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To My Family

Fva, Flise, Anders and Karina



We have not succeeded in answering all our problems.
The answers we have found only serve to raise a whole set
of new questions. In some ways we feel we are as confused
as ever, but we believe we are confused on a higher level
and about more important things.

Posted outside the mathematics reading room,
Tromsg University




Preface to the Sixth Edition

This edition contains detailed solutions of selected exercises. Many readers
have requested this, because it makes the book more suitable for self-study.
At the same time new exercises (without solutions) have been added. They
have all been placed in the end of each chapter, in order to facilitate the use
of this edition together with previous ones.

Several errors have been corrected and formulations have been improved.
This has been made possible by the valuable comments from (in alphabetical
order) Jon Bohlin, Mark Davis, Helge Holden, Patrick Jaillet, Chen Jing,
Natalia Koroleva, Mario Lefebvre, Alexander Matasov, Thilo Meyer-Brandis,
Keigo Osawa, Bjgrn Thunestvedt, Jan Ubge and Yngve Willassen. I thank
them all for helping to improve the book.

My thanks also go to Dina Haraldsson, who once again has performed the
typing and drawn the figures with great skill.

Blindern, March 2003
Bernt @ksendal






Preface to the First Corrected Printing, of the
Fifth Edition

The main corrections and improvements in this corrected printing are from
Chapter 12. I have benefitted from useful comments from a number of peo-
ple, including (in alphabetical order) Fredrik Dahl, Simone Deparis, Ulrich
Haussmann, Yaozhong Hu, Marianne Huebner, Carl Peter Kirkebg, Niko-
lay Kolev, Takashi Kumagai, Shlomo Levental, Geir Magnussen, Anders
Dksendal, Jiirgen Potthoff, Colin Rowat, Stig Sandnes, Lones Smith, Set-
suo Taniguchi and Bjgrn Thunestvedt.

I want to thank them all for helping me making the book better. I also
want to thank Dina Haraldsson for proficient typing.

~

Blindern, May 2000
Bernt @ksendal






Preface to the Fifth Edition

The main new feature of the fifth edition is the addition of a new chapter,
Chapter 12, on applications to mathematical finance. I found it natural to
include this material as another major application of stochastic analysis, in
view of the amazing development in this field during the last 10-20 years.
Moreover, the close contact between the theoretical achievements and the
applications in this area is striking. For example, today very few firms (if
any) trade with options without consulting the Black & Scholes formula!
The first 11 chapters of the book are not much changed from the previous
edition, but I have continued my efforts to improve the presentation through-
out and correct errors and misprints. Some new exercises have been added.
Moreover, to facilitate the use of the book each chapter has been divided
into subsections. If one doesn’t want {or doesn’t have time) to cover all the
chapters, then one can compose a course by choosing subsections from the
chapters. The chart below indicates what material depends on which sections.

Chapters 1-5 o Chapter 6
y
Chapter 8 seg.ttism Chapter 7 > s";,“f“ Chapter 9
i / y
Chapter 10 Chapter 11

e

Section
Chapter 12 TR

For example, to cover the first two sections of the new chapter 12 it is recom-
mended that one (at least) covers Chapters 1-5, Chapter 7 and Section 8.6.
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Chapter 10, and hence Section 9.1, are necessary additional background for
Section 12.3, in particular for the subsection on American options.

In my work on this edition I have benefitted from useful suggestions
from many people, including (in alphabetical order) Knut Aase, Luis Al-
varez, Peter Christensen, Kian Esteghamat, Nils Christian Framstad, Helge
Holden, Christian Irgens, Saul Jacka, Naoto Kunitomo and his group, Sure
Mataramvura, Trond Myhre, Anders Jksendal, Nils (3vrelid, Walter Schacher-
mayer, Bjarne Schielderop, Atle Seierstad, Jan Ubge, Gjermund Vage and
Dan Zes. I thank them all for their contributions to the improvement of the
book.

Again Dina Haraldsson demonstrated her impressive skills in typing the
manuscript — and in finding her way in the LATEX jungle! I am very grateful
for her help and for her patience with me and all my revisions, new versions
and revised revisions ...

Blindern, January 1998
Bernt Oksendal



Preface to the Fourth Edition

In this edition I have added some material which is particularly useful for the
applications, namely the martingale representation theorem (Chapter IV),
the variational inequalities associated to optimal stopping problems (Chapter
X) and stochastic control with terminal conditions (Chapter XI). In addition
solutions and extra hints to some of the exercises are now included. Moreover,
the proof and the discussion of the Girsanov theorem have been changed in
order to make it more easy to apply, e.g. in economics. And the presentation
in general has been corrected and revised throughout the text, in order to
make the book better and more useful.

During this work I have benefitted from valuable comments from several
persons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge
Holden, Yaozhong Hu, Tom Lindstrgm, Trygve Nilsen, Paulo Ruffino, Isaac
Saias, Clint Scovel, Jan Ubge, Suleyman Ustunel, Qinghua Zhang, Tusheng
Zhang and Victor Daniel Zurkowski. I am grateful to them all for their help.

My special thanks go to Hakon Nyhus, who carefully read large portions
of the manuscript and gave me a long list of improvements, as well as many
other useful suggestions.

Finally I wish to express my gratitude to Tove Mgller and Dina Haralds-
son, who typed the manuscript with impressive proficiency.

Oslo, June 1995 Bernt Jksendal






Preface to the Third Edition

The main new feature of the third edition is that exercises have been included
to each of the chapters II-XI. The purpose of these exercises is to help the
reader to get a better understanding of the text. Some of the exercises are
quite routine, intended to illustrate the results, while other exercises are
harder and more challenging and some serve to extend the theory.

I have also continued the effort to correct misprints and errors and to
improve the presentation. I have benefitted from valuable comments and
suggestions from Mark H. A. Davis, Hakon Gjessing, Torgny Lindvall and
Hakon Nyhus, My best thanks to them all.

A quite noticeable non-mathematical improvement is that the book is
now typed in TpX. Tove Lieberg did a great typing job (as usual) and I am
very grateful to her for her effort and infinite patience.

Oslo, June 1991 Bernt Jksendal






Preface to the Second Edition

In the second edition I have split the chapter on diffusion processes in two, the
new Chapters VII and VIII: Chapter VII treats only those basic properties
of diffusions that are needed for the applications in the last 3 chapters. The
readers that are anxious to get to the applications as soon as possible can
therefore jump directly from Chapter VII to Chapters IX, X and XI.

In Chapter VIII other important properties of diffusions are discussed.
While not strictly necessary for the rest of the book, these properties are
central in today’s theory of stochastic analysis and crucial for many other
applications.

Hopefully this change will make the book more flexible for the different
purposes. I have also made an effort to improve the presentation at some
points and I have corrected the misprints and errors that I knew about,
hopefully without introducing new ones. I am grateful for the responses that
I have received on the book and in particular I wish to thank Henrik Martens
for his helpful comments.

Tove Lieberg has impressed me with her unique combination of typing
accuracy and speed. I wish to thank her for her help and patience, together
with Dina Haraldsson and Tone Rasmussen who sometimes assisted on the

typing.

Oslo, August 1989 Bernt Oksendal






Preface to the First Edition

These notes are based on a postgraduate course I gave on stochastic dif-
ferential equations at Edinburgh University in the spring 1982. No previous
knowledge about the subject was assumed, but the presentation is based on
some background in measure theory.

There are several reasons why one should learn more about stochastic
differential equations: They have a wide range of applications outside mathe-
matics, there are many fruitful connections to other mathematical disciplines
and the subject has a rapidly developing life of its own as a fascinating re-
search field with many interesting unanswered questions.

Unfortunately most of the literature about stochastic differential equa-
tions seems to place so much emphasis on rigor and completeness that it
scares many nonexperts away. These notes are an attempt to approach the
subject from the nonexpert point of view: Not knowing anything (except ru-
mours, maybe) about a subject to start with, what would I like to know first
of all? My answer would be:

1) In what situations does the subject arise?
2) What are its essential features?
3) What are the applications and the connections to other fields?

I would not be so interested in the proof of the most general case, but rather
in an easier proof of a special case, which may give just as much of the basic
idea in the argument. And I would be willing to believe some basic results
without proof (at first stage, anyway) in order to have time for some more
basic applications.

These notes reflect this point of view. Such an approach enables us to
reach the highlights of the theory quicker and easier. Thus it is hoped that
these notes may contribute to fill a gap in the existing literature. The course
is meant to be an appetizer. If it succeeds in awaking further interest, the
reader will have a large selection of excellent literature available for the study
of the whole story. Some of this literature is listed at the back.

In the introduction we state 6 problems where stochastic differential equa-
tions play an essential role in the solution. In Chapter II we introduce the
basic mathematical notions needed for the mathematical model of some of
these problems, leading to the concept of Ito integrals in Chapter III. In
Chapter IV we develop the stochastic calculus (the Ito formula) and in Chap-
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ter V we use this to solve some stochastic differential equations, including the
first two problems in the introduction. In Chapter VI we present a solution
of the linear filtering problem (of which problem 3 is an example), using
the stochastic calculus. Problem 4 is the Dirichlet problem. Although this is
purely deterministic we outline in Chapters VII and VIII how the introduc-
tion of an associated Ito diffusion (i.e. solution of a stochastic differential
equation) leads to a simple, intuitive and useful stochastic solution, which is
the cornerstone of stochastic potential theory. Problem 5 is an optimal stop-
ping problem. In Chapter IX we represent the state of a game at time ¢ by an
Ito diffusion and solve the corresponding optimal stopping problem. The so-
lution involves potential theoretic notions, such as the generalized harmonic
extension provided by the solution of the Dirichlet problem in Chapter VIII.
Problem 6 is a stochastic version of F.P. Ramsey’s classical control problem
from 1928. In Chapter X we formulate the general stochastic control prob-
lem in terms of stochastic differential equations, and we apply the results of
Chapters VII and VIII to show that the problem can be reduced to solving
the (deterministic) Hamilton-Jacobi-Bellman equation. As an illustration we
solve a problem about optimal portfolio selection.

After the course was first given in Edinburgh in 1982, revised and ex-
panded versions were presented at Agder College, Kristiansand and Univer-
sity of Oslo. Every time about half of the audience have come from the ap-
plied section, the others being so-called “pure” mathematicians. This fruitful
combination has created a broad variety of valuable comments, for which I
am very grateful. I particularly wish to express my gratitude to K.K. Aase,
L. Csink and A.M. Davie for many useful discussions.

I wish to thank the Science and Engineering Research Council, U.K. and
Norges Almenvitenskapelige Forskningsrad (NAVF), Norway for their finan-
cial support. And I am greatly indebted to Ingrid Skram, Agder College and
Inger Prestbakken, University of Oslo for their excellent typing — and their
patience with the innumerable changes in the manuscript during these two
years.

Oslo, June 1985 Bernt Oksendal

Note: Chapters VIII, IX, X of the First Edition have become Chapters IX,
X, XI of the Second Edition.
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1. Introduction

To convince the reader that stochastic differential equations are an important
subject let us mention some situations where such equations appear and can
be used:

1.1 Stochastic Analogs of Classical-Differential
Equations

If we allow for some randomness in some of the coefficients of a differential
equation we often obtain a more realistic mathematical model of the situation.

Problem 1. Consider the simple population growth model

dN

= a(t)N(t), N(0) = Ny (constant) (1.1.1)
where N(t) is the size of the population at time t, and a(¢) is the relative
rate of growth at time ¢. It might happen that a(¢) is not completely known,
but subject to some random environmental effects, so that we have

a(t) =r(t) + “noise” ,

where we do not know the exact behaviour of the noise term, only its prob-
ability distribution. The function r(t) is assumed to be nonrandom. How do
we solve (1.1.1) in this case?

Problem 2. The charge Q(t) at time ¢ at a fixed point in an electric circuit
satisfies the differential equation

L-Q"¢)+R-Q(t) + % ‘Q(t)y=F(t), Q0) =Qo, Q'(0) =1L (1.1.2)

where L is inductance, R is resistance, C is capacitance and F(t) the potential
source at time t.

Again we may have a situation where some of the coefficients, say F(t),
are not deterministic but of the form

F(t) = G(t) + “noise” . (1.1.3)
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How do we solve (1.1.2) in this case?

More generally, the equation we obtain by allowing randomness in the
coefficients of a differential equation is called a stochastic differential equa-
tion. This will be made more precise later. It is clear that any solution of
a stochastic differential equation must involve some randomness, i.e. we can
only hope to be able to say something about the probability distributions of
the solutions.

1.2 Filtering Problems

Problem 3. Suppose that we, in order to improve our knowledge about
the solution, say of Problem 2, perform observations Z(s) of Q(s) at times
s < t. However, due to inaccuracies in our measurements we do not really
measure Q(s) but a disturbed version of it:

Z(s) = Q(s) + “noise” . (1.2.1)

So in this case there are two sources of noise, the second coming from the
error of measurement.

The filtering problem is: What is the best estimate of Q(t) satisfying
(1.1.2), based on the observations Z in (1.2.1), where s < t ? Intuitively, the
problem is to “filter” the noise away from the observations in an optimal way.

In 1960 Kalman and in 1961 Kalman and Bucy proved what is now known
as the Kalman-Bucy filter. Basically the filter gives a procedure for estimating
the state of a system which satisfies a “noisy” linear differential equation,
based on a series of “noisy” observations.

Almost immediately the discovery found applications in aerospace en-
gineering (Ranger, Mariner, Apollo etc.) and it now has a broad range of
applications.

Thus the Kalman-Bucy filter is an example of a recent mathematical
discovery which has already proved to be useful — it is not just “potentially”
useful.

It is also a counterexample to the assertion that “applied mathematics
is bad mathematics” and to the assertion that “the only really useful math-
ematics is the elementary mathematics”. For the Kalman-Bucy filter — as
the whole subject of stochastic differential equations - involves advanced,
interesting and first class mathematics.

1.3 Stochastic Approach to Deterministic Boundary
Value Problems

Problem 4. The most celebrated example is the stochastic solution of the
Dirichlet problem:
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Given a (reasonable) domain U in R” and a continuous function f on
the boundary of U,dU. Find a function f continuous on the closure
U of U such that

(i) f=fondU

(ii) f is harmonic in U, i.e.

=0 inU.

°’l
\hz

=35

In 1944 Kakutani proved that the solution could be expressed in terms
of Brownian motion (which will be constructed in Chapter 2): f(z) is the
expected value of f at the first exit point from U of the Brownian motion
starting at z € U.

It turned out that this was just the tip of an iceberg: For a large class
of semielliptic second order partial differential equations the corresponding
Dirichlet boundary value problem can be solved using a stochastic process
which is a solution of an associated stochastic differential equation.

1.4 Optimal Stopping

Problem 5. Suppose a person has an asset or resource (e.g. a house, stocks,
oil...) that she is planning to sell. The price X; at time ¢ of her asset on the
open market varies according to a stochastic differential equation of the same
type as in Problem 1:

dX
dt

where 7, o are known constants. The discount rate is a known constant p. At
what time should she decide to sell?

We assume that she knows the behaviour of X, up to the present time ¢,
but because of the noise in the system she can of course never be sure at the
time of the sale if her choice of time will turn out to be the best. So what
we are searching for is a stopping strategy that gives the best result in the
long run, i.e. maximizes the expected profit when the inflation is taken into
account.

This is an optimal stopping problem. It turns out that the solution can be
expressed in terms of the solution of a corresponding boundary value problem
(Problem 4), except that the boundary is unknown (free) as well and this is
compensated by a double set of boundary conditions. It can also be expressed
in terms of a set of variational inequalities.

t .
=rX; + aX;- “noise”
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1.5 Stochastic Control

Problem 6 (An optimal portfolio problem).
Suppose that a person has two investment possibilities:

(i) A safe investment (e.g. a bond), where the price Xo(¢) per unit at time
t grows exponentially:

— = pXp (1.5.1)
where p > 0 is a constant.

(ii) A risky investment (e.g. a stock), where the price X;(t) per unit at
time ¢t satisfies a stochastic differential equation of the type discussed in
Problem 1:

dX,

dt
where u > p and 0 € R\ {0} are constants.

= (u+ o - “noise” ) X, (1.5.2)

At each instant ¢ the person can choose how large portion (fraction)
u, of his fortune Z, he wants to place in the risky investment, thereby
placing (1 — u;)Z; in the safe investment. Given a utility function U and
a terminal time T the problem is to find the optimal portfolio u; € [0,1]
(i.e. find the investment distribution u:; 0 < ¢ £ T') which maximizes the

expected utility of the corresponding terminal fortune Z(T"):

0<u,<1 {E [ (u) ]} (1.5.3)

1.6 Mathematical Finance

Problem 7 (Pricing of options).

Suppose that at time ¢ = 0 the person in Problem 6 is offered the right (but
without obligation) to buy one unit of the risky asset at a specified price K
and at a specified future time t = T'. Such a right is called a European call
option. How much should the person be willing to pay for such an option?
This problem was solved when Fischer Black and Myron Scholes (1973) used
stochastic analysis and an equlibrium argument to compute a theoretical
value for the price, the now famous Black-Scholes option price formula. This
theoretical value agreed well with the prices that had already been established
as an equilibrium price on the free market. Thus it represented a triumph for
mathematical modelling in finance. It has become an indispensable tool in
the trading of options and other financial derivatives. In 1997 Myron Scholes
and Robert Merton were awarded the Nobel Prize in Economics for their
work related to this formula. (Fischer Black died in 1995.)
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We will return to these problems in later chapters, after having developed
the necessary mathematical machinery. We solve Problem 1 and Problem 2
in Chapter 5. Problems involving filtering (Problem 3) are treated in Chap-
ter 6, the generalized Dirichlet problem (Problem 4) in Chapter 9. Problem 5
is solved in Chapter 10 while stochastic control problems (Problem 6) are dis-
cussed in Chapter 11. Finally we discuss applications to mathematical finance
in Chapter 12.






2. Some Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and
Stochastic Processes

Having stated the problems we would like to solve, we now proceed to find
reasonable mathematical notions corresponding to the quantities mentioned
and mathematical models for the problems. In short, here is a first list of the
notions that need a mathematical interpretation:

(1) A random quantity

(2) Independence

(3) Parametrized (discrete or continuous) families of random quantities

(4) What is meant by a “best” estimate in the filtering problem (Problem 3)

(5) What is meant by an estimate “based on” some observations (Prob-
lem 3)7

(6) What is the mathematical interpretation of the “noise” terms?

(7) What is the mathematical interpretation of the stochastic differential
equations?

In this chapter we will discuss (1)—(3) briefly. In the next chapter we will
consider (6), which leads to the notion of an Itd stochastic integral (7). In
Chapter 6 we will consider (4)-(5).

The mathematical model for a random quantity is a random variable.
Before we define this, we recall some concepts from general probability theory.
The reader is referred to e.g. Williams (1991) for more information.

Definition 2.1.1. If {2 is a given set, then a o-algebra F on £2 is a family
F of subsets of §2 with the following properties:

(iy 0erF
(i) FeF = FC e F, where FC = 2\ F is the complement of F in 2
(iii) A Ay, ... EF = A= U A, e F

i=1

The pair (12, F) is called a measurable space. A probability measure P
on a measurable space (12, F) is a function P: F — [0, 1] such that

(a) P(@) =0, P(f2) =1
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(b) if A1, Az,... € F and {A;}$2, is disjoint (i.e. A;NA; =0 ifi # j) then

i=1 i=1

The triple (£2,F, P) is called a probability space. It is called a complete
probability space if F contains all subsets G of 2 with P-outer measure zero,

i.e. with
P*(G):=mf{P(F; Fe F,GCF}=0.

Any probability space can be made complete simply by adding to F all
sets of outer measure 0 and by extending P accordingly. From now on we
will assume that all our probability spaces are complete.

The subsets F of {2 which belong to F are called F-measurable sets. In a
probability context these sets are called events and we use the interpretation

P(F) = “the probability that the event F' occurs” .

In particular, if P(F) = 1 we say that “F occurs with probability 1”, or
“almost surely (a.s.)”.

Given any family U of subsets of (2 there is a smallest o-algebra Hy
containing U, namely

Hy = ﬂ{H;H o-algebra of 2, U C H} .

(See Exercise 2.3.)

We call Hy the o-algebra generated by U.

For example, if U is the collection of all open subsets of a topological
space {2 (e.g. 2 = R"), then B = Hy is called the Borel o-algebra on {2 and
the elements B € B are called Borel sets. B contains all open sets, all closed
sets, all countable unions of closed sets, all countable intersections of such
countable unions etc.

If (2, F, P) is a given probability space, then a function Y: 2 — R" is
called F-measurable if

YW WU)y={weRYw)eU}eF
for all open sets U € R™ (or, equivalently, for all Borel sets U C R").
If X: 2 — R™ is any function, then the o-algebra Hx generated by X is
the smallest o-algebra on {2 containing all the sets
XNy ; UcCR" open.
It is not hard to show that
Hx = {X~(B); Be B},

where B is the Borel o-algebra on R"™. Clearly, X will then be H x-measurable
and Hyx is the smallest g-algebra with this property.

The following result is useful. It is a special case of a result sometimes
called the Doob-Dynkin lemma. See e.g. M. M. Rao (1984), Prop. 3, p. 7.
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Lemma 2.1.2. If X,Y:{2 — R"™ are two given functions,then Y is Hx-
measurable if and only if there exists a Borel measurable function g:R” — R"
such that

Y =g(X).

In the following we let (2,7, P) denote a given complete probability
space. A random variable X is an F-measurable function X: 2 — R". Every
random variable induces a probability measure pux on R™, defined by

px(B) = P(X~'(B)).

px is called the distribution of X.
If [|X(w)|dP(w) < oo then the number
2

E[X]:= / X (w)dP(w) = / zdux (z)
2

R™

is called the expectation of X (w.r.t. P).
More generally, if f:R™ — R is Borel measurable and
f |f(X (w))|dP(w) < co then we have

B(f(X 1—/f(x )P (w /fx)dux)

The LP-spaces
If X : 2 — R" is a random variable and p € [1,00) is a constant we define
the LP-norm of X, ||X||,, by

X1l = 1 X|locpy = / X ()PdP(w )

If p = co we set
| Xlloo = [|X|1o0(py = sup{| X (w)|;w € 2}.
The corresponding LP-spaces are defined by
LP(P) = LP(2) = {X : 2 - R™;||X||, < oo}

With this norm the LP-spaces are Banach spaces, i.e. complete normed linear
spaces (see Exercise 2.19). If p = 2 the space L?(P) is even a Hilbert space,
i.e. a complete inner product space, with inner product

(X,Y)2py:=E[X-Y}, X, Y € L*(P).

The mathematical model for independence is the following:
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Definition 2.1.3. Two subsets A, B € F are called independent if
P(AnB)= P(A)- P(B).

A collection A = {H;;i € I} of families H; of measurable sets is independent
if
P(H; n-.-NnH,; )= P(H,;,) --P(H;,)
for all choices of H;, € H;,,- -+, H;, € H;, with different indices 1,, ..., .
A collection of random variables {X;;i € I'} is independent if the collec-
tion of generated o-algebras Hx, is independent.

If two random variables X, Y: {2 — R are independent then
E[XY) = E[X)E]Y],
provided that E[|X|] < co and E[|Y]] < co. (See Exercise 2.5.)

Definition 2.1.4. A stochastic process is a parametrized collection of ran-
dom variables

{Xiher
defined on a probability space (2, F, P) and assuming values in R™.

The parameter space T is usually (as in this book) the halfline [0, 0o}, but
it may also be an interval [a, b], the non-negative integers and even subsets
of R" for n > 1. Note that for each t € T fixed we have a random variable

w— X (w) ; weR.
On the other hand, fixing w € {2 we can consider the function
t— Xi(w); teT

which is called a path of X,.

It may be useful for the intuition to think of ¢ as “time” and each w
as an individual “particle” or “experiment”. With this picture X;(w) would
represent the position (or result) at time t of the particle (experiment) w.
Sometimes it is convenient to write X (¢,w) instead of X,(w). Thus we may
also regard the process as a function of two variables

(t,w) — X(t,w)

from T x {2 into R™. This is often a natural point of view in stochastic
analysis, because (as we shall see) there it is crucial to have X (t,w) jointly
measurable in (¢,w).

Finally we note that we may identify each w with the function t — X, (w)
from T into R™. Thus we may regard 2 as a subset of the space 2 = (R™)7 of
all functions from T into R™. Then the o-algebra F will contain the o-algebra
B generated by sets of the form
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{wiw(ti) € Fr,---,w(te) € Fr}, F; ¢ R™ Borel sets

(B is the same as the Borel o-algebra on 2 if T = [0,00) and 2 is given
the product topology). Therefore one may also adopt the point of view
that a stochastic process is a probability measure P on the measurable space
(R, B).

The (finite-dimensional) distributions of the process X = {X:}ier are
the measures p;, ¢, defined on R™*, k= 1,2,..., by

,U'tl,.,.,tk(F] x F2 X e X Fk) = P[Xh € Fl,"',th € Fk] N t; € T.

Here F),..., Fx denote Borel sets in R"™.

The family of all finite-dimensional distributions determines many (but
not all) important properties of the process X.

Conversely, given a family {vy, .. ;. k € N,t; € T} of probability mea-
sures on R™* it is important to be able to construct a stochastic process
Y = {Y;hier having u,,. ., as its finite-dimensional distributions. One
of Kolmogorov’s famous theorems states that this can be done provided
{v,,...1, } satisfies two natural consistency conditions: (See Lamperti (1977).)

Theorem 2.1.5 (Kolmogorov’s extension theorem).
Forallt),...,tx €T, k € N let vy, +, be probability measures on Rk .t
(F] X X Fk) = l/tl,...,tk(Fa.—l(]) X -+ X Fa—l(k)) (Kl)

Vtoayrotoqn)

for all permutations o on {1,2,...,k} and
I/th-n,tk(FlX .. XFk) = l/tly"'ytk,tk+11"~1tk+"t(le . ‘XFk XRnX . XRn) (K2)

for all m € N, where (of course) the set on the right hand side has a total of
k + m factors.

Then there exists a probability space (2, F,P) and a stochastic process
{X:} on 2, X;: 2 > R", s.t.

th,,..,tk(F] X X Fk) = P[Xh S Fl,”-,th [S Fk] y
for allt; € T, k € N and all Borel sets F;.

2.2 An Important Example: Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later ex-
plained by the random collisions with the molecules of the liquid. To describe
the motion mathematically it is natural to use the concept of a stochastic
process By(w), interpreted as the position at time ¢ of the pollen grain w. We
will generalize slightly and consider an n-dimensional analog.
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To construct { By }i>0 it suffices, by the Kolmogorov extension theorem, to
specify a family {1y, ..} of probability measures satisfying (K1) and (K2).
These measures will be chosen so that they agree with our observations of
the pollen grain behaviour:

Fix z € R™ and define

12
pt, z,y) = (2nt)~™/? -exp(~—-|—x—gy-|—) for ye R*, t>0.
If0 <t <ty <--- <tx define a measure vy, ., on R™* by
th,...,tk(Fl X X Fk) = (221)

= / p(t1, z, z1)p(tea—t1, x1, z2) - - Pt —tk—1, Th—1, T )dT1 - - - dzg
Fix: -xFy

where we use the notation dy = dy; -- - dyr for Lebesgue measure and the
convention that p(0, z, y)dy = §,(y), the unit point mass at z.

Extend this definition to all finite sequences of t;’s by using (K1). Since
J p(t,z,y)dy = 1 for all t > 0, (K2) holds, so by Kolmogorov’s theorem
RrR»

there exists a probability space (£2, F, P*) and a stochastic process {B;}:>0
on {2 such that the finite-dimensional distributions of B, are given by (2.2.1),
l.e.

P*(By, € Fy,---,By, € F) =

= / p(tl,x,xl)---p(tk —tk_l,xk_l,xk)dxl dxk . (222)
Fyx---x Fy

Definition 2.2.1. Such a process is called (a version of) Brownian motion
starting at = (observe that P*(By = z) = 1).

The Brownian motion thus defined is not unique, i.e. there exist several
quadruples (B, £2, F, P*) such that (2.2.2) holds. However, for our purposes
this is not important, we may simply choose any version to work with. As we
shall soon see, the paths of a Brownian motion are (or, more correctly, can be
chosen to be) continuous, a.s. Therefore we may identify (a.a.) w € 2 with a
continuous function ¢t — B;(w) from [0, co) into R"™. Thus we may adopt the
point of view that Brownian motion is just the space C([0, c0), R™) equipped
with certain probability measures P* (given by (2.2.1) and (2.2.2) above).
This version is called the canonical Brownian motion. Besides having the
advantage of being intuitive, this point of view is useful for the further anal-
ysis of measures on C([0,c0), R™), since this space is Polish (i.e. a complete
separable metric space). See Stroock and Varadhan (1979).

We state some basic properties of Brownian motion:
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B, is a Gaussian process, i.e.forall0 <i¢; < ... < #, the random variable
Z = (By,,--.,B;,) € R* has a (multi)normal distribution. This means
that there exists a vector M € R™* and a non-negative definite matrix
C = [cjm] € R™*™¥ (the set of all nk x nk-matrices with real entries)
such that

[exp ( Zuj )] = exXp (— 5 Zu]c]mum +1i ZuJM ) (2.2.3)

]m

for all w = (uy,...,unk) € R™, where i = /—1 is the imaginary unit
and E* denotes expectation with respect to P*. Moreover, if (2.2.3)
holds then

M = E*®[Z] is the mean value of Z (2.2.4)

and

¢im = E*|[(Z; — M;)(Z, — Mp)]  is the covariance matrix of Z .
(2.2.5)
(See Appendix A).
To see that (2.2.3) holds for Z = (By,, ..., By, ) we calculate its left hand
side explicitly by using (2.2.2) (see Appendix A) and obtain (2.2.3) with

M = E*|Z) = (z,z,---,z) € R™* (2.2.6)
and
til, til, -+ t1iI,
I, tol, -+ tol,
c=|"" " o (2.2.7)
til, tol, -+ trl,
Hence
E*[B]=1«z forall t >0 (2.2.8)
and

E*[(B; — x)?] = nt, E*|(B; — x)(B, — )] = n min(s,t) . (2.2.9)

Moreover,
E*((B, — B)} ] =n(t—s)ift > s, (2.2.10)
since
E®((B; — B;)?| = E*[(B, — z)* = 2(B, — z)(Bs — z) + (B, — )]
= n(t—2s+8)=n(t—s),whent >s.
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(ii) B has independent increments, i.e.

B, ,By, — By, +, By, — By, , are independent
forall 0 <ty <ty--- <ty . (2.2.11)

To prove this we use the fact that normal random variables are inde-
pendent iff they are uncorrelated. (See Appendix A). So it is enough to
prove that

EI[(Bt_‘ — Bti—l)(Btj - Btj—x)] =0 when ¢; < tj R (2212)
which follows from the form of C:

EI[BtiBt,' - Bt-;—thj - BtiBtj—l + Bti—lBtj—I]
=nt; —ti—y —t; +t_1)=0.

From this we deduce that By — B, is independent of F; if s > t.

(iii) Finally we ask: Is ¢ — B(w) continuous for almost all w? Stated like this
the question does not make sense, because the set H = {w;t — B;(w)
is continuous} is not measurable with respect to the Borel o-algebra B
on (R™)[%%) mentioned above (H involves an uncountable number of
t’s). However, if modified slightly the question can be given a positive
answer. To explain this we need the following important concept:

Definition 2.2.2. Suppose that {X:} and {Y;} are stochastic processes on
(2, F, P). Then we say that {X;} is a version of (or a modification of ) {Y;}
if

P{w; Xi(w) =Y (w)}) =1 forall ¢.

Note that if X, is a version of Y;, then X, and Y; have the same finite-
dimensional distributions. Thus from the point of view that a stochastic pro-
cess is a probability law on (R™)[%%) two such processes are the same, but
nevertheless their path properties may be different. (See Ezercise 2.9.)

The continuity question of Brownian motion can be answered by using
another famous theorem of Kolmogorov:

Theorem 2.2.3 (Kolmogorov’s continuity theorem). Suppose that the
process X = {Xi}i>0 satisfies the following condition: For all T > O there
exist positive constants a, 3, D such that

E[|X: — X,|*]<D-|t—s'*?; 0<s t<T. (2.2.13)

Then there exists a continuous version of X.
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For a proof see for example Stroock and Varadhan (1979, p. 51).
For Brownian motion B, it is not hard to prove that (See Exercise 2.8)

E®||B; — Bg|*] = n(n + 2)|t - 5| . (2.2.14)

So Brownian motion satisfies Kolmogorov’s condition (2.2.13) with o = 4,
D =n(n+2) and § = 1, and therefore it has a continuous version. From now
on we will assume that B; is such a continuous version.
Finally we note that
If B;= (Bt(l), e ,Bt(")) is n-dimensional Brownian motion, then
the 1-dimensional processes {Bt(j )}tzo, 1<j<n are independent,
1-dimensional Brownian motions . (2.2.15)

Exercises

2.1. Suppose that X: 2 — R is a function which assumes only countably
many values a1, as,... € R.

a) Show that X is a random variable if and only if
X Yap)e F  forall k=1,2,... (2.2.16)
b) Suppose (2.2.16) holds. Show that

E[X] =) lak|P[X = ax] . (2.2.17)
k=1
c) If (2.2.16) holds and E[|X|] < oo, show that
E[X] =) axP[X =a].
k=1
d) If (2.2.16) holds and f:R — R is measurable and bounded, show

, that -
E[f(X)] =) fax)P[X = a4] .

k=1
2.2. Let X:f2 —» R be a random variable. The distribution function F of
X is defined by
F(z)=P[X <2z].

a) Prove that F has the following properties:

(i) 0<F<1, lim F(z)=0, lim F(z)=1.

I ——00 T—00
(ii) F is increasing (= non-decreasing).
(iii) F is right-continuous, i.e. F(z) =limy_o F(xz + h) .

h>0
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b) Let g: R — R be measurable such that E[|g(X )|} < co. Prove that

[e 0]

Efg(X)] = / o(z)dF(z)

-0

where the integral on the right is interpreted in the Lebesgue-
Stieltjes sense.

c) Let p(z) > 0 be a measurable function on R. We say that X has
the density p if

T

F(z) = / p(y)dy for all = .

— o0

Thus from (2.2.1)-(2.2.2) we know that 1-dimensional Brownian
motion B; at time ¢t with By = 0 has the density

p(z) = ﬁem(—g); zeR.
Find the density of B?.
2.3. Let {H;}icr be a family of o-algebras on 2. Prove that
H=({Hisiel}
is again a o-algebra.
2.4. a) Let X: 2 — R" be a random variable such that
E[|X|P} < o0 for some p, 0 < p < 0.

Prove Chebychev’s inequality:
PIX| >\ < ;;EHXP’] forall A>0.
Hint: [|X|PdP > [|X|PdP, where A = {w:|X| > A}.
b) Suppcge there exi;s k > 0 such that
M = Elexp(k|X])] < 00 .
Prove that P[|X| > ] < Me " forall A > 0.
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5. Let X,Y:f2 — R be two independent random variables and assume
for simplicity that X and Y are bounded. Prove that

E[XY] = E|X]E[Y] .
(Hint: Assume |X| < M, |Y| < N. Approximate X and Y by sim-
ple functions p(w) = 3 a;XF, (w), Y(w) = > b;Xg, (w), respectively,
=1 7=1

where F; = X‘l([ai,aiﬂ)), Gj = Y'—l([bj,bj_;_l)), ~M =qap<a; <
o< =M, -N=by<b <...<by,=N.Then

E[X] = E[g| = }: a;P(F)), E[Y]=~ E[]= Z b; P(G;)

and
E[XY]~ Elpy] = > aibjP(FiN Gy) .. ) .
i,j
.6. Let (2, F, P) be a probability space and let A;, Az,... be sets in F
such that

f:P(Ak) <00.
k=1

Prove the Borel-Cantelli lemma:

P(ﬁ DAk)=O,

m=1k=m

i.e. the probability that w belongs to infinitely many A} s is zero.

.7. a) Suppose G1,Gy,...,G, are disjoint subsets of {2 such that

Prove that the family G consisting of § and all unions of some (or
all) of Gy, ..., G, constitutes a o-algebra on 2.

b) Prove that any finite o-algebra F on {2 is of the type described in
a).

c) Let F be a finite o-algebra on 2 and let X:2 — R be F-
measurable. Prove that X assumes only finitely many possible
values. More precisely, there exists a disjoint family of subsets
F,..., F,, € F and real numbers cy,...,c¢n such that

m

X(w) = Zc,'Xp‘(w) .

.8. Let B, be Brownian motion ou R, By = 0. Put E == E.
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2.9.

2.10.

2.11.
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a) Use (2.2.3) to prove that
Ele™B] = exp(—%u%) foralueR.

b) Use the power series expansion of the exponential function on both
sides, compare the terms with the same power of u and deduce that

E[B}] = 3t?
and more generally that
oy _ (2R
E[Bt]_2k_k!t, keN.

c¢) If you feel uneasy about the lack of rigour in the method in b), you
can proceed as follows: Prove that (2.2.2) implies that

E[f(B.)] = 721——% / f(@)e Fda
R

for all functions f such that the integral on the right converges.
Then apply this to f(z) = z?* and use integration by parts and
induction on k.

d) Prove (2.2.14), for example by using b) and induction on n.

To illustrate that the (finite-dimensional) distributions alone do not
give all the information regarding the continuity properties of a pro-
cess, consider the following example:
Let (£2, F, P) = ([0,00), B, u) where B denotes the Borel o-algebra on
[0,00) and u is a probability measure on [0, 00) with no mass on single
points. Define ¢
1 ift=w
Xe(w) = 0 otherwise
and

Yi(w) =0 for all (t,w) € [0,00) x [0,00) .

Prove that {X;} and {¥;} have the same distributions and that X, is
a version of Y;. And yet we have that t — Y;(w) is continuous for all
w, while t — X, (w) is discontinuous for all w.

A stochastic process X, is called stationary if {X,} has the same dis-
tribution as {X;+n} for any h > 0. Prove that Brownian motion B,
has stationary increments, i.e. that the process {B;4+n — Bi}n>0 has
the same distribution for all ¢.

Prove (2.2.15).
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Let B; be Brownian motion and fix {5 > 0. Prove that
By= By 4y — By, ; t>0
is a Brownian motion.
Let B; be 2-dimensional Brownian motion and put
D, = {z € R*|z| < p} for p>0.

Compute
P°B,e D,].

Let B; be n-dimensional Brownian motion and let K C R™ have zero
n-dimensional Lebesgue measure. Prove that the expected total length
of time that B, spends in K is zero. (This implies that the Green
measure associated with B, is absolutely continuous with respect to
Lebesgue measure. See Chapter 9).

Let B; be n-dimensional Brownian motion starting at 0 and let
U eR™ " be a (constant) orthogonal matrix, i.e. UUT =1. Prove that

Bti = UBt
is also a Brownian motion.

(Brownian scaling). Let B; be a l-dimensional Brownian motion
and let ¢ > 0 be a constant. Prove that

~ 1
Bt: = —BCZt
c
is also a Brownian motion.

If X¢(-): 2 — R is a continuous stochastic process, then for p > 0 the
p'th variation process of X;, (X, X){) is defined by

(X, X)Pw) = lim S |X,,,, ()~ X, ()|" (limit in probability)
Atk—-»Otk(t

where 0 =¢; <t < ... <t, =t and Aty = ty,; — t&. In particular,
if p = 1 this process is called the total variation process and if p = 2
this is called the quadratic variation process. (See Exercise 4.7.) For
Brownian motion B; € R we now show that the quadratic variation
process is simply

(B, B)u(w) = (B, B (w) =t as.

Proceed as follows:
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2.18.

2.19.

2.20.
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a) Define
ABy = By, ,, — By,
and put
Y(t,w) = Y (ABr(w))?,
te <t
Show that

E[(D (4B 1)1 =2 (Aty)?

te<t te <t

and deduce that Y(t,-) — t in L?(P) as Aty — 00 .
b) Use a) to prove that a.a. paths of Brownian motion do not have
a bounded variation on [0,t], i.e. the total variation of Brownian

motion is infinite, a.s.
a) Let 12 = {1,2,3,4,5} and let U be the collection

U ={{1,2,3},{3,4,5}}

of subsets of {2. Find the smallest o-algebra containing U (i.e. the
o-algebra Hy, generated by U).
b) Define X : {2 — R by

X(1)=X(@2)=0, X(@3)=10, X(4)=X(5)=1

Is X measurable with respect to Hy?
c) Define Y : 2 - R by

Y(1)=0, Y(2)=Y@B)=Y@)=Y(5) =1

Find the o-algebra Hy generated by Y.

Let (£2,F,u) be a probability space and let p € [1,00]. A sequence
{fn}32, of functions f, € LP(u) is called a Cauchy sequence if

| fr— fmllp — 0 as n,m — o0.

The sequence is called convergent if there exists f € LP(u) such that
fn— f in LP().

Prove that every convergent sequence is a Cauchy sequence.

A fundamental theorem in measure theory states that the converse is
also true: Every Cauchy sequeence in LP(u) is convergent. A normed
linear space with this property is called complete. Thus the LP(u)
spaces are complete.

Let B; be 1-dimensional Brownian motion, 0 € R be constant and
0 < s < t. Use (2.2.2) to prove that

E[exp(o(Bs — B:))] = exp (§0%(s - t)). (2.2.18)
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3.1 Construction of the It6 Integral

We now turn to the question of finding a reasonable mathematical interpre-
tation of the “noise” term in the equation of Problem 1 in the Introduction:

‘fj_]j = (r(t) + “noise” )N (t)

or more generally in equations of the form

dX
- = b(t, X¢) + o(t,X¢) - “noise” , (3.1.1)
where b and o are some given functions. Let us first concentrate on the case
when the noise is 1-dimensional. It is reasonable to look for some stochastic
process W, to represent the noise term, so that
dX
_(-j? = b(t, Xt)-l—O'(t,Xt)-Wt . (312)
Based on many situations, for example in engineering, one is led to assume
that W, has, at least approximately, these properties:

(i) t1 # to = Wy, and Wy, are independent.

(i) {W,} is stationary, i.e. the (joint) distribution of {Wi, 4¢,..., Wi, 41}
does not depend on ¢.

(i) E[W;] =0 for all t.

However, it turns out there does not exist any “reasonable” stochastic
process satisfying (i) and (ii): Such a W; cannot have continuous paths. (See
Exercise 3.11.) If we require E[W?] = 1 then the function (t,w) — W;(w)
cannot even be measurable, with respect to the o-algebra B x F, where B is
the Borel o-algebra on [0, c0]. (See Kallianpur (1980, p. 10).)

Nevertheless it is possible to represent W, as a generalized stochastic
process called the white noise process.

That the process is generulized means that it can be constructed as a
probability measure on the space S’ of tempered distributions on [0, 00),
and not as a probability measure on the much smaller space RI[%), like an
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ordinary process can. See e.g. Hida (1980), Adler (1981), Rozanov (1982),
Hida, Kuo, Potthoff and Streit (1993) or Holden, @ksendal, Ubge and Zhang
(1996).

We will avoid this kind of construction and rather try to rewrite equation
(3.1.2) in a form that suggests a replacement of W; by a proper stochastic

process: Let 0 = tp < ¢; < --- < t,,, = t and consider a discrete version of
(3.1.2):

Xiy1 — X = b(te, Xp) Aty + o(te, X)W Aty (3.1.3)
where

Xj=X(tj), Wk:Wtk7 Atk=tk+1—tk,

We abandon the Wi-notation and replace WAty by AV, = V;, ., — V;,,
where {V;}¢>0 is some suitable stochastic process. The assumptions (i), (ii)
and (iii) on W, suggest that V; should have stationary independent increments
with mean 0. It turns out that the only such process with continuous paths
is the Brownian motion B;. (See Knight (1981)). Thus we put V; = B; and
obtain from (3.1.3):

k-1 k-1
Xk =X0+Zb(tj,Xj)Atj+ZO’(tj,Xj)ABj . (3.1.4)
j=0 3=0

Is it possible to prove that the limit of the right hand side of (3.1.4) exists,
in some sense, when At; — 07 If so, then by applying the usual integration
notation we should obtain

¢ t
X; = X0+/b(s,X3)ds+ “/a(s,Xs)st” (3.1.5)
0 0

and we would adopt as a convention that (3.1.2) really means that X, =
Xi(w) is a stochastic process satisfying (3.1.5).

Thus, in the remainder of this chapter we will prove the existence, in a
certain sense, of

“ / f(s,w)dBs(w)”
0

where B;(w) is 1-dimensional Brownian motion starting at the origin, for a
wide class of functions f:[0,00] X £2 — R. Then, in Chapter 5, we will return
to the solution of (3.1.5).

Suppose 0 < S < T and f(¢,w) is given. We want to define

T
/ F(t,w)dBy(w) . (3.1.6)
S



3.1 Construction of the It5 Integral 23

It is reasonable to start with a definition for a simple class of functions f
and then extend by some approximation procedure. Thus, let us first assume
that f has the forn

o(t,w) = Z‘«’j(w) c A0 Genz-m(t) (3.1.7)
j20

where & denotes the characteristic (indicator) function and n is a natural
number. For such functions it is reasonable to define

/ ¢(t,w)dBy(w) = Y _ €;(w)[By,,, — By }(w), (3.1.8)

j=0

where
k-27" if §<k-27"<T
te=tM={ § if k-27"<S§
T if k-27">T

However, without any further assumptions on the functions e;(w) this leads
to difficulties, as the next example shows.

Here — and in the following - E means the same as E°, the expectation
w.r.t. the law P° for Brownian motion starting at 0. And P means the same
as P°.

Example 3.1.1. Choose

1(t,w) = ZBﬂ n(w) * Aja-n (541)2-7) (1)
j>0
$2(t,w) = Y _ Birnyz-n(w) - Xja-n (i+1)2-)(t) -
j=0

Then
[/¢1 t w dBt(UJ)] ZE[BtJ Bt_,+1 Bt,)] =0,
j>o0

since {B;} has independent increments. But

[ / pa(t, w)dBs( w)] > E[By,,, - (Bi,, — By)]

j>0
= > E[((Bi;,, —B,)*|=T, by (2210).
Jj20

So, in spite of the fact that both ¢, and ¢, appear to be very reasonable
approximations to

f(t,w) = By(w) ,
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their integrals according to (3.1.8) are not close to each other at all, no matter
how large n is chosen.

This only reflects the fact that the variations of the paths of B, are too
big to enable us to define the integral (3.1.6) in the Riemann-Stieltjes sense.
In fact, one can show that the paths ¢ — B, of Brownian motion are nowhere
differentiable, almost surely (a.s.). (See Breiman (1968)). In particular, the
total variation of the path is infinite, a.s.

In general it is natural to approximate a given function f(t,w) by

> F(E,w) - Xyt (B)
J

where the points ¢} belong to the intervals [¢;,2;41], and then define

T

[ f(t,w)dB(w) as the limit (in a sense that we will explain) of

5

Z:f(t;’f,t.u)[BtH1 — By,](w) as n — oo. However, the example above shows
3

that — unlike the Riemann-Stieltjes integral - it does make a difference here
what points 7 we choose. The following two choices have turned out to be
the most useful ones:

1) tj =t; (the left end point), which leads to the Ité integral, from now on
denoted by

T
/ f(t,w)dBy(w) ,
S

and
2) t; = (tj+%;+1)/2 (the mid point), which leads to the Stratonovich integral,
denoted by

T
/f(t,w) o dBy(w) .
S

(See Protter (1990, Th. V. 5.30)).

In the end of this chapter we will explain why these choices are the best
and discuss the relations and distinctions between the corresponding inte-
grals.

In any case one must restrict oneself to a special class of functions f(¢,w)
in (3.1.6), also if they have the particular form (3.1.7), in order to obtain
a reasonable definition of the integral. We will here present It6’s choice
t7 = t;. The approximation procedure indicated above will work out success-
fully provided that f has the property that each of the functions w — f(t;,w)
only depends on the behaviour of B,(w) up to time t;. This leads to the fol-
lowing important concepts:
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Definition 3.1.2. Let By(w) be n-dimensional Brownian motion. Then we
define Fy = ft(") to be the o-algebra generated by the random variables
{Bi(s)}1<i<n,ossgt' In other words, F; is the smallest o-algebra containing
all sets of the form

{w; By, (w) € F1,--+, By, (w) € Fi},

where t; <t and F; C R™ are Borel sets, j <k =1,2,... (We assume that
all sets of measure zero are included in Fy).

One often thinks of F; as “the history of By up to time t”. A function
h(w) will be F;-measurable if and only if h can be written as the pointwise
a.e. limit of sums of functions of the form

91(Bt,)92(Bt;) - - gk (B, )

where g,,..., gr are bounded continuous functions and t; <t for j < k,
k=1,2,.... (See Exercise 3.14.) Intuitively, that h is F;-measurable means
that the value of h(w) can be decided from the values of B,(w) for s < ¢. For
example, hy(w) = By2(w) is Fi-measurable, while hy(w) = By (w) is not.

Note that F; C F; for s <t (i.e. {F:} is increasing) and that F, C F for
all ¢.

Definition 3.1.3. Let {N;}1>0 be an increasing family of o-algebras of sub-
sets of 2. A process g(t,w): [0, 00) x 2 — R"™ is called M;-adapted if for each
t > 0 the function

w — g(t,w)

is N;-measurable.

Thus the process hj(t,w) = Byo(w) is Fi-adapted, while hy(t,w) =
Byt (w) is not.

We now describe our class of functions for which the It6 integral will be
defined:

Definition 3.1.4. Let V =V(S,T) be the class of functions
ft,w):[0,00) x N2 = R
such that

(i) (t,w) — f(t,w) is B x F-measurable, where B denotes the Borel o-
algebra on [0, 00).
(i) f(t,w) is Fi-adapted.

(iii) E[ff(t,w)mt] < 0o.
S
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The It6 Integral

For functions f € V we will now show how to define the [té integral

T
T(f)(w) = / £(t,w)dBy(w) ,
S

where B, is 1-dimensional Brownian motion.

The idea is natural: First we define Z[¢] for a simple class of functions
¢. Then we show that each f € V can be approximated (in an appropriate
sense) by such ¢’s and we use this to define [ fdB as the limit of [ ¢dB as
¢— f.

We now give the details of this construction: A function ¢ € V is called
elementary if it has the form

Pt,w) =D ej(w) - Xy, 1,40 (1) - (3.1.9)
J

Note that since ¢ € V each function e; must be F;-measurable. Thus in
Example 3.1.1 above the function ¢, is elementary while ¢, is not.

For elementary functions ¢(¢,w) we define the integral according to
(3.1.8), ie.

T
/ B(t,w)dBi(w) = 3 e;(@)[Beysr — By, ](w) - (3.1.10)
S

=0
Now we make the following important observation:

Lemma 3.1.5 (The It6 isometry). If ¢(t,w) is bounded and elementary

then
T 9 T
E‘[(!(ﬁ(t,w)dBt(w)) ] = E[S/qS(t,w)?dt] . (3.1.11)

Proof. Put ABj = By, ,, — B;,. Then
0 if i
Ele;e; AB; AB;| = e .Y
[ J ]] {E[e?] . (tj_,,l - tj) lf =7
using that e;e; AB; and AB; are independent if 2 < j. Thus

E[(/Tdde)z] = ZE[eie,-ABiAB,-] = ZE[ef] (tjp1 —t5)
S iJ J

= E[Zd;’dt] :
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The idea is now to use the isometry (3.1.11) to extend the definition from
elementary functions to functions in V. We do this in several steps:

Step 1. Let g € V be bounded and g(-,w) continuous for each w. Then there
erist elementary functions ¢, € V such that

T
E[/(g~¢n)2dt]——>0 as n — 00 .
5

Proof. Define ¢,,(¢,w) = 3_ g(t;,w)- At .¢,,,)(t). Then ¢, is elementary since
J
g €V, and

T
/(9 ~ ¢n)2dt — 0 as n — 00, for each w,
5

T
since g(-,w) is continuous for each w. Hence E[[(g — ¢,)?dt] — 0 as n — oo,
5

by bounded convergence.

Step 2. Let h € V be bounded. Then there exist bounded functions g, € V
such that gn(-,w) is continuous for all w and n, and

T
— 2 0.
E[S/(h gn) dt] 0

Proof. Suppose |h(t,w)| < M for all (f,w). For each n let 9, be a non-
negative, continuous function on R such that

(i) Yn(z)=0forz<-landz>0
and

@) | Yn(@)de =1
Define

gn(t»w) = /wn(s - t)h(s,w)ds .
0

Then g,(:,w) is continuous for each w and |gn(t,w)] < M. Since h € V we
can show that gn(t,-) is Fi;-measurable for all ¢. (This is a subtle point; see
e.g. Karatzas and Shreve (1991), p. 133 for details.) Moreover,
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T
/(gn(s,w) — h(s,w))%ds — 0 as n — 0o, for each w,
5

since {¢,}n constitutes an approximate identity. (See e.g. Hoffman (1962,
p. 22).) So by bounded convergence

E[S/T(h(t,w) - gn(t,w))2dtj| —0 as n — oo,

as asserted.

Step 3. Let f € V. Then there exists a sequence {h,} C V such that h, is
bounded for each n and

T
E[ (f—hn)2dt] —0asn— 0.
/

Proof. Put
-n if ftw) < —n
ho(t,w)=< f(t,w) if —n<ftw)<n
n if ft,w)y>n.

Then the conclusion follows by dominated convergence.
That completes the approximation procedure.

We are now ready to complete the definition of the It6 integral

T
/f(t,W)dBt(w) for feV.
5

If f € V we choose, by Steps 1-3, elementary functions ¢, € V such that

T
E[ |f—¢n|2dt] —0.
/

Then define
T T
2(f)w)i= [ f(tw)dBw): = im [ on(t,0)dBw).
S S

T
The limit exists as an element of L?(P), since { [ ¢, (¢, w)dB,(w)} forms a
5

Cauchy sequence in L?(P), by (3.1.11).
We summarize this as follows:
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Definition 3.1.6 (The Itd intégral). Let f € V(S,T). Then the 1t inte-
gral of f (from S to T) is defined by

T T
/f(t,w)dBt(w) = nlln;o/(ﬁn(t,w)dBt(w) (limit in L2(P)) (3.1.12)
S S

where {9, } is a sequence of elementary functions such that

E[/T(f(t,w) ~¢n(t,w))2dt] —0 asn-—oo. (3.1.13)
S

Note that such a sequence {¢,} satisfying (3.1.13) exists by Steps 1-3
above. Moreover, by (3.1.11) the limit in (3.1.12) exists and does not depend
on the actual choice of {¢r}, as long as (3.1.13) holds. Furthermore, from
(3.1.11) and (3.1.12) we get the following important

Corollary 3.1.7 (The It isometry).

E[(S/Tf(t,w)dBt)2] =E[S/Tf2(t,w)dt] forall f € V(S,T). (3.1.14)

Corollary 3.1.8. If f(t,w) € V(S,T) and fo(t,w) € V(5,T) forn=1,2,...
T

and E[ [(fa(t,w) — f(t,w))?dt] — 0 as n — oo, then
s

T T
/fn(t,w)dBt(w) - /f(t,w)dBt(w) in L2(P) asn — oo .
s s

We illustrate this integral with an example:

Example 3.1.9. Assume By = 0. Then
i
/Bsst = %Bf —3t.
0

Proof. Put ¢n(s,w) =3 Bj(w) - Aly; 1;,,)(8), where B; = B;;. Then
i

B| 0/ (6n — Bods] = E[; /(B - B)%ds|

ti+1

=Z /(S—tj)d.9=2%(tj+|—tj)2—*0 as Atj—+0.
J ¢ J
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So by Corollary 3.1.8
i i
/ B.dB, = lim [ ¢,dB, = lm 0; B;AB; .
0 0

(See also Exercise 3.13.) Now

A(B?) = Bi,, — B = (Bj1— B))>+2B;(Bj+1 — B;)

= (AB;)? +2B;AB; ,
and therefore, since By = 0,
B? =) A(B?)= (AB;)*+2)_ B;AB;

J J J

or
> _B;AB; =3B} -3 (4B;).

J J

Since Y (AB;)? — t in L2(P) as At; — 0 (Exercise 2.17), the result follows.
J

The extra term — %t shows that the It6 stochastic integral does not behave
like ordinary integrals. In the next chapter we will establish the Ité formula,
which explains the result in this example and which makes it easy to calculate
many stochastic integrals.

3.2 Some Properties of the It6 Integral

First we observe the following:

Theorem 3.2.1. Let f,g € V(0,T) and let 0< S <U < T. Then
T U T
(i) [fdB,= [ fdB:+ [ fdB, for a.a. w
8 5 U
T T T
(i) [(cf+g)dB,=c- [ fdB,+ [ gdB, (c constant) for a.a. w
S S S
T
(iii) E[[fdB,] =0
5
T
(iv) [ fdB; is Fr-measurable.
8

Proof. This clearly holds for all elementary functions, so by taking limits we
obtain this for all f,g € V(0,T).

An important property of the Itd integral is that it is a martingale:
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Definition 3.2.2. 4 filtration (on (£2,F)) is a family M = {M,;}i>0 of
o-algebras M; C F such that

O0<s<t=> M, CM,

(i.e. {M;} is increasing). An n-dimensional stochastic process {M;}1>0 on
(2, F, P) is called a martingale with respect to a filtration {M,;}i>0 (and
with respect to P) if

(i) M; is M,-measurable for all t,
(ii) E[|M,|] < oo for allt

and
(iii) E[M M} = M, for all s > t.

Here the expectation in (ii) and the conditional expectation in (iii) is
taken with respect to P = P°. (See Appendix B for a survey of conditional
expectation).

Example 3.2.3. Brownian motion B; in R™ is a martingale w.r.t. the o-
algebras F, generated by {B;;s < t}, because

E[|B.|)? < E[|By|] = |Bo|? + nt and if s > ¢ then
E[left] = E[Bs - Bt + Btlft]
= E[Bs - Btlft] + E[Btlft] = 0+ Bt = Bt .
Here we have used that E[(B; — B;)|F;] = E|Bs — B;] = 0 since B, — B, is

independent of F; (see (2.2.11) and Theorem B.2.d)) and we have used that
E|[B;|F] = B, since B, is F;-measurable (see Theorem B.2.c)).

For continuous martingales we have the following important inequality
due to Doob: (See e.g. Stroock and Varadhan (1979), Theorem 1.2.3 or Revuz
and Yor (1991), Theorem I1.1.7)

Theorem 3.2.4 (Doob’s martingale inequality). If M, is a martingale
such that t — M;(w) is continuous a.s., then for all p > 1,T > 0 and all
A>0

1
Pl sup |M;| > A} < — - E[|M7|"].
0<t<T AP

We now use this inequality to prove that the It integral

0/ f(s,w)dB,

can be chosen to depend continuously on ¢ :
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Theorem 3.2.5. Let f € V(0,T). Then there erists a t-continuous version

of
/f(S»w)st(w) . 0<i<T,
0

i.e. there erxists a t-continuous stochastic process J; on (2, F, P) such that

t
PlJ, = /de] =1 forall t,0<t<T. (3.2.1)

Proof. Let ¢p = ¢pp(t,w) = Zeg.”)(w)/\’[t(n) L) )(t) be elementary functions
j Jjotik

such that T
[/f ¢n2dt}—>0 when n — o0 .
0
Put .
I(tw) = /(ﬁn(s,w)st(w)
0
and

It———I(t,w):/f(s,w)st(w); 0<t<T.

Then I,(-,w) is continuous, for all n. Moreover, I,(t,w) is a martingale with
respect to Fi, for all n :

ElIn(s,w)|F1] = E[( / dndB + / ¢,,dB))ft]

i
= / ¢ndB+E[ > e§")ABj[}}]
0

(7) < 4(n)
1<tV <t <s

- / bndB+ 3 E[E[e;.")ABj|ft§n)]]}‘t]
J

t

- / 6ndB + 5 E[e™ E[AB;|F, | 7]
j 3

= /¢ndB = In(t,w) (3.2.2)
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when ¢ < s, using Theorem B.3. and Theorem B.2.d).
Hence I, — I, is also an F;-martingale, so by the martingale inequality
(Theorem 3.2.4) it follows that

P[ sup |I,(t,w) — In(t,w)| > e] < el"’ CE[|I(T,w) - Im(T,w)m

0<t<T
. T
=6—2E[/(¢n—¢m)2ds]—>0 as m,n — 00.
0

Hence we may choose a subsequence ny T 0o s.t.

P sup |In,,,(t,w) = In, (t,0)] > 27%] < 27
0<t<T

By the Borel-Cantelli lemma

P[ sup lInk+1(t w) — In, (t,w)| > 27% for infinitely many k] =0.
0<

So for a.a. w there exists k1(w) such that

sup Hppoo (t,w) = In, (Hw)] < 2k for k > k1(w) .
0<t<

Therefore I, (t,w) is uniformly convergent for ¢t € [0, 7], for a.a. w and so the
limit, denoted by Jy(w), is t-continuous for ¢t € [0,T], a.s. Since I, (¢,-) —
I(t,-) in L%[P] for all t, we must have

I = J; as. for all t e (0,7 .

That completes the proof. 0

t
From now on we shall always assume that [ f(s,w)dBs(w) means a t-
0

continuous version of the integral.

Corollary 3.2.6. Let f(t,w) € V(0,T) for all T. Then

i
M(w) = /f(s,w)st
0
is a martingale w.r.t. F; and

P[ sup |M,| > )] < = E[/f(s w) ds} ; AT >0. (3.2.3)
0<t<T

Proof. This follows from (3.2.2), the a.s. t-continuity of M, and the martin-
gale inequality (Theorem 3.2.4), combined with the It6 isometry (3.1.14).
a
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3.3 Extensions of the It6 Integral

The It0 integral [ fdB can be defined for a larger class of integrands f than
V. First, the measurability condition (ii) of Definition 3.1.4 can be relaxed to
the following:

(i)’ There exists an increasing family of o-algebras H;;¢ > 0 such that
a) B; is a martingale with respect to H; and
b) f; is H;-adapted.

Note that a) implies that F; C H:. The essence of this extension is that we
can allow f; to depend on more than F; as long as B, remains a martingale
with respect to the “history” of f,; s < ¢. If (i)’ holds, then E[B;—B;|H;] = 0
for all s > ¢ and if we inspect our proofs above, we see that this is sufficient
to carry out the construction of the Ité integral as before.

The most important example of a situation where (ii)’ applies (and (ii)
doesn’t) is the following:

Suppose Bi(w) = B(t,w) is the k’th coordinate of n-dimensional Brown-
ian motion (Bi,. .., By). Let ]—'t(") be the o-algebra generated by By (s1,+),- - -,
B, (sn,"); sk < t. Then Byi(t,w) is a martingale with respect to ftn) because
By(s,+) — Bi(t,) is independent of ft(") when s > ¢. Hence we can choose

t
H, = F™ in (i)’ above. Thus we have now defined [ f(s,w)dBy(s,w) for
0
ft(")—adapted integrands f(¢,w). That includes integrals like
/ BydB;  or / sin(B} + B2) dB;

involving several components of n-dimensional Brownian motion. (Here we
have used the notation dB; = dBj(t,w) etc.)
This allows us to define the multi-dimensional It6 integral as follows:

Definition 3.3.1. Let B = (B,, Ba,...,B,) be n-dimensional Brownian
motion. Then Vi7*™(S,T) denotes the set of m x n matrices v = [vy;(t,w)]
where each entry vy;(t,w) satisfies (i) and (i) of Definition 8.1.4 and (i)’
above, with respect to some filtration H = {H:}i>o0.

Ifve V™™ (S,T) we define, using matriz notation

T T /vl ' Vn dB;
[uas=[| : )
s S Umli *°° Umn dB,
to be the m x 1 matriz (column vector) whose i’th component is the following
sum of (extended) 1-dimensional Ité integrals:
n T
Z/v;,-(s,w)dBj(s,w).

j=1%
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IfH=F"m = {FM},50 we write V™(S,T) and if m = 1 we write
VE(S,T) (respectively V'(S,T)) instead of Vi,*1(S,T) (respectively
V*1(8 T)). We also put

ymxn men(()’oo) = ﬂ men(0>T) :
T>0

The next extension of the It6 integral consists of weakening condition (iii)
of Definition 3.1.4 to

(i)’ P[/Tf(s,w)2ds < oo} =1.
S

Definition 3.3.2. Wy (S, T) denotes the class of processes f(t,w) € R satis-

fying (i) of Definition 8.1.4 and (1), (i)’ above. Similarly to the notation for

V we put Wy = [} Wi(0,T) and in the matriz case we write Wy (S, T')
T>0

ete. If H = F™ we write W(S, T) instead of We (S, T) etc. If the dimen-
sion is clear from the context we sometimes drop the superscript and write
F for F™ and so on.

Let B; denote 1-dimensional Brownian motion. If f € Wy one can show
that for all ¢ there exist step functions f,, € Wy, such that jt“ [fa—fl?ds — 0
in probability, i.e. in measure with respect to P. For such aosequence one has
that ft fn(s,w)dB; converges in probability to some random variable and the

0

limit only depends on f, not on the sequence {f,}. Thus we may define

it

i
/f(s,w)st(w) :nlin;o /fn(s,w)st(w) (limit in probability) for feW,, .
0

(3.3.1)
As before there exists a t-continuous version of this integral. See Friedman
(1975, Chap. 4) or McKean (1969, Chap. 2) for details. Note, however, that
this integral is not in general a martingale. See for example Dudley’s Theorem
(Theorem 12.1.5). It is, however, a local martingale. See Karatzas and Shreve
(1991), p. 146. See also Exercise 7.12.

A comparison of Ité6 and Stratonovich integrals

Let us now return to our original question in this chapter: We have argued
that the mathematical interpretation of the white noise equation

dX

P =b(t, X)) +o(t, X)) W, (3.3.2)
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is that X, is a solution of the integral equation

¢ ¢
X:=Xo + /b(s,Xs)ds + “/a(s,Xs)st” , (3.3.3)
0 0

for some suitable interpretation of the last integral in (3.3.3). However, as
indicated earlier, the It6 interpretation of an integral of the form

“/f(s,w)st(w)” (%)
0

is just one of several reasonable choices. For example, the Stratonovich in-
tegral is another possibility, leading (in general) to a different result. So the
question still remains: Which interpretation of (x) makes (8.5.8) the “right”
mathematical model for the equation (3.3.2)7 Here is an argument that in-
dicates that the Stratonovich interpretation in some situations may be the
most appropriate: Choose t-continuously differentiable processes Bt(") such
that for a.a. w
BM(t,w) — B(t,w) as 1 — 00

uniformly (in ) in bounded intervals. For each w let Xt(") (w) be the solution
of the corresponding (deterministic) differential equation

dB{"
=b(t, X;) + a(t,Xt)—T;—— . (3.3.4)

ax,
dt

Then Xt(n) (w) converges to some function X;(w) in the same sense: For a.a.
w we have that Xt(")(w) — Xi(w) as n — oo, uniformly (in ¢) in bounded
intervals.

It turns out (see Wong and Zakai (1969) and Sussman (1978)) that this so-
lution X; coincides with the solution of (3.3.3) obtained by using Stratonovich
integrals, i.e.

t t
Xy = Xo+ /b(s,Xs)ds+/a(s,Xs) odB; . (3.3.5)
0 0
This implies that X; is the solution of the following modified It6 equation:
i i i
X = Xo +/b(s,Xs)ds + %/a'(s,Xs)a(s,Xs)ds +/a(s,Xs)st , (3.3.6)
0 0 0

where ¢’ denotes the derivative of ¢ (t, ) with respect to . (See Stratonovich
(1966)).
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Therefore, from this point of view it seems reasonable to use (3.3.6) (i.e.
the Stratonovich interpretation) — and not the It6 interpretation

i

X: = Xo +/b(s,Xs)ds+ /a(s,Xs)st (3.3.7)
0 0

as the model for the original white noise equation (3.3.2).

On the other hand, the specific feature of the It6 model of “not looking
into the future” (as explained after Example 3.1.1) seems to be a reason for
choosing the It6 interpretation in many cases, for example in biology (see the
discussion in Turelli (1977)). The difference between the two interpretations
is illustrated in Example 5.1.1. Note that (3.3.6) and (3.3.7) coincide if o (¢, z)
does not depend on z. For example, this is the situation in the linear case
handled in the filtering problem in Chapter 6.

In any case, because of the explicit connection (3.3.6) between the two
models (and a similar connection in higher dimensions — see (6.1.3)), it will
for many purposes suffice to do the general mathematical treatment for one
of the two types of integrals. In general one can say that the Stratonovich
integral has the advantage of leading to ordinary chain rule formulas under a
transformation (change of variable), i.e. there are no second order terms in the
Stratonovich analogue of the It6 transformation formula (see Theorems 4.1.2
and 4.2.1). This property makes the Stratonovich integral natural to use for
example in connection with stochastic differential equations on manifolds (see
Elworthy (1982) or Ikeda and Watanabe (1989)).

However, Stratonovich integrals are not martingales, as we have seen that
1t6 integrals are. This gives the Ité integral an important computational
advantage, even though it does not behave so nicely under transformations
(as Example 3.1.9 shows). For our purposes the Ité integral will be most
convenient, so we will base our discussion on that from now on.

Exercises

Unless otherwise stated B; denotes Brownian motion in R, By = 0.

3.1. Prove directly from the definition of It6 integrals (Definition 3.1.6)

that
i

t
/Sst = tBt - /Bsds .
0

0
(Hint: Note that

ZA (s;B ZsJAB +ZBJ+1AsJ.
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3.2.

3.3.

3.4.

3.5.

3.6.
3.7.

3. 1t6 Integrals

Prove directly from the definition of It6 integrals that
¢ ¢
/deBs =4iB} - /Bsds .
0 0

If X;:{2 — R™ is a stochastic process, let H; = ng) denote the o-

algebra generated by {X;(-); s <t} (i.e. {ng)}tzo is the filtration of

the process {Xi}i>0)-

a) Show that if X, is a martingale w.r.t. some filtration {M;};>0, then
X, is also a martingale w.r.t. its own filtration {Hix)}tzo .

b) Show that if X, is a martingale w.r.t ng), then

E[X:] = E[X)] forall t > 0. (%)

¢) Give an example of a stochastic process X, satisfying (*) and which
is not a martingale w.r.t. its own filtration.

Check whether the following processes X, are martingales w.r.t. {F;}:
(ii) X;= B?
¢
(i) X; = t2B, — 2 [ sB,ds
0
(iv) X = Bi(t)Ba(t), where (B;(t), Ba(t)) is 2-dimensional Brownian

motion.

Prove directly (without using Example 3.1.9) that
M, =B? -t
is an F;-martingale.

Prove that N, = B? — 3tB, is a martingale.

