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Preface to the Second Edition 

A considerable number of corrections and improvements have been 
made in this second edition. In particular, major and substantial changes 
are in Chapter III and Chapter V where the sections treating on excur-
sions of Brownian motion and the Malliavin calculus have been much 
more expanded and refined. Also, sections discussing complex (conformal) 
martingales and Kahler diffusions have been inserted. 

We would express our sincere thanks to all those who kindly com-
municated us mistakes in and gave us helpful comments on the first edi-
tion of this book. 

November 1988 

N. IKEDA 
S. WATANABE 





Preface 

The theory of stochastic integrals and stochastic differential equations 
was initiated and developed by K. Itô. In 1942 ([57], cf. also [62]) this 
theory was first applied to Kolmogorov's problem of determining Markov 
processes [85]. Let y, be a Markov process on the real line .1?' and, for each 
instant to , let F  = F,,,(y,o) be the conditional probability distribution of 
y, given y,0 . In almost all interesting cases we may assume that 1V-to)-13  
converges as t t o  to a probability distribution on which we shall 
denote by Dyro . (Here [a] is the integer part of a and *k denotes the 
k-fold convolution.) Dyro  is thus an infinitely divisible distribution. Kol-
mogorov's problem is now formulated as follows: given a system L(t,y) of 
infinitely divisible distributions, find the Markov process y, with given ini-
tial distribution such that 

(0.1) 	Dy, = L(t,y,). 

Kolmogorov [85] and Feller [26] both succeeded in obtaining Markov 
processes by solving Kolmogorov's differential equations (equations equi-
valent to (0.1) for the transition probabilities), thus establishing an analy-
tical method in probability theory. This method has been further developed 
in connection with Hille-Yosida's theory of semigroups. 

In contrast with these analytical methods, a probabilistic approach 
suggested by Lévy and established by itô enables one to construct sample 
functions of the process y, directly. Consider the case when L(t,y) =  G 
(a(t,y),b(t,y)), where G(a,f3) is the Gaussian distribution with mean a and 
standard deviation /3. The intuitive meaning of (0.1) then is that the infin-
itesimal change of the conditional distribution given y, = y is G(a(t,y)dt, 
b(t,y),/dt). On the other hand, if  x,. is  A Brownian motion* )  (Wiener 

* The Brownian motion is a random movement of microscopic particles which was 
discovered by the English botanist R.Brown. Its physical theory was investigated by 
Einstein ([24]). The mathematical theory was initiated and ,developed by Wiener 
[177] and Lévy [99]. 

ix 
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process), the "stochastic differential"* dx, r--- 	— x, conditioned on 
the past lx„ s < t) satisfies the law G(0, ,Idt). This suggests that we write 

(0.2) 	dy, = a(t,y,)dt b(t,y,)dx,; 

thus y, should be determined as a solution of the integral equation 

(0.3) 	y, = Yo + f o
a(siy.,)ds 	b(s,y)dx,. 

However, Wiener and Lévy had already shown that x, is nowhere differ-
entiable for almost all sample paths and so the integral with respect to dx, 
cannot be defined in the ordinary sense. In order to get around this dif-
ficulty, Itô introduced the notion of "stochastic integrals". Using this idea 
he was then able to obtain y, as the unique solution of (0.3)  fora given 
initial value yo  under a Lipschitz condition on a(t,y) and b(t,y); further-
more, he showed that this y, actually satisfies the original equation (0.1). 
Independently in the Soviet Union, S. Bernstein ([41 and [5]) introduced a 
stochastic difference equation and showed that the random variable de-
termined by this equation has the fundamental solution of Kolmogorov's 
equation as its limiting distribution. Gihman ([35], [36] and [371) carried 
out Bernstein's program independently of IV) and succeeded in construct-
ing a theory of stochastic differential equations. 

Today Itô's theory is applied not only to Markov processes (diffusion 
processes) but also to a large class of stochastic processes. This framework 
provides us with a powerful tool for describing and analyzing stochastic 
processes. Since Itô's theory may be considered as an integral-differential 
calculus for stochastic processes, it is often called Itô's stochastic analysis 
or stochastic calculus. 

The main aim of the present book is to give a systematic treatment of 
the modern theory of stochastic integrals and stochastic differential equa-
tions. As is customary nowadays, we will develop this theory within the 
martingale framework. The theory of martingales, which was initiated 
and developed by LL. Doob, plays an indispensable role in the modern 
theory of stochastic analysis. The class of stochastic processes to which 
Itô's theory can be applied (usually called Itô processes or locally in-
finitely divisible processes) is now extended to a class of stochastic pro-
cesses called semimartingales. Such processes appear to be the most gen- 

* The notion of stochastic differentials was considered by L4vy ([99], [100] and [101]); 
he used a suggestive notation to denote dx, where is a random variable 
with distribution G(0,1). 
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eral for which a unified theory of stochastic calculus can be developed.* 
A somewhat different type of stochastic calculus has been introduced by 
Stroock and Varadhan under the name of martingale problems (cf. [160] 
for this elegant and powerful approach). In this book, however, we prefer 
to follow Itô's original approach although an influence of Stroock and 
Varadhan will be seen in many places. 

Chapter I contains some preliminary materials that are necessary for 
the development and understanding of our book. In particular, we review 
the theory of martingales. 

The notion of stochastic integrals and Refs formula are discussed in 
Chapter II. These constitute the core of stochastic analysis. 

In Chapter III, the results of Chapter II are reformulated in a more 
convenient form for applications. In particular, a type of stochastic integral 
introduced by Stratonovich [153] and Fisk [27] will be formulated as an 
operation (called symmetric multiplication) in the framework of the theory 
developed there. It will play an important role in Chapters V and VI. 

The general theory of stochastic differential equations is discussed in 
Chapter IV. The solutions of these equations will not necessarily be non-
anticipative functionals of the accompanying Brownian paths; we distin-
guish those solutions having this property as strong solutions. Stochastic 
differential equations are then used to construct diffusion processes for 
given differential operators and, in the case of a state space with boundary, 
for given boundary conditions. In discussing stochastic differential equa-
tions with boundary conditions, we are naturally led to stochastic differ-
ential equations which are based on semimartingales more general than 
Brownian motions and on Poisson random measures over general state 
spaces. 

The main objects to be studied in Chapter V are  the flows  of diffeomor-
phisms defined on a differentiable manifold which are associated with a 
given system of vector fields. Stochastic calculus enables us to transfer many 
important operations in analysis and differential geometry which are de-
fined on smooth curves through ordinary differential-integral calculus to a 
class of stochastic curves. Flows of diffeomorphisms are one such example. 
By making use of affine connections or Riemannian connections we can 
construct flows of diffeomorphisms over the space of frame bundles. The 
most general non-singular diffusion can then be obtained by projection. 
We can also realize Itô's stochastic parallel displacement of tensor fields 
by this method. These ideas are due to Eells, Elworthy and Malliavin. In 
discussing a similar problem in the case of a manifold with boundary, we 

* The modern theory of semimartingales and the stochastic calculus based on them 
have been extensively developed in France by Meyer, Dellacherie, Jacod etc. (cf. 
Jacod [77]). 
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exhibit a probabilistic condition which characterizes the reflecting diffusion 
processes in the normal direction among all reflecting diffusion processes 
in oblique directions. 

Many of the mathematical objects obtained through stochastic analy-
sis,e.g.,strong solutions of stochastic differential equations, are functionals 
of the accompanying Brownian paths, i.e., Brownian functionals or Wiener 
fun ctionals. In Sections 7 and 8 of Chapter V we introduce a recent work 
of Malliavin which analyzes solutions of stochastic differential equations 
as Wiener functionals. There he obtains the remarkable result that the 
smoothness problem for the heat equation can be treated by this proba-
bilistic approach. 

Some miscellaneous materials are presented in Chapter VI. In the first 
half we discuss some topics related to the comparison theorem. Although the 
results obtained by this method are usually a little weaker than those ob-
tained via partial differential equations, the technique is simpler and it 
sometimes produces sharp results. The topics discussed in the second half 
are more or less related to the notion of stochastic area as introduced by 
Lévy. The approximation theorems considered in Section 7 are concerned 
with the transfer of concepts defined on smooth curves to stochastic curves. 

There are many topics in the area of stochastic differential equations 
and their applications which are not considered in this book: e.g., the 
theory of stochastic control, filtering and stability, applications to limit 
theorems, applications to partial differential equations including non-
linear equations, etc. We especially regret that we could not include the 
important works by N.V. Krylov on the estimates for the distributions of 
stochastic integrals and their applications (cf. e.g. [91] and [92]). 

We wish to express our gratitude to G. Maruyama for his constant in-
terest and encouragement during the writing of this book. We are also in-
debted to H. Kunita for his critical, comments  and constructive suggestions 
and to S. Nakao who greatly assisted us in the proofs of Theorems VI-7.1 
and VI-7.2. Among the many others who have made contributions, we 
would particularly thank H. Asano, S. Kotani, S. Kusuoka, S. Manabe, 
Y. Okabe, H. elkura and I. Shigekawa for their useful comments, sug-
gestions and corrections. Finally, we also express our appreciation to T.H. 
Savits who read the manuscript and  suggested grammatical improvements, 
and to the editorial staff of Kodansha Scientific who provided much help 
in the publication of this book. 

Osaka and Kyoto, February 1980 

Nobuyuki IKEDA 
Shinzo WATANABE 
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General Notation 

Theorem IV-3.2, for example, means Theorem 3.2 (the second theorem 
in Section 3) in Chapter IV. If this theorem is quoted in Chapter IV, it is 
written as Theorem 3.2 only. 

The following notations are frequently used. 

A: = B means that A is defined by B or A is denoted by B. 
A(x) B(x) : A(x) and B(x) are identically equal, i.e. A(x) = B(x) 

for all x. 
the restriction (of a function f) to a subset A of the 
domain of definition off. 
the symmetric difference of A and B, i.e., (A\B) U (B\A). 
the indicator function of A,i.e.,14(x) = 1 or 0 according-
ly as X E A or x A. 
the maximum of a and b. 
the minimum of a and b. 
the expectation of a random variable X on an event B, 
i.e., f E ga0P(dco) = gxr a). 
the Kronecker's 6. 
the unit (Dirac) measure at a. 
limit in probability. 
almost surely. 

the mapping t 	X(t). 

the real line. 
the complex plane. 
the d-dimensional Euclidean space. 
the set of all positive integers. 
the set of all integers. 
the set of all non-negative integers. 

f1 4  

A B 

aVb 
aAb 
E(X:B) 

(Su ,c5ti  
(5 (a) 
Up. 
a.s. 
t 
[t 
R = 

Rd 

Z+ 

XV 



xvi GENERAL NOTATION 

Q 
	

: the set of all rational numbers. 
[x] 
	

: the largest integer not exceeding x. 

"smooth" usually means Coe( i.e., infinitely differentiable); "sufficiently 
smooth" is the same as "sufficiently differentiable". 

Other notations will be explained where they first appear. 



CHAPTER 

Preliminaries 

1. Basic notions and notations 

The reader is assumed to be familiar with some of the basic notions 
in measure theory (cf. [45] and [129]), especially the notions of a a-field 
(called also a a-algebra or a Bore l  field), a measurable space (a pair con-
sisting of an abstract space and a a-field on it) and a measurable mapping. 
When S is a topological space, the smallest a-field ..g(S) on S which con-
tains all open sets is called the topological a-field and an element B e 
,g(S) is called a Borel set in S. A mapping f from a topological space 
into another topological space S' which is  .%(S)/.(S') -measurable  
(i.e., f- i (B) = {x ; f(x) e B} e (S) for all B E ..g(Y)) is called Bore! 
measurable. Any a-additive non-negative measure P on a measurable space 
(f2,..97-) such that P(Q) = 1 is called a probability on (0,5-) and the triple 
(12,..7,P) is called a probability space. If P is a probability on (Q,,r), 
then r = {A c Q; 'B1 ,  B2 E 9 such that B 1  c A c B, and P(Bi) ---- 
P(B2)} is a o--field on Q containing 9"..--The probability P can be naturally 
extended to jr-  and the space (Q . 	P) is called the completion of 
(Q, 	P). A probability P on (Q, ..r) such that .53-  =  r is called 
complete and in this case (0, „r, P) is called a complete probability space. 
If S is a topological space, we set 

(1.1) 	w(s) =  n .2TYY, 

where p runs over all probabilities on (s,a(s)). An element in F(S) 
is called a universally measurable set in S and a mapping f from S into 
another topological space S' which is g'(S)/.(S') -measurable is called 
universally measurable. Let {,ra} be a family of a-fields on Q. We denote 
by V ..ra  the smallest a-field on Q which contains all Y. If is a class 

a 

of subsets of Q, we denote by o ['] the smallest o.-field on Q which con- 
tains V'. Also, if {Ara} «eat is a family of mappings from Q into a measurable 

1 
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space (S2', 9'"), then the smallest cr-field „7-  on Q such that each X„ is 
'-measurable is denoted by a[X,, ; a e A]. In particular, 0[X] = 

X-I(Y- ') for every mapping X:  Q 	Q'. 
Let (Q,  9 P) be a probability space and (S,O(S)) be a topological 

space S with the topological cr-field 0(S). A mapping X from Q into S 
which is 9 7OM-measurable is called an S-valued random variabk.* 1  
If, in particular, S = R, S = C, or S--= Rd , then X is called a real random 
variable, a complex random variable, or a d-dimensional random variable, 
respectively. If X is an S-valued random variable, then 

(1.2) 	Px(B) = P[X'(B)] = no; X(co) E B] = P{X E 
B e R(S), 

defines a probability on (S,O(S)). Px is called the probability law (or 
probability distribution) of the random variable X. Px is nothing but the 
induced measure, or the image measure of the measurable mapping X. 

2. Probability measures on a metric space 

Let S be a separable metric space with the metric p and R(S) be the 
topological a-field. 

Proposition 2.1. Let P be a probability on (S,O(S)). Then, for every 
B  

(2.1) 	P(B) =  sup 	P (F) = 	inf P(G). 
Pc13.17 : closed 	 BcG,G: open 

Proof Set 	= (B E ar(S); (2.1) holds} . If B E W, then clearly 
BC  (the complement of B) W. If B„ E 	n =  1, 2, ..., then 
U  B e W. Indeed, for given e > 0, we can choose an open set G„ and 
a closed set Fn  such that F. c B„  c G„ and 

P(G„\F„) < el2n+ 1 	n =  1, 2, .... 

ao 	 no 

Set G = U G„ and  F  --= U F„ where no  is chosen so that 
n 1 	 n== 1 

P( û  F \ 	e/2. 
n••1 	n6E1 

* 1  More generally, a random variable is any measurable mapping from 42,9) into 
a measurable space. 
*2  We often suppress the argument co in this way. 
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00 

Then G is open,  F is  closed, F c U Bn  c G and 
n=1  

P(G\F) 4. P(G„\F„) P (0, F„\F) s/2 8/2 = e. 

CO 

Thus, UB„ e W. Therefore, 	is a a-field. If G is open, then F, 
n = 1 

{x; p(x, Gc) > 11n} * is closed, F„ c F„.1. 1  and U F„ = G. Since P(G) 

11m P(Fn), it follows that G 	f.  Therefore, W' = 

We denote, by Cb(S), the set of all bounded, continuous real-valued 
functions on S. Cb (S) is a Banach space with the usual norm 
sup f(x),f E Cb(S). 
xES  

Proposition 2.2. Let P and Q be probabilities on (5,0(S)). If 
sf(x)P(dx) = fs  f(x)Q(dx) for every f E CO), then P = Q. 

Proof By Proposition 2.1, it is sufficient to show that P(F) = Q(F) 
for every closed set F. If we set f„(x) gnp(x, F)) where g3(t) is the func-
tion defined by 

= 

1 

0 

then lim fn(x) = b(x) for every x S. Consequently, by the dominated 
n--• 

convergence theorem, 

P(F) 	sf,(x)P(dx) = 	s f,(x)Q(dx) = Q(F). 

Proposition 2.3. Suppose that S is complete with respect to the metric 
p, that is, every p-Cauchy sequence is a convergent sequence. Then any 
probability P on (S, 0(S)) is inner regular in the sense that for every B E 

O(S) 

(2.2) 	P(B) = 	sup 
	

P(K). 
Ka 13, : compact 

Proof We first prove that for every a > 0 there exists a compact set 

* p(x, A) = inf p(x, y). 
YEA 
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K  c S such that P(K) > 1—e. Since  S is  separable, S can be covered by 
a countable number of balls of radius 6 for any given 6 > O. Let 3„ 0, 
and, for each n, let or, k =-- 1, 2, ... be a sequence of closed balls of 
radius 6„ covering S. Then 

1 --,-- P(S) = lim P 	ar) 
1..2.3 	VC ..  1 	/ 

and consequently we can find ln  such that 

(2.3) 	P (kb or) > 1 — a 1 2n. 

in  

Set K = fl U 	. Clearly, for every ô>  0, K can be covered by a finite 
1 

number of balls with radius 6 and hence K is totally bounded. Since S is 
complete, this implies that K is compact. From (2.3), we conclude that 
P(K)>1 — s.  

Next, let B 0(S). By Proposition 2.1, we can choose a closed set 
F  c B such that P(B) < P(F) e. Now F' = F ()K is compact and 
P(F) — P(F) < P(KC) 8. Hence P(B) P(F') 2e which implies 
that (2.2) holds. 

Definition 2.1. A sequence {P„} of probabilities on (S,..g(S)) is said 
to be weakly convergent to a probability P on (S,R(S)) if for every 
f e Cb(S) 

11n2  f sf(x)P.(dx) = 5 f(x)P(dx). 

P is uniquely determined from {Pn} by Proposition 2.2, and we write 

P = w — lira Pn, or  P 	P as n 	co. 

Proposition 2.4. The following five conditions are equivalent: 

Pn 
Wp  

(ii) lim f(x)Pn(dx) = f(x)P(dx) for every uniformly continuous 
S 

f e Cb(S). 
(iii) 1iiii P(F) 	P(F) for every closed set F. 

irn; P n(G) P(G) for every open set G. 
rj•CO 



If we set F1 = k-1 
E P(F1)/k and 
i-o 
(iii), it follows that 

{x; ilk f(x)} , the right-hand side of (2.4) is equal to 

the left-hand side is equal to kt1  P(F1)1k —11k. From 
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(y)  lim P(A) = P(A) for every A ER(S) such that P(aA) = O.* 
n-.02 

Proof. "(i) =  (ii)" is obvious. To show "(ii) 	(iii)", note that the 
functions fk(x) used in the proof of Proposition 2.2 are uniformly continu-
ous. Then, (ii) implies that 

lim P„(F) lime s fk(x)P.(dx) = sfk(x)P(dx) 

and, letting k 	co, we have (Hi). "(iii) .t> (iv)" follows by taking 
complements. Next, we show "(iii) (i)". Let f e Cb(S). By a linear 
transformation, we may assume, without loss of generality that 0<f<1. 
Then 

(i — 1)1k P {x; (i 1)1k < f(x) 
(2.4) 	̀- 

< f(x)P(dx) 	P Ix; (i — 1)1k f(x) 	. 

lira f f(x)P„(dx.) < hm ktI  P (F)lk < kÉ1  P(F)lk
I s 	 ao 1-0 " 	— io•O  

Ç 11k ± f s f(x)P(dx). 

Since k was arbitrary, we deduce that 

iirn  Lf(x)P n(dx) 	sf(x)P(dx). 

By replacing f with 1 — f in the above argument, we obtain 

lim f(x)P„(dx) 	
s
f(x)P(dx). 

s 

Consequently, limf f(x)P„(dx) = f(x)P(dx). 
s 

* aA = ii\di is the boundary of the set A,  A is the closure of A and  A is the interior of 
A. 
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Finally, we show "(iii) <=> (v)". If  P(A) =-- 0, then, assuming (iii) 
(.(=> (iv)), we have 

P (A) = P(1) lim P(A) < lim P.(i) P(A)= P (A) 
jr-• 00 	 27—.cê 

showing that limPn(A) P(A). Conversely, assume (v). Let F be a closed 
yr-• 

set and set 1,5 	{x; p(x,F) < . Then aF, c Ix; p(x,F) = 	:= As 
and, since the  As  are disjoint for different (5, the set of 6 such that P(A6) > 
0 is at most countable. Therefore, we can choose 61  I 0 such that  P(A 51)  
0 and hence p(3F81) =  O. Consequently 

P(F) =  lim P(4) =  lirn lim P„(F51) > lirn P„(F). 

Example 2.1. If S = R, there is a one-to-one correspondence between 
a probability P on (S,s.g(S)) and its distribution function F(x) 
P((— co, x]). Then "P„ 	P" is equivalent to  "F(x) 	F(x) for every 
continuity point x of F". The former implies the latter by (v) of the above 
proposition and the converse implication is proved easily by approxima-
ting the integrals f f(x)dF„(x) and ff(x)dF(x) with the Riemann sums. 

Proposition 2.5. Weak convergence of probabilities is a metric con-
cept. To be precise, we can define a metric d on the totality gr(s) of 
probabilities on (S, R(S)) such that 

p 	is equivalent to d(P „, P) 	0 as n 	oo. 

Proof. The well known Prohorov metric, which is a generalization 
of that of Lévy in the case S = R, is such a metric (cf. [142]). Here we 
give an equivalent metric in the following way (cf. [165]). If S is a separable 
metric space, we can choose an equivalent metric so that S is totally 
bounded under this metric.* Then, the set of all uniformly continuous 
functions has a countable dense subset {f„} with respect to the uniform 
norm and we set 

d(P, = 2-1  11A f s fi(x)P(dx) f sgx)Q(dx) 

1—beo 

* Indeed, it is well known that a separable metric space is homeomorphic to a subset 
of the Hilbert cube [0, 1]N, [98]. 



PROBABILITY MEASURES ON A METRIC SPACE 	 7 

It is easy to see, by using Proposition 2.4 (ii), that d is a metric satisfying 
the condition of the theorem. 

Thus, the totality .97(5)  of probabilities on  (S, (S)) is a metric space 
under weak convergence. We now want to characterize a relatively corn-
pact* i  set in .91(S). For this, we give the following definition:  

Definition 2.2. A family A c (S) is called tight if for every E> 0 
there exists a compact subset K c S such that P(K) > 1 e for every 
P E A; i.e., inf P(K) 1 — 

PeA 

Example 2.2. If S is complete under the metric p, then every finite 
set A is tight by Proposition 2.3. Generally, if A l  and A 2  are tight, then 
so is A l  U A2. 

Theorem 2.6. Let A c 
(1) If A is tight, then A is relatively compact in .97(S). 
(2) When S is complete under the metric p we have the converse of 

(1): namely, if A is relatively compact in (S), then A is tight. 

Proof. For the proof of (1), we first note that, if S is a compact metric 
space then .97(S) is compact and hence every A c .97(S) is relatively com-
pact. Indeed, by Riesz's theorem, .97(S) = fp E C *(S); p(f) > 0 forf > 0 
and p(1) = 1} *2  and, since C(S) = Cb(S), weak convergence is equivalent 
to convergence in the weak *-topology on C*(S). Thus (S) is compact 
since it is a weak *-closed subset of the unit ball in C*(S) and, as is well 
known, the unit ball is weak *-compact. 

In the general case, we note that S is homeomorphic to a subset of a 
compact metric space (actually, a subset of [0,1 ]' ) and hence we may 
assume that S is a subset of a compact metric space S.  We want to show 
that for every sequence {p} from a tight family A we can always choose 
a convergent subsequence. For a probability p on (S„g(S)), we define 
a probability on ([5,a'(:1)) by /2(1) =-- p(1 n S), A E ( 7). Note that 
A c S is in PO(S) if and only if it is expressed as A = InS for some 

e ..g(g). Now, {fi n } is a sequence in .97(g) and hence, by the above 
remark, we can choose a subsequence, which we denote again by {} , 
converging weakly to a probability y .  on (a§,(S-1)). We now show that 
there is a probability p on (S,,g(S)) such that fl  = v and p n  converges 

* 'i.e., its closure is compact, or equivalently, from every infinite sequence contained 
in this set we can choose a convergent subsequence. 
* 2  C(S) is the Banach lattice under the natural order of all real continuous functions on 
S and C*(S) is the dual space. 1 denotes the function f(x) 1. 
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weakly to g. Indeed, for every r = 1, 2, ... , there exists a compact sub-
set K of S (and hence a compact subset in g) such that p„(KT) > 1 — lIt  
for all n. Clearly Kr  E R(S) n gi($) and 12 (K0 = Pn(Kr)- Since fin — y 
weakly, we have 

v(K) lim p(K r) 1 — 1/r. 
rp••■■ CO 

Therefore U K,. E c S is both in R(S) and ,g(g) and v(E).--- 1. If 
A E R(S), then AnEE ,g(g) since A fl E =--- dinSr1E= 44-  fl E for some 

E .g(g). We set p(A) --= v(A n E) for every A E .g(S). Now it is easy 
to see that g is a probability on (S, 0(S)) and fz=  v. Finally we show that 

— it weakly in .9r(S). Let A be closed in S. Then A --,--  A n S for some 
closed set in g and Pa) = p„(A). Consequently 

lim g„(A) = lim „(21) f(A) = p(A) 
ir".  CO 	 r•-•03 

and the assertion follows from Proposition 2.4, (iii). We omit the proof 
of (2) (cf. [6], [138]). 

Consider an S-valued random variable X; i.e., an  .r/.(S) -measura-
ble mapping from a probability space (Q,,r,p) into S. The probability 
law Px of X is the image measure of the mapping X: Q — S. 

Definition 2.3. Let X., n = 1, 2, ... , and X be S-valued random 
variables.* We say X„ converges to X in law if Px. 	Plf weakly. 

Suppose X„, n = 1, 2, ... and X are defined on the same probability 
space P). Then X. is said to converge to X almost everywhere (or 
almost surely) if 

P {co; p(X(co), X(co)) — 0 as n 	co) = 1 

and X. is said to converge to X in probability, if, for every e>  0, 

P  {co; p(X„(co), X(co)) > e} — O 	as n 	co. 

It is well known that almost everywhere convergence implies con-
vergence in probability and convergence in probability implies conver-
gence in law. The following theorem due to Skorohod asserts that, if S 

* They may be defined on different probability spaces. 
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is complete under the metric p, a converse of the above implications holds 
in a certain sense. 

Theorem 2.7. Let (S, p) be a complete separable metric space and 
P., n = 1, 2, . , and P be probabilities on (S,R(S)) such that 
P as n 	co. Then, on a probability space (L, , fi), we can construct 
S-valued random variables X„, n = 1, 2, . . ., and X such that 

( i ) P.= 13  xn, n = 1, 2, ... and P 
(ii) X converges to X almost everywhere. 

Thus, in particular, convergence in law of random variables  X 	be 
realized by an almost everywhere convergence without changing the law 
of any X.  

Proof. We prove this theorem by taking = [0, 1), 	= ([0, 1)) 
and /3(do)) = do): the Lebesgue measure. To every finite sequence (i1, 

,Z 1 ) (k = 1,2, ...) of natural numbers, we associate a set 
So b 	ik) E R(S) as follows: 

(1) If (ij j2, • • • ik) # Ch i2, - • - 	then 
Sub 	„ ik) n 	93 ; 

(2) S = S and 	, tics.» = SOL 12, ,'k)  ; 
j••• 

(3) diam  
(4) P 	 = 0, n = 1, 2, . . . and P(aSoi. ,, ..... 	= 0. 

Thus, by (1) and (2), {S01 , 12 	forms for each fixed k a disjoint 
covering of S which is a refinement of that corresponding to k' < k. We 
can construct such a system of subsets as follows. For each k, let (Tr, 

= 1,2, . . . be balls with radius < 2-  ("4)  covering the whole space 
S and satisfying F(&)  = 0, P(ac) = 0 for every n, k, m. Set, for 
each k, Mk )  = , D of \or , . . . , Dr)  =-- ,r\(crf k)  U • • • U 

and Sol , 12,...,,k)  =  fl D rl • • • ("1 Dt) . It is easy to 
verify that the system of sets so defined possesses the above properties. 
Fixing k, we order all a i ,-1, -2, - • •, ik) lexicographically. Define intervals* 2  

Ik» ,61,71)  .i2 	Lid  in [0, 1) with the following properties: 

..... I = P65(11, 12. - • - . 1k) )/ 	 ,ik) I = 	n(S a 1  .12.....to); 

(ii) if 01, i2,  • '• 9  1/3  < (f j,i29 - • • jk), then the interval A at.i2.---(k) 
(A 	is located to the left of the interval 4 ,  1 , 12, /k) (resp. 

A1)1.i2 . 	10); 

* 1  diam A = sup p(x, y). 

* 2  Here, by intervals in [0, I), we mean intervals of the form [a, b) (a b) only. [41 
stands for the length of the interval 4. 
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(iii) 	U4 (11.12,....,0  = [0, 1), 	U 	.0 2 	,k)  = [0, 1). 
01.12 ..... 10 	 ('1. 12, - - . ik) 	. 

Clearly these intervals are uniquely determined by these properties. For 
each (i1 , i2, •.. , ik) such that §01 , 12,.... 10  # 0, we choose a point 
x.11./2,.... 1k  E L§(11,12 ik) . For co E [0, 1), we set 

X(co) 	X11 i2. • - * fie 
	if co  E 
	 and 

Xk(co) 	X1 1 12 1,. 	if e°  e A01.12 	ik)) 

for k = 1, 2, ... , n =  1, 2, 	.* Clearly, 

p(X (co), X+P(co)) 	112k, p(Xk(co), Xk+P(co)) _Ç 112k 

and hence  X(co) = lira r,(co), X(co) = an Xk(co) exist by the complete- 
k-,00 	 k--. co  

ness of (S, p). Since P„(S(11,12 	ik)) "---- I A ri,t2,- • • , ikd --'- ill 0 1, 12 - - - . 10 1  = 
P.(Su i  , ,2 , . . . .'k))'  if co E Ll ui ,,2.... , 10  then there exists nk  such that co E 
414i2,...10  for all n fl. Then  X(co) = Xk(co) and hence 

P(X,(0.)) X(co)) P(A((0), r(co)) POil( 0)), X%0)) 

p(Xk(co), X(co)) Ç 2/2k, if n nk. 

Therefore, if we set Do  = n ( u 	2(1 1  i2  fk))) 	 X(co) for 
fool (i , 12, . , k) 

CO e Do  as n 	co and clearly P(i20) ,---- 1. 
Finally, we show that fixn P„ and  P'  •=-- P. Since 

P la);  XP(co) e (1,12 	
 
ik), — .P {co; Xi7;+P(CO) E 

P n (05  a t2,  

and since every open set in S is expressed as a disjoint countable union of 
S(11 , 12,.... io 's, we have, by Fatou's lemma, 

11 P xf;(o) > P(0) 
p-+00  

for every open set 0 in S. Then, by Proposition 2.4, Pxf converges weakly 
to P. as p 	co showing that fix,  =  P. Similarly, we have fix = P. 

* If  4cil,t2,...,10 	95 or 41,12,,,.., to 	95, then 	 95 and hence this is well 
defined. 
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3. Expectations, conditional expectations and regular conditional 
probabilities 

Let X be a real (or complex) random variable defined on a probability 
space (S2,,F;P). Two random variables X and Y are identified if 
P[co;X(co) # Y(co)] = O. X is called integrable if 

f I X(CO) 1 P(dCO) < Co. 
D 

More generally, if 

f I X(w) i P  P (d co) < co, 	(p > 0), 
D 

it is called p-th integrable» Let p > 1. The totality of p-th integrable 
random variables, denoted by 2' (Q ,FP) or simply by 2' ,,(0) or _Zp(P), 
forms a Banach space with the norm 

IIX IL, -,-- (Jr, I X(w) I PP(dc))) 11P. 

2'oe(S2,P) is the Banach space of essentially bounded random variables 
with the norm I IX I I., = ess. sup I X(co) I . 

For an integrable random variable X, E(X) = LX(co)P(dco) is called 
the expectation of X. For a square-integrable random variable X, V(X) = 
E(X 2) — E(X) 2  ( = EqX — E(X)) 2)) is called the variance of X. 

A family {..r,x} ..A of sub a-fields of Y.' is called mutually independent 
if for every distinct choice of ai , a2, . . . , a, e A and A l eY -cep i= 
1, 2, . , k, 

P(Al n A2 n - • • fl A,.) = P(A1)P(A2) • • • POO. 

A family of random variables {Xa} a e A is called mutually independent* 2  
if 101X all cr E A is mutually independent. A family {Ara, a E Al of random 
variables is called independent of a a-field g c fi--  if o- [X a ; a E A] and 
g are mutually independent. 

Let X be an integrable random variable and g c ,7-  be a sub o--field 
of .."-. Then p(B) -- E(X:B): =-- f BX(co)P(do)), B E g, defines a 

*' If p = 2, it is called square-integrable. 
* 2  This definition applies for general S-valued random variables. 
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a-additive set function on g with finite total variation and is clearly abso-
lutely continuous with respect to y = P1 57. The Rad  on-Nikodym deriva-
tive dp/dy(co) is denoted by E(X1  ')(co) ;  thus E(xig) is the unique (up 
to identification) g-measurable integrable random variable Y such that 
E(Y:B)= E(X:B) for every B  W. 

Definition 3.1. E(XI g)(co) is called the conditional expectation of X 
given W.  

The following properties of conditional expectations are easily proved. 
(X, Y, X„, below are integrable real random variables and a, b are real 
numbers.) 

(E.1) E(aX bYIW) = aE(XIW) bE(Ylg) a.s. 
(E.2) If X > 0 a.s., then E(XIW)> 0 a.s. 
(E.3) E(11 g) =  1 a.s. 
(E.4) If X is '-measurable, then E(Xlg) =  X,  a.s., more generally, 

if XY is integrable and X is ' -measurable 

E(Xrig) = XE(Y1g) a.s. 

(E.5) If ,R7  is a sub a-field of W,  then 

E(E(Xig)ige) = E(X ) a.s. 

(E.6) If X„ — X in 9'1 (0), then E(Xn jW) 	E(Xig)  in 2'1(0)- 
(E.7) (Jensen's inequality) If tv: 	 is convex and v(X) 

integrable then 

1,10(x1g)) E(w(X)1g) a.s. 

In particular, 1 E(XI g)1 < E(1  X I  g) and, if X is square-integrable, 
1E(X1 W)12 	E(1X1 2 1g). 

(E.8) Xis independent of g if and only if for every Borel measura-
ble function f such that f(X) is integrable, E(f(X)Ig) --= E(f(X)) a.s. 

Let be a mapping from Q into a measurable space (S, ) such that 
it is ... 7.-measurable. Then p(B) = E(X: {ro, 4co) e B}) is a a-additive 
set function on .g which is absolutely continuous with respect to the image 
measure y =  P.  The Radon-Nikodym density dpldv(x) is denoted by 
E(X1 = x) and is called the conditional expectation of X given x. It 
possesses similar properties as above. 

Definition 3.2. Let (0,5;P) be a probability space and g be a 
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sub a-field of Y. A system {p(o), A)} (DE D,AEy- is called a regular conditional 
probability given g if it satisfies the following conditions: 

(i) for fixed co, A 	p(co, A) is a probability on (Q, „F. ); 
(ii) for fixed A E 	,  co 	p(co, A) is '-measurable; 

(iii) for every A E „9--  and B E g, 

P(A n =  p(o), A)P(dco). 

Clearly property (iii) is equivalent to 
(iii)' for every non-negative random variable X and B e g 

E(X: B) = 	1/.8(co) 	X(a)p(co, dco')} P(dco), 

that is, f X(co')p(co, da) coincides with E(X1g)(co) a.s. 
We say that the regular conditional probability is unique if whenever 

{p(o), A)} and {p'(co, A)} possess the above properties, then there exists 
a set N E g of P-measure 0 such that, if 0) N then p(co, A) = pi(co, 
A) for all A z . 

Definition 3.3. A measurable space (Q, .7-) is called a standard meas-
urable space if it is Borel isomorphic* to one of the following measurable 
spaces: (<1,  n>,  g (<1, OD, (N,O(N)) or (M,O(M)), where <1, n> = 
{1, 2, . . . , n} with the discrete topology, N = {1, 2, . . . } with the 
discrete topology and M = {0,1}N = {CO = (0)19 (025 • • •), CO i= 0 or 
1} with the product topology. 

It is well known that a Polish space (a complete separable metric space) 
with the topological a-field is a standard measurable space and every 
measurable subset of a standard measurable space with the induced 
a-field is a standard measurable space (cf. [98], [138]). 

Theorem 3.1. Let (Q, 	) be a standard measurable space and P be 
a probability on (Q, ,7-). Let g be a sub a-field of Si-  . Then a regular 
conditional probability {p(co, A)} given g exists uniquely. 

Proof. We consider the case where 	) is isomorphic to (M, 
as(M)) and hence we may assume that 0 = M and .7= R(M). Let 
nn: 	Dcci  1—~ (coi,c029 	(DO E {0,1}" be the projection and 

* 	) and (S2', 5") are Borel isomorphic if there exstis a bijectionf: 	a such 
that  f is  ,97,-/-measurab1e and f-1  is .71-9- -measurab1e, i.e. f(.7) = 
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= n,V..g[{0,1}1. Clearly P4;1 is an increasing family of finite 
a-fields and  VY =  J. If P„, n. 1, 2, . .. are probabilities on (Q, 

and {P} is consistent in the sense that P I 

	

n-1-1 	=  P , n =  1, 2, 
then there exists a unique probability P on (Q, 	) such that Pl y.= P,,. 

	

OD 	 OD 

Indeed, by consistency, P is well defined on U  Y 	if B„ E U 
n-1 	 k.■ 1 

n = 1, 2, . . ., is such that B„ D B„.4. 1  and  Jim  P(B„) > 0 then (1 
71■0 CO 

since {B„} is a system of closed sets in a compact space Q having the finite 
intersection property. P is then extended to 01U 9.-„} =-- V "73 	by 

Hopf's extension theorem. 
We set pn(co, A). E(14 Ig)(co), A e‘7. Clearly, there exists a set 

E g of P-measure 0 such that if co IE N„, then  p(a), A) is a prob-
ability on 977  and pn(co, A)  = pn-i (co, A) for A e n =  1, 2, . . . . 
If we set N = U N„, then for each co ON, {p„(co,-)} is a consistent family 

and hence determines a unique probability p(co, -) on (Q, Y). Take a prob-
ability y on (Q, )  and define p(co, -)= y if w E N. Then the system 
{p(co,-)} is a regular conditional probability given g. Indeed, properties 
(ii) and (iii) are obvious for A E U."; and extend to Y by a standard 

monotone lemma. If {p(co,-)} and {p'(co, •)} are two regular conditional 
probabilities, then the set N = {co; p(co, A) k p'(co, A) for some A E 

has P-measure 0 and if co N, then p(co, A) ---- pi(o.), A) for all 
n••1 

A E 	again by the monotone lemma. This proves the uniqueness of• 

the regular conditional probability. 

Definition 3.4. Let (Q, ..7) be a measurable space. We say that 9 - is 
countably determined if there exists a countable subset Y c Y-  such 
that whenever any two probabilities agree on Y-.0  they must coincide. 

Clearly, if (Q, ..7.) is a standard measurable space then Y-  is countably 
determined. 

Theorem 3.2. Let (Q, ‘,-) be a standard measurable space and P be a 
probability on (Q, ). Let g be a sub a-field of .9-  and p(o.), dal) be a 
regular conditional probability given g. If A' is a countably determined 
sub a-field of g, then there exists a set N e g of P-measure 0 such 
that co e N implies p(co, A). IA(Co) for every A E . 

Proof Let A"c, c 	be a countable set in Definition 3.4 for ge . 
Clearly if A E ,Wo, then there exists N, E g of P-measure 0 such that 
p(co, A) = 14(w) if co N4 .  Set N 	U  N4, then p(co, A) = 14(co) holds 

Aexo 
for all A E 2'  if o.) çt N. 
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Corollary. Let (12, ,r) be a standard measurable space and P be a 
probability on (Q, ,7). Let g be a sub o'-field of  LY  and p(co, -) be a 
regular conditional probability given g. Let ` .(w) be a mapping from Q 
into a measurable space (S, sg) such that it is '/-measurable.  Suppose 
further that 	is countably determined and {x} ea' for every x E S 
(this is true, for example, if (S, 	) is a standard measurable space). Then 

(3.1) 	p(co,  {a)';  (co') = &))} ) --- 1, a.a. w. 

Proof Since R is countably determined, there exists a countable 
subset Ro  R with the property of Definition 3.4. Hence, if we set 

g-1 (B); Be RI, X is a countably determined sub a-field of g 
with X, = g-i(B); B e Rol . By Theorem 3.2, there exists a set N E g 
of P-measure 0 such that if w  E N, p(co, A) = 1:4(co) for every A G X' . 
By taking A„, =  {w';  `(co') =  4w)} e X , we have (3.1) for w N. 

In the same way as Theorem 3.1, we can prove the following result. 

Theorem 3.3. Let (Q, 	be a standard measurable space and P be a 
probability on (Q, .7). Let 4w) be a mapping from 12 into a measurable 
space (S, .g) such that it is ..770-measurable and let be the induced 
measure on  (S, 1)  by c. Then there exists a system {p(x, A)} xes . de ir- such 
that 

(i) for fixed x  e S, A 	p(x, A) is a probability on (12, .7" ); 
(ii) for fixed A E  Y,  X 	p(x, A) is .-measurable;  

(iii) for every A e er and B  eas, we have 

P(A n {co; 4(0) e  B})  = p(x, A)P(dx). 

Furthermore, if {p'(x, A)} is any other such system, then there exists a set 
N E R of ./3 -measure 0 such that x IEN implies 

p(x, A) = p'(x, A) 	for all A E 

Thus, for every integrable random variable X, f r2  X(co)p(x, dc.o) coincides 
with E(X1 - = x), PLa.e. x. p(x, A) is called the regular conditional prob-
ability given = x. In the same way as Theorem 3.2 and its corollary we 
can prove the following: 

Corollary. We assume further in Theorem 3.3 that R is countably 
determined and {x} ear for every x e S. Then there exists a set N e 
of Pc-measure  0 such that if x N, p(x, {co;  c(co) E B} ) = .4(x) for every 
B E R. In particular, if x N then 
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(3.2) 	p(x, {co; .(co) = x})= 1. 

4. Continuous stochastic processes 

Let Wd = C([0, 00) 	le) be the set of all continuous functions 
w: [0, co) t 	w(t) e Rd .  We define a metric p on Wd by 

(4.1) 	p(wi w2) = E 2-"Kmax 	w2(t ) 1 ) A 11, w1, w2 E Wd. 
n=1 	0<rra 

It is easy to see that Wd is complete and separable under this metric. 
Clearly, w„ w with respect to the metric p if and only if  w(t) con-
verges to w(t) uniformly in t on each bounded interval. Let .g( Wd) be 
the topological a-field. By a Borel cylinder set we mean a set B c Wd of 
the following form 

B = fw; (w(t1),w(t2), • • • ,w(t.)) e E} 

for some sequence 0 < t,  <t2  < • — < t„ and E e 9 (.1?"). The 
totality of Borel cylinder sets is denoted by W . Since the mapping w e 
rrIel 

1-1-  0 41(t 1) W (t • • • WO'  e Rnd  is continuous, it is clear that 
c .g(W4). 

Proposition 4.1. aFej = .9(Wd). 

Proof It is only necessary to show that a[W] D 0( Wd). The totality 
of sets of the form (w; max I w(t) — wo(t) I < , wo  E 	e > 0, n 7=- 

0t<n 

1, 2, . . . , forms a basis of neighborhoods in Wd and we have 

fw; max I w(t) — w0(t) 	=-- n  {w;  w(r) E U(wo(r), re f2,01-Çrx 

where U(a, e) = Ix e  Rd;  Ix — al <  e).  Thus, such a set is representable 
as a countable intersection of sets in Te. Now ..g( Wd) c  a[ ?1]  is obvious. 

Corollary. Every probability on  ( W', (FP)) is uniquely determined 
by its values on W 

Definition 4.1. By a d-dimensional continuous process X we mean a 
Wd-valued random variable defined on a probability space (Q, 	P), i.e., 
a mapping X: Q 	Wd which is ,,r7.9 ( Wd)-measurable. 

Thus, if X is a d-dimensional continuous process, then for each co, 
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X(Co) E W4 . The value of X(co) at t E [O, 00) * is denoted by Xt (w) or 
X(t, co). For fixed t, X(co) is a d-dimensional random variable. 
Conversely, a collection {X,(a))}, EN  oe)  of d-dimensional random variables 
determines a d-dimensional  continuous process if t X(t) is continuous 
with probability one. 

We say that two d-dimensional processes X and X' have the same 

law, denoted by X X', if their probability laws Px and Px' coincide. 

Since PX  and Px' are determined by their values on , x x,  if and only 
if all their finite dimensional distributions coincide : a finite dimensional 
distribution of X for a given sequence of times 0 t1  <t2  <  
is the probability law of nd-dimensional random variable (Xt 1 , Xt25 • • • 5 

Theorem 4.2. Let X = {X„(0), n = 1,2, ... , be a sequence of d-
dimensional continuous processes satisfying the following two conditions: 

(4.2) 	lim sup P {IX „(0)1 >N} 	0; 
N-.co n 

(4.3) 	for every T>  0 and e > 0, 

lim sup P 1 max jX(t) — X, 7(s) I > = O. 
hi0 	n 	t,sE CO, 71 

Then there exists a subsequence n1  <n2  < • 	<n/,,  • • • 	00, a 
probability space (69,15) and d-dimensional continuous processes 
itk  = (Î,7,(0), k = 1, 2, ... and if = (Î(t)) defind on it such that 

(4.4) 	ink 	X„k, k = 1,2, ... , 

(4.5) 	itnk  converges to Î almost everywhere as k 	00,  
{ca; p(itk(6), t(6.3)) — 0 as k 	00) = 1. 

Furthermore, if every finite dimensional distribution of Pxn converges as 
n— 00, then we need not take a subsequence: we can construct i n, 
n =  1, 2, . . . and  Î such that (4.4) and (4.5) hold for n = 1,2, . 
and as n 	co respectively. 

Proof. First we show that {PM is tight (cf. Definition 2.2) if (4.2) 
and (4.3) are satisfied. By the Ascoli-Arzelà theorem, a subset A c Wd 
is relatively compact in Wd if and only if it is both 

(i) uniformly bounded, i.e., for every T>  0, sup max w(t)1  < oc,  
wEA tEO, TJ  

*  t E [0, co) is considered as time. 



18 	 PRELIMINARIES 

and 
(ii) equi-continuous, i.e., for every T>  0, lim sup r(w)=---- 0, where 

h10 weA 

V(w) = max I w(s) — w(t)  I. t, sE to 71 
Ir—slis 

We see by (4.2) that for every 8 > 0 there exists a> 0 such that Pdrn {w; 
I w(0) I < a} > 1 — 812 for all n. Also, by (4.3), for every 8> 0  and k = 
1, 2, ... there exists hi, > 0 such that hk  1 0 and PIG { w; V,,(w) > 

11k }  < 812k+' for all n. Thus PM n { 47; v,(w)._ 1/k}] > 1 — c/2. Set 
k-1 

CO 

K, =  {w; w(0)!  __ a} r1 ( n {w;v,(w) ._ 1/1c)). Then clearly K, satisfies 

(i) and (ii) and hence it is compact. Now Pzn(K e) > 1 — 8 showing 
that {Pxn} is tight. So, by Theorem 2.6 (1), a subsequence {nk} exists such 
that PXak 2- '  -P for some probability P on ( Wd, .g( Wd)). We now apply 
Theorem 2.7 to construct Ink  and it with properties as above. If every finite 
dimensional distribution of  P "' converges, then clearly a limit point of 
{Pin} is unique and hence P'» itself converges weakly to P as n— 00. 

Theorem 4.3. Let X„ = (X„(t)), n =-- 1, 2, . . . , be a sequence of 
d-dimensional continuous processes satisfying the following two condi-
tions: 

(4.6) 	there exist positive constants M and y such that E {1 X „(0) 17} < 
M for every n — 1, 2; 

(4.7) 	there exist positive constants a, A Mk, k --= 1,2, . . . , such that 
E{ I I„(t) — X„(s) I "I Ç  M,. It  — si 1+P for every n and t,s e PAL 
(k = 1, 2, . . . ). 

Then {X.} satisfies the conditions (4.2) and (4.3) of Theorem 4.2. 

Proof By Chebyshev's inequality, 

P 1 I Xn(0) I > NI :5_ M/NY, 	n = 1, 2, 

and (4.2) is clearly satisfied. We now prove (4.3). We may take T to be an 
integer. By (4.7), Y(t) = X„(t), n = 1, 2, . .. , satisfies 

E { I Y(t) — ns)Ia} _... MT  t — sl i +ft, 	t, s e [0, T]. 

By Chebyshev's inequality, 

0 8) 	
p flyti ±m17,2)/ _22+73_,I 

; 

ya() if2m)i > 1/2m 0l < MT2-14(1-4)  2mact  . 
I  ---= 0,1,2, ... ,2"'T — 1. 
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We choose a such that 0  <a  < 13/a.  By (4.8), we have 

(4.9) 	P 1 max I n(i 	1)/21") — 	> 1/2m0l < AirT2-m (g. 
0.<12,7zT-1 

Let 8 > 0 and  o>  0 be given. Choose y = (6, e) such that 
(1 + 2/(2a — 1))/2va e and 

Co 

P[ U { max I Y((i 1)/2 )  — Y(i/2m)I > 1/2m0l 
(4.10) 
	/TP=1) 0512rn r- 

CO 

< MTTE 2— m(13—ace) < 6. 
mv  

CO 

Set g2„ = U 	max I Y((i l)/2m) — Y(//2m) I >  1/2"}. Then 
m=y 021nr— 1 

P(S2p) <  ô and if w 15È S2, 

I Y((i 	1)/2m) — Y(//21  I  < 1/2ma 

for all m > y and i such that (i 1)/2m < T. Let DT be the set of all 
binary rationals in the interval [0, T]. If s E D, is in the interval 

[i/2,(i ± 1)/2v), then s is written as s =  i/2" 	a1/2v+i, where a, is 0 
z=i 

or 1, and hence, if w 	f2„, 

I Y(8) — Ai/29 IÇAI Ai/2v 	ai/2v+l) Y(//2v + E  ai/2v+i)I 

J 	 CO  

< E 1/2(v+k)- < E 1/2(v+k)a = 1/(2a — 0214. 
k-1 

Therefore, if s,  t E D Is — t! < 1/2v and w e D„, then 

(4.11) 	1  Y(s) — Y(t) 	(1 ± 2/(2a —  1))/2  <e. 

Indeed, if t e [(i — 1)12Y, il2v) and s E 	(i 	1)129, then 

I Y(t) — Y(s) I 	I Y(s) — Y(i/2v) I + I Y(t) — 	— 1)/291 
+  I Ai/29 — Y((i — 1)/2 ) I  Ç (1 + 2/(2a — 

and if t, s E [i/2v,  (i 	1)/2v), then 

Y(t) — Y(s)I LÇ._  I  Y(s) — Y(i12)  I  ±  I  Y(t) 	Y(i129I 

Ç 2/(2a — 1)2va. 

Since DT is dense in [0, 7 ] , (4.11) holds for every s, t 	[0, 71 such that 
Is — t! < 1/2v. Therefore, 
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P 1 max I  Y(t) — Y(s)1 > 	P(Q) <ô.  
4:E [0,71 

It—:l<1/2v 

Since v = v(s, 6) is independent of n, we have proved (4.3). 

Corollary. Let {X(t)}, <0, œ)  be a system of d-dimensional random 
variables such that for some positive constants a, fi and  Mk,  k --= 1, 2, • • • , 
the following condition (4.12) holds: 

(4.12) 	E(1.Y(t) 	gs)il 	Mk It — 1 1+  fi  

for every t, s E [0, k], k = 1, 2, . . . 
Then there exists a d-dimensional continuous process Î =  (AO) such 

that for every t E [0, oo), P[X(t) = t(t)] = 1. 

Proof. Just as in the above proof, (4.9) holds for Y(t) = X(t) and so, 
by Borel-Cantelli's lemma ([129]), we have for almost all co 

I X((i 	1)/2m) — X(i/2m) I  _< 1/2ma, i =  0, 1, 2, . . . , 2mT — 1, 

for all m > v = 

This implies, as in the above proof, that I  X(t) — X(s)! < (1 + 2/(2" — 

1))/2ma  if t,5D 2,, it —si < 1/2m and m > v. Consequently, t E 
D X(t) is uniformly continuous almost surely. Let 2(0 be the con-
tinubus extension of X(t) c't D•  Then Î =  (2(0) is a continuous process 

k=1 k 

and it is easy to prove that P[X(t) = if(t)] = 1 for every t E [0, co). 

5. Stochastic processes adapted to an increasing family of sub 
ri-fields  

Let (Q,  Y P) be a probability space and (5";), 0  be an increasing 
family of sub a-fields of """ : i.e., 

(5.1) 	,7; 	 if 0 <t<s. 

(.•F;) is called right-continuous if .-9-t+o: =  n  J  =  -97 for every 
a>0 

t e [0, co). In the following, unless otherwise stated, (.9";) is assumed to be 
right continuous. Such a family (Y;) is called a reference family. Suppose 
we are given (Q, 	P) and VD. By a d-dimensional stochastic process* 

* We consider here the d-dimensional case (i.e., the state space is Rd) but the generali-
zation to an arbitrary state space is obvious. 
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we mean a family of d-dimensional random variables X = (14). In this 
section, a d-dimensional stochastic process is simply called a process. 

Definition 5.1. A process X 	is called adapted to (.7-e) * 1  if 
X, is .9;-measurable for every t. 

Generally, a process X = 	is called measurable if the mapping 

(t, co) E [0,  co)  X Q 	Xr((o) E Rd 

is .g([0, co)) x ,77.g (Rd)- measurable. 

Let  5 be the smallest c-field on [0, co) x Q such that all left-continu-
ous (9 )-adapted processes Y: [0,00) X Q D (t,a)) Y(w) E Rd are 
measurable. If we replace left-continuous Y by right-continuous Y in the 
above, the corresponding o--field is denoted by 9.  

Definition 5.2. A process X =  (X e)  is called predictable" if the map-
ping (t,co) X(co) is 512(Rd)-measurable; it is called well measurable" 
if the corresponding mapping is -r/i(Rd)measurable. 

Clearly, both predictable and well measurable processes are measura-
ble and adapted to (Y). 

Remark 5.1. A predictable process is a well measurable process. Indeed, 
if X = (Xe) is left-continuous, i.e., t 	X. is left-continuous for every co, 
then X,  = (X (1,') ) defined by X (7) 	X„,2. for t 	[k/2", (k 	1)12") is right 
continuous and  X(w) 	X(co) as n 	00. Thus X is -F--measurable. 
This implies that 5°c.7-. . 

Proposition SI.'" Let 0 be a linear space of real and bounded* 5  
measurable processes satisfying the following two conditions: 

(i) 0 contains all bounded, left (resp. right)-continuous  (Y;)-adapted  
processes; 

(ii) if {On} is a monotone increasing sequence of processes in 0 such 
that O  = sup On  is bounded, then O E 0. 

Then 0 contains all bounded predictable (resp. well measurable) pro-
cesses. 

Proof. A bounded predictable process, i.e., a bounded 5"-measurable 

*' We also say (97)-adapted. 
* 2  To be precise, predictable with respect to ("7). We also say VD-predictable. 
* 3  To be precise, VD-well measurable. It is also called optional. 
*4  in this proposition, we assume d = 1. 
*5  That is, it is bounded as a function from [0, co) X SZ into R. 
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function, is a monotone increasing limit of 5"-measurable simple func-
tions. Hence, it is enough to prove /a  E 0 for B E . Set 

5" = {B;B c [0, 00) x Q such that I.  E 01 . 

Then, since 0 is a linear space and le 0,5" ' has the following properties: 
(i) [0, co) x Q e ' ; 

(ii) A, B E .5°', A c B B\A E 2'; 
(iii) A„e 	A„  c A n+i , n = 1, 2, . . . => U A„ 

Let Y, (i = 1, 2, . . . , k) be a left-continuous (F)-adapted process 

and E, (i = 1,2, ... , k) be an open set in  R'.  Then CI Y7 1 (E,) E 
1-1 

Indeed, 'k 	(t, co) ,  =  II  IE,(Ye(t, o))) and since there exists a se- 
n 	A  (Ed 	 1=1 

1..1 • 

quence of bounded continuous functions gY„ on R such that 0,(x) t 
/E,(x) as n 	00, 

gYt(t, co)) t  II 1.€,( 17#2 co». 1-1 

The left-hand side being a bounded left-continuous F-radapted process 
is in 0 and hence so is the right-hand side. 

But the totality  g' of sets of the form fl  Yri(Ei) is closed under the 
g-i 

finite intersection and ci['  ] = .9' by the definition. Then S' c 5'1  
follows from the lemma below. 

Lemma 5.1.'" Generally, if a family g' of subsets of [0, co) x Q 
satisfies (i), (ii) and (iii) above, it is called a d-system. If TI7  is closed under 
finite intersections, it is called a 7r-system. Let the smallest d-system con-
taining ' be denoted by d[W J. Then for every n-system d[W] = 
u[V]. 

The proof is standard and is left to the reader. 

Definition 5.3. Let (0,F-,P) and (..V;)„,, be given. A mapping a: Q — 
[0, co] is called a stopping time* 2  (with respect to (F)), if, for every t > 0, 
{co; a(co) < E  Y.  For a stopping time a, we set 

(5.2) 	Jr, = {A E 	vt e [0, co), A n {a(co) t}  e9}.  

Clearly, 57, is a sub a-field of Y and if  cî(w) 	t, then .97, Jr; 

* 1  Due to Drakin (cf. [21]). 
*2  Sometimes, it is called a Markov time. 
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Example 5.1. If X = (X,) is a right-continuous, VD-adapted process 
and E Rd is an open set in Rd, then the first hitting time 5E  to the set E, 
defined by 

(5.3) 	cE(co) = inf {t >  O;  X(co) E E] *1  

is a stopping time. Indeed, 

16rE(0)) 	t) =  n fo-E(0)) < t + 1/n1 

= n u {xr(w) E El e f;+6 = "7- 
n  r+1211, 

It is known that if (.9) satisfies .Fr = tr, for every t or, more generally, 
if for some system {Pa}  of probabilities on (Q, 	n FT.Pet  = ..7; for 

a 

every t, then o-E  is a stopping time for every Borel subset E c Rd for 
every well measurable X (cf. [15] and [117)). 

Proposition 5.2. Let a, T, a„, n = 1, 2, . be stopping times. Then 
(i) cry; 	AT, 

(ii) a = lira a„, when a„ t or an  4,,  

are all stopping times. 

Proof Since {a V T < t} *2  = {a < t} n 	t], a V -c is a stop- 
ping time. Similarly, a A T.  is also a stopping time. If an  t a then 
{a < t} = n {a„ < t} and hence a is a stopping time. If an  4, a, then 

< t} = U {an  < t} and by the following lemma, a is a stopping time. 

Lemma 5.2. a is a stopping time if and only if {a < t} E ,P--; for 
every t. 

Proof. If a is a stopping time then la < t} = U {a(co) 	t — 1/n} 

Y. Conversely, if {a < t} 	Y"," for every t, then la(w) t} = 
n {0-(0) < t+  1/n1 	.fr;fo = 

Proposition 5.3. Let a, T,  an , n = 1, 2, . , be stopping times. 
(1) If a(co) 	T(co) for all co, then ..9; c  9. 
(2) If a n (co)  4,  c(co) for all co, then n..9.7-7  = 7, 

* 1  We define always inf = co unless otherwise stated. 
* 2  We often write {X e Aj for icy;  X(co) e  A}.  
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Proof (1) follows from the definition. If an  ci,  then CI"; D 9; 

by (1). Let A e r1.7; . Then, as in Lemma 5.2, An {a n  < t} 

for every (t, n) [0, 00) x {1, 2, . } . Hence A fl < t} = U [A 1.1 

{an  < tl] e ..rt  and so A E 

Proposition 5.4. Let o-  be a stopping time. Then the following hold. 
(1) a: Q 	co 	a(co) e [0, co] is tr.g./..g([0, co])-measurable. 
(2) If X = (Xt)to is well-measurable, the mapping 

Xc,: Q, 	{w; a(co) < co} D CO 	X,. (co  (co) G Rd 
is .94; s?,/.(R") -measurable. 

Proof (1) is easy and hence omitted. To prove (2), we may assume X 
is right-continuous by Proposition 5.1. Let ag(co) = kl2n if o-(co) e [(k — 
1)/2n, kl2n). Then an  is a stopping time and an  1  a. Hence X7 = lim X,, 
on  Q.  On the other hand {Xo.n  G El n {an  t} = u 	El 11 

{a„ = k/2 }  fl 	til G  .9;.  This implies that  Xe,,  is 	I szg-measur- 
able and hence X, is rl .7;,,I D,= .9; Dg-measurable. 

Intuitive reasonings on stopping times are often justified by the fol-
lowing proposition. 

Proposition 5.5•* Let a and T be stopping times and X be an integrable 
random variable. Then the following hold: 

(5.4) 	E(/(a>T) XI 	= ikr>T1 E(X1.-ranT) 

(5. 5) 	E(47z-0 X14-7;) 	Eql-rernO 

(5.6) 	E {E(X .9 -) I g-",} = E(X I „P";-A,). 

Proof First we note that 1" >e  and ./(} are  9 A -measurable. Indeed 
{a> 'r, T 	t} = {0.  > t, 	t} U{r< < t} 

e 	for every t 0 and hence  {o- > 21 G traAT . Now, fa. > 
< Tic E ,..raAr  is obvious. In order to prove (5.4), it is sufficient to show 
that E(//„>e  XI 	= 1{,>,} E(X1,747r) is .9;AT-measurable. This is true 
because 

47>r) E(X •9;) IkrArSt) =  EV- 1.-94-0 Ift<r) I (o>r,r56 

is (9;-measurable for every t > O. The proof of (5.5) is similar and (5.6) is 
easily obtained from (5.4) and (5.5). 

* Communicated by H. Asano. 
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So far, we have only considered the continuous time parameter case 
(i.e., t [0, co)). The discrete time parameter case (i.e., t 0, 1, 2, . . . ) 
can be handled in an obvious way. The notion of adaptedness and stopping 
times are defined as before. In this case, however, the notion of measurable 
processes is trivial. The notion of predictable processess is defined as fol-
lows. A process X = is predictable with respect to a reference 
family (Y;) if X„ is „9:_ 1 -measurable for each n = 1, 2, . . 

6. Martingales 

Let T be the time parameter set: T = {0, 1, 2, . ..}  in the discrete 
time case or T = [0, co) in the continuous time case. Let .t = T u {co } 

 be the one-point compactification of T. Let (0,,,,P) be a probability 
space and (...7;), ET  be a reference family.*' 

Definition 6.1. A real stochastic process X = (X) t7  is called a 
martingale" (supermartingale, submartingale) with respect to (9 ) if 

(i) X, is integrable for each t e T, 
(ii) X = (Xe) is (7')-adapted, 

(iii) E(X,I Y -rs) =  X  (resp. E(Xe ljTe) 	X„ E(X t i t.r .$).. Xs) a.s. 
for every t, s E T such that s < t. 

First, we consider the discrete time case. Let f (f
)-1 bounded and non-negative predictable process; i.e., there exnists12a,  .— b  constant a  nt 

M>  0 such that 0 <  f(û)  < M for all n and f„ is f;_ 1 -measurable,  
n = 1,2, . . . . Let X = (X„) be a martingale (supermartingale, sub-
martingale) relative to („747,). We define a stochastic process Y = (Y„)„ ET  
by 

(6.1) 	
I Yo --=X0 
1 Y„ 	f„-(X„ — 	 n=  1, 2, . . 

Then it is easy to see that Y is a martingale (resp., supermartingale, sub-
martingale) relative to (Y). We denote Y == f.X and call it the mar-
tingale transform of X by f 

Example 6.1. (Optional stopping). Let Q 	11  be a stopping time 
and set fn 	I,„„) , n =  1, 2, . . . . f = (f„) is predictable because In < 

= [ U 	]c and clearly X: =f.X is given by X`:,, = 	n = 
k•20 

*i In the continuous time case (...7;-) is assumed to be right-continuous. 
*2  Sometimes, X is said to be an  (.F)-martingale  or a (P, ")-martingale. 
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0, 1, 2, . . Thus the process Xcr obtained by stopping a process X at 
time a is a martingale (supermartingale or submartingale) if X is one. 

Theorem 6.1. (Optional sampling theorem).'" Let X = (X7,)„.7. be a 
martingale (supermartingale, submartingale) relative to (..7;) and let a 
and  'r  be bounded* 2  stopping times such that a(co) < 'r(w) for all co. Then 

(6.2) 	E(X, 	= 	(resp. LÇ_ , 	)  as. 

In particular, 

(6.3) 	E(X) = E(X) 	(resp. < , ). 

Proof First we show (6.3). Let m E T be such that TM m for 
all co. Set f„ = 	= 	—  I, , for n = 1, 2, .. . ., Then f=  
(f.) is predictable as Example 6.1 and (PX). — X0  = XTA. — 	 . In 
particular, (fe 	— 10  = X, — X, and hence (6.3) is obvious. 

Next we show (6.2). Clearly it is sufficient to prove that if .B E 
then 

(6.4) 	E(X.r : B) = E(Xo : B) 	(resp. 	, 

Set 

and 

(78(co) = 1 47(0)) 
m , 

Co E B, 

co e Bc, 

TB(CO) = 1 1- (co) , 
m , 

co e 

co e Bc. 

Then 0-5  and TB are stopping times. Indeed, 

if j > 
IcfR 	= lc; 	r1B 	, if j < 

and similarly for r5 . Consequently by (6.3) 

* 1  Due to Doob [18]. 
*2  a is bounded if a constant m e T exists such that a(co) m, for all a). 
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E(X, R)= E(X), 	(resp. 	). 

That is 

E(XT: B) E(X„,: BC) = E(Xg : B) E(X„,:  BC)  (resp. , 

proving (6.4). 

Corollary. Let X = (X,), cr  satisfy the conditions (i) and (ii) of Defi-
nition 6.1. Then it is a martingale (supermartingale, sub martingale)  if 
and only if (6.3) holds for every bounded stopping times a and  r such that 

< Z. 

Remark 6.1. In view of Proposition 5.5, (6.2) is equivalent to 

E(X,19;) = XrAc, 	(resp. 	) 

for any bounded stopping times ci and Z. 

In the following, we call simply that X = (X,,) is a martingale (super-
martingale or submartingale) if X is a martingale (resp. supermartingale 
or submartingale) with respect to some reference family. Clearly this is 
equivalent to saying that X is a martingale (supermartingale or submar-
tingale) with respect to the proper reference family (..24?-„x) of X, where 

=- a[Xo, X1, • - - 7 X n], n = 1, 2, .. . . 

Theorem 6.2.* Let X = (X„) T  be a submartingale. Then for every 
> 0 and N T, 

(6.5) 	AP( max X„ > A) < E(X N : max X„ > A) Ç 	) E(IXN1). 
0<nV■7 - 	OnVI 

and 

(6.fY 
AP( min X„ < —A) < —E(X0) 4- E(XN : min X„ > —A) 

0$n<1■1 

Ea X 01) 4- E(IxN1). 

Proof. Set 

{ min {n N; 	, 
= 

, if { 	=0. 
* Due to Doob (cf. [18]). 
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Clearly a is a bounded stopping time such that a < N. By (6.2), we have 

E(X) = E(X,: max X,,  > 1) ± E(X N : max X,, <2)  

	

OrrVI 	 Ort-91 

> AP( max X„> 1) E(X N : max X„ < A). 
13,11V 

Thus 

2P( max X„> 2) < E(X N) — E(X N : max X„  <2)  
0<trIV 	 057:5N 

= E(X N : max X „> 2). 
0<n-91 

The inequality (6.5)' is obtained from E(X 0) < E(X) where 

T = 
1N, 	if { 	} = 

I min In N; X „ < — 11 

Corollary. Let X = (X„) be a martingale such that E(! X„IP) < 00 , 

n = 1, 2, . . . for some p > 1. Then, for every N, 

(6.6) 	P( max I X„I 	..- _E(IXN1 P)1» 
0<raPI 

and if p > 1, 

(6.7) 	E{ criliazy  I X„IP} 	(p/(p — 1))P E(I X NI P). 

The case of p = 2 in (6.6) is known as Doob-Koln2ogorov's inequality. 

Proof By Jensen's inequality (Section 3, (E.7)), n 	1X „IP is a 
submartinzale and so (6.6) follows from Theorem 6.2. As for (6.7), 
setting Y = max J  X,,  I we have by Theorem 6.2 that 

05n5N 

AP( Y 	fa  /(},t) I Zvi dP. 

Hence 

E( YP) = dP p2P-- 'd2 f dP f oe  
S2 	0 	 S2 	0 

	

=pf
) 

	

	 p f oe  1P2 J( 	1X N IdPdli, 

	

0 	 0 

	

(p/(p — 1)) 	YP-- ' 1 X NI dP 
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and, by Holder's inequality, 

E( Y)(MP — 1 ))  E( Y' - ' I XN ) 

(MP — 1)) E( I Xiit P)"E( YIP-1)  /P 

from which (6.7) follows. 

For a real (.9-)-adapted process (X,,),, 7  and an interval [a, h], we 
set* 

= min {n;  X,,  < a) , 
= min {n > ; X„ > 

(6.8) 	 • • 

1-21c-1-1 = min In 7.  2k;  X „ < a}, 

T2k+2 = min {n -r2k+i ; X„ > b} , 

{r,,} is clearly an increasing sequence of stopping times. We set 

(6.9) 	Ukr(a, b)(co) = max {k;  2k (c0) <  N}.  

Clearly, U(a, b) is the number of uperossings of (Xn)'. 0  for the interval 
[a, b]. 

Theorem 6.3. Let X = (X„) „ Er  be a submartingale. Then for every 
NE T and real numbers a and b such that a < b, 

1 
(6.10) 	E(CI(a, b)) 	{(XN — 	— (X0 — 

Proof By Jensen's inequality, Y = (Y„) where Y„ ----  (X,,  — a)+, 
n =-- 0, 1, 2, .. . , is also a submartingale and Uff(a, b) =  U0, b — a). 
Let . be defined as in (6.8) with X, a and b replaced by Y, 0 and 
b a respectively. Set 7, = AN. Then if 2k>  N, 

(6.11) 

2k 
17N — Y0 =  E(YIn,  - 	) 

n=1 	n-1 

( 
/3 1 	v2n 	Zn- 1 

* We always set min sd = 00 unless otherwise stated. 
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and it is not difficult to see that the first term in the right-hand side is 
greater than or equal to (b — a)UK,(0, b — a). Also E(Y4, 1 ) > E(Y4,) 
since Y is a submartingale. Thus (6.10) is obtained by taking expectations 
in (6.11). 

Theorem 6.4. If X = (X „)„ 0. is a submartingale such that 

(6.12) 	sup E(X) < co, 

then X0.  = Em X„ exists almost surely and  X integrable.'" 
12-1. CO 

Proof Since Ea X „I) = 2E(X) E(X) :Ç2E(X; s ) — E(X 0), we 
have supE(1X„ I) < co by (6.12). Thus, if X.,  =  lim X„ exists, then X. 

is integrable by Fatou's lemma. Clearly, if we set U.A:(a,b) = Ern U(a,b), 
N—oco 

{CO; Ern X„(0.)) < lim Xn(c0)} L----  U 	{(2); U (r, r') = a)}. 
rr-107 	 n—,  CO 	 r,rf EQ,r<ri 

But, by Theorem 6.3, 

E(U 	r')) = Ern E(Uf,(r, r')) 

1 	. 
hm E ((IN  — — (X0  — r 	r N—•co  

and this is finite by (6.12). Consequently Pflim  X,,  < lim  X,,]  =  0, which 
n—.03 

proves that Ern X exists a.s. 
rr■P 

Theorem 63. Let X = (X.).,7 ,  be a submartingale satisfying the con-
dition (6.12) and let X., =limX,,. In order that X = (X„)„ET  be a submar- 

n ■-• 

tingale, i.e., X„ < 	 n = 0, 1, 2, ... , it is necessary and 
sufficient that {X,I}  ner  be equi-integrable.* 2  

*' In particular, non-positive submartingales (X„) or non-negative supermartingales (X„) 
possess finite limits Jim X,,  a.s. 

ri-640 

*2  The reader is assumed to be familiar with the n6tion of equi-integrability: a family 
A c 21 (S2,.,-,P) is equi-integrable if  Jim  )ss  E(1X1: 1X1 > 2) = 0. A is equi- 
integrable if and only if A is relatively compact in the weak topology a(2'„2'..), (cf. 
[12.9]). 
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Proof If  X,,  < E(X.IY -„), n = 0, 1, 2, ... , then, by Jensen's ine- 
quality, X: E(X1 I 	and hence E(X:: X: > 2) < E(X ct: X > 2). 
Also, P(X: > 2) < E(X 	< E(X) 12 and thus it is clear that 
{X -7:- }  her  is equi-integrable. 

Conversely, if {X:} nET is equi-integrable then the almost sure conver-
gence Ern X ,,  =  X is clearly a convergence in 2'1 (Q). In the same way, 

yr.*CM:1 

Ern X„V (—a) = X.V (—a) in. the sense of 2'1(0). Since (X„V(—a))„ El 
n.-• 

is a submartingale, 

E(X., V (—a)1Y -n) = lim E(X„, V (—a) I .94- ) X„ V (—a), 

and so, letting a t co, E(X  t  (.7"„) 7  X,,.  

Theorem 6.6. For Y E 21 (C2,...r;P) set X„ = E(Y 1 	n T. 
Then X = (X.) is an equi-integrable martingale and lim  X,,  = X. exists 

almost surely and in _291 (Q). Furthermore, 

(6.13) 	X., = 

where Y-;„ = V 

Proof Since 1X„1 	E(1Y11Y-.), n E T, {X„} is equi-integrable as 
in the proof of Theorem 6.5. Also (X,,)  is a martingale since E(X„,I.9-,,) = 
E(E(YIY -„,)1„r„) = E(11.9 -„) =  X,,  for  m>  n. Thus X. = lim  X,,  in 

Fr., co 

2'1 (0) and Ï = (Xn)ner is a martingale. In order to prove (6.13), consider 
the totality Te of sets B E 	such that E(Xoe : B) E(Y: B). If B E 
then E(Y : B) = E(X „: B) = E(X.: B) and hence 	D U ..rn . Clearly 

Te is a d-system and hence, by applying Lemma 5.1, we see Te D 
9-1]. This proves (6.13). 

We consider, for a moment, martingales with "reversed" time. Let 
(12,,,-,P) be a probability space and (.9 n=0, —1, 	be a family 
of sub ti-fields of jr  such that Y-0  D D 912 D . X = 
(In)n•=0, —1, —2, • ... is called a martingale (supermartingale, submartingale) 
if  X,, is  integrable, 9 -measurable random variable such that E (X „I..9) 
= X„, (resp. < , > ) for every n, m E {O, —1, —2, . . . } satisfying n > m. 

Theorem 6.7. Let X =  (X,,),,.. 0,  _1 ,  _2 , 	be a submartingale such that 

(6.14) 	inf E(XJ> — co. 



32 	 PRELIMINARIES 

Then X is equi-integrable and limX„ == 	exists almost surely and in 

-sn ( 2). 

Proof Since E(X„) is decreasing as n I —co, (6.14) implies that 
urn  E(X) exists finitely as n  j —co. Let e>  0 and take k such that 

E(Xk) — Ern  E(X) < a. Then if n < k, 

E(IX„1:1X„1 > )) = E(X„: X„ > A) + E(X„: 1(„ —A) — E(X) 

- E(Xk: X„> A) ± E(Xk : X„>:. —A) — E(X k) + 

- E(iXk i:  IX!  > + E. 

Also 

1 P(IX„1 > A) Ç E(IX„D = —1 (2E(X:)— E(X„)) 

(2E(x,-0 — lim E(X„)). 
fl 	00 

Now, we can easily conclude the equi-integrability of (Xn). The almost 
sure existence of lim Xn  is proved similarly as in Theorem 6.4. 

00 

Now, we consider the continuous time case, i.e., T = [0, co).  Let 
X = (X,), ET  be a submartingale. 

Theorem 6.8. With probability one, t E rnQI--- X, is bounded 

and possesses 

urn 	Xs. and lira 
Qnr r 1 r 	WIT as r 

for every t > O. 

Proof Let  T>  0 be given and {r 1 , r2 , 	} be an enumeration of 
the set Q  fl [0,T]. For every n, if [si , s2, , sn] is the set [7- 1 , r2, , 
rn] arranged according to the natural order, then Y, = X ,  i = 1, 2, ...  n, 
defines a submartingale Y = (Y,)7.. 1 . Also fr (Y1)7.1 where Yo  = X0 
and Y,, =  XT  is a submartingale. Therefore by Theorem 6.2 and Theorem 
6.3, we have 

P( max Y1 1 > .1) 	[E(1 X 01) gi X Ti» 1<in 

and 
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E (U 	b 	1  a  E {(Y a) } b 	1  a  E {(XT  — 	- 

Since this holds for every n, we have 

P( sup iXt1 > 	-1- {E(1401)± E(1X7.1)} 
tev[0,70 

33 

and 

1  
E(ElfolanE°. 7'(a, b)) b — a "X T a)÷}  

By letting 2 and a < 1) run over positive integers and pairs of rationals 
respectively, the assertion of the theorem follows. 

By Theorem 6.8, if X = (X,), ET  is a submartingale with respect to a 
reference family (9;), then ±, = lira X„ t OE T, exists a.s. and it is easy 

rit.  reQ 

to see that t 	is right-continuous with left-hand limits. ./1?‘ = (±r) 
is also a submartingale with respect to (.9- ) . Indeed, it is „F;+0 
adapted and since for every sequence 8„ 0, {X„,.} is equi-integrable by 
Theorem 6.7, we have 

E(21 : B) = lira E(X, en : B) < lirn E(Xs+sn : B) = E(Î: B) 
n—oca) 	 72—•co 

for s> t and B E „rt . Similarly, E(X,: B) < E(± 1 : B) for every B 
and hence X, < Î  a.s. We summarize these results in the next theorem. 

Theorem 6.9. Let X = (X,)„ T  be a submartingale. Then 11  = 
lim X,. exists a.s. and it = (.4)rET is a submartingale such that t 
it, ref2 

tt is right-continuous with left-hand limits a.s. Furthermore, X,. < ±, 
a.s. for every t E T. 

= (Xs t) in this theorem is called the right-continuous modification 
of X = (X 1). Clearly P[X, = 	= 1 for every t OE T if and only if t 
E(X) is right-continuous. 

In the remainder of this section, we consider right-continuous mar-
tingale only. The first theorem is an easy consequence of Theorem 6.2 and 
Corollary. 

Theorem 6.10. If X = (X,), ET  is a right-continuous martingale such 
that E(I ZIP) < oo, then for every T>  0, 
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(6.15) 	P[ sup I X, I > 21 	EHXD IP11, , 	1), 
rem, 71 

(6.16) 	E[ sup I re  I I (PgP —  1)) E[ XT I 1, 	(I) > 1 ). fero,70 

The next theorem is a consequence of Theorem 6.1: we approximate 
a stopping time a by stopping times a n  as in the proof of Proposition 5.4, 
apply Theorem 6.1 for a,, and then take limits as n co by using 
Theorem 6.7. 

Theorem 6.11. (Optional sampling theorem). Let X = (X) 1e r  be a 
right-continuous submartingale with respect to (..9";) and (a,)(Ec0,œ)  be a 
family of bounded stopping times such that P[ar  < 	1 if t s. Set 
1, X„, and .07 	for t e T. Then Î  = (le) is a submartingale 
with respect to (tr). 

Finally, we will discuss Doob-Meyer's decomposition theorem for 
submartingales. In the discrete time case, any submartingale X =  (X,,)  
with respect to (tr.) is decomposed as 

(6.17) 	X„ M„  

where M = (M„) is a martingale with respect to (..r„) and A = (A„) is an 
increasing process adapted to (.,), i.e., A„ < 	a.s., n = 0, 1, 2, . . . . 
A = (A„) is always chosen to be a predictable process (i.e., A a, is 
measurable, n =  1, 2, . . . ) such that A °  =  O  a.s. and, under these con-
ditions, the decomposition (6.17) is unique. Indeed, the process defined by 

f A 0  = 0, 
(6.18)  

lA ,, = A n_ 1  E(X —  n =  1,2 ,  . 	, 

is a predictable increasing process and clearly M = (M„), where M. = 
X,,  — A„, is a martingale. If we have two decompositions X,,  =  M,,  ± 
A„ = M'„ A„' , then M„ M „' = A„ — A„ is 9-„_ 1 -measurable and hence 

— 	E[M n — M 	=  M,,_ 1  — 111_ 1 . Since Mo — 
X0  — X0  = 0, we have M„ — M„' = 0 for all n thus proving the uniqueness 
of such a decomposition. 

In the continuous time case, the situation is more difficult.* 

* In the following, we fix a probability space (Q,  r P) with a reference family ("). 
Martingales, submartingales, adaptedness, stopping times etc., are all relative to this 
reference family (Or, ). • 
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Definition 6.2. By an integrable increasing process, we mean a process 
A = (A,) with the following properties: 

(i) A is (9-)-adapted, 
(ii) A o = 0, t 	A, is right continuous and increasing* a.s. 

(hence A, > 0 a.s.), 
(iii) E(A,) < cx) 	for every t E [O, 00). 

Definition 63. An integrable increasing process A = (A,) is called 
natural if for every bounded martingale M = (Mt), 

(6.19) 	E[f M,dA s]= E[f 0 Ms-dAs] 0  

holds for every t E [0, 00). 

It is known that an integrable increasing process is natural if and 
only if it is predictable, cf. [15]. If an integrable increasing process is 
continuous (i.e., t A, is continuous a.s.), then it is natural. Indeed, 

= 0 a.s. and hence ff,M sdA s. = Sto M„dA s  a.s. Note also 
that (s6.19) is equivalent to 

(6.20) 	E(M,A,)= E (it  Ms_dA s) 
0 

for every bounded martingale M = (M,). Indeed, for a partition 4: 
0 = to  < t, < 	< t„ = t, we define M° = (M1) by Ml  = 111,k+i, 

t 	t„,]. Then E[M,A,]= 	E[M,(A, k  — A rk_ i)]= E E[M,k (A ck  - 
k-1 

A rk_ i )J = E[fro MIldA s], and letting I A I ( : = max (tk  — tk _,)) — 0 we 

have E[M,At] = E[ fr0MtdAs]. 
For a> 0, let Sa  be the set of all stopping times a such that a a 

a.s. 

Definition 6.4. A submartingale X = (X,) is said to be of class (DL) 
if for every a> 0 the family of random variables IL; u E Sal is equi-
integrable. 

Every martingale M = (M,) is of class (DL) because, by optional 
sampling theorem (Theorem 6.11), 

1Ma ldP 	1Ma ldP, 
(imat>,} 	 ama.i>c) 

o- 	S., 

   

* When we say "increasing", we mean increasing in the wide sense, i.e.,"non-decreas-
ing". Otherwise, we shall write "strictly increasing". 
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and 

sup Pa Mg  I > c) Ç sup E(1Ma 1)1c E(!Ma 1)1c. 
cres a or €Sa  

Therefore, if a submartingale X = (X,) is represented as 

(6.21) 	X, = M, d - A, 

where M (Me) is a martingale and A  = (A,) is an integrable increasing 
process, then X is of class (DL). Conversely, we have the following result. 

Theorem 6.12. If X = (X,) is a submartingale of class (DL), then it 
is expressible as the sum of a martingale M = (M,) and an integrable in-
creasing process A = (A,). Furthermore, A can be chosen to be natural 
and, under this condition, the decomposition is unique. 

This theorem is known as Doob-Meyer's decomposition theorem for 
submartingales. 

Proof.* First we prove that the decomposition (6.21) with A natural 
is unique. Indeed, if X,  =  M, + A, = Af; + A; are two such decom-
positions, then since A, — A  = M', M, is a martingale, we have, for 
any bounded martingale m„ 

n- 1 
E[f m,d(A, — it)]. lim E 	mtk {(A tk+, A;k+i ) 

0 	 141-0 

— (A rk  — A; k))]. 0, 

where 4 is a partition 0 = to  < t,  <t 2  < • •• < t„= t. Consequently, 
by (6.20), E[m,A,J= E[m,A;]. If is a bounded random variable, m, 
Eg Y] is  a bounded martingale and hence E[A,]= Elm,A,1= E[m,A;J= 
Egia Therefore A, = A; a.s. and so, by the right-continuity of A and 
A', A t = A; for all t, a.s. 

Next we prove that a submartingale X = (X) of class (DL) has the 
decomposition (6.21) with A natural. Because of the uniqueness result, it 
is sufficient to prove the existence of the decomposition (6.21) on the 
interval [0, a] for every a>  0. Set Y, = X — E[X t E [0, 42]. Then 
Y, is a non-positive submartingale on [0, a] such that L = 0 a.s. For 
each n = 1, 2, . . . , let 4 „ be the partition 0 = < t < • • • < 
t1n2 = a of [0, a]  given by tr jal2n. Define a discrete time increasing 
process Mn) , t e A n , by 

* We follow here the proof of Kunita [94) which was originally given by Rao [143] . 
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Al.)= 
k-1 

{E(Y., 00 1.94;(,)) —  
k 	 i+1 

E  A. 

Lemma 6.1. {AP, n = 1, 2, . . . } is equi-integrable. 

Proof Let c> 0 be fixed and set 

inf {tZ'2 1 ; A (sto  > 
tk = 

a , if { }= s.  

Then c4n)  e S.  Since Y==  —E[Aln)  I „FA ± AP) , t E4, we have by the 
optional sampling theorem that Ye = —E[AP t .9] ± A (400 . Hence, cr, 
noting that Aow  < c, 

a 

E[A,(„n)  : AP > c] = —E[Y 	oln)  < a] ± E[A (nato : o-P < a] 

< — E[Y : 	< a] ± cP [a P < a]. g o2) 

On the other hand 

—E[Y : cf,(1,1 < a] = E[AP A(000 :  c < a] 
47c12 	 ac/2 

ER,n)  — A (nin) : G18)  < a] > (c I 2) P [a c(n)  < a]. 
a cI2 

Consequently 

E[AP : 4,n)  > c] —E[Y 	es)  < a] — 2E[Y („): a cl < a]. 
a 	 0c/2 

By the assumption, {X„, o S.} is equi-integrable and hence {Kr, o-  E Sa} 
is also equi-integrable. Since P(a c(n)  < a) = P (AP > c) < E(441") )1c < 
—E(Y0)/c  —w  0 as c t oo, we can now conclude that {A, (',4  ; n = 1, 
2, . . . } is equi-integrable. 

Now we return to the original proof. The equi-integrability of {,e )  ; 
n = 1, 2, . . . } implies that this set is relatively compact in the weak 
topology cr(Z, .Z,) of the space Y1(Q). Thus, there exists a subsequence 
n1,  1=  1, 2, . . . , and A. E 9'1 (2) such that ALnd — A. in a(2'1 , 
Define A, by A, = 	E[A.1,;], t [0, al.* Since also API)  — A,. 

* 	is taken to be right-continuous. 
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in a(2' 1 , 	for each t E  U A,  it is clear that t 	A, is increasing. 

Since X, = E[X,,— 	A„ what remains to be proven is that A = 
(A i) is natural. If m, is a bounded martingale, then 

2n-1 
E[m ait!,n) ]. E E[rn a(A (n)(,)  — Aln) )] t k—O 	 tk+1 	 ic  

E E[m 04 (Acits)  — A(,,o )] 
k—O 	k 	t  k+1 	1 
2n-1 

E E[m,(n)(Y, (n) 	Y (n))] r k—O 	k 	k+1 	k 

E E[m (7) (A (n)  — A 00]. 

	

k 	k+1 	tk  

Letting n 	co, we have 

a 
E[m.A.]= E[f m j _dA c]. 

0 

Replacing m = (me) by m = (tritA ,) for each t E [0,a] it is easy to conclude 
that 

E[m r A rl= ELf 

Thus A = (A,) is natural. 

