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Preface

Courses in Stochastic Calculus have in the last two decades changed their target
audience. Once this advanced part of mathematics was of interest mainly to
postgraduates intending to pursue an academic research career, but now many
professionals cannot do without the ability to manipulate stochastic models.

The aim of this book is to provide a tool in this direction, starting from a basic
probability background (with measure theory, however). The intended audience
should, moreover, have serious mathematical bases.

The entire content of this book should provide material for a two-semester class.
My experience is that Chaps. 2–9 provide the material for a course of 72 h, including
the time devoted to the exercises.

To be able to manipulate these notions requires the reader to acquire not only the
elements of the theory but also the ability to work with them and to understand their
applications and their connections with other branches of mathematics.

The first of these objectives is taken care of (or at least I have tried to. . . ) by the
development of a large set of exercises which are provided together with extensive
solutions. Exercises are hardwired with the theory and are intended to acquaint the
reader with the full meaning of the theoretical results. This set of exercises with
their solution is possibly the most original part of this work.

As for the applications, this book develops two kinds.
The first is given by modeling applications. Actually there are very many

situations (in finance, telecommunications, control, . . . ) where stochastic processes,
and in particular diffusions, are a natural model. In Chap. 13 we develop financial
applications, currently a rapidly growing area.

Stochastic processes are also connected with other fields in pure mathematics
and in particular with PDEs. Knowledge of diffusion processes contributes to a
better understanding of some aspects of PDE problems and, conversely, the solution
of PDE problems can lead to the computation of quantities of interest related to
diffusion processes. This two-way tight connection between processes and PDEs is
developed in Chap. 10. Further interesting connections between diffusion processes
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viii Preface

and other branches of mathematics (algebraic structures, differential geometry, . . . )
are unfortunately not present in this text, primarily for reasons of space.

The first goal is to make the reader familiar with the basic elements of stochastic
processes, such as Brownian motion, martingales, and Markov processes, so that it
is not surprising that stochastic calculus proper begins almost in the middle of the
book.

Chapters 2–3 introduce stochastic processes. After the description of the general
setting of a continuous time stochastic process that is given in Chap. 2, Chap. 3
introduces the prototype of diffusion processes, that is Brownian motion, and
investigates its, sometimes surprising, properties.

Chapters 4 and 5 provide the main elements on conditioning, martingales, and
their applications in the investigation of stochastic processes. Chapter 6 is about
Markov processes.

From Chap. 7 begins stochastic calculus proper. Chapters 7 and 8 are concerned
with stochastic integrals and Ito’s formula. Chapter 9 investigates stochastic dif-
ferential equations, Chap. 10 is about the relationship with PDEs. After the detour
on numerical issues related to diffusion processes of Chap. 11, further notions of
stochastic calculus are investigated in Chap. 12 (Girsanov’s theorem, representation
theorems of martingales) and applications to finance are the object of the last
chapter.

The book is organized in a linear way, almost every section being necessary
for the understanding of the material that follows. The few sections and the single
chapter that can be avoided are marked with an asterisk.

This book is based on courses that I gave first at the University of Pisa, then
at Roma “Tor Vergata” and also at SMI (Scuola Matematica Interuniversitaria) in
Perugia. It has taken advantage of the remarks and suggestions of many cohorts of
students and of colleagues who tried the preliminary notes in other universities.
The list of the people I am indebted to is a long one, starting with the many
students that have suffered under the first versions of this book. G. Letta was very
helpful in clarifying to me quite a few complicated situations. I am also indebted
to C. Costantini, G. Nappo, M. Pratelli, B. Trivellato, and G. Di Masi for useful
remarks on the earlier versions.

I am also grateful for the list of misprints, inconsistencies, and plain mistakes
pointed out to me by M. Gregoratti and G. Guatteri at Milano Politecnico and
B. Pacchiarotti at my University of Roma “Tor Vergata”. And mainly I must mention
L. Caramellino, whose class notes on mathematical finance were the main source of
Chap. 13.

Roma, Italy Paolo Baldi
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Common Notations

Real, complex numbers, Rm

x _ y D max.x; y/ the largest of the real numbers x and y
x ^ y D min.x; y/ the smallest of the real numbers x and y
hx; yi The scalar product of x; y 2 R

m

xC, x� The positive and negative parts of x 2 R: xC D max.x; 0/, x� D
max.�x; 0/

jxj According to the context the absolute value of the real number x,
the modulus of the complex number x, or the euclidean norm of
x 2 R

m

<z, =z The real and imaginary parts of z 2 C

BR.x/ fy 2 R
m; jy � xj < Rg, the open ball centered at x with radius R

A�, tr A, det A The transpose, trace, determinant of matrix A

Derivatives

@f

@xi
, fxi Partial derivatives

f 0 Derivative, gradient
f 00 Second derivative, Hessian

Functional spaces

Mb.E/ Real bounded measurable functions on the topological space E
kf k1 D supx2E jf .x/j if f 2 Mb.E/

xiii



xiv Common Notations

Cb.R
m/ The Banach space of real bounded continuous functions on R

m

endowed with the norm k k1
CK.R

m/ The subspace of Cb.R
m/ of the continuous functions with com-

pact support
Ck.D/ k times differentiable functions on the open set D � R

m

C2;1.D � Œ0;TŒ/ Functions twice differentiable in x 2 D and once in t 2 Œ0;TŒ
C .Œ0;T�;Rm/ The vector space of continuous maps � W Œ0;T� ! R

m endowed
with the sup norm k k1. It is a Banach space

C .RC;Rm/ The vector space of continuous maps � W RC ! R
m, endowed

with the topology of uniform convergence on compact sets of
R

C
Cx.Œ0;T�;Rm/ The vector space of continuous maps � W Œ0;T� ! R

m such that
�0 D x, endowed with the topology of uniform convergence



Chapter 1
Elements of Probability

In this chapter we recall the basic facts in probability that are required for the
investigation of the stochastic processes that are the object of the subsequent
chapters.

1.1 Probability spaces, random variables

A measurable space is a pair .E;E / where

• E is a set;
• E is a �-algebra of subsets of E.

A probability space is a triple .˝;F ;P/ where

• ˝ is a set;
• F is a �-algebra of subsets of ˝ (i.e. (˝;F / is a measurable space);
• P is a positive measure on F such that P.˝/ D 1.

The elements of F are called events, P a probability (measure).
If .˝;F ;P/ is a probability space and .E;E / a measurable space, a random
variable (r.v.) is a measurable function X W ˝ ! E, i.e. such that X�1.A/ 2 F
whenever A 2 E . It is a real random variable if E D R and E D B.R/ (Borel sets
of R).

For a real r.v. X on .˝;F ;P/ we can speak of an integral. If X is integrable we
shall usually write EŒX� instead of

R
X dP. EŒX� is the mathematical expectation.

Sometimes the terms mean or mean value are also used.
If X D .X1; : : : ;Xm/ is .Rm;B.Rm//-valued we shall speak of m-dimensional

r.v.’s and, if the components Xi are integrable, we define

EŒX� D .EŒX1�; : : : ;EŒXm�/ :

We say that two r.v.’s X;Y are equivalent if P.X D Y/ D 1.
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2 1 Elements of Probability

The spaces Lp, 1 � p < C1, and L1 are defined as usual as well as the norms
kXkp and kXk1. Recall in particular that Lp is the set of equivalence classes of r.v.’s
X such that kXkp D EŒjXjp�1=p < C1. It is worth pointing out that Lp is a set of
equivalence classes and not of r.v.’s; this distinction will sometimes be necessary
even if often, in order to simplify the statements, we shall identify a r.v. and its
equivalence class.

For a real r.v. X, let us denote by X D XC � X� its decomposition into positive
and negative parts. Recall that both XC D X _ 0 and X� D .�X/ _ 0 are positive
r.v.’s. X is said to be lower semi-integrable (l.s.i.) if X� is integrable. In this case it
is possible to define the mathematical expectation

EŒX� D EŒXC� � EŒX�� ;

which is well defined, even if it can take the value C1. Of course a positive r.v. is
always l.s.i.

The following classical inequalities hold.

Jensen’s inequality. Let X be an m-dimensional integrable r.v. and ˚ W Rm !
R[fC1g a lower semi-continuous convex function; then˚.X/ is lower semi-
integrable and

EŒ˚.X/� � ˚.EŒX�/ (1.1)

(possibly one or both sides in the previous inequality can be equal to C1).
Moreover, if ˚ is strictly convex and ˚.EŒX�/ < C1, then the inequality is
strict unless X takes only one value a.s.

Hölder’s inequality. Let Z, W be real positive r.v.’s and ˛, ˇ positive real
numbers such that ˛ C ˇ D 1. Then

EŒZ˛Wˇ� � EŒZ�˛EŒW�ˇ : (1.2)

From (1.2) it follows that if X, Y are real r.v.’s and p, q positive numbers such that
1
p C 1

q D 1, then, by setting ˛ D 1
p , ˇ D 1

q , Z D jXjp, W D jYjq, we have

ˇ
ˇEŒXY�

ˇ
ˇ � EŒjXjp�1=pEŒjYjq�1=q ; (1.3)

which also goes under the name of Hölder’s inequality.
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Minkowski’s inequality. Let X, Y be real r.v.’s and p � 1, then

kX C Ykp � kXkp C kYkp : (1.4)

Minkowski’s inequality, in particular, implies that Lp, p � 1, is a vector space. If
p > q, Jensen’s inequality applied to the continuous convex function ˚.x/ D jxjp=q

gives

kXkp
p D EŒjXjp� D EŒ˚.jXjq/� � ˚.EŒjXjq�/ D EŒjXjq�p=q

and therefore, taking the p-th root,

kXkp � kXkq : (1.5)

In particular, if p � q, Lp � Lq.

1.2 Variance, covariance, law of a r.v.

Let X be a real square integrable r.v. (i.e. such that EŒX2� < C1). Its variance is
the quantity

Var.X/ D EŒ.X � EŒX�/2� D EŒX2� � EŒX�2 :

If ˛ > 0, the quantity
R jxj˛�.dx/ is the absolute moment of order ˛ of �. If ˛ is

a positive integer the quantity
R

x˛�.dx/, if it exists and is finite, is the moment of
order ˛ of �.

Markov’s inequality. For every ı > 0; ˇ > 0 we have

P.jXj � ı/ � EŒjXjˇ�
ıˇ

� (1.6)

It is apparent from its definition that the variance of a r.v. is so much larger as X takes
values far from its mean EŒX�. This intuitive fact is made precise by the following

Chebyshev’s inequality. Let X 2 L2. Then for every ˛ > 0

P.jX � EŒX�j � ˛/ � Var.X/

˛2
�
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This is a very important inequality. It is, of course, a particular case of Markov’s
inequality.

The covariance of two r.v.’s X and Y is defined as

Cov.X;Y/ D EŒXY� � EŒX�EŒY� :

If Cov.X;Y/ D 0, X and Y are said to be uncorrelated.
Let X be a r.v. with values in the measurable space .E;E /. It is easy to see that the
set function �X defined on E as

�X.A/ D P.X�1.A//

is itself a probability measure (on E ). �X is the law of X. It is the image (or pullback)
of P through X. The following proposition provides a formula for the computation
of integrals with respect to an image law. We shall make use of it throughout.

Proposition 1.1 Let X W .˝;F ;P/ ! .E;E / be a r.v., �X the law of X. Then
a measurable function f W .E;E / ! .R;B.R// is �X-integrable if and only if
f .X/ is P-integrable, and then we have

Z

E
f .x/ �X.dx/ D

Z

˝

f .X.!// P.d!/ : (1.7)

In particular, if X is a real r.v. then X has finite mathematical expectation if and
only if x 7! x is �X-integrable, and in this case

EŒX� D
Z

x�X.dx/ :

Also we have, for every ˛,

EŒjXj˛� D
Z

jxj˛�X.dx/ :

Therefore X 2 Lp if and only if its law has a finite absolute moment of order p.
By the notations X � �, X � Y we shall mean “X has law �” and “X and Y have

the same law”, respectively.
Given two probabilities P and Q on .˝;F /, we say that Q is absolutely continuous
with respect to P if P.A/ D 0 implies Q.A/ D 0. This relation is denoted P 	 Q.

The Radon–Nikodym Theorem states that if P 	 Q then there exists a r.v. Z � 0
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such that

Q.A/ D
Z

A
Z dP

(the converse is obvious). P and Q are said to be equivalent if both P 	 Q and
Q 	 P. In other words, two probabilities are equivalent if and only if they have
the same negligible events. Recall that an event N 2 F is negligible if P.N/ D 0.
Conversely, P and Q are said to be orthogonal if there exists an event A such that
P.A/ D 1 and Q.A/ D 0. If P and Q are orthogonal, of course, it is not possible for
one of them to be absolutely continuous with respect to the other one.

1.3 Independence, product measure

If E , E 0 are �-algebras of events of E let us denote by E _ E 0 the smallest �-
algebra containing both E and E 0. This is well defined: it is immediate that the
intersection of any non-empty family of �-algebras is again a �-algebra. We can
therefore consider the family of all �-algebras containing both E and E 0. This is
non-empty as certainly P.E/ (all subsets of E) is one of them. Then E _ E 0 will be
the intersection of this family of �-algebras. This argument will be used from now
on to define �-algebras as “the smallest �-algebra such that. . . ”.

Let X W .˝;F ;P/ ! .E;E / be a r.v. and denote by �.X/ the �-algebra
generated by X, i.e. the smallest sub-�-algebra of F with respect to which X is
measurable. It is easy to see that �.X/ is the family of the events of F of the form
X�1.A0/ with A0 2 E .

The following lemma, characterizing the real �.X/-measurable r.v.’s, is very
useful.

Lemma 1.1 (Doob’s measurability criterion) Let X W .˝;F ;P/ !
.E;E / be a r.v. Then every real �.X/-measurable r.v. is of the form f .X/,
where f W .E;E / ! .R;B.R// is a measurable map.

The r.v.’s X1; : : : ;Xm, taking values respectively in .E1;E1/; : : : ; .Em;Em/, are
said to be independent if, for every A0

1 2 E1; : : : ;A0
m 2 Em,

P.X1 2 A0
1; : : : ;Xm 2 A0

m/ D P.X1 2 A0
1/ : : : P.Xm 2 A0

m/ :

The events A1; : : : ;Am 2 F are said to be independent if and only if

P.Ai1 \ � � � \ Ai` / D P.Ai1 / : : : P.Ai` /
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for every choice of 1 � ` � m and of 1 � i1 < i2 < � � � < i` � m. A
careful but straightforward computation shows that this definition is equivalent to
the independence of the r.v.’s 1A1 ; : : : ; 1Am .

If F1; : : : ;Fm are sub-�-algebras of F , we say that they are independent if, for
every A1 2 F1; : : : ;Am 2 Fm,

P.A1 \ � � � \ Am/ D P.A1/ : : :P.Am/ :

It is immediate that the r.v.’s X1; : : : ;Xm are independent if and only if so are the
generated �-algebras �.X1/; : : : ; �.Xm/.

Let .Xi/i2I be a (possibly infinite) family of r.v.’s; they are said to be independent
if and only if the r.v.’s Xi1 ; : : : ;Xim are independent for every choice of a finite
number i1; : : : ; im of distinct indices in I. A similar definition is made for an infinite
family of �-algebras.

We shall say, finally, that the r.v. X is independent of the �-algebra G if and only
if the �-algebras �.X/ and G are independent. It is easy to see that this happens if
and only if X is independent of every G -measurable r.v. W.

Let us now point out the relation between independence and laws of r.v.’s. If we
denote by �i the law of Xi and we define E D E1 � � � � � Em, E D E1 ˝ � � � ˝ Em, on
the product space .E;E /, we can consider the product measure � D �1 ˝ � � � ˝�m.

The following result will be of constant use in the sequel.

Proposition 1.2 In the previous notations the r.v.’s X1; : : : ;Xm are indepen-
dent if and only if the law of X D .X1; : : : ;Xm/ on .E;E / is the product law�.

The proof of this proposition makes use of the following theorem.

Theorem 1.1 (Carathéodory’s criterion) Let .E;E / be a measurable
space, �1, �2 two finite measures on .E;E /; let I � E be a family of
subsets of E stable with respect to finite intersections and generating E . Then,
if �1.E/ D �2.E/ and �1 and �2 coincide on I , they also coincide on E .

Proof of Proposition 1.2. Let us denote by � the law of X and let I be the family
of the sets of E of the form A1 � � � � � Am with Ai 2 Ei, i D 1; : : : ;m. I
is stable with respect to finite intersections and, by definition, generates E . The
definition of independence states exactly that � and � coincide on I ; therefore by
Carathéodory’s criterion they coincide on E . ut
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Proposition 1.3 If X and Y are real independent integrable r.v.’s, then also
their product is integrable and

EŒXY� D EŒX�EŒY� :

Recalling that Cov.X;Y/ D EŒXY� � EŒX�EŒY�, in particular we have that real
integrable and independent r.v.’s are not correlated. Examples show that the converse
is not true.

Remark 1.1 A problem we shall often be confronted with is to prove that
some �-algebras are independent. Let us see how, in practice, to perform
this task.

Let F1 and F2 be sub-�-algebras of F and let C1 � F1, C2 � F2

be subclasses generating F1 and F2, respectively, and stable with respect to
finite intersections. Then F1 and F2 are independent if and only if

P.A1 \ A2/ D P.A1/P.A2/ (1.8)

for every A1 2 C1, A2 2 C2.
Actually, if A2 2 C2 is fixed, the two measures on F1

A1 7! P.A1 \ A2/ and A1 7! P.A1/P.A2/

are finite and coincide on C1; they also have the same total mass (D P.A2/).
By Carathéodory’s criterion, Theorem 1.1, they coincide on F1, hence (1.8)
holds for every A1 2 F1, A2 2 C2. By a repetition of this argument with
A1 2 F1 fixed, (1.8) holds for every A1 2 F1, A2 2 F2, i.e. F1 and F2 are
independent.

A case of particular interest appears when F1 D �.X;X 2 I /, F2 D
�.Y;Y 2 J / are �-algebras generated by families I and J of r.v.’s
respectively. If we assume that every X 2 I is independent of every Y 2 J ,
is this enough to guarantee the independence of F1 and F2?

Thinking about this a bit it is clear that the answer is negative, as even
in elementary classes in probability one deals with examples of r.v.’s that
are independent pairwise but not globally. It might therefore happen that X1
and Y are independent, as well as X2 and Y, whereas the pair .X1;X2/ is
not independent of Y. fX1;X2g D I and fYg D J therefore provides a
counterexample.

If, however, we assume that for every choice of X1; : : : ;Xn 2 I and
Y1; : : : ;Yk 2 J the r.v.’s .X1; : : : ;Xn/ and .Y1; : : : ;Yk/ are independent, then
necessarily the two generated �-algebras F1 and F2 are independent.

(continued)
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Remark 1.1 (continued)
Let us denote by .Ei;Ei/ and .Gj;Gj/ the measurable spaces where the

r.v.’s Xi;Yj take the their values respectively. Let us consider the class C1 of
the events of the form

fX1 2 A0
1; : : : ;Xn 2 A0

ng
for some n � 1;X1; : : : ;Xn 2 I ;A0

1 2 E1; : : : ;A0
n 2 En and similarly define

C2 as the class of the events of the form

fY1 2 B0
1; : : : ;Yk 2 B0

kg
for some k � 1;Y1; : : : ;Yk 2 J ;B0

1 2 G1; : : : ;B0
k 2 Gk. One verifies that C1

and C2 are stable with respect to finite intersections and generate �.X;X 2
I / and �.Y;Y 2 J /, respectively. Moreover, (1.8) is satisfied for every
A1 2 C1;A2 2 C2. Actually, as the r.v.’s .X1; : : : ;Xn/ and .Y1; : : : ;Yk/ are
assumed to be independent, the two events

A1 D fX1 2 A0
1; : : : ;Xn 2 A0

ng D f.X1; : : : ;Xn/ 2 A0
1 � � � � � A0

ng
A2 D fY1 2 B0

1; : : : ;Yk 2 B0
kg D f.Y1; : : : ;Yk/ 2 B0

1 � � � � � B0
kg

are independent. Therefore, by the previous criterion, F1 and F2 are
independent. In other words, F1 and F2 are independent if and only if the
r.v.’s .X1; : : : ;Xn/ and .Y1; : : : ;Yk/ are independent for every choice of n; k
and of X1; : : : ;Xn 2 I and Y1; : : : ;Yk 2 J .

We shall see later that if the r.v.’s of I and J form together a Gaussian
family, then this criterion can be considerably simplified.

The following result will be of constant use in the sequel.

Theorem 1.2 (Fubini) Let �1; �2 be measures respectively on the measur-
able spaces .E1;E1/, .E2;E2/ and let f W E1�E2 ! R be an E1˝E2-measurable
function such that at least one of the following is true:

1) f is integrable with respect to �1 ˝ �2
2) f is positive.

Then
a) the functions

x1 7!
Z

f .x1; z/ �2.z/; x2 7!
Z

f .z; x2/ �1.dz/ (1.9)

are respectively E1-measurable and E2-measurable.

(continued)
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Theorem 1.2 (continued)
b)

Z

E1�E2

f d�1 ˝ �2 D
Z
�1.dx1/

Z
f .x1; x2/ �2.dx2/

D
Z
�2.dx2/

Z
f .x1; x2/ �1.dx1/ :

1.4 Probabilities on R
m

Let � be a probability on .Rm;B.Rm// and let us denote by �i W R
m ! R its

projection on the i-th coordinate: we call the image of� through�i the i-th marginal
law of�. By the integration rule with respect to an image law, (1.7), the i-th marginal
law is therefore given by

�i.A/ D
Z

Rm
1A.xi/ �.dx1; : : : ; dxm/; A 2 B.R/ : (1.10)

If X D .X1; : : : ;Xm/ is an m-dimensional r.v. with law � it is clear that its i-th
marginal �i coincides with the law of Xi.

We say that a probability � on R
m admits a density (with respect to Lebesgue

measure) if there exists a Borel function f � 0 such that for every A 2 B.Rm/

�.A/ D
Z

A
f .x/ dx :

If � admits a density f then its i-th marginal �i also admits a density fi, given by

fi.x/ D
Z

f .y1; : : : ; yi�1; x; yiC1; : : : ; ym/ dy1 : : : dyi�1dyiC1 : : : dym

(the existence of the integral and the fact that such an fi is a measurable function are
consequences of Fubini’s Theorem 1.2, see (1.9)).

In any case the previous formulas show that, given �, it is possible to determine
its marginal distributions. The converse is not true: it is not possible, in general,
knowing just the laws of the Xi’s, to deduce the law of X. Unless, of course, the r.v.’s
Xi are independent as, in this case, by Proposition 1.2 the law of X is the product of
its marginals.
Let X be an R

m-valued r.v. with density f , a 2 R
m and A an m � m invertible matrix;

it is easy to see that the r.v. Y D AX C a has also a density g given by

g.y/ D j det Aj�1f .A�1.y � a// : (1.11)
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If X D .X1; : : : ;Xm/ is an m-dimensional r.v., its covariance matrix is the matrix
C D .cij/i;j defined as

cij D Cov.Xi;Xj/ D EŒ.Xi � EŒXi�/.Xj � EŒXj�/� D EŒXiXj� � EŒXi�EŒXj� :

It is the matrix having on the diagonal the variances of the components X1; : : : ;Xm

and outside the diagonal their covariances. Another more compact way of express-
ing the covariance matrix is the following. Let us assume X centered, then

C D EŒXX�� ; (1.12)

where we consider X as a column vector; X� (� denotes the transpose) is a row vector
and the result of the product XX� is an m � m matrix whose i; j-th entry is precisely
XiXj. If, conversely, X is not centered, we have C D EŒ.X � E.X//.X � EŒX�/��.
This formulation allows us, for instance, to derive immediately how the covariance
matrix transforms with respect to linear transformations: if A is a k � m matrix and
Y D AX, then Y is a k-dimensional r.v. and (assume X centered for simplicity)

CY D EŒAX.AX/�� D EŒAXX�A�� D AEŒXX��A� D ACA� : (1.13)

If X D .X1; : : : ;Xm/ is an m-dimensional r.v., the covariance matrix provides
information concerning the correlation among the r.v.’s Xi; i D 1; : : : ;m. In
particular, if these are pairwise independent the correlation matrix is diagonal. The
converse is not true in general.

An important property of every covariance matrix C is that it is positive
definite, i.e. that for every vector � 2 R

m

hC�; �i D
mX

i;jD1
cij�i�j � 0 : (1.14)

Assuming for simplicity that X is centered, we have cij D EŒXiXj� and

hC�; �i D
mX

i;jD1
cij�i�j D E

h mX

i;jD1
XiXj�i�j

i
D E

h� mX

iD1
Xi�i

�2i � 0 ; (1.15)

as the r.v. inside the rightmost expectation is positive.
Let now X and Y be independent m-dimensional r.v.’s with laws � and �

respectively. We call the law of X C Y, denoted by �
 �, the convolution product of
� and �. This definition actually only depends on � and � and not on X and Y: �
�
is actually the image on R

m through the map .x; y/ 7! x C y of the law of .X;Y/ on
R

m �R
m that, as we have seen, is the product law �˝ � and does not depend on the

particular choice of X and Y.
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Proposition 1.4 If � and � are probabilities on R
m having density f and g

respectively with respect to Lebesgue measure, then � 
 � also has density h
with respect to Lebesgue measure given by

h.x/ D
Z

Rm
f .z/g.x � z/ dz :

Proof If A 2 B.Rm/, thanks to the theorem of integration with respect to an image
law, Proposition 1.1,

� 
 �.A/ D
Z
1A.z/ � 
 �.dz/ D

Z
1A.x C y/ �.dx/ �.dy/

D
Z
1A.x C y/f .x/g.y/ dx dy D

Z

A
dx
Z

Rm
f .z/g.x � z/ dz ;

which allows us to conclude the proof.
ut

1.5 Convergence of probabilities and random variables

In this section .E;B.E// denotes a measurable space formed by a topological space
E with its Borel �-algebra B.E/.

• Let .�n/n be a sequence of finite measures on .E;B.E//. We say that it converges
to � weakly if for every continuous bounded function f W E ! R

lim
n!1

Z
fd�n D

Z
fd� : (1.16)

Note that if �n !n!1 � weakly, in general we do not have �n.A/ !n!1 �.A/
for A 2 E , as the indicator function 1A is not, in general, continuous. It can be
proved, however, that �n.A/ !n!1 �.A/ if �.@A/ D 0 and that (1.16) also
holds for functions f such that the set of their points of discontinuity is negligible
with respect to the limit measure �.

Let Xn, n 2 N, and X be r.v.’s on .˝;F ;P/ taking values in .E;B.E//.

• We say that .Xn/n converges to X almost surely (a.s.), denoted Xn
a:s:! X, if there

exists a negligible event N 2 F such that

lim
n!1 Xn.!/ D X.!/ for every ! … N :
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• If E D R
m we say that .Xn/n converges to X in Lp, denoted Xn

Lp

! X, if X 2 Lp

and

lim
n!1 EŒjXn � Xjp� D 0 :

Thanks to (1.5), Lp-convergence implies Lq-convergence if p > q.
• If the sequence .Xn/n takes its values in a metric space E with a distance denoted

by d, we say that it converges to X in probability, denoted Xn
P! X, if, for every

ı > 0,

lim
n!1 P.d.Xn;X/ > ı/ D 0 :

• We say that .Xn/n converges to X in law, denoted Xn
L! X, if �n ! � weakly,

�n, � denoting respectively the laws of Xn and X. Note that for this kind of
convergence it is not necessary for the r.v.’s X;Xn; n D 1; 2; : : : , to be defined on
the same probability space.

The following proposition summarizes the general comparison results between
these notions of convergence.

Proposition 1.5 If Xn
Lp

! X then Xn
P! X. If Xn

a:s:! X then Xn
P! X. If

Xn
P! X then Xn

L! X. If Xn
P! X then there exists a subsequence .Xnk/k

converging to X a.s.

In particular, the last statement of Proposition 1.5 implies the uniqueness of the
limit in probability.

Proposition 1.6 (Cauchy criterion of convergence in probability) Let
.Xn/n be a sequence of r.v.’s with values in the complete metric space E and
let us assume that for every 	 > 0, " > 0 there exists an n0 2 N such that for
every n;m > n0

P.d.Xn;Xm/ > 	/ < " :

Then there exists an E-valued r.v. X such that Xn
P! X as n ! 1.
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Let us consider on the probability space .˝;F ;P/ a sequence .An/n of events.
Let us define an event A (the superior limit of .An/n) through

lim
n!1 An D

1\

nD1

[

k�n

Ak D A :

It is easy to see that, equivalently,

1A D lim
n!1 1An

or

A D f!I! 2 An for infinitely many indices ng :

We shall often be led to the computation of the probability of the superior limit of a
sequence of events. To this end, the key argument is the following.

Proposition 1.7 (Borel–Cantelli lemma) Let .An/n, and A D limn!1An

as above. Then

a) if
P1

nD1 P.An/ < C1, then P.A/ D 0.
b) If

P1
nD1 P.An/ D C1 and, moreover, the events .An/n are pairwise

independent, then P.A/ D 1.

Usually Proposition 1.7 b) is stated under assumption of global independence of
the events .An/n. Actually, pairwise independence is sufficient.

1.6 Characteristic functions

If X is an m-dimensional r.v. and � denotes its law, let us define

b�.
/ D
Z

eih
;xi�.dx/ D EŒeih
;Xi� ; 
 2 R
m :

b� is the characteristic function (very much similar to the Fourier transform) of �. It
is defined for every probability � on R

m and enjoys the following properties, some
of them being immediate.

1. b�.0/ D 1 and jb�.
/j � 1, for every 
 2 R
m.

2. If X and Y are independent r.v.’s with laws � and � respectively, then we have
b�XCY.
/ D b�.
/b�.
/.
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3. b� is uniformly continuous.
4. If � has finite mathematical expectation thenb� is differentiable and

@b�

@
j
.
/ D i

Z
xjeih
;xi�.dx/ :

In particular,

@b�

@
j
.0/ D i

Z
xj�.dx/ ;

i.e.b�0.0/ D iEŒX�.
5. If � has finite moment of order 2,b� is twice differentiable and

@2b�

@
k@
j
.
/ D �

Z
xkxje

ih
;xi�.dx/ : (1.17)

In particular,

@2b�

@
k@
j
.0/ D �

Z
xkxj�.dx/ : (1.18)

For m D 1 this relation becomes b�00.0/ D �EŒX2�. If X is centered, then
the second derivative at 0 is equal to �1 times the variance. If m � 2 and X
is centered, then (1.18) states that the Hessian of b� at the origin is equal to �1
times the covariance matrix.

Similar statements hold for higher-order moments: if ˛ D .i1; : : : ; im/ is a
multi-index and j˛j D i1 C � � � C im and if the absolute moment of order j˛j,
EŒjXjj˛j�, is finite, then b� is ˛ times differentiable and

@j˛jb�
@x˛

.
/ D
Z

ij˛jx˛ d�.x/ : (1.19)

These results of differentiability are an immediate consequence of the theorem
of differentiation of integrals depending on a parameter.

Conversely it is not true, in general, that if all the derivatives of order j˛j of
b� are finite, then the moment of order j˛j is finite. It can be shown, however,
that if j˛j is an even number and b� is differentiable up to the order j˛j at 0,
then X has a finite moment of order j˛j and therefore (1.19) holds. Thus, in
particular, in dimension 1, if b� is twice differentiable at the origin, then X has
finite variance and (1.17) and (1.18) hold.

The previous formulas are very useful as they allow us to obtain the mean,
variance, covariance, moments. . . of a r.v. simply by computing the derivatives
of its characteristic function at 0.
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6. If b�.
/ D b�.
/ for every 
 2 R
m, then � D �. This very important property

explains the name “characteristic function”.
7. If X1; : : : ;Xm are r.v.’s respectively �1; : : : ; �n-distributed, then they are inde-

pendent if and only if, denoting by � the law of X D .X1; : : : ;Xm/,

b�.
1; : : : ; 
m/ D b�1.
1/ : : :b�m.
m/

(the “only if part” is a consequence of the definitions, the “if” part follows from
6 above).

8. If �k is the k-th marginal of � then

b�k.
/ D b�.0; : : : ; 0; 

"

k�th

; 0; : : : ; 0/ :

9. Let b 2 R
k and A a k � m matrix. Then Y D AX C b is a R

k-valued r.v.; if �
denotes its law, for 
 2 R

k,

b�.
/ D EŒeih
;AXCbi� D eih
;biEŒeihA�
;Xi� D b�.A�
/ eih
;bi (1.20)

(again A� is the transpose of A).
10. Clearly if �n !n!1 � weakly then b�n.
/ !n!1 b�.
/ for every 
 ; indeed,

x 7! eih
;xi is a continuous function having bounded real and imaginary parts.
Conversely, (P. Lévy’s theorem) if

lim
n!1b�n.
/ D  .
/ for every 
 2 R

m

and if  is continuous at the origin, then  is the characteristic function of
some probability law � and �n !n!1 � weakly.

1.7 Gaussian laws

A probability � on R is said to be N.a; �2/ (normal, or Gaussian, with mean a
and variance �2), where a 2 R; � > 0, if it has density with respect to Lebesgue
measure given by

f .x/ D 1p
2� �

exp
h

� .x � a/2

2�2

i
:
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Let us compute its characteristic function. We have at first, with the change of
variable x D y � a,

b�.
/ D 1p
2� �

Z C1

�1
ei
y exp

h
� .y � a/2

2�2

i
dy D ei
a

p
2� �

Z C1

�1
ei
xe� x2

2�2 dx

and if we set

u.
/ D 1p
2� �

Z C1

�1
ei
xe� x2

2�2 dx ;

we haveb�.
/ D u.
/ ei
a. Integrating by parts we have

u0.
/ D 1p
2� �

Z C1

�1
ix ei
xe� x2

2�2 dx

D 1p
2� �

.�i�2/ ei
xe� x2

2�2

ˇ
ˇ
ˇ
ˇ

C1

�1
� �2
p

2� �

Z C1

�1
ei
xe� x2

2�2 dx

D ��2
u.
/ :

This is a first order differential equation. Its general solution is u.
/ D c � e� 1
2 �

2
2

and, recalling the condition u.0/ D 1, we find

u.
/ D e� 1
2 �

2
2 ; b�.
/ D ei
ae� 1
2 �

2
2 :

By points 4. and 5. of the previous section one easily derives, by taking the derivative
at 0, that � has mean a and variance �2. If now � � N.b; �2/ then

.� 
 �/b.
/ D b�.
/b�.
/ D ei
.aCb/ exp
h

� .�2 C �2/
2

2

i
:

�
� therefore has the same characteristic function as an N.aCb; �2C�2/ law and,
by 6. of the previous section, � 
 � � N.a C b; �2 C �2/. In particular, if X and Y
are independent normal r.v.’s, then X C Y is also normal.
Let X1; : : : ;Xm be independent N.0; 1/-distributed r.v.’s and let X D .X1; : : : ;Xm/;
then the vector X has density

f .x/ D 1p
2�

e�x21=2 : : :
1p
2�

e�x2m=2 D 1

.2�/m=2
e� 1

2 jxj2 (1.21)

and, by 7. of the previous section, its characteristic function is given by

e�
21 =2 : : : e�
2m=2 D e� 1
2 j
 j2 :
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If a 2 R
m and A is an m � m matrix then, recalling (1.20), AX C a has characteristic

function

eih
;aie� 1
2 hA�
;A�
i D eih
;aie� 1

2 h� 
;
i ; (1.22)

where � D AA�.
Let a 2 R

m and let � be an m � m positive semi-definite matrix. A law �

on R
m is said to be N.a; � / (normal with mean a and covariance matrix � ) if

its characteristic function is given by (1.22). This is well defined as we can prove
that (1.22) is certainly the characteristic function of a r.v.

It is actually well-known that if � is an m � m positive semi-definite matrix,
then there always exists a matrix A such that AA� D � ; this matrix is unique under
the additional requirement of being symmetric and in this case we will denote it
by � 1=2. Therefore (1.22) is the characteristic function of � 1=2X C a, where X
has density given by (1.21). In particular, (1.21) is the density of an N.0; I/ law (I
denotes the identity matrix).

In particular, we have seen that every X � N.a; � /-distributed r.v. can be written
as X D a C � 1=2Z, where Z � N.0; I/. We shall often take advantage of this
property, which allows us to reduce computations concerning N.a; � /-distributed
r.v.’s to N.0; I/-distributed r.v.’s, usually much simpler to deal with. This is also very
useful in dimension 1: a r.v. X � N.a; �2/ can always be written as X D a C �Z
with Z � N.0; 1/.

Throughout the computation of the derivatives at 0, as indicated in 4. and 5. of
the previous section, a is the mean and � the covariance matrix. Similarly as in the
one-dimensional case we find that if � and � are respectively N.a; � / and N.b; /,
then � 
 � is N.a C b; � C/ and that the sum of independent normal r.v.’s is also
normal.

If the covariance matrix � is invertible and � D AA�, then it is not difficult
to check that A also must be invertible and therefore, thanks to (1.20), an N.a; � /-
distributed r.v. has density g given by (1.11), where f is the N.0; I/ density defined
in (1.21). Developing this relation and noting that det� D .det A/2, we find, more
explicitly, that

g.y/ D 1

.2�/m=2.det� /1=2
e� 1

2 h��1.y�a/;y�ai:

If, conversely, the covariance matrix � is not invertible, it can be shown that the
N.a; � / law does not have a density (see Exercise 1.4 for example). In particular, the
N.a; 0/ law is also defined: it is the law having characteristic function 
 7! eih
;ai,
and is therefore the Dirac mass at a.
Let X be a Gaussian R

m-valued N.a; � /-distributed r.v., A a k�m matrix and b 2 R
k.

Let us consider the r.v. Y D AX C b, which is Rk-valued. By (1.20)

b�.
/ D b�.A�
/ eih
;bi D eih
;bieihA�
;aie� 1
2 h� A�
;A�
i D eih
;bCAaie� 1

2 hA� A�
;
i :
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Therefore Y is Gaussian with mean b C Aa and variance A� A�. This fact can be
summarized by saying that

Theorem 1.3 Linear-affine transformations map normal laws into normal
laws.

This is a fundamental property. In particular, it implies that if X and Y are real
r.v.’s with a normal joint law, then X C Y is normal. It suffices to observe that X C Y
is a linear function of the vector .X;Y/.

The same argument gives that if � D N.a; � / and �k is the k-th marginal
distribution of �, then �k is also normal (the projection on the k-th coordinate is
a linear function). This can also be deduced directly from 8. of the previous section:

b�k.
/ D e� 1
2 �kk


2

ei
ak (1.23)

and therefore �k � N.ak; �kk/.
If � is diagonal, then using (1.22) and (1.23),

b�.
1; : : : ; 
m/ D b�1.
1/ : : :b�m.
m/ : (1.24)

By 7. of Sect. 1.6 we see then that � D �1 ˝ � � � ˝ �m. Therefore

if X D .X1; : : : ;Xm/ is normal and has a diagonal covariance matrix, its
components X1; : : :Xm are independent r.v.’s.

Therefore for two real jointly Gaussian r.v.’s X and Y, if they are uncorrelated, they
are also independent. This is a specific property of jointly normal r.v.’s which, as
already remarked, is false in general.

A similar criterion can be stated if X1; : : : ;Xm are themselves multidimensional:
if the covariances between the components of Xh and Xk, h 6D k; 1 � h; k � m,
vanish, then X1; : : : ;Xm are independent. Actually, if we denote by�h the covariance
matrix of Xh, the covariance matrix � of X D .X1; : : : ;Xm/ turns out to be block
diagonal, with the blocks �h on the diagonal. It is not difficult therefore to repeat the
previous argument and show that the relation (1.24) holds between the characteristic
functions b� of X and those, b�h, of the Xh, which implies the independence of
X1; : : : ;Xm.

Definition 1.1 A family I of d-dimensional r.v.’s defined on .˝;F ;P/ is
said to be a Gaussian family if, for every choice of X1; : : : ;Xm 2 I , the
dm-dimensional r.v. X D .X1; : : : ;Xm/ is Gaussian.
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Remark 1.2 Let us go back to Remark 1.1: let F1 D �.X;X 2 I / and F2 D
�.Y;Y 2 J / be �-algebras generated respectively by the families I and J
of real r.v.’s. Let us assume, moreover, that I [J is a Gaussian family. Then
it is immediate that F1 and F2 are independent if and only if

Cov.X;Y/ D 0 for every X 2 I ;Y 2 J : (1.25)

In fact this condition guarantees that the r.v.’s .X1; : : : ;Xn/ and .Y1; : : : ;Yk/

are independent for every choice of X1; : : : ;Xn 2 I and Y1; : : : ;Yk 2 J
and therefore the criterion of Remark 1.1 is satisfied. Let us recall again
that (1.25) implies the independence of the generated �-algebras only under
the assumption that the r.v.’s X 2 I ;Y 2 J are jointly Gaussian.

Proposition 1.8 Let I be a family of d-dimensional r.v.’s. Then it is a
Gaussian family if and only if for every X1; : : : ;Xm 2 I and �1; : : : ; �m 2 R

d,
the r.v. h�1;X1i C � � � C h�m;Xmi is Gaussian.

Proof We shall assume d D 1 in order to make things simple.
Let us assume that every finite linear combination of the r.v.’s of I is Gaussian.

Hence, in particular, every r.v. of I is Gaussian. This implies that if X;Y 2 I then

EŒjXYj� � EŒX2�1=2EŒY2�1=2 < C1 :

So that Cov.X;Y/ is well defined. Let X1; : : : ;Xm 2 I and X D .X1; : : : ;Xm/ and
let us denote by � the law of X. Let us compute its characteristic function b�. Let
� D .�1; : : : ; �m/ 2 R

m. By hypothesis �1X1 C � � � C �mXm D h�;Xi is N.a; �2/-
distributed for some �2 � 0, a 2 R. Now we know that X has finite expectation, z,
and covariance matrix � , hence

a D EŒh�;Xi� D
mX

iD1
�iEŒXi� D h�; zi

�2 D EŒh�;Xi2� � a2 D
mX

i;jD1
�i�j

�
EŒXiXj� � EŒXi�EŒXj�

� D
mX

i;jD1
�ij�i�j :

Therefore we have

b�.�/ D EŒeih�;Xi� D eiae��2=2 D eih�;zie� 1
2 h� �;�i

so X is Gaussian.
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Conversely, if X D .X1; : : : ;Xm/ is Gaussian and � 2 R
m, then �1X1 C � � � C

�mXm D h�;Xi is Gaussian, being a linear function of a Gaussian vector (see
Theorem 1.3). ut
The following property of the Gaussian laws, which we shall use quite often, is,
together with the invariance with respect to affine transformations of Theorem 1.3,
the most important.

Proposition 1.9 Let .Xn/n be a sequence of m-dimensional Gaussian r.v.’s
converging in law to a r.v. X. Then X is also Gaussian.

Proof Thanks to Proposition 1.8 it is sufficient to prove that Y D h�;Xi is Gaussian
for every � 2 R

m.
The r.v.’s Yn D h�;Xni are Gaussian, being linear functions of Gaussian vectors.

Denoting by mn; �
2
n respectively the mean and variance of Yn, the characteristic

function of Yn is

�n.
/ D ei
mne� 1
2 �

2
n 


2

:

By hypothesis �n.
/ ! �.
/ as n ! 1, where � is the characteristic function of
Y. Taking the modulus we have, for every 
 2 R,

e� 1
2 �

2
n 


2 !
n!1 j�.
/j :

This proves that the sequence .�2n /n is bounded. Actually, if there existed a
subsequence converging to C1 we would have j�.
/j D 0 for 
 6D 0 and
j�.0/j D 1, which is not possible, � being continuous. If �2 denotes the limit of
a subsequence of .�2n /n, then necessarily e� 1

2 �
2
n 


2 ! e� 1
2 �

2
2 .
Let us prove now that the sequence of the means, .mn/n, is also bounded. Note

that, Yn being Gaussian, we have P.Yn � mn/ D 1
2

if �2n > 0 and P.Yn � mn/ D 1

if �2n D 0, as in this case the law of Yn is the Dirac mass at mn. In any case, P.Yn �
mn/ � 1

2
.

Let us assume that .mn/n is unbounded. Then there would exist a subsequence
.mnk/k converging to C1 (this argument is easily adapted to the case mnk ! �1).
For every M 2 R we would have, as mnk � M for k large,

P.Y � M/ � lim
n!1

P.Ynk � M/ � limn!1 P.Ynk � mnk/ D 1

2
,

which is not possible, as necessarily limM!C1 P.Y � M/ D 0. As .mn/n is
bounded, there exists a convergent subsequence .mnk/k, mnk ! m say. Therefore
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we have, for every 
 2 R,

�.
/ D lim
k!1 ei
�nk e� 1

2 �
2
nk

2 D ei
me� 1

2 �
2
2

hence Y is Gaussian. ut

1.8 Simulation

Often one needs to compute a probability or an expectation for which there is no
explicit formula. In this case simulation is natural option.

For instance, if X is a r.v. and f a real Borel function, bounded to make things
simple, and we must know the value of the expectation

EŒf .X/� ;

then the Law of Large Numbers states that if .Xn/n is a sequence of independent
identically distributed r.v.’s with the same law as X, then

1

N

NX

iD1
f .Xi/ !

N!1 EŒf .X/� :

A first question in this direction is to be able to simulate a r.v. with a given
distribution, i.e. to instruct a computer to generate random numbers with a given
distribution.

In this section we shall see how to simulate Gaussian distributed random
numbers.

We will assume that the researcher has access to a programming language with
a random generator uniformly distributed on Œ0; 1�, i.e. a command that produces a
random number with this law and such that, moreover, repeated calls to it give rise
to random numbers that are independent.

These are the so-called pseudo-random numbers. We shall not approach the
question of how they are obtained: we shall just be satisfied with the fact that all
the common programming languages (FORTRAN, C, . . . ) comply with our needs.
We shall see later, however, that it is always wise to doubt of the quality of these
generators. . .

The first problem is: how is it possible, starting from a random generator uniform
on Œ0; 1�, to obtain a generator producing a r.v. with a Gaussian distribution? Various
algorithms are available (see also Exercise 1.21); curiously most of them produce
simultaneously two independent random numbers with an N.0; 1/ distribution. The
one provided by the following proposition is possibly the simplest.
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Proposition 1.10 (The Box–Müller algorithm) Let W;Z be independent
r.v.’s respectively exponential with parameter 1

2
(see Exercise 1.2) and uniform

on Œ0; 2��. Then X D p
W cos Z and Y D p

W sin Z are independent and
N.0; 1/-distributed.

Proof First, let us compute the density of R D p
W. The partition function of W is

F.t/ D 1� e�t=2 (see also Exercise 1.2). Therefore the partition function of R is, for
r > 0,

FR.r/ D P.
p

W � r/ D P.W � r2/ D 1 � e�r2=2

and FR.r/ D 0 for r � 0. Therefore, taking the derivative, its density is fR.r/ D
re�r2=2, r > 0. As the density of Z is equal to 1

2�
on the interval Œ0; 2��, the joint

density of
p

W and Z is

f .r; z/ D 1

2�
re�r2=2; for r > 0; 0 � z � 2�;

and f .r; z/ D 0 otherwise. Let us compute the joint density, g say, of X D p
W cos Z

and Y D p
W sin Z: g is characterized by the relation

EŒ˚.X;Y/� D
Z C1

�1

Z C1

�1
˚.x; y/g.x; y/ dx dy (1.26)

for every bounded Borel function ˚ W R
2 ! R. Recalling the formulas of

integration in polar coordinates,

EŒ˚.X;Y/� D EŒ˚.
p

W cos Z;
p

W sin Z/� D
Z Z

˚.r cos z; r sin z/f .r; z/ dr dz

D 1

2�

Z 2�

0

dz
Z C1

0

˚.r cos z; r sin z/ re�r2=2 dr

D 1

2�

Z C1

�1

Z C1

�1
˚.x; y/e� 1

2 .x
2Cy2/ dx dy

and, comparing with (1.26), we derive that the joint density g of X;Y is

g.x; y/ D 1

2�
e� 1

2 .x
2Cy2/ ;

which proves simultaneously that X and Y are independent and
N.0; 1/-distributed. ut
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Proposition 1.10 suggests the following recipe for the simulation of an N.0; I/-distri-
buted r.v.: let Z be a r.v. uniform on Œ0; 2�� and W an exponential r.v. with parameter
1
2
. They can be obtained from a uniform distribution as explained in Exercise 1.2).

Then the r.v.’s

X D p
W cos Z; Y D p

W sin Z (1.27)

are Gaussian N.0; I/-distributed and independent. To be more explicit the steps
are:

• Simulate two independent r.v.’s U1, U2 uniform on Œ0; 1� (these are provided by
the random number generator of the programming language that you are using);

• set Z D 2�U1, W D 2 log.1 � U2/; then Z is uniform on Œ0; 2�� and W is
exponential with parameter 1

2
(see Exercise 1.2);

• then the r.v.’s X, Y as in (1.27) are N.0; 1/-distributed and independent.

This algorithm produces an N.0; 1/-distributed r.v., but of course from this we
can easily obtain an N.m; �2/-distributed one using the fact that if X is N.0; 1/-
distributed, then m C �X is N.m; �2/-distributed.

Remark 1.3 a) The Box–Müller algorithm introduced in Proposition 1.10 is
necessary when using low level programming languages such as FORTRAN
or C. High level languages such as Matlab, Mathematica or scilab, in fact
already provide routines that directly produce Gaussian-distributed r.v.’s and,
in fact, the simulated paths of the figures of the forthcoming chapters have
been produced with one of them.

However, these high-level languages are interpreted, which means that
they are relatively slow when dealing with a real simulation, requiring the
production of possibly millions of random numbers. In these situations a
compiled language such as FORTRAN or C is necessary.

b) The huge number of simulations that are required by a real life
application introduces another caveat. The random number generator that is
usually available in languages such as FORTRAN or C is based on arithmetic
procedures that have a cycle, i.e. the generator produces numbers a0; a1; : : :
that can be considered uniformly distributed on Œ0; 1� and independent, but
after N numbers (N Dthe cycle length) it goes back to the beginning of the
cycle, repeating again the same numbers a0; a1; : : :

This means that it is not fit for your simulation if your application requires
the production of more than N random numbers. In particular, the C command
rnd() has a cycle N � 2 � 109, which can very well be insufficient (we shall
see that the simulation of a single path may require many random numbers).

Luckily more efficient random number simulators, with a reassuringly
large cycle length, have been developed and are available in all these
languages and should be used instead of the language default.
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1.9 Measure-theoretic arguments

Very often in the sequel we shall be confronted with the problem of proving that
a certain statement is true for a large class of functions. Measure theory provides
several tools in order to deal with this kind of question, all based on the same idea:
just prove the statement for a smaller class of functions (for which the check is easy)
and then show that necessarily it must be true for the larger class. In this section we
give, without proof, three results that will be useful in order to produce this kind of
argument.

In general, if E is a set and C a class of parts of E, by �.C / we denote the
�-algebra generated by C , i.e. the smallest �-algebra of parts of E containing C .

Proposition 1.11 Let .E;E / be a measurable space and f a positive real
measurable function on E. Then there exists an increasing sequence . fn/n of
functions of the form

fn.x/ D
mX

iD1
˛i1Ai.x/ (1.28)

such that fn % f .

Functions of the form appearing on the right-hand side of (1.28) are called ele-
mentary. Therefore Proposition 1.11 states that every measurable positive function
is the increasing limit of a sequence of elementary functions.

Theorem 1.4 Let E be a set, C a class of parts of E stable with respect to
finite intersections and H a vector space of bounded functions such that:

i) if . fn/n is an increasing sequence of elements of H all bounded above by
the same element of H then supn fn 2 H ; and

ii) H contains the function 1 and the indicator functions of the elements of
C .

Then H contains every bounded �.C /-measurable function.

Theorem 1.5 Let H be a vector space of bounded real functions on a set E
such that:

(continued)
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Theorem 1.5 (continued)
i) 1 2 H ;

ii) if . fn/n � H and fn !n!1 f uniformly, then f 2 H ; and
iii) if . fn/n � H is an increasing sequence of equi-bounded positive functions

and limn!1 fn D f , then f 2 H .

Let L be a subspace of H stable under multiplication. Then H contains
every bounded �.L/-measurable function.

Let us prove Theorem 1.1 (Carathéodory’s criterion) as an example of application
of Theorem 1.4. Let H be the set of the real bounded measurable functions f on E
such that

Z
f d�1 D

Z
f d�2 :

H is a vector space and satisfies i) of Theorem 1.4 thanks to Lebesgue’s theorem.
Moreover, of course, H contains the function 1 and the indicators of the elements
of I . Therefore H contains every bounded �.I /-measurable function. As by
assumption �.I / D E , �1 and �2 coincide on E .

This example of application of Theorem 1.4 is typical when one must prove in
general a property that is initially only known for a particular class of events.

Similarly, Theorem 1.5 will be used, typically, in order to extend to every
bounded measurable function a property which is known at first only for a particular
class of functions: for instance, the class of continuous functions on .E;B.E//, if E
is a metric space.

Exercises

1.1 (p. 437) Given a real r.v. X, its partition function (p.f.) is the function

F.t/ D P.X � t/ :

Show that two real r.v.’s X and Y have the same p.f. if and only if they have the same
distribution.

Use Carathéodory’s criterion, Theorem 1.1.

1.2 (p. 437) a) A r.v. X has exponential law with parameter 	 if it has density

f .x/ D 	e�	x1Œ0;C1Œ.x/ :
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What is the p.f. F of X (see the definition in Exercise 1.1)? Compute the mean and
variance of X.

b) Let U be a r.v. uniformly distributed on Œ0; 1�, i.e. having density

f .x/ D 1Œ0;1�.x/:

Compute the mean and variance of U.
c) Let U be as in b).

c1) Compute the law of Z D ˛U, ˛ > 0.
c2) Compute the law of W D � 1

	
log U, 	 > 0.

1.3 (p. 439) a) Let X be a positive r.v. and f W RC ! R a differentiable function
with continuous derivative and such that f .X/ is integrable. Then

EŒf .X/� D f .0/C
Z C1

0

f 0.t/P.X � t/ dt :

b) Let X be a positive integer-valued r.v. Then

EŒX� D
1X

kD1
P.X � k/ :

a) If � is the law of X, then
RC1

0 f 0.t/ dt
RC1

t �.dx/ D RC1

0 �.dx/
R x
0 f 0.t/ dt by Fubini’s

theorem.

1.4 (p. 439) Let X be an m-dimensional r.v. and let us denote by C its covariance
matrix.

a) Prove that if X is centered then P.X 2 Im C/ D 1 (Im C is the image of the
matrix C).

b) Deduce that if the covariance matrix C of a r.v. X is not invertible, then the
law of X cannot have a density.

1.5 (p. 439) Let X;Xn; n D 1; 2; : : : , be R
m-valued r.v.’s. Prove that if from every

subsequence of .Xn/n we can extract a further subsequence convergent to X in Lp

(resp. in probability) then .Xn/n converges to X in Lp (resp. in probability). Is this
also true for a.s. convergence?

1.6 (p. 440) Given an m-dimensional r.v. X, its Laplace transform is the function

R
m 3 
 ! EŒeh
;Xi�

(possibly D C1). Prove that, if X � N.b; � /, then

EŒeh
;Xi� D eih
;bie
1
2 h� 
;
i:
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1.7 (p. 440) Prove points 2 and 8 of Sect. 1.6.

1.8 (p. 440) Let X be a real r.v. having a Laplace law with parameter 	, i.e. having
density

f .x/ D 	

2
e�	jxj :

Compute its characteristic function and its Laplace transform.

1.9 (p. 441) Let X, Y be independent N.0; 1/-distributed r.v.’s. Determine the laws
of the two-dimensional r.v.’s .X;X C Y/ and .X;

p
2X/. Show that these two laws

have the same marginals.

1.10 (p. 442) Let X1, X2 be independent N.0; 1/-distributed r.v.’s. If Y1 D X1� X2,

Y2 D X1CX2, show that Y1 and Y2 are independent. And if it were Y1 D 1
2
X1�

p
3
2

X2,

Y2 D 1
2
X1 C

p
3
2

X2?

1.11 (p. 443) a) Let X be an N.�; �2/-distributed r.v. Compute the density of eX

(lognormal law of parameters � and �2).
b) Show that a lognormal law has finite moments of all orders and compute them.

What are the values of its mean and variance?

1.12 (p. 443) Let X be an N.0; �2/-distributed r.v. Compute, for t 2 R, EŒetX2 �.

1.13 (p. 444) Let X be an N.0; 1/-distributed r.v., �; b real numbers and x;K > 0.
Show that

EŒ.xebC�X � K/C� D xebC 1
2 �

2

˚.�� C �/ � K˚.��/ ;

where � D 1
�
.log K

x �b/ and˚ denotes the partition function of an N.0; 1/-distribu-
ted r.v. This quantity appears naturally in many questions in mathematical finance,
see Sect. 13.6. (xC denotes the positive part function, xC D x if x � 0, xC D 0 if
x < 0.)

1.14 (p. 444) a) Let .Xn/n be a sequence of m-dimensional Gaussian r.v.’s
respectively with mean bn and covariance matrix �n. Let us assume that

lim
n!1 bn WD b; lim

n!1�n WD �:

Show that Xn
L! N.b; � / as n ! 1.

b1) Let .Zn/n be a sequence of N.0; �2/-distributed real independent r.v.’s. Let
.Xn/n be the sequence defined recursively by

X0 D x 2 R; XnC1 D ˛Xn C ZnC1
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where j˛j < 1 (i.e., possibly, X1; : : : ;Xn; : : : represent the subsequent positions of
a moving object that at every iteration moves from the actual position Xn to the
position ˛Xn but also undergoes a perturbation ZnC1). What is the law of X1? And
of X2? Prove that, as n ! 1, .Xn/n converges in law and determine the limit law.

b2) Prove that, as n ! 1, the sequence of two-dimensional r.v.’s ..Xn;XnC1//n
converges in law and determine the limit law.

1.15 (p. 446) a) Prove that, for every p � 0, there exists a constant cp;m > 0 such
that E.jXjp/ � cp;mE.jXj2/p=2 for every Gaussian m-dimensional centered r.v. X.

b) Let .Xn/n be a sequence of Gaussian r.v.’s converging to 0 in L2. Show that
the convergence also takes place in Lp for every p > 0.

Recall the inequality, for x D .x1; : : : ; xm/ 2 R
m,

mX

iD1

jxijp � jxjp � m
p�2
2

mX

iD1

jxijp :

1.16 (p. 446) (Example of a pair of Gaussian r.v.’s whose joint law it is not
Gaussian) Let X;Z be independent r.v.’s with X � N.0; 1/ and P.Z D 1/ D P.Z D
�1/ D 1

2
. Let Y D XZ.

a) Prove that Y is itself N.0; 1/.
b) Prove that X C Y is not Gaussian. Does .X;Y/ have a joint Gaussian law?

1.17 (p. 447) a) Let .Xn/n be a sequence of independent N.0; 1/-distributed r.v.’s.
Prove that, for every ˛ > 2,

P
�
Xn > .˛ log n/1=2 for infinitely many indices n

� D 0 : (1.29)

b) Prove that

P
�
Xn > .2 log n/1=2 for infinitely many indices n

� D 1 : (1.30)

c) Show that the sequence ..log n/�1=2Xn/n tends to 0 in probability but not a.s.

Use the following inequalities that will be proved later (Lemma 3.2)

�
x C 1

x

��1

e�x2=2 �
Z C1

x
e�z2=2 dz � 1

x
e�x2=2 :

1.18 (p. 448) Prove Proposition 1.1 (the integration rule with respect to an image
probability).

1.19 (p. 449) (A very useful measurability criterion) Let X be a map .˝;F / !
.E;E /, D � E a family of subsets of E such that �.D/ D E and let us assume that
X�1.A/ 2 F for every A 2 D . Show that X is measurable.
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1.20 (p. 449) (A special trick for the L1 convergence of densities) Let Zn;Z be
positive r.v.’s such that Zn ! Z a.s. as n ! 1 and EŒZn� D EŒZ� < C1 for every
n. We want to prove that the convergence also takes place in L1.

a) Let Hn D min.Zn;Z/. Prove that limn!1 EŒHn� D EŒZ�.
b) Note that jZn �Zj D .Z �Hn/C .Zn �Hn/ and deduce that Zn ! Z also in L1.

1.21 (p. 449) In the FORTRAN libraries in use in the 70s (but also nowadays . . . ),
in order to generate an N.0; 1/-distributed random number the following procedure
was implemented. If X1; : : : ;X12 are independent r.v.’s uniformly distributed on
Œ0; 1�, then the number

W D X1 C � � � C X12 � 6 (1.31)

is (approximately) N.0; 1/-distributed.
a) Can you give a justification of this procedure?
b) Let Z be a N.0; 1/-distributed r.v. What is the value of EŒZ4�? What is the

value of EŒW4� for the r.v. given by (1.31)? What do you think of this procedure?



Chapter 2
Stochastic Processes

2.1 General facts

A stochastic process is a mathematical object that is intended to model the evolution
in time of a random phenomenon. As will become clear in the sequel the appropriate
setting is the following.

A stochastic process is an object of the form

X D .˝;F ; .Ft/t2T ; .Xt/t2T ;P/ ;

where

• .˝;F ;P/ is a probability space;
• T (the times) is a subset of RC;
• .Ft/t2T is a filtration, i.e. an increasing family of sub-�-algebras of F :

Fs � Ft whenever s � t; and
• .Xt/t2T is a family of r.v.’s on .˝;F / taking values in a measurable space
.E;E / such that, for every t, Xt is Ft-measurable. This fact is also expressed
by saying that .Xt/t is adapted to the filtration .Ft/t.

Let us look at some aspects of this definition.
Of course Xt will represent the random position of our object at time t.
At this point the meaning of the �-algebras Ft and the role that they are going

to play may not be evident; we will understand them well only later. For now let us
just say that Ft is “the amount of information that is available at time t”, i.e. it is the
family of the events for which, at time t, one knows whether they happened or not.

Note that, if s � t, as Xs must be Fs-measurable and Fs � Ft, then all the r.v.’s
Xs for s � t, must be Ft measurable, so that Ft necessarily contains the �-algebra
Gt D �.Xs; s � t/. These �-algebras form the natural filtration .Gt/t, which is
therefore the smallest possible filtration with respect to which X is adapted. As Xs
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for s � t is an Ft measurable r.v., this means intuitively that at time t we know the
positions of the process at the times before time t.

In general, if .Ft/t is a filtration, the family
S

t Ft is not necessarily a �-algebra.
By F1 we shall denote the smallest �-algebra of parts of˝ containing

S
t Ft. This

is a �-algebra that can be strictly smaller than F ; it is also denoted
W

t Ft.
Another filtration that we shall often be led to consider is the augmented natural

filtration, .G t/t, where G t is the �-algebra obtained by adding to Gt D �.Xu; u � t/
the negligible events of F , i.e.

Gt D �.Xu; u � t/; G t D �.Gt;N / ;

where N D fAI A 2 F ;P.A/ D 0g.
The space E appearing above (in which the process takes its values) is called the

state space. We shall mainly be interested in the case .E;E / D .Rm;B.Rm//; in
general, however, it might also be a more involved object (a group of matrices, a
manifold,. . . ).

Via the map ! 7! .t 7! Xt.!// one can always think of ˝ as a subset of ET (ET

is the set of all functions T ! E); for this reason˝ is also called the space of paths.
This point of view will be developed in Sect. 3.2.
Let .˝;F ; .Ft/t2T ; .Xt/t2T ;P/ and .˝ 0;F 0; .F 0

t /t2T ; .X0
t/t2T ;P0/ be two processes.

They are said to be equivalent if for every choice of t1; : : : ; tm 2 T the r.v.’s
.Xt1 ; : : : ;Xtm/ and .X0

t1 ; : : : ;X
0
tm/ have the same law.

As we shall see in Sect. 2.3, the notion of equivalence of processes is very important:
in a certain sense two equivalent processes “are the same process”, at least in the
sense that they model the same situation.

One process is said to be a modification (or a version) of the other if
.˝;F ; .Ft/t2T ;P/ D .˝ 0;F 0; .F 0

t /t2T ;P0/ and if, for every t 2 T, Xt D X0
t

P-a.s. In this case, in particular, they are equivalent.

They are said to be indistinguishable if

.˝;F ; .Ft/t2T ;P/ D .˝ 0;F 0; .F 0
t /t2T ;P0/

and

P.Xt D X0
t for every t 2 T/ D 1 :

Two indistinguishable processes are clearly modifications of one another. The
converse is false, as shown in the following example.
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Example 2.1 If ˝ D Œ0; 1�;F D B.Œ0; 1�/ and P DLebesgue measure, let

Xt.!/ D 1f!g.t/; X0
t.!/ � 0 :

X0 is a modification of X, because the event fXt 6D X0
tg is formed by the only

element t, and therefore has probability 0. But the two processes are not indis-
tinguishable, and the event f!I Xt.!/ D X0

t.!/ for every tg is even empty.

Let us assume from now on that the state space E is a topological space endowed
with its Borel �-algebra B.E/ and that T is an interval of RC.

A process is said to be continuous (resp. a.s. continuous) if for every ! (resp.
for almost every !) the map t 7! Xt.!/ is continuous. The definitions of a right-
continuous process, an a.s. right-continuous process, etc., are quite similar.

Note that the processes X and X0 of Example 2.1 are modifications of each
other but, whereas X0 is continuous, X is not. Therefore, in general, the
property of being continuous is not preserved when passing from a process
to a modification.

X is said to be measurable if the map .t; !/ 7! Xt.!/ is measurable .T �˝;B.T/˝
F / ! .E;B.E//. It is said to be progressively measurable if for every u 2 T the
map .t; !/ 7! Xt.!/ is measurable .Œ0; u� � ˝;B.Œ0; u�/ ˝ Fu/ ! .E;B.E//. A
progressively measurable process is obviously measurable.

It is crucial to assume that the processes we are working with are progressively
measurable (see Examples 2.2 and 2.3 below). Luckily we will be dealing with
continuous processes and the following proposition guarantees that they are pro-
gressively measurable.

Proposition 2.1 Let X D .˝;F ; .Ft/t; .Xt/t;P/ be a right-continuous
process. Then it is progressively measurable.

Proof For a fixed u 2 T let us consider the piecewise constant process

X.n/s D
(

X kC1
2n u if s 2 Œ k

2n u; kC1
2n uŒ

Xu if s D u :

Note that we can write X.n/s D Xsn where sn > s is a time such that jsn � sj � u2�n

(sn D .k C 1/u2�n if s 2 Œ k
2n u; kC1

2n uŒ). Hence sn & s as n ! 1 and, as X is

assumed to be right-continuous, X.n/s ! Xs as n ! 1 for every s � u.
Let us prove now that X.n/ is progressively measurable, i.e. that if � 2 B.E/

then the event f.s; !/I s � u;X.n/s .!/ 2 � g belongs to B.Œ0; u�/˝Fu. This follows
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from the relation

f.s; !/I s � u;X.n/s .!/ 2 � g
D
[

k<2n

��
k
2n u; kC1

2n u
� � ˚X kC1

2n u 2 � �� [ �fug � fXu 2 � g�

and the right-hand side is an element of B.Œ0; u�/˝ Fu.
The map .s; !/ 7! Xs.!/ is now B.Œ0; u�/ ˝ Fu-measurable, being the limit of

B.Œ0; u�/˝ Fu-measurable functions. ut

Example 2.2 Let us see a situation where the assumption of progressive
measurability is needed. Let X D .˝;F ; .Ft/t; .Xt/t;P/ be a process. We shall
often be led to the consideration of the process Yt.!/ D R t

0
Xs.!/ ds (assuming

that t 7! Xt is integrable for almost every !). Is the new process .Yt/t adapted
to the filtration .Ft/t? That is, is .˝;F ; .Ft/t; .Yt/t;P/ a process?

Let us fix t > 0. If X is progressively measurable, then the map .!; s/ 7!
Xs.!/; ! 2 ˝; s � t, is Ft ˝ B.Œ0; t�/-measurable. Therefore by the first part
of Fubini’s theorem (Theorem 1.2) the map ! 7! R t

0
Xs.!/ ds D Yt is Ft-

measurable. Therefore Y is adapted and, being continuous, also progressively
measurable. Without the assumption of progressive measurability for X, Y
might not be adapted.

Example 2.3 Let X be a stochastic process and � a positive r.v. Sometimes we
shall be led to the consideration of the r.v. X� , i.e. the position of X at the random
time �. Can we say that X� is a r.v.?

The answer is positive if we assume that X is a measurable process: in this
case .!; t/ 7! Xt.!/ is measurable and X� is obtained as the composition of the
measurable maps ! 7! .!; �.!// and .!; t/ 7! Xt.!/.

In order to be rigorous we will sometimes need to make some assumptions
concerning the filtration. These will not produce difficulties, as we shall soon see
that they are satisfied for our processes of interest.

Let FtC D T
">0FtC". Clearly FtC is a �-algebra (the intersection of any

family of �-algebras is always a �-algebra) and Ft � FtC; we say that the filtration
is right-continuous if FtC D Ft for every t.

A process is said to be standard if

a) the filtration .Ft/t is right-continuous;
b) for every t, Ft contains the negligible events of F .
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Note that the assumption that a process is standard concerns only the filtration and
not, for instance, the r.v.’s Xt.

A situation where this kind of assumption is needed is the following: let X D
.˝;F ; .Ft/t; .Xt/t;P/ be a process and .Yt/t a family of r.v.’s such that Xt D Yt

a.s. for every t. In general this does not imply that Y D .˝;F ; .Ft/t; .Yt/t;P/ is
a process. Actually, Yt might not be Ft-measurable because the negligible event
Nt D fXt 6D Ytg might not belong to Ft. This problem does not appear if the space
is standard. Moreover, in this case every a.s. continuous process has a continuous
modification.

The fact that the filtration .Ft/t is right-continuous is also a technical assumption
that is often necessary; this explains why we shall prove, as soon as possible, that
we can assume that the processes we are dealing with are standard.

2.2 Kolmogorov’s continuity theorem

We have seen in Example 2.1 that a non-continuous process can have a continuous
modification. The following classical theorem provides a simple criterion in order
to ensure the existence of such a continuous version.

Theorem 2.1 (Kolmogorov’s continuity theorem) Let D � R
m be an open

set and .Xy/y2D a family of d-dimensional r.v.’s on .˝;F ;P/ such that there
exist ˛ > 0, ˇ > 0, c > 0 satisfying

EŒjXy � Xzjˇ� � cjy � zjmC˛ :

Then there exists a family .eXy/y of Rd-valued r.v.’s such that

Xy D eXy a.s. for every y 2 D

(i.e.eX is a modification of X) and that, for every ! 2 ˝ , the map y 7! eXy.!/

is continuous and even Hölder continuous with exponent � for every � < ˛
ˇ

on every compact subset of D.

In the proof we shall assume D D�0; 1Œm. The key technical point is the following
lemma.
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Lemma 2.1 Under the assumptions of Theorem 2.1, let D D�0; 1Œm and let
us denote by DB the set, which is dense in D, of the dyadic points (i.e. points
having as coordinates fractions with powers of 2 in the denominator). Then,
for every � < ˛

ˇ
, there exists a negligible event N such that the restriction of

X to DB is Hölder continuous with exponent � on Nc.

Proof For a fixed n let An � DB be the set of the points y 2 D whose coordinates
are of the form k2�n. Let � < ˇ

˛
and let

�n D fjXy � Xzj > 2�n� for some z; y 2 An with jy � zj D 2�ng :

If y; z 2 An are such that jy � zj D 2�n, then, by Markov’s inequality (1.6),

P.jXy � Xzj > 2�n� / � 2nˇ�E.jXy � Xzjˇ/ � 2n.ˇ��˛�m/:

As the set of the pairs y; z 2 An such that jy � zj D 2�n has cardinality 2m � 2nm,

P.�n/ � 2m2nmCn.ˇ��˛�m/ � const 2�n�

where� D ˛�ˇ� > 0. This is the general term of a convergent series and therefore,
by the Borel–Cantelli lemma, there exists a negligible event N such that, if ! 2 Nc,
we have ! 2 � c

n eventually. Let us fix now ! 2 Nc and let n D n.!/ be such that
! 2 � c

k for every k > n. Let us assume at first m D 1. Let y 2 DB: if � > n and
y 2 Œi 2��; .i C 1/2��Œ then

y D i2�� C
rX

`D�C1
˛`2

�` ;

where ˛` D 0 or 1. By the triangle inequality

jXy � Xi2�� j �
rX

kD�C1

ˇ
ˇX
�
i2�� C

kC1X

`D�C1
˛`2

�`� � X
�
i2�� C

kX

`D�C1
˛`2

�`�ˇˇ

�
rX

kD1
2�.�Ck/� � 1

1 � 2�� 2
��� :
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Let now y; z 2 DB be such that jy � zj � 2�� ; there are two possibilities: if there
exists an i such that .i � 1/2�� � y < i2�� � z < .i C 1/2�� then

jXy�Xzj � jXz�Xi2�� jCjXy�X.i�1/2�� jCjXi2�� �X.i�1/2�� j �
�
1C 2

1 � 2��
�
2��� :

Otherwise y, z 2 Œi2��; .i C 1/2��Œ and then

jXy � Xzj � jXy � Xi2�� j C jXz � Xi2�� j � 2

1 � 2�� 2
��� :

Thus we have proved that if y, z 2 DB and jy � zj � 2�� then jXy � Xzj � k2��� ,
where k does not depend on � or, equivalently, that if y, z 2 DB and jy � zj � 2��
then

jXy � Xzj � kjy � zj�

for every � > n. The lemma is therefore proved if m D 1. Let us now consider the
case m > 1. We can repeat the same argument as in dimension 1 and derive that the
previous relation holds as soon as y and z differ at most by one coordinate. Let us
define x.i/ 2 R

m, for i D 0; : : : ;m, by

x.i/j D
(

yi if j � i

zj if j > 1 :

Therefore x.0/ D z, x.m/ D y and x.i/ and x.iC1/ have all but one of their coordinates
equal, and then

jXy � Xzj �
mX

iD1
jXx.i/ � Xx.i�1/ j � k

mX

iD1
jx.i/ � x.i�1/j� � mkjy � zj� ;

which allows us to conclude the proof.
ut

Proof of Theorem 2.1 By Lemma 2.1, if � < ˛
ˇ

then there exists a negligible event
N such that if ! 62 N, the restriction of y 7! Xy.!/ to DB is Hölder continuous
with exponent � and hence uniformly continuous. Let us denote byeX..!/ its unique
continuous extension to D. It suffices now to prove that eXy D Xy a.s. This fact is
obvious if y 2 DB. Otherwise let . yn/n � DB be a sequence converging to y. The
assumption and Markov’s inequality (1.6) imply that Xyn !n!1 Xy in probability
and therefore, possibly taking a subsequence, Xyn !n!1 Xy a.s. As eXyn D Xyn a.s.
for every n, this implies that Xy D eXy a.s. ut



38 2 Stochastic Processes

Corollary 2.1 Let X be an R
d-valued process such that there exist ˛ > 0,

ˇ > 0, c > 0 satisfying, for every s; t,

EŒjXt � Xsjˇ� � cjt � sj1C˛ :

Then there exists a modification Y of X that is continuous. Moreover, for
every � < ˛

ˇ
the paths of Y are Hölder continuous with exponent � on every

bounded time interval.

Example 2.4 In the next chapter we shall see that a Brownian motion is a real-
valued process B D .˝;F ; .Ft/t�0; .Bt/t�0;P/ such that

i) B0 D 0 a.s.;
ii) for every 0 � s � t the r.v. Bt � Bs is independent of Fs;

iii) for every 0 � s � t Bt � Bs is N.0; t � s/-distributed.
Let us show that a Brownian motion has a continuous modification. It is

sufficient to check the condition of Corollary 2.1. Let t > s; as Bt � Bs �
N.0; t � s/, we have Bt � Bs D .t � s/1=2Z with Z � N.0; 1/. Therefore

EŒjBt � Bsjˇ� D .t � s/ˇ=2EŒjZjˇ� :

As EŒjZjˇ� < C1 for every ˇ > 0, we can apply Corollary 2.1 with ˛ D
ˇ

2
�1. Hence a Brownian motion has a continuous version, which is also Hölder

continuous with exponent � for every � < 1
2

� 1
ˇ

; i.e., ˇ being arbitrary, for

every � < 1
2
.

2.3 Construction of stochastic processes

Let X D .˝;F ; .Ft/t2T ; .Xt/t2T ;P/ be a process taking values in the topological
space .E;B.E// and � D .t1; : : : ; tn/ an n-tuple of elements of T with t1 < � � � < tn.
Then we can consider the r.v.

X� D .Xt1 ; : : : ;Xtn/ W ˝ ! En D E � � � � � E

and denote by �� its distribution. The probabilities �� are called the finite-dimen-
sional distributions of the process X.
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Note that two processes have the same finite-dimensional distributions if and
only if they are equivalent.

This family of probabilities is quite important: the finite-dimensional distributions
characterize P in the following sense.

Proposition 2.2 Let X D .˝;F ; .Ft/t2T ; .Xt/t2T ;P/ and X0 D
.˝;F ; .Ft/t2T ; .Xt/t2T ;P0/ be two processes (defined on the same .˝;F /)
having the same finite-dimensional distributions. Then P and P0 coincide on
the �-algebra �.Xt; t 2 T/.

Proof If �1; : : : ; �n 2 B.E/, as X and X0 have the same finite-dimensional
distributions,

P.Xt1 2 �1; : : : ;Xtn 2 �n/ D ��.�1 � � � � � �n/ D P0.Xt1 2 �1; : : : ;Xtn 2 �n/ ;

i.e. P and P0 coincide on the events of the type

fXt1 2 �1; : : : ;Xtn 2 �ng :

As these events form a class that is stable with respect to finite intersections, thanks
to Carathéodory’s criterion, Theorem 1.1, P and P0 coincide on the generated �-
algebra, i.e. �.Xt; t 2 T/.

ut
A very important problem which we are going to be confronted with later is the
converse: given a topological space E, a time span T and a family .��/�2˘ of finite-
dimensional distributions (˘ D all possible n-tuples of distinct elements of T for
n ranging over the positive integers), does an E-valued stochastic process having
.��/�2˘ as its family of finite-dimensional distributions exist?

It is clear, however, that the �� ’s cannot be anything. For instance, if � D ft1; t2g
and � 0 D ft1g, then if the .��/�2˘ were the finite-dimensional distributions of some
process .Xt/t, �� would be the law of .Xt1 ;Xt2 / and �� 0 the law of Xt1 . Therefore
�� 0 would necessarily be the first marginal of �� . This can also be stated by saying
that �� 0 is the image of �� through the map p W E � E ! E given by p.x1; x2/ D x1.

More generally, in order to be the family of finite-dimensional distributions
of some process X, the family .��/�2˘ must necessarily satisfy the following
consistency condition.
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Condition 2.1 Let � D .t1; : : : ; tn/ and � 0 D .t1; : : : ; ti�1; tiC1; : : : ; tn/.
Let pi W En ! En�1 be the map defined as .x1; : : : ; xn/ 7!
.x1; : : : ; xi�1; xiC1; : : : ; xn/. Then the image of �� through pi is equal to �� 0 .

The next theorem states that Condition 2.1 is also sufficient for .��/�2˘ to be
the system of finite-dimensional distributions of some process X, at least if the
topological space E is sufficiently regular.

Theorem 2.2 (Kolmogorov’s existence theorem) Let E be a complete
separable metric space, .��/�2˘ a system of finite-dimensional distributions
on E satisfying Condition 2.1. Let ˝ D ET (ET is the set of all paths
T ! E) and let us define Xt.!/ D !.t/, Ft D �.Xs; s � t/, F D
�.Xt; t 2 T/. Then there exists on .˝;F / a unique probability P such that
.��/�2˘ is the family of the finite-dimensional distributions of the process
X D .˝;F ; .Ft/t2T ; .Xt/t2T ;P/.

Uniqueness is of course a consequence of Proposition 2.2.

Example 2.5 (Gaussian processes) An R
m-valued process .Xt/t is said to be

Gaussian if it is a Gaussian family i.e. if its finite-dimensional distributions
are Gaussian. If we define

bt D E.Xt/; its mean function

Kij
s;t D Cov.Xi.s/;Xj.t//; 1 � i; j � m; its covariance function ;

then the finite-dimensional distributions of .Xt/t are completely determined
by these two quantities.

Let us, for instance, determine the distribution of the 2m-dimensional r.v.
.Xs;Xt/, s < t. By assumption it is Gaussian (Proposition 1.8) and has mean
.bs; bt/. As Kt;t is the m � m covariance matrix of Xt, the covariance matrix of
.Xs;Xt/ is the 2m � 2m block matrix

�
Kt;t Ks;t

Kt;s Ks;s

	

:

The law of .Xs;Xt/ is therefore determined by the functions K and b.
Similarly, if 0 � t1 � � � � � tn, then the r.v. .Xt1 ; : : : ;Xtn/ is Gaussian, has
a covariance matrix with blocks Kti;ti on the diagonal and blocks Kti ;tj outside
the diagonal and mean .bt1 ; : : : ; btn/.

(continued)
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(continued)
Conversely, given a mean and covariance functions, does an associated

Gaussian process exist?
We must first point out that the covariance function must satisfy an

important property. Let us consider for simplicity the case m D 1, i.e. of a
real-valued process X. A real function .s; t/ 7! C.s; t/ is said to be a positive
definite kernel if, for every choice of t1; : : : ; tn 2 R

C and �1; : : : ; �n 2 R,

nX

i;jD1
C.ti; tj/�i�j � 0 (2.1)

i.e. if the matrix .C.ti; tj//i;j is positive definite.
The covariance function K is necessarily a positive definite kernel: actually

.Kti;tj /ij is the covariance matrix of the random vector .Xt1 ; : : : ;Xtn/ and every
covariance matrix is positive definite (as was shown in (1.14)).

Conversely, let us prove that if K is a positive definite kernel, then there
exists a Gaussian process X associated to it. This is a simple application of
Kolmogorov’s existence Theorem 2.2.

If � D .t1; : : : ; tm/, let us define the finite-dimensional distribution �� of
X to be Gaussian with covariance matrix

�ij D Kti ;tj :

Let us check that this family of finite-dimensional distributions satisfies
the coherence Condition 2.1. If � 0 D .t1; : : : ; ti�1; tiC1; : : : ; tm/ then �� 0

is Gaussian with covariance matrix obtained by removing the i-th row and
the i-th column from � . Let us denote by � 0 such a matrix. We must
check that �� 0 coincides with pi.��/, where pi is the map pi.x1; : : : ; xn/ D
.x1; : : : ; xi�1; xiC1; : : : ; xn/.

But this is immediate: pi.��/ is also a Gaussian law, being the image of
a Gaussian distribution through the linear mapping pi (recall Theorem 1.3).
Moreover, the covariance matrix of pi.��/ is equal to � 0. To see this simply
observe that if .X1; : : : ;Xm/ is a r.v. having law �� and therefore covariance
matrix � , then .X1; : : : ;Xi�1;XiC1; : : : ;Xm/ has distribution

pi.��/

and covariance matrix � 0.
Therefore if K is a positive definite kernel, then there exists a stochastic

process X which is Gaussian with covariance function K and mean function
bt � 0. Now, for every mean function b the process Yt D Xt C bt is Gaussian
with covariance function K and mean function b.
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2.4 Next. . .

In this chapter we have already met some of the relevant problems which arise in
the investigation of stochastic processes:

a) the construction of processes satisfying particular properties (that can be reduced
to finite-dimensional distributions); for instance, in the next chapter we shall
see that it is immediate, from its definition, to determine the finite-dimensional
distributions of a Brownian motion;

b) the regularity of the paths (continuity, . . . );
c) the determination of the probability P of the process, i.e. the computation of the

probability of events connected to it. For instance, for a Brownian motion B, what
is the value of P.sup0�s�t Bs � 1/?

Note again that, moving from a process to one of its modifications, the finite-
dimensional distributions do not change, whereas other properties, such as regularity
of the paths, can turn out to be very different, as in Example 2.1.

In the next chapters we investigate a particular class of processes: diffusions.
We shall be led to the development of particular techniques (stochastic integral)
that, together with the two Kolmogorov’s theorems, will allow us first to prove their
existence and then to construct continuous versions. The determination of P, besides
some particular situations, will in general not be so simple. We shall see, however,
that the probability of certain events or the expectations of some functionals of
the process can be obtained by solving suitable PDE problems. Furthermore these
quantities can be computed numerically by methods of simulation.

These processes (i.e. diffusions) are very important

a) first because there are strong links with other areas of mathematics (for example,
the theory of PDEs, but in other fields too)

b) but also because they provide models in many applications (control theory,
filtering, finance, telecommunications, . . . ). Some of these aspects will be
developed in the last chapter.

Exercises

2.1 (p. 451) Let X and Y be two processes that are modifications of one another.
a) Prove that they are equivalent.
b) Prove that if the time set is RC or a subinterval of RC and X and Y are both

a.s. continuous, then they are indistinguishable.

2.2 (p. 451) Let .Xt/0�t�T be a continuous process and D a dense subset of Œ0;T�.
a) Show that �.Xt; t � T/ D �.Xt; t 2 D/.
b) What if .Xt/0�t�T was only right-continuous?
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2.3 (p. 452) Let X D .˝;F ; .Ft/t; .Xt/t be a progressively measurable process
with values in the measurable space .E;E /. Let  W E ! G be a measurable
function into the measurable space .G;G /. Prove that the G-valued process t 7!
 .Xt/ is also progressively measurable.

2.4 (p. 452) a) Let Z1;Zn, n D 1; : : : , be r.v.’s on some probability space
.˝;F ;P/. Prove that the event flimn!1 Zn 6D Z1g is equal to

1[

mD1

1\

n0D1

[

n�n0

fjZn � Z1j � 1
m g : (2.2)

b) Let .˝;F ; .Ft/t2T ; .Xt/t2T ;P/ and .e̋ ; eF ; .fFt/t2T ; .eXt/t2T ;eP/ be equivalent
processes.

b1) Let .tn/n � T. Let us assume that there exists a number ` 2 R such that

lim
n!1 Xtn D ` a.s.

Then also

lim
n!1

eXtn D ` a.s.

b2) Let t 2 T. Then if the limit

lim
s!t;s2Q Xs D `

exists for some ` 2 R then also

lim
s!t;s2Q

eXs D ` : (2.3)

2.5 (p. 453) An example of a process that comes to mind quite naturally is so-
called “white noise”, i.e. a process .Xt/t defined for t 2 Œ0; 1�, say, and such that the
r.v.’s Xt are identically distributed centered and square integrable and Xt and Xs are
independent for every s 6D t.

In this exercise we prove that a white noise cannot be a measurable process,
unless it is � 0 a.s. Let therefore .Xt/t be a measurable white noise.

a) Prove that, for every a; b 2 Œ0; 1�, a � b,

Z b

a

Z b

a
E.XsXt/ ds dt D 0 : (2.4)
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b) Show that for every a; b 2 Œ0; 1�

E
h� Z b

a
Xs ds

�2i D 0 :

c) Deduce that necessarily Xt.!/ D 0 a.e. in t for almost every !.

2.6 (p. 454) Let .˝;F ; .Ft/t; .Zt/t;P/ be an R
m-valued continuous process.

Let  Z W ! ! ft ! Zt.!/g be the application associating to every ! 2 ˝

the corresponding path of the process.  Z is a map with values in the space
C D C .RC;Rm/. Let us consider on C the topology of uniform convergence on
compact sets and denote by M the associated Borel �-algebra. We want to prove
that  Z is measurable.

a) Let, for � 2 C , t > 0, " > 0, A�;t;" D fw 2 C I j�t � wtj � "g. Prove that
 �1

Z .A�;t;"/ 2 F .
b) For � 2 C ;T > 0; " > 0, let

U�;T;" D fw 2 C I j�t � wtj � " for every t 2 Œ0;T�g (2.5)

(a closed tube of radius " around the path � ). Prove that  �1
Z .U�;T;"/ 2 F .

c) Prove that  Z is a .C ;M /-valued r.v.

b) As the paths of C are continuous, U�;T;" D fw 2 C I j�r � wrj � " for every r 2 Œ0; T� \ Qg,
which is a countable intersection of events of the form A�;t;". c) Recall Exercise 1.19.



Chapter 3
Brownian Motion

Brownian motion is a particular stochastic process which is the prototype of the
class of processes which will be our main concern. Its investigation is the object of
this chapter.

3.1 Definition and general facts

We already know from the previous chapter the definition of a Brownian motion.

Definition 3.1 A real-valued process B D .˝;F ; .Ft/t�0; .Bt/t�0;P/ is a
Brownian motion if

i) B0 D 0 a.s.;
ii) for every 0 � s � t the r.v. Bt � Bs is independent of Fs;

iii) for every 0 � s � t Bt � Bs has law N.0; t � s/.

Remarks 3.1

a) ii) of Definition 3.1 implies that Bt � Bs is independent of Bu for every
u � s and even from �.Bu; u � s/, which is a �-algebra that is contained
in Fs. Intuitively this means that the increments of the process after time
s are independent of the path of the process up to time s.

b) A Brownian motion is a Gaussian process, i.e. the joint distributions of
Bt1 ; : : : ;Btm are Gaussian. Let ˛1; : : : ; ˛m 2 R, 0 � t1 < t2 < � � � < tm: we
must prove that ˛1Bt1 C � � � C ˛mBtm is a normal r.v., so that we can apply
Proposition 1.8. This is obvious if m D 1, as Definition 3.1 with s D 0

(continued)
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Remarks 3.1 (continued)
states that Bt � N.0; t/. Let us assume this fact true for m � 1 and let us
prove it for m: we can write

˛1Bt1 C� � �C˛mBtm D Œ˛1Bt1 C� � �C.˛m�1C˛m/Btm�1 �C˛m.Btm �Btm�1 / :

This is a normal r.v., as we have seen in Sect. 1.7, being the sum of
two independent normal r.v.’s (the r.v. between Œ � is Ftm�1 -measurable
whereas Btm �Btm�1 is independent ofFtm�1 , thanks to ii) of Definition 3.1).

c) For every 0 � t0 < � � � < tm the real r.v.’s Btk � Btk�1 ; k D 1; : : : ;m, are
independent: they are actually jointly Gaussian and pairwise uncorrelated.

d) Sometimes it will be important to specify with respect to which filtration
a Brownian motion is considered. When the probability space is fixed we
shall say that B is an .Ft/t-Brownian motion in order to specify that B D
.˝;F ; .Ft/t; .Bt/t;P/ is a Brownian motion. Of course, for every t the
�-algebra Ft must necessarily contain the �-algebra Gt D �.Bs; s � t/
(otherwise .Bt/t would not be adapted to .Ft/t). It is also clear that if B is
an .Ft/t-Brownian motion it is a fortiori a Brownian motion with respect
to every other filtration .F 0

t/t that is smaller than .Ft/t, (i.e. such that
F 0

t � Ft for every t � 0) provided that B is adapted to .F 0
t/t i.e provided

that .F 0
t/t contains the natural filtration (see p. 31). Actually if Bt � Bs is

independent of Fs, a fortiori it will be independent of F 0
s .

We shall speak of natural Brownian motion when .Ft/t is the natural
filtration.

Proposition 3.1 If B D .˝;F ; .Ft/t; .Bt/t;P/ is a Brownian motion then

1) B0 D 0 a.s.;
2) for every 0 � t1 < � � � < tm, .Bt1 ; : : : ;Btm/ is an m-dimensional centered

normal r.v.;
3) EŒBsBt� D s ^ t.

Conversely, properties 1), 2) and 3) imply that B is a natural Brownian
motion.

Proof If B is a Brownian motion, 1) is obvious; 2) is Remark 3.1 b). As for 3), if
s � t, as Bt � Bs and Bs are centered and independent

EŒBtBs� D EŒf.Bt � Bs/C BsgBs� D EŒ.Bt � Bs/Bs�C EŒB2s � D s D s ^ t :

Conversely, if B satisfies 1), 2) and 3), then i) of Definition 3.1 is obvious. Moreover,
for 0 � s < t, Bt � Bs is a normal r.v., being a linear function of .Bs;Bt/, and is
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centered since both Bt and Bs are so; as, for s � t,

EŒ.Bt � Bs/
2� D EŒB2t �C EŒB2s � � 2EŒBtBs� D t C s � 2s D t � s ;

Bt � Bs has an N.0; t � s/ distribution and iii) is satisfied. To complete the proof
we must show that Bt � Bs is independent of �.Bu; u � s/; Brownian motion being
a Gaussian process, thanks to Remark 1.2 it is sufficient to prove that Bt � Bs is
uncorrelated with Bu for every u � s. Actually, if u � s � t,

EŒ.Bt � Bs/Bu� D t ^ u � s ^ u D 0

and Bt � Bs is therefore independent of �.Bu; u � s/. ut
We have not yet proved the existence of a process satisfying the conditions of

Definition 3.1, but this is a simple application of Remark 2.5. Actually it is sufficient
to verify that, if t1 � t2 � � � � � tm,

K.ti; tj/ D ti ^ tj

is a positive definite kernel, i.e. that the matrix � with entries �ij D ti ^ tj is positive
definite. The simplest way to check this fact is to produce a r.v. having � as a
covariance matrix, every covariance matrix being positive definite as pointed out on
p. 10.

Let Z1; : : : ;Zm be independent centered Gaussian r.v.’s with Var.Zi/ D ti � ti�1,
with the understanding that t0 D 0. Then it is immediate that the r.v. .X1; : : : ;Xm/

with Xi D Z1 C � � �C Zi has covariance matrix � : as the r.v.’s Zk are independent we
have, for i � j,

Cov.Xi;Xj/ D Cov.Z1 C � � � C Zi;Z1 C � � � C Zj/ D Var.Z1/C � � � C Var.Zi/

D t1 C .t2 � t1/C � � � C .ti � ti�1/ D ti D ti ^ tj :

The next statement points out that Brownian motion is invariant with respect to
certain transformations.

Proposition 3.2 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion.
Then

Xt D BtCs � Bs; �Bt; cBt=c2 ;

Zt D
(

tB1=t t > 0

0 t D 0

are also Brownian motions, the first one with respect to the filtration .FtCs/t,
the second one with respect to .Ft/t, and the third one with respect to .Ft=c2 /t.
.Zt/t is a natural Brownian motion.
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Proof Let us prove that X is a Brownian motion. The condition X0 D 0 is immediate
as is the fact that, if v < u, then Xu � Xv D BuCs � Bs � BvCs C Bs D BuCs � BvCs

is N.0; u � v/-distributed. This also gives that the increment Xu � Xv is independent
of FvCs, so that X is an .FtCs/t-Brownian motion.

Let us now prove that Z is a Brownian motion, the other situations being similar
to the case of X. The proof amounts to checking that the three conditions of
Proposition 3.1 are satisfied.

1) of Proposition 3.1 is immediate, 2) follows from the fact that Z is also a
Gaussian family; actually .Zt1 ; : : : ;Ztm/ can be written as a linear transformation
of .B1=t1 ; : : : ;B1=tm/, which is Gaussian. Finally, if s < t then 1

s ^ 1
t D 1

t and

EŒZsZt� D st EŒB1=sB1=t� D st . 1s ^ 1
t / D s D s ^ t

and therefore 3) is satisfied. ut
We shall speak of the invariance properties of Proposition 3.2 as the scaling

properties of the Brownian motion.

Definition 3.2 An R
m-valued process X D .˝;F ; .Ft/t; .Xt/t;P/ is an m-

dimensional Brownian motion if

a) X0 D 0 a.s.;
b) for every 0 � s � t, the r.v. Xt � Xs is independent of Fs;
c) for every 0 � s � t, Xt � Xs is N.0; .t � s/I/-distributed (I is the m � m

identity matrix).

Remarks 3.2 Let X D .˝;F ; .Ft/t; .Xt/t;P/ be an m-dimensional Brownian
motion.

a) The real processes .˝;F ; .Ft/t; .Xi.t//t;P/ are Brownian motions for i D
1; : : : ;m. Definition 3.1 is immediately verified.

b) The �-algebras �.Xi.t/; t � 0/, i D 1; : : : ;m, are independent. Keeping
in mind Remark 1.2 c), it is sufficient to check that EŒXi.t/Xj.s/� D 0, for
every s � t, i 6D j. But

EŒXi.t/Xj.s/� D EŒ.Xi.t/ � Xi.s//Xj.s/�C EŒXi.s/Xj.s/�

and the first term on the right-hand side vanishes, Xj.s/ and Xi.t/ � Xi.s/
being independent and centered, the second one vanishes too as the
covariance matrix of Xs is diagonal.

Therefore the components .Xi.t//t, i D 1; : : : ;m, of an m-dimensional
Brownian motion are independent real Brownian motions.
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Example 3.1 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian
motion. Let us prove that if z 2 R

m and jzj D 1, then the process Xt D hz;Bti
is a real Brownian motion.

Since, for t � s, Bt � Bs is independent of Fs, the r.v.

Xt � Xs D hz;Bti � hz;Bsi D hz;Bt � Bsi

is itself independent of Fs. Moreover, Xt � Xs D hz;Bt � Bsi is Gaussian,
being a linear combination of B1.t/ � B1.s/; : : : ;Bm.t/ � Bm.s/, which are
jointly Gaussian. The variance of Xt � Xs is computed immediately, being a
linear function of Bt � Bs: (1.13) gives

Var.Xt � Xs/ D .t � s/z�z D .t � s/jzj2 D t � s :

As a) of Definition 3.1 is obvious, this proves that X is a Brownian motion
with respect to the filtration .Ft/t. Conditions 1), 2), 3) of Proposition 3.1 are
also easily checked. Note. however, that these only ensure that X is a natural
Brownian motion, which is a weaker result.

This, similarly to Proposition 3.2, is a typical exercise: given a Brownian
motion B, prove that some transformation of it gives rise to a Brownian
motion. By now we have the choice of checking that the conditions of
Definition 3.1 or of Proposition 3.1 are satisfied. Note that Proposition 3.1
is useful only if we have to prove that our candidate process is a natural
Brownian motion. Later (starting from Chap. 8) we shall learn more powerful
methods in order to prove that a given process is a Brownian motion.

Of course a) of Remark 3.2 is a particular case of this example: just choose
as z the unit vector along the i-th axis.

We already know (Example 2.4) that a Brownian motion has a continuous mod-
ification. Note that the argument of Example 2.4 also works for an m-dimensional
Brownian motion. From now on, by “Brownian motion” we shall always understand
a Brownian motion that is continuous. Figure 3.1 provides a typical example of a
path of a two-dimensional Brownian motion.

If we go back to Proposition 3.2, if B is a continuous Brownian motion, then
the “new” Brownian motions X, �B, .cBt=c2 /t are also obviously continuous. For Z
instead a proof is needed in order to have continuity at 0. In order to do this, note
that the processes .Bt/t and .Zt/t are equivalent. Therefore, as B is assumed to be
continuous,

lim
t!0C Bt D 0 ;
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−1 0

−.4

0

.4

.8

Fig. 3.1 A typical image of a path of a two-dimensional Brownian motion for 0 � t � 1 (a black
small circle denotes the origin and the position at time 1). For information about the simulation of
Brownian motion see Sect. 3.7

therefore (see Exercise 2.4 b2))

lim
t!0C;t2Q Zt D 0

from which, the process .Zt/t;t>0 being continuous, we derive

lim
t!0C Zt D 0 :

It will be apparent in the sequel that it is sometimes important to specify the filtration
with respect to which a process B is a Brownian motion. The following remark
points out a particularly important typical filtration. Exercise 3.5 deals with a similar
question.

Remark 3.1 (The augmented natural filtration) Let B D .˝;F ; .Ft/t;

.Bt/t;P/ be a Brownian motion and let F t be the �-algebra that is obtained
by adding to Ft the negligible events of F . Let us prove that B is a Brownian
motion also with respect to .F t/t.

Actually, we must only prove that the increment Bt � Bs, s � t, is
independent of F s. Let us denote by N the family of the negligible events
of F . Let C be the class of the events of the form A \ G with A 2 Fs

and G 2 N or G D ˝ . C is stable with respect to finite intersections and

(continued)
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Remark 3.1 (continued)

contains Fs (one chooses G D ˝) and N , and therefore generates F s. By
Remark 1.1, in order to prove that Bt � Bs and F s are independent we just
have to check that, for every Borel set C � R and A and G as above,

P.fBt � Bs 2 Cg \ A \ G/ D P.fBt � Bs 2 Cg/P.A \ G/ ;

which is immediate. If G D ˝ the relation above is true because then A\G D
A and B is an .Ft/t-Brownian motion, whereas if G 2 N , both members are
equal to 0.

In particular, B is a Brownian motion with respect to the augmented natural
filtration, i.e. with respect to the filtration .G t/t that is obtained by adding the
negligible events of F to the natural filtration .Gt/t.

We shall see in Sect. 4.5 that .G t/t is also right-continuous, so that the
Brownian motion with respect to the natural augmented filtration is a standard
process (see the definition on p. 34).

Remark 3.2 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. We
know that each of the increments Bt�Bs, t > s, is independent of Fs. Actually
a stronger statement holds: the �-algebra �.Bt � Bs; t � s/ is independent
of Fs.

This fact is almost obvious if Fs D �.Bu; u � s/, i.e. if B is a natural
Brownian motion, as the families of r.v.’s fBu; u � sg and fBv � Bs; v � sg
are jointly Gaussian and pairwise non-correlated, so that we can apply the
criterion of Remark 1.2. It requires some care if the filtration is not the natural
one. The proof is left as an exercise (Exercise 3.4).

Note that this is a useful property. For instance, it allows us to state that the
r.v. .Bt1 � Bs/C .Bt2 � Bs/, t1; t2 > s, is independent of Fs. Recall that if X;Y
are r.v.’s that are independent of a �-algebra G , it is not true in general that
their sum is also independent of G . Here, however, we can argue that .Bt1 �
Bs/C .Bt2 � Bs/ is �.Bt � Bs; t � s/-measurable and therefore independent of
Fs. Similarly, if b > s, the r.v.

Y D
Z b

s
.Bu � Bs/ du

for t > s is independent of Fs: writing the integral as the limit of its Riemann
sums, it is immediate that Y is �.Bt � Bs; t � s/-measurable and therefore
independent of Fs.
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Remark 3.3 Computations concerning Brownian motion repeatedly require a
certain set of formulas typical of Gaussian distributions. Let us recall them
(they are all based on the relation Bt � p

t Z with Z � N.0; 1/):

a/ EŒe
Bt � D e
1
2 t
2 I

b/ EŒe
B2t � D
(

1p
1�2t


if t
 < 1
2

C1 if t
 � 1
2

�

a) (the Laplace transform) is computed in Exercise 1.6, b) in Exercise 1.12.

3.2 The law of a continuous process, Wiener measure

Let � D .˝;F ; .Ft/t; .�t/t;P/ be a continuousRd-valued process and let � W ! 7!
ft 7! �t.!/g be the map mapping every ! to its associated path. This map takes its
values in C D C .RC;Rd/, the space of continuous maps R

C ! R
d, endowed

with the topology of uniform convergence on compact sets. Let us denote by M the
corresponding Borel �-algebra on C .

Proposition 3.3  � W .˝;F / ! .C ;M / is measurable.

The proof of Proposition 3.3 is rather straightforward and we shall skip it (see,
however, Exercise 2.6).

Proposition 3.3 authorizes us to consider on the space .C ;M / the image
probability of P through � , called the law of the process �. The law of a continuous
process is therefore a probability on the space C of continuous paths.

Let us denote by P� the law of a process �. If we consider the coordinate r.v.’s
Xt W C ! R

d defined as Xt.�/ D �.t/ (recall that � 2 C is a continuous function)
and define Mt D �.Xs; s � t/, then

X D .C ;M ; .Mt/t; .Xt/t;P� /

is itself a stochastic process. By construction this new process has the same finite-
dimensional distributions as �. Let A1; : : : ;Am 2 B.Rd/, then it is immediate that

f�t1 2 A1; : : : ; �tm 2 Amg D  �1
�

�
Xt1 2 A1; : : : ;Xtm 2 Am

�



3.3 Regularity of the paths 53

so that

P�
�
Xt1 2 A1; : : : ;Xtm 2 Am

� D P
�
 �1
�

�
Xt1 2 A1; : : : ;Xtm 2 Am

��

D P
�
�t1 2 A1; : : : ; �tm 2 Am

�

and the two processes � and X have the same finite-dimensional distributions and are
equivalent. This also implies that if � and � 0 are equivalent processes, then P� D P�

0
,

i.e. they have the same law.
In particular, given two (continuous) Brownian motions, they have the same law.

Let us denote this law by PW (recall that this a probability on C ). PW is the Wiener
measure and the process X D .C ;M ; .Mt/t; .Xt/t;PW/, having the same finite-
dimensional distributions, is also a Brownian motion: it is the canonical Brownian
motion.

3.3 Regularity of the paths

We have seen that a Brownian motion always admits a continuous version which is,
moreover, � -Hölder continuous for every � < 1

2
. It is possible to provide a better

description of the regularity of the paths, in particular showing that, in some sense,
this estimate cannot be improved.

From now on X D .˝;F ; .Ft/t; .Xt/t;P/ will denote a (continuous) Brownian
motion. Let us recall that if I � R is an interval and f W I ! R is a continuous
function, its modulus of continuity is the function

w.ı/ D sup
x;y2I;jx�yj�ı

j f .x/ � f . y/j :

The regularity of a function is determined by the behavior of its modulus of
continuity as ı ! 0C. In particular,

• f is uniformly continuous if and only if limı!0C w.ı/ D 0.
• f is Hölder continuous with exponent ˛ if and only if w.ı/ � cı˛ for some c > 0.
• f is Lipschitz continuous if and only if w.ı/ � cı for some c > 0.

Theorem 3.1 (P. Lévy’s modulus of continuity) Let X be a real Brownian
motion. For every T > 0

P
�

lim
ı!0C

1
�
2ı log 1

ı

�1=2 sup
0�s<t�T

t�s�ı

jXt � Xsj D 1
�

D 1 :



54 3 Brownian Motion

We skip the proof of Theorem 3.1, which is somewhat similar to the proof of the
Iterated Logarithm Law, Theorem 3.2, that we shall see soon.

P. Lévy’s theorem asserts that if w.�; !/ is the modulus of continuity of Xt.!/ for
t 2 Œ0;T�, then P-a.s.

lim
ı!0C

w.ı; !/
�
2ı log 1

ı

�1=2 D 1 :

Note that this relation holds for every ! a.s. and does not depend on T.
As w.ı/

ı1=2
! C1 as ı ! 0C, Theorem 3.1 specifies that the paths of a Brownian

motion cannot be Hölder continuous of exponent 1
2

on the interval Œ0;T� for every T
(Fig. 3.2). More precisely

Corollary 3.1 Outside a set of probability 0 no path is Hölder continuous
with exponent � � 1

2
in any time interval I � R

C having non-empty interior.

Proof It suffices to observe that for q; r 2 Q
C, 0 � q < r,

lim
ı!0C sup

q�s<t�r
t�s�ı

jXt � Xsj
�
2ı log 1

ı

�1=2 D 1 a.s. (3.1)

thanks to Theorem 3.1 applied to the Brownian motion .XtCq � Xq/t. Therefore if
Nq;r is the negligible event on which (3.1) is not satisfied, N D S

q;r2QC Nq;r is still
negligible. Since an interval I � R

C having non-empty interior necessarily contains

0 1

0

1.6

1.2

.8

.4

−.4

2

Fig. 3.2 Example of the path of a real Brownian motion for 0 � t � 1 (here the x axis represents
time). As in Fig. 3.1, the lack of regularity is evident as well as the typical oscillatory behavior,
which will be better understood with the help of Theorem 3.2
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an interval of the form Œq; r� with q < r, q; r 2 Q
C, no path outside N can be Hölder

continuous with exponent � � 1
2

in any time interval I � R
C having non-empty

interior.
ut

Let us recall that, given a function f W R ! R, its variation in the interval Œa; b� is
the quantity

Va
b f D sup

�

nX

iD1

ˇ
ˇ f .tiC1/� f .ti/

ˇ
ˇ ;

the supremum being taken among all finite partitions a D t0 < t1 < � � � < tnC1 D b
of the interval Œa; b�. f is said to have finite variation if Va

b f < C1 for every a,
b 2 R.

Note that a Lipschitz continuous function f is certainly with finite variation: if
we denote by L the Lipschitz constant of f then

nX

iD1

ˇ
ˇ f .tiC1/ � f .ti/

ˇ
ˇ �

nX

iD1
L jtiC1 � tij D L

nX

iD1
.tiC1 � ti/ D L.b � a/ :

Therefore differentiable functions have finite variation on every bounded interval. It
is also immediate that monotone functions have finite variation.

Proposition 3.4 Let X be a real Brownian motion. Let � D ft0; : : : ; tmg
with s D t0 < t1 � � � < tm D t be a partition of the interval Œs; t�, j�j D
max0�k�m�1 jtkC1 � tkj. Then if

S� D
m�1X

kD0
jXtkC1

� Xtk j2

we have

lim
j�j!0C

S� D t � s in L2 : (3.2)

In particular, the paths of a Brownian motion do not have finite variation in
any time interval a.s.
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Proof We have
Pm�1

kD0 .tkC1 � tk/ D .t1 � s/C .t2 � t1/C � � � C .t � tm�1/ D t � s
so we can write

S� � .t � s/ D
m�1X

kD0

�
.XtkC1

� Xtk/
2 � .tkC1 � tk/



:

We must prove that EŒ.S� � .t � s//2� ! 0 as j�j ! 0. Note that .XtkC1
� Xtk /

2 �
.tkC1 � tk/ are independent (the increments of a Brownian motion over disjoint
intervals are independent) and centered; therefore, if h 6D k, the expectation of the
product

�
.XthC1

� Xth/
2 � .thC1 � th/


�
.XtkC1

� Xtk/
2 � .tkC1 � tk/


�

vanishes so that

EŒ.S� � .t � s//2�

D E
� m�1X

kD0

�
.XtkC1

� Xtk/
2 � .tkC1 � tk/


 �
m�1X

hD0

�
.XthC1

� Xth/
2 � .thC1 � th/


�

D
m�1X

kD0
E
��
.XtkC1

�Xtk/
2�.tkC1�tk/


2� D
m�1X

kD0
.tkC1�tk/

2E
h� .XtkC1

� Xtk /
2

tkC1 � tk
�1
�2i

:

But for every k the r.v.
XtkC1

�Xtkp
tkC1�tk

is N.0; 1/-distributed and the quantities

c D E
h� .XtkC1

� Xtk /
2

tkC1 � tk
� 1

�2i

are finite and do not depend on k (c D 2, if you really want to compute it. . . ).
Therefore, as j�j ! 0,

EŒ.S� � .t � s//2� D c
m�1X

kD0
.tkC1 � tk/

2 � cj�j
m�1X

kD0
jtkC1 � tkj D cj�j.t � s/ ! 0 ;

which proves (3.2). Moreover,

S� D
m�1X

kD0

ˇ
ˇXtkC1

� Xtk

ˇ
ˇ2 � max

0�i�m�1
ˇ
ˇXtiC1

� Xti

ˇ
ˇ

m�1X

kD0

ˇ
ˇXtkC1

� Xtk

ˇ
ˇ : (3.3)
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As the paths are continuous, max0�i�m�1 jXtiC1
� Xti j ! 0 as j�j ! 0C and

therefore if the paths were with finite variation on Œs; t� for ! in some event A of
positive probability, then on A we would have

lim
j�j!0C

m�1X

kD0

ˇ
ˇXtkC1

� Xtk

ˇ
ˇ < C1

and therefore, taking the limit in (3.3), we would have limj�j!0C S�.!/ D 0 on A,
in contradiction with the first part of the statement. ut

Let us recall that if f has finite variation, then it is possible to define the integral

Z T

0

�.t/ df .t/

for every bounded Borel function �. Later we shall need to define an integral of the
type

Z T

0

�.t/ dXt.!/ ;

which will be a key tool for the construction of new processes starting from
Brownian motion. Proposition 3.4 states that this cannot be done ! by !, as the
paths of a Brownian motion do not have finite variation. In order to perform this
program we shall construct an ad hoc integral (the stochastic integral).

3.4 Asymptotics

We now present a classical result that gives very useful information concerning the
behavior of the paths of a Brownian motion as t ! 0C and as t ! C1.

Theorem 3.2 (Iterated logarithm law) Let X be a Brownian motion. Then

P
�

lim
t!0C

Xt
�
2t log log 1

t

�1=2 D 1
�

D 1 : (3.4)

Before giving the proof, let us point out some consequences.
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Corollary 3.2

lim
t!0C

Xt
�
2t log log 1

t

�1=2 D �1 a.s. (3.5)

lim
s!C1

Xs
�
2s log log s

�1=2 D 1 a.s. (3.6)

lim
s!C1

Xs
�
2s log log s

�1=2 D �1 a.s. (3.7)

Proof Let us prove (3.6). We know from Proposition 3.2 that Zt D tX1=t is a
Brownian motion. Theorem 3.2 applied to this Brownian motion gives

lim
t!0C

tX1=t
�
2t log log 1

t

�1=2 D 1 a:s:

Now, with the change of variable s D 1
t ,

lim
t!0C

tX1=t
�
2t log log 1

t

�1=2 D lim
t!0C

p
t

X1=t
�
2 log log 1

t

�1=2 D lim
s!C1

Xs
�
2s log log s

�1=2 �

Similarly, (3.5) and (3.7) follow from Theorem 3.2 applied to the Brownian motions
�X, and .�tX1=t/t. ut

Remark 3.4 (3.6) and (3.7) give important information concerning the
asymptotic of the Brownian motion as t ! C1. Indeed they imply
the existence of two sequences of times .tn/n, .sn/n, with limn!1 tn D
limn!1 sn D C1 and such that

Xtn � .1 � "/
p
2tn log log tn

Xsn � �.1 � "/
p
2sn log log sn :

This means that, as t ! C1, the Brownian motion takes arbitrarily large
positive and negative values infinitely many times. It therefore exhibits larger
and larger oscillations. As the paths are continuous, in particular, it visits
every real number infinitely many times.

(3.6) and (3.7) also give a bound on how fast a Brownian motion
moves away from the origin. In particular, (3.6) implies that, for t large,

(continued)
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Remark 3.4 (continued)
Xt.!/ � .1 C "/

p
2t log log t. Similarly, by (3.7), for t large, Xt.!/ �

�.1C "/
p
2t log log t, so that, still for large t,

jXt.!/j � .1C "/
p
2t log log t : (3.8)

To be precise, there exists a t0 D t0.!/ such that (3.8) holds for every t � t0.
Similarly, by (3.4) and (3.5), there exist two sequences .tn/n; .sn/n decreas-

ing to 0 and such that a.s. for every n,

Xtn � .1 � "/
q
2tn log log 1

tn

Xsn � �.1 � "/

q
2sn log log 1

sn
�

In particular, Xsn < 0 < Xtn . By the intermediate value theorem the path
t 7! Xt crosses 0 infinitely many times in the time interval Œ0; "� for every
" > 0. This gives a hint concerning the oscillatory behavior of the Brownian
motion.

In order to prove Theorem 3.2 we need some preliminary estimates.

Lemma 3.1 Let X be a continuous Brownian motion. If x > 0, T > 0, then

P
�

sup
0�t�T

Xt > x
�

� 2P.XT > x/ :

Proof Let t0 < t1 < � � � < tn D T, I D ft0; : : : ; tng and let � D inff jI Xtj > xg. Note
that if XT.!/ > x, then � � T, i.e. fXT > xg � f� � Tg. Moreover, we have Xtj � x
on f� D tjg. Hence

P.XT > x/ D P.� � T ;XT > x/ D
nX

jD0
P.� D tj;XT > x/ �

nX

jD0
P.� D tj;XT � Xtj � 0/ :

We have f� D tjg D fXt1 � x; : : : ;Xtj�1 � x;Xtj > xg. Hence f� D tjg is Ftj -
measurable and independent of fXT � Xtj � 0g; moreover, P.XT � Xtj � 0/ D 1

2
, as

XT � Xtj is Gaussian and centered; therefore

P.XT > x/ �
nX

jD0
P.� D tj/P.XT �Xtj � 0/ D 1

2

nX

jD0
P.� D tj/ D 1

2
P
�

sup
t2I

Xt > x
�
:
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Let now In be a sequence of finite subsets of Œ0;T� increasing to Œ0;T� \ Q. By the
previous inequality and taking the limit on the increasing sequence of events

P
�

sup
t�T;t2Q

Xt > x
�

D sup
n

P
�

sup
t2In

Xt > x
�

� 2P.XT > x/ :

As the paths are continuous, supt�T;t2Q Xt D supt�T Xt, and the statement is proved.
ut

Lemma 3.2 If x > 0 then

�
x C 1

x

��1
e�x2=2 �

Z C1

x
e�z2=2 dz � 1

x
e�x2=2 :

Proof We have

Z C1

x
e�z2=2 dz � 1

x

Z C1

x
z e�z2=2 dz D 1

x
e�x2=2

and the inequality on the right-hand side is proved. Moreover,

d

dx

1

x
e�x2=2 D �

�
1C 1

x2

�
e�x2=2

and therefore

1

x
e�x2=2 D

Z C1

x

�
1C 1

z2

�
e�z2=2 dz �

�
1C 1

x2

� Z C1

x
e�z2=2 dz :

ut
Proof of Theorem 3.2 Let us prove first that

lim
t!0C

Xt
�
2t log log 1

t

�1=2 � 1 a.s. (3.9)

Let �.t/ D �
2t log log 1

t

�1=2
. Let .tn/n be a sequence decreasing to 0, let ı > 0 and

consider the event

An D ˚
Xt > .1C ı/�.t/ for some t 2 ŒtnC1; tn�

�
:

ı being arbitrary, (3.9) follows if we can prove that P.limn!1 An/ D 0. Indeed,
recall that limn!1 An is the event that is formed by those!’s that belong to infinitely
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many An. If this set has probability 0, this means that Xt > .1C ı/�.t/ for some t 2
ŒtnC1; tn� only for finitely many n and therefore that limt!0C Xt

.2t log log 1
t /
1=2

� .1Cı/,
and ı being arbitrary, this implies (3.9).

By the Borel–Cantelli lemma it suffices to prove that the series
P1

nD1 P.An/

is convergent; we need, therefore, a good upper bound for P.An/. First, as � is
increasing,

An �
n

sup
0�t�tn

Xt > .1C ı/�.tnC1/
o
;

and by Lemmas 3.1 and 3.2, as Xtn=
p

tn � N.0; 1/,

P.An/ D P
�

sup
0�t�tn

Xt � .1C ı/�.tnC1/
�

� 2P
�
Xtn � .1C ı/�.tnC1/

�

D 2P
� Xtnp

tn

� .1C ı/
�
2

tnC1
tn

log log
1

tnC1

�1=2�

D 2p
2�

Z C1

xn

e�z2=2 dz �
r
2

�

1

xn
e�x2n=2 ;

where xn D .1C ı/
�
2

tnC1

tn
log log 1

tnC1

�1=2
. Let us choose now tn D qn with 0 < q <

1, but such that 	 D q.1C ı/2 > 1. Now if we write ˛ D log 1
q > 0, then

xn D .1C ı/
�
2q log

�
.n C 1/ log 1

q


�1=2 D �
2	 log.˛.n C 1//


1=2
:

Therefore

P.An/ �
r
2

�

1

xn
e�x2n=2 �

r
2

�
e�	 log.˛.nC1// D c

.n C 1/	
�

As 	 > 1, the rightmost term is the general term of a convergent series, henceP1
nD1 P.An/ < C1 and, by the Borel–Cantelli Lemma, P.limn!1 An/ D 0, which

completes the proof of (3.9).
Let us prove now the reverse inequality of (3.9). This will require the use of

the converse part of the Borel–Cantelli Lemma, which holds under the additional
assumption that the events involved are independent. For this reason, we shall first
investigate the behavior of the increments of the Brownian motion. Let again .tn/n
be a sequence decreasing to 0 and let Zn D Xtn �XtnC1

. The r.v.’s Zn are independent,
being the increments of X. Then for every x > 1, " > 0, we have

P
�
Zn > x

p
tn � tnC1

� D P
�Xtn � XtnC1p

tn � tnC1
> x

�

D 1p
2�

Z C1

x
e�z2=2 dz � x

x2 C 1

1p
2�

e�x2=2 � 1

2x
p
2�

e�x2=2 ;

(3.10)
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where we have taken advantage of the left-hand side inequality of Lemma 3.2. Let

tn D qn with 0 < q < 1 and put ˇ D 2.1�"/2
1�q , ˛ D log 1

q . Then

x D .1 � "/
�.tn/p

tn � tnC1
D 1 � "p

1 � q

q
2 log

�
n log 1

q

�

D
s
2.1� "/2

1� q
log

�
n log 1

q

� D p
ˇ log.˛n/

so that (3.10) becomes

P.Zn > .1 � "/�.tn// � c

nˇ=2
p

log n
�

We can choose q small enough so that ˇ < 2 and the left-hand side becomes the
general term of a divergent series. Moreover, as the r.v.’s Zn are independent, these
events are independent themselves and by the Borel–Cantelli lemma we obtain

Zn > .1 � "/�.tn/ infinitely many times a.s.

On the other hand the upper bound (3.9), which has already been proved, applied to
the Brownian motion �X implies that a.s. we have eventually

Xtn > �.1C "/�.tn/ :

Putting these two relations together we have that a.s. for infinitely many indices n

Xtn D Zn C XtnC1
> .1 � "/�.tn/� .1C "/�.tnC1/

D �.tn/
h
1 � " � .1C "/

�.tnC1/
�.tn/

i
:

(3.11)

Note that, as log log 1
qn D log n C log log 1

q and limn!1 log.nC1/
log n D 1,

lim
n!1

�.tnC1/
�.tn/

D lim
n!1

q
2qnC1 log log 1

qnC1

q
2qn log log 1

qn

D p
q lim

n!1

q
log log 1

qnC1

q
log log 1

qn

D p
q :

For every fixed ı > 0 we can choose " > 0 and q > 0 small enough so that

1 � " � .1C "/
p

q > 1 � ı ;

hence from (3.11)

Xtn > .1 � ı/�.tn/ for infinitely many times a.s.

which completes the proof of the theorem. ut
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3.5 Stopping times

Sometimes, in the investigation of a stochastic process X, we shall consider the value
of X at some random time � , i.e. of the r.v. X�.!/.!/. A random time is, in general,
just a r.v. � W ˝ ! Œ0;C1Œ. Among random times the stopping times of the next
definition will play a particular role.

Definition 3.3 Let .Ft/t2T be a filtration. A r.v. � W ˝ ! T [fC1g is said to
be a stopping time if, for every t 2 T, f� � tg 2 Ft. Associated to a stopping
time � let us define the �-algebra

F� D fA 2 F1;A \ f� � tg 2 Ft for every t 2 Tg

where, as usual, F1 D W
t Ft.

Note that, in general, a stopping time is allowed to take the value C1. Intuitively
the condition f� � tg 2 Ft means that at time t we should be able to say whether
� � t or not. For instance. we shall see that the first time at which a Brownian
motion B comes out of an open set D is a stopping time. Intuitively, at time t we
know the values of Bs for s � t and we are therefore able to say whether Bs 62 D for
some s � t. Conversely, the last time of visit of B to an open set D is not a stopping
time as in order to say whether some time t is actually the last time of visit we also
need to know the positions of Bs for s > t.

F� is, intuitively, the �-algebra of the events for which at time � we can say
whether they are satisfied or not. The following proposition summarizes some
elementary properties of stopping times. The proof is a straightforward application
of the definitions and it is suggested to do it as an exercise (looking at the actual
proof only later).

Proposition 3.5 Let � and � be stopping times. Then

a) � is F� -measurable.
b) � _ � and � ^ � are stopping times.
c) If � � � , then F� � F� .
d) F�^� D F� \ F� .

Proof

a) By Exercise 1.19, we just have to prove that, for every s � 0, f� � sg 2 F� . It
is obvious that f� � sg 2 Fs � F1. We then have to check that, for every t,
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f� � sg\f� � tg 2 Ft. Now, if t � s, we have f� � sg\f� � tg D f� � tg 2 Ft.
If, conversely, t > s, f� � sg \ f� � tg D f� � sg 2 Fs � Ft.

b) We have

f� ^ � � tg D f� � tg [ f� � tg 2 Ft :

and therefore � ^ � is a stopping time. The argument for � _ � is similar:

f� _ � � tg D f� � tg \ f� � tg 2 Ft :

c) If A 2 F� then, for every t, A \ f� � tg 2 Ft. As f� � tg � f� � tg,

A \ f� � tg D A \ f� � tg
„ ƒ‚ …

2Ft

\ f� � tg
„ ƒ‚ …

2Ft

2 Ft :

d) Thanks to c), F�^� is contained both in F� and in F� . Let us prove the opposite
inclusion. Let A 2 F� \ F� ; then A 2 F1, A \ f� � tg 2 Ft and A \ f� �
tg 2 Ft. We have therefore

A\f� ^� � tg D A\ .f� � tg[f� � tg/ D .A\f� � tg/[ .A\f� � tg/ 2 Ft

and therefore A 2 F�^� . ut
Note that, in particular, if t 2 R

C then � � t is a (deterministic) stopping time.
Therefore if � is a stopping time, by Proposition 3.5 b), � ^ t is also a stopping time.
It is actually a bounded stopping time, even if � is not. We shall use this fact very
often when dealing with unbounded stopping times.

Proposition 3.6 If � is an a.s. finite stopping time and X D .˝;F ;

.Ft/t; .Xt/t;P/ is a progressively measurable process, then the r.v. X� is F� -
measurable.

Proof Let us assume that X takes its values in some measurable space .E;E /. We
must prove that, for every � 2 E , fX� 2 � g 2 F� . We know already (Example 2.3)
that X� is F1-measurable, so that fX� 2 � g 2 F1.

Recalling the definition of the �-algebra F� , we must now prove that, for every
t, f� � tg\fX� 2 � g 2 Ft. Of course f� � tg\fX� 2 � g D f� � tg\fX�^t 2 � g.

The r.v. � ^ t is Ft-measurable: the event f� ^ t � sg is equal to ˝ if s � t and
to f� � sg if s < t and belongs to Ft in both cases.

The r.v. X�^t then turns out to be Ft-measurable as the composition of the maps
! 7! .!; �^t.!//, which is measurable from .˝;Ft/ to .˝�Œ0; t�;Ft ˝B.Œ0; t�//,
and .!; u/ 7! Xu.!/, from .˝ � Œ0; t�;Ft ˝ B.Œ0; t�// to .E;B.E//, which is
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Fig. 3.3 The exit time of a two-dimensional Brownian motion B from the unit ball. The three
black small circles denote the origin, the position at time 1 and the exit position B�

measurable thanks to the assumption of progressive measurability. Hence f� �
tg \ fX� 2 � g 2 Ft as the intersection of Ft-measurable events.

ut
If A 2 B.E/, let

�A D infft � 0I Xt … Ag :

�A is called the exit time from A (Fig. 3.3). In this definition, as well as in other
similar situations, we shall always understand, unless otherwise indicated, that the
infimum of the empty set is equal to C1. Therefore �A D C1 if Xt 2 A for every
t � 0. Similarly the r.v.

�A D infft � 0I Xt 2 Ag

is the entrance time in A. It is clear that it coincides with the exit time from Ac. Are
exit times stopping times? Intuition suggests a positive answer, but we shall see that
some assumptions are required.

Proposition 3.7 Let E be a metric space and X an E-valued continuous
process.

a) If A is an open set, then �A is a stopping time.
b) If F is a closed set and the filtration .Ft/t is right continuous, then �F is a

stopping time.
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Proof

a) If A is an open set, we have

f�A > tg D
1[

nD1

\

r2Q
r<t

fd.Xr;A
c/ > 1

n g 2 Ft :

Indeed, if ! belongs to the set on the right-hand side, then for some n we have
d.Xr.!/;Ac/ > 1

n for every r 2 Q \ Œ0; tŒ and, the paths being continuous, we
have d.Xs.!/;Ac/ � 1

n for every s � t. Therefore Xs.!/ 2 A for every s � t and
�A.!/ > t.

The opposite inclusion follows from the fact that if �A.!/ > t then Xs.!/ 2 A
for every s � t and hence d.Xs.!/;Ac/ > 1

n for some n and for every s � t (the
image of Œ0; t� through s 7! Xs.!/ is a compact subset of E and its distance from
the closed set Ac is therefore strictly positive).

Therefore f�A � tg D f�A > tgc 2 Ft for every t.
b) Similarly, if F is closed,

f�F � tg D
\

r2Q;r<t

fXr 2 Fg 2 Ft ;

so that f�F < tg 2 Ft. Therefore

f�F � tg D
\

">0

f�F < t C "g 2 FtC D Ft

since we have assumed that the filtration is right-continuous.
ut

3.6 The stopping theorem

Let X be a Brownian motion. In Proposition 3.2 we have seen that, for every
s � 0, .XtCs � Xs/t is also a Brownian motion. Moreover, it is immediate that it
is independent of Fs. The following result states that these properties remain true if
the deterministic time s is replaced by a stopping time � .

Theorem 3.3 Let X D .˝;F ; .Ft/t; .Xt/t;P/ be an m-dimensional Brow-
nian motion and � an a.s. finite stopping time of the filtration .Ft/t. Then
Yt D XtC� � X� is a Brownian motion independent of F� .
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Proof Let us assume first that � takes only a discrete set of values: s1 < s2 <
� � � < sk < : : : Let C 2 F� ; then, recalling the definition of F� , we know that
C \ f� � skg 2 Fsk . Actually also C \ f� D skg 2 Fsk , as

C \ f� D skg D .C \ f� � skg/ n .C \ f� � sk�1g/„ ƒ‚ …
2Fsk�1�Fsk

and both events on the right-hand side belong to Fsk . Then, if A1; : : : ;An 2 B.Rm/

and C 2 F� , we have

P. Yt1 2 A1; : : : ;Ytn 2 An;C/

D
X

k

P.Xt1C� � X� 2 A1; : : : ;XtnC� � X� 2 An; � D sk;C/

D
X

k

P.Xt1Csk � Xsk 2 A1; : : : ;XtnCsk � Xsk 2 An„ ƒ‚ …
independent of Fsk

; � D sk;C„ ƒ‚ …
Fsk �measurable

/

D
X

k

P.Xt1Csk � Xsk 2 A1; : : : ;XtnCsk � Xsk 2 An/P.� D sk;C/ :

Now recall that .XtCsk � Xsk/t is a Brownian motion for every k, so that the quantity
P.Xt1Csk � Xsk 2 A1; : : : ;XtnCsk � Xsk 2 An/ does not depend on k and is equal to
P.Xt1 2 A1; : : : ;Xtn 2 An/. Hence

P. Yt1 2 A1; : : : ;Ytn 2 An;C/ D P.Xt1 2 A1; : : : ;Xtn 2 An/
X

k

P.� D sk;C/

D P.Xt1 2 A1; : : : ;Xtn 2 An/P.C/ :

Letting C D ˝ we have that Y is a Brownian motion (it has the same finite-dimen-
sional distributions as X); letting C 2 F� we have that Y is independent of F� .

In order to get rid of the assumption that � takes a discrete set of values, we use
the following result, which will also be useful later.

Lemma 3.3 Let � be a stopping time. Then there exists a non-increasing
sequence .�n/n of stopping times each taking a discrete set of values and such
that �n & � . Moreover, f�n D C1g D f� D C1g for every n.
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Proof Let

�n.!/ D

8
ˆ̂
<

ˆ̂
:

0 if �.!/ D 0

kC1
2n if k

2n < �.!/ � kC1
2n

C1 if �.!/ D C1 :

As �n � 1
2n � � � �n, obviously �n & � . Moreover,

f�n � tg D
[

k; kC1
2n �t

˚
�n D kC1

2n

� D f�.!/ D 0g [
[

k; kC1
2n �t

˚
k
2n < � � kC1

2n

� 2 Ft

and therefore �n is a stopping time. ut
End of the proof of Theorem 3.3. If � is a finite stopping time, let .�n/n be a

sequence of stopping times each taking a discrete set of values as in Lemma 3.3.
In the first part of the proof we have proved that, for every choice of t1; : : : ; tk,

the r.v.’s Xt1C�n � X�n ; : : : ;XtkC�n � X�n are independent of F�n and have the
same distribution as Xt1 ; : : : ;Xtk , Therefore for every bounded continuous function
˚ W R

m ! R and C 2 F� � F�n (recall that, as � � �n then F� � F�n , see
Proposition 3.5 c)), we have

E
�
˚.Xt1C�n � X�n ; : : : ;XtkC�n � X�n/1C




D E
�
˚.Xt1C�n � X�n ; : : : ;XtkC�n � X�n/



P.C/

D E
�
˚.Xt1 ; : : : ;Xtk/



P.C/ :

(3.12)

Let us take the limit as n ! 1 in (3.12). As the paths are continuous and by
Lebesgue’s theorem

E
�
˚.Xt1C�n �X�n ; : : : ;XtkC�n �X�n/1C


 !
n!1 E

�
˚.Xt1C� �X� ; : : : ;XtkC� �X� /1C




so that

E
�
˚.Xt1C� � X� ; : : : ;XtkC� � X� /1C


 D E
�
˚.Xt1 ; : : : ;Xtk /



P.C/ : (3.13)

Again by first choosing C D ˝ we find that the joint distributions of .Xt1C� �
X� ; : : : ;XtkC� � X� / and .Xt1 ; : : : ;Xtk/ coincide. Therefore the process .XtC� � X� /t,
having the same joint distributions of a Brownian motion, is a Brownian motion
itself. Then taking C 2 F� we find that it is independent of F� . ut

Let us describe a first, very useful, application of the stopping theorem. Let a > 0
and �a D infftI Xt � ag; �a is a stopping time, being the exit time from the half-
line � � 1; aŒ, and is called the passage time at a. By the Iterated Logarithm Law,
Corollary 3.2, the Brownian motion takes arbitrarily large values a.s., hence �a is
a.s. finite.
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It is often of interest to determine the probability that a Brownian motion X
will cross the level a before a time t. This will be a consequence of the following
more general (and interesting) statement. Note that the events fsups�t Xs � ag and
f�a � tg coincide.

Theorem 3.4 (The joint distribution of a Brownian motion and of its
running maximum) Let X be a Brownian motion. For every t � 0, let
X�

t D sup0�s�t Xs. Then, if a � 0 and b � a,

P.X�
t � a;Xt � b/ D P.Xt � 2a � b/ : (3.14)

Proof Let �a D infft � 0I Xt D ag. If we write Wt D XtC�a � X�a , we have

P.X�
t � a;Xt � b/ D P.�a � t;Xt � b/ D P.�a � t;Wt��a � b � a/ ;

as Wt��a D Xt � X�a D Xt � a. We know that W is a Brownian motion independent
of F�a , hence of �a. As W has same law as �W, the pair .�a;W/, as an R

C �
C .Œ0; t�;R/-valued r.v., has the same law as .�a;�W/.

Let A D f.s; �/ 2 R � C .Œ0; t�;R/; s � t; �.t � s/ � b � ag, so that we have
P.�a � t;Wt��a � b � a/ D P..�a;W/ 2 A/. Then, if a � b,

P.X�
t � a;Xt � b/ D P.�a � t;Wt��a � b � a/ D P..�a;W/ 2 A/

D P..�a;�W/ 2 A/ D P.�a � t;�Xt C X�a � b � a/

D P.�a � t;Xt � 2a � b/ D P.Xt � 2a � b/

since if Xt � 2a � b then a fortiori Xt � a, so that fXt � 2a � bg � f�a � tg. ut
Let us denote by f the joint density of .Xt;X�

t /. From (3.14), for a > 0, b � a,

Z b

�1
dx
Z C1

a
f .x; y/ dy D P.Xt � b;X� � a/ D P.Xt � 2a � b/

D 1p
2�

Z C1

.2a�b/=
p

t
e�x2=2 dx :

Taking first the derivative with respect to b we have

Z C1

a
f .b; y/ dy D 1p

2�t
e� 1

2t .2a�b/2
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and then taking the derivative with respect to a we find

Corollary 3.3 The joint density of .Xt;X�
t /, i.e. of the running maximum and

the position at time t of a Brownian motion, is

f .b; a/ D 2p
2�t3

.2a � b/ e� 1
2t .2a�b/2

for a > 0; b � a and f .b; a/ D 0 otherwise.

Another consequence of Theorem 3.4 is the following, which is an important
improvement of Lemma 3.1.

Corollary 3.4 (The reflection principle)

P.X�
t � a/ D P.�a � t/ D 2P.Xt � a/ :

Proof We have, from (3.14), P.X�
t � a;Xt � a/ D P.Xt � a/. Moreover, fX�

t �
a;Xt � ag D fXt � ag. Hence

P.X�
t � a/ D P.X�

t � a;Xt � a/C P.X�
t � a;Xt � a/ D 2P.Xt � a/ :

ut

Remark 3.5 Because of the symmetry of the centered Gaussian distributions
we have 2P.Xt � a/ D P.jXtj � a/. Let again X�

t D sup0�s�t Xs. As a
consequence of the reflection principle, for every a > 0,

P.X�
t � a/ D P.�a � t/ D 2P.Xt � a/ D P.jXtj � a/ :

This means that, for every t, the two r.v.’s X�
t and jXtj have the same

distribution. Of course, the two processes are different: .X�
t /t is increasing,

whereas .jXtj/t is not.

3.7 The simulation of Brownian motion

How to simulate the path of a Brownian motion? This is a very simple task, but
it already enables us to investigate a number of interesting situations. Very often a
simulation is the first step toward the understanding of complex phenomena.
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Applications may require the computation of the expectation of a functional of
the path of a stochastic process and if closed formulas are not available one must
resort to simulation. This means that one must instruct a computer to simulate many
paths and the corresponding value of the functional: by the law of large numbers
the arithmetic mean of the values obtained in this way is an approximation of the
desired expectation.

In this section we see the first aspects of the problem of simulating a stochastic
process starting from the case of Brownian motion. For more information about
simulation, also concerning more general processes, see Chap. 11. On this subject,
because of today’s ease of access to numerical computation, a vast literature is
available (see, for example, Kloeden and Platen 1992; Fishman 1996; Glasserman
2004).

The first idea (others are possible) for the simulation of a Brownian motion is
very simple: its increments being independent Gaussian r.v.’s, the problem is solved
as soon as we are able to simulate a sequence of independent Gaussian r.v.’s, which
can be done as explained in Sect. 1.8.

If Z1;Z2; : : : are independent m-dimensional and N.0; I/-distributed r.v.’s on
some probability space .˝;F ;P/, let us choose a grid of times 0 < h < 2h < : : :

where h > 0 is a positive number (typically to be taken small). Then the r.v.
p

h Z1
is N.0; h I/-distributed, i.e. has the same distribution as the increment of a Brownian
motion over a time interval of size h. Hence the r.v.’s

Bh.h/ D p
h Z1

Bh.2h/ D p
h .Z1 C Z2/

Bh.kh/ D p
h .Z1 C � � � C Zk/

: : :

(3.15)

have the same joint distributions as the positions at times h; 2h; : : : ; kh; : : : of a
Brownian motion.

If, for kh � t � .k C1/h, we define Bh.t/ as a linear interpolation of the positions
Bh.kh/ and Bh..k C 1/h/, this is obviously an approximation of a Brownian motion.
More precisely:

Theorem 3.5 Let T > 0, n > 0 and h D T
n . Let us denote by Ph the law

of the process Bh (Ph is therefore a probability on the canonical space C D
C .Œ0;T�;Rm/). Then Ph converges weakly to the Wiener measure PW .

Proof Note first that the law Ph neither depends on the choice of the r.v.’s .Zn/n,
nor on the probability space on which they are defined, provided they are N.0; I/-
distributed and independent.

Let .C ;M ;PW/ be the canonical space and, as usual, denote by Xt the coor-
dinate applications (recall that PW denotes the Wiener measure, as defined p. 53).
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The process X D .C ;M ; .Xt/t;PW/ is therefore a Brownian motion. The r.v.’s

Zk D 1p
h
.X.kC1/h � Xkh/

are therefore independent and N.0; I/-distributed. If we construct the process Bh

starting from these r.v.’s, we have Bh.kh/ D Xkh. The process Bh, in this case, is
nothing else but the piecewise linear interpolation of X. As the paths are continuous
(and therefore uniformly continuous on every compact interval), limh!0 Bh.!; t/ D
Xt.!/ for every ! 2 C uniformly on compact sets. This means that the family of
C -valued r.v.’s .Bh/h converges to X a.s. in the topology of C . Therefore, as a.s.
convergence implies convergence in law, Bh ! X in law as h ! 0.

Hence, as remarked above, Ph ! PW weakly as h ! 0, whatever the choice of
the r.v.’s .Zn/n. ut

Theorem 3.5 ensures that if � W C ! R is a bounded continuous function, then

lim
h!0

EŒ�.Bh/� D EŒ�.B/� :

Example 3.2 Let B be a real Brownian motion and let us consider the problem
of computing numerically the quantity

E
h Z 1

0

e�B2s ds
i
: (3.16)

It is easy to determine the exact value:

Z 1

0

EŒe�B2s � ds D
Z 1

0

1p
1C 2s

ds D p
1C 2s

ˇ
ˇ
ˇ
1

0
D p

3 � 1 ' 0:7320508 :

In order to compute by simulation an approximation of this value, note
that, using the same argument as in the proof of Theorem 3.5, the integralR 1
0

e�B2s ds is the limit of its Riemann sums, i.e.

lim
h!0

h
nX

kD1
e�Bh.kh/2 D

Z 1

0

e�B2s ds

and, by Lebesgue’s theorem,

lim
h!0

E
h
h

nX

kD1
e�Bh.kh/2

i
D E

h Z 1

0

e�B2s � ds
i
:

(continued)
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Example 3.2 (continued)
Hence, if .Zi

n/n are independent N.0; 1/-distributed r.v.’s then, by the Law of
Large Numbers,

lim
N!1

1

N

NX

iD1

nX

kD1
e�h.Zi

1C���CZi
kh/

2 D E
h
h

nX

kD1
e�Bh.kh/2

i
(3.17)

so that the left-hand side above is close to the quantity (3.16) of interest.
The results for N D 640;000 and various values of the discretization

parameter h are given in Table 3.1. It is apparent that, even for relatively large
values of h, the simulation gives quite accurate results.

