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IAS/Park City
Mathematics Institute

The IAS/Park City Mathematics Institute (PCMI) was founded

in 1991 as part of the “Regional Geometry Institute” initiative of

the National Science Foundation. In mid-1993 the program found

an institutional home at the Institute for Advanced Study (IAS) in

Princeton, New Jersey. The PCMI continues to hold summer pro-

grams in Park City, Utah.

The IAS/Park City Mathematics Institute encourages both re-

search and education in mathematics and fosters interaction between

the two. The three-week summer institute offers programs for re-

searchers and postdoctoral scholars, graduate students, undergradu-

ate students, mathematics teachers, mathematics education re-

searchers, and undergraduate faculty. One of PCMI’s main goals is to

make all of the participants aware of the total spectrum of activities

that occur in mathematics education and research: we wish to involve

professional mathematicians in education and to bring modern con-

cepts in mathematics to the attention of educators. To that end the

summer institute features general sessions designed to encourage in-

teraction among the various groups. In-year activities at sites around

the country form an integral part of the Secondary School Teacher

Program.

xi
                

                                                                                                               



xii IAS/Park City Mathematics Institute

Each summer a different topic is chosen as the focus of the Re-

search Program and Graduate Summer School. Activities in the Un-

dergraduate Program deal with this topic as well. Lecture notes from

the Graduate Summer School are published each year in the IAS/Park

City Mathematics Series. Course materials from the Undergraduate

Program, such as the current volume, are now being published as

part of the IAS/Park City Mathematical Subseries in the Student

Mathematical Library. We are happy to make available more of the

excellent resources which have been developed as part of the PCMI.

John Polking, Series Editor

October 2012

                

                                                                                                               



Preface

Algebraic Geometry

As the name suggests, algebraic geometry is the linking of algebra

to geometry. For example, the unit circle, a geometric object, can be

(1, 0)

(0, 1)

Figure 1. The unit circle centered at the origin.

described as the points (x, y) in the plane satisfying the polynomial

xiii
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equation

x2 + y2 − 1 = 0,

an algebraic object. Algebraic geometry is thus often described as the

study of those geometric objects that can be defined by polynomials.

Ideally, we want a complete correspondence between the geometry

and the algebra, allowing intuitions from one to shape and influence

the other.

The building up of this correspondence has been at the heart of

much of mathematics for the last few hundred years. It touches on

area after area of mathematics. By now, despite the humble begin-

nings of the circle

{(x, y) ∈ R2 | x2 + y2 − 1 = 0},

algebraic geometry is not an easy area to break into.

Hence this book.

Overview

Algebraic geometry is amazingly useful, yet much of its develop-

ment has been guided by aesthetic considerations. Some of the key

historical developments in the subject were the result of an impulse

to achieve a strong internal sense of beauty.

One way of doing mathematics is to ask bold questions about

concepts you are interested in studying. Usually this leads to fairly

complicated answers having many special cases. An important ad-

vantage of this approach is that the questions are natural and easy to

understand. A disadvantage is that the proofs are hard to follow and

often involve clever tricks, the origins of which are very hard to see.

A second approach is to spend time carefully defining the ba-

sic terms, with the aim that the eventual theorems and their proofs

are straightforward. Here the difficulty is in understanding how the

definitions, which often initially seem somewhat arbitrary, ever came

to be. The payoff is that the deep theorems are more natural, their

insights more accessible, and the theory is more aesthetically pleas-

ing. It is this second approach that has prevailed in much of the

development of algebraic geometry.
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This second approach is linked to solving equivalence problems.

By an equivalence problem, we mean the problem of determining,

within a certain mathematical context, when two mathematical ob-

jects are the same. What is meant by the same differs from one

mathematical context to another. In fact, one way to classify differ-

ent branches of mathematics is to identify their equivalence problems.

Solving an equivalence problem, or at least setting up the lan-

guage for a solution, frequently involves understanding the functions

defined on an object. Since we will be concerned with the algebra

behind geometric objects, we will spend time on correctly defining

natural classes of functions on these objects. This in turn will allow

us to correctly describe what we will mean by equivalence.

Now for a bit of an overview of this text. In Chapter 1 our moti-

vation will be to find the natural context for being able to state that

all nonsingular conics are the same. The key will be the development

of the complex projective plane P2. We will say that two curves in

this new space P2 are the same (we will use the term “isomorphic”)

if one curve can be transformed into the other by a projective change

of coordinates (which we will define). We will also see that our conic

“curves” can actually be thought of as spheres.

Chapter 2 will look at when two cubic curves are the same in P2,

meaning again that one curve can be transformed into the other by a

projective change of coordinates. Here we will see that there are many

different cubics. We will further see that the points on a cubic have

incredible structure; technically they form an abelian group. Finally,

we will see that cubic curves are actually one-holed surfaces (tori).

Chapter 3 turns to higher degree curves. From our earlier work,

we still think of these curves as “living” in the space P2. The first

goal of this chapter is to see that these “curves” are actually surfaces.

Next we will prove Bézout’s Theorem. If we stick to curves in the

real plane R2, which would be the naive first place to work, we can

prove that a curve that is the zero locus of a polynomial of degree

d will intersect another curve of degree e in at most de points. In

our claimed more natural space of P2, we will see that these two

curves will intersect in exactly de points, with the additional subtlety

of needing to give the correct definition for intersection multiplicity.

                

                                                                                                               



xvi Preface

The other major goal of Chapter 3 is the Riemann-Roch Theorem,

which connects the geometry and topology of a curve to its function

theory. We will also define on a curve its natural class of functions,

which will be called the curve’s ring of regular functions.

In Chapter 4 we look at the geometry of more general objects than

curves. We will be treating the zero loci of collections of polynomials

in many variables, and hence looking at geometric objects in Cn and

in fact in kn, where k is any algebraically closed field. Here the

function theory plays an increasingly important role and the exercises

work out how to bring much more of the full force of ring theory

to bear on geometry. With this language we will see that there are

actually two different but natural equivalence problems: isomorphism

and birationality.

Chapter 5 develops the true natural ambient space, projective

n-space Pn, and the corresponding ring theory.

Chapter 6 increases the level of mathematics, providing an intro-

duction to the more abstract, and more powerful, developments in

algebraic geometry from the 1950s and 1960s.

Problem Book

This is a book of problems. We envision three possible audiences.

The first audience consists of students who have taken courses

in multivariable calculus and linear algebra. The first three chapters

are appropriate for a semester-long course for these students. If you

are in this audience, here is some advice. You are at the stage of

your mathematical career where you are shifting from merely solving

homework exercises to proving theorems. While working the problems

ask yourself what the big picture is. After working a few problems,

close the book and try to think of what is going on. Ideally you

would try to write down in your own words the material that you

just covered. Most likely the first few times you try this, you will be

at a loss for words. This is normal. Use this as an indication that you

are not yet mastering this section. Repeat this process until you can

describe the mathematics with confidence and feel ready to lecture to

your friends.
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The second audience consists of students who have had a course

in abstract algebra. Then the whole book is fair game. You are at the

stage where you know that much of mathematics is the attempt to

prove theorems. The next stage of your mathematical development

involves coming up with your own theorems, with the ultimate goal to

become creative mathematicians. This is a long process. We suggest

that you follow the advice given in the previous paragraph, and also

occasionally ask yourself some of your own questions.

The third audience is what the authors refer to as “mathemati-

cians on an airplane.” Many professional mathematicians would like

to know some algebraic geometry, but jumping into an algebraic ge-

ometry text can be difficult. We can imagine these professionals tak-

ing this book along on a long flight, and finding most of the problems

just hard enough to be interesting but not so hard so that distractions

on the flight will interfere with thinking. It must be emphasized that

we do not think of these problems as being easy for student readers.

History of the Book

This book, with its many authors, had its start in the summer of

2008 at the Park City Mathematics Institute’s Undergraduate Faculty

Program on Algebraic and Analytic Geometry. Tom Garrity led a

group of mathematicians on the basics of algebraic geometry, with the

goal being for the participants to be able to teach algebraic geometry

to undergraduates at their own college or university.

Everyone knows that you cannot learn math by just listening to

someone lecture. The only way to learn is by thinking through the

math on your own. Thus we decided to write a new beginning text

on algebraic geometry, based on the reader solving many exercises.

This book is the result.

Other Texts

There are a number of excellent introductions to algebraic geom-

etry, at both the undergraduate and graduate levels. The following is

a brief list, taken from the first few pages of Chapter 8 of [Fowler04].
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Undergraduate texts. Bix’s Conics and Cubics: A Concrete In-

troduction to Algebraic Geometry [Bix98] concentrates on the zero

loci of second degree (conics) and third degree (cubics) two-variable

polynomials. This is a true undergraduate text. Bix shows the classi-

cal fact, as we will see, that smooth conics (i.e., ellipses, hyperbolas,

and parabolas) are all equivalent under a projective change of coor-

dinates. He then turns to cubics, which are much more difficult, and

shows in particular how the points on a cubic form an abelian group.

For even more leisurely introductions to second degree curves, see

Akopyan and Zaslavsky’s Geometry of Conics [AZ07] and Kendig’s

Conics [Ken].

Reid’s Undergraduate Algebraic Geometry [Rei88] is another good

text, though the undergraduate in the title refers to British under-

graduates, who start to concentrate in mathematics at an earlier age

than their U.S. counterparts. Reid starts with plane curves, shows

why the natural ambient space for these curves is projective space,

and then develops some of the basic tools needed for higher dimen-

sional varieties. His brief history of algebraic geometry is also fun to

read.

Ideals, Varieties, and Algorithms: An Introduction to Computa-

tional Algebraic Geometry and Commutative Algebra by Cox, Little,

and O’Shea [CLO07] is almost universally admired. This book is

excellent at explaining Groebner bases, which is the main tool for

producing algorithms in algebraic geometry and has been a major

theme in recent research. It might not be the best place for the rank

beginner, who might wonder why these algorithms are necessary and

interesting.

An Invitation to Algebraic Geometry by K. Smith, L. Kahanpaa,

P. Kekaelaeinen, and W. N. Traves [SKKT00] is a wonderfully intu-

itive book, stressing the general ideas. It would be a good place to

start for any student who has completed a first course in algebra that

included ring theory.

Gibson’s Elementary Geometry of Algebraic Curves: An Under-

graduate Introduction [Gib98] is also a good place to begin.

                

                                                                                                               



Other Texts xix

There is also Hulek’s Elementary Algebraic Geometry [Hul03],

though this text might be more appropriate for German undergrad-

uates (for whom it was written) than U.S. undergraduates.

The most recent of these books is Hassett’s Introduction to Al-

gebraic Geometry, [Has07], which is a good introductory text for

students who have taken an abstract algebra course.

Graduate texts. There are a number, though the first two on the

list have dominated the market for the last 35 years.

Hartshorne’s Algebraic Geometry [Har77] relies on a heavy

amount of commutative algebra. Its first chapter is an overview of

algebraic geometry, while chapters four and five deal with curves and

surfaces, respectively. It is in chapters two and three that the heavy

abstract machinery that makes much of algebraic geometry so intimi-

dating is presented. These chapters are not easy going but vital to get

a handle on the Grothendieck revolution in mathematics. This should

not be the first source for learning algebraic geometry; it should be

the second or third source. Certainly young budding algebraic ge-

ometers should spend time doing all of the homework exercises in

Hartshorne; this is the profession’s version of paying your dues.

Principles of Algebraic Geometry by Griffiths and Harris [GH94]

takes a quite different tack from Hartshorne. The authors concentrate

on the several complex variables approach. Chapter zero in fact is an

excellent overview of the basic theory of several complex variables. In

this book analytic tools are freely used, but an impressive amount of

geometric insight is presented throughout.

Shafarevich’s Basic Algebraic Geometry is another standard, long-

time favorite, now split into two volumes, [Sha94a] and [Sha94b].

The first volume concentrates on the relatively concrete case of sub-

varieties in complex projective space, which is the natural ambient

space for much of algebraic geometry. Volume II turns to schemes,

the key idea introduced by Grothendieck that helped change the very

language of algebraic geometry.

Mumford’s Algebraic Geometry I: Complex Projective Varieties

[Mum95] is a good place for a graduate student to get started. One

of the strengths of this book is how Mumford will give a number of
                

                                                                                                               



xx Preface

definitions, one right after another, of the same object, forcing the

reader to see the different reasonable ways the same object can be

viewed.

Mumford’s The Red Book of Varieties and Schemes [Mum99]

was for many years only available in mimeograph form from Har-

vard’s Mathematics Department, bound in red (hence its title “The

Red Book”), though it is now actually yellow. It was prized for its

clear explanation of schemes. It is an ideal second or third source

for learning about schemes. This new edition includes Mumford’s de-

lightful book Curves and their Jacobians, which is a wonderful place

for inspiration.

Fulton’s Algebraic Curves [Ful69] is a good brief introduction.

When it was written in the late 1960s, it was the only reasonable

introduction to modern algebraic geometry.

Miranda’s Algebraic Curves and Riemann Surfaces [Mir95] is a

popular book, emphasizing the analytic side of algebraic geometry.

Harris’s Algebraic Geometry: A First Course [Har95] is chock-

full of examples. In a forest versus trees comparison, it is a book of

trees. This makes it difficult as a first source, but ideal as a reference

for examples.

Ueno’s two volumes, Algebraic Geometry 1: From Algebraic Va-

rieties to Schemes [Uen99] and Algebraic Geometry 2: Sheaves and

Cohomology [Uen01], will lead the reader to the needed machinery

for much of modern algebraic geometry.

Bump’s Algebraic Geometry [Bum98], Fischer’s Plane Algebraic

Curves [Fis01] and Perrin’s Algebraic Geometry: An Introduction

[Per08] are all good introductions for graduate students.

Another good place for a graduate student to get started, a source

that we used more than once for this book, is Kirwan’s Complex

Algebraic Curves [Kir92].

Kunz’s Introduction to Plane Algebraic Curves [Kun05] is an-

other good beginning text; as an added benefit, it was translated into

English from the original German by one of the authors of this book

(Richard Belshoff).
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Holme’s A Royal Road to Algebraic Geometry [Hol12] is a quite

good recent beginning graduate text, with the second part a serious

introduction to schemes.

An Aside on Notation

Good notation in mathematics is important but can be tricky. It

is often the case that the same mathematical object is best described

using different notations depending on context. For example, in this

book we will sometimes denote a curve by the symbol C, while at

other times denote the curve by the symbol V(P ) when the curve is

the zero locus of the polynomial P (x, y). Both notations are natural

and both will be used.
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Chapter 1

Conics

Linear algebra studies the simplest type of geometric objects,

such as straight lines and planes. Straight lines in the plane are the

zero sets of linear, or first degree, polynomials, such as {(x, y) ∈ R2 :

3x+4y− 1 = 0}. However, there are far more plane curves than just

straight lines. Higher degree polynomials define other plane curves,

and these are where we begin our exploration of algebraic geometry.

We start by looking at conics, which are the zero sets of second

degree polynomials. The quintessential conic is the circle:

{(x, y) ∈ R2 : x2 + y2 − 1 = 0}.

x2 + y2 − 1 = 0

(1, 0)

(0, 1)

Despite their apparent simplicity, an understanding of second degree

equations and their solution sets is the beginning of much of algebraic

geometry. By the end of the chapter, we will have developed some

beautiful mathematics.

1

                                     

                

                                                                                                               



2 1. Conics

1.1. Conics over the Reals

The goal of this section is to understand the basic properties of conics

in the real plane R2. In particular, we will see how to graph these

conics.

For second degree polynomials, you can usually get a fairly good

graph of the corresponding curve by just drawing it “by hand.” The

first series of exercises will lead you through this process. Our goal is

to develop basic techniques for thinking about curves without worry-

ing about too many technical details.

We start with the polynomial P (x, y) = y − x2 and want to look

at its zero set

C = {(x, y) ∈ R2 : P (x, y) = 0}.
We also denote this set by V(P ).

Exercise 1.1.1. Show that for any (x, y) ∈ C, we also have

(−x, y) ∈ C.

Thus the curve C is symmetric about the y-axis.

Exercise 1.1.2. Show that if (x, y) ∈ C, then we have y ≥ 0.

Exercise 1.1.3. Show that for every y ≥ 0, there is a point (x, y) ∈ C

with this y-coordinate. Now, for points (x, y) ∈ C, show that if

y goes to infinity, then one of the corresponding x-coordinates also

approaches infinity while the other corresponding x-coordinate must

approach negative infinity.

The last two exercises show that the curve C is unbounded in

the positive and negative x-directions, unbounded in the positive y-

direction, but bounded in the negative y-direction. This means that

we can always find (x, y) ∈ C so that x is arbitrarily large, in either

the positive or negative directions, y is arbitrarily large in the positive

direction, but that there is a number M (in this case 0) such that

y ≥ M (in this case y ≥ 0).

Exercise 1.1.4. Sketch the curve C = {(x, y) ∈ R2 : P (x, y) = 0}.
                

                                                                                                               



1.1. Conics over the Reals 3

Conics that have these symmetry and boundedness properties and

look like this curve C are called parabolas. Of course, we could have

analyzed the curve {(x, y) : x−y2 = 0} and made similar observations,

but with the roles of x and y reversed. In fact, we could have shifted,

stretched, and rotated our parabola many ways and still retained

these basic features.

We now perform a similar analysis for the plane curve

C =

{
(x, y) ∈ R2 :

x2

4
+

y2

9
− 1 = 0

}
.

Exercise 1.1.5. Show that if (x, y) ∈ C, then the three points

(−x, y), (x,−y), and (−x,−y) are also on C. Thus the curve C

is symmetric about both the x- and y-axes.

Exercise 1.1.6. Show that for every (x, y) ∈ C, we have |x| ≤ 2 and

|y| ≤ 3.

This shows that the curve C is bounded in both the positive and

negative x- and y-directions.

Exercise 1.1.7. Sketch C =

{
(x, y) ∈ R2 :

x2

4
+

y2

9
− 1 = 0

}
.

Conics that have these symmetry and boundedness properties

and look like this curve C are called ellipses.

There is a third type of conic. Consider the curve

C = {(x, y) ∈ R2 : x2 − y2 − 4 = 0}.

Exercise 1.1.8. Show that if (x, y) ∈ C, then the three points

(−x, y), (x,−y), and (−x,−y) are also on C. Thus the curve C

is also symmetric about both the x- and y-axes.

Exercise 1.1.9. Show that if (x, y) ∈ C, then we have |x| ≥ 2.

These exercises show that the curve C has two connected com-

ponents. Intuitively, this means that C is composed of two distinct

pieces that do not touch.

Exercise 1.1.10. Show that the curve C is unbounded in the positive

and negative x-directions and also unbounded in the positive and

negative y-directions.
                

                                                                                                               



4 1. Conics

Exercise 1.1.11. Sketch C =
{
(x, y) ∈ R2 : x2 − y2 − 4 = 0

}
.

Conics that have these symmetry, connectedness, and bounded-

ness properties are called hyperbolas.

In the following exercise, the goal is to sketch many concrete

conics.

Exercise 1.1.12. Sketch the graph of each of the following conics in

R2. Identify which are parabolas, ellipses, or hyperbolas.

(1) V(x2 − 8y)

(2) V(x2 + 2x− y2 − 3y − 1)

(3) V(4x2 + y2)

(4) V(3x2 + 3y2 − 75)

(5) V(x2 − 9y2)

(6) V(4x2 + y2 − 8)

(7) V(x2 + 9y2 − 36)

(8) V(x2 − 4y2 − 16)

(9) V(y2 − x2 − 9)

A natural question arises in the study of conics. If we have a

second degree polynomial, how can we determine whether its zero set

is an ellipse, hyperbola, parabola, or something else in R2? Suppose

we have the following polynomial:

P (x, y) = ax2 + bxy + cy2 + dx+ ey + h.

Are there conditions on a, b, c, d, e, h that determine what type of

conic V(P ) is?

Whenever we have a polynomial in more than one variable, a use-

ful technique is to treat P as a polynomial in a single variable whose

coefficients are themselves polynomials in the remaining variables.

Exercise 1.1.13. Express the polynomial P (x, y) = ax2+bxy+cy2+

dx+ ey + h in the form

P (x, y) = Ax2 +Bx+ C

where A, B, and C are polynomials in y. What are A, B, and C?
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Since we are interested in the zero set V(P ), we want to find the

roots of Ax2 + Bx + C = 0 in terms of y. As we know from high

school algebra the roots of the quadratic equation Ax2 +Bx+C = 0

are
−B ±

√
B2 − 4AC

2A
.

To determine the number of real roots, we need to look at the sign of

the discriminant

Δx = B2 − 4AC.

Exercise 1.1.14. Treating P (x, y) = ax2 + bxy + cy2 + dx+ ey + h

as a polynomial in the variable x, show that the discriminant is

Δx(y) = (b2 − 4ac)y2 + (2bd− 4ae)y + (d2 − 4ah).

Exercise 1.1.15.

(1) Suppose Δx(y0) < 0. Explain why there is no point on V(P )

whose y-coordinate is y0.

(2) Suppose Δx(y0) = 0. Explain why there is exactly one point

on V(P ) whose y-coordinate is y0.

(3) Suppose Δx(y0) > 0. Explain why there are exactly two

points on V(P ) whose y-coordinate is y0.

This exercise demonstrates that in order to understand the set

V(P ) we need to understand the set {y : Δx(y) ≥ 0}. We will first

see how for parabolas we expect the scalar b2 − 4ac to be zero.

Exercise 1.1.16. Suppose b2 − 4ac = 0. Suppose further that 2bd−
4ae > 0.

(1) Show that Δx(y) ≥ 0 if and only if y ≥ 4ah− d2

2bd− 4ae
.

(2) Conclude that if b2 − 4ac = 0 and 2bd− 4ae > 0, then V(P )

is a parabola.

Notice that if b2 − 4ac �= 0, then Δx(y) is itself a quadratic func-

tion in y, and the features of the set over which Δx(y) is nonnegative

is determined by its quadratic coefficient.

Exercise 1.1.17. Suppose b2 − 4ac < 0.
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(1) Show that one of the following occurs:

(a) {y | Δx(y) ≥ 0} = ∅,
(b) {y | Δx(y) ≥ 0} = {y0},
(c) there exist real numbers α and β, α < β, such that

{y | Δx(y) ≥ 0} = {y | α ≤ y ≤ β}.

(2) Conclude that V(P ) is either empty, a point, or an ellipse.

Exercise 1.1.18. Suppose b2 − 4ac > 0.

(1) Show that one of the following occurs:

(a) {y | Δx(y) ≥ 0} = R and Δx(y) �= 0,

(b) {y | Δx(y) = 0} = {y0} and {y | Δx(y) > 0} = {y |
y �= y0},

(c) there exist real numbers α and β, α < β, such that

{y | Δx(y) ≥ 0} = {y | y ≤ α} ∪ {y | y ≥ β}.

(2) If {y | Δx(y) ≥ 0} = R, show that V(P ) is a hyperbola

opening left and right:

(3) If {y | Δx(y) = 0} = {y0} and there is a point on V(P )

with y-coordinate equal to y0, show that V(P ) is two lines

intersecting in a point:
                

                                                                                                               



1.1. Conics over the Reals 7

(4) If there are two real numbers α and β, α < β, such that

{y | Δx(y) ≥ 0} = {y | y ≤ α} ∪ {y | y ≥ β},

show that V(P ) is a hyperbola opening up and down:

Above we decided to treat P as a function of x, but we could

have treated P as a function of y, P (x, y) = A′y2 +B′y+C ′, each of

whose coefficients is now a polynomial in x.

Exercise 1.1.19. Show that the discriminant of A′y2+B′y+C ′ = 0

is

Δy(x) = (b2 − 4ac)x2 + (2be− 4cd)x+ (e2 − 4ch).

Note that the quadratic coefficient is again b2−4ac, so our obser-

vations from above are the same in this case as well. In the preceding

exercises we were intentionally vague about some cases. For example,

we do not say anything about what happens when b2 − 4ac = 0 and

2bd− 4ae = 0. This is an example of a “degenerate” conic. We treat

degenerate conics later in this chapter, but for now it suffices to note
                

                                                                                                               



8 1. Conics

that if b2 − 4ac = 0, then V(P ) is neither an ellipse nor a hyperbola.

If b2−4ac < 0, then V(P ) is neither a parabola nor a hyperbola. And

if b2 − 4ac > 0, then V(P ) is neither a parabola nor an ellipse. This

leads us to the following theorem.

Theorem 1.1.20. Suppose P (x, y) = ax2 + bxy+ cy2 + dx+ ey+ h.

If V(P ) is a parabola in R2, then b2 − 4ac = 0; if V(P ) is an ellipse

in R2, then b2 − 4ac < 0; and if V(P ) is a hyperbola in R2, then

b2 − 4ac > 0.

In general, it is not immediately clear whether a given conic C =

V(ax2 + bxy+ cy2 + dx+ e+ h) is an ellipse, hyperbola, or parabola.

When the coefficient b = 0, then it is much easier to determine what

type of curve C is.

Corollary 1.1.1. Suppose P (x, y) = ax2+cy2+dx+ey+h. If V(P )

is a parabola in R2, then ac = 0; if V(P ) is a hyperbola in R2, then

ac < 0, i.e. a and c have opposite signs; and if V(P ) is a ellipse in

R2, then ac > 0, i.e. a and c have the same sign.

1.2. Changes of Coordinates

The goal of this section is to show that, in R2, any ellipse can be

transformed into any other ellipse, any hyperbola into any other hy-

perbola, and any parabola into any other parabola.

Here we start to investigate what it could mean for two conics to

be the same; thus we start to solve an equivalence problem for conics.

Intuitively, two curves are the same if we can shift, stretch, or rotate

one to obtain the other. Cutting or gluing, however, is not allowed.

Our conics live in the real plane R2. In order to describe conics as

the zero sets of second degree polynomials, we first must choose a co-

ordinate system for the plane. Different choices for these coordinates

will give different polynomials, even for the same curve. (To make

this concrete, imagine 10 people separately go to a blank blackboard,

put a dot on it to correspond to an origin, and then draw two axes.

There will be 10 quite different coordinate systems chosen.)
                

                                                                                                               



1.2. Changes of Coordinates 9

Consider the two coordinate systems:

x

y

u

v

Figure 1. xy- and uv-coordinate systems.

Suppose there is a dictionary between these coordinate systems,

given by

u = x− 3,

v = y − 2.

Then the circle of radius 4 has either the equation

u2 + v2 − 16 = 0

or the equation

(x− 3)2 + (y − 2)2 − 16 = 0,

which is the same as x2 − 6x+ y2 − 4y − 3 = 0.
                

                                                                                                               



10 1. Conics

u

v

4−4

4

−4

Figure 2. Circle of radius 4 centered at the origin in the uv-
coordinate system.

These two coordinate systems differ only by where you place the

origin.

Coordinate systems can also differ in their orientation. Consider

two coordinate systems where the dictionary between the coordinate

systems is:

u = x− y

v = x+ y.

x

y

u

v

Figure 3. xy- and uv-coordinate systems with different orientations.
                

                                                                                                               



1.2. Changes of Coordinates 11

Coordinate systems can also vary by the chosen units of length.

Consider two coordinate systems where the dictionary between the

coordinate systems is:

u = 2x

v = 3y.

x

y

u

v

11

1

1

Figure 4. xy- and uv-coordinate systems with different units.

All of these possibilities are captured in the following.

Definition 1.2.1. A real affine change of coordinates in the real

plane, R2, is given by

u = ax+ by + e

v = cx+ dy + f,

where a, b, c, d, e, f ∈ R and

ad− bc �= 0.

In matrix language, we have(
u

v

)
=

(
a b

c d

)(
x

y

)
+

(
e

f

)
,

where a, b, c, d, e, f ∈ R, and

det

(
a b

c d

)
�= 0.

                

                                                                                                               



12 1. Conics

Exercise 1.2.1. Show that the origin in the xy-coordinate system

agrees with the origin in the uv-coordinate system if and only if e =

f = 0. Thus the constants e and f describe translations of the origin.

Exercise 1.2.2. Show that if u = ax + by + e and v = cx + dy + f

is a change of coordinates, then the inverse change of coordinates is

x =

(
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

y =

(
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af).

(This is why we require that ad − bc �= 0.) There are two ways of

working this problem. One method is to just start fiddling with the

equations. The second is to translate the change of coordinates into

the matrix language and then use a little linear algebra.

It is also common for us to change coordinates multiple times,

but we need to ensure that a composition of real affine changes of

coordinates is a real affine change of coordinates.

Exercise 1.2.3. Show that if

u = ax+ by + e

v = cx+ dy + f

and

s = Au+Bv + E

t = Cu+Dv + F

are two real affine changes of coordinates from the xy-plane to the

uv-plane and from the uv-plane to the st-plane, respectively, then the

composition from the xy-plane to the st-plane is a real affine change

of coordinates.

We frequently go back and forth between using a change of co-

ordinates and its inverse. For example, suppose we have the ellipse
                

                                                                                                               



1.2. Changes of Coordinates 13

V(x2 + y2 − 1) in the xy-plane. Under the real affine change of coor-

dinates

u = x+ y

v = 2x− y,

this ellipse becomes V(5u2 − 2uv + 2v2 − 9) in the uv-plane (verify

this). To change coordinates from the xy-plane to the uv-plane, we

use the inverse change of coordinates

x =
1

3
u+

1

3
v

y =
2

3
u− 1

3
v.

Since any affine transformation has an inverse transformation, we will

not worry too much about whether we are using a transformation or

its inverse in our calculations. When the context requires care, we

will make the distinction.

Exercise 1.2.4. For each pair of ellipses, find a real affine change of

coordinates that maps the ellipse in the xy-plane to the ellipse in the

uv-plane.

(1) V(x2 + y2 − 1), V(16u2 + 9v2 − 1)

(2) V((x− 1)2 + y2 − 1), V(16u2 + 9(v + 2)2 − 1)

(3) V(4x2 + y2 − 6y + 8), V(u2 − 4u+ v2 − 2v + 4)

(4) V(13x2 − 10xy + 13y2 − 1), V(4u2 + 9v2 − 1)

We can apply a similar argument for hyperbolas.

Exercise 1.2.5. For each pair of hyperbolas, find a real affine change

of coordinates that maps the hyperbola in the xy-plane to the hyper-

bola in the uv-plane.

(1) V(xy − 1), V(u2 − v2 − 1)

(2) V(x2 − y2 − 1), V(16u2 − 9v2 − 1)

(3) V((x− 1)2 − y2 − 1), V(16u2 − 9(v + 2)2 − 1)

(4) V(x2 − y2 − 1), V(v2 − u2 − 1)

(5) V(8xy − 1), V(2u2 − 2v2 − 1)
                

                                                                                                               



14 1. Conics

Now we move on to parabolas.

Exercise 1.2.6. For each pair of parabolas, find a real affine change

of coordinates that maps the parabola in the xy-plane to the parabola

in the uv-plane.

(1) V(x2 − y), V(9v2 − 4u)

(2) V((x− 1)2 − y), V(u2 − 9(v + 2))

(3) V(x2 − y), V(u2 + 2uv + v2 − u+ v − 2)

(4) V(x2 − 4x+ y + 4), V(4u2 − (v + 1))

(5) V(4x2 + 4xy + y2 − y + 1), V(4u2 + v)

The preceding three problems suggest that we can transform el-

lipses to ellipses, hyperbolas to hyperbolas, and parabolas to parabo-

las by way of real affine changes of coordinates. This turns out to be

the case. Suppose C = V(ax2 + bxy + cy2 + dx + ey + h) is a conic

in R2. Our goal in the next several exercises is to show that if C is

an ellipse, we can transform it to V(x2 + y2 − 1); if C is a hyperbola,

we can transform it to V(x2 − y2 − 1); and if C is a parabola, we can

transform it to V(x2 − y). We will pass through a series of real affine

transformations and appeal to Exercise 1.2.3. This result ensures

that the final composition of our individual transformations is the

real affine transformation we seek. This composition is, however, a

mess, so we won’t write it down explicitly. We will see in Section 1.11

that we can organize this information much more efficiently by using

tools from linear algebra.

We begin with ellipses. Suppose V(ax2+ bxy+ cy2+dx+ey+h)

is an ellipse in R2. Our first transformation will be to remove the

xy term, i.e. to find a real affine transformation that will align our

given curve with the coordinate axes. By Theorem 1.1.20 we know

that b2 − 4ac < 0.

Exercise 1.2.7. Explain why if b2 − 4ac < 0, then ac > 0.
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Exercise 1.2.8. Show that under the real affine transformation

x =

√
c

a
u+ v

y = u−
√

a

c
v,

the ellipse V(ax2 + bxy+ cy2 + dx+ ey+ h) in the xy-plane becomes

an ellipse in the uv-plane whose defining equation is Au2 + Cv2 +

Du + Ev + H = 0. Find A and C in terms of a, b, c. Show that if

b2 − 4ac < 0, then A �= 0 and C �= 0.

Now we have a new ellipse V(Au2 +Cv2 +Du+Ev+H) in the

uv-plane. If our original ellipse already had b = 0, then we would

have skipped the previous step and gone directly to this one.

Exercise 1.2.9. Show that there exist constants R, S, and T such

that the equation

Au2 + Cv2 +Du+ Ev +H = 0

can be rewritten in the form

A(u−R)2 + C(v − S)2 − T = 0.

Express R, S, and T in terms of A,C,D,E, and H.

To simplify notation, we revert to using x and y as our variables

instead of u and v, but we keep in mind that we are not really still

working in our original xy-plane. This is a convenience to avoid sub-

scripts. Without loss of generality we can assume A,C > 0, since if

A,C < 0 we could simply multiply the above equation by −1 without

affecting the conic. Note that we assume that our original conic is an

ellipse, i.e., it is nondegenerate. A consequence of this is that T > 0.

Exercise 1.2.10. Suppose A,C > 0. Find a real affine change of

coordinates that maps the ellipse

V(A(x−R)2 + C(y − S)2 − T ),

to the circle

V(u2 + v2 − 1).
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Hence, we have found a composition of real affine changes of

coordinates that transforms any ellipse V(ax2+bxy+cy2+dx+ey+h)

to the circle V(u2 + v2 − 1).

We want a similar process for parabolas. Suppose V(ax2+ bxy+

cy2 + dx + ey + h) is a parabola in R2. We want to show, by direct

algebra, that there is a change of coordinates that takes this parabola

to

V(u2 − v).

By Theorem 1.1.20 we know that b2 − 4ac = 0. As before our first

task is to eliminate the xy term. Suppose first that b �= 0. Since

b2 > 0 and 4ac = b2 we know ac > 0, so we can repeat Exercise 1.2.8.

Exercise 1.2.11. Consider the valuesA and C found in Exercise 1.2.8.

Show that if b2 − 4ac = 0, then either A = 0 or C = 0, depending on

the signs of a, b, c. [Hint: Recall,
√
α2 = −α if α < 0.]

Since either A = 0 or C = 0 we can assume C = 0 without loss of

generality. Then A �= 0, for our curve is a parabola and not a straight

line, so our transformed parabola is V(Au2 + Du + Ev + H) in the

uv-plane. If our original parabola already had b = 0, then we also

know, since b2− 4ac = 0, that either a = 0 or c = 0, so we could have

skipped ahead to this step.

Exercise 1.2.12. Show that there exist constants R and T such that

the equation

Au2 +Du+ Ev +H = 0

can be rewritten as

A(u−R)2 + E(v − T ) = 0.

Express R and T in terms of A,D,E, and H.

As above we revert our notation to x and y with the same caveat

as before. Multiplying our equation by −1 if necessary, we may as-

sume A > 0.

Exercise 1.2.13. Suppose A > 0 and E �= 0. Find a real affine

change of coordinates that maps the parabola

V(A(x−R)2 − E(y − T ))
                

                                                                                                               



1.2. Changes of Coordinates 17

to the parabola

V(u2 − v).

Hence, we have found a real affine change of coordinates that

transforms any parabola V(ax2 + bxy + cy2 + dx + ey + h) to the

parabola V(u2 − v).

Finally, suppose V(ax2 + bxy+ cy2 + dx+ ey+ h) is a hyperbola

in R2. We want to show that there is a change of coordinates that

takes this hyperbola to

V(u2 − v2 − 1).

By Theorem 1.1.20 we know that b2 − 4ac > 0. Suppose first that

b �= 0. Unlike before, we can now have ac > 0, ac < 0, or ac = 0.

Exercise 1.2.14. Suppose ac > 0. Use the real affine transformation

in Exercise 1.2.8 to transform C to a conic in the uv-plane. Find the

coefficients of u2 and v2 in the resulting equation and show that they

have opposite signs.

Now for the ac < 0 case.

Exercise 1.2.15. Suppose ac < 0 and b �= 0. Use the real affine

transformation

x =

√
− c

a
u+ v

y = u−
√
−a

c
v

to transform C to a conic in the uv-plane of the form

Au2 + Cv2 +Du+ Ev +H = 0.

Find the coefficients of u2 and v2 in the resulting equation and show

that they have opposite signs.

Note that in the case when ac < 0 and b = 0, then a and c have

opposite signs and the hyperbola is already of the form

ax2 + cy2 + dx+ ey + f = 0.
                

                                                                                                               



18 1. Conics

Exercise 1.2.16. Suppose ac = 0 (so b �= 0). Since either a = 0 or

c = 0, we can assume c = 0. Use the real affine transformation

x = u+ v

y =

(
1− a

b

)
u−
(
1 + a

b

)
v

to transform V(ax2 + bxy + dx + ey + h) to a conic in the uv-plane

of the form

V(u2 − v2 +Du+ Ev +H).

In all three cases we find that the hyperbola can be transformed

to V(Au2−Cv2+Du+Ev+H) in the uv-plane, with both A and C

positive. We can now complete the transformation of the hyperbola

as we did above with parabolas and ellipses.

Exercise 1.2.17. Show that there exist constants R, S and T so

that

Au2 − Cv2 +Du+ Ev +H = A(u−R)2 − C(v − S)2 − T.

Express R, S, and T in terms of A,C,D,E, and H.

We are assuming that we have a hyperbola. Hence T �= 0, since

otherwise we would have just two lines through the origin. If T < 0,

then we can multiply the equation A(u − R)2 − C(v − S)2 − T = 0

through by −1 and then interchange u with v. Thus we can assume

that our original hyperbola has become

V(A(u−R)2 − C(v − S)2 − T )

with A, C and T all positive.

Exercise 1.2.18. Suppose A,C, T > 0. Find a real affine change of

coordinates that maps the hyperbola

V(A(x−R)2 − C(y − S)2 − T ),

to the hyperbola

V(u2 − v2 − 1).

We have now shown that in R2 we can find a real affine change

of coordinates that will transform any ellipse to V(x2 + y2 − 1), any

hyperbola to V(x2−y2−1), and any parabola to V(x2−y). Thus we
                

                                                                                                               



1.2. Changes of Coordinates 19

have three classes of smooth conics in R2. Our next task is to show

that these are distinct, that is, that we cannot transform an ellipse

to a parabola and so on.

Exercise 1.2.19. Give an intuitive argument, based on the number

of connected components, for the fact that no ellipse can be trans-

formed into a hyperbola by a real affine change of coordinates.

Exercise 1.2.20. Show that there is no real affine change of coordi-

nates

u = ax+ by + e

v = cx+ dy + f

that transforms the ellipse V(x2 + y2 − 1) to the hyperbola V(u2 −
v2 − 1).

Exercise 1.2.21. Give an intuitive argument, based on boundedness,

for the fact that no parabola can be transformed into an ellipse by a

real affine change of coordinates.

Exercise 1.2.22. Show that there is no real affine change of coor-

dinates that transforms the parabola V(x2 − y) to the circle V(u2 +

v2 − 1).

Exercise 1.2.23. Give an intuitive argument, based on the num-

ber of connected components, for the fact that no parabola can be

transformed into a hyperbola by a real affine change of coordinates.

Exercise 1.2.24. Show that there is no real affine change of co-

ordinates that transforms the parabola V(x2 − y) to the hyperbola

V(u2 − v2 − 1).

Definition 1.2.2. Two conics are equivalent under a real affine change

of coordinates if the defining polynomial for one of the conics can be

transformed via a real affine change of coordinates into the defining

polynomial of the other conic.

Combining all of the work in this section, we have just proven the

following theorem.

Theorem 1.2.25. Under a real affine change of coordinates, all el-

lipses in R2 are equivalent, all hyperbolas in R2 are equivalent, and all
                

                                                                                                               



20 1. Conics

parabolas in R2 are equivalent. Further, these three classes of conics

are distinct; no conic of one class can be transformed via a real affine

change of coordinates to a conic of a different class.

In Section 1.11 we will revisit this theorem using tools from linear

algebra. This approach will yield a cleaner and more straightforward

proof than the one we have in the current setting. The linear algebraic

setting will also make all of our transformations simpler, and it will

become apparent how we arrived at the particular transformations.

1.3. Conics over the Complex Numbers

The goal of this section is to see how, under a complex affine changes

of coordinates, all ellipses and hyperbolas are equivalent, while parabo-

las are still distinct.

While it is certainly natural to begin with the zero set of a poly-

nomial P (x, y) as a curve in the real plane R2, polynomials also have

roots over the complex numbers. In fact, throughout mathematics it

is almost always easier to work over the complex numbers than over

the real numbers. This can be seen in the solutions given by the qua-

dratic equation x2+1 = 0, which has no solutions if we require x ∈ R

but does have the two solutions, x = ±i, in the complex numbers C.

Exercise 1.3.1. Show that the set

{(x, y) ∈ R2 : x2 + y2 + 1 = 0}

is empty but that the set

C = {(x, y) ∈ C2 : x2 + y2 + 1 = 0}

is not empty. In fact, show that given any complex number x there

must exist a y ∈ C such that

(x, y) ∈ C.

Then show that if x �= ±i, then there are two distinct values y ∈ C

such that (x, y) ∈ C, while if x = ±i there is only one such y.
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Thus if we use only real numbers, some zero sets of second degree

polynomials will be empty. This does not happen over the complex

numbers.

Exercise 1.3.2. Let

P (x, y) = ax2 + bxy + cy2 + dx+ ey + f,

with a �= 0. Show that for any value y ∈ C, there must be at least

one x ∈ C, but no more than two such x’s, such that

P (x, y) = 0.

[Hint: Write P (x, y) = Ax2 + Bx + C as a function of x whose

coefficients A, B, and C are themselves functions of y, and use the

quadratic formula. As mentioned before, this technique will be used

frequently.]

Thus for any second order polynomial, its zero set is non-empty

provided we work over the complex numbers.

But even more happens. We start with:

Exercise 1.3.3. Let C = V

(
x2

4
+

y2

9
− 1

)
⊂ C2. Show that C is

unbounded in both x and y. (Over the complex numbers C, being

unbounded in x means, given any number M , there will be a point

(x, y) ∈ C such that |x| > M . Compare this result to Exercise 1.1.6.)

Hyperbolas in R2 come in two pieces. In C2, it can be shown that

hyperbolas are connected, meaning there is a continuous path from

any point to any other point. The following shows this for a specific

hyperbola.

Exercise 1.3.4. Let C = V(x2 − y2 − 1) ⊂ C2. Show that there

is a continuous path on the curve C from the point (−1, 0) to the

point (1, 0), despite the fact that no such continuous path exists in

R2. (Compare this exercise with Exercise 1.1.9.)

These two exercises demonstrate that in C2 ellipses are unbounded

(just like hyperbolas and parabolas) and hyperbolas are connected

(just like ellipses and parabolas). Thus the intuitive arguments in

Exercises 1.2.19, 1.2.21, and 1.2.23 no longer work in C2. We have

even more.
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Exercise 1.3.5. Show that if x = u and y = iv, then the circle

{(x, y) ∈ C2 : x2 + y2 = 1} transforms into the hyperbola {(u, v) ∈
C2 : u2 − v2 = 1}.

Definition 1.3.1. A complex affine change of coordinates in the com-

plex plane C2 is given by

u = ax+ by + e

v = cx+ dy + f,

where a, b, c, d, e, f ∈ C and

ad− bc �= 0.

Exercise 1.3.6. Show that if u = ax + by + e and v = cx + dy + f

is a change of coordinates, then the inverse change of coordinates is

x =

(
1

ad− bc

)
(du− bv)−

(
1

ad− bc

)
(de− bf)

y =

(
1

ad− bc

)
(−cu+ av)−

(
1

ad− bc

)
(−ce+ af).

This proof should look almost identical to the solution of Exercise 1.2.2.

Definition 1.3.2. Two conics are equivalent under a complex affine

change of coordinates if the defining polynomial for one of the conics

can be transformed via a complex affine change of coordinates into

the defining polynomial for the other conic.

Exercise 1.3.7. Use Theorem 1.2.25 together with the new result of

Exercise 1.3.5 to conclude that all ellipses and hyperbolas are equiv-

alent under complex affine changes of coordinates.

Parabolas, though, are still different.

Exercise 1.3.8. Show that the circle {(x, y) ∈ C2 : x2 + y2 − 1 = 0}
is not equivalent under a complex affine change of coordinates to the

parabola {(u, v) ∈ C2 : u2 − v = 0}.

We now want to look more directly at C2 in order to understand

more clearly why the class of ellipses and the class of hyperbolas are

different as real objects but the same as complex objects. We start

by looking at C. Algebraic geometers regularly use the variable x for
                

                                                                                                               



1.3. Conics over the Complex Numbers 23

a complex number. Complex analysts more often use the variable z,

which allows a complex number to be expressed in terms of its real

and imaginary parts

z = x+ iy,

where x is the real part of z and y is the imaginary part.

x

y

1

1

C

�
2 + i

�

−3− 2i

�

−3 + 4i

Figure 5. Points in the complex plane.

Similarly, an algebraic geometer will usually use (x, y) to denote

points in the complex plane C2 while a complex analyst will instead

use (z, w) to denote points in the complex plane C2. Here the complex

analyst will write

w = u+ iv.

There is a natural bijection from C2 to R4 given by

(z, w) = (x+ iy, u+ iv) → (x, y, u, v).

In the same way, there is a natural bijection from C2 ∩ {(x, y, u, v) ∈
R4 : y = 0, v = 0} to the real plane R2, given by

(x+ 0i, u+ 0i) → (x, 0, u, 0) → (x, u).

Likewise, there is a similar natural bijection from C2 = {(z, w) ∈
C2} ∩ {(x, y, u, v) ∈ R4 : y = 0, u = 0} to R2, given this time by

(x+ 0i, 0 + vi) → (x, 0, 0, v) → (x, v).
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One way to think about conics in C2 is to consider two-dimensional

slices of C2. Let

C = {(z, w) ∈ C2 : z2 + w2 = 1}.

Exercise 1.3.9. Give a bijection from

C ∩ {(x+ iy, u+ iv) : x, u ∈ R, y = 0, v = 0}
to the real circle of unit radius in R2. (Thus a real circle in the plane

R2 can be thought of as a real slice of the complex curve C.)

Taking a different real slice of C will yield not a circle but a

hyperbola.

Exercise 1.3.10. Give a bijection from

C ∩ {(x+ iy, u+ iv) ∈ R4 : x, v ∈ R, y = 0, u = 0}
to the hyperbola V(x2 − v2 − 1) in R2.

Thus the single complex curve C contains both real circles and

real hyperbolas.

1.4. The Complex Projective Plane P2

The goal of this section is to introduce the complex projective plane

P2, which is the natural ambient space (with its higher dimensional

analog Pn) for much of algebraic geometry. In P2, we will see that all

ellipses, hyperbolas, and parabolas are equivalent.

In R2 all ellipses are equivalent, all hyperbolas are equivalent, and

all parabolas are equivalent under real affine changes of coordinates.

Further, these classes of conics are distinct in R2. When we move

to C2, ellipses and hyperbolas are equivalent under complex affine

changes of coordinates, but parabolas remain distinct. The next step

is to describe a larger plane in which all three classes are equivalent.

First, we will define the complex projective plane P2 and discuss

some of its basic properties. While it may not be immediately clear

from this definition, we will see how C2 naturally lives in P2. Further,

the extra points in P2 that are not in C2 can be viewed as “points
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at infinity.” Then we will look at the projective analogue of change

of coordinates and see how we can view all ellipses, hyperbolas, and

parabolas as equivalent.

Definition 1.4.1. Define a relation ∼ on points in C3 − {(0, 0, 0)}
as follows: (x, y, z) ∼ (u, v, w) if and only if there exists λ ∈ C− {0}
such that (x, y, z) = (λu, λv, λw).

Exercise 1.4.1.

(1) Show that (2, 1 + i, 3i) ∼ (2− 2i, 2, 3 + 3i).

(2) Show that (1, 2, 3) ∼ (2, 4, 6) ∼ (−2,−4,−6) ∼ (−i,−2i,−3i).

(3) Show that (2, 1 + i, 3i) �∼ (4, 4i, 6i).

(4) Show that (1, 2, 3) �∼ (3, 6, 8).

Exercise 1.4.2. Show that ∼ is an equivalence relation. (Recall that

an equivalence relation ∼ on a set X satisfies the conditions (i) a ∼ a

for all a ∈ X, (ii) a ∼ b implies b ∼ a, and (iii) a ∼ b and b ∼ c

implies a ∼ c.)

Exercise 1.4.3. Suppose that (x1, y1, z1) ∼ (x2, y2, z2) and that x1 =

x2 �= 0. Show that y1 = y2 and z1 = z2.

Exercise 1.4.4. Suppose that (x1, y1, z1) ∼ (x2, y2, z2) with z1 �= 0

and z2 �= 0. Show that

(x1, y1, z1) ∼
(
x1

z1
,
y1
z1

, 1

)
=

(
x2

z2
,
y2
z2

, 1

)
∼ (x2, y2, z2).

Let (x : y : z) denote the equivalence class of (x, y, z), i.e. (x : y :

z) is the following set

(x : y : z) =
{
(u, v, w) ∈ C3 − {(0, 0, 0)} : (x, y, z) ∼ (u, v, w)

}
.

Exercise 1.4.5.

(1) Find the equivalence class of (0, 0, 1).

(2) Find the equivalence class of (1, 2, 3).

Exercise 1.4.6. Show that the equivalence classes (1 : 2 : 3) and

(2 : 4 : 6) are equal as sets.
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Definition 1.4.2. The complex projective plane P2(C) is the set of

equivalence classes of the points in C3 − {(0, 0, 0)}. This is often

written as

P2(C) =
(
C3 − {(0, 0, 0)}

)/
∼ .

The set of points {(x : y : z) ∈ P2(C) : z = 0} is called the line at

infinity. We will write P2 to mean P2(C) when the context is clear.

Let (a, b, c) ∈ C3 − {(0, 0, 0)}. Then the complex line through

this point and the origin (0, 0, 0) can be defined as all points, (x, y, z),

satisfying

x = λa, y = λb, and z = λc

for any complex number λ. Here λ can be thought of as an indepen-

dent parameter.

Exercise 1.4.7. Explain why the elements of P2 can intuitively be

thought of as complex lines through the origin in C3.

Exercise 1.4.8. If c �= 0, show, in C3, that the line x = λa, y =

λb, z = λc intersects the plane {(x, y, z) : z = 1} in exactly one point.

Show that this point of intersection is

(
a

c
,
b

c
, 1

)
.

In the next several exercises we will use

P2 = {(x : y : z) ∈ P2 : z �= 0} ∪ {(x : y : z) ∈ P2 : z = 0}
to show that P2 can be viewed as the union of C2 with the line at

infinity.

Exercise 1.4.9. Show that the map φ : C2 → {(x : y : z) ∈ P2 : z �=
0} defined by φ(x, y) = (x : y : 1) is a bijection.

Exercise 1.4.10. Find a map from {(x : y : z) ∈ P2 : z �= 0} to C2

that is the inverse of the map φ in Exercise 1.4.9.

The maps φ and φ−1 in Exercises 1.4.9 and 1.4.10 show us how to

view C2 inside P2. Now we show how the set {(x : y : z) ∈ P2 : z = 0}
corresponds to directions towards infinity in C2.

Exercise 1.4.11. Consider the line � = {(x, y) ∈ C2 : ax+by+c = 0}
in C2. Assume a, b �= 0. Explain why, as |x| → ∞, |y| → ∞. (Here,

|x| is the modulus of x.)
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Exercise 1.4.12. Consider again the line �. We know that a and b

cannot both be 0, so we will assume without loss of generality that

b �= 0.

(1) Show that the image of � in P2 under φ is the set

{(bx : −ax− c : b) : x ∈ C}.
(2) Show that this set equals the following union.

{(bx : −ax− c : b) : x ∈ C} = {(0 : −c : b)}∪
{(

1 : −a

b
− c

bx
:
1

x

)}
.

(3) Show that as |x| → ∞, the second set in the above union

becomes

{(1 : −a

b
: 0)}.

Thus, the points (1 : −a

b
: 0) are directions toward infinity and the

set {(x : y : z) ∈ P2 : z = 0} is the line at infinity.

If a point (a : b : c) in P2 is the image of a point (x, y) ∈ C2 under

the map from φ : C2 → P2, we say that (a, b, c) are homogeneous

coordinates for (x, y). Notice that homogeneous coordinates for a

point (x, y) ∈ C2 are not unique. For example, the points (2 : −3 : 1),

(10 : −15 : 5), and (2− 2i : −3 + 3i : 1− i) all provide homogeneous

coordinates for (2,−3).

In order to consider zero sets of polynomials in P2, a little care is

needed. We start with:

Definition 1.4.3. A polynomial is homogeneous if every monomial

term has the same total degree, that is, if the sum of the exponents

in every monomial is the same. The degree of the homogeneous poly-

nomial is the total degree of any of its monomials. An equation is

homogeneous if every non-zero monomial has the same total degree.

Exercise 1.4.13. Explain why the following polynomials are homo-

geneous, and find each degree.

(1) x2 + y2 − z2

(2) xz − y2

(3) x3 + 3xy2 + 4y3

(4) x4 + x2y2
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Exercise 1.4.14. Explain why the following polynomials are not

homogeneous.

(1) x2 + y2 − z

(2) xz − y

(3) x2 + 3xy2 + 4y3 + 3

(4) x3 + x2y2 + x2

Exercise 1.4.15. Show that if the homogeneous equation Ax+By+

Cz = 0 holds for the point (x, y, z) in C3 − {(0, 0, 0)}, then it holds

for every point of C3 that belongs to the equivalence class (x : y : z)

in P2.

Exercise 1.4.16. Show that if the homogeneous equation Ax2 +

By2 + Cz2 + Dxy + Exz + Fyz = 0 holds for the point (x, y, z) in

C3 − {(0, 0, 0)}, then it holds for every point of C3 that belongs to

the equivalence class (x : y : z) in P2.

Exercise 1.4.17. State and prove the generalization of the previous

two exercises for any degree n homogeneous equation P (x, y, z) = 0.

Exercise 1.4.18. Consider the non-homogeneous equation P (x, y, z)

= x2+2y+2z = 0. Show that (2,−1,−1) satisfies this equation. Find

a point of the equivalence class (2 : −1 : −1) that does not satisfy the

equation.

Thus the zero set of a non-homogeneous polynomial is not well-

defined in P2. These exercises demonstrate that the only zero sets of

polynomials that are well-defined on P2 are homogeneous polynomi-

als.

To study the behavior at infinity of a curve in C2, we would like to

extend the curve to P2. Thus, we want to be able to pass from zero sets

of polynomials in C2 to zero sets of homogeneous polynomials in P2.

This motivates our next step, a method to homogenize polynomials.

We start with an example. For any point (x : y : z) ∈ P2 with

z �= 0 we have (x : y : z) =
(x
z
:
y

z
: 1
)
, which we identify, via φ−1

from Exercise 1.4.10, with the point
(x
z
,
y

z

)
∈ C2.
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Under this identification, the polynomial P (x, y) = y−x−2 maps

to P (x, y, z) =
y

z
− x

z
− 2. Since P (x, y, z) = 0 and zP (x, y, z) = 0

have the same zero set if z �= 0 we clear the denominator and, with an

abuse of notation, consider the homogeneous polynomial P (x, y, z) =

y − x− 2z. The zero set of P (x, y, z) = y − x− 2z in P2 corresponds

to the zero set of P (x, y) = y− x− 2 = 0 in C2 precisely when z = 1.

Similarly, the polynomial x2 + y2 − 1 maps to
(x
z

)2
+
(y
z

)2
− 1.

Again, clear the denominators to obtain the homogeneous polynomial

x2 + y2 − z2, whose zero set V(x2 + y2 − z2) ⊂ P2 corresponds to the

zero set V(x2 + y2 − 1) ⊂ C2 when z = 1.

Definition 1.4.4. Let P (x, y) be a degree n polynomial defined over

C2. The corresponding homogeneous polynomial defined over P2 is

P (x, y, z) = znP
(x
z
,
y

z

)
.

This method is called the homogenization of P (x, y).

In a similar manner, we can homogenize an equation.

Exercise 1.4.19. Homogenize the following equations. Then find

the point(s) where the curves intersect the line at infinity.

(1) ax+ by + c = 0

(2) x2 + y2 = 1

(3) y = x2

(4) x2 + 9y2 = 1

(5) y2 − x2 = 1

Exercise 1.4.20. Show that in P2, any two distinct lines will inter-

sect in a point. Notice this implies that parallel lines in C2, when

embedded in P2, intersect at the line at infinity.

Exercise 1.4.21. Once we have homogenized an equation, the orig-

inal variables x and y are no more important than the variable z.

Suppose we regard x and z as the original variables in our homog-

enized equation. Then the image of the xz-plane in P2 would be

{(x : y : z) ∈ P2 : y = 1}.
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(1) Homogenize the equations for the parallel lines y = x and

y = x+ 2.

(2) Now regard x and z as the original variables, and set y = 1

to sketch the image of the lines in the xz-plane.

(3) Explain why the lines in part (2) meet at the x-axis.

1.5. Projective Changes of Coordinates

The goal of this section is to define a projective change of coordi-

nates and then show that all ellipses, hyperbolas, and parabolas are

equivalent under projective changes of coordinates.

Earlier we described a complex affine change of coordinates from

points (x, y) ∈ C2 to points (u, v) ∈ C2 by setting u = ax + bx + e

and v = cx + dy + f . We will define the analogue for changing

homogeneous coordinates (x : y : z) ∈ P2 to homogeneous coordinates

(u : v : w) ∈ P2. We need the change of coordinates equations to be

both homogeneous and linear.

Definition 1.5.1. A projective change of coordinates is given by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z,

where the aij ∈ C and

det

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ �= 0.

In matrix language ⎛⎝u

v

w

⎞⎠ = A

⎛⎝xy
z

⎞⎠ ,

where A = (aij), aij ∈ C, and detA �= 0.

For any affine change of coordinates, there is a corresponding

projective change of coordinates as seen in the following:
                

                                                                                                               



1.5. Projective Changes of Coordinates 31

Exercise 1.5.1. For the complex affine change of coordinates

u = ax+ by + e

v = cx+ dy + f,

where a, b, c, d, e, f ∈ C and ad− bc �= 0, show that

u = ax+ by + ez

v = cx+ dy + fz

w = z

is the corresponding projective change of coordinates.

Definition 1.5.2. Two conics in P2 are equivalent under a projective

change of coordinates, or projectively equivalent, if the defining ho-

mogeneous polynomial for one of the conics can be transformed into

the defining polynomial for the other conic via a projective change of

coordinates.

By Exercise 1.5.1, if two conics in C2 are equivalent under a

complex affine change of coordinates, then the corresponding conics

in P2 will still be equivalent, but now under a projective change of

coordinates.

Exercise 1.5.2. Let C1 = V(x2 + y2 − 1) be an ellipse in C2 and

let C2 = V(u2 − v) be a parabola in C2. Homogenize the defining

polynomials for C1 and C2 and show that the projective change of

coordinates

u = ix

v = y + z

w = y − z

transforms the ellipse in P2 into the parabola in P2.

Exercise 1.5.3. Use the results of Section 1.3, together with the

above problem, to show that, under a projective change of coordi-

nates, all ellipses, hyperbolas, and parabolas are equivalent in P2.
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1.6. The Complex Projective Line P1

The goal of this section is to define the complex projective line P1

and show that it can be viewed topologically as a sphere. In the

next section we will use this to show that ellipses, hyperbolas, and

parabolas are also topologically spheres.

We start with the definition of P1.

Definition 1.6.1. Define an equivalence relation ∼ on points in C2−
{(0, 0)} as follows: (x, y) ∼ (u, v) if and only if there exists λ ∈ C−{0}
such that (x, y) = (λu, λv). Let (x : y) denote the equivalence class of

(x, y). The complex projective line P1 is the set of equivalence classes

of points in C2 − {(0, 0)}. That is,

P1 =
(
C2 − {(0, 0)}

)/
∼ .

The point (1 : 0) is called the point at infinity.

The next series of problems are direct analogues of problems for

P2.

Exercise 1.6.1. Suppose that (x1, y1) ∼ (x2, y2) and that x1 = x2 �=
0. Show that y1 = y2.

Exercise 1.6.2. Suppose that (x1, y1) ∼ (x2, y2) with y1 �= 0 and

y2 �= 0. Show that

(x1, y1) ∼
(
x1

y1
, 1

)
=

(
x2

y2
, 1

)
∼ (x2, y2).

Exercise 1.6.3. Explain why the elements of P1 can intuitively be

thought of as complex lines through the origin in C2.

Exercise 1.6.4. If b �= 0, show that the line x = λa, y = λb will

intersect the line {(x, y) : y = 1} in exactly one point. Show that this

point of intersection is
(a
b
, 1
)
.

We have that

P1 =
{
(x : y) ∈ P1 : y �= 0

}
∪ {(1 : 0)}.
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Exercise 1.6.5. Show that the map φ : C → {(x : y) ∈ P1 : y �= 0}
defined by φ(x) = (x : 1) is a bijection.

Exercise 1.6.6. Find a map from {(x : y) ∈ P1 : y �= 0} to C that is

the inverse of the map φ in Exercise 1.6.5.

The maps φ and φ−1 in Exercises 1.6.5 and 1.6.6 show us how to

view C inside P1. Now we want to see how the extra point (1 : 0) will

correspond to the point at infinity of C.

Exercise 1.6.7. Consider the map φ : C → P1 given by φ(x) = (x :

1). Show that as |x| → ∞, we have φ(x) → (1 : 0).

Hence we can think of P1 as the union of C and a single point at

infinity. Now we want to see how we can regard P1 as a sphere, which

means we want to find a homeomorphism between P1 and a sphere. A

homeomorphism is a continuous map with a continuous inverse. Two

spaces are topologically equivalent, or homeomorphic, if we can find

a homeomorphism from one to the other. We know that the points of

C are in one-to-one correspondence with the points of the real plane

R2, so we will first work in R2 ⊂ R3. Specifically, identify R2 with the

xy-plane in R3 via (x, y) �→ (x, y, 0). Let S2 denote the unit sphere

in R3 centered at the origin. This sphere is given by the equation

x2 + y2 + z2 = 1.

Exercise 1.6.8. Let p denote the point (0, 0, 1) ∈ S2, and let �

denote the line through p and the point (x, y, 0) in the xy-plane,

whose parametrization is given by

γ(t) = (1− t)(0, 0, 1) + t(x, y, 0),

i.e.,

� = {(tx, ty, 1− t) | t ∈ R}.

(1) � clearly intersects S2 at the point p. Show that there is

exactly one other point of intersection q.

(2) Find the coordinates of q.

(3) Define the map ψ : R2 → S2−{p} to be the map that takes

the point (x, y) to the point q. Show that ψ is a continuous

bijection.
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(4) Show that as
√
x2 + y2 → ∞, we have ψ(x, y) → p. Thus as

we move away from the origin in R2, ψ(x, y) moves toward

the North Pole.

The above argument does establish a homeomorphism, but it

relies on coordinates and an embedding of the sphere in R3. We now

give an alternative method for showing that P1 is a sphere that does

not rely as heavily on coordinates.

If we take a point (x : y) ∈ P1, then we can choose a repre-

sentative for this point of the form

(
x

y
: 1

)
, provided y �= 0, and a

representative of the form
(
1 :

y

x

)
, provided x �= 0.

Exercise 1.6.9. Determine which point(s) in P1 do not have two

representatives of the form (x : 1) =

(
1 :

1

x

)
.

Our construction needs two copies of C. Let U denote the first

copy of C, whose elements are denoted by x. Let V be the second

copy of C, whose elements we’ll denote y. Further let U∗ = U − {0}
and V ∗ = V − {0}.

Exercise 1.6.10. Map U → P1 via x �→ (x : 1) and map V → P1

via y �→ (1 : y). Show that (x : 1) �→
(
1 :

1

x

)
is a natural one-to-one

map from U∗ onto V ∗.

The next two exercises have quite a different flavor than most of

the problems in the book. The emphasis is not on calculations but

on the underlying intuitions.

Exercise 1.6.11. A sphere can be split into a neighborhood of its

northern hemisphere and a neighborhood of its southern hemisphere.

Show that a sphere can be obtained by correctly gluing together two

copies of C.