A famous result of Itd (1951) gives the following formula for n times
iterated Ité integrals:

n!/-~-(/( / dBy,)dBy,) - dBy, :ﬁhn(%) (3.3.8)

0<u1<-~Sun <t

where h,, is the Hermite polynomial of degree n, defined by
2 i3

o2
hp(z) = (-1 "e%d— e T ; n=20,1,2,...
dz™

(Thus ho(z) = 1, hi(z) = z, ha(z) = 22 — 1, ha(z) = z° - 3z.)
a) Verify that in each of these n It6 integrals the integrand satisfies
the requirements in Definition 3.1.4.



3.8.

3.9.

3.10.

N

b) Verify formula (3.3.8) for n = 1,2,3 by combining Example 3.1.9
and Exercise 3.2.
¢) Use b) to give a new proof of the statement in Exercise 3.6.

a) Let Y be a real valued random variable on (§2, 7, P) such that
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1.

E[[Y]] < 0.

Define

Show that M, is an F;-martingale.
b) Conversely, let M;; t > 0 be a real valued F;-martingale such that

sup E{|M;|?] < oo for some p > 1.
>0

Show that there exists Y € L!(P) such that
M, = E[Y|F].
(Hint: Use Corollary C.7.)

Suppose f € V(0,T) and that t — f(f,w) is continuous for a.a. w.
Then we have shown that

T
/f(t,w)dBt(w) = AltinlOZf(tj,w)ABj in L2(P).
0 ! J

Similarly we define the Stratonovich integral of f by

T

/f(t,w)odBt(w)zAlti]EOZ f(t;,w)AB;, where t¥=21(t; +t;11),
0 J

whenever the limit exists in L2(P). In general these integrals are dif-
ferent. For example, compute

T
/Bt odB,
0

and compare with Example 3.1.9.

If the function f in Exercise 3.9 varies “smoothly” with ¢ then in fact
the Ité and Stratonovich integrals of f coincide. More precisely, assume
that there exists K < oo and € > 0 such that

E[|f(s,) = ft, )] < K|s—t|'**; 0<s, t<T.

Prove that then we have
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3.11.

3.12,

3.13.

3. It6 Integrals
T
_ : ! . se 1
/f(t,w)dBt = Altllxgogf(tj,w)ABj (limit in L'(P))
0

for any choice of t); € [t;,¢;41]. In particular,

T T
O/f(t,w)dBt :0/f(t,w)odBt.

(Hint: Consider E[| Y f(t;,w)AB; — ¥ f(t},w)AB;l].)
J J

Let W, be a stochastic process satisfying (i), (ii) and (iii) (below
(3.1.2)). Prove that W, cannot have continuous paths. (Hint: Consider
E[(Wt(N) — Wi?], where

WM = (N)V(NAW,), N=1,2,3,...).

As in Exercise 3.9 we let odB; denote Stratonovich differentials.

(i) Use (3.3.6) to transform the following Stratonovich differential
equations into It6 differential equations:
(a) dX; =vXidt+aX,o0dB,
(b) dX, = sin X, cos X;dt + (t2 + cos X;) o dB;

(ii) Transform the following Ité differential equations into Stratonovich
differential equations:
(a) dXt = T‘Xtdt + O(XtdBt
(b) dX;=2e"Xtdt + X2dB,

A stochastic process X;(-): 2 — R is continuous in mean square if
E[X?] < oo for all t and

lim B[(X, ~ X¢)?} =0  forall t>0.
88—
a) Prove that Brownian motion B, is continuous in mean square.

b) Let f:R — R be a Lipschitz continuous function, i.e. there exists
C < oo such that

|f(z) - f(y) < Clz — v forall z,y € R.

Prove that
Y;:= f(By)

is continuous in mean square.
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¢) Let X; be a stochastic process which is continuous in mean square
and assume that X; € V(S,T), T < co. Show that

/ X.dB; = lim / bn(t,w)dBy(w)  (limit in L2(P))
S S

where

¢n(t,w) = Z Xt;”)(w)X{t;"),t;i)l)(t) , T <.
J

(Hint: Consider

()
tis1

T
[ S/ = n t))zdt] [Z / (X¢ ~ Xt;n))zdt]),

J 1
J

.14. Show that a function h(w) is F;-measurable if and only if 4 is a point-
wise limit (for a.a. w) of sums of functions of the form

91(Bt,) - g2(Bt,) -+ gk(Bsy,)

where g1, ..., gr are bounded continuous functions and t; < tfor j < k,

k=1,2,...

Hiut: Complete the following steps:

a) We may assume that A is bounded.

b) For n = 1,2,...and j = 1,2,... put ¢; = t;") = j-27". For
fixed n let H, be the o-algebra generated by {By,(-)}:,;<:- Then by
Corollary C.9

h = E[h|F] = lim E[h{H,] (pointwise a.e. limit)
n—oo

c¢) Define hy,:= E[h|H,]. Then by the Doob-Dynkin lemma (Lemma
2.1.2) we have

hn(w) = Gn(Bt1 (UJ), cey Btk (w))

for some Borel function G,:R¥ — R, where k=max{j;j-2""<t}.
Now use that any Borel function G:R¥ — R. can be approximated
pointwise a.e. by a continuous function F: R¥ — R and complete
the proof by applying the Stone-Weierstrass theorem.
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3.15.

3.16.

3.17.

3.18.

3. 1td Integrals

Suppose f,g € V(S,T) and that there exist constants C, D such that
T

C+ /f(t,w)dBt(w) =D+ /g(t,w)dBt(w) for a.a. we 2.
S S

Show that
C=D
and
ft,w) =g(t,w)  foraa. (t,w)e[S,T] x 2.
Let X: 2 — R be a random variable such that E[{X?] < 0o and let
H C F be a o-algebra. Show that

E[(E[X|M))?] < E[X?].

(See Lemma 6.1.1. See also the Jensen inequality for conditional ex-
pectation (Appendix B).)

Let (£2, F, P) be a probability space and let X: {2 — R be a random

variable with E[|X]|] < oco. If G C F is a finite o-algebra, then by
n

Exercise 2.7 there exists a partition 2 = {J G; such that G consists
i=1

of @ and unions of some (or all) of G,,...,Gp.

a) Explain why E[X|G](w) is constant on each G;. (See Exercise 2.7 ¢).)

b) Assume that P[G;] > 0. Show that

E[X|G Jo XdP G
[ I ](w) = W or weG;.
¢) Suppose X assumes only finitely many values @y, ..., any. Then from

elementary probability theory we know that (see Exercise 2.1)

m
E[X|G:] =) aP[X = ak|Gi] .
k=1
Compare with b) and verify that
E[X|Gi] = E[X|G](w) for weG;.
Thus we may regard the conditional expectation as defined in Ap-
pendix B as a (substantial) generalization of the conditional expec-
tation in elementary probability theory.
Let B; be 1-dimensional Brownian motion and let 0 € R be constant.
Prove directly from the definition that
M, .= exp(oB; — %azt); t>0
is an Fi-martingale.
(Hint: If s > t then Elexp(dB; — §02s)|F;] = Elexp(o(B, — By)) -

exp(cBy — 025)|F;). Now use Theorem B.2 e), Theorem B.2 d) and
Exercise 2. 20 )



4. The It6 Formula and the Martingale
Representation Theorem

4.1 The 1-dimensional It6 Formula

Example 3.1.9 illustrates that the basic definition of It6 integrals is not very
useful when we try to evaluate a given integral. This is similar to the situation
for ordinary Riemann integrals, where we do not use the basic definition but
rather the fundamental theorem of calculus plus the chain rule in the explicit
calculations.

In this context, however, we have no differentiation theory, only integra-
tion theory. Nevertheless it turns out that it is possible to establish an Itd
integral version of the chain rule, called the It6 formula. The Itd formula is,
as we will show by examples, very useful for evaluating Itd integrals.

From the example

t i
/Bsst =iBf-4 or iB}=1t4 /B,,st , (4.1.1)
0 1]

t
we see that the image of the Itd integral B; = [dB, by the map g(z) = %z
0

is not again an It integral of the form

/f(s,w)dB,(w)
0

but a combination of a dB,-and a ds-integral:

(ST

t t
B? =/%ds+/B,st. (4.1.2)
0 0

It turns out that if we introduce Ité processes (also called stochastic integrals)
as sums of a dB,-and a ds-integral then this family of integrals is stable under
smooth maps. Thus we define
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Definition 4.1.1 (1-dimensional It6 processes).
Let B, be 1-dimensional Brownian motion on (2,F,P). A (1-dimensional)
It6 process (or stochastic integral) is a stochastic process X; on (2, F, P) of

the form
t

¢
Xi=Xo+ /u(s,w)ds +/v(s,w)st , (4.1.3)
0 0

where v € Wy, so that

i
P[/v(s,w)2ds < oo for all t > O] =1 (4.1.4)
0

(see Definition 8.3.2). We also assume that u is H;-adapted (where H, is as
in (i), Section 3.3) and

¢
P[/ lu(s,w)|ds < oo for all t > 0] =1. (4.1.5)
0

If X, is an It6 process of the form (4.1.3) the equation (4.1.3) is sometimes
written in the shorter differential form

dX; = udt + vdB; . (4.1.6)
For example, (4.1.1) (or (4.1.2)) may be represented by
d(1B?) = Ldt + B,dB, .
We are now ready to state the first main result in this chapter:

Theorem 4.1.2 (The 1-dimensional Itd formula).
Let X; be an Ité process given by

dX; = udt +vdB; .

Let g(t,z) € C%([0,00) x R) (i.e. g is twice continuously differentiable on
[0,00) x R). Then

}/t = g(t’ Xt)
is again an It6 process, and
dg dg &g
dY = oo (t, Xa)dt + 52 (8, Xo)d X, + %m(t,xt) - (dX4)?, (4.1.7)
where (dX;)? = (dX,) - (dX;) is computed according to the rules

Before we prove It6’s formula let us look at some examples.
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Example 4.1.3. Let us return to the integral
¢
I= /Bsst from Chapter 3 .
0

Choose X, = B, and g(t,z) = 2% Then
1
Y, = g(t, B;) = 7B} .

Then by Ité’s formula,

dg dg d%g
dY, = ﬁdt + %dBt + %Eﬁ(dBt)? = B,dB, + }(dB,)? = B.dB, + idt .
Hence
d(3B}) = B;dB; + idt .

In other words,
¢
iB} = /Bsst + 3t, asin Chapter 3.
0

Example 4.1.4. What is
i

/ sdBg ?

0
From classical calculus it seems reasonable that a term of the form tB, should
appear, so we put

g(t,z) =tz

and
Y, =g(t,B;) =tB; .

Then by Ité’s formula,
dYy = Bydt +tdB; + 0

i.e.
or ‘ :
tB, = /Bsds-l-/sst
0 0
or

t

t
/sdB, =tB; — /Bsds,
0 0

which is reasonable from an integration-by-parts point of view.
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More generally, the same method gives

Theorem 4.1.5 (Integration by parts). Suppose f(s,w) is continuous an
of bounded variation with respect to s € [0,t], for a.a. w. (See Exercise 2.17.)
Then

t

0/ §(5)dB, = £(©)B: — [ Budf,

0

Note that it is crucial for the result to hold that f is of bounded variation.
(See Exercise 4.3 for the general case.)

Sketch of proof of the Ité formula. First observe that if we substitute
dXt = udt -+ ’UdBt

n (4.1.7) and use (4.1.8) we get the equivalent expression

: 2
g(t,Xt)zg(O,Xo)+/<g (sX)+usg (:aX)~1—2 . 22(8)())
0

¢
+/v3 . %(S,Xs)st where u; = u(s,w), vs = v(s,w) . (4.1.9)
0

Note that (4.1.9) is an It process in the sense of Definition 4. 1.1.

We may assume that g, %%, gg and g%i— are bounded, for if (4.1.9) is proved
in this case we obtain the general case by approximating by C? functions

2
gn such that g,, ng,%‘zxﬂ and %f{-‘- are bounded for each n and converge

uniformly on compact subsets of [0,00) X R to g, %%, gg, g—:ﬁ%, respectively.
(See Exercise 4.9.) Moreover, from (3.3.1) we see that we may assume that
u(t,w) and v(t,w) are elementary functions. Using Taylor’s theorem we get

9(t, X:) = g(0, Xo) + Y _ Ag(t;, X;) = g(0, X0)+Z =2 At +Zag-4X

J

QZW (4t;)? +Zata (4t; )(AXH—QZa 2(4X;)° +ZRJ,

where %%, gg etc. are evaluated at the points (¢;, X;,),
Aty =tjp1 —t;, AX; =Xy, — Xy, Ag(t;, X5) = g(ti41, Xeyp0) —9(t5, X;)

and R; = o(| At;|% + |AX;|?) for all j.
If At; — 0 then
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ag Oy 39
2}: = At ~Zat(tJ,X ) At ———)/ (s, X,)ds (4.1.10)

dg < 9g dg
;%ij_;%(tj,xjmxjH/%(s,xs)dxs. (4.1.11)
0

Moreover, since u and v are elementary we get

P9 ax;)2 =5 2920102 12 At;)(AB,
@( i) = azg(t)+zazum(t)( )
+Z (AB;)?, where u; = u(t;,w), v; = v(tj,w). (4.1.12)

The first two terms here tend to 0 as At; — 0. For example,

o[(5 Zaucaniany) ] -

2 2
= ZEK'&}%%%) ](Atj)s — 0 as Atj — 0.
J
We claim that the last term tends to
t
/;9—3 2ds  in L?(P), as At; — 0.
0

2

To prove this, put a(t) = g;%(t,Xt)vz(t,w), a; = a(t;) and consider
2
E [(Z aj(AB;)*~) “J‘Ati) ] =Y Elaia;((AB;)?— At:)((AB;)? - At;)] .
J J %

If i < j then a;a;((AB;)? — At;) and (AB;)? — At; are independent so the
terms vanish in this case, and similarly if i > j. So we are left with

Y Ela3((AB;)? — At;)?) = Z Ela?] - E[(AB))* — 2(AB;)?At; + (At;)?)
= ZEW] 3(4t;)* - 2(At )7+ (Aty)%) =2 Elad] - (4t;)?
— O as At; - 0. ’

In other words, we have established that
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¢
Zaj(ABj)2 — /a(s)ds in L2(P) as At; —»0
J 0

and this is often expressed shortly by the striking formula
(dB;)? = dt . (4.1.13)

The argument above also proves that 3 R; — 0 as At; — 0. That completes
the proof of the It6 formula. O

Remark. Note that it is enough that g(t,z) is C% on [0,00) x U, if U C R
is an open set such that X,(w) € U for all t > 0,w € £2. Moreover, it is
sufficient that g(t,z) is C* w.r.t. t and C? w.r.t. z.

4.2 The Multi-dimensional It6 Formula

We now turn to the situation in higher dimensions: Let B(t,w)=(B(t,w), . ..,
B,.(t,w)) denote m-dimensional Brownian motion. If each of the processes
ui(t,w) and v;;(t, w) satisfies the conditions given in Definition 4.1.1 (1<i<n,
1 < j £ m) then we can form the following n It6 processes

dX1=wdt +virdBy + - + vymdBm

S : (4.2.1)
dX, = Updt + vp1dBy + - - + Vpmd B
Or, in matrix notation simply
dX (t) = udt + vdB(t) , (4.2.2)

where

X, (t) Uy V11 Vim dB;(t)
X(t) = : , U= }],v: : : ],dB(t)——: : (4.2.3)

Xn(t) U Unl* " Unm dB,,.(t)

Such a process X (t) is called an n-dimensional Ité6 process (or just an It
process).

We now ask: What is the result of applying a smooth function to X? The
answer is given by

Theorem 4.2.1 (The general It6 formula).
Let
dX(t) = udt + vdB(t)

be an n-dimensional Ité process as above. Let g(t,z) = (91(¢,%),...,9p(t, T))
be a C? map from [0,00) x R™ into RP. Then the process
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Y(t,w) = g(t, X (1))

is again an Ité process, whose component number k,Y}., is given by

agk agk 1 0% gx .
— (& X)dt+Z (t, X)dX; + 1 }; 5z, (t, X)dX:d X,

where dBZdB] = (5,‘jdt, dBidt = dtdBl =0.

The proof is similar to the 1-dimensional version (Theorem 4.1.2) and is
omitted.

Example 4.2.2. Let B = (By,..., B,) be Brownian motion in R*, n > 2,
and consider

R(t,w) = |B(t,w)| = (B}(t,w) + - + B2(t,w))?,

i.e. the distance to the origin of B(t,w). The function g(t, ) = |z} is not C?
at the origin, but since B, never hits the origin, a.s. when n > 2 (see Exercise
9.7) It6’s formula still works and we get

B -
dR = Z dB; , n ldt.

The process R is called the n-dimensional Bessel process because its generator
(Chapter 7) is the Bessel differential operator Af(x) = 1 f”(z) + %z f' ().
See Example 8.4.1.

4.3 The Martingale Representation Theorem

Let B(t) = (Bi(t), ..., B,(t)) be n-dimensional Brownian motion. In Chap-
ter 3 (Corollary 3.2.6) we proved that if v € V" then the It6 integral

¢
X: = Xo +/v(s,w)dB(s) ; t>0
0

is always a martingale w.r.t. filtration f (and w.r.t. the probability mea-
sure P). In this section we will prove that the converse is also true: Any
ft(")-martingale (w.r.t. P) can be represented as an Ité6 integral (Theorem
4.3.4). This result, called the martingale representation theorem, is important
for many applications, for example in mathematical finance. See Chapter 12.
For simplicity we prove the result only when n = 1, but the reader can easily
verify that essentially the same proof works for arbitrary n.

We first establish some auxiliary results.
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Lemma 4.3.1. Fiz T > 0. The set of random variables
{&(Bty,.--, B, ); ti €0,T), g €c CR™), n=1,2,...}
is dense in L*(Fr, P).

Proof. Let {t;}52, be a dense subset of [0,7] and for each n =1,2,...let H,
be the o-algebra generated by By, (-),..., By, (-). Then clearly

Hn C Hn+1
and Fr is the smallest o-algebra containing all the H,,’s. Choose

g € L2(Fr, P). Then by the martingale convergence theorem Corollary C.9
(Appendix C) we have that

9= El[g|Fr] = lim Elg|Hy] .

The limit is pointwise a.e. (P) and in L2(Fr, P). By the Doob-Dynkin Lemma
(Lemma 2.1.2) we can write, for each n,

E[ng’n] = gn(Btn- .. 7Bin)

for some Borel measurable function g,: R® — R. Each such g,(B,,..., B:,)
can be approximated in L?(Fr, P) by functions ¢, (B, ..., B, ) where
on € C§°(R"™) and the result follows. 0

For an alternative proof of the next result see Exercise 4.17.

Lemma 4.3.2. The linear span of random variables of the type

T T
exp { O/h(t)dBt(w) -3 O/hz(t)dt}; heL?0,T) (deterministic)  (4.3.1)

is dense in L%(Fr, P).

Proof. Suppose g € L?(Fr, P) is orthogonal (in L?(Fr, P)) to all functions
of the form (4.3.1). Then in particular

G(A):= /exp{)\lBt1 (W) + -+ + AnBe, (w)}g(w)dP(w) =0 (4.3.2)
3
for all A= (A1,...,An) € R® and all ty,...,t, € [0,T]. The function G(\) is

real analytic in A € R™ and hence G has an analytic extension to the complex
space C" given by

G(z) = / exp{z1 B, (w) + - - - + z, By, (w) }g(w)d P(w) (4.3.3)
2

forall z=(21,...,2n) € C". (See the estimates in Exercise 2.8 b).) Smoe G=0
on R"™ and G is analytic, G = 0 on C". In particular, G(iy;,iys,...,iyn) =0

for all y = (y1,.-.,yn) € R". But then we get, for ¢ € C§°(R"),
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/¢(Bt1 sy Bt )g(w)dP(w)

7]

:/(27r)‘"/2(/$(y)ei‘y‘B’1+"'+y"B’"’dy)g(w)dP(w)

2 Rn
~ ;e [ ay)( / e“y'B'l+‘“+y"Bf~>g(w>dP(w))dy

R" 2
= (202 [ B(w)Glin)dy =0, (4.3.4)
R".

where

3(y) = (2m)~"/? / b(z)e™ = Vdx
R‘n

is the Fourier transform of ¢ and we have used the inverse Fourier transform
theorem
8(@) = 212 [ Glwpe=vay
Rn

(see e.g. Folland (1984)).

By (4.3.4) and Lemma 4.3.1 g is orthogonal to a dense subset of L2(Fr, P)
and we conclude that g = 0. Therefore the linear span of the functions in
(4.3.1) must be dense in L?(Fr, P) as claimed. O

Suppose B(t) = (Bi(t), ..., Bn(t)) is n-dimensional. If v(s,w) € V*(0,T)
then the random variable

T
V(w):= /v(t,w)dB(t) (4.3.5)
0
is i -measurable and by the Ité isometry
T
E|V? = /E[vz(t,-)]dt <oo, soVelLFM P).
0

The next result states that any F' € Lz(fq(q"), P) can be represented this way:

Theorem 4.3.3 (The It representation theorem).

Let Fe LX(FSV, P). Then there exists a unique stochastic process f(t,w) €
Vr(0,T) such that

T
F(w) = E[F] + / f(t,w)dB(t) . (4.3.6)
0
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Proof. Again we consider only the case n = 1. (The proof in the general case
is similar.) First assume that F has the form (4.3.1), i.e.

F(w) —exp{ /T h(t)dB,(w) — /T h2(t)dt}
4] 4]

for some h(t) € L2[0,T).
Define

t

Yi(w) = exp { /th(s)st(w) - % /h2(s)ds} ; 0<t<T.
0 0

Then by 1t6’s formula
dY; = Y, (h(t)dB, — $h*(t)dt) + 1Yi(h(t)dB,)* = Y;h(t)dB,
so that

t
;=1 +/Ysh(s)dB, ; te0,7T].
0

Therefore

T
F=Yr=1 +/Y,h(s)st
0
and hence E[F] = 1. So (4.3.6) holds in this case. If F € L*(Fr,P) is
arbitrary, we can by Lemma 4.3.2 approximate F in L%(Fr, P) by linear
combinations F, of functions of the form (4.3.1). By linearity (4.3.6) also

holds for linear combinations of functions of the form (4.3.1). Then for each
n we have

F,(w) = E[F,] + /fn(s,w)dB,(w), where f, € V(0,T) .
0

By the It6 isometry

T
B{(Fn — F)?] = E|(E[Fn ~ Fn] + [ (fa — fm)dB)
s [t = msamy|
T
= (BFy = Fal)? + [ Bl(fn = )t =0 a5 n,m — o0
0

so {fn} is a Cauchy sequence in L?([0,T] x £2) and hence converges to some
f € L*[0,T) x £2). Since fn € V(0,T) we have f € V(0,T). (A subsequence
of {fn(t,w)} converges to f(t,w) for a.a. (t,w) € [0,T] x £2. Therefore f(¢,-)
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is Fi-measurable for a.a. t. So by modifying f(f,w) on a t-set of measure 0
we can obtain that f(t,w) is F;-adapted.) Again using the Ito isometry we
see that

T T
F=lim F, = lim (E[Fn]-}-/fndB) =E[F]+/de7
0 0

n—00 n—0Q

the limit being taken in L%(Fr, P). Hence the representation (4.3.6) holds
for all F € L?(Fr, P).
The uniqueness follows from the It6 isometry: Suppose

Flw) = F]+/f1tw)dB, F]+/f2 t,w)dBy(w)

with fi, f2 € V(0,T). Then

T T
0= BI( [ (ht0) — folt,0))aBufw)?] = [ Bltit0) - fat)a
0 0

and therefore fi{t,w) = fa(t,w) for a.a. (t,w) € [0,T] x §2. 0

Remark. The process f(t,w) can be expressed in terms of the Frechet
derivative and also in terms of the Malliavin derivative of F(w). See Clark
(1970/71), Davis (1980) and Ocone (1984).

Theorem 4.3.4 (The martingale representation theorem).

Let B(t) = (Bi(t),...,Bn(t)) be n-dimensional. Suppose M, is an ft(")-
martingale (w.r.t. P) and that M; € L?(P) for allt > 0. Then there erists a
unique stochastic process g(s,w) such that g € V(™ (0,t) for allt > 0 and

¢
Mi(w) = E[Mo] + /g(s,w)dB(s) a.s., forall t > 0.
0

Proof (n =1). By Theorem 4.3.3 applied to T' = t, F' = M,, we have that
for all t there exists a unique f*)(s,w) € L%(F;, P) such that

t t
My(w) = E[M:] + / FO(s,w)dB,(w) = E[Mo] + / F®O(s,w)dB,(w) .
0 0
Now assume 0 < t; < t5. Then

t

E[M,,|F,,] = E[Mo] + E[ / f<‘2>(s,w)st(w>|fh]
0

M,

E[M,) + /0 ' 105, 0)dB, (W) . (4.3.7)
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But we also have
t1
M,, = E[My] + /f(t‘)(s,w)st(w) . (4.3.8)
0

Hence, comparing (4.3.7) and (4.3.8) we get that

i o
0=E[(O/(f‘ ) - jap) | =0/E[(f‘ D fe0)2ds

and therefore
F (s, w) = F4D(s,w) for a.a. (s,w) € [0,t,] x 2.
So we can define f(s,w) for a.a. s € [0,00) x {2 by setting
fs,w) = fM(s,w)  if s€[0,N]

and then we get

M, = E[M0]+/ FO(s,w)dB,(w) = E[MO]+/f(s,w)st(w) forallt>0.
0 0 [}

Exercises

4.1. Use It6’s formula to write the following stochastic processes Y; on the
standard form
dY; = u(t, w)dt + v(t,w)d B,
for suitable choices of u € R™, v € R™*™ and dimensions n, m:
a) Y; = B?, where B, is 1-dimensional
b) Y; =2+t + eB (B, is 1-dimensional)
¢) Y, = B%(t) + B2(t) where (Bj, By) is 2-dimensional
d) Y: = (to + ¢, Be) (B is 1-dimensional)
e) Y, = (B] (t) +B2(t)+B3(t), Bg(t)—Bl(t)B;;(t)), where (B], B, Bg)
is 3-dimensional.

4.2. Use It6’s formula to prove that

t t
/BZdB, =4iB} - /B,ds :
V] 0
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Let X;,Y; be It6 processes in R. Prove that
d(X,Y:) = XodY; + YVidX, + d X, - dY, .

Deduce the following general integration by parts formula
t t t
/Xde, = XY — XoYo — /stXs - /dXs - dY; .
0

(Exponential martingales)
Suppose O(t,w) = (01(t,w),...,0,(t,w)) € R™ with 8;(t,w) € V[0,T)
for k=1,...,n, where T' < co. Define

¢
Zt=exp{/93des)—-/02swds} 0<tLT
0

where B(s) € R™ and 6% = 8 - # (dot product).
a) Use Itd’s formula to prove that

dZ, = Z(t,w)dB(t) .
b) Deduce that Z, is a martingale for ¢ < T, provided that
Z6k(t,w) € V[0, T for 1<k<mn.

Remark. A sufficient condition that Z, be a martingale is the Kazamaki

4.5.

condition
i
E[mp(%/ﬂawMBGO]<oo forall t<T.  (43.9)
0

This is implied by the following (stronger) Novikov condition

E[exp (%Zﬁ(s,w)ds)] <00 . (4.3.10)

See e.g. Ikeda & Watanabe (1989), Section II1.5, and the references
therein. See also Section 8.6.

Let B; € R, By = 0. Define
Bk(t)=E[Bf];  k=0,1,2,...; t>0.

Use It6’s formula to prove that

Bi(t) = %k(k - 1) /ﬁk_g(s)ds ; k>2.
0
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a} Deduce that
E[B}] =3t*  (see (2.2.14))
and find
E[B]] .
b) Show that
E[B(#)**'] =0

and
(2k)1tk
2Kkt
(Compare with Exercise 2.8.)
a) For ¢, a constants, By € R define

E[B(t)*] =

Xt — ect+aBt

Prove that
dX; = (c + 10?)X,dt + aXdB, .

b) For ¢, a1, ..., 0, constants, By = (Bi(t),..., Bp(t)) € R™ define
Xt = exp (Ct -+ Zaij(t)) .
j=1
Prove that
kel kel
dX, = (c+ %Zag)xtdt + X,(Zadej) :
j=1 ji=1
Let X, be an It6 integral

dX, = v{t,w)dB;(w) wherev e V*(0,T), B, R*, 0<t<T.

a) Give an example to show that X? is not in general a martingale.
b) Prove that if v is bounded then

¢
M= X2 — / |vg|2ds is a martingale .
0

¢
The process (X, X)i:= [ |vs|%ds is called the quadratic variation

0
process of the martingale X;. For general processes X, it is defined
by

(X,X),:A]tikrg()tz;t[X,HI—X,,JQ (limit in probability) (4.3.11)
k>

where 0 = ) <ty-- - <t, =t and Aty = tx41 — tx- The limit can

be shown to exist for continuous square integrable martingales X,.
See e.g. Karatzas and Shreve (1991).
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a) Let B, denote n-dimensional Brownian motion and let f:R" - R
be C2. Use Itd’s formula to prove that

18 = 150 + [ ViBgaB,+ 4 [ AsBds,
b} 0

n

where A = 3" 3%27 is the Laplace operator.

t=1 '

b) Assume that g : R — R is C! everywhere and C? outside finitely
many points zy,...,zy with |¢"(z)} < M for z € {z1,...,zn}.
Let B, be 1-dimensional Brownian motion. Prove that the 1-
dimensional version of a) still holds, i.e.

¢ ¢
g(By) -g(Bo)+/g (Bs)dBs + = /g”(Bs)ds.
0
(Hint: Choose fx € C*(R) s.t. fx — ¢ uniformly, f, — ¢’ uni-

formly and |f]/| < M, fi! — ¢" outside z,...,zn. Apply a) to fx
and let k — oo)

Prove that we may assume that g and its first two derivatives are
bounded in the proof of the 1t6 formula (Theorem 4.1.2) by proceeding
as follows: For fixed t > 0 and n = 1,2,... choose g, as in the statement
such that g,(s,z) = g(s,z) for all s <t and all || < n. Suppose we
have proved that (4.1.9) holds for each g,. Define the stochastic time

T = Tp(w) = inf{s > 0;| X (w)| > n}
(1o is called a stopping time (See Chapter 7)) and prove that

t
( ag’n(sx) 3<7—ndB __)
Or
0

tAT, tATRh

/ 69"(3 X,)dB, = /v@-(s,x,)dB,

oz

0 0

for each n. This gives that
g(t N Tp, Xt/\'rn) = 9(07 XO)

tATh tATH
dg 09 1 0% dg
+ / (63 Fugs YV g Jdst / Vog B
0 0
and since
Plmm>tj—-1 asn— o

we can conclude that (4.1.9) holds (a.s.) for g.
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4.10. (Tanaka’s formula and local time).
What happens if we try to apply the It formula to g(B;) when B, is
1-dimensional and g(z) = |z| ? In this case g is not C? at x = 0, so we
modify g(x) near z = 0 to g.(z) as follows:

(z) = |z if |zj=e€
9el) = %(6—}-1?2) if |zl <e

where € > 0.

fe = ——
4
A Y

a) Apply Exercise 4.8 b) to show that
t

9:(Be) = 9(Bo) + [ dL(B)dB.+ 5 I{s € (0.8 By € (-,
0

where | F'| denotes the Lebesgue measure of the set F.
b) Prove that

t

t

B
/gé(B,) 'XB,e(—e,e)st = /—6‘1 : XBae(_E)E)st -0
0 0

in L?(P) as e — 0.
(Hint: Apply the It6 isometry to

t
B 2
el (/% Anccnis) |
0

c¢) By letting ¢ — 0 prove that
¢

1Bl = |Bol + [ sign(B,)dB, + Li(w) (4.3.12)
4]
where
L= 3%2—16 {s € [0,8]; Bs € (~€,€)}| (limit in LA(P))
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and
-1 for <0

SIgn(:c)z{ 1 for z>0~

L, is called the local time for Brownian motion at 0 and (4.3.12) is
the Tanaka formula (for Brownian motion). (See e.g. Rogers and
Williams (1987)).

4.11. Use Itd’s formula (for example in the form of Exercise 4.3) to prove
that the following stochastic processes are {F;}-martingales:

a) X, =e?tcos B, (B: € R)
b) X, =e¥tsinB, (B, €R)
C) Xt = (Bt + t)exp(—Bt - —é‘t) (Bt (S R)

4.12. Let dX,; = u(t,w)dt + v(t,w)dB; be an It6 process in R™ such that
¢ ¢

E[/ |u(7‘,w)]dr] + E[/ oo™ (7, w)|dr] < 00 forallt>0.
0 0

Suppose X, is an {]-'t(")}-martingale. Prove that
u(s,w)=0  for a.a. (s,w) € [0,00) x 2. (4.3.13)

Remarks:

1) This result may be regarded as a special case of the Martingale
Representation Theorem.

2) The conclusion (4.3.13) does not hold if the filtration Ft(") is re-
placed by the o-algebras M, generated by X,(); s < ¢, i.e. if we
only assume that X; is a martingale w.r.t. its own filtration. See
e.g. the Brownian motion characterization in Chapter 8.

Hint for the solution:
If X, is an F™-martingale, then deduce that

8
E[/u(r, w)dr|]—'t(")] =0 foralls>t.
t
Differentiate w.r.t. s to deduce that

Efu(s,w)|F™) =0  as,foraa s>t.

Then let ¢ T s and apply Corollary C.9.
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4.13. Let dX; = u(t,w)dt +dB; (u € R, B, € R) be an Itd process
and assume for simplicity that u is bounded. Then from Exercise 4.12
we know that unless u = 0 the process X; is not an F;-martingale.
However, it turns out that we can construct an F;-martingale from X,

by multiplying by a suitable exponential martingale. More precisely,
define
Y, = XiM,

where
t t

M, = exp ( ~ / u(r,w)dB, — 1 / u?(r, w)dr> :
0

0
Use Itd’s formula to prove that

Y, is an F;-martingale .

Remarks:

a) Compare with Exercise 4.11 c).

b) This result is a special case of the important Girsanov Theorem.
It can be interpreted as follows: {X:}:<1 is a martingale w.r.t the
measure Q defined on Fr by

dQ = MypdP (T < 00).
See Section 8.6.
4.14. In each of the cases below find the process f(t,w) € V[0,T] such that
(4.3.6) holds, i.e.

T
F(w) = E[F] + / Ft,w)dB,(w) .
0

T
a) F(w) = Br(w) b) F(w) = Oth(w)dt
¢) F(w) = B}(w) d) F(w) = By(w)
e) F(w) =™ f) F(w) = sin Br(w)

4.15. Let > 0 be a constant and define
X, =@ +1B,)®; t>0.
Show that
dX, = 3X;%dt + X}/*dB,;  Xo==z.
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.16. By Exercise 3.8 we know that if Y is an Fr-measurable random vari-
able such that E[|Y]?] < co then the process

is a martingale with respect to {]:‘}0<t<T‘
a) Show that E[M?] < oo for all t € [0,T]. (Hint: Use Exercise 3.16.)

b) According to the martingale representation theorem (Theorem
4.3.4) there exists a unique process g(t,w) € V(0,T) such that
t
M, = E[Mo] + /g(s,w)dB(s) ; t€(0,7).
0
Find g in the following cases:
(i) Y(w)=B*T)
(if) Y (w) = BYT)
(iii) Y(w) = exp(6B(T)); 0 € R is constant.
(Hint: Use that exp(cB(t) — 10%¢) is a martingale.)

.17. Here is an alternative proof of Theorem 4.3.3 which, in particular, does
not use the complex analysis argument of Lemma 4.3.2. The idea of the
proof is taken from Davis (1980), where it is extended to give a proof
of the Clark representation formula. (See the Remark before Theorem
4.34.):

In view of Lemma 4.3.1 it is enough to prove the following:
Let Y = ¢(By,,...,B;,) where 0 < t; < t3 < --- < t, £ T and

¢ € CP(R™). We want to prove that there exists f(t,w) € V(0,T)
such that

T
Y=E[Y}+ /f(t)dB(t). (4.3.14)
0
a) Use the It6 formula to prove that if w = w(t, x1,...,Zk) : [te—1, tk] X

RF — R is once continuously differentiable with respect to t and
twice with respect to %, then

w(t, B(tr),..., Blte_1), B(£))
= w(tk_1,B(t1), ceey B(tk_l), B(tk_l))
BY (. B(ty),..., B(te_), B(s))dB(s)

Ok
the-1

t

Ow v
+/ ('3_3 + %5;{)(3,B(t;),...,B(tk_l),B(s))ds; t € [tk—1,tk]

Chet
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b) For £ = 1,...,n define functions vg : [tx—1, tg] X R* - R induec-
tively as follows:

2
B +35w =0 P tm1<t<in 4395
Un(tn, Z1, .-, Zn) = &(x1, ..., 20)
and, fork=n-1,n—-2,...,1,
2
%’f.’.%%’?:(} otk <t <ty
vk(tk’xla e 7Ik) = vk-}‘l(tkaxla e 71:’671:’6)
(4.3.16)
Verify that the solution of (4.3.16) is, for t € [tg_1, k]
ve(t, 2y, ..., Tk) (4.3.17)
a2
= (2m(ty — t))~/? /vk+1(tk,x1, 2 Tk, Y) EXP ( - )dy
R

(= E[ves1(tk, 71y, Tk B{™)]  (compare with Theorem 8.1.1))
In particular, w = vg satisfies the smoothenss conditions of a).

c) Show that the representation (4.3.14) holds with

flt,w) = gz—';-(t,B(tl),...,B(tk_l),B(t)) for t € [th_1,tx).

[Hint: By (4.3.15) and a) we have

O(B(),- ., Bltn)) = va(tn Bt .., B(ta))
= vp(tn-1, B(t1), .. ,B(tn_1),B(tn_1))

tn

+ / g%:(s,B(tx),...,B(tn_l),B(S))dB(S)
= ’Un—_l(tn—l, B(tl), . ’B(tn—l))
+ %(S,B(h),...,B(tn_l),B(s))dB(s) '

Now repeat the procedure with v,,_1(t,—1, B{t1), ..., B(tp—1)) and
proceed by induction.]



5. Stochastic Differential Equations

5.1 Examples and Some Solution Methods

We now return to the possible solutions X,(w) of the stochastic differential
equation

dX,

e b(t, X;) +o(t, X)W, b(t,z)eR,0(t,z) € R (5.1.1)
where W, is 1-dimensional “white noise”. As discussed in Chapter 3 the Ito
interpretation of (5.1.1) is that X, satisfies the stochastic integral equation

t

t
X, =Xo+ /b(s,Xs)ds+/a(s,X3)dB,
0 0

or in differential form
dX; =b(t, X;)dt + o(t, X;)dB, . {(5.1.2)

Therefore, to get from (5.1.1) to (5.1.2) we formally just replace the white
noise W, by %‘- in (5.1.1) and multiply by d¢. It is natural to ask:

{A) Can one obtain existence and uniqueness theorems for such equations?
What are the properties of the solutions?
(B) How can one solve a given such equation?

We will first consider question (B) by looking at some simple examples,
and then in Section 5.2 we will discuss (A).

It is the It6 formula that is the key to the solution of many stochastic
differential equations. The method is illustrated in the following examples.

Example 5.1.1. Let us return to the population growth model in Chapter 1:

dN,
——t a; N N, given
dt :
where a;, = r, + aW,, W; = white noise, a = constant.
Let us assume that r, = r = constant. By the It6 interpretation (5.1.2)
this equation is equivalent to (here a(t, ) = az)
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dNt =rNtdt+aNtdBt (513)
or AN
Wf = rdt + adB, .
Hence

t

s
0

To evaluate the integral on the left hand side we use the It6 formula for the
function

g{t,z) =Inz; >0
and obtain
1 1
d(ln Ny) = A -dN; + {;( - W)(dzvy
dNt 1 2 a72 dNt 1.2
= — e —— . a*Nidt = — ~ 3 .
N.  2N? t N, 2
Hence N,
=t —d(In NV,) + LoPdt
N
so from (5.1.4) we conclude
N, 1
In F; =(r— §a2)t +aB,
or
N, = Noexp((r — 20%)t + aB,) . (5.1.5)

For comparison, referring to the discussion at the end of Chapter 3, the
Stratonovich interpretation of (5.1.3),

dN,=rNdt +oN,o0dB,,
would have given the solution
N, = Npexp(rt +aB;) . (5.1.6)
The solutions N,, N, are both processes of the type
X = Xoexp(ut + aBy) (1, @ constants) .

Such processes are called geometric Brownian motions. They are important
also as models for stochastic prices in economics. See Chapters 10, 11, 12.
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Remark. It seems reasonable that if B, is independent of Ny we should
have

E[N,] = E[Nyle™, (*)

i.e. the same as when there is no noise in a,. To see if this is indeed the case,
we let
Y't — ean

and apply Itd’s formula:
dY; = ae®PtdB, + 1o’e*Pdt

or
t t

Y: =Yo+a/e°’B"st +%a2/e°‘Bsds.
0 0

¢
Since E[f e*B+dB,] = 0 (Theorem 3.2.1 (iii)), we get
0

EY] = ElYo] + }a? [ B[Y.Jds
0

ie.
2 [¥) = Jo?B(¥i), E%] =1.
So
ElY,) = et*’t
and therefore — as anticipated — we obtain
E[N;) = E[Nyle™ .
For the Stratonovich solution, however, the same calculation gives
E[N,] = E[NoJel+3eDt

Now that we have found the explicit solutions N; and N, in (5.1.5), (5.1.6)
we can use our knowledge about the behaviour of B, to gain information on
these solutions. For example, for the It solution N, we get the following:

(i) Ifr>4a?® then N, — 00 ast — oo, a.s.

(ii) Ifr < 3a? then N, —» 0 as t — oo, a.s.

(iii) f r = %a2 then N, will fluctuate between arbitrary large and arbitrary
small values as t — oo, a.s.

These conclusions are direct consequences of the formula (5.1.5) for IV,
together with the following basic result about 1-dimensional Brownian motion
Bti
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Theorem 5.1.2 (The law of iterated logarithm).

B
lim sup —t =1 as.

t—oo /2t log logt

For a proof we refer to Lamperti (1977), §22.

For the Stratonovich solution N; we get by the same argument that N, —
0as. ifr <0and N, — oo as. if 7 > 0.

Thus the two solutions have fundamentally different properties and it is an
interesting question what solution gives the best description of the situation.

Example 5.1.3. Let us return to the equation in Problem 2 of Chapter 1:
1
LQY+RQ, + 5Q: = F = Gi + oW, . (5.1.7)
We introduce the vector

X =X(t,w) = [Xl] = [gi] and obtain

X3
X=X
{LXQ = “RX; — X1 + G, + aW, (5-1.8)
or, in matrix notation,
dX =dX(t) = AX(t)dt + H(t)dt + KdB; (5.1.9)

where

o (85)- 4=, )= ()= (3). eom

and B, is a 1-dimensional Brownian motion.
Thus we are led to a 2-dimensional stochastic differential equation. We
rewrite (5.1.9) as

exp(—At)dX (t) —exp(—At)AX (t)dt = exp(—At)[H (t)dt + KdB,], (5.1.11)
where for a general n x n matrix F we define exp(F') to be the n X n matrix

o0
given by exp(F) = 5. L F™. Here it is tempting to relate the left hand side
n=0

to
dexp(—At)X(t)) .

To do this we use a 2-dimensional version of the It6 formula (Theorem 4.2.1).
Applying this result to the two coordinate functions g1, g2 of

g:[0,00) x R 5 R?  given by g(t,z1,72) = exp(—At) (i’) :
2

we obtain that
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d{exp(—At) X (t)) = (—A)exp(—At) X (t)dt + exp(—At)d X (t) .

Substituted in (5.1.11) this gives

t

exp(—AH)X (t) — X(0) = /exp(—As)H(s)ds+ /exp(—As)Kst
0

0
or
X (t) = exp(At)[X(0) + exp(—At)K B,
/ — As)[H(s) + AKB,}ds], (5.1.12)
0

by integration by parts (Theorem 4.1.5).
Example 5.1.4. Choose X; = B,, 1-dimensional Brownian motion, and
g(t,z) = € = (cos z,sinz) € R? for zeR.

Then '
Y (t) = g(t, X;) = e*B* = (cos By, sin B,)

is by Ité’s formula again an It6 process.
Its coordinates Y3, Y5 satisfy

dY(t) = —sin(B;)dB; — § cos(B,)dt
dY,(t) = cos(B,)dB, — 1 sin(B,)dt .

Thus the process Y = (¥;,Y;), which we could call Brownian motion on the
unit circle, is the solution of the stochastic differential equations

{le = —1Y1dt — Y2dB, (5.0.13)

dY = —1Yadt + Y1dB, .

Or, in matrix notation,

dy (t) = *%Y(t)dt + KY (t)dB, , where K = ((1) _01) .
Other examples and solution methods can be found in the exercises of
this chapter.
For a comprehensive description of reduction methods for 1-dimensional
stochastic differential equations see Gard (1988), Chapter 4.
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5.2 An Existence and Uniqueness Result

We now turn to the existence and uniqueness question (A) above.

Theorem 5.2.1. (Existence and uniqueness theorem for stochastic
differential equations).

Let T > 0 and b(-,-):[0,T) x R® — R™,0(-,-):{0,T} x R® — R"™*™ be
measurable functions satisfying

b, z)| + lo(t, 2)| L C(1 + |z|) 5 zeR”, t€l0,T) (5.2.1)
for some constant C, (where |o|? = 3 |04;|?) and such that
|b(t, ) — b(t, y)| + |o(t, ) —o(t,y)| < Diz—y|; z,yeR?, t€(0,T} (5.2.2)

for some constant D. Let Z be a random variable which is independent of the
o -algebra fé;") generated by Bs(-), s > 0 and such that

E(|Z)?) < 0.
Then the stochastic differential equation
dX, = b(t, X)dt +o(t, X,)dB, , 0<t<T, Xo=2 (5.2.3)
has a unique t-continuous solution X,(w) with the property that

Xi(w) is adapted to the filtration FZ generated by Z and B,(-); s <t
(5.2.4)

and
T

E| [ 1X.2dt| <. (5.2.5)
|[1xeral

0

Remarks. Conditions (5.2.1) and (5.2.2) are natural in view of the following
two simple examples from deterministic differential equations (i.e. ¢ = 0):

a) The equation
dX
_.(EE =X2, Xo=1 (5.2.6)
corresponding to b(z) = x? (which does not satisfy (5.2.1)) has the

(unique) solution
1

“1-¢’
Thus it is impossible to find a global solution (defined for all ¢) in this
case.

More generally, condition (5.2.1) ensures that the solution X,(w) of (5.2.3)
does not explode, i.e. that | X;(w)| does not tend to oo in a finite time.

X, 0<t<l.
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b) The equation

X

has more than one solution. In fact, for any a > 0 the function

X, = 0 for t<a
T l(t—a)® for t>a

solves (5.2.7). In this case b(x) = 3z%° does not satisfy the Lipschitz
condition (5.2.2) at x = 0.

Thus condition (5.2.2) guarantees that equation (5.2.3) has a unique so-
lution. Here uniqueness means that if X;(f,w) and X,(¢,w) are two ¢-
continuous processes satisfying (5.2.3), (5.2.4) and (5.2.5) then

X1(t,w) = Xo(t,w) forall t < T, as. (5.2.8)

Proof of Theorem 5.2.1. The uniqueness follows from the It6 isometry
(Corollary 3.1.7) and the Lipschitz property (5.2.2): Let X1(t,w) = X3(w)
and Xp(t,w) = )’(:t(w) be solutions with initial values Z, Z respectively, i.e.
X1(0,w) = Z(w), X2(0,w) = Z(w),w € 2. For our purposes here we only
need the case Z = Z , but the following more general estimate will be useful
for us later, in connection with Feller continuity (Chapter 8).

Put a(s,w) = b(s, X,) — b(s, X,) and v(s,w) = o(s, X,;) — (s, X,). Then

E[|X, — X% = E[(Z -Z+ /tads +/t'ydB,)2]
0 0

S3E[|Z_Z|2]+3E[(/tads>2] +3E[(/~yst>2]

0

0
t t
<3E||Z - Z) +3tE[/a2ds] +3E[/72ds]
0 0

t
<3E(Z - 2% +3(1 + £)D? /E[|X3 _ X,|%)ds .
[\]

So the function
v(t) = E[| X, — X:?);  0<t<T

satisfies
¢
v(t) < F+A/v(s)ds , (5.2.9)
0

where F =3E([|Z — Z|?) and A = 3(1 + T)D?.
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By the Gronwall inequality (Exercise 5.17) we conclude that
v(t) < Fexp(At) . (5.2.10)
Now assume that Z = Z. Then F = 0 and so v(t) = 0 for all t > 0. Hence
P|X;—X,/=0 forall teQn0,T]=1,
where Q denotes the rational numbers.
By continuity of t — |X; — X;| it follows that
Pl X:1(t, w) — Xa(t,w)| =0 forall te€[0,T]] =1, (5.2.11)

and the uniqueness is proved.

The proof of the existence is similar to the familiar existence proof for
ordinary differential equations: Define Yt(o) = X¢ and Yt(k) = Yt(k) (w) induc-
tively as follows

t t
YD = X, + / b(s, Yds + / o(s,Y*)dB, . (5.2.12)
0 0
Then, similar computation as for the uniqueness above gives

t
E[Y*Y —y®P) < (1 + T)3D? / E[[Y® — Y+ ps
0

fork>1,t<7T and
E[Y,” - v,O12] < 2C*2(1 + E[|Xo|))
+2C%t(1 + E(| Xof?) < At

where the constant A; only depends on C,T and E[|Xo|%]. So by induction
on k we obtain

K+l

for some suitable constant A, depending only on C, D,T and E[|Xo/?].
Hence, if A denotes Lebesgue measure on (0,7} and m > n > 0 we get

m—1
RS A P D3R dun A
k=n

E[Y D _y W2 < k>0, te0,T) (5.2.13)

L2(Ax P)
m—1 fot . m—1 T ka1 * 1/2
< Y %5 = YO aiay = Y (B] [ 10 - v0par])
k=n k=n 0
m—1 T k+1l,k+1 m—1 k+lmk+2
< 22 - = — 0 (5.2.14)
~ ([T - X ()
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as m,n — 00.
Therefore {Y,™}22, is a Cauchy sequence in L2(Ax P). Hence {Y;(") |3
is convergent in L2(\ x P). Define

X, == lim Y™ (limit in L2(X x P)).

n—00

Then X, is F#-measurable for all ¢, since this holds for each Yt("). We prove
that X, satisfies (5.2.3):
For all n and all ¢ € [0, T} we have

t t
Y = X, + / b(s, Y ™ds + / o(s, Y)dB, .
0 0
Now let n — co. Then by the Hélder inequality we get that
t t
/ b(s,Y{™)ds — / b(s,Xs)ds  in L2(P)
0 0
and by the It6 isometry it follows that
t t
/a(s, Y{™dB, — /a(s,X,)dB, in L2(P).
0 0
We conclude that for all ¢ € (0,7} we have
t t
X, =Xo+ /b(s,X,)ds—i— /a(s,X,)dB, a.s. (5.2.15)
0 0

i.e. X, satisfies (5.2.3).

It remains to prove that X; can be chosen to be continuous. By Theorem
3.2.5 there is a continuous version of the right hand side of (5.2.15). Denote
this version by X’t. Then )?t is continuous and

i t
X, XO+/b(s,X,)ds+/a(s,X3)dB, for a.a. w
0

a(s,}?,)dB, for a.a. w.

o . °

t
= }?o—i—/b(s,}?,)ds—i—
0
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5.3 Weak and Strong Solutions

The solution X; found above is called a strong solution, because the version
B, of Brownian motion is given in advance and the solution X, constructed
from it is FZ-adapted. If we are only given the functions b(t,z) and (¢, z)
and ask for a pair of processes (()?t, By), H,) on a probability space (2, H, P)
such that (5.2.3) holds, then the solution X, (or more precisely ()Z't, E’t)) is
called a weak solution. Here H, is an increasing family of o-algebras such that
Xt is H,- adaQted and Bt is an H;- Brownian motion, i.e. B, is a Brownian
motion, and B, is a martingale w.r.t. H, (and so E[BHh Bt|’Ht] = 0 for all
t,h > 0). Recall from Chapter 3 that this allows us to define the Itd integral
on the right hand side of (5.2.3) exactly as before, even though X, need not
be FZ-adapted.

A strong solution is of course also a weak solution, but the converse is not
true in general. See Example 5.3.2 below.

The uniqueness (5.2.8) that we obtain above is called strong or path-
wise uniqueness, while weak uniqueness simply means that any two solutions
(weak or strong) are identical in law, i.e. have the same finite-dimensional
distributions. See Stroock and Varadhan (1979) for results about existence
and uniqueness of weak solutions. A general discussion about strong and weak
solutions can be found in Krylov and Zvonkin (1981).

Lemma 5.3.1. If b and o satisfy the conditions of Theorem 5.2.1 then we
have
A solution (weak or strong) of (5.2.3) is weakly unique .

Sketch of proof. Let ((Xt, Bt) ’Ht) and ((Xt, Bt) ’Ht) be two weak solutions.
Let X; and Y; be the strong solutions constructed from Bt and Bt, respec-
tively, as above. Then the same uniqueness argument as above applies to show
that X; = X; and Y; = X, for all ¢, a.s. Therefore it suffices to show that X,
and Y; must be identical in law. We show this by proving by induction that if
X,(k),Yt(k) are the processes in the Picard iteration defined by (5.2.12) with
Brownian motions ﬁt and ét, then

(X, B,) and (V¥ B,
have the same law for all k. ]

This observation will be useful for us in Chapter 7 and later, where we
will investigate further the properties of processes which are solutions of
stochastic differential equations (It6 diffusions).

From a modelling point of view the weak solution concept is often natural,
because it does not specify beforehand the explicit representation of the white
noise. Moreover, the concept is convenient for mathematical reasons, because
there are stochastic differential equations which have no sirong solutions but
still a (weakly) unique weak solution. Here is a simple example:
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Example 5.3.2 (The Tanaka equation). Consider the 1-diinensional sto-
chastic differential equation

dX, =sign(X,)dB;; Xo=0. (5.3.1)

where
+1if >0

sign(z) = {—1 if 2<0.
Note that here o(t,x) = o(z) = sign(z) does not satisfy the Lipschitz con-
dition (5.2.2), so Theorem 5.2.1 does not apply. Indeed, the equation (5.3.1)

has no strong solution. To see this, let B; be a Brownian motion generating
the filtration F; and define

t
Y, = /sign(gs)dgs .
0

By the Tanaka formula (4.3.12) (Exercise 4.10) we have
Y, =B | Bo| - Li(w),

where L, (w) is the local time for B, (w) at 0. It follows that Y} is measurable
w.r.t. the g-algebra G; generated by |§,()l, s < t, which is clearly strictly
contained in f't. Hence the o-algebra N; generated by Y,(-); s < ¢ is also
strictly contained in ft.

Now suppose X; is a strong solution of (5.3.1). Then by Theorem 8.4.2
it follows that X, is a Brownian motion w.r.t. the measure P. (In case the
reader is worried about the possibility of a circular argument, we point out
that the proof of Theorem 8.4.2 is independent of this example!) Let M, be
the o-algebra generated by X,(-); s < t. Since (sign(z))? = 1 we can rewrite
(5.3.1) as

dBt = sign(Xt)dXt .

By the above argument applied to ﬁt = X,, Y, = B, we conclude that F, is
strictly contained in M,.

But this contradicts that X, is a strong solution. Hence strong solutions
of (5.3.1) do not exist.

To find a weak solution of (5.3.1) we simply choose X to be any Brownian
motion ét. Then we define B, by

t t
B.— [ sign(B,)aB, = [ sign(X,)ax,
0 0

dB, = sign(X,)dX, .
Then



74

5. Stochastic Differential Equations

dX,; = sign(X,)dB, ,

so X, is a weak solution.

Finally, weak uniqueness follows from Theorem 8.4.2, which ~ as noted

above - implies that any weak solution X; must be a Brownian motion w.r.t.
P '
Exercises
5.1. Verify that the given processes solve the given corresponding stochastic
differential equations: (B, denotes 1-dimensional Brownian motion)
(l) Xt = eB' solves dXt 1 Xtdt —+ XtdBt
(i) X, = 1+t’ By=0 solves
dXtZ 1+tXtdt+1+tdBt, X()=O
(iif) X; = sin B, with By = a € (-, %) solves
dX,=—1X,dt + \/1-X2dB, for t <inf {s >0;B,¢[ - Z,Z]}
(iv) (X1(t), X2(t)) = (¢, €' By) solves
dx;] _[1 0 ]
[dxz] - [Xz]m [X 4B,
(v) (X1(t), X2(t)) = (cosh(By),sinh(B;)) solves
dx1] _1[Xx; X2 ]
[ng] =3 [X2 dt + X, | dB, .
5.2. A natural candidate for what we could call Brownian motion on the

ellipse
{(:c y) b2 —1} where a > 0,6 >0
is the process X, = (Xl(t),Xz(t)) defined by
Xi(t) =acos By, Xs(t)="bsinB,

where B, is 1-dimensional Brownian motion. Show that X, is a solution
of the stochastic differential equation

dX, = —1X,dt + MX.dB,

0 -3
where M = |, .
2 0
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Let (Bi,...,Bx) be Brownian motion in R™, a1,...,a, constants.
Solve the stochastic differential equation

dX, = rX.dt + Xt(ZakdBk(t)); Xo>0.
k=1

(This is a model for exponential growth with several independent white
noise sources in the relative growth rate).

Solve the following stochastic differential equations:
. dX,| |1 1 0 dB,
o ] = [leo ][4
(if) dX; = X;dt +dB,
(Hint: Multiply both sides with “the integrating factor” e~ and

compare with d(e™*X};))
(lll) dXt = —Xtdt + C_tdBt.

a) Solve the Ornstein-Uhlenbeck equation (or Langevin equation)
dXt = MXtdt + G'dBt

where u, o are real constants, B; € R.
The solution is called the Ornstein-Uhlenbeck process. (Hint: See
Exercise 5.4 (ii).)

b) Find E[X,] and Var[X,): = E[(X; — E[X}])?].

Solve the stochastic differential equation
dY, = rdt + aY,dB;

where r, « are real constants, B, € R.
(Hint: Multiply the equation by the ’integrating factor’

E =exp(~aBt+%a2t) )

The mean-reverting Ornstein- Uhlenbeck process is the solution X; of
the stochastic differential equation

dXt = (m — Xt)dt + O'dBt

where m, o are real constants, B; € R.

a) Solve this equation by proceeding as in Exercise 5.5 a).
b) Find E[X,] and Var[X,): = E[(X; — E[X,})?].

Solve the (2-dimensional) stochastic differential equation

dX1(t) = X2(t)dt + adBi(t)
dXa(t) = —X1(t)dt + BdBa(t)
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5.9.

5.10.
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where (Bi(t), Ba(t)) is 2-dimensional Brownian motion and «, 3 are
constants.

This is a model for a vibrating string subject to a stochastic force. See
Example 5.1.3.

Show that there is a unique strong solution X; of the 1-dimensional

stochastic differential equation

dXy =In(1 + X2)dt + X

{X;>0}

XtdBt, XOZGER.

Let b, o satisfy (5.2.1), (5.2.2) and let X; be the unique strong solution
of (5.2.3). Show that

E|X.?) < Ky -exp(Kat) for t<T (5.3.2)

where Ky = 3E[|Z|?] + 6C?T(T + 1) and K2 = 6(1 + T)C?.
(Hint: Use the argument in the proof of (5.2.10)).

Remark. With global estimates of the growth of b and ¢ in (5.2.1) it is pos-
sible to improve (5.3.2) to a global estimate of E[|X,|?]. See Exercise 7.5.

5.11.

5.12.

(The Brownian bridge).
For fixed a,b € R consider the following 1-dimensional equation

dYt—*%——Yidt—&—dBt, 0<t<l, Yp=a. (5.3.3)
Verify that
t
dB;
Y}:a(l—t)-i—bt—l—(l—-t) T—_—s; 0<t«1 (534)
0

solves the equation and prove that }ln} Y, = b a.s. The process V; is
called the Brownian bridge (from a to b). For other characterizations
of Y; see Rogers and Williams (1987, pp. 86-89).

To describe the motion of a pendulum with small, random perturba-

tions in its environment we try an equation of the form
y'®)+(1+eW)y=0; y(0),%'(0) given,

where W, = d—f} is 1-dimensional white noise, € > 0 is constant.

a) Discuss this equation, for example by proceeding as in Exam-
ple 5.1.3.
b) Show that y(t) solves a stochastic Volterra equation of the form

y(t) = y(0) + ¥'( a(t,r)y(rYdr + [ ~(t,")y(r)dB,
o [ [

where a(t,r) =1 —t, ¥(t,7) = €(r - t).
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5.13. As a model for the horizontal slow drift motions of a moored floating
platform or ship responding to incoming irregular waves John Grue
(1989) introduced the equation

) + aox, + wiz, = (To — apx))nW, | (5.3.5)

where W, is l-dimensional white noise, ag,w, Ty, g and 7 are con-
stants.

(i) Put X, = [if] and rewrite the equation in the form

t

dXt = AXtdt + KXtdBt + MdBt ,

where

0 1 0 0 0
A:[_wz _ao], K:aon[o _1] and M—Ton[l].

(ii) Show that X, satisfies the integral equation
t t
X, = / et K X ,dB; + / eAt=9MdB, if Xo=0.
0 0

(iif) Verify that
A €N . .
et = ; {(& cos &t + Asin&t)I + Asin €t}
2

where A = % £ = (w? — %)% and use this to prove that

t
T =7 / (To — 0yYs)g1-sdB; (5.3.6)
0
and
i
n= U/(TO — aoyYs)hi—sdBs with ys: =z}, (5.3.7)
0
where
g = %Im(ect)

he = %Im(ce@) , (= A4iE (i=+v-1).

So we can solve for y, first in (5.3.7) and then substitute in (5.3.6)
to find z;.
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5.14. If (B;, B2) denotes 2-dimensional Brownian motion we may introduce
complex notation and put

B(t):= By(t) +iBa(t) (i=vV—1).

B(t) is called complex Brownian motion.
(i) If F(z) = u(z) +1v(z) is an analytic function i.e. F satisfies the
Cauchy-Riemann equations

Ou _Ov Ou  Ov

3z oy’ oy oz’ O TW
and we define
Zy = F(B(t))
prove that
dZ, = F'(B(t))dB(t) , (5.3.8)

where F' is the (complex) derivative of F. (Note that the usual
second order terms in the (real) Itd formula are not present in
(5.3.8)1)

(i) Solve the complex stochastic differential equation

dZ, = 0Z;dB(t) o constant) .

For more information about complex stochastic calculus involving
analytic functions see e.g. Ubge (1987).

5.15. (Population growth in a stochastic, crowded environment)
The nonlinear stochastic differential equation

dXy = rX,(K — X)dt + BX,dBy; Xo=2 >0 (5.3.9)

is often used as a model for the growth of a population of size X; in
a stochastic, crowded environment. The constant K > 0 is called the
carrying capacity of the environment, the constant r € R is a measure
of the quality of the environment and the constant 3 € R is a measure
of the size of the noise in the system.

Verify that

exp{(rK — 36°)t + BB:}
z! +rftexp{(rK — $8%)s + BB, }ds
0

X, = . t>0  (5.3.10)

is the unique (strong) solution of (5.3.9). (This solution can be found by
performing a substitution (change of variables) which reduces (5.3.9)
to a linear equation. See Gard (1988), Chapter 4 for details.)
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.16. The technique used in Exercise 5.6 can be applied to more general
nonlinear stochastic differential equations of the form

dX, = f(t, Xp)dt + c(t)X:dB,, Xo=u2 (5.3.11)

where f: R x R — R and c: R — R are given continuous (determinis-
tic) functions. Proceed as follows:

a)

d)

Define the ’integrating factor’

F, = Fy(w) = exp ( - /c(s)st + %/tc2(s)ds> . (5.3.12)
(4] 0

Show that (5.3.11) can be written

d(FiX:) = Fy - f(t, Xy)dt . (5.3.13)
Now define
so that
X, =F ;. (5.3.15)
Deduce that equation (5.3.13) gets the form
dY;(w
W) DR FLF @) Yo=z.  (5316)

Note that this is just a deterministic differential equation in the
function t — Yi(w), for each w € §2. We can therefore solve (5.3.16)
with w as a parameter to find Yi;(w) and then obtain Xi(w) from
(5.8.15).

Apply this method to solve the stochastic differential equation

1
dXt = S('—dt + aX,dBt 5 Xo=x>0 (5317)
t

where a is constant.
Apply the method to study the solutions of the stochastic differen-
tial equation

dX; = X;Ydt + aXdBy ; Xo=z>0 (5318)

where a and v are constants.
For what values of v do we get explosion?
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5.17.

5.18.
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(The Gronwall inequality)
Let v(t) be a nonnegative function such that

t
v(t)§C+A/v(s)ds for 0<t<T
0

for some constants C, A. Prove that

v(t) < Cexp(At) for0<t<T. (5.3.19)

¢
(Hint: We may assume A # 0. Define w(t) = [v(s)ds . Then w'(t) <

0
C + Aw(t). Deduce that

w(t) < —(exp(At) — 1) (5.3.20)

= Q

by considering f(t): = w(t) exp(—At).
Use (5.3.20) to deduce (5.3.19.)

The geometric mean reversion process X; is defined as the solution of
the stochastic differential equation

dX, = n(a - lOgXt)Xtdt -+ O'XtdBt ) Xo=2z>0 (5321)

where k,a, 0 and z are positive constants.
This process was used by J. Tvedt (1995) to model the spot freight
rate in shipping.

a) Show that the solution of (5.3.21) is given by

=y (2 2) -

t (5.3.22)
4o e nt fe'“st).

0

{Hint: The substitution
Y = log X;
transforms (5.3.21) into a linear equation for Y}]
b) Show that
2 2 —2xt
_ —kt 0N mty, T (1—e )

E[X:] = exp (e Inz + (a 2n)(1 e ") + — )
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5.19. Let Yt(k) be the process defined inductively by (5.2.12). Show that
{Yt(")}:):o is uniformly convergent for t € [0, T}, for a.a. w. Siuce each

Yt(") is continuous, this gives a direct proof that X; can be chosen to
be continuous in Theorem 5.2.1.

[Hint: Note that

T
sup [Y*) - 7)) < / 1b(s, YO) = bs, V¥ Vjds
0<t<T 5

t
+ sup | [(o(s,Y®(5) = o5, 1))aB,
oge<r )

Hence

P[ sup IYt(k+1) _ Yt(k)l > 2—k]

0<t<T
T
< P[ [ 1666, Y ) = bls, Yl > 274
0
t
+P[ sup |/(a(s’Ys(k)) _ U(vas(k_l)))stl > 2—k—-1]'
o<t

Now use the Chebychev inequality, the Hoélder inequality and the
martingale inequality (Theorem 3.2.4), respectively, combined with
(5.2.13), to prove that

A T)k+1
P| sup [YED _y B 5 07k < (AsT)™
[ogthi t S %+ 1)

for some constant A < oo. Therefore the result follows by the Borel-
Cantelli lemma.]






6. The Filtering Problem

6.1 Introduction

Problem 3 in the introduction is a special case of the following general filtering
problem:

Suppose the state X; € R™ at time t of a system is given by a stochastic
differential equation

dX,
dt
where b: R"t1 — R™, o: R*! — R™*? satisfy conditions (5.2.1), (5.2.2) and

W, is p-dimensional white noise. As discussed earlier the It6 interpretation
of this equation is

=b(t, X;) +o(t, X)W,, t>0, (6.1.1)

(system) dX, = b(t, X:)dt + o (¢, X,)dU, (6.1.2)

where U, is p-dimensional Brownian motion. We also assume that the distri-
bution of Xy is known and independent of U;. Similarly to the 1-dimensional
situation (3.3.6) there is an explicit several-dimensional formula which ex-
presses the Stratonovich interpretation of (6.1.1):

dXt = b(t, Xt)dt -+ U(t, Xt) o dUt
in terms of It6 integrals as follows:

dX, = b(t, X;)dt + o(t, X;)dU;,  where

~(ta,;)—btac)JrZZz:aa”ak,, 1<i<n. (6.1.3)

i=1k=1

(See Stratonovich (1966)). From now on we will use the It interpretation
(6.1.2).

In the continuous version of the filtering problem we assume that the
observations H; € R™ are performed continuously and are of the form

H, = c(t, Xo) + 7(t, X)) - W, (6.1.4)

where c:R**! — R™, v:R"*! — R™>" are functions satisfying (5.2.1) and
W; denotes r-dimensional white noise, independent of U; and Xj.
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To obtain a tractable mathematical interpretation of (6.1.4) we introduce

t
Zy = / H,ds (6.1.5)
0

and thereby we obtain the stochastic integral representation
(observations) dZy = c(t, X)dt + v(t, X)dVy, Zo=0 (6.1.6)

where V; is r-dimensional Brownian motion, independent of U; and Xj.

Note that if H is known for 0 < s<¢, then Z, is also known for 0<s<¢
and conversely. So no information is lost or gained by considering Z; as our
“observations” instead of H;. But this allows us to obtain a well-defined
mathematical model of the situation.

The filtering problem is the following:

Given the observations Z, satisfying (6.1.6) for 0 < s < ¢, what is the best
estimate X; of the state X, of the system (6.1.2) based on these observations?

As we have pointed out earlier, it is necessary to find a precise mathe-
matical formulation of this problem: By saying that the estimate X; is based
on the observations {Zy; s <t} we mean that

)?,() is Gs~measurable,
where G, is the o-algebra generated by {Z,(-),s <t}. (6.1.7)

By saying that X, is the best such estimate we mean that

/|X, — RPdP = B X, — X% = inf{E[ X, — Y2; Y €K} . (6.1.8)
(93

Here - and in the rest of this chapter — (§2,F, P) is the probability space
corresponding to the (p + r)-dimensional Brownian motion (U, V;) starting
at 0, E denotes expectation w.r.t. P and

K:=Ky=K(Z,t):={Y:2-R"; YeL*(P)and Y is G;-measurable} ,
(6.1.9)
where L2(P) = L2(£2, P).
Having found the mathematical formulation of our problem, we now start
to study the properties of the solution Xj.
We first establish the following useful connection between conditional ex-
pectation and projection:

Lemma 6.1.1. Let H C F be a o-algebra and let X € L%(P) be F-
measurable. Put N' = {Y € L?(P);Y is H-measurable} and let Py denote
the (orthogonal) projection from the Hilbert space L%(P) into the subspace
N. Then

Pn(X) = E[X|H].
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Proof. Recall (see Appendix B) that E[X|H] is by definition the P-unique
function from 2 to R such that

(i) E[X|H] is H-measurable
(i) [E[X{H]dP = [ XdP for all A € H.
A A

Now Ppr(X) is H-measurable and

/Y(X —Pn(X)dP =0 forall Y e V.
2

In particular,

/ (X = Pn(X))dP =0 forall AcH

A
ie.
/PN(X)dP=/XdP forall AeH.
A A
Hence, by uniqueness, Py (X) = E(X|H]. o

From the general theory of Hilbert spaces we know that the solution X ¢
of the problem (6.1.8) is given by the projection P, (X:). Therefore Lemma
6.1.1 leads to the following useful result:

Theorem 6.1.2. R
X = Px,(X:) = E[X|G:] .