Table 3.1 The estimated values of Example 3.2

h Value Error
1
100

0:7295657 0:34%
1
200

0:7311367 0:12%
1
400

0:7315369 0:07%
1
800

0:7320501 10�5%

Of course it would be very important to know how close to the true value
EŒ�.B/� the approximation EŒ�.Bh/� is. In other words, it would be very important
to determine the speed of convergence, as h ! 0, of the estimator obtained by
the simulated process. We shall address this question in a more general setting in
Chap. 11.

Note also that in Example 3.2 we obtained an estimator using only the values of
the simulated process at the discretization times kh, k D 0; : : : ; n, and that it was not
important how the simulated process was defined between the discretization times.
This is almost always the case in applications.

Example 3.3 Let B be a real Brownian motion and let us consider the problem
of computing numerically the quantity

P
�

sup
0�s�t

Bt � 1
�
: (3.18)

(continued)
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Example 3.3 (continued)
We could try to reproduce the simulation algorithm above, i.e. consider the
approximation

Xh WD 1

N

NX

iD1
1fsup0�k�n B

i
kh�1g :

However, there is a difficulty: the functional C 3 � ! 1fsup0�s�T �s�1g
is not continuous because of the presence of the indicator function, so
that Theorem 3.5 is not immediately sufficient in order to guarantee that
limh!0 EŒXh� D P

�
sup0�t�1 Bs � 1

�
.

One should, however, recall that the convergence holds if the set A D
fsup0�s�t Bt � 1g is such that PW.@A/ D 0, as indicated on p. 11. This is the
case here, as

@A D
n

sup
0�s�t

Bt D 1
o

and the r.v. B� D sup0�s�t Bt has a density, which is an immediate
consequence of Remark 3.5. Hence PW.@A/ D P.B� D 1/ D 0.

Table 3.2 reproduces the results of the computation of the probabil-
ity (3.18) for different values of h.

Here again N D 640;000. It is apparent that the relative error is much
larger than in Example 3.2 and, more noteworthy, that the error decreases very
slowly as the discretization step h becomes smaller. This is certainly related
to the lack of regularity of the functional to be computed.

Table 3.2 The outcomes of the numerical simulation and their relative errors. Thanks to the
reflection principle, Corollary 3.4, the true value is 2P.B1 � 1/ D 2.1 � ˚.1// D 0:3173, ˚
denoting the partition function of an N.0; 1/-distributed r.v.

h Value Error
1
100

0:2899 8:64%
1
200

0:2975 6:23%
1
400

0:3031 4:45%
1
800

0:3070 3:22%
1

1600
0:3099 2:32%
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Exercises

3.1 (p. 455) Let B be a Brownian motion and let s � t.

a) Compute EŒBsB2t �.
b) Compute EŒB2s B2t �.
c) Show that

EŒBseBs � D ses=2 :

d) Compute EŒBseBt �.

Recall: EŒX4� D 3 if X 	 N.0; 1/.

3.2 (p. 455) Let B be a Brownian motion. Compute

a) limt!C1 EŒ1fBt�ag�.
b) limt!C1 EŒBt1fBt�ag�.

3.3 (p. 456) Let B be a Brownian motion. Compute

lim
t!C1

p
t EŒB2t e�B2t � :

3.4 (p. 456) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a d-dimensional Brownian motion.
We prove here that the increments .Bt � Bs/t�s form a family that is independent of
Fs, as announced in Remark 3.2. This fact is almost obvious if Fs D �.Bu; u � s/,
i.e. if B is a natural Brownian motion (why?). It requires some dexterity otherwise.
Let s > 0.

a) If s � t1 < � � � < tm and �1; : : : ; �m 2 B.Rd/ prove that, for every A 2 Fs,

P
�
Btm � Btm�1 2 �m; : : : ;Bt1 � Bs 2 �1;A

�

D P
�
Btm � Btm�1 2 �m; : : : ;Bt1 � Bs 2 �1

� � P.A/ :

b) Show that the two �-algebras

�.Btm � Bs; : : : ;Bt1 � Bs/ and �.Btm � Btm�1 ;Btm�1 � Btm�2 ; : : : ;Bt1 � Bs/

are equal.
c) Prove that the �-algebra �.Bt � Bs; t � s/ is independent of Fs.

3.5 (p. 457) Let B be a .Ft/t-Brownian motion, let G a �-algebra independent of
F1 D W

t Ft and eF s D Fs _ G . The object of this exercise is to prove that B
remains a Brownian motion with respect to the larger filtration .eF t/t.
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a) Let C be the class of the events of the form A \ G with A 2 Fs and G 2 G .
Prove that C is stable with respect to finite intersections and that it generates the
�-algebra eF s.

b) Prove that B is also a .eF t/t-Brownian motion.

3.6 (p. 457) Let B be a Brownian motion.

a) Show that if 0 � s � t, then the joint law of .Bs;Bt/ is

fs;t.x; y/ D 1p
2�s

e� 1
2s x2 1

p
2�.t � s/

e� 1
2.t�s/ . y�x/2

: (3.19)

b) Show that, for every s > 0,

P.Bs < 0;B2s > 0/ D 1

8
�

3.7 (p. 459)

a) Let B be a Brownian motion and let Xt D e�tBe2t .
a1) Show that .Xt/�1<t<C1 is a Gaussian process and compute its covariance

function K.s; t/ D Cov.Xs;Xt/.
a2) Prove that X is a stationary process, i.e. such that for every t1 < t2 < � � � <

tm and h > 0, the r.v.’s .Xt1 ; : : : ;Xtm/ and .Xt1Ch; : : : ;XtmCh/ have the same
distribution.

a3) Prove that the kernel K.s; t/ D e�jt�sj is positive definite (i.e. that it satis-
fies (2.1)).

b) Let .Xt/�1<t<C1 be a (not necessarily continuous) centered Gaussian process
with covariance function K.s; t/ D e�jt�sj.

b1) Prove that Wu D p
u X 1

2 log u is a natural Brownian motion.
b2) Prove that X has a continuous version.

3.8 (p. 459) Sometimes in applications a process appears that is called a �-corre-
lated Brownian motion. In dimension 2 it is a Gaussian process .X1.t/;X2.t//t such
that X1 and X2 are real Brownian motions, whereas Cov.X1.t/;X2.s// D �.s ^ t/,
where �1 � � � 1 (Figs. 3.4 and 3.5).

a) Let B D .B1.t/;B2.t// be a two-dimensional Brownian motion. Then if X2 D B2
and X1.t/ D p

1 � �2 B1 C �B2.t/, then X D .X1.t/;X2.t// is a �-correlated
Brownian motion.

b) Conversely, if X is a �-correlated Brownian motion and j�j < 1, let B2.t/ D X2.t/
and

B1.t/ D 1
p
1 � �2 X1.t/ � �

p
1� �2

X2.t/ :

Prove that B D .B1.t/;B2.t// is a two-dimensional Brownian motion such that
X2.t/ D B2.t/ and X1.t/ D p

1� �2 B1 C �B2.t/.
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10

–.5

–.5

0

1

Fig. 3.4 Example of a path of a two-dimensional �-correlated Brownian motion for 0 � t � 1

and � D 0:7 (a black small circle denotes the origin and the position at time 1). Of course, for
� D 1 the paths concentrate on the main diagonal

0

0

.8

.4

–.4

–.5

Fig. 3.5 Example of a path of a two-dimensional �-correlated Brownian motion for 0 � t � 1

and � D �0:6. Now the correlation is negative. (a black small circle denotes the origin and the
position at time 1)

3.9 (p. 460) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian
motion. Determine the matrices A 2 M.m/ such that Xt D ABt is also an m-
dimensional Brownian motion.
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3.10 (p. 460) Let B be an m-dimensional Brownian motion and A � R
m a Borel

set having finite and strictly positive Lebesgue measure. Let

SA.!/ D ft 2 R
CI Bt.!/ 2 Ag :

SA.!/ is the set of the times t such that Bt.!/ 2 A. Let us denote by 	 the Lebesgue
measure of R; therefore the quantity EŒ	.SA/� is the mean time spent by B on the set
A (SA is called the occupation time of A). Prove that

EŒ	.SA/� D
8
<

:

C 1 if m � 2
1

2�m=2
� .m

2
� 1/

Z

A
jxj2�m dx if m > 2 :

Recall the definition of the Gamma function: � .˛/ D R C1
0

x˛�1e�x dx, for ˛ > 0.

Note that EŒ	.SA/� D RC1

0 P.Xt 2 A/ dt by Fubini’s theorem.

3.11 (p. 461) Let X be a continuous Gaussian process.

a) Let us denote by G the family of the compactly supported finite measures � on
R

C (i.e. such that �.Œa; b�c/ D 0 for some a; b 2 R
C). Let

X� D
Z

Xs d�.s/ : (3.20)

Show that .X� /�2G is a Gaussian family.
b) Let � be a measure on R

C such that �.Œa; b�/ < C1 for every finite interval
Œa; b� (i.e. a Borel measure) and let

Yt D
Z t

0

Xs �.ds/ :

b1) Prove that Y is a Gaussian process.
b2) Let us assume that X is a Brownian motion. Using the relation

�.�r; t�/2 D 2

Z t

r
�.�r; u�/ d�.u/ (3.21)

prove that Yt has centered Gaussian law with variance �2t D R t
0
�.�s; t�/2 ds.

Compute Cov. Yt;Ys/.

a) The integral is the limit of the Riemann sums
P

i�0 Xi=n�.�i
t
n ; .i C 1/ t

n �/ and one can apply
Proposition 1.9;

b2) use the relations (Fubini)

E
� Z t

0

Xu d�.u/ �
Z s

0

Xv d�.v/
�

D
Z t

0

d�.u/

Z s

0

E.XuXv/ d�.v/ ;

Z s

0

v d�.v/ D
Z s

0

d�.v/

Z v

0

du D
Z s

0

du

Z s

u
d�.v/ D

Z s

0

�.�u; s�/ du :
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3.12 (p. 463) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let

Zt D Bt �
Z t

0

Bu

u
du :

a) Note that the integral converges for almost every ! and show that .Zt/t is a
Brownian motion with respect to its natural filtration .Gt/t.

b) Show that .Zt/t is a process adapted to the filtration .Ft/t, but it is not a Brownian
motion with respect to this filtration.

c) Prove that, for every t, Bt is independent of Gt.

a) Use in an appropriate way Exercise 3.11.

3.13 (p. 464) Let B be a Brownian motion. Prove that, for every a > 0 and T > 0,

P.Bt � a
p

t for every t � T/ D 0 :

3.14 (p. 465) Let B be a Brownian motion and b 2 R, � > 0. Let Xt D ebtC�Bt .

a) Investigate the existence and finiteness of the a.s. limit

lim
t!C1 Xt

according to the possible values of b; � .
b) Investigate the existence and finiteness of

lim
t!C1 EŒXt� (3.22)

according to the possible values of b; � .

3.15 (p. 465) Let B be a Brownian motion and b 2 R, � > 0.

a) For which values of b; � , b 6D 0, is the integral

Z C1

0

ebuC�Bu du

a.s. finite?
b1) Prove that the r.v.

Z 1

0

1fBu>0g du

is > 0 a.s.
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b2) Prove that

lim
t!C1

Z t

0

1fBu>0g du D C1 a.s.

b3) Deduce that

Z C1

0

e�Bu du D C1 a.s.

c) For which values of b; � is

E
h Z C1

0

ebuC�Bu du
i
< C1 ‹

3.16 (p. 466) (Approximating exit times) Let E be a metric space, D � E an open
set, X D .Xt/t a continuous E-valued process, � the exit time of X from D. Let .Dn/n
be an increasing sequence of open sets with Dn � D for every n > 0, and such that
d.@Dn; @D/ � 1

n . Let us denote by �n the exit time of X from Dn. Then, as n ! 1,
�n ! � and, on f� < C1g, X�n ! X� .

3.17 (p. 467) Let B be an m-dimensional Brownian motion and D an open set
containing the origin. For � > 0 let us denote by D� the set �D homothetic to D and
by � and �� the exit times of B from D and D� respectively.

Show that the r.v.’s �� and �2 � have the same law. In particular, EŒ��� D �2EŒ� �,
this relation being true whether the quantities appearing on the two sides of the
equation are finite or not.

3.18 (p. 467) Let S be the unit ball centered at the origin of Rm, m � 1, and X a
continuous m-dimensional Brownian motion. Let � D infftI Xt … Sg be the exit time
of X from S.

a) Prove that � < C1 a.s.; X� is therefore a r.v. with values in @S. Show that the
law of X� is the .m�1/-dimensional Lebesgue measure of @S, normalized so that
it has total mass 1.

b) Prove that � and X� are independent.

Recall that an orthogonal matrix transforms a Brownian motion into a Brownian motion
(Exercise 3.9 b)) and use the fact that the only measures on @S that are invariant under the action
of orthogonal matrices are of the form c �	, where 	 is the .m �1/-dimensional Lebesgue measure
of @S and c some positive constant.
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3.19 (p. 468)

a) Let f W Œ0; 1� ! R be a continuous function. Prove that

log ke f k1 D sup
0�s�1

f .s/ :

b) Let B be a Brownian motion.
b1) Prove that, for every t > 0,

Z t

0

eBs ds
L� t

Z 1

0

e
p

tBs ds :

b2) Prove that

1p
t

log
Z t

0

eBs ds
L!

t!C1 sup
s�1

Bs :

b3) Give an approximation, for t large, of

P
� Z t

0

eBs ds � 1
�

P
� Z t

0

eBs ds � e:77337�
p

t
�

(0:77337 is, approximately, the quantile of order 3
4

of the N.0; 1/ distribution).

Recall the relation among the Lp norms: limp!C1 k f kp D k f k1.

3.20 (p. 469)

a) Let X be a continuous Brownian motion, a > 0 and �a D infftI Xt � ag the
passage time of X at a. Prove that the law of �a has a density, with respect to
Lebesgue measure, given by fa.t/ D 0 for t � 0 and (Fig. 3.6)

fa.t/ D a

.2�/1=2 t3=2
e�a2=2t (3.23)

for t > 0. In particular, �a does not have finite expectation (and neither doesp
�a). Show that, as t ! C1,

P.�a > t/ � 2ap
2�

1p
t

�

b) A researcher wants to explore the distribution of �1 by simulation. He therefore
realizes a computer program and simulates N paths of a Brownian motion and
records the passage times at a D 1 of each of them, T1; : : : ;TN say.

Assume N D 10;000. What is the probability that Tj � 108 for at least one
path? And the probability that Tj � 1010 (1 hundred millions) for at least one
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path? Why is the program taking so long? This should be done numerically with
a computer.

c) Let us recall that a probability� is said to be stable with exponent ˛; 0 < ˛ � 2,
if

X1 C � � � C Xn

n1=˛
� X1

where X1; : : : ;Xn are independent �-distributed r.v.’s (for instance, a centered
normal law is stable with exponent 2).

Prove that the law of �a is stable with exponent ˛ D 1
2
.

a) Note that P.�a � t/ D P.sup0�s�t Bs > a/. c) Use Theorem 3.3 to prove that if X1; : : : ;Xn

are independent copies of �1, then X1 C � � � C Xn has the same distribution as �na. This property of
stability of the law of �a will also be proved in Exercise 5.30 in quite a different manner. Do not
try to compute the law of X1 C � � � C Xn by convolution!

0 1 2 3 4

.25

.5

Fig. 3.6 The graph of the density f of the passage time at a D 1. Note that, as t ! 0C, f tends
to 0 very fast, whereas its decrease for t ! C1 is much slower, which is also immediate from
(3.23)

3.21 (p. 470)

a) Prove, without explicitly computing the values, that

E
h

sup
0�s�t

Bs

i
D p

t E
h

sup
s�1

Bs

i
: (3.24)

b) Compute

E
h

sup
0�s�t

Bs

i

(recall Exercise 1.3).
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3.22 (p. 471)

a) Let B be an m-dimensional Brownian motion and let, for Rm 3 z 6D 0, k > 0,
H D fx 2 R

m; hz; xi � kg be a hyperplane containing the origin in its interior.
Let us denote by � the exit time of B from H. The object of this exercise is to
compute the law of � and its expectation.

a1) Prove that

Xt D 1

jzj hz;Bti

is a Brownian motion and that � coincides with the passage time of X at a D k
jzj .

a2) Compute the density of � and EŒ� �. Is this expectation finite?
b) Let B D .B1;B2/ be a two-dimensional �-correlated Brownian motion (see

Exercise 3.8) and consider the half-space H D f.x; y/; x C y < 1g.
b1) Find a number ˛ > 0 such that

Xt D ˛.B1.t/C B2.t//

is a natural Brownian motion.
b2) Let � be the exit time of B from H. Compute the density of � and EŒ� �. Is this

expectation finite? Compute P.� � 1/ and determine for which values of � this
quantity is maximum.

3.23 (p. 472) (Do Exercise 3.22 first)

a) Let B be a two-dimensional Brownian motion and z 2 R
2; z 6D 0. Let Xt D

hBt; zi. Show that there exists a number v > 0 such that Wt D vXt is a Brownian
motion.

b) Let � be the first time at which B reaches the straight line x C y D 1.
b1) Let z D .1; 1/. Show that � coincides with the passage time at a D 1 of Xt D

hBt; zi.
b2) Show that the law of � has a density and compute it. Compute P.� � 1/.

c) Let �1 and �2 be the first times at which B reaches the lines 2x C y D 1 and
1
2
x � y D 1, respectively.

c1) Compute the densities of �1 and �2.
c2) Prove that �1 and �2 are independent.
c3) Let � D �1 ^ �2: � is the exit time of B out of the shaded infinite region in

Fig. 3.7. With the help of numerical tables compute P.� � 1/.
c4) Compute P.�1 � �2/.
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Fig. 3.7 � D �1 ^ �2 is the exit time out of the shaded area



Chapter 4
Conditional Probability

4.1 Conditioning

Let .˝;F ;P/ be a probability space and A 2 F an event having strictly positive
probability. Recall that the conditional probability of P with respect to A is the
probability PA on .˝;F /, which is defined as

PA.B/ D P.A \ B/

P.A/
for every B 2 F : (4.1)

Intuitively the situation is the following: initially we know that every event B 2 F
can appear with probability P.B/. If, later, we acquire the information that the event
A has occurred or will certainly occur, we replace the law P with PA, in order to keep
into account the new information.

A similar situation is the following. Let X be a real r.v. and Z another r.v. taking
values in a countable set E and such that P.Z D z/ > 0 for every z 2 E. For every
Borel set A � R and for every z 2 E let

n.z;A/ D P.X 2 AjZ D z/ D P.X 2 A;Z D z/

P.Z D z/
�

For every z 2 E, A 7! n.z;A/ is a probability on R: it is the conditional law of X
given Z D z. This probability has an intuitive meaning not dissimilar from the one
just pointed out above: A 7! n.z;A/ is the law that it is reasonable to consider for
the r.v. X, should we acquire the information that the event fZ D zg certainly occurs.
The conditional expectation of X given Z D z is defined as the mean of this law, if
it exists:

EŒX jZ D z� D
Z

x n.z; dx/ D 1

P.Z D z/

Z

fZDzg
X dP D EŒX1fZDzg�

P.Z D z/
�
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86 4 Conditional Probability

This is a very important concept, as we shall see constantly throughout. For this
reason we need to extend it to the case of a general r.v. Z (i.e. without the assumption
that it takes at most only countably many values). This is the object of this chapter.

Let us see first how it is possible to characterize the function h.z/ D EŒX jZ D z�
in a way that continues to be meaningful in general. For every B � E we have

Z

fZ2Bg
h.Z/ dP D

X

z2B

EŒX jZ D z�P.Z D z/ D
X

z2B

EŒX1fZDzg�

D EŒX1fZ2Bg� D
Z

fZ2Bg
X dP :

Therefore the r.v. h.Z/, which is of course �.Z/-measurable, is such that its integral
on any event B of �.Z/ coincides with the integral of X on the same B. We shall see
that this property characterizes the conditional expectation.

In the following sections we use this property in order to extend the notion of
conditional expectation to a more general (and interesting) situation. We shall come
back to conditional distributions at the end.

4.2 Conditional expectations

Let X be a real r.v. and X D XC � X� its decomposition into positive and negative
parts and assume X to be lower semi-integrable (l.s.i.) i.e. such that EŒX�� < C1.
See p. 2 for more explanations.

Definition and Theorem 4.1 Let X be a real l.s.i. r.v. and D � F a sub-�-
algebra. The conditional expectation of X with respect to D , denoted EŒX jD �,
is the (equivalence class of) r.v.’s Z which are D-measurable and l.s.i. and
such that for every D 2 D

Z

D
Z dP D

Z

D
X dP : (4.2)

A r.v. Z with these properties always exists and is unique up to P-equivalence.

Proof Existence. Let us assume first that X � 0; then let us consider on .˝;D/ the
positive measure

Q.B/ D
Z

B
X dP B 2 D :
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Obviously Q � P (see p. 4); thus by the Radon–Nikodym theorem there exists a
real D-measurable r.v. Z such that

Q.B/ D
Z

B
Z dP

and hence Z 2 EŒX jD �. Note that if X is integrable then Q is finite and Z is
integrable. For a general r.v. X just decompose X D XC � X� and check that
EŒX jD � D EŒXC jD � � EŒX� jD � satisfies the conditions of Definition 4.1. This is
well defined since, X� being integrable, EŒX� jD � is integrable itself and a.s. finite
(so that the form C1 � 1 cannot appear).

Uniqueness. Let us assume first that X is integrable. If Z1;Z2 are D-measurable
and satisfy (4.2) then the event B D fZ1 > Z2g belongs to D and

Z

B
.Z1 � Z2/ dP D

Z

B
X dP �

Z

B
X dP D 0 :

As the r.v. Z1 � Z2 is strictly positive on B this implies P.B/ D 0 and hence Z2 � Z1
a.s. By symmetry, Z1 D Z2 a.s.

In general if X is l.s.i. and not necessarily integrable this argument cannot
be applied as is, since it is possible that

R
B X dP D C1. However, B can be

approximated by events Bn on which the integral of X is finite; the details are left as
an exercise. ut

Remark 4.1 (4.2) states that if Z D EŒX jD �, the relation

EŒZW� D EŒXW� (4.3)

holds for every r.v. W of the form W D 1A, A 2 D . Of course, then, (4.3)
also holds for every linear combination of these indicator functions and,
by standard approximation results (see Proposition 1.11), for every positive
bounded D-measurable r.v. W.

If Y is a r.v. taking values in some measurable space .E;E /, sometimes we shall
write EŒX jY� instead of EŒX j�.Y/�. We know that every real �.Y/-measurable r.v.
is of the form g.Y/, where g W E ! R is a measurable function (Doob’s criterion,
Lemma 1.1). Therefore there exists a measurable function g W E ! R such that
EŒX jY� D g.Y/ a.s. Sometimes we shall use for the function g, in an evocative
manner, the notation

g.y/ D EŒX jY D y� :
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Always keeping in mind that every �.Y/-measurable r.v. W is of the form  .Y/ for
a suitable measurable function  , such a g must satisfy the relation

EŒX .Y/� D EŒg.Y/ .Y/� (4.4)

for every bounded measurable function  . The next section provides some tools for
the computation of g.y/ D EŒX jY D y�.

To be precise (or pedantic. . . ) a conditional expectation is an equivalence class of
r.v.’s but, in order to simplify the arguments, we shall often identify the equivalence
class EŒX jD � with one of its elements Z.

Remark 4.2 We shall often be called to verify statements of the form “a
certain r.v. Z is equal to EŒX jD �”. On the basis of Definition 4.1 this is
equivalent to show that

a) Z is D-measurable; and
b) EŒZ1D� D EŒX1D� for every D 2 D .

In fact it will be enough to check b) for every D in a class C � D generating
D and stable with respect to finite intersections and containing ˝ . This is
actually a simple application of Theorem 1.4: let H be the space of the D-
measurable bounded r.v.’s W such that

EŒWX� D EŒWZ� : (4.5)

Clearly H contains the function 1 and the indicator functions of the events
of C . Moreover, if .Wn/n is an increasing sequence of functions of H all
bounded above by the same element W� 2 H and Wn " W, then we have,
for every n, W1 � Wn � W�. As both W1 and W� are bounded (as is every
function of H ), with two applications of Lebesgue’s theorem we have

EŒWX� D lim
n!1 EŒWnX� D lim

n!1 EŒWnZ� D EŒWZ�:

Therefore condition i) of Theorem 1.4 is satisfied and H contains every
�.C /-bounded measurable r.v.; therefore (4.5) holds for every D-bounded
measurable r.v. W, which allows us to conclude the proof.

Proposition 4.1 Let X;X1;X2 be integrable r.v.’s and ˛; ˇ 2 R. Then

a) EŒ˛X1 C ˇX2 jD � D ˛EŒX1 jD �C ˇEŒX2 jD � a.s.
b) If X � 0 a.s., then EŒX jD � � 0 a.s.
c) EŒEŒX jD �� D EŒX�.

(continued)
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Proposition 4.1 (continued)
d) If Z is bounded and D-measurable then EŒZX jD � D ZEŒX jD � a.s.
e) If D � D 0 then EŒEŒX jD 0�jD � D EŒX jD � a.s.
f) If X is independent of D then EŒX jD � D EŒX� a.s.

Proof These are immediate applications of the definition; let us look more carefully
at the proofs of the last three statements.

d) As it is immediate that the r.v. Z EŒX jD � is D-measurable, we must only prove
that the r.v. ZEŒX jD � satisfies the relation E

�
W ZEŒX jD �
 D EŒWZX� for every

r.v. W. This is also immediate, as ZW is itself bounded and D-measurable.
e) The r.v. EŒEŒX jD 0�jD � is D-measurable; moreover, if W is bounded and D-

measurable, then it is also D 0-measurable and, using c) and d),

E
�
WEŒEŒX jD 0�jD �
 D E

�
EŒEŒWX jD 0�jD �
 D E

�
EŒWX jD 0�


 D EŒWX� ;

which allows us to conclude the proof.
f) The r.v. ! 7! EŒX� is constant, hence D-measurable. If W is D-measurable then

it is independent of X and

EŒWX� D EŒW�EŒX� D EŒWEŒX�� ;

hence EŒX� D EŒX jD � a.s. ut
It is easy to extend Proposition 4.1 to the case of r.v.’s that are only l.s.i. We shall
only need to observe that a) holds only if ˛; ˇ � 0 (otherwise ˛X1 C ˇX2 might not
be l.s.i. anymore) and that d) holds only if Z is bounded and positive (otherwise ZX
might not be l.s.i. anymore).

Proposition 4.2 Let X, Xn, n D 1; 2; : : : ; be real l.s.i. r.v.’s. Then

a) (Beppo Levi) if Xn % X a.s. then EŒXn jD � % EŒX jD � a.s.
b) (Fatou) If limn!1 Xn D X and for every n Xn � Z for some integrable r.v.

Z then

EŒX jD � � lim
n!1

EŒXn jD � a.s.

c) (Lebesgue) If limn!1 Xn D X and for every n jXnj � Z for some integrable
r.v. Z then

lim
n!1 EŒXn jD � D EŒX jD � a.s.

(continued)
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Proposition 4.2 (continued)
d) (Jensen’s inequality) If˚ is a convex lower semi-continuous function R !

R [ fC1g then ˚.Y/ is also l.s.i. and

EŒ˚.Y/jD � � ˚
�
EŒY jD �� a.s.

Proof

a) As .Xn/n is a.s. increasing, the same is true for the sequence .EŒXn jD �/n by
Proposition 4.1 b); hence the limit limn!1 EŒXn jD � exists a.s. Let us set Z WD
limn!1 EŒXn jD �. By Beppo Levi’s theorem applied twice we have, for every
D 2 D ,

EŒZ1D� D E
�

lim
n!1 EŒXn jD �1D


 D lim
n!1 EŒEŒXn jD �1D� D lim

n!1 EŒXn1D� D EŒX1D� ;

hence Z D EŒX jD � a.s.
b) If Yn D infk�n Xk then

lim
n!1 Yn D lim

n!1
Xn D X :

Moreover, .Yn/n is increasing and Yn � Xn. We can therefore apply a) and obtain

EŒX jD � D lim
n!1 EŒYn jD � � lim

n!1
EŒXn jD � :

c) Immediate consequence of b), applied first to Xn and then to �Xn.
d) The proof is identical to the proof of the usual Jensen’s inequality: recall that a

convex l.s.c. function˚ is equal to the supremum of all the affine linear functions
that are bounded above by ˚ . If f .x/ D ax C b is an affine function minorizing
˚ , then

EŒ˚.X/jD � � EŒ f .X/jD � D f
�
EŒX jD ��:

Then just take the upper bound in f in the previous inequality among all the affine
functions minorizing ˚ . ut

Sometimes we shall write P.AjD/ instead of EŒ1A jD � and shall speak of the
conditional probability of A given D .



4.2 Conditional expectations 91

Remark 4.3 It is immediate that, if X D X0 a.s., then EŒX jD � D EŒX0 jD � a.s.
Actually, if Z is a D-measurable r.v. such that EŒZ1D� D EŒX1D� for every
D 2 D , then also EŒZ1D� D EŒX01D� for every D 2 D . The conditional
expectation is therefore defined on equivalence classes of r.v.’s.

Let us investigate the action of the conditional expectation on Lp spaces.
We must not forget that Lp is a space of equivalence classes of r.v.’s, not of
r.v.’s. Taking care of this fact, Jensen’s inequality (Proposition 4.2 d)), applied
to the convex function x 7! jxjp with p � 1, gives jEŒX jD �jp � EŒjXjp jD �, so
that

E
�ˇˇEŒX jD �ˇˇp
 � E

�
EŒjXjp jD/
 D EŒjXjp� : (4.6)

The conditional expectation is therefore a continuous linear operator Lp !
Lp; p � 1; moreover, it has norm � 1, i.e. it is a contraction. The image
of Lp through the operator X 7! EŒX jD � is the subspace of Lp, which we
shall denote by Lp.D/, that is formed by the equivalence classes of r.v.’s that
contain at least one D-measurable representative. In particular, since p � 1,
by (4.6)

E
�ˇˇEŒXn jD � � EŒX jD �ˇˇp
 D E

�ˇˇEŒXn � X jD �ˇˇp
 � E
�ˇˇXn � X

ˇ
ˇp
 ;

we have that Xn
Lp

!
n!1 X implies EŒXn jD � Lp

!
n!1 EŒX jD �.

The case L2 deserves particular attention. If X 2 L2, we have for every
bounded D-measurable r.v. W,

E
�
.X � EŒX jD �/W
 D EŒXW� � E

�
EŒX jD �W
 D 0 : (4.7)

As bounded r.v.’s are dense in L2, the relation EŒ.X � EŒX jD �/W� D 0 also
holds for every r.v. W 2 L2.D/. In other words, X � EŒX jD � is orthogonal to
L2.D/, i.e. EŒX jD � is the orthogonal projection of X on L2.D/. In particular,
this implies that

EŒX jD � is the element of L2.D/ that minimizes the L2 distance from X.

If for simplicity we set Z D EŒX jD �, then, for every W 2 L2.D/,

kX � Wk22 D EŒ.X � W/2� D EŒ.X � Z C Z � W/2�

D EŒ.X � Z/2�C 2EŒ.X � Z/.Z � W/�C EŒ.Z � W/2� :

(continued)
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Remark 4.3 (continued)
Note that EŒ.X�Z/.Z�W/� D 0 thanks to (4.7), since Z�W is D-measurable.
Hence the double product above vanishes and

kX � Wk22 D EŒ.X � Z/2�C EŒ.Z � W/2� � EŒ.X � Z/2� D kX � Zk22 ;
where the inequality is even strict, unless Z D W a.s.

Therefore, in the sense of L2, EŒX jD � is the best approximation of X by a
D-measurable r.v. (Fig. 4.1).

Fig. 4.1 The L2 distance between EŒX jD� and X is the shortest because the angle between the
segments EŒX jD� ! W and EŒX jD� ! X is 90ı

Example 4.1 If D D f˝;;g is the trivial �-algebra, then

EŒX jD � D EŒX� :

Actually, the only D-measurable r.v.’s are the constants and, if c D EŒX jD �,
then the constant c is determined by the relationship c D EŒEŒX jD �� D EŒX�.
The notion of expectation thus appears to be a particular case of conditional
expectation.

Example 4.2 Let A 2 F be an event such P.A/ > 0 and let D be the �-
algebra fA;Ac;˝;;g. Then EŒX jD �, being D-measurable, is constant on A
and on Ac. Its value, c say, on A is determined by the relation

EŒX1A� D EŒ1AEŒX jD �� D cP.A/ :

From this relation and the similar one for Ac we easily derive that

EŒX jD � D
(

1
P.A/ EŒX1A� on A
1

P.Ac/
EŒX1Ac� on Ac :

(continued)
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Example 4.2 (continued)
In particular, EŒX jD � is equal to

R
X dPA on A, where PA is the conditional

probability (4.1), and is equal to
R

X dPAc on Ac.

Example 4.3 Let B D .˝;F ; .Ft/t, .Bt/t;P/ be a Brownian motion. Then if
s � t

EŒBt jFs� D Bs a.s.

Indeed

EŒBt jFs� D EŒBt � Bs jFs�C EŒBs jFs� D EŒBt � Bs�C Bs D Bs

since Bt � Bs is independent of Fs and centered, whereas Bs is already Fs-
measurable.

The computation of a conditional expectation is an operation that we are led to
perform quite often and which, sometimes, is even the objective of the researcher.
Let us now make two remarks that can be of help towards this goal.

Remark 4.4 Sometimes one must compute the conditional expectation of a
r.v. X with respect to a �-algebra D that is obtained by adding to a �-algebra
D0 the family N of negligible events of a larger �-algebra, F for example.
It is useful to observe that

EŒX jD � D EŒX jD0� a:s:

If we denote EŒX jD0� by Y, for simplicity, then Y is a fortiori D-measurable.
Moreover, for every event of the form A \ G with A 2 D0 and G 2 N or
G D ˝ ,

EŒY1A\G� D EŒX1A\G� :

Actually, both sides vanish if G 2 N whereas they obviously coincide if
G D ˝ . As pointed out in Remark 3.1, the events of this form are stable
with respect to finite intersections and generate the �-algebra D , therefore
Y D EŒX jD � a.s.
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Let D be a �-algebra. We have seen two situations in which the computation of
EŒ�jD � is easy: if X is D-measurable then

EŒX jD � D X

whereas if it is independent of D then

EŒX jD � D EŒX� : (4.8)

The following lemma, which is quite (very!) useful, combines these two situations.

Lemma 4.1 (The freezing lemma) Let .˝;F ;P/ be a probability space
and G and D independent sub-�-algebras of F . Let X be a D-measurable
r.v. taking values in the measurable space .E;E / and  W E � ˝ ! R an
E ˝ G -measurable function such that ! 7!  .X.!/; !/ is integrable. Then

EŒ .X; �/jD � D ˚.X/ ; (4.9)

where ˚.x/ D EŒ .x; �/�.

Proof Let us assume first that  is of the form  .x; !/ D f .x/Z.!/, where Z is
G -measurable. In this case, ˚.x/ D f .x/EŒZ� and (4.9) becomes

EŒ f .X/Z jD � D f .X/EŒZ� ;

which is immediately verified. The lemma is therefore proved for all functions  of
the type described above and, of course, for their linear combinations. One obtains
the general case with the help of Theorem 1.5. ut
Lemma 4.1 allows us to easily compute the conditional expectation in many
instances. It says that you can just freeze one of the variables and compute the
expectation of the resulting expression. The following examples show typical
applications.

Example 4.4 Let B be an m-dimensional .Ft/t-Brownian motion and
f WRm ! R a bounded Borel function. Let s < t. What is the value of
EŒ f .Bt/jFs�?

We can write f .Bt/ D f ..Bt � Bs/ C Bs/: we are then in the situation of
Lemma 4.1, i.e. the computation of the conditional expectation with respect
to Fs of a function of a r.v. that is already Fs-measurable and of a r.v. that is
independent of Fs. If we define  .x; !/ D f .x C Bt.!/ � Bs.!//, then  is

(continued)
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Example 4.4 (continued)
B.Rm/˝ G -measurable with G D �.Bt � Bs/ and we have

EŒ f .Bt/jFs� D EŒ f .Bs C .Bt � Bs//jFs�

D EŒ .Bs;Bt � Bs/jFs� D ˚.Bs/ ;
(4.10)

where ˚.x/ D EŒ f .x C Bt � Bs/�. Note that the r.v. EŒ f .Bt/jFs� just obtained
turns out to be a function of Bs and is therefore �.Bs/-measurable. Hence

EŒ f .Bt/jBs�DE
�
EŒ f .Bt/jFs�jBs


 D EŒ˚.Bs/jBs� D ˚.Bs/ D EŒ f .Bt/jFs� ;

i.e. the conditional expectation knowing the position at time s is the same as
the conditional expectation knowing the entire past of the process up to time
s. We shall see later that this means that the Brownian motion is a Markov
process.

It is also possible to make explicit the function˚ : as xCBt �Bs � N.x; .t�
s/I/,

˚.x/ D EŒ f .x C Bt � Bs/� D 1

Œ2�.t � s/�m=2

Z
f .y/ exp

h
� jy � xj2
2.t � s/

i
dy :

Example 4.5 (The position of a Brownian motion at a random time) Let B
be an m-dimensional Brownian motion and � a positive r.v. independent of B.
How can we compute the law of the r.v. B�? Lemma 4.1 provides a simple
way of doing this. We assume, for simplicity, � > 0 a.s.

Let A � R
m be a Borel set. We have

P.B� 2 A/ D EŒ1A.B�/� D E
�
EŒ1A.B�/j�.�/�



:

This is a very common trick: instead of computing the expectation directly
we first compute a conditional expectation and then its expectation. In the
computation of the conditional expectation above we are in the situation of
Lemma 4.1 as B� is a function of the r.v. �, which is �.�/-measurable, and
of the Brownian motion, which is independent of �.�/. In order to apply the
freezing lemma let A 2 B.Rm/ and let us define .t; !/ D 1A.Bt.!//, so that
1A.B�/ D  .�; �/. Therefore

E
�
EŒ1A.B�/j�.�/�


 D EŒ˚.�/�

(continued)
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Example 4.5 (continued)
where

˚.t/ D EŒ .t; �/� D EŒ1A.Bt/� D 1

.2�t/m=2

Z

A
e� jxj2

2t dx :

By Fubini’s theorem and denoting the law of � by �,

P.B� 2 A/ D EŒ1A.B�/� D EŒ˚.�/� D
Z C1

0

˚.t/ d�.t/

D
Z C1

0

d�.t/
Z

A

1

.2�t/m=2
e� jxj2

2t dx

D
Z

A
dx
Z C1

0

1

.2�t/m=2
e� jxj2

2t d�.t/
„ ƒ‚ …

WDg.x/

(4.11)

so that the density g of B� is obtained by computing the integral.
One could also compute the characteristic function of B� in quite a similar

way: if  .t; !/ D eih
;Bt.!/i, we can write

EŒeih
;B� i� D E
�
EŒ .�; !/j�.�/�
 D EŒ˚.�/�

where now ˚.�/ D EŒ .t; !/� D EŒeih
;Bti� D e� t
2 j
 j2 . Therefore

EŒeih
;B� i� D
Z C1

0

e� t
2

j
 j2 d�.t/ : (4.12)

In order to determine the law of B� we can therefore choose whether to
compute the density using (4.11) or the characteristic function using (4.12),
according to the difficulty of the computation of the corresponding integral.
Exercises 4.6 and 4.8 give some important examples of the application of this
technique.

Remark 4.5 Sometimes we are confronted with the computation of some-
thing of the kind

E
h Z T

0

Xt dt
ˇ
ˇD
i
; (4.13)

where X is some integrable measurable process and we are tempted to write

E
h Z T

0

Xt dt
ˇ
ˇD
i

D
Z T

0

EŒXt jD � dt : (4.14)

(continued)
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Remark 4.5 (continued)
Is this correct? It is immediate that if W is a bounded D-measurable r.v. then

E
h
W
Z T

0

Xt dt
i

D
Z T

0

EŒWXt� dt D
Z T

0

E
�
WEŒXt jD �



dt

D E
h
W
Z T

0

EŒXt jD � dt
i
:

There are, however, a couple of issues to be fixed. The first is that the quantity
EŒXt jD � is, for every t, defined only a.s. and we do not know whether it has a
version such that t 7! EŒXt jD � is integrable.

The second is that we must also prove that the r.v.

Z D
Z T

0

EŒXt jD � dt (4.15)

is actually D-measurable.
In practice, without looking for a general statement, these question are

easily handled: very often we shall see that t 7! EŒXt jD � has a continuous
version so that the integral in (4.15) is well defined. In this case, the r.v. Z
of (4.15) is also D-measurable, as it is the limit of Riemann sums of the form

X
EŒXti jD �.tiC1 � ti/ ;

which are certainly D-measurable.

Example 4.6 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. Com-
pute, for s � t,

E
h Z t

0

Bu du
ˇ
ˇ
ˇFs

i
:

We have EŒBu jFs� D Bs if u � s and EŒBu jFs� D Bu if u � s (as Bu is then
already Fs-measurable), i.e.

EŒBu jFs� D Bs^u :

This is a continuous process, so that we can apply formula (4.14), which gives

E
h Z t

0

Bu du
ˇ
ˇ
ˇFs

i
D
Z t

0

EŒBu jFs� du D
Z t

0

Bs^u du D
Z s

0

Bu du C .t � s/Bs :
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4.3 Conditional laws

At the beginning of this chapter we spoke of conditional distributions given the value
of some discrete r.v. Z, but then we investigated the conditional expectations, i.e. the
expectations of these conditional distributions. Let us go back now to conditional
distributions.

Let Y;X be r.v.’s with values in the measurable spaces .G;G / and .E;E /,
respectively, and let us denote by �Y the law of Y.

A family of probabilities .n.y; dx//y2G on .E;E / is a conditional law of X
given Y if,

i) For every A 2 E , the map y 7! n.y;A/ is G -measurable.
ii) For every A 2 E and B 2 G ,

P.X 2 A;Y 2 B/ D
Z

B
n.y;A/ �Y.dy/ : (4.16)

Intuitively n.y; dx/, which is a probability on .E;E /, is the law that it is suitable
to consider for the r.v. X, keeping into account the information that Y D y. (4.16)
implies that, if f W E ! R and g W G ! R are functions that are linear combinations
of indicator functions, then

EŒ f .X/ .Y/� D
Z

G

� Z

E
f .x/ n.y; dx/

�
 .y/ �Y.dy/ : (4.17)

Actually, (4.17) coincides with (4.16) if f D 1A and  D 1B. Therefore, by lin-
earity, (4.17) is true if f and  are linear combinations of indicator functions. With
the usual approximation arguments of measure theory, such as Proposition 1.11 for
example, we have that (4.17) holds for every choice of positive functions f ;  and
then, decomposing into the sum of the positive and negative parts, for every choice
of functions f ;  such that f .X/ .Y/ is integrable.

If we set g.y/ D R
E f .x/ n.y; dx/, then (4.17) can be written as

EŒ f .X/ .Y/� D
Z

G
g.y/ .y/ �Y.dy/ D EŒg.Y/ .Y/� :

A comparison with (4.4) shows that this means that .n.y; dx//y2G is a conditional
distribution of X given Y if and only if, for every bounded measurable function f
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such that f .X/ is integrable,

EŒ f .X/jY� D g.Y/ D
Z

E
f .x/ n.Y; dx/ a.s. (4.18)

i.e. EŒ f .X/jY D y� D g.y/. In particular, if X is an integrable real r.v., choosing
f .x/ D x we have

EŒX jY� D
Z

R

x n.Y; dx/ a.s. (4.19)

i.e. EŒX jY D y� D R
R

x n.y; dx/. We then find the conditional expectation as the
mean of the conditional law.

The next example highlights a general situation where the computation of the
conditional law is easy.

Example 4.7 Let X;Y be respectively R
d- and R

m-valued r.v.’s having joint
density h.x; y/ with respect to the Lebesgue measure of Rd � R

m. Let

hY.y/ D
Z

Rd
h.x; y/ dx

be the marginal density of Y (see Sect. 1.4) and let Q D fyI hY.y/ D 0g.
Obviously P.Y 2 Q/ D R

Q hY.y/ dy D 0. If we define

h.xI y/ D
8
<

:

h.x; y/

hY.y/
if y 62 Q

any arbitrary density if y 2 Q ;

(4.20)

we have immediately that n.y; dx/ D h.xI y/ dx is a conditional law of X
given Y D y: if f and g are bounded measurable functions on R

d and R
m

respectively, then

EŒ f .X/g.Y/� D
Z

Rm

Z

Rd
f .x/g.y/h.x; y/ dy dx

D
Z

Rm
g.y/hY.y/ dy

Z

Rd
f .x/h.xI y/ dx :

Therefore, for every measurable function f such that f .X/ is integrable,

EŒ f .X/jY D y� D
Z

Rm
f .x/h.xI y/ dx ;

(continued)
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Example 4.7 (continued)
which allows us to compute explicitly the conditional expectation in many
situations.

Note, however, that we have proved that the conditional expectation EŒX jY�
always exists whereas, until now at least, we know nothing about the existence of a
conditional distribution of X given Y D y.

4.4 Conditional laws of Gaussian vectors

In this section we see a particular case of computation of conditional laws (hence
also of conditional expectations) when the r.v. X (whose conditional law we want
to compute) and Y (the conditioning r.v.) are jointly Gaussian. In order to do this
it is also possible to use the procedure of Example 4.7 (taking the quotient of the
joint distribution and the marginal), but the method we are about to present is much
more convenient (besides the fact that a joint density of X and Y does not necessarily
exist).

Let X;Y be Gaussian vectors with values in R
k and R

p respectively. Let
us assume that their joint law on .RkCp;B.RkCp// is Gaussian with mean and
covariance matrix given respectively by

�
mX

mY

	

and

�
CX CXY

CYX CY

	

;

where CX ;CY are the covariance matrices of X and Y, respectively, and

CXY D EŒ.X � EŒX�/ .Y � EŒY�/�� D C�
YX

is the k � p matrix of the covariances of the components of X and of those of Y; let
us assume, moreover, that CY is strictly positive definite (and therefore invertible).

Let us look first for a k�p matrix, A, such that X �AY and Y are independent. Let
Z D X � AY. The pair .X;Y/ is Gaussian and the same is true for .Z;Y/ which is a
linear function of .X;Y/. Therefore, for the independence of Z and Y, it is sufficient
to check that Cov.Zi;Yj/ D 0 for every i D 1; : : : ; k; j D 1; : : : ; p. In order to keep
the notation simple, let us first assume that the means mX and mY vanish so that the
covariance coincides with the expectation of the product. The condition of absence
of correlation between the components of Z and Y can then be expressed as

0 D EŒZY�� D EŒ.X � AY/Y�� D EŒXY�� � AEŒYY�� D CXY � ACY :
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Therefore the required property holds with A D CXYC�1
Y . If we remove the

hypothesis that the means vanish, it suffices to repeat the same computation with
X � mX and Y � mY instead of X and Y. Thus we can write

X D AY C .X � AY/ ;

where X � AY and Y are independent. It is rather intuitive now (see Exercise 4.10
for a rigorous, albeit simple, verification) that the conditional law of X given Y D y
is the law of Ay C X � AY, since, intuitively, the knowledge of the value of Y does
not give any information on the value of X � AY. As X � AY is Gaussian, this law is
characterized by its mean

Ay C mX � AmY D mX C CXYC�1
Y .y � mY/

and covariance matrix (recall that A D CXYC�1
Y )

CX�AY D EŒ..X � mX/� A.Y � mY//..X � mX/ � A.Y � mY//
��

D CX � CXYA� � ACYX C ACYA�

D CX � CXYC�1
Y C�

XY � CXYC�1
Y C�

XY C CXYC�1
Y CYC�1

Y C�
XY

D CX � CXYC�1
Y C�

XY ;

where we took advantage of the fact that CY is symmetric and of the relation CYX D
C�

XY . In conclusion

the conditional distribution of X given Y D y is Gaussian with mean

mX C CXYC�1
Y .y � mY/ (4.21)

and covariance matrix

CX � CXYC�1
Y C�

XY : (4.22)

In particular, from (4.21), we obtain the value of the conditional expectation,
which is equal to

EŒX jY� D mX C CXYC�1
Y .Y � mY/ :

If X and Y are both one-dimensional, this formula becomes

EŒX jY� D mX C Cov.X;Y/

Var.Y/
.Y � mY/ ; (4.23)
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whereas the variance (4.22) of the conditional distribution of X given Y D y is

Var.X/� Cov.X;Y/2

Var.Y/
(4.24)

and is therefore always smaller that the variance of X. Let us point out two important
things in the previous computation:

• The conditional laws of a Gaussian vector are Gaussian themselves.
• Only the mean of the conditional law depends on the value y of the

conditioning r.v. Y. The covariance matrix of the conditional law does not
depend on the value of Y and can therefore be computed before knowing
the observation Y.

4.5 The augmented Brownian filtration

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional (continuous) Brownian
motion. Let us consider its natural filtration Gt D �.Bs; s � t/ and the aug-
mented natural filtration G D �.Gt;N / (see p. 32). We know that B is still a
Brownian motion if considered with respect to .Gt/t and also with respect to .G t/t
(Remark 3.1). In this section we show that this filtration is right-continuous and
therefore .˝;F ; .G t/t; .Bt/t;P/ is a standard Brownian motion. More precisely, let

G sC D
\

u>s

G u; G s� D
_

u<s

G u :

It is immediate that Gs� D Gs. Indeed, as B is continuous, we have

lim
u!s� Bu D Bs :

Hence the r.v. Bs, being the limit of Gs�-measurable r.v.’s, is Gs�-measurable itself,
which implies Gs � Gs�. More precisely, we have the following

Proposition 4.3 G s� D G s D G sC.
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Proof Of course, we only need to prove the rightmost equality. We shall assume for
simplicity m D 1. It is sufficient to show that for every bounded G1-measurable
r.v. W

EŒW jG sC� D EŒW jG s� a.s. (4.25)

This relation, applied to a r.v. W that is already G sC-measurable, will imply that
it is also G s-measurable and therefore that G s  G sC. As the reciprocal inclusion
is obvious, the statement will be proved. Note that here we use the fact that the �-
algebras G s contain all the negligible events of G1: thanks to this fact, if a r.v. is
a.s. equal to a r.v. which is G s-measurable, then it is G s-measurable itself.

We have by Lebesgue’s theorem, for t > s,

EŒei˛Bt jG sC� D ei˛Bs EŒei˛.Bt�Bs/ jG sC� D ei˛Bs E
h

lim
"!0

ei˛.Bt�BsC"/
ˇ
ˇG sC

i

D ei˛Bs lim
"!0

EŒei˛.Bt�BsC"/ jG sC� ;

as ei˛.Bt�BsC"/ ! ei˛.Bt�Bs/ as " ! 0 and these r.v.’s are bounded by 1. As, for " > 0,
Bt � BsC" is independent of GsC" and a fortiori of GsC,

EŒei˛Bt jG sC� D ei˛Bs lim
"!0

EŒei˛.Bt�BsC"/ jG sC� D ei˛Bs lim
"!0

EŒei˛.Bt�BsC"/�

D ei˛Bs lim
"!0

e� 1
2 ˛

2.t�s�"/ D ei˛Bs e� 1
2 ˛

2.t�s/ :

Hence, the right-hand side above being Gs-measurable, we have, for t 2 R
C, ˛ 2 R,

EŒei˛Bt jG sC� D EŒei˛Bt jG s� a.s. (4.26)

(if t � s this relation is obvious).
We now prove that (4.26) implies that (4.25) holds for every bounded G1-

measurable r.v. W. Let us denote by H the vector space of the real r.v.’s Z such that
E.Z jG sC� D EŒZ jG s� a.s. We have seen that H contains the linear combinations
of r.v.’s of the form <ei˛Bt and =ei˛Bt , t 2 R

C, which is a subspace stable under
multiplication; it also contains the r.v.’s that vanish a.s., since for such r.v.’s both
EŒZ jG sC� and EŒZ jG s� vanish a.s. and are G t-measurable for every t, as the �-
algebras G t contain all negligible events.

Hence H satisfies the hypotheses of Theorem 1.5 and therefore contains every
bounded r.v. that is measurable with respect to the smallest �-algebra, A , generated
by the r.v.’s ei˛Bt , ˛ 2 R, t 2 R

C and by the negligible events of F . But, as

Bt D lim
˛!0

ei˛Bt � e�i˛Bt

2i˛
;
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the r.v.’s Bt are A -measurable and thus A  G t for every t � 0, hence A  G1,
which concludes the proof. ut

Corollary 4.1 B D .˝;F ; .G t/t; .Bt/t;P/ is a standard Brownian motion.

Exercises

4.1 (p. 474) Let X be a real r.v. defined on a probability space .˝;F ;P/ and
G � F a sub-�-algebra. Let D � F be another �-algebra independent of X and
independent of G .

a) Is it true that

EŒX jG _ D � D EŒX jG � ‹ (4.27)

b) Show that if D is independent of �.X/ _ G , then (4.27) is true.

Use the criterion of Remark 4.2.

4.2 (p. 475) On .˝;F ;P/ let G � F be a sub-�-algebra and Y a r.v. independent
of G . Show that Y cannot be G -measurable unless it is a.s. constant.

4.3 (p. 476) Let P and Q be probabilities on .˝;F / and let us assume that Q
has a density, Z, with respect to P, i.e. Q.A/ D E.1AZ/ for every A 2 F . Let
X W .˝;F / ! .E;E / be a r.v. and let �P D X.P/, �Q D X.Q/ be the laws of X
with respect to P and Q, respectively. Prove that �P 	 �Q and that d�Q

d�P
D f , where

f .x/ D EŒZ jX D x� (E denotes the expectation with respect to P).

4.4 (p. 476) (Conditioning under a change of probability) Let Z be a real positive
r.v. defined on .˝;F ;P/ and G a sub-�-algebra of F .

a) Prove that, a.s., fZ D 0g  fEŒZ jG � D 0g (i.e. by conditioning the set of zeros
of a positive r.v. shrinks). Prove that for every r.v. Y such that YZ is integrable,

EŒZY jG � D EŒZY jG �1fE.Z jG />0g a.s. (4.28)

b) Let us assume, moreover, that EŒZ� D 1. Let Q be the probability on .˝;F /

having density Z with respect to P and let EQ denote the expectation with respect
to Q. Show that EŒZ jG � > 0 Q-a.s. (E still denotes the expectation with respect
to P). Show that, if Y is Q-integrable,

EQŒY jG � D EŒYZ jG �
EŒZ jG � Q�a:s: (4.29)
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a) Try assuming Y � 0 first.

4.5 (p. 477) Let D � F be a sub-�-algebra and X an m-dimensional r.v. such that
for every 	 2 R

m

EŒeih	;Xi jD � D EŒeih	;Xi� a.s.

Then X is independent of D .

4.6 (p. 477) Let B be an m-dimensional Brownian motion and � an exponential r.v.
with parameter 	 and independent of B.

a) Compute the characteristic function of B� (the position of the Brownian motion
at the random time �/.

b1) Let X be a real r.v. with a Laplace density with parameter �, i.e. with density

fX.x/ D �

2
e��jxj :

Compute the characteristic function of X.
b2) What is the law of B� for m D 1?

4.7 (p. 478) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let � W
˝ ! R

C be a positive r.v. (not necessarily a stopping time of .Ft/t) independent
of B.

Prove that Xt D B�Ct � B� is a Brownian motion and specify with respect to
which filtration.

4.8 (p. 478) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a two-dimensional Brownian
motion. Let a > 0 and let � D infftI B2.t/ D ag be the passage time of B2 at
a, which is also the entrance time of B in the line y D a. Recall (Sect. 3.6) that
� < C1 a.s.

a) Show that the �-algebras �.�/ and G1 D �.B1.u/; u � 0/ are independent.
b) Compute the law of B1.�/ (i.e. the law of the abscissa of B at the time it reaches

the line y D a).

b) Recall Example 4.5. The law of � is computed in Exercise 3.20. . .

4.9 (p. 479) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. Compute

E
� Z t

s
B2u du

ˇ
ˇFs

�
and E

� Z t

s
B2u dujBs

�
:

4.10 (p. 479) Let .E;E /, .G;G / be measurable spaces, X an E-valued r.v. such
that

X D �.Y/C Z ;
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where Y and Z are independent r.v.’s with values respectively in E and G and where
� W G ! E is measurable.

Show that the conditional law of X given Y D y is the law of Z C �.y/.

4.11 (p. 480)

a) Let X be a signal having a Gaussian N.0; 1/ law. An observer has no access to
the value of X and only knows an observation Y D X C W, where W is a noise,
independent of X and N.0; �2/-distributed. What is your estimate of the value X
of the signal knowing that Y D y?

b) The same observer, in order to improve its estimate of the signal X, decides to
take two observations Y1 D X C W1 and Y2 D X C W2, where W1 and W2 are
N.0; �2/-distributed and the three r.v.’s X;W1;W2 are independent. What is the
estimate of X now given Y1 D y1 and Y2 D y2? Compare the variance of the
conditional law of X given the observation in situations a) and b).

4.12 (p. 481)

a) Let B be a Brownian motion. What is the conditional law of .Bt1 ; : : : ;Btm/ given
B1 D y, 0 � t1 < � � � < tm < 1?

b) What is the conditional law of .Bt1 ; : : : ;Btm/ given B1 D y;Bv D x, 0 � t1 <
� � � < tm < 1 < v?

4.13 (p. 483) Let B be a Brownian motion. What is the joint law of

B1 and
Z 1

0

Bs ds ‹

Let us assume we know that
R 1
0

Bs ds D x. What is the best estimate of the position
B1 of the Brownian motion at time 1?

The joint law is Gaussian, see Exercise 3.11.

4.14 (p. 483) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and � an
N.�; �2/-distributed r.v. independent of .Bt/t. Let

Yt D �t C �Bt

and Gt D �.Ys; s � t/. Intuitively the meaning of this exercise is the following:
starting from the observation of a path Ys.!/; s � t, how can the unknown value of
�.!/ be estimated? How does this estimate behave as t ! 1? Will it converge to
�.!/?

a) Compute Cov.�;Ys/, Cov.Ys;Yt/.
b) Show that .Yt/t is a Gaussian process.
c) Prove that, for every t � 0, there exists a number 	 (depending on t) such that
� D 	Yt C Z, with Z independent of Gt.
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d) Compute EŒ�jGt� and the variance of �� EŒ�jGt�. Show that

lim
t!C1 EŒ�jGt� D � a.s.

4.15 (p. 484) Let .˝;F ; .Ft/t; .Bt/t;P/ be a natural Brownian motion and, for
0 � t � 1, let

Xt D Bt � tB1 :

The process .Xt/t, defined for 0 � t � 1, is called the Brownian bridge .

a) Show that .Xt/t is a centered Gaussian process independent of B1. Compute
E.XtXs/.

b) Show that, for s � t, the r.v.

Xt � 1 � t

1 � s
Xs

is independent of Xs.
c) Compute EŒXt jXs� and show that, with Gs D �.Xu; u � s/, for s � t

EŒXt jGs� D EŒXt jXs� :

d) Compute EŒXt jFs�. Do the �-algebras Fs and Gs coincide?
e) Compute the finite-dimensional distributions of .Xt/t (0 � t � 1) and show that

they coincide with the finite-dimensional distributions of .Bt/t conditioned given
B1 D 0.



Chapter 5
Martingales

Martingales are stochastic processes that enjoy many important, sometimes surpris-
ing, properties. When studying a process X, it is always a good idea to look for
martingales “associated” to X, in order to take advantage of these properties.

5.1 Definitions and general facts

Let T � R
C.

Definition 5.1 A real-valued process M D .˝;F ; .Ft/t2T ; .Mt/t2T ;P/ is a
martingale (resp. a supermartingale, a submartingale) if Mt is integrable for
every t 2 T and

E.Mt jFs/ D Ms .resp. � Ms;� Ms/ (5.1)

for every s � t.

When the filtration is not specified it is understood to be the natural one.

Examples 5.1

a) If T D N and .Xk/k is a sequence of independent real centered r.v.’s, and
Yn D X1 C � � � C Xn, then .Yn/n is a martingale.

Indeed let Fm D �.Y1; : : : ;Ym/ and also observe that Fm D
�.X1; : : : ;Xm/. If n > m, as we can write Yn D Ym C XmC1 C � � � C Xn

(continued)
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Examples 5.1 (continued)
and, as the r.v.’s XmC1; : : : ;Xn are centered and independent of Fm, we
have

E.Yn jFm/ D E.Ym jFm/C E.Xn C � � � C XmC1 jFm/

D Ym C E.Xn C � � � C XmC1/ D Ym :

b) Let X be an integrable r.v. and .Fn/n a filtration, then Xn D E.X jFn/ is a
martingale. Indeed if n > m, then Fm � Fn and

E.Xn jFm/ D E
�
E.X jFn/

ˇ
ˇFm


 D E.X jFm/ D Xm

thanks to Proposition 4.1 e).
c) If B D .˝;F ; .Ft/t; .Bt/t;P/ is a Brownian motion, then .Bt/t is a .Ft/t-

martingale, as we saw in Example 4.3.

It is clear that linear combinations of martingales are also martingales and linear
combinations with positive coefficients of supermartingales (resp. submartingales)
are still supermartingales (resp. submartingales). If .Mt/t is a supermartingale, then
.�Mt/t is a submartingale and vice versa.

Moreover, if M is a martingale (resp. a submartingale) and ˚ W R ! R is a
convex (resp. increasing convex) function such that ˚.Mt/ is also integrable for
every t, then .˚.Mt//t is a submartingale: it is a consequence of Jensen’s inequality,
Proposition 4.2 d). Indeed, if s � t,

EŒ˚.Mt/jFs� � ˚
�
EŒMt jFs�

� D ˚.Ms/ :

In particular, if .Mt/t is a martingale then .jMtj/t is a submartingale (with respect to
the same filtration).

We shall say that a martingale (resp. supermartingale, submartingale) .Mt/t is in
Lp; p � 1, if Mt 2 Lp for every t. We shall speak of square integrable martingales
(resp. supermatingales, submartingales) if p D 2. If .Mt/t is a martingale in Lp,
p � 1, then .jMtjp/t is a submartingale.

Note that it is not true, in general, that if M is a submartingale, then also .jMtj/t
and .M2

t /t are submartingales (even if M is square integrable): the functions x 7! jxj
and x 7! x2 are convex but not increasing. If M is square integrable .M2

t /t will,
however, be a submartingale under the additional assumption that M is positive: the
function x 7! x2 is increasing when restricted to R

C.
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5.2 Discrete time martingales

In this and in the subsequent sections we assume T D N.

A process .An/n is said to be an increasing predictable process for a filtration
.Fn/n if A0 D 0, An � AnC1 a.s. and AnC1 is Fn-measurable for every n � 0.

As Fn � FnC1, .An/n is, in particular, adapted but, intuitively, it is even a process
such that at time n we know its value at time n C 1 (which accounts for the term
“predictable”). Let .Xn/n be an .Fn/n-submartingale and .An/n the process defined
recursively as

A0 D 0; AnC1 D An C E.XnC1 jFn/ � Xn„ ƒ‚ …
�0

: (5.2)

.An/n is clearly increasing and, as AnC1 is the sum of Fn-measurable r.v.’s, by
construction it is an increasing predictable process. As AnC1 is Fn-measurable, (5.2)
can be rewritten as

E.XnC1 � AnC1 jFn/ D E.XnC1 jFn/� AnC1 D Xn � An ;

i.e. Mn D Xn � An is an .Fn/n-martingale, that is we have decomposed X into the
sum of a martingale and of an increasing predictable process.

If Xn D M0
n C A0

n were another decomposition of .Xn/n into the sum of a
martingale M0 and of an increasing predictable process A0, we would have

A0
nC1 � A0

n D XnC1 � Xn � .M0
nC1 � M0

n/ :

By conditioning with respect to Fn, we have A0
nC1 � A0

n D E.XnC1 jFn/ � Xn D
AnC1 � An; as A0 D A0

0 D 0, by recurrence it follows that A0
n D An and M0

n D Mn .
We have therefore proved that

Theorem 5.1 Every submartingale .Xn/n can be decomposed uniquely into
the sum of a martingale .Mn/n and an increasing predictable process .An/n.

This is Doob’s decomposition and the process A is the compensator of .Xn/n.
If .Mn/n is a square integrable martingale, then .M2

n/n is a submartingale. Its
compensator is called the associated increasing process of .Mn/n.
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If .Xn/n is a martingale, the same is true for the stopped process X�n D Xn^� ,
where � is a stopping time of the filtration .Fn/n. Indeed as X�nC1 D X�n on f� � ng,

X�nC1 � X�n D .X�nC1 � X�n/1f��ng C .X�nC1 � X�n /1f��nC1g D .X�nC1 � X�n/1f��nC1g

Hence, as by the definition of a stopping time f� � n C 1g D f� � ngc 2 Fn, we
have

E.X�nC1 � X�n jFn/ D EŒ.XnC1 � Xn/1f��nC1g jFn�

D 1f��nC1gE.XnC1 � Xn jFn/ D 0 :
(5.3)

Similarly it is proved that if .Xn/n is a supermartingale (resp. a submartingale) then
the stopped process .X�n/n is again a supermartingale (resp. a submartingale).

The following is the key result from which many properties of martingales
follow.

Theorem 5.2 (Stopping theorem) Let X D .˝;F ; .Fn/n; .Xn/n;P/ be a
supermartingale and �1; �2 two a.s. bounded stopping times of the filtration
.Fn/n such that �1 � �2 a.s. Then the r.v.’s X�1 ;X�2 are integrable and

E.X�2 jF�1/ � X�1 :

Proof Integrability of X�1 and X�2 is immediate, as, for i D 1; 2 and denoting by k a
number that majorizes �2, jX�i j � Pk

jD1 jXjj. Let us assume, at first, that �2 � k 2 N

and let A 2 F�1 . As A \ f�1 D jg 2 Fj, we have for j � k

EŒX�11A\f�1Djg� D EŒXj1A\f�1Djg� � EŒXk1A\f�1Djg�

and, taking the sum over j; 0 � j � k,

EŒX�11A� D
kX

jD0
EŒXj1A\f�1Djg� �

kX

jD0
EŒXk1A\f�1Djg� D EŒX�11A� :

We have therefore proved the statement if �2 is a constant stopping time. Let us now
remove this hypothesis and assume �2 � k. If we apply the result proved in the first
part of the proof to the stopped martingale .X�2n /n and to the stopping times �1 and k
we obtain

EŒX�11A� D EŒX�2�1 1A� � EŒX�2k 1A� D EŒX�21A� ;

which allows us to conclude the proof.
ut
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Thanks to Theorem 5.2 applied to X and �X we have, of course,

Corollary 5.1 If X is a martingale and �1; �2 are bounded stopping times such
that �1 � �2, then

E.X�2 jF�1 / D X�1 a:s:

Let us point out that the assumption of boundedness of the stopping times in
the two previous statements is essential and that it is easy to find counterexamples
showing that the stopping theorem does not hold under the weaker assumption that
�1 and �2 are only finite.

Remark 5.1 In particular, if X is a martingale, Corollary 5.1 applied to �2 D �

and �1 D 0 gives

EŒX� � D EŒE.X� jF0/� D EŒX0�

for every bounded stopping time � . Hence the quantity E.X� / is constant as
� ranges among the bounded stopping times. In fact this condition is also
sufficient for X to be a martingale (Exercise 5.6).

Theorem 5.3 (Maximal inequalities) Let X be a supermartingale and 	 >
0; then

	P
�

sup
0�i�k

Xi � 	
�

� E.X0/C E.X�
k / ; (5.4)

	P
�

inf
0�i�k

Xi � �	
�

� �EŒXk1finf0�i�k Xi��	g� � E.jXkj/ : (5.5)

Proof Let

�.!/ D inffnI n � k;Xn.!/ � 	g
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with the understanding that � D k if f g D ;. � is a finite stopping time and we have
X� � 	 on the event fsup0�i�k Xi � 	g. By Theorem 5.2 applied to �2 D � , �1 D 0,

E.X0/ � E.X� / D EŒX� 1fsup0�i�k Xi�	g�C EŒXk1fsup0�i�k Xi<	g�

� 	P
�

sup
1�i�k

Xi � 	
�

� E.X�
k / ;

from which we obtain (5.4). If conversely

�.!/ D inffnI n � k;Xn.!/ � �	g

and �.!/ D k if f g D ;, then � is still a bounded stopping time and, again by
Theorem 5.2,

E.Xk/ � E.X� / D EŒX�1finf0�i�k Xi��	g�C EŒXk1finf0�i�k Xi>�	g� �
� �	P

�
inf
0�i�k

Xi � �	
�

C EŒXk1finf0�i�k Xn>�	g�

from which we obtain (5.5).
ut

5.3 Discrete time martingales: a.s. convergence

One of the reasons why martingales are important is the result of this section; it
guarantees, under rather weak (and easy to check) hypotheses, that a martingale
converges a.s.

Let a < b be real numbers. We say that .Xn.!//n makes an upcrossing of the
interval Œa; b� in the time interval Œi; j� if Xi.!/ < a, Xj.!/ > b and Xm.!/ � b for
m D i C 1; : : : ; j � 1. Let

� k
a;b.!/ D number of upcrossings of .Xn.!//n�k over the interval Œa; b� :

The proof of the theorem of convergence that we have advertised is a bit technical,
but the basic idea is rather simple: in order to prove that a sequence is convergent
one first needs to prove that it does not oscillate too much. For this reason the key
estimate is the following, which states that a supermartingale cannot make too many
upcrossings.
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Proposition 5.1 If X is a supermartingale, then

.b � a/E.� k
a;b/ � EŒ.Xk � a/�� :

Proof Let us define the following sequence of stopping times

�1.!/ D inffiI i � k;Xi.!/ < ag
�2.!/ D inffiI �1.!/ < i � k;Xi.!/ > bg
: : :

�2m�1.!/ D inffiI �2m�2.!/ < i � k;Xi.!/ < ag
�2m.!/ D inffiI �2m�1.!/ < i � k;Xi.!/ > bg

with the understanding that �i D k if f g D ;. Let

˝2m D f�2m � k;X�2m > bg D f� k
a;b � mg ;

˝2m�1 D f� k
a;b � m � 1;X�2m�1 < ag :

It is immediate that˝i 2 F�i , as �i and X�i are F�i -measurable. Moreover, X�2m�1 <

a on˝2m�1 and X�2m > b on˝2m. By Theorem 5.2, applied to the bounded stopping
times �2m�1 and �2m,

0 �
Z

˝2m�1

.X�2m�1 � a/ dP �
Z

˝2m�1

.X�2m � a/ dP

� .b � a/ P.˝2m/C
Z

˝2m�1n˝2m

.Xk � a/ dP ;

where we take advantage of the fact that �2m D k on˝2m�1 n˝2m and that X�2m > b
on ˝2m. Therefore

.b � a/P.˝2m/ D .b � a/P.� k
a;b � m/ �

Z

˝2m�1n˝2m

.Xk � a/�dP : (5.6)

Let us recall that (Exercise 1.3)

E.� k
a;b/ D

1X

mD1
P.� k

a;b � m/ :
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As the events ˝2m�1 n ˝2m are pairwise disjoint, taking the sum in m in (5.6) we
have

.b � a/E.� k
a;b/ D .b � a/

1X

mD1
P.� k

a;b � m/ � EŒ.Xk � a/�� :

ut

Theorem 5.4 Let X be a supermartingale such that

sup
n�0

E.X�
n / < C1 : (5.7)

Then it converges a.s. to a finite limit.

Proof For fixed a < b let us denote by �a;b.!/ the number of upcrossings of the
path .Xn.!//n over the interval Œa; b�. As .Xn � a/� � aC C X�

n , by Proposition 5.1,

E.�a;b/ D lim
k!1 E.� k

a;b/ � 1

b � a
sup
n�0

EŒ.Xn � a/��

� 1

b � a

�
aC C sup

n�0
E.X�

n /
�
< C1 :

(5.8)

In particular, �a;b < C1 a.s., i.e. �a;b < C1 outside a negligible event Na;b;
considering the union of these negligible events Na;b for every possible a; b 2 Q

with a < b, we can assume that outside a negligible event N we have �a;b < C1
for every a, b 2 R.

Let us prove that if ! … N then the sequence .Xn.!//n necessarily has a limit.
Indeed, if this was not the case, let a D limn!1 Xn.!/ < limn!1 Xn.!/ D b. This
implies that .Xn.!//n is close to both a and b infinitely many times. Therefore if
˛; ˇ are such that a < ˛ < ˇ < b we would have necessarily �˛;ˇ.!/ D C1,
which is not possible outside N.

The limit is, moreover, finite. In fact from (5.8)

lim
b!C1 E.�a;b/ D 0

but �a;b.!/ is a non-increasing function of b and therefore

lim
b!C1 �a;b.!/ D 0 a.s.
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As �a;b takes only integer values, �a;b.!/ D 0 for large b and .Xn.!//n is therefore
bounded above a.s. Similarly one sees that it is bounded below.

ut
In particular,

Corollary 5.2 Let X be a positive supermartingale. Then the limit

lim
n!1 Xn

exists a.s. and is finite.

Example 5.1 Let .Zn/n be a sequence of i.i.d. r.v.’s taking the values ˙1 with
probability 1

2
and let X0 D 0 and Xn D Z1 C � � � C Zn for n � 1. Let a; b

be positive integers and let � D inffnI Xn � b or Xn � �ag, the exit time of
X from the interval � � a; bŒ. Is � < C1 with probability 1? In this case we
can define the r.v. X� , which is the position of X when it leaves the interval
� � a; bŒ. Of course, X� can only take the values �a or b. What is the value of
P.X� D b/?

We know (as in Example 5.1 a)) that X is a martingale. Also .Xn^� /n is
a martingale, which is moreover bounded as it can take only values that are
� �a and � b.

By Theorem 5.4 the limit limn!1 Xn^� exists and is finite. This implies
that � < C1 a.s.: as at every iteration X makes steps of size 1 to the right
or to the left, on � D C1 we have jX.nC1/^� � Xn^� j D 1, so that .Xn^� /n
cannot be a Cauchy sequence.

Therefore necessarily � < C1 and the r.v. X� is well defined. In order
to compute P.X� D b/, let us assume for a moment that we can apply
Theorem 5.2, the stopping theorem, to the stopping times �2 D � and �1 D 0

(we cannot because � is finite but not bounded), then we would have

0 D EŒX0� D EŒX� � : (5.9)

From this relation, as P.X� D �a/ D 1 � P.X� D b/, we obtain

0 D EŒX� � D bP.X� D b/� aP.X� D �a/ D bP.X� D b/� a.1� P.X� D b//

i.e.

P.X� D b/ D a

a C b
�

(continued)
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Example 5.1 (continued)
The problem is therefore solved if (5.9) is satisfied. Let us prove it: for every
n the stopping time � ^ n is bounded, therefore the stopping theorem gives

0 D EŒX�^n� :

Now observe that limn!1 X�^n D X� and that, as �a � X�^n � b, the
sequence .X�^n/n is bounded, so that we can apply Lebesgue’s theorem and
obtain (5.9).

This example shows a typical application of the stopping theorem in order
to obtain the distribution of a process stopped at some stopping time, and also
how to apply the stopping theorem to stopping times that are not bounded:
just apply the stopping theorem to the stopping times � ^ n, that are bounded,
and then pass to the limit using Lebesgue’s theorem as in this example or
some other statement, such as Beppo Levi’s theorem, in order to pass to the
limit.

Remark 5.2 Condition (5.7) for a supermartingale is equivalent to requiring
that X is bounded in L1. Indeed, obviously,

X�
k � jXkj

so that, if supk EŒjXkj� < C1, then also (5.7) holds. Conversely, note that

jXkj D Xk C 2X�
k ;

hence

EŒjXkj� D EŒXk�C 2EŒX�
k � � EŒX0�C 2EŒX�

k � ;

so that (5.7) implies boundedness in L1.

5.4 Doob’s inequality; Lp convergence, the p > 1 case

We say that a martingale M is bounded in Lp if

sup
n

E
�jMnjp



< C1 :
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Theorem 5.5 (Doob’s inequality) Let M D .˝;F ; .Fn/n; .Mn/n;P/ be a
martingale bounded in Lp with p > 1. Then if M� D supn jMnj, M� 2 Lp and

kM�kp � q sup
n

kMnkp ; (5.10)

where q D p
p�1 is the exponent conjugate to p.

Theorem 5.5 is a consequence of the following result, applied to the positive
submartingale .jMnj/n.

Lemma 5.1 If X is a positive submartingale, then for every p > 1 and n 2 N

E
�

max
0�i�n

Xp
i

�
�
� p

p � 1
�p

E.Xp
n/ :

Proof Let Y D max1�i�n Xi and, for 	 > 0,

�	.!/ D inffiI 0 � i � n;Xi.!/ > 	g

and �	.!/ D n C 1 if f g D ;. Then
Pn

kD1 1f�	Dkg/ D 1fY>	g and, for every ˛ > 0,

Yp D p
Z Y

0

	p�1 d	 D p
Z C1

0

	p�11fY>	g d	

D p
Z C1

0

	p�1
nX

kD1
1f�	Dkg d	 :

(5.11)

Moreover, if k � n, as Xk � 	 on f�	 D kg, we have 	1f�	Dkg � Xk1f�	Dkg and

	p�1
nX

kD1
1f�	Dkg � 	p�2

nX

kD1
Xk1f�	Dkg : (5.12)

As X is a submartingale and 1f�	Dkg is Fk-measurable,

E.Xn1f�	Dkg jFk/ D 1f�	DkgE.Xn jFk/ � Xk1f�	Dkg

and, combining this relation with (5.12), we find

E
h
	p�1

nX

kD1
1f�	Dkg

i
� E

h
	p�2

nX

kD1
1f�	DkgXk

i
� E

h
	˛�2Xn

nX

kD1
1f�	Dkg

i
:
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Thanks to this inequality, if we take the expectation of both members in (5.11),

1

p
EŒYp� � E

h
Xn

Z C1

0

	p�2
nX

kD1
1f�	Dkg d	

„ ƒ‚ …
D 1

p�1 Yp�1

i
D 1

p � 1
EŒXnYp�1� :

Now by Hölder’s inequality (recall that we assume p > 1)

EŒYp� � p

p � 1
EŒYp�. p�1/=p EŒXp

n �
1=p :

As we know that E.Yp/ < C1 (Y is the maximum of a finite number of r.v.’s of
Lp), we can divide both terms by EŒYp�. p�1/=p, which gives

EŒYp�1=p � p

p � 1
EŒXp

n �
1=p ;

from which the statement follows. ut
Proof of Theorem 5.5 Lemma 5.1 applied to the submartingale Xi D jMij gives the
inequality

�
�
� max
0�i�n

jMij
�
�
�

p
� qkMnkp D q max

k�n
kMkkp ;

where we used the fact that k 7! kMkkp is increasing as .jMnjp/n is a submartingale.
Doob’s inequality now follows by taking the limit as n ! 1 and using Beppo
Levi’s theorem. ut

Thanks to Doob’s inequality (5.10), for p > 1, the behavior of a martingale
bounded in Lp is very nice and simple.

Theorem 5.6 If p > 1 a martingale is bounded in Lp if and only if it
converges a.s. and in Lp.

Proof It is immediate that a martingale M that converges in Lp is also bounded in
Lp.

Conversely, if a martingale M is bounded in Lp with p > 1, then

sup
n�0

M�
n � sup

n�0
jMnj D M� :
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Since by Doob’s inequality M� 2 Lp, we have supn E.M�
n / � E.M�/ < C1, so

that the condition (5.7) of Theorem 5.4 is satisfied and M converges a.s. Moreover,
its limit M1 belongs to Lp, as obviously jM1j � M�.

Let us prove that the convergence takes place in Lp, i.e. that

lim
n!1 E

�jMn � M1jp

 D 0 :

We already know that jMn �M1jp !n!1 0 so that we only need to find a bound in
order to apply Lebesgue’s theorem. Thanks to the inequality jx C yjp � 2p�1.jxjp C
jyjp/, which holds for every x; y 2 R,

jMn � M1jp � 2p�1.jMnjp C jM1jp/ � 2pM�p

and as the r.v. M�p is integrable by Doob’s maximal inequality, Lebesgue’s theorem
can be applied, giving

lim
n!1 EŒjMn � M1jp� D 0 :

ut
We see in the next section that for L1-convergence of martingales things are very
different.

5.5 Uniform integrability and convergence in L1

The notion of uniform integrability is the key tool for the investigation of L1

convergence of martingales.

Definition 5.2 A family of m-dimensional r.v.’s H is said to be uniformly
integrable if

lim
c!C1 sup

Y2H
E
�jYj1fjYj>cg


 D 0 : (5.13)

The set formed by a single integrable r.v. is the simplest example of a uniformly
integrable family. We have limc!C1 jYj1fjYj>cg D 0 a.s. and, as jYj1fjYj>cg � jYj,
by Lebesgue’s theorem,

lim
c!C1 E

�jYj1fjYj>cg

 D 0 :



122 5 Martingales

Similarly H turns out to be uniformly integrable if there exists an integrable real
r.v. Z such that Z � jYj for every Y 2 H . Actually, in this case, for every Y 2 H ,
jYj1fjYj>cg � jZj1fjZj>cg so that, for every Y 2 H ,

E
�jYj1fjYj>cg


 � E
�
Z1fZ>cg



;

from which (5.13) follows. Hence the following theorem is a extension of
Lebesgue’s theorem. For a proof, as well as a proof of the following Proposition 5.3,
see J. Neveu’s book (Neveu 1964, §II-5).

Theorem 5.7 Let .Yn/n be a sequence of r.v.’s converging a.s. to Y. In order
for Y to be integrable and for the convergence to take place in L1 it is necessary
and sufficient that .Yn/n is uniformly integrable.

In any case a uniformly integrable family H is bounded in L1: let c > 0 be such
that

sup
Y2H

E
�jYj1fjYj>cg


 � 1 ;

then we have, for every Y 2 H ,

E.jYj/ D E
�jYj1fjYj>cg


C E
�jYj1fjYj�cg


 � 1C c :

The next two characterizations of uniform integrability are going to be useful.

Proposition 5.2 A family H is uniformly integrable if and only if the
following conditions are satisfied.

a) supY2H EŒjYj� < C1.
b) For every " > 0 there exists a ı" > 0 such that, for every Y 2 H ,

EŒjYj1A� � "

for every A 2 F such that P.A/ � ı".

The proof is left as an exercise or, again, see J. Neveu’s book (Neveu 1964,
Proposition II-5-2).
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Proposition 5.3 A family H � L1 is uniformly integrable if and only if
there exists a positive increasing convex function g W R

C ! R such that
limt!C1 g.t/

t D C1 and

sup
Y2H

EŒg.jYj/� < C1 :

In particular, if H is bounded in Lp for some p > 1 then it is uniformly
integrable: just apply Proposition 5.3 with g.t/ D tp.

Proposition 5.4 Let Y be an integrable r.v. Then the family fE.Y jG /gG , for
G in the class of all sub-�-algebras of F , is uniformly integrable.

Proof As the family formed by the single r.v. Y is uniformly integrable, by
Proposition 5.3 there exists a positive increasing convex function g W R

C ! R

such that limt!C1 g.t/
t D C1 and EŒg.jYj/� < C1. By Jensen’s inequality,

Proposition 4.2 d),

E
�
g.jE.Y jG /j/
 � E

�
E.g.jYj/jG /
 D EŒg.jYj/� < C1

and, again by Proposition 5.3, fE.Y jG /gG is uniformly integrable.
ut

In particular, if .Fn/n is a filtration on .˝;F ;P/ and Y 2 L1, .E.Y jFn//n is a
uniformly integrable martingale (recall Example 5.1 b)).

Theorem 5.8 Let .Mn/n be a martingale. Then the following properties are
equivalent

a) .Mn/n converges in L1;
b) .Mn/n is uniformly integrable;
c) .Mn/n is of the form Mn D E.Y jFn/ for some Y 2 L1.˝;F ;P/.

If any of these conditions is satisfied then .Mn/n also converges a.s.

Proof If .Mn/n is a uniformly integrable martingale then it is bounded in L1 and
therefore the condition (5.7), supk E.M�

k / < C1, is satisfied and M converges a.s.
to some r.v. Y. By Theorem 5.7, Y 2 L1 and the convergence takes place in L1.
Therefore (Remark 4.3), for every m,

Mm D E.Mn jFm/ !
n!1 E.Y jFm/
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in L1. This proves that b))a) and a))c). c))b) is Proposition 5.4.
ut

The following proposition identifies the limit of a uniformly integrable martingale.

Proposition 5.5 Let Y be an integrable r.v. on L1.˝;F ;P/, .Fn/n a filtration
on .˝;F / and F1 D W

n Fn, the �-algebra generated by the �-algebras
.Fn/n. Then

lim
n!1 E.Y jFn/ D E.Y jF1/ a.s. and in L1 :

Proof Let Z D limn!1 E.Y jFn/. Then Z is F1-measurable. Let us check that for
every A 2 F1

E.Z1A/ D E.Y1A/ : (5.14)

By Remark 4.2 it is sufficient to prove this relation for A in a class of events C ,
generating F1, stable with respect to finite intersections and containing ˝ . If A 2
Fm for some m then

E.Z1A/ D lim
n!1 E.E.Y jFn/1A/ D E.Y1A/

because for n � m A is Fn-measurable and E.E.Y jFn/1A/ D E.E.1AY jFn// D
E.Y1A/. (5.14) is therefore proved for A 2 C D S

n Fn. As this class is stable with
respect to finite intersections, generates F1 and contains˝ , the proof is complete.

ut

5.6 Continuous time martingales

We now extend the results of the previous sections to the continuous case, i.e. when
the time set is RC or an interval of RC, which is an assumption that we make from
now on.

The main argument is that if .Mt/t is a supermartingale of the filtration .Ft/t,
then, for every t0 < t1 < � � � < tn, .Mtk /kD0;:::;n is a (discrete time) supermartingale
of the filtration .Ftk /kD0;:::;n to which the results of the previous sections apply.
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Theorem 5.9 Let M D .˝;F ; .Ft/t; .Mt/t;P/ be a right (or left) continuous
supermartingale. Then for every T > 0, 	 > 0,

	P
�

sup
0�t�T

Mt � 	
�

� E.M0/C E.M�
T / ; (5.15)

	P
�

inf
0�t�T

Mt � �	
�

� �E
�
MT1finf0�t�T Mt��	g� � EŒjMT j� : (5.16)

Proof Let us prove (5.15). Let 0 D t0 < t1 < � � � < tn D T. Then by (5.4) applied
to the supermartingale .Mtk/kD0;:::;n

	P
�

sup
0�k�n

Mtk � 	
�

� E.M0/C E.M�
T / :

Note that the right-hand side does not depend on the choice of t1; : : : ; tn. Letting
ft0; : : : ; tng increase to Q\Œ0;T�we have that sup0�k�n Mtk increases to sup

Q\Œ0;T� Mt

and Beppo Levi’s theorem gives

	P
�

sup
Q\Œ0;T�

Mt � 	
�

� E.M0/C E.M�
T / :

The statement now follows because the paths are right (or left) continuous, so that

sup
Q\Œ0;T�

Mt D sup
Œ0;T�

Mt :

ut
The following statements can be proved with similar arguments.

Theorem 5.10 Let X be a right-continuous supermartingale. If Œa; bŒ� R
C

(b D C1 possibly) and supŒa;bŒ E.X
�
t / < C1, then limt!b� Xt exists a.s.

Theorem 5.11 A right-continuous martingale M is uniformly integrable if
and only if it is of the form Mt D E.Y jFt/, where Y 2 L1 and if and only if it
converges a.s. and in L1.
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Example 5.2 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a real Brownian motion and,
for 
 2 R, let

Xt D e
Bt� 
2

2 t :

Then X is a martingale.
Indeed, with the old trick of separating increment and actual position,

EŒXt jFs� D e� 
2

2 tEŒe
.Bt�BsCBs/ jFs� D e� 
2

2 te
BsEŒe
.Bt�Bs/ jFs�

D e� 
2

2 te
Bse

2

2 .t�s/D Xs :

This is the prototype of an important class of martingales that we shall
investigate later. Now observe that X is a positive martingale and hence, by
Theorem 5.10, the limit limt!C1 Xt exists a.s. and is finite. What is its value?
Is this martingale uniformly integrable? These questions are the object of
Exercise 5.9.

Theorem 5.12 (Doob’s inequality) Let M be a right-continuous martingale
bounded in Lp, p > 1, and let M� D supt�0 jMtj. Then M� 2 Lp and

kM�kp � q sup
t�0

kMtkp ;

where q D p
p�1 .

Theorem 5.13 (Stopping theorem) Let M be a right-continuous martingale
(resp. supermartingale, submartingale) and �1; �2 two stopping times with
�1 � �2. Then if �2 is bounded a.s.

E.M�2 jF�1 / D M�1 .resp. �;�/ : (5.17)

Proof Let us assume first that M is a martingale. Let b > 0 and let � be a stopping
time taking only finitely many values t1 < t2 < � � � < tm and bounded above
by b. Then by Theorem 5.2, applied to the discrete time martingale .Mtk /kD0;:::;m
with respect to the filtration .Ftk /kD0;:::;m, we have EŒMb jF� � D M� and by
Proposition 5.4 the r.v.’s .M� /� , for � ranging over the set of stopping times taking
only finitely many values bounded above by b, is a uniformly integrable family.
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Let now .�1n /n, .�2n /n be sequences of stopping times taking only finitely many
values and decreasing to �1 and �2, respectively, and such that �2n � �1n for every n
as in Lemma 3.3. By Theorem 5.2, applied to the martingale .Mtk /kD0;:::;m, where
t0 < t1 < � � � < tm are the possible values of the two stopping times �1; �2,

EŒM�2n
jF�1n

� D M�1n
:

Conditioning both sides with respect to F�1 , as F�1 � F�1n
,

EŒM�2n
jF�1 � D EŒM�1n

jF�1 � : (5.18)

Since n ! 1, M�1n
! M�1 and M�2n

! M�2 (the paths are right-continuous) and
the convergence also takes place in L1, .M�1n

/n, .M�2n
/n being uniformly integrable.

Therefore one can take the limit in (5.18) leading to (5.17).
Assume now that M is a supermartingale. A repetition of the argument as above

brings us to (5.18) with D replaced by �, i.e.

EŒM�2n
jF�1 � � EŒM�1n

jF�1 � :

Now the fact that .M�1n
/n and .M�2n

/n are uniformly integrable is trickier and follows
from the next Lemma 5.2 applied to Hn D F� i

n
and Zn D M� i

n
, observing that the

stopping theorem for discrete time supermartingales ensures the relation M� i
nC1

�
EŒM� i

n
jF� i

nC1
�. The proof for the case of a submartingale is similar.

ut

Lemma 5.2 Let .Zn/n be a sequence of integrable r.v.’s, .Hn/n a decreasing
sequence of �-algebras, i.e. such that HnC1 � Hn for every n D 0; 1; : : : ,
with the property that Zn is Hn-measurable and ZnC1 � EŒZn jHnC1�. Then, if
supn EŒZn� D ` < C1, .Zn/n is uniformly integrable.

Proof Let " > 0. We must prove that, at least for large n, there exists a c > 0 such
that EŒjZnj1fjZnj�cg� � ". As the sequence of the expectations .EŒZn�/n is increasing
to ` there exists a k such that EŒZk� � ` � ". If n � k we obtain for every A 2 Hn

EŒZk1A� D EŒE.Zk1A jHn/� D EŒ1AE.Zk jHn/� � EŒZn1A� ;

hence

EŒZk1fZn<cg� � EŒZn1fZn<cg� ;

EŒZk1fZn��cg� � EŒZn1fZn��cg� :
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Now, for every n � k,

EŒjZnj1fjZnj�cg� D EŒZn1fZn�cg� � EŒZn1fZn��cg�

D EŒZn� � EŒZn1fZn<cg� � EŒZn1fZn��cg�

� ` � EŒZk1fZn<cg� � EŒZk1fZn��cg�

� "C EŒZk� � EŒZk1fZn<cg� � EŒZk1fZn��cg�

D "C EŒZk1fZn�cg� � EŒZk1fZn��cg�

D "C EŒjZkj1fjZnj�cg� :

(5.19)

Moreover, for every n,

P.jZnj � c/ � 1

c
EŒjZnj� D 1

c
.2EŒZC

n � � EŒZn�/ � 1

c
.2` � EŒZ0�/ : (5.20)

Let now ı be such that EŒZk1A� � " for every A 2 F satisfying P.A/ � ı,
as guaranteed by Proposition 5.2 (the single r.v. Zk forms a uniformly integrable
family) and let c be large enough so that P.jZnj � c/ � ı, thanks to (5.20). Then
by (5.19), for every n � k,

EŒjZnj1fjZnj�cg� � "C EŒjZkj1fjZnj�cg� � 2" ;

which is the relation we are looking for.
ut

Proposition 5.6 Let M D .˝;F ; .Ft/t; .Mt/t;P/ be a right-continuous
martingale and � a stopping time. Then .Mt^� /t is also an .Ft/t-martingale.

Proof Thanks to Exercise 5.6 we need only prove that, for every bounded stopping
time � , E.M�^� / D E.M0/. As � ^ � is also a bounded stopping time, this follows
from Theorem 5.13 applied to the two bounded stopping times �1 D 0 and �2 D
� ^ � .

ut

Example 5.3 Let B be a Brownian motion, a; b > 0 and denote by � the exit
time of B from the interval Œ�a; b�. It is immediate that � < C1 a.s., thanks
to the Iterated Logarithm Law. By continuity, the r.v. B� , i.e. the position of B
at the time at which it exits from Œ�a; b�, can only take the values �a and b.
What is the value of P.B� D �a/?

(continued)
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Example 5.3 (continued)
As B is a martingale, by the stopping theorem, Theorem 5.13, applied to

the stopping times �1 D 0, �2 D t ^ � , we have for every t > 0

0 D E.B0/ D E.Bt^� / :

Letting t ! C1 Bt^� ! B� and, by Lebesgue’s theorem (the inequalities
�a � Bt^� � b are obvious),

0 D E.B� / D �aP.B� D �a/C bP.B� D b/

D �aP.B� D �a/C b.1� P.B� D �a// D b � .a C b/P.B� D �a/

from which

P.B� D �a/ D b

a C b
; P.B� D b/ D a

a C b
�

As in Example 5.1, we have solved a problem concerning the distribution of
a process stopped at some stopping time with an application of the stopping
theorem (Theorem 5.13 in this case) to some martingale.

Here, as in Example 5.1, the process B itself is a martingale; in general,
the stopping theorem will be applied to a martingale which is a function of
the process or associated to the process in some way, as developed in the
exercises.

The hypothesis of right continuity in all these statements is not going to be
too constraining, as almost every martingale we are going to deal with will
be continuous. In a couple of situations, however, we shall need the following
result, which gives some simple hypotheses guaranteeing the existence of a right-
continuous modification. See Revuz and Yor (1999) or Karatzas and Shreve (1991)
for a proof.

Theorem 5.14 Let .˝;F ; .Ft/t; .Mt/t;P/ be a supermartingale. Let us
assume that the standard hypotheses are satisfied: the filtration .Ft/t is right-
continuous and is augmented with the negligible events of F1. Then .Mt/t
admits a right-continuous modification if and only if the map t 7! E.Mt/ is
continuous.

We have seen in Proposition 3.4 that the paths of a Brownian motion do not have
finite variation a.s. The following two statements show that this is a general property
of every continuous martingale that is square integrable.
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Theorem 5.15 Let M be a square integrable continuous martingale with
respect to a filtration .Ft/t. Then if it has finite variation, it is a.s. constant.

Proof Possibly switching to the martingale M0
t D Mt �M0, we can assume M0 D 0.

Let � D 0 < t0 < � � � < tn D t denote a subdivision of the interval Œ0; t� and let
j�j D max jtiC1 � tij. As was the case when investigating the variation of the paths
of a Brownian motion, we shall first look at the quadratic variation of the paths. Let
us assume first that M has bounded variation on the interval Œ0;T�, i.e. that

VT.!/ D sup
�

n�1X

iD0

ˇ
ˇMtiC1

.!/ � Mti .!/
ˇ
ˇ � K

for some K > 0 and for every !. Note that EŒMtiC1
Mti � D EŒE.MtiC1

jFti/Mti � D
EŒM2

ti �, so that

EŒ.MtiC1
� Mti /

2� D EŒM2
tiC1

� 2MtiC1
Mti C M2

ti � D EŒM2
tiC1

� M2
ti � :

Therefore

EŒM2
t � D E

h n�1X

iD0
.M2

tiC1
� M2

ti/
i

D E
h n�1X

iD0
.MtiC1

� Mti/
2
i
:

As

.MtiC1
� Mti/

2 D ˇ
ˇMtiC1

� Mti

ˇ
ˇ � ˇˇMtiC1

� Mti

ˇ
ˇ � ˇ

ˇMtiC1
� Mti

ˇ
ˇ � max

i�n�1
ˇ
ˇMtiC1

� Mti

ˇ
ˇ

we have

EŒM2
t � � E

h
max

0�i�n�1
ˇ
ˇMtiC1

� Mti

ˇ
ˇ

n�1X

iD0

ˇ
ˇMtiC1

� Mti

ˇ
ˇ
i

� E
�
VT max

0�i�n�1
ˇ
ˇMtiC1

� Mti

ˇ
ˇ


� KE
�

max
�

ˇ
ˇMtiC1

� Mti

ˇ
ˇ
 :

The paths of M being continuous, if .�n/n is a sequence of subdivisions such that
j�nj ! 0 then max�n jMtiC1

� Mti j ! 0 as n ! 1 and also max�n jMtiC1
� Mti j �

Vt � K. Therefore by Lebesgue’s theorem

EŒM2
t � D 0 ;

which gives Mt D 0 a.s. The time t being arbitrary, we have P.Mq D 0 for every q 2
Q/ D 1, so that, as M is assumed to be continuous, it is equal to 0 for every t a.s.
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In order to get rid of the assumption VT � K, let Vt be the variation of M up to
time t, i.e.

Vt D sup
�

n�1X

iD0
jMtiC1

� Mti j

for � ranging among the partitions of the interval Œ0; t�. The process .Vt/t is adapted
to the filtration .Ft/t, as Vt is the limit of Ft-measurable r.v.’s. Hence, for every
K > 0, �K D inf.s � 0I Vs � K/ is a stopping time. Note that .Vt/t is continuous,
which is a general property of the variation of a continuous function.

Hence .Vt^�K /t is bounded by K and is the variation of the stopped martingale
M�K

t D M�K ^t, which therefore has bounded variation. By the first part of the proof
M�K is identically zero and this entails that Mt � 0 on fVT � Kg. Now just let
K ! C1.

ut
As a consequence,

a square integrable stochastic process whose paths are differentiable or even
Lipschitz continuous cannot be a martingale.

An important question is whether Doob’s decomposition (Theorem 5.1) also holds
for time continuous submartingales. We shall just mention the following result (see
Revuz and Yor 1999, Chapter IV or Karatzas and Shreve 1991, Chapter 1 for proofs
and more details).

Theorem 5.16 Let M be a square integrable continuous martingale with
respect to a filtration .Ft/t augmented with the negligible events of F1. Then
there exists a unique increasing continuous process A such that A0 D 0 and
.M2

t � At/t is a .Ft/t-martingale. If � D f0 D t0 < t1 < � � � < tm D tg is a
partition of the interval Œ0; t� then, in probability,

At D lim
j�j!0

m�1X

kD0
jMtkC1

� Mtk j2 : (5.21)

We shall still call the process .At/t of Theorem 5.16 the associated increasing
process to the square integrable martingale M and sometimes we shall use the
notation hMi. Thus hMi is a process such that t 7! M2

t � hMit is a martingale and
Theorem 5.16 states that, if M is a square integrable continuous martingale, such a
process exists and is unique.
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Note that (5.21) implies that the increasing process associated to a square
integrable continuous martingale does not depend on the filtration: if .Mt/t is
a martingale with respect to two filtrations, then the corresponding increasing
associated processes are the same.

Remark 5.3 Under the hypotheses of Theorem 5.16, if � is a stopping time
and we consider the stopped martingale M�

t D Mt^� (which is also continuous
and square integrable), is it true, as it may appear natural, that its associated
increasing process can be obtained simply by stopping hMi?

The answer is yes: it is clear that .M�
t /
2 � hMit^� D M2

t^� � hMit^� is a
martingale, being obtained by stopping the martingale .M2

t � hMit/t. By the
uniqueness of the associated increasing process we have therefore, a.s.,

hMit^� D hM� it: (5.22)

We are not going to prove Theorem 5.16, because we will be able to explicitly
compute the associated increasing process of the martingales we are going to deal
with.

Example 5.4 If .Bt/t is a Brownian motion of the filtration .Ft/t, then we
know (Example 5.1 c)) that it is also a martingale of that filtration. Therefore
Proposition 3.4, compared with (5.21), can be rephrased by saying that the
increasing process A associated to a Brownian motion is At D t. This is
consistent with the fact that .B2t � t/t is a martingale, which is easy to verify
(see also Exercise 5.10).

There are various characterizations of Brownian motion in terms of martingales.
The following one will be very useful later.

Theorem 5.17 Let X D .˝;F ; .Ft/t; .Xt/t;P/ be an m-dimensional contin-
uous process such that X0 D 0 a.s. and that, for every 	 2 R

m,

Y	t D eih	;XtiC 1
2 j	j2 t

is an .Ft/t-martingale. Then X is an .Ft/t-Brownian motion.
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Proof The martingale relation

E
�
eih	;XtiC 1

2 j	j2 t
ˇ
ˇFs


 D E.Y	t jFs/ D Y	s D eih	;XsiC 1
2 j	j2s

implies that, for every 	 2 R
m,

E.eih	;Xt�Xsi jFs/ D e� 1
2 j	j2.t�s/ : (5.23)

Taking the expectation in (5.23) we find that the increment Xt � Xs is N.0; .t �
s/I/-distributed. Moreover, (Exercise 4.5), (5.23) implies that the r.v. Xt � Xs is
independent of Fs. Therefore a), b) and c) of Definition 3.2 are satisfied.

ut

5.7 Complements: the Laplace transform

One of the natural application of martingales appears in the computation of the
Laplace transform of stopping times or of processes stopped at some stopping time
(see Exercises 5.30, 5.31, 5.32, 5.33).

Let � be a �-finite measure on R
m. Its complex Laplace transform is the function

 � W Cm ! C
m defined as

 �.z/ D
Z

Rm
ehz;xi d�.x/ (5.24)

for every z 2 C
m such that

Z

Rm
jehz;xij d�.x/ < C1 : (5.25)

The domain of the Laplace transform, denoted D�, is the set of the z 2 C
m for

which (5.25) is satisfied (and therefore for which the Laplace transform is defined).
Recall that ehz;xi D e<hz;xi.cos.=hz; xi/C i sin.=hz; xi/ so that jehz;xij D e<hz;xi.

If � has density f with respect to Lebesgue measure then, of course,

 �.z/ D
Z

Rm
ehz;xif .x/ dx

and we shall refer to it indifferently as the Laplace transform of � or of f . If X is an
m-dimensional r.v., the Laplace transform of its law �X is, of course,

 �X .z/ D EŒehz;Xi� ;

thanks to the integration rule with respect to an image law, Proposition 1.1.
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In this section we recall some useful properties of the Laplace transform. We
shall skip the proofs, in order to enhance instead consequences and applications.
We shall assume m D 1, for simplicity. The passage to the case m � 2 will be rather
obvious.

�1) There exist x1; x2 2 R [ fC1g [ f�1g; x1 � 0 � x2, (the convergence
abscissas) such that, if x1 < <z < x2,

Z

R

j eztj d�.t/ D
Z

R

et<z d�.t/ < C1

i.e. z 2 D�, whereas

Z

R

j eztj d�.t/ D C1 (5.26)

if <z < x1 or x2 < <z. In other words, the domain D� contains an open strip (the
convergence strip) of the form x1 < <z < x2, which can be empty (if x1 D x2).

Let x1 < x2 be real numbers such that

Z

R

etxi d�.t/ < C1; i D 1; 2

and let z 2 C such that x1 � <z � x2. Then t<z � tx2 if t � 0 and t<z � tx1 if
t � 0. In any case, hence et<z � etx1 C etx2 and (5.26) holds.

A typical situation appears when the measure � has a support that is contained
in R

C. In this case jeztj � 1 if <z < 0; therefore the Laplace transform is defined at
least on the whole half plane <z < 0 and in this case x1 D �1.

Of course if� is a finite measure,D� always contains the imaginary axis <z D 0.
Even in this situation it can happen that x1 D x2 D 0. Moreover, if � is a probability,
then its characteristic function b� is related to its Laplace transform by the relation
b�.t/ D  �.it/.

Example 5.5

a) Let �.dx/ D 1�0;C1Œ 	e�	x be an exponential distribution. We have

	

Z 1

0

etze�	t dt D 	

Z 1

0

e�.	�z/t dt

so that the integral converges if and only if <z < 	. Therefore the
convergence abscissas are x1 D �1, x2 D 	. For <z < 	 we have

 �.z/ D 	

Z 1

0

e�.	�z/t dt D 	

	 � z
� (5.27)

(continued)
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Example 5.5 (continued)
b) If

�.dt/ D dt

�.1C t2/

(Cauchy law) then the two convergence abscissas are both equal to 0.
Indeed

Z C1

�1
et<z

�.1C t2/
dt D C1

unless <z D 0.

�2) If the convergence abscissas are different (and therefore the convergence strip
is non-empty) then  � is a holomorphic function in the convergence strip.

This property can be easily proved in many ways. For instance, one can prove that
in the convergence strip we can take the derivative under the integral sign in (5.24).
Then if we write z D x C iy we have, using the fact that z 7! ezt is analytic and
satisfies the Cauchy-Riemann equations itself,

@

@x
< �.z/ � @

@y
= �.z/ D

Z C1

�1

� @

@x
<ezt � @

@y
=ezt

�
d�.t/ D 0 ;

@

@y
< �.z/C @

@x
= �.z/ D

Z C1

�1

� @

@y
<ezt C @

@x
=ezt

�
d�.t/ D 0 ;

so that the Cauchy–Riemann equations are satisfied by  �. In particular, inside the
convergence strip the Laplace transform is differentiable infinitely many times.

Example 5.6

a) If � � N.0; 1/, we have already computed its Laplace transform for x 2
R in Exercise 1.6, where we found  �.x/ D ex2=2. As the convergence
abscissas are x1 D �1; x2 D C1,  � is analytic on the complex plane
and by the uniqueness of the analytic extension this relation gives the value
of  � for every z 2 C:

 �.z/ D ez2=2 : (5.28)

(continued)
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Example 5.6 (continued)
The same result might have been derived immediately from the value of
the characteristic function

 �.it/ D b�.t/ D e�t2=2 (5.29)

and again using the argument of analytic extension. Note also that the
analyticity of the Laplace transform might have been used in order to
compute the characteristic function: first compute the Laplace transform
for x 2 R as in Exercise 1.6, then for every z 2 C by analytic extension
which gives the value of the characteristic function by restriction to the
imaginary axis. This is probably the most elegant way of computing the
characteristic function of a Gaussian law.

b) What is the characteristic function of a � .˛; 	/ distribution? Recall that,
for ˛; 	 > 0, this is a distribution having density

f .x/ D 	

� .˛/
x˛�1e�	x

for x > 0 and f .x/ D 0 on the negative half-line, where � is Euler’s
Gamma function, � .˛/ D R C1

0
x˛�1e�x dx. As developed above, we can

compute the Laplace transform on the real axis and derive its value on the
imaginary axis by analytic continuation. If z 2 R and z < 	. We have

 .z/ D
Z

ezxf .x/ dx D 	˛

� .˛/

Z C1

0

x˛�1e�	xezx dx

D 	˛

� .˛/

Z C1

0

x˛�1e�.	�z/x dx D 	˛

� .˛/

� .˛/

.	 � z/˛
D
� 	

	 � z

�˛
;

where the integral was computed by recognizing, but for the normalizing
constant, the expression of a � .˛; 	� z/ distribution. If z � 	 the integral
diverges, hence 	 is the convergence abscissa. The characteristic function
of f is then obtained by substituting z D i
 and is equal to


 7!
� 	

	 � i


�˛
:

The fact that inside the convergence strip is differentiable infinitely many times
and that one can differentiate under the integral sign has another consequence: if 0
belongs to the convergence strip, then

 0.0/ D
Z

x d�.x/ ;
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i.e. the derivative at 0 of the Laplace transform is equal to the expectation. Iterating
this procedure we have that if the origin belongs to the convergence strip then the
r.v. having law � has finite moments of all orders.

�3) Let us prove that if two �-finite measures �1; �2 have a Laplace transform
coinciding on an open non-empty interval �x1; x2Œ� R, then �1 D �2. Again by the
uniqueness of the analytic extension, the two Laplace transforms have a convergence
strip that contains the strip x1 < <z < x2 and coincide in this strip. Moreover, if
	 is such that x1 < 	 < x2 and we denote by e�j; j D 1; 2, the measures de�j.t/ D
e	td�j.t/, then, denoting by  their common Laplace transform,

 Q�j.z/ D
Z

R

ezte	t d�j.t/ D  .	C z/ :

The measurese�j are finite, as

e�j.R/ D  Q�j.0/ D  .	/ < C1 :

Up to a division by  .	/, we can even assume that e�1 and e�2 are probabilities.
Hence, as

be�j.t/ D  Q�j.it/ D  .	C it/ ;

they have the same characteristic function. Therefore, by 6. of Sect. 1.6, e�1 D e�2
and therefore also �1 D �2.

This proves that the Laplace transform  � characterizes the probability �.
�4) As is the case of characteristic functions, it is easy to compute the Laplace

transform of the sum of independent r.v.’s. If X and Y are independent then the
product formula for the expectation of independent r.v.’s gives for the Laplace
transform of their sum

 XCY.z/ D EŒez.XCY/� D EŒezXezY � D EŒezX�EŒezY � D  X.z/ Y .z/

provided that both expectations are finite, i.e. the Laplace transform of the sum is
equal to the product of the Laplace transforms and is defined in the intersection of
the two convergence strips.

As for the characteristic functions this formula can be used in order to determine
the distribution of X C Y.

�5) A useful property of the Laplace transform: when restricted to R
m  is

a convex function. Actually, even log is convex, from which the convexity of
 follows, as the exponential function is convex and increasing. Recall Hölder’s
inequality (1.2): if f ; g are positive functions and 0 � ˛ � 1, then

Z
f .x/˛g.x/1�˛ d�.x/ �

� Z
f .x/ d�.x/

�˛� Z
g.x/ d�.x/

�1�˛
:
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Therefore

 .˛
 C .1 � ˛/	/ D
Z

e.˛
C.1�˛/	/x d�.x/ D
Z �

e
x
�˛�

e	x
�1�˛

d�.x/

�
� Z

e
x d�.x/
�˛� Z

e	x d�.x/
�1�˛ D  .
/˛ .	/1�˛ ;

from which we obtain the convexity relation for log :

log .˛
 C .1 � ˛/	/ � ˛ log .
/C .1 � ˛/ log .	/ :

�6) Let X be a r.v. and let us assume that its Laplace transform  is finite at a
certain value 	 > 0. Then for every x > 0, by Markov’s inequality,

 .	/ D EŒe	X � � e	xP.X � x/

i.e. we have for the tail of the distribution of X

P.X � x/ �  .	/e�	x :

The finiteness of the Laplace transform therefore provides a useful information
concerning the decrease of the tail of the distribution. This gives to the convergence
abscissa some meaning: if the right abscissa, x2, is > 0, then, for every " > 0,

P.X � x/ � const e�.x2�"/x

with const possibly depending on ".

Remark 5.4 To fix the ideas, let us consider Exercise 5.33. There we prove
that if 
 < 0 then

EŒe
�a � D e�a.
p
�2�2
 ��/ ; (5.30)

where �a is the passage time at a > 0 of Xt D Bt C �t, � > 0. Let us

define g.z/ D e�a.
p
�2�2z ��/. g defines a holomorphic function also for some

values of z with <z > 0, actually on the whole half-plane <z < �2

2
. Can we

say that (5.30) also holds for 0 � 
 <
�2

2
and that �2

2
is the convergence

abscissa of the Laplace transform of �a?
The answer is yes, as we shall see now with an argument that can be

reproduced in other similar situations. This is very useful: once the value of
the Laplace transform is computed for some values of its argument, its value

(continued)
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Remark 5.4 (continued)
is immediately known wherever the argument of analytic continuation can be
applied.

Let x0 < 0. The power series development of the exponential function at
x0�a gives

ex�a D
1X

kD0

.x � x0/k

kŠ
� k

a ex0�a :

If we choose x real and such that x � x0 > 0, the series above has positive
terms and therefore can be integrated by series, which gives

EŒex�a � D
1X

kD0

.x � x0/k

kŠ
EŒ� k

a ex0�a � (5.31)

and this equality remains true also if EŒex�a � D C1 since the series on the
right-hand side has positive terms. As also g, being holomorphic, has a power
series development

g.z/ D
1X

kD0

.z � x0/k

kŠ
ak (5.32)

and the two functions g and z 7! EŒez�a � coincide on the half-plane <z < 0,
we have ak D EŒ� k

a ex0�a � and the two series, the one in (5.31) and the other
in (5.32), necessarily have the same radius of convergence. Now a classical
property of holomorphic functions is that their power series expansion
converges in every ball in which they are holomorphic. As g is holomorphic

on the half-plane <z < �2

2
, then the series in (5.31) converges for x < �2

2
,

so that �
2

2
is the convergence abscissa of the Laplace transform of �a and the

relation (5.30) also holds on <z < �2

2
.

Exercises

5.1 (p. 485) Let .˝; .Ft/t; .Xt/t;P/ be a supermartingale and assume, moreover,
that E.Xt/ D const. Then .Xt/t is a martingale. (This is a useful criterion.)

5.2 (p. 486) (Continuation of Example 5.1) Let .Zn/n be a sequence of i.i.d. r.v.’s
taking the values ˙1 with probability 1

2
and let X0 D 0 and Xn D Z1 C � � � C Zn. Let
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a; b be positive integers and let �a;b D inffnI Xn � b or Xn � �ag, the exit time of X
from the interval � � a; bŒ.

a) Compute lima!C1 P.X�a;b D b/.
b) Let �b D inffnI Xn � bg be the passage time of X at b. Deduce that �b < C1 a.s.

5.3 (p. 486) Let .Yn/n be a sequence of i.i.d. r.v.’s such that P.Yi D 1/ D p,
P.Yi D �1/ D q with q > p. Let Xn D Y1 C � � � C Yn.

a) Compute limn!1 1
n Xn and show that limn!1 Xn D �1 a.s.

b1) Show that

Zn D
�q

p

�Xn

is a martingale.
b2) As Z is positive, it converges a.s. Determine the value of limn!1 Zn.

c) Let a; b 2 N be positive numbers and let � D inffnI Xn D b or Xn D �ag. What
is the value of EŒZn^� �? And of EŒZ� �?

d) What is the value of P.X� D b/ (i.e. what is the probability for the random walk
.Xn/n to exit from the interval � � a; bŒ at b)?

5.4 (p. 487) Let .Xn/n be a sequence of independent r.v.’s on the probability space
.˝;F ;P/ with mean 0 and variance �2 and let Fn D �.Xk; k � n/. Let Mn D
X1 C � � � C Xn and let .Zn/n be a square integrable process predictable with respect
to .Fn/n (i.e. such that ZnC1 is Fn-measurable).

a) Show that

Yn D
nX

kD1
ZkXk

is a square integrable martingale.
b) Show that EŒYn� D 0 and that

EŒY2n � D �2
nX

kD1
EŒZ2k � :

What is the associated increasing process of .Mn/n? And of .Yn/n?
c) Let us assume Zk D 1

k . Is the martingale .Yn/n uniformly integrable?
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5.5 (p. 488) Let .Yn/n�1 be a sequence of independent r.v.’s such that

P.Yk D 1/ D 2�k

P.Yk D 0/ D 1 � 2 � 2�k

P.Yk D �1/ D 2�k

and let Xn D Y1 C � � � C Yn, Fn D �.Xk; k � n/.

a) Show that .Xn/n is a martingale of the filtration .Fn/n.
b) Show that .Xn/n is square integrable and compute its associated increasing

process.
c) Does the martingale .Xn/n converge a.s.? In L1? In L2?

5.6 (p. 489)

a) Let .Ft/t be a filtration. Let s � t and A 2 Fs. Prove that the r.v. � defined as

�.!/ D
(

s if ! 2 A

t if ! 2 Ac

is a stopping time.
b) Prove that an integrable right-continuous process X D .˝;F ; .Ft/t; .Xt/t;P/ is

a martingale if and only if, for every bounded .Ft/t-stopping time � , E.X� / D
E.X0/.

5.7 (p. 490) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a real Brownian motion. Prove
that, for every K 2 R,

Mt D .eBt � K/C

is an .Ft/t-submartingale.

5.8 (p. 490)

a) Let M be a positive martingale. Prove that, for s < t, fMs D 0g � fMt D 0g
a.s.

b) Let M D .Mt/t be a right-continuous martingale.
b1) Prove that if � D infftI Mt D 0g, then M� D 0 on f� < C1g.
b2) Prove that if MT > 0 a.s., then P.Mt > 0 for every t � T/ D 1.

b2) Use the stopping theorem with the stopping times T, T > 0, and T ^ � .

• Concerning b), let us point out that, in general, it is possible for a continuous
process X to have P.Xt > 0/ D 1 for every t � T and P.Xt > 0 for every t �
T/ D 0. Even if, at first sight, this seems unlikely because of continuity.
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An example is the following, which is an adaptation of Example 2.1: let
˝ D�0; 1Œ, F D B.�0; 1Œ/ and P DLebesgue measure. Define a process X
as Xt.!/ D 0 if t D !, X0.!/ D X1.!/ D 1, Xt.!/ Dlinearly interpolated
otherwise. We have, for every t, fXt > 0g D ˝ n ftg D�0; 1Œnftg, which is a set
of probability 1, but every path vanishes for one value of t. This exercise states
that this phenomenon cannot occur if, in addition, X is a martingale (Fig. 5.1).

0 1

1

Fig. 5.1 A typical graph of t 7! Xt.!/

5.9 (p. 490) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian
motion and let, for 	 2 R

m,

Xt D eh	;Bti� 1
2 j	j2 t :

a) Prove that .Xt/t is an .Ft/t-martingale.
b) As the condition of Theorem 5.12 is satisfied (X is positive) limt!C1 Xt exists

a.s. and is finite. What is its value?
c) Is X uniformly integrable?

5.10 (p. 491) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a real Brownian motion and let
Yt D B2t � t.

a) Prove that .Yt/t is an .Ft/t-martingale. Is it uniformly integrable?
b) Let � be the exit time of B from the interval � � a; bŒ. In Example 5.3 we saw

that � < C1 a.s. and computed the distribution of X� . Can you derive from a)
that EŒB2� � D EŒ� �? What is the value of EŒ� �? Is EŒ� � finite?

c) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian motion and let
Yt D jBtj2 � mt.

c1) Prove that .Yt/t is an .Ft/t-martingale.
c2) Let us denote by � the exit time of B from the ball of radius 1 of Rm. Compute

EŒ� �.
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5.11 (p. 493) Let M D .˝;F ; .Ft/t; .Mt/t;P/ be a square integrable martin-
gale.

a) Show that EŒ.Mt � Ms/
2� D EŒM2

t � M2
s �:

b) M is said to have independent increments if, for every t > s, the r.v. Mt � Ms is
independent of Fs. Prove that in this case the associated increasing process is
hMit D E.M2

t / � E.M2
0/ D EŒ.Mt � M0/

2� and is therefore deterministic.
c) Show that a Gaussian martingale has necessarily independent increments with

respect to its natural filtration.
d) Let us assume that M D .˝;F ; .Ft/t; .Mt/t;P/ has independent increments

and, moreover, is a Gaussian martingale (i.e. simultaneously a martingale and a
Gaussian process). Therefore its associated increasing process is deterministic,
thanks to b) above. Show that, for every 
 2 R,

Zt D e
Mt� 1
2 


2hMit (5.33)

is an .Ft/t-martingale.

5.12 (p. 494)

a) Let X D .˝;F ; .Fn/n; .Xn/n;P/ be a (discrete time) martingale. Let Y D .Yn/n
be a process equivalent to X (see p. 32 for the definition of equivalent processes).
Show that Y is a martingale with respect to its natural filtration.

b) Let X D .˝;F ; .Ft/t; .Xt/t;P/ be a (time continuous) martingale. Let Y D .Yt/t
be a process equivalent to X. Show that Y is a martingale with respect to its
natural filtration.

5.13 (p. 495) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion.

a) Show that

Yt D tBt �
Z t

0

Bu du

is a martingale. Recall (Exercise 3.11) that we know that .Yt/t is a Gaussian
process.

b) Prove that, if t > s, EŒ.Yt � Ys/Bu� D 0 for every u � s.

5.14 (p. 495)

a) Let .Fn/n be a filtration, X an integrable r.v. and � an a.s. finite stopping time of
.Fn/n. Let Xn D E.X jFn/; then

E.X jF� / D X� :

b) Let .Ft/t�0 be a filtration, X an integrable r.v. and � a a.s. finite stopping time.
Let .Xt/t be a right continuous process such that Xt D E.X jFt/ a.s. (thanks
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to Theorem 5.14 the process .Xt/t thus defined always has a right-continuous
modification if .Ft/t is the augmented natural filtration). Then

E.X jF� / D X� :

b) Use Lemma 3.3.

5.15 (p. 496) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and 	 2 R.
Prove that

Mt D e	tBt � 	

Z t

0

e	uBu du

is an .Ft/t-martingale with independent increments.

5.16 (p. 496) Let .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and 	; � real
numbers with � � 0. Let

Xt D e	Bt��t :

a) Compute, for 	 2 R, � > 0, the value of limt!1 E.Xt/.
b) Show that .Xt/t is

8
ˆ̂
<

ˆ̂
:

a supermartingale if 	2

2
� �

a martingale if 	2

2
D �

a submartingale if 	2

2
� � :

c) Assume � > 0. Show that there exists an ˛ > 0 such that .X˛t /t is a
supermartingale with limt!1 E.X˛t / D 0. Deduce that the limit limt!1 Xt exists
a.s. for every 	 2 R and compute it.

d) Prove that, if 	2

2
< �, then

A1 WD
Z C1

0

e	Bs��s ds < C1 a.s.

and compute E.A1/. Prove that the r.v.’s

Z C1

0

e	Bs��s ds and
1

	2

Z C1

0

eBs�	�2�s ds

have the same law.
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5.17 (p. 498) (The law of the supremum of a Brownian motion with a negative
drift)

a) Let .Mt/t be a continuous positive martingale such that limt!C1 Mt D 0 and
M0 D 1 (do you recall any examples of martingales with these properties?). For
x > 1, let �x D infftI Mt � xg its passage time at x. Show that

lim
t!C1 Mt^�x D x1f�x<C1g : (5.34)

b) Deduce from (5.34) the value of P.�x < C1/.
c) Let M� D supt�0 Mt. Compute P.M� � x/.
d) Let B be a Brownian motion and, for 
 > 0, let Xt D Bt � 
 t. Prove that

Mt D e2
Bt�2
2t is a martingale and show that the r.v. X� D supt�0 Xt is a.s.
finite and has an exponential law with parameter 2
 .

5.18 (p. 499) The aim of this exercise is the computation of the law of the
supremum of a Brownian bridge X. As seen in Exercise 4.15, this is a continuous
Gaussian process, centered and with covariance function Ks;t D s.1� t/ for s � t.

a) Show that there exists a Brownian motion B such that, for 0 � t < 1,

Xt D .1 � t/B t
1�t

: (5.35)

b) Prove that, for every a > 0,

P
�

sup
0�t�1

Xt > a
�

D P
�

sup
s>0
.Bs � as/ > a

�

and deduce the partition function and density of sup0�t�1 Xt.

b) Use Exercise 5.17 d).

5.19 (p. 499) Let B be a Brownian motion and let � D infftI Bt 62� � x; 1Œg be the
exit time of B from the interval � � x; 1Œ.

a) Compute P.B� D �x/.
b) We want to compute the distribution of the r.v.

Z D � min
0�t��1

Bt

where �1 denotes the passage time of B at 1. Z is the minimum level attained by
B before passing at 1. Compute

P.Z � x/ D P
�

min
0�t��1

Bt � �x
�
:

Does the r.v. Z have finite mathematical expectation? If so, what is its value?
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5.20 (p. 500) In this exercise we compute the exit distribution from an interval of a
Brownian motion with drift. As in Example 5.3, the problem is very simple as soon
as we find the right martingale. . . Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian
motion and, for � > 0, let Xt D Bt C �t.

a) Prove that

Mt D e�2�Xt

is an .Ft/t-martingale.
b) Let a; b > 0 and let � be the exit time of .Xt/t from the interval �� a; bŒ.

b1) Show that � < C1 a.s.
b2) What is the value of P.X� D b/? What is the value of the limit of this probability

as � ! 1?

5.21 (p. 500) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion.

a) Show that Xt D B3t � 3tBt is an .Ft/t-martingale.
b) Let a; b > 0 and let us denote by � the exit time of B from the interval � � a; bŒ.

Compute the covariance Cov.�;B� /.

Recall (Exercise 5.10) that we know that � is integrable.

5.22 (p. 501) (The product of independent martingales) Let .Mt/t, .Nt/t be
martingales on the same probability space .˝;F ;P/, with respect to the filtrations
.Mt/t, .Nt/t, respectively. Let us assume, moreover, that the filtrations .Mt/t and
.Nt/t are independent. Then the product .MtNt/t is a martingale of the filtration
Ht D Mt _ Nt.

5.23 (p. 501) Let .Mt/t be a continuous .Ft/t-martingale.

a) Prove that if .M2
t /t is also a martingale, then .Mt/t is constant.

b1) Prove that if p > 1 and .jMtjp/t is a martingale, then .jMtjp0
/t is a martingale

for every 1 � p0 � p.
b2) Prove that if p � 2 and .jMtjp/t is a martingale then .Mt/t is constant.

5.24 (p. 502) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian
motion.

a) Prove that, if i 6D j, the process .Bi.t/Bj.t//t is a .Ft/t-martingale.
b) Prove that if i1; : : : ; id, d � m are distinct indices, then t 7! Bi1 .t/ : : : Bid.t/ is a

martingale.
c) Let B be an m � m matrix Brownian motion, i.e. Bt D .Bij.t//ij, i; j D 1; : : : ;m,

where the Bij’s are independent Brownian motions. Prove that Xt D det.Bt/ is a
martingale. Prove that Yt D det.BtB�

t / is a submartingale.
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5.25 (p. 503) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion.

a) Compute, for t � T,

EŒ1fBT>0g jFt� :

b) Let us denote by ˚ the partition function of an N.0; 1/ distribution. Prove that

Mt D ˚
� Btp

T � t

�

is an .Ft/t-martingale for t < T. Is it uniformly integrable? Compute the a.s.
limit limt!T� Mt.

5.26 (p. 503) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion.

a) Show that the integral

Xt D
Z t

0

Bup
u

du

converges a.s. for every t � 0.
b) Show that .Xt/t is a Gaussian process and compute its covariance function Ks;t D

Cov.Xs;Xt/.
c) Is .Xt/t a martingale?

5.27 (p. 505) Let P, Q be probabilities on .˝;F ; .Ft/t/. Let us assume that, for
every t > 0, the restriction QjFt

of Q to Ft is absolutely continuous with respect to
the restriction of P to Ft. Let

Zt D dQjFt

dPjFt

�

a) Show that .Zt/t is a martingale.
b) Show that Zt > 0 Q-a.s. and that .Z�1

t /t is a Q-supermartingale.
c) Show that if also QjFt

	 PjFt
, then .Z�1

t /t is a Q-martingale.

Recall (Exercise 5.8) that the set of the zeros t 7! fZt D 0g is increasing.

5.28 (p. 505) Let .Xt/t be a continuous process such that Xt is square integrable
for every t. Let G D �.Xu; u � s/ and Gn D �.Xsk=2n ; k D 1; : : : ; 2n/. Let t > s.
Does the conditional expectation of Xt given Gn converge to that of Xt given G , as
n ! 1? In other words, if the process is known at the times sk=2n for k D 1; : : : ; 2n,
is it true that if n is large enough then, in order to predict the future position at time
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t, it is almost as if we had the knowledge of the whole path of the process up to time
s?

a) Show that the sequence of �-algebras .Gn/n is increasing and that their union
generates G .

b1) Let Zn D E.Xt jGn/. Show that the sequence .Zn/n converges a.s. and in L2 to
E.Xt jG /.

b2) How would the statement of b1) change if we just assumed Xt 2 L1 for every
t?

5.29 (p. 506) Let .Bt/t be an .Ft/t Brownian motion and � an integrable stopping
time for the filtration .Ft/t. We want to prove the Wald equalities: EŒB� � D 0,
EŒB2� � D EŒ� �. The situation is similar to Example 4.5 but the arguments are going
to be different as � here is not in general independent of .Bt/t.

a) Prove that, for every t � 0, EŒB�^t� D 0 and EŒB2�^t� D EŒ� ^ t�.
b) Prove that the martingale .B�^t/t is bounded in L2 and that

E
h

sup
t�0

B2�^t

i
� 4EŒ� � : (5.36)

c) Prove that EŒB� � D 0 and EŒB2� � D EŒ� �.

5.30 (p. 507) (The Laplace transform of the passage time of a Brownian motion)
Let B be a real Brownian motion, a > 0 and �a D infftI Bt � ag the passage time at
a. We know from Example 5.2 that Mt D e	Bt� 1

2 	
2t is a martingale.

a) Prove that, for 	 � 0, EŒM�a � D 1. Why does the proof not work for 	 < 0?
b) Show that the Laplace transform of �a is

 .
/ D EŒe
�a � D e�a
p�2
 (5.37)

for 
 � 0, whereas  .
/ D C1 for 
 > 0.
c) Show that �a has a law that is stable with exponent 1

2
(this was already proved in a

different manner in Exercise 3.20, where the definition of stable law is recalled).

5.31 (p. 507) Let B be a Brownian motion and, for a > 0, let us denote by � the
exit time of B from the interval Œ�a; a�. In Example 5.3 we remarked that � < C1
a.s. and we computed the distribution of X� . Show that, for 
 > 0,

EŒe�
� � D 1

cosh.a
p
2
/

�

Find the right martingale. . . Recall that B� and � are independent (Exercise 3.18). Further
properties of exit times from bounded intervals are the object of Exercises 5.32, 8.5 and 10.5.
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5.32 (p. 508) Let B be a Brownian motion with respect to a filtration .Ft/t and let
� D infftI jBtj � ag be the exit time from ��a; aŒ. In Exercise 5.31 we computed the
Laplace transform 
 7! EŒe
� � for 
 � 0. Let us investigate this Laplace transform
for 
 > 0. Is it going to be finite for some values 
 > 0?

a) Prove that, for every 	 2 R, Xt D cos.	Bt/ e
1
2 	

2t is an .Ft/t-martingale.
b) Prove that, if j	j < �

2a ,

EŒe
1
2 	

2.�^t/� � 1

cos.	a/
< C1;

and that the r.v. e
1
2 	

2� is integrable. Prove that

EŒe
� � D 1

cos.a
p
2
/

; 0 � 
 <
�2

8a2
� (5.38)

c) What is the value of E.�/? Show that � 2 Lp for every p � 0

d) Determine the spectrum of the Laplace operator 1
2

d2

dx2
on the interval � � a; aŒ,

with the Dirichlet conditions u.a/ D u.�a/ D 0, i.e. determine the numbers

 2 R such that there exists a function u not identically zero, twice differentiable
in � � a; aŒ, continuous on Œ�a; a� and such that

(
1
2
u00 D 
u on � � a; aŒ

u.�a/ D u.a/ D 0:
(5.39)

Which is the largest of these numbers? Do you notice some coincidence with the
results of b)?

Recall that if 0 < � < �
2

, then cos x � cos � > 0 for x 2 Œ��; ��. See Exercise 10.5 concerning
the relation between the convergence abscissas of the Laplace transform of the exit time and the
spectrum of the generator of the process.

5.33 (p. 510) Let .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. Let� 2 R, a > 0.
We want to investigate the probability of crossing the level a > 0 and the time
needed to do this for the process Xt D Bt C �t. For � D 0 the reflection principle
already answers this question whereas Exercise 5.17 investigates the case � < 0.
We now consider � > 0. Let � D infft � 0I Xt � ag.

a) Prove that � < C1 a.s.
b) Prove that, for every 	 2 R,

Mt D e	Xt�. 	22 C	�/t
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is an .Ft/t-martingale. What is the value of

EŒMt^� � D EŒe	Xt^��. 	22 C	�/.t^�/� ‹

c) Let 	 � 0. Show that Mt^� � e	a and that

EŒe�. 	22 C	�/� � D e�	a : (5.40)

d) Compute, for 
 > 0, EŒe�
� �. What is the value of EŒ� �?



Chapter 6
Markov Processes

In this chapter we introduce an important family of stochastic processes. Diffusions,
which are the object of our investigation in the subsequent chapters, are instances of
Markov processes.

6.1 Definitions and general facts

Let .E;E / be a measurable space.

A Markov transition function on .E;E / is a function p.s; t; x;A/, where s; t;2
R

C, s � t, x 2 E, A 2 E , such that

i) for fixed s; t;A, x 7! p.s; t; x;A/ is E -measurable;
ii) for fixed s; t; x, A 7! p.s; t; x;A/ is a probability on .E;E /;

iii) p satisfies the Chapman–Kolmogorov equation

p.s; t; x;A/ D
Z

E
p.u; t; y;A/ p.s; u; x; dy/ (6.1)

for every s � u � t.

Definition 6.1 Given on .E;E / a Markov transition function p and a prob-
ability �, an .E;E /-valued process X D .˝;F ; .Ft/t�u; .Xt/t�u;P/ is said

(continued)
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152 6 Markov Processes

Definition 6.1 (continued)
to be a Markov process associated to p, starting at time u and with initial
distribution �, if

a) Xu has law �.
b) (The Markov property) For every bounded measurable function f W E ! R

and t > s � u

E. f .Xt/jFs/ D
Z

E
f .x/ p.s; t;Xs; dx/ a.s. (6.2)

When the filtration .Ft/t is not specified it is understood, as usual, that it is the
natural filtration.

As we shall see better in the sequel, p.s; t; x;A/ represents the probability that
the process, being at position x at time s, will move to a position in the set A at
time t. The Chapman–Kolmogorov equation intuitively means that if s < u < t, the
probability of moving from position x at time s to a position in A at time t is equal
to the probability of moving to a position y at the intermediate time u and then from
y to A, integrated over all possible values of y.

Remark 6.1

a) Let us have a closer look at the Markov property: if f D 1A, A 2 E , (6.2)
becomes, for s � t,

P.Xt 2 AjFs/ D p.s; t;Xs;A/ :

Note that this conditional expectation given Fs only depends on Xs.
Therefore

P.Xt 2 AjXs/ D EŒP.Xt 2 AjFs/jXs�

D EŒ p.s; t;Xs;A/jXs� D p.s; t;Xs;A/ D P.Xt 2 AjFs/ ;
(6.3)

i.e. the conditional probability of fXt 2 Ag given Xs or given the whole past
Fs coincide. Intuitively, the knowledge of the whole path of the process
up to time s or just of its position at time s give the same information about
the future position of the process at a time t, t � s.

(continued)
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Remark 6.1 (continued)
It is important to understand this aspect of the Markov property when

modeling a random phenomenon with a Markov process. Consider, for
instance, the evolution of financial assets (stocks, bonds, options,. . . ): to
assume that, in view of predicting tomorrow’s price, the knowledge of
the prices of the previous days, knowing today’s price, does not give
any additional valuable information is certainly not correct. Consider the
importance of knowing whether or not we are in a trend of growing prices,
and that to determine this we need to know the price evolution of the last
few days. To model this kind of situation with a Markovian model may
lead to grossly wrong appreciations.

However, we shall see how to derive a non Markovian model from a
Markovian one (see Exercises 6.2 and 6.11, for example).

b) Recalling (4.18), the relation

Z

E
f .x/ p.s; t;Xs; dx/ D EŒ f .Xt/jFs� D EŒ f .Xt/jXs�

says that p.s; t; x; �/ is the conditional distribution of Xt given Xs D x. This
a useful starting point when, given a Markov process, one has to determine
the transition function.

c) For every bounded measurable function f W E ! R and for every s < t,
the map

x 7!
Z

E
f . y/ p.s; t; x; dy/ (6.4)

is measurable. Indeed i) of the definition of transition function states
that (6.4) is measurable for every f which is an indicator of a set A 2 E .
Therefore this is true for every linear combination of such indicators and
for every positive measurable function, as these are increasing limits of
linear combinations of indicators. By subtracting the positive and negative
parts, (6.4) is true for every bounded measurable function f .

d) Definition 6.1 allows to determine the finite-dimensional distributions of
a Markov process. Let f0; f1 W E ! R be Borel functions and t > u and let
us derive the joint distribution of .Xu;Xt/. As Xu has law �, with the trick
of performing an “intermediate conditioning”,

EŒ f1.Xt/f0.Xu/� D E
�

f0.Xu/EŒ f1.Xt/jFu�



D E
h

f0.Xu/

Z

E
f1.x1/ p.s; t;Xu; dx1/

i

D
Z

E
f0.x0/�.dx0/

Z

E
f1.x1/ p.s; t; x0; dx1/ :

(6.5)

(continued)
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Remark 6.1 (continued)
By induction on m we have, for every u � t1 < � � � < tm,

EŒ f0.Xu/f1.Xt1 / : : : fm.Xtm/�

D
Z

E
f0.x0/�.dx0/

Z

E
f1.x1/ p.u; t1; x0; dx1/ : : :

: : :

Z

E
fm�1.xm�1/ p.tm�2; tm�1; xm�2; dxm�1/

�
Z

E
fm.xm/p.tm�1; tm; xm�1; dxm/ :

(6.6)

The meaning of (6.6) may be difficult to decrypt at first, however it is simple:
once the rightmost integral in dxm has been computed, the result is a function
of xm�1, which is integrated in the subsequent integral giving, rise to a
function of xm�2, and so on.

Formula (6.6) states that a priori the finite-dimensional distributions of a
Markov process only depend on the initial distribution �, the starting time u
and the transition function p. In particular, two Markov processes associated
to the same transition function and having the same starting time and starting
distribution are equivalent.

Example 6.1 If E D R
m, E D B.Rm/, let

p.s; t; x;A/ D 1

Œ2�.t � s/�m=2

Z

A
exp

h
� jy � xj2
2.t � s/

i
dy : (6.7)

Then p is a Markov transition function: p.s; t; x; �/ is an N.x; .t � s/I/ law.
The Chapman–Kolmogorov equation is a consequence of the property of the
normal laws with respect to the convolution product: if A 2 B.Rm/, then

Z
p.u; t; y;A/ p.s; u; x; dy/

D
Z

1

Œ2�.u � s/�m=2
exp

h
� jy � xj2
2.u � s/

i
dy
Z

A

1

Œ2�.t � u/�m=2
exp

h
� jz � yj2
2.t � u/

i
dz

D
Z

A
dz
Z

1

Œ2�.u � s/�m=2
exp

h
� jy � xj2
2.u � s/

i

„ ƒ‚ …
f1. y/

1

Œ2�.t � u/�m=2
exp

h
� jz � yj2
2.t � u/

i

„ ƒ‚ …
f2.z�y/

dy

so that the inner integral is the convolution of the densities f1, which is
N.x; .u � s/I/, and f2 � N.0; .t � u/I/. The result, owing to well-known

(continued)
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Example 6.1 (continued)
properties of Gaussian distributions (see Sect. 1.7), is N.x; .t � s/I/, i.e.
p.s; t; x; �/. Therefore we can conclude that

Z
p.u; t; y;A/ p.s; u; x; dy/ D 1

Œ2�.t � s/�m=2

Z

A
exp

h
� jy � xj2
2.t � s/

i
dy D p.s; t; x;A/ :

In Example 4.4 we computed

EŒ f .Bt/jFs� D 1

Œ2�.t � s/�m=2

Z
f . y/ exp

h
� jy � Bsj2
2.t � s/

i
dy

D
Z

E
f .x/ p.s; t;Bs; dx/ ;

i.e. the Markov property, b) of Definition 6.1, is satisfied by Brownian motion,
with respect to the Markov transition function given by (6.7). Therefore
Brownian motion becomes our first example of Markov process. To be
precise, it is a Markov process associated to the transition function (6.7) and
starting at 0 at time 0.

Let us now prove the existence of the Markov process associated to a given
transition function and initial distribution. The idea is simple: thanks to the previous
remark we know what the finite-dimensional distributions are. We must therefore

a) check that these satisfy the coherence Condition 2.1 of Kolmogorov’s existence
Theorem 2.2 so that a stochastic process with these finite-dimensional distribu-
tions does exist;

b) prove that a stochastic process having such finite-dimensional distributions is
actually a Markov process associated to the given transition function, which
amounts to proving that it enjoys the Markov property (6.3).

Assume E to be a complete separable metric space endowed with its Borel �-
algebra B.E/ and p a Markov transition function on .E;B.E//. Let ˝ D ER

C
;

an element ! 2 ˝ is therefore a map R
C ! E. Let us define Xt W ˝ ! E as

Xt.!/ D !.t/, t � 0 and then F u
t D �.Xs; u � s � t/, F D F u1. Let us consider

the system of finite-dimensional distributions defined by (6.6). The Chapman–
Kolmogorov equation (6.1) easily implies that this system of finite-dimensional
distributions satisfies the Condition 2.1 of coherence.