Definition 6.5. A submartingale X = (X,) is called regular, if for every 
a> 0 and cy,,  E S. such that an  t a-, we have 

Theorem 6.13. Let X = (X,) be a submartingale of class (DL) and 
A = (A,) be the natural integrable increasing process in the decomposi-
tion (6.21). Then A is continuous if and only if X is regular. 

Proof. If A is continuous, then clearly X is regular. Indeed, every 
martingale X is regular because  E(X) = E(X 0) for every a  e  Sa . Con-
versely, suppose that X = (X,) is regular. Then A = (21,) is regular and it 
is easy to see that if o-„ t an  e Sa, then A crn t A,. Define the sequence 
4„ of partitions of [0, a] as in the proof of Theorem 6.12. Set, for  c>  0, 

=-- E[A t
k
(n
+1 

A c I „rt], 	t  C  (t,(;), rind. 
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Since /17 is a martingale on the interval (te,  t'21],  it  is easy to see that 

(6.22) 	E[f ANA,]= E[ 
o

.21,7_dA], 	for every t e [0, al 

We prove now that there exists a subsequence n1  such that A rn i converges 
to A, A c uniformly in t E [0, a] as l — co.  Fore >0 we define 

1  inf E [0, a]; Alts A r  A c > , 

a , if { }= 0. 

Since /1:,' A. A c for every n, aa,, = a implies that AI — A, A c < e 
for all t E [0, a). Let fb„(t) be defined by 0, 2(t) = tP1 1  for t e (te,  tg_ 1]. 
Then 	and g5„(o-„,, ) belong to S. Since A7 is decreasing in n, o- , is 
increasing in n. Let ae = lira an ,. Then o 	S. and  Jim 93„(0-„,0 = a,. By 

the optional sampling theorem,* 	= E[A ôn(a.„)  A c] and hence 

E[A on(an, 8) A c A trme  A  cl  = E[A:n.s  — A an,,Ac] 

> sP(a.,„ < a). 

It is easy to see by the regularity of A„ that the left-hand side tends 
to zero as n 	co. Hence lim P (a < a) = 0, which implies that 

74■4•CO 

Jim P(sup  I  A  — A, A  cJ > a) = 0. From this it follows that there exists 
E CO, a] 

a subsequence n1  such that 

sup I A nr ` — Ad\ c  j  — 0 	as 1 	co a.s. 
r, [0, al 

Thus, by (6.22), we have 

E[f o (A s  A c)dA si = E[f . (A s._ A c)dA s] 

and so 

0 = E[f ro (A.,Ac A,_ 	 {(A, A c) — (As- A c)} 9. 

This clearly implies that 	A, A c is continuous as.  and hence, since c 
is arbitrary, t 	A, is continuous a.s. 

*If we consider the expectation on the set where cr„. e  e 01,n), P], we may then apply 
the optional sampling theorem since A7 is a martingale on or, tad. Now sum over k. 
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7. Brownian motions 

Let p(t, x),  t>  0, x E Rd, be defined by 

(7.1) 	p(t , x) = (27rt)-d/2exp[— I xj 2/24 

Let X = (X0re[0,00) be a d-dimensional continuous process such that 
for every 0  <t1  < • < tm  and E, E 	(Ra), i 1, 2, ... , m, 

e EI, 	E E2, • . , Z 77  e E„,} 

(7.2) 	= f 12(dx)f p(t„ x, - x)dx 1  P(t2 t1, x2 — x1)dx2 Rd 	El 	 E2 

• • • f 	xm  — Xrn- 1 )dXm  • 
Em  

Here, p is a probability on  (Ra,  (Ra)). This is equivalent to saying that 
X = (X,) is a d-dimensional continuous process such that for every 
0 =  tO < t1 < • • • < 	 X 	3437 	Xr17 • • • 7 Xrm Xtm  are 
mutually independent, Prto p and Pxti-xr(-1 = the Gaussian distribution  
P(ti — 	x)dx, i = 1, 2, - • • , m• 

Definition 7.1. A process X = (X,) with the above property is called 
a d-dimensional Brownian motion (or Wiener process) with the initial dis-
tribution (or law) p. The probability law PX on ( Wd,  .9( W4)) is called the 
d-dimensional Wiener measure with the initial distribution (or law) p. 

Thus, the d-dimensional Wiener measure P with the initial law g 
is a probability on wd ,ac( Fr.\ )) characterized by the property that 
P  {w; w(1 1 )  E E1 ,w(t2) E E2, . . . ,w(t,n)  C Em} is given by the right-
hand side of (7.2). 

Theorem 7.1. For any probability g on  (RI,  g (Rd)) the d-dimensional 
Wiener measure P p  with the initial distribution it exists uniquely. 

Proof The uniqueness is obvious. We will show its existence. First, 
we consider the case d = 1 and g = 60 . On a probability space, we con-
struct a family of real random variables {X(t), t e [0, oo)) such that 
1(0) = 0 and for every 0  <t1  <t2  < • • <t and El  e 
= 1, 2, ..•,m, 

Pf1(1 1) e E„  1(t2) E E2, . . . ,X(t m) e 

Ei 
P(t1) Xl)dXI SE2 

P(t2 tly  x2 — XI)IX2 
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• • • 	p(t„, — 	— xm_ i)dx„,. 

By Kohnogorov's extension theorem ([45]), such a system exists. Then it 
is easy to see that 

(7.3) 	E { I X(t) 	X(s) l 4} = 3 1t 	sl 
	

t > s > O. 

By the corollary of Theorem 4.3, there exists a continuous process Î = 
(±(t)) such that for every t E [0, co), X(t) =  Î(t) as.  The probability 
law Po  of Î on  (W',.( Fr)) is the Wiener measure with the initial law 
60 . More generally, for x e R', the probability law Pz  of the process Yx  = 
(Y(0) with Y(t) = x it(t) is the Wiener measure with the initial law (5z . 
Now let x =  (x', x2, . . . , xd) E Rd be given and consider the one 
dimensional Wiener measures Pit , i = 1, 2, . . . , d. The product measure 
Px '  Pz  0 • " 0 Pxd on Tr x 	x • - • x  W1  = Wd is denoted 
by P.  It is easy to verify that Pz  is the d-dimensional Wiener measure with 
the initial law 6z . For any probability p on (Rd,O(Rd)), P i (B) 
Ltd  Pz(B)p(dx) defines the d-dimensional Wiener measure with the 
initial law p. 

On the probability spacew( 	.g(wd) ,  r ,  1 1% .1"" ) where PI, is the d-dimen-
sional Wiener measure with the initial law p, the coordinate process 
X(t, w) = w(t), w Wd, defines a cl-dimensional Brownian motion with 
the initial law p. This process is called the canonical realization of a d-
dimensional Brownian motion. 

Suppose we are given a probability space (12,-,13) with a reference 
family  

Definition 7.2. A d-dimensional continuous process X = (X(t)),. [0,..)  
is called a d-dimensional (9-)-Brownian motion if it is VD-adapted and 
satisfies 

(7.4) 	E[exp[i<, Xt — X,>] 	exp[— (t — 	 2/21, a.s., 
for every E R d  and O < s < t. 

(7.4) implies that X, — X, is independent of „9"-, (and hence independ-
ent of o[X„; u < s]) and that the probability law of X, — X, is the Gaus-
sian distribution p(t — s, x)dx. Thus X satisfies (7.2) and hence it is a d-
dimensional Brownian motion in the sense of Definition 7.1. Conversely, 
any d-dimensional Brownian motion X = (X,) is a d-dimensional  (.5)-
Brownian motion if (.9";) is the proper reference family of X; i.e., .9; --= 
n apfu; 
s>0 
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It is easy to verify the following result. 

Theorem 7.2. If X = {X, = (Xi, X ,  . . . , XI)} is a d-dimensional 
VD-Brownian motion, then for every t>  s 0, 

(7.5) 	E(X: — Xf.19;) = 0, a.s., 	and 

(7.6) 	E((Xf — XXX: — X() I ‘.,;) = (t s)c5ii 	a.s. 

Thus, if E(1 X01 2) < cx), then each (XD, i = 1, 2, . . . , d, is a square-
integrable martingale relative to (9";) such that AIX-I, but is a martingale 
relative to (Y;),  i,  j  = 1, 2, . . . d. We shall see in Theorem II-6.1 that 
these properties characterize a d-dimensional VD-Brownian motion. 

8. Poisson random measure 

Let (X, If) be a measurable space. Let M be the totality of non-
negative (possibly infinite) integral-valued measures on (X, Rx) and arm 

 be the smallest  ci-field on M with respect to which all p E M p(B) E 
Z+U fool, B ‘gx, are measurable. 

Definition 8.1. An (M, .gm)-valued random variable p (i.e., a map-
ping p: M defined on a probability space (12„.7-, P) which is 
„F./Rai-measurable) is called a Poisson random measure if 

(i) for each B e x, ,u(B) is Poisson distributed; i.e., P(p(B) = n) = 
exp[—A(B)]/n!, n = 0, 1, 2, . . . , where 2(B) = E(p(B)), B E 	;* 

(ii) if B1, B2, 	2 B,, G 	x  are disjoint, then 44/31), POD, - • • 
p(B„) are mutually independent. 

Theorem 8.1. Given a u-finite measure A on (X, .0x), there exists a 
Poisson random measure p with E(p(B)) =  2(B) for every B 

Proof. Let U„ e x  be disjoint, 0 < 2(U,,) < co and U  U,,  = X. 

On a probability space we construct the following: 
(i) for each n = 1, 2, . . . and i = 1, 2, . . . , 00 is a  U,,-valued 

random variable with P(0 )  du) = 
(ii) p„, n = 1, 2, . . . , is an integral-valued random variable such 

that P(p„ k) =  2(CI„)" exp[—A(Un)]lk!, k = 0, 1, . . . ; 
(iii) ?z), p„, n --= 1, 2, . 	, i = 1, 2, ... are mutually independent. 

Set 

* If 1(B) = 00 , then we understand that /AB) co a.s. 
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is(B) = E E 	u„(e))/(„„ I), B G X* 
n-..1  12 -  

It is a simple exercise to prove that 12 	{p(B)} is a Poisson random mea- 
sure with E(2(B)) = 	B E asx : just verify for every disjoint B 1 , 
B21  • . B„, e x  and a, > 0,i = 1, 2, ... , m, that 

E(exp [ — ai p(B,)]) = exp[ (eat— 1)2(.81)]. 

Clearly the probability law of iz is uniquely determined by the measure 
A. 2 is called the mean measure or the intensity measure of the Poisson 
random measure p. 

9. Point processes and Poisson point processes 

Let (X, I x) be a measurable space. By a point function p  on X we 
mean a mapping p: D,, c (0, co) — X, where the domain Dp  is a counta-
ble subset of (0, oo). p defines a counting measure Np(dtdx) on (0, co) x 
X * by 

(9.1) 	N1,((0, x U)= # IsDp ;s<t,p(s) 	,  t>  0, U 

A point process is obtained by randomizing the notion of point func-
tions. Let T4 be the totality of point functions on X and 0(17x) be the 
smallest c-field on fix  with respect to which all p  N1, ((O,  t]xU), 
t>  0, U ,gx , are measurable. 

Definition 9.1. A point process p on Xis a (.14,0(17x))-valued random 
variable, that is, a mapping p:  Q  — lix  defined on a probability space 
(Q, „7",P) which is t9?7..g(/7x)-measurable. 

A point process p is called stationary if for every t> 0, p and 0,p have 
the same probability law, where Op  is defined by Dot, = Is E (0,00); 
s t G Dp} and (0,p)(s) = p(s t). A point process p is called Poisson 
if Np(dtc/x) is a Poisson random measure on (0, co) x X. A Poisson point 
process is stationary if and only if its intensity measure n,,(dt dx) = 
E(N.,,(dtdx)) is of the form 

(9.2) 	n„(dtdx) = dtn(dx) 

for some measure n(dx) on (X,9 x). n(dx) is called the characteristic 

* We endow (0, co) x X with the product a-field ROO, co)) X Rx. 
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measure of p. Given a measure n(dx) on (X, ax), x), p is a stationary Poisson 
point process with the characteristic measure n if and only if for every 
t>  s 0, disjoint U1 , U2, . . . , Um  e Rix  and Ai  > 0, 

E(expf — 1-3   
) IN„((s, t] x UM i a[N Xi °, sx V.); s' ... s, U e Rxl) 

= exp [(t — s) 2 (e't — 1)n(U1)] 
i-i 
	 a.s. 

Theorem 9.1. Given a a-finite measure n on (X,arjf) there exists a 
stationary Poisson point process on X with the characteristic measure n. 

The following construction is essentially the same as in Theorem 8.1;  
indeed, p may be identified with a Poisson random measure on (0, co) x X 
having the intensity measure dtn(dx). 

Let Uk e %, k = 1, 2, . . . , be such that they are disjoint, n(U k) < 
oo and X = U Uk. Let Cc) , k,i = 1, 2, . . . , be Uk-valued random varia- 

k . 
bles with P(e)  E dx) . n(dx)/n(Uk) and .r (ik) , k,i = 1, 2, . . . , be non-
negative random variables such that P(e) > t) = exp [— tn(Uk)] for t > O. 
We also want all Cc) , Tr to be mutually independent. After constructing 
such random variables on a probability space (0, .9-,P), we set 

D, = u {,r , Ilk) + 1,1k) , ..., ik) + 	± ... ± .r uc) 	}* m , • • • 
kn. 1 	 7  

and 

P( r?)  ±  i 	. . . ± 1" gc)) = Vk)  m ? k,  in  . 1, 2, ... • 

It is easy to see that the point process so defined is what we want. 

* It is easy to see that this union is disjoint a.s. 



CHAPTER II 

Stochastic Integrals and Itô's Formula 

1. Itti's definition of stochastic integrals 

Let (2, ..7., P) be a complete probability space with a right-continuous 
increasing family (.9"),. 0  of sub a-fields of ...r.  each containing all P-null 
sets. Let  33 . (B(t)) 0  be a one-dimensional VD-Brownian motion (cf. 
Definition 1-7.2). Since with probability one the function t 1-- B(t)  is 
nowhere differentiable, the integral Po  f(s)dB(s) can not be defined in the 
ordinary way. However, we can define the integral for a large class of 
functions by making use of the stochastic nature of Brownian motion. 
This was first defined by K. Itô [59] and is now known as Itô's stochastic 
integral. 

Definition 1.1. Let 272  be the space of all real measurable processes 
0 --- {0(t, co)} ro  on Q adapted to (";) * 1  such that for every T>  0, 

(1.1) 	11011i, T = E[f : 452(s,co)ds]< oo. 

We identify 0 and 01  in _.T2  if HO — 0'112,7,  = 0 for every T>  0, and 
in this case write 0 — W.  For 0 E 2'2, we set 

(1.2) 	11 0112 = aÉi 2-n(ii 0 i12,n A 1). 

Clearly 110 — 0112 defines a metric on  .9'2;  furthermore, 2'2  is complete 
in this metric. 

Remark 1.1. For every 0 E 22  there exists a predictable* 2  0' E  2'2  

* 1  Cf. Chapter 1, §5. 
*1  Cf. Definition 1-5.2. 

45 
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such that 0 = : for example, we may take 

0'(t, co) = Jim
rt. 	

0(s co)ds
• 
* 

h10 	t—h  

Thus without loss of generality we may assume that 0 E 2'2  is predicta-
ble. 

Definition 1.2. Let _Fo  be the subcollection of those real processes 
= {0(t,w)} E having the property that there exists a sequence 

of real numbers 0 = to  < t1  < • • • < t„ < • • • —. 00  and a sequence 
of random variables {f,(co)} ;:o  such that f, is „7,-measurable, sup Ilf,11. 
< co and 

0(t, a)) = 
fo(co) , 	if 	t = 0, 

if 	t G (ti , t1i-112 = 0, 1, ... • 

Clearly such 0 is expressed as 

0(t, co) =.fo(co)/(,-.0)(t) + 	fi(c0)4,41+ 00). 

Lemma 1.1. 2% is dense in  2'2 with respect to the metric 11• 112. 

Proof.  Take 0 E  2'2 and set 0m(t,co) = 00,(0)/E-m,m3 (13(t,c0)). 
Then Om e  2'2 and 110 — 09 2  — 0 as M 	co.  Thus it is enough 
to show that for any bounded 0 E  2'2 we can find 0„ E  21), n = 1, 
2, ..., such that 11 45  — n112 -- 0 as n 	00. Let 0 = {0 e 
0 is bounded and there exists 0, E Yo  such that 110 — 0,112 — 0 as 
n 	00} . 0 is a linear space and it is easy to see that if 0„ E  0, I 0„ 
< M for some constant M>  0 and 0„  f  0 then 0 e 0. Suppose 0 is 
a left-continuous bounded (9)-adapted process. Then if we set 

co) = {
0

(
—
k 
	k 2+. 11, k = 0, 1, 

2n  

it is clear that 0„ E  20  and 11 0n — 0112 — as n 	00 by the bounded 
convergence theorem. Now, by Proposition 1-5.1, we can conclude that 

* To prove this rigorously, we have to appeal to Theorem 4.6 in [117],  p.68 to guarantee 
that 0 has a modification s5 progressively measurable with respect to („F;) (i. e., for 
every T>  0, the mapping (t, w) (t A T, W) is .2 ([0, T] ) x  72—measurable). 

0(0, a)), 	t = 0, 

• • • 
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0 contains all bounded VD-predictable processes. By Remark 1.1, 0 
contains all bounded 0 E 

Remark 1.2. A more direct proof may be found in [18] p. 440-441. 

Definition 1.3. ./e, 	{X = t)to; X is a square integrable mar- 
tingale' on (0,,-,P) with respect to (..F),. 0  and  X0  = 0 a.s.} ../41 

Œ  diz ; t 	X, is continuous a.s.} . 
We identify two X, X' e..14 if t 	X, and t 	X', coincide a.s. 

Definition 1.4. For X E .42 , we set 

(1.3) 	1X1  = E[A 112, T>  0, 

and 

(1.4) 	IXI = ti 2-73(11xInn 1). 

We note that since X is a martingale, I. It is non-decreasing in t. 

Lemma 1.2. .42  is a complete metric space in the metric IX — Yi, 
X, Y E A, and .41, is a closed subspace of ,4"2. 

Proof. First we note that if IX — YI = 0, then X = Y; indeed, 
IX — YI = 0 implies X = Y„ a.s., n = 1, 2, . . . , and so X, = 
E[X„1„7] = E[Y, I ,rt] = Yt for t < n. By the right-continuity of 
t X, and t Y we conclude that X = Y. 

Next, let X (h ) , n 	1, 2, ... , be a Cauchy sequence; i.e., 
Jim 	X ('''' I --- O. 
71, 771-' 

Then by the Kolmogorov-Doob inequality for martingales* 2  we have 
for every T>  0 and  C > 0 

PI sup f X ifn)  — XPI)I > CI < 	irn ) — X (m ) 11 2.2.. C 2  

Therefore, there exists X = (X,) such that 

sup XP )  — I —'O 
0<t7' 

in probability 

   

1" It is always assumed that t 	X, is right continuous a.s. 
*2  Theorem I-6.10. 
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as n 	co for every T>  O. 
Clearly, for every t>  0, E[ I tr3)  — X s r] 	0 as n 	co and we 

can conclude from this that X eA and Irn )  — XI — 0 as n 	00. 
Finally, it is also clear from this proof that if rn )  eq.4'2c, then X E .42̀  . 

We will now define the stochastic integral with respect to an  (Y)-
Brownian motion as a mapping 

qY
E 1—* AO) eAc. 

Suppose we are given an VD-Brownian motion B(t) on (f2,..r,P). 
If 0 E  220  and 

CO 

00, 	= fo(co)Iit.0)(t) + E fi(c0)4„,,+, 3(t) 
.-0 

then we set 

(1.5) 

n-1 
1(0)(t , CO) 	fi(o.))(B(t +1 , co) — B(t co)) 

fn(co)(B(t, co) — B(t n , co)) 

for t n  < t < t„,„ n = 0, 1, 2, ... . Clearly /(0) may be expressed as 

(1.6) 	/(0)(t) = fi(B(t A 4+1) 	B(t A ti))  

(This sum is, in fact, a finite sum.) We can easily verify that for s < t 

Elf,(B(t A ti+i) — B(t A 0)191 = fi(B(s A ti+i) — B(s AO), 

and hence /(0)(t) is a continuous ..7-martingale, i.e., 40) E Ac. Also 
it is easy to verify that 

(1.7) 	E(/(0)(0 2) = o af ( i' A 4+1 	t A ti)] = E[f 02(s, co)ds].* 

Thus, 

(1.8) 	MCI T = 11°112,T 

* From this formula we see that /(J) is uniquely determined by fri and is independent 
of the particular choice of {t,},  
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and 

(1 .9) 	11(0)1 = 11oll2- 

Next, let 0 E 9'2 . Then by Lemma 1.1 we can find On  E .990  such that 
HO — Onli2 — 0 as n — co. Since IAN — /(0.)i — iid5, — 0,1112, 
/(0„) is a Cauchy sequence in al2  and consequently by Lemma 1.2, it 
converges to a unique element X = (X e) E di,c. Clearly X is determined 
uniquely from 0 and is independent of the particular choice of O n. We 
denote X by /(0). 

Definition 1.5. J(i)  E ...iia' defined above is called the stochastic 
integral of 0 E 2'2  with respect to the Brownian motion B(t). We shall 
often denote /(0)(t) by fro  0(s, co)dB(s, co) or more simply fro  0(s)dB(s). 

Clearly if 0,T E 2'2 and a, fi E R, then 

(1.10) 	1(a0 + fiT)(t) = al(0)(t) ± MT)(t) 	for each t 0 a.s. 

Remark 1.3. Thus a stochastic integral /(0) is defined as a stochastic 
process (in fact, a martingale). But for each fixed t the random variable 
/(0)(t) itself is also called a stochastic integral. 

Proposition 1.1. The stochastic integral with respect to an (,Y)-
Brownian motion has the following properties: 

(i) /(0)(0) = 0 	a.s. 
(ii) For each 	t>  s 0, 

(1.11) 	ERI(0)(t) — 1(0)(s))1 "A = 0 	a.s. 

and 

(1.12) 	E[(1(0)(t) — 1(0)(s)) 2 1,731 = E Te 452(u, co)dul..97,1 	a.s. 

More generally, if  or  are  (Y)-stopping times such that "C _". a a.s., 
then for every constant  t >  0 

(1.13) 	EI(1(0)(t A T) — AO* A cf» 1,771 = 0 	as.  

and 

(1.14) 	ERI(45)(14  A '1") — IMO A a))2 1.-9cr] = E[f rAQAT02(u, co)du I irai a.s. 
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(iii) (1.12) and (1.14) have the following generalization: if ,   
then 

EKI(0)(t) — 1(0)(s))(1(W)(t) —  

= E[ ft  (0. V1)(u, co)dul‘ri] 	a.s. 

EN/(0)(t A s') 40)(t A 17))(I(F)(t A 'r) /(V)(t A 0)) 
rAs 

= E[ f (0. Vi)(u, co)dul.f.] a.s. 
rAct 

(iv) If a is an (T;)-stopping time, then 

(1.17) 	40)(t A a)  = 40')(t) 	for every t > 0, 

where 0i(t, w) = /,,(,„))„ • 0 (t , co).*' 

Proof. (i) is obvious. (1.11) is clear since /(0) is a martingale. (1.12) 
is easily proved first for 0 e_To  and then by taking limits. (1.13) and 
(1.14) are consequences of Doob's optional sampling theorem. Therefore, 
we need only prove (iv).* 2  First consider the case when 0 e 2. 

Let IsT17_0 	1, 2, ... ) be a refinement of subdivisions ita 
and {i2-"}  . Suppose 0 has the expression 0(4 co) = fo(co)1(,-0) (t) 

,(t) for each n = 1, 2, ... . Define 

if 0'(w) e (3 S i(1)  

It is easy to see that a" is an GTO-stopping time for each n = 1, 2, ... 
and orn a as n oo. If s (51(7) , 0-01}: then =  Iand  
therefore, if we set 0:,(s, co)  =  sPfs, co) 4,.(0,) ,) , cP E 20 . Clearly, for 
every t>  0, 

lI — 	 = E[ 02(s, co)I(ans>cridsl 	0 

as n 	00. Hence /(0 ) 	1(W) in .4' 2 . Also, 

* 1  Clearly 0' e 
*2 A simpler proof is given in Remark 2.2 below. 
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1( )0) A 0fe (co)I 1,7). 	021  (B A s 	B(t A se» 
CO 

„) (B0 A a' A sin ) — B0 A a" A Se)» 
k= 0 	 (a>s x. 

CO 

= E f 1?) (c0)(13(t A cin A sin) — 	 A an A Se» 
k.. 0 

tnan 
45(s, co)dB(s) 

Jo 

since a" < se if a < . Consequently 

 lira /(0)(t) = j-to Aç  0(s, co)dB(s) = /(0)(t A (7). 

The general case can be proved by approximating 0 with 0„ E Yo. 

Let B(t) = 03'(t),B 2(t), . . . , Br(t)) be an r-dimensional • (Y)-
Brownian motion and let 01 (t,0)), . . . , co) e  2'2. Then the 
stochastic integrals f to  i(s)dBi(s) are defined for i = 1, 2, ... , r. 

Proposition 1.2. For t > s > 0, 

E[ 0,(u)dBi(u) f j (u)dB. (u)1 .,;] 
(1.18) 

=  5  E[fg  1(u)0 j (u)dul..97;], i,j = 1,2, . . . , r. 

Proof It is easy to prove this when 0, E Yo,  I  = 1, 2, . . . , r. The 
general case follows by taking limits. 

So far we have defined the stochastic integral for elements in 2'2. 
This can be extended to a more general class of integrands as follows. 

Definition 16. 2q2c = 	= {OW} ; 0 is a real measurable pro- 
cess on Q adapted to ("--,) such that for every T>  0 

(1.19) 
rr 
j 0  02(t , co)dt < CO a.s.} . 

We identify 0 and W in _Tix if, for every T>  0, 

j100, co) — o))1 2dt 0 r: a.s. 
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In this case we write 0 =  W.  
Similarly as in Remark 1.1, we may always assume that 0 E -2921" 

is a predictable process. 

Definition 1.7. A real stochastic process X (X,), 0  on (Q, 	P) is 
called a local (.9";)-martingale if it is adapted to (9";) and if there exists a 
sequence of (F )-stopping times un  such that an  < 00, c •. t co and 
Xr, (X„(t)) is an (F) -martingale for each n = 1, 2, . . . where  X(t) 
X(t A o-„). If, in addition, X„ is a square integrable martingale for each n, 
then we call X a locally square integrable (..7;)-martingale. 

By taking an appropriate modification if necessary, we may and shall 
always assume for such X that t 	X, is right continuous a.s. 

Definition 1.8. an" = {X = (Xf),0;  l is a locally square integrable 
VD-martingale and  10  = 0 a.s.} . .4T" = E  41r; t X, is 
continuous a.s.} . 

Let B = (B(t)) 0  be an (F )-Brownian motion and 0 E 2 OC.  Let 
an(co) = Wit; f 02(s,c,o)ds n) An, n = 1,2, . . . Then cr„ is a 
sequence of (F)-stopping times such that o-„ f 00 a. s. Set 0(s,co) =--- 
4,n(a„,,,0(s, co). Clearly 

an  
co)ds = f C(s, c))ds n 

and hence O n  E 	n = 1,2, 	. By Proposition 1.1 (iv), we have for 
m n that 

/(45„)(t A (7m) = 1(45,0(t). 

Consequently if we define AC by 

40)(0 = J(C)(t) 	for t < o-„ 

then this definition is well-defined and determines a continuous process 
AO) such that 

/(0)(t A an) = 	 n = 1, 2, • • • • 

Therefore /(0) e ../Ocec. 

Definition 1.9. I(c)  E 	defined above is called the stochastic 
integral of (25 e  270c  with respect to the Brownian motion B(t). We shall 
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often denote /(0)(t) by 0(s,co)dB(s,co) or more simply f 0(s)dB(s). As 
in Remark 1.3, we shall also call the random variable /(0)(t), for each fixed 
t, a stochastic integral. 

2. Stochastic integrals with respect to martingales 

Let ( 2, ,7-,P) and (..9-)t0  be given as in Section 1. Suppose we are 
given M G A. We shall now define a stochastic integral fro 0(s)dM(s) 
which coincides with that in Section 1 when M is an (.9-)-Brownian 
motion (Kunita-Watanabe [97]). 

Proposition 2.1. (i) Let M = (Me) 	Then there exists a natural 
integrable increasing process'''. A = (A i) such that "VP — A i  is an  (Y)-
martingale. Furthermore, A is uniquely determined.* 2  

(ii) Let M = (Me) and N = (AT r) be in 	Then there exists A = 
(A i) which is expressible as the difference of two natural integrable in-
creasing processes such that MA — A i  is an (F)-martingale. Further-
more, A is uniquely determined. 

Proof Let M (Me) E A. Then t 	Mi is a non-negative sub- 
martingale of the class (DL) and hence by Doob-Meyer's decomposition 
theorem)", there exists a unique natural integrable increasing process 
A ----- (A i) such that t  M  — A, is an (7-)-martingale. If M, N G 

-/g2, then MI  = (M N)/2 E A and M2 = (M N)/2  E  4. 
Let A' and A 2  be the natural integrable increasing processes corresponding 
as above to M1  and M2 respectively. Then A = A' — A 2  satisfies that 
t MeN, — A, is an (.9-)-martingale. The uniqueness of A is a con-
sequence of the uniqueness of Doob-Meyer's decomposition. 

Definition 2.1. (i) A =  (A i)  in Proposition 2.1 (i) is denoted by <M>=  
(<M>r)ro. 

(ii) A = (A i) in Proposition 2.1 (ii) is denoted by <M, N> = 
(<M) N> )zo- 

Note that <M> = <M, M>. We call <M, N> the quadratic variational 
process corresponding to M and N. 

By Theorem I-6.13, we see that <M, N> is continuous if at least one 
of the following conditions is satisfied: 

(.-rr)to has no time of discontinuity, that is, if o „ is an increasing 

* 1  Cf. Definition 1-6.2 and Definition 1-6.3. 
*2  i.e., if A' is another such process, then t 	A,  and t 	A; coincide a.s. 
*' Theorem I-6.12. 
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sequence of (...9;)-stopping times and o- = lim o-„, then ...9; = V.-9; ; 

(ii) M, N 
Indeed, if (i) is satisfied, then M,A,.= E[M  I  .-renani 

LIM t i 	= Mt A cr as o, t a and hence M(t) 2  is regular. 

Example 2.1 ,  Let B(t) = 03' (t),B 2(t), ... , Bd(t)) be a d-dimen-
sional (f;)-13rownian motion such that B(0) 0 a.s. Then, for each i, 

E./".  and <13', Bi>(t). 61f t,  j , j = 1, 2, ... , d. A famous theorem 
of Lévy asserts that a d-dimensional  (.9)-Brownian motion is char-
acterized by this property (cf. Theorem 6.1). 

Let M e ..4  and <M> be the corresponding quadratic variational 
process. 

Definition 2.2.  2'2(M) = 	= (1/50,a0); 	is a real (";)-pre- 
dictable process and, for every T>  0, 

(2.1) 	(110M)2  = E[ fro  452(s, co)d<M>(s)] < co}. 

For 0 E 292 ( M) , we set 

(2.2) 	How = n et, 2-nooliz, A 1). 

We identify 0 and 0' in _TAM) if 11 0  — O'WT= 0 for every T and 
write 0 =  W.  If M is an (.9;)-Brownian motion, 272(M) coincides with 
—292 of Definition 1.1. Note that ..T2(M) D 290 , *  where _To  is defined by 
Definition 1.2. In exactly the same way as in Lemma 1.1, we have the fol-
lowing result. 

Lemma 2.1. .Z0  is dense in 222(M) with repect to the metric II. 1111 . 

Using this lemma, we can now define stochastic integrals in the same 
way as in the case of a Brownian motion. First let 45 e _Fs . Then 0(t) = 

CO 

fo(co)I„..,),(t) 	fi  (co)/ („ 3(t), and we set 
(-0 

Im(45)(t) =  E  .fi(co)( 1W4+1, co) 	M(ti, (0)) 

f,(co)(M(t, co) — M(t,„ co)) for t < t < tn+i , 

n = 1, 2, ... . 

* Every 45  E 270  is left-continuous and so it is predictable. 



STOCHASTIC INTEGRALS WITH RESPECT TO MARTINGALES 55 

As before /m(0) E .42  and I/m(0)1 = 110r. Using this isometry, 0 G 
E di, is extended to 0 E -TAM) MO) E 	as 

in Section 1. 

Definition 2.3. MO) is called the stochastic integral of 0 e 
yoi") with respect to M E.A. We shall also denote /m(0)(t) by 

0(s)dM(s). 
Thus we have defined the stochastic integral with respect to a mar-

tingale M Œ.A. It is clear that if M E .47 then /m(0) E -e2c  and if M 
is an VD-Brownian motion, then /m(0) coincides with /(0) defined in 
Section 1. 

	

Proposition 2.2. The stochastic integral /m(0), 0 E 	M Œ 
has the following properties: 
(i) /m(0)(0) = 0, a.s. 

(ii) For each t>  s > 0, 

(2.3) 	EK/m(0)(t) — /m(0)(s))  I 	= 0, 	as.  

and 

(2.4) 	EK/m(0)(t) 	 I „rs ] 	f t  452(u)d<M>(u)1,77,), a.s. 

More generally, if f:  r are .9-stopping times such that r > a a.s., 
then for every t>  0, 

EV Af(0)(t A .r) im(0)(t A a))  I 	= 0, 	a.s. 

EfUm(0)(t A — /m(l5)(t A 0-))2  I  

tAT 

= E[ f 02(u)cl <M>(u) I .54?:,], 	a.s. 
rAQ  

(iii) (2.4) and (2.6) can be generalized as follows: if 0, W E  222(M), 
then 

ERIm(0)(t) — Im(0)(s))(1m010(t) ITIO(s))1,9 7:j 
(2.7) 

= 	(0 W)(u)d<M>(u)  I  YJ , a.s. 

(2.5) 

and 

(2.6) 

and 
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EK/m(0)(t A — /NOV A 0)(EA TIM A — /NM A a))  
(2.8) 

= 
 E[f

tAr  
(0T)(u)d<M>(u)I...F;], 

tAcr 

a .s. 

(iv) If a is an VD-stopping time, then 

(2.9) 	im(0)(t A a) = im(45')(t) 	for 	t 0, 

where  W(t) =  

The proof is same as in Proposition 1.1. 

If M ,N EA, P E  5°2(M) and W E  2'2(N), then Pf(0) and  IN(W) 
are defined as elements in .44. 

Proposition 2.3. For t>  s > 0, 

EI(Pf(0)(t) im(0)(s))(/N( W)(t) — /N( T)(s)) 
(2.10) 

= E[f r  (0V)(u)d<M,N>(u)191. 

The proof is easily obtained first for 0,W e 2'0  and then by a 
limiting procedure. (2.10) is another way of saying that 

(2.11) 	<1m(0), /N(V)>(t) = 	(0 W)(u)d<M,N>(u), 

or more symbolically, 

(2.11)' 	dav(0), IN(P)>, =0(t)Kt)d<M,N>,. 

Remark 2.1. (2.10) implicitly implies the following result: if M, N E 
..42, cP  e -2°2(M) and W 5f2 (N) then 

E[ I OP] (0/ <M,N>1(4)] < 00 

where I <M,N>1(t) denotes the total variation of s G [0, 	<M, N>(s). 
In fact, we have the inequality 

ro  1 (25  1 (u)dl<M,N>1(u) _Ç if r 	1  12  o  0(u)2d<M>(u)1 V1   

X [f KUN<N>001 112 . 

* 4",)  is left continuous in t and so it is predictable. Hence O' E —22(M)- 

(2.12) 
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(2.12) is easily proved when 0, Vf E go  and the general case follows 
by a limiting procedure. Note that if t A, is of bounded variation on 
finite intervals and is continuous, then there exists a predictable process 
Or  such that I 0, I = 1 a.s. and  IAI = for 0(u)dA n . 

The above definition of stochastic integrals is extended in an obvious 
manner to the case of local martingales. Let M, N ../0?°. Then there 
exists a sequence of VD-stopping times c,, such that cr„ t co a.s. and 
Man = (111rAan) and Nan = (Nz.A,) are in .4',. It follows from the unique-
ness of the quadratic variational process that if m  < n  then 

<Mom, N°•m>(t) = <Man, Nan>(t A cf,). 

Hence there exists a unique predictable process <M,N> such that <M, N> 
 (t A an) = <Mcra,N6h>(t) for all n and  t>  O. We write <M, M> as <Iv>. 

Definition 2.4. Let M  4'0c 22  lac(M) = {0 = (0(t)); 0 is a real 
(Y)-predictable process on Q such that there exists a sequence of VD-
stopping times o-„ such that a„ t 00 a.s. and 

TA• n  
(2.13) 	E[f 	02(4 w)d<M>(t)] < Co  

for every T>  0 and n = 1, 2, . I .* 
Let M ..//fac and 	2Tc(M). Then clearly we may choose a 

sequence of (g;)-stopping times a„ such that cr,, t co a.s., Man = 
(M (t A an)) E 4  2  and (2.13) is satisfied. Hence for 45„(t, co) = 
1",„n(co) .,1 0(t, co) and Mn. _W., we can define im-(0„) and it is easy to 
see that imm(0„,)(t) = 1mn(0„)(t A  ci,,,)  for m < n. Thus there exists a uni-
que process /m(0)(t) such that imn(#15,,)(t) = Pf(0)(t n = 1, 2, ... . 
It is clear that im(0) E 

Definition 2.5. im(0) is called the stochastic integral of 45 E 	oc(M) 

with respect to M E 	IM(0)(t) is also denoted by fro 0(s)dM(s). 
It is clear that Propositions 2.2 and 2.3 easily extend to this general 

case. In particular, we note that (2.11) holds. 
As a special case of (2.11), we obtain 

(2.14) 	<Im(0),N>(t) = :0(u)d<M,N>(u). 

This property completely characterizes the stochastic integral; more 
precisely, we state the following proposition. 

* If <M>, is continuous, (2.13) is equivalent to that ff 020,0»d<m>(t)‹ co for all 
T>  0, a.s. 
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Proposition 2.4. Let M e .A and 0 e 2'2(M) (or M 
e Y?(M)). Then X = MO) is characterized as the unique X OE --g2 

(X e .41") such that 

	

(2.15) 	<X, N>(t) =ro 0(u)d<M, N>(u) 

for every NE ../02 (N E ../C°c) and all t > O. 

Proof We need only show uniqueness. If X' e ...A also satisfies 
(2.15), then <X — X', N> = 0 for every N E .42  and so, by taking N = 
X — <X — X'> = O. Hence X = 

Remark 2.2. For example, we can prove (2.9) using this characteriza-
tion. Denoting generally by X°.  the stopped process {X(crA t)} , by Pro-
position 1-5.5 and Doob's optional sampling theorem, 

<(1m)(45)% N>(t) = <(1m)(0)a, N>(t) = <MO), N>e(t) 

= S tAcr 

o  0(u)d<M, N>(u) = 	 N>(u), 

where 0'(z) =  1,,,} 0(t). Consequently im(0') = im(0)/ by Proposition 
2.4. 

Proposition 2.5. (i) Let M, N e ..,C°c and 0 e _T 1"(M)  fl Y?(N). 
Then 0 E NM N) and 

	

(2.16) 	5: 0(u)d(M+N)(u) = 0(u)dM(u) 	stl(u)dN(u). 

(ii) Let M E ./Al" and 0, W E NM). Then 

	

(2.17) 	So  (0+7)(u)dM(u) = 0 0(u)dM(u) + 5 o nu)dM(u). 

(iii) Let M  E  ../,'2" and 0 E 12"(M). Set N = MO) and let 
E 5f NN). Then 0 VI E 	(M) and 

o (OW)(u)dM(u) = V(u)dN(u). 
0 

(iv) Let M E  .../gzi"c. Let OE _.2' 12"(M) be a stochastic step function 
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in the sense that there exists a sequence of increasing (F)-stopping times 
o-„ such that 

Ct, a0  

where f. is Y-un-measurable. Then 

PA0)(t) = E fi#0)(mtAan+1  —mtA). 

The proof is easy and so we omit it.  it is proved most simply by using 
Proposition 2.4. 

3. Stochastic integrals with respect to point processes 

The notion of point processes was given in Section 9 of Chapter I. 
Here we discuss point processes adapted to an increasing family of a-fields 
and their stochastic calculus. Let (Q, „9-,P) and (Y-), 0  be given as above. 
A point process p = (p(t)) on X defined on 0 is called VD-adapted if 
for every t>  0 and U E .g(X), N(t, U) = E 1(p(s)) is Y;-measura- 

seD0, ,sr 

ble. p is called a-finite if there exist U„ E R(X), n = 1, 2, . . . such that 
U„ f X (i.e. U U,, = X) and E[N„(t, U.)] < co for all t>  0 and n = 1, 

2, . .. . For a given (Y)-adapted, a-finite point process p, let r,, --- 
1u e £(X); E[N (t,U)] < oo for all t> O).  If U rp , then t ,----- 
N„(t, U) is an adapted, integrable increasing process and hence there exists 
a natural integrable increasing process it,(t,U) such that i: t ,--- 
Rp(t, U)= N (t, U) — S r J (t, U) is a martingale. In general, t 1--- Srp(t,U) 
is not continuous but it seems reasonable (at least in applications discussed 
in this book) to assume that t i--- 29(t,U) is continuous for every U. 
U I— 1■1„(t,U) may not be a-additive, but if the space X is a nice space 
e.g., a standard measurable space (Definition 1-3.3), it is well known that 
a modification of A", exists such that it is a measure with respect to U. 
Keeping these considerations in mind, we give the following definition: 

Definition 3.1. An (r)-adapted point process p on (S2,9;P) is said 
to be of the class (QL)* (with respect to (Yr.)) if it is a-finite and there exists 
g„ = (I(t, U)) such that 

(i) for U e rp, t ,--- R.,,(t,U) is a continuous (Y)-adapted increasing 
process, 

* Quasi left-continuous. 
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(ii) for each t and a.a. co EQ , U 	p(t,U) is a a-finite measure on 
(X,O(X)), 

(iii) for U r„, t 	gp(t,U) = Np(t,U) — p(t,U) is an (.9;)- 
ma rtingale. 

The random measure {.1+7(t, U)} is called the compensator of the point 
process p (or INp(t, U)1). 

Definition 3.2. A point process p is called an (_F;)-Poisson point 
process if it is an (.9;)-adapted,  or-finite Poisson point process such that 
{N„(t h,U) N„(t,U)} h>o.u(x), is independent of YT. 

An GYP-Poisson point process is of class (QL) if and only if t 
E(Np(t,U)) is continuous for U E fp ; in this case, the compensator 

,, is given by ArA p(t,U) = E[N„(t,U)]. In particular, a stationary Grp-
Poisson point process is of the class (QL) with compensator Sr„(t,U) = 
tn(U) where n(dx) is the characteristic measure of p (Chapter I, Section 
9). This property characterizes a stationary (Y)-Poisson point process 
(cf. Section 6). 

Theorem 3.1. Let p be a point process of the class (QL). Then for 
U rp, .gp(• ,U) E .4; and we have 

(3.1) 	<R,( •, U1), gp(6, U2)>(t) = A7,(t, u1 n u2). 
For the proof, we need the following lemma. 

Lemma 3.1. If U r„ and f(s) = f(s,co) is a bounded (F)-pre-
dictable process, then 

X( t) 	for  f(s )dlitp(s, 	(= 	f(S)IU(P(3)) 	f ro ftS)C11Q .p (S, U.)) 

is an VD-martingale. 

Proof. By Proposition I-5.1, it is sufficient to assume that s 	f(s) 
is a bounded, left continuous adapted process. Then, for every s E 10, 00), 

fn(s) = JOY u-0)(s) +  Ê f 	4,2n, (k+i)/2n,(s) 	f(s). 
kO  

Thus it is sufficient to prove the result for f„(s). But 

* In the sense of the Stieltjes integral. 
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j't f(s)dN(sU) = f(—k
) 

AT ik 	 
1_ 	

27, l At ' U) — 
P  24  

is obviously an  (Y) -martingale. 

Proof of the theorem. It is clear that there exists a sequence of 
VD-stopping times u„ such that on  1-  oc  a. s. and both il-upn) (t, U1) = 
/7(t A ae, U1 ) and R (1„4 (t, U2) = lii",(t A an,U2) are bounded in t. Conse-
quently it suffices to show for each n 

Ui )Sr;n) (t, U2) = a martingale + 19.,(t A an, U1(1U2). 

By an integration by parts, 

R (',/) (t, UOR') (t, U2) 
r  

= ul)N- (ds, U2) + 	 R U2)P) (ds, U1) 

rt 
=  Is-,  Ui)R 	

rt 
(ds, U2) + R 	U2)1n) (ds, U1) 

0 	 0 

+ 
rt 
 [Iir(s, U2) — 	U2)119- (ds, 171)- 0 

But the first two terms are martingales by Lemma 3.1 and the last term 
is equal to E Juin  u2(P(S)) = Np(t A an,  Ui  n u2) = *p (t  i\ an, U1  n u2) + 

.st/Nan 
 sGD7, 

g(t A an , U1  n U2). This proves the theorem. 

We are now going to discuss stochastic integrals with respect to a given 
point process of the class (QL). For this it is convenient to generalize the 
notion of predictable processes. 

Definition 3.3. A real function f(t, x, co) defined on [0, co) x Xx S2 
is called (Y)-predictable  if the mapping (t,x,w) f(t,x,co) is 9'/.(R')-
measurable where .99  is the smallest a-field on [0, co) x Xx 12 with respect 
to which all g having the following properties are measurable: 
(i) for each t>  0, (x, co) 	g(t, x, co) is ..9/(X) x „Fr-measurable; 
(ii) for each (x, co), t 	g(t, x, co) is left continuous. 

We introduce the following classes: 

Fp  = {f(t, x, a)); f is (...F;)-predictable and for each t>  0, 
st+ 

(3.2) 	 Las, x, co)1N„(dsdx) < co a.s.} , f x 
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Fa; = 	x, co); f is (9)-predictable  and for every t>  0, 
(3.3) 

KS ' 	lf(s, x, •)1(dsdx)] < co} , 
0 x 

( ) 	
= ff(t, x, co); f is VP-predictable and for every t>  0, 

3.4 
E[ 

 f$
lf(s, x, •)1 2  lqp(dsdx)] < co}, 

0 x 

= {f(t, x, co); f is (f)-predictable  and there exists a 
(3.5) 	sequence of (.Y)-stopping times ai, such that a,, t co 

as.  and /man] W(t, x, co) EF,  n = 1, 2/ • • • - 

For f 
(3.6) 	t+ 

fo  f x f(s, x, •)Np(dsdx) 

is well defined a.s. as the Lebesgue-Stieltjes integral and equals the abso-
lutely convergent sum 

(33) 	E 	p(s), .). 

Next let f E F.  By the same argument  as in the proof of Lemma 3.1, it 
is easy to see that 

ElS t+ 	f(s, x, .)IN,,(dsdx)} 	E[ f 1 f(s x 	.Ars  D(dsdx)] 
Jo  x 	 0 x 	' 	- 

This implies, in particular, that F;  c Fp. Set 

f+f (3.8) 	x 

= 	fx  f(s, x, •)Np(dsdx) — f r  f f(s, x,  
o x 

Then t 	ft,; f xf(s, x, •)St p(dsdx) is an VP-martingale by the same 
proof as in Lemma 3.1. 

If we assume f e F fl 4 then 

. 	g t 	j 	xf(s, x, •) p(dsdx) 

and 

t+ 
(3.9) 	<f f f(s, x, •)R,,(dsdx)> = f f f 2(s, x, .).19;(dsdx). 

0 x 	 o x 

f(s, x, .),ITT p(dsdx) 
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(3.9) is proved by the same argument as in the proof of Theorem 3.1 and 
Lemma 3.1. 

Let f E F. If we set 

f„(s, x, co) = I (_„,„) (f(s, x, copl un(x)f(s, x, co)*' 

then fn  E F1, n 1;', and so ffxf,t(s, x, •)liVdsdx) is defined for each 
n. By (3.9), 

ENS: f xf„(s, x, •). Ar-p(dsdx) — fo+  f x f„,(s, x, •)fif-  p(dsdx)}1 

= E[fr  o .16  x ff„(s, x, -) — f„,(s, x, •)1 2 .1i1.' 2,(dsdx)] 

and thus tro+fxf,i(s, x, -)lir-  „(dsdx)}:).., is a Cauchy sequence in .A. We 
denote its limit by ffo+fxf(s, x, .)19".  p(dsdx). Note that (3.8) no longer holds: 
each term in the right-hand side has no meaning in general. The integral 
fo+Ixf(s, x, -)lirp(dsdx) may be called a "compensated sum". 

Finally, if f e 41", the stochastic integral fro+fx  f(s, x, •)fit (dsdx) 
is defined as the unique element X e ../0 .2c having the property 

t+ 
X(t A o-n) = f 5 /E0, 0..3(s)f(s, x, .).11-1:„(dsdx), 	n = 1, 2, . .. 

o x 

where {a„} is a sequence of stopping times in (3.5). 

4. Semi-martingales 

The time evolution of a physical system is usually described by a differ-
ential equation. Besides such a deterministic motion, it is sometimes 
necessary to consider a random motion and its mathematical model is a 
stochastic process. Many important stochastic processes have the fol-
lowing common feature: they are expressed as the sum of a mean motion 
and afluctuation from the mean motion.* 2  A typical example is a stochastic 
process X(t) of the form 

X(t) =  1(0) ± js:f(s)ds + f:g(s)dB(s) 

* 1  {U 1  is chosen so that IA, t x and E[N9(t,U„)]< co for every t> 0 and all n. 
*2  It may be considered as a noise. 
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wheref(s) and g(s) are suitable adapted processes and f • dB is the stochas-
tic integral with respect to a Brownian motion B(t). Here the process 
frof(s)ds is the mean motion and fro g(s)dB(s) is the fluctuation. Such a 
stochastic process is called an Itô process and it constitutes a very important 
class of stochastic processes. The essential structure of such a process is 
that it is the sum of a process with sample functions of bounded variation 
and a martingale. Generally, a stochastic process X(t) defined on (12, 
g-,P) with a reference family (..F;) is called a semi-martingale if 

X(t) = X(0) + M(t) A(t) 

where M(t) (M(0) = 0, a.s.) is a local (.9;)-martingale and A(t) (A(0) = 
0, a.s.) is a right-continuous (..7;)-adapted process whose sample functions 
t A(t) are of bounded variation on any finite interval a.s. We will 
restrict ourselves to a sub-class of semi-martingales which is easier to 
handle and yet is sufficient for applications discussed in this book.* For 
simplicity, we will call an element of this sub-class a semi-martingale. 
Namely we give the following 

Definition 4.1. Let (S2,.,-,P) and (), 0  be given as usual. A 
stochastic process X = (X(t)), 0  defined on this probability space is called 
a semi-martingale if it is expressed as 

(4.1) 
X(t) = X(0) + M(t) + A(t) f

r+ 
 f f i (s x

' 
 •)N (dsdx) 

x 	12  
f-1- 

fxf2(s, x, .)R„(dsdx)  

where 
(i) X(0) is an „7-0-measurable random variable, 
(ii) M E 	(so, in particular, M(0) 	0 a.s.), 
(iii) A = (A(t)) is a continuous VD-adapted process such that a.s. 
A(0) = 0 and t 	A(t) is of bounded variation on each finite interval, 
(iv) p is an (9-)-adapted point process of class (QL) on some state space 
(X, ,g(X)), sf, e F ,  and f2  e F , '" such that 

(4.2) 	fifz  = 0. 

It is not difficult to see that M(t) in the expression (4.1) is uniquely 
determined from X(t); it is called a continuous martingale part of X(t). The 

* For a detailed treatment of the general theory of semi-martingales, we refer the reader 
to Meyer [121] and hoed [77]. 
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discontinuities of X(t) come from the sum of the last two terms and, by 
(4.2), these two terms do not have any common discontinuities. 

Example 4.1. (Lévy processes). 
Let X(t) be a d-dimensional time homogeneous Lévy process (i.e. a 

right continuous process with stationary independent increments) and 
(-7-)(0 be generated by the sample paths go. Let D.p . ft > 0; X(t) 
X(t-)} and, for t e Di„ let p(t) = X(t) — X(t-). Then p defines a station-
ary (9-)-Poisson point process on X = Rd\ {0} (cf.  Definition  3.1). The 
famous Lévy-Itô theorem*i states that there exist a d'-dimensional (J)-
Brownian motion B(t) = (Bk(t))f.. 1 , 0 < d' < d, a dx d' matrix A = 
(4) of the rank d' and a d-dimensional vector B = (Y) such that X(t) = 
(r(t), X 2(t), . . . , Xd(t)) can be represented as 

(4.3) 

di r-i- 

	

Xt(t) = r(0) + E aikBk(t) ± bit ± f f 	x il 	fixli)Np(dsdx) o 	Rd\ro, k=1 

± f t+o  fR,, {0}xi,<„ Rp(dsdx), 	1. I, 2, . . . , d. 

In this case, the compensator g-j,(dsdx) of p is of the form fl(dsdx) = 
dsn(dx), where n(dx) is the characteristic measure of p. n(dx) is also called 
the Lévy measure of the process X. It is a 0-finite measure on Rd\ {0} such 

that f{ 1 x 1 2/(1 ± 1 x 1 2)} n(dx) < 00. 
Rd\ 101 

In the above expression, the Brownian motion {Bk(t)} and p are auto-
matically independent (cf. Section 6). By (4.3), we get the following Lévy-
Khinchin formula: 

(4.4) 	Efegz,x(t)-xco> ifr-s] ,.. ect-s)."(4) 	a.s., 	t> s> 0, 	Rd, 

where 

(4.5) 

1 
W(0 = --2 <AA*U> ± i<B, > 

+ 
 f

(elq, x> — 1 — il fixi<i) <,x))n(cbc).* 2  
Rd. 101 

Let X(t) be a given semi-martingale with respect to (Fr ) and let (97) 
be generated by the sample paths X(t). Clearly ,94-r x c Y; for each / > O. 
It is not trivial that X(t) is also a semi-martingale with respect to (9;x).*3  

* 1  Cf. Levy [99] and 1tô [58], [69]. 
*2  A* stands for the transposed matrix of A. 
*3  Cf. Stricker [155]. 
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The continuous martingale part of X(t) with respect to (  f) differs from 
that with respect to (9;) and generally it is an important problem to 
discuss how the martingale part differs under a change of a reference 
family.*i 

5. Itô's  formula 

Itô's formula is one of the most important tools in the study of semi-
martingales. It provides us with the differential-integral calculus for sample 
functions of stochastic processes. 

Let (Q,,F-,P) with ( .P";),,, be given as above. Suppose on this proba-
bility space the following are given: 
(i) Mi(t) e .4fV", (i =  1,  2, . . . , d); 
(ii) AV) (i = 1, 2, . . . , d): a continuous (,9;)-adapted process whose 
almost all sample functions are of bounded variation on each finite interval 
and A'(0) = 0; 
(iii) p: a point process of the class (QL) with respect to (..,;) on some state 
such that ft(t, x, co)gf(t, x, co) = 0, i,j =  1, 2, • • • , d; furthermore, we 
assume that g(t, x, co) is bounded, i.e. a constant  M>  0 exists such that 

x, co)1 	M 	for all i, t, x, co. 

(iv) Xi(0) (i = 1, 2, • • - , d): an Yirmeasurable random variable. 
Define a d-dimensional semi-martingale X(t) = (Xi(t), X 2(t), • • , 

Xd(t)) by 

r(t) = r(0) Ml(t) Al(t) 
t+ 	 t+ 

(5.1) 	f o  fx 	f(s, x, •)N,(dsdx) f f 	x, •)Sr„(dsdx), 
o x 

i = 1, 2, . . . d. 

Denote also f = (f 1 ,f 2, . . . , fd) and g = (g1 , g2, . . . , gd). 

Theorem 5.1. (Itô's formula).* 2  Let F be a function of class C2  on Rd 
and X(t) a d-dimensional semi-martingale given above. Then the stochastic 
process F(X(t)) is also a semi-martingale (with respect to (.9r,), 0) and the 
following formula holds :* 3  

F(X(t)) — F(X(0)) 

"tt Cf.  e. g. Jeulin [78] for a general theory and applications. In filtering theory,it is related 
to the notion of "innovation", Fujisaki-Kallianpur-Kunita [29]. 
*2  Cf. Ita [63], Kunita-Watanabe [97] and Doléans-Dade-Meyer [17]. 

aFa2F 
*3  F'  = — 	 j = 1 2, . . . . ari  ' 	 " 	' 
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f or  FU(spdMi(s) t FU(spdAl(s) 

FaX(s))d<Mi, Mi>(s) 

(5.2) 	fx  {F(X(s–) f(s, x, 	— F(X(s–))lAT,(dsdx) 

	

+ fro +  fr  IF(X(s–) ± g(s, x, 	F(X(s–))A(dsdx) 

f IF(X(s) g(s, x, -)) F(X(s)) 

gi(s, x, -)1V(s))A(dsdx). 

Proof To avoid notational complexity, we shall assume d = 1; there 
is no essential change in the multi-dimensional case. 

First, we will prove the result in the case of continuous semi-
martingale: 

(5.3) 	X(t) =  1(0) ± M(t) A(t). 

Formula (5.2) then reduces to 

F(X(t)) F(X(0)) --= froF'(X(s))dM(s) 	F(X(spdA(s) 
(5.4) 

FAX(s))d<M>(s). 

Let 

I 	0 	, if 1 /(0) 1 > n, 

r„ = inf {t ; I M(t)1 > n or IA1(t) > n or l<M>(t)I > n) - , 

if I X(0) 1 Ç n. 

Clearly r„ t co a.s. Consequently, if we can prove (5.4) for X(t A T.) 
on the set tr„ > 01, then by letting n t co we see immediately that (5.4) 
holds. Therefore, we may assume that 1(0), M(t),  IA 1(t),  <M>(t) are 
bounded in (t, co) and also that F(x) is a C2-function with compact sup-
port. 

Fix t>  0 and let A be a division of [0, t] given by 0 = to  <t1 
 < • - • < t„ = t. By the mean value theorem, 

F(X(t)) — F(X(0)) = 	{F(X(tk)) _ Foirok_,) ))  

= Ê  Fmtk....,»{z(tk) xok_o} 
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± pi  Ff,(G)Igto—xok_,)}2, 

where G satisfies X(t ie) A gtk-1) G ---X(tk)V X(tk-1). Firstly 

.F(X(tk- i)) IX(tk) — 

Ff(Xok_o) w (tk) — mok_o) 

F" (X(t k-1)) {2 1(tk) 	A(tk-1)} 

= /11 	say. 
It is clear that, as I 41 =  max I tk — tk-1 — o,  i  — j.to  F'(X(s))dA(s) 

a.s. Also, if we set 

4(s, co) 4.0.p 0(xo» + 0 	 4k_i.„oFfmtk_1» 

and 

ds(s, a)) = FV(s)), 

then 04  E -2°0  and 

— IIr =-- E[ f of  I 04(s, co) — Ws, co)1 2d<M> (s)1112 

as ! I — O. Hence /1 = j  OA(s,co)dM(s) 	F(X(s))0f(s) in 

.222(0) as Id — O. 

Secondly, 

FAG) IX(t k ) — X(t 1 )) 2 

; 7 1  FAG) {A(tk) 	A(tk-1)} 2  

+  Ê  FtvolivAtk) mok_ImActo Aok_o} 

+ 2  Fivoim(to — 1/1(4-1)} 2  

= + + Al, say. 
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It is not hard to show that ./.1 and Pg tend to 0  as.  as  IA!  — 0; for 
example, 

1 Ii 1 	sup  1 F "(x) 1 max 1 M(tk ) —0 a.s. as 
xe 	 MN-0114(0 —. 

iVcSn R 

IA I — O. We now show that /I —. I fro  F"(X(s))d<M>(s) in .2'1 ( 2). 
For this we need the following lemma. 

Lemma 5.1. Let  C >  0 be a constant such that I M(s)I < C, s e 
[0, t}. Set V/ — A tivoik, _ mok_012, / = 1, 2, . . . , n. Then 

ERV1,)2} _Ç 12 C4. 

Proof. It is easy to see that 

(V )2  = kt,  {M(tk) — MOIc-1)} 4  

+ 2 pi uifi, — viixm(tk)—mok_or 

and 

EK VI — VI) I ,,;k] = E[ l  D+1  {MOO — M(t1-1)} 2  1 .-F;k1 

= El(M(t) — 1 I f (t 0) 2 1 .- 9  - tk] .. (2C)2. 

Hence, 

E[ IA {( vl - v1)(111(4) - m(tk-i))21 ] 

_Ç (2C)2E(V ) = (2C)2E(111(02) _Ç 4C4. 

Finally, 

E[ pre.i  {moo— mok_0)4] (2c-f)2E(vri)_ 4C4, 

and the proof is complete. 

Now, returning to the proof, we set 

Pe = 1  Ê F" Gfir(t » 1m (t ) - m(t )1 2  T  k_l 	k-1 	k 	k-1 • 

Then 
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E( I I - II) 	1 
{ max I F"U— FAXN-1))i 21) 112(E WV} ) "2  

L. 	1 Clc<rx 

< (N/12C4/2)(E { max I F"(6c,) — F"Mtk-i» I 2})l/2 	0 

as IA 1 —0 by the dominated convergence theorem. If we set 

If  = l icti F"(Xok_1))1<mxto <mxtk_o) 

then clearly 

(5.6) 	ElI  /41 	fcir  FAX(s))d<M>(s)11 	0 	as 	14 I 	0 

by the dominated convergence theorem. Finally, 

— /11 2 } 

14-E {[ FAXN-1» PAW — M(tk-1)) 2 

 (01/)(tk) — <M>N-IDIPI • 

the above equals 

{ k±2 1 [F"Of(tk-1)) 2  {( 11Atle) 	MOk—I))2  

(<M>(t1c)  

:5— n2))4 I F"(x)I 2E {A(M(t k) — MN-1)) 4} 

Inxic. 1 F"(x)1 2  E 	(<M>(4) 	N <M>-1))2} 

(5.7) 	rxrEip 	F.E[ F"(x) 	((M(t k) — MN 	1/ - 1 ))2 1] 

1 TN» F" (x) 1 2  E[Fax(<M>(4) —  

Ç ixeic 	 i<k n  F"(x) 2(E[(V09)"2(E[  max m(to — M(tk- 1)1 4D 1 /2  

112,),( F"(x)1 2E[Flaka: (<M>(tk) —  

This last expression tends to zero as 141 — 0 by Lemma 5.1 and the 
dominated convergence theorem.* By (5.5), (5.6) and (5.7), we have 
* Note that </t4)(t) is bounded. 

(5.5) 

Noting that 

E {[(M(t k ) — 	k-.1)) 2  (<M)(tk) <M> (4-1))]1-97k_ 1 1 = 0 

for all k, 
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proved that /11  , F"(X(s))d<M>(s) in  2'1(Q). Thus (5.4) is true for a 
fixed time t but, since both sides are continuous in t a.s., (5.4) holds for 
all t 0 a.s. 

Next we will prove (5.2) for the general X(t) in the case d = 1: 

t+ 
X(t) = X(0) + M(t) ± A(t) + f f f(s, x, -)N p(dsdx) 

0 x 

± 
 f

t + 

o  f x g(s, x, -)1Vp(dsdx). 

First we note that the proof is easily reduced to the case that if (s, x, •)1 
is bounded; i.e. there exists M>  0 such that 

I f(s, x, co)1 -. M 	for all (s, x, co); 

because the set { s; If(s, P(s), co) I >  M}  is discrete in (0, co) almost 
surely. Then, by the usual method of truncation, the proof can be re-
duced to the case where g e F  F is such that F, F' and F" are 
bounded. For the point process p, let Un  G a X),  n = 1, 2, • • • be 
such that C.& e Un+ 1, UU.— X and E(Np((0, t] x U.)) < co for all t 

n 

> O. For each n set 

(5.8) 

14- 
X(t) =  1(0) + M(t) + A(t) ± f 0  f xf ( n ) (•, x, •)N.„(dsdx) 

+ ft+o  fx g(n)(s, x, •)1)-12,(dsdx), 

where 1(n) (s,  x, co) = f(s, x, co)1„.(x) and g (n ) (s, x, co) = g(s, x, co)lun(x). 
First we prove (5.2) for the semi-martingale X„(t). The point process p m  
defined by Dpn  — Is a D„; p(s) a U.} and  p m(s) = p(s) for s el) is 
discrete in the sense that # Is; s < t, s E  D}  is finite a.s. for each t>  O. 
If we order the set D  according to magnitude, say 0 < al  <2  < • • • 
< 1m < - • • it is easy to see that o-„, is an (9;)-stopping time. Now 
X(t) is represented as 

X(t) -----  1(0) -I- M(t) ± A(t) ±.(o -„„ p(o-„,), -) rf  

4 - 	 o-  , g(„i, p(o),  -) f : f jr g 	Sr (n ) (S, x, •) p(dsdx). 

Then, setting a°  ... 0, 

F(X„(0) — F(X(0)) 

= {F(X.(c7„, A t ))  — RX„(a. A t –») 
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+ E IF(x.(0.. A t--)) — FV„(0,,,-1 A t))I * 
Mt) + 12(t) say. 

We can apply (5.4) to obtain 

F(X„(o-,,, A t)) — F(X„(cfm-1 A t ))  

= fcimAt  F'(X„(s)) dM(s) 	amAr  F'(X„(s))dA(s) 
  ans —I At 

	

± flmAl  F"(X „(spd<M>(s) f amAt 	F' (X (spdAta(s), 2 am, At 	 gm-1N 

where 

Agn(t) = 	x en) (s, y, .).111 (dsdy). 
o 

Thus 

12(0 = f ro  F'(X„(s))dM(s) f: F' (X „(s))dA(s) 
(5.9) 

+ 	F"(X„(spd<M>(s) —  

Noting the assumption f(s,x,w)g(s,x,co) = 0, we have 

I1 (t) = E {Rx„((0„,)) - F(X,,(a,„-))} I f,„mr .f( ,..,„, (c.).. ) 0)  

E {F(X„(a)) — F(X„(cr„,-))} 1 " 
ni  

= 	x {F(X „(s-) f (n) (s, x, 	F(X„(s-))1 N„(dsdx) 

(5.10) 	fro÷fx  {F(X„(s-) g (n ) (s,  x,  •)) — F(X „(s-))1 N,(dsdx) 

$
to+  x {F(X „(s-) f (4) (s, x, 	F(X (s-))} N,(dsdx) 

+ 1:f x {F(X„(s-) en)  (s, x, 	F(X (s-))1 R „(dsdx) 

frofx {Rx(,) g (n ) (s, x, •)) F(X n(s))} „(dsdx). 

By (5.9) and (5.10), we see that (5.2) holds for the process X„(t). The for- 

if 	a 	t „, 
if 	t < CI m. 

* To be precise, 

F(X.(cr„, A = F(XiXam-» 1 F(X „(t)) 
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mula (5.2) for the process X(t) is obtained by letting n --.- oo . First, 

51.11g(n)(s,  x, •)1'7(dsdx) converges to ff,lx g(s, x, -)R,(dsdx) in .42  
as n — 00 and hence, by taking a subsequence if necessary, we may 
assume that this convergence is uniform on every finite interval a.s. Also 

rofxf ')(s,  x) -)N" „(dsdx) converges to fro±fxf(s, x, -)1■1,(dsdx) as n — 00 
uniformly in t on each finite interval a.s. Consequently  X(t) converges 
to X(t) as n — 00 uniformly in t on each finite interval a.s.. and hence 
F(X„(t)) — F(X(0)) — F(X(t)) — F(X(0)) a.s. Also, it is easy to see, by 
the dominated convergence theorem, that 

ft0 F'(X„(s))dM(s) --,- it  o  F'(X(s))dM(s) 	in -,0 - 2, 

f to F (X „(s))dA(s) — f t  o F' (X(s))dA(s) 	a.s., 

Sto  F"(X„(s))d<M>(s) ---.- f t  F "(X(spd <M>(s) 
0 

$J 
 {F(X „(s) + g (n)  (s, x, -)) — F(X „(s)) 

— en)  (s, x, -)F' (X „(s))119(dsdx) 

--.- 
 $J'1 

 {F(X(s) + g(s, x, -)) — F(X(s)) 

	

— g(s, x, -)F' (X(s))}1 9 (dsdx) 	a.s., 

for+fx 
{F(X „(s-) ± f (n)  (S,X, e)) — F(X n(s-))1N „(dsdx) 

--- 
 S

t+ o  fx  {F(X(s-) + f(s,x, -)) — F(X(s-))}N„(dsdx) a.s., 

and 

{F(X „(s-) ± g (n ) (s, x, e)) — F(X„(s-))}217,(dscbc) 

— — . 

 
t+ 15X  IF(X(s-) + g(s,x, •)) — F(X(s-))}R p(dsdx) 	in A. 

Thus the proof of (5.2) for X(t) is now Complete. 

6. Martingale characterization of Brownian motions and Poisson 
point processes 

It is a remarkable fact that many interesting stochastic processes are 
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characterized as semi-martingales whose characteristics (e.g., the quadratic 
variational process of the continuous martingale part, the compensator of 
the point process describing discontinuities of the sample path) are given 
functionals of sample paths.* 1  Martingale problems (first introduced by 
Stroock and Varadhan [157]) are just such ways of determining stochastic 
processes. They are based on the fact that the basic stochastic processes 
such as Brownian motions and Poisson point processes are characterized 
in terms of the characteristics of semi-martingales. This fact itself may be 
considered as a typical martingale problem. 

Theorem 6.1. Let X(t) = (Xl(t),1 2(t), . . . , X4(1)) be a d-dimen-
sional VD-semi-martingale such that 

(6.1) 	M (t ) = r(t) — r(0) 

and 

(6.2) 	<111', MO(t)= 	i,j = 1,2, . , el. 

Then X(t) is a d-dimensional (94-,)-Brownian motion*: 

Proof It is enough to prove that 

(6.3) 	Efetq,x(0 -x(s)>1 .."--j_ e-41020-4 	a.s. 

for every G Rd  and  t>  s > O. Let F(x) = e'<4, x' and apply Itefs for-
mula. Then we have 

egc,xct» 	etq, xct» 

(6.4) 	±r st gket<c.xciodmk( u) _1_ 1 1-4] it  (-62,)esq, x (u»du. 
k-1 $ 	 I  2 k-1, 

Clearly (6.2) implies that Mk ,/.h1 and hence 

. (6.5) 	E[j efq,-114»c1Mk(u)]...,r] = 0 	a.s. 

Take any A EJÇ  Then, multiplying both sides of (6.4) by e-gc, x(s»./,,, 
and taking the expectation, 

*1  Grigelionis [44 ] . 
*2  Cf. Definition 1-7.2. 
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Ereig'x (6-x(4)14J— P(A)= 	Efriqd(w -xu) >IA]du. 2 	.f 

From this integral equation we see at once 

E[eigdao-xco A]  = p(A)e-ivo-s) .  

This proves (6.3). 

In particular, this theorem implies that a continuous process X(t) is a 

	

one-dimensional Brownian motion if and only if both t 	X(t) and 
1(t) 2  t are martingales. This result is known as a theorem of P. 

Lévy (cf. Doob [18], Chapter VII, Theorem 11.9). 

Example 6.1. Let X(t) = (Xi(t),X 2(t), . . . , Xd(t)) be a d-dimen-
sional  (Y)-Brownian motion and p = (plic(t, co)) be a process with values 
in orthogonal dx d-matrices such that each component p(t,co) is an 
(Jr;)-predictable process. Set 

Mi(t) = X1(t) — X1 (0) 

and 

gk(t) = ifko) 	fr  o 	co)d P(s), k = 1, 2, ... , d 

where jik(0) is an tf-0-measurable random variable. Then 1(0 = 
12(t ) , is a d-dimensional  (Y)-Brownian  motion. Indeed, 
setting  Mk(t) = 2Yk(t) 

t 	d 

<SI k  21>0) 	E p(s, o.))p(s, co)Altfm, Mn>(s) 
0 tn. n..1 

t d 

= E 	co)p(s, co)ds 
0 ty1=3 

= 

Theorem 6.2. Let p be a point process of class (QL) with respect to 
(...74- ) on some state space (X,,g(X)) such that its compensator grp(dtdx) 
is a non-random u-finite measure on [0, co) x X. Then p is an (Y )-Poisson 
point process. If, in particular, li:(dtdx) = dtn(dx) where n(dx) is a non-
random a-finite measure on X, p is a stationary (Y)-Poisson point process 
with n as its characteristic measure. 
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Proof The idea of the proof is essentially same as in Theorem 6.1. 
Let t>  s > 0 and let U1 , U2, . . . Urn e .,g (X) be disjoint sets such 
that ST:( (O, tj x Uk) <  00,  k = 1, 2, , m. It is enough to prove for 

■12, • • • 2 itin > 

(6.6) 
	E[exp( —: 	t] x 111))1.7;) 

= exP[ 	(e-lk 1)*„((s, 11X U 

In fact, one can easily deduce from (6.6) that Np(E1),N,(E2), . . . are indepen- 
dent if El , E2, • • • E .g((O, 00)) X gi(X) are disjoint. Let F(x' , x2, . . . , xm) 

eXP 	14X1 ic•. 

Then 

and fk0,x,(0)= luk(x), 	f=(f1,f 2, • • • 

ro+ xfk(s, x, .)Np(dsdx) = Np((0,t]xUk) 

and by Itô's formula (setting N(t) = (N „PA x U1), . . . ,N,((0,1 
X Urn))  

F(N(t)) F(N(s)) =f :++ S x [F(N(u-) f(u, x, •)) 

F(N(u-))]N p(dudx) 

= a martingale ± f [F(N(u) +f(u,  x, -)) — F(N(u))Pt(dudx). 

But 

F(N(u) f(u, x, -)) 	F(N(u)) =- e-212kNuo. x uk)(6.-kEiakruk (x) ___ I).  

Consequently, as in the proof of Theorem 6.1 we have from this 

E kri11/kN(0,tDa7k) 	 P(A) 

= 	E[exp(—
k
N((s ulxUk)): Al(e - 	1 (9  — 	p(ducbc) 

s X 

for any A e Y. Hence, 

Efe—k2i lkNn (U.  t3 x  Uk) A] 
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= F(A)  exp [ kti  (c)-k — 1)1„((s, t] x  U,)].  

This proves (6.6). If, in particular, Y.  p(dtdx) = dtn(d.x), we have that 

in  
1  (6.7) 	EViE 1 2kNr2(4,t]xuk) I .9•;]= expkt — .s.,\ .,_ V  , ( ,e- k — 1)n(U A  

k-1 

and sop is a stationary Poisson point process with n(dx) as its characteristic 
measure. 

Theorem 6.1 and Theorem 6.2 can be combined as in Theorem 6.3: 
an interesting point is that we have automatically the independence of 
Brownian motion and Poisson point process. 

Theorem 6.3. Let X(t) = vi(t),12(t), ... , xd(o) be a d-dimen- 
sional (F;) semi-martingale and n io ..- i) ..- 2, • • • P Pn be point processes of 
class (QL) with respect to (r,) on state spaces X1 , X2, . . .  , X  respec-
tively. Suppose that 

(6.8) 	/IRO = XV) — X1(0)  

(6.9) 	<AP, /1/1>(t) = but, 	i,j = 1,2, . . . , d, 

(6.10) 	the compensator .19;,1(dtdx) ofpi is anon-random o--finite measure 
on [0, 00) x X,, i = 1,2, . . . , n and 

(6.11) 	with probability one, the domains Dpi  are mutually disjoint. 
Then X(t) is a d-dimensional (F)-Brownian motion and pi (i = 1, 2, 
n) is an (F)-Poisson point process such that they are mutually independent. 

, 
Proof. Let DJ,. lui Dh  and set, p(t) = p i(t) if t E Dr,. Then we have 

. 
a point process p on the sum U X,* which is clearly a point process of the 

1-1 
class (QL) with compensator 1■7 2,(dtdx) = t I x

'
(x).19-  .(dtdx). Therefore, 

t-i 	Pg 
p is an (9-)-Poisson point process. This clearly implies that p„ i = 1, 
2, . . . , n, are mutually independent Poisson point processes since the X, 

* The sum of X1 , X2, - , X„ is a set H such that there exists a family of subsets Hi, 
H2, . . . , Hn  with the following property: Eft  are mutually disjoint, 6E4 = H and 

t=i 
there exists a bijection between Xi  and Ht  for each i. Identifying Hi  with X„ we often 
denote the sum as CI If,. t- I 
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are supposed to be disjoint (by the definition of sum U Xe). Thus it is suf- 
i-i 

ficient to prove the independence of X(t) and p and this will be accom-
plished if we show that for every t > s > 0, 

E [el < X (t) X(:)> e  - -k 	k N „ s , x E k) 

(6.12) 
414120-4 

= e 	exp [ E (e-lk — 1)((s, t]  X Uk
)]

, 
k -1 

where A = (4), { Ui} have the same meaning as in the proof of Theorems 

6.1 and 6.2. Let F(xi , . .. , xd,  y 1 ,  . . . , y") = e"4, -v>e-  ilkY k  and apply 
Itô's formula to the (d m)-dimensional semi-martingale (X,(t), 
N((0, t] x Uk)),,,,,..., d , k = 1,2, .. , m • (6.12) then follows as in the proof of 
previous theorems. 

Finally we note that the strong Markov property of Brownian motions 
and Poisson point processes are simple consequences of Theorems 6.1 and 
6.2. 

Theorem 6.4. Let X(t) = (r(t),X 2(t), . . . ,  1d(0) be a d-dimen-
sional  (Y)-Brownian motion and a be an (F)-stopping time such that 
ci  < CO a.s.*I Let X*(t) = X(t C7) and ,rt* = 97+a , t e [0, 00). Then 
X* = {X*(t)} is a d-dimensional G9,*)-13rownian motion. In particular, 
B*(t) = X(t 0.) — X(0-) is a d-dimensional Brownian motion which is 
independent of ..ro* =-- 

Proof. By Doob's optional sampling theorem, M*i(t) 	+ a) — 

Xt(a) is a local martingale with respect to (Y;*) and also <M*', M*J>(t) = 
6,1(t + — a) = bu t, i,j = 1, 2, . . . , d. Then the assertion of the 
theorem follows from Theorem 6.1. 

In the same way, we have 

Theorem 6.5.* 2  Let p be a stationary (Y)-Poisson point process on 
some space X with the characteristic measure n(dx) and a be an  (Y)-
stopping time such that a <co as.  Let a point process p* on X be defined 
by 

Dp* = {t; t 	e Dp} 

*i If we only assume that P(o. < co) > 0, we have the same conclusion by restricting 
D to 17 n < co) and by substituting P by P(.) = P(- n < co) )112(o-  < cc.). 
*2  Cf. lido j70], Theorem 5.1 where it is called the strong renewal property. 



Ili(t; f) = Hi. f. 

Consequently, if tk_, _< t < tk  we have 

EIMX(t1))f2(X02» • - • fi(X(tO) i "--. fl 

I Hn(tip t21 • • • p tn; fl, f2) " -  ,fn) 

 --= Hp1-1(t1p t2, • • • , tn-1; fllf2a • • • 1 fn-2, fn-1Ht n—tn_ifn) 
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and p*(t) = p(t + a), tED0,. Let Y.; * = Jr;„. Then p* is a stationary 
(f,*)-Poisson point process with the characteristic measure n. 

Let X(t) = (Xi(t), X 2(t), . . . , POD be a d-dimensional Brownian 

motion on a complete probability space and let (trti) be the family of a-
fields generated by the sample paths X(t): Frx = a {X(s); s Ç_ t} V .ir. 
Here ar stands for the totality of P-null sets. 

Lemma 6.1. ...7;_f0  = 

Proof Let p(t, x) be given by (1-7.1) and set 

( II r  f)(x) ----- L ,  p(t, x — Y)f(Y)dY, 	f Œ Co(Rd).* 

IN constitutes a strongly continuous semigroup of operators on 
co(Rd). We can rewrite (1-7.2) in the following form 

EUI(X(t1)).1 .2(X(t2)) - ' • .fng(tn))] 

tr--- f Rd 11(dx)11„(ti, t2 , . . - , tn; f1,12, • • 

where 0 < t,  <t2  < • - • < tn,filf2, ... ,f, E Co(R d) and 1-1„(t 1 , /12, • • 
fi ,f1, . . . JD e Co(Rd) is defined inductively by 

k-1 
= lifi(gtt»Hn—k-FlOk — tp tk+1 — t, • • .2 tis — t;f/c7.6+1, • • • 'Mgt» i-1 

and hence 

ETA(x (t1))f2 (x(t2)) • • - .f.(x(t.)) I .9"-t-To] 

* Co(r) is the Banach space of all continuous functions on Rd such that Jim I f(x)r 
Ixl-co 

..= 0 with the maximum norm. 
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=  Jim  Effi(gt i».f2(X02)) • • • fn(gt Y -tf 

EIA (gti».f2(X(t2)) • • • fnMtn»  I 'rill. 

This proves "-J.° = 

Lemma 6.2. For any increasing sequence an  of  (Y)-stopping times, 

v trot" = trai 

where a  

Proof By the strong Markov property, 

EUI(X(t 1))f2(X(t 2)) • • • f„(XO n))I ,979 
k-1 

E
k-1k fig(*un-k+1(tk — tk+i  — T, • 

fk+i, 	f, ,7)(xer» + fifi(x01))1it„T) 
1 ■ 1 

for any (..77)-stopping time r. Using this, the lemma can be proved as in 
Lemma 6.1. 

Let B(t) = XV) — X (0), i = 1, 2, ... , d. Then .13 1  E 
The following theorem, first proved by It6 as an application of the multi-
ple Wiener-R*6 integrals (c.f. [64]), is very useful and will be used often in 
this book. The proof which we give is based on Theorem 6.1 and is due to 
Dellacherie [16]. 

Theorem 6.6. Let M =  (Mt) E A(57 )  (-/grGrtx ) . Then there 
exist 0, E 2 2Grti (2'  Mfirri),  j  = 1, 2, ... , d, such that 

(6.13) 	M(t) tif 5 t (s)d 13' (s). 
O  

That is, every martingale with respect to the proper reference family of 
X(t) can be represented as a sum of stochastic integrals with respect to the 
basic martingales B',  i 1, 2, . , d. 

Proof. We assume that X(0) is constant. The proof is easily reduced 

* ..,02°( ,-"rx) is the space arz° With respect  to  ( x). 
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to this case by a standard argument. For simplicity of notations, we as- 
sume d = 1; i.e., X(t) is a one-dimensional Brownian motion and B(t). 
X(t) — X(0). It sufficies to prove (6.13) on each finite interval [0, T]; 
indeed, it is easy to see that 0(s) is determined consistently on different 
intervals and thus defines the expression (6.13) on [0, CO). The spaces 

2'2, etc. all refer to the proper reference family (g7) and time is 
restricted on [0, T]. Let .41 c ...‘q be defined by 

4,01`= {M(t) = 0(s)dB(s);  5 E -T2} • 

The theorem then asserts that 	--,- 	To prove this, we first show 
that every M 4.4(2  can be expressed as 

(6.14) 	M(t) 	M2(t) 

where M1  E ..4'  and M2 Œ .4'2 satisfies <M2, N> = 0 for all N E 
Clearly, such a decomposition is unique if it exists. 

Let  2" = IM1 (T); M,E...efl. It is easy to see that Z' is a closed 
subspace of  9'2(0,P). Let XI be the orthogonal complement of gr. 
Now, let M E .4'2  be given. Then, since M(T) E 2'2(12,P), we have the 
orthogonal decomposition 

M(T) =  H1  + 112, 

where H1  e X' and H2 Œ 	By definition, H1  is of the form HIM 
 (s)dB(s) for some 45 E  22. Let M2(t) be the right-continuous modifica-

tion of E[H2 1‘.77]. Then clearly 

M(t) 	M2(t), t e [0, T], 

where WO ---- ito  0(s)dB(s). It remains to show that <M2 , N>(t) = 0 on 
[0, T] for every N .//f*: that is, t M 2(t)N(t) is an (..97)-martingale 
on [0, T]. For this it is sufficient to show that, for every (Y)-stopping 
time a such that a < T, 

E[M2(a)N(a)] =  0.*' 

But if N(t) = fro  V(s)dB(s), then  N(t) f Vi(s)/ iso dB(s)E,./OI *2  
and hence 

*' Cf. Corollary of Theorem 1-6.1 and its continuous time version. 
*2  For X = (X(t)), X° = (Xu(t)) is defined by r(t) = X(t A a). 
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E[N(o)Al2(0)] = E[N(o-)E[M2(T)1.-rcril 

= ErN(o)M2(7 7))= EINa(T)112]= O. 

Thus, we have now completed the proof of the decomposition (6.14). 
To prove the theorem, it is sufficient to show that, for a dense sub-

space Jr c A, the  M2-part in the decompositions (6.14) of M E ../f/".  

vanishes: indeed, we then have that ..irC .4'2*  and, since ..42* is closed, we 
have ,,e, = 4412* . 

Let .7' = {M E A; M is bounded} . It is easy to see that . -, is 
dense in ..4'2  because, in the space ;re = {M(T); M /4" 2} = -7'2(g.  2 ' ,FT' , 

= {FE , , e ; bounded} is dense and the norm 1 1 Of -&' m•ET -- - 2 
(restricted to the interval [0, TD was defined by the  2'2-norm of X. Let M 
E .7-  and M = M 1  ± M2 be the decomposition of (6.14). Since M 1  is a 
continuous martingale, there exists a sequence u„ (= c(M1)) of (.F')- 
stopping times such that o.„ e [0,11, an t T and MI.= (MI (t A an)) 
is a bounded martingale, n = 1, 2, ... . As we know, Mci. E .41' and 
Man = MT. ± MP is the decomposition of (6.14) for M47. since <N, mg.> 
= <N7.,  Man>  = <N, M2>cra = 0 for every N  E.41.  Set 

Then by Lemma 6.2 it is easy to see that ..Jf/-  is dense in A and if M = 
M1 ± M2 is the decomposition of (6.14) for M E .iff.  then both M1  and 
M2 are bounded. It is sufficient to show M2 = 0. This follows from the 
next lemma. 

Lemma 6.3. Let M E A be bounded and suppose that <M, N> = 0 
for every N E ./el. Then M — 0. 

Remark 6.1. The condition <M, N> = 0 for every N G./02*  is equi-
valent to the condition <M,B> = 0 since <M, N>(t) = fro O(s)d<M, B>(s) 
if N(t)= S to 0(s)dB(s). 

Proof Assume f M(01 < a where a is a positive constant and set 
D(co) = 1 + M(T, co)/2a. Then D(c)) > 1/2 and E[D(co)] = 1. Define a 
new probability measure P on „rrx by 

13(B). E[D(co)1B(co)i, B e trrX. 

*  2'2(Q, 9f,  P) = IF E 272(Q, P); F is JF-f—measurablei . 
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Then for every g',.x-stopping time  ci e [0, T], 

t[B(o)] = E[D(co)B(a)] = E[E[D(co)1.9 -,]B(a)] 

= E[B(a)] + E[M(a)B(a)] = E[B(o -)] = 0 

because <M, B> = O. 
Similarly, E[B(a) 2  — a] = 0 because B(t) 2  — t = 2 fo B(s)dB(s) e 

and hence <B(t) 2  — t, MOD = O. That is, both t 	B(t) and t 
— t are continuous "-x-martingales with respect to the probability P. 

By Theorem 6.1, t B(t) is an (J')-Brownian motion with respect 
to P. This clearly implies that P = 13  on „7-Tx and hence we must have 
D = 1 a.s., i.e., M =  0 a.s. 

Corollary 1. ./112(..7,x) =  

Corollary 2. Let F E 272(2,,,Tx,P) for a positive constant  T>  O. 
Then there exists an (.,?)-predictable process f(s) (0 < s < T) such that 

E[  S Tf2(s)ds] < 09 
o 

and 

(6.15) 	F = E[F I „re-] j.  or  f(s)dB(s).* 

Similar proof (based on Theorem 6.2) applies for Poisson point pro-
cesses. 

