2 + 8xz has −4[2]2 + 8[2][1] = −16 + 16 = 0. Thus both first order

partial derivatives also vanish at (2 : 1). However, the second order partial,
∂2

∂z2
[x3 − 4x2z + 4xz2] = 8x clearly does not vanish at (2 : 1). Thus the

intersection multiplicity of V(x3 − y2z + z3) with its tangent at (2 : 3 : 1)

is equal to 2, which agrees with our result from Part (1) of Exercise
2-2:Inflection:CubicTangentMult
2.2.15.

(3) Consider P (x, y, z) = x3 − y2z + z3 at the point (0 : 1 : 1). To show that

the intersection multiplicity of V(P ) with its tangent line V(−y + z) at

(0 : 1 : 1) is equal to 3, we must prove that (0 : 1) is root of multiplicity

three for P (x, z, z) = x3−(z)2z+z3 = x3. Following Exercise
multiplicitypartials
2.2.8, this is

the same as showing this polynomial of x, z and all of its first and second
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order partial derivatives vanish at (0 : 1) but that at least one of its third

order partials does not. Now P (0, 1, 1) = 0 since (0 : 1 : 1) ∈ V(P ), so

x3 is equal to 0 at (0 : 1). Also,
∂

∂x
[x3] = 3x2, which clearly vanishes

at (0 : 1). Furthermore,
∂

∂z
[x3] = 0, so it too is zero at (0 : 1). Hence

both first order partials vanish at (0 : 1). Moreover, since
∂

∂z
[x3] = 0,

both
∂2

∂x∂z
[x3] = 0 and

∂2

∂z2
[x3] = 0, so these also vanish at (0 : 1). The

remaining second order partial derivative is
∂2

∂x2
[x3] = 6x, which likewise

vanishes at the point (0 : 1). Therefore, x3 and all of its first and second

order partial derivatives vanish at (0 : 1), so the multiplicity of (0 : 1)

as a root of x3 is at least 3. To confirm that it is exactly equal to 3, we

must show that one of the third order partials does not vanish at (0 : 1),

so consider
∂3

∂x3
[x3] = 6, which is not zero (0 : 1). Hence the intersection

multiplicity of V(P ) and its tangent at (0 : 1 : 1) is three, which agrees

with our result from Part (2) of Exercise
2-2:Inflection:CubicTangentMult
2.2.15.

tangentmulttwo Exercise 2.2.17. Show that for any non-singular curve V(P ) ⊂ ℙ2, the inter-

section multiplicity of V(P ) and its tangent line ℓ at the point of tangency is at

least two.

Solution. Suppose that V(P ) is a non-singular curve. Let (x0 : y0 : z0) be

a point on V(P ) and let ℓ be the tangent line to V(P ) at this point, which exists

since V(P ) is non-singular. Thus ℓ = V(l), where

l(x, y, z) =

(
∂P

∂x
(x0, y0, z0)

)
x+

(
∂P

∂y
(x0, y0, z0)

)
y +

(
∂P

∂z
(x0, y0, z0)

)
z.

Let a =
∂P

∂x
(x0, y0, z0), b =

∂P

∂y
(x0, y0, z0), and c =

∂P

∂z
(x0, y0, z0).

Suppose b ∕= 0. Then, on ℓ, y =
ax+ cz

−b , so the intersection multiplicity of

V(P ) and ℓ is, by definition, the multiplicity of (x0 : z0) as a root of the homoge-

neous two-variable polynomial g(x, z) = P (x,
ax+ cz

−b , z). By Exercise
multiplicitypartials
2.2.8, this

multiplicity is at least two so long as g(x0, z0) =
∂g

∂x
(x0, z0) =

∂g

∂z
(x0, z0) = 0. The

first of these, g(x0, z0) = 0, follows immediates since g(x0, z0) = P (x0,
ax0 + cz0

−b , z0) =

P (x0, y0, z0) and (x0 : y0 : z0) ∈ V(P ). Next consider
∂g

∂x
=

∂P

∂x
+
∂P

∂y
⋅ ∂y
∂x

=

∂P

∂x
− a

b

∂P

∂y
. Then

∂g

∂x
(x0, z0) =

∂P

∂x
(x0,

ax0 + cz0
−b , z0) −

a

b

∂P

∂y
(x0,

ax0 + cz0
−b , z0).

Recalling that a =
∂P

∂x
(x0, y0, z0), b =

∂P

∂y
(x0, y0, z0) and y0 =

ax0 + cz0
−b , we find
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∂g

∂x
(x0, z0) = a − a

b
b = a − a = 0. Similarly,

∂g

∂z
(x0, z0) =

c

−bb + c = 0, so g(x, z)

and both of its first order partial derivatives vanish at (x0 : z0). Therefore, the

multiplicity of (x0 : z0) as a root of g(x, z) = P (x,
ax+ cz

−b , z) is at least two by

Exercise
multiplicitypartials
2.2.8, so the intersection multiplicity of V(P ) and its tangent line must be

at least two at the point of tangency.

The cases a ∕= 0 and c ∕= 0 are similar. Thus, in all cases, the intersection

multiplicity of V(P ) and its tangent line must be at least two at the point of

tangency.

Exercise 2.2.18.

(1) Let P (x, y, z) be an irreducible degree three homogeneous polynomial.

Show that the intersection multiplicity of V(P ) and any line ℓ at a point

of intersection is at most three.

(2) Let P (x, y, z) be an irreducible homogeneous polynomial of degree n.

Show that the intersection multiplicity of V(P ) and any line ℓ at a point

of intersection is at most n.

Solution.

(1) Let P (x, y, z) be an irreducible degree three homogeneous polynomial.

Let ℓ be any line in ℙ2, and let (x0 : y0 : z0) ∈ V(P ) ∩ V(l) be a point of

intersection. Suppose (x : y : z) = L(s, t) is a parametrization of ℓ with

(x0 : y0 : z0) = L(s0, t0).

Since P (x, y, z) is an irreducible polynomial, it has no linear factors

and hence no line components. Therefore, P (L(s, t)) is not identically

zero, so it is again a homogeneous degree three polynomial. Then the

intersection multiplicity of V(P ) and ℓ, which is the multiplicity of the

root (s0 : t0) of P (L(s, t)), is equal to the exponent k such that (t0s−s0t)k
divides P (L(s, t)) but (t0s−s0t)k+1 does not. Since P (L(s, t)) has degree

three, we conclude that k ≤ 3, so the intersection multiplicity of V(P )

and any line ℓ at a point of intersection is at most three.

(2) Let P (x, y, z) be an irreducible homogeneous polynomial of degree n and

let ℓ be a line in ℙ2. Suppose (x0 : y0 : z0) is a point of intersection of

V(P ) with ℓ. Suppose (x : y : z) = L(s, t) is a parametrization of ℓ with

(x0 : y0 : z0) = L(s0, t0).

Since P (x, y, z) is an irreducible polynomial, it has no linear factors

and hence no line components. Therefore, P (L(s, t)) is not identically

zero, so it is again a homogeneous polynomial of degree n. Therefore, the

exponent k such that (t0s − s0t)
k divides P (L(s, t)) but (t0s − s0t)

k+1
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inflection point

flex

does not must be less than or equal to n, so the intersection multiplicity

of V(P ) and ℓ at a point of intersection is at most n.

Definition 2.2.5. Let P (x, y, z) be an irreducible homogeneous polynomial of

degree n. A non-singular point p ∈ V(P ) ⊂ ℙ2 is called a point of inflection or a

flex of the curve V(P ) if the tangent line to the curve at p intersects V(P ) with

multiplicity at least three.

Exercise 2.2.19. Let P (x, y, z) = x3+yz2. Show that (0 : 0 : 1) is an inflection

point of V(P ).

Solution. We first find the tangent line to V(P ) at (0 : 0 : 1), whose equation

is given by
(
∂P

∂x
(0, 0, 1)

)
x+

(
∂P

∂y
(0, 0, 1)

)
y +

(
∂P

∂z
(0, 0, 1)

)
z = 0.

As
∂P

∂x
= 3x2,

∂P

∂y
= z2 and

∂P

∂z
= 2yz, the tangent line to V(P ) at (0 : 0 : 1) is

V(l) for

l(x, y, z) =
(
3[0]2

)
x+

(
[1]2
)
y + (2[0][1]) z = y.

Observe that not all of the first order partials of P (x, y, z) vanish at (0 : 0 : 1),

so (0 : 0 : 1) is a non-singular point on V(P ), and y = 0 on the tangent line to

V(P ) at (0 : 0 : 1). Thus the intersection multiplicity of V(P ) and its tangent

line at (0 : 0 : 1) is equal the the multiplicity of (0 : 1) as a root of P (x, 0, z) =

x3 + [0]z2 = x3. That is, the intersection multiplicity is the exponent k such that

(1x − 0z)k = xk divides P (x, 0, z) = x3 but xk+1 does not. Clearly k = 3, so the

tangent line intersects V(P ) at (0 : 0 : 1) with multiplicity at least three. Hence

(0 : 0 : 1) is an inflection point of V(P ).

hardinflection Exercise 2.2.20. Let P (x, y, z) = x3 + y3 + z3 (the Fermat curve). Show that

(1 : −1 : 0) is an inflection point of V (P ).

Solution. The partial derivatives are

Px = 3x2, Py = 3y2, Pz = 3z2

and

Px(1,−1, 0) = 3, Py(1,−1, 0) = 3, Pz(1,−1, 0) = 0.

Hence (1 : −1 : 0) is a non-singular point of V(P ) and the tangent line to V(P ) at

(1 : −1 : 0) is l(x, y, z) = 3x+3y, or y = −x. Now P (x,−x, z) = x3+(−x)3+ z3 =

z3, so the intersection multiplicity of V (P ) and V (l) at (1 : −1 : 0) is three.

Therefore (1 : −1 : 0) is an inflection point of V(P ).
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Hessian

Hessian!curve

2.2.4. Hessians. We have just defined what it means for a point p ∈ V(P )

to be a point of inflection. Checking to see whether a given point p ∈ V(P ) is

an inflection point can be tedious, but finding inflection points can be extremely

difficult task with our current tools. How did we know to check (1 : −1 : 0) in

Exercise
hardinflection
2.2.20? As we know V(P ) has an infinite number of points, so it would

be impossible to find the tangent at every point and to check the intersection

multiplicity. Moreover, if these inflection points are related to the inflection points

of calculus, where are the second derivatives? The Hessian curve will completely

solve these difficulties. We will first define the Hessian curve, then determine how

it can be used to find the points of inflection.

Definition 2.2.6. Let P (x, y, z) be a homogeneous polynomial of degree n.

The Hessian H(P ) is

H(P )(x, y, z) = det

⎛
⎜⎝
Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz

⎞
⎟⎠ ,

where

Px =
∂P

∂x

Pxx =
∂2P

∂x2

Pxy =
∂2P

∂x∂y
, etc.

The Hessian curve is V(H(P )).

computingHPs Exercise 2.2.21. Compute H(P ) for the following cubic polynomials.

(1) P (x, y, z) = x3 + yz2

(2) P (x, y, z) = y3 + z3 + xy2 − 3yz2 + 3zy2

(3) P (x, y, z) = x3 + y3 + z3

Solution.

(1) The first order partials of P (x, y, z) = x3 + yz2 are

Px = 3x2, Py = z2, Pz = 2yz,

so the second order partials are

Pxx = 6x Pxy = 0 Pxz = 0

Pyx = 0 Pyy = 0 Pyz = 2z

Pzx = 0 Pzy = 2z Pzz = 2y
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Hence the Hessian of P (x, y, z) = x3 + yz2 is

H(P )(x, y, z) = det

⎛
⎜⎝

6x 0 0

0 0 2z

0 2z 2y

⎞
⎟⎠ = 6x(0− 4z2) = −24xz2.

(2) The first order partials of P (x, y, z) = y3 + z3 + xy2 − 3yz2 + 3y2z are

Px = y2, Py = 3y2 + 2xy − 3z2 + 6yz, Pz = 3z2 − 6yz + 3y2,

so the second order partials are

Pxx = 0 Pxy = 2y Pxz = 0

Pyx = 2y Pyy = 6y + 2x+ 6z Pyz = −6z + 6y

Pzx = 0 Pzy = −6z + 6y Pzz = 6z − 6y

Hence the Hessian of P (x, y, z) = y3 + z3 + xy2 − 3yz2 + 3y2z, computed

by cofactor expansion across the first row, is

H(P )(x, y, z) = det

⎛
⎜⎝

0 2y 0

2y 6y + 2x+ 6z −6z + 6y

0 −6z + 6y 6z − 6y

⎞
⎟⎠

= −(2y)[(2y)(6z − 6y)− 0] = −24y2(z − y).

(3) The partials of P (x, y, z) = x3 + y3 + z3 are

Px = 3x2, Py = 3y2, Pz = 3z2,

so the second order partials are

Pxx = 6x Pxy = 0 Pxz = 0

Pyx = 0 Pyy = 6y Pyz = 0

Pzx = 0 Pzy = 0 Pzz = 6z

Hence the Hessian of P (x, y, z) = x3 + y3 + z3 is

H(P )(x, y, z) = det

⎛
⎜⎝
6x 0 0

0 6y 0

0 0 6z

⎞
⎟⎠ = 216xyz.

hessiandegree Exercise 2.2.22. Let P (x, y, z) be an irreducible homogeneous polynomial of

degree three. Show that H(P ) is also a third degree homogeneous polynomial.

Solution. Let P (x, y, z) = ax3 + bx2y + cx2z + dxy2 + exz2 + fy3 + gy2z +

ℎyz2 + kz3 be an irreducible homogeneous polynomial of degree three. Then Px =

3ax2+2bxy+2cxz+dy2+ez2 is either zero or a homogeneous polynomial of degree

two, as are Py and Pz. Then Pxx = 6ax + 2by + 2cz as well as Pxy = Pyx, Pxz =
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points of inflection Pzx, Pyy, Pyz = Pzy and Pzz are either zero or homogeneous linear polynomials.

Therefore,

H(P ) = det

⎛
⎜⎝

Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎞
⎟⎠

will be a third degree homogeneous polynomial, since each of the summands PxxPyyPzz, PxyPyzPzx,

etc., are the product of three homogeneous polynomials of degree one or they are

zero, so they are either zero or homogeneous third degree polynomials. Hence the

sum, H(P ), is either zero or it is a third degree homogeneous polynomial.

Our proof will be complete if we can show that H(P ) is a non-zero polynomial.

If H(P )(p) = 0 for all points p ∈ V(P ), then it can be shown that V(P ) contains a

line component using the Implicit Function Theorem.1 Since P (x, y, z) is an irre-

ducible polynomial, the only way V(P ) can contain a line component is if P (x, y, z)

is a linear polynomial, which it is not as it has degree three. Therefore H(P )(x, y, z)

is not identically zero, so H(P ) is a third degree homogeneous polynomial.

We want to link the Hessian curve with inflection points.

Exercise 2.2.23. Let P (x, y, z) = x3 + y3 + z3 (the Fermat curve). Show that

(1 : −1 : 0) ∈ V(P ) ∩V(H(P )).

Solution. It is clear that P (1,−1, 0) = [1]3 + [−1]3 + [0]3 = 0, so (1 : −1 :

0) ∈ V(P ). Also, using H(P )(x, y, z) = 216xyz from part (3) of Exercise
computingHPs
2.2.21,

we find H(P )(1,−1, 0) = 216[1][−1][0] = 0. Thus (1 : −1 : 0) ∈ V(H(P )), so

(1 : −1 : 0) ∈ V(P ) ∩V(H(P )) as claimed.

Exercise 2.2.24. Let P (x, y, z) = y3 + z3 + xy2 − 3yz2 + 3zy2. Show that

(−2 : 1 : 1) ∈ V(P ) ∩V(H(P )).

Solution. First, P (−2, 1, 1) = [1]3 + [1]3 + [−2][1]2 − 3[1][1]2 + 3[1][1]2 = 0,

so (−2 : 1 : 1) ∈ V(P ). Second, recalling from part (2) of Exercise
computingHPs
2.2.21 that

H(P )(x, y, z) = −24y2(z − y),

we find H(P )(−2, 1, 1) = −24[1]2([1] − [1]) = 0, so (−2 : 1 : 1) ∈ V(H(P )).

Therefore, (−2 : 1 : 1) ∈ V(P ) ∩V(H(P )).

Exercise 2.2.25. Let P (x, y, z) = x3 + yz2. Show that (0 : 0 : 1) ∈ V(P ) ∩
V(H(P )).

Solution. Since P (0, 0, 1) = [0]3 + [0][1]2 = 0, (0 : 0 : 1) ∈ V(P ). From part

(1) of Exercise
computingHPs
2.2.21,

H(P )(x, y, z) = −24xz2.

1See Lemma 13.3 of
gibson
[Gib98] for the proof.
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Thus H(P )(0, 0, 1) = −24[0][1]2 = 0, so (0 : 0 : 1) ∈ V(H(P )). Therefore, (0 : 0 :

1) ∈ V(P ) ∩V(H(P )).

These exercises suggest a link between inflection points of V(P ) and points in

V(P ) ∩V(H(P )), but we need to be careful.

Exercise 2.2.26. Let P (x, y, z) = x3 + yz2.

(1) Show that (0 : 1 : 0) ∈ V(P ) ∩V(H(P )).

(2) Explain why (0 : 1 : 0) is not an inflection point of V(P ).

Solution.

(1) First, P (0, 1, 0) = [0]3 + [1][0]2 = 0, so (0 : 1 : 0) ∈ V(P ). From part

(1) of Exercise
computingHPs
2.2.21, H(P )(x, y, z) = −24xz2. Thus H(P )(0, 1, 0) =

−24[0][0]2 = 0, so (0 : 1 : 0) ∈ V(H(P )). Hence, (0 : 0 : 1) ∈ V(P ) ∩
V(H(P )).

(2) The first order partials of P (x, y, z) = x3 + yz2 are

Px(x, y, z) = 3x2, Py(x, y, z) = z2, Pz(x, y, z) = 2yz.

Therefore

Px(0, 1, 0) = 3[0]2 = 0, Py(0, 1, 0) = [0]2 = 0, Pz(0, 1, 0) = 2[1][0] = 0.

Hence (0 : 1 : 0) is a singular point of V(P ). However, the definition of an

inflection point of V(P ) requires the point to be non-singular, so (0 : 1 : 0)

cannot be an inflection point of this curve.

We can now state the relationship we want.

hessianintersection Theorem 2.2.27. Let P (x, y, z) be a homogeneous polynomial of degree d. If

V(P ) is smooth, then p ∈ V(P ) ∩ V(H(P )) if and only if p is a point of inflection

of V(P ).

We will prove this theorem through a series of exercises.2 The first thing we

need to show is that the vanishing of the Hessian V(H(P )) is invariant under a

projective change of coordinates.

invarianthessian Exercise 2.2.28. Consider the following projective change of coordinates
⎛
⎜⎝
u

v

w

⎞
⎟⎠ = A

⎛
⎜⎝
x

y

z

⎞
⎟⎠ ,

2The following exercises are based on the proof taken from C. G. Gibson’s “Elementary

Geometry of Algebraic Curves.”
gibson
[Gib98]
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where

A =

⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ .

Suppose that under the projective transformation A the polynomial P (x, y, z) be-

comes the polynomial Q(u, v, w).

(1) Show that the Hessian matrices of P and Q are related by
⎛
⎜⎝
Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz

⎞
⎟⎠ = AT

⎛
⎜⎝
Quu Quv Quw

Quv Qvv Qvw

Quw Qvw Qww

⎞
⎟⎠A.

(2) Conclude that H(P )(x, y, z) = 0 if and only if H(Q)(u, v, w) = 0.

Solution. To say that the polynomial P (x, y, z) becomes the polynomial

Q(u, v, w) under the projective transformation A means that, upon substituting the

expressions u = a11x+ a12y+ a13z, v = a21x+ a22y+ a23z, w = a31x+ a32y+ a33z

in place of u, v, w in the polynomial Q, we recover the polynomial P , i.e.,

Q(a11x+ a12y + a13z, a21x+ a22y + a23z, a31x+ a32y + a33z) = P (x, y, z)

as polynomials in the variables x, y, z.

(1) As P (x, y, z) can be written implicitly as Q(u, v, w), where u, v, w are

linear functions of x, y, z as determined by the projective transformation

A, we can compute the partial derivatives of P in terms of those of Q

using the Chain Rule: Px = Qu ⋅ux+Qv ⋅vx+Qw ⋅wx, Py = Qu ⋅uy+Qv ⋅
vy+Qw ⋅wy, and Pz = Qu ⋅uz+Qv ⋅vz+Qw ⋅wz. However, ux = a11, uy =

a12, uz = a13, vx = a21, vy = a22, vz = a23, wx = a31, wy = a32, wz = a33.

Thus Px = a11Qu + a21Qv + a31Qw, Py = a12Qu + a22Qv + a32Qw, and

Pz = a13Qu + a23Qv + a33Qw. Therefore, the second order partials of

P (x, y, z) are

Pxixj
=

3∑

l=1

3∑

k=1

akialjQukul
,

where x1 = x, x2 = y, x3 = z and u1 = u, u2 = v, u3 = w.

In comparison, AT (Quiuj
)A = AT (

3∑

s=1

Quius
asj) = (

3∑

r=1

ari

[
3∑

s=1

Qurus
asj

]
),

so the ij-entry is

3∑

r=1

3∑

s=1

ariasjQurus
. This is exactly the same as the for-

mula for Pxixj
obtained above, so

⎛
⎜⎝
Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz

⎞
⎟⎠ = AT

⎛
⎜⎝
Quu Quv Quw

Quv Qvv Qvw

Quw Qvw Qww

⎞
⎟⎠A.
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(2) Using part (1), we obtain the relationship

H(P )(x, y, z) = det

⎛
⎜⎝
Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz

⎞
⎟⎠

= det

⎛
⎜⎝AT

⎛
⎜⎝
Quu Quv Quw

Quv Qvv Qvw

Quw Qvw Qww

⎞
⎟⎠A

⎞
⎟⎠

= det(AT )H(Q)(u, v, w) det(A) = det(A)2H(Q)(u, v, w)

between the Hessians of P and of Q. Since A is a projective transforma-

tion, det(A) ∕= 0. Therefore,H(P )(x, y, z) = 0 if and onlyH(Q)(u, v, w) =

0.

Next we need to show that inflection points are mapped to inflection points

under a projective change of coordinates.

invariantinflection Exercise 2.2.29. Suppose p is a point of inflection of V(P ), and that under a

projective change of coordinates the polynomial P becomes the polynomial Q and

p 7→ q. Show that q is a point of inflection of V(Q).

Solution. Let p = (x0 : y0 : z0) be a point of inflection of V(P ) and let ℓ be

the tangent line to V(P ) at p. Suppose (x : y : z) = L(s, t) is a parametrization of

ℓ such that (x0 : y0 : z0) = L(s0, t0).

Let A be a projective transformation under which the polynomial P (x, y, z)

becomes the polynomial Q(u, v, w). Thus P = Q ∘ A as polynomials in x, y, z, so

Q = P ∘A−1 as polynomials in u, v, w. Let q = (u0 : v0 : w0) = A(x0 : y0 : z0) be the

image of p under the projective transformation A. Then the tangent line to V(Q)

at q is parametrized by A∘L with (u0 : v0 : w0) = A(L(s0, t0)) for the same (s0 : t0)

as above. The intersection multiplicity of V(Q) with the line AL(s, t) is equal to

the multiplicity of (s0 : t0) as a root of Q(AL(s, t)). However, Q = P ∘ A−1,

so Q(AL(s, t)) = (P ∘ A−1)(AL(s, t)) = P (A−1(AL(s, t))) = P (L(s, t)), and the

multipicity of (s0 : t0) as a root of P (L(s, t)) is at least three since p = L(s0, t0)

is an inflection point of V(P ). Therefore the multiplicity of (s0 : t0) as a root of

Q(AL(s, t)) is likewise at least three, so the intersection multiplicity of V(Q) and

its tangent line at q = AL(s0, t0) is at least three.

Finally, we must prove that q is a non-singular point of V(Q). Since p is a

non-singular point of V(P ), assume Px(x0, y0, z0) ∕= 0. Using P = Q ∘ A, we can

compute Px using the Chain Rule as

Px =
∂

∂x
[Q(u, v, w)] = Qu(u, v, w) ⋅

∂u

∂x
+Qv(u, v, w) ⋅

∂v

∂x
+Qw(u, v, w) ⋅

∂w

∂x
= a11Qu(u, v, w) + a12Qv(u, v, w) + a13Qw(u, v, w)
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Thus

0 ∕= Px(x0, y0, z0) = a11Qu(u0, v0, w0) + a12Qv(u0, v0, w0) + a13Qw(u0, v0, w0),

so at least one of Qu(u0, v0, w0), Qv(u0, v0, w0), Qw(u0, v0, w0) must be non-zero.

As a result, q is a non-singular point, so we conclude that q is a point of inflection

of V(Q).

In the next exercise, we will reduce the proof of Theorem
hessianintersection
2.2.27 to the case

where p = (0 : 0 : 1) ∈ V(P ) and the tangent line to V(P ) at p is ℓ = V(y).

Exercise 2.2.30. Use Exercises
invarianthessian
2.2.28 and

invariantinflection
2.2.29 to explain why to prove

Theorem
hessianintersection
2.2.27 it is enough to show that p is a point of inflection if and only if

H(P )(p) = 0 in the case where p = (0 : 0 : 1) ∈ V(P ) and the tangent line ℓ to

V(P ) at p is y = 0, i.e. ℓ = V(y).

Solution. Let P (x, y, z) be a homogeneous polynomial of degree n such that

V(P ) is smooth, and let p = (x0 : y0 : z0) be a point on V(P ). Let ℓ be the

tangent line to V(P ) at p, which exists since V(P ) is smooth. Suppose (x : y : z) =

L(s, t) = (a1s+ b1t : a2s+ b2t : a3s+ b3t) is a parametrization of ℓ such that (x0 :

y0 : z0) = L(0, 1). Therefore, without loss of generality, b1 = x0, b2 = y0, b3 = z0.

Let L(1, 0) = (a1 : a2 : a3), which is a distinct point in ℙ2. Now select a vector

(c1, c2, c3) ∈ ℂ3 so that the matrix

A =

⎛
⎜⎝
a1 c1 b1

a2 c2 b2

a3 c3 b3

⎞
⎟⎠

is invertible, which we can do as the first and third column are linearly independent

since they correspond to distinct points in ℙ2, and dimℂ3 = 3 allows us to select a

third vector as requested. Observe that

A

⎛
⎜⎝
0

0

1

⎞
⎟⎠ =

⎛
⎜⎝
x0

y0

z0

⎞
⎟⎠ and A

⎛
⎜⎝
s

0

t

⎞
⎟⎠ =

⎛
⎜⎝
a1s+ b1t

a2s+ b2t

a3s+ b3t

⎞
⎟⎠ .

Therefore ⎛
⎜⎝
x

y

z

⎞
⎟⎠ = A

⎛
⎜⎝
u

v

w

⎞
⎟⎠

is a projective transformation sending q = (0 : 0 : 1) to p and the line v = 0 to

L(s, t). Now let Q = P ∘ A, so Q(u, v, w) becomes P (x, y, z) under the projective

transformation. Furthermore, under the projective transformation induced by A−1,

P (x, y, z) becomes Q(u, v, w), p 7→ q = (0 : 0 : 1) and the tangent line ℓ to V(P ) at

p comes the tangent line v = 0 to V(Q) at q = (0 : 0 : 1).
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Suppose now that we have proven q is an inflection point of V(Q) if and only

if H(Q)(q) = 0. We will use this to prove that p is an inflection point of V(P ) if

and only if H(P )(p) = 0.

Assume p is an inflection point of V(P ). By Exercise
invariantinflection
2.2.29, this implies q is

an inflection point of V(Q), which in turn implies that H(Q)(q) = 0. Hence, by

Exercise
invarianthessian
2.2.28, H(P )(p) = 0 as well. Therefore, if p is a point of inflection of V(P ),

then H(P )(p) = 0.

Conversely, supposeH(P )(p) = 0. Then Exercise
invarianthessian
2.2.28 implies thatH(Q)(q) =

0, so that q is a point of inflection of V(Q). Therefore p is a point of inflection of

V(P ) by Exercise
invariantinflection
2.2.29.

Thus we will assume that the point p = (0 : 0 : 1) ∈ V(P ) and that the tangent

line to V(P ) at p is y = 0 from now until the end of Exercise
EndHessianProof
2.2.34.

dehomogenizedcubic Exercise 2.2.31. Explain why in the affine patch z = 1 the dehomogenized

curve is

�y + (ax2 + bxy + cy2) + higher order terms,

where � ∕= 0. [Hint: We know that p ∈ V(P ) and p is non-singular.]

Solution. Let P (x, y, z) be a homogeneous polynomial of degree n such that

p = (0 : 0 : 1) ∈ V(P ) and the tangent line to V(P ) at p is y = 0. We may write

P (x, y, z) = �zn + f1(x, y)z
n−1 + f2(x, y)z

n−2 + ⋅ ⋅ ⋅+ fn(x, y),

where � ∈ ℂ and each fk(x, y) is a homogeneous two-variable polynomial in x, y of

degree k. Then the dehomogenized curve is

P (x, y, 1) = �+ f1(x, y) + f2(x, y) + ⋅ ⋅ ⋅+ fn(x, y).

Since p = (0 : 0 : 1) ∈ V(P ), we know that P (0, 0, 1) = 0, but P (0, 0, 1) =

� + f1(0, 0) + f2(0, 0) + ⋅ ⋅ ⋅ + fn(0, 0) = � since any homogeneous polynomial of

positive degree vanishes at (0, 0). Thus � = 0, so P (x, y, 1) = f1(x, y) + f2(x, y) +

⋅ ⋅ ⋅+ fn(x, y).

To determine the tangent line to V(P ) at p = (0 : 0 : 1), we first compute the

partials

Px(x, y, z) =
∂f1
∂x

(x, y)zn−1 +
∂f2
∂x

(x, y)zn−2 + ⋅ ⋅ ⋅+ ∂fn
∂x

(x, y),

Py(x, y, z) =
∂f1
∂y

(x, y)zn−1 +
∂f2
∂y

(x, y)zn−2 + ⋅ ⋅ ⋅+ ∂fn
∂y

(x, y), and

Pz(x, y, z) = (n− 1)f1(x, y)z
n−2 + (n− 2)f2(x, y)z

n−3 + ⋅ ⋅ ⋅+ fn−1(x, y) + 0

Recalling that any homogeneous two-variable polynomial vanishes at (0, 0), almost

all of the summands of the partials Px, Py, Pz above will vanish when evaluated at
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(0 : 0 : 1), so that Px(0, 0, 1) =
∂f1
∂x

(0, 0)+0, Py(0, 0, 1) =
∂f1
∂y

(0, 0)+0, Pz(0, 0, 1) =

0. Therefore, if f1(x, y) = �x + �y, then Px(0, 0, 1) = � and Py(0, 0, 1) = �, so

that the tangent line to V(P ) at (0 : 0 : 1) is given by �x + �y = 0. However,

we are told that the tangent line to V(P ) at p = (0 : 0 : 1) is y = 0, so � = 0

and � ∕= 0. Therefore, P (x, y, 1) = (�y) + f2(x, y) + f3(x, y) + ⋅ ⋅ ⋅ + fn(x, y) =

�y + (ax2 + bxy + cy2) + higher order terms, where � ∕= 0, as we were to show.

From this we can conclude that P (x, y, z) is given by

hessianeqnhessianeqn (2.1) P (x, y, z) = �yzd−1 + (ax2 + bxy + cy2)zd−2 + higher order terms

where d = degP .

hessianmult Exercise 2.2.32. Explain why the intersection of V(P ) with the tangent V(y)

at p corresponds to the root (0 : 1) of the equation

P (x, 0, z) = ax2zd−2 + higher order terms = 0.

Solution. Since the tangent line is y = 0, it has parametrization L(x, z) =

(x : 0 : z), and the intersection multiplicity of V(P ) and V(y) at p = (0 : 0 : 1) is

equal, by definition, to the multiplicity of the root (x0 : z0) = (0 : 1) of P (L(x, z)) =

P (x, 0, z). Thus all that remains to show is that P (x, 0, z) has the form described.

Recall from Equation (
hessianeqn
2.1) that P (x, y, z) = �yzd−1 + (ax2 + bxy + cy2)zd−2 +

higher order terms, so

P (x, 0, z) = �[0]zd−1 + (ax2 + bx[0] + c[0]2)zd−2 + ⋅ ⋅ ⋅ = ax2zd−2 + ⋅ ⋅ ⋅ .

Therefore, the intersection of V(P ) with V(y) at p = (0 : 0 : 1) corresponds to

the root (0 : 1) of the equation P (x, 0, z) = ax2zd−2 + higher order terms = 0, as

claimed.

Exercise 2.2.33. Show that p is a point of inflection of V(P ) if and only if

a = 0. [Hint: For p to be an inflection point, what must the multiplicity of (0 : 1)

be in the equation in Exercise
hessianmult
2.2.32?]

Solution. We already know that p is a non-singular point of V(P ), so p is

a point of inflection of V(P ) if and only if the intersection multiplicity of V(P )

and V(y) at p is at least three. Equivalently, the multiplicity of the root (x0 :

z0) = (0 : 1) of P (x, 0, z) must be at least three, which happens if and only if

(1x − 0z)3 = x3 divides P (x, 0, z). Thus p is a point of inflection of V(P ) if

and only if x3 divides P (x, 0, z) = ax2zd−2 + higher order terms. Here the higher

order terms are of the form f3(x, 0)z
d−3 + ⋅ ⋅ ⋅ + fd(x, 0), following our notation

from Exercise
dehomogenizedcubic
2.2.31. Yet each fk(x, 0) must be a monomial involving only x,

so fk(x, 0) = ckx
k for k = 3, . . . , d. Thus we may be more precise and write
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P (x, 0, z) = ax2zd−2 + c3x
3zd−3 + ⋅ ⋅ ⋅ + cdx

d. Clearly x3 divides P (x, 0, z) if and

only if a = 0, so we conclude that p is an inflection point of V(P ) if and only if

a = 0.

We have now established that p is a point of inflection if and only if a = 0 in

Equation (
hessianeqn
2.1). All that remains is to show that p ∈ V(H(P )) if and only if a = 0.

Exercise 2.2.34.EndHessianProof

(1) Show that

H(P )(p) = det

⎛
⎜⎝
2a b 0

b 2c �(d− 1)

0 �(d− 1) 0

⎞
⎟⎠ .

(2) Conclude that p ∈ V(H(P )) if and only if a = 0.

Solution. Recall that P (x, y, z) = �yzd−1+(ax2+bxy+cy2)zd−2+higher order terms

from Equation (
hessianeqn
2.1).

(1) To compute the Hessian, H(P )(p), we find the first order partials

Px(x, y, z) = (2ax+ by)zd−2 + higher order terms,

Py(x, y, z) = �zd−1 + (bx+ 2cy)zd−2 + higher order terms,

Pz(x, y, z) = (d− 1)�yzd−2 + (d− 2)(ax2 + bxy + cy2)zd−3 + higher order terms.

Thus the second order partials are

Pxx = 2azd−2 + higher order terms,

Pxy = bzd−2 + higher order terms,

Pxz = (d− 2)(2ax+ by)zd−3 + higher order terms,

Pyx = bzd−2 + higher order terms,

Pyy = 2czd−2 + higher order terms,

Pyz = (d− 1)�zd−2 + (d− 2)(bx+ 2cy)zd−3 + higher order terms,

Pzx = (d− 2)(2ax+ by)zd−3 + higher order terms,

Pzy = (d− 1)�zd−2 + (d− 2)(bx+ 2cy)zd−3 + higher order terms,

Pzz = (d− 1)(d− 2)�yzd−3 + (d− 2)(d− 3)(ax2 + bxy + cy2)zd−4 + higher order terms.

All of the higher order terms will vanish when x = y = 0, so the Hessian

of P (x, y, z) at p = (0 : 0 : 1) is

H(P )(p) = det

⎛
⎜⎝
2a b 0

b 2c (d− 1)�

0 (d− 1)� 0

⎞
⎟⎠

as we needed to show.
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(2) By cofactor expansion across the first row,

H(P )(p) = det

⎛
⎜⎝
2a b 0

b 2c (d− 1)�

0 (d− 1)� 0

⎞
⎟⎠

= (2a)[(2c)(0)− (d− 1)2�2]− (b)[(b)(0)− (0)�(d− 1)]

= −2a(d− 1)2�2.

Clearly, if a = 0, then H(P )(p) = 0. Conversely, suppose H(P )(p) = 0.

Since � ∕= 0, this implies either a = 0 or d = 1. However, if d = 1,

then a = 0 for a is the coefficient of a term of degree at least two in

the expansion of P (x, y, z). Therefore, if H(P )(p) = 0, then a = 0, so

p ∈ V(H(P )) if and only if a = 0.

This completes our proof of Theorem
hessianintersection
2.2.27. In practice, we use the Hessian

to locate inflection points even if V(P ) is not smooth by finding the points of

intersection of V(P ) and V(H(P )) and eliminating those that are singular on V(P ).

Exercise 2.2.35. Let P (x, y, z) be an irreducible second degree homogeneous

polynomial. Using the Hessian curve, show that V(P ) has no points of inflection.

Solution. Let P (x, y, z) = ax2+bxy+cy2+dxz+eyz+fz2 be an irreducible

second degree polynomial. As P (x, y, z) is irreducible, V(P ) is neither crossing lines

nor a double line. Therefore, V(P ) is a non-degenerate conic, so V(P ) is smooth

by Theorem
singularclassification
1.9.15. Thus, by Theorem

hessianintersection
2.2.27, a point p ∈ V(P ) is an inflection

point if and only if p ∈ V(H(P )). Now Px = 2ax + by + dz, Py = bx + 2cy + ez,

and Pz = dx+ ey + 2fz, so

H(P )(x, y, z) = det

⎛
⎜⎝
2a b d

b 2c e

d e 2f

⎞
⎟⎠

is a constant. Thus H(P )(p) = 0 if and only if H(P )(x, y, z) = 0, in which case

V(P ) contains a line.3 As V(P ) is an irreducible second degree curve, it has no line

components, so H(P ) is not identically zero. Thus H(P ) is never zero, so V(P )

has no inflection points.

We conclude this section with the following theorem, which we state without

proof. Theorem
cubic bezout
2.2.36 is a direct result of Bézout’s theorem, which we will prove

in Section
bezout
3.3.28.

cubic bezout Theorem 2.2.36. Two cubic curves in ℙ2 will intersect in exactly 3 × 3 = 9

points, counted up to intersection multiplicities.We haven’t defined

intersection

multiplicities for two

curves yet. – DM

(8/13/09).

3See Lemma 13.3 of
gibson
[Gib98] for the proof, which uses the Implicit Function Theorem.
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nineinflections Exercise 2.2.37. Use Exercise
hessiandegree
2.2.22 and Theorem

hessianintersection
2.2.27 to show that if V(P )

is a smooth cubic curve, then V(P ) has exactly nine inflection points.

Solution. Let V(P ) be a smooth cubic curve in ℙ2. Thus P (x, y, z) is an

irreducible4 homogeneous polynomial of degree three, so H(P ) is also a third de-

gree homogeneous polynomial by Exercise
hessiandegree
2.2.22. Therefore, by Theorem

cubic bezout
2.2.36,

V(P ) ∩ V(H(P )) contains exactly nine points, each of which is an inflection point

by Theorem
hessianintersection
2.2.27. Hence V(P ) has exactly nine inflection points.

Exercise 2.2.38. Find all nine points of inflection of the Fermat curve, P (x, y, z) =

x3 + y3 + z3.

Solution. Since Px = 3x2, Py = 3y2, Pz = 3z2, every point of V(P ) must be

non-singular since at least one of its x-, y-, or z-coordinates will be non-zero. Thus

V(P ) is a smooth cubic curve, so it will have exactly nine inflection points, which

will be the nine points of intersection of V(P ) and V(H(P )). To find these points,

we must first compute the Hessian of P :

H(P )(x, y, z) = det

⎛
⎜⎝
6x 0 0

0 6y 0

0 0 6z

⎞
⎟⎠ = 216xyz.

A point p ∈ ℙ2 belongs to V(H(P )) if and only if one of its coordinates is zero.

Now P (0, y, z) = y3 + z3 = 0 if and only if y3 = −z3, so setting z = −1 we

find y3 = 1. Letting ! denote a primitive cube root of unity, the three solutions

of P (0, y, z) = 0 are (0 : 1 : −1), (0 : ! : −1), (0 : !2 : −1). Similarly, (1 :

0 : −1), (! : 0 : −1), (!2 : 0 : −1) are the three solutions of P (x, 0, z) = 0 and

(1 : −1 : 0), (! : −1 : 0), (!2 : −1 : 0) are the three solutions of P (x, y, 0) = 0.

Hence the nine inflection points of V(P ) are

(0 : 1 : −1), (0 : ! : −1), (0 : !2 : −1),

(1 : 0 : −1), (! : 0 : −1), (!2 : 0 : −1),

(1 : −1 : 0), (! : −1 : 0), (!2 : −1 : 0).

2.3. Group Law

The goal of this section is to illustrate that, as a consequence of their geometric

structure, smooth cubic curves are abelian groups. While the group law can be

stated algebraically, in this section we will develop it geometrically to see why it is

important for the curve to have degree three.

4If P (x, y, z) is reducible, say P (x, y, z) = l(x, y, z)Q(x, y, z) for some linear and quadratic

polynomials l, Q, then consider a point p ∈ V(l)∩V(Q), which exists by the Fundamental Theorem

of Algebra. Clearly p ∈ V(P ) and it is easy to check that p is a singular point.
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group

group!Abelian

chord-tangent
composition law

2.4.1:Group Law:Combining points
2.3.1. Adding points on smooth cubics. Let C denote a smooth cubic

curve in the projective plane, ℙ2(ℂ). We will develop a geometric method for

adding points so that C is an abelian group under this operation. First, we define

an abelian group.

2.4:Group Law:Def of Group Definition 2.3.1. A group is a set G equipped with a binary operation ★

satisfying the following axioms:

(G1) The binary operation is associative, i.e.,

g1 ★ (g2 ★ g3) = (g1 ★ g2) ★ g3

for all g1, g2, g3 ∈ G.

(G2) There is an (unique) identity element e ∈ G such that e ★ g = g = g ★ e for

all g ∈ G.

(G3) For each g ∈ G, there is an (unique) inverse element g′ ∈ G satisfying

g ★ g′ = e = g′ ★ g.

A group G is said to be an abelian group if, in addition, the binary operation

★ is commutative, i.e., g1 ★ g2 = g2 ★ g1 for all g1, g2 ∈ G.

For points P and Q on C, let ℓ(P,Q) denote the line in ℙ2 through P and Q. In

case P and Q are the same point, let ℓ(P, P ) be the line tangent to C at P . (This is

why we must assume the cubic curve C is smooth, in order to ensure there is a well-

defined tangent line at every point.) In Section
2.2:Lines and cubics
2.2.3 we saw that the Fundamental

Theorem of Algebra ensures there are exactly three points of intersection of ℓ(P,Q)

with the cubic curve C, counting multiplicities. Let PQ denote this unique third

point of intersection, so that the three points of intersection of C with ℓ(P,Q) are

P , Q and PQ. In the event that a line ℓ is tangent to C at P , then the multiplicity

of P is at least two by Exercise
tangentmulttwo
2.2.17. Therefore, if P ∕= Q and ℓ(P,Q) is tangent

to C at P , then PQ = P , for P counted the second time is the third point of

intersection of ℓ(P,Q) with C. The rule (P,Q) 7→ PQ gives a binary operation on

C, which is called the chord-tangent composition law .I’m not sure this term

is universal. However,

it appears in

Husemöller’s “Elliptic

Curves” (p. 13),

Knapp’s “Elliptic

Curves” (p. 67), and I

saw two pages online

use it.

Law:EX-ChordLawCommutes Exercise 2.3.1. Explain why the chord-tangent composition law is commuta-

tive, i.e., PQ = QP for all points P,Q on C.

Solution. If P = Q, then PP = PP , so we may assume that P ∕= Q. There

is a unique line ℓ(P,Q) passing through these two distinct points. This line will

intersect the elliptic curve in a unique third point PQ. However, QP is also the

third point of intersection of ℓ(P,Q) and C. Therefore PQ = QP .

While this is a well-defined, commutative binary operation on C, the following

exercises illustrate that the chord-tangent composition law lacks the properties

required of a group law.
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Law:EX-ChordLawNotAssoc Exercise 2.3.2. Consider the cubic curve C = {(x, y) ∈ ℂ2 ∣ y2 = x3 − x}
and the points P,Q,R on C, as shown below. (Note that only the real part of C is

shown.)

2.4:Group Law:yˆ2=xˆ3-x graph

1

2

−1

−2

1 2−1−2

C

∙P∙Q

∙R

Using a straightedge, locate PQ and then (PQ)R on the curve C. Now locate the

point QR and the point P (QR) on the curve C. Is it true that P (QR) = (PQ)R?

That is, is the chord-tangent composition law associative for these points on C?

Solution. We find P (QR) by first drawing the line through Q and R to obtain

the point QR, and then drawing the line through P and QR to get P (QR).

2.4:Group Law:yˆ2=xˆ3-x graph

1

−1

1 2−1−2

C

∙ P∙
Q

∙R

∙
QR

∙
P (QR)

Now we find (PQ)R by first obtaining PQ and then drawing the line through this

point and R to find (PQ)R.
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2.4:Group Law:yˆ2=xˆ3-x graph

1

−1

1 2−1−2

C

∙ P∙
Q

∙
R

∙
PQ

∙
(PQ)R

Clearly, the point P (QR) is below the x-axis while the point (PQ)R is above the

x-axis, so these are not the same point. That is, P (QR) ∕= (PQ)R, so the chord-

tangent composition law is not associative.

The preceding exercise demonstrates that the chord-tangent composition law

is not associative. The next exercise illustrates that associativity is not the only

group axiom that fails for the chord-tangent composition law.

That there is no

identity element was

inspired by a comment

in Husemöller’s

“Elliptic Curves” (p.

13)

Law:EX-ChordLawNoIdentity Exercise 2.3.3. Consider the cubic curve C = {(x, y) ∈ ℂ2 ∣ x3 + y3 = 1}.
and the points P = (0, 1) and Q = (1, 0) on C, as shown below. (Again, we note

that only the real part is shown.)

2.4:Group Law:xˆ3+yˆ3=1 graph

1

2

−1

−2

1 2−1−2

C

∙P

∙Q

(1) Using the equation of the cubic curve C and its Hessian, verify that P and

Q are inflection points of C.

(2) Verify that PP = P . Conclude that if C has an identity element e, then

e = P .

(3) Verify that QQ = Q. Conclude that if C has an identity element e, then

e = Q.

(4) Conclude that C does not have an identity element for the chord-tangent

composition law.
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Solution. (1) Homogenizing the curve, we have f(x, y, z) = x3+y3−z3.
The Hessian is given by

H(x, y, z) = det

⎛
⎜⎝
6x 0 0

0 6y 0

0 0 −6z

⎞
⎟⎠ = −216xyz

The point P = (0, 1) in the plane has homogenoues coordinates (0 : 1 : 1)

and H(0, 1, 1) = 0. Similarly, the point Q = (1, 0) in the plane has

homogenoues coordinates (1 : 0 : 1) and H(1, 0, 1) = 0. Since P,Q ∈
V (H) ∩ C, P and Q are both inflection points.

(2) The point PP is the third point of intersection of the line tangent to

C at P . The tangent line has equation y = 1 - compute the derivative

implicitly and dy
dx = −x

y . Substituting into the defining equation for C

gives us x3 + 1 = 1, or x3 = 0. The only other solution is x = 0, so

PP = P . If C has an identity element e, then e = P .

(3) The point QQ is the third point of intersection of the line tangent to C at

Q. The tangent line has equation x = 1. Substituting into the defining

equation for C gives us 1 + y3 = 1, or y3 = 0. The only other solution is

y = 0, so PP = P . If C has an identity element e, then e = Q.

(4) The identity element of a group must be unique: if e and f are identity

elements, then ef = f and ef = e, so e = f . Since we have 2 distinct

points which act as identity elements, C does not have an identity element

under chord-tangent composition.

Therefore, the chord-tangent composition law will not serve as a binary oper-

ation for the group structure on C because it violates both axioms (G1) and (G2).

However, we can find a way to make this work. By using the chord-tangent com-

position law twice in combination with a fixed inflection point, we will construct

the group law on C in the next subsection.

2.4.2:Group Law:O=inflection

2.3.2. Group Law with an Inflection Point. Let C denote a smooth cubic

curve in the projective plane, ℙ2(ℂ). As we showed in Exercise
nineinflections
2.2.37 , there

are nine points of inflection (counting multiplicity) on C. These are the points of

intersection of the cubic curve, C, with its Hessian curve.

Select a point of inflection O on C. We define our binary operation, +, relative

to this specific point O. For points P,Q on C, define P +Q to be the unique third

point of intersection of ℓ(O,PQ) with C, where PQ denotes the chord-tangent

composition of P and Q. That is, P + Q = O(PQ), using the chord-tangent

composition law notation. We claim that with this binary operation +, C is an

abelian group, and we call this operation addition, i.e. we can “add” points on C.
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We will prove that for a given choice of inflection point, O, the cubic curve

C with addition of points relative to O is an abelian group. Before we verify this

claim, let’s consider a specific example.

2-4:Group Law:yˆ2=xˆ3+1

1

2

3

4

−1

−2

−3

−4

1 2 3−1−2

C

∙P1

∙
P2

∙P3

∙P4

∙P5

Figure 1. The cubic curve C = V (x3 − y2z + z3) in the affine

patch z = 1

Consider the cubic curve C = V (x3 − y2z + z3) ⊂ ℙ2, and the points P1 = (2 :

3 : 1), P2 = (0 : 1 : 1), P3 = (−1 : 0 : 1), P4 = (0 : −1 : 1), P5 = (2 : −3 : 1) on C.

Figure
2-4:Group Law:yˆ2=xˆ3+1
2.3.2 shows C in the affine patch z = 1.

2.4:Group Law:EX-PlusLaw Exercise 2.3.4. Use the equations of the cubic curve C and its Hessian to

verify that P2 and P4 are inflection points of C.

Solution. The Hessian is

H(x, y, z) = det

⎛
⎜⎝
6x 0 0

0 −2z −2y

0 −2y0 6z

⎞
⎟⎠ = 6x

(
−12z2 − 4y2

)
= −24x(3z2 + y)

Since the x−coordinates of P2 and P4 are 0, H = 0.

2.4:Group Law:EX-PlusLawP2 Exercise 2.3.5. Let O = P2 be the specified inflection point so that + is

defined relative to P2, i.e. Q+R = P2(QR) for points Q,R on C.
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(1) Compute P1 + P2, P2 + P2, P3 + P2, P4 + P2, and P5 + P2.

(2) Explain why P2 is the identity element for C.

(3) Find the inverses of P1, P2, P3, P4 and P5 on C.

(4) Verify that P1+(P3+P4) = (P1+P3)+P4. In general, addition of points

on C is associative.

Solution. (1) (a) To compute P1 + P2, note that the third point of

intersection of ℓ(P1, P2) and C is P3 and P2(P3) = P1. Therefore

P1 + P2 = P1.

(b) To compute P2 + P2, note that the third point of intersection of

ℓ(P2, P2) and C is P2 since P2 is an inflection point of C, and P2(P2) =

P2. Therefore P2 + P2 = P2.

(c) To compute P3 + P2, note that the third point of intersection of

ℓ(P3, P2) and C is P1. Then P3 + P2 = P2(P3P2) = P2(P1) = P3.

(d) To compute P4 + P2, note that the third point of intersection of

ℓ(P4, P2) and C is (0 : 1 : 0), so P2 ((0 : 1 : 0)) = P4.

(e) To compute P5 + P2, note that the third point of intersection of

ℓ(P5, P2) and C is P5, and P2(P5) = P5.

(2) From these five examples it seems like P2 added to any other point yields

that point again. To verify this, suppose Q is another point on C. Then

Q + P2 = P2(QP2). Now QP2 is the unique third point of intersection

of the line ℓ(Q,P2) with the curve C, so the three points Q,P2, QP2 are

collinear points on C. Then Q + P2 = P2(QP2) is the third point of

intersection of the line ℓ(P2, QP2) with C. Yet ℓ(P2, QP2) = ℓ(Q,P2), and

the third point of intersection of this line with C is Q. Hence Q+P2 = Q

for all points Q on C.

(3) P1 has inverse P3, P2 has inverse P2, P3 has inverse P1, P4 has inverse

(0 : 1 : 0), and P5 has inverse P5.

(4) Let us first compute the left hand side of the equation. To calculate

P3+P4, we determine that the line connecting these two points ℓ(P3, P4) =

−x − 1. We can substitute this into the defining equation for C, which

gives us

x3 − y2 + 1 = 0

x3 − (−x− 1)2 + 1 = 0

x3 − x2 − 2x− 1 + 1 = 0

x(x2 − x− 2) = 0

which has solutions x = 0,−1, 2. So the third point of intersection of ℓ

and C has x−coordinate 2. We can see that the appropriate y−coordinate
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is −3, so P3P4 = P5. Now the line connecting P2 and P5 has a point of

tangency at P5, so P2(P3P4) = P3 + P4 = P5.

Now, to compute P1 + P5, we first obtain the line ℓ(P1, P5) is the

vertical line x = 2. If we substitute this into the defining equation in

this chart, we obtain 8 − y2 + 1 = 0 or y = ±3. This means that the

third point of intersection is not shown in this chart. If we homogenize

the equation which defines C, we obtain x3 − zy2 + z3 = 0. If we set

z = 0, the equation becomes x3 = 0. Thus the y−coordinate must be

non-zero, so the third point of intersection is P1P5 = (0 : 1 : 0). Now the

line connecting (0 : 1 : 0) to P2 is vertical, which will also intersect C at

P4. Therefore, P1 + (P3 + P4) = P4.

The right hand side of the equation can be evaluated straightfor-

wardly. Since P1 and P3 are inverses, P1 + P3 = P2. Since P2 is the

identity element P2 + P4 = P4.

2.4:Group Law:EX-PlusLawP4 Exercise 2.3.6. Now let O = P4 be the specified inflection point so that + is

defined relative to P4, i.e. Q+R = P4(QR) for points Q,R on C.

(1) Compute P1 + P2, P2 + P2, P3 + P2, P4 + P2, and P5 + P2. [Hint: For

P4+P2 and P5+P2 find the equations of the lines ℓ(P4, P2) and ℓ(P5, P2),

respectively, to find the third points of intersection with C.] Are the

answers the same as they were in part (1) of Exercise
2.4:Group Law:EX-PlusLawP2
2.3.5? Is P2 still

the identity element for C?

(2) Now compute P1 + P4, P2 + P4, P3 + P4, P4 + P4, and P5 + P4. Explain

why P4 is now the identity element for C.

(3) Using the fact that P4 is now the identity element on C, find the inverses

of P1, P2, P3, P4 and P5 on C. [Hint: See the hint on part (1).] Are these

the same as the inverses found in part (3) of Exercise
2.4:Group Law:EX-PlusLawP2
2.3.5?

Solution. (1) (a) To compute P1 + P2, note that the third point of

intersection of ℓ(P1, P2) and C is P3 and P4(P3) = P5. Therefore

P1 + P2 = P5.

(b) To compute P2 + P2, note that the third point of intersection of

ℓ(P2, P2) and C is P2 since P2 is an inflection point of C and P4(P2) =

(0 : 1 : 0). Therefore P2 + P2 = (0 : 1 : 0).

(c) To compute P3 + P2, note that the third point of intersection of

ℓ(P3, P2) and C is P1. The line connecting P1 and P4 is given by y =

2x−1. Substituting into the equation for C yields x3−4x2+4x = 0,

which has roots x = 0, 2, 2. So P1 has multiplicity two on this line

and P4(P1) = P1.
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(d) To compute P4 + P2, note that the third point of intersection of

ℓ(P4, P2) and C is (0 : 1 : 0), so P4 ((0 : 1 : 0)) = P2.

(e) To compute P5 + P2, note that the third point of intersection of

ℓ(P5, P2) and C is P5, and P4(P5) = P3.

We can see that P2 is not the identity element under addition relative

to P4.

(2) The given points, along with (0 : 1 : 0) are enough to show this result.

(3) The inverse of P1 is P1. The inverse of P2 is (0 : 1 : 0). The inverse of P3

is P5. The inverse of P4 is P4. The inverse of P5 is P3.

Now we will prove that the cubic curve C with addition of points relative to

a fixed inflection point O is an abelian group. First, we verify that the binary

operation + is commutative.

2.4:Group Law:EX-PlusCommutes Exercise 2.3.7. Explain why P + Q = Q + P for all points P,Q on C. This

establishes that + is a commutative binary operation on C.

Solution. Let P,Q ∈ C and let O ∈ C be a fixed inflection point. Then P +Q

is the third point of intersection of ℓ(O,PQ) on C, where PQ is the chord-tangent

composition. Since PQ = QP , this is the same as the third point of intersection of

ℓ(O,QP ) on C. Therefore P +Q = Q+ P .

In Exercises
2.4:Group Law:EX-PlusLawP2
2.3.5 and

2.4:Group Law:EX-PlusLawP4
2.3.6, the inflection point used to define the addition also

served as the identity element for the curve C = V (x3 − y2z + z3). In the exercise

below, you will show this is true for any cubic curve.

2.4:Group Law:EX-PlusIdentity Exercise 2.3.8. Let C be a smooth cubic curve and let O be one of its inflection

points. Define addition, +, of points on C relative to O. Show that P +O = P for

all points P on C and that there is no other point on C with this property. Thus O

is the identity element for + on C.

Solution. Let P ∈ C be a point and addition is defined relative to an inflection

point O and consider P +O. Let Q be the third point on ℓ(O,PO) and C. Then O,

P and Q are collinear. Now P +O = O(Q) is the third point on the line connecting

Q and O on C, which must be P . Therefore P +O = P for all P ∈ C.

To prove uniqueness, suppose P +O = P and P +O′ = P for all P ∈ C. Then

O +O′ = O and O′ +O = O′. Since O +O′ = O′ +O, it follows that O′ = O.

Thus (C, O,+) satisfies group axiom (G2). Next, we verify that every point P

on C has an inverse, so that C with + also satisfies group axiom (G3).

2.4:Group Law:EX-PlusInverses Exercise 2.3.9. Let C be a smooth cubic curve and let O be one of its inflection

points. Define addition, +, of points on C relative to the identity O.
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(1) Suppose that P , Q, R are collinear points on C. Show that P+(Q+R) = O

and (P +Q) +R = O.

(2) Let P be any point on C. Assume that P has an inverse element P−1 on

C. Prove that the points P , P−1, and O must be collinear.

(3) Use the results of parts (1) and (2) to show that for any P on C there is

an element P ′ on C satisfying P +P ′ = P ′ +P = O, i.e. every element P

has an inverse P−1. Then show this inverse is unique.

Solution. (1) Consider (P + Q) + R. The line segment containing P

and Q must intersect at R, so P + Q = O(R). If we construct the line

segment from O(R) to R, the point of intersection must be collinear with

R, O and O(R). Then the third point of intersection must be O. Since O

is an inflection point, the line tangent to O intersects the curve again at

O. Hence (P +Q) +R = O.

The verification that P + (Q+R) = O is similar.

(2) Construct the segment through P and P−1 with third point Q. Then

(P + P−1) + Q = O while P + P−1 = O, so O + Q = O. However, O is

the identity, so O + Q = Q. Therefore, Q = O and P , P−1 and O are

collinear.

(3) Let P ′ = OP be the unique third point of intersection of the line ℓ(O,P )

with the curve C. We claim that P ′ is an inverse for P . Since P,O, P ′ are

collinear points, P +(O+P ′) = O and (P ′+O)+P = O by part (1). Yet

O+P ′ = P ′ = P ′ +O, so P +P ′ = O and P ′ +P = O. Therefore, P has

an inverse element, P ′ = OP , on C. Moreover, this must be the unique

inverse of P on C by part (2), as it is the unique element on C such that

P,O, P ′ are collinear.

So far we have shown that (C, O,+) has an identity, inverses, and is commuta-

tive. All that remains in order to prove that C is an abelian group is to show that

+ is an associative operation. Establishing this fact is more involved than verifying

the other axioms.

The following three exercises are based on
Fulton1969
[Ful69], pages 124-125. We will first

develop some results regarding families of cubic curves.

2-4:Group Law:families of cubics Exercise 2.3.10. Start with two cubic curves, C = V (f) and D = V (g). By

Theorem
cubic bezout
2.2.36, there are exactly nine points of intersection, counting multiplicities,

of C and D. Denote these points by P1, P2, . . . , P9.

(1) Let �, � ∈ ℂ be arbitrary constants. Show that P1, P2, . . . , P9 are points

on the cubic curve defined by �f + �g = 0.
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general position(2) Let �1, �2, �1, �2 ∈ ℂ be arbitrary constants. Show that P1, P2, . . . , P9

are the nine points of intersection of the cubic curves C1 = V (�1f + �1g)

and C2 = V (�2f + �2g).

Solution. (1) For Pi, i = 1, . . . , 9, we have �f + �g(Pi) = �f(Pi) +

�g(Pi) = 0 + 0 = 0.

(2) For every � and �, the points Pi are on V (�f + �g) for i = 1, . . . , 9.

Therefore the Pi are on the intersection of any two cubics of this form.

Let F (x, y, z) = a1x
3+a2x

2y+a3x
2z+a4xy

2+a5xyz+a6xz
2+a7y

3+a8y
2z+

a9yz
2+a10z

3 be a cubic whose coefficients, a1, a2, . . . , a10, are viewed as unknowns.

Then, for any point P = (x0 : y0 : z0) in ℙ
2, the equation F (P ) = 0 gives a linear

equation in the unknown coefficients, ai. Explicitly, we obtain the linear equation

a1x
3
0 + a2x

2
0y0 + a3x

2
0z0 + a4x0y

2
0 + a5x0y0z0+

a6x0z
2
0 + a7y

3
0 + a8y

2
0z0 + a9y0z

2
0 + a10z

3
0 = 0.

Recall that the coordinates of P are only determined up to non-zero scalar mul-

tiple. Since F (x, y, z) is homogeneous of degree three, we have F (�x0, �y0, �z0) =

�3F (x0, y0, z0). Therefore, the zero set of the equation in the ten unknowns a1, a2, . . . , a10

is uniquely determined by P .

2-4:Group Law:8 points Exercise 2.3.11. Consider eight distinct points in ℙ2, say P1, P2, . . . , P8, that

are in general position, which for us means that no four are collinear and no seven

are on a single conic. Let F be a generic cubic polynomial with unknown coefficients

a1, a2, . . . , a10. The system of simultaneous equations F (P1) = F (P2) = ⋅ ⋅ ⋅ =

F (P8) = 0 is a system of eight linear equations in the ten unknowns a1, a2, . . . , a10.

(1) Show that if the eight points P1, P2, . . . , P8 are in general position, then

the rank of the linear system F (P1) = F (P2) = ⋅ ⋅ ⋅ = F (P8) = 0 is equal

to 8.

(2) Use the Rank-Nullity theorem from linear algebra to show that there are

two “linearly independent” cubics F1(x, y, z) and F2(x, y, z) such that any

cubic curve passing through the eight points P1, P2, . . . , P8 has the form

�F1 + �F2. The RN intro needs

revision(3) Conclude that for any collection of eight points in general position, there

is a unique ninth point P9 such that every cubic curve passing through

the eight given points must also pass through P9.

In this next exercise, we prove the associativity of the newly defined addition

of points on a smooth cubic curve.

Law:EX-GeometricAssociativity Exercise 2.3.12. Let C be a smooth cubic curve in ℙ2 and let P,Q,R be three

points on C. We will show that P + (Q+R) = (P +Q) +R.
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order!group element ∙ Let V (l1) = ℓ(P,Q) and S1 = PQ, so V (l1) ∩ C = {P,Q, S1}.
∙ Let V (l2) = ℓ(S1, O) and S2 = OS1 = P +Q, so V (l2) ∩ C = {S1, O, S2}.
∙ Let V (l3) = ℓ(S2, R) and S3 = (P +Q)R, so V (l3) ∩ C = {S2, R, S3}.

Similarly,

∙ Let V (m1) = ℓ(Q,R) and T1 = QR, so V (m1) ∩ C = {Q,R, T1}.
∙ Let V (m2) = ℓ(T1, O) and T2 = OT1 = Q+R, so V (m2)∩C = {T1, O, T2}.
∙ Let V (m3) = ℓ(T2, P ) and T3 = P (Q+R), so V (m3) ∩ C = {T2, P, T3}.

(1) Notice that C′ = V (l1m2l3) is a cubic. Find C′ ∩ C.

(2) Likewise, C′′ = V (m1l2m3) is a cubic. Find C′′ ∩ C.

(3) Using parts (1) and (2) together with Exercise
2-4:Group Law:8 points
2.3.11, deduce that (P +

Q)R = P (Q+R).

(4) Explain why (P+Q)R = P (Q+R) implies that (P+Q)+R = P+(Q+R).

Conclude that the addition of points on cubics is associative.

Solution. (1) We have C′ ∩ C = {O,P,Q,R, S1, S2, S3, T1, T2}.
(2) We also have C′′ ∩ C = {O,P,Q,R, S1, S2, T1, T2, T3}.
(3) Both C′ and C′′ pass through the 8 points {O,P,Q,R, S1, S2, T1, T2}.

Therefore they must pass through the same ninth point, so S3 = T3 or

(P +Q)R = P (Q+R).

(4) Since (P + Q)R = P (Q + R), we have O ((P +Q)R) = O (P (Q+R)),

which is the same as (P +Q) +R = P + (Q+R).

Therefore, a cubic curve C with a selected inflection point O determines a binary

operation, +, in such a way that (C, O,+) is an abelian group under addition.5

Since (C, O,+) is a group, it is natural to ask group theoretic questions about

C, such as questions regarding the orders of its elements. First we define an integer

multiple of a point and the order of a point.

Definition 2.3.2. Let (C, O,+) be a smooth cubic curve and let P ∕= O be a

point on the curve. For n ∈ ℤ we define n ⋅ P as follows:

∙ 0 ⋅ P = O and 1 ⋅ P = P

∙ For n ≥ 2, we have n ⋅ P = (n− 1)P + P

∙ For n < 0, we set n ⋅ P to be the inverse of −n ⋅ P .

Definition 2.3.3. Let (C, O,+) be a smooth cubic curve and let P ∕= O be a

point on the curve. If there exists a positive integer n so that n ⋅ P = O and for

1 ≤ m ≤ n−1 we have m ⋅P ∕= O, then the point P has order n. If no such positive

integer exists, then the point is said to have infinite order.

5We defined addition on C relative to an inflection point, O, but we could define addition on

C relative to any point O on C. See Husemöller, “Elliptic Curves”, Theorem 1.2 for details.
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point of inflectionWe can now examine points of finite order. In particular, we are interested here

in points of order two and three. Many areas of mathematics are concerned with

the computation of the order of various points on a cubic curve.
2.4.3:Group Law:FiniteOrder

2.3.3. Points of Order Two and Three. Let C be a smooth cubic curve

with + defined relative to the inflection point O, the group identity. Let P be a

point on C.

Law:EX-l(O,P) tangent at P iff 2P=O Exercise 2.3.13. Show that 2P = O if and only if ℓ(O,P ) is tangent to C at

P .

Solution. Suppose 2P = O, which is the same as P +P = O. If we construct

the tangent line at P and find the third point of intersection Q, then draw the line

seqment from Q to O, it must intersect again at O. Since O is an inflection point,

the multiplicity of the root is (at least) 3, so Q = O and ℓ(P,O) is tangent to C at

P .

Conversely, suppose ℓ(P,O) is tangent to C at P and consider P + P . The

tangent line at P has third point of intersection O and the line segment connecting

O to itself has third point O. Therefore, P + P = O.

Law:EX-Order 2 points are collinear Exercise 2.3.14. Show that if P and Q are two points on C of order two, then

PQ, the third point of intersection of C with ℓ(P,Q), is also a point of order two

on C.

Solution. Let P and Q be points of order 2 and consider PQ, which is the

third point of intersection of ℓ(P,Q) and C. We note that P + Q has order 2. To

prove the result, we need to show that P +Q = PQ.

If P + Q ∕= PQ, then suppose P + Q = R. Then R has order 2, so the line

ℓ(O,R) is tangent at R. However, this line also passes through O and PQ so the

degree of the root at R is at least 4, which is a contradiction. Hence PQ must also

have order 2.

2.4:Group Law:EX-Order 2 example Exercise 2.3.15. Let C be the cubic curve defined by y2z = x3 − xz2. Graph

C in the affine patch z = 1, and find three points of order two.

Solution. Add graph here!

Let C be a smooth cubic curve with + defined relative to the inflection point

O.

Law:EX-Inflection have order 3 Exercise 2.3.16. Let P be any inflection point on C. Show that 3P = O.

Solution. Let P be any inflection point on C. If P = O, then 3P = O+O+

O = O so we may assume P ∕= O. Then P + P can be determined by taking the
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line segment from P to O and finding the third point of intersection R. This point

can not be O, otherwise the line connecting O and P has intersection multiplicity

4. Now RP is the line from R to P . This line contains O, so the third point of

intersection is O. Therefore 3P = O.

Law:EX-Point of order 3 Exercise 2.3.17. Suppose P is point on C and 3P = O. Conclude that PP =

P . From this, deduce that P is a point of inflection on C.

Solution. Suppose 3P = O. This is equivalent to P + P = −P . Now the

points P , −P , and O are collinear since P − P = O. Therefore, −P is on the line

segment tangent at P to O. So PP , which is the third point of intersection, must

be equal to P .

If PP = P , then the multiplicity of the tangent line at P must be at least 3.

Therefore, P is an inflection point.

We will return to points of finite order in section
2.6.4:Elliptic Curves:FiniteOrder2
2.4.3 after we have developed

a more convenient way to express our smooth cubic curves.

2.4. Normal forms of cubics
2.5:Canonical Form

The goal of this section6 is to show that every smooth cubic is projectively equiv-

alent to one of the form y2 = x3 + Ax + B, the Weierstrass normal form, where

the coefficients A and B are determined uniquely. See Equation (
2.5:Canonical Form:EQ-wnf
2.7). We will

also show that every smooth cubic is projectively equivalent to the canonical form

y2 = x(x−1)(x−�). See Equation 2.5:Canonical Form:EX-canonical form
2.4.24. The value of �, however, is not uniquely

determined, as there are six values of � for the same cubic. We associate to each

cubic a complex number and vice versa showing that we can parametrize all cubics

by the complex numbers. Using this, in the next section we will give an algebraic

characterization of the group law, which may then be used not only in characteristic

zero, but for positive characteristics and even over non-algebraically closed fields

such as ℝ, ℚ, and ℤp.

2.4.1. Weierstrass Normal Form. One set of problems will be to achieve

the goals outlined above for a general cubic curve C. The other set of problems

consists of carrying out the computations with a concrete example, the curve {x3+
y3 − z3 = 0}.

Let C be a smooth cubic curve in ℙ2 given by the homogeneous equation

f(x, y, z) = 0. Select an inflection point, O = (a0 : b0 : c0), on C and let ℓ denote

the tangent line to C at O, where ℓ is defined by the linear equation l(x,y,z)=0.

6The development in this section follows the first two sections of chapter three of J. Silver-

man’s The Arithmetic of Elliptic Curves.
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Recall that we can projectively change coordinates with an invertible 3× 3 matrix

M .
⎛
⎜⎝
x1

y1

z1

⎞
⎟⎠ =M

⎛
⎜⎝
x

y

z

⎞
⎟⎠ .

We choose M so that
⎛
⎜⎝
0

1

0

⎞
⎟⎠ =M

⎛
⎜⎝
a0

b0

c0

⎞
⎟⎠

and ℓ is transformed to the line defined by l1(x1, y1, z1) = z1, i.e. the inflection

point O becomes and (0 : 1 : 0) and the tangent line ℓ becomes the line {z1 = 0}
under the projective change of coordinates M . Recall, that we actually carry out

the computations of changing coordinates by using the inverse M−1 of M and

replacing x, y, and z with expressions involving x1, y1, and z1.

Form:EX-moving Fermat O to infinity Exercise 2.4.1. Consider the smooth cubic curve C defined by x3+y3−z3 = 0.

(1) Show that O = (1 : 0 : 1) is an inflection point of C.

(2) Show that x− z = 0 is the equation of the tangent line to C at O.

(3) Find a 3× 3 matrix M such that, under the change of variables

⎛
⎜⎝
x

y

z

⎞
⎟⎠ =M−1

⎛
⎜⎝
x1

y1

z1

⎞
⎟⎠ ,

we have (1 : 0 : 1) 7→ (0 : 1 : 0) and l(x, y, z) = x − z becomes

l1(x1, y1, z1) = z1.

(4) Find the equation, f1(x1, y1, z1) = 0, for the curve C1 that is associated

to this projective change of coordinates.

Solution. Let f(x, y, z) = x3 + y3 − z3.

(1) V (f) is a smooth cubic. The Hessian H(f) is H(f)(x, y, z) = −216xyz. It

is clear that O ∈ V (f)∩V (H(f)), so by Theorem
hessianintersection
2.2.27, O is an inflection

point of C.

(2) The equation of the tangent to C at O is

∂f

∂x
(1, 0, 1)(x− 1) +

∂f

∂y
(1, 0, 1)(y − 0) +

∂f

∂z
(1, 0, 1)(z − 1) = 0.

Hence the tangent line is defined by 3(x − 1) − 3(z − 1) = 0. This is the

line x− z = 0.
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(3) Let M = (aij), detM ∕= 0. We want M to map (1 : 0 : 1) to (0 : 1 : 0),

i.e. ⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠

⎛
⎜⎝
1

0

1

⎞
⎟⎠ =

⎛
⎜⎝
0

1

0

⎞
⎟⎠ .

We also require that M take points on the line V (x− z) to points on the

line V (z1). Any point on V (x−z) is of the form (� : � : �), and any point

on V (z1) is of the form ( : � : 0). Hence
⎛
⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠

⎛
⎜⎝
�

�

�

⎞
⎟⎠ =

⎛
⎜⎝


�

0

⎞
⎟⎠ .

must hold. The first matrix equation yields the following three equations

in aij .

a11 + a13 = 0

a21 + a23 = 1

a31 + a33 = 0

The second matrix equation yields only one equation

�a31 + �a32 + �a33 = 0.

But since this equation must hold for all �, � ∈ ℂ, we know a32 = 0 and

a31+a33 = 0. These equations form an underdetermined linear system, so

there are many projective changes of coordinatesM that meet our criteria.

Since we have freedom to pick values for aij , provided detM ∕= 0, we let

M be the following.

M =

⎛
⎜⎝
−1 1 1

1 0 0

1 0 −1

⎞
⎟⎠

This M satisfies the the conditions and detM = 1 ∕= 0.

(4) To find the defining equation f1(x1, y1, z1) = 0 for C1, we use M−1.

M−1 =

⎛
⎜⎝
0 1 0

1 0 1

0 1 −1

⎞
⎟⎠

x = y1

y = x1 + z1

z = y1 − z1
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Then f1(x1, y1, z1) = (y1)
3 + (x1 + z1)

3 − (y1 − z1)
3, so

f1(x1, y1, z1) = x31 + 3x21z1 + 3x1z
2
1 + 3y21z1 − 3y1z

2
1 + z31 .

Now we have transformed our original smooth cubic curve C into another

smooth cubic curve C1, which is projectively equivalent to C. Let’s now work

with the new curve C1 that is defined by the equation f1(x1, y1, z1) = 0 in ℙ2 with

coordinates (x1 : y1 : z1).

2.5:Canonical Form:EX-cubic terms Exercise 2.4.2.