This is the basis for the general Fujisaki-Kallianpur-Kunita equation of fil-
tering theory. See for example Bensoussan (1992), Davis (1984) or Kallianpur
(1980).

6.2 The 1-Dimensional Linear Filtering Problem

From now on we will concentrate on the linear case, which allows an explicit
solution in terms of a stochastic differential equation for X, (the Kalman-
Bucy filter):

In the linear filtering problem the system and observation equations have
the form:

(linear system) dX,=F(t) X, dt+C(t)dUy;
F(t)eR™", C(t)e R"*? (6.2.1)

(linear observations) dZ;=G(t)X.dt+ D(t)dV;;
G(t)eR™*" D(t)e R™*" (6.2.2)
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To be able to focus on the main ideas in the solution of the filtering
problem, we will first consider only the 1-dimensional case:

(linear system) dX, = F(t) X dt + C(t)dUy; F(t), C{t) e R (6.2.3)
(linear observations) dZ; = G(t)X.dt + D(t)dVy; G(t), D(t) e R (6.2.4)

We assume (see (5.2.1)) that F,G,C, D are bounded on bounded intervals.
Based on our interpretation (6.1.5) of Z, we assume Zg = 0. We also assume
that Xo is normally distributed (and independent of {U,}, {V;}). Finally we
assume that D(t) is bounded away from 0 on bounded intervals.

The (important) extension to the several-dimensional case (6.2.1), (6.2.2)
is technical, but does not require any essentially new ideas. Therefore we shall
only state the result for this case (in the next section) after we have discussed
the 1-dimensional situation. The reader is encouraged to work out the nec-
essary modifications for the general case for himself or consult Bensoussan
(1992), Davis (1977) or Kallianpur (1980) for a full treatment.

From now on we let X;, Z; be processes satisfying (6.2.3), (6.2.4). Here is
an outline of the solution of the filtering problem in this case.

Step 1. Let £ = L£(Z,t) be the closure in L?(P) of functions which are
linear combinations of the form

co+e1Zs, (W) +- -+ eZg, (W), with s; <t,c;eR.

Let
Pc  denote the projection from L2(P) onto L .

Then, with K as in (6.1.9),
X, = Pe(Xy) = E[X|Gi) = Pe(Xy) .

Thus, the best Z-measurable estimate of X; coincides with the best Z-linear
estimate of X;.

Step 2. Replace Z; by the innovation process Ny:
t
Ne=Zi~ [(GX))ds, where (GX)} = Peiz.(Gls)X,) = Gl9) R,
0

Then

(i) N has orthogonal increments, i.e.
E[(Ni,—Ng, )(N¢,—Ng, )] = 0 for non-overlapping intervals [s1,t1], [s2, t2].
(ii) L(N,t) = L(Z,t),s0 X; = Pev,gy (Xe).
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Step 3. If we put

dR; = (t)dNt ,

then R, is a 1-dimensional Brownian motion. Moreover,

L(N,t) = L(R,1) and

t
-~ 0
R, = Peqvn(X0) = Pegnay(X) = BLX + [ 5o EIXRiJdR,
0

Step 4. Find an expression for X; by solving the (linear) stochastic differ-
ential equation

Step 5. Substitute the formula for X; from Step 4 into E[X.;R,] and use
Step 3 to obtain a stochastic differential equation for X,:

t
c 0 92
dXt = 5;E[XtR313=tht "+' (/ %E[XtRs]dRs)dt etc.
0

Before we proceed to establish Steps 1-5, let us consider a simple, but moti-
vating example:

Example 6.2.1. Suppose X, W), Wy,... are independent real random vari-
ables, E(X] = E(W;] = 0 for all j, E[X?] = a?, E[W}] = m? for all j. Put

What is the best linear estimate X of X based on {Z;;5 < k}? More
precisely, let

£=ﬁ(Z,k)={61Z1+"'+Cka;Cl,...,Ck ER} .

Then we want to find R
Xr = Pr(X),

where Pj. denotes the projection into £(Z, k).
We use the Gram-Schmidt procedure to obtain random variables A;, A,, ..
such that

(i) E[AiAj}=0for i+#j
(i) L(A,k) = L(Z,k) for all k.

Then

X = Z EéfA‘;]’]A for k - 1,2,.... (6.2.5)

We obtain a recursive relation between X x and X k-1 from this by observing
that

J=1
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Ay =2Z;- X1, (6.2.6)
which follows from
Aj=Z; —Pi—1(Z;) = Z; = Pj—1(X),  since Pj_1(W;)=0.
By (6.2.6)
E[XA;] = B[X(Z; - X;-1)] = E[X(X - X;-1)] = E[(X - X;-1)%]

and
E[AY] = E(X +W; - X;_1)%] = E[(X — X;_1)}) + m?.

Hence

El(X - Xk-1)?]

Xe=Xeo1 + - Zr — Xe_1) . 6.2.7)
FIX ~ Rn 1)) + 8 1 (
If we introduce .
= 1
Zr =7 Z z;,
j=1
then this can be simplified to
b @ 3z
= e— . 6.2.8
k (12 T Tlc' -m2 k ( )
(This can be seen as follows:
Put 5
a —
Q. = m y Uk = aka
Then

() Uk € L(Z,k)
(ii) X — UxLL(Z, k), since

E[(X - Uk)Zi] = E[XZ,] — akE[—ZkZi]
= E[X(X +Ws)] - ak% > Elz;Zi]

— - Lo, 2 B+ W)(X+ 1) = o - raufka?+m?) =0.)

The result can be interpreted as follows:

For large k we put X; = Zj, while for small k the relation between a2
and m? becomes more important. If’\m2 > a?, the observations are to a large
extent neglected (for small k) and X} is put equal to its mean value, 0. See
also Exercise 6.11.
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This example gives the motivation for our approach:

We replace the process Z; by an orthogonal increment process N, (Step 2)
in order to obtain a representation for X, analogous to (6.2.5). Such a rep-
resentation is obtained in Step 3, after we have identified the best linear
estimate with the best measurable estimate (Step 1) and established the con-
nection between N, and Brownian motion.

Step 1. Z-Linear and Z-Measurable Estimates

Lemma 6.2.2. Let X,Z,; s <t be random variables in L?(P) and assume
that
(X,Z5,,Z5y,---,2s,) € R*!

has a normal distribution for all s1,89,...,8, <t, n>1. Then
Pc(X) = E[X|G] = Pe(X) .

In other words, the best Z-linear estimate for X coincides with the best Z-
measurable estimate in this case.

Proof. Put X = P(X), X = X — X. Then we claim that X is independent
of G: Recall that a random variable (Y3,...,Yx) € R¥ is normal iff ¢,Y; +
.-+ + Yy is normal, for all choices of ¢1,...,¢cx € R. And an L2-limit of
normal variables is again normal (Appendix A). Therefore

()?,Zsl,...,an) is normal for all s1,...,s, <t¢.

Since E[)?Zsj] =0, X and Zs; are uncorrelated, for 1 < j < n. It follows
(Appendix A) that

X and (Zsys- .., 2Zs, ) are independent .
So X is independent from G as claimed. But then
E[Xg(X — X)| = E[XsX) = E[Xg]- E[X] =0 forall GegG
ie. [ XdP = [ XdP. Since X is G-measurable, we conclude that
X =G E[X|gG]. ¢ o

There is a curious interpretation of this result: Suppose X, {Z;}1er are
L?(P)-functions with given covariances. Among all possible distributions of

(X, Z4y,.. .1 Z4,)

with these covariances, the normal distribution will be the “worst” w.r.t.
estimation, in the following sense: For any distribution we have

E[(X - E[X|G])?] < E[(X - Pc(X))?],
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with equality for the normal distribution, by Lemma 6.2.2. (Note that the
quantity on the right hand side only depends on the covariances, not on
the distribution we might choose to obtain these covariances). For a broad
discussion of similar conclusions, based on an information theoretical game
between nature and the observer, see Topsoe (1978).

Finally, to be able to apply Lemima 6.2.2 to our filtering problem, we need
the following result:

Lemma 6.2.3.

X,

Mt:[Zt

} € R? is a Gaussian process .

Proof. We may regard M, as the solution of a 2-dimensional linear stochastic
differential equation of the form

dM, = H(t)M,dt + K (t)dBy, Mo = [)60] ; (6.2.9)

where H(t) € R?*?, K(t) € R?*? and By is 2-dimensional Brownian motion.
Use Picard iteration to solve (6.2.9), i.e. put

t
Mt(n+l) =M0+/H(S)M§n)d3+ /K(s)st, n=0,1,2,... (6.2.10)

Then M{™ is Gaussian for all n and M{™ — M, in L?(P) (see the proof of
Theorem 5.2.1) and therefore M, is Gaussian (Theorem A.7). ]

Step 2. The Innovation Process

Before we introduce the innovation process we will establish a useful repre-
sentation of the functions in the space

L(Z,T) = the closure in L?(P) of all linear combinations
CO+cht1+"'+cthk; OstiST,CjGR.

If f € L?[0,T), note that

|( 0/T swaz) | ==|( /T sewxar) |+ O/T ropwav.) |
] ) o).

Since
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|

9 T
E[( f(t)G(t)Xtdt) ] < A ~/f(t)2dt by the Cauchy-Schwartz inequality,

gl

and {X.}, {V;} are independent, we conclude that

T T 2 T
Ao/fz(t)dt SE[(/f(t)dZt) ] < Az/f2(t)dt, (6.2.11)
0 0 0

for some constants Ag, A;, A2 not depending on f. We can now show

T

ft)D( t)th) ] / F(t)2D?(t)dt by the It6 isometry
0

O 4 ©

Lemma 6.2.4. £(Z,T) = {co + ff(t)dZt; f e L?0,T),co € R}.
0

Proof. Denote the right hand side by N (Z,T). It is enough to show that

a) N(Z,T) C L(Z,T)
b) N(Z,T) contains all linear combinations of the form

co+c1Zy + -+ ey, ; 0<t; =T
¢) N(Z,T) is closed in L(P)

a): This follows from the fact that if f is continuous then
/f t)dZ, = lim Zf (G-27™) (Z1yz-n — Zjz-n) -

b): Suppose 0 < t; <ty <--- <t < T. We can write

k-1 b T k-1
Zc,Zt = Zc Az, _Z / c;dZz, =/(Zc;x[tj,tj+l)(t))dzt,
= i 0 3=0
where AZ; = Zy,,, — Zy;.
c): This follows from (6.2.11) and the fact that L2[0, T] is complete. a

Now we define the innovation process N, as follows:

t
Ny= 2y — / (GX)\ds, where (GX)) = Prz.(G(s)X,) = G(s)X, .

0
(6.2.12)
v dN, = G(t)(X. — X,)dt + D(t)dV, . (6.2.13)
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Lemma 6.2.5. (i) N; has orthogonal increments
t

(ii) E[NZ] = [ D?*(s)ds
0

(iif) L(N,t) = L(Z,t) forallt >0
(iv) N, is a Gaussian process

Proof. (i): If s <t and Y € L(Z, s) we have

Blve - wy) = 5| / Gr)(Xe = X Jar + / D(av,)Y]

= /tG(r)E[(XT — X,)Y)dr + E[(deV)Y] =0,

since X, —~X,1L(Z,r) D L(Z, s) for r > s and V has independent increments.
(ii): By Itd’s formula, with g(¢,z) = 22, we have
d(N?) = 2N,dN; + 12(dN;)? = 2N dN, + D?dt .
So

t

E[N} = E[ / 2N3st] + j D?(s)ds .
0 0

/Nsts = AltiJ»IP—»OZth [th+1 - th] ,
0

Now

so since N has orthogonal increments we have
t
E[/Nsts] =0, and (ii) follows .

(iif): It is clear that L(N,t) C L(Z,t) for all t > 0. To establish the opposite
inclusion we use Lemma 6.2.4. So choose f € L?[0,¢] and let us see what
functions can be obtained in the form

/fs)dN /fs)dZ—/fr)G Xdr

=/fs)dZ /fr)[/ r.s)dZa] 0/f

0
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t t ¢
:O/[f(s)—/f(r)g(r, s)d7‘]dZs—0/f(7”)C(7”)d7”,

3

where we have used Lemma 6.2.2 and Lemma 6.2.4 to write, for each r,

r

(GX)} =c(r) + /g(r, 8)dZ, for some g(r,-) € L?[0,7], c(r) €R .
0

From the theory of Volterra integral equations (see e.g. Davis (1977), p. 125)
there exists for all h € L?[0,¢] an f € L?[0,¢] such that

£(s) - / F(r)g(r, s)dr = h(s).

So by choosing h = Xjg,) where 0 < ¢; < ¢, we obtain

t

t t
f(r)e(rydr+ | f(s)dANs = | Xo,i,)(8)dZs = Z4, ,
[ s [roa.- |

which shows that L(N,t) D L(Z,t).

(iv): X, is a limit (in L%(P)) of linear combinations of the form

M=c+aZs + - +cxZs, , where s <t.
Therefore - A
(Xey,-o oy Xe)
is a limit of m-dimensional random variables (M) ... M (™) whose com-
ponents M) are linear combinations of this form. (M), ... M) has a

normal distribution since {Z;} is Gaussian, and therefore the limit has. Hence
{X:} is Gaussian. It follows that

t
Ny =Z, — / G(s)X,ds
0

is Gaussian, by a similar argument. O
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Step 3. The Innovation Process and Brownian Motion

t o~
Let N, = Z; — [ G(s)X,ds be the innovation process defined in Step 2.
0

Recall that we have assumed that D(t) is bounded away from 0 on bounded
intervals. Define the process R:(w) by
1

=B

dNy(w); t>0, Ry=0. (6.2.14)

Lemma 6.2.6. R, is a 1-dimensional Brownian motion.
Proof. Observe that

(i) R has continuous paths

(ii) R; has orthogonal increments (since NV, has)
(iii) R, is Gaussian (since N, is)

(iv) E[R:] = 0 and E[R.R;] = min(s, ).

To prove the last assertion in (iv), note that by 1t6’s formula
d(R2) = 2R.dR, + (dR.)? = 2R.dR, + dt ,

so, since R; has orthogonal increments,

t

E[R?]zE[/ds]:t.
0

Therefore, if s < ¢,
E(R,R,| = E|(R; — Rs)Rs] + E[R}| = E[R}] = 5.

Properties (i), (iii) and (iv) constitute one of the many characterizations of a
1-dimensional Brownian motion (see Simon (1979), Theorem 4.3). (Alterna-
tively, we could easily deduce that R, has stationary, independent increments
and therefore — by continuity — must be Brownian motion, by the result previ-
ously referred to in the beginning of Chapter 3. For a general characterization
of Brownian motion see Corollary 8.4.5.) O

Since
L(N,t) = L(R,1)

we conclude that ,\
X = PE(R,t)(Xt) .

It turns out that the projection down to the space L(R,t) can be described
very nicely: (compare with formula (6.2.5) in Example 6.2.1)
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Lemma 6.2.7.
[ o
X, = E[X,) + /b—;E[X,,Rs]dRs. (6.2.15)
0

Proof. From Lemma 6.2.4 we know that

t
Xi=co(t) + /g(s)dRs for some g € L2[0,¢], co(t) € R..
0

Taking expectations we see that co(t) = E[X,] = E[X,]. We have
t
(X, —)?t)L/f(s)dRs for all f € L2[0,].
0

Therefore

E[Xt Oj f(s)dRs] =E[)?t Oj f(s)dRs] =E[ j g(s)dR, 0/ f(s)dRs]

=F g(s)f(s)ds| = | g(s)f(s)ds, for all f € L?0,¢],
fooson] -

where we have used the It6 isometry. In particular, if we choose f = Xl .
for some r < ¢, we obtain

r

E[XR,]| = [ g(s)ds
/
or

g(r) = gE[Xth] , as asserted .
r
This completes Step 3. 0

Step 4. An Explicit Formula for X,

This is easily obtained using Itd’s formula, as in the examples in Chapter 5.
The result is

X; = exp (jF(s)ds) [Xo + jexp ( - jF(u)du) C(s)dUs]
0 0 0

t

= exp (/tF(s)ds)Xo + /exp( ; F(u)du) C(s)dU, .
0

0 .
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t
In particular, we note that E[X;] = E[Xo]exp([ F(s)ds).
0

More generally, if 0 <r < t, (see Exercise 6.12)

X; = exp (]F(s)ds)Xr + /texp (jF(u)du)C(s)dUs . (6.2.16)

Step 5. The Stochastic Differential Equation for )’a

We now combine the previous steps to obtain the solution of the filtering
problem, i.e. a stochastic differential equation for X;. Starting with the for-
mula from Lemma 6.2.7

X, = B[X:) + / f(s,t)dR, ,
0

where

o
f(s’t) = EE[XtRs] ) (6217)
we use that
[G() o o
R, = (Xy — Xy )dr + Vs from (6.2.13) and (6.2.14))
D(r)
0
and obtain s
_ [ G(r) =
E[X:R,] = / D(T)E[XtXr]dr,

0

where

X, =X, -X,. (6.2.18)
Using formula (6.2.16) for X;, we obtain

t

E[X.X,) = exp ( j F(v)dv) E[X,X,] =exp ( / F(v)dv) S(r),

™ T

where 5
S(r) = E[(X,)%], (6.2.19)

i.e. the mean square error of the estimate at time r > 0. Thus

_ 8 G(r) t
E[X.R,) = J 56 P ( / F(v)dv) S(r)dr
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so that .
f(s,t) = Gisi exp ( / F(v)dv)S(s) . (6.2.20)
3
We claim that S(t) satisfies the (deterministic) differential equation
@ _ F(t)S(t G*(1) S2%(t) + C%(t) (The Riccati equation) . (6.2.21)
dt D2(t)

To prove (6.2.21) note that by the Pythagorean theorem, (6.2.15) and the
It6 isometry

S(t) = B{(X. ~ X.)%] = B[X?] — 2E[X.X,] + E[X?] = E[X?] - E[X}]
=T(t) - /f(s,t)zds — E[X)?, (6.2.22)
0

where
T(t) = E[X?]. (6.2.23)

Now by (6.2.16) and the It6 isometry we have

T(t) = exp (Q/tF(s)ds) E[X3 + jexp <2jF(u)du> C%(s)ds,
0 s

0

using that Xo is independent of {U,}s>0. So

%:tf =2F(t) - exp (2 / F(s)ds)E[Xg] +C%(¢)
0

+ j 2F (t) exp (2 j F(u)du)Cz(s)ds

0

1.e. dT

dt
Substituting in (6.2.22) we obtain, using Step 4,

2F(t)T(t) + C%(t) . (6.2.24)

o = O~ St~ [21(s,1) - S, 0ds — 2P BIX
0
G*(£)S?(2)
D*(2)

G2(t)S*(¢)
Dy

= 2F(t)T(t) + C?(t) — - 2/f2 (s,t)F(t)ds — 2F(t)E[X,)?

= 2F(t)S(t) + C%(t) - which is (6.2.21) .
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We are now ready for the stochastic differential equation for X;:
From the formula

)?t = co(t) + /f(s,t)dRs where ¢o(t) = E[X;]

it follows that

t

4%, = cyeyie + 1t 0dR + ( [ Gr(e.dR, )at, (6.2.25)
!
since
of(ofg—f(s aR, )t = O/(/%f(s,t)dt)d&
(F(50) = £(5,9))dRs = Ko = colu) — [ £(s,8)dRs -
So ! , /
) dX, = ch(t)at + G( iR, + ( 0/ f(s, t)dR, ) (t)dt

dX; = cy(t)dt + F(t) - (X; — co(t))dt + 2t GH)S) 4R,

D(¢)
G(t)S(t)

= F(t)X,dt + D& dR, , (6.2.26)

since ¢4(t) = F(t)eo(t) (Step 4).
If we substitute

1 —~
dR; = m[dZt — G(t) X, dt]
we obtain

G(#)S()
D2(t)

IEHORONS

) Xdt +

dZ, . (6.2.27)

So the conclusion is:
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Theorem 6.2.8 (The 1-dimensional Kalman-Bucy filter).
The solution X, = E[X;|G;] of the 1-dimensional linear filtering problem

(linear system) dX, = F(t)X,dt + C(t)dU,; F(t), C(t) e R (6.2.3)
(linear observations) dZ, = G(t)X.dt + D(t)dVy; G(t), D(t) e R (6.2.4)

(with conditions as stated earlier) satisfies the stochastic differential equation

- G2 (t)S()\ o G(t)S(t >
a%= (Fo - SR R+ S0 azs %o = X (6229)
where
S(t) = E{(X, — X,)?] satisfies the (deterministic) Riccati equation
S G?
L~ 2POS() - TRL S0+ CX(0), 50) = Bl(Xo ~ BLXo)7] . (62.29)

Example 6.2.9 (Noisy observations of a constant process).
Consider the simple case

(system) dX; =0, ie X, = Xo; E[Xo] = Xo, E[X2] =a?
(observations) dZy = Xydt + mdVy; Zp =0

(corresponding to

_az
T dt
First we solve the corresponding Riccati equation for

S(t) = E{(X: — X,)?):

Ht = Xt + th, Wt = white noise) .

@~ Tmy o S0=a
i.e.
a’m?
= — t>0.
S m2 +a?t’ 20
This gives the following equation for X,
dX, 2 Rd @iz Xo = E[X,
t m2 +a%t” ' +m2+a2t b 0 [Xo] =0

or

t t
s a? a? a?
d(Xt P ( / m‘z‘d)) = exp ( [ +azs‘“) TR
0 0

which gives
2 2
Xo+

~

Xt

m? + a%t mirant 120 (6:2.30)

This is the continuous analogue of Example 6.2.1.
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Example 6.2.10 (Noisy observations of a Brownian motion).
If we modify the preceding example slightly, so that

(system) dX; = cdUy; E[Xy] =0, E[XZ] = a?, ¢ constant
(observations) dZ, = Xdt + mdVj,

the Riccati equation becomes

dS_ 1 ., 2 o
i m2S +¢%,50) =a
o m2dS
P R =dt, (S # mc) .
This gives
2
mc+sl=Kexp<—Ct-); _‘mc-l—az‘
me — s m me—a
Or

mc'ﬁ% 7 i S(0) < me
S(t) = { mc (constant)  if S(0) =
mc%—ié—j_gg%—i if S(0) > me.
Thus in all cases the mean square error S(t) tends to mec ast — oo .
For simplicity let us put @ = 0, m = ¢=1. Then

S(t) = Z%’;—%Jr—i — tanh(t) .
The equation for X, is
dX, = —tanh(t) X,dt + tanh(t)dZ,, X, =0
or R
d(cosh(t)X;) = sinh(t)dZ, .
So

o~

t
1 .
Xy = EO—S}_’I—(?)- /smh(s)dZ
0

If we return to the interpretation of Z; :

t
Zy = /H,ds,
0

where H, are the “original” observations (see (6.1.4)), we can write
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t

h(s 2.
COSh(t /sm VH,ds , (6.2.31)
0

so X, is approximately (for large t) a weighted average of the observations
H,, with increasing emphasis on observations as time increases.

Remark. It is interesting to compare formula (6.2.31) with established for-
mulas in forecasting. For example, the exponentially weighted moving average
X, suggested by C.C. Holt in 1958 is given by

Xn=(1-a)"Zo+a) 1-a)"Fz,
k=1

where o is some constant; 0 < a < 1. See The Open University (1981), p. 16.
This may be written

Xp=BT"Zo+ (B-1)"S B2,
k=1

where § = = (assuming a < 1), which is a discrete version of (6.2.31), or —
more precxsely of the formula corresponding to (6.2.31) in the general case
when a # 0 and m, ¢ are not necessarily equal to 1.

Example 6.2.11 (Estimation of a parameter).
Suppose we want to estimate the value of a (constant) parameter 4, based
on observations Z; satisfying the model

dZ, = 0 M(t)dt + N(t)dB,

where M(t), N(t) are known functions. In this case the stochastic differential
equation for # is of course
dg =0,

so the Riccati equation for S(t) = E[(6 — 8,)?) is
s (M@®S®)\®
it N()

which gives

S(t) = (50—1 + j M(s)zN(s)_2d5>_1
0

and the Kalman-Bucy filter is

M(t)S(t)

N (42 - M@B.dt)

dd, =
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This can be written

(50-1 +/M(s)2N(s)‘2ds>d§t + M(t)2N(t) 20,dt = M(t)N(t)"%dZ, .
0

We recoqnize the left hand side as
t
d( (50-1 + /M(s)2N(s)-2ds)§t)
0

so we obtain .
B0Sy ' + [ M(s)N(s)~2dZ,
0

§t =
t
Syl + [ M(s)2N(s)2ds
0
This estimate coincides with the maximum likelihood estimate in classical
estimation theory if Sy = 0. See Liptser and Shiryaev (1978).
For more information about estimates of drift parameters in diffusions

and generalizations, see for example Aase (1982), Brown and Hewitt (1975)
and Taraskin (1974).

Example 6.2.12 (Noisy observations of a population growth).
Consider a simple growth model (r constant)

dX, =rXdt,E[Xo] =b>0,  E[(Xo—b)? =a?,
with observations
dZ, = X,dt + mdV, ; m constant .

The corresponding Riccati equation

dsS 1
=S - 52 — g2
T rS 35 S(0) =a”,
gives the logistic curve
27‘7712 2rm? —1.

S(t) =

T Re—ot s  Where K =S5

So the equation for X, becomes
~ S\ ~ S ~
dX, = r_'_r—n—i Xtdt-l-a-,_;dzt; Xo=E[Xo}=b.
For simplicity let us assume that a2 = 2rm?2, so that

S(t) = 2rm? forall t.
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(In the general case S(t) — 2rm? as t — oo, so this is not an unreasonable
approximation for large t). Then we get

d(exp(rt) X;) = exp(rt)2rdZ, , Xo=1b

or
t

X, = exp(—rt) [/27‘ exp(rs)dZ, + b} .
0
As in Example 6.2.10 this may be written

t
- ¢
X; = exp(—r1t) [/2r exp(rs)Hsds + b] if Z, = [Hyds. (6.2.32)
0
- 0

For example, assume that H, = 3 (constant) for 0 < s < ¢, i.e. that our
observations (for some reason) give the same value 8 for all times s < ¢.
Then .

X: =208— (28 - b)exp(—rt) — 20 as t — 00 .

If H, = 8- exp(as), s > 0 (o constant), we get

- 2
X, = exp(—rt) " :—ﬁa (exp(r+a)t—1)+b

~
~

t forl t.
—a exp o arge

Thus, only if o = r, i.e. H; = Bexp(rs); s > 0, does the filter “believe” the
observations in the long run. And only if o = r and 8 = b, i.e. H; = bexp(rs);
s > 0, does the filter “believe” the observations at all times.

Example 6.2.13 (Constant coefficients — general discussion).
Now consider the system

dX, = FXdt + CdU, ; F,C constants # 0
with observations
dZ; = GXdt + DdV;, ; G,D constants # 0.

The corresponding Riccati equation

G?
=2FS — ﬁbﬂ +C?%*,  S(0)=a?
_ 2
() = @17 Kasexp(2p0")
1 - K exp({e2a=gpcty -

has the solution

where
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oy = G4 FD? — DVF2D? + G2C?)
=G Y(FD? + DVF2D? + G2C?)

and )
a” —o
K =

a? —ag

This gives the solution for X, of the form

X, =exp (jH(s)ds)Xo+ ———/exp (/H du) )dZ,
0

G2
For large s we have S(s) = a. This gives

t
- = G’a G G a
thXoexp(<F— D22)t)+ DO‘22 /exp((F——-E—?-)(t—s))dZ
0
t

= )?oexp( ﬁt)+ exp( ﬁt)/exp(ﬁs)dZs (6.2.33)
0

where 3 = D™1/F2D? 4+ G2C? . So we get approximately the same be-
haviour as in the previous example.

where

S(s) .

6.3 The Multidimensional Linear Filtering Problem

Finally we formulate the solution of the n-dimensional linear filtering problem
(6.2.1), (6.2.2):

Theorem 6.3.1 (The Multi-Dimensional Kalman-Bucy Filter).
The solution X, = E[X,;|G,] of the multi-dimensional linear filtering problem

(linear system) dX,=F(t)X,dt+C(t)dU,,
F(t)eR"*" C(t)eR™*P (6.3.1)
(linear observations) dZ,=G(t)X.dt+ D(t)dV;
G(t)eR™ ", D(t)e R™*" (6.3.2)

satisfies the stochastic differential equation

dX, = (F — SGT(DDT)~'G)X.dt + SGT(DDT)~'dZ,; Xo= E|Xo]
(6.3.3)
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where S(t):= E[(X; — X)X, - )?t)T] € R™*" satisfies the matriz Riccati
equation

a5 _ ps +SFT - SGT(DDT)"'GS + cCT;

dt
5(0) = E{(Xo — E[Xo])(Xo — E[Xo])"] . (6.3.4)

The condition on D(t) € R™*" is now that D(t)D(t)T is invertible for all t
and that (D(t)D(t)T)~! is bounded on every bounded t-interval.

A similar solution can be found for the more general situation

(system) dX; = [Fo(t) + FL(t) Xy + Fa(t) Zo)dt + C(t)dU, (6.3.5)
(observations)  dZq = [Go(t) + G1(t)X, + Ga(t)Ze)dt + D(t)dV; ,  (6.3.6)

where X; € R™, Z; € R™ and B; = (U, \¢) is n + m-dimensional Brownian
motion, with appropriate dimensions on the matrix coefficients. See Ben-
soussan (1992) and Kallianpur (1980), who also treat the non-linear case.
An account of non-linear filtering theory is also given in Pardoux (1979) and
Davis (1984).

For the solution of linear filtering problems governed by more general
processes than Brownian motion (processes with orthogonal increments) see
Davis (1977).

For various applications of filtering theory see Bucy and Joseph (1968),
Jazwinski (1970), Gelb (1974), Maybeck (1979) and the references in these
books.

Exercises

6.1. (Time-varying observations of a constant)
Prove that if the (1-dimensional) system is

dX, =0, E[Xo] =0, E[X}] =a®
and the observation process is
dZ, = Gt)Xdt +dVy,,  Zy =0
then S(t) = E[(X; — X,)?] is given by
1
" Shy +Ja GR(s)s

We say that we have eract asymptotic estimation if S(t) — Oast — oo,
i.e. if

S(t) (6.3.7)
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o0
/Gz(s)ds =00.
0
Thus for )
G(s) = axsr {p > 0 constant)

we have exact asymptotic estimation iff p < 1 .

Consider the linear 1-dimensional filtering problem with no noise in
the system:

(system) dX; = F(t)X,dt (6.3.8)
(observations) dZ, = G(t)X,dt + D(t)dV; (6.3.9)

Put S(t) = E[(X: - )?t)z] as usual and assume S(0) > 0.
a) Show that

1
R(t):= 3@—)
satisfies the linear differential equation
G?(t) 1
"(t) = — - = 3.
R'(t) = =2F(t)R(t) + D) R(0) 500) (6.3.10)

b) Use (6.3.10) to prove that for the filtering problem (6.3.8), (6.3.9)
we have

t t t
1 1 G?(s)
E(t—) = ‘STd')'eXp (—2/F(s)ds)+/exp (—Q/F(U)dU)D—z(gdS .
0 0 s
(6.3.11)
In Example 6.2.12 we found that
S(t) — 2rm? as t — oo,

so exact asymptotic estimation (Exercise 6.1) of X, is not possible.
However, prove that we can obtain exact asymptotic estimation of Xg,
in the sense that

E[(Xo — E[Xo|G:)))] =0  as t—oo.

(Hint: Note that Xy = e™"'X, and therefore E[X|G:] = e‘”)’(:t, S0
that
E[(Xo — E[X0|G])%] = e™2™5(2)) -
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Consider the multi-dimensional linear filtering problem with no noise
in the system:

(system) dX, = F(t)X,dt ;

X, € R™, F(t) e R**" (6.3.12)
(observations) dZ, = G(t) X dt + D(t)dV; ;

G(t) e R™*" | D(t) ¢ R™*" (6.3.13)

Assume that S(t) is nonsingular and define R(t) = S(t)~!. Prove that
R(t) satisfies the Lyapunov equation (compare with Exercise 6.2)

R'(t) = —R(t)F(t) - F&)TR@) + G)T (D) D(t)T)"IG(t) . (6.3.14)

(Hint: Note that since S(t)S™!(t) = I we have
S'(t)S~1(t) + S(¢)(S~1)(t) = 0, which gives

(S™Y(t) = =S~ S (HS(2) )

(Prediction)

In the prediction problem one seeks to estimate the value of the system
X at a future time T based on the observations G, up to the present
time t < T'.

Prove that in the linear setup (6.2.3), (6.2.4) the predicted value

E|Xr|G:], T>t

is given by
T
E[X7|Gy] = exp ( / F(s)ds) X, (6.3.15)
t

(Hint: Use formula (6.2.16).)

(Interpolation/smoothing)

The interpolation or smoothing problem consists of estimating the
value of the system X at a time s < ¢, given the observations up
to time t, G;.

With notation as in (6.2.1), (6.2.2) one can show that M,: = E[X,|G;]
satisfies the differential equation

(6.3.16)

LM, = F(s)M +C(s)CT(s)S™Y(s)(Ms — X,); s <t
Mt = X\t .

(See Davis (1977, Theorem 4.4.4).)
Use this result to find E[X,|G,] in Example 6.2.9.
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6.7. Counsider the system

_ldXi(t)yp |0 |0
dX, = [dX;(t)] = [0] , E[Xo] = [0]
with observations

260] - [l 28]

Apply (6.3.14) from Exercise 6.4 to prove that
S(t):= E[(X: — Xi)(X: — X:)T] is given by

St = S71(0) + [f i] t

if 5(0) is invertible. Then show that

X, = -S(t) [f ”)?tdtJrS(t)[é i]dZt.

6.8. Transform the following Stratonovich equation
dX; =b(t, X¢)dt + o(t, X¢) o dBy
into the corresponding It6 equation
dX, = b(t, X,)dt + o(t, X;)dB,

using (6.1.3):

a)
dX 1 0
I:dX;]z [X2+e2xl]dt+[exlj|OdBt (BtER)

ax,] _ [x Xs
[dXz] = [X2]dt+[X1] OdBt (BtER)

b)

6.9. Transform the following It6 equation
dX: = b(t, Xy)dt + o(t, X;)dB,
into the corresponding Stratonovich equation
dX; = b(t, X;)dt + o(t, X;) o dB; ,

using (the converse of) (6.1.3):
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a) dX, = —3X,dt + KX,dBy, where

_10 -1 _ | Xa(®) 2 \
K_[l 0}, Xt—[Xz(t)}ER and B, € R

(i.e. X, is Brownian motion on the unit circle (Example 5.1.4)).
b) dXy} _ | X1 —Xa| [dB

dX, X2 Xy | |dBz2f’
(On the support of an It6 diffusion)

The support of an It6 diffusion X in R™ starting at € R™ is the
smallest closed set F’ with the property that

Xi(w) e F for all t >0, for a.a. w.

In Example 5.1.4 we found that Brownian motion on the unit circle,
X, satisfies the (Itd) stochastic differential equation

[giﬁg] =-3 [28]dt+[? —01] [i;g:;]d&. (6.3.17)

From this equation it is not at all apparent that its solution is situ-
ated on the same circle as the starting point. However, this can be
detected by proceeding as follows: First transform the equation into
its Stratonovich form, which in Exercise 6.9 is found to be

[g;gg] B [(1) —01] [28;] odB; . (6.3.18)

Then (formally) replace odB; by ¢’(t)dt, where ¢ is some smooth (de-
terministic) function, ¢(0) = 0. This gives the deterministic equation

[Ziézzgg] - [(1) _01] ¢'(t)dt . (6.3.19)

1f (X{%(0), X§9(0)) = (1,0) the solution of (6.3.19) is

0] =[]

So for any smooth ¢ the corresponding solution X(#)(t) of (6.3.19)
has its support on this unit circle. We can conclude that the original
solution X (¢,w) is supported on the unit circle also, in virtue of the
Stroock- Varadhan support theorem. This theorem says that, quite gen-
erally, the support of an It6 diffusion X;(w) coincides with the closure
in R of {X(®)(.); # smooth}, where X(#)(¢) is obtained by replacing
odB, by ¢’'(t)dt in the same way as above. See e.g. Ikeda and Watan-
abe (1989, Th. VI. 8.1). (In this special case above the support could
also have been found directly from (6.3.18)).
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Use the procedure above to find the support of the process X, ¢ R?
given by
01

] X:dB, .
Consider Example 6.2.1, but now without the assumption that
E[X] = 0. Show that

2 2
EX|+ ———2%Zk; k=1,2,...
[ ]+a2+-};m2 §

N m
k= T35
ka? + m?

(Compare with (6.2.8).)
(Hint: Put £ = X — E[X], ¢x = Zx — E[X]. Then apply (6.2.8) with
X replaced by € and Zj replaced by (x.)

Prove formula (6.2.16).
(Hint: exp ( — [ F(u)du) is an integrating factor for the stochastic

differential equation (6.2.3).)
Consider the 1-dimensional linear filtering problem (6.2.3), (6.2.4).
Find N _
E[X;] and E[(X;)?.
(Hint: Use Theorem 6.1.2 and use the definition of the mean square
error S(t).)
Let B; be 1-dimensional Brownian motion.
a) Give an example of a process Z; of the form

dZt = u(t,w)dt + dBt

such that Z; is a Brownian motion w.r.t. P and u(f,w) € V is not
identically O.
(Hint: Choose Z; to be the innovation process (6.2.13) in a linear
filtering problem with D(¢) = 1.)

b) Show that the filtration {Z;}:>0 generated by a process Z; as in a)
must be strictly smaller than {F;}+>0, i.e. show that

Z, CF for all t and Z; # F; for some ¢t .
(Hint: Use Exercise 4.12.)

Suppose the state X; € R at time t is a geometric Brownian motion
given by the equation

dX; = uX,dt + 0 X:dB; ; Xo=z2>0. (6.3.20)

Here o # 0 and x are known constants. The parameter u is also con-
stant, but we do not know its value, only its probability distribution,
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which is assumed to be normal with mean 7 and variance a?. We as-
sume that u is independent of {B,} ., and that E[u?] < co.

We assume that we can observe the value of X, for all t. Thus we have
access to the information “(c-algebra)’ M, generated by X,; s < t.
Let A; be the o-algebra generated by &;, s < t, where

d¢, = pdt + o dBy & = (6.3.21)

a) Prove that M, = V.
b) Prove that

EpN] =6+ 07%) " (p0+07%¢,) (6.3.22)
where
§=E((r-n*""  B=E. (6.3.23)
¢) Define
B, = /a_l(u — E[ulM,))ds + B, . (6.3.24)
0

Prove that B; is a Brownian motion.

d) Prove that B, is M,-measurable for all t. Hence
Fo C M, (6.3.25)

where F; is the o-algebra generated by ES; s<t.

e) Prove that &, is F,-measurable for all t. Combined with d) and a)
this gives that _
Fo=Mi=N,=F;.
f) Prove that
dXi = Elu|M;]Xidt + 0 X,dBy .

Note that in this representation of X, all the coeflicients are ob-
servable quantities.

Repeat Exercise 6.15, but this time with X, being a mean-reverting
Ornstein-Uhlenbeck process given by

dth(,U”‘pXt)dt-}‘G'dBt, Xo =z €R.

Here p,0 # 0 and x are known constants, while x4 is an unknown
constant, as before. Conclude that X; can be given a representation of
the form _

dX, = (EluM] ~ pX(t))dt + 0 dB; .






7. Diffusions: Basic Properties

7.1 The Markov Property

Suppose we want to describe the motion of a small particle suspended in a
moving liquid, subject to random molecular bombardments. If b(t,z) € R
is the velocity of the fluid at the point z at time ¢, then a reasonable math-
ematical model for the position X; of the particle at time ¢ would be a
stochastic differential equation of the form

X

—dt—‘ = b(t, X:) + o(t, X )Ws , (7.1.1)
where W, € R® denotes “white noise” and o(t,z) € R3*3. The It6 interpre-
tation of this equation is

dX, = b(t, X,)dt + o(t, X)dB; , (7.1.2)

where B, is 3-dimensional Brownian motion, and similarly (with a correction
term added to b) for the Stratonovich interpretation (see (6.1.3)).
In a stochastic differential equation of the form

dXt = b(t, Xt)dt + G'(t, Xt)dBt y (713)

where X; € R", b(t,z) € R, o(t,z) € R"™ and B; is m-dimensional
Brownian motion, we will call b the drift coefficient and o — or sometimes
to0T - the diffusion coefficient (see Theorem 7.3.3).

Thus the solution of a stochastic differential equation may be thought of
as the mathematical description of the motion of a small particle in a moving
fluid: Therefore such stochastic processes are called (It6) diffusions.

In this chapter we establish some of the most basic properties and results
about It6 diffusions:

7.1 The Markov property.

7.2 The strong Markov property.

7.3 The generator A of X, expressed in terms of b and o.
7.4 The Dynkin formula.

7.5 The characteristic operator.
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This will give us the necessary background for the applications in the
remaining chapters.

Definition 7.1.1. A (time-homogeneous) It6 diffusion is a stochastic process
Xi(w) = X(t,w):[0,00) x 2 — R" satisfying a stochastic differential equation
of the form

dXt = b(Xt)dt + G'(Xt)dBt 5 t Z S X_g = (714)

where B; is m-dimensional Brownian motion and b: R* — R", o: R" —
R™*™ satisfy the conditions in Theorem 5.2.1, which in this case simplify to:

b(z) ~by)| +lo(@) ~ o) < Dlz~y|; zyeR",  (7.15)
where [of2 = 3 o2,

We will denote the (unique) solution of (7.1.4) by X; = X;""; t > s. If
s = 0 we write X7 for X_'°. Note that we have assumed in (7.1.4) that b and
o do not depend on ¢t but on x only. We shall see later (Chapters 10, 11) that
the general case can be reduced to this situation. The resulting process X;(w)
will have the property of being time-homogeneous, in the following sense:

Note that

s+h s+h
3,T

v g / B(X2")du + / o(X37)dB,

] 8
h h

s / b(X2E,)dv + / o(X22)dB,, (u=s+v) (7.16)
] ]

where Eu = B,y — Bs; v > 0. (See Exercise 2.12). On the other hand of
course

h h
X)* =z + / b(X2*)dv + / o(X2*)dB, .
0 0

Since {B,}v>0 and {By}u>0 have the same P°-distributions, it follows by
weak uniqueness (Lemma 5.3.1) of the solution of the stochastic differential
equation

dXt = b(Xt)dt + O'(Xt)dBt N X() =X

that
{Xoin nzo and {Xg’x}hzo

have the same P°-distributions, i.e. {X:}e>0 is time-homogeneous.

We now introduce the probability laws Q* of {X,;}:>0, for z € R". Intu-
itively, Q® gives the distribution of { X;},>0 assuming that X, = z. To express
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this mathematically, we let M, be the o-algebra (of subsets of {2) generated
by the random variables w — X;(w) = X}(w), where t > 0, y ¢ R™.
Define Q on the members of M by

Q* (X, € Ev,--, Xy, € Ex) = P°[X] € Ey, -, X[ € Ey] (7.1.7)

where E; C R™ are Borel sets; 1 <1 < k.

As before we let }'t(m) be the o-algebra generated by {B,;r < t}. Similarly
we let M; be the o-algebra generated by {X,;r < t}. We have established
earlier (see Theorem 5.2.1) that X, is measurable with respect to E(m), SO
M, € F™.

We now prove that X, satisfies the important Markov property: The fu-
ture behaviour of the process given what has happened up to time ¢ is the
same as the behaviour obtained when starting the process at X;. The precise
mathematical formulation of this is the following:

Theorem 7.1.2 (The Markov property for Ité diffusions).
Let f be a bounded Borel function from R™ to R. Then, fort,h >0

E*[f(Xern)|FT™ )y = EX@[F(X5)] - (7.1.8)

(See Appendix B for definition and basic properties of conditional ex-
pectation). Here and in the following E* denotes the expectation w.r.t. the
probability measure Q. Thus E¥[f(X},)] means E[f(X})], where E denotes
the expectation w.r.t. the measure P°. The right hand side means the func-
tion EY[f(X4h)] evaluated at y = X,(w).

Proof. Since, for r > ¢,

we have by uniqueness
Xr(w) = X0¥(w) .

In other words, if we define
F(z,t,nw) = Xb*(w) for r > ¢,

we have
Xr(w) = F( Xy, t,nw); 72t (7.1.9)

Note that w — F(x,t,7,w) is independent of F{™. Using (7.1.9) we may
rewrite (7.1.8) as

E[f(F(Xu t,t + hw)IF™] = E[f(F(2,0,h,w))le=x, . (7.1.10)
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Put g(z,w) = f o F(z,t,t + h,w). Then (z,w) — ¢(x,w) is measurable. (See
Exercise 7.6). Hence we can approximate g pointwise boundedly by functions
on the form

> dr(z)er(w) .

k=1

Using the properties of conditional expectation (see Appendix B) we get

Elg(Xs,w)|F™) = [limZm(Xt)wk(w)lfém’]
=limY pi(Xe) -E[wk(w)lft(m)]
= lim Y Elgw(y)ur (@)l F™]y=x,
= Elg(y, w)| ™ )L,:x,. = Elg(y.w)ly=x, -
Therefore, since {X,} is time-homogeneous,

BIf(F(Xestt + b DIF™] = BU(F(y, 1,6 + hyw)ly=x,
= E[f(F(y,0,h,w))ly=x,

which is (7.1.10). O

Remark. Theorem 7.1.2 states that X, is a Markov process w.r.t. the family
of o-algebras {ft(m)}tzo- Note that since M; C ]-'t(m) this implies that X,
is also a Markov process w.r.t. the o-algebras {M;}¢>0. This follows from
Theorem B.3 and Theorem B.2 c¢)( Appendix B):

E*[f(Xesn)Mi]

E[E*[f(Xorn)| ™) M)
= EF[EX[f(Xn)]|Me] = EXt[f(Xn)]

since EXt[f(X})] is M;-measurable.

7.2 The Strong Markov Property

Roughly, the strong Markov property states that a relation of the form (7.1.8)
continues to hold if the time ¢ is replaced by a random time 7(w) of a more
general type called stopping time (or Markov time):

Definition 7.2.1. Let {N;} be an increasing family of o-algebras (of subsets
of 2). A function 7: {2 — [0,00] is called a (strict) stopping time w.r.t. {N;}
if

{w;T(w) <t} € M, forall t >0.
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In other words, it should be possible to decide whether or not 7 < ¢t has
occurred on the basis of the knowledge of M.

Note that if 7(w) = to (constant) for all w, then 7 is trivially a stopping
time w.r.t. any filtration, because in this case

2 i t<t

Example 7.2.2. Let U C R"™ be open. Then the first exit time
ry:=inf{t > 0; X, ¢ U}

is a stopping time w.r.t. {M,}, since

{w; v St}:ﬂ U{w;Xr¢Km}€ M,

m rEQ
r<t

where {K,,} is an increasing sequence of closed sets such that U = |J K., .

More generally, if H C R™ is any set we define the first exit time ;‘nrom H,
TH, as follows
Ty =inf{t > 0;X; ¢ H} .

If we include the sets of measure 0 in M; (which we do) then the family
{ M.} is right-continuous i.e. M = M, , where M, = (] M, (see Chung

s>t
(1982, Theorem 2.3.4., p. 61)) and therefore 7y is a stopping time for any

Borel set H (see Dynkin (1965 II, 4.5.C.e.), p. 111)).

Definition 7.2.3. Let 7 be a stopping time w.r.t. {N;} and let Ny, be the
smallest o -algebra containing N; for allt > 0. Then the o-algebra N consists
of all sets N € Noo such that

Nﬂ{rSt}E/\ft fordlt>0.

In the case when A; = M;, an alternative and more intuitive description
is:
M; = the o-algebra generated by { Xmins,ry;8 > 0} . (7.2.1)
(See Rao (1977, p. 2.15) or Stroock and Varadhan (1979, Lemma 1.3.3,
p. 33).) Similarly, if N} = F™, we get
}'T(m) = the o-algebra generated by {Bsar;s > 0} .

Theorem 7.2.4 (The strong Markov property for Ité diffusions).

Let f be a bounded Borel function on R™, 7 a stopping time w.r.t. E(m),
T <00 a.s. Then

E*[f(X: )| F™) = EX7[f(Xh)] forallh>0. (7.2.2)
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Proof. We try to imitate the proof of the Markov property (Theorem 7.1.2).
For a.a. w we have that X" (w) satisfies
T+h T+h
XTE =2+ / B(XD%)du + / o(XT#)dB, .
T

By the strong Markov property for Brownian motion (Gihman and Skorohod
(1974a, p. 30)) the process

§v==Br+v_'Br; v2>0

is again a Brownian motion and independent of f,(-m). Therefore
h

XIfh =g+ / b(XTF,)dv + / o(X72,)dB, .

Hence {X ", }n>o0 must coincide a.e. with the strongly unique (see (5.2.8))
solution Y} of the equation

h h
Y=m+/b dv+/0(Y)dB
0 0

Since {Yn}r>o is independent of Fim), {X7’.} must be independent also.
Moreover, by weak uniqueness (Lemma 5.3.1) we conclude that

{Yn}n>o , and hence {X7’7,}n>0, has the same law as {X,?‘I}hzo . (7.2.3)

Put
Flz,t,r,w) = X5 (w) forr>t.

Then (7.2.2) can be written
E[f(F(.r,O,T+ h, w))]f,,(_m)] = E[f(F(.T,O, h,w))]J'.:Xng' :
Now, with X; = X?’I,

T+h T+h
F(z,0,7 + h,w) = Xr4n(w) = 2 + / b(X,)ds + / o(X4)dB,
O O
T T T+h T+h
—z+ / b(X,)ds + / o(X,)dB, + / b(Xs)ds + / o(X,)dB,
0 0 T T

T+h T+h

=X, + / b(X,)ds + / o(X,)dB,

p
=F(X;, 7,7+ hw).
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Hence (7.2.2) gets the form
E[f(F(X., 7,7+ h,w))|F™] = E[f(F(z,0,h,w))|z=x, -

Put g(z,t,7,w) = f(F(z,t,7,w)). As in the proof of Theorem 7.1.2 we may
assume that g has the form

g(z,t,rw) = Zq&k(m)wk(t, r,w) .
k

Then, since X[, is independent of F™ we get, using (7.2.3)

Elg(X,,7,7m + hy)lFIV] = 3 Eldw(Xo)gu(r, 7 + h,w)| FE™)
k

=3 Se(X) El(r, 7 +h W) FE™) = 3 Bl (@) (r, 74y w) | FE)eex,
k k

= Elg(z, 7,7 + h,w)|F™],=x, = Elg(z, 7,7 + h,w)]z=x,

= E(f(X] W lz=x. = Elf(Xp")le=x, = E[f(F(z,0,h,w))|e=x, - O

We now extend (7.2.2) to the following:

If f1,-- -, fx are bounded Bore! functions on R?, 7 an ft(m)—stopping time,
T < 00 a.s. then

E*(fi(Xrin) f2(Xegny) - (X gn IFT] = EX [f1 (Xn,) -+ fi(Xn,)]
(7.2.4)
for all 0 < hy < hg < -+ < hg. This follows by induction: To illustrate the
argument we prove it in the case k = 2:

EI[fl(XT+hl )f2(XT+h2)'f1(-m)] = E* [EI[fl(Xr+h1)f2(Xr+h2)|fr+h1]|f1('M)]
= E*[f1(Xrthy ) E*(fo(Xr4n )| Fran JIF™)
= E*[fi(Xrtn ) BN+ [fo Xng—ny ) JIFT™)]
= EX [f1(Xn,) E*" [fo( Xny—ny)]]
= B% [f1(Xn, E* [foa(Xn)IFS]) = B [f1(Xny) f2(Xn,)] ,  as claimed .

Next we proceed to formulate the general version we need: Let H be the
set of all real M ,-measurable functions. For t > 0 we define the shift operator

0o H—H

as follows:
Ifn=g(Xs) - 9&(Xt,) (9: Borel measurable, t; > 0) we put

0in = 91(Xs,4¢) - 'gk(xtk-f-t) .

Now extend in the natural way to all functions in H by taking limits of sums
of such functions. Then it follows from (7.2.4) that



120 7. Diffusions: Basic Properties

E*[0-n|F{™)] = E~[n] (7.2.5)
for all stopping times 7 and all bounded 7 € H, where
() (w) = (@) (w) i r(w)=t.

Hitting distribution, harmonic measure and
the mean value property

We will apply this to the following situation: Let H C R™ be measurable and
let 7y be the first exit time from H for an It6 diffusion X;. Let a be another
stopping time, g a bounded continuous function on R™ and put

n=9(Xry)Xry<oo}» TH=inf{t> ;X ¢ H}.
Then we have
0 * X{a<oo} = 9(Xrg)X(ra <o} - (7.2.6)
To prove (7.2.6) we approximate n by functions n®:. k=1,2,...,of the form

n® =3 g(Xe) )Xy gy, 0(ra) s t=3-275, 7=0,1,2,...
j

Now

0eXit; 65.1) (TH) = OeX(vre(0,t;) X, €H&Is€t) tj11) X2 H}

= X(Vre(0,t;) Xrp 1 €H&IsEt t;41) X0yt £ H)

= X{Vue(tt;+) Xu € HEIvE[t; 4.ty 41+ Xo g H) = Xity+t,t, 4146 (TH) -
So we see that

0({] = h,?] 0tn(k) = h,:n Z g(th+t)X[tj+t,tj+1+t)(7-]t-])
J

= g(Xrt ) X(st, <0} » Whichis (7.2.6) .

In particular, if @ = 7¢ with G CC H measurable, 7y < 00 a.s. Q%, then
we have 7§} = 7y and so

brc9(Xry) = 9(Xs,) - (7.2.7)
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So if f is any bounded measurable function we obtain from (7.2.5) and
(7.2.7):

B[ (X)) = BN (f(Xr)l) = [ BYIFO)] - @71Xrg € ] (7.28)
oG

for z € G.

(Define p%(F) = Q*(X;, € F) and approximate f in L'(u%) by con-
tinuous functions g satisfying (7.2.7)). In other words, the expected value of
f at X, when starting at x € G can be obtained by integrating the ex-
pected value when starting at y € G with respect to the hitting distribution
(“harmonic measure”) of X on &G. This can be restated as follows:

Define the harmonic measure of X on 9G, pg, by
LE(F) = Q%[ X, € F) for FCOG, z€G.

Then the function
¢(x) = E*[f(X,4)]

satisfles the mean value property:

o(z) = /d)(y)du’é;(y) , forallz € G (7.2.9)
aG

for all Borel sets G CC H.

This is an important ingredient in our solution of the generalized Dirichlet
problem in Chapter 9.

7.3 The Generator of an Ité Diffusion

It is fundamental for many applications that we can associate a second order
partial differential operator A to an It6 diffusion X,. The basic connection
between A and X; is that A is the generator of the process X;:

Definition 7.3.1. Let {X,} be a (time-homogeneous) Ité diffusion in R™.
The (infinitesimal) generator A of X; is defined by

Af(n:) - ltlllg Ex[f(Xtt)] - f(m) : reR™.

The set of functions f: R™ — R such that the limit exists at x is denoted by
Da(x), while D denotes the set of functions for which the limit exists for
allz € R™.
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To find the relation between A and the coefficients b, ¢ in the stochastic
differential equation (7.1.4) defining X, we need the following result, which
is useful in many connections:

Lemma 7.3.2. LetY; = Y;® be an Itd process in R™ of the form
¢ ¢
Yi(w)=z+ /u(s,w)ds + /v(s,w)st(w)
0 0

where B is m-dimensional. Let f € CZ(R"), i.e. f € C*(R") and f has
compact support, and let T be a stopping time with respect to {Ft(m)}, and
assume that E*[1] < 0o. Assume that u(t,w) and v(t,w) are bounded on the
set of (t,w) such that Y (t,w) belongs to the support of f. Then

E*[f(Y:)] =
f
T
flx)+ E [/(Zu,sw 2Zvv ,,swamamJ(Y))ds],
where E* is the expectation w.r.t. the natural probability law R* for Y; start-
ing at x:
Ry, € F,....Y,, € F|=PYF € F,...,YZ € F], F; Borel sets.

Proof. Put Z = f(Y') and apply Ito’s formula (To simplify the notation we
suppress the index ¢ and let Y3, ...,Y,, and By, ..., B,, denote the coordinates
of Y and B, respectively)

dZ = Z Y)dY; + 4 Z aa / -~ (V)dviay,

-Zu,f’fdt+223 - (vdB)(vdB); +Z ~(vdB); .

Since

(vdB); - (vdB); = ( > v,-,chk) ( ; v]-ndBn)

k

(Z vikvjk)dt = (’UUT),‘jdt y

k

this gives



7.3 The Generator of an Itd Diffusion 123
t
of T *f
fYy) = f(Yo) + / (Z“’a_xz + 5;(”” )z‘jm ds

t
+ /v dBk (7.3.1)
0

1’1

Hence

E’[f(YT)1=f<x)+Ef[/(Zu, 0+ D s lm)as

W (Y)dBk] . (7.3.2)

If g is a bounded Borel function, |g| < M say, then for all integers k we have

Ak k
Ex[ / g(Ys)st] = E¥ [/X{S<T}Q(Ys)st:| =0,
0 0

since g(Ys) and X(,<,} are both F{™ _measurable. Moreover

E[( / 9(Y,)dB, T/Akgm)st)Z] =Ex[ / 92(Ys)ds]
0 0

TAk

< M2E®[r —7 Akl —0.

Therefore

0= Jim 5% ;/Akg(ys)st] — 57| / o(Y,)dB,) .

Combining this with (7.3.2) we get Lemma 7.3.2.
o]

This gives immediately the formula for the generator A of an It6 diffusion:
Theorem 7.3.3. Let X, be the It6 diffusion
dX; = b(X,)dt + o(X:)dB; .
If f € C3(R™) then f € D and
af 0% f
=) bi(z)z— + 1 . 7.3.3
L@ g, +4 0@ (7:33)

.7
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Proof. This follows from Lemma 7.3.2 (with 7 = t) and the definition of A.
O

Example 7.3.4. The n-dimensional Brownian motion is of course the solu-
tion of the stochastic differential equation

dX; =dB,,

i.e. we have b = 0 and o0 = I, the n-dimensional identity matrix. So the
generator of B is

Zaza f=f(m1,...,mn)€Cg(R")

ie A= %A, where A is the Laplace operator.

Example 7.3.5 (The graph of Brownian motion). Let B denote 1-di-
mensional Brownian motion and let X = (i;) be the solution of the
stochastic differential equation

Xm = dt s X}(O) = to
dX; =dB; X3(0) =zo

i.e.

dX =bdt +0dB;  X(0) = (;("O) ,

with b = ((1) and 0 = ((1)) In other words, X may be regarded as the

graph of Brownian motion. The generator A of X is given by

2
Af = ﬁﬂgé, f=ftz)e C3R").

From now on we will, unless otherwise stated, let A = Ax denote the
generator of the It6 diffusion X;. We let L = Lx denote the differential
operator given by the right hand side of (7.3.3). From Theorem 7.3.3 we
know that Ax and Ly coincide on CZ(R™).

7.4 The Dynkin Formula

If we combine (7.3.2) and (7.3.3) we get:

Theorem 7.4.1 (Dynkin’s formula).
Let f € C2(R™). Suppose T is a stopping time, E*[7] < co. Then

E*[1(X)] = £(a) + B / Af(X,)ds| (7.4.1)
0
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Remarks.

(i) Note that if 7 is the first exit time of a bounded set, E*[r] < oo, then
(7.4.1) holds for any function f € C2.
(ii) For a more general version of Theorem 7.4.1 see Dynkin (1965 I), p. 133.

Example 7.4.2. Consider n-dimensional Brownian motion B = (B,,..., B,
starting at ¢ = (ay,...,a,) € R*(n > 1) and assume |a| < R. What is the
expected value of the first exit time 7x of B from the ball
K=Kp={zxeR"|z|<R}?
Choose an integer k and apply Dynkin’s formula with X = B, 7 = o, =
min(k, 7k ), and f € CZ such that f(z) = |z|? for |z| < R :
Ok

Wwwﬂn=ﬂ@+Eﬂjgmwm4
O

Tk

= ]a|2+Ea[/n-ds] =la|®* + n- E%oy] .
0

Hence E%[0;] < L(R? - |a|?) for all k. So letting k — oo we conclude that
Tk = limog < 00 a.s. and

EPlri] = %(R2 —la?). (7.4.2)

Next we assume that n > 2 and |b| > R. What is the probability that B
starting at b ever hits K7
Let ai be the first exit time from the annulus

Ar={;R<|z| < 2*R}; k=1,2,...
and put
Tk = inf{t > 0; X, € K} .

Let f = fox be a C? function with compact support such that, if R < |z|
< 2*R,

_ f —logjz| whenn=2
fla) = { |z|> ™  whenn >2.

Then, since Af = 0 in Ag, we have by Dynkin’s formula
Eb(f(Ba,)] = f(b) forall k. (7.4.3)

Put
Pk = P’|Ba,| = R, gk = P"|Ba,| = 2*R] .

Let us now consider the two cases n = 2 and n > 2 separately:
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n = 2. Then we get from (7.4.3)
—logR pr — (log R+ k- log 2)q, = —log |b] for all k. (7.4.4)
This implies that g — 0 as k — o0, so that
P Tk <o) =1, (7.4.5)
i.e. Brownian motion is recurrent in R2. (See Port and Stone (1979)).
n > 2. In this case (7.4.3) gives
pe-R¥ ™4 g (2FR)? T = o2
Since 0 < g < 1 we get by letting k — oo
: b LAY
kl_l_’n;opk = P°[Tk < 0] = (E) )

i.e. Brownian motion is transtent in R™ for n > 2.

7.5 The Characteristic Operator

We now introduce an operator which is closely related to the generator A,
but is more suitable in many situations, for example in the solution of the
Dirichlet problem.

Definition 7.5.1. Let {X;} be an Ité diffusion. The characteristic operator
A= Ax of {X.} is defined by

. ETf( X)) = f(=z)
Af(z) = Jim N , (7.5.1)

where the U’s are open sets Uy decreasing to the point x, in the sense that
Uks1 CUx and Uk = {z}, and 7, = inf{t > 0; X, ¢ U} is the first exit
k

time from U for X.. The set of functions f such that the limit (7.5.1) exists
Jor all z € R™ (and all {Uy}) is denoted by D . If E*[r,] = oo for all open
U 3z, we define Af(z) =0.

It turns out that D4 C D4 always and that
Af = Af forall feDy .

(See Dynkin (1965 I, p. 143).)
We will only need that Ax and Lx coincide on C?. To obtain this we
first clarify a property of exit times.
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Definition 7.5.2. A point x € R" is called a trap for {X,} if
Q*{X, =1z forallt})=1.

In other words, x is trap if and only if T(;y = oo a.s. Q. For example, if
b(zp) = o(xp) = 0, then xy is a trap for X, (by strong uniqueness of X:).

Lemma 7.5.3. If x is not a trap for X, then there exists an open setU > x
such that
E*[r,] < o0.

Proof. See Lemma 5.5 p. 139 in Dynkin (1965 I).
Theorem 7.5.4. Let f € C?. Then f € D4 and

_ of 1 vy _0f
Af = Xi:bzami +1 ;‘j(aa )ij Sade (7.5.2)

Proof. As before we let L denote the operator defined by the right hand side
of (7.5.2). If z is a trap for {X;} then Af(z) = 0. Choose a bounded open set
V such that x € V. Modify f to fo outside V such that f, € C3(R"™). Then
fo € Da(z) and 0 = Afo(z) = Lfo(z) = Lf(z). Hence Af(z) =Lf(z) =0
in this case. If z is not a trap, choose a bounded open set U 3 x such that
E?*|r,] < 0o. Then by Dynkin’s formula (Theorem 7.4.1) (and the following
Remark (i)}, writing 7, =7

IEm[Of{(Lf)(Xs) — Li(x)}ds)
Efr]
< sup|Lf(z)— Lf(y)|—0 as Ulzx,
yel

E*[f(X)] - f(=z)
Ez[r]

- Li(@)| =

since Lf is a continuous function.

Remark. We have now obtained that an It diffusion is a continuous, strong
Markov process such that the domain of definition of its characteristic oper-
ator includes C2. Thus an It6 diffusion is a diffusion in the sense of Dynkin
(1965 I).

Example 7.5.5 (Brownian motion on the unit circle). The character-

Y,
Y
stochastic differential equations (5.1.13), i.e.

{le = —1Yidt - Y2dB

istic operator of the process Y = ) from Example 5.1.4 satisfying the

dYy; = — %Ygdt + Y1dB
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9 f O f % f af af
Af (y1, =l[2——2 — iy 2 |
fln Y2) 31Y2 Byf ny2 591092 hn By% n I Y2 vz

This is because dY = —1Ydt + KY dB, where

k=(7 )

so that
dY =b(Y)dt + o(Y)dB

with .

_Eyl —yz

b(y17y2) = ( 1 ) ) U(ylvyZ) = ( )

-§y2 n

and )
a=100T =1 ( Y2 —y1y2) .
2 2\-ny2 ¥

Example 7.5.6. Let D be an open subset of R™ such that 7p < o0 a.s. Q7
for all z. Let ¢ be a bounded, measurable function on 8D and define

$(z) = E*[¢(X+,)]

((Zis called the X-harmonic extension of ¢). Then if U is open, z € U CC D,
we have by (7.2.8) that

E*[¢(X-,)] = E*[EX0 [¢(Xy,)]] = E*[9(Xrp)] = (2) -

So ¢ € D4 and _
Ap=0 in D,

in spite of the fact that in general (Z need not even be continuous in D (See
Example 9.2.1).

Exercises

7.1. Find the generator of the following It6 diffusions:
a) dX; = puX.dt + 0dB; (The Ornstein-Uhlenbeck process) (B; € R;
i, 0 constants).
b) dX; = rX.dt + aX;dB; (The geometric Brownian motion)
(Bt € R; r,a constants).
¢) dY; = rdt + aY:dB: (B; € R; r,a constants)
dt

d) dY; = [dXt

] where X, is as in a)



7.2.

7.3.

7.4.

7.5.
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dX

dax;] 1 1 0][dB
i) - Jdt+ i le is

= (X1, X2, -, Xn), where

n
ka(t)=7‘kadt+Xk-Zakdej ; 1<k<n
j=1
((By,: -+, Br) is Brownian motion in R™, rx and aj; are constants).

Find an It diffusion (i.e. write down the stochastic differential equa-
tion for it) whose generator is the following:

a) Af(z) = f'(z)+ f"(z); fe€ CZ( )

b) Af(t,z) = % + ez + Ja?2?%d ; fe CR(R?),
where ¢, a are constants

¢) Af(z1,2) = 2m2 2L +In(1 + 23 +2}) 2L

Oz

a2 62 2
A+ G+ ngds +5 5 feCG®RY).
Let B; be Brownian motion on R, By = 0 and define
Xt = Xéz =" CCt+QB‘ )

where ¢, a are constants. Prove directly from the definition that X, is
a Markov process.

Let B be 1-dimensional Brownian motion starting at z € R*. Put
7 =inf{t > 0; Bf =0} .

a) Prove that v < oo a.s. P for all z > 0. (Hint: See Example 7.4.2,
second part).

b) Prove that E*[r] = oo for all z > 0. (Hint: See Example 7.4.2, first
part).

Let the functions b, o satisfy condition (5.2.1) of Theorem 5.2.1, with
a constant C independent of £, i.e.

jb(t, )| + |o(t, )| < C(1 + |z]) forall re R™® andall t >0.
Let X; be a solution of
dXt = b(t, Xt)dt + O'(t,Xt)dBt .

Show that
E[ X% < (1 + E[1Xo)*)e"t -1

for some constant K independent of t.
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(Hint: Use Dynkin’s formula with f(z) = |z|? and 7 = t A 7g, where
Tr = inf {¢t > 0; | X;| > R}, and let R — oo to achieve the inequality

E{|X.?) < E[[ Xo*| + K - / (1+ E[|X,[2))ds ,
[}

which is of the form (5.2.9).)

7.6. Let g(z,w) = foF(z,t,t + h,w) be as in the proof of Theorem 7.1.2.
Assume that f is continuous.

a) Prove that the map z — g(z,-) is continuous from R™ into L?(P)
by using (5.2.9).

For simplicity assume that n =1 in the following.

b) Use a) to prove that (z,w) — g(z,w) is measurable. (Hint: For each
m=1,2,... put & :f,(cm) =k-27™ k=1,2,... Then

g(’")(z, = Zg(ﬁk, ) X(Ek5~r<5k+1)
k

converges to g(z,-) in L?(P) for each z. Deduce that g™ — ¢
in L?2(dmg x dP) for all R, where dmpg is Lebesgue measure on
{lz} < R}. So a subsequence of ¢{"™(z,w) converges to g(z,w) for
a.a. (r,w).)

7.7. Let B; be Brownian motion on R" starting at € R" and let DCR"
be an open ball centered at z.

a) Use Exercise 2.15 to prove that the harmonic measure p3, of B is
rotation invariant (about x) on the sphere 0D. Conclude that uf
coincides with normalized surface measure ¢ on 9D.

b) Let ¢ be a bounded measurable function on a bounded open set
W < R"™ and define

u(:c) =E” [¢(B-rw)] for zeW.
Prove that u satisfies the classical mean value property:

u(@) = [ uly)do(y) (7.5.3)
oD

for all balls D centered at = with D Cc W.
c) Let W be as in b) and let w : W — R be harmonic in W, i.e.

n 2
Aw:=3" %;_;;_ =0 in W. (7.5.4)
i=1 i

Prove that w satisfies the classical mean value property (7.5.3).
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Remark. For a converse of this see e.g. @ksendal and Stroock (1982)
and the references therein.