Therefore there exists a unique probability P on .˝;F / such that the probabili-
ties (6.6) are the finite-dimensional distributions of .˝;F ; .F u

t /t; .Xt/t;P/. We now
have to check that this is a Markov process associated to p and with initial (i.e. at
time u) distribution �. Part a) of Definition 6.1 being immediate, we have to check
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the Markov property b), i.e. we must prove that if D 2 F u
s and f W E ! R is

bounded and measurable, then

EŒ f .Xt/1D� D E
h
1D

Z

E
f .x/ p.s; t;Xs; dx/

i
: (6.8)

It will, however, be sufficient (Remark 4.2) to prove this relation for a set D of the
form

D D fXt0 2 B0; : : : ;Xtn 2 Bng ;

where u D t0 < t1 < � � � < tn D s, since by definition the events of this form
generate F u

s , are a class that is stable with respect to finite intersections, and ˝
itself is of this form. For this choice of events the verification of (6.8) is now easy
as both sides are easily expressed in terms of finite-dimensional distributions: as
1fXtk 2Btk g D 1Bk.Xtk/, we have 1D D 1B0.Xt0 / : : : 1Bn.Xtn/ and

EŒ f .Xt/1D� D E
�
1B0.Xt0 / : : : 1Bn�1.Xtn�1 /1Bn.Xs/f .Xt/




D
Z
1B0. y0/�.dy0/

Z
1B1. y1/p.u; t1; y0; dy1/ : : :

: : :

Z
1Bn. yn/p.tn�1; s; yn�1; dyn/

Z
f . y/ p.s; t; yn; dy/

„ ƒ‚ …
WDef . yn/

D
Z
1B0. y0/�.dy0/

Z
1B1. y1/ : : :

Z
1Bn. yn/ef . yn/p.tn�1; s; yn�1; dyn/

D EŒ1B0.Xt0 / : : : 1Bn�1.Xtn�1 /1Bn.Xs/ef .Xs/� D E
�
1Def .Xs/



:

Hence (6.8) holds for every D 2 F u
s and asef .Xs/ is F u

s -measurable we have proved
that

EŒ f .Xt/jFs� Def .Xs/ D
Z

f . y/ p.s; t;Xs; dy/ :

Therefore .˝;F ; .F u
t /t�u; .Xt/t�u;P/ is a process satisfying conditions a) and b)

of Definition 6.1. The probability P just constructed depends of course, besides p,
on � and on u and will be denoted P�;u. If � D ıx we shall write Px;u instead of Pıx;u

and we shall denote by Ex;s the expectation computed with respect to Px;s.
Going back to the construction above, we have proved that, if E is a complete

separable metric space, then there exist

a) a measurable space .˝;F / endowed with a family of filtrations .F s
t /t�s, such

that F s0

t0 � F s
t if s � s0, t0 � t;
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b) a family of r.v.’s Xt W ˝ ! E such that ! 7! Xt.!/ is F s
t -measurable for every

s � t;
c) a family of probabilities .Px;s/x2E;s2RC such that Px;s is a probability on .˝;F s1/

with the properties that, for every x 2 E and s; h > 0,

Px;s.Xs D x/ D 1 (6.9)

Ex;sŒ f .XtCh/jF s
t � D

Z

E
f .z/ p.t; t C h;Xt; dz/ Px;s-a.s. (6.10)

Note that in (6.10) the value of the conditional expectation does not depend on s.

A family of processes .˝;F ; .F s
t /t�s; .Xt/t; .Px;s/x;s/ satisfying a), b), c) is

called a realization of the Markov process associated to the given transition function
p. In some sense, the realization is a unique space .˝;F / on which we consider
a family of probabilities Px;s that are the laws of the Markov processes associated
to the given transition function, only depending on the starting position and initial
time.

Let us try to familiarize ourselves with these notations. Going back to the
expression of the finite-dimensional distributions (6.6) let us observe that, if � D ıx

(i.e. if the starting distribution is concentrated at x), (6.5) with f0 � 1 gives

Ex;sŒ f .Xt/� D
Z

E
ıx.dx0/

Z

E
f .x1/p.s; t; x0; dx1/ D

Z

E
f .x1/p.s; t; x; dx1/ (6.11)

so that, with respect to Px;s, p.s; t; x; �/ is the law of Xt. If f D 1A then the previous
relation becomes

Px;s.Xt 2 A/ D p.s; t; x;A/ : (6.12)

Thanks to (6.11) the Markov property (6.10) can also be written as

Ex;sŒ f .XtCh/jF s
t � D

Z
f .z/p.t; tCh;Xt; dz/ D EXt;tŒ f .XtCh/� Px;s-a.s. ; (6.13)

for every x; s or, for f D 1A,

Px;s.XtCh 2 AjF s
t / D p.t; t C h;Xt;A/ D PXt;t.XtCh 2 A/ Px;s-a.s. (6.14)

for every x; s. The expression PXt;t.XtCh 2 A/ can initially create some confusion:
it is simply the composition of the function x 7! Px;t.XtCh 2 A/ with the r.v. Xt.
From now on in this chapter X D .˝;F ; .F s

t /t�s; .Xt/t�0; .Px;s/x;s/ will denote the
realization of a Markov process associated to the transition function p.

The Markov property, (6.10) or (6.13), allows us to compute the conditional
expectation with respect to F s

t of a r.v., f .XtCh/, that depends on the position of the
process at a fixed time t C h posterior to t. Sometimes, however, it is necessary to
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compute the conditional expectation Ex;s.Y jF s
t / for a r.v. Y that depends, possibly,

on the whole path of the process after time t.
The following proposition states that the Markov property can be extended to

cover this situation. Note that, as intuition suggests, this conditional expectation
also depends only on the position, Xt, at time t.

Let G s
t D �.Xu; s � u � t/. Intuitively, a G s1-measurable r.v. is r.v. that depends

on the behavior of the paths after time s.

Proposition 6.1 Let Y be a bounded G t1-measurable r.v. Then

Ex;s.Y jF s
t / D EXt;t.Y/ Px;s-a.s. (6.15)

Proof Let us assume first that Y is of the form f1.Xt1 / : : : fm.Xtm/, where t � t1 <
� � � < tm and f1; : : : ; fm are bounded measurable functions. If m D 1 then (6.15) is
the same as (6.13). Let us assume that (6.15) holds for Y as above and for m � 1.
Then, conditioning first with respect to F s

tm�1
,

Ex;sŒ f1.Xt1 / : : : fm.Xtm/jF s
t �

D Ex;s
�

f1.Xt1 / : : : fm�1.Xtm�1 /E
x;sŒ fm.Xtm/jF s

tm�1
�jF s

t




D Ex;s
�

f1.Xt1 / : : : fm�1.Xtm�1 /E
Xtm�1 ;tm�1 Œ fm.Xtm/�

ˇ
ˇF s

t




D Ex;sŒ f1.Xt1 / : : :
ef m�1.Xtm�1 /jF s

t � ;

whereef m�1.x/ D fm�1.x/ � Ex;tm�1 Œ fm.Xtm/�; by the induction hypothesis

Ex;sŒ f1.Xt1 / : : : fm.Xtm/jF s
t � D EXt;tŒ f1.Xt1 / : : :ef m�1.Xtm�1 /� :

However, by (6.13), EXtm�1 ;tm�1 Œ fm.Xtm/� D Ex;tŒ fm.Xtm/jF t
tm�1

� Px;t-a.s. for every
x; t so that

EXt;tŒ f1.Xt1 / : : :ef m�1.Xtm�1 /� D EXt;tŒ f1.Xt1 / : : : fm�1.Xtm�1 / � EXtm�1 ;tm�1 Œ fm.Xtm/��

D EXt;tŒ f1.Xt1 / : : : fm�1.Xtm�1 / � EXt;tŒ fm.Xtm/jF t
tm�1

��

D EXt;tŒEXt;tŒ f1.Xt1 / : : : fm�1.Xtm�1 /fm.Xtm/jF t
tm�1

��

D EXt;tŒ f1.Xt1 / : : : fm�1.Xtm�1 /fm.Xtm/� :

We obtain the general case using Theorem 1.4.
ut
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Remark 6.2 In some sense the Chapman–Kolmogorov equation follows from
the Markov property. More precisely, let X D .˝;F ; .F s

t /t�s; .Xt/t; .Px;s/x;s/

be a family of stochastic processes such that Xs D x Px;s-a.s. for every x; s and
let p.s; t; x;A/ be a function satisfying the conditions i) and ii) of the definition
of a transition function on p. 151. Then, if for every x 2 E and s � u � t,

Px;s.Xt 2 AjF s
u / D p.u; t;Xu;A/ Px;s-a.s. ;

necessarily p satisfies the Chapman–Kolmogorov equation (6.1) and X is a
realization of the Markov process associated to p.

Indeed first with u D s in the previous relation we obtain, as Xs D x
Px;s-a.s.,

Px;s.Xt 2 AjF s
s / D p.s; t;Xs;A/ D p.s; t; x;A/ Px;s-a.s.

i.e. p.s; t; x; �/ is the law of Xt with respect to Px;s. Then, if s � u � t,

p.s; t; x;A/ D Px;s.Xt 2 A/ D Ex;sŒPx;s.Xt 2 AjF s
u/�

D Ex;sŒ p.u; t;Xu;A/� D
Z

E
p.u; t; y;A/p.s; u; x; dy/ ;

which is the required Chapman–Kolmogorov relation.

The probability of making a given transition in a time span h, p.s; s C h; x;A/, in
general depends on the time s. Sometimes the transition function p depends on s and
t only as a function of t � s, so that p.s; s C h; x;A/ does not actually depend on s.
In this case, p is said to be time homogeneous and, recalling the expression of the
finite-dimensional distributions,

Ex;sŒ f1.Xt1Cs/ : : : fm.XtmCs/� D Ex;0Œ f1.Xt1 / : : : fm.Xtm/� :

In this case, as the transition p.s; sCh; x;A/ does not depend on s, in some sense the
behavior of the process is the same whatever the initial time. It is now convenient
to fix 0 as the initial time and to set p.t; x;A/ D p.0; t; x;A/, Ft D F 0

t , Px D
Px;0 and consider as a realization X D .˝;F ; .Ft/t; .Xt/t; .Px/x/. The Chapman–
Kolmogorov equation becomes, for 0 � s < t,

p.t; x;A/ D
Z

p.t � s; y;A/p.s; x; dy/

and the relations (6.12) and (6.14), for s � t, are now

Px.Xt 2 A/ D p.t; x;A/

Px.Xt 2 AjFs/ D p.t � s;Xs;A/ D PXs.Xt�s 2 A/ Px-a.s.

The transition function of Brownian motion, see Example 6.1, is time homogeneous.
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Remark 6.3 Transition functions such as that of Brownian motion, Exam-
ple 6.1, satisfy another kind of invariance: by looking back to the expression
for the transition function (6.7), by a change of variable we find that

p.t; x;A/ D p.t; 0;A � x/ :

This implies that, if .Bt/t is a Brownian motion, then .Bx
t /t, with Bx

t D x C Bt,
is a Markov process associated to the same transition function and starting at
x. Indeed, going back to (4.10),

P.Bx
t 2 AjFs/ D P.Bt 2 A � xjFs/ D p.t � s;Bs;A � x/

D p.t � s;Bs C x;A/ D p.t � s;Bx
s ;A/ :

Hence the Markov process associated to the transition function of Brownian
motion, (6.7), and starting at x has the same law as t 7! Bt C x.

6.2 The Feller and strong Markov properties

A positive r.v. � is said to be an s-stopping time if � � s and if it is a stopping
time for the filtration .F s

t /t, i.e. if f� � tg 2 F s
t for every t � s. We define

F s
� D fA 2 F s1; A \ f� � tg 2 F s

t for every tg.

Definition 6.2 We say that X is strong Markov if, for every x 2 E and A 2
B.E/, for every s � 0 and for every finite s-stopping time � ,

Px;s.XtC� 2 AjF s
� / D p.�; t C �;X� ;A/ Px;s-a.s. (6.16)

It is clear that if � � h � s then (6.16) boils down to the usual Markov
property (6.10). (6.16) is, of course, equivalent to

Ex;sŒ f .XtC� /jF s
� � D

Z

E
p.�; t C �;X� ; dy/f . y/ Px;s-a.s. (6.17)

for every bounded Borel function f , thanks to the usual arguments of approximating
positive Borel functions with increasing sequences of linear combinations of
indicator functions.
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Example 6.2 It is immediate to derive from Theorem 3.3 (the stopping
theorem for Brownian motion) that a Brownian motion is strong Markov.

Indeed, as the increment XtC� � X� is independent of F� we have, by the
freezing Lemma 4.1,

ExŒ f .XtC� /jF� � D ExŒ f .XtC� � X� C X� /jF� � D ˚.X� / ; (6.18)

where

˚.z/ D ExŒ f .XtC� � X� C z/� :

Now, as t 7! XtC� �X� is also a Brownian motion, under Px XtC� �X� Cz has
law p.t; z; dy/, denoting by p the transition function of a Brownian motion.
Hence

˚.z/ D
Z

f . y/ p.t; z; dy/ ;

which, going back to (6.18), allows to conclude the proof.

The strong Markov property allows us to compute the conditional expectation,
given F� , of a function of the position of the process at a time subsequent to time � .

It is often very useful to have formulas allowing us to compute the conditional
expectation, given F� , of a more complicated function of the path of the process
after time � . This question resembles the one answered by Proposition 6.1 where
(the simple) Markov property was extended in a similar way.

Here the situation is more complicated, as it does not seem easy to give a precise
meaning to what a “function of the path of the process after time �” is. In order to
do this we are led to the following definitions.

Sometimes the space ˝ , on which a Markov process is defined, is a space of
paths, i.e. ! 2 ˝ is a map R

C ! E and the process is defined as Xt.!/ D !.t/.
This is the case, for instance, for the process constructed in Kolmogorov’s theorem,
where ˝ D ER

C

, or for the canonical space .C ;M ; .Mt/t; .Xt/t; .Px/x/ introduced
in Sect. 3.2, where C D C .RC;Rm/. We shall say, in this case, that the Markov
process is canonical. In this case we can define, for every t 2 R

C, the map 
t W
˝ ! ˝ through


t!.s/ D !.t C s/ :

The maps 
t are the translation operators and we have the relations

Xs ı 
t.!/ D Xs.
t!/ D XtCs.!/ :
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Translation operators are the tool that allows us to give very powerful expressions
of the Markov and strong Markov properties.

If � W ˝ ! R
C is a r.v., we can define the random translation operator 
� as

.
�!/.t/ D !.t C �.!// :

Note that in the time homogeneous case the strong Markov property can be written
as

ExŒ f .XtC� /jF� � D
Z

E
f . y/p.t;X� ; dy/

or, with the notations of translation operators,

ExŒ f .Xt/ ı 
� jF� � D EX� Œ f .Xt/� : (6.19)

This leads us to the following extension of the strong Markov property for the time
homogeneous case. The proof is similar to that of Proposition 6.1.

Proposition 6.2 Let X be a canonical time homogeneous strong Markov
process and Y an F1-measurable r.v., bounded or positive. Then for every
finite stopping time �

ExŒY ı 
� jF� � D EX� ŒY� : (6.20)

Proof The proof follows the same pattern as Proposition 6.1, first assuming that
Y is of the form Y D f1.Xt1 / : : : fm.Xtm/ where 0 � t1 < � � � < tm and f1; : : : ; fm
are bounded (or positive) functions. Then (6.20) is immediate if m D 1, thanks
to (6.19). Assume that (6.20) is satisfied for every Y of this form and for m � 1.
Then if Y D f1.Xt1 / : : : fm.Xtm/ for every x we have Px-a.s.

ExŒY ı 
� jF� � D ExŒ f1.Xt1C� / : : : fm.XtmC� /jF� �

D ExŒ f1.Xt1C� / : : : fm�1.Xtm�1C� /ExŒ fm.XtmC� /jFtm�1C� �jF� �

D ExŒ f1.Xt1C� / : : : fm�1.Xtm�1C� /EXtm�1C� Œ fm.Xtm/�jF� �

D ExŒ f1.Xt1C� / : : :ef m�1.Xtm�1C� /jF� � ;

whereef m�1.x/ D fm�1.x/ExŒ fm.Xtm/�. By the recurrence hypothesis then, going back
and using the “simple” Markov property,

ExŒY ı 
� jF� � D EX� Œ f1.Xt1 / : : :ef m�1.Xtm�1 /�

D EX� Œ f1.Xt1 / : : : fm�1.Xtm�1 /E
Xtm�1 Œ fm.Xtm/��
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D EX� Œ f1.Xt1 / : : : fm�1.Xtm�1 /E
X� Œ fm.Xtm/jFtm�1 ��

D EX� ŒEX� Œ f1.Xt1 / : : : fm�1.Xtm�1 /fm.Xtm/jFtm�1 ��

D EX� Œ f1.Xt1 / : : : fm�1.Xtm�1 /fm.Xtm/�

D EX� ŒY� :

Theorem 1.4 allows us to state that if (6.20) is true for every Y of the form
Y D f1.Xt1 / : : : fm.Xtm/ with 0 � t1 � � � � � tm and f1; : : : ; fm bounded or positive
functions, then it holds for every bounded (or positive) F1-measurable r.v.

ut

Example 6.3 Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical realiza-
tion of an m-dimensional Brownian motion. Let D � R

m be a bounded open
set, � the exit time from D and � W @D ! R a bounded measurable function.
Let

u.x/ D ExŒ�.B� /� : (6.21)

We see now that u enjoys some important properties.
Let BR.x/ be a ball centered at x with radius R and contained in D, �R the

exit time from BR.x/. As � > �R Px-a.s (starting at x the process must exit
from BR.x/ before leaving D), we have

X� D X� ı 
�R

as the paths t 7! Xt.!/ and t 7! XtC�R.!/.!/ exit D at the same position (not
at the same time of course). Hence (6.20) gives

u.x/ D ExŒ�.X� /� D ExŒ�.X� / ı 
�R �

D ExŒEx.�.X� / ı 
�R jM�R/� D ExŒEX�R Œ f .X� /�„ ƒ‚ …
Du.X�R /

� :

Hence

u.x/ D ExŒu.X�R/� D
Z

@BR.x/
u. y/ d	R. y/ ;

where 	R is the law of X�R under Px. By Exercise 3.18 	R is the normalized
Lebesgue measure of the spherical surface @BR.x/. Therefore the value of u at

(continued)
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Example 6.3 (continued)
x coincides with the mean of u on the surface of the sphere @BR.x/ for every
R (small enough so that BR � D). It is a well-known result in mathematical
analysis (see Han and Lin 1997, p. 3, for example) that a bounded measurable
function with this property is harmonic, i.e. that it is twice differentiable in D
and such that

4u D 0 ;

where 4 denotes the Laplace operator

4 D
mX

iD1

@2

@x2i
�

Therefore if one wants to look for a solution of the Dirichlet problem

(
4u D 0 on D

uj@D D �

the function u of (6.21) is a promising candidate. We shall discuss this kind of
problem (i.e., the relation between solutions of PDE problems and stochastic
processes) in more detail in Chap. 10.

At this point Brownian motion is our only example of a strong Markov process. We
shall snow see that, in fact, a large class of Markov processes enjoy this property.

Let us assume from now on that E is a metric space (we can therefore speak of
continuous functions) and that E D B.E/.

Definition 6.3 A transition function p is said to enjoy the Feller property if,
for every fixed h � 0 and for every bounded continuous function f W E ! R,
the map

.t; z/ 7!
Z

E
f . y/p.t; t C h; z; dy/

is continuous. A Markov process X is said to be a Feller process if its transition
function enjoys Feller’s property.

In fact Feller’s property is equivalent to saying that if sn ! s and xn ! x then

p.sn; sn C h; xn; �/ !
n!1 p.s; s C h; x; �/
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weakly. Hence, in a certain sense, that if x is close to y and s close to t then the
probability p.s; s C h; x; �/ is close to p.t; t C h; y; �/.

Of course if the transition function is time homogeneous then

Z

E
f . y/p.t; t C h; z; dy/ D

Z

E
f . y/p.h; z; dy/

and Feller’s property requires this to be a continuous function of z, for every
bounded continuous function f and for every fixed h > 0.

Remark 6.4 Let p be the transition function of Brownian motion, then
Z

E
f . y/p.h; z; dy/ D 1

.2�h/m=2

Z

Rm
f . y/e� 1

2h jz�yj2 dy :

It is immediate, taking the derivative under the integral sign, that, if f is a
bounded measurable function, the left-hand side is actually a C1 function of
z. Therefore Brownian motion is a Feller process.

Theorem 6.1 Let X be a right-continuous Feller process. Then it is strong
Markov.

Proof We must prove that, if � is a s-stopping time,

Px;s.XtC� 2 AjF s
� / D p.�; t C �;X� ;A/ Px;s-a.s.

Note first that, as X is right-continuous, then it is progressively measurable and
therefore, by Proposition 3.5, X� is F s

� -measurable. Therefore the right-hand side
in the previous equation is certainly F s

� -measurable. We must then prove that if
� 2 F s

� then for every A 2 B.E/

Px;s.fXtC� 2 Ag \ � / D Ex;s.p.�; t C �;X� ;A/1� / :

Let us assume first that � takes at most countably many values ftjgj. Then

Px;s.fXtC� 2 Ag \ � / D
X

j

Px;s.fXtC� 2 Ag \ � \ f� D tjg/

D
X

j

Px;s.fXtCtj 2 Ag \ � \ f� D tjg/ :
(6.22)
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As � \ f� D tjg 2 F s
tj , by the Markov property (6.10),

Px;s.fXtCtj 2 Ag \ � \ f� D tjg/ D Ex;sŒ1fXtCtj 2Ag1�\f�Dtjg�

D Ex;s
�
Ex;sŒ1fXtCtj2Ag1�\f�Dtjg jF s

tj
�



D Ex;s
�
1�\f�DtjgE

x;sŒ1fXtCtj 2Ag jF s
tj �

 D Ex;s

�
1�\f�Dtjgp.tj; t C tj;Xtj ;A/




so that, substituting into (6.22)

Px;s.fXtC� 2 Ag \ � / D
X

j

Ex;s
�
1�\f�Dtjgp.tj; t C tj;Xtj ;A/




D Ex;s
�

p.�; t C �;X� ;A/1�


:

Let now � be any finite s-stopping time. By Lemma 3.3 there exists a sequence .�n/n
of finite s-stopping times, each taking at most countably many values and decreasing
to � . In particular, thereforeF s

�n
 F s

� . The strong Markov property, already proved
for �n; and the remark leading to (6.17) guarantee that, for every bounded continuous
function f on E,

Ex;sŒ f .XtC�n/jF s
�n
� D

Z

E
f . y/p.�n; t C �n;X�n ; dy/ :

In particular, if � 2 F s
� � F s

�n
then

Ex;sŒ f .XtC�n/1� � D Ex;s
h
1�

Z

E
f . y/p.�n; t C �n;X�n ; dy/

i
:

By the right continuity of the paths and the Feller property

Z

E
f . y/p.�n; t C �n;X�n ; dy/ !

n!1

Z

E
f . y/p.�; t C �;X� ; dy/ :

Since by Lebesgue’s theorem we have Ex;sŒ f .XtC�n/1� � ! Ex;sŒ f .XtC� /1� � as
n ! 1 (recall that f is bounded and continuous), we have obtained that, for every
bounded continuous function f ,

Ex;sŒ f .XtC� /1� � D Ex;s
h
1�

Z

E
f . y/p.�; t C �;X� ; dy/

i
:

By Theorem 1.5 the previous equation holds for every bounded Borel function f and
we have proved the statement.

ut
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Note that the Feller and right continuity assumptions are not needed in the first part
of the proof of Theorem 6.1. Therefore the strong Markov property holds for every
Markov process when � takes at most a countable set of values.

We have already seen (Proposition 4.3) that for a Brownian motion it is always
possible to be in a condition where the filtration is right-continuous. In fact, this
holds for every right-continuous Feller process. Let F s

tC D T
">0F

s
tC".

Theorem 6.2 If X D .˝;F ; .F s
t /t�s; .Xt/t; .Px;s/x;s/ is a realization of a

Feller right-continuous Markov process then .˝;F ; .F s
tC/t�s; .Xt/t; .Px;s/x;s/

is also a realization of a Markov process associated to the same transition
function.

Proof We must prove the Markov property with respect to .F s
tC/t, i.e. that

EŒ f .XtCh/jF s
tC� D

Z

E
f . y/p.t; t C h;Xt; dy/ (6.23)

where f can be assumed to be bounded continuous on E. A routine application of
Theorem 1.5 allows us to extend this relation to every bounded Borel function f . For
every " > 0 we have, by the Markov property with respect to .Ft/t,

Ex;sŒ f .XtChC"/jF s
tC"� D

Z

E
f . y/p.t C "; t C h C ";XtC"; dy/

and, by conditioning both sides with respect to F s
tC, which is contained in F s

tC",

Ex;sŒ f .XtChC"/jF s
tC� D Ex;s

h Z

E
f . y/p.t C "; t C h C ";XtC"; dy/

ˇ
ˇF s

tC
i
:

As the paths are right-continuous, f .XtChC"/ ! f .XtCh/ a.s. as " ! 0C. Hence
the left-hand side converges to Ex;sŒ f .XtCh/jF s

tC� by Lebesgue’s theorem for
conditional expectations (Proposition 4.2 c)). Thanks to the Feller property, the
right-hand side converges to

Ex;s
h Z

E
f . y/p.t; t C h;Xt; dy/

ˇ
ˇF s

tC
i

D
Z

E
f . y/p.t; t C h;Xt; dy/ ;

Xt being F s
tC-measurable, which concludes the proof.

ut
Recall that a �-algebra G is said to be trivial with respect to a probability P if for
every A 2 G the quantity P.A/ can only take the values 0 or 1, i.e. if all events in
G are either negligible or almost sure. Recall that we denote by .G s

t /t the natural
filtration G s

t D �.Xu; s � u � t/. Let G s
tC D T

">0 G
s
tC".
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Proposition 6.3 (Blumenthal’s 0-1 law) Let X be a right-continuous Feller
process. Then the �-algebra G s

sC is trivial with respect to the probability Px;s

for every x 2 E, s � 0.

Proof By the previous theorem X is a Markov process with respect to the filtration
.F s

tC/t�s. As G s
sC � F s

sC, if A 2 G s
sC, by Proposition 6.1 for Y D 1A and with

s D t,

1A D Ex;s.1A jF s
sC/ D Ex;s.1A/ a.s.

as Xs D x Px;s-a.s. Therefore Ex;s.1A/ D Px;s.A/ can assume only the values 0 or 1.
ut

Example 6.4 An application clarifying the otherwise mysterious Blumenthal
0-1 law is the following.

Let F � E be a closed set and x 2 @F. Let X be a right-continuous Feller
process and let � D infftI t � s;Xs 2 Fcg be the first exit time from F after
time s. X being right-continuous, � is a stopping time for the filtration .FtC/t,
thanks to Proposition 3.7. Then the event f� D sg belongs to G s

sC:

f� D sg D fthere exists a sequence of times sn & s such that Xsn 2 Fcg
and the event on the right-hand side belongs to G s

sC" for every " > 0.
Proposition 6.3 states that the probability Px;s.� D s/ (i.e. the probability

for the process to leave F immediately) can only take the values 0 or 1, i.e.
either all paths exit F immediately Px;s-a.s. or no path does (recall that x 2
@F). Figures 6.1 and 6.2 suggest situations where these two possibilities can
arise.

F
Fc

Fig. 6.1 Typical situation where Px;s.� D s/ D 1: the boundary @F near x is smooth and the
oscillations of the path take it immediately outside F
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F

Fc

Fig. 6.2 Typical situation where Px;s.� D s/ D 0: the set Fc near x is “too thin” to be “caught”
immediately by the path

6.3 Semigroups, generators, diffusions

Let p be a transition function, which for now we assume to be time homogeneous,
on the topological space E. To p we can associate the family of linear operators
.Tt/t�0 defined on Mb.E/ (bounded Borel functions on E) by

Tt f .x/ D
Z

E
f . y/ p.t; x; dy/

or, if X is a realization of the Markov process associated to p,

Tt f .x/ D ExŒ f .Xt/� : (6.24)

As
ˇ
ˇExŒ f .Xt/�

ˇ
ˇ � kf k1, for every t � 0 the operator Tt is a contraction on Mb.E/,

i.e. kTt f k1 � kf k1. Moreover, we have

TsTt D TsCt ;

i.e. the family of operators .Tt/t is a semigroup. Indeed, by the Chapman–Kolmogo-
rov equation,

TsTt f .x/ D
Z

E
p.s; x; dy/Tt f . y/ D

Z

E
p.s; x; dy/

Z

E
p.t; y; dz/f .z/

D
Z

E
p.t C s; x; dz/f .z/ D TsCt f .x/ :

If, moreover, p is Feller, then Tt also operates on Cb, i.e. Tt f 2 Cb if f 2 Cb. If
f 2 Mb.E/ let us define, if the limit exists,

Af .x/ D lim
t!0C

1

t
ŒTt f .x/� f .x/� : (6.25)
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Let us denote by D.A/ the set of functions f 2 Mb.E/ for which the limit in (6.25)
exists for every x. The operator A is defined for f 2 D.A/ and is the infinitesimal
generator of the semigroup .Tt/t or of the Markov process X.

In this section we investigate some properties of the operator A and characterize
an important class of Markov processes by imposing some conditions on A. We
assume from now on that the state space E is an open domain D � R

m.
These concepts can be repeated with obvious changes when p is not time homoge-
neous. In this case we can define the family of operators .Ts;t/s�t through

Ts;t f .x/ D
Z

f . y/ p.s; t; x; dy/ D Ex;sŒ f .Xt/�

and, for s � u � t, the Chapman–Kolmogorov equation gives

Ts;t D Ts;uTu;t :

For a time inhomogeneous Markov process, instead of the operator A we are led to
consider the family of operators .As/s defined, when the expression is meaningful,
by

Asf .x/ D lim
h!0C

1

h
ŒTs;sChf .x/ � f .x/� :

We say that the infinitesimal generator A is local when the value of Af .x/ depends
only on the behavior of f in a neighborhood of x, i.e. if, given two functions f ; g
coinciding in a neighborhood of x, if Af .x/ is defined, then Ag.x/ is also defined and
Af .x/ D Ag.x/.

Proposition 6.4 Let BR.x/ be the sphere of radius R and centered at x and let
us assume that for every x 2 D and R > 0

lim
h!0C

1

h
p.t; t C h; x;BR.x/

c/ D 0 : (6.26)

Then At is local.

Proof Let f 2 D.A/ and let R be small enough so that BR.x/ � D, then

1

h
ŒTt;tChf .x/ � f .x/� D 1

h

� Z
f . y/ p.t; t C h; x; dy/� f .x/

�

D 1

h

Z
Œ f . y/ � f .x/� p.t; t C h; x; dy/

D 1

h

Z

BR.x/
Œ f . y/ � f .x/� p.t; t C h; x; dy/C 1

h

Z

Bc
R

Œ f . y/ � f .x/� p.t; t C h; x; dy/ :
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As

1

h

ˇ
ˇ
ˇ

Z

BR.x/c
Œ f . y/ � f .x/�p.t; t C h; x; dy/

ˇ
ˇ
ˇ � 1

h

Z

BR.x/c

ˇ
ˇ f . y/� f .x/

ˇ
ˇp.t; t C h; x; dy/

� 1

h
� 2 k f k1p.t; t C h; x;BR.x/

c/

we can conclude that the two limits

lim
h!0C

1

h

Z
Œ f . y/� f .x/� p.t; t C h; x; dy/; lim

h!0C
1

h

Z

BR.x/
Œ f . y/� f .x/� p.t; t C h; x; dy/

either both exist or neither of them exist; moreover, At f .x/ does not depend on
values of f outside of BR.x/, for every R > 0.

ut
Note that condition (6.26) simply states that the probability of making a transition
of length R in a time interval of amplitude h goes to 0 as h ! 0 faster than h.

The operator A satisfies the maximum principle in the following form:

Proposition 6.5 (The maximum principle) If f 2 D.A/ and x is a point of
maximum for f , then Af .x/ � 0.

Proof

Tt f .x/ D
Z

f . y/p.t; x; dy/ �
Z

f .x/p.t; x; dy/ D f .x/

and therefore 1
t ŒTt f .x/� f .x/� � 0 for every t > 0.

ut
If A is local, the maximum principle takes the following form. The proof is rather
straightforward.

Proposition 6.6 If A is local, then if f 2 D.A/ and x is a point of relative
maximum for f then Af .x/ � 0.

If E D R
m the following proposition provides a way of computing the generator

A, at least for a certain class of functions.
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Proposition 6.7 Let us assume that for every R > 0, t � 0 the limits

lim
h!0C

1

h
p.t; t C h; x;BR.x/

c/ D 0 (6.27)

lim
h!0C

1

h

Z

BR.x/
. yi � xi/ p.t; t C h; x; dy/ D bi.x; t/ (6.28)

lim
h!0C

1

h

Z

BR.x/
. yi � xi/. yj � xj/ p.t; t C h; x; dy/ D aij.x; t/ (6.29)

exist. Then the matrix a.x; t/ is positive semidefinite for every x; t and, if

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi
;

we have, for every function f 2 C2.Rm/ \ Cb.R
m/,

lim
h!0C

1

h
ŒTt;tChf .x/ � f .x/� D Lt f .x/ for every x 2 D :

Proof By (6.27), for f 2 C2.Rm/ \ Cb.R
m/

lim
h!0C

1

h
ŒTt;tChf .x/ � f .x/� D lim

h!0C
1

h

Z
Œ f . y/ � f .x/� p.t; t C h; x; dy/

D lim
h!0C

1

h

Z

BR.x/
Œ f . y/� f .x/� p.t; t C h; x; dy/ :

Replacing f with its Taylor development to the second order,

f . y/ D f .x/C
mX

iD1

@f

@xi
.x/ . yi � xi/C 1

2

mX

i;jD1

@2f

@xi@xj
.x/ . yi � xi/. yj � xj/C o.jx � yj2/

we find

lim
h!0C

1

h
ŒTt;tChf .x/� f .x/� D Lt f .x/C lim

h!0C
1

h

Z

BR.x/
o.jx � yj2/ p.t; t C h; x; dy/ :
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Let us check that the rightmost limit is equal to 0. As the above computation holds
for every R, let R be small enough so that j o.r/

r j � " for every 0 < r < R. Then

lim
h!0C

1

h

Z

BR.x/
jo.jx �yj2/j p.t; t Ch; x; dy/ � lim

h!0C "
1

h

Z

BR.x/
jx �yj2 p.t; t Ch; x; dy/

D lim
h!0C "

1

h

Z

BR.x/

mX

iD1
.xi � yi/

2 p.t; t C h; x; dy/ D "

mX

iD1
aii.x; t/

and the conclusion comes from the arbitrariness of ". We still have to prove that the
matrix a.x; t/ is positive semidefinite for every x; t. Let 
 2 R

m and f 2 C2.Rm/ \
Cb.R

m/ be a function such that f . y/ D �h
; y � xi2 for y in a neighborhood of x.

Then, as the first derivatives of f vanish at x, whereas @2f
@xi@xj

.x/ D �2
i
j,

�ha.x; t/
; 
i D �
mX

i;jD1
aij.x; t/
i
j D Lt f .x/ D lim

h!0C
1

h
ŒTt;tCh f .x/ � f .x/� :

But x is a relative maximum for f , hence, by Proposition 6.6, �ha.x; t/
; 
i D
Lt f .x/ � 0.

ut

Example 6.5 Let us compute the infinitesimal generator of an m-dimensional
Brownian motion B. Let us first establish that it is local by checking
condition (6.26) of Lemma 6.4. We have

p.h; x;BR.x/
c/ D 1

.2�h/m=2

Z

jx�yj�R
e� 1

2h jx�yj2 dy

D 1

.2�h/m=2

Z

jyj�R
e� 1

2h jyj2 dy D 1

.2�/m=2

Z

jzj�R=
p

h
e� 1

2 jzj2 dz

D 1

.2�/m=2

Z

jzj�R=
p

h
e� 1

4 jzj2e� 1
4 jzj2 dz

� e� 1
4h jRj2 1

.2�/m=2

Z

Rm
e� 1

4 jzj2 dz � const e� 1
4h jRj2

so that condition (6.26) is satisfied. Moreover,

1

h

Z

jy�xj�R
. yi � xi/ p.h; x; dy/ D 1

h

Z

jy�xj�R

yi � xi

.2�h/m=2
e� 1

2h jx�yj2 dy

(continued)
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Example 6.5 (continued)

D 1

h

Z

jzj�R

zi

.2�h/m=2
e�jzj2=2h dz D 0

as we are integrating an odd function on a symmetric set. Also, with the
change of variable z D y�xp

h
so that dz D dy

hm=2 ,

lim
h!0C

1

h

Z

jy�xj�R
. yi � xi/. yj � xj/p.h; x; dy/

D lim
h!0C

1

h

Z

jy�xj�R

1

.2�h/m=2
. yi � xi/. yj � xj/e

� 1
2h jx�yj2 dy

D 1

.2�/m=2

Z

jzj�R=
p

h
zizje

� 1
2
jzj2 dw !

h!0

1

.2�/m=2

Z

Rm
zizje� 1

2 jzj2 dw D ıij

as we recognize in the last integral nothing else than the covariance matrix of
an N.0; I/-distributed r.v. Going back to the notations of Proposition 6.7, we
have bi D 0; aij D ıij. Therefore the Brownian motion has an infinitesimal
generator given, for every function f 2 C2 \ Cb, by

Lf D 1
2
4f D 1

2

mX

iD1

@2f

@x2i
�

Definition 6.4 Let

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi
(6.30)

be a differential operator on R
m such that the matrix a.x; t/ is positive

semidefinite. A diffusion associated to the generator Lt is a Markov process
such that

a) it is strongly Markovian,
b) for every function f 2 C2

K.R
m/, if .Ts;t/t�s is the semigroup associated to

X,

Ts;t f .x/ D f .x/C
Z t

s
Ts;uLu f .x/ du : (6.31)
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We have, up to now, a candidate example of diffusion, which is Brownian motion.
We know that it enjoys the Feller property (Example 6.4) and, being continuous, it
is also strongly Markovian by Theorem 6.1. Its generator is the Laplace operator
divided by 2 and we shall see soon that b) of Definition 6.4, which is more or less
equivalent to the fact that 1

2
4 is its generator, also holds.

It is natural now to wonder whether, given a more general differential operator Lt

as in (6.30), an associated diffusion process exists and is unique. In the next chapters
we shall answer this question; the method will be the construction of a new process
starting from Brownian motion, which is itself a diffusion.

Exercises

6.1 (p. 511) (When is a Gaussian process also Markov?) Let X be a centered m-
dimensional Gaussian process and let us denote by Ki;j

s;t D E.Xi
sX

j
t/ its covariance

function. Let us assume that the matrix Ks;s is invertible for every s.

a) Prove that, for every s; t, s � t, there exist a matrix Ct;s and a Gaussian r.v. Yt;s

independent of Xs such that

Xt D Ct;sXs C Yt;s :

What is the conditional law of Xt given Xs D x?
b) Prove that X is a Markov process with respect to its natural filtration .Gt/t if and

only if for every u � s � t

Kt;u D Kt;sK
�1
s;s Ks;u : (6.32)

b) Use the freezing Lemma 4.1; (6.32) is equivalent to requiring that Yt;s is orthogonal to Xu for
every u � s.

6.2 (p. 512) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let

Xt D
Z t

0

Bu du :

a) Is .Xt/t a martingale of the filtration .Ft/t?
b) Show that .Xt/t is a Gaussian process and compute its covariance function Ks;t D

Cov.Xs;Xt/. Show that .Xt/t is not a Markov process
c) Compute

Cov.Xt;Bs/

(be careful to distinguish whether s � t or s � t).
d) Show that .Bt;Xt/t is a Markov process.
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6.3 (p. 514) Let g; h W RC ! R
C be continuous functions with g increasing and

both vanishing at most at 0. Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion
and

Xt D h.t/Bg.t/ :

a1) Prove that X is a Markov process (with respect to which filtration?) and compute
its transition function. Is it time homogeneous?

a2) Assume that h.t/ D
p

tp
g.t/

. What is the law of Xt for a fixed t? Is X a Brownian
motion?

b) Assume that limt!C1 g.t/ D C1. What can be said about

lim
t!C1

Xtp
2g.t/h2.t/ log log g.t/

‹

6.4 (p. 515) Let B be a Brownian motion, 	 > 0, and let

Xt D e�	tBe2	t :

a) Prove that X is a time homogeneous Markov process and determine its
transition function.

b1) Compute the law of Xt. What do you observe?
b2) Prove that for every t1 < t2 < � � � < tm and h > 0 the two r.v.’s .Xt1 ; : : : ;Xtm/

and .Xt1Ch; : : : ;XtmCh/ have the same distribution (i.e. that X is stationary).
c) Let .˝;F ; .Ft/t; .Zt/t; .Px/x/ be a realization of the Markov process associ-

ated to the transition function computed in a). What is the law of Zt under Px?
Prove that, whatever the starting point x,

Zt
L!

t!C1 N.0; 1/ : (6.33)

6.5 (p. 516) (Brownian bridge again). We shall make use here of Exercises 4.15
and 6.1. Let B be a real Brownian motion and let Xt D Bt � tB1. We have already
dealt with this process in Exercise 4.15, it is a Brownian bridge.

a) What is its covariance function Ks;t D E.XsXt/? Compute the law of Xt and the
conditional law of Xt given Xs D x, 0 � s < t � 1.

b) Prove that X is a non-homogeneous Markov process and compute its transition
function.

• The generator of the Brownian bridge can be computed using Proposition 6.7. It
will be easier to compute it later using a different approach, see Exercise 9.2.



6.3 Exercises for Chapter 6 177

6.6 (p. 517) (Time reversal of a Brownian motion) Let B be a Brownian motion
and for 0 � t � 1 let

Xt D B1�t :

a) Prove that X is a Gaussian process and compute its transition function.
b) Prove that .Xt/t�1 is an inhomogeneous Markov process with respect to its natural

filtration and compute its transition function.

6.7 (p. 517) Let X be an R
m-valued Markov process associated to a transition

function p such that, for some ˇ > 0, " > 0 and c > 0,

Z

Rm
jx � yjˇ p.s; t; x; dy/ � c jt � sjmC"

for every x 2 R
m and s � t. Then X has a continuous version and its generator is

local.

6.8 (p. 518) Let X D .˝;F ; .Ft/t; .Xt/t; .Px/x/ be an m-dimensional time
homogeneous diffusion and let us assume that its transition function p satisfies the
relation

p.t; x;A/ D p.t; 0;A � x/

as in Remark 6.3.

a) Prove that, for every bounded Borel function f ,

Z
f . y/ p.t; x; dy/ D

Z

Rm
f .x C y/ p.t; 0; dy/ : (6.34)

b) Prove that the generator L of X has constant coefficients.

6.9 (p. 519) (A transformation of Markov processes)

a) Let p be a time homogeneous transition function on a measurable space .E;E /,
h W E ! R a strictly positive measurable function and ˛ a number such that for
every x 2 R, t > 0,

Z

E
h. y/ p.t; x; dy/ D e˛th.x/ : (6.35)

Show that

ph.t; x;A/ D e�˛t

h.x/

Z

A
h. y/ p.t; x; dy/

is a Markov transition function.
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b) Let us assume that (6.35) holds and let us denote by L and Lh the generators of
the semigroups .Tt/t and .Th

t /t associated to p and to ph respectively. Show that
if f 2 D.L/, then g D f

h belongs to D.Lh/ and express Lhg in terms of Lf .
c) Let us assume, moreover, that E D R

m and that p is the Markov transition
function of a diffusion of generator

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi
� (6.36)

Prove that, if h is twice differentiable, C2
K � D.Lh/ and compute Lhg for g 2 C2

K .
d) Let p be the transition function of an m-dimensional Brownian motion (see

Example 6.1) and let h.x/ D ehv;xi, where v 2 R
m is some fixed vector. Show

that (6.35) holds for some ˛ to be determined and compute Lhg for g 2 C2
K .

6.10 (p. 520) Let E be a topological space. We say that a time homogeneous E-
valued Markov process X associated to the transition function p admits an invariant
(or stationary) measure � if � is a �-finite measure on .E;B.E// such that, for
every compactly supported bounded Borel function f ,

Z
Tt f .x/ d�.x/ D

Z

E
f .x/ d�.x/ (6.37)

for every t. Recall that Tt f .x/ D R
E f . y/ p.t; x; dy/. If, moreover, � is a probability,

we say that X admits an invariant (or stationary) distribution.

a) Prove that � is a stationary distribution if and only if, if X0 has law � then Xt also
has law � for every t � 0.

b) Prove that the Lebesgue measure of Rm is invariant for m-dimensional Brownian
motion.

c) Prove that, if for every x 2 E, the transition function of X is such that

lim
t!C1 p.t; x;A/ D 0 (6.38)

for every bounded Borel set A � E, then X cannot have an invariant probability.
Deduce that the m-dimensional Brownian motion cannot have an invariant
probability.

d) Prove that if X is a Feller process and there exists a probability � on .E;B.E//
such that, for every x 2 E,

lim
t!C1 p.t; x; �/ D � (6.39)

in the sense of the weak convergence of probabilities, then � is a stationary
distribution.



6.3 Exercises for Chapter 6 179

6.11 (p. 521) (When is a function of a Markov process also Markov?) Let X D
.˝;F ; .Ft/t; .Xt/t;P/ be a Markov process associated to the transition function p
and with values in .E;E /. Let .G;G / be a measurable space and ˚ W E ! G a
surjective measurable map. Is it true that Y D .˝;F ; .Ft/t; .Yt/t;P/ with Yt D
˚.Xt/ is also a Markov process? In this exercise we investigate this question. The
answer is no, in general: the Markov property might be lost for Y. We have seen an
example of this phenomenon in Exercise 6.2.

a) Prove that if the map ˚ is bijective then Y is a Markov process and determine
its transition function.

b) Let us assume that for every A 2 G the transition function p of X satisfies the
relation

p.s; t; x; ˚�1.A// D p.s; t; z; ˚�1.A// : (6.40)

for every x; z such that ˚.x/ D ˚.z/; let, for � 2 G and A 2 G , q.s; t; �;A/ D
p.s; t; x; ˚�1.A//, where x is any element of E such that ˚.x/ D �. )

b1) Prove that for every bounded measurable function f W G ! R

Z

G
f . y/ q.s; t; �; dy/ D

Z

E
f ı ˚.z/ p.s; t; x; dz/ ; (6.41)

where x 2 E is any element such that ˚.x/ D �.
b2) Show that, if Yt D ˚.Xt/, .˝;F ; .Ft/t; .Yt/t;P/ is a Markov process

associated to q, which therefore turns out to be a transition function (note that
it is a Markov process with respect to the same filtration).

c) Let X D .˝;F ; .Ft/t; .Xt/t;P/ be an m-dimensional Brownian motion and
z 2 R

m. Let Yt D jXt � zj; Yt is therefore the distance of Xt from z. Show that
.˝;F ; .Ft/t; .Yt/t;P/ is a Markov process.

c) Note that if Z 	 N.0; I/, then the transition function of the Brownian motion can be written
as

p.s; x;A/ D P.
p

sZ 2 A � x/ : (6.42)

Then use the rotational invariance of the distributions N.0; I/.

• Condition (6.40) is called Dynkin’s criterion. It is a simple sufficient condition
for Y to be a Markov process (not necessary however).

• The Markov process introduced in c) is called Bessel process of dimension m. It
is a diffusion on R

C which will also be the object of Exercise 8.24.



Chapter 7
The Stochastic Integral

7.1 Introduction

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a (continuous) standard Brownian motion fixed
once and for all: the aim of this chapter is to give a meaning to expressions of the
form

Z T

0

Xs.!/ dBs.!/ (7.1)

where the integrand .Xs/0�s�T is a process enjoying certain properties to be
specified. As already remarked in Sect. 3.3, this cannot be done path by path as the
function t 7! Bt.!/ does not have finite variation a.s. The r.v. (7.1) is a stochastic
integral and it will be a basic tool for the construction and the investigation of
new processes. For instance, once the stochastic integral is defined, it is possible
to consider a stochastic differential equation: it will be something of the form

dXt D b.Xt/ dt C �.Xt/ dBt ; (7.2)

where b and � are suitable functions. To solve it will mean to find a process .Xt/t
such that for every t � 0

Xt D X0 C
Z t

0

b.Xs/ ds C
Z t

0

�.Xs/ dBs ;

which is well defined, once the stochastic integral is given a rigorous meaning.
One can view the solution of (7.2) as a model to describe the behavior of objects
following the ordinary differential equation Pxt D b.xt/, but whose evolution is also
influenced by random perturbations represented by the term �.Xt/ dBt.

© Springer International Publishing AG 2017
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The idea of the construction of the stochastic integral is rather simple: imitating
the definition the Riemann integral, consider first the integral of piecewise constant
processes, i.e. of the form

Xt D
n�1X

kD0
Xk1Œtk;tkC1Œ.t/ ; (7.3)

where a D t0 < t1 < � � � < tn D b. For these it is natural to set

Z b

a
Xt dBt D

X

kD0
Xk.BtkC1

� Btk/ :

Then with processes as in (7.3) we shall approximate more general situations.
Although the idea is simple, technical difficulties will not be in short supply, as
we shall see.

Once the integral is defined we shall be concerned with the investigation of the
newly defined process t 7! R t

0 Xs dBs. The important feature is that, under suitable
assumptions, it turns out to be a martingale.

7.2 Elementary processes

Let us define first the spaces of processes that will be the integrands of the stochastic
integral.

We denote by Mp
loc.Œa; b�/ the space of the equivalence classes of real-valued

progressively measurable processes X D .˝;F ; .Ft/a�t�b; .Xt/a�t�b;P/
such that

Z b

a
jXsjp ds < C1 a.s. (7.4)

By Mp.Œa; b�/ we conversely denote the subspace of Mp
loc.Œa; b�/ of the

processes such that

E
� Z b

a
jXsjp ds

�
< C1 : (7.5)

Mp
loc.Œ0;C1Œ/ (resp. Mp.Œ0;C1Œ/) will denote the space of the processes

.Xt/t such that .Xt/0�t�T lies in Mp
loc.Œ0;T�/ (resp. Mp.Œ0;T�/) for every T > 0.
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Speaking of equivalence classes, we mean that we identify two processes X and X0
whenever they are indistinguishable, which can also be expressed by saying that

Z b

a
jXs � X0

sj ds D 0 a.s.

Remarks 7.1

a) It is immediate that a continuous and adapted process .Xt/t belongs to
Mp

loc.Œa; b�/ for every p � 0. Indeed continuity, in addition to the fact
of being adapted, implies progressive measurability (Proposition 2.1).
Moreover, (7.4) is immediate as s 7! jXs.!/jp, being continuous, is
automatically integrable on every bounded interval. By the same argument,
multiplying a process in Mp

loc.Œa; b�/ by a bounded progressively measur-
able process again gives rise to a process in Mp

loc.Œa; b�/.
b) If X 2 Mp

loc (resp. Mp) and � is a stopping time of the filtration .Ft/t,
then the process t 7! Xt1ft<�g also belongs to Mp

loc (resp. Mp). Indeed the
process t 7! 1ft<�g is itself progressively measurable (it is adapted and
right-continuous) and moreover, as it vanishes for t > � ,

Z b

a
jXsjp1fs<�g ds D

Z b^�

a
jXsjp ds �

Z b

a
jXsjp ds

so that condition (7.4) (resp. (7.5)) is also satisfied.
c) It is not difficult to prove that M2 is a Hilbert space with respect to the

scalar product

hX;YiM2 D E
�Z b

a
XsYs ds

�
D
Z b

a
E.XsYs/ ds ;

being a closed subspace of L2.˝�R
C;P˝	Œa;b�/, where 	Œa;b� denotes the

Lebesgue measure of Œa; b�.
d) Quite often we shall deal with the problem of checking that a given

progressively measurable process .Xt/t belongs to M2.Œa; b�/. This is not
difficult. Indeed, by Fubini’s theorem

E
�Z b

a
jXsj2 ds

�
D
Z b

a
E.jXsj2/ ds

and therefore it is enough to ascertain that s 7! E.jXsj2/ is, for instance,
continuous. The Brownian motion itself is in M2, for instance.
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Among the elements of Mp
loc there are, in particular, those of the form

Xt.!/ D
n�1X

iD0
Xi.!/1Œti;tiC1Œ.t/ ; (7.6)

where a D t0 < t1 < � � � < tn D b and, for every i, Xi is a real Fti -measurable r.v.
The condition that Xi is Fti -measurable is needed for the process to be adapted and
ensures progressive measurability (a process as in (7.6) is clearly right-continuous).
We shall call these processes elementary. As

E
h Z b

a
X2t dt

i
D E

h n�1X

iD0
X2i .tiC1 � ti/

i
D

n�1X

iD0
E.X2i /.tiC1 � ti/

we have that X 2 M2.Œa; b�/ if and only if the r.v.’s Xi are square integrable.

Definition 7.1 Let X 2 M2
loc.Œa; b�/ be an elementary process as in (7.6). The

stochastic integral of X (with respect to B), denoted
R b

a Xt dBt, is the r.v.

n�1X

iD0
Xi.BtiC1

� Bti/ : (7.7)

It is easy to see that the stochastic integral is linear in X. Moreover,

Lemma 7.1 If X is an elementary process in M2.Œa; b�/, then

E
� Z b

a
Xt dBt

ˇ
ˇFa

�
D 0 ;

E
h� Z b

a
Xt dBt

�2 ˇ
ˇFa

i
D E

h Z b

a
X2t dt

ˇ
ˇFa

i
:

In particular, the stochastic integral of an elementary process of M2.Œa; b�/ is
a centered square integrable r.v. and

E
h� Z b

a
Xt dBt

�2i D E
h Z b

a
X2t dt

i
: (7.8)
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Proof Let Xt D Pn�1
iD0 Xi1Œti;tiC1Œ.t/; as Xi is square integrable and Fti -measurable

and BtiC1
� Bti is independent of Fti , we have EŒXi.BtiC1

� Bti/jFti � D XiEŒBtiC1
�

Bti � D 0 and therefore

E.Xi.BtiC1
� Bti/jFa/ D E

�
EŒXi.BtiC1

� Bti/jFti �jFa

 D 0 ;

from which the first relation follows. We also have

E
h� Z b

a
Xt dBt

�2 ˇ
ˇFa

i
D E

h n�1X

i;jD0
XiXj.BtiC1

� Bti/.BtjC1
� Btj/

ˇ
ˇFa

i
: (7.9)

Note first that, as Xi is Fti -measurable and therefore independent of BtiC1
� Bti , the

r.v.’s X2i .BtiC1
�Bti/

2 are integrable being the product of integrable independent r.v.’s
(Proposition 1.3). Therefore the r.v. XiXj.BtiC1

� Bti/.BtjC1
� Btj/ is also integrable,

being the product of the square integrable r.v.’s Xi.BtiC1
� Bti/ and Xj.BtjC1

� Btj/.
We have, for j > i,

E
�
XiXj.BtiC1

� Bti/.BtjC1
� Btj/jFa




D E
�
E
�
XiXj.BtiC1

� Bti/.BtjC1
� Btj/jFtj

� ˇˇFa



D EŒXiXj.BtiC1
� Bti/E.BtjC1

� Btj jFtj/„ ƒ‚ …
D0

jFa� D 0 :

Therefore in (7.9) the contribution of the terms with i 6D j vanishes. Moreover,

E
�
X2i .BtiC1

� Bti/
2 jFa

� D E
�
E
�
X2i .BtiC1

� Bti/
2 jFti �jFa


 D EŒX2i .tiC1 � ti/jFa� :

Therefore, going back to (7.9),

E
h� Z b

a
Xt dBt

�2 ˇ
ˇFa

i
D E

h n�1X

iD0
X2i .tiC1 � ti/

ˇ
ˇFa

i
D E

h Z b

a
X2t dt

ˇ
ˇFa

i
:

ut
In the proof of Lemma 7.1, note the crucial role played by the assumption that the
r.v.’s Xi are Fti measurable, which is equivalent to requiring that X is progressively
measurable.

7.3 The stochastic integral

In order to define the stochastic integral for processes in Mp we need an approxima-
tion result stating that a process in Mp can be suitably approximated with elementary
processes.
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Given a function f 2 Lp.Œa; b�/, p � 1, and an equi-spaced grid �n D fa D t0 <
t1 < � � � < tn D bg such that tiC1 � ti D 1

n .b � a/, let

Gn f D
n�1X

iD0
fi1Œti;tiC1Œ ;

where fi D 0 if i D 0 and

fi D 1

ti � ti�1

Z ti

ti�1

f .s/ ds D n

b � a

Z ti

ti�1

f .s/ ds

is the average of f on the interval at the left of ti. As, by Jensen’s inequality,

j fijp D
ˇ
ˇ
ˇ

1

ti � ti�1

Z ti

ti�1

f .s/ ds
ˇ
ˇ
ˇ
p � 1

ti � ti�1

Z ti

ti�1

j f .s/jp ds D n

b � a

Z ti

ti�1

j f .s/jp ds ;

we have

Z b

a
jGn f .s/jp ds D

n�1X

iD0

j fijp

n
.b � a/ �

nX

iD1

Z tiC1

ti

j f .s/jp ds D
Z b

a
j f .s/jp ds

(7.10)

and therefore also Gn f 2 Lp.Œa; b�/. As G2n f D G2n.G2nC1 f /, the same argument
leading to (7.10) gives

Z b

a
jG2n f .s/jp ds �

Z b

a
jG2nC1f .s/jp ds : (7.11)

Gn f is a step function and let us to prove that

lim
n!1

Z b

a
jGn f .s/ � f .s/jp ds D 0 : (7.12)

Actually, this is immediate if f is continuous, owing to uniform continuity: let, for a
fixed ", n be such that j f .x/� f .y/j � " if jx �yj � 2

n .b �a/ and
R t1

a j f .s/jp ds � "p.
For i � 1, if s 2 Œti; tiC1Œ and u 2 Œti�1; tiŒ, then ju � sj � 2

n .b � a/ so that
j f .s/ � f .u/j � " and also jGn f .s/ � f .s/j � ", as Gn f .s/ is the average of f on
Œti�1; tiŒ. Then we have

Z b

a
jGn f .s/ � f .s/jp ds D

Z t1

a
j f .s/jp ds C

Z b

t1

jGn f .s/ � f .s/jp ds � "p.1C b � a/
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which proves (7.12) if f is continuous. In order to prove (7.12) for a general function
f 2 Lp.Œa; b�/ one has just to recall that continuous functions are dense in Lp, the
details are left to the reader.

Lemma 7.2 Let X 2 Mp
loc.Œa; b�/, then there exists a sequence of elementary

processes .Xn/n � Mp
loc.Œa; b�/ such that

lim
n!1

Z b

a
jXt � Xn.t/jp dt D 0 a.s. (7.13)

If X 2 Mp.Œa; b�/ then there exists a sequence of elementary processes .Xn/n �
Mp.Œa; b�/ such that

lim
n!1 E

� Z b

a
jXt � Xn.t/jp dt

�
D 0 : (7.14)

Moreover, the elementary processes Xn can be chosen in such a way that n 7!R b
a jXnjp ds is increasing.

Proof If X 2 Mp
loc then t 7! Xt.!/ is a function in Lp a.s. Let us define

Xn D GnX. Such a process Xn is adapted as on the interval Œti; tiC1Œ it takes
the value 1

ti�tiC1

R ti
ti�1

Xs ds, which is Fti -measurable, as explained in Remark 2.2.
Finally, (7.13) follows from (7.12).

Let X 2 Mp and let �n be the equi-spaced grid defined above. We know already
that Xn D GnX is adapted and moreover, thanks to (7.10),

Z b

a
jXn.s/jp ds �

Z b

a
jX.s/jp ds

so that Xn 2 Mp.Œa; b/� and, moreover, by (7.10) we have for every n

Z b

a
jXt � Xn.t/jp dt � 2p�1�

Z b

a
jXtjp dt C

Z b

a
jXn.t/jp dt

�
� 2p

Z b

a
jXtjp dt ;

hence we can take the expectation in (7.13) and obtain (7.14) using Lebesgue’s
theorem.

Finally the last statement is a consequence of (7.11). ut
We can now define the stochastic integral for every process X 2 M2.Œa; b�/: (7.8)

states that the stochastic integral is an isometry between the elementary processes
of M2.Œa; b�/ and L2.P/. Lemma 7.2 says that these elementary processes are dense
in M2.Œa; b�/, so that the isometry can be extended to the whole M2.Œa; b�/, thus
defining the stochastic integral for every X 2 M2.Œa; b�/.
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In practice, in order to compute the stochastic integral of a process X 2
M2.Œa; b�/, by now, we must do the following: we must first determine the sequence
GnX of elementary processes approximating X in the sense of (7.14), and then
compute the limit

lim
n!1

Z b

a
Xn.s/ dBs

in the L2 sense. This procedure does not look appealing, but soon we shall see (in the
next chapter) other ways of computing the stochastic integral. This is similar to what
happens with the ordinary Riemann integral: first one defines the integral through
an approximation with step functions and then finds much simpler and satisfactory
ways of making the actual computation with the use of primitives.

Let us investigate the first properties of the stochastic integral. The following
extends to general integrands the properties already known for the stochastic integral
of elementary processes.

Theorem 7.1 If X 2 M2.Œa; b�/ then

E
�Z b

a
Xt dBt

ˇ
ˇFa

�
D 0 ; (7.15)

E
h� Z b

a
Xt dBt

�2 ˇ
ˇFa

i
D E

h Z b

a
X2t dt

ˇ
ˇFa

i
: (7.16)

In particular,

E
h� Z b

a
Xt dBt

�2i D E
h Z b

a
X2t dt

i
: (7.17)

Proof Let .Xn/n be a sequence of elementary processes approximating X as stated
in Lemma 7.2. Then we know by Lemma 7.1 that (7.15) is true for the stochastic
integral of processes of Xn and we can take the limit as n ! 1 as

R b
a Xn.t/ dBt !

R b
a Xt dBt in L2. As for (7.16) we have

E
h� Z b

a
Xn.t/ dBt

�2 ˇ
ˇFa

i
D E

h Z b

a
X2n.t/ dt

ˇ
ˇFa

i
:

We can take the limit as n ! 1 at the left-hand side as
R b

a Xn.t/ dBt ! R b
a Xt dBt

in L2 hence
� R b

a Xn.t/ dBt
�2 ! � R b

a Xt dBt
�2

in L1 and we can use Remark 4.3. As

for the right-hand side we can assume that n 7! R b
a jXn.t/j2 dt is increasing and then

use Beppo Levi’s theorem for the conditional expectation, Proposition 4.2 a). ut
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Remark 7.1 If X;Y 2 M2.Œa; b�/, then

E
� Z b

a
Xs dBs �

Z b

a
Ys dBs

�
D
Z b

a
E.XsYs/ ds : (7.18)

Indeed, it is sufficient to apply (7.17) to X C Y and X � Y and then develop
and subtract:

� Z b

a
.Xs C Ys/ dBs

�2 D
� Z b

a
Xs dBs

�2 C
� Z b

a
Ys dBs

�2 C 2

Z b

a
Xs dBs �

Z b

a
Ys dBs

� Z b

a
.Xs � Ys/ dBs

�2 D
� Z b

a
Xs dBs

�2 C
� Z b

a
Ys dBs

�2 � 2
Z b

a
Xs dBs �

Z b

a
Ys dBs

and therefore

4E
�Z b

a
Xs dBs �

Z b

a
Ys dBs

�

D E
h� Z b

a
.Xs C Ys/ dBs

�2i � E
h� Z b

a
.Xs � Ys/ dBs

�2i

D E
h Z b

a
.Xs C Ys/

2 ds
i

� E
h Z b

a
.Xs � Ys/

2 ds
i

D 4E
h Z b

a
XsYs ds

i
:

Examples 7.1

a) Note that the motion Brownian B itself belongs to M2. Is it true that

Z 1

0

Bs dBs D 1

2
B21 ‹ (7.19)

Of course no, as

E
� Z 1

0

Bs dBs

�
D 0 whereas E.B21/ D 1 :

We shall see, however, that (7.19) becomes true if an extra term is added.
b) Also .B2t /t belongs to M2. What is the value of

E
h Z 1

0

Bs dBs

Z 1

0

B2s dBs

i
‹

(continued)
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Examples 7.1 (continued)
Easy

E
h Z 1

0

Bs dBs

Z 1

0

B2s dBs

i
D E

h Z 1

0

BsB
2
s ds

i
D
Z 1

0

EŒB3s � ds D 0 :

c) What is the value of

E
h Z 2

0

Bs dBs

Z 3

1

Bs dBs

i
‹

The two stochastic integrals are over different intervals. If we set

Xs D
(

Bs if 0 � s � 2

0 if 2 < s � 3
Ys D

(
0 if 0 � s < 1

Bs if 1 � s � 3

then

E
h Z 2

0

Bs dBs

Z 3

1

Bs dBs

i
D E

h Z 3

0

Xs dBs

Z 3

0

Ys dBs

i

D
Z 3

0

EŒXsYs� ds D
Z 2

1

s ds D 3

2
�

Of course, this argument can be used in general in order to compute the
expectation of the product of stochastic integrals over different intervals.
In particular, the expectation of the product of two stochastic integrals of
processes of M2 over disjoint intervals vanishes.

Remark 7.2 As the stochastic integral is an isometry M2 ! L2.˝;F ;P/, we
can ask whether every r.v. of L2.˝;F ;P/ can be obtained as the stochastic
integral of a process of M2. One sees immediately that this cannot be as,
by (7.15), every stochastic integral of a process in M2 has zero mean. We shall
see, however, in Sect. 12.3 that if .Ft/t is the natural augmented filtration of
the Brownian motion B, then every r.v. Z 2 L2.˝;FT ;P/ can be represented
in the form

Z D c C
Z T

0

Xs dBs

with X 2 M2.Œ0;T�/ and c 2 R. This representation has deep and important
applications that we shall see later.
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By the isometry property of the stochastic integral (7.17)

E
h� Z b

a
Xn.s/ dBs �

Z b

a
Xs dBs

�2i D E
h� Z b

a
.Xn.s/ � Xs/ dBs

�2i

D E
� Z b

a
jXn.t/ � Xtj2 dt

�

so that

Corollary 7.1 If Xn;X 2 M2.Œa; b�/ are processes such that

lim
n!1 E

� Z b

a
jXn.t/ � Xtj2 dt

�
D 0

then

Z b

a
Xn.s/ dBs

L2!
n!1

Z b

a
Xs dBs :

Note that we cannot say that the value of the integral at ! depends only on the
paths t 7! Xt.!/ and t 7! Bt.!/, as the integral is not defined pathwise. However,
we have the following

Theorem 7.2 Let X;Y 2 M2.Œa; b�/ and A 2 F such that Xt D Yt on A for
every t 2 Œa; b�. Then on A we have a.s.

Z b

a
Xt dBt D

Z b

a
Yt dBt :

Proof Let .Xn/n and .Yn/n be the sequences of elementary processes that respec-
tively approximate X and Y in M2.Œa; b�/ constructed on p. 186, i.e. Xn D GnX,
Yn D GnY. A closer look at the definition of Gn shows that GnX and GnY also
coincide on A for every t 2 Œa; b� and for every n, and therefore also

R b
a Xn dBt and
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R b
a Yn dBt. By definition we have

Z b

a
Xn.t/ dBt

L2!
n!1

Z b

a
X.t/ dBt

Z b

a
Yn.t/ dBt

L2!
n!1

Z b

a
Y.t/ dBt

and then just recall that L2-convergence implies a.s. convergence for a subsequence.
ut

7.4 The martingale property

Let X 2 M2.Œ0;T�/, then the restriction of X to Œ0; t�, t � T also belongs to M2.Œ0; t�/
and we can consider its integral

R t
0

Xs dBs; let, for 0 � t � T, the real-valued process
I be defined as

I.t/ D
Z t

0

Xs dBs :

It is clear that

a) if t > s, I.t/ � I.s/ D R t
s Xu dBu,

b) I.t/ is Ft-measurable for every t. Indeed if .Xn/n is the sequence of elementary
processes that approximates X in M2.Œ0; t�/ and In.t/ D R t

0
Xn.s/ dBs, then it

is immediate that In.t/ is Ft-measurable, given the definition of the stochastic
integral for the elementary processes. Since In.t/ ! I.t/ in L2 as n ! 1, there
exists a subsequence .nk/k such that Ink.t/ ! I.t/ a.s. as k ! 1; therefore
I.t/ is also Ft-measurable (remember that we assume that the Brownian motion
B is standard so that, in particular, Ft contains the negligible events of F and
changing an Ft-measurable r.v. on a negligible event still produces an Ft-measu-
rable r.v.)

Note that if

Xt D
n�1X

iD0
Xi1Œti;tiC1Œ.t/

is an elementary process then we can write

I.t/ D
Z t

0

Xs dBs D
n�1X

iD0
Xi.BtiC1^t � Bti^t/ : (7.20)
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In particular, if X is an elementary process then I is a continuous process adapted
to the filtration .Ft/t.

A key property of the process I is the following.

Theorem 7.3 If X 2 M2.Œ0;T�/, then I is an .Ft/t-square integrable mar-
tingale. Moreover, I has a continuous version and its associated increasing
process is

At D
Z t

0

X2s ds : (7.21)

Proof If t > s we have, thanks to Theorem 7.1,

EŒI.t/ � I.s/jFs� D E
�Z t

s
Xu dBu

ˇ
ˇFs

�
D 0 a.s.

and therefore we have the martingale relation

EŒI.t/jFs� D I.s/C EŒI.t/ � I.s/jFs� D I.s/ a.s.

Theorem 7.1 also states that I.t/ is square integrable. In order to check that A is
the associated increasing process to the martingale I, we need to verify that Zt D
I.t/2 � A.t/ is a martingale. With the decomposition I.t/2 � A.t/ D ŒI.s/C .I.t/ �
I.s//�2 � A.s/ � .A.t/� A.s// and remarking that I.s/ and A.s/ are Fs-measurable,

EŒI.t/2 � A.t/jFs�

D I.s/2 � A.s/C E
�
2I.s/.I.t/� I.s//C .I.t/ � I.s//2 � .A.t/� A.s//jFs




D I.s/2 � A.s/C 2I.s/EŒI.t/� I.s/jFs�„ ƒ‚ …
D0

CE
�
.I.t/� I.s//2 � .A.t/ � A.s//jFs




which allows us to conclude that the process defined in (7.21) is the associate
increasing process as, thanks to (7.16), we have a.s.

EŒ.I.t/ � I.s//2 jFs� D E
h� Z t

s
Xu dBu

�2 ˇ
ˇFs

i
D E

h Z t

s
X2u du

ˇ
ˇFs

i

D EŒA.t/ � A.s/jFs� :

Let us prove the existence of a continuous version. We already know that this is
true for elementary processes. Let .Xn/n be a sequence of elementary processes in
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M2.Œ0;T�/ such that

lim
n!1 E

�Z T

0

jXn.t/ � X.t/j2 dt
�

D 0 :

Let In.t/ D R t
0

Xn.s/ dBs. The idea of the existence of a continuous version is simple:
just find a subsequence .nk/k such that the sequence of processes .Ink/k converges
uniformly a.s. The limit, J say, will therefore be a continuous process. As we know
already that

lim
k!1 Ink.t/ D I.t/ in L2

we shall have that J.t/ D I.t/ a.s., so that J will be the required continuous version.
In order to prove the uniform convergence of the subsequence .Ink/k we shall write

Ink.t/ D In1 .t/C
nkX

iD1
.Ini.t/ � Ini�1 .t// (7.22)

and prove that sup0�t�T jIni.t/� Ini�1 .t/j is the general term of a convergent series.
As .In.t/ � Im.t//t is a square integrable continuous martingale, by the maximal

inequality (5.16) applied to the supermartingale .�jIn.t/� Im.t/j2/t and for 	 D "2,

P
�

sup
0�t�T

jIn.t/ � Im.t/j > "
�

D P
�

inf
0�t�T

�jIn.t/ � Im.t/j2 < �"2
�

� 1

"2
E
�jIn.T/ � Im.T/j2


 D 1

"2
E
h� Z T

0

�
Xn.s/ � Xm.s/

�
dBs

�2i

D 1

"2
E
� Z T

0

jXn.s/� Xm.s/j2 ds
�
:

As .Xn/n is a Cauchy sequence in M2, the right-hand side can be made arbitrarily
small for n and m large. If we choose " D 2�k then there exists an increasing
sequence .nk/k such that, for every m > nk,

P
�

sup
0�t�T

jInk.t/ � Im.t/j > 2�k
�

� 22kE
� Z T

0

jXnk.s/ � Xm.s/j2 ds
�

� 1

k2

and therefore

P
�

sup
0�t�T

jInk.t/ � InkC1
.t/j > 2�k

�
� 1

k2
�
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But 1
k2

is the general term of a convergent series and, by the Borel–Cantelli lemma,

P
�

sup
0�t�T

jInk.t/ � InkC1
.t/j > 2�k infinitely many times

�
D 0 :

Therefore a.s. we have eventually

sup
0�t�T

jInk.t/ � InkC1
.t/j � 2�k :

Therefore the series in (7.22) converges uniformly, which concludes the proof. ut

From now on, by I.t/ or
R t
0

Xs dBs we shall understand the continuous version.

Theorem 7.3 allows us to apply to the stochastic integral .I.t//t all the nice
properties of square integrable continuous martingales that we have pointed out in
Sect. 5.6. First of all that the paths of I do not have finite variation (Theorem 5.15)
unless they are a.s. constant, which can happen only if Xs D 0 a.s for every s.

The following inequalities also hold

P
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ > 	

�
� 1

	2
E
� Z T

0

X2s ds
�
; for every 	 > 0

E
h

sup
0�t�T

� Z t

0

Xs dBs

�2i � 4E
h Z T

0

X2s ds
i
:

(7.23)

In fact the first relation follows from the maximal inequality (5.16) applied to
the supermartingale Mt D �ˇˇ R t

0
Xs dBs

ˇ
ˇ2: (5.16) states that, for a continuous

supermartingale M,

	P
�

inf
0�t�T

Mt � �	� � EŒjMT j�

so that

P
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ > 	

�
D P

�
sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ
2 � 	2

�

D P
�

inf
0�t�T

�
ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ
2 � �	2

�
� 1

	2
E
�ˇˇ
ˇ

Z T

0

Xs dBs

ˇ
ˇ
ˇ
2� D 1

	2
E
�Z T

0

X2s ds
�
:
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As for the second one, we have, from Doob’s inequality (Theorem 5.12),

E
h

sup
0�t�T

� Z t

0

Xs dBs

�2i � 4 sup
0�t�T

E
h� Z t

0

Xs dBs

�2i

D 4 sup
0�t�T

E
h Z t

0

X2s ds
i

D 4E
h Z T

0

X2s ds
i
:

As a consequence, we have the following strengthening of Corollary 7.1.

Theorem 7.4 Let Xn;X 2 M2.Œ0;T�/ and let us assume that

E
h Z T

0

jXn.s/ � Xsj2 ds
i

!
n!1 0

then

lim
n!1 E

�
sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xn.s/ dBs �
Z t

0

Xs dBs

ˇ
ˇ
ˇ
2� D 0 :

Obviously if f 2 L2.Œ0;T�/, then f 2 M2.Œ0;T�/. In this case the stochastic integral
enjoys an important property.

Proposition 7.1 If f 2 L2.Œ0;T�/ then the process

It D
Z t

0

f .s/ dBs (7.24)

is Gaussian.

Proof Let us prove that, for every choice of 0 � s1 < � � � < sm � T, the r.v. I D
.I.s1/; : : : ; I.sm// is Gaussian. This fact is immediate if f is piecewise constant: if
f .t/ D Pn

iD1 	i1Œti�1;tiŒ, then

Is D
nX

iD1
	i.Bti^s � Bti�1^s/

and the vector I is therefore Gaussian, being a linear function of the r.v.’s Bti^sj

that are jointly Gaussian. We know that there exists a sequence . fn/n � L2.Œ0;T�/
of piecewise constant functions converging to f in L2.Œ0;T�/ and therefore in M2.
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Let In.t/ D R t
0

fn.s/ dBs, I.t/ D R t
0

f .s/ dBs. Then, by the isometry property of the
stochastic integral (Theorem 7.1), for every t,

E.jIn.t/ � Itj2/ D
Z t

0

. fn.u/� f .u//2 ds � k fn � f k22
L2!

n!1 0

so that In.t/!n!1 It in L2 and therefore, for every t, It is Gaussian by the properties
of the Gaussian r.v.’s under L2 convergence (Proposition 1.9). Moreover, if 0 � s1 �
� � � � sm, then In D .In.s1/; : : : ; In.sm// is a jointly Gaussian r.v. As it converges,
for n ! 1, to I D .I.s1/; : : : ; I.sm// in L2, the random vector I is also jointly
Gaussian, which concludes the proof. ut

Remark 7.3 Proposition 7.1 implies in particular that

E
h

exp
� Z t

0

f .s/ dBs

�i
D exp

�1

2

Z t

0

f .s/2 ds
�
: (7.25)

Indeed we recognize on the left-hand side the mean of the exponential of a
centered Gaussian r.v. (i.e. its Laplace transform computed at 
 D 1), which
is equal to the exponential of its variance divided by 2 (see Exercise 1.6).

If � is a stopping time of the filtration .Ft/t then, thanks to Corollary 5.6, the process

I.t ^ �/ D
Z t^�

0

Xs dBs

is a .Ft/t-martingale. In particular, E
� R t^�

0
Xs dBs

� D 0. The following statement is
often useful.

Theorem 7.5 Let � be a stopping time of the filtration .Ft/t, with � � T.
Then if X 2 M2.Œ0;T�/ also .Xt1ft<�g/t 2 M2.Œ0;T�/ and

Z �

0

Xs dBs D
Z T

0

Xs1fs<�g dBs a.s. (7.26)

Proof .Xt1ft<�g/t 2 M2.Œ0;T�/ because the process t ! 1ft<�g is bounded, adapted
and right-continuous hence progressively measurable.
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(7.26) is immediate if � takes at most finitely many values t1; : : : ; tn. Actually we
have a.s.

Z �

0

Xs dBs D
nX

kD1
1f�Dtkg

Z tk

0

Xs dBs
#D

nX

kD1
1f�Dtkg

Z tk

0

Xs1fs<�g dBs

D
Z T

0

Xs1fs<�g dBs ;

where the equality marked with # is a consequence of Theorem 7.2, as on f� D tkg
the processes .Xs/s and .Xs1fs<�g/s coincide on the time interval Œ0; tkŒ.

For a general stopping time � , let .�n/n be a sequence of stopping times taking at
most finitely many values and decreasing to � (see Lemma 3.3); possibly replacing
�n with �n ^ T we can assume �n � T for every n. Then, the paths of the stochastic
integral being continuous,

lim
n!1

Z �n

0

Xs dBs D
Z �

0

Xs dBs a.s. (7.27)

Moreover,

Z T

0

ˇ
ˇXs1fs<�ng � Xs1fs<�g

ˇ
ˇ2 ds D

Z T

0

X2s 1f��s<�ng ds :

As limn!1 1f��s<�ng D 1f�Dsg, by Lebesgue’s theorem

lim
n!1

Z T

0

ˇ
ˇXs1fs<�ng � Xs1fs<�g

ˇ
ˇ2 ds D

Z T

0

X2s 1f�Dsg ds D 0

and again by Lebesgue’s theorem

lim
n!1 E

h Z T

0

ˇ
ˇXs1fs<�ng � Xs1fs<�g

ˇ
ˇ2 ds

i
D 0 :

Therefore, by Corollary 7.1,

lim
n!1

Z T

0

Xs1fs<�ng dBs D
Z T

0

Xs1fs<�g dBs in L2 :

This relation together with (7.27) allows us to conclude the proof of the lemma. ut
Let X 2 M2.Œ0;T�/ and let �1 and �2 be stopping times with �1 � �2 � T.
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The following properties follow easily from the stopping theorem, Theorem 7.5,
and the martingale property, Theorem 7.3, of the stochastic integral.

E
� Z �1

0

Xt dBt

�
D 0 (7.28)

E
h� Z �1

0

Xt dBt

�2i D E
� Z �1

0

X2t dt
�

(7.29)

E
� Z �2

0

Xt dBt

ˇ
ˇF�1

�
D
Z �1

0

Xt dBt; a.s. (7.30)

E
h� Z �2

�1

Xt dBt

�2 ˇ
ˇF�1

i
D E

� Z �2

�1

X2t dt
ˇ
ˇF�1

�
; a.s. (7.31)

Let Œa; b� be an interval such that Xt.!/ D 0 for almost every a � t � b. Is it true
that t 7! It is constant on Œa; b�?

Let � D inf
˚
tI t > a;

R t
a X2s ds > 0

�
with the understanding that � D b if f g D ;.

Then by Lemma 7.5 and (7.23)

E
�

sup
a�t�b

jIt^� � Iaj2
�

D E
�

sup
a�t�b

ˇ
ˇ
ˇ

Z t^�

a
Xu dBu

ˇ
ˇ
ˇ
2�

D E
�

sup
a�t�b

ˇ
ˇ
ˇ

Z t

a
Xu1fu<�g dBu

ˇ
ˇ
ˇ
2� � 4E

�Z b

a
X2u1fu<�g du

�
D 4E

�Z �

a
X2u du

�
D 0 ;

where the last equality follows from the fact that Xu.!/ D 0 for almost every u 2
�a; �.!/Œ. Therefore there exists a negligible event Na;b such that, for ! … Na;b,
t 7! It.!/ is constant on �a; � Œ.

Proposition 7.2 Let X 2 M2.Œ0;T�/. Then there exists a negligible event N
such that, for every ! … N and for every 0 � a < b � T, if Xt.!/ D 0 for
almost every t 2�a; bŒ, then t 7! It.!/ is constant on �a; bŒ.

Proof We know already that for every r; q 2 Q\Œ0;T� there exists a negligible event
Nr;q such that if Xt.!/ D 0 for almost every t 2�r; qŒ, then t 7! It.!/ is constant on
�r; qŒ.

Let N be the union of the events Nr;q; r; q 2 Q \ Œ0;T�. N is the negligible event
we were looking for, as if ! … N, then if Xt.!/ D 0 on �a; bŒ, t 7! It.!/ is constant
a.s. on every interval �r; sŒ��a; bŒ having rational endpoints and therefore also on
�a; bŒ. ut
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7.5 The stochastic integral in M2
loc

We can now define the stochastic integral of a process X 2 M2
loc.Œ0;T�/. The main

idea is to approximate X 2 M2
loc.Œ0;T�/ by processes in M2.Œ0;T�/.

Let, for every n > 0, �n D infft � TI R t
0 X2s ds > ng with the understanding

�n D T if
R T
0 X2s ds � n. Then �n is a stopping time and the process Xn.t/ D Xt1ft<�ng

belongs to M2.Œ0;T�/. Indeed, thanks to Theorem 7.5,

Z T

0

Xn.s/
2 ds D

Z T

0

X.s/21fs<�ng ds D
Z �n^T

0

X2s ds � n

so that Xn 2 M2. We can therefore define, for every n � 0, the stochastic integral

In.t/ D
Z t

0

Xn.s/ dBs :

Let us observe that, as
R T
0

X2s ds < C1 by hypothesis, �n % T a.s. as n ! C1.
Moreover, if n > m then �n > �m, so that f�n D Tg  f�m D Tg and the processes
Xn and Xm coincide on f�m D Tg. By Proposition 7.2 In and Im also coincide on
f�m D Tg a.s. for every t. As ˝ D S

nf�n D Tg, the sequence .In/n is eventually
constant and therefore converges a.s. to some r.v. I.

Definition 7.2 Let X 2 M2
loc.Œ0;T�/, then its stochastic integral is defined as

It D
Z t

0

Xs dBs D lim
n!1

Z t

0

Xs1fs<�ng dBs a.s.

The stochastic integral of a process X 2 M2
loc.Œ0;T�/ is obviously continuous, as

it coincides with In on f�n > Tg and In is continuous as a stochastic integral of a
process in M2.

If X 2 M2 then also X 2 M2
loc. Let us verify that in this case Definition 7.2

coincides with the definition given for processes of M2 in Sect. 7.3, p. 187. Note that
if X 2 M2.Œ0;T�/, then

E
� Z T

0

jXs � Xn.s/j2 ds
�

D E
� Z T

�n

jXsj2 ds
�

(7.32)

since Xs D Xn.s/ if s < �n, whereas Xn.s/ D 0 on s � �n. Therefore the right-hand
side in (7.32) tends to 0 as n ! 1, thanks to Lebesgue’s theorem, so that

lim
n!1 E

�Z T

0

jXs � Xn.s/j2 ds
�

D 0 :
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Thanks to Corollary 7.1,

lim
n!1 E

�
sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs �
Z t

0

Xn.s/ dBs

ˇ
ˇ
ˇ
2� D 0

and therefore if X 2 M2.Œ0;T�/ the two definitions coincide.

Remark 7.4 The statement of Theorem 7.2 remains true for stochastic inte-
grals of processes of M2

loc.Œ0;T�. Indeed if Xt D Yt on ˝0 for every t 2 Œa; b�,
then this also true for the approximants Xn, Yn. Therefore the stochastic
integrals

Z T

0

Xn.s/ dBs and
Z T

0

Yn.s/ dBs

also coincide on ˝0 and therefore their a.s. limits also coincide.

We now point out some properties of the stochastic integral when the integrand is
a process in X 2 M2

loc.Œa; b�/. Let us first look for convergence results of processes
Xn;X 2 M2

loc.Œa; b�/. We shall see that if the processes Xn suitably approximate X
in M2

loc.Œa; b�/, then the stochastic integrals converge in probability. The key tool in
this direction is the following.

Lemma 7.3 If X 2 M2
loc.Œa; b�/, then for every " > 0, � > 0

P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "

�
� P

� Z b

a
X2t dt > �

�
C �

"2
�

Proof Let �� D infftI t � a;
R t

a X2s ds � �g. Then we can write

P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "

�

D P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "; �� > T

�
C P

�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "; �� � T

�

� P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "; �� > T

�
C P.�� � T/ :

(7.33)
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As the two processes t 7! Xt and t 7! Xt1f��>tg coincide on ˝0 D f�� > Tg and by
Remark 7.4,

P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "; �� > T

�
D P

�ˇˇ
ˇ

Z b

a
Xt1f��>tg dBt

ˇ
ˇ
ˇ > "; �� > T

�

� P
�ˇˇ
ˇ

Z b

a
Xt1f��>tg dBt

ˇ
ˇ
ˇ > "

�
:

Therefore, as

E
�ˇˇ
ˇ

Z b

a
Xt1f��>tg dBt

ˇ
ˇ
ˇ
2� D E

� Z b^��

a
X2t dt

�
� � ;

by Chebyshev’s inequality

P
�ˇˇ
ˇ

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "; �� > T

�
� �

"2

and as

P.�� � T/ D P
� Z b

a
X2t dt > �

�
;

going back to (7.33) we can conclude the proof. ut

Proposition 7.3 Let X;Xn 2 M2
loc.Œa; b�/, n � 1, and let us assume that

Z b

a
jX.t/� Xn.t/j2 dt

P!
n!1 0 :

Then

Z b

a
Xn.t/ dBt

P!
n!1

Z b

a
X.t/ dBt :

Proof By Lemma 7.3

P
�ˇˇ
ˇ

Z b

a
Xn.t/ dBt �

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "

�
D P

�ˇˇ
ˇ

Z b

a
.Xn.t/ � Xt/ dBt

ˇ
ˇ
ˇ > "

�

� P
� Z b

a
jXn.t/ � Xtj2 dt > �

�
C �

"2
�
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Let � > 0 and let us first choose � so that �

"2
� �

2
and then n0 such that for n > n0

P
� Z b

a
jXt � Xn.t/j2 dt > �

�
<
�

2
�

Therefore for n > n0

P
�ˇˇ
ˇ

Z b

a
Xn.t/ dBt �

Z b

a
Xt dBt

ˇ
ˇ
ˇ > "

�
< � ;

which allows us to conclude the proof. ut
The following proposition states, similarly to the Lebesgue integral, that if the

integrand is continuous then the integral is the limit of the Riemann sums. Note,
however, that the limit is only in probability and that the integrand must be computed
at the left end point of every small interval (see Exercise 7.9 to see what happens if
this rule is not respected).

Proposition 7.4 If X 2 M2
loc.Œa; b�/ is a continuous process, then for every

sequence .�n/n of partitions a D tn;0 < tn;1 < � � � < tn;mn D b with j�nj D
max jtnkC1

� tnk j ! 0 we have

mn�1X

kD0
X.tn;k/.Btn;kC1

� Btn;k/
P!

n!1

Z b

a
X.t/ dBt :

Proof Let

Xn.t/ D
mn�1X

kD0
X.tn;k/1Œtn;k;tn;kC1Œ.t/ :

Xn is an elementary process and

mn�1X

kD0
X.tn;k/.Btn;kC1

� Btn;k/ D
Z b

a
Xn.t/ dBt :

As the paths are continuous,

Z b

a
jXn.t/ � X.t/j2 dt !

n!1 0 a.s.
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Hence by Proposition 7.3,

mn�1X

kD0
X.tn;k/.Btn;kC1

� Btn;k/ D
Z b

a
Xn.t/ dBt

P!
n!1

Z b

a
X.t/ dBt :

ut

Remark 7.5 It is worthwhile to point out that we defined the stochastic
integral under the assumption that the integrand is progressively measurable,
which implies, intuitively, that its value does not depend on the future
increments of the Brownian motion.

This hypothesis is essential in the derivation of some of the most important
properties of the stochastic integral, as already pointed out at the end of the
proof of Lemma 7.1. Exercise 7.9 shows that strange things happen when
one tries to mimic the construction of the stochastic integral without this
assumption.

For the usual integral multiplying constants can be taken in and out of the integral
sign. This is also true for the stochastic integral, but a certain condition is necessary,
which requires attention.

Theorem 7.6 Let Z be a real Fa-measurable r.v.; then for every X 2
M2

loc.Œa; b�/

Z b

a
ZXt dBt D Z

Z b

a
Xt dBt : (7.34)

Proof Let us consider the case of an elementary integrand

Xt D
mX

iD1
Xi1Œti;tiC1Œ.t/ :

Then ZX is still an elementary process. Indeed ZXt D Pn
iD1 ZXi1Œti;tiC1Œ.t/ and, as Z

is Fti -measurable for every i D 1; : : : ;m, the r.v.’s ZXi remain Fti -measurable (here
the hypothesis that Z is Fa-measurable and therefore Fti -measurable for every i is
crucial). It is therefore immediate that the statement is true for elementary processes.
Once the statement is proved for elementary processes it can be extended first to
processes in M2 and then in M2

loc by straightforward methods of approximation. The
details are left to the reader. ut
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Note also that if the condition “Z Fa-measurable” is not satisfied, the rela-
tion (7.34) is not even meaningful: the process t 7! ZXt might not be adapted and
the stochastic integral in this case has not been defined.

7.6 Local martingales

We have seen that, if X 2 M2.Œ0;C1Œ/, .It/t is a martingale and this fact has been
fundamental in order to derive a number of important properties of the stochastic
integral as a process. This is not true in general if X 2 M2

loc.Œ0;C1Œ/: It in this
case might not be integrable. Nevertheless, let us see in this case how .It/t can be
approximated with martingales.

Definition 7.3 A process M D .˝;F ; .Ft/t; .Mt/t;P/ is said to be a local
martingale if there exists an increasing sequence .�n/n of stopping times such
that

i) �n % C1 as n ! 1 a.s.
ii) .Mt^�n/t is a .Ft/t-martingale for every n.

We shall say that a sequence .�n/n as above reduces the local martingale M.

It is clear that every martingale is a local martingale (just choose �n � C1).
The important motivation of this definition is that the stochastic integral of a

process X 2 M2
loc is a local martingale: going back to Definition 7.2, if �n D

infftI R t
0

X2s ds > ng and

It D
Z t

0

Xs dBs

then

It^�n D
Z t^�n

0

Xs dBs D
Z t

0

Xs1fs<�ng dBs

and the right-hand side is a (square integrable) martingale, being the stochastic
integral of the process s 7! Xs1fs<�ng which belongs to M2.



206 7 The Stochastic Integral

Remark 7.6

a) If M is a local martingale, then Mt might be non-integrable. However, M0

is integrable. In fact M0 D M0^�n and .Mt^�n/t is a martingale.
b) Every local martingale has a right-continuous modification. Actually, this

is true for all the stopped martingales .Mt^�n/t by Theorem 5.14, so that
t 7! Mt has a right continuous modification for t � �n for every n. Now
just observe that �n ! C1 as n ! 1 a.s.

c) In Definition 7.3 we can always assume that .Mt^�n/t is a uniformly
integrable martingale for every n. If .�n/n reduces M the same is true for
�n D �n ^ n. Indeed, condition i) is immediate. Also the fact that .Mt^�n/t
is a martingale is immediate, being the martingale .M�n^t/t stopped at time
n. Therefore .�n/n also reduces M. Moreover, M�n is integrable because
M�n D Mn^�n and .Mt^�n/t is a martingale. We also have

Mt^�n D EŒM�n jFt� : (7.35)

In fact for t � n we have EŒM�n jFt� D EŒMn^�n jFt� D Mt^�n ,
thanks to the martingale property of .Mt^�n/t, whereas, if t > n, M�n D
Mn^�n is already Ft-measurable. (7.35) implies that .Mt^�n/t is uniformly
integrable.

d) If, moreover, M is continuous, then we can assume that the stopped
martingale .Mt^�n/t is bounded. Let �n D infftI jMtj � ng and �n D �n^�n,
then the sequence .�n/n again satisfies the conditions of Definition 7.3 and,
moreover, jM�n^tj � n for every t.

We shall always assume that the stopped martingales .Mt^�n/t are uniformly
integrable and, if .Mt/t is continuous, that they are also bounded, which is always
possible thanks to the previous remark.

As remarked above, in general a local martingale need not be integrable.
However, it is certainly integrable if it is positive, which is one of the consequences
of the following result.

Proposition 7.5 A positive local martingale is a supermartingale.

Proof Let .�n/n be a sequence of stopping times that reduces M. Then Mt^�n ! Mt

as n ! C1 and by Fatou’s lemma

E.Mt/ � lim
n!1 E.Mt^�n/ D E.M0/ ;
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therefore Mt is integrable. We must now prove that if A 2 Fs and s < t, then
E.Mt1A/ � E.Ms1A/, i.e. that

EŒ.Mt � Ms/1A� � 0 : (7.36)

We have

EŒ1A\f�n>sg.Mt^�n � Ms/� D EŒ1A\f�n>sg.Mt^�n � Ms^�n/� D 0 : (7.37)

Indeed A \ f�n > sg 2 Fs and .Mt^�n/t is a martingale, which justifies the last
equality. Also we used the fact that on f�n > sg the r.v.’s Ms and Ms^�n coincide. As

lim
n!1 1A\f�n>sg.Mt^�n � Ms/ D 1A.Mt � Ms/

and

1A\f�n>sg.Mt^�n � Ms/ � �Ms ;

we can apply Fatou’s lemma (we proved above that �Ms is integrable), which gives

0 D lim
n!1

EŒ1A\f�n>sg.Mt^�n � Ms/� � EŒ1A.Mt � Ms/� ;

completing the proof. ut

Remark 7.7 A bounded local martingale M is a martingale. This is almost
obvious as, if the sequence .�n/n reduces M, then

E.Mt^�n jFs/ D Ms^�n

and we can take the limit as n ! 1 using Lebesgue’s theorem for conditional
expectations (Proposition 4.2).

Note, however, that other apparently strong assumptions are not sufficient
to guarantee that a local martingale is a martingale. For instance, there
exist uniformly integrable local martingales that are not martingales (see
Example 8.10). A condition for a local martingale to be a true martingale
is provided in Exercise 7.15.

Proposition 7.6 Let M be a continuous local martingale. Then there exists
a unique continuous increasing process .At/t, which we continue to call the
associated increasing process to M, such that Xt D M2

t � At is a continuous
local martingale.
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The proof is not difficult and consists in the use of the definition of a local
martingale in order to approximate M with square integrable martingales, for which
Theorem 5.16 holds. Instead of giving the proof, let us see what happens in the
situation that is of greatest interest to us.

Proposition 7.7 If X 2 M2
loc.Œ0;T�/ and It D R t

0
Xs dBs, then .It/0�t�T is a

local martingale whose increasing process is

At D
Z t

0

X2s ds :

Proof We know already that I is a local martingale. In order to complete the proof
we must prove that .I2t � At/t is a local martingale. Let �n D infftI R t

0
X2s ds > ng,

then we know already that .�n/n reduces I and that

It^�n D
Z t^�n

0

Xs dBs D
Z t

0

1fs<�ngXs dBs

is a square integrable .Ft/t-martingale. By Proposition 7.3 and Lemma 7.5,

I2t^�n
� At^�n D

� Z t

0

1fs<�ngXs dBs

�2 �
Z t

0

1fs<�ngX2s ds

is a martingale, which means that .�n/n reduces .I2t � At/t, which is therefore a local
martingale. ut
We shall still denote by .hMit/t the associated increasing process of the local
martingale M.

Corollary 7.2 If M and N are continuous local martingales, then there exists
a unique process A with finite variation such that Zt D MtNt � At is a
continuous local martingale.

The proof of the corollary boils down to the observation that MtNt D 1
4
..Mt CNt/

2�
.Mt � Nt/

2/, so that At D 1
4
.hM C Nit � hM � Nit/ satisfies the requirement. .At/t

is a process with finite variation, being the difference of two increasing processes.
We will denote by hM;Ni the process with finite variation of Corollary 7.2.
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Exercises

7.1 (p. 523) Let B be a Brownian motion.

a) Compute

Z D
Z 1

0

1fBtD0g dBt :

b) Let

Z D
Z 1

0

1fBt�0g dBt :

Compute EŒZ� and Var.Z/.

• Note that the processes t 7! 1fBtD0g and t 7! 1fBt�0g are progressively
measurable, thanks to Exercise 2.3.

7.2 (p. 523) Compute

E
�

Bs

Z t

0

Bu dBu

�
:

7.3 (p. 523) Let B be a standard Brownian motion and Yt D R t
0

es dBs. If

Zt D
Z t

0

Ys dBs ;

compute E.Zt/, E.Z2t / and E.ZtZs/.

7.4 (p. 524)

a) Compute, for s � t,

E
h
B2s
� Z t

s
Bu dBu

�2i
:

b) Prove that, if X 2 M2.Œs; t�/, the r.v. Z D R t
s Xu dBu is uncorrelated with Bv; v � s,

but, in general, it is not independent of Fs.

7.5 (p. 525) Let

Xt D
Z t

0

e�B2s dBs :

Prove that X is a square integrable martingale. Is it bounded in L2?
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7.6 (p. 525) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a two-dimensional standard
Brownian motion and let

Zt D
Z t

0

1

1C 4s
dB1.s/

Z s

0

e�B1.u/2 dB2.u/ :

a) Is Z a martingale? Determine the processes .hZit/t and .hZ;B1it/t.
b) Prove that the limit Z1 D limt!C1 Zt exists a.s. and in L2 and compute EŒZ1�

and Var.Z1/.

7.7 (p. 526)

a) Let f 2 L2.Œs; t�/; show that W D R t
s f .u/ dBu is independent of Fs.

b) Let ˚ W R
C ! R

C be a strictly increasing differentiable function such that
˚.0/ D 0 and let

B˚t D
Z ˚�1.t/

0

p
˚ 0.u/ dBu :

Then B˚ is a Brownian motion. With respect to which filtration?

7.8 (p. 527) Show that the r.v.
R t
0

B2u du is orthogonal in L2.˝;F ;P/ to every r.v.
of the form

R s
0

f .u/ dBu, for every s > 0 and f 2 L2.Œ0; s�/.

7.9 (p. 528) Let B D .˝;F ; .Ft/t; .Bt/t/ be a Brownian motion and let 0 D t0 <
t1 < � � � < tn D t be a partition of the interval Œ0; t� and j�j D maxiD0;:::;n�1 jtiC1� tij
the amplitude of the partition. Mr. Whynot decides to approximate the stochastic
integral

Z t

0

Xs dBs

for a continuous adapted process X with the Riemann sums

n�1X

iD0
XtiC1

.BtiC1
� Bti/ (7.38)

instead of the sums

n�1X

iD0
Xti.BtiC1

� Bti/ (7.39)
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as indicated (and recommended!) in Proposition 7.4. He argues that, if this were
an ordinary integral instead of a stochastic integral, then the result would be the
same.

a) Compute the limit of the sums (7.38) as the amplitude of the partition tends to 0
when X D B.

b) Do the same thing assuming that the process X has paths with finite variation.

7.10 (p. 529) Let B be a Brownian motion and f 2 L2.RC/.

a) Show that the limit

lim
t!C1

Z t

0

f .s/ dBs

exists in L2. Does it also exist a.s.?
b) Let g W RC ! R

C be a function such that
R T
0 g.s/2 ds < C1 for every T > 0.

b1) Show that

Yt D e
R t
0 g.s/ dBs� 1

2

R t
0 g.s/2 ds

is a martingale. Compute EŒY2t �.
b2) Prove that if g 2 L2.RC/ then .Yt/t is uniformly integrable.
b3) Assume, conversely, that

R C1
0 g.s/2 ds D C1. Compute EŒY˛t � for ˛ < 1.

What is the value of limt!C1 Yt now? Is .Yt/t uniformly integrable in this
case?

7.11 (p. 530) a) For t < 1 let B a Brownian motion and

Yt D .1 � t/
Z t

0

dBs

1 � s
�

a1) Show that .Yt/t is a Gaussian process and compute E.YtYs/, 0 � s < t < 1.
Does this remind you of a process we have already met?

a2) Show that the limit limt!1� Yt exists in L2 and compute it.
b) Let A.s/ D s

1Cs and let

Ws D
Z A.s/

0

dBu

1 � u
�

Show that .Ws/s is a Brownian motion and deduce that limt!1� Yt D 0 a.s.
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7.12 (p. 531) Let .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and 	 > 0. Let

Yt D
Z t

0

e�	.t�s/ dBs; Zt D
Z t

0

e�	s dBs :

a) Prove that, for every t > 0, Yt and Zt have the same law and compute it.
b) Show that .Zt/t is a martingale. And .Yt/t?
c) Show that limt!C1 Zt exists a.s. and in L2.

d1) Show that limt!C1 Yt exists in law and determine the limit law.
d2) Show that

lim
t!C1 EŒ.YtCh � Yt/

2� D 1

	
.1 � e�	h/

and therefore .Yt/t cannot converge in L2.

7.13 (p. 532) Let B be a Brownian motion and leteB0 D 0 and

eBt D
Z t

0

�
3 � 12u

t
C 10u2

t2

�
dBu :

a) Show thateB is a natural Brownian motion.
b) Let Y D R 1

0 u dBu. Show that Y is independent ofeBt for every t � 0.
c) Show that the �-algebra generated by eBt, t � 0 is strictly smaller than the �-

algebra generated by Bt, t � 0.

7.14 (p. 533) Let X 2 M2.Œ0;T�/. We know that
R t
0 Xs dBs is square integrable. Is

the converse true? That is if X 2 M2
loc.Œ0;T�/ and its stochastic integral is square

integrable, does this imply that X 2 M2.Œ0;T�/ and that its stochastic integral is
a square integrable martingale? The answer is no (a counterexample is given in
Exercise 8.21). This exercise goes deeper into this question.

Let .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let X 2 M2
loc.Œ0;T�/ and

Mt D R t
0 Xs dBs.

a) Let �n D infftI R t
0 X2s ds > ng with the understanding that �n D T if

R T
0 X2s ds � n.

Prove that

E
h Z �n

0

X2s ds
i

� E
h

sup
0�t�T

M2
t

i
:
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b) Prove that X 2 M2.Œ0;T�/ if and only if

E
h

sup
0�t�T

M2
t

i
< C1 : (7.40)

7.15 (p. 533) Let M D .˝;F ; .Ft/t; .Mt/t;P/ be a local martingale and assume
that for every t > 0 the family .Mt^� /� is uniformly integrable, with � ranging
among all stopping times of .Ft/t. Prove that .Mt/t is a martingale.



Chapter 8
Stochastic Calculus

8.1 Ito’s formula

Let X be a process such that, for every 0 � t1 < t2 � T,

Xt2 � Xt1 D
Z t2

t1

Ft dt C
Z t2

t1

Gt dBt ;

where F 2 M1
loc.Œ0;T�/ and G 2 M2

loc.Œ0;T�/. We say then that X admits the
stochastic differential

dXt D Ft dt C Gt dBt :

A process admitting a stochastic differential is called an Ito process. An Ito process
is therefore the sum of a process with finite variation and of a local martingale.

Remark 8.1 The stochastic differential is unique: if there existed A1;A2 2
M1

loc.Œ0;T�/, G1;G2 2 M2
loc.Œ0;T�/ such that

A1.t/ dt C G1.t/ dBt D A2.t/ dt C G2.t/ dBt ;

then, for every 0 � t � T, we would have a.s.

At
defD

Z t

0

.A1.s/� A2.s// ds D
Z t

0

.G2.s/� G1.s// dBs
defD Gt

and this is not possible, unless the two integrands are identically zero, as the
left-hand side is a process with finite variation, whereas the right-hand side,
which is a local martingale, is not.
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We shall write

hXit D
Z t

0

G2
s ds :

hXi is nothing else than the increasing process (see Proposition 7.6) associated to
the local martingale appearing in the definition of X, and it is well defined thanks to
the previous remark. Similarly, if Y is another Ito process with stochastic differential

dYt D Ht dt C Kt dBt;

we shall set

hX;Yit D
Z t

0

GsKs ds :

Example 8.1 Let us compute the stochastic differential of Xt D B2t . The
analogy with standard calculus might suggest that dXt D 2Bt dBt, but we
have already remarked that this cannot be as it would give B2t D 2

R t
0

Bs dBs,
which is impossible because the stochastic integral is a centered r.v. whereas
B2t is not.

Let 0 � t1 < t2 � T and �n D ft1 D tn;1 < tn;2 < � � � < tn;mn D t2g be a
partition of Œt1; t2� such that j�nj ! 0, then by Proposition 7.4, meaning the
limits in probability,

Z t2

t1

Bt dBt D lim
n!1

mn�1X

kD1
Btn;k ŒBtn;kC1

� Btn;k �

D 1

2
lim

n!1

mn�1X

kD1

�
ŒB2tn;kC1

� B2tn;k �� ŒBtn;kC1
� Btn;k �

2
�

D 1

2
ŒB2t2 � B2t1 � �

1

2
lim

n!1

mn�1X

kD1
ŒBtn;kC1

� Btn;k �
2 :

By Proposition 3.4 the rightmost limit is equal to t2 � t1 in L2; therefore

Z t2

t1

Bt dBt D 1

2
.B2t2 � B2t1 / � 1

2
.t2 � t1/ ;

i.e.

dB2t D dt C 2Bt dBt : (8.1)
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Example 8.2 Xt D tBt. With the notations of the previous example

Z t2

t1

t dBt D lim
n!1

mn�1X

kD1
tn;k.Btn;kC1

� Btn;k/

Z t2

t1

Bt dt D lim
n!1

mn�1X

kD1
Btn;k.tn;kC1 � tn;k/ :

Let us compute the limit, in probability,

lim
n!1

� mn�1X

kD1
Btn;k.tn;kC1 � tn;k/C

mn�1X

kD1
tn;k.Btn;kC1

� Btn;k/
�

D lim
n!1

n mn�1X

kD1

�
Btn;k.tn;kC1 � tn;k/C tn;kC1.Btn;kC1

� Btn;k/
�

C
mn�1X

kD1
.tn;k � tn;kC1/.Btn;kC1

� Btn;k/
o
:

(8.2)

But as

ˇ
ˇ
ˇ

mn�1X

kD1
.tn;kC1 � tn;k/.Btn;kC1

� Btn;k/
ˇ
ˇ
ˇ

� max
kD1;:::;mn�1 jBtn;kC1

� Btn;k j
mn�1X

kD1
jtn;kC1 � tn;kj

„ ƒ‚ …
Dt2�t1

;

thanks to the continuity of the paths of B, the quantity above converges to 0
a.s. Therefore the limit in (8.2) is equal to

lim
n!1

mn�1X

kD1

�
Btn;k.tn;kC1 � tn;k/C tn;kC1.Btn;kC1

� Btn;k/
�

D lim
n!1

mn�1X

kD1
Œtn;kC1Btn;kC1

� tn;kBtn;k � :

(continued)
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Example 8.2 (continued)
Hence

Z t2

t1

Bt dt C
Z t2

t1

t dBt D lim
n!1

mn�1X

kD1
Œtn;kC1Btn;kC1

� tn;kBtn;k � D t2Bt2 � t1Bt1 ;

i.e.

d.tBt/ D Bt dt C t dBt : (8.3)

Proposition 8.1 If Xi, i D 1; 2, are processes with stochastic differentials

dXi.t/ D Fi.t/ dt C Gi.t/ dBt

then

d.X1.t/X2.t// D X1.t/ dX2.t/C X2.t/ dX1.t/C G1.t/G2.t/ dt
D X1.t/ dX2.t/C X2.t/ dX1.t/C dhX1;X2it :

(8.4)

Proof If F1, G1, F2, G2 are constant on Œt1; t2�, the statement is a consequence
of (8.1) and (8.3). If, conversely, they are elementary processes, let I1; : : : ; Ir be
the subintervals of Œt1; t2� on which F1, F2, G1, G2 are constants; the statement
follows now using (8.1) and (8.3) applied to each of the intervals Ik and taking
the sum. In general, let Fi;n, Gi;n, i D 1; 2, be elementary processes in M1

loc.Œ0;T�/
and M2

loc.Œ0;T�/, respectively, and such that

Z T

0

jFi;n.t/ � Fi.t/j dt !
n!1 0 a.s.

Z T

0

jGi;n.t/ � Gi.t/j2 dt !
n!1 0 a.s.

and let

Xi;n.t/ D Xi.0/C
Z t

0

Fi;n.s/ ds C
Z t

0

Gi;n.s/ dBs :

By Theorem 7.4

sup
0�t�T

jXi;n.t/ � Xi.t/j P!
n!1 0
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so that, possibly considering a subsequence, Xi;n.t/ ! Xi.t/ as n ! 1 uniformly
a.s. Therefore

Z t2

t1

X1;n.t/F2;n.t/ dt !
n!1

Z t2

t1

X1.t/F2.t/ dt a.s.

Z t2

t1

X2;n.t/F1;n.t/ dt !
n!1

Z t2

t1

X2.t/F1.t/ dt a.s.

Z t2

t1

G1;n.t/G2;n.t/ dt !
n!1

Z t2

t1

G1.t/G2.t/ dt a.s.

and by Theorem 7.4

Z t2

t1

X1;n.t/G2;n.t/ dBt
P!

n!1

Z t2

t1

X1.t/G2.t/ dBt

Z t2

t1

X2;n.t/G1;n.t/ dBt
P!

n!1

Z t2

t1

X2.t/G1.t/ dBt

and taking the limit as n ! 1 we obtain (8.4). ut
Note that the formula for the differential of the product of two processes is a

bit different from the corresponding one for the differential of the product of two
functions. Actually there is an extra term, namely

dhX1;X2it :

Note also that if at least one of G1 and G2 vanishes, then this additional term also
vanishes and we have the usual relation

dX1.t/X2.t/ D X1.t/ dX2.t/C X2.t/ dX1.t/ :

Let f W R � R
C be a regular function of .x; t/ and X an Ito process. What is the

stochastic differential of the process t 7! f .Xt; t/? The answer to this question is
Ito’s formula, which will be a key tool of computation from now on. In the next
theorem note again that the differential df .Xt; t/ behaves as an ordinary differential
plus an extra term.

Theorem 8.1 (Ito’s formula) Let X be a process with stochastic differential

dXt D F.t/ dt C G.t/ dBt

(continued)
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Theorem 8.1 (continued)
and let f W Rx �R

C
t ! R be a continuous function in .x; t/, once continuously

differentiable in t and twice in x. Then

df .Xt; t/

D @f

@t
.Xt; t/ dt C @f

@x
.Xt; t/ dXt C 1

2

@2f

@x2
.Xt; t/G.t/

2 dt

D
�@f

@t
.Xt; t/C @f

@x
.Xt; t/F.t/C 1

2

@2f

@x2
.Xt; t/G.t/

2
�

dt

C@f

@x
.Xt; t/G.t/ dBt :

(8.5)

Proof (The main ideas)

1ı Step: let us assume f .x; t/ D xn; (8.5) becomes

dXn
t D nXn�1

t dXt C 1
2

n.n � 1/Xn�2
t G2

t dt :

This relation is obvious for n D 1 and follows easily by induction by
Proposition 8.1.

2ı Step: (8.5) is therefore true if f .x; t/ is a polynomial P.x/. Let us assume now
that f is of the form f .x; t/ D P.x/gt. We have

dP.Xt/ D ŒP0.Xt/Ft C 1
2

P00.Xt/G
2
t � dt C P0.Xt/Gt dBt

dgt D g0
t dt

and again (8.5) follows easily for such f , thanks to Proposition 8.1.
3ı Step: (8.5) is therefore true if f is of the form

f .x; t/ D
X̀

iD1
Pi.x/gi.t/ (8.6)

where the Pi’s are polynomials and the gi’s are differentiable functions. If f is
continuous in .x; t/, once continuously differentiable in t and twice in x, one can
prove that there exists a sequence . fn/n of functions of this form such that

fn.x; t/ ! f .x; t/;

@

@x
fn.x; t/ ! @

@x
f .x; t/;

@

@t
fn.x; t/ ! @

@t
f .x; t/;

@2

@x2
fn.x; t/ ! @2

@x2
f .x; t/
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as n ! 1 uniformly on compact sets of R � R
C (see Friedman 1975, p. 95 for

a proof). We have, for t1 < t2 � T,

fn.Xt2 ; t2/ � fn.Xt1 ; t1/

D
Z t2

t1

h@fn
@t
.Xt; t/C @fn

@x
.Xt; t/Ft C 1

2

@2fn
@x2

.Xt; t/G
2
t

i
dt

C
Z t2

t1

@fn
@x
.Xt; t/Gt dBt :

(8.7)

As n ! 1 the first integral on the right-hand side converges toward

Z t2

t1

h@f

@t
.Xt; t/C @f

@x
.Xt; t/Ft C 1

2

@2f

@x2
.Xt; t/G

2
t

i
dt :

Actually, t 7! Xt is continuous and therefore bounded on Œt1; t2� for every !;
therefore @

@t fn.Xt; t/ converges uniformly to ft.Xt; t/ and the same holds for the
other derivatives. Moreover,

Z t1

t1

ˇ
ˇ@fn
@x
.Xt; t/ � @f

@x
.Xt; t/

ˇ
ˇ2G2

t dt
P!

n!1 0

and by Theorem 7.4

Z t2

t1

@fn
@x
.Xt; t/Gt dBt

P!
n!1

Z t2

t1

@f

@x
.Xt; t/Gt dBt :

We can therefore take the limit as n ! 1 in (8.7) and the statement is proved.
ut

Example 8.3 As a particular case, if f W R ! R is twice differentiable and

dXt D Ft dt C Gt dBt

then

df .Xt/ D f 0.Xt/ dXt C 1

2
f 00.Xt/G

2
t dt D f 0.Xt/ dXt C 1

2
f 00.Xt/dhXit :

In particular,

df .Bt/ D f 0.Bt/ dBt C 1

2
f 00.Bt/ dt :
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Example 8.4 If f W RC ! R is differentiable then

Z T

0

f .s/ dBs D f .T/BT �
Z T

0

Bs f 0.s/ ds :

Actually Ito’s formula (or more simply (8.4)) gives

df .t/Bt D f 0.t/Bt dt C f .t/ dBt :

Example 8.5 Let us compute the stochastic differential of

Zt D .1 � t/
Z t

0

dBs

1 � s
�

In Exercise 7.11 it is shown that Y is a Brownian bridge. There are two
possibilities in order to apply Ito’s formula. The first one is to write Zt D XtYt

where

Xt D 1 � t; Yt D
Z t

0

dBs

1 � s
,

i.e.

dXt D �dt; dYt D 1

1 � t
dBt :

Proposition 8.1 gives therefore

dZt D Yt dXt C Xt dYt D �Yt dt C dBt : (8.8)

Actually here hX;Yit � 0. Observing that Zt D .1�t/Yt, the previous relation
becomes

dZt D � 1

1 � t
Zt dt C dBt ;

which is our first example of a Stochastic Differential Equation.
A second possibility in order to compute the stochastic differential is to

write Zt D g.Yt; t/, where g.x; t/ D .1 � t/x. Now

@g

@t
.x; t/ D �x;

@g

@x
.x; t/ D 1 � t;

@2g

@x2
.x; t/ D 0

(continued)
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Example 8.5 (continued)
and the computation gives again

dZt D @g

@t
.Yt; t/ dt C @g

@x
.Yt; t/ dYt D �Yt dt C dBt D � 1

1 � t
Zt dt C dBt :

Example 8.6 In Exercise 5.13 we proved that

Yt D tBt �
Z t

0

Bu du

is a martingale. Let us see how Ito’s formula makes all these computations
simpler. We have

dYt D t dBt C Bt dt � Bt dt D t dBt

i.e., as Y0 D 0,

Yt D
Z t

0

s dBs

so that Y, being the stochastic integral of a (deterministic) process of M2, is
a square integrable martingale. This representation also makes it particularly
easy to compute the variance of Y, which was done in Exercise 5.13 with
some effort: we have

E.Y2t / D
Z t

0

s2 ds D t3

3
�

Example 8.6 points out how Ito’s formula allows to check that a process is a
martingale: first compute its stochastic differential. If the finite variation term
vanishes (i.e. there is no term in dt) then the process is a stochastic integral and
necessarily a local martingale. If, moreover, it is the stochastic integral of a process
in M2, then it is a martingale (we shall see in the examples other ways of proving
that a stochastic integral is actually a martingale). This method of checking that a
process is a martingale also provides immediately the associated increasing process.
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Remark 8.2 It is possible to give a heuristic explanation of the extra term
appearing in Ito’s formula. Thinking of differentials in the old way we find

df .Xt/ D f 0.Xt/ dXt C 1

2
f 00.Xt/.dXt/

2 C : : :

D f 0.Xt/.At dt C Gt dBt/C 1

2
f 00.Xt/.At dt C Gt dBt/

2 C : : :

D f 0.Xt/.At dt C Gt dBt/C 1

2
f 00.Xt/.A

2
t dt2 C 2AtGt dt dBt C G2

t .dBt/
2/C : : :

At this point in ordinary calculus only the first term is considered, all the terms
in dt2 or of higher order being negligible in comparison to dt. But now it turns
out that dBt “behaves as”

p
dt so that the term 1

2
f 00.Xt/G2

t .dBt/
2 is no longer

negligible with respect to dt. . .

8.2 Application: exponential martingales

If X 2 M2
loc.Œ0;T�/ and 	 2 C let

Zt D 	

Z t

0

Xs dBs � 	2

2

Z t

0

X2s ds

Yt D eZt :

(8.9)

Let us compute the stochastic differential of Y. We must apply Ito’s formula to
t 7! f .Zt/ with f .x/ D ex: as f 0.x/ D f 00.x/ D ex, we find

dYt D eZt dZt C 1

2
eZt dhZit

D eZt

�
	Xt dBt � 	2

2
X2t dt

�
C 1

2
eZt 	2X2t dt D 	XtYt dBt ;

(8.10)

i.e., keeping in mind that Y0 D 1,

Yt D 1C 	

Z t

0

YsXs dBs : (8.11)

Therefore Y is a local martingale. If 	 2 R it is a positive local martingale and, by
Proposition 7.5, a supermartingale; in particular, if 	 2 R, then

E.Yt/ � E.Y0/ D 1

for every t � T.
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In the future, we shall often deal with the problem of proving that, if 	 2 R, Y is
a martingale. Indeed, there are two ways to do this:

1) by showing that E.Yt/ D 1 for every t (a supermartingale is a martingale if and
only if it has constant expectation, Exercise 5.1);

2) by proving that YX 2 M2.Œ0;T�/. In this case Y is even square integrable.

We know (Lemma 3.2) the behavior of the “tail” of the distribution of Bt:

P.jBtj � x/ � const e� 1
2t x2 ;

and the reflection principle allows us to state a similar behavior for the tail of the r.v.
sup0�t�T jBtj. The next statement allows us to say that a similar behavior is shared
by stochastic integrals, under suitable conditions on the integrand.

Proposition 8.2 (Exponential bound) Let X 2 M2.Œ0;T�/ be such
that

R T
0

X2s ds � k a.s. for some constant k > 0. Then, for every x > 0,

P
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ � x

�
� 2e� x2

2k : (8.12)

Proof Let Mt D R t
0

Xs dBs and At D hMit D R t
0

X2s ds. Then as At � k, for every

 > 0,

fMt � xg D fe
Mt � e
xg � fe
Mt� 1
2 


2At � e
x� 1
2 


2kg :

The maximal inequality (5.15) applied to the supermartingale t 7! e
Mt� 1
2 


2At gives

P
�

sup
0�t�T

Mt � x
�

� P
�

sup
0�t�T

e
Mt� 1
2 


2At � e
x� 1
2 


2k
�

� e�
xC 1
2 


2k :

This inequality holds for every 
 > 0. The minimum of 
 7! �
x C 1
2

2k for 
 > 0

is attained at 
 D x
k and its value is � x2

2k . Substituting this value into the right-hand
side we get

P
�

sup
0�t�T

Mt � x
�

� e� x2

2k : (8.13)

The same argument applied to �M gives

P
�

inf
0�t�T

Mt � �x
�

� e� x2

2k ;

which allows us to conclude the proof. ut
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If the process X appearing in (8.9) is of the form
Pm

iD1 	iXi.s/ with X1; : : : ;Xm 2
M2

loc.Œ0;T�/, 	 D .	1; : : : ; 	m/ 2 C
m, then we obtain that if

Yt D exp
� Z t

0

mX

iD1
	iXi.s/ dBs � 1

2

Z t

0

mX

i;jD1
	i	jXi.s/Xj.s/ ds

�
;

we have

Yt D 1C
mX

iD1
	i

Z t

0

YsXi.s/ dBs ; (8.14)

i.e. Y is a local martingale. This is the key tool in order to prove the following
important result.

Theorem 8.2 Let X 2 M2
loc.Œ0;C1Œ/ be such that

Z C1

0

X2s ds D C1 a.s. (8.15)

Then, if �.t/ D inffuI R u
0

X2s ds > tg, the process

Wt D
Z �.t/

0

Xs dBs

is a (continuous) Brownian motion.

Proof We first compute, using (8.14), the finite-dimensional distributions of W,
verifying that they coincide with those of a Brownian motion. Next we shall prove
that W is continuous. Let 0 � t1 < � � � < tm; as �.t/ is a finite stopping time for
every t,

Wtj D
Z �.tj/

0

Xs dBs D lim
t!C1

Z �.tj/^t

0

Xs dBs D lim
t!C1

Z t

0

Xs1fs<�.tj/g dBs :

(8.16)

In order to determine the joint distribution of .Wt1 ; : : : ;Wtm/ we investigate the
characteristic function

E
h

exp
� mX

jD1
i
jWtj

�i
D E

h
exp

� mX

jD1
i
j

Z �.tj/

0

Xs dBs

�i
:
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Let us write (8.14) setting Xj.s/ D Xs1fs<�.tj/g and 	j D i
j, 
j 2 R:

Yt D exp
h mX

jD1
i
j

Z t

0

Xj.s/ dBs C 1

2

mX

h;kD1

h
k

Z t

0

Xh.s/Xk.s/ ds
i

D exp
h mX

jD1
i
j

Z t^�.tj/

0

Xs dBs C 1

2

mX

h;kD1

h
k

Z t^�.th/^�.tk/

0

X2s ds
i
:

(8.17)

We have, by (8.14),

Yt D 1C
mX

jD1
i
j

Z t

0

YsXj.s/ dBs : (8.18)

Moreover, Yt is bounded for every t as

Z t

0

Xh.s/Xk.s/ ds D
Z t^�.th/^�.tk/

0

X2s ds � th ^ tk (8.19)

and therefore, by (8.17),

jYtj � exp
h1

2

mX

h;kD1

h
k.th ^ tk/

i
: (8.20)

Y is therefore a bounded local martingale, hence a martingale, from which we
deduce that E.Yt/ D E.Y0/ D 1 for every t, i.e.

E
h

exp
� mX

jD1
i
j

Z t^�.tj/

0

Xs dBs C 1

2

mX

h;kD1

h
k

Z t^�.th/^�.tk/

0

X2s ds
�i

D 1 : (8.21)

But

lim
t!C1

Z t^�.th/^�.tk/

0

X2s ds D
Z �.th/^�.tk/

0

X2s ds D th ^ tk

and therefore, by (8.16) and Lebesgue’s theorem (the r.v.’s Yt remain bounded thanks
to (8.20)), taking the limit as t ! C1,

1 D lim
t!C1 EŒYt� D E

h
exp

� mX

jD1
i
jWtj C 1

2

mX

h;kD1

h
k.th ^ tk/

�i
;

i.e.

E
h

exp
� mX

jD1
i
jWtj

�i
D exp

h
� 1

2

mX

h;kD1

h
k.th ^ tk/

i
;
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which is the characteristic function of a centered multivariate Gaussian r.v. with
covariance matrix �hk D th ^ tk. Therefore W has the same finite-dimensional
distributions as a Brownian motion and is actually a Brownian motion.

We now have to prove that the paths are continuous. Let At D R t
0

X2s ds. If this
process, which is obviously continuous, was strictly increasing then we would have
�.t/ D A�1.t/. As the inverse of a continuous function is still continuous, W would
be continuous, being the composition of the two applications

s 7!
Z s

0

Xu dBu and t 7! �.t/ :

If, conversely, A is not strictly increasing, this simple argument does not work, as
t 7! �.t/ might be discontinuous. For instance, if A was constant on an interval
Œa; b�; a < b and t D Aa D Ab, then we would have

�.t/ D inffuI Au > tg � b ;

whereas �.u/ < a for every u < t; therefore necessarily limu!t� �.u/ � a < b �
�.t/. The arguments that follow are required in order to fix this technical point.
However, the idea is simple: if A is constant on Œa; bŒ, then Xt D 0 a.e. on Œa; bŒ, and
therefore t 7! R t

0
Xu dBu is itself constant on Œa; bŒ.

If a W R
C ! R

C is a non-increasing right-continuous function, its pseudo-
inverse is defined as

c.t/ D inffsI a.s/ > tg : (8.22)

� is therefore the pseudo-inverse of A.

Proposition 8.3 Let a be an increasing right-continuous function. Then

a) its pseudo-inverse c is right-continuous.
b) If limt!t0� c.t/ D L < c.t0/, then a is constant � t0 on ŒL; c.t0/Œ.

Proof

a) Let .tn/n be a sequence decreasing to t and let us prove that limn!1 c.tn/ D c.t/;
c being increasing we have limn!1 c.tn/ � c.t/; let us assume that c.tn/ &
L > c.t/ and let us prove that this is not possible. Let u be a number such that
c.t/ < u < L. As u < c.tn/ we have a.u/ � tn for every n. As c.t/ < u we have
t < a.u/. These two inequalities are clearly incompatible.

b) If L � u < c.t0/, then a.u/ � t for every t < t0 and therefore a.u/ � t0. On the
other hand u < c.t0/ implies a.u/ � t0, and therefore a.u/ D t0. ut
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End of the Proof of Theorem 8.2 As � is the pseudo-inverse of A and is therefore
right-continuous, W is right-continuous. If � was left-continuous at t0 then W would
be continuous at t0. If, conversely, limt!t0� �.t/ D L < �.t0/, then A would
be constant on ŒL; �.t0/Œ and therefore Xs D 0 a.e. on ŒL; �.t0/Œ. Therefore by
Proposition 7.2 WL D W�.t0/ a.s. and W is also left-continuous a.s. ut

Corollary 8.1 Under the hypotheses of Theorem 8.2, if At D R t
0

X2s ds we
have

WAt D
Z t

0

Xs dBs :

Proof By definition, A being increasing, �.At/ D inffsI As > Atg � t. If �.At/ D t
the statement follows immediately from Theorem 8.2. If, conversely, �.At/ D L > t
then A is constant on ŒL; tŒ and therefore Xs � 0 on ŒL; tŒ a.s.; then by Proposition 7.2
and Theorem 8.2

WAt D
Z �.At/

0

Xs dBs D
Z t

0

Xs dBs :

ut
Corollary 8.1 states that a stochastic integral is a “time changed” Brownian motion,
i.e. it is a process that “follows the same paths” of some Brownian motion W
but at a speed that changes as a function of t and !. Moreover, the time change
that determines this “speed” is given by a process A that is nothing else than the
associated increasing process of the stochastic integral.

Corollary 8.1 is obviously useful in order to obtain results concerning the
regularity or the asymptotic of the paths of t 7! R t

0
Xs dBs, which can be deduced

directly from those of the Brownian motion (Hölder continuity, Lévy’s modulus of
continuity, Iterated Logarithm Law, . . . ).

8.3 Application: Lp estimates

We have seen in Chap. 7 some L2 estimates for the stochastic integral (mostly thanks
to the isometry property M2 $ L2). If, conversely, the integrand belongs to Mp,
p > 2, is it true that the stochastic integral is in Lp? Ito’s formula allows us to
answer positively and to derive some useful estimates. We shall need them in the
next chapter in order to derive regularity properties of the solutions of Stochastic
Differential Equations with respect to parameters and initial conditions.
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Proposition 8.4 If p � 2 and X 2 M2
loc.Œ0;T�/, then

E
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ
p� � cpE

h� Z T

0

jXsj2 ds
� p
2
i

� cpT
p�2
2 E

�Z T

0

jXsjp ds
�

for some constant cp > 0.

Proof One can of course assume X 2 Mp.Œ0;T�/, otherwise the statement is obvious
(the right-hand side is D C1). Let It D R t

0
Xs dBs and define I�

t D sup0�s�t jIsj.
.It/t is a square integrable martingale and by Doob’s inequality (Theorem 5.12)

E
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Xs dBs

ˇ
ˇ
ˇ
p� D EŒI�

t
p
� �

� p

p � 1

�p
sup
0�t�T

E
�jItjp




D
� p

p � 1

�p
EŒjIT jp� :

(8.23)

Let us apply Ito’s formula to the function f .x/ D jxjp (which is twice differentiable,
as p � 2) and to the process I whose stochastic differential is dIt D Xt dBt.

We have f 0.x/ D p sgn.x/jxjp�1; f 00.x/ D p. p � 1/jxjp�2, where sgn denotes the
“sign” function (D 1 for x � 0 and �1 for x < 0). Then by Ito’s formula

djItjp D f 0.It/ dIt C 1

2
f 00.It/ dhIit

D jIsjp�1 sgn.Is/Xs dBs C 1

2
p. p � 1/jIsjp�2X2s ds ;

i.e., as I0 D 0,

jItjp D p
Z t

0

jIsjp�1 sgn.Is/Xs dBs C 1

2
p. p � 1/

Z t

0

jIsjp�2X2s ds : (8.24)

Let us now first assume jI�
T j � K: this guarantees that jIsjp�1 sgn.Is/Xs 2 M2.Œ0;T�/.

Let us take the expectation in (8.24) recalling that the stochastic integral has zero
mean. By Doob’s inequality, (8.23) and Hölder’s inequality with the exponents p

2

and p
p�2 , we have

EŒI�
T

p
� �

� p

p � 1

�p
EŒjIT jp� D 1

2

� p

p � 1

�p
p. p � 1/

„ ƒ‚ …
WDc0

E
�Z T

0

jIsjp�2X2s ds
�

� c0 E
�

I�
T

p�2
Z T

0

X2s ds
�

� c0 EŒI�
T

p
�
1� 2

p E
h� Z T

0

X2s ds
� p
2
i 2

p
:
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As we assume jI�
T j � K, EŒI�

T
p� < C1 and in the previous inequality we can divide

by EŒI�
T

p�
1� 2

p , which gives

EŒI�
T

p
�
2
p � c0 E

h� Z t

0

X2s ds
� p
2
i 2

p
;

i.e.

EŒI�
T

p
� � c p=2

0 E
h� Z t

0

X2s ds
� p
2
i
: (8.25)

If, conversely, I is not bounded, then let �n D infft � TI jItj � ng (�.n/ D T if
f g D ;). .�n/n is a sequence of stopping times increasing to T, as the paths of I are
continuous and then also bounded. We have therefore I�n^t ! It as n ! 1 and

It^�n D
Z t^�n

0

Xs dBs D
Z t

0

Xs1fs<�ng dBs

so that (8.25) gives

E.I�
T^�n

p
/ � c p=2

0 E
h� Z T

0

jXsj21fs<�ng ds
� p
2
i

� c p=2
0 E

h� Z T

0

jXsj2 ds
� p
2
i
;

and we can just apply Fatou’s lemma. Finally, again by Hölder’s inequality,

E
h� Z T

0

jXsj2 ds
� p
2
i

� T
p�2

p E
h Z T

0

jXsjp ds
i
:

ut

8.4 The multidimensional stochastic integral

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a standard d-dimensional continuous Brownian
motion and let Bt D .B1.t/; : : : ;Bd.t//.

A matrix-valued process �.s/ D .�ij.s//i;j i D 1; : : : ;m, j D 1; : : : ; d, is said
to be in Mp

loc.Œa; b�/, 0 � a < b, if .�ij.s//s is progressively measurable for
every i; j and

i) for every i; j �ij 2 Mp
loc, i.e.

Z b

a
j�ij.s/jp ds < C1 a.s.

We say that � 2 Mp.Œa; b�/ if

i’) for every i; j �ij 2 Mp, i.e. E
h Z b

a
j�ij.s/jp ds

i
< C1.
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Similarly to the one-dimensional case, for fixed d;m, the space M2.Œa; b�/ turns to
be a Hilbert space with norm

k�k2 D E
h Z b

a
j�.s/j2 ds

i
;

where

j�.s/j2/ D
mX

iD1

dX

jD1
�ij.s/

2 D tr.�.s/�.s/�/ :

If � 2 M2
loc.Œa; b�/ then, for every i; j, the stochastic integral

R b
a �ij.t/ dBj.t/ is already

defined. Let

Z b

a
�.t/ dBt D

� dX

jD1

Z b

a
�ij.t/ dBj.t/

�

i
: (8.26)

The stochastic integral in (8.26) is an R
m-valued r.v. Note that the matrix �.s/ is,

in general, rectangular and that the process defined by the stochastic integral has a
dimension (m) which may be different from the dimension of the Brownian motion
(d). It is clear, by the properties of the stochastic integral in dimension 1, that, if
� 2 M2

loc.Œ0;T�/, the process It D R t
0
�.s/ dBs has a continuous version and every

component is a local martingale (it is easy to see that a sum of local martingales
with respect to the same filtration is still a local martingale).

In the next statements we determine the associated increasing processes to these
local martingales.

Lemma 8.1 Let X1;X2 2 M2.Œ0;T�/ be real processes and

I1.t/ D
Z t

0

X1.u/ dB1.u/; I2.t/ D
Z t

0

X2.u/ dB2.u/ :

Then, for 0 � s � t � T,

E
� Z t

s
X1.u/ dB1.u/

Z t

s
X2.u/ dB2.u/

ˇ
ˇFs

�
D 0 : (8.27)

In particular, the process

t 7! I1.t/I2.t/

is a martingale and hI1; I2it � 0.
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Proof Let us first prove the statement for elementary processes. Let

X1.t/ D
nX

jD1
X.1/i 1Œti;tiC1Œ; X2.t/ D

nX

jD1
X.2/i 1Œti;tiC1Œ :

Then

E
h Z t

s
X1.u/ dB1.u/

Z t

s
X2.u/ dB2.u/

ˇ
ˇ
ˇFs

i

E
h nX

i;jD1
X.1/i

�
B1.tiC1/� B1.ti/

�
X.2/j

�
B2.tjC1/� B2.tj/

� ˇˇ
ˇFs

i

D
nX

i;jD1
E
�
X.1/i

�
B1.tiC1/ � B1.ti/

�
X.2/j

�
B2.tjC1/� B2.tj/

� ˇˇFs


:

(8.28)

Note first that all the terms appearing in the conditional expectation on the right-
hand side are integrable, as the r.v.’s X.k/i

�
Bk.tiC1/ � Bk.ti/

�
are square integrable,

being the product of square integrable and independent r.v.’s (recall that X.k/i is Fti -

measurable). Now if ti < tj then, as the r.v.’s X.1/i ;B1.tiC1/� B1.ti/;X
.2/
j are already

Ftj -measurable,

E
�
X.1/i

�
B1.tiC1/� B1.ti/

�
X.2/j

�
B2.tjC1/� B2.tj/

� ˇˇFs



D E
�
E
�
X.1/i

�
B1.tiC1/� B1.ti/

�
X.2/j

�
B2.tjC1/ � B2.tj/

� ˇˇFtj


 ˇˇFs



D E
�
X.1/i

�
B1.tiC1/� B1.ti/

�
X.2/j E

��
B2.tjC1/ � B2.tj/

� ˇˇFtj




„ ƒ‚ …
D0

ˇ
ˇFs


 D 0 :

Similarly one proves that the terms with i D j in (8.28) also vanish thanks to the
relation

EŒ.B1.tiC1/ � B1.ti//.B2.tiC1/� B2.ti//jFti �

D EŒ.B1.tiC1/� B1.ti//.B2.tiC1/� B2.ti//� D 0 ;

where we use first the independence of .B1.tiC1/ � B1.ti//.B2.tiC1/ � B2.ti// with
respect to Fti and then the independence of B1.tiC1/� B1.ti/ and B2.tiC1/� B2.ti/.

(8.27) then follows as the stochastic integrals are the limit in L2 of the stochastic
integrals of approximating elementary processes. ut

Let now � 2 M2.Œ0;T�/ and

Xt D
Z t

0

�.u/ dBu : (8.29)
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What is the associated increasing process of the square integrable martingale .Xi.t//t
(the i-th component of X)? If we define

Ik.t/ D
Z t

0

�ik.u/ dBk.u/

then Xi.t/ D I1.t/C � � � C Id.t/ and

Xi.t/
2 D

� dX

kD1
Ik.t/

�2 D
dX

h;kD1
Ih.t/Ik.t/ :

By Lemma 8.1 IhIk, h 6D k, is a martingale. Moreover, (Proposition 7.3)

Ik.t/
2 �

Z t

0

�2ik.s/ ds

is a martingale. Therefore

Xi.t/
2 �

dX

kD1

Z t

0

�2ik.s/ ds (8.30)

is a martingale, i.e.

hXiit D
dX

kD1

Z t

0

�2ik.s/ ds : (8.31)

A repetition of the approximation arguments of Sect. 7.6 gives that if, conversely,
� 2 M2

loc.Œ0;T�/, then the process (8.30) is a local martingale so that again its
associated increasing process is given by (8.31). From (8.31) we have

hXi C Xjit D
dX

kD1

Z t

0

.�ik.s/C �jk.s//
2 ds

hXi � Xjit D
dX

kD1

Z t

0

.�ik.s/ � �jk.s//
2 ds

and, using the formula hXi;Xjit D 1
4
.hXi C Xjit � hXi � Xjit/, we obtain

hXi;Xjit D
dX

kD1

Z t

0

�ik.s/�jk.s/ ds D
Z t

0

aij.s/ ds ; (8.32)
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where a.s/ D �.s/�.s/�. As a consequence we have the following, which shows
that also in the multidimensional case the stochastic integral is an isometry between
M2 and L2.

Proposition 8.5 If � 2 M2.Œ0;T�/ and X is as in (8.29) then

E
�
.Xi.t2/ � Xi.t1//.Xj.t2/� Xj.t1//


 D E
� Z t2

t1

aij.s/ ds
�

(recall that a.s/ D �.s/�.s/�) and

E
�ˇˇ
ˇ

Z t2

t1

�.t/ dBt

ˇ
ˇ
ˇ
2� D E

� Z t2

t1

j�.t/j2 dt
�

D E
� Z t2

t1

tr a.t/ dt
�
: (8.33)

Proof As both Xi and Xj are martingales, we have for t1 � t2

EŒXi.t2/Xj.t1/� D E
�
EŒXi.t2/Xj.t1/jFt1 �


 D EŒXi.t1/Xj.t1/� :

Therefore

E
�
.Xi.t2/� Xi.t1//.Xj.t2/ � Xj.t1//




D E
�
Xi.t2/Xj.t2/C Xi.t1/Xj.t1/ � Xi.t1/Xj.t2/� Xi.t2/Xj.t1/




D E
�
Xi.t2/Xj.t2/� Xi.t1/Xj.t1/




but as the process .Xi.t/Xj.t//t is equal to a martingale vanishing at 0 plus the process
hXi;Xjit we have

� � � D E
�hXi;Xjit2 � hXi;Xjit1


 D E
� Z t2

t1

aij.s/ ds
�
:

Now (8.33) follows because

E.jX.t2/ � X.t1/j2/ D
mX

iD1
EŒ.Xi.t2/� Xi.t1//

2� D E
� Z t2

t1

mX

iD1
aii.t/ dt

�
:

ut
As is the case for the stochastic integral in dimension 1, the martingale property
allows us to derive some important estimates. The following is a form of Doob’s
maximal inequality.
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Proposition 8.6 If � 2 M2.Œ0;T�/ then

E
h

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

�.s/ dBs

ˇ
ˇ
ˇ
2i � 4E

h Z T

0

j�.s/j2 ds
i
:

Proof

E
h

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

�.s/ dBs

ˇ
ˇ
ˇ
2i D E

h
sup
0�t�T

mX

iD1

� Z t

0

dX

jD1
�ij.s/ dBj.s/

�2i

�
mX

iD1
E
h

sup
0�t�T

� Z t

0

dX

jD1
�ij.s/ dBj.s/

�2i
:

By Doob’s inequality (Theorem 5.12),

E
h

sup
0�t�T

� Z t

0

dX

jD1
�ij.s/ dBj.s/

�2i � 4E
h� Z T

0

dX

jD1
�ij.s/ dBj.s/

�2i

D 4

Z T

0

E
h dX

hD1
�ih.s/�ih.s/

i
ds D 4

Z T

0

E
�
.���/ii.s/



ds

and now just take the sum in i, recalling that j�.s/j2 D tr �.s/�.s/�. ut
We say that an R

m-valued process X has stochastic differential

dXt D Ft dt C Gt dBt ;

where F D .F1; : : : ;Fm/ 2 M1
loc.Œ0;T�/ and G D .Gij/ iD1;:::;m

jD1;:::;d
2 M2

loc.Œ0;T�/, if for

every 0 � t1 < t2 � T we have

Xt2 � Xt1 D
Z t2

t1

Ft dt C
Z t2

t1

Gt dBt :

Again do not be confused: the Brownian motion here is d-dimensional whereas the
process X turns out to be m-dimensional. Note that, also in the multidimensional
case, the stochastic differential is unique: just argue coordinate by coordinate, the
details are left to the reader.

In the multidimensional case Ito’s formula takes the following form, which
extends Theorem 8.1. We shall not give the proof (which is however similar).
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Theorem 8.3 Let u W R
m
x � R

C
t ! R be a continuous function with

continuous derivatives ut; uxi , uxixj ; i; j D 1; : : : ;m. Let X be a process having
stochastic differential

dXt D Ft dt C Gt dBt :

Then the process .u.Xt; t//t has stochastic differential

du.Xt; t/ D ut.Xt; t/ dt C
mX

iD1
uxi.Xt; t/ dXi.t/

C1

2

mX

i;jD1
uxixj.Xt; t/Aij.t/ dt ;

(8.34)

where A D GG�.