(1) Explain why the homogeneous polynomial f1(x1, y1, z1) can be expressed

as

f1(x1, y1, z1) = �x31 + z1F (x1, y1, z1),

where � ∕= 0 and F (0, 1, 0) ∕= 0.

(2) Explain why the highest power of y1 in the homogeneous polynomial

f1(x1, y1, z1) is two.

(3) Explain how by rescaling we can introduce new coordinates (x2 : y2 : z2)

so that the coefficient of x32 is 1 and the coefficient of y22z2 is −1 in the

new homogeneous polynomial f2(x2, y2, z2) = 0.

Solution. (1) Any homogeneous degree three polynomial f1(x1, y1, z1)

is of the form ∑

i+j+k=3

aijkx
iyjzk.

Since (0 : 1 : 0) ∈ V (f1) and f1(0, 1, 0) = a030, we know a030 = 0. Also,

since the tangent line to V (f1) at (0 : 1 : 0) is given by z1 = 0, we know

that ∂xf1(0, 1, 0) = ∂yf(0, 1, 0) = 0, but ∂xf(0, 1, 0) = a120, so a120 = 0.

Now we have that f1 is of the form f1(x1, y1, z1) = x1(a300x
2
1 + a120y

2
1) +

z1F (x1, y1, z1). Since (0 : 1 : 0) is an inflection point and z1 = 0 is the

tangent to V (f1) at (0 : 1 : 0), we know that V (z1) intersects V (f1) only

at the point (0 : 1 : 0). This implies that (0 : 1 : 0) is the only point

at infinity on V (f1), i.e. f(x1, y1, 0) ∕= 0 unless x1 = 0, but observe that

f1(x1, y,0) = x1(a300x
2
1 + a120y

2
1), so (

√
a120 : i

√
a300 : 0) ∈ V (f1). This

implies that a120 = 0. We can then write

f1(x1, y1, z1) = �x31 + z1F (x1, y1, z1).

We only need to check that � ∕= 0 and F (0, 1, 0) ∕= 0. As before since

(0 : 1 : 0) is nonsingular, we know that at least one of ∂xf1(0, 1, 0),

∂yf1(0, 1, 0), and ∂zf1(0, 1, 0) is nonzero, but ∂xf1(0, 1, 0) = ∂yf1(0, 1, 0) =

0 and ∂zf1(0, 1, 0) = F (0, 1, 0), so F (0, 1, 0) ∕= 0. Finally, if � = 0, then f1

is the product of z1 and F (x1, y1, z1). In this case V (z1) intersects V (f1)
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at (0 : 1 : 0) with multiplicity three if and only if F (0, 1, 0) = 0, but then

V (f1) is singular.

(2) Since we can write f1(x1, y1, z1) = �x31 + z1F (x1, y1, z1), and f1 is homo-

geneous of degree three, we know F is homogeneous of degree two. Hence

the highest power of y1 in f1 is two.

(3) We can replace x1 with
x2
3
√
�

and if the coefficient of y21z1 is �, we replace

z1 with
z2
�
.

We can now rearrange the equation f2(x2, y2, z2) = 0 to be of the form

Form:EQ-homogeneous quadraticForm:EQ-homogeneous quadratic (2.2) y22z2 + a1x2y2z2 + a3y2z
2
2 = x32 + a2x

2
2z2 + a4x2z

2
2 + a6z

3
2 .

Form:EX-Fermat with specific M Exercise 2.4.3. Refer to the curve defined in Exercise
2.5:Canonical Form:EX-moving Fermat O to infinity
2.4.1 for the following.

(1) Show that the matrix

M−1 =

⎛
⎜⎝
0 1 0

1 0 1

0 1 −1

⎞
⎟⎠

does what we want for part (3) of Exercise
2.5:Canonical Form:EX-moving Fermat O to infinity
2.4.1.

(2) Find the homogeneous polynomial f1(x1, y1, z1) that corresponds to this

projective change of coordinates.

(3) Verify that f1 is of the form f1(x1, y1, z1) = �x31 + z1F (x1, y1, z1), where

� ∕= 0 and F (0, 1, 0) ∕= 0.

(4) Rescale, if necessary, so that the coefficient of x2 is 1 and the coefficient

of y22z2 is −1.

(5) Rearrange f2(x2, y2, z2) = 0 to be in the form of equation (
2.5:Canonical Form:EQ-homogeneous quadratic
2.2).

Solution.

(1) See the solution to Exercise
2.5:Canonical Form:EX-moving Fermat O to infinity
2.4.1.

(2) See the solution to Exercise
2.5:Canonical Form:EX-moving Fermat O to infinity
2.4.1.

(3)

f1(x1, y1, z1) = x31 + 3x21z1 + 3x1z
2
1 + 3y21z1 − 3y1z

2
1 + z31

= x31 + z1(3x
2
1 + 3x1z1 + 3y21 − 3y1z1 + z21)

Here � = 1 and F (x1, y1, z1) = 3x21 + 3x1z1 + 3y21 − 3y1z1 + z21 , so

F (0, 1, 0) = 3.
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(4) The coefficient of x1 is already 1, but the coefficient of y21z1 is 3. We use

the following change of coordinates

x1 = x2

y1 = y2

z1 = −z2
3

to obtain

f2(x2, y2, z2) = x32 − x22z2 +
x2z

2
2

3
− y22z2 −

y2z
2
2

3
− z32

27
.

(5)

y22z2 +
y2z

2
2

3
= x32 − x22z2 +

x2z
2
2

3
− z32

27
.

Let’s now work in the affine patch z2 = 1, that is, in the affine (x2, y2) plane,

and consider the nonhomogeneous form of equation (
2.5:Canonical Form:EQ-homogeneous quadratic
2.2),

2.5:Canonical Form:EQ-quadratic12.5:Canonical Form:EQ-quadratic1 (2.3) y22 + a1x2y2 + a3y2 = x32 + a2x
2
2 + a4x2 + a6,

keeping in mind that there is an extra point at infinity. We can treat the left-hand

side of equation (
2.5:Canonical Form:EQ-quadratic1
2.3) as a quadratic expression in y2. This means we can complete

the square to remove some of the terms.

Consider the following concrete examples.

Exercise 2.4.4.

(1) Complete the square on the left hand side of the following equation.

y2 + 2y = 8x3 + x− 1

(2) Find an affine change of coordinates so that y2+2y = 8x3+x−1 becomes

v2 = f(u).

Solution.

(1)

y2 + 2y = 8x3 + x− 1

y2 + 2y + 1 = 8x3 + x

(y + 1)2 = 8x3 + x

(2) Define an affine change as follows.

u = x

v = y + 1

Then (y + 1)2 = 8x3 + x becomes v2 = 8u3 + u.

Exercise 2.4.5.
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(1) Complete the square (with respect to y) on the left hand side of the

following equation.

y2 + 4xy + 2y = x3 + x− 3

(2) Find an affine change of coordinates such that y2 + 2y = 8x3 + x − 1

becomes v2 = f(u).

Solution.

(1)

y2 + 4xy + 2y = x3 + x− 3

y2 + (4x+ 2)y = x3 + x− 3

y2 + (4x+ 2)y + (2x+ 1)2 = x3 + x− 3 + (2x+ 1)2

(y + 2x+ 1)2 = x3 + 4x2 + 5x− 2

(2) Define an affine change as follows.

u = x

v = 2x+ y + 1

Then (y + 2x+ 1)2 = x3 + 4x2 + 5x− 2 becomes v2 = u3 + 4u2 + 5u− 2.

Now we can do this in general.

2.5:Canonical Form:EX-completesquare Exercise 2.4.6. Complete the square on the left-hand side of equation (
2.5:Canonical Form:EQ-quadratic1
2.3)

and verify that the affine change of coordinates

x3 = x2

y3 = a1x2 + 2y2 + a3

gives the new equation

2.5:Canonical Form:EQ-quadratic22.5:Canonical Form:EQ-quadratic2 (2.4) y23 = 4x33 + (a21 + 4a2)x
2
3 + 2(a1a3 + 2a4)x3 + (a23 + 4a6)

Solution. Referring to equation (
2.5:Canonical Form:EQ-quadratic1
2.3) we have

y22 + a1x2y2 + a3y2 = x32 + a2x
2
2 + a4x2 + a6

y22 + (a1x2 + a3)y2 = x32 + a2x
2
2 + a4x2 + a6

y22 + (a1x2 + a3)y2 +
1

4
(a1x2 + a3)

2 = x32 + a2x
2
2 + a4x2 + a6 +

(a1x2 + a3)
2

4

(2y2 + a1x2 + a3)
2 = 4x32 + 4a2x

2
2 + 4a4x2 + 4a6 + a21x

2
2 + 2a1a3x2 + a23

(2y2 + a1x2 + a3)
2 = 4x32 + (4a2 + a21)x

2
2 + 2(2a4 + a1a3)x2 + (4a6 + a23)



DRAFT COPY: Complied on February 4, 2010. 131

Hence our change of coordinates is given by

x3 = x2

y3 = 2y2 + a1x2 + a3

To simplify notation, we introduce the following.

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

so that equation (
2.5:Canonical Form:EQ-quadratic2
2.4) becomes

2.5:Canonical Form:EQ-quadratic32.5:Canonical Form:EQ-quadratic3 (2.5) y23 = 4x33 + b2x
2
3 + 2b4x3 + b6.

We are now ready to make the final affine change of coordinates to achieve

the Weierstrass normal form. Our goal is to scale the coefficient of x33 to 1 and to

eliminate the x23 term. 7

Consider the following concrete examples.

Exercise 2.4.7.

(1) Suppose we have the equation

y2 = x3 + 6x2 − 2x+ 5.

Show that the affine change of coordinates

u = x+ 2

v = y

eliminates the quadratic term on the right hand side.

(2) Suppose we have the equation

y2 = 4x3 + 12x2 + 4x− 6.

Show that the affine change of coordinates

u = 36x+ 36

v = 108y

eliminates the quadratic term and rescales the coefficient of the cubic term

to one on the right hand side.

Solution.

7This change of coordinates is similar to completion of the square, but with cubics. This was

first used by Cardano in Ars Magna (in 1545) to achieve a general solution to the cubic equation

x3+�x2+�x+ = 0. He needed to eliminate the x2 term then, as we do now. Since the coefficient

of the cubic term inhis equation is already one, he simply made the substitution u = x− �/3.
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cubic!Weierstrass
normal form

(1)

y2 = x3 + 6x2 − 2x+ 5

v2 = (u− 2)3 + 6(u− 2)2 − 2(u− 2) + 5

v2 = u3 − 14u+ 25

(2)

y2 = 4x3 + 12x2 + 4x− 6
( v

108

)2
= 4

(
u− 36

36

)3

+ 12

(
u− 36

36

)2

+ 4

(
u− 36

36

)
− 6

v2

11664
=

4

46656
(u3 − 108u2 + 3888u− 46656)

+
12

1296
(u2 − 72u+ 1296) +

4

36
(u− 36)− 6

v2 = u3 + 5184u− 31104

Exercise 2.4.8. Verify that the affine change of coordinates

u = 36x3 + 3b2

v = 108y3

gives the Weierstrass normal form

v2 = u3 − 27(b22 − 24b4)u− 54(b32 + 36b2b4 − 216b6).

Solution.

y23 = 4x33 + b2x
2
3 + 2b4x3 + b6

( v

108

)2
= 4

(
u− 3b2

36

)3

+ b2

(
u− 3b2

36

)2

+ 2b4

(
u− 3b2

36

)
+ b6

v2

11664
=

4

46656
(u3 − 9b2u

2 + 27b22u− 27b32) +
b2

1296
(u2 − 6b2u+ 9b22)

+
2b4
36

(u− 3b2) + b6

v2 = u3 − 27b22u+ 648b4u+ 54b32 − 1944b2b4 + 11664b6

v2 = u3 − 27(b22 − 24b4)u− 54(−b32 + 36b2b4 − 216b6)

Again we can introduce the following to simplify notation.

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

Then we have the following for our Weierstrass normal form.

(2.6) v2 = u3 − 27c4u− 54c6
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Let’s collect all of the coefficient substitutions that we have made. Recall that

the ai’s are the coefficients from equation (
2.5:Canonical Form:EQ-quadratic1
2.3). Then we have the following.

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

For upcoming computations it is convenient to introduce the following as well.

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

j =
c34
Δ

Form:EX-discjrelationship Exercise 2.4.9. Show the following relationships hold.

(1) 4b8 = b2b6 − b24

(2) 1728Δ = c34 − c26

(3) j =
1728c34
c34 − c26

These are simply brute-force computations.

Solution.

(1)

b2b6 − b24 = 4a21a6 + 4a2a
2
3 + 16a2a6 − 4a24 − 4a1a3a4 − a1a

2a23

= 4b8

(2)

1728Δ = 432(−4b22b8 − 32b34 − 108b26 + 36b2b4b6)

= 432(−b32b6 + b22b
2
4 − 32b34 − 108b26 + 36b2b4b6)

c34 − c26 = −b62 − 72b42b4 + 1728b22b
2
4 − 13824b34 + b62 + 72b42b4 − 432b32b6

−1296b22b4 + 15552b2b4b6 − 46656b26

= 432b22b
2
4 − 13824b34 − 432b32b6 + 15552b2b4b6 − 46656b26

= 1728Δ

(3) By definition j = (c34)
1

Δ
and by the previous part Δ =

c34 − c26
1728

. Then the

result follows.
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Δ is called the discriminant of the cubic curve. The discriminant of a poly-

nomial is an expression in the coefficients of a polynomial which is zero if and

only if the polynomial has a multiple root. For example, the quadratic equation

ax2+ bx+ c = 0 has a multiple root if and only if b2− 4ac = 0. Similarly, the cubic

equation �x3 + �x2 + x+ � = 0 has a multiple root if and only if

�22 − 4�3 − 4�3� − 27�2�2 + 18��� = 0.

The discriminant Δ given above is the discriminant (up to a factor of 16) of the

right hand side cubic in equation (
2.5:Canonical Form:EQ-quadratic3
2.5). The number j defined above is called the

j-invariant of the cubic curve. We will see its significance soon.

Form:EX-weierstrassexample Exercise 2.4.10. Follow the procedure outlined above to write the following

cubics in Weierstrass normal form and use part (3) of Exercise
2.5:Canonical Form:EX-discjrelationship
2.4.9 to calculate

their j- invariants.

(1) y2 + 2y = 8x3 + x− 1

(2) y2 + 4xy + 2y = x3 + x− 3

Solution. (1) After we complete the square on the left hand side we

have (y + 1)2 = 8x3 + x. On the right hand side, to scale the cubic

coefficient to one, we need a factor of ( 12 )
3. We use the following affine

change of coordinates.

u = 2x

v = y + 1

This yields the Weierstrass normal form

v2 = u3 +
1

2
u.

Notice that −27c4 = 1
2 and −54c6 = 0, so the j-invariant is

j =
1728(− 1

54 )
3

(− 1
54 )

3 − (0)3
= 1728.

(2) After we complete the square on the left hand side we have (y+(2x+1))2 =

x3 +4x2 +5x− 2. On the right hand side, the cubic coefficient to already

one, so we only need eliminate the quadratic term. Hence we use the affine

change of coordinates

u = x+
4

3

v = 2x+ y + 1.

This yields the Weierstrass normal form

v2 = u3 − 1

3
u− 106

27
.
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Now we have 27c4 = 1
3 and 54c6 = 106

27 , so the j-invariant is

j =
1728( 1

81 )
3

( 1
81 )

3 − ( 53
729 )

3
= − 8

13
.

To avoid even more cumbersome notation, let’s “reset” our variables. Consider

the Weierstrass normal form of a smooth cubic C:

2.5:Canonical Form:EQ-wnf2.5:Canonical Form:EQ-wnf (2.7) y2 = x3 − 27c4x− 54c6

Notice that with the specific example x3 + y3 − z3 = 0 in ℙ2 in exercises
2.5:Canonical Form:EX-moving Fermat
2.4.1

and
2.5:Canonical Form:EX-Fermat with specific M
2.4.3, we chose the initial change of coordinates, the transformationM , so that

the inflection point is (0 : 1 : 0) with tangent line given by z = 0, but this is not

a unique transformation. Suppose we had chosen a different transformation. That

is, suppose instead of having the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

we obtained the equation

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6.

How different would our Weierstrass normal form have been?

Exercise 2.4.11. Show that the only (affine) transformation that takes

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

to

v2 + a′1uv + a′3v = u3 + a′2u
2 + a′4u+ a′6

is given by

x = �2u+ r

y = �2su+ �3v + t,

with �, r, s, t ∈ ℂ and � ∕= 0. [Hint: Start with the projective transformation,

which is also affine,

x = a11u+ a12v + a13w

y = a21u+ a22v + a23w

z = w

and show that the only way to satisfy the condition in this exercise is for the specific

aij to have the form above.]
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Solution. Consider the change of coordinates given in the hint. First, we see

that (0 : 1 : 0) is left fixed by our desired transformation. This implies that a12 = 0

and a22 ∕= 0. We also see that after changing coordinates the coefficient of y2z is

a222 and the coefficient of x3 is a311. Since these need to be scaled to 1, we see that

a222 = a311, so a11 = �2 and a22 = �3. Using this information and applying our

change we have the following in the w = 1 patch.

�6v2 + (�5a1 + 2�3a21)uv + (�3a1a13 + 2�3a23 + �3a3)v

= �6u3 + (3�4a13 + �4a2 − �2a1a21 − a221)u
2

+(3�2a213 + 2�2a2a13 + �2a4 − �2a1a23 − a1a13a21 − 2a21a23 − a3a21)u

+(a313 + a2a
2
13 + a4a13 + a6 − a1a13a23 − a223 − a3a23)

�6v2w + (�5a1 + 2�3a21)uvw + (�3a1a13 + 2�3a23 + �3a3)vw
2

= �6u3 + (3�4a13 + �4a2 − �2a1a21 − a221)u
2w

+(3�2a213 + 2�2a2a13 + �2a4 − �2a1a23 − a1a13a21 − 2a21a23 − a3a21)uw
2

+(a313 + a2a
2
13 + a4a13 + a6 − a1a13a23 − a223 − a3a23)w

3

For convenience of notation we let a13 = r, a21 = �2s, and a23 = t. This gives

the desired change of coordinates, and we have

v2 + �−1(a1 + 2s)uv + �−3(a1r + 2t+ a3)v

= u3 + �−2(3r + a2 − sa1 − s2)u2

+�−4(3r2 + 2ra2 + a4 − ta1 − rsa1 − 2st− sa3)u

+�−6(r3 + r2a2 + ra4 + a6 − rta1 − t2 − ta3)

�6v2w + �5(a1 + 2s)uvw + �3(a1r + 2t+ a3)vw
2

= �6u3 + �4(3r + a2 − sa1 − s2)u2w

+�2(3r2 + 2ra2 + a4 − ta1 − rsa1 − 2st− sa3)uw
2

+(r3 + r2a2 + ra4 + a6 − rta1 − t2 − ta3)w
3

Using this change of coordinates, we can compute the following relationships8

between equivalent cubic curves with coefficients ai in equation (
2.5:Canonical Form:EQ-homogeneous quadratic
2.2) with coordi-

nates (x : y : z) and coefficients a′i with coordinates (u : v : w).

8This is Table 1.2 in Silverman’s book.
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�a′1 = a1 + 2s

�2a′2 = a2 − sa1 + 3r − s2

�3a′3 = a3 + ra1 + 2t

�4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

�6a′6 = a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2

�2b′2 = b2 + 12r

�4b′4 = b4 + rb2 + 6r2

�6b′6 = b6 + 2rb4 + r2b2 + 4r3

�6b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

�4c′4 = c4

�6c′6 = c6

�12Δ′ = Δ

j′ = j

Notice that if two smooth cubic plane curves are projectively equivalent, then

the value j for each is the same, which is why we call this number the j-invariant.

Let C and C′ be two cubic plane curves, written in Weierstrass normal form.

C : y2 = x3 +Ax+B

C
′ : y2 = x3 +A′x+B′

Exercise 2.4.12. Suppose C and C′ have the same j-invariant.

(1) Show that this implies

A3

4A3 + 27B2
=

A′3

4A′3 + 27B′2 .

(2) Show that from the previous part we have A3B′2 = A′3B2.

Solution.

(1) From above we can write the j-invariant of each cubic in terms of c4 and

c6. For C, we have c4 = −A/27 and c6 = −B/54. Then

j(C) =
6912A3

4A3 + 27B2
and j(C′) =

6912A′3

4A′3 + 27B′2

and the result follows by equating the two.

(2) Cross multiplication and simplification give the result.
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In the next exercises we construct the transformations that send C to C′. We

need to consider three cases: A = 0, B = 0, AB ∕= 0.

Exercise 2.4.13. Suppose A = 0.

(1) Show that if A = 0, then B ∕= 0. [Hint: Recall, C is smooth.]

(2) What is j if A = 0?

(3) Explain why B′ ∕= 0.

(4) Show that the following change of coordinates takes C to C′.

x = (B/B′)1/3u

y = (B/B′)1/2v

Solution. (1) Suppose A = 0, then C is defined by y2 = x3 + B. Since

y2 = x3 has a singular point at (0, 0), we know that B ∕= 0.

(2) If A = 0, then j = 0.

(3) If A = 0, then B ∕= 0, but since 0 = A3B′2 = A′3B2, we have A′ = 0.

Since C′ is also smooth, we know B′ ∕= 0.

(4)

y2 = x3 +B

((B/B′)1/2v)2 = ((B/B′)1/3u)3 +B

v2 = u3 +B′

Exercise 2.4.14. Suppose B = 0.

(1) What is j if B = 0?

(2) Explain why A′ ∕= 0.

(3) Show that the following change of coordinates takes C to C′.

x = (A/A′)1/2u

y = (A/A′)3/4v

Solution. (1) If B = 0, then

j =
6912A3

4A3
= 1728.

(2) If B = 0, then A ∕= 0 since C is smooth. But 0 = A′3B2 = A3B′2, so we

have B′ = 0. Since C′ is also smooth, we know A′ ∕= 0.

(3)

y2 = x3 +Ax

((A/A′)3/4v)2 = ((A/A′)1/2u)3 +A((A/A′)1/2u)

v2 = u3 +A′u
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$j$-invariantExercise 2.4.15. Suppose AB ∕= 0. Find a change of coordinates that takes C

to C′. [Hint: See the two previous problems.]

Solution. Suppose AB ∕= 0. We can use either of the changes in the preceding

problems.

x = (B/B′)1/3u

y = (B/B′)1/2v

Then

y2 = x3 +Ax+B

((B/B′)1/2v)2 = ((B/B′)1/3u)3 +A((B/B′)1/3u) +B

v2 = u3 +A(B/B′)2/3u+B′

v2 = u3 +A′u+B′

We can summarize the preceding discussion with the following theorem.

2.5:Canonical Form:THM-j invariant 1 Theorem 2.4.16. Two smooth cubic curves are projectively equivalent if and

only if their j-invariants are equal.

The following exercises yield a characterization of smooth cubics via the j-

invariant.

invariant parametrization 1 Exercise 2.4.17. Let  be any complex number except 0 or 1728, and consider

the cubic curve C defined as follows.

y2 + xy = x3 − 36

 − 1728
x− 1

 − 1728

Compute j for this cubic.
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Solution. Notice that

a1 = 1

a2 = 0

a3 = 0

a4 =
−36

 − 1728

a6 =
−1

 − 1728

b2 = 1

b4 =
−72

 − 1728

b6 =
−4

 − 1728

c4 =


 − 1728

c6 =
−

 − 1728
.

Now we can compute j.

j =
1728( 

−1728 )
3

( 
−1728 )

3 − ( −
−1728 )

2

=
1728( 

−1728 )


−1728 − 1

=
1728( 

−1728 )
1728

−1728

= 

invariant parametrization 2 Exercise 2.4.18. Compute j for the following cubics.

(1) y2 + y = x3

(2) y2 = x3 + x

Solution. (1) For y2 + y = x3 we have a1 = a2 = a4 = a6 = 0 and

a3 = 1, so b2 = b4 = 0 and b6 = 1. Then c4 = 0 and c6 = −216. This

gives us j = 0.

(2) For y2 = x3+x we have a1 = a3 = a2 = a6 = 0 and a4 = 1, so b2 = b6 = 0

and b4 = 2. Then c4 = −48 and c6 = 0. This gives us j = 1728.

Exercise 2.4.19. Use Theorem
2.5:Canonical Form:THM-j invariant 1
2.4.16 and Exercises

2.5:Canonical Form:EX-weierstrassexample
2.4.10 and

2.5:Canonical Form:EX-j invariant parametrization
2.4.18 to show

that V (x3+xz2−y2z) and V (8x3+xz2−y2z−2yz2−z3) are projectively equivalent.

Solution. First we consider these two cubics in the affine z = 1 patch. They

are

y2 = x3 + x and y2 + 2y = 8x3 + x− 1.
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$j$-invariant

parametrization!
cubic

moduli space!cubic

canonical form

From earlier work we know the j-invariant of each cubic is 1728. Then by Theorem
2.5:Canonical Form:THM-j invariant 1
2.4.16 the two cubics are projectively equivalent.

Exercises (
2.5:Canonical Form:EX-j invariant parametrization 1
2.4.17) and (

2.5:Canonical Form:EX-j invariant parametrization 2
2.4.18) establish the following theorem.

2.5:Canonical Form:THM-j invariant 2 Theorem 2.4.20. If  is any complex number, then there exists a plane cubic

curve whose j-invariant is .

2.4.2. Canonical Form. As we have just seen the Weierstrass normal form

is very useful and provides a nice way to characterize smooth plane cubics. Another

form that is equally useful is the canonical form of the cubic. Consider equation

(
2.5:Canonical Form:EQ-quadratic3
2.5) from above.

y2 = 4x3 + b2x
2 + 2b4x+ b6

2.5:Canonical Form:EX-canonical 1 Exercise 2.4.21. Rewrite equation (
2.5:Canonical Form:EQ-quadratic3
2.5) on page

2.5:Canonical Form:EQ-quadratic3
131 in (x1, y1) using the

change of coordinates below.

x = x1

y = 2y1

Solution. This cubic is now

y21 = x31 +
b2
4
x21 +

b4
2
x1 +

b6
4
.

The change of coordinates in Exercise
2.5:Canonical Form:EX-canonical 1
2.4.21 scales the cubic coefficient on the

right hand side to one. Now we can factor the resulting equation from to obtain

Form:EQ-canonical factoredForm:EQ-canonical factored (2.8) y21 = (x1 − e1)(x1 − e2)(x1 − e3).

2.5:Canonical Form:EX-distinct roots Exercise 2.4.22. Show that e1, e2, e3 are distinct. [Hint: Recall, the cubic

curve V ((x− e1z)(x− e2z)(x− e3z)− y2z)is smooth.]

Solution. Suppose two of the roots are the same, say, e2 = e3. Then our

cubic is defined by

f(x, y, z) = (x− e1z)(x− e2z)
2 − y2z = 0.

But now notice that

∂f

∂x
= (x− e2z)

2 + 2(x− e1z)(x− e2z)

∂f

∂y
= −2yz

∂f

∂z
= −e1(x− e2z)

2 − 2e2(x− e1z)(x− e2z)− y2.

We see then that (e1e2 : 0 : e1) is a singular point, but our curve is smooth.

Therefore, e1, e2, e3 are distinct.
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Consider the following example.

Form:EX-canonicalfactorexample Exercise 2.4.23. In Exercise
2.5:Canonical Form:EX-weierstrassexample
2.4.10 we found the Weierstrass normal form of

y2 +2y = 8x3 + x− 1 to be y2 = x3 + 1
2x. Factor the right hand side to find values

for e1, e2, and e3.

Solution.

y2 = x3 +
1

2
x

= x

(
x− i

√
2

2

)(
x+

i
√
2

2

)

e1 = 0

e2 =
i
√
2

2

e3 = − i
√
2

2

Now we can do this in general.

2.5:Canonical Form:EX-canonical form Exercise 2.4.24. Rewrite equation (
2.5:Canonical Form:EQ-canonical factored
2.8) in (x2, y2) using the change of coor-

dinates below.

x1 = (e2 − e1)x2 + e1

y1 = (e2 − e1)
3/2y2

Solution.

y21 = (x1 − e1)(x1 − e2)(x1 − e3)

((e2 − e1)
3/2y2)

2 = ((e2 − e1)x2 + e1 − e1) ((e2 − e1)x2 + e1 − e2) ((e2 − e1)x2 + e1 − e3)

y22 =

(
(e2 − e1)

e2 − e1
x2 +

e1 − e1
e2 − e1

)(
(e2 − e1)

e2 − e1
x2 +

e1 − e2
e2 − e1

)(
(e2 − e1)

e2 − e1
x2 +

e3 − e1
e2 − e1

)

y22 = x2(x2 − 1)

(
x2 −

e3 − e1
e2 − e1

)

Exercise 2.4.25. Show that if we make the substitution

2.5:Canonical Form:EQ-lambda, ei2.5:Canonical Form:EQ-lambda, ei (2.9) � =
e3 − e1
e2 − e1

in the equation we found in Exercise
2.5:Canonical Form:EX-canonical form
2.4.24, we get

y22 = x2(x2 − 1)(x2 − �).

Solution.

y22 = x2(x2 − 1)

(
x2 −

e3 − e1
e2 − e1

)

y22 = x2(x2 − 1)(x2 − �)
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cubic!canonical formWe say a smooth cubic is in canonical form if we can write

2.5:Canonical Form:EQ-canonical form2.5:Canonical Form:EQ-canonical form (2.10) y2 = x(x− 1)(x− �).

Form:EX-canonicallambdaexample Exercise 2.4.26. Find an affine transformation that puts y2+2y = 8x3+x−1

in canonical form. What is �?

Solution. From Exercise
2.5:Canonical Form:EX-canonicalfactorexample
2.4.23 we have e1 = 0, e2 = i

√
2

2 and e3 = − i
√
2

2 , so

we will take the affine transformation

u =
i
√
2

2
x− i

√
2

2

v =

(
i
√
2

2

)3/2

y

to obtain

v2 = u(u− 1)(u+ 1).

In this case notice that � = −1.

We digress for a moment here. By now we have become comfortable working

in ℙ2 and in various affine patches. We have seen that the context often determines

when it is most advantageous to work in an affine patch. We usually work in the

affine xy-plane, i.e. the z = 1 patch, but we need to be sure that we are not missing

anything that happens “at infinity.”

inflection only infinite point Exercise 2.4.27. Let C ⊂ ℙ2 be the smooth cubic defined by the homogeneous

equation y2z = x(x−z)(x−�z). Show that the only “point at infinity” (x1 : y1 : 0)

on C is the point (0 : 1 : 0). We will see the significance of the point (0 : 1 : 0) in

section
2.6:Elliptic Curves
2.5.

Solution. Recall that points at infinity are points whose third coordinate is

zero, i.e. (� : � : 0). If (� : � : 0) ∈ C, then 0 = x(x − 0)(x − 0), so x = 0. Hence

the only point at infinity on C is the point (0 : 1 : 0).

In equation (
2.5:Canonical Form:EQ-canonical factored
2.8) we factored the right hand side and called the roots e1, e2,

and e3, but these labels are just labels. We could just as easily have written e2,

e3, and e1. In other words, we should get the same cubic curve no matter how we

permuted the ei’s. There are 3! = 6 distinct permutations of the set {e1, e2, e3}, so
we expect that there would be six equivalent ways to express our cubic in canonical

form. Recall that we defined � as a ratio in equation (
2.5:Canonical Form:EQ-lambda, ei
2.9). Changing the roles of

e2 and e3 would give 1/� rather than �. The two cubics

y2 = x(x− 1)(x− �)

and

y2 = x(x− 1)(x− 1/�)
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six-to-one correspon-
dence!cubic!canonical
form

$j$-invariant

should still be equivalent.

2.5:Canonical Form:EX-six lambdas Exercise 2.4.28. Suppose we have the following canonical cubic

y2 = x(x− 1)(x− �),

where � corresponds to the order e1, e2, e3 of the roots in (
2.5:Canonical Form:EQ-canonical factored
2.8). Show that the other

five arrangements of {e1, e2, e3} yield the following values in place of �.

1

�
1− �

1

1− �

�− 1

�

�

�− 1

Solution. There set of permutations on a set of three elements {1, 2, 3} has

six members {(1), (12), (13), (23), (123), (132)}. Corresponding to each permutation

we have the following.

(1) e3−e1
e2−e1 = �

(12) e3−e2
e1−e2 = 1− �

(13) e1−e3
e2−e3 =

�

�− 1

(23) e2−e1
e3−e1 =

1

�

(123) e1−e2
e3−e2 =

1

1− �

(132) e2−e3
e1−e3 =

�− 1

�

As we have seen the value of � in a canonical form of C is almost uniquely

determined by C. The correspondence between complex numbers � ∕= 0, 1 and

smooth cubic curves C is a six-to-one correspondence , where if � is a complex

number assigned to C, then all of the complex numbers in exercise (
2.5:Canonical Form:EX-six lambdas
2.4.28) are

assigned to C. Though � is not uniquely determined, the j-invariant, as we would

expect, is unique.

Form:EX-canonical j-invariant Exercise 2.4.29. Show that if a smooth cubic curve C has an equation in

canonical form

y2 = x(x− 1)(x− �),

then its j-invariant is

j = 28
(�2 − �+ 1)3

�2(�− 1)2
.

[Hint: Write the equation y2 = x(x− 1)(x− �) in Weirstrass normal form and use

Exercise
2.5:Canonical Form:EX-discjrelationship
2.4.9 to compute j.]

Solution.

y2 = x(x− 1)(x− �)

y2 = x3 − (1 + �)x2 + �x
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Here we see that a1 = a3 = a6 = 0, a2 = −(1+�), and a4 = �. Then b2 = −4(1+�),

b4 = 2�, and b6 = 0 so c4 = 16(�2 − �+ 1) and c6 = 32(1 + �)(2�2 − 5�+ 2).

j =
1728(163)(�2 − �+ 1)3

163(�2 − �+ 1)3 − 322(1 + �)2(2�2 − 5�+ 2)2

=
1728(163)(�2 − �+ 1)3

27648�4 − 55296�3 + 27648�2

=
1728(163)(�2 − �+ 1)3

27648�2(�2 − 2�+ 1)

=
162(�2 − �+ 1)3

�2(�− 1)2

= 28
(�2 − �+ 1)3

�2(�− 1)2

Exercise 2.4.30. Use the � found in Exercise
2.5:Canonical Form:EX-canonicallambdaexample
2.4.26 to compute the j-invariant

of y2 +2y = 8x3 + x− 1. [Hint: Use the expression in Exercise
2.5:Canonical Form:EX-canonical j-invariant
2.4.29.] Check that

this agrees with the computation of j in Exercise
2.5:Canonical Form:EX-weierstrassexample
2.4.10.

Solution. In Exercise
2.5:Canonical Form:EX-canonicallambdaexample
2.4.26 we found � to be -1 for y2 + 2y = 8x3 + x − 1.

Then according to our previous exercise we have

j = 28
((−1)2 − (−1) + 1)3

(−1)2(−1− 1)2

= (256)

(
27

4

)

= 1728.

This value of j agrees with our computation in Exercise
2.5:Canonical Form:EX-weierstrassexample
2.4.10.

Form:EX-lambda j invariant Exercise 2.4.31. Show that the j-invariant of a smooth cubic curve C can be

written as

27

[
6∑

i=1

�2
i − 3

]
,

where the �i range over the six values �, 1/�, . . . from exercise
2.5:Canonical Form:EX-six lambdas
2.4.28.

Solution.
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27

[
6∑

i=1

�2
i − 3

]

= 27
[
�2 +

1

�2
+ (1− �)2 +

1

(1− �)2
+

(1− �)2

�2
+

�2

(�− 1)2
− 3

]

= 27
[
�4(�− 1)2 + (�− 1)2 + �2(�− 1)4 + �2 + (�− 1)4 + �4 − 3�2(�− 1)2

�2(�− 1)2

]

= 27
[
2(�6 − 3�5 + 3�4 − �3 + 3�2 − 3�+ 1)

�2(�− 1)2

]

= 28
(�2 − �+ 1)3

�2(�− 1)2

= j

Exercise
2.5:Canonical Form:EX-lambda j invariant
2.4.31 demonstrates that the value of the j-invariant, while expressed

in terms of a particular choice of � associated to C, is independent of which �

corresponding to C we select. When we combine Exercise
2.5:Canonical Form:EX-lambda j invariant
2.4.31 and Theorem

2.5:Canonical Form:THM-j invariant 1
2.4.16 we see that, as we would expect, the six values in Exercise

2.5:Canonical Form:EX-six lambdas
2.4.28 really do

give the same smooth cubic.

Exercise 2.4.32. Verify that the values of a� and b� are the same no matter

which of the six options of � is selected in the canonical form.

Solution. Here’s what I get in one case a1/� = 1
�2

[
�− 3

(
�+1
3

)2]
= 1

�2 a�,

not a� as I thought should happen.

Exercise 2.4.33. I conjecture that j(�) is some natural invariant expressed in

terms of a� and b�. Find this expression.

Solution. I haven’t found it yet.
2.6.4:Elliptic Curves:FiniteOrder2

2.4.3. An Application: Points of Finite Order. As we have seen it is

often convenient to express a smooth cubic in canonical form. For our final appli-

cation in this section we will prove that there are exactly three points of order two

on a smooth cubic. We showed in Exercise
2.4:Group Law:EX-Order 2 points are collinear
2.3.14, that if we have two points P

and Q of order two, then there is a third point PQ also of order two, but we are

not assured of the existence of the two points P and Q or that there is not another

point R, of order two, not collinear with P and Q. Exercise
2.4:Group Law:EX-Order 2 example
2.3.15 suggests there

are exactly three such points and now we set about proving this in general. Recall,

in Exercise
2.4:Group Law:EX-l(O,P) tangent at P iff 2P=O
2.3.13 we showed that a point P ∈ C has order two if and only if the

tangent to C at P passes through the identity element O.
My idea of how this

should work is that the

condition of the

tangent line to C at P

passing through O is a

linear condition on P ,

so that the points P of

order 2 are the points

of intersection of C

with a line, and hence

Law:EX-Number points order 2 Exercise 2.4.34. Let C = V (x(x − 1)(x − �) − y2) be a smooth cubic curve

with + defined relative to the inflection point O = (0 : 1 : 0).
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(1) Homogenize Equation
2.5:Canonical Form:EQ-canonical form
2.10 and find the equation of the tangent line V (l)

to C at the point P = (x0 : y0 : z0).

(2) Show that (0 : 1 : 0) ∈ V (l) if and only if either z0 = 0 or y0 = 0.

(3) Show that O is the only point in C ∩ V (l) with z0 = 0.

(4) Show that (0 : 0 : 1), (1 : 0 : 1), and (� : 0 : 1) are the only points in

C ∩ V (l) with y0 = 0.

(5) Conclude that there are exactly three points of order two on C.

Solution.

(1) The homogenization of y2 = x(x − 1)(x − �) is y2z = x(x − z)(x − �z).

Alternatively

f(x, y, z) = x(x− z)(x− �z)− y2z = 0.

The tangent line at (x0 : y0 : z0) is given by

[(x0 − z0)(x0 − �z0) + x0(x0 − �z0) + x0(x0 − z0)] (x− x0)

−2y0z0(y − y0)−
[
x0(x0 − �z0) + �x0(x0 − z0) + y20

]
(z − z0) = 0.

(2) Suppose first that (0 : 1 : 0) ∈ V (l). Then we have the equation

We have just shown that any cubic C has exactly three points of order two. In

fact, we have found these points explicitly, but we can say even more.

Exercise 2.4.35. (1) Show that the points of order two on C, together

with O = (0 : 1 : 0), form a subgroup of C.

(2) Show that this subgroup is isomorphic to ℤ2 × ℤ2.

Solution. (1) We know from the previous exercise there are exactly

three points of order two on C. Let P0, P1, and P2 denote the points

on C of order 2. We need to show that {O,P0, P1, P2} is a group under

+. Since 2Pi = O, we have that P−1
i = Pi, so we only need to check that

Pi + Pj ∈ {O,P0, P1, P2}. Associativity follows from {O,P0, P1, P2} ⊂ C.

We showed in Exercises
2.4:Group Law:EX-l(O,P) tangent at P iff 2P=O
2.3.13 and

2.4:Group Law:EX-Order 2 points are collinear
2.3.14 that Pi is of order two if and

only if the tangent to C at Pi passes through O. Moreover, if Pi and Pj

are of order two, then ℓ(Pi, Pj) intersects C at the third point of order two

Pk, and since ℓ(Pk, O) intersects C at Pk, we have Pi + Pj = Pk. Hence

{O,P0, P1, P2} is closed under +.

(2) ℤ2 × ℤ2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. The map defined by

O 7→ (0, 0)

P1 7→ (1, 0)

P2 7→ (0, 1)

P3 7→ (1, 1)
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is a group isomorphism.

We showed in Exercises
2.4:Group Law:EX-Inflection have order 3
2.3.16 and

2.4:Group Law:EX-Point of order 3
2.3.17 that a point P ∈ C satisfies 3P = O

if and only if P is an inflection point. By Exercise
nineinflections
2.2.37 there are exactly nine

inflection points on C, but O has order one. Thus there are eight points of order

three on C.

In general, there are n2 points on C whose order divides n. Hence there are

twelve points of order four on C, as there will be sixteen whose order divides four,

but four of these are already counted among the three points of order two and O.

2.5. The Group Law for a Smooth Cubic in Canonical Form
2.6:Elliptic Curves

The goal of this section is to reformulate the group law for a smooth cubic that it

is already expressed in canonical form y2 = x(x − 1)(x − �). By doing so, we will

see that the group law for cubics is valid not only over ℂ, but over fields of positive

characteristic9 and non-algebraically closed fields, too.

We have already shown that the set of points of a smooth cubic curve C forms

a group under the binary operation + we defined in Section
2.4.2:Group Law:O=inflection
2.3.2. In what follows

we will use the canonical form developed in Section
2.5:Canonical Form
2.4 to determine the (affine)

coordinates of the point P + Q given coordinates of P and Q. We will use the

point at infinity (0 : 1 : 0) as our identity O on C. When we work in the affine

patch z = 1, we will see that the line ℓ(O,PQ) that we use to determine P +Q will

correspond to the vertical line through PQ.
2.6.1:Elliptic Curves:O=infinity

2.5.1. The Identity, Addition, and Inverses. First, we need to establish

that O ∈ C and that any vertical line in the affine xy-plane does indeed pass through

O.

Exercise 2.5.1. Consider the cubic curve C in homogeneous canonical form

given by y2z = x(x− z)(x+ z), i.e. C = V (x3 − xz2 − y2z).

(1) Show that the point at infinity (0 : 1 : 0) ∈ C.

(2) Show that (0 : 1 : 0) ∈ V (H(x3 −xz2 − y2z)), the Hessian curve of C, and

conclude that O = (0 : 1 : 0) is an inflection point.

(3) Show that every vertical line in the affine xy-plane meets C at (0 : 1 : 0).

(4) Sketch the graph of the real affine part of C, y2 = x3 − x.

(5) Let P and Q be two points on the real affine curve. Show geometrically

that if the line ℓ(P,Q) through P and Q intersects C a third time at the

point PQ = (a, b), then P +Q = (a,−b).

9We would need to modify our calculations from the previous sections for fields of character-

istic two or three.



DRAFT COPY: Complied on February 4, 2010. 149

(6) Now suppose that R = (a : b : 1) is a point on C. Show that the line

ℓ(O,R) is given by the equation x − az = 0, which is the vertical line

x = a in the xy-plane.

Solution. (1) We have 03 − 0 ⋅ 02 − 12 ⋅ 0 = 0, so (0 : 1 : 0) ∈ C.

(2) H = det

⎛
⎜⎝

6x 0 −2z

0 −2z −2y

−2z −2y −2x

⎞
⎟⎠ = 6x

(
4xz − 4y2

)
+ 8z3 and H(0 : 1 : 0) =

0. Therefore, O = (0 : 1 : 0) is an inflection point of C.

(3) A vertical line in the xy−plane has equation x = c for some constant c.

This line intersects C in two points in the xy−plane,
(
c,±

√
c3 − c

)
. If we

substitute x = c in the definining homogeneous equation, we have

c3 − cz2 − y2z = 0.

If we set z = 1, we obtain the two previously listed solutions. In order

to obtain the third point of intersection, we must set z = 0 into the

homogeneous equation and learn that x3 = 0. So x = 0 and y must be

nonzero, which is equivalent to the point O = (0 : 1 : 0). Therefore, every

vertical line meets C at O = (0 : 1 : 0).

(4) Take a look at Exercise
2.4:Group Law:EX-ChordLawNotAssoc
2.3.2.

(5) Draw a vertical line in your graph.

(6) Let R = (a : b : 1) and O = (0 : 1 : 0) be points on C. This line segment

connecting these points can be parameterized by x = at, y = (b− 1)t+ 1

and z = t. By eliminating the parameter, we have x − az = 0. In the

chart z = 1, this results in the equation x = a.

origin as vertical lines Exercise 2.5.2. Let � ∕= 0, 1 be a complex number and consider the cubic

curve C in homogeneous canonical form given by y2z = x(x − z)(x − �z), i.e.

C = V (x(x− z)(x− �z)− y2z).

(1) Show that the point at infinity, (0 : 1 : 0) ∈ C.

(2) Show that (0 : 1 : 0) ∈ V (H(x(x − z)(x − �z) − y2z)), the Hessian curve

of C, and conclude that O = (0 : 1 : 0) is an inflection point.

(3) Show that every vertical line in the affine xy-plane meets C at O.

(4) Suppose that P = (a : b : 1) is a point on C. Show that the line ℓ(O,P ) is

given by the equation x − az = 0, which is the vertical line x = a in the

(x, y)-plane.

Solution. (1) The point (0 : 1 : 0) ∈ C since 12 ⋅ 0 = 0 ⋅ 0 ⋅ 0.
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(2) The Hessian is given by

H = det

⎛
⎜⎝

6x− 2(�+ 1)z 0 −2(�+ 1)x+ 2�z

0 −2z −2y

−2(�+ 1)x+ 2�z −2y 2�x

⎞
⎟⎠

which is equal to

(6x− 2(�+ 1)z)
(
−4�xz − 4y2

)
+ (2�z − 2(�+ 1)x) (−4z(�z − �x− x)) .

At the point (0 : 1 : 0), we have H = 0. Therefore (0 : 1 : 0) is an

inflection point.

(3) A vertical line of the form x = c in the chart z = 1 yields y = ±
√
c(c− 1)(c− �).

To obtain the third point of intersection, we must set z = 0, thus x3 = 0

and the third point is (0 : 1 : 0).

(4) Let R = (a : b : 1) and O = (0 : 1 : 0) be points on C. This line segment

connecting these points can be parameterized by x = at, y = (b− 1)t+ 1

and z = t. By eliminating the parameter, we have x − az = 0. In the

chart z = 1, this results in the equation x = a.

Now we have established that if C = V (x(x − z)(x − �z) − y2z) is given in

canonical form, then (0 : 1 : 0) is an inflection point, so henceforth we let O =

(0 : 1 : 0) be our identity element. Since any vertical line ℓ in the affine xy-plane

intersects C at O, we define + relative to O and ℓ. Before we develop an algebraic

expression for the coordinates of P + Q, we first consider the coordinates of P−1,

the inverse of the point P . Recall, that if P ∈ C then the inverse P−1 of P is the

third point of intersection of C and ℓ(O,P ).

Curves:EX inverse is flip Exercise 2.5.3. First, we want to work in the affine patch z = 1, so we deho-

mogenize our cubic equation, y2 = x(x− 1)(x− �). Let P = (x1, y1) be a point in

the xy-plane on C with y1 ∕= 0.

(1) Find the linear equation that defines ℓ(O,P ).

(2) Find the point P ′ = (x2, y2) that is the third point of intersection of

ℓ(O,P ) and C in the xy-plane.

(3) Show that P + P ′ = O. Conclude that P ′ = P−1.

Solution. (1) We know that ℓ is a vertical line in the affine xy-plane,

so its equation is x = x1

(2) Every point on affine ℓ(O,P ) has the form (x1, y), so the coordinate y2 is

the other solution to y2 = x1(x1 − 1)(x1 − �). This corresponds to −y1.
(3) We have ℓ(P, P ′) intersecting the curve C at O = (0 : 1 : 0). Since O is an

inflection point, ℓ(O,O) intersects C at O, so P + P ′ = O P ′ = P−1.
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groupTherefore, if P = (x1 : y1 : 1) is a point on C, the additive inverse of P is the

point P−1 = (x1 : −y1 : 1) on C. Notice in Exercise
2.6:Elliptic Curves:EX inverse is flip
2.5.3 we assumed y1 ∕= 0 for

our point P . Now we see what the inverse of a point on the x-axis in the affine

xy-plane is.

Curves:EX inverse of (x,0) Exercise 2.5.4. Let P = (x1, 0) be a point in the xy-plane on C defined by

y2 = x(x− 1)(x− �).

(1) Show that 2P = O, so that P = P−1.

(2) Show that this agrees with Exercise
2.4:Group Law:EX-l(O,P) tangent at P iff 2P=O
2.3.13, that is, show that the tangent

to C at P = (x1, y1) in the xy-plane is a vertical line if and only if y1 = 0.

Solution. To compute P + P , we notice that the tangent line is vertical, so

that the third point of intersection is O. Since O is an inflection point, the line

connecting O to O has third point of intersection O. Therefore 2P = O, which is

equivalent to P = P−1.
2.6.2:Elliptic Curves:Group law

2.5.2. The Group Law. Our goal in this section is to obtain an algebraic

formula for the sum of two points on a cubic in canonical form.

Exercise 2.5.5. Consider the cubic curve C = V (x3 − xz2 + z3 − y2z) and the

points P1 = (1 : 1 : 1), P2 = (0 : 1 : 1), P3 = (−1 : 1 : 1), P4 = (−1 : −1 : 1),

P5 = (0 : −1 : 1), P6 = (1 : −1 : 1) on C. Figure
algebraicgroupexample
2.5.5 shows C in the affine z = 1

patch.

(1) Use a straightedge and figure
algebraicgroupexample
2.5.5 to find P1 +P2, P1 +P3, P1 +P4, and

P3 + P4 geometrically. [Hint: O = (0 : 1 : 0), the point at infinity, is the

identity and we use the vertical line through PiPj to find Pi + Pj .]

(2) Find the coordinates of P1 + P2, P1 + P3, P1 + P4, and P3 + P4. [Hint:

Use the equation of the line through Pi and Pj to find the coordinates of

the point PiPj . Now find the coordinates of Pi+Pj using the equation of

the vertical line through PiPj .]

Solution. (1) Picture!

(2) We have P1 + P2 = P4, P1 + P3 = P5, P1 + P4 = P6 and P3 + P4 = O =

(0 : 1 : 0).

Curves:EX group example Exercise 2.5.6. Let C be the affine cubic curve defined by the equation y2 =

x3 + x2 − 2x. Let P denote the point (−1/2,−3
√
2/4) and Q denote the point

(0, 0).

(1) Write the defining equation of C in canonical form and verify that P and

Q are on C.

(2) Find the equation of ℓ(P,Q), the line through P and Q.
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algebraicgroupexample

1

2

−1

−2

1 2−1−2

C

∙P1
∙P2∙P3

∙P4
∙P5

∙P6

Figure 2. C in the affine xy-plane

(3) Find the coordinates of the point PQ on C, that is, the coordinates of the

third point of intersection of C and ℓ(P,Q).

(4) Let O denote the inflection point (0 : 1 : 0) and find the coordinates of

the point P +Q on C using O as the identity element.

(5) Find the coordinates of 2P on C.

(6) Find the coordinates of the point P−1 on C usingO as the identity element.

(7) Show that 2Q = O. [Hint: Show that the tangent to C at Q passes through

O and invoke Exercise
2.4:Group Law:EX-l(O,P) tangent at P iff 2P=O
2.3.13.]

(8) Find the coordinates of all three points of the points of order 2 on C.

Solution. (1) This can be expressed as y2 = x(x − 1)(x + 2) Substi-

tuting the coordinates for P we have
(

−3
√
2

4

)2
= 9

8 =
(−1

2

) (−3
2

) (
3
2

)
.

Substituting the coordinates for Q yields 0 = 0.

(2) The line passes through (0, 0) and has slope m =
−3

√
2

4
−1
2

= 3
√
2

2 , which is

y = 3
√
2

2 x

(3) To find the points of intersection of the line y = 3
√
2

2 x and the curve C,

substitute and obtain
(
3
√
2

2
x

)2

= x3 + x2 − 2x

9

2
x2 = x3 + x2 − 2x

0 = x3 − 7

2
x2 − 2x

0 = x

(
x+

1

2

)
(x− 4)

Thus PQ has x−coordinate 4 and y−coordinate
√
72 = 6

√
2.

(4) P +Q = (4,−6
√
2).
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(5) I no longer trust my solution.

Now we carry out these computations in a more general setting to derive an

expression for the coordinates of P + Q. Let C = V (x(x − z)(x − �z) − y2z) be a

smooth cubic curve. Dehomogenize the defining equation x(x−z)(x−�z)−y2z = 0

to get the affine equation y2 = f(x), where f(x) = x(x− 1)(x− �).

Curves:EX Koblitz Canonical Exercise 2.5.7. Suppose P = (x1 : y1 : 1) and Q = (x2 : y2 : 1) are two points

on C, with Q ∕= P−1 (that is x1 ∕= x2), and let y = �x+ � be the equation of line

ℓ(P,Q) through the points P and Q.

(1) Suppose P ∕= Q. Express � in terms of x1, x2, y1, y2.

(2) Suppose P = Q (in which case ℓ(P,Q) is the tangent line to C at P ). Use

implicit differentiation to express � in terms of x1, y1.

(3) Substitute �x+ � for y in the equation y2 = f(x) to get a new equation

in terms of x only. Write the resulting equation of x in the form x3 +

Bx2 + Cx+D = 0.

(4) If P + Q has coordinates (x3 : y3 : 1), explain why x3 + Bx2 + Cx + D

must factor as (x− x1)(x− x2)(x− x3).

(5) By equating coefficients of x2 in parts (4) and (5), conclude that

x3 = −x1 − x2 + �2 + �+ 1,

where � is the slope of the line ℓ(P,Q).

(6) We now have an expression for the x-coordinate of P + Q. Use this to

conclude that

P +Q =
(
−x1 − x2 + �2 + �+ 1 : y1 + �(x3 − x1) : 1

)

where � is the slope of ℓ(P,Q). [Hint: Use the relationship between the

y-coordinates of PQ and P + Q along with the fact that (x1, y1) lies on

the line defined by y = �x+ �.]

Solution. (1) � =
y2 − y1
x2 − x1

(2) Using implicit differentiation, we obtain 2y dydx = f ′(x), so � = f ′(x1)
2y1

(3) Replacing y with �x+ � gives the following.

(�x+ �)2 = x(x− 1)(x− �)

�2x2 + 2��x+ �2 = x3 − (�+ 1)x2 + �2x

x3 + (−�2 − �− 1)x2 + (�2 − 2��)x− �2 = 0

From this we see that B = −�2 − �− 1, C = �2 − 2��, and D = −�2.

(4) First, note that since we obtain P + Q by taking the second point of

intersection of y2 = x(x − 1)(x − �), and the vertical line through PQ,
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we see that if P + Q has coordinates (x3, y3), then PQ has coordinates

(x3, y3), i.e. both points have the same x-coordinate, x3. Since P , Q,

and PQ all lie on the line defined by y = �x + � and the curve defined

by y2 = x(x− 1)(x− �), the pairs (x1, y1), (x2, y2), and (x3,−y3) satisfy
both equations. In other words x1, x2, and x3 all satisfy (�x + �)2 =

x(x − 1)(x − �), from which we get x3 + Bx2 + Cx + D = 0. Hence,

x1, x2, and x3 are roots of x3 + Bx2 + Cx + D = 0. This implies that

x3 +Bx2 + Cx+D = (x− x1)(x− x2)(x− x3).

(5) First, observe that (x − x1)(x − x2)(x − x3) = x3 − (x1 + x2 + x3)x
2 +

(x1x2 + x1x3 + x2x3)x− x1x2x3. This gives the equation

x3 +Bx2 + Cx+D = x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3,

so B = −x1 − x2 − x3. From above we know B = −�2 − � − 1. Hence,

−�2 − �− 1 = −x1 − x2 − x3, so finally we have

x3 = −x1 − x2 + �2 + �+ 1.

(6) I am worried about the y−coordinate.

Therefore, if P = (x1 : y1 : 1), P = (x2 : y2 : 1) are points on C = V (x(x −
1)(x− �)− y2), then P +Q has coordinates (x3 : y3 : 1) given by

x3 =

⎧
⎨
⎩

−x1 − x2 + �+ 1 +

(
y2 − y1
x2 − x1

)2

if P ∕= Q

−2x1 + �+

(
f ′(x1)

2y1

)2

if P = Q

y3 = y1 + �(x3 − x1).

Exercise 2.5.8. Verify the results in Exercise
2.6:Elliptic Curves:EX group example
2.5.6 using the above formula.

Solution. My work does not match up - that’s why I am nervous.

We may perform a similar sequence of calculations for a cubic in general form.

Let C be the cubic curve defined by y2z = ax3+bx2z+cxz2+dz3, where a, b, c, d ∈ ℂ.
Dehomogenize this defining equation to get the affine equation y2 = f(x), where

f(x) = ax3 + bx2 + cx+ d and f has distinct roots.I would take out this

entire section or simply

state the result

without any exercises

or proof. The first is

that we already have

an expression for

P +Q whenever C is

in canonical form,

which we can always

get. Second, we should

really verify that

O = (0 : 1 : 0) is an

2.6:Elliptic Curves:EX Koblitz Exercise 2.5.9. Suppose P = (x1 : y1 : 1) and Q = (x2 : y2 : 1) be two points

on C, with Q ∕= P−1, and let y = �x + � be the equation of line ℓ(P,Q) through

the points P and Q.

(1) Suppose P ∕= Q. Express � in terms of x1, x2, y1, y2.
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point:rational(2) Suppose P = Q (in which case ℓ(P,Q) is the tangent line to C at P ). Use

implicit differentiation to express � in terms of x1, y1.

(3) Substitute �x+ � for y in the equation y2 = f(x) to get a new equation

in terms of x only. Write the resulting equation of x in the form x3 +

Bx2 + Cx+D = 0.

(4) If P +Q has coordinates P +Q = (x3 : y3 : 1), explain why Ax3 +Bx2 +

Cx+D must factor as a(x− x1)(x− x2)(x− x3).

(5) By equating coefficients of x2, conclude that

x3 = −x1 − x2 +
�2 − b

a
,

where � is the slope of the line ℓ(P,Q).

(6) We now have an expression for the x-coordinate of P + Q. Use this to

conclude that

P +Q =

(
−x1 − x2 −

b

a
+

1

a
�2 : y1 + �(x3 − x1) : 1

)

where � is the slope of ℓ(P,Q).

Therefore, if P = (x1 : y1 : 1), P = (x2 : y2 : 1) are points on C = V (ax3 +

bx2 + cx+ d− y2), then P +Q has coordinates (x3 : y3 : 1) given by

x3 =

⎧
⎨
⎩

−x1 − x2 −
b

a
+

1

a

(
y2 − y1
x2 − x1

)2

if P ∕= Q

−2x1 −
b

a
+

1

a

(
f ′(x1)

2y1

)2

if P = Q

y3 = y1 + �(x3 − x1).

2.5.3. Rational Points on Cubics. Of particular importance to number

theory and the theory of elliptic curves is the following property of the group law

for elliptic curves.

Definition 2.5.1. Let y2 = f(x) be an affine equation of a smooth cubic

curve, where f(x) is a polynomial with rational coefficients. A point P = (x, y) is

a rational point if x, y ∈ ℚ.

Once we have a rational point, a natural follow-up would be to ask how many

rational points exist on a given curve. We first note the following property of

rational points.

Curve:EX RationalPoints Exercise 2.5.10. Let y2 = f(x) be an affine equation of a smooth cubic curve,

where f(x) is a degree three polynomial with rational coefficients. Suppose P and
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Q are rational points on this curve, so that P,Q ∈ ℚ2 and Q ∕= P−1. Prove that

P +Q is also a rational point.

Solution. Let P,Q ∈ C with P = (x1, y1) and Q = (x2, y2) are rational

coefficients. If P ∕= Q, we have � = y2−y1
x2−x1

and all coefficients are rational numbers.

So the algebraic combination of rational numbers in the previous exercises show

that P +Q must also have rational coefficients. If P = Q, then � = f ′(x1)
2y1

∈ ℚ and

the combination is still rational. Since Q ∕= P−1, we have x1 ∕= x2 and the quotient

is defined.

What happens if Q = P−1? In this case P +Q would be equal to the point at

infinity O = [0 : 1 : 0]. While this point does have rational coordinates, this point

is technically not on this particular affine chart. How can we address this?BS - We probably need

a couple of exercises

working with cubics

over ℚ.

Over ℂ, all elliptic

curves are tori. Over

the rationals, the

curves are different.

Look at Mazur for

descriptions.

2.5.4. Cubics over Other Fields. Another important consequence of our

algebraic formulation for the group law is that the operations involved are inde-

pendent of the field of definition. With this addition law, we can define the group

law for cubic curves not only over ℂ, but also over ℝ, ℚ, and even over finite fields.

However, there is one subtlety that we need to be aware of. Some of the calculations

need to be modified if the characteristic of the field is equal to 2.

Exercise 2.5.11. This is inspired by
AshGross2006
[AG06], pages 105–109. Let C be the

cubic curve given by y2 = x3 + 1.

(1) Show that (0, 4) and (2, 3) are points of C over F5.

(2) Use the formulas for addition above to compute (0, 4) + (2, 3).

(3) Find all of the points on C that are defined over F5.

Solution. (1) We have 42 = 16 ≡ 1 (mod 5) and 03 + 1 ≡ 1 (mod 5),

so the point (0, 4) ∈ C. Similarly, 32 = 9 ≡ 4 (mod 5) and 23 + 1 = 9 ≡ 4

(mod 5), so (2, 3) ∈ C.

(2) We have � = 3−4
2−0 = −1

2 . Over F5, this � is the solution to the equation

2x ≡ −1 (mod 5), or 2x ≡ 4 (mod 5) which has solution x = 2. So

x3 = −2 + 22 = 2 and y3 = 4 + 2(2 − 0) = 8 ≡ 3 (mod 5). I really need

to check the signs in this computation.

(3) If we have � ∈ F5, the only choices for �2 are 0, 1, or 4. Substituting

values for x we obtain the points (0, 1), (0, 4), (2, 2), (2, 3) and (0, 0).

2.6. Cubics as Tori
2.7:Cubics:Tori

The goal of this problem set is to realize a smooth cubic curve in ℙ2(ℂ) as a

complex torus.
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Exercise 2.6.1. Draw a sequence of diagrams to show that if we attach the

circle A to the circle C and the circle B to circle D, we obtain a torus. BS - Be more explicit

about steps in

construction

A B

C D

Exercise 2.6.2. Let T : [0, 2�] → ℂ be defined by T (�) = ei� and let f : ℂ→ ℂ

be defined by f(x) =
√
x.

(1) Show that T ([0, 2�]) is a unit circle in ℂ.

(2) Show that f ∘ T ([0, 2�]) is a half circle.

Exercise 2.6.3. Now let T : [0, 2�] → ℂ be defined by T (�) = 2ei� and let

f : ℂ→ ℂ be defined by f(x) =
√
x(x− 1).

(1) Show that T ([0, 2�]) is a circle of radius 2 in ℂ.

(2) Show that f ∘ T (0) = f ∘ T (2�).
(3) Show that f ∘ T ([0, 2�]) is a closed curve in ℂ− [0, 1].

(4) Sketch an intuitive argument for f(x) =
√
x(x− 1) being well-defined on

ℂ− [0, 1] in two ways: (i) by setting
√
2(2− 1) = +

√
2, and then (ii) by

setting
√

2(2− 1) = −
√
2. This construction establishes a 2 sheeted cover

of ℂ.
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Sheet 1
0 1

Sheet 2
0 1

x−axis
0 1

Exercise 2.6.4. Let T : [0, 2�] → ℂ be defined by T (�) = 1
2e
i(�+�/2) and let

f : ℂ→ ℂ be defined by f(x) =
√
x(x− 1).

(1) Show that T ([0, 2�]) is the circle of radius 1
2 , with center 0, starting at

the point 1
2 i, in the counterclockwise direction.

(2) Show that f ∘T (0) and f ∘T (2�) give different values and that these exist

on each of the two sheets.

(3) Justify intuitively why f ∘ T ([0, 2�]) can be viewed as illustrated where

Sheet 1 corresponds to
√
2 and Sheet 2 corresponds to −

√
2 as in the

previous problem.

Exercise 2.6.5. Consider V (y2 − x(x− z)) in ℙ2. Now instead of considering

two ℂ sheets, we include the point at infinity, so we have two ℙ1 sheets, i.e. our

two sheets are now spheres rather than planes.

(1) Show that for each (x : z) ∈ ℙ1 there are two possible values for y, except

at (0 : 1) and (1 : 1).

(2) Consider the following figure in which the bottom sphere corresponds to

the (x : z)-axis, which is really ℙ1, the projective line. Show that sitting

over this projective line are two sheets, each of which is ℙ1.
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Sheet 1
(0:1) (1:1)

Sheet 2
(0:1) (1:1)

x−axis
(0:1) (1:1)

(3) Replace the segments in [(0 : 1), (1 : 1)] in Sheets 1 and 2 with circles A

and B. Draw a sequence of diagrams to show that if we attach circle A

in Sheet 1 to circle B in Sheet 2, then we obtain a sphere.

(4) Conclude that V (y2 − x(x− z)) ⊂ ℙ2 is a sphere.

Exercise 2.6.6. Now consider f : ℂ→ ℂ defined by f(x) =
√
x(x− 1)(x− �).

(1) Justify that f is well-defined on two possible sheets.

(2) Show that f is a 2-to-1 cover of the x-axis except at x = 0, x = 1, and

x = �.

(3) Homogenize y2 = x(x− 1)(x− �) to show that we now have a two-to-one

cover of ℙ1 except at (0 : 1), (1 : 1), (� : 1), and (1 : 0), where each of the

two sheets is itself a ℙ1. Explain how this is related to (b). What is the

extra ramified point?

(4) Use the earlier exercises to draw a sequence of diagrams illustrating how

y2 = x(x− z)(x− �z) in ℙ2 is a torus.

2.7. Cross-Ratios and the j-Invariant
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We have seen that every smooth cubic curve can be thought of as a two-to-one

cover of ℙ1, branched at exactly four points. This section will show how we can

always assume, via a change of coordinates, that three of these four branch points

are (1 : 0), (1 : 1) and (0 : 1). We will start with a series of exercises that explicitly

give these changes of coordinates. We then will have a series of exercises putting

these changes of coordinates into changes of coordinates of ℂ. It is here that the

cross ratio is made explicit. The key behind all of this is that two ordered sets of

four points are projectively equivalent if and only if they have the same cross-ratio.

The cross ratio will then return us to the j-invariant for a cubic curve.

2.7.1. Projective Changes of Coordinates for ℙ1. Given any three points

(x1 : y1), (x2 : y2), (x3 : y3) ∈ ℙ1, we want to find a projective change of coordinates

T : ℙ1 → ℙ1 such that

T (x1 : y1) = (1 : 0)

T (x2 : y2) = (0 : 1)

T (x3 : y3) = (1 : 1)

We will see that not only does such a map always exist, but that it is unique.

We first have to define what we mean by a projective change of coordinates for

ℙ1. In Section 1.5, we gave a definition for project change of coordinates for ℙ2.

The definition for ℙ1 is similar, namely that a projective change of coordinates is

given by

u = ax+ by

v = cx+ dy,

where ad− bc ∕= 0. We write this as

T (x : y) = (ax+ by : cx+ dy).

Now, we could write (x : y) ∈ ℙ1 as a column vector
(
x

y

)
.

If we let

A =

(
a b

c d

)
,

then we can think of T (x : y) = (ax + by : cx + dy) in terms of the matrix

multiplication

A

(
x

y

)
=

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.
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In ℙ1, we have that (x : y) = (�x : �y) for any constant � ∕= 0. This suggests the

following:

Exercise 2.7.1. Show that the matrices

A =

(
3 2

1 4

)
and B =

(
6 4

2 8

)
= 2 ⋅A

give rise to the same change of coordinates of ℙ1 → ℙ1.

Solution. We have

A

(
x

y

)
=

(
3 2

1 4

)(
x

y

)
=

(
3x+ 2y

x+ 4y

)

and

B

(
x

y

)
=

(
6 4

2 8

)(
x

y

)
=

(
6x+ 4y

2x+ 8y

)

Let TA denote the projective change of coordinates corresponding to the matrix A

and TB the projective change of coordinates corresponding to the matrix B. Then

we have

TA(x : y) = (3x+ 2y : x+ 4y)

= (6x+ 4y : 2x+ 8y)

= TB(x : y),

giving us our result.

Exercise 2.7.2. Show that the matrices

A =

(
a b

c d

)
and B =

(
�a �b

�c �d

)
,

for any � ∕= 0, give rise to the same change of coordinates of ℙ1 → ℙ1.

This means that the projective change of coordinates

(x : y) → (ax+ by : cx+ dy)

and

(x : y) → (�ax+ �by : �cx+ �dy)

are the same.

Solution. We have

A

(
x

y

)
=

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)

and

B

(
x

y

)
=

(
�a �b

�c �d

)(
x

y

)
=

(
�ax+ �by

�cx+ �dy

)
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Let TA denote the projective change of coordinates corresponding to the matrix

A and TB the projective change of coordinates corresponding to the matrix B. Then

we have

TA(x : y) = (ax+ by : cx+ dy)

= (�ax+ �by : �cx+ �dy)

= TB(x : y),

giving us our result.

Our desired projective change of coordinates T such that

T (x1 : y1) = (1 : 0), T (x2 : y2) = (0 : 1), T (x3 : y3) = (1 : 1)

is

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2)).

(It should not be at all clear how this T was created.)

Exercise 2.7.3. Let

(x1 : y1) = (1 : 2), (x2 : y2) = (3 : 4), (x3 : y3) = (6 : 5).

Show that

(1) T (x : y) = (28x− 21y : 18x− 9y)

(2) T (1 : 2) = (1 : 0), T (3 : 4) = (0 : 1), T (6 : 5) = (1 : 1)

Solution. We have

x2y − y2x = 3y − 4x

x1y − y1x = y − 2x

and

x1y3 − x3y1 = 5− 12 = −7

x2y3 − x3y2 = 15− 24 = −9

Then

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))

= ((3y − 4x)(−7) : (y − 2x)(−9))

= (28x− 21y : 18x− 9y)
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Then we have

T (1 : 2) = (28− 21 : 18− 18)

= (7 : 0)

= (1 : 0)

T (3 : 4) = (84− 84 : 54− 36)

= (0 : 18)

= (0 : 1)

T (6 : 5) = (168− 105 : 108− 45)

= (63 : 63)

= (1 : 1)

Exercise 2.7.4. Let (x1 : y1) = (3 : 1), (x2 : y2) = (8 : 5), and (x3 : y3) =

(2 : 7) Find the map T such that

T (3 : 1) = (1 : 0), T (8 : 5) = (0 : 1), T (2 : 7) = (1 : 1).

Solution. We have

x2y − y2x = 8y − 5x

x1y − y1x = 3y − x

and
x1y3 − x3y1 = 19

x2y3 − x3y2 = 46

Then

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))

= ((8y − 5x)(19) : (3y − x)(46))

= (−95x+ 152y : −46x+ 138y)

Then we get

T (3 : 1) = (−133 : 0) = (1 : 0)

T (8 : 5) = (0 : 322) = (0 : 1)

T (2 : 7) = (874 : 874) = (1 : 1)

Exercise 2.7.5. Show for the projective change of coordinates

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2)).

that

T (x1 : y1) = (1 : 0), T (x2 : y2) = (0 : 1), T (x3 : y3) = (1 : 1)
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Solution. We have

T (x1 : y1) = ((x2y1 − y2x1)(x1y3 − x3y1) : (x1y1 − y1x1)(x2y3 − x3y2))

= ((x2y1 − y2x1)(x1y3 − x3y1) : 0 ⋅ (x2y3 − x3y2))

= ((x2y1 − y2x1)(x1y3 − x3y1) : 0)

= (1 : 0)

T (x2 : y2) = ((x2y2 − y2x2)(x1y3 − x3y1) : (x1y2 − y1x2)(x2y3 − x3y2))

= (0 ⋅ (x1y3 − x3y1) : (x1y2 − y1x2)(x2y3 − x3y2))

= (0 : (x1y2 − y1x2)(x2y3 − x3y2))

= (0 : 1)

T (x3 : y3) = ((x2y3 − y2x3)(x1y3 − x3y1) : (x1y3 − y1x3)(x2y3 − x3y2))

= (1 : 1)

These problems give no hint as to how anyone could have known how to create

T ; the goal of these last problems was to show that this T actually does work.

We now want to start looking at uniqueness questions.

uniqueness Exercise 2.7.6. Let T (x : y) = (ax + by : cx + dy) be a projective change of

coordinates such that T (1 : 0) = (1 : 0), T (0 : 1) = (0 : 1), T (1 : 1) = (1 : 1). Show

that

a = d ∕= 0

and that

b = c = 0.

Explain why T must be the same as the projective change of coordinates given by

T (x : y) = (x : y).

Solution. We have

(1 : 0) = T (1 : 0) = (a : c)

which means that c = 0 and a ∕= 0. Similarly,

(0 : 1) = T (0 : 1) = (b : d),

giving us b = 0 and d ∕= 0. Finally, since

(1 : 1) = T (1 : 1) = (a+ b : c+ d) = (a : d),

we must have a = d.

We certainly have

T (x, y) = (ax : ay) = (x : y).
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Part of showing uniqueness will be in finding a decent, easy to use formula for

the inverse of our map T .

Exercise 2.7.7. Let T (x : y) = (ax + by : cx + dy) be a projective change of

coordinates and let

A =

(
a b

c d

)

be its associated matrix. Let

B =

(
d −b
−c a

)

Show that

A ⋅B = det(A)I,

where I is the two-by-two identity matrix.

Solution. We know that

det(A) = ad− bc.

Now

A ⋅B =

(
a b

c d

)(
d −b
−c a

)

=

(
ad− bc −ab+ ba

cd− cd −bc+ ad

)

= (ad− bc)

(
1 0

0 1

)

= det(A)I

This suggests the following for the inverse for T .

Exercise 2.7.8. Let T (x : y) = (ax + by : cx + dy) be a projective change of

coordinates and let

S(x : y) = (dx− by : −cx+ ay).

Show that S is the inverse of T , meaning that for all (x : y) ∈ ℙ1 we have

S(T (x : y)) = (x : y) and T (S(x : y)) = (x : y).

Solution. Let

A =

(
a b

c d

)
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be its associated matrix. Let

B =

(
d −b
−c a

)
.

We know that T (x : y) = (ax + by : cx + dy) can be described via matrix

multiplication as

A

(
x

y

)
=

(
ax+ by

cx+ dy

)
.

In a similar way, S(x : y) = (dx− by : −cx+ ay) can be described as

b

(
x

y

)
=

(
dx− by

−cx+ ay

)
.

Then we can describe S(T (x : y)) = (x : y) via

B ⋅A
(
x

y

)
=

(
d −b
−c a

)(
a b

c d

)(
x

y

)
=

(
(ad− bc)x

(ad− bc)y

)

Thus

S(T (x : y)) = ((ad− bc)x : (ad− bc)y) = (x : y)

The argument for showing T (S(x : y)) = (x : y) is similar.