Let {M;} be a right-continuous family of o-algebras of subsets of {2,
containing all sets of measure zero.

a) Let 11, T2 be stopping times (w.r.t. V}). Prove that 1 Amp and 11 V72
are stopping times.

b) If {r,} is a decreasing family of stopping times prove that 7:=
1i111n T is a stopping time.

¢) If X, is an Ito diffusion in R™ and F C R" is closed, prove that 77
is a stopping time w.r.t. M,. (Hint: Consider open sets decreasing
to F).

Let X; be a geometric Brownian motion, i.e.
dXt = TXtdt + aXtdBt y Xo =z>0

where By € R; r, a are constants.

a) Find the generator A of X, and compute Af(z) when f(z) = z";
z > 0, v constant.

b) If r < %az then X; — 0 ast — oo, a.s. @* (Example 5.1.1).
But what is the probability p that X;, when starting from z < R,
ever hits the value R ? Use Dynkin’s formula with f(z) = z™,
y=1- -ﬁ%, to prove that

_ £ T
c) If r > }a? then X; — oo as t — o0, a.s. Q. Put
r=inf{t >0; X, > R} .

Use Dynkin’s formula with f(r) =Inz, £ > 0 to prove that

iy B

(Hint: First consider exit times from (p, R), p > 0 and then let
p — 0. You need estimates for

where
p(p) = Q%[ X, reaches the value R before p|,

which you can get from the calculations in a), b).)
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7.10. Let X; be the geometric Brownian motion
dXt = TXtdt + aXtdBt .

Find E*[X|Fi] for t < T by
a) using the Markov property
and

b) writing X, = ze"* M, where

M, = exp(aB; — %azt) is a martingale .

7.11. Let X; be an It6 diffusion in R™ and let f: R™ — R be a function such
that

[o o]
E* [/|f(Xt)|dt} <oo forall z€R".
0

Let 7 be a stopping time. Use the strong Markov property to prove
that

E® [7 f(Xt)dt] = E"[g(X)],

where

o(y) = BY [ffm)dt] .
0

7.12. (Local martingales)
An N;-adapted stochastic process Z(t) € R™ is called a local martin-
gale with respect to the given filtration {N;} if there exists an increas-
ing sequence of N;-stopping times 7y such that

T, — 00 a.s.as k— o0
and
Z(t A k) is an MV;-martingale for all k.

a) Show that if Z(t) is a local martingale and there exists a constant
T < oo such that the family {Z(7)},<r is uniformly integrable
(Appendix C) then {Z(t)}s<T is a martingale.

b) In particular, if Z(t) is a local martingale and there exists a constant
K < oo such that

E(Z*r) <K
for all stopping times 7 < T, then {Z(t)}:<7 is a martingale.

¢) Show that if Z(t) is a lower bounded local martingale, then Z(t) is
a supermartingale (Appendix C).

d) Let ¢ € W(0,T). Show that

¢

Z(t) = /¢(s,w)dB(s) ; 0<t<T
0

is a local martingale.
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\13. a) Let B, ¢ R?, By=2 #0. Fix 0 < ¢ < R < oo and define
Xt = ln|Bt/\T| N t Z 0
where
r=inf{t >0; |By| <e¢ or |B>R}.
Prove that X, is an Fys,-mmartingale. (Hint: Use Exercise 4.8.)
Deduce that In|By| is a local martingale (Exercise 7.12).
b) Let By € R"® forn >3, Bo =z # 0. Fix € > 0, R < 0o and define
Y, = |Bt/\‘r|2—n ; t>0
where
T=inf{t > 0; |B;| <€ or |B > R}.
Prove that Y; is an F;5,-martingale.
Deduce that |B;|>~™ is a local martingale.

.14. (Doob’s h-transform)
Let B; be n-dimensional Brownian motion, D C R"™ a bounded open
set and A > 0 a harmonic function on D (i.e. Ah = 0 in D). Let X,
be the solution of the stochastic differential equation

dX; = V(lnh)(X;)dt + dB;
More precisely, choose an increasing sequence { Dy} of open subsets of
D such that D, ¢ D and U Dy = D. Then for each k the equation
above can be solved (strongly) for t < 7p, . This gives in a natural way

a solution for ¢t < 7: khm D, -
-0

a) Show that the generator A of X, satisfies
Af:é—g;,i) for f € C3(D).

In particular, if f = 4 then Af =0.
b) Use a) to show that if there exists o € 9D such that
lim  h(z) = {0 ify # zo

z—y€edD oo if Y = To
(i.e. h is a kernel function), then

lim X; = g a.s.
t—T

(Hint: Consider E*|{f(Xr)] for suitable stopping times T and with
=

In other words, we have imposed a drift on B; which causes the
process to exit from D at the point z¢ only. This can also be for-
mulated as follows: X, is obtained by conditioning B, to ezit from
D at zo. See Doob (1984).
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7.15.

7.16.

7.17.
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Let B, be 1-dimensional and define
F(w) = (Br(w) - K)*

where K > 0, T > 0 are constants.
By the It6 representation theorem (Theorem 4.3.3) we know that there
exists ¢ € V(0,T) such that

T
F(w) = E[F] + / 6(t,w)dB, .
0

How do we find ¢ explicitly? This problem is of interest in mathe-
matical finance, where ¢ may be regarded as the replicating portfolio
for the contingent claim F (see Chapter 12). Using the Clark-Ocone
formula (see Karatzas and Ocone (1991), Oksendal (1996) or Aase et
al (2000)) one can deduce that

¢(t,w) = E[X[K,w)(BT)|ﬁ] ; t<T. (7.5.5)

Use (7.5.5) and the Markov property of Brownian motion to prove that
for t < T we have

1 o e=BwP), ‘
$(t,w) = mk/exp( 3T — 1) )d . (7.5.6)

Let B; be 1-dimensional and let f:R — R be a bounded function.
Prove that if t < T then

E*[f(Br)|Fi] = Ei:liﬁin)dz.

1
s e a—— e ea—,
V(T —¢) Zf(x) P ( 2T — 1)
(7.5.7)
(Compare with (7.5.6).)
Let B; be 1-dimensional and put
Xi= (22 +3B)®; t>0.

Then we have seen in Exercise 4.15 that X, is a solution of the stochas-
tic differential equation

dX, = 1x}%dt + X}*dB,;  Xo==z. (7.5.8)
Define
r = inf{t > 0; X; = 0}

and put
Xg for t <7

Y= 0 for t >r.
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Prove that Y} is also a (strong) solution of (7.5.8). Why does not this
contradict the uniqueness assertion of Theorem 5.2.17
(Hint: Verify that

t t
Y; :x+/-;;y;/3ds+/}ff/3d33
0 0

for all t by splitting the integrals as follows:

t tAT t
J-1+]
0 0 tAT
.18. a) Let
dXt = b(Xt)dt + O'(Xt)dBt ; Xo =T

be a 1-dimensional Ité diffusion with characteristic operator A. Let
f € C?(R) be a solution of the differential equation

Af(z) =bz)f'(z) + 20%(2)f"(x) = 0; reR. (7.5.9)
Let (a,b) C R be an open interval such that = € (a,b) and put
T =inf{t > 0; X; & (a,b)} .

Assume that 7 < 0o a.s. Q@ and define

p=P[X,=10].
Use Dynkin’s formula to prove that
f(z) — f(a)
=l 7.5.10
75— f(@) (75:10)
In other words, the harmonic measure H{a,b) of X on d(a,b) = {a, b}
is given by
z _ f(z) — f(a) z _ ) — f=)
Haw®) =6 @) © Hen@ = Fo i@
b) Now specialize to the process
Xe=xz+By; t>0.
Prove that g
p=r— (7.5.12)
¢) Find p if
Xi=z+put+ 0By ; t>0

where u,0 € R are nonzero constants.
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7.19. Let B be 1-dimensional Brownian motion starting at > 0. Define
T =7(z,w) = inf{t > 0; Bf (w) =0} .
From Exercise 7.4 we know that
T<oo as. P®and E*[r]=00.

What is the distribution of the random variable 7(w) ?
a) To answer this, first find the Laplace transform

g(A):= E%[e™) for A>0.
(Hint: Let M; = exp(—v/2X B; — At). Then
{Mir+}i>0 is a bounded martingale. )

[Solution: g(\) = exp(—v/2A z) ]
b) To find the density f(¢) of 7 it suffices to find f(t) = f(¢,z) such
that

[}
/e"“f(t)dt =exp(—V2xz) forall A>0
0
i.e. to find the inverse Laplace transform of g(X). Verify that

flt,z) = a exp( zz)' t>0
’ V2rtd 2t)’ '

7.20. (Population growth in a stochastic, crowded environment

(ID))

As an alternative to the model in Exercise 5.15 consider the equation

dXt :rXt(K—Xt)dt+aXt(K—Xt)dBt ) X0=1'ZO

This equation does not satisfy the conditions for existence and unique-
ness in Theorem 5.2.1. However, we can still prove that a unique strong
solution exists by proceeding as follows:

a) For n = 1,2,... define

bn(y)={y(K—y) if 0<y<n

n(K—-n) if y>n
and )

ot ={ i i se
and let X; = X™ be the unique solution of

ng = ,.(Xg)dt + 07.(X¢)dB¢ ) Xo =2
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Define
= inf{t > 0; X = n}.

Show that
xM = XM forall t <7

and use this to find a unique strong solution X; fort < 70 : lim 7,.
n— o

b) Prove that 7 = 00 a.s.
¢) Prove that
(i) Xo=0=X;=0 forallt
(i) Xo=K=X,=K forallt
(iii) 0< Xo< K=0< Xy < K forallt
(iv) Xo > K= X; >k forallt.

For a discussion of optimal harvesting from this population model
" see Lungu and @ksendal (1997).






8. Other Topics in Diffusion Theory

In this chapter we study some other important topics in diffusion theory and
related areas. Some of these topics are not strictly necessary for the remaining
chapters, but they are all central in the theory of stochastic analysis and
essential for further applications. The following topics will be treated:

8.1 Kolmogorov’s backward equation. The resolvent.
8.2 The Feynman-Kac formula. Killing.

8.3 The martingale problem.

8.4 When is an Ité process a diffusion?

8.5 Random time change.

8.6 The Girsanov formula.

8.1 Kolmogorov’s Backward Equation. The Resolvent

In the following we let X; be an It6 diffusion in R™ with generator A. If we
choose f € C2(R™) and 7 =t in Dynkin’s formula (7.4.1) we see that

u(t, z) = E7[f(X3)]
is differentiable with respect to t and
o
5-‘; = E°[Af(X,)] . (8.1.1)

It turns out that the right hand side of (8.1.1) can be expressed in terms of
u also:

Theorem 8.1.1 (Kolmogorov’s backward equation).
Let f € C3(R™).

a) Define
u(t,z) = E¥[f(X,)] . (8.1.2)
Then u(t,:) € D4 for eacht and
% = Au, t>0, zeR" (8.1.3)

u(0,r) = f(x); rzeR" (8.1.4)
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where the Tight hand side is to be interpreted as A applied to the function
z — u(t, x).

b) Moreover, if w(t,z) € CLH2(R x R™) is a bounded function satisfying
(8.1.8), (8.1.4) then w(t,x) = u(t,z), given by (8.1.2).

Proof. a) Let g(x) = u{t,z). Then since ¢t — u(t, r) is differentiable we have

E*[g(Xr)] — g(x)

- E¥[EXT[f(X0)] - EX[f(X0)]]
- E*[E*[f (Xo4r)|Fr] — E¥[f(Xo)|Fr]

CET[f(Xeqr) — F(X3)]

_ul{t+rnz)—u(t,z) Ou
= r —)a aST'lO.

el e B e N

Hence

o 1 E19X0)] = 9()

m exists and %1{- = Au, as asserted .
r T

Conversely, to prove the uniqueness statement in b) assume that a function
w(t,r) € CH?(R x R") satisfies (8.1.3)~(8.1.4). Then

gw:z—%%«%—Aw:O fort >0,z € R" (8.1.5)
and
w(0,z) = f(x), zeR™. (8.1.6)

Fix (s,z) € R x R"™. Define the process Y; in R™"! by Y; = (s ~ t, X>'%),
t > 0. Then Y; has generator A and so by (8.1.5) and Dynkin’s formula we
have, for all t > 0,

tATR
E** [w(Yiamm )] = w(s, z) + E”’x[ / gw(Y,)dr} =w(s,z),
0
where 7p = inf{t > 0;|X;| > R}.
Letting R — oo we get
w(s,z) = B> [w(Y?)] ; Vt>0.

In particular, choosing t = s we get

w(s, z) = B**[w(Y,)] = Elw(0, X3")] = E[f(XJ)] = E*[f(X,)] .
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Remark. If we introduce the operator Q,: f — E°[f(X,)] then we have
u(t, ) = (Q¢f)(z) and we may rewrite (8.1.1) and (8.1.3) as follows:

%(Qtf) =Q(Af);  feCiR™ (8.1.1)

d@n=4@n; fecimr). (8.1.3)

Thus the equivalence of (8.1.1) and (8.1.3) amounts to saying that the oper-
ators (), and A commute, in some sense. Arguing formally, it is tempting to
say that the solution of (8.1.1) and (8.1.3) is

Q¢ = etA

and therefore Q:A = AQ;. However, this argument would require a further
explanation, because in general A is an unbounded operator.

It is an important fact that if a positive multiple of the identity is sub-
tracted from A then the operator A always has an inverse. This inverse can
be expressed explicitly in terms of the diffusion X;:

Definition 8.1.2. For a > 0 and g € C,(R") we define the resolvent oper-
ator Ry by

o

[ / etg(X, dt] (8.1.7)

[o]

Lemma 8.1.3. R,g is a bounded continuous function.

oo

Proof. Since Rag(z) = [e **E®[g(X,)]dt, we see that Lemma 8.1.3 is a
0

direct consequence of the next result:

Lemma 8.1.4. Let g be a lower bounded, measurable function on R™ and

define, for fired t > 0
u(z) = E%[g(X:)] -

a) If g is lower semicontinuous, then u is lower semicontinuous.
b) If g is bounded and continuous, then u is continuous. In other words, any
Ité diffusion X, is Feller-continuous.

Proof. By (5.2.10) we have
E[IX? - X¥?) < ly - z[C(t),

where C(t) does not depend on z and y. Let {y,} be a sequence of points
converging to z. Then

XV - X in L}(2,P)as n — oo .
So, by taking a subsequence {z,} of {y,} we obtain that
‘ Xi"(w) —» XF(w) foras we .
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a) If g is lower bounded and lower semicontinuous, then by the Fatou lemma
u(z) = E[g(X{)] < E[ lim_g(X/")] < lim Efg(X{")] = lim u(z,) .
n—oo n—od n—-oo

Therefore every sequence {yn} converging to r has a subsequence {z,}
such that u(z) < lim u(z,). That proves that u is lower semicontinuous.
n—o0

b) If g is bounded and continuous, the result in a) can be applied both to g
and —g. Hence both u and —u are lower semicontinuous and we conclude
that u is continuous. ]

We now prove that R, and a — A are inverse operators:

Theorem 8.1.5. a) If f € C2(R™) then Ry(a — A)f = f for alla > 0.
b) If g € Cp(R™) then Rag € Da and (a — A)Rag =g for alla>0.

Proof. a) If f € C2(R™) then by Dynkin’s formula
Ro(a— A)f(z) = (aRof — Ra Af)(x)

oo o0

=a / e~ E=[f(X,))dt — / e~ ET[Af(X,)]dt

0 0
= l —e_"‘tEI[f(Xt)]-%—/e“’tgt-Ex[f(Xt)]dt~ /e“"‘Ex[Af(Xt)]dt
0 0 0
= E*[f(Xo)] = f(z) -
b) If g € Cp(R™) then by the strong Markov property
E°[Rog(X:)) = EX[EX [/e_asg(Xs)ds}]
0

o

0
= Ex[O/e_‘”g(XtH)ds] = 0/e“"”Ex[g(XtJrs)]ds.

Integration by parts gives

E*[R,g{X})] =a/e"°‘3 / E*[g(X,)]dvds .

0 t
This identity implies that R,g € D4 and

A(Roag) = aRag—g.
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8.2 The Feynman-Kac Formula. Killing

With a little harder work we can obtain the following useful generalization
of Kolmogorov’s backward equation:

Theorem 8.2.1 (The Feynman-Kac formula).
Let f € CZ2(R™) and g € C(R™). Assume that g is lower bounded.

a) Put

v(t,z) = E®lexp | — [ q(X;5)ds ) f(X:)] . (8.2.1)
oo (= [ aomae) 0]
Then
% = Av — qu ; t>0,zeR" (8.2.2)
v0,2) = f(x); ceR" (8.2.3)

b) Moreover, if w(t,z) € CY?(R x R™) is bounded on K x R™ for each
compact K C R and w solves (8.2.2), (8.2.3), then w(t,z) = v(t,z),
given by (8.2.1).

t
Proof. a) Let Y; = f(X,),Z; = exp(— [q(X,)ds). Then dY; is given by
0
(7.3.1) and
dZt = —th(Xt)dt .
So

dY:Z,) =Y dZ, + Z,dY; since dZ; -dY; = 0.
Note that since Y;Z, is an Ité process it follows from Lemma 7.3.2 that
v(t,z) = E*[Y;Z,] is differentiable w.r.t. t.
Therefore, with v(t, z) as in (8.2.1) we get

S(B (e, X)) - v(t,2)) = B (BN 2 (X0)] - E¥[Z4(X0)

2l

E°[E*[f(Xi1r) exp (— /q(X3+r)ds) | Fr] — E¥[Zy f(Xe)|Fr)]
0

= -::Ex[ZHT - exp (/rq(Xs)dS>f(Xt+r) = Z f(X4)]
0

= ;—Ex[f(Xt-f-'r)Zt-}-r — f(X¢)Z:]

r

+%E’ [f(Xt+'r)Zt+r . (exp (/Q(XS)ds) B 1)]

0

- g—tv(t,z) + q(z)v(t, z) asr—0,
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because
106 Zene (e ([ a(X)ds) =1) = £(X0 Za(Xo)
0]

pointwise boundedly. That completes the proof of a).

b) Assume that w(t,z) € C*?(R x R") satisfies (8.2.2) and (8.2.3) and that
w(t, x) is bounded on K x R for each compact K C R. Then

ﬁw(t,x): = —%%U +Aw—-qw=0 fort>0,z€R" (8.2.4)
and
w(0,z) = f(z); zeR". (8.2.5)

t
Fix (s,z,2) € R x R™ x R" and define Z; = z + [ ¢(X,)ds and H, = (s — t,
0

Xto’x, Z;). Then H, is an It diffusion with generator

0 0
And(s,z,2) = —L + Ag + q(x)gg . $€CXHRxR"xR".

Hence by (8.2.4) and Dynkin’s formula we have, for all ¢ > 0, R > 0 and with

¢(S, T, Z) = exp(—z)w(s, ‘T):
tATR

E**%[¢(Hinrn)] = 9(s,,2) + E[ / AH¢<Hr)d’"] !

0

where 7 = inf{t > 0; |H,| > R}.

Note that with this choice of ¢ we have by (8.2.4)

Apgo(s, z,z) = exp{—2z) [ ~ %{i + Aw — q(m)w} =0.

Hence

’U)(S,.’II) = ¢(s’z1 0) =E8’I70[¢(Ht/\rg)]

0
since w(r, z) is bounded for (r,z) € K x R". In particular, choosing t = s we
get

w(s,z) = EF [exp <~ 0/()(X,‘)clr)w(o, X?")] =y(s,r), asclaimed. .
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Remark. (About killing a diffusion)
In Theorem 7.3.3 we have seen that the generator of an It6 diffusion X, given
by

dX; = b(X;)dt + o(X,)dB, (8.2.6)

is a partial differential operator L of the form

Lf =Y ayrd 7. Z (8.2.7)

where [a;;] = 2007, b = [b;]. It is natural to ask if one can also find processes
whose generator has the form

Lf= Za,ja +Zb af (8.2.8)

where ¢(z) is a bounded and continuous function.

If c(z) > 0 the answer is yes and a process X, with generator (8.2.8) is
obtained by killing X, at a certain (killing) time (. By this we mean that
there exists a random time { such that if we put

X=X, ift<¢ (8.2.9)
and leave X, undefined if t > ¢ (alteznatively, put X, =0ift> ¢, where
9 ¢ R" is some “coflin” state), then X, is also a strong Markov process and

xz v z - c(X,)ds
E7I(R)] = E7f(X)- Ao (0] = B [f(X) - ¢ X% (8:2.10)

for all bounded continuous functions f on R".
Let v(t, z) denote the right hand side of (8.2.10) with f € CZ(R"™). Then

tim Ez[f(Xtt)] — f(z) %v(t 2)ieo = (Av — ev)eo = Af(z) — c(z)f(z) ,

by the Feynman-Kac formula.
So the generator of X, is (8.2.8), as required. The function ¢(z) can be
interpreted as the killing rate:

elz) = ltllm Qx[Xo is killed in the time interval (0,t]] .
Thus by applying such a killing procedure we can come from the special case
¢ =0in (8.2.7) to the general case (8.2.8) with ¢(z) > 0. Therefore, for many
purposes it is enough to consider the equation (8.2.7).

If the function ¢(z) > 0 is given, an explicit construction of the killing
time ¢ such that (8.2.10) holds can be found in Karlin and Taylor (1981),
p. 314. For a more general discussion see Blumenthal and Getoor (1968),
Chap. III
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8.3 The Martingale Problem
If dX;, = b(X,)dt + o(X;)dB, is an It diffusion in R™ with generator A and
if f € CZ(R™) then by (7.3.1)

t

f(X:) = f(z) +/Af(Xs)ds+/VfT(Xs)a(Xs)st. (8.3.1)
0

[o]

Define

t

M, = f(X:) — / Af(X,)dr (= f(x) + / ViT(X,)o(X,)dB,) . (8.3.2)
0

0

Then, since It integrals are martingales (w.r.t. the o-algebras {ft(m)}) we
have for s > ¢
E*[M,|F{™) = M, .

It follows that
E*[M,| M) = E*[B*[M,| F™||My] = E*[My| M) = M ,
since M, is M;-measurable. We have proved:

Theorem 8.3.1. If X; is an Ité diffusion in R™ with generator A, then for
all f € C3(R™) the process

t

M, = f(X,) - / Af(X,)dr

[o]

is a martingale w.r.t. {M;}.
If we identify each w € 2 with the function
wy = w(t) = XF{w)
we see that the probability space (£2, M, Q%) is identified with
(R, B,Q)

where B is the Borel o-algebra on (R™)[%) (see Chapter 2). Thus, regarding
the law of X¥ as a probability measure Q* on B we can formulate Theo-
rem 8.3.1 as follows:

Theorem 8.3.1°. If Q° is the probability measure on B induced by the law
QT of an It6 diffusion X, then for all f € C3(R"™) the process
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M, = f(X,) — / AF(X)dr (= flwe) - / Af(w)dr); we (R0
0 0

(8.3.3)
is a Q% -martingale w.r.t. the Borel o-algebras B, of (R")[O-‘], t > 0. In other
words, the measure Q solves the martingale problem for the differential
operator A, in the following sense:

Definition 8.3.2. Let L be a semi-elliptic differential operator of the form

L= Zb_a_ +Za~——ai——
la.’Ei » 4 611-6%

l!

where the coefficients b;,a;; are locally bounded Borel measurable functions

on R™. Then we say that a probability measure P= on ((R™)[0) B) solves
the martingale problem for L (starting at x) if the process

¢
M, = f(w) — /Lf(wr)dr My = f(z) a.s. p-
0

is a P* martingale w.r.t. By, for all f € CZ(R™). The martingale problem
is called well posed if there is a unique measure P® solving the martingale
problem.

The argument of Theorem 8.3.1 actually proves that é’” solves the mar-
tingale problem for A whenever X, is a weak solution of the stochastic dif-

ferential equation

Conversely, it can be proved that if P= solves the martingale problem for

B PR AN r, _9°
L—Zb,—a;:+ 22(0’0’ )UM (835)

starting at x, for all x € R"™, then there exists a weak solution X; of the
stochastic differential equation (8.3.4). Moreover, this weak solution X, is a
Markov process if and only if the martingale problem for L is well posed.
(See Stroock and Varadhan (1979) or Rogers and Williams (1987)). There-
fore, if the coeflicients b, 0 of (8.3.4) satisfy the conditions (5.2.1), (5.2.2) of
Theorem 5.2.1, we conclude that

éw is the unique solution of the martingale problem
for the operator L given by (8.3.5) . (8.3.6)
Lipschitz-continuity of the coefficients of L is not necessary for the uniqueness

of the martingale problem. For example, one of the spectacular results of
Stroock and Varadhan (1979) is that
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2

0
L= Zb +Z ”6161]

has a unique solution of the martingale problem if [a;;] is everywhere positive
definite, a,;(x) is continuous, b(x) is measurable and there exists a constant
D such that

b(z)] + |a(z)|? < D(1 +|z|) forall z € R™.

8.4 When is an Itd Process a Diffusion?

The It6 formula gives that if we apply a C? function ¢: U € R® — R" to an
Itd process X; the result ¢(X,) is another Itd process. A natural question is:
If X, is an It6 diffusion will ¢(X;) be an It6 diffusion too? The answer is no
in general, but it may be yes in some cases:

Example 8.4.1 (The Bessel process). Let n > 2. In Example 4.2.2 we
found that the process

Ri(w) = |B(t,w)| = (B1(t,w)? + -+ Bn(t,w)?)?}

satisfies the equation

B;dB; n -1
dR, = Z T dt . (8.4.1)

i=

However, as it stands this is not a stochastic differential equation of the form
(5.2.3), so it is not apparent from (8.4.1) that R is an Ito diffusion. But this
will follow if we can show that

coincides in law with (i.e. has the same finite-dimensional distributions as)
1-dimensional Brownian motion B;. For then (8.4.1) can be written

dR, = dt +dB

2Rt

which is of the form (5.2.3), thus showing by weak uniqueness (Lemma 5.3.1)
that R, is an Ito diffusion with generator

Af(@) = 3f"(@) + = @)

as claimed in Example 4.2.2. One way of seeing that the process Y, coincides
in law with 1-dimensional Brownian motion B, is to apply the following
result:
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Theorem 8.4.2. An [t6 process
dY; = vdB, ; Yo =0 with v(t,w) € V™
coincides (in law) with n-dimensional Brownian motion if and only if
vl (t,w) =1, for a.a. (t,w) w.r.t. dt x dP (8.4.2)
where I, is the n-dimensional identity matriz.

Note that in the example above we have

t
Y,:/vdB
0
B,
U—[&. _B_.rl] B-— M
BBl -

B,

with

and since vuT

required.

Theorem 8.4.2 is a special case of the following result, which gives a
necessary and sufficient condition for an Ité process to coincide in law with
a given diffusion: (We use the symbol ~ for “coincides in law with”).

= 1, we get that Y; is a 1-dimensional Brownian motion, as

Theorem 8.4.3. Let X, be an Ité diffusion given by

dX; =b(X;)dt +o(X;)dB,, beR", o€ RY™, Xo==z,
and let Y; be an Ité process given by

dY; = u(t,w)dt + v(t,w)dB;, uweR"*, veR™™, Yy==zx.
Then X, ~ Y if and only if

ETu(t, )INV] = (Y7 and w7 (t,w) = oo T (V) (8.4.3)

for a.a. (t,w) w.r.t. dt xdP, where N; is the o-algebra generated by Ys; s < t.
Proof. Assume that (8.4.3) holds. Let

A= Zb - 22(00 )”6 97,

be the generator of X, and define, for f € CZ(R™),

2
flt,w) = Zu.(t w) (Y, 2z:('uv )i (t, w) d'(;t (vy) .
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Then by Ité’s formula (see (7.3.1)) we have, for s > ¢,

B (YN = £(%) + B / Hf(r,w)dTINf,] iy [ / VfTvdBrINt]

_ 8

ol E"[Hf(r,w)wr]drw]

Tt

= f(Y.)+ E* -/Af(Y,)drth} by (8.4.3) , (8.4.4)

where E* denotes expectation w.r.t. the law R® of Y; (see Lemma 7.3. 2)
Therefore, if we define

= f(Y2) — /Af(Y,)dr (8.4.5)
0

then, for s > t,
E*[M,N;) = F(Y;) + E* [ / Af(Yr)dﬂNt] —E? [ / Af(mdrw]
0

— f(V)-E* [ / Af(Yr)drth] —M,.
1]

Hence M, is a martingale w.r.t. the o-algebras V; and the law R*. By unique-
ness of the solution of the martingale problem (see (8.3.6)) we conclude that
Xt jad .Yt.

Conversely, assume that X; ~ Y;. Choose f € CZ. By It6’s formula (7.3.1)
we have, for a.a. (t,w) wr.t. dt X dP,

hm ( T Yern) V] = f(Y2))

t+h
Y
+3 Z(wT)ij(s,w)m(Ys)lM] ) (8.46)

_ZE’[u, (t,w) |M]— Y)+3 ZEI[(UU )i (t, w) N (Y}) . (8.4.7)

]66

On the other hand, since X, ~ Y, we know that Y, is a Markov process.
Therefore (8.4.6) coincides with



8.4 When is an Itd Process a Diffusion? 151
-1 Y, _ Y
lim - (Y[ (Ya)] - BY{ (%))
0% f
— Y: 1 Y: Y.
E:E [ (0,w) 57 (}’0]+2§U:E [(vu )is(0,) 5= 61}_(}@)]

62f

= ZEY' [1:(0, w)] Y,) +3 Z EYt[(voT);;(0, w)]

2]

m) . (8.4.8)

Comparing (8.4.7) and (8.4.8) we conclude that

E*[u(t,w)|V:] = EY*[u(0,w)] and E[voT(t,w)|N;] = EY*[vvT(0,w))
(8.4.9)
for a.a. (t,w).
On the other hand, since the generator of Y; coincides with the generator
A of X, we get from (8.4.8) that

EY[u(0,w)] = b(Y;) and EY[uuT(0,w)] = 00T (Y;) for a.a. (t,w).
(8.4.10)
Combining (8.4.9) and (8.4.10) we conclude that

ET[uN,] =b(Y,) and E*[wT|N;] = 0oT(Y;) for aa. (t,w). (8.4.11)

From this we obtain (8.4.3) by using that in fact voT(¢,-) is always N,-
measurable, in the following sense:

Lemma 8.4.4. Let dY; = u(t,w)dt + v(t,w)dB;, Yy = x be as in Theo-
rem 8.4.8. Then there exists an N;-adapted process W (t,w) such that

w7 (t,w) = W(t,w) fora.a. (t,w).

Proof. By Itd’s formula we have (if Y;(¢,w) denotes component number i of

Y(t,w))
t t ¢
YY;(t,w) = zix; +/Y,-dy;(s) + /deYi(s)+/(va)ij(s,w)ds.
0 0 0
Therefore, if we put
t t
Hjj(t,(d)=Yin(t,W)—$1:xj—/Yid.Yj—/.de.Yi, 1<4,5<n
0 0

then H;; is N;-adapted and
t

Hiy(t,w) = /(va),-j(s,w)ds .

0
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Therefore
H(t,w)—-H(t—r,w)

r

Ty — 1
(v07)(t,) = lim

for a.a. t. This shows Lemma 8.4.4 and the proof of Theorem 8.4.3 is complete.
0

Remarks. 1) One may ask if also u(t,-) must be A;-measurable. However,
the following example shows that this fails even in the case when v =n = 1:
Let By, B2 be two independent 1-dimensional Brownian motions and de-
fine
dY, = By(t)dt + dBa(t) .

Then we may regard Y; as noisy observations of the process Bi(t). So by
Example 6.2.10 we have that

E[(Bi(t,w) — B1(t,w))?] = tanh(t) ,

where Bi(t,w) = E[By(t)|V,] is the Kalman-Bucy filter. In particular,
By (t,w) cannot be N;-measurable.

2) The process v(t,w) need not be AN;-adapted either: Let B, be 1-
dimensional Brownian motion and define

dY, = sign(B,)dB, (8.4.12)

where
ifz>0

: 1
sign(z) = {—1 if 2<0.

Tanaka’s formula says that
t
|B| = |Bo| + /sign(Bs)st + L, (8.4.13)
0

where Ly = L;(w) is local time of B, at 0, a non-decreasing process which
only increases when B, = 0 (see Exercise 4.10). Therefore the o-algebra
N, generated by {Y;;s < t} is contained in the o-algebra H; generated by
{|Bsl; s < t}. It follows that v(t,w) = sign(B;) cannot be N;-adapted.

Corollary 8.4.5 (How to recognize a Brownian motion).
Let
dY; = u(t,w)dt + v(t,w)dB,

be an Ité process in R™. Then Y; is a Brownian motion if and only if
E*[u(t, )N =0 and v (t,w)=1I, (8.4.14)

for a.a. (t,w).
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Remark. Using Theorem 8.4.3 one may now proceed to investigate when
the image Y; = ¢(X,) of an Ité diffusion X, by a C?-function ¢ coincides in
law with an Ité diffusion Z,. Applying the criterion (8.4.3) one obtains the
following result:

&(X¢) ~ Z; if and only if

Alfog] = Alflog (8.4.15)
for all second order polynomials f(z),...,zn) = > a;Ti + 3 ci;xiz; (and
hence for all f € CZ) where A and A are the generators of X, and Z; re-
spectively. (Here o denotes function composition: (f o ¢)(z) = f(¢(x)).) For

generalizations of this result, see Csink and Dksendal (1983), and Csink,
Fitzsimmons and Qksendal (1990).

8.5 Random Time Change

Let c(t,w) > 0 be an F;-adapted process. Define

¢

B = B(t,w) = /c(s,w)ds . (8.5.1)

0

We will say that (3, is a (random) time change with time change rate c(t,w).
.Note that 3(t,w) is also F;-adapted and for each w the map t — §,(w) is
non-decreasing. Define oy = a(t,w) by

oy = inf{s; B, >t} . (8.5.2)
Then «, is a right-inverse of 3;, for each w :
Bla(t,w),w) =1t forall t>0. (8.5.3)

Moreover, t — a;(w) is right-continuous.
If e(s,w) > 0 for a.a. (s,w) then t — B,(w) is strictly increasing, t — a,(w)
is continuous and «; is also a left-inverse of §;:

a(B(t,w),w) =t forall t>0. (8.5.4)
In general w — a(t,w) is an {F;}-stopping time for each ¢, since
{wya(t,w) < s} ={w;t < B(s,w)} € Fs . (8.5.5)

We now ask the question: Suppose X, is an It6 diffusion and Y; an It6 process

as in- Theorem 8.4.3. When does there exist a time change (; such that

Y., ~ X, 7 (Note that a, is only defined up to time By. If 8o < o© we

interpret Y,, ~ X, to mean that Y,, has the same law as X, up to time ).
Here is a partial answer (see Qksendal (1990)):
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Theorem 8.5.1. Let X;,Y; be as in Theorem 8.4.83 and let 3, be a time
change with right inverse ay as in (8.5.1), (8.5.2) above. Assume that

u(t,w) = c(t,w)b(Y;) and voT(t,w) = c(t,w) - oo” (V) (8.5.6)

for a.a. t,w. Then
YO,, >~ Xt .

This result allows us to recognhize time changes of Brownian motion:

Theorem 8.5.2. Let dY; = v(t,w)dBs, v € R**™, B, € R™ be an Ité
integral in R™, Yo = 0 and assume that

wT (t,w) = eft,w)l, (8.5.7)
for some process c(t,w) > 0. Let ay, B¢ be as in (8.5.1), (8.5.2). Then

Y,, is an n-dimensional Brownian motion .

Corollary 8.5.3. Let dY; = Y v(t,w)dB;(t,w), Yo = 0, where B =

i=

(B1,...,Bn) is a Brownian motion in R™. Then

By:=Y,, isa 1-dimensional Brownian motion ,

where oy is defined by (8.5.2) and

Bs = / { Xn:v?(r,w)}dr. (8.5.8)
0

i=1
Corollary 8.5.4. Let Y;, 53, be as in Corollary 8.5.8. Assume that
Zv?(r,w) >0 foraa (rw). (8.5.9)
1=1
Then there exists a Brownian motion Et such that
Y, = Bg, . (8.5.10)

Proof. Let R
B, =Y,, (8.5.11)

be the Brownian motion from Corollary 8.5.3. By (8.5.9) 3, is strictly increas-
ing and hence (8.5.4) holds, So choosing t = 3, in (8.5.11) we get (8.5.10).
a
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Corollary 8.5.5. Let c(t,w) > 0 be given and define

t
dY; = / ve(s,w) dBs ,
0

where B, is an n-dimensional Brownian motion. Then
Yo, is also an n-dimensional Brownian motion .

We now use this to prove that a time change of an Ito integral is again an
It6 integral, but driven by a different Brownian motion B;. First we construct
Bti

Lemma 8.5.6. Suppose s — a(s,w) is continuous, a(0,w) = 0 for a.a. w.
Fiz t > 0 such that B, < 00 a.s. and assume that E[at] < oo. Fork=1,2,...
put

pooJieh df <y
J t if 7-27F>a

and choose r; such that a,, = t;. Suppose f(s,w) > 0 is F;-adapted, bounded
and s-continuous for a.a. w. Then

lexgto(aj,w)ABaj = /f(s,w)st a.s. , (8.5.12)
J 0

where a; = ar;, ABs; =B Ba, and the limit is in L*(12, P).

aj+1

Proof. For all k we have

E[(;f(ajaw)ABaj —Zf(s"")st)z]

_ E[( > [ (a0 - f(s,w)st)z]

ia

Qj4+1

(] e - st5.008.) |

It

Qa;

Qj+1

Z
; [ / a:',w)“f(S,w))zdS]=E[O7(f—fk)2ds],

a;

where fi(s,w) Z f(tj,w) St ,(8) is the elementary approximation to

f. (See Corollary 3 1.8). This implles (8.5.12). m]



156 8. Other Topics in Diffusion Theory

We now use this to establish a general time change formula for Ité inte-
grals. An alternative proof in the case n = m = 1 can be found in McKean
(1969, §2.8).

Theorem 8.5.7 (Time change formula for It6 integrals).

Suppose ¢(s,w) and a(s,w) are s-continuous, a(0,w) = 0 for a.a. w and that
Eloy] < 00. Let B, be an m-dimensional Brownian motion and let v(s,w) €
V™ be bounded and s-continuous. Define

B, = k&x&Z\/c(aj,w) AB,, = /\/c(s,w) dB, . (8.5.13)
J 0

Then B, is an (m-dimensional) .7-'((,:") -Brownian motion (i.e. B, is a Brown-
ian motion and B, is a martingale w.r.t. F{™ ) and

oy

/v(s w)dB /v(ar,w)\/a’ ) dB, a.s. P, (8.5.14)

0
where ol.(w) is the derivative of a(r,w) w.r.t. v, so that

1
c(ar,w)

Proof. The existence of the limit in (8.5.13) and the second identity in (8.5.13)
follow by applying Lemma 8.5.6 to the function

f(s,w) = Ve(s,w) .

a)(w) = fora.ar>0,aa0 weR. (8.5.15)

Then by Corollary 8.5.5 we have that B, is an FéT)—Brownian motion. It
remains to prove (8.5.14):

ag

/v(s,w)st

0

i

klir{:o Z v(a;,w)AB,,

= hm aJ,w)M (.9) ,/c(aJ, w) ABg,

= hm Z v(oy,w)
J

AB,
(aj’ ) ?

and the proof is complete. 0
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Example 8.5.8 (Brownian motion on the unit sphere in R"; n>2).

In Examples 5.1.4 and 7.5.5 we constructed Brownian motion on the unit
circle. It is not obvious how to extend the method used there to obtain Brow-
nian motion on the unit sphere S of R™?; n > 3. However, we may proceed as
follows: Apply the function ¢: R™ \ {0} — S defined by

o(x) =z |z|7*; z € R™\ {0}

to n-dimensional Brownian motion B = (By,..., B,,). The result is a stochas-
tic integral Y = (Y1,...,Y,) = ¢(B) which by Itd’s formula is given by

|B|? —

L — 1 . _.:_.. . i . ) = . .
dY; = |B[3 ——>dB; - Z |B|3dB 5 |B|3dt’ i=12,...,n
(8.5.16)
Hence 1 1
dY = -o(Y)dB + —==b(Y)dt
Bl B
where
o= [Uij] e R™™"™, with O'ij(Y) = 6@' —Yiyrj; 1<%, 7<n
and
n—1 n
b(y) = — " | €eR™, (y1,-..,yn are the coordinates of y € R™) .
Yn

Now perform the following time change: Define

(w) a(t w)( )

where

t
1
— -1 —
=8, B(tw)= /st
0
Then Z is again an It6 process and by Theorem 8.5.7
dZ = o(Z)dB + b(Z)dt .

Hence Z is a diffusion with characteristic operator
2

o -1 of
Arw) = 3(4sw) Zw:ayay) o S b=t

(8.5.17)
Thus, ¢(B) = l'g'l is after a suitable change of time scale - equal to a

diffusion Z living on the unit sphere S of R™. Note that Z is invariant under
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orthogonal transformations in R™ (since B is). It is reasonable to call Z
Brownian motion on the unit sphere S. For other constructions see It6 and
McKean (1965, p. 269 (§7.15)) and Stroock (1971).

More generally, given a Riemannian manifold M with metric tensor g =
(9:;] one may define a Brownian motion on M as a diffusion on M whose
characteristic operator A in local coordinates z; is given by 3 1 times the
Laplace-Beltrami operator (here [g%7] = [g;;]7})

\/d—?G_ Zam (\/det Zg”am ) (8.5.18)

See for example Meyer (1966, p. 256-270), McKean (1969, §4.3). The subject
of stochastic differential equations on manifolds is also treated in Ikeda and
Watanabe (1989), Emery (1989) and Elworthy (1982).

Example 8.5.9 (Harmonic and analytic functions).
Let B = (B, B2) be 2-dimensional Brownian motion. Let us investigate what
happens if we apply a C? function

¢(z1,12) = (u(z1,22),v(21,22))

to B:
Put Y = (Y1, Y2) = ¢(By, B;) and apply Ité’s formula:

dY) = 4 (Bi1, By)dBi1 + uy(Bi, Ba)dB; + 3(uf,(B1, B2) + ugy(Bi, By)]dt
and
dYy = vy(B1, B3)dB1 + v3(B1, B3)dB; + 1[v}1 (B, Bz) + vy (Bi, Ba)ldt
where u} = T etc. So
dY =b(B1, By)dt + 0(B1,By)dB ,

’
with b= 1 (23), o= (Z{l Z;) Dy (the derivative of ¢).

So Y = ¢(B,, Bz) is a martingale if (and, in fact, only if) ¢ is harmonic,
i.e. Ap = 0. If ¢ is harmonic, we get by Corollary 8.5.3 that
9(B1, By) = (By), By,)

where B(M) and B® are two (not necessarily independent) versions of 1-
dimensional Brownian motion, and

t t
ﬂl(t,w)=/|Vu12(Bl,Bg)ds, Bz(t,w)=/|Vv|2(Bl,Bg)ds.
0 0

Since
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[Vul?  Vu- Vv
ool =
Vu-Vv  |Vu|?

we see that if (in addition to Au = Av =0)
|Vu? = |Vv|? and Vu-Vv=0 (8.5.19)
then

t
K=Y0+‘/0dB
0

with
oo = |Vul*(B1, B2)Iy, Yo = ¢(Bi1(0), B2(0)) .

Therefore, if we let

¢
By = B(t,w) = /IVUIQ(BI,Bg)ds , a; = ﬁ[’
0

we obtain by Theorem 8.5.2 that Y,,, is a 2-dimensional Brownian motion.
Conditions (8.5.19) - in addition to Au = Av = 0 - are easily seen to be
equivalent to requiring that the function ¢(z + iy) = ¢(=,y) regarded as a
complex function is either analytic or conjugate analytic.

Thus we have proved a theorem of P. Lévy that ¢(B1, By) is — after a
change of time scale — again Brownian motion in the plane if and only if
¢ is either analytic or conjugate analytic. For extensions of this result see
Bernard, Campbell and Davie (1979), Csink and Oksendal (1983) and Csink,
Fitzsimmons and @ksendal (1990).

8.6 The Girsanov Theorem

We end this chapter by discussing a result, the Girsanov theorem, which
is fundamental in the general theory of stochastic analysis. It is also very
important in many applications, for example in economics (see Chapter 12).

Basically the Girsanov theorem says that if we change the drift coeflicient
of a given It6 process (with a nondegenerate diffusion coefficient), then the
law of the process will not change dramatically. In fact, the law of the new
process will be absolutely continuous w.r.t. the law of the original process
and we can compute explicitly the Radon-Nikodym derivative.

We now proceed to make this precise. First we state {(without proof) the
useful Lévy characterization of Brownian motion. A proof can be found in e.g.
Tkeda & Watanabe (1989), Theorem I1.6.1, or in Karatzas & Shreve (1991),
Theorem 3.3.16.
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Theorem 8.6.1 (The Lévy characterization of Brownian motion).
Let X(t) = (X1(t),..., Xn(t)) be a continuous stochastic process on a proba-
bility space (12, H, Q) with values in R™. Then the following, a) and b), are
equivalent

a) X(t) is a Brownian motion w.r.t. Q, i.e. the law of X (t) w.r.t. Q is the
same as the law of an n-dimensional Brownian motion.
b) () X(t) = (Xi(t),...,Xn(t)) is a martingale w.rt. Q (and w.r.t. its
own filtration) and
(i) Xi(t)X;(t)—0di;t is a martingale w.r.t. Q (and w.r.1. its own filtration)
foralli,j€{1,2,...,n}.

Remark. In this Theorem one may replace condition (ii) by the condition
(ii)’ The cross-variation processes (X;, X;); satisfy the identity
(X Xj)e(w) = 65t as., 1<, j<n (8.6.1)
where
(X, Xj)e = UXi + X5, Xi + Xj)e — (X — X, Xi — X)), (8.6.2)

(Y,Y), being the quadratic variation process. (See Exercise 4.7.)

Next we need an auxiliary result about conditional expectation:

Lemma 8.6.2. Let u and v be two probability measures on a measurable
space (12,G) such that dv(w) = f(w)du(w) for some f € L' (). Let X be a
random variable on (12,G) such that

BXI = [ IX@f @) < oo
(¢

Let H be a o-algebra, H C G. Then
E,[X|H]- EL[f|H] = ELIfX|H] a.s. (8.6.3)

Proof. By the definition of conditional expectation (Appendix B) we have
that if H € H then

/ E,[X|H]fdu
H

il

h/E,,[X]'H]dV:}{/XdV

/ X fdp = / E.[fX|H)du (8.6.4)
H H

On the other hand, by Theorem B.3 (Appendix B) we have
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/ E,[X|H|fdu = E,[E,[X|H)f - Xar] = E,[E,[E,[X|H]] - Xy |H]]
H

= BuXu BIXIH)- B = [ BXIH] BulfiHde.  (8.65)
H

Combining (8.6.4) and (8.6.5) we get
[ Bxiry- Blsitdn = [ BlrX(Hdu .
N H

Since this holds for all H € H, (8.6.3) follows. O

Before stating the Girsanov theorem we make some general remarks about
absolute continuity of measures:

Let (2, F, {F}t>0, P) be a filtered probability space (i.e. (2,F,P) is a
probability space and {F};>o is a filtration on (£2, F)). Fix T > 0 and let Q
be another probability measure on Fr. We say that Q is absolutely continuous
w.r.t. P|}.T (the restriction of P to Fr) and write Q@ <« P if

P(H)y=0=Q(H)=0 forall He Fr.

By the Radon-Nikodym theorem this occurs if and only if there exists an
Fr-measurable random variable Zr(w) > 0 such that

dQ(w) = Zp(w)dP(w) on Fr.

In this case we write 0
a?; = ZT on }-T
and we call Z the Radon-Nikodym derivative of Q with respect to P.
The following observation may be regarded as a weak partial converse of

the Girsanov theorem:
Lemma 8.6.3. Suppose @ < PI}.T with %% = Zp on Fr. Then Q|jrf &
Pl}} for all t € [0,T) and if we define

_d@lz)
Zt = d(Pl}_t)

then Z, is a martingale w.r.t. F; and P.

Proof. Since @ < P on Fp and F; C Fr it is obvious that Q <« P on F;.
Choose F € F;. Then

Ep(F - Ep|2r|F\)| = Ep(Ep|F - Zr|F.]
= Ep|F - Zr] = Eq|F| = Ep|F - Z,].
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Since this holds for all F € F; we conclude that
EP[ZTlft] = Zt a.s. P|-7::'

We can now prove the first version of the Girsanov formula:

Theorem 8.6.4 (The Girsanov theorem I).
Let Y(t) € R™ be an Ité process of the form

dY (t) = a(t,w)dt + dB(t); ¢<T, Yo=0.

where T < 0o is a given constant and B(t) is n-dimensional Brownian mo-
tion. Put

¢ ¢
M, = exp ( - /a(s,w)st -3 /aQ(s,w)ds) ; 0<t<T. (8.6.6)
0 0

Assume that M is a martingale with respect to .7-}(") and P. Define the mea-
sure @ on .7-'7(1") by
dQ(w) = Mr(w)dP(w) . (8.6.7)

Then Q is a probability measure on .7-'7(1") and Y (t) is an n-dimensional Brow-
nian motion w.r.t. Q, for0<t < T.

Remarks.

(1) The transformation P ~— @ given by (8.6.7) is called the Girsanov trans-
formation of measures.
(2) As pointed out in Exercise 4.4 the following Novikov condition (8.6.8) is

sufficient to guarantee that { M, },<r is a martingale (w.r.t. .7-}(") and P):

E[exp (%faQ(s,w)ds)] < o0 (8.6.8)
0

where E = FEp is the expectation w.r.t. P.
(3) Note that since M, is a martingale we actually have that
MpdP = MdP  on FV; t<T. (8.6.9)

To see this, let f be a bounded f,(")-measurable function. Then by The-
orem B.3 we have

/ f(w)Mr(w)dP(w) = E|fMz] = E(E|f Mr|F,)
R

= E[fE[Mr|F/)] = E[fM,) = / f () My(w)dP(w) .
n
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Proof of Theorem 8.6.4. Since M, is a martingale we have
Q(2) = Eq(l] = Ep[Mr] = 1.

Hence @ is a probability measure. For simplicity we assume that a(s,w) is
bounded. In view of Theorem 8.6.1 we have to verify that

(i) Y (t) = (Ya(t),...,Ya(t)) is a martingale w.r.t. Q (8.6.10)
and
(ii) Yi(t)Y;(t) — &;;t is a martingale w.r.t. Q,

foralli,j € {1,2,...,n}. (8.6.11)

To verify (i) we put K(t) = M,Y (t) and use It6’s formula to get (see
Exercises 4.3, 4.4)

dKi(t) = M.dYi(t) + Yi(t)dM, + dY;(t)dM,
= My(as(t)dt + dB;(t)) + Yi(t)Mt(z -—ak(t)dBk(t))

k=1

HAB) (- M. S an(dB()

k=1

H

(1) a(t)dBi(t)) = My~ (t)dB(t) (8.6.12)
k=1

where YO(t) = (v{?(¢),...,7(¢)), with

i =Yi(t)a;(t) forj#i
]()(t) {I—Y-(aj)ai(t) fgrgzi.

Hence K;(t) is a martingale w.r.t. P, so by Lemma 8.6.2 we get, for ¢t > s,
EM,Yi(t)|Fs) _ E[Ki(t)|F)

Eq[Yi(t)|Fs] =

E{M|F] M,
- By,

which shows that Y;(¢) is a martingale w.r.t. Q. This proves (i). The proof of
(ii) is similar and is left to the reader. O

Remark. Theorem 8.6.4 states that for all Borel sets F},...,Fx C R™ and
all ty,49,...,t < T, k=1,2,... we have

QIY(ty) € Fy,...,Y(t) € Fx] = P[B(t1) € F1,...,B(tx) € Fi] (8.6.13)

An equivalent way of expressing (8.6.7) is to say that Q < P (Q is absolutely
continuous w.r.t. P) with Radon-Nikodym derivative
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dQ
4P

Note that Mr(w) > 0 a.s., so we also have that P <« Q. Hence the two

measures @@ and P are equivalent. Therefore we get from (8.6.13)

P[Y(tl) S F],...,Y(tk) S Fk] >0
<= QY(t1) € Fr,...,Y(tx) € Fx] >0
<= P[B(t1) € F1,...,B(ty) € Fx] >0; ti,...,tx, €[0,T] (8.6.15)

=Mr on FJV. (8.6.14)

Example 8.6.5. Suppose Y(t) € R™ is given by

)
dY (t) = g(t)dt + dB(¢t), 0<t<T
where g : [0,7] — R™ is a continuous deterministic function. Then the

Novikov condition (8.6.8) holds trivially and Y'(¢) is a Brownian motion w.r.t.

Q, where
T

T
dQ(w) = exp ( - /g(s)dB(s) - %/QQ(s)ds)dP(w) on FiM.
0

0

Theorem 8.6.6 (The Girsanov theorem II).
Let Y(t) € R™ be an Ité process of the form

dY (t) = B(t,w)dt + 6(t,w)dB(t); t<T (8.6.16)

where B(t) € R™, B(t,w) € R™ and 8(t,w) € R"*™. Suppose there ezist
processes u(t,w) € Wi} and oft,w) € W§, such that

0(t,w)u(t,w) = B(t,w) — oft,w) (8.6.17)
Put

t t
M; = exp ( — /u(s, w)dB; — 3 /u2(s,w)ds) ; t<T (8.6.18)
0 0

nd
‘ dQ(w) = Mr(w)dP(w)  on FI™ . (8.6.19)

Assume that M, is a martingale (w.r.t. .7-](") and P). Then Q is a probability

measure on ]—'}.m), the process
t

E(t): = /u(s,w)ds + B(t); t<T (8.6.20)
0

is a Brownian motion w.r.t. Q and in terms of §(t) the process Y (t) has the
stochastic integral representation

dY (t) = a(t,w)dt + 6(t,w)dB(t) . (8.6.21)
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Remark. As in the Remark following Theorem 8.6.4 we note that the fol-
lowing Novikov condition is sufficient to guarantee that A, is a martingale:
T

E[exp(%/ﬁ(s,w)ds)] <o0. (8.6.22)

[

Proof. 1t follows from Theorem 8.6.4 that @ is a probability measure on f;m)

and ﬁ(t) is a Brownian motion w.r.t. (). So, substituting (8.6.20) in (8.6.16)
we get, by (8.6.17),

dY (t) = B(t,w)dt + 6(t, w)(dB(t) — u(t,w)dt)
= [B(t,w) — 8(t, w)u(t, w)|dt + (¢, w)dB(t)
ot,w)dt + O(t,w)dB(t) .

0

Note that if n = m and # € R™*™ is invertible, then the process u(t,w)
satisfying (8.6.17) is given uniquely by

u(t,w) = 071 (t,w)[B(t,w) — a(t,w)] . (8.6.23)

Remark. In most applications, e.g. in finance (see Chapter 12) the process

a(t,w) is chosen to be 0. Then the process Y (t) gets the form (see (8.6.21))
dY (t) = 6(t,w)dB(t),

which implies that Y (t) is a local martingale w.r.t. Q. In this case Q is called
an equivalent local martingale measure. If Y (t) is a martingale, then Q is
called an equivalent martingale measure. See Chapter 12.

Yi(t)

Example 8.6.7. Suppose Y (¢) = [Y ®)
2

] € R? is given by

dYi(t) = 2dt + dBi (t) + dBa(t)
dYy(t) = 4dt + dBy (t) — dBy(t)

ie. 11 Bi(t

dY (t) = [i]dt+ [1 _l]dB(t); B(t) = [32(3].

Choose a(t,w) = 0. Then equation (8.6.17) gets the form

11 (751 _ 2
1-1|{us |~ |4
which has the unique solution

u =3, wuy=-1.

Hence we put
dQ(w) = exp(-3By(T) + By(T) - 5T)dP(w)  on F&



166 8. Other Topics in Diffusion Theory

and
dB(t) = [ _31]dt+dB(t).

Then trivially the Novikov condition holds (see Example 8.6.5) and we con-
clude that B(t) is a Brownian motion w.r.t. the probability measure Q and

dY (t) = [i _11] dB(t) .

Thus in this case Y(t) is in fact a martingale w.r.t. Q, i.e. Q is an equivalent
martingale measure for Y (t).

Finally we formulate a diffusion version:

Theorem 8.6.8 (The Girsanov theorem III).

Let X(t) = X*=(t) € R™ and Y(t) = Y*(t) € R" be an Ité diffusion and an
Ité process, respectively, of the forms

dX(t) = b(X (t))dt + o(X(t))dB(t); t<T, X(0)==z (8.6.24)
dY (t) = [y(t,w) + (Y (¢))ldt + o(Y (¢))dB(t); t<T, Y(0)=z (8.6.25)
where the functions b:R™ — R™ and o: R™ — R"*™ gatisfy the conditions

of Theorem 5.2.1 and v(t,w) € W§, x € R™. Suppose there ezists a process
u(t,w) € Wi} such that

o(Y(t))u(t,w) = v(t,w). (8.6.26)

Define M, Q and B(t) as in (8.6.18), (8.6.19) and (8.6.20). Assume that
M, is a martingale w.r.t. ft(m) and P. Then Q is a probability measure on
F and

dY (t) = b(Y'(t))dt + o(Y(t))dE(t) . (8.6.27)

the Q-law of Y*(t) is the same as

the P-law of X%(t); t<T. (8.6.28)

Proof. The representation (8.6.27) follows by applying Theorem 8.6.6 to the
case 0(t,w) = o(Y (), B(t,w) = v(t,w)+b(Y (), a(t,w) = b(Y (t)). Then the
conclusion (8.6.28) follows from the weak uniqueness of solutions of stochastic
differential equations (Lemma 5.3.1). O

The Girsanov theorem III can be used to produce weak solutions of
stochastic differential equations. To illustrate this, suppose Y; is a known
weak or strong solution to the equation

dY; = b(Y:)dt + o(Y;)dB(t) (8.6.29)

where b: R — R", 0:R"” — R™*™ and B(t) € R™. We wish to find a weak
solution X (t) of a related equation
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where the drift function is changed to a: R™ — R™. Suppose we can find a
function ug: R® — R™ such that

o(y)uo(y) = b(y) —a(y);  y€eR™.
(If n = m and ¢ is invertible we choose
w=0"'-(b—a).)

Then if u(t,w) = uo(Y1(w)) satisfies Novikov’s conditions, we have, with @Q
and B; = B(t) as in (8.6.20) and (8.6.21), that

dY, = a(Y,)dt + o(Y,)dB, . (8.6.31)
Thus we have found a Brownian motion (B;, Q) such that Y, satisfies (8.6.31).
Therefore (Yz, B;) is a weak solution of (8.6.30).

Example 8.6.9. Let a:R™ — R"™ be a bounded, measurable function. Then
we can construct a weak solution X; = X7 of the stochastic differential

equation
dX, = a(X,)dt +dB; ; Xo=z€R". (8.6.32)

We proceed according to the procedure above, with o = I, b = 0 and

dYt=dBt§ Y0=:L'.

Chbose
u=0t! (b—a)=-a
and define
¢ ¢
M, = exp{— /uo(}g)st - % /ug(Ys)ds}
0 0
i.e.

t

M, = exp{ /a(Bs)st - %ja2(Bs)ds} .-
0

0
Fix T < co and put
dQ = MpdP  on F™ .

Then ,
By: = —/a(Bs)ds+B,
o

is a Brownian motion w.r.t. Q for t < 7T and

dB, - dY, = a(Y,)dt + dB, .
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Hence if we set Yo = z the pair (Y}, B;) is a weak solution of (8.6.32) for
t < T. By weak uniqueness the Q-law of Y; = B, coincides with the P-law of
X7, so that

E[fi(X3) . f(XE)] = EQlfi(Ya,) .- fi(Y)
= E[Mrfi(By)... fu(By)  (8.6.33)

for all fi1,...,fx € Co(R™); t1,...,tx <T.

Exercises

8.1. Let A denote the Laplace operator on R™.
a) Write down (in terms of Brownian motion) a bounded solution ¢
of the Cauchy problem

{ aL;;Q—%Axg(t,x) =0 for t >0,z € R"
9(0,z) = ¢(z)
where ¢ € C? is given. (From general theory it is known that the
solution is unique.)
b) Let ¢ € Cp(R") and o > 0. Find a bounded solution u of the

equation
(a—3Apu=9y in R".

Prove that the solution is unique.
8.2. Show that the solution u(t, z) of the initial value problem

Ou 19 9 2 .
8t_§ﬂ$ x+aa:$, t>0,z€R
u(0,z) = f(z)  (f € C3(R) given)
can be expressed as follows:
u(t,z) = E[f(z - exp{B8B; + (o — %ﬂz)t}]
2

= = [ e exn(py + (o~ 4 exp (— %t-)dy; £>0.
R

8.3. (Kolmogorov’s forward equation)
Let X; be an Ito diffusion in R™ with generator

0? g
Af(y)=zaij(y)ﬁj;+zbi(y)5ff ;  feC]
7 Yi0Y; : Yi

and assume that the transition measure of X, has a density pi(z,y),
i.e. that
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8.5.

8.6.
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ET[f(X,)] = /f(y)pt(x,y)dy; fec?. (8.6.34)

Assume that y — p;(x,y) is smooth for each t, z. Prove that p,(x,y)
satisfies the Kolmogorov forward equation

d
—d?pt(a:,y) = A;pi(T,y) forall z,vy, (8.6.35)

where A} operates on the variable y and is given by
* 2
Aydly) = Z 5 ay (aij6) — Z C(09); 9eC? (8636)

i.e. AY is the adjoint of A,,.
Y v
(Hint: By (8.6.34) and Dynkin’s formula we have

[ 1wpiz iy = s //Ayf(yps(w y)dyds; feCZ.

Rn

Now differentiate w.r.t. t and use that
(Ap, ) = (¢, A*y)  for g€ C3, y e C?,

where (-,-) denotes inner product in L?(dy).)

Let B; be n-dimensional Brownian motion (n > 1) and let F be a

Borel set in R™. Prove that the expected total length of time ¢ that
B, stays in F is zero if and only if the Lebesgue measure of F is zero.
Hint: Consider the resolvent R, for a > 0 and then let a — 0.

Show that the solution u(t,z) of the initial value problem
%%:pu+%Aut>0; z € R
u(0,z) = f(x) (f € C3(R™) given)

{where p € R is a constant) can be expressed by

N2
'U,(t,il:) = (27rt)_n/2 exP(pt) / f(y) exp ( - (x_ztvg)_)dy .
R'n

In connection with the deduction of the Black-Scholes formula for the
price of an option (see Chapter 12) the following partial differential
equation appears:

%1‘ —pu+am3—+ 1B2z23“‘ t>0, zeR

U(O.:L‘) “‘( - K)+v :L'GR,
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where p > 0, @, 3 and K > 0 are constants and
(z — K)t = max(z — K, 0) .

Use the Feynman-Kac formula to prove that the solution u of this
equation is given by

e—Pt

\/_ (z - exp{(a

2
ult,z) = 18t + By} — K)te Fdy; t>0.
(This expression can be simplified further. See Exercise 12.13.)

Let X, be a sum of It6 integrals of the form

X, = Z/vk(s,w)dBk(s) ,
k=1}

where (By, ..., By) is n-dimensional Brownian motion. Assume that

t
n
ﬂtzz/Zv(sw s — 00 as t — oo, a.s.
0

k=1

Prove that

lim sup =1 as.

X
t—oco YV 205, Iog Iog Bt
(Hint: Use the law of iterated logarithm.)
Let Z; be a 1-dimensional Itd process of the form

dZ; = u(t,w)dt + dB .
Let G; be the o-algebra generated by {Z,(-); s < t} and define
dN, = (u(t,w) — E[ulG:])dt + dB: .

Use Corollary 8.4.5 to prove that N, is a Brownian motion. (If we inter-
pret Z; as the observation process, then N, is the innovation process.
See Lemma 6.2.6.)

Define a(t) = %—ln(l + %t:’). If B; is a Brownian motion, prove that
there exists another Brownian motion B, such that

217

t
/ e*dB, = / rdB, .
[+

0
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8.10. Let B; be a Brownian motion in R. Show that

8.11.

8.12.

8.13.

th = B?
is a weak solution of the stochastic differential equation
dX, = dt +2v/|X|dB, . (8.6.37)

(Hint: Use Ito’s formula to express X; as a stochastic integral and
compare with (8.6.37) by using Corollary 8.4.5.)

a) Let Y(t) =t + B(t); t > 0. For each T > 0 find a probability
measure Q1 on Fr such that Qr ~ P and {Y (¢)}:<r is Brownian
motion w.r.t. @7. Use (8.6.9) to prove that there exists a probability
measure () on Fo, such that

QFr=Qr foral T>0.
b) Show that
P (fim Y() = o0) =1

while
0 (¥ -9 -0

Why does not this contradict the Girsanov theorem?

B Y A7 P

Find a probability measure ) on .7-7}2) such that ¢ ~ P and such that

o= 4 5] [0

o= | ']+ [B6)

is a Brownian motion w.r.t. Q.

where

Let b: R — R be a Lipschitz-continuous function and define
Xe=XF€Rby

dXt = b(Xt)dt + dBt,Xo =z€R.

a) Use the Girsanov theorem to prove that for all M < oo, z € R and
t > 0 we have
PIX{>M]>0.
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b) Choose b(z) = —r where r > 0 is constant. Prove that for all =
X§ — —o00 as t — oo a.s.

Compare this with the result in a).

(Polar sets for the graph of Brownian motion)
Let B; be 1-dimensional Brownian motion starting at x € R.

a) Prove that for every fixed time to > 0 we have

PI[BtO -‘—‘O] =0.

b) Prove that for every (non-trivial) closed interval J C Rt we have

P*[3t e J suchthat By=0]>0.

(Hint: If J = [t1,%2] consider P*[B;, <0 & By, > 0] and then use
the intermediate value theorem.)

In view of a) and b) it is natural to ask what closed sets F C R*
have the property that

P*[3t € F such that B, =0]=0. (8.6.38)

To investigate this question more closely we introduce the graph
X, of Brownian motion, given by

11 0 . _1to
dXt—[O]dt+[1]dBt, XO_[.’EQ]

to+1

B
Then F satisfies (8.6.38) iff K:= F x {0} is polar for X, in the
sense that

Po™[3t>0; X, € K|=0 forall to, 2o . (8.6.39)

ie.

X, = X% = [ ] where Bj° = zg as.

The key to finding polar sets for a diffusion is to consider its Green
operator R, which is simply the resolvent R, with a =0:

R (to, o) =Et°”°[ / f(Xs)ds] for f € Co(R?).
to

Show that
Rf(to, o) = /G(to,xo;t,m)f(t,a:)dt dx ,
RZ

where

- 2
G(to, zo;t,2) = X,,, - (27(t — )"t exp (_ Iz = 20"

T to)) (8.6.40)

(G is the Green function of X,.)
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d) The capacity of K,C(K) = Cg(K), is defined by
C(K) = sup{u(K);n € Mc(K)},
where M (K )= {u; 4 measure on K s.t. I{G(to, zo;t, x)du(t,z) <1

for all to, zo}.
A general result from stochastic potential theory states that

Ptoo[X, hits K] =0 C(K) =0. (8.6.41)

See e.g. Blumenthal and Getoor (1968, Prop. VI.4.3). Use this to
prove that

Ay(F)=0= P™[3t € F suchthat B, =0]=0,

where Aj denotes 1/2-dimensional Hausdorff measure (Folland
(1984, §10.2)).

8.15. Let f € C2(R™) and a(x) = (a1(z),...,an(z)) with a; € CZ(R™) be

given functions and consider the partial differential equation

{a—u=2ai($)-@f—+%.

%:;‘_-};t>0, z€R”
i=1 i=1 *
= f(z); zeR".

3

a) Use the Girsanov theorem to show that the unique bounded solution
u(t, z) of this equation can be expressed by

t

u(t,z) = Ex[exp </a(Bs)st - %/taz(Bs)ds) f(Bt)] ,
0

0

where E® is the expectation w.r.t. P*.
b) Now assume that o is a gradient, i.e. that there exists v € C}(R"™)
such that
Vy=o.

Assume for simplicity that v € CZ(R™). Use It6’s formula to prove
that (see Exercise 4.8)

u(t,2) = exp (= 1(2))E*[exp {— } [
0

+49(B,))ds | exp(2(BO)/(B)].
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c) Put v(t,z) = exp(y(z))u(t,z). Use the Feynman-Kac formula to
show that v(t,z) satisfies the partial differential equation

%% _—_--12-(V72+Afy)-v+-;—Av; t>0; reR"
v(0,7) = exp(1(2)) (=) ; TER",
(See also Exercise 8.16.)

8.16. (A connection between B.m. with drift and killed B.m.)
Let B; denote Brownian motion in R™ and consider the diffusion X,
in R™ defined by

dX, = Vh(X,)dt +dB;; Xo=z€R". (8.6.42)

where h € C3(R™).
a) There is an important connection between this process and the

process Y; obtained by killing B, at a certain rate V. More precisely,
first prove that for f € Co(R™) we have

B=(£(X0)) = E*[[exp (— [ V(B)ds) -exp(h(Be) — his))- £(B)]
[exo 0/ V(B)ds) -explh(Be) — ) 1 (B0

(8.6.43)
where

V(z) = 3|Vh(z)]® + L Ah(z) . (8.6.44)

(Hint: Use the Girsanov theorem to express the left hand side of
(8.6.43) in terms of B;. Then use the It6 formula on Z, = h(B;) to
achieve (8.6.44).)

b) Then use the Feynman-Kac formula to restate (8.6.43) as follows
(assuming V' > 0):

TX(f,z) = exp(—h(z)) - TY (f - exp h, ),

where TX,TY denote the transition operators of the processes X
and Y, respectively, i.e.

TX(f,z) = E*[f(X;)] and similarly for Y .
Yi(t)
Ya(t)

dYi(t) = fi(t)dt + dBy(t) + 2dBa(t) + 3dBs(t)
dYs(t) = Ba(t)dt + dBi(t) + 2dBa(t) + 2dBs(t)

8.17. Suppose Y (t) = [ ] € R? is given by

where B3, 82 are bounded adapted processes.

Show that there are infinitely many equivalent martingale measures @
for Y (t). (See Example 8.6.7.)



9. Applications to Boundary Value Problems

9.1 The Combined Dirichlet-Poisson Problem.
Uniqueness

We now use results from the preceding chapters to solve the following gener-
alization of the Dirichlet problem stated in the introduction:

Let D be a domain (open connected set) in R™ and let L denote a semi-
elliptic partial differential operator on C?(R") of the form

" B} & 92
L= ;bi(x)—az + E::l aij(z)m (9.1.1)

where b;(z) and a;;(z) = aji(z) are continuous functions (see below). (By
saying that L is semi-elliptic (resp. elliptic) we mean that all the eigenvalues
of the symmetric matrix a(x) = [a;;()]};=; are non-negative (resp. positive)

for all z.)