Exercise 1.6.12. Put together the last two exercises to show that

P1 is topologically equivalent to a sphere.
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C

C

Figure 6. Gluing copies of C together.

1.7. Ellipses, Hyperbolas, and Parabolas as
Spheres

The goal of this section is to show that there is always a bijective

polynomial map from P1 to any ellipse, hyperbola, or parabola. Since

we showed in the last section that P1 is topologically equivalent to

a sphere, this means that all ellipses, hyperbolas, and parabolas are

spheres.

We start with rational parameterizations of conics. While we will

consider conics in the complex plane C2, we often draw these conics

in R2. Part of learning algebraic geometry is developing a sense for

when the real pictures capture what is going on in the complex plane.

Consider a conic C = {(x, y) ∈ C2 : P (x, y) = 0} ⊂ C2, where

P (x, y) is a second degree polynomial. Our goal is to parametrize C

with polynomial or rational maps. This means we want to find a map

φ : C → C ⊂ C2, given by φ(λ) = (x(λ), y(λ)) such that x(λ) and

y(λ) are polynomials or rational functions. In the case of a parabola,

for example when P (x, y) = x2 − y, it is easy to find a bijection from

C to the conic C.

Exercise 1.7.1. Find a bijective polynomial map from C to the conic

C = {(x, y) ∈ C2 : x2 − y = 0}.

Sometimes it may be easy to find a parametrization but not one

that is rational.
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Exercise 1.7.2. Let C = V(x2 + y2 − 1) be an ellipse in C2. Find

a trigonometric parametrization of C. [Hint: Think high school

trigonometry.]

This exercise gives a parameterization for the circle, but in al-

gebraic geometry we restrict our parameterizations to polynomial or

rational maps. We develop a standard method, similar to the method

developed in Exercise 1.6.8, to find such a parameterization below.

Exercise 1.7.3. Consider the ellipse C = V(x2 + y2 − 1) ⊂ C2 and

let p denote the point (0, 1) ∈ C.

(1) Parametrize the line segment from p to the point (λ, 0) on

the complex line y = 0 as in Exercise 1.6.8.

(2) This line segment clearly intersects C at the point p. Show

that if λ �= ±i, then there is exactly one other point of

intersection. Call this point q.

(3) Find the coordinates of q ∈ C.

(4) Show that if λ = ±i, then the line segment intersects C only

at p.

Define the map ψ̃ : C → C ⊂ C2 by

ψ̃(λ) =

(
2λ

λ2 + 1
,
λ2 − 1

λ2 + 1

)
.

But we want to work in projective space. This means that we have

to homogenize our map.

Exercise 1.7.4. Show that the above map can be extended to the

map

ψ : P1 → {(x : y : z) ∈ P2 : x2 + y2 − z2 = 0}
given by

ψ(λ : μ) = (2λμ : λ2 − μ2 : λ2 + μ2).

Exercise 1.7.5.

(1) Show that the map ψ is one-to-one.

(2) Show that ψ is onto. [Hint: Consider two cases: z �= 0 and

z = 0. For z �= 0 follow the construction given above. For
                

                                                                                                               



1.8. Links to Number Theory 37

z = 0, find values of λ and μ to show that these points are

given by ψ. How does this relate to Part 4 of Exercise 1.7.3?]

Since we already know that every ellipse, hyperbola, and parabola

is projectively equivalent to the conic defined by x2 + y2 − z2 = 0,

we have, by composition, a one-to-one and onto map from P1 to any

ellipse, hyperbola, or parabola.

However, we can construct such maps directly. Here is what we

can do for any conic C. Fix a point p on C, and parametrize the line

segment through p and the point (λ, 0). We use this to determine

another point on the curve C, and the coordinates of this point give

us our map.

Exercise 1.7.6. For the following conics and the given point p, follow

what we did for the conic x2 + y2 − 1 = 0 to find a rational map from

C to the curve in C2 and then a one-to-one map from P1 onto the

conic in P2.

(1) x2 + 2x− y2 − 4y − 4 = 0 with p = (0,−2)

(2) 3x2 + 3y2 − 75 = 0 with p = (5, 0)

(3) 4x2 + y2 − 8 = 0 with p = (1, 2)

1.8. Links to Number Theory

The goal of this section is to see how geometry can be used to find all

primitive Pythagorean triples, a classic problem from number theory.

Overwhelmingly, in this book we are interested in working over

the complex numbers. If instead we work over the integers or the

rational numbers, some of the deepest questions in mathematics ap-

pear.

We want to see this approach in the case of conics. In par-

ticular we want to link the last section to the search for primitive

Pythagorean triples. A Pythagorean triple is a triple, (x, y, z), of

integers that satisfies the equation

x2 + y2 = z2.
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Exercise 1.8.1. Suppose (x0, y0, z0) is a solution to x2 + y2 = z2.

Show that (mx0,my0,mz0) is also a solution for any scalar m.

A primitive Pythagorean triple is a Pythagorean triple that can-

not be obtained by multiplying another Pythagorean triple by an

integer. The simplest example, after the trivial solution (0, 0, 0), is

(3, 4, 5). These triples get their name from the attempt to find right

triangles with integer length sides, x, y, and z. We will see that the

previous section gives us a method to compute all possible primitive

Pythagorean triples.

We first see how to translate the problem of finding integer solu-

tions of x2+y2 = z2 to finding rational number solutions to x2+y2 =

1.

Exercise 1.8.2. Let (a, b, c) ∈ Z3 be a solution to x2+y2 = z2. Show

that c = 0 if and only if a = b = 0.

This means that we can assume c �= 0, since there is only one

solution when c = 0.

Exercise 1.8.3. Show that if (a, b, c) is a Pythagorean triple with

c �= 0, then the pair of rational numbers

(
a

c
,
b

c

)
is a solution to

x2 + y2 = 1.

Exercise 1.8.4. Let

(
a

c1
,
b

c2

)
∈ Q2 be a rational solution to x2 +

y2 = 1. Find a corresponding Pythagorean triple.

Thus to find Pythagorean triples, we want to find the rational

points on the curve x2 + y2 = 1. We denote these points as

C(Q) = {(x, y) ∈ Q2 : x2 + y2 = 1}.

Recall from the last section, the parameterization

ψ̃ : Q → {(x, y) ∈ Q2 : x2 + y2 = 1}
given by

λ �→
(

2λ

λ2 + 1
,
λ2 − 1

λ2 + 1

)
.

Exercise 1.8.5. Show that the above map ψ̃ sends Q → C(Q).
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Extend this to a map ψ : P1(Q) → C(Q) ⊂ P2(Q) by

(λ : μ) �→ (2λμ : λ2 − μ2 : λ2 + μ2),

where λ, μ ∈ Z. Since we know already that the map ψ is one-to-one

by Exercise 1.7.5, this gives us a way to produce an infinite number

of integer solutions to x2 + y2 = z2.

We now want to show that the map ψ is onto, so that we actually

obtain all Pythagorean triples.

Exercise 1.8.6.

(1) Show that ψ : P1(Q) → C(Q) ⊂ P2(Q) is onto.

(2) Show that every primitive Pythagorean triple is of the form

(2λμ, λ2 − μ2, λ2 + μ2).

Exercise 1.8.7. Find a rational point on the conic x2 + y2 − 2 = 0.

Develop a parameterization and conclude that there are infinitely

many rational points on this curve.

Exercise 1.8.8. By mimicking the above, find four rational points

on each of the following conics.

(1) x2 + 2x− y2 − 4y − 4 = 0 with p = (0,−2)

(2) 3x2 + 3y2 − 75 = 0 with p = (5, 0)

(3) 4x2 + y2 − 8 = 0 with p = (1, 2)

Exercise 1.8.9. Show that the conic x2 + y2 = 3 has no rational

points.

Diophantine problems are those where you try to find integer or

rational solutions to a polynomial equation. The work in this section

shows how we can approach such problems using algebraic geometry.

For higher degree equations the situation is quite different and leads

to the heart of a great deal of the current research in number theory.

1.9. Degenerate Conics

The goal of this section is to extend our study of conics from ellipses,
hyperbolas, and parabolas to the “degenerate” conics: crossing lines

and double lines.
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Let f(x, y, z) be any homogeneous second degree polynomial with

complex coefficients. The overall goal of this chapter is to understand

curves

C = {(x : y : z) ∈ P2 : f(x, y, z) = 0}.
Most of these curves will be various ellipses, hyperbolas, and parabo-

las. Now consider the second degree polynomial

f(x, y, z) = (−x+y+z)(2x+y+3z) = −2x2+y2+3z2+xy−xz+4yz.

Exercise 1.9.1. Dehomogenize f(x, y, z) by setting z = 1. Graph

the curve

C(R) = {(x : y : z) ∈ P2 : f(x, y, 1) = 0}
in the real plane R2.

The zero set of a second degree polynomial could be the union of

crossing lines.

Exercise 1.9.2. Consider the two lines given by

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0,

and suppose

det

(
a1 b1
a2 b2

)
�= 0.

Show that the two lines intersect at a point where z �= 0.

Exercise 1.9.3. Dehomogenize the equation in the previous exercise

by setting z = 1. Give an argument that, as lines in the complex plane

C2, they have distinct slopes.

Exercise 1.9.4. Again consider the two lines

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0.

Suppose that

det

(
a1 b1
a2 b2

)
= 0

but that

det

(
a1 c1
a2 c2

)
�= 0 or det

(
b1 c1
b2 c2

)
�= 0.

Show that the two lines still have one common point of intersection,

but that this point must have z = 0.
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There is one other possibility. Consider the zero set

C = {(x : y : z) ∈ P2 : (ax+ by + cz)2 = 0}.
As a zero set, the curve C is geometrically the line

ax+ by + cz = 0

but due to the exponent 2, we call C a double line.

Exercise 1.9.5. Let

f(x, y, z) = (a1x+ b1y + c1z)(a2x+ b2y + c2z),

where at least one of a1, b1, or c1 is non-zero and at least one of the

a2, b2, or c2 is non-zero. Show that the curve defined by f(x, y, z) = 0

is a double line if and only if

det

(
a1 b1
a2 b2

)
= 0, det

(
a1 c1
a2 c2

)
= 0, and det

(
b1 c1
b2 c2

)
= 0.

We now want to show that any two crossing lines are equivalent

under a projective change of coordinates to any other two crossing

lines and any double line is equivalent under a projective change of

coordinates to any other double line. This will yield that there are

precisely three types of conics: the ellipses, hyperbolas, and parabo-

las; crossing lines; and double lines.

For the exercises that follow, assume that at least one of a1, b1, or c1
is non-zero and at least one of a2, b2, or c2 is non-zero.

Exercise 1.9.6. Consider the crossing lines

(a1x+ b1y + c1z)(a2x+ b2y + c2z) = 0,

with

det

(
a1 b1
a2 b2

)
�= 0.

Find a projective change of coordinates from xyz-space to uvw-space

so that the crossing lines become

uv = 0.

Exercise 1.9.7. Consider the crossing lines (a1x+ b1y+ c1z)(a2x+

b2y + c2z) = 0, with

det

(
a1 c1
a2 c2

)
�= 0.
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Find a projective change of coordinates from xyz-space to uvw-space

so that the crossing lines become

uv = 0.

Exercise 1.9.8. Show that there is a projective change of coordinates

from xyz-space to uvw-space so that the double line (ax+by+cz)2 = 0

becomes the double line

u2 = 0.

Exercise 1.9.9. Argue that there are three distinct classes of conics

in P2.

1.10. Tangents and Singular Points

The goal of this section is to develop the idea of singularity. We’ll

show that all ellipses, hyperbolas, and parabolas are smooth, while

crossing lines and double lines are singular.

So far, we have not explicitly needed to use calculus; that changes

in this section. We will use the familiar differentiation rules from real

calculus.

Let f(x, y) be a polynomial. Recall that if f(a, b) = 0, then a

normal vector for the curve f(x, y) = 0 at the point (a, b) is given by

the gradient vector

∇f(a, b) =

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
.

A tangent vector to the curve at the point (a, b) is perpendicular

to ∇f(a, b) and hence must have a dot product of zero with ∇f(a, b).

This observation shows that the tangent line is given by{
(x, y) ∈ C2 :

(
∂f

∂x
(a, b)

)
(x− a) +

(
∂f

∂y
(a, b)

)
(y − b) = 0

}
.
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x

y

f(x, y) = 0

a

b

∇f(a, b)

�

Figure 7. Gradient and tangent vectors.

Exercise 1.10.1. Explain why if both
∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0,

then the tangent line is not well-defined at (a, b).

This exercise motivates the following definition.

Definition 1.10.1. A point p = (a, b) on a curve C = {(x, y) ∈ C2 :

f(x, y) = 0} is said to be singular if

∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

A point that is not singular is called smooth. If there is at least one

singular point on C, then the curve C is called singular. If there are

no singular points on C, the curve C is called smooth.

Exercise 1.10.2. Show that the curve

C = {(x, y) ∈ C2 : x2 + y2 − 1 = 0}

is smooth.

Exercise 1.10.3. Show that the pair of crossing lines

C = {(x, y) ∈ C2 : (x+ y − 1)(x− y − 1) = 0}

has exactly one singular point. Give a geometric interpretation of this

singular point.
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Exercise 1.10.4. Show that every point on the double line

C = {(x, y) ∈ C2 : (2x+ 3y − 4)2 = 0}

is singular.

These definitions can also be applied to curves in P2.

Definition 1.10.2. A point p = (a : b : c) on a curve C = {(x : y :

z) ∈ P2 : f(x, y, z) = 0}, where f(x, y, z) is a homogeneous polyno-

mial, is said to be singular if

∂f

∂x
(a, b, c) = 0,

∂f

∂y
(a, b, c) = 0, and

∂f

∂z
(a, b, c) = 0.

We have similar definitions, as before, for smooth point, smooth curve,

and singular curve.

Exercise 1.10.5. Show that the curve

C = {(x : y : z) ∈ P2 : x2 + y2 − z2 = 0}

is smooth.

Exercise 1.10.6. Show that the pair of crossing lines

C = {(x : y : z) ∈ P2 : (x+ y − z)(x− y − z) = 0}

has exactly one singular point.

Exercise 1.10.7. Show that every point on the double line

C = {(x : y : z) ∈ P2 : (2x+ 3y − 4z)2 = 0}

is singular.

For homogeneous polynomials, there is a simple relationship among

f,
∂f

∂x
,
∂f

∂y
, and

∂f

∂z
, which is the goal of the next few exercises.

Exercise 1.10.8. For

f(x, y, z) = x2 + 3xy + 5xz + y2 − 7yz + 8z2,

show that

2f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.
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Exercise 1.10.9. For

f(x, y, z) = ax2 + bxy + cxz + dy2 + eyz + hz2,

show that

2f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

Exercise 1.10.10. Let f(x, y, z) be a homogeneous polynomial of

degree n. Show that

nf = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

(This problem is quite similar to the previous two, but working out

the details takes some work.)

Exercise 1.10.11. Use Exercise 1.10.10 to show that if p = (a : b : c)

satisfies
∂f

∂x
(a, b, c) =

∂f

∂y
(a, b, c) =

∂f

∂z
(a, b, c) = 0,

then p ∈ V(f).

The notion of smooth curves and singular curves certainly extends

beyond the study of conics. We will briefly discuss higher degree

curves here. Throughout, we will see that singular corresponds to

not having a well-defined tangent.

Exercise 1.10.12. Graph the curve

f(x, y) = x3 + x2 − y2 = 0

in the real plane R2. What is happening at the origin (0, 0)? Find

the singular points.

Exercise 1.10.13. Graph the curve

f(x, y) = x3 − y2 = 0

in the real plane R2. What is happening at the origin (0, 0)? Find

the singular points.

For any two polynomials, f1(x, y) and f2(x, y), let f(x, y) =

f1(x, y)f2(x, y) be their product. We have

V(f) = V(f1) ∪ V(f2).
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The picture of these curves is

x

y
{f1 = 0}

{f2 = 0}

Figure 8. Curves V(f1) and V(f2).

From the picture, it seems that the curve V(f) should have singular

points at the points of intersection of V(f1) and V(f2).

Exercise 1.10.14. Suppose that

f1(a, b) = 0 and f2(a, b) = 0

for a point (a, b) ∈ C2. Show that (a, b) is a singular point on V(f),

where f = f1f2.

While it is safe to say for higher degree curves and especially for

higher dimensional algebraic geometric objects that “singularness”

is far from understood, that is not the case for conics. A complete

description is contained in the following theorem.

Theorem 1.10.15. All ellipses, hyperbolas, and parabolas are smooth

curves. All conics that are crossing lines have exactly one singular

point, namely the point of intersection of the two lines. Every point

on a double line is singular.

We have seen specific examples for each of these. The proof of

the theorem relies on the fact that under projective transformations

there are three distinct classes of conics. We motivated the idea of
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projective changes of coordinates as just the relabeling of coordinate

systems. Surely how we label points on the plane should not affect

the lack of a well-defined tangent line. Hence a projective change

of coordinates should not affect whether or not a point is smooth or

singular. The next series of exercises proves this.

Consider a projective change of coordinates from xyz-space to

uvw-space given by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z,

where aij ∈ C and

det

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ �= 0.

In P2, with homogeneous coordinates (u : v : w), consider a curve

C = {(u : v : w) : f(u, v, w) = 0}, where f is a homogeneous poly-

nomial. The (inverse) change of coordinates above gives a map from

polynomials in (u : v : w) to polynomials in (x : y : z) described by

f(u, v, w) �→f(a11x+ a12y + a13z, a21x+ a22y + a23z,

a31x+ a32y + a33z) = f̃(x, y, z).

The curve C corresponds to the curve C̃ = {(x : y : z) : f̃(x, y, z) =

0}.

Exercise 1.10.16. Consider the curve

C = {(u : v : w) ∈ P2 : u2 − v2 − w2 = 0}.

Suppose we have the projective change of coordinates given by

u = x+ y

v = x− y

w = z.

Show that C corresponds to the curve

C̃ = {(x : y : z) ∈ P2 : 4xy − z2 = 0}.
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In other words, if f(u, v, w) = u2−v2−w2, then f̃(x, y, z) = 4xy−z2.

Exercise 1.10.17. Suppose we have the projective change of coor-

dinates given by

u = x+ y

v = x− y

w = x+ y + z.

If f(u, v, w) = u2 + uw + v2 + vw, find f̃(x, y, z).

Exercise 1.10.18. For a general projective change of coordinates

given by

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

and a polynomial f(u, v, w), describe how to find the corresponding

f̃(x, y, z).

We now want to show, under a projective change of coordinates,

that singular points go to singular points and smooth points go to

smooth points.

Exercise 1.10.19. Let

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z

be a projective change of coordinates. Show that (u0 : v0 : w0) is

a singular point of the curve C = {(u : v : w) : f(u, v, w) = 0} if

and only if the corresponding point (x0 : y0 : z0) is a singular point

of the corresponding curve C̃ = {(x : y : z) : f̃(x, y, z) = 0}. (This

is an exercise in the multi-variable chain rule; most people are not

comfortable with the chain rule without a lot of practice. Hence the

value of this exercise.)

Exercise 1.10.20. Use the previous exercise to prove Theorem 1.10.15.
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1.11. Conics via Linear Algebra

The goal of this section is to show how to interpret conics via linear

algebra. The linear algebra of symmetric 3 × 3 matrices will lead to

straightforward proofs that, under projective changes of coordinates,

all ellipses, hyperbolas, and parabolas are equivalent; all crossing line

conics are equivalent; and all double lines are equivalent.

1.11.1. Conics via 3×3 Symmetric Matrices. We start by show-

ing how to represent conics with symmetric 3× 3 matrices. Consider

the second degree homogeneous polynomial

f(x, y, z) = x2 + 6xy + 5y2 + 4xz + 8yz + 9z2

= x2 + (3xy + 3yx) + 5y2 + (2xz + 2zx)

+ (4yz + 4zy) + 9z2

=
(
x y z

)⎛⎝1 3 2

3 5 4

2 4 9

⎞⎠⎛⎝xy
z

⎞⎠ .

By using seemingly silly tricks such as 6xy = 3xy + 3yx, we have

written our initial second degree polynomial in terms of the symmetric

3× 3 matrix ⎛⎝1 3 2

3 5 4

2 4 9

⎞⎠ .

There is nothing special about this particular second degree poly-

nomial. We can write all homogeneous second degree polynomials

f(x, y, z) in terms of symmetric 3× 3 matrices. (Recall that a matrix

A = (aij) is symmetric if aij = aji for all i and j. Since the transpose

of A simply switches the row and column entries, AT = (aji), A is

symmetric if and only if A = AT .)

Exercise 1.11.1. Write the following conics in the form

(
x y z
)
A

⎛⎝ x

y

z

⎞⎠ = 0.

That is, find a symmetric matrix A for each quadratic equation.
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(1) x2 + y2 + z2 = 0

(2) x2 + y2 − z2 = 0

(3) x2 − y2 = 0

(4) x2 + 2xy + y2 + 3xz + z2 = 0

Symmetric matrices can be used to define second degree homo-

geneous polynomials with any number of variables.

Definition 1.11.1. A quadratic form is a homogeneous polynomial

of degree two in any given number of variables. Given a symmetric

n×nmatrix A andX =

⎛⎜⎝ x1

...

xn

⎞⎟⎠, then f(X) = XTAX is a quadratic

form.

Thus conics are defined by quadratic forms in three variables.

Exercise 1.11.2. Show that any conic

f(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + hz2

can be written as (
x y z

)
A

⎛⎝xy
z

⎞⎠ ,

where A is a symmetric 3× 3 matrix.

1.11.2. Change of Variables via Matrices. We want to see that

a projective change of coordinates has a quite natural linear algebra

interpretation.

Suppose we have a projective change of coordinates

u = a11x+ a12y + a13z

v = a21x+ a22y + a23z

w = a31x+ a32y + a33z.

The matrix

M =

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ ,
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that encodes the projective change of coordinates will be key.

Suppose f(u, v, w) is a second degree homogeneous polynomial

and let f̃(x, y, z) be the corresponding second degree homogeneous

polynomial in the xyz-coordinate system. From the previous subsec-

tion, we know that there are two 3× 3 symmetric matrices A and B

such that

f(u, v, w) =
(
u v w

)
A

⎛⎝u

v

w

⎞⎠ , f̃(x, y, z) =
(
x y z

)
B

⎛⎝xy
z

⎞⎠ .

We want to find a relation between the three matrices M , A, and B.

Exercise 1.11.3. Let C be a 3 × 3 matrix and let X be a 3 × 1

matrix. Show that (CX)T = XTCT .

Exercise 1.11.4. Let M be a projective change of coordinates⎛⎝u

v

w

⎞⎠ = M

⎛⎝xy
z

⎞⎠ ,

and suppose

f(u, v, w) =
(
u v w

)
A

⎛⎝u

v

w

⎞⎠ , f̃(x, y, z) =
(
x y z

)
B

⎛⎝xy
z

⎞⎠ .

Show that

B = MTAM.

As a pedagogical aside, if we were following the format of earlier

problems, before stating the above theorem, we would have given

some concrete exercises illustrating the general principle. We have

chosen not to do that here. In part, it is to allow readers to come

up with their own concrete examples, if necessary. The other part is

that this entire section’s goal is not only to link linear algebra with

conics but also to (not so secretly) force readers to review some linear

algebra.

Recall the following definitions from linear algebra.
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Definition 1.11.2. We say that two n × n matrices A and B are

similar, A ∼ B, if there is an invertible n× n matrix C such that

A = C−1BC.

Definition 1.11.3. An n× n matrix C is orthogonal if C−1 = CT .

Definition 1.11.4. A matrix A has an eigenvalue λ if Av = λv for

some non-zero vector v. The vector v is called an eigenvector with

associated eigenvalue λ.

Exercise 1.11.5. Given a 3 × 3 matrix A, show that A has exactly

three eigenvalues, counting multiplicity. (For this problem, it is fine

to find the proof in a linear algebra text. After looking it up, close

the book and try to reproduce the proof on your own. Repeat as

necessary until you get it. This is, of course, another attempt by the

authors to coax the reader into reviewing linear algebra.)

Exercise 1.11.6.

(1) Let A and B be two symmetric matrices, neither of which

has a zero eigenvalue. Show there is an invertible 3 × 3

matrix C such that

A = CTBC.

(2) Let A and B be two symmetric matrices, each of which has

exactly one zero eigenvalue (with the other two eigenvalues

being non-zero). Show that there is an invertible 3×3 matrix

C such that

A = CTBC.

(3) Now let A and B be two symmetric matrices, each of which

has a zero eigenvalue with multiplicity two (and hence the

remaining eigenvalue must be non-zero). Show that there is

an invertible 3× 3 matrix C such that

A = CTBC.

(Again, it is fine to look up this deep result in a linear algebra text.

Just make sure that you can eventually reproduce it on your own.)
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Exercise 1.11.7.

(1) Show that the 3× 3 matrix associated to the ellipse V(x2 +

y2 − z2) has three non-zero eigenvalues.

(2) Show that the 3 × 3 matrix associated to the two crossing

lines V(xy) has one zero eigenvalue and two non-zero eigen-

values.

(3) Finally, show that the 3× 3 matrix associated to the double

line V((x−y)2) has a zero eigenvalue of multiplicity two and

a non-zero eigenvalue.

Exercise 1.11.8. Based on the material of this section, give another

proof that under projective changes of coordinates all ellipses, hyper-

bolas, and parabolas are the same, all crossing line conics are the

same, and all double lines are the same.

1.11.3. Conics in R2. We have shown that all smooth conics can

be viewed as the same in the complex projective plane P2. As we

saw earlier, ellipses, hyperbolas, and parabolas are quite different in

the real plane R2. There is a more linear-algebraic approach that

captures these differences.

Let f(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + hz2 = 0, with

a, b, c, d, e, h ∈ R. Dehomogenize by setting z = 1, so that we are

looking at the polynomial

f(x, y) = ax2 + bxy + cy2 + dx+ ey + h,

which can be written as

f(x, y) =
(
x y 1

)
⎛⎜⎜⎜⎜⎝
a

b

2

d

2
b

2
c

e

2
d

2

e

2
h

⎞⎟⎟⎟⎟⎠
⎛⎝xy
1

⎞⎠ .

In P2, the coordinates x, y, and z all play the same role. That is

no longer the case after setting z = 1. The second order term of f ,

ax2 + bxy + cy2,

determines whether we have an ellipse, hyperbola, or parabola.
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Exercise 1.11.9. Explain why we need to consider only the second

order terms. [Hint: We have already answered this question earlier

in this chapter.]

x

y

x

y

x

y

Figure 9. Three types of conics.

This suggests that the matrix⎛⎜⎝a
b

2
b

2
c

⎞⎟⎠
might be worth investigating.

Definition 1.11.5. The discriminant of a conic over R2 is

Δ = −4 det

⎛⎜⎝a
b

2
b

2
c

⎞⎟⎠ .

Exercise 1.11.10. Find the discriminant of each of the following

conics.

(1) 9x2 + 4y2 = 1

(2) 9x2 − 4y2 = 1

(3) 9x2 − y = 0

Exercise 1.11.11. Based on the previous exercise, describe the conic

obtained if Δ = 0, Δ < 0, or Δ > 0. State what the general result

ought to be. (To rigorously prove it should take some time. In fact,

if you have not seen this before, this type of problem will have to be

spread out over a few days. We do not intend for you to spend all
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of your time on this problem; no, we intend for you to work on it for

thirty minutes to an hour, put it aside, and then come back to it.)

Exercise 1.11.12. Consider the equation ax2+bxy+cy2 = 0, where

all coefficients are real numbers. Dehomogenize the equation by set-

ting y = 1. Solve the resulting quadratic equation for x. You should

see a factor involving Δ in your solution. How does Δ relate to the

discriminant used in the quadratic formula?

Exercise 1.11.13. The discriminant in the quadratic formula tells

us how many (real) solutions a given quadratic equation in a single

variable has. Classify a conic V(f(x, y)) based on the number of

solutions to its dehomogenized quadratic equation.

1.12. Duality

The first goal of this section is show that there is a duality between

points and lines in the projective plane. The second goal of this

section is to use duality to map any smooth curve in P2 to another

curve called the dual curve in P2.

1.12.1. Duality in P2 between Points and Lines. Given a triple

of points a, b, c ∈ C, not all zero, we have a line

L = {(x : y : z) ∈ P2 : ax+ by + cz = 0}.

Exercise 1.12.1. Show that the line associated to a1 = 1, b1 =

2, c1 = 3 is the same line as that associated to a2 = −2, b2 = −4, c2 =

−6.

Exercise 1.12.2. Show that the line associated to a1, b1, c1 is the

same as the line associated to a2, b2, c2 if and only if there is a non-

zero constant λ ∈ C such that a1 = λa2, b1 = λb2, c1 = λc2.

Hence all representatives in the equivalence class for (a : b : c) ∈
P2 define the same line.

Exercise 1.12.3. Show that the set of all lines in P2 can be identified

with P2 itself.
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Even though the set of lines in P2 can be thought of as another

P2, we want notation to be able to distinguish P2 as a set of points

and P2 as the set of lines. Let P2 be our set of points and let P̃2 denote

the set of lines in P2. To help our notation, given (a : b : c) ∈ P2, let

L(a:b:c) = {(x : y : z) ∈ P2 : ax+ by + cz = 0}.

Then we define the map D : P̃2 → P2 by

D(L(a:b:c)) = (a : b : c).

The D stands for duality.

Let us look for a minute at the equation of a line:

ax+ by + cz = 0.

Though it is traditional to think of a, b, c as constants and x, y, z as

variables, this is only a convention. Think briefly of x, y, z as fixed,

and consider the set

M(x:y:z) = {(a : b : c) ∈ P̃2 : ax+ by + cz = 0}.

Exercise 1.12.4. Explain in your own words why, given (x0 : y0 :

z0) ∈ P2, we can interpret M(x0:y0:z0) as the set of all lines containing

the point (x0 : y0 : z0).

We are beginning to see a duality between lines and points.

Let

Σ = {((a : b : c), (x0 : y0 : z0)) ∈ P̃2 × P2 : ax0 + by0 + cz0 = 0}.

There are two natural projection maps:

π1 : Σ → P̃2

given by

π1(((a : b : c), (x0 : y0 : z0))) = (a : b : c)

and

π2 : Σ → P2

given by

π2(((a : b : c), (x0 : y0 : z0))) = (x0 : y0 : z0).

Exercise 1.12.5. Show that both maps π1 and π2 are onto.
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Exercise 1.12.6. Given a point (a : b : c) ∈ P̃2, consider the set

π−1
1 (a : b : c) = {((a : b : c), (x0 : y0 : z0)) ∈ Σ}.

Show that the set π2(π
−1
1 (a : b : c)) is identical to a set in P2 that we

defined near the beginning of this section.

As evidence for a type of duality, show:

Exercise 1.12.7. Given a point (x0 : y0 : z0) ∈ P2, consider the set

π−1
2 (x0 : y0 : z0) = {((a : b : c), (x0 : y0 : z0)) ∈ Σ}.

Show that the set π1(π
−1
2 (x0 : y0 : z0)) is identical to a set in P̃2 that

we defined near the beginning of this section.

Exercise 1.12.8. Let (1 : 2 : 3), (2 : 5 : 1) ∈ P̃2. Find

π2(π
−1
1 (1 : 2 : 3)) ∩ π2(π

−1
1 (2 : 5 : 1)).

Explain why this is just a fancy way for finding the point of intersec-

tion of the two lines

x+ 2y + 3z = 0

2x+ 5y + z = 0.

As another piece of evidence for duality, consider:

Exercise 1.12.9. Let (1 : 2 : 3), (2 : 5 : 1) ∈ P2. Find

π1(π
−1
2 (1 : 2 : 3)) ∩ π1(π

−1
2 (2 : 5 : 1)).

Explain that this is just a fancy way for finding the unique line con-

taining the two points (1 : 2 : 3), (2 : 5 : 1).

Principle 1.12.1. The duality principle for points and lines in the

complex projective plane is that for any theorem for points and lines

there is a corresponding theorem obtained by interchanging the words

“points” and “lines”.

Exercise 1.12.10. Use the duality principle to find the correspond-

ing theorem to:

Theorem 1.12.11. Any two distinct points in P2 determine a unique

line.
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This duality extends to higher dimensional projective spaces. The

following is a fairly open-ended exercise:

Exercise 1.12.12. Given (x0, y0, z0, w0), (x1, y1, z1, w1) ∈ C4−
{(0, 0, 0, 0)}, define

(x0, y0, z0, w0) ∼ (x1, y1, z1, w1)

if there exists a non-zero λ such that

x0 = λx1, y0 = λy1, z0 = λz1, w0 = λw1.

Define

P3 = C4 − {(0, 0, 0, 0)}/ ∼ .

Show that the set of all planes in P3 can be identified with another

copy of P3. Explain how the duality principle can be used to link the

fact that three non-collinear points define a unique plane to the fact

three planes with linearly independent normal vectors intersect in a

unique point.

1.12.2. Dual Curves to Conics. Let f(x, y, z) be a homogeneous

polynomial and let

C = {(x : y : z) ∈ P2 : f(x, y, z) = 0}.

We know that the normal vector at a point p = (x0 : y0 : z0) ∈ C is

∇f(p) =

(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
.

Further the tangent line at p = (x0 : y0 : z0) ∈ C is defined as

Tp(C) = {(x : y : z) ∈ P2 : x
∂f

∂x
(p) + y

∂f

∂y
(p) + z

∂f

∂z
(p) = 0}.

Recall from Section 1.10 that if f has degree n, then

nf(x, y, z) = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
.

Exercise 1.12.13. Show for any p = (x0 : y0 : z0) ∈ C, we have

Tp(C) = {(x : y : z) ∈ P2 : (x− x0)
∂f

∂x
(p)

+ (y − y0)
∂f

∂y
(p) + (z − z0)

∂f

∂z
(p) = 0}.
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Recall that p ∈ C is smooth if the gradient

∇f(p) �= (0, 0, 0).

Definition 1.12.1. For a smooth curve C, the dual curve C̃ is the

composition of the map, for p ∈ C,

p �→ Tp(C)

with the dual map

D : P̃2 → P2

from the last subsection. We also denote this map by D. Then

D(p) =

(
∂f

∂x
(p) :

∂f

∂y
(p) :

∂f

∂z
(p)

)
.

To make sense of this, we, of course, need some examples.

Exercise 1.12.14. For f(x, y, z) = x2+y2−z2, let C = V(f(x, y, z)).

Show for any (x0 : y0 : z0) ∈ C that

D(x0 : y0 : z0) = (2x0 : 2y0 : −2z0).

Show that in this case the dual curve C̃ is the same as the original C.

Exercise 1.12.15. Consider f(x, y, z) = x2 − yz = 0. Then for any

(x0 : y0 : z0) ∈ C , where C = V(f), show that

D(x0, y0, z0) = (2x0 : −z0 : −y0).

Show that the image is in P2 by showing that (2x0,−z0,−y0) �=
(0, 0, 0). Letting (u : v : w) = (2x : −z : −y), show that u2 − 4vw = 0

defines the dual curve C̃. Note that here C̃ �= C.

Exercise 1.12.16. For C = V(x2 + 4y2 − 9z2), show that the dual

curve is

C̃ = {(x : y : z) ∈ P2 : x2 +
1

4
y2 − 1

9
z2 = 0}.

Exercise 1.12.17. For C = V(5x2+2y2 − 8z2), find the dual curve.

Exercise 1.12.18. For a line L = {(x : y : z) ∈ P2 : ax + by + cz},
find the dual curve. Explain why calling this set the “dual curve”

might seem strange.

                

                                                                                                               



                

                                                                                                               



Chapter 2

Cubic Curves and
Elliptic Curves

The goal of this chapter is to provide an introduction to cubic

curves (smooth cubic curves are also known as elliptic curves). Cubic

curves have a far richer structure than that of conics. Many of the

deepest questions in mathematics still involve questions about cubics.

After a few preliminaries, we will show how each smooth cubic curve

is a group, meaning that its points can be added together. This group

structure provides a fascinating interplay between algebra, geometry,

analysis, and topology. We will then see that there are many different

cubics, even up to projective change of coordinates. In fact, we will

see that there are a complex numbers’ worth of different cubics. That

is, we can parametrize cubics up to isomorphism by the complex

numbers. This is in marked contrast to conics, since all smooth conics

are the same up to projective change of coordinates. Next, we will

see that, as surfaces, all smooth cubics are tori. Finally, we see how

all cubics can be viewed as the quotient C/Λ, where Λ is a lattice in

C.

2.1. Cubics in C2

The goal of this section is to begin the study of cubic curves by

looking at some specific examples.

61
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A cubic curve V(P ) is simply the zero set of a degree three poly-

nomial P . If P is in two variables, then V(P ) will be a cubic in C2

while if P is homogeneous in three variables, then V(P ) is a cubic in

the projective plane P2.

Exercise 2.1.1. Sketch the following cubics in the real plane R2.

(1) y2 = x3

(2) y2 = x(x− 1)2

(3) y2 = x(x− 1)(x− 2)

(4) y2 = x(x2 + x+ 1)

Of course, we are sketching these curves in the real plane only to get

a feel for cubics.

Exercise 2.1.2. Consider the cubics in the above exercise.

(1) Give the homogeneous form for each cubic, which extends

each of the above cubics to the complex projective plane P2.

(2) For each of the above cubics, dehomogenize by setting x = 1,

and graph the resulting cubic in R2 with coordinates y and

z.

Recall that a point (a : b : c) ∈ V(P ) on a curve is singular if

∂P

∂x
(a, b, c) = 0,

∂P

∂y
(a, b, c) = 0,

∂P

∂z
(a, b, c) = 0.

If a curve has a singular point, then we call the curve singular. If a

curve has no singular points, we call it smooth.

Exercise 2.1.3. Show that the following cubics are singular.

(1) V(xyz)

(2) V(x(x2 + y2 − z2))

(3) V(x3)
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The only singular conics are unions of two lines or double lines.

The above singular cubics are similar, in that they are all the zero

sets of reducible polynomials P (x, y, z). Unlike for conics, though,

there are singular cubics that do not arise from reducible polynomials

P (x, y, z).

Exercise 2.1.4. Sketch the cubic y2 = x3 in the real plane R2. Show

that the corresponding cubic V(x3 − y2z) in P2 has a singular point

at (0 : 0 : 1). Show that this is the only singular point on this cubic.

Exercise 2.1.5. Show that the polynomial P (x, y, z) = x3 − y2z is

irreducible, i.e., cannot be factored into two polynomials. (This is a

fairly brute force high school algebra problem.)

2.2. Inflection Points

The goal of this section is to show that every smooth cubic curve

must have exactly nine points of inflection.

2.2.1. Intuitions about Inflection Points. One of the strengths

of algebraic geometry is the ability to move freely between the sym-

bolic language of algebra and the visual capabilities of geometry. We

would like to use this flexibility to convert what initially is a geomet-

ric problem into an algebraic one. While we can sometimes imagine

what is happening geometrically, this will help us in situations that

may be difficult to visualize.

We have seen that a line will intersect a smooth conic in two

points. If the points are distinct, then the line will cut through the

conic. However, there may be a line which has only one point in

common with the conic, namely the tangent line. In this case, if we

consider that the point of tangency is to be counted twice, then the

line will intersect the conic in “two” points.

If we now consider a line intersecting a cubic, we have more points

of intersection to consider. Intuitively, a line cannot cross a cubic in

too many places. In fact, the Fundamental Theorem of Algebra shows

that a line intersects a cubic in at most three points. As in the case
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of conics, points may need to be counted more than once, but never

more than three times.

If a line intersects a cubic in a single point (counted thrice), we

call such a point a point of inflection or flex point. An inflection point

of a curve V(P ) is a nonsingular point p ∈ V(P ) where the tangent

line to the curve at p intersects V(P ) with multiplicity 3 (or greater).

We will later define what it means for the tangent line at a point

to intersect the curve with multiplicity 3 (or greater), but the idea

can be illustrated with some examples.

(1) Consider the cubic curve y = x3, that is, V(P ) where P (x, y)

= x3−y. Let the point p be the origin, and consider the line

y = εx, where ε > 0. This line intersects the curve in three

distinct points no matter how small ε is, but as ε approaches

zero, the three points of intersection coalesce into just one

point. We say that the tangent line y = 0 intersects the

cubic y = x3 at the origin with multiplicity 3.
y = x3

�

�

�

�

�

�

�

(2) If we look at the behavior of the quartic (fourth-degree)

curve

y = (x− ε)(x− ε/3)(x+ ε/3)(x+ ε),

we see that the curve and the line y = 0 intersect at four

points whenever ε > 0. But as ε approaches zero, the four
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points of intersection converge to one point, the origin. Here

we say that the tangent line y = 0 intersects this curve at

the origin with multiplicity four.

� � � �� � � �� � � �

ε=1

ε=0.8
ε=0.5

y = (x− ε)(x− ε/3)(x+ ε/3)(x+ ε)

(3) We will see later that the tangent line � to a curve V(P )

at a point p always intersects the curve with multiplicity at

least 2.

2.2.2. Multiplicity of Roots. For a moment we will look at one-

variable polynomials (which correspond to homogeneous two-variable

polynomials).

Definition 2.2.1. Given a polynomial P (x), a root or zero is a point

a such that P (a) = 0.

Exercise 2.2.1. If (x − a) divides P (x), show that a is a root of

P (x).

Exercise 2.2.2. If a is a root of P (x), show that (x − a) divides

P (x). [Hint: Use the Division Algorithm for polynomials.]

Definition 2.2.2. Let a be a root of the polynomial P (x). This root

has multiplicity k if (x − a)k divides P (x) but (x − a)k+1 does not

divide P (x).

Exercise 2.2.3. Suppose that a is a root of multiplicity two for P (x).

Show there is a polynomial g(x), with g(a) �= 0, such that

P (x) = (x− a)2g(x)                

                                                                                                               



66 2. Cubic Curves and Elliptic Curves

Exercise 2.2.4. Suppose that a is a root of multiplicity two for P (x).

Show that P (a) = 0 and P ′(a) = 0 but P ′′(a) �= 0.

Exercise 2.2.5. Suppose that a is a root of multiplicity k for P (x).

Show there is a polynomial g(x) such that

P (x) = (x− a)kg(x)

with g(a) �= 0.

Exercise 2.2.6. Suppose that a is a root of multiplicity k for P (x).

Show that P (a) = P ′(a) = · · · = P (k−1)(a) = 0 but P (k)(a) �= 0.

The homogeneous version is the following.

Definition 2.2.3. Let P (x, y) be a homogeneous polynomial. A root

or zero is a point (a : b) ∈ P1 such that P (a, b) = 0. If (a : b) is a root

of P (x, y), then (bx−ay) divides P (x, y). This root has multiplicity k

if (bx−ay)k divides P (x, y) but (bx−ay)k+1 does not divide P (x, y).

Exercise 2.2.7. Suppose that (a : b) is a root of multiplicity two for

P (x, y). Show that

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = 0,

but at least one of the second partials does not vanish at (a : b).

Exercise 2.2.8. Suppose that (a : b) is a root of multiplicity k for

P (x, y). Show that

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = · · · = ∂k−1P

∂xi∂yj
(a, b) = 0,

where i+ j = k − 1 but

∂kP

∂xi∂yj
(a, b) �= 0,

for at least one pair i + j = k. This means that the first partials,

second partials, etc. up to the k − 1 partials all vanish at (a : b), but

at least one of the kth partials does not vanish at (a : b).
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Exercise 2.2.9. Suppose

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = · · · = ∂k−1P

∂xi∂yj
(a, b) = 0,

where i+ j = k − 1 and

∂kP

∂xi∂yj
(a, b) �= 0,

for at least one pair i+j = k. Show that (a : b) is a root of multiplicity

k for P (x, y).

2.2.3. Inflection Points. Let P (x, y, z) be a homogeneous polyno-

mial. We want to understand what it means for a line to intersect

V(P ) in a point with multiplicity three or more. Let

l(x, y, z) = ax+ by + cz

be a linear polynomial and let � = V(l) be the corresponding line

in P2. We are tacitly assuming that not all of a, b, c are zero. We

might as well assume that b �= 0. That is, by a projective change of

coordinates we may assume that b �= 0. We can multiply l by any

nonzero constant and still have the same line, meaning that for λ �= 0,

we have V(l) = V(λl). So, we can assume that b = −1. The reason

for the −1 is that we now know that all points on the line have the

property that y = ax+ cz.

Exercise 2.2.10. Let (x0 : y0 : z0) ∈ V(P )∩V(l). Show that (x0 : z0)

is a root of the homogeneous two-variable polynomial P (x, ax+cz, z)

and that y0 = ax0 + cz0.

Definition 2.2.4. The intersection multiplicity of V(P ) and V(l) at

(x0 : y0 : z0) is the multiplicity of the root (x0 : z0) of P (x, ax+cz, z).

Exercise 2.2.11. Let P (x, y, z) = x2 − yz and l(x, y, z) = λx − y.

Show that the intersection multiplicity of V(P ) and V(l) at (0 : 0 : 1)

is one when λ �= 0 and is two when λ = 0.

The key to the definition above is that, when b = −1, the system

x = x, y = ax+cz, z = z gives a parametrization of the line V(l), and

the intersection multiplicity of V(P ) and V(l) at (x0 : y0 : z0) is found

by considering P evaluated as a function of these two parameters. The
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next exercise proves that the intersection multiplicity is independent

of the choice of parametrization used for the line V(l).

Exercise 2.2.12. Let (x0 : y0 : z0) ∈ V(P ) ∩ V(l). Let x = a1s +

b1t, y = a2s + b2t, z = a3s + b3t and x = c1u + d1v, y = c2u +

d2v, z = c3u+ d3v be two parametrizations of the line V(l) such that

(x0 : y0 : z0) corresponds to (s0 : t0) and (u0 : v0), respectively.

Show that the multiplicity of the root (s0 : t0) of P (a1s + b1t, a2s +

b2t, a3s + b3t) is equal to the multiplicity of the root (u0 : v0) of

P (c1u + d1v, c2u + d2v, c3u + d3v). Conclude that our definition of

the intersection multiplicity of V(P ) and V(l) is independent of the

parametrization used for the line V(l).

Exercise 2.2.13. Let P (x, y, z) = x2 + 2xy − yz + z2. Show that

the intersection multiplicity of V(P ) and any line � at a point of

intersection is at most two.

Exercise 2.2.14. Let P (x, y, z) be an irreducible second degree ho-

mogeneous polynomial. Show that the intersection multiplicity of

V(P ) and any line � at a point of intersection is at most two.

Exercise 2.2.15. Let P (x, y, z) = x2 + y2 + 2xz − yz.

(1) Find the tangent line � = V(l) to V(P ) at (−2 : 1 : 1).

(2) Show that the intersection multiplicity of V(P ) and � at

(−2 : 1 : 1) is two.

Exercise 2.2.16. Let P (x, y, z) = x3 − y2z + z3.

(1) Find the tangent line to V(P ) at (2 : 3 : 1) and show directly

that the intersection multiplicity of V(P ) and its tangent at

(2 : 3 : 1) is two.

(2) Find the tangent line to V(P ) at (0 : 1 : 1) and show directly

that the intersection multiplicity of V(P ) and its tangent at

(0 : 1 : 1) is three.

Exercise 2.2.17. Redo the previous two exercises using Exercise 2.2.9.

Exercise 2.2.18. Show for any nonsingular curve V(P ) ⊂ P2, the

intersection multiplicity of V(P ) and its tangent line � at the point

of tangency is at least two.
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Exercise 2.2.19.

(1) Let P (x, y, z) be an irreducible degree three homogeneous

polynomial. Show that the intersection multiplicity of V(P )

and any line � at a point of intersection is at most three.

(2) Let P (x, y, z) be an irreducible homogeneous polynomial of

degree n. Show that the intersection multiplicity of V(P )

and any line � at a point of intersection is at most n.

Definition 2.2.5. Let P (x, y, z) be an irreducible homogeneous poly-

nomial of degree n. A nonsingular point p ∈ V(P ) ⊂ P2 is called a

point of inflection or a flex of the curve V(P ) if the tangent line to

the curve at p intersects V(P ) with multiplicity at least three.

Exercise 2.2.20. Let P (x, y, z) = x3 + yz2. Show that (0 : 0 : 1) is

an inflection point of V(P ).

Exercise 2.2.21. Let P (x, y, z) = x3 + y3 + z3 (the Fermat curve).

Show that (1 : −1 : 0) is an inflection point of V(P ).

2.2.4. Hessians. We have just defined what it means for a point p ∈
V(P ) to be a point of inflection. Checking to see whether a given point

p ∈ V(P ) is an inflection point can be tedious, but finding inflection

points can be an extremely difficult task with our current tools. How

did we know to check (1 : −1 : 0) in Exercise 2.2.21? Since V(P ) has

an infinite number of points, it would be impossible to find the tangent

at every point and to check the intersection multiplicity. Moreover, if

these inflection points are related to the inflection points of calculus,

where are the second derivatives? The Hessian curve will completely

solve these difficulties. We will first define the Hessian curve, then

determine how it can be used to find the points of inflection.

Definition 2.2.6. Let P (x, y, z) be a homogeneous polynomial of

degree n. The Hessian H(P ) is the polynomial

H(P )(x, y, z) = det

⎛⎝Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎞⎠ ,
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where

Px =
∂P

∂x

Pxx =
∂2P

∂x2

Pyx =
∂2P

∂x∂y
, etc.

The Hessian curve is V(H(P )).

Exercise 2.2.22. Compute H(P ) for the following cubic polynomi-

als.

(1) P (x, y, z) = x3 + yz2

(2) P (x, y, z) = y3 + z3 + xy2 − 3yz2 + 3zy2

(3) P (x, y, z) = x3 + y3 + z3

Exercise 2.2.23. Let P (x, y, z) be an irreducible homogeneous poly-

nomial of degree three. Show that H(P ) is also a third degree homo-

geneous polynomial.

We want to link the Hessian curve with inflection points.

Exercise 2.2.24. Let P (x, y, z) = x3 + y3 + z3 (the Fermat curve).

Show that (1 : −1 : 0) ∈ V(P ) ∩ V(H(P )).

Exercise 2.2.25. Let P (x, y, z) = y3+z3+xy2−3yz2+3zy2. Show

that (−2 : 1 : 1) ∈ V(P ) ∩ V(H(P )).

Exercise 2.2.26. Let P (x, y, z) = x3 + yz2. Show that (0 : 0 : 1) ∈
V(P ) ∩ V(H(P )).

These exercises suggest a link between inflection points of V(P )

and points in V(P ) ∩ V(H(P )), but we need to be careful.

Exercise 2.2.27. Let P (x, y, z) = x3 + yz2.

(1) Show that (0 : 1 : 0) ∈ V(P ) ∩ V(H(P )).

(2) Explain why (0 : 1 : 0) is not an inflection point of V(P ).

We can now state the relationship we want.
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Theorem 2.2.28. Let P (x, y, z) be a homogeneous polynomial of

degree d. If V(P ) is smooth, then p ∈ V(P )∩V(H(P )) if and only if

p is a point of inflection of V(P ).

We will prove this theorem through a series of exercises.1 The first

thing we need to show is that the vanishing of the Hessian V(H(P ))

is invariant under a projective change of coordinates.

Exercise 2.2.29. Consider the following projective change of coor-

dinates ⎛⎝u

v

w

⎞⎠ = A

⎛⎝xy
z

⎞⎠ ,

where

A =

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ .

Suppose that under the projective transformation A the polynomial

P (x, y, z) becomes the polynomial Q(u, v, w).

(1) Show that the Hessian matrices of P and Q are related by⎛⎝Pxx Pxy Pxz

Pxy Pyy Pyz

Pxz Pyz Pzz

⎞⎠ = AT

⎛⎝Quu Quv Quw

Quv Qvv Qvw

Quw Qvw Qww

⎞⎠A.

(2) Conclude that H(P )(x, y, z) = 0 if and only if H(Q)(u, v, w)

= 0.

Next we need to show that inflection points are mapped to inflec-

tion points under a projective change of coordinates.

Exercise 2.2.30. Suppose p is a point of inflection of V(P ), and that

under a projective change of coordinates the polynomial P becomes

the polynomial Q and p �→ q. Show that q is a point of inflection of

V(Q).

In the next exercise, we will reduce the proof of Theorem 2.2.28

to the case where p = (0 : 0 : 1) ∈ V(P ) and the tangent line to V(P )

at p is � = V(y).

1The following exercises are based on the proof taken from C. G. Gibson’s “Ele-
mentary Geometry of Algebraic Curves.”[Gib98]
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Exercise 2.2.31. Use Exercises 2.2.29 and 2.2.30 to explain why,

in proving Theorem 2.2.28, it is enough to show that p is a point of

inflection if and only if H(P )(p) = 0 in the case where p = (0 : 0 :

1) ∈ V(P ) and the tangent line � to V(P ) at p is y = 0, i.e., � = V(y).

Thus we will assume that the point p = (0 : 0 : 1) ∈ V(P ) and

that the tangent line to V(P ) at p is y = 0 from now until the end of

Exercise 2.2.35.

Exercise 2.2.32. Explain why in the affine patch z = 1 the deho-

mogenized curve is

λy + (ax2 + bxy + cy2) + higher order terms,

where λ �= 0. [Hint: We know that p ∈ V(P ) and p is nonsingular.]

From this we can conclude that P (x, y, z) is given by

(2.1)

P (x, y, z) = λyzd−1 + (ax2 + bxy + cy2)zd−2 + higher order terms

where d = degP .

Exercise 2.2.33. Explain why the intersection of V(P ) with the

tangent V(y) at p corresponds to the root (0 : 1) of the equation

P (x, 0, z) = ax2zd−2 + higher order terms = 0.

Exercise 2.2.34. Show that p is a point of inflection of V(P ) if and

only if a = 0. [Hint: For p to be an inflection point, what must the

multiplicity of (0 : 1) be in the equation in Exercise 2.2.33?]

We have now established that p is a point of inflection if and

only if a = 0 in Equation (2.1). All that remains is to show that

p ∈ V(H(P )) if and only if a = 0.

Exercise 2.2.35.

(1) Show that

H(P )(p) = det

⎛⎝2a b 0

b 2c λ(d− 1)

0 λ(d− 1) 0

⎞⎠ .

(2) Conclude that p ∈ V(H(P )) if and only if a = 0.
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This completes our proof of Theorem 2.2.28. In practice, we use

the Hessian to locate inflection points even if V(P ) is not smooth by

finding the points of intersection of V(P ) and V(H(P )) and eliminat-

ing those that are singular on V(P ).

Exercise 2.2.36. Let P (x, y, z) be an irreducible second degree ho-

mogeneous polynomial. Using the Hessian curve, show that V(P ) has

no points of inflection.

We conclude this section with the following theorem, which we

state without proof. Theorem 2.2.37 is a direct result of Bézout’s

theorem, which we will prove in Section 3.3.

Theorem 2.2.37. Two cubic curves in P2, with no common com-

ponents, will intersect in exactly 3 × 3 = 9 points, counted up to

intersection multiplicities. (We have not defined what is meant by

intersection multiplicity; this is one of the goals of chapter three and

is a bit subtle.)

Exercise 2.2.38. Use Exercise 2.2.23 and Theorems 2.2.28 and 2.2.37

to show that if V(P ) is a smooth cubic curve, then V(P ) has exactly

nine inflection points.

Exercise 2.2.39. Find all nine points of inflection of the Fermat

curve,

P (x, y, z) = x3 + y3 + z3.

2.3. Group Law

The goal of this section is to illustrate that, as a consequence of

their geometric structure, smooth cubic curves are abelian groups.

While the group law can be stated algebraically, in this section we

will develop it geometrically to see why it is important for the curve

to have degree three.

2.3.1. Adding Points on Smooth Cubics. Let C denote a smooth

cubic curve in the projective plane, P2(C). We will develop a geomet-

ric method for adding points so that C is an abelian group under this

operation. First, we define an abelian group.
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Definition 2.3.1. A group is a set G equipped with a binary opera-

tion � satisfying the following axioms:

(G1) The binary operation is associative, i.e.,

g1 � (g2 � g3) = (g1 � g2) � g3

for all g1, g2, g3 ∈ G.

(G2) There is an (unique) identity element e ∈ G such that e�g =

g = g � e for all g ∈ G.

(G3) For each g ∈ G, there is an (unique) inverse element g′ ∈ G

satisfying g � g′ = e = g′ � g.

A group G is said to be an abelian group if, in addition, the binary

operation � is commutative, i.e., g1 � g2 = g2 � g1 for all g1, g2 ∈ G.

For points P and Q on C, let �(P,Q) denote the line in P2 through

P and Q. In case P and Q are the same point, let �(P, P ) be the line

tangent to C at P . (This is why we must assume the cubic curve C

is smooth, in order to ensure there is a well-defined tangent line at

every point.) In Section 2.2.3 we saw that the Fundamental Theorem

of Algebra ensures there are exactly three points of intersection of

�(P,Q) with the cubic curve C, counting multiplicities. Let PQ de-

note this unique third point of intersection, so that the three points of

intersection of C with �(P,Q) are P , Q and PQ. If a line � is tangent

to C at P , then the multiplicity of P is at least two by Exercise 2.2.18.

Therefore, if P �= Q and �(P,Q) is tangent to C at P , then PQ = P ,

for P counted the second time is the third point of intersection of

�(P,Q) with C. The rule (P,Q) �→ PQ gives a binary operation on

C, which is called the chord-tangent composition law .

Exercise 2.3.1. Explain why the chord-tangent composition law is

commutative, i.e., PQ = QP for all points P,Q on C.

While this is a well-defined, commutative binary operation on C,

the following exercises illustrate that the chord-tangent composition

law lacks the properties required of a group law.

Exercise 2.3.2. Consider the cubic curve C = {(x, y) ∈ C2 : y2 =

x3−x} and the points P,Q,R on C, as shown below. (Note that only

the real part of C is shown.)
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1

2

−1

−2

1 2−1−2

C

•P•Q

•R

Using a straightedge, locate PQ and then (PQ)R on the curve C.

Now locate the point QR and the point P (QR) on the curve C. Is it

true that P (QR) = (PQ)R? That is, is the chord-tangent composi-

tion law associative for these points on C?

The preceding exercise demonstrates that the chord-tangent com-

position law is not associative. The next exercise illustrates that asso-

ciativity is not the only group axiom that fails for the chord-tangent

composition law.

Exercise 2.3.3. Consider the cubic curve C = {(x, y) ∈ C2 : x3 +

y3 = 1} and the points P = (0, 1) and Q = (1, 0) on C, as shown

below. (Again, we note that only the real part is shown.)

1

2

−1

−2

1 2−1−2

C

•P

•Q

(1) Using the equation of the cubic curve C and its Hessian,

verify that P and Q are inflection points of C.
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(2) Verify that PP = P . Conclude that if C has an identity

element e, then e = P .

(3) Verify that QQ = Q. Conclude that if C has an identity

element e, then e = Q.

(4) Conclude that C does not have an identity element for the

chord-tangent composition law.

Therefore, the chord-tangent composition law will not serve as a

binary operation for the group structure on C because it violates both

axioms (G1) and (G2). However, we can find a way to make this work.

By using the chord-tangent composition law twice in combination

with a fixed inflection point, we will construct the group law on C in

the next subsection.

2.3.2. Group Law with an Inflection Point. Let C denote a

smooth cubic curve in the projective plane P2(C). As was shown in

Exercise 2.2.38, there are nine points of inflection (counting multi-

plicity) on C. These are the points of intersection of the cubic curve

with its Hessian curve.

Select a point of inflection O on C. We define our binary op-

eration, +, relative to this specific point O. For points P,Q on C,

define P +Q to be the unique third point of intersection of �(O,PQ)

with C, where PQ denotes the chord-tangent composition of P and

Q, that is, P + Q = O(PQ), using the chord-tangent composition

law notation. We claim that with this binary operation +, C is an

abelian group, and we call this operation addition, i.e., we can “add”

points on C.

We will prove that for a given choice of inflection point, O, the

cubic curve C with addition of points relative to O is an abelian

group. Before we verify this claim, let’s consider a specific example.

Consider the cubic curve C = V(x3 − y2z + z3) ⊂ P2, and the

points P1 = (2 : 3 : 1), P2 = (0 : 1 : 1), P3 = (−1 : 0 : 1), P4 = (0 :

−1 : 1), P5 = (2 : −3 : 1) on C. The figure shows C in the affine

patch z = 1.

Exercise 2.3.4. Use the equations of the cubic curve C and its Hes-

sian to verify that P2 and P4 are inflection points of C.
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1

2

3

4

−1

−2

−3

−4

1 2 3−1−2

C

•P1

•
P2

•P3

•P4

•P5

Figure 1. The cubic curve C = V(x3−y2z+z3) in the affine
patch z = 1.

Exercise 2.3.5. Let O = P2 be the specified inflection point so that

+ is defined relative to P2, i.e., Q + R = P2(QR) for points Q,R on

C.

(1) Compute P1 + P2, P2 + P2, P3 + P2, P4 + P2, and P5 + P2.

(2) Explain why P2 is the identity element for C.

(3) Find the inverses of P1, P2, P3, P4 and P5 on C.

(4) Verify that P1 + (P3 + P4) = (P1 + P3) + P4. In general,

addition of points on C is associative.

Exercise 2.3.6. Now let O = P4 be the specified inflection point so

that + is defined relative to P4, i.e., Q+R = P4(QR) for points Q,R

on C.
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(1) Compute P1 + P2, P2 + P2, P3 + P2, P4 + P2, and P5 + P2.

[Hint: For P4 + P2 and P5 + P2 find the equations of the

lines �(P4, P2) and �(P5, P2), respectively, to find the third

points of intersection with C.] Are the answers the same

as they were in Part (1) of Exercise 2.3.5? Is P2 still the

identity element for C?

(2) Now compute P1+P4, P2+P4, P3+P4, P4+P4, and P5+P4.

Explain why P4 is now the identity element for C.

(3) Using the fact that P4 is now the identity element on C, find

the inverses of P1, P2, P3, P4 and P5 on C. [Hint: See the

hint in Part (1).] Are these the same as the inverses found

in Part (3) of Exercise 2.3.5?

Now we will prove that the cubic curve C with addition of points

relative to a fixed inflection point O is an abelian group. First, we

verify that the binary operation + is commutative.

Exercise 2.3.7. Explain why P +Q = Q+ P for all points P,Q on

C. This establishes that + is a commutative binary operation on C.

In Exercises 2.3.5 and 2.3.6, the inflection point used to define

the addition also served as the identity element for the curve C =

V(x3 − y2z+ z3). In the exercise below, you will show this is true for

any cubic curve.

Exercise 2.3.8. Let C be a smooth cubic curve and let O be one

of its inflection points. Define addition + of points on C relative to

O. Show that P + O = P for all points P on C and that there is no

other point on C with this property. Thus O is the identity element

for + on C.

Thus (C,O,+) satisfies group axiom (G2). Next, we verify that

every point P on C has an inverse, so that C with + also satisfies

group axiom (G3).

Exercise 2.3.9. Let C be a smooth cubic curve and let O be one of

its inflection points. Define addition + of points on C relative to the

identity O.
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(1) Suppose that P , Q, R are collinear points on C. Show that

P + (Q+ R) = O and (P +Q) +R = O.

(2) Let P be any point on C. Assume that P has an inverse

element P−1 on C. Prove that the points P , P−1, and O

must be collinear.

(3) Use the results of Parts (1) and (2) to show that for any

P on C there is an element P ′ on C satisfying P + P ′ =

P ′+P = O, i.e., every element P has an inverse P−1. Then

show this inverse is unique.

So far we have shown that (C,O,+) has an identity, inverses,

and is commutative. All that remains in order to prove that C is an

abelian group is to show that + is an associative operation. Estab-

lishing this fact is more involved than verifying the other axioms.

The following three exercises are based on [Ful69], pages 124–

125. We will first develop some results regarding families of cubic

curves.

Exercise 2.3.10. Start with two cubic curves, C = V(f) and D =

V(g). By Theorem 2.2.37, there are exactly nine points of intersec-

tion, counting multiplicities, of C and D. Denote these points by

P1, P2, . . . , P9.

(1) Let λ, μ ∈ C be arbitrary constants. Show that P1, P2, . . . , P9

are points on the cubic curve defined by λf + μg = 0.

(2) Let λ1, λ2, μ1, μ2 ∈ C be arbitrary constants. Show that

P1, P2, . . . , P9 are the nine points of intersection of the cubic

curves C1 = V(λ1f + μ1g) and C2 = V(λ2f + μ2g).

Let F (x, y, z) = a1x
3+a2x

2y+a3x
2z+a4xy

2+a5xyz+a6xz
2+

a7y
3+a8y

2z+a9yz
2+a10z

3 be a cubic whose coefficients, a1, a2, . . . , a10,

are viewed as unknowns. Then, for any point P = (x0 : y0 : z0) in

P2, the equation F (P ) = 0 gives a linear equation in the unknown

coefficients ai. Explicitly, we obtain the linear equation

a1x
3
0 + a2x

2
0y0 + a3x

2
0z0 + a4x0y

2
0 + a5x0y0z0+

a6x0z
2
0 + a7y

3
0 + a8y

2
0z0 + a9y0z

2
0 + a10z

3
0 = 0.
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Recall that the coordinates of P are determined only up to nonzero

scalar multiples. Since F (x, y, z) is homogeneous of degree three, we

have

F (λx0, λy0, λz0) = λ3F (x0, y0, z0).