Thanks to (8.32) we have Aij.t/ dt D dhXi;Xjit, so that (8.34) can also be written as

du.Xt; t/ D ut.Xt; t/ dt C
mX

iD1
uxi.Xt; t/ dXi.t/C 1

2

mX

i;jD1
uxixj.Xt; t/dhXi;Xjit :

Example 8.7 Let u W R
d ! R be a twice differentiable function. Then,

denoting by u0 the gradient of u,

du.Bt/ D u0.Bt/ dBt C 1

2
4 u.Bt/ dt : (8.35)

Actually in this case dhBi;Bjit D 0 for i 6D j and dhBi;Biit D dt so that

1

2

dX

i;jD1
uxixj.Bt/dhBi;Bjit D 1

2
4 u.Bt/ dt :

In particular, if i 6D j, applying the previous remark to the function u.x/ D
xixj, whose Laplacian is equal to 0,

d.Bi.t/Bj.t// D Bi.t/ dBj.t/C Bj.t/ dBi.t/ : (8.36)

We find again that BiBj is a martingale for i 6D j (see Exercise 5.24). In
addition we obtain immediately the associated increasing process A of this

(continued)
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Example 8.7 (continued)
martingale: as

Bi.t/
2Bj.t/

2 D
� Z t

0

Bi.t/ dBj.t/C
Z t

0

Bj.t/ dBi.t/
�2

D
� Z t

0

Bj.t/ dBi.t/
�2C

� Z t

0

Bi.t/ dBj.t/
�2C2

Z t

0

Bj.t/ dBi.t/
Z t

0

Bi.t/ dBj.t/

and we know that the last term on the right-hand side is already a martingale
(Lemma 8.1), we have that if

At D
Z t

0

.Bi.s/
2 C Bj.s/

2/ ds

then t 7! Bi.t/2Bj.t/2�At is a martingale. Hence A is the requested associated
increasing process.

Example 8.8 (Bessel square processes) What is the stochastic differential of
Xt D jBtj2?

We must compute the stochastic differential of u.Bt/ where u W Rd ! R is
given by u.x/ D jxj2 D x21 C � � � C x2d. Obviously

@u

@xi
.x/ D 2xi;

@2u

@xi@xj
.x/ D 2ıij

i.e. u0.x/ D 2x whereas 4u D 2d. Therefore by (8.35)

dXt D d dt C 2Bt dBt (8.37)

and we find again another well-known fact: jBtj2 � dt is a martingale. X is a
Bessel square process.

If 
 D .
1; : : : ; 
m/ 2 R
m, �.s/ D .�ij.s// iD1;:::;m

jD1;:::;d
2 M2

loc.Œ0;T�/; let a D ��� and

Xt D
Z t

0

�.s/ dBs ; (8.38)

which is an m-dimensional process. Let

Y
t D exp
�˝

;

Z t

0

�.s/ dBs
˛ � 1

2

Z t

0

ha.s/ 
; 
i ds
�
; (8.39)
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then, by Ito’s formula applied to the function u.x/ D eh
;xi and to the process

Z
t D
Z t

0

�.s/ dBs � 1

2

Z t

0

a.s/
 ds

so that Y
t D u.Z
t /, we obtain

Y
t D 1C
mX

hD1

h

Z t

0

Y
s dXh.s/ D 1C
mX

hD1

dX

jD1

h

Z t

0

Y
s �hj.s/ dBj.s/ : (8.40)

Y
 is a positive local martingale and therefore a supermartingale. In a way similar
to Proposition 8.2 we get

Proposition 8.7 Let � 2 M2.Œ0;T�/ and 
 2 R
m with j
 j D 1. Then if there

exists a constant k such that
R T
0

ha.s/ 
; 
i ds � k we have

P
�

sup
0�t�T

jh
;Xtij � x
�

� 2e� x2

2k : (8.41)

Moreover, if
R T
0 ha.s/ 
; 
i ds � k� for every vector 
 2 R

m of modulus 1,

P
�

sup
0�t�T

jXtj � x
�

� 2me� x2

2k�m : (8.42)

Proof The first part of the statement comes from a step by step repetition of the
proof of Proposition 8.2: we have for 	 > 0

P
�

sup
0�t�T

jh
;Xtij � x
�

D P
�

sup
0�t�T

jh	
;Xtij � 	x
�

� P
�

sup
0�t�T

jh	
;Xtij � 1

2

Z T

0

	2ha.s/ 
; 
i ds � 	x � 1

2
	2k

�

D P
�

sup
0�t�T

exp
�
jh	
;Xtij � 1

2

Z T

0

	2ha.s/ 
; 
i ds
�

� e	x� 1
2 	

2k
�
:

Now t 7! exp.jh	
;Xtij � 1
2

R T
0
	2ha.s/ 
; 
i ds/ is a continuous supermartingale

whose expectation is smaller than 1. Hence, by the maximal inequality (5.15),

P
�

sup
0�t�T

jh
;Xtij � x
�

� e�	xC 1
2 	

2k
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and taking the minimum of 	 7! �	x C 1
2
	2k for 	 2 R

C we obtain (8.41).
Moreover, the inequality (8.41) applied to the coordinate vectors gives, for every
i D 1; : : : ;m,

P
�

sup
0�t�T

jXi.t/j � xp
m

�
� 2e� x2

2k�m

and now just observe that if sup0�t�T jXtj � x, then for one at least of the coordinates
i; i D 1; : : : ;m, necessarily sup0�t�T jXi.t/j � xm�1=2. Therefore

P
�

sup
0�t�T

jXtj � x
�

�
mX

iD1
P
�

sup
0�t�T

jXi.t/j � xp
m

�
� 2me� x2

2k�m :

ut

Theorem 8.4 Let X D .X1; : : : ;Xd/ 2 M2
loc.Œ0;C1Œ/ such that

Z C1

0

jXsj2 ds D C1 a.s.

Let At D R t
0

jXsj2 ds and �.t/ D inffsI As > tg; then the process

Wt D
Z �.t/

0

Xs dBs

is a (one-dimensional) Brownian motion such that W.At/ D R t
0

Xs dBs:

Proof Identical to the proof of Theorem 8.2. ut
In particular, if jXsj D 1 a.s. for every s, then At D t and therefore

Corollary 8.2 Let X D .X1; : : : ;Xd/ 2 M2
loc.Œ0;C1Œ/ be a process such that

jXsj D 1 for almost every s a.s. Then the process

Wt D
Z t

0

Xs dBs

is a Brownian motion.

Sometimes it would be useful to apply Corollary 8.2 to Xt D 1
jBt j .B1.t/; : : : ;Bd.t//,

which is obviously such that jXtj D 1. Unfortunately this is not immediately
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possible, as X is not defined if jBtj D 0. In the following example we see how
to go round this difficulty.

Example 8.9 (Bessel square processes again) We have seen in (8.37) that
the process Xt D jBtj2 has the stochastic differential

dXt D d dt C 2Bt dBt : (8.43)

Now let z0 2 R
d be any vector such that jz0j D 1 and let (recall that

p
Xt D

jBtj)

Wt D
Z t

0

� Bsp
Xs
1fXs 6D0g C z01fXsD0g

�
dBs : (8.44)

Therefore W is a one-dimensional Brownian motion. Note that

p
Xt dW.t/ D Bt 1fXt 6D0g dBt Cp

Xt 1fXtD0gz0 dBt D Bt dBt

(of course
p

Xt 1fXtD0g D 0) so that

Bt dBt D
dX

iD1
Bi.t/ dBi.t/ D

p
Xt dW.t/ :

(8.43) can now be written as

dXt D d dt C 2
p

Xt dWt : (8.45)

Therefore the process Xt D jBtj2 is a solution of (8.45), another example
of a Stochastic Differential Equation, which we shall investigate in the next
chapter.

The same arguments developed in the proofs of Theorem 8.4 and Corollary 8.2 give
the following

Proposition 8.8 Let .Os/s be a progressively measurable O.d/-valued (i.e.
orthogonal matrix-valued) process. Then .Os/s 2 M2.Œ0;C1Œ/ and

Xt D
Z t

0

Os dBs

is itself an .Ft/t-d-dimensional Brownian motion.
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Proof .Os/s obviously belongs to M2.Œ0;C1Œ/ as all the coefficients of an orthog-
onal matrix are smaller, in modulus, than 1. By the criterion of Theorem 5.17, we
just need to prove that, for every 	 2 R

d, Y	t D eih	;XtiC 1
2 j	j2 t is an .Ft/t-martingale.

By Ito’s formula, or directly by (8.39) and (8.40), we have

Y	t D 1C i
˝
	;

Z t

0

Y	s Os dBs
˛
:

Since, for s � t, jY	s j � e
1
2 j	j2s, the process .Y	s Os/s is in M2.Œ0;C1Œ/ and therefore

Y	 is an .Ft/t-martingale, which allows us to conclude the proof. ut
We conclude this section with an extension to the multidimensional case of the

Lp estimates of Sect. 8.3.

Proposition 8.9 If � 2 M2
loc.Œ0;T�/, p � 2, then

E
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

�.s/ dBs

ˇ
ˇ
ˇ
p� � c. p;m; d/T

p�2
2 E

� Z t

0

j�.s/jp ds
�
:

Proof One can repeat the proof of Proposition 8.4, applying Theorem 8.3 to the
function, Rm ! R, u.x/ D jxjp, or using the inequalities (also useful later)

mX

iD1
jxijp � jxjp � m

p�2
2

mX

iD1
jxijp x 2 R

m (8.46)

jy1 C � � � C ydjp � dp�1
mX

jD1
jyjjp y 2 R

d : (8.47)

By Proposition 8.4 and (8.46),

E
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

�.s/ dBs

ˇ
ˇ
ˇ
p� � m

p�2
2 E

�
sup
0�t�T

mX

iD1

ˇ
ˇ
ˇ

dX

jD1

Z t

0

�ij.s/ dBj.s/
ˇ
ˇ
ˇ
p�

� m
p�2
2

mX

iD1
E
�

sup
0�t�T

ˇ
ˇ
ˇ

dX

jD1

Z t

0

�ij.s/ dBj.s/
ˇ
ˇ
ˇ
p�
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and then by (8.47) and Proposition 8.4

� m
p�2
2 dp�1

mX

iD1

dX

jD1
E
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

�ij.s/ dBj.s/
ˇ
ˇ
ˇ
p�

� p3p=2.2. p � 1//�p=2m
p�2
2 dp�1T

p�2
2 E

� Z T

0

mX

iD1

dX

jD1
j�ij.s/jp ds

�

� c. p;m; d/T
p�2
2 E

� Z T

0

j�.s/jp ds
�
:

ut

8.5 �A case study: recurrence of multidimensional Brownian
motion

Let B be an m-dimensional Brownian motion, with m � 2. We know (see
Remark 3.4) that in dimension 1 the Brownian motion visits (infinitely many times)
every real number with probability 1. What can be said in dimension m � 2? In
dimension m does Brownian motion also go everywhere?

There are two ways of precisely stating this kind of property for a generic
process X.

p1) X visits every open set D � R
m with probability 1.

p2) X visits every point x 2 R
m with probability 1.

A process satisfying p1) is said to be recurrent. A process that is not recurrent is
said to be transient. Of course p2) entails p1).

Let us investigate whether the Brownian motion is transient or recurrent in
dimension � 2. We shall treat the case m � 3, leaving the case m D 2 as an
exercise (Exercise 8.23). Let x 2 R

m, x 6D 0: we want to investigate the probability
for the Brownian motion to visit a neighborhood of x. It should not be surprising,
as in other questions concerning the visit of a process to some set, that the problem
boils down to finding the right martingale. Let

Xt D 1

jBt � xjm�2 � (8.48)

We can write Xt D f .Bt/, where f .z/ D jz � xj�.m�2/. f has a singularity at x but
is bounded and infinitely many times differentiable outside every ball containing x.
In order to apply Ito’s formula, which in this case is given in (8.35), let us compute
f 0.z/ and 4f .z/, z 6D x. If g.z/ D jz � xj, we have, for z 6D x,

@g

@zi
.z/ D @

@zi

vu
u
t

mX

jD1
.zj � xj/2 D zi � xi

jz � xj
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and therefore

@f

@zi
.z/ D �.m � 2/

jz � xjm�1
zi � xi

jz � xj D �.m � 2/.zi � xi/

jz � xjm

and

@2f

@z2i
.z/ D m.m � 2/.zi � xi/

2

jz � xjmC2 � m � 2

jz � xjm

so that

4f .z/ D m.m � 2/

jz � xjmC2
mX

iD1
.zi � xi/

2 � m.m � 2/

jz � xjm
D 0 :

f is not a C2 function on R
m (it is not even defined everywhere) so that we cannot

directly apply Ito’s formula in order to obtain the stochastic differential of Xt D
f .Bt/. However, letef be a function that coincides with f outside a small ball, Vn.x/,
centered at x and with radius 1

n with 1
n < jxj and extended inside the ball in order to

be C2. Then by Ito’s formula (recall thatef .0/ D f .0/ D jxj�.m�2/)

ef .Bt/ D jxj�.m�2/ C
Z t

0

ef
0
.Bs/ dBs C

Z t

0

1

2
4ef .Bs/ ds :

Let us denote by �n the entrance time of B into the small ball. Then, as f coincides
withef outside the ball,

Xt^�n D f .Bt^�n/ Def .Bt^�n/

D jxj�.m�2/ C
Z t^�n

0

f 0.Bs/ dBs C
Z t^�n

0

1

2
4f .Bs/ ds

„ ƒ‚ …
D0

:
(8.49)

Therefore .Xt^�n/t is a local martingale. As f is bounded outside Vn.x/ . f � nm�2
outside the ball Vn.x/), .Xt^�n/t is also bounded and is therefore a martingale
(a bounded local martingale is a martingale, Remark 7.7). Let us deduce that
P.�n < C1/ < 1 if n is large enough. As X0 D jxj�.m�2/,

E.Xt^�n/ D E.X0/ D jxj�.m�2/

for every t � 0. As Xt^�n D nm�2 on f�n � tg, we have E.Xt^�n/ � nm�2P.�n � t/
and therefore

jxj�.m�2/ � nm�2P.�n � t/ (8.50)
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so that P.�n � t/ � .njxj/�.m�2/ and as t ! C1 we have P.�n < C1/ �
.njxj/�.m�2/ and for n large the last quantity is < 1. Therefore with strictly positive
probability the Brownian motion does not visit a small ball around x. In dimension
� 3 the Brownian motion is therefore transient.

From this estimate we deduce that, with probability 1, B does not visit x: in order
to visit x, B must first enter into the ball of radius 1

n centered at x so that for every n

P.Bt D x for some t > 0/ � P.�n < C1/ � 1

.njxj/.m�2/

and, as n is arbitrary,

P.Bt D x for some t > 0/ D 0 : (8.51)

If m D 2, conversely, the Brownian motion is recurrent (see Exercise 8.23),
but (8.51) is still true: even in dimension 2 the probability for the Brownian motion
to visit a given point x 6D 0 is equal to 0.

The argument proving recurrence in dimension 2 is similar to the one developed
here for dimension � 3 (find the right martingale. . . ), but using the function f2.z/ D
� log.jz � xj/ instead. What makes the difference with the function f of (8.48) is
that f2 is not bounded outside a neighborhood of x.

Example 8.10 (A uniformly integrable local martingale which is not a mar-
tingale) Since we now know that, with probability 1, B does not visit x, the
process

Xt D 1

jBt � xjm�2

is well defined and, thanks to (8.49), is a local martingale. We now prove
that it is uniformly integrable but not a martingale, which is a useful
counterexample. In order to prove uniform integrability, let us show that
supt>0 E.Xp

t / < C1 for every p < m.m � 2/�1 and therefore that it is a
process bounded in Lp for some p > 1. Let r D p.m � 2/; then

E.Xp
t / D E.jBt � xj�r/ D 1

.2�t/m=2

Z
jy � xj�re�jyj2=2t dy :

We split the integral into two parts: the first one on a ball Sx centered at x and
with radius 1

2
jxj, the second one on its complement. As jy � xj�r � jxj�r2r

(continued)
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Example 8.10 (continued)
outside of Sx,

1

.2�t/m=2

Z

Sc
x

jy � xj�re�jyj2=2t dy � 2r

jxjr.2�t/m=2

Z
e�jyj2=2t dy D 2r

jxjr
�

The remaining term conversely is evaluated by observing that inside Sx we
have jyj � 1

2
jxj and therefore e�jyj2=2t � e�jxj2=4t. The integral over Sx is

therefore smaller than

1

.2�t/m=2
e�jxj2=4t

Z

jy�xj� 1
2 jxj

jy � xj�r dy D 1

.2�t/m=2
e�jxj2=4t

Z

jzj� 1
2 jxj

jzj�r dy

D const
1

.2�t/m=2
e�jxj2=4t

Z 1
2 jxj

0

�m�1�r d�:

If p < m.m � 2/�1, we have r < m and the last integral is convergent. The
quantity E.Xp

t / is bounded in t and X is uniformly integrable.
If X, which is uniformly integrable, were a martingale, then the limit X1 D

limt!C1 Xt would exist a.s. and in L1. But by the Iterated Logarithm Law
there exists a.s. a sequence of times .tn/n with limn!1 tn D C1 such that
limn!1 jBtn j D C1, therefore X1 D 0 a.s., in contradiction with the fact
that the convergence must also take place in L1.

Exercises

8.1 (p. 533) Let .˝;F ; .Ft/t; .Bt/t;P/ be a real Brownian motion and let

Mt D .Bt C t/ e�.BtC 1
2 t/ :

a) Compute the stochastic differential of .Mt/t.
b) Show that .Mt/t is a martingale.

8.2 (p. 534) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let
a; b > 0. Compute the stochastic differential of Xt D .b � Bt/.a C Bt/ C t and
deduce that it is a martingale.

8.3 (p. 535)

a) Let .Bt/t be a Brownian motion. Determine which of the following processes is
a martingale

Xt D et=2 sin Bt

Yt D et=2 cos Bt :
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Compute E.Xt/ and E.Yt/ for t D 1.
b) Prove that X and Y are Ito’s processes and compute hX;Yit.

8.4 (p. 536)

a) Let � > 0. Prove that

Z t

0

e�Bs� 1
2 �

2s dBs D 1

�

�
e�Bt� 1

2 �
2t � 1� : (8.52)

b)

Z t

0

e
R s
0 Bu dBu� 1

2

R s
0 B2u duBs dBs D‹

8.5 (p. 536) Let B be a Brownian motion with respect to the filtration .Ft/t.

a) Show that Xt D B3t � 3tBt is an .Ft/t-martingale.
b) Prove that for every n D 1; 2; : : : there exist numbers cn;m;m � Œn=2� such that

the polynomial

Pn.x; t/ D
Œn=2�X

mD0
cn;mxn�2mtm (8.53)

is such that Xt D Pn.Bt; t/ is an .Ft/t-martingale. Compute Pn for n D 1; 2; 3; 4.
c) Let a; b > 0 and let � be the exit time of B from � � a; bŒ. In Example 5.3

and Exercise 5.10 we have computed the law of B� and E.�/. Are � and B�
independent?

8.6 (p. 537) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and 	 2 R.

a) Prove that

Mt D e	tBt � 	

Z t

0

e	uBu du

is a square integrable martingale and compute its associated increasing process.
b) Prove that if 	 < 0 then M is uniformly integrable and determine the

distribution of its limit as t ! C1.
c1) Prove that

Zt D eMt� 1
4	 .e

2	t�1/

is a martingale.
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c2) Let Z1 be the limit of the positive martingale Z as t ! C1 and assume 	 < 0.
What is the law of Z1?

c3) Assume 	 > 0. Compute EŒZp
t � for p < 1. What is the law of Z1?

8.7 (p. 538) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let

Yt D tBt �
Z t

0

Bu du :

In Exercise 5.13 and in Example 8.6 we proved that Y is an .Ft/t-martingale.
Prove that

Zt D eYt� 1
6 t3

is an .Ft/t-martingale.

8.8 (p. 539) Let B be a Brownian motion and

Xt D
Z t

0

dBsp
2C sin s

�

What is the value of

lim
t!C1

Xt

.2t log log t/1=2
‹

For �� < t < � a primitive of .2 C sin t/�1 is t 7! 2 � 3�1=2 arctan.2 � 3�1=2 tan. t
2
/ C 3�1=2/

hence
Z �

��

ds

2C sin s
D 2�p

3
�

8.9 (p. 540) Let, for 	 > 0,

Xt D
Z t

0

e�	sBs ds :

Does the limit

lim
t!C1 Xt (8.54)

exist? In what sense? Determine the limit and compute its distribution.

Integrate by parts. . .



8.5 Exercises for Chapter 8 249

8.10 (p. 540) Let B be a real Brownian motion and, for " > 0 and t � T,

X"t D p
2

Z t

0

sin
s

"
dBs :

a) Prove that, for every 0 < t � T, X"t converges in law as " ! 0 to a limiting
distribution to be determined.

b) Prove that, as " ! 0, the law of the continuous process X" for t 2 Œ0;T� converges
to the Wiener measure.

8.11 (p. 541) Let B be a Brownian motion and

Xt D
Z t

0

dBsp
1C s

�

Compute P
�

sup0�t�3 Xt � 1
�
.

8.12 (p. 541) Let, for ˛ > 0,

Xt D p
˛ C 1

Z t

0

u˛=2 dBu :

a) Compute P.sup0�s�2 Xs � 1/.
b) Let � D infft > 0I Xt � 1g. Compute the density of � . For which values of ˛

does � have finite expectation?

8.13 (p. 542) As the Brownian paths are continuous, and therefore locally
bounded, we can consider their derivative in the sense of distributions, i.e. for every
� 2 C1

K .R
C/ and for every! 2 ˝ we can consider the distribution B0.!/ defined as

h�;B0.!/i D �
Z C1

0

�0
t Bt.!/ dt :

Check that

h�;B0i D
Z C1

0

�t dBt a.s.

8.14 (p. 542) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let, for
0 � t < 1,

Zt D 1p
1 � t

exp
�

� B2t
2.1� t/

�
:
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a) Prove that Z is a continuous .Ft/t-martingale.
b) Compute, for p > 0, EŒZp

t �. Is Z square integrable? Is Z bounded in L2?
c) What is the value of limt!1� Zt?
d) Find a process .Xt/t 2 M2

loc such that

Zt D e
R t
0 Xs dBs� 1

2

R t
0 X2s ds :

8.15 (p. 545) Let B D .B1;B2/ be a two-dimensional Brownian motion. Which
one of the following is a Brownian motion?

a) W1.t/ D
Z t

0

sin s dB1.s/C
Z t

0

cos s dB1.s/.

b) W2.t/ D
Z t

0

sin s dB1.s/C
Z t

0

cos s dB2.s/.

c) W3.t/ D
Z t

0

sin B2.s/ dB1.s/C
Z t

0

cos B2.s/ dB2.s/.

8.16 (p. 545) Let .B1;B2;B3/ be a three-dimensional Brownian motion and

Xt D
Z t

0

sin.B3.s// dB1.s/C
Z t

0

cos.B3.s// dB2.s/

Yt D
Z t

0

cos.B3.s// dB1.s/C
Z t

0

sin.B3.s// dB2.s/ :
(8.55)

a) Prove that .Xt/t and .Yt/t are Brownian motions.
b1) Prove that, for every s; t, Xs and Yt are uncorrelated.
b2) Is .Xt;Yt/t a two-dimensional Brownian motion?

c) Assume instead that

Yt D �
Z t

0

cos.B3.s// dB1.s/C
Z t

0

sin.B3.s// dB2.s/ :

Is .Xt;Yt/t now a two-dimensional Brownian motion?

8.17 (p. 546) Let B D .˝;F ; .Gt/t; .Bt/t;P/ be a Brownian motion with respect
to its natural filtration .Gt/t and let eG t D Gt _ �.B1/.
a) Let 0 < s < t < 1 be fixed. Determine a square integrable function ˚ and a

number ˛ (possibly depending on s; t) such that the r.v.

Bt �
Z s

0

˚.u/ dBu � ˛B1

is orthogonal to B1 and to Bv for every v � s.
b) Compute EŒBt jeG s�. Is B also a Brownian motion with respect to the filtration
.eG t/t? Is B a martingale with respect to .eG t/t?
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c) Let, for t � 1,

eBt D Bt �
Z t

0

B1 � Bu

1 � u
du :

c1) Prove that, for 0 < s < t < 1,eBt �eBs is independent of eG s.
c2) Prove that, for 0 < t < 1, .eBt/t is a .eG t/t-Brownian motion.
c3) Prove that .Bt/t is a Ito process with respect to .eG t/t.

• This exercise shows that when switching to a larger filtration, in general,
properties such as being a Brownian motion or a martingale are lost, whereas
to be a Ito process is more stable.

8.18 (p. 548) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and X a
centered square integrable FT -measurable r.v.

a) Let us assume that there exists a process .Yt/t in M2.Œ0;T�/ such that

X D
Z T

0

Ys dBs : (8.56)

Show that such a process is unique.
b1) Let X D B3T . What is the value of Xs D EŒX jFs� for 0 � s � T? What is the

stochastic differential of .Xs/0�s�T?
b2) Determine a process .Yt/t such that (8.56) holds in this case.

c) Determine a process .Yt/t such that (8.56) holds for X D e�BT � e
�2

2 T , for
� 6D 0.

8.19 (p. 549) Let B be a Brownian motion and

Z D
Z T

0

Bs ds :

a1) Compute Mt D EŒZ jFt�.
a2) Compute the stochastic differential of .Mt/t and determine a process X 2 M2

such that

Z D
Z T

0

Xs dBs :

b) Determine a process X 2 M2 such that

Z T

0

B2s ds D T2

2
C
Z T

0

Xs dBs :
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8.20 (p. 550) In Exercise 5.24 we proved that, if B is an m-dimensional Brownian
motion, then Mt D Bi.t/Bj.t/, 1 � i; j � m, i 6D j, is a square integrable martingale
and in Example 8.7 we have shown that

hMit D
Z t

0

.B2i .s/C B2j .s// ds :

Let 
 > 0. Determine an increasing process .At/t such that

Zt D e
Bi.t/Bj.t/�At

is a local martingale.

8.21 (p. 551)

a) Let Z be an N.0; 1/-distributed r.v. Show that

EŒZ2e˛Z2 � D
(
.1 � 2˛/�3=2 if ˛ < 1

2

C1 if ˛ � 1
2

�

b) Let .Bt/t be a Brownian motion and let

Ht D Bt

.1 � t/3=2
exp

�
� B2t
2.1� t/

�
:

Prove that limt!1� Ht D 0 a.s. Prove that H 2 M2
loc.Œ0; 1�/ but H 62 M2.Œ0; 1�/.

c) Let, for t < 1,

Xt D 1p
1 � t

exp
�

� B2t
2.1� t/

�
:

Prove that, for t < 1,

Xt D 1 �
Z t

0

Hs dBs : (8.57)

Prove that limt!1� Xt D 1 a.s.
d) Prove that

Z 1

0

Hs dBs D 1

so that H is an example of an integrand not belonging to M2 whose stochastic
integral is square integrable.
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8.22 (p. 552) (Poincaré’s lemma) Let B1;B2; : : : be a sequence of one-dimensional

independent Brownian motions defined on the same probability space and let B.n/t D
.B1.t/; : : : ;Bn.t//; B.n/ is therefore an n-dimensional Brownian motion. Let �n be the
exit time of B.n/ from the ball of radius

p
n.

a) Show that Mn.t/ D jB.n/t j2�nt is a martingale. Deduce that E.�n/ D 1 for every n.
b) If Rn.t/ D 1

n jB.n/t j2, show that there exists a Brownian motion W such that

dRn.t/ D dt C 2p
n

p
Rn.t/ dWt : (8.58)

c) Deduce that

E
h

sup
0�t��n

jRn.t/ � tj2
i

� 16

n

and therefore �n ! 1 in probability as n ! 1.
d) (Gallardo 1981). Deduce the following classical lemma of H. Poincaré. Let �n

denote the normalized .n � 1/-dimensional Lebesgue measure of the spherical
surface of radius

p
n of R

n. Let d be a fixed positive integer and �n;d the
projection R

n ! R
d.

Then as n ! 1 the image of �n through �n;d converges to the N.0; I/ law of Rd.

c) Zt D Rn.t/� t, suitably stopped, is a martingale.
d) �n is the law of B.n/�n ; �n;d.�n/ is therefore the law of .B1.�n/; : : : ;Bd.�n//.

8.23 (p. 553) In this exercise we investigate the properties of recurrence/transience
of Brownian motion in dimension 2, hence completing the analysis of Sect. 8.5.
It turns out that in dimension 2 Brownian motion visits every open set with
probability 1 (which is different from the case of dimension m � 3), and is
therefore recurrent, but in contrast to dimension 1, every point x 6D 0 is visited
with probability 0.

Let B be a two-dimensional Brownian motion and x 2 R
2; x 6D 0. Let �n be the

entrance time of B in the ball of radius 1
n centered at x, with 1

n < jxj, so that this ball
does not contain the origin. Let Xt D � log jBt � xj, when defined.

a) Prove that .Xt^�n/t is a martingale.
b) Let, for 1n < M, �n;M be the exit time of B from the annulus fzI 1n < jz�xj � Mg

with M > jxj so that this annulus contains the origin (Fig. 8.1). Prove that
�n;M < C1 a.s. and compute P.jB�n;M � xj D 1

n /.
c) Deduce that P.�n < C1/ D 1 for every n and therefore that B is recurrent.
d) Let x 2 R

2, x 6D 0, and let us prove that B does not visit x with probability 1.
Let k > 0 be such that 1

kk < jxj < k. Let

�k D �kk D infftI jBt � xj D 1
kk g

�k D infftI jBt � xj D kg :
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d1) Deduce from the computation of b) the value of P.�k < �k/. Compute the limit
of this quantity as k ! 1.

d2) Let � D infftI Bt D xg. Note that, for every k, P.� < �k/ � P.�k < �k/ and
deduce that P.� < C1/ D 0.

Fig. 8.1 �n;M is the exit time of the Brownian motion from the shaded annulus. The large circle
has radius M, the small one 1

n

8.24 (p. 554) (Bessel processes) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimen-
sional standard Brownian motion with m > 1 and let x 2 R

m with jxj > 0. Then,
if Xt D jBt C xj, X is a Markov process by Exercise 6.11 and Xt > 0 a.s. for every
t � 0 a.s. as seen in Sect. 8.5 and Exercise 8.23.

a) Show that Xt D jBt Cxj is an Ito process and determine its stochastic differential.
b) Show that if f 2 C2

K.�0;C1Œ/ and � D jxj, then

1

t

�
EŒ f .Xt/� � f .�/

� !
t!C1 Lf .�/ ;

where L is a differential operator to be determined.



Chapter 9
Stochastic Differential Equations

In this chapter we introduce the notion of a Stochastic Differential Equation. In
Sects. 9.4, 9.5, 9.6 we investigate existence and uniqueness. In Sect. 9.8 we obtain
some Lp estimates that will allow us to specify the regularity of the paths and
the dependence from the initial conditions. In the last sections we shall see that
the solution of a stochastic differential equation is a Markov process and even a
diffusion associated to a differential operator that we shall specify.

9.1 Definitions

Let b.x; t/ D .bi.x; t//1�i�m and �.x; t/ D .�ij.x; t// 1�i�m
1�j�d

be measurable functions

defined on R
m � Œ0;T� and R

m- and M.m; d/-valued respectively (recall that
M.m; d/ D m � d real matrices).

Definition 9.1 The process .˝;F ; .Ft/t2Œ0;T� ; .�t/t2Œu;T�; .Bt/t;P/ is said to
be a solution of the Stochastic Differential Equation (SDE)

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D x x 2 R
m (9.1)

if

a) .˝;F ; .Ft/t; .Bt/t;P/ is a d-dimensional standard Brownian motion, and
b) for every t 2 Œu;T� we have

�t D x C
Z t

u
b.�s; s/ ds C

Z t

u
�.�s; s/ dBs :

© Springer International Publishing AG 2017
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Of course in Definition 9.1 we require implicitly that s 7! b.�s; s/ and s 7!
�.�s; s/ are processes in M1

loc.Œu;T�/ and M2
loc.Œu;T�/, respectively.

Note that the Brownian motion with respect to which the stochastic integrals are
taken and the probability space on which it is defined are not given a priori.

Note also that the solution of a SDE as above is necessarily a continuous process.
In case someone wanted to model some real life phenomenon with such a SDE it is
important to realize this point: (9.1) is not fit to model quantities that make jumps.
Discontinuous behaviors must be modeled using different SDEs (with the Brownian
motion replaced by some more suitable stochastic process).

Some terminology: � is the diffusion coefficient, b is the drift.

Definition 9.2 We say that (9.1) has strong solutions if for every standard
Brownian motion .˝;F ; .Ft/t; .Bt/t;P/ there exists a process � that satisfies
Eq. (9.1).

We shall speak of weak solutions, meaning those in the sense of Definition 9.1.
If � is a solution, strong or weak, we can consider the law of the process (see

Sect. 3.2): recall that the map  � W ˝ ! C .Œ0;T�;Rm/ defined as

! 7! .t 7! �t.!//

is measurable (Proposition 3.3) and the law of the process � is the probability on
C .Œ0;T�;Rm/ that is the image of P through the map  � .

Definition 9.3 We say that for the SDE (9.1) there is uniqueness in law if,
given two solutions � i D .˝ i;F i; .F i

t /t; .�
i
t /t; .B

i
t/t;P

i/, i D 1; 2, (possibly
defined on different probability spaces and/or with respect to different Brow-
nian motions) �1 and �2 have the same law.

Definition 9.4 We say that for the SDE (9.1) there is pathwise uniqueness
if, given two solutions .˝;F ; .Ft/t; .�

i
t /t; .Bt/t;P/; i D 1; 2, defined on the

same probability space and with respect to the same Brownian motion, �1 and
�2 are indistinguishable, i.e. P.�1t D �2t for every t 2 Œu;T�/ D 1.

Note that, whereas the existence of strong solutions immediately implies the
existence of weak solutions, it is less obvious that pathwise uniqueness implies
uniqueness in law, since for the latter we must compare solutions that are defined
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on different probability spaces and with respect to different Brownian motions. It is,
however, possible to prove that pathwise uniqueness implies uniqueness in law.

Remark 9.1 If � is a solution of the SDE (9.1) and f W Rm � R
C ! R is a

C2;1 function, then the stochastic differential of t 7! f .�t; t/ is

df .�t; t/ D @f

@t
.�t; t/ dt C

X

i

@f

@xi
.�t; t/ d�i.t/C 1

2

X

i;j

@2f

@xixj
.�t; t/aij.�t; t/ dt ;

where aij D P
` �i`�j`, i.e. a D ���. Hence we can write

df .�t; t/ D
�@f

@t
.�t; t/C Lf .�t; t/

�
dt C

X

i;j

@f

@xi
.�t; t/�ij.�t; t/ dBj.t/ ;

where L denotes the second-order differential operator

L D 1

2

mX

i;jD1
aij.x; t/

@2

@xixj
C

mX

iD1
bi.x; t/

@

@xi
�

In particular, if we look for a function f such that t 7! f .�t; t/ is a martingale,
a first requirement is that

@f

@t
C Lf D 0 ;

which ensures that t 7! f .�t; t/ is a local martingale.
The operator L will play an important role from now on. Note that if d�t D

dBt, then L D 1
2

4, 4 denoting the Laplace operator.

In this chapter we shall generally denote stochastic processes by the symbols �, .�t/t.
The notations X, .Xt/t, most common in the previous chapters, are now reserved to
denote the canonical process. From now on B D .˝;F ; .Ft/t; .Bt/t;P/ will denote
a d-dimensional standard Brownian motion, fixed once and for all.

9.2 Examples

In the next sections we shall investigate the existence and the uniqueness of solutions
of a SDE, but let us first see some particular equations for which it is possible to find
an explicit solution.
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Example 9.1 Let us consider the equation, in dimension 1,

d�t D �	�t dt C � dBt

�0 D x
(9.2)

where 	; � 2 R; i.e. we assume that the drift is linear in � and the diffusion
coefficient constant. To solve (9.2) we can use a method which is similar
to the variation of constants for ordinary differential equations: here the
stochastic part of the equation, � dBt, plays the role of the constant term. The
“homogeneous” equation would be

d�t D �	�t dt

�0 D x

whose solution is �t D e�	tx. Let us look for a “particular solution” of (9.2)
of the form �t D e�	tZt. As, by Ito’s formula,

d.e�	tZt/ D �	e�	tZt dt C e�	t dZt

�t D e�	tZt is a solution if e�	tdZt D � dBt, i.e.

Zt D
Z t

0

e	s� dBs

and, in conclusion,

�t D e�	tx C e�	t
Z t

0

e	s� dBs : (9.3)

This is the Ornstein–Uhlenbeck process (in the literature this name is
sometimes reserved for the case 	 > 0). It is a process of particular interest,
being the natural model in many applications, and we shall see in the exercises
some of its important properties (see Exercises 9.1, 9.2, 9.24 and 9.25). Now
let us observe that the computation above can be repeated if we consider an
m-dimensional analog of (9.2), i.e. the equation

d�t D ��t dt C � dBt

�0 D x
(9.4)

where and � are m � m and m � d matrices, respectively. By a step by step
repetition of the computation above, we have that a solution is

(continued)
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Example 9.1 (continued)

�t D e�tx C e�t
Z t

0

es� dBs ; (9.5)

et denoting the exponential of the matrix t. This is a Gaussian process by
Proposition 7.1, as the stochastic integral above has a deterministic integrand.

Example 9.2 Let us now consider instead the equation in dimension 1

d�t D b�t dt C ��t dBt

�0 D x :
(9.6)

Now both drift and diffusion coefficient are linear functions of �. Dividing
both sides by �t we have

d�t

�t
D b dt C � dBt : (9.7)

The term d�t
�t

is suggestive of the stochastic differential of log �t. It is not quite
this way, as we know that stochastic differentials behave differently from
the usual ones. Anyway, if we compute the stochastic differential of log �t,
assuming that � is a solution of (9.6), Ito’s formula gives

d.log �t/ D d�t

�t
� 1

2�2t
�2�2t dt D

�
b � �2

2

�
dt C � dBt :

Therefore log �t D log x C �
b � �2

2

�
t C �Bt and

�t D xe.b� �2

2
/tC�Bt : (9.8)

In fact this derivation of the solution is not correct: we cannot apply Ito’s
formula to the logarithm function, which is not twice differentiable on R (it
is not even defined on the whole of R). But once the solution (9.8) is derived,
it is easy, always by Ito’s formula, to check that it is actually a solution of
Eq. (9.6). Note that, if x > 0, then the solution remains positive for every
t � 0.

This process is geometric Brownian motion and it is one of the processes
to be taken into account as a model for the evolution of quantities that must

(continued)



260 9 Stochastic Differential Equations

Example 9.2 (continued)
always stay positive (it is not the only one enjoying this property). Because of
this, it is also used to describe the evolution of prices in financial markets.

Note that, for every t, �t appears to be the exponential of a Gaussian r.v. It
has therefore a lognormal distribution (see Exercise 1.11).

This section provides examples of SDE’s for which it is possible to obtain an explicit
solution. This is not a common situation. However developing the arguments of
these two examples it is possible to find a rather explicit solution of a SDE when the
drift and diffusion coefficient are both linear-affine functions. Complete details are
given, in the one-dimensional case, in Exercise 9.11. Other examples of SDE’s for
which an explicit solution can be obtained are developed in Exercises 9.6 and 9.13.

Note that in the two previous examples we have found a solution but we still
know nothing about uniqueness.

9.3 An a priori estimate

In this section we prove some properties of the solution of an SDE before looking
into the question of existence and uniqueness.

Assumption (A) We say that the coefficients b and � satisfy Assumption (A)
if they are measurable in .x; t/ and if there exist constants L > 0;M > 0 such
that for every x; y 2 R

m; t 2 Œ0;T�,

jb.x; t/j � M.1C jxj/ j�.x; t/j � M.1C jxj/ (9.9)

jb.x; t/� b.y; t/j � Ljx � yj j�.x; t/ � �.y; t/j � Ljx � yj : (9.10)

Note that (9.10) requires the coefficients b and � to be Lipschitz continuous in x
uniformly in t, whereas (9.9) requires that they have a sublinear growth at infinity.
Note also that if b and � do not depend on t then (9.10) implies (9.9). However, it
is useful to keep these two conditions separate in order to clarify their role in what
follows. In the remainder we shall often make use of the inequality, for x1; : : : ; xm 2
R

d,

jx1 C � � � C xmjp � mp�1.jx1jp C � � � C jxmjp/ : (9.11)

A key tool in our investigation of SDE’s is the following classical inequality.



9.3 An a priori estimate 261

Lemma 9.1 (Gronwall’s inequality) Let w; v be non-negative real func-
tions on the interval Œa; b� with w integrable and v bounded measurable; let
c � 0 and let us assume that

v.t/ � c C
Z t

a
w.s/v.s/ ds :

Then

v.t/ � c e
R t

a w.s/ds :

Note in particular in the previous statement that if c D 0 then necessarily v � 0.
Gronwall’s inequality is used with ordinary differential equations in order to

prove bounds and uniqueness of the solutions. For SDE’s its use is similar.
In particular, Gronwall’s inequality allows to prove the following Theorem 9.1:

it states that if there exists a solution (weak or strong) of the SDE (9.1) with an
initial value � that is in Lp with p � 2 and independent of the Brownian motion,
then under the condition of sublinear growth (9.10) the solution is necessarily a
process in Mp. Note that sublinear growth of the coefficients is required, but no
assumption concerning Lipschitz continuity is made. And still we do not know
whether a solution actually exists.

Theorem 9.1 Let � be a solution of

�t D �C
Z t

u
b.�r; r/ dr C

Z t

u
�.�r; r/ dBr

where the coefficients b; � are measurable in x; t and satisfy (9.9) (sublinear
growth) and � is an Fu-measurable r.v. of Lp. Then for every p � 2

E
�

sup
u�s�T

j�sjp
�

� c. p;T;M/.1C E.j�jp// (9.12)

E
�

sup
u�s�t

j�s � �jp
�

� c. p;T;M/.t � u/p=2.1C E.j�jp// : (9.13)

Proof The idea is to find some inequalities in order to show that the function v.t/ D
EŒsupu�s�t j�sjp� satisfies an inequality of the kind

v.t/ � c1.1C EŒj�jp�/C c2

Z t

u
v.s/ ds
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and then to apply Gronwall’s inequality. There is, however, a difficulty, as in order
to apply Gronwall’s inequality we must know beforehand that such a function v is
bounded. Otherwise it might be v � C1. In order to circumvent this difficulty we
shall be obliged stop the process when it takes large values as described below.

Let, for R > 0, �R.t/ D �t^�R where �R D infftI u � t � T; j�tj � Rg denotes
the exit time of � from the open ball of radius R, with the understanding �R D T if
j�tj < R for every t 2 Œu;T�. Then

�R.t/ D �C
Z t^�R

u
b.�r; r/ dr C

Z t^�R

u
�.�r; r/ dBr

D �C
Z t

u
b.�r; r/1fr<�Rg dr C

Z t

u
�.�r; r/1fr<�Rg dBr

D �C
Z t

u
b.�R.r/; r/1fr<�Rg dr C

Z t

u
�.�R.r/; r/1fr<�Rg dBr :

(9.14)

Taking the modulus, the pth power and then the expectation we find, using (9.11),

E
h

sup
u�s�t

j�R.s/jp
i

� 3p�1EŒj�jp�C 3p�1E
h

sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
b.�R.r/; r/1fr<�Rg dr

ˇ
ˇ
ˇ
pi

C3p�1E
�

sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
�.�R.r/; r/1fr<�Rg dBr

ˇ
ˇ
ˇ
p�
:

(9.15)

Now, by Hölder’s inequality and (9.9),

E
h

sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
b.�R.r/; r/1fr��Rg dr

ˇ
ˇ
ˇ
pi � Tp�1E

h Z t

u
jb.�R.r/; r/jp1fr<�Rg dr

i

� Tp�1MpE
h Z t

u
.1C j�R.r/j/p dr

i
:

By the Lp inequalities for stochastic integrals (Proposition 8.4) we have

E
h

sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
�.�R.r/; r/1fr<�Rg dBr

ˇ
ˇ
ˇ
pi � cpjt � uj

p�2
2 E

� Z t

u
j�.�R.r/; r/jp dr

�

� cpT
p�2
2 MpE

�Z t

u
.1C j�R.r/j/p dr

�
:

Hence, plugging these two inequalities into (9.15), we find

E
h

sup
u�s�t

j�R.s/jp
i

� 3p�1EŒj�jp�C 3p�1Mp
�
Tp�1 C cpT

p�2
2
�
E
� Z t

u
j1C �R.r/jp dr

�
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� 3p�1EŒj�jp�C 3p�1Mp
�
Tp�1 C cpT

p�2
2
�
2p�1E

�
Tp C

Z t

u
j�R.r/jp dr

�

� c1. p;T;M/
�
1C Ej�jp

�C c2. p;T;M/
Z t

u
E
�j�R.r/jp



dr :

Let now v.t/ D E
�

supu�s�t j�R.s/jp


: from the previous inequality we have

v.t/ � c1. p;T;M/.1C Ej�jp/C c2. p;T;M/
Z t

u
v.r/ dr :

Now j�R.t/j D j�j if j�j � R and j�R.t/j � R otherwise. Hence j�R.t/j � R _ j�j
and v.t/ � EŒRp _ j�jp� < C1. v is therefore bounded and thanks to Gronwall’s
inequality

v.T/ D E
h

sup
u�s�T

j�R.s/jp
i

� c1. p;T;M/
�
1C EŒj�jp�

�
eTc2. p;T;M/

D c. p;T;M/
�
1C EŒj�jp�

�
:

Note that the right-hand side above does not depend on R. Let us now send R !
1. The first thing to observe is that �R !R!1D T: as � is continuous we have
supu�t��R

j�tjp D Rp on f�R < Tg and therefore

E
h

sup
u�t��R

j�tjp
i

� Rp P.�R < T/

so that

P.�R < T/ � 1

Rp
E
h

sup
u�t��R

j�tjp
i

� k.T;M/.1C E.j�jp//

Rp

and therefore P.�R < T/ ! 0 as R ! C1. As R ! �R is increasing,
limR!C1 �R D T a.s. and

sup
u�s�T

j�R.s/jp !
R!C1 sup

u�s�T
j�sjp a.s.

and by Fatou’s lemma (or Beppo Levi’s theorem) we have proved (9.12). As
for (9.13) we have

sup
u�s�t

j�s � �jp

� 2p�1 sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
b.�r; r/ dr

ˇ
ˇ
ˇ
p C 2p�1 sup

u�s�t

ˇ
ˇ
ˇ

Z s

u
�.�r; r/ dBr

ˇ
ˇ
ˇ
p
:

(9.16)
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Now, by Hölder’s inequality and (9.12),

E
h

sup
u�s�t

ˇ
ˇ
ˇ

Z s

u
b.�r; r/ dr

ˇ
ˇ
ˇ
pi � .t � u/p�1E

h Z t

u
jb.�r; r/jp dr

i

� .t � u/p�1MpE
h Z t

u
.1C j�rj/p dr

i
� 2p�1.t � u/p�1MpE

h Z t

u
.1C j�rjp/ dr

i

� c1. p;T;m/.t � u/p.1C EŒj�jp�/ :

Similarly, using again Proposition 8.4,

E
h

sup
u�s�t

� Z s

u
�.�r; r/ dBr

�pi � c.t � u/
p�2
2 E

h Z t

u
j�.�r; r/jp dr

i

� c.t � u/
p�2
2 MpE

h Z t

u
.1C j�rj/p dr

i
� c2p�1.t � u/

p�2
2 MpE

h Z t

u
.1C j�rjp/ dr

i

� c2. p;T;m/.t � u/p=2.1C EŒj�jp�/

and (9.13) follows from (9.16). ut

Remark 9.2 Note again that we have proved (9.12) before we knew of the
existence of a solution: (9.12) is an a priori bound of the solutions.

As a first consequence, for p D 2, under assumption (9.9) (sublinearity
of the coefficients) if � 2 L2 every solution � of the SDE (9.1) is a process
belonging to M2. This implies also that the stochastic component

t 7!
Z t

0

�.�s; s/ dBs

is a square integrable martingale. Actually the process s 7! �.�s; s/ itself
belongs to M2.Œu; t�/: as j�.�s; s/j � M.1 C j�sj/ we have j�.�s; s/j2 �
2M2.1Cj�sj2/. Hence, as the stochastic integral

R t
u �.�s; s/ dBs has expectation

equal to 0,

EŒ�t� D EŒ��C E
h Z t

u
b.�s; s/ ds

i
: (9.17)

Therefore, intuitively, the coefficient b has the meaning of a trend, i.e. in the
average the process follows the direction of b. In dimension 1, in the average,
the process increases in regions where b is positive and decreases otherwise.

Conversely, � determines zero-mean oscillations. If the process is one-
dimensional then, recalling Theorem 8.4, i.e. the fact that a stochastic integral
is a time-changed Brownian motion, regions where � is large in absolute value
will be regions where the process undergoes oscillations with high intensity

(continued)
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Remark 9.2 (continued)
and regions where � is small in absolute value will be regions where the
oscillations have a lower intensity.

This is useful information when dealing with the problem of modeling a
given phenomenon with an appropriate SDE.

Remark 9.3 It is useful to point out a by-product of the proof of Theorem 9.1.
If �R is the exit time from the sphere of radius R, then, for every � 2 Lp,

P.�R < T/ D P
�

sup
u�t�T

j�tj � R
�

� k.T;M/.1 C E.j�jp//

Rp
�

Hence limR!C1 P.�R < T/ D 0 and this rate of convergence is moreover
uniform for � in a bounded set of Lp and does not depend on the Lipschitz
constant of the coefficients.

9.4 Existence for Lipschitz continuous coefficients

In this section we prove existence and uniqueness of the solutions of an SDE under
suitable hypotheses on the coefficients b and � .

Let us assume by now that (9.9) (sublinear growth) holds. Then, if Y 2
M2.Œ0;T�/, as jb.x; s/j2 � M2.1C jxj/2 � 2M2.1C jxj2/,

E
h Z t

0

jb.Ys; s/j2 ds
i

� 2M2E
h Z t

0

.1C jYsj2/ ds
i

� 2M2
�

t C E
h Z t

0

jYsj2 ds
i� (9.18)

whereas, with a similar argument and using Doob’s maximal inequality (the second
of the maximal inequalities (7.23)),

E
h

sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

�.Ys; s/ dBs

ˇ
ˇ
ˇ
2i � 4E

h Z t

0

j�.Ys; s/j2 ds
i

� 8 M2
�

t C E
h Z t

0

jYsj2 ds
i�
:

(9.19)
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We are now able to prove that for an SDE under Assumption (A) there exist strong
solutions and that pathwise uniqueness holds.

Theorem 9.2 Let u � 0 and let � be an R
m-valued r.v., Fu-measurable and

square integrable. Then under Assumption (A) there exists a � 2 M2.Œu;T�/
such that

�t D �C
Z t

u
b.�s; s/ ds C

Z t

u
�.�s; s/ dBs : (9.20)

Moreover, we have pathwise uniqueness, i.e. if � 0 is another solution of (9.20)
then

P.�t D � 0
t for every t 2 Œu;T�/ D 1 : (9.21)

The proof is very similar to that of comparable theorems for ordinary equations
(the method of successive approximations). Before going into it, let us point out that
to ask for � to be Fu-measurable is equivalent to requiring that � is independent of
�.BtCu �Bu; t � 0/, i.e., intuitively, the initial position is assumed to be independent
of the subsequent random evolution.

Actually, if � is Fu-measurable, then it is necessarily independent of �.BtCu �
Bu; t � 0/, as developed in Exercise 3.4.

Conversely, assume u D 0. If � is independent of �.Bt; t � 0/, then, if F 0
t D

Ft _�.�/, B is also an .F 0
t /t-standard Brownian motion (see Exercise 3.5) and now

� is F 0
0-measurable.

Proof We shall assume u D 0 for simplicity. Let us define by recurrence a sequence
of processes by �0.t/ � � and

�mC1.t/ D �C
Z t

0

b.�m.s/; s/ ds C
Z t

0

�.�m.s/; s/ dBs : (9.22)

The idea of the proof of existence is to show that the processes .�m/m converge
uniformly on the time interval Œ0;T� to a process � that will turn out to be a solution.

Let us first prove, by induction, that

E
h

sup
0�u�t

j�mC1.u/� �m.u/j2
i

� .Rt/mC1

.m C 1/Š
, (9.23)

where R is a positive constant. For m D 0, thanks to Hölder’s inequality,

sup
0�u�t

j�1.u/� �j2 � 2 sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

b.�; s/ ds
ˇ
ˇ
ˇ
2 C 2 sup

0�u�t

ˇ
ˇ
ˇ

Z u

0

�.�; s/ dBs

ˇ
ˇ
ˇ
2

� 2t
Z t

0

jb.�; s/j2 ds C 2 sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

�.�; s/ dBs

ˇ
ˇ
ˇ
2

:
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By (9.18) and (9.19),

E
�

sup
0�u�t

j�1.u/� �j2
�

� 4M2t
�
t C tEŒj�j2��C 16M2

�
t C tEŒj�j2�� � Rt ;

where R D 16M2.T C 1/.1C E.j�j2//. Let us assume (9.23) true for m � 1, then

sup
0�u�t

j�mC1.u/� �m.u/j2 � 2 sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

b.�m.s/; s/ � b.�m�1.s/; s/ ds
ˇ
ˇ
ˇ
2

C 2 sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

�.�m.s/; s/ � �.�m�1.s/; s/ dBs

ˇ
ˇ
ˇ
2

:

Now, by Hölder’s inequality,

sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

b.�m.s/; s/ � b.�m�1.s/; s/ ds
ˇ
ˇ
ˇ
2

� sup
0�u�t

u
Z u

0

jb.�m.s/; s/ � b.�m�1.s/; s/j2 ds � tL2
Z t

0

j�m.s/ � �m�1.s/j2 ds

whereas by Doob’s inequality

E
�

sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

�.�m.s/; s/ � �.�m�1.s/; s/ dBs

ˇ
ˇ
ˇ
2�

� 4E
�Z t

0

j�.�m.s/; s/ � �.�m�1.s/; s/j2 ds
�

� 4L2
Z t

0

E.j�m.s/ � �m�1.s/j2/ ds

whence, with a possibly larger value for R,

E
�

sup
0�u�t

j�mC1.u/� �m.u/j2
�

� 2L2tE
� Z t

0

j�m.s/� �m�1.s/j2 ds
�

C 8L2E
� Z t

0

j�m.s/ � �m�1.s/j2 ds
�

� R
Z t

0

E.j�m.s/ � �m�1.s/j2/ ds � R
Z t

0

.Rs/m

mŠ
ds

D .Rt/mC1

.m C 1/Š

and (9.23) is proved. Markov’s inequality now gives

P
�

sup
0�t�T

j�mC1.t/ � �m.t/j > 1

2m

�
� 22mE

h
sup
0�t�T

j�mC1.t/ � �m.t/j2
i

� 22m .RT/mC1

.m C 1/Š
�
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As the left-hand side is summable, by the Borel–Cantelli lemma,

P
�

sup
0�t�T

j�mC1.t/ � �m.t/j > 1

2m
for infinitely many indices m

�
D 0 ;

i.e. for almost every ! we have eventually

sup
0�t�T

j�mC1.t/ � �m.t/j � 1

2m

and therefore for fixed ! the series

�C
m�1X

kD0
Œ�kC1.t/ � �k.t/� D �m.t/

converges uniformly on Œ0;T� a.s. Let �t D limm!1 �m.t/. Then � is continuous,
being the uniform limit of continuous processes, and therefore � 2 M2

loc.Œ0;T�/. Let
us prove that it is a solution of (9.20). Recall that we have the relation

�mC1.t/ D �C
Z t

0

b.�m.s/; s/ ds C
Z t

0

�.�m.s/; s/ dBs : (9.24)

Of course the left-hand side converges uniformly to �. Moreover, as b and � are
Lipschitz continuous (constant L),

sup
0�t�T

jb.�m.t/; t/ � b.�t; t/j � L sup
0�t�T

j�m.t/ � �tj :

This and the analogous inequality for � imply that, uniformly on Œ0;T� a.s.,

lim
m!1 b.�m.t/; t/ D b.�t; t/; lim

m!1�.�m.t/; t/ D �.�t; t/ :

Therefore

Z t

0

b.�m.s/; s/ ds !
m!1

Z t

0

b.�s; s/ ds a.s.

and

Z T

0

j�.�m.t/; t/ � �.�t; t/j2 dt !
m!1 0 a.s.

and by Theorem 7.3 (a.s. convergence implies convergence in probability)

Z t

0

�.�m.s/; s/ dBs
P!

m!1

Z t

0

�.�s; s/ dBs
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so that we can take the limit in probability in (9.24) and obtain the relation

�t D �C
Z t

0

b.�s; s/ ds C
Z t

0

�.�s; s/ dBs ;

so that � is a solution. Of course, � 2 M2.Œ0;T�/ thanks to Theorem 9.1.
Let us turn to uniqueness. Let �1; �2 be two solutions, then

j�1.t/ � �2.t/j

�
ˇ
ˇ
ˇ

Z t

0

�
b.�1.s/; s/ � b.�2.s/; s/

�
ds
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ

Z t

0

�
�.�1.s/; s/ � �.�2.s/; s

�
dBs

ˇ
ˇ
ˇ :

Using (9.18) and (9.19) and the Lipschitz continuity of the coefficients,

E
h

sup
0�u�t

j�1.u/� �2.u/j2
i

� 2E
h

sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

Œb.�1.s/; s/ � b.�2.s/; s/� ds
ˇ
ˇ
ˇ
2i

C2E
h

sup
0�u�t

ˇ
ˇ
ˇ

Z u

0

Œ�.�1.s/; s/ � �.�2.s/; s/� dBs

ˇ
ˇ
ˇ
2i

� 2tE
h Z t

0

jb.�1.s/; s/ � b.�2.s/; s/j2 ds
i

C8E
h Z t

0

j�.�1.s/; s/ � �.�2.s/; s/j2 ds
i

� L2Œ2T C 8�

Z t

0

E
�j�1.s/ � �2.s/j2



ds :

(9.25)

Therefore, if v.t/ D EŒsup0�u�t j�1.u/� �2.u/j2�, v is bounded by Theorem 9.1, and
satisfies the relation

v.t/ � c
Z t

0

v.s/ ds 0 � t � T

with c D L2.2T C 8/; by Gronwall’s inequality v � 0 on Œ0;T�, i.e. (9.21).
ut

Remark 9.4 Let us assume that the initial condition � is deterministic, i.e.
� � x 2 R

m and that the starting time is u D 0. Let us consider the filtration
Ht D �.�s; s � t/ generated by the solution � of (9.1). Then we haveHt � G t

(recall that .G t/t denotes the augmented natural filtration of the Brownian
motion).

(continued)
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Remark 9.4 (continued)
Actually, it is immediate to check by induction that all the approximants

�n are such that �n.t/ is G t-measurable. Hence the same holds for �t, which is
the a.s. limit of .�n.t//n.

The opposite inclusion is not always true. Consider, for example, the case
where the last k columns of the diffusion coefficient � vanish. In this case the
solution � would be independent of the Brownian motions Bd�kC1; : : : ;Bd,
which cannot be adapted to the filtration .Ht/t.

We shall see later that the question of whether the two filtrations .Ht/t and
.G t/t coincide is of some interest.

9.5 Localization and existence for locally Lipschitz
coefficients

In this section we prove existence and uniqueness under weaker assumptions than
Lipschitz continuity of the coefficients b and � . The idea of this extension is
contained in the following result, which is of great importance by itself. It states
that as far as the solution � remains inside an open set D, its behavior depends only
on the values of the coefficients inside D.

Theorem 9.3 (Localization) Let bi, �i, i D 1; 2, be measurable functions on
R

m � Œu;T�. Let �i; i D 1; 2, be solutions of the SDE

d�i.s/ D bi.�i.s/; s/ ds C �i.�i.s/; s/ dBs

�i.u/ D �

where � is a square integrable, Fu-measurable r.v. Let D � R
m be an open set

such that, on D � Œu;T�, b1 D b2, �1 D �2 and, for every x; y 2 D, u � t � T,

jbi.x; t/ � bi.y; t/j � Ljx � yj; j�i.x; t/ � �i.y; t/j � Ljx � yj:

Then, if �i denotes the exit time of �i from D,

�1 ^ T D �2 ^ T q.c. and P
�
�1.t/ D �2.t/ for every u � t � �1 ^ T

� D 1 :

Proof Let, for t � T,

eb.x; t/ D b1.x; t/1D.x/ D b2.x; t/1D.x/; e�.x; t/ D �1.x; t/1D.x/ D �2.x; t/1D.x/:
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Then it is easy to see that, as in the proof of Theorem 9.1,

�i.t ^ �i/ D �C
Z t^�i

0

b.�i.s/; s/ ds C
Z t^�i

0

�.�i.s/; s/ dBs

D �C
Z t

0

eb.�i.s ^ �i/; s/ ds C
Z t

0

e�.�i.s ^ �i/; s/ dBs

and therefore, for t � T,

sup
0�r�t

j�1.r ^ �1/ � �2.r ^ �2/j2

� 2 sup
0�r�t

ˇ
ˇ
ˇ

Z r

0

�
eb.�1.s ^ �1/; s/ �eb.�2.s ^ �2/; s/

�
ds
ˇ
ˇ
ˇ
2

C2 sup
0�r�t

ˇ
ˇ
ˇ

Z r

0

�
e�.�1.s ^ �1/; s/�e�.�2.s ^ �2/; s/

�
dBs

ˇ
ˇ
ˇ
2

:

A repetition of the arguments that led us to (9.25) (Doob’s inequality for the
stochastic integral and Hölder’s inequality for the ordinary one) gives

E
h

sup
0�r�t

j�1.r ^ �1/� �2.r ^ �2/j2
i

� L2.2T C 8/E
�Z t

0

j�1.s ^ �1/� �2.s ^ �2/j2 ds
�

� L2.2T C 8/E
�Z t

0

sup
0�r�s

j�1.r ^ �1/� �2.r ^ �2/j2 dr
�
;

i.e., if we set v.t/ D E
�

sup0�r�t j�1.r ^ �1/ � �2.r ^ �2/j2


, v satisfies the relation

v.t/ � L2.2T C 8/

Z t

0

v.s/ ds :

Now, v is bounded by Theorem 9.1 and Gronwall’s inequality gives v.t/ � 0, so
that

v.T/ D E
h

sup
0�r�T

j�1.r ^ �1/� �2.r ^ �2/j2
i

D 0 ;

whence the two statements follow simultaneously.
ut

Assumption (A’) We say that b and � satisfy Assumption (A’) if they are
measurable in .x; t/ and

(continued)
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(continued)
i) have sublinear growth (i.e. satisfy (9.9));

ii) are locally Lipschitz continuous in x, i.e. for every N > 0 there exists an
LN > 0 such that, if x; y 2 R

m, jxj � N, jyj � N, t 2 Œ0;T�,
jb.x; t/� b.y; t/j � LN jx � yj; j�.x; t/ � �.y; t/j � LN jx � yj ;

i.e. their restriction to every bounded set is Lipschitz continuous.

Theorem 9.4 Under Assumption (A’), let � be a square integrable Fu-
measurable r.v. Then there exists a process � such that

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D � :

Moreover, � 2 M2.Œ0;T�/ and pathwise uniqueness holds.

Proof Existence. We shall assume u D 0. For N > 0 let ˚N 2 C1
K .R

m/ such that
0 � ˚N � 1 and

˚N.x/ D
(
1 if jxj � N

0 if jxj � N C 1 :

Let

bN.x; t/ D b.x; t/˚N.x/; �N.x; t/ D �.x; t/˚N.x/ :

�N and bN therefore satisfy Assumption (A) and there exists a �N 2 M2.Œ0;T�/ such
that

�N.t/ D �C
Z t

0

bN.�N.s/; s/ ds C
Z t

0

�N.�N.s/; s/ dBs :

Let �N be the exit time of �N from the ball of radius N. If N0 > N, on fjxj � Ng �
Œ0;T� we have bN D bN0 and �N D �N0 . Therefore, by the localization Theorem 9.3,
the two processes �N0 and �N coincide for t � T until their exit from the ball of
radius N, i.e. on the event f�N > Tg a.s. By Remark 9.3, moreover,

P.�N > T/ D P
�

sup
0�t�T

j�N.t/j � N
�

!
N!1 1

and therefore f�N > Tg % ˝ a.s. We can therefore define �t D �N.t/ on f�N > Tg:
this is a well defined since if N0 > N then we know that �N0.t/ D �N.t/ on f�N > Tg;
by Theorem 7.2 on the event f�N > Tg we have
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�t D �N.t/ D �C
Z t

0

bN.�N.s/; s/ ds C
Z t

0

�N.�N.s/; s/ dBs

D �C
Z t

0

b.�s; s/ ds C
Z t

0

�.�s; s/ dBs ;

hence, by the arbitrariness of N, � is a solution. Of course, � 2 M2.Œ0;T�/ thanks to
Theorem 9.1.

Uniqueness. Let �1; �2 be two solutions and let, for i D 1; 2, �i.N/ D infft �
TI j�i.t/j > Ng. Then, by Theorem 9.3, �1.N/ D �2.N/ a.s. and �1 and �2 coincide
a.s. on f�1.N/ > Tg. As f�1.N/ > Tg % ˝ a.s., �1 and �2 coincide for every
t 2 Œ0;T� a.s.

ut

Remark 9.5 With the notations of the previous proof �N ! � uniformly for
almost every ! (�N.!/ and �.!/ even coincide a.s. on Œ0;T� for N large
enough). Moreover, if � � x, the event f�N � Tg on which �N and � are
different has a probability that goes to 0 as N ! 1 uniformly for u 2 Œ0;T�
and x in a compact set.

Remark 9.6 A careful look at the proofs of Theorems 9.1, 9.2, 9.3, 9.4
shows that, in analogy with ordinary differential equations, hypotheses of
Lipschitz continuity of the coefficients are needed in order to guarantee
local existence and uniqueness (thanks to Gronwall’s inequality) whereas
hypotheses of sublinear growth guarantee global existence. Exercise 9.23
presents an example of an SDE whose coefficients do not satisfy (9.9) and
admits a solution that is defined only on a time interval Œ0; �.!/Œ with � <
C1 a.s.

9.6 Uniqueness in law

In this section we prove uniqueness in law of the solutions under Assumption (A’).

Theorem 9.5 Let Bi D .˝ i;F i; .F i
t /t; .B

i
t/t;P

i/, i D 1; 2, be d-dimen-
sional standard Brownian motions, �i; i D 1; 2, m-dimensional r.v.’s in
L2.˝ i;F i

u;P
i/, respectively, and having same law. Let us assume that b and �

satisfy Assumption (A’) and let � i be the solutions of

(continued)
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Theorem 9.5 (continued)

� i.t/ D �i C
Z t

u
b.� i.s/; s/ ds C

Z t

u
�.� i.s/; s/ dBi

s:

Then the processes .� i;Bi/, i D 1; 2, have the same law.

Proof We assume u D 0. Let us first assume Assumption (A). The idea of the proof
consists in proving by induction that, if � i

n are the approximants defined in (9.22),
then the processes .� i

n;B
i/, i D 1; 2, have the same law for every n.

This is certainly true for n D 0 as � i
0 � �i is independent of Bi and �1 and

�2 have the same law. Let us assume then that .� i
n�1;Bi/, i D 1; 2, have the same

law and let us prove that the same holds for .� i
n;B

i/. This means showing that the
finite-dimensional distributions of .� i

n;B
i/ coincide. This is a consequence of the

following lemma.

Lemma 9.2 Let Bi D .˝ i;F i; .F i
t /t; .B

i
t/t;P

i/, i D 1; 2, be d-dimen-
sional standard Brownian motions, �i; i D 1; 2, m-dimensional r.v.’s in
L2.˝ i;F i

u;P
i/, respectively, and having same law. Let us assume that b

and � satisfy Assumption (A) and let �1; �2 be processes in M2
loc;B1

.Œ0;T�/,

M2
loc;B2

.Œ0;T�/ respectively such that .�i; �
i;Bi/, i D 1; 2, have the same law.

Then, if

Yi D �i C
Z t

0

b.� i
s; s/ ds C

Z t

0

�.� i
s; s/ dBi

s ;

the processes .�i;Yi;Bi/ have the same finite-dimensional distributions.

Proof If the � i’s are elementary processes and b and � are linear combinations
of functions of the form g.x/1Œu;vŒ.t/ this is immediate as in this case b.� i

s; s/ and
�.� i

s; s/ are still elementary processes and by Definition 7.15 we have directly that
the finite-dimensional distributions of .�1;Y1;B1/ and .�2;Y2;B2/ coincide. The
passage to the general case is done by first approximating the � i’s with elementary
processes and then b and � with functions as above and using the fact that a.s.
convergence implies convergence in law. The details are omitted. ut
End of the Proof of Theorem 9.5 As the equality of the finite-dimensional distri-
butions implies equality of the laws, the processes .� i

n;B
i/ have the same law.

As .� i
n;B

i/ converges to .� i;Bi/ uniformly in t and therefore in the topology of
C .Œ0;T�;RmCd/ (see the proof of Theorem 9.2) and the a.s. convergence implies
convergence of the laws, the theorem is proved under Assumption (A).
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Let us assume now Assumption (A’). By the first part of this proof, if �1N ; �
2
N are

the processes as in the proof of Theorem 9.4, .�1N ;B
1/ and .�2N ;B

2/ have the same
law. As � i

N ! � i uniformly a.s. (see Remark 9.5), the laws of .� i
N ;B

i/, i D 1; 2,
converge as N ! 1 to those of .� i;Bi/, which therefore coincide. ut

9.7 The Markov property

In this section we prove that, under Assumption (A’), the solution of an SDE is a
Markov process and actually a diffusion associated to a generator that the reader can
already imagine. In Sect. 9.9 we shall consider the converse problem, i.e. whether
for a given differential operator there exists a diffusion process that is associated to
it and whether it is unique in law.

Let, for an Fs-measurable r.v. �, ��;st be the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�s D �

(9.26)

and let us prove first the Markov property, i.e. that, for every � 2 B.Rm/ and
s � u � t,

P
�
�
�;s
t 2 � jF s

u

� D p.u; t; ��;su ; � / (9.27)

for some transition function p. We know that the transition function p.u; t; x; �/ is the
law at time t of the process starting at x at time u, i.e. if �x;u

t is the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D x
(9.28)

then the candidate transition function is, for � 2 B.Rm/,

p.u; t; x; � / D P.�x;u
t 2 � / : (9.29)

In order to prove the Markov property (9.27) we note that

�
�;s
t D �C

Z t

s
b.��;sv ; v/ dv C

Z t

s
�.��;sv ; v/ dBv

D �C
Z u

s
b.��;sv ; v/ dv C

Z u

s
�.��;sv ; v/ dBv

„ ƒ‚ …
D��;su

C
Z t

u
b.��;sv ; v/ dv C

Z t

u
�.��;sv ; v/ dBv ;

(9.30)
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i.e. the value at time t of the solution starting at � at time s is the same as the value
of the solution starting at ��;su at time u, i.e.

�
�;s
t D �

�
�;s
u ;u

t : (9.31)

Let us define

 .x; !/ D 1� .�
x;u
t .!//

and observe that

�.x/ WD EŒ .x; �/� D EŒ1� .�
x;u
t /� D P.�x;u

t 2 � / D p.u; x; t; � / : (9.32)

By (9.31)

 .��;su ; !/ D 1� .�
�
�;s
u ;u

t .!//

and, going back to (9.27),

P
�
�
�;s
t 2 � jF s

u

� D P
�
�
�
�;s
u ;u

t 2 � jF s
u

� D E
�
 .��;su ; �/jF s

u

�
:

The r.v. ��;su is F s
u -measurable. If we prove that the r.v. �x;u

t is independent of F s
u ,

then .x; �/ is independent ofF s
u and we can apply the freezing lemma (Lemma 4.1)

and obtain

P
�
�
�;s
t 2 � jF s

u

� D E
�
 .��;su ; �/jF s

u


 D �.��;su / D p.u; ��;su ; t; � /

(� is defined above in (9.32)), which proves the Markov property.
Hence in order to complete this proof we still have to

a) prove that �x;u
t is a r.v. that is independent of F s

u , and, unfortunately, also that
b) the map .x; u/ 7! �

x;u
t is measurable for every ! or at least that there is

a measurable version of it. This is the object of the next section, where
(Theorem 9.9) it is shown that, under Assumption (A), there exists a version of
.x; u; t/ 7! �

x;u
t that is continuous in the three arguments x; u; t (it will be another

application of Theorem 2.1, the continuity Kolmogorov theorem).

Fact a) above follows easily from the following lemma. Let H 0
u D �.Bv �

Bu; v � u/ be the �-algebra generated by the increments of B after time u and
Hu the �-algebra obtained by adding to H 0

u the negligible sets of F1. Of course
(Exercise 3.4) Hu is independent of Fu.
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Lemma 9.3 Let Y 2 M2 be a process such that Ys is Hu-measurable for every
s � u. Then the r.v.

Z t

u
Ys dBs (9.33)

is also Hu-measurable for every t � u and therefore independent of Fu.

Proof The statement is immediate if Y D Pm
iD1 Xi1Œti;tiC1Œ is an elementary process.

In this case the r.v.’s Xi are Hu-measurable and in the explicit expression (7.7)
only the increments of B after time u and the values of the Xi appear. It is
also immediate that in the approximation procedure of a general integrand with
elementary processes described at the beginning of Sect. 7.3 if Y is Hu-measurable,
then the approximating elementary processes are also Hu-measurable. Then just
observe that the stochastic integral in (9.33) is the a.s. limit of the integrals of the
approximating elementary processes.

ut
Let us assume Assumption (A). If we go back to the successive approximations
scheme that is the key argument in the proof of existence in Theorem 9.2, we see
that .�x;u

t /t�u is the limit of the approximating processes �m, where �0.t/ � x and

�mC1.t/ D x C
Z t

u
b.�m.v/; v/ dv C

Z t

u
�.�m.v/; v/ dBv :

The deterministic process �0 � x is obviously Hu-measurable and by recurrence,
using Lemma 9.3, the processes �m are such that �m.t/ also is Hu-measurable, as
well as .�x;u

t /t�u which is their a.s. limit.
Hence, given as granted b) above, we have proved the Markov property under

Assumption (A).

Theorem 9.6 Under Assumption (A’), p defined in (9.29) is a transition
function and the process .˝;F ; .Ft/t; .�

x;s
t /t;P/ is a Markov process starting

at time s, with initial distribution ıx and associated to the transition function p.

Proof Under Assumption (A) the Markov property has already been proved. Under
Assumption (A’) we shall approximate the solution with processes that are solutions
of an SDE satisfying Assumption (A): let �N and �N be as in the proof of
Theorem 9.4 and let

pN.s; t; x; � / WD P.�x;s
N .t/ 2 � / :
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�N is the solution of an SDE with coefficients satisfying Assumption (A), and
therefore enjoying the Markov property, i.e.

P.�x;s
N .t/ 2 � jF s

u / D pN.u; t; �
x;s
N .u/; � / :

We now have to pass to the limit as N ! 1 in the previous equation. As �x;s
t and

�
x;s
N .t/ coincide on f�N > tg and P.�N � t/ ! 0 as N ! 1, we have, using the fact

that probabilities pass to the limit with a monotone sequences of events,

pN.s; t; x; � / D P.�x;s
N .t/ 2 � /

D P.�x;s
t 2 �; �N > t/C P.�x;s

N .t/ 2 �; �N � t/ !
N!1 P.�x;s

t 2 � /
D p.s; t; x; � / :

(9.34)

From this relation we derive that

pN.u; t; �
x;s
N .u/; � / !

N!1 p.u; t; �x;s.u/; � /

as �x;s
N .u/ D �x;s.u/ for N large enough. Moreover,

P
�
�x;s

t 2 � jF s
u

� D E
�
1� .�

x;s
t /1f�N>tg jF s

u


C E
�
1� .�

x;s
t /1f�N�tg jF s

u




D E
�
1� .�

x;s
N .t//1f�N>tg jF s

u


C E
�
1� .�

x;s
t /1f�N�tg jF s

u




D E
�
1� .�

x;s
N .t//jF s

u


C E
�
.1� .�

x;s
t /� 1� .�

x;s
N .t///1f�N�tg jF s

u



:

The second term on the right-hand side tends to zero a.s., as P.�N � t/ & 0 as
N ! 1, hence

lim
n!1 P.�x;s

N .t/ 2 � jF s
u / D lim

n!1 E
�
1� .�

x;s
N .t//jF s

u


 D P
�
�x;s

t 2 � jF s
u

�
a:s:

and putting things together

P.�x;s
t 2 � jF s

u / D lim
N!1 EŒ1� .�

x;s
N .t//jF s

u �

D lim
N!1 pN.u; t; �

x;s
N .u/; � / D p.u; t; �x;s.u/; � / :

The Markov property is therefore proved under Assumption (A’). We still have to
prove that p satisfies the Chapman–Kolmogorov equation; this is a consequence of
the argument described in Remark 6.2: as p.s; t; x; �/ is the law of �x;s

t

p.s; t; x; � / D P.�x;s
t 2 � / D EŒP.�x;s

t 2 � jF s
u /� D EŒp.u; t; �x;s

u ; � /�

D
Z

p.u; t; y; � /p.s; u; x; dy/ :

ut
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We can now construct a realization of the Markov process associated to the solution
of an SDE. In order to do this, let C D C .Œ0;T�;Rm/ and let Xt W C ! R

m be the
applications defined by Xt.�/ D �.t/. Let M D B.C /, M s

t D �.Xu; s � u � t/,
M s1 D �.Xu; u � s/. On C let Px;s be the law of the process �x;s (Sect. 3.2) and
denote by Ex;s the expectation computed with respect to Px;s. Of course, if p is the
transition function defined in (9.29), we have p.s; t; x; � / D Px;s.Xt 2 � /.

As, by definition, the finite-dimensional distributions of .Xt/t�s with respect to
Px;s coincide with those of �x;s with respect to P, the following theorem is obvious.

Theorem 9.7 Under Assumption (A’), .C ;M ; .M s
t /t�s; .Xt/t�s; .Px;s/x;s/ is

a realization of the Markov process associated to the transition function p
defined in (9.29).

Thanks to Theorem 9.5, which guarantees the uniqueness in law, the probability
Px;s does not depend on the Brownian motion that is used to construct the solution
�x;s. Therefore the realization .C ;M ; .M s

t /t�s; .Xt/t�s; .Px;s/x;s/ is well defined. We
shall call this family of processes the canonical Markov process associated to the
SDE (9.1).

Theorem 9.8 Under Assumption (A’) the canonical Markov process associ-
ated to (9.1) is a diffusion with generator

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi

,

where a.x; t/ D �.x; t/�.x; t/� .

Proof Let us prove first the Feller property which will imply strong Markovianity
thanks to Theorem 6.1. We must prove that, for every h > 0 and for every bounded
continuous function f , the map

.x; t/ 7!
Z

f .y/p.t; t C h; x; dy/ D Ex;tŒ f .XtCh/� D EŒ f .�x;t
tCh/�

is continuous. Under Assumption (A) this is immediate, using the fact that �x;s
t .!/ is

a continuous function of x; s; t; t � s thanks to the forthcoming Theorem 9.9. Under
Assumption (A’) if �x;s

N and �N are as in the proof of Theorem 9.4 then as �x;s and
�

x;s
N coincide on f�N > Tg,

EŒ f .�x;t
tCh/� D EŒ f .�x;t

N .t C h//�C E
�
.f .�x;t

tCh/� f .�x;t
N .t C h///1f�N�Tg



:
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Now it is easy to deduce that .x; t/ 7! EŒ f .�x;t
tCh/� is continuous, as the first term

on the right-hand side is continuous in .x; t/ whereas the second one is majorized
by 2kf k1P.�N � T/ and can be made small uniformly for .x; t/ in a compact set,
thanks to Remark 9.3.

Let us prove that Lt is the generator. By Ito’s formula, as explained in Remark 9.1,
if f 2 C2

K ,

Ts;t f .x/ D EŒ f .�x;s
t /�

D f .x/C E
h Z t

s
Luf .�x;s

u / du
i

C E
h Z t

s

mX

iD1

dX

jD1
�ij.�

x;s
u ; u/

@f

@xi
.�x;s

u / dBj.u/
i
:

The last integrand is a process of M2.Œs; t�/, as �x;s 2 M2.Œs; t�/ and � has a sublinear
growth (the derivatives of f are bounded), therefore the expectation of the stochastic
integral vanishes and we have

Ts;tf .x/ D f .x/C
Z t

s
EŒLu f .�x;s

u /� du D f .x/C
Z t

s
Ts;u.Lu f /.x/ du :

ut

Example 9.3 What is the transition function p.t; x; �/ of the Ornstein–
Uhlenbeck process, i.e. the Markov process that is the solution of

d�t D �	�t dt C � dBt ‹ (9.35)

By (9.29) p.t; x; �/ is the law of �x
t , i.e. of the position at time t of the solution

of (9.35) starting at x. We have found in Sect. 9.2 that

�t D e�	tx C e�	t
Z t

0

e	s� dBs :

Now simply observe that �t has a distribution that is Gaussian with mean e�	tx
and variance

�2t WD
Z t

0

e�2	.t�s/�2 ds D �2

2	
.1 � e�2	t/ :

This observation can be useful if you want to simulate the process �: just fix a
discretization step h. Then choose at random a number z with distribution
N.e�	hx; �2h / and set �h D z. Then choose at random a number z with
distribution N.e�	h�h; �

2
h / and set �2h D z and so on: the position �.kC1/h

will be obtained by sampling a number with distribution N.e�	h�kh; �
2
h /.

(continued)
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Example 9.3 (continued)
This procedure allows us to simulate subsequent positions of an Ornstein–
Uhlenbeck process exactly, which means that the positions .x; �h; : : : ; �mh/

have exactly the same joint distributions as the positions of the Markov
process which is the solution of (9.35) at the times 0; h; : : : ;mh.

This procedure can be easily extended to the case of a multidimensional
Ornstein–Uhlenbeck process, the only difference being that in that case the
transition function is a multivariate Gaussian distribution.

Chapter 11 is devoted to the simulation problems of a more general class
of diffusion processes.

Example 9.4 Let B be a real Brownian motion and X the solution of the two-
dimensional SDE

d�1.t/ D b1.�1.t// dt C �1.t/ dBt

d�2.t/ D b2.�2.t// dt C �2.t/ dBt :

What is the differential generator of �?
This equation can be written as

d�t D b.�t/ dt C �.�t/ dBt ;

where b.x1; x2/ D
�

b1.x1/
b2.x2/

	

and �.x/ D
�

x1
x2

	

: here the Brownian motion B

is one-dimensional.
In order to obtain the generator, the only thing to be computed is the matrix

a D ��� of the second-order coefficients. We have

a.x/ D �.x/��.x/ D
�

x1
x2

	
�
x1 x2

� D
�

x21 x1x2
x1x2 x22

	

:

Therefore

L D 1

2

�
x21
@2

@x21
C x22

@2

@x22
C 2x1x2

@2

@x1@x2

�
C b1.x1/

@

@x1
C b2.x2/

@

@x2
�

And if it was

d�1.t/ D b1.�1.t// dt C �1.t/ dB1.t/

d�2.t/ D b2.�2.t// dt C �2.t/ dB2.t/ ;

(continued)
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Example 9.4 (continued)
where B D .B1;B2/ is a two-dimensional Brownian motion?

Now

�.x/ D
�

x1 0
0 x2

	

and

a.x/ D �.x/��.x/ D
�

x21 0
0 x22

	

so that

L D 1

2

�
x21
@2

@x21
C x22

@2

@x22

�
C b1.x1/

@

@x1
C b2.x2/

@

@x2
�

9.8 Lp bounds and dependence on the initial data

Let us see how the solution depends on the initial value � and initial time u. What if
one changes the starting position or the starting time “just a little”? Does the solution
change “just a little” too? Or, to be precise, is it possible to construct solutions so
that there is continuity with respect to initial data?

In some situations, when we are able to construct explicit solutions, the answer to
this question is immediate. For instance, if �x;t

s is the position at time s of a Brownian
motion starting at x at time t, we can write

�x;t
s D x C .Bt � Bs/ ;

where B is a Brownian motion. It is immediate that this is, for every !, a continuous
function of the starting position x, of the starting time t and of the actual time s.
Similar arguments can be developed for other processes for which we have explicit
formulas, such as the Ornstein–Uhlenbeck process or the geometric Brownian
motion of Sect. 9.2.

The aim of this chapter is to give an answer to this question in more general
situations. It should be no surprise that the main tool will be in the end Kolmogorov’s
continuity Theorem 2.1.
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Proposition 9.1 Under Assumption (A), let �1 and �2 be solutions of (9.20)
with initial conditions �1; u and �2; v, respectively. Let us assume u � v.
Then, if p � 2,

E
h

sup
v�t�T

j�1.t/ � �2.t/jp
i

� c.L;T;M; p/
�
1C E.j�1jp/

��ju � vjp=2 C E.j�1 � �2jp/
�
:

(9.36)

Proof For t � v

�1.t/ � �2.t/

D �1.v/��2 C
Z t

v

�
b.�1.r/; r/� b.�2.r/; r/



dr C

Z t

v

�
�.�1.r/; r/��.�2.r/; r/



dBr

and therefore, again using Hölder’s inequality on the integral in dt and Doob’s
inequality on the stochastic integral,

E
h

sup
v�t�s

j�1.t/ � �2.t/jp
i

� 3p�1E
�j�1.v/ � �2jp


C 3p�1Tp�1E
h Z s

v

jb.�1.r/; r/� b.�2.r/; r/jp dr
i

C3p�1E
h

sup
v�t�s

ˇ
ˇ
ˇ

Z t

v

Œ�.�1.r/; r/ � �.�2.r/; r/� dBr

ˇ
ˇ
ˇ
pi

� 3p�1E
�j�1.v/ � �2jp


C .L;T;M; p/
Z s

v

E
h

sup
v�t�r

j�1.t/ � �2.t/jp
i

dr :

The function s 7! EŒsupu�t�s j�1.t/ � �2.t/jp� is bounded thanks to (9.12). One can
therefore apply Gronwall’s inequality and get

E
h

sup
v�t�T

j�1.t/ � �2.t/jp
i

� c.L;T;M; p/
�
1C E

�j�1.v/ � �2jp

�
:

Now, by (9.13),

E
�j�1.v/ � �2jp


 � 2p�1�E
�j�1.v/ � �1jp


C E
�j�1 � �2jp


�

� c.T;M; p/
�
1C E

�j�1jp

�jv � ujp=2 C E

�j�1 � �2jp



� c0.T;M; p/
�
1C E

�j�1jp

��jv � ujp=2 C E

�j�1 � �2jp

�
;

which allows us to conclude the proof.
ut
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Let us denote by �x;s
t the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�s D x :
(9.37)

A classical result of ordinary differential equations is that, under suitable conditions,
the solution depends continuously on the initial data x; s. The corresponding result
for SDEs is the following.

Theorem 9.9 Under Assumption (A) there exists a family .Zx;s.t//x;s;t of r.v.’s
such that

a) the map .x; s; t/ 7! Zx;s.t/ is continuous for every ! for x 2 R
m; s; t 2

R
C; s � t.

b) Zx;s.t/ D �
x;s
t a.s. for every x 2 R

m, s; t 2 R
C; s � t.

Proof This is an application of Kolmogorov’s continuity Theorem 2.1. Note that,
by (9.30), for every s � u; �x;u is a solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�s D �x;u
s :

Let us fix T > 0 and let u; v; s; t be times with u � s; v � t. We want to prove, for
x; y with jxj; jyj � R the inequality

E
�j�x;u

s � �
y;v
t jp


 � c.L;M;T; p;R/
�jx � yjp C jt � sjp=2 C ju � vjp=2

�
: (9.38)

Assume first u � v � s � t. We have

E
�j�x;u

s � �
y;v
t jp


 � 2p�1E
�j�x;u

s � �y;v
s jp


C 2p�1E
�j�y;v

s � �y;v
t jp



:

Using Proposition 9.1 in order to bound the first term on the right-hand side, we
have

E
�j�x;u

s � �y;v
s jp


 � c.L;T;M; p/
�
1C jxjp

��ju � vjp=2 C jx � yjp
�
;

whereas for the second one, recalling that �y;v
t is the solution at time t of the SDE

with initial condition �y;v
s at time s, (9.12) and (9.13) give

E
�j�y;v

s � �y;v
t jp


 � c. p;T;M/jt � sjp=2.1C EŒj�y;v
s jp�/

� c. p;T;M/jt � sjp=2.1C jyjp/ ;
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which together give (9.38). The same argument proves (9.38) in the case u � v �
t � s.

If, instead, u � s � v � t, we must argue differently (in this case �y;v
s is not

defined); we have

E
�j�x;u

s � �
y;v
t jp




� 3p�1E
�j�x;u

s � �y;u
s jp


C 3p�1E
�j�y;u

s � �
y;u
t jp


C 3p�1E
�j�y;u

t � �y;v
t jp




and again Proposition 9.1, (9.12) and (9.13) give (9.38). In conclusion, for p large
enough,

E
�j�x;u

s � �y;v
t jp


 � c
�jx � yj C jt � sj C ju � vj�mC2C˛

for some ˛ > 0. Theorem 2.1 guarantees therefore the existence of a continuous
version of �x;s

t in the three variables x; s; t; s � t for jxj � R. R being arbitrary, the
statement is proved.

ut
Note that in the previous proof we can choose ˛ D p

2
� m � 2 and a more precise

application of Theorem 2.1 allows us to state that the paths of �x;u are Hölder
continuous with exponent � < 1

2p . p � 2m/ D 1
2
.1 � m

p / and therefore, by the

arbitrariness of p, Hölder continuous with exponent � for every � < 1
2
, as for the

Brownian motion.

9.9 The square root of a matrix field and the problem
of diffusions

Given the differential operator

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi

, (9.39)

where the matrix a.x; t/ is positive semidefinite, two questions naturally arise:

• under which conditions does a diffusion associated to Lt exist?
• what about uniqueness?

From the results of the first sections of this chapter it follows that the answer to
the first question is positive provided there exists a matrix field �.x; t/ such that
a.x; t/ D �.x; t/�.x; t/� and that � and b satisfy Assumption (A’) (local Lipschitz
continuity and sublinear growth in the x variable, in addition to joint measurability).

In general, as a.x; t/ is positive semidefinite, for fixed x; t there always exists
an m � m matrix �.x; t/ such that �.x; t/�.x; t/� D a.x; t/. Moreover, it is unique
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under the additional assumption that it is symmetric. We shall denote this symmetric
matrix field by � , so that �.x; t/2 D a.x; t/.

Let us now investigate the regularity of � . Is it possible to take such a square
root in such a way that .t; x/ 7! �.x; t/ satisfies Assumptions (A) or (A’)? Note also
that, due to the lack of uniqueness of this square root � , one will be led to enquire
whether two different square root fields �.x; t/ might produce different diffusions
and therefore if uniqueness is preserved. We shall mention the following results.
See Friedman (1975, p. 128), Priouret (1974, p. 81), or Stroock and Varadhan (1979,
p. 131) for proofs and other details.

Proposition 9.2 Let D � R
m be an open set and let us assume a.x; t/ is

positive definite for every .x; t/ 2 D � Œ0;T�. Then if a is measurable in .x; t/,
the same is true for � . If a is locally Lipschitz continuous in x then this is also
true for � . If a is Lipschitz continuous in x and uniformly positive definite, �
is Lipschitz continuous in x.

To be precise, let us recall that “a.x; t/ positive definite” means that

ha.x; t/z; zi D
mX

i;jD1
aij.x; t/zizj > 0 (9.40)

for every z 2 R
m, jzj > 0, or, equivalently, that, for every x; t, the smallest eigenvalue

of a.x; t/ is > 0. “a uniformly positive definite” means

ha.x; t/z; zi D
mX

i;jD1
aij.x; t/zizj > 	jzj2 (9.41)

for every z 2 R
m and some 	 > 0 or, equivalently, that there exists a 	 > 0 such

that the smallest eigenvalue of a.x; t/ is > 	 for every x; t.

Definition 9.5 We say that the matrix field a is elliptic if a.x; t/ is positive
definite for every x; t and that it is uniformly elliptic if a.x; t/ is uniformly
positive definite.

Remark 9.7 Note that

ha.x; t/z; zi D h�.x; t/��.x; t/z; zi D h��.x; t/z; ��.x; t/zi D j��.x; t/zj2
(continued)
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Remark 9.7 (continued)
hence (9.40) is equivalent to requiring that

j��.x; t/zj2 > 0

for every z 2 R
m; z 6D 0, i.e. the matrix �.x; t/� W Rm ! R

d must be injective.
As �.x; t/ is an m�d matrix, (9.40) can hold only if d � m, otherwise ��.x; t/
would have a kernel of dimension � 1 (recall that m is the dimension of the
diffusion process and d the dimension of the driving Brownian motion).

Of course (9.40) implies that a.x; t/ is invertible for every x; t and (9.41)
that

ha.x; t/�1w;wi � 1

	
jwj2 :

If a is not positive definite, the square root � may even not be locally Lipschitz
continuous, even if a is Lipschitz continuous. Just consider, for m D 1, the case
a.x/ D jxj and therefore �.x/ D pjxj. However, we have the following result.

Proposition 9.3 Let D � R
m be an open set and assume that a.x; t/ is positive

semidefinite for every .x; t/ 2 D � Œ0;T�. If a is of class C2 in x on D � Œ0;T�,
then � is locally Lipschitz continuous in x. If, moreover, the derivatives of
order 2 of a are bounded, � is Lipschitz continuous in x.

We can now state the main result of this section.

Theorem 9.10 Let us assume that b satisfies Assumption (A’) and that a.x; t/
is measurable in .x; t/, positive semidefinite for every .x; t/ and of class C2 in
x or positive definite for every .x; t/ and locally Lipschitz continuous. Let us
assume, moreover, that, for every t 2 Œ0;T�,

ja.x; t/j � M2.1C jxj2/ :

Then on the canonical space .C ;M ; .M s
t /t�s; .Xt/t�0/ there exists a unique

family of probabilities .Px;s/x;s such that .C ;M ; .M s
t /t�s; .Xt/t�s; .Px;s/x;s/ is

the realization of a diffusion process associated to Lt. Moreover, it is a Feller
process.
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Proof If � is the symmetric square root of the matrix field a, then the coefficients
b; � satisfy Assumption (A’) and if �x;s denotes the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�s D x
(9.42)

then the probabilities Px;s on .C ;M / introduced p. 279 satisfy the conditions
required.

Uniqueness requires more attention. We must prove that if e� is any matrix field
such that a.x; t/ D e�.x; t/e�.x; t/� ande� is a solution of

de� t D b.e� t; t/ dt Ce�.e� t; t/ dBt
e�s D x

(9.43)

then the laws of �x;s ande� coincide. If a is elliptic, so that a.x; t/ is invertible for
every x; t, ande� is another m � m matrix field such thate�.x; t/e�.x; t/� D a.x; t/ for
every x; t, then there exists an orthogonal matrix field �.x; t/, such thate� D �� (just
set � D ��1e� and use the fact that a and its symmetric square root � commute).
Hencee� is a solution of

de� t D b.e� t; t/ dt C �.e� t; t/�.e� t; t/ dBt D b.e� t; t/ dt C �.e� t; t/ deBt ;

where

eBt D
Z t

0

�.e�s; s/ dBs

is once again a Brownian motion by Proposition 8.8. By Theorem 9.5 (uniqueness
in law under Assumption (A’)) � ande� have the same law.

This gives the main idea of the proof, but we must take care of other possible
situations. What if a is not elliptic? And ife� was an m � d matrix field with d 6D m?
The first situation is taken care of by the following statement.

Lemma 9.4 Let A be an m � m semi-positive definite matrix and S1, S2 be
two m � m matrices such that

A D SiS
�
i :

Then there exists an orthogonal matrix Q such that S1 D S2Q.

Proof There exists an orthogonal matrix O such that A D O�DO; where D is
diagonal and with non-negative entries. Then if Ri D OSi, we have

RiR
�
i D OSiS

�
i O� D OO�DOO� D D : (9.44)
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Suppose A has m0 non-zero eigenvalues, ordered in such a way that

D D
�
eD 0

0 0

	

for an m0 � m0 diagonal matrix eD with strictly positive entries in its diagonal. Let ej

be the vector having 1 as its j-th coordinate and 0 for the others. Then if j > m0

0 D hDej; eji D hRiR
�
i ej; eji D jR�

i ejj2 ;

which implies that the last m �m0 columns of R�
i vanish. Hence the last m �m0 rows

of Ri vanish and Ri is of the form

Ri D
�

R0
i

0

	

:

Clearly R0
iR

0
i
� D eD so that ifeRi D eD�1=2R0

i we have

eRieR�
i D eD�1=2R0

iR
0
i
�eD�1=2 D I :

Hence the rows of eRi are orthonormal. Let bRi be any .m � m0/ � m matrix whose
rows complete to an orthonormal basis of Rm. Then the matrices

LRi D
�eRi

bRi

	

are orthogonal and there exists an orthogonal matrix Q such that

LR1 D LR2Q :

From this relation, “going backwards” we obtain eR1 D eR2Q, then R1 D R2Q and
finally S1 D S2Q. ut
End of the Proof of Theorem 9.10 Let us now consider the case of an m � d-matrix
field e� such that e�2e��

2 D a.x; t/ for every x; t, hence consider in (9.43) a d-
dimensional Brownian motion possibly with d 6D m. Also in this case we have a
diffusion process associated to the generator L and we must prove that it has the
same law as the solution of (9.42). The argument is not really different from those
developed above.

Let us assume first that d > m, i.e. the Brownian motion has a dimension that is
strictly larger than the dimension of the diffusion �. Thene�.x; t/ has a rank strictly
smaller than d. Let us construct a d �d orthogonal matrix �.x; t/ by choosing its last
d � m columns to be orthogonal unitary vectors in kere�.x; t/ and then completing
the matrix by choosing the other columns so that the columns together form an
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orthogonal basis of Rd. Then (9.43) can be written as

de� t D b.e� t; t/ dt Ce�.e� t; t/�.e� t; t/�.e� t; t/
�1 dBt

D b.e� t; t/ dt Ce��.�t; t/ dWt ;

where e��.x; t/ D e�.x; t/�.x; t/ and Wt D R t
0
�.e�s; s/�1 dBs is a new d-dimensional

Brownian motion. Now with the choice we have made of �.x; t/, it is clear that the
last d � m columns of ��.x; t/ vanish. Hence the previous equation can be written

de� t D b.e� t; t/ dt Ce�2.e� t; t/ deWt ;

where e�2.x; t/ is the m � m matrix obtained by taking away from ��.x; t/ the last
d � m columns and eW is the m-dimensional Brownian motion formed by the first m
components of W. It is immediate that �2.x; t/�2.x; t/� D a.x; t/ and by the first part
of the proof we know that the processe� has the same law as the solution of (9.42).
It remains to consider the case where �2 is an m � d matrix with d < m (i.e. the
driving Brownian motion has a dimension that is smaller than the dimension of �),
but this can be done easily using the same type of arguments developed so far, so
we leave it to the reader.

Note that this proof is actually incomplete, as we should also prove that the
orthogonal matrices �.x; t/ above can be chosen in such a way that the matrix field
.x; t/ ! �.x; t/ is locally Lipschitz continuous. ut

9.10 Further reading

The theory of SDEs presented here does not account for other approaches to the
question of existence and uniqueness.

Many deep results are known today concerning SDEs whose coefficients are not
locally Lipschitz continuous. This is important because in the applications examples
of SDEs of this type do arise.

An instance is the so-called square root process (or CIR model, as it is better
known in applications to finance), which is the solution of the SDE

d�t D .a � b�t/ dt C �
p
�t dBt :

In Exercise 9.19 we see that if a D �2

4
then a solution exists and can be obtained

as the square of an Ornstein–Uhlenbeck process. But what about uniqueness? And
what about existence for general coefficients a, b and �?

For the problem of existence and uniqueness of the solutions of an SDE there are
two approaches that the interested reader might look at.

The first one is the theory of linear (i.e. real-valued) diffusion as it is developed
(among other places) in Revuz and Yor (1999, p. 300) or Ikeda and Watanabe (1981,



9.10 Exercises for Chapter 9 291

p. 446). The Revuz and Yor (1999) reference is also (very) good for many other
advanced topics in stochastic calculus.

The second approach is the Strook–Varadhan theory that produces existence and
uniqueness results under much weaker assumptions than local Lipschitz continuity
and with a completely different and original approach. Good references are, without
the pretension of being exhaustive, Stroock and Varadhan (1979), Priouret (1974)
(in French), Rogers and Williams (2000) and Ikeda and Watanabe (1981).

Exercises

9.1 (p. 556) Let � be the Ornstein–Uhlenbeck process solution of the SDE

d�t D �	�t dt C � dBt

�0 D x
(9.45)

with 	 > 0 (see Example 9.1).

a) Prove that, whatever the starting position x, the law of �t converges as t ! C1
to a probability � to be determined.

b) Consider now the process � but with a starting position �0 D �, where � is a
square integrable r.v. having law � and independent of the Brownian motion B.
Show that �t has distribution � for every t.

9.2 (p. 557)

a) Let B be a d-dimensional Brownian motion and let us consider the SDE, in
dimension m,

d�t D b.t/�t dt C �.t/ dBt

�0 D x
(9.46)

where b and � are locally bounded measurable functions of the variable t only,
with values respectively in M.m/ and M.m; d/ (m � m and m � d matrices
respectively). Find an explicit solution, show that it is a Gaussian process and
compute its mean and covariance functions (see Example 2.5).

b) Let us consider, for t < 1, the SDE

d�t D � �t

1 � t
dt C dBt

�0 D x :
(9.47)

Solve this equation explicitly. Compute the mean and covariance functions of �
(which is a Gaussian process by a)). Prove that if x D 0 then � is a Brownian
bridge.
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9.3 (p. 558) (The asymptotic of the Ornstein–Uhlenbeck processes) Let B D
.˝;F ; .Ft/t; .Bt/t;P/ be a real Brownian motion and � the Ornstein–Uhlenbeck
process solution of the SDE, for 	 6D 0, � > 0,

d�t D �	�t dt C � dBt

�0 D x :

a) Let us assume 	 > 0.
a1) Prove that

lim
t!C1

�tp
log t

D � �p
	
; lim

t!C1
�tp
log t

D �p
	

�

a2) What can be said of limt!C1 �t and limt!C1 �t?
b) Let 	 < 0. Prove that there exists an event A 2 F such that limt!C1 �t D C1

on A and limt!C1 �t D �1 on Ac with P.A/ D ˚. x
p�2	
�

/, where ˚ denotes
the partition function of an N.0; 1/-distributed r.v. (in particular P.A/ D 1

2
if

x D 0).

9.4 (p. 560) Let � be the solution of the SDE, for t < 1,

d�t D �1
2

�t

1 � t
dt C p

1 � t dBt

�0 D x :
(9.48)

a) Find the solution of this equation and prove that it is a Gaussian process.
b) Compare the variance of �t with the corresponding variance of a Brownian bridge

at time t. Is � a Brownian bridge?

9.5 (p. 561) Let B be a real Brownian motion and � the solution of the SDE

d�t D b.t/�t dt C �.t/�t dBt

�0 D x > 0 ;
(9.49)

where b and � are measurable and locally bounded functions of the time only.

a) Find an explicit solution of (9.49).
b) Investigate the a.s. convergence of � as t ! C1 when

.1/ �.t/ D 1

1C t
b.t/ D 2C t

2.1C t/2

.2/ �.t/ D 1

1C t
b.t/ D 1

3.1C t/2

.3/ �.t/ D 1p
1C t

b.t/ D 1

2.1C t/
�
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9.6 (p. 562) Let b 2 R
m, � an m � d matrix, B a d-dimensional Brownian motion.

Let us consider the SDE

d�i.t/ D bi�i.t/ dt C �i.t/
dX

jD1
�ij dBj.t/; i D 1; : : : ;m

�0 D x :

(9.50)

a) Find an explicit solution. Prove that if xi > 0 then P.�i.t/ > 0 for every t > 0/ D
1 and compute EŒ�i.t/�.

b) Prove that the processes t 7! �i.t/�j.t/ are in M2 and compute EŒ�i.t/�j.t//� and
the covariances Cov.�i.t/; �j.t//.

9.7 (p. 564) Let B be a two-dimensional Brownian motion and let us consider the
two processes

d�1.t/ D r1�1.t/ dt C �1�1.t/ dB1.t/

d�2.t/ D r2�2.t/ dt C �2�2.t/ dB2.t/

where r1; r2; �1; �2 are real numbers.

a) Prove that both processes Xt D �1.t/�2.t/ and Zt D p
�1.t/�2.t/ are solutions of

SDEs to be determined.
b) Answer the same questions as in a) if we had

d�1.t/ D r1�1.t/ dt C �1�1.t/ dB1.t/

d�2.t/ D r2�2.t/ dt C �2
p
1 � �2 �2.t/ dB2.t/C �2��2.t/ dB1.t/ ;

where �1 � � � 1.

9.8 (p. 565) Let � be the solution (geometric Brownian motion) of the SDE

d�t D b�t dt C ��t dBt

�0 D 1 :

a) Determine a real number ˛ such that .�˛t /t is a martingale.
b) Let � be the exit time of � out of the interval � 1

2
; 2Œ. Compute P.�� D 2/.

9.9 (p. 566) Let B be a two-dimensional Brownian motion and, for � 2 R, let us
consider the SDE

d�t D �t dB1.t/

d�t D ��t dt C �t dB2.t/

�0 D x; �0 D y > 0 :
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a) Find an explicit expression for .�t/t and .�t/t. Is .�t/t a martingale?
b) Compute E.�t/ and Var.�t/.
c) Prove that, if � < � 1

2
, the limit

lim
t!0C

�t

exists a.s. and in L2.

9.10 (p. 567) Let us consider the one-dimensional SDE

d�t D .a C b�t/ dt C .	C ��t/ dBt

�0 D x :
(9.51)

a) Let v.t/ D EŒ�t�. Show that v satisfies an ordinary differential equation and
compute EŒ�t�.

b1) Prove that if b < 0, then limt!C1 EŒ�t� D � a
b .

b2) Prove that if x D � a
b then the expectation is constant and EŒ�t� � x whatever

the value of b.
b3) Assume b > 0. Prove that

lim
t!C1 EŒ�t� D

(
�1 if x0 < � a

b

C1 if x0 > � a
b �

9.11 (p. 568) Let us consider the one-dimensional SDE

d�t D .a C b�t/ dt C .	C ��t/ dBt

�0 D x :
(9.52)

Recall (Example 9.2) that if a D 	 D 0 then a solution is given by �0.t/x, where

�0.t/ D e.b� �2

2 /tC�Bt .

a1) Determine a process C such that t 7! �0.t/Ct is a solution of (9.52) and produce
explicitly the solution of (9.52).

a2) Prove that if � D 0 then � is a Gaussian process and compute EŒ�t�, Var.�t/.
a3) Prove that, if � D 0 and b < 0, � converges in law as t ! C1 to a limit

distribution to be determined.
b) We want to investigate the equation

dYt D .b C 
 log Yt/Yt dt C �Yt dBt

Y0 D y > 0 :
(9.53)



9.10 Exercises for Chapter 9 295

Show that �t D log Yt is the solution of an SDE to be determined. Show
that (9.53) has a unique solution such that Yt > 0 for every t a.s. What is
the law of Yt? Prove that, if 
 < 0, .Yt/t converges in law as t ! C1 and
determine the limit distribution.

9.12 (p. 570) Let .˝;F ; .Ft/t; .Bt/t;P/ be a one-dimensional Brownian motion
and let � be the Ornstein–Uhlenbeck process that is the solution of the SDE

d�t D 	�t dt C �dBt

�0 D x ;

where 	 6D 0.

a) Show that

Zt D e�2	t
�
�2t C �2

2	

�

is an .Ft/t-martingale.
b) Let Yt D �2t C �2

2	
. What is the value of E.Yt/? And of limt!1 E.Yt/? (It will be

useful to distinguish the cases 	 > 0 and 	 < 0.)

9.13 (p. 571) Let us consider the one-dimensional SDE

d�t D
�q

1C �2t C 1

2
�t

�
dt C

q
1C �2t dBt

�0 D x 2 R :
(9.54)

a) Does this equation admit strong solutions?
b1) Let

Yt D log
�q
1C �2t C �t

�
:

What is the stochastic differential of Y?
b2) Deduce an explicit solution of (9.54).

Hint: z 7! log
�p
1C z2 C z

�
is the inverse function of y 7! sinh y.

9.14 (p. 572) Let .�t; �t/ be the solution of the SDE

d�t D �	�t dt C �dB1.t/

d�t D �	�t dt C �� dB1.t/C �
p
1 � �2 dB2.t/
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with the initial conditions .�0; �0/ D .x; y/, where B D .B1;B2/ is a two-dimensio-
nal Brownian motion and �1 � � � 1.

a) Compute the laws of �t and of �t and explicitly describe their dependence on the
parameter �.

b) Compute the joint law of .�t; �t/. What is the value of Cov.�t; �t/? For which
values of � is this covariance maximum? For which values of � does the law of
the pair .�t; �t/ have a density with respect to Lebesgue measure?

c) What is the differential generator of the diffusion .�t; �t/?

9.15 (p. 573) Let B be a Brownian motion. Let �t D .�1.t/; �2.t// be the diffusion
process that is the solution of the SDE

d�1.t/ D � 1
2
�1.t/ dt � �2.t/ dBt

d�2.t/ D � 1
2
�2.t/ dt C �1.t/ dBt

with the initial condition �1.0/ D 0; �2.0/ D 1.

a) What is the generator of .�t/t? Is it elliptic? Uniformly elliptic?
b) Let Yt D �1.t/2C�2.t/2. Show that .Yt/t satisfies an SDE and determine it. What

can be said of the law of Y1?

9.16 (p. 574) Let � 2 R, � > 0 and

Xt D x C
Z t

0

e.�� �2

2 /uC�Bu du

Yt D e.�� �2

2 /tC�Bt :

a) Prove that the two-dimensional process Zt D .Xt;Yt/ is a diffusion and compute
its generator.

b) Prove that

�t D Xt

Yt

is a (one-dimensional) diffusion which is the solution of an SDE to be deter-
mined.

c) Let r 2 R, � > 0. Find an explicit solution of the SDE

dZt D .1C rZt/ dt C �Zt dBt

Z0 D z 2 R
(9.55)

and compare with the one obtained in Exercise 9.11. Determine the value of
EŒZt� and its limit as t ! C1 according to the values of r; �; z.
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9.17 (p. 576) (Do Exercise 9.11 first) Let us consider the SDE

d�t D �t.a � b�t/ dt C ��t dBt

�0 D x > 0 ;
(9.56)

where b > 0. Note that the conditions for the existence of solutions are not satisfied,
as the drift does not have a sublinear growth at infinity.

a) Compute, at least formally, the stochastic differential of Zt D 1
�t

and determine
an SDE satisfied by Z.

b) Write down the solution of the SDE for Z (using Exercise 9.11) and derive a
solution of (9.56). Prove that �t > 0 for every t � 0.

9.18 (p. 577) Let � be the solution, if it exists, of the equation

d�t D �
� Z t

0

�s ds
�

dt C � dBt

�0 D x ;

where �; x 2 R, � > 0. This is not an SDE, as the drift depends not only on the
value of the position of � at time t but also on its entire past behavior.

a) Prove that if

�t D
Z t

0

�s ds

then the two-dimensional process Zt D .�t; �t/ is a diffusion. Write down its
generator and prove that � is a Gaussian process.

b) Prove (or take as granted) that if

M D
�
0 a
b 0

	

then

eM D
 

cosh
p

ab
p a

b sinh
p

abq
b
a sinh

p
ab cosh

p
ab

!

which of course means, if ab < 0,

eM D
 

cos
p�ab �p� a

b sin
p�ab

�
q

� b
a sin

p�ab cos
p�ab

!

: (9.57)
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c) Compute the mean and variance of the distribution of �t and determine their
behavior as t ! C1, according to the values of �; � .

9.19 (p. 579) (Have a look at Example 8.9 first) Let B be a Brownian motion and
� the Ornstein–Uhlenbeck process solution of the SDE

d�t D b�t dt C � dBt

�0 D x ;

where b; � 2 R. Let �t D �2t .
Prove that � is the solution of an SDE to be determined.

9.20 (p. 580) Let � W R ! R be a function satisfying hypothesis (A’). Moreover,
let us assume that �.x/ � c > 0 for every x 2 R and let � be the solution of the SDE

d�t D �.�t/ dBt; �0 D 0 :

Let I D Œ�a; b�, where a; b > 0, and let � be the exit time from I. Show that
� < C1 a.s. and compute P.�� D b/.

9.21 (p. 581) Let a; b > 0 and let � be the Ornstein–Uhlenbeck process that is the
solution of

d�t D �	�t dt C � dBt

�0 D x :

a) Prove that the exit time, � , of � from � � a; bŒ is finite a.s. for every starting
position x and give an expression of P.�� D b/ as a function of �; 	; a; b.

b1) Prove that if a > b then

lim
	!C1

Z a

0

e	z2 dz

Z b

0

e	z2 dz

D C1 : (9.58)

b2) Assume a > b. Prove that

lim
	!C1 Px.�� D b/ D 1

whatever the starting point x 2 � � a; bŒ.
b3) In b2) it appears that, even if x is close to �a, the exit from �� a; bŒ takes place

mostly at b if 	 is large. Would you be able to give an intuitive explanation of
this phenomenon?
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9.22 (p. 582) Let �" be the Ornstein–Uhlenbeck process solution of the SDE

d�"t D �	�"t dt C "� dBt

�"0 D x ;

where 	 2 R, � > 0.

a) Prove that, for every t � 0

�"t
L!
"!0

e�	tx :

b) Prove that the laws of the processes �" (which, remember, are probabilities on the
space C D C .Œ0;T�;R/) converge in distribution to the Dirac mass concentrated
on the path x0.t/ D e�	tx that is the solution of the ordinary equation

P�t D �	�t

�0 D x :
(9.59)

In other words, the diffusion �" can be seen as a small random perturbation of
the ODE (9.59). See Exercise 9.28, where the general situation is considered.

9.23 (p. 583) (Example of explosion). Let us consider the SDE, in dimension 1,

d�t D �3t dt C �2t dBt

�0 D x
(9.60)

and let �x D infftI Bt D 1
x g for x 6D 0, �0 D C1. Prove that, for t 2 Œ0; �xŒ, a

solution is given by

�t D x

1 � xBt
�

9.24 (p. 584) Let L be the operator in dimension 2

L D 1

2

@2

@x2
C x

@

@y
(9.61)

and � the diffusion having L as its generator.

a) Is L elliptic? Uniformly elliptic? Compute the law of �t with the starting
condition �0 D x. Does it have a density with respect to the Lebesgue measure
of R2?
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b) Answer the same questions as in a) for the operator

L2 D 1

2

@2

@x2
C y

@

@y
� (9.62)

9.25 (p. 585) (Continuation of Exercise 9.24) Let us consider the diffusion
associated to the generator

L D 1

2

mX

i;jD1
aij

@2

@xi@xj
C

mX

i;jD1
bijxj

@

@xi

, (9.63)

where a and b are constant m � m matrices.

a) Compute the transition function and show that, if the matrix a is positive definite,
then the transition function has a density with respect to Lebesgue measure.

b) Show that for the operator L in (9.63) the transition function has a density if and
only if the kernel of a does not contain subspaces different from f0g that are
invariant for the matrix b�.

9.26 (p. 586) Let � be the solution of the SDE in dimension 1

d�t D b.�t/ dt C �.�t/ dBt

�0 D x :

Assume that b is locally Lipschitz continuous, � is C1 and such that �.x/ � ı > 0

for some ı and that b and � have a sublinear growth at infinity.

a) Prove that there exists a strictly increasing function f W R ! R such that the
process �t D f .�t/ satisfies the SDE

d�t Deb.�t/ dt C dBt (9.64)

for some new drifteb.
b) Prove that, under the assumptions above, the filtration Ht D �.�u; u � t/

coincides with the natural filtration of the Brownian motion.

9.27 (p. 587) (Doss 1977; Sussmann 1978). In this exercise we shall see that,
in dimension 1, the solution of an SDE can be obtained by solving an ordinary
differential equation with random coefficients. It is a method that can allow us to
find solutions explicitly and to deduce useful properties of the solutions.
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Let us assume m D 1. Let b and � be Lipschitz continuous functions R ! R

and let us assume that � is twice differentiable and strictly positive. Let us denote
by h.x; y/ the solution of

u0.y/ D �.u.y//
u.0/ D x :

(9.65)

Let t 7! Dt.!/ be the solution of the ODE with random coefficients

D0
t D f .Dt;Bt.!//; D0 D x ;

where

f .x; z/ D
h

� 1

2
.� 0�/.h.x; z//C b.h.x; z//

i
exp

�
�
Z z

0

� 0.h.x; s// ds
�
:

a) Prove that �t D h.Dt;Bt/ is the solution of

d�t D b.�t/ dt C �.�t/ dBt

�0 D x :
(9.66)

b) Leteb be a Lipschitz continuous function such thateb.x/ � b.x/ for every x 2 R

and lete� be the solution of

de� t Deb.�t/ dt C �.�t/ dBt
e�0 Dex :

(9.67)

withex � x. Note that the two SDEs (9.66) and (9.67) have the same diffusion
coefficient and are with respect to the same Brownian motion. Show thate� t � �t

for every t � 0 a.s.

a) Thanks to differentiability results for the solutions of an ODE with respect to a parameter, h is
twice differentiable in every variable. Giving this fact as granted, prove that

@h

@x
.x; y/ D exp

h Z y

0

� 0.h.x; s// ds
i
;

@2h

@y2
.x; y/ D � 0.h.x; y//�.h.x; y// (9.68)

and apply Ito’s formula to t 7! h.Dt;Bt/.
b) Recall the following comparison theorem for ODEs: if g1; g2 are Lipschitz continuous functions

R � R
C ! R such that g2.x; t/ � g1.x; t/ for every x; t and �i; i D 1; 2 are solutions of the

ODEs

� 0
i .t/ D gi.�i.t/; t/

�i.s/ D xi

with x2 � x1, then �2.t/ � �1.t/ for every t � 0.
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9.28 (p. 588) Let �" be the solution of the SDE, in dimension m,

d�"t D b.�"t / dt C "�.�"t / dBt

�"0 D x ;

where b and � are Lipschitz continuous with Lipschitz constant L and � is bounded.
Intuitively, if " is small, this equation can be seen as a small random perturbation of
the ordinary equation

� 0
t D b.�t/

�0 D x :
(9.69)

In this exercise we see that �" converges in probability as " ! 0 to the path � that
is the solution of (9.69) (and with an estimate of the speed of convergence).

a) If �"t D �"t � �t, show that �" is a solution of

d�"t D Œb.�"t C �t/� b.�t/� dt C "�.�"t C �t/ dBt

�"0 D 0 :

b) Prove that, for T > 0; ˛ > 0,

n
sup
0�s�T

ˇ
ˇ
ˇ"
Z s

0

�.�"u C �u/ dBu

ˇ
ˇ
ˇ < ˛

o
�
n

sup
0�s�T

j�"s j < ˛eLT
o

and therefore

P
�

sup
0�s�T

j�"s � �sj > ˛
�

� 2m exp
h

� 1

"2
˛2e�2LT

2mTk�k21
i
:

Deduce that �" W ˝ ! C .Œ0;T�;Rm/ converges in probability (and therefore in
law) as " ! 0 to the r.v. concentrated on the path � a.s.

c) Are you able to weaken the hypothesis and show that the same result holds if b
and � satisfy only Assumption (A’)?

b) Use Gronwall’s inequality and the exponential inequality (8.42). c) Localization. . .

9.29 (p. 589) We have seen in Sect. 9.3 some Lp estimates for the solutions of a
SDE, under Assumption (A’). In this exercise we go deeper into the investigation of
the tail of the law of the solutions. Let B be a d-dimensional Brownian motion and,
for a given process Z, let us denote sup0�s�t jZsj by Z�

t .

a) Let X be the m-dimensional process
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Xt D x C
Z t

0

Fs ds C
Z t

0

Gs dBs

where F and G are processes in M1.Œ0;T�/ and M2.Œ0;T�/, respectively, that
are m- and m � d-dimensional, respectively; let us assume, moreover, that G is
bounded and that the inequality

jFtj � M.1C jXtj/
holds (which is satisfied, in particular, if F is bounded). Then for every T > 0,
K > 0, there exist c D cT > 0 and R0 > 0 such that, for R > R0 and for every x
such that jxj � K,

P.X�
T > R/ � e�cR2 : (9.70)

b) Let us assume that b and � satisfy Assumption (A’) and that, moreover, the m�d
matrix � is bounded. Let � be the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D x :

Then for every T > 0 there exists a constant c D cT > 0 such that for large R

P.��
T > R/ � e�cR2

uniformly for x in a compact set.
c) Let us assume again that b and � satisfy Assumption (A’) and drop the

assumption of boundedness for � . Show that Yt D log.1Cj�tj2/ is an Ito process
and compute its stochastic differential. Deduce that, for every T > 0, there exists
a constant c D cT > 0 such that for large R

P.��
T > R/ � 1

Rc log R

uniformly for x in a compact set.
d) Show that ��

T 2 Lp for every p (this we already know thanks to Theorem 9.1).
Moreover, if � is bounded, all exponential moments ��

T are finite (i.e. e	�
�
T is

integrable for every 	 2 R) and even

EŒe˛�
�
T
2

� < C1

for ˛ < c� for some constant c� > 0.

a) Use the exponential inequality, Proposition 8.7, in order to estimate P.sup0�t�T j R t
0 Gs dBsj >

�/ and then Gronwall’s inequality. d) Recall the formula of Exercise 1.3.



Chapter 10
PDE Problems and Diffusions

In this chapter we see that the solutions of some PDE problems can be represented
as expectations of functionals of diffusion process. These formulas are very useful
from two points of view. First of all, for the investigation and a better understanding
of the properties of the solutions of these PDEs. Moreover, in some situations, they
allow to compute the solution of the PDE (through the explicit computation of the
expectation of the corresponding functional) or the expectation of the functional (by
solving the PDE explicitly). The exercises of this chapter and Exercise 12.8 provide
some instances of this way of reasoning.

10.1 Representation of the solutions of a PDE problem

Let D be a domain of Rm and u a solution of the Dirichlet problem

(
Lu D 0 on D

uj@D D � ;
(10.1)

where L is a second-order differential operator and � a function @D ! R. Without
bothering about regularity assumptions, let B be a Brownian motion and �x the
diffusion associated to L and starting at x 2 D obtained as seen in the previous
chapter by solving an SDE with respect to the Brownian motion B. Then by Ito’s
formula applied to the function u (that we assume to exist and to be regular enough)
we have

u.�x
t / D u.x/C

Z t

0

Lu.�x
s / ds C

Z t

0

u0.�x
s /�.Xs/ dBs ;
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u0 denoting the gradient of u (recall Remark 9.1). If � denotes the exit time of �x

from D, then

u.�x
t^� / D u.x/C

Z t^�

0

Lu.�x
s /„ƒ‚…

D0
ds C

Z t^�

0

u0.�x
s /�.�

x
s / dBs

and if the process t 7! u0.�x
t / belongs to M2, taking the expectation we find

EŒu.�x
t^� /� D u.x/ :

As �x
� 2 @D and u D � on @D, taking the limit as t ! 1 we find finally, if � is

finite and u bounded,

u.x/ D EŒu.�x
� /� D EŒ�.�x

� /� ; (10.2)

i.e. the value of u at x is equal to the mean of the boundary condition � taken with
respect to the exit distribution from the domain D of the diffusion associated to L and
starting at x. Note that, denoting by .C ;M ; .Mt/t�0; .Xt/t�0; .Px/x/ the canonical
diffusion associated to L, (10.2) can also be written as

u.x/ D ExŒ�.X� /� : (10.3)

The idea is therefore really simple. There are, however, a few things to check in
order to put together a rigorous proof. More precisely:

a) We need conditions guaranteeing that the exit time from D is a.s. finite. We shall
also need to know that it is integrable.

b) It is not allowed to apply Ito’s formula to a function u that is defined on D only
and not on the whole of Rd. Moreover, it is not clear that the solution u can be
extended to the whole of Rd in a C2 way. Actually, even the boundary condition
� itself might not be extendable to a C2 function.

c) We must show that t 7! u0.�x
t / belongs to M2.

In the next sections we deal rigorously with these questions and we shall find similar
representation formulas for the solutions of other PDE problems.

Note that, as stated above, the previous argument leads to the representation of
the solutions of problem (10.1), once we know already that this problem actually
has a solution. The PDE theory is actually well developed and provides many
existence results for these problems. Once the representation (10.2) is obtained we
can, however, work the argument backwards: in a situation where the existence of
a solution is not known we can consider the function defined in (10.2) and try to
show that it is a solution. In other words, the representation formulas can serve as
a starting point in order to prove the existence in situations in where this is not
guaranteed a priori. This is what we shall do in Sects. 10.4 and 10.6.
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10.2 The Dirichlet problem

We need a preliminary result. Let � be the solution of the SDE

�t D x C
Z t

s
b.�u; u/ du C

Z t

s
�.�u; u/ dBu ;

where b and � satisfy Assumption (A’). Let D be a bounded open set containing x.
We see now that, under suitable hypotheses, the exit time from D, � D infftI t �
s; �t.!/ … Dg, is finite and actually integrable. Let, as usual,

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi

,

where a D � ��. Let us consider the following assumption.

Assumption H0. There exists a C2;1.Rm �R
C/ function˚ , positive on D�R

C
and such that, on D � R

C,

@˚

@t
C Lt˚ � �1:

Under Assumption H0 the exit time from D is finite and integrable.

Proposition 10.1 Under Assumption H0 and if D is bounded, E.�/ < C1
for every .x; s/ 2 D � R

C.

Proof By Ito’s formula, for every t � s we have

d˚.�t; t/ D
�@˚

@t
C Lt˚

�
.�t; t/ dt C

X

i;j

@˚

@xi
.�t; t/�ij.�t; t/ dBj.t/

hence for s < t

˚.�t^� ; t ^ �/ � ˚.x; s/

D
Z t^�

s

�@˚

@u
C Lu˚

�
.�u; u/ du C

Z t^�

s

X

i;j

@˚

@xi
.�u; u/�ij.�u; u/ dBj.u/ :
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As � and the first derivatives of ˚ are bounded on D � Œs; t�, the last term is a
martingale and has mean 0; hence for every t > s,

EŒ˚.�t^� ; t ^ �/� �˚.x; s/ D E
� Z t^�

s

�@˚

@u
C Lu˚

�
.�u; u/ du

�
� �E.t ^ �/C s :

As ˚ is positive on D � R
C, we obtain ˚.x; s/ C s � E.t ^ �/. Now just take the

limit as t ! C1 and apply Fatou’s lemma. ut
The following two assumptions, which are easier to check, both imply that

Assumption H0 is satisfied.

Assumption H1. There exist two constants 	 > 0, c > 0 and an index i,
1 � i � m, such that

aii.x; t/ � 	; bi.x; t/ � �c

for every x 2 D, t � 0.

Assumption H2. On D � R
C b is bounded and the matrix field a is uniformly

elliptic, i.e. such that ha.x; t/z; zi � 	jzj2 for some 	 > 0 and for every
.x; t/ 2 D � R

C, z 2 R
m.

Proposition 10.2 H2 ) H1 ) H0.

Proof H2 ) H1: we have aii.x; t/ D ha.x; t/ ei; eii � 	, where ei denotes the
unitary vector pointing in the i-th direction.

H1 ) H0: let ˚.x; t/ D ˇ.e˛R � e˛xi/, where R is the radius of a sphere
containing D, and ˛; ˇ are positive numbers to be specified later (˚ therefore does
not depend on t); then ˚ > 0 on D and

@˚

@t
C Lt˚ D �ˇe˛xi. 1

2
˛2aii.x; t/C ˛bi.x; t// � �ˇe˛xi . 1

2
˛2	 � ˛c/

� �˛ˇe�˛R. 1
2
˛	 � c/

and we can make the last term � �1 by first choosing ˛ so that 1
2
˛	 � c > 0 and

then ˇ large. ut
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In particular, the exit time from a bounded open set D is integrable if the
generator of the diffusion is elliptic.

Let us assume that the open bounded set D is connected and with a C2

boundary; let

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi

be a differential operator on D such that

a) L is uniformly elliptic on D, i.e. ha.x/ z; zi � 	jzj2 for some 	 > 0 and for
every x 2 D, z 2 R

m;
b) a and b are Lipschitz continuous on D.

The following existence and uniqueness theorem is classical and well-known (see
Friedman 1964, 1975).

Theorem 10.1 Let � be a continuous function on @D and c and f Hölder
continuous functions D ! R with c � 0. Then, if L satisfies conditions a) and
b) above, there exists a unique function u 2 C2.D/\ C.D/ such that

(
Lu � cu D f on D

uj@D D � :
(10.4)

We prove now that the solution u of (10.4) can be represented as a functional of
a suitable diffusion process, in particular giving a rigorous proof of (10.2).

By Proposition 9.2 there exists an m � m matrix field � , Lipschitz continuous
on D, such that a D ���. As � and b are assumed to be Lipschitz continuous
on D, they can be extended to the whole of R

m with Assumption (A) satisfied.
Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian motion and �x the
solution of the SDE

d�x
t D x C

Z t

0

b.�x
s / ds C

Z t

0

�.�x
s / dBs :

Moreover, let Zt D e� R t
0 c.�x

s / ds, so that dZt D �c.�x
t /Zt dt. Let, for " > 0, D" be a

regular open set such that D" � D and dist.@D"; @D/ � "; let �" be the exit time
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from D": obviously �" � � and, moreover, � < C1 by Propositions 10.1 and 10.2;
as the paths are continuous, �" % � a.s. as " & 0. Let u" be a bounded C2.Rm/

function coinciding with u on D". Then Ito’s formula gives

dZtu".�
x
t / D u".�

x
t / dZt C Zt du".�

x
t /

D �c.�x
t /Ztu".�

x
t / dt C Zt

�
Lu".�

x
t / dt C

mX

i;jD1

@u"
@xi
.�x

s /�ij.�
x
s / dBj.s/

�
:

Therefore, P-a.s.,

Zt^�"u".�x
t^�" / D u".x/C

Z t^�"

0

�
Lu".�

x
s /� c.�x

s /u".�
x
s /
�
Zs ds

C
Z t^�"

0

mX

i;jD1

@u"
@xi

.�x
s /Zs�ij.�

x
s / dBj.s/ :

(10.5)

As the derivatives of u on D" are bounded, the stochastic integral above has 0 mean
and as u coincides with u" on D" we get, taking the expectation for x 2 D",

EŒu.�x
t^�" /Zt^�" � D u.x/C E

�Z t^�"

0

f .�x
s /Zs ds

�
:

Now, taking the limit as " & 0,

EŒu.�x
t^� /Zt^� � D u.x/C E

h Z t^�

0

Zs f .�x
s / ds

i
:

We now take the limit as t ! C1: we have EŒu.�x
t^� /Zt^� � ! EŒu.�x

� /Z� � as u
is bounded (recall that 0 � Zt � 1). As for the right-hand side, since Zs � 1 for
every s,

ˇ
ˇ
ˇ

Z t^�

0

Zs f .�x
s / ds

ˇ
ˇ
ˇ � �k f k1 :

As � is integrable by Propositions 10.1 and 10.2, we can apply Lebesgue’s theorem,
which gives

EŒu.�x
� /Z� � D u.x/C E

h Z �

0

Zs f .�x
s / ds

i
:

Finally, as �x
� 2 @D a.s., u.�x

� / D �.�x
� / and we obtain

u.x/ D EŒ�.�x
� /Z� � � E

h Z �

0

Zs f .�x
s / ds

i
:
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This formula can also be expressed in terms of the canonical realization:

Theorem 10.2 Under the assumptions of Theorem 10.1, the solution of the
PDE problem (10.4) is given by

u.x/ D ExŒ�.X� /Z� � � Ex
h Z �

0

Zs f .Xs/ ds
i
; (10.6)

where .C ;M ; .Mt/t�0; .Xt/t�0; .Px/x/ is the canonical diffusion associated to
the infinitesimal generator L, Zt D e� R t

0 c.Xs/ ds and � D infftI Xt 62 Dg.

In the case c D 0, f D 0, (10.6) becomes simply

u.x/ D ExŒ�.X� /� ; (10.7)

i.e. the value at x of the solution u is the mean of the boundary value � taken with
respect to the law of X� , which is the exit distribution of the diffusion starting at x.

As remarked at the beginning of this chapter, formulas such as (10.6) or (10.7)
are interesting in two ways:

• for the computation of the means of functionals of diffusion processes, such as
those appearing on the right-hand sides in (10.6) and (10.7), tracing them back
to the computation of the solution of the problem (10.4),

• in order to obtain information about the solution u of (10.4). For instance, let
us remark that in the derivation of (10.6) we only used the existence of u.
Our computation therefore provides a proof of the uniqueness of the solution
in Theorem 10.1.

The Poisson kernel of the operator L on D is a family .˘.x; �//x2D of measures
on @D such that, for every continuous function � on @D, the solution of

(
Lu D 0 on D

uj@D D �
(10.8)

is given by

u.x/ D
Z

@D
�.y/˘.x; dy/ :

(10.7) states that, under the hypotheses of Theorem 10.1, the Poisson kernel always
exists and˘.x; �/ is the law of X� with respect to Px (i.e. the exit distribution from D
of the diffusion X starting at x 2 D). This identification allows us to determine the
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exit distribution in those cases in which the Poisson kernel is known (see the next
example and Exercise 10.4, for example).

Example 10.1 Let L D 1
2
4 and BR be the open sphere centered at 0 with

radius R in R
m, m � 1; let �.dy/ be the surface element of @BR and !m D

2�m=2

� .m=2/ the measure of the surface of the sphere of radius 1 in R
m. Then it is

known that, for y 2 @BR; x 2 BR, if

NR.x; y/ D 1

R!m

R2 � jxj2
jx � yjm

,

then the Poisson kernel of 1
2
4 on BR is given by

˘.x; dy/ D NR.x; y/ �.dy/ : (10.9)

Therefore (10.9) gives the exit distribution from BR of a Brownian motion
starting at a point x 2 BR. If x Dthe origin we find the uniform distribution on
@BR, as we already know from Exercise 3.18.

Example 10.2 Let .Xt/t be a one-dimensional diffusion process associated to
some SDE with Lipschitz continuous coefficients b, � . Let Œa; b� be some
finite interval and x 2 �a; bŒ and assume that � > ˛ > 0 on Œa; b�. We know
from Propositions 10.1 and 10.2 that the exit time, � , from Œa; b� is a.s. finite.
We want to compute the probability

P.X� D a/ :

We can use the representation formula (10.7) with D D �a; bŒ and � given by
�.a/ D 1, �.b/ D 0 (the boundary @D here is reduced to fa; bg). By 10.7
therefore

u.x/ D Px.X� D a/ D ExŒ�.X� /�

is the solution of the ordinary problem

8
<

:
bu0 C �2

2
u00 D 0 on �a; bŒ ;

u.a/ D 1; u.b/ D 0 :

(continued)
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Example 10.2 (continued)
Let us compute the solution: if v D u0 the ODE becomes bv C 1

2
�2v0 D 0,

i.e.

v0

v
D �2b

�2
,

which gives log v.x/ D � R x
a
2b
�2
.y/ dy C c1 i.e.

v.x/ D c1e
� R x

a
2b.y/
�2.y/

dy

and therefore

u.x/ D c2 C c1

Z x

a
e

� R z
a
2b.y/
�2.y/

dy
dz :

The condition u.a/ D 1 gives at once c2 D 1, from which also c1 is easily
computed giving

u.x/ D 1 �

Z x

a
e

� R z
a
2b.y/
�2.y/

dy
dz

Z b

a
e

� R z
a
2b.y/
�2.y/

dy
dz

�

It is useful to note that to solve the equation bu0 C �2

2
u00 D 0 is equivalent

to finding a function u such that .u.Xt/t/t is a martingale. We know already
that problems of determining the exit distribution are often solved using an
appropriate martingale.

In the following examples, conversely, formulas (10.6) and (10.7) are used in order
to prove properties of the solutions of the Dirichlet problem (10.4).

Remark 10.1 (The maximum principle) Let D be a bounded domain and

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi

a uniformly elliptic differential operator on D; let us assume a and b are
Lipschitz continuous on D. The maximum principle states that for a function
u which is in C2.D/\ C.D/ and such that Lu D 0, we have

min
@D

u � u.x/ � max
@D

u :

(continued)
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Remark 10.1 (continued)
This is now an immediate consequence of (10.7), as it is immediate that

min
@D

u � ExŒu.X� /� � max
@D

u :

If u satisfies the weaker condition Lu D f � 0 (but still c D 0) then it enjoys
a weaker form of the maximum principle: starting from (10.6) we have

u.x/ D ExŒu.X� /� � Ex
h Z �

0

f .Xs/ ds
i

� ExŒu.X� /� � max
@D

u ;

(c D 0 implies Zt � 1). Recall that we have already come across the
maximum principle in Sect. 6.3 (Proposition 6.5).

Remark 10.2 Let D be a bounded domain and u W D ! R a harmonic
function, i.e. such that 1

2
4u D 0 on D. Then u enjoys the mean property:

if we denote by BR.x/ the ball of radius R and by � the normalized Lebesgue
measure of the surface @BR.x/, then

u.x/ D
Z

@BR.x/
u.y/ d�.y/ (10.10)

for every x 2 D and R > 0 such that BR.x/ � D.
Indeed, from (10.7), applied to D D BR.x/, we have u.x/ D ExŒu.X�R/�,

where �R denotes the exit time from BR.x/ and we know that the exit distri-
bution of a Brownian motion from a ball centered at its starting point is the
normalized Lebesgue measure of the surface of the ball (see Exercise 3.18).

Actually the mean property (10.10) characterizes the harmonic functions
(see also Example 6.3)

Formula (10.6) also gives a numerical approach to the computation of the solution
of a PDE problem as we shall see in Sect. 11.4.

10.3 Parabolic equations

A representation formula can also be obtained in quite a similar way for the Cauchy–
Dirichlet problem.
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Let D � R
m be a bounded connected open set having a C2 boundary and let

Q D D � Œ0;TŒ and

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi
(10.11)

be a differential operator on Q such that

a) ha.x; t/ z; zi � 	jzj2, where 	 > 0 for every .x; t/ 2 Q, z 2 R
m;

b) a and b are Lipschitz continuous in Q.

Then (Friedman 1964, 1975) the following existence and uniqueness result holds.
Note that assumption b) above requires that the coefficients are also Lipschitz
continuous in the time variable.

Theorem 10.3 Let � be a continuous function on D and g a continuous
function on @D � Œ0;T� such that g.x;T/ D �.x/ if x 2 @D; let c and f be
Hölder continuous functions Q ! R. Then, under the previous hypotheses a)
and b), there exists a unique function u 2 C2;1.Q/\C.Q/ such that (Fig. 10.1)

8
ˆ̂
<

ˆ̂
:

Ltu � cu C @u

@t
D f on Q

u.x;T/ D �.x/ on D

u.x; t/ D g.x; t/ on @D � Œ0;T� :
(10.12)

By Proposition 9.2 there exists a Lipschitz continuous matrix field � on Q
such that ��� D a; moreover, the coefficients � and b can be extended to

0 T

← (x)

↖

g(x, t)

g(x, t)

↘

•

•

D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 10.1 In the problem (10.12) the boundary values are given on the boundary of D (i.e. on
@D � Œ0; T�) and at the final time T (i.e. on D � fTg). Note that the hypotheses of Theorem 10.3
require that on @D � fTg, where these boundary conditions “meet”, they must coincide
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R
m � Œ0;T� preserving Lipschitz continuity and boundedness. Hence b and � satisfy

Assumption (A) (see p. 260). Actually they are even Lipschitz continuous in the
time variable, which is not required in Assumption (A).

Theorem 10.4 Let .C ;M ; .M s
t /t�s; .Xt/t; .P x;s/x;s/ be the canonical diffu-

sion associated to the SDE with coefficients b and � . Then under the
hypotheses of Theorem 10.3 we have the representation formula

u.x; t/ D Ex;t
h
g.X� ; �/ e� R �

t c.Xs;s/ ds1f�<Tg
i

C Ex;t
h
�.XT/ e� R T

t c.Xs;s/ ds1f��Tg
i

�Ex;t
h Z �^T

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i
;

(10.13)

where � is the exit time from D.

Proof The argument is similar to the one in the proof of (10.6): we must apply Ito’s
formula to the process Ys D u".Xs; s/ e� R s

t c.Xr;r/ dr, where u" approximates u in a
way similar to (10.6). ut

In the particular case g D 0, c D 0, f D 0, (10.13) becomes

u.x; t/ D Ex;tŒ�.XT/1f��Tg� :

Note that this relation follows from Theorem 10.4 if we assume that � vanishes
on @D, otherwise the condition g.x;T/ D �.x/ if x 2 @D, which is required in
Theorem 10.3, is not satisfied.

Remark 10.3 If (Fig. 10.2) b; �; f ; g; c do not depend on t then if v.x; t/ D
u.x;T � t/, v is a solution of

8
ˆ̂
<

ˆ̂
:

Lv � @v

@t
� cv D f .x/ on Q

v.x; 0/ D �.x/ on D

v.x; t/ D g.x/ on @D � Œ0;T� :
(10.14)

For the solution v of (10.14) we have the representation (recall that now the
diffusion associated to L is time homogeneous, so that Ex;tŒ�.XT/1f��Tg� can
be written as ExŒ�.XT�t/1f��T�tg�)

v.x; t/ D u.x;T � t/ D ExŒ�.Xt/1f��tg� :
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←

↖

↘

•

•
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x, t)

0 T
g(x, t)

D (x)

Fig. 10.2 In the problem (10.14) the boundary values are given on @D � Œ0; T� and at time 0, i.e.
it is an “initial value” problem. Note that, with respect to (10.12), the term in @

@t has the � sign

10.4 The Feynman–Kac formula

In this section we investigate representation formulas similar to the one of Theo-
rem 10.4, for the domain R

m � Œ0;T�. We shall see applications of them in the next
chapters. The main difficulties come from the fact that Rm is not bounded.