Theorem 6.7. Let p be a Poisson point process on some state space 
(X,O(X)) and ..rtP  = n 0[7 s p(s,E);s t c, E e..g(X)]. Then every 

8>0 
M e .44(,-;P) (di'2°c(,-,P)) can be expressed in the form 

(6.16) 	M(t) = S o  f(s, x, 4,2 (dsdx) 

for some f G F97) (f e 

As we saw above, the proof of representation theorems for martingales 
(like Theorem 6.6 and Theorem 6.7) is based on the martingale char-
acterization of the basic processes. Generally, we can say that a martingale 
representation theorem holds if the process is determined as a unique 

* This corollary is also true for T = cv if we set  Y  ------ V g-f. 
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solution of a martingale problem. More generally Jacod [77] showed that 
the validity of such a representation theorem is equivalent to the 
extremality of the basic probability in the convex set of all solutions of 
a martingale problem. 

7. Representation theorem for semi-martingales 

In this section, we will see how semi-martingales are represented in 
terms of Brownian motions and Poisson point processes. The results of 
this section will play an important role in the study of stochastic differential 
equations. 

Let V? 	be a given probability space with (.9-)t 0 as usual. 

Theorem 7.1. Let M' e „AT", i =  1, 2, . , d. Suppose that 
0,j(s) E  2 If' * and 7-1,k (s) E 	,k = 1, 2, ... , d, exist such that 

(7.1) 	<111', Aff)(t) =S t0 0,i(s, co)ds, 

(7.2) 	0,j (s) = 	fk(S)W 

and 

(7.3) 	det(Wik(s)) 	0 	a.s. 	for every s. 

Then there exists a d-dimensional (Y;)-Brownian motion B(t) = (B 1 (t), 
B2(t), . . . , Bd(t)) with B(0) = 0 a.s. such that 

d j ftr 

(7.4) 	Mi(t) = E 0 wik(s)dBk(s), 	1, 2, ... , d. 

Proof. We will consider the case where M i E 	 and 
Tik e  2°2 ; the general case is easily reduced to this case. For N>  0 we set 

ri-i )ik(s, a)), 
(7.5) 	Obl'el) (s, co) =-- 

0, 

if I  ( V-I),k (s, co) I < N for all i, k, 

otherwise, 

where W--4  denotes the inverse of W = (Wi,k (s)). Then clearly Or 
and for every  i and j 

* _S° 1,°c• = f0 	(0(t)), z 0 , 0 is a real (Y)-predictable process and  J (0  0(s)1 ds < co 
a.s. for every t >  01 	= 145  E5f IOC ; E[f ro l0(s)i cis] < co for every t > Of. 
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St 	d 

(7.6) 	E[  I 	ons, co)031;2(s, co)4Pkv (s, co) — öti llds — 0 
O 	k,kf —1 

as 	N 	co. 

If we set 

d Sr 
B(t ) = E oins, codmqs, 

fc.■ 1 	0 

then Blo,)  E .4' 1.  and 

i t 	d 
(7.7) 	<B6, MO(t) = E ekv)(s, (000(s, 0.))0ke (s, co)ds. 

k,kh=1 

From (7.6) and (7.7) we see that Bw converges to some Et in .%1 as N 	co 

and 03',./P>(t) = c5ut. By Theorem 6.1, B(t) = (Bl(t), B 2(t), 	, Bd(t)) 
is a d-dimensional  (Y)-Brownian motion. Since 

d 	r 
E 	vik(s)dg,cm(s) SO IN (3) 	(S), 
k-1 0 

where 

if I (V- 9,k(s, co) 	N 	for all 
iN(s, co) = 1 1 ' 

0, 	otherwise, 

we have, by letting N 	00, 

M(t) = 	it Wik (s)dBk(s). 
O 

 

Theorem 7.2. Let M E ./Oe c  such that lim<M>(t) 00  ais.  Then, 

if we set 

(7.8) 	Tt  = inf {u; <M>(u) > , 

and  5; = 91. the time changed process B(t) M(;) is an  (F)-
Brownian motion. Consequently, we can represent M by an (5;)-Brown-
ian, motion B(t) and an (" )-stopping time <M>(t):* 

(7.9) 	M(t) = B(<M)(t)). 

* Note that <M>(t) is an (" )-stopping time for each t O. Indeed,  {<M>(t) u) 
tr. t} e 	= 
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Proof. First, we remark that, with probability one, t 	B(t) 
M(;) is continuous. It is sufficient to show that, for any fixed r < r', we 
have, except a set of probability zero, 

(7.10) 	RMW) = <M>(r))  c  {M(u) M(r),vu e [r,  r']).  

Indeed, if (7.10) holds, we can conclude by a standard argument that the 
following is true with probability one:  for any r < r', <M>(r') = <M>(r) 
implies that M(u) = M(r) on the interval [r, r']. This clearly implies that, 
with probability one, t M(;) is continuous. 

To prove (7.10), set o-  = inf fs r; <M>(s)> <M>(r)} . Then o- is an 
(Y)-stopping time and hence N(s) = .M(o-  A (r s)) — M(r) is a local-
martingale with respect to (A) where 9.; = 5'",,$)• Since <N>(s) — 
<110(0" A (r 	— <M>(r) = 0, N 0. This implies that M(o-  A (r 
s)) = M(r) for all s > 0  as.,  and hence (7.10) holds. 

By Doob's optional sampling theorem, E[M(r, A n)9 = E[<MArt A n)] 
E[<MXT,)] = t. Letting n 	00, E[M(s-,)2] = t. Then we can conclude 

by the same theorem that B(t) = M(1 -,) is ..4q with respect to (Y;), 
...ggr;, and <B>(t) = <M>(;) = t. By Theorem 6.1 B(t) is an VD-Brownian 
motion. 

This theorem was generalized by Knight [84] (cf. also [119]) as follows: 

Theorem 7.3. Let .111' e 	i = 1, 2, ... , d, such that </l/P, M.f> 
0 if i j and lirn <M'>(t) = co a.s. Set 

trœ 

(7.11) 	-rt, = inf {u ; <M(>(u) > t} , 	i = 1,2, . . . , d. 

Then if we set Ir(t) = 1kt:(11), i = 1, 2, . . , d, B(t) = W (t ), B2(t), . . . 
Bd(0) is a d-dimensional Brownian motion. 

Proof. By the previous theorem, Bi(t) is a one-dimensional Brownian 
motion for each i = 1, 2, . . . , d. Consequently, we only need to prove 
that the processes Bi(t), B 2(t), . . . , Bd(t) are mutually independent. 

We shall show this by induction. Suppose that k(t), B 2(t), , 
Bg(t) are mutually independent and we will show that (V(t), B 2(t), 
Bi(t)) and k+I(t) are mutually independent. Let g  = 481 (0 , B 2  (t), . . . , 
Bt(t), t e [0, co)] and gr  =  fl  alk(s), B 2(s), . . . , Bi(s); s 	t 	d; let 

e>0 
= a[Bt+ 1 (t), t e [0, 00)] and X; =  n or[Bi+ 1(s); s 	t s]. We 

a>0 
may assume, without loss of generality, that our probability space (Q, 
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tr,P) is such that (52,  19r) is a standard measurable space (cf. Chapter 1, 
Section 3). Let P(• 1g) be the regular conditional probability given g . 
Clearly (Bi (t), B 2(t), . . . , Bi(t)) and H4' 1 (0 are mutually independent if 
and only if B"d(t) is a one-dimensional Brownian motion with respect to 
Pe 1g) a.s. Hence, noting Theorem 6.1, it is sufficient to prove that 
for every t>  s and Z's-measurable bounded function  F1 (co) 

(7.12) 	E[(.13 1± 1 (t) — Bi+ 1 (s))Fi(o)191= 0 	a.s. 

and 

(7.13) 	E{[(Bi -"(t) — Bi+1 (s))2. 	— .9)]Fi(o)  I gl =  O 	a.s. 

Thus, it is sufficient to prove the following: for every t > s, every bounded 
X.,-measurable function Fi (co) and every bounded '-measurable  func-
tion F2(w), 

(7.14) 	EK.B 1+'(t) — B t+1 (s))F1(w)F2(co)] = 0 

and 

(7.15) 	E  {[(B'1  (t)  —  B' '(s))2  — (t 	s)1Fi(co)F2(co)} = O. 

We will prove (7.14) only: the proof of (7.15) can be given similarly. Let 
g, (k) 	0.[Bk(s) ;  s e [0, 00)], k = 1, 2, . . . , i. Since F2(co) can be approxi- 

mated by a linear combination of functions of the form ft  Gk(co) where 
Ic.01 

Gk(co) is g uo -measurable, we may assume from the beginning that F2(co) = 

Gkm. By Corollary 2 of Theorem 6.6, Fi (c)) and G k (co), k = 1, 2, ... , 

can be expressed as 

F1 (a0 = c  

Gk(w) Ck s: r  k(U)dBk (U), 

where c and ck  are constants and 45 is an (g4)-predictable process and 
Pk  is a (gn-predictable process. Here gr = r) oii3k(s);s < t e], 

t>0 
k = 1, 2, 	,  1. By setting 2,v  = e», we can write 
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F1 (o) = c 	ovs  13(u)dM" -1 (u) 

and 

Gk(co) = 	se; Tik(u)dM k(u), 

where Au) = 0(0117+1>(u)) and Tf k(u) = Vk(04"k»)) are  (Y)-predicta-
ble processes. Since aft,MiXt) =  0 for i # j, we have by Itô's formula 

F2(co) = kfi Gk , oo 

t , 
= C1C2 • • • ci 	 (c1 	VINdM I(U0k(t)dAf k(t) 

	

kac1 0 1171 	0 

= C I  + 	Ok(t)dM k(t). 

Then the left-hand side of (7.14) becomes 

E{(13€+ 1 (t) — B l+1(s))F1(0))F2(co)} 

= E {(M'÷'(;) —  M'' (;))(c 	(u)dMi+i(u)) 

x (c' 	s c: k(u)dM k(u))} 

= E {(M'+'(;) — M'+'(;)) 

x (c Eg .3(odmi-i-10,»  5  ek(odmk(u)} 

E {(MH-1(;) 

— Mi+Vs»  f  ok(u)dM'(u)(c fog  Au)dMi+I(u))). 

, EI(Mt+ i( rr) — M I+1(E.0) f:' ek(u)dM k(u) 

X  (c sT; (u)ciA41-" (u)))  . 

Now the first term vanishes because (M'+', Mk> = 0 and hence 

E{(111'+ 1 (t r) IVP±Tri»  s:Ok(u)dM k(u)lir, s} = 0 
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and the second term vanishes because 

E{(''(;) 	Mi+lecs))1 ,7;,} = O. 

Theorems 7.1, 7.2 and 7.3 also hold under weaker assumptions: 
however, it is generally necessary to extend the given probability space 
in order to guarantee the existence of Brownian motion. Before stating 
these results we shall first make precise the notion of extension of a proba-
bility space. 

Definition 7.1. We say a probability space (5,1;P) with a reference 
family (9;) an extension of a probability space (Q,  Y P) with a reference 
family (..24r;) if there exists a mapping n: s"2" Q which is „9-7,9--meas-
urable such that 

(i) -7; 
(ii) P = n(P) (: = Pon-1) 	and 

(iii) for every X(CO) E Y',„(S-4,;P) 

fa (di) I 	= 	I Y -;)(2rc-o),  

where we set 1(65) = X(nc.75) 	for cr) E 

Definition 7.2. Let (12,.."-,P) be a probability space with a reference 
family (Y;). Let (S2' „. ,P') be another probability space and set 

= S2 x , 	= „7-X , P P x P' 

and 

= co 	for 	ci) = (co, co')  

If (Sr ) is a reference family on (5„P,P) such that ‘.97x 	D .-947; D 
...74r X IQ', Oh then (6„5,P) with (.,;) is called a standard extension of 
(12,.,-,P) with (Y.:). 

It is easy to see that a standard extension is an extension in the sense 
of Definition 7.1. 

Let (5,,P) with (.7) be an extension of (g-4.9;P) with (9;). 
If M .4'2  with respect to (Q,Y',P) and (..7;), then M  = (A( 65)), 
where .11-1,(c7) = Mr(nC6), belongs to A, i.e., the space with respect 
to (ej,..9";./5) and GOD. Also, if M,N E /tf2  then <R,R>t(d). ) =  
holds. This is an easy consequence of the property (iii) in Definition 7.1. 
Therefore, the space ...if, 	./iTc etc.) is naturally imbedded into the 
space 	Moc, etc.) and M E _A may be regarded as a martingale 



90 	STOCHASTIC INTEGRALS AND ITO'S FORMULA 

on the extension iej by identifying M and ri The following three theorems 
are natural extensions of the above three theorems. 

Theorem 7.1'. Let (Q, Y, P) be a probability space with a reference 
family („9-,) and M' e 	i = 1, 2, . . . , d. Let 0,j , i,f = 1, 2, 
d and Wm, 1, 2, ... , d, k 1, 2, . . r, be (Y)-predictable pro-
cesses such that fro  I sPii (s)Ids < 00 and Po  Vik(s)rds < co for all 
t > 0 a.s., 

(7.16) 	<111', MiXt)= 	4151i(s)ds 
 J't 

and 

(7.17) 	0,j(s) = 	Wa(s)V.A.(s). 

Then on an extension (ij,  F P) and (07) of  (Q,  4,P) and (7;), there 
exists an r-dimensional (" )-Brownian motion B(0 = (13'(0, B 2(0, . . . 
Br (0) such that 

(7.18) 	Mt(t) 	Ê  fro  Wik(s)dBk(s), 	i = 1,2, ... , d. 

Proof We may assume d = r by setting Mi(t) 0 or Wik (t) = 0 if 
necessary. Since st. =  ((s)) is for each (s, co) a dx d symmetric non-
negative matrix, 0" is uniquely determined as a dxd symmetric non-
negative matrix such that (15" 20"2  = 0; moreover, s 	0112(s) is (Y;)- 
predictable and 5'0 110i/2(012 ds  < 00 a.s. for every t > O. We may assume 
without loss of generality that P. = sto". Indeed in the general case there 
exists a (dx d orthogonal matrices-valued) predictable process P 
(P (s)) such that 0" 2  = W. P.  Consequently, if we have a representation 

MI(t) = 	(0" 2),,(s)dBk(s), we can write Mg(t) = 	S r 	(Oak  (s), k1 0 	 k-.1 	0 	k  
d 

where iiik(t) = E Pki(S)dB i(S) is another d-dimensional (Y;)-Brownian
f t  

I-1 	o 
motion by Example 6.1. Therefore, we assume V' = 

(u) = Jim 01/2(4)(0(u) ± 8.0-1 

where / is the identity matrix. Let ER (u) be the matrix corresponding to the 
orthogonal projection onto range 45(u)Rd and set EN(u) = I — ER(u). Then 
clearly P(u)Ku) = V(u)i (u) = R(u). We prepare, on a probability space 

0112. Set 
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(0' 	,P') with a reference family (n), a d-dimensional (97)-Brownian 
motion 13' (t) = (B",13/ 2(t), . . . , B(t)) and construct a standard 
extension (6,5-,P) and (";) of (0,9,P) and (Y;) by S.5 =  Q x SY, 

= 	P  =  Px P' and "; = Y; x Y7. On this extension, 
.4's.lcx such that 

(7.19) 
1 t 

<Me, M>(t) = $000(u)du, 

<Me, B'-f>(t) = 0 	and 
<B",  B'>(t) = c5, 1t 

for i,j = 1, 2, ... , d. Now set 

Bi(t) = k±11  fro  ,„(odm, + 	J.:(EN),k(u)dB'k(u). 

Then, by (7.19), 

	

I': 	d 

<B' BiXt)  Joki 
qf- ,„(u*- „(zoki(odu+ f (EN)„(odu 

. = I (Es),I(OdU j (EN)LIMdli =
JO 

 

0 

and hence {Bi(t)} is a d-dimensional (5;)-Brownian motion. Also, noting 
that Ku)EN(u) EN(u)Ku) = 0, 

kit 't  I  i o gillc(U) dBk( 11) 
1 

1:107i1c(U)q"(u)kidliOu) 

j
r: 

 
k,1...1 	0 

	

M l(t) — 	0 (EN)11(U)dM i(U) 	j.:0 (KOEN(U))1C1BAU) 
11

= Mi(t). 

The second term in the middle line is zero because of 

(EN)„(odmi(u)> = (EN (00(4)EN (u))uclu =-- O. 

Theorem 7.2'. Let (.(2„.r,P) be a probability space with a reference 
family (..,;) and M e ../OV". Set 
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 inf {u; <M>(u) > t} , 
(7.20) 

co, 	if 	t <M>(co) = lim<M)(t), 

and fr.-; = v ,947, As . Then on an extension (5,,-,P) and (54;) of 
3>0 

(S2,,F;P) and  (?;)there exists an (5-)-Brownian motion B(t) such that 
B(t) = M(;), t e [0, <M>(00)). Consequently we can represent M by an 
(5')-Brownian motion B(t) and an (5)-stopping time <M>(t): 

(7.21) 	M(t) = B(<M)(t)).* 

Proof. By the optional sampling theorem (Theorem 1-6. 11), 
E(M.,..As ttr") = M, and 	— MT,A,42 ] ..F:rpAs,) E(<M>— 

.97,,,,w) for every s > s' and u > v. Hence, ft (u) =  lim 
st. 

exists a.s. and 

(7.22) 	E(:1-3 (u)  j 	= (v), 

(7.23) 	E(((u)  — fj(v))2  I.P;) = E(<M>. A u— <M>œ A V I ski) 

for every u > v. We prepare, on a probability space (S2' „F."' ,P') with a 
reference family (,;'), an (.97)-Brownian motion B'(t). We construct a 
standard extension (5, fie, P) and (5') of (Q, 	P) and () by setting 
5 f2 x , = x 	P = Px P' and  P=fr x 	On this 
extension let 

B(t) = B' (t) HO A (M>(00)) .§(t). 

Then B(t) is a continuous (.7;)-martingale such that <B>(t) = t and 
hence it is an (1')-Brownian motion. The rest of the proof is obvious. 

Theorem 7.3'. Let (0,...F,P) be a probability space with a reference 
family (Jr-r). Let M' a i = 1, 2, ... , d, such that 
<MI,MiXt) 0, i # j. Then, on an extension (5,9-,P) of  (Q ,P), 
there exists a d-dimensional Brownian motion B(t) = (kW, B2(t), 
Bd(t)) such that 

(7.24) 	Bi(t) = Mi(r) 	t e [0, <M1».0)), 

where 

* As in Theorem 7.2, <M>(t) is an  (fl)-stopping time for each t O. 
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inf {u; <Mt») > t} 

= CO 	t <Mi>(°°). 
Consequently, (W(t), M 2(t), . . . ,Md(t)) can be obtained from a d-dimen-
sional Brownian motion B(t) = (.8'(t),B 2(t), . . . , B 4()) as 

Mt(t) = Bf(<M iXt)), 	i = 1, 2, . . . , d. 

The proof is similar to that of Theorem 7.2' and therefore omitted. 
Finally, we will discuss a similar representation theorem for a class of 

point processes by means of Poisson point processes. 

Theorem 7•4•* 1  Let (S?„7-,P) be a probability space with a reference 
family VD. Let (X,.. x) be a measurable space and p be an VD-point 
process of class (QL) on X with the compensator ii,"''(dtdx) = q(t, dx,co)dt. 
Suppose that there exists a cl-finite measure m on a standard measurable 
space (Z, O z) and a predictable X* = X u {A} * 2-valued process 

0(t, z, co): [0, co) x Zx S2 — X* 

such that 

(7.26) 	m({z; 0(t, z, co) e  E}) = q(t, E, co) 	for every E E Ox. 

Then, on an extension (5,,r,P) and (";) of (f2„7,P) and (97), there 
exists a stationary (F )-Poisson point process q on Z with the char-
acteristic measure m such that 

s+ 

(7.27) 
t] X E) = 

0 
IE(0(s, z, o.)))N,(dsdz) 

z 
= # Is E  Dq , s 	t, 0(s, q(s), 

for every E 
e 

Proof. First we prove several lemmas. 

Lemma 7.1. There exists a predictable probability kernel Q(t,x,dz,co) 
on [0, 00) x Xxa z xf2 (i.e., for a fixed A 	z , (t, x, co) 
Q(t, x, A, co) is predictable and for fixed (t, x, co) E [0, co) X Xx 
A E 	Q(t, x, A, co) is a probability on Oz), such that for every 
non-negative Ox X Oz-measurable function f(x,z) 

* 1  Cf. Grigelionis [43], Karoui-Lepeltier [81] and Tanaka [161]. Proof given here was 
suggested by [161]. 
*2 4 is an extra point attached to X and Rx,i; is the a-field generated by ..gx  and {4} . 

(7.25) 
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z 
{1[0( t,40)) ,,nf(0(t, z, co), z)}m(dz) 

(7.28) 
= 	f(x, z)Q(t, x, dz, co)} q(t, dx, c )). 

x z 

The proof of this lemma is standard and is left to the reader (cf. 
Chapter I, Section 3). 

Lemma 7.2. On an extension (5,5;P) and (9;) of (S 2 ," ;P) and 
(9r;), there exists an (" )-point process p of the class (QL) on Xx 
[0,1] such that 

(i) Dp  and n(p(s)) = p(s) for s  e Ai, where n(x, a) = x, 
(x, a) E XX [ p, 1]; 

(ii) the compensator A-,(dt, dxda) of p is given by 

(7.29) 	2q,-,(dt, dxda) = q(t, dx, to)dtda, 

where da is the Lebesgue measure on [0, 1]. 

Proof We prepare a sequence of independent identically distributed 
random variables 	n,k 	1, 2, ... on a probability space (12', 
P) such that 0.< k < 1 a.s. and are uniformly distributed. Set 5 = 
x = jr", P Px P' p may be regarded as a point pro-

cess defined on this product space. There exist disjoint un e arx, n = 1, 
2, ... such that U  U --- X and E(Ni,((0, t] X U.)) < 00 for every t E 

[O, 00) and n. Let Dpn = Is E Dp ; p(s)  e U}. We can order each Dpn  
according to magnitude: i.e., Dpn = Is? <s  < • • • < sz < - • • } . 

Since UDp  = Dp , there exists for each s E Dp  a unique pair (n, k) such 

that s = sik'. We set P(s) (P(9), ys,k). Then the point process p with the 
domain D5  = Dp  and P  =  fl  o[p(s), s t e] is what we want. 

Proof of the theorem. Let Q(t, x, dz, to) be the probability kernel in 
Lemma 7.1. Then there exists a predictable process f(t, x, a, co): [0, co) x 
X x [0, 1] x Q Z such that the Lebesgue measure of {a; f(t, x, a, 
to) E A} = Q(t, x, A, to) for every AEasz .* Let p be the point process 
on Xx [0, 1] given in Lemma 7.2. We write p(s) (p,(s), p 2(s)) for s E 
Dlo , where p i (s) = p(s)  e X and p2(s) [0, 1]. Define a point process q2  
on Z by Dq2 -,- D  = Dp  and q2(s) = f(s, Ms), p2(s), co) for s e Dq2 . Thus 

N22((0, J.] x A) = 
0 f 1)03,1] 

I,(f(s, x, a, co))N,;(ds, dxda) 

* Cf. [81]. 
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and the compensator is given by 

fig2((0, t] x A) =---f t  of 	13
/ jf(s, x, a, co))q(s, dx, w)dads 

(7.30) f ox Q(s, x, A, co)q(s, dx, co)ds 

f r 

o 

for all A ..gz . On an extension (.6,,k,i5 ) and (A) of (S5,,,;fi) and 
(Pt) we construct a stationary 0-0-Poisson point process q 1  on Z with 
the characteristic measure m(dz) such that q1  and q, are mutually inde-
pendent. Clearly such a construction is possible by taking a standard ex-
tension. Define a point process q, on Z by D,,= fs D,,; 0(s, q i (s), 
co) = 41 and  q 3(s) = q 1 (s) for s E D,„. Then 

t- 1- 
Nq,((0, t]X A) f Alc0u.z.01)-43Nq1(dsdz), 	A E arz 

and its compensator is 

(7.31) 	4((0, t]x A) = 
toSA Ite(s ' z'

°)...djm(dz)ds.  

Finally, a point process q on Z is defined by D  = D q 2  u Dg, and 

I q2(t) , t 
q(t) = 

q 3(t) , t  E Da3 . 

By the independence of q, and q2 , Az  and D q3  are disjoint a.s., and hence 
q is well defined; moreover q is a stationary (A)-Poisson point process 
on Z with the characteristic measure m(dz) by (7.30) and (7.31) (c.f. 
Theorem 6.2). 

Thus the only thing remaining to be proven is 

e+ 
t] x E) = fo  Sz  /(0(S, z, co))Ng(ds dz), E 	x- 

Let p be the point process on X whose counting measure N((0, t] x E) 
coincides with the right-hand side. Then 

t+ 
N((0, t] x E) = 

s 	
l'Exco  1Ax, a)NAds, dxda) 

0 fxx[..„ 
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and 

t+ 
MO, t]> < E) = f 0  LIE(0(s, z, coDN,(dsdz) 

= 
 f

t+  f 1 E(0(8, z, c1)))N q2(dsdz) 
O z 

sr+ 
. 	I E(0(s, f(s, x, a, co), coDNI,-(dsdxda). O.f.x,„0,i, 

Hence the compensator / ((O, t] x E) is given as 

sr 
.4((0, t]x E) = 	d's f 	

I E(9(s, f(s, x, a, co),co))q(s, dx,  coda 
o 	xx,..„ 

--= ft ds f f E 
.

X Z 1 (0(S, z, co))Q(s, x, dz, co)q(s, dx, co) 

= f r  o ds 5 z 1E(60(3, z, co))m(dz) 

. E q(s, E, co)ds((0, t] x E). 

Finally, 

E(11■1 AO, t]x E) — MO, t]x E)) 2) 

---- E({firp((0, t]x E) —  1 5((0, t]x E)} 2) 
ft+ 

is . E{[ 	YExco,n(X, a) — 14(0(S, f(S,X,a)(0),(0» . 	XXEO. 13 

X 1■7,5(ds, dxda)]2} 
r 	

.f 
=  E{  f ds 	[I,(x) — 1. e(0(s, f(s, x, a, co), co)]2q(s, dx, co)da} 

0 	x xr0,1] 

= El f o ds 1 z  f [I,(x) — .4(0(s, z, co))] 2Q(s, x, dz, co)q(s, dx, co)) 

f 

= E 1 f 0  ds 5 z l[ûs,,„„ tad] VE(61 (S, Z, CO)) — !EMS, Z, WDEM(dZ)) 

=0,  

and this concludes the proof. 



CHAPTER III 

Stochastic Calculus 

1. The space of stochastic differentials 

In Chapter II, we introduced the notion of stochastic integrals and 
derived Itô's formula. These are fundamental notions in stochastic calculus 
and its applications. Based on these results, we will now give a systematic 
treatment of stochastic differentials for continuous semi-martingales.*' 
One of the important notions to be introduced here is that of symmetric 
multiplication (.7....0.) which corresponds to the so-called Stratonovich 
integral or Fisk integral ([153], [27] and [133]). Under this multiplication, 
the chain rule (Itô's formula) takes the same form as in the ordinary 
calculus. 

Let (Q, 	P) be a probability space and (.94";),. °  be a reference family 
(assumed to be right continuous as usual). We introduce the following 
notations. 

..4 (previously denoted by 	V" in Chapter II) 
--- the family of all continuous locally square integrable mar- 

tingales M = (Me) relative to (.,;) such that Mo  = 0 a.s. ; 
= the family of all continuous (9;)-adapted processes A = 

(A i) such that A °  = 0 and t 	A, is non-decreasing a.s. ; 
saf = the family of all continuous (.7 )-adapted processes A = 

(A,) such that A o  = 0 and t 	A, is of bounded variation 
on every finite interval a.s. ; 

-= the family of all (.7;)-predictable processes 0 = (0,) such 
that, with probability one, t 0, is bounded on each 
bounded interval. 

It is easy to show that A = (A i) E Sat if and only if there exist 21 (i )  = 
(0) e saf, (i = 1, 2) such that A, = AP )  — 	, t > O.* 2  

*IL The material in this section is adapted from Itô [73 
*2  We simply write A = Au) — 4(2) . 

97 
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Let X = (X e) be a continuous semimartin.gale i.e., a process repre-
sented in the form 

where X0  is an .r0-measurable random variable, M = (Me ) E./0 and 
A E sa/. Following 1tô [71] we also call it a quasimartingale. 

Definition 1.1. We denote by a the totality of quasimartingales. 
Every X  e a is expressed uniquely as (1.1): M =  Mx  is called the mar-
tingale part and A = Ax  is called the bounded variation part, respectively. 
This decomposition is called the canonical decomposition of X E CZ. 

The uniqueness of the canonical decomposition is seen as follows. Let 

X(0) ± 	+ = X(0) ± MP ± 

be two such decompositions. Then 

= mp) mi  (2) Ap)  Ap) 	A. 

As we saw in Chapter II, Section 5, <M>, is given as the limit in proba- 

bility of (Mef  — 1-1 )2 as 1 Ai —0, where A is a partition 0 = to  < 

< • • • < t„ = t and 1 A1 = max it, — 4_1 1. But E (Nit , - Mti_ 1 )2  

A e,_ 1 ) 2 	V(A) max 1A,, — 
t- 1 	 I fit 

the total variation of s E (0, 	A. 
which implies that MP)  = 

A 4_ 1 1 — 0 where V e(A) = 

Therefore, <MP)  — MP> ---- 0 

The space CZ is closed under addition and multiplication; more gen-
erally, if f(xl, x2, . . . , xn) e C2(/?n R) and X', X 2, ... , Xn  a, 
then Y = f(Xi, X 2, ... ,Xn) E C2 (c.f. Theorem 11-5.1). 

Definition 1.2. For X, Y  e C, we say that X and Y are equivalent 
and write X Y if, with probability one, 

(1.2) 	X(t) — X(s) = Y(t) 	Y(s) 	for every 0 < s < t. 

Clearly this is an equivalence relation. The equivalence class con-
taining X is denoted by dX and is called the stochastic differential of X. 
EdX(u) is, by definition, the process X(t) — X(s). Let dCZ = {dX; X E 
C21 , d,41/ = {dM; M di} and d.saf = {dA; A e . We introduce 
the following operations in dC. 
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..31. Addition: 

(1.3) 	dX dY = d(X Y), 	for X, Y 

t. Product: 

(1.4) 	dX-dY d<Mx, My>, for X, Y E  a, 

where Mx  and My  are the martingale parts of X and Y respectively. 
Next we define a multiplication between a and 6°. 
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R-Multiplication: If 0 e .g and X E a, then 

(1.5) 	(0•X) = X(0) 	E 0(s, co)d It 4 1,r (s) 	d5(s, co)dA x(s), t 0, 

is defined as an element in  2.  Hence d(O.X) is uniquely defined from 0 
and dX. Now we define an element c  • dl  of da by 

(1.6) 	0. dX = d(0 • X). 

Sometimes we write 0 • dX simply as OdX. 

Theorem 1.1. The space da with the operations ..sze , ‘4".  and ‘9 is a 
commutative algebra over a , i.e., a commutative ring with the opera-
tions La and gr satisfying the relations 

(1.7) 

0.(dX dr= • dX 	• dY, 

0.(dX-dY)= (04X)•dY, 

(0 ± V1)•dX =- 0.61X + I • dX 

(0V1).dX =- -(V -dX) 

for 0, E 	and  dl, dY e d2 .  We also have that 

(1.8) 	da • da c dsi, dtsze. da =-- 0 	and da . . da = O. 

Proof It follows almost immediately from the property of stochastic 
integrals established in Chapter II that da is a commutative algebra over 
0. (1.8) follows at once because (Ms,  E ...2( for X, Y e C2'. 

Now Theorem 11-5.1 in continuous case can be rephrased in this 
context as follows: if XI, X2, . . . , Xd E a and f e C 2(Rd R), then 
Y f(Xl, 1 2, ... , Xd) e a and 

(1.9) 	dY = (a ) • DO + 	fa f)• 	• , 11 
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where a,f and 6,6,f are elements in .g defined by a—x-laf  (X',X 2, . . . , Xd) 
a2 f 

and 	(Xl X 2  . . . Xd) respectively. Also Theorem 11-6.1 can be axiaxi 
rephrased as follows: if dl',  dX 2, . . . ,  dl"  e d./ffand dr • dXf= b u  dt, 

1, 2, . . . , d, then (XV), X 2(t), . . . , Xd(t)) is a d-dimensional 
Wiener process. Such a system of martingales (X1 ,X2, , Xd) is called a 
d- dimensional  Wiener martingale. 

Now we introduce the fourth operation. 

7.."0. Symmetric a-Multiplication: 

(1.10) 	Y odX = Y • dX 4-dX • dY for dX d CZ and Y e C. 

Theorem 12. The space da with the operations szo', 	and  9t  
is a commutative algebra over ; we have, for X, Y, Z e 

(1.11) 

Xo(dY dZ) = X odY + X odZ, 

(1+  Y)odZ = XodZ YodZ, 

X0(dY • dZ) = (X dY)• dZ = X. (dY • dZ), 

(XY)odZ X0(YodZ). 

Proof We note that since da • diszef = 0 and de2 • de? • dig? =  0, we 
have that 

	

(1.12) 	XodY = X • dY 	if X or Y E Sat, 

and 

	

(1.13) 	(ZodX). dY Z. dX • dY. 

Then, for example, 

Xo(YodZ) = X.(Y dZ) i-dX • (Y dZ) 

= X.(Y.dZ) 	.(dY •dZ) 4-dX .(Y • dZ) 

= (XY)•dZ --21-d(XY)•dZ 

= XY odZ. 



THE SPACE OF STOCHASTIC DIFFERENTIALS 	101 

The other properties are also easily proved and so we omit the details. 
A remarkable fact for the operation 547...f. is that the chain rule takes 

the same form as in the ordinary calculus. Namely we have 

Theorem 1.3. If X', X 2, ... , Xd e a and f e C 3(& 	1?), then 
for Y =f(Xi, X 2, ... , X") e el we have 

	

(1.14) 	dY = a
I 
f odir

• I-1  

Proof. By Theorem 1.2 

a f odr 

i(a,f •dr 	d(a,f)•dr) 

== ±1  aif•dr 	 a,a,f•dXf 

±' 2 	a akaif-dXl•dr)•dr 

= E  df .dX' 	a1a1f.dX1-dXi,  by (1.8)), 

= dY. 

The stochastic integral fro  YodX is called the Stratonovich integral or 
the Fisk integral or sometimes the Fisk-Stratonovich symmetric integral. 
Indeed, we have the following: 

Theorem 1.4. For every X and Y in  

	

(1.15) 	.1.  YodX = 1.i.p. E n Y(ti) ± Y(4_1)
(X(ti) — X01-1» 

0 	 141-.0 i.=1 	2 

where A denotes a partition 0 = < ti  < • • • < = t and 141 = 
max (t, — 
1Vri 

Proof 

ntt-i) (X(t i) — 2 

= Y(t,_,)(X(t i)— X01-1» 	7A (17(t)—nti-i)XX(ti)—X(4--1». 
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Thus the assertion follows by the same arguments as in the proof of 
Theorem 11-5.1. 

Finally, we discuss the notion of stochastic time change. This is an im-
portant operation on quasimartingales. 

Definition 1.3. By a process of time change T5 we mean any process 
= (0 )  e ..Qif+  such that, with probability one, t 	0, is strictly in- 

creasing and Em 0, = co. 
ttc. 

For a given process of time change 0, we set 

(1.16) 	Tt  = inf fu; 0„› t} . 

Then, with probability one, To  = 0, t 	Tr  is strictly increasing and con- 
tinuous and Ern Tt  = DO. Furthermore, Tt  is an  (Y)-stopping time 

"Co 

because {T, < 14} =  ft 0u }  E  àÇ Set 

(1.17) 

Thus (Fr ) is a reference family on (Q, 	P). Let X = (14) be an  (Y)- 
well measurable process and define TX  = ((ToX)) by  (T 0X) = Xrt. Then 
ToX is an  (.P) -well measurable process by Proposition 1-5.4.  TOX is called 
the time change of X by 0. It is easy to see that if C and e are the space 
of quasimartingales relative to (9;) and (9,) respectively, where 5; 
is defined by (1.17), then TO :  C 	e is a bijection which preserves all 
structures on the space of quasimartingales: To(M x) = Mesx, T 0(A) 
A Tisx, X Y if and only if ToX To Y. Thus To induces a bijection be-
tween da and (re. Also, the space :4 with respect to (re) coincides 
with Mar) and To is an isomorphism between the 0-algebra co' and 
the 2-algebra de. In particular, To commutes with the operation 
5. 	 : To(XodY) = (TOX)0TO(dY). 

The proof of these facts procee'ds as follows. By Doob's optional 
sampling theorem (Theorem I-6.11), M earif and only if To(M) 
where 	is defined with respect to (";) and furthermore To<M,N> = 
<TOM, TON>. Also, A E sal if and only if ToA e ,or. Consequently 
To(fdM)= iToma(Tom) for 0 e 0 and M e .4' because N =f0dM 
is characterized as the unique N e ,4` such that <N,L> =  
for all L 	t. Since all operations in cz are defined in terms of addition 
(which is clearly preserved by To), the operation <M, N> and stochastic 
integration, the assertion is obvious. 
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2. Stochastic differential equations with respect to quasimartingales 

Let  (Q, 	and (";) be given as in section 1. Suppose that we are 
given Xi,x2, 	, Xr e 62 and a system (o-Xxpic.i, 2,  

of real locally bounded Borel measurable functions on Rd. We want to 
find Y', Y2, . . . , Yd e CZ such that 

(2.1) 	dr(t) = 	(75(nt».dxf (t), 	i = 1, 2, 

where Y(t) = (P(t), Y 2(t), . . . , 

Theorem 2.1. Suppose that oi(x), i = 1, 2, . . . , d, j =  1, 2, 
r, satisfy a Lipschitz condition; i.e., there exists a constant  K>  0 such that 

(2.2) 	I c5(x) — aj(Y) 	K I x — Yi, 
	for all 	x, y E Rd. 

Then for each given y = (y', y2, ... , yd) 	Rd, there exists a unique 
Y = (Y', Y2, 	, Yd) such that In e Q ,  r(0) = y' and (2.1) is satisfied. 

Proof. Since there is no essential change, we assume that d = 1 and 
that (2.1) is of the form 

(2.3) 	dY = a i (Y(t))•dM a 2(Y(t))•dA 

where M E .4',  A e and ag(x) (i = 1, 2) are given, and the ai(x) 
satisfy (2.2). The problem is equivalent to finding Y E 0 such that 

(2.4) 	Y(t) = y ±  f a i (Y(s))dM 	a2(Y(s))dA 5 . 

Set OW = t <M>, i41r  where lAI denotes the total variation of 
[0, t ] sr-- A. Then 95 is a process of time change. By applying the time 
change To to (2.4) we have 

(2.5) At) = y + Ç  aowdris 	a20,-(s))dz 

where it-  = 	=  TM  and A = PA. It is sufficient to show the 
unique existence of  V satisfying (2.5). Since <AIX= <M> 0-1(t)  and I, = 

* Clearly each ei(Y(1)) e R. 
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A 0-1 0) 7 it is easy to see that t 	t — <11?› t 	lilt  is increasing. In 
particular we have AR> < ds and dill, < cis as Stieltjes measures a.s. 
Let us construct a solution by successive approximations: 

Y°(t) = y,  

fl) 	= y + al( rn-i) (s))&11; 	a2( Y'>  (s))a„ 
0 	 Jo  

n = 1, 2, . • . 

Let  T>  0 be given and fixed. Set KT = 2K2(1 T) where K is the 
Lipschitz constant in (2.2). Then, if t E [O, 7], 

Et Yo(t) 	ro)(-• 1 21  r) 	E Ifal(Y)-AZ 	a2(y)I,] 2) 	C1, 

where C I  = 2(a1(y) 2T a2(Y) 2T2). Suppose now that 

	

El I  Y(t) —  Y -D (t)I 2} < CiKri 
(n t 	 

for some n 1. Then 

	

E {117(n+i )  (t) 	(n )  (01 21 Ç2E({ Eral(ro(s),—ch(r"-"(s))idAl 

+ 2E( { fro  [az(Y (n ) (s)) a2(Y('" (*Mils} 2) 

=--  Ii  + 

But 

= 2E { fro  ai(r(s)) — 

<2E  { f [a1(rn) (0) 	c 1 (Y (n-1) (S))1 2dS} 

	

2K2E { 	j17 (s) — ri"- D(s) 1 2 1 ds 

= 2K 2  ft  0 E {I rn )  (s) rn -i) 	ds 

and 
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/2  _Ç 2E tot f:ia2(Y93)) — a2(Y'"(3))1 2drils) 

Ç 2E It f t.  [aAY' ) (s)) — a2(r"-"(s))Pds} 

< 2TK 2  E E{  17(n)  (8) — rn-1)  (S) 1 2) ds. 

Hence 

E {1P+ 1) (t) — Y(n)  (t)1 2} 
t 

< (2K2  + 2TK2) 
 J

E  {1 inn)  (S) — rn-1)  (9) 1 21 dy 
o 

.
r 	 Sn-1 

K r .1 0 CiKVI (n — 1)! ds 

t n  = C 11 q — 71! • 

Therefore the inequality 

(2.6) 	EI I rn+ 1) (t) — Ycn) (t)1 2} Ç CIK, t E [O, Tj, 

follows by induction. Also, by Theorem 1-6.10, 

E { sup 1 Vn+i ) (t) — P") (t)J 2) 

Ç 2E I °sm.  I E Pi( r") (s)) — al( YI'D  (s)AdAs) 1 2) 

± 2E { oslitEr  I fo  [a2Crw (s» 	07  — a2 ('- ' )  (s)Adi(s) I 2} 

Ç 8E( { f oT  [a l (Y (n) (s)) — al( rn-1) (S))id.t*S)) 2) 

+ 2E({ is  or  1a2(17(n) (s)) — a2(Y (n-D(s))14:1-11(s)} 2) 

and by the same calculations as above, this is dominated by 

8K2 
 f

T 
E {i  Y)()  — r n-1)  4)1 2} ds o 

+ 2TK 2  f T  E {1 Y (n)  (3) —  o 

105 
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7.77  
< (8K 2 +22X 2)C 1 lq- i .  

Consequently 

1 
P( sup f rn+"(t) r" ) (t)) > --) Ç const. x (4Krn" 

2"• n! 

and, by a standard application of Borel-Cantelli's lemma, we see that no 
converges uniformly on [0, 7 ] , a.s. The limit  Y(t)  is a continuous (P)-
adapted process and, by (2.6), E(I Y(t) — Y(t)1 2) 0 as n — co, 
t e [0, T] . Now it is easy to see that Y = (Y(t)) satisfies (2.5). To prove the 
uniqueness, let Y, and Y2 satisfy (2.5). Then, by the same calculations as 
above, we have 

E ITY,(t) — Y 2(t)1 2} 	K ft  0  E I Y,(s) — Y2(s) 2} ds. 

By truncating Y, and Y2 with stopping times if necessary, we may assume 
that s E Yi(s) — Y2(s) I 9 is bounded in [0, 7 ] . Now it is easy to con-
clude that Y, = Y2. 

Corollary. Let agi(x), i = 1, 2, . . . , d,  j  = 1, 2, . . . , r, be real 
continuous functions on Rd such that they are twice continuously differ-
entiable with bounded derivatives of the first and second orders. Then, 
for given dr,dX 2, . . . , e da and y = (yi, y2, ... yd) Rd, 
there exist unique Y', Y2, ... , Yd e 	such that 

I r(0) = 
(2.7) 	 1,2, ... , d. 

dr(t) =  E  o.,(Y(t))0die(t) 
j— ' 

Proof This follows at once if we note that (2.7) is equivalent to 

r(0) = y 

dr(t) 	i o-ti(Y(t))•dir(t) + 	AA(o -5)(Y(t)).(dr -dX0(t) 
(2.7)' 

= cii( Y(0). dr(t) +.1 I  t., (L01.01)(nt». 

oixi•dX0(t). 

This equation is a particular case of (2.1) with respect to dl'  and dX/ • dr. 

The coefficients at and  E-a— ut• (if satisfy the Lipschitz condition by 
lc ■ 1 aXk  

the assumption in the corollary. 
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Thus a general theory of existence and uniqueness of the equations for 
semimartingales is established. Below there are some examples for which 
solution can be written down explicitly. 

Example 2.1.* Let d = 1 and consider, for a given X e C2 such that 
X0  = 0 the following equation 

IdY , = a(Y,)0dX, + b(Y,)•dt 

where a e C 2(1?' — R) with bounded a' and a" and b is Lipschitz 
continuous. By the corollary of Theorem 2.1, we know that the solution 
exists uniquely and it is given in the following way. Let u(x, z) be the 
solution of 

jau 
z) = a(u(x, z)) 

u(x, 0) = x. 

Let D, be the solution of 

1 dc--VD  = exp 1 — 	a' (u(D„ s))ds} b(u(D„  X,))  
0 

Do  =- y. 

Then the solution Y is given by 

 Yr  = u(D„  X,).  

Indeed, by the chain rule (1.14), 

A-, 
di', = a(u(D„ X,)). dX, + ( 

a
—au)(D„ X,) exp 1 — f a'(u(D „ spds) x 	 o 

X  b(u(D„ X,)). dt. 

au But 5.; i 
 = a 

a au 	
' (u(x, z))--- .- and 	'i-.(x' 	— 0) — 1 imply that ax 	ax  

au 2 

—(x z) = exp { f a' ' 	( u(x, spdsi , ax 	 o 

* Doss [19]. 
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and hence dY, = a(Y r)0dX, b(Y,)•dt. 

d 	 a 
Example 2.2. Let Ak = E AL(x) — be a Ca'-vector field*i 

j-1 	 axi 
k = 1,2, . . . , r. We assume that the first and second order derivatives 
of all coefficients 

= 0,  i=  
equation 

(2.8) 

are bounded. For given X', X2, 
1, 2, . . . , r, 	and y = (y1, y 2, 	 , yd) 

dr(t) = kt1  AgYttpodr(t) 
, j  = 1, 

, 

2, 

e a such that 
Rd,   consider the 

... , d. 
Y'(0) = y', 

[I]*2  If the vector fields A 1 , A21 	A, are commutative, i.e., [A,„ A g] 
= 0, p,q = 1, 2, . . . , r, then this implies the integrability of 

au' 
z) = Aij(u(x, z)), 	= 1, 2, . . .,d, j= 1, 2, ••• ,r 

{  

u(x, 0) x E Rd 

and so we have the solution u(x, z) = (u 1(x, z), . . . , ud(x, z)). If we set 
Yri = ut(y, = 1, 2, . . . , d, where X, = (X;., X?, , X,'), it follows 
immediately from the chain rule (1.14) that Y = (11, Y , , . . . , ri) is a 
solution of (2.8). 

[II]* 3  Next we consider the non-commutative case but we assume that 
the vector fields A1, A2, ... A, satisfy 

(2.9) 	[Ai, [A1, Ak]i = 0, 	i,j,k = 1,2, . . . , r, 

i.e., the Lie algebra £(A 1 , A2,  • • • Ar) generated by A A —1, —2) • • • Ar 
is nilpotent in two steps. Then the solution of (2.8) is given as follows. Let 

j); 	j r} and Rm. {1, 2, ... , r} U.k. For z = (z0, s, 
consider the following system of equations 

auh 1-1  
— = Al(u(z)) — E z-PA:,,(*)) 
aZI 	 p"°1 

(2.10) 
1 au  7h T4 — Ah. k  (u(z)) , 	l  

* 1  Cf. Chapter V, §1. 
*2  Doss [19]. 
*3  Additional information on this subject can be found in Yamato [184]. 

1,2, • • • r, 

1 < < k < r, h = 1,2, . . . d, 



STOCHASTIC DIFFERENTIAL EQUATIONS 	 109 

where Alk(x) is defined by 

Ed  A , , k(X) 4±  = [A A k] -  = A 

	

axh 	1 , 	• 	J,k• 
11-1 

We can prove that (2.9) implies the integrability condition of (2.10) and so, 
for given x e Rd, we have the solution (ui(x, z)),..,, 2,..., d  of (2.10) such 
that ui(x, 0) = xi, i . 1, 2, . . . , d. Let 

re.k = f Xisedr: , 1 -Ç j < k r 
Jo  

and X, = (Xf),N. Then r= ut(y,  Xe),  i = 1, 2, ... , d is a solution of 
(2.8). Indeed 

	

r ad 	 a 
dr = E ., ,(y,X,)0dX1. + E no  k)  ui(y, Xt)odX-Pk 

	

j -loz- 	 isp<ksruz - 
r 1-1 = ± A(Y,)0dX1. — E E At j(Y,)XifodX.f. , 

J-1 	 J-1 k-1 

+ E A'j k (Y e)Xiodn 
ls.i<k$r 	' 

= ± A ii(Yt)odr t . 
PF 1  

a 	a 	a For example*, if d = 3, r ==. 2 and A, = a7xr  

— 2.x. ' '±.
, 

the solution Y, = (r,r,n) is given by r = yi ± n n 
ax3 

= y2  + n and yi = y3  ± 2(y 2X,' — yin) + 20- 0̀ 210dX!. — fto XIodXD. 

Consider the solution Y(t) = (r(t), Y 2(t), . . . , Yd(t)) of the equa-
tion (2.8). If a C2  function f(x) defined on Rd satisfies A k f = 0, k = 1, 
2, . . . , r, then f(Y(t)) = f(y) for all t>  0 a.s. Indeed, 

df(Y(t)) = g c  a , f(Y(t))0dr 	il (t) = i c il f,(Y(t))a lf(Y(t))0dX 1; 

= ii (Ak.f)(Y(t))0c1r: = 0. 

+ 2x2  a—X7  ' A2  = aX2  

* Gaveau (33). 
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d 	af For example, if Akf = 	A fk(x) 	(x), k --- 1, 2, . . . , d, with "l (x) 

45,k 	xixk x i 2, x  (X1 ,x2, 	rxd) E  Rd\ {0} 9 f(x) = V-1  

	

) 	Ld  ()CO 2  satisfies 

A kf = 0, k = 1, 2, . . . , d. Thus the solution Y(t) always stays on the 
sphere with center 0 and radius I yf ( = I Y(0) ). If we take Xk 
k = 1, 2, . .. , d, such that dXk • dr = (Ski - dt, i.e., (X', X 2, . . . , r) is a 
d-dimensional Wiener process, then the solution 

= kt AgAtDodr 

Yi(t) = Yfl 

defines the Brownian motion on the sphere with center 0 and radius I y I .*' 

3. Moment inequalities for martingales 

Various inequalities for moments of martingales are discussed, e.g., 
by Meyer [120] and Garsia [32] in, connection with a martingale version of 
the theory of HP-spaces. Here we obtain fundamental inequalities for con-
tinuous local martingales as an application of stochastic calculus. 

Theorem 3.1. There exist universal constants cp, C (0  <p  < 00) 
such that for every M 	( = Pc) and t > 0, 

(3.1) 	c„E(M72.P) E(<M, MA Ç C,,E(Me*21') 

where Ack = max I Ms  I.  o<3<t 

Proof.*2  It is sufficient to prove (3.1) for a bounded martingale M = 
(Me) since the general case follows easily by a truncation argument. In-
deed, setting Tn  = inf {t;  f  M  I  > n or <M>, n} , we have Tn  t 00 
a.s., and if (3.1) holds for M (MT„A) with cy  and Cy  independent of 
n, then (3.1) holds for M by letting n co. In the proof we shall write A 
for Of, M>. By the inequality (6.16) of Chapter I, 

(3.2) 	E(MP) 	P 	1) 27  E(IM ti 	p>  1. 

* 1  This representation of a spherical Brownian motion is due to Stroock [156]. 
*2  The following proof is adapted from Getoor-Sharpe [34]. 
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Case 1. If p 	1, 

E(<M, M>,) = E(M1) 

and hence, noting (3.2), we have (3.1) with c ,,  = 1/4 and Cap  = 1. 
Case 2. If p > 

E(M7 2P) < (2p/(2p 1)) 2PE(IM,1 2P). 

Since j x I 2P  is of class C2  we can apply Itô's formula to obtain 

1 M  t 211 	2P  I Add 2P-1  Sgn(Ms)dMs ± PPP — 1)  I Ms I 2P-2dAs . 
o 

 

By taking the expectations, we obtain 

E(1M,1 2P) p(2p — 1)E( E  I x l 2P-2dAs)  

p(2p 1)E(M7 2P-2A,) 

< p(2p — 1)E(M7 2P) 1-11PE(AVIP. 

Therefore, 

E(M7 2 ) (2p1(2p 1))2Pp(2p 1)E(M7 2P)' -1 IPE(AVIP, 

from which the left side of (3.1) follows. To prove the other side of (3.1), 
set N, = J  R-1)12dM 2. Then p<N,N> = p fro  Ari diel s  = AT and so 
E(Af) = pE(N). By Itô's formula, 

Mte 12  = t  A?. /2  s 	0 A I sd(44? 12) 
0 

N, 	0 M scl(A?-0 /2) 

and hence I N,1 < 2M7 MP-1)12 . Thus 

E(A),') = E(ND < 4E(MrAr 1) Ç 4E(M* 2P) 11PE(Af) 1- 1  , 

and so 

E(A) (4P)PEOVI721- 
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Case 3. Let 0  < p  < 1. Set N, = Ar 1)12dMi. Then, as above, 
E(21?) = pE(M) and Mr  f' AP -P)12dN,. By Itô's formula, 

NrAP -Al 2  = ft  44 (1-P>I2dN, 	N d(A (1-1» 13) 
o s 	 0 

= M, 	.14  N.,c1(44 (.1-p) /2), 
o 

and hence 

IM, ] 2N7AP-An. 

Thus M7 < 2N7 Ap-p) /2 ,  and by Holder's inequality, 

E(M 2P) < 22PE(N7 2PAr - P)) 22PE(N7 2)PE(AV -P 
< 22P4PE(N)PE(Ar)' -P = (161p)PE(R)PE(AV -P 

= (161p)PE(AO. 

Finally we must show that  E(A) < CpE(MrP). Let a be a positive con 
stant. By applying Holder's inequality to the identity 

[Ar(a 	M7) -2P (1-P) ](a 	M:`) 2P ( '-')  

we obtain 

E(R) 	{E(A,(a M7) 2 "-')} '  {E((a M7) 2P)} 1-p. 

Setting N, = (a ± 	dM „ we have 0 

<N, N>, = fro (a M*) 24-1) dil 3  A,(a Mr) 2(P-1) . 

By Ita's formula, 

Mr(a 1117. )P-' = o (a M*)P-iciMs  j .  0 M sc 1 f(a 

= N, (p — 1) 5:M s(a M)P-2dM:, 

and hence 



SOME APPLICATIONS OF STOCHASTIC CALCULUS 	113 

1Ne l Ç 	+ (1 _p) .111* (P- i'dM: = 

Therefore E(M) <-11--)2 E(M7 2n) for every a>  0, so 

E(Af) < p-21'{E(M7 2P)}P {E((a M')2')} 'P•  

Letting a .1 0, we conclude that 

E(Ar) 	p-2P E(.111,* 2P). 

4. Some applications of stochastic calculus to Brownian motions 

4.1. Brownian local time. Let X --,-- (X e) be a one-dimensional Brown-
ian motion defined on a probability space (Q,c.r,P). 

Defmition 4.1. By the local time or the sojourn time density of X we 
mean a family of non-negative random variables 10(t, x, co), t E [0, oo), 
x G RI such that, with probability one, the following holds: 

(i) (t, 	0(t, x) is continuous, 
(ii) for every Borel subset A of IV and t > 0 

f 

0 IA (X e)ds = 2 	x)dx. 
A 

It is clear that if such a family {0 (t, x) }  exists, then it is unique and is 
given by 

00, x) =  Ern  left 
e I 0 48 0  (x—e,x+e)(Xs)ds. 

The notion of the local time of Brownian motion was first introduced by 
Lévy [101] and the following theorem was first established by H. Trotter 
[163]. 

Theorem 4.1. The local time {0(4 x)} of X exists. 

Proof. We will prove this theorem by using stochastic calculus. This 
idea is due to H. Tanaka (McKean [113] and [114]). Let (9 ;) = 	be 
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the proper reference family of X. Then X is an VD-Brownian motion and 
It — X0  belongs to the space ..4e. Let  g(x) be a continuous function on 
IV such that its support is contained in (-1/n + a, 11n + a),  g(x) > 0, 
g„(a x) = g„(a — x) and 

flg„(x)dx = 1. 

Set 

u(x) =fx_. dy f g(z)dz. 

By Itô's formula, 

1 

u(I)  — lin(X()) f u(Xs)dr, 4sto  u(X,)ds' 

and if the local time {r(t, x)} does exist, then 

zl,;(Xs)ds = 	g (X) 	ce  „ 	ds = 	g„(y)0(t, y)dy 	0(t, a) 

as n 	co. 

Also, it is clear that 

un(x) —•- (x a)+, i
1, x > a 
1, x = a, 
0, x < a 

as n 	co. 

Hence, 0(t, a) should be given as 

(4.1) 	54(t, a) = 	— 	— (X0  a)+ — f10, (XpdX.,. 
0 

In the sequel we will show that the family of random variables 0(t,a), 
t > 0, a e RI defined by (4.1) satisfies the properties (i) and (ii) above. 
It is obvious that (X, — a)+ (X0  — a)+ is continuous in (t, a). We will 
show that there exists a process ty(t,a) which is continuous in (t, a), a.s., 
and for each t, a, 
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t 
tv(t, a) = 

0 	' 
a .s. 

For each a c IV and  T>  0, [0, 1 ]  t 1-- Y 0(t) = fro l (a,„,) (X,r)dX, is 
a continuous process, i.e., C([0, 7 ] ,  R)-valued random variable. If we 
set 

IIY a — Ybil = max i Y0(t) 
— LW I, 05t5T 

then 

(4.2) 	E{11  Y0 — Yb11 4} 	Klb — al 2  

for some constant K = K(T) > O. Indeed, if a < b, 

(Y0 — Yb)(t) = fo  icri, b3(X.)X, E ..4" 

and <Y. - Y b> t = f to I (a, b)(X s)dS . Now applying the inequality (3.1) 

E(IlY . — Y bI1 4) _ -2-2 E({ f To  I ca,m(1 t)chl 2) 

< -c E( f or I 0„,  b3(X Od s S T  4,, I,XX„)du) 

— -c.i.  or  ds f.2.  dugica.b3(XsAa,b3(XJ) 
b 	b -- —2  f r  ds f r  du f 

RI
p(dx) f a

f
dy a dz 

C2 0 	s  
1 	{ (x — y) 21 	1 

X ---= exp 	exp f (y  — 

z)2  I 
A/22.ts 	2s I A  /27-c(u — s) 	1 2(u — s)j 

< 1  (b — a) 2  1' T  ds S T  du . 	 i 	

	

— C2 	 0 	s 	27r-VAU — s) 
.-..-- K(T)(b — a) 2. 

Here p is the initial distribution of X, i.e., p = Pxo. (4.2) is proved. By the 
corollary of Theorem I-4•3,* there exists a family { yi(a)} of C([0, T]--,- R) - 
valued random variables such that 

* This corollary applies for any system of random variables taking values in a metric 
space. 
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a 	w(a) CO, 21 --- 

is continuous as.  and for each fixed a, w(a) = 370( • ) a.s. Clearly 
w(t,a) = w(a)(t) is what we want. Thus by choosing this modification we 
see that At, a) satisfies (i). In order to prove (ii), it is clearly sufficient to 
show that 

(4.3) 	go  f(X s)ds = 2f R1 0(t, a)f(a)da 	a. s. 

for any continuous function 1(x) with compact support. Set 

F(x) = fc:oef(a)(x a)da. 

Then F E C2(R), (x) = ff(a)1 (a) (x)da = fl .f(a)da, F" (x) = f(x), 

and so by Itô's formula, 

F(X) F(X0) — S to F'(X s)dX, 	Stof(X.Ods. 

The left-hand side is equal to 

If(a) {(X — a)+ —  (X0  — a)) da — r  0 { flf(a)I (0,(X,)da} 

If we now apply the next lemma to the second term, the above reduces to 

:.f(a) {(X — 	— (X 0   ar — 	(Xs)dXs} da 

sc  f(a)0(t, a)da 

and hence (4.3) is established. 

Lemma 4.1. (A Fubini-type theorem for stochastic integrals). Let 
(S 2, 9-,P) be a probability space and (9;) be a reference family. Let M E 
./C, (i.e., a continuous square-integrable martingale such that ildo  = 0 
a.s.). Let {0(t ,a,co)} , t [0, co), a E R 2 ,  be a family of real random 
variables such that 
(i) ((t, co), a) e ([0, co) x Q) x RI — (t, a, c)) is .7x  (k)-measurable 
(9  is defined in Chapter I, p. 21), 
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(ii) there exists a non-negative Borel measurable function f(a) such that 

I 45(t, a, co)I _-<_ f(a) 	for every t, a, co. 

By (i) and (ii), ro  0(s, a, co)dM, .. 4'  is well-defined. We assume 
further that 
(iii) (a, co) 1--- fro  0(s, a, co)dM„ is R(k) x ,Xmeasurable for each t > O. 

Let  u(da)  be a non-negative Borel measure on l?' such that 
fie f(a)p(da) < co. Then 

(4.4) 	t — 50(4 a, co)p(da) E 22(<M>) 
RI 

(i.e., it is predictable and E[ fro  { f izi  0(s, (29 • ) Ada)} 2d <M> il < co for 
every t) and we have 

(4.5) 	f
r 
 { f 0(s, a, co)p(da)} dM, ..----1 {f 0(s, a, co)dM „} p(da). 
o Ri 	 J RI 	0 

Proof. It is clear that S R, st1(s, a, co)p(da) is VD-predictable and 
bounded. Hence it is obvious that 

E[ f r  0 1 f Ri  45(s, a, co),u(da)} zd<M> s) < co. 

Thus the left-hand side of (4.5) is well-defined as an element in .4'2c. On the 
other hand, a 1---- Po  415(s, a, co)d11/1 3  is Borel measurable by assumption 
(iii), and for every T>  0, 

Ç 
E[ J.  p(da) max I f 0(s, a, co)dM,I] 

Ri 	citsx. 	13 

t 
_.-_ fp(da) {E[ max I f 0.(s, a, co)dM,11) "2  

R 1 	 0<r<7' JO  

._Ç 2 SRI  1.2(da)(E[ ff 
T 
 0(s, a, co)dM,} 2])"2  

0 

= 2 SRI  p(da)(E[ f T  02(s, a, co)d<M>„)) 112  
O  

_Ç 2 f f(a)p(da) {E KMXT)]} ' 12  
RI 

<00. 
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Hence 

	

p(da) max 	10(s, a, a) )d1 I fi t < co 
RI 	1:1<r7" 

a.s. 

and this implies that 

t 	p 	
0 

(da) 45(s, a, a))dAl, 
R1  

is continuous a.s. Thus the right-hand side of (4.5) is well-defined and 
defines an  (Y) -adapted continuous process. It is square-integrable be-
cause 

E fr Ri ( f 0 45(s, a, co)dM5),u(da)]2 } 

= Ri gdal) 	ii(da2)E[ 0  4
5(s, al , cOdg, 

f 
 45(s, a2 , co)dM,} 

Ri gdai) f Ri Al(da2)E[ 0 45(s, al , (0)0(s, a2, co)d<M>j 

<fRif(aMdai)f Ri ficop(daDERmxtA 

.(fRi  f(a)p(da))2E[011>(t 

< co. 

It is an (.9";)-martingale because if  t > s >  0 and A e jr; 

EVA  S RI  p(da) 2 0(u, a, w)d.111- j 

= R1 1-1(da)E[ 1  A  f «u,  a, co)dM u l = O. 

Similarly, if N E./02, then 

EVA  { $RI  ,u(da) fs (15(u, a, co)dM„}(N, N5)]  

Ri

- 

	p(da)E[IA 
 f

0.(u, a, co)dAlu(Nr  — N,)] 

=-- 1 p(da)E[I, f:0(u, a, w)d<M, N>,,] 
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= Erj f t 	R1 0(u, a, co)p(da)}d<M, N>„]. 

Thus t 	p(da) fro  0(u, a, co)dM„ = 4 is an element in .412c such 
that for every N 

<N, L>, = fro { 11 0(u, a, co)p(da)}d<M, N>„. 

Now we can conclude that L, fo Ri  O(u, a, o))p(da)} dM„ by Proposi-
tion 11-2.4. This completes the proof of (4.5). 

4.2. Reflecting Brownian motion and the Skorohod equation. Let 
X = (X,) be a one-dimensional Brownian motion and let X+ = (X7) 
be a continuous stochastic process on [0, co) defined by 

It is easy to see that 

P[X,-; E A 1, 	G A2,  An] 

(4.7) = fE0,œ) lz+ (dx)f A11)+
(1 1 X1)(1X1 	

A2
P+(t 2 	tl, xl, X2)(1X2 

• • 	• P+(tn 	tn-1, xn-19 xn)dx., 
A, 

0 < t 1  < t2  < < ta , 	Ai  e R([0, co)), 

where 

1 / 	
—2t 

(4.8) 	p+(t, x, y) — 

.%/27rt exl) 	(x  3)2} 	expl— 	 2t 

and p+ is the probability law of X -0'• =f X0 f.  The process X+ is called the 
.one-dimensional reflecting Brownian motion. Reflecting Brownian motion 
can be characterized in different ways. We shall now present one such 
characterization due to Skorohod [149]. 

We set WI, = e C({0, 00) 	R 1); f(0) = 0} and C+ = If E 
•C ([O, co) 	R); f(t) 	0 for all t 	. 

Lemma 4.2. Given f e 07(; and x E R4', there exist unique g e C+ 
and h e C+ such that 

(i) g(t) = 	f(t) 	h(t), 
(ii) h(0) := 0 and t 	h(t) is increasing, 
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(iii) f or 1(0) (g(s))dh(s) --= h(t), 
i.e., h(t) increases only on the set of t when g(t) = O. 

Proof. Set 

(4.9) 	g(t) = x + f(t) — min {(x + f(s)) A Oh 
osssr 

(4.10) 	h(t) = — min {(x + as)) A 0} . 
osssr 

Then it is easy to verify that g(t) and h(t) satisfy the above conditions (i), 
(ii) and (iii). We shall prove the uniqueness. Suppose  g(t)  and  fi(t) e C÷ 
also satisfy the conditions (i), (ii) and (iii). Then 

g(t) — -g(t) = h(t) — ii(t) 	for all t > 0. 

If there exists t 1  > 0 such that g(t i) — g(t,) > 0, we set t2  . max ft < t i ; 
g(t) — g(t) = 0) . Then g(t) > AO 0 for all t e (t„ t1 ) and hence, by 
(iii), h(t i ) — h(t2) = 0. Since  h(z) is increasing, we have 

0 < g(t 1) — g(t 1) = h(t1) — 140 _._ h(t2) — fi(t 2) = g(t2) — g (t2) .  O.  

This is a contradiction. Therefore g(t) < g(t) for all t > 0. By symmetry, 
g(t) > g(t) for all t 	O. Hence g(t) --.E g(t) and so h(t) 

The mappings (x, f) 1--- g and (x,  f)  '—w h given by (4.9) and (4.10) 
are denoted by g . Ti (x, f) and h — T 2(x, f) respectively. 

Theorem 4.2. Let {X(t),B(t),0(t)} be a system of real continuous 
stochastic processes defined on a probability space such that B(t) is a one-
dimensional Brownian motion with B(0) = 0,  1(0) and the process (B(t)} 
are independent and with probability one the following holds: 

(i) X(t) > 0 for all t > 0 and gt) is increasing with 0(0) = 0 such 
that 

E /,,,„(x(s))d(s) __. gt) ;  

(ii) 

(4.11) 	X(t) =  1(0) + B(t) + 00). 

Then X = (X(t)) is a reflecting Brownian motion on [0, co). 
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Equation (4.11) is called the Skorohod equation. 

Proof. By Lemma 4.2, X = (1(t )) and 0 = (0(t)) are uniquely deter-
mined by 1(0) and B = (B(t)): X = I 1 (X(0), B) and 0 = rAx(o), B).  In 
order to prove the theorem we have only to show that if ; is a one-dimen-
sional Brownian motion, then X(t) = lx,1 satisfies, with some processes 
B(t) and gi(t), the above properties. Let  g(x) be a non-negative continuous 
function on I?' with support in (0,1/n) such that foœ gn(x)dx = 1. Set 

ix! 	), is 
un(x) = 	dy gn(z)dz. 

o 	o 

Then it is easy to see that un 	C2(RI),  I  uI < 1, /4.70 t  1x1  and 
u(x) 	sgn x as n 	co.* By itô's formula, 

u(x) — u(x 0) = 	u'n(xs)dx, 2  u"(xs)ds 

	

0 	 0  n  

	

= 
o

u'n(xs)dx, 	_co g(—y)0(t, y)dy f c°  gn(y)00,y)dy, 

where 0(t, y) is the local time of ;. Letting n 	oo, we have 

X(t)—  1(0) = fro  sgn (x.,)dx, ± 20(t, 0). 

Set 

B(t) = sgn (x,)dx, and 0 (t) =- 20(t, 0). 

Then, since <B) = t, B(t) is an (..9-)-Brownian motion, where (,94-;) = 
(.9x) is the proper reference family for ;. Since 1(0) is ..ro-measurable, 
1(0) and {B(0} are independent. Since 

At) = hm 
81. 2zj o  (0,8)(X(3))ds, 

it is clear that 

	

1 , 	x > 0, 

	

sgnx.1 0 , 	x.0, 

	

, 	x < 0. 
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fro I (0) (x(s))4(s) = OW- 

Therefore {X(t), B(t), 95(t)} satisfies all conditions in Theorem 4.2. Thus 
X = (X(t)) and 0 = (f6(t)) are characterized as X = T 1 (X(0), B) and = 
T2(X(0), B). 

An immediate corollary is the following result due to Levy. 

Corollary. Let B(t) be a one-dimensional Brownian motion such that 
B(0) = O. Then 

(i) the processes { B(t)I } and  {B(t) — min B(s)1 are equivalent in 
ossst 

limo 2e-1- /[,, ) (B(s) — min B(u))ds = — min B(s). 
O 	o<ust 	 ostst 

We can give yet another description of the reflecting Brownian mo-
tion. Let x(t) be a one-dimensional Brownian motion. Then by (4.1), 

x(t)+ — x(0)+ f ro  I (O , ) (x(s))dx(s) 	55(t, 0). 

M(t) = fro  /(O ,.) (x(s))dx(s) is a continuous martingale such that <M>(t) 

= St°  / ( ,,, C) (x(s))ds. It is easy to see that Jim  <M>(t) =  co a.s. Indeed, if 
ti 

we set o- l =min It; x(t) = 01, T1 = min It > al  ; x(t) = —11, 	. , 
= min {t > z.„_ 1  ; x(t) --=  O),  = min {t > an ; x(t) = — 1} , . and 

r n  
I(0, 00(X(S))d,S, 

on  

then by the strong Markov property of x(t) (Theorem 11-6.4), it is easy to 
see that IQ is independent and identically distributed. By the strong law 
of large numbers, + • • • ± 00 a.s. This implies that 

ft 
Jim 	I (0  ,), ) (x(s))ds = co 
tt 	0 

a. s.  

Set 

= influ; f/ (0  oe) (x(spds > tl. 
0 	' 
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By Theorem 11-7.2, M(;) is a one-dimensional Brownian motion. Also it 
is easy to see that X(t) = x(re) is continuous and X(t) > 0 for all I 0, 
as. Therefore 

fber„ 0) = X(t) — X(0) — M(r) 

is continuous in t and satisfies 

.1,0) (X(s))c10(s) 	0(0, 	a.s. 

Hence IX(t) = x(;), B(t) = M(;), 0(0 = Ar t , 0)1 is a system satisfying 
the conditions of Theorem 4.2. Thus we have the following result. 

Theorem 4.3. Let x(t) be a one-dimensional Brownian motion and 
Tr = inf Iu; ro  /m oo  (x(s))ds > t} . Set X(t) = x('c z). Then X(t) is a reflect-
ing Brownian motion. 

If  x(t) - = (—x(t)) V 0, then we have similarly 

x(t) - — x(0) -  = — to l 	 ) (x(s))dx(s) gt, 0). 

Let 	inf 114; "0 	(x(s))ds > ,  N.  = — 	(_.,0) (x(s))dx(s), fi(t) 
N(rit) and Y(t) = —x(th). Then Y(t) is also a reflecting Brownian motion. 
As we saw above, X — r I (xo), B) and Y = TI (Y(0), Since <M, N> = 
0, B and are independent by Theorem 11-7.3. Therefore, if X(0) and Y(0) 
are independent (this is the case if x(0) = x a.s. for some x E IV or x(0) > 
O  a.s.), then the processes X and Y are independent. This fact indicates 
roughly that the motion of x(t) on the positive half line (0, 00) and that on 
the negative half line  (—oc ,  0) are independent. This is seen more clearly 
by studying the excursions of Brownian motion. 

4.3. Excursions of Brownian motion. Let X = (X(t)) be a one-dimen-
sional Brownian motion and let Z= It; X(t) 0) . It is well known that, 
with probability one, X is a perfect set of Lebesgue measure 0 and 
[0, 00)\X = U ea  is a countable union of disjoint open intervals ea  ([73] and 

a 

1101]). Each interval e a  is called an excursion interval; the part of the pro-
cess {X(t), t e ea} is called an excursion of X(t) in RI\ {0} . In order to 
study the fine structures of Brownian sample paths, it is sometimes neces-
sary to decompose them into excursions. Here we prefer to proceed in an 
equivalent but opposite direction: we start with the collection of all ex-
cursions and then construct Brownian sample functions. 
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First of all, we will formulate and construct the collection of all excur-
sions of Brownian motion as a Poisson point process taking values in 
a function space. This idea is due to Itô [70].  Let 7/- + (V-) be the 
totality of all continuous functions w: [0, 00) -- R such that w(0) = 0 
and there exists a(w) > 0 such that if 0 < t < o-(w), then w(t) > 0 (resp. 
w(t) < 0), and if t > o(w), then w(t) = 0. Let ,g(7/-+) and R(V" -) 
be the a-fields on V-+ and 7/--  respectively which are generated by 
Borel cylinder sets. The spaces W/-+ and 7/--  are called spaces of 
positive and negative excursions respectively. There exist 0-finite 
measures n+ and n-  on (W.+, ..g(V+)) and on (V', R (V - -)) 
respectively such that 

n±({w; w(t i ) E A1, w(12) E A2, 
(4.12) 

. 5 K±(t i , xi)dxif p°(t2 - 
A I 	 42 

.. , , WO n) G AnD 

t1 7  x1 1  X2)C1X2f ... 
A3 

X 
 S tn  „ — tn_ i , x„_. 1 , xn)dx„ 

A n  

where 0  <t1  <12  < • - • < t„ and A, eR((0,00)) (resp. ,g((-00, 0)) , 
i-,. 1,2, ... 

x2 
K ( t, x) = ,\I —2 x exp(-- ft-.), 

7ct 3  
t > 0, x E PI  co), 

2 x2  K ( t, x) -, \I —i (—x) exp(— 	t > 0, x e (—co, 0] 
7rt 

and 

At, x, y) = -=_.1  (exp 1 (x  — )7)2  I ( 	2t ) exP ( (x 	42; 1' 1/ 27rt . 

t> 0, x,y E [0, 00) or x,y e (—co, 0]. 

A way of constructing the measures n+ and n-  is as follows. In Chapter 
IV, Example 8.4, we shall see that for every T>  0 there exists a proba-
bility measure PT on V+ n lo-(w) -- 71 such that 

Pr 1w; w(1 1 ) E dXi, W(t2) OE dX2, • • • , w(t) E dXn} 

---- h(0, 0; t 1 , xi)h(t i , xi ; t2, x2) - • • kt n-i, xn-i; tn, xn)dxidx2 • • • aiXn 

where 
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K(T — I b) 

h(s, a; t,b) =1
K+(T — s, a) P  

+ 	,  
(t 	s, a, b), 0 < s t, a, b > 

\ ir  T 3  K+0,b)K+(T t, b), s = 0, t> 0, a = 0, b>0, 

and  0< t2  <t2  < • • • < t„ < T. The o--finite measure n+  

defined by 

dT  
n+(B) = j  PT(13  fl  {c(w) = T}) 1 ,B E (7J')  

Jo 

satisfies (4.12). n-  can be constructed in a similar way. Let W. — W.+  U 
27--  be the sum, R(27")= ‘(21/*+)V .(7ff -) and n be the a-finite 
measure on 17; ..g(27)) such that nI 2,-± = n±. By Theorem I-9.1, we 
can construct a stationary Poisson point process p on 2//-  with char-
acteristic measure n. We call it the Poisson point process of Brownian 
excursions. This Poisson point process is what we intended to be the 
collection of excursions of Brownian motion. Suppose we are given a 
Poisson point process of Brownian excursions p on a probability space 
(Q,  Y P). A Brownian motion X(t) is constructed from p by the 
following steps. Set 

t+ f  
E cr(p(s)) f 	o-(w)Ni,(dsdw) 

sst,senp 	 0 9r 

where D„ is the domain of p and Is I p(dsdw) is the counting measure of p 

defined by (9.1) in Chapter I, Section 9. With probability one, t A(t) 

is strictly increasing, right continuous and 

lirn A(t) = oo 
tie  

Indeed, it is a time homogeneous Lévy process with increasing paths 
(cf. Example. II-4.1) with 

E[exp(-2A(t))] = exp(— t  w  (2)) 

where 

w(A) fœo ci — 	cw ; 0-(w) E  du})  

= f (1 - CA") 
2du  

-%/27tu3  

j. e., it is a one-sided stable process with exponent 1/2. Let AO=  
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be the inverse function of A(t). Then, almost surely, At) is continuous. 
We now define, for any sample point on which the above mentioned 
properties of A(t) are satisfied, a function: [0, co] D t X(t) e A' 
as follows: For each t > 0, set s =  At). If A(s-) < A(s), then s  e D, 
and we set X(t) = p(s)(t — A(s-)). If A(s-) A(s), we set X(t) =  O. 
We claim that with probability one, t X(t) is continuous. Furthermore, 
we can identify X(t) with a one-dimensional Brownian motion starting at 
0 and At) with the local time at 0: 

At) = lim 	/,_,,„(X(s))ds. 
sio 46 

Proof*. First, we establish the almost-sure continuity of t 	X(t). 
We have, by (4.21) below, 

n({w; max I w(t) 	81) = —2 	e > O. 

Since 

E[# {s e D, ; s T, max ip(s)N1 > El] 
•:,arpt.o3 

= T x n(fw; max I w(t)I > 	2T E}) — 	<00 
(mt-a(w) 	 e 

for every T> 0 and  e>  0, it holds with probability one that 

# {s E D„; s T, max p(s)[t] > e) < co 
0SrSofp(s)3 

for every T>  0 and  e>  O. This implies, in particular ;  that with 
probability one, for any sequence s„  e D, converging to a finite time 
point t o  such that s„# t o  for every n, 

max p(s„)[t]— 0 	as n 	co. 
OStScr[p(s n)] 

Now the continuity of t 	X(t) is easily concluded: It is obvious that 
t 	X(t) is continuous on each interval (A(s-), A(s)), s E  D.  If A(s-) 

t = A(s), then X(t) = 0 and, for intervals (A(s„-), A(s)), s„ E Dp, 
converging to t as n 	co , 

max I X(t) I — 0 as n-- co 
rE(4(sn-), ii(sn)) 

by the above remark. 

* cf.[234]for construction of Brownian motions in more general cases than that 
treated here. 
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To identify X(t) with a Brownian motion, we appeal to Theorem 
11-6.1. We may assume that p is given as an (9;)-Poisson point pro-
cess with respect to some reference family (.F;). Then A(t) is (J)-
adapted and hence At) is an (..F;)-stopping time for each t. Let 9; = 
'945(0 and .94;- — 9; 01 _ be the usual a-fields; in particular 9; (,) _ is 
the a-field generated by sets of the form A n (3 < AO}, A 

 s [0, co). For each fixed t>  0, set  F(3, w, co) = w(t — A(s-)) .1(t4(3 ._)) . 
It is (9";)-predictable and belongs to n fl  F.  Indeed 

Je u Of 7.- 
I WO — AC9DIVA(.01 I 29,,(dsdw) 

=  f dy f [w(t —  
0 	7-i-  

+  f ds f[—w(t — A(s))1 it4co dn-(dw) 
o 	r-- 

u 

(tAco , f 	K+(t — A(s), x)xdx 
0 	 co..) 

= 
 2 f

, 
4,4c0) ds 

O - 

where Srp(dsdw) is the compensator of the point process p. Also, 

," 

I WO — 11(SDIttigs» J 	 I 2Srp(d5WW) 
0 f 2r 

= 
 2 i'

. 
l  ds .1,,,,, col  f K+(t — A(s), x)x 2dx 
o (0,..) 

-- 4_.- f (t — A(spi /2  1,,„ (,) ,t1s. 
0 

Set lit p(dsdw) = N i,(dsdw) — *p(dsdw). Then, clearly the X(t) defined 
above is expressed, for each fixed t, as 

J 	f 
- 0 (t) + 

X(t) = 	Fr(s, w, •)N,,(dsdw) 
O r• 

sow+ 
= 	Ft(s, w, •')R,(dsdw) O I: 2,- 

since 

1  
Ft(s,w, •)19- (dsdw) = O. 

0 J 	.1 2.- 
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Let A°, = 	V 01P(0(0)(u A(93(0--)); u 1] C 	We will 
show that X(t) is an (M)-martingale such that <X>(t) = t. Set H(w)..-- 
H1 (o))H2(0)) where Iii (o.)) is bounded and Al.-measurable and 1/2(co) ---- 
G(p(0(s));_, (95(,) _) ). Here G(w) is a bounded .(*) measurable  function 
on V* *2  and for w W** and  s>  0, w; V* is defined by w;(t) 
= w(t A s). It is sufficient to prove that 

(4.13) 	E(X(t)H(co)) = E(X(s)H(c))) 

and 

(4.14) 	E([X(t) 2 	tiH(co)) = E([X(s)2  s]ll(co)). 

(4.13) is proved as follows. 

E(X(t)H(w)) 
95(o+ 

E[  I 	Ft(u, w, w)17,,(dudw)H(co)] 

=E[f (s) +S 0 
= E[ 	E 	Fr( r, p('r), co)H(co)] 

.E-95($), T6 Dp 

= E[ E Fkr, p(r), co)11(co)] E[F,(0(s), p(0(s)), co)H(co)] 
'T<0 (S), TŒDp 

:=  I1 + 12* 

Then 11  = 0 because F(r,P(E),0)) = 0 if  r < 	<  6(t).  It is known 
(cf. [15]) that there exists a bounded (F)-predictable process H ,(!) (co) 
such that 111(w) = H4) (co). Then 

12  = E(F,(515(s), p(0(s)), co)111(w)H2(co)) 

= E( 	E 	• il(2.-)<l7(12(T»I F r p(r), W) :  41)  (W)G(P(r); • A(z—))) 
95(S), TED), 

= E(  1

ts(s)+ 
I  1 is_ A 	60)  Ft(u, w,  
., 

„(s) 
= E 	dull"L' ) (co){ 	I tr... Aw<0.(0}F,(u, w,  

Jo  

56 ts) 
= E { So  duH L' ) (co)[ i'7. 4-44(o<crooiFs(u, w, (0)G(w.s7-A( ) )n(dw)i} • 

* 1  p(s)  E 7r, s Dp , is extended by setting p(s)(.) 0 if s 
*2 	= 7."- U  {0J, where 0 is the function 0(t) 0. 

Ft(u, w, w).2T1;,(dudw)H(w)] 
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Here we used (4.15) below. The following are the fundamental properties 
of the measure n: if  t> s>  0 and g(w) is bounded and  .,()-meas-
urable* then 

(4.15) 	w(t)g(w)n(dw) = 	w(s)g(w)n(dw) 

and 

(4.16) f 7  [w(t)2 —t A a(w)]g(w)n(dw). f [W(S)2  —S A a(w)k(w)n(dw). 

Now the above argument can be reversed to see that 

co 
E {  j 	dui I L i) (a))[ f 11,-Am<a(w))Fs(u, w, •)G(w-A(m)n(dw)]) 

= DE(X(s)H(co)). 2P-  

Equation (4.14) is proved in a similar way by taking Ft (s, w, co) = (w(t — 
.A(s-)) 2  — [(t 	A(s-)) A o-(w)]). 	and by using (4.16). In this 
case F,(T, p ( r), .) 	0 for  r < OW but it is easy to see that Ft(r, p(t), -) = 

p(r), •) if r < fi(s). Consequently X(t) is an (X;)-Brownian motion 
by Theorem 11-6.1. 

Next we prove that OW is the local time at the origin of X(t). It is clear 
that 

ow+ 
A ( t)! = 	js,, I  w(t A(,))/„Au _„ 1 N p(dsdw). 

Noting that f r. I  w(t)  I  n(dw) = 25°05  xK+(t,x)dx = 2 for every t > 0, we 
see that 

	

si 	+ 
X(t)I 	So 	fr. I w(t 	A(s-))1ir>ms-)1 I lirp(daw) 	225(t). 

By the same argument as above, we can prove that 

ro w+ r  

J0 	J 7- w(t — A(s- )) I 11>ms-),  I  R „(dsdw) 

is an (g4)-martingale, and so by Theorem 4.2 we can conclude that 

* ars(V -) is the a-field on W,/* generated by Borel cylinder sets up to time s. 
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20(t) = lim  

The inverse A(t) of  ç(t) has expression 

A(t) = f
t+ 

 0  f w_o-(w)Np(dsdw). 

We know that it is a one-sided stable process with exponent 1/2. 

Thus we have established the following formula describing a Brownian 
sample path X(t) in terms of a Poisson point process of Brownian excur-
sions p: 

(4.17) 

	JX(t) = $  

lA(t) = J.
0 
 f r.  a(w)N p(dsdw) 

and At) is the inverse of t 1---- A(t). 

r+ 
0 LP^ 

WO - 
95 (r+) 

This expression may be regarded as a formula for the decomposition of a 
Brownian path into its excursions. Using it, many results on the local 
time OW and the zero set X of X(t) can be obtained. Before we proceed 
with some examples, we first introduce the following maps 

(4.18) 	T1 : W.  --- (0, co) defined by Tiw = a(w) 

and 

(4.19) 	2"2 : V — (0, oo) defined by 7"2w = max I w(t) I . 
0<t<ø(w) 

T1  and 7'2  induce stationary Poisson point processes Ti(p) and T2(p) on 
(0, co) by 

Dri(p)  = Dp  and Ti(P)(s) = Ti(p(s)), 	s e DTA„), i . 1, 2. 

The characteristic measure n 1  of Ti(P)  is given by 

(4.20) 	n lax, co)) = 2n+  ({w ; 0*(w) ..?._ x}) = 2$ c°  dt — 2,8/r. 
x ,V27-ct 3 	KX 

and the characteristic measure n, of T2(p) is given by 
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n2([x, co)) = 2n+({w; max w(t) x}) 
ostsa(w) 

-- lira 2n+(lw; a(w) > e, max w(t) x}) 
el() 	 (w) 

(4.21) 

	

= lira 2 .14 œ 	y)Py(ax  < ao)dy 
810 	0 

lirn 2 c1--ir  y exp(— -1--P-.) Y  A  dy  —2  , 
e 10 SO ns 	 x 

where Px  is the Wiener measure starting at x and a is the first hitting 
time to a.*' 

For a Brownian path X(s) and  s>  0, let 

th(t)  (4 22) 	= the number of excursion intervals in [0, t) whose lengths 
.  

are not less than e, 

and 

d(t) = the number of down-crossings of X(s) from s to 0 and 
(4.23) up-crossings of X(s) from —e to 0 before time t. 

It is immediate from (4.17) that 

?Mt)= NT1w ((0, OW) x [e, co)) 

and 

d(t) = NT2(,) ((0, OW) x [e, co)). 