Therefore, the zero set of the equation in the ten unknowns

a1, a2, . . . , a10

is uniquely determined by P .

For k points P1, . . . , Pk the system of equations

F (P1) = F (P2) = · · · = F (Pk) = 0

is a system of k linear equations in the ten unknowns a1, a2, . . . , a10.

The common solutions to this system are the coefficients of cubics

through the k points.

In the next two exercises we will prove that eight “general” points

impose eight conditions on the space of cubic polynomials. We state

the following results, which are a direct consequence of Bézout’s The-

orem, which we will prove in Section 3.3.

(1) If a line and a cubic in P2 intersect in four points, then the

cubic must be reducible and contain the line as a component.

(2) If a conic and a cubic intersect in seven points, then the cubic

must be reducible and contain the conic as a component.

(3) Two conics meet in four points, counted up to intersection

multiplicities.

Exercise 2.3.11. Consider eight distinct points P1, P2, . . . , P8 in

P2, such that no four are collinear and no seven are on a single

conic. Let F be a generic cubic polynomial with unknown coefficients

a1, a2, . . . , a10. The system of simultaneous equations

F (P1) = F (P2) = · · · = F (P8) = 0

is a system of eight linear equations in the ten unknowns a1, a2, . . . , a10.

Prove that the vector space of solutions to this linear system has di-

mension equal to 2 by considering each of the following cases.

(1) The eight points are in general position, which means that

no three are collinear and no six are on a conic.
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(2) Three of the points are collinear.

(3) Six of the points are on a conic.

Exercise 2.3.12. Show that there are two linearly independent cu-

bics

F1(x, y, z) and F2(x, y, z)

such that any cubic curve passing through the eight points

P1, P2, . . . , P8

has the form λF1 + μF2. Conclude that for any collection of eight

points with no four collinear and no seven on a conic, there is a

unique ninth point P9 such that every cubic curve passing through

the eight given points must also pass through P9.

In this next exercise, we prove the associativity of the newly de-

fined addition + of points on a smooth cubic curve.

Exercise 2.3.13. Let C be a smooth cubic curve in P2 and let P,Q,R

be three points on C. We will show that P +(Q+R) = (P +Q)+R.

• Let V(l1) = �(P,Q) and S1 = PQ, so V(l1)∩C = {P,Q, S1}.
• Let V(l2) = �(S1, O) and S2 = OS1 = P +Q, so V(l2)∩C =

{S1, O, S2}.
• Let V(l3) = �(S2, R) and S3 = (P + Q)R, so V(l3) ∩ C =

{S2, R, S3}.

Similarly:

• Let V(m1) = �(Q,R) and T1 = QR, so V(m1) ∩ C =

{Q,R, T1}.
• Let V(m2) = �(T1, O) and T2 = OT1 = Q + R, so V(m2) ∩

C = {T1, O, T2}.
• Let V(m3) = �(T2, P ) and T3 = P (Q+R), so V(m3) ∩C =

{T2, P, T3}.

(1) Notice that C ′ = V(l1m2l3) is a cubic. Find C ′ ∩ C.

(2) Likewise, C ′′ = V(m1l2m3) is a cubic. Find C ′′ ∩ C.

(3) Using Parts (1) and (2) together with Exercise 2.3.11, de-

duce that (P +Q)R = P (Q+R).
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(4) Explain why (P +Q)R = P (Q+R) implies that (P +Q) +

R = P + (Q+ R). Conclude that the addition of points on

cubics is associative.

Therefore, a cubic curve C with a selected inflection point O

determines a binary operation + in such a way that (C,O,+) is an

abelian group under addition.2

Since (C,O,+) is a group, it is natural to ask group theoretic

questions about C, such as questions regarding the orders of its ele-

ments. First we define an integer multiple of a point and the order of

a point.

Definition 2.3.2. Let (C,O,+) be a smooth cubic curve and let

P �= O be a point on the curve. For n ∈ Z we define n · P as follows:

• 0 · P = O and 1 · P = P

• For n ≥ 2, we have n · P = (n− 1) · P + P

• For n < 0, we set n · P to be the inverse of (−n) · P .

Definition 2.3.3. Let (C,O,+) be a smooth cubic curve and let

P �= O be a point on the curve. If there exists a positive integer n

so that n · P = O and for 1 ≤ m ≤ n − 1 we have m · P �= O, then

the point P has order n. If no such positive integer exists, then the

point is said to have infinite order.

We can now examine points of finite order. In particular, we are

interested here in points of order two and three. Many deep questions

in mathematics are concerned with the computation of the order of

various points on a cubic curve.

2.3.3. Points of Order Two and Three. Let C be a smooth cubic

curve with + defined relative to an inflection point O, the group

identity. Let P be a point on C.

Exercise 2.3.14. Show that 2·P = O if and only if �(O,P ) is tangent

to C at P .

2We defined addition on C relative to an inflection point, O, but we could define
addition on C relative to any point O on C. See Husemöller, Elliptic Curves [Hus87],
Theorem 1.2, for details.
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Exercise 2.3.15. Show that if P and Q are two points on C of order

two, then PQ, the third point of intersection of C with �(P,Q), is

also a point of order two on C.

Exercise 2.3.16. Let C be the cubic curve defined by y2z = x3−xz2.

(1) Show that O = (0 : 1 : 0) is an inflection point.

(2) Graph C in the affine patch z = 1.

(3) Show that lines through (0 : 1 : 0) correspond to vertical

lines in the affine patch z = 1.

(4) Find three points of order two in the group (C,O,+).

Let C be a smooth cubic curve with + defined relative to the

inflection point O.

Exercise 2.3.17. Let P be any inflection point on C. Show that

3 · P = O.

Exercise 2.3.18. Suppose P is point on C and 3 ·P = O. Conclude

that PP = P . From this, deduce that P is a point of inflection on C.

We have shown that the points of order 3 are inflection points,

and an inflection point which is not O must have order 3. We will

return to points of finite order in Section 2.4.3 after we have developed

a more convenient way to express our smooth cubic curves.

2.4. Normal Forms of Cubics

The goal of this section3 is to show that every smooth cubic is pro-

jectively equivalent to one of the form y2 = x3 + Ax + B, which is

called the Weierstrass normal form, where the coefficients A and B

are uniquely determined. We will also show that every smooth cubic

is projectively equivalent to a curve of the form y2 = x(x− 1)(x−λ),

called the canonical form. For a given cubic, there are 6 possible val-

ues for this λ. We associate to each cubic a complex number called

the j-invariant and show that we can parametrize all cubics by the

complex numbers via their j-invariant.

3The development in this section follows the first two sections of chapter three of
J. Silverman’s The Arithmetic of Elliptic Curves [Sil86].
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2.4.1. Weierstrass Normal Form. We will show that any smooth

cubic curve can be transformed into the Weierstrass normal form

y2 = x3 + Ax + B under a projective change of coordinates. This

will be accomplished using a sequence of several projective changes

of coordinates, both in the general case and with a concrete example,

the Fermat cubic x3 + y3 − z3 = 0.

Let C be a smooth cubic curve in P2 given by the homogeneous

equation f(x, y, z) = 0. Select an inflection point, O = (a0 : b0 : c0),

on C and let � denote the tangent line to C at O, where � is defined

by the linear equation l(x, y, z) = 0. Recall that we can projectively

change coordinates with an invertible 3× 3 matrix M⎛⎝x1

y1
z1

⎞⎠ = M

⎛⎝xy
z

⎞⎠ .

We choose M so that ⎛⎝01
0

⎞⎠ = M

⎛⎝a0b0
c0

⎞⎠ ,

and � is transformed to the line defined by l1(x1, y1, z1) = z1, i.e., the

inflection point O becomes (0 : 1 : 0) and the tangent line � becomes

the line z1 = 0 under the projective change of coordinates M . Recall

that we carry out the computations of changing coordinates by using

the inverse M−1 of M and replacing x, y, and z with expressions

involving x1, y1, and z1.

Exercise 2.4.1. Consider the smooth cubic curve C defined by x3+

y3 − z3 = 0.

(1) Show that O = (1 : 0 : 1) is an inflection point of C.

(2) Show that x − z = 0 is the equation of the tangent line to

C at O.

(3) Find a 3× 3 matrix M such that, under the change of vari-

ables ⎛⎝xy
z

⎞⎠ = M−1

⎛⎝x1

y1
z1

⎞⎠ ,
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we have (1 : 0 : 1) �→ (0 : 1 : 0) and l(x, y, z) = x − z

becoming l1(x1, y1, z1) = z1.

(4) Find the equation f1(x1, y1, z1) = 0 for the curve C1 that is

associated to this projective change of coordinates.

Now we have transformed our original smooth cubic curve C into

another smooth cubic curve C1, which is projectively equivalent to C.

Let’s now work with the new curve C1 that is defined by the equation

f1(x1, y1, z1) = 0 in P2 with coordinates (x1 : y1 : z1).

Exercise 2.4.2.

(1) Explain why the homogeneous polynomial f1(x1, y1, z1) can

be expressed as

f1(x1, y1, z1) = αx3
1 + z1F (x1, y1, z1),

where α �= 0 and F (0, 1, 0) �= 0.

(2) Explain why the highest power of y1 in the homogeneous

polynomial f1(x1, y1, z1) is two.

(3) Explain how by rescaling we can introduce new coordinates

(x2 : y2 : z2) so that the coefficient of x3
2 is 1 and the co-

efficient of y22z2 is −1 in the new homogeneous polynomial

f2(x2, y2, z2) = 0.

We can now rearrange the equation f2(x2, y2, z2) = 0 to be of the

form

(2.2) y22z2 + a1x2y2z2 + a3y2z
2
2 = x3

2 + a2x
2
2z2 + a4x2z

2
2 + a6z

3
2 .

Exercise 2.4.3. Use the Fermat curve defined in Exercise 2.4.1 for

the following.

(1) Show that

M−1 =

⎛⎝0 1 0

1 0 1

0 1 −1

⎞⎠
is the desired matrix that solves Part (3) of Exercise 2.4.1.

(2) Find the homogeneous polynomial f1(x1, y1, z1) that corre-

sponds to this projective change of coordinates.
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(3) Verify that f1 is of the form f1(x1, y1, z1) = αx3
1+z1F (x1, y1, z1),

where α �= 0 and F (0, 1, 0) �= 0.

(4) Rescale, if necessary, so that the coefficient of x2 is 1 and

the coefficient of y22z2 is −1.

(5) Rearrange f2(x2, y2, z2) = 0 to be in the form of Equation

(2.2).

Let’s now work in the affine patch z2 = 1, that is, in the affine

(x2, y2)-plane, and consider the nonhomogeneous form of Equation

(2.2),

(2.3) y22 + a1x2y2 + a3y2 = x3
2 + a2x

2
2 + a4x2 + a6,

keeping in mind that there is an extra point at infinity. We can treat

the left-hand side of Equation (2.3) as a quadratic expression in y2.

This means we can complete the square to remove some of the terms.

Consider the following concrete examples.

Exercise 2.4.4.

(1) Complete the square on the left-hand side of the following

equation.

y2 + 2y = 8x3 + x− 1

(2) Find an affine change of coordinates so that y2+2y = 8x3+

x− 1 becomes v2 = f(u).

Exercise 2.4.5.

(1) Complete the square (with respect to y) on the left-hand

side of the following equation.

y2 + 4xy + 2y = x3 + x− 3.

(2) Find an affine change of coordinates such that y2 + 2y =

8x3 + x− 1 becomes v2 = f(u).

Now we do this in general.

Exercise 2.4.6. Complete the square on the left-hand side of Equa-

tion (2.3) and verify that the affine change of coordinates

x3 = x2

y3 = a1x2 + 2y2 + a3
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gives the new equation

(2.4) y23 = 4x3
3 + (a21 + 4a2)x

2
3 + 2(a1a3 + 2a4)x3 + (a23 + 4a6).

To simplify notation, we introduce the following:

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

so that Equation (2.4) becomes

(2.5) y23 = 4x3
3 + b2x

2
3 + 2b4x3 + b6.

We are now ready to make the final change of coordinates to

achieve the Weierstrass normal form. Our goal is to scale the coeffi-

cient of x3
3 to 1 and to eliminate the x2

3 term.4

Consider the following concrete examples.

Exercise 2.4.7.

(1) Suppose we have the equation

y2 = x3 + 6x2 − 2x+ 5.

Show that the affine change of coordinates

u = x+ 2

v = y

eliminates the quadratic term on the right-hand side.

(2) Suppose we have the equation

y2 = 4x3 + 12x2 + 4x− 6.

Show that the affine change of coordinates

u = 36x+ 36

v = 108y

4This change of coordinates is similar to completion of the square, but with cubics.
This was first used by Cardano in Ars Magna (in 1545) to achieve a general solution

to the cubic equation x3 +αx2 +βx+γ = 0. Cardano needed to eliminate the x2 term
then, as we do now. Since the coefficient of the cubic term in his equation is already
one, he simply made the substitution u = x − α/3.
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eliminates the quadratic term and rescales the coefficient of

the cubic term to one on the right-hand side.

Exercise 2.4.8. Verify that the affine change of coordinates

u = 36x3 + 3b2

v = 108y3

gives the Weierstrass normal form

v2 = u3 − 27(b22 − 24b4)u− 54(b32 + 36b2b4 − 216b6).

Again we can introduce the following to simplify notation:

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

Then we have the following for our Weierstrass normal form.

(2.6) v2 = u3 − 27c4u− 54c6.

Let’s collect all of the coefficient substitutions that we have made,

recalling that the ai’s are the coefficients from Equation (2.3):

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

For upcoming computations it is convenient to introduce the following

as well.

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

j =
c34
Δ
.

Exercise 2.4.9. Show the following relationships hold:

(1) 4b8 = b2b6 − b24

(2) 1728Δ = c34 − c26
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(3) j =
1728c34
c34 − c26

.

These are simply brute-force computations.

The number Δ is called the discriminant of the cubic curve, since

it is related to the discriminant of the cubic polynomial in x on the

right-hand side of Equation (2.5). The number j is called the j-

invariant of the cubic curve. We will see its significance soon.

Exercise 2.4.10. Follow the procedure outlined above to write the

following cubics in Weierstrass normal form and calculate their j-

invariants.

(1) y2 + 2y = 8x3 + x− 1

(2) y2 + 4xy + 2y = x3 + x− 3

To avoid even more cumbersome notation, let’s “reset” our vari-

ables. Consider the Weierstrass normal form of a smooth cubic C:

(2.7) y2 = x3 − 27c4x− 54c6.

Notice that with the specific example x3 + y3 − z3 = 0 in P2 in

Exercises 2.4.1 and 2.4.3, we chose the initial change of coordinates,

so that the chosen inflection point becomes (0 : 1 : 0) with tangent

line given by z = 0. This is not a unique transformation. Suppose

we had chosen a different transformation. That is, suppose instead of

having the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

we obtained the equation

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6.

How different would our Weierstrass normal form have been?

Exercise 2.4.11. Show that the only (affine) transformation that

takes

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

to

v2 + a′1uv + a′3v = u3 + a′2u
2 + a′4u+ a′6
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is given by

x = α2u+ r

y = α2su+ α3v + t,

with α, r, s, t ∈ C and α �= 0. [Hint: Start with the projective trans-

formation, which is also affine,

x = a11u+ a12v + a13w

y = a21u+ a22v + a23w

z = w

and show that the only way to satisfy the condition in this exercise

is for the specific aij to have the form above.]

Using this change of coordinates, we can compute the following

relationships5 between equivalent cubic curves with coefficients ai in

Equation (2.2) with coordinates (x : y : z) and coefficients a′i with

coordinates (u : v : w).

αa′1 = a1 + 2s

α2a′2 = a2 − sa1 + 3r − s2

α3a′3 = a3 + ra1 + 2t

α4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

α6a′6 = a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2

α2b′2 = b2 + 12r

α4b′4 = b4 + rb2 + 6r2

α6b′6 = b6 + 2rb4 + r2b2 + 4r3

α6b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

α4c′4 = c4

α6c′6 = c6

α12Δ′ = Δ

j′ = j.

5This is Table 1.2 in Silverman [Sil86].
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Notice that if two smooth cubic plane curves are projectively

equivalent, then the value j for each is the same, which is why we call

this number the j-invariant. Let C and C ′ be two cubic plane curves,

written in Weierstrass normal form

C : y2 = x3 +Ax+B

C ′ : y2 = x3 +A′x+B′.

Exercise 2.4.12. Suppose C and C ′ have the same j-invariant.

(1) Show that this implies

A3

4A3 + 27B2
=

A′3

4A′3 + 27B′2 .

(2) Show that from the previous part we have A3B′2 = A′3B2.

In the next exercises we construct the transformations that send

C to C ′. We need to consider three cases: A = 0, B = 0, AB �= 0.

Exercise 2.4.13. Suppose A = 0.

(1) Show that if A = 0, then B �= 0. [Hint: Recall that C is

smooth.]

(2) What is j if A = 0?

(3) Explain why B′ �= 0.

(4) Show that the following change of coordinates takes C to

C ′.

x = (B/B′)1/3u

y = (B/B′)1/2v.

Exercise 2.4.14. Suppose B = 0.

(1) What is j if B = 0?

(2) Explain why A′ �= 0.

(3) Show that the following change of coordinates takes C to

C ′.

x = (A/A′)1/2u

y = (A/A′)3/4v.
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Exercise 2.4.15. Suppose AB �= 0. Find a change of coordinates

that takes C to C ′. [Hint: See the two previous problems.]

We can summarize the preceding discussion with the following

theorem.

Theorem 2.4.16. Two smooth cubic curves are projectively equiv-

alent if and only if their j-invariants are equal.

The following exercises yield a characterization of smooth cubics

via the j-invariant.

Exercise 2.4.17. Let γ be any complex number except 0 or 1728,

and consider the cubic curve C defined by

y2 + xy = x3 − 36

γ − 1728
x− 1

γ − 1728
.

Compute j for this cubic.

There are natural, but technical, reasons for the appearance of

the seemingly random number 1728.

Exercise 2.4.18. Compute j for the following cubics.

(1) y2 + y = x3

(2) y2 = x3 + x

Exercise 2.4.19. Use Theorem 2.4.16 and Exercises 2.4.10 and 2.4.18

to show that V(x3 + xz2 − y2z) and V(8x3 + xz2 − y2z − 2yz2 − z3)

are projectively equivalent.

Exercises 2.4.17 and 2.4.18 establish the following theorem.

Theorem 2.4.20. If γ is any complex number, then there exists a

plane cubic curve whose j-invariant is γ.

2.4.2. Canonical Form. As we have just seen the Weierstrass nor-

mal form is very useful and provides a nice way to characterize smooth

plane cubics. Another form that is equally useful is the canonical form

of the cubic. Consider Equation 2.5 from above

y2 = 4x3 + b2x
2 + 2b4x+ b6.

                

                                                                                                               



2.4. Normal Forms of Cubics 93

Exercise 2.4.21. Rewrite Equation (2.5) in (x1, y1) using the change

of coordinates

x = x1

y = 2y1.

The change of coordinates in Exercise 2.4.21 scales the cubic coef-

ficient on the right-hand side to one. Now we can factor the resulting

equation to obtain

(2.8) y21 = (x1 − e1)(x1 − e2)(x1 − e3).

Exercise 2.4.22. Show that e1, e2, e3 are distinct. [Hint: Recall that

the cubic curve V((x− e1z)(x− e2z)(x− e3z)− y2z) is smooth.]

Consider the following example.

Exercise 2.4.23. In Exercise 2.4.10 we found the Weierstrass normal

form of y2+2y = 8x3+x−1 to be y2 = x3+
1

2
x. Factor the right-hand

side to find values for e1, e2, and e3.

Now we do this in general.

Exercise 2.4.24. Rewrite Equation (2.8) in (x2, y2) using the change

of coordinates

x1 = (e2 − e1)x2 + e1

y1 = (e2 − e1)
3/2y2.

Exercise 2.4.25. Show that if we make the substitution

(2.9) λ =
e3 − e1
e2 − e1

in the equation we found in Exercise 2.4.24, we get

y22 = x2(x2 − 1)(x2 − λ).

We say a smooth cubic is in canonical form if it is

(2.10) y2 = x(x− 1)(x− λ).

Exercise 2.4.26. Find an affine transformation that puts y2 +2y =

8x3 + x− 1 in canonical form. What is λ?
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We digress for a moment here. By now we have become comfort-

able working in P2 and in various affine patches. We have seen that

the context often determines when it is most advantageous to work

in an affine patch. We usually work in the affine xy-plane, i.e., the

z = 1 patch, but we need to be sure that we are not missing anything

that happens “at infinity.”

Exercise 2.4.27. Let C ⊂ P2 be the smooth cubic defined by the

homogeneous equation y2z = x(x − z)(x − λz). Show that the only

point at infinity (x1 : y1 : 0) on C is the point (0 : 1 : 0). (We will see

the significance of the point (0 : 1 : 0) in Section 2.5.)

In Equation (2.8) we factored the right-hand side and called the

roots e1, e2, and e3, but these labels are just labels. We could just

as easily have written e2, e3, and e1. In other words, we should get

the same cubic curve no matter how we permuted the ei’s. There are

3! = 6 distinct permutations of the set {e1, e2, e3}, so we expect that

there would be six equivalent ways to express our cubic in canonical

form. Recall that we defined λ as a ratio in Equation (2.9). Changing

the roles of e2 and e3 would give 1/λ rather than λ. The two cubics

y2 = x(x− 1)(x− λ)

and

y2 = x(x− 1)(x− 1/λ)

should still be equivalent.

Exercise 2.4.28. Suppose we have the following canonical cubic

y2 = x(x− 1)(x− λ),

where λ corresponds to the order e1, e2, e3 of the roots in (2.8). Show

that the other five arrangements of {e1, e2, e3} yield the following

values in place of λ.

1

λ
1− λ

1

1− λ

λ− 1

λ

λ

λ− 1

As we have seen, the value of λ in a canonical form of C is almost

uniquely determined by C. The correspondence between complex

numbers λ �= 0, 1 and smooth cubic curves C is a six-to-one corre-

spondence, where if λ is a complex number assigned to C, then all of
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the complex numbers in Exercise (2.4.28) are assigned to C. Though

λ is not uniquely determined, the j-invariant, as we would expect, is

unique.

Exercise 2.4.29. Show that if a smooth cubic curve C has an equa-

tion in canonical form

y2 = x(x− 1)(x− λ),

then its j-invariant is

j = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

[Hint: Write the equation y2 = x(x− 1)(x− λ) in Weirstrass normal

form and use Exercise 2.4.9 to compute j.]

Exercise 2.4.30. Use the λ found in Exercise 2.4.26 to compute the

j-invariant of y2 + 2y = 8x3 + x − 1. [Hint: Use the expression in

Exercise 2.4.29.] Check that this agrees with the computation of j in

Exercise 2.4.10.

Exercise 2.4.31. Show that the j-invariant of a smooth cubic curve

C can be written as

27

[
6∑

i=1

μ2
i − 3

]
,

where the μi range over the six values λ, 1/λ, . . . from Exercise 2.4.28.

Exercise 2.4.31 demonstrates that the value of the j-invariant,

while expressed in terms of a particular choice of λ associated to

C, is independent of which λ corresponding to C we select. When

we combine Exercise 2.4.31 and Theorem 2.4.16 we see that, as we

would expect, the six values in Exercise 2.4.28 really do give the same

smooth cubic.

2.4.3. An Application: Points of Finite Order. As we have

seen it is often convenient to express a smooth cubic in canonical

form. For our final application in this section we will prove that

there are exactly three points of order two on a smooth cubic. We

showed, in Exercise 2.3.15, that if we have two points P and Q of

order two, then there is a third point PQ also of order two, but we

are not assured of the existence of the two points P and Q or that
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there is not another point R, of order two, not collinear with P and

Q. Exercise 2.3.16 suggests there are exactly three such points and

now we will prove this in general. Recall that in Exercise 2.3.14, we

showed that a point P ∈ C has order two if and only if the tangent

to C at P passes through the identity element O.

Exercise 2.4.32. Let C = V(x(x−1)(x−λ)−y2) be a smooth cubic

curve with + defined relative to the inflection point O = (0 : 1 : 0).

(1) Homogenize Equation 2.10 and find the equation of the tan-

gent line V(l) to C at the point P = (x0 : y0 : z0).

(2) Show that (0 : 1 : 0) ∈ V(l) if and only if either z0 = 0 or

y0 = 0.

(3) Show that O is the only point in C with z0 = 0.

(4) Show that (0 : 0 : 1), (1 : 0 : 1), and (λ : 0 : 1) are the only

points in C with y0 = 0.

(5) Conclude that there are exactly three points of order two on

C.

We have just shown that any cubic C has exactly three points of

order two. In fact, we have found these points explicitly, but we can

say even more.

Exercise 2.4.33.

(1) Show that the points of order two on C, together with O =

(0 : 1 : 0), form a subgroup of C.

(2) Show that this subgroup is isomorphic to Z2 × Z2.

We showed, in Exercises 2.3.17 and 2.3.18, that a point P ∈ C

satisfies 3P = O if and only if P is an inflection point. By Exercise

2.2.38 there are exactly nine inflection points on C, but O has order

one. Thus there are eight points of order three on C.

In general, there are n2 points on C whose order divides n. Hence

there are twelve points of order four on C, as there will be sixteen

whose order divides four, but four of these are already counted among

the three points of order two and O.
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2.5. The Group Law for a Smooth Cubic in
Canonical Form

The goal of this section is to reformulate the group law for a smooth

cubic in canonical form y2 = x(x−1)(x−λ). By doing so, we will see

that the group law for cubics is valid not only over C, but over fields

of positive characteristic6 and non-algebraically closed fields, too.

We have already shown that the set of points of a smooth cubic

curve C forms a group under the binary operation + we defined in

Section 2.3. In what follows we will use the canonical form developed

in Section 2.4 to determine the (affine) coordinates of the point P +Q

given coordinates of P and Q. We will use the point at infinity (0 : 1 :

0) as our identity O on C. When we work in the affine patch z = 1,

we will see that the line �(O,PQ) that we use to determine P + Q

will correspond to the vertical line through PQ.

2.5.1. The Identity, Addition, and Inverses. First, we need to

establish that O ∈ C and that any vertical line in the affine xy-plane

does indeed pass through O.

Exercise 2.5.1. Consider the cubic curve C in homogeneous canon-

ical form given by y2z = x(x− z)(x+ z), i.e., C = V(x3−xz2 − y2z).

(1) Show that the point at infinity (0 : 1 : 0) is on C.

(2) Show that (0 : 1 : 0) ∈ V(H(x3 − xz2 − y2z)), the Hessian

curve of C, and conclude that O = (0 : 1 : 0) is an inflection

point.

(3) Show that every vertical line in the affine xy-plane meets C

at (0 : 1 : 0).

(4) Sketch the graph of the real affine part of C, y2 = x3 − x.

(5) Let P and Q be two points on the real affine curve. Ex-

plain geometrically that if the line �(P,Q) through P and

Q intersects C a third time at the point PQ = (a, b), then

P +Q = (a,−b).

6We would need to modify our calculations from the previous sections for fields
of characteristic two or three.
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(6) Now suppose that R = (a : b : 1) is a point on C. Show that

the line �(O,R) is given by the equation x− az = 0, which

is the vertical line x = a in the xy-plane.

Exercise 2.5.2. Let λ �= 0, 1 be a complex number and consider

the cubic curve C in homogeneous canonical form given by y2z =

x(x− z)(x− λz), i.e., C = V(x(x− z)(x− λz)− y2z).

(1) Show that the point at infinity, (0 : 1 : 0) is on C.

(2) Show that (0 : 1 : 0) ∈ V(H(x(x − z)(x − λz) − y2z)), the

Hessian curve of C, and conclude that O = (0 : 1 : 0) is an

inflection point.

(3) Show that every vertical line in the affine xy-plane meets C

at O.

(4) Suppose that P = (a : b : 1) is a point on C. Show that the

line �(O,P ) is given by the equation x − az = 0, which is

the vertical line x = a in the xy-plane.

Now we have established that if C = V(x(x− z)(x − λz) − y2z)

is given in canonical form, then (0 : 1 : 0) is an inflection point, so

henceforth we let O = (0 : 1 : 0) be our identity element and define

+ relative to it. Before we develop an algebraic expression for the

coordinates of P + Q, we first consider the coordinates of P−1, the

inverse of the point P . Recall that if P ∈ C then the inverse P−1 of

P is the third point of intersection of C and �(O,P ).

Exercise 2.5.3. First, we want to work in the affine patch z = 1,

so we dehomogenize our cubic equation y2 = x(x − 1)(x − λ). Let

P = (x1, y1) be a point in the xy-plane on C with y1 �= 0.

(1) Find the linear equation that defines �(O,P ).

(2) Find the point P ′ = (x2, y2) that is the third point of inter-

section of �(O,P ) and C in the xy-plane.

(3) Show that P + P ′ = O. Conclude that P ′ = P−1.

Therefore, if P = (x1 : y1 : 1) is a point on C, the additive inverse

of P is the point P−1 = (x1 : −y1 : 1) on C. Notice in Exercise 2.5.3

we assumed y1 �= 0 for our point P . Now we see what the inverse of

a point on the x-axis in the affine xy-plane is.
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Exercise 2.5.4. Let P = (x1, 0) be a point in the xy-plane on C

defined by y2 = x(x− 1)(x− λ).

(1) Show that 2P = O, so that P = P−1.

(2) Show that this agrees with Exercise 2.3.14, that is, show

that the tangent to C at P = (x1, y1) in the xy-plane is a

vertical line if and only if y1 = 0.

2.5.2. The Group Law. Our goal in this section is to obtain an

algebraic formula for the sum of two points on a cubic in canonical

form.

Exercise 2.5.5. Consider the cubic curve C = V(x3−xz2+z3−y2z)

and the points P1 = (1 : 1 : 1), P2 = (0 : 1 : 1), P3 = (−1 : 1 : 1),

P4 = (−1 : −1 : 1), P5 = (0 : −1 : 1), P6 = (1 : −1 : 1) on C. Figure 2

shows C in the affine z = 1 patch.

(1) Use a straightedge and the figure below to find P1 + P2,

P1 + P3, P1 + P4, and P3 + P4 geometrically. [Hint: O =

(0 : 1 : 0), the point at infinity, is the identity and we use

the vertical line through PiPj to find Pi + Pj .]

(2) Find the coordinates of P1 + P2, P1 + P3, P1 + P4, and

P3 +P4. [Hint: Use the equation of the line through Pi and

Pj to find the coordinates of the point PiPj . Now find the

coordinates of Pi+Pj using the equation of the vertical line

through PiPj .]

1

2

−1

−2

1 2−1−2

C

•P1
•P2•P3

•P4
•P5

•P6

Figure 2. C in the affine xy-plane.
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Exercise 2.5.6. Let C be the affine cubic curve defined by the equa-

tion y2 = x3 + x2 − 2x. Let P denote the point (−1/2,−3
√
2/4) and

Q denote the point (0, 0).

(1) Write the defining equation of C in canonical form and verify

that P and Q are on C.

(2) Find the equation of �(P,Q), the line through P and Q.

(3) Find the coordinates of the point PQ on C, that is, the co-

ordinates of the third point of intersection of C and �(P,Q).

(4) Let O denote the inflection point (0 : 1 : 0) and find the

coordinates of the point P +Q on C using O as the identity

element.

(5) Find the coordinates of 2P on C.

(6) Find the coordinates of the point P−1 on C.

(7) Show that 2Q = O. [Hint: Show that the tangent to C at

Q passes through O and invoke Exercise 2.3.14.]

(8) Find the coordinates of all three points of order two on C.

Now we carry out these computations in a more general setting to

derive an expression for the coordinates of P +Q. Let C = V(x(x−
z)(x−λz)−y2z) be a smooth cubic curve. Dehomogenize the defining

equation x(x− z)(x− λz) − y2z = 0 to get the affine equation y2 =

f(x), where f(x) = x(x− 1)(x− λ).

Exercise 2.5.7. Suppose P = (x1 : y1 : 1) and Q = (x2 : y2 : 1) are

two points on C, with Q �= P−1 (that is, x1 �= x2), and let y = αx+β

be the equation of the line �(P,Q) through P and Q.

(1) Suppose P �= Q. Express α in terms of x1, x2, y1, y2.

(2) Suppose P = Q (in which case �(P,Q) is the tangent line to

C at P ). Use implicit differentiation to express α in terms

of x1, y1.

(3) Substitute αx + β for y in the equation y2 = f(x) to get a

new equation in terms of x only. Write the resulting equa-

tion of x in the form x3 +Bx2 + Cx+D = 0.
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(4) If P + Q has coordinates (x3 : y3 : 1), explain why x3 +

Bx2 + Cx+D must factor as (x− x1)(x− x2)(x− x3).

(5) By equating coefficients of x2 in Parts (3) and (4), conclude

that

x3 = −x1 − x2 + α2 + λ+ 1,

where α is the slope of the line �(P,Q).

(6) We now have an expression for the x-coordinate of P + Q.

Use this to conclude that

PQ =
(
−x1 − x2 + α2 + λ+ 1 : y1 + α(x3 − x1) : 1

)
,

where α is the slope of �(P,Q) and therefore

P +Q =
(
−x1 − x2 + α2 + λ+ 1 : − (y1 + α(x3 − x1)) : 1

)
.

[Hint: Use the relationship between the y-coordinates of PQ

and P +Q along with the fact that (x1, y1) lies on the line

defined by y = αx+ β.]

Therefore, if P = (x1 : y1 : 1), Q = (x2 : y2 : 1) are points on

the curve C = V(x(x− 1)(x− λ)− y2), then P +Q has coordinates

(x3 : y3 : 1) given by

x3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−x1 − x2 + λ+ 1 +

(
y2 − y1
x2 − x1

)2
if P �= Q

−2x1 + λ+ 1 +

(
f ′(x1)

2y1

)2
if P = Q

y3 = − (y1 + α(x3 − x1)) .

Exercise 2.5.8. Verify the results in Exercise 2.5.6 using the above

formula.

We may perform a similar sequence of calculations for a cubic in

general form. Let C be the cubic curve defined by y2z = ax3+bx2z+

cxz2 + dz3, where a, b, c, d ∈ C. Dehomogenize this defining equation

to get the affine equation y2 = f(x), where f(x) = ax3+ bx2+ cx+ d

and f has distinct roots.
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Exercise 2.5.9. Suppose P = (x1 : y1 : 1) and Q = (x2 : y2 : 1) are

two points on C, with Q �= P−1, and let y = αx+ β be the equation

of line �(P,Q) through the points P and Q.

(1) Suppose P �= Q. Express α in terms of x1, x2, y1, y2.

(2) Suppose P = Q (in which case �(P,Q) is the tangent line to

C at P ). Use implicit differentiation to express α in terms

of x1, y1.

(3) Substitute αx + β for y in the equation y2 = f(x) to get a

new equation in terms of x only. Write the resulting equa-

tion in the form ax3 +Bx2 + Cx+D = 0.

(4) If P +Q has coordinates P +Q = (x3 : y3 : 1), explain why

ax3+Bx2+Cx+D must factor as a(x−x1)(x−x2)(x−x3).

(5) By equating coefficients of x2, conclude that

x3 = −x1 − x2 +
α2 − b

a
,

where α is the slope of the line �(P,Q).

(6) We now have an expression for the x-coordinate of P + Q.

Use this to conclude that

PQ =

(
−x1 − x2 −

b

a
+

1

a
α2 : y1 + α(x3 − x1) : 1

)
,

where α is the slope of �(P,Q) and use this to find P +Q.

Therefore, if P = (x1 : y1 : 1), Q = (x2 : y2 : 1) are points on the

curve C = V(ax3 + bx2 + cx + d − y2), then P + Q has coordinates

(x3 : y3 : 1) given by

x3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−x1 − x2 −

b

a
+

1

a

(
y2 − y1
x2 − x1

)2
if P �= Q

−2x1 −
b

a
+

1

a

(
f ′(x1)

2y1

)2
if P = Q

y3 = −(y1 + α(x3 − x1)).
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2.5.3. Rational Points on Cubics. Of particular importance in

number theory and the theory of elliptic curves is the following prop-

erty of the group law.

Definition 2.5.1. Let y2 = f(x) be an affine equation of a smooth

cubic curve, where f(x) is a polynomial with rational coefficients. A

point P = (x, y) on the curve is a rational point if x, y ∈ Q.

Once we have a rational point, a natural follow-up would be to

ask how many rational points exist on a given curve. We first note

the following property of rational points.

Exercise 2.5.10. Let y2 = f(x) be an affine equation of a smooth

cubic curve, where f(x) is a degree three polynomial with rational

coefficients. Suppose P and Q are rational points on this curve, so

that P,Q ∈ Q2 and Q �= P−1. Prove that P + Q is also a rational

point.

This shows that the rational points on a cubic form a subgroup.

The study of the structure of this subgroup leads to some of the most

significant open questions in number theory, including the Birch and

Swinnerton-Dyer Conjecture.

2.5.4. Cubics over Other Fields. Another important consequence

of our algebraic formulation for the group law is that the operations

involved are independent of the field of definition. With this addition

law, we can define the group law for cubic curves not only over C,

but also over R, Q, and even over finite fields. However, there is one

subtlety, namely some of the calculations need to be modified if the

characteristic of the field is equal to 2.

Exercise 2.5.11. This is inspired by [AG06], pages 105–109. Let C

be the cubic curve given by y2 = x3 + 1.

(1) Show that (0, 4) and (2, 3) are points of C over Z5, the field

of order five.

(2) Use the formulas for addition above to compute (0, 4)+(2, 3).

(3) Find all of the points on C that are defined over Z5.
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2.6. Cross-Ratios and the j-Invariant

We have seen that the j-invariant uniquely determines a cubic curve

up to a projective change of coordinates. In this section, we will de-

velop another way to understand the j-invariant. We start by showing

that any three points in P1 can be sent to any other three points under

a projective change of coordinates. It is critical, though, to under-

stand that it is not possible for four points to be sent to an arbitrary

collection of four other points. It is here that the cross-ratio appears.

The key is that two ordered sets of four points are projectively equiv-

alent if and only if they have the same cross-ratio. The cross-ratio

will then return us to the j-invariant for a cubic curve.

2.6.1. Projective Changes of Coordinates for P1. Given any

three points (x1 : y1), (x2 : y2), (x3 : y3) ∈ P1, we want to find a

projective change of coordinates T : P1 → P1 such that

T (x1 : y1) = (1 : 0)

T (x2 : y2) = (0 : 1)

T (x3 : y3) = (1 : 1).

We will see that not only does such a map exist, but that it is unique.

We first have to define what we mean by a projective change of

coordinates for P1. In Section 1.5, we gave a definition for projective

changes of coordinates for P2. The definition for P1 is similar, namely

that a projective change of coordinates is given by

u = ax+ by

v = cx+ dy,

where ad− bc �= 0. We write this as

T (x : y) = (ax+ by : cx+ dy).

Now, we could write (x : y) ∈ P1 as a column vector(
x

y

)
.
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If we let

A =

(
a b

c d

)
,

then we can think of T (x : y) = (ax + by : cx + dy) in terms of the

matrix multiplication

A

(
x

y

)
=

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.

In P1, we have that (x : y) = (λx : λy) for any constant λ �= 0. This

suggests the following:

Exercise 2.6.1. Show that the matrices

A =

(
3 2

1 4

)
and B =

(
6 4

2 8

)
= 2 ·A

give rise to the same projective change of coordinates of P1.

Exercise 2.6.2. Show that the matrices

A =

(
a b

c d

)
and B =

(
λa λb

λc λd

)
,

for any λ �= 0, give rise to the same change of coordinates of P1.

This means that the projective changes of coordinates

(x : y) → (ax+ by : cx+ dy)

and

(x : y) → (λax+ λby : λcx+ λdy)

are the same.

The projective change of coordinates T such that

T (x1 : y1) = (1 : 0), T (x2 : y2) = (0 : 1), T (x3 : y3) = (1 : 1)

is

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2)).

(It should not be at all clear how this T was created.)

Exercise 2.6.3. Let

(x1 : y1) = (1 : 2), (x2 : y2) = (3 : 4), (x3 : y3) = (6 : 5).
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Show that

(1) T (x : y) = (28x− 21y : 18x− 9y)

(2) T (1 : 2) = (1 : 0), T (3 : 4) = (0 : 1), T (6 : 5) = (1 : 1).

These problems give no hint as to how anyone could have known

how to create T ; the goal of these last problems was to show that this

T actually works.

Now we want to start looking at uniqueness questions.

Exercise 2.6.4. Let T (x : y) = (ax + by : cx + dy) be a projective

change of coordinates such that T (1 : 0) = (1 : 0), T (0 : 1) = (0 :

1), T (1 : 1) = (1 : 1). Show that

a = d �= 0

and that

b = c = 0.

Explain why T must be the same as the projective change of coordi-

nates given by T (x : y) = (x : y).

Part of showing uniqueness will be in finding an easy-to-use for-

mula for the inverse of our map T .

Exercise 2.6.5. Let T (x : y) = (ax + by : cx + dy) be a projective

change of coordinates and let

A =

(
a b

c d

)
be its associated matrix. Let

B =

(
d −b

−c a

)
.

Show that

A ·B = det(A)I,

where I is the 2× 2 identity matrix.

Exercise 2.6.6. Let (x1 : y1), (x2 : y2), (x3 : y3) ∈ P1 be three dis-

tinct points. Let T1 and T2 be two projective changes of coordinates

such that

T1(x1 : y1) = (1 : 0), T1(x2 : y2) = (0 : 1), T1(x3 : y3) = (1 : 1),
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and

T2(x1 : y1) = (1 : 0), T2(x2 : y2) = (0 : 1), T2(x3 : y3) = (1 : 1).

Show that T1 ◦ T−1
2 is a projective change of coordinates such that

T1 ◦ T−1
2 (1 : 0) = (1 : 0),

T1 ◦ T−1
2 (0 : 1) = (0 : 1),

T1 ◦ T−1
2 (1 : 1) = (1 : 1).

Show that T1 and T2 must be the same projective change of coordi-

nates.

Thus our desired map T is unique.

Exercise 2.6.7. Mathematicians will say that any three points in P1

can be sent to any other three points, but any fourth point’s image

must be fixed. Using the results of this section, explain what this

means. (This problem is not so much a typical math exercise but is

instead an exercise in exposition.)

We have seen that the map

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))

works, but we have not explained how it was derived. We just have

to find a matrix

A =

(
a b

c d

)
such that

A

(
x1

y1

)
=

(
1

0

)
, A

(
x2

y2

)
=

(
0

1

)
, A

(
x3

y3

)
=

(
1

1

)
.

Solving for the coefficients of A is now just a (somewhat brutal) ex-

ercise in algebra that yields the map T .

2.6.2. Working in C. Algebraic geometers like to work in projec-

tive space Pn. Other mathematicians prefer to work in affine space,

such as Cn, allowing for points to go off to infinity. In this subsection

we interpret the projective change of coordinates T : P1 → P1 from

the previous section as a map T : C ∪ {∞} → C ∪ {∞}.
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Given three points x1, x2 and x3 in C, we want to find a map

T : C ∪ {∞} → C ∪ {∞} such that

T (x1) = ∞
T (x2) = 0

T (x3) = 1.

For now, set

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
.

The next three exercises are in parallel with those in the previous

subsection.

Exercise 2.6.8. Let x1 = 1/2, x2 = 3/4, and x3 = 6/5. (Note

that these correspond to the dehomogenization of the three points

(x1 : y1) = (1 : 2), (x2 : y2) = (3 : 4), (x3 : y3) = (6 : 5) in the

previous subsection’s first problem.) Show that

(1) T (x) =
28x− 21

18x− 9

(2) T (1/2) = ∞, T (3/4) = 0, T (6/5) = 1.

The next exercise will link the map T : C∪{∞} → C∪{∞} with

the map T : P1 → P1. Recall in P1 that

(x : y) =

(
x

y
: 1

)
,

provided that y �= 0. By a slight abuse of notation, we can think of

dehomogenizing as just setting all of the y’s equal to one.

Exercise 2.6.9. Show that the map T : P1 → P1 given by

T (x : y) = (ax+ by : cx+ dy)

will correspond to a map T : C ∪ {∞} → C ∪ {∞} given by

T (x) =
ax+ b

cx+ d
.

Exercise 2.6.10. Show that the map T : P1 → P1 given by

T (x : y) = ((x2y − y2x)(x1y3 − x3y1) : (x1y − y1x)(x2y3 − x3y2))
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will correspond to the map T : C ∪ {∞} → C ∪ {∞} given by

T (x) =
(x2 − x)(x1 − x3)

(x1 − x)(x2 − x3)
.

Here the dehomogenization is the map achieved by setting y = 1.

2.6.3. Cross-Ratio: A Projective Invariant. We introduce the

fundamental invariant for points on the projective line P1, the cross-

ratio of four points.

Suppose we are given some points in P1. We can label these points

in many ways, by choosing different coordinate systems. This is the

same as studying the points under projective changes of coordinates.

We would like to associate to our points something (for us, a number)

that will not change, no matter how we write the points. We call such

numbers invariants.

If we start with three points in P1, no such invariant can exist,

since any three points can be sent to any other three points. But we

cannot send any four points to any other four points. This means

that any collection of four points has some sort of intrinsic geometry.

Definition 2.6.1. The cross-ratio of the four distinct points p1, p2,

p3, p4 is

[p1, p2, p3, p4] =
(x2y4 − y2x4)(x1y3 − x3y1)

(x1y4 − y1x4)(x2y3 − x3y2)
,

where pi = (xi : yi).

We need to show that this number does not change under a pro-

jective change of coordinates.

Exercise 2.6.11. Let

p1 = (1 : 2), p2 = (3 : 1), p3 = (1 : 1), p4 = (5 : 6).

(1) Calculate the cross-ratio [p1, p2, p3, p4].

(2) Let T : P1 → P1 be

T (x : y) = (3x+ 2y : 2x+ y).

Find T (p1), T (p2), T (p3), T (p4).
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(3) Show

[T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

Exercise 2.6.12. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 :

y3), p4 = (x4 : y4) be any collection of four distinct points in P1

and let T (x, y) = (ax + by : cx + dy) be any projective change of

coordinates. Show

[T (p1), T (p2), T (p3), T (p4)] = [p1, p2, p3, p4].

(This is a long exercise in algebra, but at the end, there should be

satisfaction at seeing everything being equal.)

The above cross-ratio depends, though, on how we ordered our

four points p1, p2, p3, p4. If we change the order, the cross-ratio

might change.

Exercise 2.6.13. Let p1, p2, p3, p4 be any four distinct points in P1.

Show

[p1, p2, p3, p4] =
1

[p2, p1, p3, p4]
.

Exercise 2.6.14. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 :

y3), p4 = (x4 : y4) such that [p1, p2, p3, p4] �= ±1. Show that there is

no projective change of coordinates T (x : y) = (ax + by : cx + dy)

such that T interchanges p1 with p2 but leaves p3 and p4 alone. In

other words, show there is no T such that

T (p1) = p2, T (p2) = p1, T (p3) = p3, T (p4) = p4.

Exercise 2.6.15. Let p1 = (x1 : y1), p2 = (x2 : y2), p3 = (x3 :

y3), p4 = (x4 : y4) be any collection of four distinct points in P1.

Show that

[p2, p1, p4, p3] = [p1, p2, p3, p4].

Exercise 2.6.16. Using the notation from the previous problem,

find two other permutations of the points p1, p2, p3, p4 so that the

cross-ratio does not change.

Let

[p1, p2, p3, p4] = λ.
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We have shown that there are four permutations of the p1, p2, p3, p4
(including the identity) that do not change the cross-ratio, but we

have also shown

[p2, p1, p3, p4] =
1

λ
.

Exercise 2.6.17. Using the above notation, find permutations of

p1, p2, p3, p4 so that all of the following cross-ratios occur:

λ,
1

λ
,

1

1− λ
, 1− λ,

λ

λ− 1
,
λ− 1

λ
.

Exercise 2.6.18. Given any four distinct points p1, p2, p3, p4 in P1,

show that the j-invariant of the cross-ratio does not change under any

reordering of the four points or under any projective change of coor-

dinates. (This is why we are justified in using the term “invariant”

in the name j-invariant.)

Thus given a smooth cubic curve, we can put the curve intoWeier-

strass normal form and associate to this curve a single number j. A

natural question is if two different curves could have the same j-

invariant. The next exercises will show that this is not possible. (We

have already done this in Section 2.4, but now we will do this in the

context of the cross-ratio.)

Exercise 2.6.19. Suppose that

j(λ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
= a

for some constant a.

(1) Show that any solution μ of the equation

28(λ2 − λ+ 1)3 − aλ2(λ− 1)2 = 0

has the property that

j(μ) = a.

(2) Show that the above equation has only six solutions.

(3) Show that if λ is a solution, then the other five solutions are
1

λ
,

1

1− λ
, 1− λ,

λ

λ− 1
,
λ− 1

λ
.
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(4) Show that if we have two curves zy2 = x(x− z)(x−λz) and

zy2 = x(x− z)(x− μz) with

j(λ) = j(μ),

then there is a projective change of coordinates taking the

first curve to the second.

2.7. Torus as C/Λ

In the last chapter, we showed that all smooth conics are topologically

spheres. Our long-term goal for the rest of this chapter is to show that

all smooth cubics are topologically tori. This will take some work. In

this section we will take the first step, which is to realize a torus as a

quotient group C/Λ, where Λ is a lattice.

2.7.1. Quotient Groups. Since we want to show that a torus is

a quotient group, we will begin this section with some background

material from abstract algebra to make clear what a quotient group

is.

Given an abelian group G with binary operation +, a subset S of

G is said to be a subgroup if S is itself a group using the operation +.

Given a known group G, a way to generate examples of groups is to

look at all of its subgroups. Another way of generating examples is

to “collapse” a subgroup N of the group G into the identity element

of a new “quotient group” G/N .

Before we make this notion precise, we need to introduce parti-

tions and their connection to equivalence relations.

Definition 2.7.1. Given a nonempty set A, we say that a collection

P of subsets of A is a partition of A if P consists of nonempty, pairwise

disjoint sets whose union is A. This means that if

P = {Pα}α∈I ,

where I is an indexing set, then the elements of P satisfy the following

two conditions:

(1) Pα ∩ Pβ = ∅, for all α �= β ∈ I;
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(2) A =
⋃
α∈I

Pα.

Exercise 2.7.1. Let A be a nonempty set.

(1) Let ∼ be an equivalence relation on the set A. Show that

the set of equivalence classes of ∼ is a partition of A.

(2) Suppose P is a partition of A. Show that the relation ∼,

defined by x ∼ y if and only if x and y belong to the same

element of P , is an equivalence relation.

The previous exercise shows a natural correspondence between

partitions and equivalence relations.

Let G be an abelian group with binary operation +, and let H be

a subgroup of G. Define the relation ∼ on G by x ∼ y if x− y ∈ H.

Exercise 2.7.2. Show that ∼ is an equivalence relation.

Exercise 2.7.3. Let G = Z with the binary operation +. Let H =

3Z, the multiples of 3, which is a subgroup of G. Show that 1 ∼
4, 2 ∼ 5 and 2 ∼ −1.

This equivalence relation determines a partition of G. Denote the

equivalence class of x ∈ G by x +H. This is called a coset of H in

G. Denote the set of all cosets by G/H.

Exercise 2.7.4. Let G = Z and H = 3Z, a subgroup of G. Find all

of the cosets of H in G.

Define an operation + on G/H by

(x+H) + (y +H) = (x+ y) +H.

(Note that x+H, y +H, (x+ y) +H are all sets.)

Exercise 2.7.5. Suppose x ∼ x′ and y ∼ y′ for elements x, x′, y, y′ ∈
G. Show that (x+ y) +H = (x′ + y′) +H. (This demonstrates that

the operation on G/H is well-defined.)

Under this operation, G/H will be a group, which is called the

quotient group of G by H.

Exercise 2.7.6. Find the quotient group of G = Z by H = 3Z.
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In the discussion above, we have produced some ways of generat-

ing examples of groups: finding subgroups and taking quotients. How

do we compare groups? One way of doing this is to look for maps

between groups that preserve group structure.

Definition 2.7.2. Suppose (G,+G) and (H,+H) are two groups.

A map ϕ : G → H is said to be a homomorphism if ϕ(x +G y) =

ϕ(x)+H ϕ(y) for all x, y ∈ G. If a homomorphism is bijective, we call

it an isomorphism and say that the groups G and H are isomorphic.

We denote this by G ∼= H.

If two groups are isomorphic, they are essentially “the same.”

If there is a homomorphism between two groups there is still a nice

relationship between G and H.

Exercise 2.7.7. Let ϕ : G → H be a homomorphism between abelian

groups, and let e be the identity element of H. Let ker(ϕ) := {g ∈
G : ϕ(g) = e}. (We call ker(ϕ) the kernel of ϕ.)

(1) Show that ker(ϕ) is a subgroup of G.

(2) Show that if ϕ : G → H is onto, then the quotient group

G/ker(ϕ) is isomorphic to H.

If the groups are not abelian, the formation of quotient groups is

much more involved.

2.7.2. The Torus. In order to understand some of the geometry of

a torus, we need to determine how a torus is formed. We will begin

by using a little group theory to realize a circle, S1, as the quotient

group R/Z.

Exercise 2.7.8.

(1) Show that R is an abelian group under addition.

(2) Show that Z is a subgroup of R.

Exercise 2.7.9. Define a relation on R by x ∼ y if and only if

x− y ∈ Z.

(1) Verify that ∼ is an equivalence relation.
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(2) Let [x] denote the equivalence class of x, that is, [x] = {y ∈
R : x ∼ y}. Find the following equivalence classes: [0], [

1

2
],

and [
√
2].

(3) The equivalence relation ∼ gives a partition of R. Explain

how this partition R/Z is the realization of a circle. [Hint:

Explain how progressing from 0 to 1 is the same as going

around a circle once.]

We can also use Exercise 2.7.7 to give an isomorphism between

R/Z and the circle. Let S1 denote the unit circle centered at the origin

in R2. As we have already seen R2 is in one-to-one correspondence

with C, so we can regard S1 as the set S1 = {x ∈ C : |x| = 1}. Recall
that any complex number has a polar representation x = r(cos θ +

i sin θ), so we can express S1 as S1 = {cos θ + i sin θ : θ ∈ R} ⊂ C.

Exercise 2.7.10. Show that S1 is a group under (complex) multi-

plication.

Exercise 2.7.11. Define a map φ : R → S1 by φ(θ) = cos 2πθ +

i sin 2πθ.

(1) Show that φ is onto.

(2) Show that φ is a homomorphism, i.e., show that φ(α+β) =

φ(α)φ(β) for all α, β ∈ R.

(3) Find kerφ and conclude that R/Z ∼= S1.

We now want to extend the ideas in the previous exercises to the

complex plane. Let ω1 and ω2 be complex numbers such that
ω1

ω2
is

not purely real. Let the integer lattice Λ be defined as

Λ = {mω1 + nω2 : m,n ∈ Z}.

We will call the parallelogram formed by joining 0, ω1, ω1 + ω2, ω2,

and 0 in succession the fundamental period-parallelogram. We will

realize a torus as a quotient group C/Λ.

Exercise 2.7.12.

(1) Sketch the lattice generated by ω1 = 1 and ω2 = i. [Hint:

Sketch the fundamental period-parallelogram of this lattice.]
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(2) Sketch the lattice generated by ω1 = 1 + i and ω2 = i.

Exercise 2.7.13.

(1) Show that C is an abelian group under addition.

(2) Show that Λ is a subgroup of C.

Exercise 2.7.14. Define a relation on C by x ∼ y if and only if

x− y ∈ Λ. Show that ∼ is an equivalence relation.

Since ∼ is an equivalence relation, it is natural to ask about the

quotient group C/Λ.

Exercise 2.7.15. Let Λ ⊂ C be the integer lattice generated by

{ω1 = 1, ω2 = i} and let a, b ∈ R.

(1) Find all points in C equivalent to
1

2
+

1

2
i.

(2) Find all points in C equivalent to
1

3
+

1

4
i.

(3) Show that a ∼ a+ i.

(4) Show that bi ∼ 1 + bi.

Exercise 2.7.16. Sketch a sequence of diagrams to show that C/Λ

is a torus. [Hint: Construct a torus using ω1 = 1 and ω2 = i by iden-

tifying the horizontal and vertical sides of the fundamental period-

parallelogram as in the previous problem. Now repeat with any lat-

tice.]

Exercise 2.7.17. Let Λ ⊂ C be the integer lattice generated by

{ω1 = 1, ω2 = i}.

(1) Sketch a vertical segment in the fundamental period-

parallelogram and illustrate to what this corresponds on our

torus. Sketch a horizontal line in the fundamental period-

parallelogram and illustrate to what this corresponds on our

torus.

(2) Show that
1

4
+ i ∈ C/Λ has order 4 and write all of the

elements of 〈1
4
+ i〉.
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(3) Represent the fact that
1

4
+ i has order 4 geometrically on

the fundamental period-parallelogram by sketching a line in

C that has slope
1

4
and considering its image in C/Λ.

(4) Sketch the paths traced by these segments on the torus.

What do you notice about this path on the torus?

(5) Pick any element α ∈ C/Λ and show that if α has finite

order, then the path on the torus represented by the line

through 0 and α is a closed path.

(6) Suppose an element α has infinite order. What can you say

about the slope of the line through 0 and α? Illustrate this

phenomenon on the fundamental period-parallelogram in C

and on the torus.

2.8. Mapping C/Λ to a Cubic

The goal of this section is to construct a map from a torus C/Λ to a

cubic curve.

In this section we assume some knowledge about complex vari-

ables and analysis.

Our goal is to construct a map from the quotient group C/Λ to C2

whose image is the zero locus of a nonsingular cubic polynomial. In

order to do this we will use the Weierstrass ℘-function ℘ : C/Λ → C

defined by

℘(x) =
1

x2
+
∑

m,n∈Z

(m,n) �=(0,0)

1

(x−mω1 − nω2)2
− 1

(mω1 + nω2)2
.

Then our map C/Λ → C2 will be given by the map x �→ (℘(x), ℘′(x)),

and the smooth cubic will be defined by the differential equation

[℘′(x)]2 = 4[℘(x)]3 +A℘(x) +B,

where A,B are constants depending on the lattice.

At this point it is not at all clear how we arrived at the function

℘. We begin by considering the minimal properties that are essential
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for a map C/Λ → C. We will then show that ℘ has these properties

and gives us our desired cubic.

Exercise 2.8.1. Let f : C → C be a function. Show that x + Λ �→
f(x) is a well-defined function from C/Λ to C if and only if f is

doubly-periodic, that is,

f(x+ ω1) = f(x) and f(x+ ω2) = f(x),

for all x in the domain of f .

To define the function f , we need to consider only what happens

on the fundamental period-parallelogram. We would like our function

f to be as nice as possible. For example, we would like our function f

to be analytic on its fundamental period-parallelogram, i.e., f equals

its Taylor series, f(x) =
∑∞

n=0 anx
n. Unfortunately, this will not

work.

Exercise 2.8.2. Show that if a doubly-periodic function f is analytic

on its fundamental period-parallelogram, then f is constant. [Hint:

Use Liouville’s Theorem.]

We see then that f cannot be analytic on its entire fundamental

period parallelogram. The next hope is that f is analytic except with

a single pole at 0, and hence at the other lattice points by double

periodicity. Furthermore, we hope that the pole at 0 is not too bad.

We can do this, but 0 will be a pole of order two, as the next two

exercises illustrate.

Recall that a function f(x) on C has a pole of order k at a point

α ∈ C if near α we can write the function as

f(x) =
bk

(x− α)k
+

bk−1

(x− α)k−1
+ · · ·+ b1

x− α

+ a0 + a1(x− α) + a2(x− α)2 + · · · ,

where b1, . . . bk, a0, a1, . . . are all complex numbers and with bk �= 0.

Thus

f(x) =
3

(x− 2i)2
+

1

(x− 7)
+ 4 + 5x

has a pole of order two at 2i, a pole of order one at 7 and no other

poles.
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It is inconvenient to integrate over these parallelograms if the

singularities are on the boundaries, but we can translate the vertices,

without rotating, so that the singularities are in the interior. The

translated parallelograms will be called cells.

Exercise 2.8.3. Show that the sum of the residues of f at its poles

in any cell is zero.

Exercise 2.8.4. Show that if f has a single pole at 0 in its funda-

mental period-parallelogram, not including the other vertices, then 0

must be a pole of order at least two.

We have now established that a candidate for our function could

have the form

f(x) =
a−2

x2
+ a0 + a1x+ a2x

2 + . . .

Exercise 2.8.5. Show that if

f(x) =
a−2

x2
+ a0 + a1x+ a2x

2 + a3x
3 + . . .

is doubly-periodic, then f is an even function, i.e., a1 = a3 = · · · = 0.

[Hint: Consider the function f(x)− f(−x).]

We can change coordinates to eliminate a0 so that f is now of

the form

f(x) =
a−2

x2
+ a2x

2 + a4x
4 + . . .

Now we are ready to introduce the Weierstrass ℘-function,

(2.11) ℘(x) =
1

x2
+
∑

m,n∈Z

(m,n) �=(0,0)

1

(x−mω1 − nω2)2
− 1

(mω1 + nω2)2
.

A series
∑∞

n=0 an is absolutely convergent whenever
∑∞

n=0 |an| <
∞.

A series of functions
∑

fn is uniformly convergent with limit f

if, for all ε > 0, there exists a natural number N such that for all x

in the domain and all n ≥ N , |
∑n

k=1 fk(x)− f(x)| < ε.

Exercise 2.8.6. Show that ℘(x) converges uniformly and absolutely

except near its poles. Conclude that ℘(x) is analytic on the complex

plane except at the lattice points Λ = {mω1 + nω2}.
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Since ℘(x) converges uniformly and absolutely, we can differenti-

ate term-by-term to find ℘′(x), and the order of summation does not

affect the value of the function, so we can rearrange the terms.

Exercise 2.8.7. Find ℘′(x) and show that ℘′(x) is doubly-periodic.

Exercise 2.8.8. Show that ℘(x) is doubly-periodic. [Hint: Consider

the functions Fi(x) = ℘(x+ ωi)− ℘(x) for i = 1, 2.]

Consider the function F (x) = ℘(x)− x−2.

Exercise 2.8.9. Show that F is analytic in a neighborhood of 0.

Exercise 2.8.10. Find the Taylor series expansion of F at 0.

Exercise 2.8.11. From Exercise 2.8.5 we know that ℘(x) is even, so

F is also even. Show that the odd powers of x vanish in the Taylor

expansion of F at 0.

Exercise 2.8.12. Now we can rewrite ℘(x) = x−2 + F (x). Find the

coefficients of x2 and x4 in this expression for ℘(x).

Exercise 2.8.13. Let

g2 = 60
∑
ω∈Λ

ω �=0

1

ω4

and

g3 = 140
∑
ω∈Λ

ω �=0

1

ω6
.

Find the coefficients of x2 and x4 in ℘(x) in terms of g2 and g3.

Exercise 2.8.14. Find the coefficients of x and x3 in ℘′(x) in terms

of g2 and g3.

We will now establish a cubic relationship between ℘(x) and

℘′(x). In the previous exercises we found the following expressions

for ℘(x) and ℘′(x):

℘(x) =
1

x2
+

1

20
g2x

2 +
1

28
g3x

4 +O(x6)

℘′(x) = − 2

x3
+

1

10
g2x+

1

7
g3x

3 +O(x5).
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Exercise 2.8.15. Compute ℘(x)3 and ℘′(x)2, and consider only

terms up to first order, that is, find f and g such that ℘(x)3 =

f(x) +O(x2) and ℘′(x)2 = g(x) +O(x2).

Exercise 2.8.16. Show that ℘′(x)2 = 4℘(x)3 − g2℘(x)− g3.

Thus, starting with the lattice Λ, we have a map to a cubic curve.

2.9. Cubics as Tori

The goal of this section is to show that a smooth cubic curve in

P2(C) is topologically a torus. We will be sketching the argument, as

opposed to providing rigorous proofs.

In the following exercise, we first see how to obtain a torus from

two spheres. Let A and B be two disjoint circles on a sphere. Let

S1 be the sphere with the interiors of A and B removed. Similarly,

define S2 as a different sphere with the interiors of disjoint circles C

and D removed.

Exercise 2.9.1. Draw a sequence of diagrams to show that if we

attach S1 and S2 by identifying the circle A to the circle C and

the circle B to circle D, we obtain a torus. (Note we are working

topologically, where we can deform objects, but not tear them.)
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S1

A B

S2

C D

Now we return to cubics. Our goal is to show that a cubic in

canonical form

y2 = x(x− 1)(x− λ)

can be realized as two spheres attached along two discs, as in the

above problem and hence is topologically a torus. Since any smooth

cubic curve can be put into canonical form, we will have shown that

all smooth cubic curves are topologically tori.

