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Preface

This book is built upon a basic second-year masters course given in 1991–
1992, 1992–1993 and 1993–1994 at the Université Paris-Sud (Orsay). The
course consisted of about 50 hours of classroom time, of which three-quarters
were lectures and one-quarter examples classes. It was aimed at students who
had no previous experience with algebraic geometry. Of course, in the time
available, it was impossible to cover more than a small part of this field. I
chose to focus on projective algebraic geometry over an algebraically closed
base field, using algebraic methods only.

The basic principles of this course were as follows:

1) Start with easily formulated problems with non-trivial solutions (such
as Bézout’s theorem on intersections of plane curves and the problem of
rational curves). In 1993–1994, the chapter on rational curves was replaced
by the chapter on space curves.

2) Use these problems to introduce the fundamental tools of algebraic geom-
etry: dimension, singularities, sheaves, varieties and cohomology. I chose
not to explain the scheme-theoretic method other than for finite schemes
(which are needed to be able to talk about intersection multiplicities). A
short summary is given in an appendix, in which special importance is
given to the presence of nilpotent elements.

3) Use as little commutative algebra as possible by quoting without proof
(or proving only in special cases) a certain number of theorems whose
proof is not necessary in practise. The main theorems used are collected
in a summary of results from algebra with references. Some of them are
suggested as exercises or problems.

4) Do not hesitate to quote certain algebraic geometry theorems when the
proof’s absence does not alter the reader’s understanding of the result.
For example, this is the case for the uniqueness of cohomology or certain
technical points in Chapter IX. More generally, in writing this book I tried
to privilege understanding of phenomena over technique.
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5) Provide a certain number of exercises and problems for every subject
discussed. The papers of all the exams for this course are given in an
appendix at the end of the book.

Clearly, a book on this subject cannot pretend to be original. This work
is therefore largely based on existing works, particularly the books by
Hartshorne [H], Fulton [F], Mumford [M] and Shafarevitch [Sh].

I would like to thank Mireille Martin-Deschamps for her careful read-
ing and her remarks. I would also like to thank all those who attended the
course and who pointed out several errors and suggested improvements, no-
tably Abdelkader Belkilani, Nicusor Dan, Leopoldo Kulesz, Vincent Lafforgue
and Thomas Péteul.

I warmly thank Catriona Maclean for her careful translation of this book
into English.

And finally, it is my pleasure to thank Claude Sabbah for having accepted
the French edition of this book in the series Savoirs Actuels and for his help
with the editing of the final English edition.



Notation

We denote the set of positive integers (resp. the set of integers, rational num-
bers, real numbers or complex numbers) by N (resp. Z, Q, R or C). We
denote by Fq the finite field with q elements.

We denote the cardinal of a set E by |E|. We denote the integral part of
a real number by [x]. The notation

(
n
p

)
represents the binomial coefficient:

(
n

p

)
=

n!
p!(n − p)!

.

By convention, this coefficient is zero whenever n < p.
If f : G → H is a homomorphism of abelian groups (or modules or vector

spaces), we will denote by Ker f (resp. Im f , resp. Coker f) its kernel (resp. its
image, resp. its cokernel). We recall that by definition Coker f = H/ Im f .

An exact sequence of abelian groups (or modules or vector spaces)

0 −→ M ′ u−−→ M
v−−→ M ′′ −→ 0

is given by the data of two homomorphisms u, v such that
a) u is injective,
b) v is surjective,
c) Im u = Ker v.

Further definitions and notations are contained in the summary of useful
results from algebra.

In the exercises and problems, the symbol ¶ indicates a difficult question.



Introduction

0 Algebraic geometry

Algebraic geometry is the study of algebraic varieties: objects which are the
zero locus of a polynomial or several polynomials. One might argue that
the discipline goes back to Descartes. Many mathematicians—such as Abel,
Riemann, Poincaré, M. Noether, Severi’s Italian school, and more recently
Weil, Zariski and Chevalley—have produced brilliant work in this area. The
field was revolutionised in the 1950s and 60s by the work of J.-P. Serre and
especially A. Grothendieck and has since developed considerably. It is now a
fundamental area of study, not just for its own sake but also because of its
links with many other areas of mathematics.

1 Some objects

There are two basic categories of algebraic varieties: affine varieties and pro-
jective varieties. The latter are more interesting but require several definitions.
It it is too early to give such definitions here; we will come back to them in
Chapter II.

To define an affine variety, we take a family of polynomials Pi ∈
k[X1, . . . , Xn] with coefficients in a field k. The subset V of affine space kn

defined by the equations P1 = · · · = Pr = 0 is then an affine algebraic variety.
Here are some examples.

a) If the polynomials Pi are all of degree 1, we get the linear affine sub-
spaces of kn: lines, planes and so forth.

b) Take n = 2, r = 1 and k = R, so that k2 is a real plane and V , defined
by the equation P (X,Y ) = 0, is a plane “curve”. For example, if P is of
degree 2, the curves we get are conics (such as the ellipse X2 + Y 2 − 1 = 0,
the hyperbole XY − 1 = 0, or the parabola Y − X2 = 0).
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If P is of degree 3, we say that the curve is a cubic. For example, we
could consider Y 2 − X3 = 0 (which is a cuspidal curve, i.e., it has a cusp),
X3 + Y 3 − XY = 0 (which is a nodal cubic, i.e., it has an ordinary double
point or node) or Y 2 − X(X − 1)(X + 1) = 0 (which is a non-singular cubic,
also called an elliptic curve, cf. below).

Fig. 1. X3 + Y 3 − XY = 0 Fig. 2. Y 2 − X3 = 0

Fig. 3. Y 2 − X(X − 1)(X + 1) = 0

Of course, curves of every degree exist. Let us mention the following two
curves in particular: (X2+Y 2)2+3X2Y −Y 3 = 0 (the trefoil) and (X2+Y 2)3−
4X2Y 2 = 0 (the quadrifoil).

c) In space k3 an equation F (X,Y,Z) = 0 defines a surface.
For example, if F is of degree 2, we get quadric surfaces, such as
the sphere (X2 + Y 2 + Z2 − 1 = 0) or the one-sheeted hyperboloid
(X2 + Y 2 − Z2 − 1 = 0).

d) Generally, two equations in k3 define a space curve. For example,
Y − X2 = 0 and Z − X3 = 0 define a space cubic (the set of points of the
form (u, u2, u3) with u ∈ k).
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Fig. 4. (X2 +Y 2)2 +3X2Y −Y 3 = 0 Fig. 5. (X2 + Y 2)3 − 4X2Y 2 = 0

e) Clearly, the study of algebraic varieties depends heavily on the base field.
For example, algebraic geometry over the field of real numbers is sometimes
surprising (consider for example the plane “curves” given by the equations
X2 +Y 2 +1 = 0 or X2 +Y 2 = 0). The theory is nicest when k is algebraically
closed (for example k = C). This is the situation we will deal with in this
book. This choice (which is equivalent to giving greater importance to the
equations defining varieties than their points) can be partially justified by the
fact that any field can be embedded in an algebraically closed field.1

Of course, the opposite point of view is just as interesting. It led, for exam-
ple, to real algebraic geometry (k = R) or arithmetic (k = Q or even k = Z,
or k a finite field). For example, the points of the variety defined over Z by the
equation Xn +Y n−Zn = 0 are the subject of Fermat’s famous theorem. Like-
wise, the search for rational points on the curve Y 2 − X(X − 1)(X − λ) = 0
(the arithmetic of elliptic curves) is very much an open question. Two impor-
tant conjectures concerning these questions have been solved recently, namely
Weil’s conjecture (solved by Deligne in 1974) and Mordell’s conjecture (solved
by Faltings in 1982). But this is another story.

f) Furthermore, algebraic varieties appear in many areas of mathematics.
One simple example is given by matrices and classical groups. For example,
the group

SLn(k) = {A ∈ Mn(k) | det(A) = 1}
is an algebraic variety in the affine space of matrices because the determinant
is a polynomial. Likewise, the orthogonal group

On(k) = {A ∈ Mn(k) | tAA = I},

or the set of matrices of rank � r, are affine algebraic varieties. The basic
concepts of algebraic geometry which we will introduce (such as the dimension
1 When the base field is R or C, the objects we study also appear in other branches

of mathematics (such as topology and differential geometry). It turns out that the
difference between these fields depends more on the choice of “good” functions
than the objects studied (cf. Chapter III).
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in Chapter IV and the tangent space in Chapter V) are fundamental tools for
the study of these varieties.

g) And finally, let us mention a more complicated example: families of
algebraic varieties (for example, the set of lines in k3 or the set of vector
subspaces of dimension d of a space of dimension n) can often themselves be
equipped with the structure of an algebraic variety (much as the set of subsets
of a set is itself a set) and we can therefore apply algebro-geometric techniques
to them.

2 Some problems

One of the principles of this course is to start from easily formulated prob-
lems whose solution requires the use of fairly sophisticated algebro-geometric
techniques (such as sheaves cf. Chapter III and cohomology, cf. Chapter VII).
Here are two examples: Bézout’s problem and the rational curves problem. We
will also mention, in Chapter X, the less elementary problem of space curve
liaison.

a. Intersection: Bézout’s theorem

If we study the intersections of a conic (think of an ellipse) and a line in
the plane, we see that they intersect in at most 2 points. A line and a cubic
intersect in at most 3 points and two conics intersect in at most 4 points. It is
natural to ask whether or not two plane curves C and C ′, of degrees d and d′,
always have at most dd′ intersection points, and under what circumstances
we might get the best possible theorem: that two such curves have exactly dd′

intersection points. There are four obvious obstructions to this claim being
true.

a) The two curves might have a common component: for example, the
curves given by the equations XY = 0 and X(Y − X) = 0 have the y-axis
(i.e., the curve X = 0) in common and their intersection is therefore infinite.
We will have to assume that the curves C and C ′ have no common component
which means we will have to first specify what we mean by a “component”
(cf. Chapter I).

b) If k is the real number field, we know that this claim is not always true.
For example, the circle X2 + Y 2 − 1 = 0 and the line X = 2 do not meet
in R2. On the other hand, they do meet twice in C2 at the points (2,∓i

√
3).

We will therefore have to assume that the base field is algebraically closed
(cf. Section 1.e) to get the best possible theorem.

c) Another fundamental counter-example to the best possible theorem is
the case of two parallel lines, or a hyperbole and its asymptote, which never
meet. Once again, it is clear what we must do to overcome this difficulty: intro-
duce points at infinity. In this context, this means we must work in projective
space, not affine space.
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d) And finally, returning to the case of a circle and a line, we see there is
another case in which the number of intersection points is not two, namely
the case where the line is tangent to the circle. For example, the curves X2 +
Y 2 − 1 = 0 and X = 1 meet at a unique point (1, 0). However, if we solve the
system formed by these two equations, we obtain the equation y2 = 1, so the
solution y = 0 is a double root: the point of intersection is a double point and
has to be counted twice. Likewise, if we intersect the cubic Y 2 −X3 = 0 with
the line Y = tX, then we obtain only two points, (t2, t3) and (0, 0), but the
latter is a double point (this happens because the cubic has a singularity at
the point in question, cf. Chapter V). In short we will have to define carefully
what we mean by the intersection multiplicity of two curves at a point. (We
suggest the reader try out a trefoil and quadrifoil meeting at (0, 0) to convince
him or herself that it is not entirely obvious what this definition should be,
cf. Chapter VI).

Once all these precautions have been taken, we can prove our ideal theorem
(cf. Chapter VI):

Theorem (Bézout). Let C and C ′ be two projective plane curves of de-
grees d and d′, defined over an algebraically closed base field, with no common
components. Then the number of intersection points of C and C ′, counted with
multiplicity, is dd′.

For example, besides the point (0, 0), which has multiplicity 14, the trefoil
and the quadrifoil meet at four (simple) real points in the plane and two
imaginary points at infinity, each of which is counted with multiplicity 3,
which does indeed give a total of 24.

b. Parameterisations, rational curves and genus

Let C be a plane curve whose equation is f(X,Y ) = 0. A rational parameter-
isation of C is given by two rational fractions α(T ) and β(T ) such that the
identity f(α(T ), β(T )) = 0 holds. On calculating the intersection of a cusp
cubic Y 2 − X3 = 0 with a line passing through the origin we obtain an ex-
ample of a rational parameterisation, x = t2, y = t3, and the basic question
is to determine which curves possess such a parameterisation. (These curves
are said to be rational.) Here are two reasons (other than the possibility of
carrying out effective calculations in the real case) for being interested in such
curves.

1) Diophantine equations. These are polynomial equations to which we seek
integral solutions. Given a rational parameterisation this problem is easy. As
an example, let’s solve the equation x2 + y2 − z2 = 0 in Z or, alternatively,
(x/z)2 + (y/z)2 − 1 = 0 in Q, which comes down to the same thing. We
have to try to find rational points on the circle X2 + Y 2 − 1 = 0. To do
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this we parameterise the circle by cos u and sinu, or, even better, on setting
t = tan(u/2), by

x =
1 − t2

1 + t2
, y =

2t

1 + t2
.

On taking t ∈ Q, we obtain all the rational points of the circle (since conversely
we can calculate t given x and y using the equation t = y/(1 + x)). This
immediately gives us all the integral solutions of X2 + Y 2 = Z2, which are
given by x = a2 − b2, y = 2ab and z = a2 + b2, where a, b ∈ Z.

2) Calculating integrals. Although this problem is not as important as it once
was, it was one of the driving forces behind the development of algebraic
geometry in the xixth century, notably in the work of Abel and Riemann.

Let us consider an integral of the form
∫ √

ax2 + bx + c dx.

This integral involves the conic y =
√

ax2 + bx + c (i.e., y2 = ax2 + bx + c).
More generally, let y = ϕ(x) be an algebraic function (i.e., a function which,
like the above example, contains radicals). We suppose that y = ϕ(x) is the
solution to an implicit equation f(x, y) = 0, where f is a polynomial. We seek
the integral ∫

g(x, ϕ(x)) dx,

where g is a rational function. (For example, the special case where ϕ(x) =√
x(x − 1)(x − λ), which arises when calculating the length of the arc of an

ellipse, gave rise to the theory of elliptic functions and integrals.)
If the curve f(x, y) = 0 has a rational parameterisation x = α(t), y = β(t),

then this integral can be written in the form
∫

g(α(t), β(t)) α′(t) dt,

which we know how to calculate since it is the integral of a rational function.

To be or not to be rational: some examples.
1) Lines are rational curves.
2) So are conics: fix a point m0, for example (0, 0), on the curve and con-

sider the intersection of the curve with a varying line y = tx passing through
this point. The second intersection point can then be rationally parameterised
using the parameter t.

3) The same method can be applied to singular cubics. We have seen the
case Y 2 − X3 = 0 dealt with above. Likewise, X3 + Y 3 − XY = 0 can be
parameterised by

x =
t

1 + t3
y =

t2

1 + t3
.
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4) On the other hand, non-singular cubics are not rational (the arithmetic
of elliptic curves would otherwise be a much easier problem!). For example,
the curves

Y 2 = X(X − 1)(X + 1) or X3 + Y 3 − 1 = 0

are not rational. More generally, we will show that if the characteristic of the
field does not divide n, then the curve Xn + Y n − 1 = 0 with n � 3 is not
rational (otherwise solutions of Fermat’s equation would exist!).

Assume given a parameterisation x = p(t)/r(t), y = q(t)/r(t) such that
p, q, r ∈ k[t] have no common factor. We would then have pn + qn − rn = 0,
and hence p, q, r are mutually coprime. On differentiating this equation we get

pn−1p′ + qn−1q′ − rn−1r′ = 0.

We may suppose that the degree of p is at least as large as the degrees of q
and r. After multiplying by r we get

pn−1(rp′ − pr′) = qn−1(qr′ − rq′),

and since p and q are coprime, pn−1 divides (qr′ − rq′), which, since n � 3, is
impossible for degree reasons.

5) Warning: as the example of the curve C whose equation is y − x3 = 0
and which is clearly rational shows, it is not enough to consider singular points
in the plane (C has none) but also those at infinity (where C has a cusp).

To solve the rationality of curves problem we will introduce in Chapters
VIII and IX an invariant of C, the geometric genus g(C), which is an integer
� 0, and we will prove the equivalence

C rational ⇐⇒ g(C) = 0.

We still need to be able to calculate the genus to check whether or not it
vanishes. For a plane curve of degree d which is non-singular (even at infinity)
we prove the very simple formula g = (d − 1)(d − 2)/2. We hence prove that
if d � 3, such a curve is not rational.

On the other hand, if C has singular points, the genus can be smaller than
the value given by the above formula: every ordinary double point (i.e., a dou-
ble point with distinct tangent vectors) diminishes the genus by 1. More gen-
erally, an ordinary multiple point of order r diminishes the genus by r(r−1)/2.
Hence a curve of degree 4 is rational whenever it has a triple point (for ex-
ample, the trefoil is rational) or three double points (for example, the curve
of equation

4(X2 + Y 2)2 − 4X(X2 − 3Y 2) − 27(X2 + Y 2) + 27 = 0

is rational).
If the multiple points are not ordinary (which is the case at turning points,

for example), things are more complicated and the genus can be even smaller.
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Fig. 6. 4(X2 + Y 2)2 − 4X(X2 − 3Y 2) − 27(X2 + Y 2) + 27 = 0

Fig. 7. (X2 − Y )2 + Y 3(Y − 1) = 0

For example, the curve of degree 4 whose equation is (X2−Y )2+Y 3(Y −1) = 0
is rational even though it has only one double point. In Chapter IX we will
give an algorithm allowing us to calculate the genus in all cases.
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Affine algebraic sets

Throughout this chapter, k is a commutative field.

1 Affine algebraic sets and the Zariski topology

Let n be a positive integer. Consider the space1 kn. If x = (x1, . . . , xn) is a
point in kn and P (X1, . . . , Xn) is a polynomial, we denote P (x1, . . . , xn) by
P (x). The first fundamental objects we encounter are the affine algebraic sets
defined below.

Definition 1.1. Let S be an arbitrary subset of k[X1, . . . , Xn]. We set

V (S) = {x ∈ kn | ∀P ∈ S, P (x) = 0},

i.e., the x ∈ V (S) are the common zeros of all the polynomials in S. We call
V (S) the affine algebraic set defined by S. When the set S is finite, we will
often write V (F1, . . . , Fr) instead of V ({F1, . . . , Fr}).

Examples 1.2.
1) We have V ({1}) = ∅ and V ({0}) = kn, so both the empty set and the

whole of kn are affine algebraic sets.
2) If n = 1 and S �= {0}, then V (S) is a finite set: the affine algebraic

subsets of a line are the line and the finite sets.
3) If n = 2, then the affine sets, other than the empty set and the plane, are

the “curves” of the form V (F ) and the finite sets of points: V (X,Y ) = {(0, 0)},
V (X(X − 1), Y ) = {(0, 0), (1, 0)}, . . . .
1 In fact, what follows is valid in n-dimensional affine k-space, denoted An(k), and

is independent of the choice of basis: the affine group action (translations and
bijective linear maps) is not a source of any serious problems, cf. Example 6.3.2.
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Remarks 1.3.
0) The function V is decreasing: if S ⊂ S′, then V (S′) ⊂ V (S).
1) If S ⊂ k[X1, . . . , Xn], then we denote by 〈S〉 the ideal generated by S:

〈S〉 is composed of polynomials f of the form f =
∑r

i=1 aifi, where fi ∈ S and
ai ∈ k[X1, . . . , Xn]. We then have V (S) = V (〈S〉). (The decreasing property
implies V (〈S〉) ⊂ V (S). Conversely, if x ∈ V (S), then all the fi ∈ S vanish
on x and hence so do all the f ∈ 〈S〉.) As far as affine algebraic sets are
concerned we can therefore restrict ourselves to the case where S is an ideal,
or, alternatively, to the case where S is the set of generators of an ideal.

2) Since k[X1, . . . , Xn] is Noetherian, every ideal is finitely generated: I =
〈f1, . . . , fr〉, and hence every affine algebraic set is defined by a finite number
of equations V (I) = V (f1, . . . , fr) = V (f1) ∩ · · · ∩ V (fr).

The sets of the form V (f) are called hypersurfaces (strictly speaking, we
should reserve this notation for the case where f is non-constant and k is
algebraically closed, cf. Chapter IV). We have shown above that every affine
algebraic set is a finite intersection of hypersurfaces.

3) Note that two polynomials can define the same affine algebraic set. For
example, in k2, V (X) = V (X2). (Later on, however, we will want to say that
V (X2) is the y-axis counted twice.)

4) A point of kn is an affine algebraic set:
if a = (a1, . . . , an), then {a} = V (X1 − a1, . . . , Xn − an).
5) An arbitrary intersection of affine algebraic sets is an affine algebraic

set: ⋂

j

V (Sj) = V
(⋃

j

Sj

)
.

(If we want to restrict ourselves to using ideals, we must replace the union of
the sets Sj by their sum.)

6) A finite union of affine algebraic sets is an affine algebraic set. It is
enough to prove this for the union of two sets defined by ideals I and J . We
now prove that V (I)∪ V (J) = V (IJ). Indeed, IJ ⊂ I, J (cf. Summary 1.2.a)
and hence V (I)∪V (J) ⊂ V (IJ) by the decreasing property of V . Conversely,
suppose that x ∈ V (IJ) and x /∈ V (I). There is then a P ∈ I such that
P (x) �= 0. For all Q ∈ J we have PQ ∈ IJ , and hence (PQ)(x) = 0, so
Q(x) = 0 and x ∈ V (J). (The same argument shows that V (I) ∪ V (J) =
V (I ∩ J).)

7) It follows from 4) and 6) that any finite set is an affine algebraic set.

1.4. The Zariski topology. Remarks 5) and 6) above show that the affine al-
gebraic sets are the closed sets of a topology on kn, which we call the Zariski
topology. Of course, any subset X of kn inherits an induced topology (again
called the Zariski topology) whose closed sets are the sets of the form X∩V (I);
in particular, if X is an affine algebraic set, then the closed sets of X are the
affine algebraic sets contained in X.
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Warning : the Zariski topology is very different from the usual topologies,
and the reader will need some time to develop an intuition for its behaviour.
Simplifying, the closed sets of this topology are very small: in k3 the closed sets
are all surfaces, curves or points (compare this with the closed balls of usual
topologies). On the other hand, the open sets are very large. For example, two
non-empty open sets always meet (and hence this topology is not separated).
We will encounter another difference when we come to compare the Zariski
topology on k2 and the product of the Zariski topologies on k (cf. Problem I).

1.5. Standard open sets. Consider f ∈ k[X1, . . . , Xn] and let V (f) be the
hypersurface defined by f . The set D(f) = kn − V (f) is a Zariski open set
of kn, which we call a standard open set. The standard open sets are a basis
for this topology (cf. Summary 1.8); more precisely, any open set U is a finite
union of standard open sets. This is the dual statement to Remark 1.3.2 on
intersections of hypersurfaces.

2 Ideal of an affine algebraic set

We introduce an operation I, which is essentially the dual of V , which asso-
ciates an ideal in the polynomial ring to a set of points.

Definition 2.1. Let V be a subset of kn. The set

I(V ) = {f ∈ k[X1, . . . , Xn] | ∀x ∈ V, f(x) = 0}

is called the ideal of V .

In other words, I(V ) is the set of polynomial functions which vanish on V .
To show that it is indeed an ideal, we consider the ring homomorphism

r : k[X1, . . . , Xn] −→ F(V, k),

with image in the ring of all k-valued functions on V associating to a
polynomial the restriction of the associated polynomial function to V . The
kernel of r is I(V ) (which is therefore an ideal) and the image of r is
the ring Γ (V ) of polynomial (or regular) functions on V , which is isomor-
phic to k[X1, . . . , Xn]/I(V ). This ring, which is a k-algebra of finite type
(cf. Summary 1.5), is called the affine algebra of V and will play a key role
throughout the rest of this book.

The guiding philosophy of this book is to associate to the geometric ob-
ject V an algebraic object I(V ) (or Γ (V )) and set up a dictionary allowing
us to translate geometric properties into algebraic properties and vice versa.
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Remarks 2.2.
0) The map I is decreasing.
1) If V is an affine algebraic set, then V (I(V )) = V . Indeed, it is clear

that V ⊂ V (I(V )). Conversely, if V = V (I), then I ⊂ I(V ) and hence V =
V (I) ⊃ V (I(V )).

2) It follows that the map V �→ I(V ) is injective, and hence if V ⊂ W and
V �= W , then there exists a polynomial which vanishes on V and does not
vanish on W .

3) Conversely, I ⊂ I(V (I)), but NB : equality does not hold in general.
There are two basic obstructions to equality.

a) When the field k is not algebraically closed, V (I) can be abnormally
small: for example, if k = R and I = (X2 + Y 2 + 1), then V (I) = ∅

(whereas we would have expected to obtain a curve) and hence I(V (I)) =
k[X1, . . . , Xn] �= I. The same thing happens if I = (X2 + Y 2).

b) The operation I forgets powers: if n = 2 and I = (X2), then V (I) is
the y-axis and I(V (I)) = (X) �= I.

The relationship between I and I(V (I)) is fundamental and will be dealt
with in Section 4.

2.3. Some examples.
a) We have I(∅) = k[X1, . . . , Xn].
b) For I(kn) we have the following proposition.

Proposition 2.4. Assume that k is infinite. Then I(kn) = 0.

In other words, if a polynomial function vanishes everywhere, then the
polynomial vanishes.

NB: the proposition is false if k is finite; consider the polynomial Xq −X
on Fq.

Proof. We proceed by induction on n. The case n = 1 is clear since a non-zero
polynomial has only a finite number of roots. At the nth level, if P �= 0 and P
is not constant, then we can write, for example,

P = ar(X1, . . . , Xn−1)Xr
n + · · · ,

where r � 1 and ar �= 0. By induction, there exist (x1, . . . , xn−1) ∈ kn−1 such
that ar(x1, . . . , xn−1) �= 0. Hence the polynomial P (x1, . . . , xn−1,Xn) has at
most r roots and hence is not zero for every xn ∈ k.

c) We have I({(a1, . . . , an)}) = (X1 − a1, . . . , Xn − an).
The inclusion ⊃ is obvious. Conversely, if P (a1, . . . , an) = 0, then we can

divide P successively by the terms Xi − ai (cf. Summary 1.1.c) and we write

P = (X1 − a1)Q1 + · · · + (Xn − an)Qn + c,



3 Irreducibility 13

with c ∈ k. But c is simply P (a1, . . . , an), which vanishes, so P is contained
in the ideal (X1 − a1, . . . , Xn − an).

d) Let us assume that k is infinite and calculate the ideal

I(V ) = I(V (Y 2 − X3))

in k[X,Y ]. It is clear that (Y 2 − X3) ⊂ I(V ). Conversely, we know that any
point in V can be written as (t2, t3), with t ∈ k (cf. Introduction; if x �= 0,
we take t = y/x and if x = 0, we take t = 0). Suppose that P ∈ I(V ). We
divide P by Y 2 − X3 with respect to the variable Y (cf. Summary 1.1.c):

P = (Y 2 − X3)Q(X,Y ) + a(X)Y + b(X).

It follows that for any t ∈ k, P (t2, t3) = 0 = a(t2)t3 + b(t2). Since k is
infinite, we deduce that a(T 2)T 3 + b(T 2) = 0 in k[T ]. Separating the terms
of odd and even degrees we get a = b = 0 and we have hence proved that
I(V ) = (Y 2 − X3).

3 Irreducibility

Let us consider in k2 the affine algebraic set defined by XY = 0. This set is
the union of two coordinate axes which are themselves affine algebraic sets
and are hence Zariski closed subsets. This is the kind of situation we are now
going to deal with. The idea is that in such cases we will essentially be able
to restrict ourselves to studying each of the pieces separately.

Proposition-Definition 3.1. Let X be a non-empty topological space. The
following are equivalent:

i) If we can write X in the form X = F ∪ G, where F and G are closed
sets in X, then X = F or X = G.

ii) If U, V are two open sets of X and U ∩ V = ∅, then U = ∅ or V = ∅.
iii) Any non-empty open set of X is dense in X.

Under these conditions we say that X is irreducible.

These conditions are never satisfied for usual topologies: for example, no
separated topological space which is not a point is ever irreducible.

For affine algebraic sets we have a very simple characterisation of irre-
ducible spaces in terms of the ideal I(V ). (This is one of the first examples of
an algebra-geometry translation.)

Theorem 3.2. Let V be an affine algebraic set equipped with its Zariski topol-
ogy. Then, V irreducible ⇔ I(V ) prime ⇔ Γ (V ) integral.
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Proof. It will be enough to prove the first equivalence. Assume that V is
irreducible and let f, g be such that fg ∈ I(V ). We then have

V = V (I(V )) ⊂ V (f) ∪ V (g) and hence V = (V (f) ∩ V ) ∪ (V (g) ∩ V ),

and since V is irreducible, we may assume V (f)∩V = V , i.e., V ⊂ V (f) and
f ∈ I(V ).

Conversely, if I(V ) is prime and we can write V = V1 ∪ V2 in such a
way that Vi is a closed set and Vi �= V , then I(V ) ⊂ I(Vi) and I(V ) �= I(Vi)
(cf. Remark 2.2.2). We then consider elements fi ∈ I(Vi)−I(V ), and it follows
that f1f2 vanishes on V and is hence a member of I(V ), which is impossible.

Corollary 3.3. Assume that k is infinite. Then the affine space kn is irre-
ducible.

Proof. We have I(kn) = (0) (cf. Proposition 2.4), and this ideal is prime since
k[X1, . . . , Xn] is integral.

If k is finite, then the corollary is false because kn is finite, and therefore kn

is a finite union of points, which are closed sets.

Application 3.4 (Extension of algebraic identities). Assume that k is
infinite. Let V be an affine algebraic set �= kn and P ∈ k[X1, . . . , Xn]. Assume
that P is zero outside of V . Then P is identically zero.

This is obvious. This theorem enables us to use over an arbitrary field
density arguments analogous to those used on R or C with the usual topol-
ogy. A classical application is proving that a certain identity which holds for
invertible square matrices holds in fact for all matrices (since the determinant
is a polynomial function, the set of non-invertible matrices is a closed set). For
example, if we denote the coefficient of Xi in the characteristic polynomial
det(I − XA) by ci(A), then ci(AB) = ci(BA). (We deal first with the case
where B is invertible, using the relation AB = B−1(BA)B.)

The following proposition will be useful in Chapter IV.

Proposition 3.5. Let X be a topological space and let Y be a subspace of X.
Then if Y is irreducible, so is its closure Y . If U is an open set of X, then
the maps Y �→ Y and Z �→ Z ∩ U are mutually inverse bijections between the
irreducible closed sets Y in U and the irreducible closed sets Z in X which
meet U .

Proof. If Y = F1 ∪ F2, where Fi is a closed set of Y and is hence a closed
set of X, then Y = (F1 ∩ Y ) ∪ (F2 ∩ Y ), and hence since Y is irreducible,
Y = Fi ∩ Y , or, alternatively, Y ⊂ Fi. But we then have Y ⊂ Fi, and hence
Y = Fi.

We now show how to reduce to the irreducible case.

Theorem-Definition 3.6. Let V be a non-empty affine algebraic set. We can
write V uniquely (up to permutation) in the form V = V1∪· · ·∪Vr, where the
sets Vi are irreducible affine algebraic sets and Vi �⊂ Vj for i �= j. The sets Vi

are called the irreducible components of V .



4 The Nullstellensatz (or Hilbert’s zeros theorem) 15

Proof.
1) Existence. We proceed by contradiction. We assume there exist non-

decomposable affine algebraic sets and we pick one whose ideal is maxi-
mal amongst all such sets. (Such a V exists since the ring k[X1, . . . , Xn]
is Noetherian.) Since V is not irreducible, we can write V = F ∪ G,
where F,G �= V . It follows by injectivity of I that I(F ), I(G) ⊃ I(V ) and
I(F ), I(G) �= I(V ). By maximality of I(V ), it follows that F and G are de-
composable: F = F1∪· · ·∪Fr, G = G1∪· · ·∪Gs, but V is then decomposable,
which gives us a contradiction.

2) Uniqueness. Assume given two expressions: V = V1 ∪ · · · ∪ Vr =
W1 ∪ · · · ∪ Ws. We set Vi = V ∩ Vi = (W1 ∩ Vi) ∪ · · · ∪ (Ws ∩ Vi). Since Vi is
irreducible, there is a j such that Vi = Wj ∩ Vi, i.e., Vi ⊂ Wj . Likewise, there
is a k such that Wj ⊂ Vk, and hence Vi ⊂ Vk, which implies by hypothesis
that i = k and hence Vi = Wj .

Remark 3.7. If W is an irreducible closed set of V , then W is contained in an
irreducible component. It follows that the irreducible components are exactly
the maximal closed irreducible subsets of V .

See the exercises for some examples of decompositions.

4 The Nullstellensatz (or Hilbert’s zeros theorem)

This is one of the first fundamental theorems of algebraic geometry. It controls
the correspondence between affine algebraic sets and ideals; in particular, it
enables us to calculate I(V (I)). We have already seen (Remark 2.2.3.a) that
certain problems arise when k is not algebraically closed. We therefore assume
henceforth that:

k is algebraically closed.

This hypothesis enables us to avoid the case where the affine algebraic sets
are too small. For example, the reader can easily check (without using the
Nullstellensatz!) that if F ∈ k[X1, . . . , Xn] is non-constant, the hypersurface
V (F ) is infinite (if n � 2). The following result is similar.

Theorem 4.1 (Weak Nullstellensatz). Let I ⊂ k[X1, . . . , Xn] be an ideal
different from k[X1, . . . , Xn]. Then V (I) is non-empty.

Proof. The proof which follows is valid whenever k is not countable (k = C
for example). For a proof in the general case, cf. Problem III, 4.

Embedding I in a maximal ideal if necessary, we may assume that I is
maximal. Let K = k[X1, . . . , Xn]/I be the residue field. Since k[X1, . . . , Xn]
is a vector space of at most countable dimension over k, the same is true of K.
We then have the following lemma.

Lemma 4.2. Let k be an uncountable algebraically closed field and let K be
an extension of k whose dimension is at most countable. Then K = k.
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Proof (of 4.2). It will be enough to show that K is algebraic over k. Otherwise,
K would contain a transcendental element, and K would therefore contain a
subfield isomorphic to the field of fractions k(T ). But this field contains an
uncountable family 1/(T − a), a ∈ k, and this family is free: given an identity

n∑

i=1

λi

T − ai
= 0,

we multiply by T − ai and on setting T = ai we get λi = 0.

Returning to 4.1, we consider the images a1, . . . , an of the variables Xi in
K = k. If P (X1, . . . , Xn) ∈ I, then P (a1, . . . , an) = 0, or in other words, the
point (a1, . . . , an) ∈ kn is in V (I). QED.

In order to state the Nullstellensatz, we introduce the radical of an ideal I
in A, which is the ideal

rac(I) = {x ∈ A | ∃ r ∈ N, xr ∈ I}.

Theorem 4.3 (Nullstellensatz). Let I be an ideal of k[X1, . . . , Xn]. Then
I(V (I)) = rac(I).

Proof. We set

R = k[X1, . . . , Xn], I = (P1, . . . , Pr) and V = V (I).

It is clear that rac(I) ⊂ I(V (I)). To prove the converse, consider F ∈ I(V ). We
want to show that Fm ∈ I for large enough m. This can be easily translated
in terms of the local ring RF obtained on inverting F (cf. Summary 1.6.b).
Indeed, it will be enough to show that the ideal IRF generated by I in RF is
equal to (1) = RF since we would then have

1 =
∑

i

PiQi

Fm
,

and on clearing the denominators we get Fm ∈ I.
But the ring RF is also isomorphic to k[X1, . . . , Xn, T ]/(1 − TF )

(cf. Summary loc. cit.), and hence the condition that IRF = (1) means
that 1 can be written in the form

1 =
∑

i

PiQi + A(1 − TF ),

where A,Qi ∈ k[X1, . . . , Xn, T ]. Let J be the ideal (P1, . . . , Pr, 1 − TF ) in
k[X1, . . . , Xn, T ]. We have V (J) = ∅ in kn+1, since if (x1, . . . , xn, t) were in
V (J), then the polynomials Pi would vanish at the point x = (x1, . . . , xn)
and hence x would be in V , hence F would vanish at x and 1 − TF could
not vanish there. It follows by the weak Nullstellensatz that J = (1), and the
result follows.
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Example 4.4. The phenomena involving powers seen in Remark 2.2.3.b arise
once more in this context. For example, if I = (X,Y 2), then I(V (I)) = (X,Y ).
Remark 4.5. It is clear that the ideal I(V ) is equal to its radical (in this case
we say that I(V ) is radical) and hence I(V (I)) = I if and only if I is a radical
ideal (in particular, this is the case if I is a prime ideal). The ideal I(V ) is
radical if and only if the ring Γ (V ) is reduced (i.e., has no nilpotent elements,
cf. Summary 1.2.d). We will alter this condition later on when we want to
talk about multiple structures.
4.6. Applications of the Nullstellensatz: an algebra-geometry dictionary. Let V
be an affine algebraic set. We associate to V its ideal I(V ) and its affine algebra
Γ (V ) � k[X1, . . . , Xn]/I(V ), which is a reduced k-algebra of finite type.
a) The case V = kn. The following proposition is an immediate consequence
of the Nullstellensatz and 3.2.

Proposition 4.7. There is a decreasing bijection W �→ I(W ), whose in-
verse is I �→ V (I), between affine algebraic sets in kn and radical ideals in
k[X1, . . . , Xn]. Moreover, the following properties are equivalent:

a) W irreducible ⇔ I(W ) prime ⇔ Γ (W ) integral,
b) W is a point ⇔ I(W ) maximal ⇔ Γ (W ) = k.

(To prove b) we use the weak Nullstellensatz and the decreasing property
of the maps I and V .)

Another example of such a translation is the following:

Proposition 4.8. The following are equivalent: V is finite ⇔ Γ (V ) is a finite-
dimensional k-vector space. (We then say that Γ (V ) is a finite k-algebra,
cf. Summary 1.7.)

Proof.
1) Assume that V is finite, V = {u1, . . . , ur}, and consider the ring mor-

phism
ϕ : k[X1, . . . , Xn] −→ kr,

which associates (F (u1), . . . , F (ur)) to F . (We equip kr with its product ring
structure, cf. Summary 1.1.d.) The kernel of f is simply I(V ), so Γ (V ) can
be embedded in kr and is hence finite dimensional.

2) Conversely, assume that Γ (V ) is finite dimensional. Let Xi be the image
of Xi in Γ (V ). The elements 1,Xi, . . . ,X

s

i , · · · are not independent, and hence
in Γ (V ) there is an identity

asX
s

i + · · · + a1Xi + a0 = 0,

such that aj ∈ k and as �= 0. If u = (x1, . . . , xn) is an arbitrary point of V , it
follows that we also have

asx
s
i + · · · + a1xi + a0 = 0

and hence there are only a finite number of possible values for the ith coordi-
nate of u and hence also for u: V is finite.
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b) The general case. Let V be an arbitrary affine algebraic set. If W is an
algebraic affine set contained in V , then I(V ) ⊂ I(W ) and I(W ) determines
an ideal IV (W ) of the ring Γ (V ) (namely its image, cf. Summary 1.2.c), which
is simply the set of f ∈ Γ (V ) which vanish on W ). We have an isomorphism
Γ (V )/IV (W ) � Γ (W ), from which it follows that this ideal is also radical.
We note that if I is an ideal of Γ (V ), then we can define V (I) either as the
set of zeros of functions of I on V :

V (I) = {x ∈ V | ∀ f ∈ I, f(x) = 0}

or, which amounts to the same thing, by setting V (I) = V (r−1(I)), where r
is the canonical projection of k[X1, . . . , Xn] onto Γ (V ). We then have the
following proposition.

Proposition 4.9. There are mutually inverse decreasing bijections W �→
IV (W ) and I �→ V (I) between affine algebraic subsets contained in V and
radical ideals of Γ (V ). Moreover, we have the following equivalences:

a) W irreducible ⇔ IV (W ) prime ⇔ Γ (W ) integral,
b) W is a point ⇔ IV (W ) maximal ⇔ Γ (W ) = k,
c) W is an irreducible component of V ⇔ IV (W ) is a minimal prime ideal

of Γ (V ).

Proof. The existence of these bijections is obvious, as is a) (it is enough to
note that I is a radical ideal of Γ (V ) if and only if r−1(I) is a radical ideal
of k[X1, . . . , Xn]). The claim c) is simply the dual of the proposition stating
that irreducible components are maximal irreducible subsets (cf. 3.6). We note
that there are therefore a finite number of minimal prime ideals (cf. Summary
4.3).

For b) we note that to any x ∈ V there corresponds a homomorphism of
k-algebras χx : Γ (V ) → k which associates the quantity f(x) to f and whose
kernel is the maximal ideal

mx = I({x}) = {f ∈ Γ (V ) | f(x) = 0}.

The k-algebra homomorphisms χ : Γ (V ) → k are also called the characters
of Γ (V ) and they are also in bijective correspondence with the points of V
(conversely, we associate to a character χ the point (χ(X1), . . . , χ(Xn)) and
we check that this is in V ). We have hence proved the following result.

Proposition 4.10. The points of V are in bijective correspondence with the
maximal ideals of Γ (V ), or, alternatively, with characters of Γ (V ).

Examples 4.11.
a) Consider V = V (XY ) ⊂ k2. Check that the minimal prime ideals of

Γ (V ) are the images of the ideals (X) and (Y ) corresponding to the two
components of V .

b) More generally, for any hypersurface the following proposition holds.
The proof is left to the reader as an exercise. (cf. also Exercise I, 3):
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Proposition 4.12. Consider F ∈ k[X1, . . . , Xn], F = Fα1
1 · · ·Fαr

r , where the
Fi are irreducible and non-associated and αi > 0. We then have:

1) I(V (F )) = (F1 · · ·Fr). In particular, if F is irreducible, then I(V (F )) =
(F ).

2) The decomposition of V (F ) into irreducible components is given by
V (F ) = V (F1) ∪ · · · ∪ V (Fr). In particular, if F is irreducible, then V (F ) is
as well.

An arbitrary algebraic set V possesses, as in 1.5, standard open sets which
form a basis for its Zariski topology.

Proposition-Definition 4.13. Let V be an affine algebraic set and let f ∈
Γ (V ) be non-zero. The set

DV (f) = V − V (f) = {x ∈ V | f(x) �= 0}

(which we denote by D(f) when there is no risk of confusion) is called a
standard open set of V . Every open set in V is a finite union of standard open
sets.

5 A first step towards Bézout’s theorem

We will now show that the intersection of two plane curves without common
components is finite. In this section, k is an arbitrary commutative field.

Theorem 5.1. Let F,G ∈ k[X,Y ] be non-zero polynomials without common
factors. Then V (F ) ∩ V (G) is finite.

The proof will also give us the following result, which is interesting to
compare with 4.8:

Theorem 5.2. Under the hypotheses of 5.1 the ring k[X,Y ]/(F,G) is a finite-
dimensional k-vector space.

Proof. We start by proving the following lemma.

Lemma 5.3. Under the hypotheses of 5.1 there is a non-zero polynomial d ∈
k[X] and polynomials A,B ∈ k[X,Y ] such that d = AF +BG. (In other words
d ∈ (F,G).)

Proof (of 5.3). We leave the details of the proof to the reader: we simply
apply Bézout’s (elementary) theorem to the principal ring k(X)[Y ] and clear
denominators.

We can now prove 5.1. If (x, y) ∈ V (F ) ∩ V (G), then by 5.3 d(x) = 0
and hence there are a finite number of possible values x. The same reasoning
applied to y shows that the intersection is finite.

To prove 5.2 we use a similar argument, applied to the images of the
monomials XiY j in the quotient ring: by 5.3 we see that a finite number of
these monomials generate k[X,Y ]/(F,G).
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Remark 5.4. An example of a polynomial which can be used as the d(X) in
Lemma 5.3 is the resultant of F and G, considered as polynomials in Y . If F
and G are of degrees p and q, we can show that the degree of the resultant
is � pq and deduce (using a clever trick) that |V (F ) ∩ V (G)| � pq, which is
part of Bézout’s theorem.

6 An introduction to morphisms

In this section we will assume that the field k is infinite (which is the case if,
for example, k is algebraically closed).

We have defined our objects: affine algebraic sets. However, it is the mor-
phisms rather than the objects which will determine the behaviour of our
theory. Indeed, it is by now an established principle of mathematics that the
same objects (for example, affine algebraic sets such that k = C) can give rise
to radically differing theories depending on the maps allowed between them.
We may, for example, consider continuous maps, real differentiable maps,
analytic maps or polynomial maps between objects. We then get topology,
differential geometry, analytic geometry or algebraic geometry. Of course, in
the case at hand we will use polynomial maps. More precisely:

Definition 6.1. Let V ⊂ kn and W ⊂ km be two affine algebraic sets and let
ϕ : V → W be a map which we can write in the form ϕ = (ϕ1, . . . , ϕm), where
ϕi : V → k. We say that f is regular (or a morphism) if its components fi are
polynomial (i.e., are elements of Γ (V )). We denote the set of regular maps
from V to W by Reg(V,W ).

Remark 6.2. It is clear that we obtain in this way a category : the identity is
a morphism, as is the composition of two morphisms. All the usual notions—
isomorphisms, automorphisms, and so forth—therefore apply. We note that
morphisms are continuous maps for the Zariski topology (which is to say
that the preimage of an algebraic set under a morphism is again an algebraic
set), but the converse is false (for example, any bijective map from k to k is
continuous for the Zariski topology but is not necessarily polynomial).

Examples 6.3.
1) The elements of Γ (V ), particularly the coordinate functions, are mor-

phisms from V to k.
2) The bijective affine maps from kn to itself are isomorphisms: they cor-

respond to polynomials of degree 1.
3) Consider V ⊂ kn. The projection f from V to kp, p � n, given by

ϕ(x1, . . . , xn) = (xi1 , . . . , xip
), is a morphism.

4) Let V be the parabola V (Y −X2) and let f be the projection ϕ : V → k
given by ϕ(x, y) = x. Then f is an isomorphism, whose inverse is given by
x �→ (x, x2).
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5) The map ϕ : k → V (X3 + Y 2 − X2), given by the parameterisation
x = t2 − 1, y = t(t2 − 1) (obtained by intersecting with the line Y = tX), is
a morphism but not an isomorphism (ϕ is not injective).

6) The map ϕ : k → V (Y 2 − X3) given by the parameterisation t �→
(t2, t3) is a bijective morphism, but we will see further on that it is not an
isomorphism.

We have associated to an affine algebraic set V its affine algebra Γ (V )
and started to set up a dictionary allowing us to pass from one to the other.
Of course, we will have to extend this correspondence to morphisms: in other
words, we must show that it is functorial. This is done in the following trivial
proposition.

Proposition-Definition 6.4. Let ϕ : V → W be a morphism. For any f ∈
Γ (W ), we set ϕ∗(f) = f ◦ ϕ. Then ϕ∗ is a morphism of k-algebras, ϕ∗ :
Γ (W ) → Γ (V ).

Remarks 6.5.
1) We now have a contravariant functor, which we denote by Γ , from the

category of affine algebraic sets with regular maps to the category of k-algebras
with k-algebra morphisms which associates (Γ (V ), ϕ∗) to (V, ϕ). (The word
contravariant means that the direction of arrows is reversed, and functoriality
means that (g ◦ f)∗ = f∗ ◦ g∗ and the identity is sent to the identity.)

2) We can calculate ϕ∗ in the following way: let V ⊂ kn and W ⊂ km

be two affine algebraic sets and let ϕ : V → W be a morphism, written
in the form ϕ = (ϕ1, . . . , ϕm), where ϕi ∈ Γ (V ). We denote by ηi the ith
coordinate function on W , which is the image of the variable Yi in Γ (W ).
Then ϕ∗(ηi) = ϕi. If the functions ϕi are restriction to V of polynomials
Pi(X1, . . . , Xn), then the homomorphism

ϕ∗ : k[Y1, . . . , Ym]/I(W ) −→ k[X1, . . . , Xn]/I(V )

is given by Yi �→ P i(X1, . . . , Xn).
3) If ϕ(x) = y, then it is easily checked that with the notation of 4.9

(ϕ∗)−1(mx) = my.
Examples 6.6.

1) If ϕ is the projection ϕ : V (F ) ⊂ k2 → k, where ϕ(x, y) = x, then ϕ∗ is
the map from Γ (k) = k[X] to k[X,Y ]/(F ) which associates X to X.

2) Consider the parameterisation of V (Y 2 − X3) by t2, t3. We have

ϕ∗ : k[X,Y ]/(Y 2 − X3) −→ k[T ],

which is given by ϕ∗(X) = T 2 and ϕ∗(Y ) = T 3.

We will now study the properties of the functor Γ . Its behaviour on mor-
phisms is as good as we could have hoped.

Proposition 6.7. The functor Γ is fully faithful. In other words the map
γ : ϕ �→ ϕ∗ from Reg(V,W ) to Homk-alg(Γ (W ), Γ (V )) is bijective.
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Proof. We assume V ⊂ kn and W ⊂ km. We denote the coordinate functions
on W by ηi (cf. 6.5.2).

1) Γ is faithful, i.e., if ϕ and ψ are two morphisms from V to W such that
ϕ∗ = ψ∗, then ϕ = ψ (injectivity of γ). Indeed, this follows from the formula
which gives the components of ϕ: ϕi = ϕ∗(ηi) (cf. 6.5.2) and the analogous
formula for ψ.

2) Now let θ : Γ (W ) → Γ (V ) be a homomorphism of k-algebras. We
set ϕi = θ(ηi) ∈ Γ (V ). We consider the map ϕ : V → km whose coordi-
nates are the elements ϕi. If we can show that the image of ϕ is contained
in W , then we will have (cf. 6.5.2) that θ = ϕ∗, which would establish the
surjectivity of γ. Consider F (Y1, . . . , Ym) ∈ I(W ) and x ∈ V . We calcu-
late F (ϕ(x)) = F (θ(η1), . . . , θ(ηm))(x). Since θ is a morphism of algebras,
F (θ(η1), . . . , θ(ηm)) = θ(F (η1, . . . , ηm)), and since F (η1, . . . , ηm) is the image
in Γ (W ) of F (Y1, . . . , Ym) ∈ I(W ), it vanishes and we are done.

Corollary 6.8. Let ϕ : V → W be a morphism. Then ϕ is an isomorphism
if and only if ϕ∗ is an isomorphism. It follows that V and W are isomorphic
if and only if their algebras Γ (V ) and Γ (W ) are isomorphic.

Application 6.9. The morphism ϕ : k → V = V (Y 2 − X3) given by ϕ(t) =
(t2, t3) is not an isomorphism.

Indeed, if f were an isomorphism, then the image of Γ (V ) under ϕ∗ would
be the whole ring Γ (k) = k[T ]. But the image of ϕ∗ is the subring k[T 2, T 3]
of k[T ], which is strictly smaller.

In fact, the two curves are not isomorphic because their rings are not
isomorphic. The homomorphism ϕ∗ is injective (cf. 2.4.d or 6.11 below), so
Γ (V ) is isomorphic to k[T 2, T 3]. The element T is contained in the field of
fractions of Γ (V ) (it is T 3/T 2), and it is integral over Γ (V ) (since it satisfies
the equation X2 − T 2 = 0), but it is not in Γ (V ), and hence this ring is not
integrally closed. On the other hand, the ring k[T ] is principal, and hence
is integrally closed. This phenomenon is caused by the singular point of the
curve V (cf. Chapter V).

There is also a dictionary for morphisms; here is an example. We start
with a definition.

Definition 6.10. Let ϕ : V → W be a morphism. We say that ϕ is dominant
if the closure of its image (in the Zariski topology) is equal to the whole of W ,
ϕ(V ) = W .

We then have the following proposition.

Proposition 6.11. Let ϕ : V → W be a morphism.
1) ϕ dominant ⇔ ϕ∗ injective.
2) Assume that ϕ is dominant and V is irreducible. Then W is irreducible.
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Proof.
1) If ϕ is dominant and f ∈ Ker ϕ∗, then fϕ = 0 and hence f vanishes

on ϕ(V ) and, since f is continuous, f vanishes everywhere. Conversely, set
X = ϕ(V ). This is an affine algebraic set contained in W . Assume X �= W .
Then (cf. 2.2.2) there exists a non-zero f ∈ Γ (W ) which vanishes on X. But
then fϕ = ϕ∗(f) = 0, which is a contradiction.

2) This follows from 1) and 3.2. (We can also argue directly assuming W
to be of the form F ∪ G.)

Remark 6.12. We note that the conditions are dual to each other because of
the contravariance of Γ . Be careful, however: ϕ∗ injective does not imply ϕ
surjective (consider the projection of the hyperbole XY = 1 on the x-axis).

We finish this section by showing that when the field k is algebraically
closed, the situation is as good as it could be.

Theorem 6.13. Assume that k is algebraically closed. The functor Γ is then
an equivalence of categories between the category of affine algebraic sets with
regular maps and the category of reduced k-algebras of finite type with homo-
morphisms of k-algebras.

(This means that the functor is fully faithful (cf. Proposition 6.7) and,
moreover, it is essentially surjective: if A is a reduced k-algebra of finite type,
then there exists a V such that A is isomorphic to Γ (V ).)

Proof. We have already proved full faithfulness in Proposition 6.7. To prove
surjectivity, consider A a reduced k-algebra of finite type. Since A is of finite
type, we can write A � k[X1, . . . , Xn]/I (cf. Summary 1.5), and since A is
reduced, the ideal I is radical. We set V = V (I). We have I(V ) = rac(I) = I
by the Nullstellensatz, and hence A � Γ (V ).

Remark 6.14. This theorem is the culmination of the programme of transla-
tion between geometry and algebra undertaken in this chapter. In the affine
setting this translation is more or less optimal, but in projective geometry we
will have to use functions defined only on open sets.

In the following chapters we will need the notion of a rational function
on V , which we will re-examine in detail in Chapters VIII and IX.

Definition 6.15. Let V be an irreducible affine algebraic set, so the ring Γ (V )
is integral. The field of fractions of Γ (V ) is called the field of rational functions
on V and is denoted K(V ).

Remark 6.16. If f ∈ K(V ), then f can be written in the form f = g/h, where
g, h ∈ Γ (V ) and h �= 0. We can therefore consider f to be a function defined
on the standard open set D(h) defined by h(x) �= 0.
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Exercises

1) Is the set {(t, sin t) | t ∈ R} algebraic?

2) Let V be an affine algebraic set, V ⊂ kn, and consider x /∈ V . Show that there
is an F ∈ k[X1, . . . , Xn] such that F (x) = 1 and F |V = 0.

3) Let F ∈ k[X, Y ] be an irreducible polynomial. Assume that V (F ) is infinite.
Prove that I(V (F )) = (F ).
Application: let F be of the form F α1

1 · · ·F αr
r , where the polynomials Fi are

irreducible and the sets V (Fi) are infinite. Find the irreducible components of
V (F ).

4) Some results on irreducibility. (All spaces in this question are arbitrary
topological spaces.)

a) If X is irreducible and U is an open subset of X, show that U is irreducible.
b) If X is of the form U1 ∪U2, where the sets Ui are open and irreducible, and

U1 ∩ U2 �= ∅, show that X is irreducible.
c) If Y ⊂ X and Y is irreducible, show that Y is irreducible.

5) A ring A is said to be connected if every idempotent in A is trivial (i.e., if every
element e in A such that e2 = e is equal to 0 or 1).

a) Prove that every integral domain is connected.
b) If A is the direct product of two non-trivial rings, prove that A is not

connected.
c) Conversely, if A possesses a non-trivial idempotent e, prove that A �

A/(e) × A/(1 − e).
d) Let V be an affine algebraic set over an algebraically closed field k. Prove

that V is connected (in the Zariski topology) if and only if Γ (V ) is con-
nected. (If V has two connected components, start by finding a function
which is 0 on one and 1 on the other.) Is this still the case if k is not
algebraically closed?

6) Assume that k is infinite. Determine the function rings Ai (i = 1, 2, 3) of the
plane curves whose equations are F1 = Y − X2, F2 = XY − 1, F3 = X2 +
Y 2 − 1. Show that A1 is isomorphic to the ring of polynomials k[T ] and that
A2 is isomorphic to its localised ring k[T, T−1]. Show that A1 and A2 are not
isomorphic (consider their invertible elements). What can we say about A3

relative the two other rings? (Treat separately the cases where −1 is or is not a
square in k, and pay special attention to the characteristic 2 case.)

7) Let f : k → k3 be the map which associates (t, t2, t3) to t and let C be the image
of f (the space cubic). Show that C is an affine algebraic set and calculate I(C).
Show that Γ (C) is isomorphic to the ring of polynomials k[T ].

8) Assume that k is algebraically closed. Determine the ideals I(V ) of the following
algebraic sets.

V (XY 3 + X3Y − X2 + Y ), V (X2Y, (X − 1)(Y + 1)2),

V (Z − XY, Y 2 + XZ − X2).
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Projective algebraic sets

Throughout this chapter, k will be a commutative field.

0 Motivation

We have already seen the main reason for introducing projective space in the
Introduction when discussing Bézout’s theorem. In affine space, results on
intersections always contain a certain number of special cases due to parallel
lines or asymptotes. For example, in the plane two distinct lines meet at a
unique point except when they are parallel. In projective space, there are no
such exceptions.

Historically, projective space was introduced in the xviith century by
G. Desargues, but was mostly developed in the xixth century (by Monge,
Poncelet, Klein and others). We have known that it is the natural setting for
most geometries since Klein’s Erlangen programme (1872).

In algebraic geometry, it is also the setting which gives the most satisfying
results. However, affine space remains important since it is a local model of
projective space.

1 Projective space

a. Definition

Let n be an integer � 0 and let E be a k-vector space of dimension n + 1. We
introduce the equivalence relation R on E − {0}:

xRy ⇐⇒ ∃λ ∈ k∗, y = λx.

The relation R is simply collinearity and the equivalence classes for R are the
lines in E passing through 0 with 0 removed.
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Definition 1.1. The projective space associated to E, denoted by P(E), is the
quotient of E−{0} by the relation R. When E = kn+1 (i.e., given a basis), we
write P(E) = Pn(k) and we call this space standard n-dimensional projective
space.

We denote by p the canonical projection kn+1 − {0} → Pn(k). If x =
(x0, x1, . . . , xn) is �= 0 and x = p(x), then we say that x is a point of Pn(k),
whose homogeneous coordinates are (x0, x1, . . . , xn). We note that the ele-
ments xi are not all 0 and if λ ∈ k is �= 0, then (λx0, λx1, . . . , λxn) is another
system of homogeneous coordinates for x, which justifies our terminology.

Remarks 1.2.
1) When k = R or C, projective space has a natural topology, namely the

quotient of the topology on kn+1−{0}. Projective space is then easily checked
to be compact and connected.

2) The fact that the projective space associated to kn+1 is of dimension n
corresponds to the fact that lines passing through the origin are contracted
to points.

b. Projective subspaces

Using the above notation, we consider a subspace F in E of dimension m+1,
where m is an integer satisfying 0 � m � n.

Definition 1.3. The image of F −{0} in P(E) is called a projective subspace
of dimension m, denoted by F .

(This is justified, amongst other things, by the fact that the restriction
to F of the collinearity relation on E is simply the collinearity relation on F .)

When m = 0, we call F a point: when m = 1, 2, . . . , n−1, we call it a line,
plane, . . . , projective hyperplane, and we can set up a theory of projective
geometry, analogous to affine geometry, whose intersection theorems have no
special cases.

Proposition 1.4. Let V,W be two projective subspaces of P(E) of dimen-
sions r and s such that r + s−n � 0. Then V ∩W is a projective subspace of
dimension � r + s − n. (In particular, V ∩ W is non-empty.)

Proof. This follows immediately from theorems on intersections of vector sub-
spaces.

Example 1.5. If n = 2, then two distinct lines in the projective plane meet at
a unique point. If n = 3, a plane and a line meet at least at one point and this
point is unique if the line is not contained in the plane; two distinct planes
meet at a line, and so forth.
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2 Homographies

If E is a vector space, then the linear group GL(E) acts on E. We consider
u ∈ GL(E); since u is injective and preserves collinearity, u induces a bijection
u of P(E).

Definition 2.1. A bijection of P(E) induced by an element u in GL(E) is
called a homography.

Remarks 2.2.
a) If F is a projective subspace of dimension d in P(E) and u is a ho-

mography, then u(F ) = u(F ): the image of F is a projective subspace of
dimension d. When d = 1, we see that homographies preserve alignment.

b) For an explanation of the word homography, cf. 3.1.1.
c) It is clear from the definition that the group k∗ of homotheties acts

trivially on P(E) and it is easy to check that these are the only elements
which act trivially on P(E). The group of homographies on P(E) (or the
projective group of E) is therefore the quotient PGL(E) = GL(E)/k∗.

d) Homographies are automorphisms of projective space, in the sense given
in Chapter III.

3 Relation between affine and projective space

What follows is an intuitive introduction to the affine-projective link. We will
deal in more detail with this link in Chapter III.

Let the n + 1-dimensional space E be equipped with a basis, so that
P(E) = Pn(k), with coordinates (x0, x1, . . . , xn). Let H be the hyperplane
of equation x0 = 0 and let H be the associated projective hyperplane. Set
U = Pn(k) − H. There is then a bijection ϕ : U → kn which associates to x
(where x = (x0, x1, . . . , xn)) the point (x1/x0, . . . , xn/x0). This map is well
defined, since x0 does not vanish on U , and its image is independent of the
system of coordinates chosen for x. It is also a bijection whose inverse is given
by (x1, . . . , xn) �→ (1, x1, . . . , xn).

Moreover, since the hyperplane H is a projective space of dimension n−1,
the foregoing gives a description of projective space Pn(k) of dimension n as
being a disjoint union of an affine space kn of dimension n and a projective
space H of dimension n− 1. Alternatively, we have embedded a copy of affine
space kn in a projective space of the same dimension. The points of kn are
said to be “at finite distance” and the points of H are said to be “at infinity”.

Of course, the notion of infinity depends on the choice of hyperplane H
and it is entirely possible to change it by taking another hyperplane of the
form xi = 0, or indeed a more general hyperplane. In fact, there is no infinity
in projective space: infinity is an affine concept!
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Examples 3.1.

1. The projective line. We take n = 1: we denote the coordinates of k2 by
(x, t) and we take t = 0 to be the “hyperplane” at infinity H. In fact, since all
the points (x, 0) in H are collinear, H contains a unique point ∞ = (1, 0) and
we identify k and P1(k) − {∞} via the map x �→ (x, 1). It follows that the
projective line is an affine line to which we add a unique point at infinity. This
description enables us to calculate the cardinal of the projective line when k
is finite. When k = R or C, we get topological information: the projective
line is the Alexandrov compactification of the affine line and is hence a circle
for k = R and a sphere for k = C.

We can check that under this identification the homographies of P1(k) are
the maps x �→ ax+b/cx+d, extended to infinity in the usual way: these maps
are indeed homographies in the usual sense.

2. The projective plane. We use coordinates (x, y, t) and take t = 0 to be
the hyperplane at infinity. In this case H consists of points with homoge-
neous coordinates (x, y, 0) and is hence a projective line denoted by D∞. The
complement of H is formed of points (x, y, 1) and is isomorphic to the affine
plane k2 via the map which forgets the third coordinate.

a. The projective lines in the plane. Let us determine the projective lines in
P2(k). Such a line D is the image of a subspace of dimension 2 in k3, and
is therefore given by a unique non-trivial linear equation ux + vy + wt = 0,
where u, v and w are not all 0. There are two cases to consider.

1) If u = v = 0, then we may assume w = 1 and that D is simply D∞.
2) Otherwise, we consider the restriction D of D to the affine plane k2:

we obtain the points (x, y) such that ux + vy + w = 0, i.e., an affine line.
On the other hand, we consider the restriction of D to D∞: we obtain the
points (x, y, 0) such that ux+ vy = 0. There is a unique such point, for which
we may choose homogeneous coordinates (v,−u, 0). This point at infinity on
the line D corresponds to the direction of D: moreover, if D′ is an affine line
parallel to D, then its equation is ux+vy +w′ = 0 and D′ has the same point
at infinity as D.

To summarise, the projective lines other than D∞ are in bijective corre-
spondence with affine lines: each projective line contains an extra point at
infinity corresponding to its direction.

b. Conics. Let C be the subset of P2 consisting of points whose homogeneous
coordinates (x, y, t) satisfy the equation xy − t2 = 0. (See 4.1 for an explana-
tion of why we must use homogeneous polynomials in projective space.) The
intersection of C with the affine plane k2 is the hyperbole xy = 1. At infinity,
C has two points, (1, 0, 0) and (0, 1, 0), corresponding to the asymptotes of C.
Furthermore, if we take the intersection of C and the projective line x− t = 0
corresponding to the affine line x = 1, which is parallel to the asymptote
x = 0, we get one point (1, 1, 1) at finite distance and another point (1, 0, 0)
at infinity, corresponding to the direction of the asymptote. If we take the
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intersection with the asymptote itself, we get the point at infinity counted
double: the asymptote is tangent to C at infinity.

NB: we have seen that the line at infinity in projective space is not intrin-
sically fixed. We now choose x = 0 to be the line at infinity. In the (y, t) affine
plane we obtain a curve C ′, whose equation is y = t2, a parabola with only
one point at infinity, (0, 1, 0). (This parabola is tangent to the line at infinity.)

Continuing, we now take x + y = 0 to be the line at infinity and assume
that k is the field of real numbers. After a change of variables (or homography)
t′ = x + y, x′ = x, y′ = t we get a new equation for C, x′2 + y′2 − x′t′ = 0. In
affine coordinates, relative to the new line at infinity t′ = 0 this curve is an
ellipse (actually a circle) x′2 + y′2 − x′ = 0, and this time there is no point at
infinity (because we have taken k = R).

The conclusion of this little game is that the familiar conic types (hyper-
bolae, parabolas, ellipses, etc) are affine properties. In projective space, these
properties can be expressed by simply saying that the conic cuts the line cho-
sen to be the line at infinity in two, one or no points. Moreover, we will show
that (cf. Exercise V, 3) in projective space there is a unique non-degenerate
conic (up to homography).

4 Projective algebraic sets

We will now repeat in the projective setting the material contained in Chap-
ter I, passing quickly over similar points and emphasising differences.

We work with an infinite commutative field k: n is an integer > 0 and
we denote by Pn(k) or simply Pn the projective space of dimension n. The
coordinates on Pn are denoted by (x0, x1, . . . , xn). We denote by R the ring of
polynomials k[X0, . . . , Xn]. In small dimensions we will mostly use variables
x, y, z, t and take the hyperplane t = 0 to be the hyperplane at infinity.

The first difference with affine sets is that the polynomials F in the ring
k[X0, . . . , Xn] no longer define functions on projective space since their value
at a point x depends on the chosen system of homogeneous coordinates. For
example, if F is homogeneous of degree d, then

F (λx0, λx1, . . . , λxn) = λdF (x0, x1, . . . , xn).

However, we can define zeros of polynomials in the following way.

Proposition-Definition 4.1. Consider F ∈ k[X0, . . . , Xn] and x ∈ Pn. We
say that x is a zero of F if F (x) = 0 for any system of homogeneous coor-
dinates x for x. We then write either F (x) = 0 or F (x) = 0. If F is homo-
geneous, it is enough to check that F (x) = 0 for any system of homogeneous
coordinates. If F = F0 + F1 + · · · + Fr, where Fi is homogeneous of degree i,
then it is necessary and sufficient that Fi(x) = 0 for all i.
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Proof. Only the last statement needs to be proved. If F (λx) = λrFr(x) +
· · ·+λF1(x)+F0(x) = 0 for any λ, then since k is infinite all the values Fi(x)
vanish. The converse is obvious.

This is the first appearance of homogeneous polynomials, which will play
an essential role in the study of projective space.

Definition 4.2. Let S be a subset of k[X0, . . . , Xn]. We set

Vp(S) = {x ∈ Pn | ∀F ∈ S, F (x) = 0}

(in the sense of 4.1, of course). We say that Vp(S) is the projective algebraic
set defined by S. When there is no risk of confusion, we denote this set by
V (S).

Remark 4.3. It is clear that if I is the ideal generated by S, then Vp(I) =
Vp(S). Since k[X0, . . . , Xn] is Noetherian, we can therefore assume that S
is finite and by 4.1 we can even assume S is a finite set of homogeneous
polynomials.

Examples 4.4.
a) We have Vp((0)) = Pn.
b) Let m = R+ = (X0, . . . , Xn) be the ideal of polynomials with constant

term 0. We have Vp(m) = ∅. (The homogeneous coordinates of a point in Pn

are not all 0.) We call this ideal the “irrelevant” ideal. NB : this is the case
even if k is algebraically closed, which is an important difference with affine
geometry (cf. Chapter I, 4.1).

c) Points are projective algebraic sets: consider x = (x0, x1, . . . , xn) ∈ Pn.
One of the component xi—for example, x0—is not 0, so we can assume x0 = 1.
We then have {x} = Vp(X1 − x1X0, . . . , Xn − xnX0).

d) If n = 2, projective plane curves are defined by homogeneous equations:
Y 2T − X3 = 0, X2 + Y 2 − T 2 = 0, . . .

Remarks 4.5. As in the affine case, the following hold.
a) The map Vp is decreasing.
b) An arbitrary intersection or finite union of projective algebraic sets

is a projective algebraic set, so there is a (Zariski) topology on Pn whose
closed sets are the projective algebraic sets. Of course, the Zariski topology
on subsets of Pn is simply the restriction of the Zariski topology on Pn. We
will see in Chapter III that if we embed affine space kn in projective space,
then we recover by this method the Zariski topology on kn.

c) Let V ⊂ Pn be a projective algebraic set; we associate to V its cone
C(V ), which is the inverse image of V under the projection p : kn+1 − {0} →
Pn(k), plus the origin of kn+1. If I is a homogeneous ideal (cf. 7.2 below)
different from R and V = Vp(I), then C(V ) = V (I) ⊂ kn+1 (in the affine
category). If I = R, then C(V ) = V (R+) = {0}. This type of argument some-
times enables us to reduce a projective problem to a similar affine problem
(cf. 5.4).
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5 Ideal of a projective algebraic set

Definition 5.1. Let V be a subset of Pn. We define the ideal of V by the
formula

Ip(V ) = {F ∈ k[X0, . . . , Xn] | ∀x ∈ V, F (x) = 0 (in the sense of 4.1)}.

Remarks 5.2.
a) Ip(V ) is a homogeneous radical ideal by 4.1 (cf. 7.2)
b) The operation Ip is decreasing.
c) If V is a projective algebraic set, then Vp(Ip(V )) = V . If I is an ideal,

then I ⊂ Ip(Vp(I)).
d) We have Ip(Pn) = (0) and I(∅) = k[X0, . . . , Xn].