It follows from the strong law of large numbers that 

P(limNT1  (0(0, a)x[e, co)) = 2a for all a>  0) = 1 
a 	z 

and 

P(lim eNT., (,) (0, a) x [e, co)) = 2a for all a>  0) = 1. 
to " 

Consequently, we have proved the following results of Lévy * 2 : 

* 1  The formula Pja, <c/b) = — a)/(b — c), b < a < c, is well-known and is easily 
derived from the fact that w(t Aac  Ac/ b) — a is a P.-martingale. 
*2  Lévy only conjectured (4.25); for different proofs, cf. e.g. Itô-McKean [73], Chung-
Durret [11] and Williams [179]. 
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(4.24) 	P(lim.\/717/ (t)= 20(t) for all t>  0) = 1 
eio 	2 e  

and 

(4.25) 	P(Iim ede(t) = 293(t) for all t > 0) = 1. 
tS O 

Let p+ and r be the restriction of p on W.+ and Ze*-  respectively. 
Then p+ and p-  are stationary Poisson point processes on V+ and V-
with the characteristic measures n+ and n+ respectively; moreover, they 
are mutually independent. We set, respectively, 

(4.26) 	Ai(t) =-- f f r± cr(w)N„(dsdw) 	and 

X±(t) = p±(s)[t — A -(s)] 

where A(s-) t A±(s) under the convention that  pt(s) -a-- 0 if 
s 	. The unique s such that if'--(s-) t A±(s) are denoted by 
yk-'-(t), respectively, so that 0±(t) are the inverse of t 	A(t). Also 
we set 

0+(t) --= Ï ,  .) (X(s))ds and 0-(t) = f t0 I( ._.„ 03(X(spds  ft 

where X is the Brownian motion given by (4.17). It is immediately seen 
that 

X+(t)= X(r+(t)) and  X(t) = X(r(t)) 

where .r+(t) and Tit) are the inverse of t 	0+(t) and t 	Olt) 
respectively. Thus X+ and — X-  are mutually independent reflecting 
Brownian motions as being functionals of p+ and p-  respectively and 
therefore, we recover what was explained at the end of the previous 
section. If we set 

(4.27) 
	13+(t) = p+(0+(t )[t — A+(0+(t))] — 0+(t) 	and 

13- (t) = —p -(0-(t)) [t A -(0+(t))] — 

then, by the same proof as for (4.17), we can show that V and 13-  are 
Brownian motions and that 	X+(t) = B+(t) 0+ (e) and —X-(t) = 

0-(t) are Skorohod equations for X+ and 	respectively. 
In particular, 
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leini) 2Ite  f ro  J .  0  (X+(s))ds and 

O (t) = lsim  2x1   f : ./ ( _ e , o3(X-(s))ds. 

If A(t) is defined by (4.17), it is immediately seen that 

A±(t) = 0±(A(t)). 

Let a  <O  and set a.= inf{ t; X(t) = a). Then the excursion p(e) 
of X such that A(e-) a. A(e) must coincide with p (e') 
where 

A -(e' -) -... cr; = inflt; X(t) = a) .. 24-(e'). 

Hence e = e' = 0-  (0-;) and 

e = inf{s E 130„; M_[p(s)] a} 

where 

M(w) = inf w(t), 	w  
(3 ,7(w) 

Then 

= 
 f

AU) 

. Ito , ,,, ) (X(s))ds = A+(e) = A +  (0-  Oa. 

e is exponentially distributed with mean --d since 

P[e > ul = P[N p((0 , u] x {w; M_(w) a}) = 0] 
= exp[—u n({ w; M_(w) - . ap] 

= exp[ —ula] 

by (4.21). Note that e = 0(t;) and X+, as being functionals of if and 
p+ respectively, are independent. Hence we can conclude the following: 
the part [X+(t) = X(c+(t)); T+(t) < o -„j of the reflecting Brownian motion 
X+ coincides with [X+(t); 0 t c A+(e) -----. inf{u; 0+(u) > e)] where 
e is an exponential holding time independent of the process X+ with mean 
—a. The process defined in the second way is known as the elastic 
barrier Brownian motion with parameter y = —a1(1 — a), (cf. Example 
IV-5.5) and the above shows that it can also be constructed from a 
Brownian motion X(t) by a time change as in the first way. 

Let us give one more application of the above consideration. Let 
t>  0 be fixed and set u = T+(t). Then with probability one, X(u) = 
X+(t) > 0 and X(u) is contained in the excursion p[O(u)] = p+[0+ (0] E 
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V.+ . Hence Au) = 0+(t). Now it is obvious that 

t — Al- (0+(t) —) = u — A(f5(u)—). u — A(0+(t)—) 

and hence 

u = t — A+ (0+ (t) —) ± A(0+ (t) —) 
. t + A-  (0+ (t) —) 
= t + 21 -  (0±  (t))- 

Noting the independence of X+ and X-  and the fact that  A(t)  is a 
one-sided stable process with E[exp(-11.21-(t))] = exp[ — t()] where 

y(2) =  f1  — clu)n-(fw; a-(v) e du)) = 

we obtain the following formula due to Williams [ 235 ], (cf. McKean 
[114]): 

E[exp (-11.+(t)) I X+(s); 0 s < 00] 

= exp[—At —  

This formula can be used to prove the aresine law: 

(4.28) 	P[19 1- (T) < t]= 1.n.  sin-  Y-4--,t  , 	0 5. t -5 T. 

Indeed 

E[exp(—)1e(t))] = E[exp(—At — 

and, noting 0+(t) and max X(s) are equivalent in law (Corollary of 
i:1,,r 

Theorem 4.2), this is equal to 

2 
2e-ar fe-1—  2,2x(27)--rt\ 1 / 2exp[— x  ]dx 

o 	 2t 

= 2cat(27rt)-112  f c°[f c  ° clu(2nu3)-1112x exp( — X2  )dui 
0 	o 	 2u 

2 
X exp(-- 

x2t)dx  
0, =f 
:

{ t(u — t)3  } - 1 / 2oro- le-1 	_ utiu  
k 	t)du 

from which (4.28) is easily obtained. 



SOME APPLICATIONS OF STOCHASTIC CALCULUS 	135 

In the remainder of this section, we shall present, within our frame-
work of Brownian excursions, several results of Williams on decomposi-
tions of Brownian paths, especially on a beautiful description of the 
Brownian excursion law n or n+ n1 . 

For w E W.+ , we define }vi,  e W/- + by 

WO) = w(Gr(w)  t) 	for 0 t a(w) 
0 	for t a(w). 

Clearly a(w) = o(w). 

Lemma 4.3. n is invariant under the mapping: w 	w. 

Proof. PT on Ze- + n { 4); ci(w) = T} is invariant under the 
mapping: w 	(cf. Example IV-8.4). Since 

n+(B) = 
 Jo PT(B n {a(w) T)) (27rT 3)-1c1T, 	B B(7/- +), 

the assertion is obvious. 

For a continuous path w E c([O, co) 	R) and t 0, define w;'• 
and w7 in C([0, 00) 	R) by 

(u) = w(t u) and w7(u) = w(t A u). 

Define aa(w), a E R, by o-„(w) = inf[t; w(t) = a). In the following, 
a Brownian motion X(t) with X(0) = a is denoted by BMa  and its 
probability law on C([0, 00) 	R) is denoted by P.. A Bessel diffusion 
process Y(t) with index 3 (i.e., the radial process of a three-dimensional 
Brownian motion, cf. Example IV-8.3) such that Y(0) = a (a 0) is 
denoted by BESa(3) and its probability law on C([0, 00) — R +) is 
denoted by Q. where  R +  = [0, 00). BESa(3), a 0, is a diffusion 
process on [0, 00) with transition probability q(t, x, y)dy where 

(4.29) 	q(t, x, ) . 1 	
, ---1  --pV, x, y)y 	for t, x,  y>  0 

y x 
K+(t, y)y 	for t, y > 0, x -- 0 

with e(t, x, y) and 1C+(t i  y) given as above. 

Lemma 4.4. (i) If  a>  0, 

(4.30) 	
n+({w; w;. ( ,,,, e B1 , 4. (,,,, G Bz}  Io  < 00) 

= Qo[w;-,. G BilPa[w;o  e B2] 



136 	 STOCHASTIC CALCULUS 

for any Borel subsets BI , B2 in C([0, co) 	R). 
(ii) If 0 < b < a, 

31) 	Pb[{W; W67.(w) E B1, 14.0,) E B2110', < aca (4.  
= Qb[w4,7,, E Bi]Plw BA 

for any Borel subsets B 1 , B2 in C([0, 00) 	R). 

Proof (i) We know n+({w; o-„(w) < cop = 1/a. Also by (4.12), n+ 
has the following property: for any Borel subsets B1 , 132  in 
C([0, co) 	R +) 

n+({w7 E B 1 , a(w) > t,  w 	B2D 
= En-  "[E-Pww[w;0( ,, )  E BA: w7 B 1 , o-(w)> t] 

where En+ (Eta)  denotes the integration by n+ (resp. P.). Hence iffi , 
fi, . . . , f„, and g g .1, cp. 2, • • • gn are bounded Borel functions on R + , 
0 < t i  < t 2  < . . . < tif, and 0 < s i  < s2 < . . 

En+ Ui(w(t1))f2(w(t2)) • • • fm(w(tm))/(f m <Gra) 

	

x gl (w(o-a 	s1 ))g2(w(o-a 	s2)) . . . gn(w(o-a  

=-- En+ ffi(w(ti))f2(w(t2)) • - • fm(w(0) (cfAct a >t,,,) 

X  EPw (tmtg i (lv(a . 	s1 ))g2(w(a0 	s2)) . 

g„(w(aa 	sn))itaa÷s„<cro}il 

E"' ffi(w(ti))f2(w(t2)) • • - fm(w(0)IroAa a >fm ) 
X  EPw(rnd[Eparg iks iDg2(w(s2)) . . . aw(s.))/(3.<0- 0 )1 1(a0 <d0,]) 

En+ LA(w(t1))Mw(t2)) - 	h(w(tm))/terAaa >tm,P. (t.)[cfa < an]] 

x Efa[g1(w(s1))g2(w(s2)) • • • gn(w(sn))/N<c oii 
= En +  [fi (w(t i))Mw(t . . . fm(w(t m))/,,,,,w(4)] 

X  EP4g1(w(s1))g2(w(s2)) 	. gn(w(si))]lu„<c ol a 

and by using (4.32) below, this is equal to 

Eatifi(w(ti))f2(w(t2)) • • frn(wOmpiw a>rii 

x EPa[g1(w(s 1))g2(w(s 2)) . . . g„(w(s„))4 0>sn) ) a. 

Then the proof of (i) will be completed. So we prove the following: for 
any Borel subset B in c([O, CO) 	R 4.) , 

(4.32) 	Elw(t)/„,, ,- Eild = Qo  [w7 B]. 
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For, if 0  <s1  <s2  < . . .  < s. 	t, 

Elg1(w(s1))g2(w(s2)) . . . aw(s))w(t)] 

.f 

	

f: 	K+(s„xopo(s,_ sbx,,x2)  . 
fcao  

	

X PqS,, 	Xn_ i , 

X  gi(xi)g2(x2) • • • gn-1(Xn--1)gn(X0XndX1dX2 
	doc„ 

=1 • . • f mq(s i , 0, x1)q(s2-s1, 
0 0 	 0 

Xi, X2) . . . 

X q(s„ — s i,_ 1 , x_ 1 , x„) 

X  g1(x1)g2(x2) . . . g.(x„)dx 1 dx2 . . . dx„ 

= EQ°[gi(w(si))g2(w(sz)) 	aw(sn))i 

and this proves (4.32). 
The assertions (ii) can be proved in the same way as (i). 

Lemma 4.5. Let  a>  0 and set, for w E C([0, 00) 	R), 

	

(4.33) 	/2(w) = sup{t; t 	a 0(w), w(t) =--- a] 

	

(4.34) 	/.(w) = sup (t; w(t) = al. 

Then 

(4.35) Pa[w72(0 E /31 = Q.K0,4 E BJ 

for any Borel set B in c([O, co) — R +). 

Proof. It is sufficient to prove that for bounded Borel functions 
. 	on (0, 00) and 0 < t1  < t2  < . . . < trip 

	

(4.36) 	EPa[12Ifj(w(t i))/,,2,,,nd = Ef2a[ fIfj (W(tiMia>tnj. 
J"' 1  

We have 

the left hand side of (4.36) 

= EPa[liVi(w(tAI (.7 (w+)«7 06.+), a th 	ta  

= EPa[fi j -j(WMAW(t,,)) u n<crood 
j=1 

en<cro(w))) 
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. . . f 1-1{po (tj 	tj _ i , 	xj)fi(xi)lex„)dx icbc2  0;=.1 

where t0  to  = 0,  x0  = a and 

g(x) = 13,[c y  a  < 0.0] =  x A a  
a 

Also 
the right hand side of (4.36) 

=  Ea[ ff .6(w(0) 1(0 (w÷)<œ}i a tn  »"1 

= EQa[  fi  fj(W(Oh(W(42))1 
1=1 

x > O. 

	

s co r ce 	 n  
{q(t i  — . 	. 	11 

0 	0 	0 J.■ 1 

where to  = 0, xo  = a and 

t1_ 1 ,  xj_il xjAxj)}h(xn)clxicbc2 - • . dx„ 

a 	x > O. h(x) = Qx[o-  a  < co] = x V  a'  

The equality (4.36) is now easily verified by noting q(t, x, y) = 
x,Y)Yix- 

Corollary 1 (Williams [179]). For given a>  0, let 
{X(0} be BM° and { Y(0) be BES°(3). Then {X(cif — t), 	t < 
of,} is equivalent in law to { Y(t), 	t 	/1} where 

= inf{ t; X(t) = 0} and 
/Iv 	sup[t; Y(t) =  a}.  

Proof From (4.30), we see that [ w(t);  O  < t < a(w)} is de-
composed, under n+( • I cra < co), into mutually independent parts {w(t), 
0 < t < ac,} and {w(t ± an), O  < t < a — o-.}, the former being equiv-
alent in law to { Y(t),  O  < t < on where ar = inf {t; Y(t) = a} and 
the latter to {X(t),  O  < t < . Hence, the part {w(t),  O  < t < /.(w)} 
WO is defined by (4.34)) is decomposed, under n4:(•  I  cr,, < co), into 
mutually independent parts { w(t),  O  < t < a} and {w(t a a), 0 < 
t <  la — o-.), and latter being equivalent in law to {Z(t);  O  < t < ifl  
where Z(t) is BES4(3) by virtue of (4.35). Hence we can conclude that 
the part { w(t);  O  < t < In } is, under n( I aa < 00), equivalent to 

Y(t);  O  < t el. Since  {a0(w) < co}  ={a.(') < co}, it follows from 
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Lemma 4.3 that {}140, 0 < t < la(i))} is, under -n( • 10-. < 00), also 
equivalent to { Y(t), 0 < t < 11). But it is obvious that /.(W- ) = a (w) — 
o-„(w), *(t) = w(a(w) — t) and we know that { w(t ± „), 0 t < 
cr—co ) is, under n( - Io  < co), equivalent to {X(t), 0 < t < cif}. This 
clearly implies the assertion. 

Let p+ pl 0,-+ be the above point process on V+ and define 
"VW and A+(t) by (4.26). If we define 13+(t) by (4.27) then we know 
that B+ (t) is BM° and hence X(t) = —B(t) is also BM° ; that is, the 
process X defined by 

X(t) = v$+(t) — [P+(56+(t))Kt — A÷(95÷(t) (4.37) 

is BM° and 

0+(t) = max X(s). 
oss.cr 

We define a continuous process Y(t) by 

(4 38) 	Y0) = 0+0) ± i/ff(04.0))] — A l- (0+0) —  .  
2 max X(s) X(t). 

o<sst 

We fix a>  0 and define a point process 13 on V+ by 	D ,  = e 
(0, a); a — s  D,+} u ts E (a, co); s E 	} and 

p(s) = 
fp+(a — s) 	for s Di;  (1 (0, a) 
1.p+ (s) 	for s 	D,, f") (a, co). 

By Lemma 4.3, it is immediately seen that p has the same law as p+ . If 
we define k(t) from p in the same way as Y(t) is defined from p +  by 
(4.38), then it is immediately seen that 

A(a) = Â(a):  

A +(a) = inf{t; X(t) = a), 
(a) = sup(t; k(t) = a) 

and 

k(t) = a — X+(de(a) — t) 	for 0 < t < A+(a). 

Therefore, Corollary 1 implies that { i(t), 0 < t < 1!}  is equivalent to 
{Z(t), 0 < t < in where Z is BES°(3). Letting a1'  cc,  we see that 
Y(t) defined by (4.38) is actually BES°(3). Thus we have the following: 

-_, 0+ (t ) 	X+(t) 
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Corollary 2 (Pitman [1411). If X(t) is BM°, Y(t) = 2 max X(s) — 
0<s<t 

Here, we present a useful result for an (.9";)-stationary Poisson point 
process p on a general state space (X, a (X)) with characteristic measure 
n(dx). Let A e (jp, co)) x al(x) and assume that 

IA (s, x)n(dx) = C 4(s) < co 

and 

ft 
0c,(s)ds co for all t > 0 

but 

fce 
0 c4(s)ds. 00. 

Define 

(4.39) 	0 = inffs E Dp; (s, p(s)) E A} . 

Then 0 is an (5;)-stopping time and P[0 < co] = I because 

P[O t] P[N i,(Rs, x) A; s < t}) = 0] 

= exp[— f o CA (s)ds] — 0 as  t — oo.  

Lemma 4.6. (i) The point process p* on X defined by D * = {t;t 
0 E D, } and p* (t) = p(t + 0), t E D,  is independent of Y. 

(ii) .9-0 _ and p(0) are conditionally independent given 0: To be more 
precise, if H(w) is bounded .9-67measurable and G(x) is bounded apo-
measurable, then we have, for > 0, 

E[HG[p(0)]e -"] 

=  foe  e'[E[119-,s, Hs] f G(x)I A (s, x)n(dx)ids 
0 

where H s  is a bounded predictable process such that H =- Ho (cf. [15]). 
From this formula, we can conclude that 

X(t) is BES°(3). 

(4.40) 	P[H 10= s] = 	fo-as1  H s]egcA(u)du 
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E[G[p(0)]I 0 = s] = f xG(x)I A(s, x)n(dx){C a(s)) -' 

-1 
= fxG(x )14(s, x)n(dx)if  A (')  x)n(dx)1 . 

Proof (i) This is essentially established in Theorem 11-6.5, because 
(...9";)-stationary Poisson point process p is always independent of L.F.0  

(ii) We have 

E[H G[p(0)]e -11 

= E[ E H,G[p(s)]e -asIA(s, p(s))] 
se Op , .s-0 

+ f 
= 	I- I 8G(x)ell A (s, x)Np(dsdx)] 

x 

= E[f:e-lsH, f xG(x)I A  (s, x)n(dx)ds] 

= f:e-24 [E[I(9 ,1-Is]f xG(x)14(s, x)n(dx)lds 

and hence the result. 

Example 4.1. Let p be the above Poisson point process of Brownian 
excursions given as an (9-;)-stationary Poisson point process on 
and construct BM° X by (4.17). Let  a>  0 and define A E a((O, 00)) X 

(V) by 

A = (0, co) x ( w; M(w) a) 

where M(w) = max w(s). If 0 is defined by (4.39), then 
0<s<a(w) 

0 inf s E 1),,; M[p(s)] 	a) 

and hence, A(0-) <  ti  < A(0) and 

A(0-) = sup{t; t <cï', X(t) =0}:= l.  

If G(w) = 115(w;.), where 0 is a bounded Borel function on 
C([O, co) --1?,), we have 

E[G(p (0))I 0 = s] = E[G(p(0))] 

f G(w)I (m6,4  ,o n(dw)(n({M(w) 	a})) - ' 

f5r+O(w;.)n(dwia. < co) 
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=fcao, ..)_> R+) 
°(we7„)Q0(dw) 

by (4.30). Thus we obtained the following: 
(4.42) If X is BM° and Y is BES°(3), then {x(ly t), 0 < t < c — 
1g.x} is equivalent in law to {Y(t), 0 < t < ol). Furthermore, {X(1t,r-x 

t), 0 < t < 	— 41.-1 }  is independent of {X(t), 0 t < 4-11. 
The second assertion follows from the fact that {X(t), 0 < t < 

lg,x) is .9-8_-measurable and E[G[p(0)]10 = s] is independent of s. 
Now we discuss the first decomposition result of Brownian paths 

due to Williams [179]. Take the (..7;)-point process p± = pl 2,-+ and, 
for  a>  0, define BM  a X by 

X(t) = a ± 0+(t) — p+[ç5r(t)](t —  

Then 

a ± 0+(t) = max X(u). 
0<u<t 

Define A .g((0, co)) x a'(W+) by 

A= [(s, w); a ± s — M[w] 0). 

If 0 is defined by (4.39), it is easy to see that 

A+(0-) < cr6Y  < A+(0), 	a ± 0 = maxx X(t) 
0.Çtcro  

A*( e) 

7.--A+(0 ) 

a 	a+8 

Fig. 1 
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and y = A+ (0--) is the unique time point in [0, of] which attains this 
maximum. Then 

p(0)(t) ------ a ± 0 — X(y 	t) 

and by (4.41) 

E[G[p(0)]10= s] 

=f + 

=1 G(w)n+ (dw 1 da. - a+s < co). 

G(w)I 	(dw){n+ 	(w) a -1- s})} 

By (4.30) we can conclude that, given 0, {X(y t), 0 < t <cricr — y} 
is equivalent in law to {a + 0 — Y(t), 0 < t < al+0} where Y is 
BES°(3). But, if 0 is given, {a ± 0 — Y(t), 0 < t < 61+0 } is equivalent 
to { Y(o -r+0 t), 0 < t < 0-r±e} as is easily verified by Corollary 1 above 
and (4.42). 

Next, we consider the part {X(t), 0 < t < y}. This part is .9-0- 
-measurable and, for a bounded Borel function 0 on C([0, co) — 

R.,.), we set H = 0(X i) where Xi is defined by Xi(t) = X(y A t),t. O. 
Then H = He where Hs  is a predictable process defined by 1-1, = (I) 
(X;+(s_) ). By (4.40), we have 

E[0(Xi)10= s] 

= Efl (e-as) 0(X;1+(3-))]{Efl ifrasii} -1 
 E[0(X)I  o ±  < ajoq 

since A +(s-)=A+(s)= af+, for each fixed s>  0. By (4.31) we can con-
clude that, given 0, {X(t), 0 < t < y} is equivalent to { Y(t), 0 < t < 
crI+0 } where Y is BESa(s). Note that, given 0, p(0) and Y-0_ are independ-
ent; in particular p(0) and [X(t), 0 < t < y} are independent. Finally, 
we have 

P[0  E ds] = fexp [—f so C,i(u)du])C 4(s)ds —  (a +a  ds 

because 

a 	s  - 

Now we can summarize the above to obtain the following result of 
Williams: On a probability space, we set up the following three independent 
random elements: BESa(3) , BES°(3) Y 2  and a random variable 0 OE 
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(O, co) distributed by 

P (0 E ds) — (a +a  s)2 ds . 

Define 

Z(1)= 
f yl(t) 0 < t < erVo 

Y2(c-10 Ciro) t), 	aVe < t < oVe crVe- 

Then {Z(t), 0 t aV e  ± an} is equivalent in law to {X(t), 0 < 
t < an where X is BM°. 

This result, combined with (4.30), yields immediately the following 
description of Brownian excursion law n+ due to Williams: Let Y' and 
Y2  be mutually independent BES°(3) and, for a> 0, set 

no for 0 < t < 
r(t) = Y2(crr + crr — t) i 	

0 

for or < t < 

for  t> ar 	a12. 

± 0.12 

Let Rc, be the law on V' of X°. Then 

n+= 
 S

c.  (Ra  I a2)da. 
0 

o 	 a 

Fig. 2 
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Next, we discuss the second decomposition result of Brownian 
paths due to Williams [179]. We start with BES°(3) Y defined by (4.38) 
from the  (.Y)-point process p+ on 7/.+. Let a>  0 and define A 
a((0, co))x.(W- ±)by A = f(s, w); s M(w) a). If 0 is defined by 
(4.39), it is easy to see that A+(0—)  < cî'  < A+(0±), 0 = min e  Y(t) 

Y<t<I Y 

and y ---- A+(0) is the unique time point in  (cî',  lar) which attains this 
minimum. Set X(t) = a — yyr — t), 0 < t < 12'. Then lr = 
= = sup{ t; t <  a,  X(t) = 0) and, by Corollary 1 above X is 

a part of a BM° up to its hitting to a. The process Y* defined by Y*(t) 
= 'Y(t ± y) — 0 is independent of  9-9  because Y* can be constructed 
from the point process p* of Lemma 4.6 (i) in the same way as Y from 
p+. Then, under the conditional probability P( • .1";), {Y(t y), 0 < t 
< laY — y) can be expressed as {0 +Z(t), 0 < t < eo) where Z is 
BES°(3) independent of O. Since Y(t ± y)  =  a — X(of — t — y), 0 < 
t < af — y, we see by Corollary 1 again that {X(t), 0 < t < — y), 
under P( • 1,94-0), can be expressed as { W(t), 0 < t < of_8 ) where W 
is BM° independent of O. 

Also we know by (4.42) that {X(/(Tx t), 0 t 	lx}  is 
independent of {X(t), 0 < t < 1,3, 9  and is equivalent in law to {Z(t), 
0 < t < al) where Z is BES°(3). 

Finally we study the part {X(crf — y + t), 0 < t <  l" —•  cr + y). 
Noting that 1V— aX  +y=y—ol and X(cr if — y t) = Y(y — t), 

0 < t < y — we study { Y(0-2' t), OÇtÇy —0-21 = + 
p+m7.-9(p+0» + tj, o t a(p +(0)) cia-o02+0»i.  We can 
compute the joint law of p+(0) and 0 as follows: 

C A(s) = n+ ({s M(w) > a } ) — a  1  s  

and hence 

P[O E ds] 	exp(— f CA (u)du)1C A(s)ds =Ag- 
o 	 a 

and 

E[G(P +  (0))1  O  = 

f +G(w). , m(,,,) ri ._,,n+(dw){n+({s 	M(w) 	a))) - ' 

= En+[G(w)la a_s  < 00]. 

Hence, by (4.30), 



146 	 STOCHASTIC CALCULUS 

E[450*(0)1;Lo cp-i-a03) f  O  =  .9] 
= En+[0(14,:a_)  I 	< co] 

El'al0(w,;70)] 

for a bounded Borel function 0 on C([0, co) — R +). This implies that 
t), 0 < t < y — o-,;} is equivalent in law to {a — W(t), 0 < 

t < an} where W is BM° and 0 e (0, a) is independent of W and 
uniformly distributed on (0, a). This, combined with Corollary 1 above, 
implies that {X(of — y ± t), 0 < t < lg'x — of y} is equivalent in 
law to {a — 0 — Z(t), 0 < t < 11.,} where Z is BES°(3) independent 
of O. We can now summarize the above to obtain the following result 
of Williams: On a probability space, we set up four independent random 
elements: BM° X, BES°(3) and Y2, a random variable 3 uniformly 
distributed on (0, a). Define 

IX(t) 	 forø<t< cîl  
Z(t) 3 — r(t —4) 	for at < t <  al  + 

y2(t _ af — 111 ) for al ± lr < t < oj + 111 +  

Then {Z(t), 0 < t <  c  +  ir .12 )  is equivalent in law to  (X(t), 

4.4. Some limit theorems for occupation times of Brownian motion. 
Let X = (X(t)) be a one-dimensional Brownian motion such that X(0) = O. 

Letf(x) be a continuous function with compact support. We are interested 

in the problem of finding the limit process of —1 
) ltf(X(spcis as ).  — co u(A 0 

where u(A) is a some normalizing function. The situation will be quite 
different accordingly as 

f 	
RI

f(x)dx 0 or f= o.  

Theorem 4.4•* (i) If j# 0, the family of continuous stochastic pro-
cesses 

t 1-- 	flu  f(X(s))ds, 	A> 0, 
A o 

* Cf. Papanicolaou-Stroock-Varadhan [137]. The corresponding problem for a two-
dimensional Brownian motion was discussed by Kasahara and Kotani [82]. 
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converges in the sense of law on the space of continuous functions to the 
continuous process t 2:63(t, 0) as A oc where 0(t , 0) is the local 
time of X(t) at zero. 

(ii) If f = 0 but f is not identically zero, the family of continuous 
stochastic processes 

1 t 	f(X(s))ds, 
Ali' 	

A > 0, 

converges in the sense of law on the space of continuous functions to the 
continuous process t 1-- 2i, 1<f, f>B(0(t, 0)) as A co where 0(t, 0) is 
the local time of X(t) at zero and B(t) is another Brownian motion in-
dependent of X(t) with B(0) = 0 and  <f f> -jlJRl Ix - Ylf(x) 
f(y)dxdy. 

Proof. The proof of (i) is easy. Indeed, by the scaling property of the 
Brownian motion, {X(t)} {A- ' i 2X(At)} for each 2>  0. From this it is 

easy to conclude that {0(t, a)} „_-S.17--1_,-F,  0(At, Alia)} for each 2>  0. Then 

1 	
f 	

2 
(— 	X(spel 	

A 
s = 	0(At, a)f(a)da 

1,1 A 0 	 I 	Ri 

2 00 al ilT)f(a)da. 
Ri 

But 21 Ri At, al s/T)f(a)da converges, as A 	oo , to 20(t, 0)f f(a)da 
uniformly in t on each bounded interval a.s. Thus the assertion of (i) is 
proved. 

To prove (ii), set 

F(x) = flf(y)dy and G(x) = f:F(y)dy. 

Since f(x) is of compact support and null charged, i.e., f = 0, F(x) is ol 
compact support and G(x) is bounded. By Itô's formula, 

G(X(t)) = F(X(s))dX(s) -12-f f(X(s))d.9. 

Therefore, 
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2 	2 At —1  r lef(X(spds — G(X(2t)) — / 4 
f 

0 F(X(s))dX(s) A1/4 	 Al /4 J 0 

=  Il  + 

Clearly /1  — 0 uniformly in t as 	a.s. Set 

a., 
MAO = ill/4-

2 	
F(X(s))dX(s).  0  

For each 2>  0, MAO is a continuous martingale such that 

011,1)(t) = A4-T-J2  2:F(X(s)) 2ds, 0   

and by the result (i), this family of processes converges in law to the pro-
cess 8F20(t,0) as 00• Define a family of three-dimensional con-
tinuous processes Zx(t),  2 >  0, by 

Z2(t) = (MAO, <MAXt), 2-1
1
/2 X(2t)). 

First we show that the family of laws of Zt  is tight. For this it is clearly 
sufficient to show that the family of laws of Mi(t) is tight. By Theorem 3.1, 
we have for s < t, that 

Eq.M A(t) — M2(s)]6) 

const. E(RM iXt) — <M1)(s)r) 

sv < const. 2-3 / 2  du 
A 	

dw 	dx 	dy f dz 
As 	s 

dv 
As 	RI 	RI 	RI 

X2 

exp( — Tv) exp( 	 

	

2(v 	 
A/27r(u — 1/2nw 	A/27r(v — w) 

exp( 	y)2  
— w) 	2(u — y) 

y) 
F(x)2F(y) 2F(z) 2  

< const. 	J.  du 	dv dw 
Ar 

2$ 	As 	ls 	W - 12n( v 	w) 112n(u — y) 

const. (t — s)312. 

X  

Hence, we can conclude from Theorem 1-4.3 that the laws of MAW con- 
stitute a tight family. Next we show that the set of limit points of laws of 
Z1 consists of a single point. Let ZAI 	Z in law for some subsequence 
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and Z = (Zi(t), Z 2(t), Z,(t)). Then Z 3(t) is a Brownian motion and 
Z2(t) = 8720(t, 0) where 0(t, 0) is the local time of Z 3(t) at zero. By Theorem 
1-4.2, we may assume that  Z21(t) Z(t) uniformly on each compact 
interval a.s. Then it is easy to prove that (Z 1 , Z,) is a system of continuous 
martingales such that 

(Zr,  Z1>t  = Z2(t) = 8F20(t, 0), <Z3, Z3> t  = t 

and 

<Z1, Z3>= lira <MA, -L X(.1.• )>, = lim (— 
2 	2t 

 F(X(s))ds) =-- 0 t 	21 / 2 	 23 / 4 0  

since 

1 	At  
21/2 So F(X(s))ds 	2F0(t, 0) =-- 0 in law. 

By Theorem 11-7.3, we can conclude that  Z 1 (t) = fffiB(0(40)) where 
B(t) is a Brownian motion with B(0) = 0 which is independent of Z3(t). 
This shows that the law of Z(t) is uniquely determined. In particular it has 
been shown that MAO converges in law to the process Z / (t). The assertion 
of (ii) now follows if we notice that <f,f> = 2F2  but this is immediate since 

11f R1 Ix — y f(x)f(y)dxdy ----- 	 y)f(x)f(y)dxdy 
x>y 

= — 2f 	(
y 
 dz)f(x)f(y)dxdy = — 2 	f(x)f(y)dxdydz 

x>3" x>,>y 

= —2f.  dz f(x)dx Lf(y)dy = 	f(y)dy) 2dz 

=  2$  

5. Exponential martingales 

Let (0,  Y P) and (5;6)  be given as in Section 1 and consider 
a quasimartingale X(t) such that X(0) = O. We denote by M, the 
martingale part of X(t). Then the exponential quasimartingale defined by 

(5.1) M(t) = exp —  

is the unique solution of the stochastic differential equation 
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[dM M•dX, 
(5.2) 

Mo  = 1, 

as is easily seen by Itô's formula and Theorem 2.1. 
Define the Hermite polynomials 

(— O n 	(X2 ) an  F4[4 xj 	exp n1 	a-x  exp ( 	
2 \ 

— 	n > ), 

that is, 

(5.3) 	yn.H„[t,x] exp(yx — 	for every y e R. 2 

In particular, 

110[t, x] = 1, 

.11 1 [t, x] = x, 

H 2[t , xi = — t  
2 T' 
x 	xt H3[t, x] = —63  2' 

For each A R set 

(5.4) 	M(t) 	 ti- = explAX, 	-12-<MAx>ti. 

Thus MA(t) is the unique solution of 

ic/M,t (t) = AM A(t)-dX(t) 
(5.5) 

MA(0) = 1. 

By (5.3), 

MAO. AnII,EMx>„ Xe] :=  
n..0 

where we set Z„(t) 	 Xe]. Let N be a positive integer. 
Letting Ax  be the bounded variation part of X(t), we set 

/0)= max{X(t), 	MO, lAxi(t)} 
	

0 t < co , 

aN  = inf{t; ? (t) N} 
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where lA xl(t) is the variation of the mapping: s 	A x(s) on the 
interval [0, t ] . We note that H„[t, x], n =  0,1,2, . . can be expressed as 

n n—k 
H„[t, x] 	E a„(k, At ,  .7ck 

kQ  JO 

Then we can easily verify by induction on n that 

n n—k 

E E 1 an(k, 	1. 
tom° JC) 

This implies that I I „It, x]l 	N n  n = 0,1,2, . . . , provided t 	N 
and I x I 	N. Hence 

I n(t )i 	Nn 	for 0 	t 	a N. 

Then it is easy to see by (5.5) that for every 2 satisfying 0 < 2  < —1 
N 

MN(t A aN) = 1 ± dtf t:N.Afx(s)dX(s) 

= 1 ±  1
f :AN ( 
	x .4»dx(s)  0   

1 ± fe:crN  An Z„(s))dM x(s) 4- f c N  ( anz„(s»dA,(s)  

1 +  Ê An+ ' f t" N  Z„(s)dM x(s)+ An+ ' ft".1412„(s)dA1(s) 
n=0 	0 	 nt=0 	0 

= 1 +  1n+ f t"NZn(S)dX(S) 
n=0 	0 

E 21 2-.(t A a N) • 
n=0 

Then we have 

tAd 

X0(t A aN) = 1 and Zn(t A aN)  =f0 

 v 
ZI-i(s)dX(s) 

for n = 0,1,2, . . .. Since 

lim Gr N  = co, 
iv—co 

we deduce from this that 

Zo(t) 1 and Zn(t) = f ro  Zn- i(s)dX(s) 

for n = 1, 2, ... . Hence 
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Cigt2) • • • 
	

1  dX(4). 
o 	o 

Thus we have proven the following result ([64] and [113]). 

Theorem 5.1. 

(5.6) 	f dX (t i)f
l 
 dX(h) 

t 	
- • 

f04-1 
Mt.) = H„[<Mx>„ X e],  

J o 	0 
n = 1,2, . 	. 

Now we will investigate some properties of the exponential quasi-
martingale exp {X,  

Theorem 5.2. If X E .4', then the exponential quasimartingale Mt 
is a continuous local (Y)-martingale. Furthermore, Me  is a supermar-
tingale, and it is a martingale if and only if 

E[Mt] = 1 	for every t O. 

Proof. Since Me  is the unique solution of (5.2) 

Me  — 1  = 	1/1X(s) ‘/O. 

Thus, it is easy to see by Fatou's lemma that Me  is a supermartingale. 

Theorem 5.3. (Novikov [132]). Let X e 	and set 

Me  = exp  

If 

(5.7) 	E[e<x)ra] < 00 	for every t 0, 

then M„ t 0, is a continuous (F;)-martingale, i.e., 

(5.8) 	E[Mt] = 1 	for every t O. 

Proof. By Theorem II-7.2', on an extension (1-2-,5is) of 12 with a 
reference family (A), there exists an (5;)-Brownian motion B = (B(t)) 
with B(0) = 0 such that X(t) = B(<X)(1)) and <X>(t) is an (.7;)-stopping 
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time for each t > O. Set 

	

0-, = infft; B(t) 	t — a). 

Then, if a>  0, we have for 2>  0 that 

(5.9) 	E[e-Aaa] =  

Indeed, setting 

u(t, x) = e-2te-cou-1>x, 

we have by Itô''s formula that 

u(t, A — t) — u(0, 0) = ..1.:  P,7i! (s, B, — s)dB, 
o ax 

+ ft. t — t ± 4- 
= , au f  

(s, B, — s)dBs. 
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B, — s)ds 

Thus t 1--.- u(t A cr,„ Ang„ — t A a.) is a martingale if  a> 0 and hence 

E[u(t A am BgAcr a  — t A 0-a)] = u(0, 0) = 1. 

Letting t t co, we have by the bounded convergence theorem that 

E[u(cra, B, 	co)] = 1- 

This proves (5.9). 
From this we can conclude that 

E [exp (4.• a.)] = e < 00. 

Therefore, 

E[exp(B(Gr a) — lcra)1= e-aE[exp(4-a0)]= I. 

Combining this result with Theorem 5.2 and setting 



154 	 STOCHASTIC CALCULUS 

17(t) = exp(B(c. A t) — 

we can show that Y(t), t 10, co], is a uniformly integrable (97)-mar-
tingale. Hence for any (" )-stopping time a-, 

E[exp (go-. A a-) — 7.1  a-. A cr)1 = 1. 

In particular, we have 

1 = E[exp(B(cY. A <X>,) 4-17, A <X>r)1 

, EP"{ 	 7- Qot) exp(—a  To..)1 E[I taa><XM expfr(t) —  

Since 

exp (—a 

we have 

Tau)] e-aE[
exp ( -1- <X> )]  2 

1 1 =  lim E[it,.>orm exp (X(t) -T<X> f)] = E[expk(t)  

and this completes the proof. 

Remark 5.1. By a slight modification of the proof, Kazamaki [83] 
proved the following stronger result: if instead of (5.7) we assume that 
E[exp(X(t)/2)] co, then the same conclusion (5.8) holds. 

The following result is an immediate consequence of Theorem 5.3. 

Corollary. Let X 	,/ If <X), is locally bounded, i.e., for every 
t >  0 there exists a positive constant C(t) such that 

(5.10) 	<X>, 	C(t) 	a.s., 

then M is a continuous VD-martingale. 
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6. Conformal martingales 

Let (Q, 	P) and (..7-,), 0  be given as usual. 

Definition 6.1. By an n-dimensional conformal martingale (local 
conformal martingale) with respect to ("r;), we mean a Ca-valued con-
tinuous (Y;)-adapted process Z, = (Z,  Z,.  . . , Z) such that, writing 
Z ,̀` = ± irri, a = 1, 2, . . 

(6.1) 	Aare, Yt/ 	(resp. 	rtx  E ./Le  = 	a = 1, 2, - 	n 

and their stochastic differentials satisfy 

dXf -dA? drf • dY? 
(6.2) 	 a, /3 =  1, 2, . . . , n. 

dr,r•dY? = —dXf • dY,T 

(6.2) implies, in particular, 

(6.3) 	dri- dYfr= 0, a = 1, 2, . . . , n. 

A one-dimensional conformal martingale (local conformal martin-
gale) is simply called a conformal martingale (resp. local conformal 
martingale). We complexify the spaces .4,:, so  d,d, da in an 
obvious way and define, for Z„ =  X  + 	y, E 

dZ, dX, • ■/— 1dY, and d2, = dX, — VL-TdY,. 

It is immediately seen that (6.2) can be equivalently written in the com-
plex form as 

(6.2)' 	dZcrf • dZI„3  = 0, 	a, 13 = 1, 2, . . . , n. 

In other words, Z, =  (X, Zt2, • • • , Z7) is an n-dimensional local 
conformal martingale if and only if all Zfr, Z`21, a, /3 = 1, 2, . • . , n, 
are (.Y;)-local martingales. 

Example 6.1. Let B, 	(B,', B?, . . . 	Bl.n) be 2n-dimensional 
(.Y)-Brownian  motion and set 

= B?"- ' 	— 1 BP a = 1, 2, . . . , n. 

Then Z,— 	. . . , Z7) is an n-dimensional conformal martingale. 
Z, is called an n-dimensional complex Brownian motion. 

Example 6.2. Let (B1, B?, B?, As) be a four-dimensional Brownian 
motion and let {‘? f 1 -81 be the proper refence family of (B), B?) (i.e., 
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the filtration generated by the process (B 1 , BM. Let A t  be a continuous 
("7"2)-adapted increasing process such that A o  = 0 a.s. Define 
Z?) by 

=  BI  + ,‘ ,R and Z? = 

If {,,-;} is the proper refence family of (4, 2?) (i.e., the filtration 
generated by the process (Z)., Z?)), then it is not difficult to see that Zt  
is a two-dimensional local conformal martingale with respect to (...F;). 

The following two propositions are easily obtained by Doob's 
optional sampling theorem (Theorem I-6.11) and Knight's theorem 
(Theorem 11-7.3'). 

Proposition 6.1. Let A = (A i) be a continuous (.9-)-adapted process 
such that A o  = 0 and t A, is strictly increasing. Furthermore we 
assume that 

lim A t  = 00 , a. s. 
tl øo  

Set C(t) = id{ u, A u > t } and  fl  = .97: (, ) . Then, for every n-dimen-
sional local conformal martingale Zr  with respect to (.9;) the time change 
process 2t  = Z,(0  is an n-dimensional local conformal martingale with 
respect to (.7;). 

Proposition 6.2. Let Z.,. = (Zr',  Z?,.  . , , 41) be an n-dimensional 
local conformal martingale such that dZ d2f = 0, a, /3 = 1, 2, . 
n, a * /3. Then there exists an n-dimensional complex Brownian motion 
C(t) = (NO, C2(t), . . , Cn(t)) such that 

Zfr= CŒ(<Z"> t), 	a = 1, 2, . . . , n, 

where <Za>, is defined to be the common processes <r> = 
, x2 

	xi', 	y2, 	yn) Let f(xJ, 	 be a C2-function on R 24 . 

By setting z" = xa Nr-7-7.ya, it can be regarded as a C2-function 
f(z', z 2, . . . , zn) on  C.  We introduce the differential operator in the 
usual way: 

a _____ 	a 	d a  ) and aa2„ — 12 (  adxa  +  aza 	axa 	ay 	 ay" 

Then the Ite) formula for 2n-dimensional continuous semimartingale 
Cr = 	. . , X7, 171  ,, Y 2  t , . 	• 	: 

df(C t) = cti  (Z(Ct)d Alt ± —aa3f7-(Ct)dr) 
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(6.4) 	 axaaLfl  (C)c/X7 • dY 

82f  + 2 
 ax-aayfl 	" ayaayft " 

(C,)dXa• dyP+  '92-f  (c )dr • 

can be rewritten, in the complex form, as follows. Setting 
Z, = (4, 	- • • Z7), •Z:z  = 	± 	1 Yft, 

df(Z,) a*I(Z(Ze)dZ;" 

(6.4)' ar‘zfl-(ZE)dZfr • dZil ± 2  azaaL fi (Z,)dZ"- d2f 

+ a2a„15,(z)aff • dote). 

If Z, (4, 27, . . . , 2f) is an n-dimensional local conformal mar-
tingale, then dZ7 • dZf = 0 and hence d2;1  • d2f = dZft • dZII = O. 
Therefore (6.4)' becomes a simple form: 

df(Z) ,i ( dazfa  (Zr)dZfr --,2fa (Z,)d26,g) 
(6.5) 

An important consequence of (6.5) is the following: If f(z) is holomor-
phic, i.e., 

af A 
a 	1, 2, . 	. , n, a2- 

we have 

(6.6) 	df(Z,) = 	af  (Z )d.Z a  
a-i aZa 	t 	t  

In particular,  f(Z) is a local martingale. Furthermore, it is a local 
conformal martingale, because 1(z) 2  being also holomorphic,  1(Z,) 2  is 
also a local martingale. More generally, let 1=  (r, f 2, 	. , fm): Cin 

en, be holomorphic, i.e., 

oft  —o  a2a 

azaa2af213 (Z,)dZft • d2f. 

Then 
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dr(Z,) — Ê 111(n  , Z,)dZ;2  , i=  1, 2, . . . , M 
cr..1 OZ —  

and 

d((ffi)(Z)) = 7± a Cfa'zij:i  )  (Z,)dZc, I, 	i, j = 1, 2, . . 

are local martingales and hence  f(Z r) = (fl(Z), f 2(Z,), . . . , fn(Z,)) is 
an m-dimensional local conformal martingale. Thus we obtain 

Theorem 6.3. Let Z = (Z,1 , 27, . . . , Z) be an n-dimensional 
local conformal martingale and f = (A f2,.  . . , fn): Cn --4-  Cm be 
holoro.orphic. Then 

f(Z) =  (f 1(Z),  f2(Zt), . . - , PV:)) 

is an m-dimensional local conformal martingale. 

Corollary. Let Z = (Zr',  V, . . . , Tr) be a Cs-valued continuous 
(Jr;)-adapted process. Z, is an n-dimensional local conformal martingale 
with respect to (9-)  if and only if for every holomorphic function f: 
Cn . C, f(Z) is a local (9')-martingale. 

Indeed, "if" part follows by taking f — za and f = tag, a, fi = 
I, 2, . . . , n. "only if" part follows at once from Theorem 6.3. 

Remark 6.L It Zr  = (4, 2?, . . . , Z )  satisfies that Z, E D for 
all t 0, a.s., where D is a domain in C", then the above results 
remain valid for every!: D --..- Cm which is holomorphic in D. 



CHAPTER IV 

Stochastic Differential Equations 

1. Definition of solutions 

Let Rd be the d-dimensional Euclidean space and let TV" = C([0, co) 
Rd) be the space of all continuous functions w defined on [0,00) with 

values in Rd. For w 1 , w, z Wd, let 

p(wi, w2) = E 2-k( max I  w1 (t) — w2(t) I A 1), 0<t<lc 

where j • I denotes the Euclidean metric in Rd (see Chapter I, Section 4). 
Wd is a complete separable metric space under this metric p. Let R(Wd) 
be the topological a-field on Wd and .gr (Wd) be the sub-a-field of ar(Wd) 
generated by w(s), 0 < s < t. In other words, tgf ( Wd) is the inverse a-
field p7 1 [R( Wa)] of ar( Wd) under the mapping pt : Wd Wd defined by 

(pt  w)(s) = w( t A s ). 

Definition 1.1. We shall denote by the set of all functions 
a(t, w): [0, co) x Wd 	RdC)Rr such that 

(i) it is  ([0,œ)) x R(Wd)/R(R dORI)-measurable, and 
(ii) for each t [0, co), Wd W 	a(t, w) e RdORr is Rt( WI)/ 

ar(RdOk)-measurable. 
Here we denote by RdC)Rr the totality of real dx r matrices; (Rd® 
Rr) is the topological a-field on RdC)RF obtained by identifying Rd0R1 
with dr-dimensional Euclidean space. 

We shall denote the (i, frentry of the matrix a(t,w) by ap,w), 
i=  1, 2, ... , d,j = 1, 2, . 	, r. 

Suppose we are given a e .Y d' r  and /3 E sa(d.I. Consider the fol-
lowing stochastic differential equation for a d-dimensional continuous pro-
cess X=(X(t)),0: 

159 
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(1.1) 	dir = E aii(t ,X)dBf(t) 	f3l(t,X)dt 	i = 1, 2, • - , d 

or sometimes simply written as 

(1.1)' 	dX = a(t,X)dB(t) 	fl(t,X)dt. 

A precise formulation is as follows. 

Definition 1.2. Let a = (aXt ,w)) 	fd.r and )6 -,- (fli(t,w))  E .safda 
be given. By a solution of the equation (1,1), we mean a d-dimensional 
continuous stochastic process X-----(X(t)), 0  defined on a probability space 
(0,97) with a reference family (.firr ) c, such that 

(i) there exists an r-dimensional  (f')-Brownian motion* 1  B = (B(t)) 
with B(0) = 0 a.s.; 

(ii) X=(X(t)) is a d-dimensional continuous process adapted to 
i.e., Xis a mapping: we Q 	X(co)E Wd such that, for each t E 

[O, co), it is tir,./alt( Wd)-measurable; 
(iii) the family of adapted processes 01,(t, co) and W(t, co) defined by 

0'(t, co) = aii(t,X(co)) 

and 

wi(t, co) = Rt,X(co)) 

belong to the spaces 2Tc *2  and Yr respectively, where _Tr is the set 
of all measurable VD-adapted processes P such that for every t > 0, 
Sot  Vf(s, (0) I ds < co a. s.* 3  ; 

(iv) with probability one, X(t).(X'(t),X 2(t), 	,r(t)) and B(t) 
82(t), . . . ,Br(t)) satisfy 

(1.2) 	XV) — X 1(0) = 	&As ,X)dBi (s) fir(s,X)ds, 

i 	1, 2, ... , d, 

where the integral by dB•1(s) is Itô's stochastic integral as defined in Chapter 
II, Section 1. 

In equation (1.2), the first term on the right-hand side is called the 
martingale term and the second term is called the drift term. 

To emphasize the particular role of the VD-Brownian motion B = 

* 1  Cf. Chapter I, Section 7. 
*2  Cf. Chapter II, Definition 1.6. 
* 3  iv, re9' 0a are identified if ito  I Vi(s, co)— VP(s, o)ids = 0 for every t 0 a.s. 
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(B(t)) in Definition 1.2, we call X =(X(t)) a solution of (1.1) with the 
Brownian motion B = (B(t)), or sometimes we call the pair (X,B) itself a 
solution of (1.1). 

Remark 1.1. The condition (iii) of Definition 1.2 is satisfied if a and 
/3 are bounded* or more generally, if 

sup {II a(t , w)11+11fl(t , 41; t 	[0, T], dwil T 	< 00 

for every T and  M>  0, where 

= max ilw(t)11 and pit .‘/E d r 	at.  

OT 	 ji
I ./ I = 

for a ERdORr. 

The stochastic differential equations which are most important and 
which are mainly studied in this book are of the following type. 

Definition 1.3. Let cr(t,x) = (o- (t,x)) be a Borel measurable function 
(t,x) E [0,c) X R d  — RdORr and b(t,x) = (b'(t,x)) be a Borel measurable 
function (t,x) E [O, co) X Rd  — Rd . Then a(t,w) and fl(t,w) defined by 
a(t,w) = a(t,w(t)) and 13(t,w) = b(t,w(t)) clearly satisfy a E.saed, r, 
/3 E .0'41 • In such a case, the stochastic differential equation (1,1) is said 
to be of the Markovian type. The equation then has the following form: 

(1.3) 	dX(t) = u(t,X(t))dB(t) 	b(t,X(t))dt 

or, in terms of its components, 

(1.3)' 	dXi(t) = I ck(t,X(t))dBk(t)± bi(t,X(t))dt, i = 1,2, . . , d. 

Furthermore, if c and b do not depend on t and are functions of X e Rd 
alone, then the equation (1.1) is said to be of the time-independent (or 
time homogeneous) Markovian type. 

Note that an equation of Markovian type reduces to a system of 
ordinary differential equations (a dynamical system) t, b(t,X,) when 

Ei O. Thus a stochastic differential equation generalizes the notion of an 
ordinary differential equation by adding the effect of random fluctuation. 

Now we will present several definitions concerning the uniqueness of 
solutions. Given a e ..2(d.r and /3 esid.', we consider the stochastic 
differential equation (1.1). We suppose that at least one solution of (1.1) 
exists. 

* i.e., all components of a and  8  are bounded. 
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Definition 1.4. We say that the uniqueness of solutions for (1.1) holds 
if whenever X and X' are two solutionel whose initial 'awe" on R4  
coincide, then the laws of the processes X and X' on the space Wd coincide. 

Remark 1.2. The above definition is equivalent to the following: 
the uniqueness of solutions for (1.1) holds if whenever X and X' are two 
solutions of (1.1) such that X(0) = x a.s. and X' (0) = x a.s. for some 
x E R d , then the laws on the space Wd of the processes X and X' coincide. 
The equivalence is easily seen if we notice the following fact: if X is a solu-
tion of (1.1) on the space (C2,.."-,P) with 	then, setting Poe 
P(• 19-0),* 3  we have, for almost all fixed 0), that X is a solution of (1.1) 
on the space (Q,9-,Pc°) with (firr)ro  such that X(0) = X(0, co) (cf. the corol-
lary of Theorem 1-3.2). 

The uniqueness defined in Definition 1.4 is sometimes called "the 
uniqueness in the sense of probability law".  On the other hand if we consider 
stochastic differential equations as a tool for defining sample paths of a 
random process as functionals of Brownian paths, then the following 
definition might be more natural. 

Definition 1.5. (pathwise uniqueness). We say that the  pathwise unique-
ness of solutions for (1.1) holds if whenever X and X' are any two solu-
tions defined on the same probability space (S2,9-,P) with the same 
reference family (9"-r ) and the same r-dimensional (9-)-Brownian motion 
such that X(0) = X'(0) a.s., then X(t) = X'(t) for all t > 0 a.s. 

Remark 1.3. We may also consider the following more strict definition 
of pathwise uniqueness. 

We say that the pathwise uniqueness holds (in the strict sense) if when-
ever X and X' are two solutions such that X(0) = X'(0) a.s. which are 
defined on the same probability space (Q,,F;P) with the reference families 
(Sirt ) and (ger) respectively, and with the same Brownian motion B(t) which 
is both an (.7) - and (X;)-Brownian motion, then X(t) = X'(t) for all 
t > 0 a.s. 

Since it is not necessarily true that B(t) is (9-, V Per)-Brownian mo-
tion, the equivalence of this strict definition and Definition 1.5 is not 
trivial. However it can be proved as an easy consequence of the following 
Theorem 1.1. 

* 1  They may be defined on different probability spaces. 
*2  The law of X(0) of a solution X of (1.1) is called the initial law or initial distribution 
of the solution. 
*3  P(' 1.9-0) stands for the regular conditional probability. We can always represent any 
solution (X,B) on a standard measurable space (S2, 9- ) without changing the law of 
(X, B). 
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Remark 1.4. Just as in Remark 1.2, we need only consider non-
random initial values; i.e., X(0)=X'(0) =x a.s., for some fixed xERd. 

To understand some of the implications of pathwise uniqueness, it 
is convenient to introduce the following notion. 

In the following, a function 45(x, w): Rd x Wor 	Wd * 1  is called 
9(Rd x Wor)-measurable if, for any Borel probability measure p on Rd, 
there exists a function 4(x, w): Rd x Wor  —e- W'  which is ..g(Rd x Wo')AxPw/ 

Wd)-measurable and for almost all x (p) it holds 0(x, w) = &p(x, w), 
a.a. w(Pw). *2  For such a function 0(x, w) and for an Rd-valued random 
variable c and an r-dimensional Brownian motion B = (B(t)) which are 
mutually independent, we set 45g, B): = B) where p is the law of 

By this it is a well-defined W'-valued random variable. 

Definition 1.6. (strong solution). A solution X = (X(t)) of (1.1) with 
a Brownian motion B=(B(t)) is called a strong solution if there exists a 
function F(x,w): x wd *1 which is g?(Rd x W)-measurable 
and, for each x E R d, W 	F(x, w) is t(W0Pw  1 r(Wd)-measurable for 
every t > 0 and it holds 

(1.4) 	X --- F(X(0),B) a.s. 

We shall say that the equation (1.1) has a unique strong solution if there 
exists a function F(x, w):  Ra  x K. Wd with the same properties as 
above such that the following is true; 

(i) for any r-dimensional VD-Brownian motion B=(B(t)) (B(0) =- 
0) on a probability space with a reference family (9;) and any Rd-valued 
random variable c which is ..ro-measurable, the continuous process X= 

 F(c',B) is a solution of (1.1) on this space with X(0) = a.s.; 
(ii) for any solution (X, B) of (1.1), X = F(X(0),B) holds a.s. 
Thus, a strong solution may be regarded as the function F(x, w) which 

produces a solution X of (1.1) if we substitute an initial value X(0) and a 
Brownian motion B. 

Theorem 1.1. Given a Et.çated, r and /3 E..saed,1 , the equation (1.1) 
has a unique strong solution if and only if for any Borel probability meas-
ure p on Rd, a solution X of (1.1) exists such that the law of initial value 
X(0) coincides with 12 and the pathwise uniqueness of solutions holds. 

Proof. If a unique strong solution of (1.1) exists, this means by defi- 

* 1  Fri; = { w e 	00) —'  R');  w(0) = 01. 
*2  PW  is the (r-dimensional) Wiener measure on W,; (i.e., the probability law of B) . 
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nition that a function F(x, w): Rd x 	WI  exists such that (i) and 
(ii) above hold. So for a given Borel probability measure p on Rd, let 
B = (B(t)) be an r-dimensional (Y )-Brownian motion and  ç be an 9-
measurable Rd-valued random variable which is distributed as p defined 
on some suitable probability space with a reference family (Fr). Then if 
we define a continuous process X by X =F(,B), X is a solution of (1.1) 
such that X(0) = a.s. 

Also, if two solutions (X,B) and (X' ,B') exist on the same probability 
space such that B(t).----if(t) and X(0) ---- r (o) a.s., then X = F(X'(0),B) 
= F(X'(0),B') = X'.  This implies that the pathwise uniqueness of solutions 
holds.'" 

Thus what we have to prove is that the existence of a solution for each 
given initial distribution and the pathwise  uniqueness imply the existence 
of a unique strong solution. So let us assume that for any initial distribu-
tion a solution of (1.1) exists and the pathwise uniqueness of solutions 
holds. Let x e Rd be fixed and let (X,B) and (X' ,B') be any solutions of 
(1.1)*2  such that X(0)=x and X'(0)=x, a.s. Let Px  and P.', be the 
probability distributions of (X,B) and (X' ,if) on the space Wd 
respectively. If 7c: Wd x 	D (w1 , w2) 	w2  e Wic; is the projection, then 
both marginal distributions n(P) and  iv(P) coincide with Pw, the Wiener 
measure on K. Let Qw2(dw i) and Q'w2(dw i) be the regular conditional 
distributions of w, given w2 ; that is, 

(i) for a fixed w2  e W ,  Qw2(dw 1 ) is a probability measure on (Wd, 

(ii) for a fixed A ER( Wd), w2 	Qw 2(241) is a (W&)'-measurable, 
(iii) for every A 1  e.g( Wd) and A2e R( W), 

Px(ili X A2) = Qw201)13W (CIW2)- 
A2 

v./2 is defined similarly from P. We define, on the space Q = 	x 
Wd  X K, a Borel probability measure Q by 

Q(dw1dw2dw3) = Qw3(dwi)Vw3(dw2)Pw(dw3). 

Let Y be the completion of the topological a-field R(Q) by Q, and „F"," 
fl (Re+g V .X), where Rt  = Rt(Wd)x..g r(Wd)x R t(K) and a/".  is 

the set of all Q-null sets. Then clearly (w 1  ,w3)  and (X,B) have the same 
distribution and as does (w2, w3) and (X' )3'). 

* 1  In fact, it implies the pathwise uniqueness in the strict sense of Remark 1.3. 
*2  They may be defined on different probability spaces. 
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In order to complete our argument, we first need to prove two sub-
sidiary lemmas. 

Lemma 1.1. For A e. g t(Wd), w e Flit;.  I—. Qw (A) or Q' w (A) is 
(gr( 

 
W&)'-measurable.  

Proof For fixed t >  0 and A e.gr( Wd), there exists a conditional 
probability Q7 (A) such that w  C WI; i---- Q7(A) is ggr( W6)Pw-measurab1e 
and P x (A x C) --- fc  Q7 (A)P w(dw) for every Ce 0,( WL). If we can show 
that this equality holds for all CE.g(K), then this implies that 
Q' (A) = Q' (A) a.a. w(P w) and the assertion of the lemma holds. We may 
assume that C is of the form 

C=  fw E rn; ptw eA i , erw EA21, A1, A2  

where O,  is defined by (0,w)(s) = w(t ± s) — w(t). 
Then since Ow  and Or ( WO are independent with respect to Pw, we 

have 

L  

. 
 5

Q7 (A)P w(dw)Pw(0 tw E A2) 
(Ptwelil) 

---- Px (Ax {pm ,  E A l})P w(19,3v e A2) 

=---- P x(Ax {Am e A i })Px(Wd x {Om/ E A2}) 

= P (X eA, P(B) e A OP (0 t(B) E A2) 

= P (X eA, p r(B) E A1, O(B) E A2) 

= P (X eA, B e C) 

= P x (A x C) 

since {X e A,  p(B)  e A l l E Jr; and  9(B)  and .9: are independent. 
This proves the lemma. 

Lemma 1.2. w3  = (w3(t)) is an r-dimensional (Y;)-Brownian motion 
on (C 2 ,...F-,Q). 

Proof It is only necessary to prove the independence of w3(t) — 
w3(s) and ..9": for every t >  s. For this, it is sufficient to prove that 

EQ[elq■ Iv 3 4) -w3(4>  I A i x A2X All *  

* Er? stands for expectation with respect to the probability Q. 
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exP 	2/2* — s)1Q(A1 X A2 X A3) 

for 	le, A1, A2 05( Wd) and A 3  eggs(K). 

But using Lemma 1.1, we have that 

the left hand side 

fii3 ei ' " 6."-" 	((4)  Q"(111)V0 w3 2)P w(dw3) 

= exp 	2/2)(t  — s)] f A3 Qw3(141)Q1"(A2)PW(dW3) 

= exp (—(I  j 2/2)(t  — s)]Q(Ai X A2 X A3). 

Now returning to the proof of Theorem 1.1, we conclude from Lemma 
1.2 that (w 1 ,w3) and (w2 ,w3) are solutions on the same space (S2 „F,Q) 
with the same reference family (";). Hence the pathwise uniqueness 
implies that w 1  = w2, Q-a.s. This implies that Qw  X  Q'w(w i  = w2) = 1 
Pw-a.s. Now it is easy to see that there exists a function w 

Wd such that Qw = Q'w = Pw-a.s. By Lemma 1.1, this 
function Fx(w)is0,(Ke w  1..gt ( Wd)-measurable. Clearly  F(w) is uniquely 
determined up to Pw-measure O. 

Next, let p be any given Borel measure on Rd and let (X,B) be any 
solution of (1.1) such that X(0) is distributed as is. Then (X ,B) is also a 
solution on (S" 2 	1,94',0) with respect to (9;) and hence P(F x (0) (B) 
Xj -7-o) = 1. From this it is easy to conclude that F x(w) is 9(Rd 
measurable and X = Fx(0) (B) a.s. Thus the existence of a unique strong 
solution is now proved. 

Corollary. The pathwise uniqueness of solutions implies the unique-
ness of solutions (Definition 1.4). 

Indeed, in the above proof, we showed that P x  = P: which means that 
the laws of (X,B) and (X' Jr) coincide. Then, of course, the laws of X 
and X' coincide. This implies the uniqueness in the sense of Definition 1.4 
(cf. Remark 1.2). 

Finally, we shall give an example of a stochastic differential equation 
for which the uniqueness of solutions holds but the pathwise uniqueness 
does not hold. This example is due to H. Tanaka. 

Example 1.1. Consider the following one-dimensional stochastic 
differential equation of the time-homogeneous Markovian type: 
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(1.5) 	dX(t) = u(X(0)dB(0, 

where a(x). 1 for x > 0 and  o(x)=  —1 for x < O. For any Borel prob-
ability p on .1?' there exists a solution X(t), unique in the law sense, such 
that the law of  1(0) coincides with Indeed, let B = (B(0) be an  (Y;) -
Brownian motion and let be an ...ro-measurable random variable having 
the distribution p defined on some suitable probability space with a ref-
erence family („9";). Set X(t) = H-B(t). Then J(t) = fo o.(x(s))dB(s) is 
an VD-Brownian motion by Theorem 11-6.1 and X(t) = 	Po cr(X(s)) 
di-As), that is, (X(t), .§(0) is a solution with the initial value X(0)= dis-
tributed as p. The uniqueness in the sense of law is clear since for any solu-
tion (X(t), B(0), ft ocr(X(s))dB(s) is a Brownian motion which is independent 
of X(0). 

However the pathwise uniqueness of solutions does not hold for (1.5). 
For example, if (X(t), B(0) is a solution such that X(0) = 0, then (—X(t), 
B(t)) is also a solution. In this case we can prove that o[B(s); s < t] = 
c4 I  X(s) I ; s < t]; indeed, as we saw in the proof of Theorem 111-4.2, 

I 1(01 = Sto o-(X(s))dX(s) + At) B(t) At), 

where Ø(t) = lirn 	E ko,$)( 1 x(s)  I  )ds. Thus o[B(s); s 	z] cuff  X(s)I ; 

s < t]. Also it follows from the proof of the same theorem that X(t)I = 
B(t) — minB(s). This proves the converse inclusion. This relation of 

a-fields implies immediately that no strong solution exists for the equation 
(1.5). 

Another example will be given in Example 1V-4.1. 

2. Existence theorem* 1  

Consider the stochastic differential equation 

(1.1) 	dX(t) = a(t,X)dB(t) 	fl(t,X)dt, 

where a E d' r  and flOE.sid , '. For fE Cl,(Ra),* 2  let 

* 1  An existence theorem for stochastic differential equations was first obtained by 
Skorohod [150]. 
*2 

 

C(Rd) = the set of real m-times continuously differentiable functions which are 
bounded together with their derivatives up to the m-th order. 
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(2.1) 	(Af)(t,w) = s tau(t,w) aax24(w(t)) 	,w) (w(t)), 

t e [0, co), w Wa, 

where 

(2.2) 	au(t , w) =± agt , w)a(t, w). 

If (X(t),B(t)) is a solution of (1.1) on a probability space (12„.97) 
with a reference family (.7;), then by Itô's formula we have 

f(X(t)) 
(2.3) 

and hence 

f(X(0)) 

' 

o (Af)(s,X)ds 

O ags,X) 	(X(s))dB k(s) 
i1 k1 J 

(2.4) f(X(t)) — f(X(0)) — (Af)(s, X)ds 

for every f E Ci(R d). 

Conversely, if a d-dimensional continuous adpated process X=(X(t)) 
defined on a probability space (Q,..r,P) with a reference family (.9;) 
satisfies (2.4), then on an extension (D,,r,P) and (";) of (Q, 	P) and 
(.9;) we can find an r-dimensional  (F) -Brownian motion B = (B(t)) 
such that (X, B) is a solution of (1.1). Indeed, let 131  = e Rd; x 
and, for each i, choose f(x) E Cl(R d) such that f(x) = x, if x  e 131. Then 
setting a, 	inf ft; X(t) 	B,I,  I  = 1, 2, . . . , we see that 

(t) = XV A 0-1) — X 1(0) — J 	fli(S,A)dS 

i = 1, 2, ... , d. 

Thus, 

M,(t) = r(t) — r(0) — 
: 
 fl'(s,X)d C4C,lOC  i = 1, 2, ... , d. 

By choosing f  e  C(Rd) such that f(x) = 	x E BI , we see similarly 
that 
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(2.5) 	<M„MiXt) = au(s,X)ds. 

By Theorem 11-7.1', we can find an r-dimensional  (f)-Brownian motion 
B = (B(t)) on an extension (fj,";13) and (fr..,) such that 

= 	
0 
 ags,X)dBk(s), i = 1, 2, ... , d. 

k=1  

Hence (X, B) is a solution of (1.1). 
If X satifies (2.4), then its probability law Px on ( Wa,R( Wd)) satisfies 

(2.6) 	f(w(t)) f(w(0)) — f:(Af)(s,w)ds E 	1" *1  

for every f E Cb2(R d). Clearly, X(t,w) = w(t) is a stochastic process on 
(Wd vg(Wd),Px) with (.0„ 4.( Wd)) satisfying (2.4). Thus we have the fol-
lowing result. 

Proposition 2.1. The existence of a solution of (1.1) is equivalent to 
the existence of a d-dimensional continuous process X satisfying (2.4), and 
this is also equivalent to the existence of a probability P on ( Wd„g( Wd)) 

satisfying (2.6). 

Theorem 2.2. Suppose that a E.Salf d' r  and )6 E.sa(d.' are bounded 
and continuous.*2  Then, for any given probability it on (Rd,.- (Rd)) with 
compact support, there exists a solution (X, B) of the equation (1.1) such 
that the law of X(0) coincides with p, i.e., P {X(0) e A} = p(A) for any 
A e,g(Rd). 

Proof By Proposition 2.1, it is sufficient to construct a process X with 
the property (2.4) and P {X(0) e A} =p(A) for every AeR(Rd). For 
each I = 1, 2, . , let 95 1(t) be defined by 

fbi(t) = k12' 	for k12' < t < (k 	(k = 0, 1, 2, - • • ), 

and set ai(t,w) = a(01(0, w) and /3/ (t, w) = /3(0 1(t), w). Clearly, cr i  E 
and )6, 	On a probability space  ( S? ,9P) with a reference family 
(.9;) we prepare an r-dimensional (Y )-Brownian motion B = (B(t)) 

* 1  .,02tac is defined with respect to the reference family  5B4(Wd). 
*2  i.e., the function (0, co) x Wd D (t,W) 	a(t,w) e RdORr or i(t,w)ERd is bounded 
and continuous. 
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and a d-dimensional 9-0-measurable random variable 	such that 
P(e A) = p(A)*' for every A 	(Rd). Define ad-dimensional continuous 
process X i  (1 . 1, 2, ... ) inductively as follows: X,(0) 	and if X,(t) 
is defined for t < k12', then we define X,(t), for k/2' < t < (k 	1)12', by 

X At) = X i(k12') 	a(k121 ,X1, k )(B(t) — B(ki 21)) 

14121,X1,0(t — k12) 

where 

t < 
Xi, k(t) 	IX l(t)'  116(k12), 	t> k12'. 

Clearly X/  --= (X /(0) is the unique solution of the equation 

IdX(t) = cri(t,X)dB(t) 13 10,X)dt 
(2.7) 

X(0) 

Since Ilad1 2 	< M for some constant  M>  0, we can apply Theorem 
111-3.1 to conclude that for every T>  0 and m =  1, 2, 

(2.8) 	sup sup El X,(t) I 2m] 	Cm  
0<t7' 

and 

(2.9) 	sup E[f X i(t) — X i(s)1 21 	C„dt 
	

t, s E [O, 

where Cm  (m = 1, 2, ... ) is a constant. Indeed, for (2.9) we have 

X,(t) X i(s) = a i(u,X)dB(u) 	131(u,X)du 

and hence* 2  

E[IXI(t) 	Xi(s)1 21 	Eli! 5.:cri(u,X)dB(u)11 21 

C ) E[11 5:13,(u,X)duil 2m] 

* 1  Note that is bounded since u has a compact support. 
*2  In the following, C;,; ) , C2), ... are positive constants depending on m, T and M. 
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CE[(  sts  ilai(u,X)1 1 2 du)m] 	CrEK 11)31(u,X)Ildur] 

Cm l t S m . 

Applying Theorem 1-4.2 and Theorem 1-4.3 for a ---= 4 and /3 = 2, we 
obtain a subsequence { 1,} , a probability space (6,..P.,13) and d-dimension- 
al continuous processes it 	i = 1, 2, ... , such that Xi, A',X,, and 

converges to Î(t) uniformly on each compact interval of [0,  cc)  as 
i-- co as.  If s < t and if F is a real bounded continuous and Os( W")-
measurable function on Wd, then for every f E Ci(r), 

{(f(Î (t)) — [(I (s)) — f r  (Af)(u,t)du)F (I)} 

(2.10) 	= lirn  Ê  {(f(it,(t)) — 	i (s)) 	(A (1i)f)(u, tz )du)F(4)} 

= 0,  

where the operator iii (o is defined in a similar fashion as A from a , and 
fi,,.  Equation (2.10) implies that 

f(Î(0) f(±(0)) — 0 (A f)(u,±)du 

is an (9')-martingale, where 

= nov4* u 
e>0 

Thus Î is a process satisfying (2.4). 

Remark 2.1. The condition that p has compact support is technical 
and may be removed. Indeed, by what we have shown, for each xeRd 
there exists a solution rx)  such that p 5x. Let Px  = Px(x) . If we can 
choose P.  in such a way that x P is (Rd)I0 r (Wd))-measurable* 
or F(Rd)/0(91( Wd))-measurable then P(-) = Rd  p(dx)P x(-) is a prob-
ability on ( Wd,.g( Wd)) which satisfies (2.6). Such a selection is always 
possible because of a general selection theorem ([160], p. 289). 

The boundedness assumption on a and /3 can be weakened, but some 
kind of restriction on the growth order of a and /3 is necessary in order to 

* gç(Wd) is the set of all probabilities on (Wd,g/(Wd)) with the topology of the weak 
convergence (cf. Chapter I, Section 2). 
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guarantee the existence of a global solution (i.e., a solution defined for all 
t e [0, 00)). We will not, however, discuss this kind of problem in general 
(see, e.g. [102) and [188]); we shall only discuss it in the case of equations 
of the Markovian type. 

Let  a(x) = (ak(x)): Rd 	Rd C) RI and b(x) (bloc» :  Rd 	Rd be  
continuous. Consider the following stochastic differential equation 

(2.11) dX(t) = o -(X(0)dB(t) b(X(t))dt, 

or, in terms of its components, 

dXf(t) = Aol(X(0)dBk(t) be(X(t))dt, i =  1, 2, . , d. 

If x 	o(x) and x 	b(x) are bounded, then we know by Theorem 2.2 
that a solution of (2.11) exists for every given initial distribution with 
compact support. If we remove this condition of boundedness, then a solu-
tion does exist locally but, in general, blows up (or explodes) in finite time. 
Therefore it is more convenient to modify the notion of a solution given 
in Section 1 so as to include solutions admitting explosions. 

Let 	=, Rd u {A} be the one-point compactification of Rd and 
FrVd 	{w; [0, co) 	w(t)Rd  is continuous and such that if 

w(t) 	4, then w(t') =  A for all t' 	t} . 
Let  .B( J)  be the a-field generated by Borel cylinder sets. For w e ti7d, 
we set 

(2.12) 	e(w) = inf {t;w(t) = 4} 

and call e(w) the explosion time of the trajectory w. 

Definition 2.1. By a solution X = (X(t)) of the equation (2.11) we 
mean a ( rVd,ar( 'ki))-valued random variable defined on a probability 
space (S2„9-,P) with a reference family (..97-) 0  such that 

(i) there exists an r-dimensional (9r-)-Brownian motion B = (B(t)) 
with B(0) -- 0, 

(ii) X = (X(t)) is adapted to (.57-) , i.e., for each t,  Co 	X(t, Co) e 
Ad is ."-;-measurable and 

(iii) if e(co). e(X(co)) is the explosion time of  X(co) E aid, then for 
almost all co, 
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X (t )  _ xim  . A in.  c4gx(,),dBk(s )  ± slip  bi(X(s))ds, 

i=  1, 2, ... , d, 

for all t E [O, e(co)). 

Remark 2.2. The stochastic integral 

t E [0, e(co)) 1--- ,- f o a(X(s))dr(s) 

is well-defined, for if  o(co) = inf ft; I X(t) I >  n}, then uk(X(s))/ fo..(a.,}  
is bounded in (s,w) and hence 

r Ao , (co) 

L 	dBk(s) . f 	o-(x(s) )dBk (s)  . 
is defined for t E [O, 00). Thus t E [0, an) 1-- f rocit(X(s))dBk(s) is defined 
for every n = 1, 2, . . . , and hence it is defined on [0,  e(Û)))  since e(co) 
= lim an(co). e(co) is called the explosion time of the solution. 

.1. 
Now the uniqueness of solutions, the pathwise uniqueness of solutions 

etc. are defined in the same way as in Section 1: just replace Wd by rVd. 

Theorem 2.3. Given continuous a(x) = (o(x)) and h(x)= (bi(x)), 
consider the equation (2.11). Then for any probability p on (Rd,O(Rd)) 
with compact support, there exists a solution X = (X(t)) of (2.11) such that 
the law of X(0) coincides with p. 

Proof. As in Proposition 2.1, it suffices to show the existence of a 
O/d-valued random variable X = (X(t)) on a probability space (Q,SP,P) 
with a reference family („9) such that X is (.7')-adapted, P (X(0) E dx) 
= ,u(dx), and for every f E C(Rd)  and n = 1, 2, . .. , 

rAcrn  
f(X(t A an))  — fiX(0)) — f(Af)(X(s))ds 

O  

is an (.9-)-martingale. Here a a  = inf  (t;  X(t)1> n1 and 

d d 

(Af)(x) .---- -1- - 	 ao 7(x) 82f  . (x) -I- 	b(x) if- (x), 
2 i, J-1 	axiaxi 	i-i 	axi 

au(x) = Ê 01(X)O-i(X) . 
k — 1 
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Let p(x) be a continuous function defined on Rd such that 0 < p(x) < 
1 for every x e Rd and all p(x)di(x) and p(x)Kx) are bounded. Clearly 
we can choose such a function. Let (1f)(f; = p(x)(Af)(x). By Theorem 2.2, 
there exists a d-dimensional continuous process 1 = (1(0) (i.e. a FP-
valued random variable) on a space  (Q ,5P) with a reference family 
(f1;) such that P(1(0) e dx) = p(dx) and for every f E Ci(Rd), 

f(fe (t)) — f(l(0)) — 5:(2;17)(1(s»ds 

is an  (F)-martingale. Set 

(2.13) A(t) = 5: p(1 (s))ds 

and 

(2.14) 	e = sœo  pa(s))ds. 

Since p < 1, A(t) < 00 for every t and 0 < e < oo . The inverse function 
a(t) of t 1--- A(t) is defined for t 	[0, e) and lirn o(t) . 00. Since A(t) 

ri e   

is ...97-adapted, it is easy to see that a(t) * is an  (F)-stopping time for 
each t. Set 

(2.15) 
	

9-; 	 a (t) 

and 

(2.16) 	X(t) = 
t < e, 

14 	, 	t > e. 

By the next lemma, we see that X = (X(t)) is an  (Y)-adapted JP-valued 
random variable. 

Lemma 2.1. If e(co) < 00 then lim X(t).= 4 in lid for a.a. CO. 
tte 

Proof. It is equivalent to show that, with probability one, if 
fo' p(1(s))ds < 00 then lim 1(0 =---- 4 in  k'.  Take 0  <a < b  such that 

rice 

11(0)1  <b  a.s. and define 

* We set 0(t ) = co if t e. 
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eil  = 0 ti --= inf {t > di ; I f(t)i > b} , 
52 = inf.  It > fi  ; 1 I (t ) I < al , 	f2  = inf { t > 6, ; fif(t) I >  b}, 

 ' . 	 . 
We show that, with probability one, if l'o p(i7(s))ds < co , then there exists 
an integer n such that /I n  < 00 and 5 „4. i  -,-- co . It is sufficient to show that 
ro  p(i(s))ds = 00 a.s. on the set { 3n such that 6= „ < oo and f „ .--- 00 }  

U 10 ,, < oo for every n]. First, if there exists an integer n such that 5„ < 
co and ~ e „ . co, then !I(')! < b for all t >  s,,  and hence ro  p(I(s))ds = co 

since min p(x) > O. Next, we show that if d „ < co for every n, then 
I xi  <b 

E (-.„ — on) = 00. If we can show this, then 
. 

	

f

ea 	 t „ 	.... 

pa(spds E f p(X(spds _7 min p(x) E (t. — do = 00. 

	

0 	 n 	an 	 I xl5b 	n 

It is clearly equivalent to show that 

{11/0<.1}expt—E (t. — 6--„A = 110.,,„<co, expl—(f. — dab 

	

n 	 n 	 n 

. 0, a.s., 

(2.17) 	Effiii,„<co, exp [—(-e„ — JO]) =-- O. , 

We have 

m+1 
E( IT I 0 <oe , exp [—(t„ —  5 ,,)} I  

w=1 	72  

= fi / i, <oe, exp  [— (r,,  —  
nm J n  

x gexp [—Cf.+1 — 0.+0]1.11.-d„,,,)- 

In the following we assume for simplicity that d = 1; a necessary 
modification of the proof in the general case is left to the reader. Now 
T(t) is of the form 

i(t) =  10) 4- M(t) + I: c(s)ds, 
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where M(t) is a continuous (A)-martingale such that <M>(t) = 'od(s)ds 
and I c(s)  I  +  I  d(s)  I  < c (c > 0 is a constant). We may assume (Q, 
is a standard measurable space (e.g we may always take Q = Wd and 

R(Wd)) and let P( I ..rem+i ) be a  regular conditional probability 
given A +,• By Doob's optional sampling theorem, IV, = M(t-Feim+i)-- 
M(5.4.1) is a martingale on { 5-.+1  <00 } with respect to the probability 
P(. 5 m+i) and the reference family 9; = ..97,,,n+ , with <N), ---.-- 

p am-Fid(s)ds. By Theorem 11-7.2', there exists a Brownian motion b(t) -m-Fi 
(b(0) = 0) which is independent of Si, = A.+, such that N, = 
Then 

{11(t  + m÷i) Acim+1)1 > 	g { m(t + eim+i) m(5,.+1) I 
am+i +t 

Ib(<N),) 	al2) U { 
em-1-1 	

c(s)I cis 	a/2}. 

Consequently, 

a 	a a I infit; I 10+ em+1) ;ACim+i) I > a} 	A c  

where 	= inf {t; I b(t)  I  >  «/2).  Hence 

/0„7+1 <œ) gexP [(m+1 	m+1)] 	
I'm+) 

:5_ / 	< E(exp [ 
Jb 

 (em+1 	
c  A  (b—a) I  

2—c a  

E(exp [— 	a  A  (b-a) /211) = k 	1. 
1 2e 

Thus 

m-I-1 
E( 1-1 I n  <œ) exP [ — (trs 	5 .)]) 	kE( I (a <.1 exP 	— OD 

" 

and (2.17) is now obvious. 
Therefore if fc7p(2(s))ds < co then there exists an n such that t. < co 

and I -1(01 > a for all t >  ç Since a was arbitrary, we have lira At) = 
rt. 

in /V. The proof of the lemma is now complete. 
Now we return to the proof of Theorem 2.3. We have only to show 

that 
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tAa n  

f(i(t A on)) — .MO» 	(Af)(X(s))ds 
o 

is a martingale. Since 

f(2(t)) f(1(0)) — (PADMs»ds 

is an  (fl) -martingale, we have by the optional stopping theorem that 

f(At A Ci„)) f(1(0)) — j .rmn (pAf)(I(s))ds 
0 

is an  (P) -martingale for n = 1, 2, .. . , where an . inf {t; 11(t)1 > n} . 
Again by the optional sampling theorem 

fa(cr(t) A a.» — MOD —  fcr:A6n Ana(s))ds 

is an (..r,)-martingale. It is easy to see that c(t) A an = c(t A a.) and hence 
51(5(t) A = X(t A a,,).  Also, we have t = I:0 11 p(1(s))dA(s) and hence 
a(t) = f 4)  p(1(s))dA(s) =ft o llp(X(s))ds. Consequently, 

faCtAa n) 	 tAa 

(pAf)(X-(s))ds 	0  n  (pAf)(X(s))da(s) =  

The proof of the theorem is now complete. 

Theorem 2.4. If  ci(x) = (o(x)) and b(x) = (bi(x)) are continuous and 
satisfy the condition 

(2.18) 	11o(x)11 2 	Ilb(41 2 	K(1 	1x1 2) 

for some positive constant K, then for any solution of (2.11) such that 
E(1X(0)1 2) < co, we have E(1X(t)1 2) < co for all t>  O. Thus e = 00 a.s. 

Proof. Let o-„= inf It ;1X(t)1 > n) and f E C(Rd) be chosen so that 
f(x) = I x1 2  if 1x1 	n. Then since 

f(X(t A an)) — IMO» — toAan  (Af)(X(s))ds 
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is a martingale, 

E(  I  X(t A an) I = I x(0)1 2) + E[ fro'n ( a"(X(s)) 

2 A Xf(sW(X(s)))ds]. 

By (2.18) we have for some constant  e>  0 that 

E( X(t A an) i 2) E( X(0)1 2) 	sto  11 ± Ea X(s A Gr.) 2)} ds- 

From this we can conclude that 

E(IX(t A an)1 2) 	{ 1  + 	X(0) i 2)} 	— 1. 

Letting n 	00 , we have 

E( I X(t)1 2) 	11 	E( X(0)1 2)} ecr — 1, 

which completes the proof. 

Thus the condition (2.18) is a sufficient condition for non-explosion 
of solutions. A more general criterion for explosion or non-explosion will 
be given in Chapter VI, Section 4. 

3. Uniqueness theorem 

In this section we only consider stochastic differential equations of 
the time homogeneous Markovian type. So suppose we are given a(x) =-- 
(0,(x)) :  R d 	Rd 0  v`r K and  b(x) = (b'(x)):  Rd —  Rd which are as- 
sumed to be continuous unless otherwise stated. We consider the follow-
ing stochastic differential equation 

(3.1) 	dX(t) = a(X(t))dB(t) b(X(0)dt 

or in terms of its components, 

dXt(t) = AOEL(X(t))dBk(t)-Fbi(X(t))dt, i = 1, 2, ... , d. 

Theorem 3.1. Suppose o-(x) and b(x) are locally Lipschitz continuous, 
i.e., for every N>  0 there exists a constant KN > 0 such that 
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(3.2) 	 aCv)11 2  + 11b(x) 	b(y)I2 	KN1 x — Y1 2  
for every x, y E BN.* 

Then the pathwise uniqueness of solutions holds for the equation (3.1) 
and hence it has a unique strong solution. 

Proof. Let (X, B) and (X', B') be any two solutions of equation (3.1) 
defined on some same probability space (f2„9-,P) with some same reference 
family such that 1(0) = X'(0) = x and B(t) B'(t). It is sufficient 
to show that if  O N  = inf {t;  I X(t) and o-d = inf It; I XV)!.__./■71 
then o-N  = o'N  and X(t) = X'(t) for all t <  o,  (N = 1, 2, . . . ). But 

X(t A 0-N  A (6) — r(t A aN  A ofN) foAa NA41  [CI(X(S)) 

— 0(X'(s))141B(s) ± . 0  1.167 AlAAr [b(X(S)) b(r(SMCIS 

and hence, if t E [0, 7 ], 

E X(t A oisi A 01 )  — r(t A oN A afAr) I 9 
rnownc/iv 

	

< 2E {1 	[o.(X(s)) 	c(X'(s))]c1B(s)1 2) 
0 

rAcr ivAa 
+2E  { 	N  [b(X(s)) — b(X' (s))ids 1 21 

0 
rAa NAer'N  

Ç 2E { 	llo-(X'(s)) — a(X'(s))Pds 
0 

rAa ArAIN  
+ 2TE { f 	- Ib(X(s)) — b(r(s))1 2ds} 

o  

Ç 2E1 Ello.(X(s N AG)) a(X 1 (s Aoly  AGIN))11 2ds} 

± 2TE f 5t lb(gs A orN A o'N)) — b(X'(s A N A c/.0) I 'cis} 
0 

▪ 2KN (1  T) E {1X(s Ao -N  A) — X' (s N AG /N)1 2) ds. 
0 

It is easy to conclude from this inequality that 

E 11 gt A orN  A .7;0 	A N  A o''N) 1 2) = 0 for all t E [0, 2 ]  

= Ix; lx1 S NJ 
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and hence, letting T t cc, we have 

X(t A CrN A c/N) = 	A aN A a'N) 
	

a.s. 	for all t > O. 