The heart of the construction lies in the nature of the square

root function,
√
z = z1/2. As it stands, the square root function is

not well-defined, but in fact has two possible values. For example, the

square root of 4 is either 2 or −2. In high school, if you are just taking

square roots of positive real numbers, the convention is usually to say

that the square root is the positive value. Such a convention is more

difficult to make over the complex numbers. Before starting the series

of exercises to contruct a torus from a cubic, note that there is one and

only one complex number for which the square root is unambiguous,

namely
√
0 = 0. Thus for any nonzero complex number w there are
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two possible values for
√
w but only one value for

√
0. This will be

critical in a moment.

Exercise 2.9.2. Let T : [0, 2π] → C be defined by T (θ) = eiθ and

let f : C → C be defined by f(x) =
√
x.

(1) Show that T ([0, 2π]) is a unit circle in C.

(2) Show that f ◦ T ([0, 2π]) is a half circle.

This problem shows how there can be no easy sign convention

for
√
w. We have f ◦ T (0) = 1, while f ◦ T (2π) = −1, even though

T (0) = T (2π) = 1. Since f is the square root function, this means

that the square root of 1 must be both 1 and −1. This is problematic

at best. Even if we start with
√
1 = 1, going once around the circle

we must now have
√
1 = −1.This forces the square root function to

be two-valued and hence not a real function at all.

To remedy this situation, we do the following. Let p(x) be a

polynomial. If we go around a circle, the
√
p(x) will change sign,

provided that p(x) has a zero in the interior. For example,
√
(x− 2)

will change sign when we go around a circle of radius two centered

at 2 but will not change sign if we go around a circle of radius one

centered at the origin.

�

i

1 2

Exercise 2.9.3. Now let T : [0, 2π] → C be defined by T (θ) = 2eiθ

and let f : C → C be defined by f(x) =
√
x(x− 1).
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(1) Show that T ([0, 2π]) is a circle of radius 2 in C.

(2) Show that f ◦ T (0) = f ◦ T (2π).
(3) Show that f ◦ T ([0, 2π]) is a closed curve in C− [0, 1].

Exercise 2.9.4. Using the notation from the previous problem, sketch

an intuitive argument for f(x) =
√

x(x− 1) being well-defined on

C − [0, 1] in two ways: (i) by setting
√

2(2− 1) = +
√
2, and then

(ii) by setting
√
2(2− 1) = −

√
2. This construction establishes a

two-sheeted cover of C− [0, 1].

This suggests that a function of the form
√
p(x) will not change

sign if p(x) has two zeros in the interior. Thus we will assume, for

example, that
√

(x− 1)(x− 4) will not change sign along a circle of

radius 5 centered at the origin.

� �
1 4
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Sheet 1
0 1

Sheet 2
0 1

x−axis
0 1

Exercise 2.9.5. Let T : [0, 2π] → C be defined by T (θ) =
1

2
ei(θ+π/2)

and let f : C → C be defined by f(x) =
√
x(x− 1).

(1) Show that T ([0, 2π]) is the circle of radius
1

2
, with center 0,

starting at the point
1

2
i, in the counterclockwise direction.

(2) Show that f ◦ T (0) and f ◦ T (2π) give different values and

that these exist on each of the two sheets.

(3) Justify intuitively why f ◦ T ([0, 2π]) can be viewed as illus-

trated where Sheet 1 corresponds to
√
2 and Sheet 2 corre-

sponds to −
√
2, as in the previous problem.

We now see how a particular conic can be viewed, topologically,

as a sphere (a fact that we already showed in Chapter 1).
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Exercise 2.9.6. Consider V(y2 − x(x − z)) in P2. Now instead of

considering two C sheets, we include the point at infinity, so we have

two P1 sheets, i.e., our two sheets are now spheres rather than planes.

(1) Show that for each (x : z) ∈ P1 there are two possible values

for y, except at (0 : 1) and (1 : 1).

(2) Let γ be the straight real line from (0 : 1) to (1 : 1) where

x/z is a positive real. Consider the following figure in which

the bottom sphere corresponds to P1 − γ. Show that sitting

over this projective line are two sheets, each of which is a

copy of P1 − γ.

Sheet 1
(0:1) (1:1)

Sheet 2
(0:1) (1:1)

x−axis
(0:1) (1:1)
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(3) Replace the segments in [(0 : 1), (1 : 1)] in Sheets 1 and 2

with circles A and B. Draw a sequence of diagrams to show

that if we attach circle A in Sheet 1 to circle B in Sheet 2,

then we obtain a sphere.

Sheet 1

A

Sheet 2

B

x−axis
(0:1) (1:1)

(4) Conclude that V(y2 − x(x− z)) ⊂ P2 is a sphere.

Exercise 2.9.7. Now consider f : C → C defined by

f(x) =
√
x(x− 1)(x− λ).

(1) Show that f is a 2-to-1 cover of the x-axis except at x = 0,

x = 1, and x = λ.
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(2) Let γ be a straight line in C from λ to infinity as in :

�λ

γ

Via pictures, intuitively argue that x(x− 1)(x−λ) can con-

tain either no zeros or two zeros in the interior of any circle

in C− [0, 1]− γ.

(3) Sketch an intuitive argument for f(x) =
√
x(x− 1)(x− λ)

being well-defined on C − [0, 1] − γ in two ways: by fixing

one of the values f(x) =
√
x(x− 1)(x− λ) at a point on

C − [0, 1] − γ and then by fixing the opposite value. This

construction establishes a 2-sheeted cover of C− [0, 1]− γ.

(4) Homogenize y2 = x(x− 1)(x−λ) to show that we now have

a two-to-one cover of P1 except at (0 : 1), (1 : 1), (λ : 1),

and (1 : 0), where each of the two sheets is itself a P1.

(5) Use the earlier exercises to draw a sequence of diagrams

illustrating how y2 = x(x− z)(x− λz) in P2 is a torus.

Thus topologically all cubics are the same, while algebraically

they can be quite different.

                

                                                                                                               



Chapter 3

Higher Degree Curves

The goal of this chapter is to explore higher degree curves in P2.

There are seven parts. In the first, we define what is meant by an

irreducible curve and its degree. We next show how curves in P2 can

be thought of as real surfaces, similar to our observations for conics

(Section 1.7) and cubics (Section 2.9). In the third part, we develop

Bézout’s Theorem, which tells us the number of points of intersection

of two curves. We then introduce the ring of regular functions and the

function field of a curve. In the fifth and sixth sections, we develop

Riemann-Roch, an amazing theorem that links functions on the curve,

the degree of the curve, and the genus (the number of holes) of the

curve into one formula. In the last section, we consider singular points

on a curve and develop methods for resolving them.

3.1. Higher Degree Polynomials and Curves

The goals of this section are to define what it means for a curve to

be irreducible and to define the degree of a curve.

In Chapter 1 we dealt with conics, which are the zero sets of

second degree polynomials. In Chapter 2 we looked at cubics, which

are the zero sets of third degree polynomials. It is certainly natural

to consider zero sets of higher degree polynomials.

129
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By now, we know that it is most natural to work in the complex

projective plane, P2, which means in turn that we want our zero

sets to be the zero sets of homogeneous polynomials. Suppose that

P (x, y, z) ∈ C[x, y, z] is a homogeneous polynomial. As before, we

denote this polynomial’s zero set by

V(P ) = {(a : b : c) ∈ P2 : P (a, b, c) = 0}.

Exercise 3.1.1. Let P (x, y, z) = (x+y+z)(x2+y2−z2). Show that

V(P ) is the union of the two curves V(x+y+ z) and V(x2+y2− z2).

Thus, if we want to understand V(P ), we should start by looking

at its two components: V(x+y+z) and V(x2+y2−z2). In many ways,

this might remind us of working with prime factorization of numbers.

If we understand these building blocks—those numbers that cannot

be broken into a product of two smaller numbers—then we start to

understand the numbers formed when they are strung together.

Exercise 3.1.2. Let P (x, y, z) = (x + y + z)2. Show that V(P ) =

V(x+ y + z).

Both (x+y+z)(x2+y2−z2) and (x+y+z)2 are reducible, meaning

that both can be factored. When we are considering a factorization,

we do not consider trivial factorizations, such as P = 1 ·P . We would

prefer, for now, to restrict our attention to curves that are the zero

sets of irreducible homogeneous polynomials.

Definition 3.1.1. If the defining polynomial P cannot be factored,

we say the curve V(P ) is irreducible.

For the rest of this chapter, all polynomials used to define curves

will be irreducible unless otherwise indicated.

Definition 3.1.2. The degree of the curve V(P ) is the degree of its

defining polynomial P (x, y, z).

The degree of a curve is the most basic number associated to a

curve that is invariant under change of coordinates. The following is

an example of this phenomenon.
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Exercise 3.1.3. Let P (x, y, z) = x3+y3−z3. Then V(P ) is a degree

three curve. Consider the projective change of coordinates

x = u− w

y = iv

z = u+ v.

Find the polynomial P̃ (u, v, w) whose zero set V(P̃ ) maps to V(P ).

Show that V(P̃ ) also has degree three.

3.2. Higher Degree Curves as Surfaces

The goal of this section is to generalize our work in Sections 1.7

(Chapter 1) and 2.9 (Chapter 2), where we realized smooth conics

and cubics over C as topological surfaces over R.

3.2.1. Topology of a Curve. Suppose f(x, y, z) is a homogeneous

polynomial, so V(f) is a curve in P2. Recall that the degree of V(f)

is, by definition, the degree of the homogeneous polynomial f . We

will see that this algebraic invariant of the curve is closely linked to

the topology of the curve viewed as a surface over R. Specifically, it

is related to the “genus” of the curve, which counts the number of

holes in the surface.

Before we proceed to higher degree curves, we return to our pre-

vious experience with conics and cubics.

Exercise 3.2.1. Consider the conics defined by the homogeneous

equation x2−y2 = λz2, where λ is a parameter. Sketch affine patches

of these in the chart z = 1 for λ = 4, 1, 0.25.

As λ → 0, we get x2 − y2 = 0, or (x− y)(x+ y) = 0. In R2, this

looks like
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•

but this picture isn’t accurate over C in P2. Instead, topologically

the picture looks like “kissing spheres”:

•

Thus, the topological version of the original equation, x2 − y2 = λz2,

should be found by perturbing the kissing spheres a little to account

for λ �= 0:

•

λ = 0 λ �= 0

∼=

Therefore, by mildly perturbing the specialized, non-smooth conic,

we find that topologically a smooth conic (those in this exercise for

which λ �= 0) is a sphere with no holes, which agrees with our work

in Section 1.7.

Following this same reasoning, we find another proof that a smooth

cubic must be a torus when realized as a surface over R. We begin

with the highly degenerate cubic, f(x, y, z) = (a1x+ b1y+ c1z)(a2x+

b2y+ c2z)(a3x+ b3y+ c3z). In the real affine chart z = 1, the picture

looks like
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•

••

Again, our picture isn’t valid over C in P2. Instead, the correct topo-

logical picture is that of three spheres meeting at three points, as

shown.

•

••

Perturbing the top two spheres slightly, we find they join into the

topological equivalent of a single sphere, but that this new figure is

joined to the third sphere at two points of contact. Perturbing each of

these points of intersection independently of one another, we obtain

a single surface with a hole through the middle as depicted in the

sequence of figures below.

•• ∼=
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Thus a smooth cubic over C is topologically equivalent to a torus (a

sphere with a hole through it) as a surface over R. Note that this

agrees with our results in Section 2.9.

Exercise 3.2.2. Mimic the arguments illustrated above to describe

the real surface corresponding to a smooth quartic (fourth degree)

curve over C in P2. Start with a highly degenerate quartic (the prod-

uct of four pairwise non-parallel lines), draw the corresponding four

spheres, and deform this surface by merging touching spheres two at

a time. How many holes will the resulting figure possess?

Now do the same for a smooth quintic (fifth degree) curve. How

many holes must it have?

3.2.2. Genus of a Curve. The number of holes in the real surfaces

corresponding to smooth conics, cubics, quartics, and quintics is a

topological invariant of these curves. That is, every smooth conic is

topologically equivalent to a real sphere with no holes. Every smooth

cubic is topologically equivalent to a real torus (a sphere with ex-

actly one hole through it), every smooth quartic is equivalent to a

sphere with three holes, and every smooth quintic to a sphere with

six holes. Therefore, all smooth conics are topologically equivalent to

one another, all smooth cubics are topologically equivalent, and so on,

and each equivalence class is completely determined by the number

of holes in the associated real surface.

Definition 3.2.1. Let V(P ) be a smooth, irreducible curve in P2(C).

The number of holes in the corresponding real surface is called the

topological genus of the curve V(P ).

topological

genus= 0
topological genus= 1 topological genus= 2

Presently, this notion of genus makes sense only when we are

thinking of our complex curves as surfaces over the reals. We see

that there is a connection between the genus g and the degree d of a
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curve. That is, all smooth curves of degree d have the same genus, so

we now wish to find a formula expressing the genus as a function of

the degree.

Exercise 3.2.3. Find a quadratic function in d, the degree of a

smooth curve, that agrees with the topological genus of curves of

degrees d = 2, 3, 4 found earlier. Now use this formula to compute

the genus of a smooth quintic (fifth degree) curve. Does it match

your answer to the last exercise?

Definition 3.2.2. Let V(P ) be a smooth curve of degree d. The

number
(d− 1)(d− 2)

2
is the arithmetic genus of the curve, which is

an algebraic invariant of V(P ).

Exercise 3.2.4. Argue by induction on d, the degree, that the topo-

logical genus agrees with the arithmetic genus for smooth curves, or

in other words that

g =
(d− 1)(d− 2)

2
.

It is a theorem that the topological genus and the arithmetic

genus do agree with one another whenever both are defined and make

sense. However, the arithmetic version is independent of base field

and enables us to exploit the genus of curves even over finite fields in

positive characteristic.

3.3. Bézout’s Theorem

The goal of this section is to develop the needed definitions that allow

the statement and proof of Bézout’s Theorem, which says that in P2

a curve of degree n will intersect a curve of degree m in exactly nm

points, provided the points of intersection are “counted correctly.”

3.3.1. Intuition behind Bézout’s Theorem. We look at how

many points a straight line will intersect a conic in P2. Both the

need to work in the complex projective plane P2 and the need to

define intersection numbers correctly will become apparent.

Exercise 3.3.1. Show that the line V(x− y) will intersect the circle

V(x2 + y2 − 1) in two points in the real plane, R2.
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Exercise 3.3.2. Show that the line V(x− y + 10) will not intersect

V(x2 + y2 − 1) in R2 but will intersect V(x2 + y2 − 1) in two points

in C2.

The last exercise demonstrates our need to work over the complex

numbers. Now we must demonstrate the need for projective space.

Exercise 3.3.3. Show that the two lines V(x−y+2) and V(x−y+3)

do not intersect in C2. Homogenize both polynomials and show that

they now intersect at a point at infinity in P2.

Exercise 3.3.4. Show that V(y− λ) will intersect V(x2 + y2 − 1) in

two points in C2, unless λ = ±1. Show that V(y − 1) and V(y + 1)

are tangent lines to the circle V(x2+y2−1) at their respective points

of intersection. Explain why it is reasonable to say that V(y − 1)

intersects the circle V(x2+y2−1) in one point with multiplicity two.

Exercise 3.3.5. Show that the line V(y−λx) will intersect the curve

V(y − x3) in three points in C2, unless λ = 0. Letting λ = 0, show

that V(y) will intersect the curve V(y − x3) in only one point in C2.

Explain why we might say that V(y) intersects V(y−x3) in one point

with multiplicity three.

Exercise 3.3.6. Show that there are no points in C2 in the intersec-

tion of V(xy− 1) with V(y). Homogenize both equations xy = 1 and

y = 0. Show that there is a point of intersection at infinity. Explain

why we might say that V(xy − 1) will intersect V(y) in one point at

infinity with multiplicity two.

3.3.2. Fundamental Theorem of Algebra. Polynomials have

roots. Much of the purpose of high school algebra is the exploration

of this fact. The need for complex numbers stems from our desire to

have all possible roots for polynomials.

In this subsection we briefly review the Fundamental Theorem

of Algebra. The exercises will lead us to the realization that such

a generalization requires a precise definition of the multiplicity of a

point of intersection.

Consider a polynomial f(x) with real coefficients. Of course, the

number of real roots of f is less than or equal to the degree of f , with
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equality in the case that f can be written as a product of distinct

linear factors over R.

Exercise 3.3.7. Give examples of second degree polynomials in R[x]

that have zero, one, and two distinct real roots, respectively.

Exercise 3.3.8. Find the complex roots of your first example.

The moral of the preceding exercises is that by considering com-

plex roots, and defining multiplicity appropriately, we can make a

uniform statement about the number of roots of a polynomial.

Definition 3.3.1. Let f(x) be a polynomial in C[x]. If f(x) = (x−
a)mg(x), m > 0, such that (x− a) does not divide g(x), then we say

that the multiplicity of the root a of f(x) is m.

Theorem 3.3.9 (Fundamental Theorem of Algebra). If f(x) is a

polynomial of degree d in C[x], then

f(x) = c(x− a1)
m1(x− a2)

m2 · · · (x− ar)
mr ,

where c is a nonzero constant, each ai is a complex root of multiplicity

mi and
r∑

i=1

mi = d.

Another way of stating this theorem is that the graph of y = f(x)

in C2 intersects the complex line y = 0 in d points, counted with

multiplicity. A natural generalization of this would be to consider the

intersection of a curve defined by f(x, y) = 0, where f is a degree d

polynomial in C[x, y], and a line defined by ax+ by + c = 0.

Exercise 3.3.10. Let f(x, y) = x2 − y2 − 1 and g(x, y) = x. Sketch

V(f) and V(g) in R2. Do they intersect? Find V(f) ∩ V(g) in C2.

Exercise 3.3.11. Let g(x, y) = ax + by + c, b �= 0, in C[x, y]. Let

f(x, y) =
∑
i

aix
riysi be any polynomial of degree d in C[x, y]. Show

that the number of points in V(f)∩V(g) is d, if the points are counted

with an appropriate notion of multiplicity. [Hint: Substitute y =
−ax− c

b
into f = 0, so that f = 0 becomes a polynomial equation of

degree d in the single variable x. Apply the Fundamental Theorem

of Algebra.]
                

                                                                                                               



138 3. Higher Degree Curves

What about the intersection of two curves? To answer this ques-

tion we will need a more general definition of multiplicity—one that is

inspired by the previous exercise, and for the most uniform statement

we will need to consider curves in the complex projective plane.

3.3.3. Intersection Multiplicity. The goal of this section is to un-

derstand Bézout’s Theorem on the number of points in the intersec-

tion of two plane curves. The statement of Bézout’s Theorem requires

the definition of the intersection multiplicity of a point p in the in-

tersection of two plane curves, which is the goal of this subsection.

Here we will present an axiomatic development for intersection mul-

tiplicity, but we will eventually show that calculating the intersection

multiplicity can be reduced to applying the Fundamental Theorem of

Algebra for a one-variable polynomial.

The following theorem establishes the existence of a well-behaved

intersection multiplicity. We will not prove this theorem. (The proof

is certainly not beyond the scope of this text; it would take a number

of pages and problems to actually prove it, though.) The statement

of this theorem and our treatment of it closely follows that of Kir-

wan [Kir92] and, to a lesser extent, Fulton [Ful69].

Theorem 3.3.12 (Intersection Multiplicity). Given polynomials f

and g in C[x, y] and a point p in C2, there is a uniquely defined number

I(p,V(f) ∩V(g)) such that the following axioms are satisfied.

(1) I(p,V(f)∩V(g)) ∈ Z≥0, unless p lies on a common compo-

nent of V(f) and V(g), in which case I(p,V(f)∩V(g)) = ∞.

(2) I(p,V(f) ∩V(g)) = 0 if and only if p �∈ V(f) ∩ V(g).

(3) Two distinct lines meet with intersection number one at

their common point of intersection.

(4) I(p,V(f) ∩V(g)) = I(p,V(g) ∩V(f)).

(5) I(p,V(f) ∩ V(g)) =
∑

risjI(p,V(fi) ∩ V(gj)) when f =∏
fri
i and g =

∏
g
sj
j .

(6) I(p,V(f)∩V(g)) = I(p,V(f)∩V(g+af)) for all a ∈ C[x, y].
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Definition 3.3.2. The number I(p,V(f) ∩ V(g)) is the intersection

multiplicity of f and g at p.

We can easily extend this definition to curves in P2, by dehomoge-

nizing the projective curves, making them into curves in C2 containing

the point in question.

Exercise 3.3.13. Use the above axioms to show that for p = (0, 0),

I(p,V(x2) ∩V(y)) = 2.

Sketch V(x2) and V(y).

Exercise 3.3.14. Show for p = (0, 0),

I(p,V(x2 − y) ∩ V(y)) = 2.

Sketch V(x2 − y) and V(y).

Exercise 3.3.15. Show for p = (0, 0),

I(p,V(y2 − x2 − x3) ∩V(x)) = 2.

Sketch V(y2 − x2 − x3) and V(x).

Finally, we want to see how the intersection multiplicity varies,

or more accurately doesn’t vary, under change of coordinates.

Exercise 3.3.16. Show that for any polynomials f and g in C[x, y]

and a point p in C2, for any affine change of coordinates T we have

I(p,V(f) ∩ V(g)) = I(T (p),V(T−1f) ∩V(T−1g)).

[Hint: This problem is actually not that hard. Its solution involves

little or no calculations.]

3.3.4. Multiplicity of a Curve at a Point. In this subsection we

give the definition of the multiplicity of a point on a curve. The first

step in this direction is to generalize the idea of multiplicity of a root.

Besides being of independent interest, the multiplicity of a point on

a curve will help us in easily calculating intersection multiplicities.

In order to have a rigorous definition for the multiplicity of a

point on a curve V(P ), we will need to review multivariable Taylor

series expansions.
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Exercise 3.3.17. Show that

P (x, y) = 5− 8x+ 5x2 − x3 − 2y + y2

is equal to

(y − 1)2 − (x− 2)2 − (x− 2)3

by directly expanding the second polynomial. Now, starting with

P (x, y) = 5 − 8x + 5x2 − x3 − 2y + y2, calculate its Taylor series

expansion at the point (2, 1):

∞∑
n,m=0

1

n!m!

∂n+mP

∂xn∂ym
(2, 1)(x− 2)n(y − 1)m,

which is

P (2, 1)+
∂P

∂x
(2, 1)(x−2)+

∂P

∂y
(2, 1)(y−1)+

1

2

∂2P

∂x2
(2, 1)(x−2)2+ . . . .

Definition 3.3.3. Let f be a nonhomogeneous polynomial (in any

number of variables) and let p be a point in the set V(f). The mul-

tiplicity of f at p, denoted mpf , is the degree of the lowest degree

nonzero term of the Taylor series expansion of f at p.

Notice that if p �∈ V(f), then mpf = 0, since the lowest degree

nonzero term of the Taylor expansion of f at p is f(p) �= 0, which has

degree zero. If p ∈ V(f), then f(p) = 0, so mpf must be at least one.

Exercise 3.3.18. Let f be a nonhomogeneous polynomial (in any

number of variables) of degree n.

(1) Show that mpf = 1 if and only if p is a nonsingular point.

Hence, mp(f) = 1 for every point p ∈ V(f) if and only if

V(f) is nonsingular.

(2) Show that mpf ≤ n for all p ∈ V(f). Hence, 1 ≤ mpf ≤ n

for all p ∈ V(f).

Exercise 3.3.19. Let f(x, y) = xy. What is the multiplicity of f at

the origin? Let p = (0, 1), and calculate mpf .

Exercise 3.3.20. Let f(x, y) = x2+xy−1. Calculate the multiplicity

of f at p = (1, 0).
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We are interested in curves in the complex projective plane, P2,

and hence in zero sets of homogeneous polynomials. By considering

appropriate affine patches, we can apply our definition in this case.

Exercise 3.3.21. Consider the homogeneous polynomial

P (x, y, z) = zy2 − (x− z)3.

We want to show that the point (1 : 0 : 1) ∈ V(P ) has multiplicity

two, no matter how P is dehomogenized. Show when we dehomoge-

nize by setting z = 1, that the point x = 1, y = 0 has multiplicity two

for P (x, y, 1). Then show when we dehomogenize by setting x = 1,

that the point y = 0, z = 1 has multiplicity two for P (1, y, z).

Exercise 3.3.22. Let (a : b : c) ∈ V(f). Show that the multiplicity

of f at the point (a : b : c) remains the same no matter how we

dehomogenize. (This is quite a long problem to work out in full

detail.)

The following theorem links intersection multiplicity of two plane

curves at a point p with the multiplicity of the point for each of the

curves.

Theorem 3.3.23. Given polynomials f and g in C[x, y] and a point

p in C2, we have

I(p,V(f) ∩ V(g)) ≥ mp(f) ·mp(g),

with equality if and only if V(f) and V(g) have no common tangent

at p.

(We will not give a proof of this result; once we know how to

compute intersection multiplicity from resultants, which is the goal

of the next few sections, we could indeed show that it is true.)

3.3.5. Statement of Bézout’s Theorem. Bézout’s Theorem tells

us how many points are in the intersection of two plane curves. We

start with some examples.

Exercise 3.3.24. Let f(x, y) = x2 + y2 − 1. Give examples of real

polynomials

g(x, y) = ax+ by + c
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such that

V(x2 + y2 − 1) ∩ V(ax+ by + c)

in R2 has zero, one or two points, respectively. Now consider the

intersections V(f)∩V(g) in C2. In each of your three examples, find

these points of intersection, calculate their multiplicities, and verify

that
∑
p

I(p,V(f) ∩V(g)) = (deg f)(deg g). [Hint: To help with the

intersection multiplicity, use Theorem 3.3.23.]

Exercise 3.3.25. Let

f = x2 + y2 − 1

and

g = x2 − y2 − 1.

Find all points of intersection of the curves V(f) and V(g). For each

point of intersection p, send p to (0, 0) via a change of coordinates

T . Find I(p,V(f)∩V(g)) by calculating I((0, 0), T (V(f))∩T (V(g))).

Verify that ∑
p

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Exercise 3.3.26. Let

f = y − x(x− 2)(x+ 2)

and

g = y − x.

Find all points of intersection of the curves V(f) and V(g). At

each point of intersection p, show that the curves have distinct tan-

gent lines. Using Theorem 3.3.23 from the previous section, find

I(p,V(f) ∩V(g)). Verify that∑
p

I(p,V(f) ∩V(g)) = (deg f)(deg g).

The previous exercises may have led you to conjecture that if f

and g are any polynomials, then
∑
p

I(p,V(f) ∩ V(g)) = (deg f)(deg g).

This is not true for all curves V(f) and V(g) in C2 (though it will be

true in P2), as the next exercise illustrates.
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Exercise 3.3.27. Let f = y−x2 and g = x. Verify that the origin is

the only point of V(f)∩V(g) in C2 and that I((0, 0),V(f)∩V(g)) = 1.

We would like the number of points of intersection of two curves

to be the product of their degrees. Unfortunately, we have seen in

the previous exercise that this is not true in the affine plane. The

corresponding curves in the projective plane, however, will always

intersect in the “correct” number of points. This is Bézout’s Theorem,

which we will prove later in this section.

Theorem 3.3.28 (Bézout’s Theorem). Let f and g be homogeneous

polynomials in C[x, y, z] with no common factors, and let V(f) and

V(g) be the corresponding curves in P2(C). Then∑
p∈V(f)∩V(g)

I(p,V(f) ∩V(g)) = (deg f)(deg g).

Exercise 3.3.29. Homogenize the polynomials in Exercise 3.3.27,

and find the two points of V(f)∩V(g) in P2(C). Check that Bézout’s

Theorem holds.

Exercise 3.3.30. Let f = x2 − y2 − 1 and g = x − y. Sketch V(f)

and V(g) in R2. Homogenize f and g and verify Bézout’s Theorem in

this case. Describe the relationship between the points of intersection

in P2(C) and the sketch in R2. Repeat this exercise with g = x+ y.

Exercise 3.3.31. Confirm that the curves defined by x2 + y2 = 1

and x2 + y2 = 4 do not intersect in C2. Homogenize these equations

and confirm Bézout’s Theorem in this case. Would a sketch of the

circles in R2 give you any insight into the intersections in P2(C)?

3.3.6. Resultants. The goal of this subsection is to define the re-

sultant of two polynomials, which will be the main tool in our proof

of Bézout’s Theorem.

While the Fundamental Theorem of Algebra tells us that a one-

variable polynomial of degree d has exactly d roots, counting multi-

plicities, it gives us no means for actually finding these roots. Simi-

larly, what if we want to know if two one-variable polynomials have a

common root? The most naive method would be to find the roots for

each of the polynomials and see if any of the roots are the same. In
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practice, though, this method is quite difficult to implement, since we

have no easy way for finding these roots. The resultant is a totally

different approach for determining if the polynomials share a root.

The resultant is the determinant of a matrix; this determinant will

be zero precisely when the two polynomials have a common root.

Definition 3.3.4. The resultant Res(f, g) of two polynomials

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and

g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0

is defined to be the determinant of the (m+ n)× (m+ n) matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 · · · a0 0 0 · · · 0

0 an an−1 · · · a0 0 · · · 0

0 0
. . .

. . . · · · . . . . . . 0

0 0 · · · 0 an an−1 · · · a0
bm bm−1 · · · b0 0 0 · · · 0

0 bm bm−1 · · · b0 0 · · · 0

0 0
. . .

. . . · · · . . . . . . 0

0 0 · · · bm−1 · · · · · · · · · b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where there are m rows of a’s and n rows of b’s.

For example, if f(x) = a2x
2 + a1x+ a0 and g(x) = b4x

4 + b3x
3 +

b2x
2 + b1x+ b0, then

Res(f, g) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a2 a1 a0 0 0 0

0 a2 a1 a0 0 0

0 0 a2 a1 a0 0

0 0 0 a2 a1 a0
b4 b3 b2 b1 b0 0

0 b4 b3 b2 b1 b0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

An important property of resultants is that f(x) and g(x) have

a common root if and only if Res(f, g) = 0. The following three

exercises will illustrate this property. You will then prove this result.

Exercise 3.3.32. Let f(x) = x2 − 1 and g(x) = x2 + x− 2.

(1) Find the roots of f and g and show that they share a root.
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(2) Show that Res(f, g) = 0.

Exercise 3.3.33. Let f(x) = x2 − 1 and g(x) = x2 − 4.

(1) Find the roots of f and g and show that they have no roots

in common.

(2) Show that Res(f, g) �= 0.

Exercise 3.3.34.

(1) Let f(x) = x − r and g(x) = x − s. Find Res(f, g). Verify

that Res(f, g) = 0 if and only if r = s.

(2) Let f(x) = x−r and g(x) = (x−s1)(x−s2). Find Res(f, g).

Verify that Res(f, g) = 0 if and only if r = s1 or r = s2.

Exercise 3.3.35. For a degree two polynomial f(x) = a2x
2 + a1x+

a0 = a2(x− r1)(x− r2), we have

a1
a2

= −(r1 + r2)

a0
a2

= r1r2.

Use these relations between the coefficients and roots to show that if

f(x) = a2x
2 + a1x+ a0 = a2(x− r1)(x− r2)

g(x) = b2x
2 + b1x+ b0 = b2(x− s1)(x− s2),

then

Res(f, g) = a22b
2
2(r1 − s1)(r1 − s2)(r2 − s1)(r2 − s2).

Exercise 3.3.36. Let f(x, y) = x2 + y2 − 2 and g(x, y) = x2 − xy +

y2 + y − 2.

(1) Treating f and g as polynomials in x, compute

R(y) = Res(f, g;x) = det

⎛⎜⎜⎝
1 0 y2 − 2 0

0 1 0 y2 − 2

1 −y y2 + y − 2 0

0 1 −y y2 + y − 2

⎞⎟⎟⎠
(2) Set R(y) = 0 and solve for y to find the projections on the

y-axis of the points of intersection of V(f) and V(g).
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Exercise 3.3.37. The two lines V(x− y) and V(x− y + 2) are par-

allel in the affine plane, but intersect at (1 : 1 : 0) in P2. Treating

f(x, y, z) = x− y and g(x, y, z) = x− y + 2z as one-variable polyno-

mials in x, show that Res(x− y, x− y + 2z;x) = 0 when z = 0.

Exercise 3.3.38. Let f(x, y) = 4x− 3y and g(x, y) = x2 + y2 − 25.

Use the resultant Res(f, g;x) to find the points of intersection of V(f)

and V(g).

Exercise 3.3.39. Let f(x) = ax2 + bx+ c.

(1) Find Res(f, f ′).

(2) Under what conditions will Res(f, f ′) = 0?

We are now ready to prove that two polynomials f and g have a

common root if and only if Res(f, g) = 0.

Exercise 3.3.40. Show that if r is a common root of f and g, then

the vector x =

⎛⎜⎜⎜⎜⎜⎝
rm+n−1

rm+n−2

...

r

1

⎞⎟⎟⎟⎟⎟⎠ is in the null space of the resultant

matrix of f and g, and thus Res(f, g) = 0.

Exercise 3.3.41 (from Kirwan, Complex Algebraic Curves [Kir92],

Lemma 3.3, p. 67). Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 and

g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0, with an �= 0 and bm �= 0.

(1) Prove that f and g have a common root x = r if and only if

there exists a polynomial p(x) of degree m − 1 and a poly-

nomial q(x) of degree n− 1 such that p(x)f(x) = q(x)g(x).

(2) Write p(x) = αm−1x
m−1 + · · · + α1x + α0 and q(x) =

βn−1x
n−1 + · · ·+β1x+β0. By comparing coefficients, show

that the polynomial equation p(x)f(x) = q(x)g(x) corre-

sponds to the linear system in the αi and βj

αm−1an = βn−1bm
αm−1an−1 + αm−2an = βn−1bm−1 + βn−2bm

...

α0a0 = β0b0.
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(3) Prove that this system of equations has a nonzero solution

(αm−1, αm−2, . . . , α0, βn−1, βn−2, . . . , β0)

if and only if Res(f, g) = 0.

(This solution is quite a bit longer than most of the other problems.)

We have shown for f(x) = x− r and g(x) = x− s that

Res(f, g) = r − s

and for f(x) = x− r and g(x) = (x− s1)(x− s2) that

Res(f, g) = (r − s1)(r − s2).

We want to show in the next series of exercises that if

f(x) = an(x− r1) · · · (x− rn)

and

g(x) = bm(x− s1) · · · (x− sm),

then

Res(f, g) = amn bnm

i=n,j=m∏
i=1,j=1

(ri − sj).

One technical point first: if an �= 0, then the roots of

f(x) = anx
n + · · ·+ a0

are the same as the roots of

f̃(x) = xn +

(
an−1

an

)
xn−1 + · · ·+ a0

an
.

Exercise 3.3.42. If

f(x) = anx
n + an−1x

n−1 · · ·+ a0

g(x) = bmxm + · · ·+ b0

f̃(x) = xn +

(
an−1

an

)
xn−1 + · · ·+ a0

an

g̃(x) = xm +

(
bm−1

bm

)
xm−1 + · · ·+ b0

bm
,

then show

Res(f, g) = amn bnm Res(f̃ , g̃).
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We will use this to show that if

f(x) = (x− r1) · · · (x− rn)

and

g(x) = (x− s1) · · · (x− sm),

then Res(f, g) =
∏
(ri − sj).

First we recall the relationship between the roots of a polynomial

and its coefficients.

Exercise 3.3.43. Let r1, r2 and r3 be the three roots of the cubic

f(x) = x3 + a2x
2 + a1x+ a0.

Show that

a2 = −(r1 + r2 + r3)

a1 = r1r2 + r1r3 + r2r3

a0 = −r1r2r3.

Exercise 3.3.44. Let r1, . . . , rn be the roots of

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Show that

an−1 = −(r1 + · · ·+ rn)

an−2 = r1r2 + r1r3 + · · ·+ r1rn + r2r3 + · · ·+ rn−1rn
...

an−k = (−1)k
∑

i1<···<ik

ri1 · · · rik

...

a0 = (−1)nr1 · · · rn.

(If the polynomial has a multiple root, say of degree k, we list this

root k times. For example, the roots of (x− 3)2(x − 5) are listed as

3, 3, 5.)

We can describe a polynomial f(x) either via its coefficients

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0,
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or by its roots

f(x) = (x− r1) · · · (x− rn).

We say that the n-tuple (a1, . . . , an−1) is in the coefficient space while

the roots (r1, . . . , rn) are in the root space. The above exercise shows

that there is an easy map

Root space → Coefficient Space.

Much of the difficulty in algebra and algebraic geometry lies with the

inverse map

Coefficient Space → Root Space.

A large part of high school algebra is the development of the quadratic

equation, which is simply the map from the coefficient space of a

second degree polynomial to its two roots:

(a1, a2) →
(
−a1 +

√
a21 − 4a2
2

,
−a1 −

√
a21 − 4a2
2

)
.

Back to resultants: Given polynomials f(x) and g(x), the resul-

tant is the determinant of a matrix whose entries are coefficients of f

and g and is hence a polynomial of the coefficients. Since the coeffi-

cients are in turn polynomials of the roots of f and g, we can write

the resultant as a polynomial in the roots r1, . . . , rn of f and the roots

s1, . . . sm of g, namely as

Res(r1, . . . rn, s1, . . . , sm).

Exercise 3.3.45. Show that (ri−sj) divides Res(r1, . . . rn, s1, . . . , sm).

Exercise 3.3.46. If f has degree n and g has degree m, show that∏
(ri − sj)

has degree m as a polynomial in ri and degree n as a polynomial in

sj .

Exercise 3.3.47. For

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with roots r1, . . . , rn and for

g(x) = xm + bm−1x
m−1 + · · ·+ b1x+ b0
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with roots s1, . . . , sm, show that Res(r1, . . . rn, s1, . . . , sm) has degree

m as a polynomial in ri and degree n as a polynomial in sj .

Exercise 3.3.48. With the notation of the previous exercise, show

that there is a nonzero constant λ such that

Res(f, g) = λ
∏

(ri − sj).

The goal of the next two exercises is to show that this constant

λ equals 1.

Exercise 3.3.49. For

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

and

g(x) = xm + bm−1x
m−1 + · · ·+ b1x+ b0,

show that the highest power of a0 in the resultant is m with leading

coefficient (−1)nm.

Exercise 3.3.50. Show that the highest power of r1, · · · , rn in
∏
(ri−

sj) is m, with leading coefficient one. Conclude for

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

and

g(x) = xm + bm−1x
m−1 + · · ·+ b1x+ b0

that

Res(f, g) =
∏

(ri − sj).

Exercise 3.3.51. For

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with roots r1, . . . , rn and an �= 0 and for

g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0

with roots s1, . . . , sm and bm �= 0, show that

Res(f, g) = amn bnm

i=n,j=m∏
i=1,j=1

(ri − sj).

Exercise 3.3.52. Suppose f(x) = f1(x)f2(x) and g(x) is any other

polynomial. Show that

Res(f, g) = Res(f1, g) · Res(f2, g).
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3.3.7. Proof of Bézout’s Theorem. Now we are ready to outline

a proof of Bézout’s Theorem. Full details can be found in Cox, Little,

and O’Shea’s Ideals, Varieties, and Algorithms [CLO07], Chapter 8,

Section 7.

We start by linking resultants to intersection points of curves.

Exercise 3.3.53. Let f(x, y, z) = 3x+y+2z and g(x, y, z) = x+5z.

Show that Res(f, g; z) is a homogeneous polynomial in x and y of

degree 1.

Exercise 3.3.54. Letting f(x, y, z) = 3x + y + 2z and g(x, y, z) =

x+ 5z, show that V(f) ∩V(g) contains no point with y = 0.

Exercise 3.3.55. Use the notation from the previous two exercises.

After dehomogenizing by setting y = 1, sketch V(f) and V(g) in the

xz-plane. Find the point of intersection (a : 1 : b) of V(f) ∩ V(g).

Show that (a : 1) is the root of Res(f, g; z). Hence the zero of the

resultant is the projection of the point of intersection of V(f)∩V(g).

This suggests the following approach for understanding intersec-

tions of curves. Consider two curves V(f(x, y, z)) and V(g(x, y, z)):

x

y
V(f)

V(g)

The resultant Res(f, g; z), calculated with respect to the variable z,

is a homogeneous polynomial in the variables x and y. The zeros of

this polynomial will be the projections of the points in the intersec-

tion of V(f) ∩ V(g) along the z-axis to the projective line P1 with

homogeneous coordinates x, y. This will allow us to translate ques-

tions about points of intersections of plane curves to questions about
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the roots of one-variable (or two-variable homogeneous) polynomials.

The next few exercises show how we do this. We will then use the

resultant to determine the intersection multiplicity, which in turn will

provide us with the tools to prove Bézout’s Theorem.

Exercise 3.3.56. Let f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = 2x+

3y− z. Show that Res(f, g; z) is a homogeneous polynomial of degree

2.

Exercise 3.3.57. Let f(x, y, z) = x2 + xz + z2 and g(x, y, z) =

x2 + y2 + z2. Show that Res(f, g; z) is a homogeneous polynomial of

degree 4.

The next exercise is a generalization of the previous two exercises.

Exercise 3.3.58. (Cox, Little, and O’Shea [CLO07], Lemma 5,

p. 425). Let f, g ∈ C[x, y, z] be homogeneous polynomials of degrees

n and m, respectively. If f(0, 0, 1) and g(0, 0, 1) are nonzero, then

Res(f, g; z) is homogeneous of degree mn in x and y.

Exercise 3.3.59. Let f(x, y) = x2 − 8xy + 15y2. Show that V(f) =

{(3 : 1), (5 : 1)} and that f(x, y) = (x− 3y)(x− 5y).

Exercise 3.3.60. Let f(x, y) = x2 + y2. Show that V(f) = {(i :

1), (−i : 1)} and that f(x, y) = (x+ iy)(x− iy).

Exercise 3.3.61. Let f(x, y) = x3−5x2y−14xy2. Show that V(f) =

{(0 : 1), (7 : 1), (−2 : 1)} and that f(x, y) = x(x+ 2y)(x− 7y).

The previous exercises are special cases of the general result pre-

sented next.

Exercise 3.3.62. ([CLO07], Lemma 6, p. 427). Let f ∈ C[x, y] be

homogeneous, and let V(f) = {(r1 : s1), . . . , (rt : st)}. Show that

f = c(s1x− r1y)
m1 · · · (stx− rty)

mt ,

where c is a nonzero constant. (This is actually not that hard.)

We now link intersection multiplicity with resultants. The method

is a bit cumbersome. The most important part of the following is

when our two curves contain no common components. Earlier, we

defined intersection multiplicity axiomatically. We will now define
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intersection multiplicity in terms of the resultant and show that the

two definitions are equivalent.

Definition 3.3.5. Let V(f) and V(g) be curves in P2(C) with no

common components. Choose homogeneous coordinates for P2(C) so

that the point (0 : 0 : 1) is not in V(f) or V(g) and is not collinear

with any two points of V(f)∩V(g). (What follows will be independent

of this choice of coordinates, though this is not obvious.) For

p = (u : v : w) ∈ V(f) ∩V(g),

define

I(p,V(f) ∩ V(g))

to be the exponent of (vx − uy) in the factorization of Res(f, g; z),

while if

p �∈ V(f) ∩V(g),

define

I(p,V(f) ∩V(g)) = 0.

If V(f) and V(g) are curves in P2(C) with a common component and

if p is an element of this common component, define

I(p,V(f) ∩ V(g)) = ∞.

Finally, if V(f) and V(g) share a common component but p is an el-

ement not on this common component, factor out the common com-

ponent and then compute the intersection multiplicity, as in the first

case.

The condition that (0 : 0 : 1) is not in V(f) or V(g) is needed to

guarantee that

f(x, y, z) = azn + lower order terms with respect to z,

with a �= 0, and

g(x, y, z) = bzm + lower order terms with respect to z,

with b �= 0. Thus f and g, thought of as functions of z, will be of

degree n and m respectively.
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The condition that (0 : 0 : 1) is not collinear with any two points

of V(f) ∩ V(g) is to guarantee that two distinct points in the in-

tersection will not project to the same point in the line P1 whose

coordinates are x and y. Thus we do not want something like:

x

y

V(f)V(g)

(0 : 0 : 1)

(In general, if (0 : 0 : 1) is on both curves, we can do a simple change

of coordinates to reduce finding the intersection points to the above.)

We want to show that this definition satisfies the axioms for the

intersection multiplicity given earlier.

Exercise 3.3.63. Show that I(p,V(f) ∩ V(g)) ∈ Z≥0, unless p lies

on a common component of V(f) and V(g), in which case I(p,V(f)∩
V(g)) = ∞.

Exercise 3.3.64. Show that I(p,V(f) ∩ V(g)) = 0 if and only if

p �∈ V(f) ∩ V(g).

Exercise 3.3.65. Show that two distinct lines meet with intersection

number one at their common point of intersection.

Exercise 3.3.66. Show that I(p,V(f) ∩V(g)) = I(p,V(g) ∩V(f)).

Exercise 3.3.67. Show that I(p,V(f) ∩ V(g)) =
∑

risiI(p,V(fi) ∩
V(gi)) when f =

∏
fri
i and g =

∏
gsii .

Exercise 3.3.68. Show that I(p,V(f) ∩ V(g)) = I(p,V(f) ∩ V(g +

af)) for all homogeneous polynomials a ∈ C[x, y, z] of degree m− n,

where g has degree m and f has degree n.
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Thus the axiomatic and the resultant definitions of intersection

multiplicity are equivalent.

Exercise 3.3.69. Deduce Bézout’s Theorem from Exercises 3.3.58,

3.3.62, and 3.3.68.

3.4. The Ring of Regular Functions and
Function Fields

The goal of this section is to associate a ring and a field to any curve.

Both will encode algebraic information about the curve and play a

critical role throughout algebraic geometry.

3.4.1. The Affine Case. We want to understand functions defined

on a curve.

Exercise 3.4.1. Let P (x, y) = x2 + xy + 1. Consider the two poly-

nomials

f1(x, y) = x2 and f2(x, y) = 2x2 + xy + 1.

Find a point (a, b) ∈ C2 such that

f1(a, b) �= f2(a, b).

Now show that if (a, b) ∈ V(P ), then

f1(a, b) = f2(a, b).

To some extent, we would like to say that the polynomials f1 and

f2 are the same as far as points on the curve V(P ) are concerned.

Why is it in the above exercise that f1(a, b) = f2(a, b) for any point

(a, b) ∈ V(P )? The key is to look at f2(x, y)− f1(x, y).

Definition 3.4.1. Let V(P ) be an irreducible curve. Let f(x, y) and

g(x, y) be two polynomials. We say that

f(x, y) ∼ g(x, y)

if P (x, y) divides f(x, y)− g(x, y).

Exercise 3.4.2. Show that ∼ defines an equivalence relation on poly-

nomials.
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Definition 3.4.2. Let V = V(P ) be an irreducible curve. The ring

of regular functions on V is the set of all polynomials f(x, y) modulo

the equivalence relation ∼. Denote this ring by O(V ). (We will also

denote this by OV .)

You should be worried that we are calling O(V ) a ring without

proof. We shall remedy that situation now.

Exercise 3.4.3. We want to show that addition and multiplication

are well-defined on O(V ). Suppose that

f1(x, y) ∼ f2(x, y) and g1(x, y) ∼ g2(x, y).

Show that

f1(x, y) + g1(x, y) ∼ f2(x, y) + g2(x, y),

which means that addition is well-defined in O(V ). Also show

f1(x, y)g1(x, y) ∼ f2(x, y)g2(x, y),

which means that multiplication is well-defined in O(V ).

Hence for any curve V , we have the ring O(V ) of regular func-

tions defined on V . (Once we know the operations are well-defined,

checking the ring axioms is straightforward and left as an exercise for

the interested reader.)

Exercise 3.4.4. Suppose V(P ) is an irreducible curve. Let f and g

be two polynomials. Show that if fg ∼ 0, then either f ∼ 0 or g ∼ 0.

Conclude that the ring of regular functions on an irreducible curve is

an integral domain.

There is also a field of functions associated to V(P ). Morally this

field will simply be all of the fractions formed by the polynomials in

O(V ).

Definition 3.4.3. Let the function field, K(V ), for the curve V =

V(P ) be all rational functions

f(x, y)

g(x, y)

where
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(1) P does not divide g (which is a way of guaranteeing that

g, the denominator, is not identically zero on the curve V ),

and

(2)
f1(x, y)

g1(x, y)
is identified with

f2(x, y)

g2(x, y)
if P divides f1g2 − f2g1.

Exercise 3.4.5. Show that ∼ is an equivalence relation.

We want K(V ) to mimic the rational numbers. Recall that the

rational numbers Q are all the fractions

a

b

such that a, b ∈ Z, b �= 0 and a
b is equal to c

d if ad− bc = 0.

Now, you should be concerned that we are calling K(V ) a field.

We will define addition and multiplication on K(V ) using the rational

numbers as a guide.

Definition 3.4.4. On K(V ), define addition and multiplication by

f(x, y)

g(x, y)
+

h(x, y)

k(x, y)
=

f(x, y)k(x, y) + g(x, y)h(x, y)

g(x, y)k(x, y)

and

f(x, y)

g(x, y)
· h(x, y)
k(x, y)

=
f(x, y)h(x, y)

g(x, y)k(x, y)
.

In the next exercise, we will verify that these operations are well-

defined.

Exercise 3.4.6. Suppose

f1
g1

=
f2
g2

and
h1

k1
=

h2

k2

in K(V ). Show that f1
g1

+ h1

k1
can be identified with f2

g2
+ h2

k2
in K(V ).

Similarly, show that f1
g1

· h1

k1
can be identified with f2

g2
· h2

k2
in K(V ).

Exercise 3.4.7. Show that K(V ) is a field. (This is an exercise in

abstract algebra; its goal is not only to show that K(V ) is a field but

also to provide the reader with an incentive to review what a field is.)
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3.4.2. The Projective Case. We have seen that the natural space

for the study of curves is not C2 but the projective plane P2. The

corresponding functions will have to come from homogeneous poly-

nomials. To a large extent, after we add words about homogeneity,

this subsection will be a reworking of the previous subsection.

Exercise 3.4.8. Let P (x, y, z) = x2 + xy + z2. Consider the two

polynomials

f1(x, y, z) = x2 and f2(x, y, z) = 2x2 + xy + z2.

Find a point (a : b : c) ∈ P2 such that

f1(a, b, c) �= f2(a, b, c).

Now show that if (a : b : c) ∈ V(P ), then

f1(a, b, c) = f2(a, b, c).

In the above exercise, why is f1(a, b, c) = f2(a, b, c) for any point

(a : b : c) ∈ V(P )? Again, the key is to look at f2(x, y, z)−f1(x, y, z).

In the affine case, we used the analogous equivalence relation to define

the ring of regular functions on the curve V(P ). However, if we wish

to use homogeneous polynomials to define functions on a projective

curve, we encounter problems.

Exercise 3.4.9. Let V = V(P ) be an irreducible curve in P2, let

(a : b : c) ∈ V be a point on this curve, and let f(x, y, z) be a

homogeneous polynomial of degree d.

(1) Show that f(λa, λb, λc) = λdf(a, b, c) for all λ �= 0.

(2) Conclude that if f(a, b, c) �= 0 and d > 0, then f is not a

well-defined function from V to C.

Therefore, the only regular functions on a projective curve are

constants. Luckily we have a projective analogue to the function

field.

Definition 3.4.5. Let the function field K(V ) for the curve V =

V(P ), where P (x, y, z) is a homogeneous polynomial, be the set of all

rational functions
f(x, y, z)

g(x, y, z)

where
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(1) both f and g are homogeneous of the same degree,

(2) P does not divide g (which is a way of guaranteeing that

g, the denominator, is not identically zero on the curve V ),

and

(3)
f1(x, y, z)

g1(x, y, z)
is identified with

f2(x, y, z)

g2(x, y, z)
if P divides f1g2 −

f2g1. We denote this identification by setting

f1(x, y, z)

g1(x, y, z)
∼ f2(x, y, z)

g2(x, y, z)
.

As before, we want K(V ) to mimic the rational numbers.

Definition 3.4.6. On K(V ), define addition and multiplication by

f(x, y, z)

g(x, y, z)
+

h(x, y, z)

k(x, y, z)
=

f(x, y, z)k(x, y, z) + g(x, y, z)h(x, y, z)

g(x, y, z)k(x, y, z)

and
f(x, y, z)

g(x, y, z)
· h(x, y, z)
k(x, y, z)

=
f(x, y, z)h(x, y, z)

g(x, y, z)k(x, y, z)
,

when f, g, h and k are all homogeneous, f and g have the same degree

and h and k have the same degree.

We now want to link the equivalence relation for the projective

case with the equivalence relation for the affine case.

In fact, we will show that this K(V ) is isomorphic, in some sense,

to the function field of the previous subsection (which is why we are

using the same notation for both). For now, we will specify the K(V )

of the projective curve as KP(V ) and the K(V ) of the affine curve as

KA(V ).

Define

T : KP(V ) → KA(V )

by setting

T

(
f(x, y, z)

g(x, y, z)

)
=

f(x, y, 1)

g(x, y, 1)
.

We first show that T is well-defined.

Exercise 3.4.10. Let f(x, y, z) and g(x, y, z) be two homogeneous

polynomials of the same degree such that f(x, y, z) ∼ g(x, y, z) with
                

                                                                                                               



160 3. Higher Degree Curves

respect to the homogeneous polynomial P (x, y, z). Show that f(x, y, 1)

∼ g(x, y, 1) with respect to the dehomogenized polynomial P (x, y, 1).

Exercise 3.4.11. Let f1(x, y, z), f2(x, y, z), g1(x, y, z) and g2(x, y, z)

be homogeneous polynomials of the same degree such that f1(x, y, z)

∼ f2(x, y, z) and g1(x, y, z) ∼ g2(x, y, z) with respect to the homoge-

neous polynomial P (x, y, z). Show that in KA(V ) we have

T

(
f1(x, y, z)

g1(x, y, z)

)
∼ T

(
f2(x, y, z)

g2(x, y, z)

)
.

Hence T indeed maps the field KP(V ) to the field KA(V ). Next

we want to show that T is a field homomorphism, which is the point

of the next two exercises.

Exercise 3.4.12. Let f(x, y, z) and g(x, y, z) be two homogeneous

polynomials of the same degree, and let h(x, y, z) and k(x, y, z) be

two other homogeneous polynomials of the same degree. Show that

T

(
f(x, y, z)

g(x, y, z)
+

h(x, y, z)

k(x, y, z)

)
= T

(
f(x, y, z)

g(x, y, z)

)
+ T

(
h(x, y, z)

k(x, y, z)

)
.

Exercise 3.4.13. Let f(x, y, z) and g(x, y, z) be two homogeneous

polynomials of the same degree, and let h(x, y, z) and k(x, y, z) be

two other homogeneous polynomials of the same degree. Show that

T

(
f(x, y, z)

g(x, y, z)
· h(x, y, z)
k(x, y, z)

)
= T

(
f(x, y, z)

g(x, y, z)

)
· T
(
h(x, y, z)

k(x, y, z)

)
.

To show that T is one-to-one, we will use the fact that it is equiv-

alent to show that the only element mapping to zero is zero itself.

Exercise 3.4.14. Suppose f(x, y, z) and g(x, y, z) are two homoge-

neous polynomials of the same degree such that

T

(
f(x, y, z)

g(x, y, z)

)
= 0

in KA(V ). Show that
f(x, y, z)

g(x, y, z)
= 0

in KP(V ).

To finish the proof that T is an isomorphism, we must show that

T is onto.
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Exercise 3.4.15. Given two polynomials f(x, y) and g(x, y), find

two homogeneous polynomials F (x, y, z) and G(x, y, z) of the same

degree such that

T

(
F (x, y, z)

G(x, y, z)

)
=

f(x, y)

g(x, y)
.

3.5. Divisors

The goal of this section is to define divisors on a curve. To each divi-

sor, there is a naturally associated vector space of rational functions.

The dimension of these vector spaces is essential for understanding the

Riemann-Roch Theorem, a result that links the algebraic and topo-

logical properties of a curve. We will discuss and prove Riemann-Roch

in the next section.

3.5.1. Intuition behind Riemann-Roch. Here is a fairly simple

question. Let C = V(P ) be a curve in P2. Choose some point p on

the curve. Is there a rational function with a pole (an infinity) of

order one exactly at the point p and no other poles? Recall that a

rational function in K(C) can be written as

F (x, y, z) =
f(x, y, z)

g(x, y, z)
,

where f and g are homogeneous polynomials of the same degree with

the additional property that g is not identically zero on V(P ). The

poles of F on the curve V(P ) occur when the denominator of F is

zero. Thus we must look at the set of intersection points

V(g) ∩ V(P ).

By Bézout’s Theorem, there should be deg(g) · deg(P ) points of in-

tersection. Unless P has degree one, F cannot have a single isolated

pole of order one on C.

There is a subtlety that we need to consider. It could be that the

number of intersection points in V(g)∩V(P ) is greater than one but

that at all of these points, besides our chosen point p, the numerator

f has the same zeros, canceling those from the denominator. The

heart of Riemann-Roch is showing that this does not happen. The
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Riemann-Roch Theorem will give us information about what type of

elements in K(C) can exist with prescribed poles on C = V(P ).

We now want to see that the projective line P1 has a particularly

well-behaved function field.

Exercise 3.5.1. If x and y are homogeneous coordinates for P1, show

that the rational function

F (x, y) =
x

y

has a single zero at (0 : 1) and a single pole at (1 : 0).

Exercise 3.5.2. For P1, find a rational function with a single zero

at (1 : −1) and a single pole at (1 : 0).

Exercise 3.5.3. For P1, find a rational function with zeros at (1 : −1)

and at (0 : 1) and a double pole at (1 : 0).

Exercise 3.5.4. For P1, find a rational function with zeros at (1 : −1)

and (0 : 1) and poles at (1 : 0) and (1 : 1).

Exercise 3.5.5. For P1, show that there cannot be a rational function

with zeros at (1 : −1) and at (0 : 1) and a single pole at (1 : 0) with

no other poles.

3.5.2. Divisors.

Definition 3.5.1. A divisor on a curve C = V(P ) is a formal fi-

nite linear combination of points on C with integer coefficients, D =

n1p1+n2p2+ · · ·+nkpk. The sum
∑k

i=1 ni of the coefficients is called

the degree of D. When each ni ≥ 0 we say that D is effective.

Given two divisors D1 and D2 on V(P ), we say

D1 ≤ D2

if and only if D2 −D1 is effective. This defines a partial ordering on

the set of all divisors on V(P ).

One reason that divisors are natural tools to study a curve is

their link with rational functions. Consider a nonzero function F in

the function field K(C) of the curve C = V(P ). Associate to F the

divisor

div(F ) =
∑

nipi,
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where the sum is taken over all zeros and poles of F on V(P ), ni is

the multiplicity of the zero at pi, and −nj is the order of the pole at

pj .

Definition 3.5.2. Any divisor that can be written as div(w) for a

function w ∈ K(C) is called a principal divisor on C = V(P ).

Note that for the plane curve C = V(P ) defined by P (x, y, z) = 0,

any w ∈ K(C) can be written as w = f(x,y,z)
g(x,y,z) , where f and g are

homogeneous polynomials of the same degree.

Exercise 3.5.6. Let x and y be homogeneous coordinates on P1 and

let w = x
y . Write the divisor div(w) as a formal sum of points.

Exercise 3.5.7. Let x, y, z be homogeneous coordinates on P2. For

the cubic curve V(y2z−x3−xz2), write the divisor div( yz ) as a formal

sum of points.

Exercise 3.5.8. Let x, y, z be homogeneous coordinates on P2. For

the cubic curve V(y2z − x3 − xz2), show that the divisor D = 2(0 :

0 : 1)− 2(0 : 1 : 0) is principal.

Exercise 3.5.9. Show that a principal divisor has degree zero.

Exercise 3.5.10. Prove that the set of all divisors on a curve V(P )

forms an abelian group under addition and that the subset of principal

divisors is a subgroup.

3.5.3. Vector Space L(D) Associated to a Divisor. To any di-

visor on a curve C we want to associate a vector space that is a

subspace of the function field K(C). The dimension of this vector

space will be critical for the Riemann-Roch Theorem.

Definition 3.5.3. For a divisor D on a curve C, define L(D) to be

L(D) = {F ∈ K(C) : F = 0 or div(F ) +D ≥ 0}.
Thus for D =

∑
npp, we have F ∈ L(D) when F has a pole of order

at most np for points p with np > 0 and F has a zero of multiplicity

at least −np at points p with np < 0.

Exercise 3.5.11. Consider the curve P1. Let D = (1 : 0) + (0 : 1).

Show that
(x− y)(x+ y)

xy
∈ L(D).
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Exercise 3.5.12. Consider the curve P1. Let D = (1 : 0) + (0 : 1).

Show that
(x− y)(x+ y)

xy
∈ L(kD)

for any positive integer k.

Exercise 3.5.13. Continuing with the previous exercise, show that
xy

(x− y)(x+ y)
�∈ L(D).

Exercise 3.5.14. Let D = (1 : 0 : 1) + (−1 : 0 : 1) be a divisor on

V(x2 + y2 − z2). Show that
x

y
∈ L(D),

but that
y

x
�∈ L(D).

Exercise 3.5.15. Let D be a divisor on V(P ). Show that L(D) is a

complex vector space.

Exercise 3.5.16. For a smooth curve V(P ), find L(0).

Exercise 3.5.17. Find L(D) for the divisor D = (0 : 1) on P1.

Exercise 3.5.18. Prove if deg(D) < 0, then L(D) = {0}, the trivial

space.

Exercise 3.5.19. Prove if D1 ≤ D2, then L(D1) ⊆ L(D2).

In the next subsection, we will see that the dimension of L(D) is

finite.

3.5.4. L(D + p) versus L(D). We write l(D) for the dimension of

L(D) as a vector space over C. In the next section we will be dis-

cussing the Riemann-Roch Theorem, which gives sharp statements

linking the dimension of the vector space L(D) with the degree of

D and the genus of the curve C. We will start the proof here, by

showing:

Theorem 3.5.20. Let D be a divisor on a curve C and let p ∈ C be

any point on the curve. Then

l(D + p) ≤ l(D) + 1.
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By Exercise 3.5.19, we know that l(D) ≤ l(D + p). Thus the

above theorem is stating that by adding a single point to a divisor,

we can increase the dimension of the corresponding vector space by

at most one.

Exercise 3.5.21. Let D =
∑

npp be a divisor on the curve V(P ).

Use this theorem, together with the result of Exercise 3.5.18, to prove

that l(D) is finite.

The proof of Theorem 3.5.20 uses some basic linear algebra.

Exercise 3.5.22. Let V be a complex vector space. Let

T : V → C

be a linear transformation. Recall that the kernel of T is

ker(T ) = {v ∈ V : T (v) = 0}.

Show that ker(T ) is a subspace of V .

Exercise 3.5.23. Using the above notation, show that

dim(ker(T )) ≤ dim(V ) ≤ dim(ker(T )) + 1.

(This problem will require you to look up various facts about linear

transformations and dimensions.)

For the next few exercises, assume that D is a divisor on a curve

C and p ∈ C is a point on the curve.

Exercise 3.5.24. Suppose there is a linear transformation

T : L(D + p) → C

such that

ker(T ) = L(D).

Show that

l(D + p) ≤ l(D) + 1.

Thus to prove the theorem it suffices to construct such a linear

transformation. Let D =
∑

nqq, where each nq ∈ Z, the q are points

on C and all but a finite number of the coefficients, nq, are zero. We

call the integer nq the multiplicity of the point q for the divisor D.
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Exercise 3.5.25. Show that the multiplicity of the point p for the

divisor D + p is exactly one more than the multiplicity of p for the

divisor D.

Exercise 3.5.26. Let p = (0 : 1 : 1) ∈ V(x2 + y2 − z2). Set D =

2p + (1 : 0 : 1). Let F ∈ L(D). Even though F (x, y, z) can have a

pole at the point p, show that the function x2F (x, y, z) cannot have

a pole at p. Show if p is a zero of the function x2F (x, y, z), then

F ∈ L(D − p).

Exercise 3.5.27. Use the same notation from the previous exercise.

Define a map

T : L(D) → C

as follows. Dehomogenize by setting z = 1. Set T (F ) to be the

number obtained by plugging in (0, 1) to the function x2F (x, y, 1).

Show that

T

(
(2y − z)(2y + z)

x2

)
= 3.

Exercise 3.5.28. Use the notation from the previous exercises. Show

that

T : L(D) → C

is a linear transformation with kernel L(D − p).

We need to make a few choices about our curve C and our point p.

By choosing coordinates correctly, we can assume that p = (0 : y : 1).