5.3. Irreducibility. The definitions and results of Chapter I can be easily trans-
lated mutatis mutandis into projective geometry.

Assume now that the field k is algebraically closed. There is then a projec-
tive version of the affine Nullstellensatz. The main difference is the existence
of the irrelevant ideal R+ = (X0, . . . , Xn).

Theorem 5.4 (Projective Nullstellensatz). Assume that k is algebra-
ically closed. Let I be a homogeneous ideal of k[X0, . . . , Xn] and set V = Vp(I).

Vp(I) = ∅ ⇐⇒ ∃N such that (X0, . . . , Xn)N ⊂ I1)

⇐⇒ (X0, . . . , Xn) = R+ ⊂ rac(I).

2) If Vp(I) �= ∅, then Ip(Vp(I)) = rac(I).

Proof. If I = R, then V = Vp(I) = ∅ and 1) is trivially true. Assume therefore
that I �= R. We apply the affine Nullstellensatz to the cone of V : C(V ) =
V (I) ⊂ kn+1 (cf. 4.5.c). The statement that V = Vp(I) is empty means exactly
that C(V ) contains only the origin in kn+1 and hence that rac(I) is equal
to R+, which proves 1). We now prove 2). As V = Vp(I) is non-empty, Ip(V ) =
I(C(V )), so this ideal is equal to rac(I) by the affine Nullstellensatz.

Remark 5.5. It can be checked that if I is a homogeneous ideal, then so is its
radical. We therefore obtain a bijection between non-empty projective alge-
braic sets in Pn and homogeneous reduced ideals of R which do not contain
the irrelevant ideal R+. The prime ideals still correspond to irreducible pro-
jective algebraic sets; but be careful—points no longer correspond to maximal
ideals.
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6 A graded ring associated to a projective algebraic set

Let V ⊂ Pn be a projective algebraic set and let Ip(V ) be its ideal. Since
Ip(V ) is homogeneous, the quotient ring

Γh(V ) = k[X0, . . . , Xn]/Ip(V )

is graded (cf. 7.1 below). This is one of the graded rings naturally associ-
ated to V . We leave it to the reader to check that there is still a dictionary
translating homogeneous radical ideals in Γh(V ) into projective algebraic sets
contained in V .

Remarks 6.1.
a) NB: the elements of Γh(V ), unlike their affine analogues, do not define

functions on V . However, if f ∈ Γh(V ) and x ∈ Pn, then the statement that x
is a zero of f is meaningful and independent of the choice of representative
of x. The ring Γh(V ) differs in two other fundamental ways from affine rings:
we will see in Chapter III, 11.6 that this ring depends fundamentally on the
embedding of V in Pn, and moreover, even for a fixed embedding there are
several graded rings naturally associated to V (cf. Chapter III, 9.8).

b) The following is a consequence of the Nullstellensatz. If f ∈ Γh(V ) is
homogeneous of degree > 0 and vanishes on the closed set W in V , then f is
contained in the radical of the ideal IV (W ).

The open sets D+(f). These are the projective analogues of the open affine
sets D(f).

Definition 6.2. Let V be a projective algebraic set and consider a homoge-
neous element f ∈ Γh(V ) of degree > 0. We set

D+(f) = {x ∈ V | f(x) �= 0}.

It is clear that the sets D(f) are open sets of V . Moreover:

Proposition 6.3. With the notations of 6.2, every non-empty open set of V
is a finite union of open sets of the form D+(f).

Proof. Let U be a non-empty open set of V , so that V − U = Vp(I), where I
is a homogeneous ideal of R. It follows that I = (F1, . . . , Fr), where the
Fi ∈ k[X0, . . . , Xn] are homogeneous polynomials of degree > 0. If fi is the
image in Γh(V ) of Fi, then U = D+(f1) ∪ · · · ∪ D+(fr).

Example 6.4. Considering the open sets D+(Xi) for i = 0, . . . , n in Pn we
obtain an open cover of Pn by open sets which were shown in Section 3 to be
in natural bijection with affine spaces. This remark will enable us to define
the structure of a variety on Pn in the next chapter.
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Remark 6.5. For reasons which will become apparent in the next chapter, we
will only consider the open sets D+(f) for elements f of degree > 0. If f is
of degree 0, hence constant, the corresponding open set is trivial—empty if
f �= 0 and equal to V if f = 0. If f is of degree > 0, then D+(f) is non-empty
and can only be equal to V if V is finite (cf. IV, 2.9).

To conclude, the main differences between affine and projective geometry
are the following:

1) We have to use homogeneous polynomials and replace rings by graded
rings and ideals by homogeneous ideals in the projective setting.

2) Polynomials (and more generally elements of all the graded rings in-
volved) are no longer functions.

3) The irrelevant ideal (X0, . . . , Xn) plays a very special role.
4) We can recover affine geometry from projective geometry using the open

sets D+(Xi) or, more generally, open sets of the form D+(f).

7 Appendix: graded rings

Definition 7.1. A k-algebra R is said to be graded if it can be written as a
direct sum

R =
⊕

n∈N

Rn,

where the subspaces Rn of R satisfy RpRq ⊂ Rp+q. The elements of Rp are
said to be homogeneous of degree p and this condition is the usual rule for the
degree of a product.

We note that R0 is a subalgebra of R and m = R+ =
⊕

n>0 Rn is an ideal
of R whose quotient is isomorphic to R0. The canonical example of a graded
ring is the ring of polynomials, graded by the degree function in the usual
way.

Proposition-Definition 7.2. Let R be a graded k-algebra and let I be an
ideal of R. The following are equivalent.

1) I is generated by homogeneous elements.
2) If f ∈ I and f =

∑r
0 fi and fi is homogeneous of degree i, then fi ∈ I

for every i.
Such an ideal is said to be homogeneous.

Proof. It is clear that 2) implies 1). Conversely, assume that I is generated
by homogeneous elements Gi of degrees αi. Consider F = F0 + · · · + Fr ∈ I,
where Fi is homogeneous of degree i. By induction, it will be enough to show
that Fr ∈ I. But we can write F =

∑
UiGi, and on identifying terms of

highest degree, we get Fr =
∑

Ui,r−αi
Gi, so Fr is contained in I.

Proposition 7.3. Let R be a graded k-algebra and let I be a homogeneous
ideal of R. Let S be the quotient k-algebra S = R/I and p the canonical
projection. Then S has a natural grading given by Si = p(Ri).
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Proof. It will be enough to show that S is the direct sum of the spaces Si,
but this is exactly condition 2) of Proposition 7.2.

Remark 7.4. If R0 = k and I is homogeneous and different from R, then I is
contained in R+.

Definition 7.5. Let R be a graded k-algebra. An R-module M is said to be
graded if it can be written as a direct sum

M =
⊕

n∈Z

Mn,

where the k-subspaces Mn of M satisfy RpMq ⊂ Mp+q for all p ∈ N and
q ∈ Z. A homomorphism ϕ : M → N between two graded R-modules is said
to be homogeneous of degree d if, for all n, ϕ(Mn) ⊂ Nd+n.

We note that if ϕ is homogeneous of degree d, then the kernel of ϕ is a
graded submodule of M , i.e., if x =

∑
xn ∈ Ker ϕ, then xn ∈ Ker ϕ for all n.

Exercises

1 Homographies

Let E be a k-vector space of dimension n + 1 and let P(E) be the associated
projective space. If u ∈ GL(E), u induces a bijection u from P(E) to itself which
we call a homography.

a) What can we say about u when u = Id?
b) Show that the image of a projective subspace of dimension d under a homogra-

phy is again a projective subspace of dimension d.
c) Conversely, show that if V and W are two projective subspaces of dimension d,

then there is a homography u such that u(V ) = W .
d) Assume E = k2 and

u =

(
a b
c d

)

such that ad− bc �= 0. Take the point (1, 0) in P1(k) = P(E) to be the point at
infinity, so points x in k can be identified with points (x, 1) in P1(k) − {∞}.
Determine u explicitly and explain the origins of the word homography.

2 Markings

Using the same notation as in 1, we denote the canonical projection from E − {0}
to P(E) by p. A marking of P(E) consists of n+2 points x0, . . . , xn+1 of P(E) such
that there is a basis e1, . . . , en+1 of E such that p(ei) = xi for i = 1, . . . , n + 1 and
p(e1 + · · · + en+1) = x0.

a) Assume n = 1. Prove that a marking of P(E) (i.e., the projective line) is exactly
the data of three distinct points. (For example, in P1(k) we can take 0 = (0, 1),
∞ = (1, 0) and 1 = (1, 1).)
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b) Prove that n + 2 points x0, . . . , xn+1 ∈ P(E) form a marking if and only if no
n + 1 of them are contained in a hyperplane.

c) Prove that if x0, . . . , xn+1 and y0, . . . , yn+1 are two markings of P(E), then
there is a unique homography which sends each xi to yi. Study the case n = 1
in detail.

3 Quadrics

Let k be an algebraically closed field. A quadric in P3(k) is a projective algebraic
set of the form Q = V (F ), where F is an irreducible polynomial of degree 2 in
X, Y, Z, T and hence gives rise to a quadratic form on k4 which we assume to be
non-degenerate.

a) Prove that if Q = V (F ) is a quadric, then there is a homography h such that
h(Q) = V (XT − Y Z). We assume from now on that Q is of this form.

b) Prove that Q contains two families of lines both of which are indexed by P1.
Prove that a unique line from each family passes through any point of Q, that
two lines in the same family are disjoint and that two lines in different families
meet at a unique point.

c) Prove that if D1, D2, D3 are three lines in P3 which are pairwise disjoint, then
there is a unique quadric Q containing the lines Di. (Start by showing that
for any 9 points in P3 we can find a set of the form V (F ) with F of degree 2
containing them all, and then show that if a set of this form meets a line in
three points, then it contains it.)

4 The space cubic

We assume that k is infinite.
We consider the map ϕ : P1 → P3 defined by

ϕ(u, v) = (u3, u2v, uv2, v3).

We set C = Im ϕ.

a) Show that C = V (I), where I is the ideal

(XT − Y Z, Y 2 − XZ, Z2 − Y T ).

(For the non-obvious inclusion, consider the affine open sets X �= 0, T �= 0.)
b) Prove that I(C) is equal to I. (Start by proving (by induction on the degree

of F relative to Y and Z, for example) that any homogeneous polynomial F ∈
k[X, Y, Z, T ] is equal modulo I to a polynomial of the form a(X, T )+b(X, T )Y +
c(X, T )Z.)

c) Prove that I(C) cannot generated by two elements. (Consider the terms of
degree 2.) We say that C is not a scheme-theoretic complete intersection.

d) ¶ Prove that on the other hand C = V (Z2−Y T, F ), where F is a homogeneous
polynomial to be determined. We say that C is a set-theoretic complete inter-
section, which means that C can be defined by two equations, or, alternatively,
that C is the intersection of two surfaces. NB: these surfaces are tangent to each
other and C should be thought of as being of multiplicity 2 in this intersection.
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e) ¶ Prove there is a “resolution” of I(C) i.e., an exact sequence

0 −→ R(−3)2
u−−→ R(−2)3

v−−→ I(C) −→ 0,

where R is the ring k[X, Y, Z, T ] and R(−i) is the graded R-module which is
simply R with a shifted grading: R(−i)n = Rn−i. The homomorphisms u and v
are of degree 0 (i.e., they send elements of degree n to elements of degree n).
Here, this means that v is given by three homogeneous polynomials of degree 2
which generate I(C) (what could they be!) and u by a 3 × 2 matrix whose
coefficients are homogeneous polynomials of degree 1. Our aim is to calculate u,
i.e., the relations (or, to use a nicer word, the syzygies) linking the generators
of I.

5 The union of two distinct lines

Let D1 and D2 be two distinct lines in P3.

a) Show that up to homography we can assume D1 = V (X, Y ) and D2 = V (Z, T ).
b) Consider C = D1 ∪ D2. Calculate I(C).
c) ¶ Prove that there is a resolution of I(C) of the following form (cf. 4):

0 −→ R(−4) −→ R(−3)4 −→ R(−2)4 −→ I(C) −→ 0.



III

Sheaves and varieties

0 Motivation

If we compare the study of affine algebraic sets and projective algebraic sets,
we find many similarities and a few fundamental differences, such as the role
played by homogeneous polynomials and graded rings in projective geometry.
The most important difference, however, is the functions. If V is an affine
algebraic set, we have a lovely function algebra Γ (V ) and an almost perfect
dictionary translating properties of V into properties of Γ (V ). One of the
problems of projective geometry is that elements of Γh(V ) do not define func-
tions on V , even in the simplest case, namely a homogeneous polynomial,
since if x ∈ Pn and F is homogeneous of degree d, then the quantity F (x)
depends on the choice of representative: F (λx) = λdF (x).

To solve this problem we will exploit the idea that projective space Pn

contains open sets Ui = D+(Xi) which are isomorphic to affine spaces. On
these open sets there is a set of well-behaved functions—the polynomials. We
might imagine that we could get good functions on Pn by gluing together
good functions on the open sets Ui. It turns out that this method will not
give us many functions defined globally on Pn, as the example below shows.

Consider the projective line P1, with homogeneous coordinates x and t
and open sets U0 (x �= 0) and U1 (t �= 0). These are isomorphic to k via
maps j0 and j1 given, respectively, by τ �→ (1, τ) and ξ �→ (ξ, 1) with inverses
(x, t) �→ t/x and (x, t) �→ x/t. On U0 (resp. U1) a function is good if it is
polynomial function f(τ) = f(t/x) (resp. g(ξ) = g(x/t)). To obtain a good
function on the whole of P1 these two functions must coincide on U0 ∩U1. In
other words, for all x, t �= 0 we must have f(t/x) = g(x/t), that is to say,

an
tn

xn
+ · · · + a1

t

x
+ a0 = bm

xm

tm
+ · · · + b1

x

t
+ b0,
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and clearing denominators we get

antn+m + an−1t
n+m−1x + · · ·
+ a0t

mxn − b0t
mxn − b1t

m−1xn+1 − · · · − bmxm+n = 0.

The above polynomial, which vanishes on the Zariski open set x �= 0, t �= 0
in k2, is therefore identically zero (at least if k is infinite). But this implies
that all the coefficients ai, bi should be zero for i > 0 and a0 and b0 should
be equal. In other words, f and g must be two equal constants and the global
function constructed on P1 is a constant.

The moral of the story is that in projective geometry global functions
(i.e., functions defined on the whole of Pn, or on the whole of V , where V
is a projective algebraic set) are not enough (most of the time the only such
functions are constants), and if we want to deal with functions, we must settle
for locally defined functions, i.e., functions defined on open sets.

It is this observation which leads us to the notion of sheaves.

1 The sheaf concept

a. Sheaves of functions: definition

Definition 1.1. Let X be a topological space and K a set. A K-valued sheaf
of functions on X is given, for every open set U in X, by a set F(U) of
functions from U to K, which satisfy the following two axioms.

1) Restriction. If V is an open set contained in U and f ∈ F(U), then
f |V ∈ F(V ).

2) Gluing. If U is covered by open sets Ui (i ∈ I), then for any choice of
elements fi ∈ F(Ui) such that fi|Ui∩Uj

= fj |Ui∩Uj
there is a unique function

f ∈ F(U) such that f |Ui
= fi.

Remarks 1.2.
a) In the gluing axiom, the existence of a function f : U → K such that

f |Ui
= fi is clear. The condition simply says that this function is in F(U).

b) The above axioms are natural. They say that a certain class of functions
on X (which we want to use as our class of good functions) has enough good
properties to be manageable. More precisely, we ask that the class in question
should be stable under restriction (Axiom 1) and local, that is to say, to check
that f is a good function it should be enough to check it is locally a good
function (Axiom 2).

c) These conditions are satisfied by some highly important classes of func-
tions. The set of all functions is of course a sheaf, but we also have a sheaf of
all real or complex valued continuous functions. Alternatively, if X is an open
set in Rn, we have a sheaf of all differentiable or analytic functions, etc.

d) We note that restriction defines a map rV,U : F(U) → F(V ) such that
for any U , rU,U = IdF(U), and for all W ⊂ V ⊂ U , rW,U = rW,V rV,U .
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Notation 1.3. We set F(U) = Γ (U,F). The elements of Γ (U,F) are called
sections of F over U . When U is equal to X, we call the corresponding sections
global sections.

b. General sheaves

We will need more general sheaves than function sheaves. The restriction
operation, which is no longer obvious, is now given axiomatically by 1.2.d.

Definition 1.3. Let X be a topological space. A presheaf on X is given by the
following data:

• For every open set U in X, a set F(U);
• For every pair of open sets U and V with V ⊂ U , a map rV,U : F(U) →

F(V ) called the restriction map,

such that the two following conditions are satisfied:
i) If W ⊂ V ⊂ U , then rW,U = rW,V rV,U ,
ii) We have rU,U = IdF(U);
We set rV,U (f) = f |V .
We say that F is a sheaf if in addition it satisfies the gluing Condition 2)

of 1.1.

Remarks 1.5.
a) The presheaf whose sections over U are constant K-valued functions is

not generally a sheaf. The gluing condition is not satisfied for a non-connected
open set.

b) It is always possible to consider a given sheaf to be a sheaf of func-
tions (in a non-natural way) (cf. Exercise III, A.1). This remark enables us to
restrict ourselves to sheaves of functions if necessary.

c) If F is a presheaf on X (for the sake of simplicity we assume it is a
presheaf of functions from X to K), we can embed it in a canonical way in a
sheaf F+ called the associated sheaf of F . To do this we localise the condition
for being an element of F(U) in the following way. For any open set U in X
we set

F+(U) = {f : U −→ K | ∀x ∈ U, ∃V open,
such that x ∈ V ⊂ U, and g ∈ F(V ) such that f |V = g}.

The sheaf thus defined is the best possible solution to the problem (i.e., it is
the smallest sheaf containing F , cf. [H] Chapter II, 1.2).

d) Given a sheaf F on X and an open set U in X, the sheaf F|U is defined
in the obvious way: if V is an open set in U , then we set F|U (V ) = F(V ).
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c. Sheaves of rings

The most important sheaves we will be working with are sheaves of rings (or,
more precisely, sheaves of k-algebras). The statement that F is a sheaf of
rings means that the spaces F(U) are commutative rings and the restriction
functions are homomorphisms of rings. This is true of the sheaf of (arbitrary)
functions into a ring, or for sheaves of continuous/differentiable functions into
R or C, with the usual addition and multiplication. We can of course define
sheaves of other structures (groups, modules or k-algebras) in a similar way.

Definition 1.5. A ringed space is a topological space X equipped with a sheaf
of rings. This sheaf is called the structural sheaf of X and is traditionally
denoted by OX .

“Morally” this sheaf is the sheaf of “good” functions on X and we have
therefore assumed that a sum or product of good functions is still a good
function.

Warning 1.7. From now on we fix an algebraically closed field k. Unless oth-
erwise specified, the structural sheaf of all ringed spaces considered will be
a sheaf of k-valued functions and we will assume it is a sheaf of k-algebras
containing the constant functions.

With these precautions taken, there is a natural notion of morphism (and
hence isomorphism) of ringed spaces:

Definition 1.6. Let (X,OX) and (Y,OY ) be two ringed spaces. A morphism
of ringed spaces is given by a continuous map ϕ : X → Y , which trans-
forms good functions into good functions by composition. In other words,
for any function g : U → k such that g ∈ Γ (U,OY ) we should have
gϕ ∈ Γ (ϕ−1U,OX).

Remarks 1.9.
a) We note that when, for example, the sheaf in question is the sheaf of

differentiable functions, the composition condition is equivalent to the require-
ment that f be a differentiable map.

b) For any open set U of Y we define a homomorphism of rings

ϕ∗
U : Γ (U,OY ) −→ Γ (ϕ−1U,OX)

by setting ϕ∗
U (g) = gϕ. These homomorphisms are compatible with restric-

tions. In other words they satisfy the condition rϕ−1V,ϕ−1U ϕ∗
U = ϕ∗

V rV,U .
For ringed spaces whose sheaves are not simply sheaves of functions a mor-
phism consists not only of the data of a continuous map ϕ but also a col-
lection of homomorphisms ϕ∗

U satisfying the above compatibility conditions
(cf. [EGA] I, 0.4.1).
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2 The structural sheaf of an affine algebraic set

Let V ⊂ kn be an affine algebraic set. We want to define good functions on
the open sets of V . We will be guided by the following two remarks.

1) The good functions on V should be the polynomial functions Γ (V ).
2) V has a very simple basis of open sets, the sets D(f).

In fact, the following lemma shows that it is enough to define the structural
sheaf on a basis of open sets.

Lemma 2.1. Let X be a topological space, U a basis of open sets in X and K
a set. We suppose given for every open set U ∈ U a set F(U) of functions
from U to K satisfying the following conditions:

i) (Restriction) If V,U ∈ U , V ⊂ U and s ∈ F(U), then s|V ∈ F(V ).
ii) (Gluing) If an open set U ∈ U is covered by sets Ui indexed by i ∈ I,

such that Ui ∈ U and if s is a function from U to K such that ∀ i ∈ I,
s|Ui

∈ F(Ui), then s ∈ F(U).
Then there is a unique sheaf F of functions on X such that, for every

U ∈ U , F(U) = F(U).

Proof. Any open set U is covered by open sets Ui contained in the basis U .
We set

F(U) = {s : U → K | ∀ i, s|Ui
∈ F(Ui)}.

We leave it as an exercise for the reader to check that this definition is in-
dependent of the choice of open cover Ui and that F is indeed the required
sheaf.

Provided we check Conditions i) and ii) from 2.1, it is enough to define
sheaves on bases of open sets.

We also note the following trivial lemma.

Lemma 2.2. Let X be a topological space equipped with a basis of open sets
U , let F be a sheaf and let G be a presheaf on X. We assume F(U) = G(U)
for every U ∈ U . Then F = G+ (cf. 1.5.c).

In the case in hand we therefore seek to define Γ (D(f),OV ). Since D(f) is
the set of points where the function f does not vanish, it is natural to include
the inverse function f−1 along with the polynomial functions on V in the set
of sections Γ (D(f),OV ). More precisely, we consider the restriction homo-
morphism r : Γ (V ) → F(D(f), k), where F(D(f), k) denotes the ring of all
functions from D(f) to k. Since r(f) is invertible, r can be factorised through
the localisation Γ (V )f , r = ρj (cf. Summary 1.6.b) and the homomorphism
ρ : Γ (V )f → F(D(f), k) is injective. Indeed, if ρ(g/fn) = 0, then g(x) = 0 on
D(f) and hence fg = 0 on V , which implies that g/fn is zero in the localised
ring (cf. Summary loc. cit.). We then have the following definition.
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Definition 2.3. Let V be an affine algebraic set and consider a non-zero f ∈
Γ (V ). We set

Γ (D(f),OV ) = Γ (V )f

(identified with a subring of the ring of k-valued functions on D(f) via ρ).
By this method we define a sheaf of rings on V called the sheaf of regular
functions.

In the special case where Γ (V ) is an integral domain, the ring Γ (V )f is a
subring of the field of fractions K(V ) of Γ (V ) (the field of rational functions
on V , cf. Chapter I, 6.15) and the natural homomorphism j : Γ (V ) → Γ (V )f

is injective. If Γ (V ) is not an integral domain (i.e., if V is not irreducible)
there is no fraction field and j is no longer necessarily injective.
Check 2.4. We must now check that the conditions given in 2.1 allowing us
to construct a sheaf on V are satisfied.

a) Restriction. If D(f) ⊂ D(g), then V (g) ⊂ V (f), and since f vanishes on
V (g), the Nullstellensatz implies fn = gh. Given u/gi ∈ Γ (V )g, its restriction
to D(f) can be written in the form uhi/gihi = uhi/fni, and this restriction
is indeed contained in Γ (V )f .

b) Gluing. We assume that V is irreducible (and hence Γ (V ) is an integral
domain): the general case is left to the reader as an exercise (cf. 2.5.b).

Let D(f) be a standard open set covered by the sets Dfi
, where fi �= 0.

This means that V (f) is the intersection of the sets V (fi), or, alternatively,
that V (f) = V (I), the ideal generated by the functions fi. Since the ring
Γ (V ) is Noetherian, we can assume that there are only a finite number of
functions fi.

Let si be sections of D(fi) which we write as si = ai/fn
i (we can use

the same n for all the sections si since there is a finite number of them). We
assume these sections to be coincident on the intersections D(fi)∩D(fj). We
have aif

n
j = ajf

n
i on D(fi) ∩ D(fj), and hence this relation holds on V by

density (since V is irreducible).
Since f vanishes on V (f1, . . . , fr) = V (fn

1 , . . . , fn
r ), the Nullstellensatz

tells us that f ∈ rac(fn
1 , . . . , fn

r ). In other words, there is an integer m and
functions bj ∈ Γ (V ) such that fm =

∑r
j=1 bjf

n
j .

(We note that when dealing with an open cover of the whole of V there is
an identity of the form 1 =

∑r
j=1 bjf

n
j , which is an algebraic analogue of the

partitions of unity used in analysis.)
We now look for a section s on D(f) of the form s = a/fm (with m as

defined above) such that s|D(fi) = si, i.e., a/fm = ai/fn
i , or, alternatively,

fn
i a = aif

m = ai

∑r
j=1 bjf

n
j =
∑r

j=1 bjaif
n
j =
∑r

j=1 bjajf
n
i = fn

i

∑r
j=1 bjaj .

This clearly holds if we set a =
∑r

j=1 bjaj .
Remarks 2.5.

a) The careful reader will check that if an open set can be written as a stan-
dard open set in two different ways D(f1) = D(f2), then the corresponding
rings are the same. This follows from the argument used in 2.4.a above.
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b) When proving 2.4 in the general case, a little care is needed. The equality
of the sections si on the intersection then only means that there is a natural
number N such that fN

i fN
j (aif

n
j −ajf

n
i ) = 0. We then write fm =

∑
j bjf

n+N
j

and a =
∑

j ajbjf
N
j .

c) Calculating Γ (U,OV ) for a non-standard open set is harder. Consider
for example U = k2 − {(0, 0)} (cf. Exercises III, A.2).

3 Affine varieties

We have equipped any affine algebraic set V with the structure of a ringed
space (V,OV ) by taking the sheaf of regular functions OV defined above. An
affine algebraic variety is essentially the same thing.

Definition 3.1. An affine algebraic variety is a ringed space which is isomor-
phic as a ringed space to a pair (V,OV ), where V is an affine algebraic set
and OV is the sheaf of regular functions on V . A morphism of affine algebraic
varieties is simply a morphism of ringed spaces.

Remarks 3.2.
a) Many authors (especially Americans) reserve the word variety for an

irreducible variety.
b) The only advantage affine algebraic varieties have over affine algebraic

sets is that they are intrinsic, i.e., their structure does not depend on a choice
of embedding in kn. A typical example of this is a standard open set D(f):

Proposition 3.3. Let V be an affine algebraic set and consider f ∈ Γ (V ).
The open set D(f) equipped with the restriction of the sheaf OV to D(f) is
an affine algebraic variety.

Proof. Assume that V is embedded in kn: set I = I(V ) and let F be a
polynomial whose restriction to V is f . Our aim is to show that D(f) is
isomorphic to an affine algebraic set. The trick is to look for this set in kn+1:
we consider the map

ϕ : (x1, . . . , xn) �−→ (x1, . . . , xn, 1/f(x1, . . . , xn))

sending D(f) into kn+1. The image W of ϕ is equal to the set V (J), where
J = I + (Xn+1F − 1) (cf. the proof of the Nullstellensatz). It is clear that ϕ
is a homeomorphism from D(f) onto W whose inverse is given by the pro-
jection p(x1, . . . , xn, xn+1) = (x1, . . . , xn). It is easy to check that this is an
isomorphism. (It is enough to check this fact on standard open sets, cf. 11.1
below.)
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Example 3.4. The group of invertible matrices with complex coefficients
GL(n,C) is an affine algebraic variety. In fact, it is an open set of the form
D(f) in the affine space of matrices M(n,C) = Cn2

, f being the determinant
function, which is a polynomial.

In the following proposition we show that the affine variety morphisms
between two affine algebraic sets are exactly the maps defined in Chapter I.
We denote by HomVar(X,Y ) the set of affine variety morphisms from X to Y .

Proposition 3.5. Let (X,OX) and (Y,OY ) be two affine algebraic sets
equipped with the affine variety structures given by the structural sheaves OX

and OY . There are natural bijections

HomVar(X,Y ) � Reg(X,Y ) � Homk-alg(Γ (Y,OY ), Γ (X,OX)).

Proof. The existence of the second bijection was established in Chapter I, 6.7.
We use the notation from Chapter I, 6.7. We establish the existence of the first
bijection as follows. If ϕ : X → Y is a variety morphism, then on considering
the coordinate functions ηi on Y it is immediate that ϕ = (η1ϕ, . . . , ηmϕ) is
regular (cf. 1.8). Conversely, if ϕ is regular, D(g) is a standard open set of Y
and f = h/gr ∈ Γ (D(g),OY ), then fϕ = ϕ∗(h)/ϕ∗(g)r ∈ Γ (D(ϕ∗(g),OX),
which shows that ϕ is also a morphism of varieties.

Remark 3.6. The above proposition shows that the category of affine algebraic
varieties is equivalent to the category of affine algebraic sets. (However, we
have seen that if we do not identify isomorphic objects, the former category
contains more objects.)

4 Algebraic varieties

The main use of ringed spaces is that they enable us to define classes of objects
which are locally isomorphic to some particular kind of space. For example, a
differentiable manifold is a ringed space which is locally isomorphic to an open
set of Rn with the sheaf of differentiable functions. In our case, of course, the
local models are affine algebraic varieties.

Definition 4.1. An algebraic variety is a quasi-compact ringed space
(cf. Summary 1.8) which is locally isomorphic to an affine algebraic va-
riety. A morphism of algebraic varieties is simply a morphism of ringed
spaces.

To say that (X,OX) is locally isomorphic to an affine algebraic variety
means that for any x ∈ X there is an open set U containing x such that
(U,OX |U ) is isomorphic to an affine algebraic variety. We leave it to the
reader to check that affine varieties are quasi-compact and hence are algebraic
varieties.
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Definition 4.2. Let1 X be an algebraic variety. The open sets of X which are
isomorphic to affine algebraic varieties are called the affine open sets of X.

Proposition 4.3. Let X be an algebraic variety. The affine open sets form a
basis of open sets of X. More precisely, any open set in X is a finite union of
affine open sets (and is hence quasi-compact).

Proof. We have X =
⋃r

i=1 Ui, where the sets Ui are open and affine (this is
the definition of a variety: the quasi-compactness of X allows us to take a
union of only a finite number of open sets). Let U be an open set of X. We
have U =

⋃r
i=1 U ∩Ui and so it will be enough to prove the result for U ∩Ui.

But since Ui is affine, this follows from Chapter I, 4.13 and 3.3.

If X is an algebraic variety and U is an open set in X, then it is easy
to check using 4.3 that the sections of Γ (U,OX) are continuous k-valued
functions (where k is equipped with the Zariski topology).

Corollary 4.4. A non-empty algebraic variety can be uniquely written as a
finite union of irreducible closed sets which do not contain each other. These
are its irreducible components.

Proof. By quasi-compactness, we can write X = U1 ∪ · · · ∪ Un, where the
sets Ui are open affine sets. We then write each of the sets Ui as a finite union
of closed sets Ui,j which are closed in Ui. We then have X =

⋃
i,j U i,j and the

U i,j are irreducible by Chapter I, 3.5.

Examples 4.5.
a) If X is an algebraic variety and U is an open set of X, then U equipped

with the sheaf OX |U is an algebraic variety which is called an open subvariety
of X.

In particular, any open subset of an affine algebraic variety is an algebraic
variety (called a quasi-affine variety); but be careful : it is not necessarily affine
(for example, k2 − {(0, 0)} is not affine cf. Exercise III, A.4).

b) Closed subvarieties. Let X be an algebraic variety and let Y be a closed
set in X. Our aim is to define a sheaf OY on Y . The most natural idea, given
that the inclusion map has to be a morphism, is to take the sheaf of functions
on open sets of X restricted to Y , i.e., to define the sections over an open
set V on Y by

{f : V → k | ∃U ⊂ X, open,
such that U ∩ Y = V and ∃ g ∈ OX(U) such that g|V = f}.

Unfortunately, this formula only defines a presheaf O0,Y in general. For
the gluing condition to be satisfied, we have to “localise” the definition, i.e.,
we have to consider the sheafification OY = O+

0,Y of this presheaf (cf. 1.5.c).

1 By abuse of notation we will often write X when we mean the variety (X,OX).
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Proposition-Definition 4.6. Let X be an algebraic variety and let Y be a
closed set in X. We define a sheaf of rings OY on Y by setting

OY (V ) = {f : V → k | ∀x ∈ V, ∃U ⊂ X, open,
with x ∈ U and g ∈ OX(U) such that g|U∩V = f |U∩V }

for any open V in Y . If X is an algebraic variety (resp. an affine algebraic
variety), then the same is true of Y with the sheaf OY and the inclusion of Y
in X is a morphism.

Proof. It will be enough to prove the result for affine X since the general case
then immediately follows. We assume that X is affine: it will then be enough
to show that the sheaf OY is equal to the sheaf RY of regular functions on Y .
Consider f ∈ Γ (X) and its image in Γ (Y ), f . By Lemma 2.2, it will be enough
to show that R(D(f)) = O0,Y (D(f)). Since we know that D(f) = D(f) ∩ Y
and the restriction homomorphism Γ (X)f → Γ (Y )f is surjective, we know
that R(D(f)) = Γ (Y )f ⊂ O0,Y (D(f)). Conversely, if s ∈ O0,Y (D(f)), then s
is the restriction of a section s ∈ OX(U) defined on an open set U in X such
that U ∩Y = D(f). We cover U with open sets Ui = D(gi). Their restrictions
D(gi) cover D(f), and since s|Ui

∈ OX(Ui) = Γ (X)gi
, s|D(gi)

∈ Γ (Y )gi
=

RY (D(gi)). But then s ∈ RY (D(f)) since RY is a sheaf. QED.

Remark 4.7. In fact, what we are trying to prove is that there is a surjective
map of sheaves from OX to OY (cf. § 6 below). We note that if V is an open
affine set of Y which is the restriction to Y of an open affine set U in X, then
the proof above shows that any regular function on V is the image of a regular
function on U . In this case, the problem mentioned above does not arise. On
the other hand, we have to be more careful when the open sets are not affine,
as the example below shows (cf. also Exercise III, A.3):

Example 4.8. Let us take V = P2 (cf. § 8), let W be the closed set
V (X(X − T ),XY ), a union of the y-axis and the point (1, 0, 1), and
consider W as an open set of itself. We seek open sets Ω = P2 −Z in P2 con-
taining W : this is equivalent to saying that the closed set Z does not meet W
and in particular does not meet V (X). By Bézout’s theorem, this implies that
Z is finite (cf. Chapter VI). But then Γ (Ω,OP2) = Γ (P2,OP2) = k (cf. 8.8
and Exercise III, A.2.b). The only functions on W arising from open sets on
V are therefore constant functions. However, if OW is a sheaf, then there are
obviously other functions on W , such as the functions which are constant on
each of the two connected components of W .

c) Subvarieties. We merge the above two examples.

Definition 4.9. Let X be an algebraic variety and let Y be a locally closed
subset in X (i.e., the intersection of an open set and a closed set). Then Y ,
equipped with the variety structure defined in a) and b), is called an algebraic
subvariety of X.
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5 Local rings

Definition 5.1. Let X be an algebraic variety and consider x ∈ X. We
consider the pairs (U, f), where U is an open set in X containing x and
f ∈ Γ (U,OX). Two such pairs, (U, f) and (V, g), are said to be equivalent
if there is an open set W such that x ∈ W ⊂ U ∩ V and f |W = g|W . The
equivalence classes for this relation are called the germs of functions at x. The
germ of (U, f) at x is denoted by fx. The set of germs at x is denoted OX,x.

Proposition-Definition 5.2. With the above notations, the set OX,x is
canonically equipped with a ring structure. This ring is a local k-algebra with
maximal ideal mX,x = {f ∈ OX,x | f(x) = 0}. We call it the local ring of X
at x. We have OX,x/mX,x � k.

Proof. The ring structure is defined in the following way. Given two germs
(U, f) and (V, g), we add and multiply them by first restricting to U ∩ V and
then using the ring structure on Γ (U∩V,OX). We check that these operations
are well-defined (i.e., do not depend on the choice of representatives). And
finally, if f ∈ OX,x, then we denote by f(x) the value of f at x, which does
not depend on the choice of representative either. There is therefore a ring
homomorphism π : OX,x → k which associates f(x) to f . This homomorphism
is obviously surjective and its kernel is mX,x, which is therefore a maximal
ideal. On the other hand, if f ∈ OX,x − mX,x, then f is invertible in OX,x

(which proves that this ring is local). Indeed, lift f to (U, f). After possibly
shrinking U we can assume that U is affine. We then have x ∈ DU (f), but f
is then invertible in Γ (DU (f),OU ) = Γ (DU (f),OX) and hence f is invertible
in OX,x.

Remark 5.3. Of course, the terminology “local ring” comes from this kind of
example. The advantage of the local ring over the rings of functions on affine
open sets containing x is that it is intrinsic.

Proposition 5.4. Assume that k is algebraically closed. Let X be an algebraic
variety, take a point x ∈ X and let U be an affine open set containing x. We
set A = Γ (U,OX). Let m be the maximal ideal in A corresponding to the
point x (cf. Chapter I, 4.9). We then have OX,x � Am. In particular, the
prime ideals of OX,x correspond bijectively to closed irreducible subsets of U
(and hence of X) containing x.

Proof. There is a homomorphism r from A to OX,x which associates to a its
germ at x, ax. This homomorphism factorises through Am since if a /∈ m,
then a(x) �= 0, and hence ax is invertible. It is easy to check (using the open
sets D(f)) that this gives us the required isomorphism. The last claim follows
from Chapter I, 4.9 (to obtain the result on the whole of X we simply use
closure, cf. Chapter I, 3.5).
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Remark 5.5. Let ϕ : X → Y be a morphism of varieties and consider points
x ∈ X and y = ϕ(x). This induces a homomorphism ϕ∗ : OY,y → OX,x.
Indeed, if fy ∈ OY,y is represented by a pair (U, f), where U is an open set
in Y containing y, then by definition of a morphism there is a homomorphism
ϕ∗ : Γ (U,OY ) → Γ (ϕ−1(U),OX) which associates the composition fϕ to f .
We then associate to fy the germ (fϕ)x, and this gives us the required map.

We note that this homomorphism is local, i.e., it sends mY,y into mX,x. If
ϕ is an isomorphism, then so is ϕ∗.

6 Sheaves of modules

Let (X,OX) be a ringed space (for example, an algebraic variety). In this
section we will study sheaves of modules. This is a key notion whose usefulness
will become apparent as we go on.

Definition 6.1. A OX-module is a sheaf F such that for any open set U
in X, F(U) is a OX(U)-module and the restriction maps are linear maps.

Remark 6.2. Warning: the use of the word “linear” in this context may not
be what you expect. If V ⊂ U , then there are restriction maps r : OX(U) →
OX(V ) and ρ : F(U) → F(V ); F(U) and F(V ) are therefore both OX(U)-
modules; F(U) is a OX(U)-module by definition and F(V ) becomes one via r.
We then ask that ρ should be OX(U) linear, i.e., ρ(af) = r(a)ρ(f). Since
OX(U) is a k-algebra, all the spaces F(U) are k-vector spaces.
Example 6.3. The null sheaf is clearly a OX -module. A finite direct sum (or
finite direct product, which is the same thing) of OX -modules is a OX -module.
For example, On

X , the direct sum of n copies of the structural sheaf, is a OX -
module.

Essentially all the usual A-module constructions, such as homomorphisms,
kernels, images, exact sequences, etc., are also possible with OX -modules.

Definition 6.4. Let F ,G be two OX-modules. A homomorphism f : F → G
is given by the data of OX(U)-linear maps for every U , f(U) : F(U) → G(U)
which are compatible in the obvious way with restrictions.

We can then define the kernel sheaf of f by the formula

(Ker f)(U) = Ker(f(U)),

and we say that f is injective if f(U) is injective for all U , or, alternatively, if
Ker f = 0.

On the other hand, we have to be more careful in defining image sheaves
and surjective maps. This is one of the fundamental difficulties in sheaf theory.
Consider a homomorphism f : F → G. It is tempting to define its image by the
formula (Im f)(U) = Im(f(U)). Unfortunately, in general this is not a sheaf,
as the following example (which was historically the first such example) shows.
(The objects here are in fact abelian groups, not modules, but the principle
is the same.)
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Example 6.5. We set X = C and let F = OC be the sheaf of holomorphic
functions on the open sets of C. We let G = O∗

C be the sheaf of non-vanishing
holomorphic functions. There is a homomorphism f : F → G given by the
exponential map. If we define Im f as above, this is not a sheaf: the gluing
condition is not satisfied. We set U = C−{0}. This open set is covered by open
sets V and W which are C without the positive and negative real half-lines.
On V and W the identity function z is in the image of the exponential map
(these open sets are simply connected and hence the function Log(z) exists),
but, over U , z is not in the image of f since U is not simply connected.

To get around this problem we “localise” and define Im f to be the sheaf
associated to this presheaf (cf. 1.5.c):

Definition 6.6. Let f : F → G be a homomorphism of OX-modules. We
define the sheaf Im f as follows. Consider s ∈ G(U): we say that s ∈ (Im f)(U)
if for all x ∈ U there is an open set V ⊂ U such that x ∈ V and s|V ∈
Im(f(V )). We say that f is surjective if Im f = G.

Remark 6.7. The map f is said to be surjective if it is locally surjective. This
is true of the exponential map in Example 6.5.

Definition 6.8. An exact sequence of OX-modules F u−→ G v−→ H is given by
the data of two homomorphisms of sheaves u and v such that Ker(v) = Im(u).

We now return to closed subvarieties. We will need the following definition.

Definition 6.9. Let ϕ : Y → X be a continuous map and let F be a sheaf
on Y . The direct image of F , denoted by ϕ∗F , is the sheaf defined on X by
ϕ∗F(U) = F(ϕ−1(U)) for any open set U in X.

Example 6.10. Let X be an algebraic variety, let Y be a closed subset of X
and let j : Y → X be the canonical injection. We denote by FY the sheaf
of all k-valued functions on Y and consider its direct image j∗FY . There is
a morphism of OX -modules r : OX → j∗FY which associates to s ∈ OX(U)
its restriction s|U∩Y ∈ j∗FY (U) = FY (U ∩ Y ). Using the definition of the
structural sheaf on Y given in 4.6 the sheaf j∗OY is then simply the image
sheaf of r.

In what follows we will often identify OY and j∗OY , which allows us to
consider OY as a OX -module. (See Exercise II, A.9 for a justification of this
identification.)

We also consider the kernel of r which we denote by JY (or, alternatively,
JY/X when we want to keep track of the original space). This is a OX -module:
even better, it is an ideal (or sheaf of ideals) in OX (in other words, JY (U)
is an ideal in OX(U) for all U).

After identifying OY and its direct image we get the following exact se-
quence of OX -modules (called the fundamental exact sequence associated to
the closed space Y ):

0 −→ JY −→ OX −→ OY −→ 0.
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Definition 6.11. Let F and G be two OX-modules. We define the tensor prod-
uct F⊗OX

G to be the sheaf associated to the presheaf U �→ F(U)⊗OX(U)G(U).
This is once again a OX-module.

7 Sheaves of modules on an affine algebraic variety

Let V be an affine algebraic variety and consider A = Γ (V,OV ). If F is a
OV -module, then Γ (V,F) is an A-module and this correspondence is functo-
rial by 6.4: it is the global sections functor. The aim of this section is to find
an “inverse” functor.

Definition 7.1. Let M be an A-module. We define a OV -module M̃ on the
standard open sets of V in the following way. If f ∈ A, then we set M̃(D(f)) =
Mf = M ⊗A Af . In particular, M̃(V ) = Γ (V, M̃) = M .

Remarks 7.2.
1) We can describe the localised module Mf as being the set of pairs (x, s)

such that x ∈ M and s = fn, quotiented by the equivalence relation

(x, s) ∼ (y, t) ⇐⇒ ∃u = fr u(xt − ys) = 0.

(NB: the u term may be necessary if A is not an integral domain or M is
not torsion free, i.e., if it is possible to have ax = 0 satisfied with a ∈ A and
x ∈ M both non-zero.) We denote the image of (x, s) by x/s. This image is
also denoted x ⊗ (1/s).

2) We check as in 2.3 that this does indeed define a sheaf.

3) In particular, Ã = OV .

Proposition 7.3. The correspondence M �→ M̃ is functorial and exact and
commutes with direct sums and tensor products.

Proof.
1) Functoriality. Let ϕ : M → N be a homomorphism of A-modules. By

functoriality of the tensor product there is a map ϕf : Mf = M ⊗A Af →
Nf = N ⊗A Af . The functoriality of the correspondence follows.

2) Exactness. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
A-modules. Then the sequence 0 → M ′

f → Mf → M ′′
f → 0 obtained by

localisation is exact. It will be enough to prove the injectivity of i : M ′
f →

Mf since the rest is immediate by basic properties of the tensor product
(cf. Summary 2.2). Assume i(x′/fn) = 0 in Mf . This implies frx′ = 0 in M
and hence frx′ = 0 in M ′, so x/fn = 0 in M ′

f . (A more sophisticated way of
saying the same thing is that the A-module Af is flat, cf. [Bbki] AC II.)

3) Sums and products. We have (M⊕M ′)f = Mf ⊕M ′
f and (M⊗AM ′)f =

Mf ⊗Af
M ′

f . These formulae are left to the reader as an exercise.
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Example 7.4: The exact sequence associated to a closed subset. Let W be a
closed subset of V defined by an ideal I = IV (W ) in A. Then we have an
exact sequence 0 → I → A → A/I → 0 which, on passing to sheaves, gives
us 0 → Ĩ → Ã → Ã/I → 0, which is simply the fundamental exact sequence
0 → JW → OV → OW → 0. (This can be proved by noting that W is an
affine variety and Γ (W ) = A/I, or, alternatively, by a direct calculation in a
standard open set D(f).)

Definition 7.5. A OV -module isomorphic to a OV -module of type M̃ is said
to be quasi-coherent. If M is of finitely generated over A, we say that M̃ is
coherent. We will sometimes simply say a quasi-coherent sheaf rather than a
quasi-coherent OV -module.

Remark 7.6. The functor M �→ M̃ is an equivalence of categories between the
category of A-modules and the category of quasi-coherent OV -modules (this
functor has a “quasi-inverse”, namely the functor of global sections Γ ). Once
again, in the affine case, everything essentially depends on the ring A = Γ (V ).
We note that there are non quasi-coherent sheaves on affine algebraic varieties
(cf. [H] II 5.2.3 or Exercise III, B.5 below) but we will not deal with them in
this course.

When dealing with quasi-coherent sheaves on affine algebraic varieties,
there is no fundamental difficulty with surjectivity of homomorphisms of
sheaves.

Proposition 7.7. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of quasi-
coherent sheaves on an affine algebraic variety X. We have the following exact
sequence:

0 −→ Γ (X,F ′) −→ Γ (X,F) π−−→ Γ (X,F ′′) −→ 0.

Proof. The only problem is to prove the surjectivity of π. This will be done
in Chapter VII when we prove that the cohomology group H1(X,F ′) is zero.

The following proposition, whose proof can be found in [H] II § 5, shows
that the property of being quasi-coherent is local.

Proposition 7.8. Let X be an affine algebraic variety and let F be a OX-
module. Then F is quasi-coherent (resp. coherent) if and only if there is an
affine open covering Ui of X such that Γ (Ui,OX) = Ai and Ai-modules Mi

(resp. of finite type) such that, for every i, F|Ui
� M̃i.

This proposition justifies the following definition.

Definition 7.9. Let X be an algebraic variety and let F be a OX-module. We
say that F is quasi-coherent (resp. coherent) if there is an open affine covering
of X, Ui, such that F|Ui

is quasi-coherent (resp. coherent) on each Ui.
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We have the following proposition on tensor products of quasi-coherent
sheaves.

Proposition 7.10. Let X be a variety and let F and G be two quasi-coherent
sheaves on X. Then

a) The sheaf F ⊗OX
G is quasi-coherent;

b) For any affine open set U in X

(F ⊗OX
G)(U) = F(U) ⊗OX(U) G(U).

Proof. If U is an open set, then (F ⊗OX
G)|U = F|U ⊗OU

G|U (since these
two sheaves are associated to the same presheaf W �→ F(W ) ⊗OX(W ) G(W )
on U). If U is affine and we set A = Γ (U,OX), F = Γ (U,F), G = Γ (U,G),
then (F ⊗OX

G)|U = F̃ ⊗Ã G̃ = ˜F ⊗A G, which proves the above two claims.

8 Projective varieties

a. Definition of the structure sheaf

We use the same notations as in Chapter II.
Let V ⊂ Pn be a projective algebraic set with its Zariski topology. We will

put an algebraic variety structure on V . Of course, it will be enough to define
the structure sheaf on the basis of open sets D+(f), where f ∈ Γh(V ) is a ho-
mogeneous polynomial of positive degree (cf. Chapter II, 6.2). To get an idea
of how to define this sheaf, let us look at the open set U0 = D+(X0). We know
that there is a bijection j : kn → U0 defined by (ξ1, . . . , ξn) �→ (1, ξ1, . . . , ξn)
whose inverse is (x0, . . . , xn) �→ (x1/x0, . . . , xn/x0). On U0 the good functions
correspond to the polynomial functions on kn, namely the polynomials in
x1/x0, . . . , xn/x0. In other words, we set Γ (U0,OPn) = k[X1/X0, . . . , Xn/X0].
This ring is contained in the localisation of k[X0, . . . , Xn] relative to X0: how-
ever, considering only polynomials in variables Xi/X0 is equivalent to taking
only those members of the localised ring of the form F/Xr

0 , with F homoge-
neous of degree r. This leads us to the following definition.

Definition 8.1. Let R be a graded ring and let f ∈ R be a homogeneous
element of degree d. We define a grading on the localised ring Rf by setting
deg(g/fr) = e−rd whenever g is a homogeneous element of R of degree e. The
set of elements of degree 0 of Rf is then a subring which we denote by R(f).

Remark 8.2. If we consider R = Γh(V ) and a homogeneous f ∈ R of de-
gree > 0, then the elements of R(f) have the following great advantage: they
define functions on the open set D+(f). A change of homogeneous coordinates
multiplies the numerator and denominator by the same scalar.
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Definition 8.3. Let V be a projective algebraic set. We define a sheaf of
k-valued functions on V by setting

Γ (D+(f),OV ) = Γh(V )(f)

for any homogeneous f ∈ Γh(V ) of degree > 0.

The reader will check using Remark II.6.1.b that, as in 2.4, the conditions
of 2.1 are satisfied and so this definition does indeed give us a sheaf on V .
NB: it is important that we only consider elements f of degree > 0. If it were
possible to apply 8.3 to f = 1, we would have D+(f) = V and the global
sections of OV would be the degree 0 elements of Γh(V ), i.e., the constant
functions. But if V is not connected, there are other possible sections on V —
namely the functions which are constant on each component of V .

Proposition-Definition 8.4. Let V be a projective algebraic set. The ringed
space (V,OV ) (with the sheaf defined above) is then an algebraic variety. An
algebraic variety which is isomorphic to a projective algebraic set (resp. an
open set in a projective algebraic set) with the sheaf defined above will be
called a projective variety (resp. a quasi-projective variety).

Proof. We start by reducing to the case V = Pn. Assume V ⊂ Pn. Consider
f ∈ Γh(V ), the image of a homogeneous polynomial F ∈ k[X0, . . . , Xn]. We
have D+(f) = V ∩ D+(F ). Moreover, the restriction homomorphism

r : Γ (D+(F ),OPn) −→ Γ (D+(f),OV )

is clearly surjective. But OV is then the image of the sheaf OPn in the sheaf
of functions in V (cf. 2.2), and if Pn is a variety, then V is simply the closed
subvariety supported on V (cf. Example 6.10).

For Pn it will be enough to show that the open sets D+(Xi) are affine
varieties and by homography it will in fact be enough to prove this for D+(X0)
(it is clear that homographies are automorphisms of Pn with its ringed space
structure). This is essentially a formal translation of the affine-projective link
seen in Chapter II and will be dealt with in the next paragraph.

b. The affine-projective link

We set U0 = D+(X0), the set of points of Pn whose x0 coordinate is �= 0.
There is a bijection j : kn → U0, defined by

(ξ1, . . . , ξn) �−→ (1, ξ1, . . . , ξn),

whose converse is given by

(x0, . . . , xn) �−→ (x1/x0, . . . , xn/x0).

We consider the Zariski topology on kn and the Zariski topology induced
on U0 by Pn. The following proposition completes the proof of 8.4.
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Proposition 8.5.
1) j is a homeomorphism.
2) j is an isomorphism of ringed spaces between the affine variety (kn,Okn)

and (U0,OPn |U0).

To prove this proposition we study the homogenisation and dehomogeni-
sation operators in detail. If P is a homogeneous polynomial of degree d in
T1, . . . , Tm, then the formula

(0) P
(T1

Ti
, . . . ,

Tm

Ti

)
=

P (T1, . . . , Tm)
T d

i

.

holds in the field of fractions. We will use the following convention: poly-
nomials in k[X0, . . . , Xn] will be written using capital letters and those in
k[X1, . . . , Xn] will be written using small letters.

i) The � operator. This is a surjective ring homomorphism k[X0, . . . , Xn] →
k[X1, . . . , Xn] given by

P (X0, . . . , Xn) �−→ P�(X1, . . . , Xn) = P (1,X1, . . . , Xn).

Its kernel is the ideal (X0 − 1). We are particularly interested in the case
where P is homogeneous of degree d. In this case we have (in the field of
fractions k(X0, . . . , Xn))

(1) P�

(X1

X0
, . . . ,

Xn

X0

)
= P
(X0

X0
,
X1

X0
, . . . ,

Xn

X0

)
=

P (X0, . . . , Xn)
Xd

0

.

We note that if P is homogeneous of degree d, then P� is of degree d if
and only if X0 does not divide P .

ii) The operation �. NB : this operation is not a homomorphism. Contrary
to the operation �, it goes from k[X1, . . . , Xn] into k[X0, . . . , Xn]: if p ∈
k[X1, . . . , Xn], p� is the homogeneous polynomial of smallest degree of
k[X0, . . . , Xn] such that p = (p�)�. We can describe it as follows: if p =
p0 + p1 + · · · + pd, where pi is homogeneous of degree i and pd �= 0, then
we set p�(X0, . . . , Xn) = Xd

0p0 + Xd−1
0 p1 + · · · + pd, or, alternatively,

(2) p�(X0, . . . , Xn) = Xd
0 p
(X1

X0
, . . . ,

Xn

X0

)
.

iii) Some remarks. If p, q ∈ k[X1, . . . , Xn], then (pq)� = p�q� (this follows from
Formula (2)).
If p ∈ k[X1, . . . , Xn], then (p�)� = p.
If P ∈ k[X0, . . . , Xn] is homogeneous, then P = (X0)r(P�)�, where Xr

0

is the largest power of X0 dividing P . (We reduce to the case where X0

does not divide P and use (1) and (2), noting that the degree does not
decrease on passing from P to P�.)
It follows that if P is homogeneous and P� = 0, then P = 0.
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iv) j is a homeomorphism. Since the sets D+(F ) and D(f) are bases of open
sets on Pn and kn respectively, this follows from the following two formu-
lae whose proof is immediate.
a) If F ∈ k[X0, . . . , Xn] is homogeneous, then

j−1(D+(F )) = j−1(D+(F ) ∩ U0) = D(F�),

b) If f ∈ k[X1, . . . , Xn], then j(D(f)) = D+(f �) ∩ U0.
v) The sheaf isomorphism. Consider a homogeneous F ∈ k[X0, . . . , Xn] of

degree d. It will be enough to prove there is an isomorphism

Γ (D+(F ) ∩ U0,OPn) � Γ (D(F�),Okn).

We note that D+(F ) ∩ U0 = D+(FX0).
We have Γ (D+(F ) ∩ U0,OPn) = k[X0, . . . , Xn](FX0) and the elements
of this ring are functions of the form P/(FX0)r, where P is homoge-
neous of degree r(d + 1). They are also exactly the elements of the form
P/F rXs

0 , where P is of degree rd + s (it is enough to multiply the nu-
merator by a power of F or X0 to recover the above form). On the other
hand, Γ (D(F�),Okn) = k[X1, . . . , Xn]F�

.
To define the required map ϕ we start with the morphism � :
k[X0, . . . , Xn] → k[X1, . . . , Xn]. Since (FX0)� = F�, this homomor-
phism induces a homomorphism ψ on local rings

ψ : k[X0, . . . , Xn]FX0 −→ k[X1, . . . , Xn]F�
,

and we construct ϕ by composing ψ with the natural injection

i : k[X0, . . . , Xn](FX0) −→ k[X0, . . . , Xn]FX0 .

It remains to prove that ϕ is indeed an isomorphism. Note that
ϕ(P/F rXs

0) = P�/F r
� .

1) ϕ is injective.
If P�/F r

� = 0, then P� = 0 and hence P = 0 (cf. iii).
2) ϕ is surjective.
Consider p/F r

� ∈ k[X1, . . . , Xn]F�
; we have p/F r

� = ϕ(Xs
0p�/F r), where

s = rd − deg p ∈ Z.

This completes the proof of 8.5 (and hence also of 8.4).

Remarks 8.6.
1) Projective space Pn is irreducible. This follows from 8.5 and Exercise

I, 4.b.
2) We will prove in 11.8 that all open sets D+(F ) in Pn are open affine

sets. It follows that the open sets D+(f) in V ⊂ Pn are also open affine sets.

In the following proposition we describe the local ring of Pn at a point.
For a proof see Exercise III, B.4.
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Proposition 8.7. Consider x = (x0, . . . , xn) ∈ Pn and Ix = Ip({x}) the
homogeneous prime ideal of polynomials vanishing at x. Then the local ring
OPn,x is k[X0, . . . , Xn](Ix), the subring of the local ring k[X0, . . . , Xn]Ix

con-
sisting of elements of degree 0. If x0 = 1 and we set ξ = (x1, . . . , xn), then
the homomorphism � induces an isomorphism from OPn,x to Okn,ξ.

The following proposition confirms that there are no non-trivial global
functions on a projective algebraic variety. It will be proved in Chapter VIII
(cf. also Problem II, 3).

Proposition 8.8. Let X be an irreducible projective algebraic variety. Then
Γ (X,OX) = k (the only global sections of OX are the constant functions).

9 Sheaves of modules on projective algebraic varieties

Let X be a projective algebraic variety equipped with an embedding into Pn.
We will give a definition of sheaves of modules on X similar to the definition
of § 7 in the affine case but which acts on graded modules (cf. Chapter II, 7.5).
We set R = Γh(X). It is important to note that this ring, and particularly its
grading, depends on the choice of embedding (cf. 11.6 below).

Definition 9.1. Let M be a graded R-module. We define a OX-module M̃ on
the standard open sets of X as follows: if f ∈ R is homogeneous of degree > 0,
then M̃(D+(f)) = M(f).

Of course, M(f) denotes the submodule of Mf (cf. § 7) consisting of ele-
ments of degree 0, i.e., elements of the form x/fn, where x is homogeneous
of degree ndeg f .

Remarks 9.2.
1) We have R̃ = OX .
2) Restricting to the affine open set D+(f) whose ring is R(f) we check

that the sheaf M̃ is simply the sheaf M̃(f) associated to the R(f)-module M(f)

defined in § 7 in the affine case. In particular, the OX -module M̃ is quasi-
coherent (and is coherent if M is an R-module of finite type). Conversely, all
quasi-coherent OX -modules are obtained in this way (cf. 9.8.2).

We consider the category of graded R-modules whose morphisms are the
homomorphisms of degree 0 (i.e., degree-preserving morphisms cf. Chapter II,
7.5). We then have the following analogue of Proposition 7.3.

Proposition 9.3. The correspondence M �→ M̃ is functorial, exact and com-
mutes with direct sums and tensor products.
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Proof. The proof is essentially identical to the proof of 7.3, except for the
part concerning the tensor product. To do this we start by checking that we
can define a graded R-module structure on P = M ⊗R N by setting Pn =
∑

p+q=n Mp ⊗k Nq. We then construct a morphism ϕ : M̃ ⊗R̃ Ñ → M̃ ⊗R N .
It is enough to do this on the open sets D+(f), and on these sets we set
ϕ(x/fr ⊗ y/fs) = (x ⊗ y)/fr+s. We check that ϕ is an isomorphism of OX -
modules. It is enough to do this on open sets D+(f) such that f of degree 1,
since these open sets cover X. The inverse isomorphism is obviously given
over such sets by (x ⊗ y)/fr �→ x/fp ⊗ y/fq, where p = deg x and q = deg y.
(If f is not of degree 1, we still have an isomorphism which is slightly less
trivial but which will not escape the attentive reader.)

For the exact sequence, the following result, which is more precise, holds.

Proposition 9.4. Let ϕ : M → N be a homogeneous degree 0 morphism
between graded R-modules. Assume that, for large n, ϕn : Mn → Nn is sur-
jective. Then ϕ̃ : M̃ → Ñ is a surjective map of sheaves.

Proof. We choose an open set D+(f), where f is homogeneous of degree > 0.
It will be enough to show that ϕ(f) : M(f) → N(f) is surjective. Consider
y/fr ∈ N(f). For large enough s, fsy is in the image of ϕ and hence so is
y/fr = fsy/fr+s. QED.
Example 9.5: The exact sequence associated to a closed set.

Let X be a projective algebraic variety, set R = Γh(X) and let Y be a
closed subset of X defined by a homogeneous ideal in R, I = IX(Y ). There is
then an exact sequence of graded R-modules 0 → I → R → R/I → 0, which
on sheafifying gives an exact sequence 0 → Ĩ → R̃ → R̃/I → 0. Once again,
this sequence is simply the fundamental exact sequence 0 → JY → OX →
OY → 0, as can be checked directly over the open sets D+(f).

We now define sheaves OPn(d) and OX(d) on a projective variety X.
Their advantage over the structure sheaf is that whenever d > 0 they have
global sections, namely the homogeneous polynomials of degree d. We start
by defining shifted modules.

Definition 9.6. Let R be a graded ring and let M =
⊕

n∈Z Mn be a graded
R-module. The module M(d) is the graded module which is equal to M except
that the grading is shifted: M(d)n = Md+n.

We note that a shift operation does not alter the exactness of exact se-
quences of modules.

Definition 9.7. Let X be a projective algebraic variety embedded in Pn and
consider R = Γh(X). The sheaf OX(d) is the sheaf associated to the shifted
module R(d); OX(d) = R̃(d). If F is a OX-module, then we write F(d) for
the sheaf F ⊗OX

OX(d) (cf. 6.11).

The sections of OX(d) over the open set D+(f) are therefore the degree d
elements of R(f), i.e., elements of the form a/fr, where deg a − r deg f = d.
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Remarks 9.8.
0) Warning. The sheaves OX(d) depend fundamentally on the grading

on R, and hence on the chosen embedding of X in Pn.

1) If M is a graded R-module, then M̃(d) = M̃ ⊗OX
OX(d) = M̃(d). (This

follows from the fact that tensor products commute.)
2) We now seek an inverse functor. Since sheaves on projective varieties

generally have too few functions, sections of the sheaves F(d) (for all d in Z)
will play the role in projective theory played by global sections of F in affine
theory. However, the correspondence between sections and sheaves is less per-
fect in projective geometry. More precisely, if F is a OX -module, then we
define a graded R-module Γ∗(F) by the formula

Γ∗(F) =
⊕

d∈Z

Γ (X,F(d)).

(The module structure comes from the natural map

Γ (X,OX(p)) ⊗k Γ (X,F(q)) −→ Γ (X,F(p + q)).)

We can check that if F is a sheaf, then F � Γ̃∗(F): in other words, Γ∗ is
a right inverse of ˜ (cf. [H] Chapter II, 5.15). In particular, a module is
quasi-coherent (resp. coherent) if and only if it is of the form M̃ (resp. M̃ for
some M of finite type).

3) NB: this functor is not, however, a left inverse. If the given sheaf F is of
the form M̃ , then the modules M and Γ∗(F) are not necessarily isomorphic.
More precisely, there is a natural homomorphism rd : Md → Γ (X, M̃(d)) for
each d which associates to x ∈ Md the element x/1 in M(f)(d) (note that these
sections glue together to form a global section). This gives a homomorphism of
degree 0, r : M → Γ∗(F), but we have to be careful because r is not generally
either injective or surjective (cf. Chapter VII or consider the case where X
is not connected, M = R and d = 0). However, we will show in Chapter VII
that if M is of finite type, then rd is an isomorphism for large enough d. (The
moral is that the sheaf M̃ actually only depends on the terms of large degree
in M .)

For Pn, however, the global sections are what we expect.

Proposition 9.9. Let Rd be the vector space of homogeneous polynomials of
degree d in X0, . . . , Xn. Then

Γ (Pn,OPn(d)) =

{
0 if d < 0;
Rd if d � 0.

In particular, Γ (Pn,OPn) = k (cf. 8.8).
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Proof. Consider f ∈ Γ (Pn,OPn(d)), f �= 0. By definition its restriction to
the open set D+(Xi) is a rational function of the form Pi(X0, . . . , Xn)/Xr

i ,
where Pi is homogeneous of degree d + r. After simplifying if necessary
we can assume that Xi does not divide P . Likewise, f |D+(Xj) is of the
form Pj(X0, . . . , Xn)/Xs

j , where Pj is homogeneous of degree d + s and Xj

does not divide Pj . Since these elements are restrictions of f , they coin-
cide on the intersection D+(XiXj) and hence are equal in the localised ring
k[X0, . . . , Xn](XiXj) or in the field of rational fractions k(X0, . . . , Xn). It fol-
lows that Xs

j Pi = Xr
i Pj , but since Xi does not divide Pi, this is only possible

if r = 0 and likewise s = 0, so Pi = Pj . The section f is therefore given by a
homogeneous polynomial Pi of degree d which is independent of i.

Corollary 9.10. We have

dimk Γ (Pn,OPn(d)) =
(

n + d

n

)
.

Remark. Unlike affine varieties, whose spaces of sections are rarely finite di-
mensional (this only happens for finite varieties cf. Chapter I, 4.8), the space
of sections over projective space of a sheaf OPn(d) is finite dimensional. This
is a general phenomenon: we will show in Chapter VII that if F is a coher-
ent sheaf on a projective algebraic variety X, then the space Γ (X,F) is a
finite-dimensional k-vector space.

10 Two important exact sequences

a. The exact sequence of a hypersurface

We work in projective space Pn and we consider a homogeneous polynomial of
degree d > 0, F ∈ R = k[X0, . . . , Xn], which is non-zero and has no multiple
factors. Let X = Vp(F ) be the projective hypersurface defined by F . We know
that the ideal I(X) is equal to (F ) by the Nullstellensatz. Multiplication by F
induces an isomorphism of graded R-modules R(−d) → I(X). (Be careful
when dealing with shifts: here we have to make sure that the constant 1, whose
image is F , has the same degree, namely d, on both sides of the equation.)
Passing to sheaves, we have the following exact sequence

0 −→ OPn(−d) · F−−−−→ OPn −→ OX −→ 0.

b. The exact sequence of a complete intersection

Proposition 10.1. Let F,G ∈ R = k[X0, . . . , Xn] be two homogeneous poly-
nomials of degrees s and t without common factors and set I = (F,G). We
have an exact sequence of graded R-modules

0 −→ R(−s − t)
ϕ−−→ R(−s) ⊕ R(−t)

ψ−−→ I −→ 0,

where ϕ(C) = (−CG,CF ) and ψ(A,B) = AF + BG.
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Proof. We note that the maps are indeed homogeneous of degree 0. It is clear
that ψ is a surjective map onto I. Let us find its kernel: if AF +BG = 0, then
AF = −BG, but since F and G are coprime, F divides B and hence B = CF
and it follows that A = −CG. And, finally, since R is an integral domain, it
is clear that ϕ is injective.

Corollary 10.2. With the above notation we consider V = Vp(F,G). We
assume that Ip(V ) = I = (F,G) (in other words, we assume this ideal is
radical). We then have the following exact sequence:

0 −→ OPn(−s − t) −→ OPn(−s) ⊕OPn(−t) −→ JV −→ 0.

When F and G have no common factors, we say that the variety V =
Vp(F,G) is a complete intersection of the hypersurfaces V (F ) and V (G) and
we express the fact that I(V ) = (F,G) by saying that V is a scheme-theoretic
complete intersection of the hypersurfaces in question. NB: a set-theoretic
complete intersection is not always a scheme-theoretic complete intersection
(cf. the space cubic in Exercise II,4).

For more examples of calculations of “resolutions”, see Exercise II.

11 Examples of morphisms

a. Some remarks on morphisms

Let (X,OX) and (Y,OY ) be algebraic varieties and let ϕ : X → Y be a map.
We wish to know under what conditions ϕ is a morphism.

Proposition 11.1. The fact of being a morphism is a local condition: given
an open cover Vi of Y and for each i an open cover Uij of ϕ−1(Vi), then ϕ is
a morphism if and only if for all i, j, ϕ|Uij

: Uij → Vi is a morphism.

Proof. Only the “if” part needs to be proved. We note that ϕ is continuous.
If V is an open set of Y and f ∈ Γ (V,OY ), then the restriction fi of f to Vi

is a section, and hence fiϕ restricted to Ui,j is a section, so fϕ, obtained by
gluing, is also a section.

Proposition 11.2. If Y is affine, it is enough to consider global sections: ϕ
is a morphism if and only if for any f ∈ Γ (Y,OY ), fϕ ∈ Γ (X,OX).

Proof.
1) Assume that X is affine. Then ϕ is regular and we are done by 3.5.
2) To prove the result in general, take an open affine covering of X: the

proposition follows from 11.1 plus the case where X is affine.
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Remarks 11.3.
1) It can be proved that the natural projection from kn+1 − {0} to Pn is

a morphism.
2) If ϕ : X → Y is a morphism and V and W are subvarieties of X and Y

respectively such that ϕ(V ) ⊂ W , then the restriction ϕ|V : V → W is a
morphism.

b. Applications to morphisms from Pn to Pm

Consider m + 1 polynomials F0, . . . , Fm ∈ k[X0, . . . , Xn], homogeneous of the
same degree d. We then define a map

ϕ : Ω = Pn − Vp(F0, . . . , Fm) −→ Pm

by setting ϕ(x) = ϕ(x0, . . . , xn) = (F0(x), . . . , Fm(x)).
Don’t forget that 1) the coordinates of a point in projective space are

not all 0, which is why ϕ is not defined on the whole of Pn, and 2) these
coordinates are homogeneous, which is why all the polynomials Fi must be of
the same degree.