Exercise 2.7.9. Let (x1 : y1), (x2 : y2), (x3 : y3) ∈ ℙ1 be three distinct points.

Let T1 and T2 be two projective change of coordinates such that

T1(x1 : y1) = (1 : 0), T1(x2 : y2) = (0 : 1), T1(x3 : y3) = (1 : 1)

and

T2(x1 : y1) = (1 : 0), T2(x2 : y2) = (0 : 1), T2(x3 : y3) = (1 : 1).

Show that T1 ∘ T−1
2 is a projective change of coordinates such that

T1 ∘ T−1
2 (1 : 0) = (1 : 0), T1 ∘ T−1

2 (0 : 1) = (0 : 1), T1 ∘ T−1
2 (1 : 1) = (1 : 1).

Show that T1 and T2 must be the same projective change of coordinates.

Solution. We have

T1 ∘ T−1
2 (1 : 0) = T1(x1 : y1)

= (1 : 0)

T1 ∘ T−1
2 (0 : 1) = T1(x2 : y2)

= (0 : 1)

T1 ∘ T−1
2 (1 : 1) = T1(x3 : y3)

= (1 : 1).

By exercise
uniqueness
2.7.6, we have that

T1 ∘ T−1
2 (x : y) = (x : y),
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which means that

T1(x : y) = T2(x, y).

Thus our desired map T is unique.

Exercise 2.7.10. Mathematicians will say that any three points in ℙ1 can be

sent to any other three points, but any fourth point’s image must be fixed. Using

the results of this section, explain what this means. (This problem is not so much

a typical math exercise but is instead an exercise in exposition.)

Solution. Suppose we have three points

p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3)

and three other points

q1 = (u1 : v1), q2 = (u2 : v2), q3 = (u3 : v3).

We will find a projective change of coordinates T such that

T (x1 : y1) = (u1 : v1)

T (x2 : y2) = (u2 : v2)

T (x3 : y3) = (u3 : v3)

We know that there is are unique projective changes of coordinates T1 and T2

such that

T1(x1 : y1) = (1 : 0)

T1(x2 : y2) = (0 : 1)

T1(x3 : y3) = (1 : 1)

T2(u1 : v1) = (1 : 0)

T2(u2 : v2) = (0 : 1)

T2(u3 : v3) = (1 : 1)

Our desired map is now simply

T = T−1
2 ∘ T1.

There is no freedom at all for where any other point can be mapped.

Finally, we can see how anyone ever came up with the map

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2)).

We just have to find a matrix

A =

(
a b

c d

)
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such that

A

(
x1

y1

)
=

(
1

0

)
, A

(
x2

y2

)
=

(
0

1

)
, A

(
x3

y3

)
=

(
1

1

)
.

Solving for the coefficients for A is now just a (somewhat brutal) exercise in algebra.

2.7.2. Working in ℂ. Algebraic geometers like to work in projective space

ℙn. Other mathematicians prefer to keep their work in affine spaces, such as ℂn,

allowing for points to go off, in some sense, to infinity. In this subsection we

interpret the projective change of coordinates T : ℙ1 → ℙ1 in the previous section

as a map T : ℂ ∪ {∞} → ℂ ∪ {∞}.
Given three points x1, x2 and x3 in ℂ, we want to find a map T : ℂ ∪ {∞} →

ℂ ∪ {∞} such that

T (x1) = ∞
T (x2) = 0

T (x3) = 1

For now, set

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
.

The next three exercises are in parallel with those in the previous subsection.

Exercise 2.7.11. Let x1 = 1/2, x2 = 3/4, and x3 = 6/5. (Note that these

correspond to the dehomogenization of the three points (x1 : y1) = (1 : 2), (x2 :

y2) = (3 : 4) in the previous subsections first problem.) Show that

(1) T (x) =
28x− 21

18x− 9
.

(2) T (1/2) = ∞, T (3/4) = 0, T (6/5) = 1.

Solution. We have

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)

=

(
3
4 − x

) (
1
2 − 6

5

)
(
1
2 − x

) (
3
4 − 6

5

)

=
28x− 21

18x− 9

Showing T (1/2) = ∞, T (3/4) = 0 and T (6/5) = 1 involves just plugging into the

above.

Exercise 2.7.12. Let x1 = 3, x2 = 8/5, and x3 = 2/7. Find the map T such

that

T (3) = ∞, T (8/5) = 0, T (2/7) = 1.
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Solution. We set

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)

=

(
8
5 − x

) (
3− 2

7

)

(3− x)
(
8
5 − 2

7

)

=
95x− 152

46x− 138

Exercise 2.7.13. Show for

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
.

that

T (x1) = ∞, T (x2) = 0, T (x3) = 1.

Solution. We have

T (x1) =
(x2 − x1)(x1 − x3)

(x1 − x1)(x2 − x3)

=
(x2 − x1)(x1 − x3)

0 ⋅ (x2 − x3)
= ∞

T (x2) =
(x2 − x2)(x1 − x3)

(x1 − x2)(x2 − x3)

=
0 ⋅ (x1 − x3)

(x1 − x2)(x2 − x3)

= 0

T (x3) =
(x2 − x3)(x1 − x3)

(x1 − x3)(x2 − x3)

= 1

The next exercise will link the map T : ℂ ∪ {∞} → ℂ ∪ {∞} with the map

T : ℙ1 → ℙ1. Recall in ℙ1 that

(x : y) = (
x

y
: 1),

provided that y ∕= 0. By a slight abuse of notation, we can think of dehomogenizing

as just setting all of the y’s equal to one.

Exercise 2.7.14. Show that the map T : ℙ1 → ℙ1 given by

T (x : y) = (ax+ by : cx+ dy)

will correspond to a map T : ℂ ∪ {∞} → ℂ ∪ {∞} given by

T (x) =
ax+ b

cx+ d
.
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Solution. We have

T (x : y) = (ax+ by : cx+ dy) =

(
ax+ b

cx+ d
: 1

)
,

giving us our result.

Exercise 2.7.15. Show that the map T : ℙ1 → ℙ1 given by

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))

will correspond to the map T : ℂ ∪ {∞} → ℂ ∪ {∞} given by

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
.

Here the dehomogenization is the map achieved by setting y = 1.

Solution. We have

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))

=

(
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
: 1

)

2.8. Cross Ratio: A Projective Invariant

Suppose we are given some points in ℙ1. We can label these points in many

ways, by choosing different coordinate systems. This is the same as studying the

points under projective changes of coordinates. We would like to associate to our

points something (for us, a number) that will not change, no matter how we write

the points. We call such numbers invariants.

If we start with three points p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3) ∈ ℙ1,
no such invariant number can exist, since any three points can be sent to any other

three points. But we cannot send any four points to any other four points. This

means that any collection of four points has some sort of intrinsic geometry. So

add a fourth point p4 = (x4 : y4) ∈ ℙ1. Then

Definition 2.8.1. The cross ratio of the four distinct points p1, p2, p3, p4 is

[p1, p2, p3, p4] =
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)
.

We need to show that this number does not change under projective change of

coordinates.

uniquenesscrossratio Exercise 2.8.1. Let

p1 = (1 : 2), p2 = (3 : 1), p3 = (1 : 1), p4 = (5 : 6).

(1) Calculate the cross ratio [p1, p2, p3, p4].
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(2) Let T : ℙ1 → ℙ1 be

T (x : y) = (3x+ 2y : 2x+ y).

Find T (p1), T (p2), T (p3), T (p4).

(3) Show

[T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

Solution. For p1 = (1 : 2), p2 = (3 : 1), p3 = (1 : 1), p4 = (5 : 6), we have

[p1, p2, p3, p4] =
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

=
(3 ⋅ 6− 1 ⋅ 5)(1 ⋅ 1− 2 ⋅ 1)
(1 ⋅ 6− 2 ⋅ 5)(3 ⋅ 1− 1 ⋅ 1)

=
13

8

For T (x : y) = (3x+ 2y : 2x+ y), we have

T (p1) = T (1 : 2) = (7 : 4)

T (p2) = T (3 : 1) = (11 : 7)

T (p3) = T (1 : 1) = (5 : 3)

T (p4) = T (5 : 6) = (27 : 16)

Then we have

[T (p1), T (p2), T (p3), T (p4)] =
(11 ⋅ 16− 7 ⋅ 27)(7 ⋅ 3− 5 ⋅ 4)
(7 ⋅ 16− 4 ⋅ 27)(11 ⋅ 3− 7 ⋅ 5)

=
13

8
,

giving us that [T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

Exercise 2.8.2. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3), p4 = (x4 : y4)

be any collection of four distinct points in ℙ1 and let T (x, y) = (ax+ by : cx+ dy)

be any projective change of coordinates. Show

[T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

(This is a long exercise in algebra, but at the end, there should be satisfaction at

seeing everything being equal.)

Solution. We have [T (p1), T (p2), T (p3), T (p4)] being

((ax2 + by2)(cx4 + dy4)− (cx2 + dy2)(ax4 + by4))((ax1 + by1)(cx3 + dy3)− (cx1 + dy1)(ax3 + by3))

((ax1 + by1)(cx4 + dy4)− (cx1 + dy1)(ax4 + by4))((ax2 + by2)(cx3 + dy3)− (cx2 + dy2)(ax3 + by3))

Now

((ax2 + by2)(cx4 + dy4)− (cx2 + dy2)(ax4 + by4))

equals

(ac− ac)x2y4 + (ad− cd)x2y4 + (bc− ad)x4y2 + (bd− bd)y2y4
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which is

(ac− bd)(x2y4 − x4y2).

Similarly we have

((ax1 + by1)(cx3 + dy3)− (cx1 + dy1)(ax3 + by3)) = (ac− bd)(x1y3 − x3y1)

((ax1 + by1)(cx4 + dy4)− (cx1 + dy1)(ax4 + by4)) = (ac− bd)(x1y4 − x4y1)

((ax2 + by2)(cx3 + dy3)− (cx2 + dy2)(ax3 + by3)) = (ac− bd)(x2y3 − x3y2)

Then

[T (p1), T (p2), T (p3), T (p4)] =
(x2y4 − x4y2)− (x1y3 − x3y1)

(x1y4 − x4y1)(x2y3 − x3y2)
,

which is indeed [p1, p2, p3, p4].

The above cross ratio depends, though, on how we ordered our four points

p1, p2, p3p4. If we change the order, the cross ratio might change.

Exercise 2.8.3. Let p1, p2, p3, p4 be any four distinct points in ℙ1. Show

[p1, p2, p3, p4] =
1

[p2, p1, p3, p4]
.

Solution. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3), p4 = (x4 : y4).

Then we have

[p2, p1, p3, p4] =
(x1y4 − y1x4)(x2y3 − x3y1)

(x2y4 − y2x4)(x1y3 − x3y1)
,

which by direct examination is the inverse of

[p1, p2, p3, p4] =
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

Exercise 2.8.4. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3), p4 = (x4 : y4)

such that [p1, p2, p3, p4] ∕= ±1. Show that there is no projective change of coordinate

T (x : y) = (ax+ by : cx+ dy) such that T interchanges p1 with p2 but leave p3 and

p4 alone. In other words, show there is no T such that

T (p1) = p2, T (p2) = p1, T (p3) = p3, T (p4) = p4.

Solution. By
uniquenesscrossratio
2.8.1, we have

[T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

But we just showed in the previous exercise that

[p1, p2, p3, p4] =
1

[p2, p1, p3, p4]
.

If there is such a projective change of coordinate T , we need to have

[p1, p2, p3, p4] =
1

[p1, p2, p3, p4]
,

which would mean that [p1, p2, p3, p4] = ±1, which contradicts our assumptions.
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Exercise 2.8.5. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 : y3), p4 = (x4 : y4)

be any collection of four distinct points in ℙ1. Show that

[p2, p1, p4, p3] = [p1, p2, p3, p4].

Solution. We have

[p1, p2, p3, p4] =
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

=
(x1y3 − x3y1)(x2y4 − y2x4)

(x2y3 − x3y2)(x1y4 − y1x4)

= [p2, p1, p4, p3]

Exercise 2.8.6. Using the notation from the previous problem, find two other

permutations of the points p1, p2, p3, p4 so that the cross ratio does not change.

Solution. We have

[p3, p4, p1, p2] =
(x4y2 − y4x2)(x3y1 − x1y3)

(x3y2 − y3x2)(x4y1 − x1y4)

=
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

= [p1, p2, p3, p4].

Since we always have [p2, p1, p4, p3] = [p1, p2, p3, p4], we get [p1, p2, p3, p4] =

[p3, p4, p1, p2] = [p4, p3, p2, p1] giving us our two other permutations.

Let

[p1, p2, p3, p4] = �.

We have shown that there are four permutations of the p1, p2, p3, p4 that do not

change the cross ratio but we have also shown

[p2, p1, p3, p4] =
1

�
.

Exercise 2.8.7. Using the above notation, find permutations of the p1, p2, p3, p4

so that all of the following cross ratios occur:

�,
1

�
,

1

1− �
, 1− �,

�

�− 1
,
�− 1

�
.

Solution. The method is to just start permuting the p1, p2, p3, p4 until you

get all six possibilities.
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Here is one possible set of choices: We will show that

� = [p1, 22, p3, p4]

1

�
= [p1, p2, p4, p3]

1− � = [p1, p3, p2, p4]

1

1− �
= [p1, p3, p4, p2]

�

�− 1
= [p1, p4, p3, p2]

�− 1

�
= [p1, p4, p2, p3]

The first is just the definition and the second we have already shown. Consider

[p1, p3, p2, p4] =
(x3y4 − y3x4)(x1y2 − x2y1)

(x1y4 − y1x4)(x3y2 − x2y3)

= − (x3y4 − y3x4)(x1y2 − x2y1)

(x1y4 − y1x4)(x2y3 − x3y2)

= −x1x3y2y4 − x2x3y1y4 − x1x4y2y3 + x2x4y1y3
(x1y4 − y1x4)(x2y3 − x3y2)

Now

1− � = 1− (x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

=
((x1y4 − y1x4)(x2y3 − x3y2)

(x1y4 − y1x4)(x2y3 − x3y2)
− (x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)

= −x1x3y2y4 − x2x3y1y4 − x1x4y2y3 + x2x4y1y3
(x1y4 − y1x4)(x2y3 − x3y2)

= [p1, p3, p2, p4]

Since [p1, p2, p4, p3] =
1

[p1,p2,p3,p4]
, we must have

[p1, p3, p4, p2] =
1

[p1, p3, p2, p4]
=

1

1− �
.

Now for the fifth equation. We have that

1− 1

1− �
=

1− �

1− �
− 1

1− �
=

�

�− 1
.

Since 1− [p1, p2, p3, p4] = [p1, p3, p2, p4], we get that

�

�− 1
= 1− 1

1− �

= 1− [p1, p3, p2, p4]

= [p1, p4, p3, p2]
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Since we know that interchanging the third and fourth term in the cross ratio will

invert the cross ratio, we get the last equation:

�− 1

�
= [p1, p4, p2, p3].

The above explains Exercise 2.5.20.

Exercise 2.8.8. There are 4! = 24 permutations of the four points p1, p2, p3, p4.

For any ordering of these points, there are four permutations (including the identity)

that preserve the cross ratio. Show that the list �, 1
� ,

1
1−� , 1 − �, �

�−1 ,
�−1
� are the

only possible values for the cross ratio, no matter how we order the four points.

Solution. We have

� = [p1, p2, p3, p4]

= [p2, p1, p4, p3]

= [p3, p4, p1, p2]

= [p4, p3, p2, p1]

We get the values for the remaining 20 permutations will give us our other

values, as follows:

1

�
= [p1, p2, p4, p3]

= [p2, p1, p3, p4]

= [p4, p3, p1, p2]

= [p3, p4, p2, p1]

1− � = [p1, p3, p2, p4]

= [p3, p1, p4, p2]

= [p2, p4, p1, p3]

= [p4, p2, p3, p1]

1

1− �
= [p1, p3, p4, p2]

= [p3, p1, p2, p4]

= [p4, p2, p1, p3]

= [p2, p4, p3, p1]
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�

�− 1
= [p1, p4, p3, p2]

= [p4, p1, p2, p3]

= [p3, p2, p1, p4]

= [p2, p3, p4, p1]

�− 1

�
= [p1, p4, p2, p3]

= [p4, p1, p3, p2]

= [p2, p3, p1, p4]

= [p3, p2, p4, p1].

2.9. The j-Invariant

But how are these cross ratios related to this chapter’s main topic, cubic curves?

In the Weierstrass normal form for a cubic, we showed that any cubic curve can be

written as y2 = f(x), where f(x) is a cubic polynomial. In ℙ2, we have the corre-

sponding homogeneous equation zy2 = f(x, z). Letting (x : z) be the homogeneous

coordinates for ℙ1, we know that there is a projective change of coordinates that

sends two of the roots of f to (1 : 0) and (1 : 1), leaving (0 : 1) fixed. The third root

is then sent to some point (� : 1). This further explains the Weierstrass normal

form

y2 = x(x− 1)(x− �),

given in section 2.5.

As discussed in section 2.5, it would be great if the third root � was unique.

But that is false, as its value depends on how we order the three roots (and what

we define as infinity). We know that by rearranging these four points, we can get

the third root to be any of the values �, 1
� ,

1
1−� , 1 − �, �

�−1 ,
�−1
� . We would

like to have a single number that encodes all of this information. While not at all

obvious, that number is

j(�) = 28
(�2 − �+ 1)3

�2(�− 1)2
,

which we called in section 2.5 the j-invariant. (The 28 only appears for quite

technical reasons for when our curves are defined not over ℂ but over fields of

characteristic two, which we will not be concerned with.)

Exercise 2.9.1. Show that

(1) j(�) = j
(
1
�

)

(2) j(�) = j
(

1
1−�

)

(3) j(�) = j (1− �)

(4) j(�) = j
(

�
�−1

)
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(5) j(�) = j
(
�−1
�

)

Solution. This is an exercise in algebra.

(1) We have

j

(
1

�

)
= 28

((
1
�

)2 − 1
� + 1

)3

(
1
�

)2 ( 1
� − 1

)2

= 28
((

1
�2

) (
1− �+ �2

))3

( 1
�2 )
(
1
� (1− �)

)2

= 28
(
1
�

)6 ((
1− �+ �2

))3

( 1� )
4 ((1− �))

2

= 28
(
1− �+ �2

)3

�2 (1− �)
2 = j(�)

(2) Now

j

(
1

1− �

)
= 28

((
1

1−�

)2
− 1

1−� + 1

)3

(
1

1−�

)2 (
1

1−� − 1
)2

= 28

((
1

1−�

)2 (
1− (1− �) + (1− �)2

))3

( 1
1−� )

2
(

1−1+�
1−�

)2

= 28

(
1

1−�

)6 (
1− 1 + �+ 1− 2�+ �2

)3
(

1
1−�

)4
�2

= 28
(
1− �+ �2

)3

�2 (1− �)
2 = j(�)

(3) Continuing, we have

j (1− �) = 28
(
(1− �)2 − (1− �) + 1

)3

(1− �)2(1− �− 1)2

= 28
(
1− 2�+ �2 − 1 + �+ 1

)3

(1− �)2�2

= 28
(
1− �+ �2

)3

�2 (1− �)
2 = j(�)
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(4) We have

j

(
�

�− 1

)
= 28

((
�

1−�

)2
− �

1−� + 1

)3

(
�

1−�

)2 (
�

1−� − 1
)2

= 28

((
1

1−�

)2 (
�2 − �(�− 1) + (�− 1)2

))3

( �
1−� )

2
(
�−(�−1)
�−1

)2

= 28

(
1

1−�

)6 (
�2 − �2 + �+ �2 − 2�+ 1

)3
(

�
1−�

)2 (
1

�−1

)2

= 28
(
1− �+ �2

)3

�2 (1− �)
2 = j(�)

(5) We could grind through the algebra, but we have done enough work to

produce an elegant solution. Using part 1 we can rewrite j
(
�−1
�

)
=

j
(

1
�−1
�

)
, which can be simplified to j

(
�
�−1

)
, which we have calculated in

Part 4 as j(�).

Exercise 2.9.2. Given any four distinct points p1, p2, p3, p4 in ℙ1, show that

the j-invariant of the cross ratio does not change under any reordering of the four

points and under any projective linear change of coordinates. (This is why we are

justified in using the term “invariant” in the name j-invariant.)

Solution. We have seen by
goodcross
??, that there are 6 values for the cross ratio de-

pending on the order of the points. If [p1, p2, p3, p4] = �, then the other possibilities

for the cross ratio are
1

�
,

1

1− �
, 1− �,

�

�− 1
,
�− 1

�
.

All of these values will produce a value equal to j(�). We are justified in calling j

an invariant of the cubic curve.

Thus given a smooth cubic curve, we can put the curve into Weierstrass normal

form and associate to this curve a singe number j. A natural question is if two

different curves could have the same j invariant. The next exercises will show that

this is not possible.

Exercise 2.9.3. Suppose that

j(�) = 28
(�2 − �+ 1)3

�2(�− 1)2
= a

for some constant a.
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(1) Show that any solution � of the equation

28(�2 − �+ 1)3 − a�2(�− 1)2 = 0

has the property that

j(�) = a.

(2) Show that the above equation can have only six solutions.

(3) Show that if � is a solution, then the other five solutions are 1
� ,

1
1−� , 1−

�, �
�−1 ,

�−1
� .

(4) Show that if we have two curves zy2 = x(x − z)(x − �z) and zy2 =

x(x− z)(x− �z) with

j(�) = j(�),

then there is a projective change of coordinates of ℙ1 with coordinates

(x : z) taking the first curve to the second.

Solution. (1) Let � be a solution to 28(�2 − �+ 1)3 − a�2(�− 1)2 = 0,

which means that 28(�2−�+1)3−a�2(�−1)2 = 0. Solving this equation

for a yields a = 28(�2−�+1)3

�2(�−1)2 .

(2) Since j(0) = 28 ∕= 0, this polynomial is nonconstant. The degree of this

polynomial as a function of � is 6. By the Fundamental Theorem of

Algebra, there can only be 6 solutions.

(3) Suppose � is a solution to 28(�2 − � + 1)3 − a�2(� − 1)2 = 0. Then

j(�) = a. By the first exercise in this section, the other values with the

same j-invariant are

1

�
,

1

1− �
, 1− �,

�

�− 1
,
�− 1

�

. The first part of this problem shows that these are also solutions to the

polynomial.

(4) I need to work on this part.

2.10. Torus as ℂ/Λ

We will begin this section with background material from abstract algebra to

make clear what a quotient group is. After that material is developed, we will

expeditiously proceed to the goal of this problem set, namely to realize a torus as

the quotient group ℂ/Λ.
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partition

equivalence relation

2.10.1. Quotient Groups. Given a group G with binary operation ★, a sub-

set S of G is said to be a subgroup if, equipped with the restriction of ★ to S × S,

S itself is a group. Given a known group G, a way to generate examples of groups

is to look at all its subgroups. Another way of generating examples is to “collapse”

a certain type of subgroup N of the group G into the identity element of a new

“quotient group” G/N . In order for this “quotient” construction to yield a group,

N must satisfy certain properties that make it a so-called normal subgroup of G.

Notation: Let G be a group with binary operation ★. This binary operation ★

induces an operation ★ (by abuse of notation) on subsets of G defined as follows:

if S and T are subsets of G, then S ★ T := {s ★ t : s ∈ S, t ∈ T}. If S = {s} is a

singleton, then we write sT for {s} ★ T ; likewise, we write St for S ★ {t}.

Definition 2.10.1. Given a nonempty set A, we say that a collection P of

subsets of A is a partition of A if P consists of nonempty, pairwise disjoint sets

whose union is A. This means that if

P = {U�}�∈I ,

where I is an indexing set, then the elements of P satisfy the following two condi-

tions.

(1) P� ∩ P� = for all �, � ∈ I;

(2) A = ∪�∈IU�.

Exercise 2.10.1. Let A be a nonempty set.

(1) Let ∼ be an equivalence relation on the set A. Show that the set of

equivalence classes of ∼ is a partition of A.

(2) Suppose P is a partition of A. Show that the relation ∼, defined by x ∼ y

if and only if x and y belong to the same element of P , is an equivalence

relation.

Solution. (1) To show that the equivalence classes form a partition of A,

we will show that any two equivalence classes are either equal or disjoint.

Let [a] and [b] be two equivalence classes, for a, b ∈ A. Suppose [a]∩[b] ∕= ∅.
Then there is some element x ∈ A with x ∼ a and x ∼ b. By symmetry,

a ∼ x, and then by transitivity a ∼ b. To see that this implies [a] = [b],

let y ∈ A. Then

y ∈ [a] ⇔ y ∼ a⇔ y ∼ b⇔ y ∈ [b]

thus [a] = [b]. Therefore two equivalence classes are either equal or dis-

joint, so the collection of equivalence classes forms a partition of A.

(2) We must show that ∼ is reflexive, symmetric, and transitive. Clearly for

any a ∈ A, a is in some element of P so that a ∼ a and ∼ is reflexive.
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quotient groupTo see that ∼ is symmetric suppose a, b ∈ A with a ∼ b, so that a and b

belong to the same subset of A in the partition P . Then b ∼ a. Lastly,

suppose a ∼ b and b ∼ c for a, b, c ∈ A. Then a and b are in the same

subset and b and c are in the same subset in P . Since P is a partition b

is in exactly one element of P , thus a, b, and c are all in the same element

of P and a ∼ c. Therefore ∼ is also transitive, thus it is an equivalence

relation.

The previous exercise shows that partitions give natural equivalence relations

and that equivalence relations are natural ways of generating partitions.

Definition 2.10.2. Let G be a group. A quotient group of G is a partition of

G that is a group under the subset operation induced by the binary operation on

G.

Exercise 2.10.2. For i = 0, 1, 2, let 3ℤ + i := {3n + i : n ∈ ℤ}. Show that

{3ℤ, 3ℤ+ 1, 3ℤ+ 2} is a quotient group of the additive group ℤ.

Solution. By the Division Algorithm, every integer can be written uniquely

in the form 3q + r for 0 ≤ r ≤ 2. Thus {3ℤ, 3ℤ + 1, 3ℤ+ 2} is a partition of ℤ. It

is straightforward to check that {3ℤ, 3ℤ + 1, 3ℤ + 2} is closed under the induced

addition with additive identity 3ℤ. The elements 3ℤ+ 1 and 3ℤ+ 2 are inverses.

quotient Exercise 2.10.3. Suppose Q is a quotient group of a group G. Prove the

following.

(1) Let e be the identity of G and let E be the unique element of Q with

e ∈ E. Then E is the identity in the group Q.

(2) Let A ∈ Q, a ∈ A, and a−1 the inverse to a in G. Let A′ be the unique

element of Q containing a−1. Then A′ is the inverse to A in Q.

(3) Let A ∈ Q. For any a ∈ A, A = aE = Ea.

Solution. (1) Let A ∈ Q and a ∈ A. Since e ∈ E, we have a = a ★ e ∈
A ★E and a = e ★ a ∈ E ★A; since A ★E and E ★A are in the partition Q

and contain the element a, we must have A = A ★ E = E ★ A. Thus E is

the identity in Q.

(2) Since e = a ★ a−1 ∈ A ★ A′, A ★ A′ = E..

(3) For all x ∈ E, a ★ x ∈ A ★ E, thus aE ⊆ A ★ E = A. Let a−1 ∈ A′, where

A′ is the inverse to A in Q. Then a−1A ⊆ A′ ★ A = E, thus A ⊆ aE.

Therefore aE = A. A similar argument shows Ea = A.

Exercise 2.10.4. Suppose Q is a quotient group of a group G and let S ∈ Q.

Prove that for any g ∈ G, both gS ∈ Q and Sg ∈ Q.
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normal subgroup Solution. Let s ∈ S so we may write S = sE = Es by the previous exercise.

Then gS = (gs)E and Sg = E(gs); again by the previous exercise (gs)E ∈ Q and

E(gs) ∈ Q.

Definition 2.10.3. Let G be a group. A normal subgroup N of G is a subgroup

of G that is the identity element of some quotient group Q of G. The subsets of G

in Q are called the cosets of N . If N is a normal subgroup by virtue of being the

identity element of the quotient group Q, we write Q = G/N and say that Q is the

group G mod N .

Exercise 2.10.5. Identify all possible normal subgroups of the additive group

ℤ. (Hint: start by analyzing the previous exercise.)

Solution. A normal subgroup of G arises as the identity E of a quotient group

Q. By the previous exercise, for any quotient group Q of ℤ E contains 0 and for all

g ∈ ℤ, g+E = E + g. Every subgroup contains 0 and the second condition follows

since ℤ is abelian. Thus every subgroup of ℤ is normal.

Recall, from above, that gN = {gn : n ∈ N}. In the next exercise we will

establish that N is normal if and only if gN = Ng. gN and Ng are two sets and

we will show equality as sets. In particular, we show that every element of gN is

in Ng and vice versa, but it is not necessarily true that gn = ng for a particular

n ∈ N , i.e. the group need not be abelian.

Exercise 2.10.6. Show that a subgroup N of a group G is normal if and only if

gN = Ng for all g ∈ G. [Hint: If gN = Ng for all g ∈ G, define Q = {gN : g ∈ G}.
Show that the operation on subsets of G is well-defined on Q and makes Q into a

group.]

Solution. Suppose N is a normal subgroup of G. Then N is the identity

element for a quotient group of G, thus gN = Ng for all g ∈ G by previous.

Conversely, suppose N is a subgroup of G such that gN = Ng for all g ∈ G.

Define Q = {gN : g ∈ G}. We will show Q is a quotient group with identity N .

We first check that Q forms a partition of G. Every g ∈ G is contained in an

element of Q, namely g ∈ gN since N is a subgroup of G and e ∈ N . If g, ℎ ∈ G

with gN ∩ ℎN ∕= ∅, then gn ∈ ℎN for some n ∈ N and thus g ∈ ℎN . This implies

gN = ℎN , thus the distinct elements of Q form a partition of G.

For gN, ℎN ∈ Q, gN ★ ℎN = gℎN ∈ Q, and (gN)−1 = g−1N . The subgroup

N is the identity of Q, thus N is a normal subgroup of G.

Exercise 2.10.7. Given a quotient groupQ of a groupG, show that the element

of Q containing e (the identity element of G) is a normal subgroup of G.
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Solution. Let E be the element of Q containing e. By Exercise
quotient
2.10.3, for all

g ∈ G, gE = Eg. Thus E a is normal subgroup of G by the previous exercise.

abelian Exercise 2.10.8. Suppose G is an abelian group. Show that every subgroup

is normal.

Solution. Suppose G is abelian and letN be a subgroup of G. Then gN = Ng

for all g ∈ G, thus by the previous exercise N is normal.

In the discussion above, we have produced some ways of generating examples of

groups: finding subgroups and taking quotients. (To be sure, there are more ways

of generating groups from given ones: for instance, one can take direct products, or

ultraproducts, but that’s not useful to us at this point.) But how do we compare

groups? One way of doing this is to look for maps between groups that preserve

group structure.

Definition 2.10.4. Suppose (G, ★G) and (H, ★H) are two groups. A map ' :

G→ H is said to be a homomorphism if '(x ★G y) = '(x) ★H '(y) for all x, y ∈ G.

If a homomorphism is bijective, we call it an isomorphism and say that the groups

G and H are isomorphic. We denote this by G ∼= H.

If two groups are isomorphic, they are essentially “the same.” If there is a

homomorphism between two groups there is still a nice relationship between G and

H.

isomorphism theorem Exercise 2.10.9. Let ' : G→ H be a homomorphism, and let e be the identity

element of H. Let ker(') := {g ∈ G : '(g) = e}. (We call ker(') the kernel of '.)

(1) Show that ker(') is a subgroup of G.

(2) Show that ker(') is a normal subgroup of G.

(3) Show that if ' : G → H is onto, then the quotient group G/ker(') is

isomorphic to H.

Solution. (1) For a, b ∈ ker('), '(ab) = '(a)'(b) = ee = e, thus

ab ∈ ker('). For a ∈ ker(') we have '(eG) = '(aa−1) = '(a)'(a−1) =

e'(a−1) = '(a−1). Since ' is a homomorphism, '(eG) = e, thus '(a−1) =

e so a−1 is also in the kernel.

(2) Let N = ker(') and let g ∈ G. To prove N is normal we must show

gN = Ng, or equivalently gNg−1 = N . Let n ∈ N . Then '(gng−1) =

'(g)'(n)'(g−1) = '(g)e'(g−1) = '(gg−1) = '(e) = e, thus gng−1 ∈ N .

This proves gNg−1 ⊆ N . To see that these two sets are in fact equal, let

n ∈ N . One checks that g−1ng is also in N , thus n = g(g−1ng)g−1 ∈
gNg−1 and we have gNg−1 = N . Thus N is a normal subgroup of G.
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group (3) We will extend the map ' to ' : G/N → H, where N = ker('). The

elements ofG/N can be written as aN for a ∈ G; one checks that aN = bN

if and only if ba−1 ∈ N . With this in mind we define '(aN) = '(a).

First let’s verify that this map is well-defined. Suppose aN = bN

in G/N , so that ba−1 ∈ N . Then ba−1 = n for some n ∈ N , and we

have '(bN) = '(b) = '(na) = '(n)'(a) = '(a) = '(aN). Thus ' is a

well-defined map from G/N to H.

That this map is a homomorphism follows since ' is a homomorphism.

To see that ' is one-to-one, suppose '(aN) = '(bN). Then '(a) = '(b)

and '(ab−1) = e. Thus ab−1 ∈ N , thus aN = bN .

To prove that ' is also onto, and therefore an isomorphism, let ℎ ∈ H.

Since ' is onto, there exists some g ∈ G with '(g) = ℎ. Then '(gN) =

'(g) = ℎ.

The previous exercise gives us a way to check whether a subset S of a group G is

a normal subgroup. If we can realize the subset S as the kernel of a homomorphism,

then it must be a normal subgroup.

Exercise 2.10.10. Let G be the multiplicative group of all invertible 2 × 2

matrices over the real numbers, and let N be the subset of G consisting of matrices

having determinant equal to 1. Prove that N is a normal subgroup of G.

Solution. We will show that N is the kernel of a homomorphism from G

to ℝ∗, the multiplicative group of non-zero reals. Let � : G → ℝ∗ be defined by

�(M) = detM . For any two matrices M,N ∈ G, det(MN) = detM detN , thus �

is a homomorphism. The kernel of � is the set of all matrices in G with determinant

1.

2.10.2. The Torus. In order to understand some of the geometry of a torus,

we need to determine how a torus is formed. We will begin by using a little group

theory to realize a circle, S1, as the quotient group ℝ/ℤ.

Exercise 2.10.11.

(1) Show that ℝ is an abelian group under addition.

(2) Show that ℤ is a subgroup of ℝ and conclude that ℤ is a normal subgroup.

Solution. (1) Clearly, the real numbers are closed under addition and

this operation is associative and commutative. We have identity element

0 and for any r ∈ ℝ, the additive inverse is −r.
(2) Let a, b ∈ ℤ. Then a + b and −a are also integers, thus ℤ is a subgroup.

Since ℝ is abelian, by exercise
abelian
2.10.8, ℤ is normal.

Exercise 2.10.12. Define a relation on ℝ by x ∼ y if and only if x− y ∈ ℤ.
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(1) Verify that ∼ an equivalence relation.

(2) Let [x] denote the equivalence class of x, that is, [x] = {y ∈ ℝ ∣ x ∼ y}.
Find the following equivalence classes: [0], [ 12 ], and [

√
2].

(3) The equivalence relation ∼ gives a partition of ℝ. Explain how this par-

tition ℝ/ℤ is the realization of a circle. [Hint: Explain how progressing

from 0 to 1 is the same as going around a circle once.]

Solution. (1) For any x ∈ ℝ, x ∼ x since x − x = 0 ∈ ℤ. Thus ∼ is

reflexive. If x−y ∈ ℤ, then y−x = −(x−y) ∈ ℤ. Thus x ∼ y =⇒ y ∼ x

and ∼ is symmetric. To see that ∼ is transitive, suppose x ∼ y and y ∼ z

for x, y, z ∈ ℝ. Then x−y ∈ ℤ and y−z ∈ ℤ, so x−z = (x−y)+(y−z) inZ
and x ∼ z. Therefore ∼ is also transitive.

(2) [0] = {y ∈ ℝ∣0 ∼ y} = ℤ[
1
2

]
=
{
y ∈ ℝ∣y − 1

2 ∈ ℤ
}
=
{
x+ 1

2 ∣x ∈ ℤ
}

[√
2
]
=
{
y ∈ ℝ∣y −

√
2 ∈ ℤ

}
=
{
x+

√
2∣x ∈ ℤ

}

(3) Under this equivalence relation, every x ∈ ℝ is related to a y ∈ [0, 1)

(namely y = x − ⌊x⌋). We can picture wrapping this interval around a

circle, with 1 ∼ 0.

We can also use Exercise
isomorphism theorem
2.10.9 to give an isomorphism between ℝ/ℤ and the

circle. Let S1 denote the unit circle centered at the origin in ℝ2. As we have already

seen ℝ2 is in one-to-one correspondence with ℂ, so we can regard S1 as the set

S1 = {x ∈ ℂ ∣ ∣x∣ = 1}. Recall, that any complex number has a polar representation

x = r(cos � + i sin �), so we can express S1 as S1 = {cos � + i sin � : � ∈ ℝ} ⊂ ℂ.

Exercise 2.10.13. Show that S1 is a group under (complex) multiplication.

Solution. Let x, y ∈ S1. Then x, y ∈ ℂ with ∣x∣ = 1, ∣y∣ = 1. We have ∣xy∣ =
∣x∣∣y∣ = 1, thus xy ∈ S1 and S1 is closed under multiplication. The multiplicative

identity 1 is clearly in S1. For any x ∈ S1, x ∕= 0 so we may find 1
x ∈ S1.

Exercise 2.10.14. Define a map � : ℝ→ S1 by �(�) = cos 2�� + i sin 2��.

(1) Show that � is onto.

(2) Show that � is a homomorphism, i.e. show that �(�+ �) = �(�)�(�) for

all �, � ∈ ℝ.
(3) Find ker� and conclude that ℝ/ℤ ∼= S1.

Solution. (1) Any x ∈ S1 can be written as x = cos�+i sin� for � ∈ ℝ;
letting � = �

2� we have �(�) = x.

(2) This can be checked using the sum formulas for sine and cosine. Al-

ternately we can use Euler’s Formula to write �(�) = e2�i�. Then for
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lattice

x

y

x

y

Figure 3. lattices ⟨1, i⟩ and ⟨1 + i, i⟩

�, � ∈ ℝ,

�(�+ �) = e2�i(�+�) = e2�i�+2�i� = e2�i�e2�i� = �(�)�(�).

(3) The kernel of � is all � ∈ ℝ with �(�) = e2�i� = 1. Thus ker� = ℤ. Thus

by the First Isomorphism Theorem, ℝ/ℤ ∼= S1.

We now want to extend the ideas in the previous exercises to the complex plane.

Let !1 and !2 be complex numbers such that !1

!2
is not purely real. Let the integer

lattice Λ be defined as Λ = {m!1+n!2 : m,n ∈ ℤ}. We will call the parallelogram

formed by joining 0, !1, !1 + !2, !2, and 0 in succession the fundamental period-

parallelogram. We will realize a torus as a quotient group ℂ/Λ.

Exercise 2.10.15. (1) Sketch the lattice generated by !1 = 1 and !2 = i.

[Hint: Sketch the fundamental period-parallelogram of this lattice.]

(2) Sketch the lattice generated by !1 = 1 + i and !2 = i.

Solution.

Exercise 2.10.16. (1) Show that ℂ is an abelian group under addition.

(2) Show that Λ is a subgroup of ℂ and conclude that Λ is a normal subgroup.

Solution. (1) Clearly the complex numbers are closed under addition

and this operation is associative and commutative. We have identity ele-

ment 0 and for any x ∈ ℂ, the additive inverse is −x.
(2) For x, y ∈ Λ we can write x = a!1 + b!2, y = c!1 + d!2 for a, b, c, d ∈ ℤ.

Then x+ y = (a!1 + b!2) + (y = c!1 + d!2) = (a+ c)!1 + (b+ d)!2 ∈ Λ

and −x = −a!1 − b!2 ∈ Λ. Thus Λ is closed under addition and inverses,

so it is a subgroup of ℂ; since ℂ is abelian Λ is a normal subgroup.

Exercise 2.10.17. Define a relation on ℂ by x ∼ y if and only if x − y ∈ Λ.

Show that ∼ is an equivalence relation.
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torusSolution. For all x ∈ ℂ, x ∼ x since x − x = 0 ∈ Λ, thus ∼ is reflexive. If

x ∼ y then y − x = −(x − y) ∈ Λ, thus y ∼ x and ∼ is symmetric. If x ∼ y and

y ∼ z, then x − z = (x − y) + (y − z) ∈ Λ, thus x ∼ z. This proves that ∼ is an

equivalence relation.

Since ∼ is an equivalence relation, it is natural to ask about the quotient group

ℂ/Λ.

Exercise 2.10.18. Let Λ ⊂ ℂ be the integer lattice generated by {!1 = 1, !2 =

i} and let a, b ∈ ℝ.
(1) Find all points in ℂ equivalent to 1

2 + 1
2 i in the group ℂ/Λ.

(2) Find all points in ℂ equivalent to 1
3 + 1

4 i in ℂ/Λ.

(3) Show that a ∼ a+ i in ℂ/Λ.

(4) Show that bi ∼ 1 + bi in ℂ/Λ.

Solution. (1) A point x = a + bi ∈ ℂ is equivalent to 1
2 + 1

2 i in ℂ/Λ

if and only if x − 1
2 + 1

2 i = (a − 1
2 ) + (b − 1

2 )i ∈ Λ, or equivalently

x = ( 12 +m) + ( 12 + n)i for some m,n ∈ Z.

(2) A point x = a + bi ∈ ℂ is equivalent to 1
3 + 1

4 i in ℂ/Λ if and only if

x− 1
3 +

1
4 i = (a− 1

3 )+(b− 1
4 )i ∈ Λ, or equivalently x = ( 13 +m)+( 14 +n)i

for some m,n ∈ Z.

(3) a− (a+ i) = −i ∈ Λ, thus a ∼ a+ i.

(4) bi− (1 + bi) = −1 ∈ Λ, thus bi ∼ 1 + bi.

Exercise 2.10.19. Sketch a sequence of diagrams to show that ℂ/Λ is a torus.

[Hint: Construct a torus using !1 = 1 and !2 = i by identifying the horizontal and

vertical sides of the fundamental period-parallelogram as in the previous problem.

Now repeat with any lattice.]

Exercise 2.10.20. Let Λ ⊂ ℂ be the integer lattice generated by {!1 = 1, !2 =

i}.
(1) Sketch a vertical segment in the fundamental period-parallelogram and

illustrate to what this corresponds on our torus. Sketch a horizontal line

in the fundamental period-parallelogram and illustrate to what this cor-

responds on our torus.

(2) Show that 1
4 + i ∈ ℂ/Λ has order 4 and write all of the elements of ⟨ 14 + i⟩.

(3) Represent the fact that 1
4 + i has order 4 geometrically on the fundamen-

tal period-parallelogram by sketching a line in ℂ that has slope 1
4 and

considering its image in ℂ/Λ.

(4) Sketch the paths traced by these segments on the torus. What do you

notice about this path on the torus?



188 Algebraic Geometry: A Problem Solving Approach

Weierstrass
$“wp$-function

(5) Pick any element � ∈ ℂ/Λ and show that if � has finite order, then the

path on the torus represented by the line through 0 and � is a closed path.

(6) Suppose an element � has infinite order. What can you say about the

slope of the line through 0 and �. Illustrate this phenomenon on the

fundamental period-parallelogram in ℂ and on the torus.

2.11. Mapping ℂ/Λ to a Cubic

The goal of this problem set is construct a map from ℂ/Λ to a cubic curve.

In this section we assume some knowledge about complex variables and analysis.

For a quick outline of the basics that we are going to use, please refer to Appendix
complex appendix
A

or your favorite introductory complex variables textbook.

We have established that given any smooth cubic curve C we can realize C

topologically as a torus. We have also seen that given any integer lattice Λ =

{m!1 + n!2 : m,n ∈ ℤ} ⊂ ℂ, with !1/!2 not purely real, we can construct a torus

ℂ/Λ. Our goal in this section is to generate a smooth cubic curve given a lattice Λ.

Hence, we will construct a map from the quotient group ℂ/Λ to ℂ2 whose image is

the zero locus of a non-singular cubic polynomial. In order to do this we will use

the Weierstrass ℘-function ℘ : ℂ/Λ → ℂ defined by

℘(x) =
1

x2
+

∑

m,n∈ℤ

(m,n) ∕=(0,0)

1

(x−m!1 − n!2)2
− 1

(m!1 + n!2)2
.

Then our map ℂ/Λ → ℂ2 will be given by the map x 7→ (℘(x), ℘′(x)), and the

smooth cubic will be defined by the differential equation [℘′(x)]2 = 4[℘(x)]3 +

A℘(x) +B.

At this point it is not at all clear how we arrived at the function ℘. We begin

by considering the minimal properties that are essential for our map ℂ/Λ → ℂ. We

will then show that ℘ has these properties and gives us our desired cubic.

Exercise 2.11.1. Show that for a function f : ℂ/Λ → ℂ to be well-defined,

the function f : ℂ→ ℂ must be doubly-periodic, that is,

f(x+ !1) = f(x) and f(x+ !2) = f(x),

for all x in the domain of f .

Solution. For f to be well-defined on the quotient group ℂ/Λ, f([x]) must

be independent of the choice of representative x of the equivalence class [x]. Since

x ≡ x+ !1( mod Λ) and x ≡ x+ !2( mod Λ) in ℂ/Λ, we have f(x) = f(x+ !1)

and f(x) = f(x+ !2) for all x in the domain of f .
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cellsTo define the function f we seek we need only consider what happens on the

fundamental period-parallelogram. Our first hope is that f is analytic on its fun-

damental period-parallelogram, i.e. f has a Taylor series, f(x) =
∑∞
n=0 anx

n. This

will not work.

Exercise 2.11.2. Show that if a doubly-periodic function f is analytic on

its fundamental period-parallelogram, then f is constant. (Hint: Use Liouville’s

Theorem.)

Solution. If f is analytic on its fundamental period-parallelogram, then f is

analytic on ℂ. By Liouville’s Theorem, f must be a constant function.

We see then that f cannot be analytic on its entire fundamental period-parallelogram.

The next hope is that f is be analytic except with a single pole at 0, and hence at

the other lattice points by double periodicity. Furthermore, we hope that the pole

at 0 is not too bad. We can do this, but 0 will be a pole of order two, as the next

two exercises illustrate.

It is inconvenient to integrate over these parallelograms if the singularities are

on the boundaries, but we can translate the vertices, without rotating, so that the

singularities are in the interior. The translated parallelograms will be called cells.

Exercise 2.11.3. Show that the sum of the residues of f at its poles in any

cell is zero.

Solution. By the Residue Theorem the sum of the residues of f at its poles in

a cell is equal to a constant multiple of the line integral around the parallelogram.

The integral around any translated parallelogram in the lattice must vanish, because

the values assumed by the doubly periodic function f along the two pairs of parallel

sides are identical, and the two pairs of sides are traversed in opposite directions as

we move around the contour. In particular, let the vertices of the cell be denoted

by t, t+ !1, t+ !1 + !2, and t+ !2. Then the sum of the residues of f at its poles

in this cell is given by integrating f over the boundary contour C of the cell.

2�i
∑

Res(f) =

∫

C

f(x)dx =residue (2.11)

∫ t+!1

t

f(x)dx+

∫ t+!1+!2

t+!1

f(x)dx+

∫ t+!2

t+!1+!2

f(x)dx+

∫ t

t+!2

f(x)dx

In the second integral on the right-hand side, make the substitution u = x− !1 to

get
∫ t+!1+!2

t+!1

f(x)dx =

∫ t+!2

t

f(u+ !1)du.
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In the third integral on the right-hand side, make the substitution u = x − !2 to

get ∫ t+!2

t+!1+!2

f(x)dx =

∫ t

t+!1

f(u+ !2)du.

Then (
residue
2.11) becomes

∫ t+!1

t

[f(u)− f(u+ !2)]du+

∫ t+!2

t

[f(u+ !1)− f(u)]du.

Since f is doubly-periodic, f(u+ !1) = f(u+ !2) = f(u), so the integrands above

both vanish and line integral is zero. Hence the sum of the residues is zero.

Exercise 2.11.4. Show that if f has a single pole at 0 in its fundamental

period-parallelogram, not including the other vertices, then 0 must be a pole of

order at least two.

Solution. If f has a pole of order one at 0, then in a neighborhood of 0 f has

the form

f(x) =
a−1

x
+ a0 + a1x+ a2x

2 + . . . ,

where a−1 ∕= 0. If f has no other poles in this cell, then the sum of the residues of

f at its poles in this cell is 2�ia−1 contradicting the previous exercise.

We have now established that a candidate for our function could have the form

f(x) =
a−2

x2
+ a0 + a1x+ a2x

2 + . . .

Exercise 2.11.5. Show that if

f(x) =
a−2

x2
+ a0 + a1x+ a2x

2 + a3x
3 + . . .

is doubly-periodic, then f is an even function, i.e. a1 = a3 = ⋅ ⋅ ⋅ = 0. [Hint:

Consider the function f(x)− f(−x).]

Solution. If f is doubly-periodic, then f(x)− f(−x) is also doubly-periodic,

but

f(x)− f(−x) = 2a1x+ 2a3x
3 + . . .

is analytic and, therefore, constant. Since f(0)−f(−0) = 0, we have f(x)−f(−x) =
0 for all x in the domain of f . Hence a1 = a3 = ⋅ ⋅ ⋅ = 0.

We can change coordinates to eliminate a0 so that f is now of the form

f(x) =
a−2

x2
+ a2x

2 + a4x
4 + . . .

Now we are ready to introduce the Weierstrass ℘-function.

(2.12) ℘(x) =
1

x2
+

∑

m,n∈ℤ

(m,n) ∕=(0,0)

1

(x−m!1 − n!2)2
− 1

(m!1 + n!2)2
,
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absolutely convergent

uniformly convergent

A series
∑∞
n=0 an is absolutely convergent whenever

∑∞
n=0 ∣an∣ <∞.

A series of functions fn is uniformly convergent with limit f if for all � > 0,

there exists a natural number N such that for all x in the domain and all n ≥ N ,

∣fn(x)− f(x)∣ < �.

Exercise 2.11.6. Show that ℘(x) converges uniformly and absolutely except

near its poles. Conclude that ℘(x) is analytic on the complex plane except at the

lattice points Λ = {m!1 + n!2}.

Solution. Writing ! = m!1 + n!2 for the general lattice point, we have

℘(x) =
1

x2
+

∑

!∈Λ,! ∕=0

(
1

(x− !)2
− 1

!2

)
.

Then ∣∣∣∣
1

(x− !)2
− 1

!2

∣∣∣∣ =
∣∣∣∣
2x! − x2

!2(x− !)2

∣∣∣∣ =
∣∣∣∣
x(2! − x)

!2(x− !)2

∣∣∣∣ .

For x ∕∈ Λ with ∣x∣ <
∣∣!
2

∣∣, we have ∣2! − x∣ < 5∣!∣
2 and ∣(x− !)2∣ > ∣!∣2

4 , thus
∣∣∣∣
x(2! − x)

!2(x− !)2

∣∣∣∣ < 5
∣x∣
∣!∣3 .

Comparing with the series
∑

1
!3 we see that ℘(x) converges uniformly and abso-

lutely away from its poles.

Since ℘(x) converges uniformly and absolutely, we can differentiate term-by-

term to find ℘′(x), and the order of summation does not affect the value of the

function, so we can rearrange the terms.

Exercise 2.11.7. Find ℘′(x) and show that ℘′(x) is doubly-periodic.

Solution.

℘′(x) = − 2

x3
+

∑

!∈Λ,! ∕=0

− 2

(x− !)3

℘′(x+ !) = − 2

(x+ !)3
+

∑

!∈Λ

(m,n) ∕=(0,0)

− 2

((x+ !1)−m!1 − n!2)3

The terms of ℘′(x+!1) are exactly the same as the terms of ℘′(x), but written in a

different order. Since ℘(x) and ℘′(x) converge absolutely, the order of summation

does not affect the sum. Hence, ℘′(x+ !1) = ℘′(x). Similarly, ℘′(x+ !2) = ℘′(x),

so ℘′(x) is doubly-periodic.

Exercise 2.11.8. Show that ℘(x) is doubly-periodic. (Hint: Consider the

functions Fi(x) = ℘(x+ !i)− ℘(x) for i = 1, 2.)
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Solution. Let F1(x) = ℘(x+!1)−℘(x) and F2(x) = ℘(x+!2)−℘(x). Then
F ′
1(x) = ℘′(x + !2) − ℘′(x) and F ′

2(x) = ℘′(x + !2) − ℘′(x). From above, ℘(x) is

doubly-periodic, so F ′
1(x) = F ′

2(x) = 0. Then F1(x) = c1 and F2(x) = c2. To find

c1, let x = −!1/2. Then c1 = F1(−!1/2) = ℘(!1/2)− ℘(−!1/2). Since ℘(x) is an

even function, c1 = 0. Similarly, c2 = 0, and the conclusion follows.

Consider the function F (x) = ℘(x)− x−2.

Exercise 2.11.9. Show that F is analytic in a neighborhood of 0.

Solution. There is a neighborhood of 0 which does not contain any other

! ∈ Λ, thus F (x) = ℘(x) − x−2 =
∑
!∈Λ,! ∕=0

(
1

(x−!)2 − 1
!2

)
is analytic in this

neighborhood.

Exercise 2.11.10. Find the Taylor series expansion of F at 0.

Solution. We compute F (n)(0) =
∑ (n+1)!

!n+2 so the Taylor series expansion is

F (x) = a1x+ a2x
2 + a3x

3 + . . . where

an =
∑

!∈Λ

! ∕=0

(n+ 1)

!n+2
.

Exercise 2.11.11. From above we know that ℘(x) is even, so F is also even.

Show that the odd powers of x vanish in the Taylor expansion of F at 0.

Solution. From the previous exercise we have the coefficient of xn in the

Taylor series of F (x) is an =
∑

!∈Λ

! ∕=0

n+1
!n+2 . For every ! ∈ Λ, −! is also in the

lattice. Thus the terms (n+1)
!n+2 and (n+1)

(−!)n+2 in the sum will cancel when n+2 is odd.

Thus an = 0 for n odd and F (x) is even.

Exercise 2.11.12. Now we can rewrite ℘(x) = x−2+F (x). Find the coefficients

of x2 and x4 in this expression for ℘(x).

Solution. Using our Taylor expansion of F (x) we have

℘(x) =
1

x2
+ x2

⎛
⎜⎝3

∑

!∈Λ

! ∕=0

1

!4

⎞
⎟⎠+ x4

⎛
⎜⎝5

∑

!∈Λ

! ∕=0

1

!6

⎞
⎟⎠+ . . . .

Exercise 2.11.13. Let

g2 = 60
∑

!∈Λ

! ∕=0

1

!4

and

g3 = 140
∑

!∈Λ

! ∕=0

1

!6
.

Find the x2 and x4 coefficients of ℘(x) in terms of g2 and g3.
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Solution. The coefficient of x2 is 3
∑

!∈Λ

! ∕=0

1
!4 = 1

20g2 and the coefficient of x4

is 5
∑

!∈Λ

! ∕=0

1
!6 = 1

28g3, thus we can write ℘(x) = 1
x2 + 1

20g2x
2 + 1

28g3x
4 + . . . .

Exercise 2.11.14. Find the coefficients of x and x3 in ℘′(x) in terms of g2 and

g3.

Solution. Differentiating the Taylor series expansion of ℘(x) we obtain

℘′(x) = − 2

x3
+

1

10
g2x+

1

7
g3x

3 + . . . .

Thus the coefficient of x is 1
10g2 and the coefficient of x3 is 1

7g3.

We will now establish a cubic relationship between ℘(x) and ℘′(x). In the

previous exercises we found the following expressions for ℘(x) and ℘′(x).

℘(x) =
1

x2
+

1

20
g2x

2 +
1

28
g3x

4 +O(x6)

℘′(x) = − 2

x3
+

1

10
g2x+

1

7
g3x

3 +O(x5)

Exercise 2.11.15. Compute ℘(x)3 and ℘′(x)2, and only consider terms up to

first order, that is, find f and g such that ℘(x)3 = f(x) + O(x2) and ℘′(x)2 =

g(x) +O(x2).

Solution. Using the Taylor expansions of ℘(x) and ℘′(x) we obtain

℘(x)3 =
1

x6
+

3g2
20

1

x2
+

3g3
28

+O(x2)

℘′(x)2 =
4

x6
− 2g2

5

1

x2
− 4g3

7
+O(x2).

Exercise 2.11.16. Show that ℘′(x)2 = 4℘(x)3 − g2℘(x)− g3.

Solution. LetH(x) = ℘′(x)2−
(
4℘(x)3 − g2℘(x)− g3

)
. We know that ℘(x), ℘′(x)

are analytic away from the lattice Λ. Substituting the expressions from the previous

exercises we find that H(x) has no pole at 0. Since H is doubly-periodic it has no

pole at any lattice point, thus H is analytic on all of ℂ. Therefore H is constant.

Since H(0) = 0, H(x) = 0 on all of ℂ thus

℘′(x)2 = 4℘(x)3 − g2℘(x)− g3.





CHAPTER 3

Higher Degree Curves

The goal of this chapter is to explore higher degree curves in ℙ2. There are five

parts. In the first, we define what is meant by an irreducible curve and its degree.

We next show how curves in ℙ2 can be thought of as real surfaces, similar to our

observations for conics (Section
1.7:Conics:Spheres
1.7) and cubics (Section

2.7:Cubics:Tori
2.6). In the third part, we

develop Bézout’s Theorem, which tells us the number of points of intersection of

two curves. We then introduce the ring of regular functions and the function field

of a curve. In the fourth part, we develop Riemann-Roch, an amazing theorem that

links functions on the curve, the degree of the curve and the genus (the number of

holes) of the curve into one formula. In the last section, we consider singular points

on a curve and develop methods for resolving them.

3.1. Higher Degree Polynomials and Curves

The goals of this section are to define what it means for a curve to be irreducible

and to define the degree of a curve.

In Chapter 1 we dealt with conics, which are the zero sets of second degree

polynomials. In Chapter 2, we looked at cubics, which are the zero sets of third

degree polynomials. It is certainly natural to consider zero sets of higher degree

polynomials.

By now, we know that it is most natural to work in the complex projective

plane, ℙ2, which means in turn that we want our zero sets to be the zero sets of

homogeneous polynomials. Suppose that P (x, y, z) ∈ ℂ[x, y, z] is a homogeneous

polynomial. We denote this polynomial’s zero set by

V(P ) = {(a : b : c) ∈ ℙ2 : P (a, b, c) = 0}.

Exercise 3.1.1. Let P (x, y, z) = (x+ y+ z)(x2 + y2 − z2). Show that V(P ) is

the union of the two curves V(x+ y + z) and V(x2 + y2 − z2).

Solution. Let (a : b : c) ∈ V(P ). Then we know that

0 = P (a, b, c) = (a+ b+ c)(a2 + b2 − c2)

195
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curve!irreducible

curve!degree

degree!curve

which can happen if and only if a + b + c = 0 or a2 + b2 − c2 = 0, which in turn

means that

(a : b : c) ∈ V(x+ y + z) ∪V(x2 + y2 − z2).

Thus, if we want to understand V(P ), we should start with looking at its two

components: V(x + y + z) and V(x2 + y2 − z2). In many ways, this reminds us

of working with prime factorization of numbers. If we understand these build-

ing blocks—those numbers that cannot be broken into a product of two smaller

numbers—then we start to understand the numbers formed when they are strung

together.

Exercise 3.1.2. Let P (x, y, z) = (x+y+z)2. Show that V(P ) = V(x+y+z).

Solution. Let (a : b : c) ∈ V(P ). Then we know that

0 = P (a, b, c) = (a+ b+ c)2

which can happen if and only if a+ b+ c = 0, which in turn means that

(a : b : c) ∈ V(x+ y + z).

Both (x + y + z)(x2 + y2 − z2) and (x + y + z)2 are reducible, meaning that

both can be factored. We would prefer, for now, to restrict our attention to curves

that are the zero sets of irreducible homogeneous polynomials.

Definition 3.1.1. If the defining polynomial P cannot be factored, we say the

curve V(P ) is irreducible.

When we are considering a factorization, we do not consider trivial factoriza-

tions, such as P = 1 ⋅P . For the rest of this chapter, all polynomials used to define

curves will be irreducible unless otherwise indicated.

Definition 3.1.2. The degree of the curve V(P ) is the degree of its defining

polynomial, P .

The degree of a curve is the most basic number associated to a curve that is

invariant under change of coordinates. The following is an example of this phenom-

enon.

Exercise 3.1.3. Let P (x, y, z) = x3 + y3 − z3. Then V(P ) is a degree three

curve. Consider the projective change of coordinates

x = u− w

y = iv

z = u+ v
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Find the polynomial P̃ (u, v, w) whose zero set V(P̃ ) maps to V(P ). Show that

V(P̃ ) also has degree three.

Solution. We have

P̃ (u, v, w) = P (u− w, iv, u+ v)

= (u− w)3 + (iv)3 − (u+ v)3

= (u3 − 3u2w + 3uw2 − w3)− iv3 − (u3 + 3u2v + 3uv2 + v3)

= −3u2v − 3u2w − 3uv2 + 3uw2 − (1 + i)v3 − w3,

which has degree three.

3.2. Higher Degree Curves as Surfaces

The goal of this section is to generalize our work in Sections
1.7:Conics:Spheres
1.7 and

2.7:Cubics:Tori
2.6, where we

realized smooth conics and cubics over ℂ as topological surfaces over ℝ.

BS-add material at

beginning about

visualizing zero sets as

surfaces.

3.2.1. Topology of a Curve. Suppose f(x, y, z) is a homogeneous polyno-

mial, so V(f) is a curve in ℙ2. Recall that the degree of V(f) is, by definition, the

degree of the homogeneous polynomial f . We will see that this algebraic invariant

of the curve is closely linked to the topology of the curve viewed as a surface over

ℝ. Specifically, it is related to the “genus” of the curve, which counts the number

of holes in the surface.

Before we proceed to higher degree curves, we return to our previous experience

with conics and cubics.

Exercise 3.2.1. Consider the conics defined by the homogeneous equation

x2 − y2 = �z2, where � is a parameter. Sketch affine patches of these in the chart

z = 1 for � = 4, 1, 0.25.

Solution. Consider the conics defined by the homogeneous equation x2−y2 =

�z2, where � is a parameter. Sketch affine patches, in ℝ2, of these in the chart z = 1,

for � = 4, 1, 0.25.
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1

2

3

4

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4−5

� = 4

1

2

3

4

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4−5

� = 1
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1

2

3

4

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4−5

� = 0.25

As �→ 0, we get x2 − y2 = 0, or (x− y)(x+ y) = 0. In ℝ2, this looks like

∙

but this picture isn’t accurate over ℂ in ℙ2. Instead, topologically the picture looks

like “kissing spheres”:

∙

Thus, the topological version of the original equation, x2 − y2 = �z2, should be

found by perturbing the kissing spheres a little to account for � ∕= 0:

∙

� = 0 � ∕= 0

∼=
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Therefore, by mildly perturbing the specialized, non-smooth conic, we find that

topologically a smooth conic (those in this exercise for which � ∕= 0) is a sphere

with no holes, which agrees with our work in Section
1.7:Conics:Spheres
1.7.

Following this same reasoning, we find another proof that a smooth cubic must

be a torus when realized as a surface over ℝ. We begin with the highly degenerate

cubic, f(x, y, z) = (a1x+ b1y + c1z)(a2x+ b2y + c2z)(a3x+ b3y + c3z). In the real

affine chart z = 1, the picture looks like

∙

∙∙

Again, our picture isn’t valid over ℂ in ℙ2. Instead, the correct topological picture

is that of three spheres meeting at three points, as shown.

∙

∙∙

Perturbing the top two spheres slightly, we find they join into the topological equiv-

alent of a single sphere, but that this new figure is joined to the third sphere at two

points of contact. Perturbing each of these points of intersection independently of

one another, we obtain a single surface with a hole through the middle as depicted

in the sequence of figures below.

∙∙

∼=
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Thus a smooth cubic over ℂ is topologically equivalent to a torus (a sphere with

a hole through it) as a surface over ℝ. Note that this agrees with our results in

Section
2.7:Cubics:Tori
2.6.

Exercise 3.2.2. Mimic the arguments illustrated above to describe the real

surface corresponding to a smooth quartic (fourth degree) curve over ℂ in ℙ2.

Start with a highly degenerate quartic (the product of four pairwise non-parallel

lines), draw the corresponding four spheres, and deform this surface by merging

touching spheres two at a time. How many holes will the resulting figure possess?

Now do the same for a smooth quintic (fifth degree) curve. How many holes

must it have?

Solution. Mimic the arguments illustrated above to describe the real surface

corresponding to a smooth quartic (fourth degree) curve over ℂ in ℙ2. Start with a

highly degenerate quartic (the product of four pairwise non-parallel lines), draw the

corresponding four spheres, and deform this surface by merging touching spheres

two at a time. How many holes will the resulting figure possess?

In z = 1:

b

b
b

b

b

b

In ℙ2:
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b b b

∼=

It has 3 holes.

Now do the same for a smooth quintic (fifth degree) curve. How many holes

must it have?

In z = 1:

b

b

b

b

b

b

b

b

In ℙ2 (after merging all but the last two spheres):

∼=
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genus!topologicalIt has 6 holes.

3.2.2. Genus of a Curve. The number of holes in the real surfaces corre-

sponding to smooth conics, cubics, quartics and quintics is a topological invariant

of these curves. That is, every smooth conic is topologically equivalent to a real

sphere with no holes. Every smooth cubic is topologically equivalent to a real

torus (a sphere with exactly one hole through it), every smooth quartic is equiv-

alent to a sphere with three holes and every smooth quintic to a sphere with six

holes. Therefore, all smooth conics are topologically equivalent to one another, all

smooth cubics are topologically equivalent, and so on, and each equivalence class

is completely determined by the number of holes in the associated real surface.

Definition 3.2.1. Let V(P ) be a smooth, irreducible curve in ℙ2(ℂ). The

number of holes in the corresponding real surface is called the topological genus of

the curve V(P ).

topological

genus= 0
topological genus=1 topological genus=2

Presently, this notion of genus only makes sense when we are working over the

reals or an extension of them. However, by the discussion above, we see that there

is a connection between the genus, g, and the degree, d, of a curve. That is, all

smooth curves of degree d have the same genus, so we now wish to find a formula

expressing the genus as a function of the degree.

Exercise 3.2.3. Find a quadratic function in d, the degree of a smooth curve,

that agrees with the topological genus of curves of degrees d = 2, 3, 4 found earlier.

Now use this formula to compute the genus of a smooth quintic (fifth degree) curve.

Does it match your answer to the last exercise?

Solution. We will guess that the formula is

g =
(d− 1)(d− 2)

2
.

For d = 1, we know that the genus is zero. We indeed have for d = 1

(d− 1)(d− 2)

2
=

(1− 1)(1− 2)

2
= 0.
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genus!arithmetic For d = 2, we know that the genus is also zero, and we have for d = 2

(d− 1)(d− 2)

2
=

(2− 1)(2− 2)

2
= 0.

For d = 3, the genus is one, and we have for d = 3

(d− 1)(d− 2)

2
=

(3− 1)(3− 2)

2
= 1.

For d = 4, the genus is three, and we have for d = 4

(d− 1)(d− 2)

2
=

(4− 1)(4− 2)

2
= 3.

Finally, for d = 5, the genus is six, and we have for d = 5

(d− 1)(d− 2)

2
=

(5− 1)(5− 2)

2
= 6.

Definition 3.2.2. Let V(P ) be a curve of degree d. The number
(d− 1)(d− 2)

2
is the arithmetic genus of the curve, which is an algebraic invariant of V(P ).

Exercise 3.2.4. Argue by induction on d, the degree, that the topological

genus agrees with the arithmetic genus for smooth curves, or in other words that

g =
(d− 1)(d− 2)

2
.

Solution. The base case is when d = 1, but we know that for d = 1 the genus

is zero, and we have

(d− 1)(d− 2)

2
=

(1− 1)(1− 2)

2
= 0.

First argue that the result holds for d = 1. The results of Section
1.7:Conics:Spheres
1.7 may be

useful here.

Now suppose the topological genus agrees with the arithmetic genus for smooth

curves of degree d − 1 and consider a smooth curve of degree d. Notice that you

can perturb the curve a little bit to obtain a smooth curve of degree d − 1 which

intersects a single line in d− 1 points. By the induction hypothesis, the topological

genus of this smooth curve of degree d − 1 must agree with its arithmetic genus.

Topologically, you now have a surface of genus (d−2)(d−3)
2 that intersects a single

sphere in d− 1 points.
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∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙ ∙

genus=
(d− 2)(d− 3)

2

sphere with (d− 1) intersection points

Observe that the d− 1 points of intersection of the surface and the sphere will

add d − 2 topological holes to the overall figure. Thus, a curve of degree d has a

topological genus of

g =
(d− 2)(d− 3)

2
+ (d− 2).

Finally, we have that

(d− 2)(d− 3)

2
+ (d− 2) =

(d− 1)(d− 2)

2
,

finishing the argument.

It is a theorem that the topological genus and the arithmetic genus do agree with

one another whenever both are defined and make sense. However, the arithmetic

version is independent of base field and enables us to exploit the genus of curves

even over finite fields in positive characteristic.

3.3. Bézout’s Theorem

The goal of this section is to develop the needed sharp definitions to allow a

statement and a proof of Bézout’s Theorem, which states that in ℙ2 a curve of

degree n will intersect a curve of degree m in exactly nm points, provided the

points of intersection are “counted correctly”.

3.3.1. Intuition behind Bézout’s Theorem. We look at how many points

a straight line will intersect a conic in ℙ2. Both the need to work in the com-

plex projective plane ℙ2 and the need to define intersection numbers correctly will

become apparent.

Exercise 3.3.1. Show that the line V(x − y) will intersect the circle V(x2 +

y2 − 1) in two points in the real plane, ℝ2.
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Solution. Every point on the line V(x− y) is of the form (x, x), so the points

of intersection correspond to the values x such that 2x2 − 1 = 0. The two points of

intersection are

(
1√
2
,
1√
2

)
and

(
− 1√

2
,− 1√

2

)
.

Exercise 3.3.2. Show that the line V(x−y+10) will not intersect V(x2+y2−1)

in ℝ2 but will intersect V(x2 + y2 − 1) in two points in ℂ2.

Solution. Every point of V(x−y+10) is of the form (x, x+10), so the points

of intersection correspond to the values of x such that 2x2 + 20x + 99 = 0. The

discriminant of this quadratic equation is −392, so it has no real solution, i.e. there

are no intersection points in ℝ2, but there are two intersection points in ℂ2. They

are

(
−5 + i

√
98

2
, 5 + i

√
98

2

)
and

(
−5− i

√
98

2
, 5− i

√
98

2

)
.

The last exercise demonstrates our need to work over the complex numbers.

Now to see the need for projective space.

Exercise 3.3.3. Show that the two lines V(x− y+2) and V(x− y+3) do not

intersect in ℂ2. Homogenize both polynomials and show that they now intersect at

a point at infinity in ℙ2.

Solution. Every point of V(x−y+2) ⊂ ℂ2 is of the form (x, x+2), so the point

of intersection corresponds to the values of x such that x−(x+2)+3 = 0, but there

is no x value, real or complex, that satisfies the equation 1 = 0. After homogenizing,

we see that every point of V(x−y+2z) ⊂ ℙ2 is of the form (x : x+2z : z), so the point

of intersection corresponds to the values of x and z such that x− (x+2z)+3z = 0.

Thus, the point of intersection in ℙ2 is (1 : 1 : 0).
Replaced ”Give an

argument for why we

might consider

saying..” with ”Explain

why we say..” in the

last sentence of this

exercise and the next

two since we already

discussed intersection

multiplicity for lines

and curves in
2.2:Lines and cubics
2.2.3.

Ryan 8/21/09

Exercise 3.3.4. Show that V(y−�) will intersect V(x2+y2−1) in two points

in ℂ2, unless � = ±1. Show that V(y − 1) and V(y + 1) are tangent lines to the

circle V(x2 + y2 − 1) at their respective points of intersection. Explain why we say

that V(y−1) intersects the circle V(x2+y2−1) in one point with multiplicity two.

Solution. Suppose � ∕= 1. The points of intersection correspond to the points

whose x values satisfy x2 + �2 − 1 = 0, i.e. the two points
(√

1− �2, �
)

and
(
−
√
1− �2, �

)
. Suppose � = 1. The tangent to the circle V(x2 + y2 − 1) at the

point (0, 1) is the line V(y− 1). Similarly, the tangent to V(x2 + y2 − 1) at (0,−1)

is V(y + 1). From Section
2.2:Lines and cubics
2.2.3 we know that the intersection multiplicity of the

line V(y − z) and the circle V(x2 + y2 − z2) in ℙ2 is the multiplicity of the root

(0 : 1 : 1) of x2 + z2 − z2 = 0, which is two.

Exercise 3.3.5. Show that the line V(y−�x) will intersect the curve V(y−x3)
in three points in ℂ2, unless � = 0. Letting � = 0, show that V(y) will intersect
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the curve V(y − x3) in only one point in ℂ2. Explain why we that V(y) intersects

V(y − x3) in one point with multiplicity three.

Solution. Suppose � ∕= 0. The points of intersection correspond to the points

whose x values satisfy �x − x3 = 0, i.e. the three points (0, 0), (
√
�, �

√
�), and

(
√
�, �

√
�). Suppose � = 0. The tangent to V(y − x3) at the point (0, 0) is the

line V(y). From Section
2.2:Lines and cubics
2.2.3 we know that the intersection multiplicity of the line

V(y) and V(yz2 − x3) in ℙ2 is the multiplicity of the root (0 : 0 : 1) of x3 = 0,

which is three.

Exercise 3.3.6. Show that there are no points in ℂ2 in the intersection of

V(xy − 1) with V(y). Homogenize both equations xy = 1 and y = 0. Show that

there is a point of intersection at infinity. Explain why we say that V(xy − 1) will

intersect V(y) in one point at infinity with multiplicity two.

Solution. Every point of V(y) has y = 0, so xy = 0 ∕= 1. Hence there is no

point common to V(xy− 1) and V(y). After homogenizing we have V(xy− z2) and
V(y) which have the point (1 : 0 : 0) in common. The intersection multiplicity of

V(xy − z2) and V(y) is the multiplicity of the root (1 : 0 : 0) of z2 = 0, which is

two.

3.3.2. Fundamental Theorem of Algebra. The goal of this section is

to review the Fundamental Theorem of Algebra and consider how it might be

generalized to a statement about intersections of plane curves.

Polynomials have roots. Much of the point behind high schools algebra is the

exploration of this fact. The need for complex numbers stems from our desire to

have all possible roots for polynomials.

In this section we briefly review the Fundamental Theorem of Algebra. The

exercises in this section will lead us to the realizations that such a generalization

requires a precise definition of the multiplicity of a point of intersection and that

the curves must lie in projective space.

Consider a polynomial f(x) with real coefficients. Of course, the number of

real roots of f is less than or equal to the degree of f , with equality in the case

that f can be written as a product of distinct linear factors over ℝ.

parabolas Exercise 3.3.7. Give examples of second degree polynomials in ℝ[x] that have

zero, one, and two distinct real roots, respectively.

Solution. f(x) = x2 + 1, g(x) = x2, and ℎ(x) = x2 − 1 have zero, one, and

two distinct real roots, respectively.