Since X and X' are continuous in t a.s., we can conclude that X(t)= r(t) 
for all t e [0, o -N  A aN' ) a.s. This clearly implies that up,  = a.s. and the 
pathwise uniqueness of solutions of (3.1) is proven. From Theorem 1.1 
and Theorem 2.3 we now conclude that the unique strong solution* exists 
for the equation (3.1). 

The existence of a strong solution may be proved more directly by 
using the method of successive approximations as follows. For simplicity 
we assume that the Lipschitz condition (3.1) holds globally: i.e., there 
exists a constant K> 0 such that 

(3.3) 	lia(x) — a(y)11 2 	Ilb(x) — b(y)(1 2 	Klx 	yI 2  

for all x, y e Rd. 

Then, by changing the constant K if necessary, we may assume that 

(3.4) 	11a(x) 	Jib(x)11 2 	K( I xI 2 	1) 	for all x e Rd. 

In the following we essentially repeat the same proof as that of 
Theorem 111-2.1. Let x E R d  be fixed. For a given r-dimensional Brownian 
motion B = (.8(t)), we define a sequence X  = (X„(t)) (n = 0, 1, 2, . .) 
of d-dimensional continuous processes by 

X0(t) = x 
(3.5) 

X(t) = x 	o a(X„_ 16))dB(s) S to b(X._ 1 (s))ds, 

n =  1, 2, ... . 

Set 

X 1 (t) — 	fto [o-(X„(s)) a(X„_ 1 (s)))0(s) 

r t  [b(X„(s)) — b(X.-1(sDids J 
= 

 

11(0 + /At) 	say. 

* The space Wd is now replaced by Fka. 
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By Doob-Kolmogorov's inequality, 

E( sup Iii (s)1 2) 	4E(1 11 (01 2) 
ossr 

181 

= 4E( fto  II a (X a(s)) 	,z-i(s))I ds) 

Ç 4K f r  0  E(1 X „(s) — X „_,(s)1 2)ds. 

Also, if t E [0, 7 ],  

E( ag<upt 1 1 2(s)1 2) 	E({ or  I ib(X n(s)) — b(X „-i(spilds) 2) 

< TE( ro  1 I b(X „(s)) 	b(X „-i(s))II 2ds) 

TK  Ç  E(1 X „(s) — X „_ 1 (s)1 2)ds. 

Hence 

E( sup I X 4- 1(s) — X n(s) 1 2) 	2K(4 	T) E(I X „(s) — X „... i (s)1 2)ds 
O 

and therefore, 

E( sup 1X,1(s) X(s)I 2) 

Ç {2144 	T)} n dt1 ri  dt 2  • • f fon-1  dt„E(1X i (t„) 	X0(t„)1 2) 
0 	0 

Since 

Eaxi(t) 	X0(t)1 2) < 2E(1101x)B(t)11 2 	11b(x)11 2 t 2) 

200-Wi 2t ± lib(x)1120) 

	

2K(1 	T)T(1 	1x1 2), 

we have 

E( sup 1 X.-FAO Xn(t)1 2) const. {2K(4 T)}"Tn 

Consequently 
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P { osupT I X n-Fi(t) — X n(t)1 >112n} 	const. {8K(4 	T)} n link/ ! 

By Borel-Cantelli's lemma, we see with probability one that  X(t) con- 
verges uniformly on [0, T], and, since T was arbitrary, limX„(t) = X(t) 

determines a d-dimensional continuous process which is clearly a solution 
of (3.1). This solution is of the form F(x, B) for some function F(x, w) on 
Rd Wr since each X„ is so. Thus X is a strong solution of (3.1); the 
uniqueness is clear from Theorem 3.1. 

The Lipschitz condition (3.2) for the pathwise uniqueness of solutions 
of the equation (3.1) can be weakened considerably in the case d = 1. 
For simplicity we state the theorem in the global form assuming that  o(x) 
and b(x) are bounded but it may be localized as Theorem 3.1 in an obvious 
way. 

Theorem 3.2. Let d = r = P" and suppose that a(x) and b(x) are 
bounded. Assume further that the following conditions are satisfied: 

(i) there exists a strictly increasing function p(u) on [0, 00) such that 
p(0) = 0, f0+p-2(u)du = 00 and 1 o-(x) a(y)I Ç pa x — yl) for all 
x, y 	11 1  *2 ; 

(ii) there exists an increasing and concave function K(u) on [0, co) 
such that K(0) = 0, fo÷K - '(u)du = oc and 1 b(x) — b(y)I Ç Ka x y I) 
for all x, y E RI. 

Then the pathwise uniqueness of solutions holds for the equation (3.1) 
and hence it has the unique strong solution. 

Corollary. If o- is Holder continuous with exponent 1/2 and b is 
Lipschitz continuous, then the pathwise uniqueness of solutions holds for 
the equation (3.1) in the case d =\ 1. 

Proof of Theorem 3.2. Let 1 > al  >  a2 >  • • • > a„ > • • > 0 be 
defined by 

p-2(u)du = 1, sa l 
p2(u)du 2, . 	, f°" ' 	= n, . . . . 

a I 	 a?  

Clearly a „ 	0 as n 	co. Let w„(u), n = 1, 2, .. . , be a continuous 
function such that its support is contained in (a„, 

* 1  r may be arbitrary. We assume r = 1 only for simplicity. 
*2  This nice condition for a was found by T. Yamada ([183]) improving an idea of H. 
Tanaka in [162]. 
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O  Ç.. n(u) 2p -2(u)In and 1  n(u)du = 1. 
a , 

Such a function obviously exists. Set 

lx1 	y 
9,(X) = 	dy n(u)du, 

o 	o 
x 	RI •. 

It is easy to see that q ,,  C2(k), I  ç(x)  I  .Ç 1 and  9(x) t 1x 1  as n 	co . 
Suppose that we are given two solutions (X1(t),B1 (t)) and (X2(t), B2(t)) 
on the same probability space with the same reference family such that 
X1 (0) = X2(0) = x and Bi(t) B2(t) ( : = B(t)) a.s. Then we have 

Xi(t) — X2(t) = o fri(X l (s)) — cr(X 2(s))]dB(s) 

+ Eb ( (s)) — b ( x2 (s))] ds 0 

and by Itô's formula, 

9„(X1(t) X2(0 = fto  50:Ms) — X2(s))[(7(X1(s)) — a(12(s))idB(s) 

± St  o ço:,(Xl(s) — X2(s))[b(X1(s)) — b( 12(s))lds 

x2(.0)[0-(11(s)) au12(s)wds,. 

Since the expectation of the first term in the right-hand side is zero, we 
have 

E[9(X1 (t) — X2(t))] = E[ (14(X1(s) X2(s)) lb(X1(0) — b(X2(s))1 dsi 

-1-E[ f:q)::(X i (s) — X2(s)){a(X 1 (s)) — a(X2(s))}2ds} 

= + 12. 

Now 

I 	so  En b(Xl(s)) — b(12(s))i]ds 

0  E[K(1 X i(s) — X2(s)Dids 
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KEE( I  X1 (s) 	x2(s) ,,,d, 

by Jensen's inequality, and 

	

±12- 	P-2(I Xi(s) — X2(s)I)P 2(iX1(s) — X2(s)Didg 

	

< tin 	 as n 	co. 

Consequently by letting n — co, 

Ea X 1(t) — X 2(t) I) 	:K[E(1 X i(s) — X 2(s)i)ids 

Since fo+K -4 (u)du =  +00, the above inequality implies that E(i  11 (t) 
X2(t)j) = 0 and hence  X1 (t) = X2(t) a.s. This proves the pathwise 
uniqueness for (3.1). 

The continuity condition for the function a in the theorem is, in a 
sense, the best possible. Indeed, suppose for simplicity that b(x) 0 and 
u(x) is such that  u(x0) = 0 and fxxr: a-2(y)dy < co and u(x) 1 for 

I 	xo  I > c. Then the equation 

I dX(t) = o -(X(t))dB(t) 

1 

 

X(0) = 

has infinitely many solutions. Clearly X(t) x o  is a solution. Also, for a 
one-dimensional Brownian motion b(t) with b(0) = 0, we set for each 
p > 0, 4t) = xo  + b(t), A(t) =  2 f:œ0(t,y)a -2(y)dy ppi(t,x o) = 

fro  0--2(M)ds+po(t, xo) and Xp(t),= 4AV(0), where AT' is the inverse 
function of t A(t) and 0(t,y) is the local time of 4t).*' Then  X(t) is a 
solution of (3.6), because M = X(t) — xo  is a continuous martingale 
with 

<M>, AV(t)= 04; 1(4  a2((s))dA p(s) = f:a2(Xp(s))ds 

(cf. Proposition 2.1). It is easy to see that the probability law of  X,,  is differ-
ent for different p. 

So far we have only presented conditions for pathwise uniqueness.*2  

* 1  Chapter III, Section 4. 
*2  Except the cases which can be covered by Theorems 3.1 and 3.2, little is known about 
the pathwise uniqueness and the existence of the strong solutions. Cf. [125] and [189]. 

(3.6) 
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There are also several important results for the uniqueness of solutions 
in the sense of probability laws due mainly to Stroock-Varadhan [157] 
and Krylov [90]. In particular, Stroock-Varadhan showed that the 
uniqueness of solutions holds for the equation (1.3) if the matrix a(t,x) = 

o-(t,x)o-(1,x)* (in component form, au(t, x) = t o-k(t,x)c(t,x)) is con-

tinuous, bounded and uniformly positive definite, and if b(t,x) = 
(bt(t,x)) is bounded and Borel measurable. Here we shall content 
ourselves with presenting only a particular case of this beautiful and 
important result. 

Theorem 3.3. Consider the equation of the time homogeneous 
Markovian case (3.1). If a(x) = cr(x)o-(x)* is uniformly positive definite, 
bounded and continuous and b(x) is bounded and Borel measurable, then 
the uniqueness of solutions holds. 

Proof. We assume b(x) .- 0; the general case is obtained by a trans-
formation of drift which will be discussed in the next section. Set 

Af(x) =-- I i au(x) f.
xi 

 (x), f CARd). 2 t, j .. 1 	axta 

By Proposition 2.1, it is sufficient to prove that if P„ is a probability on 
( W(  Wet))  such that 

(i) Px {w; w(0) = x }  = 1 and 
(ii) f(w(t)) — f(w(0)) — St o (Af)(w(s))ds is a (Px„g t( Wdp-martingale 

forf E Ci(Rd), 
then P.  is uniquely determined. As we shall see in the corollary of 
Theorem 5.1, it suffices to prove that Ex[ro' e-ltf(w(t))dt] is uniquely 
determined for every f OE Cb(r); that is, for any two probabilities P„ and 
P; on ( Wd,0( Wd)) satisfying (i) and (ii), 

(3.7) 	Ex [ f
o 

 oe  e-lr f(w(tpdt} = E;[ S Q3  e-atf(w(tpdti 
 0 

for every f e Cb(Rd). We shall obtain this result by a perturbation argu-
ment on Wiener measure. First we shall show that there exists a positive 
constant e such that if a(x) = (au(x)) satisfies 

(3.8) 	I au (x) —  ô,,1  < e 	for all x E Rd and i,j = 1, 2, ... , d, 

then for any x and for any two probabilities Px  and P; satisfying (i) and 
(ii), (3.7) holds. 
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We now list some analytical properties of operators related to Brown-
ian motion which we shall need in the subsequent discussion. Set 

gr (x) = (27rt)-a 12  exp ( ili--2-), 	t > 0, x E R d, 

v(x)----,. f c°  e 	2>  0, x e Rd 
0 

and 

(V lf)(x) = f v l(x — y)f(y)dy. 
R d 

Then the following facts hold. Let A > 0 be fixed. 
(1) VA  is a bounded operator on  2;,(Rd) into itself such that li VI II, 

livA ii, -- W. This is a consequence of the well-known Hausdorff-Young's 
inequality. 

(2) If p>  4,, 1, then there exists a constant A, depending on p 

and d only such that 

I vlf(x)! ..- Aplif II, 	for every f ...?;,(Rd) and x  E Ra. 

Indeed, by Holder's inequality, 

I V.t.f(x)i -' fivAligilf lip 	where lfp + 1/q = 1, 

and 

const 
œ 	 œ 

ett( 1 	) d Di Ali q  -- I el' 	d ligr il q4 .< 	. f -A -4 - di' < co 
o 	 0 

if — 1. \ ...._,. d ___ 1.  
q 1 2—p "s 

a2 v . f  

(3) For each i and j, 	" for f e C;(Rd) * can be extended to a axiaxi 
bounded operator on  2' 1,(Rd) into itself for every p>  1; that is, there 
exists a constant C„ depending on p and d only such that 

a2vaf it 
axiaxi 11 -.- Cpilflip. 

P 

* C(Rd) is the space of C--functions on Rd with compact supports. 
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The proof in the case of p = 2 is easily furnished by the Fourier 
transform, but in the general case we have to appeal to the deep  2-
theory for singular integrals (cf. [152]). 

Suppose a(x) = (ati(x)) satisfies (3.8) and let P.  be a probability on 
(1P,R(Wd)) satisfying the above conditions (i) and (ii). Then 

Ex[fmtm.f(x)+E ExKiff)(w(s))lds 	for f e C(Rd) 

and hence for fixed A.>  0 and x E Rd, 

.01.E.zf e -17.(w(t))dt] = f(x) + EA 5: clf(Af)(w(t))dt]. 

Consequently, denoting Ex [f; cltg(w(t))dt] by pl(g), we have that 

c"oaxat2afxJ( * )) ,  

where cu(y) = au(y) ow  Letting f=  Kth for h e CARd), 

1  Id 	62 vh  
/11(h) = v.112(x) + 	c"( axiax,(.)) • 

Using the above properties (2) and (3) for  p>  dI2V 1, 

114(h)1 :‹ Apiihiip 	1d2C, 

Therefore, if sup pa(f)I = II/411 Q  < co, then we can conclude that 

11121 11, A p1(1 Ld 2C ) for all a > 0 such that 1— Ld2C > O. This 2 	P 	 2 	P 
can be verified as follows. Set 

Y„,(t,w) = w (yr. A m) , t E RI2m,(k 	1)127")) k = 0, 1, ... 

and 

.Vm(t,w) 	x 	f:a(Y„,(s))dB(s), 
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where B = (B(t,w)) is a d-dimensional (Mt(  W4))-Brownian motion such 
that 

w(t) = x 	o a(w(s))dB(s) 

(cf. Theorem 11-7.1). Then it is easy to see that the probability law P (m )  
of the process (X,„(t)) converges weakly to P and, in particular, 

Ex[  5  ef(Xm(t))dt] 	1.1,1(f), f OE Cb(Rd). 

Since {w(t), t E [k12'n , (k 	1)/2m)} is, with respect to the regular condi- 
tional probability Pm(.  I  arkam(Wd)) , a linear transformation of the d-
dimensional Brownian motion by the constant matrix a-(w(k/2'n)), we see 
from (2) that 

il/4m) 11 4  =  sup 1.E.,[ 	e-Iff(X„,(tpdt}! < 00 . 

Then by the same argument as above we have 

11/41) 11,7  Ç. Ai,/(1 	-82-d2C„). 

Finally, by letting m 	co 

iiPrli q  Apt  ( 1  — Id2C p). 

Let P; be another probability on  ( W%(  FP)) satisfying the above 
conditions (i) and (ii). Then for each fixed x and f e CARd), 

PAW == VA.Ax)+1 11(KAD and  j4(f) = VA.f(x) -FPAID 

where 

1 " 

	a2 Ktf 
KAfty) T E c"(y) 

and p:t  is defined in the same way as /2A  from P.  Therefore 
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(/-11 	11:)(f) = 0,41. — liD(K2f)- 

But we have IIICAf lip 	Ç€C,11fIlp. Consequently 

sup 
ife„s1 104 — 	—d2  eC sup I (PA — Pâ.)(f)I 2 	P  

Çand hence, if we choose 8 > 0 such that 7  eC
P 
< 1, then ,u1(f)---- 

Thus we have proved the uniqueness of the probabilities LP L- xeRd 

provided at-1(x) satisfies the condition (3.8) for > 0 such that 7  eCi, <1. 

Clearly (611) may be replaced by any positive definite constant matrix 
C = (07), and  c>  0 can be chosen independent of C if A < A(C) < 
,I(C) < B for some positive constants A, B, where .1.(C) and ;i(C) are the 
least and the largest eigenvalues of C respectively. Now we remove the 
restriction (3.8) by the following standard localization argument. Set 

-r(w) = inf {t; max I cel(w(t)) — au(w(0))1 >  e).  
154.15d 

Then the result we obtained implies that for any {P} satisfying (i) and (ii), 

(3.9) 	Px  {IV; E A} = P,', {w.7 E Al for every x and A E.g( Wd) 

where w;  E  Wd is defined by w;(u) = w(r A u). We denote P,, {w;  E A),  
x  Rd,  A G .0( Wd), by p fx, A). By Doob's optional sampling theorem, 
it is easy to see that if 0 is a (.g,(  W6))-stopping time such that Px(0 < co) 
= 1, then for Px-almost all w, P(A) = Px(wt E A a k ( W6)), A G 
9( W6)  satisfies the above condition (ii) and 

P;(w' ; w'(0) = w(0(w))) = 1.* 

Here wt E Wd  is defined by (w-0 )(u) w(0 u). Using this fact, it is easy 
to conclude the following: letting 

1-0(w) = 0 

Ti (w) = T(w) 

T2(w) = Ti(w) + 

* Cf. the corollary of Theorem 1-3.2. 
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1-n4-1(w)= z(w) 	t(w) 

and Onw = (w:),.-(w+ )  , 	for n 0,1, 	, n 	zn  

Px{w; (Pow E Ao, 01w E A1, 	Onw e AJ 

= 	p {x, dwo} f At P iwo(t(wo)), dwil f 
f p fw „--i(r(w n-1)), dW n} 

n  

= 13 1 1 4  ; 01V e Ao, 01w E Alt • • • OnW E An}. 

Since  r(w) — co for every w, this implies Px P. 

4. Solution by transformation of drift and by time change 

Certain stochastic differential equations can be solved (i.e., we can 
show the existence and the uniqueness of solutions) by some probabilistic 
methods. These methods sometimes apply even for equations which are 
not covered by the theorems obtained so far. 

4.1. The transformation of drift. Let (12,..7 ,̀P) be a probability space 
with a reference family (9;). In the following, we assume that (f 2 „7,P) 
and (..7;),>0  possess the below property: 

Suppose, for every t > 0, that pr  is an absolutely continuous prob- 
ability measure on (S2,..7;) with respect to P such that pr  restricted 

(4.1) on „F.; coincides with p, for any t> s > O. Then there exists a 
probability measure p on (r2„..9) such that p restricted on ,947 
coincides with pg. for every t O. 

That is, we assume that any consistent family of absolutely continu-
ous probability measures with respect to P can be extended to a probability 
measure on (Q,„7"). For example, if (S-2,,r) is a standard measurable 
space, then the above condition (4.1) is satisfied. 

For X e../1V" we set 

(4.2) 	M(t) = exp [X(t)— <X> (t )/2]. 

We assume that M is a martingale. This is true, for example, by Theorem 
111-5.3 if gexp (i<X>,)) < CO for every t > O. Then if we define fit  for 
each  t > 0 by 
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(4.3) 	-13,(A) = E[M(t): A], 	A e 

is a measure on (Q, .."-;) and  P  Jr, = fi,, for t > s> O. In fact, if 
A E,  

/51(A) = E[M(t): A] = E[E(M(t)lfr;): A] = E[M(s): A]. 

By assumption (4.1), there exists a probability 13  on (Q,,,-) such that 

Definition 4.1. fi is called the probability measure which has density 
M with respect to P. We denote fi as fi =  M. P. 

In this way we obtain a new system (Q,,,-,P) and (.-rt)to. The spaces 
of martingales with respect to this system are denoted by A, .m, etc. 
The following theorem was established by Girsanov [401* in the case when 
X(t) is a Brownian motion. 

Theorem 4.1. (1) Let Y e ../OV°c. If we define L by 

(4.4) 	k(t) = Y(t) 	<Y,  X>(t), 

then fr 

(ii) Let Y1 , Y2  E ...OS.' and define fr, and fir2  by (4.4). Then 

(4.5) 	<Y1, Y2> = <frlsir-2>• 

Remark 4.1. Since PI jr, and PI jr-t  are mutually absolutely continuous 
for each fixed t > 0, there is no ambiguity in the statement of (ii): (4,5) 
holds P-a.s. and fi-a.s. 

Proof Assume first that 2(0 is bounded in the sense that, for each 
t > 0, fr(t)  e 2"(Q, (9fl. By Itô's formula, 

d(M(t)f(t)) 

d1M(t)(Y(t) — < Y,X>(t))) 

fr(t)dM(t) M(t)dY(t) — M(t)d<Y,X)(t) dM(t).dY(t) 

f/(t)dM(t) M(t)dY(t) 

since dM(t) = 31(t)dX(t) and hence dM(t)• dY(t) = M(t)d<X,Y>(t). This 
implies that M(t)fr(t) is a martingale and thus 

* Cf. Cameron-Martin [9], Maruyama [110] and Motoo [123]. 
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ffr(t) 	E[M(t)i -(01.9-JM(S) -1  = 

In general, we choose a sequence {a,,} of (5)-stopping times such 
that, for each n,t 	f(t A an) is bounded in the above sense. Since -At A an) 

= nt A an) — <X, Y>(t A an) = Y/n(t), where Ycrr,  E ...4q 1°' is defined by 
Y en(t) = At A 0-  ), Yen E M.1" by the above proof and hence 
E  

The proof of (ii) can be given in a similar way. 

Corollary. Let YE ./O ci l", e .2(Y)  and Z(t)  = f  0(s)dY(s). 
Then 0 E_9612"(F) and 

(4.6) 	2(t) = Z(t) — <Z, X>(t) = St  0 45(s)dAs). 

Proof. By the definition of stochastic integrals, it suffices to prove 
(4.6) for 0 e _To  ; but in this case the assertion is clear. 

Theorem 4.1 implies that if we transform the probability measure 
P into .23  = M • P, every continuous local martingale Y with respect to P 
is transformed under the probability 13  to Y = a continuous local mar-
tingale+ <Y, X>. That is, the transformation of the probability measures 
P 	.15  M • P induces a drift <Y, X> for every local martingale Y. For 
this reason, the transformation of measures P 	I' is called transfor- 
mation of drift. It is also often called the Girsanov transformation. 

The method of transformation of drift can be applied to solve a class 
of stochastic differential equations. Suppose a etse'd'r and /3 E 
are given and let us consider the stochastic differential equation 

(1.1) 	dX(t) = a(t,X)dB(t) 	fi(t,X)dt. 

Suppose that a solution (X, B) is given on a probability space (S2,..7;P) 
with a reference family (F;). Without loss of generality, we may assume 
that this system satisfies condition (4.1). Choose y E ,sZier' l  such that it is 
bounded or, more generally, satisfies 

1 E[exp (-2- 0  jiy(s,X)11 2  ds)1< 00 	for every t>  O. 

Then 

1 (4.7) 	M(t) = exp {  I  y(s,X)dB(s) — 	ily(s,2011 2ds} 
Jo  
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is an  (.Y)-martingale. Let P =  M • P. By Theorem 4.1, 

(4.8) 	ii(t) = B(t) — S to y(s,X)ds 

is an r-dimensional VD-Brownian motion on the probability space 
(Q,  JP)  with the reference family (9-;), 0 . Indeed, since X(t) in (4.2) is now 

0  y(s,X)dB(s)(= A fot As,X)dk(s)) := 

we have 

f3-1(t) = B' (t) —<BJ,Y>(t). Bi(t) — S to yi(s,X)ds E 

and <.§', IP>(t) = 	B'>(t) = but, implying that is an r-dimensional 
VD-Brownian motion. By the corollary of Theorem 4.1, we have 

(4.9) 	dX(t)= a(t,X)d13(t) 	[fl(t,X) 	a(t,X)y(t,X)]dt. 

This implies that (X(t), ii(t)) is a solution of the stochastic differential 
equation (4.9) on the probability space (S2,9--,f)) with the reference family 
(.-rt)0. Thus we get a solution of (4.9) by applying the transformation of 
drift to a solution of (1.1). Furthermore, if the uniqueness of solutions (cf. 
Definition 1.4) holds for the equation (1.1), then it also holds for the equa-
tion (4.9). To show this, we may assume without loss of generality that 
y E a". 1  is of the form y(t,w) = a*(t,w)n(t,w) with some ri E ,Sa( d. I  . 

(a*(t, w) E tO r' d  is the transposed of a(t,w); as usual, we regard it as a 
linear mapping Rd R r  .) Indeed, let ir = a*(t,w)(Rd)  
be the orthogonal decomposition and y(t,w) = y i (t,w) y 2(t,w) under this. 
decomposition. Then yl  OE .safro. yi  is clearly bounded if y is bounded 
and a(t,w)y(t,w) = a(t,w)y i (t,w) since a(t,w)y,(t,w) = 0 as we see by 
(a(t,w)h(t,w),y) = (y2(t,w), a*(t,w)y) =  0 for any y e Rd. Finally choose 
/(t,w) from the affine space 1y; a*(t,w)y = y i (t,w)} in Rd such that 

E  ; for example, let 27(t,w) be the unique element in the affine space 
which attains the minimal distance from the origin. By replacing y by y i  
we can conclude the above assertion. 

Then M(t) given by (4.7) is a well determined functional of X: 

M(t)  = exp  J y(s,X)dB(s) — I 	ly(s,X)irds1 
0 	 2 0 
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f t r 	 1 rr 
= exP ii r(s,X)dAfx(s) — -T j 0 ila*(s,X)/(s,X)Pds1 0 

where 

M1(t )  . go _ x(0) _ E A s,x)ds . E a(s,X)dB(s). 

Thus the uniqueness of solutions for the equation (1.1) implies that the 
law of the joint process (X(t),M(t)) is uniquely determined by the initial 
law of X. 

Now we shall show that the uniqueness of solutions for the equation 
(1.1) implies that for the equation (4.9). In fact, starting with any solution 
(1(0, .1-3(t)) of the equation (4.9) on a probability space (S2,..94-,fi) with a 
reference family (t.F;), 0  satisfying the condition (4.1), we define 

.1(1' (t) =--- 
exp [_$' 

 y(s, t)dfj (s) — 	s toll y(s, ±)11 2dsl, 

B(t) = B(t) + 5:y(s,i)ds, 

and 

P = Irl-fi. 

Then (At), B(t)) is a solution of equation (1.1) with respect to the prob-
ability P and it is easy to see that if we apply the above transformation 
of drift to the solution (it(t), B(t)), then we come back to (1(t ), ;6(t)). Thus 
any solution of (4.9) is obtained by the transformation of drift from some 
solution of (1.1), and hence combined with the above remark, the unique-
ness of the solutions of (1.1) implies that of (4.9). Summarizing, we have 
the following result. 

Theorem 4.2. If the equation (1.1) has a unique solution, then the 
equation (4.9) also has a unique solution; moreover a solution of (4.9) is 
obtained from a solution of (1.1) by the transformation of drift. 

Corollary. Suppose 11 e „szed, ' is bounded. Then the stochastic differ-
ential equation 

(4.10) 	dX(t) = dB(t) + fl(t,X)dt 

(i.e., the stochastic differential equation (1.1) with a = I, the identity 
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matrix) has a unique solution and is constructed as follows. We choose on 
some probability space (Q,..9;13) with a reference family (..7;), o  satisfying 
the condition (4.1) a d-dimensional (..r,)-Brownian motion B(t) with 
B(0) --- 0 and a d-dimensional,  .Y-measurable random variable X(0) with 
given distribution p on Rd. We set 

X(t) X(0) + B(t), 

M(t)= exp [S:13(s,X)dB(s) — 4•- S to llfl(s,X)11 2ds], 

= • P 

and 

ii(t)= B(t) — fl(s,X)ds. 

Then (X(t), (0) is a solution of (4.10) on the probability space (0,Y - )  
with the reference family (.9-)0- 

In this way, the stochastic differential equation (4.10) is always solved 
uniquely by the method of the transformation of drift,  (cf. Maruyama 
1110 )). But the solution thus obtained is not necessarily a strong solution 
in general. In fact, Cirel' son [12] gave an example of a stochastic differen-
tial equation of the form (4.10) for which the solution is not strong. 

Example 4.1. (Cirel'son [12]). Let d = 1 and fl(t,w) E ._2( 1 . 1  be de-
fined as follows: let 0(x) = x (mod 1) = x [x]  E [0, 1), x e RI, and let, 
{tk ; k = 0, —1, —2, . } be a sequence such that 0 < t t and 

	

- 	 - - k 

lim tk  = 0. For w e Fr, set 
k-.- 

(4.11) 	13(t,w) = 

0  (w(t,c) — w(tk-i))  , if t E [tk, tk+1),k --'- —1,  — 2, 
{ 

O 	 , if t = 0 or t > to . 

It is clear that fl(t,w)  E 	and is bounded. However, the one-dimen- 
sional stochastic differential equation (4.10) does not have a strong solu-
tion. 

Proof• * Suppose on the contrary, this stochastic differential equation 
has a strong solution (X(t), B(t)). We may assume that X(0) =-- x a.s. for 

* We learned the following simple proof from Shiryaev by private communication. 
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some constant x E . Then, by the definition of strong solution, we have 
Jr?' =49-[X(s); s t] C "73 = a[B(s); s t]. Now 

X(t k+1 ) — X(t k) = B(tk+i) B(tk) 	4+1fl(t,X)dt 
tk 

= B(tk+i ) — B(tk) 49(
X(tk) 

 X0k-1) ) (tk+i  — 4)  k 	tk — Lk-1 

, for k = —1, —2, 	, 

and hence if we set 

x(tk ) — x(tk_i)  
Ilk — tk  — tk— i 

G 
Ntk) — B(4-1) 

tk  — tk-1 
k =  —1, —2, ... , 

then 

(4.12) 
	

1k+1 = 	0(11k)• 

Consequently 

e2/c+ 1 = e2XiCk+ I e2ni7k,  

and therefore, for every / = 0, 1, 2, • • , 

(4.13) 	eurrtk+I  = e2zqk4. 1e2 k  	+ 1 e2ri7k-/. 

Since  B(t)  is an VD-Brownian motion and (X(t), B(t )) is (9";)-adapted, 
we have that 	is independent of duv .k-1, k-2, • • • 7 747 11k•-1 11iC•27 

. and so from (4.13) 

Efew ilk+ij = ge2  k-n+11Ere 2nilk-11. 

Since I 	< 1 and E[e2xicni = exp [-27r2/(ti, 	tn_ 1)1, we have 

E[e2rtt/k-i-l]  I  < exp [ 2n2  E (t ,-k-n+1 	tic-J -11 
rt 0 

Letting I — co , we deduce that 

(4.14) 	E[e2 /ank-F1] , 0 ,  k = —1, —2, 
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Set ari = cifB(t) — B(s); tk-i s < t t k+i]. Then cf[X(u), B(10, 
u < tk-I] (c.firt.k_z) is independent of alic+' and hence, by (4,13) and 
(4.14), 

E[e2gilk+il 	e21=17,.+1 erqk 	erific-1+ 1E[e2gilk-11=' O. 

Since 1/ trB  D „,r x  it follows by letting / t co that 

	

rk-1-1 	ek+i ,  

	

Keutu+1 	= lim E[e21- 701,, itgfc+1] = 0, 
k-I-1 

(cf. Theorem 1-6.6). But this is clearly a contradiction. 

4.2. Time change. Another probabilistic method which is sometimes 
useful in solving stochastic differential equations is method of random 
time change. The general theory of time changes in the martingale theory 
is well known; we have already discussed it somewhat in Chapter II and in 
Chapter III, Section 1. In order to avoid undesirable complications, we 
restrict the class of time changes and formulate it as follows. 

Let / be the class of functions 

0: t 	[0, co) 	Or  e {0, co) 

satisfying 
(i) ç6=O, 
(ii) ç6 is continuous and strictly increasing and 

(iii) 0, t co as t  f oo . 
Clearly, if 0-1  is the inverse function of 0 e /, then 	E I. / is a subset 
of W' and the Borel fields induced by  %(  W'),  ar,.(W1) are denoted by 
R(.1)  and a r ,(1) respectively. Each 0  E / defines a transformation To of 
Wd into itself by 

(4.15) 	To: w E Wd 	(T 9s W) Wd  

where (Tow)(t) =  w(957'), t e [0, co). To is called the time change defined 
by ç6 e  I. 

Let a probability space (12,..9P) with a reference family (..9- ), 0  be 
given. Consider a mapping 0 :f2 D co ç6(co) OE / which is  Y/2(I)-
measurable for each t. Such a = (01 (0))) is called a process of the 
time change. Clearly ç6  = (0,(co)) is an (Y )-adapted increasing process, 
and hence if 0;-4 (co) is the inverse function of ti---- 0,(w) then 07' is an 
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(F)-stopping time for each fixed t E [0, 00). If X = (X(t)) is a 
continuous (9-)-adapted process, then TX  ((ToX)(t)) defined by 
(ToX)(t) X(07 1 ) is a continuous (9 7 0-adapted process. The 
transformation  Xi_-  TX  defined above is called the time change of X 
by the process of time change 0. 

Given a process of time change 0, we define a new reference family 
(A) by 	= 	t E [0, co). The class _eV" with respect to A- 
is denoted by .M. 1". It is an important consequence of Doob's optional 
sampling theorem that if XE.z0V6c, then ToXe.. -ÉV", and if X, Y E 
s41. 1", then 

(4.16) 	<ToX, To Y> = To<X, Y>. 

Now we apply the method of time change to solve stochastic differ-
ential equations. In the following we consider the case of d =1, r 1 
and /3 = O. Thus we consider for given a(t,w) E...2( 1 i 1  the equation 

(4.17) 	dX(t) 	a(t,X)dB(t). 

We assume for simplicity that there exist positive constants C, and C2 
such that 

(4.18) 	C, < a(t,w) < C2. 

AS we saw in Theorem 4.2, if we can solve the equation (4.17), then we can 
solve the general equation having drift term fl(t,w)dt by the method of 
transformation of drift. 

Theorem 4.3. (i) Let b = (b(t)) be a one-dimensional (F)-Brownian 
motion with b(0) = 0 given on a probability space (S2,,F,P) with a ref-
erence family (..7-), 0  and let X(0) be an 5-0-measurable random variable. 
Define a continuous process = (40) by M) = X(0)+b(t). Let 0 = 
(0r) be a process of time change such that 

(4.19) 
	

Or ---- 0 a(95.,,Tor2cis 

holds a.s. Then if we set X =7-0  (i.e., X(t) = (f137 1) ,-. X(0) + b(079) 
and .."; = *-1, there exists an (5)-Brownian motion B = (B(0) such 
that (X(t), B(t)) is a solution of (4.17) on the probability space (f2„F,P) 
with the reference family 
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(ii) Conversely, if (X(t), B(t)) is a solution of (4.17) on a probability 
space (S2,,-,P) with a reference family (..7), 0, then there exist a refer-
ence family (9.t)to ,  an (047)-Brownian motion b = (b(t)) with b(0) = 0, 
and a process of time change 0 = (0,) with respect to the family VD 
such that, if we set (t) =X(0)±b(t), then (4.19) holds a.s. and X  =T.  

That is, any solution of (4.17) is given as in (i). 

Corollary. Suppose we are given a one-dimensional (9;)-Brownian 
motion b = (b W) and an  9-0-measurable random variable X(0). Define 

= (40) by (t) =X(0)±b(t). If there exists a process of time change 
0 such that (4.19) holds and if such a 0 is unique, (i.e., if vi is another pro-
cess of time change satisfying (4.19), then 0(t) w(t) a.s.), then the solu-
tion of (4.17) with the initial value X(0) exists and is unique. Moreover, 
the solution is given by X =  T.  

Proof (i) If b = (b(t)), X(0) and 0 = (00 are given as in (i) of the 
theorem, then M =  Tb  and <M>(t) = 07'. If X =  T , then 
by (4.19), t = fro  a(0„X) 2d0 and hence 

<M>(t) = 07' = j6 :7 1  a(0„X) 2d0, = .1‘ t  o  a(s,X) 2ds. 

We set B(t) = fro  (a(s,X)) - idM(s). Then B E...4( 1" and <B>(t) 
fro a(s, X) 2d<M>(s) = t. This implies that B is an  (F)-Brownian motion. 
Since M(t) = X(t) — X(0) = fto  a(s, X)dB(s), (X, B) is a solution of (4.17). 

(ii) Let (X(t), B(t)) be a solution of (4.17) on a probability space (0, 
9-,P) with a reference family ("-r)ro. Then M(t) = X(t) — X(0) E 
./OV" and  <M>(t) —J  a(s,X) 2ds. Set w(t) <M>(t), 0, = w7 1  and .91; 

Clearly 0 = (O r) is a process of time change with respect to 
(.9;) and the process b = (b(t)) = (M(0,)) is an (F;)-Brownian motion 
(Theorem 11-7.2). If we now set (t) = X(0) ± b(t), then Tq X. Fur-
thermore, since t = fro  a(s, X) -2di,us , it follows that 

= 0  a(s,X) -2 	= o a(0„,X) -2du 

= so a(Ou,P0-2du 

and consequently 0 = (0,) satisfies (4.19). The proof of the theorem is 
now complete. 
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Example 4.2. Let a(x) be a bounded Borel measurable function on RI 
such that a(x) > C for some positive constant C. Set a(t,w) = a(w(t)). 
Thus we are considering a stochastic differential equation of time-inde-
pendent Markovian type. If X(0) and b = b(t) are given, then equation 
(4.19) may be written as 

	

(4.20) 	0, 	a[M(0 3)]-2ds = s t  o a((s))_2ds, 

where «0= X(0) + b(t). Consequently 0, is uniquely determined from 
(t) and hence the stochastic differential equation 

dX(t) = a(X(t))dB(t) 

is solved as X(t) = 

Example 4.3. Let a(t,x) be a bounded Borel measurable function on 
[0,00)x R' such that a(t,x) C for some positive constant C. Set 
a(t,w) = a(t,w(t)). In this case, equation (4.19) is given as 

	

(4.21) 	fit 	a[g3.„7n(0.)] -2ds = o a[0„ (s)] -2ds. 

This is equivalent to the following differential equation for 0, along each 
fixed sample path of 4t): 

(4.21)' 
f 	= 1/a[Ø,, (t)]2,*  

100 = 0. 

One simple sufficient condition that (4.21)' has the unique solution is that 
a(t, x) be Lipschitz continuous in t; in this case the stochastic differential 
equation 

dX(t) = a(t,X(t))dB(t) 

is solved uniquely as X(t) = (07 1) (cf. Yershov [187]). On the other hand, 
Stroock-Varadhan [159] proved that the above stochastic differential 
equation always has a unique solution, and this fact, in turn, can be used 
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to show that (4.21)' has a unique solution 0, along each fixed sample path 
of (t). (cf. Watanabe [167]). 

Example 4.4. (Nisio [130]). Let f(x) be a locally bounded Borel meas-
urable function on  R',  a(x) be a bounded Borel measurable function on 
RI such that a(x) > C for some positive constant C, and y e R'.  Set 
a(t,w) = a[y+ Po  f(w(s))ds], w E Fr. The corresponding stochastic 
differential equation is 

	

(4.22) 	dX(t) = a[y+ J. ' of(X(s))ds}dB(s) 

and the equation (4.19) is given as 

	

(4.23) 	0, --= S
t
o  a(y+ $5603  f [(To 0(u)idu) -2ds. 

Now 

f :sf [(TO)(u)]du..- f: s  fg(93: 1 )1du 

= fsofg(u)1d0. = fs  of(4upfSudu. 

Thus (4.23) is equivalent to 

iS, = 1/a(y+ f t  f(4u))4,c/u)2, 

	

(4.24) 	 0 
00  — O. 

and this can be solved uniquely for each given (t) as follows. Set 

Z(t) — f rof((u))4,du. 

Then 

2(0 =MODS& =MtDia(y-FAtD2  

and hence 
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S 
 to  a(y+Z(s)) 22(s)ds = f toN(s))ds. 

Consequently, if we define A(x) by 

f
, 
a(y+z)2dz, 	for x > 0, 

— 
 f

0 
a(y+z)2dz, 	for x < 0, 

, 

then A(Z(t)) = fro  f(c(s))ds and therefore Z(t) ,----- A - '[ ff,f(Ospds] where 
Ai(x) is the inverse function of x 1-- A(x). Thus Or  is solved uniquely as 

Or = 
J.: 	 $ 	 $ 

a(y + Z(s))-2ds = f o a(y+A -1[ f of( 1 (u))dup-2ds 
o 

and so the equation (4.22) is solved uniquely as X(t) = 
Note that in the special case off(x) = x, equation (4.22) is equivalent 

to the following equation of motion with random acceleration: 

idY(t) = X(t)dt 

(4.25) 	dX(t) = a(Y(t))dB(t) 

Y(0) ----. y. 

5. Diffusion processes 

Diffusion processes constitute a class of stochastic processes which 
are characterized by two properties: the Markovian property and the con-
tinuity of trajectories. Since it is beyond  the scope of this book to discuss 
diffusion processes in full generality,*' we restrict our attention to the class 
of diffusion processes which can be described by stochastic differential 
equations. This class of diffusions is known to be sufficiently wide both in 
theory and applicationez; furthermore, the stochastic calculus provides 
us with a very powerful tool for studying such diffusions. 

First, we give a formal definition of diffusion processes. Let S be a 
topological space. We sometimes find it convenient to attach an extra point 

*1  Only in the one dimensional case is a satisfactory theory known, cf. Itô-McKean 
[73] and Dynkin [22]. 
* 2  There are, however, many recent results on multi-dimensional diffusion processes 
which can not be covered by the method of stochastic differential equations; see, e.g: 
Fukushima [30], Ikeda-Watanabe [53], Motoo [124] and Orey [135]. 
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A to S, either as an isolated point or as point at infinity if S is locally com-
pact. Thus we set S' = S U {4} . A is called the terminal point. Either S 
or S' is called the state space. Let  W(S) be the set of all functions w: 
[0, co) D t  w(t) S' such that there exists 0 < ((w) < 00 with the 
following properties: 

(i) w(t) E S for all t E [0 ,C(w)) and the mapping t E [0, aw)) 
w(t) is continuous; 

(ii) w(t) = A for all t > C(w). 
aw) is called the life time of the trajectory w. For convenience, we set 
w(00) = A for every w G FV(S). A Borel cylinder set in p(S) is defined for 
some integer n, a sequence 0 < t,  < t2  < • < t„ and a Borel subset 
A in S'n = S' x S' x - - • xS' as 

7E--1  
1142, —an (A) 

where 	: FRS) 	S'n is given by 

(w) = (w (t 1) w(t 2) , • - • , w(Q) - rt,t2, ••-,tn 

Here, of course, a Borel subset in a topological space is any set in the 
smallest a-field containing all open sets. Let .g(FV(S)) be the o--field in 
1717(S) generated by all Borel cylinder sets and let Or( .07(S)) be that gen-
erated by all cylinder sets up to time t, i.e., sets expressed in the form 

(A) where t„ < t. A family of probabilities  {P ,x e S'}  on 
(W(S),:g(W(S))) is called Markovian*i if 

(i) P  {w; w(0) = 	= 1 for every x E S ' , 
(ii) x e S 	P x (A) is Borel measurable (or more generally, uni- 

versally measurable)* 2  for each A e .g(FP(S)), and 
(iii) for every t> s > 0, A e 	W(S))  and a Borel subset f in  S', 

(5.1) 	P x (A n  {w; w(t) E ) = 	w(t — s) E 11P x (dW) 

for every x S'. 
A Markovian system {P,  x e S'} is called conservative if 

(5.2) 	P  (w; C(w) = co} = I 	for every x E S. 

In this case we need not consider the point  4 since almost all sample paths 

*' We only consider the time homogeneous case. 
*2  Cf. Chapter I, §1. 
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lie in S. For a Markovian system {Px, x E S'} , t E [0, 00), x S' and a 
Borel subset r of S', we set 

(53) 	P(t,x,T) =  Px  (w;  w(t) 	. 

The family fP(t,x,r)). is called the transition probability of a Markovian 
system. By the successive application of (5.1), it is easy to see that 

Px[w(ti)e AI, w(t2)e A21 • • • IlV(t OE An] 

(5.4) 	= 	P(tb x, dXi) 	P(t2 	tl, xl, dX2)5 • • • 
Ai 	 A7 

X  f P(1„ — t n_i, x.-1) dx.) 
A n  

forø<t1  < 12  < 	< tn , e o(S), 

and thus we see that two Markovian systems on the same state space with 
the same transition probability coincide. 

Let a Markovian system {Px } be given. For each t > 0, we set Y( RS)) 
= n n 0,,e(rv(syx*i and L.F(17V(S)) = V 9:(f-V(S)). A mapping 

xesf 	 r>o 
w E W(S) 	(TM E [0, co)  is called a stopping time if it is an (F;(1P(S))) 
-stopping time, i.e., if for every t > 0,  {w;  a(w) t} E.,;(1P(S)). 
For a stopping time a, we set .9(FV(S))= {A E 9:(FRS)); A CI fw; 
a(w) < t) E Sr;(17P(S)) for every t > 0). The Markovian system {Px} is 
called a strongly Markovian system if for every t > 0, stopping time a, 
A E .947,(17-V(S)) and a Borel subset r of S', we have that 

P.M n (w ;  w(t 0-(w)) E  T))  

(5 ' 5) 	= 	P„, (0. 0,0)  [w; w(t) E .1]Px(dw) 
A 

for every x e S' .*2  

Definition 5.1. A family of probabilities {Px} xes, on ( FP(S), aF( RS))) 
is called a system of diffusion measures, or simply a diffusion if it is a strong-
ly Markovian system. 

Definition 5.2. A stochastic process X = {X(t)} on S' defined on a 

* 1  It follows from this definition that Y(IP(S)) is right continuous, i.e., .97, 4(W(S)) 
= .( W(S)) for every t O. 
*2  We need only assume that (5.5) is valid for bounded stopping time; otherwise, replace 
a by o-  An, A by A n 	n} and then let n T 00. 
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probability space (f2,,, --,P) is called a diffusion process on S if there exists 
a system of diffusion measures {Px} ,Es, such that, for almost all co, [t 
X(t)] E P(S)  and the probability law (i.e. the image measure) on FV(S) of 

X(t)] coincides with P fs, Px(.)p(dx) where p is the Borel 
measure on S' defined by p(dx) =P {co;X(0, (.0) E dx} and is called the 
initial distribution of X. 

If X = (X(t)) is a diffusion process and if we set C(co) = inf {t; X(t) = 
4 } , then it is clear that, with probability one, [0, C) t X(t) E S is 
continuous and X(t) = 4 for all t> C. C is called the life time of the diffu-
sion process X. X is called conservative if C(co) = co a.s. 

Now, let C(S') be the Banach space of all real or complex valued 
bounded continuous functions defined on S' and (A,.0(A)) be a linear 
operator on C(S') into itself with the domain of definitions ff(A). Let 
{P,, xe S'} be a system of probability measures on (FV(S),0( 07(S))) 
such that xi-- Px(A) is Borel measurable (or universally measurable) 
for A E P(S). The following definition is based on an idea of Stroock 
and Varadhan [160]. 

Definition 5.3. {P,} is called a diffusion measure generated (or deter-
mined) by the operator A (or simply as an A-diffusion) if it is a strongly 
Markovian system satisfying 

	

fw ; w (0) = xl =1 	for every x, 

f(w(t))—f(w(0)) 	(Af)(w(s))ds  j't 0 

is a (Px , .gr( RS)))-martingale for every f e 2.(A) and every X.  

Theorem 5.1. Suppose that {Px ,x e S'} is a system of probability 
measures on ( W(S),(i —V(S))) satisfying conditions (i) and (ii) of Defini-
tion 5.3. Suppose further that {Px } is unique; i.e., 

(iii) if {P;} is any other system of probability measures on ( ø'(S), 
W(S))) satisfying the conditions (i) and (ii) of Definition 5.3, then 

P; = Px  for every x. 
Then {P,} is a system of diffusion measures generated by the operator 

A. 

Proof. It is only necessary to show that {P,} is a strongly Markovian 
system, i.e., it satisfies (5.5). Since 

Xf (t) = f(w(t)) f(w(0))—E(Af)(w(s))ds 



206 	 STOCHASTIC DIFFERENTIAL EQUATIONS 

is a  (P,6(  W(S)))-martingale  for every x E S' and  t 	X At) is right 
continuous, it is clear that it is also a (Px ,5;(TV(S)))-martingale. If a 
is a bounded stopping time, then by Doob's optional sampling theorem 
t X f(t+o-) is a  (P,-9 + (fr(S)))-martingale. In particular, for every 
t>  s, A EF-s+cr( W(S))  and CE .9;( RS)), we have 

Ex(X f(t+a) — X f(s+a): An = O. 

This implies that 

Ex(Xf(t+a) — X f(s+a): Al9;(17V(S))) =  0, a.a. w(Px)- 

Therefore, if Pv(A) Px(OV(A)! ,;( 0- (S))), AER(FV(S)) is the re- 
gular conditional probability given ..,( RS)) where Oa : FT(S) 	W(S) 
is defined by (0,w)(t) = w(a(w)+t), then /7 "(w'; w'(0) = w(o-(w))) 	1 
for a.a. w(P x) and  X1(t) is a (Pw,..q,(W(S)))-martingale. By assumption 
(iii), we have is w 	1),",. ())  which clearly implies (5.5). 

Corollary. Let {P,, x e S'l be a system of probability measures on 
(FV(S),R(FV(S))) which satisfies the conditions (i) and (ii) of Definition 
5.3. The uniqueness condition (iii) of Theorem 5.1 then follows from the 
weaker condition (iv): 

(iv) if {P;} is any other system of probability measures on (RS), 
,g( FV(S))) satisfying (i) and (ii), then 

(5.6) 	
ffixs)

f(w(t))Px(dw) 
 = wol

f(w(t))P(dw) 

for every t > 0, x E S' and f 	where 	is some total family in 
C(S').* The equality (5.6) can also be replaced by 

(5.7) 	f e-At f(w(t))dtP x (dw) 	 f(w(t))dtP;(dw) ..s.) 
for every A.> 0, x ,.S" and f e..r, where 5-  is some total family in 
C(S'). 

Proof Just as in the above proof, we have 

*  Y c C(51) is called total if for any two Borel probability measures p and y on S', 
f(x)p(dx) = f,f(x)v(a"x) for any f 	implies that p = v. 
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S w(s) f(w'(t))13w(dw`) = 
w(s) 

for every bounded stopping time cs and hence {P,} is a strongly Markovian 
system. Since 9-  is total, our assumption (5.6) implies that the transition 
probability P(t, x, T) = P „(w(t)eT) is uniquely determined. Consequent-
ly, by (5.4), P, is uniquely determined as a measure on 0( RS)), i.e. 
(iii) is satisfied. The equivalence of (5.6) and (5.7) is obvious. 

The following theorem is an easy consequence of Theorem 5.1. 

Theorem 5.2. Let (A,ff(A)) be a linear operator on C(S') and let 
(Q,...r,P) and (.9";), 0  be given as usual. Suppose that for each x  E S' 
there exists an S'-valued, (...9)-adapted stochastic process Xx = (X(t)) 
such that 

(i) with probability one, X(0) = x, [0, C(w) = C(Xx)) t 	X(t)  E S 
is continuous and X(t) = LI for t > C and 

(ii) for every f 

Xf (t) =--- f(X(t)) — f(X(0)) j "  0 (A f)(X(s))ds 

is an (9-)-martingale. 
Let P, be the probability law of the process X, on ( W(S), 	W(S))) 
and suppose that x 	P is universally measurable and, furthermore, 
that Px  is uniquely determined for every x e S'.  Then {Px} res., is the 
system of diffusion measures determined by the operator A and the 
stochastic process X, is a diffusion process satisfying X(0) = x. 

We pall Xx  the A-diffusion process starting at x E S'. 

Example 5.1. Let S = Rd and S' =  Rd U  (4}, where 4 is attached to 
Rd as an isolated point. Let .0(A) = lf C(Y) fl Rd E Ct(Rd)} and 
define A on gr(A) by 

1 Aft  \ 

(5 . 8) 	Af(x) = { 2 

0 , 

x E Rd , 

x = A.  

Then the operator A generates a unique diffusion {P,} ; This is just d-
dimensional Brownian motion i.e., Px  is the Wiener measure on Wd starting 
at x E Rd. 

To prove this, we first show that 13„, x  E R", is conservative. Indeed, 
f(x) defined by f(x)I R d 0 and f(4)=1 belongs to .2 r(A) and Af(x) O. 
Thus  14(w(t)) is a martingale with respect to P„ for every x, and hence if 
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x ER 4,14(w(t)) = 0, a.a. w(Px), that is, Px(C(w) = co) = 1. Consequently 
for every  fe q(Rd) and x E  R',  f(w(t))—f(w(0))— fro  4(4f)(w(s))ds is 
a Px-martingale and we can apply the same proof as that of Theorem II-
6.1 to show that P,,  is the Wiener measure starting at x. Thus the A-diffu-
sion is just d-dimensional Brownian motion. 

Example 5.2. Let S' and ff(A) be as in Example 5.1. Define A on 
ar(A ) by 

(5.9) 	Af(x) =2
A f(x) 	c, (x), x e Rd, 

LIA 

	

1 	 el 	a  f 

	

0, 	 x = A, 

where c = (c1 ) e Rd is a constant. Then the operator A generates a unique 
diffusion {P„ }  ; Px  is the probability law of the process X(t) = x+B(0+ 
et  where B(t) is a d-dimensional Brownian motion with B(0) = O. This 
diffusion is called the d-dimensional Brownian motion with drift  C.  

This can be proved in the same way as in Example 5.1. 

Example 5.3. Let S' = Rd U {A} be as in the previous examples. 
Let .0(A) = ff e C(S'); fl Rd E Cl(Rd) and f(4) =  01 and define A on 
2(A) by 

fi  / A  4.\  

(5.10) Af( x) = -2-,v - v )(x) — cfix), 

0 , 

where e>  O is a constant. Then, the operator A generates a unique diffu-
sion {/),} on Rd; Px  is the probability law of the process X„ defined as 
follows. Let (B(t)) (B(0) =  0) be a d-dimensional Brownian motion and e 
be an independent exponentially distributed random variable with mean 
1/c. We define 

X x(t) 	
ix 	B(t), if 	t < e, 

if 	t > e. 

This diffusion is called the d-dimensional Brownian motion with the 
random absorption rate c. To prove this assertion, we first note that the 
system {Px} clearly satisfies the conditions (i) and (ii) of Definition 5.3. 
Secondly the function fz(x), E  R 4,  defined by 

e Rd, 

x = 4, 
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iefq.x>, 	x 	Rd, 
fi(x) 

0, 	x = 

is in PAA), and hence if {P. } satisfies (i) and (ii) of Definition 5.3, then 

.f(w(t)) —.f(w(0)) — E (21.1- )(w(s))ds 

is a .P;-martingale. Thus, if x Rd, 

1 	1 2 
E[e""r» : C > t] =  e"e, x> — 	c)f Ext[elq, w(4)- C > s]ds* 2 

and so Elf (w(t ))]=Exleiq,.(0> :  c > 	x>_ 02,2+ot Since 
{
ji; 

e Rd} is total, we conclude that {P} coincides with {P} by the corol-
lary of Theorem 5.1. 

Example 5.4. Let S = 	= = (x',x2, 	,xd) E R d  ; ;Ca  > , 
S' =  R U {A} where A is attached to RI_ as an isolated point. Let (A) 

af 
= Ec(s`);f1 E C (

RT) and axd  as  = 0} where as = Ix G RI.; = 

and define A on 9(A) by 

(5.11) Af(x) = 
—1 Af (x), 2 { 

0, 

x E Re, !F  

x = 4. 

Then the operator A generates a unique diffusion IP,j On 14; Px  is the 
probability law of the process  X(t) defined as follows. Let B(t) = (B 1 (t), 
B2(t), ,Bd(t)) be a d-dimensional Brownian motion with B(0) = 0 
and 

1{,(t) = (xl+B l(t), x2 -F B2(t), 	, xd-i+Bd-1 (t), I xd+Bd(t ) 1 ). 

This diffusion is called the reflecting barrier Brownian motion on k'F. To 
prove this, we first note that by Chapter III, Section 4.2 X(t) = xic+ 

k(t)+ö4(t) for k = 1, 2, . . . , d where  B(t) is a d-dimensional 

* E.:, stands for expectation with respect to P.  
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Wiener martingale* and At) is the local time of X(t) at 0: 95(t) 

Jim 
8 10 1-0  0 

1 (0  ,) (X Aspds . Hence, by Itô's formula, 
- 

f(X x(t)) —f(x) — 	f(X x(s))ds 

= fto lk  (X x(s))d (s) f t  0 	(X x(s))I a s (X x(s))45(s) 

= j c 1  fr  ';:ifck  (X x(spd 13-  k (s) 	 if f gr(A). 

Thus {P}  satisfies the conditions (i) and (ii) of Definition 5.3. To prove 
the uniqueness of any such system {P} we set, for = (V, V,  

i dri ewe- 1c cogdxd, 
_f (x) = ki 

0, x = . 

Then A fff (A) and hence 

A(w(t)) f(x) — r  0  (AA)(w(s))ds 

is a f'-martingale. Noting that AA = — 412A, we have 

Crf(w(t))1 = f(x) 	1  2  j*to  Uf(w(s))1ds 

This equation implies that Elfi(w(t))] = exp 	I zt )f (x) '  and so since 2  
E Rd} is total, we can apply the corollary of Theorem 5.1 to conclude 

that P =  P. 

Example 5.5 ([73]). For simplicity, we consider the one-dimensional 
case only. Let S=[0, oo) and S'=[0, co) U {A}, where A is attached to 
S as an isolated point. For a given parameter y (0 < y < 1), let .0(A) = 
If c(s') ; fl ro..) e C([0,00)) and (1 — Y)A0) = yffpl and define A 
on '.. (A) by 

* Indeed, fri'(t) = RV) for i d, and 13 d(t) = ro  sgn(xd Bd (MdBd(s). 
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1 d2  
(5.12) 	Af(x) = 	 crx2i kx), 

0, 	 x A. 

The operator A generates a unique diffusion {P, }  on [0, 00) which is called 
the elastic barrier Brownian motion with parameter y.  P. is the probability 
law of the following process Xx(t). Let x(t) be the reflecting Brownian mo- 

tion starting at x and 0(t) be its local time at 0: OW = lim f 
al0 

(Us»ds. Let e be a random variable which is exponentially distributed 
with mean y/(1 — y) and is independent of &„. Set 

,c(t), if t < C: = inf It; At) >  e},  
Xx(t) 

A, 	if t > C. 

The proof follows by a similar argument as in Examples 5.3 and 5.4: we 
take for E R 

g cos  x  ± (1 — y) sin .7c, 	x  Œ [0, co), 
f(x) = 

0, 	 x = A. 

Example 5.6. Let S be a bounded smooth domain in R4  and 
S' = S U ILO , where 4 is attached to S as a point at infinity.*' Let 
2f(A) = Cd(S) (: = ff; twice continuously differentiable in S and tends 

to 0 at 41) and define A on .T(A) by 

(5.13) Af(x) { 
—1 df(x), 	x E S, 
2 

0, 	 x = A. 

Then the operator A generates a unique diffusion {Px }  on S' which is called 
the absorbing barrier Brownian motion on S or the minimal Brownian mo-
tion on S. P„ is the probability law of a Brownian motion starting at x E S 
stopped at the first instant when it hits the boundary of S (which is identi-
fied with A). Again it is clear that {P.„} satisfies the conditions (i) and (ii) 
of Definition 5.3. Suppose {P. } also satisfies these conditions. Let 
Ga(x,y),  a>  0, be the Green function of S for the operator La  = a — 4/2 
with Dirichlet boundary conditions: i.e., if f E C;(5) *2  then Ga  f(x) = 
sGa(x, y)f(y)dy is the unique solution of 

*l i.e., S' is the one point compactification of S. 
*2  Ci7(S) is the set of all C--functions f with the support S(f )c S. 

X  E [0,00), 
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{ I au — --rdu = f, 

ulas = O. 

Let f E C;(S) and set u — Gaf. 
Hence 

Then ziaf(A) and Au = au  —f.  

u(w(t)) 	u(w(0)) 	7,1  5'0 .4u(w(s))ds 

is a 1)-martingale and, therefore for every t > 0, 

E'x [u(w(0)} — u(x) = a j"  0  Ex [u(w(s))]ds— Elf(w(s))1ds. 

Consequently 

e-argju(w(t))1dt u(x) 
a 

= — s c*o [ rx [u(w(s))]dsld(e-at) 

laTs:[fr  0 .Elf(w(s))]cis]d(e-at) 

..14°) e-alElu(w(t))]dt 	f c°  e-atEle(w(t))]dt 
0 

and hence 

u(x)= fc: e-asE'x[f(w(s))icis =Gaf(x). 

Now apply the corollary of Theorem 5.1. 

6. Diffusion processes generated by differential operators and 
stochastic differential equations 

Suppose that we are given a second order differential operator A on 
Rd : 

(6.1) 	Af(x) = 1,t (x) axialf», (x) 	(x) 	(x), 

where au(x) and bi(x) are real continuous functions on Rd and (au(x)) is 

symmetric and non-negative definite; i.e., ao(x) =-- all(x) and ± al-1(x) 
J-1 
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> 0 for all --= (V)e Rd and all xe Rd. We take, as the domain of 
the definition of A, the space CARd) consisting of all twice continuously 
differentiable functions having compact support. The notion of the diffu-
sion process generated by the operator A (A-diffusion) was defined in the 
previous section. To be precise, we formulate it again as follows. Let 
Ad =Rd u {A} be the one-point compactification of Rd. Every function 
f on Rd is regarded as a function on Ad by extending it as f(z1). O. Let 
Ikd be defined as in Section 2 and e(w) be defined by (2.12). 

Definition 6.1. By a diffusion measure generated by the operator A-
(or simply an A-diffusion), we mean a system (Pi, xe Rd} * of probabili-
ties on (JP ,a(Fild)) which is strongly Markovian and satisfies 

(j) 
P x {w; w(0) = = 1 	for every x eRd, 

f(w(t)) — f(w(0))— to  (A f)(w(s))ds 

is a (.1,,,a,r( J))-martingale  for every f C(R 4) and every x E R 4.  

Remark 6.1. By Theorem 5.1, we know that any system {P i , x e Rd} 
of probabilities on  (,9i( FP)) satisfying (i) and (ii) and that x Px  
is universally measurable is strongly Markovian and hence is an A-diffu-
sion if it satisfies further the following uniqueness condition: 

(iii) if {P;} is another system of probabilities on ( Fitew( rvd)) satisfy-
ing the above conditions (i) and (ii), then P  =  I:), for all x. 

Also, by the corollary of Theorem 5.1, (iii) may be replaced by the fol-
lowing weaker condition: 

(iii)' if {P;} is another system of probabilities on (Jî', 	( FP)) satis- 
fying the above conditions (i) and (ii), then 

wd
f(w(t))P x (dw) = fraf(w(0)P(dw) 

for every t > 0, x E Rd and f in a total family of functions on Rd. 

Definition 6.2. A stochastic process X=(X(t)) on ha is called a 
diffusion process generated by the operator A or simply A-diffusion process, 
if almost all samples [t 	X(t)] belong to F-Vd and the probability law of 

coincides with P(.) 	Rd  Px(•)12(dx) where [Pi} is a diffusion measure 

* To be precise, PA should be included in the system but, since P4 is the trivial 
measure 6„ where  w4(t) zl, we usually omit it. 
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generated by A and y is the probability law of X(0). 
Our problem now is to consider the existence and uniqueness of A-

diffusions. 
Let o = (c4(x)) e Rd C)Rr be such that 

(6.2) 	x 	o-(x) is continuous and atl(x) = 	o(x)c(x) 
k 

for i j --- 1, 2, . . . , d. 

Clearly such a a exists for some r. We choose one such a and fix it. We 
now consider the following stochastic differential equation 

(6.3) 	dr(t) =o-I(X(t))dBk(t)± Y(X(tDdt, 	i 	1, 2, ... , d. 
I 

According to Theorem 2.3, we know that for every x e R d  there exists a 
solution X(t) of (6.3) such that X(0) = x. By Refs formula (Theorem II-
5.1), 

f(X(t)) — f(X(0)) --,- 	fro  zi (x(s),(x(mdBk(s) 
kI i-1

± for (Af)(X(s))ds 

for every f e Ci(Rd). From this, it is clear that the law P x  on 07d  of the 
process X satisfies the conditions (i) and (ii) of Definition 6.1. We shall 
now show that the uniqueness of solutions for the stochastic differential 
equation (6.3) is equivalent to the uniqueness condition (iii) in Remark 
6.1. Indeed, it is obvious that (iii) implies the uniqueness of solutions of 
(6.3). On the other hand, if {P} is the system of probabilities on gm 
satisfying the conditions (i) and (ii) of Definition 6.1, then we can conclude 
by the same proof as in Section 2 that there exists some extension (Q„..5 7; 
P) with a reference family (..F;) of the probability space ( Wd, ,g( 
with the reference family (..gr(  Jî)),*  and an (Y )-Brownian motion B = 
((B(t)) such that setting X(t) = w(t) and e = e(w), we have for t e [0, e), 

Xi(t)=-- x' 	GrAx (,),dBk (s) +L bl(X(s))ds, i =  1, 2, ... , d. 
-1 

This implies that (1(t),  B(t)) is a solution of (6.3) such that X(0) = x. Since 

* .g,(Wd) is defined in the same way as ,g,(Wd). 
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the probability law of the process X(t) is clearly Px , the uniqueness of 
solutions of (6.3) implies the uniqueness condition (iii). Thus we have the 
following result. 

Theorem 6.1. Let the differential operator (6.1) be given as above 
and choose any a = (ak(x)) such that (6.2) holds. Then the A-diffusion 
{P.,xOERd) exists uniquely if and only if the uniqueness of solutions 
holds for the stochastic differential equation (6.3). In this case, Px  is the 
probability law on ( rvd» of a solution X = (X(t)) of (6.3) such that 
X(0) 

Stroock-Varadhan's result (Theorem 3.3) implies that if (au(x)) is 
bounded, continuous and uniformly positive definite and (Ii(x)) is 
bounded, then the A-diffusion exists uniquely; moreover, it is a conserva-
tive diffusion. In the general case when (au(x)) may degenerate, we have 
by Theorem 3.1 that if we can choose the above c(x) = (o-/(x)) such that 
a(x) and b(x) = (bf(x)) are locally Lipschitz continuous, then the A-diffu-
sion exists uniquely. Furthermore, this A-diffusion is conservative (i.e., 
Px(e co)  =  1, for every x C Rd) if o-(x) and b(x) satisfy the growth 
condition 115(x)11+11b(x)11 _Ç K(1+ 1 x 1) for some positive constant K. In 
the one-dimensional case, the Lipschitz condition on a(x) may be weakened 
as in Theorem 3.2. In particular, if we can choose  a(x) such that it is 
locally Holder continuous of exponent 1/2 and if b(x) is locally Lipschitz 
continuous, then the A-diffusion exists uniquely. An important question 
now is to determine when we can choose a sufficiently smooth 0- such that 
(6.2) holds for a given matrix a. For this we have the following result. 

Proposition 6.2. (i) Let Sr be the set of all rx r symmetric, non-
negative definite matrices. If a(x): Rd — Sr is in the class Ci(Rd),* 2  then 
the square root  a(x) (i.e.,  a(x): Rd — Sr satisfying the property a(x)a(x)* 

a(x)) is uniformly Lipschitz continuous on Rd. 

	

(ii) If a(x): Rd 	Sr is twice continuously differentiable, then the 
square root a(x) is locally Lipschitz continuous. 

Proof. Clearly it is only necessary to prove (i). We shall prove this in 
the case d = 1; the general case follows from the fact that a function is 
uniformly Lipschitz continuous on Rd if it is uniformly Lipschitz con-
tinuous in each variable x' E IV for fixed g = 

. ,xd) with the Lipschitz constant independent of g. Fix x0 E . We 

* 1  The universal measurability of x 	P,, is seen as in the proof of Theorem 1.1. 
*2  We say that a(x) is in Ci(Ra) if every component of a(x) is in Ci(R4). 
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can choose an orthogonal matrix P such that Pa(x0)P* is a diagonal 
matrix. Set  ã(x)  = Pa(x)P*. For a positive constant e > 0, let 

ac(x) a(x) ± al and fie(x) = Pae(x)P* = a(x) ± el. 

The square roots of ae(x) = (a7(x)) and iie(x) = (i-41(x)) are denoted by 
ce(x) = (cregi(x)) and  c 8(x) = (efau(x)) respectively. Then o(x) and 58(x) = 
Pcr8(x)P* are clearly in C(IV). By differentiating both sides of  ã'(x)  

Ê sik (x)erJek (X) at x = x0 , we have 

(6.4) 	 (ã'(x0) 	d(x0))8 1(xo). *  

Let K = sup 1 Vu(x) = sup I cletl(x) 1 and set ,f(x) = 041 e(x).1.> 
j$r,xe R1 	 l<1.1<r.xeR 1  

for 2 R. Then since f(x) > 0 for all x e RI, we have 

0 f(x + h)  =1(x)  f(x)h 4.-..i(x+Oh)h 2  

< f(x) f(x)h ± 	( 1 1/111)21Ch2  

and hence 

f 	2 1(x) 	2,1)2  K. 
(-1 

Letting 2 be (5, 	(6k)k.1, 6.1  = (6.0)k :. 1  and 5, 	öj  respectively, we 
obtain that 

ellAx) 2  2101(x),'cl1J(x) 2  < 2Kã(x) 

and 

((x) 	261-1(x) 	tilei(x)) 2 	8K(11?(x) 	TelY(x) 	ã'(x)).  

Consequently there exists a constant c(K) independent of a > 0 such that 

I (x) 	c(K )(d-tet(x) / 2 + 	/2) 

for all x E . If we set x =  x0 , then 

* For every/ E 0,(k), we set f(x) = f(x) and f(x) = Lf(x). 
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Iaeil(x0) < c(10(58"(x0) ±  6)2(x0)) 

and combining this with (6.4), we have Ier-u(x0)1 < c(K). Since  cry(x 0) = 
(P*5-,(x o)P)1 1, it is easy to see that I  e4)(x0) f < rc(K). But x0  is arbitrary 
and hence, 

lerAx)i 	rc(K) 	for all x E . 

Thus I 04/(x) — crtAy)1 < rc(K)!x — yi. Letting e 4. 0 , we conclude that 

I au(x) 	o-u(y)1 	rc(K)lx — yi. 

Corollary. If the coefficients of the differential operator (6.1) satisfy 
(i) (x) is twice continuously differentiable, ij = 1, 2, . . . ,  d,  and (ii) 
b(x) is continuously differentiable, i = 1, 2, . . . , d, then the A-diffusion 
exists uniquely. 

7. Stochastic differential equations with boundary conditions 

In the previous section we discussed a class of diffusion processes 
described by second order differential operators. If we consider the case of 
a domain with boundary, a diffusion is usually described by a second order 
differential operator plus a boundary condition. A general class of boundary 
conditions was found by Wentzell [175]. Here we will discuss the construc-
tion of such diffusions by means of stochastic differential equations.*' 
For simplicity we only consider diffusion processes on the upper half space 

d> 2. 
So let D = RfiF = {x =  (x', x 2, . . . , xd); xd >  01,  a D 	E D; 

xd = 01 be the boundary of D and b = {x e D; xd > 0} be the interior 
of D. Suppose we are given a second order differential operator on D 
acting on CI(D):* 2  

1  az f 	d 	 a  f 
(7.1) 	A f(x) = —al] (x) 	(x) E b' (x) 

where au(x) and b'(x) are bounded continuous functions on D and 
(al (x)) is symmetric and non-negative definite. Suppose also we are given 
a boundary operator of the Wentzell type; i.e., a mapping from Ci(D) into 
the space of continuous functions on a D given as follows: 

4" [49], [166] and [169]. 
" C(D) = the set of all twice continuously differentiable functions with compact 

support. 
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(7.2) 

d-1 	af  
Lf(x) = 1  d-1  - 	492f  

T 	aLf(x)  axiaxi (x) + i1 N i(x)  a7ci (x)  

af + a(x) -a?  (x) — p(x)Af(x), 	x 

where au(x), flg(x), (5(x) and p(x) are bounded continuous functions on a» 
such that (crif(x))id.72i  is symmetric and non-negative definite, (5(x) > 0 
and p(x)> O. 

Definition 7.1. By a diffusion measure generated by the pair (A,L) of 
operators given above, or simply (A,L)-diffusion, we mean a system 
{Pz , x e D} of probabilities on (W(D),. (W(D)))* 1  which is strongly 
Markovian (cf. Section 5) and satisfies the following two conditions: 
(i) P z  {w;w(0) ----- x} = 1 for every x e D; 
(ii) there exists a function 0(t,w) defined on [0, co) x W(D) such that 

a) for a.a. w(Px), «0,w) = 0, t i-- 0(t,w) is continuous and non-
decreasing, and 

S to IaD(w(s))4(s,w) = gt,w), for all t .?_. 0, 

b) for each t > 0, w ,--- f6(t,w) is tgt( W(D))-measurable,* 2 

 (7.3) 	f(w(t)) — f(w(0)) — f:(Af)(w(s))ds — E (Lf) (w(s))4(s,w) 

is a  (P$(  W(D)))-martingale for every f E C(D)  and 

(7.4) 	EhD(w(s))ds . fro  p(,(,))4(s,w) a.s.  (P). 

Remark 7.1. Suppose (A,L) and (A' ,L') are two pairs of operators as 
above such that Af(x) =A'f(x) and Lf(x) = c(x)Lf(x) for all ire CI(D), 
where c(x) is a positive continuous function on a D. Then an (A' ,L')- 
diffusion is also an (A,L)-diffusion since 

S to (Lf)(w(s))dgs,w) = E (Lf)(w(s))di(s,w) 

* 1  W(D) = C ([O , co) —* D) = the space of all continuous functions w: [0, co) B t *--0. 
W(t) e D with the topology of uniform convergence on bounded intervals. 
*2  .(W(D)) is the a-field on W(D) generated by cylinder sets up to time t. 
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where At, w) = fro  c(w(s))4' (s, w) and gr satisfies the conditions a) and b) 
of Definition 7.1. Consequently, there is one degree of freedom in de-
fining the operator L. 

Remark 7.2. If we define another boundary operator L' by 

Lf(x) = Lf(x) ± p(x)Af(x) 
(7.5) 	 1 d-1 	 a2 f 	d-1 	a  f 	 af 

=- ,.... 1  ati(x) axi  5  xi  (x) + 	fli(x)-ti(x) + c5(x) Fri (x) 

then the expression (7.3) is given as follows: 

f(w(t)) —f(w(0)) —E Of )(w(s))ds —fro  (Lf)(w(s))(10(3,w) 

= f(w(t))—f(w(0)) _E I b(w(s))(Af)(w(s))ds 

— S to iaD(w(s))(Af)(w(s))ds —E 
:---- f(w(t))—f(w(0)) — $ to lb(w(s))(Af)(w(s))ds 

—E P(w(s))(Af)(w(s))4(s,w) —  f 1 (Lf)(w(s))clAs,w) 

(by (7.4)), 

= f(w(0)—f(w(0)) — f to  Ib(w(s))(Af)(w(s))ds 

_ E (L')(w(s))dØ(5,4 

Thus (7.3) is equivalent (under (7.4)) to the statement that 

f(w(t)) — f(w(0)) — E I b(w(s))(Af)(w(s))ds 

(7.3)' 	
— E (Ef)(w(s))4(s,w) 

is a (Px , A(W(D))) -martingale for every f e C(D). 

Definition 7.2. A continuous stochastic process X--.(X(0) on D is 
called a diffusion process generated by the pair of operators (A ,L),  or simply 
(A,L)-diffusion process, if the probability law of X on (W(D),O(W(D))) 
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coincides with PI (-) = S D  Px (•)/2(dx), where {Pr} is a diffusion measure 
generated by (A,L) and p is the probability law of X(0). 

Remark 7.3. By Theorem 5.1, we know that any system {Pr, xe DI 
of probabilities on (W(D),.g!(W(D))) satisfying (i) and (ii) of Definition 
7.1 and that x 1--- P.  is universally measurable is strongly Markovian 
and hence is an (A,L)-diffusion if it satisfies further the following unique-
ness condition: 

(iii) if In is another system of probabilities on (W(D)„g(W(D))) 
satisfying the above conditions (i) and (ii), then P; = P, for every XE 
D. 

Now we will discuss the existence and uniqueness of (A, L)-diffusions 
by the method of stochastic differential equations. First we will formulate 
a stochastic differential equation which describes an (A, L)-diffusion pro-
cess. For this, we choose a(x) = (o(x)): D -- RdORT and T(x) . 
(T1(x)): aD — Rd - '(3Rs which are continuous and 

(7.6) 	at(x) =--al,(x)o-jk(x), i,j = 1, 2, • • • , d, 
k=1 

and 

(7.7) 	ail(x) = 	 1-S(x)71(x), i, j = 1, 2, • • • , d — 1. 1   

Consider the following stochastic differential equation 

 

, 

dr(t) = A aik(x(0)4(xoDdBk (o + biawygx"dt 

_Fri .z.viwazi(x(t))dmi(t)+,31(x(t))/aD(x(o)do(t), 

i. I, 2, - - • , d — 1, 

dXd(t) = A ol(x(t ))4(x(t))dBk (t) ± bduotwx(t)dt 

±c5(x(t))45(t), 

/aD(x(0)dt=p(x(t))dØ(t). 

(7.8) 

 

  

An intuitive meaning of this equation is as follows. 0(t) is an increasing 
process which increases only when X(t) is on the boundary aD and is called 
the local time of X(t) on  D.  4(0 acts only when X(t) aD and causes 
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the reflection at D. {Bk(t), IW (t)} is a mutually orthogonal*i system of 
martingales such that d<Bk>(t) = dt, k = 1, 2, . . . ,  r,  and d<MNt) = 
dAt), 1 = 1,2, . . . , s, i.e., B is an r-dimensional Brownian motion in 
the ordinary time, and M is an s-dimensional Brownian motion if the time 
is measured by the local time At). The function p(x) represents the rate 
of sojourn of X(t) on the  boundary:  note that p(x) 0 if and only if f or  lap 
(X(s))ds =-- 0 for every t > 0 a.s. In this case, we say that the boundary 
aD is non-sticky; otherwise it is called sticky. 

A precise formulation of (7.8) is as follows. 

Definition 7.3. By a solution of equation (7.8)* 2  we mean a system of 
stochastic processes X = [X(t) = (XV), X 2(x), . . . , Xd(t)), B(t) = (OW, 
B2(t), , Br(t)), M(t) = (M1 (t),1k1 2(t), , Ms(t)), At)] defined on a 
probability space (S2,9,P) with a reference family (9--;),0 such that 

(i) X(t) is a D-valued continuous (Y)-adapted  process, 
(ii) Ø(t) is a continuous (5'1  )-adapted increasing process such that 

AO) = 0 and 

iaD(X(s))4(s) = At), t 0, a.s., 

(iii) {B(t), M(t)} is a system of elements in  '/f' such that <Bk,B- 1>(t) 
bkit, <Bk ,311> = 0 and OW, Mni>(t) = bitn0(t), and 

(iv) with probability one, 

r(t) = 	fto o-ims»./Lims»dBk(s) + fro  bi(x(s))1ims»d, 

+ ± E ,qx(s))ia.(x(s))dmi(s) f:fli(x(8))/aD(x(s))dow 

(7.8') 	 i=  1, 2, . . .  , d— 1, 

Xd(t) = X d(0) 	
$

to alc(X(s))1,5(X(s))dBk(s) 

+sto  beiGios),/,,(40)d, +for e(x(s))dr(s), 

f ro  ia,a(s),d, 
=

sto  

Definition 7.4. We say that the uniqueness of solutions for (7.8) holds 

* 1  With respect to the random inner product < , > of Definition II-2.1. 
*2  Also we call it a solution corresponding to the coefficients [a, b,  T, A, 6, p]. 
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if whenever X and X' are any two solutions of (7.8) whose initial laws coin-
cide, then the probability laws of X.(X(t)) and X'=(r(t)) on (W(D), 
.9(W(D))) coincide.* 

The following theorem can be proved in almost the same way as 
Theorem 6.1. 

Theorem 7.1. Let the differential operator A and the boundary oper-
ator L be given as above and choose continuous a and T satisfying (7.6) 
and (7.7). Then the (A,L)-diffusion Px, x E DI exists uniquely if and 
only if, for every probability p on (D, (D)) there exists a solution of 
(7.8) such that the probability law of X(0) coincides with p and the 
uniqueness of solutions holds for (7.8).  P.  is the probability law on 
(W(D), (W(D))) of a solution X(t) of (7.8) such that X(0) = x. 

Theorem 7.2. We assume for the stochastic differential equation (7.8) 
that 0-, b, T, fl, 6, p satisfy the  following:  a and b are bounded and 
Lipschitz continuous on D, )6' and 6 are bounded and Lipschitz 
continuous on ap and p is bounded and continuous on  D.  Furthermore, 
we assume that a satisfies 

(7. 9) 	add(x) = Er crf(x)af(x) 	c, 
k•=1 

and 

(7.10) 	6(x) c, 	x e ap 
for some positive constant c. Then for any probability p on (D, R(D)) 
there exists a solution X(t) such that the probability law of X(0) coincides 
with p. Furthermore, the uniqueness of solutions holds for the equation 
(7.8). 

Corollary. For a given pair of  operators  (A,L) satisfying (7.9) and 
(7.10), suppose that we can choose a and  'r  for some r and s such 
that (7.6) and (7.7) hold and a, b, f3, 6, p satisfy the assumption of 
Theorem 7.2. Then (A,L)-diffusion exists uniquely. 

Proof of Theorem 7.2. Let c(x) be a continuous function on ap such 
that c, c(x) c2, x E aD, for some positive constants c 1  and cz. 
Then it is easy to see that X = [X(t), B(t), M(t), 0 (t )] is a solution 
corresponding to [a, b, z, fi, 6, p] if and only if = [1(t), *0, At), 
At)} with 1(t) X(t), .§(t) 

1171(0= 0  {N/cms» r id AAA i(t) =f c(X(s)) rids' 0 

* We sometimes call the process X = (X(t)) itself a solution of (7.8). 

x E 8D, 
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is a solution corresponding to [u,b, N/Er, cfl, c(5, cp). Under the assump-
tion (7.10), therefore, we may always assume that c5(x) is normalized to 
be (5(x) 1. 

We will prove the theorem in the following three steps. 
(1 ° ) The case of non-sticky boundary; i.e., p(x) _.. 0 and  o(x) -=-- 1, 

o(x)-=.- 0, k = 2, 3, •• . , r, and bd(x) :..-. O. 
(2°) The case of non-sticky boundary i.e.; p(x) -.,=_-. O. 
(3° ) The general case. 

(1 0 ) The case of p(x) 	0, o-f(x) .._ 1, o(x) ...._ 0, k = 2, 3, ... , r, 
and  bd(x)  -. O. 

First we show the existence of solutions. Let p be a given Borel prob-
ability on D. On a probability space we construct the following three 
objects such that they are mutually independent. 

(i) x(0) . (x 1 (0),x2(0), . . . ,x(0)), a D-valued random variable with 
the distribution p, 

(ii) B(t) = 03' (t),B 2(t), . . . ,B'(0), an r-dimensional Brownian motion 
with B(0) = 0 and 

(iii) /At) . UP(t),h 2(t), . . . ,Ês(t)), an s-dimensional Brownian motion 
with h(0) — O. 

Define At) and Xd(t) by 

(7.11) 	Ø(t) =
10, 	t < a°  : = min {t; BI(t)-Fxd(0)=0} , 

—min(13 1(s)d-xd(0)), 	t>  ao 
(1 0<s<r 

and 

(7.12) 	X d(t) = x4(0) + Bi(t) ± At). 

As we saw in Chapter III, Section 4.2, Xd(t) is a reflecting Brownian mo-

tion on [0,co) and 0(t) is the local time of Xd(t) at 0: At) = lirn 1,„ f 
0 

ICO, a)(Xd(S))CIS. Next define M(t) — (M i(t),M 2(t), . . . ,M3(t)) by M(t) =-- 
j31(93(t)). Set ,97 ..--rtniin, where ,..97 is the u-field generated by x(0) 

, 
and {B(u),M(u)} , t. It is then clear that y3(t),M(t)} is a system of ele-
ments in ../gt" satisfying the conditions in (iii) of Definition 7.3. Con-
sider the following stochastic differential equation for -1(t) = (X 1 (t), 
X2(t) ,  . . .  

DM) = , '' i o-L(I(t), Xd(t))dBk(t) ± W (t), Xd(t))dt 
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(7. 1 3) 	 10(t), 0)di V (t) 	)0' (I(t),0)4(t), 

X' (0) = x'(0), 	 i = 1,2, . , d — 1. 

By Theorem 111-2.1, the solution 1(t) exists uniquely. X(t) = (1(0, Xd(t)) 
is a continuous D-valued process satisfyingf to  ian(X(s))ds = St; /(0)(X d(s))ds 
= 0 for every t 0 a.s. and fto Iai,(X(s))4(s) 	/{0,(Xd(s))4(s) = 
for every t > 0 a.s. In particular, 

1,5(X(t))dBk(t) = dBk(t), 	k = 1, 2, ... r, 

and 

1,5(X(t))dt = dt. 

Consequently 2E. [X(t),B(t),M(0,0(01 is a solution of (7.8). 

Next we show the uniqueness of solutions. The equation (7.8) implies 
that 

dr(t). dBi(t) 4(t) 

and by Theorem 111-4.2, Xd(t) and f3(t) are uniquely determined from 
Xd(0) and k(t) as (7.12) and  (7.11). By Theorem 11-7.3, {B(t), B(t) 
M(0-1 (t))) is an (r+s)-dimensional Brownian motion which is independent 
of X(0). Therefore, the probability law of [X(0), (B(t)), (M(t))] is uniquely 
determined from the law p of X(0). Since the solution 1(t) of (7.13) is 
unique and is constructed as in Theorem 111-2.1, it is clear that the law of 
X=[X(t) =  (At), Xd(t)), B(t), M(t), f5(t)] is uniquely determined from the 
law p. 