Let �; f be two real continuous functions defined respectively on R
m and R

m �
Œ0;T� and let us make one of the assumptions

j�.x/j � M.1C jxj	/; j f .x; t/j � M.1C jxj	/ .x; t/ 2 R
m � Œ0;T�

(10.15)

for some 	 � 0 (condition of polynomial growth), or

� � 0; f � 0 : (10.16)

Let Lt be a differential operator on R
m � Œ0;TŒ, as in (10.11), and let us consider its

associated canonical diffusion .C ;M ; .M s
t /t�s; .Xt/t; .P x;s/x;s/.

Theorem 10.5 Let c W Rm � Œ0;T� ! R be a continuous function bounded
below (i.e. c.x; t/ � �K > �1) and w a C2;1.Rm � Œ0;TŒ/ function,
continuous on R

m � Œ0;T� and a solution of the problem
8
<

:

Ltw C @w

@t
� cw D f on R

m � Œ0;TŒ
w.x;T/ D �.x/ :

(10.17)

(continued)
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Theorem 10.5 (continued)
Let us assume that the coefficients a and b are Lipschitz continuous on Œ0;T��
R

m and that a is uniformly elliptic. Assume also that the functions �; f , in
addition to being continuous, satisfy one of the hypotheses (10.15) or (10.16).
Assume, finally, that w has a polynomial growth, i.e. there exists M1; � > 0

such that

jw.x; t/j � M1.1C jxj�/ (10.18)

for every t 2 Œ0;T�, x 2 R
m. Then we have the representation formula

w.x; t/ D Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds

 � Ex;t

h Z T

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i
:

(10.19)

Proof Let �R be the exit time of X from the sphere of radius R. Then, by
Theorem 10.4 applied to D D BR, we have, for every .x; t/ 2 BR � Œ0;TŒ,

w.Xt; t/ D �Ex;t
h Z T^�R

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i

CEx;t
�
w.X�R ; �R/ e� R �R

t c.Xu;u/ du1f�R<Tg



CEx;t
�
�.XT/ e� R T

t c.Xu;u/ du1f�R�Tg



D I1 C I2 C I3 :

(10.20)

Let us first assume that (10.15) holds. By Lemma 9.1 we know that

Ex;t
h

max
t�u�T

jXujq
i

� Cq.1C jxjq/ (10.21)

for every q � 2, where the constant Cq does not depend on x. Then by the Markov
inequality we have

P x;t.�R � T/ D P x;t
�

max
t�u�T

jXuj � R
�

� CqR�q.1C jxjq/ ; (10.22)

hence P x;t.�R � T/ ! 0 as R ! C1, faster than every polynomial. The map
R ! �R is increasing and �R ^ T ! T as R ! C1 for every !. Therefore if
we let R ! C1 in the first term in (10.20) and apply Lebesgue’s theorem, thanks
to (10.21) and to the second relation in (10.15), we find that it converges to

�Ex;t
h Z T

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i
:

A similar argument works for I3: as R ! C1 the r.v. inside the expectation
converges to

�.XT/ e� R T
t c.Xu;u/ du ;
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being bounded by j�.XT/j eKT which, thanks to (10.21) and to the first relation
in (10.15), is an integrable r.v. We still have to prove that I2 ! 0 as R ! C1.
In fact

ˇ
ˇw.X�R ; �R/ e� R �R

t c.Xu;u/ du1f�R�Tg
ˇ
ˇ � M1eKT.1C R�/1f�R�Tg

and therefore

Ex;t
�
w.X�R ; �R/ e� R T

t c.Xu;u/ du1f�R>Tg

 � M1eKT.1C R�/ P x;t.�R � T/

and the left-hand side tends to 0 as R ! C1 as in (10.22) (just choose q > �).
If, conversely, (10.16) holds, then we argue similarly, the only difference being

that now the convergence of I1 and I3 follows from Beppo Levi’s Theorem. ut

Remark 10.4 The hypothesis of polynomial growth (10.18) can be weakened
if, in addition, � is bounded. In this case the process .Xt/t enjoys a stronger
integrability property than (10.21). In Exercise 9.29 we prove that if

sup
x2Rm

j�.x/��.x/j � k�; jb.x/j � Mb.1C jxj/ ;

where j j denotes the operator norm of the matrix, then

Ex;t
h

exp
�
˛ max

t�u�T
jXuj2

�i
� K

for every ˛ < c D e�2MbT.2Tmk�/�1. It is easy then to see that, if we
replace (10.18) by

jw.x; t/j � M1e˛jxj2 (10.23)

for some ˛ < c, then we can repeat the proof of Theorem 10.5 and the
representation formula (10.19) still holds. In this case, i.e. if � is bounded,
also the hypotheses of polynomial growth for � and f can be replaced by

j�.x/j � Me˛jxj2 ; j f .x; t/j � Me˛jxj2 .x; t/ 2 R
m � Œ0;T� (10.24)

for some ˛ < c D e�2MT .2Tmk�/�1.

Theorem 10.5 gives an important representation formula for the solutions of the
parabolic problem (10.17). We refer to it as the Feynman–Kac formula.

It would, however, be very useful to have conditions for the existence of a
solution of (10.17) satisfying (10.18). This would allow us, for instance, to state
that the function defined as the right-hand side of (10.19) is a solution of (10.17).
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Existence results are available in the literature: see Friedman (1975, p. 147), for
example, where, however, boundedness for the coefficients a and b is required, an
assumption that is often too constraining and which will not be satisfied in some
applications of Chap. 13.

Until now we have given representation formulas for the solutions of PDE
problems as functionals of diffusion processes. Let us conversely try to construct
a solution and therefore prove that a solution exists.

Let us assume c and f to be locally Hölder continuous and let, for .x; t/ 2 R
m �

Œ0;T�,

u.x; t/ D Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds



„ ƒ‚ …
WDu1.x;t/

� Ex;t
h Z T

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i

„ ƒ‚ …
WDu2.x;t/

; (10.25)

where, as above, Lt is a differential operator on R
m � Œ0;TŒ, as in (10.11), and

.C ;M ; .M s
t /t�s; .Xt/t; .P x;s/x;s/ is the associated canonical diffusion.

We shall now prove that such a function u is continuous on R
m � Œ0;T�, that it is

C2;1.Rm � Œ0;TŒ/ and a solution of (10.17).
Let BR be the ball centered at the origin and of radius R large enough so that

x 2 BR. The idea is simply to show that, for every R > 0, u satisfies a relation of the
same kind as (10.13), with a function g to be specified on @BR�Œ0;TŒ. Theorems 10.3
and 10.4 then allow us to state that u has the required regularity and that it is a
solution of (10.12) on BR � Œ0;TŒ. In particular, by the arbitrariness of R, we shall
have

Ltu C @u

@t
� cu D f on R

m � Œ0;TŒ : (10.26)

The key tool will be the strong Markov property.

Lemma 10.1 Let us assume that

• the coefficients a and b are Lipschitz continuous on Œ0;T� � R
m and that a

is uniformly elliptic
• that the function c is continuous and bounded below, on R

m � Œ0;T�, by a
constant �K.

Then if � is continuous and has polynomial growth, the function u1 defined
in (10.25) is continuous in .x; t/. The same holds for u2 if f is continuous and
has polynomial growth.

If, moreover, the diffusion coefficient is bounded, it is sufficient to assume
that � and f have an exponential growth, i.e. that there exist constants k1; k2 �
0 such that j�.x/j � k1ek2jxj, j f .x; t/j � k1ek2jxj for every 0 � t � T.
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Proof This is an application of the continuity property of a diffusion with respect to
the initial conditions (Sect. 9.8). The idea is simple but, to be rigorous, we need to
be careful. One can write

u1.x; t/ D E
�
�.�

x;t
T / e� R T

t c.�x;t
u ;u/ du



;

where �x;t denotes, as in the previous chapter, the solution of

d�s D b.�s; s/ ds C �.�s; s/ dBs

�t D x

with respect to a Brownian motion .˝;F ; .Ft/t; .Bt/t;P/.
By Theorem 9.9 we can assume that .x; t; s/ 7! �x;t

s .!/ is a continuous function
for every ! 2 ˝ . If .xn; tn/ ! .x; t/ as n ! 1, let R be a number large enough so
that x; xn 2 BR.

Let �R be a bounded continuous function coinciding with � on BR and let us
denote by � and �n, respectively, the exit times of �x;t and �xn ;tn from BR. Then

ju1.xn; tn/� u1.x; t/j
� E

hˇ
ˇ�.�xn;tn

T / e� R T
tn c.�xn ;tn

u ;u/ du � �.�
x;t
T / e� R T

t c.�x;t
u ;u/ du

ˇ
ˇ
i

� E
hˇ
ˇ�R.�

xn;tn
T / e� R T

tn c.�xn ;tn
u ;u/ du � �R.�

x;t
T / e� R T

t c.�x;t
u ;u/ du

ˇ
ˇ
i

CE
hˇ
ˇ�.�xn;tn

T /
ˇ
ˇ e� R T

tn c.�xn;tn
u ;u/ du1f�n^�<Tg

i

CE
hˇ
ˇ�.�x;t

T /
ˇ
ˇ e� R T

t c.�x;t
u ;u/ du1f�n^�<Tg

i
:

(10.27)

Applying Lebesgue’s theorem, we first have hat

�R.�
xn ;tn
T / e� R T

tn c.�xn ;tn
u ;u/ du !

n!1 �R.�
x;t
T / e� R T

t c.�x;t
u ;u/ du

and then (recall that �R is bounded and c � �K) that

lim
n!1 E

�ˇˇ�R.�
xn;tn
T / e� R T

tn c.�xn ;tn
u ;u/ du � �R.�

x;t
T / e� R T

t c.�x;t
u ;u/ du

ˇ
ˇ� D 0 :

It remains to show that the last two terms in (10.27) can be made arbitrarily small
uniformly in n for large R. To this end let us observe that

1f�n^�<Tg � 1f�n<Tg C 1f�<Tg D 1fsupt�u�T j�x;t
u j>Rg C 1fsuptn�u�T j�xn ;tn

u j>Rg:
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Thanks to Hölder’s inequality (1.3) and using the upper bound j�.x/j � M.1Cjxj	/
for some M > 0; 	 > 0, we have for every z, s � 0

E
�j�.�z;s

T /j e� R T
s c.�z;s

u ;u/ du1fsups�u�T j�z;s
u j>Rg




� MeKTE
h�
1C sup

s�u�T
j�z;s

u j	
�
1fsups�u�T j�z;s

u j>Rg
i

� M2E
h
1C sup

s�u�T
j�z;s

u j2	
i1=2

P
�

sup
s�u�T

j�z;s
u j > R

�1=2

and the last quantity tends to zero as R ! C1, uniformly for z; s in a compact set.
Actually thanks to Proposition 9.1

E
h
1C sup

s�u�T
j�z;s

u j2	
i
< C1

and thanks to Remark 9.3

P
�

sup
s�u�T

j�z;s
u j > R

�
!

R!C1 0 :

Hence the last two terms in (10.27) can be made uniformly arbitrarily small for
large R.

The proof of the continuity of u2 follows the same pattern. ut

Lemma 10.2 Let � be a t-stopping time such that � � T a.s. Then

u1.x; t/ D Ex;t
�
e� R �

t c.Xs;s/ dsu1.X� ; �/


;

u2.x; t/ D Ex;t
h Z �

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i

C Ex;t
h
e� R �

t c.Xu;u/ du u2.X� ; �/
i

We prove Lemma 10.2 later.
Let �R D inffsI s � t;Xs 62 BRg be the first exit time from BR after time t. This

is of course a stopping t-time (see the definition p. 160). Let � D �R ^ T and let us
deal first with u1.

Lemma 10.2 applied to the t-stopping time � gives

u.x; t/ D u1.x; t/ � u2.x; t/

D Ex;t
�
e� R �

t c.Xs;s/ dsu.X� ; �/
i

� Ex;t
h Z �

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i
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D Ex;t
�
u.X�R ; �R/ e� R �R

t c.Xu;u/ du1f�R<Tg

C Ex;t

�
�.XT/ e� R T

t c.Xs;s/ ds1f�R�Tg



�Ex;t
h Z �R^T

t
f .Xs; s/ e� R s

t c.Xu;u/ du ds
i
:

Comparing with the representation formula of Theorem 10.4 with g D u this allows
us to state that if

• f and c are Hölder continuous and
• the function u is continuous,

then u coincides with the solution of
8
ˆ̂
<̂

ˆ̂
:̂

Ltw C @w

@t
� cw D f on BR � Œ0;TŒ

w.x;T/ D �.x/ on BR

w.x; t/ D u.x; t/ on @BR � Œ0;T�

and, in particular, is of class C2;1. By the arbitrariness of R, u is of class C2;1 and a
solution of (10.26).

We have proved the following

Theorem 10.6 Let us assume that

• the coefficients a and b of Lt are Lipschitz continuous on R
m � Œ0;T� and

moreover that for every R > 0 there exists a 	R > 0 such that ha.x; t/z; zi �
	Rjzj2 for every .x; t/, jxj � R; 0 � t � T, z 2 R

m.
• � W Rm ! R is continuous and has polynomial growth.
• the real functions f and c, defined on R

m � Œ0;T�, are locally Hölder
continuous; c is bounded below, f has polynomial growth.

Then there exists a function u, continuous on R
m � Œ0;T� and C2;1.Rm �

Œ0;TŒ/, which is a solution of

8
<

:

Ltu C @u

@t
� cu D f on R

m � Œ0;TŒ
u.x;T/ D �.x/ :

(10.28)

It is given by

u.x; t/ D Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds

 � Ex;t

h Z T

t
f .Xs; s/ e� R s

t c.Xv;v/ dv ds
i
;

(continued)
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Theorem 10.6 (continued)
where .C ;M ; .Mt/t; .Xt/t; .P x;s/x;s/ is the canonical diffusion associated to
Lt. Moreover, u is the unique solution with polynomial growth of (10.28).

If, moreover, the diffusion coefficient � is bounded, then if � and f have an
exponential growth, u is the unique solution with exponential growth.

Proof of Lemma 10.2 The proof consists in a stronger version of the strong Markov
property. We shall first make the assumption that � takes a discrete set of values.

Taking the conditional expectation with respect to M t
� , as the r.v.

R �
t c.Xs; s/ ds

is M t
� -measurable,

u1.x; t/ D Ex;t
�
e� R �

t c.Xs;s/ dsEx;t
�
�.XT/ e� R T

� c.Xs;s/ ds jM t
�

�

: (10.29)

Let us denote by s1; : : : ; sm the possible values of � . Then if C 2 M t
� we have

Ex;t
h
1C �.XT/ e� R T

� c.Xs;s/ ds
i

D Ex;t
h mX

kD1
1C\f�Dskg�.XT/ e� R T

� c.Xs;s/ ds
i

D Ex;t
h mX

kD1
1C\f�Dskg�.XT/ e� R T

sk
c.Xs;s/ ds

i

D Ex;t
h mX

kD1
1C\f�DskgEx;t

�
�.XT/ e� R T

sk
c.Xs;s/ ds jM t

sk

�i
:

Note now that the r.v. �.XT/ e� R T
sk

c.Xs;s/ ds is M sk1-measurable. Hence by Proposi-
tion 6.1

Ex;t
�
�.XT/ e� R T

sk
c.Xs;s/ ds jM t

sk

�
D EXsk ;sk

�
�.XT/ e� R T

sk
c.Xs;s/ ds

�
P x;t-a.s.

Hence, as

u1.X� ; �/ D
mX

kD1
1f�Dskgu1.Xsk ; sk/ D

mX

kD1
1f�DskgEXsk ;sk

�
�.XT/ e� R T

sk
c.Xs;s/ ds

�
;

we have

Ex;t
h
1C �.XT/ e� R T

� c.Xs;s/ ds
i

D Ex;t
h mX

kD1
1C\f�DskgEXsk ;sk

�
�.XT/ e� R T

sk
c.Xs;s/ ds

�i

D Ex;t
h mX

kD1
1C\f�Dskgu1.Xsk ; sk/

i
D Ex;t

�
1C u1.X� ; �/
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and therefore

Ex;t
�
�.XT/ e� R T

� c.Xs;s/ ds jM t
�

� D u1.X� ; �/

and going back to (10.29) we see that the first equality of Lemma 10.2 is proved
for a discrete stopping time � . We obtain the result for a general stopping time
� � T with the usual argument: let .�n/n be a sequence of discrete stopping times
decreasing to � . We have proved that

Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds jM t
�n


 D e� R �n
t c.Xs;s/ dsu1.X�n ; �n/ : (10.30)

Conditioning both sides with respect to M t
� , as M t

� � M t
�n

,

Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds jM t
�


 D Ex;t
�
e� R �n

t c.Xs;s/ dsu1.X�n ; �n/jM t
�



:

Now clearly

e� R �n
t c.Xs;s/ dsu1.X�n ; �n/ !

n!1 e� R �
t c.Xs;s/ dsu1.X� ; �/

and thanks to (10.30) the sequence on the left-hand side above is uniformly
integrable so that, P x;t-a.s.,

Ex;t
�
e� R �n

t c.Xs;s/ dsu1.X�n ; �n/jM t
�


 !
n!1 Ex;t

�
e� R �

t c.Xs;s/ dsu1.X� ; �/jM t
�




D e� R �
t c.Xs;s/ dsu1.X� ; �/

which proves the first equality of Lemma 10.2. The second one is proved along the
same lines. ut

Example 10.3 Let us consider the problem

8
<

:

1

2
4u.x; t/C @u

@t
.x; t/ � 	jxj2u.x; t/ D 0 on R

m � Œ0;TŒ
u.x;T/ D 1 :

By Theorem 10.6 a solution is therefore given by

u.x; t/ D Ex;t
�
e�	 R T

t jXsj2 ds



(continued)
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Example 10.3 (continued)
(here � � 1, f � 0), where X D .˝;F ; .F s

t /t�s; .Xt/t; .P x;t/x;t/ is a
realization of the diffusion associated at generator 1

2
4, i.e.

u.x; t/ D E
�
e�	 R T�t

0 jBsCxj2 ds


; (10.31)

where B is a Brownian motion. This solution is unique among those with a
polynomial growth. In Exercise 12.8 the expectation on the right-hand side
of (10.31) will be computed giving the explicit solution

u.x; t/ D cosh
�p
2	 .T � t/

��m=2
exp

h
�

p
2	 jxj2
2

tanh
�p
2	 .T � t/

�i
:

10.5 The density of the transition function, the backward
equation

In the examples of diffusion processes we have met so far (all of them being R
m-

valued for some m � 1), the transition probability p had a density, i.e. there existed
a positive measurable function q.s; t; x; y/ such that

p.s; t; x; dy/ D q.s; t; x; y/ dy ;

dy denoting the Lebesgue measure of R
m. We now look for general conditions

ensuring the existence of a density.

Definition 10.1 A fundamental solution of the Cauchy problem onRm�Œ0;T�
associated to Lt is a function� .s; t; x; y/ defined for x; y 2 R

m, 0 � s < t � T,
such that if, for every continuous compactly supported function �,

v.x; s/ D
Z
� .s; t; x; y/�.y/ dy ;

then v is C2;1.Rm � Œ0; tŒ/, is bounded and is a solution of

8
<

:

Lsv C @v

@s
D 0 on R

m � Œ0; tŒ
lims!t� v.x; s/ D �.x/ :

(10.32)

Let us assume that the operator Lt satisfies the assumptions of Theorem 10.6. If the
transition function p.s; t; x; dy/ has a density q.s; t; x; y/, then this is a fundamental
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solution. Actually, by Theorem 10.6 there is a unique bounded solution of (10.32),
given by

v.x; s/ D Ex;sŒ�.Xt/� D
Z
�.y/ p.s; t; x; dy/ D

Z
�.y/q.s; t; x; y/ dy :

Therefore � D q is a fundamental solution. Conversely, if a fundamental solution
� exists, by the same argument, necessarily

Z
�.y/ p.s; t; x; dy/ D

Z
�.y/� .s; t; x; y/ dy

for every compactly supported continuous function �. This implies that the transi-
tion function has density � .

We still have to investigate conditions under which the transition function has a
density, or equivalently, the differential generator has a fundamental solution.

Let us make the following assumptions

• ha.x; t/ z; zi � 	jzj2 for some 	 > 0 and for every z 2 R
m, .x; t/ 2 R

m �
Œ0;T�.

• a and b are continuous and bounded for .x; t/ 2 R
m � Œ0;T�. Moreover, a

is continuous in t uniformly in x.
• a and b are Lipschitz continuous in x uniformly for t 2 Œ0;T�.

Theorem 10.7 Under the assumptions above there exists a unique funda-
mental solution � of the Cauchy problem on R

m � Œ0;T� associated to Lt.
Moreover, it satisfies the inequalities

j� .s; t; x; y/j � C.t � s/�m=2 exp
h

� c
jx � yj2

t � s

i

ˇ
ˇ
ˇ
@�

@xi
.s; t; x; y/

ˇ
ˇ
ˇ � C.t � s/�.mC1/=2 exp

h
� c

jx � yj2
t � s

i
;

(10.33)

where C and c are positive constants. Furthermore the derivative of � with
respect to s and its second derivatives with respect to x exist and are continuous
for t > s. Finally, as a function of .x; s/, s < t, � is a solution of

Ls� C @�

@s
D 0 : (10.34)
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Theorem 10.7 is a classical application of the parametrix method. See Levi (1907)
and also Friedman (1964, Chapter 1), Friedman (1975, Chapter 6) or Chapter 4
of Azencott et al. (1981). Note, however, that Assumption (H) is only a sufficient
condition. In Exercise 9.25 b) the transition density (and therefore the fundamental
solution) is computed explicitly for an operator L whose second-order matrix
coefficient a.x/ is not elliptic for any value of x.

As we have identified the transition density q.s; t; x; y/ and the fundamental
solution, q satisfies, as a function of s; x (the “backward variables”), the backward
equation

Lsq C @q

@s
D 0 : (10.35)

10.6 Construction of the solutions of the Dirichlet problem

In this section we construct a solution of the Dirichlet problem

8
ˆ̂
<

ˆ̂
:

u 2 C2.D/\ C.D/
1

2
4u D 0 on D

uj@D D �

(10.36)

without using the existence Theorem 10.1. In particular, we shall point out the
hypotheses that must be must satisfied by the boundary @D in order to have a
solution; the C2 hypothesis for @D will be much weakened.

Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical realization of an m-dimen-
sional Brownian motion, D a connected bounded open set of Rm, � the exit time
from D. Let

u.x/ D ExŒ�.X� /� : (10.37)

Let us recall that in Example 6.3 we have proved the following result.

Proposition 10.3 For every bounded Borel function � on @D, u is harmonic
in D.

(10.37) therefore provides a candidate solution of the Dirichlet problem (10.36). We
see now which conditions on � and @D are needed for u to be continuous on D and
verify the condition at the boundary. It is clear that, for z 2 @D, u.z/ D �.z/ and in
order for u to be continuous at x it will be necessary to show that if x 2 D is a point
near z, then the law of X� with respect to Px is concentrated near z. The investigation
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of this type of property is the object of the remainder of this section. It is suggested
at this time to go back and have a look at Example 6.4.

Proposition 10.4 Let g W R
m ! R be a bounded Borel function. Then the

function  .x/ D ExŒg.Xt/� is C1, for every fixed t > 0.

Proposition 10.4 is just a repetition of Remark 6.4.
Let � 0.!/ D infft > 0I Xt … Dg. � 0 is not the exit time from D, because of the >

instead of �. Of course, � 0 D � if X0 2 D or X0 2 D
c
; � and � 0 can be different if

the initial point of the process lies on the boundary @D, as then � D 0 (as @D � Dc),
whereas we may have � 0 > 0 (if the path enters D immediately).

It is immediate that � 0 is a stopping time of the filtration .MtC/t. Indeed

f� 0 D 0g D fthere exists a sequence .tn/n of times with tn > 0; tn & 0 and Xtn … Dg

and this is an event of M" for every " > 0. Therefore f� 0 D 0g 2 M0C. Moreover,
for u > 0,

f� 0 � ug D f� � ug n f� D 0g [ f� 0 D 0g 2 Mu � MuC:

Definition 10.2 x 2 @D is said to be a regular point if Px.� 0 D 0/ D 1.

It is immediate that, as Brownian motion is a continuous Feller process, by
Blumenthal’s 0–1 law (Proposition 6.23), Px.� 0 D 0/ can take the values 0 or 1
only.

Lemma 10.3 For every u > 0 the function x 7! Px.� 0 > u/ is upper
semicontinuous.

Proof Let �s.!/ D infft � sI Xt … Dg. Then �s & � 0 as s & 0, therefore Px.�s > u/
decreases to Px.� 0 > u/ as s & 0. We now just need to prove that x 7! Px.�s > u/ is
a continuous function, as the lower envelope of a family of continuous functions is
known to be upper semicontinuous. Using translation operators we can write �s D
s C � ı 
s: in fact � ı 
s.!/ is the time between time s and the first exit from D of !
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after time s. By the strong Markov property, Proposition 6.2,

Px.�s > u/ D Px.� ı 
s > u � s/ D ExŒ1f�>u�sg ı 
s�

D ExŒE.1f�>u�sg ı 
s jFs/� D Ex
�
PXs.� > u � s/


 D ExŒg.Xs/� ;

where g.x/ D Px.� > u � sg. Therefore x 7! Px.�s > ug is even C1 by
Proposition 10.4. ut

Lemma 10.4 If z 2 @D is a regular point and u > 0, then

lim
x!z
x2D

Px.� > u/ D 0 :

Proof If x 2 D, then Px.� > u/ D Px.� 0 > u/ and by Lemma 10.3

0 � lim
x!z
x2D

Px.� > u/ D lim
x!z
x2D

Px.� 0 > u/ � Pz.� 0 > u/ D 0 :

ut
The following lemma states that if z 2 @D is a regular point, then, starting from a
point x 2 D near to z, the Brownian motion exits from D mainly at points near to z.

Lemma 10.5 If z 2 @D is a regular point, then for every " > 0 and for
every neighborhood V of z there exists a neighborhood W of z such that, if
x 2 D \ W, Px.X� … V \ @D/ � ".

Proof By the Doob and Chebyshev inequalities

Px
�

sup
0�s�t

jXs � xj � ˛

2

�
� 4

˛2
Ex
h

sup
0�s�t

jXs � xj2
i

� 16m

˛2
ExŒjXt � xj2� D 16tm

˛2
�

Let ˛ > 0 be such that B˛.z/ � V; then if jx � zj < ˛
2

Px.jX� � zj � ˛/ � Px.� > u/C Px.jX� � xj � ˛
2
; � � u/

� Px.� > u/C Px
�

sup
0�s�u

jXs � xj � ˛

2

�
� Px.� > u/C 16um

˛2
�

Now just choose u small so that 16um
˛2

< "
2

and apply Lemma 10.4. ut
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Proposition 10.5 If z 2 @D is a regular point and � W @D ! R is continuous
at z, then the function u.x/ D ExŒ�.X� /� satisfies lim x!z

x2D
u.x/ D �.z/.

Proof Let � > 0 be such that j�.y/� �.z/j < "
2

for every y 2 @D with jy � zj < �;
then

ju.x/� �.z/j � ExŒj�.X� /� �.z/j�
� Ex

�j�.X� / � �.z/j1fjX��zj<�g

C Ex

�j�.X� / � �.z/j1fjX��zj��g



� "

2
C 2k�k1Px.jX� � zj � �/ :

Now, by Lemma 10.5, there exists a neighborhood V of z such that if x 2 V then
Px.jX� � zj � �/ � ", which allows us to conclude the proof. ut

The following statement is now a consequence of Propositions 10.3 and 10.5.

Theorem 10.8 Let D � R
m be a bounded open set such that every point in

@D is regular. Then if � is a continuous function on @D, the function u.x/ D
ExŒ�.X� /� is in C2.D/\ C.D/ and is a solution of

8
<

:

1

2
4u D 0 on D

uj@D D � :

It is now natural to investigate conditions for the regularity of points of @D.

Proposition 10.6 (Cone property) Let z 2 @D and let us assume that there
exist an open cone C with vertex z and a neighborhood V of z such that C\V �
Dc. Then z is regular.

Proof Let ˛ > 0 be such that the ball B˛.z/ of radius ˛ and centered at z is contained
in V; then, as f� 0 > tg & f� 0 > 0g, we have

Pz.� 0 > 0/ D lim
t!0C Pz.� 0 > t/
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but for every t > 0

Pz.� 0 > t/ � Pz.Xt … C \ B˛.z// D 1 � Pz.Xt 2 C \ B˛.z//

so that

Pz.� 0 > 0/ � 1 � lim
t!0C

Pz.Xt 2 C \ B˛.z// : (10.38)

But if C1 D C � z, C1 is an open cone with vertex at the origin, which is invariant
under multiplication by a positive constant, hence C1 D C1=

p
t and

Pz.Xt 2 C \ B˛.z// D P0.Xt 2 C1 \ B˛/ D P0.
p

t X1 2 C1 \ B˛/

D P0.X1 2 C1 \ B˛=
p

t/ D 1

.2�/m=2

Z

C1\B˛=
p

t

e�jyj2=2 dy :

Taking the limit as t ! 0C in (10.38) we find

Pz.� 0 > 0/ � 1 � 1

.2�/m=2

Z

C1

e�jyj2=2 dy < 1 :

As Pz.� 0 > 0/ can be equal to 0 or 1 only, we must have Pz.� 0 > 0/ D 0 and z is a
regular point. ut

By Proposition 10.6 all the points of the boundary of an open convex set are
therefore regular, as in this case we can choose a cone which is a whole half-plane.
One easily sees that all the points at which the boundary is C2 are regular. The
cone condition requires that the boundary does not have inward pointing thorns, see
Fig. 10.3.

The cone hypothesis of Proposition 10.6 is only a sufficient condition for the
regularity of the boundary, as we see in the following example.
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Fig. 10.3 The domain on the left-hand side enjoys the cone property at z, the one on the right-hand
side doesn’t
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Example 10.4 Let D � R
2 be a domain formed by a disc minus a segment S

as in Fig. 10.5. Let us prove that all the points of @D are regular. This fact is
obvious for the points of the circle so we need to consider only the points of
the segment S. We can assume that S belongs to the axis y D 0 and that one
of its ends is the origin. Let us prove that the origin is a regular point.

Let V be a ball centered at 0 and with a small enough radius and let

VS D V \ S; V1 D V \ .fy D 0gnS/; V0 D VS [ V1

(see Fig. 10.4). Consider the three stopping times

� 00 D infft > 0I Xt 2 VSg; �1 D infft > 0I Xt 2 V1g; �0 D infft > 0I Xt 2 V0g:

The idea of the proof is simple: starting at 0, by the Iterated Logarithm
Law applied to the component X2 of the Brownian motion X, there exists
a sequence of times .tn/n decreasing to 0 such that X2.tn/ D 0 for every n.
Now we just need to show that with positive probability, possibly passing to
a subsequence, we have X1.tn/ 2 VS for every n. We have

1) f� 00 D 0g � f� 0 D 0g.
2) f�0 D 0g D f�1 D 0g [ f� 00 D 0g. In one direction the inclusion is

obvious. Conversely, if ! 2 f�0 D 0g then there exists a sequence .tn/n,
decreasing to 0 and such that Xtn 2 V0. As V0 D VS [ V1, there exists a
subsequence .tnk/k such that Xtnk

2 V1 for every k, or Xtnk
2 VS for every

k; therefore ! 2 f�1 D 0g or ! 2 f� 00 D 0g, from which we derive the
opposite inclusion.

3) P0.� 00 D 0/ D P0.�1 D 0/, which is obvious by symmetry.
4) P0.� 0 D 0/ � 1

2
P0.�0 D 0/. From 2) and 3) we have

P0.�0 D 0/ � P0.� 00 D 0/C P0.�1 D 0/ D 2 P0.� 00 D 0/ � 2 P0.� 0 D 0/:

5) P0.�0 D 0/ � P0.sup0�t�˛ jX1.t/j < �/ > 0 where � is the radius of V
and ˛ is any number > 0. Indeed f�0 D 0g contains the event

n
lim

t!0C

X2.t/
�
2t log log 1

t

�1=2 D 1; lim
t!0C

X2.t/
�
2t log log 1

t

�1=2 D �1; sup
0�t�˛

jX1.t/j<�
o

and this event is equal to
˚

sup0�t�˛ jX1.t/j < �
�

by the Iterated Logarithm
Law.

From 4) and 5), we have P0.� 0 D 0/ > 0 and by Blumenthal’s 0–1 law 0
is a regular point (Fig. 10.5).
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Fig. 10.4 The different objects appearing in Example 10.4
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Fig. 10.5 The domain D is the interior of the disc minus the segment S

Exercises

10.1 (p. 591)

a) Let D � R
m be a bounded open set with a C2 boundary. Let L be the differential

operator

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi

and assume that the coefficients a and b satisfy the conditions a) and b) stated
p. 309 before Theorem 10.1. Let u 2 C2.D/\ C.D/ be the solution of

(
Lu D �1 on D

uj@D D 0 :
(10.39)

Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical diffusion associated to L
and � the exit time from D. Prove that

u.x/ D Ex.�/ :

b) Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical realization of an m-di-
mensional Brownian motion. Let � be the exit time from the sphere of radius 1.
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Solve (10.39) explicitly and prove that

Ex.�/ D 1

m
.1 � jxj2/ �

Compare the result of b) with Exercise 5.10 c).

10.2 (p. 592) Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical diffusion
associated to the SDE in dimension 1

dXt D b.Xt/ dt C dBt :

Let 0 < a < b and let us assume that b.x/ D ı
x for a � x � b and that, on R, b

satisfies Assumption (A’). Let � be the exit time of X from �a; bŒ.

a) Show that � < C1 Px-a.s. for every x.
b) Prove that, if ı 6D 1

2
and for a < x < b,

Px.X� D b/ D 1 � . a
x /
	

1 � . a
b /
	

(10.40)

with 	 D 2ı � 1.
c) Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical realization of an m-dimen-

sional Brownian motion with m � 3 and let D D fa < jxj < bg. Let us denote
by � the exit time of X from the annulus D. What is the value of Px.jB� j D b/
for x 2 D? How does this probability behave as m ! 1?

Go back to Exercise 8.24 for the SDE satisfied by the process �t D jXt � xj.

10.3 (p. 593) Let a; b > 0, � > 0, � 2 R.

a) Let �x be the solution of the SDE

d�t D �� dt C � dBt

�0 D x

and � the exit time of �x from the interval � � a; bŒ.
a1) Prove that � < C1 a.s. whatever the starting point x.
a1) What is the generator, L, of the diffusion �? Compute P.�0� D b/ (�0 is the

solution starting at x D 0).
b) Let �x be the solution of the SDE

d�t D � �

1C �2t
dt C �

p
1C �2t

dBt

�0 D x :

Let now � be the exit time of �x from the interval � � a; bŒ.
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b1) What is the generator of the diffusion �? Can you say that � < C1 a.s.?
Whatever the starting point x?

b2) Compute P.�0� D b/ (�0 is the solution starting at x D 0).

Compare the result of a) with Exercise 5.20.

10.4 (p. 594) Let B be a two-dimensional Brownian motion, � the circle of radius
1, x D . 1

2
; 0/ and � the exit time of B from the ball of radius 1. If � 0 � � denotes

the set of the points of the boundary with a positive abscissa, compute Px.B� 2 � 0/
(Fig. 10.6).

See Example 10.1.
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Fig. 10.6 The starting point and the piece of boundary of Exercise 10.4

10.5 (p. 595) (The Laplace transform of the exit time, to be compared with
Exercise 5.32)

a) Let X be the canonical diffusion on R
m associated to the generator

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi

that we assume to be uniformly elliptic and satisfying Assumption (A’). If D �
R

m is a bounded open set having a C2 boundary and 
 2 R, let u (if it exists)
be a solution of

(
Lu C 
u D 0 on D � Œ0;TŒ
u@D D 1 :

(10.41)

We know that, if 
 � 0, a unique solution exists by Theorem 10.1 and is given
by u.x/ D ExŒe
� �. Let, for every " > 0, D" be an open set such that D" � D
and dist .@D"; @D/ � " and let us denote by �; �" the respective exit times of X
from D;D".

a1) Show that if Mt D e
 tu.Xt/ then, for every " > 0, .Mt^�" /t is a martingale.
a2) Prove that if u � 0 then

u.x/ D ExŒe
� � :
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b) Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical realization of a real
Brownian motion and D D� � a; aŒ, a > 0.

b1) Prove that

ExŒe
� � D cos.
p
2
x/

cos.
p
2
a/

, 
 <
�2

8a2

and ExŒe
� � D C1 for 
 � �2

8a2
.

b2) Deduce that the r.v. � is not bounded but that there exist numbers ˇ > 0 such
that Px.� > R/ � const � e�ˇR and determine them.

b3) Compute ExŒ� �.

b) Note that u.x/ D ExŒMt^�" � for every t and prove first, using Fatou’s lemma, that the r.v. e
� is
Px-integrable.

10.6 (p. 596) Let us consider the problem

8
<

:

1

2

@2u

@x2
C @u

@t
D 0 on R � Œ0;TŒ

u.x;T/ D �.x/ :
(10.42)

a) Find a solution for �.x/ D x2. What can be said about uniqueness?
b) Show that if � is a polynomial, then the unique solution of (10.42) having

polynomial growth is a polynomial in x; t.

10.7 (p. 597)

a) Find a solution of the problem

8
<

:

�2

2
x2
@2u

@x2
.x; t/C bx

@u

@x
.x; t/C @u

@t
.x; t/ D 0 on R � Œ0;TŒ

u.x;T/ D x :
(10.43)

b) What if the boundary condition was replaced by u.x;T/ D x2?

10.8 (p. 597) Let

L D �2

2

mX

iD1

@2

@x2i
C 	

mX

iD1
xi
@

@xi
�
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a) Find a solution of the problem

8
<

:
Lu C @u

@t
D 0 on R

m � Œ0;TŒ
u.x;T/ D cos.h
; xi/ ;

(10.44)

where 
 2 R
m.

b) What can be said of x 7! u.x; 0/ as T ! C1?

10.9 (p. 598) Compute the fundamental solution of the Cauchy problem (in
dimension 1) of the operator

L D 1

2
ax2

@2

@x2
C bx

@

@x
,

where a > 0; b 2 R.

10.10 (p. 599) Let �x;s be the solution of the SDE in dimension 1

d�t D b.�t; t/�t dt C �.�t; t/�t dBt

�s D x ;

where b and � are continuous functions in x; s, Lipschitz continuous in x and
bounded. Let us assume �.x; t/ > 0 for every x; t.

a) Assume x > 0. Show that the process �x;s
t D log.�x;s

t / is defined for every s > 0

and is the solution of an SDE to be determined. Deduce that �t > 0 for every t
a.s.

b) Let � W R ! R be a continuous function having polynomial growth and f ; c
functions Rm � Œ0;T� ! R measurable in x; t and locally Hölder continuous in
x, such that f has a polynomial growth as a function of x and c is bounded below.
Let

u.x; t/ D E
�
�.�

x;t
T / e� R T

t c.�x;t
v ;v/ dv


 � E
h Z T

t
f .�x;t

s ; s/ e� R s
t c.�x;t

v ;v/ dv ds
i

and let Lt be the differential operator

Lt D 1

2
�.x; t/2x2

@2

@x2
C b.x; t/x

d

dx
�

Show that u is a solution of
8
<

:
Ltu C @u

@t
� cu D f on R

C � Œ0;TŒ
u.x;T/ D �.x/ :

(10.45)
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• Note that in b) Theorem 10.6 cannot be applied directly as Lt does not satisfy
all the required assumptions (the diffusion coefficient vanishes at 0).

b) Trace back to the diffusion � introduced in a) and apply the Feynman–Kac formula.

10.11 (p. 600) Let X D .C ;M ; .M s
t /t; .Xt/t; .P x;t/x;t/ be the canonical realization

of an m-dimensional Brownian motion and � W Rm ! R a bounded Borel function.
Let

u.x; t/ D Ex;tŒ�.XT/� :

a) Show that u is C1.Rm � Œ0;TŒ/.
b) Show that u.x; s/ D Ex;sŒu.Xt; t/� for every t; s � t < T.
c) Show that u is a solution of

1

2
4u C @u

@t
D 0 on R

m � Œ0;TŒ (10.46)

lim
t!T� u.x; t/ D �.x/ for every x of continuity for � : (10.47)

d) For m D 1, find a solution of (10.46) such that

lim
t!T� u.x; t/ D

(
1 if x > 0

0 if x < 0 :

What is the value of limt!T� u.0; t/?

10.12 (p. 601) Let X D .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical diffusion
associated to the differential operator

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi
(10.48)

that we assume to satisfy the same hypotheses as in Theorem 10.1. Let D be an open
set of Rm, x 2 @D; we shall say that @D has a local barrier for L at x if there exists
a function w.y/ defined and twice differentiable in a neighborhood W of x and such
that Lw � �1 on W \ D, w � 0 on W \ D and w.x/ D 0.

Then

a) if @D has a local barrier for L at x, then x is regular for the diffusion X.
b) (The sphere condition) Let x 2 @D and assume that there exists a ball S � Dc

such that S \ D D fxg. Then x is regular for X.

a) Apply Ito’s formula and compute the stochastic differential of t 7! w.Xt/. b) Construct a local
barrier at x of the form w.y/ D kŒjx � zj�p � jy � zj�p�, where z is the center of S.



Chapter 11
�Simulation

Applications often require the computation of the expectation of a functional of a
diffusion process. But for a few situations there is no closed formula in order to
do this and one must recourse to approximations and numerical methods. We have
seen in the previous chapter that sometimes such an expectation can be obtained by
solving a PDE problem so that specific numerical methods for PDEs, such as finite
elements, can be employed. Simulation of diffusion processes is another option
which is explored in this chapter.

11.1 Numerical approximations of an SDE

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a d-dimensional Brownian motion and � the
m-dimensional solution of the SDE

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D �
(11.1)

where

a) b is an m-dimensional vector field and � a m � d matrix field satisfying
assumptions to be made precise later;

b) � is an Fu-measurable square integrable r.v.

We have already discussed the question of the simulation of the paths of a process
in the chapter about Brownian motion in Sect. 3.7. Of course, the method indicated
there cannot be extended naturally to the case of a general diffusion unless the
transition function p of � is known and easy to handle, as is the case, for instance,
for the Ornstein–Uhlenbeck process, as explained in Example 9.3.

© Springer International Publishing AG 2017
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This is not, however, a common situation: the transition function is in most cases
unknown explicitly or difficult to sample. Hence other methods are to be considered,
possibly taking into account that we shall have only an approximate solution.

The simplest method in this direction is the so-called Euler scheme, which
borrows the idea of the scheme that, with the same name, is used in order to
solve numerically Ordinary Differential Equations. Sometimes it is called the Euler–
Maruyama scheme, G. Maruyama (1955), being the first to apply it to SDEs.

The idea is to discretize the time interval Œu;T� into n small intervals of length
h D 1

n .T �u/. Let tk D uCkh, k D 0; 1; : : : ; n. Then we consider the approximation

�tk D �tk�1 C
Z tk

tk�1

b.�s; s/ ds C
Z tk

tk�1

�.�s; s/ dBs

' �tk�1 C b.�tk�1 ; tk�1/h C �.�tk�1 ; tk�1/.Btk � Btk�1 / :

(11.2)

Let .Zn/n be a sequence of d-dimensional independent N.0; I/-distributed r.v.’s; then
the r.v.’s

p
h Zk have the same joint distributions as the increments Btk � Btk�1 of the

Brownian motion. We can construct the subsequent positions of an approximating

process �
.n/

by choosing the initial value �
.n/
.u/ by sampling with the same law as �

(and independently of the Zk’s) and then through the iteration rule

�
.n/
tk

D �
.n/
tk�1

C b.�
.n/
tk�1
; tk�1/h C �.�

.n/
tk�1
; tk�1/

p
h Zk : (11.3)

Of course we need to prove that, as h ! 0, the process obtained in this way
converges, in some appropriate way, to the solution of the SDE (11.1).

There are two points of view concerning the convergence. The first one is the
so-called strong approximation. A result about strong approximation is a statement

that gives an estimate of how close the values of the approximants �
.n/
tk are to those

of the solution �tk when Zk D 1p
h
.Btk � Btk�1 / as in (11.2).

The second point of view, the weak approximation, concerns the estimation of

how close the law of �
.n/

is to the law of �. Typically it consists in estimates of how

close the value of EŒ f .�
.n/
T /� is to the “true” value EŒ f .�T /� for a function f that is

sufficiently regular.

Definition 11.1 An approximation scheme �
.n/

is said to be strongly conver-
gent of order ˇ if for every k, 1 � k � n,

EŒj�.n/tk � �tk j2�1=2 � const hˇ : (11.4)

(continued)
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Definition 11.1 (continued)

Let W be a class of functions Rm ! R. An approximation scheme �
.n/

is said
to be weakly convergent of order ˇ for the class of functions W if for some
T > 0

ˇ
ˇEŒ f .�.n/T /� � EŒ f .�T /�

ˇ
ˇ � const hˇ (11.5)

for every function f 2 W .

Of course, for every Lipschitz continuous function f with Lipschitz constant L we
have

ˇ
ˇEŒ f .�

.n/
T /� � EŒ f .�T/�

ˇ
ˇ � EŒj f .�

.n/
T /� f .�T /j� � LEŒj�.n/T � �T j� (11.6)

so that strong approximation gives information of weak type, at least for some class
of functions f .

In the next sections we shall often drop the superscript .n/. We shall use the
notations

• n: number of subintervals into which the interval Œu;T� is partitioned;
• h D 1

n .T � u/: length of each of these subintervals;
• tk D u C hk, k D 0; : : : ; n: endpoints of these subintervals.

11.2 Strong approximation

We shall make the following assumptions.

Assumption (E) We say that the coefficients b and � satisfy Assumption (E)
if there exist constants L > 0;M > 0 such that for every x; y 2 R

m, t 2 Œ0;T�,

jb.x; t/� b.x; s/j � L.1C jxj/jt � sj1=2; (11.7)

j�.x; t/ � �.x; s/j � L.1C jxj/jt � sj1=2; (11.8)

jb.x; t/j � M.1C jxj/; j�.x; t/j � M.1C jxj/; (11.9)

jb.x; t/� b. y; t/j � Ljx � yj; j�.x; t/ � �. y; t/j � Ljx � yj : (11.10)
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In practice this is almost the same as Assumption (A) p. 260, but for the fact that we
require more regularity in the time variable.

Let us consider an Euler scheme whose subsequent positions � t0 ; : : : ; � tn are
defined in (11.3), with the choice Zk D 1p

h
.Btk � Btk�1 /. It will be useful to define

an approximating processb� interpolating the values of the Euler scheme between
the times tk. More precisely, for tk�1 � t � tk, let

b� t D � tk�1
C b.� tk�1

; tk�1/.t � tk�1/C �.� tk�1
; tk�1/.Bt � Btk�1 / : (11.11)

Let us define jn.s/ D tn for tn � s < tnC1; thenb� satisfies

b� t D �C
Z t

0

b.b� jn.s/; jn.s// ds C
Z t

0

�.b� jn.s/; jn.s// dBs : (11.12)

In particular,b� is a Ito process.
Let us prove first thatb� has finite moments of order p for every p � 1.

Lemma 11.1 If the coefficients b; � satisfy (11.9) (sublinear growth) and the
initial value � belongs to Lp, p � 2, then

E
h

sup
kD0;:::;n

j� tk jp
i

� E
h

sup
u�t�T

jb� tjp
i
< C1 :

Proof The proof follows almost exactly the steps of the proof of Theorem 9.1. For
R > 0, letb�R.t/ D b�.t ^ �R/, where �R D infftI t � T; jb� tj > Rg denotes the exit
time ofb� from the open ball of radius R. Then a repetition of the steps of the proof
of Theorem 9.1 gives the inequality

E
h

sup
u�s�t

jb�R.s/jp
i

� c1. p;T;M/
�
1C Ej�jp

�C c2. p;T;M/
Z t

u
E
�jb�R. jn.r//jp



dr

� c1. p;T;M/
�
1C Ej�jp

�C c2. p;T;M/
Z t

u
E
h

sup
u�s�r

jb�R.s/jp
i

dr :

Let now v.t/ D E
�

supu�s�t jb�R.s/jp
�
: from the previous inequality we have

v.t/ � c1. p;T;M/.1C Ej�jp/C c2. p;T;M/
Z s

u
v.r/ dr :

As v.s/ � R we can apply Gronwall’s inequality, which gives

v.T/ � c. p;T;M/
�
1C EŒj�jp�

�
;
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i.e.

E
h

sup
u�s�T^�R

jb�sjp
i

� c. p;T;M/
�
1C EŒj�jp�

�
:

We remark that the right-hand side does not depend on R and we can conclude the
proof by letting R ! C1 with the same argument as in the proof of Theorem 9.1.

ut
The following theorem gives the main strong estimate.

Theorem 11.1 Assume that b and � satisfy Assumption (E). Let B be a
d-dimensional Brownian motion, � 2 Lp, p � 2, an m-dimensional r.v.
independent of Fu and � the solution of

d�t D b.�t; t/ dt C �.�t; t/ dBt

�u D � :

Let b� D b�.n/ be the approximating process defined by the Euler
scheme (11.11) and with initial conditionb�u D �, u � 0. Then for every
p � 1 and T > u, we have

E
h

sup
u�t�T

jb� t � �tjp
i

� const hp=2 ; (11.13)

where the constant c depends only on T, p, L, M and the Lp norm of �.

Proof The idea of the proof is to find upper bounds allowing us to apply Gronwall’s
inequality. We shall assume for simplicity that u D 0. Let jn.s/ D tn for tn � s <
tnC1, then, thanks to (11.12), we have

jb� t � �tjp � 2p�1
ˇ
ˇ
ˇ

Z t

0

.b.b� jn.s/; jn.s//� b.�s; s// ds
ˇ
ˇ
ˇ
p

C2p�1
ˇ
ˇ
ˇ

Z t

0

.�.b� jn.s/; jn.s//� �.�s; s// dBs

ˇ
ˇ
ˇ
p

and, by Hölder’s inequality and the Lp bound of Proposition 8.9,

E
h

sup
0�u�t

jb�u � �ujp
i

� 2p�1TpE
h Z t

0

jb.b� jn.s/; jn.s//� b.�s; s/jp ds
i

C2p�1c. p;m; d/T
p�2
2 E

h Z t

0

j�.b� jn.s/; jn.s// � �.�s; s/jp ds
i
:

(11.14)
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We have, for tn � s � tnC1,

jb.b� jn.s/; jn.s// � b.�s; s/j D jb.b�tn ; tn/� b.�s; s/j
� jb.�s; s/� b.�tn ; s/j C jb.�tn ; s/ � b.�tn ; tn/j C jb.�tn ; tn/ � b.b� tn ; tn/j

hence, for tn � v < tnC1, under Assumption (E),

Z v

tn

jb.b� jn.s/; jn.s// � b.�s; s/jp ds

� 3p�1Lp
� Z v

tn

j�s � �tn jp ds C .1C j�tn j/p
Z v

tn

js � tnjp=2 ds C
Z v

tn

j�tn �b� tn jp ds
�
:

The same arguments give

Z v

tn

j�.b� jn.s/; jn.s// � �.�s; s/jp ds

� 3p�1Lp
� Z v

tn

j�s � �tn jp ds C .1C j�tn j/p
Z v

tn

js � tnjp=2 ds C
Z v

tn

j�tn �b� tn jp ds
�
:

Thanks to the Lp estimates for the solution of an SDE with coefficients with a
sublinear growth, (9.13) and (9.12), p. 261, we have for tn � s < tnC1 and denoting
by c. p;T/, c.L; p;T/ suitable constants,

EŒj�s � �tn jp� � c. p;T/.s � tn/
p=2.1C EŒj�tn jp�/ � c. p;T/.s � tn/

p=2.1C EŒj�jp�/ :

Substituting into (11.14) we find

E
h

sup
0�u�t

jb�u � �ujp
i

� c.L;T; p/
n
.1C EŒj�jp�/

Z T

0

js � jn.s/jp=2 ds

C
Z t

0

EŒj�jn.s/ �b� jn.s/jp� ; ds
o
:

(11.15)

As

Z T

0

js � jn.s/jp=2 ds D
n�1X

kD0

Z tkC1

tk

.s � tk/
p=2 D n

p
2

C 1
h1Cp=2 D T

p
2

C 1
hp=2

and

Z t

0

EŒj�jn.s/ �b� jn.s/jp� ds �
Z t

0

E
h

sup
0�u�s

j�u �b�ujp
i

ds ;
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for the function v.t/ D EŒsup0�u�t j�u � �ujp� we have the inequality

v.t/ � hp=2c.L;T; p/.1C EŒj�jp�/C c.L;T; p/
Z t

0

v.s/ ds :

As by Lemma 11.1 and Theorem 9.1 the function v is bounded, we can apply
Gronwall’s inequality, which gives

E
h

sup
0�u�T

jb�u � �ujp
i

� c.L;T; p/eTc.L;T;p/.1C EŒj�jp�/ hp=2

concluding the proof.
ut

By Theorem 11.1 with p D 2 the Euler scheme is strongly convergent of order 1
2
.

Theorem 11.1 states that the L2 difference between the r.v.’s � tk and �tk tends to
0 as h ! 0. This is enough in many situations, typically if we need to estimate
a functional of the type EŒ f .�T/�. Sometimes we might be concerned with more
complicated functionals of the path of �, which leads to the following extension.

Let us define a process, which we shall denote again by �, by setting, for tk �
t � tkC1, � t as the value that is obtained by interpolating linearly between the values
� tk and � tkC1

. More precisely, if tk � t � tkC1, we have

t D 1

h
.tkC1 � t/tk C 1

h
.t � tk/tkC1

and we define

� t D 1

h
.tkC1 � t/� tk C 1

h
.t � tk/� tkC1

D � tk C b.� tk ; tk/.t � tk/C 1

h
�.� tk ; tk/.t � tk/.BtkC1

� Btk / :
(11.16)

The processes � and b� coincide at the discretization times tk but differ between
the times tk and tkC1 because the stochastic components are different. � has the
advantage that it can be numerically simulated.

Corollary 11.1 Under the assumptions of Theorem 11.1, as n ! 1 the

Euler approximations �
.n/

(11.16) converge in law to the law of � on
C .Œu;T�;Rm/ for every T > 0 and in C .RC;Rm/.

Proof Again we shall assume u D 0. We shall prove that, for a fixed T, from every

sequence .nj/j converging to C1 we can extract a subsequence .n0
j/j such that �

.n0
j /
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converges to � uniformly on Œ0;T�. As a.s. convergence implies convergence in law,
this will conclude the proof. If we define hj D 1

nj
, then we have thanks to (11.13)

and the Markov inequality, for every " > 0,

P
�

sup
kD0;:::;nj

j�.nj/

tk
� �tk j � "

�
� 1

"2
E
h

sup
kD0;:::;nj

j�.nj/

tk
� �tk j2

i
� c

hj

"2
D cT

nj"2

hence certainly there exists a subsequence .n0
j/j such that

1X

jD1
P
�

sup
kD0;:::;n0

j

j�.n
0
j /

tk � �tk j � "
�
< C1 :

By the Borel–Cantelli lemma, for every " > 0 the event
n

sup
kD0;:::;n0

j

j�.n
0
j /

tk
� �tk j � " for infinitely many indices j

o

has probability 0. Let ! 2 ˝ . Then as the map t 7! �t.!/ is continuous, for every
" > 0 there exists a ı" > 0 such that if jt�sj � ı" then j�t.!/��s.!/j � ". Let us fix

" > 0 and let j0 > 0 be such that h0
j � ", h0

j � ı" and supkD0;:::;n0
j
j�.n

0
j /

tk
.!/��tk.!/j <

" for every j � j0. Then we have, for tk � t � tkC1,

j�t.!/ � �tkC1
.!/j � " and j�t.!/� �tk .!/j � " (11.17)

and also, for j > j0,

j�tk.!/ � �
.n0

j /

tk .!/j � " and j�tkC1
.!/� �

.n0
j/

tkC1
.!/j � " : (11.18)

By (11.16) we have �
.n0

j /

t .!/ D ˛�
.n0

j /

tk
.!/ C .1 � ˛/�

.n0
j /

tkC1
.!/ with ˛ D 1

h0
j
.tkC1 �

t/. Thanks to (11.17) and (11.18), we have by adding and subtracting the quantity
˛�tk .!/C .1 � ˛/�tkC1

.!/, if tk � t � tkC1,

j�t.!/ � �.n
0
j /

t .!/j
� j�t.!/� .˛�tk .!/C .1 � ˛/�tkC1

.!//j

Cj.˛�tk .!/C .1 � ˛/�tkC1
.!// � .˛�

.n0
j /

tk
.!/C .1 � ˛/�

.n0
j /

tkC1
.!/

„ ƒ‚ …

D�.n
0
j /

t .!/

j

� ˛j�t.!/ � �tk .!/j C .1 � ˛/j�t.!/ � �tkC1
.!/j

C˛j�tk .!/ � �.n
0
j /

tk .!/j C .1 � ˛/j�tkC1
.!/� �

.n0
j /

tkC1
.!/j

� 2" :
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Hence we have proved that, for j � j0, sup0�t�T j�t � �
.n0

j /

t j � 2" hence that .�
.n0

j//j
converges a.s. to � in C .Œ0;T�;Rm/.

The convergence in law of �
.n/

to � in C .RC;Rm/ is easily deduced recalling that
convergence in C .RC;Rm/ means uniform convergence on Œ0;T� for every T. The
details are left to the reader.

ut
We remarked above that Theorem11.1 and (11.6) guarantee that the Euler scheme
is weakly convergent of order 1

2
for the class of Lipschitz functions. In the next

section we shall see that, for a class W of regular functions and under regularity
assumptions on the coefficients b and � , the weak rate of convergence is of order 1.

11.3 Weak approximation

The following theorem gives an estimate concerning the weak convergence of the
Euler scheme in the case of a time homogeneous diffusion. We shall skip the proof,
putting the focus on the applications of the results.

Theorem 11.2 (The Talay–Tubaro expansion) Let us assume that

a) the coefficients b and � are time homogeneous and differentiable infinitely
many times with bounded derivatives of all orders (b and � may be
unbounded themselves);

b) the initial condition is � � x 2 R
m;

c) f W Rm ! R is differentiable infinitely many times and all its derivatives
have polynomial growth, i.e. for every multi-index ˛ D .˛1; : : : ; ˛m/ there
exist numbers C˛; p˛ > 0 such that

ˇ
ˇ
ˇ
@j˛jf
@x˛

ˇ
ˇ
ˇ � C˛.1C jxjp˛ / :

Then there exists a constant c such that

EŒ f .�T /� � EŒ f .�T/� D c h C O.h2/ : (11.19)

The Talay–Tubaro theorem, Talay and Tubaro (1990) or Graham and Talay (2013,
p. 180), actually gives more precision about the constant c. Note also that Theo-
rem 11.2 does not just give a bound of the error as in Theorem 11.1, but gives an
expansion of the error, which is a more precise statement. This fact will be of some
importance in Sect. 11.6.
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Example 11.1 The usual weak convergence estimate, such as the one of
Theorem 11.2, gives information concerning how much the expectation
EŒ f .�T/� differs from the true value EŒ f .�T/�, but what about the discrepancy
when considering the expectation of a more complicated function of the path
of the diffusion �? For instance, if � W Rm ! R is a regular function how do
we estimate the difference between

E
h Z T

0

�.�s/ ds
i

(11.20)

and, for instance, its Euler approximation

E
h
h

n�1X

kD0
�.� tk /

i
‹ (11.21)

A nice approach can be the following. Let us consider the .mC1/-dimensional
diffusion that is the solution of the SDE

d�t D b.�t/ dt C �.�t/ dBt

d�t D �.�t/ dt :
(11.22)

Hence �T D R T
0
�.�s/ ds and we have written our functional of interest as a

function of the terminal value of the diffusion .�; �/. The Euler scheme gives
for the � component the approximation

�T D h
n�1X

kD0
�.� tk/ : (11.23)

If � satisfies the assumptions of Theorem 11.2 and � is differentiable infinitely
many times with bounded derivatives, then (11.19) guarantees for the Euler
approximation (11.23) a rate of convergence of order h.

11.4 Simulation and PDEs

The representation results of Chap. 10 allow us to compute numerically the solution
of a PDE problem via the numerical computation of expectations of functionals of
diffusion processes. Let us consider, as in Sect. 10.4, the differential operator

Lt D 1

2

mX

i;jD1
aij.x; t/

@2

@xi@xj
C

mX

iD1
bi.x; t/

@

@xi



11.4 Simulation and PDEs 351

and the parabolic problem

8
<

:

Ltu � cu C @u

@t
D f on R

m � Œ0;TŒ
u.x;T/ D �.x/ x 2 R

m :

We know that, under the hypotheses of Theorem 10.6, a solution is

u.x; t/ D Ex;t
�
�.XT/ e� R T

t c.Xs;s/ ds

�Ex;t

h Z T

t
f .Xs; s/ e� R s

t c.Xv;v/ dv ds
i
; (11.24)

where .C ;M ; .Mt/t; .Xt/t; .Px;s/x;s/ is the canonical diffusion associated to Lt.
Hence, thanks to Corollary 11.1, as the functionals inside the expectations in (11.24)
are continuous functionals of the paths .Xt/t, we have that, denoting by P

x;t
n the law

on .C ;M / of the Euler approximation with time step h D T
n , if

un.x; t/ D E
x;t
n

�
�.XT/ e� R T

t c.Xs;s/ ds

 � E

x;t
n

h Z T

t
f .Xs; s/ e� R s

t c.Xv;v/ dv ds
i

then

lim
n!1 un.x; t/ D u.x; t/ :

In practice, an approximation of the value of the solution u at .x; t/ can be obtained
by simulating, with the Euler scheme, N paths �1; : : : ; �N of the diffusion associated
to the generator L and with starting condition x; t and considering the approximation

un;N.x; t/ D 1

N

NX

kD1
˚ k ;

where

˚ k D �.�k.T// e� R T
t c.�k.s/;s/ds �

Z T

t
f .�k.s/; s/ e� R s

t c.�k.v/;v/ dv ds :

In the simpler situation f � 0, c � 0 the approximation becomes

un;N.x; t/ D 1

N

NX

kD1
�.�k.T// :
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The solutions of the Dirichlet and Cauchy–Dirichlet problems of Sects. 10.2
and 10.3 can be numerically approximated in the same spirit. But then an additional
problem appears. Let us consider the Dirichlet problem

(
Lu � c D f on D

uj@D D � :

Theorem 10.2 states that, under suitable assumptions, the solution is given by

u.x/ D ExŒ�.X� /Z� � � Ex
h Z �

0

Zs f .Xs/ ds
i
; (11.25)

where .C ;M ; .Mt/t; .Xt/t; .Px/x/ denotes the canonical realization of the diffusion
associated to the generator L, Zt D e� R t

0 c.Xs/ ds and � is the exit time from D.
We can think of simulating the diffusion with its Euler approximation in order to

approximate u.x/ with

u.x/ D E
x
Œ�.X� /Z� � � E

x
h Z �

0

Zs f .Xs/ ds
i

(11.26)

where by E
x

we denote the expectation with respect to the law of the Euler
approximation with step h.

We know from Corollary 11.1 that under mild assumptions the laws of the Euler
approximations P

x
converge weakly, as h ! 0, to Px. Unfortunately the map � W

C ! R
C is not continuous so we cannot immediately state that u.x/ converges to

u.x/ as h ! 0. In this section we prove that, in most cases, this is not a difficulty.
The idea is very simple. In the next statement we prove that the exit time from

an open set is a lower semicontinuous functional C ! R
C, whereas the exit time

from a closed set is upper semicontinuous. In Theorem 11.3 it will be proved that,
under suitable assumptions, the exit time � from an open set D is Px-a.s. equal to the
exit time from its closure for every x. Hence � will turn out to be Px-a.s. continuous,
which is sufficient in order to guarantee the convergence of u.x/ to u.x/.

Proposition 11.1 Let D be an open (resp. closed) set. Then the exit time �
from D as a functional C ! R

C is lower (resp. upper) semicontinuous.
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Proof Assume that D is an open set and let � 2 C . For every " > 0 the set � D
fx 2 DI x D �t for some t � �.�/ � "g is a compact set contained in D. Hence
ı WD d.�; @D/ > 0 (the distance between a compact set and a disjoint closed set is
strictly positive). Now U D fw 2 C I sup0�t��.�/�" jwt � �tj � ı

2
g is a neighborhood

of � such that for every path w 2 U �.w/ � �.�/ � ". Hence, by the arbitrariness
of ",

lim
w!�

�.w/ � �.�/ :

Assume now that D is closed and let � be such that �.�/ < 1. Then there exist
arbitrarily small values of " > 0 such that ��.�/C" 2 Dc. Let ı WD d.��.�/C";D/ > 0.
Again if U D fw 2 C I sup0�t��.�/C" jwt � �tj � ı

2
g, for every w 2 U we have

�.w/ � �.�/C ". ut
We must now find conditions ensuring that, for a given open set D, the exit time

from D and from its closure coincide Px-a.s.
The intuitive explanation of this fact is that the paths of a diffusion are subject

to intense oscillations. Therefore as soon as a path has reached @D, hence has gone
out of D, it immediately also exits from D a.s. This is an argument similar to the
one developed in Example 6.4 (and in particular in Fig. 6.1). It will be necessary
to assume the boundary to have enough regularity and the generator to be elliptic,
which will ensure that oscillations take place in all directions.

The formal proof that we now develop, however, shall take a completely different
approach.

Let D � R
m be a regular open set and let Dn be a larger regular open set with

D � Dn and such that dist.@D; @Dn/ ! 0 as n ! 1. Let us consider the functions
u, un that are the solutions respectively of the problems

(
Lu D �1 on D

uj@D D 0
(11.27)

and

(
Lun D �1 on Dn

unj@Dn
D 0 :

(11.28)

As a consequence of Theorem 10.2 (see also Exercise 10.1) we have, denoting by
� , � and �n the exit times from D, D, Dn respectively,

u.x/ D ExŒ� �; un.x/ D ExŒ�n�

hence, for every x 2 D, as � � � � �n

u.x/ � ExŒ� � � un.x/ : (11.29)
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But, of course, un is also the solution of

(
Lun D �1 on D

un.x/ D un.x/ x 2 @D
(11.30)

and thanks to the representation formula (10.6), for x 2 D,

ExŒ�n� D un.x/ D ExŒun.X� /�C ExŒ� � : (11.31)

Later on in this section we prove that, for every " > 0, there exists an n0 such that
un.x/ � " on @D for n � n0. This is rather intuitive, as un D 0 on @Dn and the
boundaries of D and Dn are close. Hence (11.31) will give

un.x/ � ExŒ� �C " ;

which together with (11.29) gives

ExŒ� � � ExŒ� � � ExŒ� �C " :

Hence, by the arbitrariness of ", ExŒ� � D ExŒ� � and as � � � this entails � D � a.s.
The result is the following. It requires the boundary of D to be C2;˛ , i.e. locally

the graph of a function that is twice differentiable with second derivatives that are
Hölder continuous of order ˛. It also requires that D is convex, an assumption that
can certainly be weakened.

Theorem 11.3 Let .C ;M ; .Mt/t; .Xt/t; .Px/x/ be the canonical diffusion
associated to the differential operator

L D 1

2

mX

i;jD1
aij.x/

@2

@xi@xj
C

mX

iD1
bi.x/

@

@xi
(11.32)

and let D be a bounded open set with a C2;˛ boundary with 0 < ˛ < 1. We
assume that there exists an open set eD such that D � eD and

• the coefficients a and b are locally Lipschitz continuous on eD;
• L is uniformly elliptic on eD, i.e. ha.x/ z; zi � 	jzj2 for some 	 > 0 and for

every x 2 eD, z 2 R
m.

Then the exit time � from D is a.s. continuous with respect to Px for every x.
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In order to complete the proof we must prove that for every " > 0 there exists an n0
such that un.x/ � " on @D for n � n0. This will follow as soon as we prove that the
gradient of un is bounded uniformly in n, and this will be a consequence of classical
estimates for elliptic PDEs.

Let us introduce some notation. For a function f on a domain D and 0 < ˛ � 1,
let us introduce the Hölder’s norms

j f j˛ D k f k1;D C sup
x;y2D;x 6Dy

j f .x/ � f . y/j
jx � yj˛

and, for a positive integer k and denoting by ˇ D .ˇ1; : : : ; ˇm/ a multi-index,

j f jk;˛ D
kX

hD0

X

jˇjDh

ˇ
ˇ
ˇ
@jˇjf
@xˇ

ˇ
ˇ
ˇ
˛
:

The following result (see Gilbarg and Trudinger 2001, Theorem 6.6, p. 98 for
example) is a particular case of the classical Schauder estimates.

Theorem 11.4 Let D be an open set with a C2;˛ boundary and let u be a
solution of (11.27), where L is the differential operator (11.32). Assume that
the coefficients satisfy the conditions

ha.x/�; �i � 	j�j2 (11.33)

for every x 2 D, � 2 R
m and, for some ˛, 0 < ˛ < 1,

jaijj˛; jbij˛;�  (11.34)

for every i; j D 1; : : : ;m, for some constants 	; > 0. Then for the solution
u of (11.27) we have the bound

juj2;˛ � C.kuk1 C 1/ (11.35)

for some constant C D C.m; ˛; 	;;D/.

End of the proof of Theorem 11.3 We must prove that, for a suitable family .Dn/n
as above, the gradients of the solutions un of (11.30) are bounded uniformly in n.
This will be a consequence of the Schauder inequalities of Theorem 11.4, as the
Hölder norm j j2;˛ majorizes the supremum norm of the gradient.
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The first task is to prove that the constant C appearing in (11.35) can be chosen
to hold for Dn for every n.

Let us assume that the convex set D contains the origin so that we can choose
Dn as the homothetic domain .1 C 1

n /D. Note that, as D is assumed to be convex,
D � Dn. Let us define rn D 1C 1

n and let n be such that Dn � eD. Let

eun.x/ D un.rnx/

eLn D 1

2

mX

i;jD1
ea .n/ij .x/

@2

@xi@xj
C

mX

iD1
eb.n/i .x/

@

@xi

(11.36)

withea .n/ij .x/ D 1
r2n

aij.rnx/,eb.n/.x/ D 1
rn

bi.rnx/. TheneLneun.x/ D .Lnun/.rnx/, hence
eun is the solution of

(
eLneun D �1 on D

eunj@D
D 0 :

(11.37)

Let us consider on D the differential operatorseLn, L and let us verify that there exist
constants 	,  such that (11.33) and (11.34) are satisfied for all of them. Indeed if
ha.x/�; �i � 	j�j2 for every x 2 Dn, then, as rn � 2,

ha.n/.x/�; �i � 	

r2n
j�j2 � 	

4
j�j2

and if  is such that jaijj˛ �  (the Hölder norm being taken on Dn), then

ja.n/ij j˛ � r˛n
r2n
 � 

and a similar majorization holds for the coefficientseb.n/. Hence by Theorem 11.3
there exists a constant C such that, for every n,

rnkun
0k1 D keun

0k1 � jeuj2;˛ � C.keunk1 C 1/ D C.kunk1 C 1/ : (11.38)

Finally, simply observe that, as Dn � Dn and the generator L is elliptic on Dn, the
exit time from Dn is integrable thanks to Proposition 10.1 and we have the bound

kunk1 D sup
x2Dn

ExŒ�n� � sup
x2Dn

ExŒ�n� < C1 (11.39)
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and, putting together (11.38) and (11.39), we obtain that the supremum norm of the
gradient of un is bounded uniformly in n, thus concluding the proof of Theorem 11.3.

ut
Note that the assumption of convexity for the domain D is required only in order
to have D � .1 C 1

n /D and can be weakened (D starshaped is also a sufficient
assumption, for example).

Example 11.2 Consider the Poisson problem in dimension 2

(
1
2
4u D 0 on D

uj@D.x1; x2/ D x2 _ 0 ; (11.40)

where D is the ball centered at 0 of radius 1. The representation formula (10.6)
gives

u.x/ D ExŒX2.�/ _ 0� ;

where .C ;F ; .Ft/t; .Xt/t; .Px/x/ denotes the realization of the diffusion
process associated to L D 1

2
4 so that, under Px, X D .X1;X2/ is a two-

dimensional Brownian motion starting at x and � is the exit time from D. The
value u.x/ of the solution at x 2 D can therefore be computed by simulating
many paths of the Brownian motion starting at x and taking the mean of the
values of X2.�/_0, i.e. the positive part of the ordinate of the exit point. Doing
this for a grid of starting points in D, the result would appear as in Fig. 11.1.

This can be compared with the solution obtained with the aid of some
specific numerical method for PDEs (finite elements for instance), shown in
Fig. 11.2.

It is apparent that finite elements are much more accurate, as a comparison
with the exact solution given by the formulas of Example 10.1 would show.
Simulation therefore performs poorly in comparison with these numerical
methods and requires, for an accurate result, a very small value of the
discretization step h and a large number of simulated paths. However it has
two great advantages.

a) It is very simple to implement.
b) Very often it is the only method available. This is the case, for instance,

if the dimension is larger than, say, 4. In these situations other numerical
methods are unavailable or become really complicated to implement.
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Fig. 11.1 The solution of (11.40) computed numerically by simulation of a two-dimensional
Brownian motion. At each point the value was determined as the average on n D 1600 paths,
each obtained by a time discretization h D 1

50

Fig. 11.2 The solution of (11.40) computed numerically with the finite elements method
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11.5 Other schemes

The Euler scheme is possibly the most natural approach to the approximation of the
solution of an SDE but not the only one, by far. In this section we provide another
approximation scheme. Many more have been developed so far, the interested reader
can refer to the suggested literature.

Going back to (11.2) i.e.

�tk D �tk�1 C
Z tk

tk�1

b.�s; s/ ds C
Z tk

tk�1

�.�s; s/ dBs ; (11.41)

a natural idea is to find a better approximation of the two integrals. The Euler scheme
can be thought of as a zero-th order development: what if we introduce higher order
developments of these integrals?

In this direction we have the Milstein scheme. Let us apply Ito’s formula to the
process s 7! �.�s; s/: assuming that � is twice differentiable, we have for tk�1 �
s < tk,

�ij.�s; s/ D�ij.�tk�1 ; tk�1/

C
Z s

tk�1

�@�ij

@u
C

mX

lD1

@�ij

@xl
bl C 1

2

mX

r;lD1

@2�ij

@xr@xl
arl

�
.�u; u/ du

C
Z s

tk�1

dX

lD1

� mX

rD1

@�ij

@xr
�rl

�
.�u; u/ dBl.u/ :

The integral in du is of order h and, after integration from tk�1 to tk in (11.41), will
give a contribution of order o.h/, which is negligible with respect to the other terms.
Also we can approximate

Z s

tk�1

dX

lD1

� mX

rD1

@�ij

@xr
�rl

�
.�u; u/ dBl.u/

'
mX

rD1

@�ij

@xr
.�tk�1 ; tk�1/

dX

lD1
�rl.�tk�1 ; tk�1/.Bl.s/� Bl.tk�1// ;

which gives finally the Milstein scheme, which is obtained by adding to the Euler
iteration rule (11.2) the term whose i-th component is

dX

jD1

mX

rD1

@�ij

@xr
.�tk�1 ; tk�1/

dX

lD1
�rl.�tk�1 ; tk�1/

Z tk

tk�1

.Bl.s/ � Bl.tk�1// dBj.s/ :
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If d D 1, i.e. the Brownian motion is one-dimensional and � is an m�1 dimensional
matrix, by Ito’s formula we have

Z tk

tk�1

.Bs � Btk�1 / dBs D 1

2

�
.Btk � Btk�1 /

2 � h
�

and the iteration rule becomes, for i D 1; : : : ;m,

�i.tk/ D�i.tk�1/C bi.�tk�1 ; tk�1/h C �i.�tk�1 ; tk�1/.Btk � Btk�1 /

C
mX

lD1

@�i

@xl
.�tk�1 ; tk�1/�l.�tk�1 ; tk�1/

Z tk

tk�1

.Bs � Btk�1 / dBs

D�i.tk�1/C bi.�tk�1 ; tk�1/h C �i.�tk�1 ; tk�1/.Btk � Btk�1 /

C 1

2

mX

lD1

@�i

@xl
.�tk�1 ; tk�1/�l.�tk�1 ; tk�1/

�
.Btk � Btk�1 /

2 � h
�
:

In practice, the subsequent positions of the approximating process will be obtained
by choosing �u � � and iterating

� i.tk/ D� i.tk�1/C bi.� tk�1
; tk�1/h C p

h �i.� tk�1
; tk�1/Zk

C h

2

mX

lD1

@�i

@xl
.� tk�1

; tk�1/�l.� tk�1
; tk�1/.Z2k � 1/

for a sequence .Zk/k of independent N.0; 1/-distributed r.v.’s.
In dimension larger than 1 this scheme requires us to be able to simulate the joint

distribution of the r.v.’s

Bi.tj/;
Z tk

tk�1

.Bl.t/ � Bl.tk�1// dBj.t/; i; j; l D 1; : : : ; d; k D 1; : : : ; n ;

which is not easy. In addition this scheme requires the computation of the derivatives
of � . The Milstein scheme in practice is confined to the simulation of diffusions in
dimension 1 or, at least, with a one-dimensional Brownian motion.

Also for the Milstein scheme there are results concerning strong and weak
convergence. Without entering into details, the Milstein scheme is of strong order
of convergence equal to 1 (i.e. better that the Euler scheme) and of weak order of
convergence also 1 (i.e. the same as the Euler scheme).

Let us mention, among others, the existence of higher-order schemes, usually
involving a higher order development of the coefficients.
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11.6 Practical remarks

In this section we discuss some issues a researcher may be confronted with when
setting up a simulation procedure.

In practice, in order to compute the expectation of a continuous functional of the
diffusion process � it will be necessary to simulate many paths �1; : : : ; �N using the
Euler or some other scheme with discretization step h and then to take their average.

If the functional is of the form ˚.�/ for a continuous map ˚ W C .Œ0;T�;Rm/ !
R, the expectation EŒ˚.�/� will be approximated by the average

˚N WD 1

N

NX

kD1
˚.�k/ :

In order to evaluate the error of this approximation it is natural to consider the mean
square error

E
�
.˚N � EŒ˚.�/�/2



:

We have, adding and subtracting EŒ˚.�/�,

E
�
.˚N � EŒ˚.�/�/2




D E
�
.˚N � EŒ˚.�/�/2


C 2E
�
˚N � EŒ˚.�/�

��
EŒ˚.�/� � EŒ˚.�/�

�

C.EŒ˚.�/� � EŒ˚.�/�/2 :

The double product above vanishes as EŒ˚N � D EŒ˚.�/� so that the mean square
error is the sum of the 2 terms

I1 WD E
�
.˚N � EŒ˚.�/�/2



; I2 WD .EŒ˚.�/� � EŒ˚.�/�/2 :

The first term, I1, is equal to 1
N Var.˚.�1//, i.e. is the Monte Carlo error. The

second one is the square of the difference between the expectation of ˚.�/ and
the expectation of the approximation˚.�/. If we consider the Euler scheme and the
functional˚ is of the form ˚.�/ D f .�T / and the assumptions of Theorem 11.2 are
satisfied, we then have I2 � c h2.

These remarks are useful when designing a simulation program, in order to
decide the best values for N (number of simulated paths) and h (amplitude of the
discretization step). Large numbers of N make the Monte Carlo error I1 smaller,
whereas small values of h make the bias error I2 smaller.



362 11 �Simulation

In the numerical approximation problems of this chapter it is possible to take
advantage of the classical Romberg artifice, originally introduced in the context of
the numerical solution of Ordinary Differential Equations. Assume that we know
that an approximation scheme has an error of order h˛ , i.e. that

ah WD EŒ f .�
.n/
T /� D EŒ f .�T/�C ch˛ C o.h˛/ : (11.42)

Then if we have an estimate ah for the value h and an estimate ah=2 for h=2, we have

2˛ah=2 � ah D .2˛ � 1/EŒ f .�T/�C o.h˛/

i.e., the linear combination

2˛ah=2 � ah

2˛ � 1 D EŒ f .�T/�C o.h˛/

of the two approximations ah and ah=2 gives an approximation of higher order.
Note that the knowledge of the constant c in (11.42) is not needed. In order to

apply this artifice the value of ˛ must be known, otherwise there is no improvement
(but the estimate should not become worse by much).

In the case of an Euler approximation, in the assumptions of Theorem 11.2 we
have ˛ D 1 and the Romberg estimator will give an approximation of order h2.

Example 11.3 Imagine that you want to obtain an approximation of the
expectation at time T of a geometric Brownian motion using the Euler
scheme. Of course, the true value is known and for geometric Brownian
motion there are more reasonable ways to perform a simulation, but this
example allows us to make some explicit estimates.

By Theorem 11.2 the error is of order h. The Romberg artifice says that if,
instead of a simulation with a very small value of h, you make two simulations
with moderately small values h and h=2 you may obtain a better estimate at
a lower price. Table 11.1 shows some results. Here the drift and diffusion
coefficient are b D 1 and � D 0:5 and we set T D 1. Hence the true value is
e D 2:7182.
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Table 11.1 The quantity of interest appears to be better estimated making two sets of approxima-
tions with the values h D 0:02 and h D 0:01 than with a single simulation with h D 0:001, which
is probably more costly in time. Here 106 paths were simulated for every run

Value Error

h D 0:02 2.6920 0.0262

h D 0:01 2.7058 0.0124

2a0:01 � a0:02 2.7196 0.0014

h D 0:001 2.7166 0.0016

Example 11.4 Let us go back to Example 3.3 where we were dealing with
the estimation by simulation of the probability

P
�

sup
0�t�1

Bt > 1
�
:

We remarked there that the discrepancy between the estimate provided by
the Euler scheme (which in this case coincides with a discretization of the
Brownian motion) and the true value was decreasing very slowly. Actually it
is believed that it is of the order h1=2. Granting this fact, the Romberg artifice
gives, combining the estimates for h D 1

200
and h D 1

400
, the value

p
2 � 0:3031� 0:2975p

2 � 1
D 0:3166

with a 0:15% of relative error with respect to the true value 0:3173. Note that
this value is much better than the result obtained by simulation with h D 1

1600
.

Exercises

11.1 (p. 602) Let us consider the geometric Brownian motion that is the solution
of the SDE

d�t D b�t dt C ��t dBt

�0 D x :
(11.43)
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In this exercise we compute explicitly some weak type estimates for the Euler
scheme for this process. Let us denote by � the Euler scheme with the time interval
Œ0;T� divided into n subintervals. Of course the discretization step is h D T

n . Let
.Zk/k be a sequence of independent N.0; 1/-distributed r.v.’s.

a1) Prove that

�T � x
nY

iD1
.1C bh C �

p
h Zk/ : (11.44)

a2) Compute the mean and variance of �T and verify that they converge to the mean
and variance of �T , respectively.

a3) Prove that

jEŒ�T � � EŒ�T �j D c1 h C o.h/ (11.45)

jEŒ�2T � � EŒ�
2

T �j D c2 h C o.h/ : (11.46)

b1) Find a formula similar to (11.44) for the Milstein approximation of �T .
b2) Let us denote this approximation bye�T . Prove that

jEŒ�T � � EŒe�T �j Dec1 h C o.h/ (11.47)

and compare the valuesec1 and c1 of (11.45).



Chapter 12
Back to Stochastic Calculus

12.1 Girsanov’s theorem

Example 12.1 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. We
know that

Mt D e	Bt� 1
2
	2t

is a positive martingale with expectation equal to 1. We can therefore define
on .˝;F / a new probability Q letting, for every A 2 F ,

Q.A/ D EŒMT1A� D
Z

A
MT dP :

What has become of .Bt/t with respect to this new probability? Is it still a
Brownian motion?

We can first investigate the law of Bt with respect to Q. Its characteristic
function is

EQŒei
Bt � D EŒei
Bt MT � :

Let us assume t � T. Then, as Bt is Ft-measurable,

EŒei
Bt MT � D E
�
EŒei
Bt MT jFt�


 D EŒei
Bt Mt� D EŒe.	Ci
/Bt� 1
2
	2t
�

D EŒe.	Ci
/Bt� 1
2
.	Ci
/2t

�
„ ƒ‚ …

D1
e� 1

2

2tCi	
 t D e� 1

2

2tCi	
 t

;

(continued)
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Example 12.1 (continued)
where the expectation of the quantity over the brace is equal to 1 because
we recognize an exponential complex martingale. The quantity on the right-
hand side is the characteristic function of an N.	t; t/ distribution. Hence, with
respect to Q, Bt � N.	t; t/; it is not a centered r.v. and .Bt/t cannot be a
Brownian motion under Q. What is it then?

The previous computation suggests that Bt might be equal to a Brownian
motion plus a motion t 7! 	t. To check this we must prove that Wt D Bt � 	t
is a Brownian motion with respect to Q. How can this be done? Among the
possible ways of checking whether a given process W is a Brownian motion
recall Theorem 5.17, reducing the task to the verification that

Yt D ei
WtC 1
2 


2t D ei
.Bt�	t/C 1
2 


2t

is a Q-martingale for every 
 2 R. This is not difficult: if s � t � T and
A 2 Fs, we have, again first conditioning with respect to Ft,

EQŒYt1A� D EŒYt1AMT � D E
�
Yt1AEŒMT jFt�


 D EŒYt1AMt�

D EŒei
.Bt�	t/C 1
2 


2te	Bt� 1
2 	

2t1A� D EŒe.	Ci
/Bt� 1
2 t.	Ci
/2

„ ƒ‚ …
WDZt

1A�

D EŒZs1A� D EŒe.	Ci
/Bs� 1
2 s.	Ci
/21A� D EŒYsMs1A� D EŒYsMT1A� D EQŒYs1A� ;

as we recognized that Z is a complex martingale with respect to P.
Hence, for 0 � t � T, B is a Brownian motion plus a drift t 7! 	t.

The example above introduces a subtle way of obtaining new processes from old:
just change the underlying probability. In this section we develop this idea in full
generality, but we shall see that the main ideas are more or less the same as in this
example.

From now on let B D .˝;F ; .Ft/t; .Bt/t;P/ denote an m-dimensional Brownian
motion. Let ˚ be a C

m-valued process in M2
loc.Œ0;T�/ and

Zt D exp
h Z t

0

˚s dBs � 1

2

Z t

0

˚2
s ds

i
; (12.1)

where, if z 2 C
m, we mean z2 D z21 C � � � C z2m. By the same computation leading

to (8.40) we have

dZt D Zt˚t dBt (12.2)



12.1 Girsanov’s theorem 367

and therefore Z is a local martingale. If ˚ is Rm-valued, Z is a positive supermartin-
gale and E.Zt/ � E.Z0/ D 1. If E.ZT/ D 1 for T > 0, we can consider on .˝;F /

the new probability dQ D ZT dP. Girsanov’s Theorem below investigates the nature
of the process .˝;F ; .Ft/t; .Bt/t;Q/ in general.

First let us look for conditions guaranteeing that Z is a martingale. Let jzj2 D
Pm

kD1 jzkj2 for z 2 C
m. If E

� R T
0

jZt˚tj2 dt


< C1, then Z˚ is an m-dimensional

process whose real and imaginary parts are in M2.Œ0;T�/ and therefore, recall-
ing (12.2), Z is a complex martingale.

Proposition 12.1 If
R T
0

j˚sj2 ds � K for some K 2 R then .Zt/0�t�T is a
complex martingale bounded in Lp for every p.

Proof Let Z� D sup0�s�T jZsj and let us show first that E.Z�p/ < C1. We shall
use the elementary relation (see Exercise 1.3)

E.Z�p/ D
Z C1

0

prp�1P.Z� > r/ dr : (12.3)

Therefore we must just show that r 7! P.Z� � r/ goes to 0 fast enough. Observe
that, as the modulus of the exponential of a complex number is equal to the
exponential of its real part,

jZtj D exp
h Z t

0

Re ˚s dBs � 1

2

Z t

0

jRe ˚sj2 ds C 1

2

Z t

0

jIm ˚sj2 ds
i

� exp
h Z t

0

Re ˚s dBs C 1

2

Z t

0

jIm ˚sj2 ds
i
:

Therefore, if r > 0, by the exponential inequality (8.41),

P.Z� � r/ � P
�

sup
0�t�T

exp
h Z t

0

Re ˚s dBs C 1

2

Z t

0

jIm ˚sj2 ds
i

� r
�

D P
�

sup
0�t�T

Z t

0

Re ˚s dBs � log r � 1

2

Z T

0

jIm ˚sj2 ds
�

� P
�

sup
0�t�T

Z t

0

Re ˚s dBs � log r � K

2

�
� 2 exp

h
� .log r � K

2
/2

2K

i
:

The right-hand side at infinity is of order e�c.log r/2 D 1
rc log r and therefore r 7!

P.Z� � r/ tends to 0 as r ! 1 faster than r�˛ for every ˛ > 0 and the integral
in (12.3) is convergent for every p > 1. We deduce that ˚Z 2 M2, as

E
� Z T

0

j˚sj2jZsj2 ds
�

� E
�

Z�2
Z T

0

j˚sj2 ds
�

� KE.Z�2/ < C1
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and, thanks to (12.2), Z is a martingale. It is also bounded in Lp for every p as we
have seen that Z� 2 Lp for every p.

ut
If ˚ is Rm-valued, then Zt � 0 and if Z is a martingale for t 2 Œ0;T�, then E.ZT/ D
E.Z0/ D 1. In this case we can consider on .˝;FT/ the probability Q having density
ZT with respect to P. From now on EQ will denote the expectation with respect to Q.

Lemma 12.1 Let .Yt/t be an adapted process. A sufficient condition for it to
be an .Ft/t-martingale with respect to Q is that .ZtYt/t is an .Ft/t-martingale
with respect to P.

Proof Let s � t � T. From Exercise 4.4 we know that

EQ.Yt jFs/ D E.ZTYt jFs/

E.ZT jFs/
� (12.4)

But if .ZtYt/t is an .Ft/t-martingale with respect to P

E.ZTYt jFs/ D E
�
E.ZTYt jFt/jFs


 D E
�
YtE.ZT jFt/jFs


 D E.ZtYt jFs/ D ZsYs

so that from (12.4)

EQ.Yt jFs/ D ZsYs

Zs
D Ys :

ut

Theorem 12.1 (Girsanov) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-
dimensional Brownian and ˚ 2 M2

loc.Œ0;T�/. Let us assume that the process
Z defined in (12.1) is a martingale on Œ0;T� and let Q be the probability on
.˝;F / having density ZT with respect to P. Then the process

eBt D Bt �
Z t

0

˚s ds

is an .Ft/t-Brownian motion on Œ0;T� with respect to Q.

Proof Thanks to Theorem 5.17 we just need to prove that, for every 	 2 R
m,

Y	t D eih	;eBtiC 1
2 j	j2 t
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is an .Ft/t-martingale with respect to Q. This follows from Lemma 12.1 if we verify
that X	t WD ZtY	t is a .Ft/t-martingale with respect to P. We have

X	t D ZtY
	
t D exp

h Z t

0

˚s dBs � 1

2

Z t

0

˚2
s ds C ih	;eBti C 1

2
j	j2t

i

D exp
h Z t

0

.˚s C i	/ dBs � 1

2

Z t

0

˚2
s ds � i

Z t

0

h	;˚si ds C 1

2
j	j2t

i
�

D exp
h Z t

0

.˚s C i	/ dBs � 1

2

Z t

0

.˚s C i	/2 ds
i

(recall that z2 is the function C
m ! C defined as z2 D Pm

kD1 z2k). If the r.v.
R T
0 j˚sj2 ds is bounded then X	 is a martingale by Proposition 12.1. In general, let

�n D inf
˚
t � TI

Z t

0

j˚sj2 ds > n
�

(12.5)

and ˚n.s/ D ˚s1fs<�ng. We have

exp
h Z t

0

˚n.s/ dBs � 1

2

Z t

0

j˚n.s/j2 ds
i

D exp
h Z t^�n

0

˚.s/ dBs � 1

2

Z t^�n

0

j˚.s/j2 ds
i

D Zt^�n :

If

Y	n .t/ D exp
h
i
˝
	;Bt �

Z t

0

˚n.s/ ds
˛C 1

2
j	j2t

i
;

then, as
R T
0

j˚n.s/j2 ds � n, X	n .t/ D Zt^�n Y	n .t/ is a P-martingale by the first part of
the proof. In order to show that X	t D ZtY	t is a martingale, we need only to prove
that X	n .t/ ! X	t as n ! 1 a.s. and in L1. This will allow us to pass to the limit as
n ! 1 in the martingale relation

EŒX	n .t/jFs� D X	n .s/ a:s:

First of all Zt^�n !n!1 Zt a.s., as �n !n!1 C1. If Hn D min.Zt^�n ;Zt/, then
Hn !n!1 Zt and, as 0 � Hn � Zt, by Lebesgue’s theorem EŒHn� ! EŒZt�. Finally,
as EŒZt� D EŒZt^�n � D 1 (both .Zt/t and .Zt^�n/t are martingales equal to 1 for t D 0),

EŒjZt � Zt^�n j� D EŒZt � Hn�C EŒZt^�n � Hn� D 2EŒZt � Hn� !
n!1 0
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and therefore Zt^�n !n!1 Zt in L1. Moreover, note that Y	n .t/ !n!1 Y	t a.s. and
jY	n .t/j � e

1
2 j	j2 t. Then

E
�jX	n .t/ � X	t j
 D E

�jZ	n .t/Y	n .t/ � Z	t Y	t j


� E
�jZ	n .t/ � Z	t jjY	n .t/j


C E
�
Z	t jY	n .t/ � Y	t j


and by Lebesgue’s theorem both terms on the right-hand side tend to 0 as n ! 1.
It follows that, for every t, X	n .t/ !n!1 X	t in L1 which concludes the proof.

ut
Girsanov’s theorem has many applications, as the next examples will show. Note,
however, a first important consequence: if X is an Ito process with stochastic
differential

dXt D At dt C Gt dBt

then, with the notations of Theorem 12.1,

dXt D .At C Gt˚t/ dt C Gt deBt :

As both .Gt/t and .˚t/t belong to M2
loc, the process t 7! Gt˚t belongs to M1

loc, so
that X is also an Ito process with respect to the new probability Q and with the
same stochastic component. Because of the importance of Girsanov’s theorem it
is useful to have weaker conditions than that of Proposition 12.1 ensuring that Z
is a martingale. The following statements provide some sufficient conditions. Let
us recall that anyway Z is a positive supermartingale: in order to prove that it is a
martingale, it is sufficient to show that E.ZT/ D 1.

Theorem 12.2 Let ˚ 2 M2
loc.Œ0;T�/, Mt D R t

0
˚s dBs, 0 � t � T, and

Zt D eMt� 1
2 hMit ; t � T :

Consider the following properties:

a) EŒe
1
2 hMiT � D EŒe

1
2

R T
0 j˚sj2 ds� < C1 (the Novikov’s criterion).

b) .Mt/0�t�T is a martingale that is bounded in L2 and EŒe
1
2 MT � < C1 (the

Kazamaki’s criterion).
c) .Zt/0�t�T is a uniformly integrable martingale.

Then a))b))c).
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Proof If a) is true then the positive r.v. hMiT has a finite Laplace transform at 
 D 1
2
.

It is therefore integrable:

EŒhMiT � D E
h Z T

0

j˚sj2 ds
i
< C1

hence ˚ 2 M2.Œ0;T�/ and .Mt/0�t�T is a martingale which is bounded in L2.
Moreover, note that

e
1
2 MT D Z1=2T .e

1
2 hMiT /1=2

so that, thanks to the Cauchy–Schwarz inequality,

EŒe
1
2 MT � � EŒZT �

1=2EŒe
1
2 hMiT �1=2 � EŒe

1
2 hMiT �1=2 < C1

(recall that EŒZT � � 1) so that b) is true.
Let us prove that b))c). By the stopping theorem, for every stopping time � � T

we have M� D EŒMT jF� � and by Jensen’s inequality

e
1
2 M� � EŒe

1
2 MT jF� � :

As e
1
2 MT is assumed to be integrable, the r.v.’s EŒe

1
2 MT jF� � with � ranging among

the stopping times that are smaller than T form a uniformly integrable family
(Proposition 5.4). Hence the family of r.v.’s e

1
2 M� (which are positive) is also

uniformly integrable.
Let 0 < a < 1 and Y.a/t D e

a
1Ca Mt . We have

eaMt� 1
2 a2hMit D �

eMt� 1
2 hMit

�a2�
Y.a/t

�1�a2
:

If A 2 FT and � � T is a stopping time we have by Hölder’s inequality, as 1Ca
2a > 1,

EŒ1AeaM�� 1
2 a2hMi� � � EŒeM�� 1

2 hMi� �a2EŒ1AY.a/� �1�a2

� EŒ1AY.a/� �1�a2 � EŒ1A.Y.a//
1Ca
2a �

2a
1Ca �.1�a2/ D EŒ1Ae

1
2 M� �a.1�a/ :

(12.6)

We used here the relation EŒeM�� 1
2 hMi� � D EŒZ� � � EŒZT � � 1, which follows from

the stopping theorem applied to the supermartingale Z.
As we know that the family .e

1
2 M� /� for � ranging among the stopping times

that are smaller than T forms a uniformly integrable family, by (12.6) and using the
criterion of Proposition 5.2, the same is true for the r.v.’s eaM�� 1

2 a2hMi� .
Let us prove that .eaMt� 1

2 a2hMit /t is a uniformly integrable (true) martingale: as
we know that it is a local martingale, let .�n/n be a sequence of reducing stopping
times. Then for every s � t, A 2 Fs,

EŒeaMt^�n � 1
2 a2hMit^�n1A� D EŒeaMs^�n � 1

2 a2hMis^�n1A� :
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As eaMt^�n � 1
2 a2hMit^�n1A !n!C1 eaMt� 1

2 a2hMit1A and these r.v.’s are uniformly inte-
grable, we can take the limit in the expectations and obtain the martingale relation

EŒeaMt� 1
2 a2hMit1A� D EŒeaMs� 1

2 a2hMis1A� :

Again by Jensen’s inequality, repeating the argument above for � D T, A D ˝ , we
have

1 D EŒeaMT � 1
2 a2hMiT � � EŒeMT � 1

2 hMiT �a
2

EŒY.a/T �1�a2 � EŒeMT � 1
2 hMiT �a

2

EŒe
1
2 MT �a.1�a/:

Letting a ! 1 this inequality becomes EŒeMT � 1
2 hMiT � � 1, which allows us to

conclude the proof.
ut

Corollary 12.1 With the notations of Theorem 12.2, if for some � > 0

EŒe�j˚t j2 � < C < C1 for every 0 � t � T, then .Zt/0�t�T is a martingale.

Proof By Jensen’s inequality (the exponential is a convex function)

exp
h1

2

Z t2

t1

j˚sj2 ds
i

D exp
h 1

t2 � t1

Z t2

t1

1

2
.t2 � t1/j˚sj2 ds

i

� 1

t2 � t1

Z t2

t1

e
1
2 .t2�t1/j˚sj2 ds :

Let t2 � t1 < 2�. With this constraint we have

E
h

exp
�1

2

Z t2

t1

j˚sj2 ds
�i

� 1

t2 � t1

Z t2

t1

EŒe�j˚sj2 � ds < C1 :

Let 0 D t1 < t2 < � � � < tnC1 D T be chosen so that tiC1 � ti < 2� and let
˚i.s/ D ˚s1Œti;tiC1Œ.s/. Each of the processes ˚i; i D 1; : : : ; n, satisfies condition a)
of Theorem 12.2 as

E
h
e
1
2

R T
0 j˚i.s/j2 ds

i
D E

h
exp

�1

2

Z tiC1

ti

j˚sj2 ds
�i
< C1

and if

Zi
t D exp

h Z t

0

˚i.s/ dBs � 1

2

Z t

0

j˚i.s/j2 ds
i
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then Zi is a martingale. We have ZT D Z1T : : : Z
n
T ; moreover, Zi

ti
D 1, as ˚i D 0

on Œ0; tiŒ and therefore E.Zi
T jFti/ D Zi

ti D 1. Hence it is easy now to deduce that
EŒZT � D 1 as

E.ZT/ D E.Z1T : : : Z
n
T/ D EŒZ1T : : : Z

n�1
T E.Zn

T jFtn/� D E.Z1T : : : Z
n�1
T / D � � � D 1

which allows us to conclude the proof.
ut

Example 12.2 Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. Let us
prove that

Zt D exp
�



Z t

0

Bs dBs � 
2

2

Z t

0

B2s ds
�

is a martingale for t 2 Œ0;T�.
Novikov’s criterion requires us to prove that

E
�
e

2

2

R T
0 B2s ds



< C1 :

Here, however, it is much easier to apply the criterion of Corollary 12.1, which
requires us to check that for some � > 0

E
�
e�


2B2t


< C1 (12.7)

for every t 2 Œ0;T�. Recalling Remark 3.3 we have that if 2�
2T < 1 then
EŒe�


2B2t � D .1 � 2�
2T/�1=2, so that (12.7) is satisfied as soon as

� <
1

2
2T
�

Therefore the criterion of Corollary 12.1 is satisfied and .Zt/0�t�T is a
martingale.

We can therefore consider on F the probability Q having density ZT with
respect to P. What can be said of B under this new probability Q?

Girsanov’s theorem states that, for 0 � t � T,

Wt D Bt � 


Z t

0

Bs dBs

(continued)
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Example 12.2 (continued)
is a Q-Brownian motion. Therefore, under Q, .Bt/0�t�T has the differential

dBt D 
Bt dt C dWt

and, with respect to Q, .Bt/0�t�T is an Ornstein–Uhlenbeck process.

Example 12.3 As an example of application of Girsanov’s theorem, let us
investigate the distribution of the passage time �a at a > 0 of a Brownian
motion with a drift �. Recall that the distribution of �a for the Brownian
motion has been computed in Exercise 3.20. Let B be a Brownian motion

and Zt D e�Bt� �2

2 t. Then Z is a martingale and, by Girsanov’s formula, if
dQ D Zt dP, then, with respect to Q, Ws D Bs � �s is, for s � t, a Brownian
motion. Hence, with respect to Q, Bs D Ws C �s.
If �a D infftI Bt � ag, let us compute Q.�a � t/, which is then the partition
function of the passage time of a Brownian motion with drift �. We have

Q.�a � t/ D EQŒ1f�a�tg� D EP
�
1f�a�tgZt



:

Recall now that f�a � tg 2 F�a \ Ft D F�a^t and that Z is a martingale.
Therefore, by the stopping theorem for martingales,

EP
�
1f�a�tgZt


 D EP
�
EŒ1f�a�tgZt jF�a^t�


 D EP
�
1f�a�tgZ�a^t


 D EP
�
1f�a�tgZ�a



;

the last equality coming from the fact that, of course, on f�a � tg we have
�a ^ t D �a. But

Z�a D e�B�a � �2

2 �a D e�a� �2

2 �a

and, under P, B is a Brownian motion so that the law of �a under P is given
by (3.23). In conclusion,

Q.�a � t/ D e�aEPŒ1f�a�tge� �2

2 �a �

D e�a
Z t

0

a

.2�/1=2 s3=2
e�a2=2s e� �2

2 s ds

D
Z t

0

a

.2�/1=2 s3=2
e� 1

2s .�s�a/2 ds :

(12.8)

(continued)
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Fig. 12.1 The graph of the densities of the passage time �a for a D 1 and � D 3
4

(solid) and
� D 0 (dots). The first one decreases much faster as t ! C1

Example 12.3 (continued)
If � > 0, then we know that �a is Q-a.s. finite and taking the derivative we
find that the passage time �a of the Brownian motion with a positive drift �
has density (Fig. 12.1)

f .t/ D a

.2�/1=2 t3=2
e� 1

2t .�t�a/2
: (12.9)

In particular,

Z C1

0

a

.2�/1=2 s3=2
e� 1

2s .�s�a/2 ds D 1 : (12.10)

Note the rather strange fact that the integral in (12.10) does not depend on �,
as far as � � 0.

For � > 0 the passage time has a finite expectation, as its density goes
to 0 at C1 exponentially fast. This is already known: in Exercise 5.33 we
obtained, using a Laplace transform argument, that EŒ�a� D a

�
.

If � < 0, conversely, we know that �a D C1 with probability 1 � e2�a

(Exercise 5.17).

Example 12.4 (Same as the previous one, but from a different point of view)
Imagine we want to compute the quantity

EŒ f .�a/�

(continued)
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Example 12.4 (continued)
�a being the passage time at a of a Brownian motion and f some bounded
measurable function. Imagine, moreover, that we do not know the distribution
of �a (or that the computation of the integral with respect to its density is too
complicated) so that we are led to make this computation by simulation. This
means that we are going to simulate N paths of the Brownian motion and for
each one of these to note the passage times, T1; : : : ;TN say. Then by the law
of large numbers

1

n

NX

jD1
f .Ti/

is, for N large, an approximation of EŒ f .�a/�.
However, in practice this procedure is unfeasible as �a is finite but can take

very large values (recall that �a does not have finite expectation). Therefore
some of the values Ti may turn out to be very large, so large that the
computer can stay on a single path for days before it reaches the level a (see
Exercise 3.20 b)).

The computation of the previous example suggests that we can do the
following: instead of a Brownian motion, let us simulate a Brownian motion
with a positive drift�, collect the passage times, T�1 ; : : : ;T

�
N say, and consider

the quantity

e��a

N

NX

jD1
f .T�i /e

�2

2 T
�
i :

Let us check that e��aEŒ f .T�i /e
�2

2 T
�
i � D EŒ f .�a/� so that, again by the law of

large numbers, this is also an estimate of EŒ f .�a/�. Actually, denoting g�; g0
the densities of the r.v.’s T�i and Ti ,respectively (given by (12.9) and (3.23)
respectively), we have

e��aE
�

f .T�i /e
�2

2 T
�
i

 D e��a

Z C1

0

f .t/ e
�2

2 tg�.t/ dt

D e��a
Z C1

0

f .t/ e
�2

2 t a

.2�/1=2 t3=2
e� 1

2t .�t�a/2 dt

D
Z C1

0

f .t/
a

.2�/1=2 t3=2
e� a2

2t dt

D
Z C1

0

f .t/g0.t/ dt D E
�

f .Ti/


:

(continued)
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Example 12.4 (continued)
Now, as the passage time of the Brownian motion with a positive drift �
has finite expectation, the simulation of these paths is much quicker and the
problem mentioned above disappears.

In other words, Girsanov’s theorem can by applied to simulation in the
following way: instead of simulating a process X (B in the example above),
which can lead to problems, simulate instead another process Y (Bt C �t
above) that is less problematic and then compensate with the density of the
law of X with respect to the law of Y.

Example 12.5 Let X be a Brownian motion and � a real number. Let a > 0

and

� D infftI Xt � a C �tg :

We want to compute P.� � T/, i.e. the probability for X to cross the linear
barrier t 7! a C �t before time T. For � D 0 we already know the answer
thanks to the reflection principle, Corollary 3.4. Thanks to Example 12.3 we
know, for � < 0, the density of � so we have

P.� � T/ D
Z T

0

a

.2�/1=2 t3=2
e� 1

2t .��t�a/2 dt ;

but let us avoid the computation of the primitive by taking another route and
applying Girsanov’s theorem directly. The idea is to write

P.� � T/ D P
�

sup
0�t�T

.Xt � �t/ � a
�

and then to make a change of probability so that, with respect to the new
probability, t 7! Xt ��t is a Brownian motion for which known formulas are
available. Actually, if

ZT D e�XT � 1
2 �

2 T

and dQ D ZT dP, then with respect to Q the process

Wt D Xt � � t

(continued)
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Example 12.5 (continued)
is a Brownian motion up to time T. Hence

P
�

sup
0�s�T

.Xs � �s/ � a
�

D EQ
h
Z�1

T 1fsup0�s�T .Xs��s/�ag
i

D EQ
h
e��XT C 1

2 �
2 T1fsup0�s�T .Xs��s/�ag

i

D e� 1
2 �

2 TEQ
h
e��WT1fsup0�s�T Ws�ag

i
:

The expectation on the right-hand side can be computed analytically as, from
Corollary 3.3, we know the joint density of WT and sup0�s�T Ws, i.e.

P
�

sup
0�s�T

.Xs � �s/ � a
�

D 2p
2�T3

e� 1
2 �

2 T
Z C1

a
ds
Z s

�1
.2s � x/ e� 1

2T .2s�x/2e�� x dx :

With the change of variable y D 2s � x and using Fubini’s theorem

P
�

sup
0�s�T

.Xs��s/ � a
�

D 2p
2�T3

e� 1
2 �

2 T
Z C1

a
ds
Z C1

s
ye� 1

2T y2e��.2s�y/ dy

D 2p
2�T3

e� 1
2 �

2 T
Z C1

a
ye� 1

2T y2e�y dy
Z y

a
e�2�s ds

D 1

�
p
2�T3

e� 1
2 �

2 T
Z C1

a
ye� 1

2T y2e�y.e�2�a � e�2�y/ dy :

Now, integrating by parts,

P
�

sup
0�s�T

.Xs ��s/ � a
�

D � 1

�
p
2�T

e� 1
2 �

2 T e� 1
2T y2e�y.e�2�a � e�2�y/

ˇ
ˇ
ˇ
C1
a„ ƒ‚ …

D0

C 1p
2�T

e� 1
2 �

2 T
Z C1

a
e� 1

2T y2 .e�.y�2a/ C e��y/ dy

and with the change of variable z D 1p
T
.y � �T/

1p
2�T

e�2�ae� 1
2 �

2 T
Z C1

a
e� 1

2T y2e�y dy

(continued)
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Example 12.5 (continued)

D 1p
2�T

e�2�a
Z C1

a
e� 1

2T .y��T/2 dy

D 1p
2�

e�2�a
Z C1

.a��T/=
p

T
e�z2 dz D e�2�a

�
1 � ˚

�a � �Tp
T

��
:

Similarly

1p
2�T

e� 1
2 �

2 T
Z C1

a
e� 1

2T y2e��y dy
1p
2�T

Z C1

a
e� 1

2T .yC�T/2 dy

1p
2�

Z C1

.aC�T/=
p

T
e�z2=2 dy D

�
1� ˚

�a C �Tp
T

��

and finally

P
�

sup
0�s�T

.Xs � �s/ � a
�

D e�2�a
�
1 �˚

�a � �Tp
T

��
C
�
1� ˚

�a C �Tp
T

��
:

(12.11)

12.2 The Cameron–Martin formula

In this section we see how we can use Girsanov’s Theorem 12.1 in order to construct
weak solutions, in the sense of Definition 9.1, for SDEs that may not satisfy
Assumption (A’).

Let us assume that � satisfies Assumption (A’) and, moreover, that it is a
symmetric d � d matrix field and that, for every .x; t/, the smallest eigenvalue of
�.x; t/ is bounded below by a constant 	 > 0. The last hypothesis implies that the
matrix field .x; t/ 7! �.x; t/�1 is well defined and bounded. Let b W Rm �R

C ! R
m

be a bounded measurable vector field. We know, by Theorem 9.4, that there exists a
solution of the SDE

d�t D �.�t; t/ dBt

�0 D x
(12.12)

which, moreover, is unique in law. Let now, for a fixed T > 0,

ZT D exp
h Z T

0

��1.�s; s/b.�s; s/ dBs � 1

2

Z T

0

j��1.�s; s/b.�s; s/j2 ds
i
: (12.13)
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As ��1 and b are bounded, by Proposition 12.1 and Theorem 12.1 EŒZT � D 1 and if
eP is the probability on .˝;F / with density ZT with respect to P and

eBt D Bt �
Z t

0

��1.�s; s/b.�s; s/ ds ;

theneB D .˝;F ; .Ft/0�t�T ; .eBt/0�t�T ;eP/ is a Brownian motion; hence (12.12) can
be written as

d�t D b.�t; t/ dt C �.�t; t/ deBt

�0 D x :
(12.14)

Therefore, with respect toeP, � is a solution of (12.14).

Theorem 12.3 Under the previous assumptions equation (12.14) admits a
weak solution on Œ0;T� for every T and there is uniqueness in law.

Proof The existence has already been proved. As for the uniqueness the idea of
the proof is that for Eq. (12.12) there is uniqueness in law (as Assumption (A’) is
satisfied) and that the law of the solution of (12.14) has a density with respect to the
law of the solution of (12.12).

Let .˝ 0;F 0; .F 0
t /0�t�T ; .�

0
t /0�t�T ; .eB0

t/0�t�T ;eP0/ be another solution of (12.14),
i.e.

d� 0
t D b.� 0

t ; t/ dt C �.� 0
t ; t/ deB0

t :

We must prove that � 0 has the same law as the solution � constructed in (12.14). Let

eZ0
T D exp

h
�
Z T

0

��1.� 0
s; s/b.�

0
s; s/ deBs � 1

2

Z T

0

j��1.� 0
s; s/b.�

0
s; s/j2 ds

i

and let P0 be the probability on .˝ 0;F 0/ having densityeZ0
T with respect toeP0. Then,

by Proposition 12.1 and Theorem 12.1, the process

B0
t DeB0

t C
Z t

0

��1.� 0
s; s/b.�

0
s; s/ ds

is a P0-Brownian motion. Expressing B0 in terms of eB0 in (12.14), it turns out that
.˝ 0;F 0; .F 0

t /0�t�T ; .�
0
t /0�t�T ; .B0

t/0�t�T ;P0/ is a solution of (12.12). Moreover,eP0
has density with respect to P0 given by

Z0
T D eZ0

T
�1 D exp

h Z T

0

��1.� 0
s; s/b.�

0
s; s/ dB0

s C 1

2

Z T

0

j��1.� 0
s; s/b.�

0
s; s/j2 ds

i

D exp
h Z T

0

��1.� 0
s; s/b.�

0
s; s/ deB0

s � 1

2

Z T

0

j��1.� 0
s; s/b.�

0
s; s/j2 ds

i
:
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As Eq. (12.12) satisfies Assumption (A’), there is uniqueness in law and the laws
�.P/ and � 0.P0/ coincide. The law of the solution of (12.14) is �.P/ (image of P
through �), but

�.P/ D �.ZT �eP/ :

Also the joint laws of .�;ZT / and .� 0;Z0
T / (Lemma 9.2) coincide and from this it

follows (Exercise 4.3) that the laws �.ZTP/ D �.eP/ and � 0.Z0
TP/ D � 0.eP0/ coincide,

which is what had to be proved.
ut

The arguments of this section stress that, under the hypotheses under consideration,
if � is a solution of (12.14), then its law is absolutely continuous with respect to
the law of the solution of (12.12). More precisely, with the notations of the proof of
Theorem 12.3, if A is a Borel set of the paths space C ,

P.� 2 A/ D EQP.ZT1f�2Ag/ ; (12.15)

where ZT is defined in (12.13). (12.15) is the Cameron–Martin formula. In fact,
it holds under hypotheses weaker than those considered here. These are actually
rather restrictive, since often one is led to the consideration of diffusions having
an unbounded drift or a diffusion coefficient that it is not uniformly invertible. In
this case the vector field .x; t/ 7! �.x; t/�1b.x; t/ is not bounded and therefore
Proposition 12.1 cannot be used to obtain that E.ZT/ D 1; it will be necessary to
turn instead to Proposition 12.2. In Exercise 12.5 the absolute continuity of the laws
of the Ornstein–Uhlenbeck process with respect to Wiener measure is considered:
this is a simple example where the hypotheses of this section do not hold, the drift
being linear.

12.3 The martingales of the Brownian filtration

Let B be an m-dimensional Brownian motion with respect to a filtration .Ft/t. We
have seen in Sect. 8.4 that the stochastic integral of B with respect to an integrand
of M2 is a square integrable .Ft/t-martingale. Is the converse also true? Is it true
that every square integrable .Ft/t-martingale is a stochastic integral with respect to
some integrand of M2?

We see in this section that the answer is yes if .Ft/t D .G t/t, the natural
filtration augmented with the events of probability zero of F which was introduced
in Remark 3.1. This is a particularly important representation result with deep
applications, some of which will appear in Chap. 13. Now just observe that
this result implies that every .G t/t-martingale is continuous (has a continuous
modification, to be precise). We know from Proposition 4.3 that .G t/t is right-
continuous, so that .˝;F ; .G t/t; .Bt/t;P/ is a standard Brownian motion.
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The key result is the following, which we have already mentioned in
Remark 7.2.

Theorem 12.4 Let B D .˝;F ; .G t/t; .Bt/t;P/ be an m-dimensional Brown-
ian motion with respect to its augmented natural filtration and let T > 0. Then
every r.v. Z 2 L2 D L2.˝;G T ;P/ is of the form

Z D c C
Z T

0

Hs dBs ; (12.16)

where c 2 R and H 2 M2.Œ0;T�/ (in particular, H is .G t/t-adapted). Moreover,
the representation (12.16) is unique.

Proof The uniqueness is obvious, as c is determined by c D EŒZ� whereas, if H1

and H2 were two processes in M2.Œ0;T�/ satisfying (12.16), then from the relation

Z T

0

�
H1.s/ � H2.s/

�
dBs D 0

we have immediately, by the isometry property of the stochastic integral, that

E
� Z T

0

ˇ
ˇH1.s/� H2.s/

ˇ
ˇ2 ds

�
D 0

and therefore H1.s/ D H2.s/ for almost every s 2 Œ0;T� a.s.
As for the existence, let us denote by H the space of the r.v.’s of the form (12.16)

and let us prove first that H is a closed subset of L2. If .Zn/n � H is a Cauchy
sequence in L2 and

Zn D cn C
Z T

0

Hn.s/ dBs D cn C In

then .cn/n is also a Cauchy sequence, as cn D EŒZn� and

jcn � cmj � E.jZn � Zmj/ � E.jZn � Zmj2/1=2 :
Therefore both .cn/n and .In/n are Cauchy sequences (in R and in L2 respectively).
As the stochastic integral is an isometry between L2 and M2.Œ0;T�/ (Theorem 7.1),
it follows that .Hn/n is a Cauchy sequence in M2.Œ0;T�/. Therefore there exist c 2 R

and H 2 M2.Œ0;T�/ such that

lim
n!1 cn D c

lim
n!1 Hn D H in M2.Œ0;T�/



12.3 The martingales of the Brownian filtration 383

whence we get

lim
n!1 Zn D c C

Z T

0

Hs dBs in L2 :

Let us prove now that H is also dense in L2. If f 2 L2.Œ0;T�;Rm/ ( f is therefore a
deterministic function), for t � T, and we set

ef .t/ WD exp
� Z t

0

f .s/ dBs � 1

2

Z t

0

j f .s/j2 ds
�

then we know that

ef .T/ D 1C
Z T

0

ef .s/f .s/ dBs : (12.17)

Moreover, ef .T/ is square integrable, as
R T
0

f .s/ dBs is a Gaussian r.v. More precisely
(see also Remark 7.3).

EŒef .T/
2� D E

h
exp

�
2

Z T

0

f .s/ dBs

�i
exp

�
�
Z T

0

jf .s/j2 ds
�

D exp
�
2

Z T

0

jf .s/j2 ds
�

exp
�

�
Z T

0

jf .s/j2 ds
�

D exp
� Z T

0

jf .s/j2 ds
�
:

Therefore

Z T

0

EŒef .s/
2� jf .s/j2 ds � EŒef .T/

2�

Z T

0

jf .s/j2 ds

� exp
� Z T

0

jf .s/j2 ds
� Z T

0

jf .s/j2 ds ;

which proves that the process Hf .s/ D f .s/ef .s/ belongs to M2.Œ0;T�/ hence, thanks
to (12.17), the r.v.’s of the form ef .T/ belong to H . Let us prove that they form a
total set, i.e. that their linear combinations are dense in H . To this end let Y 2
L2.G T/ be a r.v. that is orthogonal to each of the r.v.’s ef .T/ and let us prove that
Y D 0 a.s.

First, choosing f D 0 so that ef .T/ D 1 a.s., Y D YC � Y� must have mean
zero and therefore EŒYC� D EŒY��. If both these mathematical expectations are
equal to 0, Y vanishes and there is nothing to prove. Otherwise we can multiply Y
by a constant so that E.YC/ D E.Y�/ D 1. The remainder of the proof consists
in checking that the two probabilities YCdP and Y�dP coincide on .˝;G T/, which
will imply YC D Y� and therefore Y D 0 a.s.
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If f .s/ D Pn
jD1 	j1Œtj�1;tj Œ.s/, where 0 D t0 < t1 < � � � < tn D T and 	1; : : : ; 	n 2

R
m, then

R T
0

f .s/ dBs D Pn
jD1h	j;Btj � Btj�1i. We have

ef .T/ D exp
� nX

jD1
h	j;Btj � Btj�1i � 1

2

nX

jD1
j	jj2.tj � tj�1/

�

and orthogonality of Y with respect to ef .T/ implies

0 D E
h
Y exp

� nX

jD1
h	j;Btj � Btj�1i

�i
; (12.18)

i.e.

E
h
YC exp

� nX

jD1
h	j;Btj � Btj�1i

�i
D E

h
Y� exp

� nX

jD1
h	j;Btj � Btj�1i

�i
:

Allowing the vectors 	1; : : : ; 	n to take all possible values, this implies that the
laws of the random vector .Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1 / with respect to the two
probabilities YCdP and Y�dP have the same Laplace transforms and therefore
coincide (see Sect. 5.7 for more details). Recalling the definition of the law of a
r.v., this also implies that

E
�
YC ˚.Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1 /


 D E
�
Y� ˚.Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1 /




for every bounded measurable function ˚ , from which we deduce that YCdP and
Y�dP coincide on the �-algebra �.Bt1 ;Bt2 � Bt1 ; : : : ;Btn � Btn�1 /, which is equal to
�.Bt1 ; : : : ;Btn/.

As the union of these �-algebras for all possible choices of n, and of 0 D
t0 < t1 < � � � < tn D T, forms a family that is stable with respect to finite
intersections and generates GT , the two probabilities YCdP and Y�dP coincide on
GT by Carathéodory’s criterion, Theorem 1.1. They also coincide on G T (just repeat
the argument of Remark 4.4): let C be the class of the events of the form A \ N
with A 2 GT and N 2 F is either a negligible set or N D ˝ . Then C is stable with
respect to finite intersections, contains both GT and the negligible sets of F and
therefore generates G T . Moreover, the two probabilities YCdP and Y�dP coincide
on C and therefore also on G T , again by Carathéodory’s criterion.

ut
An immediate consequence is the following

Theorem 12.5 Let .Mt/0�t�T be a square integrable martingale of the filtra-
tion .G t/t. Then there exist a unique process H 2 M2.Œ0;T�/ and a constant

(continued)
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Theorem 12.5 (continued)
c 2 R such that

Mt D c C
Z t

0

Hs dBs a.s.

for t 2 Œ0;T�. In particular, .Mt/0�t�T has a continuous modification.

Proof As MT 2 L2, by Theorem 12.4 there exists a unique process H 2 M2.Œ0;T�/
such that

MT D c C
Z T

0

Hs dBs

and therefore

Mt D E.MT jG t/ D c C
Z t

0

Hs dBs a:s:

ut
Note that in the statement of Theorem 12.5 we make no assumption of continuity.
Therefore every square integrable martingale of the filtration .G t/t always admits a
continuous version.

The representation Theorem 12.5 can be extended to local martingales.

Theorem 12.6 Let .Mt/0�t�T be a local martingale of the filtration .G t/t.
Then there exists a unique process H 2 M2

loc.Œ0;T�/ and a constant c 2 R

such that, for t 2 Œ0;T�,

Mt D c C
Z t

0

Hs dBs a.s.

Proof The idea of the proof is to approximate M with square integrable martingales,
but in order to do this properly we first need to prove that .Mt/0�t�T is itself
continuous, or, to be precise, that it has a continuous modification. Let us first
assume that .Mt/0�t�T is a martingale of the filtration .G t/t (not necessarily square
integrable). As MT is integrable and L2.G T/ is dense in L1.G T/, let .Zn/n be a
sequence of r.v.’s in L2.G T/ such that

kZn � MTk1 � 2�n :
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Let Mn.t/ D E.Zn jG t/; Mn is a square integrable martingale for every n and
has a continuous modification by Theorem 12.5. .Mt/0�t�T has a right continuous
modification thanks to Theorem 5.14. Then the supermartingale .�jMt � Mn.t/j/t is
right-continuous and we can apply the maximal inequality (5.16), which gives

P
�

sup
0�t�T

jMt � Mn.t/j � 1

k

�
D P

�
inf

0�t�T
�jMt � Mn.t/j � �1

k

�

� kE.jMT � Znj/ � k2�n :

As we have on the right-hand side the general term of a convergent series, by the
Borel–Cantelli lemma,

sup
0�t�T

jMt � Mn.t/j < 1

k

eventually a.s. In other words, .Mn.t//t converges a.s. uniformly to .Mt/t, which is
therefore a.s. continuous.

If M is a local martingale of the filtration .G t/t and .�n/n is a sequence of
reducing stopping times, then the stopped process M�n is a martingale. Therefore,
M is continuous for t < �n for every n and, as limn!1 �n D C1, M is continuous.

The fact that M is continuous allows us to apply the argument of Remark 7.6 and
we can assume that the sequence .�n/n is such that the stopped processes M�n are
bounded martingales, and therefore square integrable. By Theorem 12.5, for every
n there exist cn 2 R and a process H.n/ 2 M2.Œ0;T�/ such that

M�n
t D Mt^�n D cn C

Z t

0

H.n/
s dBs a.s.

Obviously cn D cnC1 D M0
defD c. Moreover, the two processes M�n and M�nC1

coincide for t � �n, therefore

Z �n

0

H.n/
s dBs D

Z �n

0

H.nC1/
s dBs a.s.

By the uniqueness of the representation of the r.v.’s of L2.G T/ of Theorem 12.4,
it follows that the two processes .H.n/

t^�n
/t and .H.nC1/

t^�n
/t are modifications of one

another. This allows us to define a process H by setting Ht D H.n/
t on ft < �ng, as

this definition does not depend on the choice of n. The process thus defined is such
that

E
� Z �n

0

H2
s ds

�
< C1
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for every n; as �n ! C1 as n ! 1, this implies
R T
0

H2
s ds < C1 a.s., and

therefore H 2 M2
loc.Œ0;T�/. We still have to prove that

Mt D c C
Z t

0

Hs dBs a.s.;

but

Mt^�n D c C
Z t^�n

0

H.n/
s dBs D c C

Z t^�n

0

Hs dBs a.s.

and we can take the limit as n ! 1.
ut

12.4 Equivalent probability measures

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian motion. Girsanov’s
Theorem 12.1 states that if .Zt/t is a martingale of the form

Zt D exp
h Z t

0

˚s dBs � 1

2

Z t

0

j˚sj2 ds
i
;

where .˚t/t is an R
m-valued process in M2

loc.Œ0;T�/, then dQ D ZT dP is a
probability on .˝;FT/ that is equivalent to P.

Let us show now that if Ft D G t, then all the probabilities on .˝;FT/ that are
equivalent to P are of this form.

Theorem 12.7 Let B D .˝;F ; .G t/t; .Bt/t;P/ be an m-dimensional Brow-
nian motion with respect to its natural augmented filtration .G t/t. If a
probability Q on .˝;G T/ is equivalent to P then there exists a progressively
measurable m-dimensional process ˚ 2 M2

loc.Œ0;T�/ such that dQ D ZT dP,
where

Zt D exp
h Z t

0

˚s dBs � 1

2

Z t

0

j˚sj2 ds
i
; (12.19)

is a martingale under P. Moreover,eBt D Bt�
R t
0
˚s ds is a G t-Brownian motion

under Q.
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Proof Let

Zt D dQjG t

dPjG t

�

We know that .Zt/0�t�T is a martingale. Obviously we have, for every t � T,

Q.Zt > 0/ D EP.Zt1fZt>0g/ D EP.Zt/ D 1 :

Therefore Zt > 0 Q-a.s. and also P-a.s., as P and Q are assumed to be equivalent.
By Theorem 12.6 there exists a process .�t/t 2 M2

loc.Œ0;T�/ such that

Zt D 1C
Z t

0

�s dBs :

We want now to apply Ito’s formula in order to compute d log Zt. This is not possible
directly, as log is not a C2 function on R. Let f be a function such that f .x/ D log x
for x � 1

n and then extended to R so that it is of class C2. Then, by Ito’s formula,

df .Zt/ D f 0.Zt/ dZt C 1

2
f 00.Zt/j�tj2 dt :

The derivatives of f coincide with those of log x for x � 1
n , i.e. f 0.x/ D 1

x , f 00.x/ D
� 1

x2
, so that, if �n D infftI Zt � 1

n g,

log Zt^�n D
Z t^�n

0

f 0.Zs/�s dBs C 1

2

Z t^�n

0

f 00.Zs/j sj2 ds

D
Z t^�n

0

�s

Zs
dBs � 1

2

Z t^�n

0

j�sj2
Z2s

ds :

By Exercise 5.8 b), Z being a martingale, we have P.Zt > 0 for every t � T/ D 1

for every t � T and therefore t 7! Zt.!/ never vanishes a.s. Therefore, Z being
continuous, for every ! 2 ˝ there exists an " > 0 such that Zt.!/ � " for every
t � T. Therefore ˚s D �s

Zs
2 M2

loc.Œ0;T�/ and

Zt^�n D exp
� Z t^�n

0

˚s dBs � 1

2

Z t^�n

0

˚2
s ds

�
:

Now just let n ! 1 and observe that, again as Zt > 0 for every t a.s., �n ! C1.
ut
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Exercises

12.1 (p. 603) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion. Let us
consider the three processes

.Bt/t; Yt D Bt C ct; Zt D �Bt ;

where c; � are real numbers. On the canonical space .C ;M ; .Mt/t; .Xt/t/ let us
consider the probabilities PB;PY ;PZ , respectively the law of B (i.e. Wiener measure)
and the laws of the processes Y and Z. Then

a) PB and PY are equivalent (PB � PY and PY � PB) on Mt for every t � 0, but,
unless c D 0, not on M where they are actually orthogonal.

b) If j� j 6D 1 then PB and PZ are orthogonal on Mt for every t > 0.

a) Use Girsanov’s theorem in order to find a probability Q of the form dQ D Z dP with respect
to which .Bt/t has the same law as .Yt/t. b) Look for an event having probability 1 for PB and
probability 0 for PZ .

12.2 (p. 604) Given two probabilities �; � on a measurable space .E;E /, the
entropy H.�I�/ of � with respect to � is the quantity

H.�I�/ D
8
<

:

Z

E

d�

d�
log

d�

d�
d� if � � �

C1 otherwise :

Note that we also have, for � � �,

H.�I�/ D
Z

E
log

d�

d�
d� : (12.20)

The chi-square discrepancy of � with respect to � is the quantity

�2.�I�/ D
8
<

:

Z

E

ˇ
ˇ d�

d�
� 1ˇˇ2 d� if � � �

C1 otherwise :

a) Show that H.�I�/ � 0 and H.�I�/ D 0 if and only if � D �. Show, with an
example, that it is possible that H.�I�/ 6D H.�I �/.

b) Let C D C .Œ0;T�;Rm/ and let .C ;MT ; .Ft/0�t�T ; .Xt/0�t�T ;P/ be the
canonical space endowed with the Wiener measure P. Let � be a path almost
a.e. differentiable and with square integrable derivative and let P1 be the law of
Wt D Xt C �t, i.e. of a Brownian motion with a deterministic drift � .

b1) What is the value of the entropy H.P1I P/? And of H.PI P1/?
b2) Compute �2.P1I P/ and �2.PI P1/.
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a) Use Jensen’s inequality, since x 7! x log x is a strictly convex function. b1) Girsanov’s theorem
gives the density of P1 with respect to P. b2) Look first for a more handy expression of the �2

discrepancy (develop the square inside the integral).

12.3 (p. 606) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a Brownian motion and let
Xt D Bt � 
 t; 
 > 0. As limt!C1 Xt D �1 (thanks, for instance, to the Iterated
Logarithm Law), we know that supt>0 Xt < C1. In this exercise we use Girsanov’s
theorem in order to compute the law of supt>0 Xt. We shall find, through a different
argument, the same result as in Exercise 5.17.

The idea is to compute the probability of the event fsupt>0 Xt > Rg with a change
of probability such that, with respect to the new probability, it has probability 1 and
then to “compensate” with the density of the new probability with respect to the
Wiener measure P.

a) Let Zt D e2
Bt�2
2t. Show that .Zt/t is an .Ft/t-martingale and that if, for a fixed
T > 0,

dQ D ZT dP

then Q is a probability and, ifeBt D Bt�2
 t, then .˝;F ; .Ft/0�t�T ; .eBt/0�t�T ;Q/
is a Brownian motion.

b) Show that .Z�1
t /t is a Q-martingale. Note that Z�1

t D e�2
Xt .
c) Let R > 0 and �R D infftI Xt D Rg. Show that P.�R � T/ D EQ.1f�R<TgZ�1

T^�R
/

and

P.�R � T/ D e�2
RQ.�R � T/ : (12.21)

d) Show that P.�R < C1/ D e�2
R, hence the r.v. supt>0 Xt has an exponential law
with parameter 2
 .

c) f�R � Tg 2 FT^�R and we can apply the stopping theorem to the Q-martingale .Z�1
t /t.

12.4 (p. 607) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a standard Brownian motion. In
Exercise 8.14 it is proved that

Zt D 1p
1 � t

exp
�

� B2t
2.1� t/

�
D exp

�
�
Z t

0

Bs

1 � s
dBs � 1

2

Z t

0

B2s
.1 � s/2

ds
�

is a martingale for t 2 Œ0;T� for every T < 1. Let Q be a new probability on .˝;F /

defined as dQ D ZT dP. Show that, with respect to Q, .Bt/t is a process that we have
already seen many times.

12.5 (p. 607) Let X D .˝;F ; .Ft/t; .Xt/t;P/ be an m-dimensional Brownian
motion. The aim of this exercise is to compute

J	 D E
h

exp
�
	

Z t

0

jXsj2 ds
�i
:
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It may help to first have a look at Exercise 1.12 and, for d), at the properties of the
Laplace transform in Sect. 5.7.

a) Let

Zt D exp
�



Z t

0

Xs dXs � 
2

2

Z t

0

jXsj2 ds
�
:

Show that E.Zt/ D 1 for every t � 0.
b) Let Q be the probability on .˝;FT/ defined as dQ D ZT dP. Prove that, with

respect to Q, on the time interval Œ0;T� X is an Ornstein–Uhlenbeck process (see
Sect. 9.2). What is the mean and the covariance matrix of Xt, 0 � t � T, with
respect to Q?

c) Prove that, if 	 D � 
2

2
and t � T,

J	 D EQ
�
e� 


2
.jXtj2�mt/


and determine the value of J	 for 	 � 0.
d) Compute J	 for every 	 2 R.

12.6 (p. 609) Let X D .˝;F ; .Ft/t; .Xt/t;P/ be a real Brownian motion.

a1) Let b W R ! R be a bounded continuously differentiable function and x a fixed
real number. Determine a new probability Q on .˝;F / such that, with respect
to Q, the process Bt D Xt � R t

0 b.Xs C x/ ds is a Brownian motion for t � T.
Prove that, with respect to Q, the process Yt D x C Xt is the solution of an SDE
to be determined.

a2) Let U be a primitive of b. Prove that dQ D ZT dP with

Zt D exp
�

U.Xt C x/� U.x/� 1

2

Z t

0

Œb0.Xs C x/C b2.Xs C x/� ds
�
: (12.22)

b1) Let b.z/ D k tanh.kz C c/ for some constant k. Prove that b0.z/C b2.z/ � k2.
b2) Let Y be the solution of

dYt D k tanh.kYt C c/ dt C dBt

Y0 D x :
(12.23)

Compute the Laplace transform of Yt and show that the law of Yt is a mixture of
Gaussian laws, i.e. of the form ˛�1 C .1 � ˛/�2, where 0 < ˛ < 1 and �1; �2
are Gaussian laws to be determined.

b3) Compute EŒYt�.

b2) A primitive of z 7! tanh z is z 7! log cosh z.
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12.7 (p. 611) (Wiener measure gives positive mass to every open set of C0) Let as
usual C D C .Œ0;T�;Rm/ endowed with the topology of uniform convergence and
let PW be the Wiener measure on C . Let us denote by C0 the closed subspace of C
formed by the paths � such that �0 D 0.

a) Show that PW.C0/ D 1.
b) Recall that, for a real Brownian motion, if � denotes the exit time from Œ�r; r�,

r > 0, then the event f� > Tg has positive probability for every T > 0

(Exercise 10.5 c)). Deduce that PW.A/ > 0 for every open set A � C containing
the path � � 0.

c) Note that the paths of the form �t D R t
0
˚s ds, with ˚ 2 L2.RC;Rm/, are dense

in C0 (they form a subset of the paths that are twice differentiable that are dense
themselves). Deduce that PW.A/ > 0 for every open set A � C0.

b) A neighborhood of the path � 
 0 is of the form V D fwI sup0�t�T jwtj < �g for some
T; � > 0. c) Use Girsanov’s formula to “translate” the open set A to be a neighborhood of the
origin.

12.8 (p. 612) In this exercise we use the Feynman–Kac formula in order to find
explicitly the solution of the problem

8
<

:

1

2
4u.x; t/C @u

@t
.x; t/ � 	jxj2u.x; t/ D 0 if .x; t/ 2 R

m � Œ0;TŒ
u.x;T/ D 1 ;

(12.24)

where 	 � 0. Let X D .˝;F ; .Ft/t; .Bt/t;P/ be a m-dimensional Brownian
motion. By Theorem 10.6, a solution of (12.24) is given by

u.x; t/ D Ex;t
h
e�	 R T

t jXsj2 ds
i
;

where .˝;F ; .Ft/t; .Xt/t; .Px;t/x;t/ is the canonical diffusion associated to the
operator L D 1

2
4. We know that, with respect to Px;t, the canonical process .Xs/s�t

has the same law as .Bs�t Cx/t, where .Bt/t is a Brownian motion. Hence for x D 0,
t D 0 we shall recover the result of Exercise 12.5.

a) For x 2 R
m and 
 2 R, let

Zt D exp
�



Z t

0

.Bs C x/ dBs � 
2

2

Z t

0

jBs C xj2 ds
�
:

Show that E.ZT/ D 1.
b) Let Q be the probability on .˝;FT/ defined as dQ D ZT dP. Prove that, with

respect to Q, Ys D Bs Cx is an Ornstein–Uhlenbeck process (see Sect. 9.2). What
is the mean and the covariance matrix of BT C x with respect to Q?
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c) Prove that, under P,

Z T

0

.Bs C x/ dBs D 1

2
.jBT C xj2 � jxj2 � mT/ (12.25)

and deduce that, for every 
 � 0,

E
h

exp
�

� 
2

2

Z T

0

jBs C xj2 ds
�i

D e


2 .mTCjxj2/EQ

h
e� 


2 jBT Cxj2
i
:

d) Prove (or take as granted) that, if W is an m-dimensional N.b; �2I/-distributed
r.v., then

E.e
 jWj2 / D .1� 2�2
/�m=2 exp
� 


1 � 2�2
 jbj2
�

(12.26)

for every 
 < .2�2/�1.
e) What is the value of E

�
exp

� � 
2

2

R T
0

jBs C xj2 ds
�


?
f) Derive from b) and e) that a solution of (12.24) is

u.x; t/ D cosh
�p
2	 .T � t/

��m=2
exp

h
�

p
2	 jxj2
2

tanh
�p
2	 .T � t/

�i
:

Is it unique?

a) Use the criterion of Proposition 12.2 b) and Exercise 1.12.

12.9 (p. 615) Let B be an m-dimensional Brownian motion, T > 0 and f W Rm ! R

a bounded measurable function. We know (Theorem 12.4) that there exists a process
X 2 M2 such that

f .BT/ D EŒ f .BT/�C
Z T

0

Xs dBs : (12.27)

In this exercise we determine X explicitly (Theorem 12.4 is not necessary).

a) Determine a function  W Œ0;TŒ�Rm ! R such that

EŒ f .BT/jFt� D  .Bt; t/

and show that  is actually differentiable infinitely many times on R
m � Œ0;TŒ.

What is the value of  .0; 0/?
b) Write the stochastic differential of Zt D  .Bt; t/. Because of what possible

reason can you state that

@ 

@t
C 1

2
4 D 0
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without actually computing the derivatives? Prove that, for every t < T,

 .Bt; t/ D  .0; 0/C
Z t

0

 0
x.Bs; s/ dBs : (12.28)

c1) Determine a process X 2 M2.Œ0;T�/ such that (12.27) holds.
c2) Determine X explicitly if the dimension of B is m D 1 and f .x/ D 1fx>0g.
d) Prove that if, in addition, f is differentiable with bounded first derivatives,

then (12.27) holds with Xs D EŒ f 0.BT/jFs�.



Chapter 13
An Application: Finance

Stochastic processes are useful as models of random phenomena, among which a
particularly interesting instance is given by the evolution of the values of financial
(stocks, bonds, . . . ) and monetary assets listed on the Stock Exchange.

In this chapter we develop some models adapted for these situation and we
discuss their application to some typical problems.

13.1 Stocks and options

In a stock exchange, besides the more traditional stocks, bonds and commodities,
there are plenty of securities or derivative securities which are quoted and traded. A
derivative security (also called a contingent claim), as opposed to a primary (stock,
bond,. . . ) security, is a security whose value depends on the prices of other assets of
the market.

An option is an example of a derivative: a call option is a contract which
guarantees to its holder the right (but not the obligation) to buy a given asset
(stock, commodity, currency, . . . ), which we shall refer to as the underlying
asset, at a given time T (the maturity) and at a price K fixed in advance (the
strike price).

These types of contracts have an old history and they became increasingly practised
at the end of the 60s with the institution of the Chicago Board Options Exchange. A
call option is obviously intended to guarantee the holder of being able to acquire the
underlying asset at a price that is not larger than K (and therefore being safe from
market fluctuations).

© Springer International Publishing AG 2017
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396 13 An Application: Finance

If at maturity the underlying asset has a price greater than K, the holder of the
option will exercise his right and will obtain the asset at the price K. Otherwise he
will choose to drop the option and buy the asset on the market at a lower price.