The Combined Dirichlet-Poisson Problem _

Let ¢ € C(8D) and g € C(D) be given functions. Find w € C?(D) such that

(i) Lw=—¢g in D (9.1.2)

and

(ii) lim w(z) = ¢(y) for all y € 8D . (9.1.3)
r€D

The idea of the solution is the following: First we find an It6 diffusion {X,}
whose generator A coincides with L on CZ(R"™). To achieve this we simply
choose o(x) € R™*" such that

30(2)0” (z) = [ay(2)] - (9.1.4)

We assume that o(z) and b(z) = [b;(x))] satisfy conditions (5.2.1) and (5.2.2)
of Theorem 5.2.1. (For example, if each a;; € C?(D) is bounded and has
bounded first and second partial derivatives, then such a square root ¢ can
be found. See Fleming and Rishel (1975).) Next we let X, be the solution of
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where B, is n-dimensional Brownian motion. As usual we let E* denote
expectation with respect to the probability law Q* of X, starting at x € R™.
Then our candidate for the solution w of (9.1.2), (9.1.3) is

)

w(z) = B*[$(Xr)) - X(r, <o0}] + E° [ / g(Xt)dt] (9.1.6)
0

provided that ¢ is bounded and

D
E* [/ |g(Xt)|dt] < oo for allz . (9.1.7)
0

The Dirichlet-Poisson problem consists of two parts:

(i) Existence of solution.
(if) Uniqueness of solution.

The uniqueness problem turns out to be simpler and therefore we handle
this first. In this section we prove two easy and useful uniqueness results.
Then in the next sections we discuss the existence of solution and other
uniqueness questions.

Theorem 9.1.1 (Uniqueness theorem (1)).
Suppose ¢ is bounded and g satisfies (9.1.7). Suppose w € C%(D) is bounded
and satisfies

(i) Lw=—g in D (9.1.8)
and

(it)’ limerr, w(Xe) = ¢( X7 ) - X7 <oo} a.s. QF forall x.  (9.1.9)
Then

>

w(z) = E¥[¢(X,,) - X{r, <o0}] +E"[/g(Xt)dt] . (9.1.10)
0

Proof. Let {Dy}%2, be an increasing sequence of open sets Dy such that
o0

Dy cc D and D = |J Dy. Define
k=1

ak=k/\TDk; k=1,2,...

Then by the Dynkin formula and (9.1.8)
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Oy

E*[w(Xa,)] — E° [ / Lw(Xt)dtJ
;

w(z)

i

Ok

E*[w(Xa,)] +E"[/g(Xt)dt] . (9.1.11)
0

By (9.1.9) w(Xo,) — ¢(Xs,) - X{r <0} Pointwise boundedly a.s. Q°. Hence

E*[w(Xay)] = E*[$(X,) - Xirp <o) 85 k00, (9.1.12)
Moreover,
ap D
E’[/g(Xt)dt:l — E"[/g(Xt)dt] as k — o0, (9.1.13)
0 i
since .
Qg D
/g(Xt)dt—+ /g(Xt)dt a.s.
i i
and
o s
/g(Xt)dt' < /|g(Xt)|dt , which is @*-integrable by (9.1.7).
0 kS
Combining (9.1.12) and (9.1.13) with (9.1.11) we get (9.1.10). O

An immediate consequence is:

Corollary 9.1.2 (Uniqueness theorem (2)).
Suppose ¢ is bounded and g satisfies (9.1.7). Suppose

T, < 00 a.s. QF forall x . (9.1.14)
Then if w € C?(D) is a bounded solution of the combined Dirichlet-Poisson
problem (9.1.2), (9.1.3) we have

)

w(z) = B*[¢(X,, )] +Ex[/g(Xt)dt] : (9.1.15)
0
Example 9.1.3 (The classical Dirichlet problem).

Let D be a bounded open set in R™ and let ¢ be a bounded function on 8D.
Suppose there is a function w € C%(D) such that

(iy Aw=0 in D (9.1.16)
and
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(ii) lim w(z) = ¢(y) forall y€ D (9.1.17)
r€D
Then

w(z) = E* [¢(BTD )]

This follows from Corollary 9.1.2, since
n 82
A = %Z 32 is the generator of B(t)
1=1 4

and we know from Example 7.4.2 that 7p < 0o a.s.

Example 9.1.4 (The classical heat equation).
Consider the heat operator

o 18
L—5;+55;2-, (s,zy e R x R.
This is the generator of
Xe= X" = (s +1,B}); t>0

where B is Brownian motion starting at z € R (see Example 7.3.5). There-
fore, if there exists a solution w(s, x) € C?(R?) of the heat equation

dw 10%w

(1) 5.—;4-'2-—53:—2 =0 (s,z) € (0,TYXR =: D (9.1.18)
() lmow(X)=éX,) as (9.1.19)

where ¢ : {T} x R — R is a given bounded function, then it is given by
w(s,z) = E**[¢(X,p)] = E*7[$(s + 7D, BT,))]-

Here
Tp =inf{t > 0; (s + ¢, B*(t)) € [0,T] x R} (9.1.20)
=inf{t >0s+tg[0,T]}=T-s. o
Therefore the solution of the heat equation is
w(s,z) = E**[¢(T, B_,)]. (9.1.21)

9.2 The Dirichlet Problem. Regular Points

We now consider the more complicated question of existence of solution. It
is convenient to split the combined Dirichlet-Poisson problem in two parts:
The Dirichlet problem and the Poisson problem:
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The Dirichlet Problem
Let ¢ € C(OD) be a given function. Find u € C?(D) such that

(I) Lu=0 in D (9.2.1)

and

(I1) lim u(z) = o(y) for all y € 0D . (9.2.2)
z€D

The Poisson Problem

Let g € C(D) be a given function. Find v € C?(D) such that

(a) Lv=—g in D (9.2.3)

and

(b) limv(zx)=0 forall yedD. (9.2.4)
zeD

Note that if u and v solve the Dirichlet and the Poisson problem, respectively,
then w: = u + v solves the combined Dirichlet-Poisson problem.

We first consider the Dirichlet problem and proceed to study the Poisson
problem in the next section.

For simplicity we assume in this section that (9.1.14) holds.

In view of Corollary 9.1.2 the question of existence of a solution of the
Dirichlet problem (9.2.1), (9.2.2) can be restated as follows: When is

u(z): = E¥[¢(X, ) (9.2.5)

a solution?

Unfortunately, in general this function u need not be in C?(D). In fact,
it need not even be continuous. Moreover, it need not satisfy (9.2.2), either.
Consider the following example:

Example 9.2.1. Let X(t) = (X1(t), X2(t)) be the solution of the equations

dX,(t) = dt
dX,(t) =0

so that X(t) = X(0) +¢(1,0) € R?%; ¢ > 0. Let
D =((0,1) x (0,1)) U((0,2) x (0, 3))
and let ¢ be a continuous function on @D such that

¢=1 on {l}x[%,l] and
¢ =0 on {2} x[0,3}]
¢ =0 on {0} x[0,1].
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A

1/2

——._»X'

Then
1 ifze (i)
u(t, ) = B [0(Xp,)l =3 o ifre 0,%),

so u is not even continuous. Moreover,

. _ 1
tl_l.%l+ u(t,z) = 1 # ¢(0,z) if 3<z<1

s0 (9.2.2) does not hold.

However, the function u(x) defined by (9.2.5) will solve the Dirichlet prob-
lem in a weaker, stochastic sense: The boundary condition (9.2.2) is replaced
by the stochastic (pathwise) boundary condition (9.1.9) and the condition
(9.2.1) (Lu = 0) is replaced by a condition related to the condition

Au=0
where A is the characteristic operator of X, (Section 7.5).
We now explain this in more detail:

Definition 9.2.2. Let f be a locally bounded, measurable function on D.
Then f is called X -harmonic in D if

f(z) = E*[f(X+,)]
for all z € D and all bounded open sets U withU C D.
We make two important observations:

Lemma 9.2.3.
a) Let f be X-harmonic in D. Then Af =0 in D.
b) Conversely, suppose f € C*(D) and Af =0 in D. Then f is X-harmonic.

Proof.
a) follows directly from the formula for A.
b) follows from the Dynkin formula: Choose U as in Definition 9.2.2. Then
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Ez[f(X‘ru )] = lcl—l—{go Ez[f(X‘ru/\k)]
TuAk

f@)+ jim 5| [ @nxas| - 1@,

0
since Lf = Af =0in U. a

Il

The most important examples of X-harmonic functions are given in the
next result:

Lemma 9.2.4. Let ¢ be a bounded measurable function on 0D and put
w(z) = E[¢(X,)]; z€D.
Then u is X -harmonic. Thus, in particular, Au = 0.
Proof. From the mean value property (7.2.9) we have, if V. C D
u(@) = [ Xy € dy) = E*fulXo)]
av 0

We are now ready to formulate the weak, stochastic version:

The Stochastic Dirichlet Problem

Given a bounded measurable function ¢ on 9D, find a function u on D such
that

(i)s u is X-harmonic (9.2.6)
(ii)s tl%m wWX:) = ¢(X,)) as. Q°,z€D. (9.2.7)
>

We first solve the stochastic Dirichlet problem (9.2.6), (9.2.7) and then
relate it to the original problem (9.2.1), (9.2.2).

Theorem 9.2.5 (Solution of the stochastic Dirichlet problem).
Let ¢ be a bounded measurable function on 0D.

a) (Existence) Define
w(z) = B*[§(X,, )] - (9.2.8)
Then u solves the stochastic Dirichlet problem (9.2.6), (9.2.7).
b) (Uniqueness) Suppose g is a bounded function on D such that
(1) g is X-harmonic
(2) };rg; 9(Xe) = ¢(Xr,) a.5. Q%, z € D.

" Then g(z) = E*[¢(X,))], z € D.
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Proof. a) It follows from Lemma 9.2.4 that (i), holds. Fix z € D. Let {Dy}
be an increasing sequence of open sets such that Dy CC D and D = | Dy.
k

Put 7, = 7p,, 7 = 7. Then by the strong Markov property
u(Xr,) = EX [¢(X‘r)] = E”[0,, (P( XN Fr
= E¥[(X7)|Fr] - (9.2.9)

Now My = E*[¢(X,)|Fr,] is a bounded (discrete time) martingale so by the
martingale convergence theorem Corollary C.9 (Appendix C) we get that

kli_{& w(Xr,) = kli_{lgo E*[p(X)|Fn] = 6(X7) (9.2.10)

both pointwise for a.a. w and in LP(Q%), for all p < co. Moreover, by (9.2.9)
it follows that for each k the process

Nt = ’u'(XTkV(t/\Tk+1)) - u(XTk) N t Z 0
is a martingale w.r.t. Gy = Fr, v (sArisr)-

So by the martingale inequality

@[ swp X - uXn)l > € < B u(Xo,)  u(Xe )P

Te ST TR41

—0 as k—oo,forall e>0. (9.2.11)
From (9.2.10) and (9.2.11) we conclude that (ii), holds.

b) Let Di, 7 be as in a). Then since g is X-harmonic we have

9(z) = E*[9(Xr,)]
for all k. So by (2) and bounded convergence

g(z) = klil{.lo E®[g(Xn)] = E®[¢(X.,)], as asserted .
0

Finally we return to the original Dirichlet problem (9.2.1), (9.2.2). We
have already seen that a solution need not exist. However, it turns out that
for a large class of processes X; we do get a solution (for all D) if we reduce
the requirement in (9.2.2) to hold only for a subset of the boundary points
y € 0D called the regular boundary points. Before we define regular points
and state the result precisely, we need the following auxiliary lemmas:

(As before we let M, and M, denote the o-algebras generated by X,;
s <t and by X,; s > 0 respectively).

Lemma 9.2.6 (The 0-1 law). Let H € (} M. Then either Q(H) = 0
t>0
or Q%(H) = 1.
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Proof. From the strong Markov property (7.2.5) we have
ET[n|M,] = EX (]

for all bounded, M,-measurable 7: 2 — R. This implies that

/Btn -dQT = /EX‘ [n)d@* , for all ¢ .
H H

First assume that n = m = ¢1(X,) - - gx(Xy, ), where each g; is bounded
and continuous. Then letting £t — 0 we obtain

[ naqe =timy [ buna@x =ty [ BXfaq* = @*()E"1
H H H

by Feller continuity (Lemma 8.1.4) and bounded convergence. Approximating
the general 5 by functions 7, as above we conclude that

/ ndQ® = Q*(H)E®[)

H

for all bounded M .-measurable 7. If we put n = X,, we obtain Q*(H)

ol

(Q*(H))?, which completes the proof.
Corollary 9.2.7. Let y € R™. Then
either QY[r, =0]=0 or QY¥r, =0]=1.
Proof. H = {w;n, =0} € tDOMt . o

In other words, either a.a. paths X, starting from y stay within D for a
positive period of time or a.a. paths X; starting from y leave D immediately.
In the last case we call the point y regular, i.e.

Definition 9.2.8. A point y € 0D is called regular for D (w.r.t. X,) if
Q¥ =0]=1.
Otherwise the point y is called irregular.

Example 9.2.9. Corollary 9.2.7 may seem hard to believe at first glance. For
example, if X, is a 2-dimensional Brownian motion B, and D is the square
[0,1] x [0,1] one might think that, starting from (3, 0), say, half of the paths
will stay in the upper half plane and half in the lower, for a positive period of
time. However, Corollary 9.2.7 says that this is not the case: Either they all
stay in D initially or they all leave D immediately. Symmetry considerations
imply that the first alternative is impossible. Thus (3,0), and similarly all
the other points of D, are regular for D w.r.t. B,.
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ks

0

Example 9.2.10. Let D = [0,1] %[0, 1] and let L be the parabolic differential
operator
of

Litn =2+ 1 2

1
5 T3 s (ha) ERE.

(See Example 7.3.5)

Here )
1 0 0
b—(o) and a—[aij]—§(0 1) .

So, for example, if we choose 0 = , we have %aaT = a. This gives the

1 0
following stochastic differential equation for the It diffusion X, associated

with L: )
(1 0 0) /dB
X0 = <0> dt+ (1 0) (dBf""> '

t4+t t
x=("350) w=(%)

where B, is 1-dimensional Brownian motion. So we end up with the graph
of Brownian motion, which we started with in Example 7.3.5. In the case it
is not hard to see that the irregular points of 9D consist of the open line
{0} x (0,1), the rest of the boundary points being regular.

In other words,

y ~
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Example 9.2.11. Let A = {(x,y); 22+ 9% <1} ¢ R? and let {4,.} be
a sequence of disjoint open discs in A centered at (2", 0), respectively,
n=12....Put

D=A\(©An).

oo

Then it is easy to see that all the points of A U |J 8A, are regular for
n=1

D w.r.t. 2-dimensional Brownian motion B,, using a similar argument as in

Example 9.2.9. But what about the point 0? The answer depends on the sizes
of the discs A,,. More precisely, if r,, is the radius of A,, then 0 is a regular
point for D if and only if

o0
This is a consequence of the famous Wiener criterion. See Port and Stone
(1979), p. 225.

L = (9.2.12)

Having defined regular points we now formulate the announced general-
ized version of the Dirichlet problem:

The Generalized Dirichlet Problem

Given a domain D C R™ and L and ¢ as before, find a function u € C?(D)
such that

(i) Lu=0 inD (9.2.13)
and
(ii) lim u(z) = ¢(y) for all regular y € 8D . (9.2.14)

€D
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First we establish that if a solution of this problem exists, it must be the
solution of the stochastic Dirichlet problem found in Theorem 9.2.5, provided
that X, satisfies Hunt’s condition (H):

(H): Every semipolar set for X} is polar for X, . (9.2.15)

A semipolar set is a countable union of thin sets and a measurable set G C R"
is called thin (for X,) if Q*[T¢ = 0] = 0 for all z, where Tg = inf{t > 0; X, €
G} is the first hitting time of G. (Intuitively: For all starting points the
process does not hit G immédiately, a.s). A measurable set F' C R" is called
polar (for X;) if Q*[Tr < o] = 0 for all z. (Intuitively: For all starting
points the process never hits F, a.s.). Clearly every polar set is semipolar,
but the converse need not to be true (consider the process in Example 9.2.1).
However, condition (H) does hold for Brownian motion (See Blumenthal and
Getoor (1968)). It follows from the Girsanov theorem that condition (H) holds
for all It diffusions whose diffusion coefficient matrix has a bounded inverse
and whose drift coefficient satisfies the Novikov condition for all T < oc.

We also need the following result, the proof of which can be found in
Blumenthal and Getoor (1968, Prop. 11.3.3):

Lemma 9.2.12. Let U C D be open and let I denote the set of irregular
points of U. Then I is a semipolar set.

Theorem 9.2.13. Suppose X, satisfies Hunt’s condition (H). Let ¢ be a
bounded continuous function on dD. Suppose there exists a bounded u €
C?(D) such that

(i) Lu=0inD
(ii)s lim u(z) = ¢(y) for all regular y € 8D
r€D

Then u(z) = E*[¢(X,, )]

Proof. Let {Dy} be as in the proof Theorem 9.1.1. By Lemma 9.2.3 b) u is
X-harmonic and therefore

u(z) = E (X, )] for all z € Dy and all k.

If K —» oo then Xr, — X, and so u(X;,) — ¢(X,)) if X, is regular.
From the Lemma 9.2.12 we know that the set I of irregular points of 8D is
semipolar. So by condition (H) the set I is polar and therefore X, ¢ I as.
@Q*. Hence
u(z) = lim E*[u(X,, )] = E*[¢(X,))], as claimed . 0
Under what conditions is the solution u of the stochastic Dirichlet problem
(9.2.6), (9.2.7) also a solution of the generalized Dirichlet problem (9.2.13),
(9.2.14)? This is a difficult question and we will content ourselves with the
following partial answer:
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Theorem 9.2.14. Suppose L is uniformly elliptic in D, i.e. the eigenvalues
of |ai;] are bounded away from 0 in D. Let ¢ be a bounded continuous function
on 0D. Pul

u(z) = E® [¢(XTD ).
Then u € C?t*(D) for alla < 1 and u solves the Dirichlet problem (9.2.18),
(9.2.14), i.e.

(i) Lu=0in D.
(i), lim u(z) = ¢(y) for all regular y € 8D .

©€D

Remark. If k is an integer, o > 0 and G is an open set C*+(G) denotes the
set of functions on G whose partial derivatives up to k’th order is Lipschitz
(Holder) continuous with exponent a.

Proof. Choose an open ball A with A C D and let f € C(8A). Then, from
the general theory of partial differential equations, for all & < 1 there exists
a continuous function u on 4 such that u|A € C?+*(A) and

Lu=0 in A (9.2.16)
u=f on HA (9.2.17)

(see e.g. Dynkin (1965 II, p. 226)). Since u|A € C?**(A) we have: If K is
any compact subset of A there exists a constant C only depending on K and
the C*-norms of the coefficients of L such that

llullcz+ary < C(|Lullce(ay + lullc(ay) - (9.2.18)

(See Bers, John and Schechter (1964, Theorem 3, p. 232).) Combining
(9.2.16), (9.2.17) and (9.2.18) we obtain

lullc2+exy < Cllfllc@ay - (9.2.19)
By uniqueness (Theorem 9.2.13) we know that
w(z) = / f(y)duz(y) (9.2.20)

where du, = Q%[ X,, € dy] is the first exit distribution of X, from A. From
(9.2.19) it follows that

| [ saise, - [ s

By approximating a given continuous function on 0 A uniformly by functions
in C*°(8A) we see that (9.2.21) holds for all functions f € C(8A). Therefore

< C||f||0(34)|x1 — lea ;7 T,x€ K. (9.2.21)

bz, — b2l S Clzy —z3|* ;5  z1,22€ K (9.2.22)
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where || || denotes the operator norm on measures on JA. So if g is any
bounded measurable function on §A we know that the function

i) = / o) dita(v) = E=[g(X-,)]

belongs to the class C*(K). Since u(z) = E*[u(X,,)] for all open sets U
with U C D and z € U (Lemma 9.2.4) this applies to g = u and we conclude
that u € C*(M) for any compact subset M of D.

We may therefore apply the solution to the problem (9.2.16), (9.2.17) once
more, this time with f = u and this way we obtain that

u(z) = E"[u(X- ) belongs to C2t*(M)

for any compact M C D. Therefore (i) holds by Lemma 9.2.3 a).
To obtain (ii), we apply a theorem from the theory of parabolic differential
equations: The Kolmogorov backward equation

o

ot

has a fundamental solution v = p(t, x, y) jointly continuous in ¢, z,y for t > 0
and bounded in z,y for each fixed ¢ > 0 (See Dynkin (1965 II), Theorem 0.4
p- 227). It follows (by bounded convergence) that the process X; is a strong
Feller process, in the sense that the function

Lv

z - B*[f(X))] = / F@)p(t, 7, y)dy
Rn

is continuous, for all t > 0 and all bounded, measurable functions f. In general
we have:

If X, is a strong Feller Ité diffusion and D C R™ is open then
lim E*[$(X,, )] = (y)

€D

for all regular y € 8D and bounded ¢ € C(0D) . (9.2.23)

(See Theorem 13.3 p. 32-33 in Dynkin (1965 II)).
Therefore u satisfies property (ii), and the proof is complete. D

Example 9.2.15. We have already seen (Example 9.2.1) that condition
(9.1.3) does not hold in general. This example shows that it need not hold
even when L is elliptic: Consider Example 9.2.11 again, in the case when the
point 0 is not regular. Choose ¢ € C(9D) such that

#(0)=1,0<¢(y) <1 for ye D\ {0}.

Since {0} is polar for B, (see Exercise 9.7 a) we have B‘,’D # 0 a.s and therefore
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O

u(0) = E%(¢(B., )] < 1.

By a slight extension of the mean value property (7.2.9) (see Exercise 9.4)
we get
E°w(X,,)] = E°[¢(X, )] = u(0) < 1 (9.2.24)

where
; . 1 _
ak—mf{t>0,Bt¢Dﬂ{]x|<7€-}}, k=1,2...

This implies that it is impossible that u(z) — 1 as z — 0. Therefore (9.1.3)
does not hold in this case.

In general one can show that the regular points for Brownian motion
are exactly the regular points in the classical potential theoretic sense, i.e.
the points y on 8D where the limit of the generalized Perron-Wiener-Brelot
solution coincide with ¢(y), for all ¢ € C(8D). See Doob (1984), Port and
Stone (1979) or Rao (1977).

Example 9.2.16. Let D denote the infinite strip
D = {(t,z) e R%z < R}, where Re R
and let L be the differential operator

of  18%f

Lit2)=5 +t 5552

An Itd diffusion whose generator coincides with L on CZ(R?) is (see Exam-
ple 9.2.10)

feC¥(D).

X,=(s+t,By); >0,

and all the points of 8D are regular for this process. It is not hard to see that
in this case (9.1.14) holds, i.e.

T, < 00 a8
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(see Exercise 7.4).
Assume that ¢ is a bounded continuous function on 0D = {(t, R);t € R}.
Then by Theorem 9.2.5 the function

u(s,z) = E””[qb(XTD )]
is the solution of the stochastic Dirichlet problem (9.2.6), (9.2.7), where E**
denotes expectation w.r.t. the probability law Q%% for X starting at (s, z).
Does u also solve the problem (9.2.13), (9.2.14)7 Using the Laplace transform
it is possible to find the distribution of the first exit point on 8D for X, i.e.

to find the distribution of the first time ¢t = 7 that B, reaches the value R.
(See Karlin and Taylor (1975), p. 363. See also Exercise 7.19.) The result is

P*[T € dt] = g(z, t)dt ,
where

o(zt) = { (R—z)(2mt®)Lexp(- ¥y ¢ >0 (9.2.25)
0; t<0.

Thus the solution v may be written
u(s,z) = /¢(s +t,R)g(z, t)dt = /¢(r, R)g(z,r — s)dr.
0 s

From the explicit formula for u it is clear that % and %z—‘é are continuous
and we conclude that Lu = 0 in D by Lemma 9.2.3. So u satisfies (9.2.13).
What about property (9.2.14)7 It is not hard to see that for ¢t >0

-3 |z —yl®
B 1] = ert) [ o+ texp (- 22 )ay
R
for all bounded, (t, z)-measurable functions f. (See (2.2.2)). Therefore X, is
not a strong Feller process, so we cannot appeal to (9.2.23) to obtain (9.2.14).
However, it is easy to verify directly that if [y| = R, ¢t; > 0 then for all e > 0
there exists & > 0 such that [z —y| < 4, [t—t)| <& = Q"*[X, € N]>1—¢,
where N = {t; —€,t; + €] X {y}. And this is easily seen to imply (9.2.14).

Remark. As the above example (and Example 9.2.1) shows, an Ito diffusion
need not be a strong Feller process. However, we have seen that it is always
a Feller process (Lemma 8.1.4).

9.3 The Poisson Problem

Let L=Y aijﬁa??%i; + Zbi% be a semi-elliptic partial differential operator
on a domain D C R"™ as before and let X; be an associated It diffusion,
described by (9.1.4) and (9.1.5). In this section we study the Poisson problem
(9.2.3), (9.2.4). For the same reasons as in Section 9.2 we generalize the
problem to the following:
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The Generalized Poisson Problem

Given a continuous function g on D find a C? function v in D such that

a) Lv=~g in D (9.3.1)
b) lim v(z) =0 for all regular y € 8D (9.3.2)
€D

Again we will first study a stochastic version of the problem and then in-
vestigate the relation between the corresponding stochastic solution and the
solution (if it exists) of (9.3.1), (9.3.2):

Theorem 9.3.1 (Solution of the stochastic Poisson problem).
Assume that

E* [/ |g(X3){ds] < 00 forall x € D, (9.3.3)
0

(This occurs, for e:carﬁple, if g is bounded and E®[1,] < oo for all z € D).
Define

>
v(z) = E* [/g(Xs)ds] . (9.3.4)
0
Then
Av=—g inD,. (9.3.5)
and
tl%ng v(X)=0 as Q% forallze D. (9.3.6)

D

Proof. Choose U open, z € U CC D. Put n= [ g(X,)ds, 7 = 7y.
0
Then by the strong Markov property (7.2.5)

E*fu(X,)] —v() _ 1
E*[r] E+[r]

1 [T x _ 1 T
= E'”:[T} (E [E [OTTI‘fT” —-E [T’]) = ET[T-]-(E [OTTI - T’]) .

(E®[E*"[n]] - E®[n)

Approximate n by sums of the form

n® = Zg(xt-)Xm«D’Ati |

Since
0¢ﬂ(k) = Zg(X¢‘+¢)X(t‘+t<T£))At,' for all &

(see the argument for (7.2.6)) we see that
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D

0.m = /g(Xs)ds . (9.3.7)
Therefore "
Er(X)—v(@) _ =1 [ [ L
Eelr] = E”:[T]E [O/g(Xs)ds] g(z) as U |z,

since g is continuous. This proves (9.3.5).
U>)
Put H(x) = E*([ |g(X,)|ds]. Let Dy, 7 be as in the proof of Theo-
0

rem 9.2.5. Then by the same argument as above we get

E*(H(X o ne)] = E°[E7( / 100X ) |d5|F el

TRAL

o
E’[/ lg(Xs)Ids]AO as t = 7,, k— 00
et

by dominated convergence. This implies (9.3.6). a

Remark. For functions g satisfying (9.3.3) define the operator R by
k)

(R)@) = 3(a) = B [ o(x)as]
0

Then (9.3.5) can be written
A(Rg) = —g¢ (9.3.8)

i.e. the operator —R is a right inverse of the operator .A. Similarly, if we
define

D

Rag(z) = EF [/g(Xs)e‘“ds] for a>0 (9.3.9)
0

then the same method of proof as in Theorem 8.1.5 gives that
(A—a)Rag=—9; a>0. (9.3.10)

(If a > 0 then the assumption (9.3.3) can be replaced by the assumption that
g is bounded (and continuous as before)).

Thus we may regard the operator R, as a generalization of the resolvent
operator R, discussed in Chapter 8, and formula (9.3.10) as the analogue of
Theorem 8.1.5 b).

Next we establish that if a solution v of the generalized problem (9.3.1),
(9.3.2) exists, then v is the solution (9.3.4) of the stochastic problem (9.3.5),
(9.3.6):
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Theorem 9.3.2 (Uniqueness theorem for the Poisson equation).
Assume that X, satisfies Hunt’s condition (H) ((9.2.15)). Assume that (9.3.3)
holds and that there erists a function v € C*(D) and a constant C such that

D
o(z)] < 0(1 +E® [/ |g(X3)|ds]) forall z € D (9.3.11)
0
and with the properties
Ly=—g in D, (9.3.12)
lim v(z) =0 for all regular points y € 8D . (9.3.13)
reb

Then v(z) = E””[ZJ g9(Xs)ds).

Proof. Let Dy, 7r be as in the proof of Theorem 9.2.5. Then by Dynkin’s
formula ’

Tk Tk

B0(X)) — u(a) = B[] = =57 [ atxas]
0 0

By dominated convergence we obtain

D

o(@) = Jim (E"(Xy,)] + B []kgm)ds]) — B []g(xs>ds] ,
0 0

since X, is a regular point a.s. by condition (H) and Lemma 9.2.12. ]

Finally we combine the Dirichlet and Poisson problem and obtain the
following result:

Theorem 9.3.3. (Solution of the combined stochastic Dirichlet and
Poisson problem).

Assume that (9.1.14) holds. Let ¢ € C(3D) be bounded and let g € C(D)
satisfy

E* [g(Xs)|ds| < oo forall z € D. (9.3.14)
o]
Define
w(z) = E*[¢(X5,))] + E* [/g(Xs)ds] , z€D. (9.3.15)
0

a) Then
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Aw = —g in D (9.3.16)
and
tl%m w(Xe) = ¢(Xr,) as QF forallze D. (9.3.17)
)

b) Moreover, if there exists a function wy € C*(D) and a constant C such
that

|wy (2)] < 0(1 +E’[/D|g(X3)|ds]) . zeD, (9.3.18)
0

and wy satisfies (9.8.16) and (9.8.17), then w; = w.

Remark. With an approach similar to the one used in Theorem 9.2.14 one
can prove that if L is uniformly elliptic in D and g € C*(D) (for some a > 0)
is bounded, then the function w given by (9.3.15) solves the Dirichlet-Poisson
problem, i.e.

Lw=—g in D (9.3.19)

and
lim w(z) = ¢(y) for all regular y € 0D . (9.3.20)

€D

The Green Measure

The solution v given by the formula (9.3.4) may be rewritten as follows:

Definition 9.3.4. The Green measure (of X; w.r.t. D at =), G(z,) is de-
fined by

G(z, H) [ / Xy (X,)d } ., HCR™ Borel set (9.3.21)

or

/f(y (z,dy) = [/f(X ] , f bounded, continuous. (9.3.22)

In other words, G(xz, H) is the expected length of time the process stays
in H before it exits from D. If X, is Brownian motion, then

Gz, H) = / G(z,y)dy ,
H

where G(z, y) is the classical Green function w.r.t. D and dy denotes Lebesque
measure. See Doob (1984), Port and Stone (1979) or Rao (1977). See also
Example 9.3.6 below.
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Note that using the Fubini theorem we obtain the following relation
between the Green measure G and the transition measure for X, in D,
QP (z,H)y=Q%[X: € H, t <7, ]:

G(z,H) = Ew[/xy(xs) . X[O,TD,(s)ds] = /Q?(x,H)dt. (9.3.23)
0 0

From (9.3.22) we get
o

v(z) = E[ / g(xs>ds] = [ s, (9.3.24)
0 D

which is the familiar formula for the solution of the Poisson equation in the
classical case.

Also note that by using the Green function, we may regard the Dynkin
formula as a generalization of the classical Green formula:

Corollary 9.3.5 (The Green formula). Let E®[1,] < oo for all z € D
and assume that f € C5(R™). Then

@) = B*lf(X, )] - / (Lx f)®)G(z, dy) . (9.3.25)
D
In particular, if f € C3(D) we have
f(z) =~ / (Lx f) )Gz, dy) . (9.3.26)
D

(As before Lx = Zb,'?,i—i + %Z(O’UT)U%%;TJ_ when
dXt = b(Xt)dt + U(Xt)dBt .)
Proof. By Dynkin’s formula and (9.3.24) we have

E*[f(X, )] = [(z) + E° [ / (foxxs)ds] = 10)+ [Lx NG )
0 D

Remark. Combining (9.3.8) with (9.3.26) we see that if E¥[rg] < oo for all
compacts K C D and all x € D, then —R is the inverse of the operator A
on C¢(D) :

ARf)=R(Af)=-f, for all f € C3(D). (9.3.27)
More generally, for all @ > 0 we get the following analogue of Theorem 8.1.5:
(A= a)(Raf) =RalA -a)f = -f forall fcC3D). (9.3.28)
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The first part of this is already established in (9.3.10) and the second part
follows from the following useful extension of the Dynkin formula

E®[e=" f(X,)] = f(z) +E’[ / e~ (A - a) f(Xs)ds} . (9.3.29)
0

If o > 0 this is valid for all stopping times 7 < co and all f € C3(R™). (See
Exercise 9.6.)

Example 9.3.6. If X; = B, is 1-dimensional Brownian motion in a bounded
interval (a,b) C R then we can compute the Green function G(z, y) explicitly.
To this end, choose a bounded continuous function g: (a,b) — R and let us

compute
,

v(z): = E° [ / g(Bt)dt} .
0

By Corollary 9.1.2 we know that v is the solution of the differential equation
') =—-g(z); zE(a,b)

v(a)=v(b)=0.
Integrating twice and using the boundary conditions we get

o= 2228 [ ( [oraNau—2 [ [oces)ar

Changing the order of integration we can rewrite this as

b
v(z) = / 9(4)G(z, y)dy

where

G =222V o) X ). (0330)
We conclude that the Green function of Brownian motion in the interval
(a,b) is given by (9.3.50).

In higher dimension n the Green function y — G(z,y) of Brownian mo-
tion starting at x will not be continuous at z. It will have a logarithmic
singularity (i.e. a singularity of order In Ta—ci—y[) for n = 2 and a singularity of

the order |z — y|?~" for n > 2.
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Gixy)

"<

Exercises

9.1.

9.2.

9.3.

In each of the cases below find an It6 diffusion whose generator coin-
cides with L on C3:

a) Lf(t,z) = a%{ + %ﬁzg—i}; : a, constants
b) Lf(z1,x2) = a% +b a“ + %(g_i}l; + -g%g) : a, b constants
¢) Lf(z) =azf'(z)+16%f"(z); a,B constants
d) Lf(z) = af'(z) + 3822%f"(z); a, constants
2
e) Lf(z1,z2) = ln(1+xf)§a{?+x2%+x%-§;§+2xlx2%%+2x%g—:é .

Use Theorem 9.3.3 to find the bounded solutions of the following
boundary value problems:

du Oy .
0 {m_}_%.w:(p(t,x), 0<t<T,z€R
uw(T,z) = ¥(z); rzeR
where ¢, ¢ are given bounded, continuous functions.

(i) {axu'(x)+%ﬂ2x2u”(x)=0; O0<zr <z

it
u(zo) = 23

where a, 3 are given constants, o > 132.

(iii) If @ < 132 there are infinitely many bounded solutions of (ii),
and an additional boundary condition e.g. at £ = 0 is needed to
provide uniqueness. Explain this in view of Theorem 9.3.3.

Write down (using Brownian motion) and compare the solutions u(t, )
of the following two boundary value problems:
) $+4Au=0 for 0<t<T, zcR"
u(T,z) = ¢(x) for re R".



198

9.4.

9.5.

9. Applications to Boundary Value Problems

) %%—%Au:O for 0<t<T, z€R"
u(0,z) = ¢(z) for z € R™.

Let G and H be bounded open subsets of R®, G C H, and let B; be
n-dimensional Brownian motion. Use the property (H) for B, to prove
that

inf{t >0;,B; ¢ H} = inf{t > 7¢; B, ¢ H}

i.e., with the terminology of (7.2.6),
TH =Tq where a =74 .

Use this to prove that if X, = B, then the mean value property (7.2.9)
holds for all bounded open G C H, i.e. it is not necessary to require
G CC H in this case. This verifies the statement (9.2.24).

(The eigenvalues of the Laplacian)
Let D ¢ R™ be open, bounded and let A € R.
a) Suppose there exists a solution u € C?(D)NC(D), u not identically
zero, such that
{—%Au =M in D
u=20 on 8D.

Show that we must have A > 0. (Hint: If $ Au = —Au in D then

(9.3.31)

(3Au,u) = (—u,u)

where

(u,v) = /u(x)v(a:)da: .
D

Now use integration by parts.)

b) It can be shown that if D is smooth then there exist 0 < Ag < A; <
-+ < Ap < --- where A,, — 0o such that (9.3.31) holds for A = ),
n=0,1,2,..., and for no other values of A. The numbers {),,} are
called the eigenvalues of the operator —%A in the domain D and
the corresponding (nontrivial) solutions u,, of (9.3.31) are called the
etgenfunctions. There is an interesting probabilistic interpretation
of the lowest eigenvalue Ag. The following result indicates this:
Put 7 = 7, = inf{t > 0; B; ¢ D}, choose p > 0 and define

wy(z) = E¥[exp(pr)]; x€D.

Prove that if w,(z) < oo for all z € D then p is not an eigenvalue
for ~1A. (Hint: Let u be a solution of (9.3.31) with A = p. Apply
Dynkin’s formula to the process dY; = (dt,dB;) and the function
f(t,z) = ef*u(x) to deduce that u(x) =0 for = € D).
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¢) Conclude that
Ao > sup{p; E¥[exp(p7)] < o0 for all z € D} .

(We have in fact equality here. See for example Durrett (1984),
Chap. 8B).

9.6. Prove formula (9.3.29), for example by applying the Dynkin formula

to the process
dt
o= [

and the function g(y) = g(t, ) = et f(x).

9.7. a) Let B, be Brownian motion in R2. Prove that
P*3t>0,B,=y]=0 forall z,y € R%.

(Hint: First assume = # y. We may choose y = 0. One possible
approach would be to apply Dynkin’s formula with f(u) = In|u|
and 7 = inf{t > 0;|B,| < p or |B;| > R}, where 0 < p < R. Let
p — 0 and then R — oo. If z = y consider P*[3t > ¢; B, = z] and
use the Markov property.)

b) Let B, = (B, B®) be Brownian motion in R2. Prove that
B, = (—Bt(l),Bt@)) is also a Brownian motion.

¢) Prove that 0 € R? is a regular boundary point (for Brownian mo-
tion) of the plane region

D ={(z;,z,) € Rz;a:f +x§ <1}\ {(z1,0);z3 > 0} .

d) Prove that 0 € R3 is an irregular boundary point (for Brownian
motion) of the 3-dimensional region

U = {(z1,z2,23) € R®, 2} + 22 + 2% <1} \ {(z1,0,0);2; > 0} .
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9.8. a)

b)

9.9. a)

Applications to Boundary Value Problems

Find an It diffusion X; and a measurable set G which is semipolar
but not polar for X;.
Find an Itd diffusion X; and a countable family of thin sets Hy;
o0
k=1,2,...such that |J Hy is not thin.
k=1
Let X, be an It6 diffusion in R™ and assume that g is a non-constant
locally bounded real X;-harmonic function on a connected open
set G C R". Prove that g satisfies the following weak form of the
marimum principle: g does not have a (local or global) maximum
at any point of G. (Similarly g satisfies the minimum principle).
Give an example to show that a non-constant bounded X;-harmonic
function g can have a (non-strict) global maximum. (Hint: Consider
uniform motion to the right.)

9.10. Find the (stochastic) solution f(t,z) of the boundary value problem

K(a:)e‘”‘+%{+aa:g£+ %ﬁ212g—}§ =0 for x>0,0<t<T
f(T,z) = e *To(x) for >0

where K, ¢ are given functions and T, p, o, 8 are constants, p>0, T >0.
(Hint: Consider dY; = (dt,dX;) where X; is a geometric Brownian
motion).

9.11. a)

The Poisson kernel is defined by

_ 172 _1—z?
T 1—2rcosf+r2  |1- 2z

P-(6)

where r > 0,0 € [0,27], z=re®¥ € C (i =+-1).
The Poisson formula states that if D denotes the open unit disk in
the plane R?2 = C and h € C(D) satisfies Ah =0 in D then

2
h(re*) = -237; / P.(t — 0)h(e™)dt .
0

Prove that the probability that Brownian motion, starting from
z € D, first exits from D at a set F C 0D is given by

%/Pr(t — 0)dt, where z=re" .
F

The function

w=¢(z)=iii‘z

maps the disc D = {|z] < 1} conformally onto the half plane H =
{w = u+iv;v > 0}, ¢(8D) = R and ¢(0) = i. Use Example 8.5.9 to
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prove that if u denotes the harmonic measure for Brownian motion
at the point ¢ = (0,1) for the half plane H then

/f )€ ='21‘7 =571T—i/£(i’fz(—z)—)d
0 aD

c) Substitute w = ¢(2) (i.e. 2 = P(w):= ¢ (w) = £=2) in the inte-
gral above to show that

[ oo [ gl =1 [ noz

d) Show that the harmonic measure p}; for Brownian motion in H at
the point w = u + tv € H is given by

1 v

W)= o TR

9.12. (A Feynman-Kac formula for boundary value problems)
Let X, be an It6 diffusion on R™ whose generator coincides with a
given partial differential operator L on C2(R"™). Let D, ¢ and g be as
in Theorem 9.3.3 and let g(x) > 0 be a continuous function on R™.
Consider the boundary value problem: Find h € C?(D)N C(D) such

that
Lh(z) — q(z)h(z) = —g(z) on D
{;i_lpyh(l‘)=¢(y); y€aD.

Show that if a bounded solution h exists, then
TD t T
~[fa(X,)ds — [P g(X,)ds
h(.’L‘)=Ez[/€ fo‘I( ) g(Xt)dt+€ j;) a(Xs) ¢(XTD)

(Compare with the Feynman-Kac formula.)
Hint: Proceed as in the proof of Theorem 8.2.1 b).

_ For more information on stochastic solutions of boundary value problems
see Freidlin (1985).
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9.13. Let D = (a,b) be a bounded interval.
a) For x € R define
Xe=X{ =x+pt+0By; t>0

where u, o are constants, o # 0. Use Corollary 9.1.2 to compute

T

w(e)i= Elo(X, )+ 57| (X
0

when ¢:{a,b} — R and g:(a,b) — R are given functions, ¢
bounded and continuous.

b) Use the results in a) to compute the Green function G(z,y) of the
process X;. ’
(Hint: Choose ¢ = 0 and proceed as in Example 9.3.6.)

9.14. Let D = (a,b) C (0,00) be a bounded interval and let
dXt = T'Xtdt + aXtdBt ) XO =z € (0:, b)

be a geometric Brownian motion.
a) Use Corollary 9.1.2 to find

Q°[X,, = 1.

(Hint: Choose g = 0 and ¢(a) =0, ¢(b) =1.)
b) Use Corollary 9.1.2 to compute

U]

w(z) = E=[g(X ]+Ez[ / g(Xt)dt]

9]

for given functions ¢: {a,b} — R and g¢: (a,b) — R, ¢ bounded and
continuous.

(Hint: The substitution t = Inz, w(z) = h(lnz) transforms the
differential equation

1o’z (z) + rzw'(z) = —g(z) ; x>0
into the differential equation

2a2R(t) + (r — %a2)h'(t) = —g(e'); teR))
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.15. a) Let D = (a,b) C R be a bounded interval and let X; = B; be
1-dimensional Brownian motion. Use Corollary 9.1.2 to compute

D

h(z) = E*[e”*P ¢(B, )| + E° [9 / e“"B?dt]

for a given function ¢: {a,b} — R, when p > 0 and § € R are
constants.
(Hint: Consider the Ito diffusion

()

ay, dt 1 0

are = [dth]: [dBt]: [OJdH[l]dB“ Ho=y=(s2).
t

Then
h{z) = w(0,z)

where

T

w(s,z) = w(y) = BY[g(Y,,)] + B [ / gm)dt]
0

with  ¢(y) = ¢(s,z) = e 9()
and g(y) = g(s,z) = fe Psx? .

Note that
7, = inf{t >0; B, & (a,b)} = inf{t > 0; Y,¥) & (a, b)}
= inf{t>0;¥; R x (a,b)} .

To find w(s,z) solve the boundary value problem
%%‘2‘34—8“’ =—fePz?; a<z<b
w(s,a) = e P*Y(a), w(sb)=e ?P(b).

To this end, try w(s,z) = e~?*h(x).)
b) Use the method in a) to find E¥[e” °™?].
(Compare with Exercise 7.19.)

.16. (The Black-Scholes equation)
a) Let D = (0,T) x (0,00) C R?, where T > 0 is a constant. Show
that the unique solution w € C2(D)NC(D) of the boundary value
problem

—rw(s,z) + %“j(s,x) + rx%‘;“(s,x) + %o%w;‘”(s,x) =0; (s,x) e D
w(T,z)=(x—K)*; x>0
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(where 7 > 0, o # 0 are constants) is given by
w(s,z) = E>%e "7~ (Xr_, — K)*] (9.3.32)
where X; = X7 is the geometric Brownian motion
dX, = rXdt + 0 X;dBy ; Xo=x2>0.

[Hint: Put u(s,z) = e"" w(s,z). Then apply Theorem 9.2.13 and
Theorem 9.1.1 to the boundary value problem

84 (s,2) +r2de(s,7) + §o°* TH(s,2) = 0; (s,z) € D
tlim U()/t) — e—r(s+'ro)(XTD _ K)+ x>0
—')TD

where Y, = Y>® = (s+t, XF) and 7p = inf{t > 0;Y; ¢ D} = T~s.]
Use (9.3.32) to show that
w(0,z) = 2®(n + 30VT) - Ke "T®(ny — 2oVT)

where ) T
_ —lp-1/2y (T
np=0""T ln(K+rT)

and

o~

B(t) = —\/1—2_—7; e Tds

is the normal distribution function.

3

This is the celebrated Black-Scholes option pricing formula. See
Corollary 12.3.8.



10. Application to Optimal Stopping

10.1 The Time-Homogeneous Case

Problem 5 in the introduction is a special case of a problem of the following
type:

Problem 10.1.1 (The optimal stopping problem).
Let X, be an It6 diffusion on R™ and let g (the reward function) be a given
function on R", satisfying

a) g(¢) >0 for all £ € R® (10.1.1)
b) g is continuous.

Find a stopping time 7 = 7*(z,w) (called an optimal stopping time) for
{X:} such that

E*[g(X,.)] = sup E%[g(X)] for all z € R™, (10.1.2)

the sup being taken over all stopping times 7 for {X,;}. We also want to find
the corresponding optimal expected reward

g"(2) = E*[g(X,-)] . (10.1.3)

Here g(X;) is to be interpreted as 0 at the points w € {2 where 7(w) = oo
and as usual E* denotes the expectation with respect to the probability law
Q" of the process X;; t > O starting at Xy =z € R"™.

We may regard X, as the state of a game at time ¢, each w corresponds
to one sample of the game. For each time ¢ we have the option of stopping
the game, thereby obtaining the reward g(X,), or continue the game in the
hope that stopping it at a later time will give a bigger reward. The problem
is of course that we do not know what state the game is in at future times,
only the probability distribution of the “future”. Mathematically, this means
that the possible “stopping” times we consider really are stopping times in
the sense of Definition 7.2.1: The decision whether 7 < ¢ or not should only
depend on the behaviour of the Brownian motion B, (driving the process X)
up to time ¢, or perhaps only on the behaviour of X, up to time ¢. So, among
all possible stopping times  we are asking for the optimal one, 7*, which
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gives the best result “in the long run”, i.e. the biggest expected reward in
the sense of (10.1.2).

In the following we will outline how a solution to this problem can be
obtained using the material from the preceding chapter. Later in this chapter
we shall see that our discussion of problem (10.1.2)-(10.1.3) also covers the
apparently more general problems

g*(s,x) = sup EC®g(s + 7, X,)] = ECg(s + 7%, X)) (10.1.4)

and

G*(s,z) = sup E(*®) [/ fls+t,X)dt + g(s + 7, XT)]
0

= E(S")[/f(s+t,Xt)dt+g(S+T*,Xr')] (10.1.5)
0

where f is a given “profit rate” function (satisfying certain conditions).

We shall also discuss possible extensions of problem (10.1.2)-(10.1.3) to
cases where g is not necessarily continuous or where g may assume negative
values.

A basic concept in the solution of (10.1.2)-(10.1.3) is the following:

Definition 10.1.2. A measurable function f:R™ — [0, 00] is called super-
meanvalued (w.r.t. X) if

f(z) = E*[f(X)] (10.1.6)

for all stopping times 7 and all x € R™.
If, in addition, f is also lower semicontinuous, then f is called l.s.c. su-
perharmonic or just superharmonic (w.r.t. X).

Note that if f: R™ — [0,00] is lower semicontinuous then by the Fatou
lemma
f(z) < E*[ lim_f(X5,)] < lim E*[f(X,,)], (10.1.7)
k—00 k—s00
for any sequence {7} of stopping times such that 7 — 0 a.s. P. Combining
this with (10.1.6) we see that if f is (L.s.c.) superharmonic, then

flx)= kllrxolo E*|f(X;) forall z, (10.1.8)

for all such sequences 7%.

Remarks. 1) In the literature (see e.g. Dynkin (1965 II)) one often finds
a weaker concept of X;-superharmonicity, defined by the supermeanvalued
property (10.1.6) plus the stochastic continuity requirement (10.1.8). This
weaker concept corresponds to the X;-harmonicity defined in Chapter 9.
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2) If f € C?(R") it follows from Dynkin’s formula that f is superhar-
monic w.r.t. X; if and only if
Af <0

where A is the characteristic operator of X;. This is often a useful criterion
(See e.g. Example 10.2.1).

3) If X; = B, is Brownian motion in R™ then the superharmonic func-
tions for X; coincide with the (nonnegative) superharmonic functions in clas-
sical potential theory. See Doob (1984) or Port and Stone (1979).

We state some useful properties of superharmonic and supermeanvalued
functions.

Lemma 10.1.3. a) If f is superharmonic (supermeanvalued) and o > 0,
then af is superharmonic (supermeanvalued).

b) If fi, f2 are superharmonic (supermeanvalued), then f1 + fa is superhar-
monic (supermeanvalued).

c) If{f;};es is a family of supermeanvalued functions, then f(x):= ]nelg{fj(x)

is supermeanvalued if it is measurable (J is any set).

d) If f1, f2,--- are superharmonic (supermeanvalued) functions and fi. T f
pointwise, then f is superharmonic (supermeanvalued).

e) If f is supermeanvalued and o < 7 are stopping times, then E*[f(X,)] >
E<[f(X,)]. )

f) If f is supermeanvalued and H is a Borel set, then f(x): = E*[f(X,,)] is
supermeanvalued.

Proof of Lemma 10.1.3.

a) and b) are straightforward.
¢) Suppose f; is supermeanvalued for all j € J. Then

fi(z) > E*[f;(X,)] = E*[f(X;)] for all j.

So f(z) = inf f;(z) > E*[f(X,)], as required.
d) Suppose f; is supermeanvalued, f; T f. Then

f(z) = fi(z) > E°[f;(X,)] for all 7, so
flz) ZjEI&EI[fj(XT)] = E*[f(X,)],

by monotone convergence. Hence f is supermeanvalued. If each f; is also
lower semicontinuous then if y, — x as k — oo we have

fi(z) < dim fi(yx) < lim f(y) for each j .

k—o0 k—o0

Hence, by letting j — oo,
z) < lim .
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e) If f is supermeanvalued we have by the Markov property when t > s
EZ[f(X)|Fs] = EX+[f(Xi-s)] < F(Xs) s (10.1.9)

i.e. the process
G = f(Xy)

is a supermartingale w.r.t. the o-algebras F, generated by {B,;r < t}.
(Appendix C). Therefore, by Doob’s optional sampling theorem (see Gih-
man and Skorohod (1975, Theorem 6 p. 11)) we have

E*[f(Xo)] 2 E*[f(X7)]

for all stopping times o, 7 with o < 7 a.s. Q.
f) Suppose f is supermeanvalued. By the strong Markov property (7.2.2)
and formula (7.2.6) we have, for any stopping time «,

E*(f(Xa)] = E*[EX[f(Xq,)]] = B*[E*[fa f(Xry )| Fal
= E*(0af(Xr,)) = E°[f(X0g)] (10.1.10)

where 7§ = inf{t > o; X; ¢ H}. Since 7§} > 7y we have by €)

Ex[f(XOt)] < Ez[f(XTH)] = f(:L‘) )
80 fis supermeanvalued. 0
The following concepts are fundamental:

Definition 10.1.4. Let h be a real measurable function on R™. If f is a
superharmonic (supermeanvalued) function and f > h we say that f is a
superharmonic (supermeanvalued) majorant of h (w.r.t. X:). The function

h(z) = il}ff(:l:); z€R", (10.1.11)

the inf being taken over all supermeanvalued majorants f of h, is called the
least supermeanvalued majorant of h.

Similarly, suppose there exists a function h such that

(i) R is a superharmonic majorant of h and
(i) if f is any other superharmonic majorant of h then h < f.

Then & is called the least superharmonic majorant of h.

Note that by Lemma 10.1.3 c) the function % is supermeanvalued if it is
measurable. Moreover, if h is lower semicontinuous, then h exists and h = h.
Later we will prove that if g is nonnegative (or lower bounded) and lower
semicontinuous, then g exists and g = § (Theorem 10.1.7).
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Let g > 0 and let f be a supermeanvalued majorant of g. Then if 7 is a
stopping time
f(z) 2 E°[f(X:)] 2 E¥[g(X,)] .
So
f(z) 2 sup E¥[g(Xr)} = g7(z) -
Therefore we always have, if g exists,

9(z) > g (z) forall z € R™. (10.1.12)

What is not so easy to see is that the converse inequality also holds, i.e. that
in fact
g=g". (10.1.13)

We will prove this after we have established a useful iterative procedure for
calculating g. Before we give such a procedure let us introduce a concept
which is related to superharmonic functions:

Definition 10.1.5. A lower semicontinuous function f:R"™ — [0,00] is
called excessive (w.r.t. X;) if

f(z) = E*[f(Xs)] forall s>0,z€ R™. (10.1.14)

It is clear that a superharmonic function must be excessive. What is not
so obvious, is that the converse also holds:

Theorem 10.1.6. Let f:R™ — [0,00]. Then f is excessive w.r.t. X, if and
only if f is superharmonic w.r.t. X,.

Proof in a special case. Let L be the differential operator associated to
X (given by the right hand side of (7.3.3)), so that L coincides with the
generator A of X on CZ. We only prove the theorem in the special case when
f € C*(R™) and Lf is bounded: Then by Dynkin’s formula we have

t

E=[f(X.)] = f(z) +E’[/Lf(Xr)dr] for all £ >0,
[4]

so if f is excessive then Lf < 0. Therefore, if 7 is a stopping time we get
E*[f(Xinr)] £ f(=) forall t >0.
Letting t — oo we see that f is superharmonic. 0

A proof in the general case can be found in Dynkin (1965 II, p. 5).
The first iterative procedure for the least superharmonic majorant g of g
in the following:
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Theorem 10.1.7. (Construction of the least superharmonic majo-
rant).
Let g = go be a nonnegative, lower semicontinuous function on R™ and define
inductively

gn(z) = tseusp E%gn-1(X1)], (10.1.15)

where S, = {k-27""0<k <4"}, n=1,2,.... Then g, 1 g and g is the
least superharmonic majorant of g. Moreover, § = §.

Proof. Note that {g,} is increasing. Define g(z) = lim g,(z). Then
n—oo

§(z) > gn(z) = E%[gn-1(X1)] forall nandallte S, .

Hence
g(z) 2 lim E%[gn-1(X¢)] = E¥[§(Xe)] (10.1.16)

o0
forallte S= {J S».
n=1
Since § is an increasing limit of lower semicontinuous functions (Lemma 8.1
g is lower semicontinuous. Fix ¢ € R and choose ¢, € S such that t, — ¢.
Then by (10.1.16), the Fatou lemma and lower semicontinuity

9(z) 2 %E’[Q(sz)] > E’[Flg_{l;é(xzk )N = E¥[g(X.)] -

So g is an excessive function. Therefore § is superharmonic by Theorem 10.1.6
and hence g is a superharmonic majorant of g. On the other hand, if f is any
supermeanvalued majorant of g, then clearly by induction

f(x) > gn(z) forall n

and so f(x) > §(z). This proves that § is the least supermeanvalued majorant
gofg.Sog=g. |

It is a consequence of Theorem 10.1.7 that we may replace the finite sets
Sy by the whole interval [0, co]:

Corollary 10.1.8. Define hg = g and inductively
hn(z) =sup E¥[hp—1(Xt)] ; n=1,2,...
>0

Then h, T 3.

Proof. Let h = lim h,,. Then clearly h > § = §. On the other hand, since 7 is
excessive we have

g(z) > sup E*[g(X,)].
t>0

So by induction
g>hy for all n.

Thus § = h and the proof is complete.
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We are now ready for our first main result on the optimal stopping prob-
lem. The following result is basically due to Dynkin (1963) (and, in a mar-
tingale context, Snell (1952)):

Theorem 10.1.9 (Existence theorem for optimal stopping).
Let g* denote the optimal reward and g the least superharmonic majorant of
a continuous reward function g > 0.

a) Then
g () = g(z) . (10.1.17)
b) Fore >0 let
D, ={z;9(z) < g(z) — €} . (10.1.18)

Suppose g is bounded. Then stopping at the first time 7. of exit from D,
is close to being optimal, in the sense that

l9"(z) — E¥[g(X- )} < 2¢ (10.1.19)

for all .
c) For arbitrary continuous g > 0 let

D = {z;9(z) < g*(z)} (the continuation region) . (10.1.20)

For N = 1,2,... define g, = g AN, Dy = {z;9,(z) < gy(z)} and
on = Tpy. Then Dy C Dy4y, Dy C Dﬁg‘l([O,N)), D= UDN- If
N

oN <00 a.5. @F for all N then

g'(z) = Agnw E*[g(Xon)] - (10.1.21)

d) In particular, if Tp < 00 a.s. Q* and the family {9(X,, )}~ is uniformly
integrable w.r.t. Q% (Appendiz C), then

9" (z) = E¥[9(X+p)]
and T = Tp is an opltimal stopping time.
Proof. First assume that g is bounded and define
g.(z) = E¥[g(X;,)] fore >0. (10.1.22)
Then g, is supermeanvalued by Lemma 10.1.3 f). We claim that
g9(x) < Ge(z) + ¢ for all x . (10.1.23)

To see this suppose
B:=sup{g(x) — Ge(z)} > €. (10.1.24)
x

Then for all 7 > 0 we can find rp such that

9(z0) - G (r0) 2B -1n. (10.1.25)
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On the other hand, since g, + 8 is a supermeanvalued majorant of g, we have

9(x0) < Ge(zo) + 8. (10.1.26)
Combining (10.1.25) and (10.1.26) we get
§(zo) < g(zxo0) + 7. (10.1.27)

Consider the two possible cases:
Case 1: 7. > 0 a.s. @*°. Then by (10.1.27) and the definition of D,
9(x0) + 7 2> g(x0) 2 E®[G(Xinr, )] 2 E™[(9(X:) + €)X, ..,] forallt>0.
Hence by the Fatou lemma and lower semicontinuity of g
9(zo) +n 2 Hm E*[(g(Xe) + €)X(t<ry]
> Ex"[hm (Xt) + X (t<ry] 2 g(z0) +e.

This is a contradiction if 7 < e.

Case 2: 7. = 0 a.s. @%. Then ge(zo) = g(x0), so g(xo) < Ge(xo), contra-
dicting (10.1.25) for n < 8.

Therefore (10.1.24) leads to a contradiction. Thus (10.1.23) is proved and
we conclude that g + € is a supermeanvalued majorant of g. Therefore

§<Gct+e=E[@X.)+e<E[(g+e)(Xs)]+e<g*+2  (10.1.28)
and since € was arbitrary we have by (10.1.12)
9=9".
If g is not bounded, let
g9y =min(N, g}, N=1,2,...
and as before let g, be the least superharmonic majorant of gny. Then
9" >9y=9y1h as N—oo,where h>g

since h is a superharmonic majorant of g. Thus h = § = ¢g* and this proves
(10.1.17) for general g. From (10.1.28) and (10.1.17) we obtain (10.1.19).
Finally, to obtain c) and d) let us again first assume that g is bounded.
Then, since
7. T 7D as €} 0

and 7p < 00 a.s we have
E®lg(X,)] = E*[9(X,p)] aselO, (10.1.29)
and hence by (10.1.28) and (10.1.17)
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9" (z) = E7[g(X,)] if g is bounded . (10.1.30)
Finally, if g is not bounded define
= g 7

Then h is superharmonic by Lemma 10.1.3 d) and since g, < g for all N we
have h < g. On the other hand g, < g, < h for all N and therefore g < h.
Since g is the least superharmonic majorant of g we conclude that

h=3. (10.1.31)
Hence by (10.1.30), (10.1.31) we obtain (10.1.21):
¢"(@) = Jim gu(z) = Jim E*[g, (X)) < Jim E7[g(Xey)] < 9"(2)
— 00 — 00 — 00

Note that g, <N everywhere, so if g, (z) <g, (z) then g, (z) <N and there-
fore g(z) = gy (<) < Gy (2) < §(z) and gy, (z) = 9, (&) < 0 (&) < Gy (2)-
Hence Dy ¢ DN {x;g(x) < N} and Dy C Dyy4; for all N. So by (10.1.31)
we conclude that D is the increasing union of the sets Dy; N = 1,2,...
Therefore

D = J\}gnoo ON .
So by (10.1.21) and uniform integrability we have
9(@) = Jim_g(2) = Jim B7lg.(Xo)]
= Ex[Nh_IPOO 9n (XUN)] = Ex[g(X.,-D)] ’
and the proof of Theorem 10.1.9 is complete. 0

Remarks.

1) Note that the sets D, D, and Dy are open, since § = g* is lower semicon-
tinuous and g is continuous.

2) By inspecting the proof of a) we see that (10.1.17) holds under the weaker
assumption that g > 0 is lower semicontinuous.

The following consequence of Theorem 10.1.9 is often useful:
Corollary 10.1.10. Suppose there exists a Borel set H such that
9u(z): = E7[g(X14)]

is a supermeanvalued magorant of g. Then

9*(z) =g,{x), so T =Ty is optimal.
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Proof. 1f g,, is a supermeanvalued majorant of g then clearly

§(z) <3, ().

On the other hand we of course have
9u (x) < sup E7[g(X,)] = g"(x) ,

so g¢* = §,, by Theorem 10.1.7 and Theorem 10.1.9 a). o
Corollary 10.1.11. Let

D = {z;g(z) < g(z)}

and put
§(x) = §D (:L‘) = Ex[g(X‘rD)] .
If g > g then g = g*.

Proof. Since X., ¢ D we have g(X,,) > 9(X,,) and therefore g(X,,) =
9(X:p), as. @Q*. So g(z) = E*[g(X,,)] is supermeanvalued since § is, and
the result follows from Corollary 10.1.10. ]

Theorem 10.1.9 gives a sufficient condition for the existence of an optimal
stopping time 7*. Unfortunately, 7* need not exist in general. For example,
if

Xy =t for t >0 (deterministic)

and
_ &
g({) - 1 + 52 ’

then ¢g*(z) = 1, but there is no stopping time 7 such that

£eR

Ef[g(X:)]=1.

However, we can prove that if an optimal stopping time 7* exists, then the
stopping time given in Theorem 10.1.9 is optimal:

Theorem 10.1.12 (Uniqueness theorem for optimal stopping).
Define as before
D ={z;g(x) <g*(z)} CR".

Suppose there exists an optimal stopping time ™ = 7*(x,w) for the problem
(10.1.2) for all z. Then

™ 271D forallze D (10.1.32)

and
9*(z) = E*[9(X+p)] forall z € R™. (10.1.33)

Hence 7p is an optimal stopping time for the problem (10.1.2).



10.1 The Time-Homogeneous Case 215

Proof. Choose z € D. Let 7 be an F;-stopping time and assume
Q%|r < 7p] > 0. Since g(X,) < g*(X,) if 7 < 7p and g < g* always, we have

E*lg(X.)] = / 9(X.)dQ* + / 9(X.)d@?
< / 9" (X,)dQ* + / 0* (X,)dQ" = E*[g"(X,)] < g*(=) ,

since g* is superharmonic. This proves (10.1.32).
To obtain (10.1.33) we first choose = € D. Since g is superharmonic we
have by (10.1.32) and Lemma 10.1.3 €)

9"(z) = E%[g9(X.*)] < E*[g(X-+)] < E*[g(X,p )]
= E*[9(X,,)] £ g*(z), which proves (10.1.33) forz € D .

Next, choose z € 8D to be an irregular boundary point of D. Then rp > 0
a.s. @%. Let {ax} be a sequence of stopping times such that 0 < ay < 7p
and o — 0 a.s. Q%, as k — oo. Then X,, € D so by (10.1.32), (7.2.6) and
the strong Markov property (7.2.2)

E*[9(Xrp)]= E® (00, 9(Xsp)| = E*[EXex [g(X,, )]} = E*[¢" (Xa,)] forall k.
Hence by lower semicontinuity and the Fatou lemma

9*°(z) < E’[k%y*(Xak)] s lm E*[g"(Xow)] = E¥[g(Xrp)] -

Finally, if € 0D is a regular boundary point of D or if ¢ ¢ D we have
7p =0 a.s. @° and hence ¢g*(z) = E*[g(X,,)]. o

Remark. The following observation is sometimes useful:
Let A be the characteristic operator of X. Assume g € C?(R"). Define

= {z; Ag(z) > 0} . (10.1.34)
Then, with D as before, (10.1.20),
UcD. (10.1.35)

Consequently, from (10.1.32) we conclude that it is never optimal to stop the
process before it exits from U. But there may be cases when U # D, so that
it is optimal to proceed beyond U before stopping. (This is in fact the typical
situation.) See e.g. Example 10.2.2.

To prove (10.1.35) choose z € U and let 79 be the first exit time from a
bounded open set W 3 z, W C U. Then by Dynkin’s formula, for « > 0

ToN\u

E?[g(Xrpau)) = 9(z) + E’[ / .Ag(X,)ds] > g(z)
0

Mo 9(z) < ¢g*(z) and therefore z € D.
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Example 10.1.13. Let X; = B; be a Brownian motion in R2. Using that B,
is recurrent in R? (Example 7.4.2) one can show that the only (nonnegative)
superharmonic functions in R? are the constants (Exercise 10.2).

Therefore

9*(x) = lgllco: = sup{g(y);y € R’}  forall z.

So if g is unbounded then g* = oo and no optimal stopping time exists.
Assume therefore that g is bounded. The continuation region is

D = {z;9(z) < ||9lloc}

so if OD is a polar set i.e. cap (0D) = 0, where cap denotes the logarithmic
capacity (see Port and Stone (1979)), then 7p = oo a.s. and no optimal
stopping exists. On the other hand, if cap(dD) > 0 then rp < oo a.s. and

E"[g(Brp)] = lIgllec = g7(z) ,
so 7* = Tp is optimal.
Example 10.1.14. The situation is different in R™ for n > 3.

a) To illustrate this let X; = B; be Brownian motion in R3 and let the
reward function be

_ T forfg >

Then g is superharmonic (in the classical sense) in R3, so g* = g every-
where and the best policy is to stop immediately, no matter where the
starting point is.

b} Let us change g to

_ fiz|m* for|z| =1
h(z) = { 1 for |z} < 1

for some o > 1. Let H = {z;|z| > 1} and define
h(z) = E*[h(B,y)] = P*lry < 0] .
Then by Example 7.4.2

S (1 i<t
h(x)—{m-l if[z] > 1,

ieh=g (defined in a)), which is a superharmonic majorant of h. There-
fore by Corollary 10.1.10 _
h*=h=g,

H = D and 7* = 7y is an optimal stopping time.
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Reward Functions Assuming Negative Values

The results we have obtained so far regarding the problem (10.1.2)-(10.1.3)
are based on the assumptions (10.1.1). To some extent these assumptions
can be relaxed, although neither can be removed completely. For example,
we have noted that Theorem 10.1.9 a) still holds if g > 0 is only assumed to
be lower semicontinuous.

The nonnegativity assumption on g can also be relaxed. First of all, note
that if g is bounded below, say ¢ > —M where M > 0 is a constant, then we
can put

n=9g+M>=>0

and apply the theory to g;. Since
E*g(X;)] = E*g1(X;)] - M  if T < o0 as.,

we have g*(z) = gj(z) — M, so the problem can be reduced to the optimal
stopping problem for the nonnegative function g;. (See Exercise 10.4.)
If g is not bounded below, then problem (10.1.2)-(10.1.3) is not well-
defined unless
Efg7(X;)] < o0 for all 7 (10.1.36)

where
9" (x) = — min(g(z),0) .
If we assume that g satisfies the stronger condition that

the family {g~ (X,); 7 stopping time} is uniformly integrable (10.1.37)

then basically all the theory from the nonnegative case carries over. We re-
fer to the reader to Shiryaev (1978) for more information. See also Theo-
rem 10.4.1.

10.2 The Time-Inhomogeneous Case

Let us now consider the case when the reward function g depends on both
time and space, i.e.

g=g(t,z):RxR" - [0,00), g is continuous . (10.2.1)
Then the problem is to find go(z) and 7* such that
g0(z) = sup Blg(r, X,)] = E=lg(r", X)) (102.2)
To reduce this case to the original case (10.1.2)-(10.1.3) we proceed as follows:
Suppose the It6 diffusion X, = X¥ has the form
dX, = b(X,)dt + o(X,)dB, ; t>0, Xo==x
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whereb: R" — R™ and o: R" — R™™™ are given functions satisfying the con-
ditions of Theorem 5.2.1 and B; is m-dimensional Brownian motion. Define
the Ité diffusion Y; = Y% in R™*! by

Y, = [S;j] . >0, (10.2.3)
Then
dy, = [b()l(t)] dt + [0&)] dB, = b(Y,)dt + 5(Y;)dB, (10.2.4)
where
B(m) = b(t,€) = |, b | € R, &) =5(t,6) = ot R(m+1xm
(77) - ( 76) - [b(é)] € b 0(77) — O(t, é) - '0.'(&)' € ’

with n = (¢,£) € R x R™.