We choose a line that goes through the point p and is not tangent to

the curve C. By rotating our coordinates, if necessary, we can assume

this line is V(x).

Exercise 3.5.29. Let n be the multiplicity of the point p for the divi-

sor D+p. For any F ∈ L(D+p), show that the function xnF (x, y, 1)

does not have a pole at p.

Exercise 3.5.30. Using the notation from the previous exercise,

show that xnF (x, y, 1) has a zero at p means that F ∈ L(D).

Exercise 3.5.31. Let n be the multiplicity of the point p for the

divisor D + p. Define

T : L(D + p) → C
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by setting T (F ) to be the number obtained by plugging in (0, y) to

the function xnF (x, y, 1). Show that T is a linear transformation with

kernel L(D).

Thus we have shown that

l(D) ≤ l(D + p) ≤ l(D) + 1.

3.5.5. Linear Equivalence of Divisors. Recall that a divisor D

on a curve C is called principal if it is of the form div(w) for some

w ∈ K(C).

Definition 3.5.4. Two divisors, D1 and D2, are linearly equivalent,

written as D1 ≡ D2, if D1 −D2 is principal.

Exercise 3.5.32. Prove that linear equivalence is an equivalence re-

lation on the set of all divisors on V(P ).

Exercise 3.5.33. Prove for any two points p and q in P1, p ≡ q.

Exercise 3.5.34. For any fixed point p, prove that any divisor on

P1 is linearly equivalent to mp for some integer m.

Exercise 3.5.35. Prove if D1 ≡ D2, then L(D1) ∼= L(D2) as vector

spaces over C.

3.5.6. Hyperplane Divisors. In general, calculating l(D) is diffi-

cult and is, in part, one of the goals of Riemann-Roch. There is a

special class of divisors on any curve, called the hyperplane divisors,

for which we can explicitly calculate this dimension.

We have defined divisors on a curve C as finite formal sums of

points on C. Given any homogeneous polynomial f(x, y, z), we can

associate a divisor on C by setting div(f) =
∑

npp, where the sum

is taken over all points p in V(f) ∩ C and np is the intersection mul-

tiplicity. We frequently write div(f) as V(f)∩C. We now look at an

important case where f(x, y, z) is linear.

Exercise 3.5.36. Consider the curve V(x2+y2−z2). Determine the

divisor

D1 = V(x− y) ∩V(x2 + y2 − z2)
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and the divisor

D2 = V(x) ∩ V(x2 + y2 − z2).

Show that D1 ≡ D2.

Exercise 3.5.37. Using the notation from the previous exercise, let

D3 be the divisor on

V(x4 + 2y4 − x3z + z4) ∩ V(x2 + y2 − z2).

Show that D3 ≡ 4D1. [Hint: Do not explicitly calculate the divisor

D3.]

Exercise 3.5.38. Using the notation from the previous problems, let

f(x, y, z) be a homogeneous polynomial of degree 3. Show that

f(x, y, z)

(x− y)3
∈ L(3D1).

Exercise 3.5.39. Using the notation from the previous problems, let

f(x, y, z) be a homogeneous polynomial of degree k. Show that

f(x, y, z)

(x− y)k
∈ L(kD1).

Definition 3.5.5. Let C = V(P ) be a plane curve defined by a

homogeneous polynomial P (x, y, z) of degree d. Define a hyperplane

divisor H on C to be the divisor of zeros of a linear function �(x, y, z)

in C[x, y, z], meaning that

H = V(�) ∩V(P ).

Exercise 3.5.40. Suppose that H and H ′ are hyperplane divisors

on a curve C. Prove that H ≡ H ′.

Exercise 3.5.41. Using the same notation from the previous prob-

lem, show for any homogeneous polynomial f(x, y, z) of degree m in

C[x, y, z],
f(x, y, z)

�m
∈ L(mH).

Now we start calculating l(mH) = dimL(mH), for any hyper-

plane divisor H.

We know from the above exercise that L(mH) contains elements

of the form f(x,y,z)
�m . In fact, every element in L(mH) can be written

in this form. To prove this we use the following
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Theorem 3.5.42 (Noether’s AF+BG Theorem). ([Ful69], p. 61).

Let F (x, y, z) and G(x, y, z) be homogeneous polynomials defining

plane curves that have no common component. Assume that F de-

fines a nonsingular curve. Let U(x, y, z) be a homogeneous polyno-

mial that satisfies the following condition: suppose for every point p

in the intersection V(F ) ∩ V(G), there is the following inequality of

intersection multiplicities:

I(p,V(F ) ∩ V(U)) ≥ I(p,V(F ) ∩ V(G)).

Then there are homogeneous polynomials A and B such that U =

AF +BG.

We have restricted our statement to the case where C = V(F ) is

nonsingular; we can state this more generally, although the condition

on intersections becomes more complicated.

Exercise 3.5.43. In the case of the theorem, what are the degrees

of the polynomials A and B?

Exercise 3.5.44. Let F (x, y, z) = x and G(x, y, z) = y. Show that

any polynomial U vanishing at (0 : 0 : 1) satisfies the hypothesis of

the theorem, and thus there are A and B such that U = AF +BG.

Exercise 3.5.45. Let F (x, y, z) = xz+yz+xy and G(x, y, z) = xz+

yz−xy. Show that the polynomial U = x2(y+z)+y2(x+z)+z2(x+y)

satisfies the hypothesis of the theorem, and find A and B such that

U = AF +BG.

We now use this theorem to determine the form of the general

element in L(mH) in the following steps.

Exercise 3.5.46. Let U ∈ L(mH). Show that U can be written

as U = u
v , where u and v are homogeneous polynomials of the same

degree in C[x, y, z] and div(v) ≤ div(u) + div(�m).

Exercise 3.5.47. Let C = V(F ) and let U = u
v ∈ L(mH), where u

and v are homogeneous polynomials of the same degree in C[x, y, z].

Show for all p ∈ V(F ) ∩V(v),

I(p,V(F ) ∩ V(�m)) ≥ I(p,V(F ) ∩ V(v)).
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Exercise 3.5.48. Under the assumptions of the previous exercise,

use Noether’s Theorem to conclude there exist A and B with u�m =

AF +Bv. Show that this implies U = B
�m in K(C).

Thus the vector space L(mH) consists of all functions in K(C)

of the form f
�m for homogeneous polynomials f of degree m. To find

the dimension of L(mH), we need to find the dimension of the vector

space of all possible numerators f . The key will be that P cannot

divide f .

Exercise 3.5.49. Let Cm[x, y, z] denote the set of all homogeneous

polynomials of degree m together with the zero polynomial. Show

that if f, g ∈ Cm[x, y, z] and if λ, μ ∈ C, then

λf + μg ∈ Cm[x, y, z].

Conclude that Cm[x, y, z] is a vector space over C.

Exercise 3.5.50. Show that dimC1[x, y, z] = 3 and a basis is

{x, y, z}.

Exercise 3.5.51. Show that dimC2[x, y, z] = 6 and a basis is

{x2, xy, xz, y2, yz, z2}.

Exercise 3.5.52. Show that

dimCm[x, y, z] =

(
m+ 2

m

)
.

(By definition (
n

k

)
=

n!

k!(n− k)!
.

This number, called “n choose k”, is the number of ways of choosing

k items from n things, where order does not matter.)

Exercise 3.5.53. Let P (x, y, z) be a homogeneous polynomial of

degree d. In the vector space Cm[x, y, z], let

W = {f(x, y, z) ∈ Cm[x, y, z] : P divides f}.
If f, g ∈ W and if λ, μ ∈ C, show

λf + μg ∈ W.

Conclude that W is a vector subspace of Cm[x, y, z].
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Exercise 3.5.54. With the notation of the previous problem, show

that the vector spaceW is isomorphic to the vector space Cm−d[x, y, z].

(Recall that this means you must find a linear map T : Cm−d[x, y, z] →
W that is one-to-one and onto.) Conclude that

dim(W ) = dimCm−d[x, y, z].

Exercise 3.5.55. Show that

l(mH) = dimCm[x, y, z]− dimCm−d[x, y, z]

=
(m+ 1)(m+ 2)

2
− (m− d+ 1)(m− d+ 2)

2
.

Exercise 3.5.56. Let � be a linear function and let H be the cor-

responding hyperplane divisor on V(P ), where P (x, y, z) is homo-

geneous of degree d. Show that deg(H) = d and in general, that

deg(mH) = md. [Hint: Think Bézout.]

Exercise 3.5.57. Use the degree-genus formula g =
(d− 1)(d− 2)

2
to show that

l(mH) = md− g + 1.

3.6. The Riemann-Roch Theorem

We will show Riemann’s Theorem as our first step toward the true

goal of this section, the Riemann-Roch Theorem. Riemann-Roch is a

fundamental result that links the algebraic and topological properties

of a curve.

3.6.1. Riemann’s Theorem. Throughout this section, let C =

V(P ) be a smooth plane curve of degree d and genus g.

Theorem 3.6.1 (Riemann’s Theorem). If D is a divisor on a plane

curve C of genus g, then

l(D) ≥ degD − g + 1.

(The Riemann-Roch Theorem, our eventual goal, finds the ex-

plicit term that is needed to change the above inequality into an

equality.)
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Exercise 3.6.2. Show that for any hyperplane divisor H and any

positive integer m, we have

l(mH) = deg(mH)− g + 1.

Following notation used in Fulton’s Algebraic Curves [Ful69], set

S(D) = degD + 1− l(D).

Exercise 3.6.3. Suppose that for all divisors D we have

S(D) ≤ g.

Show that this implies Riemann’s Theorem is true.

Thus we want to show that S(D) ≤ g, for any divisor D.

Exercise 3.6.4. Show for any hyperplane divisor H that S(mH) = g

for all positive integers m.

Exercise 3.6.5. Let D1 ≤ D2. Show that l(D1) ≤ l(D2).

Exercise 3.6.6. Recall for any divisor D and point p on the curve

C that l(D) ≤ l(D + p) ≤ l(D) + 1. Show that

S(D + p) ≥ S(D).

Exercise 3.6.7. Suppose that D1 ≡ D2 for two divisors on the curve

C. Show that

S(D1) = S(D2).

Exercise 3.6.8. Let f(x, y, z) ∈ O(C) be a homogeneous polynomial

of degree m. Let D be the divisor

V(f) ∩ C

and let H be a hyperplane divisor on C. Show that D ≡ mH and

that deg(D) = md.

Exercise 3.6.9. Let p = (a : b : c) ∈ C. Suppose that a and b are

not both zero. (This is not a big restriction on the point.) Let

f(x, y, z) = ay − bx.

Define the divisor

D = V(f) ∩V(P ).

Show that p ≤ D.
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Exercise 3.6.10. Let p1 = (a1 : b1 : c1) and p2 = (a2 : b2 : c2) be

points on C. Suppose that a1 and b1 are not both zero and similarly

for a2 and b2. Let

f(x, y, z) = (a1y − b1x)(a2y − b2x)

and define the divisor

D = V(f) ∩ C.

Show that p1 + p2 ≤ D.

Exercise 3.6.11. Let p1, p2, . . . , pk ∈ C. Find a polynomial f such

that if

D = V(f) ∩ C,

then p1 + · · ·+ pk ≤ D.

Exercise 3.6.12. Let H be a hyperplane divisor on C. Using the

divisor D from the previous problem, show that there is a positive

integer m such that D ≡ mH.

Exercise 3.6.13. Let D =
∑

nipi be an effective divisor on C. Let

n be any positive integer. Prove that there is an m ≥ n and points

q1, . . . , qk on C such that D +
∑

qi ≡ mH.

Exercise 3.6.14. Let D =
∑

nipi be a divisor on C. Show that

there are points q1, . . . , qk on C, which need not be distinct, such

that D + q1 + · · ·+ qk is an effective divisor.

Exercise 3.6.15. Let D =
∑

nipi be a divisor on C (not necessarily

effective). Let n be a positive integer. Prove that there exists an

integer m, m ≥ n, and points q1, . . . , qk on C such that D +
∑

qi ≡
mH.

Exercise 3.6.16. Let D be a divisor on a curve C and let H be any

hyperplane divisor. Show that there is a positive integer m so that

S(D) ≤ S(mH).

Exercise 3.6.17. Prove Riemann’s Theorem.
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3.6.2. Differentials. In calculus we learn that the slope of the graph

y = f(x) is given by the derivative dy
dx at each point where it is defined.

For a curve defined implicitly, say by an equation P (x, y) = 0, using

implicit differentiation we compute dy
dx = −(∂P∂x )/(

∂P
∂y ). Using this as

motivation, we define the differential of the function P (x, y) to be

dP =
∂P

∂x
dx+

∂P

∂y
dy.

More generally, a differential form on C2 is a sum of terms gdf ,

for functions f, g ∈ K(C2). (Recall that this means f and g are ratios

of polynomials in two variables.) Of course we have the usual rules

from calculus:
d(f + g) = df + dg

d(cf) = cdf

d(fg) = gdf + fdg

for c ∈ C and f, g ∈ K(C2).

Exercise 3.6.18.

(1) Find the differential of f(x, y) = x2 + y2 − 1.

(2) Use your answer from Part (1) to find the slope of the circle

f(x, y) = 0 at a point (x, y).

(3) For which points on the circle is this slope undefined?

Exercise 3.6.19.

(1) Find the differential of f(x, y) = x3 + x− y2.

(2) Use your answer from Part (1) to find the slope of the curve

f(x, y) = 0 at a point (x, y).

(3) For which points on the curve is this slope undefined?

Exercise 3.6.20. Prove that the set of all differential forms on C2

is a vector space over K(C2) with basis {dx, dy}.

To define differentials on an affine curve P (x, y) = 0 in C2, we

use the relation dP = ∂P
∂x dx + ∂P

∂y dy = 0. As in calculus this gives

the slope −∂P/∂x
∂P/∂y of the curve when ∂P

∂y �= 0. We can also use this

expression to express dy in the form g(x, y)dx for a function g ∈ K(C2)

(namely, g = −∂P/∂x
∂P/∂y , the slope of our curve).
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Suppose that f ∈ K(C) is determined by some F (x, y) ∈ K(C2)

restricted to C. We wish to define the differential df to be dF re-

stricted to C. This appears to depend on the choice of F (x, y),

which is only well-defined up to the addition of terms of the form

G(x, y)P (x, y) for G(x, y) ∈ K(C2). Yet d(GP ) = G(x, y) dP +

P (x, y) dG, and we know that P (x, y) = dP = 0 on C. Thus any

F+GP ∈ K(C2) that represents f ∈ K(C) has d(F+GP ) = dF when

restricted to C, so taking df to be the restriction of dF is well-defined.

With this established, we may define differentials on an affine curve

C = V(P ) to be sums of terms of the form g df for g, f ∈ K(C).

Exercise 3.6.21. Prove that the set of all differential forms on a

nonsingular curve C = V(P ) in C2 is a vector space over K(C).

Exercise 3.6.22. Prove that the vector space of differentials on a

nonsingular curve C = V(P ) in C2 has dimension one over K(C).

3.6.3. Local Coordinates. To extend our definition of differential

forms to projective curves C = V(P ) in P2, we will consider the

affine pieces of C obtained by dehomogenizing the defining polynomial

P (x, y, z). We can cover P2 by three affine coordinate charts, that is,

three copies of C2, as follows. The bijective map

ϕ : P2 −V(z) → C2

defined by ϕ(x : y : z) =
(
x
z ,

y
z

)
assigns coordinates

r =
x

z
, s =

y

z

for all points (x : y : z) with z �= 0. Similarly we can set

t =
x

y
, u =

z

y

for all (x : y : z) with y �= 0, and

v =
y

x
, w =

z

x

when x �= 0. (These three coordinate systems give a more careful way

to “dehomogenize” polynomials in P2, compared to simply setting one

coordinate equal to 1, as we did in Chapter 1.)

Exercise 3.6.23. Verify that the map ϕ : P2 − V(z) → C2 is a

bijection.
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Exercise 3.6.24. Use the above coordinates in each of the three

affine charts on P2.

(1) Find coordinates for the point (−1 : 2 : 3) in each of the

three coordinate charts.

(2) Find all points in P2 that cannot be represented in rs-affine

plane.

(3) Find the points in P2 that are not in either rs- or tu-affine

planes.

Exercise 3.6.25. In this exercise you will find the change of coordi-

nates functions between coordinate charts.

(1) Write the affine coordinates r and s as functions of t and u.

(2) Write the affine coordinates r and s as functions of v and

w.

(3) Write the affine coordinates v and w as functions of t and

u.

Now let C be a smooth curve defined by the vanishing of a ho-

mogeneous polynomial P (x, y, z). We work locally by considering an

affine part of the curve in an affine chart. Let p = (a : b : c) ∈ C

and assume c �= 0, so p is a point of the affine curve defined by

P (xz ,
y
z , 1) = P (r, s) = 0 in C2. Since C is smooth, ∂P

∂r �= 0 or ∂P
∂s �= 0

at (r, s) =
(
a
c ,

b
c

)
.

The differential of P is

dP =
∂P

∂r
dr +

∂P

∂s
ds = 0.

Thus when ∂P
∂r �= 0 we can write

dr =
−∂P

∂s
∂P
∂r

ds.

Therefore we can write any differential form as f(r, s)ds, for some

rational function f(r, s), at all points where ∂P
∂r �= 0. We call s a local

coordinate at these points.
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Similarly, when ∂P
∂s �= 0 we may write

ds =
−∂P

∂r
∂P
∂s

dr.

We say that r is a local coordinate at points where ∂P
∂s is nonzero.

Exercise 3.6.26. Let C = V(x2 − yz).

(1) Show that this curve is covered by the rs- and tu-charts,

that is, every point p ∈ C can be written in at least one of

these coordinate systems.

(2) Show that r is a local coordinate at all points p = (a : b :

c) ∈ C with c �= 0.

(3) Show that t is a local coordinate if c = 0.

Exercise 3.6.27. Let C = V(x3 − y2z − xz2).

(1) Show that every point p ∈ C can be written in either rs- or

tu-coordinates.

(2) Show that r is a local coordinate at all points p = (a : b :

c) ∈ C with b, c �= 0.

(3) Find all points on C with b = 0 or c = 0 and determine a

local coordinate at each point.

In the next two exercises we use local coordinates to write differ-

ential forms on affine curves. As the derivative provides local (that

is, in a small neighborhood of a point) information about a curve, it

makes sense to use this approach for differentials.

Exercise 3.6.28. Consider the curve V(x2 − y) in C2.

(1) Show that x is a coordinate at all points on this curve.

(2) Show that any differential form can be written as h(x, y)dx

for some rational function h(x, y).

Exercise 3.6.29. Consider the curve V(x2 + y2 − 1) in C2.

(1) Show that x is a local coordinate at all points (a, b) with

b �= 0.

(2) Write the differential dy in the form f(x, y) dx, where f is

a rational function.
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We now extend our definition of differential forms to curves in

the projective plane. With the previous notation we have three affine

pieces of a curve, corresponding to the (r, s) = (xz ,
y
z ), (t, u) = (xy ,

z
y ),

and (v, w) = ( yx ,
z
x ) coordinate charts. For an affine piece, say in the

rs-coordinate system, we can write a differential form as h(r, s) dr (or

h(r, s) ds) for a rational function h. Using the changes of coordinates

between the three affine charts we can translate this form to each

set of coordinates. Thus a differential form on C is a collection of

differential forms on each affine piece of C, such that these pieces

“match” under our changes of coordinates.

Exercise 3.6.30. Let C be the curve V(x2 − yz) in P2, which deho-

mogenizes to r2 − s = 0 in the rs-affine chart.

(1) Show that the differential form ds can be written as 2r dr.

(2) Use an appropriate change of coordinates to write ds in the

form f(t, u) dt.

(3) Use an appropriate change of coordinates to write ds in the

form g(v, w) dw.

Exercise 3.6.31. Let C be the curve V(x2 + y2 − z2) in P2.

(1) Write the differential form dr as f(r, s) ds for a rational func-

tion f(r, s).

(2) Use an appropriate change of coordinates to write dr in the

form g(v, w) dw.

3.6.4. The Canonical Divisor. We next define the divisor asso-

ciated to a differential form on a smooth projective curve C in P2.

For any differential form ω, we want to determine a divisor div(ω) =∑
npp, a finite sum of points p ∈ C with integer coefficients np.

Throughout this section we use the notation:

r =
x

z
, s =

y

z
,

t =
x

y
, u =

z

y
,

v =
y

x
, w =

z

x
.
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To define the divisor of ω, let p = (a : b : c) be any point on

C and assume c �= 0. By dehomogenizing we can consider p as a

point on the affine piece of C given by P (xz ,
y
z , 1) = 0 in C2. As C is

nonsingular, at least one of

∂P

∂x
,
∂P

∂y
,
∂P

∂z

is nonzero at (a : b : c). Moreover, as c �= 0, either ∂P (r,s)
∂r �= 0 or

∂P (r,s)
∂s �= 0 at (r, s) = (ac ,

b
c ). Assume ∂P (r,s)

∂s �= 0; then we have r as

local coordinate at p. Thus we can write

ω = h(r, s) dr

near p. We define the order np of div(ω) at p to be the order of the

divisor of the rational function h(r, s) at p.

As a first example, let C be the curve V(x2−yz), and let ω = ds.

In Exercise 3.6.26 we showed that r is a local coordinate for all points

p = (a : b : c) on C with c �= 0. In Exercise 3.6.30 we determined how

to transform ω among the different affine charts and we showed that

ω is of the form 2rdr for all points with c �= 0.

We now use these expressions to compute the divisor of ω.

Exercise 3.6.32.

(1) Show that 2r has a simple zero at (0 : 0 : 1) and thus the

divisor of 2r, and hence the divisor of ω in the rs-chart, is

(0 : 0 : 1).

(2) In Exercise 3.6.26 we showed that t is a local coordinate

for C at (0 : 1 : 0). Show that ω has a pole of order 3 at

(0 : 1 : 0).

(3) Conclude that the divisor of ω is (0 : 0 : 1)− 3(0 : 1 : 0).

The above computation for the divisor of ω = ds depended on

our choice of local coordinates. This divisor should be independent

of the local coordinates chosen.

Exercise 3.6.33. Suppose x and y are both local coordinates at

a point p on a smooth curve C. We will show that the divisor of a

differential form ω does not depend on the choice of local coordinates.
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(1) Suppose x and y are coordinates in the same affine patch of

P2. We can describe C near p by P (x, y) = 0. Use this to

prove the divisors of dx and dy both have order zero at p.

[Hint: Since P (x, y) = 0, we have 0 = dP = Pxdx+ Pydy.]

(2) Suppose x and y are coordinates in two different affine

patches. We can describe C near p by either P (x, u) = 0 or

P (y, v) = 0, where (x, u) and (y, v) are two affine charts of

P2. Use that x and u can each be written as rational func-

tions in y and v to show that the divisors of dx and dy both

have order zero at p. [Hint: This is an exercise in the chain

rule. Let f(y, v) be the rational function with x = f(y, v).

Then

1 =
dx

dx

=
df

dx

= fy
dy

dx
+ fv

dv

dx
= fyyx + fvvx.

Also,

dx = fydy + fvdv,

which can be written as a rational function times dy, since

dv =
−Py

Pv
dy. You will also need to show and use

−Py

Pv
=

vx
yx

.]

(3) Let ω = h(x, u) dx in the xu-chart and ω = g(y, v) dy in

the yv-chart. Show that the divisors of both g and h have

the same order at p. [Hint: This is actually not that hard.

Recall Exercise 3.3.16.]

(4) Conclude that the divisor of ω does not depend on the choice

of local coordinates.

The previous exercise shows that the divisor of a differential form

does not depend on the choice of local coordinates. Thus we can make

the following definition.
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Definition 3.6.1. The canonical divisor KC on a curve C is the

divisor associated to any differential form ω on C.

It is key that the linear equivalence class of the divisor KC does

not depend on the choice of differential forms, which the next exercise

shows.

Exercise 3.6.34. Assume C is a nonsingular curve.

(1) Let f, g ∈ K(C). Show that div f dg ≡ div dg.

(2) Let ω1, ω2 be two differential forms on C. Show that

divω1 ≡ divω2.

[Hint: In an earlier section we showed that the vector space

of differential forms over the field of rational functions is

one-dimensional.]

Exercise 3.6.35. To compute the canonical divisor of the projective

line P1, write (x : y) for coordinates of P1, with affine charts u = x
y

and v = y
x .

(1) Show that the divisor of du is equal to −2(1 : 0).

(2) Show that the divisor of dv is equal to −2(0 : 1).

(3) Prove that the divisors of the two differential forms du and

dv are linearly equivalent.

Exercise 3.6.36. Let C = V(x2 − yz). We have already seen that

divds = (0 : 0 : 1)− 3(0 : 1 : 0).

The goal of this exercise is to show that

divdr ≡ divds.

(1) Compute the divisor of the differential form dr.

(2) Prove that the divisors of the two differential forms dr and

ds are linearly equivalent and of degree −2.

Exercise 3.6.37. Let C be the curve defined by P (x, y, z) = x2 +

y2 − z2 = 0. We will compute the divisor of the differential form

ω = dr.
                

                                                                                                               



182 3. Higher Degree Curves

(1) For points p = (a : b : c) ∈ C with c = 0, show that w = z
x is

a local coordinate. Use that r = 1
w to write dr as h(v, w)dw.

Show that there are two points on C with w = 0 and that

h(v, w) has a pole of order two at each.

(2) For points p = (a : b : c) ∈ C with c �= 0 and ∂P
∂y �= 0, show

that r is a local coordinate. Conclude that the divisor of ω

has no zeros or poles when z �= 0, ∂P
∂y �= 0.

(3) For points p = (a : b : c) ∈ C with c �= 0 and ∂P
∂y = 0, show

that ∂P
∂x �= 0 and therefore a �= 0. Conclude that s = y

z is

a local coordinate at these points. Use r2 + s2 = 1 to write

dr = h(r, s)ds and show that h(r, s) has zeros of multiplicity

one at each of these points.

(4) Conclude that divω is a divisor of degree −2.

In the previous exercises we found that the divisor of a differential

form on a conic has degree −2. For a general smooth curve we have

the following relation between genus and degree of KC .

Theorem 3.6.38. The degree of a canonical divisor on a nonsingular

curve C of genus g is 2g − 2.

We outline a proof of this theorem in the following exercises.

Exercise 3.6.39. Let C be a nonsingular curve defined by a homo-

geneous polynomial P (x, y, z) of degree n.

(1) Show that by changing coordinates if necessary we may as-

sume (1 : 0 : 0) /∈ C.

(2) Show that the curve C is covered by two copies of C2, {(a :

b : c) : c �= 0} and {(a : b : c) : b �= 0}. Conclude that at

every point of C we may use either the coordinates (r, s),

where r = x
z , s =

y
z , or (t, u), where t = x

y , u = z
y .

(3) Let P1(r, s) = P (r, s, 1) and P2(t, u) = P (t, 1, u) be the de-

homogenized polynomials defining C in the two coordinate
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systems. Prove that

∂P1

∂r
=

∂P

∂x
(r, s, 1)

∂P1

∂s
=

∂P

∂y
(r, s, 1)

∂P2

∂t
=

∂P

∂x
(t, 1, u)

∂P2

∂u
=

∂P

∂z
(t, 1, u).

(4) Explain why (1 : 0 : 0) /∈ C implies that ∂P1

∂r has degree

n− 1.

(5) Show that by changing coordinates if necessary we may as-

sume if p = (a : b : c) ∈ C with ∂P
∂x (a, b, c) = 0, then c �= 0.

We will find the degree of KC by computing the divisor of the

differential form ω = ds, where s = y
z . By the previous exercise

we may assume (1 : 0 : 0) /∈ C and if p = (a : b : c) ∈ C with
∂P
∂x (a, b, c) = 0, then c �= 0.

Exercise 3.6.40. First consider points (a : b : c) on the curve with

c �= 0 and ∂P
∂x �= 0. Show that s is a local coordinate and ω has no

zeros or poles at these points.

Exercise 3.6.41. Next we determine divω at points (a : b : c) with

c �= 0 and ∂P
∂x = 0.

(1) Show that we must have ∂P
∂y �= 0 at these points, and that r

is a local coordinate.

(2) Use P (r, s, 1) = 0 to write ω = ds in the form f(r, s) dr.

(3) Compute the degree of divω at these points by determining

the order of the zeros or poles of f(r, s).

Exercise 3.6.42. Now we determine divω at points (a : b : c) with

c = 0. By our choice of coordinates, we are assuming that (a : b :

c) ∈ V(P ) with c = 0 can happen only if ∂P
∂x �= 0.

(1) Show that u is a local coordinate.

(2) Write ω = ds in the form g(t, u)du.
                

                                                                                                               



184 3. Higher Degree Curves

(3) Compute the degree of divω at these points by determining

the order of the zeros or poles of g(t, u).

(4) Conclude that divω has degree n(n − 1) − 2n = n(n − 3).

Use Exercise 3.2.4 to show that this is equal to 2g−2, where

g is the genus of C.

Exercise 3.6.43. Let C = V (xy + xz + yz).

(1) Find a change of coordinates to transform C to an equivalent

curve C ′ such that (1 : 0 : 0) �∈ C ′ and such that if p = (a :

b : c) ∈ C with c = 0, then ∂P
∂x (a, b, c) �= 0.

(2) Compute the canonical divisor class of C ′ by computing the

divisor of ω = ds.

3.6.5. The Space L(KC −D). We will now see the important role

that the canonical divisor plays in the Riemann-Roch Theorem. We

proved previously Riemann’s Theorem,

l(D) ≥ degD − g + 1

for any divisor D on a smooth curve C of genus g. We now improve

this result by determining the value of l(D) − (degD − g + 1). We

will show that for all D on C, this difference is equal to the dimension

of the space L(KC −D).

We have seen for any point p ∈ C, l(D) ≤ l(D+p) ≤ l(D)+1, that

is, L(D) is either equal to L(D + p) or is a subspace of codimension

one. Applying this to the divisor KC−D, we have either l(KC−D) =

l(KC −D − p) or l(KC −D) = l(KC −D − p) + 1.

For our next result we need an important consequence of the

Residue Theorem: there is no differential form on C with a simple

(order one) pole at one point and no other poles.

Exercise 3.6.44. We will show if L(D) � L(D + p) then L(KC −
D − p) = L(KC −D).

(1) Assume L(D) � L(D+p) and L(KC−D−p) � L(KC−D).

Show that this implies the existence of functions f, g ∈ K(C)

with divf +D + p ≥ 0 and divg +KC −D ≥ 0, such that

these relations are equalities at p.
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(2) Let ω be a differential form on C so that divω ≡ KC . Show

that divfgω + p ≥ 0 and thus the form fgω has a simple

pole at p.

(3) Explain why this contradicts the Residue Theorem.

(4) Show that this result is equivalent to the inequality l(D +

p)− l(D) + l(KC −D)− l(KC −D − p) ≤ 1.

Exercise 3.6.45. Let q1, . . . , qk be points on the curve C. Use the

previous exercise and induction to show

l(D +

k∑
1

qi)− l(D) + l(KC −D)− l(KC −D −
k∑
1

qi) ≤ k.

The next problem has nothing to do with the previous one, but

does use critically that l(D) = 0 if D has negative degree. It will be

the last step that we need before proving Riemann-Roch in the next

section.

Exercise 3.6.46. Prove there exists a positive integer n such that

l(KC − nH) = 0, where H is a hyperplane divisor.

3.6.6. Riemann-Roch Theorem. We have previously seen Rie-

mann’s Theorem: for a divisor D on a smooth plane curve C of genus

g, l(D) ≥ degD − g + 1. This result provides a bound for the di-

mension of the space of functions on C with poles bounded by the

divisor D. A remarkable fact is that we can explicitly calculate the

error term in this inequality; that is, we can improve this result in

the Riemann-Roch Theorem:

Theorem 3.6.47 (Riemann-Roch). Let C be a smooth plane curve

of genus g with canonical divisor KC . If D is a divisor on C, then

l(D)− l(KC −D) = degD − g + 1.

This theorem allows us to explicitly calculate the dimensions of

spaces of functions on our curve C in terms of the genus of C and

the degree of the bounding divisor D. As before we will prove this

for smooth curves in the plane, but in fact the result also holds for

singular curves. The Riemann-Roch Theorem can also be general-

ized to higher dimensional varieties. In the next several exercises we

complete the proof.
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Exercise 3.6.48. Let n be a positive integer with l(KC − nH) = 0;

use Exercise 3.6.15 to show there exists m > n and q1, . . . , qk ∈ C

with D +
∑k

1 qi ≡ mH. Show that the degree of D is m degC − k.

Exercise 3.6.49. Using the notation from the previous exercise and

Exercise 3.6.45, show that

l(mH)− l(D) + l(KC −D) ≤ k.

Exercise 3.6.50. Using the notation from the previous exercise and

that

l(mH) = m deg(C)− g + 1

(Exercise 3.6.2), show that

l(D)− l(KC −D) ≥ degD − g + 1.

Exercise 3.6.51. Show that

deg(D)− g + 1 ≥ l(D)− l(KC −D).

[Hint: Think of KC −D as the divisor.]

Exercise 3.6.52. Prove the Riemann-Roch Theorem: show that

l(D)− l(KC −D) = degD − g + 1.

Exercise 3.6.53. Use the Riemann-Roch Theorem to prove for a

divisor D with degD > 0 on an elliptic curve, l(D) = degD.

Exercise 3.6.54. For a smooth curve C prove that the genus g is

equal to the dimension of the vector space L(KC).

Exercise 3.6.55. Suppose D is a divisor of degree 2g−2 with l(D) =

g. Prove that D is linearly equivalent to the canonical divisor.

3.6.7. Associativity of the Group Law for a Cubic. As an

application of Riemann-Roch, we will provide a more conceptual proof

of associativity for the group law on a cubic curve. Starting with a

smooth cubic curve C, we must show, given any three points P,Q,R ∈
C, that

(P +Q) +R = P + (Q+R).

Most of the following exercises, which were inspired by Theorem 6.39

of Kirwan [Kir92], depend on the material in Chapter 2. We start,

though, by explaining how we will use the Riemann-Roch Theorem.
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Exercise 3.6.56. Let T be a point on the smooth cubic curve C.

Show that L(T ) is one-dimensional and conclude that the only ratio-

nal functions in L(T ) are constant functions.

Exercise 3.6.57. Let S and T be two points on the smooth cubic

curve C. Suppose there is a rational function f such that

divf + T = S.

Show that S = T .

Let

S = (P +Q) +R, T = P + (Q+R).

Here the + refers to the group law addition, not the divisor addition.

Our goal is to show that S = T .

Let

A = P +Q, B = Q+R.

Again, the addition is the group law addition. Let O denote the

identity element of the smooth cubic curve C.

Exercise 3.6.58. Show there exists a linear function l1(x, y, z) such

that

V(l1) ∩ C = {P,Q,−A}.
Here −A refers to the inverse of A with respect to the group law of

the cubic.

Exercise 3.6.59. Show there exists a linear function l2(x, y, z) such

that

V(l2) ∩ C = {A,O,−A}.

Exercise 3.6.60. Find a rational function φ such that

divφ = P +Q−A−O.

Here the addition is the addition for divisors.

Exercise 3.6.61. Show there exists a linear function l3(x, y, z) such

that

V(l3) ∩ C = {A,R,−S}.
Here −S refers to the inverse of S with respect to the group law of

the cubic.
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Exercise 3.6.62. Show there exists a linear function l4(x, y, z) such

that

V(l4) ∩ C = {S,O,−S}.

Exercise 3.6.63. Find a rational function ψ such that

divψ = A+R − S −O.

Here the addition is the addition for divisors.

Exercise 3.6.64. Show that

divψφ = P +Q+R− S − 2O.

Here the addition is the addition for divisors.

Exercise 3.6.65. Following the outline of the last six exercises, find

a rational function μ so that

div μ = P +Q+R− T − 2O.

Here the addition is the addition for divisors.

Exercise 3.6.66. Show that μ
ψφ is a rational function such that

div
μ

ψφ
+ T = S.

Exercise 3.6.67. Put these exercises together to prove that the

group law for cubics is associative.

3.7. Blowing Up

In this section we will study a classical technique to take any singular

curve X and construct a new curve Y that is closely related to X and

is smooth. This technique will be called blowing up.

We begin by describing the blow-up of the plane C2 at the ori-

gin. We will later see how this will apply to resolving singularities of

curves. Let

π : C2 × P1 −→ C2

be the projection

((x, y), (u : v)) �→ (x, y).
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Let

Ỹ = {((x, y), (x : y)) : at least one of x or y is nonzero} ⊂ C2 × P1.

Set

Y = Ỹ ∪ π−1((0, 0)).

Exercise 3.7.1. Verify that π−1((0, 0)) can be identified with P1.

Show that the restriction of π to Ỹ is a bijection between Ỹ and

C2 − (0, 0). (Neither of these are deep.)

The set Y , along with the projection π : Y −→ C2, is called the

blow-up of C2 at the point (0, 0). (For the rest of this section, the

map π will refer to the restriction projection π : Y −→ C2.)

We look at the blow-up a bit more carefully. We can describe Ỹ

as

Ỹ = {((x, y), (x : y)) : at least one of x or y is nonzero} ⊂ C2 × P1

= {((x, y), (u : v)) ∈ C2 × P1 : xv = yu, (x, y) �= (0, 0)}.

Then Y is simply

Y = {((x, y), (u : v)) ∈ C2 × P1 : xv = yu}.

Recall that the projective line P1 can be thought of as all lines in C2

containing the origin. Thus Y is the following set:

{(points p in C2)× (lines � through (0, 0)) : p ∈ �}.

The above exercise is simply a restatement that through every point p

in C2− (0, 0) there is a unique line through that point and the origin.
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� p

C2

More generally, if C is a curve in C2 that passes through the

origin, then there is a bijection between C−(0, 0) and the set π−1(C−
(0, 0)) in Y . The blow-up of C at the origin, denoted Bl(0,0)C, is the

closure of π−1(C − (0, 0)) in Y along with the restricted projection

map.

Intuitively, π−1(C − (0, 0)) resembles a punctured copy of C in

C2 × P1, and there is an obvious way to complete this punctured

curve. If the origin is a smooth point of C, then the blow-up at the

origin is simply a copy of C. If the origin is a singular point, then the

blow-up contains information about how the tangents to C behave

near the origin.

We want to look carefully at an example. Consider C = V(xy)

in C2. Here we are interested in the zero locus of xy = 0,
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C = V(xy)

or, in other words, the union of the x-axis (when y = 0) and the y-axis

(when x = 0). We will show in two ways that the blow-up of C has

two points over the origin (0, 0), namely ((0, 0), (1 : 0)) corresponding

to the x-axis and ((0, 0), (0 : 1)) corresponding to the y-axis.

We know that π is a bijection away from the origin. We have

π−1(C − (0, 0)) = {(x, y)× (x : y) : xy = 0, (x, y) �= (0, 0)}.

We know that

C = V(xy) = V(x) ∪V(y).

We will show that there is one point over the origin on the blow-up of

V(x) and one point (a different point) over the origin on the blow-up

of V(y).

We have

π−1(V(x)− (0, 0)) = {((x, y), (0 : y)) : 0 = x, (x, y) �= (0, 0)}
= {((0, y), (0 : y)) : y �= 0}
= {((0, y), (0 : 1)) : y �= 0}.

Then as y → 0, we have

((0, y), (0 : 1)) → ((0, 0), (0 : 1)),

a single point as desired, corresponding to the y-axis.
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Similarly, we have

π−1(V(y)− (0, 0)) = {((x, y), (x : 0)) : y = 0, (x, y) �= (0, 0)}
= {((x, 0), (x : 0)) : x �= 0}
= {((x, 0), (1 : 0)) : x �= 0}.

Then as x → 0, we have

((x, 0), (1 : 0)) → ((0, 0), (1 : 0)),

a single, different point, again as desired, corresponding to the x-axis.

Now for a slightly different way of thinking of the blow-up. The

projective line can be covered by two copies of C, namely by (u : 1)

and (1 : v). For any point (u : v) ∈ P1, at least one of u or v cannot

be zero. If u �= 0, then we have

(u : v) = (1 : v/u)

while if v �= 0, we have

(u : v) = (u/v : 1).

In either case, we can assume that u = 1 or that v = 1.

Start with u = 1. We can identify {((x, y), (1 : v))} with C3

having coordinates x, y, v. Then the blow-up of V(xy) is given by the

equations

xy = 0

y = xv

(x, y) = (0, 0).

Plugging xv for y into the top equation, we have

x2v = 0.

Since x �= 0, we can divide through by x to get

v = 0.
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Then we can describe points of our curve as ((x, xv), (1 : 0)) =

((x, 0), (1 : 0)). Therefore, as x → 0, we have

((x, 0), (1 : 0)) → ((0, 0), (1 : 0)).

Now let v = 1. We can identify {((x, y), (u : 1))} with C3 having

coordinates x, y, u. Then the blow-up of V(xy) is given by

xy = 0

yu = x

(x, y) = (0, 0).

Plugging yu for x into the top equation, we have

y2u = 0.

Since y �= 0, we can divide through by y to get

u = 0.

Then points on our curve have the form ((yu, y), (0 : 1)) = ((0, y), (0 :

1)). Thus as y → 0, we have

((0, y), (0 : 1)) → ((0, 0), (0 : 1)).

In either case, the blow-up looks like
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x
y

z

Each of these techniques will be needed for the following prob-

lems.

Exercise 3.7.2. Let C = V(y − x2) in C2. Show that this curve is

smooth. Sketch this curve in C2. Sketch a picture of Bl(0,0)C. Show

that the blow-up projects bijectively to C.

Exercise 3.7.3. Let C = V(x2−y2) in C2. Show that this curve has

a singular point at the origin. Sketch this curve in C2. Blow up C

at the origin, showing that there are two points over the origin, and

then sketch a picture of the blow-up.

Exercise 3.7.4. Let C = V(y2 − x3 + x2). Show that this curve has

a singular point at the origin. Sketch this curve in C2. Blow up C at

the origin, and sketch a picture of the blow up. Show that there are

two points in the blow-up over the origin.
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Exercise 3.7.5. Let C = V(y2 − x3). Show that this curve has a

singular point at the origin. Sketch this curve in C2. Blow up C at

the origin, and sketch a picture of the blow-up. Show that there is

only one point over the origin.

Exercise 3.7.6. Let C = V((x − y)(x + y)(x + 2y)) be a curve in

C2. Show that this curve has a singular point at the origin. Sketch

this curve in C2. Blow up C at the origin, and sketch a picture of the

blow-up. Show that there are three points over the origin.

The previous exercises should convey the idea that if the original

curve is singular at the origin, then the blow-up seems to be less

singular at its points over the origin. We currently can’t express

precisely what this means, since our definition of singularity applies

only to curves in the plane, and the blow-up does not lie in a plane.

Algebraic ideas developed in Chapter 4 will allow us to make this idea

precise.

Of course, there is nothing special about the origin in affine space,

and we could just as easily blow up curves at any other point. Also,

the definition of blowing up can easily be extended to curves in projec-

tive spaces. A significant part of current algebraic geometry involves

resolving singularities of more complicated algebraic varieties.

                

                                                                                                               



                

                                                                                                               



Chapter 4

Affine Varieties

The goal of this chapter is to use abstract algebra to describe

the geometry of curves, surfaces, and more general geometric objects

called varieties. By considering the set of points where a polynomial

vanishes, we will see there is a correspondence between the algebra

of polynomials and the geometry of points on a variety. This chapter

is devoted to understanding this correspondence. Here tools from

abstract algebra, especially commutative ring theory, will become key.

You will need to know some basic facts about rings and ideals, which

can be found in most undergraduate abstract algebra texts.

4.1. Zero Sets of Polynomials

We begin the study of affine varieties with some examples of zero

sets of polynomials.

The natural ambient space for affine varieties is affine space.

Definition 4.1.1. For a field k, the affine n-space over k is the set

An(k) = {(a1, a2, . . . , an) : ai ∈ k for i = 1, . . . , n}.

We write simply An when the field k is understood.

197
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For example, A2(R) is the familiar Euclidean plane R2 from cal-

culus, and A1(C) is the complex line. We are interested in subsets of

An that are the zero sets of a collection of polynomials over k.

Recall that k[x1, x2, . . . , xn] is the commutative ring of all poly-

nomials in the variables x1, x2, . . . , xn with coefficients in the field k.

Frequently for us, our field will be the complex numbers C, with the

field of the real numbers R being our second most common field.

The goal of this chapter is to explore the link between the zero

sets of polynomials in An and the ideals of k[x1, x2, . . . , xn].

Exercise 4.1.1. Describe or sketch the zero set of each polynomial

over C.

(1) x2 + 1

(2) y − x2

Exercise 4.1.2. Show that the zero set of x2 + y2 − 1 in C2 is un-

bounded, in contrast with the zero set of x2 + y2 − 1 in R2.

Exercise 4.1.3. Find a set of polynomials {P1, . . . , Pn}, all of whose
coefficients are real numbers, whose common zero set is the given set.

(1) {(3, y) : y ∈ R} in R2

(2) {(1, 2)} in R2

(3) {(1, 2), (0, 5)} in R2

(4) Generalize the method from Part (3) to any finite set of

points in R2.

Exercise 4.1.4. Find a set of polynomials {P1, . . . , Pn}, all of whose
coefficients are complex numbers, whose common zero set is the given

set.

(1) {(3 + 2i,−i)} in C2

(2) {(3 + 2i,−i), (0, 1− 4i)} in C2

(3) Generalize the method from Part (2) to any finite set of

points in C2.

Exercise 4.1.5.

(1) Is every finite subset of C2 the zero set of a collection of

polynomials in C[x, y]? Prove or find a counterexample.
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(2) Is there an infinite subset of C2 that is the common zero set

of a finite collection of polynomials in C[x, y]?

(3) Find an infinite set of points in C that is not the common

zero set of a finite collection of polynomials in C[x].

(4) Is there any infinite set of points in C, besides C itself, that

is the common zero set of a finite collection of polynomials

in C[x]?

Much of the reason that modern algebraic geometry heavily influ-

ences not only geometry but also number theory is that we can allow

our coefficients to be in any field, even those for which no geometry

is immediately apparent. As we saw in earlier chapters, our fields do

not even need to be infinite!

Exercise 4.1.6. Find the zero set of each polynomial in A1(Z3).

(1) x2 + 2

(2) x2 − 2

Exercise 4.1.7. Find the zero set of each polynomial in A2(Z5).

(1) y − x2

(2) y2 − 2xy + x2

(3) xy − 3y − x2 + 3x

Exercise 4.1.8.

(1) Show that if k is an infinite field, and P ∈ k[x1, . . . , xn] is a

polynomial whose zero set is An(k), then P = 0. [Hint: Use

induction on n.]

(2) Is there any finite field for which this result holds?

4.2. Algebraic Sets and Ideals

In this section we explore the relationship between algebraic sets in

An and ideals in k[x1, . . . , xn].
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4.2.1. Algebraic Sets. The zero sets of polynomials in affine space

are called algebraic sets.

Definition 4.2.1. Let S ⊆ k[x1, . . . , xn] be a set of polynomials. The

algebraic set defined by S is

V(S) = {(a1, a2, . . . , an) ∈ An(k) : P (a1, a2, . . . , an) = 0

for all P ∈ S} .

Exercise 4.2.1. Sketch the algebraic sets.

(1) V(x3 − 1) in A1(C)

(2) V((y − x2)(y2 − x)) in A2(R)

(3) V(y − x2, y2 − x) in A2(R)

(4) V(y2 − x3 + x) in A2(R)

(5) V(x− 2y + 3z) in A3(R)

(6) V(z − 3, z − x2 − y2) in A3(R)

(7) V(xy − z2y) = V(y(x− z2)) in A3(R)

(8) V(y − x+ x2) in A2(Z3)

Exercise 4.2.2. Algebraic Sets in Rn and Cn:

(1) Show that for any a ∈ R, the singleton {a} is an algebraic

set.

(2) Show that any finite collection of numbers {a1, a2, . . . , ak}
in R is an algebraic set.

(3) Show that a circle in R2 is an algebraic set.

(4) Show that the set {(−1/
√
2, 1/

√
2), (1/

√
2,−1/

√
2)} ⊂ R2

is an algebraic set.

(5) Show that any line in R3 is an algebraic set.

(6) Show that the positive numbers are not an algebraic set in

R.

(7) Show that the region inside the unit circle |z| < 1 in C is

not an algebraic set.

(8) Give an example of a nonconstant polynomial P in R[x, y]

such that the algebraic set X = {(x, y) ∈ R2 : P (x, y) = 0}
is the empty set.
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(9) Is there a nonconstant polynomial P in C[x, y] such that the

algebraic set X = {(x, y) ∈ C2|P (x, y) = 0} is the empty

set? Explain why or why not.

(10) Suppose X1 = {(x, y) ∈ C2|x + y = 0} and X2 = {(x, y) ∈
C2|x − y = 0}. Find a polynomial Q ∈ C[x, y] such that

X1 ∪X2 = {(x, y) ∈ C2|Q(x, y) = 0}.
(11) Suppose X1 = {(x1, x2, . . . , xn) ∈ Cn|P1(x1, x2, . . . , xn) =

0} and X2 = {(x1, x2, . . . , xn) ∈ Cn|P2(x1, x2, . . . , xn) = 0}.
Give a single polynomial Q such that

X1 ∪X2 = {(x1, x2, . . . , xn) ∈ Cn|Q(x1, x2, . . . , xn) = 0}.

Exercise 4.2.3.

(1) Is every finite subset of A2(R) an algebraic set?

(2) Is every finite subset of A2(C) an algebraic set?

Exercise 4.2.4. Show that the set
{
(x, y) ∈ A2(R) : 0 ≤ x ≤ 1, y = 0

}
is not an algebraic set. [Hint: Any one-variable polynomial, which is

not the zero polynomial, can have only a finite number of roots.]

Exercise 4.2.5. Show that both the empty set and An(k) are alge-

braic sets in An(k).

Exercise 4.2.6. Show that ifX = V(f1, . . . , fs) andW = V(g1, . . . , gt)

are algebraic sets in An(k), then X ∪W and X ∩W are algebraic sets

in An(k).

4.2.2. Zero Sets via V(I). We next will see how to define algebraic

sets using ideals in the polynomial ring.

Exercise 4.2.7. Let f(x, y), g(x, y) ∈ C[x, y]. Show that

V(f, g) = V(f − g, f + g).

Exercise 4.2.8. Show that V(x+ y, x− y, 2x+ y2, x+ xy + y3, y +

x2y) = V(x, y).

Thus the polynomials that define a zero set are far from being

unique. But there is an algebraic object that comes close to being

uniquely defined by a zero set.

The following exercise is key to algebraic geometry.
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Exercise 4.2.9. Let I be the ideal in k[x1, . . . , xn] generated by a

set S ⊂ k[x1, . . . , xn]. Show that V(S) = V(I). Thus every algebraic

set is defined by an ideal.

While it is not quite true that the set V(I) uniquely determines

the ideal I, we will soon see how to restrict our class of ideals so that

the associated ideal will be unique.

Exercise 4.2.10. For f(x1, . . . , xn), g(x1, . . . , xn) ∈ C[x1, . . . , xn],

let I be the ideal generated by f and g and let J be the ideal generated

by f alone.

(1) Show that J ⊂ I.

(2) Show that V(I) ⊂ V(J).

Exercise 4.2.11. Show that if I and J are ideals in k[x1, . . . , xn]

with I ⊂ J , then V(I) ⊃ V(J).

Exercise 4.2.12. You may find Exercise 4.2.6 useful here.

(1) Show that an arbitrary intersection of algebraic sets is an

algebraic set.

(2) Show that a finite union of algebraic sets is an algebraic set.

We will see in Section 4.11 that the algebraic sets can be used to

help define a topology.

4.2.3. Ideals Associated to Zero Sets. We have seen that the set

of polynomials that define a zero set is not unique. While an ideal

uniquely determines an algebraic set, the converse is not true.

Definition 4.2.2. Let V be a set of points in An(k). The ideal of V

is given by

I(V) = {P ∈ k[x1, . . . , xn] : P (a1, . . . , an) = 0

for all (a1, . . . , an) ∈ V }.

We will be most interested when V is an algebraic set.

Exercise 4.2.13. Show that I(V ) is an ideal in the ring k[x1, . . . , xn].
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Exercise 4.2.14. Let X be a set of points in An(C).

(1) Show that X ⊆ V(I(X)).

(2) Find a set X with X �= V(I(X)).

(3) Show that if X is a algebraic set, then X = V(I(X)).

Exercise 4.2.15. Let I be an ideal in k[x1, . . . , xn].

(1) Show that I ⊆ I(V(I)).

(2) Find an ideal I with I �= I(V(I)).

(3) Show that if I is the ideal of an algebraic set, then I =

I(V(I)).

It looks as if there is a correspondence between algebraic sets and

some ideals.

Definition 4.2.3. Let I be an ideal in k[x1, . . . , xn]. The radical of

I is defined as

Rad(I) = {P ∈ k[x1, . . . , xn] : P
m ∈ I for some m > 0}.

An ideal I is called a radical ideal if I = Rad(I).

Exercise 4.2.16. Let f(x, y) = (x2 − y + 3)2 ∈ C[x, y]. Show that

the ideal I generated by f is not radical. Find Rad(I).

Exercise 4.2.17. Let I be an ideal in k[x1, . . . , xn]. Show that

Rad(I) is an ideal.

Exercise 4.2.18. Let X be a set of points in An(k). Show that I(X)

is a radical ideal.

Exercise 4.2.19. Show that Rad(I) ⊂ I(V(I)) for any ideal I in

k[x1, . . . , xn].

Exercise 4.2.20. Let I be an ideal in k[x1, . . . , xn]. Show V(I) =

V(Rad(I)).

Exercise 4.2.21. Let X and W be algebraic sets in An(k). Show

that X ⊂ W if and only if I(X) ⊃ I(W ). Conclude that X = W if

and only if I(X) = I(W ).
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4.3. Hilbert Basis Theorem

The goal of this section is prove the Hilbert Basis Theorem, which has

as a consequence that every ideal in k[x1, . . . , xn] is finitely generated.

How many polynomials are needed to define an algebraic set V ⊂
An? Is there a finite number of polynomials f1, f2, . . . , fm such that

V = {a ∈ An : fi(a) = 0, ∀1 ≤ i ≤ m},

or are there times that we would always need an infinite number of

defining polynomials?

Exercise 4.3.1. Let V(x2 + y2 − 1). Show that I(V) contains an

infinite number of elements.

We know that there are an infinite number of possible defining

polynomials, but do we need all of them to define V ? In the above

exercise, all we need is the single x2 + y2 − 1 to define the entire

algebraic set. If there are times when we need an infinite number

of defining polynomials, then algebraic geometry would be extremely

hard. Luckily, the Hilbert Basis Theorem has as its core that we need

only a finite set of polynomials to generate any ideal. The rest of this

section will be pure algebra.

A (commutative) ring R is said to be Noetherian if every ideal

I in R is finitely generated. (Recall that all rings considered in this

book are commutative.)

Exercise 4.3.2. Show that every field and principal ideal domain

(PID) is Noetherian. (Recall that a ring is a PID if whenever x·y = 0,

then x = 0 or y = 0, and every nontrivial ideal is generated by a single

element.)

Exercise 4.3.3. Let R be a ring. Prove that the following three

conditions are equivalent:

(1) R is Noetherian.

(2) Every ascending chain I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · of ideals

in R is stationary, i.e., there exists N such that for all n ≥
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N , In = IN . This is called the ascending chain condition

(ACC).

(3) Every nonempty set of ideals in R has a maximal element

(with inclusion being the ordering between ideals). This

means that if we have a set of ideals {I1, I2, . . .}, there must

be at least one ideal in the set, say Ik, such that there is no

In in the set with

Ik � In.

(There can be more than one maximal element.)

In what follows, we guide the reader through a proof of the Hilbert

Basis Theorem.

Theorem 4.3.4 (Hilbert Basis Theorem). If R is a Noetherian ring,

then R[x] is also a Noetherian ring.

Sketch of proof. Let I ⊂ R[x] be an ideal of R[x]. We show I is

finitely generated.

Step 1. Let f1 be a nonzero element of least degree in I.

Step 2. For i > 1, let fi be an element of least degree in

I − 〈f1, . . . , fi−1〉, if possible.
Step 3. For each i, write fi = aix

di +lower order terms. That is, let

ai be the leading coefficient of fi. Set J = 〈a1, a2, . . .〉.
Step 4. Since R is Noetherian, J = 〈a1, . . . , am〉 for some m.

Exercise 4.3.5. Justify Step 4.

Step 5. Claim that I = 〈f1, . . . , fm〉. If not, there is an fm+1, and

we can subtract off its leading term using elements of 〈f1, . . . , fm〉 to
get a contradiction.

Exercise 4.3.6. Fill in the details of Step 5.

Exercise 4.3.7. Show that if R is Noetherian, then R[x1, . . . , xn] is

Noetherian.

The Hilbert Basis Theorem shows that the ideal of any variety is

finitely generated.
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Working over R we can show that every variety is defined by a

single polynomial.

First an example

Exercise 4.3.8. Show in A2(R) that

V(y − x2, x− y2) = V((y − x2)2 + (x− y2)2).

Since we are working over the real numbers, the only way for

(y − x2)2 + (x− y2)2 = 0

is for (y − x2)2 = 0 and for (x− y2)2 = 0.

Exercise 4.3.9. Let f1, . . . , fk ∈ R[x1, . . . , xn] and V = V (f1, . . . , fk)

⊂ Ak(R). Show that there is a polynomial f ∈ R[x1, . . . , xn] such that

V (f1, . . . , fk) = V (f). Give an example to show that this fails over

C.

4.4. The Strong Nullstellensatz

The goal of this section is to start the proof of Hilbert’s Nullstel-

lensatz, which shows that there is a one-to-one correspondence be-

tween algebraic sets in An(k) and radical ideals when k is algebraically

closed. In this section we will prove the Strong Nullstellensatz, under

the assumption of the Weak Nullstellensatz, which we prove in the

next section.

We saw in Exercise 4.2.20 that given any ideal I ⊂ C[x1, x2, . . . , xn],

V(I) = V(Rad(I)).

Could there be some other ideal J ⊂ k[x1, x2, . . . , xn], with V(J) =

V(I) but Rad(I) �= Rad(J)? The punch line for this section is that

this is impossible when we work over an algebraically closed field.

The goal is to prove the Strong Nullstellensatz. (We will primarily

be following the proof shown by Arrondo [Arr06], with a nod to

Fulton [Ful69].) This is one of the key results in algebraic geometry.

To some extent, if it were not true, then the subject would probably

not be studied. It provides a clean connection between points in affine

space with radical ideals in polynomial rings.
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Theorem 4.4.1 (Strong Nullstellensatz). Let k be an algebraically

closed field and let I be an ideal of the polynomial ring k[x1, . . . , xn].

Then

I(V(I)) = Rad(I).

(By the way, the word Nullstellensatz is German for “Theorem of

Zeros.”)

By Exercise 4.2.19, it is always true that Rad(I) ⊆ I(V(I)).

Thus, to prove the Strong Nullstellensatz, we must show I(V(I)) ⊆
Rad(I). For this section, suppose that k is an algebraically closed

field and I is an ideal in k[x1, . . . , xn] such that I is generated by

the polynomials f1, . . . , fr. Suppose that g is a polynomial such that

g ∈ I(V (I)). We must find a positive integer N and polynomials

A1, . . . , Ar such that

gN = A1f1 + · · ·+Arfr,

for then g ∈ Rad(I), as desired.

We will show this in the next few exercises, under the following

assumption, which we will prove in the next section:

Theorem 4.4.2 (Weak Nullstellensatz—Version 1). Let k be an al-

gebraically closed field and let I be a proper ideal of the polynomial

ring k[x1, . . . , xn]. Then

V(I) �= ∅,

i.e., there exists (a1, . . . , an) ∈ kn such that f(a1, . . . , an) = 0 for all

f ∈ I.

Starting with our original ideal I and the polynomial g ∈ I(V (I)),

define a new ideal J in the slightly larger polynomial ring k[x1, . . . , xn,

xn+1], by setting

J = 〈f1, . . . , fr, xn+1g − 1〉.

Exercise 4.4.3. Suppose g ∈ I(V (I)), or in other words g(a1, . . . , an)

= 0 for all (a1, . . . , an) ∈ V(〈f1, . . . , fr〉). For J = 〈f1, . . . , fr, xn+1g

−1〉, show V(J) = ∅.
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Exercise 4.4.4. Assuming the Weak Nullstellensatz, show that J

is not a proper ideal and hence that there exist A1, . . . , Ar, B in

k[x1, . . . , xn, xn+1] such that

1 = A1f1 +A2f2 + · · ·+B(xn+1g − 1).

Exercise 4.4.5. Let xn+1 =
1

y
. Show there exists N > 0 and poly-

nomials C1, . . . , Cr, D in k[x1, . . . , xn, y] with

yN = C1f1 + · · ·+ Crfr +D(g − y)

by clearing denominators.

Exercise 4.4.6. Letting y = g show that gN ∈ I and hence g ∈
Rad(I).

4.5. The Weak Nullstellensatz

Here we prove the Weak Nullstellensatz, which states that an alge-

braic set for any proper ideal cannot be empty. The use of resultants

will be critical. We will then give another formulation of the Weak

Nullstellensatz, which we will call Version 2.

From the last section recall the statement:

Theorem (Weak Nullstellensatz—Version 1). Let k be an alge-

braically closed field and let I be a proper ideal of the polynomial

ring k[x1, . . . , xn]. Then V(I) �= ∅, i.e., there exists (a1, . . . , an) ∈ kn

such that f(a1, . . . , an) = 0 for all f ∈ I.

Note that if I is not proper, the result is false, since if I is not

proper, then I must be the entire polynomial ring k[x1, . . . , xn]. In

particular, the constant function 1 must then be an element of I.

Since the constant function 1 has no zeros, this would mean that

V(I) = ∅.
The proof of the Weak Nullstellensatz will take some work. Our

argument will use induction on n, the number of variables of our

polynomial ring. In the one variable case, we start with a proper

ideal I in k[x1]. As in the last section we assume k is an algebraically

closed field.
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For one variable polynomials, the Euclidean Algorithm can be

used to show I is principal, that is, I can be generated by a single

polynomial.

Exercise 4.5.1. Prove the Weak Nullstellensatz for n = 1.

We now assume theWeak Nullstellensatz for ideals in k[x1, . . . , xm]

for any 1 ≤ m < n. We must prove that every proper ideal I in

k[x1, . . . , xn] has a non-empty zero set.

Exercise 4.5.2. Let I be a proper ideal of k[x1, . . . , xn] and let I ′

be the set of all polynomials in I that do not contain the variable xn.

Prove that I ′ is a proper ideal of k[x1, . . . , xn−1].

Thus I ′ is a proper ideal in the polynomial ring k[x1, . . . , xn−1].

Under our induction hypothesis, we must have

V(I ′) �= ∅.

Let (a1, . . . , an−1) ∈ V(I ′) be one of these points. We want to show

that there is at least one an ∈ k so that

(a1, . . . , an−1, an) ∈ V(I).

Set

J = {f(a1, . . . , an−1, xn) : f ∈ I}
in k[xn]. If this J is a proper ideal, by induction our desired an must

exist.

Exercise 4.5.3. Show that J is an ideal in k[xn].

Exercise 4.5.4. Under the assumption that J is proper, prove the

Weak Nullstellensatz.

Thus to complete the proof of the Weak Nullstellensatz we must

show that J , our newly created ideal in k[xn], is a proper ideal. This

will be the technical heart of the proof, and this is where we will use

resultants. We first will show there exists a polynomial in our original

ideal I that is monic in xn. (By monic, we mean that the coefficient

of the highest power for xn is one.) Why we do so will be apparent in

a moment. We will first consider a concrete example and then turn

to the general case.
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Exercise 4.5.5. Let g(x1, x2, x3, x4) = x1x2+x3x4. Prove that there

exist λ1, λ2, λ3 such that the coefficient of x2
4 in g(x1 + λ1x4, x2 +

λ2x4, x3 + λ3x4, x4) is nonzero.

Exercise 4.5.6. Let I ⊂ k[x1, . . . , x4] be an ideal containing the

polynomial g(x1, x2, x3, x4) = x1x2 + x3x4. Prove that there is a

change of coordinates so that I contains a polynomial monic in the

variable x4.

Exercise 4.5.7. Let k be an infinite field and g be a nonconstant

polynomial in k[x1, . . . , xn] (with n ≥ 2). Prove that there exist

λ1, . . . , λn−1 in k such that the coefficient of xd
n in g(x1 + λ1xn, . . . ,

xn−1 + λn−1xn, xn) is nonzero, where d is the total degree of

g(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn).

Exercise 4.5.8. Let k be an infinite field and I be a proper ideal of

k[x1, . . . , xn]. Prove that there is a change of coordinates so that I

contains a polynomial g that is monic in the variable xn.

Thus we can always assume that I has at least one polynomial g

that is monic in the variable xn.