(2°) The general non-sticky case: p(x) O. 
First we discuss some transformations of solutions. 
(a) Transformation of Brownian motion. 
Let X.[X(t),B(t),M(0,0(t)]  be a solution on a space (S2,9-,P) with 

(„F) corresponding to the coefficients [a,b,r,fl,0]. Let p(x) = (p/Xx)): 
D — 0(r) be a continuous function defined on D with values in the 
r-dimensional orthogonal group 0(r). Set 

ijk(t) 	pii(X(u))dBi(u), 	k = 1, 2, 

Then /40. (B(t)) is an r-dimensional (9')-Brownian motion (Example 
11-6.1) and = [X(t), M(t), g3(t)] is a solution on (S2,.7-,P) with (..94-;) 
corresponding to the coefficients [5, b, T, fl, 0], where el =  op'.  The trans-
formation X t-  is called a transformation of Brownian motion deter- 



STOCHASTIC DIFFERENTIAL EQUATIONS 	 225 

mined by p and is denoted by X 	2.-E. Clearly X is also obtained from 2-E - 	(a) by transformation of the same type determined by p- ' : 

(b) Time change. 
Let X = [X(t), B(t), M(t), At)] be a solution on a space (C2,..r,P) 

with (Ft) corresponding to the coefficients [ci,  b, r, AO]. Let c(x) be a con-
tinuous function on D such that c, < c(x) < c, for some positive con-
stants c,, c2 . Set A(t) = fro c(X(u))du and denote by  A(u) the inverse of 
t 	A(t). Let 1(0 = X(A -1 (t)), fj(t)=.(fj k(t)) where 13k(t). Po i c(1(u)) 
dBk(A -'(u)), M(t) = M(A - '(t)) and (t) = AA -'(t)). Also set ‘.747 = 
.-9--A-1(0. Then we see at once (cf. Chapter III, Section 1 or Section 4.2) that 

= [X---(0)3(t),R(t),i(t)] is a solution on (17,9 -,P) with (";) corre- 
sponding to the coefficients [c- i i2a,c-'b,r, i6),0]. The transformation 

is called a transformation of time change determined by c and 
is denoted by 2E 	Clearly X is also obtained from 2-E by transforma- 

tion of the same type determined by 	-!« 

(c) Transformation of drift. 
Let X = [X(t), B(t), M(t), At)] be a solution on (S2,..7",P) with (.7;)* 

corresponding to the coefficients [a, b, T, 13, 0]. Let d(x) = (d'(x), d 2(x), 
, dr(x)) be a bounded R'-valued continuous function defined on D 

and set 

p(t) = exp{ gsto  dk(X(s))dr(s) — jA dkg(S))2d4 

Then p(t) is a positive (9;)-martingale and P = p•P is defined by Defini-
tion 4.1. Set i(t) mt), 	M(t), At)], where ffk(t) = Bk(t) 

dk(X(s))ds, k = 1, 2, . . . , r. It is easy to see from Theorem 4.1 that t(t) 
is a solution on (Q,9-,P) with (9re) corresponding to the coefficients 
[a., b = b+o -d, r, 13, 0]. The transformation X — 2-E is called a transfor- 
mation of drift determined by d and is denoted by X 	Clearly X is 
also obtained from by transformation of the same type determined by 
—d;  

With these preparations completed, we will now show the existence 
and uniqueness of solutions in the case p 0. Let a, b, r and /3 satisfy the 
assumptions in Theorem 7.2. Then there exists p(x): D 0(r) such that 
each component ofp(x) is Lipschitz continuous and 

* We may assume without loss of generality that (S2, Jr) isa standard probability 
space. 
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a(x)p(x)-'* 	* 	* - • • , 

\iad(x)!, 0, 0, • • • , 0 

where at(x) = (o -k(x))kr.. 1  is the i-th row of a(x) and 

1.4(x)i =  It  {°1,00}2 , 	-=••• 1, 2, . 	, d. 

Indeed, p L (x)= o-d(x)I lo-d(x)1 : D 	Sr-4  =  Ixe R r  ;I XI = 11 is Lipschitz 
continuous. We choose pk(x): D — Sr-1 , k = 2, 3, . . . , r such that 
Pk(x) is Lipschitz continuous and the system [pi(x), P2(x), - • • , p, (-'c)] is 
orthonormal in R r  for every x E D. Such a selection of pk (x) is always 
possible. Then p(x): D 0(r) whose k-th row is pk (x), k = 1, 2, 
r, is what we want. 

Next set c(x) =  I o-a(x)  1 2  and define d(x) = (d'(x),d 2(x), 	, clr(x)) 
by 

dl(x) --, --bd(x)/c(x) and di(x) 	0, i = 2,  3,  . , r. 

Let X be a solution corresponding to the coefficients [o-, b, 	0], If we 
operate on X by the successive transformations 

3E 

 

(a)(  b) 	(c) 
•

i   
d 

then X3 is a solution corresponding to the coefficients [5, 5, 	0], where 
o  (o-p-1 )1,1 c ,  5=  c-ib dd, =  r and = 

Clearly eff(x) 	1, 61(x) 	0, k = 2, 3, ... , r, and gd(x) 	O. By 
the result of case (1 0 ), the law of 2E3 is uniquely determined from the law 
p of X(0). Since 

(c) 	(b) 	(a) 
Al 	c 	p-1  

the law of X is uniquely determined from p. This completes the proof of 
the uniqueness. The existence of solutions is also clear. We know the 
existence of a solution 2e3 corresponding to [d,  5,  ff, 0]. Consequently X 
is obtained by the above transformation. 

(3°) The general case. 
Let [a, b, 	pl satisfy the conditions in Theorem 7.2. Construct a 

solution X=  [X(t), B(t), M(t),  95(t)] on a space (12,.."--,P) with (.9";) cor- 
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responding to [a, b, 13, 0]. Taking an extension of Q if necessary, we may 
assume that there exists an r-dimensional Brownian motion B* = (B*(t)) 
on Q which is independent off. Let A(t) t ± fro  p(X(s))4S(s) and  Al(t) 
be the inverse of t A(t). Set .1(t ) = X(A - '(t)), ii(t) = Iti(A-J(t)), 
fr(t) = ftS(A - '(t)) and ..9-; = 57,-1 (,)  V {B(s); s 	t} . Also set 

/1(t ) = B(A -1 (t)) 	/aD(2(s))dB*(s). 

Then t = 	(t),i(t)] is a solution corresponding to [cr,b,T,Ap]. 
This can be proved easily if we note the following relations 

A -'(t) =st  h(X(s))ds and sc  /aDa(s))ds = p(2(s))4(s). 

These are the consequences of 

./b(X(s))dA, 	
0 
 iX(s))ds = t 

and 

st  41,(X(s))dA s  = fr  

0 

Next we show the uniqueness of solutions. Let t = ['NO, ./3-(t), iff(t), 
(t)] be any solution corresponding to [a, b, 'r,  fi ,  p]. Set :ei(t)--- St°  h(1(s)) 

ds. Then t 	I(t) is strictly increasing a.s. Indeed if this is not true, 
there exist 0 < r1  < r2  such that if we set 	= {co ;I(r1)=-- 2(r2)} then 
P(Q,1 ,„) > O. But 

Qr1Pr2 {r2 — ri 	r 2  hpa(s»ds = 
 5

r2  Pa"  (*CIAO} 
a. s. 	 rl 	 ri 

{ fr2  di(s) > 
a. S. 	ri 

and 

c 145(1(s)) =  O for all s E [r 1 , r2]} 
a. s.  
cltr crica(s))/b(I(s))diik(s) 0 
0.5. 	k1 r and 

 r
bd(ji(s))115(if(spds = 0 . 

ri 

Therefore, 
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Qrl ■ r2 c  {Id(r2) = if ed(r)+ Ar 0 — (ri) > id(ri)} 
a. s. 

E  {1(r2) E .b}.  

But this is clearly a contradiction. 
Thus the inverse 2-1(t) of t 1-- I(t) is continuous. Set X = [X(t) --.-. 

1(1- '(t)), B(t)= f oli-1(t)  1,5(g(s))a(s), M(t)=2(ii- '(t)), At) = s.6-(1-4 (t))]. 
Then it is easy to see that I is a solution corresponding to [u, b, T, 13, 0]. 
Also, 

f t  0 1 ha (s))ds -I- E zalc(s))ds. 2(0-FE Pa(s))6(s) 

and hence 

1-1 (t) = t + E p(X(s))dqS(s). 

This implies that fE is obtained from X as above. Since the law of Y is 
unique, this implies that the law of i is also unique. 

\ 

Thus, we have constructed a general class of (A ,L)-diffusion processes 
by means of stochastic differential equations. But we assumed that 6(x) > 
0 everywhere on aD and normalized it so that 6(x) a-  1. From a proba-
bilistic point of view, this assumption is too restrictive and should be 
weakened to the condition that c5(x) + p(x) > 0 everywhere on ap. 
Roughly speaking, 6(x) > 0 implies that there is reflection at x and p(x) 
> 0 implies that there is sojourn at x. Therefore it is intuitively clear that 
6(x) = p(x) = 0 is impossible but 6(x) = 0 and p(x) > 0 may be allowed. 
We can give another method of constructing (A,L)-diffusion processes 
which covers the general case of 6(x) ± p(x) > O. This method, which is 
similar to the one given in Chapter III, Section 4.3, consists in piecing 
together excursions from the boundary to the boundary. As we shall see, 
the probabilistic structure of the diffusion is clearly revealed by this type 
of construction ([1701, [174] and [229]). 

For simplicity, we consider the case of A = 4/2 leaving the general 
case to [174] and [229]. So let D ---- .14, A = 412 (i.e., au(x) = 6u, 
bg(x) = 0) and let L be given by (7.2). We assume that 

(7.14) 	inf [p(x) ± 6(x)] > 0. 
xGaD 

Assume furthermore that there exists T(x) = (11(x)): ap — dR —I 0 Rs 

such that 
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(7.15) 	cru(x) = g 1-1(x)14/(x), x e ap, i, j = 1, 2, ... , d — 1, 

and assume that all the functions Ix), /3'(x), p(x) are Lipschitz continuous 
on aD. 

Let W(D) be the totality of all continuous functions w: [0, 00) — D 
with w(0) = 0 such that there exists  o(w) > 0 having the property that if 
0 < t < o(w), then w(t) e h and if t > cr(w), then w(t) = w(cr(w))  E aD. 
Let . g (71/-o(D)) be the  ti-field generated by Borel cylinder sets and let n 
be the o--finite measure on (2ro(D),R(V(D))) defined as follows. In 
Chapter III, Section 4.3, we defined the path space V+ and the ci-finite 
measure n+ on (7/"+,.g(W'+)). Let  P0  be the Wiener measure on Wrl 
starting at 0, and define n as the image measure of Po  xn+ under the map 

Fv0 -1 x v + (co, w) 1-- (a); (..) , w) eVo(D) 

where co;(w)  is defined by  0);(w)(t) = co(t A a(w)). If we set 

d-I 1 	/ (x )2\ I1 1 (xd)21 
IC+ (t  'x)  = a A/Tr -rt exP 	-Y ) . N 1 7 iXd  "P  k —  2t  - 1 

for t >  0,  x =  (x', x2, . . . , xd)eD, 
and 

p° (t,x, y) = dri 	1  exp ( (xi  — Y')2 ) 1— (exp ( (Xd  — Yd)2 ) 
il ,1 23-rt 	2f 	,,./ 27rt 	2f 

( ("2t YT )) 

then n is the unique measure on ((D), .g ((D))) such that 

n({w; w(ti) e Al, w(t2) E A2, • • - , WOO E AD 

=  f K+(ti, xi)dxi SA2 P°  (t 2 —  t1,  xl; X0dX2 f ..• 
Ai 	 A3 

X  f p° O. — t n_ i , x„... i , X0dX, 
An  

for 0 < t1  <t2  < • - - < t„ and A, e ‘g(f)). Let 7,-(D) be the totality 
of continuous paths w:  [0, 00) — D such that  w(0) e 3D  and w(t) = 
w(t A o-(w)), where  a(w) = inf {  t>  0; w(t) = aD). Let 0 denote the con-
stant path 0(t) = 0 E 3D. Let us define a mapping Tc : Vo(D) — W/O(D) 
U { 0 } for every c _>., 0 by 

— exp for t > 0, x, y e D, 
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cw(t/c 2), 	C>  0, 
(7.16) 	(7' cw)(t) = 

0, 	 c = 0 

and let us also define a map 

45: apx V(D) D (x, w) 	45(x, E 27 (D) 

by 

(7.17) 	45(x,w)(t) 	x 	(T6(,)  w)(0, t > 0. 

Clearly 0(x,w)(0) x and o-[0(x,w)] = 6(x) 2a(w). Let us define 0: at) 
X51(70*(D) D (x, 	93(x,w) EaD by 

(7.18) 
gx,w) = 0(x,w)(a[0(x,w)j) — x 

= 6 (x)w(cr(w)). 

It is easy to see that for every x, y E ap 

(7.19) 

f "0(D)  n ((w):11 
(x,w) — gi(Y,w) i 2  n(dw) 

(x) 3(Y)1 2  f 	*OD 1 2  n(dw) 
Ir 0(D) n Ecr(w)51) 

1 ) 	 .- 1 6(X) — gY) 1 2  * (d — 

Klx - y1 2. 

Let us take the following on an appropriate probability space 
P) with a reference family VP; 

gt CF;; an increasing family of sub u-fields of  97:, and a 
d-dimensional (g r)-Brownian motion B(t) (kW) with B(0) = 0, 

(ii) an s-dimensional  (Y;)-Brownian  motion B*(t) 	(ffl(t)*) 
and 

(iii) an  (Y;)-stationary  Poisson point process p on (V (D),R (Wc; 
(D))) with the characteristic measure n. 
We shall now construct a path function of an (A,L)-diffusion process. Let 
x E D be given as the initial point. Firstly, we set 

* Note that n( {w;  cr(w) e dt, w(o(w)) e dx} ) 

= (2n0)-112c/t(27rt) (d-1)  /2  exp (— 4--it  dx,  t>  0, x e  D.  
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(7.20) 	Xx(t) = x B(t) 	for t < ao , 

where uo  inf It 0; x B(t) e aD). Set = Xx(o-o). Then ç is an 
(9-)-measurable aD-valued random variable. Secondly, we solve the fol- 
lowing stochastic differential equation of jump type for the process (t) = 

on aD: 

ci(t) 	0, 

Nt) = + 	
0  fig(0)11/3`(s)* + fli((s))ds 0 

(7.21) fdig(s-), 	Stp(dsdw) 

w)1, 6,,, >11  N,(dsdw), 

i 	1, 2, . . . , d 	1. 

(7.21) is a stochastic differential equation of the jump type which will be 
discussed in Section 9. Noting the Lipschitz continuity of r and 13, (7.19) 
and that n(-{w; u(w)> 11) = f7(27rt 3)- " 2dt < co, we can apply Theorem 
9.1 to conclude that 4t) is determined uniquely as an  (F)-adapted right-
continuous process on aD with left-hand limits. 

Thirdly, set 

(7.22) 

t+ 
A(t) = co  + 	010((s-),w)]Np(dsdw) 	pWspds 

0 	0 (D) 
rr 

= 	E (5(4s-))20TP(s)1 	Pg(s))ds. 
354 se Dp 	 0 

It is easy to show using (7.14) that A(t) is an (...7;)-adapted right-continu- 
ous process such that t 	A(t) is strictly increasing and lirn A(t) = 00 

t °° 

a.s. For every t > 0, there exists a unique s > 0 such that A(s-) < t < 
A(s). If s = 0, i.e., 0 < t < co, Xx(t) was already defined by (7.20). If 
s>  0 and A(s-) < A(s), then this implies that s E D, and we set 

(7.23) 	Xx(t) = 45(4s-), p(s))(t — A(s-)). 

If  s>  0 and A(s-) = A(s), then 4s) = 4s-) and we set 

(7.24) 	Xx(t) = 4s). 

In this way we have defined a stochastic process Xx(t); it is obvious 
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by the way of construction that 	Xx(t) is continuous a.s. The remain- 
ing problem is to show that Xx(t) is an (A,L)-diffusion process and it is 
unique. We can show that this Xx(t) satisfies (7.8) by using the results 
in [234] or, we may argue as follows: We can show the existence of 
solution X(t) to (7.8) by a similar tightness argument as in Section 2. 
We can show, by decomposing any such solution X(t) into excursions 

X(t), t e ea } where ea  is one of intervals (A(s-), A(s)) with A(t) = 
g5- '(t), that X(t) is obtained as explained above from a Poisson point 
process of Brownian excursions p and auxiliary Brownian motions B(t) 
and B*(t). From this we can conclude the uniqueness of solutions to 
(7.8) and, at the same time, that the above constructed process Xx(t) 
actually satisfies (7.8). For the details, we refer to [229]. 

8. Examples 

Example 8.1. (Linear or Gaussian diffusions). Let a = (o-L) be a constant 
dx r-matrix and fi --- (fit) be a constant dx d-matrix. Set bi(x) 

E xxic, x 	,x4) e Rd. Consider the following stochastic 

differential equation 

(8.1) 	dr, = t oldge bt(X,)dt, i = 1, 2, 	, d, 
Ic•-1 

or in matrix notation, 

(8.1) 	dX, = oy1B, 13X,dt. 

We know by the general theory (Theorem 3.1) that the solution exists 
uniquely; it is given explicitly as follows. Let 

etfi 	t fik  
ko.0 k 	* 

Then the solution X(t) of (8.1) is given as 

(8.2) 	X(t) = efit(X(0) 	odB(s)), 

or in component form, 
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d 	 d r 

XV) E (efi 	E r)i, IX (0) ± E 	oldBk(s)) 
1-1 	 ln.lkIJO 

The proof is easily seen from the relation 

d(e-  fir X(t)) = e -fit(dX(t) 	fiX(t)dt) = e -Pt adB(t). 

In particular, if the initial value X(0) is Gaussian distributed, then 
X(t) is a Gaussian process.* For example, if d = 1 and 

(8.3) 	dX(t) = dB(t) — yX(t)dt 	(y > 0), 

X(t) is solved as 

(8.4) 	1(t)  = e"."(X(0) 	o eYldB(s)). 

(see also Example 2.1 of Chapter III, Section 2). Suppose that 1(0) is Gaus-
sian distributed with mean 0 and variance az. Then the covariance of X(t) 
is given as 

E(X(t)X(s)) = e -Y (t+*)  o-2 	.1%  e-" , (t-u) e-Y (3--")  du 
0 

(„2 	(s+s) j_ 	(t—s) 

2y 	' 2y if t > s. 

In particular, if o-2  = 1/2y, X(t) is a stationary Gaussian process [18]. 
The equation (8.3) is known as Langevin's equation and the solution 

X(t) in (8.4) is known as Ornstein-Uhlenbeck's Brownian motion. 
A slight general equation 

(8.5) 	dX(t) = (aX(t) b)dB(t) (cX(t) d)dt 

can be solved in a similar way where a, b, c and d are real constants. First, 
we note that (8.5) is equivalent to 

dX(t) = aX(t)odB(t) — 4-a(aX(t) b)dt bdB(t) 

(cX(t) d)dt 

(8 . 6) 	= aX(t)odB(t) (c 4-a 2)X(t)dt bdB(t) 

* By the definition of solutions, X(0) and B(t) are always independent. 
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(d — 	dt. 

If M(t) = exp {—aB(t) (c — -12ta2)ti, then 

dM(t) = —aM(t)odB(t) — (c 4-a 2)M(t)dt 

and consequently 

M(t) - '0dM(t) 	[adB(t) (c — 4-a 2)dt]. 

Now (8.6) is equivalent to 

dX(t) = —X(t)M(t) - i dM(t) bdB(t) (d — 4.ab)cit 

d(M(t)X(t)) =-- bM(t)odB(t) (d — ab)M(t)dt. 

Therefore X(t) is solved uniquely as 

(8.7) 	X(t) = M(0 -1 [X(0) b 
 f 

 M(s)odB(s) (d —f:M(s)ds] 

where M(t) exp I— aB(t) (c — 4.a2)t}. 

Similarly if we consider a multi-dimensional stochastic differential 
equation 

dr(t) =  Ê  (± L';iXi(t)-P 4)0 dBP(t) +(± Lf )1r(t)d-c4)dt 
P=1 	 J=1  

i = 1, 2, . . . , d, 

where Lipp   i, j = 1, 2, . . . , d, p = 0, 1, . . . , r, are constants such that 
= 0 for i > j, then the solution is given by 
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X d(t) = Md(0-1 (X d 	Md(s)odrid(s)) 

d 

with /d(t) = E cf,BP(t) egt and 
p= 1 

X(t ) 	 A(s)041(s), 

with 

rif(t) = E 	xi(s)oegi(s) + E cl.BP(t) CPt, 
j=1-1-1 	0 	 p 1  

d ft 

i = d 	1, d — 2, ... , 1. 

Here 

Vi(t) = 4BP(t) + Doit 
p=i 

and 

Mt(t) = exp (— ft(t)), 	4f  = 1, 2, .. . , d. 

In this case, the Lie algebra te(Lo,LI , 	,L) generated by vector fields 

Lip = 	 p X j 	 , 

t=1 j=1 
p = 0, 1, . 	, d, 

is solvable. A general result for the representation of solutions in such a 
case was obtained by H. Kunita [96]. 

Example 8.2. Let a, c, d be real constants such that a>  O. Consider 
the following one-dimensional stochastic differential equation: 

(8.8) 	dX(t) = (2aX(t)V IVI 2dB(t) (cX(t)± d)dt. 

Since the coefficients a(x) = (2ax V 0)' / 2  and b(x) = cx + d satisfy the 
condition of Theorem 3.2 and also the growth condition (2.18), a global 
strong solution X(t) exists uniquely for every given initial value 1 (0). If 
d> 0 and X(0) > 0 	then X(t)> 0 for all t > 0 a.s. Indeed, in the case 
d = 0, it is obvious that X(t) 	0 a.s. if X(0) 0 a.s. by the uniqueness of 
solutions. Setting u = inf {t;X(t) = 0} we see that f(t) = X(t+u) is a 
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solution of (8.8) with 1(0) = 0 on the space (0 = {co; a(co) < co}, fir- 
P = P(. IL)) and hence 1(t ) 0 a.s. on  Z. This implies that 

X(t) X(t A  ci)  a.s. and consequently, X(t) > 0 a.s. if X(0) > 0 a.s. In 
the case  d>  0, set o-_, = inf {t;  1(1) = —e} where e > 0 is such that 
— ce +d > O. Assume that P(o-_, < co) > O. Then, with probability one, 
if we take any r < such that X(t)  <0 if t e (r, we have 

dX(t) (cX(t) + d)dt 

on the interval (r,o-_e) and hence t 	X(t) is increasing on this interval., 
This is clearly impossible. 

Thus the solution of (8.8) defines a conservative diffusion process 
{P.} on [0,00) in the case d > O. It is the L-diffusion process where L is 
the operator 

(8.9) 	Lf(x) = ax lx-21f(x) + (cx + d).-c5--lbcf(x) 

acting on C,i([0, co)). 

We shall now prove the following formula: 

—dies 	 Aectx  (8.10) 	Ex(e-lw (t)  ) =[-- (e" — 1) + 1] 	exp 	a2 	I. 
(e" — 1) ± 

(If c = 0, we understand that +(e" — 1) = t.) Indeed by Itô's formula, 

with respect to Px  we have that 

u(t,w(t)) — u(0,x) = a martingale + Sto  rdi +
j 

 Lu(s,w(s))ds 

for every u(t,x) 	c7.2([0, co) x [O, co)). * Noting that the function v(t, x) 
av in the right-hand side of (8.10) satisfies that 79i  = Lv and v(0+, x) 

= e 	we set u(t,x) =-- v(t o  t,x) for fixed t o  and apply Itô's formula 
for u(t, x). Then v(to — t,w(t)) — v(t o ,x) is a Px-martingale and hence 
Ex[v(t o —t,w(t))] = v(t o ,x). Letting t = to, we have Ex(ely (4) 
v(to , x). 

* C([0, co) x (0, co)) s u(t, x) implies that all the derivatives of u up to the first order 
in t and up to the second order in x are continuous and bounded. 
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Let  x>  0 and set co  = inf (t; w(t) =  O). Then 

(8.11) 

	

Px(0-0  < oa) > 0 	if 0 < d < a 

	

=1 	if 0 d a and 	0 

and 

(8.12) 	P.,(0-0  = co) = 1 	if d > a. 

For the proof of (8.11) and (8.12), set 

x 	ry cz + d  dz I dy  = e/a exp [— 
1 	j 	az 	 1 

s(x) = exp I— -dla 
dy 

and 

cn + d  dz 
x(x) 	exp [ — Y cz ± d  dz] I exp [ S i  az 	 an 	az 

It is easy to see that s(0±) = —oc  if and only if d > a and s(co) = co if 
and only if c < 0 or c = 0 and d < a. Note also that K(0+) < oo if d < a. 
Now the assertions follows from Theorem VI-3.1 and Theorem VI-3.2. 
We also remark that the boundary x = 0 is regular* and reflecting if 0 
d < a, and exit and absorbing if d = 0. If d > a the boundary is entrance, 
and it is easy to conclude that 

(8.13) 	Po(w(t) > 0 for all t>  0) --- 1. 

Indeed, letting 2 t co in (8.10), we have Po(w(t)> 0) = 1 for every 
t>  O. Combining this with (8.12), we can conclude that 

Po(w(t s) > 0 for all s > 0) = 1 for every t>  0. 

Since t is arbitrary, this implies (8.13). 

Example 8.3. (Bessel diffusions). For a > 0, let La  be the differential 
operator on [0, co) defined by 

1 d 2 	— 
(8.14) Laf(x) = — [ ix—  ) a 1 d 

— 2 dx2 	x dx 

* Itô-McKean [73]. 
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with the domain 

(La) = E C([0,00)); for some constants 0 <a1  <a2  and 

(8.15) 	 f(x) =CX 2 if x 	[0, al ] 

and f(x) = 0 if x OE[a2,00)} . 
For f 	(La), we set Lai' (0) c (a— 1) so that L a fe Cb( (0,00)). 

There exists a unique conservative diffusion process generated by the ope-
rator La  which is called the Bessel diffusion process with index a. Bessel 
diffusion processes are essentially a particular case of the diffusions disc-
ussed in the previous example. Let 

(8.16) 
La  fix) = 2x 12, f(x) + a f(x) and c 

..9". (ra) = Cf-(x)=f (Irc ) ; fEffr (La)} . 

Then an fa-diffusion {P.,}„ E[0,.,)  exists uniquely. Indeed, the diffusion of 
Example 8.2 in the case a  =2,  c = 0 and d = a is clearly an ra-diffusion. 
Conversely, by the same proof as in Theorem 6.1, we can prove that if 
tl?)1  xeco..) is 1", a-diffusion then IX(t, w) = w(t)} is a solution of equation 
(8.8) for a = 2, c =  0 and d = a with X(0) = x. By the uniqueness of solu-
tions of (8.8), we can conclude that the f a-diffusion is unique. It is easy to 
see that 

(8.17) 	(.1,-„f)(x2) =  (La  f)(x), 	OE_r7 (La) 

where f(x) = f(AT). Now we can conclude that the La-diffusion 
{Pla } xEco,œ )  is unique and fli) is the image measure on W([0,00)) of the 
measure P,(,42')  under the mapping 

W([0, co)) w 	 We,co», 

where the path w is defined by 	w (t) = ,/w(t). That is, the Bessel 
diffusion  X(t) of index a starting at x is obtained as  X(t) = A/371,W, 
where Ye is the unique solution of 

idY(t) = 2(11t) V 0) 1 2dB(t) adt 
(8.18) 

Y(0) -,- x2. 

By (8.10), we see that 
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itx2 
(8.19) 	Ela) (e- lw (" 2) = (2.11 	1)-6" 2  exp 

22t 	1) .  

Inverting the Laplace transform, we see that 

E?) (f(w(t))) f:p<a)(t, x, Af(AdY, 

where 

(8.20) 	p (") (t, x, y) 	
exp [—(x2 y2)I2t]

t (xy yr12-1 	_ a 	cf 	-t--) -1 	(x 

X 	
( )

2n 

( 2 )
9  c° 

7=1 n!Fo.) 	n 	1) 
and 4(x) 	 -2-  	is the modified Bessel function. 

We can prove an interesting property of family of Bessel diffusions by 
using equation (8.18). Let B i  and B2 be two independent Brownian motions 
and a l  and az  be positive constants. Consider the equations 

IdY,(t) = 2(3'1 (t) V 0)' 2c/B,(t) 	a i d/ 

I Y1 (0) =  y E [0,co) 

and 

f dY2(t) r= Y2(t) V OY /2dB2(t) a2dt 

1 Y2(0) = Y2 E Plc°). 

Set NO = Y1(t) Y 2(t) and 

r, 	
Y2(S) 	dB2(S).* 

r, 	Y1(s) 	dims) + j o v y,(s)+ Ns) No= J ov Yi(s)+ Y2(s) 

Then B3(t) is a Brownian motion by Theorem II-6.1 and 

1dY 3(t) =, 2(Y 3(t)V 0) 1/3c1B3(€) 	(a 1 	az )dt 

Y3(0) = Y + Y2 •  

Thus the law of Y3 is P ((;;-1-1? )  . Consequently, if Xa(t) and  X(t) are mutually 

* We know as a consequence of (8.10) that P(1' AO> 0) = 1 for every t>  0. 
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independent Bessel diffusions of index a and )6 respectively, ,j1Xcr(t)1 2 
 1Xfl(t)1/ is a Bessel diffusion of index a + /3. In particular, if a = d, d 

1, 2, ... , XOE(t) can be identified with the radial process of d-dimensional 
Brownian motion. See [73], [147], [168] for further information on Bessel 
diffusions. 

Example 8.4. (Brownian excursions)» Let  T>  0 be fixed. Consider 
the following stochastic differential equation 

(8.21) 	
1 dX(t) = 2( 1(t)V 0)" 	

2X(t) 
2dB(t) ± (3 T—L—t)dt 

X(0) = O. 

This is an equation similar , to (8.18). Hence it can be shown that there 
exists a unique solution X(t) for t e [0, T) and that 

(8.22) 	P(X(t)> 0 for all t e (0, T)) = 1.* 2  

Furthermore, X(t) defines a time-dependent Markov process. To be pre-
cise, for 0 < s < T and x E [0, co), let rvs,x  be the totality of all continu-
ous paths w: [s, T) D t w(t)E[0, co) such that w(s) = x and w(t) > 
0 for all t e (s,T), .g(W) be the a-field on W,„ generated by Borel 
cylinder sets and 0,( s < t < T, be the sub ti-field generated by 
Borel cylinder sets depending only on the interval [s, t]. Let .P0,0  be the 
probability law on ( W010, 0( W0,0))  of the solution X(t) of (8.21) and more 
generally fi,. be the probability law on ( Ws ..g(K,o) of the unique solu-
tion {X(t)} 7) of 

(8.23) 	
) dX(t) = 2( 1(t)V 0) 112  dB(t) ± 

(3 2X(t 
-t/ 

X(s) = x. 

The Markovian property of  P00 is now formulated as follows; 
for 0 s < t and f e B([0, 0:)),* 3  

(8.24) 	to,o[f(w(t))  I R$( Wo,o)] = ts, (s)[f(w 1 (t))] a.a. w (Po,o). 

More generally, for 0 < u  <s < t, x e [0, co) and f e B([O, co)), 

*1 Mt 
*2  To prove (8.22) rigorously, apply the comparison theorem (Theorem V1-1.1) to equa-
tion (8.8) with a = 2, c =  0,2 < d  < 3 and X(0) = 0 and equation (8.21). 
*3  B([0, co)) is the totality of all bounded Borel measurable functions on [0, co). 
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(8 . 25) 	f..x[f(w(t))i 	FV)] 	LAW (t))] a.a. w 

The proof of the above can be given as in Section 5 using the uniqueness of 
solutions of (8.23) for every s and x. 

Let Ps,„ be the image measure on (W x,,g(Ws , x)) of the measure 
under the mapping W2 w 	w E W 	the path 
is defined, of course, by ..„/ w (t) = 	Then it is obvious that the 
Markovian property (8.25) also holds for  {P,,,}.  

Set 

(8.26) x, y) — 	 - t (exp (— 2t y)2) exp 	Y)2 \1 
k 	2t 	J/ 

t > 0, x, y 	[0, co), 

(8.27) 	K(t, x) = AI —2 x exp ( 
X2 

nt3 	
— 	t > 0, x E [0, co), 

and 

K(T t, y)
p 	s, x, y), K(T — s, x) 

if 0 < s < t < T, x, y (0, co), 

in(T —  K(T — t, y)K(t s, y) 
1/ 	2 

if 0 <  s<  t  <T, x=  0 and y > 0. 

We shall show that for every x > 0 and s > 0, 

P,,x {w; w(ti) E dXi, w(t2) E dx2, . . . , w(t) e dx.} 

	

(8.29) 	= p(s, x; t1, xl)P(ti, x1; t2, x2) 	- 	xn-i; tn, xn) 

dx 1 dx2  - • • dx„, 

for every s < t1 < t2  < • • • <  t  < T. It is sufficient to Prove that 

	

(8 . 30) 	E.v,xif(w(t))] = 	)c; t, Af(y)dY, 

0 s < t, x E [0, co), f E B({0, co)), 

(8.28) p(s, x; t, y) = 

since (8.29) is obtained from (8.30) by successive applications of the 
Markovian property (8.25) for {P3 }. Set, for 0 s  <t  < T, 
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u(s, x; t) = 0  p(s, x; t, y)f(t, y)dy, 

where f(t,y) is a bounded smooth function. Then we can verify by direct 
calculation that u(s,x; t) satisfies 

(8.31) 

au, 
— 	x- t) as " 

11  a2 
aTc2 (Ix T 

x )6 
s  rd. u(s,x; t), 

s E (0, t), x e (0, co), 

lim u(s, x; t) = f(t, y). 
s  T r. x-"j'  

If we set 

x; t) = f ocd P(s) t,  YVV, Y2WY, 

12(s, x; t) satisfies 
du 	 62 	1 a) 

--- ys.,(s, x; 0= 12x-6- 2— + (3— Ts ax2 	— ) .Eci ll(s' x; t)  { 
(8.32) 

By (8.32) and Itô's formula, we see for each .r < T that [s, z) D t 
4(t, x(t); I-) is a martingale if X(t) is the solution of (8.23). Hence 

E(a(t, X(t); z)) = û(s, x; z) 

for every t e [s, -r). Letting t t -r 

Eff(r, X(T))] = R,,, x[f(T, w(r))] = a(s, x; 

Consequently 

Es.x[f(r, w(T))] = 4.,2[fir,ilw(r))] =  j /As, x; Ans-, ywy 
Jo 

and (8.30) is proved. 
It is immediately seen from (8.29) that 

P0,0 {w; w(ti)  e  dxl, w(t2) e dx2 , 	, w(t) E dx„} 

lim a(s, x; t) = f(t, y). 
T  t, x-7 
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= P0,0 iw ; w(T ti) E dxl, w(T — t 2) e dx2 , 	, 

w(T — e dz.} 

-for every 0 < t,  < t2  < 	< t„ < T. This shows that P010  is invariant 
-under the time inversion w 	W, where is defined by ii,(t)= w(T — t). 
From this, we can conclude that 

(8.33) 	Po , o lw; Iim w(t) 	--- 1. 
tjT 

Hence P0, 0  may be regarded as a probability on the space W0.0 = 
fw; 10,  TI D t w(t) is coninuous, w(0) = w(T) = 0 and w(t) > 0 for 
t OE (0, T)} . 

Example 8.5. (Pinned Brownian motion). 
Let X(t) be a one-dimensional Brownian motion such that X(0) = O. 

For fixed to  > 0 and x, y e  R',  define the process Xxw' = (XxtchY(t))0, 0  
by 

(8.34) 	XT.Y(t) = x X(t) 	(—X(t o) (y — x)) 

= x —to  (y — x) 	* 

It is easy to verify that the probability law of Xxrc''Y coincides with 
EV' w(to) = where Px  is the Wiener measure starting at x. The 
process X°''  is called a pinned Brownian motion. Consider the following 
stochastic differential equation 

dX(t) = dB(t) — Y X(t)  dt 
(8.35) 	 t — to  

X(0) = x. 

Clearly the solution X(t) exists uniquely for t e 10, to). By (8.35) we have 

X(t)  
(t — to)d(

v  t 	to - )— dB(t), 

and hence X(t) is solved as 

* The process Xteis sometimes called the Brownian bridge. 
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dB(s) (8.36) 	X(t) = x + -1- (y — x) (t — to) f — to 
t < to . 

to 	 0 s  

It is now easy to identify the process X(t) with Xnt). Both /PAO and 
dB(s) (t — to) — are centered Gaussian processes with the covariance 0 s 	to  

r(s, t) 	t A s -L9  . to  

Thus the equation (8.35) is the stochastic differential equation deter-
mining the pinned Brownian motion Xxto. Y. 

9. Stochastic differential equations with respect to Poisson point 
processes 

So far we have only considered stochastic differential equations with 
respect to Brownian motions. For such equations, the solutions are always 
continuous processes. We can also consider more general stochastic differ-
ential equations* which include Poisson point processes as well as Brown-
ian motions; in this case, however, the solutions are usually discontinuous 
processes. For simplicity, we consider such general equations in the case 
of the time-homogeneous Markovian type. 

Let {U, Oul be a measurable space and n(du) be a a-finite measure 
on it. Let U0  be a set in Ai such that n(U\Uo) < oo . Let  a(x) = (o-L(x)) be 
a Borel measurable function Rd — Rd C)  R',  b(x) = (bt(x)) be a Borel 
measurable function Rd — 

 Rd,  and f(x, u) = (ff(x, u)) be a  MR ")  x 
Ou-measurable function Rd x — Rd such that for some positive con-
stant K, 

(9.1) 	110-(41 2 	f u)11 2n(du) Ç K(1 + 1x1 2), x E 

Consider the following stochastic differential equation 

r(t) = Xi(0) 	sto Ulc(X(s))dr(s) 	0 11(X(s))ds 

(9.2) 	 fi(X(s–), u).1 t,o(u)$„(dsdu) 
0 U 
t+ 

+  I o  I uft(gs—), u)lu, u0 (u)N „(dsdu), i = 1, 2 	d, • • • 

* They are also called stochastic differential equations of the jump type. 
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where B = (Bk(t)) is an r-dimensional Brownian motion, p is a stationary 
Poisson point process on U with characteristic measure n and Np  and 1-■7;, 
are defined in Chapter II, Section 3. A precise formulation is as follows. By 
a solution of the equation (9.2), we mean a right continuous process 
X = (X(t)) with left hand limits on R 4  defined on a probability space (Q, 
...04-,P) with a reference family (Ft) such that X is (F)-adapted  and there 
exist an r-dimensional (9;)-Brownian motion B = (Bk(t)) and an  (Y)-
stationary Poisson point process p on U with characteristic measure n such 
that the equation (9.2) holds a.s. 

Theorem 9.1. If a(x), b(x) and f(x, u) satisfy in addition to (9.1) the 
Lipschitz condition 

(9.3) 	lia(x) — a(Y)1[ 2 	lib(x) — b(Y)11 2 uo 	
—f(y, u)I1 2n(du) 

Klx 	 x, y Rd, 

then for any given r-dimensional VP-Brownian motion B=(Bk(t)), any 
VP-stationary Poisson point process p with characteristic measure n and 
any Rd-valued ,7(;-measurab1e random variable c defined on a probability 
space with a reference family (.9";), there exists a unique d-dimensional 
VD-adapted right-continuous process X(t) with left-hand limits which 
satisfies equation (9.2) and such that 1(0) = a.s. 

Proof Suppose B = (Bk (t)), p and are given as above. Let D = fs e 
Dp ; p(s) U\Uol . Since n(U\U0)< co, D is a discrete set in (0,  oz) a.s. 
Let a, <0 2  < • • < < - • • be the enumeration of all elements in 
D. It is easy to see that an  is an (.9)-stopping time for each n and lim o-, = 

co a.s.* First we shall show the existence and uniqueness of solutions in 
the time interval [0, us ]. For this, consider the following equation 

r(t) = ± Eol,(Y(s))dBk(s) 	bi(Y(s))ds 

(9.4) 	 in+ r 

+ J Jur(Y(s-), u)I,o(u)Srp(dsdu), i= 1, 2, . , d. 

Noting the following general formula 

E[{ S o 	g(Y(s-), u)l uo(u)f,V 	9 dsdu)} 

* We disregard the trivial case of n(II\U 0) = O. 
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= fto dsf u0 E[g2(Y(s),u)]n(du) 

and the assumption (9.3), we can show by the same argument as in the 
proof of Theorem 3.1 that the solution Y(t) of (9.4) exists uniquely and is 
constructed as follows: if = y, a constant point in Rd, the solution is 
constructed by the successive approximation as in the proof of Theorem 
3.1. The solution is a measurable function of y, B and p in the obvious 
sense. The solution for a general initial value is obtained by replacing 
the variable y of this function with . Set 

Xi(t) = I 37(t) ' 
1 Y(cri -) ± f(nai-), p(o)), 

0 < t < al , 

t = 0• 1. 

The process (Xi(t)I te0, 0. 13  is clearly the unique solution of (9.2) in the 
time interval [0, ad. Next, set e = Xi (o-i ), li — (fik(t)) where ijk(t) = 
Bk(t±a i) — Bk(a 1), and p ---- (p-o» where Di- = {s; sd-o- 1  ED}  and 
P(s) --- p(s+0- 1). We can determine the process 12(t) on [0, di ] with re-
spect to e, and p in the same way as Xi (t). Clearly di , defined with 
respect to fi, coincides with o-2  — ai . Define {X(t)} terct,a 2) by 

Xl (t), 	 t E [0, ad, X(t) = { .., 
X2(t — al), 	t e  [ci',  rid. 

It is easy to see that {X(t)} ,E[0,,23  is the unique solution of (9.2) in the time 
interval [0, az]. Continuing this process successively, X(t) is determined 
uniquely in the time interval [0, an] for every n and hence X(t) is deter-
mined globally. . 

We have actually proved, under the assumption (9.3), the unique 
existence of the strong solution of (9.2). The uniqueness in law is obvious 
from this stronger result. 



CHAPTER V 

Diffusion Processes on Manifolds 

1. Stochastic differential equations on manifolds 

Let M be a d-dimensional Cœ-manifold i.e.,  M is a Hausdorff topologi-
cal space with an open covering {Ua}  G„ A of M, each provided with a 
homeomorphism Oa  with an open subset 0,,(U,r) of Rd such that, if Ua  fl  
Up k 0 the function Ofl og3V from Oa( rl Up) into OA Uce fl Ufi) is a Cœ-
function. Uc, is called a coordinate neighborhood and for x Ua , 93a(x) = 
(xl , x2, 	_ cl• X ) E R d  is called a local coordinate of x. In this book we 
always assume that M is connected and  ti-compact. It is well-known then 
that M is paracompact and has a countable open base.* 

A function f(x) defined on an open subset D of M is called CQ (or 
smooth) if it is Cœ as a function of the local coordinate, i.e., f00,7 1  is C1(')  
on  q( U1  (1 D) for every a. Let F(M) be the totality of all real valued Cœ-
functions on M and  F0(M) be  the subclass of F(M) consisting of all func-
tions in F(M) with compact support. F(M) and Fo(M) are algebras over 
the field of real numbers R with the usual rules of f+g, fg and ill 
(f, gEF(M) or Fo(M), R). 

Let x e M. By a tangent vector at x we mean a linear mapping V of 
F(M) into R such that 

V(fg) = V( f)g(x) + f(x)V(g). 

The set of all tangent vectors at x forms a linear space  T(M), called the 
tangent space at x, with the rules 

(V+V')(f) = V(f)-f-V'(f) 	and 	(.1..V)(f) = 

* Cf. E1 121. 

247 
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Let (x'  ,x2 , 	,xd) be a local coordinate in a coordinate neighborhood 
U of x. Every f EF(M) is expressed on Uas a Coe-function f(x',x2, . . . 

Then f 	(-1- ) (x) is a tangent vector at x for every i = 1,2, . . . , d. 
ax' 

a This is denoted by H . It is easy to see that {( 2—a, 	forms a 
axt 	 u-411 1, 2, 

 

.., d  

base for  T(M). 
By a vector field we mean a mapping V: x  M 	V(x)r, c(M). 

V is  called a Coe-vector field if for every fEF(M), (Vf)(x):=V(x)f is a 
Coe-function. Thus Vis a Coe-vector field if and only if Vis a linear mapping 
of F(M) into F(M) (or Fo(M) into Fo(M)) such that V(fg)=V(f)g± 
fV(g). In this book we only consider Coe-vector fields unless otherwise 
stated. The totality of Cy-vector fields is denoted by 2E(M). 

Let A o,A 1 , 	,A, N(M). We consider the following stochastic 
differential equation given in an intuitive form 

(1.1) 	dX(t) = A a(X(t))odBa(t) A o(X(t))dt.'" 

A precise formulation is as follows. Let /a =M or MU {.61}(= the one-
point compactification of M) accordingly as M is compact or non-com-
pact. Let Fil(M) be the path space defined by 

FP(M) = fw; w is a continuous mapping [0, co) 	Si such that 
w(0) e M and if w(t)--= A then w(e).--- A for all t' > t} 

and let 0( Pi/(M)) be the a-field generated by the Borel cylinder sets. The 
explosion time e(w) is defined by 

e(w) = 	{t; w(t) =  4}.  

Definition 1.1. A solution X.(X(19) of (1.1) is any (9-)-adapted 
Fk(M)-valued random variable (i.e., a continuous process on k with 4 as 
a trap) defined on a probability space with a reference family (9;) and an 
r-dimensional (9;)-Brownian motion B=(B(t)) with B(0) = 0 such that 
the following is satisfied:  for every fEFo(M),* 2  

(1.2) 	f(X(t)) f(X(0)) f ro(A„f)(X(s))0dBa(s) f:(410.f)(X(spds, 

* 1  According to the usual convention, the summation sign is abbreviated for repeated 
indices appearing once at the top and once at the bottom. 
*2  We define Ad) =-.0 for every feFo(M). 
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where the first term on the right-hand side is understood in the sense of the 
Fisk-Stratonovich integral defined in Chapter III, Section 1. 

The results of Chapter IV applied to each coordinate neighborhood 
enable us to obtain a unique strong solution of (1.1). Namely we have the 
following result. 

Theorem 1.1. There exists a function F:  Mx  W; 	rV(M) which is 
n ..g(M)x.g,(Wr PRA(tk(M)) -measurable*' for every t > 0 such 

that 
(i) for every solution X = (X(t)) with respect to the Brownian motion 
B = (B(t)), it holds that 

X = F(X(0),B) 	a.s., 

and 
(ii) for every r-dimensional (Y)-Brownian motion B=(B(t)) with 
B(0) = 0 defined on a probability space with a reference family (9;) and 
an M-valued (7-)-measurable random variable X=F(,B) is a solu-
tion of (1.1) with 1(0) = 	a.s. 

Proof. Take a coordinate neighborhood *2  U and express 4a=  

a 
ca(x) 	a=0' 

1, 	r, under the local coordinates (x',x2, . . . ,xd) 
i  Tx '  

in U. Extend the functions  o(x) to bounded smooth functions on Rd and 
then consider the following stochastic differential equation 

IdX = 0-L(X,)0dBa(t) o.,;(X,)dt 
(1.3) 

X6 = x', 	i=  1,2, . ,d.  

Note that (1.3) is equivalent to 

(1.3)' 

where 

I dX = ol,(Z)dBa(t) 6 06(X,)dt 

1 X ò  = x', 	i = 1, 2, . 	, d, 

*' Here g runs over all probabilities on (M,R(M)). W crl , Pw, A(W) have the same 
meaning as in Chapter IV: W is the space of continuous paths in R r  starting at 0, Pw 
is the Wiener measure on rv,; and Re(K) is the a-field generated by the Borel cylinder 
sets up to time r. .A(Pfqm» is defined similarly. 
*2  Here we choose a relatively compact coordinate neighbourhood. Such a remark will 
sometimes be necessary in the future but usually we do not mention it. 
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(1.4) 	df)(x) = ci(x) 	P, ( 4k- 0-gx»,,(.). 

It follows from the results of Chapter IV that the unique strong solution 
of (1.3) exists; i.e., there exists a mapping F: Rd x Fv,r, Fini with the 
properties as in Theorem 1.1 such that any solution X of (1.3) is given as 
X=F(x,B) where x=-(x',x2, ,xd). F(x,w) (X(t,x,w)) itself is the 
solution of (1.3) with respect to the canonical realization w=-(w(t)) of 
Brownian motion on {  W, Pry} with the reference family { ,97} defined 
by ..,47 = 5,2rw (W ) , t O. Take x = (xl, x2, . , xd)U and set T u(w) 
= inf It ; X(t,x,w) U). Define X,  = (Xv (t,x,w)) by 

Xu(t,x,w) = X(t A zu(w),x,w). 

For each xe M and coordinate neighborhood U containing x we con- 
struct the local solution X,  as above. It is easy to see that if U and  U are 
two coordinate neighborhoods and x E Un 0, then Xu(t,x,w) = xat,x,w) 

a for all t <-cu(w)A ,T eM.  Indeed , if  Aa. al(i) — under the local co- 
al 

ordinate fc 	(2 1 ,22, . . . ,5e) in 0, then we have 

„ , 85ei 
(1.5) 	ã(2(x)) c(x) axk 

and the equation for X0(r,x,w) is of the form 

(1.6) 	d  = 5-i(1t)odwa(t) + 6.-4(z)dt. 

On the other hand, it follows from the chain rule (Theorem 111-1.3) that the 
process X,  under the local coordinate 2 in 17, i.e., je(X u(t,x,w)) = (24 
satisfies 

cb4 = a7„(xoDocak(t) 

aR,  
a--,--ick (x(t ))0t(x(t))odwa(t)± 871,(X(t))o-16 -(X(t))dt 

= ei(2)odwa(t) 	6- (2,)dt. 

Thus lc, = 2(X v (t,x,w)) satisfies the same equation (1.6) as 	= 
Xe(t,x,w), and so by the uniqueness of solutions, we conclude that 
Xu(t,x,w) = Xe(t,x,w) for all t 	v (w) A To(w). 

Now we will patch together the local solutions into a global solution. 
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We first choose two systems of coordinate neighborhoods { (fa } and 
{ Va l which form locally finite coverings of M such that  Lia  c V a  and 
and Pa  is also contained in another coordinate neighborhood Wa. Let 
x E M and U1 , U2, • - -,U1  be the totality of coordinate neighborhoods 
in the system { Ua } containing x. Then the process it(t,x,w) . 
Xvi (t,x,w) is well-defined for t E [0, fx(w)] where fx(w) = max 

isKi 
{ r vi(w)}. Here we set t(00,x,w) = zi, for covenience. Define Ti (w) = 
lix(w) and X(t) = t(t) for t e [0, 'rd. Inductively, if -1 -„(w) and X(t) = 
(X(t,x,w)) are defined for t E [0, 'En(w)], then on the set { w; r(w) < co ), 
we define 

xn  = X(rn), wn =  Ow,  * rn+i =; ± fx, (wn) 

and X(t) =  Î(t  — 	for t i.I.T., l',74. 1 ]. In this way, X(t) is defined 
for te [0, 1- ) where 'roe  = urn ;.  We now show that 

n—• co 

(1.7) 	lim X(t) = A 
	

on the set { w; r(w) < co}. 
ttTœ  

We can choose an increasing sequence { Ai n }  of finite sums of { V„ } such 
that 

U M. ---=-- M and g c M„÷i 	for every n -  1. 
73,=1 

Furthermore we may assume that if Pi, fl amn k fb, then Pk  c 
For each n we define 

ci l  — 0 

(72 = inf{  t > di  ; X(t) e M.} 

6•3 = inf{ t > 52 ; X(t) E Mn} 

: 

cr, = inf{ t >  a1 ;  X(t) G M 1 } 

 52  =--- inf{ t > cr2 ; X(t) E Ilif„+1 } 

 ei3  = inf{ t > a 3 ; X(t) e  M 1 } 

• 

It is sufficient for (1.7) to show that for every n, on the set { w; T. (w) < 
co } , there exists an integer k such that 

(1.8) 	dk(W) < 09 and 	a,,+1(w) = °°. 

To show this, it suffices to prove that 7.(w) . oo on the set 

* Or : rn — Fr4 is defined as in Chapter IV: (61,w)(s) = w(t+s)— w($).  
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fw; 3 k such that  rk(w) < oc and ak(w) = 00 } 

U { w; ck(w) < co for every k). 

First if a-k(w) < co for every k, then we can show 

(1.9) 	E fak(w) — ak(w)} — cc 
le=1 

by the same argument as in the proof of Lemma IV-2.1. This clearly 
implies that  r»(w) = co. Next, consider the case when there exists k 
such that  0 k(W) < co and 5-k(w) = co. Then we have 

(1.10) 	X(t) OE Mn+1 	for all t 	ak . 

We can now conclude by the same argument as in the proof of (1.9) 
that Tœ(w) = oo. 

We set X(t)=A for  t>  zœ  on the set { w; 1-. < co }. Thus we have 
defined X(t) = (X(t,x,w)) as a mapping 

Mx  K D (x, w) , X --- (X(t,x,w)) E Fk(M). 

It is easy to see that it is a solution of (1.1). Indeed, it is obvious that for 
every f Fo(M), 

f(X(t A Ta)) — f(x) = iq:AT1  :4 (gspaiaMspodwa(s) 

S= 

f
rivr, af. (X(s))aggspds 
0 axi 

'Ar1  Oa  f)(X(s))0 dwa(s)- F igrA T1  (Aof XX(s))ds. 

	

0 	 0 

Similarly, on the set {w; 2-.(w) < co}, 

f(X(t A Tni-1)) — f(X(t A .r.)) 
. 

	

J
o- 	O tArnmex  6v7,) 

" 	a  f)(±(s,x„,w.))0 dwf(s) 
0 

f (t—tAsn)AY, (ve n) 
+ 	n  (A0  f)(t(s,x„,w„))ds 

0 

= 
 j

. tATn+1  Oafa(s))0dwa(s) + ftArn+1  (A0f)(X(s))ds. 
tArn  tArn 
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Summing up, we have 

f(X(t)) f(x) = f(X(t A roe)) —f(x) 
I: :Ar c

., (A a  f )(X(s))0 dwa(s) 	f roArc' (A 0  f)(X(s))ds 

== 0 (24 f )(X(s))0 dwa (s) f:(A of)(X(s))ds. 

The uniqueness of solutions is also easily proved. 

Remark 1.1. We can also construct the solution of (1.1) more directly 
by appealing to Whitney's imbedding theorem ([176]). M is imbedded into 
R2d+! as a closed submanifold of R 2d+' and the vector fields A a(x) are 
restrictions on M of smooth vector fields ;LW on ./ed+'. The stochastic 
differential equation corresponding toia(x) is defined globally in the Euclid-
ean coordinate system and the solution is constructed as in Chapter IV. 
If the initial value is on M, then it is easy to see that the solution remains 
on  M.  Thus this solution actually defines the solution of (1.1). A construc-
tion of the Brownian motion on a sphere given in Chapter III, Section 2 is 
a typical example of the method of imbedding. 

Theorem 1.2. Let  P,,  be the probability law on fk(M) of the solution 
X.--(X(t)) of (1.1) with the initial value X(0)=---x. Then {Px} xeM is a diffu-
sion generated by the second order differential operator 

(7.11) Af = -127  ±, 21.(Aaf) Ao.f, 	F0(M). 

Proof Using the uniqueness of solutions we can show that {P} has 
the strong Markov property. Actually, we can prove the following stronger 
result: for any (Y°)-stopping time a(w), we have X(t+a(w),x,w) = 
X0,X(a(w),x,w), Ow)  for all t > 0 and almost all w such that  o(w) < co 

Since for f e Fo(M), 

df(X(t)) = (A a  f )(X(t))0 dwa (t) (A o  f)(X(t))dt 

= (A a  f )(X(t))dwa(t) ( A 0  f )(X(t))dt 

1 + d(A a  f )(X(t)) • dwa(t) 

and 

d(A f )(X (t)) = A a(il f)(X(t))0 diva' (t) + (A 021 f)(X(t))dt, 
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we have 

d(A a  f )(X(t)) • dwa(t) = t i  A a(A a  f )(X(t))dt. 

Consequently, 

df(X(t)) = a  f)(X(t))dwa(t) (Af)(X(t))dt, 

where (Af) is defined by(7.11). This proves that X=(X(t)) is an A-
diffusion. 

Remark 1.2. By a similar argument as in Chapter IV, we can deduce 
the uniqueness of the A-diffusion fP 1 L xem  on It(M) from the uniqueness 
of solutions of (1.1). 

2. Flow of diffeomorphisms 

Given vector fields AaE I(IW), a = 0, 1, . . . , r, we constructed in 
Section 1 a mapping X = (X(t,x,w)): Mx Wc; D(x,w) 1-- X(• ,x,w) 

Fil(M). This may also be regarded as a mapping: [0, co) x Mx FV(r)  
(t, x, w) X(t,x,w)E . The main purpose of this section is to show 

that the mapping xeMi-- X(t,x,w)e /a is a local diffeomorphism of M 
for each fixed t > 0 and for almost all w such that X(t,x,w) e M. 

First we discuss the case of M = Rd. Let a(x) = (crl(x))E Rd C)Rr 
and b(x) = (Kx)) e Rd be given such that they are smooth functions (i.e., 
C--functions) on Rd .  Ilo-(x)II+  I  b(x) I ÇK(1±  I  xl) for some positive 
constant K and all the derivatives of cri and b' are bounded. Let X = 
(X(t, x, w)) be the unique solution of 

idXf. = o -fr (X r)dwa(t) bt(X t)dt 
(2.1) 

X0  =-- x,  

defined on the space (r) , P') with the reference family (FM. As we saw 
in Chapter IV, the solution X=(X(t,x,w)) exists uniquely and E {I X(t)I 2} 
<00  for all t > 0 • * This result will be strengthened below as El I X(t) I PI 
< co for all p > 1. In particular, e = co a.s. 

First of all we shall prove a lemma on an approximation of solutions 

* E stands for the expectation on the space (K, Pw). 
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by polygonal paths (cf. [1111). Let 

(2.2) 	0„(s) = 102n 	if s 	RP", (k+ 1)/2n), k = 0, 1, ... . 

Lemma 2.1. Let A(x) = (A cr̀ (x))E RmC)Rr and fl(x) = (flt(x)) E R in  
be given and satisfy the following conditions; 

(i) there exists a positive constant K such that 

II A(x)II + I fl(x) I < IC(1+ I x I) 	for every x e Rin, 

(ii) for every N>  0, there exists a positive constant KN  such that 

liA(x) — A(Y)ii + 1fl(x) — )0(. ) 1 	KNix — Yi 

for every x,y R"' such that I xl <N and IA <N. Let a(t) and a „(t), 
n = 1, 2, . . . , be continuous Rm-valued (..747)-adapted * 1  processes such 
that for some p > 2 

(2.3) 	supE{ sup I a „(t)IP+ 1 }  < c\o and E { sup I  a(t) — a(t) I P} — 0 
PI 	OT 	 OT 

as n . co • * 2  Let Y(t) and Y (t), n — 1, 2, ... , be continuous 'en-
valued (97)-adapted processes such that 

(2.4) 	r(t) = a'(t) + E Aia(Y(s))dwa (s) + E 131(Y(s))ds " 

and 

rt 	 rt 
(2.4)' 	n(t) = a(t) ± j 0  A gY n(rb n(s)))dw a  (3) + j 0  fit( 17,(95n(s)))ds 

for i = 1, 2, ... , m, n = 1, 2, ... . 

Then, for every T>  0, 

(2.5) 	E{  sup I Y(t) — Y(t) I P} — 0 
0:ÇtST 

as n ----. 00 . 

* 1  As in Section 1, we consider the Wiener space (K,.. 4 (W ),Pw) and .77 = 
aPw( V4), t O. 
*2  E stands for the expectation on the Wiener space. T>  0 is any fixed constant. 
* 3  w(t) -- (wcf(t)) is the canonical realization of r-dimensional Brownian motion on 
the space (K, Pn. 
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Proof. Let T>0 be arbitrary but fixed. First we remark that (2.3) 
implies 

(2.6) 	E{  sup 1a(t)Ir +.1 1 < 00  
Ot-T 

and 

(2.7) 	E 1 osTrpT ia„(t) — a ,(0.0))11 —.- 0 as n — co. 

(2.6) follows easily from Fatou's lemma and (2.7) follows from * 

E{  onlan(t) — a„(0.(0)11 

< Ki [E 1 sup 1 a(t) — a(95.(t))I PI ± E 1 sup I an(t) —a(0111 
13.5t5T  

the right-hand side tending to zero as n. co by the dominated conver-
gence theorem and (2.3). 

In the following we assume for simplicity of notation that m=1 and 
r = 1. We shall show that 

(2.8) 	sup E{  sup I  Y(t)I} < 00 . 
n 	i:Kr<7.  

From (2.4)' we have 

E{  sup 1Y„(s)r} ..._ K2rE { sup  l a(s)V'} osssr 
s 

-1- E 1 sup i f A(Y „(0.00))dw(1 4) 112+1 
0,,,,, 	0 

± El °lit  I Sso  fl(Y.(0.(4)»du I ;in ] 

for t E [0, T]. By Theorem 111-3.1 and Holder's inequality, 

E { os2i fs 0 	 0 A(Y.(0n(u)))dw(1P+1) 

< K 3E 11 f 0 A(17  „(0(s))) 2ds1 (1'+' ) 12} 

* In the following K1, K2, . . . are positive constants independent of n (which may 
depend on T). 
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St()  E { 1 A( Y(qn(s)))1 P-1 ds 

IC, f r  0 [1 	E 	„(0„(s))1P+11dy 

and 

E 0s2  $30  13(Y ,(fi n(u)))du P + 

K 6 St  0  E I 3  ( 17  n(0 n(S)))1 12+ 1 1 dS 

IC7 fr  0 [1 	E y jo n(s))ip+lnd y.  

Consequently 

(2.9) 	E osA3 I Y(s))'} 	K8(1 ± fo  E {I  

Then obviously 

E 	n(56„(t))1P+i) 	K 3(1 	S t0 E IiL(çSAs))1 °+1 1ds) 

and we can deduce from this (using here a similar truncation argument 
as in the proof of Theorem 111-3.1 or Theorem IV-2.4) that 

Ell Yan(t»I P+1 1 	Ksexp {K 8t) 

Substituting this inequality into (2.9), we obtain (2.8). Similarly we can 
prove 

(2.10) 	E{  osNT IY(t)V +1 } < 

Next we set 

(7:1  = inf It;  jY(t)1 

and 

o' = inf tt; I Y(t) I 
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for every N>  O. Then, for te [0, 7], 

E{ sup 	Y„(s) — Y(s)I Pl 
0,r$rAcr ii3%1 AaN 

IC9rE osm  a 	1 n(s) 	a(s)1  

▪ E losrAPŒNAcriv  fo  {A( Y„(0„(u))) A(Y(u))} dw(u)IP} 

E { osrAprNAd)v i Sso  {/3(  Y„(0„(u))) — )6( Y(u))} dui P}] 

and by estimating similarly as above, this is dominated by * 

Kio[E { sup I a (s) 	a(s)11 
n  

▪ E { ft:64"AIN 1 A( irn(gin(s))) 	A(Y(s))1PdS1 

ElfrA AaN  AY n(s))) — (As» ds}] 0 
LNE .1.401\41AaN  I Yan(s)) 	17(s)I Pds} 

• o(1) 	f E 	 — 

	

Y As 	aND  Y -(s A< Aani P} ds. 

By writing s' =  sA a„N A aN for simplicity we have 

E {I 37  a n(s r)) 

Kii(E {I Y.(0(s')) 	Yn(s)ill 	E I  Y(s) 	Y(sOil) 

and 

E liYan(s')) 	Irn(s 1)i P} 
▪ 1(12 [E II an(On(s 1)) — a n(sOi 

E A(Y„(5 1Vs')))(w(s') — w(0.(s')))11 

	

+ Eli AY (Ø n(s')))(s' 	On(s))11] 
= o(1) 

by (2.7). Consequently 

* Lhr and L. are positive constants which may depend on N. o(1) denotes quantities 
which tend to zero as n 	co uniformly in t e [0, r]. 
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E sup, 1L(s) Y(s)II 
0<srAer n  Act— 

o(1) + L 
jrt 
	Ao-, Aign—As 	Aanlids% 

We can conclude from this that 

(2.11) 	E { sup 	I  Yb  (s) 	Y(s)IP} — 0 as n 	00 
05s5TA4 AcrN  

for every N>  O. Finally 

E { sup I Y(s)— Y(s)I1 
13<sr 

E { sup 	I Y, 7(s) 	Y(s)11 
(1..eSTAa4V Ao .N 

• E { ,2137.(1 Y(s)1 ±  I  Y(s)DP : 	T} 

• E{  csupT(I Y(s)1 + Y(s)DP 0 -N Ç T1 

E lo sTuAp ACIv IY.(s) 	n 1 s)1  

± 2E { sup (I Y (s)  I  +  I  Y(s)DP: sup (j  Y„(s) I +  j  Y(s)1) 
n 	 05$ST 

< E ( sup 	I  Yb(s) — Y(s)I 
05sSTA4 AcrA l  

2 El sup (I Y (s)I ±  I  Y(s)j)'}. 

Now we can easily deduce from (2.8), (2.10) and (2.11) that 

E { sup I Y,,(s) — Y(s)  j 	0 	as n 	co. 	q.e.d. 
053:52" 

For given  U(x) and b(x) as above, let  X(t) = (X„ i(t,x,w)) be the 
solution, on the Wiener space (W6, Pw) with respect to the canonical 
realization w(t) = (wa(0) of Brownian motion, of the equation 

(2.12) 	X(t) = x fro  acr(X,Igin(s)Ddwa(s) 	b(X „(0.(Mds, 
o 

in component form, 

(2.12)' 	X(t) = x' fo  cia(X.(95.(s)))dw Œ (s) 	fro  bl(X„(0„(s)))ds, 

= 1, 2, ... , d. 
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X(t)  is  uniquely determined. Indeed, X„(0) = x and if  I(t) is determined 
for tE [0,(k-1)/2 ] , then 

X(t) = X „((k— 012") + ,r(X „((k-1)12"))(wa(t)—wa((k-1)12")) 
d-b(X „((k 1)121)(t — (k — 1)/2") 

for t E [(k —1)12" , k121. It is also clear from this that  X(t) is expressed as 

X(t) = F(x,w(112n),w(212n), .. . ,w([2 4112n),w(t)) 

for some C"-function  F: Rd x (Rt) (2"4+' 	Rd.  In particular, xi, 

Xn(t,x,w) is Coe for every t > 0 and wE K. Let Da = 	 axle, . . 64d 
for a 	(ai , a2, . ,a ) 1 I al =ai±a2+ • • - +ad  and set 

Y 	= DaX(t,x,w). 

Proposition 2.1. For each xe Rd, 1 < i < d, and each a, there exists 
a unique process n(t) = (Y(t,x,w)) such that 

(2.13) 	E osz.  Y 	— n(t) Pl 	0 	as n 	co 

for all T>  0 andp > 1. Furthermore, the convergence (2.13) is uniform in 
x on each compact set in  R 4 .  

Proof. First consider the case of I aj=1. If we set 17'1, 00  (t,x,w) = 
a 

axi 
xat,x,o,  Y ()  (t)  = 	00 0, x, w» is determined by the equation (in 

matrix notation) 

(2.14) 
	y( n)(t )  =  I  +  f  aax,(0.(s)),y(n)(0„(s))dw(s) 

b'(X„(0„(s))) Y (n) (0(s))ds, 

a 	 a 
where a'a(x)gi  = a-To, alt(x), 	= a--Ta  bt(x) and 1 = OD. 	Applying 

Lemma 2.1 to the system of equations (2.12) and (2.14) combined together, 
we have that 

(2.15) 	E { sup I X (t) X(t) 	E { sup IlY(n) (t) — Y(01111 — 0 
te EO, 	n 	 tCO, TJ 

as n 	oo 
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for all T>  0 and p > 1, where X(t) is the solution of (2.1) and Y(t) 
= (Y1(t, x, w)) is the solution of 

(2.16) 	Y(t) =  I ± f t  o cr:,(X(s))Y(s)dwar(s) 	b'(X(s))Y(s)ds. 

As is immediately seen in the proof of Lemma 2.1, the convergence (2.15) 
is uniform in x on every compact set. 

Next, set 

a2 

(n) (t) 	aXiaXk 
Al(t,x,w). 

Then In,  ,k, ()Nt = (17 ,k, (). it ( x )) is determined by the equation ,n n 

Y5 1 12 () (t)  = o uL(Xn(0,(s)))ifY,T.J 2,(n)(0,(s))dw a(s) 

r

• J

o 
 b' (X n(gin(s))YkY ,12,(n)(0n(s))ds 

(2.17) + fo  caxnconcsmik. 1 3(11 1. (n)(9 n(S)) r2,00(0s»dwa(s) 

▪ I ': b"(X.(0.(s))Yk, 	, (n)(549)) Y52. (n)(0.(s))ds, 

akaxi 

 

where 

a2 	t 	
a2 

=
o(x) 
	b"(x)ka axkaxi bi(x)  

If we denote by aj1 , j2, 00(t) the sum of last two terms on the right hand 
side of (2.17), then noting Theorem III-3.1 and (2.15) it is easy to conclude 
that 

(2.18) 	E{  sup I a51f2, 00(t) 	c€5,, 12(t)11 	0 
te[0,71 

as n 

for all T>  0 and p > 1. Here 

(2.19) 	(4 1 ,12(t)= o a(X(s))J .I Y7,(s)r, 2(s)dwa(s) 
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± 
 f

r 
b"(X(s)K irci (s)Y52(s)ds 

0 

and this convergence is uniform in x on each compact set. Now we can 
apply Lemma 2.1 * to conclude that 

(2.20) 	E { sup f Y51 . 2, w (t) —  131 12(t)  P} ----* 0 	as n — CO 
tag), T] 

for every T>  0 and p> 1, where 151,40 is determined by the equation 

r 
Y 5,, j2(t) = f o uc (X(s))1,31,, j2 (s)dwa(s) 

(2.21) t 
+ f 

o
b'(X(s))/Cr i , j2 (s)ds ± azi f 0) -1 ,-2 	' 

Furthermore, the convergence is uniform in x on each compact set. 
By continuing this process step by step for higher order derivatives we 

complete the proof of the proposition. 

Now we shall introduce the following seminorms for smooth functions 
qi on  Rd.  For a bounded domain 12c Rd,p > 1 and m = 1, 2, . . . , we set 

11011g, — E { 5 I Da0(x)I  Pd}  "P) 11011'4, = E sup1Da0(x)i. 

	

falSm 	D 	 lal5m xeD 

For each S2 and m, we can find Q' Q, m' > m, p > 1 and a constant 
K> 0 such that the following inequality holds for all smooth functions 
0 on Rd: 

(2 .22) 	ii0ii9),. 	Kilgillfmf. 

This is an obvious consequence of the well-known inequalities of Sobolev 
[151]. 

Now (2.13) clearly implies that 

E { sup I Yia  ( ,) (t,x,w) — 17:40,4 (t,x,w)IP) — 0 
C I Ct 	 i  

as n, m — co for all T>  0 and p > 1 uniformly on each compact set 
in x. Consequently, 

* We apply this lemma to the system of equations (2.12) and (2.17) combined together. 
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E { sup 	I 1%, 00 (t,x,w) — Y . (m)(,,') I P  dX} 
OÇT D 

< 	dx E { sup I 1% ( ,) (t,x,w) — 

sa 1' ia,(m) (t,x,w)IP1 

as n, m 	co 

for every bounded domain Q. This implies that 

E { sup IIX„(t, w) — Xm(t, • , 
0 

as n, m 	co for all T> 0, p > 1, 1= 1, 2, ... and bounded domain 
Q. By a standard argument we can extract a subsequence of X„, denoted by 
X„ again, such that for almost all w  (Ps'), 

sup 11X„(1, •,w) 	Xm(t) 	0 
ostsx 

as n, m 	co for all bounded domain Q, p > 1, 1 = 1, 2, ... and 
T>  O. The inequality (2.22) then implies that, for almost all w, 

(2.23) 	sup IIX„(t, • ,w) — X„,(t, • ,w)112,, — 0 

as n, m 	co for all bounded domain Q, 1 1, 2, .. . and  T>  O. 
Consequently, for almost all w, 

lim X„(t,x,w) = i(t,x,w) 

exists uniformly in (t, x) on each compact set in [0, co) x Rd; furthermore 
(t, 	it(t,x,w)E Rd is continuous and for each  tŒ [O, 00), x 
it(t,x,w) is a C--mapping from Rd into Rd. We also have by (2.15) that 

Pw[w; t(t,x,w) = X(t,x,w) for all t > 0] = 1, 

for all x, i.e., (t(t,x,w)) is a modification of the family of solutions 
(X(t,x,w)) of the stochastic differential equation (2.1). 

Thus we have obtained the following result. 

Proposition 2.2. Let X=.(X(t,x,w)) be the solution of (2.1). Then a 
modification of X(t,x,w), denoted by X(t,x,w) again, can be chosen so 
that the mapping x E R d  /17(t, x,w)e Rd is Cc° for each fixed t, a.s. 

Next we shall show that the mapping x 	X(t,x,w) is a diffeo- 
morphism of R. In doing this, it is more convenient to rewrite the equa- 
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tion using Fisk-Stratonovich differentials. So instead of the equation (2.1), 
we consider the following equation 

IdYrt  = olt(X ,)0 dwa (t) + bl (X t)dt 
(2.24) 

X0  =-- x, 	 i ---= 1, 2, . . . , d. 

Note that (2.24) may be transformed into an equation of the form (2.1) 
with bi(x) replaced by Ei(x) where 

(2.25) 	Ez(x) = Y (x) + 4_ pi  (ki, 0-(x)) a (x). 

Clearly  o(x) and  Si(x) satisfy the same assumptions as c4(x) and  b' (x) and 
therefore, it is just a matter of convenience as to whether we write the 
equation in the form (2.1) or in the form (2.24). We shall now show that 
the C--mapping x .--- X(t,x,w) defined by the solutions of (2.24) is a 

a diffeomorphism. By (2.16), the Jacobian matrix (Mt)) = ( 
XV, x, w)) 

axl 
satisfies (in matrix notation) 

t 	 t - 
(2.26) 	Y(t) = I + j.  cr(X(s))Y(s)dwa(s) + is  b' (X(s))Y(s)ds 

Jo 	 o 

where 5 is given by (2.25). It is easy to see that (2.26) is equivalent to 

t 	 t 
(2.26)' 	Y(t) = I + L o-  :,(X(s))Y(s) 0 dwa (s) ± L b'(X(s))Y(s)ds . 

Now let Z(t).(Z1(t)) be the solution of 

2.27) Z(t) = / — E z(s)aggs»  °dew  _ E Z(s)b'(X(s))ds.* 

Then 

d(Z(t)Y(t)) = Z(t)o dY(t) ± dZ(t)0 Y(t) = 0 

and therefore Z(t)Y(t) --=- I. This proves that Y(t) is invertible and Y(t) -i = 
Z(t). Consequently, the Ce'-mapping xi---X(t,x,w) is a local diffeomorphism 
into R d . By using the next Lemma it is easy to see that it is a bijection. 

* To be precise we consider the system of equations (2.24) and (2.27) combined to-
gether. It is a stochastic differential equation on Rd x Rd 2  whose coefficients satisfy the 
same kind of regularity and growth conditions. 
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Indeed, x =X(t, .g(t,x,}),w) and x = i(t,X(t,x,w),*') for every x a.s. 
Thus the mapping is a diffeomorphism of Rd. 

Lemma 2.2.* Let /(t,x,w) be constructed as above from the equa- 
tion 

a(X,)odwa(t) — bi(X,)dt 
(2.28) 

Xo  = x. 

Then, for every fixed T>  0, we have 

(2.29) 	X(T — t, x, w) =  Î(t, X(T, x, w), ID) 

for every 0 < t < T and x, a.s.  (P W),  Here -ri) is another Wiener process 
defined by 

(2.30) 	= w(T-0—w(T), 	0 t T. 

Proof Let 

B:(t, w) = (in  — t) 
 Wa(t 	

(t 	
-

tn) 

 Wa(10, 
tn) 	 (In —  tn) 

(k + 1) 	k 	kT 	(k + 1)T where in  — 	T and t r, — -FT if 2. 	t < 	2„ 	, k = 1, 2, 

, 2"-1, n = 1, 2, 	. . It is clear that 

B:(T— t, w) — wa(T) = BMA, 0 < t < T. 

Consider the following two systems of ordinary differential equation for 
every n = 1, 2, ... 

dB: —dt (t) = o- (X „(t))
dt

(t,w) + b' (X JO) 
a=1 	 = 1,2, ••• , d, 

xnp =  x 

and 

* Malliavin [106]. 
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I d-Tilrft :' (t) = Ê olArn(tD dc-BrI (t,w) — b ign(t)) 
a= I i = 1, 2, ... , ti, 

Xn(0) = x. 

Solutions will be denoted by Xn(t,x,w) and in(t,x,w) respectively. It is 
immediately seen by the uniqueness of solutions that 

X(T — t,x,w) = in(t,X,( 7;x0v)) 1.)1 	n=--- 1, 2, ... . 

We can apply the corollary of Theorem VI-7.3 to obtain (2.29) by taking 
the limits. 

Summarizing we state the following result. 

Theorem 2.3.* 1  Let X(t,x,w) be the solution of (2.24) (or (2.1)) on 
the Wiener space (WL.,  Fa'). Then a modification of X(t,x,w) can be chosen 
so that the mapping xi-- X(t,x,w) is a diffeomorphism of Rd a.s., for 

each t [0, c0). The Jacobian matrix (r(t,x,w)) = 	Xl(t,x,w)) is 
axl 

determined by the equation (2.26)' (resp. (2.16)). 
Thus we have a one-parameter family of diffeomorphisms Xr(w): 

x 	X(t,x,w) for tE [0,00). Clearly X0(w)=the identity and  X(ûw)0 
X(w) = Xt,(w) for almost all w. 

Furthermore it actually holds a stronger statement: a.s., x 	X(t,x,w) 
is a diffeomorphism of Rd for all t > 0. For details, see Kunita [209]. 

Now we return to the case of a compact manifold M. The solution 
(X(t,x,w)) of (1.1) may be considered as a family of mappings X,: xi--- 
X(t,x,w) from M into M. 

Theorem 2.4. Assume that M is a compact manifold. X(t,x,w) has a 
modification,* 2  which is denoted by X(t,x,w) again, such that the map-
ping Xt(w): x X(t,x,w) is Ce in the sense that x is 
C° for every f E F(M) and all fixed  t [0, co), a.s.  Furthermore,  for 
each x e M and t E 10, co), the differential X(t,x,w) *  of the mapping 

X(t,x,w); 

X(t,x,w) * : Tx (M).-- T x(r . x ,,,) (M) 

* 1  Cf. Funaki [31], Malliavin [1061 and Elworthy [25] 
*2  By a modification of X(t,x,w) we mean a process At,x,w) such that P { it(t,x,w).--- 
X(t,x,w) for all t 0} = 1 for all x. 
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is an isomorphism a.s. on the set { w; X(t,x,w)e M ) . 

Proof Let xo  e M and t [O, co) be fixed. Then for almost all 
w such that X(t,x o,w) e M, there exist an integer n>  0 and a sequence 
of coordinate neighborhoods  U1 , U2, • • • ,U,, such that 

{X(s,x 0 ,w); s  e ((k — 1)t/n, kt/n]} C Uk, k = 1, 2, - • • , n. 

By Theorem 2.3, we can easily conclude that if U is a coordinate neigh-
borhood and { 49,Y0,w); s e [O, t o]) c U, then y 1-- X(t o ,y,w) is a 
diffeomorphism in a neighborhood of yo . Consequently, since 

X(t,X0,14 ,) = [Ift1(0 (n-1) tInw) ° 	° Xt/nOtInw) °  Xon](X0) 

the assertions of the theorem follow at once. 
In case of non-compact manifolds, the solution (X(t,x,w)) of (1.1) 

may be considered as a family of mappings X,: x X(t,x,w) from M 
into g = MU{ A} and local results can be deduced from the compact 
case. However to obtain global results about the family of mappings 
X, we must assume some additional conditions. Elworthy [197], Chap-
ter VIII can be consulted for detailed information about these. 

Now let us introduce the bundle of linear frames GL(M) on M.* By 
a frame e=[ei ,e„ . . . ,ed] at x we mean a linearly independent system of 
vectors e, E T(M), i =  1, 2, ... , d, i.e., a basis of  T(M). GL(M) is 
defined as the collection of all frames at all points X  E M; 

GL(M)={r=(x,e);xeM and e is a frame at x} . 

GL(M) can be given a structure of a Ce-manifold as follows. Let 
{Ua, Oa} be a coordinate system of M. Set 

Uci = r = (x, e) E GL(M); x  E Ua  and e is a frame at x} 

and define the mapping fk, from 0„ onto 0a(U a) X GL(d, R) c Rd X Rd2  
by 

sga(r) 	(0„(x) = (x',  f, 	, xd), e ,  i,j = 1, 2, ... , d) 

where 

ej  = 
a x. 

4` [7] and [131]. 
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Clearly (0,„ grOE) defines a coordinate system of GL(M) and so GL(M) has 
the structure of Coe-manifold of dimension d +  d 2 .  An element a of the 
group GL(d, R) acts on GL(M) from the right by 

(2.31) 	r • a = (x,ea), 	r 	(x,e) 

where ea = [(ea) i , (ea)2, • • • , (ea)d] is a frame at x defined by 

(ea)1  = aie„ 	j = 1, 2, - • • , d. 

Thus GL(M) is a principal fibre bundle with the  structural group GL(d, R). 
The projection 7c: GL(M) 	M is defined, as usual, by n(x, e)= x.  

Every vector field  L(M) induces a vector field E on GL(M) as 
follows. Let f'F(GL(M)). Then rf is given by 

(2.32) 	(.1,1f)(r) = iif((exp tL)x, (exp tL) *e)I 

where r.(x, e) and (exptL) *e = RexptL) *el , (exptL) *e2, . . . , (exptL) *e 
Here, of course, exptL is the local diffeomorphism x 	x(t,x) defined 
by the differential equation 

{ dx' 
(t,x) = at(x(t,x)), 	(L = at(x) 

x(0,x) = x 

and (exptL) *  is its differential which is an isomorphism Tx(M) — 
T (0„,,L) .(M) for each xe M. Let A o, A1, , A, EX(M) and Xt = 
(X(t,x,w)) be the flow of diffeomorphisms on M constructed above. 
Then 10 , II, • • • EX(Gglif)) defines a flow of diffeomorphisms 
r = (r(t, r, w)) on GL(M), and it is easy to see from the definition that 

r(t,r,w) = (X(t,x,w), e(t,r,w)) 

where r = (x, e) and e(t,r,w) = X(t,x,w) *e.* The expressions under a 
local coordinate are as follows: X(t,x,w) is determined by the equation 

a 	 a 
(2.24) where A(x) = a'(x)— a " 	. 1 2, 	d, 	 ) = bi(x — and 

axi 	 axi 
(2.33) 	e(t,x,w) = Y if(t,x,w)eY 

* X(t, x, w)*  is the differential of x 	X(t,x,w) and, of course, X(t, x, w), te 
[X(t,x, w)*ei , X(t,x,w)02, 	, X0,x,w)*edl. 
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where n(t,x,w) is determined by the equation (2.26'). 
Let L e X(M). We shall define a function AWE F(GL(M)) for each, 
1, 2, ... , d by 

(2.34) 	f(r) = (e-Vkak (x) 

a 
in a local coordinate 	(es))  of GLop, where L  = aloo — and 

axt 
e' the inverse matrix of e. It is easy to see that (2.34) is independent of 
a choice of local coordinates and thus defines a global function on GL(M). 
It is also easy to prove that for LI ,L,E X(M), 

(2.35) 	(Elf lL2)(r) = 	 i = 1, 2, . . . , d. 

Here f is defined by (2.32) for L1  and [LI, L2]=LIL2—L2L1 is the usual 
Poisson bracket. Therefore, we have that 

fir..(r(t,r,w)) — f(r)  
(2.36) 	fr 	 rt.

0  fC " A L3Ns,r,wp o dw Œ(s) 	f (.40.L3fr(s, r, w))ds 0 	c   

for every LE X(M) and i 1, 2, . . . , d. 

3. Heat equation on a manifold 

Let M be a C*-manifold and A 0 ,A 1 , . . . , AE (M). Let Xt = 
(X(t,x,w)) be the flow of diffeomorphisms on M constructed in the pre-
ceding section. Then x 	f(X(t,x,w)) is Cc° for any fE Fo(M). Through- 
out this section, we shall assume that the vector fields Ak, k =  0, 1; 
have the property that 

E[ sup sup I Da {f(X(t,x,w))} I ] 	00 
tero.T7 xE LI 

for all f E Fo(M), every coordinate neighbourhood U such that U is compact, 
every T>  0 and every multi-index a. 

This condition is satisfied if M=R'  and if the coefficients (bi(x)) and 
a 	 a (01,(x))inA 0(x).biw— and A a(x) = o- (x) — ' a = 1, 2, . . . , r, 

axt 	 axt  
satisfy the condition of the preceding section. It is also satisfied if M is 
imbedded into Rm (cf. Remark 1.1) such that Ak, k =  0, 1, . , r are 
restrictions of vector fields  Aft  on K u  which themselves satisfy the condi- 
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tion. In particular, if M is compact the above condition is always satisfied. 
Define the second order differential operator A acting on F(M) by 

(3.1) 	A f(x) 	±i  A „( A „ f )(x) (A 0  f )(x). 

We shall show that the function u(t,x) defined by 

(3.2) 	u(t,x) = E[ f(X(t 	f Fo(M) 

is a smooth solution of the following heat equation 

(3.3) I t(t,x) = (Av)(t,x) 

lira v(t ,y) = f(x). 
el 0.3,-x 

First, we shall prove that the function u(t,x) defined by (3.2) belongs to 
C([O, co) x M).* It is clear that u(t, x) is a C--function of x AT since 
x f(X(t,x,w)) is C"-  and the differentiation under the expectation sign 
is justified by the above condition. By (1.2), we have 

f(X(t,x,w)) — f(x) = a martingale ± fro  (A f)(X(s,x,w))ds• 

for each xE M, and hence 

(3.4) 	u(t,x) = f(x) 	EKAf)(X(s,x,w))]ds. 

Since Anf Fo(M), n = 1, 2, ... , we have 

u(t,x) f(x) *OW + fro  dti i% r: ERAY)(gt 2,,x,w»idt2 

	

f(x) + tOn(x) 	(A2D(x) 

±flo ck i' t  dtz  f r: ERA3f)(X(t 3 ,x,w))}dt 3  

	

= f(x) t(Af)(x) 	0 2.f Xx) 
_ 

▪ • • + f dt, sec: dt, • • • 
stn 

o  EKAnf)(X(tx,w))1c/t n . 

* C-((0, co)xM) is the class of C--functions on [0, co) x M. 
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Now it is clear that u(t,x)E ci-([o, co) x m). 
Next we shall show that 

(3.5) 	(Au t)(x) = E[(Af )(X(t,x,w))], 

where for each fixed t > 0, we set  u(x) = u(t,x). Applying Itô's formula 
to the smooth function u,(x), we have (writing X,=X(s,x,w)) 

u(X2) _ ut(x)  = Ç  (A aut)(X Jdwa(u) f:(Au t)(X.)du. 

Let U be a relatively compact neighborhood of x and let a = inf {t; 
U} . Then we have 

E[u,(X,A,)] — ut(x) =  E[$ (Aut)(X )dul, 

and hence 

E[u,(X, A,)]— ut (x)I 1(Au t)(x) E[s A ai 

E[ 
fsAa 

{(Au r)(X u) — (Au r)(X 0)1 du] i  
0  

Efs A 01 

E[ 	udu] E[f oAc  sdu f uo (A 2ur)(X 04 1  
0 

sAa 

E[s A ai 

 f iS 

= (A crAur)(X c)dw"(0. Clearly) 0 

E[SsoAl  du fuo (A 2u,)(X)dfl i  

E[s A al 	s rr:g (Azu:)(x) J. 