Proposition 11.4. With the above notations ϕ is a morphism of varieties.

Proof. We apply 11.1 and 11.2 using the affine cover D+(Xi) of Pm. The
inverse image of D+(Xi) is the open set D+(Fi), and these open sets cover Ω.
If g is in Γ (D+(Xi),OPm), then g = G(X0, . . . , Xm)/Xr

i and

gϕ = G(F0(X0, . . . , Xn), . . . , Fm(X0, . . . , Xn))/Fi(X0, . . . , Xn)r

is indeed an element of Γ (D+(Fi),OPn).

Remark 11.5. If V is the closure of the image of ϕ, then Remark 11.3 shows
that ϕ also defines a morphism from Pn − Vp(F0, . . . , Fm) into V .

Examples 11.6.

a) Parameterising conics. We consider the morphism ϕ : P1 → P2 given by

ϕ(u, v) = (u2, uv, v2).

This morphism is defined on the whole of P1 since the polynomials u2, uv, v2

have no common zeros on P1. It is clear that its image is contained in the
conic C = Vp(XT − Y 2) and it is easy to see that ϕ : P1 → C is bijective: we
will show that it is in fact an isomorphism.

To do this we note that C is covered by affine open sets D+(X) and
D+(T ) in P2. We know that these open sets are isomorphic to k2. For D+(X),
for example, the isomorphism is given by (1, y, t) �→ (y, t). This induces an
isomorphism j from C∩D+(X) onto C�, an affine conic defined by y2− t = 0.
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We also have an isomorphism i from k onto D+(u) ⊂ P1 given by v �→ (1, v).
Composing these maps, we get maps

k
i−−→ D+(u)

ϕ−−→ D+(X) ∩ C
j−−→ C�

such that v �→ (1, v) �→ (1, v, v2) �→ (v, v2), and since the composition of these
three morphisms is clearly an isomorphism, ϕ is an isomorphism from D+(u)
to D+(X) ∩ C. A similar argument with respect to v and T completes the
proof of this result.

Warning: in this example, even though P1 and C are isomorphic, their
associated graded rings are not the same. The morphism ϕ induces a homo-
morphism

ϕ∗ : Γh(C) = k[X,Y, T ]/(XT − Y 2) −→ Γh(P1) = k[U, V ],

given by the three polynomials U2, UV, V 2. But this homomorphism is not an
isomorphism (its image is the subring k[U2, UV, V 2]) and does not preserve the
grading. Indeed, the two rings are not isomorphic (the localisation of Γh(C)
at the ideal (X,Y, T ) is not regular because it corresponds to the vertex of
the affine cone V (XT − Y 2), cf. Chapter V).
b) The space cubic. We now consider the morphism ϕ : P1 → P3 given by
ϕ(u, v) = (u3, u2v, uv2, v3) (cf. Exercises II). A similar argument shows that ϕ
is an isomorphism from P1 to the curve

C = V (XT − Y Z, Y 2 − XZ, Z2 − Y T ).

c) The Veronese map. This generalises the above example. Let d be a positive
integer and denote by M0,M1, . . . ,MN the monomials of degree d in variables
X0, . . . , Xn, so that N =

(
n+d

n

)
− 1. The Veronese map (associated to this

ordering on the set of monomials) is the morphism ϕd : Pn → PN given by

ϕd(x0, . . . , xn) = (M0(x), . . . ,MN (x)).

We consider the homomorphism

θ : k[Y0, . . . , YN ] −→ k[X0, . . . , Xn]

sending Yi onto Mi. We let I be its kernel. We then have the following result.

Proposition 11.7. The Veronese map ϕd is an isomorphism from Pn to the
projective algebraic variety V = Vp(I) (called the Veronese variety).

The proof of this proposition is not difficult (modulo a suitable choice of
notation, cf. Exercise III, B.3).

The Veronese map is useful because it transforms a hypersurface in Pn

into a hyperplane in PN , which sometimes allows us to reduce to this case.
For example:

Proposition 11.8. Consider F ∈ k[X0, . . . , Xn], a homogeneous polynomial
of degree d. The open set D+(F ) is then an open affine set in Pn. (It follows
that in a projective algebraic variety V all the sets D+(f) are open affine
sets.)
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Proof. We write F =
∑

i aiMi (where the terms Mi are the degree d mono-
mials). Under the Veronese morphism, the monomials Mi correspond to co-
ordinates Yi and hence ϕd(D+(F )) = D+(H)∩V , where H =

∑
i aiYi is now

of degree 1. But D+(H) is isomorphic to D+(Yi) via a homography, and this
latter is an open affine set. Since D+(F ) is isomorphic to a closed subset of
D+(H), it is also an affine variety.

Exercises A

1 Sheaves and sheaves of functions

Let X be a topological space and let F be a sheaf on X. Consider P ∈ X and let EP

be the set of pairs (U, s), where U is an open set containing P and s ∈ F(U). We
check that we can define an equivalence relation on EP as follows: (U, s) ∼ (V, t) if
and only if there is an open set W containing P , W ⊂ U ∩ V such that s|W = t|W .

The equivalence class of (U, s) is called the germ of s at P . We denote it by sP .
We denote the set of germs by FP : this is the fibre of F over P . We say that FP is
the inductive limit of the spaces F(U) for P ∈ U .

We set K =
∐

P∈X FP (the disjoint union of the spaces FP ). Show that it is
possible to define an injection iU from F(U) to the set of functions from U to K by
setting iU (s)(P ) = sP . Show that the maps iU are compatible with restrictions and
hence F is a subsheaf of the sheaf of functions from X to K.

2 Sections over an open set

Let V be an affine algebraic variety. We assume that Γ (V ) is a factorial ring (this
is the case if V = kn, for example).

a) Let f1, . . . , fn ∈ Γ (V ) be non-zero elements and let h be their gcd. Prove that
D(f1) ∪ · · · ∪ D(fn) ⊂ D(h) and the natural restriction homomorphism

r : Γ (D(h),OV ) −→ Γ (D(f1) ∪ · · · ∪ D(fn),OV )

is an isomorphism. (Argue by induction on n.)
b) Deduce that if U is an open set in V and U is not contained in an open set

D(f) different from V , then Γ (U,OV ) = Γ (V,OV ). An example of this is the
case V = k2, U = k2 − {(0, 0)}. More generally, Γ (U) = Γ (V ) whenever V − U
is of codimension � 2 in V .

3 Sections and quotients

Consider Q ⊂ k4 given by Q = V (XY − ZT ) with its algebraic variety structure.
Consider UY and UZ , the open sets of Q defined by y �= 0 and z �= 0 and set
U = UY ∪ UZ .

a) Prove that the function f from U to k defined by f(x, y, z, t) = x/z (resp. = t/y)
if P = (x, y, z, t) ∈ UZ (resp. if P ∈ UY ) is an element of Γ (U,OQ).

b) ¶ Prove that f is not the restriction to U of a quotient G/H, where G, H are
elements of k[X, Y, Z, T ] such that H(P ) �= 0 for all P ∈ U .

(Note that this implies that V (Y, X), which is of codimension 1 in Q, cannot be
defined by a unique equation (cf. Chapter IV).)
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4 To be or not to be affine

Prove that k2 − {(0, 0)} with the open subvariety structure inherited from k2 is
not an affine variety. (Consider its inclusion into k2 and use Exercise 2 and the full
faithfulness of the functor V 
→ Γ (V ) on affine varieties.)

5 To be or not to be isomorphic

Prove that k is not isomorphic to k−{x1, . . . , xn} for n � 1. (Look at the invertible
elements in their rings.)

6 A local criterion

Let ϕ : X → Y be a morphism of varieties. Prove that ϕ is an isomorphism if and
only if the following two conditions are satisfied.

i) ϕ is a homeomorphism,
ii) For any x ∈ X, ϕ∗ : OY,ϕ(x) → OX,x is an isomorphism.

7 Semicontinuity of rank

Let X be an affine variety with associated ring A = Γ (X,OX), let M be an A-

module of finite type and let F = M̃ be the corresponding sheaf on X. Consider
a point x ∈ X corresponding to a maximal ideal mx in A and let k(x) be its
residue field (which is isomorphic to the base field k). We set F(x) = M ⊗A k(x).
(Be careful not to confuse this object with Fx, the sheaf fibre, which is the tensor
product with the local ring M ⊗A Amx . The link between the two is given by the
formula F(x) = Fx/mxFx.)

a) Prove that F(x) is a finite-dimensional k-vector space.
b) Set Un = {x ∈ X | r(x) = rank(F(x)) � n}. Prove that Un is open in X or,

in other words, that the function r is upper semi-continuous. (Use Nakayama,
cf. Summary 2.)

c) Generalise the above result to a not necessarily affine variety X and a coherent
sheaf F .

d) Assume that X is connected and F is locally free (i.e., for any x ∈ X there
is an affine open set U in X containing x over which F is isomorphic to On

U ).
Prove that the function r is constant on X.

e) ¶ Conversely, suppose that r is constant. Prove that F is locally free. (Start by
lifting a basis x1, . . . , xr of F(x) over k to x1, . . . , xr in Fx or even to F(U) for
some open affine set U containing x and prove that these elements form a basis
for F(U) over Γ (U,OX).)
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8 Direct and inverse images of sheaves

The ideas introduced in this exercise are of fundamental importance in algebraic
geometry. However, they will not be used in the rest of this book. More details can
be found in [H].

Let ϕ : X → Y be a morphism of varieties and let F be a sheaf on X. We defined
in 6.9 the direct image sheaf ϕ∗F via the formula ϕ∗F(V ) = F(ϕ−1V ), where V is
an open set of Y . The aim of this exercise is to define an inverse map ϕ−1 and study
its properties.

1) Let G be a sheaf on Y and let U be an open set on X. Prove that we can define an
equivalence relation on pairs (V, s), where V is an open set of Y containing ϕ(U)
and s is an element of G(V ), by setting (V, s) ∼ (V ′, s′) if and only if s and s′

coincide on an open set V ′′ containing ϕ(U) and contained in V ∩ V ′. (This
definition is analogous to the definition of germs of functions in 5.1.) The set of
equivalence classes for this relationship is denoted by ϕ−1

0 G(U) (in sophisticated
language we call it the inductive limit of the spaces G(V ) for V ⊃ ϕ(U)). This
defines a presheaf on X and the associated sheaf on X is called the inverse image
of G and denoted ϕ−1G, i.e., ϕ−1G = ϕ−1

0 G+. Prove that the operation ϕ−1 is
functorial.

2) Prove that the fibres ϕ−1GP and Gϕ(P ) correspond bijectively (cf. Exercise 1).
3) Prove that if ϕ is open, then, for every open set U in X, ϕ−1G(U) = G(ϕU).

Prove that if X is an open set of Y and ϕ is the inclusion, then ϕ−1G = G|X
(and in particular, ϕ−1OY = OX).

4) Prove that the above formula is not true in general even if X is a closed subset
of Y . (Take X to be a point and use 2).)

5) Let F (resp. G) be a sheaf over X (resp. over Y ). Prove that there exist natural
morphisms λ : ϕ−1ϕ∗F → F and µ : G → ϕ∗ϕ

−1G. Deduce the following
identity (called the adjunction formula):

HomX(ϕ−1G,F) � HomY (G, ϕ∗F).

9 Direct and inverse images of OY -modules

Let ϕ : X → Y be a morphism of varieties.

1) Prove there is a sheaf morphism j : ϕ−1OY → OX . (Use 8.5 above.)
2) Let G be a OY -module. Prove that we can define a OX -module, called the inverse

image of G and written ϕ∗G, via the formula

ϕ∗G = ϕ−1G ⊗ϕ−1OY
OX .

Prove that this operation is functorial. Prove that ϕ∗OY = OX .
3) Let F (resp. G) be a OX -module (resp. a OY -module). Prove that there are

natural morphisms λ : ϕ∗ϕ∗F → F and µ : G → ϕ∗ϕ
∗G. Deduce the following

formula (called the adjunction formula):

HomOX (ϕ∗G,F) � HomOY (G, ϕ∗F).

4) Assume that X is a (closed or open) subvariety of Y and that ϕ is the canonical
injection.
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a) Let F be a OX -module. Prove that ϕ∗ϕ∗F � F .
b) Let F and F ′ be two OX -modules. Prove that

HomOY (ϕ∗F , ϕ∗F ′) � HomOX (F ,F ′).

c) Prove that ϕ∗ and ϕ∗ provide an equivalence of categories between OX -
modules and OY -modules of the form ϕ∗F . This equivalence of cate-
gories is the theoretical justification for our identification of F and ϕ∗F
in Chapter III, 6.10.

5) Assume that X and Y are affine with associated rings A and B respectively.
There is therefore a ring homomorphism f : A → B associated to ϕ. Let M
(resp. N) be an A-module (resp. a B-module). Prove the following formulae:

ϕ∗M̃ = M̃ ⊗A B and ϕ∗Ñ = Ñ[A], where N[A] denotes the A-module obtained
from N by reduction of scalars to A.

Exercises B

1 Homogenisation and dehomogenisation

In projective space Pn(k) with homogeneous coordinates x0, . . . , xn we identify affine
space An(k) with the open set U0 defined by x0 �= 0. The hyperplane “at infinity”
x0 = 0 is denoted by H0. We will study the relationships between the algebraic
subsets of An(k) and Pn(k).

We recall the following definitions.

For any P ∈ k[X0, X1, . . . , Xn], P�(X1, . . . , Xn) = P (1, X1, . . . , Xn).
For any p ∈ k[X1, . . . , Xn], p�(X0, X1, . . . , Xn) = Xdeg p

0 p(X1/X0, . . . , Xn/X0).

The notations below will be used throughout the following.

If I is an ideal of k[X1, . . . , Xn], then I� is the ideal in k[X0, X1, . . . , Xn] gener-
ated by the elements {p� | p ∈ I}.

If J is an ideal in k[X0, . . . , Xn], then J� is the ideal in k[X1, . . . , Xn] generated
by the elements {P� | P ∈ J}.

If V (resp. W ) is an algebraic set in An(k) (resp. Pn(k)) of the form V = V (I)
(resp. W = V (J)), then V � (resp. W�) is the algebraic set in Pn(k) (resp. An(k))
defined by I� (resp. J�).

1) Prove that the operations � and � are increasing on algebraic sets.
2) a) Prove that (V �)� = V .

b) Prove that V � is the closure of V in Pn.
c) Prove that if V = V1 ∪ · · · ∪ Vr is the decomposition of V into irreducible

components, then the sets Vi
� are the irreducible components of V �.

3) a) Prove that W� = W ∩ U0.
b) Assume that no irreducible component Wi of W is contained in H0. Prove

that (W�)
� = W and the components of W� are the sets Wi�.

4) Prove that I is radical if and only if I� is radical. Prove that if J is radical, then J�

is radical. What can you say about the converse? Prove that I(V �) = I(V )� and
I(W�) = I(W )�.

5) Let I be the ideal of k[X, Y, Z] generated by F and G, where F = Y − Z2 and
G = X − Z3. Is the ideal I� generated by F � and G�? (cf. Exercise II, 4.)
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2 Resolution of a graded module

Let R be a graded Noetherian ring, R = ⊕n�0Rn and M a graded R-module of
finite type, M = ⊕n∈ZMn. We denote by M(n) the shifted module defined by
M(n)p = Mn+p.

1) Prove that M is generated by a finite number of homogeneous elements.
2) Prove there is a surjective homomorphism p : L0 → M such that L0 is a graded

R-module of the form ⊕r
i=1R(ni) and p is homogeneous of degree 0, i.e., p sends

an element of degree n to an element of degree n.
3) Prove that M has a graded resolution, i.e., there exists an exact sequence

· · · −→ Ld
ud−−−→ Ld−1 −→ · · · −→ L0

p−−→ M −→ 0

such that the spaces Li are of the above form and the maps ui are degree zero
homogeneous morphisms. (Start by considering the kernels of p and the maps
ui.)

3 The Veronese map

Our aim is to prove Theorem III, 11.7. Let n and d be numbers > 0 and set

A =
{
α = (α0, . . . , αn) ∈ Nn+1 | αi � 0 and

∑n
i=0 αi = d

}
.

We note that |A| =
(

n+d
d

)
. We set |A| = N + 1.

The support of α ∈ A is the set of indices i such that αi �= 0. Its cardinal is
called the breadth of α.

Consider distinct integers i, j ∈ [0, n]. We denote by (i, j) (resp. (i)) the ele-
ment α in A defined by αk = 0 for k �= i, j; αi = d − 1; αj = 1 (resp. αk = 0 for
k �= i and αi = d).

If X0, . . . , Xn are variables, then for any α ∈ A we set Xα = Xα0
0 · · ·Xαn

n .

We consider the map ϕ : Pn → PN defined by the formula

ϕ(x0, . . . , xn) = ((xα)α∈A) = ((xα0
0 · · ·xαn

n )).

1) Prove that ϕ is an injective map.
2) Consider the ring homomorphism

θ : k[(Yα)](α∈A) −→ k[X0, . . . , Xn]

defined by θ(Yα) = Xα. Set I = Ker θ and consider V = Vp(I) (the Veronese
variety).
Prove that I is a homogeneous ideal and ϕ(Pn) ⊂ V .

3) Consider α, β, γ, δ ∈ A. We assume that α + β = γ + δ. Prove that YαYβ −YγYδ

is in the ideal I.
4) Prove that the open sets D+(Y(i)) cover V . (Consider y = (yα) ∈ V . Our aim

is to prove that one of the elements y(i) is �= 0. Argue by contradiction, by
considering a non-zero yα of minimal breadth and using 3.)

5) We define ψ : D+(Y(i)) ∩ V → D+(Xi) by the formula

ψ((yα)) = (y(i,0), y(i,1), . . . , y(i), . . . , y(i,n)).

Prove that ϕ and ψ are mutually inverse morphisms on the open sets in question.
6) Prove that ϕ gives an isomorphism from Pn to the Veronese variety V .
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4 Local rings in projective space

Our aim is to prove Proposition III, 8.7.
Consider x = (x0, . . . , xn) ∈ Pn. We consider the ideals mx and Ix in

k[X0, . . . , Xn] defined as follows: mx = (X0 − x0, . . . , Xn − xn) and Ix is the ideal
generated by the polynomials xiXj − xjXi for 0 � i < j � n.

1) Assume x0 �= 0. Prove that Ix is generated by polynomials Xi − xi
x0

X0 for
i = 1, . . . , n. Prove that Ix ⊂ mx.

2) Prove that Ix is the ideal Ip({x}) of polynomials vanishing at x. Deduce that I
is homogeneous and prime.

3) Prove there is a canonical isomorphism

k[X0, . . . , Xn] (mx) � k[X0, . . . , Xn] (Ix),

where the brackets indicate that in the localised ring we restrict ourselves to
elements of degree 0.

4) Assume x0 = 1 and set

ξ = (x1, . . . , xn) and nξ = (X1 − x1, . . . , Xn − xn) ⊂ k[X1, . . . , Xn].

Prove that the homomorphism � : k[X0, . . . , Xn] → k[X1, . . . , Xn] sending X0

to 1 induces an isomorphism

k[X0, . . . , Xn] (mx) � k[X1, . . . , Xn]nξ .

5) Complete the proof of the theorem.

5 An example of a non quasi-coherent module

Let X be an affine irreducible variety, let a be a point of X and let F be the presheaf
defined over X by the formula

Γ (U,F) =

{
Γ (U,OX) if a /∈ U,

0 if a ∈ U.

Prove that F is a sheaf, and that it is a non-zero OX -module such that Γ (X,F) = 0.
Deduce that F is not quasi-coherent.



IV

Dimension

Throughout this chapter we work over an algebraically closed base field k.

0 Introduction

Dimension is the first and most natural invariant of an algebraic variety. We
will finally be able to talk about varieties of dimension 0 (points), 1 (curves)
and 2 (surfaces). . . We will give a very natural topological definition of di-
mension, which is not always easy to work with, followed by other definitions
which are easier to work with but which depend on results from algebra.

1 The topological definition and the link with algebra

a. Definition

The basic idea we are going to formalise is that any closed irreducible subset of
an irreducible algebraic variety is of smaller dimension than the initial variety.

Definition 1.1. Let X be a set. A chain of subsets of X is a sequence X0 ⊂
X1 ⊂ · · · ⊂ Xn such that the sets Xi are distinct. Such a chain is said to be
of length n.

Definition 1.2. Let X be a topological space. The dimension of X is the
maximum of the lengths of chains of irreducible closed subsets of X. It is
either a positive integer or +∞. We denote it by dim X.1

1 Of course, this definition is only useful for topologies such as the Zariski topology.
If X is separated, for example, then dim X is always 0.
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b. Some topological remarks

Proposition-Definition 1.3. If Y is a topological subspace of X, then
dim Y � dim X. If X is finite dimensional, then we define the codimension
of Y in X to be the number dim X − dim Y . If moreover X is irreducible
and of finite dimension and Y is a closed subset different from X, then
dim Y < dim X.

Proof. Let F1 ⊂ · · · ⊂ Fn be a chain of closed irreducible subsets of Y .
There is then a sequence F 1 ⊂ · · · ⊂ Fn of closed irreducible subsets of X
(cf. Chapter I, 3.7). These closed sets are distinct since, for every i, Fi =
F i ∩ Y , since the sets Fi are closed in Y . The theorem follows. The second
statement is obvious (simply add X to a maximal chain in Y ).

Proposition 1.4. Let X be a topological space. Assume X =
⋃n

i=1 Xi, where
the sets Xi are closed. Then dim X = supdim Xi.

Proof. Given 1.3 it is clear that dim X � sup dim Xi. Conversely, let p be the
sup in question. If p is infinite, the theorem is trivial. Assume not and take a
chain in X of length p+1, F0 ⊂ · · · ⊂ Fp+1. Then Fp+1 =

⋃n
i=1(Xi∩Fp+1), but

since Fp+1 is irreducible, it is included in one of the sets Xi, which contradicts
dim Xi � p.

In particular, the above proposition applies when the sets Xi are the ir-
reducible components of an algebraic variety X (cf. Chapter III, 4.4). The
problem of dimension is thus more or less reduced to the problem of dimen-
sion of irreducible varieties.

c. Relation with Krull dimension

We recall the definition of the Krull dimension of a ring A.

Definition 1.5. The Krull dimension of A is the maximum of the lengths of
chains of prime ideals of A. We denote it by dimK A.

Example 1.6. A principal ring which is not a field is of dimension 1 (since every
non-zero prime ideal is maximal); k[X1, . . . , Xn] is a ring of dimension � n,
as the chain (0) ⊂ (X1) ⊂ (X1,X2) ⊂ · · · ⊂ (X1, . . . , Xn) shows. In fact, this
ring is of dimension n (cf. 1.9 below).

Proposition 1.7. Let V be an affine algebraic variety and let Γ (V ) =
Γ (V,OV ) be the algebra of regular functions on V . Then

dim V = dimK Γ (V ).

Proof. This follows from the decreasing bijection (Corollary I, 4.9 of the Null-
stellensatz) between closed irreducible subsets of V and prime ideals of Γ (V ).
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d. A fundamental theorem in algebra

The key result of this chapter is the following one, whose proof may be found
in Problem III.

Theorem 1.8. Let A be an integral domain which is a k-algebra of finite type
and let K = Fr(A) be its fraction field. The Krull dimension of A is equal to
the transcendence degree of K over k: dimK A = ∂kK.

Corollary 1.9. We have dimK k[X1, . . . , Xn] = n. It follows that the affine
space kn is of dimension n.

Proof. Indeed, the fraction field of k[X1, . . . , Xn] is k(X1, . . . , Xn), whose
transcendence degree over k is n (cf. Summary 3.2.b).

Corollary 1.10. Let V be an irreducible affine algebraic variety, let Γ (V ) be
the algebra of regular functions on V and let K(V ) be the field of rational
functions on V (cf. Chapter I, 6.15). Then dim V = dimK Γ (V ) = ∂kK(V ).
In particular, the dimension of an affine algebraic variety V is finite.

Proof. The first claim follows from 1.7 and 1.8. For the second, 1.4 allows us
to assume that V is irreducible and hence Γ (V ) is an integral domain. As
Γ (V ) is a k-algebra of finite type, the field K(V ) is a k-extension of finite
type and hence its transcendence degree is finite (cf. Summary 3.c).

e. Passing from a variety to an open subset

Proposition 1.11. Let X be a irreducible algebraic variety and let U be a
non-empty open subset of X. Then dim X = dim U , and this dimension is
finite.

Proof.
1) We treat first the case where X is affine with associated ring Γ (X).

The open set U then contains an open standard set D(f), where f ∈ Γ (X) is
non-zero and dimD(f) � dim U � dim X. As the ring of D(f) is a localised
ring of the ring of X, these two rings have the same fraction field and hence X
and D(f) have the same dimension by 1.10, hence so does U .

2) The above shows that the non-empty affine subsets of X (which are
irreducible) all have the same finite dimension r (consider the intersection of
two of them).

3) Assume dim X > r. There is therefore a chain F0 ⊂ · · · ⊂ Fn such
that n > r. Consider x ∈ F0 and let U be an open affine set containing x.
We consider the closed sets U ∩ Fi in U . Being non-empty open subsets of
a irreducible set, they are irreducible: they are distinct because Fi ∩ U = Fi

(because Fi ∩ U is a non-empty open subset of the irreducible set Fi). There
is therefore a chain of length n in U , which is absurd.

4) Finally, if U is an arbitrary open set, then U contains an open affine
subset and we are done.
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Comment 1.12. The above gives us a method for calculating the dimension
of an arbitrary algebraic variety X.

1) After decomposing X as a finite union of irreducible subsets if necessary,
we reduce to the case where X is irreducible.

2) If X is irreducible, we can, after possibly passing to an affine open set,
assume that X is affine and irreducible.

3) And finally, if X is irreducible and affine, we calculate the transcendence
degree of K(X).

Examples 1.13.
1) We have dimPn = n. (Reduce to affine space.)
2) An affine variety V of dimension 0 is finite. (Reduce to the irreducible

affine case: the result is then clear.)

Definition 1.13. An algebraic variety of dimension 1 (resp. 2) is called a
curve (resp. a surface).

Note that for the moment we allow our varieties to have components of
smaller dimension.

2 Dimension and counting equations

a. The Hauptidealsatz

Let V be an affine algebraic variety of dimension d and consider f ∈ Γ (V ).
The aim of this paragraph is to put the intuitive idea that the closed subvariety
V (f) in V should have dimension d−1 on a firm footing. This idea is suggested
in particular by the linear model—i.e., hyperplanes in vector spaces.

We start by noting two extreme cases to be avoided.

Proposition 2.1.
a) V (f) empty ⇔ f is invertible in Γ (V ),
b) V (f) contains an irreducible component ⇔ f is a zero divisor.

Proof. Claim a) follows from the weak Nullstellensatz (I, 4.1). To prove b),
note that if f is a zero divisor, then fg = 0 for some g �= 0 and hence
V = V (f) ∪ V (g), where V (g) �= V . If Vi is a component of V , then Vi =
(V (f)∩Vi)∪ (V (g)∩Vi) and hence Vi is contained in V (f) or in V (g). As not
all the components can be contained in V (g) (since V (g) �= V ), V (f) contains
at least one component. Conversely, if V (f) contains a component Vi, then
consider some g ∈ Γ (V ) which is non-zero and vanishes on all the other
components of V (cf. Chapter I, 2.2.2). We see that fg = 0.

We have the following definition.

Definition 2.2. An algebraic variety X is said to be equidimensional if all its
irreducible components are of the same dimension.
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Of course, an irreducible algebraic variety is equidimensional.
The following theorem is a geometric version of an algebraic result (Krull’s

Hauptidealsatz, or principal ideal theorem).

Theorem 2.3. Let V be an equidimensional affine algebraic variety of di-
mension n and let f ∈ Γ (V ) be an element which is neither invertible nor
a zero-divisor. Then V (f) is an equidimensional affine algebraic variety of
dimension n − 1.

Proof. See [M] Chapter I, § 7 Theorem 2 for an excellent proof. We will restrict
ourselves to the trivial case where V = kn: f is then a non-constant polynomial
(which we assume to be of degree > 0 in Xn) and we can assume that f is
irreducible (cf. Chapter I, 4.12). Then

Γ (V (f)) = k[X1, . . . , Xn]/(f),

and this ring is an integral domain. We will show that the images x1, . . . , xn−1

of the variables Xi in this ring form a transcendence basis in the field of frac-
tions, which will be enough to show that V (f) is of dimension n−1. Indeed, the
last variable xn is algebraic over k(x1, . . . , xn−1) because it satisfies the equa-
tion F (x1, . . . , xn−1, xn) = 0. On the other hand, the variables x1, . . . , xn−1

are algebraically independent, since otherwise we would have a polynomial
equation g(X1, . . . , Xn−1) ∈ (f), but on considering the degree of g with re-
spect to the variable Xn we see that this is impossible.

Corollary 2.4. Let V be an equidimensional affine algebraic variety of di-
mension n and consider f1, . . . , fr ∈ Γ (V ). If W is an irreducible component
of V (f1, . . . , fr), then dim W � n − r.

Proof. We proceed by induction on r. We note that for a given r it will
be enough to prove the result for irreducible V (since W is contained in
a component of V ). Assume r = 1 and that V is irreducible. If f1 is neither
invertible nor zero we are done by 2.3. Let us note that f1 cannot be invertible
(since otherwise V (f1) = ∅, but this variety contains W which is irreducible
and hence non-empty). If f1 vanishes, then V (f1) = V and the result follows.
And finally, to pass from r − 1 to r we apply the induction hypothesis to a
component of V (f1) containing W .

The reader should be aware of the fact that if f is a zero divisor, then V (f)
is not necessarily equidimensional or of dimension n or of dimension n − 1.
For example, if V = V (XY ) and f = x(x + y + 1), then we can prove that
V (f) is the union of a line and a point.

Of course, for r > 1 equations we cannot improve on this result. (Consider
the case where the functions fi are all the same.)
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b. The intersection theorem

Once again, the inspiration for this result comes from linear algebra—namely,
the lemma on the dimension of the intersection of two subspaces. However, in
the context of algebraic varieties we only get an inequality.

Proposition 2.5. Let X and Y be two irreducible affine algebraic sets con-
tained in kn of dimensions r and s respectively. Then every irreducible com-
ponent of X ∩ Y is of dimension � r + s − n.

Proof.
1) Assume first that X = V (F ) is a hypersurface. In this case, if f is the

image of F in Γ (Y ), then X ∩ Y = VY (f), and we are done by 2.4.
2) The general case can be reduced to the above by identifying X∩Y with

the intersection of the product with the diagonal in the product space kn×kn

(cf. Exercise IV, 1 or [H] Chapter I, 7.1).

c. Converses and systems of parameters

We saw in 2.3 and 2.4 that if we take r equations in an affine variety of
dimension n, then we obtain a subvariety of dimension � n− r and probably
equal to n−r in good cases. Conversely, we might wonder whether or not any
subvariety of dimension n−r (or codimension r) can be defined by r equations.
This is clearly too much to ask for but we will give some partial converses.
We start with the case r = 1. In this case, we will be able to establish a good
converse, provided we make (strong) assumptions on the original variety.

Proposition 2.6. Let V be an irreducible affine algebraic variety. Assume
that the ring Γ (V ) is factorial. Let W be a closed irreducible subset of V of
codimension 1. Then there is an f ∈ Γ (V ) such that W = V (f).

Proof. We consider I(W ), which is a prime ideal of Γ (V ). This ideal is of
height 1, which is to say it is minimal in the set of non-zero prime ideals of
Γ (V ). (This follows from the bijection between irreducible subsets and prime
ideals.) It is enough to check that I is principal since if I(W ) = (f), then
W = V (f). Consider g ∈ I(W ), g �= 0 and decompose g as a product of
irreducible elements g = f1 · · · fr. Since I(W ) is prime one of the functions fi

is in I(W ) and hence (fi) ⊂ I(W ). But now since Γ (V ) is factorial, the ideal
fi is prime (by Euclid’s lemma, cf. Summary 1.5) and non-zero, and hence is
equal to I(W ).

In general we have to make do with the following result.

Proposition 2.7. Let V be an irreducible affine algebraic variety and let W
be an irreducible affine algebraic subvariety of codimension r > 1. For every s
such that 1 � s � r, there exist f1, . . . , fs ∈ Γ (V ) such that:

1) W ⊂ V (f1, . . . , fs) and
2) All the components of V (f1, . . . , fs) are of codimension s.
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In particular, there are elements f1, . . . , fr ∈ Γ (V ) such that W is an
irreducible component of V (f1, . . . , fr). We say that the functions fi are a
system of parameters for W .

Proof. We proceed by induction on s. For s = 1 we take f ∈ I(W ), f �= 0
(I(W ) �= (0) since V �= W ). We have W ⊂ V (f) and we are done by 2.3.

We now show how to pass from s − 1 to s. The induction hypothesis for
s− 1 says that W ⊂ V (f1, . . . , fs−1), and if Y1, . . . , Yn are the components of
V (f1, · · · , fs−1), then the sets Yi are of codimension s− 1. As s− 1 < r, none
of the components Yi are contained in W and hence I(W ) is contained in none
of the ideals I(Yi). By the avoidance of prime ideals lemma (cf. Summary 4.1)
I(W ) �⊂

⋃n
i=1 I(Yi), and there is therefore an fs ∈ I(W ) such that fs /∈ I(Yi)

for all i = 1, . . . , n. It follows that W ⊂ V (f1, . . . , fs). Moreover, if Z is a
component of V (f1, . . . , fs), then Z is of codimension � s. Furthermore, Z
is contained in V (f1, . . . , fs−1), and is hence contained in one of the compo-
nents Yi, and is not equal to this Yi (since fs /∈ I(Yi)). It follows that Z is of
codimension � s (cf. 1.3) and hence is of codimension s. QED.

Corollary 2.8. Let A be an integral k-algebra of finite type and of Krull di-
mension n and let I be a prime ideal in A. We assume dimK(A/I) = r. Then
there is a sequence of prime ideals of A of length n “passing” through I:

(0) = I0 ⊂ I1 ⊂ · · · ⊂ In−r = I ⊂ · · · ⊂ In.

(We say that the ring A is catenary.).

Proof. The existence of suitable ideals Ik for k � n− r follows from the defin-
ition of the Krull dimension for A/I. Moreover, A is the ring of an irreducible
affine variety V and I corresponds to an irreducible subvariety of dimension r.
The theorem follows on applying 2.7 in the form stated above.

Corollary 2.9. Let V be an irreducible algebraic variety and consider x ∈ V .
We have dim V = dimK OV,x. If V is not irreducible, then the Krull dimension
of OV,x is the maximum of the dimensions of the irreducible components of V
containing x. We denote this number by dimx(V ).

Proof. We reduce immediately to the case where V is irreducible and affine
with associated ring A and the point x corresponds to the maximal ideal mx

in A. By the description of the prime ideals of OV,x = Amx
given in Summary

1.6 we know that dimK OV,x � dimK A = dimV . Once again, the converse
follows from 2.7.

d. Projective versions

We now state rapidly the projective versions of some of the above results.
Most of the proofs are immediate using affine open sets and cone varieties
(cf. Chapter II, 4.5.C). The advantage of projective space is that in certain
cases we can be sure that the varieties obtained are non-empty.
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Proposition 2.10. Let V ⊂ Pn be an irreducible projective algebraic variety
and consider f ∈ Γh(V ), a non-constant homogeneous element.

1) Every irreducible component of V (f) is of codimension 1 in V .
2) If dim V > 0, then V (f) is non-empty.

Proof. To prove the first statement we consider the affine open sets Ui =
D+(Xi). The components of V (f) are non-empty and hence not contained in
all the sets V (Xi). Let us look for example at those components of V (f) which
are not contained in V (X0). Then V ∩ U0 is an irreducible affine algebraic
variety and V (f) ∩ U0 = V (f�) �= ∅, where f� ∈ Γ (V ∩ U0) is defined as
in Chapter III, 8.b. The element f� is neither invertible (since V (f�) is non-
empty) nor 0 (since otherwise V (f) would contain V ∩U0 and hence V and f
would be 0). It follows that dimV (f�) = dim(V ∩ U0) − 1 = dim V − 1, and
moreover this holds for all the irreducible components not contained in V (X0).
The result follows.

To prove 2) we work with cones in kn+1. We consider C(V ), the cone over V
(cf. Chapter II, 4.5). The (affine) ideal of C(V ) is none other than Ip(V ). It
is therefore prime, so C(V ) is irreducible. Moreover, dimC(V ) = dimV + 1.
(The simplest way to see this is to use the dimension of fibres theorem (4.7)
applied to the natural projection from C(V )−{0} to V whose fibres are lines
with the origin removed. We can also apply the Hauptidealsatz in order to
pass from the ring k[X0, . . . , Xn]/I(V ) to the affine ring k[X1, . . . , Xn]/I(V )�

by quotienting by the element X0−1.) We then consider the affine subvariety
Va(f) ⊂ C(V ). This is non-empty (since f is homogeneous, it contains 0) and
is of codimension 1 in C(V ), and is hence of dimension dim V > 0. It therefore
does not consist only of the point 0 and hence its image in Pn, which is simply
V (f), is non-empty.

We leave the proofs of the following two propositions, which are similar to
the above, as an exercise for the reader.

Corollary 2.11. Let V be an irreducible projective algebraic variety and con-
sider non-constant homogeneous elements f1, . . . , fr ∈ Γh(V ).

1) Every irreducible component of V (f1, . . . , fr) is of codimension � r
in V .

2) If r � dim V , then V (f1, . . . , fr) is non-empty.

We can also define homogeneous systems of parameters.

Proposition 2.12. Let V be an irreducible projective algebraic variety and
let W be an irreducible projective algebraic subvariety of codimension r. There
are homogeneous elements f1, . . . , fr ∈ Γh(V ) such that W is an irreducible
component of V (f1, . . . , fr).
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3 Morphisms and dimension

a. Examples and discussion

Let ϕ : X → Y be a morphism of algebraic varieties. We assume that X
and Y are irreducible. (To reduce to this case we decompose Y into irreducible
components Y = Y1 ∪ · · · ∪ Yr and then consider the inverse images of the
components Yi, which are themselves closed subsets covering X, which we
then further decompose, cf. 3.8 below.)

Let y be a point in Y and denote its fibre by ϕ−1({y}), or rather ϕ−1(y).
As {y} is closed in Y (exercise: prove this) this fibre is a closed subset of X
which we equip with its subvariety structure.2

Our aim is to compare the dimensions of X, Y and the fibres.

Example 3.1. Consider the projection ϕ : kn+d → kn given by the first n
coordinates. The fibre of an arbitrary point of kn is isomorphic to kd. Here,
we have the relationship

(∗) dim X = dimY + dimϕ−1(y).

This is the relationship we expect, but we have to be a bit careful.

Example 3.2. If Im ϕ is too small, then no formula of type (∗) can hold. For
example, if ϕ is constant, ϕ(x) = b for all x ∈ X, say, then

ϕ−1(y) =

{
∅, if y �= b,

X, if y = b,

and formula (∗) is not true (if only because Y does not appear).
We are therefore going to have to make some assumptions about ϕ. The

natural hypothesis, that ϕ should be surjective, is too strong (cf. 3.3 and 3.4);
the right condition is that ϕ should be dominant, i.e., (cf. Chapter I, 6.10)
ϕ(X) = Y .

Example 3.3. Take V = V (XY − 1) ⊂ k2, W = k and take ϕ to be the pro-
jection ϕ(x, y) = x. We have ϕ(V ) = k − {0}, and the projection is dominant
but not surjective. In this case all the fibres except for the fibre over 0, which
is empty, have the correct dimension predicted by (∗): zero.

Example 3.4. Consider V = V (XZ − Y ) ⊂ k3 and let ϕ : V → k2 be given
by ϕ(x, y, z) = (x, y). If x �= 0, then ϕ−1(x, y) = {(x, y, y/x)}; if y �= 0, then
ϕ−1(0, y) = ∅ and ϕ−1(0, 0) = {(0, 0, z) | z ∈ k}. The image of ϕ is hence
(k2 −V (X))∪{(0, 0)} and the non-empty fibres all satisfy (∗), which predicts
that their dimension should be 0 except the fibre over the point (0, 0) which
is of dimension 1.
2 When dealing with dimension, which is a fairly coarse invariant in the final analy-

sis, the variety structure is sufficient. On the other hand, for more delicate invari-
ants (such as degree) we will have to define a scheme structure on the fibre. See
the appendix on schemes 4.b.
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About images. We note that the image of a morphism is not necessarily open,
or closed, or even locally closed (i.e., the intersection of an open set and a
closed set). However, it is always constructible, that is to say, a finite union
of locally closed sets (cf. [H] Exercise II, 3.18 and 3.19 or [M] Chapter I, 8
Corollary 2).

The moral of this story is that the “general” fibre has to have the expected
dimension dim X − dim Y but that “special” fibres may be larger.

b. Reduction to the affine case

Let ϕ : X → Y be a dominant morphism of irreducible algebraic varieties
and let y ∈ Y be in the image of ϕ(X). Let Z be an irreducible component of
ϕ−1(y).

Lemma 3.5. There are non-empty affine open sets U ⊂ X and V ⊂ Y such
that

1) ϕ(U) ⊂ V ,
2) ϕ|U : U → V is dominant,
3) y ∈ V ,
4) Z ∩ U �= ∅.

Proof. Take an open affine set V in Y containing y. We consider ϕ−1(V ).
This is an open subset of X containing Z. We take z ∈ Z and we consider U ,
an affine open set of ϕ−1(V ) containing z. It will be enough to show that
ϕ|U : U → V is dominant. Let Ω be a non-empty open subset of V . As ϕ is
dominant, Ω meets ϕ(X), so ϕ−1(Ω) is a non-empty open set in X. But as X
is irreducible this open set meets U in a point x and hence ϕ(x) ∈ Ω∩ϕ|U (U).
QED.

3.6. Consequences.
a) Under the hypotheses of the lemma, dim X = dim U , dim Y = dim V ,

dim Z = dim Z ∩ U and Z ∩ U is an irreducible component of ϕ|−1
U (y). We

are therefore in exactly the same situation, but all our algebraic varieties are
affine. This enables us to reduce most of our claims to the affine case.

b) It follows from the lemma that if ϕ : X → Y is dominant (and X, Y
are irreducible), then dimY � dim X. Indeed, we can assume that X,Y are
affine and we then know that the map ϕ∗ : Γ (Y ) → Γ (X) associated to ϕ is
injective. This induces an injective map on fraction fields, ϕ∗ : K(Y ) → K(X),
and hence the transcendence degree of K(Y ) over k is smaller than that of
K(X). The result follows from 1.8.

c. The dimension theorem

Theorem 3.7. Let ϕ : X → Y be a dominant morphism of irreducible alge-
braic varieties.
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1) Let y be a point of Y . Every irreducible component of ϕ−1(y) has di-
mension at least dim X − dim Y .

2) There is a non-empty open set U ⊂ Y such that
a) U ⊂ ϕ(X),
b) ∀ y ∈ U , dim ϕ−1(y) = dim X−dim Y . More precisely, every irreducible

component of ϕ−1(y) is of dimension dim X − dim Y .

Proof. By 3.5 and 3.6 we may assume that X and Y are affine. We set A =
Γ (Y ), B = Γ (X): ϕ induces an injective map ϕ∗ : A → B.

1) We set p = dimY . Consider y ∈ Y . By 2.7, there are elements
f1, . . . , fp ∈ A such that V (f1, . . . , fp) is finite and y is a point of this set.
Replacing Y (as in 3.5) with an open affine set containing y and no other
point of V (f1, . . . , fp) we may assume V (f1, . . . , fp) = {y}. Set gi = ϕ∗(fi).
We then have ϕ−1(y) = V (g1, . . . , gp). Indeed, the statement that x ∈ ϕ−1(y),
and hence ϕ(x) = y, means exactly that, for every i, fiϕ(x) = 0, but fiϕ is
simply gi.

But it then follows by 2.4 that every component of ϕ−1(y) = V (g1, . . . , gp)
is of codimension � p and is hence of dimension � dim X − dim Y . (NB: this
fibre may however be empty, in which case it has no irreducible component.)

2) Set p = dim Y , q = dimX and r = q − p. There is an injection ϕ∗ from
A to B. As B is a k-algebra of finite type, it is also an A-algebra of finite type:
B = A[b1, . . . , bn]. (NB: this notation does not mean that B is a polynomial
algebra cf. Problem III, 0). Let K and L be the fraction fields of A and B;
we have L = K(b1, . . . , bn). Moreover, since ∂kK = p and ∂kL = q it follows
that ∂KL = r (cf. Summary 3.c). We can therefore pick r elements b1, . . . , br

amongst the elements bi which form a transcendence basis for L over K and,
conversely, r+1 of the elements bi are always algebraically dependent over K.

To prove the theorem it will be enough to deal with claims a) and b)
separately and then take the intersection of the non-empty open sets thus
obtained (which will be non-empty because Y is irreducible).

Let us first prove a). Let C be a A-subalgebra of B generated by the subsets
b1, . . . , br, C = A[b1, . . . , br]. As the elements bi are algebraically independent
over K, this is a polynomial algebra and we have C � A ⊗k k[T1, . . . , Tr]
(cf. Summary 2.4), so C is the algebra of an affine variety Z, isomorphic to
Y ×kr (cf. Problem I, 1.b), such that the projection π : Z → Y corresponds to
the canonical injection j : A → C. The other injection i : C → B corresponds
to a dominant map ϕ′ : X → Z, where f = πϕ′.

To prove a) it will be enough to show that ϕ′(X) contains a non-empty
open set Ω in Z. Indeed, ϕ(X) will then contain π(Ω), which is a non-empty
open set in Y (cf. Problem I, 1.c). We consider M = K(b1, . . . , br). We have
L = M(br+1, . . . , bn) and as b1, . . . , br is a transcendence basis for L over K,
the elements bi, i > r, are algebraic over M . There are therefore equations
cni,ib

ni
i + · · · + c0,i = 0 for every i = r + 1, . . . , n, and (after possibly clearing

denominators) we can assume that ci,j ∈ C and cni,i �= 0.
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We then set f =
∏n

i=r+1 cni,i. We have f ∈ C and f �= 0. Let Ω be the non-
empty open set DZ(f). Its inverse image under ϕ′ is simply DX(ϕ′∗(f)), and
these open sets correspond to the local algebras Cf and Bϕ′∗(f) respectively.
The second algebra is generated as a Cf -algebra by the elements bi for i > r,
but (and this is what we have gained) since f is invertible in Cf , so is cni,i, and
hence the elements bi are integral over Cf . In other words, the ring Bϕ′∗(f) is
integral over Cf , or, alternatively, the restricted morphism ϕ′ : DX(ϕ′∗(f)) →
DZ(f) is finite and hence surjective (cf. Annex 4, Theorem 4.2 below) and the
open set Ω is indeed contained in ϕ′(X).

We now turn to point b). If we consider r + 1 elements bi1 , . . . , bir+1

amongst the elements b1, . . . , bn, we know they are algebraically dependent
over K and hence they satisfy a non-trivial equation Fi(bi1 , . . . , bir+1) = 0,
(i = {i1, . . . , ir+1}) whose coefficients can be assumed to lie in A. We choose
a non-zero coefficient ai of this equation and set a =

∏
ai, the product being

taken over all subsets of {1, . . . , n} containing r+1 elements. We then consider
the non-empty open set DY (a) ⊂ Y . We will show that over this open set all
irreducible components of the fibres are of the right dimension.

Consider y ∈ DY (a). It corresponds to a maximal ideal m in A, m =
(f1, . . . , fs), and, on setting gi = ϕ∗(fi), it is easy to check that ϕ−1(y) =
V (g1, . . . , gs) = V (mB), as in the proof of point 1). By the Nullstellensatz
we know that I(ϕ−1(y)) = rac(mB), and if W is an irreducible component
of ϕ−1(y), then W corresponds to a prime ideal q in B which contains mB
and is a minimal ideal satisfying this condition. We then have Γ (W ) = B/q
and, by 1), it will be enough to show that dimB/q � r, or, alternatively,
∂k Fr(B/q) � r.

But q ∩ A = m: indeed, m ⊂ mB ⊂ q hence m ⊂ q ∩ A, and since
q ∩ A is prime (and therefore �= A) and m is maximal, they are equal. It
follows that B/q is generated as a k = A/m-algebra by the images bi of the
elements bi. Likewise, Fr(B/q) = k(b1, . . . , bn). Assume ∂k Fr(B/q) > r. We
would then have r + 1 elements bi1 , . . . , bir+1 amongst the elements bi which
are algebraically independent over k. But we know that the corresponding
elements bi satisfy the equation

Fi(bi1 , . . . , bir+1) =
∑

ai,αbα1
i1

· · · bαr+1
ir+1

= 0,

where ai,α ∈ A. The same equation holds upon passing to the quotient by q

and gives us an equation satisfied by the elements bi, with coefficients ai,α ∈ k.
As q ∩ A = m is the maximal ideal corresponding to y, ai,α = ai,α(y). But
as y ∈ DY (a), one of the elements ai,α does not vanish by construction, and
hence the equation satisfied by the bi1 , . . . , bir+1 is non-trivial, and hence these
elements are algebraically dependent, which gives us a contradiction.

d. Some corollaries

Our first corollary takes the reducible case into account.
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Corollary 3.8. Let ϕ : X → Y be a morphism of algebraic varieties.
1) Assume that all the fibres of ϕ are of dimension � r. Then dim X �

r + dim Y .
2) Assume that ϕ is dominant and all the non-empty fibres of ϕ are of

dimension r. Then dim X = r + dimY .

Proof.
1) We decompose Y into irreducible components, Y = Y1 ∪ · · · ∪ Yn, and

similarly decompose ϕ−1(Yi) =
⋃

j Xi,j . We consider the restriction ϕ : Xi,j →
Yi and set Zi = ϕ(Xi,j). We apply 3.7 to ϕ : Xi,j → Zi, and we get dim Xi,j �
dim Zi + dim ϕ−1(z) � dim Y + r. The result follows since X is the union of
the sets Xi,j .

2) Let Yi be a component of Y of dimension dimY . The restriction ϕ :
ϕ−1(Yi) → Yi is dominant (consider the non-empty open set Yi−

⋃
j �=i Yj). We

then decompose ϕ−1(Yi) =
⋃

j Xi,j into components. After possibly removing
certain components we can assume that all the sets Xi,j dominate Yi. If the
dimensions of all the Xi,j are < r + dim Y , then 2.b of 3.7 applied to the
restriction ϕ : Xi,j → Yi shows that the general fibre of ϕ−1Yi → Yi is of
dimension > r, which is impossible.

Corollary 3.9. Let ϕ : X → Y be a closed morphism (i.e., a morphism which
sends closed sets into closed sets: this is the case if, for example, X and Y
are both projective varieties, cf. Problem II). For any i ∈ N we set

Yi = {y ∈ Y | dim ϕ−1(y) � i}.

Then the sets Yi are closed in Y .

Proof. We proceed by induction on dimY . If dim Y = 0, this is clear. Other-
wise, set p = dim Y , q = dimX. We may assume that X and Y are irreducible
and ϕ is surjective and we note that the sets Yi are decreasing in i. Theorem
3.7 shows that Yq−p = Y (and hence this is also the case for Yi, i � q − p)
and that there is a closed set Y ′ �= Y (namely the complement of the open
set U constructed in 3.7) such that Yi ⊂ Y ′ for i � q − p + 1. We then apply
the induction hypothesis to Y and its inverse image under ϕ.

Remark 3.10. The closed sets Yi form what is known as a stratification of Y .
For each i we additionally construct a locally closed set Y 0

i = Yi − Yi+1 over
which the dimension of the fibre is constant and equal to i (these sets are
the strata: they are disjoint and their union is Y ). As these are locally closed
subsets of Y , they are equipped with variety structures. The use of this type
of stratification is a standard technique in algebraic geometry, as the following
corollary, which is often useful in dimension problems, shows.

Corollary 3.11. Let ϕ : X → Y be a closed surjective morphism. With the
notations of 3.9 the following formula holds; dim X = sup(i + dim Y 0

i ), where
the sup is taken over all the i ∈ N such that Y 0

i is non-empty.
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Proof. We can assume that X and Y are irreducible. Set p=dim X, q=dim Y .
As Y 0

q−p contains a non-empty open set, we have dim Y 0
q−p = dim Y = p, so

dim X � sup(i+dim Y 0
i ). Conversely, consider a non-empty Y 0

i and set X0
i =

ϕ−1(Y 0
i ). Corollary 3.8 then says that dimY 0

i + i � dim X0
i � dim X, and the

other inequality follows.

Counter-example 3.12. Corollary 3.9 is only valid if we assume ϕ is closed.
Indeed, the image of ϕ is simply Y0 and this is not generally closed, cf. 3.4.
We note that the assumption that ϕ is surjective is not enough, as is
shown by the example of the morphism ϕ : k3 → k3 given by ϕ(x, y, z) =
(x, (xy − 1)y, (xy − 1)z), which is surjective, but for which Y1 is not closed.3

4 Annex: finite morphisms

We recall (cf. Summary 1.7) that if B is an A-algebra of finite type, then B
is integral over A if and only if B is an A-module of finite type: we then say
that B is a finite A-algebra.

Definition 4.1. Let ϕ : X → Y be a dominant morphism of irreducible affine
algebraic varieties and let ϕ∗ : Γ (Y ) → Γ (X) be the associated morphism of
algebras turning Γ (X) into a Γ (Y )-algebra. We say that ϕ is a finite morphism
if Γ (X) is a finite Γ (Y )-algebra.

Theorem 4.2. Let ϕ : X → Y be a finite morphism. Then ϕ is surjective.

Proof. We work with rings. We denote by MaxA (resp. Spec A) the set of
maximal (resp. prime) ideals in A. Theorem 4.2 then follows from the following
result.

Theorem 4.3. Let A ⊂ B be integral domains such that B is integral over A.
We consider m ∈ MaxA. There is an n ∈ Max B such that m = n ∩ A.

Proof (of 4.3). We start by proving a lemma.

Lemma 4.4. With the notations of 4.3, consider q ∈ Spec B such that p =
q ∩ A ∈ Spec A. Then q maximal ⇔ p maximal.

Proof (of 4.4). As B is integral over A, the same is true of B/q over A/p (take
the integral dependence equation of b ∈ B and project it to the quotient). We
then only have to prove the following.

Lemma 4.5. Let A ⊂ B be integral domains such that B is integral over A.
Then A is a field ⇔ B is a field.
3 This example was pointed out to me by Nicusor Dan.
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Proof (of 4.5). Suppose that A is a field. Consider b ∈ B, b �= 0. This element
satisfies an equation bn + an−1b

n−1 + · · · + a1b + a0 = 0 and we may assume
a0 �= 0 (after possibly dividing by bi, which is possible since B is a domain).
But a0 is then invertible in A and we have

b(a−1
0 bn−1 + a−1

0 an−1b
n−2 + · · · + a−1

0 a1) = −1,

and hence b is invertible.
Assume that B is a field and consider a ∈ A, a �= 0. There is an inverse a−1

in B which is therefore integral over A, a−n + an−1a
−n+1 + · · · + a0 = 0, or,

alternatively, multiplying by an, 1 + a(an−1 + · · · + a0a
n−1) = 0. This is an

equality in A and shows that a is invertible in A. This completes the proof of
4.5 and 4.4.

The following result is a consequence of 4.4.

Corollary 4.6. With the notations of 4.3, if A is a local ideal with maximal
ring m, there is an n ∈ Max B such that m = n ∩ A.

Proof (of 4.6). We have A ⊂ B and hence B �= 0, so B contains a maximal
ideal n which must satisfy the condition given by 4.4.

We can now complete the proof of 4.3. We consider m ∈ Max A and
consider the localised rings Am and Bm obtained on inverting the elements
of the multiplicative set S = A − m. Bm is then a domain containing Am

and is still integral over Am. (It is enough to write down an equation for the
numerator.) By 4.6 it follows that there is an ideal n′ in Bm lying over mAm

(i.e., such that n′ ∩ Am = mAm). Set n = n′ ∩ B: this is a prime ideal of B
and we have n∩A = n′ ∩Am ∩A = m. But n is then maximal by 4.4 and we
are done.

For other results on finite morphisms, cf. Problem III, Midterm 1991 and
Chapter IX.

For applications of the results contained in this chapter, see the exam
problems from June 1993 and February 1994.

Exercises

Throughout the following exercises, we work over an algebraically closed base field k.

1 Affine intersections

Let X and Y be two irreducible algebraic subsets of kn of respective dimensions r
and s. Our aim is to prove that any irreducible component of X∩Y is of dimension �
r + s − n.

a) Prove that this result is true if X is a hypersurface in kn.
b) Let ∆ be the diagonal in kn×kn (cf. Problem I, 4). Prove that the variety X∩Y

is isomorphic to (X × Y ) ∩ ∆. Show that X × Y is of dimension r + s (use the
theorem on dimensions of fibres).

c) Using b) and explicit equations for ∆, finish the problem by reducing to the
case of a hypersurface.
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2 Projective intersections

Let X and Y be two irreducible algebraic subsets of Pn of respective dimensions r
and s.

a) Show that any irreducible component of X ∩Y is of dimension � r + s−n (use
the affine cones of X and Y to reduce to 1).

b) Show that if in addition r + s − n � 0, then X ∩ Y is non-empty.

3 Matrices of rank at most r

Let p, q be integers > 0 and r an integer such that 0 � r � inf(p, q). We denote
by Mp,q the set of matrices p × q with coefficients in k. We endow this set with its
natural affine space structure of dimension pq. We set

Cr = {A ∈ Mp,q | rank(A) � r} and C′
r = {A ∈ Mp,q | rank(A) = r}.

a) Prove that Cr is a closed set in Mp,q and C′
r is open in Cr.

b) We set

J =

(
Ir 0
0 0

)
∈ Mp,q,

where Ir is the r× r identity matrix. Show that the map ϕ : Mp,p ×Mq,q → Cr

given by ϕ(P, Q) = PJQ is a surjective morphism of varieties. Deduce that Cr

is irreducible.
c) We consider ϕ′, the restriction of ϕ to GL(p, k)×GL(q, k). Prove that the image

of ϕ′ is equal to C′
r. Prove that all the fibres of ϕ′ are isomorphic. Calculate the

dimension of ϕ′−1(J).
d) Deduce from b) and c) the dimension of Cr and the codimension of Cr in Mp,q.

4 Dimension of the orthogonal group

We denote by O(n, k) the set of n × n matrices with coefficients in k such that
tAA = In.

a) Prove that O(n, k) is both a subgroup of GL(n, k) and an affine variety. Prove
that dim O(n, k) � n(n − 1)/2.

b) Set S = {x = (x1, . . . , xn) ∈ kn |
∑n

1 x2
i = 1} and e = (1, 0, . . . , 0), e ∈ S. Prove

that the map ϕ : O(n, k) → S given by ϕ(A) = Ae is a surjective morphism.
Determine the fibres of ϕ and deduce the dimension of O(n, k) by induction4

on n.

4 We can prove, using Problem V, 6, that all the irreducible components of
O(n, k) have the same dimension. We can also prove that these components
are O+(n, k) = {A ∈ O(n, k) | det(A) = 1} and O−(n, k) (corresponding to
det(A) = −1).
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5 Dimension of the commutation variety

Our aim is to calculate the dimension of the affine variety

C = {(A, B) ∈ Mn(k) × Mn(k) | AB = BA}.

We recall the following theorems on matrices. (We assume the reader is familiar
with Jordan normal form.)

1) If A ∈ Mn(k), then the commutant C(A) = {B ∈ Mn(k) | AB = BA} is a
k-vector space of dimension � n.

2) We have dim C(A) = n if and only if the Jordan reduction is complete, i.e., is
for every eigenvalue λ the corresponding block is of the form

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

.

We then say that A is a generic matrix.

a) Prove that the generic matrices form an open set U in Mn(k).
b) Let A be an arbitrary matrix. Show that C(A) contains a generic matrix.

(Reduce to the case where A is in Jordan normal form.)
c) Let p1 and p2 be the projections from C to Mn(k). Prove that Ω = p−1

1 (U)∪
p−1
2 (U) is an open set of C of dimension n2 + n.

d) Prove that Ω is dense in C (if (A, B) ∈ C, then “approximate” (A, B),
using b), by pairs (A, B + λB′) such that λ ∈ k and B′ is generic).

e) Calculate the dimension of C.

6 Dimensions of Grassmannians

Let E be a k-vector space of dimension n and let Gn,p be the set of subspaces of E
of dimension p. We will admit the result that Gn,p is a projective algebraic variety
(called a Grassmannian).

Prove that the map ϕ, associating to a p-tuplet of independent vectors of E
the subspace they generate, induces a surjection from an open set of Ep to Gn,p.
Determine the fibres of ϕ and calculate dim Gn,p. (You may use the fact that ϕ is a
morphism.)

(See also the June 1993 exam).

7 An irreducibility theorem

Our aim is to prove the following theorem.

Theorem. Let ϕ : X → Y be a dominant morphism of projective varieties. Assume
that 1) Y is irreducible and 2) all the fibres ϕ−1(y) for y ∈ Y are irreducible and of
constant dimension n. Then X is irreducible.
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1) Prove that ϕ is surjective and closed (cf. Problem II). Prove that dim X =
n + dim Y .

2) Let X = X1 ∪ · · · ∪Xr be the decomposition of X into irreducible components.
Prove that there exists a component Xi such that ϕ(Xi) = Y .

In what follows we assume the components Xi such that ϕ(Xi) = Y are those
of index i = 1, . . . , s, 1 � s � r. We denote the restriction of ϕ to Xi by ϕi.

3) Prove there is an i � s such that dim Xi = dim X. Prove that for such i all the
fibres of the the maps ϕi are of dimension � n, and finally prove that X = Xi

(compare the fibres of ϕ and ϕi). Complete the proof of the theorem.

We note that the theorem does not hold if the varieties are not assumed to be

projective: there exist surjective morphisms between affine varieties p : X → Y such

that Y is irreducible and all the fibres of p are irreducible and of the same dimension

without X being irreducible or even equidimensional. It is enough to take X to be

the union of the origin in k2 and the hyperbole xy = 1 and p to be the projection

onto the x-axis.
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Tangent spaces and singular points

Throughout this chapter we work over an algebraically closed base field k.

0 Introduction

We start with a little differential geometry. Let f(x1, . . . , xn) = 0 be a hyper-
surface S ⊂ Rn. We assume that f is C∞. Consider a = (a1, . . . , an) ∈ S.
What is the tangent space to S at a?

To get this tangent space we expand f at a point x = a + h close to a
using Taylor’s formula

f(x1, . . . , xn) =
n∑

i=1

hi
∂f

∂xi
(a1, . . . , an) +

1
2

∑

i,j

hihj
∂2f

∂xi∂xj
(a1, . . . , an) + · · ·

(since f(a1, . . . , an) = 0). The basic idea is that, in a neighbourhood of a, hi =
xi − ai is small and the products hihj are even smaller, so S is approximated
by the “tangent” hyperplane

n∑

i=1

(xi − ai)
∂f

∂xi
(a1, . . . , an) = 0,

which we obtain on writing the equations (a1 + h1, . . . , an + hn) ∈ S and
neglecting the terms of order � 2.

In algebraic geometry, we do not, in general, have any notion of small-
ness. We replace it with the idea of a first-order deformation (the ana-
logue of (a1 + h1, . . . , an + hn)) by considering deformations of the form
(a1 + b1ε, . . . , an + bnε), where ai, bi ∈ k, but ε is “infinitesimally small to
first order,” which means that ε �= 0, but ε2 = 0.

In other words, to get the tangent space to an algebraic variety, we will
solve the equations defining it not in the field k, but in the ring of dual numbers

k[ε] = k[X]/(X2) = {a + bε | a, b ∈ k; ε2 = 0}.
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For hypersurfaces we recover the usual tangent hyperplane: this method
is most useful, however, when dealing with varieties for which we have some
global description. Here are two example of this type.

Examples 0.1.
1) We calculate the tangent space at A to the algebraic variety of matrices

O(n,R) defined by the equation tAA = I. A deformation of A is a matrix
of the form A + εB; it is in O(n,R) if and only if t(A + εB)(A + εB) = I,
which, expanding, gives us tAA+ε(tBA+ tAB)+ε2(tBB) = I: since ε2 = 0 and
tAA = I, it follows that tBA + tAB = 0, which gives us the tangent space we
are looking for. We note that for A = I we obtain the equation tB+B = 0: the
tangent space to O(n,R) at the origin is the vector space of anti-symmetric
matrices.

2) It is easy to see using the same method that the tangent space to the
group SL(n, k) at the origin is the space of trace zero matrices.

1 Tangent spaces

a. Definitions and examples

As tangent spaces are local objects, we can essentially restrict ourselves to
affine algebraic varieties (cf. 1.11).

Let V be an affine algebraic variety and consider x ∈ V . We saw in
Chapter I that a point of V is equivalent to a maximal ideal in Γ (V ):
mx = {f ∈ Γ (V ) | f(x) = 0}, or, alternatively, a homomorphism of alge-
bras (a character) χx : Γ (V ) → k, given by f �→ f(x), the link between the
two being clear: mx = Ker χx.

Another way of considering a point x in V is to introduce the “point
scheme”: this is the affine variety P , consisting of one point P , such that
Γ (P,OP ) = k. This will also be denoted by Spec k. Giving a character χx :
Γ (V ) → k = Γ (P ) is therefore equivalent to giving a morphism, which we
simply denote x : P → V , sending the point scheme into V .

A deformation of V is the same thing, but we replace the point scheme P
by the fat point1 Pε (which is also denoted by Spec k[ε]). This thickened point
is not a variety (it is our first scheme!) but a ringed space consisting of one
unique point such that Γ (Pε) = k[ε]. There are non-constant functions on
this point, such as the nilpotent element ε, and the ring of functions is not
reduced, as it always is in the case of varieties. There is an obvious morphism
i : P → Pε which corresponds on rings to the projection p : k[ε] → k sending ε
to 0.
1 This fat point is fat in one direction only. It is also possible to create multi-

dimensional fattenings by replacing, for example, k[ε] by k[X, Y ]/(X2, Y 2).
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Definition 1.1. Let V be an affine algebraic variety and consider x ∈ V .
A deformation2 of V at x is a morphism of ringed spaces t : Pε → V (in
the sense of Chapter III, 1.9.b) such that ti = x. (In other words, Pε is sent
set-theoretically to x.) We denote by Def(V, x) the set of deformations of V
at x.

This is equivalent to giving a k-algebra homomorphism t∗ : Γ (V ) → k[ε]
such that pt∗ = χx. Such a homomorphism will be called a deformation of
Γ (V ) at x. The set of such morphisms will be denoted by Def(Γ (V ), x).

Consider a deformation t∗ of Γ (V ). Since pt∗ = χx it can be written in
the form t∗(f) = f(x)+εvt(f), where vt(f) ∈ k. The deformation t∗ therefore
defines a map vt : Γ (V ) → k given by t∗ = χx + εvt. The fact that t∗ is a
homomorphism of algebras implies that vt is linear and the fact that ε2 = 0
implies that multiplication is respected if and only if for all f, g

vt(fg) = f(x)vt(g) + g(x)vt(f).

We therefore introduce the following definition.

Definition 1.2. Let A be a k-algebra and let M be an A-module. A map
D : A → M is called a derivation if it satisfies the following conditions:

1) D is k-linear;
2) For all a, b ∈ A, D(ab) = aD(b) + bD(a).

The space of derivations from A to M is denoted by Derk(A,M). It is a
k-vector space. We note that if λ ∈ k, then D(λ) = 0 (calculate D(12)). An
obvious example of a derivation is the map from k[X1, . . . , Xn] to itself given
by F �→ ∂F/∂Xj .

Example and Definition 1.3. Let V be an affine algebraic variety and con-
sider x ∈ V . Set A = Γ (V ) and M = k. Then M inherits a Γ (V )-module
structure via χx: if f ∈ Γ (V ) and λ ∈ k, we set f · λ = f(x)λ. A deriva-
tion from Γ (V ) to k is therefore a k-linear map v : Γ (V ) → k such that, for
all f, g ∈ Γ (V ), v(fg) = f(x)v(g) + g(x)v(f). We say that v is a tangent
vector to V at x; the space of tangent vectors to V at x (which is simply
Derk(Γ (V ), k)) is also denoted by Tx(V ) and is called the tangent space to V
at x. It is a k-vector space.

We see that the map vt associated to a deformation t is a tangent vector.
The following proposition summarises the above.

Proposition 1.4. Let V be an affine algebraic variety and consider x ∈ V .
There are canonical bijections

Def(V, x) � Def(Γ (V ), x) � Tx(V ) = Derk(Γ (V ), k)

given by t �→ t∗ �→ vt, where we set t∗ = χx + εvt.
2 It would in fact be more correct to say an infinitesimal deformation.
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Remark 1.5. The zero tangent vector vt = 0 corresponds to the trivial defor-
mation t = xi which sends the fat point Pε onto the ordinary point P and
then sends the latter into V at x.

Definition 1.6. Let ϕ : V → W be a morphism of affine algebraic varieties
and consider x ∈ V . We set ϕ(x) = y. The map ϕ induces a map Def(ϕ, x) :
Def(V, x) → Def(W, y) given by Def(ϕ, x)(t) = ϕt. This map induces a linear
map Tx(ϕ) : Tx(V ) → Ty(W ) given by the formula Tx(ϕ)(vt) = vϕt = vtϕ

∗.
We call it the linear tangent map associated to ϕ at x, or the differential of ϕ
at x.

Remark 1.7. The above correspondence is functorial (i.e., Tx(ψϕ) =
Ty(ψ)Tx(ϕ) and the identity is sent to the identity). The reader may
wish to calculate for example’s sake the differential of some classical maps,
such as the product of two matrices or the inverse maps.
Examples 1.8.

1) Let V be kn and set a = (a1, . . . , an) ∈ V . The tangent space of V at a
consists of deformations t∗ : k[X1, . . . , Xn] → k[ε] such that χa = pt∗. Such
a deformation is given by the images of the variables t∗(Xi) = ai + εbi, that
is to say, by a vector (b1, . . . , bn). The tangent space is therefore the vector
space kn.

2) Let V be an affine algebraic variety, embedded in kn, and assume I(V ) =
(F1, . . . , Fr). We set a = (a1, . . . , an) ∈ V and seek the tangent space of V
at a.

To do this we consider a deformation

t∗ : k[X1, . . . , Xn]/(F1, . . . , Fr) −→ k[ε]

such that χa = pt∗, determined by the images of the variables Xi, t∗(Xi) =
ai + εbi, which must satisfy the relations Fj(a + εb) = 0 for all j = 1, . . . , r.
In other words, we have the Taylor formula

n∑

i=1

bi
∂Fj

∂Xi
(a1, . . . , an) = 0.