We now return to show that our J is a proper ideal in k[xn]. We

will assume J is not proper and use a resultant to obtain a contra-

diction.

Exercise 4.5.9. Assume J is not proper. Show there exists f ∈ I

such that

f(x1, . . . , xn) = f0(x1, . . . , xn−1) + f1(x1, . . . , xn−1)xn

+ · · ·+ fd(x1, . . . , xn−1)x
d
n

with f0(a1, . . . , an−1) = 1, fi(a1, . . . , an−1) = 0 for 1 ≤ i ≤ d.

[Hint: If J is not proper, then 1 ∈ J.]

We now use this expression of f as a polynomial in xn. Recall

Definition 3.3.4.

Fixing a monic g ∈ I, we can similarly write

g(x1, . . . , xn) = g0(x1, . . . , xn−1) + g1(x1, . . . , xn−1)xn + · · ·+ xe
n.
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Consider the resultant

R = Res(f, g;xn) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 f1 · · · fd 0 0 · · · 0

0 f0 f1 · · · fd 0 · · · 0

0 0
. . .

. . . · · · . . . . . . 0
0 0 · · · f0 f1 · · · · · · fd
g0 g1 · · · ge−1 1 0 · · · 0
0 g0 g1 · · · ge−1 1 · · · 0

0 0
. . .

. . . · · · . . . . . . 0
0 0 · · · g0 · · · · · · ge−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(Note: The above matrix is the transpose, and then a switching of

the order of a few columns, of the matrix that we used in 3.3.4. Since

this will not change where the determinant is zero, the above is still

the resultant. This formatting will make the following proof a bit

easier to follow.) We want to show R ∈ I.

Exercise 4.5.10. Replace the first column in the resultant matrix

by

1st column + xn · 2nd column + · · ·+ xd+e−1
n · last column.

Show that the first column becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, . . . , xn1
, xn)

xnf(x1, . . . , xn1
, xn)

...

xe−1
n f(x1, . . . , xn1

, xn)

g(x1, . . . , xn1
, xn)

...

xd−1
n g(x1, . . . , xn1

, xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Exercise 4.5.11. By expanding along the first column of the matrix

obtained from the column operation in the previous exercise, show

R ∈ I.

Exercise 4.5.12. Show R ∈ I ′.

Exercise 4.5.13. Show R(a1, . . . , an−1) = 1.

Exercise 4.5.14. Prove that the ideal J must be proper.

Thus we have proven the Weak Nullstellensatz, our final step in

the proof that I(V(I)) = Rad(I).
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We next give an alternate version of the Weak Nullstellensatz

that will be useful later.

Exercise 4.5.15 (Weak Nullstellensatz—Version 2). Let k be an

algebraically closed field. An ideal I in k[x1, . . . , xn] is maximal if and

only if there are elements ai ∈ k such that I is the ideal generated by

the elements xi − ai; that is I = 〈x1 − a1, . . . , xn − an〉.

In our last exercises of this section we see that the Nullstellensatz

can fail when the field k is not algebraically closed.

Exercise 4.5.16. Let I = 〈x2 + 1〉 ∈ R[x] and show that I(V(I)) �=
Rad(I).

Exercise 4.5.17. Show that I = 〈x2+y2〉 and J = 〈x, y〉 are radical
ideals in R[x, y] with V(I) = V(J). This demonstrates that the corre-

spondence between algebraic sets and radical ideals is not one-to-one

over R.

4.6. Points in Affine Space as Maximal Ideals

In this section we give a geometric interpretation of the Weak Null-

stellensatz to establish a correspondence between points in affine

space and maximal ideals in k[x1, . . . , xn].

Exercise 4.6.1. Show that for a1, a2, . . . , an ∈ k, the ideal I ⊂
k[x1, . . . , xn] defined as

I = 〈x1 − a1, x2 − a2, . . . , xn − an〉
is maximal. [Hint: Suppose J is an ideal with I � J , and show that

J contains 1.]

Exercise 4.6.2. Show that I({(a1, . . . , an)}) = 〈x1−a1, . . . , xn−an〉.

Exercise 4.6.3. Show that if an ideal I ⊂ k[x1, . . . , xn] is maximal,

then V(I) is either a point or empty.

Note that we are not requiring k to be algebraically closed. This

is why V(I) can be empty. When k is algebraically closed, the Weak

Nullstellensatz shows that V(I) �= ∅.
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Exercise 4.6.4. Find a maximal ideal I ⊂ R[x1, . . . , xn] for which

V(I) = ∅.

Such a maximal ideal in k[x1, . . . , xn] cannot exist when k is al-

gebraically closed, for all maximal ideals are then of the form 〈x1 −
a1, . . . , xn − an〉 for some a1, . . . , an ∈ k by the Weak Nullstellensatz

(Theorem 4.5.15). However, in Exercises 4.6.2 and 4.6.3, we saw that

such maximal ideals correspond to points in An(k). This proves the

following important fact.

Theorem 4.6.5. In an algebraically closed field k, there is a one-to-

one correspondence between points of An(k) and maximal ideals of

k[x1, . . . , xn].

4.7. Affine Varieties and Prime Ideals

The goal of this section is to define affine varieties and to show that

they correspond to prime ideals.

Throughout this section we assume that k is an algebraically

closed field.

4.7.1. Irreducible Components. An algebraic set V is reducible

if

V = V1 ∪ V2,

where V1 and V2 are algebraic sets with V1 � V and V2 � V . An

algebraic set that is not reducible is said to be irreducible.

Definition 4.7.1. An affine variety is an irreducible algebraic set in

An, for some n.

Exercise 4.7.1. Show that A1(C) is irreducible, so A1(C) is an affine

variety.

Exercise 4.7.2. Decide if the following algebraic sets in A2 are re-

ducible or irreducible.

(1) V(x)

(2) V(x+ y)
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(3) V(xy)

Exercise 4.7.3. Let f ∈ k[x1, . . . , xn] and set V = V(f). Show that

if f factors as a product f = gh of distinct nonconstant irreducible

polynomials g, h ∈ k[x1, . . . , xn], then V is reducible.

4.7.2. Prime and Non-Prime Ideals. A proper ideal I ⊂ R is a

prime ideal in R if, whenever ab ∈ I for a, b ∈ R, either a ∈ I or b ∈ I

(or both). A proper ideal I ⊂ R is a maximal ideal in R if I � J ⊂ R

for some ideal J implies that J = R.

Exercise 4.7.4. We know that every ideal I in Z is of the form

I = 〈m〉 for some m ∈ Z.

(1) For what values of m is the ideal I = 〈m〉 a prime ideal in

Z?

(2) For what values of m is the ideal I = 〈m〉 a maximal ideal

in Z?

Exercise 4.7.5. Let I be an ideal in a ring R.

(1) Show that I ⊂ R is a prime ideal if and only if R/I is an

integral domain.

(2) Show that I ⊂ R is a maximal ideal if and only if R/I is a

field.

(3) Explain why every maximal ideal in R is prime.

Exercise 4.7.6. Let f(x, y) = xy ∈ k[x, y]. Show that the ideal 〈f〉
is not a prime ideal.

Exercise 4.7.7. Let f ∈ k[x] be a nonconstant polynomial. Prove

that f is an irreducible polynomial if and only if 〈f〉 is a prime ideal.

Exercise 4.7.8. Let ϕ : R → S be a ring homomorphism. Let J ⊂ S

be a prime ideal in S. Show that ϕ−1(J) is a prime ideal in R.

4.7.3. Varieties and Prime Ideals. We now reach the key results

of this section.

Exercise 4.7.9. Let V ⊂ An be an algebraic set.

(1) Suppose that V is reducible, say V = V1 ∪ V2 where V1 and

V2 are algebraic sets with V1 � V and V2 � V . Show that
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there are polynomials P1 ∈ I(V1) and P2 ∈ I(V2) such that

P1P2 ∈ I(V ) but P1, P2 �∈ I(V ). Conclude that I(V ) is not

a prime ideal.

(2) Prove that if I(V ) is not a prime ideal in k[x1, . . . , xn], then

V is a reducible algebraic set.

Exercise 4.7.10. Let V be an algebraic set in An. Prove that the

following are equivalent:

(1) V is an affine variety.

(2) I(V ) is a prime ideal in k[x1, . . . , xn].

(3) The quotient ring k[x1, . . . , xn]/I(V ) is an integral domain.

(Note: This quotient ring is denoted by OV and is called

either the coordinate ring or the ring of regular functions.)

Exercise 4.7.11. Show that An is an irreducible algebraic set for

every n ≥ 1. Thus every affine space is an affine variety.

Exercise 4.7.12. Let f ∈ k[x, y] be an irreducible polynomial. Show

that V(f), which is a curve in A2, is an irreducible algebraic set.

Typically an algebraic set is not irreducible, but it can always be

written as a finite union of irreducible algebraic sets, which leads us

to the following exercise.

Exercise 4.7.13. Let V be an algebraic set. Assume that V cannot

be written as the union of a finite number of irreducible algebraic sets.

(This is based on Proposition I.1.5 and Corollary I.1.6 of [Har77].)

(1) Show that there is an infinite descending chain of algebraic

sets

V ⊃ V1 ⊃ V2 ⊃ · · ·
in An.

(2) Show that

I(V ) ⊂ I(V1) ⊂ I(V2) ⊂ · · ·

is an infinite ascending chain of ideals in k[x1, . . . , xn].

(3) Use the fact that k[x1, . . . , xn] is Noetherian to develop a

contradiction.
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Conclude that every algebraic set in An can be written as a union of

a finite number of irreducible algebraic sets in An.

Exercise 4.7.14.

(1) Let V be an algebraic set in An. Show that V can be written

as a union of finitely many irreducible algebraic sets in An,

V = V1 ∪ · · · ∪ Vk, such that no Vi contains any Vj .

(2) Suppose that V1∪· · ·∪Vk = W1∪· · ·∪W�, where the Vi,Wj

are irreducible algebraic sets in An such that no Vi contains

any Vj and no Wi contains any Wj if i �= j. Show that k = �

and, after rearranging the order, V1 = W1, . . . , Vk = Wk.

Therefore, every algebraic set in An can be expressed uniquely as the

union of finitely many affine varieties, no one containing another.

4.8. Regular Functions and the Coordinate Ring

In this section we define the natural ring of polynomial functions on

an algebraic set: O(V ).

One of the themes in 20th-century mathematics is that it is not

clear what is more important in geometry: the actual geometric point

set or the space of functions defined on the geometric point set. We

now look at functions defined on algebraic sets.

Definition 4.8.1. Let V ⊆ An(k) be an algebraic set. The coordi-

nate ring of V is the quotient ring O(V ) = k[x1, . . . , xn]/I(V ). The

elements of the coordinate ring are the regular functions on V .

The elements of O(V ) can be thought of as polynomial functions

on V .

Given an algebraic set V , recall that by I(V ) we mean the vanish-

ing ideal of V , i.e., the ideal in k[x1, . . . , xn] consisting of polynomials

f that satisfy f(p) = 0 for all p ∈ V .

Exercise 4.8.1. Let f(x, y) = x2 + y2 − 1 ∈ C[x, y]. Consider the

two polynomials g(x, y) = y, h(x, y) = x2 + y2 + y − 1.
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(1) Find a point (a, b) ∈ A2(C) such that

g(a, b) �= h(a, b).

(2) Show for any point (a, b) ∈ V(f) that

g(a, b) = h(a, b).

Thus g and h are different as functions on A2(C) but should be viewed

as equal on the algebraic set V(f).

Exercise 4.8.2. Let f(x, y) = x2 + y2 − 1 ∈ C[x, y]. Suppose that

g, h ∈ C[x, y] such that for all (a, b) ∈ V(f) we have g(a, b) = h(a, b).

Show that the polynomial g(x, y)− h(x, y) ∈ 〈x2 + y2 − 1〉.

Exercise 4.8.3. Let V ⊆ kn be an algebraic set. Prove that there is a

one-to-one correspondence from the set of all ideals of k[x1, . . . , xn]/I(V )

onto the set of all ideals of k[x1, . . . , xn] containing I(V ).

Exercise 4.8.4. Let V ⊆ An(k) and W ⊆ Am(k) be algebraic sets.

A function f : V → W is a polynomial map if there exist f1, . . . , fm ∈
O(V ) so that for all p ∈ V we have f(p) = (f1(p), . . . , fm(p)).

(1) Let f : V → W be a polynomial map, and define φ :

O(W ) → O(V ) by φ(g) = g ◦ f . Show that φ is a k-algebra

homomorphism. Thus you must show that φ(g + h) =

φ(g) + φ(h), for all g, h ∈ O(W ) and φ(ag) = aφ(g) for

all a ∈ k.

(2) Show that for each k-algebra homomorphism φ : O(W ) →
O(V ) there exists a polynomial map f : V → W such that

φ(g) = g ◦ f , for all g ∈ O(W ).

4.9. Subvarieties

The goal of this section is to define subvarieties of an affine variety

and to examine some of their algebraic properties.

Definition 4.9.1. Let W be an algebraic variety that is properly

contained in an algebraic variety V ⊂ An(k). Then W is a subvariety

of V .
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Exercise 4.9.1. Let V = {(x, y) : x − y = 0} ⊂ A2(C). Show that

the point p = (1, 1) is a subvariety of V , while the point q = (1, 2) is

not a subvariety of V .

Exercise 4.9.2. From the previous problem, find I(V ), I(p) and

I(q). Show that

I(V ) ⊂ I(p)

and

I(V ) �⊂ I(q).

Exercise 4.9.3. Let W be a subvariety of V . Show that

I(V ) ⊂ I(W ).

Exercise 4.9.4. Let V and W be two algebraic varieties in An(k).

Suppose that

I(V ) ⊂ I(W ).

Show that W is a subvariety of V .

Thus we have an elegant diagram:

W ⊂ V

if and only if

I(W ) ⊃ I(V )

We now want to explore the relation between the coordinate ring

O(V ) and the coordinate ring O(W ) for any subvariety W of a variety

V .

Exercise 4.9.5. Continue letting V = {(x, y) : x− y = 0} ⊂ A2(C),

with subvariety p = (1, 1). Find a polynomial f ∈ C[x, y] that is not

identically zero on points of V but is zero at p, meaning there is a

point q ∈ V with f(q) �= 0 but f(p) = 0. Show that

Rad 〈f, I(V )〉 = I(p).

[Hint: Choose f reasonably.]

We have to worry a little about notation. For a variety V ⊂
An(k), by definition O(V ) = k[x1, . . . , xn]/I(V ). Then, given any

f ∈ k[x1, . . . , xn], we can think of f as a function on V and hence

as an element of O(V ), but we must keep in mind that if we write
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f ∈ O(V ), then f is standing for the equivalence class f + I(V ),

capturing that if f and g ∈ k[x1, . . . , xn]/I(V ) agree on all points of

V , then f − g ∈ I(V ) and hence f + I(V ) = g + I(V ), representing

the same function in O(V ).

We have a ring theoretic exercise first.

Exercise 4.9.6. Let R be a commutative ring. Let I ⊂ J be two

ideals in R. Show that J/I is an ideal in the quotient ring R/I. Show

that there is a natural onto map

R/I → R/J

whose quotient is the ideal J/I.

Exercise 4.9.7. Continue letting V = {(x, y) : x− y = 0} ⊂ A2(C),

with subvariety p = (1, 1). Explicitly check the above exercise for

R = C[x, y], I = I(V ) and J = I(p).

For any type of subsets W ⊂ V , if f : V → k, then there is the

natural restriction map f |W : W → k, which just means for all p ∈ W

that we define

f |W (p) = f(p).

Exercise 4.9.8. Let W be a subvariety of a variety V ⊂ An(k). Let

f ∈ O(V ). Show that the above restriction map sends f to an element

of O(W ) and that this restriction map is a ring homomorphism.

Exercise 4.9.9. Show that the kernel of this restriction map is

I(W )/I(V ) in the ring O(V ).

Exercise 4.9.10. Discuss why each subvariety W of V should corre-

spond to an onto ring homomorphism from the coordinate ring O(V )

to a commutative ring.

Thus there are three equivalent ways for thinking of subvarieties

of an algebraic variety V :

(1) W as an algebraic variety properly contained in an algebraic

variety V .

(2) A prime ideal J properly containing the prime ideal I(V ).

(3) A quotient ring of the ring O(V ) = k[x1, . . . , xn]/I(V ).
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4.10. Function Fields

The goal of this section is to associate not just a ring but also a field

to an algebraic variety. This field plays a critical role throughout

algebraic geometry.

Every algebraic variety V corresponds to a prime ideal I ⊂
k[x1, . . . , xn]. This allowed us to define the ring of functions on V ,

namely the quotient ring O(V ) = k[x1, . . . , xn]/I. Every integral

domain sits inside a field, much like the integers sit inside the ratio-

nal numbers. In fact, the integers can be used to define the rational

numbers as the smallest field containing the integers. The goal of this

subsection is to define the function field KV , which is the smallest

field that contains the quotient ring O(V ).

Definition 4.10.1. Given an algebraic variety V corresponding to a

prime ideal I ⊂ k[x1, . . . , xn], the function field KV is:

KV =

{
f

g
: f, g ∈ O(V ), g �= 0

}
/ ∼

where
f1
g1

∼ f2
g2

if and only if f1g2 − f2g1 ∈ I.

Exercise 4.10.1. Show that ∼ is an equivalence relation.

So far, KV is simply a set. To make it into a field, we need to

define how to add and multiply its elements. Define addition to be:

e

f
+

g

h
=

eh+ fg

fh

and multiplication to be
e

f
· g
h
=

eg

fh
.

Exercise 4.10.2. Show that addition is well-defined, that is, if
e1
f1

∼ e2
f2

and
g1
h1

∼ g2
h2

,

then
e1
f1

+
g1
h1

∼ e2
f2

+
g2
h2

.
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Exercise 4.10.3. Show that multiplication is well-defined, that is, if
e1
f1

∼ e2
f2

and
g1
h1

=
g2
h2

,

then
e1
f1

· g1
h1

∼ e2
f2

· g2
h2

.

Under these definitions, KV is indeed a field.

4.11. The Zariski Topology

The goal of this section is to show that there is an algebraically

defined topology for any ring.

4.11.1. Topologies. The development of topology is one of the great

success stories of early 20th-century mathematics. With a sharp defi-

nition for a topological space, once tricky notions such as “continuity”

and “dimension” now have rigorous, meaningful definitions. As with

most good abstractions, these definitions could be applied to situa-

tions far removed from what their founders intended. This is certainly

the case in algebraic geometry.

We start with the definition of a topology on a set X.

Definition 4.11.1. A topology on the set X is given by specifying a

collection U of subsets of X having the properties:

(1) Both the empty set and the entire set X are elements of the

collection U.

(2) The union of any subsets of X in U is also in U. (It is critical

that we allow even infinite unions.)

(3) The finite intersection of any subsets of X in U is also in U.

(Here is it critical that we allow only finite intersections.)

A set U ∈ U is said to be open. A set C is said to be closed if its

complement X − C is open.

Let us look at a few examples.

Start with the real numbers R. We need to define what subsets

will make up the collection U.
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Definition 4.11.2. A set U ⊂ R is a standard open set in R if for

every a ∈ U , there exists an ε > 0 such that

{x ∈ R : |x− a| < ε} ⊂ U.

R◦ ◦
U

(
a− ε

•
a

)
a+ ε

Exercise 4.11.1. Let a, b ∈ R with a < b.

(1) Show that in R, (a, b) = {x ∈ R : a < x < b} is open.

(2) Show that in R, [a, b] = {x ∈ R : a ≤ x ≤ b} is closed.

(3) Show that in R, [a, b) = {x ∈ R : a ≤ x < b} is neither open

nor closed. (This type of set is often said to be half-open.)

Exercise 4.11.2. Show that the collection of standard open sets in

R defines a topology on R. This is called the standard topology on R.

Let us now put a topology on Cn.

Definition 4.11.3. A set U ⊂ Cn is a standard open set in Cn if for

every a ∈ U , there exists an ε > 0 such that

{x ∈ Cn : |x− a| < ε} ⊂ U.

(Note that |x−a| =
√

|x1 − a1|2 + · · ·+ |xn − an|2 for a = (a1, . . . , an)

and x = (x1, . . . xn).)

Thus a set U is open in Cn if any of its points can be made the

center of a little open ball that lies entirely within U .

Exercise 4.11.3. Show that the collection of standard open sets in

Cn defines a topology on Cn. This is called the standard topology on

Cn.

Exercise 4.11.4. In C2, show that C2 − V(x2 + y2 − 1) is open in

the standard topology.

Exercise 4.11.5. In C2, show that C2−V(P ) is open in the standard

topology for any polynomial P (x, y).

Exercise 4.11.6. In C3, show that C3 −V(x2 + y2 + z2 − 1) is open

in the standard topology.
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Exercise 4.11.7. In Cn, show that Cn −V(P ) is open for any poly-

nomial P (x1, x2, . . . , xn), so V(P ) is closed in the standard topology

on Cn.

Exercise 4.11.8. In C2, show that {(x, y) ∈ C2 : |x|2 + |y|2 < 1}
is open in the standard topology. [Hint: Use the Triangle Inequality,

which states that for any z, w ∈ Cn, |z + w| ≤ |z|+ |w|.]

The standard topologies on R and Cn may be familiar to you.

However, these are not the only topologies that can be defined on

these sets. In the next exercise you will explore the finite complement

topology on R and see that it is different than the standard topology.

Exercise 4.11.9. Finite complement topology on X: On R a set U

is open if the complement of U is a finite collection of points, i.e.,

U = X − {p1, . . . , pk}. X and ∅ are also considered to be open sets.

(1) Verify that any arbitrary union of open sets is again open.

(2) Verify that any finite intersection of open sets is open.

(3) Conclude that the open sets defined above form a topology

on X. This is called the finite complement topology on X.

(4) Show that if a set U is open in the finite complement topol-

ogy for R, then it is open in the standard topology on R.

(5) Give an example of an open set in the standard topology on

R that is not open in the finite complement topology.

(6) Show that any two nonempty open sets in the finite com-

plement topology on R must intersect. Is the same true in

the standard topology on R?

The definition of topology involves properties of open sets. When

we work in the algebraic geometry world, most of our basic objects,

such as varieties, are closed objects. We would like to be able to

switch between open and closed sets from time to time. The next

pair of exercises hold for any general topology.

Exercise 4.11.10. Let X be a set. Define for any set U in X its

complement to be Uc = X − U. Show that

(Uc)c = U.
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Exercise 4.11.11. For subsets Uα, α ∈ A, of a set X, let Cα = Uc
α.

(1) Show that ⋃
α

Uα = X −
⋂
α

Cα.

(2) Show that ⋂
α

Uα = X −
⋃
α

Cα.

The final part of Exercise 4.11.9 implies that the finite comple-

ment topology on R is not “Hausdorff” while the standard topology

is. In a Hausdorff topology on a set X, for any pair of distinct points

p, q ∈ X you can find open sets U, V such that p ∈ U , q ∈ V and

U∩V = ∅. That is, we can “separate” p and q in X with disjoint open

sets. This is usually a desirable property in the study of topology, but

it is not a property of the topology we use in algebraic geometry: the

Zariski topology.

4.11.2. The Zariski Topology on An(k).

Definition 4.11.4. Let k be a field. A set X ⊂ An(k) is a Zariski-

closed set if X is an algebraic set. A set U is Zariski-open if U =

An(k)−X where X is an algebraic set.

Exercise 4.11.12.

(1) Use Exercises 4.2.5 and 4.2.12 to show that the collection of

Zariski-open sets in An(k) is a topology. This is called the

Zariski topology on An(k).

(2) Show that a finite collection of points in An(k) is a Zariski-

closed set.

Exercise 4.11.13. In this exercise, we compare the Zariski and finite

complement topologies.

(1) Show that if a set U is open in the finite complement topol-

ogy on An(k), then it is open in the Zariski topology on

An(k).

(2) Show that the finite complement topology on R is the same

as the Zariski topology on R. (Two topologies are the same
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if and only if they are given by the same collection of open

sets or, equivalently, the same collection of closed sets.)

(3) Show that the finite complement topology on C is the same

as the Zariski topology on C.

(4) Show that a circle in R2 is a Zariski-closed set. Conclude

that the Zariski topology is not the same as the finite com-

plement topology on R2.

Exercise 4.11.14. In this exercise we describe the Zariski topology

on C2.

(1) Show that, in C2, the complement of a finite number of

points and algebraic curves is Zariski-open. Note: By an

“algebraic curve” in C2 we mean V(P ) for some irreducible

polynomial P (x, y) of positive degree.

(2) Show that a non-empty Zariski-open set in C2 is the com-

plement of a finite number of points and algebraic curves.

Exercise 4.11.15. Show geometrically that the Zariski topology on

C2 is not Hausdorff.

4.12. Spec(R)

The goal of this section is to define a space and its Zariski topology

associated to any ring R.

Let R be a commutative ring. In order to create a topological

space, we first have to specify our set of points. We will see that our

“points” will be the prime ideals in R. Recall that a proper ideal I

in a ring R is prime if the following holds: whenever f, g ∈ R with

fg ∈ I, then f ∈ I or g ∈ I. A proper ideal I of R is maximal if

I ⊂ J for some ideal J in R implies that either J = I or J = R.

Definition 4.12.1. The prime spectrum or spectrum of a ring R is

the collection of prime ideals in R, denoted by Spec(R).

For any ring R, the set on which we will define our topology is

Spec(R). This definition might not appear to be the proper gener-

alization of Theorem 4.6.5, where we learned that points of An(k)
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correspond to maximal ideals in k[x1, . . . , xn]. However, it is the

natural choice for the set of points we need, which will be further

explained in Subsection 4.18.2 later in this chapter. In the meantime,

we note that because maximal ideals are prime, the set Spec(R) in-

cludes all points from before and potentially more, as we explore in

the following exercises.

Exercise 4.12.1. Describe the following sets.

(1) Spec(Z)

(2) Spec(R)

(3) Spec(k) for any field k

Exercise 4.12.2. Consider the polynomial ring C[x].

(1) Show that the ideal 〈0〉 is a prime ideal in C[x].

(2) Show that all prime ideals in C[x] are maximal ideals, except

for the ideal 〈0〉.
(3) Show for each point a ∈ C there is a corresponding prime

ideal.

(4) Explain why Spec(C[x]) can reasonably be identified with

C.

Exercise 4.12.3. Show that there are three types of points in Spec(R[x]):

i. The zero ideal 〈0〉,
ii. Ideals of the form 〈x− a〉 for a real number a,

iii. Ideals of the form 〈x2 + βx+ γ〉 for real numbers β, γ with

β2 − 4γ < 0.

Exercise 4.12.4. A curious property of “points” in Spec(R).

(1) Show that 〈x− y〉 is a prime ideal in C[x, y] and hence is a

point in Spec(C[x, y]).

(2) For two fixed complex numbers a and b, show that 〈x−a, y−
b〉 is a maximal ideal of C[x, y] and is hence also a point in

Spec(C[x, y]).

(3) Show that for every a ∈ C, 〈x− a, y − a〉 contains the ideal

〈x− y〉.
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Thus, in Spec(R), some “points” can be contained in others. This

suggests that not all points in Spec(R) are created equal. Returning

to our motivation in Theorem 4.6.5, we make the following definition.

Definition 4.12.2. The geometric points in Spec(R) are the maximal

ideals.

By Part (2) of Exercise 4.12.4, 〈x − a, y − b〉 is a maximal ideal

in C[x, y], and hence a geometric point in Spec(C[x, y]). In general,

by the Weak Nullstellensatz (Theorem 4.5.15), the maximal ideals in

C[x1, . . . , xn] are of the form 〈x1 − a1, . . . , xn − an〉 for (a1, . . . , an) ∈
Cn. Thus the set of geometric points of Spec(C[x1, . . . , xn]) corre-

sponds exactly to the set of points of Cn. However, we should not

confuse these two sets, for Spec(C[x1, . . . , xn]) contains many points

other than its geometric ones, as indicated in the previous exercises.

Now that we are better acquainted with our set of points, we are

ready to define the topology.

Definition 4.12.3. Let S ⊆ R. Define the Zariski closed set given

by S in Spec(R) to be

Z(S) = {P ∈ Spec(R) : P ⊇ S}.
A subset U of Spec(R) is Zariski open if there is a set S ⊆ R with

U = Spec(R)− Z(S).

Exercise 4.12.5. Let R be a ring. For a subset S of R, recall that

〈S〉 denotes the ideal in R generated by S.

(1) For a set S ⊆ R, show that Z(S) = Z(〈S〉).
(2) Show that Z({0}) = Spec(R), and Z({1}) = ∅.
(3) For ideals I, J ⊂ R with I ⊂ J , show that Z(I) ⊇ Z(J).

Exercise 4.12.6. Show that a point I in Spec(R) is Zariski closed if

and only if the ideal I is maximal in R.

Thus the geometric points of Spec(R) coincide with the points of

Spec(R) that are Zariski closed. We could have defined a geometric

point as a point of Spec(R) that is Zariski closed.

As in Section 4.2 we want to create a dictionary for going back

and forth between Zariski closed sets in Spec(R) and ideals in R. We
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have already described Z(S), which assigns closed subsets of Spec(R)

to ideals in R. Now we define the ideal associated to a subset of

Spec(R).

Definition 4.12.4. For X ⊆ Spec(R), define the ideal of X to be

I(X) =
⋂

P∈X

P,

the intersection of all prime ideals of R that are in X.

Exercise 4.12.7. Let X ⊂ Spec(R). Show that I(X) is a radical

ideal.

Exercise 4.12.8. Let X and Y be subsets of Spec(R).

(1) Show that X ⊆ Z(I(X)).

(2) Show that if X ⊆ Y , then I(Y ) ⊆ I(X).

Exercise 4.12.9. Show that if X is a Zariski closed set in Spec(R),

then X = Z(I(X)).

Definition 4.12.5. For a subset Y of Spec(R), the Zariski closure

of Y in Spec(R) is Y = Z(I(Y )).

Exercise 4.12.10. Compute the Zariski closure of the following sets.

(1) {〈2〉, 〈3〉} in Spec(Z)

(2) {〈0〉} in Spec(Z)

(3) {〈x− y〉} in Spec(C[x, y])

This reinforces our previous result that the geometric points of

Spec(R) coincide with the Zariski closed points. Part (2) is especially

interesting and has a name:

Definition 4.12.6. A point of Spec(R) whose closure is the whole

space is called a generic point .

As we have already noted, the nature of points in Spec(R) chal-

lenges our geometric intuition. Still, we have also seen that several

of the results from Section 4.2 for our dictionary between closed sets

and ideals in R continue to hold in Spec(R). Here is one more of these

results, which will prove important in our proof that the collection of

Zariski open sets defines a topology on Spec(R).
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Exercise 4.12.11. Show that if X and Y are Zariski closed sets in

Spec(R), then X∪Y = Z(I(X)∩I(Y )) and X∩Y = Z(I(X)+I(Y )).

Exercise 4.12.12. Show that the Zariski closed sets are closed under

arbitrary intersections.

Recall that a topology is a collection of open sets. We now convert

the Zariski closed sets into open ones and prove that the set of Zariski

open sets defines a topology on Spec(R).

Exercise 4.12.13. Let U1 and U2 be Zariski open sets in Spec(R).

Show that U1 ∩ U2 is a Zariski open set in Spec(R).

Exercise 4.12.14. Let {Uα : α ∈ A} be an arbitrary collection of

Zariski open sets in Spec(R). Show that
⋃

α Uα is a Zariski open set

in Spec(R).

Exercise 4.12.15. Show that the collection of Zariski open sets forms

a topology on Spec(R).

4.13. Points and Local Rings

The goal of this section is to show how to link points on an algebraic

variety V with local rings OV , which are subrings of the function field

KV .

We want to study what is going on around a point p in an al-

gebraic variety. One approach would be to understand the behavior

of the functions on V near p. If we just want to know what is going

on at p, then what a function is doing far from p is irrelevant. The

correct ring-theoretic concept will be that of a local ring.

We start with points in affine varieties V ⊂ An(k) and their local

rings. We then see how to put this into a much more general language.

4.13.1. Points as Maximal Ideals in Affine Varieties. In Sec-

tion 4.6 we proved that points in An(k) correspond to maximal ideals

in k[x1, . . . , xn] and, conversely, that maximal ideals correspond to

points when the field k is algebraically closed (Theorem 4.6.5). In

the following exercises, we prove similar results for affine varieties
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V ⊂ An(k). Throughout this subsection we assume that k is an

algebraically closed field.

Exercise 4.13.1. Let V = V(x2 + y2 − 1) ⊂ A2(k). Let p = (1, 0) ∈
V . Define

mp = {f ∈ OV : f(p) = 0}.

(1) Show that mp is an ideal in OV .

(2) Show that mp is in fact a maximal ideal in OV .

Exercise 4.13.2. Let m be a maximal ideal in OV for the variety

V = V(x2 + y2 − 1) from the previous problem. Let

V(m) = {p ∈ V : for all f ∈ m, f(p) = 0}.
Show that V(m) must be a single point on V .

Exercise 4.13.3. Let V ⊂ An(k) be an algebraic variety. Let p be a

point in V . Define

mp = {f ∈ OV : f(p) = 0}.
Show that mp is a maximal ideal in OV .

Exercise 4.13.4. Let m be a maximal ideal in OV , for V ⊂ An(k).

Let

V(m) = {p ∈ V : for all f ∈ m, f(p) = 0}.
Show that V(m) must be a single point in V .

Thus points p define maximal ideals in the coordinate ring OV

and maximal ideals in OV define points on V . This extends the results

of Theorem 4.6.5 to affine varieties in general.

4.13.2. Local Ring at a Point. Let V ⊂ An(k) be an algebraic

variety and let p be a point in V . We want to concentrate on the

functions on V defined near p. Suppose there is a g ∈ OV with

g(p) �= 0, say g(p) = 1. Then close to p, whatever that means, the

function g looks a lot like the constant function 1. This means that

we should be allowed to look at 1/g, which is generally not allowed

in OV but is allowed in its function field KV .

Recall the construction of KV from Section 4.10. By definition,

KV =

{
f

g
: f, g ∈ OV , g �= 0

}
/

(
f1
g1

∼ f2
g2

)
,
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where f1/g1 ∼ f2/g2 if f1g2 − f2g1 ∈ I(V ). Addition and multiplica-

tion were defined as usual for fractions,

f1
g1

+
f2
g2

=
f1g2 + f2g1

g1g2
and

f1
g1

· f2
g2

=
f1f2
g1g2

,

both of which are well-defined. This set with these operations is then

a field. We now define the local ring at p to be a subring of this field.

Definition 4.13.1. Let p be a point on an algebraic variety V . The

local ring associated to p is

Op(V ) =

{
f

g
∈ KV : g(p) �= 0

}
.

Exercise 4.13.5. Let p be a point in an algebraic variety V . Prove

that its local ring Op(V ) is a subring of the function field KV .

Exercise 4.13.6. Let V = V(x2+y2−1) ⊂ A2(k) and p = (1, 0) ∈ V .

(1) Show for f(x, y) = x ∈ Op(V ) that there is an element

g ∈ Op(V ) such that f · g = 1 in Op(V ).

(2) Show for f(x, y) = y ∈ Op(V ) that there can exist no ele-

ment g ∈ Op(V ) such that f · g = 1 in Op(V ).

(3) Show that the ring Op(V ) cannot be a field.

Exercise 4.13.7. Let p be a point in an algebraic variety V ⊆ An(k)

and let

mp = {f ∈ Op(V ) : f(p) = 0}.

(1) Suppose that f �∈ mp. Show that there exists an element

g ∈ Op(V ) such that f · g = 1 in Op(V ).

(2) Show that mp is the unique maximal ideal in the ring Op(V ).

4.13.3. Local Rings in Commutative Algebra. We now shift

gears and make things quite a bit more abstract. Part of the power of

algebraic geometry is that we can start with geometric insights and

translate these into the language of ring theory, allowing us to think

geometrically about rings for which there is little apparent geometry.

This is not our emphasis in this book, but the following is included

to give just a flavor of this.

In Exercise 4.13.7 we saw that the local ring at a point p in an

affine variety V , Op(V ), has a unique maximal ideal, mp. Inspired
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by this, we make the following definition for commutative rings in

general.

Definition 4.13.2. A local ring is a ring that has a unique maximal

ideal.

Now we can talk about local rings quite generally. For example,

every field is a local ring since the only proper ideal in a field is the

zero ideal. However, as we have seen in Exercise 4.13.6, not every

local ring is a field.

The rest of this section develops the method of localization for

creating local rings from a given commutative ring R. This method

is similar to the creation of Op(V ) above, where we create a new ring

of “fractions” of elements from R with denominators from one of its

subsets. In Op(V ), that set of denominators was {g ∈ OV : g(p) �= 0}.
In this case and in all of our other experiences with fractions, both

addition and multiplication require that we multiply denominators

and again have a valid denominator. This leads to the following

definition.

Definition 4.13.3. A nonempty subset S of a ring R is said to be

multiplicatively closed in R if, whenever a, b ∈ S, the product ab ∈ S.

Exercise 4.13.8.

(1) Show that S = {1, 3, 9, 27, . . . } = {3k : k ≥ 0} is a multi-

plicatively closed set in Z.

(2) Let R be a ring and let a �= 0 be an element of R. Show

that the set S = {ak : k ≥ 0} is a multiplicatively closed set

in R.

Exercise 4.13.9.

(1) Let p ∈ Z be a prime number. Show that the set Z− 〈p〉 is
multiplicatively closed.

(2) Let R be a ring and assume that I ⊂ R is a maximal ideal

in R. Show that S = R− I is multiplicatively closed.

(3) Let R be a ring and I ⊂ R be any ideal. Under what

conditions on the ideal I will the subset S = R − I be a

multiplicatively closed subset of R? Prove your answer.
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Let S be a multiplicatively closed set in R. Define an equivalence

relation ∼ on the set R× S as follows:

(r, s) ∼ (r′, s′) ⇐⇒ ∃ t ∈ S such that t(s′r − sr′) = 0.

Exercise 4.13.10. Show that ∼ is an equivalence relation on R×S.

Exercise 4.13.11. Describe the equivalence relation ∼ on R × S if

0 ∈ S.

Let RS = (R × S)/ ∼ and let [r, s] denote the equivalence class

of (r, s) with respect to ∼. Define addition in RS by

[r1, s1] +
S
[r2, s2] = [r1s2 + r2s1, s1s2]

and multiplication by

[r1, s1] ·
S
[r2, s2] = [r1r2, s1s2].

Exercise 4.13.12. Show that +
S

and ·
S
are well-defined operations

on RS .

With a little work checking the axioms, one can show that RS is

a ring under the addition and multiplication defined above. This ring

is called the localization of R at S.

Exercise 4.13.13. Let S = Z−{0}. What is ZS? Is ZS a local ring?

Exercise 4.13.14. LetR = Z and S = {2k : k ≥ 0} = {1, 2, 4, 8, . . . }.

(1) Show that S is multiplicatively closed in R.

(2) Show that, in RS = ZS , addition and multiplication of

[a, 2m] and [b, 2n] agrees with the addition and multiplica-

tion of the fractions a/2m and b/2n in Q.

(3) Let S′ = {2, 4, 8, . . . } = {2k : k ≥ 1}. Show that RS′ ∼= RS .

Exercise 4.13.15. Let R be a ring and I ⊂ R be a prime ideal. Set

S = R − I, which is a multiplicatively closed set in R, and consider

the ring RS .

(1) Show that RS is a local ring. Describe its unique maximal

ideal.

(2) Show that the proper ideals in RS correspond to ideals J in

R such that J ⊆ I.
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Exercise 4.13.16. Let f �= 0 be an element of an integral domain R.

Let S = {fm | m ≥ 0} = {1, f, f2, f3, . . . }, which is a multiplicatively

closed set in R by Part (2) of Exercise 4.13.8 and doesn’t contain 0

since R is a domain.

(1) Show that the proper ideals in RS correspond to ideals J in

R such that J ∩ S = ∅.
(2) Show that the prime ideals in RS correspond to prime ideals

in R that do not meet S.

(3) Conclude that Spec(RS) coincides with the Zariski open set

Spec(R)− Z({f}) = {P ∈ Spec(R) : f �∈ P}.

We conclude this section by showing that the method of localiza-

tion developed above gives another way to create the local ring at a

point in An(k).

Exercise 4.13.17. Let p be a point in An(k). Let mp = {f ∈
k[x1, . . . , xn] : f(p) = 0}. By the Weak Nullstellensatz (Theorem

4.5.15), mp is a maximal ideal in R = k[x1, . . . , xn]. Prove that the

localization of R at S = R−mp is isomorphic to Op(A
n).

4.14. Tangent Spaces

The goal of this section is to establish the equivalence among several

different notions of the tangent space TpV of a variety V at a point

p.

4.14.1. Derivations. There are several equivalent notions of a tan-

gent space in algebraic geometry. Before developing the algebraic idea

of a tangent space we will consider the familiar tangent space as it

is usually defined in a multivariable calculus course, but we want to

be able to work over any field k, not just R and C, so we need to

generalize our idea of differentiation.

To motivate this new definition, let’s consider the main proper-

ties of the derivative map. The derivative is linear, the derivative

of a constant is zero, and the derivative obeys the Leibniz rule (the

Product Rule). The derivative map is an example of a derivation.
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Definition 4.14.1. A derivation is a map L : R → S from a k-

algebra1 R to a k-algebra S with the following properties:

(i) L is k-linear, i.e., L(af + bg) = aL(f)+ bL(g) for all a, b ∈ k

and f, g ∈ R,

(ii) L obeys the Leibniz rule, L(fg) = gL(f) + fL(g) for all

f, g ∈ R.

Exercise 4.14.1. Suppose R is a k-algebra. Show that if L : R → R

is a derivation, then L(a) = 0 for all a ∈ k. [Hint: Show that L(1) = 0

and apply (i).]

Exercise 4.14.2. Verify that
d

dx
: k[x] → k[x] formally defined by

d

dx
[anx

n + an−1x
n−1 + · · ·+ a1x+ a0]

= nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1

is a derivation.

4.14.2. First Definition. We will first give an extrinsic definition

of the tangent space of an algebraic set at a point.

Definition 4.14.2. Let I be a prime ideal in k[x1, . . . , xn], V = V(I)

the corresponding variety in An, and p = (p1, p2, · · · , pn) ∈ V . The

tangent space of V at p is the linear subspace

TpV =

{
(x1, x2, . . . , xn) ∈ kn :

n∑
i=1

(xi − pi)
∂f

∂xi
(p) = 0,

for all f ∈ I

}
,

where
∂

∂xi
is the derivation defined formally by

∂

∂xi
xm
j =

{
mxm−1

j if i = j

0 if i �= j

and imposing that it is k-linear and satisfies the Leibniz rule.

1A k-algebra is a k-vector space that also has a multiplication making it a ring.
                

                                                                                                               



236 4. Affine Varieties

If k = C or R, then
∂

∂xi
can be regarded as the usual partial

derivative.

Note that the above definition also makes sense for an algebraic

set and will be used when we compute their tangent spaces. In the

special case that V is a hypersurface, V = V(f) for f ∈ k[x1, . . . , xn],

the tangent space of the hypersurface at p is simply

TpV =

{
(x1, x2, . . . , xn) ∈ kn :

n∑
i=1

(xi − pi)
∂f

∂xi
(p) = 0

}
.

Exercise 4.14.3. In R2 let f(x, y) = x2 + y2 − 1 and consider the

curve C = V(f). Let p = (a, b) be a point on C.

(1) Find the normal direction to C at p.

(2) How is the normal direction to C at p related to the gradient

of f at p, ∇f(p)?

(3) Use Definition 4.14.2 to find TpC.

(4) How is TpC related to ∇f(p)?

Exercise 4.14.4. Show that TpV , as defined in Definition 4.14.2, is

a vector space over k by identifying the vector (x1, . . . , xn) in TpV

with the vector (x1 − p1, . . . , xn − pn) in kn.

Exercise 4.14.5. In this problem, let

z1 = x+ iy ∈ C, (x, y) ∈ R,

z2 = u+ iv ∈ C, (u, v) ∈ R.

Suppose V ⊂ C2 is defined via F (z1, z2) = z1 − z22 = 0.

(1) Let p0 = (−1, i). Is p0 ∈ V ?

(2) Find the tangent line h(z1, z2) = 0 to V at p0 using Defini-

tion 4.14.2.

(3) Show that V , viewed as a set VR ⊂ R4, is the intersection of

two surfaces,

f(x, y, u, v) = 0 and g(x, y, u, v) = 0.

Find f and g explicitly. Intuitively, what is the real dimen-

sion of VR?
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(4) Find the point q0 = (x0, y0, u0, v0) ∈ R4 to which p0 =

(−1, i) ∈ C2 corresponds.

(5) Find two normal vectors in R4 to VR at q0 via �N1 = ∇f(q0),
�N2 = ∇g(q0). The real tangent space TR,q0 to VR at q0 is

the set of lines through q0 perpendicular to both �N1 and �N2.

Intuitively, what is the real dimension of TR,q0?

(6) In Part (2), you found the tangent line equation h(z1, z2) = 0

to V at p0 in C2. Write the tangent line as a system of two

equations in R4 using x, y, u, v. These equations correspond

to two hyperplanes Π1,Π2 in R4. Let T = Π1 ∩ Π2. Find

two linearly independent vectors �D1, �D2 ∈ R4 parallel to T .

Show that �D1 ⊥ �N1, �N2 and �D2 ⊥ �N1, �N2. Is T the same

as TR,Q0
?

(7) Does this convince you that if C is a curve in C2 and TC,p0
is

the tangent line to C at p0, then TC,p0
is the usual geometric

tangent space to C at p0 when C2 is thought of as R4?

4.14.3. Second Definition. Next, we consider another definition

of an affine tangent space. Recall the definition of the local ring of a

variety V at p,

Op(V ) =

{
f

g
∈ KV : g(p) �= 0

}
.

This local ring captures the behavior of functions on V near p. That

is, Op(V ) gives an algebraic description of V near p. On the other

hand, the tangent space to V at p gives a geometric description of V

near p. With our second definition of TpV , we connect these descrip-

tions, using derivations on Op(V ) to construct TpV .

Definition 4.14.3. The tangent space of the variety V at a point p

is the linear space

TpV = {L : Op(V ) → k : L is a derivation} .

We first justify our claim in the definition that this is a linear

space.

Exercise 4.14.6. Show that TpV , as defined in Definition 4.14.3, is

a vector space over k.
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For any point p ∈ An, TpA
n is the vector space span{ ∂

∂x1
, . . . , ∂

∂xn
},

where ∂
∂xi

are defined formally as before. When V = V(I) ⊂ An

is an affine variety, TpV is the subspace of linear combinations of
∂

∂xi
that agree on I. In other words, TpV consists of all derivations

L =
∑n

i=1 αi
∂

∂xi
such that L(f)(p) = 0 for all f ∈ I. We verify this

below.

Exercise 4.14.7. Show that L =
n∑

i=1

αi
∂

∂xi
defines a derivation

Op(V ) → k if and only if L(f)(p) = 0 whenever f ∈ I.

Now we are in a position to use this characterization of the tan-

gent space to compute an example.

There is yet another description of the tangent space to V at p,

which we explore in the next two exercises.

Exercise 4.14.8. In A2(C), consider the complex curve C = V(x2+

y2−1). At a point p = (a, b) ∈ C, show that mp/m
2
p is a 1-dimensional

vector space over C. Relate this 1-dimensional vector space to the

tangent line found in Exercise 4.14.3.

Exercise 4.14.9. Let V ⊂ An(k) be an algebraic variety and let

p = (p1, . . . , pn) be a point in V . As in Definition 4.14.3, write

TpV = {L : Op(V ) → k : L is a derivation}

and let L ∈ TpV be given.

(1) Let mp = {f ∈ OV : f(p) = 0} be the maximal ideal in OV

corresponding to p. Show that for all f, g ∈ mp, L(fg)(p) =

0.

(2) Show that L induces a k-linear map L′ : mp/m
2
p → k.

(3) Let l : mp/m
2
p → k be a k-linear map. Show that the func-

tion given by Dl(f)(p) = l(f − f(p) + m2
p) is a well-defined

derivation Dl : Op(V ) → k.

(4) Show that the maps L �→ L′ in Part (2) and l �→ Dl in

Part (3) establish an isomorphism of vector spaces between

TpV and Homk(mp/m
2
p, k), the space of k-linear maps from

mp/m
2
p to k.
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4.15. Dimension

In this section we define the dimension of a variety using the tangent

space at a point. We also have alternate definitions of dimension

using the coordinate ring and the function field, as we will explore in

several examples.

One may think of dimension of an affine variety V as the number

of coordinates needed to describe V . The dimension will depend on

our base field k, as we have seen in the first few chapters when we

considered complex curves as surfaces over R. Our first definition of

dimension uses the tangent spaces studied in the previous section.

Definition 4.15.1. Let V ⊆ An be an irreducible variety. Then the

dimension of V is the minimum dimension of TpV over all points

p ∈ V .

Here we define the dimension of TpV to be its dimension as a

vector space over the field k. For example, at any point p the tangent

space TpA
n is just An, which is n-dimensional over k.

Exercise 4.15.1. Let V = V(x3 + x2 − y2) be a curve in A2 whose

graph in R2 is shown.

1

2

−1

−2

1 2−1−2

(1) Let p = (−1, 0). Show that TpV has dimension 1.

(2) Let q = (0, 0). Show that TqV has dimension 2.

We have defined smooth plane curves to be curves with well-

defined tangent lines at each point, that is, curves f(x, y) = 0 where
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at least one of ∂f
∂x and ∂f

∂y is nonzero for every point on the curve. We

next show that a smooth curve has dimension one.

Exercise 4.15.2. Let V be a smooth plane curve. Show that dimV =

1.

In fact the dimension of any curve in A2 is one. More generally

we can show that any hypersurface V(f) in An has dimension n− 1.

Exercise 4.15.3. Let V = V(f) be an irreducible hypersurface in

An. Show that V has dimension n− 1.

In fact the subset of points at which the dimension of the tangent

space is greater than the dimension of the variety forms a closed

subvariety. We will see in the next section that these are the singular

points of V .

Definition 4.15.2. Let V be an affine variety. A point p ∈ V is a

smooth point of V if dim TpV = dim V . Otherwise dim TpV > dim V

and p is a singular point of V .

Exercise 4.15.4. In Definition 4.15.1, must V be an irreducible va-

riety? Why?

The next exercise may help clarify.

Exercise 4.15.5. Let V ⊂ A3 be the variety defined by V(xz, yz).

(1) Show that V is reducible by showing that it is the union of

a line and a plane.

(2) Find the dimension of the tangent space to the plane at a

point p �= (0, 0, 0) on the plane.

(3) Find the dimension of the tangent space to the line at a

point p �= (0, 0, 0) on the line.

We define the dimension of a algebraic set to be the maximum

dimension of its components.

We have seen that varieties can be studied algebraically in terms

of the spectrum of a ring. When we use this algebraic point of view we

want a similar approach to compute dimension. In fact the dimension

of a variety V can be defined in terms of prime ideals in the coordinate

ring O(V ). First we need some definitions from commutative algebra.
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Definition 4.15.3. The height of a prime ideal P in a ring R is the

length of the largest chain of prime ideals properly contained in P,

that is, the maximum n with

P0 � P1 � · · · � Pn−1 � P.

The Krull dimension of R is the maximum height over all prime

ideals.

Exercise 4.15.6. Find a prime ideal in the polynomial ring R =

k[x1, . . . , xn] of height n.

One can show this is the maximal height of any prime ideal in

k[x1, . . . , xn]; thus its Krull dimension is n and we have dimAn = n.

As a third alternative we can define dimension using the field of

functions of our irreducible variety V . For an extension field K of a

field k, the transcendence degree of K over k is the maximum number

of elements in K that form an algebraically independent set over k.

The dimension of V is also equal to the transcendence degree of KV

over the base field k.

For example, the transcendence degree of k(x), the rational func-

tions in one variable, is one since {x} is a maximal algebraically inde-

pendent set; the transcendence degree of an algebraic extension field

is 0. Thus a point in affine space, which has function field isomorphic

to k, has dimension zero. The function field of the affine line A1 is

k(x), so A1 has dimension one. Similarly we can show that affine

n-space has the expected dimension.

Exercise 4.15.7. Let KAn be the function field of An.

(1) Show that KAn ∼= k(x1, . . . , xn).

(2) Show that {x1, . . . , xn} is a maximal set of algebraically

independent elements over k.

(3) Conclude that the dimension of An is n.

We have seen that our three notions of dimension agree for affine

n-space An. In fact these definitions are equivalent for any irreducible

affine variety. (See Theorems I.1.8 and I.5.1 in Hartshorne [Har77].)

Exercise 4.15.8. Check that our three notions of dimension agree

for a smooth plane curve.
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4.16. Arithmetic Surfaces

Our affine varieties have been in essence of the form

Spec(k[x1, . . . , xn]/I), for I a prime ideal, where k is an algebraically

closed field. Arithmetic varieties occur when we replace the field k

with the ring of integers Z. In this section we will consider the ring

Z[x] and see that Spec(Z[x]) is two dimensional.

In Section 4.15, we gave various ways for defining the dimension

of a variety. For Spec(Z[x]), the definition that makes sense is the

Krull dimension (Definition 4.15.3). Thus the dimension for us will

be the number of terms of the longest chain of prime ideals P0 �

P1 � · · · � Pn in Z[x].

We start with finding the dimension of Spec(Z):

Exercise 4.16.1. Show that the Krull dimension of Spec(Z) is one.

Next, we want to find the Krull dimension of Spec(k[x]), for k a

field:

Exercise 4.16.2. Show that the Krull dimension of Spec(k[x]) is

one.

Here is the rough idea for why Spec(Z[x]) should have dimension

two and hence why Spec(Z[x]) should be called a surface. The Z part

gives us one degree of freedom and the x part gives us another degree

of freedom. Now to make this a bit more precise.

We first have to find the maximal ideals in Z[x].

Let J = 〈p, f(x)〉 be an ideal in Z[x] generated by a prime number

p and a polynomial f(x) whose reduction mod p is irreducible in Zp.

Our goal is to show that every maximal ideal in Z[x] has this form.

Exercise 4.16.3. Show that f(x) = x2 + 4 is irreducible mod 3.

Exercise 4.16.4. Given an ideal J = 〈p, f(x)〉, show that the quo-

tient ring Z[x]/J is isomorphic to the quotient ring Zp/〈f(x)〉. (This
is actually not that hard of a problem.)

Exercise 4.16.5. Show that ideals J = 〈p, f(x)〉 for p prime and

for polynomials f(x) whose reduction mod p is irreducible in Zp, is a
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maximal ideal in Z[x]. (Use that an ideal I is maximal in a ring R if

and only if R/I is a field.)

We now want to see why every maximal ideal in Z[x] is of the

form 〈p, f(x)〉 for p prime and f(x) a polynomial whose reduction

mod p is irreducible in Zp.

Exercise 4.16.6. Let J be a prime ideal in the ring Z[x]. Show that

J ∩Z is a prime ideal in Z, in which case either J ∩Z = 〈p〉, the ideal
in Z generated by a prime number p, or J ∩ Z = 〈0〉.
Exercise 4.16.7. Show that in Z[x], the ideal J1 = 〈3, x2 + 8x+ 5〉
is equal to the ideal J2 = 〈3, x2 + 2x+ 2〉.
Exercise 4.16.8. Suppose two polynomials f(x) and g(x) in Z[x]

are equal when reduced by mod p. Show that the ideals 〈p, f(x)〉 and
〈p, g(x)〉 are equal.

Exercise 4.16.9. Suppose J is a maximal ideal of the form

〈p, f1(x), . . . , fn(x)〉, for some prime p. Show that there is a poly-

nomial f(x) ∈ Z[x] that is irreducible mod p such that

J = 〈p, f(x)〉.
Exercise 4.16.10. Let J be a maximal ideal in Z[x]. Show that

J = 〈p, f(x)〉 for some prime number p and some polynomial f(x)

whose reduction mod p is irreducible in Zp.

Now to show that the height of a maximal ideal J = 〈p, f(x)〉 is
two.

We have that

〈0〉 � 〈p〉 � 〈p, f(x)〉
is a chain of prime ideals, which means that the height of J is at least

two. We also have another type of chain of prime ideals,

〈0〉 � 〈g(x)〉 � 〈p, f(x)〉,
where g(t) equals f(x) mod p. We have to show there is no chain of

prime ideals of greater length.

Exercise 4.16.11. For a maximal ideal J = 〈p, f(x)〉, suppose we

have a chain of prime ideals

〈0〉 � I � 〈p, f(x)〉.
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Show that either I = 〈p〉 or I = 〈g(x)〉, for some g(x) equaling f(x)

mod p.

Exercise 4.16.12. Show that the ideal J = 〈p, f(x)〉 for p prime and

f(x) whose reduction mod p is irreducible in Zp, has height two.

4.17. Singular Points

A singularity of a variety is a point where the variety exhibits unusual

behavior. In this section we will see two ways to find the singular

points of a variety, either using the tangent space or computing the

Jacobian matrix.

As we saw in the previous section, a singular point is where the

dimension of the tangent space jumps and is larger than the dimension

of the variety. In Section 1.10 we stated that a plane curve V(f(x, y))

is singular at any point p where f, ∂f
∂x , and

∂f
∂y vanish simultaneously.

We will first verify that these definitions coincide in the case of a

plane curve.

Exercise 4.17.1. Let V = V(f(x, y)) ⊂ A2 be an irreducible curve

and let p be a point on V .

(1) Suppose at least one of ∂f
∂x and ∂f

∂y is nonzero at p. Show

that TpV is one-dimensional and thus p is a smooth point

of V .

(2) Suppose ∂f
∂x and ∂f

∂y both vanish at p. Show that TpV has

dimension two, meaning that p is a singular point of V .

(3) Show that the tangent space TpV , as defined in Section 4.14,

is equivalent to the tangent line of this curve as defined in

Section 1.10.

Exercise 4.17.2. Determine the singular points of each curve.

(1) V(y2 − x3 + x2)

(2) V(y2 − x3)
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We have previously seen the nodal and cuspidal singular cubics

of the last exercise. More generally we can determine when a cubic

in normal form is singular.

Exercise 4.17.3. Let f(x) be a polynomial and let V = V(y2−f(x)).

(In the case where f has degree three, V is the normal form of a cubic

curve.) Show that V is singular at a point (x0, y0) if and only if y0 = 0

and x0 is a multiple root of f(x).

The case of a hypersurface is similar to that of curves.

Exercise 4.17.4. Let V be the hypersurface f(x1, . . . , xn) = 0 in An

and let p be a point on V . Recall from Exercise 4.15.3 that V has

dimension n− 1.

(1) Suppose at least one of the ∂f
∂xi

is nonzero at p. Show that

TpV has dimension n−1. Conclude that p is a smooth point

of V .

(2) Suppose ∂f
∂xi

(p) = 0 for i = 1, . . . , n. Show that TpV = An.

Conclude that p is a singular point.

Exercise 4.17.5. Find all singular points of each surface in A3.

(1) V(x2 + y2 − z2)

(2) V(x2 − y2z)

(3) V((x− y)2 + z3)

Exercise 4.17.6. Let V = V(x2 + y2 + z2 − 1, x− 1) ⊂ A3.

(1) Show that V has dimension one, by visualizing V as the

intersection of the surface x2 + y2 + z2 = 1 and the plane

x = 1.

(2) Show that the tangent space to V at p = (1, 0, 0) is the plane

x− 1 = 0. Thus TpV has dimension two. Conclude that V

is singular at p.

Exercise 4.17.7. Let V = V(fg) and let p be a point of intersection

of the hypersurfaces V(f) and V(g). Show that p is a singular point

of V .

We now present a second way to find the singular points of a

variety V using a Jacobian matrix.
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Definition 4.17.1. Let {f1, f2, . . . , fm} be a generating set for I(V ),

with each fi ∈ k[x1, . . . , xn], where V = V(f1, f2, . . . , fm) ⊂ An. The

Jacobian matrix for V at a point p ∈ V is the m×n matrix
(

∂fi
∂xj

(p)
)
.

This definition depends upon the set of generators for I(V ). We

will see that the rank of the Jacobian matrix is independent of this

choice; thus we can use the rank of the Jacobian to give an alternate

definition of singularity.

Definition 4.17.2. Let V be a variety in An of dimension d. V is

nonsingular at p if and only if the rank of the Jacobian matrix at p

is equal to n− d.

Exercise 4.17.8. Let V be the curve V(x−yz, xz−y2, y−z2) ⊂ A3.

Show that the Jacobian matrix has rank two at every point p ∈ V .

Conclude that V is a smooth curve.

Exercise 4.17.9. Compute the Jacobian matrix for V = V(x2+y2+

z2 − 1, x− 1) ⊂ A3.

(1) Show the Jacobian has rank two when y or z is nonzero.

(2) Show the Jacobian has rank one when y = z = 0. Use this

to determine the singular points of V .

Exercise 4.17.10. Let V = V(x+ y + z, x− y + z) ⊂ A3.

(1) Compute the Jacobian matrix for V and show that V is

nonsingular everywhere.

(2) Show that {x+ z, y} is also a generating set for I(V ).

(3) Compute the Jacobian matrix using this alternate set of gen-

erators and show that it has the same rank as your matrix

in Part (1).

Exercise 4.17.11. Let V = V(x2 + y2 − 1, x2 + z2 − 1) ⊂ A3.

(1) Compute the Jacobian matrix for V and find all points

where the rank is not equal to two.

(2) Show that
{
y2 − z2, 2x2 + y2 + z2 − 2

}
is also a generating

set for I(V ).
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(3) Compute the Jacobian matrix using this alternate set of gen-

erators and show that it has the same rank as your matrix

in Part (1).

Exercise 4.17.12. For a hypersurface V(f) ⊂ An the Jacobian ma-

trix at p is (
∂f

∂x1
(p)

∂f

∂x2
(p) · · · ∂f

∂xn
(p)

)
.

Show that V is nonsingular at p if at least one of the ∂f
∂xi

(p) is nonzero.

Thus for hypersurfaces this definition coincides with our previous one.

In the next exercise we will show more generally that our two

definitions agree.

Exercise 4.17.13. Let p be a point of a d-dimensional variety V ⊂
An and let {f1, f2, . . . , fm} be a generating set for I(V ).

(1) By identifying each point q ∈ An with the vector q − p,

show that the Jacobian matrix
(

∂fi
∂xj

(p)
)

defines a linear

transformation from An to Am.

(2) Show the kernel of this transformation is the tangent space

TpV .

(3) Use the Rank-Nullity Theorem to conclude that p is a non-

singular point of V if and only if the rank of the Jacobian

matrix is equal to n− d.

It follows from this exercise that the rank of the Jacobian matrix

at p is equal to n − dimTpV . Thus the rank is independent of the

choice of generators for I(V ).

In each of our examples we have seen that the singular points

form a proper subvariety of V . Our next exercises will show this is

always true.

Exercise 4.17.14. Let V be an affine variety. Prove that the set

of singular points of V is a closed subset of V . [Hint: Think of the

minors of the Jacobian.]

Exercise 4.17.15. Let V = V(f) ⊂ An be an irreducible hypersur-

face over k. Prove that the singularities of V are a proper subvariety.

[Hint: Consult Exercise 4.15.3.]
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The previous exercise shows that the singular points of a hyper-

surface are a proper subvariety. One can extend this result to all affine

varieties using the fact that every irreducible variety is “equivalent”

to a hypersurface. The type of equivalence we will use is a birational

morphism, which will be defined in a later section.

4.18. Morphisms

The goal of this section is to define morphisms, which are a nat-

ural type of mapping between algebraic sets. We will then relate

morphisms to the spectrum of a ring.

4.18.1. Definition of Morphism. The world of algebraic geom-

etry is the world of polynomials2. For example, algebraic sets are

defined as the set of common zeros of collections of polynomials. The

morphisms, or mappings, between them should also be given by poly-

nomials.

Suppose X ⊂ An(k) and Y ⊂ Am(k) are algebraic sets. The

morphisms between X and Y are the polynomial mappings:

φ : X → Y

p �→ (f1(p), . . . , fm(p))

for some f1, . . . , fm ∈ k[x1, . . . , xn].

The map φ induces a ring homomorphism

OY → OX

f �→ f ◦ φ.
In terms of polynomials, suppose that

G(y1, . . . , ym) ∈ I(Y ) ⊂ k[y1, . . . , ym].

Then we require that

G(f1, f2, . . . , fm) ∈ I(X).

Thus the map

φ : X → Y

2The first subsection is largely based on David Perkinson’s lectures in the Under-
graduate Summer School at the Park City Mathematics Institute in 2008.
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induces a ring homomorphism

φ∗ : k[y1, . . . , ym]/I(Y ) = OY → OX = k[x1, . . . , xn]/I(X).

Exercise 4.18.1. Let X = V(v − u2), and let Y = V(z2 − xy). We

may think of X as a parabola and Y as a double cone. Define a

morphism

φ : X → Y

(u, v) �→ (1, v, u).