Exercise 3.3.8. Find the complex roots of your first example.
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multiplicity!of a root Solution. The roots of f are ±i. The root of g is 0. The roots of ℎ are ±1.

I think this exercise is

superfluous since we

already define

multiplicity of a root in

Chapter 2.

Ryan 8/24/09

Exercise 3.3.9. Define the multiplicity of a root of a polynomial so that, in

your second example, the single real root has multiplicity two.

The moral of the preceding exercises is that by considering complex roots,

and defining multiplicity appropriately, we can make a uniform statement about

the number of roots of a polynomial. Compare the following definition with the

definition you produced in the exercise above.

Definition 3.3.1. Let f(x) be a polynomial in ℂ[x]. If f(x) = (x− a)mg(x),

m > 0, such that (x− a) does not divide g(x), then we say that the multiplicity of

the root a of f(x) is m.

fta Theorem 3.3.10 (Fundamental Theorem of Algebra). If f(x) is a polynomial

of degree d in ℂ[x], then

f(x) = (x− a1)
m1(x− a2)

m2 ⋅ ⋅ ⋅ (x− ar)
mr ,

where each ai is a complex root of multiplicity mi and
r∑

i=1

mi = d.

Another way of stating this theorem is that the graph of y = f(x) in ℂ2

intersects the complex line x = 0 in d points, counted with multiplicity. A natural

generalization of this would be to consider the intersection of a curve defined by

f(x, y) = 0, where f is a degree d polynomial in ℂ[x, y], and a line defined by

ax+ by + c = 0.

Exercise 3.3.11. Let f(x, y) = x2 − y2 − 1 and g(x, y) = x. Sketch V(f) and

V(g) in ℝ2. Do they intersect? Find V(f) ∩V(g) in ℂ2.
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Solution.

1

2

3

4

−1

−2

−3

−4

1 2 3 4 5−1−2−3−4−5

They do not intersect in ℝ2. They intersect at the points (0, i) and (0,−i) in

ℂ2.

Exercise 3.3.12. Let g(x, y) = ax + by + c, b ∕= 0, in ℂ[x, y]. Let f(x, y) =∑

i

aix
riysi be any polynomial of degree d in ℂ[x, y]. Show that the number of

points in V(f) ∩ V(g) is d, if the points are counted with an appropriate notion

of multiplicity. (Substitute y =
−ax− c

b
into f = 0, so that f = 0 becomes a

polynomial equation of degree d in the single variable x. Apply the Fundamental

Theorem of Algebra.)

Solution. Since b ∕= 0 we can write y =
−ax− c

b
and now we want to find

the number of roots of

f

(
x,

−ax− c

b

)
=
∑

i

aix
ri

(−ax− c

b

)si
= 0.

This is a single variable polynomial of degree max
i

(ri + si) = d, so by the Funda-

mental Theorem of Algebra, it has d roots, counted with multiplicity.

What about the intersection of two curves, one defined by a polynomial of

degree d and the other defined by a polynomial of degree e? To answer this question

we will need a more general definition of multiplicity—one that is inspired by the

previous exercise, and for the most uniform statement we will need to consider

curves in the complex projective plane.
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multiplicity!of $f$ at
$p$ 3.3.3. Intersection Multiplicity. The goal of this section is to understand

Bézout’s Theorem on the number of points in the intersection of two plane curves.

The statement of this theorem requires the definition of the intersection multiplicity

of a point p in the intersection of two plane curves defined by polynomials f and g,

respectively. We would like to define this notion in such a way that we can often,

through elimination of variables, reduce its calculation to an application of the

Fundamental Theorem of Algebra. The first step in this direction is to generalize

the idea of multiplicity of a root.

We want a rigorous definition for the multiplicity of a point on a curve V(P ),

which will require us to first review multivariable Taylor series expansions.Recall that a

polynomial is a Taylor

Series centered at the

origin.

Exercise 3.3.13. Show that P (x, y) = 5− 8x+ 5x2 − x3 − 2y + y2 is equal to

(y − 1)2 − (x− 2)2 − (x− 2)3, by directly expanding the second polynomial. Now,

starting with P (x, y) = 5 − 8x + 5x2 − x3 − 2y + y2 , calculate its Taylor series

expansion at the point (2, 1):

Taylor expansion of P at (2, 1) =

∞∑

n,m=0

1

n!m!

∂n+mP

∂xn∂ym
(2, 1)(x− 2)n(y − 1)m

= P (2, 1) +
∂P

∂x
(2, 1)(x− 2) +

∂P

∂y
(2, 1)(y − 1) +

1

2

∂2P

∂x2
(2, 1)(x− 2)2 + . . .

Solution. For the first part we see that

(y − 1)2 − (x− 2)2 − (x− 2)3 = y2 − 2y + 1− (x2 − 4x+ 4)

−(x3 − 6x2 + 12x− 8)

= 5− 8x+ 5x2 − x3 − 2y + y2

Starting with P we compute its Taylor expansion at (2, 1) by evaluating P (2, 1) = 0

and computing the various partial derivatives evaluated at (2, 1). Note that all

of the mixed partial derivatives are zero. We have
∂P

∂x
(2, 1) = 0,

∂P

∂y
(2, 1) = 0,

∂2P

∂x2
(2, 1) = −2,

∂2P

∂y2
(2, 1) = 2, and

∂3P

∂x3
(2, 1) = −6. All higher partial derivatives

are zero. Then the Taylor series expansion is

P (x, y) = 0 + 0(x− 2) + 0(y − 1)− 2

2!0!
(x− 2)2 +

2

0!2!
(y − 1)2 − 6

6!0!
(x− 2)3

= (y − 1)2 − (x− 2)2 − (x− 2)3

Definition 3.3.2. Let f be a non-homogeneous polynomial (in any number of

variables) and let p be a point in the set V(f). The multiplicity of f at p, denoted
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mpf , is the degree of the lowest degree non-zero term of the Taylor series expansion

of f at p.

Notice that if p ∕∈ V (f), then f(p) ∕= 0, so the lowest degree non-zero term of

the Taylor expansion of f at p is f(p), which has degree zero. If p ∈ V (f), then

f(p) = 0, so mpf must be at least one.
I added this exercise

and the note between

Definition 3.3.2 and

this exercise.

Ryan 8/26/09

Multiplicity:Smooth Curve Exercise 3.3.14. Let f be a non-homogeneous polynomial (in any number of

variables) of degree n.

(1) Show thatmpf = 1 if and only if p is a nonsingular point. Hence, mp(f) =

1 for every point p ∈ V (f) if and only if V (f) is nonsingular.

(2) Show that mpf ≤ n for all p ∈ V (f). Hence, 1 ≤ mpf ≤ n for all

p ∈ V (f).

Solution. (1) Let f be a polynomial in k variables x1, . . . , xk. Suppose

first that mpf > 1. Then all of the first partial derivatives of f vanish at

p, i.e.
∂f

∂x1
(p) = ⋅ ⋅ ⋅ = ∂f

∂xk
(p) = 0.

But this is exactly what it means for p to be a singular point. Now suppose

mpf = 1. Then at least one of
∂f

∂xi
(p) ∕= 0. Hence p is a nonsingular point.

Now V (f) is nonsingular if and only if every point p is a nonsingular point,

so mpf = 1 for all p ∈ V (f) if and only if V (f) is nonsingular.

(2) Suppose f is degree n polynomial in k variables x1, . . . , xk. We will show

that
∂mf

∂xi1i ∂x
i2
2 ⋅ ⋅ ⋅ ∂xikk

= 0

for any i1 + i2 + ⋅ ⋅ ⋅ + ik = m ≥ n + 1, that is all the partial derivatives

of order greater than n vanish identically. Hence, the first nonzero term

of the Taylor series expansion must be of degree less than n+1. To show

all of the higher order partial derivatives vanish, we observe that if f is of

degree n, then for any i, 1 ≤ i ≤ k,
∂f

∂xi
is a polynomial of degree at most

n− 1, and a straightforward induction argument shows that

∂mf

∂xi1i ∂x
i2
2 ⋅ ⋅ ⋅ ∂xikk

is a polynomial of degree at most n − m. We see then that if m = n,

the result is a degree zero polynomial, i.e. a constant, perhaps zero.

Differentiating once more gives the desired result.

Exercise 3.3.15. Let f(x, y) = xy. What is the multiplicity of f at the origin?

Let p = (0, 1), and calculate mpf .
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Solution. First note that the Taylor series expansion of f at the origin is

f(x, y) = xy. Since the degree of the first nonvanishing term is two, the multiplicity

of f at the origin is two. Now suppose p = (0, 1). The Taylor series expansion of

f at (0, 1) is f(x, y) = x+ x(y − 1). The lowest degree nonvanishing term is x, so

mpf = 1.

Exercise 3.3.16. Let f(x, y) = x2 + xy− 1. Calculate the multiplicity of f at

p = (1, 0).

Solution. We compute the Taylor series expansion of f at p.

∂f

∂x
(p) = 2,

∂f

∂y
(p) = 1,

∂2f

∂x2
(p) = 2,

∂2f

∂x∂y
(p) = 1,

∂2f

∂y2
(p) = 0

All higher derivatives are zero. The Taylor series expansion of f at p is

f(x, y) = 2(x− 1) + y + (x− 1)2 + (x− 1)y,

so mpf = 1.

Exercise 3.3.17. Let f(x, y) = y− ℎ(x), for some polynomial ℎ. Suppose p is

a point in the intersection of V(f) with the x-axis. Show that p corresponds to a

root of ℎ and that the multiplicity of this root is the same as mpf .I don’t think the

second part of this is

true. For example, if

f(x, y) = y − (x− 1)5,

then for p = (1, 0),

mpf = 1, but

multiplicity of 1 for ℎ

is 5.

Ryan 9/3/09

Solution. Since p is a point in the intersection of V(f) with the x-axis, we

know p ∈ V(y) ∩V(f). But any point in this intersection has 0 = f(x, 0) = −ℎ(x).
Therefore, p corresponds to a root x of ℎ.

We are interested in curves in the complex projective plane, ℙ2, and hence in

zero sets of homogeneous polynomials. Luckily this does not matter.

Exercise 3.3.18. Consider the homogeneous polynomial

P (x, y, z) = zy2 − (x− z)3.

We want to show that the point (1 : 0 : 1) ∈ V(P ) has multiplicity two, no matter

how P is dehomgenized. Show when we dehomogenize by setting z = 1, that

the point x = 1, y = 0 has multiplicity two for P (x, y, 1). Now show when we

dehomogenize by setting x = 1, that the point y = 0, z = 1 has multiplicity two for

P (1, y, z).

Solution. In the affine patch corresponding to z = 1, we have P (x, y) =

y2 − (x − 1)3. The point (1, 0) ∈ V(P ) ⊂ ℂ2 and we compute the Taylor series at

(1, 0) of P , which is P (x, y) = y2−(x−1)3. We see then that m(1:0:1)P (x, y, 1) = 2.

In the affine patch corresponding to x = 1, we have P (y, z) = zy2 − (1− z)3. The

point (0, 1) ∈ V(P ) ⊂ ℂ2 and we compute the Taylor series at (0, 1) of P , which is

P (y, z) = y2 + (z − 1)3 + y2(z − 1). We see then that m(1:0:1)P (1, y, z) = 2.
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Exercise 3.3.19. Let (a : b : c) ∈ V(f). Show no matter how we dehomogenize

that the multiplicity of f at the point (a : b : c) remains the same. (This is quite a

long problem to work out in full detail).

Solution. The main calculations in this solution are changes of coordinates

and applications of the multivariable chain rule, so we will introduce the following

notation to help keep track of our coordinates in the various affine patches. Let

(X0 : X1 : X2) be homogeneous coordinates on ℙ2. We only need to consider what

happens in the three affine patches that correspond to X0 = 1, X1 = 1, and X2 = 1,

so let

(x1, x2) =

(
X1

X0
,
X2

X0

)

(y1, y2) =

(
X0

X1
,
X2

X1

)

(z1, z2) =

(
X0

X2
,
X1

X2

)

be affine coordinates in each of the patches.

Let f be a degree n polynomial and p = (a : b : c) ∈ V(f). First we note that if

a = 0, b = 0, or c = 0, then the point corresponding to p in the X0 = 1, X1 = 1, or

X2 = 1 patch, respectively, is a point at infinity, so mpf is not well-defined in this

patch since p is not well-defined. As our interest is in verifying that mpf in one

patch equals mpf in another patch, we will assume that both a and b are nonzero.

We assume mpf = m+ 1 in the X0 = 1 patch and show that mpf = m+ 1 in the

X1 = 1 patch. The same calculation would follow in the X2 = 1 patch also if c ∕= 0.

First note the relationships

x1 =
1

y1

x2 =
y2
y1
.

Suppose mpf = m+1 in the X0 = 1 patch. Then all partial derivatives up to order

m vanish at
(
b
a ,

c
a

)
, i.e.

∂kf

∂xi11 ∂x
i2
2

(
b

a
,
c

a

)
= 0,

1 ≤ k ≤ m where i1 + i2 = k, but at least one of the (m + 1) partials does not

vanish. We need to show that the same thing occurs in the X1 = 1 patch, that is,

∂kf

∂yi11 ∂y
i1
2

(a
b
,
c

b

)
= 0
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for all 1 ≤ k ≤ m but that this is nonzero for some i1 + i2 = k = m + 1. Recall,

the chain rule

∂f

∂yj
=

2∑

i=1

∂f

∂xi

∂xi
∂yj

∂2f

∂yk∂yj
=

∂

∂yk

[
2∑

i=1

∂f

∂xi

∂xi
∂yj

]

=

[(
∂2f

∂x21

∂x1
∂yk

+
∂2f

∂x1∂x2

∂x2
∂yk

)
∂x1
∂yj

]
+

(
∂f

∂x1

)(
∂2x1
∂yk∂yj

)

+

[(
∂2f

∂x1∂x2

∂x1
∂yk

+
∂2f

∂x22

∂x2
∂yk

)
∂x2
∂yj

]
+

(
∂f

∂x2

)(
∂2x2
∂yk∂yj

)

A straight-forward induction argument gives that
∂kf

∂yi11 ∂y
i2
2

is equal to a sum of

partial derivatives with respect to x1 and x2 up to order k, so if all partial derivatives

of f up to order m with respect to x1 and x2 vanish at

(
b

a
,
c

a

)
, then all partial

derivatives of f up to order m with respect to y1 and y2 vanish at
(a
b
,
c

b

)
. This

implies that if mpf > m in (x1, x2), then mpf > m in (y1, y2). We only need to

show that if at least one partial of f with respect to x1 and x2 of order m + 1 is

nonvanishing, then at least one partial of f with respect to y1 and y2 of order m+1

is nonvanishing also. But notice that the coordinate transformations are invertible,

so if mpf > m + 1 in (y1, y2), we could repeat the process interchanging the roles

of x and y above to conclude that mpf > m+ 1 in (x1, x2). Hence if mpf = m+ 1

in (x1, x2), then mpf = m+ 1 in (y1, y2).

The following theorem establishes the existence of a nicely behaved intersection

multiplicity. We will not prove this theorem now, but we will revisit it in a later

chapter after we have more fully developed the dictionary between algebra and

geometry. The statement of this theorem and our treatment of it closely follows

that of Fulton
Fulton1969
[Ful69].Where do we use this

later?
thm:mult Theorem 3.3.20 (Intersection Multiplicity). Given polynomials f and g in ℂ[x, y]

and a point p in ℂ2, there is a uniquely defined number I(p,V(f)∩V(g)) such that

the following axioms are satisfied.

(1) I(p,V(f) ∩V(g)) ∈ ℤ≥0.

(2) I(p,V(f) ∩V(g)) = 0 iff p ∕∈ V(f) ∩V(g).

(3) For an affine change of coordinates T , I(p,V(f)∩V(g)) = I(T (p),V(T−1f)∩
V(T−1g)).

(4) I(p,V(f) ∩V(g)) = I(p,V(g) ∩V(f)).
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(5) I(p,V(f) ∩ V(g)) ≥ mpf ⋅mpg with equality iff V(f) and V(g) have no

common tangent at p. What does it mean to

have no common

tangent at p? What if

one or both of the

functions is singular at

p? In this case there is

no well-defined

tangent.

Ryan 9/3/09

(6) I(p,V(f) ∩ V(g)) =
∑
risiI(p,V(fi) ∩ V(gi)) when f =

∏
frii and g =

∏
gsii .

(7) I(p,V(f) ∩V(g)) = I(p,V(f) ∩V(g + af)) for all a ∈ ℂ[x, y].

I propose we split this

theorem into a

definition and a

theorem. First we

define intersection

multiplicity followed by

a theorem: The integer

defined in definition

”xxx” is unique. Later

in Exercise
Bezout:3
3.3.51 we

can be more specific in

the hint, i.e. show that

the integer in Exercise
Bezout:2
3.3.50 satisfies the

conditions in definition

”xxx” and use theorem

”yyy”. Also, should we

prove this result in a

series of exercises to be

more self-contained?

Ryan 9/3/09

Note that Axioms Five and Seven suggest a way to compute intersection mul-

tiplicity by reducing it to the calculation of mpF , for an appropriate polynomial F.

We can easily extend this definition to curves in ℙ2(ℂ) by dehomogening the curves

making them into curves in ℂ2 containing the point in question.

Exercise 3.3.21. Use the above axioms to show that for p = (0, 0), I(p,V(x2)∩
V(y)) = 2. Sketch V(x2) and V(y).

Solution. V(x2) is a double line that corresponds to the y-axis and V(y) is the

x-axis. Their intersection is p and they have no common tangent at p, so we can use

Axiom 5. We have mp(x
2) = 2 and mp(y) = 1, so I(p,V(x2) ∩V(y)) = (2)(1) = 2.

1

2

3

4

−1

−2

−3

−4

1 2 3 4 5−1−2−3−4−5

Exercise 3.3.22. Show for p = (0, 0), I(p,V(x2 − y) ∩ V(y)) = 2. Sketch

V(x2 − y) and V(y).
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Solution. In this exercise we cannot use Axiom 5 directly since V(x2−y) and
V(y) have a common tangent at p. We can use Axioms 4 and 7.

I(p,V(x2 − y) ∩V(y)) = I(p,V(y) ∩V(x2 − y)) Axiom 4

= I(p,V(y) ∩V((x2 − y) + y)) Axiom 7

= I(p,V(y) ∩V(x2))

= 2

The second inequality follows from Axiom 7 with f(x, y) = y, g(x, y) = x2− 1, and

a = 1. The last equality follows from the previous exercise.

1

2

3

4

−1
1 2 3−1−2−3

Exercise 3.3.23. Show for p = (0, 0), I(p,V(y2−x2−x3)∩V(x)) = 2. Sketch

V(y2 − x2 − x3) and V(x).

Solution. V(y2 − x2 − x3) and V(x) have no common tangent, so we can use

Axiom 5. We notice that mp(y
2 − x2 − x3) = 2 and mp(x) = 1, so I(p,V(y2 − x2 −

x3) ∩V(x)) = (2)(1) = 1.

1

2

3

−1

−2

−3

1 2 3−1−2−3

Exercise 3.3.24. Let f(x, y) = x2+y2−1. Give examples of a real polynomial

g(x, y) = ax + by + c such that V(x2 + y2 − 1) ∩ V(ax + by + c) in ℝ2 has zero,

one or two points, respectively. Now consider the intersections V(f) ∩ V(g) in ℂ2.
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In each of your three examples, find these points of intersection, calculate their

multiplicities, and verify that
∑

p

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Solution. Empty intersection in ℝ2. Let g(x, y) = y − 2.

Single intersection point in ℝ2. Let g(x, y) = y − 1.

Two intersection points in ℝ2. Let g(x, y) = y.

Now suppose we are working in ℂ2. Then in the first example, g(x, y) = y − 2 our

intersection points are p1 = (i
√
3, 2) and p2 = (−i

√
3, 2). Since both f and g are

smooth, we know from Exercise
Multiplicity:Smooth Curve
3.3.14 that mp1f = mp1g = 1 and mp2f = mp2g =

1. Since f and g do not have a common tangent at either point, Axiom 5 applies

and we have
∑

p

I(p,V(f) ∩V(g)) = 1 + 1 = 2.

In the third example our intersection points are p1 = (−1, 0) and p2 = (1, 0). As

before we know from Exercise
Multiplicity:Smooth Curve
3.3.14 that mp1f = mp1g = 1 and mp2f = mp2g = 1.

Since f and g do not have a common tangent at either point, Axiom 5 applies and

we have
∑

p

I(p,V(f) ∩V(g)) = 1 + 1 = 2.

In the second example the single intersection point is p = (0, 1), and f and g do

have a common tangent at p, so we have to use Axiom 7.

I(p,V(f) ∩V(y − 1)) = I(p,V(y − 1) ∩V(x2 + y2 − 1))

= I(p,V(y − 1)

∩V((x2 + y2 − 1) + (−1)(y + 1)(y − 1)))

= I(p,V(y − 1) ∩V(x2))

= 2.

Again we have
∑

p

I(p,V(f) ∩V(g)) = 2.

3.3.4. Statement of Bézout’s Theorem.

Exercise 3.3.25. Let f = x2 + y2 − 1 and g = x2 − y2 − 1. Find all points

of intersection of the curves V(f) and V(g). For each point of intersection p,

send p to (0, 0) via a change of coordinates T . Find I(p, f ∩ g) by calculating

I((0, 0), T (V(f)) ∩ T (V(g))). Verify that
∑

p

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Solution. All points in V(f) have y2 = 1−x2, so we have g(x, y) = x2− (1−
x2) − 1 = 0, which gives x = ±1. Then the two intersection points are p1 = (1, 0)

and p2 = (−1, 0). Define T1(x, y) = (x−1, y) and T2(x+1, y) so that T1(p1) = (0, 0)
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and T2(p2) = (0, 0). Under T1 we have

T1(V(f)) = V(f ∘ T−1
1 (x, y))

= V((x+ 1)2 + y2 − 1)

= V(2x+ x2 + y2)

T1(V(g)) = V(g ∘ T−1
1 (x, y))

= V((x+ 1)2 − y2 − 1)

= V(2x+ x2 − y2)

We know that these curves have a common tangent at (0, 0), so we need to use

Axiom 7.

I((0, 0), T1(V(f)) ∩ T1(V(g))) = I((0, 0),V(2x+ x2 + y2) ∩V(2x+ x2 − y2))

= I((0, 0),V(2x+ x2 + y2)

∩V((2x+ x2 − y2) + (−1)(2x+ x2 + y2))

= I((0, 0),V(2x+ x2 + y2) ∩V(−2y2))

Since V(2x + x2 + y2) and V(−2y2)) have no common tangent at (0, 0) we can

apply Axiom 5 to obtain I((0, 0),V(2x + x2 + y2) ∩ V(−2y2)) = 2. A nearly

identical calculation gives I((0, 0), T2(V(f)) ∩ T2(V(g))) = 2. Finally, we have∑

p

I(p,V(f) ∩V(g)) = 2 + 2 = 4 = (2)(2) = (deg f)(deg g).

This exercise should

follow the comment

below it. There are

only two points of

intersection in ℂ2 for a

total multiplicity of

4 ∕= 6. There is an

additional intersection

(1 : 0 : 0) ∈ ℙ2, which

gives the correct total.

Ryan 9/9/09

Exercise 3.3.26. Let f = x2 − y3 and g = x − y2, and find all points

of intersection of the curves V(f) and V(g). For each point of intersection p,

send p to (0, 0) via a change of coordinates T . Find I(p, f ∩ g) by calculating

I((0, 0), T (V(f)) ∩ T (V(g))). Verify that
∑

p

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Solution. All points of V(g) have x = y2, so we have f(y2, y) = y4 − y3 = 0,

which gives y = 0 and y = 1. Then the two intersection points are p1 = (0, 0) and

p2 = (1, 1). Since p1 is already (0, 0) we only need to define one affine transformation

T by T (x, y) = (x−1, y−1) so that T (p2) = (0, 0). Consider first I((0, 0), T (V(f))∩
T (V(g))).

T (V(f)) = V(f ∘ T−1(x, y))

= V(2x− 3y + x2 − 3y2 − y3)

T (V(g)) = V(g ∘ T−1(x, y))

= V(x− 2y − y2)

Since T (V(f)) and T (V(g)) do not have a common tangent at (0, 0), and both have

multiplicity one at (0, 0) we have I((0, 0), T (V(f)) ∩ T (V(g))) = 1.
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Now consider I((0, 0),V(f) ∩V(g)). We do have a common tangent.

I((0, 0),V(f) ∩V(g)) = I((0, 0),V(x2 − y3) ∩V(x− y2))

= I((0, 0),V(x− y2) ∩V(x2 − y3))

= I((0, 0),V(x− y2) ∩V((x2 − y3) + (−x)(x− y2)))

= I((0, 0),V(x− y2) ∩V(xy2 − y3))

= I((0, 0),V(x− y2) ∩V(y2(x− y)))

= I((0, 0),V(x− y2) ∩V(y2))

+I((0, 0),V(x− y2) ∩V(x− y))

The last equality is the result of Axiom 6. Neither V(x−y2) and V(y2) nor V(x−y2)
and V(x−y) have a common tangent, so we can apply Axiom 5 to get I((0, 0),V(f)∩
V(g)) = 2 + 1 = 3. Finally, we have

∑

p

I(p,V(f) ∩V(g)) = 2 + 2 = 4 ∕= 6.

The previous exercises may have led you to conjecture that if f and g are any

polynomials, then
∑

p

I(p,V(f) ∩V(g)) = (deg f)(deg g). This is not true for all

curves V(f) and V(g) in ℂ2, though, as the next exercise illustrates.

ex:AffineParabola Exercise 3.3.27. Let f = y − x2 and g = x. Verify that the origin is the only

point of V(f) ∩V(g) in ℂ2 and that I((0, 0),V(f) ∩V(g)) = 1.

Solution. Every point p ∈ V(g) has x = 0, so the only point of V(f) ∩ V(g)

has y = 0 also, i.e. p = (0, 0) is the only point of V(f) ∩ V(g) in ℂ2. Since

f and g are both smooth and f and g have no common tangent at p, we have

I((0, 0),V(f) ∩V(g)) = (mpf)(mpg) = 1.

The way to unify the previous exercises is to consider the polynomials as restric-

tions to an affine plane of homogeneous polynomials, well-defined on the projective

plane. The corresponding curves in the projective plane will always intersect in the

“correct” number of points, counted with multiplicity. This is Bézout’s Theorem.

bezout Theorem 3.3.28 (Bézout’s Theorem). Let f and g be homogeneous polyno-

mials in ℂ[x, y, z] with no common component, and let V(f) and V(g) be the

corresponding curves in ℙ2(ℂ). Then

∑

p∈V(f)∩V(g)

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Exercise 3.3.29. Homogenize the polynomials in Exercise
ex:AffineParabola
3.3.27, and find the

two points of V(f) ∩V(g) in ℙ2(ℂ).
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Solution. After homogenizing we have f(x, y, z) = yz−x2 and g(x, y, z) = x.

Now if p ∈ V(f) ∩ V(g), then x = 0 and either y = 0 or z = 0, i.e. the two points

of V(f) ∩ V(g) in ℙ2(ℂ) are p1 = (0 : 0 : 1) and p2 = (0 : 1 : 0). We already found

I(p1,V(f) ∩ V(g)) = 1 in the affine patch corresponding to z = 1. Now consider

f = z−x2 and g = x in the affine patch corresponding to y = 1. The same analysis

from Exercise
ex:AffineParabola
3.3.27 applies and we have I(p2,V(f) ∩V(g)) = 1.

Exercise 3.3.30. Let f = x2 − y2 − 1 and g = x − y. Sketch V(f) and V(g)

in ℝ2. Homogenize f and g and verify Bézout’s Theorem in this case. Describe

the relationship between the points of intersection in ℙ2(ℂ) and the sketch in ℝ2.

Repeat this exercise with g = y + x.

Solution.

1

2
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4
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−2
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−4
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1 2 3 4 5−1−2−3−4−5

After homogenizing we have f(x, y, z) = x2 − y2 − z2 and g(x, y, z) = x − y. Any

point of V(g) has x = y, so the only point of V(f) ∩ V(g) is (1 : 1 : 0), a point at

infinity. Now we dehomogenize in the y = 1 affine patch and consider f = x2−z2−1

and g = x−1, and we see V(f)∩V(g) consists of p = (1, 0). Since f and g are both

smooth we know mpf = mpg = 1, but V(f) and V(g) have a common tangent,
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x = 1, at (1, 0).

I(p,V(x2 − z2 − 1) ∩V(x− 1)) = I(p,V(x− 1) ∩V(x2 − z2 − 1))

= I(p,V(x− 1)

∩V(x2 − z2 − 1 + (−x− 1)(x− 1)))

= I(p,V(x− 1) ∩V(−z2))
= 2

The last inequality follows from mp(x− 1) = 1 and mp(−z2) = 2 and the fact that

V(x−1) and V(−z2) have no common tangent at p. We have thus verified Bézout’s

Theorem. A similar analysis yields the same result for g = x+ y, but in this case,

the point of intersection is (1 : −1 : 0).

Exercise 3.3.31. Confirm that the curves defined by x2+y2 = 1 and x2+y2 =

4 do not intersect in ℂ2. Homogenize these equations and confirm Bézout’s Theorem

in this case. Would a sketch of the circles in ℝ2 give you any insight into the

intersections in ℙ2(ℂ)?

Solution. It is clear that these two conics do not intersect in ℂ2, since if

x2+y2 = 1, then x2+y2 ∕= 4. After homogenizing we have f(x, y, z) = x2+y2−z2
and g(x, y, z) = x2 + y2 − 4z2, and the two points of V(f)∩V(g) are (1 : i : 0) and

(1 : −i : 0). Consider the dehomogenization in the x = 1 affine patch, f(y, z) =

y2 − z2 + 1 and g(y, z) = y2 − 4z2 + 1. The points of intersection correspond to

p1 = (i, 0) and p2 = (−i, 0). Consider p1 first. Since f and g are both smooth we

know mpf = mpg = 1, but V(f) and V(g) have a common tangent, y = i, at p1.

I(p1,V(y
2 − z2 + 1) ∩V(y2 − 4z2 + 1) = I(p1,V(y

2 − z2 + 1)

∩V(y2 − 4z2 + 1 + (−1)(y2 − z2 + 1))

= I(p1,V(y
2 − z2 + 1) ∩V(−3z2)

= 2

Next consider p2. V(f) and V(g) have a common tangent, y = −i, at p2, so we

proceed as before to get I(p2,V(f) ∩V(g)) = 2. Finally, we have
∑

p∈V(f)∩V(g)

I(p,V(f) ∩V(g)) = 2 + 2 = 4 = (deg f)(deg g).

3.3.5. Resultants.

The goal of this section is to use the resultant of two polynomials to find

their common roots. The resultant will be the main tool in our proof of Bézout’s

Theorem.

This formula is

repeated later, we can

refer reader back here

at appropriate time.
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resultant While the Fundamental Theorem of Algebra tells us that a one-variable poly-

nomial of degree d has exactly d roots, counting multiplicities, it gives us no means

for actually finding these roots. Similarly, what if we want to know if two one-

variable polynomials have a common root? The most naive method would be to

find the roots for each of the polynomials and see if any of the roots are the same.

In practice, though, this method is quite difficult to implement, since we have no

easy way for finding these roots. The resultant is a totally different approach for

determining if the polynomials share a root. The resultant is the determinant of

a matrix; this determinant will be zero precisely when the two polynomials have a

common root.

Definition 3.3.3. The resultant Res(f, g) of two polynomials f(x) = anx
n +

an−1x
n−1+ ⋅ ⋅ ⋅+ a1x+ a0 and g(x) = bmx

m+ bm−1x
m−1+ ⋅ ⋅ ⋅+ b1x+ b0 is defined

to be the determinant of the (m+ n)× (m+ n) matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 ⋅ ⋅ ⋅ a0 0 0 ⋅ ⋅ ⋅ 0

0 an an−1 ⋅ ⋅ ⋅ a0 0 ⋅ ⋅ ⋅ 0

0 0
. . .

. . . ⋅ ⋅ ⋅ . . . . . . 0

0 0 ⋅ ⋅ ⋅ 0 an an−1 ⋅ ⋅ ⋅ a0

bm bm−1 ⋅ ⋅ ⋅ b0 0 0 ⋅ ⋅ ⋅ 0

0 bm bm−1 ⋅ ⋅ ⋅ b0 0 ⋅ ⋅ ⋅ 0

0 0
. . .

. . . ⋅ ⋅ ⋅ . . . . . . 0

0 0 ⋅ ⋅ ⋅ bm−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

An important property of resultants is that f(x) and g(x) have a common

root if and only if Res(f, g) = 0. The following three exercises will illustrate this

property.

Exercise 3.3.32. Let f(x) = x2 − 1 and g(x) = x2 + x− 2.

(1) Find the roots of f and g and show that they share a root.

(2) Show that Res(f, g) = 0.

Solution. (1) f(x) = (x−1)(x+1) and g(x) = (x−1)(x+2). So x = 1

is a root for both f and g.

(2) Res(f, g) = det

⎛
⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

1 1 −2 0

0 1 1 −2

⎞
⎟⎟⎟⎟⎠

= 0.

Exercise 3.3.33. Let f(x) = x2 − 1 and g(x) = x2 − 4.

(1) Find the roots of f and g and show that they have no roots in common.

(2) Show that Res(f, g) ∕= 0.
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Solution. (1) f(x) = (x − 1)(x + 1) and g(x) = (x − 2)(x + 2). So f

and g have no roots in common.

(2) Res(f, g) = det

⎛
⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

1 0 −4 0

0 1 0 −4

⎞
⎟⎟⎟⎟⎠

= 9.

Exercise 3.3.34. (1) Let f(x) = x− r and g(x) = x− s. Find Res(f, g).

Verify that Res(f, g) = 0 if and only if r = s.

(2) Let f(x) = x− r and g(x) = (x− s1)(x− s2). Find Res(f, g). Verify that

Res(f, g) = 0 if and only if r = s1 or r = s2.

Solution. (1) f(x) = x− r and

g(x) = (x− s1)(x− s2) = x2 − (s1 + s2)x+ s1s2,

so

Res(f, g) = det

⎛
⎜⎝

1 −r 0

0 1 −r
1 −(s1 + s2) s1s2

⎞
⎟⎠

= s1s2 − r(s1 + s2) + r2

= (r − s1)(r − s2).

Thus Res(f, g) = 0 if and only if r = s1 or r = s2.

Exercise 3.3.35. For a degree two polynomial f(x) = a2x
2 + a1x + a0 =

a2(x− r1)(x− r2), we have

a1
a2

= −(r1 + r2)

a0
a2

= r1r2.

Use these relations between the coefficients and roots to show that if

f(x) = a2x
2 + a1x+ a0 = a2(x− r1)(x− r2)

g(x) = b2x
2 + b1x+ b0 = b2(x− s1)(x− s2)

then Res(f, g) = a22b
2
2(r1 − s1)(r1 − s2)(r2 − s1)(r2 − s2).

Solution.

Res(f, g) = det

⎛
⎜⎜⎜⎜⎝

a2 a1 a0 0

0 a2 a1 a0

b2 b1 b0 0

0 b2 b1 b0

⎞
⎟⎟⎟⎟⎠

Factoring a2 out of the top two rows and b2 out of the bottom two rows gives
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= a22b
2
2 det

⎛
⎜⎜⎜⎜⎝

1 −(r1 + r2) r1r2 0

0 1 −(r1 + r2) r1r2

1 −(s1 + s2) s1s2 0

0 1 −(s1 + s2) s1s2

⎞
⎟⎟⎟⎟⎠

Always using the first column for cofactor expansion:

= a22b
2
2

[
det

⎛
⎜⎝

1 −(r1 + r2) r1r2

−(s1 + s2) s1s2 0

1 −(s1 + s2) s1s2

⎞
⎟⎠

+det

⎛
⎜⎝

−(r1 + r2) r1r2 0

1 −(r1 + r2) r1r2

1 −(s1 + s2) s1s2

⎞
⎟⎠
]

= a22b
2
2

[
(s1s2)

2 + (s1 + s2)

(
−(r1 + r2)s1s2 + r1r2(s1 + s2)

)
− r1r2s1s2

−(r1 + r2)

(
−(r1 + r2)s1s2 + r1r2(s1 + s2)

)
− r1r2s1s2 + (r1r2)

2

]

= a22b
2
2

[
r21r

2
2 − r21r2s2 − r21r2s1 + r1s1s2 − r1r

2
2s2 + r1r2s

2
2 + r1r2s1s2 − r1s1s

2
2

−
(
r1r

2
2s1 − r1r2s1s2 − r1r2s

2
1 + s21s2 − r22s1s2 + r2s1s

2
2 + r2s

2
1s2 − s21s

2
2

)]

Factoring r1 out of the first row and s1 out of the second row:

= a22b
2
2

[
(r1 − s1)

(
r1r

2
2 − r1r2s2 − r1r2s1 + s1s2 − r22s2 + r2s

2
2 + r2s1s2 − s1s

2
2

)]

= a22b
2
2

[
(r1 − s1)(r1 − s2)

(
r22 − r2s2 − r2s1 + s1s2

)]

= a22b
2
2

[
(r1 − s1)(r1 − s2)(r2 − s1)(r2 − s2)

]

Exercise 3.3.36. Let f(x, y) = x2 + y2 − 2 and g(x, y) = x2 − xy+ y2 + y− 2.

(1) Treating f and g as polynomials in x, compute

R(y) = Res(f, g;x) = det

⎛
⎜⎜⎜⎜⎝

1 0 y2 − 2 0

0 1 0 y2 − 2

1 −y y2 + y − 2 0

0 1 −y y2 + y − 2

⎞
⎟⎟⎟⎟⎠

(2) Set R(y) = 0 and solve for y to find the projections on the y-axis of the

points of intersection of V(f) and V(g).
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Solution. (1)

R(y) = Res(f, g;x) = det

⎛
⎜⎜⎜⎜⎝

1 0 y2 − 2 0

0 1 0 y2 − 2

1 −y y2 + y − 2 0

0 1 −y y2 + y − 2

⎞
⎟⎟⎟⎟⎠

= y4 − y2

(2) y = 0, 1,−1.

Exercise 3.3.37. The two lines V(x−y) and V(x−y+2) are parallel in the affine

plane, but intersect at (1 : 1 : 0) in ℙ2. Treating f(x, y, z) = x− y and g(x, y, z) =

x− y+2z as one-variable polynomials in x, show that Res(x− y, x− y+2z;x) = 0

when z = 0.

Solution.

Res(x− y, x− y + 2z;x) = det

(
1 −y
1 −y + 2z

)
= 2z

Hence Res(x− y, x− y + 2z;x) = 0 when z = 0.

Exercise 3.3.38. Let f(x, y) = 4x − 3y and g(x, y) = x2 + y2 − 25. Use the

resultant Res(f, g;x) to find the points of intersection of V(f) and V(g).

Solution.

Res(f, g;x) = det

⎛
⎜⎝

4 −3y 0

0 4 −3y

1 0 y2 − 25

⎞
⎟⎠ = 25(y2 − 8)

So y = ±
√
8 = ±2

√
2.

When y = 2
√
2, x = 2±

√
21− 6

√
2, and when y = −2

√
2, x = 2±

√
21 + 6

√
2.

Exercise 3.3.39. Let f(x) = ax2 + bx+ c.

(1) Find Res(f, f ′).

(2) Under what conditions will Res(f, f ′) = 0?

Solution. (1) Res(f, f ′) = det

⎛
⎜⎝

a b c

2a b 0

0 2a b

⎞
⎟⎠ = −a(b2 − 4ac).

(2) Res(f, f ′) = 0 if a = 0 and either b ∕= 0 or b = 0 = c. Assuming a ∕= 0,

then Res(f, f ′) = 0 when c = b2

4a . In this case f(x) = a(x ± b
a )

2 and

f ′(x) = 2a(x± b
a ).

In these last two exercises of this section, you will prove our previous assertion

that the polynomials f and g have a common root if and only if Res(f, g) = 0.
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commonroot Exercise 3.3.40. Show that if r is a common root of f and g, then the vector

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rm+n−1

rm+n−2

...

r

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is in the null space of the resultant matrix of f and g, and thus

Res(f, g) = 0.

Solution. Suppose f and g have a common root r. Write f(x) = anx
n +

an−1x
n−1 + ⋅ ⋅ ⋅+ a1x+ a0 and g(x) = bmx

m + bm−1x
m−1 + ⋅ ⋅ ⋅+ b1x+ b0. Then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 ⋅ ⋅ ⋅ a0 0 0 ⋅ ⋅ ⋅ 0

0 an an−1 ⋅ ⋅ ⋅ a0 0 ⋅ ⋅ ⋅ 0

0 0
. . .

. . . ⋅ ⋅ ⋅ . . . . . . 0

0 0 ⋅ ⋅ ⋅ 0 an an−1 ⋅ ⋅ ⋅ a0

bm bm−1 ⋅ ⋅ ⋅ b0 0 0 ⋅ ⋅ ⋅ 0

0 bm bm−1 ⋅ ⋅ ⋅ b0 0 ⋅ ⋅ ⋅ 0

0 0
. . .

. . . ⋅ ⋅ ⋅ . . . . . . 0

0 0 ⋅ ⋅ ⋅ bm−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rm+n−1

rm+n−2

...

r

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= rm−1f(r) + rm−2f(r) + ⋅ ⋅ ⋅+ rf(r) + f(r)

+ rn−1g(r) + rn−2g(r) + ⋅ ⋅ ⋅+ rg(r) + g(r)

= 0,

since r is a root of f and g. So the vector x is in the null space of the resultant

matrix and, because the null space contains a non-zero vector, it must be that the

determinant of the resultant matrix, Res(f, g), is 0.

Exercise 3.3.41 (from Kirwan, Complex Algebraic Curves
Kirwan
[Kir92], Lemma

3.3, p. 67). Let f(x) = anx
n + an−1x

n−1 + ⋅ ⋅ ⋅ + a1x + a0 and g(x) = bmx
m +

bm−1x
m−1 + ⋅ ⋅ ⋅+ b1x+ b0.

(1) Prove that f and g have a common root x = r if and only if there exists

a polynomial p(x) of degree m− 1 and a polynomial q(x) of degree n− 1

such that p(x)f(x) = q(x)g(x).

(2) Write p(x) = �m−1x
m−1 + ⋅ ⋅ ⋅ + �1x + �0 and q(x) = �n−1x

n−1 + ⋅ ⋅ ⋅ +
�1x + �0. By comparing coefficients, show that the polynomial equation
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p(x)f(x) = q(x)g(x) corresponds to the system

�m−1an = �n−1bm

�m−1an−1 + �m−2an = �n−1bm−1 + �n−2bm
...

�0a0 = �0b0

(3) Prove that this system of equations has a non-zero solution

(�m−1, �m−2, . . . , �0, �n−1, �n−2, . . . , �0)

if and only if Res(f, g) = 0.

Solution. (1) Suppose f and g have a common root x = r. Then f(x) =

(x−r)q(x) for some polynomial q(x) of degree n−1, and g(x) = (x−r)p(x)
for some polynomial p(x) of degree m− 1. Thus

p(x)f(x) = (x− r)q(x)p(x) = g(x)q(x).

Now suppose p(x)f(x) = g(x)q(x) for some polynomials p and q of degree

m−1 and n−1, respectively. Notice that the degree of pf = qg ism+n−1,

while the degree of pq is m+ n− 2. So pf = qg must have one more root

than pq does; call it r. Then

p(x)q(x)(x− r) = p(x)f(x) = q(x)g(x).

We can conclude that f(x) = (x− r)q(x) and g(x) = (x− r)p(x).

(2)

p(x)f(x) =
(
�m−1x

m−1 + ⋅ ⋅ ⋅+ �1x+ �0

)(
anx

n + an−1x
n−1 + ⋅ ⋅ ⋅+ a1x+ a0

)

= �m−1anx
m+n−1 + (�m−2an + �m−1an−1)x

m+n−2

+ ⋅ ⋅ ⋅+ (�0a1 + �1a0)x+ �0a0

And

q(x)g(x) =
(
�n−1x

n−1 + ⋅ ⋅ ⋅+ �1x+ �0)
(
bmx

m + bm−1x
m−1 + ⋅ ⋅ ⋅+ b1x+ b0

)

= �n−1bmx
m+n−1 + (�n−2bm + �n−1bm−1)x

m+n−2

+ ⋅ ⋅ ⋅+ (�0b1 + �1b0)x+ �0b0

Comparing coefficients of x gives the desired result:

�m−1an = �n−1bm

�m−1an−1 + �m−2an = �n−1bm−1 + �n−2bm
...

�0a1 + �1a0 = �0b1 + �1b0

�0a0 = �0b0.
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(3) If the system of equations has a non-zero solution, then f and g have a

common root by part 1. Thus Res(f, g) = 0, by Excercise
commonroot
3.3.40.

Now suppose Res(f, g) = 0. Let A be the resultant matrix for

f and g. We know det(A) = Res(f, g) = 0, and this implies that

det(AT) = 0 also, where AT is the transpose of A. Then there is a

non-zero (m + n)−dimensional vector x with ATx = 0. Write x as

x = (�m−1, �m−2, . . . , �0,−�n−1,−�n−2, . . . ,−�0). The matrix equation

ATx = 0 tells us that x is a non-zero solution to the system of equations

�m−1an − �n−1bm = 0

�m−1an−1 + �m−2an − �n−1bm−1 − �n−2bm = 0

...

�0a1 + �1a0 − �0b1 − �1b0 = 0

�0a0 − �0b0 = 0.

Thus (�m−1, �m−2, . . . , �0, �n−1, �n−2, . . . , �0) is a non-zero solution to

the system

�m−1an = �n−1bm

�m−1an−1 + �m−2an = �n−1bm−1 + �n−2bm
...

�0a0 = �0b0.

3.3.6. Proof of Bézout’s Theorem. Now we are ready to outline a proof of

Bézout’s Theorem. Full details can be found in Cox, Little, O’Shea, Ideals Varieties

and Algorithms
CoxLittleOShea
[CLO07], Chapter 8, Section 7.Need to expand proof

out
Exercise 3.3.42. Let f(x, y, z) = 3x + y + 2z and g(x, y, z) = x + 5z. Show

that Res(f, g; z) is a homogeneous polynomial in x and y of degree 1.

Exercise 3.3.43. Let f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = 2x + 3y − z.

Show that Res(f, g; z) is a homogeneous polynomial of degree 2.

Exercise 3.3.44. Let f(x, y, z) = x2 + xy + xz and g(x, y, z) = x2 + y2 + z2.

Show that Res(f, g; z) is a homogeneous polynomial of degree 4.

The next exercise is a generalization of these exercises.

Bezout:1 Exercise 3.3.45 (Cox, Little, O’Shea
CoxLittleOShea
[CLO07], Lemma 5, p. 425). Let f, g ∈

ℂ[x, y, z] be homogeneous polynomials of degrees m and n, respectively. If f(0, 0, 1)

and g(0, 0, 1) are nonzero, then Res(f, g; z) is homogeneous of degree mn in x and

y.
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Exercise 3.3.46. Let f(x, y) = x2−8xy+15y2. Show that V (f) = {(3, 1), (5, 1)}
and that f(x, y) = (x− 3y)(x− 5y).

Exercise 3.3.47. Let f(x, y) = x2+y2. Show that V (f) = {(i, 1), (−i, 1)} and

that f(x, y) = (x+ iy)(x− iy).

Exercise 3.3.48. Let f(x, y) = 2x2 + 3xy + 4y2. Show that

V (f) = {(−3 +
√
7i, 2), (−3−

√
7i, 2)}

and that

f(x, y) =
1

2
[2x− (−3 +

√
7i)y][2x− (−3−

√
7i)y].

Exercise 3.3.49. Let f(x, y) = x3 − 5x2y − 14xy2. Show that V (f) =

{(0, 1), (7, 1), (−2, 1)} and that f(x, y) = x(x+ 2y)(x− 7y).

The previous exercises are special cases of the general result presented next.

Exercise 3.3.50. (
CoxLittleOShea
[CLO07], Lemma 6, p. 427) Let f ∈ ℂ[x, y] be homoge-Bezout:2

neous, and let V(f) = {(r1, s1), . . . , (rt, st)}. Show that

f = c(s1x− r1y)
m1 ⋅ ⋅ ⋅ (stx− rty)

mt ,

where c is a nonzero constant.
Next exercise is far

too hard. Need to add

exercises to make it

doable.

Bezout:3 Exercise 3.3.51. Let V(f) and V(g) be curves in ℙ2(ℂ) with no common

components. Choose homogeneous coordinates for ℙ2(ℂ) so that the point (0 : 0 : 1)

is not in V(f) or V(g) and is not collinear with any two points of V(f)∩V(g). (What

follows will be independent of this choice of coordinates, though it is not obvious.)

Show that if p = (u : v : w) is in V(f)∩V(g), then I(p,V(f)∩V(g)) is the exponent

of (vx − uy) in the factorization of Res(f, g; z), i.e. check the axioms that define

intersection multiplicity.

Exercise 3.3.52. Deduce Bézout’s Theorem from Exercises
Bezout:1
3.3.45,

Bezout:2
3.3.50, and

Bezout:3
3.3.51.

Exercise 3.3.53. Let f = yz − x2 and g = yz − 2x2, and let C = V(f) and

D = V(g).

(1) Find C ∩D by solving Res(f, g; z) = 0.

(2) One of the points of intersection is (0 : 0 : 1). Check that (1 : 0 : 0) is not

in C or D and is not collinear with any two points of C ∩D.

(3) Find an invertible 3× 3 matrix A such that A(1 : 0 : 0) = (0 : 0 : 1).

(4) Compute Res(f ∘A−1, g∘A−1; z). This will be a homogeneous polynomial

in x, y; factor it completely and read the intersection multiplicities for the

points in A(C)∩A(D). These are the multiplicities for the corresponding

points in C ∩D.
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3.4. Regular Functions and Function Fields

3.4.1. The Affine Case. We want to understand the functions defined on a

curve.

Exercise 3.4.1. Let P (x, y) = x2 + xy + 1. Consider the two polynomials

f1(x, y) = x2 and f2(x, y) = 2x2 + xy + 1

Find a point (a, b) ∈ ℂ2 such that

f1(a, b) ∕= f2(a, b).

Now show that if (a, b) ∈ ℂ2 with the extra condition that the corresponding point

(a, b) ∈ V(P ), then

f1(a, b) = f2(a, b).

Solution. Almost any choice of (a, b) ∈ ℂ2, as long as (a, b) is not an element

of V(P ), will give us that f1(a, b) ∕= f2(a, b). For example, letting (a, b) = (1, 1), we

have

f1(1, 1) = 1

while

f2(1, 1) = 4.

Now let (a, b) ∈ V(P ). We have

f2(a, b) = 2a2 + ab+ 1

= a2 + a2 + ab+ 1

= a2 + P (a, b)

= a2

f1(a, b),

as desired.

To some extent, we would like to say that the polynomials f1 and f2 are the

same as far as points on the curve V(P ) are concerned.

Why is it in the above exercise that f1(a, b) = f2(a, b) for any point (a, b) ∈
V(P )? The key is to look at f2(x, y)− f1(x, y).

Definition 3.4.1. Let V(P ) be an irreducible curve. Let f(x, y) and g(x, y)

be two polynomials. We say that

f(x, y) ∼ g(x, y)

if P (x, y) divides f(x, y)− g(x, y).
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equivalence relation

ring!of regular

functions

Exercise 3.4.2. Show that ∼ defines an equivalence relation on polynomials.

(Recall that an equivalence relation ∼ on a set X satisfies the conditions (i.) a ∼ a

for all a ∈ X, (ii.) a ∼ b implies b ∼ a, and (iii.) a ∼ b and b ∼ c implies a ∼ c.)

Solution. Since f(x, y) − f(x, y) = 0 and since any polynomial P (x, y) will

divide into 0, we have

f(x, y) ∼ f(x, y).

Now suppose

f(x, y) ∼ g(x, y).

This means that there is a polynomial Q(x, y) such that

P (x, y)Q(x, y) = f(x, y)− g(x, y).

Since −Q(x, y) is also a polynomial, we have that

P (x, y)(−Q(x, y)) = g(x, y)− f(x, y),

giving us that g(x, y) ∼ f(x, y)

Suppose that f(x, y) ∼ g(x, y) and g(x, y) ∼ ℎ(x, y). Then there exist polyno-

mials Q1(x, y) and Q2(x, y) such that

P (x, y)Q1(x, y) = f(x, y)− g(x, y)

P (x, y)Q2(x, y) = g(x, y)− ℎ(x, y)

Then

P (x, y)(Q1(x, y) +Q2(x, y)) = f(x, y)− g(x, y) + g(x, y)− ℎ(x, y)

= f(x, y)− ℎ(x, y),

which shows that f(x, y) ∼ ℎ(x, y).

Definition 3.4.2. Let V(P ) be an irreducible curve. The ring of regular func-

tions on V(P ) is the space of all polynomials f(x, y) modulo the equivalence relation

∼. Denote this ring by O(V ). (We will also denote this by OV .)

You should be worried that we are calling O(V ) a ring without proof. We shall

remedy that situation now.

Exercise 3.4.3. We want to show that addition and multiplication are well-

defined on O(V ). Suppose that

f1(x, y) ∼ f2(x, y) and g1(x, y) ∼ g2(x, y).

Show that

f1(x, y) + g1(x, y) ∼ f2(x, y) + g2(x, y),
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which means that addition is well-defined in O(V ). Also show

f1(x, y)g1(x, y) ∼ f2(x, y)g2(x, y),

which means that multiplication is well-defined in O(V ).

Solution. Since f1(x, y) ∼ f2(x, y) and f1(x, y) ∼ f2(x, y), there exists poly-

nomials Q1 and Q2 such that

P (x, y)Q1(x, y) = f1(x, y)− f2(x, y)

P (x, y)Q2(x, y) = g1(x, y)− g2(x, y)

Now

(f1 + g1)− (f2 + g2) = (f1 − f2) + (g1 − g2)

= PQ1 + PQ2

= P (Q1 +Q2).

Hence f1(x, y) + g1(x, y) ∼ f2(x, y) + g2(x, y)

Showing that multiplication is well-defined involves a very slight trick.

f1g1 − f2g2 = f1g1 − f1g2 + f1g2 − f2g2

= f1(g1 − g2) + g2(f1 − f2)

= f1PQ2 + g2PQ1

= P (f1Q2 + g2Q1),

giving us that f1(x, y)g1(x, y) ∼ f2(x, y)g2(x, y).

Hence for any curve V(P ), we have the regular ring O(V ) of functions defined

on V(P ). (Once we know the operations are well-defined, checking the ring axioms

is straightforward and left as an exercise for the interested reader.)

Exercise 3.4.4. Suppose V(P ) is an irreducible curve. Let f(x1, x2, . . . , xn)

and g(x1, x2, . . . , xn) be two polynomials. Show that if fg ∼ 0, then either f ∼ 0

or g ∼ 0. Conclude that the ring of functions on an irreducible curve is an integral

domain.

Solution. If fg ∼ 0, then the polynomial P must divide the product fg.

Since P is irreducible, it has no factors besides itself. Hence P must divide f or g

(or possibly both).

Note that we are using that we there is unique factorization in the polynomial

ring k[x1, x2, . . . , xn].

There is also a field of functions associated to V(P ). Morally this field will

simply be all of the fractions formed by the polynomials in O(V ).
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Definition 3.4.3. Let the function field, K(V ), for the curve V(P ) be all

rational functions

f(x, y)

g(x, y)

where

(1) P does not divide g (which is a way of guaranteeing that g, the denomi-

nator, is not identically zero on the curve V(P )), and

(2)
f1(x, y)

g1(x, y)
is identified with

f2(x, y)

g2(x, y)
if P divides f1g2 − f2g1.

We wantK(V ) to mimic the rational numbers. Recall that the rational numbers

ℚ are all the fractions

a

b

such that a, b ∈ ℤ, b ∕= 0 and a
b is identified with c

d if ad− bc = 0.

Now, you should be concerned with us calling K(V ) a field. We need to define

addition and multiplication on K(V ), using the rational numbers, ℚ, as a guide.

Definition 3.4.4. On K(V ), define addition and multiplication by

f(x, y)

g(x, y)
+
ℎ(x, y)

k(x, y)
=
f(x, y)k(x, y) + g(x, y)ℎ(x, y)

g(x, y)k(x, y)

and

f(x, y)

g(x, y)
⋅ ℎ(x, y)
k(x, y)

=
f(x, y)ℎ(x, y)

g(x, y)k(x, y)
.

Exercise 3.4.5. Suppose

f1 ∼ f2, g1 ∼ g2, ℎ1 ∼ ℎ2, and k1 ∼ k2.

Show that f1
g1

+ ℎ1

k1
can be identified in K(V ) to f2

g2
+ ℎ2

k2
. Similarly, show that f1

g1
⋅ ℎ1

k1

can be identified in K(V ) to f2
g2

⋅ ℎ2

k2
.

Solution. We want to show that

f1
g1

+
ℎ1
k1

∼ f2
g2

+
ℎ2
k2

which means that we must show

f1(x, y)k1(x, y) + g1(x, y)ℎ1(x, y)

g1(x, y)k1(x, y)
∼ f2(x, y)k2(x, y) + g2(x, y)ℎ2(x, y)

g2(x, y)k2(x, y)
.

Hence we must show that P divides

f1g2k1k2 + g1g2ℎ1k2 − f2g1k1k2 − g1g2ℎ2k1
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Now

f1g2k1k2 + g1g2ℎ1k2 − f2g1k1k2 − g1g2ℎ2k1 = k1k2(f1g2 − f2g1)

+g1g2(ℎ1k2 − ℎ2k1)

= k1k2(f1g2 − f1g1 + f1g1 − f2g1)

+g1g2(ℎ1k2 − ℎ1k1 + ℎ1k1 − ℎ2k1)

+f1k1k2(g2 − g1) + g1k1k2(f1 − f2)

+g1g2ℎ1(k2 − k1) + g1g2k1(ℎ1 − ℎ2)

Since P divides

f1 − f2, g1 − g2, ℎ1 − ℎ2, k1 − k2,

we are done with the first part.

To show that
f1
g1

⋅ ℎ1
k1

∼ f2
g2

⋅ ℎ2
k2
,

we must show that P divides f1g2ℎ1k2 − f2g1ℎ2k1. As with the first part of this

problem, the key will be adding by appropriate zeros:

f1g2ℎ1k2 − f2g1ℎ2k1 = f1g2ℎ1k2 − f2g1ℎ2k1

+f2g2ℎ1k2 − f2g1ℎ1k2

+f2g2ℎ2k1 − f2g2ℎ2k1

+f2g2ℎ2k2 − f2g2ℎ2k2

= g2ℎ1k2(f1 − f2)

+f2ℎ2k1(g2 − g1)

+f2g2k2(ℎ1 − ℎ2)

f2g2ℎ2(k2 − k1).

Since P divides every term, we are done.

Exercise 3.4.6. Show that K(V ) is a field. (This is an exercise in abstract

algebra; its goal is not only to show that K(V ) is a field but also to provide the

reader with an incentive to review what a field is.)

Solution. Using the machinery of abstract algebra, this result follows from

the statement and proof of Theorem 15.6 of J. Gallian’s Contemporary Abstract

Algebra, which states that any integral domain has corresponding to it a quotient

field. A ring R is an integral domain if whenever

ab = 0
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for a, b ∈ R, then a = 0 or b = 0. We have shown that the ring O(V ) has this

property. The construction given in Gallian is exactly how we constructed K(V ).

In fact, we could have just quoted this result in Gallian and avoided the previous

few problems, but it is useful to see directly those properties.

3.4.2. The Projective Case. We have seen that the natural space for the

study of curves is not ℂ2 but the projective plane ℙ2. The corresponding functions

will have to be homogeneous polynomials. This section will be to a large extent

a copying of the previous section, with the addition of the needed words about

homogeneity.

Exercise 3.4.7. Let P (x, y, z) = x2 + xy + z2. Consider the two polynomials

f1(x, y, z) = x2 and f2(x, y, z) = 2x2 + xy + z2

Find a point (a : b : c) ∈ ℙ2 such that

f1(a, b, c) ∕= f2(a, b, c).

Now show that if (a : b : c) ∈ ℙ2 with the extra condition that the corresponding

point (a : b : c) ∈ V(P ), then

f1(a, b, c) = f2(a, b, c).

Solution. Almost any choice of (a : b : c) ∈ ℙ2, as long as (a : b : c) is not

an element of V(P ), will give us that f1(a, b, c) ∕= f2(a, b, c). For example, letting

(a : b : c) = (1 : 1 : 1), we have

f1(1, 1, 1) = 1

while

f2(1, 1, 1) = 4.

Now let (a : b : c) ∈ V(P ). We have

f2(a, b, c) = 2a2 + ab+ c2

= a2 + a2 + ab+ c2

= a2 + P (a : b : c)

= a2

= f1(a, b, c),

as desired.

Why is it in the above exercise that f1(a, b, c) = f2(a : b : c) for any point

(a : b : c) ∈ V(P )? The key is to look at f2(x, y, z)− f1(x, y, z).
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equivalence relation Definition 3.4.5. Let V(P ) be an irreducible curve. Let f(x, y, z) and g(x, y, z)

be two homogeneous polynomials of the same degree. We say that

f(x, y, z) ∼ g(x, y, z)

if P (x, y, z)) divides f(x, y, z)− g(x, y, z).

Exercise 3.4.8. Show that ∼ defines an equivalence relation on polynomials.

(Recall that an equivalence relation ∼ on a set X satisfies the conditions (i.) a ∼ a

for all a ∈ X, (ii.) a ∼ b implies b ∼ a, and (iii.) a ∼ b and b ∼ c implies a ∼ c.)

Solution. Since f(x, y, z)− f(x, y, z) = 0 and since any polynomial P (x, y, z)

will divide into 0, we have

f(x, y, z) ∼ f(x, y, z).

Now suppose

f(x, y, z) ∼ g(x, y, z).

This means that there is a homogeneous polynomial Q(x : y : z) such that

P (x, y, z)Q(x, y, z) = f(x, y, z)− g(x, y, z).

Since −Q(x, y, z) is also a polynomial, we have that

P (x, y, z)(−Q(x, y, z)) = g(x, y, z)− f(x, y, z),

giving us that g(x, y, z) ∼ f(x, y, z)

Suppose that f(x, y, z) ∼ g(x, y, z) and g(x, y, z) ∼ ℎ(x, y, z) Then there exist

homogeneous polynomials Q1(x, y, z) and Q2(x, y, z) such that

P (x, y, z)Q1(x, y, z) = f(x, y, z)− g(x, y, z)

P (x, y, z)Q2(x, y, z) = g(x, y, z)− ℎ(x, y, z)

Then

P (x, y, z)(Q1(x, y, z) +Q2(x, y, z)) = f(x, y, z)− g(x, y, z) + g(x, y, z)− ℎ(x, y, z)

= f(x, y, z)− ℎ(x, y, z),

which shows that f(x, y, z) ∼ ℎ(x, y, z).

In the affine case, we used the analogous equivalence relation to define the ring

of polynomials on the curve V(P ). That is a bit more difficult in this case, as we do

not want to allow the adding of two homogeneous polynomials of different degrees.

This is handled via defining the notion of a graded ring, which we will do in chapter

five. Building to that definition, we consider:
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Exercise 3.4.9. Suppose that

f1(x, y, z) ∼ f2(x, y, z) and g1(x, y, z) ∼ g2(x, y, z),

with the additional assumption that all four polynomials are homogeneous of the

same degree. Show that

f1(x, y, z) + g1(x, y, z) ∼ f2(x, y, z) + g2(x, y, z),

and

f1(x, y, z)g1(x, y, z) ∼ f2(x, y, z)g2(x, y, z).

Solution. Since f1(x, y, z) ∼ f2(x, y, z) and f1(x, y, z) ∼ f2(x, y, z), there

exists homogeneous polynomials Q1 and Q2 such that

P (x, y, z)Q1(x, y, z) = f1(x, y, z)− f2(x, y, z)

P (x, y, z)Q2(x, y, z) = g1(x, y, z)− g2(x, y, z)

Now

(f1 + g1)− (f2 + g2) = (f1 − f2) + (g1 − g2)

= PQ1 + PQ2

= P (Q1 +Q2).

Hence f1(x, y, z) + g1(x, y, z) ∼ f2(x, y, z) + g2(x, y, z)

Showing that multiplication is well-defined involves a very slight trick.

f1g1 − f2g2 = f1g1 − f1g2 + f1g2 − f2g2

= f1(g1 − g2) + g2(f1 − f2)

= f1PQ2 + g2PQ1

= P (f1Q2 + g2Q1),

giving us that f1(x, y, z)g1(x, y, z) ∼ f2(x, y, z)g2(x, y, z).

Luckily we have a projective analog to the functions field.

Definition 3.4.6. Let the function field, K(V ), for the curve V(P ), where

P (x, y, z) is a homogeneous polynomial, be all rational functions

f(x, y, z)

g(x, y, z)

where

(1) both f and g are homogeneous of the same degree,

(2) P does not divide g (which is a way of guaranteeing that g, the denomi-

nator, is not identically zero on the curve V(P )), and
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(3)
f1(x, y, z)

g1(x, y, z)
is identified with

f2(x, y, z)

g2(x, y, z)
if P divides f1g2−f2g1. We denote

this identification by setting

f1(x, y, z)

g1(x, y, z)
∼ f2(x, y, z)

g2(x, y, z)
.

As before, we want K(V ) to mimic the rational numbers.

Definition 3.4.7. On K(V ), define addition and multiplication by

f(x, y, z)

g(x, y, z)
+
ℎ(x, y, z)

k(x, y, z)
=
f(x, y, z)k(x, y, z) + g(x, y, z)ℎ(x, y, z)

g(x, y, z)k(x, y, z)

and
f(x, y, z)

g(x, y, z)
⋅ ℎ(x, y, z)
k(x, y, z)

=
f(x, y, z)ℎ(x, y, z)

g(x, y, z)k(x, y, z)
,

when f, g, ℎ and k are all homogeneous and f and g have the same degree and ℎ

and k have the same degree.

We now want to link the equivalence relation for the projective case with the

equivalence relation for the affine case.

In fact, we will show that thisK(V ) is isomorphic, in some sense, to the function

field of the previous section (which is why we are using the same notation for both).

For now, we will specify the K(V ) of this section as Kℙ(V ) and the K(V ) of the

previous section as KA(V )

Define

T : Kℙ(V ) → KA(V )

by setting

T

(
f(x, y, z)

g(x, y, z)

)
=
f(x, y, 1)

g(x, y, 1)

We first show that T is well-defined.

Exercise 3.4.10. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomials

of the same degree such that f(x, y, z) ∼ g(x, y, z) with respect to the homogeneous

polynomial P (x, y, z). Show that f(x, y, 1) ∼ g(x, y, 1) with respect to the non-

homogeneous polynomial P (x, y, 1).

Solution. Since f(x, y, z) ∼ g(x, y, z), we know that P (, x, y, z) must divide

f(x, y, z)− g(x, y, z) and hence there must be a homogeneous polynomial Q(x, y, z)

with

P (x, y, z)Q(x, y, z) = f(x, y, z)− g(x, y, z).

But then

P (x, y, 1)Q(x, y, 1) = f(x, y, 1)− g(x, y, 1),

giving us our result.
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Exercise 3.4.11. Let f1(x, y, z), f2(x, y, z), g1(x, y, z) and g2(x, y, z) be homo-

geneous polynomials of the same degree such that f1(x, y, z) ∼ f2(x, y, z) and

g1(x, y, z) ∼ g2(x, y, z) with respect to the homogeneous polynomial P (x, y, z).

Show that in KA(V ) we have

T

(
f1(x, y, z)

g1(x, y, z)

)
∼ T

(
f1(x, y, z)

g1(x, y, z)

)
.

Solution. We have

T

(
f1(x, y, z)

g1(x, y, z)

)
∼ T

(
f2(x, y, z)

g2(x, y, z)

)

if P (x, y, 1) divides

f1(x, y, 1)g2(x, y, 1)− f2(x, y, 1)g1(x, y, 1).

We already know that if f1(x, y, z) ∼ f2(x, y, z) and g1(x, y, z) ∼ g2(x, y, z) with

respect to the homogeneous polynomial P (x, y, z), then P (x, y, z) will divide

f1(x, y, z)g2(x, y, z)− f2(x, y, z)g1(x, y, z).

But then certainly P (x, y, 1) divides

f1(x, y, 1)g2(x, y, 1)− f2(x, y, 1)g1(x, y, 1).

Hence T indeed maps the field Kℙ(V ) to the field KA(V ). Next we want to

show that T is a field homomorphism, which is the point of the next two exercises.

Exercise 3.4.12. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomi-

als of the same degree and let ℎ(x, y, z) and k(x, y, z) be two other homogeneous

polynomials of the same degree. Show that

T

(
f(x, y, z)

g(x, y, z)
+
ℎ(x, y, z)

k(x, y, z)

)
= T

(
f(x, y, z)

g(x, y, z)

)
+ T

(
ℎ(x, y, z)

k(x, y, z)

)
.

Solution. We have

T

(
f(x, y, z)

g(x, y, z)
+
ℎ(x, y, z)

k(x, y, z)

)
= T

(
f(x, y, z)k(x, y, z) + g(x, y, z)ℎ(x, y, z)

g(x, y, z)k(x, y, z)

)

=
f(x, y, 1)k(x, y, 1) + g(x, y, 1)ℎ(x, y, 1)

g(x, y, 1)k(x, y, 1)

=
f(x, y, 1)

g(x, y, 1)
+
ℎ(x, y, 1)

k(x, y, 1)

= T

(
f(x, y, z)

g(x, y, z)

)
+ T

(
ℎ(x, y, z)

k(x, y, z)

)
,

as desired.
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Exercise 3.4.13. Let f(x, y, z) and g(x, y, z) be two homogeneous polynomi-

als of the same degree and let ℎ(x, y, z) and k(x, y, z) be two other homogeneous

polynomials of the same degree. Show that

T

(
f(x, y, z)

g(x, y, z)
⋅ ℎ(x, y, z)
k(x, y, z)

)
= T

(
f(x, y, z)

g(x, y, z)

)
⋅ T
(
ℎ(x, y, z)

k(x, y, z)

)
.

Solution.

T

(
f(x, y, z)

g(x, y, z)
⋅ ℎ(x, y, z)
k(x, y, z)

)
= T

(
f(x, y, z)ℎ(x, y, z)

g(x, y, z)k(x, y, z)

)

=
f(x, y, 1)ℎ(x, y, 1)

g(x, y, 1)k(x, y, 1)

=
f(x, y, 1)

g(x, y, 1)
⋅ ℎ(x, y, 1)
k(x, y, 1)

= T

(
f(x, y, z)

g(x, y, z)

)
⋅ T
(
ℎ(x, y, z)

k(x, y, z)

)
,

as desired.

To show that T is one-to-one, we use that one-to-oneness is equivalent to the

only element mapping to zero is zero itself.

Exercise 3.4.14. Suppose f(x, y, z) and g(x, y, z) are two homogeneous poly-

nomials of the same degree such that

T

(
f(x, y, z)

g(x, y, z)

)
= 0

in KA(V ). Show that
f(x, y, z)

g(x, y, z)
= 0

in Kℙ(V ).

Solution. We know that

T

(
f(x, y, z)

g(x, y, z)

)
= 0

means that P (x, y, 1) must divide f(x, y, 1). Suppose P has degree d and f has

degree n. We must have that d ≤ n. We know that

P (x, y, z) = zdP
(x
z
,
y

z
, 1
)

f(x, y, z) = znf
(x
z
,
y

z
, 1
)
.

We certainly have P (x/z, y/z, 1) dividing f(x/z, y/z, 1), and thus must have P (x, y, z) =

zdP (x/z, y/z, 1) dividing f(x, y, z) = znf(x/z, y/z, 1), as desired.

To finish the proof that T is an isomorphism, we must show that T is onto.
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Exercise 3.4.15. Given two polynomials f(x, y) and g(x, y), find two homo-

geneous polynomials F (x, y, z) and G(x, y, z) of the same degree such that

T

(
F (x, y, z)

G(x, y, z)

)
=
f(x, y)

g(x, y)
.

Solution. Let n be the degree of f and m the degree of g. We know that

znf
(x
z
,
y

z

)

is a homogeneous polynomial of degree n and

zmg
(x
z
,
y

z

)

is a homogeneous polynomial of degree m.

Let d be the maximum of n and m. Set

F (x, y, z) = zdf
(x
z
,
y

z

)

G(x, y, z) = zdg
(x
z
,
y

z

)
.

Both F and G have degree d. Further

T

(
F (x, y, z)

G(x, y, z)

)
= T

(
zdf

(
x
z ,

y
z

)

zdg
(
x
z ,

y
z

)
)

=
f(x, y)

g(x, y)

as desired.

3.5. The Riemann-Roch Theorem
Add genus-degree

formula in this section.The goal of this section is to develop the Riemann-Roch Theorem, a result that

links the algebraic and topological properties of a curve.

3.5.1. Intuition behind Riemann-Roch. Here is a fairly simple question.

Let C = V(P ) be a curve in ℙ2. Choose some point p on the curve. Is there a

rational function F (x, y, z) ∈ K(C) with a pole (an infinity) of order one exactly at

the point p, with no other poles? Recall that a rational function in K(C) has the

form

F (x, y, z) =
f(x, y, z)

g(x, y, z)
,

where f and g are homogeneous polynomials of the same degree with the additional

property that neither f not g are zero identically on V(P ) (which means that the

polynomial P can divide neither f nor g). The poles of F on the curve V(P ) occur

when the denominator of F is zero. Thus we must look at the set of intersection

points:

V(g) ∩V(P ).
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By Bézout’s theorem, there should be deg(g) ⋅deg(P ) points of intersection. Unless
P has degree one, there cannot be only one zero in V(g)∩V(P ), which means that

F cannot have a single isolated pole of order one on C.

There is a subtlety that we need to consider. It could be that the number of

intersection points in V(g)∩V(P ) is greater than one but that at all of these points,

besides our chosen point p, the numerator f has the same zeros, canceling those

from the denominator. The heart of Riemann-Roch is showing that this does not

happen. The Riemann-Roch Theorem will give us information about what type of

elements in K(C) can exist with prescribed poles on C = V(P ).

We now want to see that the straight line ℙ1 has a particularly well-behaved

function field.

Exercise 3.5.1. If x and y are the homogeneous coordinates for ℙ1, show that

the rational function

F (x, y) =
x

y

has a single zero at (0 : 1) and a single pole at (1 : 0).

Solution. We have F (0, 1) = 0
1 = 0. The zeroes of F correspond to the

points in V (f)∩ℙ1 = V (f). Since deg x = 1, there can be only one zero. Similarly,

we have F (0, 1) = 1
0 , which indicates a pole and the poles of F correspond to the

points of V (g) ∩ ℙ1 = V (g).

Exercise 3.5.2. For ℙ1, find a rational function with a single zero at (1 : −1)

and a single pole at (1 : 0).

Solution. Consider F (x, y) = x+y
y . This is an element of K(ℙ1), since the

numerator and denominator are both homogeneous of degree 1. Now F (1,−1) =
1−1
−1 = 0 and there can be only 1 zero of F since deg x+y = 1. Also, F (1, 0) = 1+0

0 ,

which indicates a pole.

Exercise 3.5.3. For ℙ1, find a rational function with zeros at (1 : −1) and at

(0 : 1) and a double pole at (1 : 0).

Solution. Let F (x, y) = x(x+y)
y2 .

Exercise 3.5.4. For ℙ1, find a rational function with zeros at (1 : −1) and

(0 : 1) and poles at (1 : 0) and (1 : 1).

Solution. Let F (x, y) = x(x+y)
y(x−y) = x2+xy

xy−y2 .