The corresponding tangent vector vt is the vector b = (b1, . . . , bn). If
da(F1, . . . , Fr) is the Jacobian matrix of the functions Fj at the point a,
which is a linear map from kn to kr, then

Ta(V ) = Ker da(F1, . . . , Fr).

In particular, Ta(V ) is finite dimensional.

b. Relation with local rings

Proposition 1.9. Let V be an affine algebraic variety, let x be a point of V
and let mx be the maximal ideal of Γ (V ) corresponding to x. There is an
isomorphism of vector spaces Tx(V ) � (mx/m2

x)∗, where the star denotes the
dual vector space.
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Proof. Let v : Γ (V ) → k be a tangent vector to V at x, i.e., a derivation from
Γ (V ) to k. We also denote its restriction to mx by v. This linear map vanishes
on m2

x since, on the one hand, for all f, g ∈ mx, v(fg) = f(x)v(g) + g(x)v(f)
and, on the other hand, as f, g are contained in mx, f(x) and g(x) are zero.
This map therefore factorises through v : mx/m2

x → k, which is an element of
the dual of mx/m2

x.
Conversely, let θ be an element of (mx/m2

x)∗. We reconstruct v via the
formula v(f) = θ(f − f(x)) (where we denote the image in mx/m2

x of a ∈ mx

by a).

Corollary 1.10. Let V be an affine algebraic variety, x a point of V , OV,x

the local ring of V at x and mV,x its maximal ideal. There is an isomorphism
Tx(V ) � (mV,x/m2

V,x)∗. In particular, the tangent space only depends on the
local ring of V at x.

Proof. Set A = Γ (V ) and m = mx, so that OV,x = Am and mV,x = mAm.
The natural homomorphism m → mAm given by x �→ x/1 factorises through
θ : m/m2 → mAm/(mAm)2 and our aim is to show that θ is an isomorphism
of k-vector spaces.

a) θ is injective. Consider x ∈ m such that x ∈ (mAm)2. This means there
is an s /∈ m such that sx ∈ m2. But if s /∈ m, since A/m is a field, there is a
t ∈ A such that st = 1 − a, a ∈ m. It follows that x = stx + ax ∈ m2.

b) θ is surjective. Consider x/s ∈ mAm, where x ∈ m and s /∈ m. Using the
same notation as in a), x/s = θ(tx), since x/s − tx = txa/(1 − a) ∈ (mAm)2.

Remark 1.11. We can now define the tangent space to an arbitrary algebraic
variety at a point x as being the tangent space at this point of an open affine
subset. By 1.10, this space does not depend on the choice of open set. We
could also have used the formula given in 1.10 directly or used the definition
via deformations of X given in 1.1.

2 Singular points

Definition 2.1. Let V be an irreducible algebraic variety and let x be a point
of V . We say that x is a regular (or smooth) point of V (or that V is non-
singular at x) if dim V = dimk Tx(V ). We say that V is non-singular (or
smooth or regular) if it is non-singular at every point.

Remarks 2.2.
1) If V is not irreducible, we ask for dimx V = dimTx(V ), where dimx V

is the sup of the dimensions of all the irreducible components of V passing
through x. (In fact, it is possible to show, cf. 3.6, that if x lies on more than
one component, then it is a singular point.)

2) It is always the case that dim Tx(V ) � dimx(V ) (cf. Problem V).
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Theorem 2.3 (Jacobian criterion). Let V ⊂ kn be an irreducible affine
algebraic variety of dimension d. Assume I(V ) = (F1, . . . , Fr). Then

V non-singular at x ⇐⇒ rank dx(F1, . . . , Fr) = n − d (cf. 1.8).

Proof. This follows immediately from 1.8.

Remark 2.4. If we assume only that V = V (F1, . . . , Fr), and

rank dx(F1, . . . , Fr) = n − d,

then V is non-singular at x. Indeed, I(V ) is generated by the functions Fi plus
(possibly) some other polynomials, but the presence of these extra polynomials
cannot increase the dimension of the kernel of the Jacobian matrix, and we
are done by 2.2.2. On the other hand, if the rank is > n − d, then we cannot
conclude anything, cf. the example of V (X2) in k2. (The variety V (X2) =
V (X) is non-singular, but the scheme V (X2), cf. the appendix on schemes, is
singular.)

Examples 2.5.

a) Plane curves. If F (X,Y ) is a polynomial without multiple factors
and F (a, b) = 0, then the point (a, b) is singular in V (F ) if and only
if ∂F/∂X(a, b) = ∂F/∂Y (a, b) = 0. (Indeed, our assumption implies
I(V (F )) = (F ), cf. Chapter I, 4.11.) Hence, for example, V (Y 2 − X3)
and V (X3 + X2 − Y 2) are singular at (0, 0). (We note that V (F ) is singular
at the point (0, 0) if and only if F has no terms of degree < 2.) On the other
hand, V (Y 2−X(X−1)(X−λ)) is smooth whenever λ �= 0, 1 (in characteristic
other than 2). We note that if F is not irreducible, F = F1 · · ·Fr, then the
points at the intersections of Fi and Fj are singular.

b) Hypersurfaces. An identical result holds for affine hypersurfaces: a =
(a1, . . . , an) is a singular point of V (F ) if all the partial derivatives of F
(and F itself!) vanish at a.

Proposition 2.6 (the projective case). Let V ⊂ Pn be an irreducible pro-
jective algebraic variety and consider x = (x0, . . . , xn) ∈ V . We assume
I(V ) = (F1, . . . , Fr), where the polynomials Fi are homogeneous. Let A be
the matrix whose general term is ∂Fi

∂Xj
(x), where i = 1, . . . , r and j = 0, . . . , n.

Then V is non-singular in x if and only if rank(A) = n − dim V .

Proof. We can assume x0 �= 0 or even x0 = 1: x is a smooth point of V if
and only if ξ = (x1, . . . , xn) is a smooth point of the affine open set V� =
V ∩ D+(X0) in V . We know that I(V�) = (F1�, . . . , Fr�) (cf. Exercise III,
B.1), ξ is smooth in V� if and only if the matrix B of partials (∂Fi�/∂Xj)(ξ),
where j = 1, . . . , n and i = 1, . . . , r, is of rank n − dim V . However, if F is a
homogeneous polynomial, then, for all j � 1, (∂F/∂Xj)(x) = (∂F�/∂Xi)(ξ),
so the matrix B is obtained from A by suppressing the first column of partials
(∂Fi/∂X0)(x). It follows that rank(B) � rank(A).
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If F ∈ k[X0, . . . , Xn] is a homogeneous polynomial of degree d, then Euler’s
formula

dF =
n∑

j=0

Xj
∂F

∂Xj

holds, and for Fi of degree di it follows that at x

∂Fi

∂X0
(x) = diFi(x) −

n∑

j=1

xj
∂Fi

∂Xj
(x),

and since Fi(x) = 0, this implies that the first column of A is a linear combi-
nation of the others, so rank(A) = rank(B).
Examples 2.7.

1) The projective elliptic plane curve V (Y 2T − X(X − T )(X − λT )) is
smooth for λ �= 0, 1.

2) The space cubic C in P3 given by

I(C) = V (XT − Y Z, Y 2 − XZ,Z2 − Y T )

(cf. Exercise II, 4) is smooth. Indeed, the Jacobian matrix

dx =

⎛

⎝
T −Z −Y X
−Z 2Y −X 0
0 −T 2Z −Y

⎞

⎠

is of rank 2 at every point (X2 and T 2 appear in its minors and at every point
of C, X or T is non-zero). It is left to the reader to check that the 3-minors
are all in I(C).

3) If the characteristic of k does not divide d, then the Fermat curve
V (Xd + Y d − T d) is a smooth curve in P2. Exercise: find a smooth plane
curve of degree d in characteristic p when p divides d. (Answer: Xd +Y d−1T +
XT d−1.)
Remark 2.8. As in the affine case, if we assume only that V = V (F1, . . . , Fr) ⊂
Pn, where the polynomials Fi are homogeneous and the matrix of partial
derivatives at the point x is of rank n − dim V , then the point x is smooth
in V .

3 Regular local rings

We start by recalling an algebraic result.

Proposition-Definition 3.1. Let A be a local Noetherian ring, let m be its
maximal ideal and set k = A/m. The quotient m/m2 � m ⊗A k is a k-vector
space and dimk m/m2 � dimK A (the Krull dimension of A, cf. Chapter IV,
1.5).

We say that A is regular if dimk m/m2 = dimK A.
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Proof. The fact that m/m2 is a k-vector space is immediate. Consider λ ∈ A
and x ∈ m and denote by λ and x their images modulo m and m2 respectively.
We set λx = λx and we check that this definition does not depend on the
choice of representatives (or, alternatively, use the tensor product description
of m/m2).

When A is a local ring at a point of an algebraic variety, the inequality we
seek follows from 2.2.2. For a proof of this inequality in the general case, see
[Ma].

Proposition 3.2. Let V be an algebraic variety and let x be a point in V .
We have the equivalence

V smooth at x ⇐⇒ OV,x regular.

Proof. We know that Tx(V ) � (mV,x/m2
V,x)∗ (cf. 1.10). On the other hand,

dimx V = dimK OV,x for any x (cf. Chapter IV, 2.9) and the result follows
(cf. 2.2.1).

The following proposition gives a handy interpretation of the dimension
of m/m2.

Proposition 3.3. Let A be a local Noetherian ring, let m be its maximal ideal
and set k = A/m. The dimension of m/m2 as a k-vector space is equal to the
minimal number of generators of m.

Proof. (This is a special case of Nakayama’s lemma, cf. Summary 2.)
1) Assume m = (x1, . . . , xd). Then the classes xi generate m/m2 over k.

Indeed, if x ∈ m, then x =
∑d

i=1 aixi, where ai ∈ A, and hence, on reducing
modulo m2, x =

∑d
i=1 aixi =

∑d
i=1 aixi by definition of the vector space

structure. It follows that dimk m/m2 � d.
2) Conversely, let x1, . . . , xd be a basis for m/m2 over k. Then m =

(x1, . . . , xd). Indeed, we can complete the elements xi to a system of gen-
erators x1, . . . , xd, . . . , xn of m and we complete the proof by induction, using
the following lemma.

Lemma 3.4. If m = (x1, . . . , xn) and x1, . . . , xn−1 generate m/m2 over k,
then m = (x1, . . . , xn−1).

Proof (of 3.4). We write xn =
∑n−1

i=1 aixi, where ai ∈ A. We deduce that
xn −
∑n−1

i=1 aixi ∈ m2. As m2 is generated by the products xixj , we have
xn =
∑n−1

i=1 aixi +
∑

i�j bijxixj . We gather the terms containing xn:

xn

(
1 −
∑

i�n

binxi

)
=

n−1∑

i=1

aixi +
∑

i�j<n

bijxixj .

As the elements xi are in m, the coefficient of xn is not in m and hence is
invertible in A, and it follows that xn ∈ (x1, . . . , xn−1).

Corollary 3.5. Let A be a local Noetherian ring and let m be its maximal
ideal. Then A is regular if and only if m is generated by dim A elements.
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Remark 3.6. A regular local ring is factorial (cf. [Ma]) and in particular is an
integral domain (which proves, cf. 2.2.1, that a point at the intersection of
two irreducible components is necessarily singular).

4 Curves

In this chapter we will use the word curves only for equidimensional varieties
of dimension 1. Our aim is to study the detailed structure of local rings of
curves. The proofs are contained in Problem IV.

Proposition 4.1. Let C be a curve and x a point of C. We have an equiva-
lence

x non-singular ⇐⇒ OC,x is a discrete valuation ring
(in other words a local principal ring).

Proof. Here, the non-singularity condition means that the maximal ideal is
principal, which is equivalent to the local ring being a discrete valuation ring
(cf. Problem IV).

Besides this local characterisation, there is a very simple global character-
isation of smooth affine curves (loc. cit.).

Theorem 4.2. Let C be an irreducible affine curve. Then C is smooth if and
only if Γ (C) is integrally closed.

Example 4.3. The curve V (Y 2 −X3) is singular at the origin. We check that
its ring A = k[X,Y ]/(Y 2 − X3) is not integrally closed. The element Y/X in
the fraction field of A is not in A but is integral over A since it satisfies the
equation (Y/X)2 − X = 0.

When x is a singular point of C, it is possible to define its multiplicity
µx(C) (which is, of course, 1 for a regular point). We restrict ourselves to
plane curves (cf. 4.7.2 for a generalisation).

Consider F ∈ k[X,Y ] (a priori, we do not suppose that F has no multiple
factors) and consider P = (a, b) ∈ k2. After translation, we may assume
P = (0, 0). We write F = F0 + F1 + · · · + Fd, where Fi is homogeneous of
degree i.

Definition 4.4. The multiplicity of F at P , which we denote by µP (F ), is the
smallest integer i such that Fi �= 0. If F has no multiple factor and C = V (F ),
this is also the multiplicity of C at P .
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Remark 4.5. The statement µP (F ) = 0 is exactly equivalent to P /∈ V (F ); the
statement µP (F ) = 1 is exactly equivalent to the statement that P is a smooth
point of V (F ) since if F1 = αX + βY , then α = ∂F

∂X (P ) and β = ∂F
∂Y (P ). If F

has no multiple factors, then µP (F ) � 2 if and only if P is a singular point
of V (F ).

We note that if OP is the local ring of k2 at P and mP is its maximal
ideal, then µP (F ) is the largest integer r such that F ∈ mr

P . It is also the
smallest integer r such that there is a partial derivative of rth order of F
which is non-zero at P .

This definition of multiplicity has the apparent defect of depending on the
choice of embedding of the curve, or the choice of coordinates. The following
proposition shows that in fact it is an intrinsic property.

Proposition 4.6. Consider F ∈ k[X,Y ]: let F = Fr + · · ·+ Fp be its decom-
position into non-zero homogeneous polynomials such that r � p. Consider
P = (0, 0) ∈ k2, so r = µP (F ). Let OP be the local ring of k2 at P , let m = mP

be its maximal ideal, let A be the quotient ring A = OP /(F ) and let m be the
maximal ideal of A. Then, for large enough n, dimk A/mn = rn + c, where c
is an integral constant.

Proof. We have A/mn � OP /(F,mn). For n � r we have the following exact
sequence:

0 −→ OP /mn−r F−−−→ OP /mn −→ OP /(F,mn) −→ 0.

Indeed, considering the map OP
F−→ OP given by multiplication by F we see

that, for all x ∈ mn−r, Fx ∈ mn since F ∈ mr. This produces the required
factorisation. The only thing that needs to be proved is that the map F is
injective. Consider a ∈ OP and assume aF ∈ mn: we aim to prove that
a ∈ mn−r. We write a = a′/s, where a′, s ∈ k[X,Y ] and s(P ) �= 0. We set
a′ = al + · · · + aq, where ai is homogeneous of degree i, al �= 0 and l � q. As
s does not vanish at P , the fact that Fa is in mn means that the valuation
at P of the polynomial a′F is � n, but this valuation is r + l (since alFr �= 0).
It follows that l � n − r, and hence a ∈ mn−r.

It follows from this exact sequence that

dim A/mn = dimOP /mn − dimOP /mn−r.

Denoting by x, y the images of the variables, there is an obvious basis for
OP /mn:

1, x, y, x2, xy, y2, . . . , xn−1, xn−2y, . . . , yn−1

of size n(n+1)/2, and hence dimA/mn = n(n+1)/2− (n− r)(n− r +1)/2 =
rn − r(r − 1)/2.



Exercises 97

Remarks 4.7.
1) Curves are a special case of the above proposition (namely the case

where F has no multiple factors). The ring A is then simply the local ring of
C = V (F ) at P and the multiplicity of C only depends on this local ring. We
have given above a more general form of the proposition so as to leave open
the possibility of curves with multiple components (cf. Chapter VI).

2) The notion of multiplicity can be generalised as follows. If A is a local
Noetherian ring with residue field k = A/m, then we can show that for n large
enough the dimension of the k-vector space A/mn is a polynomial function
of n (called the Hilbert-Samuel function of A) of degree d = dimK A and
whose dominant coefficient is of the form µA/d!, where µA is an integer called
the multiplicity of A (cf. [H] Chapter V, Exercise 3.4).

4.8. Tangent lines of a plane curve in a point. For a plane curve we can also
define the tangent lines of the curve at a possibly singular point. As above,
we use a translation to reduce to the case where P = (0, 0) and F (P ) = 0.

If µP (F ) = 1, then the tangent line is given by F1 = 0 and is simply the
tangent space (cf. 1.8).

If µP (F ) = r � 2, then the tangent space is the whole of k2, but since k
is algebraically closed, we can decompose the homogeneous polynomial Fr as
a product of factors of degree 1: Fr =

∏r
i=1(αiX + βiY )ri . The lines Ti given

by the equations αiX + βiY = 0 are called the tangent lines of F at P , and
the number ri is called the multiplicity of Ti. (We will also call the set of all
such lines the tangent cone.) When all the integers ri are equal to 1, we say
that the multiple point is ordinary.

Examples 4.9.
If F = Y 2 − X3, then the origin is a double point with a double tangent

line. It is not an ordinary double point (but a cusp).
If F = X3 + X2 − Y 2, then the origin is an ordinary double point with

tangent lines Y = ±X.
If F = (X2 + Y 2)2 + 3X2Y − Y 3 (trefoil), then the origin is an ordinary

triple point with tangent lines Y = 0 and Y = ±
√

3X.
If F = (X2 + Y 2)3 − 4X2Y 2 (quadrifoil), the origin is a (non-ordinary)

quadruple point with two double tangent lines X = 0 and Y = 0.

Exercises

In what follows we work over an algebraically closed base field k. We refer to the
exercises from Chapter II for the definition of a homography. A homography of
the projective plane P2 is simply a linear change of coordinates, t(X ′, Y ′, T ′) =
At(X, Y, T ), where A is an invertible 3 × 3 matrix.
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1 Three remarks

a) Let F ∈ k[X0, . . . , Xn] be a homogeneous polynomial of degree d. Assume that
F is reducible. Prove that V (F ) is not smooth. (If F = GH consider a common
point of V (G) and V (H), which exists by Exercise IV, 2b.)

b) Let F ∈ k[X, Y, Z, T ] be homogeneous of degree 3. Assume that V (F ) contains
two distinct singular points a and b. Prove that the line (ab) is contained in V (F ).

c) Let F ∈ k[X, Y, T ] be homogeneous of degree 3. Assume that V (F ) has three
distinct singular points. Show that V (F ) is the union of three lines.

2 Some examples

Find the singular points of the following varieties and say whether or not they are
irreducible.

a) In P2:

V (XY 4 + Y T 4 + XT 4), V (X2Y 3 + X2T 3 + Y 2T 3),

V (Xn + Y n + T n), n > 0,

V ((X2 − Y T )2 + Y 3(Y − T )), V (2X4 + Y 4 − TY (3X2 + 2Y 2) + Y 2T 2),

V (Y 2T 2 + T 2X2 + X2Y 2 − 2XY T (X + Y + T )).

If possible, try to draw the affine (relative to the line at infinity T = 0) real part
of these curves.

b) In P3:

V (X2 + Y 2 − Z2), V (XY T + X3 + Y 3),

V (XY 2 − Z2T ), V (XY Z + XY T + XZT + Y ZT ),

V (XT − Y Z, Y T 2 − Z3, ZX2 − Y 3).

3 Conics

Let F ∈ k[X, Y, T ] be an irreducible homogeneous polynomial of degree 2 and let
C = V (F ) ⊂ P2 be the “conic” defined by F .

a) Prove that up to homography we may assume F = Y T −X2. (Consider a non-
singular point in C, P , and reduce by homography to the case P = (0, 0, 1)
and the tangent line to C at P is the line Y = 0. Now show that F is of
the form aX2 + bY 2 + dY T + fXY . Perform another homography of the form
X ′ = X, T ′ = T, Y ′ = uX + vY + wT to reduce to the required form. Another
possibility would be to use the reduction of quadratic forms.)

b) Prove that any irreducible conic is smooth.

4 Cuspidal cubics

Let F ∈ k[X, Y, T ] be an irreducible homogeneous polynomial of degree 3 and let
C = V (F ) ⊂ P2 be the “cubic” defined by F . Assume that C has a cusp at P .

a) Prove that up to homography we may assume P = (0, 0, 1) and that the double
tangent line is Y = 0.

b) Prove that up to homography the curve is given by the equation F = Y 2T − X3.
Determine the singular points of C.
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5 Nodal cubics

The same exercise as above for a cubic C with a double ordinary point (i.e., a node).
(Reduce to curves of the form X3 + Y 3 − XY T .)

6 A space elliptic quartic

Set C = V (X2−XZ−Y T, Y Z−XT −ZT ) ⊂ P3 and let P be the point (0, 0, 0, 1).

a) Consider the projection ϕ with centre P onto the plane T = 0 (i.e., the map
sending Q = (x, y, z, t) ∈ P3, Q �= P to (x, y, z) ∈ P2). Show that ϕ induces an
isomorphism of C −{P} onto the plane cubic Γ = V (Y 2Z −X3 + XZ2) minus
the point (1, 0,−1). Prove that Γ is smooth.

b) Prove that C is smooth and irreducible. Prove that the number of intersection
points of C with any plane is � 4 and that this number is “generally” equal to 4
(we say that C is of degree 4 or that C is a quartic).

7 Products

Study how the smoothness of the point (x, y) ∈ X × Y depends on the nature of x
and y.

8 Linear subvarieties

Let V (F ) be a hypersurface of Pn of degree � 2. Assume that V (F ) contains a
linear subvariety L (that is to say, a projective subspace) of dimension r � n/2.
Prove that V (F ) is singular. (Look for singular points on L, which we may assume
is given by the equations Xr+1 = 0, . . . , Xn = 0.)

9 Quadrics

Assume that k is not of characteristic 2. By a quadric of Pn we mean a variety of
the form Q = V (F ), where F is homogeneous of degree 2 (i.e., a quadratic form).

a) Prove that up to homography we may assume F = X2
0 + · · · + X2

r , where
0 � r � n.

b) Prove that Q is irreducible if and only if r � 2.
c) Assume r � 2. Prove that the singular locus of Q is a linear subvariety of

dimension n − r − 1. In particular, Q is smooth if and only if r = n.
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Bézout’s theorem

0 Introduction

Our aim is to show that two plane curves of degrees s and t have exactly
st intersection points. We saw in the introduction that we need to take care
when stating this result.

1) We have to assume the curves have no common components.
2) We have to assume the base field k is algebraically closed.
3) We have to work in projective space.
4) We have to count intersections with multiplicities.

We still need to deal with this last point. As multiplicity is a local concept
we start with affine spaces.

1 Intersection multiplicities

a. Finite schemes

We start with a very simple example.
We intersect the parabola C = V (Y − X2) and the line Dλ = V (Y − λ).

The intersection variety is C ∩ Dλ = V (Y − X2, Y − λ). Consider the ideal
Iλ = (Y − X2, Y − λ) = (Y − λ,X2 − λ) and let us calculate the quotient
ring Aλ = k[X,Y ]/Iλ. Sending Y to λ we see that this ring is isomorphic to
k[X]/(X2 − λ). There are two cases to consider.

a) If λ �= 0, set λ = α2. Then Aλ is isomorphic to the product ring k × k
via the homomorphism sending X to (α,−α). This ring is reduced, so Iλ is
equal to the ideal I(C ∩Dλ) and the variety C ∩Dλ has ring Aλ. It is formed
of two distinct points and at each of these points the local ring is k.

b) λ = 0: D0 is tangent to C. We have A0 = k[X]/(X2) = k[ε] (the ring
of dual numbers). The quotient is not reduced and hence I(C ∩ D0) is the
radical of I0, or, alternatively, the ideal (X,Y ). The variety C ∩D0 is a point
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with local ring k. Of course, to get the intersection multiplicity of D0 and C—
namely 2—we simply don’t pass to the radical. It is the ideal I0 = (Y,X2),
the limit of the ideals Iλ when λ tends to 0, not its radical, which contains
the information we seek. Our solution is to define C ∩D0 not as a variety, but
as a scheme. In other words, we equip the unique point P = (0, 0) of C ∩ D0

with the ring Γ (P ) = k[X]/(X2) = k[ε], not k. The point P then possesses
an unusual “function” ε, which is non-zero but nilpotent. The above suggests
the following definition.

Definition 1.1 (Finite schemes). A finite scheme (Z,OZ) is a ringed space
such that Z is a finite discrete set and the ring OZ({P}) at each (open) point
P ∈ X is a local k-algebra which is finite dimensional as a k-vector space
(i.e., a finite k-algebra). This dimension is called the multiplicity of Z at P .
We denote it by µP (Z).

Remarks 1.2.
1) The ring OZ({P}) is also the local ring of Z at P , OZ,P (in the sense

given in Chapter III, 5.1).
2) The unique prime ideal of OZ,P is its maximal ideal mP (indeed, if I is a

prime ideal, then its quotient is an integral domain which is finite dimensional
over k and is hence a field, so I is maximal and equal to mP ). It follows that
mP is the nilradical of OZ,P (cf. Summary 1.2.d) and hence its elements are
nilpotent and, being of finite type, mP itself is nilpotent, i.e., there is an
integer n such that mn

P = 0.
3) A finite variety is a finite scheme such that all the local rings are equal

to k and hence all the points are of multiplicity 1.

Proposition 1.3. Let (Z,OZ) be a finite scheme. For any subset V in Z,
Γ (V,OZ) =

∏
P∈V OZ,P . Conversely, if we assign to every point of a finite

set Z a local finite k-algebra, then the above formula defines a finite scheme
structure on Z.

Proof. This is clear: we associate to any section over V its restriction to each
of the (open) points P ∈ V , and the gluing condition is empty in this case.

Definition 1.4. If Z is a finite scheme and A = Γ (Z,OZ), then we write
Z = SpecA.

We note that A is a finite k-algebra (i.e., a k-vector space of finite dimen-
sion) since it is a product of local rings OZ,P which are finite dimensional
(cf. 1.11.4). The scheme Z is a variety if and only if A is reduced.

Example 1.5. Even a single point has many possible scheme structures, such
as k[X]/(Xn) or k[X,Y ]/(X2,XY, Y 2), for example.
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b. The finite scheme structure on the intersection of two plane
affine curves

Let F,G ∈ k[X,Y ] be two non-zero polynomials without common factors. We
recall (cf. Chapter I,5) that the set Z = V (F,G) is finite and the algebra
k[X,Y ]/(F,G) is finite. We seek to define a finite scheme structure on Z. To
do this, we recall that given a closed subset Z in an affine variety X such that
R = Γ (X) and I = I(Z), we have OZ = R̃/I (cf. Chapter III, 7.4). We will
therefore define OZ using a similar formula, replacing I(Z) with (F,G), as
the above example of C ∩D0 suggests. We will need a detailed description of
the sheaf R̃/I, which we give in full generality.

Proposition-Definition 1.6. Let X be an irreducible affine algebraic variety
and set R = Γ (X). Let I be an ideal of R and let Z be the closed set V (I) (we
do not assume I = I(Z)). Let i be the inclusion of Z in X and set F = R̃/I.
Let D(f) be a standard open set in X. The following results hold.

1) If D(f) ∩ Z = ∅, then Γ (D(f),F) = 0.
2) If D(f) ∩ Z = {x}, then Γ (D(f),F) = OX,x/IOX,x.
3) If D(f) ∩ Z = {x1, . . . , xn}, then

Γ (D(f),F) =
n∏

i=1

OX,xi
/IOX,xi

.

4) The set Z = V (I) is finite if and only if R/I is a finite k-algebra; Z is
then discrete and we can define a sheaf of rings OZ on Z by setting, for any
U ⊂ Z:

Γ (U,OZ) =
∏

x∈U

OX,x/IOX,x.

We then have F = i∗OZ . In particular,

Γ (Z,OZ) = Γ (X,F) = R/I =
∏

x∈Z

OX,x/IOX,x.

The ringed space (Z,OZ) is a finite scheme, denoted by Spec(R/I) as in 1.4.

Proof. We certainly have

Γ (D(f),F) = (R/I)f = Rf/IRf .

1) We have Z ⊂ V (f), and hence f , which vanishes on Z, is in the radical
of I, so fr ∈ I. But fr is then both invertible and zero in the ring Rf/IRf

and hence this ring is the zero ring.
2) The point x corresponds to the maximal ideal mx in R. Saying that

x ∈ D(f) means exactly that f /∈ mx and hence mx defines a maximal ideal
of Rf . Saying that x ∈ Z means exactly that I ⊂ mx and hence mx gives
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us a maximal ideal of Rf/IRf . Saying that x is the only point in Z ∩ D(f)
means that the ideal corresponding to mx is the only maximal ideal in the
ring Rf/IRf , which is therefore local and hence Rf/IRf = (Rf/IRf )mx

=
Rmx

/IRmx
, which is the result we seek.

3) There are elements f1, . . . , fn ∈ R such that, for all i, fi(xi) �= 0 and
fi(xj) = 0 for j �= i. We therefore have xi ∈ D(ffi), but xi /∈ D(ffj) for
j �= i. We calculate Γ (D(f),F) by covering D(f) with the sets D(ffi) and
D(gi), which are disjoint from Z. We deduce an injective homomorphism

Γ (D(f),F) −→
n∏

i=1

Γ (D(ffi),F) ×
∏

j

Γ (D(gj),F).

The last rings vanish (cf. 1) and so only the sets D(ffi) remain. As
D(ffifj) ∩ Z = ∅, there is no gluing condition and ϕ is an isomorphism,
which, together with 2), proves the result.

4) We start by proving the first statement. Assume first that R/I is fi-
nite dimensional. Then, since I ⊂ I(Z), the ring Γ (Z) = R/I(Z) is finite
dimensional, and hence Z is finite (cf. Chapter I, 4.8).

Conversely, if Z is finite the ring Γ (Z), which is the reduced ring associated
to R/I, is finite dimensional by Chapter I, 4.8. Moreover, the formula from
3) applied to f = 1 shows that R/I is a product of local rings, and hence
the same is true of Γ (Z), but in the latter all the local rings are equal to k
(cf. 1.2). The local rings of R/I therefore all have nilpotent maximal ideals,
and we will be done if we can prove the following lemma.

Lemma 1.7. Let A be a local k-algebra with maximal ideal m and residue
field k. We assume mn = 0. Then A is finite dimensional over k.

Proof. It is enough to consider the sequence of subspaces

(0) = mn ⊂ mn−1 ⊂ · · · ⊂ m ⊂ A

and note that the quotients mi/mi+1 are all finite dimensional over k = A/m
(since the ideals mi are of finite type).

Let us return to 4). The fact that the sheaves i∗OZ are equal to F follows
from 3). And finally, (Z,OZ) is a finite scheme if and only if the local rings
OX,x/IOX,x are finite dimensional over k and this follows from the finiteness
of R/I.

Remark 1.8. The sheaf of rings OZ defined above is called the inverse image
of the sheaf F under the map i and is denoted by i∗(F).

Returning to the beginning of paragraph b), we define a finite scheme
structure on V (F,G) as a special case of 1.6 in the following way.
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Proposition-Definition 1.9. Consider two polynomials F,G ∈ k[X,Y ]
without common factors and let Z be the finite set V (F,G). We set
R = k[X,Y ] and I = (F,G). We equip Z with a ringed space structure
by defining OZ as in 1.6 (OZ = i∗(R̃/I) in the notation of 1.8). The ringed
space (Z,OZ) is then a finite scheme. The local ring OZ,P of Z at P is equal
to Ok2,P /(F,G) and

k[X,Y ]/(F,G) �
∏

P∈Z

Ok2,P /(F,G) = Γ (Z,OZ),

so Z = Spec(R/I) = Spec k[X,Y ]/(F,G).

Definition 1.10. With the notation of 1.9, we define the intersection multi-
plicity µP (F,G) of F and G at P to be the multiplicity of the finite scheme
Z = V (F,G) at P : alternatively

µP (F,G) = dimk Ok2,P /(F,G).

Corollary 1.11. With the notation of 1.9,
∑

P∈V (F,G)

µP (F,G) = dimk k[X,Y ]/(F,G) = dimk Γ (Z,OZ).

We note that this formula already contains a large part of the informa-
tion we seek, namely the sum of the multiplicities of the intersection points.
However, we need to be careful: this formula may miss out some points at
infinity—think of the case F = X, G = X − 1.

Remarks 1.12.
1) In definition 1.10 the polynomials F and G can have multiple factors. In

other words, we allow ourselves to consider intersection multiplicities of curves
which may themselves have multiple factors (this is important for certain
calculations, cf. Problem VII).

2) Definition 1.10 is meaningful even if P /∈ V (F,G). The multiplicity is
then zero because either F or G is non-zero at P and is therefore invertible
in the local ring, so the quotient is zero.

3) For an axiomatic definition of multiplicity and an algorithm for calcu-
lating it (which is indispensable in practice), cf. Problem VII or [F] Chapter 3.

4) We saw in Proposition 1.6 that any finite k-algebra is isomorphic to
a product of finite local k-algebras. From this it is easy to deduce that the
functor from the category of finite schemes to the category of finite k-algebras
given by Z �→ Γ (Z,OZ) is an equivalence of categories.

Example 1.13. Let us calculate the intersection multiplicity of X3 − X2 − Y
and Y at the point P = (0, 0). Let O be the local ring Ok2,P . The ideal IO
is equal to (X3 − X2 − Y, Y ) = (X3 − X2, Y ) = (X2(X − 1), Y ) = (X2, Y ),
since X − 1 is invertible in O. The quotient O/IO therefore has a basis given
by the images of 1 and X and the multiplicity is 2.
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2 Bézout’s theorem

Throughout the following, we consider two homogeneous non-zero polynomials
F,G in k[X,Y, T ] without common factors and of degrees s and t respectively.

a. Intersection multiplicity in projective space

Consider P = (x, y, t) ∈ P2. One of its coordinates is non-zero: we can assume
that t is non-zero or even that t = 1. We then consider the dehomogenised
(with respect to T ) polynomials F� and G� (that is, F�(X,Y ) = F (X,Y, 1),
cf. Chapter III, 8.b), and we define the intersection multiplicity of F and G
in P by µP (F,G) = µ(x,y)(F�, G�).

We now show that this definition does not depend on the choice of line
at infinity (T = 0 in this case). Let I(P ) be the (prime, homogeneous) ideal
of the point P in P2. The local ring OP2,P can be obtained as the subring
of the localised ring k[X,Y, T ]I(P ) consisting of elements A/B, where A,B
are homogeneous of equal degree and B(P ) �= 0 (cf. Chapter III, 8.7). If J is
an ideal of k[X,Y, T ], we denote by JP the restriction to OP2,P of the ideal
generated by J in k[X,Y, T ]I(P ).

The fact that multiplicity is well defined follows from the following lemma.

Lemma 2.1. With the above notations, there is a ring isomorphism

OP2,P /(F,G)P � Ok2,P /(F�, G�).

Proof. Note that in the case at hand (i.e., P = (x, y, 1)) the ideal (F,G)P

is the ideal generated by F/T s and G/T t. We consider the homomorphism
� : k[X,Y, T ] → k[X,Y ] sending T to 1. This homomorphism induces a map
Φ : k[X,Y, T ]I(P ) → k[X,Y ]mP

= Ok2,P (here, mP is the ideal of the point P
in k2). The restriction of Φ to OP2,P is an isomorphism sending OP2,P to
Ok2,P (cf. Chapter III, 8.7). Since the image under Φ of (F,G) is the ideal
(F�, G�), the result follows on passing to the quotient.

b. Statement of the theorem

Theorem 2.2 (Bézout). Let F,G ∈ k[X,Y, T ] be two homogeneous polyno-
mials without common factors of degrees s and t respectively. We have

∑

P∈V (F )∩V (G)

µP (F,G) = st.

(We could also take this sum over all points of P2 since if P /∈ V (F ) ∩ V (G),
then its multiplicity is zero, cf. 1.11.2.) The proof of Bézout’s theorem takes
up the rest of this chapter.
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c. The link with the affine case

Lemma 2.3. The set V (F ) ∩ V (G) ⊂ P2 is finite.

Proof. Take T = 0 to be the line at infinity and denote it by D∞. The re-
striction of V (F ) (resp. V (G)) to D∞ is a projective algebraic subset of D∞
and is hence either finite or equal to D∞. If it is equal to D∞, then T di-
vides F (resp. T divides G). Since F and G have no common factors, the set
V (F ) ∩ V (G) ∩ D∞ is finite.

We identify P2−D∞ with k2 in the usual way. We then have V (F )∩k2 =
V (F�) (cf. Chapter III, 8.b) and likewise V (G) ∩ k2 = V (G�). But F� and G�

still have no common factors and hence V (F ) ∩ V (G) ∩ k2 = V (F�) ∩ V (G�),
which is finite. The intersection is therefore finite.

Lemma 2.4. There is a projective line D which does not meet the intersection
V (F ) ∩ V (G).

Proof. Let Z ⊂ P2 be a finite set. We want to show that there is a line which
does not meet Z. Take a /∈ Z and consider the lines passing through a. There
are infinitely many such lines, and only a finite number of them meet Z. QED.

d. Description of the structure sheaf of the intersection

Let D be a projective line which does not meet Z = V (F,G). After homog-
raphy (which does not change the intersection multiplicities of the polynomi-
als F and G or their degrees) we can assume that D is the line T = 0 and
take it to be the line at infinity. On identifying P2 − D∞ and k2 we have
V (F ) ∩ V (G) = V (F�) ∩ V (G�) ⊂ k2. We equip Z = V (F�, G�) with its finite
scheme structure as in 1.9. We know that

∑

P∈V (F,G)

µP (F,G) =
∑

P∈V (F�,G�)

µP (F�, G�) = dimk Γ (Z,OZ)

and it remains to show that

dimk Γ (Z,OZ) = dimk k[X,Y ]/(F�, G�) = st.

We set S = k[X,Y, T ], J = (F,G) (a homogeneous ideal) and B = S/J (a
graded S-module). In affine space, we set R = k[X,Y ] and I = (F�, G�). We
denote by i the inclusion of Z in k2 and by j the inclusion of Z in P2. We
then have the following description of OZ .

Proposition 2.5. There are isomorphisms i∗(OZ) � R̃/I and j∗(OZ) �
S̃/J = B̃. In particular, Γ (Z,OZ) = Γ (P2, S̃/J).
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Proof. The first isomorphism was proved in 1.6. The second can be proved
by the same method, replacing the open set D(f) by D+(f) everywhere. (We
will reconstruct this isomorphism using another method in 2.11.)

Given 2.5, it is enough to prove the formula Γ (P2, S̃/J) = st. In fact, we do
not really need to calculate this space of sections (cf. 2.13), but this notation
enables us to better understand what is going on. The great advantage of
working in projective space is that all the spaces of sections of sheaves are
finite dimensional (cf. Chapter VII, 4.4). As we will see in Chapter VII, the
following arguments contain a certain amount of hidden cohomology.

e. Description of B = S/J

Lemma 2.6. There is an exact sequence of graded S-modules,

0 −→ S(−s − t)
ψ−−→ S(−s) ⊕ S(−t)

ϕ−−→ S −→ S/J −→ 0,

where ψ(W ) = (WG,−WF ) and ϕ(U, V ) = UF + V G.

Proof. This was proved in Chapter III, 10.1.

Corollary 2.7. We have the following exact sequences of sheaves.

0 −→ OP2(−s − t) −→ OP2(−s) ⊕OP2(−t) −→ J̃ −→ 0,

0 −→ J̃ −→ OP2 −→ S̃/J −→ 0.

The second exact sequence is to be understood as follows. Using j∗, we can
identify the sheaves S̃/J and OZ . The sheaf J̃ is therefore a sheaf of ideals of
OP2 which we can denote by JZ , and the second sequence is the analogue for
the subscheme Z in P2 of the fundamental sheaf associated to a closed subset
of a variety (cf. Chapter III, 9.5).

The problem with calculating Γ (P2, B̃) is that, although we have an exact
sequence

0 −→ Γ (P2, J̃) −→ Γ (P2,OP2) −→ Γ (P2, B̃),

the last map is certainly not surjective: the dimension of Γ (P2,OP2) is 1 and
we hope that the dimension of Γ (P2, B̃) will turn out to be st. We would
have had exactly the same problem with the other exact sequence: remem-
ber that surjectivity of sheaves does not imply surjectivity of global sections
(cf. Chapter III, 6.7).

The idea for getting round this problem—due to the lack of sections of
OP2—is to work with the shifted sheaves OP2(d) (cf. Chapter III, 9.7), which
have many sections for large d.
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f. Comparison of B̃ and B̃(d) (or OZ and OZ(d))

The fact that Z does not meet the line at infinity will imply that shifting does
not alter j∗(OZ) = B̃.

Proposition 2.8. Multiplication by T induces an injection α of graded
S-modules from B(−1) to B. Moreover, for n � s + t − 1 the map
αn : Bn−1 → Bn is surjective.

Proof.
1) Injectivity. Consider H ∈ B(−1) such that α(H) = 0. This

means that TH = UF + V G in S. We set T = 0 and obtain
U(X,Y, 0)F (X,Y, 0) + V (X,Y, 0)G(X,Y, 0) = 0. But F (X,Y, 0) and
G(X,Y, 0) are coprime since F and G have no common point at infinity
and hence G(X,Y, 0) divides U(X,Y, 0), U(X,Y, 0) = G(X,Y, 0)C(X,Y ),
and hence V (X,Y, 0) = −F (X,Y, 0)C(X,Y ). Returning to S we see that
U = GC+TU ′, V = −FC+TV ′, so TH = T (U ′F +V ′G) and H = U ′F +V ′G
therefore vanishes in the quotient S/J .

2) Surjectivity of αn follows from its injectivity and the following lemma.

Lemma 2.9. For d � s + t − 2, dimk Bd = st.

Proof. In degree d, the exact sequence 2.6 shows that

0 −→ Sd−s−t −→ Sd−s ⊕ Sd−t −→ Sd −→ Bd −→ 0,

and therefore dim Bd = dimSd−dim Sd−s−dim Sd−t+dim Sd−s−t. A straight-
forward calculation using the formula

dim Sn =
(

n + 2
2

)
= (n + 2)(n + 1)/2,

which is valid for n � −2 (which explains the condition d � s + t − 2) then
gives us the result.

(If we wanted to avoid the calculation, we could also have noted that the
previous formula depends only on s and t and calculate the dimension of Bd

in the special case where F = Xs, G = Y t. In this case, there is a basis of Bd

consisting of the images of the monomials XiY jT d−i−j , where 0 � i � s − 1,
0 � j � t − 1, and d − i − j � 0. For d � s + t − 2 the last condition is
unnecessary, so the required dimension is indeed st.)

Corollary 2.10. Multiplication by T induces a sheaf isomorphism B̃(−1) �
B̃. (It follows that for every integer d there is an isomorphism B̃(d) � B̃.)

Proof. This follows from 2.8 and Chapter III, 9.4 (since surjectivity for n large
is enough).
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Remark 2.11. Using 2.8 we can give another proof of 2.5. Let H ∈ S be a
homogeneous polynomial of degree > 0. Then D+(H)∩D+(T ) = D(H�) and
Z ∩ D+(H) = Z ∩ D(H�). We want to prove there is an isomorphism

Γ (D+(H), S̃/J) � Γ (D(H�), R̃/I).

(By 1.6 this last group is isomorphic to Γ (Z ∩ D+(H),OZ).) The careful
reader will easily establish the existence of such an isomorphism using the flat
(i.e., �) operation and the ideas of the proof of Proposition 2.13 below.

Identifying j∗(OZ) and B̃, Corollary 2.10 can be stated as follows.

Corollary 2.12. Multiplying by T induces a sheaf isomorphism OZ(−1) �
OZ , and hence for all integers d we have an isomorphism OZ � OZ(d).

g. Conclusion

It only remains to establish the equalities

dimk Γ (Z,OZ(d)) = dimk Γ (P2, B̃(d)) = dim k[X,Y ]/(F�, G�) = st.

In fact, as dimk Bd = st for d large enough, it will be enough to find an
isomorphism of Bd with k[X,Y ]/(F�, G�). (We can also, cf. Chapter VII, 4.3,
prove that for d large enough there is an isomorphism Γ (P2, B̃(d)) � Bd, but
this is not useful here.)

We consider the ring homomorphism

� : k[X,Y, T ] = S −→ k[X,Y ] = R

sending T to 1. As the image of the ideal J under this homomorphism is I, it
factors through a homomorphism which we also denote by �, � : B = S/J →
A = R/I. After restriction we obtain a linear map vd : Bd → R/I. It remains
to prove the following result.

Proposition 2.13. The map v = vd : Bd → R/I = k[X,Y ]/(F�, G�) is an
isomorphism for d � s + t − 2.

Proof.
1) We show first that v is injective. Let P ∈ Bd be the image of P ∈ Sd

and assume v(P ) = 0. Then P� ∈ I, i.e., P� = aF� + bG�, a, b ∈ k[X,Y ].
Applying the sharp map we get TαP = T βa�F +T γb�G (cf. Chapter III, 8.b)
and hence TαP ∈ J , but as multiplication by T is injective in S/J (cf. 2.8),
it follows that P ∈ J , and hence P = 0.

2) We now prove that v is surjective. Consider f ∈ k[X,Y ]/I, the image of
the polynomial f . We consider f � which is homogeneous of a certain degree n,
and we consider its image f � in Bn. If n � d, then the element T d−nf � in Bd

is sent to f by v. If n > d � s + t − 2, then we know that multiplication
by Tn−d gives an isomorphism between Bd and Bn and hence f � = Tn−dP ,
where v sends P ∈ Bd to f .

This completes the proof of Bézout’s theorem.
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Exercises

The following exercises deal with projective plane curves, particularly applications
of Bézout’s theorem.

1 Linear systems of curves

Let d be a strictly positive integer. We denote by Vd the vector space of homogeneous
polynomials of degree d in X, Y, T .

a) Prove that dimk(Vd) = (d + 1)(d + 2)/2.
b) For all P ∈ P2 we set Vd(P ) = {F ∈ Vd | F (P ) = 0}. Prove that Vd(P ) is a

hyperplane in Vd.
c) For all r ∈ N and P ∈ P2 we set Vd(rP ) = {F ∈ Vd | µP (F ) � r}. Calculate

dimk(Vd(rP )).
d) For all r1, . . . , rn ∈ N and P1, . . . , Pn ∈ P2 we set

Vd(r1P1, . . . , rnPn) = {F ∈ Vd | ∀ i = 1, . . . , n µPi(F ) � ri}.

Prove that

dimk Vd(r1P1, . . . , rnPn) � (d + 1)(d + 2)/2 −
n∑

i=1

ri(ri + 1)/2.

e) Using the above notation, prove that if

n∑

i=1

ri(ri + 1)/2 � d(d + 3)/2,

then there exists a curve (in the most general sense of the word: a polynomial,
which may have multiple factors) with multiplicity � ri at each pointPi.

2 Degree and singular points

Let F be a homogeneous polynomial of degree d � 1 in X, Y, T . We denote by µP (F )
(or simply µP ) the multiplicity of F at P .

a) Assume that F has no multiple factors. Prove that

∑

P∈P2

µP (µP − 1) � d(d − 1).

(Apply Bézout’s theorem to F and ∂F/∂X.)
b) Assume that F is irreducible. Prove the following strengthening of the above

inequality: ∑

P∈P2

µP (µP − 1) � (d − 1)(d − 2).

(Prove as in 1.e that there is a polynomial G of degree d−1 which has multiplicity
µP − 1 at each of the the singular points of F and which vanishes at a certain
number of suitably chosen points elsewhere on F . Apply Bézout’s theorem.)
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The (positive or zero) integer

g = (d − 1)(d − 2)/2 −
∑

P∈P2

µP (µP − 1)/2

is called the genus of the curve V (F ) (whenever V (F ) has no multiple points with
multiple tangents).

3 Applications

a) Re-prove the fact that an irreducible conic is non-singular and an irreducible
cubic has at most one double point (cf. Exercise V, 1).

b) Prove that a quartic with more than three double points or a more-than-triple
point is reducible.

c) Prove that a quartic with a unique double point with distinct tangent lines is
irreducible.

d) Set F (X, Y, T ) =
∑

i+j+k=4 XiY jT k. Prove that V (F ) is smooth (and hence
irreducible). (Note that V (F ) is stable under the action of the symmetric group
S3 which permutes the coordinates. Calculate the cardinal of the orbits of points
of P2 under the action of this group, paying careful attention to the special cases,
and examine the orbits of the singular points.)

4 The tricuspidal quartic

We set F (X, Y, T ) = Y 2T 2 + T 2X2 + X2Y 2 − 2XY T (X + Y + T ).

a) Prove that C = V (F ) has three cusp points at P = (0, 0, 1), Q = (0, 1, 0), R =
(1, 0, 0).

b) Consider a conic Γ passing through P, Q, R and tangent to C at P . Prove that
C and Γ have at most one other point in common.

c) Prove that all conics Γ of the above form have equations of the form µ(Y T −
XT ) + λXY with (λ, µ) ∈ P1(k). Calculate explicitly the intersection points of
C and Γ . (Carry out your calculations in affine space.)

d) Prove that this gives us a birational parameterisation of C. We first calculate
this parameterisation in affine space. We then homogenise and get a morphism
ϕ : P1 → C given by the formula ϕ(λ, µ) = (4µ2(λ+µ)2, 4µ2(λ−µ)2, (λ2−µ2)2).
Prove that this morphism is an isomorphism except at the points (1, 0), (−1, 1)
and (1, 1) whose images are the points P, Q and R and that the inverse of ϕ
outside of P, Q, R is given by the map ϕ−1(x, y, t) = ((x − y)t, xy).

e) Construct the real part of C in the affine plane T �= 0.



VII

Sheaf cohomology

0 Introduction

We return for a moment to the proof of Bézout’s theorem. Given Z = V (F,G)
we had to calculate the dimension of Γ (Z,OZ). The method used was to
consider the exact sequences

0 −→ JZ −→ OP2 −→ OZ −→ 0,

0 −→ OP2(−s − t) −→ OP2(−s) ⊕OP2(−t) −→ JZ −→ 0

and apply the global sections functor Γ to them. The difficulty is that Γ is
not right exact: given an exact sequence of OX -modules on a variety X

(∗) 0 −→ F −→ G p−−→ H −→ 0

there is an exact sequence

(∗∗) 0 −→ Γ (X,F) −→ Γ (X,G) π−−→ Γ (X,H),

but π is not generally surjective.
This situation often arises in algebraic geometry: we often need to calculate

the dimension of a space of global sections Γ (X,F) (which in projective space
is always finite dimensional if F is coherent, cf. 4.6). For example:

1) If X is a variety, dim Γ (X,OX) is the number of connected components
of X.

2) If C is a curve in P3, dimΓ (P3,JC(s)) is the number of (independent)
degree s surfaces containing C.

The method used to calculate these numbers is to insert the sheaves in
question into some exact sequence as in the proof of Bézout’s theorem, and
we always come across the problem of the non-exactness of Γ . (In a sequence
of type (∗∗) two dimensions are not enough to calculate the third.)
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Cohomology was invented (partly) to get around this problem. We intro-
duce new groups associated to F , which we denote by Hi(X,F) (or Hi(F) if
there is no ambiguity), defined for i � 0 and such that H0 is simply Γ . Their
most important property is that given an exact sequence of sheaves (∗) there
is a long exact sequence

0 −→ H0(F) −→ H0(G) π−−→ H0(H) δ−−→
H1(F) −→ H1(G) −→ H1(H) −→ H2(F) −→ · · ·

which we hope will allow us to calculate the image of π. (In practice we can
only do this if some of the spaces Hi are zero.)

The existence and uniqueness of these groups HiF is a very general fact
proved using the theory of derived functors, cf. [H] or [Tohoku]. We will con-
struct them explicitly, using Čech cohomology (but will have to admit their
uniqueness).

To understand the origin of this Čech cohomology we return to the example
of the exact sequence of OX -modules (∗) and the sequence (∗∗) of global
sections. Our aim is to characterise the image of π.

Consider h ∈ Γ (H). A priori h is not in the image of π, but it is locally
in the image of π because π is surjective. There is therefore an open cover
(Ui) of X and sections gi ∈ Γ (Ui,G) such that p(gi) = h|Ui

. The problem is
whether or not the sections gi can be glued together (after possibly changing
each gi by an fi ∈ Γ (Ui,F), which doesn’t change p(gi)). Over each of the
open sets Uij = Ui ∩ Uj , we consider the sections fij = gi − gj . As gi and gj

have the same image in H, fij is a section of F . What is more, over the open
set Uijk = Ui ∩ Uj ∩ Uk we have fij + fjk = fik: this is called the cocycle
relation. We say that the sections fij form a cocycle.

The sections gi can be glued together if and only if there are elements
fi ∈ Γ (Ui,F) such that fi + gi = fj + gj or fij = fj − fi (NB: we are now
talking about sections of F). We then say that the family fij is a coboundary.
(Of course, a coboundary is a cocycle.)

The obstruction to h being in the image of π is that a cocycle is not always
a coboundary. We are therefore led to define H1(X,F) to be the quotient of
the group of cocycles by the group of coboundaries, the map δ : H0(X,H) →
H1(X,F) being the map which associates to h the class of the cocycle fij

defined above. We then have h ∈ Im π ⇔ h ∈ Ker δ.

1 Some homological algebra

Definition 1.1. A Complex (of abelian groups, for example, but it could also
be a complex of A-modules or OX-modules) is a sequence A•:

· · · −→ Ai−1 di

−−−→ Ai di+1

−−−−→ Ai+1 −→ · · ·
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of abelian groups Ai indexed by Z or N such that di+1◦di = 0 for all i. The ho-
momorphisms di are called differentials (or coboundaries). NB: this sequence
is not exact: Im di is contained in Ker di+1, but equality does not necessarily
hold. The quotient group Ker di+1/ Im di is called the ith cohomology group of
the complex and is denoted by Hi(A•).

We can also define complexes whose differentials are degree-decreasing.
The quotients of such a complex are called its homology. When dealing with
cohomology (resp. homology) we generally write the terms of the complex
with upper (resp. lower) indices.
Example 1.2. Over any open set U in Rn we have a complex of differential
forms with the usual differential d (cf. [Go]). The kernel of d consists of closed
forms, its image consists of exact forms and the vanishing of the cohomology
groups encodes topological information on U . For example, if U is a star
domain, Poincaré’s lemma says that the cohomology groups Hi vanish. This
is also the case if n = 2 and U is simply connected.

Definition 1.3. Let A• and B• be complexes whose differentials are, respec-
tively, di and δi. A morphism of complexes from A• to B• is given by the data
of homomorphisms f i : Ai → Bi such that the following diagram commutes:

Ai
di+1

��

f i

��

Ai+1

f i+1

��

Bi δi+1
�� Bi+1

.

We write f : A• → B•. An exact sequence of complexes

0 −→ A
• f−−→ B

• g−−→ C
• −→ 0

is the data of two morphisms of complexes f, g such that for all i, the sequence

0 −→ Ai f i

−−−→ Bi gi

−−−→ Ci −→ 0

is exact.

It follows immediately from the definition of a morphism that f i sends
the kernel and image of di to the kernel and image of δi and hence induces a
morphism f i : Hi(A•) → Hi(B•).

We have the following fundamental proposition on exact sequences.

Proposition 1.4. Let 0 → A• f−→ B• g−→ C• → 0 be an exact sequence of
complexes. There are homomorphisms, called connecting morphisms,

∂n : HnC
• −→ Hn+1A

•

such that there is a long exact sequence

· · ·HnA
• fn

−−−→ HnB
• gn

−−−→ HnC
• ∂n

−−−→ Hn+1A
• fn+1

−−−−−→ Hn+1B
• · · ·
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Proof.
1) We consider the following commutative diagram, whose lines are com-

plexes and whose columns are exact sequences:

0

��

0

��

0

��

· · · �� An dn+1
��

fn

��

An+1 dn+2
��

fn+1

��

An+2 ��

fn+2

��

· · ·

· · · �� Bn−1 δn
��

gn−1

��

Bn δn+1
��

gn

��

Bn+1 δn+2
��

gn+1

��

Bn+2 �� · · ·

· · · �� Cn−1 ∆n
��

��

Cn ∆n+1
��

��

Cn+1 ��

��

· · ·

0 0 0

2) Possibly the hardest part of the solution is defining the homomorphism
∂n : HnC• → Hn+1A•. By definition HnC• = Ker∆n+1/ Im ∆n. Consider
x ∈ HnC•: x is the class of some x ∈ Cn such that ∆n+1(x) = 0.

Consider such an x. As gn is surjective, x = gn(y), y ∈ Bn and ∆n+1(x) =
∆n+1gn(y) = gn+1δn+1(y) = 0, so δn+1(y) ∈ Im fn+1: there is therefore a
unique z ∈ An+1 such that δn+1(y) = fn+1(z). We have z ∈ Ker dn+2. Indeed,
fn+2dn+2(z) = δn+2fn+1(z) = δn+2δn+1(y) = 0 since B• is a complex and
the result follows since fn+2 is injective. Let z be the image of z in Hn+1A•.

We check first that z does not depend on the choice of the lifting y of x.
Given another y′ lifting x we have y′ = y + fn(t) for some t ∈ An, and hence
δn+1(y′) = δn+1(y) + fn+1dn+1(t). As fn+1 is injective, z′ = z + dn+1(t), but
then z′ = z in Hn.

We have therefore constructed a map D : Ker∆n+1 → Hn+1A•.
We now have to show that:
a) D is a homomorphism. (This is clear: we can lift x + x′ to y + y′.)
b) D vanishes on Im ∆n. Indeed, if x = ∆n(u), u ∈ Cn−1, then we lift u

to v ∈ Bn−1 and we have x = gnδn(v). We can therefore lift x to y = δn(v),
but then δn+1δn(v) = 0 and hence z = 0.

We deduce that D factors through a map ∂n : HnC• → Hn+1A•, given
by ∂n(x) = z with the above notation.

3) It remains to prove that the sequence is exact. This is an easy diagram
chase. We will prove exactness at HnC•, the two other cases being left to the
reader.

1) We have ∂ngn = 0, so Im gn ⊂ Ker ∂n. Indeed, consider y ∈ HnB•,
coming from y ∈ Bn such that δn+1(y) = 0. We have gn(y) = gn(y) = x. By
definition of ∂n, we have ∂n(x) = z, where fn+1(z) = δn+1(y) = 0, and since
fn+1 is injective, z = 0.
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2) Conversely, consider x ∈ Ker ∂n. With the above notation z = 0, i.e.,
z = dn+1(t) with t ∈ An and hence fn+1(z) = δn+1(y) = δn+1fn(t), so that
y − fn(t) ∈ Ker δn+1, but then x = gn(y − fn(t)), so x ∈ Im gn.

2 Čech cohomology

a. Definition

Let X be a topological space and let F be a sheaf of abelian groups on X.
Let U = (Ui)i∈I be a finite open covering of X indexed by the ordered set
I = {0, 1, . . . , n}.

We denote the intersections Uij = Ui ∩ Uj , . . . , Ui0···ip
= Ui0 ∩ · · · ∩ Uip

.
We now define a complex of abelian groups C•(U ,F).

For all 0 � p � n we set

Cp(U ,F) =
∏

io<···<ip

F(Ui0···ip
).

If p > n, we set Cp(U ,F) = 0.
An element of Cp(U ,F) is called a cochain. It consists of the data of a

section of F , si0···ip
, over each intersection Ui0···ip

. For example, C0 consists
of sections si over Ui, C1 of sections sij over Uij , . . .

We now define the differential dp+1 : Cp → Cp+1 by the formula

(dp+1s)i0···ip+1 =
p+1∑

k=0

(−1)ksi0···ı̂k···ip+1 |Ui0···ip+1
,

where the symbol ı̂k means that we leave out the index ik.

Proposition-Definition 2.1. We have dp+1 ◦ dp = 0 for all p � 0. The
complex thus constructed is called the Čech complex of F relative to the open
cover U . Its cohomology groups are called the Čech cohomology groups of F
relative to U . They are denoted by

∨
Hp(U ,F).

Proof. Set t = dp(s). We calculate

dp+1(t)i0···ip+1 =
p+1∑

k=0

(−1)kti0···ı̂k···ip+1 |Ui0···ip+1

=
p+1∑

k=0

(−1)k

p+1∑

l=0,l �=k

(−1)a(k,l)si0···ı̂k···ı̂l···ip+1 |Ui0···ip+1
,

where the integer a(k, l) is l if l < k and l + 1 if l > k.
Consider the term si0···α̂···β̂···ip+1

, α < β in the total sum. It appears twice,
once for l = α, k = β with the sign (−1)α(−1)β+1, and once for k = α, l = β
with the sign (−1)α(−1)β . These two terms cancel each other and the result
follows.
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Example 2.2. If s ∈ C0, then s = (si), where si ∈ F(Ui) and ds is given by
(ds)ij = (sj − si)|Uij

. If t ∈ C1, t = (tij) ∈ F(Uij), then its image under d is
(dt)ijk = (tjk − tik + tij)|Uijk

. We see that in this example, d ◦ d does indeed
vanish. We recover the description of cocycles and coboundaries given in the
introduction.

We will now show that the cohomology groups we have defined have all
the properties claimed for them in the introduction. The group H0 is what
we expect.

Proposition 2.3. We have
∨
H0(U ,F) = Γ (X,F).

Proof. The group H0 is simply the kernel of the first differential. It therefore
consists of those si ∈ F(Ui) such that ds = 0, i.e., such that si = sj over
Uij . As F is a sheaf the si can be glued together to form a global section
s ∈ Γ (X,F) = F(X).

Remarks 2.4.
1) Čech cohomology is functorial: given a homomorphism of sheaves of

groups u : F → G there is an associated homomorphism of complexes
from Cp(U ,F) to Cp(U ,G) and group homomorphisms Hp(u) :

∨
Hp(U ,F) →

∨
Hp(U ,G).

2) It is immediate from the definition of Čech cohomology that it commutes
with direct sums, i.e.,

∨
Hp(X,

⊕

i∈I

Fi) =
⊕

i∈I

∨
Hp(X,Fi).

3) When X is an algebraic variety over a field k and F a OX -module, the
groups F(Ui0···ip

) have natural k-vector space structures and the same is true

of the groups Cp(U ,F). As the differentials are k-linear, all the sets
∨
Hp(U ,F)

are also k-vector spaces.

b. The cohomology groups Hi vanish in affine geometry

Theorem 2.5. Let X be an affine variety, let A = Γ (X) be its ring, let M

be an A-module, let F = M̃ be the associated quasi-coherent sheaf and let
U = (Ui) (i = 0, . . . ,m) be an open cover of X by standard affine open sets.
Then for all p > 0 we have

∨
Hp(U ,F) = 0.

Proof. We will basically only deal with a doubly special case: 1) we set p = 1
and 2) we assume A is an integral domain and M is torsion free. We will also
give an idea of the general proof. It is not conceptually more difficult but is
rather long.

We recall that M is torsion free if, for all a ∈ A and x ∈ M such that
ax = 0, a = 0 or x = 0.
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We set Ui = D(fi), with fi ∈ A, fi �= 0.
Let α = (αij) be a 1-cocycle. A priori αij is only defined for i < j and the

cocycle relation

(∗) αjk − αik + αij = 0

only holds for i < j < k. It will be convenient to extend this definition to all
pairs i, j by setting αii = 0 for all i and αij = −αji if i > j. We can then
check that the relation (∗) holds for all triplets i, j, k.

We have αij ∈ Γ (Uij , M̃) = Mfifj
. We write αij = βij/fn

i fn
j , where

βij ∈ M . (We can use the same n for all pairs i, j because the open cover is
finite.)

The relation (∗) can then be written over Uijk as

βjk

fn
j fn

k

− βik

fn
i fn

k

+
βij

fn
i fn

j

= 0

or, alternatively, fn
i βjk − fn

j βik + fn
k βij = 0. A priori this holds in Mfifjfk

,
but as M is torsion free, it also holds in M .

Alternatively, we can write this relation in the form

(∗∗) fn
k αij = −βjk

fn
j

+
βik

fn
i

,

which holds over the open set Uij .
We note that this relation is not very far from what we seek: we want to

show that aij is a coboundary, i.e., that it can be written as αij = γj − γi.
The relation (∗∗) says that αij is a coboundary after inverting fk, i.e., on Uk.
To glue all this together we will use a partition of unity.

Indeed, as we saw in Chapter III, 2.3, the fact that the sets D(fi) = D(fn
i )

cover X means there is a partition of unity: there are elements ak ∈ A such
that 1 =

∑m
k=0 akfn

k . For all j we set

γj = −
m∑

k=0

ak
βjk

fn
j

∈ Γ (Uj , M̃),

and over Uij we have

γj − γi =
m∑

k=0

ak

(
βik

fn
i

− βjk

fn
j

)
=

m∑

k=0

akfn
k αij = αij ,

and hence α is indeed a coboundary.

The proof without assuming A is an integral domain and M is torsion free
is very similar. The only thing we need to be careful of is that the relation
fn

i βjk − fn
j βik + fn

k βij = 0 over Uijk, (i.e., in Mfifjfk
) means that there is

an integer N (which can be taken to be the same for all triples) such that



120 VII Sheaf cohomology

fN
i fN

j fN
k (fn

i βjk − fn
j βik + fn

k βij) = 0 in M . The rest of the proof is more or
less the same. We have to use the exponent n + N in the partition of unity
and replace ak by akfN

k in the expression of the sections gj .
To deal with the group Hp (when A is an integral domain and M is torsion

free), we set

αi0,...,ip
=

βi0,...,ip

fn
i0
· · · fn

ip

,

where αi0,...,ip
is our cocycle. There is a partition of unity 1 =

∑m
k=0 akfn

k . It
is then enough to set

γi0,...,ip−1 =
m∑

k=0

ak

βk,i0,...,ip−1

fn
i0
· · · fn

ip−1

and we check (using the fact that dα = 0) that α = dγ.

Corollary 2.6. Let X be an affine algebraic variety and let 0 → F → G →
H → 0 be an exact sequence of quasi-coherent sheaves. There is then an exact
sequence of global sections

0 −→ Γ (X,F) −→ Γ (X,G) −→ Γ (X,H) −→ 0.

Proof. By the calculations given in the introduction (using standard open
sets, which is possible since these form a basis of open sets) this is exactly 2.5.

c. The exact sequence of Čech cohomology

We now need the concept of a separated variety (cf. Problem I, Part 4).

Definition 2.7. Let X be an algebraic variety. We say that X is separated if
the diagonal ∆ = {(x, y) ∈ X × X | x = y} is closed in the product X × X.
If X is separated and U and V are open affine sets of X, then U ∩ V is an
open affine set of X.

Proposition 2.8. Affine, projective, quasi-affine and quasi-projective vari-
eties are separated.

We then have the following theorem.

Theorem 2.9. Let X be a separated algebraic variety, let U be a finite affine
cover of X and let 0 → F → G → H → 0 be an exact sequence of quasi-
coherent sheaves. There is then a long exact sequence of Čech cohomology:

0 −→
∨
H0(U ,F) −→

∨
H0(U ,G) −→

∨
H0(U ,H) −→

∨
H1(U ,F) −→

∨
H1(U ,G) −→ · · ·
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Proof. We consider the Čech complexes associated to F ,G,H. They form an
exact sequence

0 −→ C
•(U ,F) −→ C

•(U ,G) −→ C
•(U ,H) −→ 0.

Indeed, as the sets Ui are affine and X is separated, the intersections Ui0,...,ip

are also affine. But as these sheaves are quasi-coherent we have by 2.5 an exact
sequence

0 −→ F(Ui0,...,ip
) −→ G(Ui0,...,ip

) −→ H(Ui0,...,ip
) −→ 0.

We get the exact sequence of complexes by taking the finite product of these
sequences for i0 < · · · < ip and the result follows by 1.4.

Remark 2.10. We can prove that under the hypotheses of 2.9 (i.e., X sep-
arated, F quasi-coherent and U affine) Čech cohomology is the correct co-
homology (which is unique if we require that H0 = Γ , that the long exact
sequence should exist and a certain vanishing theorem should hold). See [H],
Chapter III, 4.5 for more details. In particular, and we will use this fact with-
out proof, Čech cohomology does not depend on the choice of affine covering.
(This can also be proved directly using spectral sequences, cf. [G], 5.9.2.)
Henceforth, under the above hypotheses we will denote this ith cohomology
group by Hi(X,F), omitting the open cover and the sign ∨.

Proposition 2.11. Let X be a separated algebraic variety, let Y be a closed
subvariety of X and let j : Y → X be the canonical injection. Let F be a
quasi-coherent sheaf over Y . Then, for all i, Hi(Y,F) = Hi(X, j∗F).

Proof. The hypotheses on X, Y and F allow us to calculate the cohomology
groups using Čech cohomology. We take an affine cover Ui of X. The sets Y ∩Ui

form an affine cover of Y and we are done by the formula F(U ∩Y ) = j∗F(U),
which is the definition of j∗.

Remark 2.12. As in Chapter III we will often identify F and its direct im-
age j∗F , and by abuse of notation we will denote the cohomology group
Hi(X, j∗F) by Hi(X,F).

3 Vanishing theorems

The usefulness of cohomology (and particularly the long exact sequence) de-
pends largely on our ability to prove that certain cohomology groups vanish.
We already have Theorem 2.5 which says that on an affine algebraic variety
there is no cohomology in degree > 0.

Here is another vanishing result linked to dimension.

Theorem 3.1. Let V be a separated variety of dimension n and let F be a
quasi-coherent sheaf. Then Hi(V,F) = 0 for all i > n.
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Proof. We will prove this only for a projective algebraic variety. For the gen-
eral case, see [H] Chapter III, 2.7 or [H] Exercise III, 4.8. In the projective
case we have the following lemma.

Lemma 3.2. Let V be a closed subvariety of PN of dimension n. There is a
linear subvariety W ⊂ PN , of codimension n + 1, such that V ∩ W = ∅.

Proof (of 3.2). We proceed by induction on N . This is clear for N = 1. To
pass from N − 1 to N we prove that there is a hyperplane H in PN which
does not contain any component of V . The restriction of the said components
to H are then empty or of dimension � n − 1, and we apply induction to H.

Set E = kn+1. To prove the existence of H we note that the projective
hyperplanes correspond to linear forms which do not vanish on E, two pro-
portional forms giving rise to the same hyperplane. In other words, the space
of hyperplanes is the projective space P(E∗). In terms of coordinates, the
plane H defined by the equation a0X0 + · · · + aNXN = 0 corresponds to the
point in P(E∗) with homogeneous coordinates (a0, . . . , aN ).

If V = V1 ∪ · · · ∪ Vr, then we choose xi ∈ Vi, xi = (xi0, . . . , xiN ). In the
space of hyperplanes, the set of hyperplanes not containing xi is a non-empty
open set Ωi (defined by

∑N
k=0 xikak �= 0). But then Ω, the intersection of the

sets Ωi, is non-empty and any H ∈ Ω will do.