To be precise, assume that the call option is written on a single asset whose price
S is modeled by some process .˝;F ; .Ft/t; .St/t;P/. Then the value Z that the
issuer of the option has to pay at maturity is equal to 0 if ST � K (the option is not
exercised) and to ST � K if ST > K. In short it is equal to .ST � K/C. This quantity
.ST � K/C is the payoff of the call option.

Many other kinds of options exist. For instance put options, which guarantee the
owner the right to sell at a maturity time T a certain asset at a price not lower than K.
In this case, the issuer of the option is bound to pay an amount K �ST if the price ST

at time T is smaller than the strike K and 0 otherwise. The payoff of the put option
is therefore .K � ST/

C. Other examples are considered later (see Example 13.3 and
Exercise 13.4, for instance)

A problem of interest, since the appearance of these derivatives on the market, is
to evaluate the right price of an option. Actually the issuer of the option faces a risk:
in the case of a call option, if at time T the price of the stipulated asset turns out to
be greater than the strike price K, he would be compelled to hand to the owner the
amount ST � K. How much should the issuer be paid in order to compensate the risk
that he is going to face?

A second important question, also connected with the determination of the price,
concerns the strategy of the issuer in order to protect himself from a loss (to
“hedge”).

Put and call options are examples of the so-called European options: each of these
is characterized by its maturity and its payoff. One can formalize this as follows

Definition 13.1 A European option Z with maturity T is a pair .Z;T/, where
T is the maturity date and Z, the payoff, is a non-negative FT -measurable r.v.

In the case of calls and puts the payoff is a function of the value of the underlying
asset at the maturity T. More generally, an option can be a functional of the whole
price process up to time T and there are examples of options of interest from
the financial point of view which are of this kind (see again Example 13.3 and
Exercise 13.4, for instance).

There are also other kinds of options, such as American options, which differ
from the European ones in the exercise date: they can be exercised at any instant
t � T. Their treatment, however, requires tools that are beyond the scope of this
book.

In the next sections we develop the key arguments leading to the determination
of the fair price of an option. We shall also discuss which stochastic processes might
be reasonable models for the evolution of the price of the underlying asset. In the
last section, Sect. 13.6, we shall go deeper into the investigation of the most classical
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model in mathematical finance, the Black-Scholes model, and we shall be able to
derive explicit formulas for the price of the options and for some related quantities.

Constructing the models, we shall take into account the following facts.

• There are no transaction costs in buying or selling assets and no taxes.
• Short-selling is admitted, i.e. it is possible to sell assets that are not actually

in possession of the vendor: investors who do not own a stock can sell
shares of it and arrange with the owner at some future date to be payed an
amount equal to the price at that date.

• It is possible to buy or sell fractions of a security.

These facts constitute an ideal market that does not exist in real life. Hence
our models must be considered as a first approximation of the real markets. In
particular, models taking into account transaction costs (as in real markets) have
been developed, but they introduce additional complications and it is wiser to start
with our simple model in order to clarify the main ideas.

Some financial slang:

• holder of an option: the individual/company that has acquired the rights of
the option;

• issuer of an option: the individual/company that has issued the option and
has acquired the obligations connected to it;

• to be short (of something): this is said of someone who has short sold
something.

13.2 Trading strategies and arbitrage

Let B D .˝;F ; .Ft/t; .Bt/t;P/ be a d-dimensional Brownian motion.

Throughout this chapter we assume that Ft D G t, i.e. that the filtration .Ft/t
is the natural augmented filtration of B (see p. 32 and Sect. 4.5)

Actually it will be clear that this assumption is crucial in many instances.
We shall consider a market where m C 1 assets are present and we shall denote

their prices by S0; S1; : : : ; Sm. We shall, by now, assume that the prices S1; : : : ; Sm
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are Ito processes with stochastic differentials

dSi.t/ D Ai.t/ dt C
dX

jD1
Gij.t/ dBj.t/ ; (13.1)

where Ai, Gij are continuous adapted processes. We shall assume, moreover, that the
solution S is such that Si.t/ � 0 a.s for every t 2 Œ0;T�. This is, of course, a condition
that must be satisfied by every good model . The process S0 will have differential

dS0.t/ D rtS0.t/ dt ; (13.2)

where .rt/t is a non-negative bounded progressively measurable process (the spot
interest rate). If we assume S0.s/ D 1 then

S0.t/ D e
R t

s ru du : (13.3)

Typically S0 is an investment of the type of treasury bonds or money deposited into
a bank account: it is the riskless asset (even if its evolution is however random, as
here we assume that the spot interest rate is a stochastic process).

The model (13.1), (13.2) is very general and we shall see later more explicit
choices for the processes Ai, Gij and r.

An investor may decide to invest an amount of money by acquiring shares of the
m C 1 assets of the market.

A trading strategy (or simply, a strategy) over the trading interval
Œ0;T� is a progressively measurable .m C 1/-dimensional process Ht D
.H0.t/;H1.t/; : : : ;Hm.t// whose general component Hi.t/ stands for the
number of units of the i-th security held by an investor at time t. The portfolio
associated to the strategy H is the corresponding wealth process:

Vt.H/ D hHt; Sti D
mX

iD0
Hi.t/ Si.t/; t 2 Œ0;T� : (13.4)

The initial value of the portfolio V0.H/ represents the initial investment of the
strategy H.

At any moment the investor may decide to move part of his wealth from one asset
to another. A particularly important type of trading strategy, from our point of view,
is one in which he does not add or remove capital from the portfolio. The rigorous
definition is given below.
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We shall assume that the trading strategy Ht D .H0.t/;H1.t/; : : : ;Hm.t// satisfies
the condition

Z T

0

jH0.t/j dt C
mX

iD1

Z T

0

jHi.t/j2 dt < 1 a.s. (13.5)

The trading strategy H is said to be self-financing over the time interval Œ0;T�
if it satisfies (13.5) and its associated portfolio Vt.H/ satisfies the relation

dVt.H/ D hHt; dSti D
mX

iD0
Hi.t/ dSi.t/; 0 � t � T : (13.6)

Therefore a strategy is self-financing if the variations of the associated portfolio,
in a small time period, depend only on increments of the asset prices S0; : : : ; Sm,
i.e. changes in the portfolio are due to capital gains or losses and not to increase or
decrease of the invested funds.

Notice that the requirements (13.5) are technical and are necessary for the
differentials appearing in (13.6) to be well defined. In fact, as the processes t 7!
Ai.t/, t 7! Gij.t/ and t 7! rt are bounded on Œ0;T� for every ! (Ai and Gij

have continuous paths), then H0 r 2 M1
loc.Œ0;T�/, HiAi 2 M1

loc.Œ0;T�/ for every
i D 1; : : : ;m, and also HiGij 2 M2

loc.Œ0;T�/ for every i; j (see also Remark 7.1 a)).
Of course (13.6) can be written as

dVt.H/ D H0.t/ rt S0t dt C
mX

iD1
Hi.t/Ai.t/dt C

mX

iD1
Hi.t/

dX

jD1
Gij.t/ dBj.t/ :

In particular, the portfolio V.H/ associated to a self-financing strategy H is a Ito
process. Let

eSi.t/ D Si.t/

S0.t/
D e� R t

0 rs dsSi.t/; i D 1; : : : ;m

eVt.H/ D Vt.H/

S0.t/
D e� R t

0 rs dsVt.H/ :

Notice that, thanks to (13.4), eVt.H/ D H0.t/ C Pm
iD1 Hi.t/eSi.t/. We shall refer

to eSt D .eS1.t/; : : : ;eSm.t// as the discounted price process and to eV.H/ as the
discounted portfolio. Intuitively,eSi.t/ is the amount of money that must be invested
at time 0 into the riskless asset in order to have the amount Si.t/ at time t. Note that
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by Ito’s formula, as t 7! R t
0

rs ds has finite variation,

deSi.t/ D �rte� R t
0 rs dsSi.t/ dt C e� R t

0 rs ds dSi.t/

D �rteSi.t/ dt C e� R t
0 rs ds dSi.t/ :

(13.7)

The following result expresses the property of being self-financing in terms of the
discounted portfolio.

Proposition 13.1 Let Ht D .H0.t/;H1.t/; : : : ;Hm.t// be a trading strategy
satisfying (13.5). Then H is self-financing if and only if

eVt.H/ D V0.H/C
mX

iD1

Z t

0

Hi.t/ deSi.t/; t 2 Œ0;T� : (13.8)

Proof Suppose that H is self-financing. Then, by Ito’s formula and (13.7),

deVt.H/ D d
�

e� R t
0 rs ds Vt.H/

�
D �rte� R t

0 rs ds Vt.H/ dt C e� R t
0 rs ds dVt.H/

D e� R t
0 rs ds

�
� rt

mX

iD0
Hi.t/ Si.t/ dt C

mX

iD0
Hi.t/ dSi.t/

�

but, as H0.t/dS0.t/ D rtH0.t/S0.t/, the terms with index i D 0 cancel and we have

� � � D e� R t
0 rs ds

�
� rt

mX

iD1
Hi.t/ Si.t/ dt C

mX

iD1
Hi.t/ dSi.t/

�

D
mX

iD1
Hi.t/

�
�rte� R t

0 rs dsSi.t/ dt C e� R t
0 rs ds dSi.t/„ ƒ‚ …

DdeSi.t/

�

and, aseV0.H/ D V0.H/, (13.8) holds. Conversely, ifeV.H/ satisfies (13.8), again by
Ito’s formula and (13.7)

dVt.H/ D d
�

e
R t
0 rs dseVt.H/

�
D rte

R t
0 rs dseVt.H/ dt C e

R t
0 rs ds

mX

iD1
Hi.t/ deSi.t/

D rtVt.H/ dt C e
R t
0 rs ds

mX

iD1
Hi.t/

�
� rteSi.t/ dt C e� R t

0 rs ds dSi.t/
�

D rtVt.H/ dt � rt

mX

iD1
Hi.t/ Si.t/ dt C

mX

iD1
Hi.t/ dSi.t/
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and again using the relation H0.t/dS0.t/ D rtH0.t/S0.t/,

� � � D rtVt.H/ dt � rt

mX

iD0
Hi.t/ Si.t/

„ ƒ‚ …
DVt.H/

dt C
mX

iD0
Hi.t/ dSi.t/ D

mX

iD0
Hi.t/ dSi.t/ ;

i.e. H is self financing. ut
Let us now introduce the following sub-class of self-financing strategies.

A self-financing strategy H is said to be admissible if Vt.H/ � 0 for every t,
a.s.

To be precise, note that the processes Hi can take negative values corresponding to
short selling of the corresponding assets. In order for a strategy to be admissible it
is required, however, that the overall wealth Vt.H/ of the portfolio remains � 0 for
every t (i.e. that the investor is solvable at all times).

A self-financing trading strategy H over Œ0;T� is said to be an arbitrage
strategy if the associated portfolio Vt.H/ satisfies

V0.H/ D 0

Vt.H/ � 0 a.s. for every t � T

P.VT.H/ > 0/ > 0 :

(13.9)

Roughly speaking, an arbitrage portfolio requires no initial capital (this is the
assumption V0.H/ D 0), its value is never negative (i.e. its admissible) and can
produce a gain with strictly positive probability.

As one can imagine, an arbitrage is an operation that is seldom possible. It can
happen for instance that, keeping in mind the parity between euro and yen, the dollar
is cheaper in Tokyo than in Milano. An operator might then buy dollars in Tokyo
and sell them in Milano; he could pay the purchase in Japan with the money from
the sale in Italy and make a gain with no risk and without the need of any capital.
Such a situation is therefore an arbitrage as it satisfies the three conditions (13.9).

In the real market these situations do appear, but seldom and in any case during a
very short time span: in the example above purchases in Tokyo and sales in Milano
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would quickly provoke a raise of the exchange rate in Japan and a drop in Italy, thus
closing the possibility of arbitrage.

Therefore it is commonly assumed that in a reasonable model no arbitrage
strategy should be possible.

Definition 13.2 A market model is said to be arbitrage-free if every admis-
sible strategy H on Œ0;T� with V0.H/ D 0 is such that P.VT.H/ > 0/ D 0.

We shall see in the next section that the arbitrage-free property is equivalent to an
important mathematical property of the model.

13.3 Equivalent martingale measures

Definition 13.3 A probability P� on .˝;FT/ is called an equivalent martin-
gale measure if P� is equivalent to P on FT and the discounted price processes
eS1.t/; : : : ;eSm.t/ are .Ft/t-martingales under P�.

Equivalent martingale measures play a very important role in our analysis. Does an
equivalent martingale measure exist for the model (13.1)? Is it unique? We shall
investigate these questions later. In this section and in the next one we shall point
out the consequences of the existence and uniqueness of an equivalent martingale
measure.

Thanks to Theorem 12.7, if P� is an equivalent martingale measure, there exists
a progressively measurable process ˚ 2 M2

loc.Œ0;T�/ such that

dP�
jFT

dPjFT

D e
R T
0 ˚s dBs� 1

2

R T
0 j˚sj2 ds :

Therefore by Girsanov’s Theorem 12.1 the process

B�
t D Bt �

Z t

0

˚s ds
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is a P�-Brownian motion and, recalling (13.1) and (13.7), under P� the discounted
prices have a differential

deSi.t/

D
�

�rteSi.t/C e� R t
0 rs dsAi.t/C e� R t

0 rs ds
dX

jD1
Gij.t/˚j.t/

„ ƒ‚ …

�
dt

Ce� R t
0 rs ds

dX

jD1
Gij.t/ dB�

j .t/ :

(13.10)

Therefore the prices, which are supposed to be Ito processes under the “old”
probability P, are also Ito processes under P�. Note also that properties of the trading
strategies as being self-financed, admissible or arbitrage are preserved under the new
probability.

The requirement that the components of eS are martingales dictates that the
quantity indicated by the brace in (13.10) must vanish. The following proposition is
almost obvious.

Proposition 13.2 If there exists an equivalent martingale measure P�, the
discounted portfolio eV.H/ associated to any self-financing strategy H is a
local martingale under P�. Moreover, if H is admissible on Œ0;T�, then eV.H/
is an .Ft/t-supermartingale under P� on Œ0;T�.

Proof Let H be a self-financing strategy. Then by Proposition 13.1 and (13.10),
under P�

deVt.H/ D
mX

iD1
Hi.t/ deSi.t/ D e� R t

0 rs ds
mX

iD1
Hi.t/

dX

jD1
Gij.t/ dB�

j .t/ ;

for t � T. As t 7! Gij.t; !/ is continuous and therefore bounded for every i and j on
Œ0;T�, and Hi 2 M2

loc.Œ0;T�/ for every i (recall that this condition is required in the
definition of a self-financing strategy), it follows that HiGij 2 M2

loc.Œ0;T�/ for every
i D 1; : : : ;m and thereforeeV.H/ is a local martingale on Œ0;T�.

If H is admissible, then V.H/ is self-financing and such that Vt.H/ � 0 a.s.
for every t under P. As P� is equivalent to P, then also eVt.H/ � 0 a.s. under P�.
Hence under P�,eV.H/ is a positive local martingale and therefore a supermartingale
(Proposition 7.5). ut
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Note that, thanks to (13.10), under P� the (undiscounted) price process S follows
the SDE

dSi.t/ D d
�
e
R t
0 rs dseSi.t/

� D rte
R t
0 rs dseSi.t/ dt C e

R t
0 rs ds deSi.t/

D rtSi.t/ dt C
dX

jD1
Gij dB�

j .t/ :
(13.11)

In particular, the drift t 7! Ai.t/ is replaced by t 7! rtSi.t/ and the evolution of the
prices under P� does not depend on the processes Ai.

The next statement explains the importance of equivalent martingale measures
and their relation with arbitrage.

Proposition 13.3 If there exists an equivalent martingale measure P�, the
market model is arbitrage-free.

Proof We must prove that for every admissible strategy H over Œ0;T� such that
V0.H/ D 0 a.s. we must have VT.H/ D 0 a.s. By Proposition 13.2, eVt.H/ is a
non-negative supermartingale under P�, hence

0 � E�ŒeVT.H/� � E�ŒeV0.H/� D 0:

Therefore, as VT.H/ � 0, necessarily P�.eVT.H/ > 0/ D 0, and then, as P and P�
are equivalent, also P.VT.H/ > 0/ D 0. ut

Often we shall need the discounted portfolio to be a true martingale and not just a
local one. Thus, we introduce the following definition, which requires the existence
of an equivalent martingale measure P�.

Let P� be an equivalent martingale measure. For T > 0, MT.P�/ will denote
the class of the admissible strategies H on Œ0;T� such that the associated
discounted portfolioeV.H/ is an .Ft/t-P�-martingale on Œ0;T�.

13.4 Replicating strategies and market completeness

Definition 13.4 Assume that an equivalent martingale measure P� exists. We
say that a European option .Z;T/ is attainable if there exists a strategy H 2
MT.P�/ such that VT.H/ D Z. Such a strategy H is said to replicate the option
.Z;T/ in MT.P�/.
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Remark 13.1 If H 2 MT.P�/ then the corresponding discounted portfolio
eV.H/ is a martingale under P�, henceeVT.H/ is P�-integrable and the same is

true for VT.H/ D e
R T
0 rs dseVT.H/, as the spot rate r is assumed to be bounded.

Therefore the condition Z 2 L1.˝;FT ;P�/ is necessary for the option
.Z;T/ to be attainable.

From now on we denote by E� the expectation with respect to P�.

Proposition 13.4 Assume that an equivalent martingale measure P� exists
and let .Z;T/ be an attainable European option. Then for every replicating
strategy H 2 MT.P�/ the corresponding portfolio is given by

Vt.H/ D E�he� R T
t rs ds Z

ˇ
ˇFt

i
: (13.12)

Proof The r.v. e� R T
t rs ds Z is integrable under P�, because Z is integrable under P�

and r � 0. Moreover, for every replicating strategy H 2 MT.P�/ for Z, eV.H/ is a
P�-martingale, hence

Vt.H/ D e
R t
0 rs dseVt.H/ D e

R t
0 rs ds E��eVT.H/ jFt


 D e
R t
0 rs ds E��e� R T

0 rs dsVT.H/ jFt



D e
R t
0 rs ds E��e� R T

0 rs dsZ jFt

 D E��e� R T

t rs ds Z jFt


:

ut
Let Vt D E�Œe� R T

t rs ds Z
ˇ
ˇFt�. Proposition 13.4 suggests that (13.12) should be the

right price of an option at time t. In fact, whenever an equivalent martingale measure
exists, the issuer of the option with an amount Vt can start at time t an admissible
strategy covering the payoff at maturity.

From another point of view, if the price at time t was not given by (13.12) there
would be a possibility of arbitrage. If the price was fixed at a level Ct > Vt, then
an investor could set up a portfolio by selling the option, thus acquiring the amount
Ct. Part of this amount would be used in order to set up the replicating portfolio.
He would invest the difference Ct � Vt into the riskless asset. This operation does
not require any capital to be engaged. At maturity the replicating portfolio would
have the same value as the payoff of the option and the investor would remain with

a strictly positive gain of .Ct � Vt/ e
R T

t rs ds, which constitutes an arbitrage.
In quite a similar way an arbitrage portfolio can be produced if the price was

fixed at a level Ct < Vt.
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For t < T, the value Vt D E��e� R T
t rs ds Z

ˇ
ˇFt



is the no-arbitrage price of the

European option Z at time t.

This definition of price obviously depends on the martingale measure P�. This might
not be unique but the next statement asserts that, if many equivalent martingale
measures exist, the respective prices and replicating portfolios coincide.

Proposition 13.5 Suppose there exist two equivalent martingale measures
P�
1 and P�

2 . Let .Z;T/ be a European option attainable both in MT.P�
1 / and

MT.P�
2 /. Then the values at any time t of the two replicating portfolios agree

and are equal to

Vt D E�
1

h
e� R T

t rs ds Z
ˇ
ˇFt

i
D E�

2

h
e� R T

t rs ds Z
ˇ
ˇFt

i
;

where E�
i denotes the expectation under P�

i , i D 1; 2. In particular, the no-
arbitrage prices under P�

1 and P�
2 agree.

Proof Let H1 and H2 be replicating strategies for .Z;T/ in MT.P�
1 / and MT.P�

2 /,
respectively. In particular, they are both admissible and Z is integrable both with
respect to P�

1 and P�
2 . Since P�

1 and P�
2 are both equivalent martingale measures, by

Proposition 13.4eV.H1/ is a P�
2 -supermartingale andeV.H2/ is a P�

1 -supermartingale.

Moreover, VT.H1/ D Z D VT.H2/ and thus eVT.H1/ D e� R T
0 rs ds Z D

eVT.H2/ and by Proposition 13.4, eVt.H1/ D E�
1

�
e� R T

0 rs ds Z jFt



and eVt.H2/ D
E�
2

�
e� R T

0 rs ds Z jFt


. As eV.H1/ is a P�

2 supermartingale we have P�
2 -a.s.

eVt.H2/ D E�
2

h
e� R T

0 rs ds Z
ˇ
ˇFt

i
D E�

2 Œ
eVT.H1/ jFt� � eVt.H1/ :

By interchanging the role of P�
1 and P�

2 , we obtaineVt.H2/ � eVt.H1/ P�
1 -a.s. as well

and hence, as P�
1 , P�

2 and P are equivalent (so that P�
1 -a.s. is the same as P�

2 -a.s.), the
two conditional expectations agree. ut

In summary, the existence of an equivalent martingale measure P� (i.e. a measure
equivalent to P under which the discounted price processes are martingales) has two
important consequences.

• Every discounted portfolio is a P�-local martingale.
• The market is arbitrage free, which allows us to determine the non-arbitrage price

for attainable options and the existence of a replicating strategy.
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One might ask whether the converse of the last statement also holds: is it true
that absence of arbitrage implies existence of an equivalent martingale measure?

The answer is positive: this is the fundamental theorem of asset pricing. In the
literature there are several results in this direction, according to the model chosen
for the market: the interested reader can refer to Musiela and Rutkowski (2005) and
the references therein.

We have seen that if an equivalent martingale measure exists, the no arbitrage-
price is well defined for every attainable option. Therefore it would be nice if every
option (at least under suitable integrability assumptions) were attainable.

Assume that there exists an equivalent martingale measure P�. The model is
said to be complete if every European option .Z;T/ with Z 2 L2.˝;FT ;P�/
is attainable in MT.P�/ for every equivalent martingale measure P�. Other-
wise the market model is said to be incomplete.

We have the following fundamental result

Theorem 13.1 If the model is complete then the equivalent martingale
measure is unique.

Proof Suppose that there exist two equivalent martingale measures P�
1 and P�

2 . Let

A 2 FT and consider the option .Z;T/ defined as Z D e
R T
0 rs ds 1A. Notice that Z is

FT -measurable and, as r is assumed to be bounded, Z 2 Lp.˝;P�
i / for every p and

i D 1; 2. Since the market is complete, Z is attainable both in MT.P�
1 / and MT.P�

2 /.
Hence, by Proposition 13.5,

P�
1 .A/ D E�

1

h
e� R T

0 rs ds Z
i

D E�
2

h
e� R T

0 rs ds Z
i

D P�
2 .A/ :

As this holds for every A 2 FT , P�
1 � P�

2 on FT , i.e. the equivalent martingale
measure is unique. ut

13.5 The generalized Black–Scholes models

In the previous sections we investigated general properties of the very general
model (13.1), (13.2). In this section we introduce a more precise model, which is a
particular case of (13.1) and (13.2), and we investigate the existence of an equivalent
martingale measure and completeness.
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Let us recall first some properties that a reasonable model should enjoy.
As remarked on p. 398, prices must remain positive at all times i.e., if we assume

a situation where only one asset is present on the market, it will be necessary for its
price St to be � 0 a.s. for every t � 0.

Moreover, the increments of the price must always be considered in a multi-
plicative sense: reading in a financial newspaper that between time s and time t an
increment of p% has taken place, this means that St

Ss
D 1 C p

100
. It is therefore

wise to model the logarithm of the price rather than the price itself. These and other
considerations lead to the suggestion, in the case m D 1 (i.e. of a single risky asset),
of an SDE of the form

dSt

St
D b.St; t/ dt C �.St; t/ dBt

Ss D x :
(13.13)

If b and � are constants, this equation is of the same kind as (9.6) on p. 259 and we
know that its solution is a geometric Brownian motion, i.e.

St D xe.b� �2

2
/.t�s/C�.Bt�Bs/ ; (13.14)

which, if the initial position x is positive, is a process taking only positive values.
More precisely, we shall consider a market where m C 1 assets are present with
prices denoted S0; S1; : : : ; Sm. We shall assume that S0 is as in (13.2), i.e.

S0.t/ D e
R t

s ru du

for a non-negative bounded progressively measurable process r. As for the other
assets we shall assume that they follow the SDE

dSi.t/

Si.t/
D bi.St; t/ dt C

dX

jD1
�ij.St; t/ dBj.t/ (13.15)

where St D .S1.t/; : : : ; Sm.t//. Recall that in this model there are m risky assets and
that their evolution is driven by a d-dimensional Brownian motion, possibly with
m 6D d.

We shall make the assumption

b and � are bounded and locally Lipschitz continuous.

With this assumption the price process S is the solution of an SDE with coefficients
satisfying Assumption (A) on p. 260. In particular (Theorem 9.1), S 2 M2.
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This is the generalized Black–Scholes (or Dupire) model. In the financial models
the diffusion coefficient is usually referred to as the volatility.

By Ito’s formula applied to the function f W z D .z1; : : : ; zm/ 7!
.log z1; : : : ; log zm/, the process �t D .log S1.t/; : : : ; log Sm.t// solves the SDE

d�i.t/ D
�

bi.e
�i.t/; t/ dt � 1

2
aii.e

�i.t/; t/
�

dt C
dX

jD1
�ik.e

�i.t/; t/ dBk.t/ ; (13.16)

where a D ���. This not a rigorous application of Ito’s formula, as f is not even
defined on the whole of R, but note that the assumptions stated for b and � guarantee
that the SDE (13.16) has a unique solution, �, defined for every t > 0. It is then easy
by Ito’s formula, correctly applied to f �1 W .y1; : : : ; ym/ 7! .ey1 ; : : : ; eym/, to check
that St D xe�t > 0 is a solution of (13.13).

Hence if Si.s/ D xi > 0 then Si.t/ > 0 for every t � s a.s., which is a good thing,
as remarked above.

Let us investigate the properties of this model starting from the existence
and uniqueness of an equivalent martingale measure. The next theorem gives a
characterization of the equivalent martingale measures in the generalize Black–
Scholes model.

Theorem 13.2 The following are equivalent.

a) An equivalent martingale measure P� exists.
b) There exists a process � 2 M2

loc such that

�t D e
R t
0 �u dBu� 1

2

R t
0 j�uj2 du (13.17)

is an .Ft/t-martingale and � is a solution of the system of m equations (but
� is d-dimensional)

�.St; t/�.t/ D Rt � b.St; t/ ; (13.18)

where Rt denotes the m-dimensional process having all its components
equal to rt.

Proof Let us assume that b) holds and let P� be the probability having density �T

with respect to P. By Girsanov’s theorem, Theorem 12.1, the process

B�
t D Bt �

Z t

0

�u du (13.19)
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is, for t � T, a Brownian motion with respect to the new probability dP� D �T dP
and under P� the discounted price process, thanks to (13.10), satisfies

deSi.t/
eSi.t/

D .bi.Si.t/; t/ � rt/ dt C
dX

jD1
�ij.Si.t/; t/ dBj.t/ D

dX

jD1
�ij.Si.t/; t/ dB�

j .t/ :

Let us prove thateSi is a martingale with respect to P�. Let us apply Ito’s formula
and compute the stochastic differential of t 7! logeSi.t/ or, to be precise, let f" be
a function coinciding with log on �";C1Œ and extended to R so that it is twice
differentiable. If �" denotes the exit time ofeSi from the half-line �";C1Œ, then Ito’s
formula gives

logeSi.t ^ �"/
D log xi C

Z t^�"

s
f 0
".
eSi.u// deSi.u/C 1

2

Z t^�"

s
f 00
" .
eSi.u// dheSiiu

D log xi C
Z t^�"

s

1

eSi.u/
deSi.u/� 1

2

Z t^�"

s

1

eSi.u/2
dheSiiu

D log xi C
Z t^�"

s

dX

jD1
�ij.Si.u/; u/ dB�

j .u/� 1

2

Z t^�"

0

dX

jD1
�ij.Si.u/; u/

2 du :

(13.20)

As we know that Si.t/ > 0, hence also eSi.t/ > 0, for every t > 0 a.s., we have
�" ! C1 as " ! 0C, so that we can take the limit as " ! 0C in (13.20), which
gives foreSi the expression

eSi.t/ D xi exp
� Z t

s

dX

jD1
�ij.Si.u/; u/ dB�

j .u/� 1

2

Z t

s

dX

jD1
�ij.Si.u/; u/

2 du
�
:

As � is assumed to be bounded,eSi is a martingale, thanks to Proposition 12.1.
Conversely, if an equivalent martingale measure P� exists, then by Theorem 12.7

there exists a process � 2 M2
loc such that the r.v. �T defined by (13.17) is the density

of P� with respect to P on FT . Then with respect to P� the process B� defined
in (13.19) is a Brownian motion up to time T so that, for 0 � t � T,eSi is a solution
of

deSi.t/
eSi.t/

D
�

bi.Si.t/; t/ � rt C
dX

jD1
�ij.Si.t/; t//�j.t/

�
dt C

dX

jD1
�ij.Si.t/; t/ dB�

j .t/ :
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AseSi is a martingale with respect to P�, then necessarily the coefficient of dt in the
previous differential vanishes, i.e.

bi.Si.t/; t/ � rt C
X

jD1
�ij.Si.t/; t//�j.t/ D 0

for every i D 1; : : : ;m, i.e. (13.18). ut
Recall that, as seen in the proof of Theorem 13.2, the processeseSi satisfy under

P� the relation

deSi.t/
eSi.t/

D
dX

jD1
�ij.St; t/ dB�

j .t/ (13.21)

whereas for the undiscounted price processes we have

dSi.t/

Si.t/
D rt dt C

dX

jD1
�ij.St; t/ dB�

j .t/ : (13.22)

If the price processes eSi are martingales under the probability P�, the process �
introduced in Theorem 13.2 is called the market price of risk.

Let us now investigate the existence of an equivalent martingale measure for the
generalized Black–Scholes model.

Proposition 13.6 Suppose d � m (i.e. that the dimension of the driving
Brownian motion is larger than or equal to the number of risky assets), that
�.x; t/ has maximum rank for every .x; t/ (i.e. �.x; t/ has rank equal to m) and,
moreover, that the matrix field a D ��� is uniformly elliptic with its smallest
eigenvalue bounded from below by 	 > 0 (Definition 9.5 and (9.41)).

Then, there exists at least an equivalent martingale measure P� and the
corresponding market price of risk � is bounded a.s.

Moreover, if d D m the process � is unique and is the unique solution
of (13.18). Conversely, if d > m then there is no uniqueness for the equivalent
martingale measure.

Proof We know, see Remark 9.7, that the assumption of ellipticity implies that
a.x; t/ is invertible for every x; t. Let us first consider the case d D m and therefore
that �.x; t/ is invertible for every x; t. Equation (13.18) then has the unique solution

�t D �.St; t/
�1.Rt � b.St; t// :
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Such a process � is bounded. In fact

j�tj2 D ˝
�.St; t/

�1�Rt � b.St; t/
�
; �.St; t/

�1�Rt � b.St; t/
�˛

D ˝
.���.St; t//

�1
„ ƒ‚ …

Da.x;t/�1

�
Rt � b.St; t/

�
;Rt � b.St; t/

˛ � 1

	
jRt � b.St; t/j2 � K :

(13.23)

The existence of an equivalent martingale measure is now a consequence of
Theorem 13.2. If d > m the argument is similar but we cannot argue in the same
way, as now �.x; t/ is not invertible. Actually �.x; t/ has, for every x; t, a .d � m/-
dimensional kernel. However, for every x; t, let �.x; t/ be an orthogonal d � d matrix
such that its columns from the .m C 1/-th to the d-th form an orthogonal basis of
ker �.x; t/. Then (13.18) can be written as

�.St; t/�.St; t/„ ƒ‚ …
WD�.St;t/

��1.St; t/�t D Rt � b.St; t/ : (13.24)

The columns from the .m C 1/-th to the d-th of the matrix �.St; t/ D �.St; t/�.St; t/
vanish, hence �.x; t/ is of the form

�.x; t/ D .e�.x; t/; 0m;d�m/ ;

wheree�.x; t/ is an m � m matrix and 0m;d�m denotes an m � .d � m/ matrix of zeros.
As

a.x; t/ D �.x; t/��.x; t/ D �.x; t/��.x; t/ D e�.x; t/e��.x; t/ ;

e�.x; t/ is invertible for every x; t. Let �1 be the m-dimensional process

�1.t/ D e�.St; t/
�1�Rt � b.St; t/

�

and let �2.t/ be any bounded progressively measurable process taking values in

R
d�m. Then the process �t D

�
�1.t/
�2.t/

�
satisfies the relation

�.St; t/�t D Rt � b.St; t/

and ��
t D ��1.St; t/�t is a solution of (13.24). A repetition of the argument as

in (13.23), proves that the process �1 is bounded, hence also �� is bounded, thus
proving the existence of an equivalent martingale measure.

Finally, note that if d > m then there are many bounded solutions of (13.18) (for
any possible choice of a bounded progressively measurable process �2). Hence if
d > m the equivalent martingale measure is not unique. ut
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In particular, if d > m, the market cannot be complete, thanks to Proposition 13.1
(see, however, Remark 13.2 and Example 13.1 below). Let us investigate complete-
ness if d D m. The main point is contained in the next statement.

Lemma 13.1 Suppose d D m and that ��� is uniformly elliptic. Let
P� denote the unique equivalent martingale measure whose existence is
proved in Proposition 13.6. Let .Z;T/ be a European option such that Z 2
L1.˝;FT ;P�/ and let

eMt D E�he� R T
0 rs dsZ

ˇ
ˇFt

i
:

Then there exist m progressively measurable processes H1; : : : ;Hm 2 M2
loc

such that

deMt D
mX

iD1
Hi.t/ deSi.t/ :

Proof The idea is to use the representation theorem of martingales, Theorem 12.6,
recalling that in this chapter we assume that .Ft/t is the natural augmented filtration
of B. In fact, as eM is a martingale of the Brownian filtration, we might expect to
have the representation:

eMt D E�he� R T
0 rs dsZ

i
C
Z t

0

eYs dB�
s ; t 2 Œ0;T� ; (13.25)

where eY is a progressively measurable process in M2
loc. In order to conclude the

proof it would be sufficient to choose H as the solution of

mX

iD1
Hi.t/eSi.t/�ik.St; t/ D eYk.t/ ; k D 1; : : : ;m; (13.26)

i.e., � being invertible,

Hi.t/ D Œ.��/�1.St; t/eYt�i
eSi.t/

i D 1; : : : ;m : (13.27)

The integrability requirement for H is satisfied as .��/�1 is bounded (this has
already been proved in the proof of Proposition 13.6, as a consequence of the fact
that a D ��� is uniformly elliptic) andeSt is a strictly positive continuous process.
Therefore Hi 2 M2

loc for every i becauseeYk 2 M2
loc for every k.
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However, the representation theorem for Brownian martingales cannot be applied
in this setting. Indeed, as we are working under P�, thus with the Brownian motion
B�, the filtration to be taken into account in the representation theorem for Brownian
martingales is not .Ft/t but .F�

t /t, i.e. the augmented filtration generated by B� and
completed by the P�-null sets (and in general, F�

t � Ft). In other words, the above

argument would be correct if one had to work with E��e� R T
t rs ds Z jF�

t



, and not

with E��e� R T
t rs ds Z jFt



.

The argument that follows is necessary in order to take care of this difficulty. Let
�� denote the market price of risk (see Proposition 13.6) and let

�t D e
R t
0 �

�
s dBs� 1

2

R t
0 j��

s j2 ds

be the usual exponential martingale such that
dP�

jFT
dPjFT

D �T . Let us consider the

martingale

Mt D E
h
e� R T

0 rs ds Z �T

ˇ
ˇFt

i
:

Note that the expectation is taken under the original measure P and not P�

and that E
�
e� R T

0 rs ds Z �T

 D E��e� R T

0 rs ds Z


, so that the r.v. e� R T

0 rs ds Z �T is P-
integrable. Therefore .Mt/t2Œ0;T� is an .Ft/t-martingale under P and we can apply
the representation theorem for the martingales of the Brownian filtration and obtain
that there exists a progressively measurable process Y 2 M2

loc such that

Mt D E
h
e� R T

0 rs dsZ�T

i
C
Z t

0

Yt dBt :

Now, recalling the relation between conditional expectations under a change of
probability (Exercise 4.4),

eMt D E�
h
e�

R T
0 rs ds Z

ˇ
ˇFt

i
D

E
h
e�

R T
0 rs ds Z �T

ˇ
ˇFt

i

EŒ�T jFt�
D

E
h
e�

R T
0 rs ds Z �T

ˇ
ˇFt

i

�t
D Mt

�t
�

Let us compute the stochastic differential of eM. We have

dMt D Yt dBt D Yt.dB�
t C ��

t dt/

and d�t D �t �
�
t dBt, hence

d
1

�t
D � 1

�2t
d�t C 1

�3t
dh�it D � 1

�t
��

t dBt C 1

�t
j��

t j2 dt D � 1
�t
��

t dB�
t
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and with a final stroke of Ito’s formula

deMt D d
Mt

�t
D 1

�t
Yt.dB�

t C��
t dt/� Mt

�t
��

t dB�
t � 1

�t
Yt�

�
t dt D 1

�t
.Yt �Mt�

�
t / dB�

t :

This gives the representation formula (13.25) with eYt D ��1
t .Yt � Mt�

�
t /, which

when inserted in (13.27) gives the process H we are looking for. It remains to prove
thateY 2 M2

loc, which is easy and left to the reader. ut

Theorem 13.3 If m D d and the matrix field a.x; t/ D ���.x; t/ is uniformly
elliptic then the generalized Black–Scholes model (13.15) is complete.

Proof Let Z 2 L1.˝;FT ;P�/ be a positive r.v. We must prove that it is attainable.
Let

eMt D E�he� R T
0 rsdsZ

ˇ
ˇFt

i
; t 2 Œ0;T� :

By Lemma 13.1 there exist m progressively measurable processes H1; : : : ;Hm 2
M2

loc such that

deMt D
mX

iD1
Hi.t/deSi.t/ :

Let

H0.t/ D eMt �
mX

iD1
Hi.t/eSi.t/ ; t 2 Œ0;T� ; (13.28)

and consider the trading strategy H D .H0;H1; : : : ;Hm/ over Œ0;T�. Notice that for
the corresponding portfolio we have

eVt.H/ D H0.t/C
mX

iD1
Hi.t/eSi.t/ D eMt; t 2 Œ0;T� ; (13.29)

hence VT.H/ D Z. Let us prove that H is admissible.
First observe that H satisfies (13.5). In fact, we already know that H1; : : : ;Hm 2

M2
loc. Moreover, eM andeS are continuous; this proves that the HiSi are also in M2

loc
and from (13.28) H0 2 M2

loc � M1
loc. By (13.29)

deVt.H/ D deMt D
mX

iD1
Hi.t/deSi.t/ ;
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so that V.H/ is self-financing thanks to Proposition 13.1. Moreover,eVt.H/ D eMt �
0 a.s. by construction, being the conditional expectation of a positive r.v. Therefore
H is admissible.

Moreover, H is a trading strategy in MT.P�/ aseV.H/ is a .Ft/t-martingale under
P�: eVt.H/ D eMt and eMt is an .Ft/t-P�-martingale by construction.

As, finally, VT.H/ D e
R T
0 rsdseVT.H/ D e

R T
0 rsdseMT D Z, H replicates Z at time T

and Z is attainable. ut
In the previous statements we have assumed d � m, i.e. that there are at least

as many Brownian motions as there are risky assets. If, conversely, d < m then the
solution of the equation

�.St; t/�t D b.St; t/ � Rt

might not exist as �.x; t/ is a matrix mapping R
d ! R

m. Hence an equivalent
martingale measure might not exist and arbitrage is possible. Exercise 13.5 gives an
example of this phenomenon.

Remark 13.2 Let us criticize the theory developed so far.
The definition of a European option given in Definition 13.1 is not really

reasonable. An option in the real market is something that depends on the
value of the prices. The call and put options are of this kind, as well as the
other examples that we shall see in the next sections.

Therefore a reasonable definition of a European option would be that it
is a pair .Z;T/ (payoff and maturity) such that Z is H T-measurable where
H t D �.Ss; s � t;N / denotes the filtration generated by the price process S
and augmented. It is clear that H t � Ft and in general Ht 6D Ft (recall that
we assume .Ft/t D .G t/t, see also Remark 9.4).

Similarly it would be useful if the trading strategy Ht at time t were an
H t-measurable r.v., i.e. a functional of the price process.

If m D d this turns out not to be a real problem: under the assumptions of
Theorem 13.3, i.e. the matrix field a.x; t/ D ���.x; t/ is uniformly elliptic, it
can be proved that the two filtrations .Ft/t and .H t/t coincide.

This equality of the two filtrations is not true if d > m. In this case,
however, one may ask whether a European option .Z;T/ such that Z is
H T -measurable is attainable. The next example provides an approach to the
question.

Example 13.1 Let us consider a generalized Black–Scholes market model
with one risky asset satisfying the SDE, with respect to the two-dimensional

(continued)



13.6 Pricing and hedging in the generalized Black–Scholes model 417

Example 13.1 (continued)
Brownian motion B,

dSt

St
D b.St/ dt C �1 dB1.t/C �2 dB2.t/ ; (13.30)

where �1; �2 > 0. In this case, the dimension of the Brownian motion is
d D 2, so that, by Proposition 13.6, there is no uniqueness of the equiv-
alent martingale measure and by Theorem 13.1 the model is not complete.
Hence there are options that are not attainable. But, denoting by .H t/t the
augmented filtration generated by S, we see now that every European option
.Z;T/ such that Z is H T -measurable is actually attainable.

Indeed, consider the real Brownian motion

Wt D �1B1.t/C �2B2.t/
q
�21 C �22

�

Now (13.30) can be rewritten as

dSt

St
D b.St/ dt C � dWt ;

where � D
q
�21 C �22 and Theorem 13.3 guarantees that every option that

is G
W
T -measurable is attainable, where we denote by .G

W
t /t the augmented

filtration of W (which is strictly smaller than FT : try to find an example of

an FT -measurable r.v. which is not G W
T -measurable). As H T � G

W
T (again

thanks to Remark 9.4) our claim is verified.

Note also that in this case H T D G
W
T (see Exercise 9.26).

13.6 Pricing and hedging in the generalized Black–Scholes
model

We have seen in Theorem 13.3 that under suitable conditions for the generalized
Black–Scholes model a unique equivalent martingale measure P� exists and that
the model is complete. Hence every European option .Z;T/ such that Z is square
integrable with respect to P� is attainable and by Proposition 13.4 its no-arbitrage
price is given by

Vt D E�he� R T
t rs ds Z

ˇ
ˇFt

i
: (13.31)

The problem of the determination of the price is therefore solved.
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But let us consider the problem also from the point of view of the issuer: which
strategy should be taken into account in order to deliver the contract? The value
Vt of (13.31) is also the value of a replicating portfolio but it is also important to
determine the corresponding strategy H. This would enable the issuer to construct
the replicating portfolio, which, at maturity, will have the same value as the payoff
of the option.

This is the hedging problem. In Theorem 13.1 we have proved the existence of
a replicating strategy H, but we made use of the martingale representation theorem,
which is not constructive. We make two additional assumptions to our model

• .x; t/ 7! �.x; t/ is Lipschitz continuous.
• The randomness of the spot rate r is driven by the risky asset prices, i.e. is

of the form

rt D r.St; t/ :

Note that this assumption contains the case where r is a deterministic
function. We shall require .x; t/ 7! r.x; t/ to be a bounded, non-negative
and Lipschitz continuous function.

Hence, recalling (13.22) and (13.21), the price process and the discounted price
process solve respectively the SDEs

dSi.t/

Si.t/
D r.St; t/ dt C

dX

kD1
�ik.Si.t/; t/ dB�

k .t/

Si.0/ D xi i D 1; : : : ;m

(13.32)

and

deSi.t/
eSi.t/

D
dX

kD1
�ik.Si.t/; t/ dB�

k .t//

eSi.0/ D xi i D 1; : : : ;m :

(13.33)

Note that with these assumptions on � and r, the diffusion process S satisfies the
hypotheses of most of the representation theorems of Chap. 10 and in particular of
Theorem 10.6.

Let us consider an option Z of the form Z D h.ST/. Under P�, S is an .m C 1/-
dimensional diffusion and thanks to the Markov property, Proposition 6.1,

Vt D E�he� R T
t r.Ss;s/ ds h.ST/

ˇ
ˇFt

i
D P.St; t/ ;
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where

P.x; t/ D E�he� R T
t r.Sx;t

s ;s/ ds h.Sx;t
T /
i
;

.Sx;t
s /s�t denoting the solution of (13.33) starting at x at time t. The value of the

replicating discounted portfolio is then

eVt D e� R t
0 r.Ss;s/ dsVt D e� R t

0 r.Ss;s/ dsP.St; t/ :

Now suppose that the function P is of class C2;1 (continuous, twice differentiable in
the variable x and once in t). Ito’s formula gives

deVt D �r.St; t/e� R t
0 r.Ss;s/ dsP.St; t/ dt C e� R t

0 r.Ss;s/ ds dP.St; t/

D e� R t
0 r.Ss;s/ ds

�
� r.St; t/P.St; t/C @P

@t
.St; t/

C
mX

iD1

@P

@xi
.St; t/r.St; t/Si.t/

C 1

2

mX

i;jD1

@2P

@xi@xj
.St; t/ aij.St; t/ Si.t/ Sj.t/

�
dt

C e� R t
0 r.Ss;s/ ds

mX

iD1

@P

@xi
.St; t/Si.t/

dX

kD1
�ik.St; t/ dB�

k .t/ ;

(13.34)

where a D � �� as usual. Now, as eV is a P�-martingale, necessarily the finite
variation part in the previous differential must vanish, i.e.

@P

@t
.x; t/C LtP.x; t/ � r.x; t/P.x; t/ D 0; on R

m � Œ0;TŒ ; (13.35)

where Lt is the generator of S under the risk neutral measure i.e.

Lt D r.x; t/
mX

iD1
xi
@

@xi
C 1

2

mX

i;jD1
aij.x; t/ xi xj

@2

@xi@xj
�

Theorem 13.4 Let h W Rm ! R
C be a continuous function such that h.x/ �

C.1C jxj˛/ for some C; ˛ > 0 and let

P.x; t/ D E�he� R T
t r.Sx;t

s ;s/ ds h.Sx;t
T /
i

(13.36)

(continued)
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Theorem 13.4 (continued)
be the price function of the option h.ST/ with maturity T in the generalized
Black–Scholes model. Then P is the solution of the PDE problem

8
<

:

@P

@t
.x; t/C LtP.x; t/� r.x; t/P.x; t/ D 0; on R

m � Œ0;TŒ
P.x;T/ D h.x/ :

(13.37)

Proof In the computation above we obtained (13.37) under the assumption that P
is of class C2;1, which is still to be proved. In order to achieve this point we use
Theorem 10.6, which states that the PDE problem (13.37) has a solution and that it
coincides with the left-hand side of (13.36).

Unfortunately Theorem 10.6 requires the diffusion coefficient to be elliptic,
whereas the matrix of the second-order derivatives of Lt vanishes at the origin
(and becomes singular on the axes), hence it cannot be applied immediately. The
somehow contorted but simple argument below is developed in order to circumvent
this difficulty.

The idea is simply to consider the process of the logarithm of the prices, whose
generator is elliptic, and to express the price of the option in terms of this logarithm.

For simplicity, for x 2 R
m, let us denote .ex1 ; : : : ; exm/ by ex. By a repetition of

the argument leading to (13.16), if �i.t/ D log Si.t/ then

d�i.t/ D
�

r.e�.t/; t/ dt � 1

2
aii.e�.t/; t/

�
dt C

dX

jD1
�ik.e�.t/; t/ dB�

k .t/ ;

where a D ��� and with the starting condition �i.s/ D log xi. Hence � is a diffusion
with generator

Lt D
mX

iD1

�
r.ex; t/ � 1

2
aii.e

x; t/
� @

@xi
C

mX

i;jDm

aij.e
x; t/

@2

@xi@xj
� (13.38)

Now for the option price we can write

P.ex; t/ D E�
h
e� R T

t r.e�
x;t
s ;s/ ds h.e�

x;t
T /
i
:

As the generator Lt in (13.38) satisfies the assumptions of Theorem 10.6 (in partic-
ular, its diffusion coefficient is uniformly elliptic), the function P.x; t/ WD P.ex; t/ is
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a solution of
8
<

:

@P

@t
.x; t/C LtP.x; t/ � r.ex; t/P.x; t/ D 0; on R

m � Œ0;TŒ
P.x;T/ D h.ex/ ;

which easily implies that P satisfies (13.37). ut
From (13.34) we now have

deVt D
mX

iD1

@P

@xi
.St; t/eSi.t/

dX

kD1
�ik.St; t/ dB�

k .t/ D
mX

iD1

@P

@xi
.St; t/ deSi.t/

so that, by Proposition 13.1, we find the replicating strategy, defined by

8
ˆ̂
<

ˆ̂
:

Hi.t/ D @

@xi
P.St; t/ i D 1; : : : ;m

H0.t/ D eVt �
mX

iD1
Hi.t/eSi.t/ ;

(13.39)

which is self-financing and, as eVt � 0 by construction, also admissible.
Equation (13.35) is sometimes called the fundamental PDE following from the

no-arbitrage approach. Theorem 13.4 gives a way of computing the price P of
the option with payoff h.ST/, just by solving the PDE problem (13.37), possibly
numerically.

Note the not-so-intuitive fact that the price does not depend on the drift b
appearing in the dynamic (13.15) of the prices in the generalized Black–Scholes
model.

This means in particular that it is irrelevant, in order to consider the price of an
option, whether the price of the underlying asset follows an increasing trend
(corresponding to bi.x; t/ > 0) or decreasing (bi.x; t/ < 0).

Recalling thateVt D e� R t
0 r.Ss;s/ dsP.St; t/, (13.39) can also be written as

Hi.t/ D @P

@xi
.St; t/; i D 1; : : : ;m

H0.t/ D e� R t
0 r.Ss;s/ ds

�
P.St; t/ �

mX

iD1
Hi.t/ Si.t/

�
:

(13.40)
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The quantities Hi.t/, i D 1; : : : ;m, in (13.39) are also called the deltas of the option
and are usually denoted by �:

�i.St; t/ D @P

@xi
.St; t/; i D 1; : : : ;m :

The delta is related to the sensitivity of the price with respect to the values of the
underlying asset prices. In particular, (13.40) states that the replicating portfolio
must contain a large amount in the i-th underlying asset if the price of the option is
very sensitive to changes of the price of the i-th underlying.

The delta is a special case of a Greek.
The Greeks are quantities giving the sensitivity of the price with respect to the

parameters of the model. The name “Greeks” comes from the fact that they are
usually (but not all of them. . . ) denoted by Greek letters. They are taken into special
account by practitioners, because of the particular financial meanings of each of
them. The most used Greeks can be summarized as follows:

• delta: sensitivity of the price of the option w.r.t. the initial value of the price
of the underlying:�i D @P

@xi
;

• gamma: sensitivity of the delta w.r.t. the initial values of the price of the
underlying: �ij D @2P

@xi@xj
;

• theta: sensitivity of the price w.r.t. the initial time:� D @P
@t I

• Rho: sensitivity of the price w.r.t. the spot rate: RhoD @P
@r I

• Vega: sensitivity of the price w.r.t. the volatility: VegaD @P
@�

.

Obviously, in the Rho and Vega cases, the derivatives must be understood in a
suitably functional way whenever r and � are not modeled as constants.

The last two Greeks, Rho and Vega, give the behavior of the price and then of
the portfolio with respect to purely financial quantities (i.e. the interest rate and the
volatility), whereas the other ones (delta, gamma and theta) give information about
the dependence of the portfolio with respect to parameters connected to the assets on
which the European option is written (the starting time and the prices of the assets).

13.7 The standard Black–Scholes model

In this section we derive explicit formulas for the price of a call and put option as
well as the associated Greeks in a classical one-dimensional model, the standard
Black–Scholes model. By this we mean the particular case where there is only one
risky asset and the volatility � and the spot rate r are constant.
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Under the risk-neutral measure P�, the price of the risk asset evolves as

dSt

St
D r dt C � dB�

t (13.41)

and the price at time t of the call option with maturity T is given by

Pcall.St; t/ D E�
h
e�r.T�t/ .ST � K/C

ˇ
ˇFt

i
;

where K stands for the strike price. If we use the notation Sx;t to denote the solution
S of (13.41) starting at x at time t, then

Sx;t
s D x e.r� 1

2 �
2/.s�t/C�.B�

s �B�
t /; s � t ;

and we have

Pcall.x; t/ D E�
h
e�r.T�t/ .Sx;t

T � K/C
i

D e�r.T�t/ E�
h�

x e.r� 1
2 �

2/.T�t/C�.B�
T �B�

t / � K
�Ci

:

(13.42)

The expectation above can be computed remarking that, with respect to P�, B�
T � B�

t

has the same distribution as
p

T � t Z with Z � N.0; 1/, so that

Pcall.x; t/ D e�r.T�t/ 1p
2�

Z C1

�1
�
xe.r� 1

2
�2/.T�t/C�p

T�t z � K
�C

e�z2=2 dz :

The integrand vanishes if xe.r� 1
2
�2/.T�t/C�p

T�t z � K, i.e. for z � d0.x;T �t/, where

d0.x; t/ D 1

�
p

t

�
� log

x

K
� �

r � 1

2
�2
�
t
�

so that

Pcall.x; t/

D e�r.T�t/ 1p
2�

Z C1

d0.x;T�t/

�
xe.r� 1

2
�2/.T�t/C�p

T�t z � K
�

e�z2=2 dz :
(13.43)

This integral can be computed with a simple if not amusing computation, as already
developed in Exercise 1.13. If we denote by ˚ the partition function of a N.0; 1/-
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distributed r.v. we have from (13.43)

Pcall.x; t/ D xp
2�

Z C1

d0.x;T�t/
e� 1

2 .z��
p

T�t/2 dz � Ke�r.T�t/

p
2�

Z C1

d0.x;T�t/
e�z2=2 dz

D xp
2�

Z C1

d0.x;T�t/��p
T�t

e�z2=2 dz � Ke�r.T�t/˚.�d0.x;T � t//

D x˚.�d0.x;T � t/C �
p

T � t /� Ke�r.T�t/˚.�d0.x;T � t// :

It is customary to introduce the following two quantities

d1.x; t/ D �d0.x; t/C �
p

t D 1

�
p

t

�
log

x

K
C �

r C 1

2
�2
�

t
�

d2.x; t/ D �d0.x; t/ D 1

�
p

t

�
log

x

K
C �

r � 1

2
�2
�

t
�

so that finally the price of the call option is given by the classical Black-Scholes
formula (see Fig. 13.1)

Pcall.x; t/ D x˚.d1.x;T � t// � K e�r.T�t/ ˚.d2.x;T � t// : (13.44)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

P
(x
,0
)

K=0.95↘

↖K=1.5 ↖K=4

Fig. 13.1 Behavior of the price of a call option as a function of � , on the basis of the Black-
Scholes formula for x D 1; r D :15; T D 1 and different values of the strike price K. As � ! 0

the price tends to 0 if log K
x � rT > 0, otherwise it tends to x � Ke�rT
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Let us determine the hedging portfolio. Again by straightforward computations, one
obtains

�call.x; t/ D @Pcall

@x
.x; t/ D ˚.d1.x;T � t// : (13.45)

Hence, recalling formulas (13.40), a hedging portfolio for the call option in this
model is given by

H1.t/ D �call.St; t/ D ˚.d1.St;T � t//

H0.t/ D e�rt
�

P.St; t/ �˚.d1.St;T � t//St

�
:

(13.46)

Note that we can write

d1.St;T � t/ D 1

�

� 1p
T � t

log
St

K
C
�

r C 1

2
�2
�p

T � t
�
:

If the price St remains > K for t near T then d1.St;T � t/ will approach C1 and,
thanks to (13.46), H1.t/ will be close to 1. This is in accordance with intuition: if the
price of the underlying asset is larger than the strike it is reasonable to expect that
the call will be exercised and therefore it is wise to keep in the replicating portfolio
a unit of the underlying.

As for the put option, one could use similar arguments or also the call-put parity
property

Pcall.x; t/ � Pput.x; t/ D e�r.T�t/ E�Œ.Sx;t
T � K/� D x � Ke�r.T�t/

as explained later in Remark 13.3. The associated price and delta are therefore given
by the formulas

Pput.x; t/ D K e�r.T�t/ ˚.�d2.x;T � t// � x˚.�d1.x;T � t//;

�put.x; t/ D @Pput

@x
.x; t/ D ˚.d1.x;T � t// � 1 :

(13.47)

The other Greeks can also be explicitly written as summarized below (denoting by
� D ˚ 0 the standard N.0; 1/ density):
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� �call.x; t/ D �.d1.x;T � t//

x �
p

T � t
D �put.x; t/

� �call.x; t/ D �x�.d1.x;T � t// �

2
p

T � t
� r x e�r.T�t/ �.d2.x;T � t//

� �put.x; t/ D �x�.d1.x;T � t// �

2
p

T � t
C r x e�r.T�t/ ˚.�d2.x;T � t//

� Rhocall.x; t/ D x .T � t/ e�r.T�t/ ˚.d2.x;T � t//

� Rhoput.x; t/ D �x .T � t/ e�r.T�t/ ˚.�d2.x;T � t//

� Vegacall.x; t/ D x
p

T � t �.d1.x;T � t// D Vegaput.x; t/ :

(13.48)

These expressions of the Greeks can be obtained by the Black–Scholes formula
with straightforward computations. Let us derive explicitly the formula for the Vega,
whose value has some important consequences. Let us consider the case of the call
option. We must take the derivative of the price with respect to � . Instead of taking
the derivative in (13.44), it is simpler to differentiate (13.43) under the integral sign.
We then have, since the integrand in (13.43) vanishes at d0.x;T � t/,

@Pcall

@�
.x; t/

D �e�r.T�t/

p
2�

@d0
@�
.x;T � t/ �

��
xe.r� 1

2
�2/.T�t/Cp

T�t �z � K
�

e�z2=2
�ˇˇ
ˇ
zDd0.x;T�t/

„ ƒ‚ …
D0

Ce�r.T�t/

p
2�

Z C1

d0.x;T�t/

@

@�

�
xe.r� 1

2
�2/.T�t/Cp

T�t �z � K
�

e�z2=2 dz

D xp
2�

Z C1

d0.x;T�t/

� � �.T � t/C p
T � t z

�
e� 1

2
�2.T�t/Cp

T�t �z e�z2=2 dz

D xp
2�

Z C1

d0.x;T�t/

� � �.T � t/C p
T � t z

�
e� 1

2 .z��
p

T�t/2 dz

and with the change of variable y D z � �
p

T � t we finally obtain

@Pcall

@�
.x; t/ D xp

2�

Z C1

d0.x;T�t/��p
T�t

p
T � t y e�y2=2 dy

D x
p

T � tp
2�

e� 1
2 .d0.x;T�t/��p

T�t/2
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which, recalling that d0.x;T � t/ � �
p

T � t D �d1.x;T � t/, is the result that was
claimed in (13.48). In particular, the Vega in the standard Black–Scholes model is
strictly positive, i.e.

the price is a strictly increasing function of the volatility � (Fig. 13.1).

Example 13.2 Let us assume �2 D 0:2, r D 0:1, T D 1, K D 1. What is
the price of a call option at time t D 0 if the price of the underlying asset is
x D 0:9? What is the composition, always at time 0, of the hedging portfolio?

This is a numerical computation, requiring appropriate software in order
to perform the evaluations requested by formulas (13.44) and (13.46). The
results are

Pcall.0:9; 0/ D 0:16

H1.0/ D 0:58

H0.0/ D �0:37 :

How do we expect these quantities to change if the price at t D 0 were x D
1:1?

In this case the option is more likely to be exercised, the initial price x
now being greater than the strike. Hence we expect the price to be higher and
the hedging portfolio to contain a larger amount of the underlying asset. The
numerical computation gives

Pcall.1:1; 0/ D 0:29

H1.0/ D 0:75

H0.0/ D �0:53

in accordance with what was expected.
And what if, still with x D 1:1, we assumed �2 D 0:5? We know that the

price will increase. In fact

Pcall.1:1; 0/ D 0:38

H1.0/ D 0:74

H0.0/ D �0:42 :
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Example 13.3 (Barrier options) The payoff of a European option (Defini-
tion 13.1) can be any positive FT -measurable r.v. Puts and calls are particular
cases that are functions of the value of the price of the underlying asset at time
T. In practice more general situations are possible, in particular with payoffs
that are functions of the whole path of the price. These are generally referred
to as path dependent options.

A typical example is the payoff

Z D .ST � K/C1fsup0�s�T Ss�Ug ; (13.49)

where U is some value larger than the strike K. The holder of this option
receives at time T the amount .ST � K/C (as for a classical call option) but
under the constraint that the price has never crossed the level U (the barrier)
before time T. Many variations of this type are possible, combining the type
of option (put or call as in (13.49)) with the action at the crossing of the barrier
that may cancel the option as in (13.49) or activate it. In the financial jargon
the payoff (13.49) is an up and out call option.

In this example we determine the price at time t D 0 of the option
with payoff (13.49) under the standard Black–Scholes model. The general
formula (13.12) gives the value

p D E��e�rT.ST � K/C1fsup0�t�T St�Ug


; (13.50)

where, under P�,

St D xe.r� 1
2 �

2/tC�Bt

and x D S0 is the price of the underlying at time 0. The computation of
the expectation in (13.50) requires the knowledge of the joint distribution of
ST and its running maximum sup0�t�T St or, equivalently, of the Brownian
motion with drift 1

�
.r � 1

2
�2/ and of its running maximum. The idea is to

first make a change of probability in order to “remove” the drift. The joint
distribution of a Brownian motion and of its running maximum is actually
known (Corollary 3.3). Let

ZT D exp
�

� 1

�

�
r � 1

2
�2
�
BT � 1

2�2

�
r � 1

2
�2
�2

T
�
;

then with respect to Q, dQ D ZT dP�, the process

Wt D Bt C 1

�

�
r � �2

2

�
t

(continued)
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Example 13.3 (continued)

is a Brownian motion. Hence

EŒe�rT.ST � K/C1fsup0�t�T St�Ug�

D e�rTEQ
h
Z�1

T .xe�WT � K/C1fsup0�t�T xe�Wt �Ug
i
:

Now, as BT D WT � 1
�
.r � �2

2
/T,

Z�1
T D exp

h 1

�

�
r � 1

2
�2
�
BT C 1

2�2

�
r � 1

2
�2
�2

T
i

D exp
h 1

�

�
r � 1

2
�2
�
WT � 1

2�2

�
r � 1

2
�2
�2

T
i

so that the price p of the option is equal to

e�rT� 1
2�2

.r� 1
2
�2/2TEQ

h
e
1
� .r� 1

2
�2/WT .xe�WT � K/C1fsup0�t�T xe�Wt �Ug

i
:

By Corollary 3.3 the joint law of .WT ; sup0�t�T Wt/ has density

f .z; y/ D
� 2

�T3

�1=2
.2y � z/ e� 1

2T .2y�z/2
; y > z; y > 0 :

Hence

EQ
h
e
1
� .r� 1

2
�2/WT .xe�WT � K/C1fsup0�t�T xe�Wt �Ug

i

D
Z �2

0

dy
Z y

�1
e
1
� .r� 1

2
�2/z
.xe�z � K/Cf .z; y/ dz

where �2 D 1
�

log.U
x /. Note that the integrand vanishes for z � �1 WD

1
�

log.K
x /, so that we are left with the computation of

Z �2

0

dy
Z y

�1

e
1
� .r� 1

2
�2/z
.xe�z � K/f .z; y/ dz

D
� 2

�T3

�1=2 Z �2

�1

dz
Z �2

z_0
e
1
� .r� 1

2
�2/z
.xe�z � K/ .2y � z/ e� 1

2T .2y�z/2 dy :

(continued)
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Example 13.3 (continued)

Replacing the variable y with � D 2y � z the integral becomes

1

2

Z �2

�1

e
1
� .r� 1

2
�2/z
.xe�z � K/ dz

Z 2�2�z

2.z_0/�z
� e� 1

2T �2 d�

D T

2

Z �2

�1

e
1
� .r� 1

2
�2/z
.xe�z � K/.e� 1

2T .2.z_0/�z/2 � e� 1
2T .2�2�z/2

/ dz :

Finally, the requested price is equal to

e�rT� 1
2�2

.r� 1
2
�2/2T 1p

2�T

�
Z �2

�1

e
1
� .r� 1

2
�2/z
.xe�z � K/.e� 1

2T .2.z_0/�z/2 � e� 1
2T .2�2�z/2

/ dz :
(13.51)

From this it is possible to deduce a closed formula, having the flavor of the
Black–Scholes formula, only a bit more complicated.

Proposition 13.7 In the standard Black-Scholes model with spot inter-
est rate r and volatility � , the price p at time 0 as a function of the initial
price x of an up-and-out call barrier option with strike K, maturity T and
barrier U is given by:

x .˚.a1/ �˚.a2// � Ke�rT .˚.b1/ �˚.b2//
�xe

�rT� T
2 .

r
� � �

2 /
2� 2

T �
2
2C 1

2 .
2rTC�2TC4��2

2�
p

T
/2

.˚.c1/ �˚.c2//C
CKe

�rT� T
2 .

r
� � �

2 /
2� 2

T �
2
2C 1

2 .
2rT��2TC4��2

2�
p

T
/2

.˚.d1/ �˚.d2// ;
(13.52)

where ˚ is again the cumulative distribution function of a N.0; 1/-
distributed r.v. and

�1 D 1

�
log.K

x /; �2 D 1

�
log.U

x /;

a1 D �2p
T

� p
T
2r C �2

2�
; a2 D �1p

T
� p

T
2r C �2

2�
;

b1 D �2p
T

� p
T
2r � �2
2�

; b2 D �1p
T

� p
T
2r � �2
2�

;

c1 D �2p
T

� 2rT C �2T C 4��2

2�
p

T
; c2 D �1p

T
� 2rT C �2T C 4��2

2�
p

T
;

d1 D �2p
T

� 2rT � �2T C 4��2

2�
p

T
; d2 D �1p

T
� 2rT � �2T C 4��2

2�
p

T
�

(continued)
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Example 13.3 (continued)
Proof The integral in (13.51) can be decomposed into the sum of four terms:

x
Z �2

�1

e.
r
� C �

2 /z� 1
2T z2 dz � x e� 2

T �
2
2

Z �2

�1

e.
r
� C �

2 C 2
T �2/z� 1

2T z2 dz

�K
Z �2

�1

e.
r
� � �

2 /z� 1
2T z2 dz C Ke� 2

T �
2
2

Z �2

�1

e.
r
� � �

2 C 2
T �2/z� 1

2T z2 dz

and we treat them separately. The first term on the right-hand side can be
rewritten as

xe
T
2 .

2rC�2

2� /2
Z �2

�1

e
� 1
2 .

zp
T

�p
T 2rC�2

2� /2

dz;

so that with the change of variable u D zp
T

� p
T 2rC�2

2�
we arrive at

x
p
2�T e

T
2 .

2rC�2

2� /2
Z �2p

T
�p

T 2rC�2

2�

�1p
T

�p
T 2rC�2

2�

1p
2�T

e� u2
2 du

D x
p
2�T e

T
2 .

2rC�2

2� /2 .˚.a1/ �˚.a2// :

With similar changes of variables, the second term gives

�x
p
2�T e

� 2
T �

2
2C 1

2 .
2rTC�2TC4��2

2�
p

T
/2

.˚.b1/� ˚.b2// ;

the third term

�K
p
2�T e

T
2 .

2r��2

2� /2 .˚.c1/� ˚.c2// ;

and the last one

K
p
2�T e

� 2
T �

2
2C 1

2 .
2rT��2TC4��2

2�
p

T
/2

.˚.d1/ �˚.d2// :

Multiplying all these terms by e�rT� 1

2�2
.r� �2

2 /T 1p
2�T

the proof is
completed. ut

As an example let us compare the price of a barrier option with the values
x D 0:9, � D 0:2, r D 0:1, T D 1, K D 1 and with the barrier U D 2.
Hence in this case the option is canceled if before the maturity T the price of
the underlying becomes larger that 2.

(continued)
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Example 13.3 (continued)
We have obtained in Example 13.2 that without the barrier constraint the

price of the option is 0:15. Computing with patience the value in (13.7) we
find that the price of the corresponding barrier option becomes 0:09.

The barrier option is therefore considerably less expensive, but of course
it does not protect from spikes of the price of the underlying asset. Taking
U D 3 the price of the barrier option becomes 0:14, very close to the value
without barrier.

Remark 13.3 (The call-put parity) Let Ct, resp. Pt, denote the price of a call,
resp. a put, option on the same asset at time t. Assume that the spot rate r is
deterministic. Then the following call-put parity formula holds:

Ct D Pt C St � e� R T
t rs dsK : (13.53)

In fact, using the relation zC � .�z/C D z,

Ct � Pt D E�he� R T
t rs ds.ST � K/C

ˇ
ˇFt

i
� E�he� R T

t rs ds.K � ST/
C ˇˇFt

i

D E�he� R T
t rs ds.ST � K/

ˇ
ˇFt

i
D e

R t
0 rs dsE�ŒeST jFt� � e� R T

t rs dsK

D e
R t
0 rs dseSt � e� R T

t rs dsK D St � e� R T
t rs dsK :

The relation (13.53) can also be obtained from the requirement of absence of
arbitrage, without knowing the expression of the prices. Let us verify that a
different relation between these prices would give rise to an opportunity of
arbitrage.

Let us assume Ct > Pt CSt �Ke� R T
t rs ds. One can then establish a portfolio

buying a unit of the underlying asset and a put option and selling a call option.
The price of the operation is Ct �Pt �St and is covered through an investment
of opposite sign in the riskless asset. This operation therefore does not require
us to engage any capital. At maturity we dispose of a put option, a unit of the

underlying asset and an amount of cash �.Ct � Pt � St/ e
R T

t rs ds and we have
to fulfill a call.

There are two possibilities

• ST > K. In this case the call is exercised; we sell the underlying, which
allows us to honor the call and to collect an amount equal to K. The put is,
of course, valueless. The global balance of the operation is

K � .Ct � Pt � St/ e
R T

t rs ds > 0 :

(continued)
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Remark 13.3 (continued)
• ST � K. In this case the call is not exercised. We use then the put in order

to sell the unit of underlying at the price K. The global balance of operation

is again K � .Ct � Pt � St/ e
R T

t rs ds > 0.

In a similar way it is possible to establish an arbitrage portfolio if

conversely Ct < Pt C St � Ke� R T
t rs ds.

Note that this arbitrage argument holds for very general models (the only
requirement is that the spot interest rate must be deterministic).

(13.53) is useful because it allows us to derive the price of a call option
from the price of the corresponding put and put options are somehow easier
to deal with, as their payoff is a bounded r.v.

Note that almost all quantities appearing in the Black–Scholes formulas (13.43)
and (13.47) are known in the market. The only unknown quantity is actually the
volatility � .

In practice, � is estimated empirically starting from the option prices already
known: let us assume that in the market an option with strike K and maturity T is
already traded with a price z. Let us denote by CK;T .�/ the price of a call option
as a function of the volatility � for the given strike and volatility K;T. As CK;T is
a strictly increasing function, we can determine the volatility as � D C�1

K;T.z/. In
this way options whose price is already known allow us to determine the missing
parameter � and in this way also the price of options not yet on the market.

Another approach to the question is to estimate � from the observed values of
the underlying: actually nowadays the price of a financial asset is known at a high
frequency. This means that, denoting the price process by S, the values St1 ; St2 ; : : :

at times t1; t2; : : : are known. The question, which is mathematically interesting in
itself, is whether it is possible starting from these data to estimate the value of � ,
assuming that these values come from a path of a process following the Black–
Scholes model.

The fact that the option price is an invertible function of the volatility also allows
us to check the soundness of the Black–Scholes model. Assume that two options
on the same underlying asset are present in the market, with strike and maturity
K1;T1 and K2;T2 and prices z1; z2, respectively. If the Black–Scholes model was a
good one, the value of the volatility computed by the inversion of the price function
should be the same for the two options, i.e. the two quantities

C�1
K1;T1 .z1/ and C�1

K2;T2 .z2/

should coincide. In practice, it has been observed that this is not the case. The
standard Black–Scholes model, because of its assumption of constancy of the
volatility, thus appears to be too rigid as a model of the real world financial markets.
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Nevertheless, it constitutes an important first attempt and also the starting point of,
very many, more complicated models that have been introduced in recent years.

Exercises

13.1 (p. 616) Assume that the prices St D .S0.t/; S1.t/; : : : ; Sm.t// follow the
generalized Black–Scholes model (13.15) and that the spot rate process .rt/t is inde-
pendent of .St/t (this assumption is satisfied in particular if .rt/t is deterministic).
Assume, moreover, that there exists an equivalent martingale measure P�. Prove
that, for every i D 1; : : : ;m, and E�ŒSi.0/� < C1,

E�ŒSi.t/� D e
R t
0 E�Œrs� dsE�ŒSi.0/� :

13.2 (p. 617) Let us consider the generalized Black–Scholes model (13.15) which,
we know, may not be complete in general, so that there are options that might
not be attainable. We want to prove, however, that, if the spot interest rate .rt/t is
deterministic and there exists an equivalent martingale measure P�, then the option

Z D
Z T

0

�
˛Si.s/C ˇ

�
ds ;

˛; ˇ > 0, is certainly attainable, for every i D 1; : : : ;m.

a) Write down the differential of Si under P� and compute E�ŒSi.t/jFs�.

b) Compute E�Œe� R T
t ru duZ jFt� and determine a replicating portfolio for the option

Z (check in particular that it is admissible).
c) Deduce that Z is an attainable option and compute its price at time 0 as a function

of the price x D Si.0/.

13.3 (p. 618) In a standard Black–Scholes model let us consider an investor
that constructs a self-financing portfolio V with the constraint that the value of
the component invested into the risky asset is constant and equal to some value
M > 0.

a) Assuming that the value V0 at time 0 is deterministic and positive, compute the
distribution of Vt and compute EŒVt�, as a function of V0 and of the parameters
r; �; � of the Black–Scholes model.

b) Is V admissible?

13.4 (p. 620) (Have a look at Example 12.5 first) Let us consider a standard Black–
Scholes model with parameters b; �; r. Consider an option, Z, that pays an amount
C if the price S crosses a fixed level K, K > 0, before some fixed time T and 0
otherwise.
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a) Write down the payoff of this option.
b) Compute its no-arbitrage price at time 0.

13.5 (p. 621) Let us consider a market with a riskless asset with price S0.t/ D ert

and two risky assets with prices

dSi.t/ D Si.t/.�i dt C � dBt/; Si.0/ D xi ;

where �i 2 R, �1 6D �2, r; � > 0 and B is a real Brownian motion. Show that there
are arbitrage possibilities by proving that an equivalent martingale measure does not
exist and provide explicitly an arbitrage portfolio.



Solutions of the Exercises

1.1 If X and Y have the same law �, then they also have the same p.f., as

FX.t/ D P.X � t/ D �.� � 1; t�/ D P.Y � t/ D FY.t/ :

Conversely, if X and Y have the same p.f. F, then, denoting by �X and �Y their
respective laws and if a < b,

�X.�a; b�/ D P.a < X � b/ D P.X � b/� P.X � a/ D F.b/� F.a/ :

Repeating the same argument for �Y , �X and �Y coincide on the half-open intervals
�a; b�, a; b 2 R; a < b. The family C formed by these half-open intervals is stable
with respect to finite intersections (immediate) and generates the Borel �-algebra.
Actually a �-algebra containing C necessarily contains any open interval �a; bŒ (that
is, the intersection of the half-open intervals �a; bC 1

n �) and therefore every open set.
By Carathéodory’s criterion, Theorem 1.1, �X and �Y coincide on B.R/.

1.2

a) If x > 0

F.x/ D P.X � x/ D
Z x

�1
f .t/ dt D 	

Z x

0

e�	t dt D 1 � e�	x ;

whereas the same formula gives F.x/ D 0 if x < 0 (f vanishes on the negative
real numbers). With some patience, integrating by parts, we find

EŒX� D
Z C1

�1
xf .x/ dx D 	

Z C1

0

x e�	x dx D 1

	

EŒX2� D
Z C1

�1
x2f .x/ dx D 	

Z C1

0

x2e�	x dx D 1

	
C 1

	2
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and Var.X/ D EŒX2� � EŒX�2 D 1
	

.
b) We have

EŒU� D
Z C1

�1
xf .x/ dx D

Z 1

0

x dx D 1

2

EŒU2� D
Z C1

�1
x2f .x/ dx D

Z 1

0

x2 dx D 1

3

and Var.U/ D 1
3

� 1
4

D 1
12

.
c1) We have

P.Z � z/ D P.˛U � z/ D P.U � z
˛
/ :

Now

P.U � z
˛
/ D

8
ˆ̂
<

ˆ̂
:

0 if z
˛

� 0
z
˛

if 0 � z
˛

� 1

1 if z
˛

� 1

hence

P.Z � z/ D

8
ˆ̂
<

ˆ̂
:

0 if z � 0

z
˛

if 0 � z � ˛

1 if z � ˛ :

Taking the derivative we find that the density of Z is

fZ.z/ D

8
ˆ̂
<

ˆ̂
:

0 if z � 0
1
˛

if 0 � z � ˛

0 if z � ˛ ;

i.e. Z is uniform on the interval Œ0; ˛�.
c2) If t > 0 we have

FW.t/ D P.� 1
	

log U � t/ D P.U � e�	t/ D
Z 1

e�	t
dx D 1 � e�	t

whereas FW.t/ D 0 for t < 0. Therefore W has the same p.f. as an exponential
law with parameter 	 and, by Exercise 1.1, has this law.
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1.3

a) Let us denote by � the law of X. By the integration rule with respect to an image
law, Proposition 1.1, and by Fubini’s theorem

EŒf .X/� D
Z C1

0

f .x/ d�.x/ D
Z C1

0

d�.x/
�

f .0/C
Z x

0

f 0.t/ dt
�

D f .0/C
Z C1

0

f 0.t/ dt
Z C1

t
d�.x/ D f .0/C

Z C1

0

f 0.t/P.X � t/ dt :

b) Imitating Fubini’s theorem,

EŒX� D
1X

nD1

n P.X D n/ D
1X

nD1

P.X D n/
nX

kD1

1 D
1X

kD1

1X

nDk

P.X D n/ D
1X

kD1

P.X � k/ :

1.4

a) If � is a vector in the kernel of C then, repeating the argument of (1.15),

0 D hC�; �i D EŒh�;Xi2�

and therefore h�;Xi2 D 0 a.s., i.e. X is orthogonal to � a.s. As C is symmetric, its
image coincides with the subspace of the vectors that are orthogonal to its kernel:
z 2 Im C if and only if hz; �i D 0 for every vector � such that C� D 0. Hence,
if �1; : : : ; �k, k � m, is a basis of the kernel of C, then z 2 Im C if and only if
hz; �ii D 0 for i D 1; : : : ; k. In conclusion

fX 2 Im Cg D fhX; �1i D 0g \ � � � \ fhX; �ki D 0g

and therefore the event fX 2 Im Cg has probability 1, being the intersection of a
finite number of events of probability 1.

b) If C is not invertible, Im C is a proper subspace of R
m. The r.v. X � E.X/ is

centered and has the same covariance matrix as X and, as we have seen, X �
E.X/ 2 Im C with probability 1. If X had a density, f say, then we would have

1 D P.X 2 Im C C E.X// D
Z

Im CCE.X/
f .x/ dx :

But the integral on the right-hand side is equal to 0 because the hyperplane ImCC
E.X/ has Lebesgue measure equal to 0 so that this is absurd.

1.5 It is well-known that a sequence of real numbers .an/n converges to a limit `
if and only if from every subsequence of .an/n we can extract a further subsequence
converging to `. Therefore kXn � Xkp ! 0 as n ! 1 if and only if from every
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subsequence of .kXn � Xkp/n we can extract a further subsequence converging to 0.
For convergence in probability the argument is similar.

For a.s. convergence this argument cannot be repeated, because to say that a
subsequence converges a.s. means that there exists a negligible set N possibly
depending on the subsequence such that, on Nc, Xnk .!/ !k!1 X.!/. The argument
above therefore allows us to say that the sequence .Xn/n converges to X outside the
union of all these negligible events. As the set of all possible subsequences of a
given sequence has a cardinal larger than countable, the union of all these negligible
events may have strictly positive probability.

Note also that, if this criterion was true for a.s. convergence, it would entail,
using the last statement of Proposition 1.5, that convergence in probability implies
a.s. convergence.

1.6 If X � N.0; I/, then

EŒeh
;Xi� D 1

.2�/m=2

Z

Rm
eh
;xie� 1

2 jxj2 dx D e
1
2 j
 j2 1

.2�/m=2

Z

Rm
e� 1

2 jx�
 j2 dx
„ ƒ‚ …

D1

D e
1
2 j
 j2 ;

as we recognized the expression of the N.
; I/ density. If, more generally, X �
N.b; � /, then we know that X D � 1=2Z C b, where Z � N.0; I/. Therefore

EŒeh
;Xi� D EŒeh
;� 1=2ZCbi� D eh
;biEŒeh� 1=2
;Zi� D eh
;bie
1
2 j� 1=2
 j2 :

But j� 1=2
 j2 D h� 1=2
; � 1=2
i D h� 1=2� 1=2
; 
i D h� 
; 
i.

1.7 We have

b�XCY.
/ D EŒeih
;XCYi� D EŒeih
;Xieih
;Yi�D
"

EŒeih
;Xi�EŒeih
;Yi� D b�.
/b�.
/ ;

where the equality indicated by the arrow follows from Proposition 1.3, recalling
that X and Y are independent.

If X D .X1; : : : ;Xm/ is a �-distributed m-dimensional r.v., then the k-th marginal,
�k, is nothing else than the law of Xk. Therefore, if we denote by e
 the vector of
dimension m whose components are all equal to 0 but for the k-th one that is equal
to 
 ,

b�k.
/ D EŒei
Xk � D EŒeih Q
;Xi� D b�.e
/ :

1.8 If 
 2 R then

EŒe
X� D 	

2

Z C1

�1
e�	jxje
x dx D 	

2

� Z C1

0

e.
�	/x dx C
Z 0

�1
e.
C	/x dx

�
:
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It is apparent that in order for both integrals to converge the condition j
 j < 	 is
necessary. Once this condition is satisfied the integrals are readily computed and we
obtain the expression of the Laplace transform

EŒe
X� D 	

2

� 1

	 � 
 C 1

	C 


�
D 	2

	2 � 
2
�

As for the characteristic function, since x 7! sin 
x is an odd function whereas
x 7! cos 
x is even,

EŒei
X � D 	

2

Z C1

�1

e�	jxjei
x dx D 	

2

Z C1

�1

e�	jxj cos 
x dx D 	

Z C1

0

e�	jxj cos 
x dx :

The last integral can be computed by parts with some patience and we obtain

EŒei
X� D 	2

	2 C 
2
�

We shall see in Sect. 5.7 that the characteristic function can be deduced from the
Laplace transform in a simple way thanks to the property of uniqueness of the
analytic continuation of holomorphic functions.

1.9 The vector .X;X C Y/ can be obtained from .X;Y/ through the linear map
associated to the matrix

A D
�
1 0

1 1

	

:

As .X;Y/ is N.0; I/-distributed, by the stability property of the normal laws with
respect to linear-affine transformations as seen in Sect. 1.7, .X;X C Y/ has a normal
law with mean 0 and covariance matrix

AA� D
�
1 0

1 1

	�
1 1

0 1

	

D
�
1 1

1 2

	

:

Similarly the vector Z D .X;
p
2X/ is obtained from X through the linear

transformation associated to the matrix

A D
�
1p
2

	

that allows us to conclude that Z is normal, centered, with covariance matrix AA�.
Equivalently we might have directly computed the characteristic function of Z: if
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 D .
1; 
2/, then

EŒeih
;Zi� D EŒei.
1C
p
2 
2/X� D exp

� � 1

2
.
1 C p

2 
2/
2
�

D exp
�� 1

2
.
21 C 2
22 C 2

p
2 
1
2/

�

whence we get that it is a normal law with mean 0 and covariance matrix

�
1

p
2p

2 2

	

:

In particular, the two vectors .X;X C Y/ and .X;
p
2X/ have the same marginals

(normal centered of variance 1 and 2 respectively) but different joint laws (the
covariance matrices are different).

1.10 First observe that the r.v. .X1 � X2;X1 C X2/ is Gaussian, being obtained
from X D .X1;X2/, which is Gaussian, through the linear transformation associated
to the matrix

A D
�
1 �1
1 1

	

:

We must at this point just check that the covariance matrix, � , of .X1�X2;X1CX2/
is diagonal: this will imply that the two r.v.’s X1 � X2, X1 C X2 are uncorrelated and
this, for jointly Gaussian r.v.’s, implies independence. Recalling that .X1;X2/ has
covariance matrix equal to the identity, using (1.13) we find that

� D AA� D 2I:

The same argument applies to the r.v.’s Y2 D 1
2
X1�

p
3
2

X2 and Y2 D 1
2
X1C

p
3
2

X2. The
vector Y D .Y1;Y2/ is obtained from X through the linear transformation associated
to the matrix

A D
 

1
2

�
p
3
2p

3
2

1
2

!

: (S.1)

Therefore Y has covariance matrix AA� D I and also in this case Y1 and Y2 are
independent. Furthermore, Y has the same law, N.0; I/, as X.

Taking a closer look at this computation, we have proved something more
general: if X � N.0; I/, then, if A is an orthogonal matrix (i.e. such that A�1 D A�),
AX also has law N.0; I/. The matrix A in (S.1) describes a rotation of the plane by
an angle equal to �

3
.
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1.11

a) Let us compute the law of eX with the method of the partition function. Let us
denote by ˚�;� and f�;� , respectively, the partition function and the density of an
N.�; �2/ law; for y > 0 we have

P.eX � y/ D P.X � log y/ D ˚�;� .log y/ :

By taking the derivative we obtain the density of eX:

g�;�.y/ D d

dy
˚�;� .log y/ D 1

y
f�;� .log y/ D 1p

2� �y
exp

�� 1

2�2
.log y ��/2� :

b) If X � N.�; �2/, then we can write X D �C�Z, where Z � N.0; 1/. Therefore,
using Exercise 1.6, for every p � 0,

EŒ.eX/p� D EŒep�ZCp�� D ep�e
1
2 p2�2 :

For p D 1 this gives the mean, which is therefore equal to e�e�
2=2; as for the

variance

Var.eX/ D EŒe2X� � EŒeX�2 D e2�e2�
2 � �

e�e�
2=2
�2 D e2�e�

2�
e�

2 � 1
�
:

Note that the computations would have been more complicated if we tried to
compute the moments by integrating the density of the lognormal law, which
leads to the nasty looking integral

Z C1

0

ypg�;�.y/ dy :

1.12 Let us assume first that X � N.0; 1/, then

EŒetX2 � D 1p
2�

Z C1

�1
etx2e�x2=2 dx D 1p

2�

Z C1

�1
e� 1

2 x2.1�2t/ dx :

The integral diverges if t � 1
2
. If, conversely, t < 1

2
we recognize in the integrand

Z C1

�1
e� 1

2 x2.1�2t/ dx ;

up to a constant, the density of a normal law with mean 0 and variance .1 � 2t/�1.
Therefore the integral is equal to

p
2� .1 � 2t/�1=2, hence EŒetX2 � D C1 if t � 1

2
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and EŒetX2 � D .1 � 2t/�1=2 if t < 1
2
. Recalling that if Z � N.0; 1/ then X D �Z �

N.0; �2/, we have EŒetX2 � D EŒet�2Z2 �. In conclusion, if X D� N.0; �2/,

EŒetZ2 � D
(

C1 if t � 1
2�2

1p
1�2�2 t

if t < 1
2�2

:

1.13 Thanks to Proposition 1.1

EŒ.xebC�X � K/C� D 1p
2�

Z C1

�1
�
ebC� z � K

�C
e�z2=2 dz :

Note that the integrand vanishes if xebC� z � K < 0, i.e. if

z � � WD 1

�

�
log

K

x
� b

�
�

Hence, with a few standard changes of variable,

EŒ.xebC�X � K/C� D 1p
2�

Z C1

�

�
xebC� z � K

�
e�z2=2 dz

D xp
2�

Z C1

�

ebC� z�z2=2 dz � 1p
2�

Z C1

�

K e�z2=2 dz

D xebC 1
2 �

2

p
2�

Z C1

�

e� 1
2
.z��/2 dz � K˚.��/

D xebC 1
2 �

2

p
2�

Z C1

���
e�z2=2 dz � K˚.��/

D xebC 1
2 �

2

˚.�� C �/ � K˚.��/ :

1.14

a) It is immediate to compute the characteristic functions of the r.v.’s Xn and their
limit as n ! 1: for every 
 2 R

m we have

�Xn.
/ D eihbn;
ie� 1
2 h�n
;
i !

n!1 eihb;
ie� 1
2 h� 
;
i

and we recognize on the right-hand side the characteristic function of an
N.b; � /-distributed r.v.
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b1) X1 D ˛x C Z1 has a normal law (it is a linear-affine function of the normal r.v.
Z1) of mean ˛x and variance �2.

X2 D ˛X1 C Z2 is also normal, being the sum of the two r.v.’s ˛X1 and Z2,
which are normal and independent. As

EŒX2� D EŒ˛X1�C EŒZ2�„ƒ‚…
D0

D ˛2x

Var.X2/ D Var.˛X1/C Var.Z2/ D ˛2�2 C �2

we derive that X2 � N.˛2x; .1C ˛2/�2/. By recurrence

Xn � N.˛nx; �2.1C ˛2 C � � � C ˛2.n�1/// :

Indeed let us assume that this relation is true for a value n and let us prove that
it holds also for nC1. As XnC1 D ˛Xn CZnC1 and the two r.v.’s Xn and ZnC1 are
independent and both normally distributed, XnC1 is also normally distributed.
We still have to check the values of the mean and the variance of XnC1:

EŒXnC1� D EŒ˛Xn�C EŒZnC1� D ˛ � ˛nx D ˛nC1x

Var.XnC1/ D Var.˛Xn/C Var.ZnC1/

D ˛2 � �2.1C ˛2 C � � � C ˛2.n�1//C �2

D �2.1C ˛2 C � � � C ˛2n/ :

As j˛j < 1 we have ˛nx!0 as n ! 1 and

�2.1C ˛2 C � � � C ˛2.n�1// !
n!1

�2

1 � ˛2 �

Thanks to a) .Xn/n converges in law to an N.0; �2

1�˛2 /-distributed r.v.
b2) The vector .Xn;XnC1/ is Gaussian as a linear transformation of the vector

.Xn;ZnC1/, which is Gaussian itself, Xn and ZnC1 being independent and
Gaussian. In order to compute the limit in law we just need to compute the
limit of the covariance matrices �n (we know already that the means converge
to 0). Now

Cov.Xn;XnC1/ D Cov.Xn; ˛Xn C ZnC1/ D ˛Cov.Xn;Xn/C Cov.Xn;ZnC1/

D ˛�2.1C ˛2 C � � � C ˛2.n�1// :

As n ! 1 this quantity converges to ˛�2

1�˛2 . We already know the value of the
limit of the variances (and therefore of the elements on the diagonal of �n), and
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we obtain

lim
n!1�n D �2

1� ˛2

�
1 ˛

˛ 1

	

:

The limit law is therefore Gaussian, centered and with this covariance matrix.

1.15

a) The result is obvious for p � 2 (even without the assumption of Gaussianity),
thanks to the inequality between Lp norms (1.5). Let us assume therefore that
p � 2 and let us consider first the case m D 1. If X is centered and EŒX2� D �2,
we can write X D �Z with Z � N.0; 1/. Therefore

EŒjXjp� D �p EŒjZjp�
„ƒ‚…

Dcp

D cpEŒjXj2�p=2 :

For m � 2, let X D .X1; : : : ;Xm/. Using the result obtained for m D 1 and as
p
2

� 1, thanks to both the inequalities of the hint,

EŒjXjp� � m
p�2
2

mX

iD1
EŒjXijp� � cpm

p�2
2

mX

iD1
EŒjXij2�p=2

� cpm
p�2
2

� mX

iD1
EŒjXij2�

�p=2 D cpm
p�2
2 EŒjXj2�p=2 :

b) First of all L2-convergence implies L1-convergence and therefore the conver-
gence of the means: if mn D EŒXn�, then limn!1 mn D 0. Let eXn D Xn � mn.
TheneXn is centered and alsoeXn !n!1 0 in L2. Thanks to a),

EŒjXnjp� D EŒjeXn C mnjp� � 2p�1�jmnjp C EŒjeXnjp�
�

D 2p�1�jmnjp C cp;mEŒjeXnj2�p=2� !
n!1 0 :

1.16

a) For the partition function FY of Y we have, X and Z being independent,

FY.t/ D P.Y � t/ D P.XZ � t/ D P.XZ � t;Z D 1/C P.XZ � t;Z D �1/

D P.X � t;Z D 1/C P.�X � t;Z D �1/ D 1

2
P.X � t/C 1

2
P.X � �t/ :
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Fig. S.1 The two shaded surfaces have the same area

But, with an obvious change of variable,

P.X � �t/ D 1p
2�

Z C1

�t
e�x2=2 dx D 1p

2�

Z t

�1
e�x2=2 dx D P.X � t/

(see also Fig. S.1, for an intuitive explanation). Therefore, going back to the
computation of FY , P.Y � t/ D P.X � t/ for every t 2 R and X and Y have the
same law. It is also possible to compute the characteristic function of Y: always
using the independence of X and Z,

EŒei
Y � D EŒei
XZ� D EŒei
XZ1fZD1g�C EŒei
XZ1fZD�1g�

D EŒei
X1fZD1g�C EŒe�i
X1fZD�1g� D 1

2
EŒei
X�C 1

2
EŒe�i
X �

D 1

2
e�
2=2 C 1

2
e�
2=2 D e�
2=2:

b) Let us compute the characteristic function of X C Y: we have EŒei
.XCY/� D
EŒei
X.1CZ/� and repeating the argument above for the characteristic function of
Y,

EŒei
.XCY/� D EŒ1fZD�1g�C EŒei2
X1fZD1g� D 1

2
C 1

2
EŒei2
X� D 1

2
C 1

2
e�2
2 :

It is easy to see that this cannot be the characteristic function of a normal
r.v.: for instance, note that X C Y has mean 0 and variance �2 D 2 (taking
the derivatives of the characteristic function at 0) and if it was Gaussian its
characteristic function would be 
 7! e�
2 . The pair .X;Y/ cannot therefore
be jointly normal: if it was, then X C Y would also be Gaussian, being a linear
function of .X;Y/.

1.17

a) By the Borel–Cantelli lemma, Proposition 1.7, (1.29) holds if

1X

nD1
P.Xn � .˛ log n/1=2/ < C1 : (S.2)
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Thanks to the inequality of the hint (the one on the right-hand side)

P.Xn � .˛ log n/1=2/ D 1p
2�

Z C1

.˛ log n/1=2
e�y2=2 dy

� 1p
2�˛ log n

e� 1
2 ˛ log n D 1p

2�˛ log n n˛=2
�

As ˛
2
> 1, the series in (S.2) is summable.

b) Again in view of the Borel–Cantelli lemma we have to investigate the summa-
bility of P.Xn � .2 log n/1=2/. By the other inequality of the hint

P.Xn � .2 log n/1=2/ � 1p
2�

�
.2 log n/1=2 C .2 log n/�1=2

��1
e� log n � 1

2n
p
� log n

which is the term of a divergent series. Hence, by the Borel–Cantelli lemma

P.Xn � .2 log n/1=2 infinitely many times/ D 1 :

c) The r.v.’s .log n/�1=2Xn have zero mean and variance, .log n/�1, tending to 0 as
n ! 1. By Chebyshev’s inequality, for every ˛ > 0,

P
�ˇ
ˇ Xnp

log n

ˇ
ˇ � ˛

�
� 1

˛2 log n
!

n!1 0 :

Therefore .log n/�1=2Xn !n!1 0 in probability. On the other hand, by b), we
have, with probability 1,

Xnp
log n

� p
2 for infinitely many indices n

and therefore it is not possible for the sequence to converge to 0 a.s.

1.18 Let us first check the formula for f D 1A, with A 2 E . The left-hand side is
obviously equal to �X.A/.

Note that 1A.X/ D 1fX2Ag: X.!/ 2 A if and only if ! 2 fX 2 Ag. Therefore the
right-hand side is equal to P.X 2 A/ and, by the definition of image probability, (1.7)
is true for every function that is the indicator of an event.

By linearity (1.7) is also true for every function which is a linear combination of
indicator functions, i.e. for every elementary function.

Let now f be a positive measurable function on E. By Proposition 1.11 there
exists an increasing sequence . fn/n of elementary functions converging to f .
Applying Beppo Levi’s theorem twice we find

Z

E
f d�X D lim

n!1

Z

E
fn d�X D lim

n!1

Z

˝

fn.X/ dP D
Z

˝

f .X/ dP (S.3)
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so that (1.7) is satisfied for every positive function f and, by taking its decomposition
into positive and negative parts, for every measurable function f .

1.19 Let us consider the family, E 0 say, of the sets A 2 E such that X�1.A/ 2 F .
Using the relations

X�1.A/c D X�1.Ac/; X�1�
1[

nD1
An

�
D

1[

nD1
X�1.An/

it is easy to check that E 0 is a �-algebra contained in E . It contains the class D
hence also E . Therefore X�1.A/ 2 F for every A 2 E and X is measurable.

1.20

a) As Zn ! Z a.s. we also have Hn ! Z a.s. and, as 0 � Hn � Z, one can apply
Lebesgue’s theorem.

b) Note that if Z � Zn then jZ � Znj D Z � Zn D Z � Hn whereas Zn � Hn D 0 and
the relation is proved. Repeating the argument changing the roles of Z and Zn we
see that the relation also holds if Zn � Z. We now have

EŒjZ � Znj� D EŒZ � Hn�C EŒZn � Hn� D 2EŒZ � Hn� !
n!1 0 :

1.21

a) By the Central Limit Theorem the sequence

Yn D X1 C � � � C Xn � n�p
n �

converges in law to an N.0; 1/-distributed r.v., where � and �2 are respectively
the mean and the variance of X1. Obviously � D 1

2
, whereas

EŒX21 � D
Z 1

0

x2 dx D 1

3

and therefore �2 D 1
3

� 1
4

D 1
12

. W is nothing else than Y12. We still have to see
whether n D 12 is a number large enough for Yn to be approximatively N.0; 1/
. . .

b) We have, integrating by parts,

EŒX4�D 1p
2�

Z C1

�1
x4e�x2=2 dx D 1p

2�

�
�x3e�x2=2

ˇ
ˇ
ˇ
C1
�1 C3

Z C1

�1
x2e�x2=2 dx

�

D 3
1p
2�

Z C1

�1
x2e�x2=2 dx

„ ƒ‚ …
DVar.X/D1

D 3 :
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The computation of the moment of order 4 of W is a bit more complicated. If
Zi D Xi � 1

2
, then the r.v.’s Zi are independent and uniform on Œ� 1

2
; 1
2
� and

EŒW4� D EŒ.Z1 C � � � C Z12/
4� :

As EŒZi� D EŒZ3i � D 0 (the Zi’s are symmetric with respect to the origin), the
expectation of many terms appearing in the expansion of .Z1 C � � � C Z12/4

vanishes. For instance, as the r.v.’s Zi; i D 1; : : : ; 12, are independent,

EŒZ31Z2� D EŒZ31 �EŒZ2� D 0 :

A moment of reflection shows that a non-zero contribution is given only by the
terms of the form EŒZ2i Z2j � D EŒZ2i �EŒZ

2
j � with i 6D j and those of the form E.Z4i /.

The term Z4i clearly has a coefficient D 1 in the expansion. In order to determine
the coefficient of Z2i Z2j ; i 6D j, we can observe that in the power series expansion
of the function

�.x1; : : : ; x12/ D .x1 C � � � C x12/
4

the monomial x2i x2j , for i 6D j, has the coefficient

1

2Š2Š

@4�

@x2i @x2j
.0/ D 1

4
� 24 D 6 :

Let us compute now

EŒZ2i � D
Z 1=2

�1=2
x2 dx D 1

12
, EŒZ4i � D

Z 1=2

�1=2
x4 dx D 1

80
�

As, by symmetry, the terms of the form EŒZ2i Z2j �; i 6D j, are all equal and there are

11C 10C � � � C 1 D 1
2

� 12 � 11 of them, their contribution is

6 � 1

2
� 12 � 11 � 1

144
D 11

4
�

The contribution of the terms of the form EŒZ4i � (there are 12 of them), is
conversely 12

80
. In conclusion

EŒW4� D 11

4
C 12

80
D 2:9 :

In practice W turns out to have a law quite close to an N.0; 1/. It is possible to
compute its density and to draw its graph, which is almost indistinguishable from
the graph of the Gaussian density.
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However it has some drawbacks: for instance W cannot take values outside
the interval Œ�6; 6� whereas an N.0; 1/ can, even if with a very small probability.
In practice W can be used as a substitute for the Box–Müller algorithm of
Proposition 1.10 for tasks that require a moderate number of random numbers.

2.1

a) X and Y are equivalent because two r.v.’s that are a.s. equal have the same law: if
t1; : : : ; tn 2 T, then

f.Xt1 ; : : : ;Xtn/ 6D .Yt1 ; : : : ;Ytn/g D
n[

iD1
fXti 6D Ytig :

These are negligible events, being finite unions of negligible events. Therefore,
for every A 2 E ˝n, the two events f.Xt1 ; : : : ;Xtn/ 2 Ag and f.Yt1 ; : : : ;Ytn/ 2 Ag
can differ at most by a negligible event and thus have the same probability.

b) As the paths of the two processes are a.s. continuous but for a negligible event,
if they coincide at the times of a dense subset D � T, they necessarily coincide
on the whole of T. Let D D ft1; t2; : : : g be a sequence of times which is dense in
T (T \ Q, e.g.). Then

fXt D Yt for every tg D
\

t2T

fXt D Ytg D
\

ti2D

fXti D Ytig :

As P.Xti D Yti / D 1 for every i, it follows that

P
�\

ti2D

fXti D Ytig
�

D 1

so that also P.Xt D Yt for every t/ D 1 and the two processes are indistinguish-
able.

2.2

a) First it is clear that �.Xt; t � T/  �.Xt; t 2 D/: every r.v. Xs, s 2 D, is obviously
�.Xt; t � T/-measurable and �.Xt; t 2 D/ is by definition the smallest �-algebra
that makes the r.v.’s Xs, s 2 D, measurable.

In order to show the converse inclusion, �.Xt; t � T/ � �.Xt; t 2 D/, we need
only show that every r.v. Xt; t � T, is measurable with respect to �.Xt; t 2 D/.
But if t � T there exists a sequence .sn/n � D such that sn ! t as n ! 1. As
the process is continuous, Xsn ! Xt and therefore Xt is the limit of �.Xt; t 2 D/-
measurable r.v.’s and is therefore �.Xt; t 2 D/-measurable itself.

b) The argument of a) can be repeated as is, but now we must choose the sequence
.sn/n decreasing to t and then use the fact that the process is right-continuous.
This implies that all the r.v.’s Xt with t < T are �.Xt; t 2 D/-measurable, but this
argument does not apply to t D T, as there are no times s 2 D larger than T.
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Therefore if the process is only assumed to be right-continuous, it is necessary
to make the additional assumption T 2 D.

2.3 By hypothesis, for every u > 0, the map .Œ0; u� � ˝/;B.Œ0; u� � Fu/ !
.E;E // defined as .t; !/ ! Xt.!/ is measurable. Now note that, as the composition
of measurable function is also measurable, .t; !/ ! �.Xt.!// is measurable
.Œ0; u��˝/;B.Œ0; u��Fu/ ! .G;G //, i.e. t 7!  .Xt/ is progressively measurable.

2.4

a) To say that the sequence .Zn.!//n does not converge to Z1.!/ is equivalent
to saying that there exists an m � 1 such that for every n0 � 1 there exists an
n � n0 such that jZn � Z1j � 1

m , which is exactly the event (2.2).
b1) Thanks to a) we know that

n
lim

n!1 Xtn 6D `
o

D
1[

mD1

1\

n0D1

[

n�n0

fjXtn � `j � 1
m g 2 F (S.4)

is negligible. Let us prove that the corresponding event foreX is also negligible.
As the r.v.’s .Xtn ; : : : ;XtnCk / and .eXtn ; : : : ;

eXtnCk/ have the same distribution, the
events (belonging to different probability spaces)

k[

nDn0

fjXtn � `j � 1
m g and

k[

nDn0

fjeXtn � `j � 1
m g

have the same probability. As these events are increasing in k, we have that

1[

nDn0

fjXtn � `j � 1
m g and

1[

nDn0

fjeXtn � `j � 1
m g (S.5)

also have the same probability. As the event in (S.4) is negligible and observing
that the events in (S.5) are decreasing in m; n0, for m; n0 large

P
� 1[

nDn0

fjXtn � `j � 1
m g
�

� "

therefore also

eP
� 1[

nDn0

fjeXtn � `j � 1
mg
�

� " ;

which allows us to conclude the proof.
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b2) A repetition of the arguments of a) allows us to state that the event of thee! 2 e̋

such that the limit (2.3) does not exist is

1[

mD1

1\

kD1

[

q2Q;jq�tj� 1
k

fjeXq � `j � 1
m g

and, by a repetition of the argument of b1), this event has the same probability
as its analogue for X, i.e. 0.

2.5

a) We have E.XsXt/ D E.Xs/E.Xt/ D 0 for every s 6D t, the two r.v.’s being
independent and centered. Therefore the function .s; t/ 7! E.XsXt/ vanishes but
on the diagonal s D t, which is a subset of Lebesgue measure 0 of Œa; b�2. Hence
the integral in (2.4) vanishes.

b) As .Xt/t is assumed to be measurable, the map ! 7! R b
a Xs.!/ ds is a r.v. (recall

Example 2.2). By Fubini’s theorem

E
� Z b

a
Xs ds

�
D
Z b

a
EŒXs� ds D 0 : (S.6)

Also the map .s; t; !/ 7! Xs.!/Xt.!/ is measurable and again by Fubini’s
theorem and a)

E
h� Z b

a
Xs ds

�2i D E
h Z b

a
Xs ds

Z b

a
Xt dt

i
D
Z b

a

Z b

a
E.XsXt/ ds dt D 0 :

(S.7)

The r.v.
R b

a Xs ds, which is centered by (S.6), has variance 0 by (S.7). Hence it is
equal to 0 a.s.

c) From b) we have that, for every a; b 2 Œ0; 1�, a � b,
R b

a Xs ds D 0 a.s.
Therefore, for almost every !, the function t 7! Xt.!/ is such that its integral
on a subinterval Œa; b� vanishes for every a � b and it is well-known that such a
function is necessarily � 0 a.e.

Actually the previous argument is not completely correct as, if
R b

a Xs.!/ ds D
0 but for a negligible event, this event Na;b � ˝ might depend on a and b,
whereas in the previous argument we needed a negligible event N such thatR b

a Xs.!/ ds D 0 for every a; b. In order to deal with this question just set

N D
[

a;b2Q
Na;b :
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N is still negligible, being the union of a countable family of negligible events.
For every ! 62 N therefore

Z b

a
Xs.!/ ds D 0; for every a; b 2 Q

and a function whose integral on all the intervals with rational endpoints vanishes
is necessarily D 0 almost everywhere.

• To be rigorous, in order to apply Fubini’s theorem in (S.7) we should first
prove that s; t; ! 7! Xs.!/Xt.!/ is integrable. But this is a consequence of
Fubini’s theorem itself applied to the positive measurable function s; t; ! 7!
jXs.!/Xt.!/j. Indeed, as EŒjXtj� � EŒX2t � D p

c,

E
h Z b

a
ds
Z b

a
jXsXtj dt

i
D
Z b

a

Z b

a
E.jXsXtj/ ds dt

D
Z b

a

Z b

a
E.jXsj/E.jXtj/ ds dt � c.b � a/2

hence s; t; ! 7! Xs.!/Xt.!/ is integrable.

2.6

a) We have

 �1
Z .A�;t;"/ D f!I j�t � Zt.!/j � "g:

Therefore  �1
Z .A�;t;"/ 2 F , as this set is the inverse image through Zt of the

closed ball of Rm centered at �t and with radius ".
b) As the paths are continuous,

 �1
Z .U�;T;"/ D ˚

!I j�t � Zt.!/j � " for every t 2 Œ0;T��

D ˚
!I j�r � Zr.!/j � " for every r 2 Œ0;T� \ Q

�

D
\

r2Œ0;T�\Q

f!I j�r � Zr.!/j � "g D
\

r2Œ0;T�\Q

 �1
Z .A�;r;"/ :

Therefore, thanks to a),  �1
Z .U�;T;"/ 2 F , as a countable intersection of events

of F .
c) Keeping in mind Exercise 1.19 we must prove that the sets (2.5) generate

the Borel �-algebra B.C /. For every � 2 C the sets U�;T;" form a basis of
neighborhoods of � and, as C is separable, every open set of C is the countable
union of sets of the form (2.5). Hence the �-algebra generated by the sets (2.5)
contains the Borel �-algebra.
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3.1

a) With the usual trick of separating the actual position from the increment

EŒBsB
2
t � D EŒBs.Bt �BsCBs/

2� D EŒBs.Bt �Bs/
2�C2EŒB2s .Bt �Bs/�CEŒB3s � D 0 :

More easily the clever reader might have argued that BsB2t has the same law as
�BsB2t (.�Bt/t is again a Brownian motion), from which EŒBsB2t � D 0 (true even
if t < s).

b) Again

EŒB2s B2t � D EŒB2s .Bt � Bs C Bs/
2�

D EŒB2s .Bt � Bs/
2�

„ ƒ‚ …
Ds.t�s/

C2EŒB3s .Bt � Bs/�„ ƒ‚ …
D0

C EŒB4s �„ƒ‚…
D3s2

D s.t � s/C 3s2 :

c) We know that, if Z denotes an N.0; 1/-distributed r.v., then Bs � p
s Z. Hence,

integrating by parts and recalling the expression for the Laplace transform of the
Gaussian r.v.’s (Exercise 1.6),

EŒBse
Bs � D EŒ

p
s Ze

p
s Z� D

p
sp
2�

Z C1

�1
ze

p
s ze�z2=2 dz

D �
p

sp
2�

e
p

s ze�z2=2
ˇ
ˇ
ˇ
C1
�1

„ ƒ‚ …
D0

C sp
2�

Z C1

�1
e

p
s ze�z2=2 dz D ses=2 :

d) We have EŒBseBt � D EŒBseBs eBt�Bs � and as Bs and Bt � Bs are independent

EŒBseBt � D EŒBseBs �EŒeBt�Bs � D ses=2e.t�s/=2 D set=2 :

3.2

a) We have

EŒ1fBt�ag� D P.Bt � a/ D P.
p

tB1 � a/ D P
�

B1 � ap
t

�

and therefore

lim
t!C1 EŒ1fBt�ag� D P.B1 � 0/ D 1

2
�
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b)

EŒBt1fBt�ag� D 1p
2�t

Z a

�1
xe� x2

2t dx D � tp
2�t

e� x2

2t

ˇ
ˇ
ˇ
a

�1

D �
p

tp
2�

e� a2

2t !
t!C1 �1 :

3.3 Recalling that Bt � p
t B1, we are led to the computation of

lim
t!C1

p
t EŒtZ2e�tZ2 � D lim

t!C1
t3=2p
2�

Z C1

�1
x2e�tx2e� 1

2 x2 dx

D lim
t!C1

t3=2p
2�

Z C1

�1
x2e� 1

2 .2tC1/x2 dx D lim
t!C1

t3=2p
2�

Z C1

�1
x2e� 1

2�2
x2 dx ;

where Z denotes an N.0; 1/-distributed r.v. and we have set �2 D 1
2tC1 . With this

position we are led back to the expression of the variance of a centered Gaussian
r.v.:

� � � D lim
t!C1 � t3=2

1p
2��

Z C1

�1
x2e� 1

2�2
x2 dx

„ ƒ‚ …
D�2

D lim
t!C1 �3t3=2 D lim

t!C1
t3=2

.2t C 1/3=2

D 2�3=2 D 1p
8

�

3.4

a) As fBtm � Btm�1 2 �mg is independent of Ftm�1 whereas all the other events are
Ftm�1 -measurable,

P.Btm � Btm�1 2 �m; : : : ;Bt1 � Bs 2 �1;A/
D P.Btm � Btm�1 2 �m/P.Btm�1 � Btm�2 2 �m�1; : : : ;Bt1 � Bs 2 �1;A/ :

Iterating this procedure m times we have

P.Btm � Btm�1 2 �m; : : : ;Bt1 � Bs 2 �1;A/
D P.Btm � Btm�1 2 �m/P.Btm�1 � Btm�2 2 �m�1/ : : :P.Bt1 � Bs 2 �1/P.A/

D P.Btm � Btm�1 2 �m; : : : ;Bt1 � Bs 2 �1/P.A/ :

b) The r.v.’s Btm � Bs; : : : ;Bt1 � Bs are functions of Btm � Btm�1 , Btm�1 � Btm�2 ,. . . ,
Bt1 � Bs, so that they are �.Btm � Btm�1 ;Btm�1 � Btm�2 ; : : : ;Bt1 � Bs/-measurable
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and therefore

�.Btm � Bs; : : : ;Bt1 � Bs/ � �.Btm � Btm�1 ;Btm�1 � Btm�2 ; : : : ;Bt1 � Bs/ :

But Btm �Btm�1 ;Btm�1�Btm�2 ; : : : ;Bt1�Bs are also functions of Btm �Bs; : : : ;Bt1�
Bs and by the same argument we have the opposite inclusion.

c) Thanks to a) and b) we have, for s � t1 < � � � < tm and �1; : : : ; �m 2 B.Rd/,

P.Btm �Bs 2 �m; : : : ;Bt1�Bs 2 �1;A/ D P.Btm �Bs 2 �m; : : : ;Bt1�Bs 2 �1/�P.A/

if s � t1 < � � � < tm. But the events

fBtm � Bs 2 �m; : : : ;Bt1 � Bs 2 �1g

form a class that is stable with respect to finite intersections and generates �.Bt �
Bs; t � s// and we can conclude the argument using Remark 1.1.

3.5

a) It is immediate that C is stable with respect to finite intersections. Also C
contains Fs (just choose G D ˝) and G (choose A D ˝). Therefore the �-
algebra generated by C also contains eF s D Fs _ G (which, by definition, is
the smallest �-algebra containing Fs and G ). The converse inclusion �.C / �
Fs _ G is obvious.

b) We must prove that, for s � t, Bt � Bs is independent of eF s. By Remark 1.1
and a) it is enough to prove that, for every Borel set � 2 B.R/ and for every
A 2 Fs;G 2 G ,

P.fBt � Bs 2 � g \ A \ G/ D P.Bt � Bs 2 � /P.A \ G/ :

Now fBt � Bs 2 � g \ A 2 Ft is independent of G (G and Ft are independent).
Therefore

P.fBt � Bs 2 � g \ A \ G/ D P.fBt � Bs 2 � g \ A/P.G/

D P.fBt � Bs 2 � g/P.A/P.G/ D P.Bt � Bs 2 � /P.A \ G/

where we used the fact that fBt � Bs 2 � g and A are independent.

3.6

a) The joint law of .Bs;Bt/ is a centered Gaussian distribution with covariance
matrix

C D
�

s s
s t

	

:
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We have

C�1 D 1

s.t � s/

�
t �s

�s s

	

so that, defining z D .x; y/, the joint density of .Bs;Bt/ is

fs;t.z/ D 1

2�
p

s.t � s/
e� 1

2
hC�1z;z;i D 1

2�
p

s.t � s/
e

� 1
2s.t�s/ .tx

2Csy2�2sxy/

D 1

2�
p

s.t � s/
e

� 1
2s.t�s/ ..t�s/x2C.sx2Csy2�2sxy//

D 1

2�
p

s.t � s/
e

� 1
2s.t�s/ ..t�s/x2Cs.x�y/2/

from which (3.19) follows.
b) Of course

P.Bs < 0;B2s > 0/ D
Z 0

�1
dx
Z C1

0

fs;2s.x; y/ dy

D
Z 0

�1
1p
2�s

e� 1
2s x2dx

Z C1

0

1p
2�s

e� 1
2s .y�x/2 dy

and with the change of variable z D x � y in the inner integral,

P.Bs < 0;B2s > 0/ D
Z 0

�1
1p
2�s

e� 1
2s x2dx

Z x

�1
1p
2�s

e� 1
2s z2 dz :

Let

˚s.x/ D 1p
2�s

Z x

�1
e� 1

2s z2 dz

be the partition function of the N.0; s/ distribution, then the previous relation can
be written as

P.Bs < 0;B2s > 0/ D
Z 0

�1
˚ 0

s.x/˚s.x/ dx D 1

2
˚s.x/

2
ˇ
ˇ
ˇ
0

�1 D 1

8

since ˚s.0/ D 1
2

for every s > 0.
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3.7

a1) X is a Gaussian process, as the random vector .Xt1 ; : : : ;Xtm/ is a linear function
of the vector .Be2t1 ; : : : ;Be2tm / which is Gaussian itself. If s � t

Cov.Xt;Xs/ D EŒXtXs� D e�te�sEŒBe2t Be2s � D e�.tCs/e2s D e�.t�s/ D e�jt�sj :

a2) We have, for 1 � i; j � m, Cov.XtiChXtjCh/ D e�jtiCh�.tjCh/j D
e�jti�tjj D Cov.Xti Xtj/. Therefore the two centered Gaussian random vectors
.Xt1Ch; : : : ;XtmCh/ and .Xt1 ; : : : ;Xtm/ have the same covariance matrix, hence
the same law.

a3) K, being the covariance kernel of a stochastic process, is necessarily positive
definite as explained in Remark 2.5.

b1) A repetition of the argument of a1) gives that W is a centered Gaussian process.
Moreover, if v � u,

EŒWuWv� D EŒ
p

u X 1
2 log u

p
v X 1

2 log v� D p
uv e� 1

2 .log u�log v/ D p
uv

r
v

u
D v

so that W is a natural Brownian motion thanks to Proposition 3.1.
b2) Two possibilities. First one may try to apply Theorem 2.1 (Kolmogorov’s

continuity theorem): the r.v. Xt � Xs is centered Gaussian with covariance

Var.Xt � Xs/ D Var.Xt/C Var.Xs/� 2Cov.Xt;Xs/ D 2.1� e�.t�s// :

Therefore Xt � Xs � p
2.1� e�.t�s// Z, where Z � N.0; 1/. Hence

EŒjXt � Xsjˇ� D �
2.1� e�.t�s//

�ˇ=2
EŒjZjˇ� :

Now, for every ˛ > 0, j1 � e�˛j � ˛, as the function x 7! e�x has a derivative
that is � 1 in absolute value for x � 0. We have then

EŒjXt � Xsjˇ� � cˇjt � sjˇ=2 D cˇjt � sj1C.ˇ=2�1/ :
Hence, by choosing ˇ large enough, X has a modification that is Hölder
continuous with exponent � for every � < 1

2
, very much similarly as for the

Brownian motion.
More quickly just note that W, being a Brownian motion, has a continuous

modification. If we denote it by eW, then eXt D e�teWe2t is a continuous
modification of X.

3.8

a) It is immediate that X is a Gaussian process (for every t1 < t2; : : : tm the r.v.
.Xt1 ; : : : ;Xtm/ is a linear function of .Bt1 ; : : : ;Btm/ which is Gaussian) and that

Cov.X1.t/;X2.s// D �.t ^ s/ :
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Moreover, X2 is obviously a Brownian motion and as

Cov.X1.t/;X1.s// D �2.t ^ s/C .1 � �2/.t ^ s/ D t ^ s

the same is true for X1.
b) As X is a Gaussian process, then B is also Gaussian (same argument as in a)).

Let j�j < 1. B2 being already a real Brownian motion we must prove that B1 is a
Brownian motion and that B1 and B2 are independent. Now, for s � t,

Cov.B1.t/;B1.s//

D 1

1 � �2
Cov.X1.t/;X1.s// � �

1 � �2
Cov.X1.t/;X2.s//

� �

1 � �2
Cov.X2.t/;X1.s//C �2

1 � �2
Cov.X2.t/;X2.s//

D s

1 � �2

�
1 � �2 � �2 C �2

� D s

and

Cov.B1.t/;B2.s// D 1
p
1 � �2 Cov.X1.t/;X2.s//� �

p
1 � �2

Cov.X2.t/;X2.s// D 0 :

• Note that in b) the condition � 6D 1;�1 is needed.

3.9 If X is a Brownian motion then Xt � Xs D A.Bt � Bs/ must be N.0; .t � s/I/-
distributed. It is Gaussian, being a linear function of a jointly Gaussian r.v., and its
covariance matrix is C D .t � s/AA� (see (1.13)). We therefore have the condition
AA� D I, or A� D A�1. A must therefore be orthogonal. On the other hand, if A is
orthogonal, X is a Brownian motion with respect to the filtration .Ft/t, as Xt � Xs D
A.Bt � Bs/ is independent of Fs and a) of Definition 3.2 is immediate.

3.10 We have

	.SA/ D
Z C1

0

1fBt2Ag dt :

Therefore, with two strokes of Fubini’s theorem,

EŒ	.SA/� D E
h Z C1

0

1fBt2Ag dt
i

D
Z C1

0

P.Bt 2 A/ dt

D
Z C1

0

1

.2�t/m=2
dt
Z

A
e� jxj2

2t dx D
Z

A
dx
Z C1

0

1

.2�t/m=2
e� jxj2

2t dt :
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With the changes of variable s D 1
t and subsequently u D 1

2
jxj2s,

Z C1

0

1

.2�t/m=2
e� jxj2

2t dt D 1

.2�/m=2

Z C1

0

s�2C m
2 e� 1

2 jxj2s ds

D 1

.2�/m=2

Z C1

0

� 2u

jxj2
��2C m

2 2

jxj2 e�u du D 1

2�m=2
jxj2�m

Z C1

0

u�2C m
2 e�u du :

The last integral diverges (at 0C) if �2C m
2

� �1, i.e. if m � 2. On the other hand,
if m � 3, it is equal to � .m

2
� 1/.

3.11

a) If � 2 G, as the paths of X are continuous, the integral in (3.20) is the limit, for
every !, of its Riemann sums, i.e.

X� D
Z

Xs d�.s/ D lim
n!1

X

i�0
Xi=n�.Œ

i
n ;

.iC1/
n Œ/

„ ƒ‚ …
DIn.�/

:

Now if �1; : : : ; �m 2 G, then the vector In D .In.�1/; : : : ; In.�m// is Gaussian,
being a linear function of the r.v.’s Xi=n; i D 0; 1; : : : , which are jointly
Gaussian.

On the other hand limn!1 In D .X�1 ; : : : ;X�m/ a.s.; as a.s. convergence
implies convergence in law, by Proposition 1.9 the r.v. .X�1 ; : : : ;X�m/ is
Gaussian and therefore .X� /�2G is a Gaussian family.

b1) In order to show that Y is a Gaussian process, just observe that we can write

Yt D
Z t

0

Xs �.ds/ D
Z

Xs �.ds/ ;

where d� D 1Œ0;t� d�. One can therefore apply what we have already seen in a).
b2) Yt is centered for every t as, by Fubini’s theorem,

E.Yt/ D E
� Z t

0

Xu d�.u/
�

D
Z t

0

E.Xu/ d�.u/ D 0 :

If Ks;t D E.YtYs/ denotes its covariance function, then

Ks;t D E
�Z t

0

Xu d�.u/ �
Z s

0

Xv d�.v/
�

D
Z t

0

d�.u/
Z s

0

E.XuXv/ d�.v/

D
Z t

0

d�.u/
Z s

0

u ^ v d�.v/ :

(S.8)
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Therefore

�2t D Kt;t D
Z t

0

d�.u/
Z t

0

u ^ v d�.v/

D
Z t

0

d�.u/
Z u

0

v d�.v/C
Z t

0

d�.u/
Z t

u
u d�.v/ D I1 C I2 :

By Fubini’s theorem

I2 D
Z t

0

d�.v/
Z v

0

u d�.u/ D I1 :

Moreover,

Z u

0

v d�.v/ D
Z u

0

d�.v/
Z v

0

dr D
Z u

0

dr
Z u

r
d�.v/ D

Z u

0

�.�r; u�/ dr

and therefore, using (3.21),

I1 D
Z t

0

d�.u/
Z u

0

�.�r; u�/ dr D
Z t

0

dr
Z t

r
�.�r; u�/ d�.u/ D 1

2

Z t

0

�.�r; t�/2 dr ;

which concludes the computation of the variance of Yt. In order to compute the
covariance Cov.Ys;Yt/ D Ks;t, we have, starting from (S.8) and assuming s � t,

Ks;t D
Z s

0

d�.u/
Z s

0

u ^ v d�.v/C
Z t

s
d�.u/

Z s

0

u ^ v d�.v/

D
Z s

0

�.�r; s�/2 dr C
Z t

s
d�.u/

Z s

0

v d�.v/

D
Z s

0

�.�r; s�/2 dr C �.�s; t�/
Z s

0

�.�r; s�/ dr D
Z s

0

�.�r; t�/�.�r; s�/ dr :

Only for completeness let us justify (3.21). �.�r; t�/2 is nothing else than the
measure, with respect to �˝ �, of the square �r; t���r; t�, whereas the integral
on the right-hand side is the measure of the shaded triangle in Fig. S.2. The
rigorous proof can be done easily with Fubini’s theorem.
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Fig. S.2 The integration domain in (3.21)

3.12

a) The integral that appears in the definition of Zt is convergent for almost
every ! as, by the Iterated Logarithm Law, with probability 1, jBtj �
..2 C "/t log log 1

t /
1=2 for t in a neighborhood of 0 and the function t 7!

t�1=2.log log 1
t /
1=2 is integrable at 0C. Let us prove that Z is a Gaussian process,

i.e. that, for every choice of t1; : : : ; tm, the r.v.eZ D .Zt1 ; : : : ;Ztm/ is Gaussian. We
cannot apply Exercise 3.11 b) immediately because 1

u du is not a Borel measure
(it gives infinite mass to every interval containing 0). But, by Exercise 3.11 a),
the r.v.eZ.n/ D .Z.n/t1 ; : : : ;Z

.n/
tm / is indeed Gaussian, where Z.n/ti D 0 if ti < 1

n and

Z.n/ti D Bti �
Z ti

1=n

Bu

u
du i D 1; : : : ;m

otherwise. Then just observe that limn!1eZ.n/ DeZ a.s. and that a.s. convergence
implies convergence in law. We deduce that eZ is Gaussian, by Proposition 1.9.
Clearly Z0 D 0 and Zt is centered. We only need to compute the covariance
function of Z and verify that it coincides with that of the Brownian motion.
Repeatedly using Fubini’s theorem we have for s � t,

E.ZsZt/ D E
h�

Bs �
Z s

0

Bv
v

dv
��

Bt �
Z t

0

Bu

u
du
�i

D E.BsBt/ �
Z s

0

E.BtBv/

v
dv �

Z t

0

E.BsBu/

u
du C

Z s

0

dv
Z t

0

E.BvBu/

uv
du

D s �
Z s

0

dv �
Z s

0

du �
Z t

s

s

u
du C

Z s

0

dv
Z t

0

v ^ u

uv
du

„ ƒ‚ …
DI

D �s � s.log t � log s/C I :
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Let us compute the double integral:

I D
Z s

0

dv
Z v

0

1

v
du C

Z s

0

dv
Z t

v

1

u
du

D s C
Z s

0

.log t � log v/ dv D s C s log t � s log s C s D 2s C s.log t � log s/

so that, finally, E.ZsZt/ D s D s ^ t, which, thanks to Proposition 3.1, completes
the proof that .Zt/t is a natural Brownian motion.

b) .Zt/t is clearly adapted to .Ft/t (see Exercise 2.2 a)). In order to show that it is
not a Brownian motion with respect to .Ft/t, there are many possible approaches.
For instance, if it was Brownian, then Zt � Zs would be independent of Bs, that is
an Fs-measurable r.v. Instead we have

EŒ.Zt �Zs/Bs� D EŒ.Bt �Bs/Bs��
Z t

s

E.BsBu/

u
du D �

Z t

s

s

u
du D �s log

t

s
6D 0 :

c) Arguing as in a) Zs and Bt are jointly Gaussian. Hence, in order to prove that Bt

is independent of Gt, by Remark 1.1 it is enough to prove that Bt is independent
of Zs for every s � t, i.e. that they are uncorrelated. Actually

E.ZsBt/ D E.BsBt/�
Z s

0

E.BuBt/

u
du D s �

Z s

0

du D 0 :

3.13 We have

fBt � a
p

t for every t � Tg

D
n Bt
�
2t log log 1

t

�1=2 � a
q
2 log log 1

t

for every t � T
o

but by the Iterated Logarithm Law, with probability 1

lim
t!0C

Btq
2t log log 1

t

D 1

hence, with probability 1 there exists a sequence of times .tn/n such that

Btnq
2tn log log 1

tn

!
n!1 1
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whereas

a
q
2 log log 1

tn

!
n!1 0

and therefore the event in question has probability 0.

3.14

a) By the Iterated Logarithm Law, see also (3.8), jBtj � .1 C "/
p
2t log log t for t

large. Therefore if b < 0

lim
t!C1 Xt D 0

whatever the value of � . The same arguments give limt!C1 Xt D C1 if b >
0 (again for every �). If b D 0 and � > 0 we know, by the behavior of the
Brownian motion as t ! C1 as described in Remark 3.4, that limt!C1 Xt D
C1, limt!C1 Xt D 0.

b) We have

EŒXt� D ebtEŒe�Bt � D e.bC �2

2 /t

so that the limit (3.22) is finite if and only if b � � �2

2
and equal to C1

otherwise. Observe the apparent contradiction: in the range b 2� � �2

2
; 0Œ we

have limt!C1 Xt D 0 a.s., but limt!C1 EŒXt� D C1.

3.15

a) By the Iterated Logarithm Law jBuj � .1C "/
p
2u log log u for t large. Hence,

if b > 0, ebuC�Bu !u!C1 C1 (this is also Exercise 3.14 a)) and in this case
the integrand itself diverges, hence also the integral. If b < 0, conversely, we
have, for t large,

ebuC�Bu � exp
�
bu C .1C "/

p
2u log log u

� � ebu=2

and the integral converges to a finite r.v.
b1) The integral can vanish only if the integrand, which is � 0, vanishes a.s.

However, we know by the Iterated Logarithm Law (see Remark 3.4) that the
Brownian path takes a.s. strictly positive values in every neighborhood of 0. As
the paths are continuous they are therefore strictly positive on a set of times of
strictly positive Lebesgue measure a.s.

b2) By a change of variable and using the scaling properties of the Brownian
motion, as v 7! 1p

t
Btv is also a Brownian motion,

Z t

0

1fBu>0g du D t
Z 1

0

1fBtv>0g dv D t
Z 1

0

1f 1p
t

Btv>0g dv
L� t

Z 1

0

1fBv>0g dv :
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Now

lim
t!C1 t

Z 1

0

1fBu>0g du D C1

as we have seen in b1) that the r.v.
R 1
0
1fBu>0g du is strictly positive a.s. Hence,

as the two r.v.’s
R t
0
1fBu>0g du and t

R 1
0
1fBu>0g du have the same distribution for

every t, we have

lim
t!C1

Z t

0

1fBu>0g du D C1 in probability :

In order to prove the a.s. convergence, it suffices to observe that the limit

lim
t!C1

Z t

0

1fBu>0g du

exists a.s. as the integral is an increasing function of t. Hence the proof
is complete, because the a.s. limit and the limit in probability necessarily
coincide.

b3) It suffices to observe that

e�Bt � 1fBt�0g

and then to apply b2).
c) By Fubini’s theorem and recalling the expression of the Laplace transform of

the Gaussian distributions,

E
h Z C1

0

ebuC�Bu du
i

D
Z C1

0

EŒebuC�Bu � du D
Z C1

0

e.bC �2

2 /u du :

The expectation is therefore finite if and only if b < � �2

2
. The integral is then

easily computed giving, in conclusion,

E
h Z C1

0

ebuC�Bu du
i

D
8
<

:

� 1

bC �2

2

if b < � �2

2

C1 otherwise :

3.16 The sequence .�n/n is increasing and therefore converges to some r.v. � .
Obviously, as �n � � , also � � � . Let us prove that actually � D � .

Let us consider first the event f� < C1g. On it of course �n < C1 and X�n 2
@Dn. X being continuous, X�n ! X� and d.X� ; @D/ D limn!1 d.X�n ; @D/ D 0, so
that X� 2 @D and � � � . Conversely, on f� D C1g there is nothing to prove.

The argument above also implies that X�n ! X� as n ! 1.
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Note that this argument only works for an open set D because otherwise the
condition X� 2 @D does not imply � � � . Actually the statement is not true if D is
closed (try to find a counterexample. . . ).

3.17 If Xs D �Bs=�2 , then X is also a Brownian motion by Proposition 3.2 so that,
if

�X
� D inffuI Xu 62 �Dg ;

we have �X
� � ��. As �Bs D Xs�2

� D inffsI Bs 62 Dg D inffsI �Bs 62 �Dg D inffsI Xs�2 62 �Dg
D 1

�2
inffuI Xu 62 �Dg � 1

�2
�� :

3.18

a) By the Iterated Logarithm Law, with probability 1 there exist values of t such that
X1.t/ � .1 � "/

p
2t log log t (X1 is the first component of the Brownian motion

X). There exists therefore, with probability 1, a time t such that jXtj > 1 and so
� < C1 a.s.

Let us denote by � the law of X� and let O be an orthogonal matrix; if Yt D
OXt, then (Exercise 3.9) Y is also a Brownian motion. Moreover, as jYtj D jXtj
for every t, � is also the exit time of Y from S. Therefore the law of Y� D OX�
coincides with the law of X� , i.e. with �. Therefore the image law of � through
O (that defines a transformation of the surface of the sphere, @S, into itself) is
still equal to �.

This allows us to conclude the proof since, as indicated in the hint, the only
probability on @S with this property is the normalized .m � 1/-dimensional
Lebesgue measure. Figures S.3 and S.4 show the positions of some simulated
exit points.

b) Let � and A be Borel sets respectively of @S and of R
C; we must show that

P.X� 2 �; � 2 A/ D P.X� 2 � /P.� 2 A/. Repeating the arguments developed in
a), we have, for every orthogonal matrix O,

P.X� 2 �; � 2 A/ D P.X� 2 O�; � 2 A/ :

Therefore, for every fixed A 2 B.RC/, the measure �A on @S defined as
�A.� / D P.X� 2 �; � 2 A/ is rotationally invariant. It is therefore of the form
�A D c � 	 and obviously the constant c is determined by c	.@S/ D P.� 2 A/.
Therefore

P.X� 2 �; � 2 A/ D c � 	.� / D P.� 2 A/

	.@S/
	.� / D P.X� 2 � /P.� 2 A/ :
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Fig. S.3 The exit positions of 200 simulated paths of a two-dimensional Brownian motion from
the unit ball. The exit distribution appears to be uniform on the boundary

•

•

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•
•

• •
•

•

•
• •

••

•

•

•

•

•
•

•••

•

•

•

•
•

•

•

•

• •

•

•
•
•
•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

••

•

•

•

•

•

••

•

•

•
•

•
•

•

•

••

•

•
•

•
•

•

••

•

•

•

•

• ........
........
........
........
........
.........
.........
.........
.........
..........
...........

...........
.............

...............
...................

............................................ ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................
...............

.............
...........
...........
..........
.........
.........
.........
.........
........
........
........
........
.......

Fig. S.4 The exit positions of 200 simulated paths from the unit ball for a two-dimensional
Brownian motion starting at . 1

2
; 0/ (denoted by a black small circle). Of course the exit distribution

does no longer appears to be uniform and seems to be more concentrated on the part of the
boundary that is closer to the starting position; wait until Chap. 10 in order to determine this
distribution

3.19

a) Immediate as

ke f k1 D sup
0�s�1

ef .s/ D esup0�s�1 f .s/ :

b1) The clever reader has certainly sensed the imminent application of the scaling
properties of Brownian motion. Replacing in the left-hand side the Brownian
motion B with s 7! p

tBs=t we have, with the substitution u D s=t,

Z t

0

eBs ds
L�

Z t

0

e
p

tBs=t ds D t
Z 1

0

e
p

tBu du :

b2) The previous relation gives

log
Z t

0

eBs ds
L� log

�
t
Z 1

0

e
p

tBs ds
�
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and by the property of the Lp norms mentioned in the hint we have, in
distribution,

lim
t!C1

1p
t

log
Z t

0

eBs ds D lim
t!C1

1p
t

log t C lim
t!C1 log

h� Z 1

0

e
p

tBs ds
�1=

p
ti

D log keBk1 D sup
0�s�1

B.s/ :

b3) Taking the log and dividing by
p

t

lim
t!C1

P
� Z t

0

eBs ds�1
�
D lim

t!C1
P
� 1p

t
log

Z t

0

eBs ds � 0
�
DP

�
sup
s�1

Bs � 0
�

D 0 :

Similarly, by the Reflection Principle,

lim
t!C1 P

� Z t

0

eBs ds � e:77337�
p

t
�

D lim
t!C1 P

� 1p
t

log
Z t

0

eBs ds � :77337
�

D P
�

sup
0�s�1

Bs � :77337
�

D 1 � 2P.B1 > :77337/ D 1

2
�

3.20

a) By the reflection principle the partition function Fa of �a is, for t > 0,

Fa.t/ D P.�a � t/ D P
�

sup
0�s�t

Bs > a
�

D 2P.Bt > a/ D 2P.B1 > at�1=2/

D 2p
2�

Z C1

at�1=2
e�x2=2 dx :

Fa is differentiable, so that �a has density, for t > 0,

fa.t/ D F0
a.t/ D �

r
2

�
e�a2=2t d

dt

ap
t

D ap
2� t3=2

e�a2=2t :

We have

E.
p
�a/ D

Z C1

0

p
tfa.t/ dt D

Z C1

0

ap
2� t

e�a2=2t dt D C1 ;
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as the integrand behaves as 1
t towards infinity. A fortiori E.�a/ D C1. Again by

the reflection principle, as t ! C1,

P.�a > t/ D 1 � 2P.Bt > a/ D 1 � 2P.B1 > at�1=2/

D 1 � P.B1 > at�1=2/� P.B1 < �at�1=2/

D 1p
2�

Z at�1=2

�at�1=2
e�x2=2 dx � 1p

2�
� 2at�1=2 D 2ap

2�t
�

b) The events fTj � tg, j D 1; : : : ;N are independent, each of them having
probability

P.Tj � t/ D 2P.Bt � 1/ D 2P
�

Z � 1p
t

�
;

where Z � N.0; 1/. Hence

P.Tj > t for at least one index j; j D 1; : : : ;N/

D 1 � P
� N\

jD1
fTj � tg

�
D 1 � P.Tj � t/N D 1 �

�
2P
�

Z � 1p
t

��N
:

For N D 10000 and t D 108 we have 2P
�
Z � 10�4� D 0:9999202 and

1� �
2P
�
Z � 10�4��10000 D 1 � :55 D 45%

whereas similar computations for t D 1010 give

1 � �
2P
�
Z � 10�5��10000 D :076 D 7:6% :

Therefore the program has the drawback that it can remain stuck on a single path
for a very very long time. We shall see some remedies to this problem later on
(see Example 12.4).

c) By Theorem 3.3,eBt D B�aCt � B�a is a Brownian motion independent of F�a . If
we denote bye�a the passage time at a ofeB, the two r.v.’s �a ande� a have the same
law and are independent. Moreover, it is clear that �2a D �a Ce� a. By recurrence
therefore the sum of n independent r.v.’s X1; : : : ;Xn each having a law equal to
that of �a has the same law as �na. Therefore the density of 1

n2
.X1 C � � � C Xn/

is

n2fna.n
2t/ D n2

nap
2� .n2t/3=2

exp
�
�a2n2

2tn2

�
D ap

2� t3=2
e�a2=2t D fa.t/ :
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3.21

a) We have

sup
0�s�t

Bs D sup
u�1

But D p
t sup

u�1
1p

t
But :

As . 1p
t
But/u is itself a Brownian motion, this means that

sup
0�s�t

Bs � p
t sup

u�1
Bu

(recall that � means equality in law). Of course this implies (3.24).
b) From Exercise 1.3 and thanks to the reflection principle

E
h

sup
0�s�t

Bs

i
D
Z C1

0

P
�

sup
0�s�t

Bs > x
�

dx D 2

Z C1

0

P.Bt > x/ dx

D 2p
2�t

Z C1

0

dx
Z C1

x
e� z2

2t dz D 2p
2�t

Z C1

0

e� z2

2t dz
Z z

0

dx

D 2p
2�t

Z C1

0

ze� z2

2t dz D 2p
2�t

te� z2
2t

ˇ
ˇ
ˇ
C1
0

D
r
2t

�
�

3.22

a1) The vector 1
jzj z has modulus equal to 1, therefore X is a Brownian motion thanks

to Remark 3.1. We have

� D infftI hz;Bti � kg D infftI jzjXt � kg D infftI Xt � k
jzj g :

a2) As � coincides with the passage time of X at a D k
jzj it has infinite expectation,

as seen in Exercise 3.20, and its density is given by (3.23).
b1) X is a centered Gaussian process starting at 0 whatever the value of ˛. In order

to check whether it is a Brownian motion we have to determine for which values
of ˛ > 0 condition 3) of Proposition 3.1 is satisfied. We have, for s � t,

EŒXtXs� D EŒ˛.B1.t/C B2.t//˛.B1.s/C B2.s//�

D ˛2
�
EŒB1.t/B1.s/�C EŒB2.t/B2.s/�C EŒB1.t/B2.s/�C EŒB1.s/B2.t/�

�

D ˛2
�
s C s C �s C �s

� D 2˛2.1C �/s
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hence, if � > �1, we have the condition

˛ D 1
p
2.1C �/

� (S.9)

If � D �1 such an ˛ does not exist. Actually, if � D �1we have B1.t/CB2.t/ D
0 a.s.

b2) A repetition of the argument of a2): � coincides with the passage time of the
Brownian motion X with the choice of ˛ as in (S.9) at a D .2C 2�/�1=2 so that
� has the density (3.23) with a D .2C 2�/�1=2 and has infinite expectation. By
the reflection principle (Proposition 3.4)

P.� � 1/ D 2P.X1 � .2C 2�/�1=2/ ;

which is maximum for � D 1.