Show that the image of φ is actually in Y .

Exercise 4.18.2. Keeping the same notation as in the above prob-

lem, show for the corresponding ring homomorphism

φ∗ : OY = C[x, y, z]/〈z2 − xy〉 → OX = C[u, v]/〈v − u2〉,

we have

φ∗(x2 + xy + xz3) = 1 + v + u3.

Exercise 4.18.3. For each of the polynomial mappings φ : X → Y ,

describe the corresponding ring homomorphism φ∗ : OY → OX .

(1) φ : A2(k) → A3(k)

(x, y) �→ (y − x2, xy, x3 + 2y2)

(2) X = A1(k) and Y = V(y − x3, z − xy) ⊂ A3(k).

φ : X → Y

t �→ (t, t3, t4)

Exercise 4.18.4. For each of the ring homomorphisms σ : OY → OX ,

describe the corresponding morphism of algebraic sets, X → Y . (This

is actually not hard; in part, you should see that the answers are

almost given to you. If that is not clear, you should go back and look

at the definitions again.)

(1) σ : k[x, y] → k[t]

x �→ t2 − 1

y �→ t(t2 − 1)
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(2) σ : k[s, t, u, v]/〈s2 − v, sv − tu〉 → k[x, y, z]/〈xy − z2〉
s �→ xy

t �→ yz

u �→ xz

v �→ z2

The morphism constructed here is a mapping of the saddle

surface to a surface in A4(k).

4.18.2. Spec and Morphisms. When you first read the definition

of Spec(R) in Section 4.12, you probably asked yourself why we let

the elements of Spec(R) be all prime ideals, rather than only con-

sider those that are maximal. After all, in Sections 4.6 and 4.13

we established the correspondences between points in an affine va-

riety and the maximal ideals in its coordinate ring, whereas prime

ideals were shown to correspond to the irreducible subvarieties in

Section 4.7. Thus our definition of “points” as prime ideals should

be confusing. Additionally, our definition leads to complications such

as points contained within other points, which results in our need to

distinguish between geometric and generic points and those somehow

in between. It is also the reason why we can only “reasonably iden-

tify” Spec(C[x1, . . . , xn]) with An (and Proj(C[x0, x1, . . . , xn]) with

Pn in Section 5.6) as An does not have non-closed points. Indeed,

there are those who define the maximal spectrum of a ring R, de-

noted m-Spec(R) or Specm(R), to be the set of all maximal ideals of

the ring R. So you may be wondering why we didn’t.

In the following exercises, we will see one reason to prefer Spec

over m-Spec, even though the former tends to challenge our geometric

intuition regarding the nature of points.

Recall that whenever φ : X → Y is a morphism of affine varieties,

there is a corresponding ring homomorphism φ∗ : OY → OX between

their coordinate rings given by f �→ f ◦ φ. The converse is also true,

as we now show, so that the set of morphisms from X to Y may be

identified with the set of ring homomorphisms OY → OX .

Exercise 4.18.5. Let X = V(I) ⊂ An and Y = V(J) ⊂ Am be affine

varieties. Write OX = k[x1, . . . , xn]/I and OY = k[y1, . . . , ym]/J .

Suppose ϕ : OY → OX is a ring homomorphism.
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(1) Let gi = ϕ(yi+J) ∈ OX for i = 1, . . . ,m and define ψ : X →
Am by ψ(p) = (g1(p), . . . , gm(p)). Show that ψ(p) ∈ Y for

all p ∈ X.

(2) Show that ψ : X → Y is a morphism of affine varieties.

(3) Show that, for all f ∈ OY , ϕ(f) = f ◦ ψ.
(4) Conclude that the set of morphisms X → Y is in a one-

to-one correspondence with the set of ring homomorphisms

OY → OX .

We want the same to be true for Spec. That is, for rings R and

S, we want the set of morphisms Spec(R) → Spec(S) to be the same

as the set of ring homomorphisms S → R. This is where our need

for prime rather than maximal ideals will arise. Before we show this,

however, we want to give another view of how a morphism X → Y

may be described in terms of the ring homomorphism OY → OX .

Exercise 4.18.6. Let φ : X → Y be a morphism between affine

varieties and let φ∗ : OY → OX be the corrresponding ring ho-

momorphism. For p ∈ X, let mp = {f ∈ OX : f(p) = 0} and

mφ(p) = {g ∈ OY : g(φ(p)) = 0}. Prove that mφ(p) = (φ∗)−1(mp).

The points p ∈ X and φ(p) ∈ Y are completely determined by

their maximal ideals, mp and mφ(p). That is, {p} = V(mp) and

{φ(p)} = V(mφ(p)), so the morphism φ may either be viewed as a

function mapping points in X to points in Y or as a mapping from

ideals in OX to ideals in OY via m �→ (φ∗)−1(m).

This second view of the morphism φ is the one we will use to

define morphisms Spec(R) → Spec(S). In order for our definition to

agree with the definition for varieties above, it must be defined by

mapping a “point” P ∈ Spec(R) to its preimage ϕ−1(P ) under the

corresponding ring homomorphism ϕ : S → R. Before we can make

this a definition, we need to confirm that ϕ−1(P ) ∈ Spec(S) whenever

P ∈ Spec(R).

Exercise 4.18.7. Let ϕ : S → R be a ring homomorphism.

(1) Let J ⊂ R be an ideal in R. Show that ϕ−1(J) is an ideal

in S.
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(2) Let J ⊂ R be a prime ideal in R. Show that ϕ−1(J) is a

prime ideal in S.

Based on these results, we can define morphisms between Spec(R)

and Spec(S).

Definition 4.18.1. Let ϕ : S → R be a ring homomorphism. The

corresponding morphism ψ : Spec(R) → Spec(S) is given by ψ(P ) =

ϕ−1(P ) for all P ∈ Spec(R).

Exercise 4.18.8. Show that a morphism ψ : Spec(R) → Spec(S) is

continuous in the Zariski topology. (Recall that a function f : X →
Y between topological spaces is continuous if f−1(U) is open in X

whenever U is open in Y .)

Now suppose that we were using m-Spec rather than Spec. Could

we still define morphisms as we have above, which is the only way

that is compatible with their definition as polynomial maps for affine

varieties? This would require that the preimage of a maximal ideal

under a ring homomorphism is again maximal. In the next exercises

you will see that this does not always happen.

Exercise 4.18.9. Consider the ring homomorphism ι : Z → Q given

by inclusion, ι(n) = n.

(1) What are the maximal ideals in Z?

(2) Because Q is a field, 〈0〉 is its only maximal ideal. Find

ι−1(〈0〉). Is it a maximal ideal in Z?

We want to find an example that is algebraically similar to the

above, but which has a more geometric flavor. In C3, with variables

x, y and z, consider

X = V(yz − 1).

This is a surface in C3 that is the product of C with the hyperbola

yz = 1.
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X

x

y

z

There is the natural projection from X to the affine plane C2, with

coordinates x and y, given by

(x, y, z) → (x, y).

The corresponding ring homomorphism is given by T : C[x, y] →
C[x, y, z]/〈yz − 1〉, where T (f(x, y)) = f(x, y).

Exercise 4.18.10. Consider the ring homomorphism

T : C[x, y] → C[x, y, z]/〈yz − 1〉

given by T (f(x, y)) = f(x, y).

(1) Show that the ideal 〈x〉 of all multiples of x in C[x, y, z]/〈yz−
1〉 is a maximal ideal.

(2) Show that the inverse ideal T−1(〈x〉) is the ideal 〈x〉 of all

multiples of x in C[x, y].
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(3) Show that the ideal 〈x〉 of all multiples of x in C[x, y] is not

maximal.

Based on the results of the last exercises, if we were to use m-Spec

rather than Spec, we would lose our ability to define morphisms as

functions that send points to points. As we discussed in the preface,

however, the approach to mathematics that has prevailed in alge-

braic geometry is linked to equivalence problems, and the solution

of such problems not only requires the study of functions defined on

the objects in question but also the functions between them. Thus

morphisms play a critical role in algebraic geometry, as will the iso-

morphisms and rational maps that we encounter in the next sections,

so their loss would be a great loss indeed.

4.19. Isomorphisms of Varieties

The goal of this section is to define a natural type of equivalence for

algebraic sets.

4.19.1. Definition of Isomorphism. Let V1 = V(I1) ⊂ An(k)

and V2 = V(I2) ⊂ Am(k) be algebraic sets. We will assume in the

following that each Ij is a radical ideal. As we have already seen,

each ring O(Vi) is in a natural way the ring of (equivalence classes

of) polynomial functions mapping Vi to k. We can then define a

polynomial map (or morphism) P : V1 → V2 by P (x1, . . . , xn) =

(P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)) where each Pi ∈ O(V1).

Definition 4.19.1. A polynomial map P : V1 → V2 is an isomor-

phism of algebraic sets if there exists a polynomial map Q : V2 → V1

such that Q ◦ P = Id|V1
and P ◦ Q = Id|V2

. Two algebraic sets are

isomorphic if there exists an isomorphism between them, which we

denote by V1
∼= V2 .

Exercise 4.19.1. Let V1 = V(x) ⊂ C2 and V2 = V(x+ y) ⊂ C2.

(1) Sketch V1 and V2 in R2.

(2) Find a one-to-one polynomial map P (x, y) = (P1(x, y),

P2(x, y)) that maps V1 onto V2.
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(3) Show V1
∼= V2 as varieties by finding an inverse polynomial

map Q(x, y) for the polynomial map P (x, y) above. Verify

that Q ◦ P = Id

∣∣∣∣
V1

and P ◦Q = Id

∣∣∣∣
V2

.

Exercise 4.19.2. Let V1 = C and V2 = V(x− y2) ⊂ C2 be algebraic

sets.

(1) Sketch V2 in R2.

(2) Find a one-to-one polynomial map P that maps V1 onto V2.

(3) Show V1
∼= V2 as algebraic sets by finding an inverse Q(x, y)

for the polynomial map P (x) above. Verify that Q ◦ P =

Id

∣∣∣∣
V1

and P ◦Q = Id

∣∣∣∣
V2

.

Exercise 4.19.3. Let V1 = V(x2 + y2 − 1) ⊂ C2 and V2 = V(x2 −
y2 − 1) ⊂ C2 be varieties.

(1) Find a one-to-one polynomial map P (x, y) that maps V1

onto V2.

(2) Show V1
∼= V2 as varieties by finding an inverse Q(x, y) for

the polynomial map P (x, y) above. Verify that Q◦P = Id

∣∣∣∣
V1

and P ◦Q = Id

∣∣∣∣
V2

.

(3) Restricting to the real numbers, do you think V(x2 + y2 −
1) ⊂ R2 and V(x2−y2−1) ⊂ R2 are isomorphic as varieties?

Why or why not?

Exercise 4.19.4. Let k be any algebraically closed field. Let

V1 = V(x+ y, z − 1) ⊂ A3(k) and V2 = V(x− z2, y + z) ⊂ A3(k)

be varieties.

(1) Find a polynomial map P (x, y, z) that is a one-to-one and

onto map from V1 to V2.

(2) Show V1
∼= V2 as varieties by finding an inverse Q(x, y, z) for

the polynomial map P (x, y, z) above. Verify that Q ◦ P =

Id

∣∣∣∣
V1

and P ◦Q = Id

∣∣∣∣
V2

.
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4.19.2. Link to Ring Isomorphisms. Let’s now consider the re-

lationship between the coordinate rings O(V1) and O(V2) of two vari-

eties. From the last section we know that there is a correspondence

between polynomial maps

φ : V1 → V2

of varieties and ring homomorphisms

φ∗ : O(V2) → O(V1)

of their coordinate rings, given by φ∗(f) = f ◦ φ. We now want

to show that two algebraic sets are isomorphic if and only if their

coordinate rings are isomorphic as rings.

The next four exercises are the ring-theoretic versions of the ex-

ercises in the previous subsection.

Exercise 4.19.5. Consider Exercise 4.19.1. We have

O(V1) = C[x, y]/〈x〉, O(V2) = C[x, y]/〈x+ y〉.

For the polynomial maps

P : V1 → V2 Q : V2 → V1

with corresponding maps

P ∗ : O(V2) → O(V1) Q∗ : O(V1) → O(V2),

show the following:

(1) Let f, g ∈ C[x, y] agree on V2, i.e., f − g ∈ 〈x + y〉. Show

that P ∗(f) = P ∗(g) on V1.

(2) Show that P ∗ is a ring isomorphism by showing that Q∗ is

the inverse ring homomorphism.

Exercise 4.19.6. Using the notation from Exercise 4.19.2, show that

C[t] ∼= C[x, y]/〈x− y2〉

as rings by looking at the ring homomorphisms

P ∗ : O(V2) → O(V1)

and

Q∗ : O(V1) → O(V2).
                

                                                                                                               



4.19. Isomorphisms of Varieties 257

Exercise 4.19.7. Recalling Exercise 4.19.3, show C[x, y]/〈x2 + y2 −
1〉 ∼= C[x, y]/〈x2 − y2 − 1〉 as rings.

Exercise 4.19.8. Recalling Exercise 4.19.4, show

k[x, y, z]/〈x+ y, z − 1〉 ∼= k[x, y, z]/〈x− z2, y + z〉

as rings.

Exercise 4.19.9. Let

V1 = V(I1) ⊂ An(k), V2 = V(I2) ⊂ Am(k), V3 = V(I3) ⊂ Ai(k)

be three algebraic sets and suppose

P : V1 → V2 and Q : V2 → V3

are polynomial maps.

(1) Show (Q ◦ P )∗ = P ∗ ◦Q∗.

(2) Show that if P is an isomorphism of varieties, then P ∗ is an

isomorphism of rings.

Exercise 4.19.10. Let X and Y be algebraic sets and suppose that

we have a ring isomorphism ϕ : O(Y ) → O(X). Show that the alge-

braic sets X and Y are isomorphic.

The last series of exercises for this section deal with two varieties

that are not isomorphic. Let V1 = A1(C) with coordinate t. Thus

O(V1) = C[t]. Our second variety is V2 = V(x3 − y2) ⊂ A2(C), with

O(V2) = C[x, y]/〈x3 − y2〉. The curve V2 is the cuspidal cubic.

1

2

−1

−2

1 2−1−2

Thus the curve V2 has a singular point while V1 does not. If two

varieties being isomorphic means intuitively that the two varieties
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are the same up to a change of coordinates, we expect these varieties

should not be isomorphic.

Exercise 4.19.11. Verify that P (t) = (t2, t3) is a one-to-one poly-

nomial map that maps V1 onto V2.

Despite the existence of this one-to-one polynomial map P : V1 →
V2, there is no inverse polynomial map Q : V2 → V1. We show this

by showing that the rings O(V1) and O(V2) are not isomorphic.

Exercise 4.19.12. Show that C[t] �∼= C[x, y]/〈x3−y2〉 as rings. [Hint:

Showing that P ∗ is not an isomorphism is not enough. You must show

that there is no isomorphism between these rings. You may assume

that the ring C[t] is a unique factorization domain and that both x

and y are irreducible elements in the ring C[x, y]/〈x3 − y2〉.]

4.20. Rational Maps

The goal of this section is to define another natural mapping of

algebraic sets: rational maps.

There are two natural notions of equivalence in algebraic geom-

etry: isomorphism and birationality. An isomorphism of varieties is

given by polynomial maps while birational equivalence is given by ra-

tional maps. In this section we establish the correspondence between

rational maps of varieties and homomorphisms of the associated func-

tion fields from Section 4.10.

4.20.1. Rational Maps. Let V = V(I) be an affine variety. Re-

call from Section 4.10 that the function field KV of V is the field of

fractions of the coordinate ring OV of V , that is

KV =

{
f

g
: f, g ∈ O(V ), g �∈ I

}
/ ∼

where
f1
g1

∼ f2
g2

if and only if f1g2 − f2g1 ∈ I.

The elements of KV are called rational functions on V .
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Earlier we noted that a member f of the coordinate ring OV is

called a regular function and may be regarded as a function f : V →
k. Two members of OV are equal if their difference is in I(V ), or

equivalently, if they agree at every point in V . A difficulty arises

with rational functions that does not arise with regular functions, in

that a rational function is not, properly speaking, a function on V .

By definition a rational function F ∈ KV is of the form f
g where

f, g ∈ OV and g �∈ I(V ), so F is only partially defined on V . In

particular, F is defined only at points p where g(p) �= 0. This leads

to the notion of a regular point.

Definition 4.20.1. A rational function F ∈ KV is regular at p ∈ V

if there exist f, g ∈ O(V ) such that F can be written in the form

F = f
g and g(p) �= 0. The point p is called a regular point of F if

F is regular at p. The collection of regular points of F is called the

domain of definition of F and denoted Dom(F ):

Dom(F ) = {p ∈ V : F is regular at p}.

This means that we can regard a rational function F ∈ KV as

a function on its domain of definition. It is important to remember

that elements of KV are equivalence classes. F may have essentially

different representatives as functions on V , though all representatives

agree on (open) subsets of V . One consequence of this is that though

F may be expressed as f
g in KV , we cannot necessarily conclude that

the domain of definition of F consists only of points for which g is

nonzero. In particular, there may be points at which g vanishes that

are in the domain of definition of F because there may be another

representative in the same class which is defined at those points.

Exercise 4.20.1. Let V = V(xz − yw) ⊂ C4, and let F = x
y . Show

that there are regular points of F in V(y).

Exercise 4.20.2. Let V be a variety in An and F ∈ KV . Show that

Dom(F ) is a nonempty Zariski open subset of V .

This exercise shows that rational functions on V are defined on

open subsets of V . Since any open subset of a variety V is dense, we

see that the rational functions on V are defined on “most of” V . (To
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say that an open subset U of V is dense means that any open subset

of V intersects U .)

Definition 4.20.2. Suppose V = V(I) ⊂ An is an affine variety. A

rational map φ from V to Am is an m-tuple of rational functions, that

is, φ is given by φ(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)),

where Fi ∈ KV , i = 1, . . . ,m. Alternatively,

φ(x1, . . . , xn) =

(
f1(x1, . . . , xn)

g1(x1, . . . , xn)
, . . . ,

fm(x1, . . . , xn)

gm(x1, . . . , xn)

)
,

where fi, gi ∈ OV , i = 1, 2, . . . ,m, and none of the gi are in I.

Definition 4.20.3. We say φ is regular at a point p ∈ V if each Fi

is regular at p. Thus, the domain of definition of a rational map φ,

denoted Dom(φ), consists of all points in the domains of each Fi; that

is,

Dom(φ) =

m⋂
i=1

Dom(Fi).

Since a rational map is defined only on a dense subset of V , we

use the notation φ : V ��� W to denote rational maps.

Exercise 4.20.3. Let φ : C2 → C3 be given by

φ(x1, x2) =

(
x1 + x2

x1 − x2
,
x2
1 + x2

x1
,

x1x
3
2

x1 + 3x2

)
.

The rational map φ is not defined on three lines in C2. Draw these

three lines as lines in R2.

Definition 4.20.4. The image of a rational map φ : V ��� Am is

the set

φ(V ) = {φ(p) ∈ Am : p ∈ V and φ is regular at p}.

Definition 4.20.5. Suppose V = V(I) ⊂ An and W = V(J) ⊂ Am

are affine varieties. A rational map φ : V ��� W is a rational map

φ : V ��� Am such that φ(V ) ⊂ W .

Exercise 4.20.4. Show that the rational map

φ(t) =

(
−2t

1 + t2
,
1− t2

1 + t2

)
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is a rational map from the line C to the circle V(x2 + y2 − 1). Find

the points on the line C where φ is not defined.

Exercise 4.20.5. The above rational map φ(t) =
(

−2t
1+t2 ,

1−t2

1+t2

)
was

not made up out of thin air but reflects an underlying geometry. Let L

be any line in the plane C2 through the point (0, 1) with slope t. Then

the equation for this line is y = tx+1. First, draw a picture in R2 of

the circle V(x2+y2−1) and the line L. Using the quadratic equation,

show that the two points of intersection are (0, 1) and
(

−2t
1+t2 ,

1−t2

1+t2

)
,

for a fixed slope t. Explain the underlying geometry of the map φ for

when the slope t is zero.

4.20.2. Birational Equivalence. As we noted in the introduction

there are two notions of equivalence of varieties. We have already

studied isomorphisms, so we now turn our attention to birational

equivalence. Recall that a morphism φ : V → W is an isomorphism

if there exists an inverse morphism ψ, i.e., a morphism ψ : W → V

such that φ ◦ ψ = Id|W and ψ ◦ φ = Id|V . To understand inverse

morphisms we first had to understand compositions of morphisms.

The definition of a birational map will follow the same template where

we define composition of rational maps in the obvious way (which we

make precise below), but a difficulty arises with rational maps that

is not present in the case of isomorphisms, namely, compositions of

rational maps may not be defined.

Exercise 4.20.6. Let ψ : A1 ��� A2 be defined by ψ(x) = (x,−x)

and φ : A2 ��� A1 be defined by φ(x, y) = x
x+y . Show that the domain

of definition of φ ◦ ψ is empty.

Suppose ψ : V1 ��� V2 and φ : V2 ��� V3 are rational maps of

affine varieties. Since φ is not defined on all of V2, a problem arises

when the image of ψ is not “big enough.” Hence, we need to restrict

our attention to only those rational maps whose images are sufficiently

large. A natural question is “what is big enough?”

Definition 4.20.6. A rational map φ : V ��� W is called dominant

if φ(V ) is dense in W .

We can now define the composition of two rational maps of affine

varieties. Let V1 ⊂ An1 , V2 ⊂ An2 , and V3 ⊂ An3 be affine varieties
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with corresponding ideals I1, I2, and I3. Suppose ψ : V1 ��� V2

and φ : V2 ��� V3 are rational maps and that ψ is dominant. Let

(x1, . . . , xn1
) be affine coordinates on An1 and (y1, . . . , yn2

) be affine

coordinates on An2 . Since φ and ψ are rational maps, we can write

ψ(x1, . . . , xn1
) = (G1(x1, . . . , xn1

), . . . , Gn2
(x1, . . . , xn1

)),

where Gi ∈ KV1
and

φ(y1, . . . , yn2
) = (F1(y1, . . . , yn2

), . . . , Fn3
(y1, . . . , yn2

)),

where Fi ∈ KV2
. Then

φ ◦ ψ(x1, . . . , xn1
) = (F1(G1, . . . , Gn2

), . . . , Fn3
(G1, . . . , Gn2

)).

We now check that this definition makes sense.

Exercise 4.20.7. Let V1 ⊂ An1 , V2 ⊂ An2 , and V3 ⊂ An3 be affine

varieties with corresponding ideals I1, I2, and I3. Suppose ψ : V1 ���
V2 and φ : V2 ��� V3 are rational maps and that ψ is dominant. Show

that φ ◦ ψ : V1 ��� V3 is a rational map.

Now we have that if ψ : V1 ��� V2 is dominant, then φ ◦ ψ :

V1 ��� V3 is a rational map defined on a dense open subset of V1. A

consequence of this exercise is that composition of rational maps and

homomorphisms of function fields are related in a very natural way.

We will explore this further in the next subsection, but first we will

define a birational map.

Definition 4.20.7. Suppose V ⊂ An(k) and W ⊂ Am(k) are affine

varieties. A dominant rational map φ : V ��� W is called a birational

map if there exists a dominant rational map ψ : W ��� V such that

ψ ◦ φ = Id|V and φ ◦ ψ = Id|W , where defined.

Definition 4.20.8. Two algebraic varieties V ⊂ An(k) and W ⊂
Am(k) are birationally equivalent or birational if there exist birational

maps between them. A variety that is birational to an affine space

An is called rational .

Exercise 4.20.8. Show that the affine line A1 is birational to the

circle V(x2+ y2 − 1) by finding an inverse to the rational map φ(t) =(
−2t
1+t2 ,

1−t2

1+t2

)
. [Hint: Recall that the map φ was obtained geometri-

cally using the lines y = tx + 1 through the point (0, 1) for various
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slopes t, and then finding the line’s second point of intersection with

the circle.]

Exercise 4.20.9. Consider the cuspidal cubic curve V(y2 − x3) in

the plane A2.

1

2

−1

−2

1 2−1−2

(1) Show that the map φ(t) = (t2, t3) maps the affine line A1 to

the curve V(y2 − x3).

(2) Find a rational map ψ : V(y2−x3) ��� A1 that is the inverse

to the map φ.

Thus A1 and V(y2 − x3) are birational, even though they are not

isomorphic as we have shown in Exercise 4.19.12.

4.20.3. Birational Equivalence and Field Isomorphisms. The

goal of this subsection is to explore the relationships between rational

maps of varieties and homomorphisms of function fields. In particular,

we will establish the following theorem.

Theorem 4.20.10. Let V = V(I) ⊂ An and W = V(J) ⊂ Am be

two algebraic varieties. Then V and W are birational if and only if

the function fields KV and KW are field isomorphic.

In Exercise 4.19.12 we showed that A1 and V(y2 − x3) are not

isomorphic because their coordinate rings are not isomorphic. In

Exercise 4.20.9 we established that A1 and V(y2 − x3) are birational.

In this exercise we will show that their function fields are isomorphic.

Exercise 4.20.11. Let V = V(y2 − x3) be the cuspidal cubic in the

plane A2.
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(1) Let φ : A1 ��� V be defined by φ(t) = (t2, t3). Show that

the map φ∗ : KV → k(t) defined by φ∗(F ) = F ◦ φ is a field

homomorphism.

(2) Show that y =
(
y
x

)3
and x =

(
y
x

)2
in the field KV .

(3) Show that k(t) and KV are isomorphic as fields by showing

that (φ∗)−1 = ψ∗, where ψ∗ is the field homomorphism

associated to the rational map ψ found in Exercise 4.20.9.

The next series of exercises will provide a proof that affine vari-

eties V and W are birational if and only if the function fields KV and

KW are isomorphic.

Exercise 4.20.12. Let V ⊂ Am and W ⊂ An be affine varieties and

let φ : V ��� W be a rational map. Show that there is a natural ring

homomorphism

φ∗ : O(W ) → KV .

Exercise 4.20.13. Let V ⊂ Am and W ⊂ An be affine varieties and

let φ : V ��� W be a dominant rational map. Show that there is a

natural field homomorphism

φ∗ : KW → KV .

Exercise 4.20.14. Let V ⊂ Am and W ⊂ An be affine varieties and

let α : KW → KV be a field homomorphism. Show that there exists

a unique dominant rational map φ : V ��� W such that φ∗ = α.

Exercise 4.20.15. Let φ : A1 ��� A2 be defined by φ(t) =
(
t, 1t
)
.

(1) Show that φ is not dominant.

(2) Show that φ∗ : k[x, y] → k(t) is a ring homomorphism.

(3) Show that φ∗ : k(x, y) → k(t) is not a field homomorphism.

Exercise 4.20.16. Suppose ψ : V1 ��� V2 and φ : V2 ��� V3 are

rational maps and that ψ is dominant. Show that (φ ◦ ψ)∗ : KV3
→

KV1
and ψ∗ ◦ φ∗ : KV3

→ KV1
are the same.

Exercise 4.20.17. Show that φ : V ��� W is a birational map if and

only if φ∗ : KW → KV is a field isomorphism.
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4.20.4. Blow-ups and Rational Maps. In Section 3.7 we saw that

the blow-up of the origin (0, 0) in C2 is the space obtained by replacing

the origin by the set of all complex lines in C2 through the origin. In

coordinates, the blow-up consists of two copies of C2 that are patched

together correctly. This section shows how these patchings can be

viewed as appropriate birational maps.

Let U = C2, with coordinates u1, u2, and V = C2, with coor-

dinates v1, v2, be the two complex planes making up the blow-up.

Denote by Z = C2, with coordinates z1, z2, the original C2 whose

origin is to be blown-up.

From Section 3.7, we have the polynomial maps

π1 : U → Z and π2 : V → Z

given by

π1(u1, u2) = (u1, u1u2) = (z1, z2)

and

π2(v1, v2) = (v1v2, v2) = (z1, z2).

Exercise 4.20.18.

(1) Find the inverse maps

π−1
1 : Z ��� U and π−1

2 : Z ��� V.

(2) Find the points in Z where the maps π−1
1 and π−1

2 are not

defined.

(3) Conclude that U and Z are birational under π1, as are V

and Z under π2.

Exercise 4.20.19. Find the maps

π−1
2 ◦ π1 : U ��� V

and

π−1
1 ◦ π2 : V ��� U.

Conclude that U and V are birational under these maps.                
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4.21. Products of Affine Varieties

The goal of this section is to show that the Cartesian product of

affine varieties is again an affine variety. We also study the topology

and function theory of the product of two affine varieties.

4.21.1. Product of Affine Spaces. In analytic geometry, the fa-

miliar xy-plane R2 is constructed as the Cartesian product of two real

lines, R× R, and thus is coordinatized by ordered pairs of real num-

bers. It is natural to ask whether the same construction can be used

in algebraic geometry to construct higher-dimensional affine spaces

as products of lower-dimensional ones.

Clearly we can identify A2(k) with A1(k) × A1(k) as sets. How-

ever, this identification is insufficient to prove thatA2(k) is isomorphic

to A1(k)× A1(k) as varieties.

Exercise 4.21.1. Let O(An(k)) = k[x1, . . . , xn] and O(Am(k)) =

k[y1, . . . , ym]. Show that O(An+m(k)) ∼= k[x1, . . . , xn, y1, . . . , ym],

where the latter is, by definition, the ring of regular functions on

the product An(k)× Am(k).

Frequently, when we form the product of topological spaces X

and Y , the new space X × Y is endowed with the product topology.

This topology has as its basis all sets of the form U×V where U ⊂ X

and V ⊂ Y are open. In these exercises, the Zariski topology on the

product X×Y will be compared to the product topology to determine

that the Zariski topology is strictly finer.

Exercise 4.21.2. (This is very similar to Hartshorne [Har77], Exer-

cise I.1.4.) In Exercise 4.21.1, you have shown that An(k)×Am(k) ∼=
An+m(k). In particular, A1(k)× A1(k) ∼= A2(k).

(1) Describe an open set in the product topology on A1(k) ×
A1(k).

(2) Is an open set in the product topology on A1(k)×A1(k) also

open in the Zariski topology of A1(k)× A1(k) ∼= A2(k)?

(3) Find an open set of the Zariski topology of A1(k)×A1(k) ∼=
A2(k) that is not open in the product topology.
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This shows that the Zariski topology is strictly finer than the product

topology on A1(k)× A1(k) ∼= A2(k).

4.21.2. Product of Affine Varieties. Let X ⊂ An(k) and Y ⊂
Am(k) be affine varieties. The Cartesian product of X and Y , X×Y ,

can naturally be viewed as a subset of the Cartesian product An(k)×
Am(k).

Exercise 4.21.3. Let X = V(x2 − x1) ⊂ A2(k) and Y = V(y1) ⊂
A2(k). Describe X × Y and show that it is a closed subset of A4(k).

Exercise 4.21.4. If X = V(I) ⊂ An(k) and Y = V(J) ⊂ Am(k) are

algebraic sets, show that X × Y ⊂ An+m(k) is also an algebraic set.

Let X ⊂ An(k) and Y ⊂ Am(k) be affine subvarieties. Then

X × Y is an algebraic subset of An+m(k). Endow X × Y with the

subspace topology for the Zariski topology on An+m(k). (That is,

the open sets of X × Y are sets of the form (X × Y ) ∩ U where U

is Zariski open in An+m(k).) This is called the product of the affine

varieties X and Y .

We now want to prove that the product of affine varieties is again

an affine variety, which requires that we prove the product of irre-

ducible sets is irreducible.

Exercise 4.21.5. Let x0 ∈ X be a (closed) point. Show that {x0}×
Y = {(x0, y) ∈ X × Y : y ∈ Y } is a subvariety of X × Y isomorphic

to Y as a variety. Similarly, for any closed point y0 ∈ Y , X × {y0} is

a subvariety of X × Y isomorphic to X.

In particular, if X is irreducible, so is X × {y0} for each y0 ∈ Y .

Our next goal is to show that if X and Y are irreducible, then

X × Y is irreducible. While standard, we are basing these prob-

lems on Klaus Hulek’s presentation in Elementary Algebraic Geome-

try [Hul03].

For the rest of this subsection, we assume that both X ⊂ An(k)

and Y ⊂ Am(k) are irreducible. Suppose that X×Y = Z1∪Z2, where

both Z1 and Z2 are algebraic sets in An+m(k) with Z1 � X × Y and

Z2 � X × Y .
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Exercise 4.21.6. For any fixed y0 ∈ Y let Y0 = An(k)×{y0}. Show
that

X × {y0} = Z1 ∩ Y0

or

X × {y0} = Z2 ∩ Y0.

From this, we deduce that X × {y0} is entirely contained in one

of Z1 or Z2 for each y0 ∈ Y . Set

W1 = {y ∈ Y : X × {y} ⊂ Z1}

and

W2 = {y ∈ Y : X × {y} ⊂ Z2}.
Then

Y = W1 ∪W2.

Exercise 4.21.7. Show that if both W1 and W2 are Zariski closed,

then X × Y is irreducible.

To finish the argument, we need to show that W1 and W2 are

closed. Here are the necessary steps.

Exercise 4.21.8. For each x ∈ X, show that

W x
i = {y ∈ Y : (x, y) ∈ Zi}

is closed.

Exercise 4.21.9. Show that each Wi is closed. [Hint: Use that the

intersection of closed sets, such as the ones in the previous problem,

is closed.]

Thus, if X and Y are affine varieties, so is their product, X × Y .

4.21.3. Products and Morphisms.

Exercise 4.21.10. Let X ⊂ An(k) and Y ⊂ Am(k) be affine vari-

eties.

(1) Show that (x, y) �→ x is a morphism of affine varieties ρX :

X × Y → X, called the projection onto the first factor.
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(2) Similarly, show that (x, y) �→ y is a morphism, which we will

denote by ρY : X × Y → Y and call the projection onto the

second factor.

Exercise 4.21.11. Show that ρX : X×Y → X and ρY : X×Y → Y

are both open morphisms, i.e., if U ⊂ X × Y is an open subset, then

ρX(U) is an open subset of X and ρY (U) is an open subset of Y .

Exercise 4.21.12. Must ρX and ρY also be closed morphisms, i.e.,

must the images of a closed set C in X ×Y be closed in X and in Y ?

Exercise 4.21.13. Suppose ϕ : Z → X and ψ : Z → Y are mor-

phisms of affine varieties. Show that there is a well-defined mor-

phism π : Z → X × Y so that ϕ = ρX ◦ π and ψ = ρY ◦ π, where

ρX : X×Y → X and ρY : X×Y → Y are the projection morphisms.

This is the universal property for the product of varieties: Given

X and Y , a variety P with morphisms πX : P → X and πY : P → Y

is the product of X and Y if, for any variety Z with morphisms

α : Z → X and β : Z → Y , there is a unique morphism γ : Z → P so

that

Z

α

��

β

��

γ

��

P

πX

��

πY

�� Y

X

is a commutative diagram.

Therefore, if Q is another variety having this property, there are

unique maps δ : P → Q, ζ : Q → P , π : P → P and ε : Q → Q by the

universal property. Clearly, π, ε must both be the identity morphisms

of P and Q, respectively. However, ζ ◦ δ : P → P also satisfies the

property of the arrow from P to itself, so that ζ ◦δ = π is the identity

on P . Similarly, δ◦ζ : Q → Q is the identity morphism of Q, so ζ and

δ are invertible morphisms which establish an isomorphism P ∼= Q.

Hence the product of two varieties is unique up to isomorphism.

                

                                                                                                               



                

                                                                                                               



Chapter 5

Projective Varieties

The key to this chapter is that projective space Pn is the nat-

ural ambient space for much of algebraic geometry. We will be ex-

tending last chapter’s work on affine varieties to the study of alge-

braic varieties in projective space Pn. We will see that in projective

space we can translate various geometric objects into the language of

graded rings. While affine varieties correspond to ideals in commuta-

tive rings, we will show that projective varieties in Pn correspond to

homogeneous ideals.

You will observe that this chapter is much shorter than previous

chapters. This is not because projective varieties are less important.

Rather it is a reflection of the fact that, quite often, problems involv-

ing projective varieties can be reduced to the affine case and treated

with methods developed in Chapter 4.

5.1. Definition of Projective Space

This section gives the basic definitions for projective n-space Pn(k).

In Chapter 1, we saw that all smooth conics in the complex pro-

jective plane P2 can be viewed as the “same.” In Chapter 2, we saw

that all smooth cubics in P2 can be viewed as tori. In Chapter 3,

271
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we saw that curves of degree e and of degree f must intersect in ex-

actly ef points, counted with multiplicity, provided we work in P2.

All of this suggests that affine space An is not the natural place to

study geometry; instead, we want to define some notion of projective

n-space.

Let k be a field. (You can comfortably replace every k with the

complex numbers C, at least for most of this book.)

Definition 5.1.1. Let a = (a0, . . . , an), b = (b0, . . . , bn) ∈ An+1(k)−
{(0, . . . , 0)}. We say that a is equivalent to b, denoted a ∼ b, if there

exists a λ �= 0 in the field k such that

(a0, . . . , an) = λ(b0, . . . , bn).

Exercise 5.1.1. In A5 − {(0, . . . , 0)}, show

(1) (1, 3, 2, 4, 5) ∼ (3, 9, 6, 12, 15),

(2) (1, 3, 2, 4, 5) �∼ (3, 9, 6, 13, 15).

Exercise 5.1.2. Show that ∼ is an equivalence relation on An(k)−
{(0, . . . , 0)}.

Definition 5.1.2. Projective n-space over the field k is

Pn(k) =
(
An+1(k)− {(0, . . . , 0)}

)
/ ∼ .

We denote the equivalence class corresponding to a point (a0, . . . ,

an) (with at least one ai �= 0) by

(a0 : a1 : · · · : an).
We call the (a0 : a1 : · · · : an) homogeneous coordinates for Pn(k).

Exercise 5.1.3. Referring to Exercise 1.4.7, explain why Pn(k) can

be thought of as the set of all lines through the origin in An+1(k).

We now want to examine the relationship between An(k) and

Pn(k). There is a natural way to cover Pn(k) with n + 1 copies of

An(k).

Exercise 5.1.4. Let (a0 : a1 : a2 : a3 : a4 : a5) ∈ P5. Suppose that

a0 �= 0. Show that

(a0, a1, a2, a3, a4, a5) ∼
(
1,

a1
a0

,
a2
a0

,
a3
a0

,
a4
a0

,
a5
a0

)
.
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Definition 5.1.3. Let (x0 : x1 : · · · : xn) be homogeneous coordi-

nates on Pn(k). Define the ith affine chart to be

Ui = {(x0 : x1 : · · · : xn) : xi �= 0}.

Exercise 5.1.5. Prove that every element in Pn(k) is contained in

at least one Ui. Thus the n+ 1 sets Ui, for i = 0, . . . , n, cover Pn(k).

Exercise 5.1.6. Show that there is exactly one point in Pn(k) that

is not in U1 ∪ U2 ∪ · · · ∪ Un. Identify this point.

In the affine case, there is a natural way to link spaces with

different dimensions: An(k) can be embedded in An+1(k) by mapping

an n-tuple to an (n + 1)-tuple with the last coordinate set equal to

0. Let’s extend this so we can embed a projective space into a higher

dimensional one.

Exercise 5.1.7. Show that we can map P1(k) to the set of all points

in Pn(k) that are not in U2 ∪ U3 ∪ · · · ∪ Un.

Exercise 5.1.8. Show that we can map P2(k) to the set of all points

in Pn(k) that are not in U3 ∪ U4 ∪ · · · ∪ Un.

Since there are n+1 copies of An(k) embedded in Pn(k), we need

a way to move from one chart to another.

Definition 5.1.4. For 0 ≤ i ≤ n, define maps φi : Ui → An(k) by

φi(x0 : x1 : · · · : xn) =

(
x0

xi
,
x1

xi
, . . . , x̂i, . . . ,

xn

xi

)
,

where x̂i means that xi is omitted.

Exercise 5.1.9. For Pn(k), show for each i that φi : Ui → An(k) is

(1) one-to-one

(2) onto.

Since φi is one-to-one and onto, there is a well-defined inverse

φ−1
i : An(k) → Pn(k).

Exercise 5.1.10. For φ−1
2 : A5 → P5, show that

φ−1
2 (7, 3, 11, 5, 6) = (14 : 6 : 2 : 22 : 10 : 12).
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Define maps ψij : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) by ψij = φi ◦ φ−1
j

for 0 ≤ i, j ≤ n.

Exercise 5.1.11. Explain how each ψij is a rational map from An(k)

to An(k).

Exercise 5.1.12. Show that the map ψ02 : A2(k) → A2(k) is

ψ02(x1, x2) =

(
x2

x1
,
1

x1

)
.

Describe the set on which ψ02 is undefined.

Exercise 5.1.13. Explicitly describe ψ12 : A2(k) → A2(k). In other

words, find ψ12(x1, x2). Describe the set on which ψ12 is undefined.

Exercise 5.1.14. Write explicitly the map ψ02 : φ2(U0 ∩ U2) ⊂
An(k) → φ0(U0 ∩ U2) ⊂ An(k) in coordinates (x1, x2, . . . , xn). De-

scribe the set on which ψ02 is undefined.

Exercise 5.1.15. Show that ψij ◦ ψjk = ψik.

Exercise 5.1.16. Show that ψij ◦ ψjk ◦ ψki = Id.

For those who have had topology, the above exercises show that

Pn is a manifold. However, our primary interest in Pn(k) is as the

natural ambient space for algebraic geometry. As in Chapter 4, we

are seeking a dictionary between algebraic sets in Pn(k) and the sets

of functions that vanish on them. Similar to our prior experience with

P2 in Chapter 1, we will see that when working in projective n-space,

we need to restrict our attention to homogeneous functions. The next

section treats homogeneous polynomials and ideals in graded rings,

which is the algebraic background needed to study algebraic geometry

in projective space.

5.2. Graded Rings and Homogeneous Ideals

This section discusses why we need to consider graded rings and

homogeneous ideals as the natural ring-theoretic objects to associate

to projective varieties.
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We want to study varieties in Pn(k), but first we must see why

we cannot naively use the zero loci of arbitrary polynomials.

Exercise 5.2.1. Let

P (x0, x1, x2, x3, x4, x5) = x0 − x1x2x3x4x5.

(1) Show that

P (1, 1, 1, 1, 1, 1) = 0.

(2) Show that

P (2, 2, 2, 2, 2, 2) �= 0.

(3) Show that

(1, 1, 1, 1, 1, 1) ∼ (2, 2, 2, 2, 2, 2)

so that the two points in C6 will define the same point in

P5.

(4) Conclude that {(x0 : . . . : x5) ∈ P5 : P (x0, . . . , x5) = 0} is

not a well-defined set.

As we have seen before, the key is to consider homogeneous poly-

nomials.

Exercise 5.2.2. Let

P (x0, x1, x2, x3, x4, x5) = x5
0 − x1x2x3x4x5.

(1) Show that

P (1, 1, 1, 1, 1, 1) = 0.

(2) Show that

P (2, 2, 2, 2, 2, 2) = 0.

(3) Show that if P (x0, . . . , x5) = 0, then for all λ ∈ k we have

P (λx0, . . . , λx5) = 0.

(4) Conclude that {(x0 : . . . : x5) ∈ P5 : P (x0, . . . , x5) = 0} is a

well-defined set.

The reason why the zero locus of x5
0−x1x2x3x4x5 is a well-defined

subset of P5 is that both terms x5
0 and x1x2x3x4x5 have degree five.

Definition 5.2.1. A polynomial for which each of its terms has the

same degree is called homogeneous .
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Exercises 5.2.1 and 5.2.2 suggest that we should consider only ho-

mogeneous polynomials to do algebraic geometry in projective space.

Exercise 5.2.3. If f ∈ k[x0, . . . , xn] is a homogeneous polynomial of

degree d, then f(λx0, λx1, . . . , λxn) = λdf(x0, x1, . . . , xn) for every

λ �= 0 in the base field k.

Thus, even though the value of f at a point P ∈ Pn is not well-

defined, the set of points at which f vanishes is well-defined. Hence,

we restrict our attention to the zero loci of homogeneous polynomials

when working in projective space Pn.

First, we notice that when we work with homogeneous polynomi-

als we gain additional structure on the ring k[x0, x1, . . . , xn]. Specifi-

cally, we can break up the polynomial ring k[x0, x1, . . . , xn] in a nat-

ural way. Define Rd to be the set of all homogeneous polynomials

of degree d in k[x0, x1, . . . , xn]. Note that the zero polynomial is in

every Rd for d ≥ 0.

Exercise 5.2.4. Let R = k[x, y, z].

(1) Let f = x + 2y and g = x − z. Show that f + g and f − g

are in R1 and fg ∈ R2.

(2) Let h = x2 + yz. Show that fh and gh are in R3 and

h2 ∈ R4.

Exercise 5.2.5. Let R = k[x0, x1, . . . , xn].

(1) What is R0?

(2) Show that if f ∈ R0 and g ∈ Rd, then fg ∈ Rd.

(3) Show that for f, g ∈ R1, f + g ∈ R1 and fg ∈ R2.

(4) Show that for f, g ∈ Rd, f + g ∈ Rd and fg ∈ R2d.

We can generalize Exercises 5.2.4 and 5.2.5 to show that

k[x0, x1, . . . , xn] is a graded ring.

Definition 5.2.2. A graded ring is a ring R together with a collection

of subgroups Rd, d ≥ 0, of the additive group R such that R =⊕
d≥0 Rd and, for all d, e ≥ 0, Rd ·Re ⊆ Rd+e.

Exercise 5.2.6. As before, let R = k[x0, x1, . . . , xn] with Rd the

homogeneous polynomials of degree d.
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(1) Prove that Rd is a group under addition.

(2) Prove for any d, e ≥ 0, Rd ·Re ⊆ Rd+e.

(3) Prove k[x0, x1, . . . , xn] =
⊕

d≥0 Rd.

This notion of grading for a ring extends to ideals in the ring.

Since we are interested in projective space and hence homogeneous

polynomials, we define the related notion of a graded ideal.

Definition 5.2.3. An ideal I of a graded ring R =
⊕

d≥0 Rd is called

homogeneous or graded if and only if I =
⊕

d≥0 (I ∩Rd).

Exercise 5.2.7. Determine whether each ideal of k[x, y, z] is homo-

geneous.

(1) 〈x− yz〉
(2) 〈x2 − yz〉
(3) 〈x− yz, x2 − yz〉
(4) 〈x2 − yz, y3 − xz2〉

The next exercise gives us three equivalent descriptions for a ho-

mogeneous ideal.

Exercise 5.2.8. Prove that the following are equivalent.

(1) I is a homogeneous ideal of k[x0, . . . , xn].

(2) I is generated by homogeneous polynomials.

(3) If f =
∑

fi ∈ I, where each fi is homogeneous, then fi ∈ I

for each i.

The exercises in the rest of this section provide general results

about graded rings and practice working with them.

Exercise 5.2.9. Let I be a homogeneous ideal in R = k[x0, . . . , xn].

Prove the quotient ring R/I is a graded ring.

Exercise 5.2.10. Let R = k[x, y, z] and I = 〈x2− yz〉. Show how to

write R/I as a graded ring.

Exercise 5.2.11. Let R = k[x, y, z, w] and I = 〈xw−yz〉. Show how

to write R/I as a graded ring.
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Exercise 5.2.12. Let R = k[x, y, z] and let I = 〈x2〉, J = 〈x, y〉.
Determine whether each ideal is homogeneous.

(1) I ∩ J

(2) I + J

(3) IJ

(4) Rad(I) = {f : fm ∈ I for some m > 0}

We can generalize these results to the intersections, sums, prod-

ucts, and radicals of any homogeneous ideals.

Exercise 5.2.13. Let A be an index set, and let {Iα : α ∈ A} be a

collection of homogeneous ideals in k[x0, . . . , xn]. Also let J and J ′

be homogeneous ideals in k[x0, . . . , xn].

(1) Prove
⋂

α∈A Iα is homogeneous.

(2) Prove
∑

α∈A Iα is homogeneous.

(3) Prove JJ ′ is homogeneous.

(4) Prove Rad(J) is homogeneous.

We will see that, as in the affine case, prime ideals correspond

to irreducible varieties. The next exercise shows that to prove a ho-

mogeneous ideal is prime, it is sufficient to restrict to homogeneous

elements.

Exercise 5.2.14. Let I be a homogeneous ideal in R = k[x0, . . . , xn].

Prove that I is a prime ideal if and only if fg ∈ I implies f ∈ I or

g ∈ I for all homogeneous polynomials f, g.

5.3. Projective Varieties

In this section we will see that the V –I correspondence for affine

varieties developed in Chapter 4 extends to projective varieties, but

here the ideals must be homogeneous.

5.3.1. Algebraic Sets. To define varieties in Pn(k), we start with

the zero sets of homogeneous polynomials.
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Definition 5.3.1. Let S be a set of homogeneous polynomials in

k[x0, . . . , xn]. The zero set of S is

V(S) = {p ∈ Pn(k) : f(p) = 0 ∀f ∈ S} .

A subset of Pn(k) is called an algebraic set if it is the zero set of some

set of homogeneous polynomials.

Exercise 5.3.1. Describe the zero sets V(S) in P2 for each set S.

(1) S =
{
x2 + y2 − z2

}
(2) S =

{
x2, y
}

(3) S =
{
x2 + y2 − z2, x2 − y2 + z2

}
Exercise 5.3.2. Describe the algebraic sets in P1.

Exercise 5.3.3. Show that each set of points X is an algebraic set

by finding a set of polynomials S so that X = V(S).

(1) X = {(0 : 1)} ⊂ P1

(2) X = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)} ⊂ P2

(3) X = {(1 : 1 : 1 : 1)} ⊂ P3

While in this book we are primarily concerned with varieties over

C, it is interesting to see how the algebraic sets vary with different

base fields k.

Exercise 5.3.4. Let I = 〈x2 + y2〉 ⊂ k[x, y].

(1) Find V(I) for k = C.

(2) Find V(I) for k = R.

(3) Find V(I) for k = Z2, the field with two elements.

Exercise 5.3.5. Let S be a set of homogeneous polynomials and let I

be the ideal generated by the elements in S. Prove that V(I) = V(S).

This shows that every algebraic set is the zero set of a homogeneous

ideal.

Exercise 5.3.6. Prove that every algebraic set is the zero set of

a finite number of homogeneous polynomials. (The Hilbert Basis

Theorem, Theorem 4.3.4, will be useful here.)
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Exercise 5.3.7. We call the ideal 〈x0, x1, . . . , xn〉 ⊂ k[x0, x1, . . . , xn]

the “irrelevant” maximal ideal of k[x0, x1, . . . , xn]. Prove that this

is a maximal ideal and describe V(〈x0, x1, . . . , xn〉). Why do we say

that 〈x0, x1, . . . , xn〉 is irrelevant?

Exercise 5.3.8. Show if I and J are homogeneous ideals in k[x0, . . . ,

xn] with I ⊂ J , then V(I) ⊃ V(J).

Exercise 5.3.9. Let I and J be homogeneous ideals in k[x0, x1, . . . ,

xn].

(1) Prove V(I ∩ J) = V(I) ∪ V(J).

(2) Prove V(I + J) = V(I) ∩ V(J).

Exercise 5.3.10. Let I be a homogeneous ideal in k[x0, . . . , xn].

Prove that V(Rad(I)) = V(I).

5.3.2. Ideals of Algebraic Sets. In the previous subsection we saw

that algebraic sets in Pn(k) can always be expressed in the form V(I)

for some homogeneous ideal I in k[x0, . . . , xn]. In this subsection, we

will complete the V –I correspondence by showing that homogeneous

ideals arise from algebraic sets. We begin with a definition.

Definition 5.3.2. Let X be an algebraic set in Pn(k). The ideal of

X is the homogeneous ideal I(X) generated by the set

{f ∈ k[x0, . . . , xn] : f is homogeneous, f(p) = 0 for all p ∈ X} .

Exercise 5.3.11. Let X be an algebraic set in Pn. Prove that I(X)

is a homogeneous ideal.

Exercise 5.3.12. Find the ideal I(X) for each algebraic set X.

(1) X = {(1 : 1)} in P1

(2) X = V({x2}) in P2

(3) X = V({x0x2 − x1x3, x0 − x3}) in P3

In Chapter 4 we proved Hilbert’s Nullstellensatz (Theorem 4.4.1)

for an affine algebraic variety V(I) over an algebraically closed field

k, I(V(I)) = Rad(I). To prove the projective version of this result,

we will compare the projective and affine varieties corresponding to a
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given homogeneous ideal. For a homogeneous ideal J ⊆ k[x0, . . . , xn],

let

Va(J) =
{
p ∈ An+1(k) : f(p) = 0 ∀f ∈ J

}
be the affine zero set of the ideal J . Recall

I(Va(J)) = {f ∈ k[x0, . . . , xn] : f(p) = 0 ∀p ∈ Va(J)}
is the ideal of polynomials vanishing on the affine variety Va(J). Note

that we do not require that the polynomials in I(Va(J)) be homoge-

neous.

Exercise 5.3.13. Let J = 〈x− y〉 ⊆ k[x, y].

(1) Find the affine zero set Va(J) ⊂ A2(k).

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V(J)) = Rad(J).

Exercise 5.3.14. Let J = 〈x− y, y + z〉 ⊆ k[x, y, z].

(1) Find the affine zero set Va(J) ⊂ A3(k).

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V(J)) = Rad(J).

Exercise 5.3.15. Let J = 〈xy, yz, xz〉 ⊆ k[x, y, z].

(1) Find the affine zero set Va(J) ⊂ A3(k).

(2) Find I(Va(J)) and show that this ideal is homogeneous.

(3) Show that I(V(J)) = Rad(J).

Exercise 5.3.16. Let J be a homogeneous ideal in k[x0, . . . , xn].

(1) Prove that (a0, . . . , an) ∈ Va(J) if and only if

(λa0, . . . , λan) ∈ Va(J) for all λ �= 0 in k.

(2) Let I(Va(J)) = {f ∈ k[x0, . . . , xn] : f(p) = 0 ∀p ∈ Va(J)}
be the ideal of polynomials vanishing on the affine variety

Va(J). Prove that I(Va(J)) is in fact homogeneous and

I(Va(J)) = I(V(J)).

(3) Use Hilbert’s Nullstellensatz to conclude that I(V(J)) =

Rad(J).

Exercise 5.3.17. Let J be a homogeneous ideal. Prove that V(J) =

∅ if and only if 〈x0, x1, . . . , xn〉 ⊆ Rad(J).
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Exercise 5.3.18. Let X be an algebraic set in Pn(k). Show that

V(I(X)) = X.

Exercise 5.3.19. Let X and Y be algebraic sets in Pn(k). Show

that X ⊂ Y if and only if I(Y ) ⊂ I(X).

5.3.3. Irreducible Algebraic Sets and Projective Varieties.

As in Chapter 4, we say that an algebraic set V is reducible if V =

V1 ∪ V2, where V1 and V2 are distinct algebraic sets with V1 � V and

V2 � V . An algebraic set that is not reducible is said to be irreducible.

Definition 5.3.3. A projective variety is defined to be an irreducible

algebraic subset of Pn for some n.

Exercise 5.3.20. Determine whether each algebraic set in Pn is ir-

reducible (and thus a projective variety).

(1) V(〈x0〉)
(2) V(〈x0x1〉)
(3) V(〈x1, x2, . . . , xn〉)

Exercise 5.3.21. Let V ⊂ Pn be an algebraic set.

(1) Suppose that V is reducible, say V = V1 ∪ V2 where V1 and

V2 are distinct algebraic sets with V1 � V and V2 � V .

Show that there are polynomials f1 ∈ I(V1) and f2 ∈ I(V2)

such that f1f2 ∈ I(V ) but f1, f2 �∈ I(V ). Conclude that

I(V ) is not a prime ideal.

(2) Prove that if I(V ) is a homogeneous ideal in k[x0, x1, . . . , xn]

which is not prime, then V is a reducible algebraic set in Pn.

Therefore, an algebraic set V in Pn is a projective variety if and

only if its ideal I(V ) is a homogeneous prime ideal in k[x0, x1, . . . , xn].

This establishes a correspondence between the projective varieties in

Pn and the homogeneous prime ideals in the graded ring k[x0, x1, . . . ,

xn] other than the ideal J = 〈x0, x1, . . . , xn〉. (Recall that J is called

the irrelevant ideal, since V(J) = ∅.)

Exercise 5.3.22. Show that Pn(k) is a projective variety when k is

infinite.
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Exercise 5.3.23. Determine whether each algebraic set V is a pro-

jective variety in P2 by determining whether I(V ) is prime.

(1) V(〈xy〉)
(2) V(〈xy − z2〉)
(3) V(〈x2〉)

Exercise 5.3.24. Suppose V = V1 ∪ V2 is a reducible algebraic set

in Pn. Show that I(V ) = I(V1) ∩ I(V2).

Exercise 5.3.25. Suppose V is an algebraic set in Pn. Show that V

is the union of a finite number of projective varieties.

5.3.4. The Zariski Topology. Analogous with affine varieties, the

collection of algebraic sets will be the closed sets for the Zariski topol-

ogy on Pn, which we now show.

Exercise 5.3.26.

(1) Show that ∅ and Pn are algebraic sets in Pn.

(2) Show that the union of a finite number of algebraic sets in

Pn is again an algebraic set.

(3) Show that the intersection of an arbitrary collection of al-

gebraic sets in Pn is again an algebraic set.

(4) Conclude that the algebraic sets in Pn form the collection

of closed sets for a topology on Pn: the Zariski topology .

Exercise 5.3.27. For the Zariski topology on P1:

(1) Show that {(0 : 1), (1 : 0)} is a closed set.

(2) Find an open neighborhood of {(1 : 1)}.
(3) Describe the closed sets in P1.

(4) Find a basis of open sets for P1.

Exercise 5.3.28. For the Zariski topology on Pn:

(1) Show that the sets Pn−V(f), for homogeneous f ∈ k[x0, . . . ,

xn], form a basis for the Zariski topology on Pn.

(2) Show that this topology is not Hausdorff. (Recall that a

topological space is Hausdorff if for every pair of distinct

points there exist disjoint open sets containing them.)
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5.3.5. Parametrizing Conics via Projective Varieties. In

Chapter 1 we studied conics in the plane and classified them up to

equivalence in R2, C2 and P2. While there are infinitely many conics

in P2, we showed that there were only three classes up to a projective

change of coordinates: smooth, crossing lines, and double line conics.

In this subsection, however, we will not exploit projective changes

of coordinates but instead find a space whose points corresponds to

conics in P2. That is, we seek a space such that there is a bijection

between the set of its points and the set of conics in P2. Moreover,

we hope the geometry of this space will provide insights regarding the

family of conics in P2.

We begin by recalling that a conic in P2 is the zero set of a

homogeneous polynomial of degree two, V(Ax2+Bxy+Cy2+Dxz+

Eyz + Fz2), where not all coefficients can be zero. Observe that

V(Ax2 + Bxy + Cy2 + Dxz + Eyz + Fz2) = V(λAx2 + λBxy +

λCy2+λDxz+λEyz+λFz2) for any λ �= 0 in k. Thus, a conic in P2

is determined by its homogeneous polynomial up to scalar multiple,

and this polynomial is determined by its coefficients. Therefore, we

may identify the conic

V(Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2) ⊂ P2

with the point

(A : B : C : D : E : F ) ∈ P5.

Conversely, for every point (a0 : a1 : a2 : a3 : a4 : a5) ∈ P5, we have

the corresponding conic V(a0x
2+a1xy+a2y

2+a3xz+a4yz+a5z
2) in

P2 since not all coordinates of the point in P5 can be zero. Therefore,

the projective space P5 may be viewed as a parameter space for the

family of all conics in P2.

Exercise 5.3.29. Show that the set of singular conics in P2 corre-

sponds to an algebraic set in P5.

Thus the smooth conics form a Zariski open set in the space of all

conics in P2. This implies that a “generic” conic in P2 will be smooth,

and we begin to gain geometric insight from our parameter space.

Exercise 5.3.30. Show that the set of all conics in P2 that pass

through a given point p corresponds to an algebraic set in P5.
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Exercise 5.3.31. Fix a point p and a line � through p in P2. Show

that the set of all conics in P2 that are either tangent to � or singular

at p corresponds to an algebraic set in P5.

This is only a brief introduction to parameter spaces. If we change

our focus from conics in P2 to lines in P3 or curves in Pn, rather

than P5 and some of its projective subvarieties, we would be led to

Grassmann varieties and more general moduli spaces. Finding and

studying such spaces is on the cusp of current research in algebraic

geometry and its interaction with modern physics via string theory.

In this book, we must be content with this limited exposure to such

problems and now turn our attention to the study of functions on

projective varieties.

5.4. Functions, Tangent Spaces, and Dimension

In this section we will study functions on projective varieties and use

them to define the tangent space at a point and the dimension of a

variety.

5.4.1. The Function Field of a Projective Variety. We now

define a field of functions on a projective variety, as we did for curves

in Section 3.4 and affine varieties in Section 4.10. Let V ⊆ Pn be a

projective variety. We have seen that polynomial functions are not

well-defined on projective space in Section 5.2, so instead we consider

ratios of homogeneous polynomials of the same degree. These ratios

will determine functions on Pn.

Exercise 5.4.1. Let f and g be homogeneous polynomials of the

same degree. Show that

f(λx0, . . . , λxn)

g(λx0, . . . , λxn)
=

f(x0, . . . , xn)

g(x0, . . . , xn)
.

Thus
f

g
is a well-defined function at all points p ∈ Pn with g(p) �= 0.
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Definition 5.4.1. Let V ⊂ Pn be a projective variety with ideal

I(V ). The function field of V , KV , is the set of all ratios

f(x0, . . . , xn)

g(x0, . . . , xn)

modulo the relation ∼, where

(1) f and g are homogeneous polynomials of the same degree,

(2) g �∈ I(V ) (which is a way of guaranteeing that g, the de-

nominator, is not identically zero on the variety V ), and

(3)
f1
g1

∼ f2
g2

if f1g2 − f2g1 ∈ I(V ).

Compare this with our definitions of function fields for plane

curves (Definition 3.4.5) and affine varieties (Definition 4.10.1). The

proofs of the next two exercises are similar to these earlier cases.

Exercise 5.4.2. Prove that ∼ is an equivalence relation.

Exercise 5.4.3. Prove that KV is a field.

Exercise 5.4.4. Show that
f1
g1

∼ f2
g2

if and only if
f1
g1

and
f2
g2

are

identical as functions on their common domain in V .

Thus elements ofKV may be viewed as functions on the projective

variety V , but it is often the case that they are not defined on all of

V but only on an open subset. We say that two rational functions

are equal when they are identical on some open subset of the variety.

Exercise 5.4.5. Let V = V(〈x2 − yz〉) in P2.

(1) Show that
x

z
is defined on an open subset U of V , and thus

x

z
defines a function from U to the base field k.

(2) Show that
x

z
=

y

x
on V and find an open subset of V where

they agree.

Exercise 5.4.6. Let V = V(〈x0x2 − x2
1, x1x3 − x2

2, x0x3 − x1x2〉) in
P3.

(1) Show that
x0

x2
is defined on an open subset U of V , and thus

defines a function from U to the base field k.
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(2) Show that
x0

x2
=

x1

x3
in KV .

Exercise 5.4.7. Let V be a projective variety in Pn and let h =
f

g
,

where f and g are homogeneous polynomials of the same degree.

Show that h is defined on an open subset U of V and thus defines a

function from U to the base field k.

As in Chapter 4, we are interested in the functions on a variety

because these functions give us an algebraic tool for studying the

geometry of the space. In addition to its field of functions, an affine

variety has a coordinate ring and, at each of its points, a local ring

that provides information about the geometry of the variety near the

point. In Section 4.19 we proved two affine varieties are isomorphic if

and only if they have isomorphic coordinate rings. While we do not

have the same property for projective varieties and their coordinate

rings, the study of their local rings is still valuable (compare to the

affine case in Section 4.13). This leads to the next definition.

Definition 5.4.2. Let V be a projective variety and let p be a point

in V . The local ring of V at p is

Op(V ) =

{
f

g
∈ KV : g(p) �= 0

}
.

We call elements of Op(V ) regular functions at p.

Exercise 5.4.8. Let V = V(〈x2 − yz〉) and let p = (0 : 1 : 0) ∈ V .

Show that h =
z

x
is in Op(V ) by finding homogeneous polynomials f

and g with g(p) �= 0 and h =
f

g
on an open set containing p.

Exercise 5.4.9. Verify that Op(V ) is a local ring with unique maxi-

mal ideal

mp = {h ∈ Op(V ) : h(p) = 0} .
Compare with Exercise 4.13.7.

The similarities to the affine case that we have seen thus far are

not merely coincidental. The affine charts {Ui} of Pn give a covering

of a variety V ⊆ Pn by open sets as we proved in Section 5.1. That is,

if V ⊂ Pn is an algebraic set, then each Vi = Ui ∩ V is open in V and
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V =
⋃
Vi. Furthermore, since V is closed in Pn, Vi is closed in Ui.