Exercise 3.5.5. For ℙ1, show that there cannot be a rational function with

zeros at (1 : −1) and at (0 : 1) and a single pole at (1 : 0) with no other poles.
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divisor

divisor!degree

degree!divisor

divisor!effective

divisor!principal

Solution. Suppose such a function F (x, y) = f(x,y)
g(x,y) exists. The zeroes of F

correspond to points in V (f) and since there are two zeroes we have deg f = 2. On

the other hand, the poles of F correspond to points in V (g), so deg g = 1. Since f

and g must have the same degree, no such rational function can exist.
Add problems about

finding divisors from

functions on curves

3.5.2. Divisors. The goal of this section is to define divisors on a curve

V(P ).

In the last section, we asked several questions concerning zeros and poles on

curves with prescribed multiplicities. We will now introduce divisors as a tool to

keep track of this information.

Definition 3.5.1. A divisor on a curve C = V(P ) is a formal finite linear

combination of points on C with integer coefficients, D = n1p1 +n2p2 + ⋅ ⋅ ⋅+nkpk.

The sum
∑k
i=1 ni of the coefficients is called the degree of D. When each ni ≥ 0

we say that D is effective.

Given two divisors D1 and D2 on V(P ), we say ”effective” and ”order”

aren’t used in this

section... save for

later?

D1 ≤ D2

if and only if D2 −D1 is effective. This defines a partial ordering on the set of all
”Partial ordering”

should appear in the

glossary.

divisors on V(P ).

Part of the reason that divisors are natural tools to study a curve is their link

with rational functions.

Consider a non-zero function F in the function field, K(C), of the curve C =

V(P ). Associate to F the divisor div(F ) =
∑
nipi, where the sum is taken over all

zeros and poles of F on V(P ) and ni is the multiplicity of the zero at pi and −nj
is the order of the pole at pj .

Definition 3.5.2. Any divisor that can be written as div(w) for a function

w ∈ K(C) is called a principal divisor on C = V(P ).

Note that for the plane curve C = V(P ) defined by P (x, y, z) = 0, any w ∈ K(C)

can be written as w = f(x,y,z)
g(x,y,z) , where f and g are homogeneous polynomials of the

same degree in ℂ[x, y, z]/⟨P (x, y, z)⟩.

Exercise 3.5.6. Let x and y be homogeneous coordinates on ℙ1 and let w = x
y .

Write the divisor div(w) as a formal sum of points.

Solution. We have div(xy ) = (0 : 1)− (1 : 0).

Exercise 3.5.7. Let x, y, z be homogeneous coordinates on ℙ2. For the cubic

curve V(y2z − x3 − xz2), write the divisor div(yz ) as a formal sum of points.
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Solution. The zeros of yz on the curve are the elements of V (y) ∩ V (P ), and

these are (0 : 0 : 1), (1 : 0 : i), and (1 : 0 : −i). The poles are the elements of

V (z) ∩ V (P ) = {(0 : 1 : 0)}. It follows that

div(yz ) = (0 : 0 : 1) + (1 : 0 : i) + (1 : 0 : −i)− (0 : 1 : 0).

Exercise 3.5.8. Let x, y, z be homogeneous coordinates on ℙ2. For the cubic

curve V(y2z − x3 − xz2), show that the divisor D = 2(0 : 0 : 1) − 2(0 : 1 : 0) is

principal.

Solution. Let D = 2(0 : 0 : 1)−2(0 : 1 : 0). We first note that both points are

on V . To construct the function associated to D, let us examine the polynomials

of degree 1.

∙ For the polynomial x, the elements of V(x)∩V(y2z−x3−xz2) correspond
to solutions to y2z = 0, which corresponds to the divisor (0 : 1 : 0)+ 2(0 :

0 : 1).

∙ For the polynomial y, the elements of V(y)∩V(y2z−x3−xz2) correspond
to solutions to −x3 − xz2 = 0, which corresponds to the divisor (0 : 0 :

1) + (1 : 0 : i) + (1 : 0 : −i).
∙ For the polynomial z, the elements of V(z)∩V(y2z−x3−xz2) correspond

to solutions to x3 = 0, which corresponds to the divisor 3(0 : 1 : 0).

If we set w = x
z , then div(w) = (0 : 1 : 0)+2(0 : 0 : 1)−3(0 : 1 : 0) = D. Therefore,

D is a principal divisor.

Exercise 3.5.9. Show that a principal divisor has degree zero.

Solution. Let D be a principal divisor. Then D = div(w) for some w ∈ K(C),

say w = f
g with deg f = n = deg g. Then div(F ) =

∑
nipi, where the sum is taken

over all zeros and poles of F on V(P ) and ni is the multiplicity of the zero at pi

and −nj is the order of the pole at pj . Since
∑
ni = n and

∑
nj = −n it follows

that deg(D) = n− n = 0.

divisorgroup Exercise 3.5.10. Prove that the set of all divisors on a curve V(P ) form an

abelian group under addition and that the subset of principal divisors is a subgroup.

Solution. Examine everything coordinatewise.

3.5.3. Vector space L(D) associated to a divisor. The goal of this

section is to associate to any divisor on a curve C a vector space that is a subspace

of the function field K(C). The dimension of this vector space will be critical for

the Riemann-Roch Theorem.
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Definition 3.5.3. For a divisor D on a curve C, define L(D) to be

L(D) = {F ∈ K(C) : F = 0 or div(F ) +D ≥ 0}.

Thus for D =
∑
npp, we have F ∈ L(D) when F has a pole of order at most np

for points p with np > 0 and F has a zero of multiplicity at least −np at points p

with np < 0.

Exercise 3.5.11. Consider the curve ℙ1. Let D = (1 : 0) + (0 : 1). Show that

(x− y)(x+ y)

xy
∈ L(D).

Solution. Let F = (x−y)(x+y)
xy . We have div(F ) = (1 : 1) + (1 : −1) − (0 :

1)− (1 : 0) and div(F ) +D = (1 : 1) + (1 : −1) ≥ 0

Exercise 3.5.12. Consider the curve ℙ1. Let D = (1 : 0) + (0 : 1). Show that

(x− y)(x+ y)

xy
∈ L(kD),

for any positive integer k > 0.

Solution. Let F = (x−y)(x+y)
xy . We have div(F ) = (1 : 1) + (1 : −1) − (0 :

1)− (1 : 0) and div(F ) + kD = (1 : 1)+ (1 : −1)+ (k− 1)(1 : 0)+ (k− 1)(0 : 1) ≥ 0

Exercise 3.5.13. Continuing with the previous problem. Show that

xy

(x− y)(x+ y)
∕∈ L(D).

Solution. We have div(F ) = (0 : 1) + (1 : 0) − (1 : 1) − (1 : −1) and

div(F ) + D = 2(0 : 1) + 2(1 : 0) − (1 : 1) − (1 : −1). Since div(F ) + D is not

effective, it follows that xy
(x−y)(x+y) ∕∈ L(D).

Exercise 3.5.14. LetD = (1 : 0 : 1)+(−1 : 0 : 1) be a divisor on V(x2+y2−z2).
Show that

x

y
∈ L(D)

but that y
x ∕∈ L(D).

Solution. We have div(xy ) = (0 : 1 : 1)+(0 : 1 : −1)− (1 : 0 : 1)− (−1 : 0 : 1).

So div(xy ) + D = (0 : 1 : 1) + (0 : 1 : −1), which is effective. On the other hand,

div( yx ) = (1 : 0 : 1) + (−1 : 0 : 1) − (0 : 1 : 1) − (0 : 1 : −1) and div( yx ) = 2(1 :

0 : 1) + 2(−1 : 0 : 1) − (0 : 1 : 1) − (0 : 1 : −1) which is not effective. Therefore
x
y ∈ L(D) but y

x ∕∈ L(D).

Exercise 3.5.15. Let D be a divisor on V(P ). Show that L(D) is a complex

vector space.

Solution. We need to verify the axioms for a vector space.
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Exercise 3.5.16. For a smooth curve V(P ), find L(0).

Solution. By definition, L(0) = {F ∈ K(C) : F = 0 or div(F ) ≥ 0}. This
means that an element of L(0) can not have any poles, which means that it can not

have any zeroes either. This means that L(0) consists of the constant functions, or

L(0) = span{1}.

Exercise 3.5.17. Find L(D) for the divisor D = (0 : 1) on ℙ1.

Solution. By definition, L ((0 : 1)) = {F ∈ K(C) : F = 0 or div(F ) + (0 :

1) ≥ 0}. This means that an element of L ((0 : 1)) has a pole no worse than a pole

of order 1 corresponding to x. This must be balanced out by a zero of order 1

corresponding to y. Therefore, L ((0 : 1)) = span{1, yx}.

3.5:Curves:EX-L(negative)=0 Exercise 3.5.18. Prove if deg(D) < 0, then L(D) = {0}, the trivial space.

Solution. Let D be a divisor on C with deg(D) < 0 and consider L(D) =

{F ∈ K(C) : F = 0 or div(F ) +D ≥ 0}. Clearly, 0 ∈ L(D). Consider the identity

function F = 1. Then div(F ) +D = D. However, since degD < 0, this shows that

1 ∕∈ L(D). Therefore L(D) = {0}.

3.5:Curves:EX-LD1 subset LD2 Exercise 3.5.19. Prove if D1 ≤ D2, then L(D1) ⊆ L(D2).

Solution. Since D1 ≤ D2, there exists an effective divisor E with D2 = D1+

E. Let F ∈ L(D1). If F = 0, then F ∈ L(D2). Otherwise, div(F ) +D1 ≥ 0. This

means that div(F ) +D1 + E ≥ E ≥ 0, so F ∈ L(D2). Therefore L(D1) ⊆ L(D2).

In the next section, we will see that the dimension of L(D) is finite.Introduce l(D) here?

Why is L(D) finite

dimensional, though?

This follows from

Theorem in next

section, but should we

wait?

3.5.4. L(D + p) versus L(D). The goal of this section is to begin the proof

of the Riemann-Roch Theorem.

We write l(D) for the dimension of L(D) as a vector space over ℂ. At the end

of this chapter we will be discussing the Riemann-Roch Theorem, which gives sharp

statements linking the dimension, l(D), of the vector space L(D) with the degree

of D and the genus of the curve C. We will start the proof here, by proving:

3.5:Curves:TH-l(D+p) Theorem 3.5.20. Let D be a divisor on a curve C and let p ∈ C be any point

on the curve. Then

l(D + p) ≤ l(D) + 1.

By Exercise
3.5:Curves:EX-LD1 subset LD2
3.5.19, we know that l(D) ≤ l(D + p). Thus the above theorem is

stating that by adding a single point to a divisor, we can increase the dimension of

the corresponding vector space by at most one.
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Exercise 3.5.21. Let D =
∑
npp be a divisor on the curve V(P ). Use this

theorem together with the result of Exercise
3.5:Curves:EX-L(negative)=0
3.5.18 to prove that l(D), the dimension

of the vector space L(D), is finite.

Solution. Write D = D++D−, where D+ = n1p1+ ⋅ ⋅ ⋅+nkpk is an effective

divisor and deg(D−) < 0. By Exercise
3.5:Curves:EX-L(negative)=0
3.5.18, l(D−) = 0. Using the previous

theorem repeatedly, we have

l(D) = l(D− +D+) ≤ l(D−) +
∑

ni =
∑

ni <∞.

The proof of Theorem
3.5:Curves:TH-l(D+p)
3.5.20 uses some basic linear algebra.

Exercise 3.5.22. Let V be a complex vector space. Let

T : V → ℂ

be a linear transformation. Recall that the kernel of T is

ker(T ) = {v ∈ V : T (v) = 0}.

Show that ker(T ) is a subspace of V .

Solution. Let v and w be in ker(T ), and let c be any scalar. Then

T (v + w) = T (v) + T (w) = 0 + 0 = 0

and

T (cv) = cT (v) = 0,

showing that ker(T ) is closed under vector addition and scalar multiplication. Also,

ker(T ) is nonempty since T (0) = 0; therefore ker(T ) is a subspace of V .

Exercise 3.5.23. Using the above notation, show that

dim(ker(T )) ≤ dim(V ) ≤ dim(ker(T )) + 1.

(This problem will require you to look up various facts about linear transformations

and dimensions.)

Solution. If W is a subspace of a vector space V , then dim(W ) ≤ dim(V ).

This proves the first inequality. Another general fact from linear algebra says that

dimT (V ) + dim(ker(T )) = dimV ; but T (V ) is a subspace of the one dimensional

space ℂ, so dimT (V ) = 0 or 1.

For the next few exercises, assume that D is a divisor on a curve C and p ∈ C

is a point on the curve.
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Is this an exercise? It

follows so immediately

from the last two that

it could just be stated,

not made an exercise.

Exercise 3.5.24. Suppose there is a linear transformation

T : L(D + p) → ℂ

such that

ker(T ) = L(D).

Show then that

l(D + p) ≤ l(D) + 1.

Solution. This follows immediately from the last two exercises.

Thus to prove the theorem it suffices to construct such a linear transformation.

Let D =
∑
nqq, where each nq ∈ ℤ, the q are points on C and all but a finite

number of the coefficients, nq, are zero. We call the integer nq the multiplicity of

the point q for the divisor D.

Exercise 3.5.25. Show that the multiplicity of the point p for the divisor D+p

is exactly one more than the multiplicity of p for the divisor D.

Solution. Assume the multplicity of p for the divisor D is np. That is,

D =
∑

nqq + npp (and none of the points q are p).

Then

D + p =
∑

nqq + npp+ p

=
∑

nqq + (np + 1)p.

Thus the multiplicity of the point p for the divisor D + p is exactly one more than

the multiplicity of p for the divisor D.

ex_F in L(D-p) Exercise 3.5.26. Let p = (0 : 1 : 1) ∈ V(x2+y2−z2). Set D = 2p+(1 : 0 : 1).

Let F ∈ L(D). Even though F (x, y, z) can have a pole (a singularity) at the point

p, show that the function x2F (x, y, z) cannot have a pole at p. Show if p is a zero

of the function x2F (x, y, z), then F ∈ L(D − p).

Solution. Write F = f
g , and suppose that x2F (x, y, z) has a pole at p. The

function x2F has a zero of order (at least) two at p. For x2F to have a pole, this

means that the denominator g must have a zero of order at least three at p. Then

div(F ) +D = div(F ) + 2p + (1 : 0 : 1) is not effective, i.e., F ∕∈ L(D). Therefore

x2F (x, y, z) cannot have a pole at p.

Next, if p is a zero of the function x2F (x, y, z), then either g does not have a

zero at p or g has a zero at p of order 1. In either case we have div(F ) + (D− p) =

div(F ) + p+ (1 : 0 : 1) ≥ 0, which means F ∈ L(D − p).
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Exercise 3.5.27. Use the same notation as in the previous exercise. Define a

map

T : L(D) → ℂ

as follows. Dehomogenize by setting z = 1. Set T (F ) to be the number obtained

by plugging in (0, 1) to the function x2F (x, y, 1). Show that

T

(
(2y − z)(2y + z)

x2

)
= 3.

Solution. Dehomogenizing the function at z = 1 gives (2y−1)(2y+1)
x2 ; then

plugging in (0, 1) into the function x2 ⋅ (2y−1)(2y+1)
x2 = (2y − 1)(2y + 1) gives

T

(
(2y − z)(2y + z)

x2

)
= (2− 1)(2 + 1) = 3.

Exercise 3.5.28. Use the notation from the previous exercise. Show that

T

(
2y − z

x

)
= 0.

Solution. Dehomozenizing at z = 1 gives 2y−1
x . Plugging in (0, 1) into x2 ⋅

2y−1
x = x(2y − 1) gives T

(
2y−z
x

)
= 0(2− 1) = 0.

Exercise 3.5.29. Use the notation from the previous exercise. Show that

T : L(D) → ℂ

is a linear transformation with kernel L(D − p).

Solution. T (F1+F2) is the number when (0, 1) is plugged into x2(F1(x, y, 1)+

F2(x, y, 1)). But this number is the same as that obtained when (0, 1) is plugged

into x2F1(x, y, 1) + x2F2(x, y, 1), which is T (F1) + T (F2). For any c ∈ ℂ, the

number obtained when (0, 1) is plugged into x2cF (x, y, 1) equals c times the number

obtained when (0, 1) is plugged into x2F (x, y, 1); this shows T (cF ) = cT (F ). Hence

T is a linear transformation. Suppose T (F ) = 0. That is, suppose x2F (x, y, 1),

when evaluated at (0, 1), is 0. Then the point p = (0 : 1 : 1) is a zero of of

the function x2F (x, y, z). By Exercise
ex_F in L(D-p)
3.5.26, F ∈ L(D − p). Conversely, if F ∈

L(D − p), which means div(F ) + p+ (1 : 0 : 1) ≥ 0, then p is a pole of F of order

at most 1. Therefore x2F (x, y, z) has a zero at p and it follows that T (F ) = 0.

We need to make a few choices about our curve C and our point p. By choosing

coordinates correctly, we can assume that p = (0 : y : 1). We choose a line that goes

through the point p and is not tangent to the curve C. By rotating our coordinates,

if needed, we can assume that the line is given by ℒ = V(x).

ex:no pole Exercise 3.5.30. Let n be the multiplicity of the point p for the divisor D+p.

For any F ∈ L(D+ p), show that the function xnF (x, y, 1) does not have a pole at

p.
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divisor!linearly

equivalent

Solution. Suppose xnF (x, y, 1) has a pole at p. Since xnF (x, y, 1) has a zero

at p of multiplicity ≥ n, F has a pole at p of order ≥ n + 1. Then since n is the

multiplicity of the point p for the divisor D+p, div(F )+ (D+p) ∕≥ 0 contradicting

F ∈ L(D + p).

ex:F in L(D) Exercise 3.5.31. Using the notation from the previous problem, show that if

xnF (x, y, 1) has a zero at p means that F ∈ L(D).

Solution. If xnF (x, y, 1) has a zero at p, then F has a pole at p of order

≤ n − 1. Then, because the multiplicity of the point p for the divisor D + p is n,

div(F ) +D ≥ 0.

Exercise 3.5.32. Let n be the multiplicity of the point p for the divisor D+p.

Define

T : L(D + p) → ℂ

by setting T (F ) to be the number obtained by plugging in (0, y) to the function

xnF (x, y, 1). Show that T is a linear transformation with kernel L(D).

Solution. Let F , F1, F2 ∈ L(D + p), and let c ∈ ℂ. Since

xn(F1(x, y, 1) + F2(x, y, 1)) = xnF1(x, y, 1) + xnF2(x, y, 1)

and

xn(cF (x, y, 1)) = cxnF (x, y, 1),

T (F1 + F2) = T (F1) + T (F2) and T (cF ) = cT (F ) showing that T is a linear

transformation. If T (F ) = 0, then p = (0 : y : 1) is a zero of xnF (x, y, 1) and by

Exercise
ex:F in L(D)
3.5.31, F ∈ L(D). Conversely, for any F ∈ L(D), the function xnF (x, y, 1)

does not have a pole at p (Exercise
ex:no pole
3.5.30) and it does have a zero at p = (0 : y : 1);

so T (F ) = 0.

Thus we have shown that

l(D) ≤ l(D + p) ≤ l(D) + 1.

3.5.5. Linear equivalence of divisors. The goal of this section is to intro-

duce a relation on divisors, called linear equivalence.WHY? We should give

a hint of its value.

Recall that a divisor D on a curve C is called principal if it is of the form div(w)

for some w ∈ K(C).

Definition 3.5.4. Two divisors D1 and D2 are linearly equivalent, written as

D1 ≡ D2, if D1 −D2 is principal.

Exercise 3.5.33. Prove that linear equivalence is an equivalence relation on

the set of all divisors on V(P ).
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Solution. For any divisor D, D − D = 0 is principal since it is of the form

div(w) for w = 1
1 ∈ K(C). If D1 −D2 = div(w) for w = f

g ∈ K(C), then D2 −D1 =

div( gf ) and
g
f ∈ K(C). If D1−D2 = div( fg ) and D2−D3 = div(ab ) for

f
g ,

a
b ∈ K(C),

then D1 −D3 = div( fagb ) and
fa
gb ∈ K(C).

Exercise 3.5.34. Prove for any two points p and q in ℙ1, p ≡ q. Should we have

notation for points as

divisors, e.g., [p] rather

than just p?

Solution. Let p = (a : b) and q = (c : d) be any two points in ℙ1. Set

w = bx−ay
dx−cy . Then w ∈ K(C) and div(w) = p− q. Therefore p ≡ q.

Exercise 3.5.35. For any fixed point p, prove that any divisor on ℙ1 is linearly

equivalent to mp for some integer m.

Solution. We first note that if p ≡ q and p′ ≡ q′ (for points p, q, p′, q′ ∈ ℙ1),
then p + p′ ≡ q + q′. Now fix a point p ∈ ℙ1 and let D be a divisor on ℙ1. If

D =
∑
nqq, then by the previous Exercise q ≡ p for each of the points q in the

sum. Then D ≡ mp where m =
∑
nq = deg(D).

Exercise 3.5.36. Prove if D1 ≡ D2, then L(D1) ∼= L(D2) as vector spaces

over ℂ.

Solution. SupposeD1−D2 = div(w) for some w ∈ K(C). Define Ψ : L(D1) →
L(D2) by Ψ(F ) = Fw. It is easy to check that Ψ is a vector space homomorphism.

If G ∈ L(D2), then G/w ∈ L(D1) and Ψ(G/w) = G showing that Ψ is onto.

Suppose Ψ(F ) = 0. Then Fw = 0 in the field K(C), and since w ∕= 0, F = 0.

3.5.6. Hyperplane divisors. The goal for this section is to explicitly cal-

culate the dimensions, l(D), for a special class of divisors.

We have defined divisors on a curve C as finite formal sums of points on C. In

section 3.5.2 we extended this definition by considering the divisor of a homogeneous

polynomial f(x, y, z), where V (f) and C share no common component. We now

look at an important case where f(x, y, z) is linear.

Exercise 3.5.37. Consider the curve V(x2 + y2 − z2). Determine the divisor

D1 = V(x− y) ∩V(x2 + y2 − z2)

and the divisor

D2 = V(x) ∩V(x2 + y2 − z2).

Show that D1 ≡ D2.

Solution. The divisor of the rational function x−y
x is div(x−yx ) = D1 − D2,

thus D1 ≡ D2.
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divisor!hyperplane Exercise 3.5.38. Keeping with the notation from the previous problem, let

D3 be the divisor on

V(x4 + 2y4 − x3z + z4) ∩V(x2 + y2 − z2).

Show that D3 ≡ 4D1. (Hint: do not explicitly calculate the divisor D3).

Solution. Let F = x4 + 2y4 − x3z + z4 and consider the rational function
F

(x−y)4 on the curve. The divisor of this function is div( F
(x−y)4 ) = D3 − 4D1, thus

D3 ≡ 4D1.

Exercise 3.5.39. Keeping with the notation from the previous problems, let

f(x, y, z) be a homogeneous polynomial of degree 3. Show that

f(x, y, z)

(x− y)3
∈ L(3D1).

Solution. The rational function f(x,y,z)
(x−y)3 satisfies

div(
f

(x− y)3
) + 3D1 ≡ div(f) ≥ 0

thus f(x,y,z)
(x−y)3 ∈ L(3D1).

Exercise 3.5.40. Keeping with the notation from the previous problems, let

f(x, y, z) be a homogeneous polynomial of degree k. Show that

f(x, y, z)

(x− y)k
∈ L(kD1).

Solution. The rational function f(x,y,z)
(x−y)k satisfies

div(
f

(x− y)k
) + kD1 ≡ div(f) ≥ 0

thus f(x,y,z)
(x−y)k ∈ L(kD1).

Definition 3.5.5. Let C = V(P ) be a plane curve defined by a homogeneous

polynomial P (x, y, z) of degree d. Define a hyperplane divisor H on C to be the di-

visor of zeros of a linear function in ℂ[x, y, z], meaning that for some linear function

ℓ(x, y, z), set

H = V(ℓ) ∩V(P ).

We now consider the more general case.

Exercise 3.5.41. Suppose that H and H ′ are hyperplane divisors on a curve

C. Prove that H ≡ H ′.
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Solution. As H and H ′ are both hyperplane divisors on a curve C = V(P ),

we have H = V(ℓ) ∩ V(P ) and H ′ = V(ℓ′) ∩ V(P ) for some linear functions ℓ and

ℓ′. Then ℓ
ℓ′ is a rational function in K(C) with div( ℓℓ′ ) = H −H ′, thus H ≡ H ′.

Exercise 3.5.42. With the same notation as the previous problem, show for

any homogeneous polynomial f(x, y, z) of degree m in ℂ[x, y, z] that

f(x, y, z)

ℓm
∈ L(mH).

Solution. Since H = V (ℓ)∩V (P ), mH = V (ℓm)∩V (P ). Thus div( f(x,y,z)ℓm )+

mH ≡ div(f(x, y, z)) ≥ 0, and f(x,y,z)
ℓm ∈ L(mH).

Now we start calculating l(mH) = dimL(mH), for any hyperplane divisor H.

We know from the above exercise that L(mH) contains elements of the form
f(x,y,z)
ℓm . In fact, every element in L(mH) can be written in this form. To prove

this we use

Theorem 3.5.43 (Noether’s AF+BG Theorem).
check
[?]

Let F (x, y, z) and G(x, y, z) be homogeneous polynomials defining plane curves

that have no common component. Let U(x, y, z) be a homogeneous polynomial

that satisfies the following condition: suppose for every point P in the intersection

V (F ) ∩ V (G), IP (F,U) ≥ IP (F,G). Then there are homogeneous polynomials A

and B such that U = AF +BG.

Exercise 3.5.44. In the case of the Theorem, what are the degrees of the

polynomials A and B?

Exercise 3.5.45. Let F (x, y, z) = x and G(x, y, z) = y. Show that any poly-

nomial U vanishing at (0 : 0 : 1) satisfies the condition of the Theorem, thus there

are A and B such that U = AF +BG.

Exercise 3.5.46. Let F (x, y, z) = x2+y2+z2 and G(x, y, z) = x3−y2z. Show
that the polynomial U = x4+ y2z2 satisfies the condition of the Theorem, and find

A and B such that U = AF +BG.

We now use this Theorem to determine the form of the general element in

L(mH) in the following steps.

Exercise 3.5.47. Let U ∈ L(mH). Show that U can be written as U = u
v

where u and v are homogeneous polynomials of the same degree in ℂ[x, y, z] and

div(v) ≤ div(u) + div(ℓm).

Solution. A general non-zero element U ∈ L(mH) is a rational function on

C with div(U) + div(ℓm) ≥ 0. Thus we can write U = u
v where u and v are
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homogeneous polynomials of the same degree in ℂ[x, y, z]. We have

div(u)− div(v) + div(ℓm) ≥ 0.

We rewrite this as div(v) ≤ div(u) + div(ℓm).

Exercise 3.5.48. Let C = V (F ) and let U = u
v ∈ L(mH), where u and v

are homogeneous polynomials of the same degree in ℂ[x, y, z]. Show for all P ∈
V (F ) ∩ V (v), IP (F, uℓ

m) ≥ IP (F, v).

Solution. By the previous exercise we have div(u) + div(ℓm) ≥ div(v). Thus

for any point P on the curve C = V (F ), the polynomial uℓm has a zero of multi-

plicity at least that of v. We have IP (F, uℓ
m) ≥ IP (F, v).

Exercise 3.5.49. Under the assumptions of the previous exercise, use Noether’s

Theorem to conclude there exist A and B with uℓm = AF + Bv. Show that this

implies U = B
ℓm in K(C).

Solution. By the previous exercise, the condition for Noether’s Theorem is

met, thus there exist homogeneous polynomials A and B with uℓm = AF + Bv.

Moreover we know that u and v are homogeneous of the same degree, say k, so that

B must have degree m. Since C = V (F ), in K(C) uℓm = Bv and

u

v
=

B

ℓm
.

Thus the vector space L(mH) consists of all functions in K(C) of the form f
ℓm

for homogeneous polynomials f of degree m. To find the dimension of L(mH), we

need to find the dimension of the vector space of possible numerators, f . The key

will be that P cannot divide f .

Exercise 3.5.50. Let ℂm[x, y, z] denote the set of all homogeneous polynomials

of degree m together with the zero polynomial. Show that if f, g ∈ ℂm[x, y, z] and

if �, � ∈ ℂ, then
�f + �g ∈ ℂm[x, y, z].

Conclude that ℂm[x, y, z] is a vector space over ℂ.

Solution. If f and g are homogeneous polynomials of degree m then any

linear combination of f and g is also homogeneous of degree m, or else identically

0.

Exercise 3.5.51. Show that dimℂ1[x, y, z] = 3. Show that a basis is {x, y, z}.

Solution. A homogeneous polynomial of degree one can be written as a1x+

a2y + a3z for ai ∈ ℂ, thus {x, y, z} is a basis and dimℂ1[x, y, z] = 3.

Exercise 3.5.52. Show that dimℂ2[x, y, z] = 6. Show that a basis is {x2, xy, xz, y2, yz, z2}.
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Solution. A homogeneous polynomial of degree two can be written as a1x
2+

a2xy + a3xz + a4y
2 + a5yz + a6z

2 for ai ∈ ℂ, thus {x2, xy, xz, y2, yz, z2} is a basis

and dimℂ2[x, y, z] = 6.

Exercise 3.5.53. Show that

dimℂm[x, y, z] =

(
m+ 2

m

)
.

(By definition (
n

k

)
=

n!

k!(n− k)!
.

This number, pronounced “n choose k”, is the number of ways of choosing k items

from n, where order does not matter.)

Solution. The monomials of degree m in x, y, z form a basis for ℂm[x, y, z].

The number of monomials of degree m in three variables is
(
m+2
m

)
.

Exercise 3.5.54. Let P (x, y, z) be a homogeneous polynomial of degree d. In

the vector space ℂm[x, y, z], let

W = {f(x, y, z) ∈ ℂm[x, y, z] : P ∣f}.

If f, g ∈W and if �, � ∈ ℂ, then show

�f + �g ∈W.

Show that W is a vector subspace of ℂm[x, y, z].

Solution. Suppose f, g ∈ W , so that f and g are both divisible by P . Then

any linear combination of f and g with coefficients in ℂ is either 0 or a homogeneous

polynomial of degree m divisible by P , thus W is a subspace of ℂm[x, y, z].

Exercise 3.5.55. With the notation of the previous problem, show that the

vector space W is isomorphic to the vector space ℂm−d[x, y, z]. (Recall that this

means you must find a linear map T : ℂm−d[x, y, z] → W that is one-to-one and

onto.) Conclude that

dim(W ) = dimℂm−d[x, y, z].

Solution. Define T : ℂm−d[x, y, z] → W by T (f) = fP . For any f, g ∈
ℂm−d[x, y, z] and �, � ∈ ℂ, we have T (�f + �g) = (�f + �g)P = �fP + �gP =

�T (f) + �T (g), thus T is linear.

If T (f) = T (g), then clearly f = g, thus T is one-to-one. To see that T is

also onto, any ℎ ∈ W can be written as ℎ = Pf for some polynomial f of degree

m− deg(P ) = m− d, thus ℎ = T (f).
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Exercise 3.5.56. Show that

l(mH) = dimℂm[x, y, z]− dimℂm−d[x, y, z],

where ℂn[x, y, z] is the space of homogeneous polynomials of degree n. Thus

l(mH) =
(m+ 1)(m+ 2)

2
− (m− d+ 1)(m− d+ 2)

2
.

Solution. By exercise ??, L(mH) is the vector space of functions of the form
f
ℓm , where f is the class of a homogeneous polynomial of degree m in K(C).

Exercise 3.5.57. Let ℓ be a linear function and let H be the corresponding

hyperplane divisor on V(P ), where P (x, y, z) is homogeneous of degree d. Show

that deg(H) = d and in general, that deg(mH) = md. (Hint: Think Bézout.)

Solution. By Bézout’s Theorem, V (ℓ) ∩ V (P ) consists of deg(ℓ)deg(P ) = d

points, counting multiplicities.

Exercise 3.5.58. Use the degree-genus formula g =
(d− 1)(d− 2)

2
to show

that

l(mH) = md− g + 1.

Solution. By the previous exercises,

l(mH) =
(m+ 1)(m+ 2)

2
− (m− d+ 1)(m− d+ 2)

2
.

We compute

l(mH) = (m+1)(m+2)
2 − (m−d+1)(m−d+2)

2

= (m+1)(m+2)
2 − (m+1)(m+2)−d(m+1+m+2)+d2

2

= d(2m+3)−d2
2 = md− d2−3d

2

= md− (d−1)(d−2)
2 + 1 = md− g + 1.

3.5.7. Riemann’s Theorem. Our goal is to prove Riemann’s Theorem.

Throughout this section, let C = V(P ) be a plane curve of degree d and genus

g.

Theorem 3.5.59 (Riemann’s Theorem). If D is a divisor on a plane curve C

of genus g, then

l(D) ≥ degD − g + 1.

Our real goal is eventually to prove the Riemann-Roch Theorem, which finds

the explicit term that is needed to change the above inequality into an equality.
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Riemann:hyperplane-genus Exercise 3.5.60. Show that for any hyperplane divisor H and any positive

integer m, we have

l(mH) = deg(mH)− g + 1.

Solution. Exercise
hyperplane:hyperplane-degree
?? gives the equality deg(mH) = md. By Exercise

hyperplane:hyperplane-genus
?? we

know

l(mH) = md− g + 1.

Hence,

l(mH) = deg(mH)− g + 1.

Following notation used in Fulton’s Algebraic Curves
Fulton1969
[Ful69], set

S(D) = degD + 1− l(D).

Riemann:equivalent-theorem Exercise 3.5.61. Suppose that for all divisors D we have

S(D) ≤ g.

Show that Riemann’s theorem is then true.

Solution. Suppose that for all divisors D we have S(D) ≤ g. Then, replacing

S(D), we have

degD + 1− l(D) ≤ g

l(D) ≥ degD − g + 1

and the final inequality is Riemann’s Theorem.

Thus we want to show that S(D) ≤ g, for any divisor D.

Riemann:hyperplane-equality Exercise 3.5.62. Show, for any hyperplane divisor H, that S(mH) = g for all

positive integers m.

Solution. By Exercise
Riemann:hyperplane-genus
3.5.60 we have l(mH) = deg(mH)− g + 1, so

S(mH) = deg(mH) + 1− l(mH)

= deg(mH) + 1− (deg(mH)− g + 1)

= g.

Exercise 3.5.63. Let D1 ≤ D2. Show that l(D1) ≤ l(D2).

Solution. By Exercise
3.5:Curves:EX-LD1 subset LD2
3.5.19 we know that if D1 ≤ D2, then L(D1) ⊂ L(D2),

which implies that dimL(D1) ≤ dimL(D2), i.e. l(D1) ≤ l(D2).

Riemann:S(D+p)geS(D) Exercise 3.5.64. Recall for any divisor D and point p on the curve C that

l(D) ≤ l(D + p) ≤ l(D) + 1. Show that

S(D + p) ≥ S(D).
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Solution.

S(D + p) = deg(D + p) + 1− l(D + p)

= degD + 2− l(D + p)

≥ degD + 2− (l(D) + 1)

= degD + 1− l(D)

= S(D)

Riemann:S(D)equivalence Exercise 3.5.65. Suppose that D1 ≡ D2 for two divisors on the curve C. Show

that

S(D1) = S(D2).

Solution. Suppose D1 ≡ D2 on C. Then D1 − D2 = div(w) for some w ∈
K(C). By Exercise

Equivalence:vectorspace-isomorphism
?? we know L(D1) ∼= L(D2), so l(D1) = l(D2). Also, by Exercise

Divisors:principal-degree-zero
?? we know deg div(w) = 0. Since D1 −D2 = div(w) we have degD1 − degD2 =

deg div(w) = 0. Hence

S(D1)− S(D2) = degD1 + 1− l(D1)− (degD2 + 1− l(D2)) = 0.

Riemann:polynomial-equivalence Exercise 3.5.66. Let f(x, y, z) ∈ O(V ) be a homogeneous polynomial of de-

gree m. Let D be the divisor onAgain, divisors are

finite formal sums, not

reconciled with codim

1 subvar’s

V(f) ∩V(P )

and letH be a hyperplane divisor on C. Show thatD ≡ mH and that deg(D) = md.

Solution. A hyperplane divisor H is the divisor on V(ℓ) ∩ V(P ) for linear

function ℓ. From the previous section we have D −mH = div

(
f

ℓm

)
, so D ≡ mH.

Since div

(
f

ℓm

)
is principal, we have

0 = deg div

(
f

ℓm

)
= deg(D −mH) = deg(D)−md.

Hence degD = md.

Exercise 3.5.67. Let p = (a : b : c) ∈ V(P ) for some curve V(P ) of degree d.

Suppose that not both a and b are zero. (This is not a big restriction on the point.)

Let

f(x, y, z) = ay − bx.

Let

D = V(f) ∩V(P )

be a divisor on V(P ). Show that p ≤ D.
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Solution. First we note that D is effective since f ∈ O(V ). Notice that

f(a, b, c) = 0, so p ∈ V(f) ∩ V(P ). Then one of the terms in the finite formal sum

D is jp where j is a positive integer. Then (j − 1)p is a term in D − p, and since

j ≥ 1, we know j − 1 ≥ 0, so D − p is effective, i.e. p ≤ D.

Exercise 3.5.68. Let p1 = (a1 : b1 : c1) ∈ V(P ) and p2 = (a2 : b2 : c2) ∈ V(P )

for some curve V(P ) of degree d. Suppose that not both a1 and b1 are zero and

similarly for a2 and b2. Let

f(x, y, z) = (a1y − b1x)(a2y − b2x).

Let

D = V(f) ∩V(P )

be a divisor on V(P ). Show that p1 + p2 ≤ D.

Solution. As before we note that D is effective since f ∈ O(V ). We see that

p1, p2 ∈ V(f), so two of the terms of D are j1p1 and j2p2, where j1, j2 ≥ 1. Then

(j1 − 1)p1 and (j2 − 1)p2 are terms in D − (p1 + p2), so D − (p1 + p2) is effective,

i.e. p1 + p2 ≤ D.

Riemann:pointsonC Exercise 3.5.69. Let p1, p2, . . . , pk ∈ V(P ) for some curve V(P ) of degree d.

Find a polynomial f such that if

D = V(f) ∩V(P )

then p1 + ⋅ ⋅ ⋅+ pk ≤ D.

Solution. Let pi = (ai : bi : ci), for 1 ≤ i ≤ k. We can assume without loss

of generality that either ai ∕= 0 or bi ∕= 0 for each i. (If ai = bi = 0, then ci ∕= 0, so

ci could play the role of ai in what follows.) Let

f(x, y, z) = (a1y − b1x) ⋅ ⋅ ⋅ (aky − bkx).

Reasoning as above we know D = j1p1 + j2p2 + ⋅ ⋅ ⋅+ jkpk+ other terms, ji ≥ 1, so

D − (p1 + ⋅ ⋅ ⋅+ pk) is effective, i.e. p1 + ⋅ ⋅ ⋅+ pk ≤ D.

Riemann:hyperplane-equivalence Exercise 3.5.70. Let H be a hyperplane divisor on C. Using the divisor D

from the previous problem, show that there is a positive integer m such that D ≡
mH.

Solution. From above D is defined by V(f) ∩ C where f(x, y, z) = (a1y −
b1x) ⋅ ⋅ ⋅ (aky − bkx), so deg f = k. Let m = k. Then by Exercise

Riemann:polynomial-equivalence
3.5.66, we know

D − kH = div

(
f(x, y, z)

ℓk

)
, i.e. D ∈ L(kH).
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Riemann:addpoints1 Exercise 3.5.71. Let D =
∑
nkpk be an effective divisor on C = V(P ). Let

n be any positive integer. Prove that there is an m ≥ n and points q1, . . . , qk on C

such that D +
∑
qi ≡ mH.

Solution. Let pi = (ai : bi : ci). Define f as in Exercise
Riemann:pointsonC
3.5.69.

f(x, y, z) =

k∏

i=1

(aiy − bix)
ni

(If ai = bi = 0, then replace that factor with (cix)
ni .) Since D is effective, we

know f ∈ O(V ) and D is the divisor defined by V(f) ∩ C. Now suppose n is any

positive integer. If degD > n, then let let m = deg f = degD. By Exercise
Riemann:hyperplane-equivalence
3.5.70, D ≡ mH. If degD < n, then take additional points q1, . . . , qk ∈ C so that

degD + k > n, and redefine f to include the qi’s.

Riemann:addpoints2 Exercise 3.5.72. Let D =
∑
nkpk be a divisor on a curve V(P ). Show that

there are points q1, . . . , qn on V(P ), which need not be distinct, such that D+ q1+

⋅ ⋅ ⋅+ qn is an effective divisor.

Solution. If D is effective, then we are done, so suppose D is not effective.

Then ni1 , . . . , nij < 0 for some i1, i2, . . . , ij . For notational simplicity we reorder the

sumD so that the first terms are negative, i.e. n1, n2, . . . , nj < 0 and nj+1, . . . , nk >

0. Then let q1, . . . , qn1
= −p1, qn1+1 . . . , qn1+n2

= −p2, and so on until we run out of

negative terms, which must happen since D is a finite sum. Then D+q1+⋅ ⋅ ⋅+qn =
∑
nj+1pj+1, which is effective.

Riemann:addpoints3 Exercise 3.5.73. Let D =
∑
nkpk be a divisor on a curve V(P ). Let n be a

positive integer. Prove that there exists an integer m, m ≥ n, and points q1, . . . , qk

on C such that D +
∑
qi ≡ mH.

Solution. By Exercise
Riemann:addpoints2
3.5.72 there are points q1, . . . , qn such that D′ = D +

q1 + ⋅ ⋅ ⋅+ qn is effective. Then D′ is as in Exercise
Riemann:addpoints1
3.5.71, so there exist m ≥ n and

points qn+1, . . . , qn+j such that D′ + qn+1, . . . , qn+j ≡ mH, so let k = n+ j. Then

D +
∑
qi ≡ mH.

Riemann:divisor-hyperplane-inequality Exercise 3.5.74. Let D be a divisor on a curve C and let H be any hyperplane.

Show that there is a positive integer m so that

S(D) ≤ S(mH).

Solution. By Exercise
Riemann:addpoints3
3.5.73 there is an integer m and points q1, . . . , qk such

that D +
∑
qi ≡ mH. By Exercise

Riemann:S(D)equivalence
3.5.65, since D +

∑
qi ≡ mH, we have

S(D +
∑
qi) = S(mH). Finally, by ExerciseRiemann:S(D+p)geS(D) we know

that S(D) ≤ S(D +
∑
qi) = S(mH).
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Riemann:Riemann’sTheorem Exercise 3.5.75. Prove Riemann’s Theorem.

Solution. By Exercise
Riemann:hyperplane-equality
3.5.62 we have S(mH) = g, so by Exercise

Riemann:divisor-hyperplane-inequality
3.5.74

S(D) ≤ S(mH) = g. Hence Riemann’s Theorem is true by Exercise
Riemann:equivalent-theorem
3.5.61.

3.5.8. Differentials. In calculus we learn that the slope of the graph y =

f(x) is given by the derivative dy
dx at each point where it is defined. For a curve

defined implicitly, say by an equation P (x, y) = 0, using implicit differentiation we

compute dy
dx =

∂P
∂x
∂P
∂y

. Similarly we define the differential of the function P (x, y) to be

dP = ∂P
∂x dx+ ∂P

∂y dy.

More generally, a differential form on ℂ2 is a sum of terms gdf , for functions

f, g ∈ K(ℂ2) (recall that this means f and g are ratios of polynomials in two

variables). Of course we have the usual rules from calculus,

d(f + g) = df + dg

d(cf) = cdf

d(fg) = gdf + fdg

for c ∈ ℂ, f, g ∈ K(ℂ2).

Exercise 3.5.76. (1) Find the differential of f(x, y) = x2 + y2 − 1.

(2) Use your answer for part (1) to find the slope of the circle f(x, y) = 0 at

a point (x, y).

(3) For which points on the circle is this slope undefined?

Solution. (1) The differential of f(x, y) = x2 + y2 − 1 is df = 2x dx +

2y dy.

(2) Using (1), the slope of the circle f(x, y) = 0 at a point (x, y) is the ratio

dy/dx of the differential of y and that of x found by setting df = 0 and

using algebra. Thus set 2x dx + 2y dy = 0, so 2y dy = −2x dx and

dy/dx = −x/y is the slope of the circle f(x, y) = 0 at the point (x, y).

(3) The slope of the circle f(x, y) = 0 is undefined when −x/y is undefined,

which happens when y = 0. Thus, on the circle f(x, y) = x2 + y2 − 1 = 0,

the points where the slope is undefined are (1, 0) and (−1, 0). (Notice that

at both of these points the numerator of dy/dx is not zero, so the slope

does not exist.)

Exercise 3.5.77. (1) Find the differential of f(x, y) = x3 + x− y2.

(2) Use your answer for part (1) to find the slope of the curve f(x, y) = 0 at

a point (x, y).

(3) For which points on the curve is this slope undefined?

Solution. (1) The differential of the function f(x, y) = x3 + x − y2 is

df = (3x2 + 1) dx− 2y dy.
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(2) Using (1), the slope of the curve f(x, y) = 0 at a point (x, y) is the ratio

dy/dx of the differential of y and that of x found by setting df = 0 and

using algebra. Thus set (3x2 +1) dx− 2y dy = 0, so 2y dy = (3x2 +1) dx

and dy/dx = (3x2 + 1)/2y is the slope of the curve f(x, y) = 0 at the

point (x, y).

(3) The slope of the curve f(x, y) = 0 is undefined when dy/dx = (3x2+1)/2y

is undefined, which happens when y = 0. Thus, on the curve f(x, y) =

x3 + x − y2 = 0, the points where the slope is undefined are (0, 0), (i, 0)

and (−i, 0). (Notice that at all three of these points the numerator of

dy/dx is not zero, so the slope does not exist.)

Exercise 3.5.78. Prove that the set of all differential forms on ℂ2 is a vector

space over K(ℂ2) with basis {dx, dy}.

Solution. By definition, a differential form on ℂ2 is a sum of terms g df , for

functions f, g ∈ K(ℂ2). This set is obviously closed under addition as the sum of

sums of terms g df will again be a sum of terms of the form g df . It is equally

clear that this addition is both commutative and associative. The zero function, 0,

yields the zero differential form d0 = 0 which is an additive identity element. Then,

for any differential form, its additive inverse is obtained by multiplying by −1. In

particular, the additive inverse of g df is (−g) df , and the additive inverse of a sum

of terms g df is the sum of the terms (−g) df .
Again recalling the definition, it is clear that the set of differential forms on ℂ2

is closed under multiplication by elements of K(ℂ2), for if g df is a differential form

and ℎ ∈ K(ℂ2), then ℎ ⋅ g df = (ℎg) df with ℎg, f ∈ K(ℂ2). Hence multiplying

a sum of terms g df by a function ℎ ∈ K(ℂ2) again yields a differential form. In

the case when we multiply a differential form by 1, it is clear that the form is

unchanged. The remaining properties to show are clear as well. If ℎ1, ℎ2 ∈ K(ℂ2)

and v = g1 df1+ ⋅ ⋅ ⋅ is a differential form, then (ℎ1ℎ2) ⋅ v = (ℎ1ℎ2) ⋅ (g1 df1+ ⋅ ⋅ ⋅ ) =
(ℎ1ℎ2)g1 df1 + ⋅ ⋅ ⋅ = ℎ1(ℎ2g1) df1 + ⋅ ⋅ ⋅ = ℎ1 ⋅ (ℎ2 ⋅ v). Also, the left and right

distributive laws hold: (ℎ1 + ℎ2) ⋅ (g1 df1 + ⋅ ⋅ ⋅ ) = (ℎ1 + ℎ2)g1 df1 + ⋅ ⋅ ⋅ = (ℎ1g1 +

ℎ2g1) df1 + ⋅ ⋅ ⋅ = ℎ1g1 df1 + ℎ2g1 df1 + ⋅ ⋅ ⋅ = ℎ1 ⋅ (g1 df1 + ⋅ ⋅ ⋅ ) + ℎ2 ⋅ (g1 df1 + ⋅ ⋅ ⋅ )
and ℎ ⋅ [(g df + ⋅ ⋅ ⋅ ) + (g′ df ′ + ⋅ ⋅ ⋅ )] = ℎ ⋅ (g df + ⋅ ⋅ ⋅ ) + ℎ ⋅ (g′ df ′ + ⋅ ⋅ ⋅ ). Therefore,
the set of all differential forms on ℂ2 is a vector space over K(ℂ2).

Finally, for any f ∈ K(ℂ2), we compute its differential as df = ∂f
∂x dx+ ∂f

∂y dy.

Thus any g df = g (∂f∂x dx + ∂f
∂y dy) = (g ∂f∂x ) dx + (g ∂f∂y ) dy. From this it follows

that {dx, dy} span the set of differential forms. Note that neither dx nor dy is

the zero differential (as x, y are not constants). Assume for sake of contradiction

that dx, dy are linearly dependent over K(ℂ2). Then there are f, g ∈ K(ℂ2) with

f dx + g dy = 0, where we may assume that g is not the zero function. Thus
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dy = − f
g dx. If f/g is not a constant, then evaluating f and g at values where

f/g has different values gives dy equal to distinct constant multiples of dx, which

is impossible. Hence f/g must be a constant C, in which case dy = −C dx implies

that y = −Cx + K so that y and x are algebraically dependent variables in ℂ2,

which they are not. Thus the assumption that dx, dy are linearly dependent leads

to a contradiction, so we conclude that {dx, dy} is a basis for the vector space of

all differential forms on ℂ2 over K(ℂ2).

To define differentials on an affine curve P (x, y) = 0 in ℂ2, we use the relation

dP = ∂P
∂x dx + ∂P

∂y dy = 0. As in calculus this gives the slope −∂P/∂x
∂P/∂y of the curve

when ∂P
∂y ∕= 0. We can also use this expression to express dy in the form g(x, y)dx

for a function g ∈ K(ℂ2) (namely, g = −∂P/∂x
∂P/∂y , the slope of our curve).

Suppose that f ∈ K(C) is determined by some F (x, y) ∈ K(ℂ2) restricted to C.

We wish to define the differential df to be dF restricted to C. This appears to depend The previous

paragraph hinted at

but didn’t state the

definition of differential

on curves, so I added

this paragraph to do so

and show it is

well-defined. The

argument follows

Shafarevich. – DM

(1/21/10)

on the choice of F (x, y), which is only well-defined up to the addition of terms of the

form G(x, y)P (x, y) for G(x, y) ∈ K(ℂ2). Yet d(GP ) = G(x, y) dP + P (x, y) dG,

and we know that P (x, y) = dP = 0 on C. Thus any F + GP ∈ K(ℂ2) that

represents f ∈ K(C) has d(F + GP ) = dF when restricted to C, so taking df

to be the restriction of dF is well-defined. With this established, we may define

differentials on an affine curve C = V(P ) to be sums of terms of the form g df for

g, f ∈ K(C).

Exercise 3.5.79. Prove that the set of all differential forms on a non-singular

curve C = V(P ) in ℂ2 is a vector space over K(C).

Solution. The proof that the set of differential forms on C is a vector space

is the same as the previous exercise’s proof upon replacing K(ℂ2) with K(C). It seems tedious to

repeat nearly verbatim

the previous proof, so

I’m citing it. Are there

any objections? – DM

(1/21/10)

Exercise 3.5.80. Prove that the vector space of differentials on a non-singular

curve C = V(P ) in ℂ2 has dimension one over K(C).

Solution. From the definition, every differential form on C is a sum of terms

g df , where each df is the restriction of some dF with F (x, y) ∈ K(ℂ2). As each

such dF = ∂F
∂x dx+

∂F
∂y dy can be expressed in terms of dx and dy, the vector space

of differential forms on C = V(P ) is likewise spanned by {dx, dy}. However, on

the curve C, we have P (x, y) = 0 identically. Thus it follows that its differential

is likewise identically zero, dP = 0, on C. Yet dP = ∂P
∂x dx + ∂P

∂y dy, and the

curve is non-singular so that not both ∂P
∂x and ∂p

∂y are zero. Therefore, without

loss of generality we may assume that ∂P
∂y ∕= 0 in which case dP = 0 implies that

dy = −∂P/∂x
∂P/∂y dx. Therefore {dx, dy} is not a linearly independent set over K(C),

so the dimension of the set of differential forms on C over K(C) must be less than
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or equal to one. Since not both dx and dy can be zero since C is non-singular, it

follows that the dimension of the vector space must be exactly one as claimed.

3.5.9. Local Coordinates. To extend our definition of differential forms to

projective curves C = V(P ) in ℙ2, we will consider the affine pieces of C obtained

by dehomogenizing the defining polynomial P (x, y, z). We can cover ℙ2 by three

affine coordinate charts, that is three copies of ℂ2, as follows. The bijective map

' : ℙ2∖V(z) → ℂ2

defined by '(x : y : z) =
(
x
z ,

y
z

)
assigns coordinates r = x

z , s = y
z for all points

(x : y : z) with z ∕= 0. Similarly we can set t = x
y , u = z

y for all (x : y : z) with

y ∕= 0, and v = y
x , w = z

x when x ∕= 0. (These three coordinate systems give a more

careful way to “dehomogenize” polynomials in ℙ2, compared to simply setting one

coordinate equal to 1 as in the first chapter.)

Exercise 3.5.81. Verify that the map ' : ℙ2∖V(z) → ℂ2 is a bijection.

Solution. To show that ' is one-to-one, suppose that '(x1 : y1 : z1) =

'(x2 : y2 : z2) for points (x1 : y1 : z1), (x2 : y2 : z2) ∈ ℙ2∖V(z). This means

that (x1

z1
, y1z1 ) = (x2

z2
, y2z2 ), so

x1

z1
= x2

z2
and y1

z1
= y2

z2
. Therefore z2x1 = z1x2 and

z2y1 = z1y2, so (x1 : y1 : z1) = (x1z2 : y1z2 : z1z2) = (x2z1 : y2z1 : z2z1) =

(x2 : y2 : z2) as neither z1 nor z2 are zero. Hence ' is a one-to-one function from

ℙ2∖V(z) to ℂ2. Furthermore, if (a, b) ∈ ℂ2 is given, then (a : b : 1) ∈ ℙ2∖V(z) and
'(a : b : 1) = (a, b). Thus ' is also onto, so ' : ℙ2∖V(z) → ℂ2 is a bijection.

Exercise 3.5.82. Use the above coordinates for three affine charts on ℙ2.

(1) Find coordinates for the point (−1 : 2 : 3) in each of the three coordinate

charts.

(2) Find all points in ℙ2 that cannot be represented in (r, s) affine space.

(3) Find the points in ℙ2 that are not in either (r, s) or (t, u) affine space.

Solution. (1) To determine the coordinates for the point (−1 : 2 : 3) in

(r, s) affine space compute r = −1/3 and s = 2/3, so the (r, s) coordinates

are (−1/3, 2/3). The values for t = x/y and u = z/y are t = −1/2 and

u = 3/2, so the coordinates for the point (−1 : 2 : 3) in (t, u) affine space

are (−1/2, 3/2). Lastly, the coordinates in (v, w) affine space are (−2,−3).

(2) The only points in ℙ2 that cannot be represented in (r, s) affine space are

those for which z = 0 since r = x/z and s = y/z require division by z.

Hence the points in ℙ2 that cannot be represented in the (r, s) affine plane

are those on the line z = 0.

(3) The points in ℙ2 that cannot be represented in either (r, s) or (t, u) is the

intersection of those not in the (r, s) space with those not in the (t, u)
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space. As above, those not in the (r, s) space lie on the line z = 0.

Similarly, those not representable in the (t, u) affine space are the points

of the line y = 0, so the points in ℙ2 that are not in either lie on both the

lines z = 0 and y = 0, which intersect at the single point (1 : 0 : 0). Hence

(1 : 0 : 0) is the only point in ℙ2 that is not in either (r, s) or (t, u) space.

Exercise 3.5.83. In this exercise you will find the change of coordinates func-

tions between coordinate charts.

(1) Write the local coordinates r and s as functions of t and u.

(2) Write the local coordinates r and s as functions of v and w.

(3) Write the local coordinates v and w as functions of t and u.

Solution. (1) For a point (x : y : z) to be in both the (r, s) and the (t, u)

coordinate charts, it is necessary that y ∕= 0 and z ∕= 0. Then t = x/y

and u = z/y, so r = x
z = x/y

z/y = t
u while s = y

z = y/y
z/y = 1

u . These give the

local coordinates r = t/u and s = 1/u in terms of t and u.

(2) A point (x : y : z) is in both the (r, s) and (v, w) coordinate charts only if

x ∕= 0 and z ∕= 0. In this case, r = x
z = x/x

z/x = 1
w and s = y

z = y/x
z/x = v

w .

(3) The only points (x : y : z) in both the (v, w) and (t, u) coordinate charts

are those with x ∕= 0 and y ∕= 0. Then v = y
x = y/y

x/y = 1
t and w = z

x =
z/y
x/y = u

t .

Now let C be the curve defined by the vanishing of a homogeneous polynomial

P (x, y, z). We will work locally by considering an affine part of the curve in one of

the affine charts. Let p = (a : b : c) ∈ C. At least one of a, b, cmust be non-zero; let’s

assume c ∕= 0, so we can look at the affine part of our curve P (xz ,
y
z , 1) = P (r, s) = 0

in ℂ2. We assume that C is smooth, thus ∂P
∂r ∕= 0 or ∂P

∂s ∕= 0 at (r, s) = (ac ,
b
c ).

We will use the following version of the Implicit Function Theorem for curves

in the plane. This Theorem tells us that when p is a smooth point of a curve, near

p the curve looks like the graph of a function. For example, the circle x2 + y2 = 1

is smooth at the point p = (0, 1), and we know that near p we can write the circle

as the graph y =
√
1− x2. Although this formula will not work for all points of the

circle, near p we may use x as a local coordinate for our curve.

Theorem 3.5.84. Implicit Function Theorem (Kirwan, Appendix B)

Let F (v, w) be a polynomial over ℂ and let (v0, w0) be a point on the curve

F = 0. Assume ∂F
∂w (v0, w0) ∕= 0. Then there are open neighborhoods V andW of v0

and w0, respectively, and a holomorphic function f : V →W such that f(v0) = w0 This is the first of only

2 times ‘holomorphic’

appears in this chapter

(the other is in this

subsection soon after

this). Do students

with our assumed

background know what

it means? – DM

(1/27/10)

and for v ∈ V , if f(v) = w then F (v, w) = 0.

In our example P (x, y) = x2 + y2 − 1 = 0 at the point p = (0, 1), ∂P∂y ∕= 0, thus

by the Implicit Function Theorem x is a local coordinate.
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Exercise 3.5.85. We extend our circle example to the projective curve C =

V(x2 + y2 − z2).

(1) Let’s consider the point p = (1 : 0 : 1), so we can dehomogenize to (r, s)

affine coordinates. Find a function f(s) that expresses C as the graph

r = f(s) near p. At this point ∂f
∂s = 0; explain why r is not a local

coordinate at p.

(2) Alternately write the affine part of C in (v, w) coordinates and give an

alternate expression for C as the graph of a function near p.

Solution. (1) The circle V(x2 + y2 − z2) dehomogenizes as P (r, s) =

r2+s2−1 and the coordinates for p become (1, 0) in the (r, s) affine plane.

Solving r2 + s2 − 1 = 0 for r we have r2 = 1− s2, so that r = ±
√
1− s2.

Near the point p = (1, 0), clearly we should select the positive root, so

f(s) = +
√
1− s2 and C is the graph of r = f(s) near p.

We note that ∂P
∂s = 2s, which clearly is zero at (1, 0). Thus we

cannot use the Implicit Function Theorem to deduce that r is a local

coordinate. In fact, it is not one. For if s = g(r) were a holomorphic

function that expresses C as its graph near p, then it must be the case

that r2 + g(r)2 = 1, in which case g(r) is a holomorphic square root of

1−r2 near r = 1. However, this is impossible, for the square root function

is not holomorphic in any neighborhood of z = 0, and 1− r2 covers such

a neighborhood for r near 1. Therefore, no such g(r) can exist, so r is not

a local coordinate at p.

(2) The circle dehomogenizes as Q(v, w) = 1 + v2 − w2 and the coordinates

for p = (1 : 0 : 1) become (0, 1) in the (v, w) affine plane. Observing

that ∂Q
∂w = −2w is not equal to zero at (0, 1), v is a local coordinate by

the Implicit Function Theorem. Solving 1 + v2 − w2 = 0 for w we obtain

w2 = 1+v2 so w = ±
√
1 + v2. As w is positive we must select the positive

square root, and C is the graph of w = g(v) =
√
1 + v2 near p = (0, 1).

Exercise 3.5.86. Let C = V(x2 − yz).

(1) Show that this curve is covered by the two charts (r, s) and (t, u), that

is every point p ∈ C can be written in at least one of these coordinate

systems.

(2) Show that r is a local coordinate at all points p = (a : b : c) ∈ C with

c ∕= 0.

(3) Show that t is a local coordinate at the point (0 : 1 : 0).

Solution. (1) Let p = (a : b : c) be a point on C = V(x2 − yz). Thus

a2 = bc. If either b = 0 or c = 0, then a = 0 as well. However, not all
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three can simultaneously be zero in ℙ2, so not both b and c can be zero

for p to be a point in ℙ2 on C. If p is a point on C in which b ∕= 0, then p

is in the (t, u) affine coordinate chart given by the condition y ∕= 0, while

if p is a point with c ∕= 0, then p is in the (r, s) affine coordinate chart

specified by z ∕= 0. Therefore, every point in C can be written in at least

one of these coordinate systems, so the curve is covered by the two charts

indicated.

(2) All points p = (a : b : c) ∈ C with c ∕= 0 are in the (r, s) coordinate chart.

The equation x2 − yz for C dehomogenizes as F (r, s) = r2 − s in this

chart, and ∂F
∂s = −1. If p = (a : b : c) ∈ C with c ∕= 0 is expressed in the

coordinates of this chart, p = (a0, b0), then
∂F
∂s (a0, b0) = −1 ∕= 0, so there

is a holomorphic function s = f(r) that makes r a local coordinate for C

near p by the Implicit Function Theorem.

(3) We first observe that (0 : 1 : 0) is a point on C. The second coordinate

of this point is nonzero, so (0 : 1 : 0) is a point on C in the (t, u) affine

coordinate chart with coordinates (0, 0). In this chart, the equation x2−yz
for C dehomogonizes as G(t, u) = t2 − u, which has ∂G

∂u = −1. Therefore,

by the Implicit Function Theorem, ∂G∂u (0, 0) = −1 ∕= 0 implies that t is a

local coordinate for C near (0 : 1 : 0).

Exercise 3.5.87. Let C = V(x3 − y2z − xz2).

(1) Show that every point p ∈ C can be written in either (r, s) or (t, u) coor-

dinates.

(2) Show that r is a local coordinate at all points p = (a : b : c) ∈ C with

b, c ∕= 0. The problem read that

s is local coord with

a, c ∕= 0, but this

requires 3a2 ∕= 1 which

we can’t impose. I

changed to r local with

b, c ∕= 0. Then changed

3. to b = 0 or c = 0. –

DM (1/27/10)

(3) Find all points on C with b = 0 or c = 0 and determine a local coordinate

at each point.

Solution. (1) Let p = (a : b : c) be a point on C = V(x3−y2z−xz2), so
a3 − b2c− ac2 = 0. If both b = 0 and c = 0, then a = 0 as well. However,

not all three can simultaneously be zero in ℙ2, so not both b and c can be

zero for p to be a point in ℙ2 on C. If p is a point on C in which b ∕= 0,

then p is in the (t, u) affine coordinate chart given by the condition y ∕= 0,

while if p is a point with c ∕= 0, then p is in the (r, s) affine coordinate

chart specified by z ∕= 0. Therefore, every point in C can be written in at

least one of these coordinate systems, so the curve is covered by the two

charts indicated.

(2) All points p = (a : b : c) ∈ C with c ∕= 0 are in the (r, s) coordinate chart.

The equation x3 − y2z− xz2 for C dehomogenizes as F (r, s) = r3 − s2 − r

in this chart, and ∂F
∂s = −2s. If p = (a : b : c) ∈ C with b, c ∕= 0 is
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expressed in the coordinates of this chart, p = (a0, b0), then b0 ∕= 0 and
∂F
∂s (a0, b0) = −2b0 ∕= 0, so there is a holomorphic function s = f(r) that

makes r a local coordinate for C near p by the Implicit Function Theorem.

(3) Suppose p = (a : b : c) is a point on C, so a3−b2c−ac2 = 0. Assume b = 0.If a = 0, −b2c = 0 so

either b = 0 or c = 0,

but not both. This

yields the two points

(0 : 0 : 1) and

(0 : 1 : 0) on C for

which a = 0. Both

appear in lists for b = 0

or c = 0, so redundant

case. – DM (1/27/10)

Then a3−ac2 = 0, so a(a2−c2) = a(a−c)(a+c) = 0. This requires a = 0,

a = c or a = −c, so that p is one of the three points (0 : 0 : 1), (1 : 0 : 1)

or (−1 : 0 : 1). For these points we may work in the (r, s) coordinate

chart using the dehomogenized formula F (r, s) = r3 − s2 − r from part 2.

Observing that ∂F
∂r = 3r2 − 1 is not zero at any of the (r, s) coordinates

of these points, which are (0, 0), (1, 0) and (−1, 0), we conclude that s

is a local coordinate of C near each of these three points by the Implicit

Function Theorem.

If c = 0, then a3 = 0, so the only such point is (0 : 1 : 0), which is

a point in the (t, u) affine coordinate chart. In this chart, the equation

of C, x3 − y2z − xz2, dehomogenizes as G(t, u) = t3 − u − tu2 while the

(t, u) coordinates for (0 : 1 : 0) are (0, 0). Now ∂G
∂u = −1 − 2tu, so

∂G
∂u (0, 0) = −1 ∕= 0. Therefore, by the Implicit Function Theorem, t is a

local coordinate for C near (0 : 1 : 0).

We will use local coordinates to write differential forms on curves. As the

derivative provides local (that is, in a small neighborhood of a point)information

about a curve, it makes sense to use this approach for differentials.

Let ! be a differential form on a non-singular curve V(P ) ⊂ ℂ2. In a previous

exercise, we showed that any differential form on an affine curve in ℂ2 can be written

as f(x, y)dx. At any point p = (a, b) on the curve at least one of ∂P∂x ,
∂P
∂y must beNot exactly. In Ex.

3.5.71 we showed that

the space of forms is

1-dimensional, but this

doesn’t mean that dx

is always a basis for it.

– DM (1/28/10)

non-zero (by the definition of non-singular). Assume ∂P
∂y (a, b) ∕= 0; by the Implicit

Function Theorem there exists a holomorphic function g defined on neighborhoods

of a and b with y = g(x). This means that we can consider x as a coordinate for

the curve near the point p and we can write ! = ℎ(x)dx near p for some rational

function ℎ(x).

3.5-Exercise3.5.78 Exercise 3.5.88. Consider the curve V(x2 − y) in ℂ2.

(1) Show that x is a coordinate at all points on this curve.

(2) Write the differential dy in the form f(x)dx.

(3) Show that any differential form can be written as ℎ(x)dx for some rational

function ℎ(x).

Solution. (1) Clearly y = x2 at all points on this curve, so x is a local

coordinate near every point p on V(x2 − y).
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(2) The differential of P (x, y) = x2 − y is dP = 2x dx − dy. On V(x2 − y),

P (x, y) is always 0, so dP = 0, which enables us to solve for dy as dy =

2x dx.

(3) Suppose that ! is a differential form on V(x2−y). Then it is the restriction

to this curve of some differential form F (x, y) dx+G(x, y) dy on ℂ2, where

F (x, y), G(x, y) ∈ K(ℂ2) are rational functions of x and y. However,

upon restricting this form to V(x2 − y), we may replace y with x2 and

dy with 2x dx to obtain ! = F (x, x2) dx + G(x, x2) 2xdx = [F (x, x2) +

2xG(x, x2)] dx = ℎ(x) dx, where ℎ(x) = F (x, x2)+2xG(x, x2) is a rational

function of x.

Exercise 3.5.89. Consider the curve V(x2 + y2 − 1) in ℂ2.

(1) Show that x is a coordinate at all points (a, b) with b ∕= 0.

(2) At each point on V(x2 + y2 − 1) ∩V(y) find g(y) with x = g(y).

(3) Write the differential dx in the form f(y)dy.

Solution. (1) Let p = (a, b) be a point on the curve V(x2+y2−1) with

b ∕= 0. Solving the equation x2 + y2 − 1 = 0 of this curve for y, we have

y2 = 1 − x2 so y = ±
√
1− x2. In particular, as p ∈ V(x2 + y2 − 1), b

is either +
√
1− a2 or −

√
1− a2. Whichever sign corresponds to b gives

the corresponding choice for y = ±
√
1− x2 as the graph of the curve

V(x2 + y2 − 1) near p. Hence x is a local coordinate near p.

(2) There are only two points, (1, 0) and (−1, 0), in V(x2 + y2 − 1) ∩ V(y)

corresponding to the two solutions of the equation x2 − 1 = 0 resulting

from setting y = 0. At the first point, (1, 0), we have x =
√
1− y2 while

at (−1, 0) the local parametrization is given by x = −
√
1− y2.

(3) As in 1, at all points p = (a, b) on V(x2 + y2 − 1) with a ∕= 0, y is

a local coordinate with either x =
√
1− y2 or x = −

√
1− y2. In the

first case dx = 1

2
√

1−y2
⋅ −2y dy = −y√

1−y2
dy. In the second, dx =

− 1

2
√

1−y2
⋅ −2y dy = y√

1−y2
dy. These aren’t f(y)dy

with f a rational

function, but I don’t

see how to get one.

The IFT only gives us

something

holomorphic, which

needn’t be rational. –

DM(1/28/10)

Using local coordinates we can now describe differential forms on a curve C =

V (P (x, y, z)) in ℙ2. Using the previous notation we have three affine pieces of our

curve, corresponding to the (r, s) = (xz ,
y
z ), (t, u) = (xy ,

z
y ), and (v, w) = ( yx ,

z
x )

coordinate charts. For an affine piece of our curve, say in the (r, s) coordinate

system, we can write a differential form as ℎ(r)dr (or ℎ(s)ds) for a rational function

ℎ. Using the changes of coordinates between the three affine charts we can translate

this form to each set of coordinates. Thus a differential form on C is a collection of

differential forms on each affine piece of our curve, such that these pieces “match”

under our changes of coordinates.
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Exercise 3.5.90. Let C be the curve V(x2 − yz) in ℙ2, which dehomogenizes

to r2 − s = 0 in the (r, s) affine chart.

(1) Show that the differential form ds can be written as 2rdr.

(2) Use the appropriate change of coordinates to write ds in the form f(u)du.

(3) Use the appropriate change of coordinates to write ds in the form g(w)dw.

Solution. (1) The curve V(x2 − yz) dehomogenizes as P (r, s) = r2 − s

in the (r, s) affine plane. Then, as in Exercise
3.5-Exercise3.5.78
3.5.88, the differential ds is

2r dr.

(2) In the intersection of the (r, s) and (t, u) affine coordinate charts, we have

r = x
z = x/y

z/y = t
u . Therefore, dr = ∂

∂t [
t
u ] dt +

∂
∂u [

t
u ] du = 1

u dt +
−t
u2 du,

so that

ds = 2r dr = 2
t

u

[
1

u
dt− t

u2
du

]
=

2t

u2
dt− 2t2

u3
du.

However, on V(x2 − yz), whose dehomogenization to the (t, u) plane is

given by Q(t, u) = t2 − u, we have u = t2 so du = 2t dt. Using these

relations in the formula for ds, we obtain ds = 1
u2 2tdt− 2t2

u3 du = 1
u2 du−

2u
u3 du = − 1

u2 du.

(3) In the intersection of the (r, s) and (v, w) affine coordinate charts, we have

r = x
z = x/x

z/x = 1
w , so dr = − 1

w2 dw. Therefore,

ds = 2r dr = 2
1

w

[ −1

w2
dw

]
= − 2

w3
dw.

Exercise 3.5.91. Let C be the curve V(x2+y2−z2) in ℙ2. Use the appropriate
changes of coordinates to write the differential form dr in each coordinate chart.

Solution. First of all, in the (r, s) coordinate chart we have dr = dr.

In the intersection of the (r, s) and (t, u) coordinate charts, we have r = x
z =

x/y
z/y = t

u , so dr =
∂
∂t [

t
u ] dt+

∂
∂u [

t
u ] du = 1

u dt− t
u2 du. In this chart, x2+y2−z2 = 0

dehomogenizes as t2 + 1 − u2 = 0, so u2 = t2 + 1. Hence 2u du = 2t dt or

u du = t dt. In the intersection of the (r, s) and (t, u) charts z, y ∕= 0, so u = z
y ∕= 0.

Therefore du = t
u dt, so dr = 1

u dt − t
u2

t
u dt = ( 1u − t2

u3 ) dt =
u2−t2
u3 dt = 1

u3 dt =

(t2 + 1)−3/2 dt.This last bit isn’t a

rational function, but I

don’t see how to get

one. The IFT only

gives us something

holomorphic, which

needn’t be rational. –

DM(1/28/10)

Finally, in the intersection of the (r, s) and (v, w) coordinate charts, we have

r = x
z = x/x

z/x = 1
w . Thus dr = − 1

w2 dw in the (v, w) affine coordinate chart.

3.5.10. The Canonical Divisor. We now define the divisor associated to a

differential form on a smooth projective curve C ⊂ ℙ2. For any differential form !,

we want to determine a divisor div(!) =
∑
npp, a finite sum of points p ∈ C with

integer coefficients np.
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To define this divisor, let p = (a : b : c) be any point on C and assume c ∕= 0.

By de-homogenizing we can consider p as a point on the affine piece of C given by

P (xz ,
y
z , 1) = 0 in ℂ2 where as before we write r = x

z , s =
y
z as coordinates for ℂ2.

As C is non-singular, at least one of ∂P∂x ,
∂P
∂y ,

∂P
∂z is non-zero at (a : b : c). Moreover,

as c ∕= 0, by Euler’s formula either ∂P (r,s,1)
∂r ∕= 0 or ∂P (r,s,1)

∂s ∕= 0 at (r, s) = (ac ,
b
c ).

Assume ∂P (r,s,1)
∂s ∕= 0; then we have r as local coordinate at p. Thus we can write

! = ℎ(r)dr near p. We define the order np of div(!) at p to be the order of the

divisor of the rational function ℎ(r) at p.

As a first example, let C be the curve V(x2 − yz) and let ! = ds. In a previous

exercise we determined how to transform ! among the different affine charts. We

now use these expressions to compute the divisor of !.

Exercise 3.5.92. (1) Show that r is a local coordinate for all points p =

(a : b : c) on C with c ∕= 0.

(2) Show that we can write ! in the form 2rdr for all points with c ∕= 0.

(3) Show that at all points with c ∕= 0, the divisor of 2r is (0 : 0 : 1) since 2r

has a simple zero at this point.

(4) Show that when c = 0, then p ∈ C implies that p = (0 : 1 : 0). Verify that

t is a local coordinate for C at (0 : 1 : 0).

(5) Show that ! = − 2
t3 dt at (0 : 1 : 0),and at this point − 2

t3 has a pole of

order 3 at (0 : 1 : 0), thus the divisor is −3(0 : 1 : 0).

(6) Conclude that the divisor of ! is (0 : 0 : 1)− 3(0 : 1 : 0).

Exercise 3.5.93. Show that this definition of divisor does not depend on our

choice of local coordinates at p.

Since the order of the divisor of a differential form is well-defined, we can make

the following definition.

Definition 3.5.6. The canonical divisor class KC on a curve C is the divisor

associated to any differential form ! on C.