So Y; is an It6 diffusion starting at y = (s,z). Let R¥ = R(>®) denote the
probability law of {Y;} and let E¥ = E(**) denote the expectation w.r.t. RY.
In terms of Y; the problem (10.2.2) can be written

90(z) = ¢*(0,2) = sup ECP[g(Y;)} = E®P [g(Y;-)] (10.2.5)

which is a special case of the problem

g*(s,7) = sup E® [g(Y;)] = EC[g(Y;-)] (10.2.6)

which is of the form (10.1.2)-(10.1.3) with X, replaced by Y;.
Note that the characteristic operator A of Y; is given by

Ap(s,z) = g—f(s, z)+ Ad(s, ) ; peC*(R xR (10.2.7)

where A is the characteristic operator of X, (working on the z-variables).

Example 10.2.1. Let X; = B, be 1-dimensional Brownian motion and let
the reward function be

g(t, ) =e P, ceR

where a, § > 0 are constants. The characteristic operator A of ¥;"* = [;‘2‘]
t

is given by
- 0 1 6°
Af(s,.’t)=a—'£+§'a—x£; feCz.

Thus
Ag = (~a+ 6%,
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so if %2 < 2o then g* = g and the best policy is to stop immediately. If
B2 > 20 we have R
U:= {(s,x); Ag(s,z) > 0} = R?

and therefore by (10.1.35) D = R? and hence 7 does not exist. If 32 > 2a
we can use Theorem 10.1.7 to prove that g* = oo:

sup EC®[g(Y,)] = sup Ele” >+ +057)

tESn teS,
2
= sup[e”(+t). PHEP | (see the remark following (5.1.6))
tes,
—atlg?
= sup g(s,x) - " = g(5,2) - exp((~a + §67)2)
e n

S0 gn(s,x) — 00 as n — o0.
Hence no optimal stopping exists in this case.

Example 10.2.2. (When is the right time to sell the stocks?

(Part 1))

We now return to a specified version of Problem 5 in the introduction:
Suppose the price X; at time ¢ of a person’s assets (e.g. a house, stocks,

oil ...) varies according to a stochastic differential equation of the form

dXt = TXtdt + ClXtdBt,Xo =z>0 ,

where B, is 1-dimensional Brownian motion and r, @ are known constants.
(The problem of estimating o and r from a series of observations can be
approached using the quadratic variation (X, X), of the process {X,;} (Ex-
ercise 4.7) and filtering theory (Example 6.2.11), respectively. Suppose that
connected to the sale of the assets there is a fixed fee/tax or transaction cost
a > 0. Then if the person decides to sell at time ¢ the discounted net of the
sale is
e P (X, —a),

where p > 0 is given discounting factor. The problem is to find a stopping
time 7 that maximizes

ECS)[e7(X, — a)] = ECDg(r, X,)] ,

where

9(t.&) = e " (£ ~a).
The characteristic operator A of the process Y; = (s + t, X,) is given by

R 2
Af(s,z) = %-{»rw%ﬁ-{»%azzzg—aé—; feC?RY.

Hence jg(s, z) = —pe P (z —a) + rze "’ = e ?*((r — p)x + pa). So

- RxR ifr >
U:= {(s,z); Ag(s,z) > 0} = { {(s,x);tt <2} ifr< Z.
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Soifr > p we have U = D = R x Ry so 7* does not exist. If r > p then
g* = oo while if » = p then
9" (s,z) =zxe "
(The proofs of these statements are left as Exercise 10.5.)

It remains to examine the case r < p. (If we regard p as the sum of
interest rate, inflation and tax etc., this is not an unreasonable assumption
in applications.) First we establish that the region D must be invariant w.r.t.
t, in the sense that

D+ (t,0) =D for all to . (10.2.8)
To prove (10.2.8) consider
D + (t0,0) = {(t + to, x); (t,z) € D} = {(s,z);(s — to,x) € D}
= {(s,2);9(s — t0, ) < g"(s — t0,2)} = {(s,); " g(s,2) < 79" (5, 7)}
={(s,7);9(s,7) < g*(s,2)} = D
where we have used that

9*(s ~to,2) = sup B0 [e™" (X, ~ )] = sup Ele ™" (X7 — a)
T

= e’ sup E[e ") (X2 — q)] = e"t"g (s,) .
T

Therefore the connected component of D that contains U must have the form

D(zo) = {(t,2);0 < z < o} for some zo > 2£- .

Note that D cannot have any other components, for if V' is a component of
D disjoint from U then Ag < 0in V and so, ify € V,

E¥[9(Y:)] = g(y) + E¥ [/ﬁg(Yt)dt] < g(y)
0

for all exit times 7 bounded by the exit time from an z-bounded strip in V.
From this we conclude by Theorem 10.1.9 ¢) that ¢*(y) = g(y), which implies
V =0.

Put 7(x0) = Tp(zo) and let us compute

9(5,T) = Gz (8, @) = E®P[g(Yy5))] - (10.2.9)

From Chapter 9 we know that f = g is the (bounded) solution of the bound-
ary value problem

2
E+m6_+2a 2* 5 =0 for 0 <z < 1 (10.2.10)
f(s,x0) = e7P*(z0 — a) .
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(Note that R x {0} does not contain any regular boundary points of D w.r.t.
)/t = (S + tv Xt))
If we try a solution of (10.2.10) of the form

f(s,z) = 7 ¢(x)
we get the following 1-dimensional problem

_ ' 12,21 —
po + rzg’(x) + 30229 " (x) = 0 for 0 <z < xp } (10.2.11)

$(zo) = To—a.
The general solution ¢ of (10.2.11) is
¢(.’E) = Clz’h + 021.72 ,

where (i, Cy are arbitrary constants and

7,-=a_2[%a2—-r:t\/(r—%a2)2+2pa2] (i=1,2), 2<0<.

Since ¢(x) is bounded as x — 0 we must have C; = 0 and the boundary
requirement ¢(zo) = o — a gives C1 = x5 "' (xo — a). We conclude that the
bounded solution f of (10.2.10) is

T

Guo (5,) = £(5,) = €™ (z0 — )(5—) . (10.2.12)

If we fix (s,z) then the value of zp which maximizes g,,(s,z) is easily seen
to be given by
am

n-—1

To = Tmax = (10213)
(note that v; > 1 if and only if r < p).

Thus we have arrived at the candidate g, (s,x) for g*(s,z) =
sup E(*®)e~?" (X, — a)]. To verify that we indeed have g, = g* it would

.
suffice to prove that g, . is a supermeanvalued majorant of g (see Corol-
lary 10.1.10). This can be done, but we do not give the details here, since this
problem can be solved more easily by Theorem 10.4.1 (see Example 10.4.2).

The conclusion is therefore that one should sell the assets the first time
the price of them reaches the value Tmax = 7—‘?_‘—1 The expected discounted
profit obtained from this strategy is

§°(8,2) = Gapur(s,2) = (1 1) ()"

a !

Remark. The reader is invited to check that the value o = Tmax is the
only value of o which makes the function

T = Gz (8, T) (given by (10.2.9))
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continuously differentiable at xy. This is not a coincidence. In fact, it illus-
trates a general phenomenon which is known as the high contact (or smooth
fit) principle. See Samuelson (1965), McKean (1965), Bather (1970) and
Shiryaev (1978). This principle is the basis of the fundamental connection
between optimal stopping and variational inequalities. Later in this chapter
we will discuss some aspects of this connection. More information can be
found in Bensoussan and Lions (1978) and Friedman (1976). See also Brekke
and Oksendal (1991).

10.3 Optimal Stopping Problems Involving an Integral

Let .
dY; =b(Y,)dt + o(Y,)dB, , YYo=y (10.3.1)

be an It diffusion in RF. Let g: R* — [0, 00) be continuous and let f: RF —
[0, 00) be Lipschitz continuous with at most linear growth. (These conditions
can be relaxed. See (10.1.37) and Theorem 10.4.1.) Consider the optimal
stopping problem: Find $(y) and 7* such that

@(y)=sngV[ / f(Yt)dt+g(YT)] =E”[]f(Yt)dt+g(Y~) . (1032)
0 0

This problem can be reduced to our original problem (10.1.2)-(10.1.3) by
proceeding as follows: Define the Ité diffusion Z, in R* x R = R¥*! by

dz, = [(%&t] = [;((};‘t))] dt + ["(34)} dB,; Zo=z=(y,w). (10.3.3)

Then we see that
&(y) = sup E¥O[W, + g(¥;)] = sup E¥O [§(Z,)]
with
9(z):=9(y,w)=g(y) +w; z=(yw)e R* xR. (10.3.4)

This is again a problem of the type (10.1.2)-(10.1.3) with X; replaced by
Zs and g replaced by g. Note that the connection between the characteristic
operators Ay of Y; and Az of Z, is given by

Azd(z) = Azd(y,w) = Ay d(y, w) + f(y)b(?-w(2 , $€C*(R*). (103.5)

In particular, if §(y, w) = g(y) + w € C?(R**!) then

Az §(y,w) = Avg(y) + f(y) - (10.3.6)
Hence, in this general case the domain U of (10.1.34) gets the form

U= {y; Avg(y) + f(y) > 0} . (10.3.7)
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Example 10.3.1. Consider the optimal stopping problem
T
&(x) =sup E* [/Ge‘p‘Xtdt +e "X, |,
T 0
where

dXt = C!Xtdt + ,BXtdBt N Xo =xz>0

is geometric Brownian motion (, 3, 6 constants, § > 0). We put

d] [ 1 0 | ) _
dYt* [dXt]_ [axt]dt+[,BXt_ dBtv YO_(SVT)
and
1 0 ]
dy,
dZt = dW = O(Xt dt + ,BXt dBt ) ZO = (S,.’L’,'UJ) :
¢ e—tht 0 i
Then with
fly)=f(s,x) =0z, g(y)=€e"z
and
g(S,.’L’,'UJ) = g(S,.’L') +w= e Pr+w
we have
~ __ ag 8§ 1 12 282§ —ps 8§ __ —ps
Azg= 5o+ ata + 300 55 + 0 Puo = (—p+atf)e .
Hence

~ R3 if 0
U:{(Sy.’t,UJ);Azg(S,.’t,w)>0}={0 ifﬁ;zio

From this we conclude (see Exercise 10.6):

Ifp>a+4+0thent =0

and &(s, z,w) = g(s,z,w) =e Pz +w. (10.3.8)
If a < p < o+ 0 then 7* does not exist
and &(s,z,w) =2 e P 4w . (10.3.9)

If p < a then 7* does not exist and @ = 0o (10.3.10)
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10.4 Connection with Variational Inequalities

The ‘high contact principle’ says, roughly, that - under certain conditions —
the solution g* of (10.1.2)-(10.1.3) is a C! function on R" if g € C%(R").
This is a useful information which can help us to determine g*. Indeed, this
principle is so useful that it is frequently applied in the literature also in cases
where its validity has not been rigorously proved.

Fortunately it turns out to be easy to prove a sufficiency condition of
high contact type, i.e. a kind of verification theorem for optimal stopping,
which makes is easy to verify that a given candidate for g*(that we may have
found by guessing or intuition) is actually equal to g*. The result below is a
simplified variant of a result in Brekke and @ksendal (1991):

In the following we fix a domain G (the “solvency” set) in R* and we let

dY, = b(Y))dt + o(Y)dB,; Yo=y (10.4.1)
be an It6 diffusion in RF. Define
16 = 1a(y,w) = inf{t > 0, Yi(w) ¢ G} (the “bankruptcy” time). (10.4.2)

Let f:R* — R, g: R¥ — R be continuous functions satisfying
TG

(a) Ey[/f‘ (Y1)dt] < 0 for all y € R* , (10.4.3)
0

and

(b) the family {g~ (Y;); 7 stopping time, 7 < 7¢} is uniformly integrable
w.r.t. RY (the probability law of Y}), for all y € R*. (10.4.4)

We may regard f as a “profit rate” or “utility rate” function and g as a
“bequest” function.

Let 7 denote the set of all stopping times 7 < 7¢. Consider the following
problem: Find &(y) and 7* € 7 such that

®(y) = sup J"(y) = J" (y) (10.4.5)
T€T
where

J(y) =Ey[/Tf(Yt)dt+g(YT)] for reT.
0

The function @ is called the value function for the optimal stopping problem
(10.4.5) and 7* is called an optimal stopping time.
Note that since J(y) = g(y) we have

&(y) > g(y) forall ye G. (10.4.6)
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We can now formulate the variational inequalities. As usual we let

k
52
1
L=Ly= ;b (y)—— +3 Ezj )W) 5050
be the partial differential operator which coincides with the generator Ay of
Y; on C3(RF).

Theorem 10.4.1 (Variational inequalities for optimal stopping).
a) Suppose we can find a function ¢: G — R such that

(i) ¢eCHG)NC(G)
(i) #2=gonG and lim ¢§(Y;) = 9(Yog)X{rg<o0} @-5.

t—T1o
Define
D = {z € G;¢(z) > g(z)} (the continuation region).

Suppose Yy spends 0 time on 8D a.s., i.e.
TG
(i) EV [ / xap(n)dt] =0foralyeG

0
and suppose that
(iv) 0D is a Lipschitz surface, i.e. 3D is locally the graph of a function
h:RF=! - R such that there exists K < co with

|h(z) — h(y)| < K|z — 9| for all z,y .

Moreover, suppose the following:

(v) ¢ € C?*G \ 8D) and the second order derivatives of ¢ are locally
bounded near 8D

(vi) Lo+ f<0o0onG\D Then

d(y) = P(y) forally € G.

b) Suppose, in addition to the above, that

(vii) Lo+ f=0o0nD
(viii) 7p:=inf{t > 0;Y; ¢ D} < o0 a.s. RY forally € G

and
(ix) the family {¢(Y;);7 < 7p, 7 € T} is uniformly integrable w.r.t. RY, for
alyeG.
Then
-
o) = 8(y) = sup E[ 1o vee  aoan
T
0
and

™ =71p (10.4.8)

is an optimal stopping time for this problem.
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Proof. By (i), (iv) and (v) we can find a sequence of functions
¢; € CH(G)NC(G), j=1,2,..., such that

(a) ¢; — ¢ uniformly on compact subsets of G,as j — o0
(b) L¢; — L¢ uniformly on compact subsets of G \ 8D, as j — oo
(¢) {L¢;}52, is locally bounded on G.

(See Appendix D).

Let {G R}:;l be a sequence of bounded open sets such that G = {J Gg.
R=1
Put Tg = min(R,inf {t > 0;Y; € Gr}) and let 7 < 7¢ be a stopping time.

Let y € G. Then by Dynkin’s formula
TATR

E”[¢j(YTATR)]=¢j(y)+Ev[ / L¢j(n)dt] (10.4.9)
0

Hence by (a), (b), (c) and (iii) and the bounded a.e. convergence

TATR

o(y) = lim E[ / —L¢j<mdt+¢j<mn>]
0

J—+o0

Eu[ T7TR—-L¢(Yt)dt + d)(Y—,-ATR)] . (10.4.10)
0

Therefore, by (ii), (iil) and (vi),
TATR

o) 2| [+ ol¥onry)]
0

Hence by the Fatou lemma and (10.4.3), (10.4.4)

TATR

o(y) Z%E”[ O/ f(Yt)dt+g(Yan)] > Ey[O/Tf(Yl)ng(YT)} :

Since T < 7 was arbitrary, we conclude that
oly) 2 P(y) forallye G, (10.4.11)

which proves a).
We proceed to prove b): If y ¢ D then ¢(y) = g(y) < &(y) so by (10.4.11)
we have

oy)=¥(y) and T=T(y,w):=0 is optimal for y¢ D. (10.4.12)
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Next, suppose y € D. Let {D¢}2, be an inc1easing sequence of open sets Dy
such that D, C D, Dy is compact and D= U Dy. Put re =inf{t >0;Y; & D},
k=1,2,... By Dynkin’s formula we have for y € Dy,

T ATR

lm 6,(y) = Jim E[ [ —Losvyie+ oy TkATR)]

j—o0
0

T ATR TeATR

Ey[ 0/ —L¢(n)dt+¢(YTkATR)]=Ey[O/ F(Y)dt + o( TkATn)]

#(y)

I

So by uniform integrability and (ii), (vii), (viii) we get

Tk ATR

o) = gim 8| [ e+ oYonrs)|
0

H

E”[/f(Yt)ng(Ym)] =JP(y) < B(y). (10.4.13)
0

Combining (10.4.11) and (10.4.13) we get
d(y) = S(y) = J™°(y) = 8(y)

50
o(y) =P(y) and T(y,w):=7p isoptimal when ye D. (10.4.14)
From (10.4.12) and (10.4.14) we conclude that
o(y) =d(y) forall yeG.

Moreover, the stopping time 7 defined by

- _J0o foryé¢D
T(y,w) = {TD forye D

is optimal. By Theorem 10.1.12 we conclude that 7p is optimal also. O

Example 10.4.2. (When is the right time to sell the stocks?

(Part 2))

To illustrate Theorem 10.4.1 let us apply it to reconsider Example 10.2.2:
Rather than proving (10.2.8) and the following properties of D, we now

simply guess/assume that D has the form

D= {(s1);0 <z <o}
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for some z¢ > 0, which is intuitively reasonable. Then we solve (10.2.11) for
arbitrary zo and we arrive at the following candidate ¢ for g*:

e (zo —a)(E)" for0<z<zo
e P (x—a) for z > xo .

os.2) = {

The requirement that ¢ € C' (Theorem 10.4.1 (i)) gives the value (10.2.13)
for zg. It is clear that ¢ € C? outside D and by construction L¢ = 0 on
D. Moreover, conditions (iii), (iv), (viii) and (ix) clearly hold. It remains to
verify that

(i) (s, z)>g(s,z) for 0<z <xo, i.e. P(s,2)>e ?*(x — a) for O<z <0
and
(v) Lé¢(s,z) <0 for z >z, i.e. Lg(s,x) <0 for x > xg.

This is easily done by direct calculation (assuming r < p).
We conclude that ¢ = ¢* and 7* = 7p is optimal (with the value (10.2.13)
for xp).

Exercises

10.1. In each of the optimal stopping problems below find the supremum
g* and - if it exists — an optimal stopping time 7*. (Here B; denotes
1-dimensional Brownian motion)

8) ¢*(x) = sup B*[B]
b) g*(z) = sup E*(|B.P],

where p > 0.
¢) 9°(z) = sup B[

d) g*(s,z) = sup E®®)[e=#(#+7)cosh B,]

_Rp?
B)

where p > 0 and cosh x = 1(e* +e7%).

10.2. a) Prove that the only nonnegative (B,-) superharmonic functions in
R? are the constants.
(Hint: Suppose u is a nonnegative superharmonic function and that
there exist z,y € R? such that

u(x) < u(y) .

Consider
E®[u(B,)],

where 7 is the first hitting time for B; of a small disc centered at
v).
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b) Prove that the only nonnegative superharmonic functions in R are
the constants and use this to find g*(z) when

g(z) = re~® forz >0
0 forz <0.

c) Let v € R, n > 3 and define, for z € R",

|z|? for |z| > 1

h(@) = {1 for |z < 1.

For what values of v is f,(-) (B:)-) harmonic for |z| > 1 ? Prove
that f. is superharmonic in R™ iff y € 2 —n,0] .

10.3. Find g*, 7* such that
g*(s,z) = sup E(s:7) [e=P+T B2 = E(s:T) [e“”(”T‘)Bz‘} ,
,
where B, is 1-dimensional Brownian motion, p > 0 is constant.
Hint: First assume that the continuation region has the form
D= {(s,x); —zo < x < 20}
for some xp and then try to determine xy. Then apply Theorem 10.4.1.

10.4. Let X; be an It6 diffusion on R™ and g: R™® — Rt a continuous reward
function. Define

9°(x) = sup{E®[g(X,)]; 7 stopping time, E*[r] < oo} .

Show that ¢g° = g*.
(Hint: If 7 is a stopping time put 7, = 7 Ak for k = 1,2,... and
consider '

E[g(X:) X, ] < E’[kli_moog(er)]) :

10.5. With g,7, p as in Example 10.2.2 prove that
a) if r > p then g* = oo,
b) if r = p then g*(s,z) = ze™*°.

10.6. Prove statements (10.3.8), (10.3.9), (10.3.10) in Example 10.3.1.

10.7. As a supplement to Exercise 10.4 it is worth noting that if g is not
bounded below then the two problems

9" (z) = sup{E*[g9(X)]; 7 stopping time}
and

9°(z) = sup{E*[g(X,)]; T stopping time, E*[r] < oo}
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10.8.

10.9.

10. Application to Optimal Stopping

need not have the same solution. For example, if g(z)=z, X;=B,€R
prove that
g'(z) = forall z e R

while
glzy=1z forall ze R.

(See Exercise 7.4.)

Give an example with g not bounded below where Theorem 10.1.9 a)
fails. (Hint: See Exercise 10.7.)

Solve the optimal stopping problem

&(z) = sup E® [/e”"B?dt +e PTB2Z| .
7 0

10.10. Prove the following simple, but useful, observation, which can be

regarded as an extension of (10.1.35):
Let W = {(s,x); 37 with g(s,z) < E®D[g(s + 7, X,)]}-
Then W C D.

10.11. Consider the optimal stopping problem

g*(s,z) = sup B [e=Pls+T) g+ |
T

where B; € R and zt = max{z, 0}.
a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D = {(s,z);z < zo}

for some xg > 0.
b) Determine xp and find g*.
c¢) Verify the high contact principle:
og* @
0r Oz

where g(t,z) = e~*izt.

when (s,2) = (s,z0) ,

10.12. The first time the high contact principle was formulated seems to

be in a paper by Samuelson (1965), who studied the optimal time for
selling an asset, if the reward obtained by selling at the time ¢ and
when price is £ is given by

9(t, &) = e~ 1)".

The price process is assumed to be a geometric Brownian motion X,
given by
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dXt=1‘Xtdt+aXtdBt, X():ZL' >0,

where r < p.
In other words, the problem is to find g*, 7* such that

g*(s,z) = sup B3 e+ (X, —1)¥] = ECD[e=rl+) (X . —1)F] .
T

a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D= {(5,z);0 <z < zo}

for some xg > ;%-

b) For a given zy > ;‘5 solve the boundary value problem

%5-}-7‘:1:—%«}-%0121:2%:0 for 0<z<uxo
f(s,0)=0

f(s,xg) = e P (xg — 1)t

by trying f(s,z) = e P*¢(x).
¢) Determine xg by using the high contact principle, i.e. by using that

of _ 9y _
3= oz when z = xg .
d) With f,z¢ as in b), ¢) define
_Jf(s,7)5 T < To
(s, x) = {e"’s(x -t z>x0.

Use Theorem 10.4.1 to verify that v = g* and that 7* = 7p is
optimal.

10.13. (A resource extraction problem)
Suppose the price P; of one unit of a resource (e.g. gas, oil) at time ¢
is varying like a geometric Brownian motion

dP; = aP,dt + BP,dB; ; Pyo=p

where By is 1-dimensional Brownian motion and «, 8 are constants.
Let Q; denote the amount of remaining resources at time t. Assume
that the rate of extraction is proportional to the remaining amount,
so that

dQe = —AQ.dt Qo=4q

where A > 0 is a constant,
If the running cost rate is K > 0 and we stop the extraction at the
time 7 = 7(w) then the expected total discounted profit is given by
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J"(s,p,q) = BP9 [ / (AP:Qe — K)e™#¥0dt + e #tg(Pr,Q,) |
0

where p > 0 is the discounting exponent and g(p, ¢) is a given bequest
function giving the value of the remaining resource amount g when the
price is p.
a) Write down the characteristic operator .A of the diffusion process
dt
dXt = dPt
dQy

and formulate the variational inequalities of Theorem 10.4.1 corre-
sponding to the optimal stopping problem

; Xo=(s,p,9)

&(s,p,q) = sup J"(s,p,9) = I (5,p,q) -

b) Assume that g(p,q) = pq and find the domain U corresponding to
(10.1.34), (10.3.7), i.e

U = {(s,p,9); Ale""*g(p,q)) + f(s,p,q) > 0},

where
f(s,pq) = e (Apg - K) .
Conclude that
(i) if p> athen7* =0 and ¢(s p,q ) pge—P*
(if)y if p < a then D D {(s,p,q);pg > BTT:
¢) As a candidate for & when p < a we try a function of the form

e *°pq; 0<pg<yo
L2y 8 = -
o5 P:4) {e Y(pg); Pa>yo
for a suitable ¥: R — R, and a suitable yg. Use Theorem 10.4.1 to
determine ¥, Yo and to verify that with this choice of 1, yo we have
¢=Pand ™ =inf{t > 0; BQ: <y}, ifp<a<p+ A
d) What happensif p+ A< a?

10.14. (Finding the optimal investment time (I))
Solve the optimal stopping problem
o0
¥(s,p) = sup E(P) [/ e Pt P dt — CemPls+T)
where
dP, = aP,dt + fP,dB, ; Py=p,

B, is 1-dimensional Brownian motion and o, 3, p, C are constants,
0 < a < pand C > 0. (We may interprete this as the problem of
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finding the optimal time r for investment in a project. The profit rate
after investment is P; and the cost of the investment is C. Thus ¥
gives the max1mal expected dlscounted net proﬁt )

Hint: Write fe Pt pdt = e ”s[fe PtP,dt — fe Pt P,dt]. Compute

El[ e"’t P,dt] by using the solution formula for P; (see Chapter 5) and
0
then apply Theorem 10.4.1 to the problem

,
&(s, p) = sup E®P [ — /e—p(s+t)Ptdt _ CemPls+n)
T

10.15. Let B, be 1-dimensional Brownian motion and let p > 0 be constant.
a) Show that the family

{e7*" B,; T stopping time}
is uniformly integrable w.r.t. P*.

b) Solve the optimal stopping problem
&(s,z) = sup ED e~ P+ (B — a)]

when a > 0 is constant. This may be regarded as a variation of
Example 10.2.2/10.4.2 with the price process represented by B,
rather than X;.
10.16. (Finding the optimal investment time (II))
Solve the optimal stopping problem

o0
¥(s,p) = sup B¢ [/ e=P(H Pt _ Cemp(s+7)
T
T

where
dP, = pdt + odB; ; P, =

with i, o # 0 constants. (Compare with Exercise 10.14.)

10.17. a) Let
dX;=pdt + o dB; ; Xo=z€R

where p and o are constants. Prove that if p > 0 is constant then

o0
EI[/e"’tIthdt] <oo foral z.
0
b) Solve the optimal stopping problem

T

P(s,x) = sup E*° [/e"’(’“)(Xt - a)dt],

720

where a > 0 is a constant.






11. Application to Stochastic Control

11.1 Statement of the Problem

Suppose that the state of a system at time ¢ is described by an It6 process
X, of the form

dX; = dX;u = b(t,Xt,ut)dt +0’(t,Xt,ut)dBt y (1111)

where X; e R", b RxR"xU - R™, 0:RxR?» x U — R"*™ and B, is m-
dimensional Brownian motion. Here u; € U C R¥ is a parameter whose value
we can choose in the given Borel set U at any instant ¢ in order to control
the process X;. Thus u; = u(t,w) is a stochastic process. Since our decision
at time ¢ must be based upon what has happened up to time ¢, the function
w — u(t,w) must (at least) be measurable w.r.t. ]—'t(m), i.e. the process u;
must be ft(m)-adapted. Thus the right hand side of (11.1.1) is well-defined as
a stochastic integral, under suitable assumptions on the functions b and o. At
the moment we will not specify the conditions on b and ¢ further, but simply
assume that the process X; satisfying (11.1.1) exists. See further comments
on this in the end of this chapter.
Let {X;“}r>s be the solution of (11.1.1) such that X3 = z, i.e.

h h
Xyt =z + /b(r, X%, up)dr + /o(r, X%, up)dB, h>s
] 8

and let the probability law of X, starting at x for t = s be denoted by Q**,
so that

Q* %Xy, € Fl,..., Xy € R)=P°(X)" € Fy,...,X;)® €Fy] (11.1.2)

fors<t;, FCR™1<i<k k=1,2,...

Let f:RxR" x U — R (the “utility rate” or “profit rate” function) and
7:RxR"™ — R (the “bequest” function) be given continuous functions, let G
(the “solvency” set) be a fixed domain in Rx R" and let T (the “bankruptcy”
time) be the first exit time after s from G for the process {X*},>,, i.e.

T = T**(w) = inf{r > 8; (r, X**(w)) ¢ G} < 0 . (11.1.3)
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Suppose
T
E[ / lfu,ﬂ(r,xr)mwtg(f,xf)w{f(w}]<oo for all s,z,u (11.1.4)

where f(r,z) = f(r, z,u). Then we define the performance function J“(s, x)
by

o~

T

,]u(s,l') = Es'z[/fur(T7X7‘)dr+g(f’X?)X{f<oo}] . (11.1.5)

8

To obtain an easier notation we introduce
Y, = (s+tX3%) for t >0, Yy = (s,2)
and we observe that if we substitute this in (11.1.1) we get the equation
dY, = dY = b(Y:, ug)dt + o(Yy, us)d B, . (11.1.6)

(Strictly speaking, the u,b and ¢ in (11.1.6) are slightly different from the
u,b and o in (11.1.1).) The probability law of Y; starting at y = (s,z) for
t =0 is (with slight abuse of notation) also denoted by Q%= = Q¥.

Note that

o~

T ?— 8 TG

/Fur(r’ Xr)dr: / f“"“(s-}-t,XsH)dt:/f“s‘“(Yt)dt,
s 0 0

where —~
re:=inf{t >0;Y; ¢G}=T—5. (11.1.7)
Moreover, .
9T, X5) = 9(Yz_ ) = 9(Yrs) -
Therefore the performance function may be written in terms of Y as follows,
with y = (s, z),

TG

J(y) = Ey[/f“' (Y;)dt + g(YTG)X{TGm}] : (11.1.8)
0

(Strictly speaking this u; is a time shift of the u; in (11.1.6).)

The problem is - for each y € G - to find the number $(y) and a control
u* = u*(t,w) = u*(y,t,w) € A such that

B(y):= sup J*(y) = J* (y) (11.1.9)
u(t,w)

where the supremum is taken over a given family A of admissible controls,
contained in the set of all ft(m)-adapted processes {u, } with values in U. Such
a control u* — if it exists — is called an optimal control and & is called the
optimal performance or the value function. Examples of types of admissible
control functions that may be considered are:
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(3)

(4)
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Functions of the form wu(t,w) = wu(t) i.e. not depending on w. These
controls are sometimes called deterministic or open loop controls.
Processes {u;} which are M;-adapted, i.e. for each ¢ the function w —
u(t,w) is M -measurable, where M, is the o-algebra generated by
{X¥;r < t}. These controls are called closed loop or feedback controls.
The controller has only partial knowledge of the state of the system. More
precisely, to the controller’s disposal are only (noisy) observations R; of
Xt, given by an Itd process of the form

dR, = a(t, X;)dt + (¢, X,)dB; ,

where B is a Brownian motion (not necessarily related to B). Hence the
control process {u;} must be adapted w.r.t. the o-algebra N, generated
by {Rs;s < t}. In this situation the stochastic control problem is linked
to the filtering problem (Chapter 6). In fact, if the equation (11.1.1)
is linear and the performance function is integral quadratic (i.e. F' and
K are quadratic) then the stochastic control problem splits into a linear
filtering problem and a corresponding deterministic control problem. This
is called the Separation Principle. See Example 11.2.4.

Functions u(t,w) of the form u(t,w) = ug(t, X¢(w)) for some function
ug: R**! — U < R¥. In this case we assume that u does not depend on
the starting point y= (s, z): The value we choose at time t only depends
on the state of the system at this time. These are called Markov con-
trols, because with such u the corresponding process X; becomes an It6
diffusion, in particular a Markov process. In the following we will not dis-
tinguish between u and ug. Thus we will identify a function u: R**1 —U
with the Markov control u(Y) = u(t, X;) and simply call such functions
Markov controls.

11.2 The Hamilton-Jacobi-Bellman Equation

Let us first consider only Markov controls

u=u(t, X¢(w)) .

Introducing Y; = (s + ¢, X54¢) (as explained earlier) the system equation
becomes

dY; = b(Y;, u(¥2))dt + o(Ys, u(Y))dBs . (11.2.1)

For v € U and ¢ € C(R x R") define

) = 2200+ 5 bi(w 0128+ S gy 0) 28
(L"8)(y) = 5. (¥) +Zb‘(y’")ax.~ + Zl WV g5 (1122)

=1 3=
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where a;; = %(aaT)i,-, y = (s,z) and x = (21,...,Zn). Then for each choice
of the function u the solution Y; = Y* is an It diffusion with generator A
given by

(Ap)(y) = (L*W¢)(y)  for f € CZ(R x R") (see Theorem 7.3.3) .

For v € U define f¥(y) = f(y,v). The first fundamental result in stochastic
control theory is the following:

Theorem 11.2.1. (The Hamilton-Jacobi-Bellman (HJB) equation (I)
Define
&(y) = sup{J¥(y); u = uw(Y) Markov control} .

Suppose that & € C*(G)NC(G) satisfies
B[l + [ (o awlar] < oo
0

for all bounded stopping times a < 7¢, all y € G and all v € U. Moreover,
suppose that an optimal Markov control u* erists and that G is regular for
YY" (Definition 9.2.8). Then

sgg{f”(y) +(L*®)(y)} =0  fordl yeG (11.2.3)

and
&(y) = g(y) for all y € 0G . (11.2.4)

The supremum in (11.2.3) is obtained if v = u*(y) where u*(y) is optimal.
In other words,

fly,u* @) + (L WP)(y) =0  forallyeG. (11.2.5)

Proof. The last two statements are easy to prove: Since u* = u*(y) is optimal
we have

B(y) = J* (y) = EY [/f(Ymu*(Ys))ds +9(Yrg) - X{Tc<oo})] :
0

If y € 0G then 7¢ = 0 a.s. QY (since 8G is regular) and (11.2.4) follows. By
the solution of the Dirichlet-Poisson problem (Theorem 9.3.3)

(LY W) (y) = —f(y,u*(y)) forall yeG,

which is (11.2.5). We proceed to prove (11.2.3). Fix y = (s, z) € G and choose
a Markov control u. Let a < 7¢ be a bounded stopping time.
Since

J*(y) =Ey[/fu(yr)dr+g(y'ra)"Y(ro<oo)] ,
0
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we get by the strong Markov property (7.2.5), combined with (7.2.6) and
(9.3.7)

EY[J¥(Y,)] = EY -EY“ []Gf“(Yr)dr+g(Ym)X{TG<m}”
N 0

gl

= Ev ’Ey [90,(/f“(Yr)dr+g(Ym)X{rc<oo})
B 0

7|

r TG
= EY Ey[/f“(Yr)dr + 9(Yre) X(rg < o0}

= 5| [ 100+ (Yo X<y ~ | f“(mdr]
"0 0

— 1) - B / rear]
/

So

[+3

Ji(y) = Ey[/f“(Y,)dr] + EY[J*(Y,)] . (11.2.6)

0

' G

[

Now let W C G be of the form W = {(r,z) € G; r < t;} where s < t,. Put
a = inf{t > 0; Y, € W}. Suppose an optimal control u*(y) = u*(r, z) exists

and choose )
(rz) = v if (rnz)ew
HHE = \ut(r2) i (n2)e G\W

where v € U is arbitrary. Then
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B(Y,) = J¥ (Vo) = J4(Ya) (11.2.7)

and therefore, combining (11.2.6) and (11.2.7) we obtain
o
P(y) > J¥(y) = EY [/f”(Yr)dr] + EY[@(Y,)] . (11.2.8)
0
Since ¢ € C?(G) we get by Dynkin’s formula
a
Ba()] = o) + B [ avar]
0
which substituted in (11.2.8) gives

o) 2 B 0/ Fgar] + o)+ 2| 0/ (@)W
or

mUpyanww}o.

So N
[g (FY(Yy) + (L¥®)(Y,))dr]
Ev[a]

Letting ¢; | s we obtain, since f¥(-) and (L®)(-) are continuous at y, that
FY(y) + (L®)(y) < 0, which combined with (11.2.5) gives (11.2.3). That
completes the proof. 0

<0 for all such W .

Remark. The HJB (I) equation states that if an optimal control u* exists,
then we know that its value v at the point y is a point v where the function

v— fPy) + (L'®)y); wveU

attains its maximum (and this maximum is 0). Thus the original stochastic
control problem is associated to the easier problem of finding the maximum
of a real function in U C R*. However, the HIB (I) equation only states that
it is necessary that v = u*(y) is the maximum of this function. It is just as
important to know if this is also sufficient: If at each point y we have found
v = up(y) such that fY(y) + (L"®)(y) is maximal and this maximum is 0,
will uo(Y') be an optimal control? The next result states that (under some
conditions) this is actually the case:
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Theorem 11.2.2 (The HJB (II) equation — a converse of HIB (I)).

Let ¢ be a function in C*(G) N C(G) such that, for allv € U,

P+ (L) (y) <0; yeG (11.2.9)
with boundary values
tl—i}?g (V1) = g9(Yrs) - Xirgcoo} @5 QY (11.2.10)

and such that
{67 (Y;); T stopping time, 7 < 17¢} is uniformly QV-integrable
for all Markov controls u and ally € G . (11.2.11)
Then
o(y) = J"(y) for all Markov controls u and all y € G . (11.2.12)
Moreover, if for each y € G we have found uo(y) such that
Fo(y) + (L Wg)(y) = 0 (11.2.13)
and
{p(Y¥°); 7 stopping time, T < 1g} is uniformly
QV-integrablefor ally € G (11.2.14)

then up = uo(y) s a Markov control such that
¢(y) = J*(y)

and hence if ug is admissible then ug must be an optimal control and ¢(y) =
P(y).

Proof. Assume that ¢ satisfies (11.2.9) and (11.2.10) above. Let u be a
Markov control. Since L¥¢ < — f* in G we have by Dynkin’s formula

Tr

EY[4(Vr,)] = d(y) + EY [ / (Luqﬁ)(Yr)dr]

0
< d(y) — BV [71‘“(Yr)dr]
0

where
Tr = min{R, 7, inf{t > 0;|Y;| > R}} (11.2.15)

for all R < oo. This gives, by (11.1.4), (11.2.10), (11.2.11) and the Fatou
lemma,
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R—0

Tr
6(y) > lim Ey[ / f“(Yr)dv-+¢<YTn)]
0

> B [ [ #ear + g(YTG)X{TG@}] — JU(y)
0

which proves (11.2.12). If u is such that (11.2.13) and (11.2.14) hold, then
the calculations above give equality and the proof is complete. O

The HIB equations (1), (II) provide a nice solution to the stochastic con-
trol problem in the case where only Markov controls are considered. One
might feel that considering only Markov controls is too restrictive, but for-
tunately one can always obtain as good performance with a Markov control
as with an arbitrary ft(m)-adapted control, at least if some extra conditions
are satisfied:

Theorem 11.2.3. Let
D (y) = sup{J*(y); u = uw(Y) Markov control}

and
&, (y) = sup{J“(y); u = u(t,w) ft(m)-adapted control} .

Suppose there exists an optimal Markov control up = uwo(Y') for the Markov
control problem (i.e. Dp(y) = J¥°(y) for ally € G) such that all the boundary
points of G are regular w.r.t. Y;*° and that ®p; is a bounded function in
CYHG)NC(G) satisfying

E¥ [|¢M(Ya)l+/|L“¢M(Yt)|dt] < oo (11.2.16)
0

for all bounded stopping times a < 1, all adapted controls u and all y € G.
Then
Dpm(y) = Puly) foral yeG.

Proof. Let ¢ be a bounded function in C2(G)NC(G ) satisfying (11.2.16) and
P y) + (L) (y) <0 forall ye G,veU (11.2.17)

and
o(y) =9(y) forall ye dG. (11.2.18)

Let us(w) = u(t,w) be an ft(m)-adapted control. Then Y; is an It6 process
given by
dY: = b(Y, ue)dt + o(Y:, us)dB,

5o by Lemma 7.3.2, with Tg as in (11.2.15),
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Tr
EY(¢(Yr,)] = 6(y) + EY [ / (L“(t"")¢)(Yt)dt] ,
0

where
(LHg)(y) =
n a2¢

S LA SUURTEE SR SO Pe O

%,j=1

with a;; = %(JJT)ij. Thus by (11.2.17) and (11.2.18) this gives

Tr
E¥[¢(Yry)| < o(y) — Ey[/f(}’t,u(t,w))dt} :
0

Letting R — oo we obtain
d(y) = J“(y) - (11.2.19)

But by Theorem 11.2.1 the function ¢(y) = Pp(y) satisfies (11.2.17) and
(11.2.18). So by (11.2.19) we have &p(y) > Pu(y) and Theorem 11.2.3 fol-
lows. 0

Remark. The theory above also applies to the corresponding minimum
problem .
Uly) =inf J%(y) = J* (y) . (11.2.20)

To see the connection we note that

T(y) =~ sgp{—J"(y)} = —sup {Ey []G~f“(Yt)dt —9(Yrs) - X{Tc<00}:’ }
0

so —¥ coincides with the solution @ of the problem (11.1.9), but with f
replaced by —f and g replaced by —g. Using this, we see that the HJB
equations apply to ¥ also but with reverse inequalities. For example, equation
(11.2.3) for & gets for ¥ the form

1iglf}{f”(y) +(L*%)(y)} =0 forall ye G. (11.2.21)

We now illustrate the results by some examples:

Example 11.2.4 (The linear stochastic regulator problem).
Suppose that the state X, of the system at time ¢ is given by a linear stochastic
differential equation:

dX; = (H¢X¢ + Muy)dt + 01dB, t>s; Xs==zx (11.2.22)

and the cost is of the form

ty
J¥(s,z) = E** [/{X?ngt + u;rDtut}dt + XZ;RX:,] , 85t (11.2.23)
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where all the coefficients H, € R**" M, ¢ R"**¥ 5, € R"*™, ¢, € R**",
D, € R**k and R € R™*" are t-continuous and deterministic. We assume
that C; and R are symmetric, nonnegative definite and D, is symmetric,
positive definite, for all £. We also assume that ¢, is a deterministic time.
The problem is then to choose the control u = u(t, X;) € R* such that
it minimizes J*(s, z). We may interpret this as follows: The aim is to find a
control u which makes | X;| small fast and such that the energy used
(~ uT Du) is small. The sizes of C; and R reflect the cost of having large
values of | X;|, while the size of D; reflects the cost (energy) of applying large
values of |uy.
In this case the HJB-equation for ¥(s,z) = il&f J¥(s, ) becomes

0= igf{f”(s,x) + (L¥P)(s,2)}

66—f—+i13f{ TCozx + T D’u-{-t—zl sa:+]v1v),——i

+3 Z:: asaT)Ua 2;;]} for s <t (11.2.24)
and
¥(ty,z) =z Rx. (11.2.25)
Let us try to find a solution 9 of (11.2.24)-(11.2.25) of the form
P(t,z) = 27 Sz + ay (11.2.26)

where S(t) = S; € R™*" is symmetric, nonnegative definite, a; € R and
both a; and S; are continuously differentiable w.r.t. ¢ (and deterministic). In
order to use Theorem 11.2.2 we need to determine S; and a; such that

inf{fY(t,x) + (L"¥)(¢t,2)} =0 for t <t (11.2.27)
and
¥(ty,z) = 2 R . (11.2.28)
To obtain (11.2.28) we put
Sy, =R (11.2.29)
a,, = 0. (11.2.30)

Using (11.2.26) we get
ot z) + (L)t x) = 27 Sjz + o) + 27 Cox + vT Dy +
+(Htl‘ -+ Mt'U)T(StIL' + S;FIL‘) + Z(ata;r)ijs,-j s (11231)
i!j

where S; = fESt, a, = $a;. The minimum of this expression is obtained
when
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8ii(f”(t,x)+(L”1/))(t,m))=0; 1=1,...,k

i.e. when
2Dv + 2MT Sz =0

i.e. when
v=—-D;'MTS,z . (11.2.32)
We substitute this value of v in (11.2.31) and obtain

it x) + (L)t z) =
=278z + a, + 27Ciz + 2T S, M, D D,D; ' MT Sz
+(Hyx — MyD;*MT S,2)T2S,x + tr(co” S),
=z7(8, + C; — S M, D7 *MT S, + 2HT S;)x + o), + tr(ooTS), ,

where tr denotes the (matrix) trace. We obtain that this is 0 if we choose S
such that

St = —2HTS, + SSM,D;*MTS, - C,; t<t (11.2.33)
and a; such that
a; = —tr(o’aTS)t ; t<t. (11.2.34)

We recognize (11.2.33) as a Riccati type equation from linear filtering the-
ory (see (6.3.4)). Equation (11.2.33) with boundary condition (11.2.29) de-
termines S; uniquely. Combining (11.2.34) with the boundary condition

(11.2.30) we obtain
t

a; = / tr(coTS),ds . (11.2.35)
t

With such a choice of S; and a; we see that (11.2.27) and (11.2.28) hold, so
by Theorem 11.2.2 we conclude that

u*(t,x) = —D;MF Sz, t<t (11.2.36)

is an optimal control and the minimum cost is
ty
U(s,z) = 7S,z + /tr(cmTS)tdt , s<t. (11.2.37)
8

This formula shows that the extra cost due to the noise in the system is given

by
t

a, = /tr(aaTS)tdt .
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The Separation Principle (see Davis (1977), Davis and Vinter (1985) or Flem-
ing and Rishel (1975)) states that if we had only partial knowledge of the
state X, of the system, i.e. if we only had noisy observations

dZ, = 0, X,dt + v,dB, (11.2.38)

to our disposal, then the optimal control u*(¢,w) (required to be G;-adapted,
where G; is the o-algebra generated by {Z,;r < t}), would be given by

u*(t,w) = —D7 ' MT 8, X (w) | (11.2.39)

where X ¢ is the filtered estimate of X, based on the observations {Z,;r < t},
given by the Kalman-Bucy filter (6.3.3). Comparing with (11.2.36) we see
that the stochastic control problem in this case splits into a linear filtering
problem and a deterministic control problem.

An important field of applications of the stochastic control theory is eco-
nomics and finance. Therefore we illustrate the results above by applying
them to a simple case of optimal portfolio diversification. This problem has
been considered in more general settings by many authors, see for example
Markowitz (1976), Merton (1971), Harrison and Pliska (1981), Aase (1984),
Karatzas, Lehoczky and Shreve (1987) and the survey article Duffie (1994)
and the references therein.

Example 11.2.5 (An optimal portfolio selection problem).
Let X; denote the wealth of a person at time ¢. Suppose that the person has
the choice of two different investments. The price X;(t) at time ¢ of one of
the assets is assumed to satisfy the equation

dX(t

% = X1(t)[a + aWy] (11.2.40)
where W; denotes white noise and a,a > 0 are constants measuring the
average relative rate of change of X, (¢) and the size of the noise, respectively.
As we have discussed earlier we interpret (11.2.40) as the (It6) stochastic
differential equation

This investment is called risky, since a > 0. We assume that the price Xo(t)
of the other asset satisfies a similar equation, but with no noise:

dXo(t) = Xo(t)bdt . (11.2.42)

This investment is called safe. So it is natural to assume b < a. At each
instant ¢ the person can choose how big fraction u(t) of his wealth he will
invest in the risky asset, thereby investing the fraction 1 — u(t) in the safe
one. This gives the following stochastic differential equation for the wealth
Zt = Z:‘ H
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dZ, = u(t)Z.adt + u(t) ZyadB, + (1 — u(t))Zbdt
= Zy(au(t) +b(1 — u(t)))dt + au(t)Z,dB, . (11.2.43)

Suppose that, starting with the wealth Z;, = = > 0 at time s, the person
wants to maximize the expected utility of the wealth at some future time
to > s. If we do not allow any borrowing (i.e. require u(t) < 1) and we do
not allow any shortselling (i.e. require u(t) > 0) and we are given a utility
function N: [0, 00) — [0, 00), N(0) = 0 (usually assumed to be increasing and
concave) the problem is to find &(s, ) and a (Markov) control u* = u*(¢, Z;),
0 < u* <1, such that

&(s,z) = sup{J¥(s,z); u Markov control, 0 < u < 1} = J* (s,z) ,
where JU(s,x) = ES*[N(Z%,)] (11.2.44)

and 7¢ is the first exit time from the region G = {(r,2); r < t5,z > 0}.
This is a performance criterion of the form (11.1.6)/(11.1.8) with f =0 and
g = N. The differential operator LY has the form (see (11.2.2))

v ad’ _ 1,.2,2 262¢
(L) (t,x) = 5t + z(av + b(1 'u))a VT o (11.2.45)
The HJB equation becomes
sup{(L*®)(¢t,z)} =0, for (t,z) e G ; (11.2.46)

and
&(t,z) = N(z) for t=to, &(t,0)=N(0) for t <tp. (11.2.47)

Therefore, for each (¢, z) we try to find the value v = u(¢, ) which maximizes
the function

v . 09 202 , 0%
n(v) = L"® = 5 +z(b+ (a b)v)— +1 R (11.2.48)
If ,: -5— >0and $,,:= 5-1-7 < 0, the solution is
_ _ (a—b)P,
v=u(t,x) = Py (11.2.49)

If we substitute this into the HJB equation (11.2.48) we get the following
nonlinear boundary value problem for @ :

(a —b)°P2
b, + bz P, ver ke 0 for t <to,z>0 (11.2.50)
P(t,z) = N(z) for t=toor z=0. (11.2.51)

The problem (11.2.50), (11.2.51) is hard to solve for general N. Important
examples of increasing and concave functions are the power functions
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N(z)=2z" where 0 < v < 1 is a constant . (11.2.52)

If we choose such a utility function N, we try to find a solution of (11.2.50),
(11.2.51) of the form

o(t,x) = f(t)x” .

Substituting we obtain

P(t, x) = eMtotgy | (11.2.53)
2
where A = by + 2(—25_(—?2_—;'—) .
Using (11.2.49) we obtain the optimal control
a—1b
u(T) = ————— . 11.2.
u*(t, x) 21— (11.2.54)
If ’&5‘1'(—1_—_177) (0,1) this is the solution to the problem, in virtue of Theo-

rem 11.2.2. Note that u* is in fact constant.

Another interesting choice of the utility function is N(z) = logz, called
the Kelly criterion. As noted by Aase (1984) (in a more general setting)
we may in this case obtain the optimal control directly by evaluating
E**[log(Xr)] using Dynkin’s formula:

E**[log(Zr,)] =
TG
=logz + E*° [/{au(t, Zy) + b(1 — uft, Zy)) — %a2u2(t, Zt)}dt]
since L¥(log ) = av + b(1 — v) — 3a?0v?.
So it is clear that J*(s,z) = E**[log(Z.)] is maximal if we for all r, z
choose u(s, z) to have the value of v which maximizes

av + b(1 — v) — 1a®v?
i.e. we choose

a—>b
o2

v=u(t,Z;) = for all ¢,w . (11.2.55)

So this is the optimal control if the Kelly criterion is used. Similarly, this
direct method also gives the optimal control when N(z) = 2" (See Exer-
cise 11.8).

Example 11.2.6. Finally we include an example which shows that even
quite simple — and apparently innocent — stochastic control problems can
lead us beyond the reach of the theory developed in this chapter:

Suppose the system is a 1-dimensional [t6 integral

dX; =dX = u(t,w)dB, t>s8 Xs=x>0 (11.2.56)

and consider the stochastic control problem
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u=0 "
|

(tx) /

&(t,x) = sup E¥*|K(X2)], (11.2.57)

where 7¢ is the first exit time from G = {(r,z);r < t3,z > 0} for ¥; =
(s+¢ X, and K is a given bounded continuous function.

Intuitively, we can think of the system as the state of a game which
behaves like an “excited” Brownian motion, where we can control the size u
of the excitation at every instant. The purpose of the control is to maximize
the expected payoff K(X;,) of the game at a fixed future time t,.

Assuming that & € C? and that u* exists we get by the HIB (I) equation

@ P
sup{§— + 1112‘9

at a 2}:0 fOI‘ t<t1,¢(t1,x)=K(x). (112.58)
vER

From this we see that we necessarily have

0o 0’d od

a%2_0, Vo 0 and 5 0 for t <ty, (11.2.59)
where v* is the value of v € R which gives the supremum in (11.2.58). But
if 57 ‘945 =0, then @(t,z) = &(t;,z) = K(x). However, this cannot possibly be

the solutlon in general, because we have not assumed that 2 —5—2— < 0 - in fact,
K was not even assumed to be differentiable. ‘

What went wrong? Since the conclusion of the HJB (I) equation was
wrong, the assumptions cannot hold. So either @ is not C? or u* does not
exist, or both.

To simplify the problem assume that

z?2; 0<z<1
K(z)={l ; :L'_>1.

Then considering the figure above and using some intuition we see that it
is optimal to excite as much as possible if X, is in the strip 0 < z < 1 to
avoid exiting from G in the interval {t,} x (0, 1). Using that X, is just a time
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change of Brownian motion (see Chapter 8) we conclude that this optimal
control leads to a process X* which jumps immediately to the value 1 with
probability x and to the value 0 with probability 1 — z, if the starting point
is z € (0,1). If the starting point is = € [1,00) we simply choose our control
to be zero. In other words, heuristically we should have

u*(t,x):{"(;’ g ;eG[(l?’;)) (11.2.60)

with corresponding expected payoff

i <z <

¢ (s,7) = BT [K(XL)] = {’f g Ox—: =1 (11.2.61)
Thus we see that our candidate u* for optimal control is not continuous
(not even finite!) and the corresponding optimal process X; is not an Ité
diffusion (it is not even continuous). So to handle this case mathematically
it is necessary to enlarge the family of admissible controls (and the family of
corresponding processes). For example, one can prove an extended version of
Theorem 11.2.2 which allows us to conclude that our choice of u* above does
indeed give at least as good performance as any other Markov control v and
that ¢* given by (11.2.61) does coincide with the maximal expected payoff
defined by (11.2.57).

This last example illustrates the importance of the question of existence
in general, both of the optimal control u* and of the corresponding solution
X, of the stochastic differential equation (11.1.1). We briefly outline some
results in this direction:

With certain conditions on b, o, f,9,0G and assuming that the set of
control values is compact, one can show, using general results from nonlinear
partial differential equations, that a smooth function ¢ exists such that

sup(f"(4) + (L'$))} =0 for y€ G

and
o(y)=9g(y) for ye0G.

Then by a measurable selection theorem one can find a (measurable) function
u*(y) such that

W)+ (L)) =0, (11.2.62)

for a.a. y € G w.r.t. Lebesgue measure in R"*!. Even if u* is only known
to be measurable, one can show that the corresponding solution X, = X}"
of (11.1.1) exists (see Stroock and Varadhan (1979) for general results in
this direction). Then by inspecting the proof of Theorem 11.2.2 one can
see that it suffices to have (11.2.62) satisfied outside a subset of G with
Green measure 0 (see Definition 9.3.4). Under suitable conditions on b and o
one can in fact show that the Green measure is absolutely continuous w.r.t.
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Lebesgue measure. Thus by (11.2.62) (and a strengthened Theorem 11.2.2)
u* is an optimal control. We refer the reader to Fleming and Rishel (1975),
Bensoussan and Lions (1978), Dynkin and Yushkevich (1979) and Krylov
(1980) for details and further studies.

11.3 Stochastic Control Problems with Terminal
Conditions

In many applications there are constraints on the types of Markov controls u
to be considered, for example in terms of the probabilistic behaviour of Y;*
at the terminal time t = T. Such problems can often be handled by applying
a kind of “Lagrange multiplier” method, which we now describe:

Consider the problem of finding $(y) and u*(y) such that

B(y) = sup J*(y) = J* () (11.3.1)
where o
7w =8| [ roc )] (113.2)
0

and where the supremum is taken over the space X of all Markov controls
u: R = U ¢ R¥ such that

EYM(YE) =0, i=12,...,1, (11.3.3)
where M = (M, ..., M;):R"*! — R! is a given continuous function,
EY(IM(Y;.)]] < o0 for all y,u, (11.3.4)

and we interpret g(Y,,(w)) as 0 if 7¢(w) = oco.
Now we introduce a related, but unconstrained problem as follows:

For each A € R! and each Markov control u define
TG .
B = | [z e mers)|  0139)
0

where - denotes the inner product in R'. Find &,(y) and u}(y) such
that

() = sup Ji(w) = 13 () (11:3.6)

without terminal conditions.
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Theorem 11.3.1. Suppose that we for all A € A C R! can find ®»(y) and
u} solving the (unconstrained) stochastic control problem (11.8.5)-(11.3.6).
Moreover, suppose that there exists Ag € A such that

EY[M(Y,0)) = 0. (11.3.7)

Then &(y): = D»,(y) and u*:= u}  solves the constrained stochastic control
problem (11.8.1)~(11.8.8).

Proof. Let u be a Markov control, A € A. Then by the definition of u} we
have

TG
E[ [ 50y o) 4 3 m0v3S )] = )
0

= JX(y) = E”[/f“(Y,")dt +g(Y2)+ A M(Y:g)} . (11.3.8)
0

In particular, if A = Ag and u € K then
EY[M(Y0)] = 0 = EY[M(Y})]
and hence by (11.3.8)

T (y) > J () forall ue K.
Since u} € K the proof is complete. ]

For an application of this result, see Exercise 11.11.

Exercises

11.1. Write down the HJB equation for the problem

o0
(s, ) = irJf E"”[/e“"‘(@(xt) + ud)dt

where
dXt=utdt+dBt N Xt,ut,Bt € R,

a > 0 is a constant and g: R — R is a given bounded, continuous
function. Show that if ¥ satisfies the conditions of Theorem 11.2.1
and u* exists then ow

*(t,x) = —iet— .
w(t2) 3¢ oz
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Consider the stochastic control problem

o]

Zo(s,z) = inf B [ / et fo (uy, Xt)dt] ,

8
where

dXt = dX;‘ = b(ut, Xg)dt + U(Ut, Xg)dBt
X, €R", u, € R*, B,e R™,

fo is a given bounded continuous real function, p > 0 and the inf is
taken over all time-homogeneous Markov controls u, i.e. controls u
of the form u = u{X}). Prove that

Uo(s,z) = e P%¢(x) where &(z) = ¥(0,x) .

(Hint: By definition of E** we have

o0

o8 [ [ potutx), Xoa = / Pl fo (u(X0E), X3 )dt]

8
where E denotes expectation w.r.t. P.)
Define

dXt = T‘Uthdt + aUthng N Xt, Ug,Bz eR

and

&(s,x) = sup E** [/e""fo(X,)dt] ,

where 7, a, p are constants, p > 0 and f is a bounded continuous real
function.

Assume that & satisfies the conditions of Theorem 11.2.1 and that
an optimal Markov control u* exists.

a) Show that

2
Sup{e ”tf(x)+g+ vxg—de-l 2y 29”22;125}

Deduce that o
ox2 — 0
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b) Assume that %15 < 0. Prove that

r22
u*(t,z) = — L
and that
AR 9o\
2{ —pt v —0.
2a (e fo(z) + )6z2 r(ax) 0
c) Assume that = 0. Prove that ‘945 =0and

e_ptfo(:l:) + 2—? =0.

d) Assume that u} = u*(X;) and that b) holds. Prove that (¢, z) =
e~ Pt¢(z) and

®(fo — pE)E" —r(€)* =
(See Exercise 11.2)

The assumptions in Theorem 11.2.1 often fail (see e.g. Exercise 11.10)
so0 it is useful to have results in such cases also. For example, if we
define @, as in Theorem 11.2.3 then, without assuming that u* ex-
ists and without smoothness conditions on &, we have the Bellman
principle (compare with (11.2.6)—( (11.2. ™

D, (y) = sgp EY [/ Y )dr + D4(Y)
0

for all y € G and all stopping times o < 7¢, the sup being taken
over all }"t(m)-adapted controls u. (See Krylov (1980, Th. 6, p. 150).)
Deduce that if &, € C?(G) then

FPy)+ L@ (y) L0 forall ye G,velU.

Assume that f =0 in (11.1.8) and that an optimal Markov control
u* exists. Prove that the function @ is superharmonic in G w.r.t. the
process Y*, for any Markov control u. (Hint: See (11.2.6)-(11.2.7).)

Let X, denote your wealth at time ¢. Suppose that at any time £ you
have a choice between two investments:

1) A risky investment where the unit price X, (t) = X1(f,w) satlsﬁes
the equation

Xm(t) = a1 X (t)dt + lel(t)dBt .
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2) A safe investment where the unit price Xo(t) = Xo(¢t,w) satisfies
dXo(t) = aoXo(t)dt + oo Xo(t)dB,
where a;,o; are constants such that
ay >ag, O1>0

and B;, E, are independent 1-dimensional Brownian motions.
a) Let u(t,w) denote the fraction of the fortune Z;(w) which is placed
in the riskier investment at time ¢. Show that

dZ, = dZ™ = Z,(ayu(t) + ao(1 — u(t)))dt
+Zy(o1u(t)dB; + oo(1 — u(t))dB,) .

b) Assuming that u is a Markov control, v = wu(¢,Z}), find the
generator A* of (¢, Z}).
¢) Write down the HJB equation for the stochastic control problem

&(s, z) = sup E*° [(Z(T”))“']

where T = min(¢y, 79), 7o = inf{t > s; X; = 0} and t; is a given
future time (constant), v € (0,1) is a constant.
d) Find the optimal control u* for the problem in c).

Consider the stochastic control problem
(system) dX, = au(t)dt + u(t)dB, ; Xo=x2>0
where B; € R, u(t) € R and a € R is a given constant, and

(performance) &(s,z) =sup E>*[(X7)],

where 0 < v < 1 is constant and

F=inf{t > 0; X, = 0} A(T — s5),
T being a given future time (constant).
Show that this problem has the optimal control

ar

u*(t,x) = 1=

with corresponding optimal performance

a®(t: — S)’Y) '

&(s,z) = 27 exp ( 21 =)
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Use Dynkin’s formula to prove directly that
a—>b
u*(t,z) = min | 4,1
) =min (515 1)

is the optimal control for the problem in Example 11.2.5, with utility
function N(z) = z7. (Hint: See the argument leading to (11.2.55).)

In Benes (1974) the following stochastic control problem is consid-

ered:
(o0}

¥(s,z) = inf EI[ / e""det] ,
u

where
dX, =dX" = au,dt +dB,; X, B,€R

and a, p are (known) constants, p > 0. Here the controls u are re-
stricted to take values in U = [-1,1].

a) Show that the HJB equation for this problem is

ov ov 0w
inf -ps,2 | U — 4+ .\ _9.
velo11] {e Tt te 67:2} 0

b) If ¥ € C? and u* exists, show that
u*(z) = —sign(ax) ,

where

sign » — 1 ifz>0
ENZ=1_1 ifz<o0.

(Hint: Explajnwhyx>0¢g—‘:>0andx<0:%g<0.)

Let
folz) = 2?2 for0<z<1
M= vz forz>1

and put

T
J4(s,z) = Es*z[/e""fo(xtu)dt} , &(s,x) =supJ¥(s,x)

s

where
dX} = udBy t>s

with control values u; € R, B; € R and

T =inf{t > s; X} <0} .
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a) Define
(s, x) = —j;e_’""fA(x) forx>0,seR
where
~ T foro<z<1
f(x):{ﬁ forz>1.
Prove that

J*(s,2) < (s, )
for all s,z and all (finite) Markov controls u.
(Hint: Put ¢,(s,z) = ze #z for all 5,z and ¢o(s,z) = 2e7**\/T
for all s,z. Then
J*(s,z) < ¢i(s, ) for 1 =1,2

by Theorem 11.2.2.)
b) Show that
P(s,z) = ¢(s,z) -
(Hint: Consider J** (s, x), where

uk(z) = k for0<z<1
BE7=30 forz>1

and let k — o).
Thus »* does not exist and @ is not a C? function. Hence both
conditions for the HIB (I) equation fail in this case.

Consider a 1-dimensional version of the stochastic linear regulator
problem of Example 11.2.4:
t)
U(s,x) = nEl’fC Es* [/((X;‘)2 + Buf)dr] (11.3.9)
8

where
dX}' = wdt + odB; ; fort>s, X;=2x,

u, By € R, 0,0 constants, § > 0, the infinum being over the space
K of all Markov controls u satisfying

E*T[(X3)?] =m?, where m is a constant . (11.3.10)

Solve this problem by using Theorem 11.3.1.
(Hint: Solve for each A € R the unconstrained problem
t)
@y (8, x) = inf E>* [/((x;‘)2 + 6u)dr + A(X})?
u
8

with optimal control u}. Then try to find Ag such that

E*=((Xi)?) = m? )
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11.12.

11.13.

11.14.

11. Application to Stochastic Control

Solve the stochastic control problem
U(s,z) = inf JU(s,z) = J¥ (s,2)
where
oo
J¥(s E’[ / e Pt (X7 —+—0ut)dt]
0
and

dXt = 'Uatdt + O'dBt y

with u;, By € Rand ¢ € R, p > 0, 8 > 0 are constants. (Hint:
Try ¥(s,z) = e **(az? + b) for suitable constants a,b and apply
Theorem 11.2.2.)

Consider the stochastic control problem

T

&(s,z) = sup E** [/e“’("“)ut dt]

0

where the (1-dimensional) system X, is given by
dXt = dX;u = (1 — ’U.t)dt + O'dBt y

and p > 0, o # 0 are constants. The control u, = u;(w) can assume
any value in U = {0,1] and

T = inf{t > 0; X;* <0} (the time of bankruptcy) .
Show that if p > ‘% then the optimal control is
u; =1 for all ¢

and the corresponding value function is

¢(s,x)=e‘ps%(l—exp(—\/%x)); z>0.

The following problem is an infinite horizon version of Example
11.2.5, with consumption added.

Suppose we have a market with two investment possibilities:

(i) a bond /bank account, where the price Xo(t) at time ¢ is given by
dXo(t) = p Xo(t)dt ; Xo(0)=1, p=>0 constant
(ii) a stock, where the price X,(t) at time ¢ is given by
dX;(t) = u X, (t)dt + o X,(t)dB(t); X,(0)=z >0,

where p, o are constants, o # 0.



Exercises 259

Let Yy(t), Y1(t) denote the amount of money that an agent at time
t has invested in the bonds and in the stocks, respectively. Assume
that the agent at any time can choose her consumption rate ¢(t) =
¢(t,w) > 0 and the ratio

_ ___nh)
HO =) =

of her total wealth invested in the stocks. We assume that ¢(t) and
u(t) are F;-adapted processes and that the dynamics of the total
wealth Z(t) = Y\ (t) + Ya(t) is given by

dz(t) = Z(t)[{p(1 — u(t)) + pu(t) — c(t)}dt + o u(t)dB(t)];
Z(0)=2z>0.
Consider the problem to find &, ¢* and u* such that

&(s,z) =sup JO%(s,z) = J< ¥ (s,2) ,

c,u

where

T0 ~
ontoey = | fetorn 20
0

where 6 > 0 and «y € (0,1) are constants and
To = inf{t > 0; Z(t) <0} < oo (time of bankruptcy)
Use Theorem 11.2.2 to prove that, under some conditions,
&(s,z) = Ke %27

for a certain value of the constant K. Find this value of K and hence
find the optimal consumption rate ¢*(t) and the optimal portfolio
u*(t).






12. Application to Mathematical Finance

12.1 Market, Portfolio and Arbitrage

In this chapter we describe how the concepts, methods and results in the
previous chapters can be applied to give a rigorous mathematical model of
finance. We will concentrate on the most fundamental issues and those topics
which are most closely related to the theory in this book. We emphasize that
this chapter only intends to give a brief introduction to this exciting subject,
which has developed very fast during the last years and shows no signs of slow-
ing down. For a more comprehensive treatment see for example Bingham and
Kiesel (1998), Bjork (1998), Elliott and Kopp (1999), Duffie (2000), Karatzas
(1997), Karatzas and Shreve (1998), Lamberton and Lapeyre (1996), Musiela
and Rutkowski (1997), Kallianpur and Karandikar (2000), Merton (1990),
Nielsen (1999), Shiryaev (1999) and the references therein.

First we give the mathematical definitions of some fundamental finance
concepts. We point out that other mathematical models are also possible
and in fact actively investigated. Other models include more general (possibly
discontinuous) semimartingale models (see e.g. Barndorff-Nielsen (1998)) and
even models based on stochastic processes which are not semimartingales,
such as fractional Brownian motion. See e.g. Cutland, Kopp and Willinger
(1995), Lin (1995), Mandelbrot (1997), Hu and @ksendal (2003), Elliott and
Van der Hoek (2003).

Definition 12.1.1. a) A (mathematical) market is an ft(m)-adapted (n+1
dimensional Ité process X(t) = (Xo(t), Xi(t),..., Xn(t)); 0 £t <
which we will assume has the form

)-
T

dX()(t) = p(t,w)X()(t)dt ; X()(O) =1 (1211)
and m
dXi(t) = pa(t,w)dt + D 035(t,w)dB;(t) (12.1.2)
j=1
= p;(t,w)dt + oi(t,w)dB(t) ; X:(0) =z,

where o, is row number ¢ of the n x m matriz [0;;]; 1 <i<neN.
b) The market { X(t)}.ep0,1) is called normalized if Xo(t) = 1.
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c) A portfolio in the market {X(t)}iejo,1) is an (n + 1)-dimensional (t,w)-
measurable and ft(m)-adapted stochastic process
0(t,w) = (Bo(t,w), b1 (t,w), ..., 00 (¢, w)); 0<t<T. (12.1.3)
d) The value at time t of a portfolio 8(t) is defined by

n
V(t,w) = VO(t,w) = 0(t) - X(t) = D _ 0:(t) Xi(t) (12.1.4)
i=0
where - denotes inner product in R*+!.
e) The portfolio 8(t) is called self-financing if

T n m n
/ {IOo(s)p(s)Xo(s)+Z Bi(s)s()+3 [ZOi(s)oij(s)]2}ds<oo a.s.
i=1 J=1 =1
° (12.1.5)
and
dV (t) = 8(t) - dX (t) (12.1.6)
i.€e. .
V(t) = V(0) + / 8(s)-dX(s) for te0,T]. (12.1.7)
0

Comments to Definition 12.1.1.

a) We think of X;(t) = X;(t,w) as the price of security/asset number 7 at
time t. The assets number 1,...,n are called risky because of the presence
of their diffusion terms. They can for example represent stock investments.
The asset number 0 is called safe because of the absence of a diffusion
term (although p(t,w) may depend on w). This asset can for example
represent a bank investment. For simplicity we will assume that p(t,w) is
bounded.

b) Note that we can always make the market normalized by defining

Xi(t) = Xo(t) "1 X;(t); 1<i<n. (12.1.8)
The market _ _ .

is called the normalization of X (t).