Hence each Vi will be an algebraic set in the affine space Ui
∼= An,

and we can generally reduce local problems on V to problems on one

of the Vi, which means that we can use our tools from Chapter 4.

Exercise 5.4.10. Let V be an algebraic set in Pn.

(1) Show thatKV
∼= KVi

for each i = 0, 1, . . . , n. [Hint: Consult

Section 3.4.]

(2) Suppose that p ∈ V belongs to Vj . Show that Op(V ) ∼=
Op(Vj).

This generalizes our result from Section 3.4, where we showed the

equivalence of the function fields of a projective curve and an affine

piece of that curve.

5.4.2. Tangent Spaces and Dimension. As in Chapter 4, we will

define the tangent space to a projective variety V at a point p ∈ V

and use these tangent spaces to define the dimension of V . This again

demonstrates the geometric insight provided by studying functions on

a space.

Recall that a derivation is a map L : R → S from a k-algebra R

to a k-algebra S with the following properties:

(i) L is k-linear, i.e., L(af + bg) = aL(f)+ bL(g) for all a, b ∈ k

and f, g ∈ R,

(ii) L obeys the Leibniz rule, L(fg) = gL(f) + fL(g) for all

f, g ∈ R.

Let V be a projective variety and let p ∈ V be one of its points.

Then the local ring Op(V ) =

{
f

g
∈ KV : g(p) �= 0

}
is a k-algebra

that captures the behavior of functions on V near p. As in Section

4.14, we define the tangent space of V at p in terms of derivations on

the local ring Op(V ).

Definition 5.4.3. The tangent space of the projective variety V at

a point p is the vector space

TpV = {L : Op(V ) → k : L is a derivation} .
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By Exercise 5.4.10, if V ⊂ Pn is a projective variety then Op(V ) ∼=
Op(Vi) for any affine piece Vi = Ui∩V of V containing p, where the Ui

are the affine charts of Pn. Therefore, the tangent space TpV is equal

to TpVi = {derivations L : Op(Vi) → k}, the tangent space to Vi at p.

Moreover, since V is closed in Pn, Vi = V ∩ Ui is closed in Ui
∼= An;

thus it is an affine variety. Hence the computation of tangent spaces

for projective varieties can always be done by dehomogenizing to an

affine chart and using our various methods from Section 4.14. We do

this explicitly in some cases.

Exercise 5.4.11. In P2(C), let C be the curve given by the homo-

geneous polynomial F (x0, x1, x2) = x1x2 − x2
0 = 0.

(1) Verify that p = (2 : 4 : 1) is on C.

(2) Let C0 = C ∩ U0 and compute the tangent line TpC0.

(3) Let C2 = C ∩ U2 and compute the tangent line TpC2.

You may think that TpC0 and TpC2 are not the same. This is

because we dehomogenized to different affine charts. However, we

will see that they are the same when we rehomogenize to projective

lines in P2.

Exercise 5.4.12. Consider the curve C = V(x1x2−x2
0) ⊂ P2(C) and

the point p = (2 : 4 : 1) ∈ C from the previous exercise.

(1) Homogenize the equations for TpC0 and TpC2 and show that

they define the same projective line in P2(C).

(2) Show that the projective line from Part (1) is given by

x0
∂F

∂x0
(p) + x1

∂F

∂x1
(p) + x2

∂F

∂x2
(p) = 0.

Exercise 5.4.13. Consider the surface V = V(x0x1 − x2x3) in P3.

(1) Verify that p = (1 : 1 : 1 : 1) is on V .

(2) Dehomogenize to the affine chart U0 to compute the tangent

plane TpV0.

(3) Homogenize TpV0 to a projective plane in P3 and compare

this to the zero set of

x0
∂F

∂x0
(p) + x1

∂F

∂x1
(p) + x2

∂F

∂x2
(p) + x3

∂F

∂x3
(p) = 0.
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Exercise 5.4.14. Consider the algebraic surface V = V(x3
0−x1x2x3)

in P3.

(1) Verify that p = (1 : 1 : 1 : 1) is on V .

(2) Dehomogenize to the affine chart U0 to compute the tangent

plane TpV0.

(3) Dehomogenize to the affine chart U3 to compute the tangent

plane TpV3.

(4) Homogenize both TpV0 and TpV3 to show they give the same

projective plane in P3. Compare this to the zero set of

x0
∂F

∂x0
(p) + x1

∂F

∂x1
(p) + x2

∂F

∂x2
(p) + x3

∂F

∂x3
(p) = 0.

Since TpV is the same as the tangent space TpVi, where Vi =

V ∩Ui is an affine variety containing p, it follows that TpV is a vector

space over k from Exercise 4.14.6. Using this result, we can define

the dimension of V as follows.

Definition 5.4.4. Let V ⊆ Pn be a projective variety. Then the

dimension of V is the minimum dimension of TpV over all points

p ∈ V , where the dimension of TpV refers to its dimension as a vector

space.

Exercise 5.4.15. Show that the dimension of Pn is n.

5.5. Rational and Birational Maps

In this section, we explore rational maps between projective varieties.

5.5.1. Rational Maps. Elements of the function field KV are de-

fined on open subsets of the variety and define functions from these

open subsets to the base field k. We now extend this idea to create

maps from V to projective space.

Definition 5.5.1. Let V be a projective variety. A rational map

from V to Pm is a function h : V ��� Pm given by

h(p) = (h0(p) : h1(p) : · · · : hm(p)),

where h0, h1, . . . , hm ∈ KV and at least one of the hi(p) is nonzero.
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As in the case of rational functions in KV , a rational map may

be defined only on an open subset of V . Specifically, the domain of

h = (h0 : h1 : · · · : hm) consists of only those points p ∈ V where each

hi is defined and at least one of the hi(p) is nonzero.

Exercise 5.5.1. Prove that the above definition gives a well-defined

function from an open subset of V to Pm.

Exercise 5.5.2. Let h : P1 ��� P2 be defined by

h((x : y)) =

(
x2

y2
:
x

y
: 1

)
.

(1) Determine the domain U of h.

(2) Show that the function a((x : y)) = (x2 : xy : y2) agrees

with h on U and is defined on all of P1.

Exercise 5.5.3. Let V = V(〈x2
0 + x2

1 − x2
2〉) in P2, and let h0 =

x0

x2
,

h1 =
x1

x2
.

(1) Determine the domain U of the rational map h : V ��� P1

defined by h(p) = (h0(p) : h1(p)).

(2) Show that the function (x0 : x1 : x2) �→ (x0 : x1) agrees

with h on U .

We can generalize the idea of the previous two exercises to see

that rational maps may be defined using homogeneous polynomials

rather than ratios.

Exercise 5.5.4. Let h be a rational map h : V ��� Pm, so h is

defined as

h(p) = (h0(p) : h1(p) : . . . : hm(p)),

where hi =
fi
gi

with fi, gi both homogeneous polynomials of degree

di, for 0 ≤ i ≤ m.

(1) Show that

h(p) = (g(p)h0(p) : g(p)h1(p) : · · · : g(p)hm(p))

for any homogeneous polynomial g with g(p) �= 0.
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(2) Prove that any rational map h : V ��� Pm can be written

as

h(p) = (a0(p) : a1(p) : · · · : am(p)),

where a0, a1, . . . , am are homogeneous polynomials of the

same degree.

In some cases a rational map h will be defined on all of V rather

than an open subset.

Definition 5.5.2. A rational map h : V ��� Pm is called regular at a

point p ∈ V if there is an open neighborhood U of p on which h can be

represented by rational functions
f0
g0

,
f1
g1

, . . . ,
fm
gm

such that gi(q) �= 0

for each i and all q ∈ U and at least one fi(p) �= 0. A rational map

that is regular at all points p ∈ V is called a morphism. When this is

the case, we write h : V → Pm with a solid arrow.

Exercise 5.5.5. Let h : P2 ��� P2 be defined by (x0x1 : x0x2 : x1x2).

(1) Find all points p where h is regular.

(2) Describe the pre-images of the points (0 : 0 : 1), (0 : 1 : 0),

and (1 : 0 : 0).

Exercise 5.5.6. Let V = V(〈x0x3−x1x2〉) ⊂ P3 and let h : V ��� P1

be defined by h((x0 : x1 : x2 : x3)) = (x0 : x2). Prove that h is a

morphism and that its image is all of P1.

So far we have considered functions from a variety to projective

space, but we are often interested in functions to another projective

variety. We write

h : V ��� W

when h is a rational map whose image lies in the projective variety

W . Similarly, we write h : V → W when h is a morphism whose

image lies in W .

Exercise 5.5.7. Prove that the rational map h : P1 ��� P2 defined

by

h ((a0 : a1)) = (a0 : a1 : a1)

is a morphism whose image lies in the line V(x1 − x2) in P2.
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Thus, in the exercise above, h : P1 → V(x1 − x2) is a morphism

from the projective line to the projective variety V(x1 − x2) ⊂ P2.

As in the affine case, the product of two projective varieties is a

variety. In the next two exercises we will consider morphisms from

products of projective spaces into a larger projective space.

Exercise 5.5.8. Define the Segre embedding of the product P1 × P1

to be

ψ : P1 × P1 → P3

given by ψ((a0 : a1), (b0 : b1)) = (a0b0 : a0b1 : a1b0 : a1b1).

(1) Show that ψ is well-defined.

(2) Let Y be the image of ψ in P3. Show that Y is an algebraic

set.

Exercise 5.5.9. We now consider the product of the projective spaces

Pk and P�. Define the Segre embedding ψ : Pk × P� → P(k+1)(�+1)−1

by

ψ((a0 : · · · : ak), (b0 : · · · : b�))
= (a0b0 : a0b1 : · · · : a0b� : a1b0 : a1b1 : · · · : akb�).

(1) Show that ψ is well-defined from Pk × P� to P(k+1)(�+1)−1.

(2) Let Y be the image of ψ in P(k+1)(�+1)−1. Show that Y is

an algebraic set.

5.5.2. Birational Maps. We next consider rational maps that have

a rational inverse. These maps may be defined only on open subsets,

but we shall see that this is sufficient to provide an important notion

of equivalence between varieties.

Definition 5.5.3. Let ϕ : V ��� W be a rational map between

projective varieties V and W such that there is a rational map ψ :

W ��� V with the property ψ◦ϕ(p) = p for all points p in a non-empty

open subset of V and ϕ ◦ ψ(q) = q for all points q in a non-empty

open subset of W . We say that ϕ is a birational map with rational

inverse ψ, and the varieties V and W are birational .

In Chapter 4, we worried about rational maps that were domi-

nant. Because we are explicitly working with non-empty open subsets,

these maps are dominant.
                

                                                                                                               



294 5. Projective Varieties

Exercise 5.5.10. Let V = V(〈x0〉) ⊂ P2 and let ϕ : V ��� P1 be

defined by

ϕ((x0 : x1 : x2)) = (x1 : x2).

Prove that ϕ is a birational map.

Exercise 5.5.11. Let V = V(〈x0 + x1 + x2 + x3〉) ⊂ P3. Show that

V and P2 are birational.

Exercise 5.5.12. Define a rational map ϕ : P1 → P2 by

ϕ((x0 : x1)) = (x2
0 : x0x1 : x2

1).

(1) Show that the image of ϕ is a plane conic.

(2) Find the rational inverse of ϕ.

Exercise 5.5.13. Define a rational map ϕ : P1 → P3 by

ϕ((x0 : x1)) = (x3
0 : x2

0x1 : x0x
2
1 : x3

1).

(1) Find the image V of ϕ. (This image is called a twisted cubic

curve.)

(2) Find the rational inverse from V to P1.

We now generalize the previous two exercises to construct mor-

phisms from P1 to various projective spaces. The next two exercises

follow Hartshorne [Har77], Exercise I.2.12.

Exercise 5.5.14. The d-uple embedding of P1:

(1) Fix a degree d > 0. How many monomials in the variables

x0 and x1 of degree d exist? Call this number N and list

the monomials in some order, m1, . . . ,mN .

(2) Show that (x0 : x1) �→ (m1 : · · · : mN ) is a well-defined mor-

phism from P1 to PN−1. This is called the d-uple embedding

of P1.

(3) Let Y be the image of the 4-uple embedding of P1. Show

that Y is an algebraic set.

Exercise 5.5.15. We generalize further to d-uple embeddings from

Pn.
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(1) Fix a degree d > 0. How many monomials in the variables

x0, x1, . . . , xn of degree d exist? Call this number N and list

the monomials in some order, m1, . . . ,mN .

(2) Show that (x0 : x1 : · · · : xn) �→ (m1 : · · · : mN ) is a

well-defined morphism from Pn to PN−1. This is called the

d-uple embedding of Pn.

(3) Let Y be the image of the 2-uple embedding of P2 in P5. This

is called the Veronese surface. Show that Y is an algebraic

set in P5.

5.5.3. Function Fields of Birational Varieties. We next state

the correspondence between birational varieties and isomorphic func-

tion fields. As before, the projective case is similar to the affine case.

The goal of this subsection is to prove:

Theorem 5.5.16. Projective varieties V and W are birational if and

only if their function fields KV and KW are isomorphic.

Exercise 5.5.17. Let V and W be projective varieties and ϕ : V ���
W a rational map. Prove that ϕ induces a homomorphism between

the function fields, ϕ∗ : KW → KV , defined by ϕ∗(h) = h ◦ ϕ.

Exercise 5.5.18. Let V ⊂ Pn and W ⊂ Pm be projective varieties

and let α : KW → KV be a field homomorphism. Show that there

exists a unique rational map ϕ : V ��� W whose image is dense in W

such that ϕ∗ = α.

Exercise 5.5.19. Prove Theorem 5.5.16.

We now look at some examples of this correspondence.

Exercise 5.5.20. Let ϕ : P1 → C be the rational map ϕ((x0 :

x1)) = (x2
0 : x0x1 : x2

1) from Exercise 5.5.12, where C is the plane

conic C = V(xz − y2).

(1) Explicitly write out the map ϕ∗ : KC → KP1 .

(2) Let ψ be the rational inverse to ϕ. Explicitly write out the

map ψ∗ : KP1 → KC .

(3) Verify that ϕ∗ ◦ψ∗ is the identity on KP1 and ψ∗ ◦ϕ∗ is the

identity on KC .
                

                                                                                                               



296 5. Projective Varieties

Exercise 5.5.21. Let V = V(y0y3 − y1y2, y0y2 − y21 , y
2
2 − y1y3) ⊂ P3

be the image of the birational map ϕ : P1 → V , ϕ((x0 : x1)) = (x3
0 :

x2
0x1 : x0x

2
1 : x3

1), the twisted cubic curve from Exercise 5.5.13. Find

the map on the function fields KV → KP1 induced by ϕ.

5.6. Proj(R)

Given a commutative graded ring R, we define Proj(R), the projec-

tive analogue of Spec(R) from Chapter 4.

We next define the projective counterpart of the prime spectrum

Spec(R). The Proj construction is an important initial step in the

study of projective schemes associated to graded rings. We will state

only the definition and look at several examples of how this construc-

tion relates to projective varieties.

Let R be a graded ring, which for our purposes will be mainly

k[x0, . . . , xn] or a quotient of this polynomial ring. As before with pro-

jective varieties, we are interested in homogeneous ideals apart from

the irrelevant ideal. (Recall that the irrelevant ideal of k[x0, . . . , xn]

is 〈x0, x1, . . . , xn〉; for a general graded ring R we call the ideal gen-

erated by all elements of positive degree irrelevant.)

Define Proj(R) to be the set of all homogeneous prime ideals in

R that do not contain the irrelevant ideal. This plays the role for

projective varieties that Spec plays for affine varieties, providing a

dictionary between graded rings with their homogeneous ideals and

projective varieties with their algebraic sets.

The set Proj(R) is given the Zariski topology as follows. For any

homogeneous ideal H in R, define

Z(H) = {I ∈ Proj(R) : H ⊆ I} ,

the set of homogeneous prime ideals containing H (again excluding

the irrelevant ideal). As in the construction of the Zariski topology

on Spec(R), we say that the sets Z(H) are closed in Proj(R). Recall

that open sets are defined to be complements of closed sets, thus of

the form Proj(R)−Z(H) for some homogeneous ideal H. In the next

exercise we show that this defines a topology on Proj(R).
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Exercise 5.6.1.

(1) Show that the empty set and Proj(R) are open.

(2) Prove that the arbitrary union of open sets of Proj(R) is

also open.

(3) Prove that the intersection of a finite number of open sets

is also open.

Exercise 5.6.2. Let R = C[x]. Show that Proj(R) is a point.

Exercise 5.6.3. In this exercise we show how to obtain the projective

line P1 as Proj(R) for the ring R = C[x0, x1].

(1) Let I be a homogeneous prime ideal in R such that I does

not contain the irrelevant ideal 〈x0, x1〉. Prove that either

I = {0} or I is generated by one linear polynomial.

(2) Show how the ideal 〈x0〉 corresponds to the point (0 : 1) ∈
P1. Prove that this ideal is maximal among those in Proj(R).

(3) Find the prime ideal I that corresponds to the point (1 : 2)

and prove that the set {I} is closed in Proj(R).

(4) Find the prime ideal I that corresponds to the point (a : b)

and prove that the set {I} is closed in Proj(R).

(5) Prove that every closed point of Proj(R) is a prime ideal in

R that is maximal among those in Proj(R).

(6) Show that closed points of Proj(R) correspond to points in

P1.

Exercise 5.6.4. In this exercise we show how to obtain the projective

plane P2 as Proj(R) for the ring R = C[x0, x1, x2].

(1) Show that the ideal I = 〈x0, x1〉 corresponds to the point

(0 : 0 : 1) ∈ P2. Prove that this ideal is maximal among

those in Proj(R), so that Z(I) = {I}.

(2) Show that Z(I) �= {I} for the ideal I = 〈x2
0 + x2

1 + x2
2〉, by

finding a point P ∈ Z(I) with P �= I.
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(3) Find the prime ideal I that corresponds to the point (1 : 2 :

3) and prove that the set {I} is closed in Proj(R).

(4) Find the prime ideal I that corresponds to the point (a : b :

c) and prove that the set {I} is closed in Proj(R).

(5) Prove that closed points of Proj(R) correspond to points in

P2.

Exercise 5.6.5. In this exercise we show how to obtain Pn as Proj(R)

for R = C[x0, x1, . . . , xn].

(1) Show that the ideal I = 〈x0, x1, . . . , xn−1〉 corresponds to

the point (0 : 0 : · · · : 0 : 1) ∈ Pn. Prove that this ideal is

maximal among those in Proj(R), so that Z(I) = {I}.
(2) Show that Z(I) �= {I} for the ideal I = 〈x2

0+x2
1+ · · ·+x2

n〉,
by finding a point P ∈ Z(I) with P �= I.

(3) Find the prime ideal I that corresponds to the point (a0 :

a1 : · · · : an), and prove that the set {I} is closed in Proj(R).

(4) Prove that every closed point of Proj(R) corresponds to a

point in Pn.

As an extension of the previous exercises we next use the Proj

construction to obtain a description of the parabola x0x1 − x2
2 in P2.

While this exercise provides some practice in using the definitions, it

is not a recommended method for studying a parabola!

Exercise 5.6.6. Let S = C[x0, x1, x2]/I, where I = 〈x0x1 − x2
2〉.

(1) As a chance to review some commutative algebra, prove that

the homogeneous ideals of S correspond to homogeneous

ideals of C[x0, x1, x2] containing I.

(2) Show that the ideal J = 〈x0, x2〉 ⊂ S corresponds to the

point (0 : 1 : 0) on the parabola. Prove that the class of this

ideal in Proj(S) is maximal among those not containing the

irrelevant ideal, so that Z(J) = {J}.
(3) Find the prime ideal J that corresponds to the point (−1 :

−1 : 1) on the parabola and prove that the set {J} is closed

in Proj(S).
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(4) For an arbitrary point (a : b : c) on the parabola, find the

corresponding prime ideal J in S and prove that the set {J}
is closed in Proj(S).

(5) Show that the points of the parabola correspond to the

closed points of Proj(S).

                

                                                                                                               



                

                                                                                                               



Chapter 6

The Next Steps:
Sheaves and Cohomology

Sheaves and cohomology are two of the key mathematical ideas

developed in the 20th-century. Their scope and power have funda-

mentally shaped current algebraic geometry and much more of mod-

ern mathematics. The goal of this chapter is to sketch the beginnings

of sheaf theory. We will recast our study of divisors into the lan-

guage of invertible sheaves. Finally, we will recast the statement of

Riemann-Roch into the language of Čech cohomology of invertible

sheaves. The underlying motivation for this chapter is to develop the

necessary tools to pass from local to global information.

6.1. Intuition and Motivation for Sheaves

The goal of this section is to motivate our eventual definition of

sheaves in terms of local versus global properties. As examples, we

will review curve intersections and Riemann-Roch, and introduce the

Mittag-Leffler problem of finding rational functions with prescribed

poles on a curve.

6.1.1. Local versus Global. We started this text with problems

about conics in the plane R2 but saw that we needed to pass to the

301
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complex projective plane P2. The rhetoric is that the conic in R2

(or in C2) is local, while the homogenized conic in P2 is global. This

language is used since we form the complex projective plane P2 by

patching (or gluing) together three copies of C2.

This patching or gluing is a powerful idea. With sheaves, we

will again perform gluing operations, but this time we will be gluing

functions rather than spaces together. The idea is almost the same.

We need to describe how the functions overlap and be sure that they

agree where they should. One of the roles sheaves will have to play

for us is to record how functions can be pieced together from local

parts to form larger wholes.

6.1.2. Local versus Global Curve Intersections. Bézout’s The-

orem is the quintessential global result. Here is why:

Exercise 6.1.1. Find a curve in C2 that intersects the curve C =

V(y − x2)

1

2

−1

−2

1 2−1−2

y = x2

in exactly one point, counting multiplicity.

This is an example of a local intersection, as it is happening in

C2.

Exercise 6.1.2. Homogenize the two curves from the previous prob-

lem. Show that the two curves now must intersect in exactly two

points.

The homogenized curve in P2 is the global version. The fact that

the total intersection number must be two is thought of as a global

result.
                

                                                                                                               



6.1. Intuition and Motivation for Sheaves 303

This is common. In C2, curves of degree d and e can intersect in

any number of points, from zero to de, while the corresponding curves

in P2 must intersect in exactly de points.

6.1.3. Local versus Global for Riemann-Roch. Let C be a

smooth curve of genus g in P2. For any divisor D on C, Riemann-

Roch (Theorem 3.6.47), states that

l(D)− l(K −D) = deg(D)− g + 1.

Here l(D) is the dimension of the vector space of all f ∈ KC such

that

div(f) +D ≥ 0.

Thus l(D) is a measure of how many rational functions there are on

the curve C with certain prescribed poles and zeros.

There is nothing to prevent us from trying to find affine analogues,

namely for any affine curve C to ask for the dimension of the vector

space of all f ∈ KC such that

div(f) +D ≥ 0,

for a divisor D on C. But these vector spaces are quite different from

the projective case, and no clean analogue to Riemann-Roch exists.

Exercise 6.1.3. Let C be the curve in C2 given by

y = x2.

Let D be the divisor −(0, 0). Show that there is an f ∈ KC such that

div(f) +D ≥ 0.

Exercise 6.1.4. Let C be the curve in P2 given by

yz = x2

(the homogenization of the affine curve from the previous problem).

Let D be the divisor −(0 : 0 : 1). Show that there is no f ∈ KC such

that

div(f) +D ≥ 0.
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6.1.4. Local versus Global for the Mittag-Leffler Problem.

(This subsection requires a bit of complex analysis. If you want,

whenever you see the term “meromorphic,” just think ratios of poly-

nomials.)

We will begin with a motivating example. Suppose f is a function

whose Laurent series centered at a is given by f(z) =

∞∑
k=−∞

ck(z − a)k.

The principal part of f at a is

−1∑
k=−∞

ck(z − a)k. The function f has a

pole of order m at a if the principal part of f at a is

−1∑
k=−m

ck(z − a)k,

with c−m �= 0, that is, if the principal part of f at a is a finite sum.

Let Ω be an open subset of C and let {aj} be a sequence of distinct
points in Ω such that {aj} has no limit point in Ω. For each integer

j ≥ 1 consider the rational function

Pj(z) =

mj∑
k=1

cj,k
(z − aj)k

.

The Mittag-Leffler Theorem states that there exists a meromorphic

function f on Ω, holomorphic outside of {aj}, whose principal part

at each aj is Pj(z) and which has no other poles in Ω. This theo-

rem allows meromorphic functions on C to be constructed with an

arbitrarily preassigned discrete set of poles.

Exercise 6.1.5. Find a meromorphic function f that has a pole of

order 2 at the origin such that the residue of the origin is 0.

Exercise 6.1.6. Let ω1, ω2 ∈ C such that ω1

ω2
�∈ R. Find a mero-

morphic function that has a pole at every point in the lattice Λ =

{mω1 + nω2 | m,n ∈ Z}.

Since we can construct functions with arbitrarily preassigned dis-

crete sets of poles on C, it is natural to ask the same question on

a complex curve (which we know can be viewed as a real surface).

Suppose X is a smooth complex projective curve (also called a Rie-

mann surface.) Given a discrete set of points {aj} and a principal

part Pj(z) at each aj , where z is a local affine coordinate, does there
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exist a rational function f onX, defined outside {aj}, whose principal
part at each aj is Pj(z)? Locally, there is such a function provided

by the Mittag-Leffler Theorem, but whether there exists such a func-

tion defined globally is more subtle. This requires passing from local

information to global information. The primary virtue of sheaves is

that they provide a mechanism to deal with problems passing from

local information to global information.

6.1.5. Local versus Global: the Sheaf of Regular Functions.

Prior to giving the definition of sheaves, we will look at a concrete

example of a sheaf that has the virtue of its ubiquitousness. In the

next section, the reader will prove that the object we encounter here

is indeed a sheaf.

Let X be an algebraic variety, either affine or projective. There is

always the sheaf OX of regular functions on X, defined by assigning

to each Zariski open set U in X its ring of regular functions

OX(U) = {regular function on U}

and letting rV,U , for U ⊂ V ⊂ X, be the restriction map. In fact, we

have already been using the notation OX throughout this book.

Exercise 6.1.7. Consider the projective line P1 with homogeneous

coordinates (x0 : x1). Let U0 = {(x0 : x1) : x0 �= 0}. Show that

the ring OX(U0) is isomorphic to the ring C[t]. Show that OX(P1) is

isomorphic to C, the constant functions.

The functions making up OX(U0) are viewed as local, while those

making up OX(P1) are global. This of course extends to any projec-

tive variety, as seen in the following example for curves.

Exercise 6.1.8. In P2, let

X = {(x0 : x1 : x2) : x
2
0 + 3x2

1 − x2
2 = 0},

and let U0 = {(x0 : x1 : x2) ∈ X : x0 �= 0}. Show that OX(U0)

is isomorphic to the ring C[s, t]/〈3s2 − t2 + 1〉 but that OX(X) is

isomorphic to C, the constant functions.
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6.2. The Definition of a Sheaf

We first define presheaves and then define sheaves.

Suppose X is a topological space. Since we are interested in both

the local and global structure of X, we wish to assign to each open

set U of X a collection of data that is somehow characteristic of U .

Since different kinds of algebraic structures can encode geometric in-

formation about a topological space, it is useful to introduce a concept

that encompasses different ways of assigning algebraic structures to

the space.

Definition 6.2.1. A presheaf F of rings of functions (or modules over

rings) on X consists of a ring of functions (resp. module, etc.) F(U)

for every open set U ⊂ X and the ring homomorphism given by the

restriction map (resp. module homomorphism, etc.) rV,U : F(V ) →
F(U) for any two nested open subsets U ⊂ V satisfying the following

two conditions:

(i) rU,U = idF(U)

(ii) For open subsets U ⊂ V ⊂ W one has rW,U = rV,U ◦ rW,V .

The elements of F(U) are called the sections of F over U and the

map rV,U is called the restriction map, and rV,U (s) is often written

s
∣∣
U
.

For almost all of our examples, each F(U) will consist of some

specified type of function defined on the open set U . In this type of

case, when U ⊂ V , if f is a function with domain V , then rV,U (f) is

simply the same function f , but now with domain restricted to the

smaller open set U . Then the first axiom can be interpreted as re-

quiring that the restriction of a function from a space to itself always

returns the same function. That is, a trivial restriction should not

change functions. The second axiom, in turn, says that the result of

a sequence of restrictions should be identical to the single restriction

from the initial to the final subspace. Again, in the context of restric-

tions of functions, this axiom is very natural. This also means that

for the following exercises, where you are asked to show that various

objects are presheaves, you just have to show that if f ∈ F(V ), then
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f with domain restricted to a smaller open set U is in F(U), or in

other words, that the restriction map rV,U really does map elements

of F(V ) to elements of F(U). (This also means that the answers will

not be that long.)

The building block for almost all sheaves in algebraic geometry is

the sheaf of regular functions OX on an algebraic variety X. We first

show that OX is at the least a presheaf.

Exercise 6.2.1. Suppose X is a variety, affine or projective. Show

that its sheaf of regular functions OX , as in Section 6.1.5, is a presheaf

as just defined.

Exercise 6.2.2. Suppose X is a topological space. For open U define

F(U) = {f : U → Z : f constant on connected components of U}
and let rV,U (f) be the restriction of f from V to U . Show that F is

a presheaf of rings.

Exercise 6.2.3. Suppose X is a topological space. Define

C(U) = {f : U → C : f is continuous}
and let rV,U (f) be the restriction of f from V to U . Show that C is

a presheaf of rings.

Exercise 6.2.4. Suppose X = C. Define

B(U) = {f : U → C : f is a bounded holomorphic function}
and let rV,U (f) be the restriction of f from V to U . Show that B is

a presheaf of rings.

Presheaves enable us to assign to each open set of a topological

space X an algebraic structure that describes the open set and how

it fits inside of X. However, presheaves are top-down constructions;

we can restrict information from larger to smaller sets. The problem

of globalizing local data is not within the scope of the definition of

a presheaf. That is, presheaves do not provide the means to deduce

global properties from the properties we find locally in the open sets

of X. The definition of a sheaf below is meant to resolve this, enabling

us to pass data from global to local settings but also to patch local

information together to establish global results when possible.
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Definition 6.2.2. A presheaf F of rings of functions (or modules over

rings) on X is called a sheaf of rings of functions (or modules over

rings) if, for every collection Ui of open subsets of X with U =
⋃
i

Ui,

the following two additional conditions are satisfied.

(iii) If s, t ∈ F(U) and rU,Ui
(s) = rU,Ui

(t) for all i, then s = t.

(iv) If si ∈ F(Ui) and if for Ui ∩ Uj �= ∅ we have

rUi,Ui∩Uj
(si) = rUj ,Ui∩Uj

(sj)

for all i, j, then there exists s ∈ F(U) such that rU,Ui
(s) = si.

In light of the interpretation of functions and their restrictions,

the new axioms for a sheaf are essential ingredients for inferring global

information from local data. Axiom (iii) requires that two functions

must be the same if they agree everywhere locally, i.e., if for every

subset W of U , s
∣∣
W

= t
∣∣
W
, then s = t. Were this not true, then it

would be impossible to construct a single global function on U from

the parts of it we have on each of the Ui. Hence, axiom (iii) has to do

with the uniqueness of global functions that we might construct from

local data. Axiom (iv), in turn, has to do with the existence of such

functions. Whenever we are given a collection of functions defined

on various parts of X, we can patch them together to form a unique

(due to axiom (iii)) function on X as long as this is feasible, i.e., two

constituent functions si and sj must agree wherever both are defined

in X.

For our above presheaves, the patching is clear. The only reason

that all of the above presheaves are not automatically sheaves is if

the patched together function on the open set U is not an element of

the corresponding presheaf.

Exercise 6.2.5. Let our presheaf F be a presheaf of functions, with

rV,U (f) being the restriction map f
∣∣U. Show that axiom (iii) is equiv-

alent to the following. If s ∈ F(U) such that rU,Ui
(s) = 0 for all i,

then s = 0.

Exercise 6.2.6. Show that the presheaf F from Exercise 6.2.2 is a

sheaf.
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Exercise 6.2.7. Show that the presheaf C from Exercise 6.2.3 is a

sheaf.

Exercise 6.2.8. Suppose X is a variety, affine or projective. Show

that its sheaf of regular functions, OX , is a sheaf. (This is the key

example for this section.)

Exercise 6.2.9. Show that the presheaf B from Exercise 6.2.4 is not

a sheaf.

As we found in the last exercise, not all presheaves are sheaves.

There is a construction, which we will describe now, that associates a

sheaf to any presheaf in a universal way. The key distinction between

a sheaf and a presheaf is the ability with a sheaf to assemble local

data together to construct global results. Thus we first need to focus

on the local data in a presheaf and force the construction of global

information from it to construct the associated sheaf. To be as local

as possible, we want to study the essense of a presheaf at a point.

As in the examples above, let us suppose that the elements of

a presheaf F on X are functions. That is, an element s ∈ F(U) is

a function on the open set U . Then the value s(x) alone will not

capture the essence of this function at x, for it is very likely that

several distinct functions may have the same value at x. Hence we

want to keep track of not only the value of s at x but also the values of

s near x. This can be done by keeping track of the pair (U, s), where

U is an open set containing x and s ∈ F(U). However, if V is any

other open set containing x, then U ∩V is one also and (U ∩V, s|U∩V )

is really the same function near x that (U, s) is. So these two “local

functions” at x should be identified with one another. In general, the

pairs (U, s) and (V, t) are equivalent whenever there is a third open

set W with W ⊂ U ∩ V , x ∈ W , and s|W = t|W in F(W ).

Exercise 6.2.10. Let F be a presheaf of functions on a space X. Let

x ∈ X and let U and V be open sets containing the point x. Suppose

s ∈ F(U) and t ∈ F(V ). Set

(U, s) ∼ (V, t)

whenever there is a third open set W with W ⊂ U ∩ V , x ∈ W , and

s|W = t|W in F(W ). Show that this is an equivalence relation.
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Definition 6.2.3. If F is any presheaf on a topological space X and

x is any point in X, the equivalence class of (U, s), where U is an

open set of X containing x and s ∈ F(U), is denoted by sx and is

called the germ of the section s at x.

Definition 6.2.4. Let X be a topological space and let F be a

presheaf on X. For a point x ∈ X, the stalk of F at x, denoted

Fx, consists of the germs sx of sections at x for all open sets U con-

taining x and all s ∈ F(U).

We can now explain how to extend any presheaf to an actual

sheaf.

Definition 6.2.5. Using the stalks of a presheaf F onX, we construct

the sheaf associated to F, denoted F+, as follows. For any open set

U , F+(U) consists of all functions s from U to the union
⋃

x∈U Fx of

the stalks of F over points of U such that

(1) for each x ∈ U , s(x) ∈ Fx

(2) for each x ∈ U , there is a neighborhood V of x, contained

in U , and an element ŝ ∈ F(V ), such that for all y ∈ V , the

germ ŝy of ŝ at y is equal to s(y).

This is an admittedly complicated definition. What we want is

for our candidate sheaf F+(U) to contain F(U) plus whatever extra

that is needed to make it a sheaf. The next problem is showing how

to interpret elements of F(U) as also being in the new F+(U).

Exercise 6.2.11. Let F be a presheaf on a topological space X. Let

s ∈ F(U). Interpret s as an element of F+(U).

Exercise 6.2.12. Let F be a presheaf on a topological space X.

Prove that F+ is a sheaf on X.

Exercise 6.2.13. Let F be a sheaf on a topological space X. Show

that this sheaf is the same as our newly constructed sheaf F+.

Exercise 6.2.14. For the presheaf B of Exercise 6.2.4, show that its

associated sheaf, B+, on X = C is the sheaf of holomorphic functions

on C. (The sheaf of holomorphic functions H on C is defined by

setting for all open U

H(U) = {f : U → C : f is a holomorphic function}.
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To work this problem you will need to know that two holomorphic

functions that agree on any open set in C agree everywhere the func-

tions are defined.)

6.3. The Sheaf of Rational Functions

The second most important sheaf in algebraic geometry is the sheaf

of rational functions KX , whose definition is the goal of this section.

Let X be an algebraic variety, either affine or projective. Then X

is equipped with its sheaf of regular functions, OX . There is another

basic sheaf for every algebraic variety X, namely the function field

sheaf KX , which plays the “sheaf-theoretic” role of the function field.

Morally we want to think of KX as the ratio of the functions in OX .

The actual definition, though, is mildly subtle, as we will see. It is

here, in fact, that we will need to use the difference between a presheaf

and a sheaf.

We start by defining a presheaf K′
X . For each open U in X, let

K′
X(U) be the function field of the ring OX(U), with the standard

restriction map for functions. (Here we are using the Zariski topology;

thus the various open U are complements of the zero loci for various

polynomials.) Thus K′
X(U) consists of all ratios

f

g
,

with f, g ∈ O(U) and g not the zero function. The goal of the next

series of exercises is to see why K′
X is only a presheaf and to motivate

why we actually want to look at its associated sheaf.

Exercise 6.3.1. Let X be an algebraic variety, either affine or pro-

jective. Verify that K′
X is a presheaf of fields of functions on X.

We now concentrate on the space P1, which is covered by the two

open sets U0 = {(x0 : x1) : x0 �= 0} and U1 = {(x0 : x1) : x1 �= 0}.
Then on U0 we let s = (x1/x0) be our affine coordinate, and on U1

we let t = (x0/x1) be our affine coordinate. On the overlap, U0 ∩U1,

we have s = (1/t).
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Exercise 6.3.2. Show that K′
P1(U0) is isomorphic to the field C(s)

and that K′
P1(U1) is isomorphic to the field C(t).

Exercise 6.3.3. Show that K′
P1(P1) is isomorphic to the field C.

Exercise 6.3.4. Using that (1/t) ∈ K′
P1(U1) and condition (iii) in

the definition of a sheaf, show that K′ cannot be a sheaf.

Definition 6.3.1. The function field sheaf KX for an algebraic va-

riety X is the sheaf associated to the presheaf K′
X

Exercise 6.3.5. Show that KP1(P1) is isomorphic to the field C(s).

6.4. Divisors

The goal of this problem set is to generalize the notion of divisor

from being the finite formal sum of points on a complex curve to

being the finite formal sum of codimension one subvarieties of an

algebraic variety.

In this section, we revisit a familiar tool, divisors, from Chapter

3. We will see how divisors are intimately related to the special class

of invertible sheaves in the next section and how this can be used to

give a new presentation of the Riemann-Roch Theorem at the end of

the chapter.

Recall from Chapter 3 that a divisor D on a curve C is a formal

finite linear combination of points on C with integer coefficients, D =

n1p1 + n2p2 + · · · + nkpk with n1, . . . , nk ∈ Z and p1, . . . , pk ∈ C.

One might think a divisor on a variety X would be a formal finite

sum of points as before. However, this turns out not to be the correct

generalization. Recall the purpose of a divisor on a curve was to

keep track of the zeros and poles of a single function. On a variety

X, a function’s zeros constitute an algebraic subvariety usually of

dimension one less than the dimension ofX. Thus, rather than adding

points, we should add subsets that look like the zero sets of single

functions on X. To be precise:

Definition 6.4.1. A codimension one subvariety of a variety X is

a proper irreducible algebraic subset Y ⊂ X such that there are no

other proper irreducible algebraic subsets Z satisfying Y � Z � X.
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Definition 6.4.2. LetX be an algebraic variety. A divisor D onX is

a finite formal sum over the integers Z of codimension one subvarieties

of X. The set of all divisors is denoted Div(X).

Let X be a curve in P2 and let p, q, r be points on X. Then an

example of a divisor is

D = 3p− 5q + r.

The coefficients 3,−5, 1 are just integers, while the points p, q, r are

the codimension one subvarieties of X. We need to use the term

“formal sum” since adding points makes no real sense.

An example of a divisor on P2, using the homogeneous coordinates

x0, x1, x2, would be

3(x2
0+x1x2 = 0)−7(x5

0+x3
1x

2
2 = 0) = 3V(x2

0+x1x2)−7V(x5
0+x3

1x
2
2).

The coefficients 3 and −7 are just integers, while the codimension

one subvarieties are the curves V(x2
0 + x1x2) and V(x5

0 + x3
1x

2
2).

As divisors are formal sums, we should be able to add them. Thus

if D1 = 3p − 5q + r and D2 = 8q + 4s − 4t are two divisors on the

curve X, define

D1 +D2 = 3p− 5q + r + 8q + 4s− 4t

= 3p+ (−5 + 8)q + r + 4s− 4t

= 3p+ 3q + r + 4s− 4t.

Exercise 6.4.1. Let X be an algebraic curve. Let D1 =
∑

p∈X npp

and D2 =
∑

p∈X mpp, where the np,mp ∈ Z, be two divisors on X.

If we define

D1 +D2 =
∑
p∈X

(np +mp)p,

show that Div(X) is an abelian group. (Note in the above sums for

the divisors D1 and D2, that even though the sums are over all points

p ∈ X, we are assuming that np = mp = 0 for all but a finite number

of points on X; this is what is meant in the definition of a divisor by

the phrase “finite formal sum.”)

Exercise 6.4.2. Let X be an algebraic variety. Let D1 =
∑

nV V

and D2 =
∑

mV V , where the nV ,mV ∈ Z, be two divisors on X.
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Here both sums are over all codimension one subvarieties of X. If we

define

D1 +D2 =
∑

(nV +mV )V,

show that Div(X) is an abelian group.

Definition 6.4.3. A divisor D =
∑

nV V is effective if, for all codi-

mension one subvarieties V of X, we have nV ≥ 0. In this case we

write D ≥ 0.

We now want to link divisors with both the geometry of the va-

riety X and functions defined on X. In particular, we want to as-

sociate to every element f ∈ OX a divisor, which we will denote by

div(f). This in turn will allow us to define, for every rational function

f/g ∈ KX (where f, g ∈ OX), the divisor

div

(
f

g

)
= div(f)− div(g).

Let X be a curve in P2. Let C = V(P (x0, x1, x2)) be another

curve in P2 that shares no components with X. Then define

D = X ∩ C =
∑

p∈X∩C

mpp,

where mp is the intersection multiplicity of the intersection point.

Since C shares no components with X, their intersection is a finite

set of points, so D is a divisor on X. Since C is defined as the zero

locus of the homogeneous polynomial P , then we can think of P as

an element of OX . We use the notation

div(P ) =
∑

p∈X∩C

mpp.

Exercise 6.4.3. Let X = V(x2 + y2 − z2) be a conic in P2. If

C1 = V(x− y) and C2 = V(y − z), show that the two corresponding

divisors are

D1 = X ∩ C1 =

(
1√
2
:

1√
2
: 1

)
+

(
− 1√

2
: − 1√

2
: 1

)
D2 = X ∩ C2 = 2(0 : 1 : 1).

Give a geometric interpretation for the coefficients in D1 and D2.
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We now want to define on Pn divisors associated to homogeneous

polynomials.

Definition 6.4.4. Let x0, . . . , xn be homogeneous coordinates for

Pn. Given a homogeneous polynomial f(x0, . . . , xn), factor f into its

irreducible factors:

f(x0, . . . , xn) =
∏

fi(x0, . . . , xn)
ni .

Then the divisor on Pn associated to f is

div(f) =
∑

niV(fi).

Exercise 6.4.4. Let

f(x0, x1, x2) = x3
0 − x2

0x1 + 5x2
0x2 − x0x

2
1 − 2x0x1x2

+ 8x0x
2
2 + x3

1 − 3x2
1x2 + 4x3

2.

Show that

div(f) = V(x0 + x1 + x2) + 2V(x0 − x1 + 2x2).

Finally, we now want to define the divisor div(f) on a variety X

for any f ∈ OX . Our algebraic variety X is in either Cn or Pn. Then

we can think of f as a polynomial in n-variables if X ⊂ Cn, or as

a homogeneous polynomial in (n + 1)-variables if X ⊂ Pn. In either

case, we will look at the irreducible components of the intersection:

X ∩ V(f) = V1 ∪ · · · ∪ Vk.

Though we have not yet defined the numbers mVi
, we will want our

eventual divisor to be

div(f) =
∑

mVi
Vi.

Morally we want mVi
to capture the order of vanishing of f along the

component Vi. We will sketch the argument in the next paragraphs

and problems.

Let V be an irreducible codimension one subvariety of an alge-

braic variety X. This means for any p ∈ V , there is an open affine

set U containing p so that there is an irreducible function g ∈ OX(U)

such that

V ∩ U = V(g) ∩ U.
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(For a few more of the technical details for why we have to bring

in this seemingly extraneous open set, see Chapter 1, Section 1 of

[GH94].) Now let f ∈ OX . Define

mV (f) = max{k ∈ Z : gk divides f}.

Definition 6.4.5. Let X be an algebraic variety and f ∈ OX . Then

the divisor associated to f is

div(f) =
∑

mV (f) · V,

where the sum is over all codimension one irreducible subvarieties V

of X.

We want to see that on P1, this new definition agrees with our

earlier one.

Exercise 6.4.5. Let

f(x0, x1) = (x0 − x1)
2(x0 − 2x1).

Using the above definition, show that

div(f) = 2(1 : 1) + (2 : 1).

In the next few sections, we will see that the following definition

for linear equivalence for divisors will be important:

Definition 6.4.6. Let X be a projective variety. Divisors D1 and

D2 are said to be linearly equivalent if there are two homogeneous

polynomials f and g of the same degree such that

D1 + div

(
f

g

)
= D2.

We denote this by

D1 ∼ D2.

Exercise 6.4.6. On P1, show that D1 = (1 : 1) is linearly equivalent

to D2 = (1 : 0).

Exercise 6.4.7. Let P2 have homogeneous coordinates x0, x1, x2.

Show that the divisors D1 = V(x2
0+3x2

2) and D2 = V(x2
0) are linearly

equivalent.
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Exercise 6.4.8. Let f(x0, . . . , xn) be any homogeneous polynomial

of degree d. Show that the divisors D1 = V(f) and D2 = V(xd
0) are

linearly equivalent.

Exercise 6.4.9. Let f(x0, . . . , xn) and g(x0, . . . , xn) be any two ho-

mogeneous polynomials of degree d. Show that the divisors D1 =

V(f) and D2 = V(g) are linearly equivalent.

Exercise 6.4.10. Show that linear equivalence is indeed an equiva-

lence relation on the group Div(X).

Definition 6.4.7. The group Div(X) divided out by the equivalence

relation of linear equivalence is called the Picard group, or the divisor

class group, of X.

Exercise 6.4.11. Let D1 and D2 be two divisors on P1. Show that

D1 ∼ D2 if and only if they have the same degree.

Exercise 6.4.12. Let D1 and D2 be two divisors on Pn. Show that

D1 ∼ D2 if and only if they have the same degree.

Exercise 6.4.13. Show that the map

deg : Div(Pn) → Z

given by

deg
(∑

nV V
)
=
∑

nV

is a group homomorphism, treating Z as a group under addition.

Exercise 6.4.14. Show that the Picard group for Pn is isomorphic

to the group Z under addition.

6.5. Invertible Sheaves and Divisors

In this section we link divisors with invertible sheaves, a special type

of sheaf.

Definition 6.5.1. On an algebraic variety X, an invertible sheaf L

is any sheaf so that there is an open cover {Ui} of X such that L(Ui)

is a rank-one OX(Ui)-module.1

1Modules are similar to vector spaces, which are always defined over a field of
scalars such as C. The scalars for modules, however, may be taken from an arbitrary
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Thus for each open set Ui, we have L(Ui) is isomorphic to OX(Ui)

as an OX(Ui)-module.

We will first see how to intuitively associate to a divisor D an

invertible sheaf, which we will denote by LD. Let D =
∑

nV V be

a divisor, where the V are codimension one subvarieties of X. We

know that nV = 0 for all but a finite number of V . We can cover X

by open affine sets Ui so that for each i there is a rational function

fi ∈ K(Ui) such that

div(fi) = D ∩ Ui.

In other words, the zeros and poles of fi agree with the coefficients

nV of D.

Exercise 6.5.1. For the conic X = V(x2 + y2 − z2) in P2, consider

the divisor

D =

(
1√
2
:

1√
2
: 1

)
+

(
− 1√

2
: − 1√

2
: 1

)
− (1 : i : 0) .

On the open set U = {(x : y : z) | z �= 0}, show that if

f(x, y, z) =
x

z
− y

z
,

then

div(f) ∩ U = D ∩ U.

Thus each divisor D can be thought of as not only a finite for-

mal sum of codimension one subvarieties but also as some collec-

tion (Ui, fi), where the {Ui} are an open affine cover of X and each

fi ∈ KX(Ui). It works out that these two methods are exactly equiv-

alent when X is a smooth variety but are not necessarily the same

when X is singular (though the proof of this fact is non-trivial). From

this point forward, we will restrict our attention to smooth varieties.

Further, this definition of D depends on the choice of open cover,

which is hardly unique. The key is that if we write D as some (Ui, fi)

or as some (Vj , gj), for some other open cover {Vj} with gj ∈ KX(Vj),

then on the overlaps Ui ∩ Vj the fi
gj

have no zeros or poles.

ring, which is the key difference in the definition. The notion of dimension translates
into that of rank for modules. A more detailed account of modules and rank can be
found in [DF03] or [Her75].

                

                                                                                                               



6.5. Invertible Sheaves and Divisors 319

Thus we can write a divisor D as

D = (Ui, fi).

Definition 6.5.2. Given D = (Ui, fi), define the invertible sheaf LD

by setting

LD(Ui) =

{
g

fi
: g ∈ OX(Ui)

}
.

Exercise 6.5.2. Suppose that

g

fi
,
h

fi
∈ LD(Ui).

Show that
g

fi
+

h

fi
∈ LD(Ui).

For any α ∈ OX(Ui), show that
αg

fi
∈ LD(Ui).

(This problem is explicitly showing that each LD(Ui) is an OX(Ui)-

module; it is not hard.)

For a divisor D = (Ui, fi), let

gij =
fi
fj

.

We know that on the intersection Ui ∩ Uj , the functions gij have no

zeros or poles.

Exercise 6.5.3. Show that on Ui ∩ Uj ∩ Uk, we have

gijgjkgki = 1.

(For those who know about vector bundles, this means that the in-

vertible sheaf LD—or for that matter the divisor D—can be thought

of as a complex line bundle.)

There is another equivalent way of associating an invertible sheaf

to a divisor D. Again let D =
∑

nV V , where each V is a codimension

one subvariety of X. Let U be an open subset of X. Then we define

D
∣∣
U
=
∑

nV (V ∩ U).

For any f ∈ KX(U), define div(f)
∣∣
U

to be the divisor of zeros and

poles of f on the open set U .
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Definition 6.5.3. Define a sheaf LD by setting, for each open set U

of X,

LD(U) = {f ∈ KX(U) | (div(f) +D) ∩ U ≥ 0}.

More colloquially, LD(U) consists of those rational functions on

U whose poles are no worse than −D.

Exercise 6.5.4. Let D = (Ui, fi) be a divisor on X. Let LD be

the invertible sheaf associated to D as constructed in Definition 6.5.2

and let L′
D be the invertible sheaf associated to D as described in

Definition 6.5.3. Show that for each open set U in X, LD(U) =

L′
D(U). Thus the definitions give two ways to associate the same

invertible sheaf to D.

Exercise 6.5.5. For P1 with homogeneous coordinates (x : y), let

D = (1 : 0). Let U1 = {(x : y) : x �= 0} and U2 = {(x : y) : y �= 0}.
Show that LD(U1) is isomorphic to the set of all rational functions

of the form f(t)
t , where f(t) ∈ C[t]. (Here let t = y/x.) By letting

s = x/y, show that LD(U2) is isomorphic to C[s]. Finally show that

LD(P1) is not empty.

Exercise 6.5.6. For P1 with homogeneous coordinates (x : y), let

D = −(1 : 0). Let U1 = {(x : y) : x �= 0} and U2 = {(x : y) : y �= 0}.
Show that LD(U1) is isomorphic to the ideal {f(t) ∈ C[t] : f(0) =

0}. (Here let t = y/x.) By letting s = x/y, show that LD(U2) is

isomorphic to C[s]. Finally show that LD(P1) is empty.

6.6. Basic Homology Theory

Homology theory is presented as a means for measuring the non-

exactness of sequences of rings or modules.

Homology and cohomology theories permeate a large part of mod-

ern mathematics. There is a serious start-up cost to understanding

this machinery, but it is well worth the effort.

Suppose we have a collection of objects {Mi}, such as a bunch

of rings of functions, modules, abelian groups, or vector spaces, for
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i = 0, 1, 2, . . .. Suppose that we have maps

di : Mi → Mi−1

where each di is an appropriate map, meaning that if the Mi are

rings, then the di are ring homomorphisms and if the Mi are vector

spaces, then the di are linear transformations. We write these out as

a sequence

· · · → Mi+1 → Mi → Mi−1 → · · · ,
with the map from Mi → Mi−1 given by di. We require for all i that

Image(di) ⊂ Kernel(di−1).

In other words,

di−1 ◦ di = 0 for all i.

We call this a complex. Frequently the index i is left off, which leads

di−1 ◦ di = 0 to be written as the requirement

d ◦ d = 0.

Definition 6.6.1. A sequence

· · · → Mi+1 → Mi → Mi−1 → · · ·

is exact if for all i we have

Image(di) = Kernel(di−1).

Exercise 6.6.1. Let

0 → A3 → A2 → A1 → 0

be an exact sequence of either rings or vector spaces, with 0 denoting

either the zero ring or the vector space of one point. Show that the

map A3 → A2 must be one-to-one and the map A2 → A1 must be

onto.

Exercise 6.6.2. Find group homomorphisms so that the correspond-

ing sequence

0 → Z → Z → Z/2Z → 0

is exact.

In the above, Z/2Z denotes the “quotienting” of the integers by

the even integers, and hence is the group of two elements {0, 1}.
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Definition 6.6.2. Let

· · · → Mi+1 → Mi → Mi−1 → · · ·

be a sequence of abelian groups or vector spaces. Then the i-th

homology is

Hi = Kernel(di−1)/Image(di).

Exercise 6.6.3. Show that a sequence of abelian groups or vector

spaces is exact if and only if for all i we have Hi = 0. (This is just an

exercise in applying definitions; there really is not much to show.)

Thus homology is a way of measuring the exactness of a complex.

6.7. Čech Cohomology

The bare bones of Čech cohomology is given. This allows us to study

the Čech cohomology for divisors on algebraic varieties, which in turn

allows us to state Riemann-Roch for curves in the language of Čech

cohomology. This approach is what can be generalized to other types

of algebraic varieties.

In the above section we discussed homology theory. To some

extent, there is a dual theory called cohomology. It too is a measure

of the non-exactness of a complex. We will not be concerned with the

relation between homologies and cohomologies, but will instead just

explicitly define the Čech cohomology of an invertible sheaf L on an

algebraic variety X.2

Start with a finite open affine cover U = {Ui} of X, for i =

1, . . . , N . For any collection 0 ≤ i0 < i1 < · · · < ip ≤ N , let

Ui0i1···ip = Ui0 ∩ Ui1 ∩ · · · ∩ Uip .

We know that L(Ui0i1···ip) is isomorphic to a rank-one OX(Ui0i1···ip)-

module. Then for each p, define

Cp(U,L) =
∏

(0≤i0<i1<···<ip≤N)

L(Ui0i1···ip).

2This whole section is heavily influenced by Chapter III.4 in Hartshorne [Har77].
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We want to define a map

d : Cp(U,L) → Cp+1(U,L)

such that

d ◦ d : Cp(U,L) → Cp+2(U,L)

is the zero map, which allows us to form a complex whose exactness

we can measure. Following notation in Hartshorne [Har77], let α ∈
Cp(U,L). This means that α = (αi0i1···ip). To define d(α) we need

to specify, for each (p+ 2)-tuple (i0, i1, · · · , ip+1) with 0 ≤ i0 < i1 <

· · · < ip+1 ≤ N , what the element d(α)i0i1···ip+1
should be. We set

d(α)i0i1···ip+1
=

p+1∑
k=0

(−1)kαi0i1···̂ik···ip+1
,

where the îk means that we delete the ik term. Here αi0i1···̂ik···ip+1

stands for the restriction map

rUi0i1···̂ik···ip+1
,Ui0i1···ik···ip+1

,

which exists since L is a sheaf.

In order to make this a bit more concrete, suppose that U consists

of just three open sets U0, U1, U2.

Exercise 6.7.1. Using

C0(U,L) = L(U0)× L(U1)× L(U2)

C1(U,L) = L(U01)× L(U02)× L(U12)

C2(U,L) = L(U012),

show that

d ◦ d : C0(U,L) → C2(U,L)

is the zero map.

Exercise 6.7.2. Let α = (α0, α1, α2) ∈ C0(U,L) be an element such

that d(α) = 0. Show that there must be a single element of L(X)

that restricts to α0 on the open set U0, to α1 on the open set U1 and

to α2 on the open set U2. This is why we say that something in the

kernel of d acting on C0(U,L) defines a global section of the sheaf.
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We return to the more general situation. Now that we have a

definition for the map d, we have a complex

0 → C0(U,L) → · · · → CN (U,L) → 0,

where the first map 0 → C0(U,L) just sends 0 to the zero element of

C0(U,L) and the last map CN (U,L) → 0 sends everything in CN (U,L)

to zero.

Definition 6.7.1. The p-th Čech cohomology group for the sheaf L

with respect to the open cover U is

Hp(U,L)

=
(
ker(d : Cp(U,L) → Cp+1(U,L))/Im(d : Cp−1(U,L) → Cp(U,L))

)
.

Thus Čech cohomology is a measure of the failure of exactness

for the complex 0 → C0(U,L) → · · · → CN (U,L) → 0. This is

highly dependent on the choice of open cover U. If this choice really

mattered, then Čech cohomology would not be that useful. Luckily,

if each of the open sets Ui ∈ U is affine, we will always find that the

Čech cohomology groups are isomorphic. (See Hartshorne [Har77],

III.4.5, though if you go to this source directly from this section, it

will be rough going, or see Griffiths and Harris [GH94], Chapter 0,

Section 3, which is still not a walk in the park.)

One final theoretical point: It is the case that if D1 and D2

are linearly equivalent divisors on X, then the corresponding Čech

cohomology groups must be isomorphic. This is usually written as

Theorem 6.7.3. If D1 ∼ D2 for divisors on X, then for all d, we

have

Hd(X,LD1
) = Hd(X,LD2

).

We do not prove this but will have some exercises showing this

property. Recall in an earlier exercise that divisors up to linear equiv-

alence on projective space Pr are classified by degree. It is common

to replace LD, for a divisor D of degree n on Pr, by the notation

O(n).

Thus people frequently consider the Čech cohomology groups

Hd(Pr,O(n)),
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which equal Hd(Pr,LD) for any divisor D of degree n.

We spend some time on P1. Let (x0 : x1) be homogeneous co-

ordinates on P1. There is a natural open cover U = {U0, U1} by

setting

U0 = {(x0 : x1) : x0 �= 0}
U1 = {(x0 : x1) : x1 �= 0}.

On U0, let s = x1

x0
and on U1, let t =

x0

x1
. On the overlap U0 ∩ U1 we

have

s =
1

t
.

Now consider the divisor D = 2(1 : 0).

Exercise 6.7.4. Show that D ∩ U0 is described by V(s2) and that

D ∩ U1 is described by V(1) (which is a fancy way of writing the

empty set). Show that 2(1 : 0) has an equivalent description as{
(U0, s

2), (U1, 1)
}
.

Exercise 6.7.5. Use the notation from the above problem. Using

that

LD(U) = {f(s) ∈ C(s) : (div(f) +D) ∩ U ≥ 0},
show that

L2(1:0)(U0) =

{
a0 + a1s+ · · ·+ ans

n

s2
: a0, . . . , an ∈ C, n ≥ 0

}
L2(1:0)(U1) = {b0 + b1t+ · · ·+ bmtm : b0, . . . , bm ∈ C,m ≥ 0} .

On the overlap U01 = U0 ∩U1, we will write the restriction maps

as

rU0,U01
(f(s)) = f(s)

and

rU1,U01
(g(t)) = g

(
1

s

)
.

Exercise 6.7.6. Show that

d : C0(U,L2(1:0)) → C1(U,L2(1:0))

is given by

d

(
a0 + a1s+ · · ·+ ans

n

s2
, b0 + b1t+ · · ·+ bmtm

)
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= b0 +
b1
s

+ · · ·+ bm
sm

− a0
s2

− a1
s

− a2 − a3s+ · · · − ans
n−2.

Exercise 6.7.7. Show that(
a0 + a1s+ · · ·+ ans

n

s2
, b0 + b1s+ · · ·+ bmtm

)
is in the kernel of the map d if and only if ak = 0 and bk = 0 for k > 2

and a0 = b2, a1 = b1, a2 = b0.

Exercise 6.7.8. Based on the previous exercise, explain why we can

consider H0(P1,L2(1:0)) as the set of all 2 degree homogeneous poly-

nomials in x0 and x1, or in other words

H0(P1,L2(1:0)) = {ax2
0 + bx0x1 + cx2

1 : a, b, c ∈ C}.

Exercise 6.7.9. By similar reasoning, show that for all d > 0, we

have

H0(P1,Ld(1:0)) = {bdxd
0 + bd−1x

d−1
0 x1 + · · ·+ b0x

d
1 : ak ∈ C}.

(This problem requires you to generalize the last five exercises. Thus

it will take a bit to write up.)

Exercise 6.7.10. Show that

H0(P1,L−2(1:0)) = 0.

(This involves showing that L−2(1:0)(P
1) is empty.)

Exercise 6.7.11. By similar reasoning, show that for all d > 0, we

have

H0(P1,L−d(1:0)) = 0.

The next step in the development of Čech cohomology for divisors

would be to put the Riemann-Roch Theorem into this language. We

will simply state the theorem:

Theorem 6.7.12 (Riemann-Roch Theorem). Let X be a smooth

curve and let D be a divisor on X. Then

dim H0(X,LD)− dim H1(X,LD) = deg(D) + 1− g.
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The right-hand side is exactly what we had in Chapter 3. The

key is showing that the left-hand side is equivalent to what we had

earlier. Thus we would need to show that

l(D) = dimH0(X,LD),

which is not that hard, and

l(K −D) = dimH1(X,LD),

which does take work.

As the above is true only for curves, this is only the beginning.

For example, there is a Riemann-Roch for surfaces:

Theorem 6.7.13 (Riemann-Roch for Surfaces). Let X be a smooth

projective surface and let D be a divisor on X. Then

dimH0(X,LD)− dimH1(X,LD) + dimH2(X,LD)

=

(
D ·D −D ·K

2

)
+ 1 + pa.

The right-hand side means the following. Since in general divisors

are linear combinations of codimension one subvarieties, divisors on

surfaces are curves. The D ·D denotes the intersection number of D

with itself (such numbers have to be carefully defined). The divisor

K is the surface analogue of the canonical divisor; thus D ·K is the

intersection number of the curves D and K. The pa is something

called the arithmetic genus.

The left-hand side, namely the alternating sum of the various

dimensions of the Čech cohomology groups, is called the Euler char-

acteristic of the divisor. In general, we have:

Definition 6.7.2. For a smooth projective variety X of dimension

n, the Euler characteristic of a divisor D is

χ(D) =
n∑

i=0

(−1)kdimHk(X,LD).

All generalizations of Riemman-Roch have the form

χ(D) = some formula capturing geometry and topology.
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In this section, we saw how computations of Čech cohomology on

P1 came down to the manipulation of polynomials, which is precisely

how we started this book. The power of this section’s machinery lies

in how many different areas of mathematics (even those far from the

joys of polynomial manipulation) can be recast and informed by the

language of cohomology. For example, much of the work in algebraic

geometry in the last part of the 20th century was developing the cor-

rect generalizations of Riemann-Roch. We predict mathematicians in

the 21st century will continue this path, but now with an emphasis on

the correct generalizations of cohomology theories. (For the expert,

we are thinking “motives.”) To the student, you are now on the cusp

of the beginnings of current algebraic geometry.
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Algebraic Geometry has been at the center of much of mathematics 
for hundreds of years. It is not an easy fi eld to break into, despite its 
humble beginnings in the study of circles, ellipses, hyperbolas, and 
parabolas.

This text consists of a series of exercises, plus some background 
information and explanations, starting with conics and ending with 
sheaves and cohomology. The fi rst chapter on conics is appropriate 
for fi rst-year college students (and many high school students). 
Chapter 2 leads the reader to an understanding of the basics of cubic 
curves, while Chapter 3 introduces higher degree curves. Both chap-
ters are appropriate for people who have taken multivariable calculus 
and linear algebra. Chapters 4 and 5 introduce geometric objects of 
higher dimension than curves. Abstract algebra now plays a critical 
role, making a fi rst course in abstract algebra necessary from this 
point on. The last chapter is on sheaves and cohomology, providing 
a hint of current work in algebraic geometry.
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