We return to 3.1. Up to homography we may assume W = V (X0, . . . , Xn). As
V ∩ W is empty, V ⊂ D+(X0) ∪ · · · ∪ D+(Xn) and V is therefore covered by
the n+1 open affine sets V ∩D+(Xi). But in the Čech complex associated to
this covering all the groups Ci vanish for i > n and a fortiori all the groups Hi

vanish.
Remark 3.3. The above proof also shows that if F is a quasi-coherent sheaf
on a variety V supported on a subvariety W of dimension d (i.e., such that
F(U) = 0 for any open set U which does not meet W ), then for all p > d,
Hp(V,F) = 0. In particular, this is the case if F is a sheaf of the form j∗(G),
where G is a sheaf over W and j is the canonical injection of W into V .

For example, if Z is a finite scheme contained in Pn (cf. Chapter VI), then
Hp(Z,OZ) = Hp(Pn, j∗OZ) = 0 for p > 0.

4 The cohomology of the sheaves OPn(d)

The cohomology of the sheaves OPn(d), which play a fundamental role in
algebraic geometry, is particularly simple.

Theorem 4.1. Let n be an integer � 1 and consider d ∈ Z. We denote by Sd

the space of homogeneous polynomials of degree d in n + 1 variables. (Con-
ventionally, if d < 0, Sd = 0.)

a) We have H0(Pn,OPn(d)) = Sd for all d.
b) We have Hi(Pn,OPn(d)) = 0 for 0 < i < n and all d.
c) The vector space Hn(Pn,OPn(d)) is isomorphic to the dual of the vector

space H0(Pn,OPn(−d − n − 1)) for all d ∈ Z.
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Example 4.2. It is easy to remember the dimensions of these cohomol-
ogy groups. Firstly, they all vanish except H0 and Hn. Secondly, H0 for
given d is composed of homogeneous polynomials of degree d and is hence
of dimension

(
n+d

n

)
. For n = 3, for example, the possible dimensions are

1, 4, 10, 20, 35, 56, . . . Finally, the dimensions of the spaces Hn are the same
but inverted (increasing as d tends to −∞), and it is enough to remember
that the first d for which Hn(Pn,OPn(d)) does not vanish is −n − 1. The
dimension of Hn for given d is

(−d−1
n

)
. Note that the sheaves OPn(−i) such

that 1 � i � n have particularly simple cohomology groups!

Proof. Set S = k[X0, . . . , Xn] =
⊕

d∈N Sd. We will prove the theorem for
all integers d ∈ Z simultaneously using the sheaf F =

⊕
d∈Z OPn(d). This

sheaf is quasi-coherent (but not coherent) over Pn and is associated to the
graded S-module M =

⊕
d∈Z S(d). As cohomology commutes with direct

sums (cf. Remark 2.4.2), if we calculate the cohomology of F we get the
cohomology of each of its factors.

Of course, we are going to calculate the cohomology of F using the stan-
dard open cover of Pn by open affine sets Ui = D+(Xi) for i = 0, 1, . . . , n.
We know (cf. Chapter III, 9) that Γ (Ui0,...,ip

,OPn(d)) = S(d)(Xi0 ···Xip ), the
set of homogeneous degree d elements of the local ring SXi0 ···Xip

, and we de-
duce from this the Čech complex of OPn(d). The Čech complex of F , which
is the direct sum of the above, consists of the localised rings of S: we have
Cp = Cp(U ,F) =

∏
i0<···<ip

SXi0 ···Xip
, from which we obtain a complex

n∏

i=0

SXi
−→
∏

0�i<j�n

SXiXj
−→ · · · −→

n∏

i=0

S
X0···X̂i···Xn

δn−−−→ SX0X1···Xn
.

We note that the group Cp with its natural decomposition as a direct sum is
a graded S-module, and hence the same is true of Hp(Pn,F). The degree d
homogeneous part of this group is simply Hp(Pn,OPn(d)).

As the functor H0 is equal to Γ (cf. 2.3) we have already calculated
H0(Pn,OPn(d)) in Chapter III, 9.

To calculate Hn, we note that SX0X1···Xn
is an infinite dimensional space

with a basis formed of all the monomials Xα0
0 · · ·Xαn

n with αi ∈ Z. We then
note that Hn is the cokernel of δn and that the image of this map consists of
all fractions of the form

n∑

i=0

(−1)i Fi

(X0 · · · X̂i · · ·Xn)r
=

n∑

i=0

(−1)i Xr
i Fi

(X0 · · ·Xn)r
.

We therefore have a basis of the image of δn formed of monomials
Xα0

0 · · ·Xαn
n as above, such that at least one of the integer αi is � 0. It

follows that the cokernel Hn(Pn,F) has a basis consisting of the images of
the monomials all of whose exponents are strictly negative, Hn(Pn,OPn(d))
corresponding to monomials whose degree

∑n
i=0 αi = d. We note that this
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space is 0 for d � −n. For d � −n − 1 we have to count the degree d mono-
mials in the variables Xi all of whose exponents are < 0. This is equivalent to
counting the monomials of degree −d − (n + 1) in variables 1/Xi, and there
are therefore

(−d−1
n

)
of them.

In the special case d = −n − 1 the space Hn(Pn,OPn(−n − 1)) is of di-
mension 1 with a basis consisting of the image of the monomial 1/(X0 · · ·Xn).
Identifying this space with the base field we obtain a non-degenerate bilinear
form

ϕ : Hn(Pn,OPn(d)) × H0(Pn,OPn(−d − n − 1)) −→ Hn(Pn,OPn(−n − 1))

associating to the monomials Xα0
0 · · ·Xαn

n and Xβ0
0 · · ·Xβn

n , where
∑n

i=0 αi =
d and
∑n

i=0 βi = −d − n − 1, the image of the monomial Xα0+β0
0 · · ·Xαn+βn

n

in Hn(Pn,OPn(−n − 1)). As ϕ is non-degenerate (with a suitable choice of
ordering on monomials its matrix is the identity), it induces an isomorphism
between Hn and the dual of H0.

It remains to prove b). We argue by induction on n. For n = 1 there is
nothing to prove.

We consider the element X0 in S and the complex C•
(X0)

obtained by taking
the homogeneous degree zero part of the localisation of the Čech complex of F
with respect to X0.

The proof of the following easy lemma (which follows from the fact that
the localisation functor is exact) is left to the reader.

Lemma 4.3. Let M• = M ′ v−→ M
u−→ M ′′ be a complex of graded S-modules

and let H(M•) be the associated cohomology group (which is a graded S-
module). Let f ∈ S be a homogeneous element of degree d > 0 and M•

(f) =

M ′
(f)

v(f)−→ M(f)

u(f)−→ M ′′
(f) the complex obtained on taking the degree 0 elements

of the localisation and let H(M•
(f)) be its cohomology group. Then H(M•

(f)) =
H(M•)(f).

The lemma shows that the cohomology groups of C•
(X0)

can be obtained
by localising the cohomology groups of C•: Hp(C•

(X0)
) = Hp(C•)(X0).

Moreover, we know (cf. Chapter III, 8.5) that the operator � gives us an
isomorphism S(X0) � R = k[X1, . . . , Xn] = Γ (D+(X0),OPn) and this isomor-
phism induces isomorphisms on the localisations: (SXi0 ···Xip

)(X0) � RXi0 ···Xip

(replacing X0 by 1 wherever necessary); in other words the complex C•
(X0)

is
isomorphic to the Čech complex C ′• of the sheaf F restricted to D+(X0), with
respect to the (affine) open cover of this open set by the sets D+(Xi)∩D+(X0),
for i = 0, . . . , n.

As D+(X0) is affine and F is quasi-coherent, the cohomology of
C ′• vanishes for p � 1, as does that of C•

(X0)
, and we therefore have

Hp(Pn,F)(X0) = 0 for p � 1. This simply means that for all x ∈ Hp(Pn,F)
(or x ∈ Hp(Pn,OPn(d))) x vanishes on multiplication by a power of X0.
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To prove that Hp(Pn,OPn(d)) vanishes for p � 1 it will therefore be
enough to prove the following lemma.

Lemma 4.4. Multiplication by X0 induces an isomorphism

Hp(Pn,OPn(d)) � Hp(Pn,OPn(d + 1)).

Proof (of 4.4). Consider the exact sequence of sheaves induced by multiplica-
tion by X0 (cf. Chapter III, 10.a):

0 −→ OPn(d)
X0−−−→ OPn(d + 1) −→ OH(d + 1) −→ 0,

where H is the closed set V (X0), which is isomorphic to Pn−1 (using the
conventions of 2.12 above). We write the cohomology sequence associated to
this exact sequence. It starts as follows;

0 −→ H0(OPn(d))
X0−−−→ H0(OPn(d + 1)) π−−→ H0(OH(d + 1)),

and on calculating the dimension of the vector spaces appearing in this se-
quence we see that π is surjective. The long exact sequence ends with

Hn−1(OH(d + 1)) i−−→ Hn(OPn(d))
X0−−−→ Hn(OPn(d + 1)) −→ 0

(we have Hn(OH(d+1)) = 0 since H is of dimension n−1, cf. 3.1). Moreover,
i is injective for dimension reasons. Since all the spaces Hp(OH(d + 1)) van-
ish for 1 � p � n − 2 by the induction hypothesis, we obtain the required
isomorphism for all p between 1 and d − 1.

4.5. Application: back to Bézout. If F is a sheaf on X we denote by hiF the
dimension of the vector space Hi(X,F).

We recall that our aim is to calculate h0OZ , where Z is the finite scheme
V (F,G). We have the following two exact sequences:

0 −→ OP2(−s − t) −→ OP2(−s) ⊕OP2(−t) −→ JZ −→ 0,

0 −→ JZ −→ OP2 −→ OZ −→ 0.

We write out the exact cohomology sequences (remembering that the
numbers h1OP2(n) are zero). The second sequence gives us an equality
h0OZ = 1 + h1JZ (since h0JZ = 0). This also gives us h2JZ = h2OP2 = 0
(since h1OZ = h2OZ = 0 for dimension reasons). The first sequence then
gives us

h1JZ = h2OP2(−s − t) − h2OP2(−s) − h2OP2(−t)

=
(

s + t − 1
2

)
−
(

s − 1
2

)
−
(

t − 1
2

)
= st − 1,

and the result follows.
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Another method for proving Bézout’s theorem (which is essentially the one
used in Chapter VI) is to calculate h0OZ(d) using the above exact sequences
(shifted by d). The key point in the proof is to show that H1JZ(d) vanishes
for d large enough (which is immediate using the resolution of JZ and Theorem
4.1). We then calculate h0JZ(d) and h0OZ(d) using the exact cohomology
sequences associated to the above exact sequences. The calculations are easy
because both of the long sequences terminate at the H0 terms.

The vanishing of the groups H1JZ(d) for large enough d is a special case
of a general theorem. It is a result due to J.-P. Serre, as is the finiteness of the
dimensions of projective cohomology groups which we have already mentioned
several times.

Theorem 4.6 (Serre). Let X be a projective algebraic variety and let F be
a coherent sheaf on X. Then

1) For all i � 0, Hi(X,F) is a finite-dimensional k-vector space.
2) There is an integer n0 depending on F such that, for all d � n0 and all

i > 0, Hi(X,F(d)) = 0.

Proof.
1) Assume that X is embedded in Pn and let i be the canonical injection.

By 2.10, on replacing F by i∗F we can assume X = Pn. We note that the
sheaves OPn(d) verify Properties 1 and 2 above.

2) We set S = k[X0, . . . , Xn]. We know that F = M̃ , where M is a graded
S-module of finite type (cf. Chapter III, 9.8.2). If the generators x1, . . . , xr

of M are homogeneous of degrees n1, . . . , nr, then there is a surjection

p : L =
r⊕

i=1

S(−ni) −→ M

associating the element xi to the ith vector of the basis of L. Introducing the
kernel N of p (which is also a graded S-module of finite type) and passing to
sheaves, we have an exact sequence of coherent sheaves

0 −→ N −→ L −→ F −→ 0,

where L =
⊕r

i=1 OPn(−ni) is a sheaf whose cohomology satisfies 1) and 2)
by 4.1.

3) We will now prove 1) by descending induction on i. For i � n + 1 we
know that HiF = 0 for any coherent sheaf (cf. 3.1). Assume that the result
is known for i + 1 and any coherent sheaf and let us pass to i. We have an
exact sequence

· · · −→ HiL f−−→ HiF g−−→ Hi+1N −→ · · ·

and hence hiF = dim Im f+dim Im g � hiL+hi+1N : these last two quantities
are finite. For hi+1H this is our induction hypothesis and the other term is
the special case dealt with in 4.1.
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4) For 2) we also proceed by descending induction on i by proving the
following property P (i):

(Pi): Let i be a strictly positive integer. For any coherent sheaf F there is
an integer n0 such that, for any p � i and d � n0, hpF(d) = 0.

It is clear that (Pn+1) holds. Let i be an integer such that 1 � i � n,
assume that Pi+1 is true and let us prove Pi. Let F be a coherent sheaf and
let L and P be defined as in 2) above. There is an integer d0 such that, for
d � d0 and p � i + 1, hpN (d) = hpF(d) = 0. We take n0 to be the sup of d0

and the differences ni − n (where i = 1, . . . , r). For d � n0 there is an exact
sequence:

· · · −→ HiL(d)
f−−→ HiF(d)

g−−→ Hi+1N (d) −→ · · ·
As d−ni � −n we have hiL(d) = 0 by 4.1. As d � d0, we have hi+1N (d) = 0.
It follows that hiF(d) = 0.

Exercises

1 In which we meet a non-affine variety

Let S be the open set k2 − {(0, 0)} in affine space k2 with its variety structure.

Calculate the Čech cohomology group
∨
H1(U ,OS) relative to the covering of S by

the open sets D(X) and D(Y ) and prove that this group is non-trivial. Deduce
that S is not an affine variety (cf. Exercise III, A.2).

2 A non-separated variety

1) Let X1 and X2 be two varieties and let Ui be an open set of Xi. We assume
that the open sets U1 and U2 are isomorphic as varieties. Let ϕ : U1 → U2 be an
isomorphism. Prove that we can define a variety X (which we say is constructed
by gluing X1 and X2 along U1 and U2) in the following way:
We take the disjoint union Y = X1 ∪ X2, and we consider the equivalence
relation R identifying U1 and U2 (i.e., the only non-trivial equivalent pairs are
the pairs (x, ϕ(x)) with x ∈ U1). We denote the quotient space Y/R with its
quotient topology by X. In other words, if we consider the natural (injective)
maps i1 : X1 → X and i2 : X2 → X, a subset V ⊂ X is open if and only if
V1 = i−1

1 (V ) and V2 = i−1
2 (V ) are open. The sheaf of rings OX is then defined

by

OX(V ) =
{
(s1, s2) | s1∈OX1(V1), s2∈OX1(V2) and ϕ∗(s2|V2∩U2)=s1|V1∩U1

}
.

2) With the above notation, we set X1 = X2 = k2 and U1 = U2 = k2 − {(0, 0)}.
Prove that the variety obtained by gluing is not separated. (Produce two open
affine sets whose intersection is not affine.) Intuitively, this variety is simply the
plane with a double origin.

The aim of the following exercises is to calculate some cohomology groups in
projective space. If X is a projective variety, we denote by hi(X,F) (or hi(F) if
there is no risk of confusion) the dimension of the k-vector space Hi(X,F).
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3 Hypersurfaces

Let F ∈ S = k[X0, . . . , Xn] be a degree t homogeneous polynomial and let Q = V (F )
be the associated hypersurface. Assume I(Q) = (F ). There is an exact sequence

0 → S(−t)
j−→ S → S/(F ) → 0, where j denotes multiplication by F , and this

gives us an exact sequence of sheaves

0 −→ OPn(−t) −→ OPn −→ OQ −→ 0.

Use this exact sequence to calculate hi(Q,OQ(d)) for all d ∈ Z.

Remark. This calculation is valid even if I(Q) �= (F ), which corresponds to F with
multiple factors. In this case, the calculated cohomology groups are those of the
scheme Q, considered with multiplicities.

4 Complete intersections

We assume n � 2. We consider two polynomials F, G ∈ S = k[X0, . . . , Xn], ho-
mogeneous of degrees s and t respectively, and without common factors. We set
Z = V (F, G) and assume I(Z) = (F, G) (or simply work with schemes without
knowing it!) and we then have (cf. Bézout’s theorem) exact sequences

0 −→ JZ −→ OPn −→ OZ −→ 0

0 −→ OPn(−s − t) −→ OPn(−s) ⊕OPn(−t) −→ JZ −→ 0.and

Calculate hiOZ(d) and hiJZ(d) for all d ∈ Z. (Note that dim Z = n − 2.)

5 The space cubic

We use the notations and results of Exercise 4 of Chapter II.
We have an exact sequence

0 −→ R(−3)2
u−−→ R(−2)3

v−−→ I(C) −→ 0

which can be translated into sheaves as

0 −→ OP3(−3)2 −→ OP3(−2)3 −→ JC −→ 0.

Moreover, we have an exact sequence

0 −→ JC −→ OP3 −→ OC −→ 0.

Calculate hiOC(d) and hiJC(d) for all d ∈ Z. (Note that hiOC(d) vanishes for i � 2.
Deduce the value of h3JC(d), then that of h2JC(d). The rest is easy.)
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6 Two disjoint lines

We use the notations and results of Exercise 5 in Chapter II. We have an exact
sequence

0 −→ R(−4) −→ R(−3)4 −→ R(−2)4 −→ I(C) −→ 0.

We deduce from this an exact sequence of sheaves

0 −→ OP3(−4) −→ OP3(−3)4 −→ OP3(−2)4 −→ JC −→ 0.

As always, our aim is to calculate hiOC(d) and hiJC(d). We start by noting that

as C is a union of disjoint lines D1 and D2 there is an isomorphism OC � OD1⊕OD2 ,

which allows us to calculate hiOC(d) directly.
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Arithmetic genus of curves and the weak
Riemann-Roch theorem

We work over an algebraically closed base field k.

0 Introduction: the Euler-Poincaré characteristic

If F is a coherent sheaf over a projective variety X, then we have seen that
HiF = Hi(X,F) is a finite-dimensional k-vector space. Our aim is to calculate
its dimension hiF . We will see below that this situation often arises in practice.
This is not an easy problem in general. There is, however, an invariant of F
which is much easier to calculate than the numbers hiF , namely the Euler-
Poincaré characteristic χ(F) =

∑
i�0(−1)ihiF . (This sum is finite because

hiF = 0 for i > dim X.)1 Indeed, given an exact sequence of sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0,

then χ(F) = χ(F ′) + χ(F ′′), hence, if the Euler2 characteristics of two of the
sheaves are known, so is the third. Using the cohomology exact sequence, we
reduce the proof of this additivity property to the following lemma, which the
careful reader will prove by induction on n using the rank-kernel theorem.

Lemma 0.1. Given an exact sequence of k-vector spaces

0 −→ A0 −→ A1 −→ · · · −→ An −→ 0,

we have
∑n

i=0(−1)i dimk Ai = 0.

In its weakest form, the famous Riemann-Roch theorem for curves simply
calculates a certain Euler characteristic. (In its strongest form it also contains
a duality theorem.) For a more general version of the Riemann-Roch theorem
(which is still an Euler characteristic calculation, given in terms of Chern
classes) see, for example, [H] Appendix A.4.1.
1 The first example of this kind of alternating sum was doubtless the Euler formula

v−e+f = 2 linking the number of vertices, edges and faces of a convex polyhedron.
2 And Poincaré!
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1 Degree and genus of projective curves,
Riemann-Roch 1

a. Theory

Let C ⊂ PN be an irreducible projective curve (i.e., an algebraic variety of
dimension 1). We set S = k[X0, . . . , Xn] and A = Γh(C) = S/I(C). The ring A

is a graded integral domain and the associated sheaf Ã is simply OC . Our aim
is to calculate the Euler characteristic χ(OC(n)) = h0OC(n) − h1OC(n) for
all n ∈ Z. (We note that the numbers hi are zero for i � 2 because C is
of dimension 1.) Our method is to study the intersection of the curve with
a sufficiently general hyperplane: this is a standard technique in projective
geometry.

Proposition 1.1. Let H be a hyperplane not containing C. We denote its
equation by h and the image in A of h is denoted by h. The multiplication
by h in A induces an exact sequence of graded S-modules

(∗) 0 −→ A(−1) · h−−−→ A −→ A/(h) −→ 0.

Proof. The only thing we need to check is that multiplication by h is injective.
As A is an integral domain, this follows from the fact that C �⊂ H and hence
h /∈ I(C), so h �= 0 in A.

We now consider Z = C ∩ H. As H does not contain C, this intersec-
tion is finite. We endow it with its finite scheme structure (cf. Chapter VI,
1.1) by defining OZ as the sheaf associated to the graded k-algebra A/(h)
(cf. Chapter VI, 1.6 and 2.5). We note that, as in the proof of Bézout’s the-
orem (cf. Chapter VI, 1.6 and 2.5), there is an isomorphism OZ � OZ(n)
for all n, obtained (for example) by multiplying by the linear form X0 if the
hyperplane X0 = 0 does not meet Z.

At the level of sheaves, the sequence (∗) then gives us an exact sequence

0 −→ OC(−1) · h−−−→ OC −→ OZ −→ 0

or, alternatively, after shifting

0 −→ OC(n − 1) · h−−−→ OC(n) −→ OZ(n) −→ 0.

Taking the Euler characteristics in this sequence we get

χ(OC(n)) = χ(OC(n − 1)) + χ(OZ(n)).

The last term is simply h0OZ(n) (since dim Z = 0) and it is also equal to
h0OZ . We set d = h0OZ = h0OC∩H . This is an integer � 1 (since Z is non-
empty, cf. Chapter IV, 2.9), which is simply the number of points, counted
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with multiplicity, in C ∩ H (cf. Chapter VI, 1). We then have χOC(n) =
χOC(n − 1) + d and by induction χOC(n) = nd + χOC .

It follows that χOC(n) is a polynomial of degree 1 in n. (This result is
already a sort of Riemann-Roch theorem.) Incidentally, this proof also shows
that the number d of points in C ∩ H does not depend on H.

Definition 1.2. Let C ⊂ PN be an irreducible projective curve. The number d
of intersection points of C with a hyperplane H not containing C, counted with
multiplicity, is called the degree of C.

We still have to calculate χOC = h0OC − h1OC . We have already estab-
lished the following (cf. Chapter III, 8.8 or Problem II):

Lemma 1.3. If X is an irreducible projective algebraic variety, then
H0(X,OX) = k (the only global functions are the constants) and hence
h0(X,OX) = 1.

Proof. The ring R = H0(X,OX) = Γ (X,OX) is an integral domain. Indeed,
if fg = 0 in this ring, then fg = 0 still holds after restriction to an open affine
set U . But U is irreducible and its ring is an integral domain by Chapter I,
3.2. It follows that without loss of generality f |U = 0, and hence f = 0 by
density.

We also know that R is finite dimensional over k (cf. Chapter VII, 4.6)
and is hence a field (cf. Chapter IV, 4.5), which is algebraic over k, but as k
is algebraically closed, R = k.

We still have to deal with the h1OC term. Unable to calculate it, we will
give it a name.

Definition 1.4. Let C be an irreducible projective curve. We call the positive
integer g = h1OC the arithmetic genus of C. (We will sometimes denote this
number by pa, where a stands for arithmetic.)

The following theorem summarises the above.

Theorem 1.5 (Riemann-Roch 1). Let C ⊂ PN be an irreducible projective
curve of degree d and genus g. Then, for all n ∈ Z,

h0OC(n) − h1OC(n) = nd + 1 − g.

Moreover, for large n, h0OC(n) = nd + 1 − g.

Proof. This follows from the above, plus (for the statement for large n), Chap-
ter VII, 4.6.
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Remarks 1.6.
1) There is a fundamental difference between the two invariants d and g.

The genus g = h1OC depends only on C and not on the choice of embed-
ding into PN . However, the degree d depends fundamentally on the choice of
embedding. This is clear on examining the definition involving hyperplanes
in PN : it is also clear on examining the Riemann-Roch theorem (which can be
used as an alternative definition of degree) since the sheaves OC(n) are only
defined relative to an embedding in PN (cf. Chapter III, 9.8.0). For example,
a line (which is a degree 1 subvariety of P3) is isomorphic (cf. Chapter III,
11.6) to a conic or a space cubic, which are of degrees 2 and 3 respectively
(cf. 1.7 and 1.12 below).

2) In 1.5, if C is smooth, then we can show that h1OC(n) vanishes if
nd > 2g − 2 (cf. 2.14 below).

3) If C is smooth, there are hyperplanes H such that C ∩ H consists of d
distinct points. Indeed, this is the case for “general” H (cf. Exercise VIII, 1).

4) If C is an irreducible curve, then h0OC(n) = 0 for n < 0. To see this,
consider the exact sequence

0 −→ H0OC(n − 1) −→ H0OC(n) −→ H0OZ(n).

For n = 0, as H0OC is a field and H0OZ �= 0, the ring homomorphism
H0OC → H0OZ is injective, so H0OC(−1) vanishes. The vanishing of the
other spaces H0OC(n) for n < 0 follows by induction.

5) We can extend the above to more general curves—non-irreducible or
non-connected curves, for example, or even non-reduced curves (schemes). If
the curve C is not connected, h0OC is no longer 1, but the number of connected
components of C. To have a Riemann-Roch formula (χOC(n) = nd + 1 − g)
we have to set g = 1−χ(OC). Warning: g can then be negative. For example,
if C is the union of two disjoint lines in P3, then g = −1.

b. Examples and applications

There are two natural questions at this point:
1) What is the use of these invariants?
2) How can they be calculated?

i) Use of d and g.
1) A first use for these invariants is the one that justified their introduction:

calculating cohomology groups. We will give just one example: our aim is to
calculate whether or not a given curve C ⊂ P3 lies on a surface of degree d or,
alternatively, whether or not h0JC(d) > 0. The answer can often be calculated
using Riemann-Roch (along with 1.6.2) and the following exact sequence:

0 −→ JC(d) −→ OP3(d) −→ OC(d) −→ 0.
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Hence, if C is a smooth curve of degree 7 and genus 5, then h0OC(2) =
2 · 7 + 1− 5 = 10 = h0OP3(2), so C is not a priori on a surface of degree 2 (it
remains possible that this might be the case if h1JC(2) > 0). On the other
hand, as h0OC(3) = 3 · 7 + 1 − 5 = 17 < h0OP3(3) = 20, any such curve
lies on a surface of degree 3 (and we can even conclude that it lies on three
independent such surfaces).

2) Another use of these invariants is in the classification of curves by
genus, for example. We will see in the following chapter what happens when
g = 0 (such curves are rational curves, if g is the geometric genus). Likewise,
curves of genus 1 are elliptic curves. If the base field is C, the genus has a
simple topological interpretation. A smooth projective algebraic curve is also
a differentiable variety of dimension 1 over C and dimension 2 over R. It
is therefore a compact orientable surface, and we know (cf. [Gr]) that it is
homeomorphic to a sphere (for g = 0) or a torus (g = 1) or a torus with
g holes (genus g).

Closer to home, if we consider curves in P2 or P3 with invariants d and g,
then many natural questions arise. What degrees, genuses and pairs (d, g) are
possible (for smooth curves, say)? If these questions are easy to solve in P2, the
same is not true in P3 (especially for the last question, which was definitively
solved in 1982 cf. [GP]). Finally, if d and g are fixed, we can study the family
Hd,g of curves of degree d and genus g. This family can be equipped with
an algebraic variety structure (or, more exactly, a scheme structure) and we
can ask whether it is smooth or irreducible and what its dimension is. This
question is still essentially open in P3 (cf. for example [MDP]).

3) The reader may be wondering why the author has such an obvious
penchant for curves in P3. This is not only because, apart from plane curves,
they are the most easily accessible curves. Consider a curve C in PN and a
point P not contained in C. We can consider the projection π centred on P to
a hyperplane H which does not contain P (the image of a point Q ∈ C is the
intersection of H and the line 〈PQ〉). Let C ′ be the image of C under π. This
operation enables us to map C into H, but for C and C ′ to be isomorphic
under π the map π must be injective on C, or, in other words, P must not be
collinear with any two distinct points of C. (That is, P should not be on any
secant line of C.)

It is easy to see that the union of all the secant lines of C is a three-
dimensional subvariety of PN , so we can always find a suitable point P if
N � 4. We can therefore prove (cf. [H] Chapter IV, 3.6) that any smooth
projective curve is isomorphic to a curve in P3, and hence all smooth curves
can be embedded in P3. On the other hand, we cannot generally project a
curve in P3 isomorphically onto a plane curve: moreover, we will see below that
the genuses of plane curves are very special (cf. Chapter IX, 2.9, however).

ii) Calculating d and g: resolutions. The basic idea used to calculate d and g
(and more generally dimensions of cohomology groups) is the resolution. If F
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is a coherent sheaf on PN , then a resolution of F is an exact sequence

0 −→ Ln −→ · · · −→ L1 −→ L0 −→ F −→ 0,

where the sheaves Lj are of the form

L =
r⊕

i=1

OPN (ni), ni ∈ Z.

If F = M̃ , where M is a graded S-module of finite type, then to do this it is
enough to find a free graded resolution of M :

0 −→ Ln −→ · · · −→ L1 −→ L0 −→ M −→ 0,

with Lj of the form

L =
r⊕

i=1

S(ni), ni ∈ Z.

We saw in the proof of Chapter VII, 4.6 how to construct the first term
of such a resolution,

⊕r
i=1 S(ni)

p−→ M → 0, using the generators of M .
We continue by applying the same method to the kernel of p and so on.
A theorem of Hilbert’s (which goes under the pretty name of the “syzygies
theorem” cf. Chapter X) says that this method stops after a finite number of
steps, and hence every graded module of finite type has a resolution.

Example 1.7: plane curves.

Theorem 1.7. Let F ∈ k[X,Y, T ] be an irreducible homogeneous polynomial
of degree d > 0, and let C = Vp(F ) ⊂ P2 be the projective curve defined by F .
We have:

1) The degree of C is d.
2) The arithmetic genus of C is

(d − 1)(d − 2)
2

.

Proof.
1) This is simply Bézout’s theorem: a hyperplane is just a line, and the

number of intersection points of C and D, counted with multiplicity, is equal
to d.

2) We use the usual exact sequence

(∗) 0 −→ JC −→ OP2 −→ OC −→ 0

which gives us χ(OC) = 1 − g = χ(OP2) − χ(JC) = 1 − χ(JC). Since C is a
hypersurface in P2, we know (cf. Chapter III, 10.a) that JC is isomorphic to
OP2(−d) and hence g = χ(OP2(−d)) = h2(OP2(−d)) =

(
d−1
2

)
. QED.
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Remark 1.9. This allows us to answer the question in i) above for plane curves:
there are smooth curves of all degrees d > 0 (cf. Chapter V, 2.7.3), and their
arithmetic genus depends only on their degree. We note that the possible
genuses are rare: 0, 1, 3, 6, 10, 15, . . . . In particular, there are no plane curves
of arithmetic genus 2 or 4.

Example 1.10: complete intersections in P3. Let C = Vp(F,G) ⊂ P3 be
a complete intersection (cf. Chapter III, 10.b). We assume that F,G ∈
k[X,Y,Z, T ] are homogeneous polynomials of degrees s and t and we assume
Ip(C) = (F,G). (We then say that C is a scheme-theoretic complete inter-
section: its ideal is generated by two generators, which obviously implies that
it is a set-theoretic complete intersection of the two corresponding surfaces,
but the converse is false, cf. 1.13.) To calculate the genus g = h1OC we once
again use the exact sequence (∗). On expanding the long exact cohomology
sequence of (∗), we note that h1OC is equal to h2JC . But we have a resolution
of JC (cf. Chapter III, 10.1):

0 −→ OP3(−s − t) −→ OP3(−s) ⊕OP3(−t) −→ JC −→ 0

and we deduce an exact sequence

0 −→ H2JC −→ H3OP3(−s − t) −→ H3OP3(−s) ⊕ H3OP3(−t) −→ 0;

indeed, the cohomology group H2 of the sheaves OP3(n) vanish, as does H3JC

(consider (∗)). We have the formula:

g =
(

s + t − 1
3

)
−
(

s − 1
3

)
−
(

t − 1
3

)

(with the convention that the binomial coefficient
(
n
p

)
vanishes if n < p) and

we get g = 1
2st(s + t− 4) + 1. To calculate the degree we could calculate in a

similar way χ(OC(1)) = d+1−g, but it is easier to intersect C with a general
plane H (for example, T = 0). We are reduced to calculating the intersection
in H of two curves with equations F (X,Y,Z, 0) and G(X,Y,Z, 0) of degrees s
and t. Bézout’s theorem tells us that there are st intersection points, so the
degree of C is st.

Remarks 1.11.
1) There are smooth complete intersection curves for all s, t (cf. Exercise

VIII, 2).
2) For s = 2 and t = 3 we obtain by this method smooth curves of genus 4

(which are therefore not isomorphic to plane curves, cf. i.3 above) but we do
not get any curves of genus 2 (cf. Exam January 1992).

Example 1.12: The space cubic. We refer to Exercise II, 4 for the definition
and properties of this curve. Intersecting with an arbitrary plane, we see that
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its degree is 3. For the genus, we use the method given above. This time we
have the following resolution of JC :

0 −→ OP3(−3)2 −→ OP3(−2)3 −→ JC −→ 0

giving an exact sequence 0 → H2JC → H3OP3(−3)2 → · · · . As the H3

term vanishes, g is zero. (For the degree we can alternatively, calculate
χ(OC(1)) = 4, which gives us d = 3.)

Remark 1.13. The space cubic is not a scheme-theoretic complete intersection.
Indeed, we would otherwise have 3 = st, so without loss of generality s = 1
and t = 3, but the genus would then be 1 and not 0. On the other hand, it is a
set-theoretic complete intersection of two surfaces of degrees 2 and 3, Z2−Y T
and Y 3 − 2XY Z + X2T = Y (Y 2 − XZ) + X(XT − Y Z). What happens is
that C is double in this intersection (which is a scheme of degree 6). Let us
mention that the question whether or not any curve in P3 is a set-theoretic
complete intersection is still open.

2 Divisors on a curve and Riemann-Roch 2

If C is a curve in PN and H is a hyperplane which does not contain C, we
have seen there is a exact sequence given by multiplication by H:

0 −→ OC(−1) −→ OC −→ OC∩H −→ 0,

where C ∩ H is equipped with its finite scheme structure. We will generalise
this situation to all finite subschemes of C by introducing divisors. Conversely,
using these divisors we can reconstruct the sheaves OC(n) associated to certain
embeddings of C in projective space. This study of C using divisors, indepen-
dently of a choice of projective embedding of C, is known as the study of the
“abstract” curve C.

Before talking about divisors, we need to define rational functions.

a. Rational functions

Proposition-Definition 2.1. Let X be an irreducible algebraic variety. We
consider pairs (U, f), where U is a non-empty open set in X and f ∈
Γ (U,OX), and we consider the relation on these pairs given by (U, f) ∼
(V, g) ⇔ f |U∩V = g|U∩V . This is an equivalence relation. A rational func-
tion on X is an equivalence class for this relation.

Proof. This is clearly an equivalence relation. (Transitivity follows from the
irreducibility of X.)
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Remark 2.2. A rational function is therefore a function which is defined only
on a part of X. It has a largest possible domain of definition, namely the
union of all the open sets U of all its representatives (U, f).

Proposition 2.3.
1) Rational functions on X form a field, denoted by K(X).
2) For every open affine set U in X, K(X) is the field of fractions of

Γ (U,OX) and is hence the field of rational functions of U as defined in Chap-
ter I, 6.15.

3) For every point P ∈ X, K(X) is the field of fractions of the local ring
OX,P .

4) If X is projective, K(X) is the subfield of Fr(Γh(X)) consisting of de-
gree 0 elements.

Proof.
1) This is easy: after taking small enough open sets, we can always add,

multiply and take inverses.
2) Clearly, Γ (U,OX) is contained in K(X) by definition. K(X) therefore

also contains the field of fractions of this ring. Conversely, consider f ∈ K(X),
which is defined over an open set V . After restriction, we may assume that V is
contained in U and even that V is a standard open affine set in U : V = DU (g),
where g ∈ Γ (U,OX). But f = h/gn is then contained in the fraction field of
Γ (U).

3) We use 2) to reduce to the case where X is affine, and the result is then
clear, since the local ring is a localisation of Γ (V ) and hence has the same
field of fractions.

4) Consider f/g ∈ Fr(Γh), homogeneous of degree 0. It defines a section
of OX over D+(g) and hence defines a rational function. The converse follows
from the fact that the sets D+(f) form a basis of open sets.

Examples 2.4.
i) The projective line. By 2.3.4 a rational function on P1 is of the form

f =
P (X,T )
Q(X,T )

,

where P,Q are homogeneous of the same degree d and can be assumed to be
coprime. Up to multiplication by a non-zero constant we have

P (X,T ) = XαT γ
∏

i

(X − aiT )αi and Q(X,T ) = XβT δ
∏

i

(X − biT )βi ,

where the elements ai and bj are non-zero and distinct, αi, βi > 0 and
α, β, γ, δ � 0, but αβ = γδ = 0.

We study first the open set T �= 0. We can set t = 1, and we see that f�,
which is a rational function in X, has a zero of order αi at ai, a pole of order βi
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at bi and at 0 a zero of order α − β or a pole of order β − α according to
whether α or β is larger.

If now we look at the open set X �= 0 we find, besides the points t = 1/ai

and 1/bi already considered, a zero of order γ − δ or a pole of order δ − γ
at the point (1, 0) i.e., at infinity. On summing the multiplicities of the zeros
(respectively of the poles) we see that α + γ +

∑
i αi (resp. β + δ +

∑
i βi),

and both of these quantities are equal to d: the number of zeros of a rational
function on P1 is equal to the number of its poles. We will see a generalisation
of this in 2.7.

ii) The cuspidal cubic. This is the curve C = V (Y 2T − X3) ⊂ P2. Cal-
culating K(C) on the open set t �= 0, we get a field generated over k by two
elements x and y such that y2 = x3. But if we calculate over the open set U
given by y �= 0, we see that Γ (U) = k[X,T ]/(T − X3) � k[X], and hence
K(C) is a field of rational functions in one variable k(X) and C is rational
(cf. Chapter IX).

b. Divisors on curves

The definition of a divisor generalises the situation arising in Example i) above:
we have a finite number of points to which are assigned positive or negative
multiplicities (like the zeros and poles of f , respectively).

Definition 2.5. Let C be an irreducible smooth projective curve. A divisor D
on C is a formal sum

D =
∑

x∈C

nx x,

where the nx ∈ Z are almost all zero.3 The support of D is the set of x ∈ C
such that nx �= 0. We denote by Div(C) the set of all divisors on C. It is
equipped with an obvious addition (adding the coefficients nx), which turns
it into an abelian group. A divisor D is said to be positive (or effective),
and we write D � 0 if ∀x ∈ C, nx � 0. Any divisor D can be written
in the form D = D1 − D2, where the divisors Di are positive with disjoint
supports. The degree of a divisor D is the integer deg D =

∑
x∈C nx. The

map deg : Div C → Z is a surjective homomorphism.

Example 2.6. This example generalises the example seen above for P1. Let
f ∈ K(C) be a non-zero rational function on C. We will define a divisor (called
a principal divisor) div(f) = Z(f)−P (f), where Z(f) (resp. P (f)) represents
the zeros (resp. the poles) of f with multiplicities. More precisely, consider
P ∈ C and let OP be the local ring of C at P . This is a discrete valuation
ring (cf. Chapter V, 4.1 and Problem IV), and let vP be the valuation in
question. As f is contained in K(C) = Fr(OP ) and is �= 0, the valuation
vP (f) is defined and is a (possibly negative) integer.
3 In sophisticated language, a divisor on C is a member of the free Z-module whose

basis consists of the points in C.
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Moreover, this integer vanishes for almost all P . Let U be an open affine
set of C and write f = g/h with g, h ∈ Γ (U), g, h �= 0. We have vP (f) > 0
exactly when g ∈ mP , i.e., when g(P ) = 0 (and hence P is a zero of f ,
of order vP (f)); we have vP (f) < 0 exactly when h ∈ mP , i.e., h(P ) = 0
(and hence P is a pole of f , of order −vP (f)). As V (g) and V (h) are finite,
there are only a finite number of points of U such that vP (f) �= 0. And
finally, C − U is a proper closed set of C, and is hence finite. We note that
f ∈ H0OC ⇔ ∀P ∈ C, vP (f) � 0.

We can now define the divisor div(f):

div(f) =
∑

P∈C

vP (f)P.

Proposition 2.7. Consider f ∈ K(C), f �= 0. We have deg div(f) = 0, or, in
other words, the number of zeros and poles of f (counted with multiplicities)
are the same. We have:

f ∈ H0OC ⇐⇒ div(f) � 0 ⇐⇒ div f = 0

Proof. For a proof of this result in full generality see [F] Chapter 8 Prop. 1
or [H] Chapter II, 6.10. We will only deal with the case where C is a smooth
plane curve.

Let C be V (F ), where F ∈ k[X,Y, T ] is a homogeneous irreducible poly-
nomial of degree d, and consider u ∈ K(C). We know that u can be written
in the form u = G/H, where G,H ∈ Γh(C) = k[X,Y, T ]/(F ) are the images
of homogeneous polynomials of the same degree n which are not multiples
of F . Our aim is to calculate vP (u) for u ∈ K(C). After homography we may
assume the point P is in the open affine set T �= 0 and the local ring of C at P
is then OP (C) = OP /(F�), where OP is the local ring of P2 (or k2) in P and
u = G�/H�. We then use the formula for the valuation given in the following
lemma.

Lemma 2.8. Let A be a k-algebra which is a discrete valuation ring with
valuation v. We assume k is isomorphic to the residue field A/m. Then v(a) =
dimk(A/(a)) for all a ∈ A.

Proof (of the lemma).. If π is a uniformising parameter, we write a = uπn,
where n = v(a) and it is easy to see that (1, π, . . . , πn−1) is a basis for A/(a).

We now return to 2.7. We know that vP (u) = vP (G�)−vP (H�) and by the
lemma vP (G�) = dimOP /(F�, G�). We recognise this as being the intersection
multiplicity µP (F�, G�) = µP (F,G) of the curves F and G at P . It follows that

deg div(u) =
∑

P∈C

µP (F,G) −
∑

P∈C

µP (F,H),

but, after Bézout’s theorem, each of these sums is equal to nd, hence their
difference is zero.
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It remains to the prove the claim on functions without poles. Let f ∈
K(C) be a non-zero function without poles (i.e., such that div(f) is � 0) and
consider P ∈ C. As f ∈ OC,P there is a representative of f defined on an affine
neighbourhood of P . By definition of a rational function, these representatives
can be glued together and hence define a regular function. But f is then a
constant function and div(f) = 0.

Remark 2.9. The set P (C) of principal divisors of C is a subgroup of Div C.
Two divisors which differ by a principal divisors are said to be equivalent.
The quotient group Div C/P (C) is called the group of divisor classes of C
or the Picard group of C. By 2.7, the degree homomorphism factorises through
the Picard group. Its kernel is called the Jacobian of C and is denoted Pic0 C.
It is a key invariant of the curve C.

c. The invertible sheaf associated to a divisor

Let C be an irreducible smooth projective curve. We will associate to every
divisor D on C a sheaf on C denoted by OC(D) (or sometimes L(D)).

To understand where this sheaf comes from, let us start by considering a
divisor D =

∑
nP P � 0. We can associate to D a closed finite subscheme

of C, also denoted D, whose support consists of those points P such that
nP > 0 and which has the property that the multiplicity of D at P as a
finite scheme is exactly nP . To do this we take the local ring of the scheme D
at P to be OC,P /(πnP ) (cf. 2.8). We then have nP = µP (D). Conversely, a
finite subscheme X in C defines a divisor

∑
µP (X)P . We note that h0OD =

χOD =
∑

P µP (D) =
∑

P nP = deg D.
If D is a divisor � 0, then there is an exact sequence

0 −→ JD/C −→ OC −→ OD −→ 0,

where JD/C is the ideal of functions which vanish on D (with prescribed
multiplicities). We denote this sheaf by OC(−D), and its sections over an
open set U in C are simply the rational functions in C which are defined on U
and which vanish at every point P with multiplicity at least nP :

Γ (U,OC(−D)) = {f ∈ K(C) | ∀P ∈ U, vP (f) � nP }.

(The fact that the nP are � 0 implies f ∈ Γ (U,OC).)
Let D now be an arbitrary divisor. The sheaf OC(D) is defined in a similar

way, but the signs have changed:

Γ (U,OC(D)) = {f ∈ K(C) | ∀P ∈ U, vP (f) � −nP }.

NB: these functions are not defined everywhere on U since they can have
poles at points where nP < 0. However, at such P the order of the pole must
be � −nP . We are considering rational functions with poles and zeros whose
orders are controlled by the divisor D.
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Remarks 2.10.
0) If D = 0 it is easy to see that OC(D) = OC .
1) We will be especially interested in global sections of the sheaf OC(D),

which can be written in the following way:

H0(C,OC(D)) = Γ (C,OC(D)) = {f ∈ K(C) | div(f) + D � 0}.

(In particular, a divisor D is equivalent to a divisor � 0 if and only if the sheaf
OC(D) has non-zero sections.) The purpose of the Riemann-Roch theorem is
to calculate the dimension h0(C,OC(D)) of this space. We already know that if
deg D < 0, then Γ (C,OC(D)) = 0. Indeed, if f �= 0, then deg div(f)+deg D =
deg D by 2.7 and this degree must be � 0, which is impossible.

2) If D and D′ are equivalent, i.e., if D′ = D + div(g), then there is an
isomorphism of associated sheaves OC(D) � OC(D′) given by f �→ f/g.

3) Assume C ⊂ Pr, let H be a hyperplane which does not contain C and
let D = C ∩H be the finite intersection subscheme (cf. 1). We can think of D
as a positive divisor on C. Then the sheaf OC(D) is simply OC(1). Let U
be an open set in C: a section of OC(1) over U is a fraction f = A/B such
that A,B ∈ Γh(C) are homogeneous, deg A = deg B + 1 and B �= 0 over U
(NB: this object is not a rational function). We associate to it the section
f/H = A/BH which is a rational function whose poles are the points of
C ∩ H = D which are contained in U and which appear with the required
multiplicity. This gives us a section of OC(D).

Likewise, OC(n) � OC(nD). When C is embedded in Pr, the sheaves
OC(n) are special cases of sheaves corresponding to divisors: they correspond
to multiples of the hyperplane divisors C ∩ H. It is clear that if H and H ′

are two hyperplanes not containing C, then their corresponding divisors are
equivalent: they differ by a principal divisor div(H/H ′).

4) It is possible to see that OC(D + D′) � OC(D) ⊗OC
OC(D′) for all

divisors D,D′. In particular, OC � OC(D) ⊗OC
OC(−D): OC(−D) is the

“inverse” of OC(D). The Picard group of C is isomorphic via the map D �→
OC(D) to the group of invertible (i.e., locally free of rank 1, cf. Exercise III,
A.7) sheaves over C with the tensor product law.

d. The Riemann-Roch theorem

We now try to calculate h0(C,OC(D)). (See e. below for an application of this
calculation.) We have the following crucial lemma.

Lemma 2.11.
1) Let D be a positive divisor (which we consider as a finite subscheme

of C). There is an exact sequence

0 −→ OC(−D) i−−→ OC
p−−→ OD −→ 0.
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2) Let D be an arbitrary divisor, which we assume written in the form
D = D1 + D2, where D1 � 0. There is an exact sequence

0 −→ OC(D2)
i−−→ OC(D)

p−−→ OD1 −→ 0.

Proof. We have already proved 1), which is also a special case of 2). To
prove 2), let U be an open set in C. It is clear from the definition that
Γ (U,OC(D2)) is contained in Γ (U,OC(D)), which gives us the injective map i.
To define p, recall that

Γ (U,OD1) =
∏

P∈D1∩U

OC,P /π
n1,P

P ,

where πP is a uniformising parameter for OC,P and the integers n1,P are
the coefficients of D1. Given f ∈ Γ (U,OC(D)), we associate to f the image
of πnP

P f in OC,P /π
n1,P

P at the point P (which is meaningful because πnP

P f
is in OC,P since vP (f) + nP is � 0 by definition). Let us check that p is a
surjective sheaf morphism. This question is local so we can choose an open
set U containing a unique point P in D1. Consider g ∈ OC,P /π

n1,P

P . We can
assume g ∈ Γ (U,OC). Then f = g/πnP

P is in Γ (U,OC(D)) and p(f) = g.
Finally, we check that Ker p = Im i: if f ∈ Γ (U,OC(D2)), then vP (f) �

−n2,P and hence nP + vP (f) � n1,P , so the image of πnP f in OC,P /π
n1,P

P

vanishes. The converse is immediate.

There is an alternative proof of 2) using 1) applied to D1 and tensoring
by OC(D).

We can now prove a second version of the Riemann-Roch theorem.

Theorem 2.12 (Riemann-Roch 2). Let C be an irreducible smooth pro-
jective curve of genus g and let D be a divisor on C.

1) We have

χOC(D) = h0OC(D) − h1OC(D) = deg D + 1 − g.

2) There is an integer N such that if deg(D) � N , then h1OC(D) = 0,
and hence h0OC(D) = deg D + 1 − g.

Proof.
1) We set D = D1 − D2, where Di � 0. By Lemma 2.11.2 χOC(D) =

χOC(−D2) + χOD1 , and 2.11.1 applied to D2 gives us that χOC(−D2) =
χOC − χOD2 . By definition of the genus χOC = 1 − g. For the finite scheme
Di we know that χODi

= h0ODi
= deg Di (cf. c) above), and the formula

follows.
2) We can assume C is embedded in Pr. If H is the hyperplane divi-

sor (cf. 2.10.3), then h1OC(nH) = h1OC(n) = 0 for n � n0 by Serre’s
theorem (cf. Chapter VII, 4.6). Let D be a divisor. By 1), we know that
h0OC(D − n0H) � deg(D − n0H) + 1 − g and this is > 0 as soon as
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deg(D) � N = n0 deg(H) + g. If this holds and f ∈ Γ (C,OC(D − n0H))
does not vanish, then D � n0H − div(f) (cf. 2.10.1), or, alternatively,
D = D1 + (n0H − div(f)), where D1 � 0. Writing the long exact sequence
associated to 2.11.2 we get an exact sequence

· · · −→ H1OC(n0H − div(f)) −→ H1OC(D) −→ H1OD1 −→ 0.

As n0H − div(f) is equivalent to n0H, the associated sheaves are the same
(cf. 2.10.2) and hence their cohomology groups H1 vanish. As D1 is finite,
H1OD1 = 0, and hence H1OC(D) = 0.

Of course, 2.10.3 implies that the first version of the Riemann-Roch theo-
rem is a special case of the second version.

The third version of Riemann-Roch is in fact a duality theorem. We quote
it without proof.

Theorem 2.13 (Riemann-Roch 3). Let C be a smooth irreducible projec-
tive curve of genus g. There is a positive divisor K on C, called the canonical
divisor, such that for any divisor D on C the vector space H1(C,OC(D))
is isomorphic to the dual of the vector space H0(C,OC(K − D)). Moreover,
K has degree 2g − 2. In particular,

h0OC(D) = deg D + 1 − g + h0OC(K − D).

Proof. See [F] Chapter 8 § 8 or [H] Chapter IV, 1.3. The canonical divisor is
of the form div(ω), where ω is not a function but a differential form.

The following corollary gives us an explicit integer N which works in 2.12.2.

Corollary 2.14. With the above notation, if deg D > 2g − 2, then
h1OC(D) = 0, and hence h0OC(D) = deg D + 1 − g.

Proof. Indeed, we then have deg(K − D) < 0 and hence (cf. 2.10.1)
h0OC(K − D) = 0.

e. An application

Proposition 2.15. Let C be an irreducible smooth projective curve. The fol-
lowing are equivalent:

1) C is isomorphic to P1.
2) C is of genus 0.
3) There is a point P ∈ C such that h0OC(P ) � 2.
4) There are two distinct points P,Q ∈ C such that the divisors P and Q

are equivalent.
5) The fraction field K(C) is isomorphic to the field of rational fractions

in one variable k(T ).
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Proof. The fact that 1 ⇒ 2 follows from Chapter VII, 4.1 and the definition
of the genus. For 2 ⇒ 3 we take an arbitrary P and the result follows by
Riemann-Roch (2.12). Let us show that 3 ⇒ 4. Consider a non-constant f ∈
H0OC(P ). The function f necessarily has a pole (since otherwise it would be
in H0OC , hence constant) and this pole must be a simple pole at P ; hence f
must have a unique simple zero Q, so div(f) = (Q) − (P ) and (P ) ∼ (Q).

We now prove that 4 ⇒ 5. Consider f ∈ K(C) such that div(f) =
(Q) − (P ). We then have f ∈ H0OC(P ) and f non-constant (which, inci-
dentally, proves 3).

Let us prove that 1, f is a basis for H0OC(P ). Let π be a uniformising
parameter for OC,P . We have f = u/π with u ∈ OC,P invertible, so u(P ) �= 0
and we can assume u(P ) = 1. Consider g ∈ H0OC(P ). At P , g = vπ−1, where
v ∈ OC,P . We set λ = v(P ) and consider h = g−λf . We have h = (v−λu)/π,
where (v − λu)(P ) = 0, so h ∈ OC,P and as h has no other pole, it is an
element of H0OC . The function h is therefore a constant µ, so g = λf + µ. It
follows that h0OC(P ) = 2 and by Riemann-Roch h1OC(P ) = g.

We now consider H0OC(nP ). This space obviously contains the functions
1, f, f2, . . . , fn. These functions are independent (if they were linked by a
linear relationship, we could multiply it by f−n and evaluate at P ). It follows
that h0OC(nP ) � n+1. By Riemann-Roch h0OC(nP ) = n+1−g+h1OC(nP ).

Consider the exact sequence (cf. 2.11)

0 −→ OC((n − 1)P ) −→ OC(nP ) −→ OP −→ 0.

From the long exact sequence it follows that h1OC(nP ) � h1OC((n − 1)P ),
and by induction h1OC(nP ) � h1OC(P ) = g. In other words, h0OC(nP ) �
n + 1 and equality holds. (We note that this implies h1OC(nP ) = g for all n,
so g = 0 by 2.12.2: this proves 2.) It follows that 1, f, . . . , fn is a basis for
H0OC(nP ).

Let us now consider K(C). This contains the element f , which is transcen-
dental over k (since otherwise it would be a constant) and hence, since C is
a curve, f is a transcendental basis for K(C) over k. Consider u ∈ K(C). We
will show that u is contained in the subfield k(f). We will have proved that
K(C) = k(f), which is exactly 5.

To do this, note that u is algebraic over k(f): on replacing u by ua(f),
where a is a polynomial in f , we can even assume that u is integral over the
ring k[f ]. We then have

(∗) un + an−1(f)un−1 + · · · + a0(f) = 0,

with ai(f) ∈ k[f ]. It follows that u has no poles in any point Q different
from P . Indeed, as f ∈ OQ(C), u is integral over OQ(C), and as this ring
is a discrete valuation ring, and is hence integrally closed, u is contained in
OQ(C). But this implies that u is contained in H0OC(nP ) for some n, and is
hence a polynomial in f . QED.
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It remains to prove that 5 ⇒ 1, which will be done in Chapter IX
(cf. Chapter IX, 2.5.1).

See Exercises VIII, 4 for similar results on elliptic curves (i.e., of genus 1).

Exercises

In what follows we work over an algebraically closed base field k of characteristic
zero.

0 Back to theory

Let I ⊂ R = k[X0, . . . , Xn] be a homogeneous ideal and assume that Z = V (I)
is finite. Let h be a non-zero linear form such that V (h) ∩ Z = ∅. We are going
to give an algebraic proof of the existence of the multiplication by h isomorphism
OZ(−1) � OZ , denoted µh.

a) Prove that, for large n, µh : (R/I)n−1 → (R/I)n is surjective. (Use the Null-
stellensatz to prove that the ideal I + (h) contains a power of the irrelevant
ideal.)

b) Assume that I is saturated (cf. Chapter X, 1.1). Prove that µh is injective (use
the Nullstellensatz again). Use this to complete the proof of the theorem.

1 General hyperplane sections of a curve

Let C be an irreducible smooth curve in PN of degree d.
Prove that for a general hyperplane H the scheme Z = C∩H contains d distinct

points. (Useful hints are to be found in Problem VI, Theorem 3 and Summary 4.5).
Prove that this result still holds if C is not assumed to be smooth.

2 Existence of smooth complete intersections

We work in P3, but this exercise can be easily generalised to arbitrary dimensions.
We fix two positive integers s and t. Our aim is to prove that if F and G are

sufficiently general homogeneous polynomials in X, Y, Z, T of degrees s and t, then
the complete intersection curve C = V (F, G) is smooth and irreducible.

We consider the spaces Ls = H0(P3,OP(s)) and Lt = H0(P3,OP(t)) and the
projective (why?) variety V = P3×P(Ls)×P(Lt), whose points are triples (P, F, G),
given by coordinates P = (x, y, z, t), F = (ai,j,k,l) and G = (bi,j,k,l), such that

F =
∑

i+j+k+l=s

ai,j,k,lX
iY jZkT l and G =

∑

i+j+k+l=t

bi,j,k,lX
iY jZkT l.

We set
M = {(P, F, G) ∈ V | F (P ) = G(P ) = 0}.

We consider the projections π1 : M → P3 and π2 : M → P(Ls) × P(Lt). What are
the fibres of π2?
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1) Prove that M is a closed subvariety of V (and is hence a projective variety).
(Give explicit equations for M in open affine sets of the form x �= 0, ai �= 0,
bj �= 0.)

2) Prove that the fibres of π1 are irreducible projective varieties of constant di-
mension. Deduce that M is irreducible and of codimension 2 in V .

3) Prove that M is smooth. (Calculate the tangent space T(P,F,G)(M): it is the
kernel of a matrix with 2 lines and many columns and we have to show that its
rank is 2.)

4) Applying the generic smoothness theorem (cf. Problem VI) to π2, prove that
for (F, G) in a non-empty open set of the product P(Ls) ×P(Lt), V (F, G) is a
smooth curve.
Prove that V (F, G) is then irreducible (prove first that it is connected and then
use Chapter V, 3.6).

5) Study the following example: F = X2 + Y 2 + Z2 + T 2, G = X3 + Y 3 + Z3.

3 Some degree and genus calculations

Determine the degrees and genuses of the curves in P3 whose ideal IC has the
following graded resolution:

0 −→ R(−a − 1)a −→ R(−a)a+1 −→ IC −→ 0, where a ∈ N∗,

0 −→ R(−s − t − 1)2 −→ R(−s − t − 2) ⊕ R(−t) ⊕ R(−s) −→ IC −→ 0,

where s, t ∈ N∗,

0 −→ R(−5) −→ R(−4)4 −→ R(−2) ⊕ R(−3)3 −→ IC −→ 0.

4 Elliptic curves

The aim of this exercise is to prove that any curve of genus 1 is isomorphic to a
plane cubic.

We assume that the base field k is of characteristic different from 2. Let C be a
smooth irreducible projective curve of genus 1, and set P0 ∈ C and C′ = C − {P0}.
1) Prove that for all n ∈ N∗, h0OC(nP0) = n.
2) Prove that we can find x, y ∈ K(C) such that 1, x (resp. 1, x, y) are a basis of

H0OC(2P0) (resp. of H0OC(3P0)) over k.
3) Prove that the quantities 1, x, y, x2, xy, y2, x3 are linearly dependent over k. Let

P (x, y) be the dependence relation. Prove that the coefficients of y2 and x3 in P
are non-zero.

4) Prove that up to change of basis we can assume that P (x, y) is of the form
y2 − x(x − 1)(x − λ), where λ �= 0, 1. (Start by eliminating the terms in y and
xy by completing the square and then use an affine transformation of k to get
a cubic polynomial with roots at 0, 1 and λ.)

5) Consider the map ϕ : C′ → k2 sending P to x(P ), y(P ). Prove that ϕ is an
isomorphism from C′ to the affine curve whose equation is y2 = x(x−1)(x−λ).

6) Prove using Chapter IX, 2.4 that C is isomorphic to the plane curve whose
equation is Y 2T = X(X − T )(X − λT ).

For more information on the extensive and beautiful theory of elliptic curves,

cf. [H] Chapter II, 6.10.2 and Chapter IV, 4 (and references therein) or [F] Chap-

ter V, 6 and VIII.



IX

Rational maps, geometric genus and rational
curves

We work over an algebraically closed base field k.

0 Introduction

We saw in the book’s introduction how useful it can be to have rational
parameterisations of curves (notably for resolving Diophantine equations or
calculating primitives). We then say the curve is rational. The aim of this
chapter is to give a method for calculating whether or not a curve is rational.
We will prove that this is equivalent to the (geometric) genus of the curve
being zero and we will give methods for calculating this geometric genus.

1 Rational maps

These are generalisations of the rational functions seen in Chapter VIII
(cf. also Problem V).

Proposition-Definition 1.1. Let X and Y be irreducible algebraic varieties.
We consider pairs (U,ϕ), where U is a non-empty open set of X and ϕ :
U → Y is a morphism and we consider the relation on these pairs given by
(U,ϕ) ∼ (V, ψ) ⇔ ϕ|U∩V = ψ|U∩V . This is an equivalence relations on such
pairs. A rational map from X to Y is an equivalence class for this relation.
By abuse of notation, it is also denoted ϕ : X → Y .

Remark 1.2. As for rational functions, rational morphisms are morphisms
which are not defined everywhere. There is a largest possible open set U on
which ϕ is defined and which is called the domain of definition of ϕ.
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Examples 1.3.
i) A morphism is a rational map.
ii) A rational function on X is a rational map from X to k.
iii) The parameterisation of the affine plane curve C = V (X3 −Y 3 −XY )

obtained by intersecting with the line y = tx is a rational map ϕ from k to C
defined on k minus the cube roots of unity by

ϕ(t) =
( t

1 − t3
,

t2

1 − t3

)
.

Proposition-Definition 1.4.
a) Let ϕ : X → Y be a rational map. We say that ϕ is dominant if the

image of ϕ is dense in Y . (It is possible to prove that this does not depend on
the choice of element representing ϕ.)

b) Let X
ϕ−→ Y

ψ−→ Z be dominant rational maps. Then the composition
ψϕ is a rational map defined as follows. Consider (U,ϕ) and (V, ψ) repre-
senting ϕ and ψ. The inverse image ϕ−1(V ) is a non-empty open set in U .
Replacing U by ϕ−1(V ) we can assume ϕ(U) ⊂ V . Then ψϕ is well defined
and defines a dominant rational map. (We check that the composition does
not depend on the choice of representations of ϕ and ψ.)

c) We say that a dominant rational map ϕX → Y is birational if there
is a dominant rational map ψ : Y → X such that ψϕ = IdX and ϕψ = IdY .
(These equalities are equalities of rational maps, i.e., they hold on some non-
empty open subset).

d) Two irreducible algebraic varieties X and Y are said to be birationally
equivalent if there is a birational map ϕ : X → Y . This means that X and Y
have isomorphic non-empty open sets. X and Y are therefore of the same
dimension. If C is a curve, C is said to be rational if it is birationally equiv-
alent to P1 (or k, which is obviously the same thing): this means that C has
a rational parameterisation which is an isomorphism on some open set.

Proof. The proofs of the above statements are immediate. The claim concern-
ing the dimensions follows from the fact that a non-empty open subset has
the same dimension as the ambient variety.

Example 1.5.
i) Of course, the inclusion of an open subvariety U in X is birational: from

the birational point of view, we can always restrict ourselves to affine varieties.
ii) All the examples of rational parameterisations of the form y = tx are

birational since there is an inverse rational map (x, y) �→ t = y/x (for example:
the curves of equations X2+Y 2−Y,X3−Y 3−XY, Y 2−X3, . . . are rational).

iii) For a trickier example, consider the tricuspidal quartic, cf. Exer-
cise VI, 4.

The following theorem is the analogue for rational maps of Chapter I, 6.13.
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Theorem 1.6. There is an equivalence of categories X �→ K(X) between
irreducible algebraic varieties with dominant rational maps on one hand and
finite-type extensions K of k with field homomorphisms which are trivial on k
on the other.

Proof.
1) The functor is obtained as in the affine case: given a rational map ϕ :

X → Y we obtain a field homomorphism ϕ∗ : K(Y ) → K(X) by associating
to the rational function f on Y the composition fϕ ∈ K(X). (Here we have
used the fact that f is dominant.) We hence obtain a contravariant functor
X �→ K(X) and our aim is to show that this functor is fully faithful and
essentially surjective (cf. Chapter I).

2) The functor is faithful. Let ϕ and ψ be two rational applications from X
to Y such that ϕ∗ = ψ∗. We take open affine sets U and V in X and Y such
that ϕ and ψ define morphisms from U to V (which is possible on restrict-
ing U). This yields ring homomorphisms ϕ∗ and ψ∗ from Γ (V ) to Γ (U) which
have the same extensions to the fraction fields. These homomorphisms are
therefore the same and we are done by Chapter I, 6.7 (faithfulness for regular
maps.)

3) The functor is fully faithful. Let θ : K(Y ) → K(X) be a homomorphism
of fields which restricts to the identity on k. Choose open affine subsets U, V of
X,Y . Their algebras Γ (U) and Γ (V ) have generators ξ1, . . . , ξn and η1, . . . , ηm

respectively. The images of the elements ηi under θ are contained in some local
ring Γ (U)f , so θ induces an algebra homomorphism from Γ (V ) to Γ (U)f . By
Chapter I, 6.7 this homomorphism comes from a morphism ϕ : DU (f) → V ,
i.e., a rational map from X to Y , and it follows that θ = ϕ∗.

4) It remains to prove that the functor is essentially surjective. Let K be
a finite-type extension of k, let ξ1, . . . , ξn be generators of K and let A be the
k-algebra generated by the elements ξi. The ring A is then both an integral
domain and a finite-type k-algebra, and hence A is isomorphic to an algebra
Γ (X) for some affine irreducible X, and as K = Fr(A), K � K(X).

Corollary 1.7. Two irreducible algebraic varieties are birationally equivalent
if and only if their functions fields are isomorphic. In particular, a curve is
rational if and only if its field of functions is isomorphic to the field of rational
fractions in one variable, k(T ).

Example 1.8. This gives us a new proof of the fact that V (Y 2−X3) is rational:
on considering the open set Y �= 0 in projective space we see that K(C) =
k(X) (cf. Chapter VIII, 2.4)

Proposition 1.9. Let X be an irreducible algebraic variety of dimension n.
Then X is birationally equivalent to a hypersurface in kn+1 (or Pn+1). In
particular, every curve is birationally equivalent to a plane curve.
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Proof. See Problem V; in characteristic 0 it is enough to take a transcendence
basis ξ1, . . . , ξn of K(X) over k and note that by the primitive element theorem
K(X) is an extension of k(ξ1, . . . , ξn) generated by a unique element.

2 Curves

We now come to the heart of the problem. Our aim is to study what bi-
rational equivalence says about curves, particularly whether or not a given
irreducible curve is birationally equivalent to a “nicer” curve. What do we
mean by “nice”? There are three fairly natural criteria: being smooth (a nice
curve should not have singular points), being projective (a nice curve should
be “complete,” cf. Problem II), and being plane (a “nice” curve should be
embedded in a small projective space), and there are many natural questions
to be asked, depending on whether we want one, two or all three criteria to
be satisfied. We start by summarising known results: proofs of most of them
will be given in the coming paragraphs.

We note that the answer to the question of whether every curve is bira-
tionally equivalent to a nice curve is yes if we only require that one of our
criteria be satisfied.

1) As the singular locus S of C is finite (cf. Problem V), C is birationally
equivalent to its open smooth locus C − S.

2) Given an arbitrary C, take an affine open set U in C, embed U into kn

and consider the closure U of U in Pn. Then C is birationally equivalent to
the projective curve U .

3) The “plane curve” criterion was dealt with in 1.9.

Things become more complicated with two criteria.
1) Plane and projective is easy: we consider an equivalent affine plane

curve and take its closure.
2) For plane and smooth the answer is yes if we consider any open set of a

projective plane curve to be a plane curve. A more delicate (but probably not
very interesting) question is whether or not there exists a smooth plane curve
which is closed in k2 and which is birationally equivalent to the given curve C
(if C is a plane curve of degree 5 with three non-collinear double points, for
example). The author does not know the answer to this question.

3) For smooth and projective the answer is yes, but the proof is difficult
enough to make it a theorem (cf. 5.11).

Theorem 2.1 (Desingularisation). Any irreducible curve is birationally
equivalent to a smooth projective curve. More precisely, if C is an irreducible
projective curve, then there is an irreducible smooth projective curve X and
a morphism π : X → C which is finite (and hence surjective, cf. 3.4) and
birational. We say that X is the desingularisation or normalisation of C.
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Remark 2.2. The analogous theorem for surfaces is true in all characteristics
(Abhyankar). In arbitrary dimension the result has only officially been proved
in characteristic 0 (Hironaka), but it seems that a proof of the general case
has been announced.

And finally, if we want all three criteria to be satisfied, the answer to the
question is generally no (cf. 2.6).

Having determined whether there is a nice birational model, we can ask
whether it is unique. The answer is yes for the smooth projective model.

Theorem 2.3. Let C,C ′ be two irreducible smooth projective curves. Assume
that C and C ′ are birationally equivalent. Then they are isomorphic.

Proof. The proof relies on the following lemma.

Lemma 2.4. Let C be a smooth irreducible curve, consider P ∈ C and let
ϕ : C − {P} → X be a morphism towards a projective variety X. Then there
is a unique morphism ϕ : C → X extending ϕ.

Proof.
1) Uniqueness. We reduce to the case of an affine C, and uniqueness follows

immediately from the irreducibility of C.
2) Existence. As the variety X is embedded in Pn, we can assume X = Pn.

We note that if U is an open set in C containing P and we know how to extend
ϕ|U−{P}, then we are done (we simply glue this extension to ϕ on U − {P}).
We can therefore replace C by any open set U ⊂ C containing P . We can
thus suppose that C is affine with associated ring A. Moreover, let U0 be the
open set x0 �= 0 in Pn. We can assume that the image of ϕ meets U0, and
after shrinking C we can assume it is contained in U0. Let π be a uniformising
parameter for C at P (we know that C is smooth).

After again shrinking C if necessary we can assume that π comes from a
function f which is regular on C and has no other zeros than P on C. We
have therefore reduced to the case where C −{P} is the open affine set D(f)
in C. As the image of ϕ is contained in U0, ϕ = (1, h1, . . . , hn), with hi ∈ Af .
After shrinking C for the last time we can assume that the elements hi are of
the form hi = uif

−αi with ui ∈ A, ui(P ) �= 0 and αi ∈ Z.
If all the integers αi are � 0, then ϕ can be extended in the obvious way.