Thus normalization corresponds to regarding the price Xo(t) of the safe
investment as the unit of price (the numeraire) and computing the other
prices in terms of this unit. Since /

= ([ o)
0
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we have

t

£(t):= X5 (t) = exp (— /p(s,w)ds) >0 forallte(0,T] (12.1.9)
0

and

dX(8) =d(E(t) Xu(8) =€) (i pXi)dt+0:dB(t); 1<i<n  (12.1.10)

or
dX(t)=£(t)[dX () —p(t) X (t)dt] . (12.1.11)
¢) The components fg(t,w), ..., 0, (t,w) represent the number of units of the
securities number 0,...,n, respectively, which an investor holds at time

t.

d) This is simply the total value of all investments held at time t.

e) Note that condition (12.1.5) is required to make (12.1.7) well-defined. See
Definition 3.3.2.
This part e) of Definition 12.1.1 represents a subtle point in the math-
ematical model. According to Itd’s formula the equation (12.1.4) would
lead to

dV (t) = 6(t) - dX (t) + X(t) - dO(t) + dO(t) - dX (t)

if 6(t) was also an Ité process. However, the requirement (12.1.6) stems
from the corresponding discrete time model: If investments 6(¢;) are made
at discrete times t = %, then the increase in the wealth AV(t;) =
V(tk+1) — V() should be given by

AV (t) = 0(tk) - AX (tx) (12.1.12)

where AX(tr) = X(tky1) — X(tx) is the change in prices, provided that
no money is brought in or taken out from the system i.e. provided the
portfolio is self-financing. If we consider our continuous time model as a
limit of the discrete time case as Aty = txy3 — tx goes to 0, then (12.1.6)
(with the It6 interpretation of the integral) follows from (12.1.12).

f) Note that if @ is self-financing for X (¢) and

Vo) = 8(t) - X(t) = €(t)VO(¢) (12.1.13)
is the value process of the normalized market, then by It6’s formula and
(12.1.11) we have

dV°(t) = £(t)dVO(t) + VO(t)de(t)
= £(t)6(t)dX (t) ~ p(t)E(t)V O (t)dt
£(t)0(t)[dX (t) — p(t) X (t)d]
8(t)dX (t) . (12.1.14)
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Hence @ is also self-financing for the normalized market.

Remark. Note that by combining (12.1.4) and (12.1.6) we get

+Ze ) X4(2)

t
n
/00 )dXo(s +Z/0, )dXi(s).  (12.1.15)
0

i=1
Assume that 8y(t) is an It process. Then, if we put

Yo(t) = Go(t) Xo(t) ,

we get
dYo(t) = p(t)Yo(t)dt + dA(t) ,

where
At) = (/0 (s)dX;(s 0,-(t)X,~(t)> . (12.1.16)

This equation has the solution

E(E)Yolt) = 60(0) + / £(s)dA(s)
0

+ [ &(s)dA(s)

/

Using integration by parts we may rewrite this as

Bo(t) = 60(0) + £(t) A(t) — A(s
o[ s
or .
Bo(t) = VO(0) + £(t)A(t) + /p(s)A(s){(s)ds . (12.1.17)

0

This argument goes both ways, in the sense that if we define 6y(t) by (12.1.17)
{(which is an Ité process), then (12.1.15) holds.

Therefore, if 6,(t),...,0,(t) are chosen, we can always make the
portfolio 6(t) = (6o(t),61(t),...,0,(t)) self-financing by choosing 6y(t)
according to (12.1.17). Moreover, we are free to choose the initial
value V?(0) of the portfolio.

We now make the following definition
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Definition 12.1.2. A portfolio 6(t) which satisfies (12.1.5) and which is
self-financing is called admissible if the corresponding value process VO(t) is
(t,w) a.s. lower bounded, i. e. there exists K = K(#) < co such that

Vet,w)>-K  fora.a. (t,w)e[0,T]x 2. (12.1.18)

This is the analogue of a tame portfolio in the context of Karatzas (1996).
The restriction (12.1.18) reflects a natural condition in real life finance: There
must be a limit to how much debt the creditors can tolerate. See Exam-
ple 12.1.4.

Definition 12.1.3. An admissible portfolio 6(t) is called an arbitrage (in
the market {X:}icj0,1)) #f the corresponding value process VO(t) satisfies
V4(0) =0 and

VOT)>0 as.and P[V®(T)>0]>0.

In other words, 8(t) is an arbitrage if it gives an increase in the value from
time t = 0 to time t = T a.s., and a strictly positive increase with positive
probability. So 8(t) generates a profit without any risk of losing money.

Intuitively, the existence of an arbitrage is a sign of lack of equilibrium in
the market: No real market equilibrium can exist in the long run if there are
arbitrages there. Therefore it is important to be able to determine if a given
market allows an arbitrage or not. Not surprisingly, this question turns out to
be closely related to what conditions we pose on the portfolios that should be
allowed to use. We have defined our admissible portfolios in Definition 12.1.2
above, where condition (12.1.18) was motivated from a modelling point of
view. One could also obtain a mathematically sensible theory with other
conditions instead, for example with the L2-conditions

T n
. . 2 o0 1.
EQ[O/;le,(t)a,(t)[ dt] < (12.1.19)

where @} is the probability measure defined in Lemma 12.2.3.

In any case, some additional conditions are required on the self-financial
portfolios: If we only require the portfolio to be self-financing (and satisfying
(12.1.5)) we can generate virtually any final value V(T'), as the next example
illustrates:

Example 12.1.4. Consider the following market
dXo(t) =0, dX,(t) =dB(t), 0<t<T=1.

Let

t
Y(t)=/dlB(s)8 for 0<t<1.
0
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By Corollary 8.5.5 there exists a Brownian motion B(t) such that

where

By = ds =ln< lt) for 0<t<1,

Let M < oo be a given constant and define

Ti=Tpri = inf{t > 0; B(t) = M}

and
a:=oap:=inf{t > 0;Y(t) = M}.
Then
T<oo as. (Exercise 7.4a))
and )
T=ll’l< ), so o<1 as.
1-c
Define

3 771-_-7 for 0<t <
6:(t) =
0 fora<t<1

and choose 8y(t) according to (12.1.17) and such that V(0) = 0. Then 6(t) =
(Bo(t),64(2)) is self-financing and the corresponding value process is given by

tha
V) = EQ:Y(H\Q) for 0<t<1.

J v1—s
In particular,
V)=Y(a)=M as.
so this portfolio generates the terminal wealth M a.s. although the initial
wealth is 0. In this case condition (12.1.5) reduces to
1

/Of(s)ds <00 as.
0

1 a
ds 1
2 = = ——— =
/01(s)ds—-/1_s ln(l—-a) T<00 as.,
0

0
so (12.1.5) holds. But 6(t) is not admissible, because V(t) = Y(t Aa) =

ﬁ(ln(l—:t‘—,\-;)) is not (¢,w)-a.s. lower bounded for (t,w) € [0, 1] x 2. Note that
0(t) does not satisfy (12.1.19) either, because in this case Q = P and
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E[O/(af(s)ds] = E[r] = o0

(Exercise 7.4b).

This example illustrates that with portfolios only required to be self-
financing and satisfy (12.1.5) one can virtually generate any terminal value
V(T,w) from V(0) = 0, even when the risky price process X;(t) is Brow-
nian motion. This clearly contradicts the real life situation in finance, so a
realistic mathematical model must put stronger restrictions than (12.1.5) on
the portfolios allowed. One such natural restriction is (12.1.18), as we have
adopted.

To emphasize the phenomenon illustrated by this example, we state the
following striking result, which is due to Dudley (1977):

Theorem 12.1.5. Let F be an f;m) -measurable random variable and let
B(t) be m-dimensional Brownian motion. Then there exists ¢ € W™ such
that

T
Fw)= / o(t,w)dB(t) . (12.1.20)
0

Note that ¢ is not unique. See Exercise 3.4.22 in Karatzas and Shreve
(1991). See also Exercise 12.4.
This implies that for any constant z there exists ¢ € W™ such that

T
Flw)=2z+ /¢(t,w)dB(t) .
0

Thus, if we let m = n and interprete B1(t) = Xi(t),..., Bn(t) = Xa(t) as
prices, and put Xo(t) = 1, this means that we can, with any initial fortune
z, generate any f}m)-measurable final value FF = V(T), as long as we are
allowed to choose the portfolio ¢ freely from W™. This again underlines the
need for some extra restriction on the family of portfolios allowed, like con-
dition (12.1.18).

How can we decide if a given market {X(t)}:c[o,r} allows an arbitrage or
not? The following simple result is useful:
Lemma 12.1.6. Suppose there exists a measure Q on f}m) such that P ~ @
and such that the normalized price process {X(t)}ic(0,1) s a local martingale
w.r.t. Q. Then the market { X (t)}ic(o,7) has no arbitrage.
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Proof. Suppose 6(t) is an arbitrage for {Y(t)}te[O,T]- Let Vo(t) be the cor-
responding value process for the normalized market with 70(0) = 0. Then
Vo(t) is a lower bounded local martingale w.r.t. @, by (12.1.14). Therefore
Vo(t) is a supermartingale w.r.t. Q, by Exercise 7.12. Hence

EQV(T) < vP(0)=0. (12.1.21)

But since VO(T,w) >0 as. P we have V' (T,w) > 0 a.s. Q (because Q < P)
and since P[VG(T) > 0] > 0 we have Q[VO(T) > 0] > 0 (because P < Q).
This implies that
9
EqQ[V (T)] >0,
which contradicts (12.1.21). Hence arbitrages do not exist for the normalized

price process {X (t)}. It follows that { X ()} has no arbitrage. (Exercise 12.1).
O

Definition 12.1.7. A measure Q ~ P such that the normalized process
{X()}tepo,1) is a (local) martingale w.r.t. Q is called an equivalent (local)
martingale measure.

Thus Lemma 12.1.6 states that if there exists an equivalent local martin-
gale measure then the market has no arbitrage. In fact, then the market also
satisfies the stronger condition “no free lunch with vanishing risk” (NFLVR).
Conversely, if the market satisfies the NFLVR condition, then there exists
an equivalent martingale measure. See Delbaen and Schachermayer (1994),
(1995), (1997), Levental and Skorohod (1995) and the references therein.
Here we will settle with a weaker result, which nevertheless is good enough
for many applications:

Theorem 12.1.8. a) Suppose there exists a process u(t,w) € V™(0,T) such
that, with X (t,w) = (X1(t,w), ..., Xn(t,w)),

o(t,w)u(t,w) = p(t,w) — p(t,w))?(t,w) for a.a. (t,w) (12.1.22)
and such that

E[exp (% Zu%t,w)dt)] < 00 . (12.1.23)

Then the market {X (t)}:cjo,7) has no arbitrage.

b) (Karatzas (1996), Th. 0.2.4)
Conversely, if the market { X (t)}cjo,1 has no arbitrage, then there exists

an ft(m)-adapted, (t,w)-measurable process u(t,w) such that
o(t,whu(t,w) = u(t,w) — p(t,w) X (t, w)

for a.a. (t,w).
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Proof. a) We may assume that {X ()} is normalized, i.e. that p = 0 (Exercise
12.1). Define the measure Q = @,, on ]_-7(1m) by

T T
dQ(w) = exp (— /u(t, w)dB(t) — %/uz(t,w)dt)dP(w) . (12.1.24)
0 0
Then Q@ ~ P and by the Girsanov theorem II (Theorem 8.6.4) the process
¢
B(t): = / u(s,w)ds + B(t) (12.1.25)
0

is a @Q-Brownian motion and in terms of E(t) we have
dX;(t) = pidt + 0:dB(t) = 0:dB(t); 1<i<n.

Hence X(t) is a local Q-martingale and the conclusion follows from Lemma
12.1.6.

b) Conversely, assume that the market has no arbitrage and is normalized.
Forte€[0,T), w € 2 let

F, = {w; the equation (12.1.22) has no solution}
= {w; p(t,w) does not belong to the linear span of the columns
of o(t,w)}
= {w; Jv = v(t,w) with o7 (t,w)v(t,w) = 0 and
v(t,w) - p(t,w) # 0} .

Define
0:(t,w) = sign(v(t,w) - pt,w))vi(t,w) for we Fy
T 0 for w¢ Fy

for 1<i<n and 6(t,w) according to (12.1.17) and such that V?(0)=0. Since
o(t,w), pu(t,w) are ]—'t(m) adapted and (t,w)-measurable, it follows that we

can choose (t,w) to be F, ('")-adapted and (t,w)-measurable also. Moreover,
6(t,w) is self-financing and it generates the following terminal value

T n
VO(T, w) = / Zéh(s,w)dXi(s)

m

/Xp_ (w)|v(s,w) - p(s, w)lds+/}2=: (g 8, w)ois(s, w))dB (s)

1
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T

- / Xr, (@)[0(s,w) - p(s,w)|ds
° T

+/sign(v(s,w)-u(s,w))Xpa(w)aT(s,w)v(s,w)dB(s)
0
T

= /Xps(w)|v(s,w) cu(s,w)lds 2 0 a.s. .
0

Since the market has no arbitrage we must have that
Xr (w) =0 for a.a. (t,w)
i.e. that (12.1.22) has a solution for a.a. (t,w). O
Example 12.1.9. a) Consider the price process X (t) given by
dXo(t) =0, dXi(t) =2dt+dB(t), dXa(t)=—dt+ dBi(t)+dBa(t) .

() (1

and the system ou = p has the unique solution

I

From Theorem 12.1.8a) we conclude that X (¢) has no arbitrage.

In this case we have

b) Next, consider the price process Y (t) given by

dYo(t) =0, dYiy(t) = 2dt + dBy(t) + dBa(t) ,
dYy(t) = —dt — dBy(t) — dBs(t) .

Here the system of equations ou = u gets the form

BRI B

which has no solutions. So the market has an arbitrage, according to Theo-
rem 12.1.8 b). Indeed, if we choose

8(t) = (6o(t),1,1)

we get
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T
V(0) + /Zdt +dBy(t) + dBa(t) — dt — dBy(t) — dBy(t)
0
=Vo)+T.

Vi(T)

In particular, if we choose 6y(t) according to (12.1.17) and such that
V?(0) = 0 then § will be an arbitrage.

12.2 Attainability and Completeness

We start this section by stating without proof the following useful result,
which is a special case of Proposition 17.1 in Yor (1997):

Lemma 12.2.1. Suppose a process u(t,w) € V™(0, T)satisfies the condition

E[exp (% O/Tuz(s,w)dsﬂ <o00. (12.2.1)

Define the measure Q = Q, on .7—'7(‘"') by

T T
dQ(w) = exp (— /u(t,w)dB(t) — %/uz(t,w)dt> dP(w) . (12.2.2)
0 0

Then

E(t)::/u(s,w)ds+3(t) (12.2.3)
0

s an ft(m)-martingale (and hence an ft(m)-Brownian motion) w.r.t. Q@ and
any F € L2(f'¥n), Q) has a unique representation

T
F(w) = Eq[F) + / ¢(t,w)dB(t) , (12.2.4)
0

where ¢(t,w) is an .Ft(m)-adapted, (t,w)-measurable R™ -valued process such
that

EQ[ /T ¢2(t,w)dt} < o0. (12.2.5)
0
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Remark. a) Note that the filtration {f,Fm')} generated by {B(t)} is con-

tained in {F{™} (by (12.2.3)), but not necessarily equal to {F™}.
Therefore the representation (12.2.4) is not a consequence of the Itd
representation theorem (Theorem 4.2.3) or the Dudley theorem (The-

orem 12.1.5), which in this setting would require that F be Fi-
measurable.

b) To prove that B (t) is an ft(m)-martingale w.r.t Q, we apply Itd’s formula
to the process N
Y(t):= 2B,

where
t t
Z(t) = exp (— /u(s,w)dB(s) - %/u2(s,w)ds) ,
0 0
and use the Bayes formula, Lemma 8.6.2. The details are left to the reader.
(Exercise 12.5.)
Next we make the following simple, but useful observation:

Lemma 12.2.2. Let X(t) = £(t)X(t) be the normalized price process, as
in (12.1.8)-(12.1.11). Suppose B(t) is an admissible portfolio for the market
{X(t)} with value process

Ve(t) = 0(t) - X(t). (12.2.6)

Then 6(t) is also an admissible portfolio for the normalized market {X(t)}
with value process

V2 t): = 0(¢t) - X(t) = £(t)VP(2) (12.2.7)
and vice versa.
In other words,
VO(t) = V9(0) + f@(s)dX(s) i 0<t<T (12.2.8)
0
E@YVE(t) = VO (0) + fta(s)dY(s) ; 0<t<T (12.2.9)
0

Proof. Note that Vo(t) is lower bounded if and only if V9 (t) is lower bounded
(since p(t) is bounded). Consider first the market consisting of the price
process X(t). Let 6(t) be an admissible portfolio for this market with value
process V?(t). Then

-’

Vt)=0(t) - X(t) = £@)VOt) (12.2.10)
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and since 6(t) is self-financing for the market {X(t)} we have, by (12.1.14),

dV°(t) = 6(t)dX (t) . (12.2.11)

t

Hence 6(t) is also admissible for {X(¢)} and Ve(t) = VO(0) + [6(s)dX(s),
0
which shows that (12.2.8) implies (12.2.9).
The argument goes both ways, so the lemma is proved. O

Before we proceed we note the following useful result:

Lemma 12.2.3. Suppose there exists an m-dimensional process u(t,w) €
V™(0,T) such that, with X(t,w) = (X1(t,w),..., Xn(t,w)),

o(t,whu(t,w) = p(t,w) — p(t,w) X (t,w)  for aa (Lw)  (12.2.12)

and
T

E[exp (% /u2(s,w)ds>] <00 . (12.2.13)
0

Define the measure Q = Qu and the process B(t) as in (12.2.2), (12.2.3),

respectively. Then B is a Brownian motion w.r.t. Q and in terms of B we

have the following representation of the normalized market X (t) = £(t) X (t) :
dXo(t) =0 (12.2.14)
dX(t) = £(t)oi(t)dB(t); 1<i<n. (12.2.15)

T
In particular, if [ Eq[€2(t)o?(t)|dt < oo, then Q is an equivalent martingale

0
measure (Definition 12.1.7).

In any case the normalized value process Vo(t) of an admissible portfolio
0 is a local Q-martingale given by

n

dV° (1) = €(2) > 6i(t)ou(t)dB(t) = E(t)0(t)o (t)dB(t) , (12.2.16)

i=1
where B(t) = (61(t), ..., 0m(t)) € RIX™,

Proof. The first statement follows from the Girsanov theorem. To prove the
representation (12.2.15) we compute
dXi(t) = d(£(t)Xi(2)) = £(£)dXi(t) + Xi(t)de()
= £(&)[(wi(t) — p(t) X (t))dt + 0i(t)dB(t)]
= £(8)[(uilt) — p(t)Xi(2))dt + 0i(t)(dB(t) — u;(t)dt)]
= &(t)ou(t)dB(t) .

i
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T
In particular, if [ Eq[¢?(t)o?(t)]dt < 0o, then X;(t) is a martingale w.r.t. Q
0

by Corollary 3.2.6.
Finally, the representation (12.2.16) follows from (12.2.11) and (12.2.15).
O

Note. From now on we assume that there exists a (not necessarily
unique) process u(f,w) € V™(0,T) satisfying (12.2.12) and (12.2.13)
and we let Q = Q, and B be as in (12.2.2), (12.2.3), as described
in Lemma 12.2.3. In particular, by Theorem 12.1.8 this guarantees
that the market {X(t)};cj0,r] has no arbitrage.

Definition 12.2.4.

a) A (European) contingent T-claim (or just a T-claim or claim) is a lower
bounded F{™ -measurable random variable F(w) € L¥(Q).

b) We say that the claim F(w) is attainable (in the market {X(t)}icpo,1)) if
there exists an admissible portfolio 0(t) and a real number z such that

T
Fw)=Vi(T):=2+ /O(t)dX(t) a.s.
0
and such that
—8 . .
V(t) / 3)20 s)oq s)dB s); 0<£t<Tisa@-martingale .

0

If such a 8(t) exists, we call it a replicating or hedging portfolio for F.
c) The market { X (t)}scjo,1) s called complete if every T-claim is attainable.

In other words, a claim F(w) is attainable if there exists a real number z
such that if we start with z as our initial fortune we can find an admissible
portfolio #(t) which generates a value V/(T) at time T which a.s. equals F:

Vi(T,w) = F(w) for a.a. w.

In addition we require that the corresponding normalized value process v (t),
which has the representation (12.2.16), is a martingale and not just a local
martingale w.r.t. Q.

Remark. If we drop the martingale condition in Definition 12.2.4b) then
the replicating portfolio # need not be unique. See Exercise 12.4.

What claims are attainable? Which markets are complete? These are im-
portant, but difficult questions in general. We will give some partial answers.
We are now ready for the main result of this section:
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Theorem 12.2.5. The market {X(t)} is complete if and only if o (t,w) has

a left inverse A(t,w) for a.a. (t,w), i.e. there exists an ft(m)-adapted matrix
valued process A(t,w) € R™*" such that

Alt,w)o(t,w) = I, for a.a. (t,w) . (12.2.17)
Remark. Note that the property (12.2.17) is equivalent to the property
rank o(t,w) = m for a.a. (t,w) . (12.2.18)

Proof of Theorem 12.2.5. (i) Assume that (12.2.17) hold. Let Q and B be
as in (12.2.2), (12.2.3). Let F be a T-claim. We want to prove that there
exists an admissible portfolio 8(t) = (6o(t),...,0.(t)) and a real number z
such that if we put

Vit)y=2z+ /H(S)dX(s) ;0 0<t<T
0

then V' (¢) is a Q-martingale and
VIT) = F(w) as.

By (12.2.16) this is equivalent to

T
ETIFW) =T (D) =2+ [ €0 6:000)aBO) .
0 i=1

By Lemma 12.2.1 we have a unique representation

m

E€(T)F(w) = Eqlé(T)F)+ /¢tw>d8(t>—EQ[¢ MF)+ [ Y 85(t.0)aB, )

0 J=1
for some ¢(t,w) = (¢p1(t,w),..., ¢m(t,w)) € R™. Hence we put
z = EqQlé(T)F]
and we choose 8(t) = (61(t), .. .,0n(t)) such that
EB) Y 6it)oy(t) = ¢;(t); 1<j<m

=1

i.e. such that -
£(8)6(t)a(t) = o(t) .
By (12.2.17) this equation in §(t) has the solution

8(t,w) = Xo(t)b(t,w)A(t,w) .
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By choosing 6y according to (12.1.17) the portfolio becomes self-financing. We
t
can also choose V?(0) = 2. Moreover, since £(t)V2(t) = z + [0(s)dX(s) =
0
t

z+ [ ¢(s)d§(s) is a Q-martingale, we get the useful formula
0

EVE(1) = Bole(T)VE(T)F™) = Eqle(T)FIF™), (12.2.19)

where f-'t(m) is the o-algebra generated by B(s); s < t. In particular, V(¢) is
lower bounded. Hence the market {X (¢)} is complete.

(ii) Conversely, assume that {X(t)} is complete. Then {X(t)} is com-
plete, so we may assume that p = 0. The calculation in part a) shows
that the value process V?(t) generated by an admissible portfolio 8(t) =
(Bo(t),61(t), . ..,0n(t)) with VI(0) = z is

n

t
Zﬂiaij)déj =2z +4 /AG' d§ s (12220)
0

i=1

where 8(t) = (61(t), . .., 0a(t)).
Since {X(¢)} is complete we can hedge any T-claim. Choose an .7—}('")-

T
adapted process ¢(t,w) € R™ such that Eg[f ¢?(t,w)dt] < co and define
0
T ~
Flwy:= f¢(t,w)dB(t). Then Eg[F?] < oo so by completeness there exists

for an admissible portfolio 8 = (6, 8) such that V(¢ f odB is a Q-

T
Fw)=V%T) = ] 6o dB
0

t
Eq|F | F{™] = [ ¢dB
/

martingale and

But then

a.s. for all t € [0, 7], where ]-'t(m) is the o-algebra generated by B(s); s < t.
Hence by uniqueness we have ¢(t,w) = 8(t,w)o(t,w) for a.a. (¢, w). This
implies that ¢(t,w) belongs to the linear span of the rows {o;(t,w)}’; of
o(t,w). Since ¢ € L3(X x Q) was arbitrary, we conclude that the hnear span
of {oi(t,w)}™, is the whole of R™ for a.a. (t,w). So ranko(t,w) = m and
there exists A(t,w) € R™*™ such that

Alt,w)a(t,w) = I, .
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Corollary 12.2.6. (a) If n = m then the market is complete if and only if
o(t,w) is invertible for a.a. (t,w).

(b) If the market is complete, then
rank o(t,w) =m for a.a. (¢t,w) .

In particular, n > m.
Moreover, the process u(t,w) satisfying (12.2.12) is unique.

Proof. (a) is a direct consequence of Theorem 12.2.5, since the existence of a
left inverse implies invertibility when n = m. The existence of a left inverse
of an n x m matrix is only possible if the rank is equal to m, which again
implies that n > m. Moreover, the only solution u(t,w) of (12.2.12) is given
by

u(t,w) = A(t,w)|u(t,w) — p(t,w) X (t,w)] .

This shows (b). O
Example 12.2.7. Define Xo(t) =1 and

dX,(t) 1 10 dBy(8)
o] M H B

Then p = 0 and the equation (12.2.12) gets the form

1 0 u 1
cu= 0 1 [u‘} =2
1 1] L7 3
which has the unique solution u; = 1, uy = 2. Since u is constant, it is

clear that (12.2.12) and (12.2.13) hold. It is immediate that ranko = 2, so
(12.2.18) holds and the market is complete by Theorem 12.2.5.

Since
100(1)(1)_10_1
01011_01“2’

we see that in this case

is a left inverse of o =

_— O
=
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Example 12.2.8. Let Xo(t) =1 and
Xm(t) = 2dt + dBl(t) + dB2(t) .

Then = 2,0 = (1,1) € R™2, 50 n = 1 < 2 = m. Hence this market cannot
be complete, by Corollary 12.2.6. So there exist T-claims which cannot be
hedged. Can we find such a T-claim? Let (t) = (fo(t), 01(t)) be an admis-
sible portfolio. Then the corresponding value process V2 (t) is given by (see
(12.2.20))

VOt) =z + /91(5)(d§1(s) +dBy(s)) .
0

So if # hedges a T-claim F(w) we have that VZ(¢) is a Q-martingale and
T
Fw)y=z+ /91(3)(d§1(s) +dBsy(s)) . (12.2.21)
0

Choose F(w) = g(By(T)), where g:R — R is bounded. Then by the
Itd representation theorem applied to the 2-dimensional Brownian motion
B(t) = (Bi1(t), Ba(t)) there is a unique ¢(t,w) = {¢1(t,w), d2{t,w)) such that

Eq[ i (#3(s) + $3(s))ds) < 0o and
T
9(By(T)) = Eqlg(B1(T))] + / $1(s)dBi(s) + p2(s)dBa(s)
0

and by the It6 representation theorem applied to B (t), we must have ¢o=0,
i.e.

T
9(Br(T)) = Eqlo(Br(T))] + / 61(5)dB1(s)
0

Comparing this with (12.2.21) and using the martingale property we get

2+ [ 64(9)(dBr(s) + dBa(s)) = EolFIF) = ElF) + [oiidBs),
0 0

which implies both that 6,(s) = ¢;(s) and that #,(s) = 0 for a.a. (s,w). This

contradiction proves that F(w) = g(B1(T’)) cannot be hedged if g # 0.

Remark. There is a striking characterization of completeness in terms of
equivalent martingale measures, due to Harrison and Pliska (1983) and Jacod
(1979): : )

A market {X(t)} is complete if and only if there is one and only one
equivalent martingale measure for the normalized market {X(t)}.

(Compare this result with the equivalent martingale measure characteri-
zation of markets with no arbitrage/NFLVR, stated after Definition 12.1.7!)
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12.3 Option Pricing

European Options

Let F(w) be a T-claim. A European option on the claim F is a guarantee
to be paid the amount F(w) at time ¢ = T > 0. How much would you be
willing to pay at time ¢ = 0 for such a guarantee? You could argue as follows:
If I — the buyer of the option — pay the price y for this guarantee, then I
have an initial fortune —y in my investment strategy. With this initial fortune
(debt) it must be possible to hedge to time T" a value V2, (T, w) which, if the
guaranteed payoff F'(w) is added, gives me a nonnegative result:

V_ey(T, w)+ F(w) >0 as.
Thus the maximal price p = p(F') the buyer is willing to pay is

(Buyer’s price of the (European) contingent claim F') (12.3.1)
p(F) = sup{y; There exists an admissible portfolio §

T
such that V2, (T,w): = —y + /G(S)dX(s) > —F(w) as.}
0

On the other hand, the seller of this guarantee could argue as follows:

If I - the seller — receive the price z for this guarantee, then I can use
this as the initial value in an investment strategy. With this initial fortune it
must be possible to hedge to time T a value V(T,w) which is not less than
the amount F{w) that I have promised to pay to the buyer:

Vi(T,w) > F(w) as.
Thus the minimal price g = g(F') the seller is willing to accept is

(Seller’s price of the (European) contingent claim F') (12.3.2)
g(F) = inf{z; There exists an admissible portfolio 8

T
such that V(T ,w): =z + /G(S)dX(s) > F(w) a.s.}
0

Definition 12.3.1. If p(F) = q(F') we call this common value the price (at
t = 0) of the (European) T-contingent claim F(w).

Two important examples of European contingent claims are
a) the European call, where

F(w) = (Xi(T,w) - K)*
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for some i € {1,2,...,n} and some K > 0. This option gives the owner
the right (but not the obligation) to buy oie unit of security number i at
the specified price K (the exercise price) at time T. So if X;(T,w) > K
then thie owner of the option will obtain the payoff X,;(T,w) — K at time
T, while if X;(T.w) < K then the owner will not exercise his option and
the payoff is 0.

b) Similarly, the European put option gives the owner the right (but not
the obligation) to sell one unit of security number i at a specified price
K at time T. This option gives the owner the payoff

Fw) = (K — X{(T,w))* .

Theorem 12.3.2. a) Suppose (12.2.12) and (12.2.18) hold and let Q be as
in (12.2.2). Let F be a (European) T-claim. Then

essinf&(T)F(w) < p(F) < Eql¢(T)F) < q(F) < 0. (12.3.3)

b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then the price of the (European) T'-claim F is

p(F) = Eq[&(T)F] = q(F) . (12.3.4)
Proof. a) Suppose y € R and there exists an admissible portfolio # such that

T
V_"y(T,w) =—y+ /G(S)dX(s) > —F(w) as.
0

i.e., using (12.2.7) and Lemma 12.2.4,

n

—-y+ /Zei(s)g(s)oi(s)dé(s) > —¢(T)YF(w) as. (12.3.5)

0 i=1

where B is defined in (12.2.3).
t n -
Since [ " 6;(s)&(s)oi(s)dB(s) is a lower bounded local Q-martingale, it is
0 i=1

t n o
a supermartingale, by Exercise 7.12. Hence Eq[[ Y 6:(s)&(s)o:(s)dB(s)] < 0
0 i=1

for all ¢ € [0, T]. Therefore, taking the expectation of (12.3.5) with respect
to @ we get
y < EQ[¢(T)F].

Hence

p(F) < Eq[¢(T)F],
provided such a portfolio 6 exists for some y € R. This proves the second
inequality in (12.3.3). Clearly, if y < &§(T)F(w) for a.a. w, we can choose
6 = (-y,0,...,0). Hence the first inequality in (12.3.3) holds.
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Similarly, if there exists z € R and an admissible portfolio 8 such that
z+/9(s)dX(s) > F(w) as.
then, as in (12.3.5)
T n
z +/ 0i(s s)dB(s) > ¢(T)F(w) as.
0 i=1
Taking Q-expectations we get

z > EQ¢(T)F],

provided such z and € exist.
If no such z, 8 exist, then g(F) = oo > Eq[¢(T) F].

b) Next, assume in addition that the market is complete. Then by complete-
ness we can find (unique) y € R and 6 such that

_y+/9(5)dX(s) = ——F(w) a.s.

i.e. (by (12.2.7) and Lemma 12.2.4)

—y+ / 3 6i(s)e(s)oi(s)dB(s) = —6(T)F(w) as.,

n
=1

[}

t n
which gives, since [ Z 0:(s)¢(s)os(s)dB(s) is a Q-martingale (Definition
0

)
12.2.4c)),
y = EQ[¢(T)F].

Hence
p(F) = Eq[¢(T)F]

Combined with a) this gives
p(F) = Eq[¢(T)F] .
A similar argument gives that

g(F) = EQ[¢(T)F] .



282 12. Application to Mathematical Finance
How to Hedge an Attainable Claim

We have seen that if V(t) is the value process of an admissible portfolio 8(t)

for the market {X(t)}, then_VZ(t): = £(t)V2(t) is the value process of 8(t)
for the normalized market {X(t)} (Lemma 12.2.3). Hence we have

ERVE(R) =2+ / 8(s)dX (s) . (12.3.6)
0

If (12.2.12) and (12.2.13) hold, then — if Q, B are defined as before ((12.2.2)
and (12.2.3)) - we can rewrite this as (see Lemma 12.2.4)

ERVI(t) =2+ /29,-(5){(5) Zaij(s)dﬁj(s) . (12.3.7)
0 i=1 j=1

Therefore, the portfolio 8(t) = (8g(t),...,0.(t)) needed to hedge a given
T-claim F is given by

£(t,w)(O1(t), -, 6n(t))o(t,w) = (t,w) , (12.3.8)

ie.
0(t) = Xo(t)o(t)A(t) ,
where ¢(t,w) € R™ is such that

T
ET)F(w) =z + / #(t,w)dB(t) (12.3.9)
0

(and 6(t) is given by (12.1.14)).

In view of this it is of interest to find explicitly the integrand ¢(¢,w)
when F is given. One way of doing this is by using a generalized version
of the Clark-Ocone theorem from the Malliavin calculus. See Karatzas and
Ocone (1991). A survey containing their result is in @ksendal (1996)). In the
Markovian case, however, there is a simpler method, which we now describe.
It is a modification of a method used by Hu (1995).

Let Y(¢) be an Ité diffusion in R* of the form

dY (t) = b(Y (t))dt + o(Y (¢))dB(t), YO =y (12.3.10)

where b:R¥ — RF and 0:RF — R**¢ are given Lipschitz continuous func-
tions. Assume that Y (t) is uniformly elliptic, i.e. that there exists a constant
¢ > 0 such that

tTo(y)oT (y)z > c|z)? (12.3.11)

for all z € R*, y € R,
Let h € CZ(RF) and define

9(t,y) = B(Y(T-t))l; te[0,T], yeR*. (12.3.12)
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Then by uniform ellipticity it is known that g(t,y) € C12((0,T) x R*) (see
Dynkin 1965 II, Theorem 13.18 p. 53 and Dynkin 1965 I, Theorem 5.11 p. 162)
and hence Kolmogorov’s backward equation (Theorem 8.1.1) gives that

9 ¥ N
- +i§b Py )i ( 8%8% =0. (12.3.13)
Now put
Z(t) = g(t,Y(t)) . (12.3.14)
Then by Itd’s formula we have, by (12.3.13),
dZ(t) = ‘;f t,Y(t) )dt+z 5y (b Y (£)dYi(t))
+Z”100 i ( )—nﬂi]—tY
= z (t Y (t)oi(Y(t)dB(t) . (12.3.15)
Moreover,
Z(T) = o(T.Y(T)) = Eg'V[h(Y (0))] = h(Y (T)) (12.3.16)
and
Z(0) = g(0,Y(0)) = E4[h(Y(T))] - (12.3.17)

Combining (12.2.15)—(12.3.17) we get
h(Y(T)) = E4[h(Y(T))] + / #(t,w)dB(t) , (12.3.18)
0
where

k
o(t,w) = 258— EY[M(Y (T = 1)],_y (yos(Y (1)) - (12.3.19)

More generally, by approximating more general processes Y (¢) by uniformly
elliptic processes Y (")(t) and more general functions h(y) by C2 functions
H™)(y); n,m = 1,2,... we obtain the following conclusion:

Theorem 12.3.3. Let Y(t) € R* be an Ité diffusion of the form (12.8.10)

and assume that h : R* — R is a given function such that

) k .
{b—nyg)[h(Y(T - t))]} | eaists (12.3.20)

and
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Eg[/¢2(t,w)dt] <00, (12.3.21)
where
£ o
Z o ES[RY(T = 1)) ,_y @ (Y (1)) - (12.3.22)

Then we have the Ité representation formula
WY (T)) = Eolh(Y(T))] + / (t, w)dB(t) . (12.3.23)
0

To apply this result to find ¢ in (12.3.9) we rewrite the equation for X (t)
in terms of B(t) and get, using (12.2.12) and (12.2.3), the following system

dXo(t) = p(X(t)) Xo(t)dt (12.3.24)
dX;(t) = p(X () X;(t)dt + 0:(X (¢))dB(t); 1<i<n. (12.3.25)
Therefore Theorem 12.3.3 gives

Corollary 12.3.4. Let X(t) = (Xoft),...,Xn(t)) € R™*! be given by
(12.8.24)-(12.8.25) and assume that hy : R™! — R is a given function
such that

{ -a%Eg [E(T = t)ho(X(T — t))]};l ezists (12.3.26)
and

Eg[/¢2(t,w)dt] < o0 (12.3.27)

where

n

Z

=1 ’L

EZ [T — t)ho(X(T — 1)) ,_x (o 0s(X (1)) . (12:3.28)

Then we have the Ité representation formula
ED)ho(X(T)) = EQle@ha(X(T)] + [ otwdB(t) . (12329)
0 ,

We summarize our results about pricing and hedging of European T-
claims as follows:
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Theorem 12.3.5. Let {X(t)}icjo,1) be a complete market. Suppose (12.2.12)

and (12.2.18) hold and let Q, B be as in (12.2.2), (12.2.3). Let F be o Eu-
ropean T-claim such that EQ[(T)F] < oo. Then the price of the claim F
18

p(F) = Eql€(T)F] . (12.3.30)

Moreover, to find a replicating (hedging) portfolio (t) = (0o(t),...,0.(¢)) for
the claim F we first find (for example by using Corollary 12.3.4 if possible)

T
an adapted process ¢ such that Eq| [ ¢*(t)dt] < oo and
0

T
§(T)F = Eq[¢(T)F) + /¢(t,w)d§(t) . (12.3.31)
0

o~

Then we choose 0(t) = (01{t),...,0.(t)) such that
B(t, w)e(t,w)o(t,w) = (t,w) (12.3.32)
and we choose Oy (t) as in (12.1.17).

Proof. (12.3.26) is just part b) of Theorem 12.3.2. The equation (12.3.32)
follows from (12.3.8). Note that the equation (12.3.32) has the solution

B(t,w) = Xo(t)o(t, w)Alt, w) (12.3.33)
where A(t,w) is the left inverse of o(¢,w) (Theorem 12.2.5). (]

Example 12.3.6. Suppose the market is (Xo(t), X1(t)), where Xo(t) = e**
and X, (t) is an Ornstein-Uhlenbeck process

dXi1(t) = aX,(t)dt + odB(t); X1(0) =z,
where p > 0, a, o are constants, 0 # 0. How do we hedge the claim
F(w) = exp(X,(T)) 7
The portfolio 8(t) = (6o(t),01(¢)) that we seek is given by (12.3.33), i.e.
61(t,w) = e'o 1p(t,w)

where ¢(t,w) and V(0) = z are uniquely given by (12.3.9), i.e.

T
ET)F(w) =z + /¢>(t,w)d§(t)
0
or

T
F(w) = exp(X,(T)) = ze°T + / dolt,w)dB(t)
0



286 12. Application to Mathematical Finance
where
$o(t, w) = e Tg(t,w) .
To find ¢(t, w) explicitly we apply Corollary 12.3.4:
Note that in terms of B we have

dX,(t) = pXi(t)dt + 0dB(t);  X1(0) =z, .

This equation has the solution (see Exercise 5.5)

¢
Xi(t) = 71" + a/e"(t's)dﬁ(s) .
0

Hence, if we choose ho(z1) = exp(x;) we have

EZ [ho(X (T — 1))] = E&' [exp(X1(T — 1))]

= Eq [exp {:1:16"(7'4) +0 ep(T~t—s)d§(5)}]

O\T]

2
= exp {zleP(T 0 4 Zﬁ( e2P(T=1) _ 1)} if p#£0.

This gives, by (12.3.28),

d

¢0(t’w) = E—— 51 [hO(X(T - t))]J,';:Xl(t)U

= oe”T D exp { Xy(t)e? T + (270 _ D} i p#0.

4p
Therefore, by (12.3.33),

) - { PO ‘>+ 2(#T-0 1)} ifp£0
' exp{X1(t) + Z(T — t)} ifp=0.

The Generalized Black-Scholes Model

Let us now specialize to a situation where the market has just two securities
Xo(t), X1(t) where Xo, X are Itd processes of the form

dXo(t) = p(t,w)Xo(t)dt (as before) (12.3.34)
dX1(t) = a(t,w) X1 (H)dt + B(t,w) X1 (t)dB(t),  (12.3.35)

where B(t) is 1-dimensional and a(t,w), 5(t,w) are 1-dimensional processes
in W.
Note that the solution of (12.3.35) is
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X, (t) = X,(0) exp (/6(s,w)dB(s)+/(a(s,w)—% 2(s,u.)))ds;) . (12.3.36)
0 0

The equation (12.2.12) gets the form
X,(8)B(t,w)ult,w) = Xa(t)alt,w) — X)(£)p(tw)
which has the solution
u(t,w) = Bt w)a(t,w) — p(t,w)]  if B(t,w) #0. (12.3.37)
So (12.2.13) holds iff

E[exp (g/T(o‘(s’“’) _p(s’w))zds)} <oo. (12.3.38)
0

B*(s,w)

In this case we have an equivalent martingale measure @ given by (12.2.2)
and the market has no arbitrage, by Theorem 12.1.8. Moreover, the market
is complete by Corollary 12.2.5. Therefore we get by Theorem 12.3.2 that
the price at t = 0 of a European option with payoff given by a contingent
T-claim F'is

p(F) = q(F) = Eql¢(T)F], (12.3.39)

provided this quantity is finite.
Now suppose that p(t,w) = p(t) and B(t,w) = B(t) are deterministic and
that the payoff F'(w) has the form

F(w) = f(X1(T,w))

for some lower bounded function f: R — R such that
EQ[f(X1(T))] < 00

Then by (12.3.39) the price p = p(F) = g(F) is, with z; = X1(0),

p=€D)Ea|f (1o O/T B(s)dB(s) + /T (o) - 480 ) )|

T —~
Under the measure Q the random variable Y = [ 8(s)dB(s) is normally
0

T
distributed with mean 0 and variance 6%:= [ 3%(t)dt and therefore we can

0
write down a more explicit formula for p. The result is the following:
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Theorem 12.3.7 (The generalized Black-Scholes formula).
Suppose X (t) = (Xo(t), X1(2)) is given by

dXo(t) = p(t) Xo(t)dt ; Xo(0) =1 (12.3.40)
dX1(t) = a(t,w) X1 ()t + BE) X1 (dB(E): X1(0) =21 >0  (12.3.41)

where p(t), B(t) are deterministic and

el (] D20 0] <o

a) Then the market {X(t)} is arbitrage free and complete and the price
at time t = 0 of the European T-claim F(w) = f(Xi(T,w)) where
EqQ[f(X1(T,w))] < oo is

5\/_ /f(xl exp [y+/(p(s) 15%( s))dsD exp( 262)dy (12.3.42)

where £(T) = exp(— fp s)ds) and 6% = f,@2 (s)ds.

b) If p,a,8 # 0 are constants and f € CY(R), then the self-financing
portfolio 8(t) = (8o(t),0:1(t)) needed to replicate the T-claim F(w) =
F(X1(T,w)) s given by

_ 1 / expd B _ lg?yp_
)—m!f(xl(t,w) xp{Bz + (p — 160)(T— )

2

2(T_1_t_) —16A(T-1))ds (12.3.43)

- exp (ﬂz -

and O(t,w) is determined by (12.1.14) and V?(0) = p

Proof. Part a) is already proved and part b) follows from Theorem 12.3.4
and Theorem 12.3.5.

b) The portfolio we seek is by (12.3.33) given by
el(tv w) = Xo(t)(ﬂxl (tvw))——l‘b(tv w)
where ¢(t,w) is given by (12.3.28) with A(y) = f(y) and

X1(t) = z1 exp{BB(t) + (p— §B)t} .

Hence
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6:1(t,w) = e”‘(ﬂXl(t,w))'l—e% [EG e T F (XTI, _x, ( BX1(tw)

= 1)L B[ exp{BBT — )+ (o= )T = 0D,

= /D E[f (21 exp{BB(T — t) + (p— 36°)(T — t)})
-exp{BB(T ~t) + (0 = 38T -}, _x, (0

ep(t_T) , 102
- [ P ) expFa + (- 36O(T - 1))
Ver(T —t)
R .2
exp{Bz + (p— 38%)(T — t)}e " Vdz,
which is (12.3.43). o
An important special case of Theorem 12.3.7 is the following:

Corollary 12.3.8 (The classical Black-Scholes formula).
a) Suppose X (t) = (Xo(t), X, (t)) is the classical Black-Scholes market

dXo(t) = pXo(t)dt ; Xo(0) =1
dXi(t) = aX,(t)dt + BX1()dB(t);  X1(0) =21 >0

where p,a, B # 0 are constants. Then the price p at time 0 of the European
call option, with payoff

F(w) = (X1(T,w) - K)* (12.3.44)
where K > 0 is a constant (the exercise price) is
p=n10(n+iBVT) - Ke PTd(n— 18VT) (12.3.45)
where -
_ g-1p—1/2( 1, Tt .
n=p8"'T (m = +pT) (12.3.46)
and
1 f 1.2
S(y) = — A €ER 12.3.47
®) Tae / e z oy ( )

is the standard normal distribution function.

b) The replicating portfolio 6(t) = (8o(t),0:1(t)) for this claim F in (12.3.44)
is given by

O1(t,w) = ¢(ﬂ“(T—t)‘1/2(ln %@ + p(T—t) + %ﬂZ(T~t))) (12.3.48)

with O(t,w) determined by (12.1.17) and V®(0) = p.
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Remark. Note that, in particular, 6,(t,w) > 0 for all ¢ € [0,7]. This
means that we can replicate the European call without shortselling. For the
European put the situation is different. See Exercise 12.16.

Proof. a) This follows by applying Theorem 12.3.7a) to the function
fle)=(z-K)*.
Then the corresponding integral (12.3.42) can be written

e~ T

P= e | @reely+ (o= $69T) - K)exp (- gfr )y

where v = In(£) — pT + }5°T.

This integral splits into two parts, both of which can be reduced to in-
tegrals of standard normal distribution type by completing the square. We
leave the details to the reader. (Exercise 12.13.)

b) This follows similarly from Theorem 12.3.7b). The function f(z)=(2—K)*
is not C?', but an approximation argument shows that formula (12.3.43) still
holds if we represent f’ by

fl(z) = X[K,oo)(z) .

Then the rest follows by completing the square as in a). (Exercise 12.13.) O

American options

The difference between European and American options is that in the latter
case the buyer of the option is free to choose any exercise time 7 before or at
the given expiration time T' (and the guaranteed payoff may depend on both
7 and w.) This exercise time 7 may be stochastic (depend on w), but only in
such a way that the decision to exercise before or at a time ¢ only depends
on the history up to time t. More precisely, we require that for all ¢ we have

fw @) <t} e K™
In other words, 7 must be an ]-'t(m)—stopping time (Definition 7.2.1).

Definition 12.3.9. An American contingent T-claim is an ﬁm)-adapted,
(t,w)-measurable and a.s. lower bounded continuous stochastic process F(t) =
F(t,w); t € [0,T], w € 2. An American option on such a claim F(t,w)
gives the owner of the option the right (but not the obligation) to choose
any stopping time T{(w) < T as exercise time for the option, resulting in a
payment F(r(w),w) to the owner.



12.3 Option Pricing 291

Let F(t) = F(t,w) be an American contingent claim. Suppose you were
offered a guarantee to be paid the amount F(7(w),w) at the (stopping) time
7(w) < T that you are free to choose. How much would you be willing to pay
for such a guarantee? We repeat the argument preceding Definition 12.3.1:

If I - the buyer — pay the price y for this guarantee, then I will have an
initial fortune (debt) —y in my investment strategy. With this initial fortune
—y it must be possible to find a stopping time 7 < T and an admissible
portfolio @ such that

]
V2, (1(w),w) + F(1(w),w) >0 a.s.
Thus the maximal price p = pa (F) the buyer is willing to pay is
(Buyer’s price of the American contingent claim F) (12.3.49)

pa(F) = sup{y; There exists a stopping time 7 < T
and an admissible portfolio # such that
T{w)
] i
V2, (1(w),w):= -y + / 0(s)dX(s) > —F(7(w),w) a.s.}
0

On the other hand, the seller could argue as follows: If I - the seller ~ receive
the price z for such a guarantee, then with this initial fortune z it must be
possible to find an admissible portfolio § which generates a value process
which at any time is not less than the amount promised to pay to the buyer:

Ve (t,w) > F(t,w) a.s. forall te0,T].
Thus the minimal price g = ga(F) the seller is willing to accept is

(Seller’s price of the American contingent claim F) (12.3.50)
ga(F) = inf{z; There exists an admissible portfolio 8
such that for all t € [0, T] we have

Vet,w):=z +/0(s)dX(s) > F(t,w) a.s.}
0

We can now prove a result analogous to Theorem 12.3.2. The result is basi-
cally due to Bensoussan (1984) and Karatzas (1988).

Theorem 12.3.10 (Pricing formula for American options).

a) Suppose (12.2.12) and (12.2.13) and let Q be as in (12.2.2). Let F(t) =
F(t,w); t € [0, T} be an American contingent T-claim such that

sup Eq[€(T)F(r)] < oo (12.3.51)
<T

Then
\ Pa(F) < sup EQ¢(T)F (7)) < qa(F) < 0. (12.3.52)
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b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then

pa(F) = sup EQ[E(r)F(7)] = qa(F) . (12.3.53)

Proof. a) We proceed as in the proof of Theorem 12.3.2: Suppose y € R and
there exists a stopping time 7 < T and an admissible portfolio # such that

Ve, (rw)=—y+ /o(s)dX(s) > -F(1) as.
0
Then as before we get
—y+ /Zei(s)g(s)ai(s)dé(s) = V‘iy(r) =E(r)V2, (1) = —€(T)F(1) as.
0 t=1

Taking expectations with respect to ) we get, since V_y(t) is a J-supermar-
tingale
¥ < BQl§(r)F (7))} < sup Bqle(1)F(r)] -

Since this holds for all such y we conclude that
pa(F) < sgg Eqle(T)F(T)] . (12.3.54)

Similarly, suppose z € R and there exists an admissible portfolio 8 such that
t
Vit,w)=z+ / 0(s)dX(s) > F(t) as. forall te0,T].
0
Then, as above, if 7 < T is a stopping time we get

- / S 6(s)€(s)os(s)dB(s) = Vo (r) = E(rVA(7) 2 €(r)F(7) as.
o =1

==

Again, taking expectations with respect to @ and then supremum over 7 < T
we get
z > sup Egl¢(T)F(7)] .

T<T

Since this holds for all such z, we get

ga(F) > Sgg Eq[é(r)F (7)) . (1/2.3.55)

b) Next, assume in addition that the market is complete. Choose a stopping
time 7 < T. Define
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B [k if F(t,w)>k
Fi(t) = Fy(t,w) = {F(Lw) if F(t,w) <k

and put
Gi(w) = Xo(T)E(T) Fi(r) -

Then Gy is a bounded T-claim, so by completeness we can find y, € R and
a portfolio #%) such that

T
—Yr + /o(k)(s)dX(s) = —Gilw) as.
0

and such that .

—ue+ [ 69(5)dX(s)
0
is a -martingale. Then, by (12.2.8)—(12.2.9),

T
Yk + /9('“)(8)15(_(8) = —§(T)Gk(w) = —€(7) Fi(7)

0

and hence

T T
—yk + / 6® (5)dX (s) = Bq| - ux + / 60 (5)dX (s) | F{™|
0 0

= Eq[—£(r)Fi(r) | F{™] = —¢(7)Fi(r) -
From this we get, again by (12.2.8)—(12.2.9),

~yk + / %) (s)dX(s) = —Fi(r) as.
0

and
ye = EQ[&(T)Fi(7)] -

This shows that any price of the form Eg{¢(7)Fi(7)] for some stopping time
7 < T would be acceptable for the buyer of an American option on the claim
Fy.(t,w). Hence

pa(F) 2 pa(Fi) 2 fggEQ[’E(T)Fk(T)] :

Letting k — oo we obtain by monotone convergence

pa(F) 2 sup Eq[¢(r)F(r)] .
r<T
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It remains to show that if we put

z= sup Eg[¢(T)F(T)] (12.3.56)
0<7<T

then there exists an admissible portfolio 8(s, w) which superreplicates F(t,w),
in the sense that

z+ /O(S,w)dX(s) > F(t,w) for a.a. (t,w) € [0,T] x 2. (12.3.57)

The details of the proof of this can be found in Karatzas (1997), Theo-
rem 1.4.3. Here we only sketch the proof:
Define the Snell envelope

S@t) = tgggTEQ[E(T)F(T)If,‘""] . 0<t<T.

Then S(t) is a supermartingale w.r.t. @ and {.7-',('")}, so by the Doob-Meyer
decomposition we can write

S(ty=M(t)~At); 0<t<T

where M(t) is a Q, {F™ }-martingale with M(0) = S(0) = z and A(t) is a
nondecreasing process with A(0) = 0. It is a consequence of Lemma 12.2.1
that we can represent the martingale M as an It integral w.r.t B. Hence

z+/¢(s,w)d§(s) =M(t)=SEt)+A{t)>8(t); 0<t<T (12.3.58)
0

for some .Ft(m)-adapted process ¢(s,w). Since the market is complete, we
know by Theorem 12.2.5 that o(t,w) has a left inverse A(t, w). So if we define
§=(6,...,0,) by

B(t,w) = Xo(t)p(t, w)A(t,w)

then by (12.3.58) and Lemma 12.2.4 we get
t t o t
z+/547=z+/z £0;0:dB = z + / pdB>S(t); 0<t<T.
0 o 0
Hence, by Lemma 12.2.3,

z+ / 0(s,w)dX (s) > Xo(t)S(t) > Xo(t)E()F(t) = F(t); 0<t<T.
0 o
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The 1t6 Diffusion Case: Connection to Optimal Stopping

Theorem 12.3.8 shows that pricing an American option is an optimal stopping
problem. In the general case the solution to this problem can be expressed
in terms of the Snell envelope. See e.g. El Karoui (1981) and Fakeev (1970).
In the It6 diffusion case we get an optimal stopping problem of the type
discussed in Chapter 10. We now consider this case in more detail:

Assume the market is an (n + 1)-dimensional Ité diffusion X(t) =
(Xo(t), X1(£), ..., Xn(t)); t > 0 of the form (see (12.1.1)-(12.1.2))

dXo(t) = p(t, X (t)) Xo(t)dt ; Xo(0) =20 >0 (12.3.59)
and
dX;(t) = wu;(t, X(t))dt + i o,;(t, X(t))dB;(t) (12.3.60)
j=1

pa(t, X(t))dt + oa(t, X(8))dB(t) ;  Xi(0) ==,

|

where p, u; and o;; are given functions satisfying the conditions of Theo-
rem 5.2.1.
Moreover, assume that the American claim F(t) is Markovian, i.e.

F(t) = h(X(t)) (12.3.61)
for some lower bounded function & : R*t! — R. Define
_ | s+t n+2
Y(t)= [X(t)] cR (12.3.62)
and put
9(y) = g(s,z) = z5 ' h(z) ; T = (%o, 71,...,%Tn) € R™! . (12.3.63)

Then the problem to find the price

pa(F) = qa(F) = sup EQlé(T)F(r)] (12.3.64)

in (12.3.53) can be regarded as a special case of the general optimal stopping
problem considered in Section 10.4. Indeed, if we put

P(y) = sup E3lg(Y(r)], (12.3.65)
TSTG
where
T¢=inf{t>0,s+t>T}=T-3s (12.3.66)

is the first exit time of Y(¢) from the region

G = {(s.z);s < T} C R™! (12.3.67)
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then
pA(F) =¢(0,1,.’L‘1,...,1}n) . (12368)

To apply the theory of Section 10.4 to problem (12.3.65) we must rewrite
equations (12.3.59)-(12.3.60) in terms of B(t). Using (12.2.12) and (12.2.3)
we get, as in (12.3.24)-(12.3.25),

dXo(t) = p(X(¢))dt; Xo(0)=20>0 (12.3.69)
dX;(t) = p(X () X;(t)dt + ai(X(t))dE(t); X:(0)=1z;; 1 <i<n (12.3.70)
We summarize this as follows:

Theorem 12.3.11. Suppose the market {X(t)} has the Markovian form
(12.8.59)-(12.8.60), which is equivalent to (12.8.69)-(12.3.70), and that the
American claim F(t) has the Markovian form (12.8.61). Then the price
pa(F) of the American option with this payoff F is the solution of the optimal
stopping problem (12.8.65) aty = (0,1,zy,...,%s).

Example 12.3.12 (The Americal put).
Consider the Black-Scholes market

dXo(t) = pXo(t)dt ; Xo(0) =1

Xm(t)=O!X1(t)dt+,@X1(t)dB(t); X1(0)=.’El >0
where p,a, 3 # 0 are constants. In terms of B the system becomes

dXo(t) = pXo(t)dt; Xo(0)=1

dX1(t) = pX1(t)dt + BX,(t)dB(t);  X;(0) =z, >0.

Therefore the generator L of the process Y () defined in (12.3.62) is given by

0 0 a
Lf(s,xo,z1) = -51;- + pzoa—zf; + pzlaf 2,62 1554 (12.3.71)

for f € CZ(R3).
Therefore, according to Theorem 10.4.1, to find the value functlon $ in
(12.3.63)-(12.3.65) we look for a C*! function ¢ such that

#(s,20,%1) > x5 ' h(xo, 1) forall s<T (12.3.72)
&(T, o, 21) = x5 " h(To, 1) - (12.3.73)

Define the continuation region
D = {(s, o, z1); 9(s, Zo, Z1) > x5 h(z0, 1)} - (12.3.74)
Then we require ¢ to be C? outside 8D and

L¢(s,xo,z1) <0 outside D (12.3.75)
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and
L¢(S,:E0,I1) =0 on D. (12376)

Suppose
F(t) = (K - X,(t)* (the American put)

Then the function g in (12.3.63) is
g(s, 70, 71) =25 (K —11)T = e (K — z)*,

so we can disregard the variable zo and use s instead. Then the variational
inequalities (12.3.72)—(12.3.76) get the form

b(s,z1) > e (K — ;) forall s<T (12.3.77)

¢(T,zl) =e "T(K —z;)* - (12.3.78)
= {(s,21);¢(s,71) > e P*(K — z1)*} (12.3.79)

545 ¢ 282 -

35 T PTG 1 1-6—1? <0  outside D (12.3.80)

7] 8¢ .

af + pzl—e— +16% 1-6—33 =0 in D . (12.3.81)

In this case we cannot factor out e ?° as we often did in Chapter 10, because
that would lead to a conflict between (12.3.78) and (12.3.81).

If such a ¢ is found, and the additional assumptions of Theorem 10.4.1
hold, then we can conclude that

#(s,z1) = B(s, 1)
and hence pa(F) = ¢(0,x1) is the option price at time ¢ = 0. Moreover,
™ = 7p =inf{t > 0; (s + t, X1 (t)) & D}

is the corresponding optimal stopping time, i.e. the optimal time to exercise
the American option. Unfortunately, even in this case it seems that an explicit
analytic solution is very hard (possibly impossible) to find. However, there
are interesting partial results and good approximation procedures. See e.g.
Barles et al. (1995), Bather (1997), Jacka (1991), Karatzas (1997), Musiela
and Rutkowski (1997) and the references therein. For example, it is known
(see Jacka (1991)) that the continuation region D has the form

D = {(t,z1) € (~o0,T) x R, z1 > f(t)},

i.e. D is the region above the graph of f, for some continuous, increasing

function f:(0,T) — R.
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X 1

t=T t

Figure 12.1. The shape of the continuation region for the American put.

Thus the problem is to find the function f. In Barles et al. (1995) it is
shown that

Ft)~K —BK\/(T —t)|In(T —t)] ast—T",

in the sense that

f(t) ~
—BK /(T - t)l In(T —¢)|

This indicates that the continuation region has the shape shown in the Fig-
ure 12.1. But its exact form is still unknown.

For the corresponding American call option the situation is much simpler.
See Exercise 12.14.

-1 as t - T .

Exercises

12.1. a) Prove that the price process {X(t)}:co,r) has an arbitrage iff the
normalized price process {Y(t)}te[o,ﬂ has an arbitrage.
b) Suppose {X(t)}ejo, 7] is normalized. Prove that {X(t)}.c[o,77 has
an arbitrage iff there exists an admissible portfolio 8 such that

VO(0) < VO(T) as and PVO(T)> V®(0))>0. (12.3.82)

In other words, in normalized markets it is not essential that we
require V%(0) = 0 for an arbitrage 4, only that the gains V¢(T) —
V#(0) is nonnegative a.s. and positive with positive probability.
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Exercises 299

(Hint: If 6 is as in (12.3.66) define 8(t) = (Bo(¢), . .., 0 (t)) as fol-
lows:
Let 0;(t) = 0(t) fori=1,...,n;t € [0,T]. Then choose p(0) such

that V®(0) = 0 and define go(t) according to (12.1.15) to make 6
self-financing. Then

VOt =8(t) - X ()= / 8(s)dX (s)= / B(s)dX (s)=Ve(t) — VO (0) )
0 0

Let 8(t) = (o, . . .,8) be a constant portfolio.
Prove that 8 is self-financing.

Suppose { X (t)} is a normalized market and that (12.2.12) and (12.2.13)
hold. Suppose n = m and that o is invertible with a bounded inverse.
Suppose every bounded claim is attainable. Show that then any lower
bounded claim F such that

EQ[FZ] < 00

is attainable.
(Hint: Choose bounded T-claims Fj such that

Fy - F in L*(Q) and E[Fy]= E[F].

By assumption there exist admissible portfolios §(F) = (Oék), e ,Of,k))
and constants Vi (0) such that
T T
Fi(w) = Vi(0) + / 6% (5)dX (s) = Vi(0) + / 8% (s)a(s)dB(s)
0 0

where 88 = (8% .. 6%). It follows that Vi(0) = Eg[Fk] — Eq[F]
as k — 0. o

By the It isometry the sequence {#*)g} is a Cauchy sequence in
L?(A x @) and hence converges in this space. Conclude that there
exists an admissible # such that

T
F(w)=Eg[F] + /O(S)dX(s) J)
0

Let B(t) be 1-dimensional Brownian motion. Show that there exist
6:(t,w),82(t,w) € W such that if we define

t

t
V,(t)=1+/0|(s,w)dB(s). Vg(t)=2+/02(s,w)dB(s); te0,1]
0 0
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then

and
Vi(t) >0, Wa(t)>0

for a.a. (t,w).

Therefore both 6;{¢,w) and 6;(¢,w) are admissible portfolios for the
claim F(w) = 0 in the normalized market with n = 1 and X, (¢) = B(t).
In particular, if we drop the martingale condition in Definition 12.2.4b)
we have no uniqueness of replicating portfolios, even if we require the
portfolio to be admissible. (Note, however, that we have uniqueness if
we require that 6 € V(0,1), by Theorem 4.3.3).

(Hint: Use Example 12.1.4 with a = —1 and with @ = —2. Then define,
fori=1,2,

1
Gi(t) _ by s for 0<t<a_;
0 for a_; <t<1

Vi(t) =i+ /()i(s)dB(s) =i+Y(tAa); 0<t<1))
V]

Prove the first part of Lemma 12.2.2, i.e. that B(t) given by (12.2.3)
is an F{™-martingale (see the Remark b) following this lemma).

Determine if the following normalized markets { X (t)}iepo,7] allow an
arbitrage. If so, find one.
a) (n=m=2)
dX1(t) = 3dt + dB, (t) + dBa(t),
dX5(t) = —dt +dB; (t) - de(t).
b) (n=2,m=3)
dX,(t) = dt + dBi(t) + dBy(t) — dBs(t)
dX,(t) = bdt — dBy(t) + dB2(t) + dBs(t)
¢) (n=2,m=3)
dX,(t) = dt +dBi(t) + dBy(t) — dBs(t)
dX,(t) = bdt — dB, (t) — dB3(t) + dBs(t)
d) (n=2,m=3)
dX1(t) = dt + dBy(t) + dBs(t) — dBs(t)
dXo(t) = —3dt — 3dB; (t) - 3de(t) + 3dB3(t)
e) (n=3,m=2)
dX(t) = dt + dB1(t) + dBa(t)
dXa(t) = 2dt + dBi(t) — dBa(t)
dXa(t) = 3dt — dB, (t) + dBa(t)
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f) (n=3,m=2)
dX,(t) = dt + dB(t) + dBy(t)
dXa(t) = 2dt + dBy(t) — dBy(t)
dXs(t) = —2dt — dBy(t) + dBa(t)

12.7. Determine which of the nonarbitrage markets {X (t)}te[o,T} of Exer-
cise 12.6 a)—f) are complete. For those which are not complete, find a
T-claim which is not attainable.

12.8. Let B; be 1-dimensional Brownian motion. Use Theorem 12.3.3 to find
z € R and ¢(t,w) € V(0,T) such that

T
Flw) =z + / o(t,w)dB(t)
0

in the following cases:
(i) F(w)= B%(T,w)
(ii) F(w)=B3T,w)
(iii) F(w) = exp B(T,w).
(Compare with the methods you used in Exercise 4.14.)

12.9. Let B; be n-dimensional Brownian motion. Use Theorem 12.3.3 to find
z € R and ¢(t,w) € V*(0,T) such that

T
Flw)=2z+ / o(t,w)dB(t)
V]

in the following cases
(i) F(w)=B*T,w) (= B}(T,w)+ -+ B:(T,w))
(ii) F(w) = exp(B1(T,w) + - - - + Bnp(T,w)).

12.10. Let X (t) be a geometric Brownian motion given by
dX(t) = aX(t)dt + BX(t)dB(t) ,

where a and (3 are constants. Use Theorem 12.3.3 to find z € R and
o(t,w) € V(0,T) such that

T
X(T,wy=2z2+ /¢(t,w)dB(t) .
0

12.11. Suppose the market is given by
dXo(t) = pXo(t)dt ; Xo(0)=1
dX,(t) = (m — X,(t))dt + gdB(t) ; X1 (0)=1z,>0.

(the mean-reverting Ornstein-Uhlenbeck process) where p > 0, m > 0
and o # 0 are constants.
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a) Find the price Eg[¢(T)F] of the European T-claim
Flw)y=X1(T,w) .

b) Find the replicating portfolio 8(t) = (Go(t) 61(t)) for this claim.
(Hint: Use Theorem 12.3.4, as in Example 12.3.5.)

12.12. Consider a market (Xo(t), X;(¢)) € R? where
dXo(t) = pXo(t)dt ; Xo(0)=1 p > 0 constant) .
Find the price Eq|¢(T)F] of the European T-claim
F(w) = B(T,w)

and find the corresponding replicating portfolio 8(t) = (6(t), 6:(¢)) in
the following cases

a) dX,(t) = aXy(t)dt + 8X1(t)dB(t); a,f constants, 3# 0

b) dX;(t) = cdB(t); c # 0 constant

¢) dX,(t) = aXi(t)dt +0dB(t) ; «,0 constants, o # 0.

12.13. (The classical Black-Scholes formula).
Complete the details in the proof of the Black-Scholes option pricing
formula (12.3.45) and the corresponding replicating portfolio formula
(12.3.48) of Corollary 12.3.8.

12.14. (The American call)
Let X(t) = (Xo(t), X1(t)) be as in Exercise 12.13. If the American
T-claim is given by

F(t,w) = (X1(t,w) — K)*, 0<t<T,

then the corresponding option is called the American call.
According to Theorem 12.3.8 the price of an American call is given by

pa(F) = sup Egle ™ (Xi(r) — K)*].

Prove that
pa(F) = e T EQ[(X:(T) - K)*],

i.e. that it is always optimal to exercise the American call at the ter-
minal time T, if at all. Hence the price of an American call option
coincides with that of a European call option.
(Hint: Define

Y(t) = e "' (X (t) - K) .

a) Prove that Y (¢) is a @-submartingale (Appendix C), i.e.
Y(t) < Eq(Y(s)|F] for s>t.
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b) Then use the Jensen inequality (Appendix B) to prove that
Z(t):=e (X, (t) - K)T

is also a (-submartingale.
c) Complete the proof by using Doob’s optional sampling theorem (see
the proof of Lemma 10.1.3 e)).

12.15. (The perpetual American put)
Solve the optimal stopping problem

&(s,z) = sup E*[e PCHV(K — X (1))*]
>0

where
dX(t) = aX(t)dt + X (t)dB(t) ; X(0)=z2>0.

Here p > 0, K >0, o and 3 # 0 are constants.
If o = p then &(s, z) gives the price of the American put option with
infinite horizon (T = oo). (Hint: Proceed as in Example 10.4.2.)

12.16. Let

dXo(t) = pXo(t)dt ; Xo(0)=1
dXi(t) = aX;(t)dt + pX,(t)dB(¢t) ; Xi1(0)=z; >0
be the classical Black-Scholes market. Find the replicating portfolio
6(t) = (6o(t), 01(t)) for the following European T-claims:
a) F(w) = (K — X,(T,w))* (the European put)
b) F(w) = (Xy(T,w))2.
Remark. Note that in case a) we get 6:(t) < 0 for all t € [0,T], which
means that we have to shortsell in order to replicate the European

put. This is not necessary if we want to replicate the European call.
See (12.3.48).






Appendix A: Normal Random Variables

Here we recall some basic facts which are used in the text.

Definition A.1. Let (£2,F, P) be a probability space. A random variable
X: 2 — R is normal if the distribution of X has a density of the form

— m)?
px(z)=a\;_2; -exp(—(—x%?—)—-> , (A.1)

where o > 0 and m are constants. In other words,

PXeG)= /px(z)dx , for all Borel sets GCR.
G

If this is the case, then

ElX]= | XdP = [ zpx(z)dz =m (A.2)
[x=]
and
var[X] = E[(X - m)?] = /(x —m)?px(z)dz = o? . (A.3)
A ,

More generally, a random variable X:{2 — R" is called (multi-) normal
N (m,C) if the distribution of X has a density of the form

VIA

px(T1, "+, Tn) = (Z_wlf;’% - exp ( -3 (@ —my)az(ek - mk)) (A.4)
ik

where m = (my,---,m,) € R” and C~! = A = [a;x] € R™*" is a symmetric

positive definite matrix.