3.23

a) We know that t 7! hw;Bti is a Brownian motion if w is a vector having modulus
equal to 1 (Example 3.1). Hence v D 1

jzj satisfies the requested condition.
b1) Of course

� D infftI B1.t/C B2.t/ D 1g D infftI hz;Bti D 1g :
b2) We have jzj2 D 2, so that, thanks to a), Wt WD 1p

2
hz;Bti is a Brownian motion.

Hence

� D infftI B1.t/C B2.t/ D 1g D infftI p
2Wt D 1g D infftI Wt D 1p

2
g

so that � has the same distribution as the passage time of W at a D 1p
2

and
therefore has density

f .t/ D a

.2�/1=2 t3=2
e�a2=2t D 1

2�1=2 t3=2
e�1=4t

and, by the reflection principle and using tables of the partition function ˚ of
an N.0; 1/-distributed r.v.,

P.� � 1/ D 2P
�

W1 � 1p
2

�
D 0:48 :

c1) We have �1 D infftI 2B1.t/CB2.t/ D 1g. We can repeat the arguments of b) for
2B1.t/CB2.t/ D hz;B.t/i with z D .2; 1/; here jzj D p

5 and 2B1.t/CB2.t/ Dp
5W1.t/, where W1 is a Brownian motion. Therefore

�1 D infftI 2B1.t/C B2.t/ D 1g D infftI p
5W1.t/ D 1g D infftI W1.t/ D 1p

5
g
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so that �1 has density, for t � 0,

f1.t/ D 1

.10�/1=2 t3=2
e�1=10t :

The same argument, for the new Brownian motion W2.t/ D 1p
5

B1.t/ �
2p
5

B2.t/, gives

�2 D infftI 1
2

B1.t/� B2.t/ D 1g D infftI
p
5
2

W2.t/ D 1g D infftI W2.t/ D 2p
5
g

with density

f2.t/ D 2

.10�/1=2 t3=2
e�1=5t :

c2) In order to prove that �1 and �2 are independent, it suffices to show that the two
Brownian motions W1;W2 are independent. We have

W1.t/ D 2p
5

B1.t/C 1p
5

B2.t/; W2.s/ D 1p
5

B1.s/ � 2p
5

B2.s/ :

Therefore, assuming s � t,

Cov.W1.t/;W2.s// D EŒW1.t/W2.s/� D 2p
5

EŒB1.t/B1.s/�� 2p
5

EŒB2.t/B2.s/� D 0:

Hence, as the r.v.’s W1.t/;W2.s/ are jointly Gaussian, they are independent for
every t; s. Alternatively, just observe that the two-dimensional process .W1;W2/

is obtained from .B1;B2/ through the linear transformation associated to the
matrix

 
2p
5

1p
5

1p
5

� 2p
5

!

which is orthogonal. Hence by Exercise 3.9 .W1;W2/ is a two-dimensional
Brownian motion which implies the independence of W1 and W2.

c3) The event f� � 1g is the union of the events f�1 � 1g and f�2 � 1g, which are
independent. Therefore

P.� � 1/ D P.�1 � 1/C P.�2 � 1/� P.�1 � 1/P.�2 � 1/ :
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Now, by the reflection principle and again denoting by ˚ the partition function
of the N.0; 1/ distribution,

P.�1 � 1/ D 2P
�

W1 � 1p
5

�
D 2

�
1 �˚

�
1p
5

��
D 2.1� 0:67// D 0:65 ;

P.�2 � 1/ D 2P
�

W2 � 2p
5

�
D 2

�
1 �˚

�
2p
5

��
D 2.1� 0:81// D 0:37 ;

which gives

P.� � 1/ D 0:65C 0:37� 0:65 � 0:37 D 0:78 :

c4) The important thing is to observe that the event f�1 � �2g coincides with the
event “the pair .�1; �2/ takes its values above the diagonal”, i.e., as �1 and �2 are
independent,

P.�1 � �2/ D
Z C1

0

f2.t/ dt
Z t

0

f1.s/ ds : (S.10)

Let us compute this integral. To simplify the notations let us set a1 D 1p
5
,

a2 D 2p
5
. By the reflection principle

Z t

0

f1.s/ ds D P.�1 � t/ D 2P.W1.t/ � a1/ D 2p
2�t

Z C1

a1

e� x2
2t dx

and substituting into (S.10)

P.�1 � �2/ D
Z C1

a1

dx
Z C1

0

a2
.2�/1=2 t3=2

e�a22=2t 2p
2�t

e�x2=2t dt

D a2
�

Z C1

a1

dx
Z C1

0

1

t2
e� 1

2t .a
2
2Cx2/ dtD a2

�

Z C1

a1

dx
� 2

a22 C x2
e� 1

2t .a
2
2Cx2/

ˇ
ˇ
ˇ
tDC1

tD0

�

D a2
�

Z C1

a1

2

a22 C x2
dx D 2

�a2

Z C1

a1

1

1C . x
a2
/2

dx D 2

�
arctan

x

a2

ˇ
ˇ
ˇ
C1

a1

D 2

�

��

2
� arctan

a1
a2

�
D 1 � 2

�
arctan

1

2
' 0:7 :

• Note that the independence of �1 and �2 is a consequence of the orthogonality of
the two straight lines 2x C 1 D 1 and 1

2
x � y D 1.

4.1 Statement a) looks intuitive: adding the information D , which is independent
of X and of G , should not provide any additional information useful for the
prediction of X. But the formulation of the exercise has certainly led the reader
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to surmise that things are not really this way. Let us therefore start proving b); we
shall then look for a counterexample showing that the answer to a) is negative.

b) The events G \ D, G 2 G ;D 2 D form a class which is stable with respect to
finite intersections, generating G _ D and containing˝ . Let us prove that

EŒE.X jG /1G\D� D E.X1G\D/

for every G 2 G , D 2 D . As the r.v. EŒX jG � is obviously G _D-measurable, by
Remark 4.2 this will prove that E.X jG / D E.X jG _D/. As D is independent of
�.X/ _ G and therefore also of G ,

EŒE.X jG /1G\D� D EŒE.X1G jG /1D� D EŒE.X1G jG /�EŒ1D�

D EŒX1G�EŒ1D�D" E.X1G1D/ D E.X1G\D/ ;

where " denotes the place where independence of D and �.X/ _ G is used.
a) The counterexample is based on the fact that it is possible to construct three

r.v.’s X;Y;Z such that the pairs .X;Y/, .Y;Z/ and .Z;X/ are each formed by
independent r.v.’s but such that X;Y;Z are not independent globally.

An example is given by˝ D f1; 2; 3; 4g, with the uniform probability P.k/ D
1
4
, k D 1; : : : ; 4, and the �-algebra F of all subsets of ˝ . Let X D 1f1;2g,

Y D 1f2;4g and Z D 1f3;4g. Then we have

P.X D 1;Y D 1/ D P.f1; 2g \ f2; 4g/ D P.2/ D 1

4
D P.X D 1/P.Y D 1/ :

Similarly it can be shown that P.X D i;Y D j/ D P.X D i/P.Y D j/ for
every possible value of i; j 2 f0; 1g, which implies that X and Y are independent.
Similarly we prove that .X;Z/ and .Y;Z/ are also pairs of independent r.v.’s. Let
G D �.Y/ and D D �.Z/. Then the �-algebra G _ D contains the events

f1g D fY D 0;Z D 0g; f2g D fY D 1;Z D 0g ;
f3g D fY D 0;Z D 1g; f4g D fY D 1;Z D 1g

and thereforeG _D D F . Hence EŒX jG _D � D X, whereas EŒX jG � D E.X/ D
1
2

a.s. as X and G are independent.

4.2 Let us first assume that Y is integrable. Then if Y were G -measurable we
would have

Y D EŒY jG � a.s.

But on the other hand, as Y is independent of G ,

EŒY jG � D EŒY� a.s.



476 Solutions of the Exercises

and these two relations can both be true only if Y D EŒY� a.s. If Y is not integrable
let us approximate it with integrable r.v.’s. If Yn D Y _ .�n/ ^ n then Yn is still
independent of G and G -measurable. Moreover, as jYnj � n, Yn is integrable.
Therefore by the first part of the proof Yn is necessarily a.s. constant and, taking
the limit as n ! 1, the same must hold for Y.

4.3 Recall (p. 88) that f .x/ D EŒZ jX D x� means that f .X/ D EŒZ j�.X/� a.s., i.e.
that EŒ f .X/ .X/� D EŒZ .X/� for every bounded measurable function W E ! R.
Let A 2 E . Then we have fX 2 Ag 2 �.X/ and

�Q.A/ D Q.X 2 A/ D EŒZ1fX2Ag� D EŒ f .X/1fX2Ag� D
Z

A
f .y/ d�P.y/ ;

which proves simultaneously that �Q � �P and that d�Q

d�P
D f .

4.4

a) If G D fE.Z jG / D 0g, then G 2 G and therefore, as E.Z jG /1G D 0,

E.Z1G/ D EŒE.Z1G jG /� D EŒE.Z jG /1G� D 0 : (S.11)

As Z � 0, this implies Z D 0 a.s. on G, i.e. fZ D 0g  fE.Z jG / D 0g a.s.
Taking the complements, fZ > 0g � fE.Z jG / > 0g and 1fZ>0g � 1fE.Z jG />0g.
Hence if Y � 0 we have a.s.

EŒZY jG � D EŒZ1fZ>0gY jG � � EŒZ1fE.Z jG />0gY jG � D 1fE.Z jG />0gEŒZY jG � :

As the opposite inequality is obvious, (4.28) is proved for Y � 0. We obtain the
case of a general r.v. Y splitting into positive and negative parts.

b) We have, with a repetition of the argument of (S.11),

Q.EŒZ jG � D 0/ D EŒZ1fEŒZ jG �D0g� D 0 ;

hence EŒZ jG � > 0 Q-a.s. Moreover, as the right-hand side of (4.29) is clearly G -
measurable, in order to verify (4.29) we must prove that, for every G -measurable
bounded r.v. W,

EQ
h
W

E.YZ jG /
E.Z jG /

i
D EQŒYW� :

But

EQ
h
W

E.YZ jG /
E.Z jG /

i
D E

h
ZW

E.YZ jG /
E.Z jG /

i
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and, as inside the expectation on the right-hand side Z is the only r.v. that is not
G -measurable,

� � � D E
h
E.Z jG /W E.YZ jG /

E.Z jG /
i

D EŒE.YZ jG /W� D EŒYZW� D EQŒYW�

and (4.29) is satisfied.

• In the solution of Exercise 4.4 we left in the background a delicate point which
deserves some attention. Always remember that a conditional expectation (with
respect to a probability P) is not a r.v., but a family of r.v.’s, only differing
from each other by P-negligible events. Therefore the quantity EŒZ jG � must be
considered with care when arguing with respect to a probability Q different from
P, as it might happen that a P-negligible event is not Q-negligible. In the case of
this exercise there are no difficulties as P 	 Q, so that negligible events for P are
also negligible for Q.

4.5 Let us prove that every D-measurable real r.v. W is independent of X. The
characteristic function of the pair Z D .X;W/, computed at 
 D .	; t/, 	 2 R

m; t 2
R, is equal to

EŒeih
;Zi� D EŒeih	;XieitW � D EŒeitWE.eih	;Xi jD/� D EŒeitW �EŒeih	;Xi�

so that X and W are independent by criterion 7 of Sect. 1.6. This entails the
independence of X and D .

4.6

a) Thanks to Example 4.5 and particularly (4.12), the requested characteristic
function is

EŒeih
;B� i� D 	

Z C1

0

e� t
2

j
 j2e�	t dt D 	

	C 1
2

j
 j2 D 2	

2	C j
 j2 �

b1) The characteristic function of X is

�X.
/ D �

2

Z C1

�1
ei
xe��jxj dx :

Now x 7! sin.
x/ e��jxj is an odd function so that the imaginary part in the
integral above vanishes. Conversely, x 7! cos.
x/ e��jxj is an even function so
that

�X.
/ D �

Z C1

0

cos.
x/ e��x dx D <
�
�

Z C1

0

ei
xe��x dx
�

D <
� �

� � i


�
D �2

�2 C 
2
�
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b2) Comparing the characteristic function of B� computed in a) with that of a
Laplace distribution computed in b2) we see that if m D 1 then B� has a Laplace
distribution with parameter

p
2	.

4.7 There are two possible methods: the best is the second one below. . .

a) First method. Let us check directly that X has the same finite-dimensional
distributions as a Brownian motion. Let t1 < t2 < � � � < tm, 
 D .
1; : : : ; 
m/ 2
R

m.
Thanks to the freezing lemma,

EŒei
1Xt1C���Ci
mXtm � D EŒei
1.B�Ct1�B� /C���Ci
m.B�Ctm �B� /�

D E
�
EŒei
1.B�Ct1�B� /C���Ci
m.B�Ctm �B� / j�.�/�
 D EŒ˚.�/� ;

where

˚.s/ D EŒei
1.BsCt1�Bs/C���Ci
m.BsCtm �Bs/� :

As we know that the increments .BsCt � Bs/t form a Brownian motion (Proposi-
tion 3.2), ˚ does not depend on s and we have that

EŒei
1Xt1C���Ci
mXtm � D EŒei
1Bt1C���Ci
mBtm � :

The process X has the same finite-dimensional distributions as B so that it is itself
a natural Brownian motion.

b) Second method. Let eF s D �.Fs; �.�// be the filtration that is obtained by
adding to .Ft/t the �-algebra generated by �. Thanks to Exercise 3.5, B is also
a Brownian motion with respect to .eF t/t and now � is a stopping time for this
larger filtration as f� � tg 2 �.�/ and therefore f� � tg 2 eF t for every t. Then
the stopping theorem, Theorem 3.3, allows us to conclude that X is an .eF t/t-
Brownian motion.

4.8

a) Recall that the �-algebras G1 D �.B1.u/; u � 0/ and G2 D �.B2.u/; u � 0/ are
independent (Remark 3.2 b)) and note that � is G2-measurable.

b) Recalling Remark 4.5 and particularly (4.11), the density of B1.�/ is given by

g.x/ D
Z C1

0

1p
2�t

e�x2=2t d�.t/ ;

where � denotes the law of � . From Exercise 3.20 we know that � has density

f .t/ D ap
2� t3=2

e�a2=2t
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for t > 0 hence the density of B1.�/ is

g.x/ D
Z C1

0

1p
2�t

ap
2� t3=2

e�a2=2te�x2=2t dt D a

2�

Z C1

0

1

t2
e�.a2Cx2/=2t dt :

With the change of variable s D 1
t we obtain

g.x/ D a

2�

Z C1

0

e� 1
2 .a

2Cx2/s ds D a

�.a2 C x2/
,

which is a Cauchy law.

4.9 The idea is always to split Bu into the sum of Bs and of the increment Bu � Bs.
As B2u D .Bu � Bs C Bs/

2 D .Bu � Bs/
2 C B2s C 2Bs.Bu � Bs/, we have

Z t

s
B2u du D .t � s/Bs C

Z t

s
.Bu � Bs/

2 du C 2Bs

Z t

s
.Bu � Bs/ du :

Bs is Fs-measurable whereas (recall Remark 4.5)

E
� Z t

s
.Bu �Bs/

2 du
ˇ
ˇFs

�
D
Z t

s
E
�
.Bu �Bs/

2
ˇ
ˇFs



du D

Z t

s
.u�s/ du D 1

2
.t�s/2 ;

the r.v.’s Bu � Bs being independent of Fs. By the same argument

E
�
2Bs

Z t

s
.Bu � Bs/ du

ˇ
ˇFs

�
D 2Bs

Z t

s
E
�
Bu � Bs

ˇ
ˇFs

�
du D 0

so that finally

E
� Z t

s
B2u du

ˇ
ˇFs

�
D .t � s/Bs C 1

2
.t � s/2 :

As this quantity is already �.Bs/-measurable,

E
� Z t

s
B2u dujBs

�
D E

h
E
� Z t

s
B2u du

ˇ
ˇFs

� ˇ
ˇBs

i
D .t � s/Bs C 1

2
.t � s/2 :

The meaning of the equality between these two conditional expectations will
become clearer in the light of the Markov property in Chap. 6.

4.10 Let us denote by �Y , �Z , respectively, the laws of Y and Z and by �y the law
of �.y/ C Z. We must prove that for every pair of bounded measurable functions
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f W E ! R and g W G ! R we have

EŒ f .X/g.Y/� D
Z

G
g.y/ d�Y.y/

Z

E
f .x/ d�y.x/ :

But we have
Z

E
f .x/ d�y.x/ D

Z

E
f .�.y/C z/ d�Z.z/

and

EŒ f .X/g.Y/� D EŒ f .�.Y/C Z/g.Y/� D
Z

G
g.y/ d�Y.y/

Z

E
f .�.y/C z/ d�Z.z/

D
Z

G
g.y/ d�Y.y/

Z

E
f .x/ d�y.x/ :

4.11

a) We must find a function of the observation, Y, that is a good approximation
of X. We know (see Remark 4.3) that the r.v. �.Y/ minimizing the squared
L2 distance EŒ.�.Y/ � X/2� is the conditional expectation �.Y/ D E.X jY/.
Therefore, if we measure the quality of the approximation of X by �.Y/ in the
L2 norm, the best approximation of X with a function of Y is E.X jY/. Let us go
back to formulas (4.23) and (4.24) concerning the mean and the variance of the
conditional laws of a Gaussian r.v.’s: here

mX D mY D 0; Cov.X;Y/ D Cov.X C W;X/ D 1; Var.Y/ D 1C �2 ;

so that

E.X jY D y/ D mX C Cov.X;Y/

Var.Y/
.y � mY/ D y

1C �2
�

The required best approximation is

Y

1C �2
�

Note that the variance of the conditional distribution of X given Y D y is

Var.X/� Cov.X;Y/2

Var.Y/
D 1 � 1

1C �2
D �2

1C �2
� (S.12)

b) The computation follows the same line of reasoning as in a) but now Y is two-
dimensional and we shall use the more complicated relations (4.21) and (4.22).
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If Y D .Y1;Y2/, y D .y1; y2/, we have mX D 0, mY D 0, CX D 1. As Var.Y1/ D
Var.Y2/ D 1C �2 and Cov.Y1;Y2/ D Cov.X C W1;X C W2/ D 1,

CY D
�
1C �2 1

1 1C �2

	

; CX;Y D �
1 1
�
:

A quick computation gives

C�1
Y D 1

.1C �2/2 � 1
�
1C �2 �1

�1 1C �2

	

:

Therefore the conditional law of X given Y D y has mean

CX;YC�1
Y y D 1

2�2 C �4

�
1 1
�
�
.1C �2/y1 � y2
.1C �2/y2 � y1

	

D y1 C y2
2C �2

�

The best approximation of X given Y D y now is

Y1 C Y2
2C �2

�

The variance of the conditional law is now

1� CX;YC�1
Y C�

X;Y D 1 � 1

2�2 C �4

�
1 1
�
�
1C �2 �1

�1 1C �2

	�
1

1

	

D 1 � 1

2�2 C �4

�
1 1
�
�
�2

�2

	

D 1 � 2

2C �2
D �2

2C �2

,

which is smaller than the value of the conditional variance given a single
observation, as computed in (S.12).

4.12

a) We apply formulas (4.21) and (4.22) to X D .Bt1 ; : : : ;Btm/, Y D B1. We have
CY D 1 whereas, as Cov.Bti ;B1/ D ti ^ 1 D ti,

CX;Y D

0

B
@

t1
:::

tm

1

C
A :
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Therefore as

CX;YC�1
Y C�

X;Y D

0

B
@

t1
:::

tm

1

C
A
�
t1 : : : tm

�

the matrix CX;YC�1
Y C�

X;Y has titj as its .i; j/-th entry. As CX is the matrix .ti ^ tj/i;j,
the conditional law is Gaussian with covariance matrix CX � CX;YC�1

Y CX;Y D
.ti ^ tj � titj/i;j, i.e.

0

B
B
B
@

t1.1 � t1/ t1.1 � t2/ : : : t1.1 � tm/
t1.1 � t2/ t2.1 � t2/ : : : t2.1 � tm/

: : :

t1.1 � tm/ t2.1 � tm/ : : : tm.1 � tm/

1

C
C
C
A

and mean (here EŒX� D 0;EŒY� D 0)

CX;YC�1
Y y D

0

B
@

t1y
:::

tmy

1

C
A :

b) Now Y D .B1;Bv/ and

CY D
�
1 1

1 v

	

; C�1
Y D 1

v � 1

�
v �1

�1 1

	

; CX;Y D

0

B
@

t1 t1
:::
:::

tm tm

1

C
A

so that

CX;YC�1
Y DD 1

v � 1

0

B
@

t1 t1
:::
:::

tm tm

1

C
A

�
v �1

�1 1

	

D

0

B
@

t1 0
:::
:::

tm 0

1

C
A

and

CX;YC�1
Y C�

X;Y D

0

B
@

t1 0
:::
:::

tm 0

1

C
A

�
t1 : : : tm
t1 : : : tm

	

;
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which is still the matrix with titj entries. Hence the covariance matrix of the
conditional law is the same as in a). The same holds for the mean which is
equal to

CX;YC�1
Y

�
y
v

	

D

0

B
@

t1y
:::

tmy

1

C
A :

In conclusion, to be repositioned the conditional law neither depends on x nor on
v and coincides with the conditional law given B1 D y. From the point of view
of intuition this is not surprising as the addition of the information Bv D x means
to add the information Bv � B1 D x � y. As the increments of the Brownian
motion are independent of the past it would have been reasonable to expect that
the addition of this new information does not change the conditional law. This
fact may be obtained directly using Exercise 4.1 b).

4.13 Thanks to Exercise 3.11 the joint law of the two r.v.’s is Gaussian. In order
to identify it, we just need to compute its mean and covariance matrix. The two r.v.’s
are obviously centered. Let us compute the variance of the second one:

E
h� Z 1

0

Bs ds
�2i D E

h Z 1

0

Bs ds �
Z 1

0

Bt dt
i

D E
h Z 1

0

Z 1

0

BsBt ds dt
i

D
Z 1

0

Z 1

0

s ^ t ds dt D
Z 1

0

dt
Z t

0

s ds C
Z 1

0

dt
Z 1

t
t ds D I1 C I2 :

We have easily

I1 D
Z 1

0

t2

2
dt D 1

6

and similarly I2 D 1
6
; therefore the variance is 1

3
. The variance of B1 is equal to 1,

of course, whereas for the covariance we find

E
h
B1

Z 1

0

Bs ds
i

D
Z 1

0

E.B1Bs/ ds D
Z 1

0

s ds D 1

2
�

The covariance matrix of B1 and
R 1
0 Bs ds is therefore

�
1 1
2

1
2
1
3

	

:

The best L2 estimate of the value of B1 given
R 1
0

Bt dt D x is the conditional mean,
which is easily computed using formula (4.23) and is equal to 3

2
x.
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4.14

a) We have Cov.�;Ys/ D Cov.�; �s/ C Cov.�; �Bs/ D s�2 (� and Bs are
independent). By the same argument

Cov.Ys;Yt/ D Cov.�s; �t/C Cov.�Bs; �Bt/ D st�2 C .s ^ t/�2:

b) As � is independent of B, .�; .Bt/t�0/ is a Gaussian family. Therefore for
every t1; : : : ; tm the vector .Yt1 ; : : : ;Ytm/ is Gaussian, being a linear function of
.�;Bt1 ; : : : ;Btm/.

c) 	 must satisfy the relation Cov.�� 	Yt;Ys/ D 0 for every s � t. We have

Cov.� � 	Yt;Ys/ D Cov.�;Ys/� Cov.	Yt;Ys/ D s�2 � 	.st�2 C s�2/

D s.�2 � 	.t�2 C �2//

and therefore

	 D �2

�2 C t�2
�

With this choice of 	 the r.v. Z D �� 	Yt is not correlated with each of the r.v.’s
Ys; s � t. As these generate the �-algebra Gt and .�;Yt; t � 0/ is a Gaussian
family, by Remark 1.2 Z is independent of Gt.

d) As Yt is Gt-measurable whereas Z D ��	Yt is independent of Gt and EŒYt� D �t,

EŒ�jGt� D EŒ	Yt C Z jGt� D 	Yt C EŒZ� D 	Yt C EŒ� � 	Yt�

D 	Yt C �.1 � 	t/ D �2Yt

�2 C t�2
C �

�
1 � t�2

�2 C t�2

�
D �2Yt C �2�

�2 C t�2
�

We have

lim
t!C1 EŒ�jGt� D lim

t!C1
�2Yt C �2�

�2 C t�2
D lim

t!C1
�2Yt

�2 C t�2

D lim
t!C1

�2

�2 C t�2
.�t C �Bt/ D � a.s.

as limt!C1 1
t Bt D 0 a.s. by the Iterated Logarithm Law.

4.15

a) If t1; : : : ; tn 2 R
C, then .Xt1 ; : : : ;Xtn/ is Gaussian, being a linear function of

.Bt1 ; : : : ;Btn ;B1/. Moreover, if t � 1,

EŒXtB1� D EŒ.Bt � tB1/B1� D t ^ 1 � t D 0 :
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The two r.v.’s Xt and B1, being jointly Gaussian and uncorrelated, are independent
for every t � 1. Xt is centered and, if s � t,

EŒXtXs� D EŒ.Bt � tB1/.Bs � sB1/� D s � st � st C st D s.1 � t/ : (S.13)

b) As Xs and Xt � 1�t
1�s Xs are jointly Gaussian, we need only to show that they are

not correlated. We have, recalling that s � t,

E
h�

Xt � 1 � t

1 � s
Xs

�
Xs

i
D s.1 � t/ � 1 � t

1 � s
s.1 � s/ D 0 :

c) We have

EŒXt jXs� D E
h
Xt � 1 � t

1 � s
Xs C 1 � t

1 � s
Xs

ˇ
ˇXs

i
D 1 � t

1 � s
Xs (S.14)

as, thanks to b), Xt � 1�t
1�s Xs is independent of Xs and centered whereas 1�t

1�s Xs

is already �.Xs/-measurable. The relation EŒXt jXs� D EŒXt jGs� follows if we
show that Xt � 1�t

1�s Xs is independent of Gs and then repeat the same argument
as in (S.14). In order to obtain this it is sufficient to show that Xt � 1�t

1�s Xs is
independent of Xu for every u � s. This is true as, if u � s,

E
h�

Xt � 1 � t

1 � s
Xs

�
Xu

i
D u.1 � t/ � 1 � t

1 � s
u.1 � s/ D 0 :

d) We have, for s � t � 1,

EŒXt jFs� D EŒBt � tB1 jFs� D Bs � tBs D .1 � t/Bs :

This result is different from

EŒXt jGs� D 1 � t

1 � s
Xs

obtained in c), as it is easy to see that Var. 1�t
1�s Xs/ D .1�t/2 s

1�s whereas Var..1�
t/Bs/ D .1 � t/2s. Therefore the two �-algebras Fs and Gs are different.

e) Let 0 � t1 < � � � < tm � 1. The conditional law of the vector .Bt1 ; : : : ;Btm/

given B1 D 0 can be computed as explained in Sect. 4.4. It has actually already
been computed in Exercise 4.12 b). It is Gaussian, centered, and with covariance
matrix whose .i; j/-th entry is ti ^ tj � titj, the same as the covariance matrix of
the Brownian bridge, as it can be computed from (S.13).

5.1 For every t > s, we have E.Xt jFs/ � Xs a.s. Therefore the r.v. U D Xs �
E.Xt jFs/ is positive a.s.; but it has zero mean, as

EŒU� D EŒXs� � EŒE.Xt jFs/� D E.Xs/� E.Xt/ D 0 :
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We deduce that U D 0 a.s. (a positive r.v. having mean equal to 0 is D 0 a.s.).
Therefore E.Xt jFs/ D Xs a.s. for every t > s.

5.2

a) We know that P.X�a;b D b/ D a
aCb , hence

lim
a!C1 P.X�a;b D b/ D 1 ;

which was to be expected: if the left endpoint of the interval � � a; bŒ is far from
the origin, it is more likely for the exit to take place at b.

b) The event fX�a;b D bg is contained in f�b < C1g, hence, for every a > 0,

P.�b < C1/ � P.X�a;b D b/

so that, thanks to a), P.�b < C1/ D 1.

5.3

a) Thanks to the law of large numbers we have a.s.

1
n Xn D 1

n .Y1 C � � � C Yn/ !
n!1 EŒY1� D p � q < 0 :

Therefore a.s. there exists an n0 > 0 such that 1n Xn � 1
2
.p � q/ < 0 for n � n0,

which implies Xn � n
2
.p � q/; hence Xn ! �1 a.s.

b1) Let Fn D �.X1; : : : ;Xn/ D �.Y1; : : : ;Yn/. We have, YnC1 being independent
of Fn,

EŒZnC1 jFn� D E
h�q

p

�XnC1̌ˇFn

i
D E

h�q

p

�XnCYnC1̌ˇFn

i
D
�q

p

�Xn

E
h�q

p

�YnC1̌ˇFn

i

D
�q

p

�Xn

E
h�q

p

�YnC1
i

D
�q

p

�Xn
�q

p
P.YnC1 D 1/C p

q
P.YnC1 D �1/

�

D
�q

p

�Xn
�q

p
p C p

q
q
�

D
�q

p

�Xn

.p C q/ D
�q

p

�Xn D Zn :

Note that this argument proves that the product of independent r.v.’s having
mean equal to 1 always gives rise to a martingale with respect to their natural
filtration. Here we are dealing with an instance of this case.

b2) As, thanks to a), limn!1 Xn D �1 a.s. and q
p > 1, we have limn!1 Zn D 0.

c) As n ^ � is a bounded stopping time, by the stopping theorem EŒZn^� � D
EŒZ1� D 1. By a) � < C1, therefore limn!1 Zn^� D Z� a.s. As q

p > 1 and

�a � Xn^� � b, we have . q
p /

�a � Zn^� � .
q
p /

b and we can apply Lebesgue’s
theorem and obtain that EŒZ� � D limn!1 EŒZn^� � D 1.
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d) As X� can only take the values �a; b,

1 D EŒZ� � D E
h�q

p

�X�
� D

�q

p

�b
P.X� D b/C

�q

p

��a
P.X� D �a/

D
�q

p

�b
P.X� D b/C

�q

p

��a
.1 � P.X� D b// :

Actually, as � < C1, P.X� D �a/ D 1 � P.X� D b/. Hence

1 �
�q

p

��a D P.X� D b/
��q

p

�b �
�q

p

��a�
;

i.e.

P.X� D b/ D 1 � . q
p /

�a

. q
p /

b � . q
p /

�a
�

5.4

a) Zk is Fk�1-measurable whereas Xk is independent of Fk, therefore Xk and
Zk are independent. Thus Z2k X2k is integrable, being the product of integrable
independent r.v.’s and Yn is square integrable for every n (beware of a possible
confusion: “.Yn/n square integrable” means Yn 2 L2 for every n, “.Yn/n bounded
in L2” means supn>0 E.Y2n / < C1). Moreover,

EŒYnC1 jFn� D EŒYn C ZnC1XnC1 jFn� D Yn C ZnC1EŒXnC1 jFn�

D Yn C ZnC1 EŒXnC1�„ ƒ‚ …
D0

D Yn :

b) As Zk and Xk are independent, EŒZkXk� D EŒZk�EŒXk� D 0 and therefore EŒYk� D
0. Moreover, we have

EŒY2k � D E
h� nX

kD1
ZkXk

�2i D E
h nX

k;hD1
ZkXkZhXh

i
D

nX

k;hD1
EŒZkXkZhXh�

but in the previous sum all the terms with h 6D k vanish: let us assume k > h,
then ZkXhZh is Fk�1-measurable whereas Xk is independent of Fk�1. Therefore

EŒZkXkZhXh� D EŒXk�„ƒ‚…
D0

EŒZkZhXh� ;

hence, using again the independence of Zk and Xk,

EŒY2k � D
nX

kD1
EŒZ2k X2k � D

nX

kD1
EŒZ2k �EŒX

2
k � D �2

nX

kD1
EŒZ2k � : (S.15)



488 Solutions of the Exercises

The compensator .An/n of the submartingale .M2
n/n is given by the relations A0 D

0, AnC1 D An C EŒM2
nC1 � M2

n jFn�. Now

EŒM2
nC1 � M2

n jFn� D EŒ.Mn C XnC1/2 � M2
n jFn�

D EŒM2
n C 2MnXnC1 C X2nC1 � M2

n jFn� D EŒ2MnXnC1 C X2nC1 jFn�

D 2MnEŒXnC1 jFn�C EŒX2nC1 jFn� :

As XnC1 is independent of Fn,

EŒXnC1 jFn� D EŒXnC1� D 0 a.s.
EŒX2nC1 jFn� D EŒX2nC1� D �2 a.s.

(S.16)

and therefore AnC1 D An C�2, which with the condition A0 D 0 gives An D n�2.
In order to compute the compensator of .Y2n /n just repeat the same argument.

If we denote it by .Bn/n, then

EŒY2nC1 � Y2n jFn� D EŒ.Yn C ZnC1XnC1/2 � Y2n jFn�

D EŒ2YnZnC1XnC1 C Z2nC1X2nC1 jFn�

D 2YnZnC1EŒXnC1 jFn�C EŒZ2nC1X2nC1 jFn� D Z2nC1EŒX2nC1 jFn� D �2Z2nC1 :

From the relations B0 D 0 and BnC1 D Bn C EŒY2nC1 � Y2n jFn� we find

Bn D �2
nX

kD1
Z2k :

c) By (S.15)

EŒY2n � D �2
nX

kD1

1

k2
�

As the series on the right-hand side is convergent, the martingale .Yn/n is
bounded in L2. It is therefore convergent a.s. and in L2 and therefore uniformly
integrable.

5.5

a) We have

EŒYk� D �1 � 2�k C 0 � .1 � 21�k/C 1 � 2�k D 0 ;

Therefore .Xn/n, being the sum of independent centered r.v.’s, is a martingale
(Example 5.1 a)).
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b) The r.v.’s Yk are square integrable and therefore Xn 2 L2, as the sum of square
integrable r.v.’s. The associated increasing process of the martingale .Xn/n, i.e.
the compensator of the submartingale .X2n/n, is defined by A0 D 0 and for n � 1

An D An�1 C EŒ.Xn � Xn�1/2 jFn�1� D An�1 C EŒY2n jFn�1� D An�1 C EŒY2n � :

As EŒY2n � D 2 � 2�n,

An D 1C 1

2
C � � � C 1

2n�1 D 2.1� 2�n/ :

(Note that the associated increasing process .An/n turns out to be deterministic,
as is always the case for a martingale with independent increments).

c) Thanks to b) the associated increasing process .An/n is bounded. As

An D EŒX2n �

the martingale .Xn/n is bounded in L2. Hence it converges a.s. and in L2. It also
converges in L1, as Lp convergence implies convergence in Lp0

for every p0 � p.

5.6

a) We have

f� � ug D

8
ˆ̂
<

ˆ̂
:

; if u < s

A if s � u < t

˝ if u � t

therefore, in any case, f� � ug 2 Fu for every u.
b) If X is a martingale then the relation E.X� / D E.X0/ for every bounded stopping

time � is a consequence of the stopping theorem (Theorem 5.13) applied to the
stopping times �2 D � and �1 D 0.

Conversely, assume that E.X� / D E.X0/ for every bounded stopping time �
and let us prove the martingale property , i.e. that, if t > s, for every A 2 Fs

E.Xt1A/ D E.Xs1A/ : (S.17)

The idea is to find two bounded stopping times �1; �2 such that from the relation
EŒX�1 � D EŒX�2 � (S.17) follows. Let us choose, for a fixed A 2 Fs, � as in a) and
�2 � t. Now X� D Xs1A C Xt1Ac and the relation EŒX� � D EŒXt� can be written as

EŒXs1A�C EŒXt1Ac � D EŒX� � D EŒXt� D EŒXt1A�C EŒXt1Ac�

and by subtraction we obtain (S.17).
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5.7 Note first that Mt is integrable for every t > 0, thanks to the integrability
of eBt . Then, as indicated at the end of Sect. 5.1, it suffices to prove that g.x/ D
.ex � K/C is a convex function. But this is immediate as g is the composition of
the functions x 7! ex � K, which is convex, and of y 7! yC, which is convex and
increasing.

5.8

a) If s � t, as fMs D 0g 2 Fs,

E.1fMsD0gMt/ D E.1fMsD0gMs/ D 0 :

As Mt � 0, we must have Mt D 0 a.s. on fMs D 0g (this is also a consequence
of Exercise 4.4 a)).

b1) � is the infimum of the set of times at which M vanishes; therefore there exists
a sequence .tn/n with tn & � such that Mtn D 0. Therefore, as M is right-
continuous, M� D 0.

b2) Let T > 0 and � D infftI Mt D 0g. Let us prove that P.� � T/ D 0. By the
stopping theorem and as M� D 0 a.s.

E.MT/ D E.MT^� / D E.MT1f�>Tg C M� 1f��Tg/ D E.MT1f�>Tg/ :

As MT > 0 a.s. this equality is possible only if P.� > T/ D 1.

5.9

a) This is an extension to an m-dimensional Brownian motion of what we have
already seen in Example 5.2. Let s < t. As Bs is Fs-measurable whereas Bt � Bs

is independent of Fs,

E.Xt jFs/ D E.eh	;BsiCh	;Bt�Bsi� 1
2 j	j2 t jFs/

D eh	;Bsi� 1
2 j	j2 t E.eh	;Bt�Bsi jFs/ D eh	;Bsi� 1

2 j	j2 t E.eh	;Bt�Bsi/

D eh	;Bsi� 1
2 j	j2 t e

1
2 j	j2.t�s/ D eh	;Bsi� 1

2 j	j2s D Xs :

b) Two ways of reasoning are possible.
First let us assume that m D 1. For large t, Bt.!/ � ..2C "/t log log t/1=2 by

the Iterated Logarithm Law. Therefore, a.s.,

	Bt � 1

2
j	j2t

D ..2C"/t log log t/1=2
� Bt

..2C "/t log log t/1=2
� 1
2

j	j2pt

..2C "/ log log t/1=2
„ ƒ‚ …

!C1

�
!

t!C1
�1
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and therefore

Xt D e	Bt� 1
2 j	j2 t !

t!C1 0 a.s.

If m > 1, then we know that Wt D 1
j	j h	;Bti is a Brownian motion. We can

write

Xt D ej	jWt� 1
2 j	j2 t

and then repeat the argument above with the Iterated Logarithm Law applied to
W.

The second approach is the following: let 0 < ˛ < 1. Then

EŒX˛t � D e� 1
2 ˛j	j2 tEŒeh˛	;Bti� D e� 1

2 ˛j	j2 te
1
2 ˛

2j	j2 t D e� 1
2 j	j2 t˛.1�˛/ :

Hence limt!C1 EŒX˛t � D 0. Let us denote by X1 the a.s. limit of X (whose
existence is guaranteed, X being a continuous positive martingale). Then by
Fatou’s lemma

EŒX˛1� � lim
t!C1

EŒX˛t � D 0 :

The positive r.v. X˛1, having expectation equal to 0, is therefore D 0 a.s.
This second approach uses the nice properties of martingales (the previous

one with the Iterated Logarithm Law does not) and can be reproduced in other
similar situations.

c) If the martingale .Xt/t was uniformly integrable, it would also converge to 0 in
L1 and we would have E.Xt/ ! 0 as t ! C1. But this it is not the case, as
E.Xt/ D E.X0/ D 1 for every t � 0.

5.10

a) The first point has already been proved in Remark 5.4 on p. 132. However, let
us produce a direct proof. If s � t, as Bs is Fs-measurable whereas Bt � Bs is
independent of Fs,

E.Yt jFs/ D EŒ.Bs C .Bt � Bs//
2 jFs� � t

D EŒB2s C 2Bs.Bt � Bs/C .Bt � Bs/
2 jFs� � t

D B2s C 2Bs E.Bt � Bs jFs/„ ƒ‚ …
D0

C EŒ.Bt � Bs/
2�

„ ƒ‚ …
Dt�s

�t D B2s � s D Ys :

If Y was uniformly integrable then it would converge a.s. and in L1. This is not
possible, as we know by the Iterated Logarithm Law that there exists a sequence
of times .tn/n such that tn ! C1 and Btn D 0. Therefore limt!C1 Ytn D �1
a.s.

b) The requested equality would be immediate if � was bounded, which we do not
know (actually it is not). But, for every t > 0, t ^ � is a bounded stopping time
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and by the stopping theorem 0 D EŒYt^� � D EŒB2t^� � .t ^ �/�. Therefore

E.B2t^� / D E.t ^ �/

and we can take the limit as t ! C1

lim
t!C1 E.B2t^� / D E.B2� /

by Lebesgue’s theorem (B2t^� � max.a2; b2/) and

lim
t!C1 E.t ^ �/ D E.�/

by Beppo Levi’s theorem (t 7! t ^ � is obviously increasing). In Example 5.3
we have seen that

P.B� D �a/ D b

a C b
, P.B� D b/ D a

a C b
�

Therefore we find

E.�/ D E.B2� / D a2b C b2a

a C b
D ab :

c1) Immediate as

Yt D B1.t/
2 � t C � � � C Bm.t/

2 � t

so that, thanks to a), .Yt/t turns out to be the sum of m .Ft/t-martingales.
c2) Recall that we know already that � < C1 a.s. (Exercise 3.18). By the stopping

theorem, for every t > 0, EŒjB�^tj2 � � ^ t� D 0, i.e.

EŒjB�^tj2� D mEŒ� ^ t� :

By a repetition of the argument of b), i.e. using Lebesgue’s theorem for the
left-hand side and Beppo Levi’s for the right-hand side, we find

EŒjB� j2� D mEŒ� �

and, observing that jB� j2 D 1 a.s., we can conclude that

EŒ� � D 1

m
�
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5.11

a) As EŒMtMs jFs� D MsEŒMt jFs� D M2
s we have

EŒ.Mt � Ms/
2� D EŒEŒ.Mt � Ms/

2 jFs��

D EŒEŒM2
t � 2MtMs C M2

s jFs�� D EŒM2
t � M2

s � :

b) Let us assume M0 D 0 for simplicity. This is possible because the two
martingales .Mt/t and .Mt � M0/t have the same associated increasing process.
Note that the suggested associated increasing process vanishes at 0. We have then

EŒM2
t jFs� D EŒ.Mt �MsCMs/

2 jFs� D EŒ.Mt �Ms/
2C2.Mt�Ms/MsCM2

s jFs� :

But EŒ.Mt � Ms/
2 jFs� D EŒ.Mt � Ms/

2� D EŒM2
t � M2

s � as M has independent
increments whereas EŒ.Mt � Ms/Ms jFs� D MsEŒMt � Ms jFs� D 0. Therefore

EŒM2
t jFs� D M2

s C EŒM2
t � M2

s � ;

from which it follows that Zt D M2
t � E.M2

t / is a martingale, i.e. that hMit D
EŒM2

t �.
c) M being a Gaussian process we know (Remark 1.2) that Mt � Ms is independent

of Gs D �.Mu; u � s/ if and only if, for every u � s,

EŒ.Mt � Ms/Mu� D 0 :

But this relation is immediate as, M being a martingale,

EŒ.Mt � Ms/Mu� D E
�
EŒ.Mt � Ms/Mu jGs�


 D E
�

EŒ.Mt � Ms/jGs�„ ƒ‚ …
D0

Mu


:

d) As hMi is deterministic and because of the independence of the increments,

E
�
e
Mt� 1

2 

2hMit

ˇ
ˇFs


 D e
Ms� 1
2 


2hMit E
�
e
.Mt�Ms/

ˇ
ˇFs




D e
Ms� 1
2 


2hMit E
�
e
.Mt�Ms/



:

As Mt � Ms is Gaussian, we have E
�
e
.Mt�Ms/


 D e
1
2 


2Var.Mt�Ms/ (recall
Exercise 1.6). As, thanks to a),

Var.Mt � Ms/ D EŒ.Mt � Ms/
2� D EŒM2

t � M2
s � D hMit � hMis ;

we have

E
�
e
Mt� 1

2 

2hMit

ˇ
ˇFs


 D e
Ms� 1
2 


2hMit e
1
2 


2.hMit�hMis/ D Zs :
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5.12

a) We must prove that, for every n and for every bounded Borel function � W
R

n !R,

EŒYnC1 �.Y1; : : : ;Yn/� D EŒYn �.Y1; : : : ;Yn/� : (S.18)

But

EŒYnC1 �.Y1; : : : ;Yn/� D EŒXnC1�.X1; : : : ;Xn/� ;

EŒYn �.Y1; : : : ;Yn/� D EŒXn�.X1; : : : ;Xn/�

as .Xn/n and .Yn/n are equivalent and, .Xn/n being a martingale,

EŒXnC1�.X1; : : : ;Xn/� D EŒXn �.X1; : : : ;Xn/� ;

from which (S.18) follows.
b) The proof follows the same idea as in a). Let us denote by .Gt/t the natural

filtration of the process .Yt/t. By Remark 4.2, in order to show that EŒYt jGs� D Ys,
s � t, we must just prove that

EŒYt1C� D EŒYs1C�

for every C in a class C of events that is stable with respect to finite intersections,
containing ˝ and generating G . If we choose as C the family of events of the
form fYs1 2 A1; : : : ;Ysn 2 Ang, for n D 1; 2; : : : , s1; : : : ; sn � s and A1; : : : ;An 2
B.R/, then we are led to show that

EŒYt 1fYs12A1g : : : 1fYsn 2Ang� D EŒYs 1fYs12A1g : : : 1fYsn 2Ang� :

But this follows from the fact that

EŒYt 1fYs12A1g : : : 1fYsn 2Ang� D EŒXt1fXs12A1g : : : 1fXsn 2Ang�

EŒYs 1fYs12A1g : : : 1fYsn 2Ang� D EŒXs1fXs12A1g : : : 1fXsn 2Ang�

as .Xt/t and .Yt/t are equivalent and

EŒXt 1fXs12A1g : : : 1fXsn2Ang� D EŒXs 1fXs12A1g : : : 1fXsn 2Ang�

as .Xt/t is, by assumption, a martingale.
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5.13

a) If t > s and recalling Remark 4.5, then

EŒYt jFs� D E
h
tBt �

Z t

0

Bu du
ˇ
ˇFs

i
D E

�
t.Bs CBt �Bs/jFs


�
Z t

0

E
�
Bu jFs



du

D tBs C EŒt.Bt � Bs jFs�„ ƒ‚ …
D0

�
Z s

0

Bu du �
Z t

s
Bs du

D tBs �
Z s

0

Bu du � .t � s/Bs D Ys :

b) We have, for u � s < t,

EŒ.Yt � Ys/Bu� D EŒ.tBt � sBs/Bu� � E
h
Bu

Z t

s
Bv dv

i

D .t � s/u �
Z t

s
EŒBuBv� dv D .t � s/u �

Z t

s
u dv D 0 :

5.14

a) Let us prove first that X� is F� -measurable. Let A 2 B.R/, then we have

fX� 2 A; � � kg D
k[

mD0
fX� 2 A; � D mg D

k[

mD0
fXm 2 A; � D mg : (S.19)

As f� D mg D f� � mg n f� � m � 1g 2 Fm � Fk, from (S.19) we have
fX� 2 A; � � kg 2 Fk for every k, i.e. fX� 2 Ag 2 F� .

We are left with the proof that EŒX1A� D EŒX�1A� for every A 2 F� . If A 2
F� , then A \ f� D ng 2 Fn and

E.X1A/ D
1X

nD0
E.X1A\f�Dng/ D

1X

nD0
EŒ1A\f�DngE.X jFn/� D

1X

nD0
E.Xn1A\f�Dng/

D
1X

nD0
E.X�1A\f�Dng/ D E.X�1A/ :

b) If .�n/n is a sequence of stopping times decreasing to � and such that �n takes
a discrete set of values (see Lemma 3.3), then repeating the proof of a) we
have E.X jF�n/ D X�n . As .Xt/t is right-continuous, X�n ! X� as n ! 1
a.s. Moreover, the family .X�n/n is uniformly integrable by Proposition 5.4 and
therefore X�n ! X� also in L1. As E.X jF� / D EŒE.X jF�n/jF� � we deduce that

E.X jF� / D E.X�n jF� / !
n!1 E.X� jF� / D X� :
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The last equality in the relation above follows from the fact that X� is F� -measu-
rable, as a consequence of Propositions 2.1 and 3.6.

5.15 We have, recalling again Remark 4.5,

EŒMt jFs� D e	tE.Bt jFs/� 	

Z t

0

e	uEŒBu jFs� du

D e	tBs � 	

Z s

0

e	uBu du � 	

Z t

s
e	uBs du

D e	tBs � 	

Z s

0

e	uBu du � .e	t � e	s/Bs D Ms :

which proves the martingale property. Let us write down the increments of M, trying
to express them in terms of the increments of the Brownian motion. We have

Mt � Ms D e	tBt � e	sBs � 	

Z t

s
e	uBu du

D e	t.Bt � Bs/C .e	t � e	s/Bs � 	
Z t

s
e	u.Bu � Bs/ du � 	

Z t

s
e	uBs du

D e	t.Bt � Bs/� 	

Z t

s
e	u.Bu � Bs/ du :

As Mt � Ms is a function of the increments of B after time s, it follows that it is
independent of Fs (recall Remark 3.2).

5.16

a) Recalling the expression of the Laplace transform of Gaussian laws (Exer-
cise 1.6),

EŒe	Bt��t� D e.
	2

2 ��/t

so that the required limit is equal to C1, 1 or 0, according as 	2

2
> �, 	

2

2
D � or

	2

2
< �.

b) Let t > s. With the typical method of factoring out the increment we have

E.e	Bt��t jFs/ D e	Bs��tE.e	.Bt�Bs/ jFs/ D e	BsC 	2

2 .t�s/��t

so that, if 	2

2
D �, .Xt/t is a martingale. Conversely, it will be a supermartingale

if and only if

	2

2
.t � s/ � �t � ��s;
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i.e. if 	2

2
� �. The same argument also allows us to prove the result in the

submartingale case.
c) We have

X˛t D e˛	Bt�˛�t :

It is obvious that we can choose ˛ > 0 small enough so that 1
2
˛2	2 < ˛�, so that,

for these values of ˛, X˛ turns out to be a supermartingale, thanks to b). Being
positive, it converges a.s. Let us denote by Z its limit: as by Fatou’s lemma

lim
t!1 E.X˛t / D lim

t!1 E.e˛	Bt�˛�t/ D lim
t!1 e.

1
2 ˛

2	2�˛�/t D 0 ;

we have

E.Z/ � lim
t!C1

E.X˛t / D 0 ;

from which, as Z � 0, we deduce Z D 0 a.s. Therefore limt!1 X˛t D 0 and also
limt!1 Xt D 0 a.s.

d) The integral

A1 D
Z C1

0

e	Bs��s ds

is well defined (possibly D C1), the integrand being positive. By Fubini’s
theorem

E.A1/ D E
h Z C1

0

e	Bs��s ds
i

D
Z C1

0

E
�
e	Bs��s



ds
i

D
Z C1

0

e.
	2

2 ��/s ds :

Therefore, if 	2

2
< �, E.A1/ D .� � 	2

2
/�1. If 	2

2
� � then EŒA1� D C1.

If Wt D 1
	

B	2t, we know, thanks to the scaling property, that .Wt/t is also a
Brownian motion. Therefore the r.v.’s

Z C1

0

e	Bs��s ds

and
Z C1

0

e	Ws��s ds D
Z C1

0

eB	2s��s ds

have the same law. Now just make the change of variable t D 	2s.

• Note the apparent contradiction: we have limt!1 Xt D 0 for every value of
	 2 R; � > 0, whereas, for 1

2
	2 > �, limt!1 E.Xt/ D C1.
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5.17

a) Let us consider the two possibilities: if �x D C1, then

lim
t!C1 Mt^�x D lim

t!C1 Mt D 0

whereas if �x < C1, then Mt^�x ! M�x D x as t ! C1 (the martingale is
continuous). Putting together the two possible cases we obtain (5.34).

b) As the stopping time t ^ �x is bounded, by the stopping theorem, Theorem 5.13,
EŒMt^�x � D EŒM0� D 1. As the stopped martingale .Mt^�x/t is bounded (actually
0 � Mt^�x � x), by Lebesgue’s theorem,

1 D lim
t!C1 E.Mt^�x/ D EŒx1f�x<C1g� D xP.�x < C1/ ;

i.e. P.�x < C1/ D 1
x .

c) Just observe that, for x > 1, fM� � xg D f�x < C1g, so that

P.M� � x/ D P.�x < C1/ D 1

x
� (S.20)

d) By Exercise 5.9 we know that .Mt/t is a continuous martingale such that M0 D 1

and vanishing as t ! C1. Thanks to (S.20)

P.X� � x/ D P.2
X� � 2
x/ D P
�

sup
t�0
.2
Bt � 2
2t/ � 2
x

�

D P
�

sup
t�0

e2
Bt�2
2t � e2
x
�

D P.M� � e2
x/ D 1� P.M� > e2
x/ D 1� e�2
x :

We recognize the partition function of an exponential law with parameter 2
 ,
therefore X� is exponential with parameter 2
 .

• This is an example of a ruin problem. The process X is a ruin process modeling,
for instance, the net loss of an insurance company, coming from the difference
between the claims and the premia. In the average Xt tends to �1, as the premia
are computed in order to make a profit, but the outflow produced by the claims is
a random quantity which can (hopefully with small probability) become large.

If R denotes the reserves of the company at time 0, the event fX� > Rg
corresponds to the fact that the company is unable to face its obligations, hence
of being bankrupt.

Investigating this kind of situation is therefore of interest and Exercise 5.17 is
a first example. The process Xt D Bt � 
 t is not really a good ruin process and
more realistic ones have been developed (see Asmussen 2000 if you want to go
further). It is nevertheless a good first look.
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5.18

a) If s D t
1�t , then t D s

sC1 and 1 � t D 1
sC1 . (5.35) therefore holds if and only

if the process Bs D .1 C s/X s
sC1

is a Brownian motion. As it is obviously a
centered Gaussian process that vanishes for s D 0, we just have to prove that
E.BsBt/ D s ^ t. Note that s 7! s

sC1 D 1 � 1
sC1 is increasing. Therefore if s � t,

then also s
sC1 � t

tC1 and, recalling the form of the covariance function of the
Brownian bridge,

E.BsBt/ D .1C s/.1C t/E
�
X s

sC1
X t

tC1

� D .1C s/.1C t/
s

s C 1

�
1 � t

t C 1

�
D s

and therefore B is a Brownian motion.
b) We have, with the change of variable s D t

1�t ,

P
�

sup
0�t�1

Xt > a
�

D P
�

sup
0�t<1

.1 � t/B t
1�t

> a
�

D P
�

sup
s>0

1

s C 1
Bs > a

�

D P
�

sup
s>0

1

s C 1
.Bs � .s C 1/a/ > 0

�
D P

�
sup
s>0

Bs � sa > a
�
:

Thanks to Exercise 5.17 the r.v. sups>0 Bs � sa has an exponential law with
parameter 2a, therefore

P
�

sup
0�t�1

Xt > a
�

D e�2a2

and the partition function of sup0�t�1 Xt is F.x/ D 1 � e�2x2 for x � 0. Taking

the derivative, the corresponding density is f .x/ D 4xe�2x2 for x � 0.

5.19

a) As computed in Example 5.3 (here a D x, b D 1) P.B� D �x/ D 1
1Cx .

b) The important observation is that if Z � x, i.e.

min
t��1

Bt � �x ;

then B has gone below level �x before passing at 1, so that B� D �x. Therefore,
by a),

P.Z � x/ D P.B� D �x/ D 1

1C x
,

i.e. the partition function of Z is P.Z � x/ D 1 � 1
1Cx . Taking the derivative, the

density of Z is

fZ.x/ D 1

.1C x/2
, x > 0 :
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The expectation of Z would be

Z C1

0

x

.1C x/2
dx

but the integral does not converge, as the integrand behaves like 1
x as x ! C1.

Therefore Z does not have finite expectation.

5.20

a) We have Mt D e�2�Bt�2�2 t so that this is the martingale of Example 5.2 for

 D �2�.

b1) By the Iterated Logarithm Law. . .
b2) By the stopping theorem

E.M�^t/ D E.M0/ D 1 : (S.21)

As �a � X�^t � b, t 7! M�^t is bounded and we can apply Lebesgue’s theorem
taking the limit as t ! C1 in (S.21), which gives

1 D E.M� / D E.e�2�X� / D e2�aP.X� D �a/C e�2�bP.X� D b/

D e2�a.1 � P.X� D b//C e�2�bP.X� D b/

hence

P.X� D b/ D 1 � e2�a

e�2�b � e2�a

and the limit as � ! C1 of this probability is equal to 1.

5.21

a) We have

EŒB3t � 3tBt jFs� D EŒ.Bs C .Bt � Bs//
3 � 3t.Bs C .Bt � Bs//jFs�

D EŒB3s C 3B2s .Bt � Bs/C 3Bs.Bt � Bs/
2 C .Bt � Bs/

3 jFs� � 3tBs

D B3s C 3.t � s/Bs � 3tBs D Xs :

b) By the stopping theorem applied to the bounded stopping time � ^ t,

0 D E.X�^t/ D E.B3�^t/� 3E..� ^ t/B�^t/ ;

i.e.

E.B3�^t/ D 3EŒ.� ^ t/B�^t� :

Now E.B3�^t/ !t!C1 E.B3� /, as jB3�^tj � max.a; b/3 and we can apply
Lebesgue’s theorem. The same argument allows us to take the limit on the right-
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hand side, since j.� ^ t/B�^tj � � max.a; b/ and we know (Exercise 5.31) that �
is integrable. We can therefore take the limit and obtain

E.�B� / D 1

3
E.B3� / D 1

3

� b3a

a C b
� a3b

a C b

�
D 1

3

� ab

a C b
.b2�a2/

�
D 1

3
ab.b�a/ :

We have actually seen in Exercise 5.31 that P.B� D �a/ D b
aCb and P.B� D

b/ D a
aCb . Therefore, recalling that E.B� / D 0, we find

Cov.�;B� / D E.�B� / D 1

3
ab.b � a/ :

Note that the covariance is equal to zero if a D b, in agreement with the fact that,
if a D b, then � and B� are independent (Exercise 3.18).

5.22 We must prove that, if s � t,

EŒMtNt1A� D EŒMsNs1A� (S.22)

for every A 2 Hs or at least for every A in a subclass Cs � Hs, which generates Hs,
contains˝ and is stable with respect to finite intersections (this is Remark 4.2). One
can consider the class of the events of the form A1\A2 with A1 2 Ms, A2 2 Ns. This
class is stable with respect to finite intersections and contains both Ms (choosing
A2 D ˝) and Ns (with A1 D ˝). As Mt1A1 and Nt1A2 are independent (the first is
Mt-measurable whereas the second one is Nt-measurable) we have

EŒMtNt1A1\A2 � D EŒMt1A1Nt1A2 � D EŒMt1A1 �EŒNt1A2 � D EŒMs1A1 �EŒNs1A2 �

D EŒMs1A1Ns1A2 � D EŒMsNs1A1\A2 � ;

hence (S.22) is satisfied for the events of the class Cs.

5.23

a) If .M2
t /t is a martingale we have, for every s � t,

0 D E
�
M2

t � M2
s jFs


 D E
�
.Mt � Ms C Ms/

2 � M2
s jFs




E
�
.Mt � Ms/

2 C 2Ms.Mt � Ms/jFs

 D E

�
.Mt � Ms/

2 jFs


:

Now, taking the expectation, EŒ.Mt � Ms/
2� D 0, i.e. Mt D Ms a.s. Let us

determine a negligible event N such that, for every ! 62 N, Bt D Bs for every
t; s. For q; r 2 Q let Nq;r be the negligible event such that for! 62 Nq;r Mq D Mr.
It is easy to verify that, as M is supposed to be continuous, N D S

q;r2Q Nq;r

satisfies this requirement.
b1) The function x 7! jxjp0

being convex, .jMtjp0

/t is a submartingale and, for s � t,

E
�jMtjp0 jFs


 � jMsjp0

: (S.23)
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If p0 < p then x 7! jxjp=p0

is also convex so that

jMsjp D E
�jMtjp jFs


 D E
�
.jMtjp0

/p=p0 jFs

 � �

E
�jMtjp0 jFs



/p=p0

;

which gives E
�jMtjp0 jFs


 � jMsjp0
and this inequality together with (S.23)

allows us to conclude the proof.
b2) For p D 2 this is already proved. If for p > 2 .jMtjp/t is a martingale, then it is

a also martingale for p D 2 by b1) and is therefore constant thanks to a).

5.24

a) With the usual method of factoring out the increment we have for s � t,

E
�
Bi.t/Bj.t/jFs


 D E
��

Bi.s/C .Bi.t/ � Bi.s/
��

Bj.s/C .Bj.t/ � Bj.s/
�jFs




D E
�
Bi.s/Bj.s/C Bi.s/.Bj.t/ � Bj.s//C Bj.s/.Bi.t/ � Bi.s//

C.Bi.t/ � Bi.s//.Bj.t/ � Bj.s//jFs


:

Now just observe that, the increments being independent of Fs,

E
�
Bi.s/.Bj.t/ � Bj.s//jFs


 D Bi.s/E
�
Bj.t/ � Bj.s/jFs


 D 0

E
�
Bj.s/.Bi.t/ � Bi.s//jFs


 D Bj.s/E
�
Bi.t/ � Bi.s/jFs


 D 0

E
�
.Bi.t/ � Bi.s//.Bj.t/ � Bj.s//jFs


 D E
�
.Bi.t/ � Bi.s//.Bj.t/ � Bj.s//


 D 0

and therefore EŒBi.t/Bj.t/jFs� D Bi.s/Bj.s/.
b) This is proved using the same idea as in a), only more complicated to express:

one must factor out Bi1 .t/ : : :Bid .t/ as

.Bi1 .s/C .Bi1 .t/� Bi1 .s// : : : .Bid .s/C .Bid.t/� Bid.s// D Bi1 .s/ : : :Bid.s/C : : :

where the rightmost : : : denotes a r.v. which is the product of some Bik.s/ (which
are already Fs-measurable) and of some (at least one) terms of the kind Bik.t/�
Bik.s/. These are centered r.v.’s which are, moreover, independent with respect to
Fs. The conditional expectation of their product with respect to Fs is therefore
equal to 0, so that

EŒBi1 .t/ : : :Bid .t/jFs� D Bi1 .s/ : : :Bid.s/ ;

hence t 7! Bi1 .t/ : : : Bid.t/ is a martingale.
c) det Bt is a sum of terms of the form B1;j1B2;j2 : : :Bm;jm , with j1; : : : ; jm being

distinct indices. Thanks to b) every such term is a martingale. det Bt is therefore
a sum of martingales, hence a martingale itself.

Moreover, Yt D det.BtB�
t / D det Bt � det B�

t D .det Bt/
2 D X2t , so that Y is

the square of a martingale and therefore a submartingale.
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Throughout this part of the solution we neglected to prove that both Xt and Yt

are integrable, but this immediate.

• Note that each of the processes t 7! Bi.t/ is a martingale with respect to the
filtration t 7! �.Bi.u/; u � t/. As these are independent (Remark 3.2 b)), from
Exercise 5.22 it follows immediately that t 7! Bi.t/Bj.t/ is a martingale with
respect to the filtration Gi;j.t/ D �.Bi.u/; u � t/ _ �.Bj.u/; u � t/.

5.25

a) If t � T, thanks to the freezing Lemma 4.1 we have, as BT � Bt is independent
of Ft,

EŒ1fBT>0g jFt� D EŒ1fBtCBT �Bt>0g jFt� D �.Bt; t/ ;

where, denoting by ˚ the partition function of an N.0; 1/ law,

�.x; t/ D EŒ1fxCBT�Bt>0g� D P.BT � Bt > �x/ D ˚
� xp

T � t

�
:

We use here the fact that BT � Bt � p
T � t Z with Z � N.0; 1/. Hence

EŒ1fBT>0g jFt� D ˚
� Btp

T � t

�
:

b) From a) Mt D EŒ1fBT>0g jFt� hence M is a uniformly integrable martingale. As

lim
t!T�

xp
T � t

D

8
ˆ̂
<

ˆ̂
:

C1 if x > 0

0 if x D 0

�1 if x < 0

we have

lim
t!T�˚

� xp
T � t

�
D

8
ˆ̂
<

ˆ̂
:

1 if x > 0
1
2

if x D 0

0 if x < 0 :

Hence (the event fBT D 0g has probability 0)

lim
t!T�˚

� Btp
T � t

�
D 1fBT>0g a.s.

5.26

a) The integral converges absolutely as u 7! 1p
u

is integrable at the origin and the

path t 7! Bt.!/ is bounded (there is no need here of the Iterated Logarithm
Law. . . ).
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b) In order to prove that it is a Gaussian process, we use the usual technique of
approximating the integral with Riemann sums, which are obviously Gaussian,
using the property of stability of the Gaussian r.v.’s in the limit (Proposition 1.9).
In this case it is not obvious that the Riemann sums converge to the integral, as
the integrand diverges at 0. This argument, however, allows us to see that, for
every " > 0, the processeXt D 0 for t < " and

eXt D
Z t

"

Bup
u

du; t � "

is Gaussian. One then takes the limit as " & 0 and uses again the properties of
stability of Gaussianity with respect to limits in law. As the r.v.’s Xt are centered,
for the covariance we have, for s � t,

Cov.Xs;Xt/ D EŒXsXt� D
Z t

0

du
Z s

0

EŒBuBv�p
u
p
v

dv D
Z t

0

du
Z s

0

u ^ vp
u
p
v

dv

D
Z s

0

du
Z s

0

u ^ vp
u
p
v

dv C
Z t

s
du
Z s

0

u ^ vp
u
p
v

dv :

The last two integrals are computed separately: keeping carefully in mind which
among u and v is smaller, we have for the second one

Z t

s
du
Z s

0

u ^ vp
u
p
v

dv D
Z t

s
du
Z s

0

vp
u
p
v

dv D
Z t

s

1p
u

du
Z s

0

p
v dv

D 4

3
s3=2.

p
t � p

s/ :

Whereas for the first one
Z s

0

du
Z s

0

u ^ vp
u
p
v

dv D
Z s

0

1p
u

du
Z u

0

p
v dv C

Z s

0

p
u du

Z s

u

1p
v

dv

D 2

3

Z s

0

u du C 2

Z s

0

p
u.

p
s � p

u/ du D 1

3
s2 C 4

3
s2 � s2 D 2

3
s2 :

In conclusion

Cov.Xs;Xt/ D 2

3
s2 C 4

3
s3=2.

p
t � p

s/ :

c) The most simple and elegant argument consists in observing that .Xt/t is a square
integrable continuous process vanishing at the origin. If it were a martingale the
paths would be either identically zero or with infinite variation a.s. Conversely
the paths are C1. Therefore .Xt/t cannot be a martingale.
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Alternatively one might also compute the conditional expectation directly and
check the martingale property. We have, for s � t.

E.Xt jFs/ D E
� Z t

0

Bup
u

du
ˇ
ˇFs

�
D
Z s

0

Bup
u

du
„ ƒ‚ …

DXs

CE
� Z t

s

Bup
u

du
ˇ
ˇFs

�
:

(S.24)

For the last conditional expectation we can write, as described in Remark 4.5,

E
�Z t

s

Bup
u

du
ˇ
ˇFs

�
D
Z t

s

1p
u

EŒBu jFs� du D Bs

Z t

s

1p
u

du D 2.
p

t � p
s/Bs ;

so that E.Xt jFs/ D Xs C 2.
p

t � p
s/Bs and X is not a martingale.

5.27 Let us denote by EP, EQ the expectations with respect to P and Q,
respectively.

a) Recall that, by definition, for A 2 Fs, Q.A/ D EP.Zs1A/. Let s � t. We must
prove that, for every A 2 Fs, EP.Zt1A/ D EP.Zs1A/. But as A 2 Fs � Ft, both
these quantities are equal to Q.A/.

b) We have Q.Zt D 0/ D EP.Zt1fZtD0g/ D 0 and therefore Zt > 0 Q-a.s. Moreover,
as fZt > 0g � fZs > 0g a.s. if s � t (Exercise 5.8), then for every A 2 Fs,

EQ.1AZ�1
t / D EQ.1A\fZt>0gZ�1

t / D P.A \ fZt > 0g/ � P.A \ fZs > 0g/
D EQ.1AZ�1

s /

and therefore .Z�1
t /t is a Q-supermartingale.

c) Let us assume P � Q: this means that P.A/ D 0 whenever Q.A/ D 0. Therefore
also P.Zt D 0/ D 0 and

EQ.Z�1
t / D EP.ZtZ

�1
t / D 1 :

The Q-supermartingale .Zt/t therefore has constant expectation and is a Q-mar-
tingale by the criterion of Exercise 5.1. Alternatively, observe that

dPjFt

dQjFt

D Z�1
t

and .Z�1
t /t is a martingale by a).

5.28

a) Note that the �-algebra GnC1 is generated by the same r.v.’s Xsk=2n that generate
Gn and some more in addition, therefore GnC1  Gn.



506 Solutions of the Exercises

Let, moreover, G 0 D W
n�1 Gn. As Gn � G for every n, clearly G 0 � G .

Moreover, the r.v.’s Xsk=2n , k D 1; : : : ; 2n, n D 1; 2; : : : , are all G 0-measurable.
Let now u � s. As the times of the form sk=2n, k D 1; : : : ; 2n, n D 1; 2; : : : ,
are dense in Œ0; s�, there exists a sequence .sn/n of times of this form such that
sn ! u as n ! 1. As the process .Xt/t is assumed to be continuous, Xsn ! Xu

and Xu turns out to be G 0-measurable for every u � s. ThereforeG 0  G , hence
G 0 D G .

b1) The sequence .Zn/n is a .Gn/n-martingale: as GnC1  Gn,

Zn D EŒXt jGn� D EŒE.Xt jGnC1/jGn� D EŒZnC1 jGn� :

As EŒZ2n � � EŒX2t � by Jensen’s inequality (Proposition 4.2 d) with ˚.x/ D
x2), the martingale .Zn/n is bounded in L2 and converges a.s. and in L2 by
Theorem 5.6. Its limit, by Proposition 5.5, is equal to EŒXt jG � thanks to the
relation G D W

n�1 Gn that was proved in a).
b2) If Xt is only assumed to be integrable, then .Zn/n is again a uniformly integrable

martingale, thanks to Proposition 5.4. Hence it converges a.s. and in L1 to
EŒXt jG �. The difference is that in the situation b1) we can claim that EŒXt jGn�

converges to a r.v. that is the best approximation in L2 of Xt by a G -measurable
r.v. (Remark 4.3), whereas now this optimality claim cannot be made.

5.29

a) This is the stopping theorem applied to the bounded stopping times � ^ t and to
the martingales .Bt/t and .B2t � t/t.

b) We have, as t ! C1, � ^ t % � and B�^t ! B� . By Beppo Levi’s theorem
EŒ� ^ t� % EŒ� � < C1 (� is integrable by assumption), so that

EŒB2�^t� � EŒ� � < C1

for every t � 0. Therefore the martingale .B�^t/t is bounded in L2 and we can
apply Doob’s inequality, which gives

E
h

sup
t�0

B2�^t

i
� 4 sup

t�0
EŒB2�^t� � 4EŒ� � < C1 ;

i.e. (5.36).
c) Thanks to (5.36) the r.v. B� D supt�0 B�^t is square integrable and we have

jB�^tj � B� and B2�^t � B�2. These relations allow us to apply Lebesgue’s
theorem and obtain

EŒB� � D lim
t!C1 EŒB�^t� D 0

EŒB2� � D lim
t!C1 EŒB2�^t� D lim

t!C1 EŒ� ^ t� D EŒ� � :



Solutions of the Exercises 507

5.30

a) By the stopping theorem applied to the bounded stopping time t ^ �a we have
EŒMt^�a � D EŒM0� D 1. If, moreover, 	 � 0 the martingale .M�a^t/t is bounded,
as 	B�a^t � 	a, so that M�a^t � e	a. We can therefore apply Lebesgue’s theorem
and, recalling that �a < C1 a.s.,

EŒM�a � D lim
t!C1 E.M�a^t/ D 1 :

If 	 < 0 then M�a^t is not bounded and Lebesgue’s theorem can no longer be
applied.

b) The previous equality can be rewritten as

1 D EŒM�a � D EŒe	B�a � 1
2 	

2�a � D EŒe	a� 1
2 	

2�a � ;

i.e.

EŒe� 1
2 	

2�a � D e�	a : (S.25)

Now if 
 D � 1
2
	2, i.e. 	 D p�2
 (recall that (S.25) was proved for 	 � 0 so

that we have to discard the negative root), (S.25) can be rewritten, for 
 � 0, as

EŒe
�a � D e�a
p�2
 :

For 
 > 0 the Laplace transform is necessarily equal to C1 as a consequence
of the fact that E.�a/ D C1 (see Exercise 3.20), thanks to the inequality �a �
1



e
�a .
c) If X1; : : : ;Xn are i.i.d. r.v.’s, having the same law as �a, then the Laplace transform

of n�2.X1 C � � � C Xn/ is, for 
 � 0,

�
exp

�� a
q

�2

n2

��n D e�a
p�2
 :

The laws of the r.v.’s n�2.X1C� � �CXn/ and X1 have the same Laplace transform
and therefore they coincide, as seen in Sect. 5.7; hence the law of �a is stable with
exponent 1

2
.

5.31 We know from Example 5.2 that, for 	 2 R, Mt D e	Bt� 	2

2 t is a martingale.
The stopping theorem gives

1 D EŒMt^� � D EŒe	Bt^�� 	2

2 .t^�/� :
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As jBt^� j � a we can apply Lebesgue’s theorem and take the limit as t ! C1. We
obtain

1 D EŒe	B�� 	2

2 � � :

As B� and � are independent, as a particular case, for m D 1, of Exercise 3.18 b),
we have

1 D EŒe	B� �EŒe� 	2

2 � � : (S.26)

B� takes the values a and �a with probability 1
2
, hence

EŒe	B� � D 1

2
.e	a C e�	a/ D cosh.	a/ ;

so that by (S.26)

EŒe� 	2

2 � � D 1

cosh.	a/

and we just have to put 
 D 	2

2
, i.e. 	 D p

2
 .

5.32

a) In a way similar to Exercise 5.9 we can show that Mt D ei	BtC 1
2 	

2 t is a (complex)
.Ft/t-martingale:

E.Mt jFs/ D e
1
2 	

2tE.ei	Bs ei	.Bt�Bs/ jFs/ D e
1
2 	

2tei	Bs E.ei	.Bt�Bs//

D e
1
2 	

2 tei	Bs e� 1
2 	

2.t�s/ D Ms :

This implies that the real part of M is itself a martingale and note now that
<Mt D cos.	Bt/ e

1
2 	

2t. The martingale relation EŒXt jFs� D Xs can also be
checked directly using the addition formulas for the cosine function, giving rise
to a more involved computation.

b) By the stopping theorem applied to the bounded stopping time � ^ t,

1 D E.X0/ D EŒcos.	B�^t/ e
1
2 	

2.�^t/� : (S.27)

But jB�^tj < a hence, with the conditions on 	, j	B�^tj < �
2

and recalling the
behavior of the cosine function, cos.	B�^t/ � cos.	a/ > 0. We deduce that

EŒe
1
2 	

2.�^t/� � cos.	a/�1
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and, letting t ! 1, by Beppo Levi’s Theorem the r.v. e
1
2 	

2� is integrable. Thanks
to the upper bound

0 < cos.	B�^t/ e
1
2 	

2.�^t/ � e
1
2 	

2�

we can apply Lebesgue’s theorem as t ! C1 in (S.27). As � < C1 a.s. and
jB� j D a, we obtain

E.e
1
2 	

2� / D 1

cos.	a/

from which, replacing 
 D 1
2
	2, (5.38) follows.

c) The expectation of � can be obtained as the derivative of its Laplace transform at
the origin; therefore

E.�/ D d

d


1

cos.a
p
2
/

ˇ
ˇ
ˇ

D0 D a2:

This result has already been obtained in Exercise 5.31 b). Finally, for p � 0

and " > 0, we have xp � c."; p/ e"x for x � 0 (just compute the maximum of
x 7! xpe�"x, which is c."; p/ D pp"�pe�p). Therefore �p � c."; p/ e"� . Now just
choose an " with 0 < " < �2

8a2
.

d) First of all note that 
 D 0 is not an eigenvalue, as the solutions of 1
2
u00 D 0

are linear-affine functions, which cannot vanish at two distinct points unless they
vanish identically. For 
 6D 0 the general integral of the equation

1

2
u00 � 
u D 0

is u.x/ D c1ex
p
2
 C c2e�x

p
2
 : The boundary conditions impose on the constants

the conditions

c1ea
p
2
 C c2e�a

p
2
 D 0

c1e
�a

p
2
 C c2e

a
p
2
 D 0 :

This system, in the unknowns c1; c2, has solutions different from c1 D c2 D 0 if
and only if the determinant of the matrix

 
ea

p
2
 e�a

p
2


e�a
p
2
 ea

p
2


!
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vanishes, i.e. if and only if e2a
p
2
 � e�2a

p
2
 D 0 which gives 2a

p
2
 D ik� for

k 2 Z. Therefore the eigenvalues are the numbers

�k2�2

8a2
k D 1; 2; : : :

They are all negative and the largest one is of course � �2

8a2
.

• This exercise completes Exercise 5.30 where the Laplace transform of � was
computed for negative reals. A more elegant way of obtaining (5.38) is to observe
that the relation

EŒe�
� � D 1

cosh.a
p
2
/

, 
 > 0 ;

which is obtained in Exercise 5.30, defines the Laplace transform of � as the
holomorphic function

z 7! 1

cosh.a
p�2z/

(S.28)

on =z < 0. But z 7! cosh.a
p�2z/ is a holomorphic function on the whole

complex plane which can be written as z 7! cos.a
p
2z/ for <z > 0. Hence the

function in (S.28) is holomorphic as far as <z is smaller than the first positive
zero of 
 7! cos.a

p
2
/ i.e. �2

8a2
. Note that z 7! cosh.a

p�2z/ is holomorphic on
C, even in the presence of the square root, because the power series development
of cosh only contains even powers, so that the square root “disappears”.

5.33

a) By the Iterated Logarithm Law . . .
b) We have

Mt D e	.BtC�t/�. 	22 C	�/t D e	Bt�	2

2
t ;

which is a martingale (an old acquaintance. . . ). As t ^ � is a bounded stopping
time, by the stopping theorem EŒMt^� � D EŒM0� D 1.

c) As 	2

2
C 	� � 0,

	Xt^� �
�	2

2
C 	�

�
.t ^ �/ � 	Xt^� � 	a :
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Hence 0 � Mt^� � e	a. Moreover, Xt^� !t!C1 X� D a, hence

Mt^� !
t!C1 e	a�. 	22 C	�/ �

and by Lebesgue’s theorem

1 D lim
t!C1 EŒMt^� � D EŒe	a�. 	22 C	�/ � � ;

i.e. (5.40).
d) Let 	 > 0 such that 	

2

2
C 	� D 
 , i.e. 	 D p

�2 C 2
 � �. With this choice of
	 (5.40) becomes

EŒe�
� � D e�a.
p
�2C2
��/ : (S.29)

The expectation of � is obtained by taking the derivative at 0 of the Laplace
transform (S.29):

E.�/ D � d

d

e�a.

p
�2C2
��/

ˇ
ˇ
ˇ

D0 D a

�
�

• Remark: the passage time of a Brownian motion with a positive drift through a
positive level has a finite expectation, a very different behavior compared to the
zero drift situation (Exercise 3.20).

6.1

a) As in Sect. 4.4 and Exercise 4.10 b), we have, for s � t,

Ct;s D Kt;sK
�1
s;s ; Yt;s D Xt � Kt;sK

�1
s;s Xs :

Yt;s is a centered Gaussian r.v. with covariance matrix Kt;t � Kt;sK�1
s;s Ks;t.

Moreover, by the freezing Lemma 4.1, for every bounded measurable function f

EŒ f .Xt/jXs� D EŒ f .Ct;sXs C Yt;s/jXs� D ˚f .Xs/ ;

where˚f .x/ D EŒ f .Ct;sxCYt;s/�. Therefore the conditional law of Xt given Xs D
x is the law of the r.v. Ct;sx C Yt;s, i.e. is Gaussian with mean Ct;sx D Kt;sK�1

s;s x
and covariance matrix Kt;t � Kt;sK�1

s;s Ks;t.
b) The Markov property with respect to the natural filtration requires that, for every

bounded measurable function f W Rm ! R,

EŒ f .Xt/jGs� D
Z

f .y/p.s; t;Xs; dy/ :
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Let us first determine what the transition function p should be: it is the law of Xt

given Xs D x which, as seen in a), is the law of Ct;sx C Yt;s. In a) we have also
proved that

EŒ f .Xt/jXs� D
Z

f .y/p.s; t;Xs; dy/ :

We must therefore prove that

EŒ f .Xt/jGs� D EŒ f .Xt/jXs� : (S.30)

Let us prove that (6.32) implies the independence of Yt;s and the �-algebra Gs D
�.Xu; u � s/. This will imply, again by the freezing Lemma 4.1,

EŒ f .Xt/jGs� D EŒ f .Ct;sXs C Yt;s/jGs� D ˚f .Xs/ :

The covariances between Yt;s and Xu are given by the matrix (recall that all these
r.v.’s are centered)

E.Ys;tX
�
u / D E.XtX

�
u / � E.Kt;sK

�1
s;s XsX

�
u / D Kt;u � Ks;tK

�1
s;s Ks;u ;

which vanishes if and only if (6.32) holds. Hence if (6.32) holds then the Markov
property is satisfied with respect to the natural filtration.

Conversely, let us assume that .Xt/t is a Markov process with respect to its
natural filtration. For s � t we have, by the Markov property,

E.Xt jGs/ D E.Xt jXs/ D Kt;sK
�1
s;s Xs

hence

Kt;u D E.XtX
�
u / D EŒE.Xt jGs/X

�
u � D E.Kt;sK

�1
s;s XsX

�
u / D Kt;sK

�1
s;s Ks;u ;

i.e. (6.32).

6.2

a) The simplest approach is to observe that the paths of the process .Xt/t have finite
variation (they are even differentiable), whereas if it was a square integrable
continuous martingale its paths would have infinite variation (Theorem 5.15).
Otherwise one can compute the conditional expectation

E.Xt jFs/

and check that it does not coincide with Xs. This can be done directly:

E.Xt jFs/ D Xs C E
� Z t

s
Bu du

ˇ
ˇFs

�
D Xs C

Z t

s
EŒBu jFs� du D Xs C .t � s/Bs :
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b) If s � t,

Kt;s D Cov.Xt;Xs/ D E
� Z t

0

Bu du
Z s

0

Bv dv
�

D
Z t

0

du
Z s

0

EŒBuBv� dv

D
Z t

0

du
Z s

0

u ^ v dv D
Z t

s
du
Z s

0

v dv C
Z s

0

du
Z s

0

u ^ v dv

D s2

2
.t � s/C

Z s

0

du
Z u

0

v dv C
Z s

0

du
Z s

u
u dv

D s2

2
.t � s/C s3

3
�

In order for .Xt/t to be Markovian, using the criterion of Exercise 6.1 b), the
following relation

Kt;u D Kt;sK
�1
s;s Ks;u (S.31)

must hold for every u � s � t. But

Kt;sK
�1
s;s Ks;u D

� s2

2
.t � s/C s3

3

� 3

s3

�u2

2
.s � u/C u3

3

�
:

If we choose u D 1, s D 2, t D 3, this quantity is equal to 7
4
5
6

D 35
24

, whereas

Kt;u D u2

2
.t � u/C u3

3
D 1

2
C 2

3
D 5

6
. .Xt/t is not a Markov process.

c) If s � t,

Cov.Xt;Bs/ D E
� Z t

0

BuBs du
�

D
Z t

0

u^s du D
Z s

0

u duC
Z t

s
s du D s2

2
Cs.t�s/ :

Conversely, if s � t,

Cov.Xt;Bs/ D E
� Z t

0

BuBs du
�

D
Z t

0

u ^ s du D
Z t

0

u du D t2

2
:

d) If Yt D .Bt;Xt/, the covariance function of this process is, for s � t,

Kt;s D
�

Cov.Bt;Bs/ Cov.Bt;Xs/

Cov.Xt;Bs/ Cov.Xt;Xs/

	

D
 

s s2

2
s2

2
C s.t � s/ s3

3
C s2

2
.t � s/

!

:

Therefore the right-hand side of (S.31) becomes here

 
s s2

2
s2

2
C s.t � s/ s3

3
C s2

2
.t � s/

! 
s s2

2
s2

2
s3

3

!�1  
u u2

2
u2

2
C u.s � u/ u3

3
C u2

2
.s � u/

!

:
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Since

K�1
s;s D

 
s s2

2
s2

2
s3

3

!�1
D 12

s4

 
s3

3
� s2

2

� s2

2
s

!

we have

Kt;sK
�1
s;s D 12

s4

 
s s2

2
s2

2
C s.t � s/ s3

3
C s2

2
.t � s/

! 
s3

3
� s2

2

� s2

2
s

!

D
�
1 0

t � s 1

	

so that

Kt;sK
�1
s;s Ks;u D

�
1 0

t � s 1

	 
u u2

2
u2

2
C u.s � u/ u3

3
C u2

2
.s � u/

!

D
 

u u2

2
u2

2
C u.t � u/ u3

3
C u2

2
.t � u/

!

D Kt;u :

Condition (S.31) is therefore satisfied and .Bt;Xt/t is a Markov process.

• We have found an example of a process, .Xt/t, which is not Markovian, but which
is a function of a Markov process.

6.3

a1) Let us observe first that X is adapted to the filtration .Fg.t//t. Moreover,
X is a Gaussian process: its finite-dimensional distributions turn out to be
linear transformations of finite-dimensional distributions of a Brownian motion.
Hence we expect its transition function to be Gaussian.

Using the Markov property enjoyed by the Brownian motion, for a mea-
surable bounded function f and denoting by p the transition function of the
Brownian motion, we have with the change of variable z D h.t/y

EŒ f .Xt/jFg.s/� D EŒ f .h.t/Bg.t//jFg.s/� D
Z

f .h.t/y/ p.g.s/; g.t/;Bg.s/; dy/

D 1
p
2�.g.t/ � g.s//

Z C1

�1
f .h.t/y/ exp

�
� .y � Bg.s//

2

2.g.t/� g.s//

�
dy

D 1

h.t/
p
2�.g.t/� g.s//

Z C1

�1
f .z/ exp

�
�
. z

h.t/ � Xg.s/

h.s/ /
2

2.g.t/� g.s//

�
dz

D 1

h.t/
p
2�.g.t/� g.s//

Z C1

�1
f .z/ exp

�
�

.z � h.t/
h.s/Xg.s//

2

2h.t/2.g.t/� g.s//

�
dz
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from which we deduce that X is a Markov process with respect to the filtration
.Fg.t//t and associated to the transition function

q.s; t; x; dy/ � N
� h.t/

h.s/
x; h.t/2.g.t/� g.s//

�
: (S.32)

a2) From (S.32) we have in general Xt � N.0; h.t/2g.t//. Hence under the
condition of a2) Xt � N.0; t/, as for the Brownian motion. However, for the
transition function of X we have

q.s; t; x; dy/ � N
�ptg.s/
p

sg.t/
x;

t

g.t/
.g.t/� g.s//

�

whereas recall that the transition function of a Brownian motion is

p.s; t; x; sy/ � N.x; t � s/

hence X cannot be a Brownian motion, unless g.t/ D p
t (and in this case

Xt D Bt).
b) The clever reader has certainly sensed the apparition of the Iterated Logarithm

Law. Actually, by a simple change of variable

lim
t!C1

Xtp
2g.t/h2.t/ log log g.t/

D lim
t!C1

h.t/Bg.t/
p
2g.t/h2.t/ log log g.t/

D lim
t!C1

Bg.t/
p
2g.t/ log log g.t/

D 1 :

6.4

a) X is clearly a Gaussian process and we know, by Exercise 6.1, that it is
Markovian if it satisfies the relation

Kt;u D Kt;sK
�1
s;s Ks;u; for u � s � t : (S.33)

Now, if s � t,

Kt;s D Cov.Xs;Xt/ D e�	.tCs/EŒBe2	t Be2	s � D e�	.tCs/e2	s D e�	.t�s/ :

In particular, Ks;s D Var.Xs/ � 1. Therefore

Kt;sK
�1
s;s Ks;u D e�	.t�s/e�	.s�u/ D e�	.t�u/ D Kt;u

so that (S.33) is satisfied and X is Markovian. In order to determine its transition
function, just recall that p.s; t; x; dy/ is the conditional distribution of Xt given
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Xs D x. X being a Gaussian process, we know that this is Gaussian with mean

E.Xt/C Kt;s

Ks;s
.x � E.Xs// D e�	.t�s/x

and variance

Kt;t � K2
t;s

Ks;s
D 1 � e�2	.t�s/ :

Therefore p.u; x; dy/ � N.e�	ux; 1 � e�2	u/. As both mean and variance are
functions of t � s only, X is time homogeneous.

b1) Xt is Gaussian, centered and has variance D 1. In particular, the law of Xt does
not depend on t.

b2) This is immediate: the two random vectors are both Gaussian and centered. As
we have seen in a1) that the covariance function of the process satisfies the
relation Kt1;t2 D Kt1Ch;t2Ch, they also have the same covariance matrix.

c) Under Px the law of Zt is p.t; x; dy/ � N.e�	tx; 1 � e�2	t/. As t ! C1 the
mean of this distribution converges to 0, whereas its variance converges to 1.
Thanks to Exercise 1.14 a) this implies (6.33).

6.5

a) From Exercise 4.15 we know that .Xt/t�1 is a centered Gaussian process and that,
for s � t,

Kt;s D E.BtBs/C stE.B21/� sE.BtB1/ � tE.BsB1/ D s � st D s.1 � t/ :

Xt therefore has variance �2t D t.1 � t/. Going back to Exercise 6.1 a), the
conditional law of Xt given Xs D x is Gaussian with mean

Kt;s

Ks;s
x D 1 � t

1 � s
x (S.34)

and variance

Kt;t � K2
t;s

Ks;s
D t.1 � t/ � s.1 � t/2

1 � s
D 1 � t

1 � s
.t � s/ : (S.35)

b) With the notations of Exercise 6.1 if u � s � t, Kt;u D u.1� t/, whereas

Kt;sK
�1
s;s Ks;u D s.1 � t/

1

s.1 � s/
u.1� s/ D u.1� t/ D Kt;u :
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Therefore condition (6.32) is satisfied and .Xt/t is a Markov process. The
transition function coincides with the conditional distribution of Xt given Xs D x,
i.e. p.s; t; x; �/ � N. 1�t

1�s x; 1�t
1�s .t � s//.

6.6

a) As the joint distributions of X are also joint distributions of B, X is also a Gaussian
process. As for the covariance function, for s � t � 1,

Kt;s D E.XtXs/ D E.B1�tB1�s/ D min.1 � t; 1 � s/ D 1 � t :

b) As, for u � s � t, Kt;sK�1
s;s Ks;u D .1 � t/.1 � s/�1.1 � s/ D 1 � t D Kt;u, the

Markovianity condition (6.32) is satisfied, hence .Xt/t is Markovian with respect
to its natural filtration. Its transition function p.s; t; x; �/ is Gaussian with mean
and variance given respectively by (4.21) and (4.22), i.e. with mean

Kt;sK
�1
s;s x D 1 � t

1 � s
x

and variance

Kt;t � Kt;sK
�1
s;s Ks;t D .1 � t/ � .1 � t/2

1 � s
D 1 � t

1 � s
.t � s/ :

• The transition function above is the same as that of the Brownian bridge (see
Exercise 6.5). The initial distribution is different, as here it is the law of B1, i.e.
N.0; 1/.

6.7

a) In order to prove the existence of a continuous version we use Kolmogorov’s
Theorem 2.1. Let us assume that the process starts at time u with initial
distribution �. Recalling (6.6) which gives the joint law of .Xs;Xt/, we have
for u � s � t,

EŒjXt � Xsjˇ� D
Z

Rm
�.dz/

Z

Rm
p.u; s; z; dx/

Z

Rm
jx � yjˇ p.s; t; x; dy/

� c jt � sjmC"
Z

Rm
�.dz/

Z

Rm
p.u; s; z; dx/ D cjt � sjmC" :

Then by Theorem 2.1, X has a continuous version (actually with Hölder
continuous paths of exponent � for every � < "

ˇ
). In order to prove that the
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generator is local, let us verify condition (6.26): as jy � xjˇ > Rˇ for y 62 BR.x/,

1

h
p.s; s C h; x;BR.x/

c/ D 1

h

Z

BR.x/c
p.s; s C h; x; dy/

� R�ˇ

h

Z

Rm
jy � xjˇp.s; s C h; x; dy/ � cR�ˇjhjmC"�1 ;

which tends to 0 as h ! 0.

6.8

a) If f D 1A we have, recalling that 1A�x.y/ D 1A.x C y/,

Z
1A.y/ p.t; x; dy/ D p.t; x;A/ D p.t; 0;A � x/ D

Z
1A�x.y/ p.t; 0; dy/

Z
1A.x C y/ p.t; 0; dy/

so that (6.34) is satisfied if f is an indicator function. It is then also true
for linear combinations of indicator functions and by the usual approximation
methods (Proposition 1.11, for example) for every bounded Borel function
f .

b) Recall that p.h; x; �/ is the law of Xh under Px, whereas p.h; 0; �/ is the law of Xh

under P0. Therefore, if we denote by txf the “translated” function y 7! f .x C y/,
thanks to a) we have

ExŒ f .Xh/� D
Z

f .y/ p.h; x; dy/ D
Z

f .x C y/ p.h; 0; dy/D E0Œtx f .Xh/�

for every bounded Borel function f . If f 2 C2
K then

Lf .x/ D lim
h!0C

1

h

�
Th f .x/ � f .x/

� D lim
h!0C

1

h

�
ExŒ f .Xh/� � f .x/

�

D lim
h!0C

1

h

�
E0Œtx f .Xh/�� tx f .0/

� D L.tx f /.0/ :

As we have

@f

@yi
.x/ D @.tx f /

@yi
.0/;

@2f

@y2i
.x/ D @2.tx f /

@y2i
.0/ ;
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equating the two expressions

Lf .x/ D
mX

i;jD1
aij.x/

@2f

@x2i
.x/C

nX

iD1
bi.x/

@f

@xi
.x/

L.tx f /.0/ D
mX

i;jD1
aij.0/

@2f

@x2i
.x/C

nX

iD1
bi.0/

@f

@xi
.x/ ;

which must be equal for every choice of f 2 C2
K , we have aij.x/ D aij.0/; bi.x/ D

bi.0/, for every i; j � m.

6.9

a) ph obviously satisfies condition i) on p. 151. Moreover, ph.t; x; �/ is a measure on
E. As

ph.t; x;E/ D e�˛t

h.x/

Z

E
h.y/ p.t; x; dy/ D e�˛t

h.x/
Tth.x/ D 1 ;

ph is also a probability. We still have to check the Chapman–Kolmogorov
equation. Thanks to the Chapman–Kolmogorov equation for p,

Z

E
ph.s; y;A/ ph.t; x; dy/ D e�˛t

h.x/

Z

E
h.y/p.t; x; dy/

e�˛s

h.y/

Z

A
h.z/ p.s; y; dz/

D e�˛.tCs/

h.x/

Z

A
h.z/ p.t C s; x; dz/ D ph.s C t; x;A/ :

b) We have

Th
t g.x/ D e�˛t

h.x/

Z
h.y/g.y/p.h; x; dy/D e�˛t

h.x/
Tt.hg/.x/ :

Therefore, if gh D f 2 D.L/,

Lhg.x/ D lim
t!0C

1

t
ŒTh

t g.x/� g.x/� D 1

h.x/
lim

t!0C
1

t
Œe�˛tTt f .x/� f .x/�

D 1

h.x/

�
lim

t!0C
1

t
.Tt f .x/� f .x//C lim

t!0C
1

t
.e�˛t � 1/Tt f .x/

�

D 1

h.x/
.Lf .x/ � ˛f .x// D 1

h.x/
L.gh/.x/� ˛g.x/ :

(S.36)
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c) If h 2 C2 and g 2 C2
K , then also gh 2 C2

K and

L.gh/ D h Lg C g Lh C
mX

i;jD1
aij
@g

@xi

@h

@xj
�

From (6.35) we have Tth D e˛th, hence h 2 D.L/ and Lh D ˛h so that, thanks
to the relation between L and Lh given in (S.36),

Lh D 1

2

mX

i;jD1
aij
@2

@xi@xj
C

mX

iD1
ebi
@

@xi

,

where

ebi.x/ D b.x/C 1

h.x/

mX

jD1
aij.x/

@h

@xj
�

d) Let us check that h.x/ D ehv;xi satisfies (6.35). We have

Tth.x/ D
Z

Rm
h.y/ p.t; x; dy/ D 1

.2�t/m=2

Z

Rm
ehv;yie� 1

2t jx�yj2 dy :

We recognize in the rightmost integral the Laplace transform of an N.x; tI/ law
computed at v. Hence (see Exercise 1.6)

Tth.x/ D ehv;xie
1
2 tjvj2 :

(6.35) is therefore verified with ˛ D 1
2
jvj2. Thanks to b), therefore,

Lh D 1

2

mX

iD1

@2

@x2i
C

mX

iD1
vi
@

@xi
�

6.10

a) If f is a bounded Borel function and � is stationary, we have

Z

E
f .x/ �.dx/ D

Z

E
Tt f .x/ �.dx/ D

Z

E
�.dx/

Z

E
f .y/ p.t; x; dy/

and now just observe that
R

E �.dx/p.t; x; �/ is the law of Xt, when the initial
distribution is �.
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b) This is a consequence of Fubini’s theorem: if f is a bounded Borel function with
compact support, then

Z

Rm
Tt f .x/ dx D 1

.2�t/m=2

Z

Rm
dx
Z

Rm
e� 1

2t jx�yj2 f .y/ dy

D
Z

Rm
f .y/ dy

Z

Rm

1

.2�t/m=2
e� 1

2t jx�yj2 dx
„ ƒ‚ …

D1

D
Z

Rm
f .y/ dy :

c) Let us assume that (6.38) holds for every x; if an invariant probability � existed,
then we would have, for every t > 0 and every bounded Borel set A,

�.A/ D
Z

E
p.t; x;A/ d�.x/ :

As 0 � p.t; x;A/ � 1 and limt!C1 p.t; x;A/ D 0, we can apply Lebesgue’s
theorem and obtain

�.A/ D lim
t!C1

Z

E
p.t; x;A/ d�.x/ D 0

so that �.A/ D 0 for every bounded Borel set A in contradiction with the
hypothesis that � is a probability.

If p is the transition function of a Brownian motion then, for every Borel set
A � R

m having finite Lebesgue measure,

p.t; x;A/ D 1

.2�t/m=2

Z

A
e� 1

2t jx�yj2 dy � 1

.2�t/m=2
mis.A/ !

t!C1 0 :

Therefore a Brownian motion cannot have an invariant distribution.
d) Let f W E ! R be a bounded continuous function. Then (6.39) implies

lim
s!C1 Ts f .x/ D lim

s!C1

Z

E
f .y/ p.s; x; dy/ D

Z

E
f .y/ d�.y/ : (S.37)

By the Feller property Ttf is also bounded and continuous and, for every x 2 E,

lim
s!C1 Ts f .x/ D lim

s!C1 TsCtf .x/ D lim
s!C1 Ts.Tt f /.x/ D

Z

E
Tt f .y/ �.dy/ :

(S.38)
(S.37) and (S.38) together imply that the stationarity condition (6.37) is satisfied
for every bounded continuous function. It is also satisfied for every bounded
measurable function f thanks to the usual measure theoretic arguments as in
Theorem 1.5, thus completing the proof that � is stationary.
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6.11

a) Let f W G ! R be a bounded measurable function. Then we have for s � t,
thanks to the Markov property for the process X,

EŒ f .Yt/jFs� D EŒ f ı ˚.Xt/jFs� D
Z

E
f ı ˚.z/ p.s; t;Xs; dz/

D
Z

E
f ı ˚.z/ p.s; t; ˚�1.Ys/; dz/ D

Z

G
f .y/ q.s; t;Ys; dy/ ;

where we denote by q.s; t; y; �/ the image law of p.s; t; ˚�1.y/; �/ through the
transformation ˚ . This proves simultaneously that q is a transition function
(thanks to Remark 6.2) and that Y satisfies the Markov property.

b1) This is simply the integration rule with respect to an image probability
(Proposition 1.1).

b2) If f W G ! R is a bounded measurable function and s � t we have, thanks to
the Markov property of X,

EŒ f .Ys/jFs� D EŒ f ı˚.Xs/jFs� D
Z

E
f ı˚.z/ p.s; t;Xs ; dz/D

Z

E
f .y/q.s; t;Ys; dy/;

which proves simultaneously the Markov property for Y and the fact that q is a
transition function (Remark 6.2 again).

c) We must show that the invariance property (6.40) is satisfied when X is a
Brownian motion and ˚.x/ D jx � zj. This is rather intuitive by the property of
rotational invariance of the transition function of the Brownian motion. Let
us give a rigorous form to this intuition. Using (6.42), which is immediate
as p.s; x; dy/ is Gaussian with mean x and variance s, we must show that, if
jx � zj D jy � zj then

P.
p

sZ 2 A � x/ D P.
p

sZ 2 A � y/
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Fig. S.5 Thanks to the property of rotational invariance, the probability of making a transition into
the shaded area is the same starting from x or y, or from whatever other point on the same sphere
centered at z
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for every A of the form A D ˚�1.eA/, eA 2 B.RC/. Such a subset of Rm is
some kind of annulus around z (see Fig. S.5). In any case the set A � z is clearly
rotationally invariant. Let O be an orthogonal matrix such that O.x � z/ D
y � z (the two vectors x � z and y � z have the same modulus). As the N.0; I/-
distributed r.v.’s are rotationally invariant,

P.
p

sZ 2 A � x/ D P.
p

sZ 2 A � z � .x � z//

D P.
p

sZ 2 O.A�z�.x�z/// D P.
p

sZ 2 A�z�.y�z// D P.
p

sZ 2 A�y/ :

7.1

a) We have EŒZ� D 0, as Z is a stochastic integral with a bounded (hence belonging
to M2) integrand. We also have, by Fubini’s theorem,

EŒZ2� D E
h� Z 1

0

1fBtD0g dBt

�2i D E
h Z 1

0

1fBtD0g dt
i

D
Z 1

0

P.Bt D 0/ dt D 0 :

Z, having both mean and variance equal to 0, is equal to 0 a.s.
b) EŒZ� D 0, as the integrand is in M2. As for the variance we have

EŒZ2� D E
h� Z 1

0

1fBt�0g dBt

�2i D E
h Z 1

0

1fBt�0g dt
i

D
Z 1

0

P.Bt � 0/ dt D 1

2
:

7.2 Let s � t. We have Bs D R t
0
1Œ0;sŒ.v/ dBv therefore, by Remark 7.1,

E
�

Bs

Z t

0

Bu dBu

�
D E

� Z t

0

1Œ0;sŒ.v/ dBv

Z t

0

Bu dBu

�
D
Z t

0

EŒ1Œ0;s�.u/Bu� du D 0 :

If t � s, the same argument leads to the same result.

7.3 We have

E.Y2t / D
Z t

0

e2s ds D 1

2
.e2t � 1/

and

E
h Z t

0

Y2s ds
i

D
Z t

0

EŒY2s � ds D
Z t

0

1

2
.e2s � 1/ ds D 1

4
.e2t � 1/� t

2
< C1 :

Hence Y 2 M2 so that E.Zt/ D 0 and

EŒZ2t � D E
h Z t

0

Y2s ds
i

D 1

4
.e2t � 1/� t

2
�
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Finally, using the argument of Example 7.1 c), if s � t,

EŒZtZs� D E
h Z t

0

Yu dBu

Z s

0

Yv dBv
i

D E
h� Z s

0

Yu dBu

�2i D 1

4
.e2s � 1/� s

2
�

• In this and the following exercises we skip, when checking that a process is in M2,
the verification that it is progressively measurable. This fact is actually almost
always obvious, thanks to Proposition 2.1 (an adapted right-continuous process
is progressively measurable) or to the criterion of Exercise 2.3.

7.4

a) We have, by Theorems 7.1 and 7.6,

E
h
B2s
� Z t

s
Bu dBu

�2i D E
h� Z t

s
BsBu dBu

�2i D E
h Z t

s
B2s B2u du

i
:

Recalling that s � u so that Bu � Bs is independent of Bs,

E.B2s B2u/ D EŒB2s .Bu�BsCBs/
2� D EŒB2s .Bu � Bs/

2�
„ ƒ‚ …

Ds.u�s/

C2EŒB3s .Bu � Bs/�„ ƒ‚ …
D0

CE.B4s / :

We can write Bs D p
sZ where Z � N.0; 1/ and therefore E.B4s / D s2E.Z4/ D

3s2. In conclusion, E.B2s B2u/ D s.u � s/C 3s2 and

E
h
B2s
� Z t

s
Bu dBu

�2i D
Z t

s
s.u � s/C 3s2 du D 1

2
s.t � s/2 C 3s2.t � s/ :

b) One can write Z D R t
0
eXu dBu, whereeXu D Xu if u � s andeXu D 0 if 0 � u < s.

It is immediate that eX 2 M2.Œ0; t�/. As Bv D R t
0
1Œ0;v�.u/ dBu and the product

eXu1Œ0;v�.u/ vanishes for every 0 � u � t,

E.ZBv/D E
�Z t

0

eXu dBu

Z t

0

1Œ0;v�.u/ dBu

�
D E

�Z t

0

eXu1Œ0;v�.u/ du
�

D 0D E.Z/E.Bv/ :

If Z was independent of Fs it would be EŒ�.Z/W� D EŒ�.Z/�EŒW� for every
positive Borel function � and every positive Fs-measurable r.v. W. Let us prove
that this is not true, in general, with a counterexample. Using the computation of
a), let �.Z/ D Z2 with Z D R t

s Bu dBu and W D B2s . Then

E.Z2/ D
Z t

s
EŒB2u� du D 1

2
.t2 � s2/ ;
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hence EŒZ2�EŒB2s � D s
2
.t2 � s2/, which is different from the value of E.B2s Z2/

computed in a).

7.5 We must check that s 7! e�B2s is a process in M2. For every t � 0 and recalling
Remark 3.3,

E
h Z t

0

e�2B2s ds
i

D
Z t

0

EŒe�2B2s � ds D
Z t

0

1p
1C 4s

ds < C1 :

In order to investigate whether X is bounded in L2, just observe that

EŒX2t � D E
h Z t

0

e�2B2s ds
i

D
Z t

0

1p
1C 4s

ds !
t!C1 C1

so that the answer is no.

7.6

a) Note that .˝;F ; .Ft/t; .B2.t//t;P/ is a real Brownian motion and that B1 is
progressively measurable with respect to .Ft/t and also B1 2 M2

B2
.Œ0; t�/ so that

we can define

Xt D
Z t

0

e�B1.u/2 dB2.u/ :

Note also that .˝;F ; .Ft/t; .B1.t//t;P/ is a real Brownian motion and that X is
progressively measurable with respect to .Ft/t. Moreover, for every t � 0,

EŒX2t � D E
h Z t

0

e�2B1.u/2 du
i

D
Z t

0

1p
1C 4u

du D 1

2

�p
1C 4t�1� : (S.39)

As we can write

Zt D
Z t

0

Xs

1C 4s
dB1.s/ (S.40)

and

E
h X2s
.1C 4s/2

i
D 1

2

p
1C 4s � 1

.1C 4s/2
,

the integrand s 7! Xs
1C4s is in M2

B1
.Œ0; t�/ for every t > 0 and Z is a martingale.

Using the notation (S.40) and thanks to Theorem 7.3 and Remark 7.1

hZit D
Z t

0

X2s
.1C 4s/2

ds; hZ;B1it D
Z t

0

Xs

1C 4s
ds :
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b) It is sufficient (and also necessary. . . ) to prove that Z is bounded in L2. Now,
recalling (S.39),

EŒZ2t � D
Z t

0

EŒX2s �

.1C 4s/2
ds D 1

2

Z t

0

� 1

.1C 4s/3=2
� 1

.1C 4s/2

�
ds :

The rightmost integral being convergent as t ! C1, the L2 norm of Z is
bounded, so that Z converges as t ! C1 a.s. and in L2. As L2 convergence
implies the convergence of the expectations we have EŒZ1� D 0. Also L2

convergence implies the convergence of the second-order moment, so that

EŒZ21� D lim
t!C1 EŒZ2t � D 1

2

Z C1

0

� 1

.1C 4s/3=2
� 1

.1C 4s/2

�
ds

D �1
4

1

.1C 4s/1=2

ˇ
ˇ
ˇ
C1
0

C 1

8

1

1C 4s

ˇ
ˇ
ˇ
C1
0

D 1

8
�

7.7

a) If f 2 L2.Œs; t�/ is a piecewise constant function the statement is immediate.
Indeed, if f D Pn

iD1 	i1Œti�1;ti Œ with s D t1 < � � � < tn D t, then

Z t

s
f .u/ dBu D

nX

iD1
	i.Bti � Bti�1 /

and all the increments Bti � Bti�1 are independent of Fs. In general, if .fn/n is a
sequence of piecewise constant functions (that are dense in L2.Œs; t�/) converging
to f in L2.Œs; t�/, then, by the isometry property of the stochastic integral,

Bfn
defD
Z t

s
fn.u/ dBu

L2!
n!1

Z t

s
f .u/ dBu

defD Bf

and, possibly taking a subsequence, we can assume that the convergence also
takes place a.s. We must prove that, for every bounded Fs-measurable r.v. W and
for every bounded Borel function  ,

EŒW .Bf /� D EŒW�EŒ .Bf /� : (S.41)

But, if  is bounded continuous, then  .Bfn/ !  .Bf / a.s. as n ! 1 and we
can take the limit of both sides of the relation

EŒW .Bfn/� D EŒW�EŒ .Bfn /� :

(S.41) is therefore proved for  bounded continuous. We attain the general case
with Theorem 1.5.
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Alternatively, in a simpler but essentially similar way, we could have used the
criterion of Exercise 4.5: for every 	 2 R we have

E.ei	Bf jFs/ D lim
n!1 E.ei	Bfn jFs/ D lim

n!1 E.ei	Bfn / D E.ei	Bf / ;

where the limits are justified by Lebesgue’s theorem.

• Note that the previous proof would be much simpler if we only had to prove
that Bf is independent of Gs D �.Bv; v � s/. In this case, by the criterion of
Remark 1.2, it is sufficient to check that Bf and Bv are not correlated for every
v � s, which is immediate: if we denote byef the extension of f to Œ0; t� obtained
by setting f .v/ D 0 on Œ0; sŒ, then

E.BvBf / D E
� Z t

0

1Œ0;v� dBu

Z t

0

ef .u/ dBu

�
D
Z t

0

1Œ0;v�.u/ef .u/ du D 0 :

b) The r.v. B˚t is F˚�1.t/-measurable. This suggests to try to see whether B˚ is a
Brownian motion with respect to .eF t/t, with eF t D F˚�1.t/. If s � t, then

B˚t � B˚s D
Z ˚�1.t/

˚�1.s/

p
˚ 0.u/ dBu

is independent of eF s thanks to the result of a). We still have to prove c) of
Definition 3.1. But B˚t � B˚s is Gaussian by Proposition 7.1, is centered and has
variance

EŒ.B˚t � B˚s /
2� D

Z ˚�1.t/

˚�1.s/
˚ 0.u/ du D t � s :

7.8 Let us assume first that f D 1Œ0;s�; therefore
R s
0

f .u/ dBu D Bs. Note that the
r.v.’s BsB2u and �BsB2u have the same law (�B is also a Brownian motion) so that
EŒBsB2u� D 0 and we have

E
�

Bs

Z t

0

B2u du
�

D
Z t

0

E.BsB
2
u/ du D 0 :

In conclusion
R t
0

B2u du is orthogonal to all the r.v.’s Bs; s > 0. It is therefore
orthogonal to

R s
0

f .u/ dBu, when f is a piecewise constant function of L2.Œ0; s�/, as
in this case the stochastic integral is a linear combination of the r.v.’s Bu; 0 � u � s.
The conclusion now follows by density.
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7.9

a) We have

n�1X

iD0
BtiC1

.BtiC1
� Bti/ D

n�1X

iD0
Bti.BtiC1

� Bti/C
n�1X

iD0
.BtiC1

� Bti/
2 :

The first term on the right-hand side converges, in probability, to the integral

Z t

0

Bs dBs

as the amplitude of the partition tends to 0 thanks to Proposition 7.4. Conversely,
by Proposition 3.4,

n�1X

iD0
.BtiC1

� Bti/
2 !

j�j!0
t

in L2, hence in probability. Therefore, in probability,

n�1X

iD0
BtiC1

.BtiC1
� Bti/ !

j�j!0
t C

Z t

0

Bs dBs :

b) We have again

n�1X

iD0
XtiC1

.BtiC1
� Bti/ D

n�1X

iD0
Xti.BtiC1

� Bti/C
n�1X

iD0
.XtiC1

� Xti/.BtiC1
� Bti/ :

Now, if X has paths with finite variation, we have a.s.

ˇ
ˇ
ˇ

n�1X

iD0
.XtiC1

� Xti/.BtiC1
� Bti/

ˇ
ˇ
ˇ � sup

iD0;:::;n�1
jBtiC1

� Bti j
n�1X

iD0
jXtiC1

� Xti j

� C sup
iD0;:::;n�1

jBtiC1
� Bti j !

j�j!0
0

thanks to the continuity of B, where C D C.!/ is the variation of t 7! Xt in
the interval Œ0; t�. Therefore the sums (7.38) and (7.39) have the same limit in
probability.
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7.10

a) We know already that Xt D R t
0

f .s/ dBs is a martingale, as f 2 M2.Œ0;T�/ for
every T. As, for every t � 0,

EŒX2t � D
Z t

0

f .s/2 ds � kf k22 ;

.Xt/t is a martingale bounded in L2 and converges a.s. and in L2.
b1) There are various ways of showing that .Yt/t is a martingale. For instance, as

t 7! R t
0 g.s/ dBs is a Gaussian martingale with independent increments and its

associated increasing process is At D R t
0

g.s/2 ds, we have already seen this in
Exercise 5.11 c2). A direct computation is also simple:

EŒYt jFs� D E
�
e
R t
0 g.u/ dBu� 1

2

R t
0 g2.u/ du

ˇ
ˇFs


 D e� 1
2

R t
0 g2.u/ duE

�
e
R t
0 g.u/ dBu

ˇ
ˇFs




D e
R s
0 g.u/ dBu� 1

2

R t
0 g2.u/ duE

�
e
R t

s g.u/ dBu
ˇ
ˇFs




D e
R s
0 g.u/ dBu� 1

2

R t
0 g2.u/ duE

�
e
R t

s g.u/ dBu



D e
R s
0 g.u/ dBu� 1

2

R t
0 g2.u/ duC 1

2

R t
s g2.u/ du D Ys :

As the r.v.
R t
0

g.s/ dBs is Gaussian, we have

E.Y2t / D E
�
e2
R t
0 g.s/ dBs



e� R t

0 g.s/2 ds D e2
R t
0 g.s/ dBs e� R t

0 g.s/2 ds D e
R t
0 g.s/2 ds :

(S.42)

b2) If g 2 L2.RC/, then by (S.42) .Yt/t is a martingale bounded in L2 and therefore
uniformly integrable.

b3)

E.Y˛t / D E
�
e˛

R t
0 g.s/dBs



e� ˛

2

R t
0 g.s/2 ds D e

1
2 ˛.˛�1/ R t

0 g.s/2 ds !
t!C1 0 :

Therefore, defining Y1 D limt!C1 Yt (the a.s. limit exists because Y is a
continuous positive martingale), by Fatou’s lemma

E.Y˛1/ � lim
t!C1

E.Y˛t / D 0 :

As Y˛1 � 0, this implies Y˛1 D 0 and therefore Y1 D 0. If .Yt/t
was a uniformly integrable martingale, then it would also converge in L1

and this would imply E.Y1/ D 1. Therefore .Yt/t is not uniformly inte-
grable
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7.11

a1) Gaussianity is a consequence of Proposition 7.1. Moreover, for s � t,

E.YsYt/ D .1� t/.1 � s/E
h Z s

0

1

1 � u
dBu

Z t

0

1

1 � v
dBv

i

D .1 � t/.1 � s/
Z s

0

1

.1 � u/2
du D .1 � t/.1 � s/

�
1 � 1

1 � s

�
D s.1 � t/ ;

i.e. the same covariance function as a Brownian bridge.
a2) From a1) for s D t, E.Y2t / D t.1 � t/ ! 0 for t ! 1� hence Yt ! 0 in L2 as

t ! 1�.
b) .Ws/s is obviously a Gaussian continuous process. Moreover, observe that t 7!

A.t/ is increasing, therefore, for s � t,

E.WsWt/ D E
h Z A.s/

0

dBu

1 � u

Z A.t/

0

dBv
1 � v

i
D
Z A.s/

0

1

.1 � u/2
du

D 1

1 � A.s/
� 1 D 1C s � 1 D s D s ^ t :

Therefore .Ws/s is a (natural) Brownian motion. The inverse of s 7! A.s/ is
t 7! �.t/ D t

1�t , i.e. A.�.t// D t. We have therefore

Yt D .1 � t/
Z t

0

dBu

1 � u
D .1 � t/W�.t/

and

lim
t!1�

Yt D lim
t!1�

.1�t/W�.t/ D lim
t!1�

.1�t/�
p
2�.t/ log log �.t/� W�.t/

p
2�.t/ log log �.t/

�

In order to conclude the proof, we simply recall that �.t/ ! C1 as t ! 1�
and therefore, by the Iterated Logarithm Law,

lim
t!1�

W�.t/
p
2�.t/ log log �.t/

D 1; lim
t!1�

W�.t/
p
2�.t/ log log �.t/

D �1 a.s.

whereas

lim
t!1�.1 � t/

p
2�.t/ log log �.t/ D lim

t!1�
p
2t.1 � t/ log log �.t/ D 0

hence limt!1� Yt D 0 a.s.
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7.12

a) Yt and Zt are both Gaussian r.v.’s, as they are stochastic integrals with a
deterministic square integrable integrand (Proposition 7.1). Both have mean
equal to 0. As for the variance,

Var.Yt/D E
h� Z t

0

e�	.t�s/ dBs

�2iD
Z t

0

e�2	.t�s/ ds D
Z t

0

e�2	u du D 1

2	
.1�e�2	t/

and in the same way

Var.Zt/ D E
h� Z t

0

e�	s dBs

�2i D
Z t

0

e�2	s ds D 1

2	
.1 � e�2	t/ :

Both Yt and Zt have a Gaussian law with mean 0 and variance 1
2	
.1 � e�2	t/.

b) .Zt/t is a martingale (Proposition 7.3). For .Yt/t, if s � t, we have instead

EŒYt jFs� D e�	tE
h Z t

0

e	u dBu

ˇ
ˇFs

i
D e�	t

Z s

0

e	u dBu D e�	.t�s/Ys :

Therefore .Yt/t is not a martingale.
c) We have

sup
t�0

EŒZ2t � D lim
t�0 EŒZ2t � D 1

2	
< C1 :

.Zt/t is therefore a martingale bounded in L2 and converges a.s. and in L2.
d1) Obviously .Yt/t converges in law as t ! C1, as Yt and Zt have the same law

for every t and .Zt/t converges a.s. and therefore in law.
d2) We have

EŒ.YtCh � Yt/
2� D EŒY2tCh�C EŒY2t � � 2EŒYtYtCh� :

The two first terms on the right-hand side have already been computed in a).
As for the last, conversely,

EŒYtYtCh� D e�	.tCh/e�	tE
� Z t

0

e	s dBs

Z tCh

0

e	s dBs

�
D e�	.2tCh/

Z t

0

e2	s ds

D 1

2	
.e�	h � e�	.2tCh// :

Therefore, putting the pieces together,

lim
t!C1 EŒ.YtCh�Yt/

2� D lim
t!C1

1

2	

�
1�e�2	tC1�e�2	.tCh/�2e�	hC2e�	.2tCh/

�

D 1

	
.1 � e�	h/ :
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.Yt/t is not therefore Cauchy in L2 as t ! C1, and cannot converge in L2. We
shall see in Sect. 9.2 that .Yt/t is an Ornstein–Uhlenbeck process.

7.13

a) eB is a Gaussian process by Proposition 7.1. In order to take advantage of
Proposition 3.1 let us show that E.eBseBt/ D s ^ t. Let us assume s � t. As

EŒeBteBs� D E
h Z t

0

�
3 � 12u

t
C 10u2

t2

�
dBu

Z s

0

�
3 � 12u

s
C 10u2

s2

�
dBu

i

D
Z s

0

�
3 � 12u

t
C 10u2

t2

��
3 � 12u

s
C 10u2

s2

�
du

D
Z s

0

�
9� 36u

s
C 30u2

s2
� 36u

t
C 144u2

st
� 120u3

s2t
C 30u2

t2
� 120u3

t2s
C 100u4

s2t2

�
du

we have

EŒeBteBs� D 9s �18s C10s �18 s2

t
C48

s2

t
�30 s2

t
C10

s3

t2
�30 s3

t2
C20

s3

t2
D s :

b) As Y andeBt are jointly Gaussian, we must just check that they are uncorrelated.
Let t � 1: we have

EŒYeBt� D E
h Z 1

0

u dBu

Z t

0

�
3 � 12u

t
C 10u2

t2

�
dBu

i

D E
h Z t

0

u dBu

Z t

0

�
3 � 12u

t
C 10u2

t2

�
dBu

i

D
Z t

0

u
�
3 � 12u

t
C 10u2

t2

�
du D 3

2
t2 � 4t2 C 10

4
t2 D 0 :

The proof for t > 1 is straightforward and is left to the reader.
c) Let eG1 D �.eBt; t � 0/ and G1 D �.Bt; t � 0/. Obviously eG1 � G1 as

every r.v.eBt is G1-measurable. On the other hand the r.v. Y defined in b) is G1-
measurable but not eG1-measurable. If it were we would have

EŒY jeG1� D Y
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whereas, conversely,

EŒY jeG1� D E.Y/ D 0

as Y is independent ofeBt for every t and therefore also of eG1 (Remark 1.2).

7.14

a) We have
Z T

0

1fs<�ngX2s ds D
Z �n

0

X2s ds � n ;

hence the process .Xs1fs<�ng/s belongs M2.Œ0;T�/ and

E
h Z �n

0

X2s ds
i

D E
h Z T

0

1fs<�ngX2s ds
i

D E
h� Z T

0

1fs<�ngXs dBs

�2i

D E
h� Z �n

0

Xs dBs

�2i D E.M2
t^�n

/ � E
h

sup
0�t�T

M2
t

i
:

b) Assume (7.40): as �n % T a.s., by Beppo Levi’s theorem,

E
h

sup
0�t�T

M2
t

i
� lim

n!1 E
h Z �n

0

X2s ds
i

D E
h Z T

0

X2s ds
i
;

hence X 2 M2.Œ0;T�/. Conversely, if X 2 M2.Œ0;T�/, .Mt/0�t�T is a square
integrable martingale bounded in L2 and (7.40) follows from Doob’s inequality
(the second one of the relations (7.23)).

7.15 Let .�n/n be a sequence reducing the local martingale M. Then, for s � t,

EŒMt^�n jFs� D Ms^�n : (S.43)

As �n % C1 as n ! 1, we have Mt^�n ! Mt and Ms^�n ! Ms as n ! 1.
Moreover, as the sequence .Mt^�n/n is assumed to be uniformly integrable, the
convergence for n ! 1 also takes place in L1 and we can pass to the limit in (S.43)
and obtain that Mt is integrable for every t � 0 and also the martingale relation

EŒMt jFs� D Ms :

8.1

a) The computation of the stochastic differential of .Mt/t is of course an application
of Ito’s formula, but this can be done in many ways. The first that comes to mind
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is to write Mt D f .Bt; t/ with

f .x; t/ D .x C t/e�.xC 1
2 t/ :

But one can also write Mt D XtYt, where

Xt D Bt C t

Yt D e�.BtC 1
2 t/ :

By Ito’s formula, considering that Yt D f .Bt C 1
2

t/ with f .x/ D e�x, we have

dYt D �e�.BtC 1
2 t/
�

dBt C 1

2
dt
�

C 1

2
e�.BtC 1

2 t/ dt D �Yt dBt ;

whereas obviously dXt D dBt C dt. Then, by Ito’s formula for the product, as
dhX;Yit D �Yt dt,

dMt D d.XtYt/ D Xt dYt C Yt dXt C dhX;Yit

D �.Bt C t/Yt dBt C Yt dBt C Yt dt � Yt dt

D �.Bt C t C 1/e�.BtC 1
2 t/ dBt :

b) Thanks to a) .Mt/t is a local martingale. It is actually a martingale, as the process
t 7! �.Bt C t � 1/e�.BtC 1

2 t/ is in M2.
In order to show that it is a martingale we could also have argued without

computing the stochastic differential with the usual method of factoring out the
Brownian increments: if s � t

EŒMt jFs� D E
�
.Bs C .Bt � Bs/C t/e�.BsC.Bt�Bs/C 1

2 t/
ˇ
ˇFs




D E
�
.Bs C t/e�.BsC 1

2 t/e�.Bt�Bs/ C .Bt � Bs/e�.BsC 1
2 t/e�.Bt�Bs/

ˇ
ˇFs




D .Bs C t/e�.BsC 1
2 t/E

�
e�.Bt�Bs/


C e�.BsC 1
2 t/E

�
.Bt � Bs/e�.Bt�Bs/




e�.BsC 1
2 t/
�
.Bs C t/e

1
2 .t�s/ � .t � s/e

1
2 .t�s/

� D .Bs C s/e�.BsC 1
2 s/ D Ms :

This old method appears to be a bit more complicated.

8.2 It is convenient to write Xt D ab C .b � a/Bt � B2t C t, so that, recalling that
dB2t D 2Bt dBt C dt,

dXt D .b � a/ dBt � 2Bt dBt � dt C dt D .b � a � 2Bt/ dBt ;
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i.e.

Xt D ab C
Z t

0

.b � a � 2Bt/ dBt :

The integrand obviously being in M2, X is a square integrable martingale.

8.3

a) Again Ito’s formula can be applied in many ways. For instance, if u.x; t/ D
et=2 sin x,

dXt D du.Bt; t/ D @u

@t
.Bt; t/ dt C @u

@x
.Bt; t/ dBt C 1

2

@2u

@x2
.Bt; t/ dt

and as

@u

@t
.x; t/ D 1

2
et=2 sin x;

@u

@x
.x; t/ D et=2 cos x;

@2u

@x2
.x; t/ D �et=2 sin x

we find

dXt D
�1

2
et=2 sin Bt � 1

2
et=2 sin Bt

�
dt C et=2 cos Bt dBt D et=2 cos Bt dBt

and therefore X is a local martingale and even a martingale, being bounded on
bounded intervals. For Y the same computation with u.x; t/ D et=2 cos x gives

dYt D �et=2 sin Bt dBt

so that Y is also a martingale. As the expectation of a martingale is constant we
have E.Xt/ D 0, E.Yt/ D 1 for every t � 0.

More quickly the imaginative reader might have observed that

Yt C iXt D eiBt C 1
2

t

which is known to be an exponential complex martingale, hence both its real and
imaginary parts are martingales.

b) The computation of the stochastic differentials of a) implies that both X and Y
are Ito processes. It is immediate that

hX;Yit D �
Z t

0

es cos Bs sin Bs ds :
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8.4

a) Just take the stochastic differential of the right-hand side: by Ito’s formula

de� Bt� 1
2 �

2t D e� Bt� 1
2 �

2t.�dBt � 1

2
�2dt/C 1

2
e� Bt� 1

2 �
2t�2 dt D e�Bt� 1

2 �
2t� dBt :

Hence the left and right-hand sides in (8.52) have the same differential. As they
both vanish at t D 0 they coincide.

b) Recall that if X 2 M2
loc and

Yt D e
R t
0 Xu dBu� 1

2

R t
0 X2u du

then Y is a local martingale and satisfies the relation

dYt D XtYt dBt

and therefore

Z t

0

XsYs dBs D Yt � 1 :

In our case Xt D Bt, hence

Z t

0

e
R s
0 Bu dBu� 1

2

R s
0 B2u duBs dBs D e

R t
0 Bu dBu� 1

2

R t
0 B2u du � 1 :

8.5

a) If f .x; t/ D x3 � 3tx, by Ito’s formula,

df .Bt; t/ D @f

@x
.Bt; t/ dBt C @f

@t
.Bt; t/ dt C 1

2

@2f

@x2
.Bt; t/ dt

D @f

@x
.Bt; t/ dBt C

�1

2

@2f

@x2
C @f

@t

�
.Bt; t/ dt :

It is immediate that 1
2

@2f
@x2
.x; t/C @f

@t .x; t/ D 3x�3x D 0; therefore, as f .0; 0/ D 0,

f .Bt; t/ D
Z t

0

@f

@x
.Bs; s/ dBs D

Z t

0

.3B2s � 3s/ dBs :

The integrand belongs to M2.Œ0;C1Œ/ (it is a polynomial in t and Bt) and
therefore Xt D f .Bt; t/ is a (square integrable) martingale.
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b) The computation above shows that Xt D Pn.Bt; t/ is a martingale if and only if

1

2

@2Pn

@x2
C @Pn

@t
D 0 :

If Pn is of the form (8.53), the coefficient of xn�2m�2tm in the polynomial 1
2
@2Pn
@x2

C
@Pn
@t is equal to

1

2
.n � 2m/.n � 2m � 1/cn;m C .m C 1/cn;mC1 :

Requiring these quantities to vanish and setting cn;0 D 1, we can compute all
the coefficients sequentially one after the other, thus determining Pn, up to a
multiplicative constant. We find the polynomials

P1.x; t/ D x

P2.x; t/ D x2 � t

P3.x; t/ D x3 � 3tx

P4.x; t/ D x4 � 6tx2 C 3t2 :

The first two give rise to already known martingales, whereas the third one is the
polynomial of a).

c) The stopping theorem, applied to the martingale .P3.Bt; t//t and to the bounded
stopping time � ^ n, gives

E.B3�^n/ D 3EŒ.� ^ n/B�^n� :

We can apply Lebesgue’s theorem and take the limit as n ! 1 (the r.v.’s B�^n

lie between �a and b, whereas we already know that � is integrable) so that
E.B3� / D 3EŒ�B� �. Therefore, going back to Exercise 5.31 where the law of B�
was computed

E.�B� / D 1

3
E.B3� / D 1

3

�a3b C ab3

a C b
D ab.b � a/ :

If B� and � were independent we would have E.B� �/ D E.B� /E.�/ D 0.
Therefore B� and � are not independent if a 6D b. If conversely a D b, � and
B� are uncorrelated and we know already that in this case they are independent
(Exercise 3.18 b)).

8.6

a) Ito’s formula gives

dMt D 	e	tBt dt C e	t dBt � 	e	tBt dt D e	t dBt
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so that M is a square integrable martingale (also Gaussian. . . ) with associated
increasing process

hMit D
Z t

0

e2	s ds D 1

2	
.e2	t � 1/ :

Note that, as M is Gaussian, this associated increasing process is deterministic
as was to be expected from Exercise 5.11.

b) If 	 < 0, as

EŒM2
t � D hMit D 1

2	
.e2	t � 1/ ;

M is bounded in L2 and therefore uniformly integrable and convergent a.s.
and in L2. As M is Gaussian and Gaussianity is preserved with respect to
convergence in law (Proposition 1.9), the limit is also Gaussian with mean 0
and variance

lim
t!C1

1

2	
.e2	t � 1/ D � 1

2	
�

c1) Z is clearly an exponential martingale.
c2) If 	 < 0, limt!C1 Mt exists in L2 and is a Gaussian N.0;� 1

2	
/-distributed r.v.

Hence Z1 is the exponential of an N. 1
4	
;� 1

2	
/ distributed r.v., i.e. a lognormal

r.v. (Exercise 1.11).
c3) We have

EŒZp
t � D EŒe pMt� p

4	 .e
2	t�1/� D e

p2�p
4	 .e2	t�1/ :

If 	 > 0, for p < 1 we have p2 � p < 0, hence

lim
t!C1 EŒZp

t � D 0 :

Therefore, by Fatou’s lemma,

EŒZp1� � lim
t!C1

EŒZp
t � D 0 :

The r.v. Zp1, being positive and with an expectation equal to 0, is equal to 0 a.s.

8.7 By Ito’s formula (see Example 8.6 for the complete computation)

dYt D t dBt
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and therefore

d
�

Yt � 1

6
t3
�

D t dBt � 1

2
t2 dt :

Hence, again by Ito’s formula,

dZt D eYt� 1
6 t3
�

t dBt � 1

2
t2 dt

�
C 1

2
eYt� 1

6 t3 dhYit

D Zt

�
t dBt � 1

2
t2 dt C 1

2
t2 dt

�
D tZt dBt :

Therefore Z is a local martingale (and a positive supermartingale). In order to
prove that it is a martingale there are two possibilities. First we can prove that
Z 2 M2.Œ0;T�/ for every T � 0: as Y is a Gaussian process,

EŒZ2t � D EŒe2Yt� 1
3 t3 � D e� 1

3 t3e2Var.Yt/ D e� 1
3 t3e

2
3 t3 D e

1
3 t3 :

Therefore Z 2 M2 and Z, being the stochastic integral of a process in M2, is a
square integrable martingale. A second method is to prove that EŒZt� D 1 for every
t and to recall that a supermartingale with a constant expectation is a martingale
(Exercise 5.1). This verification is left to the reader.

8.8 By Corollary 8.1, there exists a Brownian motion W such that, if

At D
Z t

0

ds

2C sin s
,

then Xt D WAt . In order to investigate the behavior of At as t ! C1 we must only
pay attention to the fact that the primitive indicated in the hint is not defined for
every value of t. Note that, as the integrand is a periodic function,

Z 2�

0

ds

2C sin s
D
Z �

��
ds

2C sin s
D 2p

3
arctan

� 2p
3

tan
t

2
C 1p

3

�ˇˇ
ˇ
�

�� D 2�p
3

�

Hence, denoting by Œ � the integer part function,

At D
Z t

0

ds

2C sin s
D 2�p

3

h t

2�

i
C
Z t

2�Œ t
2� �

ds

2C sin s

so that limt!C1 1
t At D 3�1=2. We have therefore

lim
t!C1

Xt

.2t log log t/1=2
D lim

t!C1
WAt

.2At log log At/1=2
.2At log log At/

1=2

.2t log log t/1=2
�
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As

lim
t!C1

.2At log log At/
1=2

.2t log log t/1=2
D 3�1=4 ;

by the Iterated Logarithm Law we find

lim
t!C1

Xt

.2t log log t/1=2
D 3�1=4 ' 0:76 :

8.9 We have d.e�	tBt/ D �	e�	tBt dt C e�	t dBt from which we derive

Xt D
Z t

0

e�	sBs ds D � 1
	

e�	tBt C 1

	

Z t

0

e�	sdBs :

The stochastic integral on the right-hand side is a martingale bounded in L2 and
therefore it converges a.s. and in L2. As limt!C1 e�	tBt D 0 a.s. (recall the Iterated
Logarithm Law) and in L2, the limit in (8.54) also exists a.s. and in L2, the limit
being the r.v.

1

	

Z C1

0

e�	sdBs ;

which is a centered Gaussian r.v. with variance

1

	2

Z C1

0

e�2	s ds D 1

2	3
�

8.10

a) We know (Proposition 7.1) that X"t has a centered Gaussian distribution with
variance

2

Z t

0

sin2
s

"
ds :

Integrating by parts we find

2

Z t

0

sin2
s

"
ds D � " sin

t

"
cos

t

"
C t : (S.44)

Hence, as " ! 0, X"t converges in law to an N.0; t/-distributed r.v.
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b) We know, by Theorem 8.2 and Corollary 8.1, that

X"t D W"
A"t

where W" is a Brownian motion and

A"t D 2

Z t

0

sin2
s

"
ds :

The Brownian motion W" depends on " but of course it has the same law as B
for every ". Hence X" has the same distribution as .BA"t /t. As by (S.44) A"t ! t
uniformly in t, thanks to the continuity of the paths we have

sup
0�t�T

ˇ
ˇBA"t � Bt

ˇ
ˇ !

"!0
0 :

As a.s. convergence implies convergence in law, .BA"t /t, hence also .X"t /t,
converges in law as " ! 0 to the law of B, i.e. to the Wiener measure.

8.11 By Corollary 8.1 there exists a Brownian motion W such that, if

At D
Z t

0

ds

1C s
D log.1C t/ ;

then Xt D WAt . Therefore, by the reflection principle applied to the Brownian motion
W,

P
�

sup
0�t�3

Xt � 1
�

D P
�

sup
0�t�3

WAt � 1
�

D P
�

sup
0�s�log 4

Ws � 1
�

D 2P.Wlog 4 � 1/ D 2P.
p

log 4W1 � 1/ D 2p
2�

Z C1

.log 4/�1=2
e�x2=2 dx ' 0:396 :

8.12

a) We know that X is a time changed Brownian motion, more precisely (Corol-
lary 8.1)

Xt D WAt

where W is a Brownian motion and

At D .˛ C 1/

Z t

0

u˛ du D t˛C1 :
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Therefore

P
�

sup
0�s�2

Xs � 1
�

D P
�

sup
0�s�2

WAs � 1
�

D P
�

sup
0�t�A2

Wt � 1
�

D 2P.WA2 � 1/

D 2P.
p

A2 W1 � 1/ D 2P.W1 � 2� 1
2 .˛C1//

D 2p
2�

Z 1

2� 1
2 .˛C1/

e�t2=2 dt :

b) The previous computation with t instead of 2 gives

P.� � t/ D P
�

sup
0�s�t

Xs � 1
�

D 2p
2�

Z 1

t�
1
2 .˛C1/

e�s2=2 ds

and taking the derivative we find the density of � :

f� .t/ D 2p
2�

1

2
.˛ C 1/t�

1
2 .˛C1/�1e�1=.2t˛C1/ D .˛ C 1/p

2�t˛C3 e�1=.2t˛C1/ :

In order for � to have finite mathematical expectation the function t 7! tf� .t/
must be integrable. At zero the integrand tends to 0 fast enough because of the
exponential whereas at infinity tf� .t/ � t� 1

2 .˛C1/. It is therefore necessary that
� 1
2
.˛ C 1/ < �1, i.e. ˛ > 1.

8.13 By Ito’s formula d.�tBt/ D �0
t Bt dt C �t dBt. Therefore, for T > 0,

Z T

0

�0
t Bt dt C

Z T

0

�t dBt D �TBT � �0B0„ƒ‚…
D0

a.s.

If T is large enough, so that the support of � is contained in Œ0;T�, we have �T D 0

and therefore

Z T

0

�0
t Bt dt D �

Z T

0

�t dBt a:s:

Moreover, T can be replaced by C1, as both integrands vanish on �T;C1Œ.

8.14

a) Let us apply Ito’s formula. If

 .x; t/ D 1p
1 � t

exp
�

� x

2.1� t/

�
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then Zt D  .B2t ; t/ and we know that dB2t D 2Bt dBt C dt. Let us compute the
derivatives of  :

@ 

@t
.x; t/ D 1

2.1� t/3=2
exp

�
� x

2.1� t/

�
� x

2.1� t/5=2
exp

�
� x

2.1� t/

�

D
� 1

2.1� t/
� x

2.1 � t/2

�
 .x; t/

and similarly

@ 

@x
.x; t/ D � 1

2.1 � t/
 .x; t/

@2 

@x2
.x; t/ D 1

4.1� t/2
 .x; t/ :

Hence

dZt D @ 

@t
.B2t ; t/ dt C @ 

@x
.B2t ; t/ .2Bt dBt C dt/C 1

2

@2 

@x2
.B2t ; t/ 4B2t dt

D
h� 1

2.1 � t/
� B2t
2.1� t/2

�
dt � 1

2.1� t/

�
2Bt dBt C dt

�

C 1

8.1 � t/2
4B2t dt

i
 .B2t ; t/

D � Bt

1 � t
 .B2t ; t/ dBt D � 1

1 � t
BtZt dBt :

(S.45)

This proves that Z is a local martingale. Being positive it is also a supermartin-
gale. In order to prove that it is actually a martingale it does not seem immediate
to verify that the stochastic integrand t 7! � 1

1�t BtZt is in M2, as it depends on Z
itself. It is however immediate that Z is bounded (� .1� t/�1=2) in every interval
Œ0;T� with T < 1 and we know that a bounded local martingale is a martingale
(Remark 7.7). It is also possible to check that, for every t < 1, EŒZt� D EŒZ0� D 1,
and we know that a supermartingale having constant expectation is a martingale
(Exercise 5.1). This will be a byproduct of the computation of b).

b) We have

EŒZp
t � D 1

.1 � t/p=2
E
h

exp
�

� pB2t
2.1� t/

�i
:

Now, denoting by W an N.0; 1/-distributed r.v. (recall Remark 3.3)

E
h

exp
�

� pB2t
2.1� t/

�i
D E

h
exp

�
� ptW2

2.1� t/

�i
D 1
q
1C pt

1�t

D
p
1 � t

p
1C .p � 1/t
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so that

EŒZp
t � D 1

.1 � t/.p�1/=2p1C .p � 1/t
�

Therefore, for p D 1, EŒZt� D 1, thus a second proof that Z is a martingale.
Moreover, Z belongs to Lp but, if p > 1, it is not bounded in Lp: the Lp norm
diverges as t ! 1�.

c) Z being a continuous positive martingale, the limit limt!1� Zt WD Z1 exists a.s.
and is finite. From the computation of b) we have, for p < 1,

lim
t!1� EŒZp

t � D 0

and, as Z is positive, by Fatou’s lemma

EŒZp
1 � � lim

t!1�
EŒZp

t � D 0 :

The r.v. Zp
1 being positive and having expectation equal to 0 is necessarily equal

to 0 a.s., i.e.

lim
t!1� Zt D 0 a.s.

d) From (S.45) we recognize the differential of an exponential martingale. There-
fore a comparison between (S.45) and (8.11) suggests that

Zt D exp
�

�
Z t

0

Bs

1 � s
dBs � 1

2

Z t

0

B2s
.1 � s/2

ds
�
;

i.e.