Otherwise, let α = αk be the largest of the integers αi: as the image of ϕ is
in Pn, we can write ϕ = (fα, u1f

α−α1 , . . . , uk, · · · ), or, alternatively, as uk is
non-zero in a neighbourhood of P , ϕ = (fα/uk, u1f

α−α1/uk, . . . , 1, . . . ), so ϕ
can indeed be extended to P .

We now return to the proof of Theorem 2.3. We have a morphism ϕ :
U → C ′ defined on an open set of C or, in other words, defined on C minus
a certain number of points. As C is smooth and C ′ is projective, we see by
Lemma 2.4 that ϕ can be extended to C. Likewise, we extend the (rational)
inverse of ϕ, i.e., ψ, to the whole of C ′. We are therefore done by comparing
ϕψ (resp. ψϕ) and the identity on C ′ (resp. C), according to uniqueness.
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Remarks 2.5.
1) Theorem 2.3 allows us to finish the proof of Chapter VIII, 2.15 (5 ⇒ 1):

as K(C) is isomorphic to k(T ), C is birationally equivalent to P1 (cf. 1.7); as C
and P1 are irreducible, smooth and projective, they are isomorphic by 2.3.

2) Theorem 2.3 allows us to talk about the normalisation of C: this nor-
malisation is unique up to isomorphism. We call it the projective model of C
or of K(C). As far as birational geometry goes, we can restrict ourselves to
studying smooth projective curves. We can hence define the geometric genus
of C as follows.

Definition 2.6. Let C be a curve and X its normalisation. We call the arith-
metic genus of X the geometric genus of C.

We note that for a smooth projective curve the two genuses coincide. For
the rest of this chapter we will denote the geometric genus of C by g(C) and
the arithmetic genus of C by pa(C).

Proposition 2.7. If two curves are birationally equivalent, then they have the
same geometric genus. The converse is true if g = 0: a curve is rational if
and only if its geometric genus is zero.

Proof. The first statement is trivial. The second follows from Chapter VIII,
2.15, cf. Remark 2.5.1.

Remarks 2.8.
1) If g � 1, then the irreducible smooth curves of genus g are not all iso-

morphic. It is possible to show that the set of such curves (up to isomorphism)
forms a variety of dimension 1 (resp. 3g − 3) if g = 1 (resp. g > 1).

2) We can now show that the answer to the question of whether a triply nice
(projective plane and smooth) curve birational to a given curve necessarily
exists is no. Indeed, a smooth plane curve has genus equal to 0, 1, 3, 6, . . . ,
but not to 2 or 4. However, there are curves of genus 2 or 4 (cf. Exam 1992
and Exercise VIII, 2) and indeed of any genus (cf. [H] Chapter III, Exercise
5.6). (On the other hand, we can show that any curve is isomorphic to a curve
in P3 (cf. Chapter VIII, 2.i.3 or [H] Chapter IV, 3.6).)

The birational-classification-of-curves problem is therefore directly linked
to the problem of calculating genuses. This is not an easy problem, especially
for curves in P3. One way of advancing is to use another type of curve which
represents an acceptable compromise, namely projective plane curves with
only ordinary singularities (cf. Chapter V, 4). This is justified by the following
theorem, whose proof is contained in Problem VIII.

Theorem 2.9. Let C be an irreducible curve. Then C is birationally equiva-
lent to a projective plane curve with only ordinary singular points (i.e., with
distinct tangents).
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And finally, we know how to calculate the genus of such curves (which we
call “ordinary” curves).

Theorem 2.10. Let C be an irreducible projective plane curve with only or-
dinary singularities of degree d. We denote by µP the multiplicity of C at P
(cf. Chapter V, 4.4). The following formula holds:

g(C) =
(d − 1)(d − 2)

2
−
∑

P∈C

µP (µP − 1)
2

.

In fact, the method for calculating the genus suggested by 2.9 and 2.10 is
not very satisfactory in practice and we will give another one which is much
more efficient (cf. 5.12 and 5.15).

3 Normalisation: the algebraic method

We will now tackle the problem of desingularising curves (Theorem 2.1), ini-
tially using an essentially algebraic method. We will need several auxiliary
results whose statements are simple but whose proofs are not always easy: we
will mainly give only sketch proofs or references for these results.

a. Some preliminaries

a.1. Some results on finite morphisms.

Definition 3.1. Let ϕ : X → Y be a dominant morphism of irreducible al-
gebraic varieties. We say that ϕ is affine if it satisfies one of the following
equivalent properties.

1) For any open affine subset of Y , U , ϕ−1(U) is an open affine subset
of X.

2) There is a covering of Y by open affine subsets Ui (i = 1, . . . , n) such
that ϕ−1(Ui) is an open affine subset of X for every i.

For the equivalence of the above two properties, which is not obvious, see
[M] Chapter II, 7.5 and Chapter III, 1.5.

Definition 3.2. Let ϕ : X → Y be a dominant morphism of irreducible alge-
braic varieties. We say that ϕ is finite if it is affine and for every open affine
set U in Y the ring morphism ϕ∗ : Γ (U) → Γ (ϕ−1(U)) is integral (and hence
finite). It is enough to check this property on some open affine covering of Y .

To show that it is enough to check this property on an open covering we
reduce to the affine case and then prove that Γ (X) is a Γ (Y )-module of finite
type; this follows from the following lemma.

Lemma 3.3. Let A be a ring, let M be an A-module and let f1, . . . , fn ∈ A be
elements which generate the unit ideal. We assume that for all i the localised
module Mfi

is of finite type over Afi
. Then M is of finite type over A.
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Proof. Exercise. (Consider the submodule M ′ of M generated by the genera-
tors of all the localised rings and the conductor

I = {a ∈ A | aM ⊂ M ′}.)

Proposition 3.4. Let ϕ : X → Y be a finite morphism.
1) We have dim X = dim Y .
2) The morphism ϕ is surjective and its fibres are finite.
3) The morphism ϕ is closed (i.e., transforms closed sets into closed sets).
4) If Y is a complete variety (cf. Problem II), then so is X.
5) If Y is a separated variety (cf. Problem I), then so is X.

Proof.
1) We restrict ourselves to the affine case and the result is clear by the

transcendence degree characterisation of dimension.
2) We may assume that X and Y are affine with rings B and A. Surjectivity

then follows by Chapter IV, 4.2. If y ∈ Y corresponds to the maximal ideal m
of A, then the points of the corresponding fibre correspond to maximal ideals
of the finite k-algebra B/mB and hence there are a finite number of them.

3) Closedness is a local property, so we may restrict to the affine case. If F
is a closed subset of X, then consider the restricted morphism ϕ : F → ϕ(F ).
It is again finite, and is hence surjective, so ϕ(F ) = ϕ(F ).

4) It will be enough to prove that ϕ is proper, i.e., that if Z is a variety,
ϕ× IdZ is closed. By 2) it will be enough to show that this morphism is finite.
We reduce to the case where X,Y and Z are affine with rings A,B and C,
and it remains to prove that if A is integral over B, then A ⊗k C is integral
over B ⊗k C, which is immediate.

5) We have to prove that the diagonal in X×X is closed, or, alternatively,
that its complement is open. Consider (x, x′) ∈ X × X such that x �= x′. If
ϕ(x) �= ϕ(x′), then we are done because Y is separated. If ϕ(x) = ϕ(x′), then
since ϕ is affine, x and x′ are contained in the same open affine set and we
are done because any affine variety is separated.

Proposition 3.5. Let ϕ : X → Y be a finite morphism. Assume that Y is a
projective curve and X is smooth. Then X is a projective curve.

Proof. See [H] Chapter I, 6.8 for the details of the argument. The idea is the
following: we note that X is a complete curve so it would be enough to find an
embedding of X in a projective variety (cf. Problem II). We cover X by open
affine sets U1, . . . , Un. We embed each Ui in a projective space and we denote
by Yi its closure in this space: Yi is a projective curve. There is a morphism
ϕi : Ui → Yi which extends to a morphism on X (again denoted by ϕi) by 2.4.
A priori, this morphism is not an embedding, but we can take the diagonal
embedding ϕ = (ϕ1, . . . , ϕn) into the product of the curves Yi. We then prove
(using the smoothness of X) that ϕ is an embedding and we are done.
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Remark 3.6. The above claim is actually true even for non-smooth X (cf. [H]
Chapter III, Exercise 5.7.d). We will assume this to be the case throughout
the following discussion, especially in Paragraph 5. See Appendix 6 for a proof
of the theorems in Paragraph 5 which does not use Proposition 3.5.

Proposition 3.7. Let X,Y be separated varieties, ϕ : X → Y an affine mor-
phism and F a quasi-coherent sheaf over X. For all integers i

Hi(X,F) � Hi(Y, ϕ∗F).

Proof. We note first that ϕ∗F is quasi-coherent. For i = 0 the statement
of 3.7 is simply the definition of the direct image. For i > 0 take a finite
affine covering V1, . . . , Vn of Y and consider the covering Ui = ϕ−1(Vi) of X
(which is also affine) and calculate the associated Čech cohomologies. The
respective complexes are obtained by taking products of spaces of sections
Γ (Vi0,...,ip

, ϕ∗F) and Γ (Ui0,...,ip
,F), but these spaces are equal by definition

of ϕ∗, so the Čech complexes are identical.

a.2 Some results on gluing varieties. Let X1 and X2 be two varieties and
let Ui be an open subset of Xi. We assume that the open sets U1 and U2 are
isomorphic as varieties. Let ϕ : U1 → U2 be such an isomorphism. We define
a variety X (obtained by gluing X1 and X2 together along U1 and U2) in the
following way.

We take the disjoint union Y = X1 ∪ X2 and we consider the equivalence
relation R which identifies U1 and U2 (i.e., the only non-trivially equivalent
pairs are the pairs (x, ϕ(x)), where x ∈ U1) and we denote the quotient set
Y/R with its quotient topology by X. This means that, considering the natural
(injective) maps i1 : X1 → X and i2 : X2 → X, a subset V ⊂ X is open if
and only if V1 = i−1

1 (V ) and V2 = i−1
2 (V ) are open. The sheaf of rings OX is

then defined by

OX(V ) =
{
(s1, s2) | s1 ∈ OX1(V1), s2 ∈ OX1(V2)

and ϕ∗(s2|V2∩U2) = s1|V1∩U1

}
.

(This is an exercise, cf. Exercise VII, 2.)

b. Normalisation

We now sketch a first (brutal but efficient) method for desingularising curves.
If C is an irreducible curve, we know that C is smooth if and only if its local
rings are discrete valuation rings (cf. Chapter V, 4.1). If, moreover, C is affine,
this simply means that Γ (C) is integrally closed (cf. Chapter V, 4.2).

We therefore start with an affine curve C. Let K(C) be the field of rational
functions on C. If C is not smooth, the ring A = Γ (C) is not integrally closed.
Let A′ be the integral closure of A in K(C). The ring A′ is integrally closed
and is an A-module of finite type (cf. Summary 1.7) and is hence a k-algebra of
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finite type. There is therefore an affine algebraic variety C ′ such that Γ (C ′) =
A′ and a morphism ϕ : C ′ → C corresponding to the inclusion of A in A′

and which is therefore a finite morphism. It follows that C ′ is an irreducible
smooth curve and that ϕ is finite and birational. The map ϕ is hence an
isomorphism away from the singular points of C (cf. midterm 1991 II). We
have therefore found a desingularisation of C (in the sense given in 2.1).

In the general case, we cover the curve C with affine open sets U1, . . . , Un

such that each Ui contains at most one singular point of C. We set Ai =
Γ (Ui) ⊂ K(C) and we consider the integral closure A′

i of Ai and the corre-
sponding affine curve Ci. There is a morphism ϕi = Ci → Ui which is finite
and birational, and which is an isomorphism except possibly at one point. We
glue Ci and Cj together along the open sets ϕ−1

i (Ui ∩ Uj) and ϕ−1
j (Ui ∩ Uj).

We then iterate this method until we get a map ϕ : C ′ → C which is finite
and birational and has the property that C ′ is smooth and irreducible, so we
have desingularised C. By 3.5, if C is projective the same is true of C ′.

This method, which is pleasingly simple, has a disadvantage: we have little
control over the morphism ϕ. For genus calculations in particular, we need
detailed information on the local behaviour of ϕ. This is what we will now
obtain using blow-ups.

4 Affine blow-ups

a. Introduction

In this course we will study the blow-up of a point in the plane only. For
generalisations see (for example) [H] Chapter II, 7 (for the general case) and
Chapter V, 3 (for the blow-up of a point on a surface).

The blow-up is a method for desingularising a plane curve C at a point.
As the problem is local, we can restrict to the case of an affine curve C ⊂ k2.
We assume that C is singular at a point P and, after change of coordinates,
we can assume P = (0, 0). The idea of the blow-up for a double ordinary
point (C = V (X3 + Y 2 − X2), for example) is to separate the two branches
of the curve passing through P by replacing P by two points, corresponding
to the two tangents of C at P (cf. Figure 1). To do this we have to pass into
three-dimensional space and modify the plane by replacing the point P with
the set of all the tangent lines passing through P . The algebraic translation
of this principle is easy: the lines passing through P are the lines y = tx and
we consider the affine algebraic set

B = {(x, y, t) ∈ k3 | y = tx}.

This is an irreducible surface in k3 admitting a morphism π : B → k2 which
associates (x, y) to (x, y, t) and whose fibres π−1(x, y) are as follows.

1) If x �= 0, the fibre contains a unique point (x, y, y/x).
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2) If x = 0 and y �= 0, the fibre is empty.
3) If x = y = 0 (i.e., over P ), the fibre is the line L (called the exceptional

line) consisting of points (0, 0, t) with t ∈ k.
We say that (B, π) is the blow-up of the plane at the point P .

We note that if B′ (resp. U) is the open subset of B (resp. k2) given by
x �= 0, then π induces an isomorphism of B′ and U whose inverse is given by
(x, y) �→ (x, y, y/x).

The inverse image of C = V (X3 + Y 2 − X2) under π is the set of points
(x, y, t) such that y = tx and x3 + y2 − x2 = 0, or, alternatively, y = tx and
x2(x+t2−1) = 0. We see that π−1(C) is reducible and can be decomposed into
the line L defined by x = y = 0 and a curve C ′ whose equations are y = tx and
x+ t2−1 = 0. This curve is called the strict transform of C and is smooth. To
see this it is enough to project B onto the (x, t) plane by π′ : B → k2 (this is
an isomorphism whose inverse is given by (x, t) �→ (x, xt, t)): C ′ is isomorphic
under this projection to the plane curve C ′′ = V (X +T 2−1), which is smooth
(it is a parabola). The curve C ′ (or C ′′) is indeed a desingularisation of C as
π : C ′ → C is birational. We note that there are two points of C ′ over P
corresponding to the two tangent lines of C at P : (0, 0,±1).

In fact, in what follows, we will forget the surface B and study directly
the transformation ψ = ππ′−1 from the (x, t) plane to the (x, y) plane.

t

x

C´

Fig. 1. The blow-up of the affine plane

b. Modification of the plane

We consider the morphism ψ : k2 → k2, which associates (x, y) = (x, xt)
to (x, t). This is a birational map whose image is U ∪ {P}, where U is the
open set x �= 0 and P is the point (0, 0). Over U the inverse of ψ is given
by (x, y) �→ (x, y/x), which is an isomorphism of U on the open set ψ−1(U)
(also defined by x �= 0). The fibre L = ψ−1(P ) is the (exceptional) line whose
equation is x = 0.
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Let C be a curve in the (x, y)-plane, set C0 = C∩U , C ′
0 = ψ−1(C0) (which

is isomorphic to C0 via ψ) and let C ′ be the closure of C ′
0.

Proposition 4.1. Assume C = V (F ), where F ∈ k[X,Y ] is irreducible. We
write F = Fr+· · ·+Fn, where r = µP (C) � n = deg F and Fi is homogeneous
of degree i. Then C ′ = V (F ′), where

F ′(X,T ) = Fr(1, T ) + XFr+1(1, T ) + · · · + Xn−rFn(1, T )

and ψ|C′ is a birational morphism from C ′ to C inducing an isomorphism
from C ′

0 to C0.

Proof. We have ψ−1(C) = V (Fψ), where Fψ(X,T ) = F (X,XT ) =
XrFr(1, T ) + · · · + XnFn(1, T ) = XrF ′(X,T ). We write this equation
in the form F (X,Y ) = XrF ′(X,Y/X), and it follows that F ′ is irreducible.
Consider (x, t) ∈ k2 such that x �= 0: (x, t) is in C ′

0 if and only if F (x, xt) = 0,
or, alternatively, F ′(x, t) = 0, since x �= 0. In other words, C ′

0 ⊂ V (F ′) and
hence C ′ ⊂ V (F ′), but as F ′ is irreducible, equality holds. The rest of the
proposition is obvious.

Remark 4.2. If r = 0, i.e., if the point P is not in C, then F ′(X,T ) =
F (X,XT ) and C ′

0 = V (F ′) is closed in k2.

Proposition 4.3. Assume that the line X = 0 is not tangent to C at P
(we can always reduce to this case by an affine isomorphism). We can then
write Fr =

∏s
i=1(Y − λiX)ri , where the λ1, . . . , λs ∈ k are distinct and r =∑s

i=1 ri = r. We then have ψ−1(P ) = {P1, . . . , Ps}, where Pi = (0, λi) and
1 � µPi

(C ′) � µPi
(C ′, L) = ri. Moreover, if P is an ordinary multiple point

(i.e., ri = 1 for all i) every Pi is a smooth point of C ′ and the line X = 0 is
not tangent to C ′ at Pi.

Proof. From the definition of F it follows that

F ′(X,T ) =
s∏

i=1

(T − λi)ri + XFr+1(1, T ) + · · ·

We now determine the points over P : these are the points (0, t) such that
F ′(0, t) = 0, i.e., the points Pi = (0, λi). We compare the multiplicity of C ′

at Pi and the intersection multiplicity of C ′ and L at this point: µPi
(C ′) �

µPi
(C ′ ∩ L) (cf. Problem VII, Axiom 5), but µPi

(C ′ ∩ L) = µPi
(F ′,X) =

µPi
(
∏s

i=1(T −λi)ri ,X) = ri (cf. Problem VII, loc. cit.). If ri = 1, the point Pi

is therefore smooth, and as the intersection multiplicity of C ′ and the line
X = 0 at this point is 1, this line is not tangent to C (cf. Problem VII,
loc. cit.).
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Remark 4.4. The example F (X,Y ) = Y 2−X3 shows that 4.3 is false if ri � 2:
the line X = 0 is tangent to F ′(X,T ) = T 2 − X at the point (0, 0).

Summarising, the situation is as follows. 1) We have a transformation
ψ : C ′ → C which is an isomorphism over the open set x �= 0. 2) If P is an
ordinary multiple point of order r of C, then it is replaced in C ′ by r smooth
points.

Be careful, however: using this method we lose control of the points of C
such that x = 0, which can produce singular points of the projective curve
V (F ′�) at infinity. For example, if we start with F = X4+Y 3+Y 2−X2 and we
blow up the origin (which is the only singular point of C, including infinity),
we get a curve of equation X2 +T 3X +T 2−1 which has no singular points in
affine space but has one singular point at infinity, (1, 0, 0). To get around this
problem we will have to use projective blow-ups and gluings (cf. Theorem 5.7).

In any case, we will need a better understanding of the local structure of
blow-ups, which is the object of the next paragraph.

c. Local structure of a blow-up

We use the notations of the above section. The point P = (0, 0) is assumed
of multiplicity r � 1 in C. Once again, we assume that the line V (X) (i.e.,
X = 0) is not tangent to C at P .

We denote by x, y (resp. x, t) the coordinate functions on k2. The fields of
rational functions are K(C) = k(x, y) = K(C ′) = k(x, t), and the elements
x, y (resp. x, t) are related by an equation F (x, y) = 0 (resp. F ′(x, t) = 0).
Moreover, y = tx. We start by showing that the element t satisfies an algebraic
equation with coefficients in the ring k[x, y] generated by x and y whose
dominant coefficient is �= 0 at P .

Lemma 4.5. With the above notation t satisfies an equation of the form
hr(y)tr +

∑r−1
k=0 hk(x, y)tk = 0, where the coefficients hk are polynomials.

Moreover, if we set h = hr(y), then h(P ) �= 0, and if DC(h) is the affine open
subset of C defined by h �= 0, then DC(h) ∩ V (X) = {P}.

Proof. Set F (X,Y ) =
∑n

d=r

∑d
j=0 ad−j,jX

d−jY j . We have F (x, y) = 0 and

F ′(x, t) =
∑n

d=r xd−r
∑d

j=0 ad−j,jt
j = 0. The monomials xd−rtj can be re-

duced using the equation y = tx.
1) If j � d − r, then xd−rtj = xd−r−jyj , which does not contain t.
2) If j > d − r, then xd−rtj = yd−rtj−d+r and the degree in t of this

monomial is � r and equal to r for j = d.
We therefore have an equation of the desired form with h = hr(y) =∑n

d=r a0,dy
d−r. We note that h(P ) = a0,r = 1 (as V (X) is not tangent to C

at P , Fr =
∏s

i=1(Y − λiX)ri). Moreover, the formula F (0, y) = h(y)yr shows
that the line V (X) does not meet the open set DC(h) other than at P .

We then have the following corollary.
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Corollary 4.6. We use the above notation and set W = DC(h) and V =
ψ−1(W ) = D′

C(h). Then W and V are affine varieties, W contains P and
B = Γ (V ) = k[x, t]h is finite over A = Γ (W ) = k[x, y]h. The morphism
ψ : V → W is finite and birational and is an isomorphism outside of ψ−1(P ).

We now calculate the dimension of the quotient space B/A.

Lemma 4.7 (Gorenstein’s lemma). With the above notation and denoting
by m the ideal [x, y] in A the following hold.

1) The ideal xr−1B ∈ B is contained in A and is equal to

mr−1 = (xr−1, xr−2y, . . . , yr−1).

2) We have dimk B/xr−1B = r(r − 1).
3) We have dimk A/mr−1 = r(r−1)/2, and hence dimk B/A = r(r−1)/2.

Proof.
1) The A-module B is generated by 1, t, . . . , tr−1, but xr−1tj =

xr−1−jxjtj = xr−1−jyj ∈ mr−1, so xr−1B ⊂ mr−1. As mr−1 is gener-
ated by the monomials xr−1−jyj , the converse is clear.

2) We calculate the quotient ring k[x, t]/(x). This is the quotient:

k[X,T ]/(F ′(X,T ),X) = k[T ]/(F ′(0, T )) = k[T ]
/∏s

1(T − λi)ri ,

and as F ′(0, T ) is unitary of degree r, this quotient is of dimension r over k.
Moreover the image of h in this ring is equal to the image of hr(tx) = 1 +
a0,1tx + · · ·+ a0,n−r(tx)n−r, and as x = 0 in the quotient, this image is equal
to 1 and is hence invertible, so the quotient ring is isomorphic to B/xB.
It follows that dimk B/xB = r. Continuing, we consider the filtration of B
by the ideals xiB: 0 ⊂ xr−1B ⊂ · · ·xB ⊂ B. We have dimk B/xr−1B =∑r−2

i=0 dimk xiB/xi+1B. There is an isomorphism B/xB → xiB/xi+1B given
by multiplication by xi (which is injective because B is an integral domain),
and hence dimk xiB/xi+1B = dimk B/xB = r, so dimk B/xr−1B = r(r − 1).

3) Denoting the ideal (X,Y ) of k[X,Y ] by mP , the quotient ring
A/mr−1 is simply (k[X,Y ]/(mr−1

P , F ))h, but as F ∈ mr−1
P and hr /∈ mr−1

P ,
this is just k[X,Y ]/mr−1

P , which is of dimension r(r − 1)/2 as we saw
in Chapter V, 4.6. (A basis of this space is given by the elements
1, x, y, x2, xy, y2, . . . , xr−2, xr−3y, . . . , yr−2.)
Remark 4.8. A priori, the open set W may contain singular points P1, . . . , Pr

other than P : however, we can eliminate them by replacing W with a smaller
open affine set. Indeed, if Pi = (αi, βi) is such a point, then αi �= 0 because W
only meets V (X) in P . We set α = αi. We localise A and B along g = x− α.
The open sets obtained are again affine and the restricted morphism is again
finite. The only thing we need to check is that the dimension of B/A has not
changed. To do this we need the following lemma.

Lemma 4.9. With the above notation the multiplication by g = x−α induces
an automorphism of B/A.
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Proof. As B/A is finite dimensional over k it will be enough to prove injectiv-
ity. Consider b ∈ B such that (x−α)b ∈ A. It will be enough to show that b is
contained in A. We know that xr−1b ∈ A. Let i be the smallest integer such
that xib ∈ A. If i > 0, then xi−1(x − α)b ∈ A, so xi−1αb ∈ A, and as α ∈ k∗,
xi−1b ∈ A, which is a contradiction, so i = 0, and we are done.

Returning to 4.8 we have an isomorphism Bg/Ag � (B/A)g and as multi-
plication by g is an automorphism of B/A, we also have B/A � (B/A)g, so
the dimension of the quotient has not changed.

We can now define what we mean by a standard local blow-up.

Definition 4.10. A standard local blow-up with centre P is a morphism ψ :
V → W satisfying the following conditions:

1) V and W are isomorphic to affine open subsets of irreducible plane
curves,

2) P is a point of W with multiplicity µP � 1 and W − {P} is smooth,
3) ψ is finite and birational and is an isomorphism away from the fibre

ψ−1(P ),
4) If P is an ordinary singular point of W , V is smooth,
5) If ψ∗ : Γ (W ) → Γ (V ) is the (injective) homomorphism induced by the

morphism ψ, then dimk Γ (V )/Γ (W ) = µP (µP − 1)/2.

Remark 4.11. In particular, the last condition of 4.10 shows that if P is a
smooth point of W (i.e., µP = 1) then the morphism ψ is an isomorphism.

The following theorem summarises all the results of this section.

Theorem 4.12. Let C be a variety which is isomorphic to an open affine
subset of an irreducible plane curve and consider P ∈ C. There is an open
affine set W in C containing P and a standard local blow-up ψ : V → W .

Remark 4.13. In the local blow-up of the variety W we replace the ring A =
Γ (W ) by B = Γ (V ), which is integral over A and has the same fraction field,
and hence is contained in the integral closure A′ of A. When the singularity
at P is not ordinary the ring B is not generally equal to A′ and hence V is
not the normalisation of W , but Property 5) says that its “distance” from
the normalisation has decreased. To obtain the normalisation it is enough to
repeat this operation a finite number of times (cf. 5.11).

5 Global blow-ups

a. Definition

Not having defined blow-ups of points of a surface (other than the plane) we
will have to limit ourselves to rather special curves throughout the following
discussion.
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Definition 5.1. Let X be an irreducible curve. We say that X is locally planar
if for any P ∈ X there is an open affine subset of X containing P which is
isomorphic to an open affine subset of a plane curve.

Remark 5.2. We will see further on (cf. 5.13) that every irreducible smooth
curve is locally planar but (cf. 5.14) there are curves in P3 which are not
locally planar.

Definition 5.3. Let X and C be irreducible curves and let π : X → C be a
morphism. We say that π is a global blow-up if there is an affine open cover
U1, . . . , Un of C such that each Ui is isomorphic to an open affine set of a
plane curve and the restriction π : π−1(Ui) → Ui is either a standard local
blow-up with centre Pi ∈ Ui or an isomorphism.

Remarks 5.4.
1) It follows from the definition of local blow-ups that π−1(Ui) is also

isomorphic to an open affine subset of a planar curve: in a global blow-up the
curves X and C are locally planar.

2) In a global blow-up all the singular points of X necessarily lie over
singular points of C and their multiplicities are equal to or less than the
multiplicities of the points of C.

Proposition 5.5. Let π : X → C be a global blow-up. Then π is a finite
birational morphism, which is an isomorphism away from the blow-up centres.
(In particular, this is the case away from the singular points of C.) If C is
projective, then so is X.

Proof. This follows immediately from the definitions, except for the last part
which, follows from Proposition 3.5 when X is smooth and from the result
quoted in Remark 3.6 otherwise (cf. also [H] Chapter II, 7.16).

b. Existence of a desingularisation of an ordinary curve

Definition 5.6. An ordinary curve is a projective irreducible plane curve hav-
ing only ordinary multiple point singularities.

For an ordinary curve desingularisation by blow-up is easy.

Theorem 5.7. Let C be an ordinary curve. There is a global blow-up π :
X → C whose blow-up centres are the singular points of C such that X is
smooth and projective.

Proof. We will give two proofs of 5.7, first by gluing and then by projective
blow-up.
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Proof of 5.7 by gluing. In fact, by 4.10.4, Theorem 5.7 follows from the fol-
lowing slightly more general statement.

Proposition 5.8. Let C be a projective curve which is locally planar. There
is a global blow-up π : X → C, whose blow-up centres are the singular points
of C such that X is projective and locally planar.

Proof (of 5.8). We proceed by gluing as in 3.2 above. We isolate each singular-
ity Pi of C in an open affine subset Ui which is isomorphic to an open subset
of an affine plane curve. We blow up Ui at Pi and we obtain a variety Vi. After
shrinking Ui and Vi we may assume that πi : Vi → Ui is a standard local blow-
up. We then glue together all the sets Vi and the open set C − {P1, . . . , Pr}
to form a variety X which is the global blow-up we seek. The fact that X
is projective follows from Proposition 5.5 (which depends on Remark 3.6).
When C is ordinary, X is smooth, and we are done by Proposition 3.5.

Proof of 5.7 by projective blow-up. We start by blowing up a single point. The
method is similar to that used in the affine case, but we have to pay a bit
more attention to the denominators. Indeed, we have seen that the problem
with the transformation y = tx (or, alternatively, t = y/x) is that we lose the
points x = 0 which correspond to infinite t. The idea is to replace the point t
of the affine line by the point (u, v) of the projective line, with t = u/v when
v �= 0. This is equivalent to replacing the surface B given by y = tx by a
surface of equation vy = ux: more precisely, we consider the product variety
P2 ×P1 (which is a projective variety via the Segre embedding into P5) and
the closed subvariety1 B ⊂ P2×P1 consisting of points (x, y, z;u, v) such that
vy − ux = 0. It can be checked that this is an irreducible smooth projective
surface.

There is a morphism π : B → P2, which is the restriction of the first
projection from P2 × P1 onto P2. Let P be the point (0, 0, 1) in P2. The
fibre of π over a point Q = (x, y, z) �= P is a single point (x, y, z; y, x) and
the fibre over P is the exceptional line E formed of points (0, 0, 1;u, v) with
(u, v) ∈ P1. The morphism π is the projective blow-up of the point P of P2.
It is surjective and induces an isomorphism of V = B−E and U = P2−{P}.

The link with affine blow-ups can be obtained on considering the open
sets Ω in P2 defined by z �= 0 (or, alternatively, z = 1) or, more precisely,
the open set Ω0 in Ω defined by x, z �= 0.The inverse image of Ω0 under π is
contained in the open set z �= 0, v �= 0 of B, and on setting z = v = 1 we
obtain an affine blow-up. (NB: if we consider points (x, y) such that x = 0
and y �= 0, then the preimage of (0, y, 1) is (0, y, 1; 1, 0), which is “at infinity”
in P1.)

1 In a product space Pn1 ×· · ·×Pnr the closed subsets are defined by polynomials
which are homogeneous with respect to each set of variables corresponding to a
projective space (cf. Problem 1).
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Let C be a curve in P2, set P = (0, 0, 1) and assume (at least to begin
with) that P is the unique singular point of C and that P is ordinary. Set
C0 = C∩U and let C ′ be the closure of π−1(C0). Then C ′ is a projective curve,
the restriction of π to C ′ is a finite birational map which is an isomorphism
except at P (so C ′ is non-singular away from the fibre over P ). Moreover, if C
is not tangent to the line X = 0 at P (which we may assume to be the case
after homography), then π is isomorphic in a neighbourhood of P to an affine
blow-up. In particular, since P is ordinary, C ′ is non-singular over P , so C ′ is
non-singular everywhere and we have desingularised C.

Let us now deal with the general case of an ordinary curve C with sev-
eral singular points P1, . . . , Pn ∈ P2. We may assume these points have
homogeneous coordinates Pi = (ai, bi, 1). We consider the product of the
plane P2 with n copies of the line P1 with (partially homogeneous) coordinates
(x, y, z;u1, v1; · · · ;un, vn). In this product we consider the closed subvariety B
defined by the n equations ui(x− aiz)− vi(y− biz) for i = 1, . . . , n. We check
that B is an irreducible surface and the projection of B onto P2 is an isomor-
phism except at the points Pi. At Pi the fibre Ei is a line (called the excep-
tional line) the coordinates of whose points are given by x = ai, y = bi, z = 1,
uj = bj − bi, vj = aj − ai if j �= i and arbitrary ui, vi. If U (resp. V ) is
the open subset of P2 (resp. B), which is the complement of the points Pi

(resp. the lines Ei), then π induces an isomorphism of V onto U and there is
a neighbourhood of Pi in which π is isomorphic to an affine blow-up. If we
set C0 = C ∩U and C ′ = π−1(C0), then we can prove as above that C ′ is the
desingularisation of C we seek.

c. Genus of ordinary curves

The following theorem allows us to calculate the change in the arithmetic
genus of a curve under a global blow-up.

Theorem 5.9. Let C and X be irreducible projective curves and let
π : X → C be a global blow-up. Then

pa(X) = pa(C) −
∑

µP (µP − 1)/2,

the sum being taken over all blow-up centres.

(Recall that pa denotes the arithmetic genus and µP the multiplicity of P
in C.)

Proof. We recall that χ(OX) = 1− pa(X) and χ(OC) = 1− pa(C). Moreover,
3.7 implies χ(OX) = χ(π∗OX). But by definition of a morphism there is a
sheaf morphism i : OC → π∗OX . This morphism is injective because π is
dominant. Let T be the cokernel of i, so there is an exact sequence

(∗) 0 −→ OC
i−−→ π∗OX

p−−→ T −→ 0,
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and hence χ(π∗OX) = χ(OC) + χ(T ). As π is an isomorphism away from the
blow-up centres P1, . . . , Pr, the sheaf T is supported at {P1, . . . , Pr}, and it
follows from Chapter VII, 3.3 that its only cohomology group is H0. Moreover,
if we cover C with open affine sets Wi, i = 1, . . . , r corresponding to local
blow-ups Vi → Wi with centre Pi, there is an isomorphism:

H0(C, T ) −→
r∏

i=1

H0(Wi, T )

(gluing being automatically possible because T vanishes on the intersec-
tions). Since Wi is affine, over each Wi there is an exact sequence 0 →
Γ (Wi) → Γ (Vi) → H0(Wi, T ) → 0 deduced from (∗), so h0(Wi, T ) =
dimk(Γ (Vi)/Γ (Wi)) = µPi

(µPi
− 1)/2 by 4.10.5. We have therefore proved

that

χ(T ) = h0T =
r∑

i=1

µPi
(µPi

− 1)/2,

and the theorem follows immediately.

Corollary 5.10. Let C be an ordinary curve of degree d. We denote by µP

the multiplicity of C at P (cf. Chapter V, 4.4). The geometric genus of C is
given by the formula

g(C) =
(d − 1)(d − 2)

2
−
∑

P∈C

µP (µP − 1)
2

.

Proof. This follows from 5.7 and 5.9.

d. General desingularisations

Corollary 5.11 (General desingularisations). Let C be a locally planar
projective irreducible curve. There is a sequence of global blow-ups

X = Cn
πn−−−→ Cn−1 −→ · · · −→ C1

π1−−−→ C0 = C

such that X is smooth, irreducible and projective.

Proof. If C is not smooth we blow up its singular points to obtain C1, which
is locally planar and projective with 0 � pa(C1) < pa(C) (cf. 5.9). If C1 is not
smooth, we repeat the procedure and as the arithmetic genus of an irreducible
curve is � 0, this process terminates after at most pa blow-ups.

Corollary 5.12 (calculating the geometric genus). Let C be an irre-
ducible projective plane curve of degree d. Let

X = Cn
πn−−−→ Cn−1 −→ · · · −→ C1

π1−−−→ C0 = C
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be a sequence of blow-ups as above with X smooth and projective. Then

g(C) =
(d − 1)(d − 2)

2
−
∑ µP (µP − 1)

2
,

where the sum is taken over all the points P of all the curves C =
C0, C1, . . . , Cn (we say that the sum is taken over all the “infinitesimal
neighbours” of C).

Considering only the singular points of C we get

g(C) � (d − 1)(d − 2)
2

−
∑

P∈C

µP (µP − 1)
2

.

Proof. This is clear by induction on n using 5.9.

Corollary 5.13. Any smooth irreducible curve is locally planar.

Proof.
1) If C is projective, consider a curve Γ which is planar and projective

and birationally equivalent to C. There is then a sequence of global blow-ups
which desingularises Γ to X. As the fact of being locally planar is preserved
under blow-up, X is locally planar. But X and C are then projective, smooth
and birationally equivalent, so they are isomorphic, and we are done.

2) If C is not projective, we can assume C is affine. We embed C in a pro-
jective curve C and we construct a desingularisation X of C which is smooth
and projective. There is therefore a finite birational map π : X → C which
is an isomorphism over the smooth locus of C and is hence an isomorphism
over C. As X is locally planar by 1), we are done.

Remark 5.14. A singular curve C, on the other hand, is not gener-
ally locally planar. Indeed, the tangent space at a point of a plane
curve is of dimension � 2. Consider the curve C in k3 whose equations
are X2 − Y 3 =Y 2 − Z3 =0. It is easy to see that C is irreducible and
I(C) = (X2 − Y 3, Y 2 − Z3) (use the parameterisation x = t9, y = t6, z = t4.)
But the tangent space to C at (0, 0, 0) is of dimension 3 because the Jacobian
matrix vanishes, so C is not locally planar.

5.15. Algorithm for calculating the geometric genus of a plane curve. Let C
be an irreducible projective plane curve of degree d. (We know that any curve
is birationally equivalent to such a curve, cf. 1.9). The method for calculating
the geometric genus of C is as follows.

0) Calculate pa(C) = (d − 1)(d − 2)/2.
1) Determine the singular points of C.
2) For each singular point P of C, do a local blow-up of centre P to

obtain points P1, . . . , Pr (the infinitesimal neighbours of P ). If these points
are smooth (which happens if P is ordinary), we are done. Otherwise, we do
local blow-ups centred at each of the singular points Pi. We carry on until all
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the infinitesimal neighbours of P are smooth. Theorem 5.11 guarantees that
this process stops after a finite number of steps. We note that this stage of
the calculation is local (we work only with P and its successive fibres.)

3) Calculate the multiplicity of each singular infinitesimal neighbour of C
and apply 5.12.

Example 5.16. 1) By 5.12 a cubic with a singular point is of genus 0 and hence
is rational. Likewise, a quartic with a triple point or three double points is of
genus 0. This is the case of the trefoil defined by F (X,Y, T ) = (X2 + Y 2)2 +
3X2Y T − Y 3T (which has a triple point at the origin) or the tricuspidal
quartic defined by F (X,Y, T ) = Y 2T 2 + T 2X2 + X2Y 2 − 2XY T (X + Y + T )
(three cusp points at (0, 0, 1), (0, 1, 0) and (1, 0, 0)) or the regular trefoil given
by

F (X,Y, T ) = 4(X2 + Y 2)2 − 4X(X2 − 3Y 2)T − 27(X2 + Y 2)T 2 + 27T 4

(which has three double ordinary points). The curious reader will find more
beautiful curves in the special edition number 8, July 1976, of the magazine
Revue du Palais de la Découverte. To get an explicit parameterisation of these
quartics, we intersect the curve with a varying line passing through the triple
point or a pencil of conics passing through the three double points (plus a
fixed fourth point, cf. Exercises VI, 4).

2) Consider the curve C in P3 given by the equations

XT − Y Z, X2Z + Y 3 + Y ZT, XZ2 + Y 2T + ZT 2.

It is easy to show that C is an irreducible smooth curve (cf. the problem
on the January 1992 exam paper). To calculate its genus we project C into
the [x, y, t] plane. We obtain a curve C0 whose equation is F (X,Y, T ) =
Y 4 + X3T + XY T 2, which is birationally equivalent to C and has a unique
double ordinary point at the origin, and which therefore has geometric genus 2
by 5.10. The initial curve therefore also has genus 2.

3) Consider C the quadrifoil whose equation is (X2+Y 2)3−4X2Y 2T 2 = 0.
Its arithmetic genus is 10 and it has a quadruple point P at the origin of
the x, y affine plane, (0, 0, 1), with two double tangents, plus two cusp points
at infinity, the cyclic points (1, i, 0) and (1,−i, 0) (the easiest way to see this
is to perform the homography given by U = X + iY and V = X − iY , which
transforms the initial equation into 4U3V 3 + (U2 − V 2)2T 2 = 0). The genus
of C is therefore � 2. To calculate this genus we blow up the origin. NB: as
the two axes are tangent to C at P , it is preferable to use the second form of
the equation. On setting u = vw the blow-up gives a curve having equation
4w3v2 + (1 − w)2(1 + w)2, with two points over P , (0, 1) and (0,−1) which
are ordinary double points. These two points are therefore to be counted as
infinitesimal neighbours with multiplicity 2, so the genus of C is 0.

It is easy to find a parameterisation of C using polar coordinates and the
rational parameterisations of the functions sine and cosine.
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4) We finish with the example of the plane curve C defined by the equation
F (X,Y, T ) = (X2 − Y T )2 + Y 3(Y − T ). This curve has arithmetic genus 3
and a unique double point (a cusp) at P = (0, 0, 1). Its geometric genus is
therefore � 2. We will show that it is in fact zero. We work in the affine (x, y)
plane: in this plane the equation of C is x4 +y4−2x2y−y3+y2. We perform a
blow-up y = tx. We obtain a plane curve whose equation is t4x2−t3x+(x−t)2.
Over P there is a unique point P1 = (0, 0), which is again a cusp. We perform
a blow-up x = zt, which gives us a curve t4z2 − t2z + (z − 1)2. Over P1 there
is a unique point P2 whose coordinates are z = 1, t = 0.

We study the nature of this point by setting u = z − 1. We obtain the
equation t4u2 + 2t4u + t4 − t2u + t2 − u2, which proves that P2 is a double
ordinary point. It follows that blowing up P2 yields two smooth points and
completes the desingularisation of C. There is therefore a sequence of blow-ups
C3 → C2 → C1 → C, where C3 is smooth, and there are three infinitesimal
neighbours which are double points, P ∈ C, P1 ∈ C1 and P2 ∈ C2, and hence
the arithmetic genus of C3 is the genus of C minus 3 which is zero.

To find an explicit parameterisation of C we use the osculating conics of C
at P , i.e., the polynomials G of degree 2 such that µP (F,G) � 7. It is easy
to prove that these are conics with affine equations of the form Gλ(x, y) =
x2 +xy− y +λy2, with λ ∈ k. These conics form a pencil, i.e., a linear family
of dimension 1 in the projective space of conics. If we intersect F and Gλ,
then the resulting scheme contains P with multiplicity 7 plus another point
in C whose coordinates depend linearly on λ. More precisely, x(1 − 2λ) =
y(λ2 − λ + 1), which gives us a parameterisation

x =
(1 − 2λ)(λ2 − λ + 1)
λ4 + 2λ2 − 4λ + 2

, y =
(1 − 2λ)2

λ4 + 2λ2 − 4λ + 2
.

6 Appendix: review of the above proofs

In the preceding paragraph, we have freely used the fact (which was quoted
without proof, cf. 3.6) that any curve, even singular, which is finite over a
projective curve is projective (or, more generally, any complete curve is pro-
jective). We now sketch how to avoid using this result.

We note first that if C is a complete irreducible curve, then H0(C,OC) = k
(cf. Problem II, 3.b). We can therefore reformulate 3.9 as follows.

Theorem 6.1. Let C be a locally planar irreducible separated complete curve
such that h1OC = pa(C) is finite and let π : X → C be a global blow-up.
Then X is a locally planar irreducible separated complete curve, h1OX =
pa(X) is finite and

pa(X) = pa(C) −
∑

µP (µP − 1)/2,

where the sum is taken over the centres of all the blow-ups.
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Proof. We apply 3.4 to establish the separatedness and completeness of X:
the rest of the proof is identical to that of 5.9. The finiteness of h1OX =
h1π∗OX comes from the long exact sequence associated to the exact sequence
(∗) in 5.9. In fact, the finiteness of cohomology holds for complete varieties
(cf. [EGA], III).

The rest of Paragraph 5 is unchanged. In 5.11 we can no longer assert a pri-
ori that the intermediate curves Ci are projective, but X is indeed projective
(since it is smooth).



X

Liaison of space curves

We assume that the field k is algebraically closed. We will use the following
notation:

1) If F is a coherent sheaf on Pn, we set

Hi
∗F =
⊕

k∈Z

HiF(k)

for any i ∈ N;
2) By a split sheaf we will mean a sheaf over Pn of the form

F =
r⊕

i=1

OPn(−ni),

where the numbers ni are integers. If F is such a sheaf, then Hi
∗F = 0 for any

i such that 1 � i � n − 1 (cf. Chapter VII, 4.1).

0 Introduction

In this section, a space curve means a curve in P3 (cf. below for more details).
A space curve C is said to a be a scheme-theoretic complete intersection if
its ideal I(C) is generated by two generators (cf. Chapter III, 10.b). We saw
(cf. Chapter VIII, 1.13) that space curves are not generally scheme-theoretic
complete intersections. For example, the space curve C defined by the ideal
I = (XT−Y Z, Y 2−XZ,Z2−Y T ) (cf. Exercise II, 4) is not a scheme-theoretic
complete intersection: the ideal I cannot be generated by only two generators.
However, this curve is close to being a complete intersection in the following
sense.

If we consider the two quadrics whose equations are XT −Y Z = Y 2−XZ,
for example, their intersection is the union of the cubic C and a line D =
V (X,Y ). We then say that C and D are linked by the given quadrics. The



174 X Liaison of space curves

curve C, whilst not a complete intersection, is linked to a complete intersec-
tion. In what follows, we will study this liaison operation and characterise
the curves which, like C, are linked (possibly in several steps) to complete
intersections. We will characterise such curves both in cohomological terms
and in terms of resolutions.

1 Ideals and resolutions

In this paragraph R denotes the polynomial ring k[X0, . . . , Xn].

a. Subschemes of Pn

Even if we are mainly interested in varieties (particularly smooth curves),
using liaison requires us to work with schemes. A smooth curve can be linked to
a singular or even non-reduced curve (cf. Examples 2.7). We refer the reader to
the appendix on schemes and the references its contains for more details of this
concept. We recall simply that if I is a homogeneous ideal of R and S = R/I
is the quotient ring, then we define the closed subscheme X = Proj(S) in
Pn = Pn

k to be the ringed space (X,OX) whose underlying topological space1

X is the closed subspace V (I) in Pn with its Zariski topology and whose sheaf
of rings is given over a basis of standard open sets D+(f) of X by setting
Γ (D+(f),OX) = S(f) (cf. Chapter III, 8.1). If i denotes the inclusion of X

in Pn, then the sheaf i∗OX is simply S̃. If I is not a radical ideal, then these
rings are not necessarily reduced, contrary to the rings of the variety V (I) (for
which, cf. Chapter III, 8.a, we take I to be the ideal I(X) of all the polynomial
functions which vanish on X).

Let J = Ĩ be the sheaf associated to the ideal I. This is a sheaf of ideals
on OPn and by definition of the sheaf of rings OX we have the following exact
sequence:

0 −→ J −→ OPn −→ OX −→ 0,

so writing J = JX is compatible with Chapter III, 6.10. We say that JX is
the sheaf of ideals defining the scheme X = Proj(R/I).

It follows from the above that the ideal I (which we say is a defining ideal
for X) determines X entirely. Conversely, X entirely determines the sheaf
JX = Ĩ but does not uniquely determine the ideal I (cf. Chapter III, 9.8.3).
We will need more details of what’s going on. We start with a definition.

Definition 1.1. Let I be a homogeneous ideal of R. We set

sat(I) = {f ∈ R | ∃N ∈ N ∀ i = 0, . . . , n XN
i f ∈ I}.

sat(I) is then a homogeneous ideal containing I, which is called the saturation
of I. We say that I is saturated if it is equal to sat(I).
1 In fact, by abuse of notation, we will often use the same notation for the scheme X

and the underlying topological space X.
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Examples 1.2.
1) The saturation of the ideal (X2,XY,XZ,XT ) in k[X,Y,Z, T ] is the

ideal (X).
2) If I is a radical homogeneous ideal of k[X0, . . . , Xn] (i.e., equal to its

radical), then sat(I) = I, unless I is the irrelevant ideal m = (X0, . . . , Xn) in
which case sat(I) = R. This is clear if I = R or m. Otherwise, consider f ∈
sat(I) homogeneous of degree > 0 (if f is a constant, then we are in the above
case). There is an N such that, for all i, XN

i f ∈ I. But as f is homogeneous
of degree > 0, we can write it as a linear combination f =

∑n
i=0 aiXi and

using the (n + 1)-omial formula we see that fk ∈ I for k � nN + N − n, and
hence, as I is radical, f ∈ I.

We have the following proposition.

Proposition 1.3.
1) Let I be a homogeneous ideal of R and J = sat(I). Then Proj(R/I) �

Proj(R/J).
2) Set X = Proj(R/I). We have

sat(I) = H0
∗ (JX) = Γ∗(JX) =

⊕

d∈N

Γ (Pn,JX(d)).

This ideal depends only on X (and not on the choice of defining ideal I of X).
We call it the saturated ideal of X and we denote it by IX . It is the largest
ideal which defines X.

Proof.
1) We have already proved the set-theoretic equality V (I) = V (J). As

I ⊂ J , we know that V (J) ⊂ V (I). Conversely, if P = (x0, . . . , xn) ∈ V (I),
then one of the coordinates of P is non-zero: for example x0 �= 0. Consider
f ∈ V (J). There is an N ∈ N such that XN

0 f ∈ I, and hence xN
0 f(P ) = 0, so

f(P ) = 0 and P ∈ V (J).
To prove equality of sheaves we consider the canonical surjection R/I →

R/J given by a �→ â. This induces a surjection of local rings (R/I)(f) →
(R/J)(f) which associates â/fr to a/fr for homogeneous a, f with deg f > 0
and deg a = r deg f . It will be enough to show that this map is also injective.
But if â/fr = 0, then fma is in J . There is therefore an integer N such that
XN

0 fma, . . . ,XN
n fma ∈ I and for k large enough (cf. Example 1.2.2) fka ∈ I,

so a/fr = 0 is in (R/I)(f).
2) We consider the natural homogeneous degree 0 map I → Γ∗(JX)

(cf. Chapter III, 9.8.3). This map is injective because it is induced by the
map from R to Γ∗(OPn) which was proved in Chapter III, 9.9 to be an iso-
morphism. It remains to show that Γ∗(JX) is indeed the saturation of I.
Consider f ∈ Γ (Pn,JX(d)). The restriction of f to D+(X0) is in I(X0), so
f = f0/XN

0 with f0 ∈ I. We therefore have XN
0 f ∈ I, and the same holds for

the other variables, so f is in the saturation of I.
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Remark 1.4. In what follows we will systematically use the saturated ideal IX

as defining ideal of X. We note that this ideal is determined by the sheaf JX ,
which therefore also determines X. For varieties, the ideal I(X) of polynomial
functions which vanish on X is automatically saturated and is hence equal to
IX (cf. 1.2.2). In the non-reduced case, on the other hand, we generally have
IV ⊂ I(V ) but IV �= I(V ).

b. Resolutions

Notations 1.5. Let E and F be graded free R-modules

E =
s⊕

j=1

R(−mj), F =
r⊕

i=1

R(−ni),

where the numbers mj and the ni are integers such that n1 � · · · � nr and
m1 � · · · � ms. The degree of E (resp. F ) is defined to be the integer

∑
j −mj

(resp.
∑

i −ni). Let u : E → F be a graded R-linear homomorphism of degree
zero (i.e., sending an element of degree n to an element of degree n). We
denote by ej (j = 1, . . . , s) and εj (i = 1, . . . , r) respectively the vectors of the
canonical bases of E and F . The homomorphism u is given in these bases by a
matrix A = (aij) of size r × s whose coefficient of index i, j is a homogeneous
polynomial of degree mj −ni. In particular, this polynomial is zero if mj < ni

and is a constant (i.e., an element of k) if mj = ni.

We have seen (cf. Exercise III, B.2) that every graded module of finite
type M over a graded Noetherian ring S has a free graded resolution (we will
say a resolution for short):

· · · −→ Ld −→ Ld−1 −→ · · · −→ L0 −→ M −→ 0,

where the modules Li are free graded modules, that is, modules of the form⊕r
i=1 S(ni), and the maps are homogeneous of degree 0.
In general this resolution is not finite, but if R is a polynomial algebra,

every graded module of finite type has a finite resolution. More precisely:

Theorem-Definition 1.6 (Hilbert’s syzygies). If R = k[X0, . . . , Xn] and
M is a graded R-module of finite type, then M has a resolution of the form

0 −→ Ld −→ Ld−1 −→ · · · −→ L0 −→ M −→ 0,

with d � n + 1. If Ld is non-zero, the resolution is said to be of length d.
The smallest integer d such that M has a resolution of length d is called the
projective dimension of M and is written dp(M). If M = 0, then dp(M) = −1
by convention.
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Proof. See Problem XI or [Pes] § 13.

Definition 1.7. With the notations of 1.5 a homomorphism u : E → F is
said to be minimal if its constant coefficients are zero. A resolution is said to
be minimal if all the homomorphisms which compose it are minimal.

Proposition 1.8. Every graded R-module of finite type has a finite minimal
resolution. Moreover, this resolution is unique up to isomorphism, its length
is equal to the projective dimension of M and the rank of L0 is the minimal
number of generators of M .

Proof. Here we will prove the existence of the minimal resolution: for its
uniqueness and the other claims of 1.8, see Problem IX. Let M be a graded R-
module of finite type. We know that it has a finite resolution. If this resolution
is not minimal, then one of the maps of the resolution has a constant coefficient
λ ∈ k∗ in its matrix. After change of notation, let u : E → F be the map
in question. We will prove that we can replace the free modules E and F by
modules E′ and F ′, which are free of rank one less than E and F respectively,
and u by u′, without the coefficient λ, such that the kernel and cokernel of u
and u′ are the same. This means that we can replace u by u′ in the resolution
without changing the other terms and the theorem follows easily by induction
on the number of constant coefficients.

The situation is therefore as follows: we have a homomorphism u : E =
R(−a) ⊕ E′ → F = R(−a) ⊕ F ′ whose block matrix is of the form

(
λ v
w u′

)
,

with λ ∈ k∗. Let e1 be the first vector of the basis of E. We note that after
performing a change of basis ε′1 = u(e1), ε′i = εi for i > 1 in F we can
assume w = 0 and λ = 1. We then easily check that we have the following
commutative diagram:

Ker u′ ��

i0
��

E′ u′
��

i
��

F ′ ��

j
��

Coker u′

ϕ
��

Ker u �� R(−a) ⊕ E′ u �� R(−a) ⊕ F ′ �� Coker u

in which we have set i(y) = (−v(y), y) and j(z) = (0, z). The maps i0 and ϕ
are induced by i and j respectively, and it is easy to see that these are indeed
isomorphisms. We say we have “simplified” the resolution by R(−a).

Corollary 1.9. Let I be a homogeneous ideal of k[X0, . . . , Xn].
1) The ideal I is of projective dimension � n.
2) The ideal I is saturated if and only if it is of projective dimension �

n − 1.
3) Set d = dp(I). Let Z be the subscheme defined by I. If d = 0, Z is

empty or a hypersurface, if d � 1, then dim(Z) � n − d − 1.
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Proof.
1) The case I = R is trivial. Let 0 → Ld

ud−→ Ld−1 → · · · → L0 → I → 0 be
the minimal resolution of I �= R. The exact sequence 0 → I → R → R/I → 0
then gives a minimal resolution of R/I:

0 −→ Ld
ud−−−→ Ld−1 −→ · · · −→ L0 −→ R −→ R/I −→ 0.

As R/I has projective dimension � n + 1 (cf. 1.6), it follows that I has pro-
jective dimension � n.

2) Let J = Ĩ be the sheaf associated to I and consider the exact sequence
of sheaves obtained from the above minimal resolution of I:

0 −→ Ld
ũd−−−→ Ld−1 −→ · · · ũ1−−−→ L0 −→ J −→ 0.

We introduce the modules Ei which are defined to be the cokernels of the
morphisms ui (or the kernels of the morphisms ui−1 if you prefer) and the
associated sheaves Ei. We therefore have exact sequences:

0 −→ E1 −→ L0 −→ J −→ 0,(1)
0 −→ Ei+1 −→ Li −→ Ei −→ 0, for 1 � i � d − 2,(2)
0 −→ Ld −→ Ld−1 −→ Ed−1 −→ 0.(3)

Consider the natural map j : I → H0
∗J . We saw in the proof of 1.3 that

this map is injective and the hypothesis that I is saturated means that it is
also surjective. We consider the following diagram:

0 �� E1
��

��

L0
��

ϕ
��

I ��

j
��

0

0 �� H0
∗E1

�� H0
∗L0

g
�� H0

∗J �� H1
∗E1

�� 0

obtained from the resolution of I, the long exact sequence associated to the ex-
act sequence (1) and Chapter III, 9.8. As ϕ is an isomorphism (cf. Chapter III,
9.9), we see that j is surjective if and only if g is, that is to say, if and only
if H1

∗E1 vanishes.2 By induction using the long exact sequence associated to
the exact sequence (2) we also obtain isomorphisms H1

∗E1 � Hi
∗Ei = 0 for

1 � i � d − 1. And finally, I is saturated if and only if Hd−1
∗ Ed−1 vanishes,

or, alternatively, if the map Hd
∗Ld → Hd

∗Ld−1 arising from the exact sequence
(3) is injective. If I is of projective dimension d � n − 1, then d − 1 � n − 2
and the space Hd in question vanish because the modules Li are free, so the
sheaves Li are split, and the result follows by Chapter VII, 4.1. Conversely,
let us assume that I is saturated and argue by contradiction, assuming that
d = n and Ln �= 0. We are done by the following lemma.
2 The careful reader will doubtless have noticed that the above only really applies

for n � 2. Indeed, for n = 1 the term H1
∗L0 has no reason to vanish. However,

the proof of the case n = 1 is very similar and we leave it as an exercise for the
reader, as a reward for his or her astuteness.
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Lemma 1.10. Let u : E → F be a minimal graded homomorphism between
two free modules, let ũ : E → F be the map induced by u on the associated
sheaves and let h(u) : Hn

∗ E → Hn
∗ F be the map induced by ũ on cohomology

groups. If h(u) is injective, then E is trivial.

Proof (of 1.10). Assume E �= 0. We use the notations of 1.5. We consider the
restriction v of u to R(−mj). This can be written as v = v1 + · · ·+ vr, with vi

taking values in R(−ni). The elements vi are therefore homogeneous polyno-
mials of degree mj−ni. It will be enough to show that h(v) is non-injective or,
alternatively, that its homogeneous part h(v,mj −n−1) = ⊕h(vi,mj −n−1)

h(v,mj − n − 1) : HnOPn(−n − 1) −→
r⊕

i=1

HnOPn(−ni + mj − n − 1)

is not injective. As the group HnOPn(−n−1) does not vanish, this will follow
if we can show that h(v,mj − n − 1) = 0. But as u is minimal, vi is trivial if
ni � mj , and hence h(vi,mj − n − 1) = 0 in this case. On the other hand, if
ni < mj the group HnOPn(−ni + mj − n − 1) vanishes, and, once again,
h(vi,mj − n − 1) = 0. QED.

3) It remains to prove the final claim of 1.9. We use the above notation. If
d = 0, I is isomorphic to L0 and is hence a free R-module which is only possible
for an ideal if it is principal (since two elements f, g in I are always linked by
the relation fg−gf = 0). We therefore have I = (f), where f is homogeneous
of degree s and Z = V (I) is empty if s = 0 and is a hypersurface if s > 0.
Assume now that d � 1. After replacing I by its saturation we can assume
I = IZ . Lemma 1.10 shows that Hn

∗ Ed−1 �= 0, and it follows recursively that
Hn−i

∗ Ed−i �= 0 for i = 1, . . . , d−1, so Hn−d
∗ JZ �= 0, and finally Hn−d−1

∗ OZ �= 0.
It follows that Z is of dimension at least n − d − 1 by Chapter VII, 3.3.

2 ACM curves

Henceforth we will work in P3. We set R = k[X,Y,Z, T ].

Definition 2.1. By a space curve we mean a closed subscheme of P3 of di-
mension 1.3

We saw in 1.9 that the saturated ideal of a curve C has projective dimen-
sion � 2. We now study curves whose ideal is of projective dimension 1. Of
course, there are many others (cf. Exercise II, 5 or 3.d below).

3 This definition is not reasonable in general. There are good reasons, some of
which will appear below (cf. 3.6), for imposing extra conditions on space curves,
notably that the curves should be equidimensional and have no embedded com-
ponents. However, for the ACM curves we will be dealing with these conditions
are automatically satisfied.
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Proposition-Definition 2.2. Let C be a space curve, IC its saturated ideal
and JC = ĨC the sheaf of ideals defining C. The following conditions are
equivalent:

i) H1JC(n) = 0 for all n ∈ Z.
ii) The ideal IC has projective dimension 1.
We then say that C is arithmetically Cohen-Macaulay (ACM for short).

Proof. Assume first that IC has a free resolution of length 1: 0 → E → F →
IC → 0. There is an exact sequence of sheaves 0 → E → F → JC → 0,
and passing to cohomology we deduce the existence of an exact sequence
· · · → H1

∗F → H1
∗JC → H2

∗E → · · · . But as the sheaves E and F are split
(see the notations at the start of this chapter), their cohomology groups H1

and H2 vanish, so the same holds for the cohomology groups H1JC(n).
Conversely, we note that dp(IC) � 1 by 1.9.3.
Moreover, we have seen (cf. 1.9) that IC has a minimal resolution of length

at most 2: 0 → L2 → L1 → L0 → I → 0. We pass to sheaves and introduce
the cokernel 0 → L2 → L1 → E → 0. We then have H1

∗JC = H2
∗E = 0 and

we are done by Lemma 1.10.

The simplest ACM curves are the scheme-theoretic complete intersections
(cf. Chapter III, 10.2).

Definition 2.3. A curve C in P3 is said to be a scheme-theoretic complete
intersection if its saturated ideal IC is generated by two generators (which
necessarily have no common factors).

It follows from Chapter III, 10.1 that such a curve is ACM. The Peskine-
Szpiro theorem, which we will see below, studies the converse of this statement.

The following proposition gathers together some important properties of
ACM curves.

Proposition 2.4. Let C be an ACM curve, d its degree, g its arithmetic genus
and 0 → E

u−→ F
p−→ IC → 0 the minimal resolution of its saturated ideal.4

With the notations of 1.5 the following hold.
0) C is connected (and hence has no isolated points).
1) We have s = r − 1 and

∑r−1
j=1 mj =

∑r
i=1 ni (i.e., deg E = deg F ).

2) We have 2d =
∑r−1

j=1 m2
j −
∑r

i=1 n2
i .

3) We have

g =
r−1∑

j=1

(
mj − 1

3

)
−

r∑

i=1

(
ni − 1

3

)

= 1 − 2d +
1
6
(
r−1∑

j=1

m3
j −

r∑

i=1

n3
i ).

4 We will sometimes write a resolution (resp. a minimal resolution) of the curve C
to mean a resolution (resp. a minimal resolution) of its saturated ideal IC .
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4) We have n1 < m1, and n1 is the smallest degree of a surface contain-
ing C:

n1 = s0 = inf{n ∈ N | h0JC(n) > 0}.
In particular, n1 > 0.

5) We have nr < mr−1 and mr−1 = e+4, where e is the index of speciality
of C:

e = sup{n ∈ Z | h1OC(n) > 0}.

Proof. 0) follows from Chapter VIII, 1.6.5. We recall (cf. Chapter VII, 4.1)
that the Euler characteristic of the sheaf OP(n) is χOP(n) = B(n), where B
is the polynomial given by

B(n) =
(n + 3)(n + 2)(n + 1)

6
=

{(
n+3

3

)
if n � 0,

−
(−n−1

3

)
if n < 0.

1) 2) and 3) then follow by calculating the Euler characteristic χJC(n) in
two different ways, firstly using Riemann-Roch, which gives us

χJC(n) = χOP(n) − χOC(n) = B(n) − nd − 1 + g,

for all n ∈ Z, and secondly using the exact sequence of sheaves associated to
the resolution of IC

0 −→ E −→ F −→ JC −→ 0,

which gives us

χJC(n) = χF(n) − χE(n) =
r∑

i=1

B(n − ni) −
s∑

j=1

B(n − mj).

It is then enough to identify the terms of degrees 3, 2, 1, 0 to obtain the four
formulae we seek.

To prove 4), assume m1 � n1 and hence m1 � ni for all i. The coefficient
a1i of the matrix u then vanishes for all i (it is of degree � 0 and the resolution
is minimal). But this contradicts the injectivity of u. It is easy to check that
s0 = n1.

The proof of 5) is a little more subtle. If mr−1 � nr, then mj � nr for
all j and hence arj = 0 for all j. The canonical basis for F being denoted
by ε1, . . . , εr, this means that the image of u is contained in the submodule
generated by ε1, . . . , εr−1. Let f be the image of εr in IC under p and let
g ∈ IC be arbitrary. We will show that g is contained in the ideal (f) and
hence IC = (f), which gives a contradiction (C would then be a surface).

We have g = p (
∑r

i=1 giεi) with gi ∈ R. We write the obvious relation-
ship fg − gf = 0 in the form fp (

∑r
i=1 giεi) − gp (εr) = 0 or, alternatively,

p (f
∑r

i=1 giεi − gεr) = 0. As the kernel of p is simply the image of u and this
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latter is contained in the submodule generated by ε1, . . . , εr−1, the coefficient
of εr in this sum is zero, so g = fgr ∈ (f). QED.

To determine the speciality index e we note first that h1OC(n) = h2JC(n)
(this follows from the long exact sequence associated to the exact sequence
0 → JC → OP → OC → 0). Using the resolution, we have

0 −→ H2JC(n) −→ H3E(n) −→ H3F(n) −→ · · ·

If n > mr−1 − 4, then H3E(n) = 0 and hence H2JC(n) = 0, so e � mr−1 − 4.
If n = mr−1 − 4, then H3E(n) �= 0 and H3F(n) = 0, so H3JC(n) �= 0 and e
is therefore equal to mr−1 − 4.
Example 2.5. The curve C whose minimal resolution is given by

0 −→ R(−4)3 −→ R(−3)4 −→ IC −→ 0

is of degree 6, genus 3 and satisfies s0 = 3 and e = 0.
Resolutions and minors: two lemmas. The following two lemmas will be par-
ticularly useful for dealing with ACM curves. Their proof is essentially an
application of the expansion of a determinant along a row, which here reveals
its full power.
Reminders and notation 2.6. We use the same notation as in 1.5, with R =
k[X,Y,Z, T ]. Let E and F be graded free R-modules,

E =
s⊕

j=1

R(−mj), F =
r⊕

i=1

R(−ni).

We assume r � 2, s = r − 1 and deg E = −
∑r−1

j=1 mj = deg F = −
∑r

i=1 ni

(cf. 2.4). Let u : E → F be a graded R-linear homomorphism of degree zero
and let A = (aij) be its (r × (r − 1)) matrix in the canonical basis. For
i = 1, . . . , r we let Ai be the matrix obtained from A by removing the line
of index i. The (r − 1)-minors of A are, up to sign, the determinants of the
matrices Ai: more precisely the ith minor, ϕi, is given by

ϕi = (−1)i+1 det Ai.

It is easy to check that ϕi is a homogeneous polynomial of degree ni. If B is
the matrix obtained by adding a column of the form (a1, . . . , ar) to the left
of A, then

det B =
r∑

i=1

aiϕi.

Let i1, i2 ∈ [1, r] be two distinct integers and let j be an integer satisfying
the inequalities 1 � j � r − 1. We denote by Ai1,i2;j the matrix obtained on
removing from A the lines of index i1 and i2 and the column of index j. The
corresponding r − 2nd minor is then defined by

∆i1,i2;j =

{
(−1)i1+i2+j det Ai1,i2;j if i1 < i2,

(−1)i1+i2+j+1 det Ai1,i2;j if i1 > i2.
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We extend this definition to the case i1 = i2 by setting ∆i,i;j = 0. The
formula for expanding a determinant along column applied to Ai gives us

(1)
∑

k �=i

akj∆i,k;l =
r∑

k=1

akj∆i,k;l = δjlϕi

whenever 1 � i � r and 1 � j, l � r − 1. Here δij denotes the Kronecker
delta symbol. We can interpret this formula in matrix terms by defining ∆i

to be the (r− 1)× r matrix whose term of index (l, k) is ∆i,k;l. We then have
∆iA = ϕiIr−1, where Ir−1 is the identity matrix.

On the other hand, the formula for expanding a determinant along a row
applied to Ai1 and Ai2 gives us

(2)
r−1∑

j=1

akj∆i1,i2;j = δk,i2ϕi1 − δk,i1ϕi2

for all i1, i2, k ∈ [1, r]. In matrix terms, if ∆ is the matrix r2 × (r − 1) with
general term ∆i1,i2;j , then this equation means that the product matrix ∆tA
of size r2 × r has the general term δk,i2ϕi1 − δk,i1ϕi2 .

Lemma 2.7. With the notation of 2.6 the following hold.
1) u is injective if and only if all the (r − 1)-minors ϕ1, . . . , ϕr of A are

not all zero.
2) If the minors ϕi are not all zero, then the following are equivalent:
i) The polynomials ϕi have no common factor.
ii) Let J be the ideal generated by the polynomials ϕi. We have an exact

sequence
0 −→ E

u−−→ F
ϕ−−→ J −→ 0,

where ϕ = (ϕ1, . . . , ϕr). In particular, Coker u = J .
iii) Coker u is the saturated ideal of an ACM curve or is equal to R.
iv) Coker u is a torsion free R-module (i.e., if ax = 0 with a ∈ R and

x ∈ Coker u, then a or x is zero).