Of course we also need to check that the linear equivalence class of the divisor

KC does not depend on our choice of differential form.

Exercise 3.5.94. Assume C is a non-singular curve.

(1) Let f, g ∈ K(C). Show that div(fdg) ≡ div(dg).

(2) Let !1, !2 be two differential forms on C. Show that div(!1) ≡ div(!2).

Exercise 3.5.95. To compute the canonical divisor of the projective line ℙ1,

write (x : y) for coordinates of ℙ1, with affine charts u = x
y and v = y

x .

(1) Show that the divisor of du is equal to −2(1 : 0).
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(2) Show that the divisor of dv is equal to −2(0 : 1).

(3) Prove that the divisors of the two differential forms du and dv are linearly

equivalent.

Exercise 3.5.96. Let C = V (x2 − yz).

(1) Compute the divisor of the differential form dr.

(2) Compute the divisor of the differential form ds.

(3) Prove that the divisors of the two differential forms dr and ds are linearly

equivalent and of degree −2.

Exercise 3.5.97. Let C be the curve defined by P (x, y, z) = x2 + y2 − z2 = 0.

We will compute the divisor of the differential form dr, where r = x
z .

(1) For points p = (a : b : c) ∈ C with c = 0, show that w = z
x is a local

coordinate. Use that r = 1
w to write dr as ℎ(w)dw. Show that there are

two points on C with w = 0 and that ℎ(w) has a pole of order two at each.

(2) For points p = (a : b : c) ∈ C with c ∕= 0 and ∂P
∂y ∕= 0, show that r is

a local coordinate. Conclude that the divisor of dr has no zeros or poles

when z ∕= 0, ∂P∂y ∕= 0.

(3) For points p = (a : b : c) ∈ C with c ∕= 0 and ∂P
∂y = 0, show that ∂P

∂x ∕= 0

and therefore a ∕= 0. By the Implicit Function Theorem s = y
z is a local

coordinate at these points. Use r2+s2 = 1 to write dr = ℎ(s)ds and show

that ℎ(s) has zeros of multiplicity one at each of these points.

(4) Conclude that div(!) is a divisor of degree −2.

In the previous exercises we found that the divisor of a differential form on a

curve of genus 0 has degree −2. For a general smooth curve we have the following

relation between genus and degree of KC.

Theorem 3.5.98. The degree of a canonical divisor on a non-singular curve C

of genus g is 2g − 2.

We outline a proof of this theorem in the following exercises.

Exercise 3.5.99. Let C be a non-singular curve defined by a homogeneous

polynomial P (x, y, z) of degree n.

(1) Show that by changing coordinates if necessary we may assume (1 : 0 :

0) /∈ C.

(2) Show that the curve C is covered by two copies of ℂ2, {(a : b : c) : c ∕= 0}
and {(a : b : c) : b ∕= 0}. Conclude that every point of C we may use either

the coordinates (r, s) where r = x
z , s =

y
z or (t, u) where t = x

y , u = z
y .
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(3) Let P1(r, s) = P (r, s, 1) and P2(t, u) = P (t, 1, u) be the de-homogenized

polynomials defining C in the two coordinate systems. Prove that ∂P1

∂r =
∂P
∂x (r, s, 1),

∂P1

∂s = ∂P
∂y (r, s, 1),

∂P2

∂t = ∂P
∂x (t, 1, u),

∂P2

∂u = ∂P
∂z (t, 1, u).

(4) Explain why (1 : 0 : 0) /∈ C implies that ∂P1

∂r has degree n− 1.

(5) Show that by changing coordinates if necessary we may assume if p = (a :

b : c) ∈ C with ∂P
∂x (a, b, c) = 0, then c ∕= 0.

We will find the degree of KC by computing the divisor of the differential one-

form ! = ds, where s = y
z . By the previous exercise we may assume (1 : 0 : 0) /∈ C

and if p = (a : b : c) ∈ C with ∂P
∂x (a, b, c) = 0, then c ∕= 0.

Exercise 3.5.100. First consider points (a : b : c) on the curve with c ∕= 0 and
∂P
∂x ∕= 0. Show that s is a local coordinate and ! has no zeros or poles at these

points.

Exercise 3.5.101. Next we determine div(!) at points (a : b : c) with c ∕= 0

and ∂P
∂x = 0.

(1) Show that we must have ∂P
∂y ∕= 0 at these points, and that r is a local

coordinate.

(2) Use P1(r, s) = 0 to write ! = ds in the form f(r)dr.

(3) Compute the degree of div(!) at these points by determining the order of

the zeros or poles of f(r).

Exercise 3.5.102. Now we determine div(!) at points (a : b : c) with c = 0.

(1) Show that u is a local coordinate.

(2) Write ! = ds in the form g(u)du.

(3) Compute the degree of div(!) at these points by determining the order of

the zeros or poles of g(u).

(4) Conclude that div(!) has degree n(n − 1) − 2n = n(n − 3). Use exercise

3.3.4 to show that this is equal to 2g − 2, where g is the genus of C.

Exercise 3.5.103. Let C = V (xy + xz + yz).

(1) Find a change of coordinates to transform C to an equivalent curve C′

such that (1 : 0 : 0) ∕∈ C′.

(2) Compute the canonical divisor class of C′ by computing the divisor of

! = ds.

Exercise 3.5.104. Let C = V (y2z − x3 + xz2).

(1) Find a change of coordinates to transform C to an equivalent curve C′

such that for all p = (a : b : c) ∈ C′, ∂P∂x (a, b, c) = 0 implies c ∕= 0.

(2) Compute the canonical divisor class of C′ by computing the divisor of

! = ds.
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Exercise 3.5.105. Let C = V (y2z− x3 + xz2). Compute the canonical divisor

of C by finding the divisor of dr.

Exercise 3.5.106. Let C = V (xn + yn + zn). Compute the canonical divisor

of C.

3.5.11. The space L(K −D). We will now see the important role that the

canonical divisor plays in the Riemann-Roch Theorem. We proved previously Rie-

mann’s Theorem,

l(D) ≥ degD − g + 1

for any divisor D on a smooth curve C of genus g. We now improve this result by

determining the value of l(D)− (degD − g + 1). We will show that for all D on C,

this difference is equal to the dimension of the space L(KC −D).

We have seen for any point p ∈ C, l(D) ≤ l(D + p) ≤ l(D) + 1, that is L(D) is

either equal to L(D + p) or a subspace of codimension one. Applying this to the

divisorK−D, we have either l(K−D) = l(K−D−p) or L(K−D) = l(K−D−p)+1.

For our next result we need an important consequence of the Residue Theorem:

there is no differential form on C with a simple (order one) pole at one point and

no other poles.

Exercise 3.5.107. We will show if L(D) ⊊ L(D + p) then L(K − D − p) =

L(K −D).

(1) Assume L(D) ⊊ L(D + p) and L(K − D − p) ⊊ L(K − D). Show that

this implies the existence of functions f, g ∈ K(C) with div(f)+D+p ≥ 0

and div(g) +K −D ≥ 0, such that these relations are equalities at p.

(2) Let ! be a differential form on C so that div(!) ≡ KC. Show that

div(fg!) + p ≥ 0 and thus the form fg! has a simple pole at p.

(3) Explain why this contradicts the Residue Theorem (see appendix).

(4) Show that this result is equivalent to the inequality l(D + p) − l(D) +

l(K −D)− l(K −D − p) ≤ 1.

Exercise 3.5.108. Let q1, . . . , qk be points on the curve C. Use the previous

exercise and induction to show

l(D +
k∑

1

qi)− l(D) + l(K −D)− l(K −D −
k∑

1

qi) ≤ k.

Exercise 3.5.109. Prove there exists a positive integer n such that l(KC −
nH) = 0, where H is a hyperplane divisor.

3.5.12. Riemann-Roch Theorem. We have previously shown Riemann’s

Theorem: for a divisorD on a smooth plane curve C of genus g, l(D) ≥ degD−g+1.

This result provides a bound for the dimension of the space of functions on C with
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poles bounded by the divisorD. A remarkable fact is that we can explicitly calculate

the error term in this inequality; that is, we can improve this result in the Riemann

Roch Theorem:

Theorem 3.5.110. If D is a divisor on a smooth plane curve C of genus g and

KC is the canonical divisor of C, then

l(D)− l(KC −D) = degD − g + 1.

This theorem allows us to explictly calculate the dimensions of spaces of func-

tions on our curve C in terms of the genus of C and the degree of the bounding

divisor D. As before we will prove this for smooth curves in the plane, but in

fact the result also holds for singular curves. The Riemann-Roch Theorem can

also be generalized to higher dimensional varieties. In the next several exercises we

complete the proof.

Exercise 3.5.111. Let n be a positive integer with l(KC − nH) = 0; use

Exercise 3.5.63 to show there existsm > n and q1, . . . , qk ∈ C withD+
∑k

1 qi ≡ mH.

Show that the degree of D is mdegC− k.

Solution. Exercise 3.5.63 gives us this result almost immediately. If the initial

m used in exercise 3.5.63 is not larger than n, just add more points that are given

by intersections of the curve with the hyperplane H to make m > n.

Since H is a hyperplane divisor, and thus really is just the intersection of the

curve C with a line, we have

deg(H) = deg(C).

We know that divisors that are linearly equivalent have the same degrees. Thus we

have

deg(D +
k∑

1

qi) = deg(mH) = mdeg C.

Since

deg(D +
k∑

1

qi) = deg(D) + k,

we get that

deg(D) = mdeg C− k.

Exercise 3.5.112. Using the notation of the previous Exercise and Exercise

3.5.97, show that

l(mH)− l(D) + l(KC −D) ≤ k.
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Solution. Exercise 3.5.97 state that

l(D +

k∑

1

qi)− l(D) + l(KC −D)− l(KC −D −
k∑

1

qi) ≤ k.

From the first exercise of this section, we know that D +
∑k

1 qi ≡ mH. Hence

l(mH)− l(D) + l(KC −D)− l(KC −mH) ≤ k.

But we also know that l(KC −mH) = 0. Thus

l(mH)− l(D) + l(KC −D) ≤ k

is indeed true.

Exercise 3.5.113. Using the notation of the previous Exercise and that

deg(mH) = mdeg(C)− g + 1

(Exercise 3.5.50), show that

l(D)− l(KC −D) ≥ degD − g + 1.

Solution. Since

l(mH)mdeg(C)− g + 1,

we have

mdeg(C)− g + 1− l(D) + l(KC −D) ≤ k.

Then

mdeg(C)− k − g + 1 ≤ l(D)− l(KC −D).

But in the first exercise of this section we showed that

deg(D) = mdeg C− k.

Hence we have

deg(D)− g + 1 ≤ l(D)− l(KC −D),

as desired.

Exercise 3.5.114. Show that

deg(D)− g + 1 ≥ l(D)− l(KC −D).

(Hint: think of KC −D as a divisor.)

Solution. For any divisor D we know that

deg(D)− g + 1 ≤ l(D)− l(KC −D).

Let us plug in for D the divisor KC −D. Then

deg(KC −D)− g + 1 ≤ l(KC −D)− l(KC − (KC −D)).
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We know that deg((KC) = 2g − 2, which means that we have

2g − 2− deg(D)− g + 1 ≤ l(KC −D)− l(D)),

or

g − 1− deg(D) ≤ l(KC −D)− l(D)).

Multiplying through by (−1) give us

deg(D)− g + 1 ≥ l(D)− l(KC −D).

Exercise 3.5.115. Prove the Riemann-Roch Theorem: show that

l(D)− l(KC −D) = degD − g + 1.

Solution. We have

deg(D)− g + 1 ≥ l(D)− l(KC −D) ≤ deg(D)− g + 1.

The result follows.

Exercise 3.5.116. Use the Riemann Roch Theorem to prove for a divisor D

with degD > 0 on an elliptic curve, l(D) = degD.

Solution. We know from section 3.5.10 that the degree of the canonical divisor

is always 2g− 2. Thus for an elliptic curve, the degree of KC is zero, meaning that

the degree of KC−D is negative. This means that l(KC−D) = 0, for the following

reason. Suppose f ∈ L(KC −D). This means that

(f) +KC −D ≥ 0.

Then we have

0 ≤ deg((f) +KC −D) = deg(f) + deg(KC −D) = deg(KC −D) < 0,

which is absurd. Thus l(KC −D) = 0. Then Riemann-Roch gives us

l(D) = degD − 1 + 1 = degD,

as desired.

Exercise 3.5.117. For a smooth curve C prove that the genus g is equal to the

dimension of the vector space L(KC).

Solution. Here our divisor D is the canonical divisor KC, which we know has

degree 2g − 2. Now,

l(KC −KC) = l(0) = 1,

since L(0) is the one-dimensional space of constant functions. Thus Riemann-Roch

l(D)− l(KC −D) = deg(D)− g + 1



278 Algebraic Geometry: A Problem Solving Approach

becomes

l(KC)− 1 = 2g − 2− g + 1,

which gives us our result.

Exercise 3.5.118. Suppose D is a divisor of degree 2g − 2 with l(D) = g.

Prove that D is linearly equivalent to the canonical divisor.

Solution. Riemann-Roch, in this case, becomes

g − l(KC −D) = 2g − 2− g + 1,

which means that

l(KC −D) = 1.

Thus there is a non-zero rational function such that

f ∈ L(KC −D)

meaning that

0 ≤ (f) +KC −D.

We have, though,

deg((f) +KC −D = 0,

which means that

0 = (f) +KC −D,

which in turn means

(f) +KC = D.

This satisfies the definition for D to be linearly equivalent to the canonical divisor

KC.

3.5.13. Associativity of the Group Law for a Cubic. As an application

of Riemann-Roch, we will finally provide a proof of associativity for the group law

on a cubic curve. Starting with a smooth cubic curve C, we must show, given any

three points P,Q,R ∈ C, that

(P +Q) +R = P + (Q+R).

Most of the following exercises will depend on the material in chapter two. We

start, though, with how we will use the Riemann-Roch theorem.

Exercise 3.5.119. Let T be a point on the smooth cubic curve C. Show that

L(T ) is one-dimensional and conclude that the only rational functions in L(T ) are

constant functions.
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Solution. The point T can be though of as a divisor on C of degree one. Since

C is a cubic, we know that its genus g is one and that its canonical divisor KC is

linearly equivalent to the zero divisor, which in turn means that l(KC − T ) = 0.

Then the Riemann-Roch theorem

l(T )− l(KC − T ) = deg(T )− g + 1

becomes

l(T ) = 1,

as desired.

Now, any constant function f has the property that

(f) + T = T ≥ 0,

which means that L(T ) contains all constant functions. Since L(T ) has just been

shown to be one-dimensional, we must have that L(T ) consists just of constant

functions.

Exercise 3.5.120. Let S and T be two points on the smooth cubic curve C.

Suppose there is a rational function f such that

(f) + T = S.

Show that S = T .

Solution. Suppose that

(f) + T = S.

Then

(f) + T = T ≥ 0,

which means that f ∈ L(T ). Thus f must be a constant function, which means

that (f) = 0, which in turn means that

S = T.

Let

S = (P +Q) +R, T = P + (Q+R).

Here the ‘ + ” refers to the cubic addition, not the divisor addition. Our goal is to

show that S = T .

Let

A = P +Q,B = Q+R.

Again, the addition is the cubic law addition. Let O denote the identity element of

the smooth cubic curve C.
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Exercise 3.5.121. Find a linear function l1(x, y, z) such that

(l1 = 0) ∩ C = {P,Q,−A}.

Here −A refers to the inverse of A with respect to the group law of the cubic.

Solution. By the definition of the group law, P , Q and −(P +Q) = −A must

be collinear, which means that there is indeed a linear function l1(x, y, z) such that

(l1 = 0) ∩ C = {P,Q,−A}.

Exercise 3.5.122. Find a linear function l2(x, y, z) such that

(l1 = 0) ∩ C = {A,O,−A}.

Solution. By the definition of the inverse for the group law for a cubic, we

know that A, O and −A are collinear. Hence there is linear function l2(x, y, z) such

that

(l2 = 0) ∩ C = {A,O,−A}.

Exercise 3.5.123. Find a rational function � such that

(�) = P +Q−A− O.

Here the addition is the addition for divisors.

Solution. Set

� =
l1
l2

Then

(�) = P +Q+ (−A)− (A+ O+ (−A)) = P +Q−A− O.

Exercise 3.5.124. Find a linear function l3(x, y, z) such that

(l3 = 0) ∩ C = {A,R,−S}.

Here −S refers to the inverse of S with respect to the group law of the cubic.

Solution. We have that S = A + R, under the group law for the cubic. By

the definition of the group law, A, R and −S must be collinear, which means that

there is indeed a linear function l3(x, y, z) such that

(l3 = 0) ∩ C = {A,R,−S}.

Exercise 3.5.125. Find a linear function l4(x, y, z) such that

(l4 = 0) ∩ C = {S,O,−S}.
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Solution. By the definition of the inverse for the group law for a cubic, we

know that S, O and −S are collinear. Hence there is linear function l4(x, y, z) such

that

(l4 = 0) ∩ C = {S,O,−S}.

Exercise 3.5.126. Find a rational function  such that

( ) = A+R− S − O.

Here the addition is the addition for divisors.

Solution. Set

 =
l3
l4

Then

( ) = A+R+ (−S)− (S + O+ (−S)) = A+R− S − O.

Exercise 3.5.127. Show that

( �) = P +Q+R− S − 2O.

Here the addition is the addition for divisors.

Solution. We have

( �) = ( )(�) = A+R− S − O+ P +Q−A− O = P +Q+R− S − 2O.

Exercise 3.5.128. Following the outline of the last six exercise, find a rational

function � so that

(�) = P +Q+R− T − 2O.

Here the addition is the addition for divisors.

Solution. By the definition of the group law, Q, R and −(Q+R) = −B must

be collinear, which means that there is a linear function m1(x, y, z) such that

(m1 = 0) ∩ C = {Q,R,−B}.

By the definition of the inverse for the group law for a cubic, we know that B,

O and −B are collinear. Hence there is linear function m2(x, y, z) such that

(m2 = 0) ∩ C = {B,O,−B}.

Set

� =
m1

m2

Then

(�) = Q+R+ (−B)− (B + O+ (−B)) = Q+R−B − O.

Here the addition is the addition for divisors.
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We have that T = P +B, under the group law for the cubic. By the definition

of the group law, P , B and −S must be collinear, which means that there is a linear

function m3(x, y, z) such that

(m3 = 0) ∩ C = {P,B,−T}.

By the definition of the inverse for the group law for a cubic, we know that T ,

O and −T are collinear. Hence there is linear function m4(x, y, z) such that

(m4 = 0) ∩ C = {T,O,−T}.

Set

� =
m3

m4

Then

(�) = P +B + (−T )− (T + O+ (−T )) = P +B − T − O.

Set

� = ��.

Then

(�) = Q+R−B − O− (P +B − T − O) = P +Q+R− T − 2O,

using the addition for divisors.

Exercise 3.5.129. Show that �
 � is a rational function such that

(
�

 �

)
+ T = S.

Solution. We have
(
�

 �

)
+ T = P +Q+R− T − 2O− (P +Q+R− S − 2O) + T = S.

Exercise 3.5.130. Put these exercises together to prove that the group law

for cubics is associative.

Solution. We have a rational function �
 � such that

(
�

 �

)
+ T = S.

But by the second exercise of this section, this means that S and T are the same

point.

Thus

(P +Q) +R = S = T = P + (Q+R).

We have associativity.
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curve!singularity3.6. Singularities and Blowing Up
Move to Chapter 4 -

Blow-ups and Rational

Maps

In Section
tansin
??, we showed that conics and some higher-order curves are smooth

and some are singular. The goal of this section is to examine singular points in

more depth. In the final section, we will learn a classical technique, called blowing

up, whose goal is to take any singular plane curve X and construct a new curve

Y (embedded in a higher dimensional space) that is closely related to X and, in a

certain sense, less singular.

3.6.1. Some Singular Plane Curves. Recall from Section
tansin
?? that a point

p = (a, b) on a curve C = {(x, y) ∈ ℂ2 : f(x, y) = 0} is a singular point of C, if

∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

A point that is not singular is called smooth. If there are no singular points on C,

the curve is called a smooth curve. If there is at least one singular point on C, the

curve is called a singular curve. Intuitively, a curve has a singularity where there

is not well-defined tangent line.

Likewise,a point p on a curve C = {(x : y : z) ∈ ℙ2 : f(x : y : z) = 0}, where
f(x : y : z) is a homogeneous polynomial, is singular if any two of ∂f∂x ,

∂f
∂y , and

∂f
∂z

vanish at the point p.

Exercise 3.6.1. Consider a polynomial P (z, w) in two complex variables with

real coefficients. Let Vℂ = {(z, w) ∈ ℂ2 : P (z, w) = 0} and its “real part” be Vℝ =

{(x, y) ∈ ℝ2 : P (x, y) = 0}. Suppose (0, 0) ∈ Vℂ. This implies that (0, 0) ∈ Vℝ.

(1) If Vℝ is singular at (0, 0), is Vℂ singular at (0, 0)?

(2) If Vℝ is nonsingular at (0, 0), is Vℂ necessarily nonsingular at (0, 0)?

Solution. The partial derivatives ∂P/∂z and ∂P/∂w are the same for points

in ℝ2 and points in ℂ2. The point (0, 0) is both in ℝ2 and in ℂ2. Thus the behavior

of the two partial derivatives must be the same, over either ℝ2 or ℂ2. Thus the

curve is smooth at (0, 0) in ℝ2 if and only if it is smooth in ℂ2, and hence singular

at (0, 0) in ℝ2 if and only if it is singular in ℂ2.

Exercise 3.6.2. Show that (0, 0) is a singular point of V(x2−y2) in ℂ2. Sketch

the curve V(x2−y2) in ℝ2, to see that at the origin there is no well-defined tangent.

Solution. Let P (x, y) = x2 − y2. First, the origin (0, 0) is on the curve since

P (0, 0) = 02 − 02 = 0.



284 Algebraic Geometry: A Problem Solving Approach

We have

∂P

∂x
= 2x

∂P

∂y
= −2y

Thus at (0, 0), both partial derivatives are zero, meaning that (0, 0) is a singular

point.

In ℝ2, the curve looks like:

x

y

Exercise 3.6.3. Show that (0 : 0 : 1) is a singular point on V(zy2 − x3) in ℙ2.

(This curve is called the cuspidal cubic. See also Exercise
realcuspidal
??.)

Solution. Let P (x, y, z) = zy2 − x3. Since

P (0, 0, 1) = 1 ⋅ 02 − 03 = 0,

we know that (0 : 0 : 1) ∈ V(zy2 − x3). Now for the partial derivatives for P :

∂P

∂x
= −3x2

∂P

∂y
= 2yz

∂P

∂z
= y2

All three of these partial derivatives are zero at the point t (0 : 0 : 1), meaning that

it is a singular point.

Exercise 3.6.4. Show that V(y2z − x3 + x2z) in ℙ2 is singular at (0 : 0 : 1).

(This curve is called the nodal cubic. See also Exercise
realnodal
??.)
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Solution. Let P (x, y, z) = y2z − x3 + x2z. Since

P (0, 0, 1) = 02 ⋅ 1− 03 + 02 ⋅ 1 = 0,

we know that (0 : 0 : 1) ∈ V(y2z− x3 + x2z). Now for the partial derivatives for P :

∂P

∂x
= −3x2 + 2xz

∂P

∂y
= 2yz

∂P

∂z
= y2 + x2

All three of these partial derivatives are zero at the point t (0 : 0 : 1), meaning that

it is a singular point.

Exercise 3.6.5. Let V be V(x4 + y4 − 1) in ℂ2.

(1) Is V singular?

(2) Homogenize V . Is the corresponding curve in ℙ2 singular?

Solution. We will show that the curve is smooth in ℂ2 and remains smooth

in ℙ2. Let P (x, y) = x4 + y4 − 1. We have that

∂P

∂x
= 4x3

∂P

∂y
= 4y3.

For there to be a singular point, we must have x = 0 and y = 0. But at the origin

P (0, 0) = 04 + 04 − 1 ∕= 0,

meaning that the origin is not on the curve. Thus the curve must be smooth in ℂ2.

Now homogenize the original curve to get

P (x, y, z) = x4 + y4 − z4.

We have

∂P

∂x
= 4x3

∂P

∂y
= 4y3

∂P

∂z
= −4z4

The only way for all three of these partial derivatives to be zero is for x = 0, y = 0

and z = 0. The projective plance ℙ2 does not contain the point (0 : 0 : 0), meaning

the curve is still in smooth in ℙ2.

Exercise 3.6.6. Let V be V(y − x3) in ℂ2.
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(1) Is V singular?

(2) Homogenize V . Is the corresponding curve in ℙ2 singular? If so, find an

affine chart of ℙ2 containing one of its singularities, and dehomogenize the

curve in that chart.

Solution. We will show that the curve is smooth in ℂ2 but is singular in ℙ2.

Let P (x, y) = y − x3. We have that

∂P

∂x
= −3x2

∂P

∂y
= 1.

Since ∂P/∂y is the constant 1, it can never be zero, meaning that the curve must

be smooth in ℂ2.

Now homogenize the original curve to get

P (x, y, z) = z2y − x3.

We have

∂P

∂x
= −3x2

∂P

∂y
= z2

∂P

∂z
= 2z2y

The only way for all three of these partial derivatives to be zero is for x = 0, y = 1

and z = 0. Since

P (0 : 1 : 0) = 02 ⋅ 1− 03 = 0,

the point (0 : 1 : 0) is on the curve, and hence is a singular point.

Dehomogenize by setting y = 1. In this coordinates patch, with coordinates

(x, z), the polynomial becomes

z2 − x3.

Its partial with respect to x is −3x2 and its partial with respect to z is 2z. Both

are zero when (0, 0), meaning that V(z2 − x3) is singular at the origin.

Exercise 3.6.7. Show that V ((x+ 3y)(x− 3y + z)) has a singularity.

Solution. Let

P (x, y, z) = (x+ 3y)(x− 3y + z)

P1(x, y, z) = (x+ 3y)

P2(x, y, z) = (x− 3y + z)
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Since P = P1P2, we have

∂P

∂x
= P2

∂P1

∂x
+ P1

∂P2

∂x
∂P

∂y
= P2

∂P1

∂y
+ P1

∂P2

∂y
.

Thus V ((x+3y)(x−3y+z)) will have a singularity at any point in the intersection

of

(P1 = 0) ∩ (P2 = 0).

Since these are straight lines, there will certainly be a point in the intersection of

x+ 3y = 0

x− 3y + z = 0,

namely (−3 : 1 : 6).

Exercise 3.6.8. Let V be V(y2z − x3 + 3xz2) in ℙ2. Is V singular?

Solution. Let

P (x, y, z) = y2z − x3 + 3xz2.

We will have that V is smooth by showing

0 = ∂P
∂x = −3x2 + 3z2

0 = ∂P
∂y = 2yz

0 = ∂P
∂z = y2 + 6xz

only for x = y = z = 0. Since (0 : 0 : 0) is not a point in ℙ2, the curve must then

be smooth.

For ∂P/∂y = 2yz = 0, we must have either y = 0 or z = 0. Start by assuming

that y = 0. Then since ∂P/∂z = y2 + 6xz = 0, we must have

6xz = 0,

forcing x = 0 or z = 0. But since ∂P/∂x = −3x2 + 3z2 = 0, if either of x or z is

zero, so must the other be. Thus if y = 0, we must also have x = z = 0.

Assume now that z = 0. Since ∂P/∂z = y2 + 6xz = 0, this means that y = 0,

and dince ∂P/∂x = −3x2 + 3z2 = 0, we must have x = 0. Thus there is no point

in ℙ2 for which the curve can be singular.

3.6.2. Blowing up. We begin this section by describing the blow-up of the

plane ℂ2 at the origin. Let

� : ℂ2 × ℙ1 −→ ℂ2

be the projection

((x, y), (u : v)) 7→ (x, y).
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Let

Ỹ = {((x, y), (x : y)) : at least one of x or y is nonzero} ⊂ ℂ2 × ℙ1.

Set

Y = Ỹ ∪ �−1((0, 0)).

Exercise 3.6.9. Verify that �−1((0, 0)) can be identified with ℙ1. Show that

the restriction of � to Ỹ is a bijection between Ỹ and ℂ2 − (0, 0). (Neither of these

are deep.)

Solution. We have that

�−1((0, 0)) = {(0, 0)× (u : v) : (u : v) ∈ ℙ1}

which can of course be thought of as ℙ1 alone.

If (x, y) ∕= (0, 0) in ℂ2, the only point in Ỹ that maps to (x, y) is

(x, y)× (x : y).

Note that since (x, y) ∕= (0, 0), the point (x : y) is indeed a point on the projective

line. Thus the map is onto.

Further, if

�((a1, b1)× (a1 : b1) = �((a2, b2)× (a2 : b2).

we must have

(a1, b1) = (a2, b2),

meaning that the map is one-to-one.

The set Y , along with the projection � : Y −→ ℂ2, is called the blow-up of

ℂ2 at the point (0, 0). (For the rest of this section, the map � will refer to the

restriction projection � : Y −→ ℂ2.)

We look at the blow up a bit more carefully. We can describe Ỹ as

Ỹ = {((x, y), (x : y)) : at least one of x or y is nonzero} ⊂ ℂ2 × ℙ1}
= {(x, y)× (u : v) ∈ ℂ2 × ℙ1 : xv = yu, (x, y) ∕= (0, 0)}

Then Y is simply

Y = {(x, y)× (u : v) ∈ ℂ2 × ℙ1 : xv = yu}.

Recall that the projective line ℙ1 can be thought of as all lines in ℂ2 containing

the origin. Thus Y is the set of all

{(points p in ℂ2)× (lines l through (0, 0)) : p ∈ l}.

The above exercise is simply a restatement that through every point p in ℂ2−(0, 0)

there is a unique line through that point and the origin.
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b p

ℂ2

More generally, if C is a curve in ℂ2 that passes through the origin, then the

there is a bijection between C− (0, 0) and the set �−1(C− (0, 0)) in Y . The blow-

up of C at the origin, denoted Bl(0,0)C, is the closure of �−1(C (0, 0)) in Y , in a

sense that will be made precise in Chapter 4, along with the restricted projection

map:

Bl(0,0)C = Closure of �−1(C (0, 0)).

Intuitively, �−1(C (0, 0)) resembles a punctured copy of C in ℂ2×ℙ1, and there

is an obvious way to complete this punctured curve. If the origin is a smooth point

of C, then the blow-up at the origin is simply a copy of C. If the origin is a singular

point, then the blow-up contains information about how the tangents to C behave

near the origin.

We want to look carefully at an example. Consider C = V(xy) in ℂ2. Here we

are interested in the zero locus of xy = 0,

C = V(xy)
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or, in other words, the x-axis (when y = 0) union the y-axis (when y = 0). We

will show in two ways that the blow up of C has two pointsover the origin (0, 0):

(0, 0)× (0 : 1) and (0, 0)× (1 : 0), which correspond to the x-axis and the y-axis.

Let P (x, y) = xy. We know that � is a bijection away from the origin. We have

that

�−1(C− (0, 0) = {(x, y)× (x : y) : xy = 0, (x, y) ∕= (0, 0)}.

We know that

C = V(xy) = V(x) ∪V(y).

We will show that there is one point over the origin of the blow-up of V(x) and one

point (a different point) over the origin of the blow-up of V(xy).

We have

�−1(V(x)− (0, 0)) = {(x, y)× (0 : y) : 0 = x, (x, y) ∕= (0, 0)}
= {(0, y)× (0 : y) : y ∕= 0}
= {(0, y)× (0 : 1) : y ∕= 0}

Then as y → 0, we have

(0, y)× (0 : 1) → (0, 0)× (0 : 1),

a single point as desired, corresponding to the y-axis.

Similarly, we have

�−1(V(y)− (0, 0)) = {(x, y)× (x : 0) : y =, (x, y) ∕= (0, 0)}
= {(x, 0)× (x : 0) : x ∕= 0}
= {(x, 0)× (1 : 0) : x ∕= 0}

Then as x→ 0, we have

(x, 0)× (1 : 0) → (0, 0)× (1 : 0),

a single, different point, again as desired, corresponding to the x- axis.

Now for a slightly different way of thinking of the blow-up. The projective line

can be covered by two copies of C, namely by (u : 1) and (1 : v). For any point

(u : v) ∈ ℙ1, at least one of u or v cannot be zero. If u ∕= 0, then we have

(u : v) = (1 : v/u)

while if v ∕= 0, we have

(u : v) = (u/v : 1).

In either case, we can assume that u = 1 or that v = 1.
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Start with u = 1. We can identify (x, y)× (1 : v) with ℂ3, having coordinates

x, y, v. Then the blow-up of V(xy) will be the closure of

xy = 0

y = xv

(x, y) = (0, 0).

Plugging xv for y into the top equation, we have

x2v = 0.

Since x ∕= 0, we can divide through by x to get

v = 0.

Then we have as our curve (x, xv) × (1 : 0) = (x, 0) × (1 : 0). Then as x → 0, we

have

(x, 0)× (1 : 0) → (0, 0)× (1 : 0),

Now let v = 1. We can identify (x, y) × (u : 1) with ℂ3, having coordinates

x, y, u. Then the blow-up of V(xy) will be the closure of

xy = 0

yu = x

(x, y) = (0, 0).

Plugging yu for x into the top equation, we have

y2u = 0.

Since y ∕= 0, we can divide through by y to get

u = 0.

Then we have as our curve (yu, y) × (0 : 1) = (0, y) × (0 : 1). Then as y → 0, we

have

(0, y)× (0 : 1) → (0, 0)× (0 : 1),

In either case, the blow-up looks like
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x
y

z

Each of these techniques will be needed for various of the following problems.

Exercise 3.6.10. Let C = V(y − x2) in ℂ2. Show that this curve is smooth.

Sketch this curve in ℂ2. Sketch a picture of Bl(0,0)C. Show that the blow-up

projects bijectively to C.

Solution. Let P (x, y) = y − x2. We have

∂P

∂x
= −2x

∂P

∂y
= 1.

Since ∂P/∂y is never zero, this must be a smooth curve.

We have that

�−1(C− (0, 0)) = {(x, y)× (x : y) : y = x2, (x, y) ∕= (0, 0)}
= {(x, x2)× (x : x2) : x ∕= 0}
= {(x, x2)× (1 : x) : x ∕= 0}

We know that � is a bijection away from the origin. Thus we must show that

there is only one point in the blow-up over the origin (0, 0). As x→ 0, we have

(x, x2)× (1 : x) → (0, 0)× (1 : 0),
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a single point as desired.

The original curve, in ℝ2, looks like:

x

y

The blow-up looks like:

x

y

z



294 Algebraic Geometry: A Problem Solving Approach

x

y

z

x y

z

C1 Exercise 3.6.11. Let C = V(x2−y2) in ℂ2. Show that this curve has a singular

point at the origin. Sketch this curve in ℂ2. Blow up C at the origin, showing that

there are two points over the origin, and then sketch a picture of the blow up.
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Solution. Let P (x, y) = x2 − y2. We have

∂P

∂x
= 2x

∂P

∂y
= −2y.

Since both of these partials are zero at the origin, the origin must be a singular

point.

We know that � is a bijection away from the origin. We have that

�−1(C− (0, 0) = {(x, y)× (x : y) : x2 = x2, (x, y) ∕= (0, 0)}.

We know that x2 − y2 = (x− y)(x+ y) and thus that

C = V(x2 − y2) = V(x− y) ∪V(x+ y).

We will show that there is one point over the origin of the blow-up of V(x− y) and

one point (a different point) over the origin of the blow-up of V(x+ y).

We have

�−1(V(x− y)− (0, 0)) = {(x, y)× (x : y) : y = x, (x, y) ∕= (0, 0)}
= {(x, x)× (x : x) : x ∕= 0}
= {(x, x)× (1 : 1) : x ∕= 0}

Then as x→ 0, we have

(x, x)× (1 : 1) → (0, 0)× (1 : 0),

a single point as desired.

Similarly, we have

�−1(V(x+ y)− (0, 0)) = {(x, y)× (x : y) : y = −x, (x, y) ∕= (0, 0)}
= {(x,−x)× (x : −x) : x ∕= 0}
= {(x, x)× (1 : −1) : x ∕= 0}

Then as x→ 0, we have

(x,−x)× (1 : −1) → (0, 0)× (1 : −1),

a single, different point, again as desired.

The original curve, in ℝ2, looks like:
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x

y

The blow-up looks like:

x

y

z
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x

y

The blow-up looks like:

x

y

z

Exercise 3.6.12. Let C = V(y2−x3+x2). Show that this curve has a singular

point at the origin. Sketch this curve in ℂ2. Blow up C at the origin, and sketch a

picture of the blow up. Show that there are two points over the origin.
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Solution. Let P (x, y) = y2 − x3 + x2. We have

∂P

∂x
= −3x2 + 2x

∂P

∂y
= 2y.

Since both of these partials are zero at the origin, the origin must be a singular

point.

Now to consider

�−1(C− (0, 0) = {(x, y)× (x : y) : y2 = x3 − x2, (x, y) ∕= (0, 0)}
= {(x, y)× (u : v)) : xv = uy, y2 = x3 − x2, (x, y) ∕= (0, 0)}

Here we need to look at when u = 1 and at when v = 1. Set u = 1. Then we

are interested in when

xv = y

y2 = x3 − x2

(x, y) ∕= (0, 0).

Thus we can replace the y in the second equation by xv, to get

x2v2 = x3 − x2.

Since x ∕= 0, we can divide through by x to get

v2 = x− 1.

As x→ 0, we get

v → ±1.

Thus when u = 1, there are two points in the blow-up over the origin: (0, 0)×(1 : 1)

and (0, 0)× (1 : −1).

Now let v = 1. Then we have

x = yu

y2 = x3 − x2

(x, y) ∕= (0, 0).

The second equation becomes

y2 = y3u3 − y2u2.

Since y ∕= 0, we can cancel, to get

1 = yu3 − u2.
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Let y → 0. Then we have

1 = u2

or u = ±1. Thus when v = 1, there are two points in the blow-up over the origin:

(0, 0) × (1 : 1) and (0, 0) × (−1 : 1), which are exactly the same two points found

for when u = 1.

The original curve, in ℝ2, looks like:

x

y

The blow-up looks like:

b

b

x

y

z
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Exercise 3.6.13. Let C = V(y2 − x3). Show that this curve has a singular

point at the origin. Sketch this curve in ℂ2. Blow up C at the origin, and sketch a

picture of the blow up. Show that there is only one point over the origin.

Solution. Let P (x, y) = y2 − x3. We have

∂P

∂x
= −3x2

∂P

∂y
= 2y.

Since both of these partials are zero at the origin, the origin must be a singular

point.

Now to consider

�−1(C− (0, 0) = {(x, y)× (x : y) : y2 = x3, (x, y) ∕= (0, 0)}
= {(x, y)× (u : v)) : xv = uy, y2 = x3, (x, y) ∕= (0, 0)}

Here we need to look at when u = 1 and at when v = 1. Set u = 1. Then we

are interested in when

xv = y

y2 = x3

(x, y) ∕= (0, 0)

Thus we can replace the y in the second equation by xv, to get

x2v2 = x3.

Since x ∕= 0, we can divide through by x to get

v2 = x.

As x→ 0, we get

v → 0.

Thus when u = 1, there is only the point (0, 0) × (1 : 0)in the blow-up over the

origin.

Now let v = 1. Then we have

x = yu

y2 = x3

(x, y) ∕= (0, 0)

The second equation becomes

y2 = y3u3.
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Since y ∕= 0, we can cancel, to get

1 = yu3.

Let y → 0. There is no value of u that can satisfy 1 = 0 ⋅ u3. Thus when v = 1,

there are no points in the blow-up over the origin.

The original curve, in ℝ2, looks like:

x

y

The blow-up looks like:

x

y

z

Exercise 3.6.14. Let C = V((x − y)(x + y)(x + 2y)) be a curve in ℂ2. Show

that this curve has a singular point at the origin. Sketch this curve in ℂ2. Blow
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up C at the origin, and sketch a picture of the blow up. Show that there are three

points over the origin.

Solution. Let P (x, y) = (x − y)(x+ y)(x+ 2y) = x3 + 2x2y − xy2 − y3. We

have

∂P

∂x
= 3x2 + 4xy − y2

∂P

∂y
= 2x2 − 2xy − 3y2.

Since both of these partials are zero at the origin, the origin must be a singular

point.

We know that � is a bijection away from the origin. We have that

�−1(C− (0, 0){(x, y)× (x : y) : (x− y)(x+ y)(x+ 2y) = 0, (x, y) ∕= (0, 0)}.

We know that

C = V(x2 − y2) = V(x− y) ∪V(x+ y) ∪V(x+ 2y).

We will show that there is one point over the origin of the blow-up of V(x− y), one
point (a different point) over the origin of the blow-up of V(x+y) and still another

point over the origin for V(x+ 2y)

We have

�−1(V(x− y)− (0, 0)) = {(x, y)× (x : y) : y = x, (x, y) ∕= (0, 0)}
= {(x, x)× (x : x) : x ∕= 0}
= {(x, x)× (1 : 1) : x ∕= 0}

Then as x→ 0, we have

(x, x)× (1 : 1) → (0, 0)× (1 : 0),

a single point as desired.

Similarly, we have

�−1(V(x+ y)− (0, 0)) = {(x, y)× (x : y) : y = −x, (x, y) ∕= (0, 0)}
= {(x,−x)× (x : −x) : x ∕= 0}
= {(x, x)× (1 : −1) : x ∕= 0}

Then as x→ 0, we have

(x,−x)× (1 : −1) → (0, 0)× (1 : −1),

a single, different point, again as desired.
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Finally, we have

�−1(V(x+ 2y)− (0, 0)) = {(x, y)× (x : y) : y = −2x, (x, y) ∕= (0, 0)}
= {(x,−2x)× (x : −2x) : x ∕= 0}
= {(x,−2x)× (1 : −2) : x ∕= 0}

Then as x→ 0, we have

(x,−2x)× (1 : −2) → (0, 0)× (1 : −2),

giving us our desired third point.

The original curve, in ℝ2, looks like:

x

y

The blow-up looks like:
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x

y

z

The previous exercises should convey the idea that if the original curve is sin-

gular at the origin, then the blow-up seems to be less singular at its point over the

origin. We currently can’t express precisely what this means, since our definition

of singularity applies only to curves in the plane, and the blow-up does not lie in

a plane. Algebraic ideas developed in Chapter 4 will allow us to make this idea

precise.

Of course, there is nothing special about the origin in affine space, and we could

just as easily blow up curves at any other point. Also, the definition of blowing up

can easily be extended to curves in projective spaces. Blowing up will be discussed

in full generality in Chapter 4, once we have the necessary algebraic tools.



CHAPTER 4

Affine Varieties

Complied on February

4, 2010The goal of this chapter is to start using more algebraic concepts to describe the

geometry of curves and surfaces in a fairly concrete setting. We will translate the

geometric features into the language of ring theory, which can then be extended to

encompass curves and surfaces defined over objects besides the real numbers or the

complex numbers. You will need to know some basic facts about rings, including

ideals, prime ideals, maximal ideals, sub-rings, quotient rings, ring homomorphisms,

ring isomorphisms, integral domains, fields, and local rings. Most undergraduate

abstract algebra texts include this material, and can be used as a reference. In

addition, some concepts from topology and multivariable calculus are needed. We

have tried to include just enough of these topics to be able to work the problems.

By considering the set of points where a polynomial vanishes, we can see there is

a correspondence between the algebraic concept of a polynomial and the geometric

concept of points in the space. This chapter is devoted to understanding that

connection. Here tools from abstract algebra, especially commutative ring theory,

will be become key.

Definition 4.0.1. For a field k, the affine n-space over k is the set

An(k) = {(a1, a2, . . . , an) : ai ∈ k for i = 1, . . . , n}.

We write simply An when the field k is understood.

For example, A2(ℝ) is the familiar Euclidean space ℝ2 from calculus, and A1(ℂ)

is the complex line. We are interested in subsets of An that are the zero sets of a

collection of polynomials over k.

4.1. Zero Sets of Polynomials

Recall that k[x1, x2, . . . , xn] is the commutative ring of all polynomials in the

variables x1, x2, . . . , xn with coefficients in the field k. Frequently for us, our field

will be the complex numbers ℂ, with the field of the real numbers ℝ being our

second most common field.
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4.1.1. Over ℂ.

Exercise 4.1.1. Describe or sketch the zero set of each polynomial over ℂ.

i. {x2 + 1}
ii. {y − x2}

Exercise 4.1.2. i. Show that the zero set of x2 + y2 − 1 in ℂ2 is un-

bounded. Contrast with the zero set of x2 + y2 − 1 in ℝ2.

ii. Show that the zero set of any nonconstant polynomial in two variables

over ℂ is unbounded.

Exercise 4.1.3. Find a set of polynomials {P1, . . . , Pn}, all of whose coeffi-

cients are real numbers, whose common zero set is the given set.

i. {(3, y) : y ∈ ℝ} in ℝ2

ii. {(1, 2)} in ℝ2

iii. {(1, 2), (0, 5)} in ℝ2

iv. Generalize the method from part ii. to any finite set of points {a1, . . . , an}
in ℝ2.

Exercise 4.1.4. Find a set of polynomials {P1, . . . , Pn}, all of whose coeffi-

cients are complex numbers, whose common zero set is the given set.

i. {(3 + 2i,−i)} in ℂ2

ii. {(3 + 2i,−i), (0, 1− 4i)} in ℂ2

iii. Generalize the method from part ii. to any finite set of points {b1, . . . , bn}
in ℂ2.

Exercise 4.1.5. i. Is any finite subset of ℂ2 the zero set of a polynomial

ℂ[x, y]? Prove or find a counterexample.

ii. Is there an infinite subset of ℂ2 that is the common zero set of a finite

collection of polynomials in ℂ[x, y]?

iii. Find an infinite set of points in ℂ that is not the common zero set of a

finite collection of polynomials in ℂ[x]?

iv. Is there any infinite set of points in ℂ, besides ℂ itself, that is the common

zero set of a finite collection of polynomials in ℂ[x]?

4.1.2. Over ℤ5.

Exercise 4.1.6. Find the zero set of each polynomial in ℤ5.

a. x2 + 1

b. x2 − 2

Exercise 4.1.7. Sketch the zero set of each polynomial in A2(ℤ5).

a. y − x2
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b. y2 − 2xy + x2

c. xy − 3y − x2 + 3x

4.1.3. Over Any Field k. Much of the reason that modern algebraic geome-

try heavily influences not just geometry but also number theory is that we can allow

our coefficients to be in any field, even those for which no geometry is immediately

apparent.

Exercise 4.1.8. i. Show that if k is an infinite field, and P ∈ k[x1, . . . , xn]

is a polynomial whose zero set is An(k), then P = 0. Hint: Use induction

on n.

ii. Is there any finite field for which this result holds?

4.2. Algebraic Sets

The zero sets of polynomials in affine space are called algebraic sets.

Definition 4.2.1. Let S ⊆ k[x1, . . . , xn] be a set of polynomials over k. The

algebraic set defined by S is

V (S) = {(a1, a2, . . . , an) ∈ An(k) : P (a1, a2, . . . , an) = 0 for all P ∈ S}.

Exercise 4.2.1. Sketch the algebraic sets.

a. V (x3 + 1) in A1(ℂ)

b. V ((y − x2)(y2 − x)) in A2(ℝ)

c. V (y − x2, y2 − x) in A2(ℝ)

d. V (y2 − x3 + x) in A2(ℝ)

e. V (x− 2y + 3z) in A3(ℝ)

f. V (z − 3, z − x2 − y2) in A3(ℝ)

g. V (xy − z2y) = V (y(x− z2)) in A3(ℝ)

h. V (y − x+ x2) in A2(ℤ3)

Exercise 4.2.2. Algebraic Sets in ℝn and ℂn:

(1) Show that for any a ∈ ℝ, the singleton {a} is an algebraic set.

(2) Show that any finite collection of numbers {a1, a2, . . . , ak} in ℝ is an

algebraic set.

(3) Show that a circle ℝ2 is an algebraic set.

(4) Show that the set {(−1/
√
2, 1/

√
2), (1/

√
2,−1/

√
2)} ⊂ ℝ2 is an algebraic

set.

(5) Show that any line in ℝ3 is an algebraic set.

(6) Give an example of a subset of ℂ2 that is not an algebraic set.

(7) Give an example of a nonconstant polynomial P in ℝ[x, y] such that the

algebraic set X = {(x, y) ∈ ℝ2∣P (x, y) = 0} is the empty set.
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(8) Is there a nonconstant polynomial P in ℂ[x, y] such that the algebraic set

X = {(x, y) ∈ ℂ2∣P (x, y) = 0} is the empty set? Explain why or why not.

(9) Suppose X1 = {(x, y) ∈ ℂ2∣x+ y = 0} and X1 = {(x, y) ∈ ℂ2∣x− y = 0}.
Find a polynomial Q ∈ ℂ[x, y] such that X1∪X2 = {(x, y) ∈ ℂ2∣Q(x, y) =

0}.
(10) Suppose X1 = {(x1, x2, . . . , xn) ∈ ℂn∣P1(x1, x2, . . . , xn) = 0} and X2 =

{(x1, x2, . . . , xn) ∈ ℂn∣P2(x1, x2, . . . , xn) = 0}. Give a single polynomial

Q such that X1 ∪X2 = {(x1, x2, . . . , xn) ∈ ℂn∣Q(x1, x2, . . . , xn) = 0}.

Exercise 4.2.3. a. Is any finite subset of A2(ℝ) an algebraic set?

b. Is any finite subset of A2(ℂ) an algebraic set?

Exercise 4.2.4. Show that the set {(x, y) ∈ A2(ℝ) :: 0 ≤ x ≤ 1, y = 0} is

not an algebraic set. (Hint: any one-variable polynomial, that is not the zero

polynomial, can only have a finite number of roots.)

emptyset and Aˆn Exercise 4.2.5. Show that the empty set and An(k) are algebraic sets in

An(k).

unions and intersections Exercise 4.2.6. Show that if X = V (f1, . . . , fs) and W = V (g1, . . . , gt) are

algebraic sets in An(k), then X ∪W and X ∩W are algebraic sets in An(k).

4.3. Zero Sets via V (I)

The goal of this section is to start to see how ideals in rings give us algebraic sets.

Exercise 4.3.1. Let f(x, y), g(x, y) ∈ ℂ[x, y]. Show that

V (f, g) = V (f − g, f + g).

Exercise 4.3.2. Show that V (x+y, x−y, 2x+y2, x+xy+y3, y+x2y) = V (x, y).

Thus the polynomials that define a zero set are far from being unique. But

there is an algebraic object that comes close to be uniquely linked to a zero set.

The following exercise is key to algebraic geometry.

Exercise 4.3.3. Let I be the ideal in k[x1, . . . , xn] generated by a set S ⊂
k[x1, . . . , xn]. Show that V (S) = V (I). Thus every algebraic set is defined by an

ideal.

While it is not quite true that the set V (I) uniquely determines the ideal I, we

will soon see how to restrict our class of ideas so that the associated ideal will be

unique.

Exercise 4.3.4. For f(x, y, z), g(x, y, z) ∈ ℂ[x, y, z], let I be the ideal generated
by f and g and let J be the ideal generated by f alone.
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i. Show that J ⊂ I.

ii. Show that

V (I) ⊂ V (J).

Exercise 4.3.5. Show that if I and J are ideals in k[x1, . . . , xn] with I ⊂ J ,

then V (I) ⊃ V (J).

Exercise 4.3.6. You may find exercise
unions and intersections
4.2.6 useful here.

i. Show that an arbitrary intersection of algebraic sets is an algebraic set.

ii. Show that a finite union of algebraic sets is an algebraic set.

ii. Use your answers to parts a. and b. and exercise
emptyset and Aˆn
4.2.5 to conclude that

the collection of complements of algebraic sets forms a topology on An(k).

4.3.1. Ideals Associated to Zero Sets.

Definition 4.3.1. Let V be a an algebraic set in An(k). The ideal of V is

given by

I(V ) = {P ∈ k[x1, . . . , xn] : P (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

Similarly, for any set of points X in An(k), we define

I(X) = {P ∈ k[x1, . . . , xn] : P (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}.

Exercise 4.3.7. Show that I(V ) is an ideal in the ring k[x1, . . . , xn].

Exercise 4.3.8. Let X be a set of points in An(k).

i. Show that X ⊆ V (I(X)).

ii. Find a set X with X ∕= V (I(X)).

iii. In part b., can you find a set X such that I(X) ∕= ⟨0⟩?
iv. Show that if X is an algebraic set, then X = V (I(X)).

Exercise 4.3.9. Let I be an ideal in k[x1, . . . , xn].

a. Show that I ⊆ I(V (I)).

b. Find an ideal I with I ∕= I(V (I)).

c. In part b.., can you find an ideal I such that V (I) ∕= ∅?
d. Show that if I is the ideal given by an algebraic set, then I = I(V (I)).

Definition 4.3.2. Let I be an ideal in k[x1, . . . , xn]. The radical of I is defined

as

Rad(I) = {P ∈ k[x1, . . . , xn] : P
m ∈ I for some m > 0}.

An ideal I is called a radical ideal if I = Rad(I).

Exercise 4.3.10. Let f(x, y) = (x2 − y + 3)2 ∈ ℂ[x, y]. Show that the ideal I

generated by f is not radical. Find Rad(I).
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Exercise 4.3.11. Let f(x, y) = x2 + y2 − 1 ∈ ℂ[x, y]. Show that the ideal I

generated by f is radical.

Exercise 4.3.12. Let I be an ideal in k[x1, . . . , xn]. Show that Rad(I) is an

ideal.

Thus for any algebraic set X, there is the uniquely defined associated radical

ideal.

Exercise 4.3.13. Let X be a set of points in An(k). Show that I(X) is a

radical ideal.

Exercise 4.3.14. Show that Rad(I) ⊂ I(V (I)) for any ideal I in k[x1, . . . , xn].

Exercise 4.3.15. Let X and W be algebraic sets in An(k). Show that X ⊂W

if and only if I(X) ⊃ I(W ). Conclude that X =W if and only if I(X) = I(W ).

4.4. Functions on Zero Sets and the Coordinate Ring

One of the themes in 20th century mathematics is that it is not clear what

is more important in geometry: the actual geometric point set or the space of

functions defined on the geometric point set. So far in this chapter, we have been

concentrating on the point set. We now turn to the functions on the point sets.

Let V ⊆ An(k) be an algebraic set. Then it is very natural to consider the set

O(V ) := {f : V → k ∣ f is a polynomial function}.

Exercise 4.4.1. Show that if we equip k[V ] with pointwise addition and mul-

tiplication of functions, then k[V ] is a ring. We will call k[V ] the coordinate ring

associated to V .

Given an algebraic set V , recall that by I(V ) we mean the vanishing ideal of

V , i.e. the ideal in k[x1, . . . , xn] consisting of polynomial functions f that satisfy

f(V ) = 0 for all x̄ ∈ V .

Exercise 4.4.2. Let f(x, y) = x2 + y2 − 1 ∈ ℂ[x, y]. Consider the two polyno-

mials g(x, y) = y, ℎ(x, y) = x2 + y2 + y − 1.

i. Find a point (a, b) ∈ A2(ℂ) such that

g(a, b) ∕= ℎ(a, b).

ii. Show for any point (a, b) ∈ V (f) that

g(a, b) = ℎ(a, b).

Thus g and ℎ are different as functions on A2(ℂ) but should be viewed as equal on

algebraic set V (I).
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Exercise 4.4.3. Let f(x, y) = x2+y2−1 ∈ ℂ[x, y]. Suppose that g, ℎ ∈ ℂ[x, y]
such that for all (a, b) ∈ V (f) we have g(a, b) = ℎ(a, b). Show that the polynomial

g(x, y)− ℎ(x, y) ∈< x2 + y2 − 1 > .

Exercise 4.4.4. Let V be an algebraic set in An(k). Prove that O(V ) is ring-

isomorphic to k[x1, . . . , xn]/I(V ). (Here we are using that two functions should be

viewed as equal if they agree on all points of the domain.)

Exercise 4.4.5. Let V ⊆ kn be an algebraic set. Prove that there is one-to-one

correspondence from the set of all ideals of k[x1, . . . , xn]/I(V ) onto the set of all

ideals of k[x1, . . . , xn] containing I(V ).

Exercise 4.4.6. Let V ⊆ kn and W ⊆ km be algebraic sets.

(1) Let f : V → W be a polynomial map, and define � : k[W ] → k[V ] by

�(g) = g ∘ f . Show that � is a k-algebra homomorphism.

(2) Show that for each k-algebra homomorphism � : k[W ] → k[V ] there exists

a polynomial map f : V →W such that �(g) = g ∘ f , for all g ∈ k[W ].

4.5. Hilbert Basis Theorem

The goal of this section is prove the Hilbert Basis Theorem, which has as a conse-

quence that every ideal in ℂ[x1, . . . , xn is finitely generated.

How many polynomials are needed to define an algebraic set V ⊂ ℂn? Is there

a finite number of polynomials f1, f2, . . . , fm such that

V = {a ∈ ℂn : fi(a) = 0, for all1 ≤ i ≤ m},

or are there times that we would need an infinite number of defining polynomials?

By:

Exercise 4.5.1. Let V = (x2 + y2 − 1 = 0). Show that I(V ) contains an

infinite number of elements.

We know that there are an infinite number of possible defining polynomials,

but do we need all of them to define V . In the above exercise, all we need is the

single x2 + y2 − 1 to define the entire algebraic set. If there are times when we

need an infinite number of defining polynomials, then algebraic geometry would be

extremely hard. Luckily, the Hilbert Basis Theorem has as its core that we only

need a finite set of polynomials to generate any ideal. The rest of this section will

be pure algebra.

Recall that a (commutative) ring R is said to be Noetherian if every ideal

I in R is finitely generated. (Recall that all rings considered in this book are

commutative.)
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Exercise 4.5.2. Show that every field and every principal ideal domain are

Noetherian.

Exercise 4.5.3. Let R be a ring. Prove that the following three conditions are

equivalent:

(1) R is Noetherian.

(2) Every ascending chain I1 ⊆ I2 ⊆ ⋅ ⋅ ⋅ ⊆ In ⊆ ⋅ ⋅ ⋅ of ideals in R is stationary,

i.e., there exists N such that for all n ≥ N , In = IN .

(3) Every nonempty set of ideals in R has a maximal element (with inclusion

being the ordering between ideals).

In what follows, we guide the reader through a proof of the Hilbert Basis

Theorem.

Theorem 4.5.4 (Hilbert Basis Theorem). If R is Noetherian, so is R[x].

Exercise 4.5.5. Consider the polynomial ring R[x], where R is a Noetherian

ring. If I ⊆ R[x] is an ideal and n ∈ ℕ, let In be the set of leading coefficients of

elements of I of degree n. Prove that In is an ideal in R.

Exercise 4.5.6. Consider the polynomial ring R[X], where R is a Noetherian

ring. Show that any ideal I ⊆ R[X] is finitely generated.

The previous exercise establishes the following

Theorem 4.5.7 (Hilbert Basis Theorem). If R is a Noetherian ring then R[x]

is also a Noetherian ring.

Sketch of proof. Let I ⊂ R[x] be an ideal of R[x]. We show I is finitely generated.

Step 1. Let f1 be a nonzero element of least degree in I.

Step 2. For i > 1, let fi be an element of least degree in I ∖ {f1, . . . , fi−1}, if
possible.

Step 3. For each i, write fi = aix
di + lower order terms. That is, let ai be the

leading coefficient of fi. Set J = (a1, a2, . . .).

Step 4. Since R is noetherian, J = (a1, . . . , am) for some m.

Step 5. Claim that I = (f1, . . . , fm). If not, there is an fm+1, and we can subtract

off its leading term using elements of (f1, . . . , fm) to get a contradiction.

Exercise 4.5.8. Justify Step 4 in the above proof sketch.

Exercise 4.5.9. Fill in the details of Step 5.

Exercise 4.5.10. Show that if R is noetherian then R[x1, . . . , xn] is noetherian.

Exercise 4.5.11. Let R be a Noetherian ring. Prove that the formal power

series ring R[[x]] is also Noetherian.
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Exercise 4.5.12. Let R be a ring all of whose prime ideals are finitely gener-

ated. Prove that R is Noetherian.

4.6. Hilbert Nullstellensatz

The goal of this section is to guide the reader through a proof of Hilbert’s Null-

stellensatz. Hilbert’s Nullstellensatz show there is a one-to correspondence between

algebraic sets in ℂn and radical ideals.

(This section is based on Arrondo’s “Another Elementary Proof of the Null-

stellensatz,” which appeared in the American Mathematical Monthly on February

of 2006.)

We know, given any ideal I ⊂ ℂ[x1, x2, . . . , xn], that

V (I) = V (
√
I).

But can there be some other ideal J ⊂ ℂ[x1, x2, . . . , xn], with V (J) = V (I) but√
I ∕=

√
J? The punch line for this section is that this is impossible.

Exercise 4.6.1. Prove that there exist �1, . . . , �4 ∈ ℂ such that the coefficient

of x24 in f(x1 + �1xn, . . . , xn−1 + �n−1xn, xn) is nonzero, where f(x1, x2, x3, x4) =

x1x2 + x3x4.

Exercise 4.6.2. Let F be an infinite field and f be a nonconstant polynomial

in F [x1, . . . , xn] (with n ≥ 2). Prove that there exist �1, . . . , �n in F such that the

coefficient of xdn in f(x1 + �1xn, . . . , xn−1 + �n−1xn, xn) is nonzero, whenever d is

the total degree of f(x1 + �1xn, . . . , xn−1 + �n−1xn, xn).

Exercise 4.6.3. Let I ⊂ ℂ[x1, . . . , x4] be an ideal containing the polynomial

f(x1, x2, x3, x4) = x1x2 + x3x4. Prove that, up to a change of coordinates and

scaling, I contains a polynomial g monic in the variable x4. (By monic, we mean

that the coefficient of the highest power for xn is one.)

Exercise 4.6.4. Let I be a proper ideal of F [x1, . . . , xn]. Prove that, up to a

change of coordinates and scaling, I contains a polynomial g monic in the variable

xn.

Exercise 4.6.5. Let I be a proper ideal of F [x1, . . . , xn] and let I ′ be the set

of all polynomials in I that do not contain the indeterminate xn. Prove that I ′ is

an ideal of F [x1, . . . , xn−1] and that, modulo a change of coordinates and scaling

(as in the previous exercise), the ideal I ′ is a proper ideal.

Exercise 4.6.6. Let I be an ideal of F [x1, . . . , xn] and let g ∈ I be a polynomial

monic in the variable xn. Suppose there exists f ∈ I such that f(a1, . . . , an−1, xn) =
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1. Let R be the resultant of f and g with respect to the variable xn, i.e. let R be

the polynomial in F [x1, . . . , xn−1] given by the determinant

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 ⋅ ⋅ ⋅ fd 0 0 ⋅ ⋅ ⋅ 0

0 f0 ⋅ ⋅ ⋅ fd−1 fd 0 ⋅ ⋅ ⋅ 0

. . .

0 ⋅ ⋅ ⋅ 0 f0 f1 ⋅ ⋅ ⋅ fd−1 fd

g0 g1 ⋅ ⋅ ⋅ ge−1 1 0 ⋅ ⋅ ⋅ 0

0 g0 ⋅ ⋅ ⋅ ge−2 ge−1 1 0 . . . 0

. . .
. . .

0 ⋅ ⋅ ⋅ 0 g0 g1 ⋅ ⋅ ⋅ ge−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where f = f0+f1xn+⋅ ⋅ ⋅+fdxdn with all the fi in F [x1, . . . , xn−1], f1(a1, . . . , an−1) =

⋅ ⋅ ⋅ = fd(a1, . . . , an−1) = 0, f0(a1, . . . , an−1) = 1, and g = g0+g1xn+⋅ ⋅ ⋅ ge−1x
e−1
n +

xen with all the gj in F [x1, . . . , xn−1]. Show that (under the current faulty hypothe-

ses)

(1) R ∈ I;

(2) R ∈ I ′;

(3) R(a1, . . . , an−1) = 1.
The resultant is

defined in a previous

section.
Exercise 4.6.7. Let I be a proper ideal of F [x1, . . . , xn]. Prove that, modulo

a change of coordinates and scaling, the set

J := {f(a1, . . . , an−1, xn) ∣ f ∈ I}

is a proper ideal of F [xn].

Exercise 4.6.8. Let I be a proper ideal of F [x1, . . . , xn]. Prove that if F is

algebraically closed, then there exists (a1, . . . , an) in F
n such that f(a1, . . . , an) = 0

for all f ∈ I.

Exercise 4.6.9 (Weak Nullstellensatz). Let F be an algebraically closed field.

Then an ideal I in F [x1, . . . , xn] is maximal if and only if there are elements ai ∈ F

such that I is the ideal generated by the elements xi − ai; that is I = ⟨x1 −
a1, . . . , xn − an⟩.

Recall that an ideal I of a ring R is said to be a radical ideal if xn ∈ I for some

n ≥ 1 implies that x ∈ I. Given an arbitrary ideal I of a ring R, the radical
√
I of

I is the set of all elements x ∈ R such that some positive power of x is in I.

Exercise 4.6.10. Given a ring R and an ideal I of R, prove that the radical√
I of I is an ideal.
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Exercise 4.6.11. Let F be a field, and let V be an algebraic set in Fn for

some n ≥ 1. Prove that I(V ) is a radical ideal in the polynomial ring F [x1, . . . , xn].

Moreover, prove that V (I(V )) = A for any algebraic set A. (By V (I) we mean the

vanishing set of I.)

Exercise 4.6.12. Give an example where
√
I ⊈ I(V (

√
I)), where V (J) denotes

the vanishing set of J .

Exercise 4.6.13 (Strong Nullstellensatz). Let F be an algebraically closed field

and let I be an ideal of the polynomial ring F [x1, . . . , xn]. Then I(V (I)) =
√
I.

4.7. Variety as Irreducible: Prime Ideals

The goal of this section is to define affine varieties and to explore their topology

and coordinate rings.

4.7.1. Irreducible components. An algebraic set V is reducible if V = V1∪
V2, where V1 and V2 are algebraic sets with V1 ⊊ V and V2 ⊊ V . An algebraic set

that is not reducible is said to be irreducible. An affine variety is an irreducible

algebraic set.

4.9:Irreducible:EX-A1 is irreducible Exercise 4.7.1. Show that A1 is irreducible, so A1 is an affine variety.

4.9:Irreducible:EX-nondegenerate conic is irreducible Exercise 4.7.2. Decide if the following algebraic sets in A2 are reducible or

irreducible.

(1) V (x)

(2) V (x+ y)

(3) V (xy)

4.9:Irreducible:EX-V(reducible) is reducible Exercise 4.7.3. Let f ∈ k[x, y] and set V = V (f). Show that if f factors as a

product f = gℎ of nonconstant polynomials g, ℎ ∈ k[x, y], then V is reducible.

4.7.2. Prime and non-prime ideals. A proper ideal I ⊂ R is a prime ideal

in R if, whenever ab ∈ I for a, b ∈ R, either a ∈ I or b ∈ I (or both). A proper ideal

I ⊂ R is a maximal ideal in R if I ⊊ J ⊂ R for some ideal J implies that J = R.

4.9:Irreducible:EX-prime ideals in Z Exercise 4.7.4. Every ideal I in ℤ is of the form I = ⟨m⟩ for some m ∈ ℤ.
(1) For what values of m is the ideal I = ⟨m⟩ a prime ideal in ℤ.

(2) For what values of m is the ideal I = ⟨m⟩ a maximal ideal in ℤ.

Exercise 4.7.5. Let f(x, y) = xy ∈ k[x, y]. Show that the ideal ⟨f⟩ is not a

prime ideal.

4.9:Irreducible:EX-prime ideals in k[x] Exercise 4.7.6. Let f ∈ k[x] be a nonconstant polynomial. Prove that f is

an irreducible polynomial if and only if ⟨f⟩ is a prime ideal.
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4.9:Irreducible:EX-characterizations of prime/max ideals Exercise 4.7.7. Let I be an ideal in a ring R.

(1) Show that I ⊂ R is a prime ideal if and only if R/I is an integral domain.

(2) Show that I ⊂ R is a maximal ideal if and only if R/I is a field.

(3) Explain why every maximal ideal in R is prime.

4.9:Irreducible:EX-prime ideals and radicals Exercise 4.7.8. Let I be an ideal in a ring R. Show that
√
I =

∩

prime p⊇I
p,

where Rad(I) = {a ∈ R : an ∈ I for some n > 0}.

Exercise 4.7.9. Let ' : R→ S be a ring homomorphism.

(1) Let J ⊂ S be a prime ideal in S. Show that '−1(J) is a prime ideal in R.

(2) Let J ⊂ S be a maximal ideal in S. Is '−1(J) a maximal ideal in R?

Prove or find a counterexample.

4.7.3. Varieties and Prime Ideals. We now reach the key results of this

section.

4.9:Irreducible:EX-irreducible iff prime Exercise 4.7.10. Let V ⊂ An be an algebraic set.

(1) Suppose that V is reducible, say V = V1∪V2 where V1 and V2 are algebraic
sets with V1 ⊊ V and V2 ⊊ V . Show that there are polynomials P1 ∈ I(V1)

and P2 ∈ I(V2) such that P1P2 ∈ I(V ) but P1, P2 ∕∈ I(V ). Conclude that

I(V ) is not a prime ideal.

(2) Prove that if I(V ) is not a prime ideal in k[x1, . . . , xn], then V is a re-

ducible algebraic set.

4.9:Irreducible:EX-irred iff domain Exercise 4.7.11. Let V be an algebraic set in An. Prove that the following

are equivalent:

i. V is an affine variety.

ii. I(V ) is a prime ideal in k[x1, . . . , xn].

iii. The coordinate ring, O(V ), of V is an integral domain.
This is based on

Proposition I.1.5 and

Corollary I.1.6 of

Hartshorne.

4.9:Irreducible:EX-irreducible components Exercise 4.7.12. Let C be the collection of nonempty algebraic sets in An that

cannot be written as the union of finitely many irreducible algebraic sets.

(1) Suppose C is not empty. Show that there is an algebraic set V0 in C such

that V0 does not contain any other set in C. [Hint: If not, construct an

infinite descending chain of algebraic sets V1 ⊃ V2 ⊃ ⋅ ⋅ ⋅ in An. This

implies I(V1) ⊂ I(V2) ⊂ ⋅ ⋅ ⋅ is an infinite ascending chain of ideals in

k[x1, . . . , xn]. Why is this a contradiction?]

(2) Show that the result of part (1) leads to a contradiction, so our assumption

that C is not empty was false. Conclude that every algebraic set in An
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can be written as a union of a finite number of irreducible algebraic sets

in An.

(3) Let V be an algebraic set in An. Show that V can be written as a union

of finitely many irreducible algebraic sets in An, V = V1 ∪ ⋅ ⋅ ⋅ ∪ Vk, such
that no Vi contains any Vj .

(4) Suppose that V1∪⋅ ⋅ ⋅∪Vk =W1∪⋅ ⋅ ⋅∪Wℓ, where the Vi,Wj are irreducible

algebraic sets in An such that no Vi contains any Vj and no Wi contains

any Wj if i ∕= j. Show that k = ℓ and, after rearranging the order,

V1 =W1, . . . , Vk =Wk.

Therefore, every algebraic set in An can be expressed uniquely as the union of

finitely many affine varieties, no one containing another.

4.7.4. Examples.

4.9:Irreducible:EX-affine space is irreducible Exercise 4.7.13. Show that An is an irreducible algebraic set for every n ≥ 1.

Thus every affine space is an affine variety.

4.9:Irreducible:EX-irreducible curves Exercise 4.7.14. Let f ∈ k[x, y] be an irreducible polynomial. Show that

V (f), which is a curve in A2, is an irreducible algebraic set.

4.8. Subvarieties

The goal of this section is to define subvarieties and see how some of their ideal

theoretic properties.

Quoting Harris:

“there is some

disagreement in the

literature over the

definitions of the terms

‘variety’ and

‘subvariety’: in many

sources varieties are

required to be

irreducible and in

others a subvariety is

defined to be any

locally closed subset.”

Definition 4.8.1. Let W be an algebraic variety that is properly contained in

an algebraic variety V ⊂ An(k). Then W is a subvariety of V .

Exercise 4.8.1. Let V = (x− y = 0) ⊂ A2(ℂ). Show that the point p = (1, 1)

is a subvariety of V , while the point q = (1, 2) is not a subvariety of V .

Exercise 4.8.2. Still using the notation from the first problem, show that

I(V ) is contained in an infinite number of distinct prime ideals. Give a geometric

interpretation for this.

Exercise 4.8.3. From the previous problem, find I(V ), I(p) and I(q). Show

that

I(V ) ⊂ I(p)

and

I(V ) ∕⊂ I(q).
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Exercise 4.8.4. Let W be a subvariety of V . Show that

I(V ) ⊂ I(W ).

Exercise 4.8.5. Let V and W be two algebraic varieties in An(k). Suppose

that

I(V ) ⊂ I(J).

Show that W is a subvariety of V .

Thus we have an elegant diagram:

W ⊂ V

I(W ) ⊃ I(V )

We now want to explore the relation between the coordinate ring O(V ) and

any coordinate ring O(W ) for any subvariety W of a variety V .

Exercise 4.8.6. Continue letting V = (x − y = 0) ⊂ A2(ℂ), with subvariety

p = (1, 1). Find a polynomial f ∈ ℂ[x, y] that is not identically zero on points of V

but is zero at p, meaning there is a point q ∈ V with f(q) ∕= 0 but f(p) = 0. Show

that
√

(f, I) = J,

where I = I(V ) and J = I(p). (Hint: if you choose f reasonably, then the ideal

(f, I) will itself be equal to the ideal J .)

We have to worry a bit about notation. For V ⊂ An(k), we know that

O(V ) = k[x1, . . . , xn]/I(V ). Then given any f ∈ k[x1, . . . , xn], we can think of

f as a function on V and hence as an element of O, but we must keep in mind that

if we write f ∈ O, then f is standing for the equivalence class f + I, capturing that

if f and g ∈ k[x1, . . . , xn]/I(V ) agree on all points of V , the f − g ∈ I and hence

f + I = g + I, representing the same function in O.

We have a ring theoretic exercise first.

Exercise 4.8.7. Let R be a commutative ring. Let I ⊂ J be two ideals in R.

Show that J/I is an ideal in the quotient ring R/I. Show that there is a natural

onto map

R/I → R/J

whose quotient is the ideal J/I.

Exercise 4.8.8. Continue letting V = (x − y = 0) ⊂ A2(ℂ), with subvariety

p = (1, 1). Explicitly check the above exercise for R = ℂ[x, y], I = (V ) and J =

I(p).
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For any type of subsets W ⊂ V , if f : V → k, then there is the natural

restriction map f ∣W :W → k, which just means for all p ∈W that we define

f ∣W (p) = f(p).

Exercise 4.8.9. Let W be a subvariety of a variety V ⊂ An(k). Let f ∈ O(V ).

Show that the above restriction map sends f to an element of O(W ) and that this

restriction map is a ring homomorphism.

Exercise 4.8.10. Show that the kernel of the above restriction map is I(W )/I(V )

in the ring O(V ).

Exercise 4.8.11. Discuss why each subvariety W of V should correspond to

an onto ring homomorphism from the coordinate ring O(V ) to a commutative ring.

Thus there are three equivalent ways for thinking of subvarieties of an algebraic

variety V :

(1) W as an algebraic variety probably contained in an algebraic variety V .

(2) A prime ideal J properly containing the prime ideal I(V )

(3) A quotient ring of the ring O(V ) = k[x1, . . . , xn]/I(V ).

4.9. Function Fields

The goal of this section is to associate not just a ring to an algebraic variety

but also a field. This field plays a critical role throughout algebraic geometry.