Xs D � Bs

1 � s
�

This remark would be enough if we knew that (8.11) has a unique solution.
Without this we can nevertheless verify directly that, for t < 1,

1p
1 � t

exp
�

� B2t
2.1� t/

�
D exp

�
�
Z t

0

Bs

1 � s
dBs � 1

2

Z t

0

B2s
.1 � s/2

ds
�
:

(S.46)

Ito’s formula for the product gives

d
B2t

2.1� t/
D 2Bt dBt C dt

2.1 � t/
C B2t
2.1 � t/2

dt
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hence integrating

B2t
2.1� t/

D
Z t

0

Bs

1� s
dBs C

Z t

0

B2s
2.1 � s/2

ds � 1

2
log.1 � t/

so that

exp
�

� Bt

2.1� t/

�
D p

1 � t � exp
�

�
Z t

0

Bs

1 � s
dBs � 1

2

Z t

0

B2s
.1 � s/2

ds
�

and (S.46) follows.

8.15

a) It is immediate that W1 is a centered Gaussian process. Its variance is equal to

Z t

0

.sin s C cos s/2 ds D
Z t

0

.1C 2 sin s cos s/ ds D t C .1 � cos 2t/ 6D t ;

hence W1 is not a Brownian motion.
b) We can write

W2.t/ D
Z t

0

u.s/ dBs

with u.s/ D .sin s; cos s/. As u.s/ is a vector having modulus equal to 1 for every
s, W2 is a Brownian motion thanks to Corollary 8.2.

c) As in b) we can write

W3.t/ D
Z t

0

u.s/ dBs

where now u.s/ D .sin B2.s/; cos B2.s//. Again, as u.s/ has modulus equal to
1 for every s, W3 is a Brownian motion. Note that, without taking advantage of
Corollary 8.2, it is not immediate to prove that W3 is a Gaussian process.

8.16 Let us denote by B the two-dimensional Brownian motion .B1;B2/.

a) We can write

Xt D
Z t

0

Zs dBs

with Zs D .sin B3.s/; cos B3.s//. As jZsj D 1 for every s, X is a Brownian
motion by Corollary 8.2. The same argument applies for Y.
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b1) We have, for s � t,

EŒXsYt�

D E
h Z s

0

sin.B3.u// dB1.u/
Z t

0

cos.B3.v// dB1.v/

C
Z s

0

cos.B3.u// dB2.u/
Z t

0

sin.B3.v// dB2.v/
i

D E
h Z s

0

sin.B3.u// cos.B3.u// du C
Z s

0

cos.B3.u// sin.B3.u// du
i

D 2

Z s

0

EŒsin.B3.u// cos.B3.u//� du D 0 ;

where the last equality comes from the fact that sin.B3.u// cos.B3.u// has
the same distribution as sin.�B3.u// cos.�B3.u// D � sin.B3.u// cos.B3.u//,
and has therefore mathematical expectation equal to 0. Hence Xs and Yt are
uncorrelated.

b2) If .Xt;Yt/t were a two-dimensional Brownian motion the product t 7! XtYt

would be a martingale (see Exercises 5.22 or 5.24). This is not true because

hX;Yit D 2

Z t

0

sin.B3.u// cos.B3.u// du 6� 0 :

c) With the new definition we can write
�

Xt

Yt

	

D
Z t

0

Os dBs

with

Os D
�

sin.B3.s// cos.B3.s//
� cos.B3.s// sin.B3.s//

	

:

It is immediate that s 7! Os is an orthogonal matrix-valued process. Hence the
required statement follows from Proposition 8.8.

• Note the apparent contradiction: the processes X and Y in b) are each a Brownian
motion and are uncorrelated. But they do not form a two-dimensional Brownian
motion. Actually they are not jointly Gaussian.

8.17

a) Orthogonality with respect to Bv for v � s imposes the condition

0 D E
h�

Bt �
Z s

0

˚.u/ dBu � ˛B1
�

Bv
i

D v �
Z v

0

˚.u/ du � ˛v ;
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i.e.

v.1 � ˛/ D
Z v

0

˚.u/ du; for every v � s (S.47)

and therefore ˚ � 1 � ˛ on Œ0; s�. Orthogonality with respect to B1 conversely
requires

0 D E
h�

Bt �
Z s

0

˚.u/ dBu � ˛B1
�

B1
i

D t �
Z s

0

˚.u/ du � ˛ ;

i.e., taking into account that ˚ � 1 � ˛,

0 D t � .1 � ˛/s � ˛ D t � s � ˛.1 � s/ ;

i.e.

˛ D t � s

1 � s
; ˚.u/ � 1 � t

1 � s
�

b) Let X D t�s
1�s B1 C 1�t

1�s Bs. In a) we have proved that the r.v. Bt � X, which is
centered, is independent of eG s. Moreover, as X is eG s-measurable,

EŒBt jeG s� D EŒ.Bt � X/C X jeG s�

D X C EŒBt � X� D X D t � s

1 � s
B1 C 1 � t

1 � s
Bs :

(S.48)

Hence B is adapted to the filtration .eG t/t but is not a .eG t/t-martingale, therefore
it cannot be a Brownian motion with respect to this filtration.

c1) As the r.v.’s eBt � eBs;B1;Bv; v � s form a Gaussian family, it suffices
(Remark 1.2) to show that eBt � eBs is orthogonal to Bv, 0 � v � s, and to
B1. We have

EŒ.eBt �eBs/B1� D EŒ.Bt � Bs/B1��
Z t

s

EŒ.B1 � Bu/B1�

1 � u
du D t � s �

Z t

s
du D 0

and, for v � s,

EŒ.eBt �eBs/Bv� D EŒ.Bt � Bs/Bv��
Z t

s

EŒ.B1 � Bu/Bv�

1 � u
du D 0 :

c2) Let us prove that EŒeBteBs� D s, for 0 � s � t. This is elementary, albeit
laborious. If s < t � 1, note that EŒeBteBs� D EŒ.eBt �eBs/eBs� C EŒeB2s � D EŒeB2s �,
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thanks to c1). Hence we are reduced to the computation of

EŒeB2s �

D E.B2s / � 2

Z s

0

E
h
Bs

B1 � Bu

1 � u

i
du C

Z s

0

dv
Z s

0

E
hB1 � Bv
1 � v

B1 � Bu

1 � u

i
du

D s � 2
Z s

0

s � u

1 � u
du C

Z s

0

dv
Z s

0

1 � u � v C u ^ v
.1� v/.1 � u/

du

D s � 2I1 C I2 :

With patience one can compute I2 and find that it is equal to 2I1, which gives the
result. The simplest way to check that I2 D 2I1 is to observe that the integrand
in I2 is a function of .u; v/ that is symmetric in u; v. Hence

I2 D
Z s

0

dv
Z s

0

1 � u � v C u ^ v
.1 � v/.1 � u/

dv D 2

Z s

0

dv
Z s

v

1 � u � v C u ^ v
.1� v/.1 � u/

du

D 2

Z s

0

dv
Z s

v

1 � u

.1 � v/.1 � u/
du D 2

Z s

0

s � v
1 � v

dv D 2I1 :

Hence EŒeBteBs� D s ^ t. If s � t, the r.v.eBt �eBs is centered Gaussian as .eBt/t
is clearly a centered Gaussian process, which together with c1), completes the
proof thateB is a .eG t/t-Brownian motion.

c3) We have, of course,

dBt D At dt C deBt

with

At D B1 � Bt

1 � t
�

Hence, since .At/t is .eG t/t-adapted, B is an Ito process with respect to the new
Brownian motioneB.

8.18

a) If there existed a second process .Y 0
s/s satisfying (8.56), we would have

0 D E
h� Z T

0

Ys dBs �
Z T

0

Y 0
s dBs

�2i D E
h� Z T

0

.Ys � Y 0
s/ dBs

�2i

D E
h Z T

0

.Ys � Y 0
s/
2 ds

i
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and therefore Ys D Y 0
s a.e. with probability 1 and the two processes would be

indistinguishable.
b1) As usual, for s � T,

Xs D EŒ.Bs C .BT � Bs//
3 jFs�

D B3s C3B2s EŒBT �Bs�C3BsEŒ.BT �Bs/
2�CEŒ.BT �Bs/

3� D B3s C3Bs.T � s/ :

By Ito’s formula,

dXs D 3B2s dBs C 3Bs ds C 3.T � s/ dBs � 3Bs ds D 3.B2s C .T � s// dBs :

Note that the part in ds vanishes, which is not surprising as .Xs/s is clearly a
martingale.

b2) Obviously

B3T D XT D
Z T

0

3.B2s C .T � s//
„ ƒ‚ …

WDYs

dBs :

c) We can repeat the arguments of b1) and b2): as s 7! e�Bs� �2

2 s is a martingale,

Xs D EŒe�BT jFs� D e
�2

2 TEŒe�BT � �2

2 T jFs� D e
�2

2 Te�Bs� �2

2 s D e�BsC �2

2 .T�s/

and

dXs D e
�2

2 T�e�Bs� �2

2 s dBs

and therefore

e�BT D XT D X0 C �

Z T

0

e�BsC �2

2 .T�s/ dBs D e
�2

2 T C
Z T

0

�e�BsC �2

2 .T�s/
„ ƒ‚ …

WDYs

dBs :

8.19

a1) We have

Mt D EŒZ jFt� D E
h Z T

0

Bs ds
ˇ
ˇFt

i
D
Z t

0

Bs ds C E
h Z T

t
Bs ds

ˇ
ˇFt

i

D
Z t

0

Bs ds C .T � t/Bt :
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a2) Ito’s formula gives

dMt D Bt dt C .T � t/ dBt � Bt dt D .T � t/ dBt

and therefore, as M0 D 0,

Z T

0

Bs ds D MT D
Z T

0

.T � t/
„ƒ‚…

WDXt

dBt :

b) Let again

Mt D E
h Z T

0

B2s ds
ˇ
ˇFt

i
D
Z t

0

B2s ds C E
h Z T

t
B2s ds

ˇ
ˇFt

i
:

Now, recalling that t 7! B2t � t is a martingale,

Z T

t
EŒB2s jFt� ds D

Z T

t
.EŒB2s � sjFt�C s/ ds D .T � t/.B2t � t/C 1

2
.T2 � t2/

and putting things together

Mt D
Z t

0

B2s ds C .T � t/.B2t � t/C 1

2
.T2 � t2/ :

As dB2t D 2Bt dBt C dt,

dMt D B2t dt C .T � t/.2Bt dBt C dt � dt/� .B2t � t/ dt � t dt D 2.T � t/Bt dBt

and since M0 D T2

2
we have

Z T

0

B2s ds D MT D T2

2
C 2

Z T

0

.T � t/Bt dBt :

8.20 Ito’s formula applied to the unknown process Z gives

dZt D Zt.
dMt � dAt/C 
2

2
Zt.Bi.t/

2 C Bj.t/
2/ dt

D 
Zt.Bi.t/ dBj.t/C Bj.t/ dBi.t//C Zt

�1

2

2.Bi.t/

2 C Bj.t/
2/ dt � dAt

�
:

Z is therefore a local martingale if and only if dAt D 1
2

2 dhMit D 1

2

2.Bi.t/2 C

Bj.t/2/ dt.
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• Of course this leaves open the question of whether such a Z is a true martingale.
The interested reader will be able to answer this easily later using Proposi-
tion 12.2.

8.21

a) We have

EŒZ2e˛Z � D 1p
2�

Z C1

�1
x2e˛x2e�x2=2 dx D 1p

2�

Z C1

�1
x2e� 1

2 .1�2˛/x2 dx

D .1 � 2˛/�1=2 .1 � 2˛/1=2p
2�

Z C1

�1
x2e� 1

2 .1�2˛/x2 dx
„ ƒ‚ …

D .1 � 2˛/�3=2

as the quantity over the brace is equal to the variance of an N.0; .1 � 2˛/�1/-
distributed r.v. and is therefore equal to .1 � 2˛/�1.

b) We have limt!1� Ht.!/ D 0 for ! 62 fB1 D 0g, which is a set of probability
0. Hence t 7! Ht.!/ is continuous for t 2 Œ0; 1� if ! 62 fB1 D 0g, and H 2
M2

loc.Œ0; 1�/. In order to check whether H 2 M2.Œ0; 1�/ we have, denoting by Z an
N.0; 1/-distributed r.v.,

E
h Z 1

0

H2
s ds

i
D
Z 1

0

1

.1� s/3
E
h
B2s exp

�
� B2s
1 � s

�i
ds

D
Z 1

0

1

.1 � s/3
E
h
sZ2 exp

�
� sZ

1 � s

�i
ds D

Z 1

0

s

.1 � s/3

�
1C 2s

1 � s

��3=2
ds

D
Z 1

0

s

.1 � s/3=2.1C s/3=2
D C1 ;

so that H 62 M2.Œ0; 1�/.
c) Let

f .x; t/ D 1p
1 � t

exp
�

� x2

2.1 � t/

�

and let us compute the stochastic differential, for 0 � t < 1, of Xt D f .Bt; t/. We
have

@f

@x
.x; t/ D � x

.1 � t/3=2
exp

�
� x2

2.1� t/

�
;

so that

@f

@x
.Bt; t/ D �Ht
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and, with some patience,

@f

@t
.x; t/ D

� 1

2.1� t/3=2
� x2

2.1� t/5=2

�
exp

�
� x2

2.1 � t/

�

@2f

@x2
.x; t/ D

�
� 1

.1� t/3=2
C x2

.1 � t/5=2

�
exp

�
� x2

2.1� t/

�
;

so that

@f

@t
.x; t/C 1

2

@2f

@x2
.x; t/ D 0 :

By Ito’s formula,

dXt D
�@f

@t
.Bt; t/C 1

2

@2f

@x2
.Bt; t/

�
dt C @f

@x
.Bt; t/ dBt D @f

@x
.Bt; t/ dBt D �Ht dBt ;

from which, as X0 D 1, (8.57) follows. It is immediate that if ! 62 fB1 D 0g,
then limt!1� Xt D 0.

d) The integral

Z 1

0

Hs dBs

is well defined as H 2 M2
loc.Œ0; 1�/. Moreover, by continuity and thanks to (8.57),

Z 1

0

Hs dBs D lim
t!1�

Z t

0

Hs dBs D 1 � lim
t!1� Xt D 1 :

8.22

a) This was proved in Exercise 5.10 c).
b) In Example 8.9 it is proved that, if Xn.t/ D jB.n/t j2, then there exists a real

Brownian motion W such that

dXn.t/ D n dt C 2
p

Xn.t/ dWt

from which (8.58) follows.
c) We have, thanks to (8.58),

Rn.t ^ �n/� t ^ �n D 2p
n

Z t^�n

0

p
Rn.s/ dWs :
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As
p

Rn.s/ � 1 for s � �n, Zt D Rn.t ^ �n/ � t ^ �n is a square integrable
martingale. By Doob’s inequality,

E
h

sup
0�t��n

jRn.t/ � tj2
i

D E
�

sup
t�0

Z2t
�

� 4 sup
t�0

E.Z2t /

D 16

n
E
h Z �n

0

Rn.s/ ds
i

� 16

n
E.�n/ D 16

n
�

In particular, E.jRn.�n/��n/j2/ � 16
n and, recalling that Rn.�n/ D 1, by Markov’s

inequality,

P.j1 � �n/j � "/ � 16

n"2
,

which proves that �n !n!1 1 in probability.
d) �n;d.�n/ is the law of Xn D .B1.�n/; : : : ;Bd.�n//, as indicated in the hint. As
�n !n!1 1 in probability, from every subsequence of .�n/n we can extract
a further subsequence converging to 1 a.s. Hence from every subsequence of
.Xn/n we can extract a subsequence converging to X D .B1.1/; : : : ;Bd.1// a.s.
Therefore Xn ! N.0; I/ in law as n ! 1.

8.23

a) Let f .z/ D � log jz � xj so that Xt D f .Bt/. We cannot apply Ito’s formula
to f , which is not even defined at x, but we can apply it to a C2 function that
coincides with f outside the ball of radius 1

n centered at x. Let us compute the
derivatives of f . As remarked in Sect. 8.5, we have for g.z/ D jz � xj, z 6D x,

@g

@zi
.z/ D @

@zi

vu
u
t

mX

jD1
.zj � xj/2 D zi � xi

jz � xj

and

@f

@zi
.z/ D � zi � xi

jz � xj2
@2f

@z2i
.z/ D � 1

jz � xj2 C 2
.zi � xi/

2

jz � xj4

from which 4f .z/ D 0 for z 6D x. Hence

Xt^�n D � log jxj C
Z t^�n

0

1

2
4f .Bs/ ds C

Z t^�n

0

f 0.Bs/ dBs

D � log jxj �
Z t^�n

0

B1.s/� x1
jB.s/ � xj2 dB1.s/ �

Z t^�n

0

B2.s/� x2
jB.s/� xj2 dB2.s/ :

(S.49)
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As jBs � xj � 1
n for s � �n, we have

jBi.s/ � xij
jB.s/� xj2 � 1

jB.s/� xj � n

so that the integrands in (S.49) are processes in M2 and .Xt^�n/n is a square
integrable martingale.

b) Of course, �n;M < C1 by the Iterated Logarithm Law. Moreover, by the
stopping theorem we have for every t > 0

� log jxj D EŒXt^�n;M �

and, as � log M � Xt^�n;M � � log 1
n , we can apply Lebesgue’s theorem, taking

the limit as t ! C1. Therefore

� log jxj D EŒX�n;M � D � log 1
n �P.jB�n;M �xj D 1

n /�log M
�
1�P.jB�n;M �xj D 1

n /
�

from which we obtain

P.jB�n;M � xj D 1
n / D log M � log jxj

log M � log 1
n

� (S.50)

c) We have f�n < C1g  f�n � �n;Mg D fjB�n;M � xj D 1
n g. Therefore by (S.50)

P.�n < C1/ � log M � log jxj
log M � log 1

n

�

This inequality holds for every M and taking the limit as M ! C1 we obtain
P.�n < C1/ D 1. Hence B visits a.s. every neighborhood of x. The point x
being arbitrary, B visits every open set a.s. and is therefore recurrent.

d1) The probability P.�k < �k/ is obtained from (S.50) by replacing M with k and
n by kk. Hence

P.�k < �k/ D log k � log jxj
log k � log 1

kk

D log k � log jxj
.k C 1/ log k

and as k ! 1 this probability converges to 0.
d2) Note that �k < � : before reaching x, B must enter the ball of radius 1

kk centered
at x. Hence we have f� < �kg � f�k < �kg and P.� < �k/ � P.�k < �k/. As
�k ! C1 for k ! 1,

P.� < C1/ D lim
k!1 P.� < �k/ � lim

k!1 P.�k < �k/ D 0 :
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8.24

a) We would like to apply Ito’s formula to z 7! jz C xj, which is not possible
immediately, as this is not a C2 function. In order to circumvent this difficulty
let gn W Rm ! R be such that gn.z/ D jz C xj for jz C xj � 1

n and extended for
jz C xj < 1

n in such a way as to be C2.Rm/. For jz C xj � 1
n therefore

@gn

@zi
.z/ D zi C xi

jz C xj ;
@g2n
@zi@zj

.z/ D ıij

jz C xj � .zi C xi/.zj C xj/

jz C xj3

hence

4gn.x/ D
mX

iD1

@g2n
@z2i

.x/ D m � 1
jz C xj �

If �n D infftI jBt C xj < 1
n g, Ito’s formula applied to the function gn gives

jBt^�n C xj D jxj C
Z t^�n

0

1

2
4gn.Bs/ ds C

Z t^�n

0

g0
n.Bs/ dBs

D jxj C
Z t^�n

0

m � 1
2 jBs C xj ds C

Z t^�n

0

Bs C x

jBs C xj dBs :

By Corollary 8.2 the process

Wt D
Z t

0

Bs C x

jBs C xj dBs

is a Brownian motion. Note, as seen in Sect. 8.5 (or in Exercise 8.23 for
dimension d D 2), that jBt C xj > 0 for every t > 0 a.s. and �n ! C1 as
n ! 1. Therefore, taking the limit as n ! 1 and setting � D jxj,

Xt D � C
Z t

0

m � 1
2Xs

ds C Wt ;

which gives the required stochastic differential.
b) If f 2 C2

K.�0;C1Œ/, then by Ito’s formula

df .Xt/ D f 0.Xt/ dXt C 1

2
f 00.Xt/ dt D Lf .Xt/ dt C f 0.Xt/ dWt ;

where

L D 1

2

d2

dy2
C m � 1

2y

d

dy
�
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As f has compact support ��0;C1Œ, its derivative is bounded and therefore the
expectation of the stochastic integral

R t
0

f 0.Xs/ dWs vanishes. In conclusion

1

t

�
EŒ f .Xt/� � f .�/

� D 1

t

Z t

0

EŒLf .Xs/� ds !
t!C0 Lf .�/ :

9.1

a) Starting from the explicit solution, formula (9.3), the law of �t is Gaussian with
mean e�	tx and variance

�t D �2
Z t

0

e�2	.t�s/ ds D �2

2	
.1 � e�2	t/ �

As 	 > 0,

lim
t!C1 e�	tx D 0; lim

t!C1�t D �2

2	
�

This implies (Exercise 1.14) that, for every x, the law of �t converges weakly, as
t ! C1, to a Gaussian law � with mean 0 and variance �2

2	
.

b) This follows from Exercise 6.10 d) but let us verify this point directly. Let � be a
Gaussian r.v. with distribution �, i.e. � � N.0; 1

2	
/, and independent of B. Then

a repetition of the arguments of Example 9.1 gives that a solution of (9.45) with
the initial condition �0 D � is

�t D e�	t�
„ƒ‚…

DY1

C e�	t
Z t

0

e	s� dBs

„ ƒ‚ …
DY2

:

Y1 and Y2 are independent and Gaussian, centered and with variances

�2

2	
e�2	t and

�2

2	
.1 � e�2	t/ ;

respectively. Therefore �t is Gaussian, centered and with variance

�2

2	
e�2	t C �2

2	
.1 � e�2	t/ D �2

2	
,

i.e. �t � �.
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9.2

a) Let us follow the idea of the variation of constants of Example 9.1. The solution
of the ordinary differential equation

x0
t D b.t/xt

x0 D x

is xt D e.t/x, where.t/ D R t
0

b.s/ ds. Let us look for a solution of (9.46) of the
form xt D e.t/C.t/. One sees easily that C must be the solution of

e.t/ dC.t/ D �.t/ dBt ;

i.e.

C.t/ D
Z t

0

e�.s/�.s/ dBs :

The solution of (9.46) is therefore

�t D e.t/x C e.t/
Z t

0

e�.s/�.s/ dBs : (S.51)

As the stochastic integral of a deterministic function is, as a function of
the integration endpoint, a Gaussian process (Proposition 7.1), � is Gaussian.
Obviously E.�t/ D e.t/x. Let us compute its covariance function. Let s � t and
let

Yt D e.t/
Z t

0

e�.s/�.s/ dBs :

Then, by Proposition 8.5,

Cov.�t; �s/ D E.YtY
�
s /

D E
h
e.t/

Z t

0

e�.u/�.u/ dBu

�
e.s/

Z s

0

e�.v/�.v/ dBv
��i

D e.t/E
h Z t

0

e�.u/�.u/ dBu

� Z s

0

e�.v/�.v/ dBv
��i

e.s/
�

D e.t/
Z s

0

e�.u/�.u/��.u/ e�.u/� du e.s/
�

:

(S.52)

In particular, if m D 1 the covariance is

e.t/e.s/
Z s

0

e�2.u/�2.u/ du :
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b) We have, for this equation,

.t/ D
Z t

0

� 1

1 � s
ds D log.1 � t/ :

Therefore e.t/ D 1 � t and the solution of (9.47) is

�t D .1 � t/x C .1� t/
Z t

0

dBs

1 � s
�

Hence EŒ�t� D .1 � t/x. � is a Gaussian process with covariance function

K.t; s/ D .1� t/.1� s/
Z s

0

1

.1 � u/2
du D .1� t/.1� s/

� 1

1 � s
� 1
�

D s.1� t/ ;

for s � t. If x D 0, then E.�t/ D 0 for every t and the process has the same mean
and covariance functions as a Brownian bridge.

9.3

a1) Recall, from Example 9.1, that the solution is

�t D e�	tx C e�	t
Z t

0

e	s� dBs :

By Corollary 8.1 there exists a Brownian motion W such that, if

At D
Z t

0

e2	u�2 du D �2

2	
.e2	t � 1/ ;

then

Z t

0

e	s� dBs D WAt :

We have

lim
t!C1

�tp
log t

D lim
t!C1

e�	tx C e�	tWAtp
log t

D lim
t!C1

e�	tWAtp
log t

�

Now, trying to go back to the Iterated Logarithm Law,

lim
t!C1

e�	tWAtp
log t

D lim
t!C1

e�	t.2At log log At/
1=2

p
log t

WAt

.2At log log At/1=2
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and

lim
t!C1

WAt

.2At log log At/1=2
D 1

whereas

lim
t!C1

e�	t.2At log log At/
1=2

p
log t

D lim
t!C1.2e�2	tA.t//1=2 lim

t!C1

� log log A.t/

log t

�1=2

and we can conclude the proof as

lim
t!C1 2e�2	tAt D �2

	

and log log At � log t as t ! C1. The the case of lim is treated in the same
way.

a2) Thanks to a1), for a sequence tn % C1 we have

�tn � �

2
p
	

p
log tn :

Therefore

lim
t!C1 �t D C1 :

Similarly we obtain limt!C1 �t D �1. Therefore the Ornstein–Uhlenbeck
process, in this case, is recurrent in the sense explained p. 243.

b) We can write

�t D e�	t
�

x C
Z t

0

e	u� dBu

�
:

The stochastic integral above is a martingale bounded in L2, as its variance is
equal to

R t
0 e2	u�2 du < � �2

2	
, as 	 < 0. Therefore there exists a r.v. X such that

x C
Z t

0

e	u� dBu !
t!C1 X a.s.

The limit X, moreover, is Gaussian with mean x and variance �2

�2	 . Therefore
limt!C1 �t D C1 on the set A D fX > 0g and limt!C1 �t D �1 on
Ac D fX < 0g. As X is N.x; �2

�2	 /-distributed, we have X D x C �p�2	 Z, where
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Z � N.0; 1/. Hence

P.A/ D P.X > 0/ D P
�

x C �p�2	 Z > 0
�

D P
�

Z > �x
p�2	
�

�

D P
�

Z <
x
p�2	
�

�
D ˚

�x
p�2	
�

�
:

9.4

a) This is a particular case of the general situation of Exercise 9.2 a). The solution
of the “homogeneous equation”

d�t D �1
2

�t

1 � t
dt

�0 D x

is immediately found to be equal to

�t D p
1 � t x ;

and the “particular solution” is given by t 7! p
1 � t Ct, where C must satisfy

p
1 � t dCt D p

1 � t dBt ;

i.e. Ct D Bt and the solution of (9.48) is found to be

�t D p
1 � t.x C Bt/ :

� is obviously a Gaussian process (this is a particular case of Exercise 9.2 a)).
b) We have

Var.�t/ D .1� t/t ;

which is the same as the variance of a Brownian bridge. As for the covariance
function we have, for s � t,

Cov.�t; �s/ D E
�p
1 � t Bt

p
1 � s Bs


 D s
p
1 � s

p
1� t ;

which is different from the covariance function of a Brownian bridge. Note that,
if the starting point x is the origin, then, for every t; 0 � t � 1, the distribution
of �t coincides with the distribution of a Brownian bridge at time t, but � is not a
Brownian bridge.
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9.5

a) Similarly to the idea of Example 9.2, if we could apply Ito’s formula to the
function log we would obtain the stochastic differential

d log �t D 1

�t
d�t � 1

2�2t
�2.t/ �2t dt D

�
b.t/� �2.t/

2

�
dt C �.t/ dBt (S.53)

and we would have

log �t D
Z t

0

�
b.s/� �2.s/

2

�
ds C

Z t

0

�.s/ dBs ;

which gives for (9.49) the solution

�t D xe
R t
0

�
b.s/ � �2.s/

2

�
ds C R t

0 �.s/ dBs : (S.54)

It is now immediate to check by Ito’s formula correctly applied to the exponential
function that the process � of (S.54) is a solution of (9.49).

b) In case (1) � is square integrable, hence

Z t

0

�.s/ dBs !
t!C1 Z ;

where Z is a centered Gaussian r.v. with variance
R C1
0

�2.t/ dt D 1. The
convergence takes place in L2 and also a.s. (it is a martingale bounded in L2).

On the other hand b.s/� �2.s/
2

D 1
2.1Cs/ and

Z C1

0

�
b.s/� �2.s/

2

�
ds D C1

and therefore �t ! C1 a.s.
In case (2)

Z C1

0

�2.s/ ds D 1

Z C1

0

�
b.s/� �2.s/

2

�
ds D �

Z C1

0

1

6.1C s/2
ds D �1

6
�

The martingale t 7! R t
0
�.s/ dBs converges a.s. and in L2, being bounded in L2,

therefore, as t ! C1, �t ! xeZ where Z � N.� 1
6
; 1/, the convergence taking

place also a.s.
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Finally, in situation (3) we have b.s/� �2.s/
2

D 0 but

Z C1

0

�2.s/ ds D
Z C1

0

1

1C s
ds D C1 :

Therefore, if

At D
Z t

0

�2.s/ ds D
Z t

0

1

1C s
ds D log.1C t/ ;

then

Z t

0

�.s/ dBs D WAt ;

where W is a new Brownian motion. As limt!C1 At D C1, by the Iterated
Logarithm Law,

lim
t!C1

Z t

0

�.s/ dBs D C1; lim
t!C1

Z t

0

�.s/ dBs D �1

which implies

lim
t!C1 �t D C1; lim

t!C1
�t D 0 :

9.6

a) Using the same idea as in Example 9.2, applying Ito’s formula formally we have

d log �i.t/ D 1

�i.t/
d�i.t/ � 1

2�i.t/2
�i.t/

2d
˝ dX

jD1
�ijBj.t/;

dX

kD1
�ikBk.t/

˛
t

D bi dt C
dX

jD1
�ij dBj.t/ � 1

2

dX

jD1
�2ij dt D

�
bi � aii

2

�
dt C

dX

jD1
�ij dBj.t/ ;

where we note a D ���. This would yield the solution

�i.t/ D xi exp
��

bi � aii

2

�
t C

dX

jD1
�ijBj.t/

�
: (S.55)

Actually, Ito’s formula cannot be applied in the way we did, log not being defined
on the whole of R. We can, however, apply Ito’s formula to the exponential
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function and check that a process � whose components are given by (S.55)
actually is a solution of (9.50). From (S.55) we have also that if xi > 0 then
�i.t/ > 0 for every t a.s.

Recalling the expression of the Laplace transform of Gaussian r.v.’s we have

EŒ�i.t/� D xie.bi� aii
2 /tE

�
e
Pd

jD1 �ijBj.t/

 D xie

.bi� aii
2 /tC 1

2

Pd
jD1 �

2
ij D xiebit :

b) We have

�i.t/
2�j.t/

2 D exp
�
2
�
bi � aii

2

�
t C2

dX

hD1
�ihBh.t/C2

�
bj � ajj

2

�
t C2

dX

kD1
�ikBk.t/

�
;

which is an integrable r.v. and, moreover, is such that t 7! EŒ�i.t/2�j.t/2� is
continuous (again recall the expression of the Laplace transform of Gaussian
r.v.’s), hence t 7! �i.t/�j.t/ is in M2.

Moreover, by Ito’s formula,

d�i.t/�j.t/ D �i.t/ d�j.t/C �j.t/ d�i.t/C dh�i; �jit

D bj�i.t/�j.t/ dt C �i.t/�j.t/
dX

hD1
�jh dBh.t/C bi�j.t/�i.t/ dt

C�j.t/�i.t/
dX

kD1
�ik dBk.t/C �i.t/�j.t/aij dt :

Writing the previous formula in integrated form and taking the expectation, we
see that the stochastic integrals have expectation equal to 0, as the integrands are
in M2. We find therefore

EŒ�i.t/�j.t/� D xixj C
Z t

0

EŒ�i.s/�j.s/�.bi C bj C aij/ ds :

If we set v.t/ D EŒ�i.t/�j.t/�, then v satisfies the ordinary equation

v0.t/ D .bi C bj C aij/ v.t/ ;

hence

EŒ�i.t/�j.t/� D v.t/ D xixje.biCbjCaij/t :

Therefore

Cov.�i.t/; �j.t// D EŒ�i.t/�j.t/� � EŒ�i.t/�EŒ�j.t/� D xixj
�
e.biCbjCaij/t � e.biCbj/t

�

D xixje
.biCbj/t

�
eaijt � 1

�
:
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• This is one of the possible extensions of geometric Brownian motion to a
multidimensional setting.

9.7

a) The clever reader has certainly observed that the processes �1; �2 are both
geometric Brownian motions for which an explicit solution is known, which
allows us to come correctly to the right answer. Let us, however, work otherwise.
Observing that the process h�1; �2i vanishes,

d�1.t/�2.t/ D �1.t/ d�2.t/C �2.t/ d�1.t/

D �1.t/
�
r2�2.t/ dt C �2�2.t/ dB2.t/

�C �2.t/
�
r1�1.t/ dt C �1�1.t/ dB1.t/

�
;

hence

dXt D .r1 C r2/Xt dt C Xt
�
�1 dB1.t/C �2 dB2.t/

�
:

If

Wt D 1
q
�21 C �22

�
�1B1.t/C �2B2.t/

�

then W is a Brownian motion and the above relation for dXt becomes

dXt D .r1 C r2/Xt dt C
q
�21 C �22 Xt dWt :

X is therefore also a geometric Brownian motion and

Xt D x0e.r1Cr2� 1
2 .�

2
1C�21 //tC

p
�21C�22 Wt : (S.56)

In order to investigate the case
p
�1.t/�2.t/ we can take either the square root

in (S.56) or compute the stochastic differential of Zt D p
Xt. The latter strategy

gives

dZt D d
p

Xt D 1

2
p

Xt
dXt � 1

8X3=2t

.�21 C �22 /X
2
t dt

D 1

2
p

Xt

�
.r1 C r2/Xt dt C

q
�21 C �22 Xt dWt

� � 1

8
.�21 C �22 /

p
Xt dt

D
�1

2
.r1 C r2/ � 1

8
.�21 C �22 /

�
Zt dt C 1

2

q
�21 C �22 Zt dWt ;
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which is again a geometric Brownian motion with some new parameters r and � .
This argument is not completely correct as x 7! p

x is not a C2 function, but the
clever reader has certainly learned how to go round this kind of difficulty.

b) We can repeat the previous arguments: now dh�1; �2it D ��1�2�1.t/�2.t/ dt so
that

d�1.t/�2.t/ D �1.t/ d�2.t/C �2.t/ d�1.t/C dh�1; �2it

D �1.t/
�
r2�2.t/ dt C �2

p
1 � �2 �2.t/ dB2.t/C �2��2.t/ dB1.t/

�

C�2.t/
�
r1�1.t/ dt C �1�1.t/ dB1.t/

�C ��1�2�1.t/�2.t/
�

dt

so that, if Xt D �1.t/�2.t/,

dXt D .r1 C r2 C ��1�2/Xt dt C Xt
�
.�1 C ��2/ dB1.t/C �2

p
1 � �2 dB2.t/

�
:

Now we have a new Brownian motion by letting

Wt D 1
q
�21 C �22 C 2��1�2

�
.�1 C ��2/B1.t/C �2

p
1 � �2 B2.t/

�

and we find that X is again a geometric Brownian motion with stochastic
differential

dXt D .r1 C r2 C ��1�2/Xt dt C
q
�21 C �22 C 2��1�2 Xt dWt :

The same arguments as above give

dZt D
�1

2
.r1 C r2 C ��1�2/� 1

8
.�21 C �22 C 2��1�2/

�
Zt dt

C1

2

q
�21 C �22 C 2��1�2 Zt dWt

D
�1

2
.r1 C r2/� 1

8
.�21 C �22 � 2��1�2/

�
Zt dt C 1

2

q
�21 C �22 C 2��1�2 Zt dWt ;

which is again a geometric Brownian motion.

9.8

a) Two possibilities: by Ito’s formula, for every real number ˛

d�˛t D ˛�˛�1
t d�t C 1

2
˛.˛ � 1/�˛�2

t �2�2t dt

D
�
˛b C �2

2
˛.˛ � 1/

�
�˛t dt C ��˛t dBt :
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If the coefficient of dt in the stochastic differential above vanishes then �˛ will be
a local martingale and actually a martingale (why?). The condition is therefore
˛ D 0 (obviously) or

b C �2

2
.˛ � 1/ D 0 ;

i.e.

˛ D 1 � 2b

�2
� (S.57)

Second possibility: we know that � has the explicit form

�t D e.b� �2

2
/tC�Bt

and therefore

�˛t D e˛.b� �2

2
/tC˛�Bt ;

which turns out to be an exponential martingale if

˛.b � �2

2
/ D �˛2 �

2

2

and we obtain again (S.57).
Note, however, that the use of Ito’s formula above requires an explanation, as

the function x 7! x˛ is not defined on the whole of R.
b) By the stopping theorem we have, for every t � 0 and the value of ˛ determined

in a),

EŒ�˛�^t� D 1 :

As t 7! �˛�^t remains bounded, Lebesgue’s theorem gives

1 D EŒ�˛� � D 2˛P.�� D 2/C 2�˛�1 � P.�� D 2/
�
;

from which we find

P.�� D 2/ D 1 � 2�˛

2˛ � 2�˛ �

9.9

a) It is immediate that .�t/t is a geometric Brownian motion and

�t D ye.�� 1
2 /tCB2.t/
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and therefore

�t D x C y
Z t

0

e.�� 1
2 /tCB2.t/ dB1.t/ : (S.58)

This is a martingale, as the integrand in (S.58) is in M2.Œ0;T�/ for every T > 0

since

E
� Z T

0

e.2��1/tC2B2.t/ dt
�

D
Z T

0

e.2��1/tC2t dt < C1 :

Alternatively, in a more immediate way, the pair .�; �/ is the solution of an
SDE with coefficients with sublinear growth, and we know that the solutions
are automatically in M2.Œ0;T�/ for every T > 0 (Theorem 9.1).

b) Obviously E.�t/ D x, as .�t/t is a martingale and �0 D x. Moreover, if � 6D � 1
2
,

Var.�t/ D EŒ.�t � x/2� D E
h
y2
Z t

0

e.2��1/tC2B2.t/ dt
i

D y2
Z t

0

EŒe.2��1/tC2B2.t/� dt

D y2
Z t

0

e.2��1/tC2t dt D y2
Z t

0

e.2�C1/t dt D y2

2� C 1
.e.2�C1/t � 1/

whereas, if � D � 1
2
, Var.�t/ D y2t.

c) From b) if � < � 1
2

then E.�2t / D E.�t/
2 C Var.�t/ D x2 C Var.�t/ is bounded in

t. Therefore .�t/t is a martingale bounded in L2 and therefore convergent a.s. and
in L2.

9.10

a) We note that (9.51) is an SDE with sublinear coefficients. Therefore its solution
belongs to M2 and taking the expectation we find

EŒ�t� D x C
Z t

0

.a C bEŒ�s�/ ds :

Thus the function v.t/ D EŒ�t� is differentiable and satisfies

v0.t/ D a C bv.t/ : (S.59)

The general integral of the homogeneous equation is v.t/ D ebtv0. Let us look
for a particular solution of the form t 7! ebtc.t/. The equation becomes

bebtc.t/C ebtc0.t/ D a C bebtc.t/ ;

i.e. c must satisfy

ebtc0.t/ D a ;
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hence

c.t/ D a
Z t

0

e�bs ds D a

b
.1 � e�bt/

so that ebtc.t/ D a
b .e

bt � 1/ and, as v.0/ D EŒ�0� D x, we find

EŒ�t� D v.t/ D ebtx C a

b
.ebt � 1/ : (S.60)

b1) Immediate from (S.60).
b2) (S.60) can be written as

EŒ�t� D
�

x C a

b

�
ebt � a

b
,

therefore if x C a
b D 0, the expectation is constant and

EŒ�t� � �a

b
D x :

b3) Again by (S.60) limt!C1 EŒ�t� D ˙1 according to the sign of x C a
b .

9.11

a1) The process C must satisfy

d.�0.t/Ct/ D .a C b�0.t/Ct/ dt C .	C ��0.t/Ct/ dBt

D Ct�0.t/
�
b dt C � dBt

�C a dt C 	 dBt :

Let us assume that dCt D �t dtC�t dBt for some processes �; � to be determined.
We have d�0.t/ D b�0.t/ dt C ��0.t/ dt, hence, by Ito’s formula,

d.�0.t/Ct/ D Ct d�0.t/C �0.t/ dCt C dhC; �0it

D Ct�0.t/
�
b dt C � dBt

�C �0.t/ dCt C ��t�0.t/ dt :

Therefore C must satisfy

�0.t/ dCt C ��t�0.t/ dt D �0.t/.�t dt C �t dBt/C ��t�0.t/ dt D a dt C 	 dBt :

From this relation we obtain

�t D 	�0.t/
�1

�t D .a � �	/�0.t/�1
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and, recalling the expression of �0,

Ct D .a � �	/
Z t

0

e�.b� �2

2 /s��Bs ds C 	

Z t

0

e�.b� �2

2 /s��Bs dBs ;

which gives for (9.52) the general solution

�t D �0.t/x C �0.t/Ct

D e.b� �2

2 /tC�Bt

�
x C .a � �	/

Z t

0

e�.b� �2

2 /s��Bs ds

C	
Z t

0

e�.b� �2

2 /s��Bs dBs

�
:

(S.61)

a2) If � D 0 (S.61) becomes

�t D ebt
�

x C a
Z t

0

e�bs ds C 	

Z t

0

e�bs dBs

�
:

The stochastic integral in this expression has a deterministic integrand and
is therefore Gaussian. The other terms appearing are also deterministic and
therefore � is Gaussian itself. We have

EŒ�t� D ebtx C a

b
.ebt � 1/

Var.�t/ D 	2
Z t

0

e2b.t�s/ ds D 	2

2b
.e2bt � 1/ :

(S.62)

a3) � being Gaussian it suffices to investigate the limits as t ! C1 of its mean
and its variance. (S.62) for b < 0 give

lim
t!C1 EŒ�t� D a

�b
; lim

t!C1 Var.�t/ D 	2

�2b
�

Therefore, �t converges in law as t ! C1 to an N. a
�b ;

	2

�2b / distribution.
Observe that the mean of this distribution is the point at which the drift vanishes.

b) If Ito’s formula could be applied to the function log (but it cannot, as it is not
even defined on the whole real line) we would obtain

d.log Yt/ D 1

Yt
dYt � 1

2Y2t
dhYit D .bC
 log Yt/ dtC� dBt � �2

2
dt : (S.63)

Therefore �t D log Yt would be a solution of

d�t D �
b � �2

2
C 
�t

�
dt C � dBt

�0 D x D log y ;
(S.64)
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which is a particular case of (9.52). Once these heuristics have been performed,
it is immediate to check that if � is a solution of (S.64) then Yt D e�t is a
solution of (S.63). We have therefore proved the existence of a solution of the
SDE (9.53), but this equation does not satisfy the existence and uniqueness
results of Chap. 9 (the drift does not have a sublinear growth) so that uniqueness
is still to be proved.

Let Y be a solution of (9.53) and �" its exit time from the interval �"; 1
"
Œ or,

which is the same, the exit time of log Yt from � � log 1
"
; log 1

"
Œ. Let f" be a C2

function on R that coincides with log on �"; 1
"
Œ. Then we can apply Ito’s formula

to f".Yt/, which gives that

log Y�"^t D log y C
Z �"^t

0

�
b � �2

2
C 
 log.Y�"^s/

�
ds C � B�"^t :

Therefore by localization (Theorem 9.3) log Yt coincides with the solution
of (S.64) until the exit from the interval � � log 1

"
; log 1

"
Œ. But Eq. (S.64) is a

nice equation with Lipschitz continuous coefficients and hence has a unique
solution. As we know that �" ! C1 as " ! 0 (Remark 9.3), the uniqueness
of the solution of (S.64) implies the uniqueness of the solution of (9.53).

As Yt D e�t , necessarily Yt > 0 for every t a.s. Thanks to a), Yt has a
lognormal law (see Exercise 1.11 for its definition) with parameters �t and �2t
that can be obtained from (S.62) i.e.

�t D e
 tx C b � 1
2
�2



.e
 t � 1/

�2t D �2

2

.e2
 t � 1/ :

If 
 < 0,

lim
t!C1�t D 1

�

�

b � �2

2

�
; lim

t!C1 �2t D �2

�2

and .Yt/t converges in law as t ! C1 to a lognormal distribution with these
parameters.

9.12

a) Let us apply Ito’s formula to the function u.x; t/ D e�2	t.x2 C �2

2	
/, so that dZt D

du.�t; t/. Recall the formula (see Remark 9.1)

du.�t; t/ D
�@u

@t
C Lu

�
.�t; t/ dt C @u

@x
.�t; t/ � dBt ;
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where

Lu.x; t/ D �2

2

@2u

@x2
.x; t/C 	x

@u

@x
.x; t/

is the generator of the Ornstein–Uhlenbeck process. As

@u

@t
D �2	 u.x; t/;

@u

@x
D 2xe�2	t;

@2u

@x2
D 2e�2	t

we have

Lu D 2	 u.x; t/

and the term in dt of the stochastic differential vanishes. Therefore

dZt D du.�t; t/ D @u

@x
.�t; t/ � dBt D e�2	t2��t dBt

and .Zt/t is a martingale, being the stochastic integral of a process of M2.
b) We have

EŒZt� D Z0 D x2 C �2

2	
,

hence

EŒYt� D e2	tEŒZt� D e2	t
�

x2 C �2

2	

�
;

which entails that limt!C1 EŒYt� is equal to C1 or to 0 according as 	 > 0 or
	 < 0.

9.13

a) The coefficients are Lipschitz continuous, therefore we have strong existence
and uniqueness.

b1) We have Yt D f .�t/ with f .z/ D log
�p
1C z2 C z

�
. As

p
1C z2 C z > 0 for

every z 2 R, f W R ! R is differentiable infinitely many times and

f 0.z/ D 1p
1C z2 C z

�
� zp

1C z2
C 1

�
D 1p

1C z2

f 00.z/ D � z

.1C z2/3=2
�
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Ito’s formula gives

dYt D 1
p
1C �2t

d�t � �t

2.1C �2t /
3=2

dh�it

D 1
p
1C �2t

�q
1C �2t C 1

2
�t

�
dt C dBt � �t

2
p
1C �2t

dt

D dt C dBt :

Therefore, as Y0 D log
�p
1C x2 C x

�
,

Yt D log
�p

1C x2 C x
�

C t C Bt :

b2) We have �t D f �1.Yt/, assuming that f is invertible. Actually if y D f .z/, then

ey D
p
1C z2 C z ;

i.e. ey � z D p
1C z2 and taking the square e2y � 2zey C z2 D 1 C z2, i.e.

e2y � 1 D 2zey, and finally

z D ey � e�y

2
D sinh y

so that

�t D sinh
�

log
�p
1C x2 C x

�C t C Bt

�
:

9.14

a) If �t D .�t; �t/, we can write

d�t D �	�t dt C˙ dBt

with the initial condition �0 D z D .x; y/, where

˙ D
�
� 0

�� �
p
1 � �2

	

:

We know (Example 9.1) that the solution of this SDE is

�t D e�	tz C e�	t
Z t

0

e	s˙ dBs



Solutions of the Exercises 573

whence we obtain that �t is Gaussian with mean e�	tz and covariance matrix

1

2	
.1 � e�2	t/˙˙� : (S.65)

Now

˙˙� D
�
� 0

�� �
p
1 � �2

	�
� ��

0 �
p
1 � �2

	

D
�
�2 �2�

�2� �2

	

;

hence each of the r.v.’s �t; �t is Gaussian with variance

�2

2	
.1 � e�2	t/ (S.66)

and mean e�	tx and e�	ty respectively. In particular, their (marginal) laws
coincide and do not depend on �.

b) Their joint law has already been determined: it is Gaussian with covariance
matrix given by (S.65), i.e.

�2

2	
.1 � e�2	t/

�
1 �

� 1

	

:

Their covariance is therefore equal to

�2

2	
.1 � e�2	t/� ;

which is maximum for � D 1.
A necessary and sufficient condition for a Gaussian law to have a density

with respect to Lebesgue measure is that the covariance matrix is invertible. The
determinant of˙˙� is equal to �2.1� �2/: the covariance matrix is invertible if
and only if � 6D ˙1.

c)

L D �2

2

� @2

@x2
C @2

@y2
C 2�

@2

@x@y

�
� 	x

@

@x
� 	y

@

@y
�

9.15

a) Here the drift is b.x/ D .� 1
2
x1;� 1

2
x2/ whereas the diffusion coefficient is

�.x/ D
��x2

x1
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whence the generator of the diffusion is the second-order operator

L D 1

2

2X

i;jD1
aij.x/

@2

@xi@xj
C

2X

iD1
bi.x/

@

@xi

,

where

a.x/ D �.x/�.x/� D
��x2

x1

	
��x2 x1

� D
�

x22 �x2x1
�x2x1 x21

	

;

i.e.

L D 1

2
x22
@2

@x21
C 1

2
x21
@2

@x22
� x1x2

@2

@x1@x2
� 1

2
x1
@

@x1
� 1

2
x2
@

@x2
�

It is immediate that det a.x/ D 0 for every x, hence L is not elliptic. The lack
of ellipticity was actually obvious from the beginning as the matrix � above has
rank 1 so that necessarily a D ��� has rank 1 at most. This argument allows us
to say that, in all generality, the generator cannot be elliptic if the dimension of
the driving Brownian motion (1 in this case) is strictly smaller than the dimension
of the diffusion.

b) Let us apply Ito’s formula: if f .x/ D x21 C x22, then dYt D df .�t/ and

df .�t/ D @f

@x1
.�t/ d�1.t/C @f

@x2
.�t/ d�2.t/C 1

2

�@2f

@x21
.�t/dh�1it C @2f

@x22
.�t/dh�2it

�

as the mixed derivatives of f vanish. Replacing and keeping in mind that dh�1it D
�2.t/2 dt, dh�2it D �1.t/2 dt, we obtain

df .�t/

D 2�1.t/
� � 1

2
�1.t/dt � �2.t/ dBt

�C 2�2.t/
� � 1

2
�2.t/dt C �1.t/ dBt

�

C��2.t/2 C �1.t/
2
�

dt

D 0

so that the process Yt D �1.t/2 C �2.t/2 is constant and Y1 D 1 a.s. The process
�t D .�1.t/; �2.t// takes its values in the circle of radius 1.

9.16

a) We note that .Yt/t is a geometric Brownian motion and that the pair .Xt;Yt/ solves
the SDE

dXt D Yt dt

dYt D �Yt dt C �Yt dBt
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with the initial conditions X0 D x, Y0 D 1. Its generator is

L D 1

2
�2y2

@2

@y2
C y

@

@x
C �y

@

@y
�

b) Ito’s formula (assuming for an instant that it is legitimate to use it) gives

d�t D � Xt

Y2t
dYt C Xt

Y3t
dhYit C 1

Yt
dXt D � Xt

Y2t
Yt
�
� dtC� dBt

�C Xt

Y3t
�2Y2t dtCdt :

Actually dhX;Yit D 0. This gives

d�t D �
1C .�2 � �/�t

�
dt � ��t dBt : (S.67)

However, we are not authorized to apply Ito’s formula, as the function  W
.x; y/ 7! x

y is not defined on the whole of R2. We can, however, reproduce here
an idea developed earlier: let, for every " > 0,  " be a function coinciding with
 on fjyj > "g and then extended so that it is C2. Let �" be the first time that
Yt < ". Then the computation above applied to the function  " gives

�t^�" D x C
Z t^�"

0

�
1C .�2 � �/�u

�
du �

Z t^�"

0

��u dBu :

As P.Yt > 0 for every t � 0/ D 1, we have �" ! C1 as " ! 0 and, taking the
limit as " ! 0 in the relation above, we find

�t D x C
Z t

0

�
1C .�2 � �/�u

�
du �

Z t

0

��u dBu :

c) Equation (9.55) is a particular case of (S.67) with � D �2 � r. With this choice

of � we have �� �2

2
D �2

2
� r and Yu D e.

�2

2 �r/uC�Bu so that a solution is, taking
x D z,

Zt D Xt

Yt
D e�. �22 �r/t��Bt

�
z C

Z t

0

e.
�2

2 �r/uC�Bu du
�
:

Recalling the expression of the Laplace transform of a Gaussian r.v. we have, for
r 6D 0,

EŒZt� D z EŒe�. �22 �r/t��Bt �C
Z t

0

EŒe�. �22 �r/.t�u/��.Bt�Bu/� du

D z e�. �22 �r/tC �2

2 t C
Z t

0

e�. �22 �r/.t�u/C �2

2 .t�u/ du

D z ert C
Z t

0

er.t�u/ du D z ert C 1

r
.ert � 1/ :



576 Solutions of the Exercises

If r > 0 we have EŒZt� � � 1
r if z D � 1

r and

lim
t!C1 EŒZt� D

(
C1 if z > � 1

r

�1 if z < � 1
r :

If r < 0 then limt!C1 EŒZt� D � 1
r . whatever the starting point z.

If r D 0 the computation of the integrals above is different and we obtain

EŒZt� D t C z ;

which converges to C1 as t ! C1.

9.17

a) Ito’s formula would give

dZt D � 1

�2t
d�t C 1

�3t
dh�it D � 1

�2t
�t.a � b�t/ dt � 1

�2t
��t dBt C 1

�3t
�2�2t dt ;

i.e.

dZt D �
b � .a � �2/Zt

�
dt � �Zt dBt (S.68)

at least as soon as � remains far from 0. Of course Z0 D z with z D 1
x > 0.

b) Exercise 9.11 gives for (S.68) the solution

Zt D e�.a� �2

2 /t��Bt

�
z C b

Z t

0

e.a� �2

2 /sC�Bs ds
�
:

As z > 0, clearly Zt > 0 for every t a.s. We can therefore apply Ito’s formula
and compute the stochastic differential of t 7! 1

Zt
. As the function z ! 1

z is not
everywhere defined, this will require the trick already exploited in other exercises
(Exercise 9.16 e.g.): let �" be the first time Zt < " and let  " be a C2 function
coinciding with z 7! 1

z for z � ". Then Ito’s formula gives

 ".Zt^�" / D  ".z/C
Z t^�"

0

�
 0
".Zs/.b � .a � �2/Zs/C 1

2
 00
" .Zs/�

2Z2s
�

ds

C
Z t^�"

0

� 0
".Zs/�Zs dBs :

As  ".z/ D 1
z for z � ", we have for " < z

1

Zt^�"
D 1

z
C
Z t^�"

0

�
� 1

Z2s
.b � .a � �2/Zs/C 1

Z3s
�2Z2s

�
ds C

Z t^�"

0

1

Z2s
�Zs dBs

D 1

z
C
Z t^�"

0

1

Zs

�
a � b

1

Zs

�
ds C

Z t^�"

0

1

Zs
� dBs :
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As Zt > 0 for every t, we have �" ! C1 as " ! 0 and the process �t D 1
Zt

satisfies (9.56). Hence (9.56) has the explicit solution

�t D 1

Zt
D e.a� �2

2 /tC�Bt

�1

x
C b

Z t

0

e.a� �2

2 /sC�Bs ds
��1 �

Of course, �t > 0 for every t with probability 1.

9.18

a) Of course the pair .Xt;Yt/t solves the SDE

d�t D ��t dt C � dBt

d�t D �t dt

with the initial conditions �0 D x, �0 D 0. This is an SDE with Lipschitz
continuous coefficients with a sublinear growth and therefore has a unique
solution. The generator is

L D �2

2

@2

@x2
C �y

@

@x
C x

@

@y
�

The process Zt D .�t; �t/ is the solution of the SDE

dZt D MZt dt C˙ dBt ;

where M; ˙ are the matrices

M D
�
0 �

1 0

	

; ˙ D
�
� 0

0 0

	

:

We recognize the Ornstein–Uhlenbeck process of Example 9.1: a linear drift
and a constant diffusion matrix. Going back to (9.5), the solution is a Gaussian
process and we have the explicit formula

Zt D e�Mtz C e�Mt
Z t

0

eMs˙ dBs ;

where z D . x
0
/.

b) We have

M2 D
�
0 a
b 0

	�
0 a
b 0

	

D
�

ab 0

0 ab
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and by recurrence

M2n D
�
.ab/n 0

0 .ab/n

	

M2nC1 D
�

0 a.ab/n

b.ab/n 0

	

:

Therefore the elements in the diagonal of eM are

1X

nD0

.ab/n

.2n/Š
D

1X

nD0

.
p

ab /2n

.2n/Š
D cosh.

p
ab/

whereas the .1; 2/-entry is

a
1X

nD0

.ab/n

.2n C 1/Š
D
r

a

b

1X

nD0

.
p

ab /2nC1

.2n C 1/Š
D
r

a

b
sinh.

p
ab/ :

A similar computation allows us to obtain the .2; 1/-entry and we find

eM D
 

cosh
p

ab
p a

b sinh
p

abq
b
a sinh

p
ab cosh

p
ab

!

and (9.57) follows from the relations cosh ix D cos x, sinh ix D i sin x.
c) The mean of Zt is eMtz with z D . x

0
/. We have

Mt D
�
0 � t
t 0

	

and, thanks to b2),

eMt D
 

cosh.
p
� t/

p
� sinh.

p
� t/

1p
�

sinh.
p
� t/ cosh.

p
� t/

!

so that EŒ�t� D cosh.
p
� t/x. If � > 0 this tends to ˙1 according to the sign

of x. If � < 0 then EŒ�t� D cos.
p�� t/x. This quantity oscillates between the

values x and �x with fast oscillations if j� j is large. The mean remains identically
equal to 0 if x D 0.

Let us now look at the variance of the distribution of �t: we must compute

Z t

0

eM.t�u/˙˙�eM�.t�u/ du :

As

˙˙� D
�
�2 0

0 0
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let us first compute the integrand:

eM.t�u/˙˙� D
 

cosh.
p
� .t � u//

p
� sinh.

p
� .t � u//

1p
�

sinh.
p
� .t � u// cosh.

p
� .t � u//

!�
�2 0

0 0

	

D
 
�2 cosh.

p
� .t � u// 0

�2p
�

sinh
p
� .t � u/ 0

!

so that

eM.t�u/˙˙�eM�.t�u/

D
 
�2 cosh.

p
� .t � u// 0

�2p
�

sinh.
p
� .t � u// 0

! 
cosh.

p
� .t � u// 1p

�
sinh.

p
� .t � u//

p
� sinh.

p
� .t � u// cosh.

p
� .t � u//

!

D
 

�2 cosh2.
p
� .t�u// �2p

�
cosh.

p
� .t�u// sinh.

p
� .t�u//

�2p
�

cosh.
p
� .t�u// sinh.

p
� .t�u// �2

�
sinh2.

p
� .t�u//

!

:

The variance of �t is therefore equal to

�2
Z t

0

cosh2.
p
� .t � u// du D �2

Z t

0

cosh2.
p
� u/ du

and it diverges as t ! C1. If � < 0 the integral grows linearly fast (the
integrand becomes cos2.

p�� u/ and is bounded), whereas if � > 0 it grows
exponentially fast.

9.19 By Ito’s formula

d�t D 2�t d�t C �2 dt D .�2 C 2b�2t / dt C 2��t dBt :

If we define

Wt D
Z t

0

� �sp
�s
1f�s 6D0g C 1f�sD0g

�
dBs (S.69)

then, by Corollary 8.2, W is a real Brownian motion (the integrand is a process
having modulus equal to 1) and

p
�t dWt D p

�t

� �tp
�t
1f�t 6D0g C 1f�tD0g

�
dBt D �t dBt :
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Hence � solves the SDE

d�t D .�2 C 2b�t/ dt C 2�
p
�t dWt (S.70)

of course with the initial condition �0 D x2.

• Note that the coefficients of (S.70) do not satisfy Condition (A’) (the diffusion
coefficient is not Lipschitz continuous at 0). In particular, in this exercise we
prove that (S.70) has a solution but are unable to discuss uniqueness.

9.20 Given the process

�t D
Z t

0

�.�s/ dBs

we know that there exists a Brownian motion W such that �t D WAt , where At DR t
0
�.�t/

2 dt. By the Iterated Logarithm Law therefore there exist arbitrarily large
values of t such that

�t D WAt � .1 � "/
p
2At log log At/ :

As At � c2t, �t takes arbitrarily large values a.s. and therefore exits with probability
1 from any bounded interval.

As we are under hypotheses of sublinear growth, the process � and also .�.�t//t
belong to M2 and therefore � is a square integrable martingale. By the stopping
theorem therefore

E.��^t/ D 0

for every t > 0. Taking the limit with Lebesgue’s theorem (t 7! ��^t is bounded as
��^t 2 Œ�a; b�) we find

0 D E.�� / D �aP.�� D �a/C bP.�� D b/

and, replacing P.�� D �a/ D 1 � P.�� D b/,

P.�� D b/ D a

a C b
�

Note that this result holds for any � , provided it satisfies the conditions indicated
in the statement. This fact has an intuitive explanation: the solution � being a time
changed Brownian motion, its exit position from � � a; bŒ coincides with the exit
position of the Brownian motion.
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9.21

a) Let us first look for a function u such that t 7! u.�t/ is a martingale. We know
(see Remark 9.1) that u must solve Lu D 0, L denoting the generator of the
Ornstein–Uhlenbeck process, i.e.

�2

2
u00.x/� 	xu0.x/ D 0 :

If v D u0, then v must solve v0.x/ D 2	
�2

x v.x/, i.e. v.x/ D c1e
2	

�2
x2 , so that the

general integral of the ODE above is

u.x/ D c1

Z x

z0

e
2	

�2
y2 dy

„ ƒ‚ …
WDF.x/

Cc2 (S.71)

for any z0 2 R. As u is a regular function, with all its derivatives bounded in
every bounded interval, t 7! u.�t^� / is a martingale. This already proves that
� < C1 a.s. Actually this is a bounded martingale, therefore a.s. convergent,
and convergence cannot take place on � D C1 (see Sect. 10.2 for another
proof of this fact).

We have therefore, for every starting position x, u.x/ D ExŒu.�t^� /� and
taking the limit as t ! C1 with Lebesgue’s theorem, we find

c1F.x/C c2 D u.x/ D ExŒu.�� /� D u.b/Px.�� D b/C u.�a/.1� Px.�� D b//

D c1
�
F.b/� F.�a/

�
Px.�� D b/C c1F.�a/C c2 :

Let us choose z0 D �a in (S.71), so that F.�a/ D 0. Then the previous relation
becomes

Px.�� D b/ D F.x/

F.b/
D

Z x

�a
e
2	

�2
z2 dz

Z b

�a
e
2	

�2
z2 dz

� (S.72)

b1) With the change of variable y D p
	z we have

lim
	!C1

Z a

0

e	z2 dz

Z b

0

e	z2 dz

D lim
	!C1

Z a
p
	

0

ey2 dy

Z b
p
	

0

ey2 dy

:
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Taking the derivative with respect to 	 and applying L’Hospital rule this limit
is equal to

lim
	!C1

a

b

e	a2

e	b2
,

which is equal to C1 if a > b.
b2) Using the symmetry of the integrand we can write (S.72) as

Px.�� D b/ D

Z a

0

e
2	

�2
z2 dz C

Z x

0

e
2	

�2
z2 dz

Z a

0

e
2	

�2
z2 dz C

Z b

0

e
2	

�2
z2 dz

and now one only has to divide numerator and denominator by
R a
0

e
2	

�2
z2 dz: as

both b and jxj are smaller then a, the limit as 	 ! C1 turns out to be equal to
1 thanks to b1).

b3) For large 	 the process is affected by a large force (the drift �	x) taking it
towards 0. Therefore its behavior is as follows: the process is attracted towards
0 and stays around there until some unusual increment of the Brownian motion
takes it out of � � a; bŒ. The exit takes place mostly at b because this is the
closest to 0 of the two endpoints.

9.22

a) We know (see Example 9.1) that the law of �"t is Gaussian with mean e�	tx and
variance

"2�2

2	
.1 � e�2	t/ :

By Chebyshev’s inequality

P.j�"t � e�	txj � ı/ � "2�2

2	ı2
.1 � e�2	t/ !

"!0
0

so that �"t converges to e�	tx in probability and therefore in distribution.
b) It is sufficient to prove that

P
�

sup
0�t�T

j�"t � e�	txj � ı
�

!
"!0

0 :

Actually this entails that the probability for �" to be outside of a fixed neighbor-
hood of the path x0.t/ D e�	t goes to 0 as " ! 0. Recall the explicit expression
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for �":

�"t D e�	tx C "�e�	t
Z t

0

e	s dBs :

Therefore we are led to the following limit to be proved

P
�
" sup
0�t�T

ˇ
ˇ
ˇ�e�	t

Z t

0

e	s dBs

ˇ
ˇ
ˇ � ı

�
!
"!0

0

which is immediate since the process inside the absolute value is continuous and
therefore the r.v.

sup
0�t�T

ˇ
ˇ
ˇ�e�	t

Z t

0

e	s dBs

ˇ
ˇ
ˇ

is finite. Note that, using the exponential inequality of martingales we might
even give a speed of convergence. This will be made explicit in the general case
of Exercise 9.28.

9.23 The function f .y/ D x
1�xy is such that f .0/ D x and f 0.y/ D f .y/2, f 00.y/ D

2f .y/3. Therefore if it was legitimate to apply Ito’s formula we would have

df .Bt/ D f 0.Bt/ dBt C 1

2
f 00.Bt/ dt D f .Bt/

2 dBt C f .Bt/
3 dt

so that �t D f .Bt/ would be a solution of (9.60). This is not correct formally because
f is not C2.R/ (it is not even everywhere defined). In order to fix this point, let us
assume x > 0 and let f" be a function that coincides with f on �� 1; 1x � "� and then
extended so that it is C2.R/. If we denote by �" the passage time of B at 1x � ", then
Ito’s formula gives, for �t D f".Bt/,

�t^�" D x C
Z t^�"

0

�3s ds C
Z t^�"

0

�2s dBs :

Therefore �t D f .Bt/ is the solution of (9.60) for every t � �". Letting " & 0,
�" % �x and therefore .�t/t is the solution of (9.60) on Œ0; �xŒ.

• Note that limt!�x� �t D C1 and that, by localization, any other solution must
agree with � on Œ0; �"Œ for every ", hence it is not possible to have a solution
defined in any interval Œ0;T�. This is an example of what can happen when the
sublinear growth property of the coefficients is not satisfied.



584 Solutions of the Exercises

9.24

a) The matrix of the second-order coefficients of L is

a D
�
1 0

0 0

	

whose square root, � , is of course equal to a itself. a is not invertible, hence L is
not elliptic and a fortiori not uniformly elliptic. The corresponding SDE is then

d�t D b�t dt C � dBt ;

where

� D
�
1 0

0 0

	

b D
�
0 0

1 0

	

and we know, by Example 9.1, that this SDE has the explicit solution

�t D ebtx C ebt
Z t

0

e�bs� dBs

and has a Gaussian law with mean ebtx and covariance matrix

�t D
Z t

0

ebs���eb�s ds :

We see that b2 D b3 D � � � D 0. Hence

ebu D
1X

kD0

bkuk

kŠ
D I C bu D

�
1 0

u 1

	

so that

ebu���eb�u D
�
1 0

u 1

	�
1 0

0 0

	�
1 u
0 1

	

D
�
1 u
u u2

	

and

�t D
 

t t2

2
t2

2
t3

3

!

:

�t being invertible for t > 0 (its determinant is equal to t3

12
) the law of �t has a

density with respect to Lebesgue measure.
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b) The SDE now is of the same kind but with

b D
�
0 0

0 1

	

; ebu D
�
1 0

0 eu

	

:

Therefore

ebu���eb�u D
�
1 0

0 eu

	�
1 0

0 0

	�
1 0

0 eu

	

D
�
1 0

0 0

	

and

� D
�

t 0
0 0

	

;

which is not invertible, so that there is no density with respect to Lebesgue
measure.

9.25

a) Let B be an m-dimensional Brownian motion and � a square root of a. The SDE
associated to L is

d�t D b�t dt C � dBt

�0 D x :

We have seen in Example 9.1 that its solution is

�t D ebtx C ebt
Z t

0

e�bs� dBs :

The law of �t is therefore Gaussian with mean ebtx and, recalling (S.52),
covariance matrix

�t D
Z t

0

ebuaeb�u du : (S.73)

As the transition function p.t; x; �/ it is nothing else than the law of �t with the
initial condition �0 D x, the transition function has density if and only if �
is invertible (see Sect. 1.7 and Exercise 1.4). If a is positive definite then there
exists a number � > 0 such that, for every y 2 R

m, hay; yi � �jyj2. Therefore, if
y 6D 0,

h�ty; yi D
Z t

0

hebuaeb�uy; yi du D
Z t

0

haeb�uy; eb�uyi du �
Z t

0

�jeb�uyj2 du > 0 :
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Actually if y 6D 0, we have jeb�uyj > 0, as the exponential of a matrix is
invertible.

b) Let us first assume that there exists a non-trivial subspace contained in the kernel
of a and invariant with respect to the action of b�. Then there exists a non-zero
vector y 2 ker a such that b�iy 2 ker a for every i D 1; 2; : : : It follows that also
eb�uy 2 ker a. Therefore for such a vector we would have

h�ty; yi D
Z t

0

haeb�uy; eb�uyi du D 0

and �t cannot be invertible.
Conversely, if �t were not invertible, there would exist a vector y 2 R

m, y 6D 0,
such that h�ty; yi D 0. As haeb�uy; eb�uyi � 0, necessarily haeb�uy; eb�uyi D 0

for every u � t and therefore

aeb�uy D 0

for every u � t. For u D 0 this relation implies y 2 ker a. Taking the derivative
with respect to u at u D 0 we find that necessarily ab�y D 0. In a similar way,
taking the derivative n times and setting u D 0 we find ab�ny D 0 for every n.
The subspace generated by the vectors y; b�y; b�2y; : : : is non-trivial, invariant
under the action of b� and contained in ker a.

9.26 Let us compute the differential of � with Ito’s formula, assuming that the
function f that we are looking for is regular enough. We have

d�t D f 0.�t/ d�t C 1

2
f 00.�t/�

2.�t/ dt
�

f 0.�t/b.�t/C 1

2
f 00.�t/�

2.�t/
�

dt C f 0.�t/�.�t/ dBt :
(S.74)

Therefore, in order for (9.64) to be satisfied, we must have f 0.�t/�.�t/ D 1. Let

f .z/ D
Z z

0

1

�.y/
dy :

The assumptions on � entail that f 2 C2 so that Ito’s formula can be applied to
�t D f .�t/. Moreover, f is strictly increasing. As f 0.x/ D 1

�.x/ and f 00.x/ D � � 0.x/
�.x/2

,
Eq. (S.74) now becomes

d�t D
� 1

�.f �1.�t//
b.f �1.�t// � 1

2
� 0.f �1.�t//

„ ƒ‚ …
WDeb.�t/

�
dt C dBt ;

with the initial condition �0 D f .x/.
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b) We have

Bt D �t � f .x/ �
Z t

0

eb.�t/ dt :

The right-hand side is clearly measurable with respect to the �-algebra �.�u; u �
t/, therefore Gt � �.�u; u � t/, where Gt D �.Bu; u � t/ as usual. As f is strictly
increasing, hence invertible, �.�u; u � t/ D �.�u; u � t/ D Ht. Hence Gt � Ht

and as the converse inclusion is obvious (see Remark 9.4) the two filtrations
coincide.

9.27

a) Let us first admit the relations (9.68) and let us apply Ito’s formula to the process
�t D h.Dt;Bt/. As .Dt/t has finite variation,

dh.Dt;Bt/ D @h

@x
.Dt;Bt/D

0
t dt C @h

@y
.Dt;Bt/ dBt C 1

2

@2h

@y2
.Dt;Bt/ dt :

But

@h

@y
.Dt;Bt/ D �.h.Dt;Bt//

@2h

@y2
.Dt;Bt/ D � 0.h.Dt;Bt//�.h.Dt;Bt//

@h

@x
.Dt;Bt/ D exp

h Z Bt

0

� 0.h.Dt; s// ds
i
:

Moreover,

D0
t D

�
�1
2
� 0.h.Dt;Bt//�.h.Dt;Bt//Cb.h.Dt;Bt//

�
exp

h
�
Z Bt

0

� 0.h.Dt; s// ds
i
:

Putting things together we find

dh.Dt;Bt/ D b.h.Dt;Bt// dt C �.h.Dt;Bt// dBt ;

hence Zt D h.Dt;Bt/ is a solution of (9.66), which concludes the proof of a).
Let us check the two relations of the hint. We can write

@h

@y
.x; y/ D �.h.x; y//

h.x; 0/ D x :
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As we admit that h is twice differentiable in y,

@2h

@y2
.x; y/ D � 0.h.x; y//

@h

@y
.x; y/ D � 0.h.x; y//�.h.x; y// :

Similarly, taking the derivative with respect to x,

@2h

@y@x
.y; x/ D � 0.h.x; y//

@h

@x
.x; y/

@h

@x
.x; 0/ D 1 :

Hence, if g.y/ D @h
@x .x; y/, then g is the solution of the linear problem

g0.y/ D � 0.h.x; y//g.y/

g.0/ D 1

whose solution is

g.y/ D exp
h Z y

0

� 0.h.x; s// ds
i
:

b) Let us denote byef the analogue of the function f witheb replacing b. Then clearly
ef .x; z/ � f .x; z/ for every x; z. If eD is the solution of

eD0
t Def .eDt;Bt/

eD0 Dex ;

then eDt � Dt for every t � 0. As h is increasing in both arguments we have

e� t D h.eDt;Bt/ � h.Dt;Bt/ D �t :

9.28

a) We have

d�"t D d�"t � � 0
t dt D .b.�"t / � b.�t// dt C "�.�"t / dBt

D .b.�"t C �t/ � b.�t// dt C "�.�"t C �t/ dBt :

b) If sup0�s�T

ˇ
ˇ"
R s
0
�.�"u C �u/ dBu

ˇ
ˇ < ˛, we have, for t � T,

j�"t j �
Z t

0

jb.�"s C �s/ � b.�s/j ds C ˛ � L
Z t

0

j�"s j ds C ˛
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and, by Gronwall’s inequality, sup0�t�T j�"t j � ˛eLT . Taking the complement we
have

P
�

sup
0�s�T

j�"s � �sj � ˛
�

D P
�

sup
0�s�T

j�"s j � ˛
�

� P
�

sup
0�s�T

ˇ
ˇ
ˇ

Z s

0

�.�"u C �u/ dBu

ˇ
ˇ
ˇ � ˛

"
e�LT

�
� 2m exp

h
� 1

"2
˛2e�2LT

2mTk�k21
i

thanks to the exponential inequality (8.42). As �"s D �"s � �s and by the
arbitrariness of ˛, this relation implies that �", as " ! 0, converges in probability
to a constant r.v. taking the value � with probability 1.

c) Let us assume that Assumption (A’) holds. For fixed t, let R be the radius of some
ball centered at the origin of Rm and containing �t for every t � T. Leteb;e� be
a vector and a matrix field, respectively, bounded and Lipschitz continuous and
coinciding with b; � , respectively, for jxj � R C 1.

Let us denote bye�" the solution of an SDE with coefficientseb and "e� and
with the same initial conditione�"0 D x. We know then (Theorem 9.3) that the
two processes �" ande�" coincide up to the exit out of the ball of radius R C 1. It
follows that, for ˛ � 1, the two events

n
sup
0�t�T

j�"t � �tj � ˛
o

and
n

sup
0�t�T

je�"t � �tj � ˛
o

are a.s. equal. Therefore

P
�

sup
0�t�T

j�"t ��tj � ˛
�

D P
�

sup
0�t�T

je�"t ��tj � ˛
�

� 2m exp
h
� 1

"2
˛2e�2eLT

2mTke�k21
i
:

9.29

a) Let k� D sup0�t�T kGtG�
t k, where k k denotes the norm as an operator, so that

hGtG�
t 
; 
i � k� for every vector 
 of modulus 1. By Proposition 8.7

P
�

sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Gs dBs

ˇ
ˇ
ˇ � �

�
� 2me�c0�2 ;

where c0 D .2Tmk�/�1. If we define A D ˚
sup0�t�T

ˇ
ˇ R t
0

Gs dBs

ˇ
ˇ < �

�
, then on

A we have, for t � T,

jXtj � jxj C M
Z t

0

.1C jXsj/ ds C � ;
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i.e.

X�
t � .jxj C MT C �/C M

Z t

0

X�
s ds ;

and by Gronwall’s Lemma X�
T � .jxj C MT C �/ eMT . Therefore, if jxj � K,

P
�
X�

T > .K C MT C �/ eMT
� � P

�
sup
0�t�T

ˇ
ˇ
ˇ

Z t

0

Gs dBs

ˇ
ˇ
ˇ � �

�
� 2me�c0�2 :

Solving R D .K C MT C�/ eMT we have � D Re�MT � .jxj C MT/ and therefore

P.X�
T > R/ � 2m exp

�
� c0

�
Re�MT � .K C MT/

�2�
;

from which we obtain that, for every constant c D cT strictly smaller than

c0e�2MT D e�2MT

2Tmk� , (S.75)

the inequality (9.70) holds for R large enough.
b) It is an obvious consequence of a), with Ft D b.�t; t/;Gt D �.�t; t/.
c) If u.x/ D log.1C jxj2/, let us compute with patience the derivatives:

uxi.x/ D 2xi

1C jxj2
uxixj.x/ D 2ıij

1C jxj2 � 4xixj

.1C jxj2/2 �
(S.76)

In particular, as jxj ! C1 the first-order derivatives go to 0 at least as x 7! jxj�1
and the second-order derivatives at least as x 7! jxj�2. By Ito’s formula the
process Yt D log.1C j�tj2/ has stochastic differential

dYt D
� mX

iD1
uxi.�t/bi.�t; t/C

mX

i;j

uxixj.�t/aij.�t; t/
�

dt

C
mX

iD1

dX

jD1
uxi.�t/�ij.�t; t/ dBj.t/

where a D ���. By (S.76), as b and � are assumed to have sublinear growth, it
is clear that all the terms uxibi, uxixj aij, uxi�ij are bounded. We can therefore apply
a), which guarantees that there exists a constant c > 0 such that, for large �,

P
�

sup
0�t�T

log.1C j�tj2/ � log �
�

� e�c.log�/2 ;
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i.e. P
�
��

T � p
� � 1

� � e�c.log�/2 . Letting R D p
� � 1, i.e. � D R2 C 1, the

inequality becomes, for large R,

P.��
T � R/ � e�c.log.R2C1//2 � e�c.log R/2 D 1

Rc log R
� (S.77)

d) By Exercise 1.3, if p � 1,

EŒ.��
T /

p� D p
Z C1

0

tp�1P.��
T � t/ dt :

Under Assumption (A’), by (S.77), the function t 7! P.��
T � t/ tends to zero

faster than every polynomial as t ! C1 and therefore the integral converges
for every p � 0. If, moreover, the diffusion coefficient � is bounded, then

EŒe˛.�
�
T /
2

� D 1C
Z C1

0

2˛te˛t2P.��
T � t/ dt

and again, by (9.70) and (S.75), for ˛ < e�2MT .2Tmk�/�1 the integral is
convergent. Here k� is any constant such that j�.x/
 j2 � k� for every x 2 R

m

and j
 j D 1. A fortiori EŒe˛�
�
T � < C1 for every ˛ 2 R.

10.1

a) Just apply the representation formula (10.6), recalling that here � � 0, Zt � 1

and f � �1.
b) If m D 1 then (10.39) becomes

(
1
2
u00 D �1 on � � 1; 1Œ

u.�1/ D u.1/ D 0

and has the solution u.x/ D 1 � x2. If m � 2, as indicated in the hint, if we look
for a solution of the form u.x/ D g.jxj/, we have

1

2
4u.x/ D 1

2
g00.jxj/C m � 1

2jxj g0.jxj/ : (S.78)

We therefore have to solve

1

2
g00.y/C m � 1

2y
g0.y/ D �1 (S.79)
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with the boundary condition g.1/ D 0 (plus another condition that we shall see
later). Letting v D g0, we are led to the equation

1

2
v0.y/C m � 1

2y
v.y/ D �1 : (S.80)

Separating the variables, the homogeneous equation is

v0.y/
v.y/

D �m � 1
y

,

i.e. v.y/ D c1y�mC1. With the method of the variation of the constants, let us
look for a solution of (S.80) of the form c.y/y�mC1. We have immediately that c
must satisfy

c0.y/y�mC1 D �2

and therefore c.y/ D � 2
m ym. In conclusion, the integral of (S.80) is v.y/ D

c1y�mC1 � 2
m y. Let us compute the primitive of v. If m � 3 we find that the

general integral of (S.79) is

g.y/ D c1y
�mC2 � 1

m
y2 C c2 :

The condition g.1/ D 0 gives c1 C c2 D 1
m . However, we also need g to be

defined at 0, i.e. c1 D 0. In conclusion, the solution of (10.39) is

u.x/ D 1

m
� 1

m
jxj2

and, in particular, u.0/ D 1
m . If m D 2 the computation of the primitive of v is

different and the general integral of (S.79) is

g.y/ D c1 log y � 1

m
y2 C c2

but the remainder of the argument is the same.

10.2

a) Follows from Propositions 10.2 and 10.1 (Assumption H2 is satisfied).
b) It is immediate that the constants and the function v.x/ D x1�2ı are solutions of

the ordinary equation

1

2
v00.x/C ı

x
v0.x/ D 0
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for every x > 0. Therefore, if we denote by u.x/ the term on the right-hand side
in (10.40), as it is immediate that u.a/ D 0 and u.b/ D 1, u is the solution of the
problem

8
<

:

1

2
u00.x/C ı

x
u0.x/ D 0 x 2�a; bŒ

u.a/ D 0; u.b/ D 1 :

Therefore, by (10.7), u.x/ D Px.X� D b/.
c) Thanks to Exercise 8.24, we know that the process �t D jBt C xj is a solution of

the SDE

d�t D m � 1
2�t

dt C dWt

�0 D jxj

where W is a real Brownian motion. Therefore, denoting by Qjxj the law of �,

Px.jB� j D b/ D Qjxj.X� D b/ :

Comparing with the result of a), we have ı D m�1
2

hence 	 D 2ı � 1 D m � 2

which gives

Px.jB� j D b/ D 1 � . a
x /

m�2

1 � . a
b /

m�2 �

As m ! 1 this probability converges to 1 for every starting point x, a < jxj < b.

10.3

a1) The solution is clearly �x D �Bt � �t C x and we can apply the usual Iterated
Logarithm argument.

a2) Lu D �2

2
u00 ��u0. We know that the function u.x/ D P.�x

� D b/ is the solution
of

8
<

:
Lu.x/ D �2

2
u00 � �u0 D 0

u.�a/ D 0; u.b/ D 1 :

(S.81)

Setting v D u0 we have

v0 D �

�2
v ;
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i.e.

v.x/ D ce
2�

�2
x
;

and therefore

u.x/ D c1

Z x

x0

e
2�

�2
z dz :

We must enforce the constraints u.�a/ D 0; u.b/ D 1, i.e. x0 D �a and

c1 D 1
R b

�a e
2�

�2
z dz

D 2�

�2
1

e
2�

�2
b � e� 2�

�2
a

�

Therefore

P.�0� D b/ D u.0/ D c1

Z 0

�a
e
2�

�2
z dz D c1

�2

2�

�
1 � e� 2�

�2
a� D 1 � e� 2�

�2
a

e
2�

�2
b � e� 2�

�2
a

�
(S.82)

b1) The generator of � is

L2u.x/ D �2

2.1C x2/
u00.x/ � �

1C x2
u0.x/ D 1

1C x2
Lu.x/ :

As the coefficient of the second-order derivative is � const > 0 on the interval
considered and the coefficient of the first-order derivative is bounded, we know,
by Assumption H2 p. 308, that � < C1 a.s. (and is even integrable) whatever
the starting point x.

b2) We know that the function u.x/ D P.�x
� D b/ is the solution of

8
<̂

:̂

L2u.x/ D �2

2.1C x2/
u00.x/� �

1C x2
u0.x/ D 0

u.�a/ D 0; u.b/ D 1

(S.83)

but, factoring out the denominator 1 C x2 we see that the solution is the same
as that of (S.83), so that the exit probability is as in (S.82).

10.4 The exit law from the unit ball for a Brownian motion with starting point at
x has density (see Example 10.1)

N.x; y/ D 1

2�

1 � jxj2
jx � yj2
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with respect to the normalized one-dimensional measure of the circle. In this case
jxj D 1

2
so that 1 � jxj2 D 3

4
and, in angular coordinates, we are led to the

computation of the integral

3

4

1

2�

Z �=2

��=2
1

jx � y.
/j2 d
 ;

where y.
/ D .cos 
; sin 
/. Therefore jx � y.
/j2 D . 1
2

� cos 
/2 C sin2 
 D
5
4

� cos 
: The integral is computed with the change of variable

cos 
 D 1 � t2

1C t2
, t D tan 


2
, d
 D 2

1C t2
dt

and therefore

� � � D 3

8�

Z 1

�1
1

5
4

� 1�t2

1Ct2

2

1C t2
dt D 3

�

Z 1

�1
1

1C 9t2
dt D 1

�
arctan.3t/

ˇ
ˇ
ˇ
1

�1

D 2

�
arctan 3 ' 0:795 :

10.5

a1) For " > 0 fixed, let us still denote by u a C2.Rm/ function that coincides with u
on D". Then, by Ito’s formula,

dMt D 
e
 tu.Xt/ dt C e
 tu0.Xt/ dXt C 1

2
e
 t

mX

i;jD1
aij.Xt/

@2u

@xi@xj
.Xt/ dt

D e
 t
�

u.Xt/C Lu.Xt/

�
dt C e
 tu0.Xt/ �.Xt/ dBt :

As M0 D u.x/ Px-a.s. and 
u.Xt/C Lu.Xt/ D 0 for t � �",

Mt^�" D u.x/C
Z t^�"

0

e
su0.Xs/ �.Xs/ dBs; Px -a.s.

This is a square integrable martingale, as u0 and � are bounded on D".
a2) By the relation

ExŒe
.t^�"/u.Xt^�"/� D Ex.Mt^�" / D Ex.M0/ D u.x/ ;

taking the limit first as t ! C1 and then as " & 0 and using Fatou’s lemma
twice (recall that we assume u � 0 and that u � 1 on @D), we have

ExŒe
� � D ExŒe
�u.X� /� � u.x/ :
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Therefore the r.v. e
� is Px-integrable for every x 2 D. The r.v.’s e
.t^�"/u.Xt^�" /
are therefore positive and bounded above by e
� maxx2D u.x/. Again taking the
limit as t ! C1 and then as " & 0 and using now Lebesgue’s theorem we
find ExŒe
� � D u.x/.

b1) We must solve (10.41) for L D 1
2
4. The general integral of 1

2
u00 C 
u D 0 is

u.x/ D c1 cos.
p
2
 x/C c2 sin.

p
2
 x/ :

With the conditions u.a/ D u.�a/ D 1 we find c1 D cos.
p
2
 a/�1, c2 D 0.

Therefore the solution of (10.41) is

u.x/ D cos.
p
2
 x/

cos.
p
2
 a/

�

As cos y > 0 for jyj < �
2

, a positive solution exists if and only if
p
2
 a < �

2

i.e. 
 < �2

8a2
. � therefore has a finite Laplace transform for these values of 
 .

Since Ex.e
� / % C1 as 
 % �2

8a2
, this is the convergence abscissa.

b2) We have seen, in particular, that � does not have a finite Laplace transform for
every 
 2 R and therefore cannot be bounded Px-a.s. By Markov’s inequality,
for every ˇ > 0,

Px.� > R/ � Px.eˇ� > eˇR/ � e�ˇREx.eˇ� / :

This relation gives an estimate of the tail of the distribution of � for every
ˇ < �2

8a2
.

b3) The mean of � is obtained as the derivative at 0 of the Laplace transform. As

d

d


cos.
p
2
 x/

cos.
p
2
 a/

D 1

cos2.
p
2
 /a

�
�cos.

p
2
 a/ sin.

p
2
 x/

xp
2


Csin.
p
2
 a/ cos.

p
2
 x/

ap
2


�

we have, for 
 D 0, Ex.�/ D a2 � x2 (the mean of the exit time has already
been computed in Exercises 5.10 and 10.1).

10.6

a) By Theorem 10.6 a solution is given by u.x; t/ D Ex;tŒX2T � ; where Px;t is the law
of the diffusion associated to the differential generator Lu D 1

2
u00 with the initial

conditions x; t. With respect to Px;t, X2T has the same law as .BT�t C x/2, where
.Bt/t is a Brownian motion. Therefore

u.x; t/ D E.B2T�t C 2xBT�t C x2/ D T � t C x2 :
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The solution is unique in the class of solutions with polynomial growth by
Theorem 10.5.

b) If �.x/ D xm then the unique solution with polynomial growth is

u.x; t/ D EŒ.BT�t C x/m� D
mX

iD1

 
m

k

!

xkE.Bm�k
T�t / :

As E.Bm�k
T�t / D 0 if m�k is odd, whereas E.Bm�k

T�t / D .T�t/`E.B2`1 / if m�k D 2`,
u is a polynomial in the variables x; t. Now just observe that the solution u is
linear in �.

10.7

a) Equation (10.43) can be written in the form

Lu C @u

@t
D 0 ;

where L is the generator of a geometric Brownian motion. Hence a candidate
solution is

u.x; t/ D EŒ�x;t
T � ;

where �x;t
s D xe.b� 1

2 �
2/.s�t/C�.Bs�Bt/. Hence

u.x; t/ D xeb.T�t/ : (S.84)

We cannot apply Theorem 10.6 because the generator is not elliptic, but it is easy
to check directly that u given by (S.84) is a solution of (10.43).

b) Following the same idea we surmise that a solution might be

u.x; t/ D EŒ.�x;t
T /

2� D EŒx2e2.b� 1
2 �

2/.T�t/C2�.BT �Bt/� D x2e.2bC�2/.T�t/ :

Again it is easy to check that such a u is a solution of the given PDE problem.

10.8

a) Thanks to Theorem 10.6 a solution is given by

u.x; t/ D Ex;tŒcos.h
;XTi/� ;

where .C ;M ; .Mt/t; .Xt/t; .Px;t/x;t/ denotes a realization of the diffusion process
associated to the generator L.

It is immediate that such a diffusion is an Ornstein–Uhlenbeck process and
that, with respect to Px;t, XT has a Gaussian distribution with mean e�	.T�t/x and
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covariance matrix �2

2	
.1 � e�2	.T�t// I. Hence u.x; t/ is equal to the expectation

of cos.h
;Zi/ where Z is a Gaussian r.v. with these parameters. This is equal to
the real part of the characteristic function

EŒeih
;Zi� D eih
;e�	.T�t/xi exp
�

� j
 j2�2
4	

.1 � e�2	.T�t//
�
;

i.e.

u.x; t/ D cos.h
; e�	.T�t/xi/ exp
�

� j
 j2�2
4	

.1 � e�2	.T�t//
�
:

b) As T ! C1 the value at time 0 of u.x; t/ converges, for every x; t, to the constant

exp.� j
 j2�2
4	

/.

10.9 The SDE associated to L is

d�t D b�t dt C ��t dBt ; (S.85)

where � D p
a. As Assumption (A) is satisfied, we know that the fundamental

solution is given by the density of the transition function, if it exists. In order to
show the existence of the transition function we cannot apply Theorem 10.7, whose
hypotheses are not satisfied since the coefficients are not bounded and the diffusion
coefficient is not elliptic. However, we know that the solution of (S.85) with the
initial condition �0 D x is

�x
t D xe.b� �2

2
/tC�Bt

(see Example 9.2). This is a time homogeneous diffusion and its transition function
p.t; x; �/ is the law of �x

t .

The r.v. e.b� �2

2
/tC�Bt is lognormal with parameters .b � �2

2
/t and �2t (see

Exercise 1.11) and therefore has density

g.y/ D 1p
2�t �y

exp
�

� 1

2�2t

�
log y � .b � �2

2
/t
�2�

:

Its transition function p.t; x; �/ therefore has density

q.t; x; y/ D 1p
2�t �xy

exp
�

� 1

2�2t

�
log y

x � .b � �2

2
/t
�2�

and the fundamental solution is � .s; t; x; y/ D q.t � s; x; y/.
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10.10

a) Let us apply Ito’s formula to the function log, with the usual care, as it is not
defined on the whole of R. Let us denote by �" the exit time of �x;s from the half
line �";C1Œ; then, writing �t D �

y;s
t , y D log x and �t D �

x;s
t for simplicity, we

have

�t^�" D y C
Z t^�"

s

�
b.�u; u/� 1

2
�.�u; u/

2
�

du C
Z t^�"

s
�.�u; u/ dBu

D y C
Z t^�"

s

�
b.e�u ; u/� 1

2
�.e�u

u ; u/
2
�

du C
Z t^�"

s
�.e�u

u ; u/ dBu :

(S.86)

Ifeb.y; u/ D b.ey; u/ � 1
2
�.ey; u/2, e�.y; u/ D �.ey; u/, the process � coincides

therefore up to time �" with the solution Y of the SDE

dYt Deb.Yt; t/ dt Ce�.Yt; t/ dBt

Ys D y :
(S.87)

As the coefficients eb;e� are bounded and locally Lipschitz continuous, by
Theorem 9.2, the SDE (S.87) has a unique solution. Moreover, as �" coincides
with the exit time of Y from the half line � log ";C1Œ, by Remark 9.3 �" ! C1
as " ! 0 and, taking the limit as " ! 0 in (S.86), we find that � is a solution
of (S.87) and that �x;s

t D e�
x;s
t > 0 a.s. for every t � 0.

b) The generatoreLt of the diffusion � is

eLt D 1

2
e�.y; t/2

@2

@y2
Ceb.y; t/ d

dy
�

Moreover, ife�.y/ D �.ey/,ef .y; s/ D f .ey; s/ andec.y; s/ D c.ey; s/, we can write

u.ey; t/ D E
�
e�.�y;t

T / e� R T
t Qc.�y;t

v ;v/ dv

 � E

h Z T

t

ef .�y;t
s ; s/ e� R s

t Qc.�y;t
v ;v/ dv ds

i
:

As � and f have polynomial growth in x, e� and ef have exponential growth
in y. The operator eLt satisfies Assumption (A’) and has a bounded diffu-
sion coefficient. By Theorem 10.6, the function eu.y; t/ D u.ey; t/ is a solu-
tion of

8
<

:

eLteu C @eu

@t
�eceu Def on R � Œ0;TŒ

eu.y;T/ D e�.y/ :
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We easily see that

�
eLt C @

@t
�ec

�
eu.y; t/ D

�
Lt C @

@t
� c
�

u.ey; t/

and therefore u is a solution of (10.45).

10.11

a) We have

u.x; t/ D 1

.2�.T � t//m=2

Z
�.y/ e

� 1
2.T�t/ jx�yj2

dy

thus u is C1.Rm � Œ0;TŒ/ as we can take the derivative under the integral sign
(this is a repetition of Remark 6.4 or of Proposition 10.4).

b) This is a consequence of the Markov property (6.13):

u.x; s/ D Ex;sŒEx;s.�.XT/jF s
t /� D Ex;sŒEXt;t.�.XT//� D Ex;sŒu.Xt; t/� :

c) Thanks to a), the function x 7! u.x;T 0/ is continuous for every T 0 < T.
Moreover, u is clearly bounded, as � is bounded itself. By point b) and the
Feynman–Kac formula (Theorem 10.6) u is therefore a solution of (10.46) on
R

m � Œ0;T 0Œ and therefore, by the arbitrariness of T 0, on R
m � Œ0;TŒ.

In order to prove (10.47), let x be a continuity point of � and let " > 0 be fixed.
Let ı > 0 be such that j�.x/��.y/j � " if jx�yj � ı. Let us first prove that there
exists a number Nt > 0 such that Px;t.jXT � xj > ı/ D Px;0.jXT�t � xj > ı/ < "

for every T � Nt < t < T. Actually with respect to Px;0, .Xt � x/t is a Brownian
motion and therefore XT�t � x has the same law as

p
T � t Z where Z � N.0; I/,

so that

Px;0.jXT�t � xj > ı/ D P.jpT � t Zj > ı/ !
t!T� 0 :

If T � Nt < t < T we then have

ju.x; t/ � �.x/j � Ex;tŒj�.XT/ � �.x/j�
D Ex;t

�j�.XT/ � �.x/j1fjXT�xj>ıg

C Ex;t

�j�.XT/� �.x/j1fjXT�xj�ıg



� k�k1Px;t.jXT � xj > ı/C " < ".k�k1 C 1/

and we can conclude the proof thanks to the arbitrariness of ".
d) By a) and c) for � D 1Œ0;C1Œ,

u.x; t/ D Ex;tŒ1Œ0;C1Œ.XT/� D 1

.2�/1=2

Z C1

�x=
p

T�t
e�y2=2 dy
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is a solution of (10.46),(10.47); x D 0 is the only point of discontinuity of � D
1Œ0;C1Œ and it is immediate that u.0; t/ D 1

2
for every t � T.

10.12

a) Let � 0 D infftI t > 0;Xt 62 Dg. We must prove that, if @D has a local barrier for
L at x, then Px.� 0 D 0/ D 1. Let us still denote by w a bounded C2.Rm/ function
coinciding with w in a neighborhood of x, again denoted by W. Let � D �W ^ � 0,
where �W is the exit time from W. As w.x/ D 0, Ito’s formula gives, for t > 0,

w.Xt^� / D
Z t^�

0

Lw.Xs/ ds C
Z t^�

0

w0.Xs/ dBs Px -a.s.

The stochastic integral has mean equal to zero, since the gradient w0 is bounded
in W. Therefore

ExŒw.Xt^� /� D Ex
� Z t^�

0

Lw.Xs/ ds
�

� �Ex.t ^ �/ :

As w � 0 on W \ D, the left-hand side is � 0 and necessarily Ex.t ^ �/ D 0 for
every t > 0, i.e. � D 0 Px-a.s. As �W > 0 Px-a.s. by the continuity of the paths,
necessarily � 0 D 0 Px-a.s. and therefore x is regular for the diffusion X.

b) Let z be the center of the sphere and let us look for a barrier of the form w.y/ D
k.jx � zj�p � jy � zj�p/ where k; p are numbers> 0 to be made precise later. First
it is clear that w.x/ D 0 and w > 0 on D, as S � Dc, and therefore, for y 2 D,
jy � zj is larger than the radius of the sphere, which is equal to jx � zj. Let us
compute the derivatives of w.

@w

@yi
.y/ D kpjy � zj�p�2.yi � zi/

@2w

@yi@yi
.y/ D �kp.p C 2/jy � zj�p�4.yi � zi/.yj � zj/C kpjy � zj�p�2ıij :

Therefore

Lw.y/ D � kp.p C 2/jy � zj�p�4
mX

i;jD1
aij.y/.yi � zi/.yj � zj/

C kpjy � zj�p�2
mX

iD1
aii.y/C kpjy � zj�p�2

mX

iD1
bi.y/.yi � zi/ :

Let now 	 be a positive number such that ha.y/�; �i � 	j�j2 for every y 2 D and
� 2 R

m and M a number majorizing the norm of b.y/ and the trace of a.y/ for
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every y 2 W. Then

Lw.y/ � �kp.p C 2/	jy � zj�p�2 C kpMjy � zj�p�2 C kpMjy � zj�p�1

D �kpjy � zj�p�2.	.p C 2/� M � Mjy � zj/ :

If W is a bounded neighborhood of x, then the quantity jy�zj remains bounded for
y 2 W. One can therefore choose p large enough so that 	.pC2/�M�Mjy�zj >
1 on W. With this choice we have, for y 2 W \ D,

Lw.y/ � �kpjy � zj�p�2 � �kpjx � zj�p�2

and, choosing k large enough, we have Lw.y/ � �1, as requested.

11.1

a1) We have

� tkC1
D � tk C b� tk h C �� tk

p
h Zk D � tk.1C bh C �

p
h Zk/

from which (11.44) is immediate.
a2) Recall that for the geometric Brownian motion of (11.43) EŒ�T � D ebT and

EŒ�2T � D e.2bC�2/T : We have

EŒ�T � D x
nY

iD1
EŒ1C bh C �

p
h Zk� D x.1C bh/n D x

�
1C bT

n

�n !
n!1 xebT

and

EŒ�
2

T � D x
nY

iD1
EŒ.1C bh C �

p
h Zk/

2�

D x
nY

iD1
E
�
1C b2h2 C �2hZ2k C 2bh C 2�

p
h Zk C 2bh�

p
h Zk




D x
nY

iD1

�
1C.2bC�2/hCb2h2

� D x
�
1C.2bC�2/ T

N
Cb

T2

N2

�n !
n!1 e.2bC�2/T :

a3) We have

x.1C bh/n D xen log.1Cbh/ :
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Recall the developments

log.1C z/ D z � 1

2
z2 C O.z3/

ey D ey0 C ey0 .y � y0/C O.jy � y0j2/

that give

xen log.1Cbh/ D xebT� 1
2 b2ThCO.h2/ D xebT � 1

2
xebTb2Th C O.h2/ :

Hence

ˇ
ˇEŒ�T � � EŒ�T �

ˇ
ˇ D c1h C O.h2/ ;

with c1 D 1
2

xebTb2T. The computation for (11.46) is quite similar.
b1) We have

e� tkC1
De� tk C be� tk h C �e� tk

p
h ZkC1 C 1

2
�2e� tk .hZ2kC1 � h/

De� tk

�
1C bh C �

p
h Zk C 1

2
�2h.Z2kC1 � 1/

�
;

hence

e�T D x
n�1Y

kD0

�
1C h

�
b C 1

2
�2.Z2kC1 � 1/

�
C �

p
h ZkC1

�
:

b2) We have

EŒe�T � D x
n�1Y

kD0
E
h
1C h

�
b C 1

2
�2.Z2kC1 � 1/

�
C �

p
h ZkC1

i
D x.1C bh/n :

The mean of the Milstein approximation in this case is exactly the same as that
of the Euler approximation. Hence (11.47) follows by the same computation
leading to (11.45).

12.1

a) By Girsanov’s theorem, if

eZt D ecBt� 1
2 c2t ;
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then Ws D Bs � cs is a Brownian motion for s � t with respect to the probability
dQ D eZt dP. Therefore, with respect to Q, writing Bs D Ws C cs, .Bs/0�s�t has
the same law as .Ys/0�s�t. We deduce that PY is the law of .Bt/t with respect to
Q. If 0 � t1 < � � � < tm � t and f1; : : : ; fm are bounded Borel functions, we have

EPY
Œ f1.Xt1 / : : : fm.Xtm/� D EQŒ f1.Bt1 / : : : fm.Btm/�

D EŒ f1.Bt1 / : : : fm.Btm/ ecBt� 1
2 c2t� D EPB

Œ f1.Xt1 / : : : fm.Xtm/ ecXt� 1
2 c2t� :

Therefore the two probabilities PY and ecXt� 1
2 c2tdPB have the same finite-dimen-

sional distributions on Mt and hence coincide on Mt. This proves that PY has a
density with respect to PB so that PY � PB. Let Zt D ecXt� 1

2 c2t. As Zt > 0, we
also have PB � PY on Mt.

If c > 0, for instance, we have limt!C1 Yt D C1 hence with respect to
PY limt!C1 Xt D C1 a.s. Therefore the event flimt!C1 Xt D C1g has
probability 1 with respect to PY but probability 0 with respect to PB, as under
PB .Xt/t is a Brownian motion and therefore limt!C1 Xt D �1 a.s. by the
Iterated Logarithm Law.

b) As in the argument developed in the second part of a) we must find an event in
Mt which has probability 1 for PB and 0 for PZ . For instance, by the Iterated
Logarithm Law,

PB
�

lim
t!0C

Xt
�
2t log log 1

t

�1=2 D 1
�

D 1

whereas, as .Xt/t under PZ has the same law as .�Bt/t, we have, considering
separately the cases � > 0 and � < 0,

lim
t!0C

Xt
�
2t log log 1

t

�1=2 D j� j PZ�a:s:

hence, if j� j 6D 1, the event

n
lim

t!0C
Xt

�
2t log log 1

t

�1=2 D 1
o

has probability 1 for PB and probability 0 for PZ .
Another event having probability 1 for PB and probability 0 for PZ can be

easily produced using P. Lévy’s modulus of continuity (Theorem 3.1).

12.2

a) Of course it is sufficient to consider the case � � �. As f .x/ D x log x, with
the understanding f .0/ D 0, is convex and lower semi-continuous, by Jensen’s
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inequality,

H.�I�/ D
Z

E

d�

d�
log

d�

d�
d� D

Z

E
f
� d�

d�

�
d� � f

� Z

E

d�

d�
d�
�

D f
� Z

E
d�
�

D f .1/ D 0 :

As, moreover, f is strictly convex, the inequality is strict, unless the function
d�
d� is �-a.s. constant. As the integral of d�

d� with respect to � must be equal to
1, this happens if and only if d�

d� D 1 �-a.s. and therefore if and only if � D �.
A simple approach to finding an example showing that the entropy is not

symmetric in its two arguments is to consider a measure � such that there
exists a set A with 0 < �.A/ < 1 and then setting d� D �.A/�11A d�. The
measure� is not absolutely continuous with respect to �, as �.Ac/ D 0whereas
�.Ac/ > 0; therefore H.�I �/ D C1. Conversely, � � � and one computes
immediately H.�I�/ D � log�.A/ < C1.

b1) The process .Xt/0�t�T , under the Wiener measure P, is a Brownian motion. If

Z D exp
� Z T

0

� 0
s dXs � 1

2

Z T

0

j� 0
sj2 ds

�

then, as the r.v.
R T
0
� 0

s dXs is Gaussian, we know that EŒZ� D 1 and by Girsanov’s
Theorem 12.1 under the probability dQ D Z dP, the process Wt D Xt � �t is
a Brownian motion for 0 � t � T. Hence Xt D Wt C �t and, with respect to
Q, X is, up to time T, a Brownian motion with the deterministic drift � . Hence
Q D P1 and P1 is absolutely continuous on MT with respect to the Wiener
measure P and

dP1
dP

D exp
� Z T

0

� 0
s dXs � 1

2

Z T

0

j� 0
sj2 ds

�
:

Using the expression (12.20) the entropy H.P1I P/ is the mean with respect to P1
of the logarithm of this density. But, as with respect to P1 for t � T Wt D Xt ��t

is a Brownian motion, we have,

H.P1I P/ D EP1
�

log
dP1
dP

�
D EP1

� Z T

0

� 0
s dXs � 1

2

Z T

0

j� 0
sj2 ds

�

EP1
� Z T

0

� 0
s dWs C

Z T

0

j� 0
s j2 ds � 1

2

Z T

0

j� 0
sj2 ds

�
D 1

2

Z T

0

j� 0
sj2 ds D 1

2
k� 0k22 :

Very similar to this is the computation of the entropy H.PI P1/. We have, clearly,

dP

dP1
D Z�1 D exp

�
�
Z T

0

� 0
s dXs C 1

2

Z T

0

j� 0
sj2 ds

�
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and, as with respect to P .Xt/0�t�T is a Brownian motion,

H.PI P1/ D EP
�

�
Z T

0

� 0
s dXs C 1

2

Z T

0

j� 0
sj2 ds

�
D 1

2

Z T

0

j� 0
sj2 ds D 1

2
k� 0k22 :

Here the two entropies H.PI P1/ and H.P1I P/ coincide.
b2) Developing the square we have in general, if � � �,

�2.�I�/ D
Z

E

h� d�

d�

�2�2 d�

d�
C1

i
d� D

Z

E

� d�

d�

�2
d��1 D

Z

E

d�

d�
d��1 :

In our case, i.e. � D P and � D P1,

Z
dP

dP1
dP D EP

h
exp

�
�
Z T

0

� 0
s dXs C 1

2

Z T

0

j� 0
sj2 ds

�i

D EP
h

exp
�

�
Z T

0

� 0
s dXs

�i
exp

�1

2

Z T

0

j� 0
sj2 ds

�

D exp
� Z T

0

j� 0
sj2 ds

�
D ek� 0k22 :

Therefore

�2.P1I P/ D
Z

dP

dP1
dP � 1 D ek� 0k22 � 1 :

�2.PI P1/ can be computed similarly, giving the same result.

12.3

a) .Zt/t is a martingale and an old acquaintance (see Example 5.2).eB is a Brownian
motion with respect to Q by Girsanov’s Theorem 12.1 (here ˚s � 2
).

b) We have

Z�1
t D e�2
BtC2
2t D e�2
eBt�2
2t :

Again .Z�1
t /t is a Q-martingale as eB is a Q-Brownian motion. Alternatively,

simply observe that on Ft we have dP D Z�1
t dQ, and therefore necessarily

.Z�1
t /t is a Q-martingale (Exercise 5.27). Note also that Z�1

t D e�2
BtC2
2t D
e�2
Xt .

c) As f�R � Tg 2 FT ,

P.�R � T/ D EQ.1f�R�TgZ�1
T / ;
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but also f�R � Tg 2 F�R and therefore f�R � Tg 2 FT^�R . Conditioning with
respect to FT^�R , by the stopping theorem of martingales (Theorem 5.13),

EQ.1f�R�TgZ�1
T / D EQ

�
EQ.1f�R�TgZ�1

T jFT^�R/

 D EQ

�
1f�R�TgEQ.Z�1

T jFT^�R/



D EQ.1f�R�TgZ�1
T^�R

/ :

As Z�1
T^�R

D e�2
XT^�R and XT^�R D R on f�R � Tg, we have Z�1
T^�R

1f�R�Tg D
e�2
R1f�R�Tg hence (12.21).

d) As, with respect to Q, Xt D eBt C 
 t, we have limt!C1 Xt D C1 Q-a.s. and
Q.�R < C1/ D 1. Taking the limit as T ! C1 in (12.21) we have

P
�

sup
t>0

Xt � R
�

D P.�R < C1/ D e�2
R

so that the r.v. supt>0 Xt has an exponential law with parameter 2
 .

• The observant reader has certainly noticed in the last limit a certain carelessness
(the probability Q itself actually depends on T). However, it is not difficult to
complete the argument with care.

12.4 By Girsanov’s theorem, the process

Wt D Bt C
Z t

0

Bs

1 � s
ds;

t � T, is a Brownian motion with respect to Q. Hence, with respect to Q, B is a
solution of the SDE

dBt D � Bt

1 � t
dt C dWt :

As clearly B0 D 0 Q-a.s., we know (Exercise 9.2 b)) that the solution of this SDE is
a Brownian bridge.

12.5

a) In order to show that E.Zt/ D 1, by Corollary 12.1 b) it is enough to prove that
E.e�


2jXsj2 / < C1 for some � > 0 for every s � t. If Xs D .X1.s/; : : : ;Xm.s//,
then, as the components of X are independent,

E.e�

2jXsj2 / D E.e�


2X1.s/2/ : : :E.e�

2Xm.s/2/ D E.e�


2X1.s/2/m D E.e�s
2W2

/m ;
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where W � N.0; 1/. This quantity, thanks to Exercise 1.12, is finite for every s �
t if � < .2
2t/�1. Actually this is a repetition of the argument of Example 12.2.

b) By Girsanov’s Theorem 12.1, with respect to Q the process

Ws D Xs � 


Z s

0

Xu du

is an (m-dimensional) Brownian motion for s � t. Therefore, for s � t, X is the
solution of

dXs D 
Xs ds C dWs

and is therefore, under Q, an Ornstein–Uhlenbeck process. As X0 D W0 D 0, as
seen in Sect. 9.2 we have

Xt D
Z t

0

e
.t�s/ dWs

and X is a Gaussian process; EQ.Xt/ D 0 and, by Proposition 8.5, the covariance
matrix of Xt with respect to Q is equal to the identity matrix multiplied by

Z t

0

e2
.t�s/ ds D 1

2

.e2
 t � 1/ : (S.88)

c) By Ito’s formula, with respect to P we have djXtj2 D 2Xt dXt C m dt, i.e.

Z t

0

Xs dXs D 1

2
.jXtj2 � mt/ :

Therefore, for 	 D � 
2

2
,

EQŒe� 

2
.jXtj2�mt/

� D EŒZte
� 

2
.jXt j2�mt/

�

D E
h

exp
�



Z t

0

Xs dXs � 
2

2

Z t

0

jXsj2 ds � 


2
.jXtj2 � mt/

�i

D E
h

exp
�

� 
2

2

Z t

0

jXsj2 ds
�i

D J	 :

As the components of X are independent with respect to Q, thanks to b) we have

J	 D EQŒe� 

2
.jXtj2�mt/

� D e
1
2m
 tEQŒe� 


2
X1.t/2 �m :
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With respect to Q, X1.t/ is a centered Gaussian r.v. with a variance given
by (S.88); therefore, recalling Exercise 1.12,

EQŒe� 

2

X1.t/2 � D �
1C 
VarQ.X1.t//

��1=2 D
�
1C 1

2
.e2
 t � 1/

��1=2

D
�1

2
.e2
 t C 1/

��1=2
:

Putting all pieces together we obtain

J	 D e
1
2m
 t

�1

2
.e2
 t C 1/

��m=2 D
�e2
 t C 1

2e
 t

��m=2

D cosh.
 t/�m=2 D cosh.
p

�2	 t/�m=2 :

d) Let us denote by the Laplace transform of the r.v.
R t
0

jXsj2 ds so that J	 D  .	/.

We have seen that, for 	 � 0,  .	/ D cosh.
p�2	 t/�m=2. Recalling that the

Laplace transform is an analytic function (see Sect. 5.7), for 	 � 0 we have
 .	/ D cosh.i

p
2	 t/�m=2 D cos.

p
2	 t/�m=2, up to the convergence abscissa.

Keeping in mind that the first positive zero of the cosine function is �
2

, the

convergence abscissa is 	 D �2

8t2
and in conclusion

J	 D

8
ˆ̂
<

ˆ̂
:

cosh.
p�2	 t/�m=2 if 	 � 0

cos .
p
2	 t/�m=2 if 0 < 	 < �2

8t2

C1 if 	 � �2

8t2
:

12.6

a1) By Girsanov’s theorem, Wt D Xt � R t
0 b.Xs C x/ ds is a Brownian motion for

t � T with respect to the probability Q defined by dQ D ZT dP, where

Zt D exp
� Z t

0

b.Xs C x/ dXs � 1

2

Z t

0

b2.Xs C x/ ds
�
: (S.89)

Such a process .Zt/t is a martingale thanks to Proposition 12.1, b being
bounded.

With respect to Q, .Xt/0�t�T satisfies

Xt D
Z t

0

b.Xs C x/ ds C Wt ;
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hence Yt D Xt C x is a solution of

Yt D x C
Z T

0

b.Xs C x/ ds C Wt D x C
Z T

0

b.Ys/ ds C Wt :

a2) If U is a primitive of b, then by Ito’s formula

dU.Xt C x/ D b.Xt C x/ dXt C 1

2
b0.Xt C x/ dt

so that

Z t

0

b.Xs C x/ dXs D U.Xt C x/� U.x/� 1

2

Z t

0

b0.Xs C x/ ds ;

whence substituting into (S.89) we find that Zt is given by (12.22).
b1) We have

tanh2.z/ D sinh2.z/

cosh2.z/
D 1 � 1

cosh2.z/

tanh0.z/ D 1

cosh2.z/
,

hence

b0.z/ D k2

cosh2.kz C c/
, b2.z/ D k2

�
1 � 1

cosh2.kz C c/

�
;

so that b0.z/C b2.z/ � k2.
b2) Let t � T. The law of Yt coincides with the law of Xt C x with respect to the

probability Q defined as dQ D ZT dP, where ZT is as in (12.22) with b.z/ D
k tanh.kz C c/. Hence the Laplace transform of Yt is given by

EŒe
Yt �D EQŒe
.XtCx/� D EŒZTe
.XtCx/� D EŒEŒZT e
.XtCx/ jFt�� D EŒZte
.XtCx/� :

A primitive of z 7! k tanh.kz C c/ is U.z/ D log cosh.kz C c/. Therefore

U.Xt C x/ � U.x/� 1

2

Z t

0

Œb0.Xs C x/C b2.Xs C x/� ds

D log cosh.kXt C kx C c/� log cosh.kx C c/� 1

2
k2t
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and

Zt D cosh.kXt C kx C c/

cosh.kx C c/
e� 1

2 k2t :

Hence, as X is a Brownian motion,

EŒZte

.XtCx/� D e� 1

2 k2t

cosh.kx C c/
E
�

cosh.kXt C kx C c/ e
.XtCx/



D e� 1
2 k2te
x

2 cosh.kx C c/
E
�
e.
Ck/XtCkxCc C e.
�k/Xt�kx�c




D e� 1
2 k2te
x

2 cosh.kx C c/

�
e
1
2 .
Ck/2tekxCc C e

1
2 .
�k/2te�kx�c

�

1

2 cosh.kx C c/

�
e
1
2 


2te
.ktCx/
„ ƒ‚ …

b�1.
/

ekxCc C e
1
2 


2te
.�ktCx/
„ ƒ‚ …

b�2.
/

e�kx�c
�
;

where we recognize that b�1 and b�2 are respectively the Laplace transform of
an N.kt C x; t/ and of an N.�kt C x; t/ law. The law of Yt is therefore a mixture
of these two laws with weights (independent of t)

˛ D ekxCc

ekxCc C e�kx�c
, 1 � ˛ D e�kx�c

ekxCc C e�kx�c
�

b3) Of course

EŒYt� D ˛

Z
x d�1.x/C .1� ˛/

Z
x d�2.x/ D ekxCc.kt C x/C e�kx�c.�kt C x; /

ekxCc C e�kx�c

D x C kt tanh.kx C c/ :

12.7

a) Let B D .˝;F ; .Ft/t; .Bt/t;P/ be an m-dimensional Brownian motion. Recall
that, by definition of Wiener measure, for every Borel set A � C we have P.B 2
A/ D PW.A/. Hence PW.C0/ D P.B0 D 0/ D 1.

b) If A is an open set containing the path 0, then it contains a neighborhood of 0 of
the form U D fwI sup0�t�T jw.t/j < �g; let us show that PW.U/ > 0. In fact

PW.U/ D P
�

sup
0�t�T

jBtj < �
�

�
mY

iD1
P
�

sup
0�t�T

jBi.t/j < �p
m

�
:
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As

P
�

sup
0�t�T

jBi.t/j < �p
m

�
D P.��=pm > T/ > 0

we have PW.U/ > 0.
c) Let us denote by H1 � C0 the set of the paths of the form �t D R t

0
˚s ds, ˚ 2 L2.

As H1 is dense in C0, if A � C0 is an open set (with respect to the topology
induced by C ), then it contains a path � 2 H1. HenceeA D A � � is an open set
containing the origin. Let V D fwI sup0�t�T jw.t/j < �g be a neighborhood of
the origin of C0 contained ineA. We have

P.B 2 A/ D P.B � � 2eA/ � P.B � � 2 V/ :

Let

Z D exp
� Z T

0

� 0
s dBs � 1

2

Z T

0

j� 0
sj2 ds

�
;

and let Q be the probability defined by dQ D Z dP. Then, by Girsanov’s theorem,
for t � T the process Wt D Bt � �t is a Brownian motion with respect to Q and
we have

P.B � � 2 V/ D EQŒZ�11fB��2Vg� D EQŒZ�11fW2Vg� :

Now observe that Z�1 > 0 Q-a.s. and that, thanks to b), Q.W 2 V/ D P.B 2
V/ > 0 (W is a Brownian motion with respect to Q). Hence P.B 2 A/ �
EQŒZ�11fB2Vg� > 0.

12.8

a) Let us prove that .Zt/t is a martingale for t � T. We can take advantage
of Corollary 12.1, which requires us to prove that for some value of � > 0

E.e�

2jBtCxj2 / < C1 for every t � T. But this is immediate as

E.e�

2jBtCxj2 / � e2�


2jxj2E.e2�
2jBtj2 / D e2�

2jxj2E.e2�
2B1.t/2 /m

and the right-hand side is finite for every t � T as soon as � < .4
2T/�1
(Exercise 1.12).

b) By Girsanov’s theorem, with respect to Q the process

Wt D Bt � 

Z t

0

.Bs C x/ ds

is a Brownian motion for t � T; therefore, if Yt D Bt C x,

Yt D Bt C x D x C 


Z t

0

Ys ds C Ws
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and .Yt/t is, with respect to Q, an Ornstein–Uhlenbeck process having x as its
initial value. Going back to the computations of Sect. 9.2, Yt is a Gaussian r.v.
with mean b D e
 tx and covariance matrix � D 1

2

.e2
 t � 1/I.

c) By Ito’s formula, with respect to P,

Z T

0

.Bs C x/ dBs D 1

2
.jBT j2 � mT/C hx;BTi D 1

2
.jBT C xj2 � jxj2 � mT/ ;

hence (12.25). Therefore

e


2 .mTCjxj2/EQ

h
e� 


2 jBT Cxj2i D e


2 .mTCjxj2/E

h
ZT e� 


2 jBT Cxj2i

D E
h

exp
�



Z T

0

.Bs Cx/ dBs � 
2

2

Z T

0

jBs Cxj2 ds� 


2
.jBT Cxj2�jxj2�mT/

�i

D E
h

exp
�

� 
2

2

Z T

0

jBs C xj2 ds
�i
:

d) We can write W D b C �Z with Z � N.0; I/. Therefore, thanks to the
independence of the components of Z,

EŒe
 jWj2 � D EŒe
 jbC�Zj2 � D E
h

exp
�



mX

iD1
.bi C �Zi/

2
�i

D E
h

exp
�



mX

iD1
.b2i C 2�Zibi C �2Z2i /

�i
D

mY

iD1
e
b2i E

�
e2
�biZiC
�2Z2i 
 :

Now

E
�
e2
�biZiC
�2Z2i


 D 1p
2�

Z C1

�1
e2
�bizC
�2z2e�z2=2 dz

D 1p
2�

Z C1

�1
e� 1

2 ..1�2
�2/z2�4
�biz/ dz :

This type of integral can be computed by writing the exponent in the form of the
square of a binomial times the exponential of a term not depending on z, i.e.

� � � D 1p
2�

Z C1

�1
exp

h
� 1 � 2
�2

2

�
z2 � 4
�biz

1 � 2
�2

�i

D 1p
2�

Z C1

�1
exp

h
� 1 � 2
�2

2

�
z � 2
�bi

1 � 2
�2

�2i
dz � exp

� 2
2�2b2i
1 � 2
�2

�
:
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The integral diverges if 2�2
 � 1, otherwise, recognizing in the integrand (but
for the normalizing constant) the density of a Gaussian r.v. with variance .1 �
2
�2/�1 we find

EŒe
 jWj2 � D 1

.1 � 2�2
/m=2
mY

iD1
e
b2i exp

� 2
2�2b2i
1 � 2
�2

�

D 1

.1 � 2�2
/m=2
exp

� 


1 � 2
�2 jbj2
�
:

(S.90)

e) Thanks to b) BT C x has, with respect to Q, a normal law with mean b D e
Tx
and covariance matrix � D �2I, with �2 D 1

2

.e2
T �1/. By c) and d), replacing


 with � 

2

in (S.90),

E
h

exp
�

� 
2

2

Z T

0

jBs C xj2 ds
�i

D e


2 .mTCjxj2/EQ

h
e� 


2 jBT Cxj2
i

D e


2 .mTCjxj2/ 1

.1C �2
/m=2
exp

�
� 


2.1C �2
/
jxj2e2
T

�
:

As 1C �2
 D 1
2
.e2
T C 1/ we have

e


2

mT

.1C �2
/m=2
D .e
T/m=2

�1

2
.e2
T C 1/

��m=2

D
�1

2
.e
T C e�
T/

��m=2 D cosh.
T/�m=2

whereas

e


2

jxj2 exp
�

� 


2.1C �2
/
jxj2e2
T

�
D exp

�
 jxj2
2

�
1 � 2e2
T

e2
T C 1

��

D exp
�

� 
 jxj2
2

tanh.
T/
�
;

i.e.

E
h

exp
�

� 
2

2

Z T

0

jBs C xj2 ds
�i

D cosh.
T/�m=2 exp
h

� 
 jxj2
2

tanh.
T/
i
:

(S.91)

f) We have from c) above and (S.91) with 
 D p
2	 and T � t instead of T

u.x; t/ D E
h
e�	 R T�t

0 jBsCxj2 ds
i

D cosh
�p
2	 .T � t/

��m=2
exp

h
�

p
2	 jxj2
2

tanh
�p
2	 .T � t/

�i
:
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This solution, which is bounded, is unique among the functions having polyno-
mial growth.

12.9

a) This is a typical application of Lemma 4.1 (the freezing lemma) as developed
in Example 4.4, where it is explained that

EŒ f .BT/jFt� D  .Bt; t/ WD 1

.2�.T � t//m=2

Z

Rm
f .z/ e

� jz�Bt j2
2.T�t/ dz :

Differentiability properties of  (for t < T) follow from the theorem of
differentiation under the integral sign. Moreover, .0; 0/ D EŒ f .BT/�.

b) Ito’s formula gives

dZt D d .Bt; t/ D
�@ 

@t
.Bt; t/C 1

2
4 .Bt; t/

�
dt C  0

x.Bt; t/ dBt

the term in dt, however, must vanish as .Bt; t/ D EŒ f .BT/jFt� is a continuous
square integrable martingale!

c1) The candidate integrand is of course Xs D  0
x.Bs; s/. We must prove that such

a process belongs to M2.Œ0;T�/, which is not granted in advance as  is not
necessarily differentiable in the x variable for t D T (unless f were itself
differentiable, as we shall see in d)). We have, however, for every t < T, by
Jensen’s inequality,

EŒ f .BT /
2� � E

�
EŒ f .BT /jFt�

2

 D EŒ .Bt; t/

2� D E
h�
 .0; 0/C

Z t

0

 0
x.Bs; s/ dBs

�2i
:

Observing that  .0; 0/ D EŒ f .BT/� we have for t < T

E
h�
 .0; 0/C

Z t

0

 0
x.Bs; s/ dBs

�2i

D EŒ f .BT/�
2 C E

h Z t

0

 0
x.Bs; s/

2 ds
i

C 2EŒ f .BT/�E
h Z t

0

 0
x.Bs; s/ dBs

i

„ ƒ‚ …
D0

so that, for every t � T,

Z t

0

EŒj 0
x.Bs; s/j2� ds � EŒ f .BT/

2� � EŒ f .BT/�
2
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and, taking the limit as t ! T�, we obtain

Z T

0

EŒj 0
x.Bs; s/j2� ds � EŒ f .BT/

2� � EŒ f .BT/�
2 < C1 :

Hence s 7!  0
x.Bs; s/ belongs to M2.Œ0;T�/. Now (12.27) follows from (12.28),

as f .BT/ D limt!T�  .Bt; t/ a.s.
c2) If f .x/ D 1fx>0g, then, using once more the fact that BT � Bt � p

T � t Z with
Z � N.0; 1/,

 .x; t/ D EŒ f .xCBT �Bt/� D EŒ1fxCBT �Bt>0g�DP.BT �Bt > �x/ D ˚
� xp

T � t

�
;

where we denote by ˚ the partition function of an N.0; 1/ law. Therefore

Xs D @ 

@x
.Bs; s/ D 1

p
2�.T � s/

e
� B2s
2.T�s/ :

d) We have

 .x; t/ D 1

.2�.T � t//m=2

Z

Rm
f .z/ e

� jz�xj2
2.T�t/ dz

D 1

.2�.T � t//m=2

Z

Rm
f .x C z/ e

� jzj2
2.T�t/ dz :

If f is differentiable with bounded derivatives then the theorem of differentia-
tion under the integral sign gives

 0
x.x; t/ D 1

.2�.T � t//m=2

Z

Rm
f 0
x.x C z/ e

� jzj2
2.T�t/ dz

D 1

.2�.T � t//m=2

Z

Rm
f 0.z/ e

� jz�xj2
2.T�t/ dz

hence, again by the freezing lemma,

 0
x.Bt; t/ D EŒ f 0

x.BT/jFt� :

13.1 Recall (this is (13.22)) that under P� the prices follow the SDE

dSi.t/ D rtSi.t/ dt C
dX

jD1
�ij.St; t/Si.t/ dB�

j .t/ ;
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where .B�
t /t is a P�-Brownian motion. As in this model the processes Si, i D

1; : : : ;m, are in M2
B� , the stochastic component of the differential is a martingale

and

E�ŒSi.t/� D
Z t

0

E�ŒrsSi.s/� ds C EŒSi.0/� D
Z t

0

E�Œrs�E�ŒSi.s/� ds C E�ŒSi.0/� :

Therefore the function v.t/ D E�ŒSi.t/� satisfies the differential equation

v0.t/ D E�Œrt�v.t/

with the initial condition v.0/ D E�ŒSi.0/�, so that v.t/ D e
R t
0 E�Œrs� dsE�ŒSi.0/�.

13.2

a) If s � t we have

E�ŒSi.t/jFs� D e
R t
0 ru duE�ŒeSi.t/jFs� D e

R t
0 ru dueSi.s/ D e

R t
s ru duSi.s/ ;

whereas, of course, E�ŒSi.t/jFs� D Si.t/ if s � t.
b) We have

Vt WD E�Œe� R T
t ru duZ jFt� D e� R T

t ru du
Z T

0

�
˛E�ŒSi.s/jFt�C ˇ

�
ds

D e� R T
t ru du

�
ˇT C

Z t

0

˛Si.s/ ds C
Z T

t
˛E�ŒSi.s/jFt� ds

�

D e� R T
t ru du

�
ˇT C

Z t

0

˛Si.s/ ds C ˛Si.t/
Z T

t
e
R s

t ru du ds
�
:

(S.92)

As S0.t/ D e
R t
0 ru du, we can write

Vt D e� R T
0 ru du

� Z t

0

˛Si.s/ ds C ˇT
�

„ ƒ‚ …
WDH0.t/

S0.t/C ˛

Z T

t
e� R T

s ru du ds
„ ƒ‚ …

WDHi.t/

Si.t/ :

Let us prove that H is admissible. The condition Vt � 0 is verified by construc-
tion. In order to check that it is self-financing we shall verify condition (13.8) of
Proposition 13.1. From (S.92) we have

eVt D e� R t
0 ru duVt D e� R T

0 ru du
�
ˇT C

Z t

0

˛Si.s/ ds C ˛Si.t/
Z T

t
e
R s

t ru du ds
�
:

(S.93)
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Hence, taking the differential,

deVt D e� R T
0 ru du

n
˛Si.t/ dt C ˛Si.t/

�
� 1 �

Z T

t
rte

R s
t ru du ds

�
dt

C ˛
� Z T

t
e
R s

t ru du ds
�

dSi.t/
o

D e� R T
0 ru du˛

Z T

t
e
R s

t ru du ds
�� rtSi.t/ dt C dSi.t/

�
:

Recall now, this is (13.7), that

deSi.t/ D e� R t
0 ru du.�rtSi.t/ dt C dSi.t/

�

so that

deVt D e� R T
t ru du˛

� Z T

t
e
R s

t ru du ds
�

deSi.t/ D ˛
� Z T

t
e� R T

s ru du ds
�

deSi.t/

D Hi.t/ deSi.t/ :

c) The arbitrage price of the option at time 0 is obtained by taking t D 0 in (S.93):
denoting S1.0/ by x,

V0 D eV0 D e� R T
0 ru duˇT C ˛x

Z T

0

e� R T
s ru du ds :

• This is an example of an option that does not depend on the value of the
underlying at time T only, as is the case for calls and puts. Note also that the
price of the option at time t, Vt, is a functional of the price of the underlying Si

up to time t (and not just of Si.t/, as is the case with calls and puts).

13.3

a) The portfolio that we need to investigate enjoys two properties, first that it is
self-financing, i.e. is such that

dVt D H0.t/ dS0.t/C H1.t/ dS1.t/ (S.94)

and, second, that

H1.t/ D M

S1.t/
�
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Now Vt D H0.t/S0.t/C H1.t/S1.t/ D H0.t/S0.t/C M. Hence

dVt D H0.t/ dS0.t/C S0.t/ dH0.t/ ; (S.95)

so (S.94) and (S.95) together give

H0.t/ dS0.t/C H1.t/ dS1.t/ D H0.t/ dS0.t/C S0.t/ dH0.t/ ;

i.e. S0.t/ dH0.t/ D H1.t/ dS1.t/, from which we obtain

dH0.t/ D H1.t/

S0.t/
dS1.t/ D M

S0.t/S1.t/
dS1.t/ D Me�rt

S1.t/
dS1.t/ :

As in the Black–Scholes model

dS1.t/ D S1.t/.b dt C � dBt/

we obtain

dH0.t/ D Me�rt .b dt C � dBt/

hence

H0.t/ D H0.0/C Mb

r
.1 � e�rt/C �M

Z t

0

e�rs dBs ;

which gives for the value of the portfolio

Vt D H0.t/S0.t/C H1.t/S1.t/ D H0.t/S0.t/C M

D ert
�

H0.0/C Mb

r
.1 � e�rt/C �M

Z t

0

e�rs dBs

�
C M :

Of course,

EŒVt� D ert
�

H0.0/C Mb

r
.1�e�rt/

�
CM D ert

�
V0�M C Mb

r
.1�e�rt/

�
CM :

b) In order for V to be admissible it is necessary that Vt > 0 a.s. for every t.
This is not true in this case as Vt has a Gaussian distribution with a strictly
positive variance and such a r.v. is strictly negative with a strictly positive
probability.
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13.4 Let us denote by .St/t the price process.

a) Obviously

Z D C 1fsup0�u�T Su>Kg :

b) By definition (see Proposition 13.4) the arbitrage price of Z at time 0 is

V0 D e�rTE�ŒZ� D e�rTC P�� sup
0�u�T

Su > K
�
:

Under the equivalent martingale measure P� the price process S with the starting
condition S0 D x is the geometric Brownian motion

St D xe.r� �2

2 /tC�Bt :

Therefore

V0 D e�rTC P�
�

sup
0�u�T

Su > K
�

D e�rTC P�
�

sup
0�u�T

�
xe.r� �2

2 /uC�Bu
�
> K

�

D e�rTC P�
�

sup
0�u�T

��
r � �2

2

�
u C �Bu

�
> log K � log x

�

D e�rTC P�� sup
0�u�T

�� r

�
� �

2

�
u C Bu

�
>
1

�
log K

x

�
:

This quantity is of course equal to e�rTC if x > K, as in this case the prices
are already larger than the level K at time 0. If x < K, hence log K

x > 0, the
probability above (probability of crossing a positive level before a time T for a
Brownian motion with drift) has been computed in Example 12.5. Going back
to (12.11) (we must replace � with �. r

�
� �

2
/ and a with 1

�
log K

x ) we have,
denoting by ˚ the partition function of an N.0; 1/-distributed r.v.

V0 D e�rTC
n
e
2
� .

r
� � �

2 / log K
x

h
1 � ˚

� 1p
T

� 1

�
log

K

x
C .

r

2
� �

2
/T
��i

C1 �˚
� 1p

T

� 1

�
log

K

x
� .

r

2
� �

2
/T
��o

:

• This is another example where the payoff is not a function of the underlying asset
at the final time T (as in Exercise 13.2). One may wonder if in this case the price
of the option can also be obtained as the solution of a PDE problem. Actually
the answer is yes, but unfortunately this is not a consequence of Theorem 10.4
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because not all of its assumptions are satisfied (the diffusion coefficient can
vanish and the boundary data are not continuous at the point .K;T/).

13.5 Let us first prove that there exist no equivalent martingale measure Q such
that the discounted price processeseS1;eS2 are both martingales. Actually, Eq. (13.18)
here becomes the system

(
��t D r � �1

��t D r � �2

and, if �1 6D �2, a solution � cannot exist. Note that here we have d D 1 (dimension
of the Brownian motion) smaller than m D 2 (number of underlying assets). In this
case the existence of an equivalent martingale measure is not ensured, as remarked
on p. 416.

Also note that, if �1 > �2, then the strategy H0 � 0, H1 � 1, H2 � � x1
x2

(recall that x1 D S1.0/, x2 D S2.0/) produces an arbitrage portfolio. In words, it is
a portfolio whose composition is constant in time and is obtained by buying at time
0 a unit of asset S1 and short selling x1

x2
units of asset S2. This operation requires no

capital. The value at time t of such a portfolio is

Vt.H/ D S1.t/ � x1
x2

S2.t/ D x1e
.�1� �2

2 /tC�Bt � x1
x2

x2e
.�2� �2

2 /tC�Bt

D x1.e�1t � e�2t/e� �2

2 tC�Bt ;

which proves simultaneously that it is admissible (Vt.H/ � 0 for every t) and with
arbitrage, as VT.H/ > 0 a.s.
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Index

�-correlated Brownian motion, 76
� -algebra generated by a r.v., 5

absolutely continuous, probability, 4
admissible strategy, 401
associated increasing process, 111

continuous time, 131, 207

backward equation, 328
barrier options, 428
Bessel processes, 179, 254
Bessel square processes, 238
Black–Scholes

formula, 424
generalized model, 409
standard model, 422

Blumenthal, 0-1 law, 168
Borel–Cantelli, lemma, 13
Box–Müller algorithm, 22
Brownian bridge, 107, 145, 176, 291
Brownian motion, 45
�-correlated, 76
canonical, 53
geometric, 259
multidimensional, 48
standard, 102

call-put, parity, 432
Cameron–Martin, formula, 381
Carathéodory, criterion, 6
Chapman–Kolmogorov, equation, 151
characteristic function, 13
Chebyshev’s inequality, 3

chi-square discrepancy, 389
compensator, 111
complete, market, 407
conditional

expectation, 85
law, 85, 98

convergence
almost sure (a.s.), in Lp, in law, 11
weak of measures, 11

convolution, 10
covariance, 4

function, 40, 175
matrix, 10

delta, 422
derivative (in finance), 395
diffusion coefficient, 256
diffusion processes, 174
discounted

portfolio, 399
price process, 399

Doob’s
decomposition, 111
maximal inequality, 119
measurability criterion, 5

drift, 256
Dupire model, 409
Dynkin, criterion, 179

entrance time, 65
entropy, 389
equivalent martingale measure, 402
equivalent, probabilities, 5
Euler, simulation scheme, 342
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European options, 396
exit time, 65

Feller, property, 164
Feynman–Kac, formula, 319
filtration, 31

natural augmented, 32
right-continuous, 34

finite variation, functions, 55
finite-dimensional distributions, 38
fundamental solution, 326

Gaussian family, 18
geometric Brownian motion, 259
Greeks, 422

delta, 422, 425
gamma, 422, 426
Rho, 422, 426
theta, 422, 426
Vega, 422, 426

Gronwall’s inequality, 261

Hölder’s inequality, 2

increasing predictable process, 111
independence

of � -algebras, 6, 7
of random variables, 5

infinitesimal generator, 170
local, 170

invariant
measure, probability, 178

Iterated Logarithm Law, 57
Ito

formula, 219, 237
process, 215

Jensen’s inequality, 2

kernel, Poisson, 311
Kolmogorov’s

continuity theorem, 35
existence theorem , 40

Laplace transform, 26, 133
convergence abscissas, strip, 134
domain, 133

law
of a process, 52
of a r.v., 4

laws
Cauchy, 135, 479
exponential, 25, 134
lognormal, 27
normal or Gaussian, 15
stable, 82

local barrier, 339

marginal, law, 9
market price of risk, 411
Markov

canonical process, 161
process, 152
property, 152
strong property, 160

Markov’s inequality, 3
martingale, 109

local, 205
with independent increments, 143

mathematical expectation, 1
maturity, 395
maximal inequalities, 113
maximum principle, 171, 313
mean property of harmonic functions, 314
Milstein, simulation scheme, 359
Minkowski’s inequality, 3
modulus of continuity, 53
moment

absolute of order ˛, 3
of order ˛, 3

natural filtration, 31, 46
augmented, 51, 102

negligible, event, 5
no-arbitrage price, 406

occupation time, 78
options

American, 396
European, 396
barrier, 428
call, put, 396, 424, 432

Ornstein–Uhlenbeck, process, 258, 281, 291,
292, 295, 298–300, 374, 391, 532

partition function, 25
passage time, 68, 145, 148, 374, 375
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Poincaré’s lemma, 253
Poisson kernel, 311
portfolios, 398
positive definite, kernel, 41
probabilities

absolutely continuous, 4
equivalent, orthogonal, 5

processes
�-correlated Brownian motion, 76, 83
Bessel, 179, 254
Bessel square, 238
Brownian bridge, 107, 145, 176, 291
geometric Brownian motion, 259
Ito, 215
Ornstein–Uhlenbeck, 258, 281, 291, 292,

295, 298–300, 374, 391, 532
pseudo-inverse, of an increasing function, 228

Radon–Nikodym, theorem, 4
random variables

independent, 5
uncorrelated, 4

realization, of a Markov process, 157
reflection principle, 70
riskless asset, 398

scaling, 48
solutions

strong, 256
weak, 256, 379

sphere condition, the, 339
spot interest rate, 398
stationary

measure, probability, 178
stochastic differential, 215
stochastic integral, 187

of elementary processes, 184

stochastic process, 31
adapted, 31
continuous, right-continuous, 33
elementary, 184
equivalent, indistinguishable, 32
measurable, 33
modification, version, 32
progressively measurable, 33
standard, 34

stopping time, 63
entrance, exit, 65

strike price, 395
strong Markov, property, 160
submartingale, supermartingale, 109
superior limit of events, 13

Talay–Tubaro, expansion, 349
trading strategy, 398

admissible, 401
arbitrage, 401
self-financing, 399

transition function, 151
time homogeneous, 159

translation, operators, 161

uniform integrability, 121
uniqueness

in law, 256
pathwise, 256

upcrossings, 114

variance, 3
volatility, 409

Wiener measure, 53
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