Also 

sAa 

1
E[ „du] 

o  

ETs A 01 I 

where 
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EKs A a) sup j Yu I 	(E[CY A 02D 1  '2(E[ sup yul2])1/2 
0<u<sAa 	 05u5sAa  

E[s A al 	 Ks A ol 

< K (EKs A crYD1'2(ER Y>'D"  , (by Theorem III-3.1), 
E[s A o] 

(E[(s A a)2])"2(Efs A o'D" 2  (max t ((A Au XX)) 2) 1  / 2  

< K xe a=1 	t  

< K s"(max  Ê  ((Astlur)(x))2)i 12 , 
xe V cf-=I 

where K is a positive constant. Consequently, 

(3.6) 	lim E[zi,(XsAss)] — u t(x) 
(Au,)(x). 

sto 	E[s Ao] 

On the other hand, by the strong Markov property of Brownian motion, 

E[ut(X, A ,)] — U(X) 

= EU(X(ts XsAcr) °sA0W))1 E[f(X(t,x,w))] 

= E[f(X(t+s A cr,x,w))] — E[f(X(t,x,w))] 
r-l-sAcr 

= E[ 	(Af)(X ii)dui 

E[  j.
sAa  

(Af)(X.,)du}. 
o 

Therefore, 

sAa 

(3.7) 	Ern 
E[11,(14,,,,)] 	ut(x)  lim  E[  f 0  (Af)(X,)du} 

340 	Ks A al 	s 	

„  

E[s A 01 

It is immediately seen that E[s A a] = s o(s) since s— E(s A a) 
sP(cr s) = o(s). So 

sAa 
E[ 0  (Af )(X „,)dzi] = E[ f 0  (A f )(X " u+t)du] o(s) 

E[s A a] 

since Af is bounded. Therefore we can conclude that the limit in (3.7) is 
equal to 
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E[ o (Af)(X +,)du] = E[(Af)(X ,)]. 

This completes the proof of (3.5). 
From (3.4) and (3.5), it follows that 

u(t,x) f(x) 	0 (Au)(s,x)dis 

and therefore we have 

au 
—

at 

(t,x) = Au(t,x), 

i.e., u(t,x) satisfies the heat equation (3.3). 
Conversely, let v(t,x) C' ,2([0, co) x M) * be a bounded solution of 

(3.3). We shall further assume that v(t,x) satisfies the following condition: 

(3.8) 	lim E[v(t — a „,X(a „,x ,w)): o < t] = 0 
oe 

for every t>  0 and xE M, where cr„.inf{t;X(t, x,w)D„} and D„ 
is an increasing sequence of relatively compact open sets in M such that 
U D„ = M . 

Clearly (3.8) is satisfied for any bounded v if, for instance, (X(t,x,w)) 
is conservative, i.e., P(e[X(- ,x ,w)] = co) = 1 for every xE M. This is 
true since 

e[X(- ,x ,w)] 	lirn  o .  

Now by Itô's formula, we have for each to  > 0 and 0 < t < to, 

E[v(t 0  — t A a„, X(t A an,x,w))] — v(t o,x) 

tAern 	 av E[ 	lovxto —s, 	x, 	— —at (to—s, X(s,x,w))idsi 
Jo 

=0.  

Letting n t 00 and noting (3.8), we obtain 

* C' ,2((0, co) x M) is the totality of all functions f(t, x) on [0, co) x M which are Con-
tinuously differentiable in t and twice continuously differentiable in x. 
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E{v(t o  — t, X(t,x,w)): e[g- ,x,w)] > t} = v(t o ,x). 

Now letting t f to , we see by bounded convergence theorem that the left 
hand side tends to ELAX(t o ,x,w))] = u(to ,x). Therefore v(t,x) must coin-
cide with u(t,x). 

The above results are summarized in the following theorem. 

Theorem 3.1. For f E Fo(M), define u(t,x) by (3.2). Then u(t,x)e 
CI[O, co) x M) and satisfies the heat equation (3.3). Conversely, if 
v(t,x) E C 1 • 2([0, co) X M) is bounded and satisfies the heat equation (3.3) 
and the condition (3.8), then v(t,x) must coincide with u(t,x). 

Remark 3.1.. Generally a bounded solution of (3.3) is not unique 
and a kind of conditions like (3.8) is necessary in order to assure the 
uniqueness. For example, . if M=(0,co) and the operator Au = u"12, 

i.e., A 0  = 0 and A1--=—
d 

' 
then, for fOE Fo(M), both 

dx 

vi(t,x)= .1T,i2Tt1  (exP ( (x —2t Y)2 ) exP ( (x 	1 31)2))f(Y)dY 

and 

- 1 ( 	( (x — y) 2 	(x ± y)2 11 
v2(t,x) ---- j.  --=-- exp 	) + exp ( 	2t )) f(AdY  o ,/2nt 	2t 

are solutions of the heat equation. v i (t,x) is the solution which satisfies 
the condition (3.8). 

Now let c(x) EF(M) such that it is bounded from above: sup c(x) < 
xeM 

co and 

x 1--- E[exp { fo  c(X(s,x,w))dslf(X(t,x,w))] 

is C° for any f F0(./1/) and t > O. This condition is always satisfied if 
c e Fo(m)- 

Theorem 3.2. The function (Feynman-Kac formula) u(t,x) defined 
by 

(3.9) 	u(t,x) . E[exp { fo  c(X(s,x,w))dslAX(t,x,w))], .f EF(M) 
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is a solution in Cœ([0, co) x M) of the heat equation 

	

(3.10) 	
{ 

hm v(t,y) = f(x) 

= (Av)(t,x) + c(x)v(t,x) 

t 1 0,y—.x 

which is bounded on [0, T]x M for each T>  0. 
Conversely if v(t,x) is a solution in C" 2([0, co)x M) of the equation 

(3.10) such that it is bounded on [0, T]x M for each T>  0 and 

en  

	

(3.11) 	lim E[exp { f c(X(s,x, w))ds} v(t—cr„, X(o.„,x,w)):  c,,  -, t] = 0 

then v(t,x) coincides with u(t,x) given by (3.9). 
The proof is given in the same way as in Theorem 3.1. This time, 

however, we use lib's formula as follows: 

d[exp { E c(X.,)ds) f(X,)] = exp { E c(Xs)ds} (A crf)(X t)dwa(t) 

± exp { E c(X,,)ds} (A f(X )+ c(X t) f(X ,))dt 

and 

d[exp { fo  c(X s)ds}v(t o —t, X r)] 

= exp { E c(X t)ds} (A „v)(to — t, X r)dwa(t) 

± exp { fo  c(X,)ds} (— t (t0 — t, X)  ± (Av)(t o —t, Xt) 

+ c(Xt)v(t o —t, X r))dt. 

4. Non-degenerate diffusions on a manifold and their . horizontal 
Lifts 

Consider a two dimensional Brownian motion on a plane and suppose 
that the trajectory of a Brownian particle is traced in ink. We roll a sphere 
on the plane along the Brownian curve without slipping. The resulting path 
which is thus transferred defines a random curve on the sphere, and, in-
deed, it defines a Brownian motion on the sphere. This idea of constructing 
spherical Brownian motion was first proposed by Bochner. Such a method 
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can also be carried over to a general Riemannian manifold. By making use 
of the connection in the sense of Levi-Civita, we can "roll" the manifold 
along a smooth curve in Euclidean space and, although a Brownian curve 
in Euclidean space is not smooth, stochastic calculus enables us to "roll" 
the manifold along such a curve. A Brownian motion on a Riemannian 
manifold can be obtained in this way. By generalizing the connection of 
Levi-Civita to a class of affine connections, we can obtain more general 
diffusions  on a manifold; indeed, the most general non-degenerate smooth 
diffusions can be obtained in this manner. Such a process will be carried 
out below by constructing a flow of diffeomorphisms on the bundle of 
orthonormal frames over the manifold. This method is due to EelIs and 
Elworthy [23].* 1  As we shall see in the next section, it is closely related to 
stochastic parallel displacement which was first introduced by 1tô [68].  

Before going into details, let us quickly recall several fundamental 
notions in differential geometry. Let M be a Ce-manifold. A tensor of type 
(p,q) at x is an element in the tensor product Tx(M)1. Here  T(M) f = 
Tx(M) 71,( 1)0 - • 0 Tx(M)  CD Tx(M) *  Tx(M) *  0 • • • 0 T(M)' 

is the linear space formed of all multi -linear mappings u: 
Tx(M)* x T x (M)* x • • • X T x(M)* xT x(M)xT x(M)X • - • x T x(M) 	R 

with the usual rules of addition and scalar multiplication.*2  Choosing 

a local coordinate (xi,x2, . ,xd) introduces a basis Ha  ) ( a—a  , • • • , 
axi 	x2 

in  T(M); its dual basis is denoted by (dx 1), (dx2),, 	, (dxd),. 

• • • 0 kaxiD  Ix 	(dxii)x 	. . . a 	( a \ We denote by (7, 7i ) (5<s) 	 C) (dxici) x  the 
0 x 

element u E Tx(M)f,' such that 

, I a \ 
u((dxki).v, • - , (dxkP)x , 	; • •axiQ) x ( a  ) 

,r5zi . . . cyfi (541 . •• ôfqQ  

for every kl , k2, .. . k, l, 12, . . .  l. Clearly the system 

(4.1) 	{(-?.1,—, 1  C) 	C) • • • 0 (a4r, ) 0 	0 (dx.12)x  
x 	x 

* 1  Cf. Also their works given in the references of [23] and Malliavin [104]. 
*2  T,(M)* is the dual space of T 
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C) • • • 0 (dxdo xi 
	

i29 • • • 2i pl il2i21 •. • iq  == 1, 2, 	, d 

forms a basis of Tx(M) 1:. A Coe-tensor field of type (p, q) * 1  is a mapping 

u: .111 x 	u(x)ET(M) 

whose components u`7(x) with respect to the basis (4.1) are Cœ in 
every coordinate neighborhood. The obey the usual rule under 
a change of coordinates: 

	

ai" agi2 	 ax12 	ax'g (4.2) 	1,7 11 12. • • ip (x) = 	 • • 	 U 	W kik2-.ke . /2-•• 10% 	axki axk2 	axicv 	ag-12 	q  

Conversely, if a system of C'-functions tuilli1J22:.%(x)} is defined in every 
coordinate neighborhood and satisfies (4.2), then there exists a unique 
(p, q)-tensor field whose components coincide with it. 

A (1,0)-tensor field is just a vector field. A (0 ) 1)-tensor field is called 
a differential 1 -form. Generally, a  (differential)  p-form is a (0,p) -tensor 
which is alternate, i.e., its components satisfy 

U0. (1)0(12) 	(9  (x) = sgn(a)u„ r2... 

for every permutation cr.*2  If we set dx(i A dxt2 A • - • A 	= 

1 E sgn(cr) dxcl(q) 0 dxcra2) 0 • • - 	dx 2  a(9 then a p-form u(x) is 
P • a 

 

expressed as 

U(X) = Ui i i2...  ,p(x) dxii A dx'z A • - • A dxip 

= p! 	E 	U1 1 12...  tp(X)dX f1  A d.e2 A 
ii<i2<• • <I, 

A dx(p. 

The exterier product a A /3 of a p-form a and q-form fl is a (p+q)- 
form defined by 

(4.3) (a A fl)(x) = ak ik2...kp0013kp+1 kr+2 ... k p+q(x)dx k  1 A dx:c2 A . . . A deP+q. 

The exterior derivative da of p- form a is a (p+1)-form defined by 

* 1  Also we call it simply (p, q)-tensor field. 
*2  Such a property is clearly independent of the choice of coordinates. The notion of a 
symmetric tensor can be defined similarly. 
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a (4.4) 	(da)(x) = a-- jr, «12"  ,,(x) dxl A dxt 1  A • - • A dx1°- 

By an affine connection 17  we mean a rule which associates to every 
X e X (M) a linear mapping V,: X (M) ---.- N(M) having the following 
properties: 

(i) FxY is bilinear in X and Y; 
(4.5) 	(ii) FfX-FgY = f Fx ± 8 r  Fr ; 

(iii) Vx(fY) =f 17x Y ± (Xf)E *  
The operator V, is called covariant differentiation with respect to X. A sys- 
tem of functions {/1(x)} is defined in a coordinate neighborhood by 

, a 	12 	a \ prof = F15(x) a—„---e 	t-'1=--  axt)• 

The 11(x) are called the components of the connection J7•  In a local coordi-
nate system, 171 Y may be expressed as 

(4.6) px y=[roor(x)r(x)+ xi(x) -a ykoo] kk 

a 	 a 
.The 

components of the connec- axi 	 axt 
tion obey the following transformation rule under a change of coor-
dinates 

(4.7) 	;-_,-„. _ axP axq aik 7.,, j...  a2xr aRk 

i 	age agi ax,  i Pq  I  aRtagi•axr .  

Conversely, any system of smooth functions 11(x) defined in each co-
ordinate neighborhood and satisfying the rule (4.7) determines an affine 
connection by (4.6). 

Given a tensor field  u(x) --= (uZ2,-...%(x)) of type (p, q), a tensor field 
(17u)(x) = (u72': -..`fo ,k(x)) of type (p,q+1) is defined by 

uiTi22......tk  (x)(: = 17kui»,2.  • • lP (x)) 

a (4.8) 	 = axk  zi 7;:.% (x) ± ci l--11,g(x)u ji22*.t iP (x) 

- Eq  PIZ' 6(x)1411.1122* : : . 11,1 . ..iii(X) 
P= 1  

* For f eF(M) and X E(M), fX e X(M) is defined by (fX)g = fX(g) for every 
g e F(M). 
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where the indices I and m in u take the place of ia  and .46. respectively. By 
the transformation rule (4.7), it is easy to see that Vu(x) is a tensor field. 

a 
3E17u(x) is called the covariant derivative of u(x). For X = X'  

the (p,q)-tensor I7xu defined by 

(Pu 	) j X 	jo 	
1'2. • •+cfin. 

is called the covariant derivaitive of u(x) in the direction X. Note that if 
u = Ye g.m), the above coincides with the original 17x  Y. 

Let c: I t 	c(t) e M * be a (piecewise) smooth curve in M and 
u(t) = (0'2-  'gip be a tensor field along c; that is, u(t)E Tc(r) (M);„' el 

for t E / and  t 	u(t) is (piecewise) smooth. u(t) is said to be parallel 
along c (with respect to the connection 17) if 

- 0) + 	ri(c(o)ui.i 	(t )
dck(t ) 

dt 	2.  • • g 

	

 ct= 1 	 — 4/ 	dt 

(4.9) 	 1 1 (2. • • io 	t 
„ dCk (t  

	

8 (c(tDuj112...m...  ja(  ) dt 
— 0, 	t E  I.

13=1 

In particular, a tensor field u(x) is parallel along c if and only if 

(V4(t)u) (c(t))(: = 4, 112:ji  (c(t)) 
dck(t) 

 = 0, t E J. For t o , 4E-4 to 	t1, dt 
u(t i ) is uniquely determined from u(to) as a solution of (4.9) and we say 
that u(1 1 ) is obtained from u(to) by parallel displacement along the curve c(t). 

Consider a manifold M with an affine connection 17= {nk(X)} . Let 
GL(M) be the bundle of linear frames. For each r E GL(M), 

(4.10) 	Hr ---- IX = a' (:- 3̀7) 	 a 
' (a') E Rd} 

ox 	 ae5  

is a linear subspace of Tr(GL(M)) which is clearly independent of the choice 
of local coordinates (x', ej). A tangent vector X in HT. is called horizontal. 
An affine connection may also be defined as a rule which assigns a linear 
subspace H, of Tr(GL(M)) at each r G GL(M) (cf. Nomizu [131]). H,. is 
called the horizontal subspace. Let E T(M). E Tr(GL(M)) is called a 
horizontal lift of if is horizontal, n(r) = x and (d7r),Z =  c. is unique 
if r such that n(r)=x is given. Given X E(M), there exists a unique 
XEN(GL(M)) such that ;17r  is the horizontal lift of Xe,.)  for every r E 
GL(M). I is called the horizontal lift of X. In a local coordinate, 

* / denotes an interval of RI. 
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a  (4.11) 	g Xi(x) a--)?  — 	 a 

a Gif  X=  r(x) 	iven a smooth curve c: I t 	c(t) EM, a smooth axi 
d^d curve '6": I t 1-- 5(t)EGL(M) is called a horizontal lift of cif (i) 
d
—

t
(t) 

is horizontal and (ii) n(E(t)) = c(t) for t E I. Clearly, if r = 
(x,e = [e1 , e2, . . . , ed]) is given where x is the starting point of c, then a 
horizontal lift  5 starting at r exists and is unique. Indeed, 5(0 = 
(c(t), e(t) = [el (t), 640, . . . , ed(t)1), where e t(t) Tcw (M) is obtained from 
et  by parallel displacement along the curve c. For each j = 1, 2, ... , d, 
there exists a unique vector field fiEI(GL(M)) such that (Î j ), is the 
horizontal lift of e E Tx(M) for every r = (x, e e2, . . . , esp. In 
a local coordinate (xt, 	may be expressed as 

(4.12) rj = 	naeMaae . 

is called the system of canonical horizontal vector 
fields or basic vector fields ([7] and [131 1). 

Let u(x) =--4(x))  be a (p,q)-tensor field. Define a system of 
w1 ,2q 

smooth functions Fu(r)= ili2.-  h. 41 (r)} on GL(M) by ••4 

(4.13) 	u(x) =  Fuiiii‘j227 .1(0e 0 et  C) • • • 0 etp0 	e  2  0 • - • 0 ei,q 

for r = (x, e =46.1 , e2 , . . . ed]) and e*  =~[e„1 , 4, . .. , 4} is the dual base 
of e. In a local coordinate (xi, ej), it may be expressed as 

(4.14) 	F 	(r) 	u(x)k- lk2—k Ppil el2  • • • elq f i' f 12  • • • f ikt' klii2•••4 	1172.••1, 	/2 	if" ki k2  

where (f3) is the inverse matrix of (4). Fu(r) = {F0 (0} is called 
the scalarization of the tensor field u(x) or the system of components  of the 
tensor field u(x) read in the frame e. Fu(r) is GL(d,R)-equivariant in the 
sense that 
(4.15) 	F 	(r) = F kik2-kp(r • a)aii di2 • • • ail 	bE2 • - • big k i  k2 	p J1 .12 	fq  

for every a =  (a5) E GL(d, R) where r •  a is the action of a on r defined 
by (2.31); (b) is the inverse of (at). Conversely, every GL(d, R)-equivari-
ant system F(r) =-- {F.1'1,1:1;1.40} of smooth functions on GL(M) is 
given as F = Fu  for some uniquely determined tensor field u. 
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Proposition 4.1. 

	

(4.16) 	r„,(Fu5lifj2;1)(r ) = (F7,»:1,m(r ) 

for every i 4, 2, • • - jp, j11 j2, • • • 7fq and m = 1, 2, ... , d, where {r„,) 
is the system of canonical horizontal vector fields. 

The proof is left to the reader. 

For an affine connection V= 	,  T  =  F15  — rf, are the com- 
ponents of a tensor T of type (1,2). T is called the torsion tensor. An in-
trinsic definition of the torsion tensor T is given by 

T(X,Y)=P',Y —1 7,X — [X, Y], 	X, Y e I(M). 

An affine  connection == {Pict} is called torsion free or symmetric if the 
torsion tensor is zero, i.e., riti  =  r. 

A C'-manifold M is called a Riemannian manifold if a tensor field 
g = (gu) of type (0, 2) is given on M such that 

(i) g is symmetric, i.e.,  g11(x) = g ii(x); 
(ii) g is positive definite, i.e., g1 (x)Ni > 0 for all x and # 0 e 

Rd.* g is called fundamental tensor field or Riemannian metric (tensor 
field). It defines an inner product on each tangent space Tx (M) by 

a 

	

(4.17) 	1> = gu(x)`'rp , = ) 	and 	= 	
• axi 	 dx 

An affine connection V {TPA is called compatible with the Riemannian 
metric g if the inner product is preserved during a parallel displacement 
of tangent vectors. That is, for every smooth curve c(t) and tangent 

a 	a vectors '(t)— and /1(t) — at c(t) axl 	axt 

deft) Pk(c(t))— 
dci(t) 

k 	0 and — ri (c(t)) " k(t)— 0 dt 	 dt 	 dt 	CC 

imply that 

d 
T (gu(c(t))V0)11(0). O. 

From this it is easy to conclude that P' is compatible with g if and only if 

* Properties (i) and (ii) are clearly independent of the choice of coordinates. 



282 	 DIFFUSION PROCESSES ON MANIFOLDS 

(4A8) 	--4?— g =g 	.1--1 	for all 	j, k 	1, 2, . . . , d. 

	

axk  ij 	lo 	11 ki 

An affine connection compatible with g is not unique (see Proposition 4,3 
below), but if we assume further that it is symmetric then it is unique. 
Indeed, (4.18) together with implies that• 

li a  (4.19) 	
, a 	a 	\ 

lik  f } : 	—2-  Wiigmi 	 a—.—x;vgrij) gkm• 

This connection is called the Riemannian connection or the connection of 
Levi-Civita. The fikil are called the Christoffel symbols. 

Let 0(M) be a submanifold of GL(M) defined by 

(4.20) 	0(M) = ir = (x,e) GL(M); e is an orthonorrnal base of 
T(M)}. 

In a local coordinate (xi,ej) of GL(M), r e 0(M) if and only if 

(4.21) 
	

gk1ee5 	611, 

or equivalently, 

(4.22) 	ci ei„,e1„, 
m=1 

where (el) is the inverse matrix of (g ,f ). The equivalence of (4.21) and (4.22) 
is easily verified as follows. Set e = (e3) and G = (g1j). Then 

	

(4.21) < 	>  e*Ge =<--> G = (e*)-1 e-1  

	

< 	>  G-1  = ee* 

	

< 	> (4.22). 

Now the orthogonal group 0(d) acts on 0(M), and 0(M) is a principal 
fibre bundle over M with the structural group 0(d). 0(M) is called the 
bundle of orthonormal frames on M. Let 17 be an affine connection com-
patible with g and c: [a, b] M be a smooth curve in M. If r = 
(c(0), e) OE 0(M), then the horizontal lift 5(t ) = (c(t), e(t)) of c(t) lies in 
0(M) since e(t) is an orthonormal frame at  C(S). Similarly, a horizontal 
vector field .1 of X OEN(M), if restricted to 0(M), is a vector field on 
0(M), and the canonical horizontal vector fields -fm, m = 1, 2, ... , d, 
are vector fields on 0(M). 
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Let M be a Riemannian manifold and 17= VII be an affine connec-
tion compatible with the Riemannian metric g. The connection 17  enables 
us to "roll" M along a curve y(t) in Rd to obtain a curve c(t) in M as the 
trace of y(t). Intutitively the infinitesimal motion of c(t) is that of y(t) in 
the tangent space which can be identified with Rd by choosing an ortho-
normal frame and the infinitesimal motion of the frame is given by the 
connection i.e., parallel displacement along the curve c(t). To be precise, 
let y: [0, co) t y(t)Rd  be a smooth curve in Rd. Let r = 
(x, e)  Œ 0(M) and define a curve 5(t) = (c(t), e(t)) in 0(M) by 

(4.23) 

c 	c  ci--(t) = c;1-(t)ea(t) 

Fe(t) = 0 

c(0) = x 

e(0) = e. 

In local coordinates, 

-t- (t) = 4(0 4; (t), i=  1, 2, ... , d 

dc  
(4.24) 	42 (t) = — Tim1(c(t))e(t) -4  (t) dt 

cl(0) 

e(0) = 
i, a 	1, 2, ... , d. 

The equation (4.23) may be written as 

(4.25) 
i de 	....

a(5(t)) 
a 

(t) (t) 	 ) dt 

5(0) = r, 

where {Îl, L-2, • • • , fa} is the system of canonical horizontal vector 
fields. The curve c(t) = 7c(e(t)) in M depends on the choice of the initial 
frame e at x; we shall denote it as c(t) = c(t,r,y), r = (x, e). It follows at 
once that 

(4.26) 	c(t, r • a, y) = c(t, r, ay), 	t E [O, co), a G 0(d), 

where r • a is defined by (2.31) and the curve ay in Rd is defined by 
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(4.27) 	(ay)(t) = ay(t), 	i.e. (ay)' (t) = at]  (t). 

Now let w(t) = (wa(t)) be the canonical realization of a d-dimensional 
Wiener process. Stochastic calculus enables us to define a random curve 
X(t) in M in the same way. Let r(t) = (r(t, r, w)) be the solution of the 
stochastic differential equation 

f  
4 28) 	

dr(t) = r,„(r(tpodwa(t) 
(.  

I r(0) = r. 

r(t,r,w) is the flow of diffeomorphisms on 0(M) corresponding to the 
canonical horizontal vector fields 	, rd  and the drift vector 
field * rio 	0. In local coordinates, (4.28) is equivalent to 

I dr(t) = e(t)odwa(t) 	 i = 1, 2, ... , d 
(4.29) 

de(t) = — 11,(X(t))e(t)0dXm(t), 	i, a = 1, 2, ... , d, 

where r(t) = (XV), OD. That the solution r(t) = (XV),  e(t)) lies on 
0(M) if r(0) e 0(M) is clear since r,„ is a vector field on 0(M). Of course, 
one can also verify directly that d(g1i(X(0)e(t)e13(0) = 0 by using (4.18). 
Now a stochastic curve X(t) = (XV)) on M is defined by X(t) = n[r(t)]. 
By (4.26) we have (writing X(t) = (X(t,r,w))) 

(4.30) 	X(t, r • a, w) = X(t,r,aw) for t > 0, a e 0(d) and w E  W.  

But aw = (aw(t)) is another d-dimensional Wiener process and hence the 
probability law of  X(.,  r • a, w) is independent of a E 0(d). In other 
words, the probability law of  X(.,  r, w) depends only on x = 7Z (r). We 
denote it by P.  It is now easy to deduce the strong Markov property of 
the system { P„ } from that of r(.,  r, w). 

Remark 4.1. Of course r(t,  r, w)  can be defined as a flow of diffeo-
morphisms on GL(M) for any affine connection but its projection to M is 
not strong Markov in general because it is not usually true that the law 
of n[r(i , r, w)] depends only on x = n(r). This is the reason why we restrict 
ourselves to an affine connection compatible with g and to a flow of 
diffeomorphisms on 0(M). 

Thus we have a diffusion {Px} on M. We shall now show that it is 
A-diffusion process where the differential operator A is given by 

* In the stochastic differential equation (1.1), the vector field Ao  is called the drift vector 
field. 
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1 

	

(4.31) 	A --- 4M + b.  

Here A m  is the Laplace-Beltrami operator on M given by 

a2f 	 . af  

	

(4.32) 	A mf gfiPTIV,V * = a)--7'aTcj 	{'k 
J)  

a and b = b‘(x) a—x  is the vector field given by 

	

(4.33) 	b' = enk({i k } — T). 

Indeed, considering  f(r)=f(x) for r = (x, e), we have 

f(X(t)) — f(X(0)) = f(r(t)) — f(r(0)) 

=
0 
 (r,„f)(r(spodwa(s) 

= 	r,f(r(s))dwz(s) 	 a(r,,,f)(r(s))ds. 
0 

Therefore it is sufficient to show that 

fa(fan = Af- dr- a=1 

Note that A given by (4.31) may also be written as 

1 { 	aP 	tirk af _ 	iJ 	 a A = 	171 171 —  T g 	 aXkp  

By Proposition 4.1, 

fa(raf) = ra(F17f)a = (FFVf)aa=  (PriFj.neicreja • 

Hence 

r,„(47f) =  E  (17,17.1f)eiceeice  = gij17,1 7  if 
a= 1 	 a---  1 

* pR = (f ik j j) is the Riemannian connection. 



286 	 DIFFUSION PROCESSES ON MANIFOLDS 

by (4.22). The above results are summarized below. 

Theorem 4.2. Let M be a Riemannian manifold with an affine con-
nection Pr  which is compatible with the Riemannian metric g, and let r„ 
L2,  - • • re, be the system of canonical horizontal vector fields. Consider 
the stochastic differential equation (4.28) on 0(M). The solution defines a 
flow of diffeomorphisms r(t) = (r(t,r,w)) on 0(M) and its projection 
X(t) = n[r(t)] defines a diffusion process on M corresponding to the 
differential operator A given by (4.31). 

Definition 4.1. The process r(t) in Theorem 4.2 is called the horizontal 
lift of the A-diffusion X(t). 

Definition 4.2. In the case A = 4m/2, the A-diffusion X(t) is called the 
Brownian motion on M. 

Thus the horizontal lift r(t) of a Brownian motion X(t) on M is con-
structed by means of the Riemannian connection. Now we shall prove the 
following 

Proposition 4.3. (j) For every vector field b  = b'(x) a 
  on a  Rieman-

nian manifold M, there exists an affine connection 17 = {TN on M com-
patible with the Riemannian metric g such that (4.33) holds. 

(ii) Two affine connections 17= {rb} and 17= {/7 }  compatible with 
the Riemannian metric g satisfy 

	

(4.34) 	glk 	= ek.1"'A 	for all i = 1, 2, ... , d 

if and only if 

	

(4.35) 	T','„ = T"„ i = 1, 2, . . . , d, 

where {n} and {r,f }  are the torsion tensors of V and V' respectively. 

Proof. (i) Define 

2 
{/k } 

 , 
cm(uNk — g A Y) 

where b, = gubi . Then, since (53k, gikbi are the components of a (1, 2)- 
tensor, 17=1/1j satisfies (4.7) and hence defines an affine connection 
([185]). It satisfies (4.18) since 
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a 
axi g,4  — 

a 
= a—Ex gPq 

g  mg  p} 	g pm  lim  qJ 

d 

= - 
d 

=0.  

2  
g( ,„,c5rb p 	gniggipbm 	gp„,457b4 	g p„,g zqb'n) 

2 
I 

(g ,b 	Uqg p 	gpiLfq 	giqbp) 

Also, 

1 k 7  g` fr 	 d 	 el( Ofb k  — gab') 

1  
d — 1

(gek bk  — bed) =  b'.  

(ii). Firs1 we note the following identity for any affine connection 
{PA compatible with g: if {77k} is the torsion tensor and Sjk  = 

gemg in T k ,  then 

1 	1 (4.36) 	nk = k} + —
2 

Tjk 2 (S)k ± SO. 

Indeed, by (4.18), 

a 
axk gsi gmliTs gsinFiz = 0, 

a 
axigsk gmkrT, 	 = 0 	and 

a 
axs gfk ±g Inkr0 g m ps1 = 0.  

Hence by (4.19), 

1 	I a 	a 
= 	a—X-Icgsj aTx) gsk  aa,egik) 
11 	 1 
T 

1 g  1:g 	— 11)  T egrink(1.7; rs"))  T 
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= - 

= 

11 (Sjk  ± Ski) + —2 (rid rik) 

ski>+ PA — 4_ T. 

This proves (4.36). Since gikTif, = 0, (4.34) holds if and only if 

gik S;,k  = giksIJk 	for all i = 1, 2, 	, d, 

that is 

gmengin(T — T'?, &) 	 = 0, i = 1, 2, . . . , d.mn 

Finally this is equivalent to 

gkigim(T;'„„ — T'L) (TZ„ — nel „) = 0, k = 1, 2, . . . , d. 	q.e.d. 

From this we easily see that the correspondence between 1 7= {nk} 
and b defined by (4.33) is a bijection if d =  2, while it is a many to one 
surjection if d>  2. 

Let M be a differentiable manifold and A be a second order differential 
operator on M which is expressed in local coordinates as 

	

(4.37) 	Af(x) = au(x) aS(x) IY(x) (x), f E F(M) 

where (au(x)) is symmetric and non-negative definite» If (au(x)) is strict-
ly positive definite, i.e., 

	

(4.38) 	au(x)ç1 > 0 	for all x and  ç = 	E R d\ (0) , 442  

we say that the operator A is non-degenerate. The corresponding A-diffu-
sion is also called non-degenerate. Now any non-degenerate diffusion on 
M can be constructed by Theorem 4.2. Indeed, let A be a non-degenerate 
differential operator. In a change of local coordinates, (au(x)) and (br(x)) 
transform accordingly as 

ax'  av  

	

(4.39) 	110(x) = a'c'(x) a—T.1c  T.7--ci  

*1 , *2  These properties of (ati(x)) are independent of the choice of local coordinates. 
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and 

(4.40) 	P(x) = bk(x) 	elk (x) 

(4.39) implies that (au (x)) is a tensor field of type (2,0) and hence its 
inverse matrix (gii(x)) defines a tensor field of type (0,2) which is also 
symmetric and positive definite. Thus, it defines a Riemannian metric g 
on M and so M is a Riemannian manifold. Then we have 

(4.41)  

where E 	Es(x)L is given by 

(4.42) 	E'(x) = bg(x) 	lit . 

Obviously E is a vector field on M. Now choose an affine connection 
7= {./I }  on M compatible with g such that 

21 gmk( { m ik ) 

This is always possible by Proposition 4.3. The A-diffusion is now con-
structed as in Theorem 4.2. 

Remark 4.2. In this construction of an A-diffusion we have made use 
of an affine connection. An A-diffusion can also be constructed using only 
the Riemannian connection VR •  In this case, we first construct a flow of 
diffeomorphisms r(t) = (r(t, r, w)) on  0(M) as the solution of the stochastic 
differential equation 

(4.43) 	dr(t) = a(r(t))0 dwa(t) 	rio(r(t))dt, 

where (E1, E2, . . . Ed) is the system of canonical horizontal vector 
fields corresponding to Vg, and the drift vect )r field ro  is the horizontal 
lift (with respect to FR) of the vector field E. The A-diffusion X(t) is then 
obtained by the projection: X(t) = n[r(t)]. 

Finally, we shall study some problems related to the invariant measure 

* gmk  = amk  by definition. 
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of a non-degenerate A-diffusion. For simplicity, we shall assume that M 
is compact and orientable. As we saw above, we may assume without loss 
of generality that M is a Riemannian manifold and A is of the form 

	

(4.44) 	A = A 	b, 

where A m  is the Laplace-Beltrami operator and b2E(M). Let {Px} be 
the system of diffusion measures determined by A (i.e., the A-diffusion). 
Px  is a probability measure on fli(M).*' The transition semigroup 7; of the 
A-dffusion is defined by 

	

(4.45) 	(7; f)(x) = trm)f(w(t))P x(dw), 	C(M). 

Let Q be a domain (i.e., a connected open set) in M and define ew 
E W(2), w E W( W) by 

if t < r(w)
(ew)(t) 	w(t)  

1 A 	if t 	s2(w) 

where 2-s2(w) = inf It; w(t)  Q}.  The image measure of Px  (x e 0) under 
the mapping e is denoted by P.S2c . It is a probability measure on Tk(Q). As 
is easily seen, {P} xED  defines a diffusion on Q and it is called the minimal 
A-diffusion on Q. Its transition semigroup is defined by 

(4.46) 
(77f2f)(x) 	

W 
f(w(t))P (dw) 

u?) 

=f(w(0)1{T s2(.)>t)P.(dw), f e Cb(2). *2  W(M)  

Definition 4.3. A Borel measure p(dx) on M is called an invariant 
measure of the A-diffusion {P} if 

(4.47) 	f m T,f(x),u(dx) f mf(x)p(dx) 	for all f e C(M). 

Definition 4.4. (i). An A-diffusion {P,} is said to be symmetrizable if 
there exists a Borel measure v(dx) on M such that 

* 1  Since M is compact, W(M) = W(M): the set of all continuous paths in M. 
*2  We set f(4)= 0 for f e C6(0). 
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(4.48) 	Tef(x)g(x)v(dx) = mf(x)(T rg)(x)v(dx) 

for all f, g E 

(ii). An A-diffusion {Px } is said to be locally symmetrizable if {RF,}  
is symmetrizable for every simply connected domain Q c M, i.e., if there 
exists a Borel measure vQ(dx) on Q such that 

(4.49) 	
$

o  Tf2f(x)g(x)vQ(dx) = nf(x)TPg(x)v.Q(dx) 

for all f, g E Cb(0). 

It is clear that if {P,} is symmetrizable, the measure y in (4.48) is an 
invariant measure. 

A differential 1-form cob  is defined from the vector field b by 

(4.50) 	cob = bi(x)dx', 

a 
where b = b' — and b, = gLi bi in local coordinates. By a well-known 

axl 
theorem of de Rham-Kodaira ([145 ]) , cob  has the following orthogonal 
decomposition:* 

(4.51) 	cob  = dF + (513 + a 

where FE F(M), )6 is a 2-form and a is a harmonic 1-form. Here we briefly 
recall some of necessary notions. An inner product is defined on the 
totality A „(M) of all p-forms on M by 

(4.52) 	(a, I3) p = xf <a, pdx, 

where a = E a1' •  • •„ 	dx 1' A dx12 A 	A dx ii), = E ' 	 11 <12<.  <122  Al t2p. fp 
h 1 <12<  <IP 

dX11  A dxg2 A - 	A dxtv, 	 g1iilgt2i2 • • • 	 <a, 13> = 

	

E a„ ,  (2....  f (r)fi ll  • 	"POO and dx is a volume element defined by 
11<12<- • <ip 

cbc = A/det(g11 (x))dx'dx 2  - • • dxd. 

The operator (5: p(M) —•• A_ 1 (M) is defined by 

* With respect to the inner product defined by (4.52) below. 
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(4.53) 	(da) 13)p=  (a, 613)p-1, a EA,04),  fi  E Ap(M)- 

De Rham-Kodaira's Laplacian : A p(M) 	A p(M) is defined by 

(4.54) 	=  —(do  6c1). 

a E A .„(M) is called harmonic if Ela = O. The totality of all harmonic 
p-forms is denoted by 1-12,(M). It is known that Oa = 0 if and only if 
da =  0  and &r ----- O. For f F(M), grad f X(M) is defined by 

af  (4.55) 	grad f = gu 	
a 

 

and for X G gm .), divX E F(M) is defined by 

div X 

(4.56) 	 1 	a 
(X',/det 0-*  "A:Tit-6 axt 

Then the Laplace-Beltrami operator (4.32) is also given as 

(4.57) 	.6 1 mf = div(gradf ) = —6elf for f F(M). 

It is easy to see that /I is an invariant measure of the A-diffusion {P.,} 
if and only if 

(4.58) 	f Af(x)p(dx) =-- 0 	for all f  E  F(M). 

Indeed, we know by Theorem 3.1 that u(t,x) = Tf(x), f eF(M)) 
unique solution of 

au 
= Au(t,x) 

{ 
 

lim u(t,y) = f(x). 

is the 

Also, we saw in the proof of Theorem 3.1 that Au(t,x) = Tt(Af)(x). Hence 
if (4.47) holds, we have by differentiating with respect to t that 

* G = (g,j) and X = X . 
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J. 

m 

7',(Af)(x)p(dx) = 0 
	

for all f EF(M). 

We obtain (4.58) by letting t .1 0. Conversely, if (4.58) is satisfied, then 

d 
0 — f 

m
(Au)(t,x)p(dx) = yt- f m T r  f(x)p(dx). 

Consequently (4.47) holds for f E F(M) and hence for f E C(M). 

Proposition 4.4. 

(Af, h)0 -= (f, A *h)0,' 	.f, h e F(M), 

where 

(4.59) 	A*h = — Sdh + 6(hco b) = z 1 m h — div(hb).*2  

The proof is immediate from the definition. 

Proposition 4.5. An invariant measure p(dx) of the A-diffusion exists 
and is unique up to a multiplicative constant; moreover, p(dx) is given as 
v(x)dx where v e F(M) is a solution of 

(4.60) 	A*v = O. 

Proof The equation (4.58) is equivalent to A* p = 0 in the sense of 
Schwartz distributions on M. Since A* is elliptic, any solution must be of 
the form p =vdx, v E F(M), by Weyl's lemma ([1]). Furthermore, 2 = 0 
is the largest eigenvalue of the eigenvalue problem (A — 2)0 = 0, it is 
simple and {00 ; c eR} is the eigenspace where 00(x) -.=-. 1. Therefore, 
2 = 0 is also the largest eigenvalue of the eigenvalue problem (A* — 2)0 
= 0, it is simple and its associated eigenspace is given as {cfn ; c ER} 
where we can choose 0 such that Ot(x) > 0 for all x e M.* 3  Hence all 
invariant measures of the A-diffusion are given as p --- cgdx for some 
constant  c>  0. 

* 1 

 

(f, :)o  = f f(x)g(x)clx, dx =-- N/EFU dx1dx2  • • • de. 
m 

*2  For f EF(M) and a E A(M), a = a1 1 .12 ..... r "x i ' A dx12 A - - • AdeP, fa is defined  
by fa = (failaz 	sp)dxil A dx12  A - - - A dx‘P. 
*3  This fact is well known. It is also a consequence of the theory of positive operators 
[89]. 
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We choose U(x) EF(M) so that A*(e-u) = 0, i.e., e-  udx is an in-

variant measure. Since A*(e- u) , -- 	= 0, e- 'w,,  2 

—

T  1 

 d(e) = 6 f3 1 - F al  for some fl, EA 2(M) and cr i  Iii (lif), i.e., 

(4.61)e-ua) = — 1  d(e) + 5fl 1 ± al, 
b 	2 

where fl i  E A 2(4") and cr 1 E .1 I i (M). Conversely, if U satisfies (4.61) with 
some fl i  and al  then 

A *(e-u) = 6(e-  'lob — --12-  d(e-u)) = 6(ô A ± al) = 0 

and hence e- u (x) dx is an invariant measure. (4.61) gives the de Rham-
Kodaira decomposition of the 1-form e- ucob . 

Theorem 4.6. (i). The A-diffusion is symmetrizable if and only if 

(4.62) 	(V = a = 0 	in (4.51);* 

and this is equivalent to 

(4.63) 	0131  = a i  = 0 	in (4.61). 

The condition (4.62) or (4.63) is equivalent to the condition that b be 
given  as t, 

(4.64) 	b = grad F, 	F 

and in this case the invariant measures are of the form constant x e2F(x) dx. 
(ii). The A-diffusion is locally symmetrizable if and only if 

(4.65) 	0 )6 = 0 	in (4.51); 

this condition is equivalent to 

(4.66) 	dcob  = O. 

* [88] and [127]. 
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(iii). The A-diffusion has a measure cdx (c > 0: constant) as its in-
variant measure if and only if dF = 0 in (4.51) and this condition is equiv-
alent to 

	

(4.67) 	15cob  = —div b O. 

Corollary. The A-diffusion is symmetric with respect to the Riemann-
ian volume dx (i.e., it is symmetrizable and the measure I) in (4.48) is dx) 
if and only if it is the Brownian motion on M. 

Proof Let Uo(x) eF(M) be determined by 

cuo(-)dx = 1 and A*(e - uo) = O. 

Then the measure e- uo (x) dx is the unique invariant probability measure of 
the A-diffusion. If we introduce another inner product on F(M) by 

	

(4.68) 	<u, v> =u(x)v(x) cuo (x ) dx, 

then it is easy to see that 

<Au, v> = <u, Iv> 

where 

	

(4.69) 	iv = 4_ A mv (b + grad U0)v. 

Suppose the A-diffusion is symmetrizable. As we remarked before, the 
measure y in (4.48) is an invariant measure, and hence if 1.) is normalized 
so that it is a probability measure, we must have v(dx) = e - uo (x) dx. Thus 
<Tu,  v> = <u,Tr v> for u,v F(M) by (4.48), and so by differentiating 
with respect t we obtain 

<Tr Au, v> = <u,T,Av>. 

Letting t 0, we have <Au, v> = <u, Av>, and consequently iv Av 
for all v E F(M), that is, 

(4.70) 	b = —(b ± grad U0). 
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Hence 

b = 1 grad U0. 
2 

Conversely, if b = grad F, F ŒF(M), then cob  = dF and so e2Pcob  
1 = -- d(e2F). Therefore U — 2F satisfies the equation (4.61) with 613 1  2 

= ai = 0. Hence e- udxis an invariant measure and U = U0 -1- c for some 
1 constant c. Consequently we have b = —7  grad U0  and this implies that 

lv = Ay, y EF(M). But generally, the A-diffusion {P} and 1-diffusion 
{fix} are connected to each other, through their transition semigroups 
Tr  and fr  respectively, by the relation 

<Tu, y> = (u, tv>, 	u, V E F(M). 

Indeed, 

d <T,,u, tr y> = <— AT r_su, tr y> 	lts v> 

= 	It-1Y> <T _3u, Ifsv> 

=0, 

and hence 

<Ta u, y> — <u, ftv> = _ 	d 0 -d-Ts  <T _u, tv>ds 

= 0. 

Therefore I = A implies that  <Tu,  y> = <u, Tt y> and consequently the 
A-diffusion is symmetrizable. Now the proof of (i) is completed. The proof 
of (ii) can be given similarly. Finally, the measure dx is an invariant 
measure if and only if the function U in (4.61) is a constant, that is, 
Cob  = (5fl + a, for some )6 EA2(M) and a EHI(M). 

Remark 4.3. It might be interesting to give an probabilistic interpre-
tation for conditions like "a = 0 in (4.51)", "al = 0 in (4.61)" or "fl, = 0 
in (4.61)". In this connection, Manabe [109] obtained the following result. 
He first defined "the stochastic Kronecker index" /(X[0, t], c) between a 
d- 1 chain c in M and an orbit X[0, t] = {X(s);s E [0, of A-diffusion 
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X(t) as a stochastic process. He then showed that a l  = 0 in (4.61) if and 
only if for every d-1 cycle c 

lim i(X[0, t], c)I t = 0 
tr. 

a.s. 

5. Stochastic parallel displacement and heat equation for tensor 
fields 

Let M be a Riemannian manifold and A be the Laplace-Beltrami 
operator. Then, as we saw above, the solution of the heat equation 

la u 
-67  = L u 

(5.1) 

can be solved uniquely as 

(5.2) 	u(t,x) 	Eff(X(t,x))] 

where X(t,x) is a Brownian motion on M starting at x. In order to gen-
eralize this fact to the case of heat equation for tensor fields, Itô ([68], [72]) 
introduced the notion of stochastic parallel displacement. His idea is as 
follows. Consider the equation (5.1) where u and f are now tensor fields 
on M and Au  = g"17;Fiu, P' being the covariant differentiation with re-
spect to the Riemannian connection. Then the solution u is given by 

(5.3) 	u(t,x) = Eff(X(t,x)) *], 

wheref(X(t,x)) *  is a tensor at x obtained from the tensorf(X(t, x)) at X(t, x) 
by parallel displacement along the time reversed Brownian curve. The 
difficulty in this procedure is in obtaining f(X(t,x)) *  as the parallel trans-
late off(X(t,x)) along the time reversed Brownian curve. 1tô defined it as 
a limit of the parallel translate along a piece wise geodesic curve from 
X(t,x) to x which approximates the time reversed Brownian curve. But as 
we saw in the previous section, we can use stochastic calculus to perform a 
parallel displacement along the Brownian curve from x to X(t,x) in the 
usual sense of time. Moreover, we can actually realize Itô's idea using only 
such parallel displacements: instead of translating a tensor at X(t,x) to 
a tensor at x, we translate an orthonormal frame e at x to an orthonormal 
frame e(t) at X(t,x) along the Brownian curve and read the tensor at X(t, x) 
using this frame e(t). This approach is due to Malliavin [104]. It is now 
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clear that the process r(t) = (X(t,x), e(t)) is the horizontal lift on 0(M) 
of the Brownian curve X(t,x) constructed in the previous section. The heat 
equation (5.1) for tensor fields is solved in this manner. By modifying the 
expectation with a Feynman-Kac type weight we can also solve the heat 
equation for differential forms 

(5.4) 
da 	1 r.." = 

alt.° =1 

where D is the Laplacian of de Rham-Kodaira (4.54). 

Let M be a compact Riemannian manifold and 0(M) be the bundle 
of orthonormal frames over M. Let { ri , E2, • . . , rd} be the system of 
canonical horizontal vector fields on 0(M) with respect to the Riemannian 
connection {1,}  . As in the previous section, the flow of diffeomorphisms 
r(t) = (r(t,r,w)) on 0(M) is defined by the solution of the stochastic 
differential equation 

idr(t) = r,a(r(t))0 dwa(t) 
(5.5) 

r(0) = r. 

r(t) defines a diffusion process on 0(M) which corresponds to the differ- 

ential operator —1 zio(m" where 
2  

(5.6) 

r = (r(t)) is called the horizontal Brownian motion on 0(M) and  40(M) is 
called the horizontal Laplacian of Bochner. As we saw in the previous sec-
tion, the projection X(t) n[r(t)] is the Brownian motion on M. We write 
r(t, r, w) = (X(t, r, w), e(t, r, w)). We know that 

(5.7) 	r(t, r • a, w) = r(t, r, aw). a 

i.e. 

(5.8) 	X(t, r • a, w) = X(t, r, ow) and e(t, r • a, w) = e(t, r, aw)a 

for every a 0(d).* 

* See (2.31) for the definition of the action r.a of a on r. 
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Let T(x) (11 11;2--  `1,7 (x)) be a (p, q)-tensor field and F 	(F 

	

2. • • 	 1./2- • -la 

(r)) be its scalarization. It is a system of smooth functions on 0(M). Let 
be the Laplace-Beltrami operator acting on tensor fields defined by 

(5.9) 	(.4 Tr 12' • • iP = 	(17 (I7  T))`, 1  I?.  • • if = 	T  
2. • • q•0 	 . • ./aaa 

where VT  is the covariant derivative of T with respect to the Riemannian 
connection. By Proposition 4.1, we have 

(5.10) 	(40(m)Fr iXJ22:.5)(r) = F4T'il, (12:.(7,7(r) 

for every ii,  2, • • • ip,i1j2, • • ' ' fa' 

Indeed 

40 cm ) \-- 	• • ip 

= E ara(F  
a 

=  E F 1112.  —in  VP 7702—Jaaa 

E eai efae3Ie3i • • • ere; f f tk22  
q 

• • • f 40277 Tycik2.-kp 
1 1 12— 14,11 

= e5ie53, 	e f 1 fk22  

(Ferg12':: .14 

since E etc4, = gii. 
a 

For a given (p, q)-tensor field f=  (f(x)), we define a system of func-
tions Ufi r2— `),  (t r) on [0, co) x 0(M) by /1/2...4 

(5.11) 	U1112—  • iP 
(t,  r) = E [(Ff  )1(11,2*.:11,4(r(t, r, w))] 

for every j 1 , j2,  • • • 3  i , j1.2 122 . . . 	= 1, 2, ... , d. By Theorem 3.1 

, 2- , 
is the unique solution of the heat equation 

1 	•q. 

{ay 
at = Ao(m) V 

t-o = (Ffy112... 
-1 112. • .4 • 

(5.12) 
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Since F f 	{(F 12.  .1} is 0(d)-equivariant, we can easily prove by (5.7) 
and (5.8) that U(t) = {U2,1122:1(t, •)} is 0(d)-equivariant for every t 0. 
Therefore there exists a unique (p,q)-tensor field u(t, .) = 11411,2...  

r jr 2. • • q 

)1 such that 

VP?' (t,r) = F 	6.) 
2.. • q 	- 	84(t.•)/.../q• .1* 

By (5.10), it is clear that u(t, •) is the unique solution of (5.1). In this way 
the heat equation (5.1) for tensor fields can be solved uniquely. 

Next we consider the equation (5.4) for differential forms. Let 

a(x) = E 	 A dxf2  A  •• • A dx'P 
11 <i2<-  <4, 

be a p-form. We agree to define a1112...0) for all system of indices by 
the alternation property, so that a11i2 ...,p(x) = 0 unless the indices 
i2 , • • • , ip  are all distinct and 	= sgn(a)a, 	«)  (x)  for any 
permutation cr. Then. 

a(x) = j - 

	A dX12  A ' • • A dxtP. 

Following [145] or [128], we identify a(x)(in a coordinate neighborhood) 
with the system of functions (a11t2 ...0)) and write a(x) = (a11t2 ...„p (x)). 
Note that these components (a1112..4x)) of p-form a are p! times of those 
when a is regarded as an alternate (0, p) tensor. 

Since the Riemannian connection is torsion free, we have 

p+ 1  
(5.13) 	(da),112.;.%+1= 	v-ip 

where the circumflex denotes omission. Combining this with (4.53) it is 
easy to see that 

(5.14) 	05'2)11E2—i 	= 	gik  V kai ii ••• ip- i 	 •• ip- I • 

By (5.13) and (5.14), 

(d6a), 1 ,2... ip =t( - 1)17ifice, 
v=1 

and 
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(c5da) i i2...1 =— PViai i i2 ...1„—(-1Y17 1 17 a P 	 iv I IV -iv -4p . 

Then it is clear that 

(5.15) 	ea)11 i2.../ = VT' iati i2...1 — ±(- 1)117  ir — 177 jaii i...j„...1 - 
P 	 P 	v=1 	 P 

Notice Ricci's identity 

(F 7 1 17k  — 17k171)a,..,,...., --Ê Rh.fc., cri 
•• 

f 	hi 	f  
rh p 	v.1 	v 	1• v-1 v+t••• p 

where 

a 
Ri — 	{ 1  } jkl — aX

k 1 j  

a f 
al { k  h + (L a  J) Ik i  a) — tk a  j) III  a}) 

is the component of the curvature tensor and Ri.:ik.;g= ka .R1 jai [ 145]. Ap-
plying this identity to (5.15) we see that (5.15) can be rewritten as 

(5.16) 
1 Av Dh•k• ,.„ 

(00,1 12...1„ = 0011 i2...in  —±(— 'L l -"-le.tv "h 11...W..i p  

—2 E (_..... I )14+vie-k • , 
•Itelit ".khii...?p,...12.1...ty  • 

p<i) 

The relation (5.16) is called Weitzenbikk's formula ([128], [145]). For the 
1-form a ---. al(x)dx', 

(5- 17) 	(illa)i = (z1 01 + kia., 

where Rii  =  R; .  In exactly the same way as above, we see that the equa-
tion (5.4) is equivalent to the following equation for alternate and 0(d)- 
equivariant systems V(t, -) = {V,112..,(t, r)} of functions on 0(M) 

a 
..1

(t
, 

r) 

1 A 	 Ni 	f 1 \ Th 1.,\ v 
= —2— 4.1 0(M) vi,12...1O,  r )  — – 2  - ,ezi l, —  -iv- Vs' / ' hii. .. /v.. . ip(tp 

(5.18) 	
— E (- 1)P + VP,k,10(r)Vkhi,...4,...N..,,,,(t, r) 

p<1., 

r) 
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fr--1  = 1 	(w) 	 r), 

r) = 

where { Pi(r)}is the scalarization of R 11 = Ri.j.k.; and {it jk,(r)} is the 
scalarization of { R }. Just note that Do (m) F. = F a  for a e 
A„(M) by (5.16). 

By using the tensor { _kw } we can form various mixed tensors by 
raising and lowering indices via 

&Al — gia-Ra  Jkl, etc. 

Then a straightforward calculation in local coordinates shows that 

RIX = R iau  = — Rink. 

The Ricci tensor Ru  is defined by 

Rif k.k.; (= k  R 'JO 

Then we have Ru = Rji . We note that Pt(r) = J4(0 and  J? ,(r) 
Jiikr(r) for all i, j, k, 1 where (Jii(r)) and (Juki (r)) are scalarizations of 
(Rii(x)) and (Ruk ,(x)), respectively: It is a general fact that raising and 
lowering indices of components are irrelevant for scalarizations of 
tensors. 

The equation (5.18) is apparently 'complicated and so following [194] 
we now rewrite it into more compact and manageable form by in-
troducing several algebraic notions, especially exterior and interior mul-
tiplications (creation and annihilation operators) over exterior (Grass - 
man) algebra. 

Let Rd be the d-dimensional Euclidean space and (51, 62 ,  ..., 6d 

be the canonical basis, i.e., 

1–th 

= (0, • • • ,  0, 1 , 	0, • • , 0). 

Let ARd = 0 :IRd be the exterior (= Grassman) algebra over Rd: 
P 1) 

iiiR d  is the Euclidean space of dimension (dp) with basis 

6i ' A 612  A 	A 4P, 	1 	i2 < • - 	d 

and hence, ARd is the Euclidean space of dimension 2d. An element 
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co of )12R 1  is uniquely expressed as 

0.) 	E (51 1 A 6'2  A • • A *(51g (1)1 1 12- ip 

and we agree to define co1112 ,.. ip  for all system of indices by the alterna-
tion property so that co, 112 ... 5,  — 0 unless i1 , i2 , • • •,  i,,  are all distinct 
and co,112 ... 1p  = sgn(a)co, (,1) , (,2) ..., (9  for any permutation a.. Then we 
have 

,, 	
6 

CO = 1 --vj 	hi A 6hz 	- • • A (5' P. p 1 1 1 12-5; 

We denote co = (coiii2...0 and call 	components of co. 

If V1 , V2 are vector spaces, the space of all linear mappings from 
V, and V2 is denoted by Hom (VI , V2). For a vector space V, Hom(V, V) 
is denoted simply by End(V). Thus End( V) is the algebra of all linear 
mappings on V. For each j  = 1, 2, • ,d, let cif e End (ARd) be defined 
by 

(5.19) 	e(c.o) = 6' A co, 	co e ARd. 

p+1 
Thus ar is a linear mapping on ARd sending jiRd into A Rd for each p 
(creation operator). The dual of (27 is denoted by a,. Hence a, 

p+1 
End (ARd) which sends )1.)  Rd into A Rd (annihilation operator). 	It is 
easy to see that 

{a, a1 ) = 	and 

(5.20) 

(ar, a1 ) = 6,.11 

where 

{ a, b) = ab ± ba 	for a, b E End(ARd). 

In terms of components, these linear mappings satisfy the following: 
If co = (co, 112 ... ip), i.e., 

1 

	

= A (512 	A (5iP 

Ci2<•••<tp 
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then, for j = 1,2, • - • , d, 

p+1 

	

(5.21) 	 = E 1  (—  iv 	v v-1 

	

(5.22) 	[a1(co)],1 ,2... ip, =wit• 

For a  =  (au) E Rd C) Rd, define D i [a] E End(ARd) by 

d 

	

(5.23) 	D [a] = E aijaPaj . 

D [a] sends zPIRd into )17Rd for every p and we see by (5.21) and (5.22) that 

	

(5.24) 	(Nal(co))1112 _ = EL  Ed  (- 1)11  
1).ml J-21 

if w = (co,112...0. For fi = (flJAI) E R d  0 Rd 0 Rd 0 R d , define  D2 [fi] 
E End  (AR")  by 

d 

	

(5.25) 	DO] = E fi„,,a;Waja,. 
1,1,k,1=.1 

D2[fi] also sends APRd into ARd for every p. Furthermore, if /3 satisfies 

	

(5.26) 
	

AA: = 16kl if 

we see easily that 

(D21131(0)))11 12.- ii, 
(5.27) d 

— 2 E 	E (-1)9 4- p coati 	Fp ipfliv 11uk 
1Sv<itp 1,k-1 

if w = 	Hence, if /3 satisfies furthermore 

(5.28) 	flijki 	fiJikl = 	, 

then we have 



d 

— 2 E E (_.l)t+zw lk j flk 
, 

1Sv<p‹p 1,k=1 

(D 201(0)i 1 12-  p 
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(5.29) 

Noting that  J11(r) 	J11(r) and that Jijia (r) satisfies both (5.26) and 
(5.28), we can now rewrite (5.18) in the form 

(5.18)' 

a , 1,7  
v =-2-1_10(m ) v 

= -2-Ao(m)v + TDiVii(r)] V — TD2[Jiiki(r)] 

v(o,r). Ff(r). 

If we further define, for fl = (fiukz) E Rd 0 Rd C) C) Rd, .152U1 
End(ARd) by 

d 
(5.30) 	152b61  = E  flutaceafatal, 

then it is immediately seen from (5.20) that 

,62[fl] 	D2[fii 	Di [a] 

where 

a  = (a11) Rd 0 Rd ,  

Hence (5.18) can finally be rewritten in the following simple form ([1941): 

ay 	1 
= 2D° (m) v  

A 	 I ri (5.18)" 	T-0(m) V m -27,21
r 
 g tiki kr n 

V(0,0= Ff(r). 

Thus, to find a solution a(t,x) of (5.4) is equivalent to find a ARd-valued, 
0(d)-equivariant  function  U(t,r) = (U 1112 ...1,(t,r)) defined on (0, 00) x 
0(M) which satisfies (5.18)". 

Now we are going to show that a ARd-valued smooth function 
(t,r) on [0, co) x 0(M) which satisfies (5.18)" exists and is unique; 

furthermore, this U(t,r) is 0(d)-equivariant. In order to construct this 

d 

Ceti  = E flikkj- 
k=1 
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U(t,r), we modify the expectation in (5.11) with Feynman-Kac type 
weight. So let r(t) = r(t,r,w) be the solution of (5.5) defined on the d-
dimensional Wiener space ( Wcf, P w) and, for each w G Wg and r E 

0(M), consider the following ordinary differential equation for 
End  (A R")-valued function M(t): 

(5.31) 

dM 	1 
(t)  = —

2M(t) 152[Jukz(r(t,r,w))] 

M(0) =  I (: = the identity in End(ARd)). 

Clearly the unique solution M(t) End(ARd) of (5.31) exists. We 
denote M(t) = M(t,r,w) to clarify the dependence of M(t) on r = r(0) 
and w. 

For a given p-form 

1 
f(X) 	 ip(X)dXi 1  A dx 12  A • • • A dx:p, 

let Ff(r) = t(Ff ),,,,...,p(r)) be its scalarization and define a )1R'-valued  

function U(t,r) on [0, co) x 0(M) by 

(5.32) 	U(t,r) = E[M(t,r,w) Ff (r(t,r,w))]. 

We can conclude as in Section 3 that U(t,r) is smooth on [0, 00) x 

0(M). Note that the following Itô formula holds for any smooth 
valued smoothsmooth function V(t,r) on [0, co) x 0(M): 

M(t)V(t,r(t)) 	V(0,r) 

= f  m(s) (1,,,V)(s,r(s))dwa(s) 

(5.33) 	f m(s) {(-Z(s,r(s)) + ,e10 ( m) V(s, r(s)) 

--F ., b-2,[Jiiki (r(s))] V (s,r (s))}ds 

t 	av 	1 = a martingale ± 	 TO0  V)(s, r(s))ds. 
0 	d 

Then, by the same argument as in Theorem 3.1, we can show that U(t,r) 
defined by (5.32) is the unique solution of (5.18)". 

Finally, we show that U(t,r) is 0(d)-equivariant. For this, we intro- 
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duce some notations. Let g = (gi) OE 0(d) and define 1(g) OE End(ARd) 
by 

(5.34) 	2(g) [c5'1 A (5t 2  A • • • A (5] = (ô ig) A (6izg) A • - • A (cSipg) 

where 61g = gific5P, i = 1,2, - • - , d. In other words, 2(g) OE End(ARd) 

which sends .)1Rd into )1' Rd for every p and satisfies 

(5.34)' 	[2(g) (co)] 1 112 ...1, = gfile42 • • • elf  cofl1th ... 13,  

if co = 	E ZIR d . Note that 2(gh) = 2(h)2(g) for g,h e 0(d) 
and hence, I defines an action of 0(d) on ARd from the right. The fact 
that Ff(r) is 0(d)-equivariant can now be stated as 

(5.35) 	Ff(r • g) = 2(g)F(r) for every g e 0(d) and r OE 0(M), 

where the action r—>r • g of gE 0(d) is defined by (2.31). Also, for g = 
(8,5) e 0(d), define an Rd C) Rd-valued function [r(g).11 11 (r) and an 
Rd C) Rd C) Rd C) Rd-valued function [r(g).n ijk i(r), both defined on 
0(M), by 

(5.36) 	[t(g).1] 11(r) = girg14 9(r) 

and 

(5.37) 	[r(g)J]iikz(r) = eigiegfJafi rs(r). 

The fact that {40} and { fijki (r)} are 0(d)-equivariant can now be 
stated as 

(5.38) 	.11, (r • g) = [T(g)..1] 1i(r) 

and 

(5.39) 	fijki(r • g) = [T(g)Jitikr(r) 

for every i,j,k,l, g OE 0(d) and r E 0(M). It follows from (5.24) and 
(5.29) that 

D1 [[r(g),I] u(r)] 	2(g)Di[J11(r)] 

and 
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D2Tr(g).1],i,1(r)] = 1(g)D2Vi 1k1(r)] 2(g) - ' 

Hence, combining these with (5.38) and (5.39), we have 

	

(5.40) 	D 	• g)] =  2(g) D1 Vii(r)12(g)'  

and 

	

(5.41) 	D2[Jiik1(r.g)] = 11.(g)D2V iki (r)] 

We can conclude by (5.40), (5.41) and (5.7) that 

	

(5.42) 	M(t,r • g,w) = il,(g)M(t,r,gw)  2(g)- ', g E 0(d). 

From this and (5.35), we see immediately that U(t,r) satisfies 

U(t,rg) = 2(g)E[M(t,r,gw)Ff (r(t,r,gw))] 

2(g)E[M(t,r,w)Ff (r(t,r,w))] 

.1.(g)U(t,r). 

This means that U(t,r) is 0(d)-equivariant. 
Malliavin [104] used the above to obtain an interesting generaliza-

tion of a vanishing theorem of Bochner ([185]) for harmonic 1-forms. 

6. The case with boundary conditions 

We shall now discuss a similar probabilistic construction of the solu-
tion of the heat equation (5.4) for differential forms in the case of a mani-
fold with boundary.* 

Let M be a Riemannian manifold of dimension d with smooth 
boundary. The interior and boundary of M are denoted by if and am 
respectively. Near the boundary, we can choose a coordinate neighbor-
hood U and a local coordinate x = (xl, x2, . . . , xd) in U such that xd > 0 
for all x U and x Un aM if and only if Xd  = 0. The tangent vector 

a 
= litw— at x am given by 

axi 

	

(6.1) 	ni(x) = ed(x)1,.187—fd(4 , 	i = 1, 2, ... , d 

is called the inward pointing unit normal vector at x. For a smooth 
function f defined in U, 

The material in this section is adapted from [55] and [172]. 
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(6.2) 
af „ 
N (x) = nr(x)

—af 
(x),  x E aM, 

is called the normal derivative off at x. Let 

jiicyl(51 1 
ji112-..fp 	J i /2  • • • 	

fi, 
 

ith• • • i p — 
3.14653 . . . (51P 

P 

and  e,12... td  be the skew symmetric (0, d) tensor field defined by 

(6.3) 	:l12. 	= "idet(ig(i(X)) 451.41. id  • 

For a p-form a, its adjoint *a is a (d — p)-form defined as follows. If a is 
expressed as 

(6.4) 	a(x) = 	E 	«11 2.  . .1 (x) de' A dx'2  A • • • A dxtp, 

then 

x)dxii A dxl2  A • • • A dxid-p, (6.5) 	*a(x) = 	E 	a* ith... I d–p( 11<i2<•••<, I d 

where 

(6.6) 	a*, j i  (x) -,- 	E ,i 2.•• d –P 	 el 1 t2• •• irof 1/2• • • 1
4–p(X)d  

and 

aft'2..-'11(x) — gt  iii  (x)g 1  1.12(x) . . . giviP(x)a /1 j2.. . 

Let 0 be a p-form. We denote by Otar, the restriction of 0 to am and 
call it the tangent component of  O.  We define the normal component of 60 
by Onorm ---' 0  — Otan  - 

Let ti(x) be a differential 1-form such that 

(6.7) 	q I WOO = Tli(X)dx g , 	X G am 

where 111(x) = gii(x)nf(x) and re(x) is defined by (6.1). Then it is easy to 
see that the restriction (-1)"-p )  + P-1  [*(*0  A 71)] A 71 1  am of the p-form 
(-1)"-P) +P-1  [*(*0 A 0] A ri is uniquely determined from 0 and coincides 
with °norm. 
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Definition 6.1. A differential form 0 is said to satisfy the absolute 
boundary conditions if Ono= = 0 and (de)norm = 0 ([1 44]). 

We want to solve the heat equation (5.4) with the absolute boundary 
conditions, namely, 

(6.8) 

{a« 	1 
Ti = 2E1" 
alt.o  =f  
anors — 02 (da)norm  = 0 

where f EA(M) is given. In order to avoid undesirable complications, 
we shall restrict ourselves to the case of 1-forms. Near the boundary, 
we can choose a coordinate neighborhood U and a local coordinate 
x = (x',x 2, . . . ,xd) in U such that the following holds:* 
(i) xd >0 for all x E U; 
(ii) x e Un 8M if and only if xd = 0; 

(iii) the metric tensor g(x) = (g,j(x)) satisfies gid(x) = 0 for i = 1, 2, 
...  , d— l.  
In this local coordinate, it is easy to see that 9E  4 1 (M) satisfies the abso-
lute boundary conditions if and only if 

a (6.9) 	ed(x)= 0 and  
axd 

i = 1, 2, . . . , d-1, x e unam. 

Indeed, we have 

Onorm = ed(X)dX d  and (de)norm 
dx-- 31  (66,, 	694 JxaA  jx i  

— — H = 	 ct- Au-, 
i=1 axd 	axt 

and so (6.9) follows at once. 
Let 0(M) be the bundle of orthonormal frames over M. If Fe(r) = 

([Fe],(r)) is the scalarization of 0, i.e., 

[Ng  (r) = O(x)e, 	r = (x',  es),  

then (6.9) holds if and only if 

a 
(6.10) 	f ii[Fo]i(r) = 0 and .ff .5-i-e-d  [F9]1(r)  = 0,  i = 1, 2, ... , d — 1, 

* Cf. [13], [144 
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where (fp is the inverse of (e5). Thus, the initial value problem (6.8) for 
differential 1-forms is equivalent to the following initial value problem for 
Rd-valued functions (Ui(t,r)) on 0(M) which are 0(d)-equivariant: 

(6.11) 

(t, r) --= 	{40 opt Ji(t, r) 	Pi(r)U j(t, r)) 

U1(0, r) = (FAO

fi ujo, a 	

1 

r)J aoc = 0, 	i = 1, 2, ... , d — 1, 

fg/1(t, r)j a000)  = 0 

where { Pi(r)1 is the scalarization of the tensor { R (x)  } and a O(M) = 
r = (x, e) 0(M); xe a/if ). We note that by using same notation 

as in Section 5, (6.11) can also be rewritten in the following form: 

a 
at 	TO° (m) u  

---- -2- [40 (w )  + Ddrifiu 

U(0, r) = F f (r) 

r)! 60 (m)  = 0, i = 1, 2, 	, d — 

U j(t, r)i ao (m)  = 0. 

We will now solve this initial value problem using the horizontal 
Brownian motion (r(t)) on 0(M). (r(0) can be obtained by solving 
stochastic differential equations with boundary conditions (Chapter 
IV, Section 7). Since the construction of solutions can be localized, we 
do not hesitate to put the following assumptions. 

Assumption (A). M is the upper half space of Rd: 

M = {x; x 	,x2, . . . ,xd) e Rd, xd 0) 

and 

am = e m; xd = 01. 

Assumption (B). The Riemannian metric tensor (g,j(x)) under the 
coordinate x=(xl, x2, 	_ d‘ x ) consists of C°'-functions which are 
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bounded together with all of their partial derivatives. Furthermore, (g,j (x)) 
is uniformly positive definite and satisfies gki(x) 0 for i = 1, 2, 
d—l. 

We consider the following stochastic differential equation for the 
process (X(t), e(t)) on Rtx 

 

dX = et(t)odBk(t) bidd0( 1 ) 
de(t) = —  {1'k} (X(t))e(t).dX 1(t) 

—  {/k} (X0De(t)4(t)0 dBm(t) 	(X(t))e(t)dgi(t) 

i, a = 1, 2, . . . , d. 

(6.12) 

 

Here WO (x) are the Christoffel symbols and B(t) = (Bi(t)) is a d-dimen-
sional Brownian motion. gi(t) is a continuous non-decreasing process 
which increases only when X(t) am. (6.12) is a particular case of the 
stochastic differential equations discussed in Chapter IV, Section 7, and 
so by Theorem IV-7.2, we know that for any Borel probability measure 
p on R x Rd 2, the solution (X(t), e(t)) of (6.12) with the initial law 
exists uniquely. In the same way as in Section 4, we see that if 

gk1 (X(0))elf(0)4(0) = 6" 

then for all t > 

gki (X(t))4(04(t) = (5, j  

holds almost surely; i.e., if (X(0),e(0)) 0(M), then (X(t), e(t)) E 0(M) 
for all t > 0 as. Thus we have a diffusion process r(t) = (X(t), e(t)) on 
0(M). It is called the horizontal Brownian motion on the bundle of ortho-
normal frames 0(M) with reflecting boundary. Let L.'', E2, • • Ed  be the 
canonical horizontal vector fields: 

(6.13) 	(E„,n(r) = 	— {k' (x)eLei (r), 	= 	e = (eD)), 

	

= 1, 2, . 	, d, 

and define the horizontal Laplacian of Bochner by 

(6.14) 
d „ 

AO CM) = 
m.1 

Set 
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(6.1 5) 	add(r) dew a.a4, 	= 	Idio (x)gad(x).  

Theorem 6.1. Let r(t) -,---(X(t),e(t) = (e(t))) be the horizontal 
Brownian motion with reflecting boundary constructed above from the 
solution of (6.12). 

(i) For any smooth function F(t, r) on [0, 00) X 0(M), 

dF(t,r(t)) = (E,„F)(t,r(t))dBm(t) + 40 (m)fl(t,r(t)) 

(t,r(t))1dt 	(.!dF)(t,r(t))4(t), 

i where Id  is the horizontal lift of the vector field Xd Tel-  which s 

given explicitly as 

aF   aF 
(6- 16) 	(ifdF)(t,r) 	 add(r)  

6 1. 	
dV(t). dXd(t) = addir/t »dt 

(.7) 
dXd(t). def„(t) =a,de(r(tpdt, 

Proof (0 is immediately obtained from Itô's formula. (ii) is easily 
proved once we notice 

E e(t)e(t) = gq(X(t)). 

Theorem 6.1 implies that the process (r(t)) on 0(M) is determined by 

the differential operator  --Ao(M)  with the boundary condition ifdF = 0 

on ao(m). (6.17) implies that the process (r(t)) is a normally reflecting diffu-
sion process in the sense of Definition 6.2 given below. 

In order to obtain a solution of (6.11), we consider the canonical 
realization (r(t, w),w G W(0(M)),P r ) of the horizontal Brownian mo-
tion on 0(M) with reflecting boundary:  W(0(M)) = C([0, co) , 
0(M)), Pr  is the probability law on W(0(M)) of the solution r(t) of 
(6.12) with r(0) = r, and r(t, w) = w(t) for w E W(O(M)). For a Borel 
probability measure ,u on 0(M),  P,2  is defined by P p(B) 0 (m) P r(B) 

x 	B E ,g ( W( 0 ( M))) * Let ..7- = n W(0(M)))Pg and  Y  = 

* 	(07(40(M))) and ..g,(KO(M))) are defined as usual. 
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{A E 9--- ; for any p there exists B such ihat B, E A(W(0(M))) and 
P(A  L B ig) = 0 ). We now fix p and give the following discussions 
on the probability space (W(0(M)), .fir;P p). Writing r(t, w) (X(t) = 
X(t, w), e(t)= e(t, w)), we set 

q5(t) =  11m f ro lio, 8) (Xd(spgdd(X(spds 

and 

Bi(t) = 	[e(s)-9(k o[dXk(s) — (5 1:40(s)]. 

Then {Bi(t)} is a d-dimensional (" )-Brownian motion and WO = 
r(t,w), OW} satisfies the equation (6.12). 

Lemma 6.1. {P,} is invariant under the action Ta  of a, a e 0(d), 
from the right; that is, if w •a KO(M)) is defined for w e 
W(0(M)) by (w•a)(t) = w(t)•a and if  TG(Fr) is the image measure 
of P, under the mapping w• a, then 

(6.18) 	Ta(P,) = P,.. 

Proof. Let r(t) be a solution of (6.12) with B(t) and OW such that 
r(0) = r. Then for a E 0(d), F(t) = r(t)•a is a solution of (6.12) with 
B(t) = a- iB(t) and At) = ç(t)  such that P(0) =  rua.  B(t) is another d-
dimensional Brownian motion and hence (6.18) holds by the uniqueness 
of solutions. 

By this lemma we see that X(t) defines a diffusion process on M and 
it is easily seen as in Section 4 that X(t) is determined by 4 m/2 with 

boundary condition —
af = 0 on  M. This diffusion is called the Brownian 
an 

motion on M with reflecting boundary or simply, reflecting Brownian motion 
on M. 

Let Rd®Rd be the algebra of all dx d real matrices a = (ai)  endowed 
d 

with the norm liar = E I a51 2 . It is convenient for our purpose to define 
i,J=1 

the multiplication in Rd®Rd by the following rule:* for a = (a5) and 

= (k), ab = (cif) where 

(6.19) 	cj = a"btk . 

* This convention is used only in this section. 
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Let P = (pj) where 

if i d and j = d 

otherwise 

and Q I — P. 
In the following we fix a Borel probability measure # on 0(M) and 

restrict our attention to the probability space ( W(0(M)),...r,P #). Then 
r (t , w) = (X(t , w), e(t , w) = (4(4 w))) (also denoted simply by r (t) = ( X(t) , 
e(t) = (eii(t)))) is the solution of (6.12) with B(t) and Ø(t) defined as above. 
Following H.Airault [2], we consider the following stochastic differential 
equation for an Rd®Rd-valued process K(t)=(Kj(t,w)) as described 
below: 

(6.20) 	(i) for any t 0 such that X(t)Ell ef, 

1 (6.20)a 	c110 (t): = dK(t)P = K(t){e(t) - i de(t) + —
2 

R(X(t))dt} P 

where R(x) = (R5(x)) is the tensor defines by Ri = R-fjk.;, (cf. Section 5) 

(ii) for any t > 0, 

dK 2(t): = dK(t)Q 
(6.20)b  

= K(t) {e(t) -1  de(t) 	R(X(t))dt} „?(X(0)Q; 

(iii) with probability one, t 	KV)=K(t)P is right-continuous with 
left-hand limits. -  furthermore 

KV). 0 if X(t) 

and the initial valuedis given by 

(6.21) 	K 1 (0) = 1,;,(X(0))e(0)P, 	K 2(0) = e(0)Q. 

Remark 6.1. (a) A precise formulation of (6.20) a  is as follows: if a 
continuous process Y(t) is defined by a semimartingale integral 

Y(t) = K(s) le(s) -Ve(s) + —21  R(X(s))ds1P, 
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then, with probability one, 

KV) — Ki (s) = Y(t) — Y(s) 

for all s < t such that Y(u)e /17/ for every u e [s, a 
(b) (6.20), (ii) automatically implies that t ,-- K 2(t) is continuous 

with probability one. 
The above stochastic differential equation may also be expressed in 

the equivalent form of a stochastic integral equation as the next lemma 
shows. 

Lemma 6.2. An Rd®Rd-valued process K(t) adapted to VD is a 
solution of the above stochastic differential equation (6.20) with the initial 
condition (6.21) if and only if 

(6.22) 

KV): r---- K(t)P 

= I u<0.,(e(0) -I- E K(u)[e(u) -- ' de(u) ± -1- R(X(u))du)P 

+ I , ft. r(o K(u)[e(u) -1  de(u) ± 4- R(X(u))dulP 

K 2(t): = K(t)Q = e(0)Q ± 5:K(u)[e(u) - i de(u) 

1 + 2  R(X(u))duj1 .4(X(u))Q, 

where 

(6.23) 	a = 
I inf {s; X(s) E a Al} 

1 00 	if t 1 — 95, 

is the first hitting time of X(t) to am and 

{ sup {s; s t, X(s) e am} 
(6.24) 	r(t)  ---: 

0 	if { } = 0 

is the last exit time before t from M. 

Remark 6.2. STr w  • is understood, of course, as Y(t) — Y(r(t)) where 
Y(t) is the continuous process given by Y(t) = f 0 ' • 

The proof is easy and omitted. 
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Let 11 be the totality of all RaC)Rd-valued processes (t ) =-- 
((t,w)5) defined on ( W(0(M)),,r,P) adapted to (,04;) such that t 4t) 
is right continuous with left-hand limits a.s. and satisfies 

(6.25) 	sup E [g(t)II9 < co 	for all T>  O. 
reCO,T3 F  

Define a mapping 0: 	by 

(6.26). 	= I , >„(e(0) 5:4u)[e(u) -' de(u) 	R(X(u))du))P 

-I- .1.  (c7 . 6 4u)[e(u) -1  de(u) 	R(X(u))du]P 
(t) 

= OG)(t)Q 
(6.26)b  

eQ 	f r  (u)[e(u)-1  de(u) 	.R(X(u))du]ls,(X(u))Q. 

Let A(t) be the right-continuous inverse of t 	At) and set 

(6.27) 	D = Is 0; A(s-) < A(s)} 

If  t>  0 is fixed, then t(t) = A(0(t) -) a.s. By Theorem 6.6 given below, 
we see that if g(t) is an (9;)-well measurable process such that t •---- 
Eijg(t) 21 is locally bounded then 

(6.28) 
g(s)dBk(s)} 2] 

=co 

E ?IL{ SA(u....)Ar  g(s)dBk(s)} 2]= E,j Sr  o g(s)2dsl. 

It is easy to show from this that for every T>  0 there is a constant 
K = K(T) > 0 such that 

(6.29) 	Eis[ii 0M(t)11 2] 	K(1 ± or  E A[g(u)li ziclu) 	for all t 	[0, T]. 

This proves that 0g)EE if 	E. Again using (6.28), we have that, for 
E 
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(6.30) 	EA[iidj()(t) 	0(1)(011 2] 	K f ro Em[ig(s) 	71(s)ii 2ids, 

t 	[0, T]. 

Theorem 6.2. The stochastic differential equation (6.20) with the 
initial condition (6.21) has one and only one solution K(t)ELF. 

Proof Let 	e S, n =  0, I, . . . be defined by 	0 and 
n = 1, 2, . . . . Using (6.30) we can show that there exists ElE, 

 such that 

E,[cmign(t)— 

Then clearly is a solution of (6.22). The uniqueness also follows from 
(6.30). The arguments are standard and similar to those given in Chapter 
III or Chapter IV and so we omit the details. 

Let K(t)= (K(t, w)) be the solution of (6.20) with the initial condition 
(6.21) and define M(t) = (MI(t, w)) by 

(6.31) 	M(t,w) = K(t,w)e(t,w)i, 	t > 0. 

Theorem 6.3. M = {M(t,w)} is an RdC)Rd-valued MOF of the hori-
zontal Brownian motion on 0(M) with reflecting boundary;*  i.e., 
(i) M(t,w) is VD-adapted, 
(ii) for every t,s > 0, M(t+s,w) 	M(s,w)M(t,0,w) a.s., where the shift 
operator Os : W(0(M)) 	W(0(M)) is defined by (0,w)(t) = w(t+s). 

Proof (i) is obvious. To prove (ii), we fix s and set k(t) = K(t+s,w), 
AO= X(t+s,w) and e(t) = e(t+s,w). Then it is clear that k(t) satisfies 
the above stochastic differential equation (6.20) with respect to (1(t ), 
40). On the other hand, by applying the shift operator 0, to K(t), we see 
that f(t) = K(t, 0 3w) satisfies the same equation with respect to (X(t, 
Ow),  e(t,O sw)) = (1 (t ), e(0). If we set 

t(t) = K(s,w)e(s,w) — '1?(t), 

then 

'NO) = K(s,w)e(s,w) — V(X(s,w))e(s,w)P e(s,w)Q) 

* [139]. 
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= K(s ,w)( I sf(X(s ,w))P ± Q) 

= K(s ,w) 

by (6.20) (iii). Hence g(t) and k(t) satisfy the same equation and the same 
initial condition. Consequently fe(t)... g'(t) by the uniqueness of solutions. 
That is, 

K(t ± s,w) = K(s ,w)e(s,w) -1  K(t ,0 ,w). 

Multiplying by e(t + s ,w) -1  -----.- e(t ,  Ow)'  from the right yields (ii). 

The following lemmas delineate some properties of M 0 F M= 
{MOM} . 

Lemma 6.3. If X(0)e am, then 

Pe(0)" M(t) = 0 	for all t > O. 

Proof. It is enough to prove that  Pe(0) 1 K(t) = 0 for all t > O. If 
X(0) am, then 

P e(0) -  ' K(0) = P e (0) - 1  (1 sr (X(0)) e(0)P + e(0)Q) =  PQ  = O. 

Since f(t)=Pe(0) -1 K(t) satisfies (6.20), g(t)=0 by the uniqueness of 
solutions. 

Lemma 6.4 M(t, w • a) ----. aM(t, w)tx - ' , 	t > 0, a e 0(d). 

Proof. Since X(t, w • a) = X(t ,w) and e(t, w • a) .--- ae(t,w),* we see at 
once that K(t, w • a) = aK(t,w) by the uniqueness of solutions of (6.20). 
Thus M(t, w • a) = aK(t,w)[ae(t,w)]' = aK(t ,w)e(t ,w) - ' a-1  ------ aM(t,w)a -1  , 
which completes the proof. 

Now we can solve the equation (6.11). First of all, however, we shall 
adopt the following convention in addition to the multiplication rule 
(6.19): for a d-dimensional b — (be) and a= (a0 RdC)Rd , ab = c is the 
d-dimensional vector c = (ce) defined by 

(6.32) 	c, = 

* This was denoted by e(t, w)a in (2.31). Here we are adopting the multiplication rule 
(6.19) and hence it should be written as ae(t, w). 
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Under this convention, (6.11) is rewritten as 

(6.11) 

au 	1 r  
at = 1.40(m)U TU} 

Uit-o = Ff 

(Pe-1  u Qe_i aaxUd) 0 
if r = (x, e) e ao(m). 

More generally, we consider the following initial value problem for the 
heat equation of Rd-valued functions U(t, r) = (U,(t, r)) on 0(M): 

(6.33) 

au 1  at  — 2  itio (m)  

Ul t.0  =  F 

rau au Pe-'U Qe - i Laxd 	{h} ()? + erd(x)e-1  ul = o 

if r = (x, e) e ao(m), 

where rd(x) RdC)Rd is defined by 

Td(x) = ( {4} (x)). 

If U(t,r) is 0(d)-equivariant, this implies that U(t,r) = erl(x), r = (x,e), 
where ti(x) is a smooth Rd-valued function on M, and hence 

au , 
--e-L idik)(x)d= erd(x)e-iu. 

Thus the initial value problem (6.33) is reduced to the initial value 
problem (6.11) in the case of 0(d)-equivariant functions. We now 
construct a semigroup corresponding to the initial value problem (6.33) 
by using the MOF M. 

Let C0(0(M)— Rd) be the set of all bounded continuous functions 
F(r) on 0(M) taking values in Rd such that 

(6.34) 	Pe-iF(r) = 0 	if r = (x, e) aom. 

For F C0(0(M) 	Rd) and t > 0, set 

(6.35) 	(II,F)(r) = Er [M(t,w)F(r(t,w))]. 
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Theorem 6.4. (i) IN defines a one-parameter semigroup of operators 
on C0(0(M) — Rd). 

(ii) If F is 0(d)-equivariant, then so is .11,F for all t > O. 

Proof If r ao(M), then by Lemma 6.3 Pe-1(11,F)(r) = O. The con-
tinuity in r of the functions H,F(r), t 0 follows from the continuity of 
r Pr  E9 r(W(0(M))),* which in turn is a consequence of the 
uniqueness of solutions of the stochastic differential equations. The semi-
group property of {lit } is obvious since M is an MO F. Finally, (ii) follows 
from Lemmas 6.1 and 6.4. 

Theorem 6.5. Let F(t, r) = (Fi(t, r)) be a smooth function on [0, co) x 
0(M) taking values in Rd such that for each t > 0, r F(t, r) is a func-
tion in C0(0(M) — Rd). Then, with probability one, 

M(t)F(t, r(t)) M(0)F(0, r(0)) 

= MOO(LaF)(u, r(u))dBa(u) 

+ fro  *OM (u, 1*(0) 	tzl (m)  F(u, r(14) 

(6.36) 	 J(r(u))F(u, r(u))}]) du 

+ M(u)e(u) Qe(u) —i [rx2  (u, r(u)) 	(u, r(u)) 

X {dik}(X(0)47:(1) 	e(u)r4(X(u))e(u) -1F(u, r(u))14S(u). 

Proof As we remarked above, the diffusion (r(t)) is a normally re-
flecting diffusion on 0(M) in the sense of Definition 6.2 given below. As 
we shall see, a characteristic feature of such a diffusion is that if f(t, r) is a 
smooth function on [0,  co)  x 0(M), and if g(t) is an VD-adapted process 
such that s g(s) is right continuous with left-hand limits and s 1--- 
Eis(g(s)2) is locally bounded, then the following identity holds: 

Awn/ 
_Z:)  Au_vv g(s)df(s, r(s))  

0 
TE9D 

*JilW(0(M))) is the totality of all probabilities on W(0(M)) with the topology of 
weak convergence. 
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where the integral is understood in the sense of stochastic integral by the 
semimartingale s 	f(s, r(s)),  f .  is defined similarly as in Remark 
6.2 and the sum E* is understood as the limit in probability of the finite 

s4(r) 
seD 

sum E • as e l 0. 
AGsflst)—)>8 
First we prove the following lemma. 