Every algebraic variety V corresponds to a prime ideal I ⊂ ℂ[x1, . . . , xn]. This
allowed us to define the ring of functions on V , namely the quotient ring OV =

ℂ[x1, . . . , xn]/I. But every commutative ring sits inside of a field, much like the

integers can be used to define the rational numbers. The goal of this subsection is

to define the function field KV , which is the smallest field that the quotient ring

OV lives in.

Definition 4.9.1. Given an algebraic variety V corresponding to a prime ideal

I ⊂ ℂ[x1, . . . , xn], the function field KV is:

KV =

{
f

g
: f, g ∈ OV }/

(
f1
g1

=
f2
g2

)}

where f1
g1

= f2
g2

means that

f1g2 − f2g1 ∈ I.
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So far, KV is simply a set. To make it into a field, we need to define how to

add and multiply its elements. Define addition to be:

e

f
+
g

ℎ
=
eℎ+ fg

fℎ

and multiplication to be
e

f
⋅ g
ℎ
=
eg

fℎ
.

Exercise 4.9.1. Show that addition is well-defined. This means you must

show that if
e1
f1

=
e2
f2
,
g1
ℎ1

=
g2
ℎ2
,

then
e1ℎ1 + f1g1

f1ℎ1
=
e2ℎ2 + f2g2

f2ℎ2
.

Exercise 4.9.2. Show that multiplication is well-defined. This means you

must show that if
e1
f1

=
e2
f2
,
g1
ℎ1

=
g2
ℎ2
,

then
e1g1
f1ℎ1

=
e2g2
f2ℎ2

.

Under these definitions, KV is indeed a field.

Often a slightly different notation used. Just as ℂ[x1, . . . , xn] denotes the ring

of all polynomials with complex coefficients and variables x1, . . . xn, we let

ℂ(x1, . . . , xn) =

{
f

g
: f, g ∈ ℂ[x1, . . . , xn]

}

subject to the natural relation that f1
g1

= f2
g2

means that f1g2−f2g1. Then we could

have defined the function field of a variety V = V (I) to be

KV =

{
f

g
: f, g ∈ ℂ[x1, . . . , xn]

}
/I.

4.10. Points as Maximal Ideals

Definition 4.10.1. Let R be a ring. Recall that an ideal I ⊂ R is maximal if

I is proper (I ∕= R) and any ideal J that contains I is either I or all of R.

max1 Exercise 4.10.1. Show that for a1, a2, . . . , an ∈ k, the ideal I ⊂ k[x1, . . . , xn]

defined as

I = ⟨x1 − a1, . . . xn − an⟩
is maximal.

[Hint: Suppose J is an ideal with I ⊊ J , and show that J contains 1.]

Exercise 4.10.2. Show that if an ideal I ⊂ k[x1, . . . , xn] is maximal, then V (I)

is either a point or empty.
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max15 Exercise 4.10.3. Show that I({(a1, . . . , an)}) = ⟨x1 − a1, . . . , xn − an⟩.

max2 Exercise 4.10.4. Show that if k is an algebraically closed field, then every

maximal ideal in k[x1, . . . , xn] can be defined as

I = ⟨x1 − a1, . . . xn − an⟩.

[Hint: Use Hilbert’s Weak Nullstellensatz.]

Exercise 4.10.5. Show that the result of the previous exercise is actually

equivalent to Hilbert’s Weak Nullstellensatz.

Combining exercises
max1
4.10.1 and

max2
4.10.4, we obtain the following important fact.

Theorem 4.10.6. In an algebraically closed field k, there is a one-to-one cor-

respondence between points of An(k) and maximal ideals of k[x1, . . . , xn].

Exercise 4.10.7. Find a maximal ideal I ⊂ ℝ[x1, . . . , xn] for which V (I) = ∅.

4.11. The Zariski Topology

The goal of this section is to show that there is a quite “algebraic” topology

for any ring.

4.11.1. Topologies. The goal of this subsection is to briefly review what it

means for a set to have a topology, using the standard topology on ℝ and on ℂn

as motivating examples.

The development of topology is one of the great success stories of early 20th

century mathematics. With a sharp definition for a topological space, once tricky

notions such as “continuity” and “dimension” would have rigorous, meaningful

definitions. As with most good abstractions, these definitions could be applied to

situations far removed from what its founders intended. This is certainly the case

in algebraic geometry.

We start with the definition of a topology on a set X.

Definition 4.11.1. A topology on the set X is given by specify a collection U

of subsets of X having the properties:

(1) Both the empty set and the entire set X are elements of the collection U.

(2) The union of any the subsets in U is also in U. (It is critical that we allow

even infinite unions.)

(3) The finite intersection of any the subsets in U is also in U. (Here is it

critical that we only allow finite intersections.)
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A set U ∈ U is said to be open. A set C is said to be closed if its complement X−C
is open.

Let us look at few examples.

Start with the real numbers ℝ. We need to define what subsets will make up

the collection U.

Definition 4.11.2. A set U ⊂ ℝ will be a standard open set in ℝ is for any

a ∈ U , there exists a � > 0 such that

{x ∈ ℝ : ∣x− a∣ < �}.

PUTINSOMEPICUTRES

Exercise 4.11.1. (1) Show that in ℝ,

(a, b) = {x ∈ ℝ : a < x < b}

is open.

(2) Show that in ℝ,

[a, b] = {x ∈ ℝ : a ≤ x ≤ b}

is closed.

(3) Show that in ℝ,

[a, b) = {x ∈ ℝ : a ≤ x < b}

is neither open nor closed. (This type of set is often said to be half-open.)

Exercise 4.11.2. Show that with above definition for open sets in ℝ defines a

topology on ℝ.

Let us now put a topology on ℂn.

Definition 4.11.3. A set U ⊂ ℂn will be a standard open set in ℂn is for any

a ∈ U , there exists a � > 0 such that

{x ∈ ℂn : ∣x− a∣ < �}.

(Note that here a = (a1, . . . , an), x = (x1, . . . xn) and ∣x− a∣ < � means
√

∣x1 − a1∣2 + ⋅ ⋅ ⋅+ ∣xn − an∣2 < �.)

Thus a set U will be open in ℂn is we can put a little open ball around any of

its points and stay in U .

Exercise 4.11.3. Show that with above definition for open sets in ℝ defines a

topology on ℝ.
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Exercise 4.11.4. In C2, show that ℂ2 − V (x2 + y2 − 1) is open.

Exercise 4.11.5. In C2, show that ℂ2 − V (P ) is open, for any polynomial

P (x, y).

Exercise 4.11.6. In C3, show that ℂ3 − V (x2 + y2 + z2 − 1) is open.

Exercise 4.11.7. In Cn, show that ℂn − V (P ) is open, for any polynomial

P (x1, x2, . . . , xn).

Exercise 4.11.8. In Cn, show that V (P ) is closed, for any polynomial P (x1, x2, . . . , xn).

Exercise 4.11.9. In C2, show that

{(x, y) ∈ ℂ2 : ∣x∣2 + ∣y∣2 < 1}

is open.

4.11.2. Spec(R). The goal of this subsection is define the Zariski topology

for any ring R

For the standard topology on ℂn, defined in the previous subsection, it is

critical that ℂn has a natural notion of distance. For fields like ℤ5, there is no such

distance. Luckily there is still a topology that we can associate to any ring.

We first have to define what is our set X of points. We will see that our ‘points”

will be the prime ideals in R

Definition 4.11.4. Let R be a ring. Recall that a proper ideal I ⊂ R is prime

if the following holds: whenever f, g ∈ R with fg ∈ I, then f ∈ I or g ∈ I.

Exercise 4.11.10. Show that any maximal ideal in k[x1, . . . , xn] is a prime

ideal.

Exercise 4.11.11. Let ' : R→ S be a ring homomorphism. Show that '−1(P )

is a prime ideal of R for any prime ideal P of S. Is this true for maximal ideals?

Exercise 4.11.12. (1) Show if I is a prime ideal, then I = Rad(I).

(2) Show that the arbitrary intersection of prime ideals is a radical ideal.

Definition 4.11.5. The prime spectrum or spectrum of a ring R, is the collec-

tion of prime ideals in R, denoted by Spec(R).

Thus for any ring R, the set on which we will define our topology is Spec(R)

Exercise 4.11.13. Show that

(1) Spec(ℤ) corresponds to all prime numbers.

(2) Spec(ℝ) consists of only two points
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(3) Spec(k) for any field k

Exercise 4.11.14. Show that all prime ideals in ℂ[x] are maximal ideals, except

for the ideal (0). Show for each point a ∈ ℂ there is a corresponding prime ideal.

Show that the ideal (0) is also a prime ideal. Explain why Spec(ℂ[x]) can reasonably

be identified with ℂ

Exercise 4.11.15. Show that there are three types of points in Spec(ℝ[x]):

(1) The zero ideal (0).

(2) Ideals of the form (x− a) for a real number a.

(3) Ideals of the form (x2 + a), for positive real numbers a.

Exercise 4.11.16. Show that (x − y) is a prime ideal in ℂ[x, y] and hence

is a point in Spec(ℂ[x, y]). For two fixed complex numbers a and b, show that

(x− a, y − b) is a maximal ideal ℂ[x, y], and is hence also a point in Spec(ℂ[x, y]).

Show that (x − a, y − b) contains the ideal (x − y). (This means that in Spec(R),

one “point” can be contained in another.)

This problem suggests that not all points in Spec(R) are created equal.

Exercise 4.11.17. The geometric points in Spec(R) are the maximal ideals.

Exercise 4.11.18. Let (a, b) ∈ ℂ2. Show that (x− a, y− b) is a maximal ideal

in ℂ[x, y], and hence a geometric point in Spec(ℂ[x, y]).

Exercise 4.11.19. Let ℳ be a geometric point in Spec(ℂ[x, y]). Show that

there is an (a, b) ∈ ℂ2 such that (x− a, y − b) = ℳ.

Exercise 4.11.20. Show that ℳ is a geometric point in Spec(ℂ[x1, . . . , xn]).

if and only if there exists (a1, . . . , an) ∈ ℂn with (x1 − a1, . . . , xn − an) = ℳ.

Definition 4.11.6. Let S ⊆ R. Define the Zariski closed set given by S in

Spec(R) to be

Z(S) = {P ∈ Spec(R) : P ⊇ S}.
We say that an ideal I ∈ Spec(R) is Zariski closed if Z(I) = {I}. A subset U is

Zariski open if there is a set S ⊆ R with

U = Spec(R)− Z(S).

Exercise 4.11.21. (1) For a set S ⊆ R, show that Z(S) = Z(⟨S⟩).
(2) Show that Z(0) = Spec(R), and Z(1) = ∅.

We want to show that these open sets will make up a topology on Spec(R).

Exercise 4.11.22. Let S1 and S2 be two subsets in the ring R. Show

Z(S1) ∩ Z(S2) = Z(S1 ∪ S2).
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Exercise 4.11.23. Using the notation from the previous problem, show that

Z(S1) ∪ Z(S2) = Z(S1S2),

where S1S2 is all elements of the form s1s2, for s1 ∈ S1 and for s2 ∈ S2.

We first do a few set-theoretic exercises.

Exercise 4.11.24. Let X be a set. Define for any set U in X its complement

to be U c = X − U. Show that

(U c)c = U.

Exercise 4.11.25. For any two subsets U1 and U2 of a set X, let C1 = U c and

C2 = U2. Show that

U1 ∪ U2 = X − (C1 ∩ C2).

Exercise 4.11.26. Keeping with the notation from the previous problem, show

that

U1 ∩ U2 = X − (C1 ∪ C2).

Return to the space Spec(R).

Exercise 4.11.27. Let U1 and 2 be Zariski open sets in Spec(R). Show that

U1 ∩ U2 is also a Zariski open set in Spec(R).

Exercise 4.11.28. With the notation of the previous problem, show that U1 ∩
U2 is a Zariski open set in Spec(R).

Exercise 4.11.29. Show that the Zariski open sets in Spec(R) form a topology.

I AM NOT SURE ABOUT THE FOLLOWING

Exercise 4.11.30. Show that the ideal I ∈ Spec(R) is Zariski closed if and

only if I is maximal.

4.12. Points and Local rings

The goal of this section is show how to link points on an algebraic variety V

with local rings of O(V )

We want to study what is going on around a point p on an algebraic variety.

One approach would be to understand how the behavior of the functions on V near

p. If we just want to know what is going on at p, then what a function is doing far

from p is irrelevant. The correct ring-theoretic concept will be that of a local ring.

We start with local rings for points on affine varieties V ⊂ An(k). We then see

how to put this into a much more general language.

Let us start with a variety V ⊂ An(k).
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Exercise 4.12.1. Let V = (x2 + y2 − 1 = 0) ⊂ An(k). Let p = (1, 0) ∈ V .

Define

ℳp = {f ∈ O(V ) : f(p) = 0}.

Show that ℳp is not only an ideal in O)V ) but is a maximal ideal.

Exercise 4.12.2. Let ℳ be a maximal ideal in O(V ), for the variety V in the

previous problem. Let

V (ℳ) = {p ∈ V : for all f ∈ ℳ, f(p) = 0}.

Show that V (ℳ) must be a single point on V .

Exercise 4.12.3. Let V ⊂ An(k) be an algebraic variety. Let p a point on V .

Define

ℳp = {f ∈ O(V ) : f(p) = 0}.

Show that ℳp is a maximal ideal in O)V ) .

Exercise 4.12.4. Let ℳ be a maximal ideal in O(V ), for V ⊂ An(k). Let

V (ℳ) = {p ∈ V : for all f ∈ ℳ, f(p) = 0}.

Show that V (ℳ) must be a single point on V .

Thus we can either think of a point p as defining a maximal ideal in the coor-

dinate ring O(V ) or as a maximal ideal in O(V ) as defining a point on V .

We want to concentrate on the functions defined near p. Suppose there is a

g ∈ O(V ) with g(p) ∕= 0, say g(p) = 1. Then close to p, whatever that means, the

function g looks a lot like the constant function 1. This means that we should be

allowed to look at 1/g, which is certainly not allowed in O(V ) = k[x1, . . . xn]. We

want to make this rigorous.

Let p ∈ V be a point. In the same spirit as the definition of a varieties function

field, we set up the following equivalence relation. Let f1, g1, f2, g2 ∈ O(V ) with

the extra condition that g1(p) ∕= 0 and g2(p) ∕= 0. Then we say that

f1g1 ∼ f2g2

if

f1g2 − f2g1 ∈ I(V ).

Definition 4.12.1. Let p be a point on an algebraic variety V . The local ring

associated to p is

Op(V ) = {f
g
: g(p) ∕= 0}/((f1/g1) ∼ (f2/g2)).
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We now closely follow the analogous steps that we did in showing that the

function field K(V ) is a field. We want to make Op(V ) into a ring. . elements.

Define addition to be:
e

f
+
g

ℎ
=
eℎ+ fg

fℎ

and multiplication to be
e

f
⋅ g
ℎ
=
eg

fℎ
.

Exercise 4.12.5. Show that addition is well-defined. This means you must

show that if
e1
f1

=
e2
f2
,
g1
ℎ1

=
g2
ℎ2
,

then
e1ℎ1 + f1g1

f1ℎ1
=
e2ℎ2 + f2g2

f2ℎ2
.

Exercise 4.12.6. Show that multiplication is well-defined. This means you

must show that if
e1
f1

=
e2
f2
,
g1
ℎ1

=
g2
ℎ2
,

then
e1g1
f1ℎ1

=
e2g2
f2ℎ2

.

Exercise 4.12.7. Let V = (x2 + y2 − 1 = 0) ⊂ An(k) and p = (1, 0) ∈ V .

Show for f(x, y) = x ∈ Op(V ) that there is a element g ∈ Op(V ) such that f ⋅ g = 1

in Op(V ).

Exercise 4.12.8. Still letting V = (x2+y2−1 = 0) ⊂ An(k) and p = (1, 0) ∈ V .

Show for f(x, y) = y ∈ Op(V ) that there can exist no element g ∈ Op(V ) such that

f ⋅ g = 1 in Op(V ).

Exercise 4.12.9. Using the above problem, show that the ring Op(V ) cannot

be a field.

We still have to deal with why we are calling Op(V ) a local ring.

Definition 4.12.2. A ring R is called a local ring if R has a unique maximal

ideal.

Exercise 4.12.10. Let

ℳp = {f ∈ Op(V ) : f(p) = 0}.

Suppose that f ∕∈ ℳp. Show that there exists an element g ∈ Op(V ) such that

f ⋅ g = 1 in Op(V ).

Exercise 4.12.11. Show thatℳp is the unique maximal ideal in the ring Op(V )
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We now shift gears and make things quite a bit more abstract. Part of the

power of algebraic geometry is that we can start with geometric insights, translate

these into the language of ring theorem, allowing us to think geometrically about

rings for which there is little apparent geometry. This is not what we are doing in

this book. The following is just to give a flavor of this.

First, we can talk about local rings quite generally. For example, every field is

a local ring. However, as we have seen, not every local ring is a field.

A nonempty subset S of a ring R is said to be multiplicatively closed in R if,

whenever a, b ∈ S, the product ab ∈ S.

Exercise 4.12.12. (1) Show that S = {1, 3, 9, 27, . . . } = {3k : k ≥ 0} is

a multiplicatively closed subset of ℤ.

(2) Let R be a ring and let a ∕= 0 be an element of R. Show that the set

S = {ak : k ≥ 0} is a multiplicatively closed set in R.

Exercise 4.12.13. (1) Let p ∈ ℤ be a prime number. Show that the set

ℤ− ⟨p⟩ is multiplicatively closed.

(2) Let R be a ring and assume that I ⊂ R is a maximal ideal in R. Show

that S = R− I is multiplicatively closed.

(3) Let R be a ring and I ⊂ R be any ideal. Under what conditions on the

ideal I will the subset S = R− I be a multiplicatively closed subset of R?

Prove your answer.

Let S be a multiplicatively closed set in R. Define an equivalence relation ∼
on the set R× S as follows:

(r, s) ∼ (r′, s′) ⇐⇒ ∃ t ∈ S such that t(s′r − sr′) = 0.

Exercise 4.12.14. Show that ∼ is an equivalence relation on R× S.

Exercise 4.12.15. Describe the equivalence relation ∼ on R× S if 0 ∈ S.

Let RS = R × S/ ∼ and let [r, s] denote the equivalence class of (r, s) with

respect to ∼. Define addition in RS by

[r1, s1] +
S
[r2, s2] = [r1s2 + r2s1, s1s2].

and multiplication by

[r1, s1] ⋅
S
[r2, s2] = [r1r2, s1s2].

Exercise 4.12.16. Show that +
S

and ⋅
S
are well-defined binary operations on

RS .

With a little work checking the axioms, one can show that RS is a ring under

the addition and multiplication defined above. This ring is called the localization

of R at S.
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derivationExercise 4.12.17. Let S = ℤ− {0}. What is ℤS? Is it a local ring?

Exercise 4.12.18. Let R = ℤ and S = {2k : k ≥ 0} = {1, 2, 4, 8, . . . }.
(1) Show that S is multiplicatively closed in R.

(2) Show that, in RS = ℤS , addition and multiplication of [a, 2m], [b, 2n]

agrees with the addition and multiplication of the fractions a/2m and

b/2n in ℚ.

(3) Let S′ = {2, 4, 8, . . . } = {2k : k ≥ 1}. Show that ℤS′ ∼= ℤS .

The following exercises illustrate geometric and algebraic ways of constructing

other local rings.

Exercise 4.12.19. Let p be a point in An.

(1) Show that

Op =

{
f

g
: f, g ∈ k[x1, . . . , xn] and g(p) ∕= 0

}

is a local ring. Describe its unique maximal ideal.

(2) Let mp = {f ∈ k[x1, . . . , xn] : f(p) = 0}. By Hilbert’s Nullstellensatz, mp

is a maximal ideal in R = k[x1, . . . , xn]. Prove that the localization of R

at S = R−mp is isomorphic to Op.

Exercise 4.12.20. Let R be a ring and I ⊂ R be a prime ideal. Set S = R−I,
which is a multiplicatively closed set in R, and consider the ring RS .

(1) Show that RS is a local ring. Describe its unique maximal ideal.

(2) Show that the proper ideals in RS correspond to ideals J in R such that

J ⊆ I.

4.12.1. Examples.

4.13. Tangent Spaces

The goal of this section is to establish equivalence among several different no-

tions of the tangent space TpV of a variety V at a point p.

4.13.1. Intuitive Meaning. There are several equivalent notions of a tangent

space in algebraic geometry. Before developing the algebraic idea of a tangent space

we will consider the familiar tangent space as it is usually defined in a multivariable

calculus course, but we want to be able to work over any field k, not just ℝ and ℂ,

so we need to generalize our idea of differentiation. To motivate this new definition

let’s consider the main properties of the derivative map. The derivative is linear,

the derivative of a constant is zero, and the derivative obeys the Leibnitz rule. The

derivative map is an example of a derivation. For us a derivation will mean a map
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tangent!space L : R → R from a k-algebra R to itself, e.g. R = k[x1, . . . , xn], with the following

properties:

(i) L is k-linear, i.e. L(af+bg) = aL(f)+bL(g), for all a, b ∈ k and f, g ∈ R,

(ii) L obeys the Leibnitz rule, L(fg) = gL(f) + fL(g), for all f, g ∈ R.

Exercise 4.13.1 (SIMILAR TO EISENBUD, P. 385). Suppose R is a k-

algebra. Show that if L : R → R is a derivation, then L(a) = 0 for all a ∈ k.

[Hint: Show that L(1) = 0 and apply (i).]

We will first give an extrinsic definition of the tangent space of an affine variety

at a point. We will identify the tangent space to An at each point p ∈ An with the

vector space kn.

tanspace1 Definition 4.13.1. Let I ⊂ k[x1, . . . , xn] be a prime ideal, V = V(I) ⊂ An an

affine variety, and p = (p1, p2, ⋅ ⋅ ⋅ , pn) ∈ V. The tangent space of the variety V at

p is the linear subspace

TpV :=

{
(x1, x2, . . . , xn) ∈ kn ∣

n∑

i=1

(xi − pi)
∂f

∂xi
(p) = 0, for all f ∈ I

}
,

where
∂

∂xi
is a derivation defined formally by

∂

∂xi
xmj =

{
mxm−1

j if i = j

0 if i ∕= j
.

If k = ℂ or ℝ, then
∂

∂xi
can be regarded as the usual partial derivative.

In the special case that V is a hypersurface, V = V(f) for f ∈ k[x1, . . . , xn],

we have that the tangent space of the hypersurface V = V(f) at p is simply

TpV :=

{
(x1, x2, . . . , xn) ∈ kn ∣

n∑

i=1

(xi − pi)
∂f

∂xi
(p) = 0

}
.

ex:circle1 Exercise 4.13.2. In ℝ2 let f(x, y) = x2+y2−1, consider the curve C = V(f).

Let p = (a, b) be a point on C.

a) Find the normal direction to C at p.

b) How is the normal direction to C at p related to the gradient of f at p?

c) Use Definition
tanspace1
4.13.1 to find TpC.

d) How is TpC related to ∇f(p)?

Exercise 4.13.3. Show that TpV, as defined in Definition 1, is a vector space

over k by identifying the vector (x1, . . . , xn) with the vector (x1 − p1, . . . , xn− pn).



DRAFT COPY: Complied on February 4, 2010. 331

Next, we consider another definition of an affine tangent space. Recall, the

definition of the local ring of regular functions of a variety V at p,

Op(V) =

{
f

g
∣ f, g ∈ k[V], g(p) ∕= 0

}
.

tanspace2 Definition 4.13.2. The tangent space of the variety V at p is the linear space

TpV := {L : Op(V) → Op(V) ∣ L is a derivation} .

For any point p ∈ An, TpAn is the vector space span

{
∂

∂x1
, . . . ,

∂

∂xn

}
, where

∂

∂xi
are defined formally as above. When V = V(I) ⊂ An is an affine variety,

TpV is the subspace of linear combinations of
∂

∂xi
that agree on I. In other words

L =

n∑

i=1

�i
∂

∂xi
such that L(f)(p) = 0 for all f ∈ I.

ex:circle2 Exercise 4.13.4. In ℝ2 let f(x, y) = x2+y2−1, consider the curve C = V(f).

Let p = (a, b) be a point on C.

a) Use Definition
tanspace2
4.13.2 to find TpV.

b) Find a vector space isomorphism between TpV found in part b. of Exercise
ex:circle1
4.13.2 and TpV found in part b. of Exercise

ex:circle2
4.13.4.

Exercise 4.13.5. Show that TpV as defined in Definition
tanspace2
4.13.2 is a vector

space over k.

Exercise 4.13.6. Show that L(f) = L(g) if and only if f − g ∈ I.

ex:x4 Exercise 4.13.7. In ℂ2, consider the complex curve C = V(f) given by

f(x, y) = x4 + x2y2 − 2y − 3 = 0

a) Find the tangent line at p = (1, 3) using Definition
tanspace1
4.13.1.1a

b) Homogenize f to obtain F (x, y, z) and let C̃ = V(F ) ⊂ ℙ2(ℂ). Use Defini-2a

tion
tanspace1
4.13.1 to find Tp′C̃ at p′ = (1 : 3 : 1).

c) Let z = 1 to dehomogenize the equation in Exercise
2a
4.13.7b and check

you get the equation in Exercise
1a
4.13.7a.

d) Convince yourself that for any C in ℂ2 given by f(x1, x2) = 0, the tangents

obtained by the two methods shown in Exercise
ex:x4
4.13.7:a-b agree.

Exercise 4.13.8. In ℂ2, consider the complex curve

C = {(x1, x2) ∈ ℂ2 ∣ x21 + x22 = 1}

At a point (a1, a2) ∈ C, show that
mp

m2
p

is a 1-dimensional vector space over ℂ.

Relate this 1-dimensional vector space to the tangent line found inExercise
ex:circle1
4.13.2.
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4 Exercise 4.13.9. In this problem, let

z1 = x+ iy ∈ ℂ, (x, y) ∈ ℝ,
z2 = u+ iv ∈ ℂ, (u, v) ∈ ℝ

Suppose V ∈ ℂ2 is defined via F (z1, z2) = z1 − z22 = 0.

a) Let P0 = (z10 , z20) = (−1, i). Is P0 ∈ V?

b) Find the tangent line ℎ(z1, z2) = 0 to P0 using

∂F

∂zi
(P0) = 0

c) Show that V, viewed as a set Vℝ ∈ ℝ4 is the intersection of two surfaces,

f(x1, x2, x3, x4) = 0,

g(x1, x2, x3, x4) = 0

Find f and g explicitly. Intuitively, what is the real dimension of Vℝ?

d) Find the point Q0 = (x10 , x20 , x30 , x40) ∈ ℝ4 to which P0 = (z10 , z20) ∈ ℂ2

corresponds.

Find two normal vectors in ℝ4 to Vℝ at Q0 via N⃗1 = ∇⃗f ∣Q0, N⃗2 = ∇⃗g∣Q0. The

real tangent space Tℝ,Q0
to Vℝ at Q0 is the set of lines through Q0 perpendicular

to N⃗1, N⃗2. Intuitively, what is the real dimension k of Tℝ,Q0
? Is Tℝ,Q0

a k-plane in

ℝ4?

e) In Problem
4
4.13.9:2, you found the tangent line equation ℎ(z1, z2) to V at

P0 in ℂ2. Write the tangent line as a system of 2 equations in ℝ4 using x, y, u, v.

These equations correspond to 2 planes Pl1, P l2 ∈ ℝ4. Let T = Pl1 ∩ Pl2. Find 2

linearly independent vectors D⃗1, D⃗2 ∈ ℝ4 parallel to T . Show that D⃗1⊥ N⃗1, N⃗2 and

D⃗2⊥ N⃗1, N⃗2. Is T the same as Tℝ,Q0
? Does this convince you that if C is a curve

in ℂ2 and Tℂ,P0
is the tangent line to C at P0, then Tℂ,P0

is the usual geometric

tangent space to C at P0 when ℂ2 is thought of as ℝ4?

5 Exercise 4.13.10. In ℙ2(ℂ), let C be F [x1, x2, x3] = x2x3 − x21 = 0. Verify

that P = [2, 4, 1] is on C. Suppose you try to define the tangent to C at Q0 =

[x10 , x20 , x30 ] as
3∑

i=1

∂F

∂xi
(Q0)(xi − xi0) = 0 ∗

a. Find the tangent line at P = [1, 2, 4] using equation ∗.
b. Find the tangent line at P = [2, 4, 8] using equation ∗.
c. Consider the line

3∑

i=1

∂F

∂xi
(Q0)(xi) = 0 ∗ ∗

For C and Q0 = P = [1, 2, 4], what is ∗∗?
For C and Q0 = P = [2, 4, 8], what is ∗∗?
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In this case do that lines seem to be same regardless of the way you write

P and whether you use ∗ or ∗∗? The actual definition of the tangent is

∗∗, not ∗. Does this problem indicate why?

Exercise 4.13.11. Euler’s formula says that if F [x0, x1, ⋅ ⋅ ⋅ , xn] is a homoge-

neous polynomial of degree d, then

n∑

i=1

∂F

∂xi
(Q0)(xi) = d ⋅ F [x0, x1, ⋅ ⋅ ⋅ , xn]

Let F [x1, x2, x3] = x31 + 5x21x2 + 7x1x2x3. Verify Euler’s formula in this case.

Exercise 4.13.12. Returning to Problem
5
4.13.10, explain why the tangent

line is the same whether you use ∗ or ∗∗ and does not depend on the � ∕= 0 you use

to define Q0 = [�x10 , �x20 , �x30 ].

Exercise 4.13.13. This is in ℂ2. V is a curve defined by a polynomial equation

f(x0, x1) = 0. Let P ∈ V.

Let L be a line in ℂ2 through P . L is a tangent to V at P of order at least k,

if for some parameter �, ∃ points p1(�), ⋅ ⋅ ⋅ , pk+1(�) ∈ V such that

a. ∀� ∕= 0, p1(�), ⋅ ⋅ ⋅ , pk(�) are distinct;

b. ∀� ∕= 0, p1(�), ⋅ ⋅ ⋅ , pk(�) are collinear and lie on a line L� of the form

A(�) +B(�) + C(�) = 0;

c. As �→ 0, p1(�), ⋅ ⋅ ⋅ , pk(�) → P ;

d. As � → 0, L� → L, meaning A(�), B(�), C(�) → A,B,C where L is

given by Ax0 +Bx1 + C = 0. We further say L is a tangent of order k if

it is a tangent of order at least k but not at least k + 1.

In the following P = (0, 0) and V is one of these curves.

C1 : x1 = x20

C2 : x1 = x30

C3 : x21 = x30

C4 : x21 = x30 + x20

C5 : x21 = x40 + x20

Sketch the real parts of each curve near P .

Exercise 4.13.14. a. Show that at P (0, 0), x1 = 0 is a tangent of order

∙ 1 for C1;

∙ 2 for C2;

∙ 2 for C3

b. Show x1 = x0 and x1 = −x are tangent of order ≥ 1 for C4, C5. Make a

guess about their actual order;
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c. Draw pictures to convince yourself that in C2 every line through (0, 0) is

a tangent of order ≥ 1.

Exercise 4.13.15. Rewrite curves C1 − C5 in the form g(x0, x1) = 0. Go

through the list and for each g(x, y) = 0,

a. Write out for C1 − C5 the equations gotten from only keeping terms of

degree ≥ k and also terms of degree equal to k;

b. Then go through that list and modify those in reasonable ways by identi-

fying groups of terms corresponding to f(x0, x1) = 0

Exercise 4.13.16. Now for each curve in your list, compute the graded ring,

⊕

k≥1

mk
p

mk+1
p

4.14. Singular Points

4.14.1. Intuitive Meaning.

4.14.2. Definition in Terms of Generators of Ideal.

4.14.3. Singularities as Proper Subvarieties.

4.15. Dimension

4.15.1. Intuitive Meaning.

4.16. Zariski Topology

The main goal of this section is to show that there is a topology on any algebraic

variety V .

Let X be a set. A collection � of subsets of X is called a topology on X if

(1) X and ∅ are in � ,

(2) any arbitrary union of elements of � is an element of � ,

(3) any finite intersection of elements of � is an element of � .

Elements of � are called the open sets of X, and (X, �) is said to be a topological

space. Given topological spaces (X, �) and (Y, � ′), a function f : X → Y is said to

be continuous with respect to (�, � ′) if for each U ∈ � ′, the inverse image f−1(U) of

U under f is an element of � .

Exercise 4.16.1. Let B be the collection of all open intervals in ℝ. (Recall

that an open interval is of the form {x : a < x < b}, for two fixed numbers a and

b.) Define � to be the closure of B under arbitrary unions.

(1) Show that (ℝ, �) is a topological space.
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(2) Let f : ℝ→ ℝ be a function. Show that f is continuous in the traditional

�-� sense if and only if it is continuous with respect to (�, �).

Exercise 4.16.2. Let B be the collection of all open discs in ℝ2. (Recall that an

open disc with center (a, b) of radius � > 0 is of the form {(x, y) : (x−a)2+(y−b)2 <
�}.) Define � to be the closure of B under arbitrary unions.

(1) Show that (ℝ, �) is a topological space.

(2) Let f : ℝ→ ℝ be a function. Show that f is continuous in the traditional

�-� sense if and only if it is continuous with respect to (�, �).

Exercise 4.16.3. Finite complement topology on ℝ1: On ℝ a set U is open if

the complement of U is a finite collection of points, i.e. U = ℝ − {p1, . . . , pk}. ℝ
and ∅ are also considered to be open sets.

(1) Verify that any arbitrary union of open sets is again open.

(2) Verify that any finite intersection of open sets is open.

(3) Conclude that the open sets defined above form a topology on ℝ. This is

called the finite complement topology.

(4) Show that if a set U is open in the finite complement topology, then it is

open in the standard metric topology on ℝ.

(5) Give an example of an open set in the metric topology that is not open

in the finite complement topology.

(6) Show that any two nonempty open sets in the finite complement topology

on ℝ must intersect.

(7) Use the previous problem to show that the finite complement topology on

ℝ is not Hausdorff.

Exercise 4.16.4. Zariski Topology: A set X ⊂ kn is a Zariski-closed set if X

is an algebraic set. A set U is Zariski-open if U = kn −X.

(1) Show that a circle in ℝ2 is a Zariski-closed set.

(2) Show that a finite collection of points in ℝ is a Zariski-closed set.

(3) Show that the finite complement topology on ℝ is the Zariski topology on

ℝ.

Exercise 4.16.5. Show that in ℂ, the complement of a finite number of points

is a Zariski-open set.

Exercise 4.16.6. Show that a Zariski open set in ℂ is the complement of a

finite number of points.

Exercise 4.16.7. Show geometrically that the Zariski topology on ℂ is not

Hausdorff.
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Exercise 4.16.8. Show that, in ℂ2, the complement of a finite number of

points and curves is Zariski-open.

Exercise 4.16.9. Show that a Zariski-open set in ℂ2 is the complement of a

finite number of points and curves.

Exercise 4.16.10. Show geometrically that the Zariski topology on ℂ2 is not

Hausdorff.

Exercise 4.16.11. Show that if X is Zariski-closed, then X = V (I(X)).

Exercise 4.16.12. Show that if X and Y are Zariski-closed and X ⊆ Y ⊆ kn,

then I(Y ) ⊆ I(X).

Exercise 4.16.13. Show that if X and Y are Zariski-closed, then X ∪ Y =

V (I(X) ∩ I(Y )) and X ∩ Y = V (I(X) + I(Y )).

Exercise 4.16.14. Show that the Zariski-closed sets are closed under arbitrary

intersections. (Hint: Use the fact that if k is a field, then the polynomial ring

k[x1, . . . , xn] is a Noetherian ring, i.e., it has no infinite ascending chain of ideals.)

If X ⊆ kn can be expressed as a finite Boolean combination (i.e. using union,

intersection, and complements) of Zariski-closed sets, then we say that X is con-

structible.

Exercise 4.16.15. Let C = {(a, b, c) ∈ ℂ3 : (∃x ∈ ℂ)(ax2+bx+c = 0)}. Show
that C is constructible.

A map f : kn → km is a polynomial map if there exist polynomials g1, . . . , gm ∈
k[x1, . . . , xn] such that for all (a1, . . . , an) ∈ kn,

f(a1, . . . , an) = (g1(a1, . . . , an), . . . , gm(a1, . . . , an)).

Exercise 4.16.16. Prove or disprove: If f : ℂn → ℂm is a polynomial map

and V is open in the Zariski topology on ℂm, then the inverse image f−1(V ) of V

under f is Zariski open in ℂm.

Exercise 4.16.17. Prove or disprove: If f : ℂn → ℂm is a polynomial map

and U is open in the Zariski topology on ℂn, then the image f(U) of U under f is

Zariski open in ℂm.

Exercise 4.16.18. Let X ⊆ ℂn be a constructible set. Show that the image

of X under a polynomial map f : ℂn → ℂm is constructible. (★)

A set X ⊆ ℝn is said to be semi-algebraic if it is the intersection of finitely

many polynomial equations and inequalities.

Exercise 4.16.19. Let S = {(a, b, c) ∈ ℝ3 : (∃x ∈ ℂ)(ax2+ bx+ c = 0)}. Show
that S is semi-algebraic.
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4.17. Morphisms

The goal of this section is to define a natural type of mapping between algebraic

sets.

The world of algebraic geometry is the world of polynomials. For example,

algebraic sets are defined as the set of common zeros of collections of polynomials.

The morphisms, or mappings, between them should also be given by polynomials.

Suppose X ⊂ An(k) and Y ⊂ An(k) are algebraic sets. The natural mappings

(morphisms) between X and Y are polynomial mappings:

� : X → Y

p 7→ (f1(p), . . . , fm(p))

for some f1, . . . , fm ∈ k[x1, . . . , xn].

The map � induces a ring homomorphism

O(Y ) → O(X)

f 7→ f ∘ �

Exercise 4.17.1. Show that the above map is indeed a ring homomorphism.

A ring homomorphism

� : k[y1, . . . , ym]/I(Y ) = O(Y ) → O(X) = k[x1, . . . , xn]/I(X)

induces a morphism

X → Y

p 7→ (f1(p), . . . , fm(p))

where fi = �(yi).

Exercise 4.17.2. Let X = V (y − x2), the parabola, and let Y = V (y), the x-

axis. Then � : X → Y given by �(x, y) = x is a morphism. This morphism simply

projects points on the parabola onto the x-axis. Find the image of y ∈ O(Y ) in

O(X) by the above ring homomorphism � : O(Y ) → O(X).

Exercise 4.17.3. Let X = V (v− u2), and let Y = V (z2 − xy). We may think

of X as a parabola and Y as a double cone. Define a morphism

� : X → Y

(u, v) 7→ (1, v, u)

Show that the image of � is actually in Y . The effect of this morphism is to map

the parabola into the cone. Show that the corresponding ring homomorphism

A(Y ) = ℂ[x, y, z]/(x2 − xy) → A(X) = ℂ[u, v]/(v − u2)
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is given by

x 7→ 1, y 7→ v, z 7→ u.

Exercise 4.17.4. For each of the polynomial mappings X → Y , describe the

corresponding ring homomorphism � : O(Y ) → O(X).

(1)

� : A2(k) → A3(k)

(x, y) 7→ (y − x2, xy, x3 + 2y2)

(2) X = A1(k) and Y = V (y − x3, z − xy) ⊂ A3(k).

� : X → Y

t 7→ (t, t3, t4)

Exercise 4.17.5. For each of the ring homomorphisms � : O(Y ) → O(X),

describe the corresponding morphism of algebraic sets, X → Y .

(1)

� : k[x, y] → k[t]

x 7→ t2 − 1

y 7→ t(t2 − 1)

(2)

� : k[s, t, uw]/(s2 − w, sw − tu) → k[x, y, z]/(xy − z2)

s 7→ xy

t 7→ yz

u 7→ xz

w 7→ z2

The morphism constructed here is a mapping of the saddle surface to a

surface in A4(k).

(Note: Much of this section was taken from David Perkinson’s lectures at PCMI

2008.)

4.18. Isomorphisms of Varieties

The goal of this problem set is to establish a correspondence between poly-

nomial maps of varieties V1 = V (I1) ⊂ An(k) and V2 = V (I2) ⊂ Am(k) and

ring homomorphisms of their coordinate rings k[V1] = k[x1, . . . , xn]/I1 and k[V2] =

k[y1, . . . , ym]/I2. In particular, we will show that V1 ∼= V2 as varieties if and only if

k[V1] ∼= k[V2] as rings.
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4.18.1. Definition. Let V1 = V (I1) ⊂ An(k) and V2 = V (I2) ⊂ Am(k) be al-

gebraic sets in An(k) and Am(k), respectively. We will assume in the following that

each Ij is a radical ideal. As we have already seen, the ring O(V1) = k[x1, . . . , xn]/I1

is in a natural way the ring of (equivalence classes of) polynomial functions mapping

V1 to k. We can then define a polynomial map P : V1 → V2 by P (x1, . . . , xn) =

(P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)) where Pi ∈ k[V1]. Alternatively, P : V1 → V2

is a polynomial map of varieties if Pi = yi ∘P ∈ k[V1]. (Note: This is to emphasize

that yi and xi are coordinate functions on Am(k) and An(k), respectively.)

A polynomial map P : V1 → V2 is an isomorphism of varieties if there exists

a polynomial map Q : V2 → V1 such that Q ∘ P = Id∣V1
and P ∘ Q = Id∣V2

. Two

varieties are isomorphic if there exists an isomorphism between them.

Exercise 4.18.1. Let k = ℝ. Let V1 = V (x) ⊂ ℝ2 and V2 = V (x+ y) ⊂ ℝ2.lines

(1) Sketch V1 and V2.

(2) Find a one-to-one polynomial map P (x, y) = (P1(x, y), P2(x, y)) that

maps V1 onto V2.

(3) Show V1 ∼= V2 as varieties by finding an inverse polynomial map Q(x, y)

for the polynomial map P (x, y) above. Verify that Q ∘ P = Id

∣∣∣∣
V1

and

P ∘Q = Id

∣∣∣∣
V2

.

Exercise 4.18.2. Let k = ℝ. Let V1 = ℝ and V2 = V (x−y2) ⊂ ℝ2 be algebraic

sets.

(1) Sketch V2.

(2) Find a one-to-one polynomial map P (x) that maps V1 onto V2.

(3) Show V1 ∼= V2 as algebraic sets by finding an inverse Q(x, y) for the

polynomial map P (x) above. Verify that Q∘P = Id

∣∣∣∣
V1

and P ∘Q = Id

∣∣∣∣
V2

.

Exercise 4.18.3. Let k = ℂ. Let V1 = V (x2 + y2 − 1) ⊂ ℂ2 and V2 =

V (x2 − y2 − 1) ⊂ ℂ2 be varieties.

(1) Find a one-to-one polynomial map P (x, y) that maps V1 onto V2.

(2) Show V1 ∼= V2 as varieties by finding an inverse Q(x, y) for the polynomial

map P (x, y) above. Verify that Q ∘ P = Id

∣∣∣∣
V1

and P ∘Q = Id

∣∣∣∣
V2

.

(3) If k = ℝ, do you think V (x2 + y2 − 1) ⊂ ℝ2 and V (x2 − y2 − 1) ⊂ ℝ2 are

isomorphic as varieties? Why or why not?

Exercise 4.18.4. Let k be any algebraically closed field. Let V1 = V (x+y, z−
1) ⊂ A3(k) and V2 = V (x2 − z, y + z) ⊂ A3(k) be varieties.
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(1) Find a one-to-one polynomial map P (x, y, z) that maps V1 onto V2.

(2) Show V1 ∼= V2 as varieties by finding an inverse Q(x, y, z) for the polyno-

mial map P (x, y, z) above. Verify that Q ∘ P = Id

∣∣∣∣
V1

and P ∘Q = Id

∣∣∣∣
V2

.

4.18.2. Link to Ring Isomorphisms. Let’s now consider the relationship

between the coordinate rings O(V1) and O(V2) of two varieties. We will show that

there is a one-to-one correspondence between polynomial maps P : V1 → V2 of

varieties and ring homomorphisms � : O(V2) → O(V1) of coordinate rings. First

suppose P : V1 → V2 is a polynomial map. Define P ∗ : O(V2) → O(V1) by P
∗(f) =

f ∘P . Next, if � : O(V2) → O(V1), we can construct a polynomial map P : V1 → V2

such that P ∗ = �.

Exercise 4.18.5. Consider Exercise
lines
4.18.1.

(1) Let f, g ∈ ℝ[x, y] agree on V2, i.e. f − g ∈ ⟨x + y⟩. Show that P ∗(f) =

P ∗(g) in ℝ[V1].

(2) Show that P ∗ is a ring isomorphism by finding its inverse.

Exercise 4.18.6. Show ℝ[x] ∼= ℝ[x, y]/⟨x− y2⟩ as rings.

Exercise 4.18.7. Show ℂ[x, y]/⟨x2 + y2 − 1⟩ ∼= ℂ[x, y]/⟨x2 − y2 − 1⟩ as rings.

Exercise 4.18.8. Show k[x, y, z]/⟨x + y, z − 1⟩ ∼= k[x, y, z]/⟨x2 − z, y + z⟩ as

rings.

Exercise 4.18.9. Let V1 = V (I1) ⊂ An(k), V2 = V (I2) ⊂ Am(k), and V3 =

V (I3) ⊂ Ai(k) be varieties and suppose P : V1 → V2 and Q : V2 → V3 are

polynomial maps.

(1) Explain why P ∗ : O(V2) → O(V1)], i.e. explain why we define the map

to go from O(V2) → O(V1) and not vice versa. In words, we “pull back”

functions from O(V2) to O(V1) rather than “push forward” functions from

O(V1) to O(V2).

(2) Show that P ∗ : O(V2) → O(V1) is well-defined, i.e. show that if f = g

mod I2, then P
∗(f) = P ∗(g) mod I1.

(3) Show (Q ∘ P )∗ = P ∗ ∘Q∗.

(4) Show that if P is an isomorphism of varieties, then P ∗ is an isomorphism

of rings.

Exercise 4.18.10. Let V1 = V (I1) ⊂ An(k) and V2 = V (I2) ⊂ Am(k) be

varieties. Recall that O(V1) = k[x1, . . . , xn]/I1 and O(V2) = k[y1, . . . , ym]/I2. Then

xi and yj are coordinate functions, so let us consider their images in the quotient

rings O(V1) and O(V2). Let ui denote the image of xi under the map k[x1, . . . , xn] →
k[x1, . . . , xn]/I1 and let vi denote the image of yi under the map k[y1, . . . , yn] →
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k[y1, . . . , yn]/I2, i.e. k[V1] = k[u1, . . . , un] and k[V2] = k[v1, . . . , vm]. In general,

the uis are not algebraically independent and neither are the vis.

(1) Let V1 = V (x) ⊂ ℝ2 and V2 = V (x + y) ⊂ ℝ2. Find u1, u2, v1, and v2,

such that k[V1] = k[u1, u2] and k[V2] = k[v1, v2].

(2) Let V1 = V (x2 + y2 − 1) ⊂ ℂ2 and V2 = V (x2 − y2 − 1) ⊂ ℂ2. Find u1,

u2, v1, and v2, such that k[V1] = k[u1, u2] and k[V2] = k[v1, v2].

(3) Let V1 = V (x+y, z−1) ⊂ A3(k) and V2 = V (x2−z, y+z) ⊂ A3(k). Find

u1, u2, u3, v1, v2, and v3 such that O(V1) = k[u1, u2, u3] and O(V2) =

k[v1, v2, v3].

Exercise 4.18.11. Let V1 = V (I1) ⊂ An(k) and V2 = V (I2) ⊂ Am(k) be

varieties and suppose � : O(V2) → O(V1)] is a ring homomorphism. Our goal is

to construct a polynomial map P : V1 → V2 such that P ∗ = �. Let uj and vj

denote the coordinate functions as above on k[V1] and k[V2], respectively. Define

P = (P1, . . . , Pm) : V1 → V2 such that Pi = � ∘ vi.
(1) Let V1 = V (x) ⊂ ℝ2 and V2 = V (x + y) ⊂ ℝ2. Find the corresponding

polynomial map for � : ℝ[V2] → ℝ[V1] defined by �(v1) = u1, �(v2) = u2.

(2) Let V1 = V (x2 + y2 − 1) ⊂ ℂ2 and V2 = V (x2 − y2 − 1) ⊂ ℂ2. Find the

corresponding polynomial map for � : ℂ[V2] → ℂ[V1] defined by �(v1) =

u1, �(v2) = u2.

(3) Let V1 = V (x + y, z − 1) ⊂ A3(k) and V2 = V (x2 − z, y + z) ⊂ A3(k).

Find the corresponding polynomial map for � : O(V2)] → O(V1) defined

by �(v1) = u1, �(v2) = u2, and �(v3) = u3.

Exercise 4.18.12. Let V1 = V (I1) ⊂ An(k) and V2 = V (I2) ⊂ Am(k) be

varieties and suppose � : O(V2) → O(V1) is a ring homomorphism. Let uj and vj

denote the coordinate functions as above on k[V1] and k[V2], respectively. Define

P = (P1, . . . , Pm) : V1 → V2 such that Pi = � ∘ vi.
(1) Verify that P is a well-defined map from V1 to V2.

(2) Verify that P is a polynomial map.

(3) Verify that P ∗ = �.

(4) Show that if Q is another polynomial map V1 → V2 such that Q∗ = �,

then Q = P (in k[V1]).

(5) Show that P : V1 → V2 is an isomorphism of varieties if and only if

P ∗ : O(V2) → O(V1) is an isomorphism of rings.

Exercise 4.18.13. Let V1 = A1(k) and V2 = V (x3 − y2) ⊂ A2(k).

(1) Sketch V2 for the case when k = ℝ. Note the cusp at the point (0,0) in

ℝ2.
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(2) Verify that P (x) = (t2, t3) is a one-to-one polynomial map that maps V1

onto V2.

(3) Show that P does not have a polynomial inverse.

(4) Show that the map P does not have a polynomial inverse.

(5) Show that k[t] ∕∼= k[x, y]/⟨x3 − y2⟩ as rings. [Hint: Showing that P ∗

is not an isomorphism is not enough. You must show that there is no

isomorphism between these rings. Show that k[t] ∼= k[t2, t3] and that

k[t2, t3] ∕∼= k[t].]

4.19. Rational Maps

The goal of this section is to define a the second most natural type of mapping

between algebraic sets: rational maps.

There are two natural notions of equivalence in algebraic geometry: isomor-

phism (covered earlier in this chapter) and birationality (the topic for this section).

Morally two varieties will be birational if there is a one-to-one map, with an inverse

one-to-one map, from one of the varieties to the other, allowing though for the

maps to be undefined possibly at certain points. Instead of having maps made up

of polynomials, our maps will be made up of ratios of polynomials; hence the maps

will not be defined where the denominators are zero. We will first define the notion

of a rational map, then birationality.

4.19.1. Rational Maps.

Definition 4.19.1. A rational map

F : An(k) 99K Am(k)

is given by

F (x1, . . . , xn) =

(
P1(x1, . . . , xn)

Q1(x1, . . . , xn)
, . . . ,

Pm(x1, . . . , xn)

Qm(x1, . . . , xn)

)

where each Pi and Qj is a polynomial in k[x1, . . . , xn] and none of the Qj are

identically zero.

It is common to use a ”99K” instead of a ’→” to reflect that F is not defined

at all points in the domain.

Exercise 4.19.1. Let F : ℂ2 → ℂ3 be given by

F (x1, x2) =

(
x1 + x2
x1 − x2

,
x21 + x2
x1

,
x1x

3
2

x1 + 3x2

)
.

The rational map F is not defined on three lines in ℂ2. Find these three lines.

Draw these three lines as lines in ℝ2.
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Let V = V (I) ⊂ An(k) and W = V (J) ⊂ Am(k) be two algebraic varieties,

with defining prime ideals I ⊂ k[x1, . . . , xn] and J ⊂ k[x1, . . . , xm], respectively.

Definition 4.19.2. A rational map

F : V 99KW

is given by a rational map F : An(k) 99K Am(k) with

F (x1, . . . , xn) =

(
P1(x1, . . . , xn)

Q1(x1, . . . , xn)
, . . . ,

Pm(x1, . . . , xn)

Qm(x1, . . . , xn)

)

such that

(1) The variety V is not contained in any of the hypersurfaces V (Qi). (This

means that for almost all points p ∈ V we have Qi(p) ∕= 0 for all i. We

say that the rational map F is defined at such points p. )

(2) For each point p where F is defined, and for all polynomials g(x1, . . . , xm) ∈
J , we have

g

(
P1(x1, . . . , xn)

Q1(x1, . . . , xn)
, . . . ,

Pm(x1, . . . , xn)

Qm(x1, . . . , xn)

)
= 0.

Thus a rational map from V to W sends almost all points of V to points in W .

Exercise 4.19.2. Show that the rational map

F (t) =

( −2t

1 + t2
,
1− t2

1 + t2

)

is a rational map from the line ℂ to the circle V (x2 + y2 − 1). Find the points on

the line ℂ where F is not well-defined.

Exercise 4.19.3. The above rational map F (t) =
(

−2t
1+t2 ,

1−t2
1+t2

)
was not made

up out of thin air but reflects an underlying geometry. Let L be any line in the

plane ℂ2 through the point (0, 1) with slope t. Then the equation for this line is

y = tx + 1. First, draw a picture in ℝ2 of the circle V (x2 + y2 − 1) and the line

L. Using the quadratic equation, show that the two points of intersection are (0, 1)

and
(

−2t
1+t2 ,

1−t2
1+t2

)
, for a fixed slope t. Explain the underlying geometry of the map

F for when the slope t is zero.

4.19.2. Birational Equivalence.

Definition 4.19.3. An algebraic variety V ⊂ An(k) is birationally equivalent

to an algebraic variety W ⊂ Am(k) if there are rational maps

F : V 99KW

and

G :W 99K V
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such that the compositions

G ∘ F : V 99K V

and

F ∘G :W 99KW

are one-to-one functions, where defined. We then say that V and W are birational .

The rational map G is called the inverse of the map F .

Intuitively two varieties are birational if they are actually isomorphic, save

possibly off of certain proper subvarieties.

Exercise 4.19.4. Show that the complex line ℂ is birational to the circle

V (x2+y2−1) by finding an inverse to the rational map F (t) =
(

−2t
1+t2 ,

1−t2
1+t2

)
. Thus

you must find a rational map

G(x, y) =
P (x, y)

Q(x, y)

such that for all but finitely many (x, y) ∈ V (x2 + y2 − 1),we have

(x, y) =

⎛
⎝ −2P (x,y)

Q(x,y)

1 + (P (x,y)
Q(x,y) )

2
,
1− (P (x,y)

Q(x,y) )
2

1 + (P (x,y)
Q(x,y) )

2

⎞
⎠ = F ∘G(x, y)

and for all but finitely many t we have

t =
P ( −2t

1+t2 ,
1−t2
1+t2 )

Q( −2t
1+t2 ,

1−t2
1+t2 )

= G ∘ F (x, y)

As a hint, recall that the map F corresponds geometrically with starting with a

slope t for the line y = tx + 1 through the point (0, 1) and then finding the line’s

second point of intersection with the circle.

Exercise 4.19.5. Consider the curve V (y2 − x3) in the plane ℂ2.

Picture

(1) Show that this curve has a singular point at the origin (0, 0)

(2) Show that the map F (t) = (t2, t3) maps the complex line ℂ to the curve

V (y2 − x3).

(3) Find a rational map G : V (y2 − x3) 99K ℂ that is the inverse to the map

F

Thus ℂ and V (y2 − x3) are birational, even though ℂ is smooth and V (y2 − x3) is

singular.
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4.19.3. Birational Equivalence and Field Isomorphisms. The goal is

Theorem 4.19.6. Let V = V (I) ⊂ An(k) and W = W (J) ⊂ Am(k) be two

algebraic varieties. Then V and W are birational if and only if the function fields

KV and KW are field isomorphic.

Fields being isomorphic is a natural algebraic notion of equivalence. Thus the

intuition behind this theorem is that birational equivalence precisely corresponds

to the corresponding function fields being isomorphic.

Exercise 4.19.7. The goal of this exercise is to show that the function fields

for the line ℂ and the curve V (y2 − x3) in the plane ℂ2 are field isomorphic.

(1) Show that y =
(
y
x

)3
and x =

(
y
x

)2
in the field ℂ(x, y)/(y2 − x3).

(2) Show that for any F (x, y) ∈ ℂ(x, y)/(y2−x3), there exists two one-variable
polynomials P (t), Q(t) ∈ ℂ[t] such that

F (x, y) =
P
(
y
x

)

Q
(
y
x

)

in the field ℂ(x, y)/(y2 − x3).

(3) Show that the map

T : ℂ(t) → ℂ(x, y)/(y2 − x3)

defined by setting

Tf(t) = f
(y
x

)

is onto.

(4) Show that the above map T is one-to-one. This part of the problem is

substantially harder than the first three parts. Here are some hints. We

know for a field morphism that one-to-one is equivalent to the kernel being

zero. Let P (t), Q(t) ∈ ℂ([t] be polynomials such that

T

(
P (t)

Q(t)

)
= 0

in ℂ(x, y)/(y2 − x3). Now concentrate on the numerator and use that

(y2 − x3) is a prime ideal in the ring ℂ[x, y].

The next series of exercises will provide a proof that algebraic varieties V and

W are birational if and only if the function fields KV and KW are isomorphic.

Exercise 4.19.8. For algebraic varieties V and W , consider the rational map

F : V 99KW

given by

F (x1, . . . , xn) =

(
P1(x1, . . . , xn)

Q1(x1, . . . , xn)
, . . . ,

Pm(x1, . . . , xn)

Qm(x1, . . . , xn)

)
.
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Show that there is a natural map

F ∗
KW → KV .

Exercise 4.19.9. Let

F : V 99KW and G :W 99K V

be two rational maps. Then G ∘ F : V 99K V is a rational map from V to V , Show

that

(G ∘ F )∗ : KV → KV

equals

F ∗ ∘G∗ : KV → KV .

Exercise 4.19.10. Let

F : V 99KW and G :W 99K V

be two rational maps. Suppose that

(G ∘ F )∗ = Identity map on KV

and

(F ∘G)∗ = Identity map on KW

Show that

F ∗ : KW 99K KV

and

G∗ : KV 99K KW

are one-to-one and onto.

4.19.4. Blow-ups and rational maps. In section XXX we saw that the

blow-up of the origin (0, 0) in ℂ2 is the replacing the origin by the set of all complex

lines in ℂ2 through the origin. In coordinates, the blow-up consists of two copies

of ℂ2 that are patched together correctly. This section shows how these patchings

can be viewed as appropriate birational maps.

Let U = ℂ2, with coordinates u1, u2, and V = ℂ2, with coordinates v1, v2 be the

two complex planes making up the blow-up. Denote by Z = ℂ2, with coordinates

z1, z2, the original ℂ2 whose origin is to be blown-up.

From section XX, we have the maps polynomial maps

�1 : U → Z and �2 : V → Z

given by

�1(u1, u2) = (u1, u1u2) = (z1, z2)

and

�2(v1, v2) = (v1v2, v2) = (z1, z2).
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Exercise 4.19.11. Find the inverse maps

�−1
1 : Z 99K U and �−1

2 : Z 99K V.

Find the points Z where the maps �−1
1 and �−1

2 are not defined. Show that U and

Z are birational, as are V and Z.

Exercise 4.19.12. Find the maps

�−1
2 ∘ �1 : U 99K V

and

�−1
1 ∘ �2 : V 99K U.

Show that U and V are birational.

4.20. Products of Affine Varieties

The goal of this section is to show that the Cartesian product of affine varieties

is again an affine variety. We also study the topology and function theory of the

product of two affine varieties.

4.20.1. Product of affine spaces. In analytic geometry, the familiar xy-

plane, ℝ2, is constructed as the Cartesian product of two real lines, ℝ×ℝ, and thus is

coordinatized by ordered pairs of real numbers. It is natural to ask whether the same

construction can be used in algebraic geometry to construct higher-dimensional

affine spaces as products of lower-dimensional ones.

Clearly we can identify A2(k) with A1(k)× A1(k) as sets. However, this iden-

tification is insufficient to prove that A2(k) is isomorphic to A1(k) × A1(k), for

isomorphisms must also take into account the topologies and functions for each.

4.20:Products:??? Exercise 4.20.1. Let k[An(k)] = k[x1, . . . , xn] and k[A
m(k)] = k[y1, . . . , ym].

Show that k[An+m] ∼= k[x1, . . . , xn, y1, . . . , ym], where the latter is, by definition,

the ring of regular functions on the product An(k)× Am(k).

Frequently, when we form the product of topological spaces X and Y , the new

space X × Y is endowed with the product topology. This topology has as its basis

all sets of the form U×V where U ⊂ X and V ⊂ Y are open. In these exercises, the

Zariski topology on the product X × Y will be compared to the product topology

to determine if they are the same or different (and if different, which is finer).

Exercise 4.20.2. (This is very similar to [Hartshorne1977], Exercise I.1.4.)

In Exercise 1, you have shown that An(k) × Am(k) ∼= An+m(k). In particular,

A1(k)× A1(k) ∼= A2(k).

(1) Describe an open set in the product topology on A1(k)× A1(k).
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(2) Is an open set in the product topology on A1(k)×A1(k) also open in the

Zariski topology of A1(k)× A1(k) ∼= A2(k)?

(3) Is every open set of the Zariski topology of A1(k)×A1(k) ∼= A2 also open

in the product topology?

(4) Conclude that the Zariski topology is strictly finer than the product topol-

ogy on A1(k)× A1(k) ∼= A2(k).

4.20.2. Product of affine varieties. Let X ⊂ An(k) and Y ⊂ Am(k) be

affine varieties. The Cartesian product of X and Y , X × Y , can naturally be

viewed as a subset of the Cartesian product An(k)× Am(k).

Exercise 4.20.3. Let X = V (x2 − x1) ⊂ A2(k) and Y = V (y1) ⊂ A2(k).

Describe X × Y and show that it is a closed subset of A4(k).

Exercise 4.20.4. If X = V (I) ⊂ An(k) and Y = V (J) ⊂ Am(k) are algebraic

sets, show that X × Y ⊂ An+m(k) is also an algebraic set.

Let X ⊂ An(k) and Y ⊂ Am(k) be affine subvarieties. Then X × Y is an

algebraic subset of An+m(k). Endow X × Y with the subspace topology for the

Zariski topology on An+m(k). This is called the product of the affine varieties X

and Y .

We now want to prove that the product of affine varieties is again an affine

variety, which requires that we prove the product of irreducible sets is irreducible.

Exercise 4.20.5. Let x0 ∈ X be a (closed) point. Show that {x0} × Y =

{(x0, y) ∈ X × Y : y ∈ Y } is a subvariety of X × Y isomorphic to Y as a variety.

Similarly, for any closed point y0 ∈ Y , X×{y0} is a subvariety of X×Y isomorphic

to X.

In particular, if X is irreducible, so is X × {y0} for each y0 ∈ Y .

Exercise 4.20.6. If X and Y are irreducible, show that X × Y is irreducible.

Thus, if X and Y are affine varieties, so is their product, X × Y .

4.20.3. Products and morphisms.

4-23EX:Products:Projections Exercise 4.20.7. Let X ⊂ An(k) and Y ⊂ Am(k) be affine varieties.

(1) Show that (x, y) 7→ x is a morphism of affine varieties �X : X × Y → X,

called projection on the first factor.

(2) Similarly, show that (x, y) 7→ y is a morphism, which we will denote by

�Y : X × Y → Y and call projection on the second factor.
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Exercise 4.20.8. Show that �X : X × Y → X and �Y : X × Y → Y are both

open morphisms, i.e., if U ⊂ X×Y is an open subset, then �X(U) is an open subset

of X and �Y (U) is an open subset of Y .

Must �X and �Y also be closed morphisms, i.e., must the images of a closed set

C in X × Y be closed in X and in Y ?

4-23EX:Products:UniversalProperty Exercise 4.20.9. Suppose ' : Z → X and  : Z → Y are morphisms of affine

varieties. Show that there is a well-defined morphism � : Z → X × Y so that

' = �X ∘ � and  = �Y ∘ �, where �X : X × Y → X and �Y : X × Y → Y are the

projection morphisms.

This is the universal property for the product of varieties: Given X and Y , a

variety P with morphisms �X : P → X and �Y : P → Y is the product of X

and Y if, for any variety Z with morphisms � : Z → X and � : Z → Y , there is a

unique morphism  : Z → P so that

Z

�

��

�

##



  

P

�X

��

�Y

// Y

X

is a commutative diagram.

Therefore, if Q is another variety having this property, there are unique maps

� : P → Q, � : Q→ P , � : P → P and " : Q→ Q by the universal property. Clearly,

�, " must both be the identity morphisms of P and Q, respectively. However,

� ∘ � : P → P also satisfies the property of the arrow from P to itself, so that

� ∘ � = � is the identity on P . Similarly, � ∘ � : Q → Q is the identity morphism

of Q, so � and � are invertible morphisms which establish an isomorphism P ∼= Q.

Hence the product of two varieties is unique up to isomorphism.

Exercise 4.20.10. Suppose � : X × Y → Z is a morphism. Must there be

morphisms � : X → Z and � : Y → Z such that � = � ∘ �X and � = � ∘ �Y ? That

is, must we always be able to complete the following commutative diagram?

X × Y
�Y

//

�X

��

�
F

F

F

F

##
F

F

F

F

Y

�

��

X
�

// Z

Exercise 4.20.11. Suppose � : X → Z and � : Y → Z are morphisms of affine

varieties. Is there is a well-defined morphism � : X × Y → Z induced by � and �?





CHAPTER 5

Projective Varieties

Compiled on February

4, 2010The key to this chapter is that projective space ℙn is the natural ambient space

for much of algebraic geometry. We will be extending last chapter’s work on affine

varieties to the study of algebraic varieties in projective space ℙn. We will see that

in projective space we can translate various geometric objects into the language

not of rings but that of graded rings. Instead of varieties corresponding to ideals in

commutative rings, we will show that varieties in ℙn will correspond to homogeneous

ideals. This will allow us to define the notion of “projective isomorphisms.”

5.1. Definition of Projective n-space ℙn(k)

In chapter 1, we saw that all smooth conics in the complex projective plane ℙ2

can be viewed as the “same”. In chapter 2, we saw that all smooth cubics in ℙ2

can be viewed as describing toruses. In chapter 3, we saw that curves of degree e

and curves of degree f must intersect in exactly ef points, provided we work in ℙ2.

All of this suggests that An is not the natural place to study geometry; instead, we

want to define some notion of projective n- space.

Let k be a field. (You can comfortably replace every k with the complex

numbers ℂ, at least for most of this book.)

Definition 5.1.1. Let a = (a0, . . . , an), b = (b0, . . . , bn) ∈ An(k) − (0, . . . , 0).

We say that a ∼ b if there exists a � ∕= 0 in the field k such that

(a0, . . . , an) = �(b0, . . . , bn).

Exercise 5.1.1. In A5 − (0, . . . , 0), show

(1) (1, 3, 2, 4, 5) ∼ (3, 9, 6, 12, 15)

(2) (1, 3, 2, 4) ∕∼ (3, 9, 6, 13, 15)

Exercise 5.1.2. Show that the above ‘∼’ is an equivalence relation on An(k)−
(0, . . . , 0), meaning that for all a, b, c ∈ An(k)− (0, . . . , 0) we have

(1) a ∼ a.

(2) If a ∼ b then b ∼ a.

(3) If a ∼ b and b ∼ c, then a ∼ c

351
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Definition 5.1.2. Projective n-space over the field k is

ℙn(k) = An(k)− (0, . . . , 0)/ ∼ .

Exercise 5.1.3. Referring back to exercise XXX in chapter one, explain why

ℙn(k) can be thought of as the set of all lines through the origin in An(k).

We denote the equivalence class corresponding to some (a0, . . . , an) by

(a0 : a1 : ⋅ ⋅ ⋅ : an).

We call the (a0 : a1 : ⋅ ⋅ ⋅ : an) the homogeneous coordinates for ℙn(k).

We now want to see how ℙn(k) can be covered, in a natural way, by n + 1)

copies of An(k).

Exercise 5.1.4. Let (a0, a1, a2, a3, a4, a5) ∈ A5. Suppose that a0 ∕= 0. Show

that

(a0, a1, a2, a3, a4, a5) ∼
(
1,
a1
a0
,
a2
a0
,
a3
a0
,
a4
a0
,
a5
a0

)
.

Definition 5.1.3. Let (x0 : x1 : ⋅ ⋅ ⋅ : xn) be homogeneous coordinates on ℙn.

Define

Ui = ℙn∖V (xi)

= {(x0 : x1 : ⋅ ⋅ ⋅ : xn) : xi ∕= 0}.

Exercise 5.1.5. Prove that every element in ℙn(k) is contained in at least one

Ui. (Thus the (n+ 1) sets Ui, for i = 0, . . . , n, will cover ℙn(k).)

Exercise 5.1.6. Show that there is exactly one point in ℙn(k) that is not in

U1, U2, . . . , Un. Identify this point.

Exercise 5.1.7. Show that we can map ℙ1(k) to the set of all points in ℙn(k)

that are not in U2, U3, . . . , Un.

Exercise 5.1.8. Show that we can map ℙ2(k) to the set of all points in ℙn(k)

that are not in U3, U4, . . . , Un.

Definition 5.1.4. Define maps �i : Ui → An(k) by

�i(x0 : x1 : ⋅ ⋅ ⋅ : xn) =
(
x0
xi
,
x1
xi
, . . . , x̂i, . . . ,

xn
xi

)
,

where x̂i means that xi is omitted.

Exercise 5.1.9. For ℙn(k), show for each i that �i : Ui → An is

(1) one-to-one

(2) onto.
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Since �i is one-to-one and onto, there is a well- defined inverse

�−1
i : An(k) → ℙn(k).

Exercise 5.1.10. For �−1
2 : A5(k) → ℙ5(k), show that

�−1
2 (7, 3, 11, 5, 6) = (14 : 6 : 2 : 22 : 10 : 12).

Exercise 5.1.11. Define maps  ij : �j(Ui∩Uj) → �i(Ui∩Uj) by  ij = �i∘�−1
j .

Explain how this is a map from An to An.

Exercise 5.1.12. Show that the map  02 : A2 → A2 is

 02(x1, x2) =

(
x2
x1
,
1

x1

)
.

Describe the set on which  02 is undefined.

Exercise 5.1.13. Explicitly describe  12 : A2 → A2. In other words, find

 12(x1, x2). Describe the set on which  12 is undefined.

Exercise 5.1.14. Write explicitly the map  02 : �2(U0 ∩U2) ⊂ An → �0(U0 ∩
U2) ⊂ An in coordinates (x1, x2, . . . , xn). Describe the set on which  02 is unde-

fined.

Exercise 5.1.15. Show that  ij ∘  jk =  ik.

Exercise 5.1.16. Show that  ij ∘  jk ∘  ki = 1

For those who have had topology, the above exercises show that ℙn is a mani-

fold.

We are not interested, though, in ℙn(k), save as a place in which to do geometry.

We want to see why we cannot naively look at zero loci of polynomials in ℙn(k).

Exercise 5.1.17. Let

P (x0, x1, x2, x3, x4, x5) = x0 − x1x2x3x4x5.

(1) Show that

P (1, 1, 1, 1, 1, 1) = 0.

(2) Show that

P (2, 2, 2, 2, 2, 2) ∕= 0.

(3) Show that

(1, 1, 1, 1, 1, 1) ∼ (2, 2, 2, 2, 2, 2)

and the two points will define the same point in ℙ5.

(4) Conclude that the set {(x0, . . . , x5) ∈ ℙ5 : P (x0, . . . , x5) = 0} is not a

well-defined set.
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Exercise 5.1.18. Let

P (x0, x1, x2, x3, x4, x5) = x50 − x1x2x3x4x5.

(1) Show that

P (1, 1, 1, 1, 1, 1) = 0.

(2) Show that

P (2, 2, 2, 2, 2, 2) = 0.

(3) Show that if P (x0, . . . , x5)) = 0, then for all � ∈ C we have

P (�x0, . . . , �x5)) = 0.

(4) Conclude that the set {(x0, . . . , x5) ∈ ℙ5 : P (x0, . . . , x5) = 0} is a well-

defined set.

The reason why the zero locus of x50−x1x2x3x4x5 is a well- define subset of ℙ5

is that both terms x50 and x1x2x3x4x5 have degree five.

Definition 5.1.5. A polynomial for which of its terms has the same degree is

called homogeneous.

The next section starts the algebraic development of homogeneous polynomials,

which will allow us to apply algebra is geometry in projective space.

5.2. Graded Rings and Homogeneous Ideals

As we have seen, if f ∈ k[x0, . . . , xn] is a homogeneous polynomial of degree

d, then f(�x0, �x1, . . . , �xn) = �df(x0, x1, . . . , xn) for every � ∕= 0 in the base field

k. Thus even though the value of f at a point P ∈ ℙn is not well defined, the

vanishing of f at P is well defined. Hence we restrict our focus to the zero locus of

homogeneous polynomials when working in projective space ℙn.

We will prove that the polynomial ring k[x0, x1, . . . , xn] can be broken up in

a natural way using homogeneous polynomials. Define Rd to be the set of all

homogeneous polynomials of degree d in k[x0, x1, . . . , xn].

Exercise 5.2.1. Let R = k[x, y, z].

(1) Let f = x + 2y and g = x − z. Show f + g and f − g are in R1 and

fg ∈ R2.

(2) Let ℎ = x2 + yz. Show fℎ and gℎ are in R3 and ℎ2 ∈ R4.

Exercise 5.2.2. Let R = k[x0, x1, . . . , xn].

(1) What is R0?

(2) Show that if f ∈ R0 and g ∈ Rd, then fg ∈ Rd.

(3) Show that for f, g ∈ R1, f + g ∈ R1 and fg ∈ R2.
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(4) Show that for f, g ∈ Rd, f + g ∈ Rd and fg ∈ R2d.

We can generalize the previous exercise to show that k[x0, x1, . . . , xn] is a graded

ring.

Definition 5.2.1. A graded ring is a ring A together with a collection of

subgroups Ad, d ≥ 0, of the additive group A, such that A =
⊕

d≥0Ad and for all

d, e ≥ 0, Ad ⋅Ae ⊆ Ad+e.

Exercise 5.2.3. As before, let R = k[x0, x1, . . . , xn] with Rd the homogeneous

polynomials of degree d.

(1) Prove that Rd is a group under addition.

(2) Prove for any d, e ≥ 0, Rd ⋅Re ⊆ Rd+e.

(3) Prove k[x0, x1, . . . , xn] =
⊕

d≥0Rd.

This notion of grading of a ring extends to ideals in the ring. As we are

interested in projective space and homogeneous polynomials, we define a related

notion of grading in an ideal.

Definition 5.2.2. An ideal I of a graded ring R =
⊕

d≥0Rd is called homo-

geneous if and only if I =
⊕

(I ∩Rd).

Exercise 5.2.4. Determine whether each ideal of k[x, y, z] is homogeneous.

(1) I(P ) = {f ∣ f(P ) = 0}
(2) ⟨x− yz⟩
(3) ⟨x2 − yz⟩
(4) ⟨x− yz, x2 − yz⟩
(5) ⟨x2 − yz, y3 − xz2⟩

The next exercise gives us two alternate descriptions for a homogeneous ideal.

Exercise 5.2.5. Prove that the following are equivalent.

(1) I is a homogeneous ideal of k[x0, . . . , xn].

(2) I is generated by homogeneous polynomials.

(3) If f =
∑
fi ∈ I, where each fi is homogeneous, then fi ∈ I for each i.