Proof.
1) After passage to the fraction field k(X,Y,Z, T ) we reduce to the case

of vector spaces, which is well known.
2) Let us prove that ϕu = 0. We have to show that, for all j,∑r

i=1 aijϕi = 0. We introduce a matrix B obtained by adding to A on the
left a column of entries aij , i = 1, . . . , r. We then have detB =

∑r
i=1 aijϕi,

but as this matrix has two identical columns, its determinant is 0.
i) ⇒ ii): we have to show that Kerϕ ⊂ Im u. Consider a = (a1, . . . , ar) ∈

Ker ϕ. We then have
∑r

i=1 aiϕi = 0. Let B be the square matrix r×r obtained
by adding to A the column of elements ai. The above relation proves that
det B = 0 and hence B is not injective. Let (λ0, λ1, . . . , λr−1) be a non-zero



184 X Liaison of space curves

vector in KerB and let λ be the column vector t(λ1, . . . , λr−1). We have
a matrix equality Aλ = −λ0a. If we can show that λ0 divides the other
components λj , then we are done since the vector (a1, . . . , ar) is then in the
image of u. Multiplying the above equality on the left by the matrix ∆i and
applying Formula (1) of 2.6 we get the following equation

∆iAλ = ϕiλ = −λ0∆ia.

We see that λ0 divides all the products ϕiλj , and hence divides their gcd. As
the polynomials ϕi have no common factor their gcd is 1, and hence the gcd
of the products ϕiλj is λj , and we are done.

(Remember that the coefficients are contained in the polynomial ring R
which is factorial. In particular, the gcd is well defined.)

ii ⇒ i): let g be the gcd of the polynomials ϕi: g is a homogeneous poly-
nomial and we denote its degree by d. Our aim is to show that d is zero. Set
ϕi = gϕ′

i: let J ′ be the ideal generated by the polynomials ϕ′
i and let ϕ′ be the

degree zero homogeneous homomorphism ϕ′ : F (d) =
⊕r

i=1 R(−ni + d) → J ′

given by the formula ϕ′(a1, . . . , ar) =
∑r

i=1 aiϕ
′
i. As R is an integral domain,

it is clear that the kernel of ϕ′ is the same as that of ϕ, so we have the following
exact sequence:

0 −→ E(d) u−−→ F (d) −→ J ′ −→ 0.

Let C be the scheme defined by J ′. As J ′ is saturated (cf. 1.9) J ′ = I(C).
As the polynomials f ′

i have no common factor and r � 2, dimC � 1. By
1.9.3 the scheme C is either an ACM curve with saturated ideal J ′ or empty.
If C is a curve, we apply 2.4.1 to the degrees of E(d) and F (d) and we
get
∑r−1

j=1(mj + d) =
∑r

i=1(ni + d), which, since
∑r−1

j=1 mj =
∑r

i=1 ni, implies
d = 0. If C is empty, then IC = J ′ = R, and an Euler characteristic calculation
similar to the one given in the proof of 2.4.1 shows that d vanishes.

We note that the above proof also shows that ii) ⇒ iii). The fact that iii)
⇒ iv) is obvious, and it remains to show that iv) ⇒ ii). The fact that ϕu = 0
implies there is a surjective map π : Coker u → J such that the following
diagram commutes:

F
p

�� Coker u ��

π
��

0

F
ϕ

�� J �� 0

It remains to show that π is injective. Consider a ∈ Ker π such that a =
p(a), a ∈ F . We therefore have

∑r
i=1 aiϕi = 0, and, as in the proof of i) ⇒ ii),

it follows that there exists a λ0 ∈ R and λ ∈ E which are not both zero such
that λ0a + u(λ) = 0, so λ0a ∈ Im u and λ0a = 0 in Coker u. As λ0 does not
vanish (because u is injective) and Coker u is torsion free a = 0.
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Remark 2.8. In the above lemma, the case J = R (corresponding to the
empty set) arises if and only if one of the minors ϕi is a non-zero constant.
Of course, this can only happen if u is not minimal (otherwise the entries aij

and hence also the polynomials ϕi are of degree > 0). This also implies that
the corresponding integer ni is zero, and on setting

F ′ =
⊕

k �=i

R(−nk),

u induces an isomorphism from E to F ′. In particular, the integers mj and
the integers nk for k �= i are the same.

Our second lemma will play a key role in calculating resolutions by liaison.
We start by recalling some results on the duality of graded modules.

We recall (cf. Chapter II, 7.5) that if E =
⊕

n∈Z En and F =
⊕

n∈Z Fn

are two graded R-modules, then a homomorphism u : E → F is said to be
homogeneous of degree d if u(En) ⊂ Fn+d. We say that u is graded if u is a
finite sum of homogeneous homomorphisms. When E is an R-module of finite
type (which we will assume henceforth is the case), every homomorphism
is automatically graded. This provides a natural grading on the R-module
HomR(E,F ).

If E is a graded R-module, then we denote by E∨ the dual R-module to E,
i.e., the graded R-module HomR(E,R) of graded homomorphisms from E
to R. Let E be a graded free R-module with basis e1, . . . , es, with ej of de-
gree mj . We then have E =

⊕s
j=1 R(−mj). The module E∨ is also free, and

more precisely we obtain a basis of E∨ by taking the dual basis e∗1, . . . , e
∗
s

defined by e∗j (ei) = δij , where δij is the Kronecker delta: e∗j is then of de-
gree −mj , so that E∨ =

⊕s
j=1 R(mj).

The duality operation is functorial and contravariant: given a homomor-
phism u : E → F which is homogeneous of degree 0 we deduce the existence
of a homomorphism tu : E∨ → F∨ called the transposition of u and defined
by the formula tu(f) = fu. This homomorphism is homogeneous of degree 0
and we have t(uv) = tvtu. If E and F are free with bases (ej) and (εi) and u is
given with respect to this basis by a matrix A, then tu is given by the matrix tA
with respect to the dual bases.

Lemma 2.9. We use the notation of 2.6. We assume that the minors ϕi are
not all zero and have no common factors. Let J be the ideal generated by
the minors ϕi. Let tu (resp. tϕ) be the transposition of u (resp. ϕ). (Here, we
consider ϕ as a homomorphism from F to R.) There is an exact sequence

0 −→ R
tϕ−−−→ F∨

tu−−→ E∨ −→ Coker tu −→ 0,

and the annihilator of the R-module Coker tu is equal to J .
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Proof. We prove first that the sequence is exact. It is clear that tϕ is injective
and tutϕ = 0. (This follows by functoriality of duality from the equation ϕu = 0
seen in 2.7.)

It remains to show that the sequence is exact at F∨. Set x =
∑r

i=1 xiε
∗
i ∈

Ker tu, which we represent by a column matrix x = t(x1, . . . , xr). We have a
matrix equality tAx = 0 and, multiplying on the left by the matrix ∆ (cf. 2.6),
we see that for every pair (i1, i2)

(∗) xi2ϕi1 − xi1ϕi2 = 0.

We fix an index i1 ∈ [1, r]. If ϕi1 is zero, then so is xi1 . Otherwise, as we are
in the (factorial) ring R we can decompose ϕi1 as a product of irreducible
elements, ϕi1 =

∏
pαm

m , where the elements pm are prime and distinct. As
the elements ϕi have no common factor, for any given m there is an ϕi2 such
that pm does not divide ϕi2 . But then (∗) shows that pαm

m divides xi1 , and
applying this for every m it follows that ϕi1 divides xi1 , and hence x ∈ Im tϕ,
QED.5

Let us now calculate the annihilator Ann(Coker tu). Transposing (1) from
2.6 (that is, ∆iA = ϕiIr−1), we get tA t∆i = ϕiIr−1. We can interpret t∆i as
being a degree 0 homomorphism from E∨(−ni) to F∨ and the above formula
shows that the vectors ϕie

∗
j in E∨ are in the image of tu, and hence vanish

in Coker tu, so ϕi annihilates Coker tu and J is contained in the annihilator of
Coker tu.

For the converse, we consider the following diagram:

0 �� R
tϕ

��

νa

��

F∨
tu ��

aIF∨

��

E∨
p

��

aIE∨

��

Coker tu ��

µa

��

0

0 �� R
tϕ

�� F∨
tu �� E∨

p
�� Coker tu �� 0

in which the vertical maps are induced by multiplication by the element a∈R.
Consider a∈Ann(Coker tu). We then have µa =0, and hence µap=paIE∨ =0,
so the image of aIE∨ is in Ker p = Im tu. As E∨ is free, this implies there is a
homogeneous homomorphism f : E∨ → F∨ such that aIE∨ = tuf .

Multiplying this equation on the right by tu we get aIE∨ tu = tuaIF∨ =
tuf tu, or, alternatively, tu(aIF∨ − f tu) = 0, so the image of aIF∨ − f tu is in
Ker tu = Im tϕ. As F∨ is free, there is a g : F∨ → R such that aIF∨−f tu = tϕg.
We multiply this equation on the right by tϕ and we see that aIF∨ tϕ = f tutϕ+
tϕgtϕ = tϕνa. As tutϕ = 0 and tϕ is injective, it follows that νa = gtϕ, which
means exactly that a is in J = Imϕ.
5 We could also have passed to the fraction field of R and reduced the problem to

ordinary linear algebra.
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Remarks 2.10. The following remarks may shed some light on the above proof
for those readers who are familiar with commutative algebra.

1) The sophisticated reader will have recognised Coker tu as being the
module Ext1R(J,R) � Ext2R(R/J,R). The exactness of the above sequence
follows from the fact that R/J has projective dimension 2 and is hence of
depth 2 by the Auslander-Buchsbaum formula (cf. [H] Chapter III, 6.12A), so

Ext1R(R/J,R) = 0, i.e., Ker tu = Im tϕ.

2) It is clear that the annihilator of Ext2R(R/J,R) contains J by the func-
toriality of Ext. The converse follows from the formula Ext2R(Ext1R(J,R), R) =
R/J , which follows from the exact sequence 2.9. Indeed, if a annihilates
Ext1R(J,R), then it annihilates the Ext2 of the module in R, hence it an-
nihilates R/J , hence6 it is in J .

3 Liaison of space curves

In this section we will study the liaison operation. We will essentially restrict
ourselves to ACM curves. For the general case, which requires levels of com-
mutative algebra which we prefer to avoid, we refer the reader to [PS], which
also contains the case of liaison in arbitrary dimension.

a. Introduction and definition

Definition 3.1. Let C and Γ be two space curves, with saturated ideals IC

and IΓ . The ideal IC ∩ IΓ is the saturated ideal of a curve X which is called
the scheme-theoretic union of C and Γ .

Remark 3.2. Set-theoretically, the scheme-theoretic union is simply the union
of C and Γ . This set-theoretic union can also be defined by the product ideal
ICIΓ , but from a scheme-theoretic point of view, the intersection ideal is a
kind of sup of the two structures, whereas the product ideal is a sum (consider
the extreme example where IC = IΓ ).

Definition 3.3. Let C and Γ be two space curves with saturated ideals IC

and IΓ . We assume the following:
1) C and Γ have no common irreducible component.
2) The scheme-theoretic union X of C and Γ is a schematic complete

intersection curve, i.e., (cf. 2.3) the ideal IC ∩IΓ is generated by two elements
f, g.

We then say that C and Γ are geometrically linked by X (or by the surfaces
with equations f, g).
6 This proof, and its elementary version, was pointed out to me by Mireille Martin-

Deschamps.
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Proposition 3.4. Let C and Γ be two reduced space curves without isolated
points, with saturated ideals IC = I(C) and IΓ = I(Γ ), geometrically linked
by X. We have

IΓ = {a ∈ R | aIC ⊂ IX},
IC = {a ∈ R | aIΓ ⊂ IX}.

We say that IΓ , for example, is the transporter of IC in IX and we write
IΓ = (IX : IC).

Proof. It will of course be enough to prove the formula for IC . As ICIΓ is
contained in IC ∩ IΓ = IX , it is clear that IC is contained in the transporter.
To prove the converse we decompose C into irreducible components, C =
C1 ∪ · · · ∪ Cr: IC = IC1 ∩ · · · ∩ ICr

, where the ideals ICk
are prime (which

would no longer be the case if C were not reduced). Consider a /∈ IC : our
aim is to show that a is not in the transporter of IΓ in IX . As a /∈ IC , there
is an index k such that a /∈ ICk

. As C and Γ have no common components
IΓ �⊂ ICk

, so there is an f ∈ IΓ such that f /∈ ICk
. As this last ideal is prime,

af /∈ ICk
, so af /∈ IC and a is not contained in the transporter.

We will use Proposition 3.4 to give a more general definition of liaison.

Proposition-Definition 3.5. Let C be a space curve with saturated ideal IC

and let X be a scheme-theoretic complete intersection containing C (i.e., such
that IX ⊂ IC). Let J be the transporter of IC in IX . Then the ideal J is satu-
rated and the subscheme Γ in P3 defined by J is a space curve (or empty) and
we say that Γ is algebraically linked to C by X (or by the surfaces defining X).

Remarks 3.6.
0) Proposition 3.4 shows that two reduced space curves (i.e., varieties)

which are geometrically linked are also algebraically linked. In fact, this prop-
erty holds for arbitrary curves in the sense of 3.15 below, i.e., with no point
components, embedded or otherwise. In particular, it holds for ACM curves.
The proof is similar, using a primary decomposition of the ideals IC and IΓ

(cf. [Pes] § 3 or [Bbki] AC Chapter IV).
1) The geometrical linking relation is obviously symmetric but with no ex-

tra hypotheses on C, the algebraic linking relation may not be. This difficulty
comes from our unwise choice of definition of space curves. To get around this
problem we have to assume the curves satisfy the conditions of Definition 3.15.

2) We will see below (cf. 3.9) that if C is ACM, this problem vanishes.
3) It is immediate that Γ is empty if and only if C = X (this follows from

the fact that IX is saturated).

Examples 3.7 (Explicit calculation of a liaison).
1) If we link the smooth conic C of ideal (Y,X2 − ZT ) using the surfaces

with equations Y Z and X2 − ZT , the curve we get is the double line with
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ideal (X2, Z). We want to find all the a ∈ R such that aY ∈ (Y Z,X2 − ZT )
or, alternatively, aY = bY Z + c(X2 − ZT ). It is immediate that Y divides c:
c = Y c′ and it follows that a = bZ + c′(X2 − ZT ) ∈ (X2, Z). This example
shows that even if we start with a smooth curve, we can get a non-reduced
curve by liaison.

2) We start with the curve C which is a disjoint union of two conics
Z = P = 0 and T = Q = 0, where P and Q are two homogeneous polynomials
of degree 2, and we assume that Z (resp. T ) does not divide P (resp. Q). That
these conics are disjoint means that on writing P = P0(X,Y ) + ZP1 + TP2

and Q = Q0(X,Y )+ZQ1 +TQ2 the polynomials P0 and Q0 have no common
zeros. The ideal IC is (ZT,ZQ, TP, PQ).

We link C to Γ via the surfaces ZT and ZQ + TP . We leave it as an
exercise for the reader to show that IΓ = (ZQ+TP,Z2, ZT, T 2). Once again,
even though the initial curve is (in general) smooth, the linked curve is not
reduced. This time, the curves in question are not ACM.

b. Changing resolutions by liaison: the ACM case

Theorem 3.8. Let C be an ACM curve and, using the notations of 2.6, let

(∗) 0 −→ E
u−−→ F

p−−→ IC −→ 0

be a (not necessarily minimal) resolution of its saturated ideal. Let A be the
matrix of u in the canonical bases. By 2.7 IC = (f1, . . . , fr), where the poly-
nomials fi are the (r−1)-minors of A. Let X be a complete intersection curve
of two surfaces f, g of respective degrees s and t which contains C and is not
equal to C. We set f =

∑r
i=1 λifi and g =

∑r
i=1 µifi. Let Γ be the scheme

which is algebraically linked to C by X, defined by the ideal J which is the
transporter of IC in IX . Then the following hold.

1) The ideal J has projective dimension 1, with resolution

0 −→ F∨(−s − t) v−−→ E∨(−s − t) ⊕ R(−t) ⊕ R(−s) −→ J −→ 0,

where the matrix B of v in the dual bases of the canonical bases is the
(r + 1) × r matrix obtained by adding the rows formed by the coefficients λi

and the coefficients µi to the bottom of A.
2) The ideal IΓ is equal to J .
3) The scheme Γ is an ACM curve.

Proof. It is enough to prove 1) since J will then be saturated by 1.9 and Γ ,
which is non-empty because X is not equal to C, will be an ACM curve by
2.7. Let us therefore calculate the transporter ideal J of IC in IX . Consider
a ∈ J . This means that, for all i = 1, . . . , r, afi ∈ (f, g), or in other words
afi = αif +βig. Set λ =

∑r
k=1 λkεk and µ =

∑r
k=1 µkεk. The above equation

can be written as p(aεi − αiλ− βiµ) = 0. The exact sequence (∗) proves that
there is an xi ∈ E such that aεi = u(xi) + αiλ + βiµ.
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Let u′ : E(s + t) ⊕ R(t) ⊕ R(s) → F (s + t) be the homomorphism defined
on blocks by u′ = (u, λ, µ) (we leave it to the reader to check that the degrees
are compatible with the given shiftings). The above calculation shows that
a ∈ J ⇔ ∀ i aεi ∈ Im u′, which means exactly that a annihilates Cokeru′.
Let us now consider the transposition homomorphism v = tu′ : F∨(−s− t) →
E∨(−s − t) ⊕ R(−t) ⊕ R(−s).

We note that the degrees of the modules are the same, so we can apply
2.7 and 2.9. The polynomials f and g are already contained (up to sign) in
the set of r-minors of the matrix B of V , obtained by suppressing one of the
last two rows. As f and g have no common factor, the same is true of the
r-minors of B, and it follows from Lemma 2.9 that J is the ideal generated
by the r-minors of B and by 2.7 we have a resolution

0 −→ F∨(−s − t)
tu′

−−−→ E∨(−s − t) ⊕ R(−t) ⊕ R(−s)
(ϕ, g, f)−−−−−−−→ J −→ 0,

where ϕ = (ϕ1, . . . , ϕr−1), the polynomials ϕi being the r-minors of B ob-
tained by removing a line of tA.

Corollary 3.9. With the above notations, the curve C is algebraically linked
to Γ by X.

Proof. We calculate the resolution of J , the transporter of IΓ in IX , by the
method given in the theorem. The matrix A′′ we are interested in is an
(r + 2) × (r + 1)-matrix, and as f and g are in the set of generators of IΓ , it
can be written in the form

A′′ =

⎛

⎝
A λ µ
0 1 0
0 0 1

⎞

⎠ .

The generators of J ′ are the r + 1-minors of this matrix, which can be easily
calculated; the minors obtained by removing one of the last two lines are f
and g, and those obtained on removing one of the first r lines are simply the
r-minors of A, i.e., the polynomials fi. Hence the ideal J ′ is equal to IC . QED.

Remark 3.10. Even starting with the minimal resolution of C the resolution
of Γ given in 3.8 is not necessarily minimal. This is the case if one of the
coefficients λi or µi is a non-zero constant (we then say that f or g is a
minimal generator of IC). For example, if we start with a space cubic and
link with two quadrics, then we obtain a line, but the above resolution is not
minimal (it has four generators rather than two).

Proposition 3.11 (Calculating invariants). With the notations of 3.8, if
d, g (resp. d′, g′) are the degrees and genus of C (resp. Γ ), then

1) d + d′ = st,
2) g′ − g = (1

2 (s + t) − 2)(d′ − d).
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Proof. This follows from the calculation of the resolution of the linked curve
and the formulas in 2.4.

c. The Peskine-Szpiro theorem

We can now answer the question asked in the introduction.

Theorem 3.12 (Apéry-Gaéta-Peskine-Szpiro). Let C be a curve in P3,
IC its saturated ideal and JC the ideal sheaf defining C. The following are
equivalent.

1) There is an integer n � 0 and a sequence of curves C0, C1, . . . , Cn = C
such that Ci and Ci+1 are algebraically linked7 and C0 is a complete intersec-
tion.

2) C is an ACM curve (i.e., H1JC(n) = 0 for all n or dp IC = 1, cf. 2.2).

Proof. The fact that 1) implies 2) follows from the description of the resolution
of a complete intersection (cf. Chapter III, 10.1) and the calculation of the
resolution of the linked curves (3.8).

The converse is proved by induction on r, the minimal number of genera-
tors of IC (that is to say, the rank of F in the minimal resolution (∗) of IC).
If r = 2, C is a complete intersection and the result follows. Otherwise, let
(f1, . . . , fr) be the generators of IC , i.e., the images of the basis vectors of the
free module F . We have the following lemma.

Lemma 3.13. With the above notation, assume that (f1, . . . , fr) are of de-
grees n1 � · · · � nr respectively. There are then homogeneous polynomials
ai for i = 2, . . . , r, of degree nr − ni such that ar ∈ k∗ and f = f1 and
g =
∑r

i=2 aifi have no common factor.

Proof. Let h be a prime factor of f1. One of the polynomials fi, i = 1, · · · , r,
is not a multiple of h since otherwise C would contain the surface V (h). We
consider the subspace Wh of H0JC(nr) formed of multiples of h. It is not
equal to the whole of H0JC(nr) (if fi is not a multiple of h and l is a linear
form l �= h, then fil

nr−ni /∈ Wh). It follows that the union of the sets Wh is
a proper closed subset of IC,�nr

=
⊕nr

n=0 H0JC(n), so its complement meets
the open set of all polynomials g of the form g =

∑r
i=1 aifi with ar ∈ k∗ and

the result follows.

We now complete the proof of 3.12. Lemma 3.13 proves that up to change
of the basis vector εr in F to

∑r
i=2 aiεi we can assume that f1 and fr have

no common factor. We link C to Γ using f1 and fr. Calculating IΓ as in 3.8
we can show (cf. above) that IΓ has r − 1 generators and we are done by the
induction hypothesis. To see that IΓ is generated by r − 1 elements we note
that it is generated by the r-minors of the r + 1 × r matrix B obtained by
adding the rows (1, 0, . . . , 0) and (0, . . . , 0, 1) to tA. On writing tA = (u A′ v),
7 As all the curves are ACM, the algebraic liaison relation is symmetric (cf. 3.9).
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where A′ is a r − 1 × r − 2 matrix and u and v are column vectors, we note
on expanding the minors of B that the generators we seek are in the ideal
generated by the r − 2 minors of A′. There are r − 1 such generators. Using
the non-zero constant coefficients in the matrix B, we can also simplify two
terms in the resolution of IΓ as in the proof of 1.8.

Remarks 3.14.
1) NB: it really is sometimes necessary to change the set of minimal gener-

ators. This is the case if we start with the curve C of ideal IC = (XY, Y Z,XZ)
and three generators XY, Y Z,ZX. An arbitrary pair of these generators have
a common factor. To carry out a liaison we have to replace one of them by a
linear combination: XY and Z(X + Y ), for example.

2) Moreover, Lemma 3.13 is not generally true if g is of degree < n − r,
cf. IC = (XZ, Y Z,XT 2, Y T 2).

d. Discussion of the non-ACM case

In this section we will give a sketch (without proof) of what happens in the
non-ACM case. The interested reader will find more details in the references.

We begin by giving a more suitable definition of space curves for our
purposes.

Definition 3.15. A space curve is a subscheme of P3 which is of dimension 1
and which has no (embedded or not) point components (cf. the Appendix be-
low).

Proposition 3.16. Let C be a space curve (in the above sense), X a complete
intersection containing C and Γ the subscheme algebraically linked to C by X,
which is the complete intersection of two surfaces of degrees s and t. Then:

1) Γ is a space curve (in the above sense).
2) C is linked to Γ by X,
3) The ideal IΓ is the transporter of IC in IX ,
4) Formulae 3.11 for the degrees and genus are still valid,
5) For all n ∈ Z,

h1JC(n) = h1JΓ (s + t − n − 4),

h0JC(n) − h0JX(n) = h1OΓ (s + t − n − 4),

h0JΓ (n) − h0JX(n) = h1OC(s + t − n − 4).

Proof. See [PS] or [Rao].

Remark 3.17. We have a formula for resolutions which is similar to, but more
complicated than, the formula given in 3.8. In particular, we have to con-
sider separately two different types of resolutions (resolutions of E-type and
resolutions of N -type cf. [MDP]).
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The liaison relation is symmetric and generates an equivalence relation
(“step-by-step” liaison). The main problem is describing the liaison classes.
The class of ACM curves is one such equivalence class (this is essentially the
Peskine-Szpiro theorem). For non-ACM curves a fundamental invariant was
introduced by R. Hartshorne and studied by A.P. Rao; it is the module

MC =
⊕

n∈Z

H1JC(n),

which we call the Rao module of C. This is a graded R-module with only a
finite number of non-zero terms (this is clear for n � 0 by Serre’s Theorem
VII, 4.6, and for n � 0 this can be proved by Serre duality, cf. [H] Chapter III,
7.6) and every component is finite dimensional. This module transforms in a
very simple way under liaison; if Γ is linked to C by two surfaces of degrees s
and t, then MΓ = M∗

C(4− s− t). (The star indicates the graded dual module
of MC .) A theorem of Rao’s shows that any such module is, up to shift, the
Rao module of a curve which can be assumed to be smooth, and that two
curves are in the same liaison class if and only if they have the same Rao
module, up to duality and shift.

A possibly even more interesting relation is the biliaison (or even liaison)
relation: in this case the relevant invariant is simply the Rao module up to
shift only. Hence in a biliaison class all the curves have shifted Rao module M ,
i.e., M(n) with n ∈ Z. It can be shown that there is a minimal such n, and
the curves corresponding to this n are called the minimal curves of the class.
They are essentially unique and allow us to determine all the other curves in
the class. For more information see cf. [MDP] or [BBM]. For information on
the use of the Rao module in classifying space curves problems, cf. [MDP].

e. Appendix: embedded points on curves

We will here explain via an example the phrase “embedded component,” which
appears in Definition 3.15.

Let C be a curve in P3 (in the weak sense of the word: a one-dimensional
subscheme). This curve can have irreducible point components, which may or
may not be reduced. It can also have special points called embedded points
(or components) which, as we will see, play a role very similar to that of point
components.

Definition 3.18. Let C be a curve in P3 and let x ∈ C be a (non-isolated)
point. We denote by OC,x the local ring of C at x and by mC,x its maximal
ideal. We say that x is an embedded point of C if there is an a ∈ OC,x, a �= 0,
such that the annihilator of a is the ideal mC,x. (We say that mC,x is a prime
ideal associated to OC,x, cf. [Bbki] AC Chapter IV or [Pes] § 3. In a reduced
ring only the minimal prime ideals, corresponding to irreducible components,
are associated.)
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Example 3.19. Consider C = Proj k[X,Y, T ]/(XY,X2). This plane curve is
the intersection of two curves, V which is the union of two lines, X = 0 and
Y = 0, and W , which is the double line X2 = 0. Set-theoretically, C is simply
the line X = 0, but it has a singular point at (0, 0, 1). Indeed, it is immediate
that the maximal ideal (x, y) is the annihilator of y. We note that C is not
reduced (x2 = 0) but C−{(0, 0, 1)} is, so the nilpotents of C are concentrated
at the embedded point. Another way of understanding this is to note that the
ideal (XY,X2) is the intersection of the ideal (X) and (X2, Y ), so C is the
scheme-theoretic union of a line X = 0 and the double point whose equations
are (X2, Y ) and which, as a scheme, is not contained in the line and plays the
part of an extra point component.

This embedded point can also arise as the “limit” of a real point compo-
nent. Indeed, consider the scheme Cλ defined by the ideal (XY,X(X − λT )),
with λ ∈ k. For λ �= 0 this scheme is the disjoint union of a line X = 0 and
an isolated point (λ, 0, 1). For λ = 0 we obtain C, which is therefore the limit
of the schemes Cλ, the embedded point being the limit of the isolated points.

And finally, if we carry out an (algebraic) liaison on C (resp. Cλ) (con-
sidered as a curve in P3 on adding the equation Z = 0) with respect to the
surfaces XY,Z, we get in either case Γ , whose equations are IΓ = (Y,Z). If we
now carry out liaison on Γ using the same surfaces, we do not obtain C or Cλ

but the curve X = Z = 0: in other words, double liaison forgets the embedded
or isolated point. We see on this example that without the hypothesis in 3.15
(that the curves should not have point components, even embedded ones) the
liaison operation is not generally symmetric.

Exercises

1 Resolutions

1) Let R be a graded k-algebra, R =
⊕

n∈N Rn, with R0 = k. Let m = R+ be the
maximal ideal of elements of degree > 0, so R/m is isomorphic to k. We equip k
with the quotient graded R-module structure. Determine the minimal resolution
of the R-module k in the following cases: R = k[ε], with ε2 = 0 (the ring of dual
numbers), R = k[T ], R = k[X, T ], R = k[X, Y, T ], R = k[X, Y, Z, T ].

2) Determine the minimal resolution of the (non-saturated) ideal I =
(X2, XY, XT ) in k[X, Y, T ]. Compare this resolution with that of the as-
sociated saturated ideal.8

2 Constructing curves by liaison

1) Prove that there exist in P3 curves C which are ACM of degree d and genus g
for the following choices of d and g: d = 7, g = 5; d = 8, g = 7; d = 24, g = 64;
d = s2 − 1, g = s3 − 2s2 − 2s + 4, for any integer s � 2.

8 There is a program, called Macaulay, which enables us to calculate without any
effort more or less all the resolutions we might possibly want.
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Give the resolution of the ideals of the given curves. (Use Riemann-Roch to
determine the degrees of the surfaces on which such curves could lie, then use
liaison to reduce d and g via the formulas in 3.11).

2) Let n be an integer � 1. Prove by induction on n using liaison that there is an
ACM curve whose ideal has resolution

0 −→ R(−n − 1)n −→ R(−n)n+1 −→ I −→ 0.

3) Let D be a line.

a) Prove that there exist two surfaces S1 and S2 of degrees 2 and 5 containing
D which have no common components.

b) Let C be the curve linked to D by S1 and S2. Prove that C is an ACM curve
whose degree is 9 and whose genus is 12 and give its minimal resolution.

c) Prove there are surfaces S′
1 and S′

2 of degrees 3 and 6 containing C which
have no common components.

d) Let C′ be a curve linked to C by S′
1 and S′

2. Prove that C′ is an ACM curve
of degree 9 and genus 12 whose minimal resolution is different from that of
C.

3 The rational quartic

Let Γ be the union in P3 of the lines of equation (X, Y ) and (Z, T ). We link Γ using

the surfaces XT − Y Z and XZ2 − Y 2T to a curve C. Prove that the curve C has

degree 4 and genus 0. Is it ACM? Calculate its ideal IC and prove that C is smooth

and connected. (The ideal IC contains, besides the equations of the above surfaces,

the equations Y T 2 − Z3 and ZX2 − Y 3.)
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Summary of useful results from algebra

The contents of this summary are used throughout this book, even in the very
first chapters. They must therefore be rapidly mastered. We will mostly need
only the definitions and the statements of the theorems, but it may be useful
to try to prove them for exercise’s sake. Those theorems whose proof is not
obvious have been marked with a ¶. In this case the reader may refer to the
bibliography.

1 Rings

We assume the reader is familiar with rings (which will always be assumed
commutative with a unit), polynomial rings, ideals, quotient rings, fields, and
modules. We denote by (x) or xA the ideal generated by x in A, i.e., the set
of all elements of the form xa with a ∈ A.

1.1 Rings

a. The isomorphism theorem. Let f : A → B be a ring homomorphism and
set I = Ker f . Let J be an ideal of J contained in I and let p : A → A/J be
the canonical projection. Then:

1) There is a unique homomorphism f : A/J → B such that f = fp (we
say that f factors through A/J),

2) f is injective if and only if J = I,
3) f is surjective if and only if f is.
In particular, Im f � A/Ker f .

b. Universal property of rings of polynomials. Let A and B be two rings.
Giving a homomorphism f : A[X1, . . . , Xn] → B is equivalent to giving its
restriction to A (i.e., a homomorphism from A to B) and the images of the
variables Xi (i.e., n elements in B) (cf. [L] Chapter V).
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c. Euclidean division. Let A be a ring and consider a polynomial P ∈ A[X],
P �= 0, whose leading coefficient is a unit. For all F ∈ A[X] there are Q,R ∈
A[X] such that F = PQ + R and deg R < deg P or R = 0 (cf. [P] Chapter II,
[L] Chapter V).

For example, in k[X,Y ] we can divide by Y 2 −X3 with respect to Y , but
not by XY − 1.

As an application of a,b and c, prove that the ring of Gaussian integers
Z[i] is isomorphic to the quotient ring Z[X]/(X2 + 1).

d. Products of rings. The direct product of two rings A and B is the product
set A×B (i.e., pairs (a, b) with product laws: (a, b)+ (a′, b′) = (a+a′, b+ b′),
(a, b)(a′, b′) = (aa′, bb′)).

Example: if p and q are two coprime integers, prove that Z/(pq) � Z/(p)×
Z/(q) (Chinese remainder theorem) (cf. [L] Chapter II).

1.2 Ideals

a. Operations on ideals. An arbitrary intersection of ideals is an ideal.
The sum of a family Ik of ideals of A is the set of finite sums

∑
xk with

xk ∈ Ik. This is an ideal which is the upper bound of the ideals Ik for inclusion.
We denote it by

∑
Ik. In particular, if Ik = (fk), then we obtain the ideal

generated by the elements fk. In Z the sum of the ideals generated by (x)
and (y) is the ideal generated by the gcd of x and y.

The product of two ideals I and J is the ideal denoted by IJ generated
by products xy with x ∈ I and y ∈ J . We have IJ ⊂ I ∩ J , but the converse
is false: in Z the product ideal (resp. intersection) of (x) and (y) is the ideal
generated by xy (resp. by the lcm of x and y).

b. Prime ideals. An integral domain is a ring A �= {0} such that ∀ a, b ∈ A,
ab = 0 ⇒ a = 0 or b = 0.

For example, a field is an integral domain, a subring of an integral domain
is an integral domain, and a ring of polynomials over an integral domain is
an integral domain.

An ideal p of A is said to be prime if A/p is an integral domain. We note
that the inverse image of a prime ideal under a homomorphism is a prime
ideal.

An ideal m in A is said to be maximal if it is maximal for inclusion amongst
the ideals of A different from A. Equivalently, A/m is a field, called the residue
field of m. It follows that any maximal ideal is prime, but the converse is not
generally true. (The maximal ideals of Z are the ideals generated by a prime
number p, whereas the prime ideals are all these ideals plus the ideal (0).)

It can be proved using Zorn’s lemma that any ideal is contained in a
maximal ideal.
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c. Ideals of a quotient. Let A be a ring, I an ideal and p the canonical projec-
tion from A to A/I. The ideals of A/I are in (increasing) bijection with the
ideals of A containing I via the maps p and p−1. Moreover, the prime ideals
(resp. maximal ideals) correspond under this bijection (cf. [P] Chapter II).

Application: describe the ideals of Z/nZ.

d. Nilpotent elements. An element a ∈ A is said to be nilpotent if there is an
integer n > 0 such that an = 0. The set of nilpotent elements form an ideal
called the nilradical of A. This ideal is the intersection of all the prime ideals
of A (¶ cf. Exercise 4.2).

A ring without non-zero nilpotent element is said to be reduced. Example:
which ones of the rings Z/nZ are reduced, are integral domains, are fields?

1.3 Noetherian rings

An ideal I in a ring A is said to be finitely generated if it is generated by a
finite number of elements, i.e., if we can find x1, x2, . . . , xn ∈ I such that any
x ∈ I can be written in the form x =

∑
aixi with ai ∈ A.

A ring A is said to be Noetherian if it satisfies one of the following three
equivalent properties (cf. [P] Chapter II, [L] Chapter VI):

1) Any ideal in A is finitely generated.
2) Any increasing sequence of ideals in A is eventually stable.
3) Any non-empty set of ideals in A has a maximal element for the inclusion

relation.

Examples. A field, Z and more generally any principal ring (i.e., a ring all
of whose ideals are principal), and any quotient of a Noetherian ring are all
Noetherian. If A is Noetherian, then A[X] is also Noetherian (¶) (and hence
so is A[X1, . . . , Xn] and all its quotients).

In a Noetherian ring the set of minimal prime ideals is finite (¶ cf. Exercise
4.3).

1.4 Factorial rings

In this paragraph all rings are assumed to be integral domains. We denote
by A∗ the set of invertible elements of A.

An element p ∈ A is said to be irreducible if p /∈ A∗ and p = ab ⇒ a ∈ A∗

or b ∈ A∗.
For example, the irreducible elements in Z are the prime numbers.
An integral domain is said to be factorial if every element in A can be

written uniquely as a product of irreducible elements.
A principal ring is factorial, so Z and k[X] (where k is a field) are factorial

rings.
If A is factorial, then so is A[X] (¶) (and A[X1, . . . , Xn]). For example,

if k is a field, then k[X,Y ] is factorial but not principal (cf. [P] Chapter II).
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1.5 Finite type algebras

Let A be a ring. An A-algebra is a ring B equipped with a homomorphism
f : A → B (which is often but not always injective). It is said to be of finite
type if it is generated as an algebra by a finite number of elements x1 . . . , xn

of B, i.e., if every element of B is a polynomial function of the elements xi

with coefficients in A. This is equivalent to asking that (cf. 1.b) B should be
isomorphic to a quotient of a polynomial ring A[X1, . . . , Xn].

NB: “of finite type” as an A-module and as an A-algebra are not the same
thing. In the first case, every element can be written as a linear combination
of the elements xi, in the second as a polynomial function of the elements xi.
We can also talk about being “of finite type as a field,” in which case we allow
ourselves rational fractions in the elements xi. In each case, the structure
generated by the elements xi is the smallest substructure containing them.

1.6 Localisation

a. Local rings. A ring A is said to be local if it has a unique maximal ideal m,
called its Jacobson radical. Every element of A − m is then invertible.

Example: the ring of formal series k[[X]]. The maximal ideal consists of
series with vanishing constant terms.

b. Localisation: definition. A subset S in A is said to be multiplicative if 1 ∈ S
and ∀ a, b ∈ S, ab ∈ S.

Let A be an integral domain and S a multiplicative subset of A−{0}. We
define the ring AS (or S−1A), called the localisation of A along S, to be the
quotient of the set A × S by the equivalence relation R defined by

(a, s)R(a′, s′) ⇐⇒ as′ = a′s.

The class of (a, s) is written a/s and we define the laws of composition on the
quotient to be like those on the field Q of rational numbers. Moreover, when
S = A−{0}, AS is the field of fractions Fr(A), just as Q = Fr(Z). Otherwise,
AS is a subring of this field.

There is a homomorphism i : A → AS into the localisation given by
i(a) = a/1. The image under i of an element of S is invertible and AS is
universal for this property (intuitively, AS is the smallest ring containing A
and inverses for all the elements of S).

When A is not a domain, we can still use this construction, but
the equivalence relation must be modified as follows: (a, s)R(a′, s′) ⇔
∃ t ∈ S, t(as′ − a′s) = 0. The homomorphism i is no longer injective in
general: its kernel consists of all those elements which are annihilated by an
element of S. There is no fraction field in this case (cf. [L] II.3).
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c. Examples.
1) Consider f ∈ A and S = {fn | n ∈ N}. We write AS = Af and we have

Af � A[T ]/(fT − 1). Example: what is Z10?
2) Let p be a prime ideal of A and set S = A−p. Then S is a multiplicative

subset of A and we set AS = Ap. This is a local ring whose maximal ideal is
pAp = {a/s | a ∈ p}.

The prime ideals of AS are in bijective correspondence via i−1 with the
prime ideals of A, which do not meet S. In the case of Ap, these are exactly
the prime ideals of A contained in p.

1.7 Integral elements

Let f : A → B be an A-algebra and consider x ∈ B. We say that x is integral
over A if it satisfies a unitary equation

xn + f(an−1)xn−1 + · · · + f(a0) = 0,

with ai ∈ A. (If f is the inclusion of A in B, we omit f .)
Example: i and

√
2 are integral over Z, but 1/2, 1/

√
2 and π are not.

The algebra B is said to be integral over A if all its elements are integral
over A. It is enough to check this for a system of generators of B (as an
algebra) (¶). In all cases, the set of elements of B which are integral over A is
a subring of B (¶) called the integral closure of B over A (cf. [L] Chapter X,
2.3.4).

Example: the integral closure of Z in Q(i
√

3) is Z[j] (¶, cf. [S] 2.5).

If B is an A-algebra of finite type, then B is integral over A if and only
if B is an A-module of finite type. We then say that B is a finite A-algebra.

An integral domain is said to be integrally closed (or normal) if the integral
closure of A in its field of fractions is simply A. Otherwise, the integral closure
in question A′ is called the integral closure of A (or the normalisation of A)
and is an integrally closed ring. If A is an algebra of finite type over a field,
the integral closure A′ is an A-module of finite type (cf. [S]).

Example: what is the integral closure of Z[i
√

3]?

Any factorial ring is integrally closed. The converse is false; see, for example
Z[i

√
5].

1.8 Some topology, for a change

Let X be a topological space and let U be a family of open sets of X. We say
that U is a basis of open sets of X if every open set of X is a union of open
sets in the family U .

Let X be a topological space. We say that X is quasi-compact if any open
cover of X has a finite subcover. (This is simply compactness without the
Hausdorff condition.)



204 A Summary of useful results from algebra

2 Tensor products

2.1 Definition: modules

Let A be a ring and M , N two A-modules. The tensor product of M and N
over A is an A-module which we denote by M ⊗A N (or M ⊗N when there is
no ambiguity) generated by the symbols x ⊗ y with x ∈ M and y ∈ N (that
is to say, any element of M ⊗A N is a finite linear combination

∑
i ai(xi ⊗ yi)

with coefficients in A), with the following rules of calculation: (x + x′) ⊗ y =
x⊗ y +x′⊗ y, the same relation holds on exchanging the roles of x and y and
(ax) ⊗ y = x ⊗ (ay) = a(x ⊗ y), for a ∈ A, x ∈ M and y ∈ N .

We do not need to know how to construct this object. On the other hand,
it is important to know that it has the following universal property.

Given an A-bilinear map f : M × N → P between A-modules, there is a
unique A-linear map f : M ⊗A N → P such that f(x ⊗ y) = f(x, y).

2.2 Properties

We recall that an A-module M is said to be free if it possesses a basis (just
like a vector space: the difference is that modules are not always free).

Proposition. If M and N are free A-modules with bases (ei) with i ∈ I and
(fj) with j ∈ J , then M ⊗ N is free with basis ei × fj, where (i, j) ∈ I × J .
In particular, this is the case if A is a field.

The tensor product is functorial. This means, that given a homomorphism
f : M → M ′, there is an induced homomorphism f ⊗ Id : M ⊗ N → M ′ ⊗ N
given by the formula (f⊗Id)(x⊗y) = f(x)⊗y. (This follows from the universal
property.)

The tensor product is right exact : given an exact sequence 0 → M ′ →
M → M ′′ → 0, there is an induced exact sequence

M ′ ⊗ N −→ M ⊗ N −→ M ′′ ⊗ N −→ 0.

NB: in general, the first map is not injective. It is, however, injective if N
is free.

2.3 Extension of scalars

Let A be a ring and f : A → B an A-algebra. We note first that if N is a B-
module, then we can also consider it as an A-module on setting, ay = f(a)y for
all a ∈ A and y ∈ N . We will sometimes denote the A-module thus obtained
by restriction of scalars from B to A, by N[A].

Conversely, if M is an A-module, then the tensor product M ⊗A B has a
canonical B-module structure given by b(x⊗c) = x⊗bc. We say that M ⊗A B
is obtained from M by extension of scalars from A to B.
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The module M ⊗A B has the following universal property: if N is a
B-module, then any A-linear homomorphism f : M → N[A] induces a unique
B-linear homomorphism f ⊗A B : M ⊗A B → N defined by (f ⊗A B)(x⊗b) =
bf(x). In other words, we have an isomorphism

HomA(M,N[A]) � HomB(M ⊗A B,N).

This universal property often enables us to calculate modules M ⊗A B.
For example, there are isomorphisms

M ⊗A A/I � M/IM

(IM is the submodule of M generated by elements of the form ax, where
a ∈ I and x ∈ M),

S−1A ⊗A M � S−1M

(where S−1M is defined in a similar way to S−1A).

2.4 Tensor products of algebras

Let A be a ring and B,C two A-algebras. In particular, B and C are
A-modules, and we can construct their tensor product B ⊗A C, which is
equipped with an algebra structure on setting (b ⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′.
This tensor product has the following universal property: given two homo-
morphisms of A-algebras u : B → D and v : C → D, there is a unique
homomorphism u ⊗ v : B ⊗ C → D given by (u ⊗ v)(b ⊗ c) = u(b)v(c).

As above, we calculate most tensor products of algebras using this univer-
sal property. For example, there are isomorphisms

A[X1, . . . , Xn] ⊗A A[Y1, . . . , Ym] � A[X1, . . . , Xn, Y1, . . . , Ym],
B ⊗A A/I � B/IB.

(Examples: calculate C ⊗R C and Z/pZ ⊗Z Z/qZ. Show that

S−1A ⊗A B � S−1B.)

2.5 Exercise: Nakayama’s lemma

a) Let A be a ring, M an A-module and x1, . . . , xn elements of M . We
assume that the elements xi are solutions of a linear system

∀ j = 1, . . . , n,

n∑

i=1

uijxi = 0,

where the coefficients uij are in A. If U is the matrix with entries uij , then
det Uxi = 0. (NB: even if det(U) does not vanish, it does not follow that the
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elements xi are zero: a module can have torsion, i.e., we can have ax = 0 for
a, x such that a �= 0 in A and x �= 0 in M . Consider the Z-module Z/nZ.)

b) Let A be a local ring with maximal ideal m and set k = A/m. Let M
be an A-module of finite type. We assume M ⊗A k (= M/mM) = 0. Prove
that M = 0 (Nakayama’s lemma). (Take generators x1, . . . , xn in M and write
that they are in mM : now use a).)

c) Let A be a ring, m a maximal ideal in A and M an A-module of finite
type. Assume M/mM = 0. Prove that Mm = M ⊗A Am = 0 and there is an
f ∈ A, f /∈ m such that Mf = M ⊗A Af = 0.

Application: if x1 . . . , xn are elements of M whose images generate M/mM
over k = A/m, then there is an f , f /∈ m, such that the elements xi generate
Mf as an Af -module.

3 Transcendence bases

3.1 Definitions

The notions below are analogous to the notions of linear independence and
basis for vector spaces.

Let K ⊂ L be a field extension. A subset B in L is said to be algebraically
free over K (we also say that its elements are algebraically independent) if for
any finite subset {x1, . . . , xn} ⊂ B and any polynomial P ∈ K[X1, . . . , Xn],
the equality P (x1, . . . , xn) = 0 implies P = 0. (Otherwise, we say that the
elements of B are algebraically dependent.) For example, if B = {x}, B is
free if and only if x is transcendental over K.

Let K ⊂ L be a field extension. A subset B ⊂ L is said to be an algebraic
generating set over K if L is algebraic over the subfield K(B) generated by B.
(We note the difference with vector spaces: as far as transcendence bases are
concerned, algebraic elements don’t count.)

Let K ⊂ L be a field extension. A subset B in L is a transcendence basis
for L over K if it is both algebraically free and an algebraic generating set.

a. Existence. Let K ⊂ L be a field extension. There are transcendence bases B
for L over K. These bases all have the same cardinality, called the transcen-
dence degree of L over K. We denote it by ∂K(L).

The proof of existence is identical to that for vector spaces: we use Zorn’s
lemma to construct a maximal free subset.

b. Examples.
1) If L is algebraic over K, then B = ∅ and ∂K(L) = 0.
2) If L = K(X1, . . . , Xn), a field of rational fractions in variables

X1, . . . , Xn, then we can take B = {X1, . . . , Xn} and ∂K(L) = n. When n is
equal to 1, any element of L − K is a transcendence basis.
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3) If A = K[X,Y ]/(F ), where F is non-constant in Y and L = Fr(A),
then it is easy to see that if x is the image of X in A, {x} is a transcendence
basis for L over K.

c. Other results. There are a certain number of other results which resemble
basic results in linear algebra.

Extending base theorem. If x1 . . . , xn is a free subset of L over K, then
it can be extended to a transcendence basis, and hence n � ∂K(L).

Conversely, if x1, . . . xn is a generating set (in the above sense: L is alge-
braic over K(x1, . . . , xn)), then we can extract from it a transcendence basis.
It follows that n � ∂K(L).

Of course, in both cases equality holds if and only if the subsets are both
free and generating.

Given three fields K ⊂ L ⊂ M , ∂K(M) = ∂K(L) + ∂L(M) on taking the
union of two transcendence bases.

4 Some algebra exercises

4.1 Prime ideals: exercises

a) Let A be a ring and p a prime ideal of A. Assume that p contains a
product I1 · · · In of n ideals. Show that p contains one of the ideals Ik.

b) (The avoiding prime ideals lemma.)
Let A be a ring and let I be an ideal. Assume that I is contained in the

union p1 ∪ · · · ∪ pn of n prime ideals of A. Prove that I is contained in one of
the ideals pk. (Argue by contradiction: assume that n is minimal and consider
a suitable element of the form a1 + a2 · · · an.)

4.2 Nilradical and prime ideals

Let A be a ring and N its nilradical (cf. 2.d).
a) Prove that N is an ideal contained in the intersection I of all the prime

ideals of A.
b) We will now show that conversely I ⊂ N . We consider an element s /∈ N

and the set S = {1, s, s2, . . . , sn, . . . }. We note that 0 /∈ S.
Show using Zorn’s lemma (or the ring S−1A) that there is an ideal p which

is maximal amongst the ideals of A not meeting S.
Prove that p is prime (if ab ∈ p consider the ideals p + (a) and p + (b)).

Complete the proof of the theorem.
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4.3 Minimal prime ideals of a Noetherian ring

Let A be a Noetherian ring.
a) Let I be an ideal of A. Prove that there are a finite number of prime

ideals p1, . . . , pn such that the product p1 . . . pn is contained in I. (Argue by
contradiction; assume there exists an I which does not have this property and
take a maximal such I.)

b) Show that A has only a finite number of minimal prime ideals. (Use a)
in the case where I = (0) plus Exercise 1.a.)

4.4 A non-Noetherian ring

Let A = H(C) be the ring of holomorphic functions on the complex plane.
a) Prove that A is an integral domain. What is its fraction field? Deter-

mine A∗.
b) Prove that A is not Noetherian (consider the ideals

Ik = {f ∈ A | ∀ z ∈ N − {0, 1, · · · k} f(z) = 0}

for all k ∈ N and the function sin 2πz).
c) Prove that f ∈ A is irreducible if and only if f has a unique zero z in C

and this zero is a simple zero (i.e., f ′(z) �= 0).
d) Deduce that A is not factorial. Prove that A is, however, integrally

closed.

(It is possible to show that A satisfies Bézout’s theorem: every ideal of A
of finite type is principal, cf. [R] Chapter 15.)
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Schemes

The aim of this chapter is to present a partial (in both senses of the word)
introduction to scheme theory. NB: the theory of schemes developed here is
not exactly the theory developed by Grothendieck, for which we refer the
interested reader to [H], Chapter II. However, in the case we are interested
in (schemes of finite type over an algebraically closed base field k) the two
theories are essentially equivalent (cf. [EGA] IV, 10.9). The power of the more
general definition is important in arithmetic, for example, but this is another
story.

Throughout the following discussion we will be working over an alge-
braically closed base field k.

0 Introduction

When discussing Bézout’s theorem we used finite (i.e., zero-dimensional)
schemes. We will now define schemes in any dimension. The essential dif-
ference between varieties and schemes is the presence of nilpotent elements
in the rings associated to schemes (as we already saw for finite schemes).
Schemes are useful because they enable us to take multiplicity into account.
For example, the line in the plane of equation X = 0 (resp. X2) is a simple
(resp. double) line and in scheme theory this difference will be visible in their
rings, which are k[X,Y ]/(X) and k[X,Y ]/(X2), respectively. In the second
ring, the image of X is not zero, but its square is. One way of understanding
this nilpotent element x is to think of it as being infinitely small, as in the
definition of the tangent space.
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1 Affine schemes

a. Definition

Let A be a k-algebra of finite type. We can write A = k[X1, . . . , Xn]/I, where I
is an ideal. We consider the algebraic set X = V (I) ⊂ kn with its Zariski
topology. There is a standard basis of open sets D(f) with f ∈ A. We de-
fine a sheaf of rings OX on X by setting Γ (D(f),OX) = Af . In particular,
Γ (X,OX) = A.

NB: this sheaf OX is not exactly the sheaf used to define the usual variety
structure on X. The difference is that we have used the ideal I and not rac(I).
If I is not equal to its radical, then the ring A is not reduced—in other words,
it contains nilpotents.

The affine scheme associated to the ring A is then defined to be the
ringed space (X,OX). We denote it by Spm(A) (or Spec(A) if we are sure
Grothendieck is not listening).

b. Examples

Using this method we can construct a scheme Spm(k[X,Y ]/(F )), for example,
which describes the plane curve of equation F = 0 without neglecting the
multiplicities of the factors of F . Alternatively, if F and G have no common
factors we can construct Spm(k[X,Y ]/(F,G) which is the intersection scheme
of F and G with multiplicities (cf. Bézout’s theorem).

2 Schemes

a. Definition

A scheme is a ringed space (X,OX) which is locally isomorphic to an affine
scheme. We suppose moreover that X is quasi-compact.

A scheme is said to be reduced if for any open set U in X the ring Γ (U,OX)
is reduced (i.e., does not contain any non-zero nilpotent element). A reduced
scheme is simply a variety. If X is a scheme, then we associate to X in a
canonical way a reduced scheme denoted by Xred which has the same under-
lying topological space as X and whose rings OXred(U) are the reductions of
the rings OX(U).

b. Examples

1) Projective schemes. Let I be a homogeneous ideal of R = k[X0, . . . , Xn]
and let S = R/I be its quotient ring. Let X = V (I) be the projective algebraic
set defined by I with its Zariski topology. In particular, we have as usual
a basis of open sets D+(f), where f ∈ S is a homogeneous element. We
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define a sheaf of rings on X by setting Γ (D+(f),OX) = S(f). We check as
for varieties that (D+(f),OX |D+(f)) � Spec S(f), so (X,OX) is a scheme
which (by abuse of notation, cf. Grothendieck) we denote by Proj(S) and call
the projective scheme associated to S. If I = 0, then Proj(S) is simply Pn;
for other choices of I we get the closed subschemes of Pn. Once again, the
difference between projective varieties and projective schemes is that the rings
of projective schemes may contain nilpotent elements.

2) Finite schemes. With the above notation we assume in addition that X
is finite. There is then a hyperplane H which does not meet X and we can
assume H = V (X0). We then have X = Proj(S) � Spec S(X0), so the finite
scheme X is both projective and affine. Conversely, it is possible to prove that
the finite schemes are the only schemes which are both affine and projective.
The ring R = S(X0) is a finite-dimensional k-vector space which is a direct
product of its local rings OX,P with P ∈ X. These local rings are also finite
dimensional and their maximal ideals are nilpotent (cf. the rings of type k[η]
with ηn = 0, for example). If a local ring is reduced, then it is simply k and
we say that the associated point is a simple point.

3 What changes when we work with schemes

First of all, nothing changes at all when we work with reduced schemes: they
are simply varieties. Furthermore, most of the notions (such as irreducibility,
components, dimension, products, separatedness, morphisms, subschemes and
cohomology. . . ) which we have defined for varieties can also be defined for
schemes. This is obvious for topological properties such as the number of
components or the dimension, since the topological properties of a scheme X
are the same as those of the variety Xred.

The tangent space of a scheme can be calculated just like the tangent
space of a variety: we consider (for an affine scheme, say) the (infinitesimal)
deformations of the algebra Γ (X,OX) at the point in question. Of course,
a priori this ring might not be reduced. In particular, we can describe the
tangent space in the following way.

Let I be an ideal of k[X1, . . . , Xn] (which is not necessarily radical), set
A = k[X1, . . . , Xn]/I, set X = Spm(A) and let x be a point of X. We suppose
that I = (F1, . . . , Fr). Let dx(F1, . . . , Fr) : kn → kr be the Jacobian matrix
of the polynomials Fi at the point x. Then Tx(X) = Ker dx(F1, . . . , Fr).

We have the following smoothness criterion which is analogous to the cri-
terion for smooth varieties.

Theorem 1. Let I be an ideal of the ring k[X1, . . . , Xn] and set X =
Spm(k[X1, . . . , Xn]/I). Assume that X is irreducible and of dimension n.
Let x be a point of X and let Tx(X) be the tangent space to X at x. As-
sume dim Tx(X) = n. Then X is a variety, X is smooth at x and I(X) = I.
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It is easy to give a refined version of this criterion for non-irreducible X.
Moreover, the same result holds for X = Proj(k[X0, . . . , Xn]/I) when I is
a homogeneous ideal. Finally, we note that if X is a finite scheme, then it
is smooth if it is reduced, i.e., if it is a variety. Indeed, this implies that
the tangent space at every point vanishes, so mx = 0 for every x ∈ X by
Nakayama’s lemma.

4 Why working with schemes is useful

There are several types of problems in which schemes are indispensable.

a. Intersection problems

We saw a lot of scheme-theoretic intersections when talking about Bézout’s
theorem. More generally, given two subschemes X and Y in Pn (for exam-
ple) defined by homogeneous ideals I and J , their intersection scheme is the
subscheme defined by the ideal I + J . Even if X and Y are varieties, the
scheme structure on the intersection is fundamentally important: it explains
intersection multiplicities and all contact phenomena.

b. Fibres

Let ϕ : X → Y be a morphism of schemes (or varieties). We have proved
several results on the fibre ϕ−1(y) at a point of Y , considered as a variety. The
dimension theorems are the same whether we work with schemes or varieties,
but certain more subtle results can only be proved using the scheme structure
on the fibre. This can be done in the following way. Assume Y is affine with
ring A (which we are allowed to do) and that X is affine with ring B. There
is therefore a map ϕ∗ : A → B and y corresponds to a maximal ideal m in A.
We have seen that set-theoretically ϕ−1(y) = V (mB). We define the scheme
ϕ−1(y) to be Spm(B/mB). (The variety ϕ−1(y) corresponds to the radical of
the ideal mB.)

If X is not affine, then we glue together the fibres obtained by this method
in each of the open affine sets of X (cf. Exercise VII, 2.1).

Using this definition of a fibre it follows that, for x ∈ X and y ∈ ϕ(x),
Tx(ϕ−1(y)) = KerTx(ϕ). (Compare this result with Problem VI, 1.2.)

Let’s look at an example to understand why this construction is useful.
Consider the morphism ϕ : V → W , where V = V (Y 3+XY +X) ⊂ k2, W = k
and ϕ(x, y) = x. Looking at rings, we get a map ϕ∗ : k[X] → k[X,Y ]/(Y 3 +
XY + X) given by ϕ∗(X) = X. Consider x ∈ k. The point x corresponds to
the maximal ideal (X − x) in k[X] and hence (as a scheme) the fibre over x
has associated ring k[Y ]/(Y 3 + xY + x).
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Set-theoretically, this fibre has three distinct points if x �= 0,−27/4 (and
in this case its ring is isomorphic to k × k × k), two points if x = −27/4 (but
with ring k × k[Y ]/(Y 2), i.e., with one double and one simple point) and one
point if x = 0 (whose ring is k[Y ]/(Y 3), so this point is a triple point). In
every case, the dimension of the ring of the fibre as a k-vector space is always
equal to 3 (which cannot be seen looking only at the variety structure): we
say that ϕ is a degree 3 covering of Y ramified at the points 0 and −27/4
(cf. [H] Chapter IV, 2).

c. Differential calculus

We have already seen how to use the scheme Spec k[ε] with ε2 = 0 to calculate
tangent spaces. We can generalise this to higher-order differential calculus
by copying the techniques of differential geometry (jets and so forth) using
nilpotent elements of order > 2.

5 A scheme-theoretic Bertini theorem

We will use the notations of Problem VI. Using the above remarks on tangent
spaces it is easy to prove the following theorem.

Theorem 2. Let ϕ : X → Y be a dominant morphism between irreducible
varieties. Assume that X is smooth. There is a non-empty subset V ∈ Y
such that ϕ|ϕ−1(V ) : ϕ−1(V ) → V is smooth. In particular, the fibres ϕ−1(y)
(which a priori have a scheme structure) are smooth varieties for all y ∈ V .

When the dimensions of X and Y are the same, the general fibres are finite
and formed of simple points, as in Example 4.b.

We also have the following version of Bertini’s theorem, which is proved
using the methods of Problem VI.

Theorem 3. Let X ⊂ Pn be an irreducible smooth projective variety. If H
is a general hyperplane of Pn, the scheme X ∩ H is a smooth (projective)
variety.

When X is a curve, this shows that in general X ∩H is finite and consists
of d simple distinct points (where d is the degree of the curve X). In the plane,
for example, this means that we can always find lines which are not tangent
to a given curve. The notion of a scheme is indispensable for understanding
these phenomena as X ∩ H, which is finite, is always smooth as a variety, so
the version of Bertini’s theorem given in Problem VI does not help us.
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Problems

Problem I

The aim of this problem is to study products of algebraic varieties. We work over
an algebraically closed base field k.

1 Products of affine algebraic sets

a) Let V ⊂ kn, W ⊂ km be two affine algebraic sets. Prove that V ×W is an affine
algebraic set in kn+m. Prove that the projections p and q from V × W to V
and W are regular maps and give the associated ring morphisms.
We denote by x (resp. y) a point in kn (resp. km) and by k[X] (resp. k[Y ]) the
rings of polynomials k[X1, . . . , Xn] (resp. k[Y1, . . . , Ym]).

b) Prove that the formula ϕ(
∑

i fi ⊗ gi)(x, y) =
∑

i fi(x)gi(y) defines a k-algebra
homomorphism ϕ : Γ (V )⊗k Γ (W ) → Γ (V ×W ) (cf. Summary 2). Prove that ϕ
is an isomorphism. (To prove the injectivity of ϕ, consider bases for the k-vector
spaces Γ (V ) and Γ (W ).)
Deduce that the ideal I(V × W ) is generated by polynomials f(X) and g(Y )
such that f ∈ I(V ) and g ∈ I(W ). (Reduce the problem to calculating the
kernel of the natural map from k[X] ⊗k k[Y ] to Γ (V ) ⊗k Γ (W ).)

c) Prove that the projections p and q are open with respect to the Zariski topologies
(i.e., the image of an open set is open). (Consider an open set D(f) in the
product and write f = ϕ(

∑
i fi ⊗ gi), where the elements gi are part of a basis

of Γ (W ) over k. NB: the Zariski topology on the product is not the product of
the Zariski topologies.)

d) Prove that if V and W are irreducible, then so is V × W (use c)).

e) Deduce from d) the following purely algebraic result: if A and B are two integral
domain k-algebras, then the algebra A ⊗k B is an integral domain. Prove that
this is not the case if k is not algebraically closed (cf. Summary 2.3).
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2 Products of varieties

Let C be a category (i.e., in simple terms, a collection of objects and maps). Let X
and Y be two objects in C. A product of X and Y in C is an object Z in C with
two maps in C, p : Z → X and q : Z → Y (called projections) with the following
(universal) property: for any object T in C and maps p′ : T → X and q′ : T → Y
there is a unique map f from T to Z such that p′ = pf and q′ = qf .

a) Prove that if X and Y have a product in C, then this product is unique up to
canonical isomorphism. We denote this product by X × Y .

b) Prove that if X and Y are affine algebraic sets (from which it follows that they
are affine algebraic varieties), then the affine algebraic variety X×Y is a product
in the category of algebraic varieties.

c) Prove that products exist in the category of algebraic varieties: if X and Y are
algebraic varieties, then their product is defined as follows:

i) The underlying set is the product set X × Y .
ii) A basis of open sets of X × Y is given by considering all open affine sets U

in X and V in Y , and then taking all the affine open sets in the product
U × V (NB: this topology is finer than the product topology).

iii) The sheaf of rings is defined on this basis of open sets in the only reasonable
way.

d) Generalise c) and d) of 1 to products of arbitrary varieties.

3 Products of projective varieties

a) Prove that we can define a morphism (called the Segre morphism) ϕ : Pr×Ps →
Prs+r+s by setting

ϕ((x0, . . . , xr), (y0, . . . , ys)) = (x0y0, . . . , xiyj , . . . , xrys).

(Here i and j vary from 0 to r and 0 to s respectively.)

b) Prove that the image of ϕ is the closed subvariety V (I) in Prs+r+s, where I
is the kernel of the homomorphism from k[Zi,j ] (i = 0, . . . , r, j = 0, . . . , s) to
k[Xi, Yj ] (with the same indices) associating XiYj to Zi,j .

c) Prove that ϕ is an isomorphism from Pr × Ps to V (I). (Prove first that ϕ is
injective, then restrict to the open affine sets Zi,j �= 0, Xi �= 0, Yj �= 0.)

d) Deduce that the product of two projective varieties is a projective variety.

e) Give the equations of the Segre embedding of P1 × P1 in P3.

4 Separated varieties

Let X be an algebraic variety.
We say that X is separated if the diagonal ∆ = {(x, y) ∈ X × X | x = y} is

closed in X × X.

a) Prove that any affine algebraic variety is separated.
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b) Let X be an algebraic variety. We suppose that for any x, y ∈ X there is an
open affine set U containing x and y. Prove that X is separated.

c) Prove that any projective variety is separated.

d) Let X be a separated algebraic variety. Prove that the intersection of two open
affine sets of X is an open affine set.

e) Let f : X → Y be a morphism and let Y be separated. Prove that the graph of
f , G(f) = {(x, y) ∈ X × Y | y = f(x)} is closed in X × Y .

Problem II

The aim of this problem is to study complete (or proper) algebraic varieties and
in particular to show that projective varieties are complete. We work over an alge-
braically closed base field k.

1 Generalities on complete varieties

An algebraic variety X is said to be complete if for every variety Y the second
projection p : X × Y → Y is closed, i.e., sends closed sets to closed sets. (See
Problem I for the definition of the product.)

a) Let f : X → Y be a morphism. We assume that X is complete and Y is
separated. Prove that the image f(X) is closed and that it is a complete variety
(cf. Problem I, 4.e).

b) Assume that X and Y are complete. Prove that X × Y is complete.

c) Assume that X is complete. Let Y be a closed subvariety of X. Prove that Y is
complete.

d) Let n be greater than or equal to 1. Prove that the affine space An(k) is not
a complete variety (use a)). More generally, it is possible to prove that any
complete affine variety is finite.

2 Completeness of Pn

In this section we will prove that Pn is a complete variety. Let Y be a variety, let p
be the projection p : Pn × Y → Y and let Z be a closed set in Pn × Y . We have to
prove that p(Z) is a closed set in Y .

a) Prove that we can reduce the problem to the case where Y is an affine variety
with associated ring R.

b) Set Ui = D+(Xi)×Y . Prove that the sets Ui form an open affine cover of Pn×Y
and that Γ (Ui) = R[X0/Xi, . . . , Xn/Xi]. (We will denote this ring by Ai.)

c) Let J be the homogeneous ideal generated in S = R[X0, . . . , Xn] by the homo-
geneous polynomials F such that for all i

F (X0/Xi, . . . , Xn/Xi) ∈ I(Z ∩ Ui).

Let Sr (resp. Jr) be the degree r homogeneous part of S (resp. J). Prove that
for all i and all f ∈ I(Z ∩ Ui) there are integers k, r such that F = Xk

i f ∈ Jr.
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d) Consider y ∈ Y − p(Z) corresponding to the maximal ideal m in R. Determine
the closed set V (mAi) in Ui. Prove the equality Ai = mAi + I(Z ∩ Ui). (Use
the Nullstellensatz.)

e) Prove there is an integer t such that, for all i, Xt
i ∈ Jt + mSt. Prove there is an

integer r such that Sr = Jr + mSr.

f) Deduce that there is an f ∈ R, f /∈ m such that fSr ⊂ Jr. (Use Nakayama’s
lemma, cf. Summary 2.4.c, applied to the ring R and the module Sr/Jr).

g) Prove that f is contained in I(Z ∩ Ui) for every i. Complete the proof of the
theorem.

3 Applications

a) Prove that every projective variety is complete.

b) Let V be an irreducible projective variety. Prove that Γ (V,OV ) = k or, alter-
natively, every morphism f : V → k is constant (use 3.a, 1.a and 1.d).

Problem III

1 Notation

If A is an integral domain, we denote its fraction field by Fr(A).
If K is a field extension of a field k, we denote its transcendence degree over k

by ∂k(K). We refer to Summary 3 for more information on algebraic independence,
transcendence degree and so forth.

If A is a ring we denote the set of its prime ideals by Spec(A) and its Krull
dimension by dimK(A).

If x1, . . . , xn are elements of a k-algebra A, we denote the subalgebra of A gener-
ated by the elements xi by k[x1, . . . , xn], but we reserve the notation k[X1, . . . , Xn]
with capital letters for the ring of polynomials in the variables Xi.

2 Noether’s normalisation lemma

The aim of this section is to prove the following result.

Theorem 1. Let k be a field and let A be a k-algebra of finite type which is an in-
tegral domain. Set K = Fr(A) and n = ∂k(K). There exist elements x1, . . . , xn ∈ A,
algebraically independent over k, such that A is integral over k[x1, . . . , xn].

a) Write A as a quotient k[Y1, . . . , Ym]/I. Prove that m � n and prove the theorem
when m = n.

b) Assume m > n. Let y1, . . . , ym be the images of the variables Yi in A. Prove
that they satisfy an algebraic equation F (y1, . . . , ym) = 0, where F is a non-zero
polynomial with coefficients in k.
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c) Choose positive integers r2, . . . , rm and set

z2 = y2 − yr2
1 , . . . , zm = ym − yrm

1 .

Prove that y1, z2, . . . , zm also satisfy a non-trivial algebraic equation with coef-
ficients in k.
¶ Prove that, for large enough ri with large enough growth (i.e.,
0�r2�· · ·�rm), y1 is integral over the subring of A generated by the
elements zi.

d) Complete the proof of the theorem by induction on m.

3 The Cohen-Seidenberg going-up theorem

We aim to prove the following theorem.

Theorem 2. Let A and B be two rings such that A ⊂ B and B is integral over A.
The following properties hold.

1) The map q 
→ q∩A from Spec B to Spec A is surjective. Moreover, the following
hold.
For all p, p′ ∈ Spec A such that p ⊂ p

′ and all q ∈ Spec B such that q ∩ A = p

there is a q
′ ∈ Spec B such that q

′ ∩ A = p
′ and q ⊂ q

′.
2) The map q 
→ q ∩ A is “almost” injective: given q, q′ ∈ Spec B such that q ⊂ q

′

and q ∩ A = q
′ ∩ A, q = q

′.
3) dimK(A) = dimK(B).

a) We use the notations and hypotheses of Theorem 2; moreover, we assume that B
is integral over A. Prove that the following are equivalent: A is a field and B is
a field.

b) Let J be an ideal of B and set I = J ∩ A. Prove that A/I is a subring of B/J
and that B/J is integral over A/I.

c) We now further assume that A is local and its maximal ideal is m. Prove that
the prime ideals of B over m (i.e., the ideals q such that q∩A = m) are exactly
the maximal ideals of B (use b)).

d) Let p be a prime ideal of A and set S = A − p. We denote by Ap and Bp the
localisations S−1A and S−1B. Prove that Ap is local and contained in Bp and
that Bp is integral over Ap .

e) Prove 1) and 2) of the theorem using d) and c).

f) Complete the proof of the theorem.