If this is the case then
EX]=m (A.5)

and

A™' = C =[c;i] is the covariance matrix of X, i.e.
e = E[(Xy—my) (X — mu)] - (A.6)
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Definition A.2. The characteristic function of a random variable
X:2 — R"™ is the function ¢x:R™ — C (where C denotes the complex
numbers) defined by

dx(uy, - un)=E[exp(i(u1 X1+ 4+ unXn))| = /e“w) P[X edz], (A7)
Rn

where (u,z) = u1Zy + -+ UnZn (and i € C is the imaginary unit). In other
words, ¢x s the Fourier transform of X (or, more precisely, of the measure
P[X € dz]). Therefore we have

Theorem A.3. The characteristic function of X determines the distribution
of X uniquely.

It is not hard to verify the following:
Theorem A.4. If X: 2 — R" is normal N(m,C), then

¢X(u1,"'yu") =exp<— %ZUjCijk"}-iZUjmj) . (A8)
gk )

Theorem A.4 is often used as a basis for an extended concept of a normal
random variable: We define X: 2 — R"™ to be normal (in the extended sense)
if ¢x satisfies (A.8) for some symmetric non-negative definite matrix C =
[c;x] € R™™™ and some m € R™. So by this definition it is not required that C
be invertible. From now on we will use this extended definition of normality.
In the text we often use the following result:

Theorem A.5. Let X;:2 — R be random variables; 1 < j <n. Then
X =(X1,---,X,) is normal
if and only if
Y=MX1+ -+ X, isnormal forall \1,...,\pn€R.
Proof. If X is normal, then

Elexp(iu(\1 X1 + -+ - + M X)) = exp (— ) uljcjrudg + i Zu)\,-mJ)
Jik b

= exp ( — %uz Z )\jCjk)\k + ’L‘U,Z )\jm]) ,
ik i
so Y is normal with E[Y] =} \;m;, var[Y] = ¥ Ajcje k.

Conversely, if Y = M X; + --- + A, X, is normal with E[Y] = m and
var[Y) = 02, then
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Elexp(iu(M Xy + - - + A Xn))] = exp(—3u20? + dum) ,

where

3
i

S0 L 0? - E[( PIPBIESS AjE[Xj])z]

E[(Z Ai(X; - mj))z] = E;AjAkE[(Xj = m)( Xk —my)],
E i

where m; = E[X;]. Hence X is normal.

Theorem A.6. Let Yy, Yq,...,Y, be real, random variables on 2. Assume
that X = (Yo, Y1,...,Y,) is normal and that Yy and Y; are uncorrelated for
each j > 1, i.e

E[(Yo — E[X))(Y; — E[Y;])] =0; 1<j<n.
Then Yy is independent of {Y1,---,Y,}.
Proof. We have to prove that

P[Yo €Go, Yy € Gl,...,Yn € Gn] = P[Yo EG()] . P[)’l (S Gl,...,Yn S Gn] ,
(A.9)
for all Borel sets Gy, G1,...,G, C R.

We know that in the first line (and the first column) of the covariance
matrix ¢;r = E[(Y; — E[Y;])(Ys — E[Y%])] only the first entry coo = var[Yp],
is non-zero. Therefore the characteristic function of X satisfies

&x (U0, U1,y -+ -y Un) = Oy (Uo) - D(vy,..., ¥i) (1) - o o, Un)
and this is equivalent to (A.9).
Finally we establish the following:

Theorem A.7. Suppose Xy: {2 — R™ is normal for all k and that X — X
in L2(N2), i.e.
E|Xe =X’ -0 ask—o0.

Then X is normal.
Proof. Since |e¥®) — W] < |u| - |z — y|, we have
E[{exp(i{u, Xk)) — exp(i{u, X))}?] < |u|?- E[| Xt — X|*)] -0 as k— oo
Therefore
Elexp(i(u, Xk))] — Elexp(i{u, X))} as k — o00.

So X is normal, with mean E[X] = lim E[X}] and covariance matrix
C = lim Cx, where Cj is the covariance matrix of Xx.
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Let (12, F, P) be a probability space and let X:2 — R" be a random vari-
able such that E[|X|} < oo. If H C F is a o-algebra, then the conditional
ezpectation of X given H, denoted by E[X|H], is defined as follows:

Definition B.1. E[X|H] s the (a.s. unique) function from 2 to R™ satis-
Jying:

(1) E[X|H] is H-measurable
(2) [E|X|H]dP = [ XdP, for all H € H.
H H

The existence and uniqueness of E[X|H] comes from the Radon-Nikodym
theorem: Let u be the measure on H defined by

,u(H):/XdP; HeH.
H

Then p is absolutely continuous w.r.t. P|H, so there exists a P|H-unique
‘H-measurable function F on {2 such that

u(H):/FdP forall He H .
H
Thus E[X|H}: = F does the job and this function is unique a.s. w.r.t. the

measure P|H.
Note that (2) is equivalent to

2y /Z -E[X|H]dP = /Z - XdP for all H-measurable Z .

2 2
We list some of the basic properties of the conditional expectation:

Theorem B.2. Suppose Y: 2 — R" is another random variable with
E(|Y]] < 0o and let a,b € R. Then

a) E[aX + bY|H] = aE[X|H] + bE[Y|H]

b) E[E(X|M] = E(X]

c) E[X|M] = X if X is H-measurable

d) E[X|M] = E[X] if X is independent of H
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e) E[Y - X|H] =Y - E[X|H] if Y is H-measurable, where - denotes the usual
inner product in R™.

Proof. d): If X is independent of H we have for H € H

/XdP:/X.XHdP:/XdP-/XHdP=E[X]'P(H)v
H 1] (r4 n

so the constant E[X] satisfies (1) and (2).

e): We first establish the result in the case when Y = Xy (where X denotes
the indicator function), for some H € H.
Then for all G € H

/Y-E[X|H]dP= /E[X|H]dP= / XdP=/YXdP,
G GNH GNH G

so Y - E[X|H] satisfies both (1) and (2). Similarly we obtain that the
result is true if Y is a simple function

m
Y=Y cX, , where H;eH.
j=1
The result in the general case then follows by approximating Y by such
simple functions. o
Theorem B.3. Let G,H be o-algebras such that G C H. Then
E[X|G] = E[E[X|H]|F] .
Proof. If G € G then G € H and therefore

!E[X|H]dP=G/XdP.

Hence E[E{X|H]|G] = E[X|G] by uniqueness. 0
The following useful result can be found in Chung (1974), Theorem 9.1 .4:

Theorem B.4 (The Jensen inequality).
If $:R — R is convez and E[|¢(X)|] < oo then

(E[XIH]) < E[¢(X)|H] .

Corollary B.5. (i) |E[X|H]| < E[|X||H]
(i) |EXIH))® < E(X1? | H].

Corollary B.6. If X, » X in L? then E[X, | H] — E[X | H] in L.



Appendix C: Uniform Integrability and
Martingale Convergence

We give a brief summary of the definitions and results which are the back-
ground for the applications in this book. For proofs and more information we
refer to Doob (1984), Liptser and Shiryaev (1977), Meyer (1966) or Williams
(1979).

Definition C.1. Let (2, F,P) be a probability space. A family {f;}jes of
real, measurable functions f; on {2 is called uniformly integrable if

lim (sup{ / |fj|dP}> =0.
M—oo \ jeJ
{1£51>M}

One of the most useful tests for uniform integrability is obtained by using
the following concept:

Definition C.2. A function 9:[0,00) — [0,00) is called a u.i. (uniform in-
tegrability) test function if ¢ is increasing, conver (i.e. Y(Ar + (1 — N)y) <
M(z) + (1 — A)Y(y) for all z,y € [0,00), A € [0,1]) and

lim 1/)—-(3:—)=

T—00 I
So for example ¥(x) = P is a u.i. test function if p > 1, but not if p=1.
The justification for the name in Definition C.2 is the following:

Theorem C.3. The family {f;};jcs is uniformly integrable if and only if
there is a u.i. test function ¥ such that

i:g{/ﬂ/}(lfjl)dp} <oo.

One major reason for the usefulness of uniform integrability is the fol-
lowing result, which may be regarded as the ultimate generalization of the
various convergence theorems in integration theory:
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Theorem C.4. Suppose {fi}32., is a sequence of real measurable functions
on 2 such that

klim Jrlw) = f(w) for a.a. w.

Then the following are equivalent:
1) {fk} is uniformly integrable
2) fe LY(P) and fx — f in LY(P), i.e. [|fx ~ f|dP — 0 as k — co.

Note that 2) implies that
/fdeH/fdP as k— 00 .

An important application of uniform integrability is within the conver-
gence theorems for martingales:

Let (2, N, P) be a probability space and let {N;};>0 be an increasing
family of o-algebras, Ny C N for all t. A stochastic process Ni: 2 — R is
called a supermartingale (w.r.t. {N;}) if N, is M-adapted, E{|N¢|] < oo for
all ¢ and

N; > E[N,|M] forall s >¢. (C.1)

Similarly, if (C.1) holds with the inequality reversed for all s > ¢, then N, is
called a submartingale. And if (C.1) holds with equality then NV, is called a
martingale.

As is customary we will assume that each A; contains all the null sets
of N, that t — N(w) is right continuous for a.a.w and that {N;} is right
continuous, in the sense that N; = () N, for all £ > 0.

s>t
Theorem C.5 (Doob’s martingale convergence theorem I).
Let N, be a right continuous supermartingale with the property that

sup E[N; ] < o0,
t>0
where N; = max(—N;,0). Then the pointwise limit
N(w) = tliglo Ni(w)
exists for a.a. w and E[N~| < oo.

Note, however, that the convergence need not be in L!(P). In order to
obtain this we need uniform integrability:

Theorem C.6 (Doob’s martingale convergence theorem II).
Let N, be a right-continuous supermartingale. Then the following are equiv-
alent:

1) {Ni}i>0 is uniformly integrable
2) There erists N € L'(P) such that N — N a.e. (P) and N, — N in
LY(P), ie. [|[Ny—N|dP -0 ast— 00 .
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Combining Theorems C.6 and C.3 (with ¢(z) = zP) we get
Corollary C.7. Let M, be a continuous martingale such that

sup E[|M|P] < o0 for some p > 1.
>0
Then there exists M € L}(P) such that My — M a.e. (P) and
/|M1~M|dP-—>O ast — oco.

Finally, we mention that similar results can be obtained for the analogous
discrete time super/sub-martingales {Ng,Ni}, & = 1,2,.... Of course, no
continuity assumptions are needed in this case. For example, we have the
following result, which is used in Chapter 9:

Corollary C.8. Let My; k =1,2,... be a discrete time martingale and as-
sume that
sup E{|Mi|?] < o0 for some p >1.
k

Then there exists M € L*(P) such that My — M a.e. (P) and
/[Mk—M|dP—->0 as k — oo .

Corollary C.9. Let X € L}(P), let {Ni}$2, be an increasing family of o-
algebras, Ny, C F and define Ny to be the o-algebra generated by {Ni}2,.
Then

E[X|Nk] — E[X| N as k — oo,

a.e. P and in L}(P).

Proof. My:= E[X|Ny] is a u.i. martingale, so there exists M € L!(P) such
that My — M a.e. P and in L}(P), as k — oo. It remains to prove that
M = E[X|N): Note that

| Mi — E[M|Nill| 1 (py = |E[Mi|Nk] — E[M|Ni]l 1 (p)
S”Mk"’M”L‘(P)"’O as k — 00 .

Hence if F € N, and k > ko we have

/(X—M)dP:/E[X—MU\fk]dP:/(Mk—E[MINk])dP —0 as k—o0.
F F F

Therefore -~
/(X—M)dP=0 forall Fe |J N
k=1
F

and hence
, E[X|Nx) = EIM|Nx) =M . O
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In this Appendix we prove an approximation result which was used in The-
orem 10.4.1. We use the notation from that Theorem.

Theorem D.1. Let D C V C R"™ be open sets such that
0D is a Lipschitz surface (D.1)
and let $: V — R be a function with the following properties
pcCHV)NnCV) (D.2)

¢ € C*(V\ D) and the second order derivatives (D.3)
of ¢ are locally bounded near 0D ,

Then there exists a sequence {¢;}52, of functions ¢; € C*(V)NC(V) such
that

¢; — ¢ uniformly on compact subsets of V,asj — o0 (D.4)
Lo; — Lo uniformly on compact subsets of V\ 0D, as j — oo (D.5)
{Lg;};21 s locally bounded on V' . (D.6)

Proof. We may assume that ¢ is extended to a continuous function on the
whole of R™. Choose a C* function 7: R® — [0, 00) with compact support
such that

/n(y)dy =1 (D.7)
R'n
and put
ne(x) = e_"'r](%:-) fore >0, x € R™. (D.8)

Fix a sequence ¢; | 0 and define

6@) = (@0m,)@) = [ Bz 2,z = [ swn, -y, (D.9)
RVI R'I
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i.e. ¢; is the convolution of ¢ and 7. Then it is well-known that ¢;(z) — ¢(x)
uniformly on compact subsets of any set in V where ¢ is continuous. See e.g.
Folland (1984), Theorem 8.14 (c). Note that since n has compact support
we need not assume that ¢ is globally bounded, just locally bounded (which
follows from continuity).

We proceed to verify (D.4)-(D.6): Let W C V be open with a Lipschitz
boundary. Put Vi =W nD, Vo =W\ D.

Then Vi, V3 are Lipschitz domains and integration by parts gives, for i = 1,2
and z € W\ 9D

o2 P
V/¢(y) aykayenfj (Z’ - y) Y=
0 o . 8
(& — yInikdv(y) — [ o= W) 5=, (@ —y)dy, (D.
Z (y) 6yenj(x Y)niedv(y) V/ ayk(y) 6yen,(x y)dy, (D.10)

where n;; is component number k of the outer unit normal n; from V; at 9V;.
(This outer normal exists a.e. with respect to the surface measure v on 6V,
since 9V} is a Lipschitz surface.)

Another integration by parts yields

€ ; dy =
6yk(y)6yn,( -~ y)dy

2
22 )1 (@ - Dmadvty) - V/ S (e~ y)dy. (D)

i

Vi

Combining (D.10) and (D.11) we get

[ V= e (@ y)dy =
J '} Bykayzn" y)ay =
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a J [45(3/)5?‘/;%, (z = y)mx — a%‘%(y)ne, (z— y)me] dv(y)
3245

—_— (z — ; 1 =1,2. .
aykaye (y)an (1' y)dy ) 2 ) (D 12)

Adding (D.12) for i = 1,2 and keeping in mind that the outer unit normal
for V; is the inner unit normal for V3_; on 8V; N dV;, we get

/¢( V=L (z — y)dy =
J Y 3yk6yen€j y)ay =

[ {6 gnota - e = FE @tz = Ve bay)
ow
2
+ ./ Busdu W)7e; (2 ~ y)dy (D.13)

where Ni, Ny are components number k, £ of the outer unit normal N from
W at OW.

If we fix x € W\ 0D then for j large enough we have 7, (z —y) = 0 for
all y outside W and for such j we get from (D.13)

/ ¢(y)—?i—m~(x —y)dy = Al (Y)ne; (z — y)dy - (D.14)
A Oyrdye 4. Oy 0ye i
In other words, we have proved that
62 2¢
Bxkaxg%( ) = <3yk6ye Ne >(z) for x € V\3D. (D.15)

Similarly, integration by parts applied to W gives, if j is large enough
d o¢
— 1 (z—ydy=— | =— (Y., (x — y)d
/¢(y)6ykn,( y)dy /6yk(y)n,( y)dy
w w
from which we conclude that

¢]( r) = (5; Ne )(x) for ze V. (D.16)

From (D.15) and (D.16), combined with Theorem 8.14 (c) in Folland (1984),
we get that

a—¢l - -6-2 uniformly on compact subsets of V as 7 — oo (D.17)
Oz Oz

and
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?¢; . ¢
61‘k61‘g 8.Z‘kaxg

uniformly on compact subsets of V' \ 9D as j — co .

(D.18)
oo oo
Moreover, {g%t}jzl and {52%1;’ - are locally bounded on V, by (D.15),

(D.16) combined with the assumptions (D.2), (D.3).
We conclude that (D.4)-(D.6) hold. |



Solutions and Additional Hints to Some of the
Exercises

2.4.

2.6.

2.7.

a) Put A = {w;|X(w)| 2 A}. Then

/ IX@)PdPW) / IX(@)PdP(w) > X P(4).

7] A

a
b) By a) we have (choosing p = 1)
P{|X| > )] = Plexp(k|X]) > exp(k )]
< exp(—k N Elexp(k|X1)] -
P( N U Ak) = lim P( U Ak) < Tm S P(A) =0
m=1k=m moee k=m mee k=m
since Z P(Ax) < o0.
k=1
Hence
P({w;w belongs to infinitely many A’s})
= P({w; (Vm)(3k > m) s.t. w € Ax}) = P({w;w € ﬂ U Ak}) =0
m=1k=m
a

a) We must verify that

(i) ¢€g

(i) FEG=F%€eg

(iii) F,...,FfreG=>FRUFRU---UF,€§

Since each element F of G consists of a union of some of the G;’s, these
statements are easily verified.

b) Let F be a finite g-algebra of subsets of 2. For each z € {2 define
F, = ﬂ{F € Fiz € F}

Since F is finite we have F; € F and clearly F, is the smallest set in F
which contains x. We claim that for given z,y € {2 the following holds:

(i) Either F; N Fy =0or F; = F,.

To prove this we argue by contradiction: Assume that we both have

(i) oNF, #0and Fy # Fy,eg. Fo \ F, #0.

Then there are at most two possibilities:
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2.9.

2.13.

2.14.

Solutions and Additional Hints to Some of the Exercises

a)z€ F; NF,
Then F. N Fy is a set in F containing = and F, N Fy, is strictly smaller
than F,. This is impossible.
b)ze F; \ F,
Then F; \ F, is a set in F containing = and F; \ F, is strictly smaller
than F,. This is again impossible.
Hence the claim (i) is proved. Therefore there exist xi1,...,zm € 2 such
that
., Fpypy...  Fayp,

forms a partition of {2. Hence any F € F is a disjoint union of some of these
F;,’s. Therefore F is of the form G described in a). (]

c) Let X : 2 — R be F-measurable. Then for all z € R we have
wehXw)=c}=X"({ch) eF

Therefore X has the constant value ¢ on a finite (possibly empty) union of
the Fi’s, where F; = Fy; is as in b).

With
%@ =1, :fthé;n::a
and Yi(w) = 0 for all (t,w) € [0, 00) X [0,00) we have
PX,=Y|=PX;:=0=P({w;w#t})=1.
Hence X, is a version of Y;.
Define D, = {x € R?|z| < p}. Then by (2.2.2) with n = 2 we have

P°[B; € D,) = (2rt)™! // e‘ﬁ*ﬁdzdy.
D,

Introducing polar coordinates

z=rcosd;
y=rsinf; 0<r<p, 0<60<2n

we get
27 p
g2
P°(B, € D,| = (27rt)_1/ re” 5 dr do
00
4 2 2
=(2rt)"! - 2nt e o e_% .

0
The expected total length of time that B: spends in the set K is given by

g7 Y I P
E[O/XK(B,)dt] /P[B € Kldt /(2 £) /K/e dy=0

0 0

since K has Lebesgue measure 0.
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2.15. P[Bi, € Fi,...,By, € Fi| = P[B,, € U™'Fy,...,B,, € U"'F}]

= f p(t1,0, wl)p(tz—-t1,w1,w2) coop(tr—tp—1,Tk—1, Tk )dx1 - - - dTk
U—1PF) % xU—1F;,

= [ p(t1,0,3)p(tz = t1,y1,¥2) - Ptk ~ tr—1, Yk—1,Yx)dy1 - - - dys

Fy X X Fg
= P[By, € Fi,.. , By, € Fk]
by (2.2.1), usmg the substitutions y; = Uz; and the fact that
Uz; — Uzj—i1|® = |2j — x|

2.17. a) E[(Y,,(t,-)—t)2]=EKE2"-1(AB,c f;;‘z—nt) ]

-of{Eanr-r)]

=0

2" -1
= E[ > ((aBy)* - 2‘"t)(<ABk)2—2‘"t)]
Jr,k=0

= D El(ABy)* —27")"]
k=0
2" -1

=Y E((4B)* -2-27%"7 + 27
k=0
2n 1

= 22-2‘2’%2:2.2“%2—»0 as n — 00 .
k=0

b) This follows from the following general result: If the quadratic variation
of a real function over an interval is positive, then the total variation of
the function over that interval is infinite.

3.1. Using the notation AX; = X¢;+1 — X;; we have

tB; = Z A(t;Bj) = Z(t1+1 Bi; 41 — t;By;)
i i

t t
=Zt,-AB,-+ZB,-+1At,-—>/sdB,+/B,ds as At; —0.

3.3. a) Suppose X, is a martingale with respect to some filtration {N;};>0. Then
'fo) C MN: and hence, for s > t,
E[X,[H{®| = E[E[X.|M]H] = E[X.JH = X
b) If X. is a martingale with respect to 'Hﬁx) then

E[X. M) = X,

E[X:] = E[Xo] forall t>0.
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3.4.

3.5.

3.6.

Solutions and Additional Hints to Some of the Exercises

¢) The process X, := B} satisfies (), but it is not a martingale. To see this,
choose s > t and consider

E[B3|Fi] = E[(Bs — B:)® + 3B2B, — 3B, B} + B}|F]
= 0+ 3B.E[B%|F:] — 3B2E[B,|F.] + B}
= 3B,E|(Bs — B:)? + 2B, B, — B}|F] - 2B}
=3By(s—t)+ 6B —3B} ~2B3 =3B,(s—t)+ B} # B} .
(i) If X¢ = B, + t then E[X:] = B(0) + t # E[Xo], so X: does not satisfy
(*) of Exercise 3.3 b). Hence X cannot be a martingale.
(i) If X; = B? then E[X:] = nt+ B} # E[Xo), so X cannot be a martingale.

t
(iii) If X; = t*B, — 2 [ r Bdr then, for s > t,
0
t ]

E[Xs|Fi] = E[s*Bs|Fi] - 2 / r Bedr — 2 / r E[B,|Fildr

t o s t

=32B¢—2/rBrdr—2B,/rdr
0 t
t t

2 2 2y 2

=s B:—2/rBrdr—Bz(s ~t) =t B:—2/rBrdr=Xe.

o 0
Hence X, is a martingale. ]

(iv) If X, = Bi(t)Bz(t) then
E[X,|F:] = E[Bi(s)B2(s)| 73]
= E[(B1(s) — B1(t))(B2(s) — Ba(t))|F¢]
+E[B1(t)(Bz(s) — Ba(t))|F]
+E[B2(t)(B1(s) — B1(t))|F:] + E[B1(t) B2(t)|F]
= E[(B1(s8) — Bi1(t)) - (Bz(s) — B2(t))] + 0 + 0 + Bi(t) Ba(t)
= E[Bi1(s) - Bi(t)] - E[B2(3) — Bz(t)] + B1(t)Bz(t)
= B1(t)Ba(t) = X .
Hence X; is a martingale. [
To prove that M; := BZ — t is a martingale, choose s > t and consider
E[M, | 7] = E[B? ~ 3| Ft] = E[(Bs — B:)* + 2B,B, ~ B} | F] ~ s

=g—t+2B?—B?—s=B—t=M,. -

To prove that N, := B} — 3¢B, is a martingale, choose s > t and consider
E[N, | Fe] = E[(Bs — B:)* + 3B2B, ~ 3B, B} + B} | F.] - 3sB,
= 3B,E|B? | 7| — 3B?B, + B} — 33B,
= 3B.E[(B, — B:)* + 2B,B, — B} | Fi| - 2B} - 3sB,
= 3By(s —t) + B —38B; = B} - 3tB, = N, .
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3.8. a)If M, = E[Y | F] then for s > t,
EM, | F)=E[E]Y | F) | F) = E[Y | Fe] = M,

O
T
3.9. [BiodB.=3}B} if Bo=0.
0
3.12. (i) a) dX:=(v+3a°)X:dt+ aX.dB,.
b) dX: = }sinX;[cos X; — t?]dt + (¢ + cos X:)dB: .
(i) a) dXi=(r— %a’)Xydt + aX;0dB;.
b) dX.= (2 — XP)dt + X2 o dB, .
3.15. Suppose
T T
C+ /f(t,w)dB,(w) = D+/g(t,w)dB,(w)
s s
By taking expectation we get
C=D.
Hence
T T
[ 1tw1aB@) = [ attrdze)
s
and therefore, by the It6 isometry,
/(f(t w) - 9(t,w))dB(?)) /(f(t w) - g(t,w))dt],
which implies that
fit,w) =g(t,w) for a.a. (t,w) €[S, T] x 2.
(]

4.1. a) dX; =2B;dB; +dt.

b) dX: = (1+ 4eB:)dt+ e®*dB; .

¢) dX; = 2dt + 2B1dBi(t) + 2B2dB(t) .
dt 0

d) dz [dB] [0] dt+[1:|dB¢.

e) dXi(t) = dBi(t) + dBa(t) + dBs(¢)
dX(t) = dt — B3(t)dBi(t) + 2B2(t)dBa(t) — B1(t)dBa(t)
or

dBl(t)
dX, 0 1
X, = dngg] (¥ee+ [z _Ba(t) 2B2(t) ~Br() [432@ }
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4.2,

4.4.

4.5.

4.11.

Solutions and Additional Hints to Some of the Exercises

By Itd’s formula we get

d(3B}) = B{dB, + Bdt .

t t
3B} = / BldB, + / B,ds .
0 0 0
If we apply the It6 formula with g(x,y) = = -y we get

Hence

d(X.Y) = d(g(Xe, Ya)) = @(X:,Yt)dxt + @(xt,mdn

+-21-a—5(X¢,Y:) (dX:)? + 5260 (X:,Yt)dX,dY,+
= YdX, + X:dY: + dX:dYt .

26 2(X¢)Y¢) (dYt)

From this we obtain

XY = XoYo +/Y,dX, +/X_,dY, + /dX,dY, .
0

E[Bf] = 15t% if Bop=0.
b) By the It6 formula we have

d(e%t sin B) = -zl-eit sin B,dt + e3* cos B,dB; + -zl-e%‘(— sin B;)dt

= e%t cos BtdBt .
Since
f(t) =e¥cos B, € V(O,T) forall T,
we conclude that X, = e} sin B; is a martingale. 0

c¢) By the Ité formula (or Exercise 4.3) we get

d((Bt + t)exp(—B: — -zl-t)) = (B +t) exp(—B; — 3t)(—1)dB;
+exp(—B; — §t)(dB¢ + dt) + exp(— B — 3t)(—1)dt
where we have used that
d(exp(——Bt - -;-t)) = —-exp(—Bt - %t)dBt .

Since
£(t) = exp(~B. — $t)(1 ~ t - B) € V(0,T)

for all T > 0, we conclude that X; = (B¢ +t)exp(—B; — 3t) isa ma.rt’.ingalEi

r :
4.14. a) Br(w)=[1-dB,. ]
0
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b) By mtegratlon by parts we have
T

/B,dt TBT—/tdB, /(T—t)dBt

0 0

¢) By the It formula we have d(B7?) = 2B,dB; + dt. This gives
T

BZ = T+/2B¢dB¢ )

0

d) By the It6 formula we have
d(B?) = 3B2dB, + 3B.dt .
Combined with 4 14 b) this gwes

B} = / 3B%dB. + 3 / Bidt = / (3B? + 3(T — t))dB; .

0 0

e) Since d(eBt_%t) = eB'_%tdBt we have
T

LT gy /eB'_%tdB,
0

or
T

CBT = e%T + /eBt+%(T~t)dBt .

0
f) By Exercise 4.11 b) we have

d(eét sin Bt) = eét cos B;dB;

or
T

e%T sin By = /e%toothdB, .

0
Hence

sin By = /e%(t_T) cos B,dB, .

X: = Xo - exp ((r -3 f: ai)t + f: arBx(t)) (if B(0)=0).
k=1

(i) Xi(t) = X1(0) +t+ Bi(t),

Xa(t) = X2(0) + X1(0)Ba(t) + deBz(S) + jBl(s)de(s),
0 0

(as usual) that B(0) =

assuming
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(i) X:=e'Xo+ ft e*dB; .
(i) X¢=e"*Xp -:e_‘Bt (assuming Bg = 0).
5.6. By the It6 formula we have
dF, = Fy(—adB: + 3o’dt) + 1 F,a’dt
= Fi(—adB; + o’dt) .
Therefore, by Exercise 4.3,
d(F.Y:) = FidY: + YidF, + dF,dY,

FidY; + Y, Fy,(—a dB; + o?dt) + (—a F.dB:)(a Y:dB:)
= Fy(dY; — aYidB;) = Ferdt .

Integrating this we get
t

RY: = FoYo +/7’ng3

or Y
t

YoF ! +F;1/rF,ds

0

Y:

t
Yoexp(a B, — a’t) + r/ exp(o(B; — B,) — 2a’(t — s))ds.
0

t
5.7. a) Xy=m+ (Xo-m)e™" +0 [’ 'dB, .
0
b) E[X:] = m+ (Xo —m)e™".
Var[X;] = & [1—e72].

X1(t)

5.8. X(t)= [ ] = exp(tJ)X (0) + exp(tJ) [ exp(—sJ)MdB(s), where
0

Xa(t)
_ [0 1 _[a O _ dBl(s)]
7=[4 0], M=} 5] dB(s)_[de(s)
d 3 .
an exp(tJ)=I+tJ+%J2+...+%J"+_,_eR2x2.
Using that J2 = —I this can be rewritten as

X1(t) = X1(0) cos(t) + X2(0) sin(t) + jaoos(t — 8)dB1(s)
0
+fﬂsin(t — 8)dBa(s) ,
0
X2(t) = —X1(0) sin(t) + X2(0) cos(t) — jasin(t — 8)dBy(s)
o -

+8 j cos(t — 8)dBa(s) .
0
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t t
5.11. Hint: To prove that }in{(l—-t) [ =0as,put My = [2Bs for 0<t <1
- 0 0
and apply the martingale inequality to prove that
Plsup{(1 —t)|Mef;t €1 —27" 127"} > ] < 272.27".

Hence by the Borel-Cantelli lemma we obtain that for a.a. w there exists
n(w) < oo such that

where n2nw) >wédn,

An = {wisup{(1— t)|Mefst € [1—27 "1 — 27" Y} > 27 1}
5.12. a) If we introduce

z(t)=y(t), o2t =/(®) and X<t)=[§$§3]

then the equation "
Y (t)+ (1+eW)y(t) =0
can be written

/ 7
iy | 1) | ] V@) | | 22(t)
X(t) = [m'z(t)] - [y"(t) T (1 + W)z (2)
which is intepreted as the stochastic differential equation

T2 t dt
dX(t) = [-agl)(t)dt — ex1(t)dB(t) ]

0 1] [zt 00} [z:(t
= [—1 0] [ngt;]dt“[l 0] _ngt;] dB:
= K X(t)dt — e L X(t)dB; ,

K=|:01} and L=

where

-10

| ]
o0
[ E—

b) By the above interpretation we have
¢

t
V) =y O+ [1(6)ds =y 0) - [wie)ds = [ya.
0 0 0
Hence, if we apply a stochastic Fubini theorem,
t

y(t) = y(0) + / ¥()ds

0

= y(0) + ¥/ (0)t - / ( / y(r)dr)ds — ¢ / ( / y(r)dB, )ds

0 0 0 0

= y(0) +'(0)t - / ( / y(r)ds)dr — ¢ / ( / y(r)ds)dB,
1]

r 0 r

= y(0) + ¥ (0)t + /(r — ty(r)dr + e/(r — t)y(r)dB, .
0 o
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¢ 1/2
5.16. c) X = exp(aB; — 30°t) [:c2 + 2 [ exp(—~2aB, + a’s)ds]
0
6.15. We have
2) X; = Xoexp(o dB; + (u — Lo®)t) = zexp(é: — 207t) .

Therefore
M C N

On the other hand, since
£t = %Uzt + ln -)'i—t

we see that N; C M;. Hence M = N;.
b) Consider the filtering problem

(system) dp=0, i = Ely], a® = E[(u - p)*] = 07"
(observations) df; =pudt+odBy; & =0

By Example 6.2.9 the solution is

o’p a®
EluN = 2 Fa%t o7+ a%t
O+072) 7 (@0 +07%&) .

c¢) The innovation process N; of the filtering problem in b) is

B &

t

Ny =& — /ﬁ(s)ds .

Therefore, by a) °

t

B = / o~ (u — ElulMu])ds + Be

t

= /a'l(p — E[u|M,))ds + B, = o' N,

1}

is a Brownian motion by Lemma 6.2.6.

~ t ~
d) Since B; = 07 (¢ — [ 1i(s)ds) we see that B, is N;-measurable and hence
0
M;-measurable by a).
€) We have

= 4o
0dB, = dé, — p(t)dt = dé: — mdt .
Hence 1 -
—_—— =B B.
e~ Hg = ot T o 4B

which gives
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t

¢
ds _ _ ds [f ~
d(&exp(—/azo_i_s)) —exp( /020+3) [0+0_2tdt+adB,]

0 0

or

& ) _ 1 [ af ~]
d(020+t - 020+t 0+0_2tdt+UdBt .
We conclude that

t

- 2 >

—p Boo _4B,

&= 020+t+0/0'20+s’
0

which shows that & is Fi-measurable.

" f) By combining (6.3.20), (6.3.24) and a) we have

dXt = Xt([l- dt + O'dBt) = Xtdft
Xe(fi(t)dt + o dBy)
= E[ﬂIMt]Xtdt + O'Xt d§t .

a) Af(z) = pxf'(x) + 30°f"(); f e Ci(R).

b) Af(z) =raf'(z) + 1a?2*f"(z); f € C(R).

c) Af(y) =rf'(v) +30°*f"(v); feCER).

d) Af(t,z) = 3£+;w51+ 1284, feC3(R?).

e) Af(z1,22) = L +zagl + lez“‘l?—é f € C3(R2).

f) Af(z1,22) = 2L +;§;§+ ‘xig—é; f € C3(R?).

g) Af((cl, cey (Bn) kzl ’I‘k(l?k sz + Z_l (Uz(l?j( Z azkajk)33,82_7
feCc3®™). |
a) dX, = dt +v/2dB; .
dX,(t 1 0
b) dX(t) = [dx2§t§] = [exat | @+ [axyey | 2B

%) ax()= [%Em: [m(1+)?§((§)(2x§(t))] a+ [* 5] 35

(Several other diffusion coefficients are possible.)
a), b). Let 7x = inf{t > 0; Bf =0 or Bf =k}; k >z > 0 and put
pr = P®[Br, =k].
Then by Dynkin’s formula applied to f(y) = y° for 0 < y < k we get
E®[r] = k’pi — 2 . (S1)
On the other hand, Dynkin’s formula applied to f(y) = yfor0 <y < k

gives
kpy==x. (S2)
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Combining these two identities we get that
E®[r] = klgz E®n) = kll.r{.xo zk—z)) =00. (S3)
Moreover, from (S2) we get
P?[3t<oo with B,=0]= kllnoxo P*IB, =0]= kli'rgo(l —pe)=1, (54)
so T < 00 a.8. P*.
7.15. By the Markov property (7.2.5) we have

E*[XiK,00)(Br) | Ft] = E*[0: XK 00)(Br—t) | Fi]
= E®P [X[K w0)(Br-t)] = E¥[f(Br-t)ly=8.

m / f(z)e é?”‘J‘Lfazz]

27r(T —1)

y=B

where
f(x) = Ak 00) (@)
7.18. a) Define

_I@)-§@) .
Y@= i@ @
Then
Lw(z) =0 in D:= (a,b)
and

w(a)=1, wkh)=1.
Hence by the Dynkin formula,
1- PP X, =8 +0- P°[X,=a] = w(z) +E’[/Lw(Xt)dt] =w(z),
o

e o @1
w=PX=Y= 55" fa)

_ exp(—aff)-—exp(—i"&h)
) p= exp(—x‘f:-)—exp(—zfah) ’
8.1. . a) g(t,z) = E’OLqS(Bt)] .
b) u(z) = E’[f e~ *1(B,)di] .
o
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8.12.

9.1.
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For T > 0 define the measure Qr on Fr by
dQr(w) = exp(—B(T) — 3T)dP(w) on Fr.

Then by the Girsanov theorem Y (t):=t+ B(t); 0 < ¢ < T is a Brownian
motion with respect to Qr. Since

Qr =Qs on F; forall ¢ <min(S,T)
there exists a measure @ on F., such that
Q=Qr on Fr forall T < oo

(See Theorem 1.14 in Folland (1984).)
By the law of iterated logarithm (Theorem 5.1.2) we know that

P[N] =1,
where
N= {w; tl_lf& Y(t) = oo}
On the other hand, since Y'(¢) is a Brownian motion w.r.t. Q we have that

QN =0.

Hence P is not absolutely continuous w.r.t. Q.

Here the equation
U(ta w)u(t’ w) = IB(t, w)

1 3 ur|_ 1|0
-1 -2 tu |~ |1
_jwmi_ |1
= [u]-[4]
Hence we define the measure Q on F$2) by

dQ(w) = exp(—B1(T,w) + 3Bz(T,w) — 5T)dP(w) .

has the form

which has the solution

a)dXt=[g]dt+[2]ch

a 1 0
mm=Mmﬂ01
C) dXt = ClXtdt +ﬂdB¢ .

d) dXt = adt + ﬂXtdBt .

o ex (B[R0 L8 ) £26)

(i) In this case we put
di 1 0 . _|s
e[ i [ 5[

D= {(s,z) € R*;8< T} .

P&

and
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Then
rp=inf{t > 0;(s+t,B;) gD} =T — s
and we get ‘
™
ws) = B [0(B) + [ o(xoal]

]

2
Efw(Bs_.) - / 85 +t, BO)at],

where Bf is Brownian motion starting at x.
(ii) Define X; by
dX; = a X dt + 8 X:dB:; ; Xo=2>0,
and put
D= (0, (Bo) .
Ifa> %,62 then 7p = inf{t > 0; X; ¢ D} < 00 a.s. and

Xrp =0 a.s. (see Example 5.1.1).
Therefore the only bounded solution is
u(x) = E®[(X-p)’] = 2 (constant).
(iii) If we try a solution of the form
u(z) = 7 for some constant

we get ’ 1022 1 1 42
azu (x) + 5872w (z) = (a+ 38°(y — 1))a7,
so u(z) is a solution iff
=1 20
r=1-%
With this value of v we get that the general solution of

azu'(z) + 342" (z) = 0

is
u(z) = C1 + Cax”
where C1, C; are arbitrary constants. If o < 332 then all these solutions are
bounded on (0,z0) and we need an additional boundarg value at z = 0 to
get uniqueness. In this case P{rp = oo] > 0. If o > 38° then u(z) = C1 is
the only bounded solution on (0, zo), in agreement with Theorem 9.1.1 (and
(ii) above).
a) u(t,z) = E*[¢(Br-1)] -
b) u(t,z) = E*[¢(B)] .
a) Let X, € R? be uniform motion to the right, as described in Exam-
ple 9.2.1. Then each one-point set {(x1,23)} is thin (and hence semipolar)
but not polar.
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b) With X, as in a) let Hy = {(ax,1)}; k =1,2,... where {ax}}2, is the
set of rational numbers. Then each Hj is thin but
QI D[Ty =0]=1forallz; €R.

9.10. Let Y: =Y,"" = (s +1¢,X7) for t > 0, where X; = X7 satisfies
dX: = aXdt + X.dB, ; t20, Xo=2z>0.

Then the generator AofY, is given by
ij i
Af(s, :c)———i+a f +36%" 53 2r. jecimy.
Moreover, with D = {(¢,z);z > 0 and ¢t < T} we have
=inflt>0;Y; ¢ D} =inf{t >0;8+t>T}=T—3s.

Hence
p = (T, Xr-,) .
Therefore, by Theorem 9.3.3 the solution is
T—g
f(s,z) = E[e—Pqu(x;_,) + / e"’(""‘)K(Xf)dt] .
o

9.15. a) If we put w(s,z) = e "’ h(z) we get

2
%%x—’;’ + ‘?9—';’ =e7"* (31" (z) — ph(x)),

and the boundary value problem reduces to

(1) 3nr"(z) - ph(x) =—02% a<z<bd

(2) h(a) =14(a), h(b)=1(b)

The general solution of (1) is

h(z) = C1eV?* + Cre™ ”z+%x2—%

where C1,C> are arbitrary constants. The boundary values (ii) will deter-
mine C1,C> uniquely.

b) To find

y

9(z,p) = g(x): = E*[e7°"?]
we apply the above with ¢ =1, @ = 0 and get
g(z) = Cre VT | Che” o
where the constants C1,C; are determined by
gla)=1, g(b)=1.

After some simplifications this gives

sinh(y/2p(b — z)) + sinh(y/2p(z ~ a))
g(z) = , mnh(ﬁ(b a)) a<z<bh.
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10.1. a) g*(z) = o0, T7* does not exist.
b) g*(z) = oo, 7" does not exist.
¢) g*(z) =1, " =inf{t>0;B,=0}
d) If p < 1 then g*(s,x) = 0o and 7* does not exist.
Ifp > ; then g*(s,z) = g(s,z) = e ®*coshz and 7* = 0.

10.2. a) Let W be a closed disc centered at y with radius p < |z — y|. Define
7, =inf{t > 0; By ¢ W}.

In R? we know that 7 < 0o a.5. (see Example 7.4.2). Suppose there exists a
nonnegative superharmonic function u such that

(1) u(z) < u(y) -

Then

2 u(z) > E*[u(Bx,)].

Since u is lower semicontinuous there exists p > 0 such that
3) inf{u(z);z € W,} > u(z) .

Combining this with (2) we get the contradiction
u(z) > E” [u(BT,,)] > u(z) .
b) The argument in a) also works for R. Therefore
g"(z) =sup{g(z);z € R} =sup{ze™ ;2> 0} =1.

¢) For = # 0 we have

A(lwl’)—Za,z((Z ") - Zax.(%(Z )" 2w

=y(v+n- 2)le"-

So |z|”, and hence f,(z) = min(1, |z|"), is superharmonic iff
y(y+n—-2)<0,ie
2-n<~v<L0.

10.3. zo > 0 is given implicitly by the equation

_ 2 62\/2—910 +1
TN ey
and g*(s,z) = e"”’z%% for —zo < < x9, where
coshé = (ef +¢7%).

10.9. If0 < p < 1 then y(z) = 122

x ;,!2 but 7* does not exist. If p > 1 then

1
P

+
l . »*
A(e) = { 35+ + Coonb(yTpa) for fe] <z
22 for |z| > =*
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where C > 0, £* > 0 are the unique solutions of the equations
Ccosh(/2pz*) = (1 - %) (x*)? — ;1_2_
%p sinh(y/2pz") = 2(1 - ;1)-) *

10.12. If p > r then g*(s,z) = e **(zo — 1)*(Z&)" and
= inf{t > 0; X: > zo}, where

y=a"? [%az —r+ \ﬂ%az -r)2 4 2a2p]

Io::—y—_—l (’y>14=}p>’l‘).

and

10.13. fa < p then* =0.
Ifp<a<p+ Athen

e Ppg if 0<pg<yo
CUTEE b S M 5

where
" =ﬂ"[%ﬁ’+/\—a— \/(%ﬂ’+/\—a)2+2pﬂ’] <0
_ Enm)K(pt+A-a)
L e Py
and

1—
C = (a - p)yO i
(—m)p+A-a)
The continuation region is
D = {(s,p,9); g > yo} .
Ifp+A<athen G*=c0.

10.14. First assume that
Case 1: p>a.
Note that

o0 T

/ e P+ p gy = e_p"[ / e~ "' Pdt — / e-P‘P,dt]
1]

T (1]

and

e Pude] = / e~?* Elpexp(6 B, + (o — 1%)1)]dt

=
°\8

o0
= (a-p)t gy . P
/pe dt -a’
o
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Therefore
#(s,p) = B< 1
8p) = o—a 3,D),

where

¥(s,p) = SupE("'p) [/(_e-p(aﬂ)Pt)dt _ Ce_p("‘”)] '
This is a problem of the form discussed in Section 10.4, with

Y(t) = [8“], Y(0) = [;] =y eR?

and

fy)=f(s,2) =—ep, g(s,2)=—-Ce ™.
To get an indication of where the continuation region D is situated, we
consider the set

U={y; Lg(y) + f(y) >0}  (see (10.3.7)).

In this case the generator L is given by

o¢

10,5 = 2+ apZl 4 4579?22

+36°p 52
and so

U ={(s,p); (=p)(=C) —p >0} = {(s,p)ip < pC}.
In view of this we try a continuation D of the form

D ={(s,p);0<p<p"}

for some p* > 0 (to be determined).
We try a value function candidate of the form

é(s,p) = e"**¢(p)

where, by Theorem 10.4.1, the function 4 is required to satisfy the following
conditions:

(1) Lo¥(p) := —p(p) + ap¥'(p) + 38°p°¢Y"(p)) —p=0; 0<p < p*
(2) Loy(p) <0; p>p"

@) %@ =-C p>p

4) () >-C; 0<p<p"

The general solution of (1) is

P(p) = K1p™ =
where p
(5) vi=p8" [‘ a:i:\/ +2pﬂ2] i=1,2
with

13<0<m
and K, Kj are arbitrary constants.
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Since ¥ (p) must be bounded near p = 0 we must have K2 = 0. Hence we
put

_JKip"+35 0<p<p*
If we require ¥(p) to be continuous at p = p* we get the equation
*\ 71 P _ _
) Ki(p®) +a—-p_ C

If ¢(p) is also C* at p = p* we get

1
*yy1—1 —
®) K@) + 5 =0
Combining these two equations we get
* Clp—am
9 = U
9 x P
and
(@)™
10 K, =2
(10) T n(p-a)

It is easy to see that
n>lep>a

Since we have assumed p > o we get by (9) that p* > 0 and by (10) that
K; > 0.

It remains to verify that with these values of p* and K the function
é(s,p) = e"**9(p)

with 9 given by (6), satisfies all the conditions of Theorem 10.4.1. Many of
these verifications are straightforward. However, to avoid false solutions, it
is important to check (ii) and (vi), which correspond to (4) and (2) above:

Verification of (4):

Define h(p) =9¥(p)+C
Then

h(p*) = h'(p*) =0 by (7) and (8) above.
Moreover, if 0 < p < p* then

R'(p) = Kima(m - 1)p™ "% > 0
which implies that A'(p) < 0 and hence h(p) > 0 for 0 < p < p*, as required.

Verification of (2):
For p > p* we have ¢(p) = —C and hence

Lop(p) = (-=p)(-C)~p=pC —p,

~ Loyp(p) <0  forall p>p*
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if and only if
P 2pC,
which holds because U = {(s,p);p < pC} and U C D.

The remaining cases,
Case 2: p=a
Case 3: p<a
are left to the reader.

11.8. 9—-‘—‘,“—’%%%%32 (constant),
72

-7)

A(t—t
( l)m'y

P(s,z)=e€ for t<t1,2>0
where
A= %7(1 -3 + o031~ )2] - ylau® +az(1 —u")].

11.7. Define

ro-[£]- [lo]oe [ vo-[:]

and
G ={(s,z);z >0 and s < T}.
Then
&(s,z) = O(y) = sup E¥[g(Yz5)],
where
9(y) = g(s,z) = ="
and

Te=inf{t >0;Y(t)¢G}=7.
We apply Theorem 11.2.2 and hence look for a function ¢ such that

M) srelg{f”(y) +(L°¢)(y)} =0 forall yeG,
where in this case f¥(y) = 0 and

Lu¢(y) L* (s :L‘) = _.¢ + vg¢ +1 1 zgmﬁ '

If we guess that ——? < 0 then the maximum of the function v — LY¢(s, x)
is attained at

2 v=1v"(s, a§2(”’)
(2) (s,2) = 3 (5,2)

We try a function ¢ of the form
(3) #(s,x) = f(s)z”
for some function f (to be determined). Substituted in (2) this gives

af(s)yz’! _ az

@ VD) = - e T4
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and (1) becomes

2 2
Fla) + 7= flara™ +3 (1) flantr -1 =0

or

(5) f'8) + 5m—= ( f(s) =

)

Combined with the terminal condition

¢(y) =g(y) for y€OG
ie.
(6) f(T)=1

the equation (5) has the solution

") s e (s -9);  s<T.
With this value of f it is now easily verified that
(s, z) = f(s8)x”
satisfies all the conditions of Theorem 11.2.2, and we conclude that the value

function is
Q(ss .’L‘) = ¢(3’ .’L‘) = f(s)x"

and that ax

1-+v

u"(s,z) =v°(s, 1) =

is an optimal Markov control.

Additional hints:
For the solution of the unconstrained problem try a function ¢a(s, z) of the
form
$x(8,7) = ax(s)z” + ba(s) ,
for suitable functions ax(s),bx(8) with A € R fixed. By substituting this
into the HJB equation we arrive at the equations

aj(s) = %ai(s) -1 fors<ty

a,\(tl) =X

and
bA(s) = —o%ax(s) for s<t
bi(t1) =0,

with optimal control u*(s,z) = —a(s)z .

Now substitute this into the equation for X" and use the terminal condition
to determine Ao .
If we put a8 = 0 for simplicity, then A = Ap can be chosen as any solution of
the equation

ANX + BN +CA+D =0,
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where

— mZ(etl _e—t1)2 ,

— m2(e2t1 +2 _ 36_2t1) _ 0_2(et1 _ e—-t1)2 ,
m2(_62t1 +2 +3e—2t1) — 4.’1}2 _ 20_2(1 — e—2t1)
— _mZ(etl +e—t1)2 +4m2+o_2(e2t1 _e—2t1) .

Dawx»
il

11.12. If we introduce the process

ay(t) = [d‘ﬁﬁt] - [;t] dt + [g]d&; Y(0) =y= [;}

then the problem can be written
o0
¥(s,z) = inf EV [ / f(Y(t),u(t))dt],
u
0

where ) )
fy,u) = fU(y) = f(s,z) = e~ (z* + 0u?).
In this case we look for a function 3 such that
2
{e“"(m2+0u2) + %i +o2 + %022715} =0; (s,z)€R2.

O 3 or

ook
If we guess that 1 has the form

P(s,z) = e **(az® + b)
then (1) gets the form

(2) 1}éxlfl{a:z +0v* — plax® +b) + v2azx + -;-022a} =0; TeR.

The minimum is attained when

(3) v=0"(s,0) = ==
0

and substituting this into (2) we get

a2

mz[l—pa— 7

]+02a—pb=0 forall zeR.

This is only possible if

4) a®+p8a-0=0
and
o’a
5 b= —
(5) -

The positive root of (4) is
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(6) =§[po+\/'20_2;4—]

We can now verify that with the values of a and b given by (6) and (5),
respectively, the function

¥(8,x) = e " (ax® + b)

satisfies all the requirements of Theorem 11.2.2 and we conclude that the
value function is
P(s,x) = P(s,z) = e **(az’® + b)

and that
u*(s,z) = v"(s,z) = —9';-

is an optimal control.

If we introduce
| dt | _ 1 0 . _|s
dY(t)“[dXt]_[l—ut]dt+[a]d3" Y(O)—[m]

G = {(s,z) € R*z > 0},
then the problem gets the form

and

#(s,) = sup B [7 FY (D), u,)dt] ,

where
fw) = f(s,5,u) = e Pu.
The corresponding HIB equation is

(1) sup {e ‘"v+a¢ (1-v )a + 30 29°¢ =0.

vel[0,1] dr?

If we substitute

(2) ¢(S,.’E) = e_p"% (1 — exp (—\/i"éf_.'E))

then (1) gets the form

(3)  sup,ep, 1]{ 1+ \/',,';2'3 ( \/ %
p
prz;zgthenl—d—;exp( \/ 2% )

mum in (3) is attained for

)
E)} o

0 for all £ and hence the supre-

v=u"(s,2)=1.

Moreover, we see that the corresponding supremum in (2) is 0. Hence by
Theorem 11.2.2 we conclude that ¢ = ¢ and ug = 1.
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12.6. a) no arbitrage
b) no arbitrage
c) 6(t) = (0,1,1) is an arbitrage
d) no arbitrage
e) arbitrages exist
f) no arbitrage.

12.7. a) complete
b) not complete. For example, the claim

T
F(w) = / Bs(t)dBs(t) = $B3(T) — 4T
0

cannot be hedged.
c) (arbitrages exist)
d) not complete
e) (arbitrages exist)
f) complete.

12.9. For the n-dimensional Brownian motion B(t) = (B1(t),..., Bn(t)) the rep-
resentation formula (12.3.33) gets the form

T
R(B(T)) = E[H(B(T))] + f 3 5B (B~ )] BHO).
0

j=1
() Ifh(x)=z?=22+ -+ 22 we get
E*[R(B(T — t))] = E[(B*(T — t))*] = 2> + n(T - t).

Hence 5
'a-z—JE [h(B(T e t))] = 2Zj

and we conclude that
T
Bz(T) =zl +nT + / 2B;(t)dBj(t), with B(0)=z.
o

(i) If h(z) = exp(z1+ - + zn) we get
E*[A(B(T-1))) = Elexp(z + Bi(T~t) + - + 20 + Ba(T—1))]

= exp (%(T—t) + z": z.-).

Hence n
a%E*[h(B(T — ) =exp (3T -) + Zz‘)

=1
and we conclude that if B(0) = x then
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exp (Z B.-(T)) — exp (%T + Zm)
i=1 i=1
T n
+ /exp (g—(T—t) +y B,-(t))(dBl(t) 4 +dBq(t)
° i=1

c) EQ[{(T)F| = oz (1~ ‘—;—)(1 —e*T). The replicating portfolio is 8(t) =
(Bo(2), 01(t)), where

01(t) = o ! [1 _ %(1 _ ep(t—T))]

and 6o(t) is determined by (12.1.14).

B(s,z) = {:ZZ§§ _ 22)(5,)7 gg: 23 i:
where
v [ -a- -+ | <0
and

«_ Ky
x _7_16(0,K).

Hence it is optimal to stop the first time X (¢) < z*.
If a = p this simplifies to

ot = 20K
B2 T FB+2
Recall that (see Theorem 12.3.5)

T
VeT) =Vve0)+ / 6(s)dX (s)
0

iff T T

vé(r)=v°0)+ / 0(s)dX (s) = V(0) + / £(s)8(s)o(s)dB(s) .
0 0
Therefore, if we seek a portfolio 8 such that

VYT)=F as.,
we first find ¢ such that

T
) V(T) = ET)F = V°(0) + / $(s)dB(s)
0

and then put R

(2 6(s) = Xo(8)¢(s)A(s),
where A(s) is the left inverse of o(a).

8) F(w) = (K- Xi(T,w))*
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In this case (1) gets the form
7T (K = Xa ()" = Bale™ (K = Xa(T,w)*] + [ o(e)aB(e)
or

(3) (K- Xi(T,w)* = Eol(K ~ Xi(T,w))*] + / do(s)dB(s),
where
po(s) = e ¢(s).

To find ¢o we use Theorem 12.3.3:
In this case we have

dY (t) =dX1(t) =a X1 (t)dt+ 8 X1(t)dB(t) = p X1(t)dt+8 X1 (£)dB(2),

with
dB(t) =dB(t) + -—-ﬂ——dt
Moreover
h(y) = (K - y)*
and

EQ[M(Y (T - ¢)] = EG (K — Xa(T — t))™]
= EQ[(K —z1exp{B B(T - t) + (o~ 38°)(T - ))*].
From this we deduce that
) ;;—IEE‘ [(K — Xy(T — ))*] = —Eq[Xjo,k)(z1 exp{8 B(T ~ 1)
+(p - 38T - 1)) - X (T - )],
where X{(T —t) = exp{8 B(T — t) + (p — 16°)(T — 1)}
Hence
$o(t) = =BG [(K = Xa(T = 0)*],, _y, (o BX1(8) = ¢ (s).
Substituting this into (2) we get
B(t) = 61(t) 5
= —e~ " T~ Eq | X0,k (X1(t) exp{B8 B(T — t)
+p - 38T - ) HhX(T - 1))

= —(2n(T — t))‘*/X[o,m(Xl(t) exp{By + (p— 38°)(T - t)})
R

(%) -exp{ay— $0%(T = 0) ~ gt t)}

Note that 8:1(t) < 0 for all ¢ € [0, T]. Hence it is necessary to shortsell at all
times in order to replicate the European put option.
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List of Frequently Used Notation and Symbols

n-dimensional Euclidean space

the non-negative real numbers

the rational numbers

the integers

the natural numbers

the complex plane

the n x m matrices (real entries)

the transposed of the matrix A

the determinant of the n x n matrix C

i.e. vectors in R™ are regarded as n x 1-matrices

the n-dimensional complex space
n

Y.z ifx = (x1,...,%0) € R?

=1
n
the dot product Y z;y; if z = (z1,...,Tp),
=1
y= (y11""yn)
max(z,0) if t € R
max{—z,0) ifre R
1 ifx>0
{—1 fr<0
the continuous functions from U into V
the same as C(U,R)
the functions in C(U) with compact support
the functions in C(U,R) with continuous deriva-
tives up to order k
the functions in C*(U) with compact support in U
the functions in C* whose k’th derivatives are Lip-
schitz continuous with exponent o
the functions f(¢,z):R x R® — R which are C!
wrt. t € R and C? wrt. z € R®
the bounded continuous functions on U
the restriction of the function f to the set K
the generator of an It6 diffusion X
the characteristic operator of an It6 diffusion X
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L=Lyx

B, (or (B, F, 2, P*))

Dy
v

A
L

Rq

iff

a.a., a.e., a.§.
w.r.t.

s.t.

E[Y} -
E[Y|A]
Foo

B
ftvft(m)

Fy

4
M,

M,

oG
G
GCcCH

d(y, K)

e

V(§5,T),V*(S,T)

w,wn

EHY] =

[Ydu

List of Frequently Used Notation and Symbols

the second order partial differential operator which
coincides with Ax on C? and with Ay on C?
Brownian motion

the domain of definition of the operator A

the gradient: Vf = (5911 o 81")

the Laplace operator: Af =Y E@

1
a semielliptic second order partial dlfferentlal oper-

ator of the form L = Z b'T + Y a5t 811811
i
the resolvent operator

if and only if
almost all, almost everywhere, almost surely
with respect to
such that
coincides in law with (see Section 8.5)
the expectation of the random variable Y w.r.t. the
measure
the conditional expectation of ¥ w.r.t. N
the o-algebra generated by |J F;
t>0
the Borel o-algebra
the o-algebra generated by {B,;s < t}, B; is m-
dimensional
the o-algebra generated by {Bsa-;8 > 0} (7 is a
stopping time)
orthogonal to (in a Hilbert space)
the o-algebra generated by {X,;s < t} (X, is an
It6 diffusion)
the o-algebra generated by {X;ar;8 > 0} (7 is a
stopping time)
the boundary of the set G
the closure of the set G
G is compact and G C H
the distance from the point y € R™ to the set K C
R’n
the first exit time from the set G of a process
Xi1e = inf{t > 0; X; ¢ G}
Definition 3.3.1
Definition 3.3.2
Hunt’s condition (Chapter 9)
the Hamilton-Jacobi-Bellman equation (Chapter 11)
the n x n identity matrix
the indicator function of the set G;-
Xo(z)=1ifze€G, Xg(z)=0ifz ¢ G



p=
p=p°

T

R(s:z)

Qs,z
PkQ

P~Q
E‘t, E(s,z)’ Es=

X(t)
£(t)

lim, lim
essinf f
esssup f
N

List of Frequently Used Notation and Symbols 355

the probability law of B; starting at x
the probability law of B, starting at 0
the probability law of X, starting at z (Xo = z)
the probability law of Y; = (s +t), X[ )i<o with
Yo = (s, z) (Chapter 10)
the probability law of Y; = (s + ¢, X;}7)e>0 with
Yo = (s, z) (Chapter 11)
the measure P is absolutely continuous w.r.t. the
measure @
P is equivalent to Q, ie. P Q and Q € P
the expectation operator w.r.t. the measures Q7,
R®%) and Q*7, respectively
the expectation w.r.t. the measure Q
the expectation w.r.t. a measure which is clear from
the context (usually P°)
the minimum of s and ¢ (= min(s,t))
the maximum of s and ¢ (= max(s,t))
the transposed of the matrix o
the unit point mass at ©
§i;=1ifi=7,6;=0ifi#j
the shift operator: 6,(f(X;)) = f(X;4s) (Chap-
ter 7)
portfolio (see (12.1.3))
= () - X(t), the value process (see (12.1.4))

t

= z+ [ 6(s)dX (s), the value generated at time ¢ by
0

the self-financing portfolio # if the initial value is z
(see (12.1.7))

the normalized price vector (see (12.1.8)-(12.1.11))
the discounting factor (see (12.1.9))

equal to by definition

the same as liminf, limsup

sup{M € R; f2>Mas.}

inf{NeR; f<Nas}

end of proof

“increasing” is used with the same meaning as “nondecreasing”, “decreas-
ing" with the same meaning as “nonincreasing”. In the strict cases “strictly
increasing/ strictly decreasing” are used.






Index

absolutely continuous 161

adapted process 25

adjoint operator 169

admissible control 236

admissible portfolio 265

almost surely (a.s.}) 8

American call option 298,302

American contingent T-claim 290

American option 290-298

American option price 291

American put option 296-298

American put option, perpetual 303

analytic functions (and Brownian
motion) 78,158

arbitrage 265

attainable claim 274

bankruptcy time 224,235
Banach space 9
Bayes’ rule 160 (8.6.3)

Bellman principle 254

Bessel process 49, 148

bequest function 224,235

Black-Scholes equation 203

Black-Scholes formula 4,169,204,
288, 289, 302

Borel sets, Borel o-algebra 8

Borel-Cantelli lemma 17

borrowing 247

Brownian bridge 76

Brownian motion, in R® 3,11-15

Brownian motion, complex 78

Brownian motion, on the ellipse 74

Brownian motion, on the unit circle
67,127

Brownian motion, on the unit sphere
157

Brownian motion, on a Riemannian
manifold 158

Brownian motion, the graph of 124

Brownian motion, w.r.t. an increasing
family H, of o-algebras 72
Brownian scaling 19

capacity 173

carrying capacity 78

Cauchy sequence 20

characteristic function 306

characteristic operator 126

change of time 153

change of variable in an It6 integral
156

Chebychev’s inequality 16

claim, European 274

claim, American 290

closed loop control 237

coincide in law 149

combined Dirichlet-Poisson problem
175-178,193

complete market 274

complete normal linear space 20

complete probability space 8

complex Brownijan motion 78

conditional expectation 309-310

conditioned Brownian motion 133

contingent T-claim (American) 290

contingent T-claim (European) 274

continuation region 211,225

continuous in mean square 40

control, deterministic (open loop) 23

control, feedback (closed loop) 237

control, Markov 237

control, optimal 236

convolution 316

covariance matrix 13, 305

cross-variation processes 160

crowded environment 78

density (of a random variable) 16
diffusion, 1t6 113,114
diffusion, Dynkin 127
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diffusion coefficient 113

Dirichlet problem 2,177,179

Dirichlet problem (generalized) 185

Dirichlet problem (stochastic version)
181

Dirichlet-Poisson problem
193

distribution (of a random variable) 9

distribution (of a process) 11

distribution function (of a random
variable}) 15

Doob-Dynkin lemma 8-9

Doob-Meyer decomposition 294

drift coefficient 113

Dudley’s theorem 267

Dynkin’s formula 124, 196

175-178,

eigenvalues (of the Laplacian) 198

elementary function/process 26

elliptic partial differential operator
175

equivalent local martingale measure
165, 268

equivalent martingale measure 165,
268,278

estimate (linear/measurable) 89

estimation of a parameter 101

estimation, exact asymptotic

European call option 4,279

European contingent T-claim 274

European option 279 -

European option price 279,280

European put option 280

events 8

exact asymptotic estimation 105

excessive function 209

expectation 9

explosion (of a diffusion) 68,79

exponential martingale 55

feedback control
141

Feynman-Kac formula 143,201

filtering problem, general 2, 83-85

filtering problem, linear 85-105

filtration 31, 38

finite-dimensional distributions (of a
stochastic process) 11

first exit distribution 136

first exit time 117

Gaussian process 13
generalized (distribution valued)
process 21

105, 106

237 Feller-continuity

generator (of an It6 diffusion) 121,
123

geometric Brownian motion 64

Girsanov’s theorem 60, 159-168

Girsanov transformation 162

Green formula 195

Green function 172,194, 196

Green measure 19, 194, 250

Green operator 172

Gronwall inequality 70, 80

Hamilton-Jacobi-Bellman (HJB)

equation 238-243

harmonic extension (w.r.t. an Itdé
diffusion) 128

harmonic function (and Brownian
motion) 130, 158

harmonic function (w.r.t. a diffusion)
180

harmonic measure (of Brownian
motion) 130

harmonic measure (of a diffusion)
120,121,135

Hausdorff measure 173

heat equation 178

hedging portfolio 274

Hermite polynomials 38

high contact (smooth fit) principle
222,224, 230

Hilbert space 9

hitting distribution 120,121

‘H:-Brownian motion 72

h-transform (of Brownian motion)
133

Hunt’s condition (H) 186

independent 9,10
independent increments 14,22
innovation process 86, 90,91, 94

integration by parts (stochastic) 46,
55

interpolation (smoothing) 107

irregular point 183-185, 199

iterated It6 integrals 38

iterated logarithm (law of) 66

1t6 diffusion 114

It6 integral 24-37

It6 integral; multidimensional 34, 35

It6 interpretation (of a stochastic
differential equation) 36,63, 83

1t6 isometry 26,29

It6 process 44,48 -

It6 representation theorem/formula
51,284



Ito’s formula 44, 48
Jensen inequality 310

Kalman-Bucy filter 2,99, 104

Kazamaki condition 55

Kelly criterion 248

kernel function 133

killing (a diffusion) 145

killing rate 145

killing time 145

Kolmogorov’s backward equation 139

Kolmogorov’s continuity theorem 14

Kolmogorov's extension theorem 11

Kolmogorov’s forward equation
168-169

Langevin equation 75

Laplace operator A 3,57

Laplace transform 136

Laplace-Beltrami operator 158

law of iterated logarithm 66

least superharmonic majorant 208,
210

least supermeanvalued majorant
210

Levy’s characterization of Brownian
motion 160

L.evy’s theorem 159

linear regulator problem 243

208,

Lipschitz surface 225, 315
local martingale 132,268
local time 58, 59, 73

IP-space 9
L.yapunov equation 107

Malliavin derivative 53

market 261

market, complete 274

market, normalized 261, 262

Markov control 237

Markov process 116

Markov property 115

martingale 31,33, 312

martingale, local 132

martingale convergence theorem 312

martingale inequality 31

mnrtingale problem 146-147

martingale representation theorem
49, 53

maximum likelihood 102

maximum principle 200

mean-reverting Ornstein-Uhlenbeck
process 75

Index 359

mean square error 96

mean value 13

mean value property, classical 130

mean value property (for a diffusion)
120,121

measurable function (w.r.t. a g-algebra)
8

measurable sets (w.r.t. a o-algebra) 8

measurable space 7

moving average, exponentially weighted
101

(multi)normal distribution 13

noise 1-4,21-22, 63

normal distribution 12, 305~-307

normalization (of a market process)
261, 262, 263,267, 298

Novikov condition 55,162

numeraire 262

observation process 84

open loop control 237

optimal contro! 236

optimal performance 236

optimal portfolio selection 4, 246

optimal stopping 3, 205-227

optimal stopping time 205,211,214,
224,225

optimal stopping existence theorem
211

optimal stopping uniqueness theorem
214

option pricing 4, 279-298

optional sampling theorem 208

Ornstein-Uhlenbeck equation/process
75

orthogonal increments 86

outer measure zero 8

path (of a stochastic process) 10

performance function 236

Perron-Wiener-Brelot solution 189

Poisson formula 200

Poisson kernel 200

Poisson problem 179

Poisson problem (generalized) 191

Poisson problem (stochastic version)
191

polar set 172,186

Polish space 12

population growth 1,63, 78,136

portfolio 4, 246, 262-267

prediction 104

probability measure 7



360 Index

probability space 8
profit rate function 206, 224, 235
p'th variation process 19

quadratic variation process 19,56

Radon-Nikodym derivative 161
random time change 153

random variable 9

recurrent 126

regular point 183-185,199
replicating portfolio 274, 289
resolvent operator 141, 192

reward function 205

Riccati equation 97,99, 100, 103, 245
risky investment 246

safe investment 246

scaling (Brownian) 19

self-financing portfolio 262, 263-264

semi-elliptic partial differential operator
175

semi-polar set 186

separation principle

shift operator 119

shortselling 247, 290, 303

Snell envelope 294

smoothing (interpolation) 107

solvency set 224

stationary process 18

stochastic control 4, 235-252

stochastic differential equation;
definition 63

stochastic differential equation;
existence and uniqueness of solution
68

stochastic differential equation; weak
and strong solution 72

stochastic Dirichlet problem 181

stochastic integral 44

stochastic Poisson problem 191

stochastic process 10

stopping time 57,116

Stratonovich integral 24,35-37, 39, 40

Stratonovich interpretation (of a
stochastic differential equation) 36,
64, 65, 66, 83

strong Feller process 188, 190

strong Markov property 116-121

strong solution (of a stochastic
differential equation) 72

strong uniqueness (of a stochastic
differential equation) 69,72

submartingale 302, 303, 312

237,246

superharmonic function 206, 254

superharmonic majorant 208

supermartingale (132), 208, 268, 280,
294, 312

supermeanvalued function 206

supermeanvalued majorant 208

superreplicate 294

support (of a diffusion) 109

Tanaka’s equation 73

Tanaka's formula 58,59, 73

terminal conditions (in stochastic
control) 251-252, 257

thin set 186

time-homogeneous 114

time change formula Itd integrals

total variation process 19

transient 126

transition measure 195

transition operator 174

trap 127

156

uniformly elliptic partial differential
operator 187,282

uniformly integrable 311-312

utility function 4, 247

utility rate function 235

value function 224, 236

value process 262

value process, normalized 272-273

variational inequalities (and optimal
stopping) 3, 224-227

version {of a process) 14,32

Volterra equation, deterministic 93

Volterra equation, stochastic 76

weak solution (of a stochastic
differential equation) 72

weak uniqueness 72

wealth process 247, 259

well posed (martingale problem)

white noise 21, 63

Wiener criterion 185

147

X-harmonic 180
zero-one law 182

o-algebra 7

o-algebra, finite 17

o-algebra, generated by a family of sets
8 -

o-algebra, generated by a random
variable 8
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