Exercise 5.2.6. Let I be a homogeneous ideal in R = k[x0, . . . , xn]. Prove the

quotient ring R/I is a graded ring.

Exercise 5.2.7. Let R = k[x, y, z] and I = ⟨x2 − yz⟩. Show how to write R/I

as a graded ring
⊕
Sd.

Exercise 5.2.8. Let R = k[x, y, z, w] and I = ⟨xw − yz⟩. Show how to write

R/I as a graded ring
⊕
Sd.
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Exercise 5.2.9. Let R = k[x, y, z] and let I = ⟨x, y⟩, J = ⟨x2⟩. Determine

whether each ideal is homogeneous.

(1) I ∩ J
(2) I + J

(3) IJ

(4) Rad(I)

(Recall that the radical of I is the ideal Rad(I) = {f : fm ∈ I for some m > 0} .)

We can generalize these results to the intersections, sums, products, and radi-

cals of any homogeneous ideals.

Exercise 5.2.10. Let I and J be homogeneous ideals in k[x0, . . . , xn].

(1) Prove I ∩ J is homogeneous.

(2) Prove I + J is homogeneous.

(3) Prove IJ is homogeneous.

(4) Prove Rad(I) is homogeneous.

We will see that, as in the affine case, prime ideals correspond to irreducible

varieties. The next exercise shows that to prove a homogeneous ideal is prime, it

is sufficient to restrict to homogeneous elements.

Exercise 5.2.11. Let I be a homogeneous ideal in R = k[x0, . . . , xn]. Prove

that I is a prime ideal if and only if fg ∈ I implies f ∈ I or g ∈ I for all homogeneous

polynomials f, g.

5.3. Projective Varieties

In this section we will see that the V − I correspondence for affine varieties

developed in chapter 4 extends to projective varieties.expand this after

comparing with

chapter 4 revisions. 5.3.1. Algebraic Sets. To define varieties in ℙn, we start with the zero sets

of polynomials.

Definition 5.3.1. Let S be a set of homogeneous polynomials in k[x0, . . . , xn].

The zero set of S is V (S) = {P ∈ ℙn ∣ f(P ) = 0 ∀f ∈ S}. A set X in ℙn is called

an algebraic set if it is the zero set of some set of homogeneous polynomials.

Exercise 5.3.1. Describe the zero sets V (S) in ℙ2 for each set S.

(1) S =
{
x2 + y2 − z2

}
.

(2) S =
{
x2, y

}
.

(3) S =
{
x2 + y2 − z2, x2 − y2 + z2

}
.

Varieties:EX-algebraic sets in P1 Exercise 5.3.2. Describe the algebraic sets in ℙ1.
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Exercise 5.3.3. Show that each set of points X is an algebraic set by finding

a set of polynomials S so that X = V (S).

(1) X = {(0 : 1)} ⊂ ℙ1.
(2) X = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)} ⊂ ℙ2.
(3) X = {(1 : 1 : 1 : 1)} ⊂ ℙ3.

While in this book we are interested in varieties over ℂ, it is interesting to see

how the algebraic sets vary when we vary the base field k.

Exercise 5.3.4. Let I = ⟨x2 + y2⟩ ⊂ k[x, y].

(1) Find V (I) for k = ℂ.

(2) Find V (I) for k = ℝ.

(3) Find V (I) for k = ℤ2.

Exercise 5.3.5. Let S be a set of homogeneous polynomials and let I be the

ideal generated by the elements in S. Prove that V (I) = V (S). This shows that

every algebraic set is the zero set of a homogeneous ideal.

Exercise 5.3.6. Prove that every algebraic set is the zero set of a finite number

of homogeneous polynomials. (The Hilbert Basis Theorem (check section in chapter

4) will be useful here.)

Exercise 5.3.7. We call the ideal ⟨x0, x1, . . . , xn⟩ ⊂ k[x0, x1, . . . , xn] the “ir-

relevant” maximal ideal of k[x0, x1, . . . , xn]. Prove that this is a maximal ideal and

describe V (⟨x0, x1, . . . , xn⟩). Why do we say that ⟨x0, x1, . . . , xn⟩ is irrelevant?

Exercise 5.3.8. Let I and J be homogeneous ideals in R = k[x0, x1, . . . , xn].

(1) Prove V (I ∩ J) = V (I) ∪ V (J).

(2) Prove V (I + J) = V (I) ∩ V (J).

Exercise 5.3.9. Let I be a homogeneous ideal. Prove that V (Rad(I)) = V (I).

5.3.2. Ideals of algebraic sets.

Definition 5.3.2. Let V be an algebraic set in ℙn. The ideal of V is

I(V ) = {f ∈ k[x0, . . . , xn] ∣ f is homogeneous, f(P ) = 0 for all P ∈ V } .

Exercise 5.3.10. Let V be an algebraic set in ℙn. Prove that I(V ) is a

homogeneous ideal.

Exercise 5.3.11. Find the ideal I(S) for each projective algebraic set S.

(1) S = {(1 : 1)} in ℙ1.

(2) S = V (⟨x2⟩) in ℙ2.
(3) S = V (⟨x0x2 − x1x3, x0 − x3⟩) in ℙ3.
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In chapter 4 we proved Hilbert’s Nullstellensatz: for an affine algebraic variety

V (I) over an algebraically closed field k, I(V (I)) = Rad(I). To prove the projective

version of this result, we will compare the corresponding projective and affine ideals

and varieties. For a homogeneous ideal J ⊆ k[x0, . . . , xn], let

Va(J) =
{
P ∈ An+1∖{(0, 0, . . . , 0)} : f(P ) = 0 ∀f ∈ J

}
,

the affine zero set of the ideal J .

Exercise 5.3.12. Let J be a homogeneous ideal in k[x0, . . . , xn].

(1) Let ' : An+1∖{(0, 0, . . . , 0)} → ℙn be the map

'((a0, . . . , an)) = (a0 : ⋅ ⋅ ⋅ : an).

Describe '−1(a0 : ⋅ ⋅ ⋅ : an).
(2) Prove that (a0, . . . , an) ∈ Va(J) if and only if (�a0, . . . , �an) ∈ Va(J) for

all � ∈ k∗.

(3) Let I(Va(J)) = {f ∈ k[x0, . . . , xn] : f(P ) = 0 ∀P ∈ Va(J)} the ideal of

polynomials vanishing on the affine variety Va(J). Note that we do

not require the polynomials in I(Va(J)) to be homogeneous, since Va(J)

is an affine variety. Prove that I(Va(J)) is in fact homogeneous, and

I(Va(J)) = I(V (J)).

(4) Use Hilbert’s Nullstellensatz to conclude that I(V (J)) = Rad(J).

Exercise 5.3.13. Let J = ⟨x0 − x1⟩ ⊆ k[x0, x1].

(1) Find the affine zero set Va(J) ⊂ A2.

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V (J)) = RadJ .

Exercise 5.3.14. Let J = ⟨x0 − x1, x1 + x2⟩ ⊆ k[x0, x1, x2].

(1) Find the affine zero set Va(J) ⊂ A3.

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V (J)) = RadJ .

Exercise 5.3.15. Let J = ⟨x0x2, x0x2, x1x2⟩ ⊆ k[x0, x1, x2].

(1) Find the affine zero set Va(J) ⊂ A3.

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V (J)) = RadJ .

Exercise 5.3.16. Let I be a homogeneous ideal. Prove that V (I) = ∅ if and

only if ⟨x0, x1, . . . , xn⟩ ⊆ Rad(I).
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5.3.3. Irreducible algebraic sets and projective varieties. As in Chap-

ter 4, we say that an algebraic set V is reducible if V = V1 ∪ V2, where V1 and V2

are algebraic sets with V1 ⊊ V and V2 ⊊ V . An algebraic set that is not reducible is

said to be irreducible. A projective variety is defined to be an irreducible algebraic

subset of ℙn, for some n.

Exercise 5.3.17. Determine whether each algebraic set in ℙn is irreducible

(and thus a projective variety).

(1) V (⟨x0⟩)
(2) V (⟨x0x1⟩)
(3) V (⟨x1, x2, . . . , xn⟩)

Varieties:EX-irreducible iff prime Exercise 5.3.18. Let V ⊂ ℙn be an algebraic set.

(1) Suppose that V is reducible, say V = V1∪V2 where V1 and V2 are algebraic
sets with V1 ⊊ V and V2 ⊊ V . Show that there are polynomials P1 ∈ I(V1)

and P2 ∈ I(V2) such that P1P2 ∈ I(V ) but P1, P2 ∕∈ I(V ). Conclude that

I(V ) is not a prime ideal.

(2) Prove that if I(V ) is not a homogeneous prime ideal in k[x0, x1, . . . , xn],

then V is a reducible algebraic set in ℙn.

Therefore, a projective variety V in ℙn corresponds to a homogeneous prime

ideal I in the graded ringR = k[x0, x1, . . . , xn], other than the ideal J = ⟨x0, x1, . . . , xn⟩.
(Recall that J is called the irrelevant ideal, since V (J) = ∅.)

Exercise 5.3.19. Determine whether each algebraic set V is a projective vari-

ety in ℙ2 by determining whether I(V ) is prime.

(1) V (⟨x0x1⟩)
(2) V (⟨x0x1 − x22⟩)
(3) V (⟨x20⟩)

Exercise 5.3.20. Suppose V = V1 ∪ V2 is a reducible algebraic set. Show that

I(V ) = I(V1) ∩ I(V2).

Exercise 5.3.21. Suppose V is a reducible algebraic set. Show that V is the

union of a finite number of projective varieties.

5.3.4. The Zariski topology. As we saw with affine varieties, the collection

of algebraic sets are the closed sets for a topology on ℙn, the Zariski topology.

Varieties:EX-topological properties Exercise 5.3.22. (1) Show that ∅ and ℙn are algebraic sets in ℙn.

(2) Show that the union of a finite number of algebraic sets in ℙn is again an

algebraic set.
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(3) Show that the intersection of an arbitrary collection of algebraic sets in

ℙn is again an algebraic set.

Conclude that the algebraic sets in ℙn form the collection of closed sets for a

topology on ℙn. This is the Zariski topology on ℙn.

Exercise 5.3.23. The Zariski topology on ℙ1.

(1) Show that {(0 : 1), (1 : 0)} is a closed set.

(2) Find an open neighborhood of {(1 : 1)}.
(3) Describe the closed sets in ℙ1.

(4) Find a basis of open sets for ℙ1

Exercise 5.3.24. The Zariski topology on ℙn.

(1) Show that the sets ℙn∖V (f), for homogeneous f ∈ k[x0, . . . , xn], form a

basis for the Zariski topology on ℙn.

(2) Show that this topology is not Hausdorff. (Recall that a topological space

is Hausdorff if for every pair of distinct points there exist disjoint open

neighborhoods containing them.)

5.4. Functions on Projective Varieties

5.4.1. The rational function field and local ring. As we did for curves

in section 3.12 we now define a field of functions on a projective variety. Suppose

V ⊂ ℙn is a projective variety. We’d like to work with functions on V and as we

have previously seen, polynomial functions are not well-defined on projective space.

Instead we consider ratios f(x0,...,xn)
g(x0,...,xn)

where f and g are homogeneous polynomials

of the same degree.

Exercise 5.4.1. Let f and g be homogeneous polynomials of the same degree.

Show that
f(�x0, . . . , �xn)

g(�x0, . . . , �xn)
=
f(x0, . . . , xn)

g(x0, . . . , xn)
.

Thus f
g is a well-defined function at all points P ∈ ℙn with g(P ) ∕= 0.

Definition 5.4.1. Let V ⊂ ℙn be a projective variety with ideal I(V ). The

function field of V , K(V ), is the set of all ratios

f(x0, . . . , xn)

g(x0, . . . , xn)

such that

(1) f and g are homogeneous polynomials of the same degree

(2) g /∈ I(V )

(3) f1
g1

∼ f2
g2

if f1g2 − f2g1 ∈ I(V ).
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Exercise 5.4.2. Prove that ∼ is an equivalence relation and that f1
g1

∼ f2
g2

if

and only if f1g1 and f2
g2

are identical functions on V .

Exercise 5.4.3. Prove that K(V ) is a field.

Exercise 5.4.4. Let V = V (⟨x2 − yz⟩) in ℙ2.
(1) Show that x

z = y
x in K(V ).

(2) Show that x
z is defined on an open subset U of V , and thus x

z defines a

function from U to the base field k.

Exercise 5.4.5. Let V = V (⟨x0x2 − x21, x1x3 − x22, x0x3 − x1x2⟩) in ℙ3.
(1) Show that x0

x2
= x1

x3
in K(V ).

(2) Show that x0

x2
is defined on an open subset U of V , and thus defines a

function from U to the base field k.

Exercise 5.4.6. Let V be a projective variety in ℙn and let ℎ = f(x0,...,xn)
g(x0,...,xn)

where f and g are homogeneous polynomials of the same degree. Show that ℎ is

defined on an open subset U of V , and thus defines a function from U to the base

field k.

What we call a function on a projective variety V is often only defined on an

open subset of V . We also will be interested in functions defined at a particular

point of our variety, which leads to the next definition.

Definition 5.4.2. Let V be a projective variety and P ∈ V . The local ring

of V at P , OV,P , is the set of all rational functions ℎ ∈ K(V ) such that at P , we

can write ℎ = f
g where f, g are homogenous polynomials of the same degree and

g(P ) ∕= 0.

Exercise 5.4.7. Let V = V (⟨xz − y2⟩) and let P = (0 : 0 : 1). Show that the

rational function ℎ = x
y is in OV,P by finding homogeneous polynomials f and g

with g(P ) ∕= 0 and ℎ = f
g .

Exercise 5.4.8. Verify that OV,P is a ring.

Exercise 5.4.9. In abstract algebra a ring is called local if it has a unique

maximal ideal. In this exercise we will show that OV,P satisfies this property.

(1) Let mP = {ℎ ∈ OV,P ∣ ℎ(P ) = 0}. Prove that mP is a maximal ideal.

(2) Let I be any ideal in OV,P . Prove that I ⊆ mP .

5.4.2. Rational functions. As we have seen in the previous exercises, an

element ℎ of K(V ) is defined on an open set U of V and defines a function from U

to k. We will write V 99K k for this function to indicate that ℎ is not defined on all
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of V . Taking elements ℎ0, ℎ1, . . . , ℎm ∈ K(V ) we can define a function ℎ : V 99K ℙm

by

ℎ(p) = (ℎ0(p) : ℎ1(p) : . . . : ℎm(p))

at each point p ∈ V where each ℎi is defined and at least one of the ℎi(p) is non-zero.

We call such a function a rational map on V .

Exercise 5.4.10. Prove that the above definition of ℎ gives a well-defined

function from an open subset of V to ℙm.

Exercise 5.4.11. Let V = V (⟨x0x2 − x1x3⟩) in ℙ3, and let ℎ0 = x0

x3
, ℎ1 = x1

x2
,

ℎ2 = x3

x1
. Determine the domain of the rational map ℎ : V 99K ℙ2 defined by

ℎ(p) = (ℎ0(p) : ℎ1(p) : ℎ2(p)).

Exercise 5.4.12. Let ℎ : ℙ1 99K ℙ2 be defined by

ℎ((p0 : p1)) =

(
p20
p21

:
p0
p1

: 1

)
.

(1) Determine the domain U of ℎ, that is the points where ℎ is regular.

(2) Show that the function a((p0 : p1)) = (p20 : p0p1 : p21) agrees with ℎ on U

and is defined on all of ℙ1.

Exercise 5.4.13. Let V = V (⟨x20 + x21 − x22⟩) in ℙ2, and let ℎ0 = x0

x2
, ℎ1 = x1

x2
.

(1) Determine the domain of the rational map ℎ : V 99K ℙ1 defined by ℎ(p) =

(ℎ0(p) : ℎ1(p)).

(2) Show that the function (x0 : x1 : x2) 7→ (x0 : x1) is equal to ℎ.

Exercise 5.4.14. Let ℎ be a rational map ℎ : V 99K ℙm, so ℎ is defined as

ℎ(p) = (ℎ0(p) : ℎ1(p) : . . . : ℎm(p))

where ℎi =
fi
gi

with fi, gi homogeneous polynomials of degree di, for 0 ≤ i ≤ m.

(1) Show that

(ℎ0(p) : ℎ1(p) : . . . : ℎm(p)) = (g(p)ℎ0(p) : g(p)ℎ1(p) : . . . : g(p)ℎm(p))

for any homogeneous polynomial g.

(2) Prove that any rational map ℎ : V 99K ℙm can be defined by

ℎ(p) = (a0(p) : a1(p) : . . . : am(p))

where a0, a1, . . . , am are homogeneous polynomials of the same degree.

As we see in the previous exercises, a rational function can have more than one

representation. By changing to an equivalent expression we can often extend the

domain of our function.
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A rational function ℎ : V 99K ℙm is called regular at a point P if locally near

P , ℎ can be represented by rational functions f0
g0
, f1g1 , . . .

fm
gm

such that gi(P ) ∕= 0 for

each i and fi(P ) ∕= 0 for at least one i. A rational function that is regular at all

points of the variety V is called a morphism.

Exercise 5.4.15. Let V = V (⟨x0x2 − x1x3⟩) in ℙ3, and let ℎ0 = x0

x3
, ℎ1 = x1

x2
,

ℎ2 = x3

x1
. Determine the regular points of the rational map ℎ : V 99K ℙ2 defined by

ℎ(p) = (ℎ0(p) : ℎ1(p) : ℎ2(p)).

Exercise 5.4.16. Let f : ℙ2 99K ℙ2 be defined by (x0x1 : x0x2 : x1x2).

(1) Find all points P where f is regular.

(2) Describe the pre-images of each of the points (0 : 0 : 1), (0 : 1 : 0), and

(1 : 0 : 0).

So far we have considered functions from a variety to projective space, but we

are often interested in functions to another projective variety. We write

f : V 99KW

when the image of f lies in the projective variety W .

Exercise 5.4.17. Prove that the rational map f : ℙ1 → ℙ2 defined by

f((a0 : a1)) = (a0 : a1 : a1)

is a morphism and that the image lies in the line x1 − x2 = 0 in ℙ2.

Exercise 5.4.18. Prove that the rational map f : ℙ1 → ℙ2 defined by

f((a0 : a1)) = (a20 : a0a1 : a21)

is a morphism and that the image lies in the conic x0x2 − x21 = 0.

Exercise 5.4.19. Let f : ℙ1 99K ℙ3 be defined by

f((a0 : a1)) = (a30 : a20a1 : a0a
2
1 : a31).

Prove that f is a morphism and that the image lies in the variety W = V (⟨x0x3 −
x1x2, x0x2 − x21, x1x3 − x22⟩).

Exercise 5.4.20. Let V = V (⟨x0x3 − x1x2⟩) ⊂ ℙ3 and let f : V 99K ℙ1 be

defined by f((x0 : x1 : x2 : x3)) = (x0 : x2). Prove that f is a morphism and that

the image is all of ℙ1.
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5.4.3. Birationality.

Definition 5.4.3. Let � : V 99K W be a rational map between projective

varieties such that there is a rational map  :W 99K V with the property  ∘�(P ) =
P for all points P in an open subset of V . We say that � is a birational map with

rational inverse  , and the varieties V and W are birational.

Exercise 5.4.21. Let V = V (⟨x0⟩) ⊂ ℙ2 and let f : V 99K ℙ1 be defined by

f((x0 : x1 : x2)) = (x1 : x2). Prove that f is birational.

Exercise 5.4.22. Let V = V (⟨x0x2−x21⟩) ⊂ ℙ2 and let f : V 99K ℙ1 be defined

by f((x0 : x1 : x2)) = (x0 : x1). Prove that f is birational.

Exercise 5.4.23. Let V = V (⟨x0 + x1 + x2 + x3⟩) ⊂ ℙ3. Show that V and ℙ2

are birational.

Exercise 5.4.24. Let V = V (⟨y2z−x3 −xz2⟩) ⊂ ℙ2. Show that V and ℙ1 are

not birational.

5.5. Examples

Exercise 5.5.1. Define a rational map ' : ℙ1 → ℙ2 by '((x0 : x1)) = (x20 :

x0x1 : x21).

(1) Show that the image of ' is a plane conic.

(2) Find the rational inverse of '.

Exercise 5.5.2. Define a rational map ' : ℙ1 → ℙ3 by '((x0 : x1)) = (x30 :

x20x1 : x0x
2
1 : x31).

(1) Find the image V of '. (This image is called a twisted cubic curve.)

(2) Find the rational inverse from V to ℙ1.

We now generalize the previous two exercises to construct morphisms from ℙ1

to various projective spaces. The next two exercises follows Hartshorne, Exercise

I.2.12.

Exercise 5.5.3. (1) Fix a degree d > 0. How many monomials in the

variables x0 and x1 of degree d exist? Call this number N and list the

monomials in some order, m1, . . . ,mN .

(2) Show that (x0 : x1) 7→ (m1 : ⋅ ⋅ ⋅ : mN ) is a well defined function from ℙ1

to ℙN . This is called the d-uple embedding of ℙ1.

(3) Let Y be the image of the 4-uple embedding of ℙ1. Show that Y is an

algebraic set.

Morphisms:EX-d-uple embedding Exercise 5.5.4. We generalize further to construct morphisms from ℙn.
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(1) Fix a degree d > 0. How many monomials in the variables x0, x1, . . . , xn

of degree d exist? Call this number N and list the monomials in some

order, m1, . . . ,mN .

(2) Show that (x0 : x1 : ⋅ ⋅ ⋅ : xn) 7→ (m1 : ⋅ ⋅ ⋅ : mN ) is a well defined function

from ℙn to ℙN . This is called the d-uple embedding of ℙn.

(3) Let Y be the image of the 2-uple embedding of ℙ2 in ℙ5. This is called

the Veronese surface. Show that Y is an algebraic set in ℙ5.

In the next two exercises we will show that the product of projective spaces is

again a projective algebraic set, which in fact is a projective variety.

Exercise 5.5.5. Define the Segre embedding of the product, ℙ1 × ℙ1, by

 : ℙ1 × ℙ1 → ℙ3

by  ((a0 : a1), (b0 : b1)) = (a0b0 : a0b1 : a1b0 : a1b1).

(1) Show that  is well defined.

(2) Let Y be the image of  in ℙ3. Show that Y is an algebraic set.

Morphisms:EX-Segre embedding Exercise 5.5.6. We now consider the product of the projective spaces ℙk and

ℙℓ. Define the Segre embedding of ℙk × ℙℓ,

 : ℙk × ℙℓ → ℙ(k+1)(ℓ+1)−1

 ((a0 : a1 : ⋅ ⋅ ⋅ : ak), (b0 : b1 : ⋅ ⋅ ⋅ : bℓ)) = (a0b0 : a0b1 : ⋅ ⋅ ⋅ : a0bℓ : a1b0 : a1b1 : ⋅ ⋅ ⋅ :
akbℓ).

(1) Show that  is well defined from ℙk × ℙℓ to ℙ(k+1)(ℓ+1)−1.

(2) Let Y be the image of  in ℙ(k+1)(ℓ+1)−1. Show that Y is an algebraic

set.

5.5.1. Proj. We next define the projective counterpart of the prime spectrum

Spec(R). The Proj construction is an important initial step in the study of projec-

tive schemes associated to graded rings. We will only state the definition and look

at several examples of how this construction relates back to projective varieties.

Let R be a graded ring, which for our purposes will be mainly k[x0, . . . , xn]

or a quotient of this polynomial ring. As before, for projective varieties we are

interested in homogeneous ideals, apart from the irrelevant ideal. (Recall that the

irrelevant ideal of k[x0, . . . , xn] is ⟨x0, x1, . . . , xn⟩; for a general graded ring R we

call the ideal generated by all elements of positive degree irrelevant.)

Define Proj(R) to be the set of all homogeneous prime ideals in R that do not

contain the irrelevant maximal ideal. This plays the role for projective varieties

that Spec plays for affine varieties, providing a dictionary between graded rings

and their homogeneous ideals and the projective varieties and their algebraic sets.
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The set Proj(R) is given the Zariski topology as follows. For any homogeneous

ideal H in R, define

V (H) = {I ∈ Proj(R) : H ⊆ I}
the set of homogeneous prime ideals containing H (again excluding the irrelevant

ideal). As in the construction of the Zariski topology on Spec(R), we say that

the sets V (H) are closed in Proj(R). Recall then that open sets are defined to be

complements of closed sets, thus of the form Proj(R)−V (H) for some homogeneous

ideal H. In the next exercise we show that this defines a topology on Proj(R).

Exercise 5.5.7. (1) Show that the empty set and Proj(R) are open.

(2) Prove that the arbitrary union of open sets of Proj(R) is also open.

(3) Prove that the intersection of a finite number of open sets is also open.

Exercise 5.5.8. Let R = ℂ[x]. Show that Proj(R) is a point.

Exercise 5.5.9. In this exercise we show how to obtain the projective line ℙ1

as Proj(R) for the ring R = ℂ[x0, x1].

(1) Let I be a homogeneous prime ideal in R such that I does not contain

the irrelevant ideal ⟨x0, x1⟩. Prove that either I = {0} or I is generated

by one linear polynomial.

(2) Show how the ideal ⟨x0⟩ corresponds to the point (0 : 1) ∈ ℙ1. Prove that
this ideal is maximal among those in Proj(R).

(3) Find the prime ideal I that corresponds to the point (1 : 2), and prove

that the set {I} is closed in Proj(R).

(4) Find the prime ideal I that corresponds to the point (a : b), and prove

that the set {I} is closed in Proj(R).

(5) Prove that every closed point of Proj(R) is a prime ideal in R that is

maximal among those in Proj(R).

(6) Show that Proj(R) corresponds to ℙ1.

Exercise 5.5.10. In this exercise we show how to obtain the projective plane

ℙ2 as Proj(R) for the ring R = ℂ[x0, x1, x2].

(1) Show that the ideal I = ⟨x0, x1⟩ corresponds to the point (0 : 0 : 1) ∈ ℙ2.
Prove that this ideal is maximal among those in Proj(R), so that V (I) =

{I}.
(2) Show that V (I) ∕= {I} for the ideal I = ⟨x20 + x21 + x22⟩, by finding a point

P ∈ V (I) with P ∕= I.

(3) Find the prime ideal I that corresponds to the point (1 : 2 : 3), and prove

that the set {I} is closed in Proj(R).

(4) Find the prime ideal I that corresponds to the point (a : b : c), and prove

that the set {I} is closed in Proj(R).
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(5) Prove that every closed point of Proj(R) corresponds to a point in ℙ2.

Exercise 5.5.11. In this exercise we show how to obtain ℙn as Proj(R) for

R = ℂ[x0, x1, . . . , xn].

(1) Show that the ideal I = ⟨x0, x1, . . . , xn−1⟩ corresponds to the point (0 :

0 : ⋅ ⋅ ⋅ : 0 : 1) ∈ ℙn. Prove that this ideal is maximal among those in

Proj(R) , so that V (I) = {I}.
(2) Show that V (I) ∕= {I} for the ideal I = ⟨x20 + x21 + ⋅ ⋅ ⋅+ x2n⟩, by finding a

point P ∈ V (I) with P ∕= I.

(3) Find the prime ideal I that corresponds to the point (1 : 2 : ⋅ ⋅ ⋅ : n), and
prove that the set {I} is closed in Proj(R).

(4) Find the prime ideal I that corresponds to the point (a0 : a1 : ⋅ ⋅ ⋅ : an),
and prove that the set {I} is closed in Proj(R).

(5) Prove that every closed point of Proj(R) corresponds to a point in ℙn.

As an extension of the previous exercises we next use the Proj construction to

obtain a description of the parabola x0x1 − x22 in ℙ2. While this exercise provides

some practice in using the definitions, it is not a recommended method for studying

a parabola!

Exercise 5.5.12. Let S = ℂ[x0, x1, x2]/I, where I = ⟨x0x1 − x22⟩.
(1) As a brief review of some commutative algebra, prove that the homoge-

neous ideals of S correspond to homogeneous ideals of ℂ[x0, x1, x2] con-

taining I.

(2) Show that the ideal ⟨x0, x2⟩ ⊂ S corresponds to the point (0 : 1 : 0) on the

parabola. Prove that the class of this ideal in Proj(S) is maximal among

those not containing the irrelevant ideal, so that V (I) = {I}.
(3) Find the prime ideal J that corresponds to the point (−1 : −1 : 1) on the

parabola, and prove that the set {J} is closed in Proj(S).

(4) For an arbitrary point (a : b : c) on the parabola, find the corresponding

prime ideal J in S and prove that the set {J} is closed in Proj(S).

(5) Show that the points of the parabola correspond to the closed points of

Proj(S).

Exercise 5.5.13. some motivation for studying Proj!
eventually compare

with chapter 4 section

on Spec





CHAPTER 6

Sheaves and Cohomology

Complied on February

4, 2010In the first three chapters of this book, we developed the theory of algebraic

curves and presented many of its greatest results: the classification of smooth

curves of degrees 2 and 3, the group law for cubic curves, Bezout’s Theorem, and

the Riemann-Roch Theorem. Since then, we have expanded our view of algebraic

geometry from the special case of curves to a larger realm including affine and

projective varieties in Chapters 4 and 5.

It is the goal of this final chapter to develop the tools needed to reach results for

varieties of similar importance to those we have for curves. In the end, we provide

an alternative presentation of the Riemann-Roch Theorem, based on sheaves and

cohomology, that demonstrates the power of modern algebraic geometry and its

tools. While more abstract, the methods are more general and explain some of the

seemingly arbitrary spaces and constructions introduced in Chapter 3 when proving

the theorem the first time.

To do all of this, we must first introduce sheaf theory (Sections 6.1, 6.2, 6.3),

then we’ll reintroduce divisors (Sections 6.4 and 6.5) that we had previously encoun-

tered in Chapter 3, and lastly discuss how to use cohomology to deduce important

properties of varieties such as the Riemann-Roch Theorem for smooth curves (Sec-

tions 6.6 and 6.7).

6.1. Intuition and Motivation for Sheaves

In Chapter 1, we discussed gluing copies of ℂ together to form a new space,

the complex projective line, ℙ1. When gluing the two copies of ℂ together, we

needed to describe how they should overlap one another and how they should be

attached together at these points. We could undertake a more general study of

gluing algebraic varieties together, forming new and more complicated spaces from Did we glue varieties

in Chapter 4 or 5? –

DM (7/2/09)

smaller, simpler parts.

With sheaves, we will again perform gluing operations, but this time we will

be gluing functions rather than spaces together. The idea is almost the same. We

need to describe how the functions overlap and be sure that they agree where they

do so. One of the roles sheaves will have to play for us is to record how functions

can be pieced together from local parts to form larger wholes. They will also, as we

369
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will see, indicate the obstacles that may prevent us from extending a local functionDo we show how

sheaves and

cohomology indicate

obstructions? Could

we? – DM (7/3/09)

to a global one and so keep us from attempting the impossible.

The Mittag-Leffler Theorem in the first subsection below provides just one

example of patching locally defined functions together to construct a single globally

defined function that agrees with each part where it was originally defined. Sheaves

will enable us to do this and more, as we will see below.

6.1.1. Motivating Example. We will begin with a motivating example. Sup-

pose f is a function whose Laurent series centered at a is given by f(z) =

∞∑

k=−∞
ck(z − a)k.

The principal part of f at a is
−1∑

k=−∞
ck(z − a)k. The function f has a pole of order

m at a if the principal part of f at a is
−1∑

k=−m
ck(z − a)k, that is, if the principal

part of f at a is a finite sum.

Let Ω be an open subset of ℂ and let {aj} be a sequence of distinct points in Ω

such that {aj} has no limit point in Ω. For each integer j ≥ 1 consider the rational

function

Pj(z) =

mj∑

k=1

cj,k
(z − aj)k

.

The Mittag-Leffler Theorem states that there exists a meromorphic function f on

Ω, holomorphic outside of {aj}, whose principal part at each aj is Pj(z) and which

has no other poles in Ω. This theorem allows meromorphic functions on ℂ to be

constructed with an arbitrarily preassigned discrete set of poles.Do our readers know

this much complex

analysis yet? We

should improve the

appendix! – DM

(7/3/09)

My sense is that we

will have to address

this issue in the

introduction. – PP

(8/3/09)

The original

interpretation of the

Mittag-Leffler

Theorem did not make

sense to me: it surely

isn’t the case that the

theorem allows one to

construct meromorphic

functions with

arbitrarily preassigned

sets of poles, right? I

imagine we must mean

meromorphic functions

with arbitrary discrete

Exercise 6.1.1. Find a meromorphic function f that has a pole of order 2 at

the origin such that the residue of the origin is 0.

Solution. The function f(z) =
1

z2
satisfies the conditions of the exercise.

Exercise 6.1.2. Let !1, !2 ∈ ℂ such that !1

!2
∕∈ ℝ. Find a meromorphic

function that has a pole at every point in the lattice Λ = {m!1 + n!2 ∣ m,n ∈ ℤ}.

Solution. The function

℘(z) =
1

z2
+

∑

m,n∈ℤ

(m,n) ∕=(0,0)

1

(z −m!1 − n!2)2
− 1

(m!1 + n!2)2

from Chapter 3 is such a function.

Since we can construct functions with arbitrarily preassigned discrete sets of

poles on ℂ, it is natural to ask the same question on a complex curve (which we

know can be viewed as a real surface). Suppose X is a Riemann surface. Given a
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presheafdiscrete set of points {aj} and a principal part Pj(z) at each aj , where z is a local

affine coordinate, does there exist a rational function f on X, defined outside {aj},
whose principal part at each aj is Pj(z)? Locally, there is such a function provided

by the Mittag-Leffler Theorem, but whether there exists such a function defined

globally is more subtle. This requires passing from local information to global

information. The primary virtue of sheaves is that they provide a mechanism to

deal with problems passing from local information to global information.

6.1.2. The Sheaf of Regular Functions. Prior to giving the definition of

sheaves, we will explore a concrete example of a sheaf that has the virtue of its

ubiquitousness. Later on, the reader will prove that the object we encounter here

is indeed a sheaf. Let X be an algebraic variety, either affine or projective. There

is always the sheaf OX of regular functions on X, defined by setting for each open

set U in X the ring of functions

OX(U) = {regular function on U}

and letting rV,U , for U ⊂ V ⊂ X, be the restriction map. In fact, we have already

been using the notation OX throughout this book.

Exercise 6.1.3. Consider the projective line ℙ1 with homogeneous coordinates

(x0 : x1). Let U0 = {(x0 : x1) ∣ x0 ∕= 0}. Show that the ring OX(U0) is isomorphic

to the ring ℂ[t]. Show that OX(ℙ1) is the zero ring.

Exercise 6.1.4. In ℙ2, let

X = {(x0 : x1 : x2) : x
2
0 + 3x21 − x22 = 0},

and for each i, let Ui = {(x0 : x1 : x2) ∈ X : xi ∕= 0}. Show that OX(U0)

is isomorphic to the ring ℂ[s, t]/(3s2 − t2 + 1), OX(U1) is isomorphic to the ring

ℂ[s, t]/(s2 − t2 + 3) and OX(U2) is isomorphic to the ring ℂ[s, t]/(s2 + 3t2 − 1).

6.2. The Definition of a Sheaf

Suppose X is a topological space. Being interested in both the local and global

structure of X, we wish to assign to each open set U of X a collection of data that

is somehow characteristic of U . Since different kinds of algebraic structures can

encode geometric information about a topological space, it is useful to introduce

a concept that encompasses different ways of assigning algebraic structures to the

space. Perhaps recall the V-I

correspondence as

instance of algebraic

objects giving

geometric data? – DM

(7/3/09)

DEF:presheaf Definition 6.2.1. A presheaf ℱ of abelian groups (or vector spaces, rings, etc.)

on X consists of an abelian group (resp. vector space, rings, etc.) ℱ(U) for every
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open set U ⊂ X and a group homomorphism (resp. linear map, ring homomor-

phism, etc.) rV,U : ℱ(V ) → ℱ(U) for any two nested open subsets U ⊂ V satisfying

the following two conditions:

i) rU,U = idℱ(u)

ii) For open subsets U ⊂ V ⊂W one has rW,U = rV,U ∘ rW,V .

The elements of ℱ(U) are called the sections of ℱ over U and the map rV,U is

called the restriction map, and rV,U (s) is often written s
∣∣
U
. In this case, the first

axiom can be interpreted as requiring that the restriction of a function from a space

to itself always returns the same function. That is, a trivial restriction should not

change functions. The second axiom, in turn, says that the result of a sequence

of restrictions should be identical to the single restriction from the initial to the

final subspace. Again, in the context of restrictions of functions, this axiom is very

natural and clearly desirable if a presheaf is to help us collect and organize data

regarding functions on X.

regular Exercise 6.2.1. Suppose X is a variety, affine or projective. Show that its

sheaf of regular functions, OX , is a presheaf as just defined.

constant Exercise 6.2.2. Suppose X is a topological space. For connected U define

ℱ(U) = {f : U → ℤ ∣ f is a constant function}

and let rV,U (f) be the restriction of f to U . Show that ℱ is a presheaf of rings.

continuous Exercise 6.2.3. Suppose X is a topological space. Define

C(U) = {f : U → ℂ ∣ f is continuous}

and let rV,U (f) be the restriction of f to U . Show that C is a presheaf of rings.

bounded Exercise 6.2.4. Suppose X = ℂ. Define

ℬ(U) = {f : U → ℂ ∣ f is a bounded holomorphic function}

and let rV,U (f) be the restriction of f to U . Show that ℬ(U) is a presheaf of rings.

Presheaves enable us to assign to each open set of a topological space X an

algebraic structure that describes the open set and how it fits inside of X. However,

presheaves are top-down constructions; we can restrict information from larger to

smaller sets. The problem of globalizing local data is not within the scope of the

definition of a presheaf. That is, presheaves do not provide the means to deduce

global properties from the properties we find locally in the open sets of X. The

definition of a sheaf below is meant to resolve this, enabling us to pass data from

global to local settings but also to patch local information together to establish

global results when possible.
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sheafDEF:sheaf Definition 6.2.2. A presheaf ℱ of abelian groups is called a sheaf of abelian

groups if, for every collection Ui of open subsets of X with U =
∪

i

Ui, the following

two additional conditions are satisfied.

iii) If s, t ∈ ℱ(U) and rU,Ui
(s) = rU,Ui

(t) for all i, then s = t.

iv) If si ∈ ℱ(Ui) and if for Ui ∩ Uj ∕= ∅ we have

rUi,Ui∩Uj
(si) = rUj ,Ui∩Uj

(sj),

for all i, j, then there exists s ∈ ℱ(U) such that rU,Ui
(s) = si.

In light of the interpretation of functions and their restrictions, the new axioms

for a sheaf are essential ingredients for inferring global information from local data.

Axiom (iii) requires that two functions must be the same if they agree everywhere

locally, i.e., if for every subset W of U , s
∣∣
W

= t
∣∣
W
, then s = t. Were this not

true, then it would be impossible to construct a single global function on U from

the parts of it we have on each of the Ui. Hence, axiom (iii) has to do with the

uniqueness of global functions that we might construct from local data. Axiom (iv),

in turn, has to do with the existence of such functions. Whenever we are given a

collection of functions defined on various parts of X, we can patch them together

to form a unique (due to axiom (iii)) function on X so long as this is feasible, i.e.,

two constituent functions si and sj must agree wherever both are defined in X.

Exercise 6.2.5. Show that (iii) is equivalent to the following. If s ∈ ℱ(U) such

that rU,Ui
(s) = 0 for all i, then s = 0.

Exercise 6.2.6. Suppose X is a variety, affine or projective. Show that its

sheaf of regular functions, OX , is a sheaf as just defined.

Exercise 6.2.7. Show that the presheaf ℱ from Exercise
constant
6.2.2 is a sheaf.

Exercise 6.2.8. Show that the presheaf C from Exercise
continuous
6.2.3 is a sheaf.

Exercise 6.2.9. Show that the presheaf ℬ from Exercise
bounded
6.2.4 is not a sheaf.

As we found in the last exercise, not all presheaves are sheaves. There is a

construction, which we will describe now, that associates a sheaf to any presheaf in

a universal way. The key distinction between a sheaf and a presheaf is the ability

with a sheaf to assemble local data together to construct global results. Thus we

first need to focus on the local data in a presheaf and force the construction of global

information from it to construct the associated sheaf. To be as local as possible,

we want to study the essense of a presheaf at a point.

As in the examples above, let us suppose that the elements of a presheaf ℱ on

X are functions. That is, an element s ∈ ℱ(U) is a function on the open set U .
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sheaf!germ

sheaf!stalk

presheaf!associated

sheaf

Then the value s(x) alone will not capture the essence of this function at x, for it

is very likely that several distinct functions may have the same value at x. Hence

we need to keep track of not only the value of s at x, but all of the values of s near

x. This can be done by keeping track of the pair (U, s), where U is the open set

containing x and s ∈ ℱ(U). However, if V is any other open set containing x, then

U ∩ V is one too and (U ∩ V, s∣U∩V ) is really the same function near x that (U, s)

was. So these two “local functions” at x should be identified with one another. In

general, the pairs (U, s) and (V, t) are equivalent whenever there is a third open set

W with W ⊂ U ∩ V , x ∈W , and s∣W = t∣W in ℱ(W ).

Exercise 6.2.10. Let X = ℂ. Let U consist of all nonzero complex numbers

with 0 < arg(z) < 2� and let V consist of all nonzero complex numbers with −� <
arg(z) < �. Both are clearly open sets in X = ℂ. On U , define f(z) =

√
z so that

0 < arg(f(z)) < �, while on V define g(z) =
√
z so that −�/2 < arg(g(z)) < �/2.

(1) Show that the pairs (U, f) and (V, g) are equivalent as “local functions”

at x = i.

(2) Show that the pairs (U, f) and (V, g) are not equivalent as “local functions”

at x = −i.

While our interpretation of functions and restrictions motivated this definition

of equivalence, the notion does not require the elements of the presheaf to be func-

tions at all. If ℱ is any presheaf on an algebraic variety X and x is any point

in X, the equivalence class of (U, s), where U is an open set of X containing x

and s ∈ ℱ(U), is denoted by sx and is called the germ of the section s at x. The

collection of germs of sections at x make up the stalk of the presheaf, as we now

define.

Definition 6.2.3. Let X be an algebraic variety, either affine or projective,

and let ℱ be a presheaf on X. For a point x ∈ X, the stalk of ℱ at x, denoted ℱx,

consists of the germs sx of sections at x for all open sets U containing x and all

s ∈ ℱ(U).

Exercise 6.2.11. Something with stalks???Suggestions welcome!

– DM (8/14/09)
sheafification Definition 6.2.4. Using the stalks of a presheaf ℱ on X, we construct the

sheaf associated to ℱ, denoted ℱ+, as follows. For any open set U , ℱ+(U) consists

of all functions s from U to the union
∪
x∈U ℱx of the stalks of ℱ over points of U

such that

(1) for each x ∈ U , s(x) ∈ ℱx

(2) for each x ∈ U , there is a neighborhood V of x, contained in U , and an

element t ∈ ℱ(V ), such that for all y ∈ V , the germ ty of t at y is equal

to s(y).
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Exercise 6.2.12. Let ℱ be a presheaf on an algebraic variety X. Prove that

ℱ+ is a sheaf of functions on X. Proving ℱ
+ is

isomorphic to ℱ when

ℱ is a sheaf is likely

too technical. – DM

(8/14/09)

Exercise 6.2.13. For the presheaf ℬ of Exercise
bounded
6.2.4, find its associated sheaf,

ℬ+, on X = ℂ.

6.3. The Sheaf of Rational Functions

Let X be an algebraic variety, either affine or projective. Then X is equipped

with its sheaf of regular functions, OX .

There is another basic sheaf for every algebraic variety X, namely the function Requires each OX(U)

to be a domain, so

need irreducibililty!

How have we defined

“variety”? Is it

irreducible? – DM

(8/6/09)

field sheaf KX , which plays the “sheaf-theoretic” role of the function field. We will

see that its definition is mildly subtle. It is here that we need to use the difference

between a presheaf and a sheaf.

We start with defining a presheaf K′
X . For each open U in X, let K′

X(U) be

the function field of the ring OX(U). The goal of the next series of exercises is to

see why K′
X is only a presheaf and to motivate why we actually want to look at its

associated sheaf.

Exercise 6.3.1. Let X be an algebraic variety, either affine or projective.

Verify that K′
X is a presheaf of fields on X.

We concentrate on the space ℙ1, which is covered by the two open sets U0 =

{(x0 : x1) ∣ x1 ∕= 0} and U1 = {(x0 : x1) ∣ x1 ∕= 0}. Then on U0 we let s = (x1/x0)

be our affine coordinate, and on U1 we let t = (x0/x1) be our affine coordinate. On

the overlap, U0 ∩ U1, we have s = (1/t).

Exercise 6.3.2. Show that K′
ℙ1(U0) is isomorphic to the field ℂ(s) and that

K′
ℙ1(U1) is isomorphic to the field ℂ(t). Then show that K′

ℙ1(ℙ1) is isomorphic to

the zero field. What is the “zero

field”? Typical

convention requires

0 ∕= 1 in fields, so that

the zero ring is not a

field. – DM

K-prime-not-sheaf Exercise 6.3.3. Using that (1/t) ∈ K′
ℙ1(U1) and condition (iii) in the defini-

tion of a sheaf, show that K′ cannot be a sheaf.

Exercise 6.3.4. In ℙ1, show that f(x0 : x1) = x1

x0
is well-defined. Here the

question involves showing that f(x0 : x1) is a well-defined number, even though the

(x0 : x1) represents an equivalence class of ordered pairs. What happens where

x0 = 0?

This is only defined on

U0. – DM

As you found in Exercise
K-prime-not-sheaf
6.3.3, the presheaf K′

X we defined for any algebraic

variety need not be a sheaf. However, we prefer to work with sheaves due to the

ability they give us to reconstruct global information about X from local data.

Thus let KX be the sheaf associated to the presheaf K′
X as defined in the previous

section, Definition
sheafification
6.2.4.

Exercise 6.3.5. Show that Kℙ1(ℙ1) is isomorphic to the field ℂ(s).
Same question as

before: how does the

reader know what

Kℙ1(ℙ
1) means? – PP

(8/3/09)
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divisor 6.4. Divisors

In this section, we revisit a familiar tool, divisors, from Chapter 3. We will

see how divisors are intimately related to the special class of invertible sheaves

in the next section and how this can be used to give a new presentation of the

Riemann-Roch Theorem at the end of the chapter.

Recall from Chapter 3, a divisor D on a curve C is a formal finite linear combi-

nation of points on C with integer coefficients, D = n1p1 + n2p2 + ⋅ ⋅ ⋅+ nkpk with

n1, . . . , nk ∈ ℤ and p1, . . . , pk ∈ C. One might think a divisor on a variety X would

be a formal finite sum of points as before. However, this turns out not to be the

correct generalization. Recall the purpose of a divisor on a curve was to keep track

of the zeros and poles of a single function. On a variety X, a function’s zeros con-

stitute an algebraic subvariety usually of dimension one less than the dimension of

X. Thus, rather than adding points, we should add subsets that look like the zero

sets of single functions on X. To be precise, we define a codimension-one subvariety

of a variety X to be a proper irreducible algebraic subset Y ⊂ X such that there

are no other proper irreducible algebraic subsets Z satisfying Y ⊊ Z ⊊ X.This isn’t perfect, but

will do for now. Have

we defined “variety”?

If so, how? In

particular, is X

irreducible? – DM

Definition 6.4.1. Let X be an algebraic variety. A divisor D on X is a finite

formal sum over the integers ℤ of codimension-one subvarieties of X.

Let X be a curve in ℙ2 and let p, q, r ∈ X be points on X. Then an example

of a divisor is

D = 3p− 5q + r.

The coefficients 3,−5, 1 are just integers, while the points p, q, r are the codimension-

one subvarieties of X. We need to use the term “formal sum” since adding points

makes no real sense.I’m not sure I agree

with the explanation

for the use of the term

“formal sum.” Once

one defines a binary

operation with the

appropriate properties,

it does indeed make

sense to call it a sum.

As I understand the

phrase “formal sum,”

it is used to indicate to

the reader that one is

not willing to talk

about issues of

convergence in some

topology. I would

simply not say

anything at all about

the term, but that’s

just me. – PP

As divisors are formal sums, we should be able to add them. Thus if D1 =

3p− 5q + r and D2 = 8q + 4s− 4t are two divisors on the curve X, define

D1+D2 = 3p−5q+r+8q+4s−4t = 3p+(−5+8)q+r+4s−4t = 3p+3q+r+4s−4t.

Let Div(X) denote the set of divisors on X with addition of divisors done formally

as illustrated above.

Exercise 6.4.1. Let X be an algebraic curve. Let D1 =
∑
p∈X npp and D2 =

∑
p∈X mpp, where the np,mp ∈ ℤ, be two divisors on X. If we define

D1 +D2 =
∑

p∈X
(np +mp)p,

show that Div(X) is an abelian group. (Note in the above sums for the divisors

D1 and D2, that even though the sums are over all points p ∈ X, we are assuming
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divisor!degree

divisor!effective

that np = mp = 0 for all but a finite number of points on X; this is what is meant

in the definition of a divisor by the phrase “finite formal sum.”) This is a better

statement than the

previous one; I might

replace the part after

the semicolon by

something like “Note

we don’t need to worry

about issues of

convergence, because

all the ‘sums’ we do

consider turn out to be

finite. The phrase

“finite formal sum” is

a way of indicating to

the reader that this is

what is going on. – PP

Exercise 6.4.2. Let X be an algebraic variety. Let D1 =
∑
nV V and D2 =

∑
mV V , where the nV ,mV ∈ ℤ, be two divisors on X. Here both sums are over

all codimension-one subvarieties of X. If we define

D1 +D2 =
∑

(nV +mV )V,

show that Div(X) is an abelian group.

Definition 6.4.2. On an algebraic variety X, let D =
∑
nV V be a divisor.

The degree of D is

deg(D) =
∑

nV ,

where the sum is over all codimension-one subvarieties of X. (For this to actually

be a finite sum, we use that nV = 0 for all but a finite number of codimension-one

subvarieties of X.)

I don’t think it is

strictly necessary to

add motivation for the

definition of ‘degree’

but I think it might be

good to elaborate here

on why one cares

about ‘effective

divisors.’ – PP

Definition 6.4.3. A divisor D =
∑
nV V is effective if, for all codimension-one

subvarieties V of X, we have nV ≥ 0. In this case we write D ≥ 0.

Exercise 6.4.3. Show that the degree of D = 3p− 5q + r on a complex curve

X is −1.

Now we more closely link divisors with geometry. Let X be a curve in ℙ2. Let

C be another curve in ℙ2 that shares no components with X. Then define

D = X ∩ C =
∑

p∈X∩C
mpp,

where mp is the intersection multiplicity of the intersection point. Since C shares

no components with X, their intersection is a finite set of points, so D is a divisor

on X.

Exercise 6.4.4. Let X = V (x2 + y2 − z2) be a conic in ℙ2. If C1 = V (x− y)

and C2 = V (y − z). Show that the two corresponding divisors are

D1 = X ∩ C1 = (
1√
2
:

1√
2
: 1) + (− 1√

2
: − 1√

2
: 1)

D2 = X ∩ C2 = 2(0 : 1 : 1).

Give a geometric interpretation for the coefficients in D1 and D2.

Exercise 6.4.5. Recalling Bezout’s theorem, show that if X and C are curves

in ℙ2, then the degree of the divisor D = X ∩ C is deg(X)deg(C).
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divisor!associated to

rational function

divisor!linearly

equivalent

In ℙ2, with homogeneous coordinates x, y, z, consider the ratio of two homoge-

neous polynomials f(x, y, z) and g(x, y, z) of the same degree. Suppose we factor f

and g into irreducible factors

f(x, y, z) =
∏

fi(x, y, z)
ni

g(x, y, z) =
∏

gj(x, y, z)
mi .

We have for all i and j that ni > 0 and mj > 0. Notice thatAre fi, gj linear? Not

necessarily, so we need

deg(fi), deg(gj) added

below. – DM

deg(f) =
∑

ni deg(fi) =
∑

mj deg(gj) = deg(g).

Definition 6.4.4. Let X be a curve in ℙ2. Define the divisor associated to the

rational function (f/g) to be
(
f

g

)
=
∑

ni(X ∩ V (fi))−
∑

mj(X ∩ V (gj)).

Exercise 6.4.6. Let X = V (x2 + y2 − z2) be a conic in ℙ2. Show that
(
x− y

y − z

)
= (

1√
2
:

1√
2
: 1) + (− 1√

2
: − 1√

2
: 1)− 2(0 : 1 : 1).

Exercise 6.4.7. Let X be a curve in ℙ2. Let f(x, y, z) and g(x, y, z) be two

homogeneous polynomials of the same degree, neither being identically zero on any

component of X. Show that

deg

(
f

g

)
= 0.

Definition 6.4.5. Let X be a curve in ℙ2. If D1 and D2 are two divisors on X,

we say that they are linearly equivalent if there are two homogeneous polynomials

f and g of the same degree such that

D1 +

(
f

g

)
= D2.

Exercise 6.4.8. If we define D1 ∼ D2 to mean that D1 and D2 are linearly

equivalent, show that ‘∼’ is an equivalence relation on the group Div(X).

Exercise 6.4.9. (This is a much more open ended exercise than most of the

others.) Let X be a smooth algebraic variety in ℙn. For two homogeneous polyno-

mials f and g of the same degree in (n+1) variables, what should be the associated

divisor (f/g) on X? Show that

deg

(
f

g

)
= 0.

Finally, define what “linear equivalence” should mean for two divisors on X.

Many problems in algebraic geometry involve the study of divisors, but only

up to linear equivalence. This happens often enough that we make a definition.
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sheaf!invertibleDefinition 6.4.6. The group Div(X) divided out by the equivalence relation

of linear equivalence is called the Picard group, or the divisor class group, of X.

Exercise 6.4.10. For the projective line ℙ1, show that the divisors D1 = (1 :

2) + 3(2 : 1) and D2 = (4 : 5) + (3 : 2) + 2(1 : 1) are linearly equivalent. (Hint:

find a homogeneous polynomial of degree 4 whose zeros are D1 and a homogeneous

polynomial of degree 4 whose zeros are D2.)

Exercise 6.4.11. Let D1 and D2 be two divisors on ℙ1. Show that D1 ∼ D2

if and only if they have the same degree.

Exercise 6.4.12. Show that the Picard group for ℙ1 is the group ℤ under

addition.

Exercise 6.4.13. Let D1 and D2 be two divisors on ℙn. Show that D1 ∼ D2

if and only if they have the same degree. Show that the Picard group for ℙn is the

group ℤ under addition.

6.5. Invertible Sheaves and Divisors

In this section we link divisors with sheaves.

Definition 6.5.1. On an algebraic variety X, an invertible sheaf ℒ is any sheaf

so that there is an open cover {Ui} of X such that ℒ(Ui) is a rank-one OX(Ui)-

module.1

Thus for each open set Ui, we have ℒ(Ui) is isomorphic to OX(Ui) as a OX(Ui)-

module.

We will first see how to intuitively associate a divisor D to an invertible sheaf,

which we will denote by ℒD. Let D =
∑
nV V be a divisor, where the V are

codimension-one subvarieties of X. We know that for all but a finite number of V

that nV = 0. We can cover X by open affine sets Ui so that for each i there is a

rational function fi ∈ K(Ui) such that

(fi) = D ∩ Ui.

In other word, the zeros and poles (infinities) of fi agree with the coefficients nV

of D.

1Modules are similar to vector spaces, which are always defined over a field of scalars such

as ℂ. The scalars for modules, however, may be taken from an arbitrary ring, which is the key

difference in the definition. The notion of dimension translates into that of rank for modules. A

more detailed account of modules and rank can be found in
DummitFoote
[?] or

Herstein2
[?].
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Exercise 6.5.1. For the X = V (x2 + y2 − z2) be a conic in ℙ2, consider the

divisor

D = (
1√
2
:

1√
2
: 1) + (− 1√

2
: − 1√

2
: 1)− (1 : i : 0).

On the open set U = {(x : y : z) ∣ z ∕= 0}, show that if

f(x, y, z) =
x

z
− y

z

then

(f) = D ∩ U.

Thus we can write each divisorD not only as a finite formal sum of codimension-

one subvarieties, but also as some collection (Ui, fi), where the {Ui} are an open

affine cover of X and each fi ∈ KX(Ui). Working out that these two methods

are exactly equivalent when X is a smooth variety but are not necessarily the same

when singular is non-trivial. We will take them as the same. Further, this definition

of D depends on the choice of open cover, which is hardly unique. The key is that

if we write D as some (Ui, fi) or as some (Vj , gj), for some other open cover {Vj}
with gj ∈ KX(Vj), we require on the overlaps Ui∩Vj that fi

gj
have no zeros or poles.

Thus write the divisor D as

D = (Ui, fi).

DEF:L_D(1) Definition 6.5.2. GivenD = (Ui, fi), define the invertible sheaf ℒD by setting

ℒD(Ui) =

{
g

fi
∣ g ∈ OX(Ui)

}
.

Exercise 6.5.2. Suppose that

g

fi
,
ℎ

fi
∈ ℒD(Ui).

Show that
g

fi
+
ℎ

fi
∈ ℒD(Ui).

For any � ∈ OX(Ui), show that

�g

fi
∈ ℒD(Ui).

Thus each ℒD(Ui) is an OX(Ui)-module.

For a divisor D = (Ui, fi), let

gij =
fi
fj
.

Suppose that the elementsWhat are gi, gj? If

not related to gij , use

ℎi, ℎj instead. – DM
Fi =

gi
fi

∈ ℒD(Ui)

Fj =
gj
fj

∈ ℒD(Uj)
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restrict to the same rational function in KX(Ui ∩ Uj). Then we have

Fj = gijFi

on Ui ∩ Uj .

Exercise 6.5.3. Show that on Ui ∩ Uj ∩ Uk, we have

gijgjkgki = 1.

For those who know about vector bundles, this means that the invertible sheaf

ℒD (or, for that matter, the divisor D) can be though of as a complex line bundle.

There is another, equivalent, way of associating an invertible sheaf to a divisor

D. Again let D =
∑
nV V , where each V is a codimension-one subvariety of X.

Let U be an open subset of X. Then we define

D
∣∣
U
=
∑

nV (V ∩ U).

For any f ∈ KX(U), define (f)
∣∣
U

to be the divisor of zeros and poles of f on the

open set U .

DEF:L_D(2) Definition 6.5.3. Define a sheaf ℒD by setting, for each open set U of X,

ℒD(U) = {f ∈ KX(U) ∣ (f) +D ≥ 0}.

More colloquially, ℒD(U) consists of those rational functions on U whose poles

are no worse than −D.

Exercise 6.5.4. Let D = (Ui, fi) be a divisor on X. Let ℒD be the invertible

sheaf associated to D as constructed in Definition
DEF:L_D(1)
6.5.2 and let ℒ′

D be the invertible

sheaf associated to D as described in Definition
DEF:L_D(2)
6.5.3. Show that for each open set

U in X, ℒD(U) = ℒ′
D(U). Thus the definitions give two ways to associate the same

invertible sheaf to D.

Exercise 6.5.5. For ℙ1 with homogeneous coordinates (x : y), let D = (1 : 0).

Let U = {(x : y) ∣ x ∕= 0} and V = {(x : y) ∣ y ∕= 0}. Show that ℒD(U) is

isomorphic to all rational functions of the form f(t)
t , where f(t) ∈ ℂ[t]. (Here let

t = y/x.) By letting s = x/y, show that ℒD(V ) is isomorphic to ℂ[s]. Finally show

that ℒD(ℙ
1) is not empty.

Exercise 6.5.6. For ℙ1 with homogeneous coordinates (x : y), letD = −(1 : 0).

Let U = {(x : y) ∣ x ∕= 0} and V = {(x : y) ∣ y ∕= 0}. Show that ℒD(U) is isomorphic

to the ideal {f(t) ∈ ℂ[t] : f(0) = 0}. (Here let t = y/x.) By letting s = x/y, show

that ℒD(V ) is isomorphic to ℂ[s]. Finally show that ℒD(ℙ
1) is empty.
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6.6. Basic Homology and Cohomology

Homology and cohomology theories permeate a large part of modern mathe-

matics. There is a serious start-up cost to understanding this machinery, but it is

well worth the effort.

Suppose we have a collection of objects {Mi}, such as a bunch of abelian groups

or vector spaces, for i = 0, 1, 2, . . .. Suppose that we have maps

di :Mi →Mi−1

where each di is an appropriate map, meaning that if the Mi are groups, then the

di are group homomorphisms and if theMi are vector spaces, then the di are linear

transformations. We write these out as a sequence

⋅ ⋅ ⋅ →Mi+1 →Mi →Mi−1 → ⋅ ⋅ ⋅ ,

with the map from Mi → Mi−1 given by di. We require for all i that Image(di) ⊂
Kernel(di−1) — in other words, di−1 ∘ di = 0, for all i. We call this a complex.I don’t like having )(

side-by-side. Can we

fix it? – DM

I tried – PP

Frequently the index i is left off, which leads di−1 ∘ di = 0 to be written as the

requirement

d ∘ d = 0.

Definition 6.6.1. A sequence

⋅ ⋅ ⋅ →Mi+1 →Mi →Mi−1 → ⋅ ⋅ ⋅

is exact if for all i we have

Image(di) = Kernel(di−1).

Exercise 6.6.1. Let

0 → A3 → A2 → A1 → 0

be an exact sequence of either rings or vector spaces, with 0 denoting either the

zero ring or the vector space of one point. Show that the map A3 → A2 must be

one-to-one and the map A2 → A1 must be onto.

Exercise 6.6.2. Find group homomorphisms so that the corresponding se-

quence

0 → ℤ→ ℤ→ ℤ/2ℤ→ 0

is exact.

In the above, ℤ/2ℤ denotes the “quotienting” of the integers by the even inte-

gers, and hence is the group of two elements {0, 1}.
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Definition 6.6.2. Let

⋅ ⋅ ⋅ →Mi+1 →Mi →Mi−1 → ⋅ ⋅ ⋅

be a sequence of abelian groups or vector spaces. Then the i-th homology is

Hi = Kernel(di−1)/Image(di).

Exercise 6.6.3. Show that a sequence of abelian groups or vector spaces is

exact if and only if for all i we have Hi = 0. (This is just an exercise in applying

definitions.)

Thus homology is a way of measuring the exactness of a complex.

6.7. Cech Cohomology

In the above section we discussed homology theory. To some extent, there is

a dual theory called cohomology. It too is a measure of the non-exactness of a

complex. We will not be concerned with the explicit relation between homologies

and cohomologies, but will instead just explicitly define the Cech cohomology of an

invertible sheaf ℒ on an algebraic variety X.2

Start with a finite open affine cover U = {Ui} of X, for i = i, . . . , N . For any

collection 0 ≤ i0 < i1 < ⋅ ⋅ ⋅ < ip ≤ N , let

Ui0i1⋅⋅⋅ip = Ui0 ∩ Ui1 ∩ ⋅ ⋅ ⋅ ∩ Uip .

We know that ℒ(Ui0i1⋅⋅⋅ip) is isomorphic to a rank-one OX(Ui0i1⋅⋅⋅ip)-module. Then

for each p, define

C
p(U,ℒ) =

∏

(0≤i0<i1<⋅⋅⋅<ip≤N)

ℒ(Ui0i1⋅⋅⋅ip).

We want to define a map

d : Cp(U,ℒ) → C
p+1(U,ℒ)

such that

d ∘ d : Cp(U,ℒ) → C
p+2(U,ℒ)

is the zero map, which allows us to form a complex whose exactness we can measure.

Following notation in Hartshorne
hartshorne
[Har77], let � ∈ Cp(U,ℒ). This means that � =

(�i0i1⋅⋅⋅ip). To define d(�) we need to specify, for each (p+2)-tuple (i0, i1, ⋅ ⋅ ⋅ , ip+1)

with 0 ≤ i0 < i1 < ⋅ ⋅ ⋅ < ip+1 ≤ N , what the element d(�)i0i1⋅⋅⋅ip+1
should be. We

set

d(�)i0i1⋅⋅⋅ip+1
=

p+1∑

k=0

(−1)k�i0i1⋅⋅⋅̌ik⋅⋅⋅ip+1
,

2This whole section is heavily under the influence of Chapter III.4 in Hartshorne
hartshorne
[Har77].
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Cech cohomology where the ǐk means that we delete the ik term. Here �i0i1⋅⋅⋅̌ik⋅⋅⋅ip+1
stands for the

restriction map

rUi0i1⋅⋅⋅̌ik⋅⋅⋅ip+1
,Ui0i1⋅⋅⋅ik⋅⋅⋅ip+1

which exists since ℒD is a sheaf.

In order to make this a bit more concrete, suppose that U consists of just three

open sets U0, U1, U2.

Exercise 6.7.1. Show that

C
0(U,ℒ) = ℒ(U0)× ℒ(U1)× ℒ(U2)

C
1(U,ℒ) = ℒ(U01)× ℒ(U02)× ℒ(U12)

C
2(U,ℒ) = ℒ(U012).

Exercise 6.7.2. Show that

d ∘ d : C0(U,ℒ) → C
2(U,ℒ)

is the zero map.

Exercise 6.7.3. Let � = (�0, �1, �2) ∈ C0(U,ℒ) be an element such that

d(�) = 0. Show that there must be a single element of ℒ(X) that restricts to �0

on the open set U0, to �1 on the open set U1 and to �2 on the open set U2. This

is why we say that something in the kernel of d acting on C0(U,ℒ) defines a global

section of the sheaf.

We return to the more general situation. Now that we have a definition for the

map d, we have a complex

0 → C
0(U,ℒ) → ⋅ ⋅ ⋅ → C

N (U,ℒ) → 0,

where the first map 0 → C0(U,ℒ) just sends 0 to the zero element of C0(U,ℒ) and

the last map CN (U,ℒ) → 0 sends everything in CN (U,ℒ) to zero.

Definition 6.7.1. The p-th Cech cohomology group for the sheaf ℒ with respect

to the open cover U is

Hp(U,ℒ) =
(
ker(d : Cp(U,ℒ) → C

p+1(U,ℒ))/Im(d : Cp−1(U,ℒ) → C
p(U,ℒ))

)
.

Thus Cech cohomology is a measure of the failure of exactness for the complex

0 → C0(U,ℒ) → ⋅ ⋅ ⋅ → CN (U,ℒ) → 0. This is highly dependent on the choice of

open cover U. If this choice really mattered, then Cech cohomology would not be

that useful. Luckily, if each of the open sets Ui ∈ U is affine, we will always find

that the Cech cohomology groups are isomorphic. (See Hartshorne III.4.5
hartshorne
[Har77],

though if you go to this source directly from this section, it will be rough going, or
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see Griffiths and Harris
griffithsharris
[Gri94], Chapter 0, section 3, which is still not a “walk in

the park”.)

One final theoretical point. It is the case that if D1 and D2 are linearly equiv-

alent divisors on X, then the corresponding Cech cohomology groups must be

isomorphic. This is usually written as

Theorem 6.7.4. If D1 ∼ D2 for divisors on X, then for all d, we have

Hd(X,ℒD1
) = Hd(X,ℒD2

).

We do not prove this but will have some exercises showing this property. Recall

that in an earlier exercise that divisors up to linear equivalence on projective space

ℙr are classified by degree. It is common to replace ℒD, for a divisor D of degree

n on ℙr by the notation

O(n).

Thus people frequently consider the Cech cohomology groups

Hd(ℙr,O(n))

which equals Hd(ℙr,ℒD) for any divisor D of degree n.

We spend some time on ℙ1. Let (x0 : x1) be homogeneous coordinates on ℙ1.

There is a natural open cover U = {U0, U1} by setting

U0 = {(x0 : x1) : x0 ∕= 0}
U1 = {(x0 : x1) : x1 ∕= 0}.

On U0, let s =
x1

x0
and on U1, let t =

x0

x1
. On the overlap U0 ∩ U1 we have

s =
1

t
.

Now consider the divisor D = 2(1 : 0).

Exercise 6.7.5. Show that D ∩ U0 is described by V (s2) and that D ∩ U1

is described by V (1) (which is a fancy way of writing the empty set). Show that

2(1 : 0) has an equivalent description as {(U0, t
2), (U1, 1)}.

Exercise 6.7.6. Keep with the notation of the above problem. Using that

ℒD(U) = {f(s) ∈ ℂ(s) ∣ ((f) +D) ∩ U ≥ 0}

show that

ℒ2(1:0)(U0) =

{
a0 + a1s+ ⋅ ⋅ ⋅+ ans

n

s2
∣ a0, . . . , an ∈ ℂ

}

ℒ2(1:0)(U1) = {b0 + b1s+ ⋅ ⋅ ⋅+ bmt
m ∣ b0, . . . , bm ∈ ℂ}.
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On the overlap U01 = U0 ∩ U1, we will write the restriction maps as

rU0,U01
(f(s)) = f(s)

and

rU1,U01
(g(t)) = g

(
1

s

)
.

Exercise 6.7.7. Show that

d : C0(U,ℒ2(1:0)) → C
1(U,ℒ2(1:0))

is given by

d

(
a0 + a1s+ ⋅ ⋅ ⋅+ ans

n

s2
, b0 + b1s+ ⋅ ⋅ ⋅+ bmt

m

)

=
a0
s2

+
a1
s

+ a2 + a3s+ ⋅ ⋅ ⋅ ansn−2 − b0 −
b1
s

− ⋅ ⋅ ⋅ − bm
sm

.

Exercise 6.7.8. Show that(
a0 + a1s+ ⋅ ⋅ ⋅+ ans

n

s2
, b0 + b1s+ ⋅ ⋅ ⋅+ bmt

m

)

is in the kernel of the map d if and only if ak = 0 and bk = 0 for k > 2 and

a0 = b2, a1 = b1, a2 = b0.

Exercise 6.7.9. Based on the previous exercise, explain why we can consider

H0(ℙ1,ℒ2(1:0)) as the set of all degree homogeneous polynomials in x0 and x1, or

in other words

H0(ℙ1,ℒ2(1:0)) = {ax20 + bx0x1 + cx21 ∣ a, b, c ∈ ℂ}.

Exercise 6.7.10. By similar reasoning, show that for all d > 0, we have

H0(ℙ1,ℒd(1:0)) = {adxd0 + ad−1xd−1x1 + ⋅ ⋅ ⋅+ a0x
d
1 ∣ ak ∈ ℂ}.

Exercise 6.7.11. By similar reasoning, show that

H0(ℙ1,ℒ−2(1:0)) = 0.

Exercise 6.7.12. By similar reasoning, show that for all d > 0, we have

H0(ℙ1,ℒ−d(1:0)) = 0.

Exercise 6.7.13. By similar reasoning, show that, we have

H0(ℙ1,ℒ(1:0)+(0:1)) = {ax20 + bx0x1 + cx21 ∣ a, b, c ∈ ℂ}.

Exercise 6.7.14. Let (x0 : x1 : ⋅ ⋅ ⋅ : xr) be homogeneous coordinates on ℙr.

Let H = V (x0) be a divisor. Show that for d > 0, H0(ℙr,ℒdH) can be identified

with the space of all degree d homogeneous polynomials in the variables x0, . . . , xr.

(This problem is similar to the above ones, but definitely takes some care with the

notation.)
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The next step in the development of Cech cohomology for divisors would be

to put Riemann-Roch Theorem into the this language. We will simply state the

theorem:

Theorem 6.7.15 (Riemann-Roch Theorem). Let X be a smooth curve and let

D be a divisor on X. Then

dimH0(X,ℒD)− dimH1(X,ℒD) = deg(D) + 1− g.

The right hand side is exactly what we had in Chapter 3. The key is showing

that the left hand side is equivalent to what we had earlier.

This is admittedly abstract. The power is that many different areas of math

can be put into this language. I vote against ending

the book on an

apologetic note

followed by a vague

waving of hands. How

about something more

uplifting? Something

along the lines of “It is

our hope that the

reader who manages to

conquer this last page

can appreciate the

strength of the

abstract machinery we

have here introduced.

The beauty of this

language is that many

areas of mathematics

can be put into it and

when this is done,

many deep

results—the original

proofs of which

required overcoming

serious obstacles and

providing clever and

seemingly miraculous

constructions—fall

swiftly to the ground

like ripe apples in a

pleasant orchard, albeit

an orchard in the

clouds.” (It may be a

bit corny, I know, but I

think it might be

humorous.) – PP

One serious note is

this: I think we should





APPENDIX A

A Brief Review of Complex Analysis

complex appendix

One rationale for this little excursion is the idea behind the saying, “If you

don’t use it, in this case complex analysis, you lose it.” We would like to make the

reading of the book as painless as possible.

A.1. Visualizing Complex Numbers

A complex number z = a + bi is plotted using rectangular coordinates as dis-

tance a away (left or right depending on the sign of a) from the the origin and

distance b away (up or down depending on the sign of b) from the origin. We

can also graph complex numbers by using polar coordinates where z = rei� =

r(cos �+ i sin �). This means that the equations a = r cos � and b = r sin � facilitate

an easy conversion from polar to rectangular and vice versa.

A.2. Power Series

A power series about a, is any series that can be written in the form,

∞∑

n=0

cn(x− a)n

where cn are called the coefficients of the series.

Once we know that a power series has a radius of convergence, we can use it

to define a function.

A.3. Residues

Let C be a Jordan curve about 0. Now, consider the contour integral

∮

C

ez

z3
dz

A.4. Liouville’s Theorem

A bounded entire function is constant, i.e., a bounded complex function f :

ℂ → ℂ which is holomorphic on the entire complex plane is always a constant

function. Let us define in a very brief and hopefully intuitive manner some of the

389
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words used in Liouville’s Theorem. “Bounded” means that the function f satisfies

the so-called polynomial bound condition,

∣f(z)∣ = c∣zn∣

for some c ∈ ℝ, n ∈ ℤ, and all z ∈ C with sufficiently large.

”Holomorphic functions” are complex functions defined on an open subset of

the complex plane which are differentiable, in fact infinitely differentiable.
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cells, 189

change of coordinates

complex, 24

equivalent, 20, 25

projective, 38

chord-tangent composition law, 112

conics, 1

cubic

canonical form, 143

Weierstrass normal form, 132

cubic curve, 79

curve

degree, 196

irreducible, 196

singular, 56, 83

singularity, 283

smooth, 57

degree

curve, 196

divisor, 243

derivation, 329

Diophantine equation, 51

discriminant, 71

divisor, 243, 376

associated to rational function, 378

degree, 243, 377

effective, 243, 377

hyperplane, 252

linearly equivalent, 250, 378

principal, 243

ellipse, 4

elliptic curve, see also cubic

equivalence relation, 180, 231, 236

flex, 86, 99

general position, 121

genus

arithmetic, 204

topological, 203

group, 112, 151, 184

Abelian, 112

Hessian, 100

curve, 100

homeomorphism, 42

homogeneous, 34, 89

homogeneous coordinates, 33

hyperbola, 5

inflection point, 86, 99

lattice, 186

matrix

equivalence, 68

symmetric, 65

moduli space

cubic, 141

multiplicity

intersection, 92

of f at p, 210

of a root, 208

root, 87, 89
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normal subgroup, 182

order

group element, 122

parabola, 2

parameterization

rational, 46

parametrization

cubic, 141

partition, 180

point of inflection, 123

point:rational, 155

points of inflection, 102

presheaf, 371

associated sheaf, 374

projective

line, 40

plane, 31

Pythagorean Theorem, 49

quadratic form, 66

quotient group, 181

resultant, 222

ring

of regular functions, 231

root, 87

multiplicity, 87

sheaf, 373

germ, 374

invertible, 379

stalk, 374

six-to-one correspondence

cubic

canonical form, 144

tangent

space, 330

torus, 187

uniformly convergent, 191

Weierstrass ℘-function, 188, 190

zero set, 1
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