4 Dimensions of k-algebras of finite type

Our aim is to prove the following fundamental theorem on dimensions.

Theorem 3. Let k be a field and let A be a k-algebra of finite type which is an
integral domain. Set K = Fr(A). Then dimK(A) = ∂k(K).
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a) Prove that

∂k Fr(k[X1, . . . , Xn]) = n and dimK(k[X1, . . . , Xn]) � n.

b) Let p be a non-zero prime ideal of k[X1, . . . , Xn]. Prove that

∂k Fr(k[X1, . . . , Xn]/p) � n − 1.

c) Prove Theorem 3 when ∂k(K) = 0.

d) Prove Theorem 3 by induction on ∂k(K). (Use the normalisation lemma and
going-up to reduce to the case where A = k[X1, . . . , Xn]. Then take a chain of
prime ideals (0) ⊂ p1 ⊂ · · · ⊂ pr of k[X1, . . . , Xn] and use b), plus the induction
hypothesis.)

5 Applications to the Nullstellensatz

Let K be a k-algebra of finite type. Assume K is a field. Prove that K is alge-
braic over k (use theorems 1 and 2.a). Deduce a proof of the weak Nullstellensatz
(cf. Chapter I, 4.1) in the general case.

Problem IV

1 Discrete valuation rings

1) Let A be an integral domain and K its fraction field. Assume A �= K. Prove
that the following are equivalent.

i) A is local and principal.
ii) A is local and Noetherian and its unique maximal ideal m is principal.
iii) There exists an irreducible π ∈ A, π �= 0 such that ∀x ∈ A, x �= 0, x = uπn,

where n ∈ N and u ∈ A∗.
iv) There is a map v : K → Z ∪ {∞} such that:

• v(0) = ∞,
• ∀x, y ∈ K, v(xy) = v(x) + v(y),
• ∀x, y ∈ K, v(x + y) � inf(v(x); v(y)),
• v(K) �= {0,∞},

and such that A = {x ∈ K | v(x) � 0}. (Arithmetic in Z ∪ {∞} is as one
would expect: n + ∞ = ∞, etc.)

A ring satisfying the above properties is said to be a discrete valuation ring ; v
is its valuation and π is said to be a uniformising parameter.

2) Prove that any regular (local Noetherian integral domain) ring of dimension 1 is
a discrete valuation ring. Prove that the ring of formal series k[[T ]] is a discrete
valuation ring.

3) Assume that A is both a k-algebra and a discrete valuation ring and the natural
map from k to A/m is an isomorphism. Consider a ∈ A. Prove that dimk A/(a) =
v(a).
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2 The link with Dedekind rings

Our aim is to prove the following theorem.

Theorem. Let A be a Noetherian domain. The following are equivalent.

1) A is one-dimensional and is integrally closed.
2) For any maximal ideal m in A, Am is a discrete valuation ring.

We then say that A is a Dedekind domain.

A) We prove that 2) ⇒ 1). Assume that all the rings Am are discrete valuation
rings.

A1) Prove that A is one-dimensional.
A2) Prove that any discrete valuation ring is integrally closed.
A3) Prove the formula

A =
⋂

m∈Max A

Am .

(To prove A ⊃
⋂

m∈Max A

Am , consider the conductor of an element x in K,

Ix = {a ∈ A | ax ∈ A}.)

Deduce that A is integrally closed.

B) We now prove 1) ⇒ 2). Assume A satisfies 1). Let m be a maximal ideal in A.

B1) Prove that Am is a local domain of dimension 1 and that it is integrally
closed.

B2) Let R be a non-zero Noetherian ring. Prove there is an a ∈ R such that
Ann a = {x ∈ R | ax = 0} is a prime ideal of R (called an associated prime
ideal of R). (Take a maximal element amongst the annihilating ideals of R.)

B3) Let M be an n×n matrix with coefficients in an integral domain R and let
P (X) = det(XI − M) be its characteristic polynomial. Prove that P (X)
is a unitary polynomial with coefficients in R and P (M) = 0 (the Cayley-
Hamilton theorem). (Pass to fraction fields to reduce to the usual Cayley-
Hamilton theorem.)

B4) We now prove that if A is a local Noetherian domain with maximal ideal m

which is one-dimensional and integrally closed, then it is a discrete valuation
ring.

We consider an element f ∈ m, f �= 0.

a) Prove there is a g ∈ A, g /∈ fA such that (g/f)m ⊂ A. (Apply B2 to
the ring A/fA.)

b) Prove (g/f)m ⊂ m or (g/f)m = A. In the latter case, prove that m is
principal and complete the proof of the theorem in this case.

c) Prove that (g/f)m ⊂ m is impossible. (Otherwise, g/f would define an
endomorphism of the finite-type A-module m: writing out the Cayley-
Hamilton equation for this endomorphism we can show that g/f is then
integral over A and produce a contradiction.)



222 C Problems

3 An example

Set A = C[X, Y ]/(Y 2 − X3 + X).

1) Prove that the plane curve of equation Y 2 − X3 + X is irreducible and non-
singular. Deduce that A is integrally closed.

2) Prove that A is not factorial. (Denoting the images of X and Y in A by x and y,
prove that y is irreducible but the ideal (y) is not prime because y2 = x3 − x =
x(x − 1)(x + 1).)

Problem V

The aim of this problem is to prove the following theorem.

Theorem. Let X be an irreducible variety.

1) For every x ∈ X, dim Tx(X) � dim X.
2) There is a non-empty open set in X on which equality holds (i.e., X has a

smooth open set).

(If X is not irreducible, then dim Tx(X) � dimx X.)

1) Prove that the map from X to N which associates dim Tx(X) to x is upper
semi-continuous (i.e., if dim Ta(X) = n, then dim Tx(X) � n for x close to a)
(cf. Exercise IV, 3).

2) Prove that the theorem holds for an irreducible hypersurface V (F ) in kn. (NB:
the proof is somewhat trickier in positive characteristic.)

3) Let X and Y be two irreducible varieties. We say that X and Y are birationally
equivalent if there is a non-empty open set of X, U , and an open set of Y , V ,
which are isomorphic. Prove that if X and Y are affine, then they are birationally
equivalent if and only if their rational fraction fields K(X) and K(Y ) (i.e., the
fraction fields of Γ (X) and Γ (Y )) are k-isomorphic.

4) We recall the primitive element theorem: if K ⊂ L is a separable (which is always
the case if K is of characteristic zero, for example) finite algebraic extension,
then there is an x ∈ L (called the primitive element) such that L = K(x).
Prove that X is birationally equivalent to a hypersurface V in kn. (Reduce
to the case where X is affine and consider the field of functions K(X). Take a
transcendence basis x1, . . . , xn in K(X) over k and then take a primitive element
for the extension k(x1, . . . , xn) ⊂ K(X). The reader may prefer to consider only
the characteristic zero case and refer to Shafarevitch p. 29 for the general case.)

5) Complete the proof of the theorem.

6) Application to algebraic groups. Let G be an algebraic group (i.e., an algebraic
variety equipped with a group structure such that the multiplication µ : G×G →
G and the inverse σ : G → G given by µ(x, y) = xy and σ(x) = x−1 respectively
are morphisms). For example, the usual classical groups—the linear group, the
orthogonal groups and so forth—are algebraic groups.
a) Prove that the translations x 
→ ax are variety isomorphisms from G to

itself.
b) Prove that if G is connected, then it is irreducible (argue by contradiction

assuming that G is not irreducible and using a)).
c) Prove that G is a smooth variety. (Reduce to the case where G is connected

and use both a) and the above theorem.)
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Problem VI

The aim of this problem is to study smooth morphisms between irreducible smooth
varieties and in particular to prove the generic smoothness theorem and one of the
many versions of Bertini’s theorem. An integral morphism will always be assumed
to be dominant and hence surjective.

1 Smooth morphisms

Let X and Y be smooth irreducible varieties and let ϕ : X → Y be a dominant map.
We say that ϕ is smooth if for any x ∈ X the linear tangent map Tx(ϕ) : Tx(X) →
Ty(Y ), where y = ϕ(x) is surjective.

NB: if X and Y are not smooth this definition is not the right one (cf. [H]
Chapter III, 10). In what follows we will only consider smooth morphisms between
smooth varieties.

1) Prove that the composition of two smooth morphisms is again a smooth mor-
phism. Prove that if Z and Y are smooth, then the projection from Y ×Z to Y
is smooth. If U is an open subset of a smooth variety X, prove that the inclusion
of U in X is smooth.

2) Let ϕ : X → Y be a morphism. We denote by ϕ−1(y) the fibre of y ∈ Y with
its variety structure. Prove that for all x ∈ ϕ−1(y), Tx(ϕ−1(y)) ⊂ Ker Tx(ϕ).

3) Deduce that if ϕ is smooth, the non-empty fibres of ϕ are smooth of dimen-
sion dim(X) − dim Y and that Tx(ϕ−1(y)) = Ker Tx(ϕ) for all x ∈ X. (Use
Problem V and the dimension of fibres theorem.)

2 An example

Let ϕ : X → Y be a dominant morphism of irreducible affine varieties. We set
A = Γ (Y ) and B = Γ (X): there is then an injective map ϕ∗ : A → B. We suppose
that B = A[ξ] � A[T ]/(P ), where P (T ) = T n + an−1T

n−1 + · · · + a0 with ai ∈ A.
The morphism ϕ is then integral. Furthermore, we assume that f = P ′(ξ) = nξn−1+
(n − 1)an−1ξ

n−2 + · · · + a1 is �= 0 in B.

1) Prove that if x ∈ D(f), then the linear tangent map Tx(ϕ) : Tx(X) → Ty(Y ),
where y = ϕ(x), is surjective. (Lift a deformation χ : A → k[ε] of the form
χ(a) = a(y) + v(a)ε to a deformation ψ of B of the form ψ(ξ) = ξ(x) + w(ξ)ε;
the trick is to find w(ξ).)

2) Deduce that if D(f) and Y are smooth, then the morphism ϕ|D(f) : D(f) → Y
is smooth.

3 The generic smoothness theorem, first version

Henceforth we assume the field k is of characteristic zero. We will prove the following
theorem.



224 C Problems

Theorem 1. Let ϕ : X → Y be a dominant map between irreducible varieties (which
are not assumed to be smooth). There are non-empty (smooth) open sets U in X
and V in Y such that ϕ(U) ⊂ V and ϕ|U : U → V is smooth.

1) Prove that we can assume that X and Y are affine and smooth (cf. Problem V).

2) Prove that after replacing X by one of its open sets we can write ϕ = piψ :

X
ψ−→ Ω

i−→ Y × kn p−→ Y , where ψ is integral, i is the inclusion of the open
set Ω in Y × kn, and p is projection. (Use the arguments seen in the proof of
the dimension of fibres theorem given in Section 3 of Chapter IV.)
Deduce that it will be enough to prove the theorem for integral ϕ.

3) Assume that ϕ is integral. Using the primitive element theorem (cf. Problem V:
this is where we need the hypothesis that k is of characteristic zero) prove that,
after possibly modifying X, we can reduce to the case where ϕ is of the form
given in Example II. Complete the proof of the theorem.

4 The generic smoothness theorem, second version

Theorem 2. Let ϕ : X → Y be a dominant morphism between irreducible varieties
such that X is smooth. There is then a non-empty open set V in Y such that
ϕ|ϕ−1(V ) : ϕ−1(V ) → V is smooth. In particular, the fibres ϕ−1(y) are smooth for
all y ∈ V .

1) Prove that it is enough to deal with the case where Y is smooth.

2) Set Xr = {x ∈ X | rank(Tx(ϕ)) � r}. Prove that dim ϕ(Xr) � r. (Consider
the restriction of ϕ to suitable irreducible components of Xr and ϕ(Xr) and use
Theorem 1 and the dimension of fibres theorem.)

3) Complete the proof of the theorem.

5 Bertini’s theorem

Let E be a vector space of dimension n+1. A hyperplane H in P(E) � Pn is defined
by a non-zero linear form f ∈ E∗ and two such forms define the same hypersurface
if and only if they are proportional. The set G of hyperplanes in P(E) is therefore
in canonical correspondence with the projective space P(E∗) � Pn. Henceforth we
identify these two spaces.

Let X ⊂ Pn be an irreducible smooth projective variety. Our aim is to prove
Bertini’s theorem.

Theorem 3. If H is a general hyperplane in Pn, X ∩ H is a smooth (projective)
variety.

(Here, the word general means that there is a dense open set U in G such that
if H ∈ U , then X ∩ H is smooth.)

We consider the incidence variety V ⊂ X × G:

V = {(x, H) | x ∈ H}.
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1) Prove that V is a closed subset of X × G or Pn × G and give its equations in
terms of the equations for X.

2) Prove that V is irreducible (use Exercise 7 of Chapter IV) and smooth (calculate
its dimension and the dimension of its tangent space).

3) Complete the proof of the theorem by applying Theorem 2 to the projection
from V to G.

We refer to the appendix on schemes for more details of these two theorems.

Problem VII

The aim of this problem is to establish the existence and uniqueness of the intersec-
tion multiplicity of two plane curves in a point. This multiplicity will be constructed
as a function verifying certain natural properties. The following is largely inspired
by Fulton [F], Chapter 3, Section 3.

1 Statement of the theorem

There is a unique map µ : k2 × (k[X, Y ]−{0})2 → N∪{∞} associating to the point
P ∈ k2 and the non-zero polynomial F, G ∈ k[X, Y ] a number µP (F, G) called the
intersection multiplicity of F and G at the point P satisfying the following seven
axioms.

1) µP (F, G) = ∞ if and only if F and G have a common factor H passing through P
(i.e., such that H(P ) = 0).

2) µP (F, G) = 0 if and only if P /∈ V (F ) ∩ V (G).

3) µP (F, G) = µP (G, F ) for all P, F, G.

4) If u : k2 → k2 is a bijective affine map, then for all P, F, G: µP (F, G) =
µu−1(P )(F

u, Gu). (Recall that F u is the polynomial such that for all x, y ∈ k,
F u(x, y) = F (u(x, y)).)

5) We have µP (F, G) � µP (F )µP (G) with equality if and only if F and G have no
common tangents at P .

5’) Variant: if P = (0, 0), then µP (X, Y ) = 1.

6) If F =
∏m

i=1F
ri
i and G =

∏n
j=1G

sj

j , then µP (F, G) =
∑

i,jrisjµP (Fi, Gj).

7) We have µP (F, G) = µP (F, G + AF ) for any polynomial A ∈ k[X, Y ] (in other
words µP (F, G) essentially depends only on the ideal (F, G)).
Moreover, when F and G have no common factor passing through P this number
is given by the formula

µP (F, G) = dimk Ok2,P /(F, G).
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2 Uniqueness

Let µ and µ′ be two maps satisfying Axioms 1) to 7) (with variant 5’). Our aim is
to show that µ = µ′.

a) Prove that if µP (F, G) = ∞, then µ′
P (F, G) = ∞.

b) Prove that if µP (F, G) = 0, then µ′
P (F, G) = 0.

c) Set P = (0, 0) and let m, n be positive integers. Prove that µP (Xm, Y n) =
µ′

P (Xm, Y n) = mn.

We now proceed by induction on µP (F, G). Consider n ∈ N such that n > 0.
We assume that uniqueness has been proved for µP (F, G) < n. Consider P, F, G
such that µP (F, G) = n. We will show that µ′

P (F, G) = n.

d) Prove that F and G have no common factors passing through P and P ∈
V (F ) ∩ V (G). Prove we can assume P = (0, 0).

We consider the polynomials F (X, 0) and G(X, 0); let the integers (r, s) be their
respective degrees. We proceed by induction on inf(r, s).

e) Assume inf(r, s) = 0. Prove that µ′
P (F, G) = n. (Factorise one of the polyno-

mials by Y and use Axioms 6) and 7), c) above and the induction hypothesis
on n.)

f) Assume inf(r, s) > 0. Prove that we can assume r � s. Prove there is a polyno-
mial A such that if H = G + AF the degree of H(X, 0) is < s. Prove further
that there is an A such that the degree of H(X, 0) is < r and complete the proof
by applying the induction hypothesis on inf(r, s) to F and H.

We note that this uniqueness proof gives us an algorithm for calculating
µP (F, G) in a finite number of operations. Of course, the calculation is much
easier using 5) than 5’).

g) Apply the above to calculate µP (F, G) in the following cases:

1) P = (0, 0) and F, G are arbitrary polynomials in the following list

Y 2 − X3, X3 + Y 3 + XY, (X2 + Y 2)2 + 3X2Y − Y 3,

(X2 + Y 2)3 − 4X2Y 2, 2X4 + Y 4 − Y (3X2 + 2Y 2) + Y 2,

X2Y 3 + X2 + Y 2, Y 2 + X2 + X2Y 2 − 2XY (X + Y + 1).

2) P = (1, i, 0) and F, G are homogeneous polynomials

(X2 + Y 2)2 + T (3X2Y − Y 3), (X2 + Y 2)3 − 4X2Y 2T 2.

(Use the affine open set X �= 0.)

3 Existence with variant 5’

When F and G have no common factors passing through P , we set µP (F, G) =
dimk Ok2,P /(F, G) (otherwise we set µP (F, G) = ∞). Our aim is to prove that µ
satisfies the seven axioms (with variant 5’). We will occasionally write Ok2,P = O
for short.
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a) Assume F = F1F2 and F1(P ) �= 0. Prove there is an isomorphism
Ok2,P /(F, G) � Ok2,P /(F2, G). Deduce that µP (F, G) is unchanged if we
multiply F or G by a polynomial which does not vanish at P .

b) Prove that µ satisfies Property 1). When F and G have no common factor
passing through P , use the isomorphism

k[X, Y ]/(F, G) �
∏

P∈V (F )∩V (G)

Ok2,P /(F, G);

otherwise, if H is an irreducible factor of F and G such that H(P ) = 0, prove
that Ok2,P /(F, G) is of dimension larger than Γ (V (H)) and this latter ring is
of infinite dimension.

c) Prove Properties 2), 3), 4), 5’), 7). (For 4), note that if u is a morphism from k2

to itself it induces an isomorphism of the local rings Ok2,P and Ok2,u−1(P ).)

d) To prove 6) reduce the problem first to establishing the formula µP (F, GH) =
µP (F, G) + µP (F, H) when F and GH have no common factor and then prove
there is an exact sequence

0 −→ O/(F, H)
ψ−−→ O/(F, GH)

π−−→ O/(F, G) −→ 0,

where π is the canonical projection and ψ is induced by multiplication by G.

4 Existence: Property 5)

We define µ as in 2. We will prove 5), which is somewhat trickier. We set m = µP (F )
and n = µP (G).

a) Prove we can reduce to the case where P = (0, 0).

b) Let I be the ideal (X, Y ) in k[X, Y ]. Calculate dimk(k[X, Y ]/Ir) for all r ∈ N.

c) Prove there is an exact sequence

k[X, Y ]/In × k[X, Y ]/Im ψ−−→ k[X, Y ]/Im+n ϕ−−→ k[X, Y ]/(Im+n, F, G) −→ 0,

where ϕ is the canonical projection and ψ is given by ψ(A, B) = AF + BG.
Deduce that dimk k[X, Y ]/(Im+n, F, G) � mn with equality if and only if ψ is
injective.

d) Prove there is an isomorphism α : k[X, Y ]/(Im+n, F, G) → O/(Im+n, F, G).
(Start by proving that the first ring is local.) Deduce that µP (F, G) � mn.
Prove that equality holds if and only if we have the following two conditions:

1) ψ is injective;
2) the projection π : O/(F, G) → O/(Im+n, F, G) is an isomorphism, or, al-

ternatively, Im+n ⊂ (F, G)O (the ideal generated by F and G in O).

We now assume that F and G have no common tangent at P .

e) Prove that ψ is injective. (If ψ(A, B) = AF + BG = 0, then consider the lowest
degree terms of A, B, F, G.)
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f) Prove that, for large enough r, Ir ⊂ (F, G)O (use a polynomial H which vanishes
at all the points of V (F ) ∩ V (G) except P and apply the Nullstellensatz).

g) Let L1, . . . , Lm (resp. M1, . . . , Mn) be the tangents to V (F ) (resp. V (G)) at P
(some of the Li (resp. Mj) can be equal, but Li �= Mj for all i, j). For all i, j � 0,
we set Ai,j = L1 · · ·LiM1 · · ·Mj with the convention that if i > m (resp. j > n),
Li = Lm (resp. Mj = Mn).
Prove that for t � 0 the set of polynomials Ai,j such that i + j = t form a basis
for the vector space of homogeneous polynomials of degree t.

h) Prove that if i + j � m + n − 1, then Ai,j ∈ (F, G)O (use f) and g)).

i) Complete the proof of the theorem.

Problem VIII

The aim of this problem is to establish the following theorem.

Theorem. Let C be an irreducible projective plane curve. The curve C is then
birationally equivalent to an irreducible projective plane curve X which has only
ordinary singular points (i.e., singular points with distinct tangent lines).

As we know that every irreducible curve is birationally equivalent to a projective
plane curve (cf. Problem V, for example), we see that every irreducible curve is
birationally equivalent to a projective plane curve with ordinary singularities.

What follows is taken from Fulton [F], Chapter 7, paragraph 4.

We work in the projective plane P2 = P2(k) over an algebraically closed base
field k of characteristic zero. (For the characteristic p case, see Fulton [F], appendix.)
The homogeneous coordinates of the plane are denoted x, y, z. We consider the three
points (called the fundamental points)

P = (0, 0, 1), P ′ = (0, 1, 0) and P ′′ = (1, 0, 0)

and the three lines (called the exceptional lines)

L = V (Z), L′ = V (Y ) and L′′ = V (X).

These three lines form a triangle whose vertices are the fundamental points. We
denote the open set P2 − V (XY Z) in P2 by U .

If F is a homogeneous polynomial on P2 and S is a point in P2, we denote by
µS(F ) the multiplicity of F at S. If F and G are two homogeneous polynomials
and S is a point of P2 we denote the intersection multiplicity of the curves whose
equations at S are F and G by µS(F, G). Finally, if d is the degree of the curve
C = V (F ), then we call the integer

g∗(C) = (d − 1)(d − 2)/2 −
∑

P∈P2

µP (µP − 1)/2 where µP = µP (F )

the expected genus of C. Recall that if C is irreducible, then g∗(C) � 0 (cf. Exercises
VI).

We define the map Q : P2 − {P, P ′, P ′′} → P2 by the formula Q(x, y, z) =
(yz, zx, xy). This map is called the standard quadratic transformation on P2.
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1) Prove that Q is a morphism of varieties (and is hence a rational map from P2

to itself). Why do we have to restrict the domain of this map?

2) Prove that Q is an involution of the open set U (i.e., Q2 = IdU ). Deduce that Q
is a birational map of P2. Determine the image of the exceptional lines and the
image of Q.

We consider an irreducible projective curve C = V (F ) ⊂ P2 of degree d. We
assume that C is not one of the exceptional lines. We denote by C′ the closure
in P2 of Q−1(C ∩ U).

3) Prove that C′ is an irreducible projective curve which is birationally equivalent
to C and (C′)′ = C.

4) We set F Q(X, Y, Z)=F (Y Z, ZX, XY ). We assume µP (C)=r (resp. µP ′(C)=r′,

resp. µP ′′(C) = r′′). Prove that Zr (resp. Y r′
, resp. Xr′′

) is the highest power
of Z (resp. Y , resp. X) dividing F Q.

We set F Q = Xr′′
Y r′

ZrF ′.

5) Prove that F ′ is a homogeneous polynomial of degree 2d − r − r′ − r′′. Prove
that µP (C′) = d − r′ − r′′ and establish similar formulae for P ′ and P ′′. Prove
that (F ′)′ = F , F ′ is irreducible and C′ = V (F ′).

We say that C is in good position if no exceptional line is tangent to C at a
fundamental point.

6) Assume that C is in good position. Prove that C′ is also in good position.
(Consider µP ′(F ′, Z).)

7) Prove that if C is in good position and P1, . . . , Ps are the non-fundamental
points in C′ ∩ L, then

µPi(C
′) � µPi(C

′, L) and
s∑

i=1

µPi(C
′, L) = r.

We say that C is in excellent position if C is in good position, L meets C
(transversally) in d distinct non-fundamental points and L′ and L′′ both meet C
(transversally) in d − r non-fundamental points.
In questions 8), 9) and 10) we assume that C is in excellent position. We denote
the non-fundamental points of C′ ∩ L by P1, . . . , Ps.

8) Prove that the singular points of C′ are the following:

a) The points in C′ ∩ U whose image under Q is a singular point of C ∩ U .
Show that these are of the same kind (i.e., ordinary or otherwise) and have
the same multiplicity in C and C′ (cf. Fulton, Problem 3.24).

b) The points P, P ′, P ′′, which are ordinary singular points of C′ with multi-
plicities d, d − r and d − r respectively.

c) Possibly some of the points Pi.

9) Prove that C′ ∩ L′ and C′ ∩ L′′ contain no non-fundamental points.

10) Prove that we have the following formula for expected genuses:

g∗(C′) = g∗(C) −
s∑

i=1

ri(ri − 1)/2, where ri = µPi(C
′).
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11) Let C = V (F ) be an arbitrary irreducible curve in P2 and let A be a point
of C. Prove that there is a homography h of P2 such that h(C) is in excellent
position and h(A) = P . (Prove that if P is a point of C of multiplicity r, there
are an infinite number of lines passing through P meeting C in d − r distinct
points (cf. Fulton, Problem 5.26): at this point we need to use the fact we are
in characteristic zero.)

We call the composition Qh of a standard quadratic transformation and a ho-
mography h a quadratic transformation. This is a birational transformation
of P2.

12) Prove Theorem 1. (Use quadratic transformations and proceed by induction on
N + g∗(C), where N is the number of non-ordinary singular points of C.)

13) ¶ Prove that the curve of equation (X2 − Y Z)2 + Y 3(Y − Z) is rational.

Problem IX

The aim of this problem is to prove certain results quoted in Chapter X.

1 The snake lemma

This is an algebraic lemma which is extremely useful in many diagram chases.
We assume given a commutative diagram

0 → A′ i−→ A
p−→ A′′ → 0⏐

⏐"u′
⏐
⏐"u

⏐
⏐"u′′

0 → B′ j−→ B
q−→ B′′ → 0

where the objects are commutative groups, the maps are group homomorphisms and
the two horizontal rows are exact.

Prove there is an exact sequence

0 −→ Ker u′ −→ Ker u −→ Ker u′′ −→ Coker u′ −→ Coker u −→ Coker u′′ −→ 0.

(Start by defining the maps: the only problematic one is the map linking Ker u′′ and
Coker u′.)

Give a version of this lemma for exact sequences with more than three terms.

(Of course, this statement also holds for exact sequence of A-modules, OX -
modules, etc.)

2 Projective dimension of modules over polynomial rings

In this section our aim is to prove by induction on n + 1, the number of variables,
Proposition X, 1.6—or, more precisely, to prove the following proposition.
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Proposition. Set R = k[X0, X1, . . . , Xn] and let M be a graded R-module of finite
type. We assume given an exact sequence of graded R-modules (with degree zero
homomorphisms):

0 −→ En+1 −→ Ln −→ · · · −→ Li
ui−−−→ Li−1 −→ · · ·

−→ L1
u1−−−→ L0

u0−−−→ M −→ 0.

If the modules Li are free graded R-modules, then so is En+1.

1) We start by proving a graded analogue of Nakayama’s lemma. Let R be a
graded ring, M a graded R-module of finite type, N a graded submodule of M
and f ∈ R a homogeneous element of degree d > 0. Assume M = N + fM .
Prove that M = N .

2) Prove that Proposition 1 is true if n + 1 = 0.

3) Assume the proposition holds for n variables: we now prove it for n+1 variables.
We set Ei+1 = Ker ui.

a) We recall that an R-module F is said to be torsion free if the equation
ax = 0 for a ∈ R and x ∈ F can only be satisfied if a or x is zero. Prove
that for i = 0, . . . , n the R-modules Li and Ei+1 are torsion free.

b) Let F be a torsion free R-module. Prove that multiplication by Xn induces
an exact sequence of graded modules

0 −→ F (−1)
· Xn−−−−−→ F −→ F/XnF −→ 0.

c) Set R = R/(Xn) = k[X0, . . . , Xn−1]. If F is a graded R-module, then set
F = F/XnF . Prove that F is a graded R-module and that the R-modules
Li are free.

d) Using the snake lemma, prove there is an exact sequence of graded R-
modules

0 −→ En+1 −→ Ln −→ · · · −→ Li
ui−−−→ Li−1 −→ · · ·

−→ L1
u1−−−→ E1 −→ 0.

e) Deduce that En+1 is a free graded R-module.
We consider a basis e1, . . . , er of En+1 over R, where ei is the image of
ei ∈ En+1 which is homogeneous of degree di.

f) Prove that the elements ei generate En+1 over R (use Nakayama’s lemma).
g) Prove that the elements ei are independent over R. (Argue by contradiction

using an equation of minimal degree linking the elements ei.)

3 Minimal resolutions

We now return to Proposition 1.8 in Chapter X.
Let R be a graded Noetherian ring, R =

⊕
i∈N Ri. We assume R0 = k is a field

and we set m = R+ =
⊕

i>0 Ri. This is a maximal ideal of R whose quotient is
isomorphic to k. (The classical example of such a ring is k[X0, . . . , Xn]. The reader
may restrict him or herself to this case if he or she wishes.)
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Let M be a graded R-module of finite type. A minimal cover of M is a homoge-
neous degree zero map ϕ : L0 → M such that L0 is free and graded, ϕ is surjective
and the induced homomorphism

ϕ = ϕ ⊗R k : L0 ⊗R k = L0/mL0 −→ M ⊗R k = M/mM

is an isomorphism.

0) Let ϕ : L0 → M be a minimal cover. Prove that the rank of L0 is the minimal
number of generators of M .

1) Given an R-module, M , prove that there exists a minimal cover ϕ : L0 → M .
(Lift a k-basis of M ⊗R k.)

2) Let ϕ : L0 → M be a minimal cover and let ψ : L → M be a surjective
homomorphism such that L is free. Prove that ϕ is a “direct summand” of ψ,
i.e., that there is a direct sum decomposition L = L′

0 ⊕L′′
0 with L′

0 and L′′
0 free

and an isomorphism θ : L0 � L′
0 such that ϕ = (ψ|L′

0
)θ. Deduce that if ϕ and ψ

are two minimal covers of M , then there is an isomorphism θ : L0 → L such
that ϕ = ψθ.

3) Let L1
u1−→ L0

u0−→ M → 0 be an exact sequence of graded R-modules such
that the modules Li are free. Prove that u0 is a minimal cover if and only if u1

is minimal in the sense of definition 1.7 of Chapter X. (We note that this is
equivalent to saying that u1 ⊗R k vanishes.)

4) We consider a free resolution L
•

of a graded module M :

0 −→ Ln −→ · · · −→ Li
ui−−−→ Li−1 −→ · · · −→ L1

u1−−−→ L0
u0−−−→ M −→ 0

and we set Ei+1 = Ker ui. Prove that this resolution is minimal if and only if
for all i = 1, . . . , n the natural map Li → Ei induced by ui is a minimal cover
of Ei. Prove that this establishes the existence of minimal resolutions.

5) Let L
•

and L′• be two minimal resolutions of M . Prove that these resolutions
are isomorphic or, more precisely, that there exist isomorphisms θi : Li → L′

i

such that θi−1ui = u′
iθi.

6) Assume that M is of finite projective dimension. Prove that dp(M) is the length
of any minimal resolution of M .

Midterm, December 1991

The two parts of the exam paper are independent.

Problem 1

Let k be an algebraically closed field and let p, q, r be integers � 1. We denote by
Mp,q(k) (or Mp,q for short) the space of p × q matrices (i.e., matrices with p lines
and q columns) with coefficients in k. This is an affine space of dimension pq which
we equip with its affine algebraic variety structure, particularly its Zariski topology.
We recall that the rank function is then a lower semi-continuous function of Mp,q:
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in other words, the set of matrices of rank � n is open. In particular, the set GLp(k)
of p × p invertible matrices is an open subset of Mp,p(k). We recall also that the
closed set Kn of matrices of rank � n is irreducible.

A p × q matrix is said to be of maximal rank if it is of rank inf(p, q).
It will occasionally be convenient to identify a linear map from kq to kp and its

(p × q) matrix with respect to the canonical bases.

We consider the set

Cp,q,r = {(A, B) ∈ Mp,q(k) × Mq,r(k) | AB = 0}.

This set is an affine algebraic variety, and the aim of this problem is to study its
properties: irreducible components, dimension and singular points.

We denote by π1 (resp. π2) the projection from Cp,q,r onto Mp,q (resp. Mq,r).

1) Prove that if (A, B) ∈ Cp,q,r, then rank(A) + rank(B) � q.

2) Prove that any irreducible component of Cp,q,r is of dimension � pq + qr − pr.
Determine the fibre of π1 (resp. π2) at the point A (resp. B) and calculate its
dimension as a function of the rank of A (resp. B).

3) Assume q < p + r. Prove that Cp,q,r is reducible. (Consider the inverse images
under π1 and π2 of the open sets of Mp,q and Mq,r consisting of matrices of
maximal rank.)

4) Assume q � p+r. Let Ω be the open set of Mp,q consisting of matrices of rank p
and let U be the open set (contained in Ω) of matrices written in block form
A = (A1A2), where A1 ∈ GLp(k) and A2 ∈ Mp,q−p.

a) Determine the inverse image π−1
1 (U) by writing the matrices B in the form

B =

(
B1

B2

)
,

where B1 ∈ Mp,r and B2 ∈ Mq−p,r. Prove that π−1
1 (U) is isomorphic to

an open subset of Mp,q × Mq−p,r. Deduce that π−1
1 (U) is irreducible and

then that π−1
1 (Ω) is irreducible. (Start by proving that a finite union of

irreducible open sets whose intersection is non-empty is irreducible.)
b) Prove that π−1

1 (Ω) is dense in Cp,q,r. (Prove that for any (A, B) ∈ Cp,q,r

there is an A0 ∈ Ω such that (A0, B) ∈ Cp,q,r and work in the fibre of π2

over B.)
c) Prove that Cp,q,r is irreducible and calculate its dimension.
d) Consider (A, B) ∈ Cp,q,r. Assume A is of rank p and B is of rank r. Prove

that (A, B) is a smooth point of Cp,q,r. (Determine the tangent space at
this point.)

5) We now again assume q < p + r. Let (m, n) be integers such that 0 � m � p,
0 � n � r, m + n = q. We set:

Fm,n = {(A, B) ∈ Cp,q,r | rank(A) = m, rank(B) = n},
Gm,n = {(A, B) ∈ Cp,q,r | rank(A) � m, rank(B) � n}.

a) Prove that Fm,n is a non-empty open set of Cp,q,r.



234 C Problems

b) ¶ Using an argument similar to that given in 4), prove that Fm,n is irre-
ducible. (Consider first those matrices A whose top left-hand m×m minor,
A1, is invertible and calculate the fibre of π1 over A using the block form
expression.)

c) Prove that the irreducible components of Cp,q,r are the varieties Gm,n and
calculate their dimensions.

d) Prove that every point of Fm,n is a smooth point of Cp,q,r. (Give the tangent
space of Cp,q,r at this point.)

Problem II

We recall that an integral domain A with fraction field K is said to be integrally
closed if ∀x ∈ K, x integral over A ⇒ x ∈ A.

We recall further that a local Noetherian domain of dimension 1 is regular if and
only if it is integrally closed.

0) Let A be an integrally closed ring and let S be a multiplicative subset of A.
Prove that S−1A is integrally closed.

Let X and Y be two irreducible affine algebraic varieties defined over an al-
gebraically closed base field k and let ϕ : X → Y be a dominant map. We set
A = Γ (Y ) and B = Γ (X), and we therefore have an injective map ϕ∗ : A → B. We
identify A and its image under ϕ∗. We assume that B is integral over A and that
A and B have the same fraction field (i.e., ϕ is an integral birational map). We set
I = {a ∈ A | aB ⊂ A}.

1) Prove that I is a non-zero ideal of A.

2) Set V = Y − V (I). This is a non-empty open set in Y and we set U = ϕ−1(V ).
Prove that the restriction of ϕ to U is an isomorphism from U to V .

3) Let y be a point of Y , my the corresponding maximal ideal of A and Amy = OY,y

the associated localised ring. Assume that Amy is integrally closed. Prove that
y ∈ V .

4) Assume that B is integrally closed. Prove that, conversely, if y is contained in V ,
then the ring Amy is integrally closed.

5) Assume Y is a curve (i.e., dim Y = 1) and B is integrally closed. Prove that X
is a smooth curve and ϕ is an isomorphism away from the singular points of Y .

Exam, January 1992

The aim of this problem is to study some properties of certain curves in P3 which
are linked to graded resolutions of their ideals. The hardest questions are marked
with one or more symbols ¶.
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Notation

In what follows k is an algebraically closed field. We denote the ring of polynomials
k[X, Y, Z, T ] by R and the vector space of degree n homogeneous polynomials by Rn.
We denote by R(d) the graded R-module which is equal to R with a shifted grading,
R(d)n = Rd+n. This is a free rank-1 R-module having the constant polynomial 1
as a basis: this polynomial has degree −d. If F is a coherent sheaf over P3, then
we denote by hi(F) the dimension of the k-vector space Hi(P3,F). We denote by
(F1, . . . , Fn) the ideal of R generated by the polynomials F1, . . . , Fn.

Let C be a curve in P3 (i.e., a closed subvariety all of whose components are of
dimension 1). We denote by OC the structure sheaf of C and by IC the homogeneous

ideal of C, (IC = {F ∈ R | ∀P ∈ C F (P ) = 0}). We denote by JC the sheaf ĨC

associated to IC , d the degree of C and g its arithmetic genus. We recall there is an
exact sequence

0 −→ JC −→ OP3 −→ OC −→ 0.

1 Cohomological study of ACM curves

We now assume that C is a curve whose ideal has a resolution of the following form:

(∗) 0 −→ E
ϕ−−→ F

p−−→ IC −→ 0,

where E and F are free graded R-modules, E =
⊕s

j=1 R(−mj), F =
⊕r

i=1 R(−ni).
Here, the integers mj and ni are such that 0 < n1 � · · · � nr and 0 < m1 � · · · �
ms, and ϕ and p are R-linear graded maps of degree zero (i.e., sending an element
of degree n to an element of degree n). We denote the elements of the canonical
bases of E and F by ej (j = 1, . . . , s) and εi (i = 1, . . . , r) respectively.

Such a curve will be called an ACM (arithmetically Cohen-Macaulay) throughout
the following discussion.

We also have an associated resolution of sheaves

(∗∗) 0 −→ E ϕ̃−−→ F p̃−−→ JC −→ 0,

where E =
⊕s

j=1 OP3(−mj), and F =
⊕r

i=1 OP3(−ni).

0) Prove that the Euler-Poincaré characteristic of OP3(n) is a polynomial function
of n to be determined.

1) Prove that h1JC(n) = 0 for all n ∈ Z. Deduce that the curve C is connected.

2) Calculate the Euler-Poincaré characteristic χ(JC(n)) as a function of d and g,
then as a function of the integers ni and mj . Prove that s = r−1 and

∑s
j=1 mj =∑r

i=1 ni; calculate d and g as a function of the integers ni and mj .

3) Prove that ϕ is given by an r× (r−1) matrix whose ϕij term is a homogeneous
polynomial whose degree is to be determined. What is ϕij when mj < ni?
We say that the resolution (∗) is minimal if ϕij is zero whenever ni = mj .

4) ¶ Prove that if the resolution (∗) is not minimal, then there is a resolution

0 −→ E′ −→ F ′ −→ IC −→ 0
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of the same form with r′ < r. (Hint: there is a term ni = mj = n such that
ϕij = λ �= 0. Perform a change of basis on E to obtain E = R(−n) ⊕ E′,
F = R(−n) ⊕ F ′ in such a way that ϕ is in block form

ϕ =

(
λ 0
u ϕ′

)
.)

5) Assume that the resolution (∗) is minimal. Prove that n1 < m1. Let s0 be the
smallest degree of any surface containing C.

s0 = inf{n ∈ N | h0JC(n) > 0}.

Calculate s0 as a function of the integers ni and the mj .

6) Assume the resolution (∗) is minimal.

a) ¶ Prove that nr < mr−1.
b) Let e by the speciality index of C, i.e.,

e = sup{n ∈ N | h1OC(n) > 0}.

Calculate e as a function of the integers ni and the mj . Prove there is no
smooth ACM curve such that the integers ni are (2, 2, 4) and the integers
mj are (3, 5).

7) Calculate d, g, s0, e when r = 4 and the integers ni (resp. the integers mj) are
all equal to 3 (resp. 4).

2 Curves linked to complete intersections

Let C and Γ be two curves without common components. Assume W = Γ ∪ C
is a scheme-theoretic complete intersection, which means that IW = (F, G) (and
hence in particular, W = V (F, G)) for two homogeneous polynomials F and G of
degrees s and t respectively). We then say that C and Γ are linked by the surfaces
whose equations are F and G.

1) Prove that F and G are non-zero, non-constant and have no common non-
constant common factors. Prove that IW = IΓ ∩ IC .

2) Prove that IC = {U ∈ R | ∀K ∈ IΓ , UK ∈ IW } and that the analogous
equation in which the roles of C and Γ are interchanged also holds.

We now assume that Γ is also a scheme-theoretic complete intersection: in
other words, IΓ = (A, B), where A and B are two homogeneous polynomials of
degrees a and b respectively. We note that A and B are non-zero, non-constant
and have no common non-constant factors. We set F = F ′A + F ′′B and G =
G′A + G′′B and H = F ′G′′ − F ′′G′. Give the degrees of the homogeneous
polynomials F ′, F ′′, G′, G′′, H.

3) Our aim is to prove that IC = (F, G, H).

a) Prove that (F, G, H) ⊂ IC .
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b) ¶ Let U be a polynomial such that UA = αF + βG and UB = γF + δG.
Prove there are polynomials ϕ and ψ such that

βF ′ + δF ′′ = ϕF and U − αF ′ − γF ′′ = ϕG,

αG′ + γG′′ = ψG and U − βG′ − δG′′ = ψF.

Prove that U ∈ (F, G, H). (Start with the case where F ′ and F ′′ have no
common factors.) Complete the proof of the proposition.

c) Prove that C = V (F, G, H).

4) Our aim is to prove there is a resolution of IC of the following form:

0 −→ R(−s − t + a) ⊕ R(−s − t + b)
ϕ−−→

ϕ−−→ R(−s − t + a + b) ⊕ R(−t) ⊕ R(−s)
p−−→ IC −→ 0.

a) Determine the map p and prove that it is surjective.
b) Give a reasonable guess for ϕ (our aim is to find all the relations between

H, G and F ; they have already appeared above). Check that ϕ is injective.
c) ¶ Let a, β, γ be polynomials such that αF + βG + γH = 0. Prove that

γ ∈ (A, B), γ = γ1A + γ2B. Expressing the fact that γH is contained in
the ideal (F, G) in two different ways, prove that α is contained in (G′, G′′)
and β is contained in (F ′, F ′′) and complete the proof of the proposition.

5) ¶¶ Assume k is of characteristic zero. Let Γ be the line whose equations are
A = X and B = Y and let s = t be an integer > 1. Using the notations above,
prove that for a suitable choice of polynomials F ′, F ′′, G′, G′′ of degree s−1, the
curve C = V (F, G, H) is irreducible and smooth. (Use the generic smoothness
theorem.)

3 An example

1) Let C0 be the plane curve of equation Y 4 + X3T + XY T 2. Prove that C0 is
irreducible. Determine its singular points and its geometric genus. (Assume that
the characteristic of k is not 5. ¶ What happens when the characteristic of k
is 5?)

2) Set C = V (F, G, H), the subvariety of P3 defined by the equations
F = XT − Y Z, G = X2Z + Y 3 + Y ZT and H = XZ2 + Y 2T + ZT 2.
Prove that C is an irreducible curve (use the projection onto the (x, z, t) plane,
for example). Using the projection π onto the (x, y, t) plane, prove that C
and C0 are birationally equivalent. (Give the morphisms and their domain of
definition carefully.)

3) Assume the characteristic of k is not 5. Prove that C is a smooth curve. (You
may use π to shorten the calculations.) Prove that V (F, G) = C ∪ Γ , where Γ
is the line V (X, Y ). Prove (¶¶) that C and Γ are linked by the surfaces of
equations F and G. Deduce the ideal IC and prove that C is ACM. Calculate
the invariants d, g, s0 and e. (You may either use the results from Parts I and
II or prove this result directly.)
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Exam, June 1992

The two parts of the exam paper are independent.

Problem I

We work over an algebraically closed base field k.
Recall that a variety X is said to be separated if the diagonal

∆ = {(x, y) ∈ X × X | x = y}

is closed in the product X × X. We also recall that every projective variety is
separated and complete: for any variety Y the second projection p : X × Y → Y is
closed, i.e., sends closed sets to closed sets.

1) Let X, Y, Z be three varieties. We assume that X and Y are irreducible, that X
is projective and that Z is separated. We denote by π, p and q the projections
π : X × Y × Z → X, p : X × Y × Z → Y × Z and q : Y × Z → Y .
Let ϕ : X × Y → Z be a morphism. We assume there is a point y0 in Y such
that ϕ(X ×{y0}) is a point. Our aim is to prove that for any y ∈ Y , ϕ(X ×{y})
is a point.
Let Γ be the graph of ϕ,

Γ = {(x, y, z) ∈ X × Y × Z | z = ϕ(x, y)}.

a) Prove that Γ is closed in X × Y × Z, Γ ′ = p(Γ ) is closed in Y × Z and Γ ′

is irreducible.
b) Prove that dim Γ ′ = dim Y (use the projection q).
c) Complete the proof of this result. (Consider, for any x0 ∈ X, the subvariety

Γx0 = π−1({x0})∩ Γ in Γ and its image under p.) Is this result still true if
X is not assumed to be projective?

2) Let G be an algebraic group (i.e., an algebraic variety with a group structure
such that multiplication µ : G×G → G and inverse s : G → G given respectively
by µ(x, y) = xy and σ(x) = x−1 are morphisms).

a) Assume G is an irreducible projective variety. Prove that G is a commutative
group. (Use the map ϕ : G × G → G given by ϕ(g, h) = g−1hg.) Is this
result still valid if G is not assumed to be projective? If G is not assumed
to be irreducible?

b) Let G and H be two irreducible projective algebraic groups and let ϕ :
G → H be a morphism of varieties. Prove there is an element a ∈ H and a
morphism ψ : G → H which is both a morphism of varieties and a morphism
of groups such that for all g ∈ G, ϕ(g) = aψ(g).

Problem II

We work over an algebraically closed base field k. If X is a variety, we denote its
structure sheaf by OX .
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1) Let F be a finite subset of P2. We equip F with its natural algebraic subvariety
of P2 structure and we denote by JF the sheaf of ideals of OP2 defining F .
Prove there is a line ∆ which does not meet F . We denote the equation of this
line by δ. Prove that multiplication by δ gives us an exact sequence of sheaves

0 −→ JF (−1)
· δ−−−→ JF −→ O∆ −→ 0.

(Work in standard open affine sets.)
Deduce that if H1(P2,JF (n)) = 0 for some n � −2, then

H1(P2,JF (k)) = 0

for all k � n.

Throughout the following problem, we work in projective space P3.

2) Let C be an irreducible smooth curve of degree d in P3 and let H be a plane
of equation h. We assume that C ∩ H is finite and consists of d distinct points.
We denote the sheaf of ideals defining C in P3 by JC and that defining C ∩ H
in H by JC∩H,H . Prove that multiplication by h gives us an exact sequence of
sheaves

0 −→ JC(−1)
· h−−−−→ JC −→ JC∩H,H −→ 0.

Assume that for some integer n � −2

H1(P3,JC(n)) = H1(C,OC(n − 1)) = 0.

Prove that, for all k � n, H1(P3,JC(k)) = 0.
Let ϕ : P1 → P3 be the map given by

ϕ(u, v) = (u4, u3v, uv3, v4).

3) a) Prove that ϕ is an isomorphism from P1 to an irreducible smooth projective
curve C in P3. Determine the degree and genus of C.

We denote the ideal sheaf defining C in OP3 by JC .
b) Prove that H1(C,OC(n)) = 0 whenever n � 0. Calculate the dimensions of

the spaces H1(C,OC(n)) for all n ∈ Z.
c) Determine explicitly the spaces

H0(P3,JC(1)) and H0(P3,JC(2)).

Calculate the dimensions of H1(P3,JC(n)) for n ∈ Z. (Start with n = 1
and 2 and use 2).)

d) Calculate the dimensions of the spaces Hi(P3,JC(n)) for i = 0, 1, 2, 3 and
n ∈ Z.
¶ Determine explicitly the space H0(P3,JC(3)).

Exam, January 1993

The aim of this problem is to prove a theorem of Castelnuovo’s which gives an upper
bound for the genus of a curve in P3 in terms of its degree.
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Notations

Throughout the following problem, k is an algebraically closed field and PN is
projective space of dimension N over k. We denote by R the space of polynomials
k[X, Y, T ]. If F is a coherent sheaf on a closed subvariety Z of PN and j : Z → PN

is the canonical injection, then we identify F and its direct image j∗(F). We know
that this identification does not alter the cohomology of the sheaf in question. If F
is a coherent sheaf over PN , we denote by hi(F) the dimension of the k-vector space
Hi(PN ,F).

If X is a closed subvariety of PN , we denote by OX the structure sheaf of X,
IX the homogeneous ideal of X and JX the ideal sheaf in OPN which defines X.
On identifying OX and its direct image we have an exact sequence

0 −→ JX −→ OPN −→ OX −→ 0.

For all n ∈ Z there are also analogous exact sequences

0 −→ JX(n) −→ OPN (n) −→ OX(n) −→ 0,

obtained by shifting.
The cardinal of a finite set A is denoted by |A|. The integral part of a real

number x > 0 is denoted by [x].

1 Cohomological study of finite sets in P2

Let Z be a finite set of points in P2 of cardinality d > 0. We equip Z with its natural
algebraic variety structure. The structure sheaf OZ of Z is then simply the sheaf
of functions from Z to k. We recall that d = h0OZ and that OZ is isomorphic to
OZ(n) for all n.

Let D be a line in P2 whose equation is δ. We set Z′ = Z ∩D and Z′′ = Z −Z′

and we equip Z′ and Z′′ with their natural algebraic variety structures. We denote
by IZ′/D the ideal of Z′ in R/(δ) and by JZ′/D the sheaf of ideals defining Z′ in D.

0) Calculate h1JZ(n) for n � 0.

1) Consider n ∈ Z. Prove that multiplication by δ induces an exact sequence

0 −→ JZ′′(n − 1) −→ JZ(n) −→ JZ′/D(n) −→ 0.

(Start by showing there is an exact sequence of graded R-modules

0 −→ IZ′′(n − 1)
· δ−−−→ IZ(n) −→ IZ′/D(n).)

2) Assume | Z′ |= l � 0. Prove that h1JZ′/D(n) vanishes for n � l − 1. (Prove
that JZ′/D(n) is isomorphic to the sheaf OP1(n − l), for example.)

3) Prove that the function n 
→ h1JZ(n) is decreasing in N. (Apply 1) to a line
which does not meet Z.)

4) Prove that, for n � 0, h1JZ(n) � sup(0, d − n − 1). (Argue by induction on d,
applying 1) to a line D containing only one point of Z.)

5) Assume Z has no trisecant (i.e., no three distinct points of Z are ever collinear).
Prove that for n � 0, h1JZ(n) � sup(0, d − 2n − 1).
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2 Existence of good plane sections

Let C be an irreducible smooth curve in P3 of degree d. We assume that C is not
a plane curve. The aim of this section is to prove the following result.

There is a plane H such that Z = C ∩ H is a finite set of cardinal d without a
trisecant (cf. Chapter I, 5).

We denote the vector space k4 by E. We have P(E) = P3. We consider the
projective space P(E∗) associated to the dual space. The points of P(E∗) correspond
to non-zero linear forms on E up to multiplication by a scalar or, alternatively, to
planes in P3.

1) Assume that Z = C∩H contains d distinct points. Prove that Z is not contained
in a line.

You may quote the result that there is a non-empty open set Ω in P(E∗) such
that any plane H ∈ Ω has the following two properties.

a) Z = C ∩ H consists of d distinct points (cf. Exercise VIII, 1).
b) There are two distinct points P, Q of Z = C ∩H such that the line 〈PQ〉 is

not a trisecant of Z.

2) We set F = {(P, Q, R) ∈ C×C×C | P, Q, R collinear}. Prove that F is a closed
set of C × C × C.

3) Let V be the open subvariety of C ×C consisting of those points P, Q such that
P �= Q. Let V ′ be the subset of V corresponding to the trisecants of C:

V ′ = {(P, Q) ∈ V | |C ∩ 〈PQ〉| � 3}.

Prove that if V ′ is not contained in a proper closed set of V , then it contains a
non-empty open set of V . (Write V ′ as the projection of an open set in F .)

4) Prove that V ′ is contained in a proper closed subset of V . (If V ′ contains a
non-empty open subset of V , then we get a contradiction by considering the
closed subvariety of V × Ω

W = {(P, Q, H) ∈ V × Ω | P, Q ∈ H}

and its projections p and π to V and Ω respectively.)

5) We denote by M the set of planes of Ω whose intersection with C contains
three collinear points. Prove using W that dim M � 2. Complete the proof of
the theorem.

3 The upper bound on the genus of a curve in P3

Let C be an irreducible smooth curve in P3 of degree d and genus g. We set

e(C) = sup{n ∈ Z | h1OC(n) �= 0}.

Let H be a plane not containing C and let h be its equation. We assume that
Z = C∩H contains d distinct points. We identify H and P2 and we use the notations
of the first section.
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1) Prove that, for all n, h1OC(n) = h2JC(n).

2) Prove that multiplication by h induces the following commutative diagram of
exact sequences

0 0 0⏐
⏐
"

⏐
⏐
"

⏐
⏐
"

0 −→ JC(n − 1) −→ JC(n) −→ JZ(n) −→ 0⏐
⏐
"

⏐
⏐
"

⏐
⏐
"

0 −→ OP3(n − 1) −→ OP3(n) −→ OP2(n) −→ 0⏐
⏐
"

⏐
⏐
"

⏐
⏐
"

0 −→ OC(n − 1) −→ OC(n) −→ OZ(n) −→ 0⏐
⏐
"

⏐
⏐
"

⏐
⏐
"

0 0 0

3) Prove that h1OC(n − 1) − h1OC(n) � h1JZ(n). Deduce that for all n ∈ Z

h1OC(n) �
∑

k�n+1

h1JZ(k).

4) Prove that g � (d − 1)(d − 2)/2. Prove that equality holds if and only if C is a
plane curve.

5) Assume that C is not a plane curve. Prove that

g �
{

(m − 1)2, if d = 2m;

m(m − 1), if d = 2m + 1.

(This is Castelnuovo’s theorem.)

6) Prove that e(C) � d − 3 (resp. e(C) � [d/2] − 2 if C is not a plane curve). For
which curves is e(C) = d − 3?

4 An example

Let a, b be integers > 0 such that a + 2 � b. Let C be an irreducible smooth curve
in P3 whose ideal sheaf has a resolution

0 −→ OP3(−b − 2)b−a−1 −→ OP3(−b − 1)2(b−a)

−→ OP3(−2) ⊕OP3(−b)b−a+1 −→ JC −→ 0.

Calculate the degree and genus of C. Compare this calculation with the bounds
given in 3, 5). Propose resolutions for curves for which these bounds may be sharp.

Exam, June 1993

The problem and the two exercises are independent.
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Problem

We work over an algebraically closed base field k and denote by PN the projective
space of dimension N over k. We denote by R the ring of polynomials k[X, Y, Z, T ].

We recall the following result (cf. Exercise IV, 7): let ϕ : X → Y be a dominant
morphism of projective varieties. If Y is irreducible and the fibres of ϕ are irreducible
and of constant dimension, then X is irreducible.

1 Constructing the variety of lines in P3

Let P = (x, y, z, t) and P ′ = (x′, y′, z′, t′) be two distinct points of P3. We denote
by l, m, n, l′, m′, n′ the six 2 × 2 minors of the matrix

µ(P, P ′) =

(
x y z t
x′ y′ z′ t′

)
;

more precisely, we set

l = xy′ − x′y, l′ = zt′ − z′t, m = xz′ − x′z,

m′ = yt′ − y′t, n = xt′ − x′t, n′ = yz′ − y′z.

0) Prove that ll′ − mm′ + nn′ = 0.

We consider projective space P5 with homogeneous coordinates l, m, n, l′, m′, n′.
Let G be the subset of P5 defined by the equation

ll′ − mm′ + nn′ = 0.

1) Prove that G is a smooth irreducible projective variety of P5 and give its di-
mension.

2) Let ϕ be the map associating to two distinct points P, P ′ of P3 the six minors
l, m, n, l′, m′, n′ of µ(P, P ′) defined as above. Let ∆ be the diagonal in P3 ×P3

(i.e., the set of pairs (P, P ) for P ∈ P3). Prove that ϕ induces a morphism from
P3 × P3 − ∆ to P5 whose image is contained in G. Prove that ϕ(P, P ′) only
depends on the line D = 〈P, P ′〉 (if Q, Q′ are two different distinct points of D,
then compare µ(Q, Q′) and µ(P, P ′)). Prove that ϕ induces a bijection from the
set of projective lines in P3 to G. (Consider the intersection points of lines and
coordinate planes.)

Henceforth we will identify the set of projective lines in P3 and the vari-
ety G (called the Grassmannian). The coordinates l, m, n, l′, m′, n′ are called
the Plücker coordinates of the line 〈P, P ′〉.

3) Study the fibres of the morphism ϕ and, in particular, determine their dimen-
sion.
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2 The incidence variety and applications

Let d be a positive integer and let Rd = H0(P3,OP3(d)) be the vector space of
homogeneous polynomials of degree d in X, Y, Z, T . We identify the space of degree d
surfaces in P3 with the projective space P(Rd).

0) What is the dimension of P(Rd)?

We set Vd = {(D, F ) ∈ G × P(Rd) | D ⊂ F} and denote by π (resp. p) the
projection of Vd onto P(Rd) (resp. onto G).

1) Let H be a plane of equation αX + βY + γZ + δT = 0 and let D be a line
which is not contained in H. Determine both the homogeneous coordinates of
the point of intersection of D and H as a function of α, β, γ, δ and the Plücker
coordinates of D. What happens when D ⊂ H?

2) Prove that Vd is a closed subvariety of G × P(Rd), called the incidence variety
(use 1), for example, and let the plane H vary). Prove that the projections π
and p are closed maps (i.e., they send closed sets to closed sets).

3) Determine the fibres p−1(D) for any D ∈ G (use Riemann-Roch). Deduce that p
is surjective and Vd is irreducible. Calculate the dimension of Vd.

4) Assume d � 4. Prove that π is not dominant. Deduce that there is a non-empty
open set in P(Rd) consisting of surfaces which do not contain any line. (We say
that the “general” surface of degree � 4 does not contain a line.)

5) Assume d = 3. Prove there are only a finite number of lines in the surface
XY Z −T 3 = 0. (You may either use a direct argument or use 1) and 2) above.)
Deduce that π is surjective and that a general cubic surface contains a finite
number of lines. Study the surface XY Z + T (X2 + Y 2 + Z2) − T 3 = 0. (Start
by proving that the lines which do not meet the line X = T = 0 are defined by
equations of the form Y = aX + bT , Z = cX + dT .)

6) What happens when d = 1?

7) We take d = 2. Determine the Plücker coordinates of the lines contained in the
quadric of equation XY − ZT = 0. Prove they form a closed one-dimensional
subset of G. Deduce that π is surjective. Are the fibres of π all of the same
dimension?

Exercise 1

We work over an algebraically closed base field k.
Let n be an integer � 2. We consider the two polynomials F = XY − ZT and

G = aZ2 + bZ + c, where a, b, c are homogeneous polynomials in X, Y, T of degrees
n − 2, n − 1 and n respectively such that a is not a multiple of T . Let C be the
subvariety of P3

k given by the equations F = 0 and G = 0. We assume that C is an
irreducible curve and I(C) = (F, G).

1) Calculate the degree d and the arithmetic genus pa of C.

2) Prove that C is birationally equivalent to the plane curve G whose equation is
aX2Y 2 +bXY T +cT 2 = 0. Deduce that the geometric genus g of C is such that
g < n(n − 1)/2. Prove that, if n � 5, C is not smooth.

3) Determine the geometric genus of the plane curve of equation X2Y 2+X2Y T +T 4.
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Exercise 2

We work over an algebraically closed base field k.
Let n be an integer > 0, R the ring k[X0, . . . , Xn] and Pn the projective space

of dimension n over k. Let r be an integer � 0. We consider for all i = 0, . . . , r a
homogeneous polynomial Fi ∈ R of degree di > 0. Let

ϕ :
r⊕

i=0

R(−di) −→ R

be the R-linear map given by the formula

ϕ(G0, . . . , Gr) =

r∑

i=0

FiGi

and let

ψ :
r⊕

i=0

OPn(−di) −→ OPn

be the associated map of sheaves.

1) Prove that ψ is surjective if and only if the subvariety V (F0, . . . , Fr) in Pn is
empty. For what values of r is this possible?

We now assume r = n and that ψ is surjective. Let N be the kernel of ψ.

2) Determine the dimension of V (F0, . . . , Fi) for i = 0, . . . , n.

3) Prove that for all i such that 2 � i � n − 1 and all d ∈ Z, Hi(Pn,N (d)) = 0.
Calculate the dimension of Hn(Pn,N (d)).

4) Prove that the groups H1(Pn,N (d)) are not all trivial and give the smallest
value of d such that H1(Pn,N (d)) is non-trivial.

5) Assume Fi = X2
i for all i. Calculate the dimension of H1(Pn,N (d)) for all

d ∈ Z.

Exam, February 1994

Question 5 is not part of the exam. The symbol ¶ indicates a difficult question.

0 Revision and notations

Throughout the following problem we will work over an algebraically closed base
field k. We denote the ring of polynomials k[X, Y, Z, T ] by R.

If p is an integer � 1 we denote the binomial coefficients by
(

n
p

)
: by convention,

this coefficient vanishes if n < p.
We denote the vector space of p × q matrices with coefficients in k by Mp,q.

This space is naturally an affine variety isomorphic to affine space kpq. We denote
by Cs the subset of Mp,q consisting of matrices of rank � s. We recall that Cs is an
irreducible closed set of codimension (p − s)(q − s) in Mp,q (cf. Exercise IV, 3).

We recall the following result.
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Intersection Theorem 1. If X and Y are two irreducible affine algebraic vari-
eties in kn of dimensions r and s, then every irreducible component of X ∩ Y is of
dimension � r + s − n (cf. Chapter IV, 2.5).

(NB: if X ∩ Y is empty this theorem gives us no information on their respective
dimensions.)

Let r be an integer � 2 and let E and F be two free graded R-modules

E =
r−1⊕

j=1

R(−mj), F =
r⊕

i=1

R(−ni),

where the (possibly negative) integers mj and ni are such that n1 � · · · � nr and
m1 � · · · � mr−1. Moreover, we assume mj �= ni for all pairs i, j and

r−1∑

j=1

mj =
r∑

i=1

ni.

Let u : E → F be a graded degree zero (i.e., sending an element of degree n
to an element of degree n) R-linear homomorphism. We denote the vectors of the
canonical bases of E and F by ej (j = 1, . . . , r−1) and εi (i = 1, . . . , r) respectively.
The homomorphism u is given in these bases by an r × (r − 1) matrix A = (aij)
whose coefficient of index i, j is a homogeneous polynomial of degree mj − ni. In
particular, this coefficient vanishes if mj < ni.

The aim of this problem is to give conditions on the integers mj and ni under
which there exists an injective homomorphism u : E → F as above such that its
cokernel is the ideal of a curve (resp. of a smooth curve) in P3.

We recall (cf. Chapter X, 2.7) that the following results hold:

1) u is injective if and only if all the r − 1 minors ϕ1, . . . , ϕr of A are all non-zero.

2) If we assume the minors ϕi are all non-zero, the following are equivalent:

i) The polynomials ϕi have no common factor.
ii) Coker u is the saturated ideal of an ACM curve whose ideal is generated by

the polynomials ϕi.

1 Preliminary results

1) Let n and p be integers � 1 and M an n × p matrix with coefficients in an
arbitrary commutative ring S. We assume that M is written in block form

M =

(
M1 M2

0 M3

)

where M1 is a k × l matrix, 1 � k � n, 1 � l � p. Let I (resp. I1) be the
ideal generated by the p-minors of M (resp. by the l-minors of M1). If p > n
(resp. l > k), then by convention these minors are zero. Prove that I ⊂ I1.
(Reduce to the case p = n and then argue by induction on n.)
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2) Let D be the subspace of Mr,r−1 formed of matrices M = (µij), µij ∈ k, such
that µij = 0 for i � j + 2 and i � j − 1 (i.e., matrices with only two non-zero
diagonals: we will call them bidiagonal matrices).

a) Prove that D∩Cr−2 is non-empty and all its irreducible components are of
codimension 2 in D.

b) Let V be a subspace of Mr,r−1 containing D. Prove that all the irreducible
components of V ∩ Cr−2 are of codimension 2 in V . (Use the intersection
theorem applied to D and an irreducible component Z of V ∩Cr−2, noting
that the zero matrix is in Z.)

2 Necessary conditions

Let u : E → F be a graded homomorphism.

1) Assume that u is injective. Prove that mj > nj for all j = 1, . . . , r − 1. (Study
the restriction of u to the submodule

⊕
k�j R(−mk).)

2) Assume that u is injective and the cokernel of u is the ideal of a curve in P3.
This curve is connected (cf. Chapter X, 2.4) but not necessarily reduced.
Prove that ∀ j = 1, . . . , r − 1, mj > nj+1. (Use 1.1.) Deduce that n1 > 0.

3) We assume in addition that C is smooth (and is hence an irreducible variety
cf. Chapter V, 2.2).
Prove that ∀ j = 1, . . . , r − 2, mj > nj+2. (Use 1.1 to show that otherwise C
would contain a curve other than C.)

3 Sufficient conditions, 1

We assume that ∀ j = 1, . . . , r − 1, mj > nj+1.
Let H be the set of homogeneous degree 0 homomorphisms u : E → F . We

identify H with the set of corresponding matrices A = (aij).

1) Prove that H is a k-vector space and determine its dimension, which we will
denote by N .

We consider the map ψ : H×(k4−{0}) → Mr,r−1 defined by ψ(A, P ) = A(P ) =
(aij(P )) and we set ψP (A) = ψ(A, P ).

2) a) Prove that ψ is a morphism. Prove that for all P ∈ k4 −{0}, ψP is a linear
map from H to Mr,r−1 whose image is the subspace

V = {M = (µij) ∈ Mr,r−1 | mj < ni =⇒ µij = 0}.

We set v = dim V . Determine the fibres of ψP and give their dimension.
b) Prove that V is also the image of ψ and that V contains the space D of

bidiagonal matrices.

3) Consider M ∈ Mr,r−1. The fibre ψ−1(M) is a closed subset of H × (k4 − {0}),
which we equip with its variety structure. Calculate the dimension of ψ−1(M).

We set W = ψ−1(Cr−2). This is a closed subset of H × (k4 − {0}), which we
equip with its variety structure.
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4) Prove that

W = {(A, P ) ∈ H × (k4 − {0}) | ϕ1(P ) = · · · = ϕr(P ) = 0},

where the polynomials ϕi are the (r − 1)-minors of the matrix A.
Prove that W is a variety of dimension N + 2.

5) Prove there is a non-empty open set Ω in H such that for any u ∈ Ω, u is
injective and the cokernel of u is the ideal of an ACM curve in P3. (Study the
fibres of the projection π1 from W to H.)

Such a property, which holds for u in some non-empty open (and hence dense)
set in H, will be said to hold for a “general” u.

4 The genus of ACM curves

The aim of this section is to prove that for any integer g � 0 there is a (not
necessarily smooth) ACM curve of arithmetic genus g. Let C be an ACM curve with
a resolution 0 → E → F → IC → 0, where E and F are as above. It follows that,
for j = 1, . . . , r − 1, mj > nj+1. We recall that the arithmetic genus g of C is given
by the formula

g =

r−1∑

j=1

(
mj − 1

3

)

−
r∑

i=1

(
ni − 1

3

)

.

1) Prove that

g =
( r−1∑

j=1

∑

nj+1�n<mj

(
n − 1

2

)
)
−
(

n1 − 1

3

)

.

(You may use the formula
(

n+3
3

)
=
∑

0�k�n

(
k+2
2

)
.)

The integers of the form
(

n
2

)
= n(n − 1)/2 for n � 2 are called triangular

numbers. In the following problem, you may use the following result: any positive
integer is the sum of at most three triangular numbers.1

2) Prove that r � n1 + 1. Give the possible values of the integers ni and the
mj when n1 = 1 (resp. 2). Prove that the genus of C is then either zero or a
triangular number (resp. the sum of at most two triangular numbers). Prove
that by this method we can construct curves of all genuses which are sums of
at most two triangular numbers.

3) Assume n1 = 3. Prove that g is the sum of three triangular numbers. Study the
converse and complete the proof of the theorem.

4) We set n1 = s. Prove that

g � s

(
s − 1

2

)

−
(

s − 1

3

)

.

¶ Prove there is no smooth ACM curve of genus 8.

1 This result is due to Gauss (cf. Serre, Cours d’arithmétique, Chapter IV) but had
been previously mentioned by Fermat in the famous (and famously too small)
margin of his copy of the works of Diophante.
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5 Sufficient conditions, 2

The aim of this section is to prove the following theorem.

Theorem (Gruson-Peskine, 1976). Assume that k is of characteristic 0. With
the notations of Section 0 above the following conditions are equivalent.

i) ∀ j = 1, . . . , r − 2, mj > nj+2,
ii) If u : E → F is general enough, u is injective and its cokernel is the ideal of a

smooth connected ACM curve.

1) ¶ We use the above notation, particularly those in Section 3. However, we con-
sider W with its scheme structure. Assume m1 > nr (which implies Condition i).
We set S = ψ−1(Cr−3).

a) Prove that dim S < N and W − S is a smooth variety.
b) Consider the restriction of the projection π1 to the open set W −S. Apply-

ing the generic smoothness theorem (cf. Problem VI and the appendix on
schemes), prove there is an open set of H over which the fibres of π1 are
smooth. Complete the proof of the theorem.

2) ¶¶ Prove the Gruson-Peskine theorem in general.
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