Lemma 6.5. For any t such that Xt OESI, 

1 (6.38) 	dM(t) = —
2 

M(t).1(r(t))dt, 

i.e., if u  E D,  then for every s < t such that [s, t] c(A(u-), A(u)) we have 

(6.39) 	M(t) M(s) = 12-Sts  M(u)J(r(u))du. 

Proof. First we note that J = eRe-1  by the convention (6.19). Then by 
(6.20) and Itô's formula, if X(t) 

dM(t) = K(t)e(t)' {de(t)e(t)' 	e(t)d(e(t) -1) 	de(t)•d(e(t) - ')} 

—1 K(t)e(t)-1J(r(t))dt 2 

= K(t)e(t) -1  d(e(t)e(t) - ') 	K(t)e(t) -4.1(r(t))dt 

1 = M(t)J(r(t))dt. 2 

Now we return to the proof of (6.36). By Lemma 6.5 and Itô's formula, 

{M(t  A A(s))F(t A A(s), r(t A A(s))) 

— M(A(s-))F(A(s-), r(A(s-))1 
A(s)Ar 

(6.40) 	 E* 	M(u)dF(u,r(u)) 
s556(t)f A(s—) 
sc- D 

1 	A (s)N 
E*soo)  J A(s-) M(u)J(r(u))F(u,r(u))du. 

5.D 

Using (6.37) and Theorem 6.1 (i), (6.40) is equal to 
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M(u)dF(u,r(u))  
o  

=  I  M(u)(r, „ iF)(u ,r(u))dgn (u) 
Jo  

± I ro M(u)r--1; (u,r(u)) 	140 ( m ) F(u,r(u)) 

J(r(u))F(u, r(u))}1du 

+ fr m(u)rg_ r(u)) 
J 	axd 	

— 	(u, r (u)) {a` lc} (X (u))e(u)]d 	• 

On the otherhand, for every s < t, 

M(t)F (t , r(t)) M(s)F(s , r(s)) 

= Kl(t)Pe(t) -1F (t , r(t)) 	K i (s)Pe( s) -1  F(s , r(s)) 

± K 2  (t)Qe(t)' F(t , r (t)) — K 2(s)Qe(s) -1F(s, r(s)). 

Noting that P e(t) - ' F(t, r) = 0 if r Eao(m) and that r(A(u)) E aO(M) if 
u cD ,  and r(A(u-)) ao(M) if u eD and  u >  0, we see that the first 
line of (6.40) is equal to 

[Ki (OP e(t) - ' F(t, r(t)) — Ki (0)P e(0) -1  F(0 , r(0))] 
(6.42) 	+ 	{K 2(t A A( s))Qe(t A A(s)) -1  F(t A A(s), r(t A il(s))) 

1%)  
— K 2(A(s-))Qe(A(s-)) - ' (A(s-), r(A(s-)))) 

By (6.20) and the fact that fro  I a 	(u))du 	0, 

d K 2  (u) = K(u) {e(u) de(u) 	R(X(u))dul Q 

— K(u)e(u)' de(u)I a 	(u))Q. 

Hence it is clear that d{K 2(u)Qe(u)' F(u, r (u))} has the form 

g1 (u)de(u) 	g2(u)du g 3(u)d(e(u) -1 ) 	g4(u)dF(u, r(u)) 

— a m (X(u))K(u)4u) -1  de(u)Qe(u) -1F(u, r(u)) 

(6.41) 

where u 	gi(u), i = 1, 2, 3, 4, are all right continuous VD-adapted 
processes with left-hand limits. Using again the general formula (6.37), 
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the second term of (6.42) is equal to 

‘ A(e)A1 E* .1 	d (K 2(u)Qe(u) - i F(u, r(u))) 
s50(t) 4(s—) 
sc D 

	

=  Ç  g1 (u)de(u)
0  g

2(u)du 	g3(u)d(e(u) - ') 
0 

+ g4(u)dF(u, r(u)) 
0 

K 2(t)Qe(t)'F(t, r(t)) 	K 2(0)Qe(0) - ' F(0, r(0)) 

ft  la m (X(u))K(u)e(u) - ' de(u)Qe(ur F(u, r(u)). 

Because of (6.12) and since  4m (X(u))Pe(u) -1F(u,r(u))= 0, 

fro lam (X(u))1C(u)e(u)'de(u)Qe(u) - '17(u, r(u)) 

.40  K(u)e(u) - 'e(u).1"Paupe(u) -T(u, r(u))d0(u) 

._sto  K(u)r d(X(u))e(u) -T(u, r(u))d95(u). 

Thus we have 

M(t)F(t,r(t)) M(0)F(0,r(0)) 

—
0 
 M(u)e(u).1-d(X(u))e(u) -T(u, r(u))4(u) 

= f t0 M(u)(17,„,F)(u, r(u))dBm(u) 

+ f:M(u)1 (u, r(u)) + {4, (m)  F(u, r (u)) 
(6.43) 

+ J(r(u))F(u, r(u))}]du 

	

+Em(u) [aS (1'1, r(u)) — 	 (u,  r(14)){l k} (X(11))egu)]dgu). 

Finally we remark that if g(u) is (Y-)-well measurable process, then 

0  M(u)g(u)d0(u) 



THE CASE WITH BOUNDARY CONDITIONS 
	

325 

(6.44) 
= 

= 

Ki(u)e(u) - 'g(u)dAu) 

K 2(u)e(u)ig(u)dAu) 
o  

m(u)e(u)Qe(u ) ig(u)d,6(0 

0  K2(u)e(urg(u)dAu) 

since i3m (X(u))1( 1 (u) := O. Now (6.36) follows from (6.43). 	q.e.d. 

Theorem 6.5 may be regarded as a martingale version of the statement 
that u(t, r) = HF(r) solves (6.33). 

In the remainder of this section, we shall elaborate on the above men-
tioned notion of normally reflecting diffusions and especially on the 
formula (6.37). Let D be the upper half space of Rd and c(x) = (o(x)), 
b(x) = (P(x)), r(x)=((x)), fi(x)=(fl 1(x)) be given as in Chapter IV, 
Section 7. Consider the non-sticky stochastic differential equation (7.8) 
in Chapter IV, Section 7 corresponding to [o-,b,r,I3,1,0]. Let au(x) and 
To(x) be defined by (7.6) and (7.7) in Chapter IV, Section 7. Let = 
(X(t), B(t), M(t), 00)) be a solution. We know that X(t) is a diffusion 
process on D determined by the differential operator 

(6.45) 	Af(x) = i c i all(x)a)63.42afxj (x) tbi(x)te,(x) 

with the boundary condition 

	

1 d-i 	 62f 	d-1
-- 1 1 	

i„ Of „ . af ,x, (6.46) 	Lf(x) = 	E au(x) axiaxi (x) 	fl (x) (x)  ± 	u  2 ../= 

on OD. 
Set 

(6.47) 	Z= 	O;  X(s) 

Since fro  4,(X(s))ds = 0 a.s., Z has Lebesgue measure 0 a.s. and (0, co) 
\X = U ea, where ea= (la,r,a) are mutually disjoint open intervals. Each 

a 

ea  is called an excursion interval and the part (X(t), t E ea) is called an 
excursion of X(t). Let A(t) be the right-continuous inverse function of 
ti-4- At). Set D =Is [0, co); A(s)—A(s-)> 01.* Then it is easy to 
see that the totality of excursion intervals coincides with the set of 
intervals {(A(u-),A(u)), u  D}.  Let 97 be the completion of a[X(u), 

* 4(0-) = O. 



400A, 
E* 
usD f4(u—)At 
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B(u), u < t] and let g(s) be an  97-well measurable process such 
that s 	E[g(s) 2] is bounded on each finite interval. Then Yk(t) 
fro  g(s)dBk(s) is a continuous 97°-martingale. For each excursion interval 
ea  = (1a, a), 

g(s)dBk(s) = Y k(ra  A t) — Y kga At) 
ea  n ta, 

by definition. It is also denoted by 

J./loon' 
g(s)dBk(s) 	if ea  = (A(u–), A(u)). 

Theorem 6.6. (i). 

A(u)N 
(6.48) 	E(  D [ A(....)A, g(s)dBk(s)r) = E[ co g(s)2ds], 

k = 1, 2, ... , r, t > O. 

(ii). Assume further that s 	g(s) is right-continuous with left-hand 
limits and that au(x) is C 3  on D. Then 

A(u—)At 

(6.49) 

Here 

A(u)At ND*  SA(1,—)At  g(s)dBk(s) = f g(s)dBk(s) 
0 st o  g(s)  (a711((Xx((ss)))) dxs),  k 	1, 2, . 	, r, t> O ,  

is defined as the limit in probability of finite sum 

A(u)At 

us D 
	 • 

4(u) —A(u—)>e 	4(u—)At 

if and only if the limit exists. 

Proof. We shall first prove the special case of the reflecting Brownian 
motion and reduce the general case to this special case. 
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(a) The case of the reflecting Brownian motion: i.e., the case  a(x) 
cYk  with r = d, b(x) 	0, 1-(x) 	0, fi(x) 	0 and 6(x) 	1. 

In this case, the system N(t) 	(X(t), B(t), fi(t)) is determined by the 
equation 

ir(t) = X 7(0) ± RV), 	i = 1, 2, ... , d — 1 
(6.50) 

Xd(t) = Xd(0) Bd(t) 

Let the path spaces W(D),V(D), 74(D), the corresponding a-fields 
(W(D)), .g(V(D)), R(W (D)) and the a-finite measure n on 

(V(D), wrap») be defined as in Chapter IV, Section 7. If we set 
D =-- {u co); A(u) — A(u-) > 0} = 101 and 

IX(t A(u-))— X(A(u-)), 	A(u)—A(u-): = o[p(u)] 
p(u) = 

X(A(u)) X(A(u-», 	t A(u)—A(u-) 

for u  E D, 

then we know that p: Dp  u 	p(u) 7/0' (D) is an  (P)-stationary 
Poisson point process on (,ro(D), (Wr(D))) with characteristic measure 
n, where f; 	. Let nç 	D, be the image measure on V(D) of n 
under the mapping 	w.* We shall now introduce the following 
notations 

(6.51) 	pt : W(D) 	W(D) defined by (Ptw)(s) = w(t A s) (stopped 
path) 

(6.52) 	9: : W(D) 	W(D) defined by (0,w)(s) = w(t+s); (shifted 
path) 

(6.53) 	PaD: W(D) 	W(D) defined by (PaDw)(s) = w(s A u(w)) 

where 

(6.54) 	0-(w) = inf It > 0; w(t) e D} 

(stopped path on reaching the boundary). 

Let, by X, be denoted the path t 	X(t). Clearly this is a W(D)-valued 
random variable. 

* + w)(t ) 	+ w(t). 



0 f2r0(D) 
Z(s)f(A(s-), PA(5)1. X(A(s-)) ± w)N p(dsdw) 

f t+ 
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Excursion formula L Let Z(s) be an (ST)-predictable non-negative 
process and f(s,w,W) be a non-negative Borel function on (0, 00) x 
W(D)  x V (D). Then 

(6.55) 

E{ E z(s)f(A(s-), PA (5- )x, parleA(s-)n} 
r5t.sep o  

t 
= E( f O Z(s)[ f 2„.(D) f(A(s), p 4(e)  X, w)n.t .(4($)) (dwAds). 

This follows immediately from the fact that the sum under the ex-
pectation on the left is just 

(cf. Chapter II, Section 3). 
By a random time change t 1--- 0(t) in (6.55) we have 

Excursion formula II. Let Z(s) be an (r;)-well measurable non-nega-
tive process and f(s, w, w') be as above. Then 

(6.56) 

Et E Z(11(s-))f(A(s-),P4 ($-)X,PaD[OA(3-)XD} .t.. 55(t),sepp  

J"  = El f O Z(s)[ f r.(D) f(s, p3X,w)n x(i) (dw)]d0(s)} - 

Let -r(t) be defined by (6.24). By setting 

f(s, w, w') -=-. g(t — s, s, w, w')1 {, („,)).,,)  

in (6.56),*' we have 

Last exit formula. Let Z(s) be an (5-)-well measurable non-negative 
process and g(s,s',w,w 1 ) be a non-negative Borel function on (0, 00) x 
(0, 00) X W(D)  X 7/-(D). Then 

E(Z(r(t))g(t — 1 -(t), -c(t), p, ( , ) X, page, (o Xpl wo> ,),} 
(6.57) 	 t 

=Elf 
')

Z(s)[f 	g(t — s, s, p sX, w)l ,,(),)>,_,, n -7 1 ( s)  (c1w)idgs)} • ar (D) 

For each i = 1, 2, . . . , r and to  > 0, wg(t+to) — wl(to) is a 
continuous A÷0((D)) -martingale  with respect to IA- I cr(w) > t0)-*2  

*I This idea is due to Maisonneuve [103]. 
*2  eaD is fixed..a(w) is defined by (6.54). 
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Hence, for any R,('(D))-well measurable process O(s, w) such that 

20.-(D) E  J 
u(w)Ar I 43(s, w) I zds]n(dw) < co 

	for each t >  0, 

we can define the stochastic integral 

frAcr(w) 
45(s,w)dw€(s). 

It is easy to see that 

.. tna(w) 
li 	

ram 
m 	0(s,w)dw€(s) = 	0(s,w)dwl(s) to  10  J roAcr (v) 	 0 

exists in 2'2(V(D), ne), 

tAcroo 
(6.58) 	f 3,(D)  [( So 	0(s,w)dwi(s)) 21nc(dw) 

D f rAcr(w) 0(s,w)2dsite(dw) 

	

() 	O  

and for every sgr0( 7 (D))-measurable  H(w) in 2'2(1i7 (D), ne), 

(6.59) 
(D)  [ f to  0(s, w)dwl(s)]H(w)n(dw) 

= f„p(p)  [f°  0(s,w)dwg(s)1H(w)W(dw), 	t> t o. 

First we shall prove (6.48). Without loss of generality we may assume 
that X(u) is given in canonical form, i.e., X(u,w) = w(u), w E W(D). 
Now let g(s) = g(s,w) be (Or ( W(D)))-well measurable process such that 
s E(g(s) 2) is bounded on each finite interval. For given s > 0, w e 
W(D) and w' E (D), set 

(6.60) 	Vg(u, w, w') = 
g(s u, [w, wl) 	if w(s) = W(0), 

1 0 	 otherwise 

where (w, WI, is defined by 

0 	u 	s, 
(6.61) 	14/ls(u) = 

w'(u — s), 	u >  s. 

roAce 
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Let  t>  0 be given and fixed. Let 

(6.62) 	ff(s,w,W) = So 
	415gU,W,WWW "(14A 2  t s>  0 

	

0, 	 t < s 

in the sense explained above. By (6.58), 

  

(a (V)+s)Ar 
f 	[ 	AU,[w,W iD2dillle (s) (CIIV) 

2r(D) Jilv 

f w')nw (5)  (dw') 
,o) 

 

 

if w(s) = w'(0), 

otherwise. 

 

   

It is clear from the definition that 

	

(6.63) 	 .f1t0(59) PA(s—)X1 PaD[OA(5—)X1) 

JIA(s)Ar 	 1:4(s)At 
= 	 g(u)dr(u))2  ( 	g(u)d13i(u))2. 

A(s—)Ar 	 A4—)Ar 

By the excursion formula and (6.62), 

A(s)Ar 
E ( E ( g(u)dif(u)) 21 

seD SA(s-)At 

aAt 	 A(s)At 
= E (( f g(u)03t(u)) 2 1 ± Et E  (j'  

0 	 seAsSo(r)i .  As—)N 
aAr 	 r 

= E{f
o 

g(u)2du} + E { .1-  od0(s) f 	[j'  
7-0:4 f s/V 

ctAt 	 A(s)Ar 
= E t J.  g(u)u} + E { E f 	goozdu} 

0 	 seD„,s9)(t) A(s—) 

Ej
0 
 g(u)2du]. 

Now we shall prove (ii). In the case (a), (6.49) is given as 

	

(6.64) 	E* g(u)dBz(u) = g(u)dBi(u), = 1, 2, 	, d — 1 
seD 	.1(s—)At 	 0 

and 
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j'A(s)IV 
(6.65) 	Au...)Ar g(u)dBd(u) = g(u)dBd(u) j.  g(u)4(u). 

sED 

First we prove (6.65). In the following, we shall cal] g(s) a step process 
if there exists a sequence of (.gr ( W(D)))-stopping times ao  -= O  < 
<02  < • < cr„ < • • — co and ((W(D))1 -measurable random 
variable g, such that g(s) = g, if s E [at , cr,, i ) for i = 0, 1, 	. 

Lemma 6.6. Let g(s) be a step process. Then (6.65) holds. 

Proof. If, for example, g(s) 	1, then (6.65) is trivially true: we have 

 J
. A(s)Ar 

J 
dB (100 = 	dX d(t) = X d(Â(S) At) — X4(11(5—) A t) 

A(s—)At 	 A(s—)A1 

I 0, 	 s E pp) A(s) < t or A(s—) > t 

Xd(1), 	 s ep,„ A(s—) t < A(s) 

Xd(o .  At) — Xd(0), 	s = 0 

and hence the left-hand side of (6.65) is equal to Xd(t) — X(0) = Bd(t) 

At). A similar argument applies if g(s) is a step process. 

Lemma 6.7. Let g(s) be a ig,( W(D))-adapted process such that s 
g(s) is right-continuous with left-hand limits. Then for every e >  0, there 
exists a step process g e(s) such that 

(6.66) 	I ge(s) — g(s)I Ç e 	for every s. 

Proof. Let {on} be defined by o-0  = 0 and 

cr. = nf {t > 	;  I  g(t) g(a „_1)I 	e) An. 

Then cr ,,  t co, and ge(s) = E g(c1.)1(00.a+1) (s) has the desired properties. 
n=0 

Lemma 6.8. For  c 	D and  t>  0, let 

(6.67) 	12 ,r(B) n 4(B I > t) — 	6>>  ot) 	for B 

Then /2.' is a Markovian measure on V(D) concentrated on (wE WAD); 
w(0) =  c,  cr(w) > t} such that 
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izt ' t  fw;w(t1)E El,  w(t2)E2, • • • P w(t) En} 
11-1 (6.68) 	= f dx1  f 	e  dx2  - - - j dx„V(t i, 	x1) ri P(4, xi; 4+1, x1+1) 

El 	E2 	En 	 (= 1  
for 0 < ti  < t2  < • • • < t„ < t and Ei  e.g(b) 

In the above, 

10(s, x) — K+(s, x —  ) h(t — s, x)  
K(t) 	, 	s > 0, 

p(s, x; u, y) 
= h

h
(
(
t
t 
-
- 

s
u
,
, 
 x
y

)
) 
 p°(u — s, x, y), 0 < s < u < t, x, y E b 

h(s, x) = fp°(s, x, y)dy — -,:zi--.z  fx: exp i_ 7f2s,} (171 
D 

and 

K(t) = f D K(t, x)dx . a, 

where K+(t,x) and p°(t, x, y) are given as in Chapter IV, Section 7. 

This lemma is easily proved from the properties of the measure n. 

Corollary. The process 

s 

	

M(s) = wd(s) — f A(t, u, w(u))du 	(0 Ç s < t) 
0 

is a one-dimensional Brownian motion with respect to the probability 
measure 1.1 , ' on  ?P(D), where 

	

(L- h(t — u, x)) 	
expi __(x4)2 i 

12(t — u)i  (6.69) 	A(t, u, x) — 	  h(t — u, x) 	— xd 	
712  1 chi 

f 0 
exp { 20 — u)J 

Lemma 6.9. Let g(s) be a bounded (sg,(W(D))) -well measurable pro-
cess. Then for fixed s, w e W(D) and for any e > e' > 0, 

f 	I se gu, W, WWW /d(u) I Arnw (qC/W) 
o 

'... ([1 ± 1 ) iigil. 
(6.70) 
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where Ile., =sup g(u,w) I and 0.1', is defined by (6.60). 

Proof. By the corollary to Lemma 6.8, 

(D) So g w, 	i,„ (,„,)>einw(s) (dw') 

s' 
{  i f O(u, 1 4 W I)db d  (01) pw(s)  ' e(dW I)nw (4  (0 f,W I) > 

ar (D) 	0 

($81 	(u,w,W)A(e,u041(u))1 du} izw (5) . e(dw')nw (s) (a(W) > e) 
 0 

e"i2 /T  

< 	+ 1 ) lig11. 

Here we used the following facts: 

re(o-(w) > e)=-- 	K+(e, x)dx = Ii 
D 

and 

e ' 
vr  (D) t 	A(e, u, w(u))dujig , e(dw)n 4.(o-(w)> 

 O 

f„rm if O A(e, u, w(u))duliz 4.,8(dw)n 4(o-(w) > e) 

=$ 9P" (D) 
wd(e)W(dw) 

= xdK+(e, x Odx =1. 
D 

Now let g(s) be a favt( W(D))) -well measurable process such that 
E(g(s) 2) is bounded on each bounded interval. We introduce the 

following notation: 

A wAt 

	

(6.71) 	SP) = 	 g(s)dBd(s), 
vsos(i). A CO— A(s—)>s A(s—) 

	

(6.72) 	Y 6(t) =d0(s)[ 	 45.gu, w, 	) 1d  ,14.,-(0 ( v1)>81 .1  
0 

X nw(s)(dW)j, 
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(6.73) 	Me(t) = Se(t) — Ye(t). 

Lemma 6.10. WO 	Sto g(s)dBd(s) 
	

in  2'2(P) as a O. 

Proof Set 

(t—s) Aa (V) 
(6.74) 	ft2(s, w, w') = 	sk(u, w, w(s)H-wldw'd(u) 

for 0 < s t, w e W(D) and w' e Vo(D), 

Then clearly 

=  J. crAt 
° g(u)dBd(u)I (,>e  

row 
,f'2(A(s—), )9  A(E—)X 101  f(wi)>81 19  10'511141  

	

0 	2r O(D) 

in the sense of stochastic integrals (Chapter II, Section 3). Consequently 
for each fixed t, MAO— M(t) in .?(P) as e 	0, where 

	

crAr 	 0 (r) 
M(t) = 0  g(u)dBd(u) 	2,0(D/r2(A(s–),p A(s_) X,w')Srp(dsdw) 

and 

aAr 
tf(t) 2) = E[f 

o 
g(u) 2du] 	E[ it  d0(s) 	{f2(s,p,X,w')} 2n(dwi)] JO  

= E[f g(u) 2du]. 

Next we assume that g(s) is bounded and prove that M(t) is an 
1.gt( W(D))) -martingale. It is sufficient to show that for any bounded 
Borel measurable functions Fl (w), F2(w) on W(D) and 0 < t1 < t2, 

(6.75) E(M(t 2)H) = E(M(t i)H) 

where 

H( V) = Fi (PA (0(1)—)W)F2(Pri —A (0(t1) —)[°,1(000—) 3VD. 

We prove the following estimate 



THE CASE WITH BOUNDARY CONDITIONS 	 335 

(6.76) 	E(M8(t2)1f) = E(M,(t i )H) o(1) 	0) 

from which (6.75) follows. First, it is clear that 

E(  I 	g(u)dBd(u)I {,>,,H) = E( 	g(u)dBd (01 kr>ei 	o(1).
Jo  

By the martingale property of the stochastic integral with respect to Srp, 
we have 

E[
f(6(12) 

f q(A(s-), p A(s _) X, w 1)1 ( „,)>8,112,(dsdw')H] 2 2ro(D) 

=-- E[ 1.*'3(ti) 	P(A(s-), p dg,-) 1, w')1 (, („,}>e} lir i,(dsdw')H]. J 	fr-ou» 2  

Now 

fcri) r 
p 	 „(dsdw') 

se Dr, s:50(r1), (7(0 4(s_96>e
r22(.4(s—), P Acs-)X, A.9.0[0 Acs-)Xl) 

— I  dO(s)f 
Sro(D) 

	p,X, w')1, (,,,, )>,,n(dw') 
0  

• 
	 /8 - 2, 

where AaD[ 19A(.,-)X] = Pa D[OA u_)X] X(A(s-)). If e < t2  t1  and s t17 

$ f?(s, p sX , 	,a, ( ,,,,)›e n(dw') 
7-0(D) 

:=5,(D) so(r2_,)A.„(.,, 
0;(u, psX, w')dw'd(u)11 (ŒN,,, >enx (s ) (dw') 

—5 
8 

go (u, p ,X , W)dw'd(u)]1, 47( ,)›ei nx (3)  (dw') 
20-(D) 	0 

and hence 

ti 
12c 	dØ(s) (s, p sX , wIt 	a ri 

s) 
l  

2r (D) 

rl dO(S) f 	[se 	p ,X, w')dw'd(u) 
2,- (D) 	0 

f (ti—s) 
p sX ,  

0 



a1 (8) 	a2(0. 

Sr i - S 

o  Oisr(u, AI) w)dw id(u)11(7(, ,,)>e) F2(Pr 1 --3w)n 1'`s) (dwlli 
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If we denote the second term by (5(a), then by Lemma 6.9, WED  =  o(1). 
Next, 

= 	E 	f 	(s-), PA (s-) i3aDn(s-)x]) 
se Dp  s<9501) 

+ fr:(r(ti), ProoX) Aap[OT(roX ])  
:= 	1812 

where -r(t i) = A(56(t 1 )-). By the last exit formula, 

	

E(.112H) = E[ $t ' Fi (p,X)c16(s){ 	[ fœ(wn3i-eu, p,X, wldwicr(u)] 
0 	 Ir(D) 	0 

X ikropt»avol-s» F2(9: 1 -sivt)nx(3)  (dW)} 
svol-3) 

= E[ Fi(psx)dks) { fr.(D) [ 
0 	

0;(u,  pi ,  W)dw'd(u)] 
Jo 

X I tew ,)>evcri-r»F2(1)8 1 ,W)n x' (c1W))] 

E[ 	Fi(p,X)dsgs){f (ti -3)  sk(u, p,X, w')dw' d(1,01 
iO  

	

(D) 	0 

X 'W  (w' ) 	F2(Pr1 	
(dwr)} 

ft' 	 re 
E[ 	Fi(PeAlCIAS) flr(D) 

[ 
0 

digti, psX, WWWId(U) 
r1 - 8  

Then clearly 

E(4,H) al(e) = E( 	E t210(s—), 	Ar, Aarlews-)X1)} H). 
seAr sgS(ti) 
cr(0 4(s_)10>e 

By Lemma 6.9, ch(e) = o(1). Now the proof of (6.76) is complete. 
Let g(s) be a bounded step process. By Lemma 6.6, 

S9(t) 	fo g(s)d/34(s) 	o g(s)d0(s) a.s. as e — 0 

and hence 

= Se(t) — 	o g(s)d.13 4(s) 	o g(s)46(s) — M(t) 
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in probability as e 	O. By Lemma 6.9, we can easily conclude that this 
limit is of the form fto  h(s)d4(s) for some bounded adapted process 
h(s). Therefore, 

o h(s)4(s) = o g(s)dBd(s) 	o g(s)dgi(s) — M(t). 

We conclude from this that 

ft  o h(s)dvi(s) = o g(s)4(s) 

and 

Jt  o g(s)dBd(s) = 

Let g(s) be general. Then we take a sequence {gk (s)} of bounded step 
processes such that 

E[ o lg,(s) g(s)I 2ds] — 0 (k 	co). 

It is easy to see that  Mk(t) corresponding to gk (s) converges to 
M(t)  and hence 

m(t ) .E g(s)dBd(s). 

Lemma 6.11. Let g(s) be a {at( W(D))) -adapted process such that 
s g(s) is right-continuous with left limits and s E[g(s)2] is locally 
bounded. Let Ire(t) be defined by (6.72). Then 

(6.77) 	Ye(t) — 5 0  g(u)c/93(u) in probability as e 	O. 

Proof First assume that g(s) is a step process. Then by Lemma 6.6 

SAO — g(s)dBd(u) 5:g(u)d0(u) 	a.s., 

and by Lemma 6.10, 
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A18(t)— f t0 g(u)dBd(u) 	in 2'2(P). 

Thus (6.77) holds. Now let g(s) be general. By Lemma 6.7, we can choose 
a sequence {Ms)} of step processes such that 

gk (s) — 	g(s) gk(s) 

Since Yg(t) may also be expressed as 

Ys(t) = di(s) I 2,(D) [ Scro (w"(r 1)1\8  45;(u,w,w1A(8,u,w'(u»du 
0 

X I iew l)›sdnx (s) (dwi), 

we have 

Y(t) — 	 ± IOW 

where 11: corresponds to gk . The desired conclusion then follows by first 
letting e 	0 and then k 	00. 

Now we are ready to conclude the proof of (6.65). By Lemma 6.10 
and Lemma 6.11 

SAO =Me(t) Y e(t) 

converges in probability to 

ft 0 g(s)dBd(s) 	g(s)dO(s) 

and this proves (6.65). 
The proof of (6.64) is immediate from the following reasoning. Sup-

pose that a family of disjoint open non-random intervals fej in [0, oo) is 
given such that [0, co)\ U eOE  has zero measure. Then it is obvious that 

a 

Eicf 	g(u)dif(u) = f 
o

g(u)dif(u) 
a 	CO, n ea 

Indeed, if E is the union of all eg  such that I ea l > 8, 
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f E 	g(u)d13 1(u) = f
t 
 11E(u)g(u)dk(u) 

a 	E0,0flea 	 0 
lea l>8 

since the ea  are non-random intervals; moreover, it is clear that 

fro lE(u)g(u)dif(u) — f:g(u)dif(u) 	in  5f2(P) as g — O. 

Since {A(u)} is defined only through {B4(t)}, it is independent of {Bl(t), 
i = 1,2, •.. , d-1} . By Fubini's theorem, the intervals (A(s-), A(s)) 
can be treated as non random intervals and hence (6.64) follows. 

(b) General case. 
The proof of (i) is similar to the proof in case (a). As for (ii), we first 

remark that we may assume d= r. Indeed, if r < d,we set 

c4(x) 0 	for r < k < d 

and then adjoin d— r independent Wiener processes Br -  "(t), B' 2(1), . . • , 
B4(t). If r > d, we consider the r-dimensional process (Y1 (t), Y2(t), 
Yr -d(t),r(t), ... ,X 4(t)) by setting e.g., In(t)=B 1 (t), Y 2(t)=B 2(t), .. 
Y' -4(t )= Br—d(t). 

First, we consider the case  it(s)  a 6,1 and bd(x) a O. Then [OW, 
B2( t ) ,  . . . ,Bd-1(t) ,xd(t) = xdp+Bdo)+00)] is a refelcting Brownian 
motion and the proof in case (i) applies. Secondly, we consider the case 
cric (x)- -  c5Z. Then by a change of drift (Chapter IV, Section 7), it is reduced 
to the first case. Thirdly, we consider the general case. It is reduced to the 
second case by the following change of coordinates and transformation 
of Brownian motion. Since the di(x) are C3  by assumption, we can find a 
C2-function f(x) on D such that f(x) 0, f(x) = 0 if and only if 
x E ap and 

df af 
di(x)  ax'Tx./ 

1 	on ap. 

For X=(X(t),B(t),M(t),95(0), set i=(/(t),B(t),M(t) 0(t)) where SI(t) 
= XV), i = 1, 2, .. . ,  d ' —  1 and /d(1)---./(X(t)). il-f.  corresponds to 
kaf,11,1,0} with iidd(x) .- I. By a transformation of Brownian motion 
from B(t) to /At) (Chapter IV, Section 7), we may assume that  ô(x) = 
45cki. 

The proof of Theorem 6.6 is now complete. 
Let N.(X(t),B(t),M(t),¢(1)) be given as above and f(t,x) be a 
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smooth function on [0, co) x D. Then f(t, X(t)) is a continuous (97)- 
semimartingale. 

Theorem 6.7. Let g(t) be an („97)-adapted process such that t 
g(t) is right-continuous with left-hand limits and t 	E[g(t)2] is locally 
bounded. Then we have 

r  A COAI 
j

A(3— )A 
 

SED 

= 
o
g(u)df(u,X(u)) 	g(u) 1-1(u,X(u))11(X(u))dIVP(u) 

1= 1  1=1 0 	U.X" 

(6.78) 	
ac"(X(u)))  f ro- g(u)11],_ i V3'((gu» &mow) ax'  (u,X(u)) 

+ 1 	a,if(go) aS(u,X(u))143(u). 
2  

Proof. Let A and L be defined by (6.45) and (6.46). By Itô's formula, 

g(u)df(u,X(u)) = g(u)—af (u X(u))du at 

±1 ,  g (u) 49-8-1.7-:i (u,x(0)01(xmak(u) 
i 	k1 

g(u) 	
(u'X(u))1X(u))dill'(u) 

g(u)(A x  f)(u, X(updu g(u)(L x  f )(u,X(u))610(u). 

By Theorem 6.6, the left-hand side of (6.78) is equal to 

f g(u)—(u X(u))du 	kti  g(u)Z(u,X(u))o -1,(X(updBk(u) a aft 

r  2  af x(u)) 0-ika(u))01(x(4))  do(  
) 

1= 1 k= 1 0 aX1  " add(X(u)) 

ro g(u)(A xf)(u,X(u))du 

0 g(u)df(u,X(u)) 	fro  g(u)E;(u,X(u))1X(u))dAP(u) 

d acii(X(0) 
—

0 
 g (u)[1., „ f (u , X(u)) — 	add(X(u)) 

a  (u , X(u))] c 1 (u) 

Since 
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d adi(x)  af  
Lxf(u,x) — E  " (u,x) add(x)  axi 

d-1 	 adi(X) af 	d-1 	 62f  
= ifit(x) — 	

1  (u,x) + — E 
2 td -1 a  (X)  aXia (12')C)2  

we have obtained the conclusion. 

Corollary. The identity 

A(s)At 

	

(6.79) 	E*  I 	g(u)df(u,X(u)) =  I  g(u)df(u,X(u)) 
se ll J  A(s—)At 	 0 

holds for every smooth f(u, x) on [0, cc) x D if and only if 

adi  (X)  

	

(6.80) 	au (x) =  0 and /31(x) = add(x) 

i,j ----- 1, 2, . 	, d-1. 

Definition 6.2. We say that X is a normally reflecting diffusion process 
if (6.80) is satisfied. 

7. liNhler diffusions 

Let 0 be a mapping from an open set D of Cn into Cm. Then we can 
write 0(z) = (0'(z), 0 2(z) , 93m (z)) where 0i is a complex-valued function 
defined on D. As in the Section III-6 if each 0i is holomorphic on D, 
then 0 is called a holomorphic mapping from D into Cm. A Haus-
dorff topological space M is called a d-dimensional complex manifold 
if M has an open covering U„ }„ EA  such that for each Ua  there is a homeo-
morphism 0a  from Ua  onto an open set D„ of Cd satisfying the following 
property: if U 4  rl Ufl  # ç6 the mapping fbfl o rb 1  from fl3 a(U a  fl Uft) into 
Ofl(V.  a n ufl) is a holomorphic mapping. { (U0,, rba)}cced  is called a system 
of holomorphic coordinate neighborhoods of M. Let U be an open set of 
M provided with a homeomorphism 0 from U onto an open set D of Cd. 

(U, 93) is called a holomorphic coordinate neighborhood of M if the follow-
ing property holds:  If u n Ua  fb, a e A, then the mapping 0a  0 
from  Ø(U fl U to 00,(u n fa) and the mapping gi o 40; 1  from fli a(U U 
to 0(U n Ua) are both holomorphic. For a holomorphic coordinate 
neighborhood (U, 0), we set 

identically on ap, 

0(z) = (zi(z) , z2(z),- -, zd(z)), z 	U 
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and we call (z 1 , z2 ,  . . . , zd) the system of complex local coordinates on 
(U, 0). Since we can identify Cd with R 2d  a d-dimensional complex mani-
fold M can be considered as a 2d-dimensional real manifold. Hence a 
holomorphic coordinate neighborhood (U, 0) of M is a Ce* coordinate 
neighborhood. For a system of complex local coordinates (z', z 2,..., 
zd) on (U, 0), we denote by xk and yk the real and imaginary parts of 
Z"  respectively. Then (x', y', x2,  xd yd)  is a system of local 
coordinates of M. Hence 

- 	 (') 

z 	 : 	 ax cl z ,  ay" z  

is a basis of  T(M)  and 

{(dxi) z , (dy')„.–, (dxd)„ (dyd)z } 

is a basis of  T(M). As in the Section III-6, we set 

1-2-1( a ) 

	

axk  — 	 (-gz  

	

= ,l( aaxic) + 	--- f(kk),} 

and also set 

(dzk), = (dxk), Nr=j,(dyk), 

(d2k), = (dxk), — N7---f(dy 1')7 . 

Then we see immediately that 

(ad)% } 

is a basis of the complexification T(M)  of  T(M)  and 

(dz i )z, (c12 %, • *, (clz9z, (c12%) 

is a basis of the complexification Tr(M) of  T(M). 
Define a linear transformation 4. of  T(M)  by 

d. 
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It is easy to see that J , can be defined independently of the choice of the 
system of complex local coordinates (7), z 2, ... ,  z d\ .  ) The mapping 
J: z — J, is called the almost complex structure attached to M. A Rie-
mannian metric g on a complex manifold M is called a Hermitian metric 
on M if g satisfies 

(7.1) 	&(J zX, Jzi r) = S'(X, Y) 	for X, Y E T(M)  

at each point z of M. We extend the value of g at z E M to a symmetric 
bilinear form on  T(M) by defining 

gz(X + N/ — 1 Y, X' + N/mn) 

= (g,(X, X') — g z(Y, r)) + 4/1--f.(g,(X, Y') + g z(Y, X')) 

for X + .V-- 1 Y, X' ± -17- : f r E TAM). We set 

gap(z) 
= gz(U:-za ),' 

a g ,3(z) .--- g# a2. )z,  
(L -)z) ,  gam = gz

((

): (—al )) 

CL » gdPo = gz((ïaFt ),, 
(a2)

) 
, a, )5' = 1,2,—, d, 

and call gap, gag, ga, 13, ga, g the components of g with respect to (zl,z 2,..., 

zd). It is easy to see that 

gafi = gPa gaig = ggd,  gelP = g#a)  gap =  g5 	= gap' 

In terms of components of g the condition (7.1) is expressed as 

(7.2) 	gap  = gag = 0, a, fi = 1, 2, — , d. 

For a Hermitian metric g, we set 

(7.3) 	co,(X, Y) = gz(J,X, Y) 	for X, Y E T(M). 

The mapping co: z ---.. coz  defines a real differential 2-form on M. w is 
called the differential form on M of degree 2 attached to the Hermitian 
metric g. co is expressed as 

d 
0) = N/ — 1 E gcrioza A d2fl. 

a, I3..1 

If w is a closed form, i.e. 
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(7.4) 	do) = 0, 

then the Hermitian metric g is called a Kiihler metric. A complex mani-
fold endowed with a Kahler metric is called a hler manifold. We note 
that in terms of components of g the condition (7.4) is expressed as 

(7.5) 	6g4  —  4' 15 	a, fi, y = 1, 2,—, d. 
az" 	aza 

We now note that if (M, g) is a Kahler manifold, the Laplace-Bel-
trami operator A on M may be written as 

a 	62 	 ,,„(z\  az  (7.6) 	= E g ( ) 	azaavt 	aZaag a,f3=1 

where (gaP(z)) and (g z))  are given by 

(7.7) 	gaa(z)g0(z) = gc , 	, g.67(z)gy15. (z) = 6ci 

fi =-- 1, 2, • , d, 

respectively. Indeed a straightforward calculation in local coordinates 
shows that if g is a Hermitian metric, then the principal part of A is equal 
to the right hand of (7.6). Combining (7.5) with V-(4.32) we can show 
that the coefficients of the lower order terms of A identically vanish. These 
imply (7.6). 

Definition 7.1. The Brownian motion on a Kahler manifold M, 
i.e. the diffusion process on M generated by the differential operator 
given by (7.6) is called the Keihler diffusion on M. 

We note that the Riemannian connection p defined by IV-(4.19) 
is extended by complex linearity to act on complex vector fields, i.e., for 
complex vector fields 

Zk = Ik 	-1Yk k = 1, 2 

we set 

VZ1Z2 = PX1 X2 - Fri  Y2 + VL"--f(FX1 Y2 + VII X2)- 

a Define the components of the connection y with respect to 	and 

a 
by 



ra  11= Tch = T ily  = 0 

= = 0 

Fly  = rOE 

(7.8) 

ra  = ra 
fir 	Pr 
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a 	a , „ 
• a  Tz73- 	7V aft 	co iTiTa  
aza 

a  
• a a2P 
aza 

a  
• a azft 
a2a 

a  
• a a2fl 
a2a 

=* a  

	

1:15  azY 	rc`la  

/ 	a  
azY + 1-Z4) 

/ 	a 

	

azY 	a2Y 
a  ) 

If  (M, g)  is a Kahler manifold, we obtain 

Furthermore, for a Kdhler manifold the coefficients of v are determined 
by 

r 	age34  Egy3  rarfl  = 	 Eg93  
oz 

In the rest of this section, unless otherwise stated we assume that 
(M, g) is a Kdhler manifold. We introduce the bundle of unitary frames 
over M: By a unitary frame e = [e l , e2 , •• , ed ] at z we mean a system of 
complex tangent vectors ea  G Tf(M) such that 

gz(ea , 
 e)  = II 	all 	a,  1  = 1,2,—, d 

a 
and each ea  is of holomorphic type, i.e., it has no component of 

a213' 
/3 = 1, 2,—, d. U(M) is defined as the collection of all unitary frames 
at all points z M: 

U(M) = [r = (z, e); z E M and e is a unitary frame at z). 

Then U(M) is a principal fibre bundle with the structure group U(d). 
This bundle is called the bundle of unitary frames over M. For details, 
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see [207]. Since M is Kahlerian, U(M) is invariant under the parallel 
displacement with respect to the connection pr. 

As in the Section 4, the Kahler diffusion on M is constructed by the 
solution of the stochastic differential equation corresponding to the 
canonical horizontal vector fields. In this case, it is described more 
conveniently by using the complex structure. Let wou, Pw) be the 
standard 2d-dimensional Wiener space and define a system of complex-
valued martingales C(t) = (C"(t) )ai.. 1  by 

Ca(t) = 
j

_
2 
	(w2a-1(t) 	1w(t)), a = 1, 	d. 

As stated in the Example 111-6.1, CO) is called a d-dimensional complex 
Brownian motion and it is a typical example of d-dimensional conformal 
martingale. We consider the following stochastic differential equation 

(7.9) 	dr(t) = La(r(t)) 0 d(t) 

where { LI , L2,•", Li ci} is the system of the canonical horizontal vector 
field on U(M), i.e. La(r) e MU(M)) is defined to be the horizontal 
lift of ea  e TAM), a = 1, 2,.--, d where r = (z, e = [6,1, ed]) e 
U(M). The meaning of (7.9) is as follows: we say that r(t) is a solution 
of (7.9) if r(t) is a continuous process on U(M) such that, for every 
F E F(U(M)), F(r(1)) is a semimartingale and satisfies 

F(r(t)) F(r(0)) = f ro  LaF(r(s))  o  d(s) 	(E F) (r(s)) 0 dCa(s). 

In a complex local coordinate, it is given as follows: 

dZi(t) = 4(0 0 d(t) 	i = 1, 	d 

(7.9)' 
de(t) = 	13fl (Z(0)4,(t)  o  dZY(t), 	i, a = 1, 2,..., d. 

Since Cga  • CICS = 0 and dZa • dr = 0, (7.9)' is equivalent to 

dZi(t) = eja(t)dCa(t) 	i = 1, 	d 
(7.9)" 

de(t) = — 17.ft (Z(t))eg(t)dZY(t), 	i, a -= 1, 2, — , d. 

If r(0) E U(M), then the solution r(t) = (Zt(t), 4(0) lies on U(M) and 
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the Z(t) = (Z'(t), Z 2(t),—, Zd(t)) is a d-dimensional local conformal 
margingale. Combining these results with III-(6.5), we obtain the 
following: The solution r(t) to (7.9) with r(0) E U(M) lies on U(M) 
and its projection Z(t)= n(r(t)) defines the Kiihler diffusion on M 
where n: U(M)— M is the natural projection given by n(r)= z for 
r = (z, e) U(M). 

Example 7.1. Let D = f z C;  j z  j  < 1 } be the unit disc in the 
complex plane C endowed with the Riemannian metric 

(7.10) 	ds2  = IdzI 21(1 	iz1 2)2 	z E D. 

Then D is a Kahler manifold and the metric g given by (7.10) is called 
the Poincaré  metric. Since (D, g) is a realization of the Lobachevskii 
plane, the Kahler diffusion on (D, g) is called the Lobachevskii Brownian 
motion in the unit disc. This diffusion is obtained from the one-dimen-
sional complex Brownian motion by a transformation of time change 
determined by the function c(z) = (1 — I z ! 2) -2 . Let C(t) be the one-
dimensional complex Brownian motion defined above. For z e D, we 
set 

C(t) = z CO) 

and let 

inf{t; NO] = 1}. 

We also set 

A, = o c(Cz(s))ds, 	t 	cr. 

Then it holds that lim e  ,A, = 00 a.s. and hence its inverse Cr  = inf 
fu; A› t I can be defined for t 	[0, 00). To see this, we note that r(t) 

IC(t)I is BES(2): the Bessel diffusion process with index 2 (Ex-
ample 1V-8.3) and  r(C) is a one-dimensional diffusion on [0, 1) starting 
at I z1 with generator 

(1 — r2)2  d2 	1 d 
2 	dr2  ± 7 Tr )* 

By Theorem VI-3.2 we can see that if I z j # 0, r(C,) can not hit 0 nor 1 
in a finite time almost surely. Noting that lim o  ,A t : = e < oo implies 
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lim i(C) = 1, we can conclude that lim o  ,A, = co a.s. 
Then  Z(t) = Cz(C,) is a local conformal martingale by Proposition 

III-6.1 and it possesses the properties that  Z(t) E D, t 0 a.s. and 
lim Z(t): =  Zt, exists and Zf., E at) = lz;  izi = 1, z E 	a.s. 
It is clear that { Zz(t), t 	defines the Lobachevskii Brownian motion 
starting at z in the unit disc. 

Remark 7.1. Let p(t, z 1 , z2),  t>  0, z1 , z2 	D be the transition den- 
sity function with respect to the Riemannian volume 

m(dz) = dxdy  (1—  jz1 2)2  ' 

on D of the Lobachevskii Brownian motion. Then it holds that 

P(t, zl, 22) = p(t, p(z i , i2)), 	t > 0, z1 , z2  e D 

where p(zi , 22 ), z1 , Z2 E D is the Poincaré distance between z 1  and z2, i.e. 

p(z i , z2) = 
2 	— log 1 + r  

r — 1 	r ' 

  

 

Z1Z2 

1 — 21z2  

   

and 
_t 	r2 

e 	cc°  re 2t dr  
P(t , 13) — (2711) 312  Jp .‘/chr— chp 

Finally we give one of simplest examples in which conformal mar-
tingales can be applied to problems in complex analysis. 

Example 7.2. Let D be a polydisc in C 2  given by 

D 	{z = (z', z 2) E C2 ; izi  I < i 	1, 21 

and let zo  = (4, 4) E D. Let Z(t) = (r(t), Z 2(t)) where Zi(t) and 
Z 2(t) are mutually independent Lobachevskii Brownian motions in the 
unit disc in C as given in the Example 7.1 such that 0(0) = 4, i = 
1, 2. Then Z(t) is a two-dimensional conformal martingale such that 
Z(0) = zo  and with probability one, Z(t) E D for all E 0, limfrœZ(t) 
: = Z. exists and 

E 	= {z = (z 1 , z2); izi I = 1,  1  = 1, 2}. 
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Note that the usual topological boundary ap of D is given by 

ap = (z. 	(z' z 2); zi 	1 and 1z2 1 = 1 or 1zi I = 1 

and 1z2 1 

and aD is much smaller than aD. ar• is called the  distin  gushed boundary 
of D. Now if 0: D C is holomorphic, 0(Z(0) is a local conformal 
martingale. As a simple application of this fact, we show the following: 
Let 0: D = D u aD c be continuous and 0, restricted on D, be holo- 

morphic. Then maxzeb 10(z)1 is always attained on aD: 

(7.11) 	my I 0(z)1 = !:12.5x10(z)1. 

Indeed 0(Z(t)) is a bounded martingale and lim1 93(z(t)) 
AZ.). Hence 

Azo) = E[gz(0))1 = E[fgz.A 

and therefore, 

1 (2.0) I -5, Et 1 gz.)11. 

We know that Zoe  e ap a.s. and hence 

gzo) 	maxlç5(z) j.  
ze aD 

Since z o  can be choosen as any point in D, this clearly implies the asser-
tion (7.11) 

For these topics, we refer the reader to Debiard-Gaveau [195] and 
Kaneko-Taniguchi [205].  For further applications of conformal diffusions 
to complex analysis, see Gaveau [200], Malliavin [108], Durrett [196], 
Fukushima-Okada [198] etc. 

8. Malliavin's stochastic calculus of variation for Wiener func-
tionals 

As we have seen above, strong solutions of stochastic differential 
equations are functions of Brownian motions. Such functions are often 
called Wiener functionals or Brownian functionals and they have been 
studied by many people with a variety of motivations (cf. e.g. [10], [64], 
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[79], and [178]). Recently P. Malliavin ([106], [107]) gave a new approach 
to the analysis of Wiener functionals, especially to the analysis of strong 
solutions of stochastic differential equations. We follow the assmptions 
and notations of Section 2 and let X (X(t, x, w)) be the solution of 
(2.1) realized on the r-dimensional Wiener space (K,  Pi").  Recall that 
W: is the totality of continuous functions w: [0, co) Rr  such that 
w(0) = 0 with the topology of uniformly convergence on every bounded 
interval, i.e. the topology induced by a countable system of norms 

ilw1l =--- max w(t)J,  n =  1, 2,—, w e Wor. 

If t (> 0) and x are fixed, the mapping: w X(t,  x, w)  is a d-dimensional 
Wiener functional, i.e. a P w-measurable function of w, but it is not in a 
class of functionals to which the classical calculus of variations or 
Fréchet differential calculus on a countably normed space wcr, can be ap-
plied. Generally, it is not even continuous in w. It is an important dis-
covery of Malliavin that this functional, however, can be differentiated 
in w as many times as we want if the differentiation is understood pro-
perly. Moreover he showed that these derivatives can actually be used 
to produce fruitful results. Examples of such successful applications 
initiated by Malliavin, then followed by Kusuoka-Stroock, Bismut, 
Watanabe, Léandre and so on, are among others, in the problems of 
regularity, estimates and asymptotics of heat kernels. As we saw in 
Sections 3 and 5, the initial value problems of heat equations can be 
solved by probabilistic method of representing solutions as expectations 
of certain Wiener functionals. With a help of the Malliavin calculus, we 
can proceed one step further and represent the heat kernel, i.e. the 
fundamental solution of a heat equation, as a generalized expectation (in 
the same sense as in the Schwartz distribution theory) of a certain gene-
ralized Wiener functional. This method, as we shall see in the subsequent 
sections, is quite useful in the above mentioned problems of heat kernels. 

We start with the r-dimensional Wiener space ( Wor, Pw). We write 
simply In = w and Pw P when there is no confusion. As usual, P-
measurable functions defined on the Wiener space ( W, P) are called 
Wiener  fun ctionals and two Wiener functionals with the same range 
space are identified whenever they coincide P-almost everywhere. Need-
less to say that the most important function spaces of Wiener functionals 
are 4-spaces. In the following, we denote by E a real separable Hilbert 
space. As usual, we denote by L,,(P ; E) (1 p < co) or simply by 
L(E) the real La-space formed of all E-valued Wiener functionals F 
such that I F(w)I E  is p-th integrable and endowed with the norm 
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liF lip = (I wi F(w)i IP(dw)) 1IP  

where I el E  = < e,e>112  is the norm of e E E and < , > E  is the inner 
product of E. In the case E = R, L(E)  is denoted simply by Lp. In the 
Malliavin calculus, we introduce, besides 4,-spaces of Winer functionals, 
a system of Sobolev spaces of Wiener functionals so that we can develop 
a differential calculus of Wiener functionals. Malliavin defined the 
notion of derivatives and Sobolev spaces in terms of Ornstein-Uhlenbeck 
processes over Wiener spaces. These notions have been studied further 
by Shigekawa [148] ; Meyer [218], Kusuoka-Stroock [211] and Sugita 
[225], [226], among others. Sugita [226], in particular, showed the 
equivalence of apparently different approaches of these authors. Here 
we develop the theory along the line of [204] and [232]. 

Let H be the Hilbert space formed of all h e W such that each com-
ponent of h(t) = (h'(t), hr(t)) is absolutely continuous in 
t and has square-integrable derivatives. Endow H with the Hilbertian 
norm 

1h1 2fr = Eiii(t)1 2dt, 	h e H 

where A(t) = (4 1 (t), 	fir(t)) and 

kV) =
t 	' 	

i = 1, 2, — , r. 
d 

This H is often called the Cameron-Martin subspace of W. For h E H, 
the stochastic integral (often called Wiener integral) 

r  

(8.1) 	[h](w) 	Er iii(t)dwt(t) 
1=1 o 

is well defined and [h] E L2 as a function of w. Indeed, L 2-norm of [h] 
coincides with j h I H i.e. the linear mapping:  H D h — [h] E L2 is an 
isometry. 

Definition 8.1. (i) A function F: W R is called a polynomial func-
tional if there exist an n e N, h l , h2 ,..., h„ E H and a real polynomial 
p(x„ x„) of n-variables such that 

(8.2) 	F(w) = Pahli(w), [hd(w),... [h](w)). 

The totality of all polynomial functionals is denoted by P. 
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(ii)A functional F: W. R is called a smooth functional if there exist 
an n E N,  h 1 , h2,.., h„ E H and a tempered Cw-function 	x2,—•, 
x„) on R n  such that 

(8.3) 	F(w) = fahli(w), 

Here, f is called a tempered Ce°-function if it is Ce° and all derivatives of 
f are of polynomial growth order: i.e. for each multi-index a = (a1, 
a2,---, as), ai  E V, positive constants Ka  and Na  exist such that 

ID a f(x)i -15 a(1 ± ix I 2)Na 	for all x e Rn, 

where Da  is the differential operator defined by 

Da= wai(Lrmu---cda r 
(previously denoted by Da in Section 2). The totality of smooth 
functionals is denoted by S 

(iii) An E-valued functional F: 	E is called an E-valued poly- 
nomial functional (smooth functional) if there exist an m E N, el, e2, 

E E and F1 , F2,—•P (resp. S) such that 

F(w) = F1 (w)e 	F2(w)e2 •• Fm(w)em . 

The totality of E-valued polynomial functionals and that of E-valued 
smooth functionals are denoted by P(E) and S(E) respectively. 

Remark 8.1. In (8.2) and (8.3), h 1 ,h2,--,h„ e H can be chosen to 
satisfy the orthonormality condition: (121,k). 6,i, i,j = 1, 2,--, n, if n 
and p or f are suitably modified. In this case, the degree of polynomial 
p is uniquely determined from F and it is called the degree of the polyno-
mial functional F. Note also that the joint law of Wid(w),[haw),---, 
[14,1(w)) is the n-dimensional standard Gaussian distribution N„, Le. 

N „(dx) = (2701exp( — 44 }dx 1 c/x2 .--dx-n. 

The totality of F G P of degree at most n is denoted by F.  
In the following, we often state definitions, properties, etc. in the 

case E = R for simplicity: All the statements are valid in the case of 
general E with obvious modifications. 
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Remark 8.2. Pc Sc Lp  for every 1 p < co and P is dense in 
L.  Gnerally, P(E) c S(E) c L(E)  and P(E) is dense in  L(E).  

Proof. We fix an ONB (17,1 in H. Note that, for every c > 0, 

(8.4) 	E[exp{ ct  J  Ak [hkl(w)  fl  <  co 

for every n = 1, 2,— and  2  --,---  (2',  22  , , An) E Rn  

and ar(W) = offhaw), i = 1, 2,—], where E denotes the expectation 
with respect to the Wiener measure P. It immediately follows that 

PcSc n 4, and .g(W) = V arn( 

where .g„(W) = of[q(w),  i  = 1, 2,— , n]. We prove that P is dense 
in L„, 1 p < co. Suppose the contrary. Then there exists a non-zero 
X E L q, (1/p 1Iq =1) such that 

(8.5) 	EfX Fj= 0 	for every F E P. 

Noting (8.4) and that 1  < q co, we have 

Et I X I exPIA I AkIhki(w) }I < co 

and, combining this with (8.5), we can conclude that 

ETX exp{ ,s/271-At k [hkl(w)}] 

(8.6) 	= 	fir 	EIXtilk[hki(w)ri 

; 

for every n = 1, 2,— and  2  = (21 , 22,—, An) E  R.  
IfIrn = E[XIA,(W)], then there exists f(xl, x2,..., x") e ..21(1?n , 
such that  X(w) = fand(w), [h 2Kw),—, [haw)) and (8.6) implies that 

E[X„ exp{ 	1?_; 1  Ak Ihrel(w) }i 

= EIXexpt.,/— ip.k[haw)}] 



354 	 DIFFUSION PROCESSES ON MANIFOLDS 

13, 

i.e. 

f(x)e=i 61,4N„(dx) = 0 
Rn 

for every 1= (111 , 22,—, 2") E Rn. 

By the uniqueness of Fourier transform, we can conclude that 
f(x)N„(dx) = 0 i.e. f(x) = 0 a.e. x(N,,), implying that X„ =  0 a.s. By 
Theorem 1-6.6, X = lirn X„ a.s. and hence X = 0, leading us therefore 

to a contradiction. 

L2 is a Hilbert space and is decomposed into the direct sum of 
mutually orthogonal subspaces known as Wiener's homogeneous chaos: 

L2= Co 0 Ci 0 ••• 0 Cn  0 ••• 

where Co  = { constants } and 

	

= fin  n [co  EC1 	ci,_1 ] `. 

Here — and  J. denote the closure and the orthogonal complement in 
L2, respectively. The projection operator L2 	C,, is denoted by Jia . 

Let H„(x), n = 0, 1,—, be Hermite polynomials defined by 

n = 0, 1,••• (8.7) 	Hn(x) = (—n! 
 exp
1)" 	x

2
2 

d
d
;e

n  exp(— 
x
2
' 
), 

(previously denoted by H.[I, x]  in Section 111-5). Let 

A = (a = (a1, a2)...); aj  Z+, ai  = 0 except for a finite number 
of  i's) 

and, for a E A, set 

	

CO 	 CO 

a! = H ad and I a I = Eat. 

	

1-1 	 i.1 

Let (M t:, be an orthonormal base (ONB) of H and define 

Ha(w)  E P, a E A, by 
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(8.8) 	11.(w) =  11 H (Paw)). 
a I  

Since Ho(x) = 1 and a, = 0 except for finite number of i's, this product 
is actually finite and defines a polynomial functional. We note that 

E P„ 	if 	a 	n. 

Proposition 8.1. (i) N/ri!lia(w); a E Al is an ONB in L2* 

VO.H.(w); a z A,  lai  = n} is an ONB in  C. 

Proof. First recall that {.071-4(x)} 	is an ONB in _TAR, N 
7b 0 

where N1  is the one-dimensional standard Gaussian measure, i.e. 

Ni (dx) 	ex p —1 dx. 

Since l[haw) are independent identically distributed random variables 
(i.i.d.) with the one-dimensional standard Gaussian distribution, it is 
immediatly seen that 

w Ha(w)Hb(w)P(dw)= 11 - 1 5„, b , 	a, b e A. 

Since P is dense in L2, the assertion of the proposition is almost obvious. 

Corollary. If F E P, then .1"„F E P and F = JF is a finite sum. 

Indeed, if F is represented as (8.2) with orthonormal [h1 )  extend 
{ h1 ) to an ONB of H and apply the proposition. Since p(xi, x2,---, 

xn) can be expressed as a linear combination of IIHni(x,), the assertion 
- 

is obvious. 
00 

Hence, for a given real sequence 93 (h),  we can define an 
n.=.0 

operator To  on P by 

(8.9) 	TV = c 'fb„.1„F, 	F e P. 

T 9s  can be extended to a self adjoint operator on L2 (denoted again by 
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To) by setting 

the domain 0(710). {F E L2; iogiJnFiii <  00  } 

and 

ToF = 	 F e ar(T0). 

If On  = — n, To  is denoted by L and called the Ornstein-Uhlenbeck 
operator or number operator. Also (I — L) 8, for s E R, is defined to be 
To with On  = (1 + 	n = 0, 1,—. If On  = exp{ nt }, t 0, n = 0, 1, 

we denote To  by T. Namely, we define 

OD 

(8.10) 	TF Eent.I„F, 	Fe P,t O. 
n ■BO 

It is clear that { T,} defines a one-parameter semigroup of operators on 
P. If (8.10) is extended to F E L2, it define a contraction operators on 
L2, i.e., 

II TFII 2 	1 1 F1 12 , 	F E  L2. 

Hence { Tr } defines a one parameter semigroup of symmetric and con- 
traction operators on L2 and is called the Ornstein-Uhlenbeck semigroup. 

Proposition 8.2. The Ornstein-Uhlenbeck semigroup T on P is also 
given by 

(8.11) 
	T,F(w) = wF(e-rw ± N/1 — e-vv)P(dv) 	

,FE  P, 
= 	Tt(w,dv)F(v) 

where T,(w, dv), w E W, is the image measure on W of P under the 
mapping: W 9 y e-tw 	e-2tv E W.  

Proof. We denote the operator defined by the right-hand side of 
(8.11) by ft . Let h e H and 
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F(w) = exp( .V=f [h](w) 110,12}. 

Then noting that [11](w) is Gaussian distributed with mean 0 and variance 
IhI,  we have 

1F(w) = wexp{ —icr[h](w) 	/T/1 — e -zt[h}(v) 

+ —1 I hl 2H }P(dv) 2 

(8.12) 	= expi — ler[h](w) 

	

x 	exp{ 	— e-2t[12}(v)}P(dv) 

	

exp{.‘/=-Telqw) 	61-2t I hji}. 

Let = 	24), n E N, and h = 	±  2h2 	where 
{h') E H is orthonormal. Setting 

F(w) =  1f  expt N/=1./V[hi](w) 4-W:::12T1 

we have, by 1I-(5.3) and (8.7) 

F(w) = 	E 	fIW—ifv)mi piHmjah,i(0). 
ml, m2, --., nt..0 

Applying fr  to both sides, we obtain 

exp[ ,V=Ter[h](w) 4-e -21 121 2H} 

= 412(w) 

=tt(lp„.03( - WO. 
ml, 	in-'O  J-1 

Since the left-hand side is 

flexp{V .---We -t[hi](w) - 12-(Pe-V=-1) 2 } 

= fTc te (J—=-71 e—)'HAN(w))} 
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e- oni +.2+.-+norti (sr 	.([111J(w)), 
m1,, "72, 	mrem° 	 PG1 

we can conclude that 

14:(11Hmi(VIA ))( 47) = e-(7711+m2+..""ndr iliHmiqh11(W)), 
J-1 	 P°1 

that is 

(4H9)(w) = e - ra'tHa(w) 	for any a A. 

This, combined with Proposition 8.1, implies 

which completes the proof. 

Thus, the Ornstein-Uhlenbeck semigroup is a symmetric Markovian 
semigroup, i.e., a semigroup given by a probability kernel Tt(w, dv) as 
(8.11) which is symmetric in the sense of (4.48) with respect to its in-
variant measure y = P. It can be extended to F in S by (8.10) and it is 
easy to see that  TF  e S, t O. Furthermore, it can be extended to any 
Borel function F(w) on W with growth order 

1F(w)i :6. C1  exP{ C211wiln 

for some positive constants C1, C2 and n. As we have noticed, 	} is an 
L2-contraction symmetric semigroup on L2. Furthermore it is a strongly 
continuous contraction semigroup on 	1 p < oo, i.e., for  t>  0 

TrFiip 

(8.13) 	 for any F E 

(ii) 	TF— Fil, = 0 
to 

In fact, it is easy to see that for any F E L„ satisfying f 	E L2, 

w  IT,FIP(w)P(dw) 

= f  if w Tr(w, dv) F(v)iP P(dw) 

f w tf w T t(w , dv)IF(v)1P}P(dw) 
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= 	Tr(i F I P)(w)P(dw) 

=  L j F j P(w)(7 1t 1 )(w)P(dw) 	(by the symmetry of T, in L2) 

= f F I P(W)P(dW). 

In the general case, for any F  L 1,,  we choose F. e  L ,,  such that 
lEn  j P e L2 and F. — F in Lp . 

(ii) of (8.13) is easily concluded first for F P and then by a stand-
ard limiting argument. 

We have defined the Ornstein-Uhlenbeck operator L on P by 

(8.14) 	LF = 	 F e P. 

Clearly 

d 
(8.15) 	7;17  = T t (LF) = L(T rF), F e P. 

We now determine the expression of L. Let F E P be given by (8.2) with 
{10 orthonormal. Then, writing, 	(w) = (V(w), 2  (w) • • 	ON» 

1KW) [122](w), - • • I [haw» E Rn  and 491P = ap/axt, i = 1,2,—, n for 
simplicity, 

d 	 d p(e -r(w) 	/ 1 	
1 y — 1112 

= 
" L  Rn 	

e 2'111( ,v2T7  e 2  chi 

	

f Rn ge—r4i(w)(arP)(e—(w) 	4/i  — 	
1  N" i/i2 

e-2e11C/-27E e 2  di/ 

+ fR. .vre're_.(dip)(e -rt(w)+,/i 	
 

e-2q1)( 	jfi) e 

	
di  

= Sn  

	

 (w)(3  iP)(e-t (w) 	— e-297C/27r  e 2 

ebi 

I. „terow,4(w)  + _ 	N/yr  e 2  dri 

f 	
n 	111)2n 	1,0  

Rn 

by an integration by parts. Hence 
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(8.16) 
	LF(w) = --drit (Ttnit-o(w) 

= 1 aa?1,)(t(w)) —  

Similarly, if F e S is given by (8.3), LF(w) = .1(TF)it-0(w) is also 

given by (8.16) with p replaced  by  f. For F E P (or S) and h e H, we 
define the derivative of F in the direction of h by 

DhF(w) = lim  F(w + eh) — F(w) 
810 

It is clear that there exists unique DF e P(H) (resp. DF e 5(11 )) sat-
isfying 

DhF(w). <DF(w),h> Er  h e H. 

Indeed, if F e P is given by (8.2) 

(8.17) 	DF(w) =Pa,p)(t(wph„ 

and similarly in the case of F E S. More generally, if F e P(E) then 
DF E P(HC)E), HC)E being the tensor product of H and E. Re-
member that the tensor product Ei  E2 Of two separable Hilbert 
spaces E1  and E2  is a Hilbert space formed of all linear operators A: 

E2 of Hilbert-Schmidt type endowed with the Hilbert-Schmidt 
norm 

HALs  = {  E  <Ae,, e>12}112 4 J..1 

for some (= any) ONB's {e,} in El  and { ea in E2. Indeed, if 

F(w) = /AP Mii(w), [ 1221(w) ,••• [h](w))e k , 	E 

then 

DF(w) = 	(49 	Eh ( , [h 2]( 	, .1(w)) 12 I 0 ek 

where h, C) eh  H®  E is defined by 

[h, ® 41(h) = <h i, h>.H 4 	h E H. 
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If F e P, then D2F P(H H) and D2F, as a linear operator on H, 
is of trace class for almost all w E W. Indeed, if F E P is given by 
(8.2) with {lid orthonormal, then extending {111 } to an ONB in H, 

trace D2F(w) = a'<D2 F(w)(11 1), hi>ji  
(8.18) 

4a?/,)(4(w». 

From (8.16), (8.17) and (8.18), we have 

	

(8.19) 	LF(w) = trace D2F(w) [DF](w). 

Here, for G e P(H) generally, [G] E P is defined as follows: If G is 

represented by G = ±G1(w)h 1  with G, e P and h,  E H, 

	

(8.20) 	[G](w) = , n4G,(w)[haw). 

This definition of [G] is well-defined independently of a way of repre-
senting G. If we introduce a linear operator D*: P(H)—. P by 

	

(8.21) 	D*F(w) = — trace DF(w) [F](w), 	F 

then we have 

	

(8.22) 	L = — D*D. 

All the above definitions and formulas extend to the case of S and S(H). 
In the same way as we obtained (8.16), we can prove 

	

(8.23) 	
w< DF(w), GM> HP(dw) = F(w)D*G(w)P(dw) 

for all F E S and G E S(H). 

Also it is easy to prove the following chain rules: If F, E S,  i  = 1, 2,—, 
n and g(xi , x2 , • --, x„) is a tempered Coe-function on R", then 

ag 

	

(8.24) 	D(g(F1 , F2 3  • • 3  F73))= Lt , F2,••• , FODF, 
1- 1  x 
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L(g(Fi , F2,..., Fa)) 

(8.25) 	=
a2g 

axiaxi 

'Lgr- 	F2y •", FOLF,. 
1-1 ax, 

In particular, if F, G E Sy  

(8.26) D(FG) = FDG + GDF 

and 

(8.27) <DF, DG>H  = 1{L(FG) — (LF)G — FLG}. 2 

If, F,G,J E S, then 

CD < DF, DG>H, DJ> H  

= <D2F, DG C) DJ> Heil <D2G, DF C) DJ> Hell,  

If F e S and G 5(H), then FG S(H) and 

(8.29) D*(FG) = — <DF, G> H FD*G. 

Hence, if F, G E S 

(8.30) D*(FDG) = — <DF, DG> H  — FLG. 

As before, let E be a separable real Hilbert space. 

Definition 8.2. For 1  < p  < oo and s E R, we define a norm 11 • 11„,,, 
on P(E) by 

(8.31) 	11F11„,,, = 11(1 	L)s/ 2111„. 

Note that (I — L)3 12F e P(E) is defined by the Wiener chaos de-
composition as 

(I — L)5 12F t(l n)42J„F. i)   

Proposition 8.3. These norms possess the following basic pro-
perties: 

(i) (Monotonicity) if s s' and 1 < p' p < co, then, 
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1 1 F11 ,,s 
	 F 	P(E). 

(ii) (Compatibility) if s,s' E R and p,p' E (1, co) and if F„ 
P(E) satisfy  I1FII , 3—  0 as n cc and  IIF — 	— 0 as n,m 00, 
then 	— 0 as n — co. 

(iii) (Duality) if s  E R, p E (1, 00) and G E P(E), then 

= sup{ If w  <F(w), G(w)> EP(dw)1 ; F E P(E), iiFiip,, 5_ 1} 

where lip ± 1/q = 1. 

Proof (i) Since i; is a contraction semigroup on Lp(E),1  <p  < 00, 
the operator 

1  	r -  
(1 — L)-2 	

T(s)  J° 
6.-T-1T,dt 

is also a contraction on  L(E) if  s>  0: 

— 	 F E P(E). 

From this, (i) is easily concluded. 
(ii) Let G„ 	(I — L)$' 12F,, E P(E). Then IlF„ — 	0 as n, 

m 00 means that IIG„ — Gm IIp  — 0 as n, m co and hence, there 
exists G e L,(E), such that IIG„ — 	— 0 as n 	co. But 11Fnlip,2 
0 as n — co implies that 

— L)(s-s' )/2G„11, — 0 
	

as n 	00. 

Let J E P(E). Then 

e -s 
— L) 2  J P(E) c L(E) 

for every 1  < q  < co. Hence 

w <G(w), J(w)> EP(dw) = En2f w <G„(w), J(w)> EP(dw) 

s-st 
= 	<(I — L) 2  G n(w), (I — L)2-2  J>EP(dw) 

n-02 W 

= 0  

and this implies that G = O. Then 
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11Fnlly, st = 11G.11p,  — 	as 	co. 

(iii) This can be easily obtained by the well-known duality between 
L(E) and L 4,(E) if lip ± 1/q = 1. 

Definition 8.3. Let 1 < p < 00 and s e R. Define  D1 (E) to be the 
completion of P(E) by the norm M 

It is easy to see that D, 3(E)  coincides with the completion of .S(E) 
by the norm II 	Now it is clear that 

(8.32) 	D, 0(E) = L(E) 

and by (i) and (ii) of Proposition 8.3, we have 

(8.33) 	Dr,,  „,(E) D„,,(E) 	for s s' and 1 < p' p < 00 

where 	denotes the continuous inclusion. By (iii) of Proposition 8.3, 
we have 

(8.34) 	D„ s(E) = Dg, _(E), 	s e R, 	p E (1, co) 

under the obvious identification where lip 1/q = 1. Set 

(8.35) 	D.,(E) = 	n 	D, .,(E) 
£>O ' 

and 

(8.36) 	D__.,(E) = 	U 	D, _,(E). 
i<p<oe, :>0 

Then D œ (E) is a complete countably normed space (Fréchet space) and 
D,(E) is its dual. The spaces D,,,(E), D.,(E), are denoted 
by D,,, D.,, D„,... if E = R. Since 

c D,, 0(E) = L(E) 	ifs>  0, 

elements in 	U D„(E) are Wiener functionals in the usual sense, 
s>0 

but elements in  D, 3(E) for s < 0 are usually not so. We have a clear 
analogy with the Schwartz distribution theory and it may be natural to 
call such elements as generalized Wiener functionals. The coupling 

D_co(E)(112 F)Dœ(E), 
	 0 e D„,(E),  F EE  D.,(E). 
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is also denoted by E(<0, F> E)  and it is called a generalized expectation. 
In particular, 1 (= the functional identically equal to 1) OE D. and, for 
0 e D_„ the coupling D_(0, 1)». is called the generalized expectation 
of 0 and is denoted by the usual notation E(0) because it is compatible 
when 

P E U L,.  

It is clear from the definition of our Sobolev spaces D,, (E)  that the 
Ornstein-Uhlenbeck operator L: P(E) — P(E) can be extended uni-
quely to L: D_ oe (E) — D_(E) and it is continuous as a operator Dp, :+2 

 (E)— D, 3(E) for every p e (1, co) and s E R. The following important 
result is due to Meyer [218]. Unfortunatly, we can not have enough 
space here to give its complete proof. For the proof, see [225] and [232]. 

Theorem 8.4. (Meyer [218]). For p e (1, co) and k e Z÷, there 
exist positive constants c„,k  and C,,,, such that 

(8.37) 	cp,kilDkFlip -.- liFIlp,k __ Cp,kgliD iFiip 

for every F E P(E). 

By using this we obtain the following theorem. 

Theorem 8.5. (Meyer [218] , Sugita [225], P. Kree-M. Kree [208]). 
The operator D: P(E) — P(H C) E) (or S(E) ---,- S(H C) E)) can be 
extended uniquely to an operator D: D„(E)— D_,„(H C) E) so that its 
restriction D: D„,, 3+1 (E) — D„, s(H C) E) is continuous for every p e 
(1, co) and s e R. 

By the duality, we immediately have the following 

Corollary. The operator D*:  P(H C) E) — P(E) (or S(H C) E) — 

S(E)) can be extended uniquely to an operator D*: D__JH C) E) — 

D_(E) so that its restriction  D*:  Dp p „,(H C) E). D, 3(E) is conti-
nuous for every p e (1 1  co) and s e R. 

It is now clear that L = — D* D in this extended sense. These re-
sults imply, in particular, that operators D, D* and L, first defined on 
the space of polynomial functionals or smooth functionals, are closable 
and therefore can be extended to Sobolev space Dp , s(E). It may be in- 



366 	 DIFFUSION PROCESSES ON MANIFOLDS 

teresting to note that the following operator on P; 

P F— trace D2F E P 

is not closable. Indeed, let r = 1 and Fk E P, k = 1, 2,—, be defined 
by 

   

 

2k 
Fk ( w) E 

rs1 

n \ 	(n — 1  
11

( 2k ) — w 
2 

—  1.  

 

   

It is easy to show that Fk 0 in L, for every 1 < p < 00 but 
trace D2Fk  =  2 for every k = 1, 2,—. 

To prove Theorem 8.5, we prepare the following lemmas and pro-
positions. 

Lemma 8.1. (Commutation relations involving D). For a real se-
quence = (007=0, 

DT9s= To+D on P(E) 

where 

n = 0 , 1 , 

Proof For simplicity, we only show the lemma in case of E = R. 
By Proposition 8.1, it suffices to prove 

DT011.(w) -= To+DH.(w) 	for every 	a E A, 

where 

Ha(w) jfI  llaiGhii(w)) 

and {h1  };: i  is an ONB of H. Since 

To.fia(w) 0( I al)Hc(w) 	a E A, 

we have 

(8.38) 	DT014(w) = 0(IaI)DH4(w). 

Furthermore, noting that  H(x) = H.- 1(x), we easily see 

DH(w) ; , 11,,,,([hiKw)) E H a  j](WDh 
i*j 
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and hence 

DH.(w) e C1 . 1 _ 1 . 

This implies 

T#±1).k(w) =  Ø(n  1)J„D.R4(w) = 0(1 a Dak(w). 

Combining this with (8.38) yields the conclusion. 

Proposition 8.6. (Hypercontractivity of the Ornstein-Uhlenbeck 
semigroup, Nelson [220]). Letp E (1, co), t> 0 and q(t) = (p — 1)e 2r +1. 
Then 

iiTtGlig(t) 	liGilp 	for every G 	L.  

Proof. The following proof is due to Neveu [221]. Let {BP, t 0 ), 
I  = 1, 2, be two n-dimensional Brownian motions with Be  =  0 defined 
on a probability space {Q,  Y Q). We assume that { t  O],  i ---- 1,2 
are independent. For given E (0, 1), we set 

q q(A) (p 	1)A -2  + 1 

and define q' = q'(A) by 

q + = 

It is easy to see that ((p — 1) (q' — 1)P 12  = A. We define 

	

= BP )  and 4P)  = ABP )  + N/1 — 	0 < t 1 

and 911) , i = 1, 2, the proper reference families of { 4,(')  }, i.e. 9-,(0  = 
oR (.1) , 0 s t], i = 1, 2. Let f and g be C--functions defined on Rn 
such that 

a 6_ f(x), g(x) b 	for some 0 < a < b. 

Define martingale {Mt , 0 t 1 }  and  { N,  0 t 1 } by 

Mr  = Eff(V)elY; (0], Art  = E[g(4 2))PIY; (2)], 0 6 t 1. 

Then these can be written in the following forms (Theorem 11-6.6): 
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Aft =  M0  + 0 0,c1V, Art  = No  + 0 

By Itô's formula, we have 

EQ[MPeN1/1 EGTAO'Noll 

— -12-EQ[floMfr -2  Nfr -2  (1 — 	— 2—paq , MtNt0:Wr 

-41, (1 — ) .N;201c/t1 

-12'Ecl[f lo Mfr -2 	.‘/Pp— 	1  Pity, 	.‘/q '  ,--- N45,) 2  idil 

	

( by .%/(p —1)(g' — 1) 	) 

where EQ denotes the expectation with respect to Q. This implies that 

Ecif(41)),g(ti2))1 == Ea [M Tit  NI(P 

EQUifiôq'  N1  =(EQ[A4i 1))1) 11q1 (EQ[g(ti2))1Y 19. 

Hence we obtain 

f Rn  SRn 

/ 	1 	\n  _i 2  / 	y  _ I,712  

dtd11 g(24 	—    e
2 	e 

 _ii iver, 	 _ 
f(4)qi.v27,r) e 2  c14 1 1J g(4)P( 	—Ye Rn 

Taking A =  e t, t>  0, we have 

1 	- 1 711 

f f 	

2 	 1  y izr2 
g(24 + /1 — e-2tq)(-5

y 
, e 2  dri 	e 2  cit) 

An{ Rn 

11 lp 	 1 	yi 	11/ (0 1  
g ( )P 	 e 2  d4 	mow(  _ e 2  g -s/27t Rn 	 an 

where (t )'  g(et)'. By combining this with Remark 8.2 and Proposi-
tion 8.2, we easily obtain 

Fv T,G(w)F(w)P(dw) 

for every G E L„ and F 

which completes the proof. 
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Proposition 8.7. 4: 	Cn  is a bounded operator on L,, p E 
(1, cc)). 

Proof. Let  p>  2 and t be the positive constant such that 

e2r 	p 	1. 

Then by Proposition 8.6 we have 

112;111„1111 2 	F E  L,. 

In particular 

LITt4FIlp 	114Fii2 	11F1I2 	liFiip - 

Since 
11T,J„Fil„, = 

this implies that 

(8.39) 	IIJ„Flip 	 for F EL, . 

For 1  < p  < 2, consider the adjoint J: of J. Then (8.39), applied to p' 
such that 1/p + lip'  = 1, yields that 

IIJ:Fil, 	 for F 11  . 

But, for F E P, J:F = J„F. By the denseness of P, the result follows. 

Lemma 8.2. (4-multiplier theorem).* Let fb = ( r (n))7-0 be a real 
positive sequence such that 

ce k 
93(n) = E ak.( -,,e) 	for 	n 	no  

k 	n 	' 

for some no  e N, 	1>  a>  0 and 

(ii "  
Ec°  lakl 	<00. 
k=0 	127) 

Then for every 1  < p  < co there exists a positive constant C„ such that 

*) First obtained by Meyer [218]. Proof given here is due to Shigekawa (Private 
communication). 
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CAFIL, 	for every 	F E P. 

Proof. First we consider the case a = 1. We set 

no-1  

TO =  E 5,500.T. + E 
n-0 	 7730 

: = Tsil) 	. 

By Proposition 8.7, Tr is 4-bounded, i.e., there exists a positive con-
stant Cp, 

	

(8.40) 	11ni ' )111„ CAVIL, 	for 	F e Lp . 

We now show that there exists C >  0 such that 

	

(8.41) 	II TQ —  J0  —  J1  — ••• — 	Ce-norlIF11,„ 

for all t >  0 and F e L,. 

First we consider the case p = 2. For F E L2, we have 

IlT,(/— Jo  — Ji  

	

(8.42) 	= II ca± cktikFlli= Ê lie-kt jkFtil  

knono 	 kg=no 

CO 

e— znor E 114F111 	e-2norlIFIli. 
loon° 

Next we consider the case p > 2. Take to  such that p = e 2to 1. By 
Proposition 8.6, we obtain 

Tto+tV —  J 0  —  J1  — ••• — 40-1)Fil; 
—  Jo 

 — — — 

lit 
(8.43) 
	

n —no 

CO 

e-2not E lIJFIl ...0  

= enc"e-211°+'°) IiF11i. 

Furthermore for t t o  we obtain, by (8.13)2 

117= —  Jo  — 
 Ji  — — Jno—OFIlp 
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(8.44) 	-11(1 — 	J1— 	40-1)F1lp 

- 11 1  — Jo— — 

where III —  Jo  — 	 40-1lip is the operator norm of 
— Jo 

— — 40_ 1 ) in Lp . 

Combining (8.42), (8.43) and (8.44) we obtain (8.41) with p  2. 
For 1  < p  < 2, the (8.41) follows by duality. 

We now set 

Rno 	
0

Tt(I 	 — -•• 
	40 _ i )dt. 

Then, from (8.41) we obtain 

IiRnonip < C411Flip. 

Since 

_ r ÷s,/ 	_ 0  — R,i0F = ro f: T 	
— — 40_ 1)F dtds 

we obtain 

and repeating this we have 

(8.45) 	 k 	1, 2, 

Note that 

itoF = 	k = 1, 2,—, if F E Cn, n no . 

Hence we obtain 

TeF =Ê° akR:0JnF 	akR,V. 
.-.0  k-o 	 km.0 

By (8.45), 
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II TrFlip .- C(to laki kr)11Filp- 

Combining this with (8.40), we can conclude that there exists Ci, > 0, 
such that 

liToni..'_ C,liFil, 	F E P. 

For the general case i.e., 0 < a <1, define 

.  
Q(Œ) = E e-nœtJ„F .---- 

s: 
 (T,F)pia)(ds) 

where pia)  is the probability measure defined by 

S: 
 - e-lspia) (ds)=---- exp (— 20'2 
	

for every A > 0. 

As in the case a =1, write 

Ts6 = n 1) + T9(5 2) . 

By the same reason, Tr is Li-bounded. From (8.41), we have 

110') (/ —4/0 — J1 — — — 4 0 --1)Fiip 

......_ Cs: 11FI1,e-n0se) (ds) = C exp (— nao t)II.F11,. 

Define 

Rno  = f 6' 
 Q

) (I  - Jo  — 
0 

and proceed as in the case a = 1. Then we obtain that T612)  is L,,-
bounded. This concludes the proof. 

Proof of Theorem 8.5. In case of E = R, we show the theorem. 
By Lemma 8.1, we obtain 

[(.1 — 4212  DF I H = IDR(I — L) 12F I H 	F e P 

where R is the operator given by 

.3 ( n  yiz
.  R =E 	 J 

n-i n +1 	4  

- 40_1)dt 
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Note that R = Tsi  with 

0, 	 n = 0 

gn)= 	n \,12 ( 1 r 2 

+ 1 
n 

) 1 
In 

and 

1  h(x) = 

is analytic near x =  0. By Theorem 8.4 and Lemma 8.2, there exist posi-
tive constants C, and C; such that 

11(I — L)$12DF11, = I IDR(I — L)i 2F i I, 

C2,11(1 L) -  R(I L) FIP  
CpilR(I — L) +1) I2F lip  

C(1 L) (s+" 12FIL, 

= 

Therefore 

F E P 

from which the result follows by a limiting argument. 

Proposition 8.8. Let E1  and E2 be real separable Hilbert spaces. 
For any p, q e (1,  co)  and k = 0, 1, 2, ••• such that 

p 	q 	r 

there exists a constant Cp ,  q, k > 0 such that 

(8.46) ilF® Giir,k CP. q.kliFiip,k1IGliq,k 

for every F e P(E1) and G E P(E2)- 

Proof Indeed, 



374 	 DIFFUSION PROCESSES ON MANIFOLDS 

D(F C) G) = DF C ) G F C) DG 

and hence 

IDVO 060E,0E, IDFiHeE, GiE2  'FIE, IDGi HoE2  

from which (8.46) in the case of k = 1 is easily obtained by noting the 
equivalence of norms VII, I1DF11„ and  1IFIl , 1  (which is a consequence 
of Meyer's theorem). We can obtain (8.46) by the same argument succes-
sively. 

From (8.46) and the duality (Proposition 8.3, (iii)), it is easy to ob-
tain the following. 

Corollary. For every p , q E (1, co) such that 

p 	q 	r 

and k = 0, 1, 	there exists a constant Cpl  > 0 such that 

(8.47) 	VC) G11,_ k  

for every F E P(E1 ) and G E P(E2). 

By (8.46) and (8.47), we see that F®  G D,.. k (Ei  C) ED is well- 
defined for every F E D„, k(Ei ) and G Dg k(E2) and, F C) G  E Dr , _k(E1 

E2) is well-defined for every F E D„, k Ei ) and G E Dg,_ k(E2) pro- 

vided
P 	

1  + 	= 1  < 1. In particular, D. is an algebra, i.e., if F,G E 

D. then FG E D.. Furthermore, D.,(E) and D_.(E) are D.-modules, 
i.e., if F E D. and G E D.(E) (D_.(E)), then FG E D.(E) (resp. 
D_.(E)). Note that if F D. and G 	the generalized expectation 
E(FG) of FG E 	coincides with D_ Co <G, F> Doe 

We note that chain rules (8.24)—(8.30) can be easily extended to 
Wiener functionals belonging to Sobolev spaces in an obvious way: 
In particular these formulas hold if P and P(E) are replaced by D. and 
D.(E) respectively. Also the integration by parts formula (8.23) can be 
extended to the case F E Dp, 1  and G E D,, 1 (H) such that 
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Of course, (8.23) holds in the case F E Dp.„, and G E Dg, „(H), 

P 
	 s E R, 

if the both sides of (8.23) are understood as the natural coupling between 
D, 3(H) and Dg.,(H)(= (Dp , s(H))') and Dp ,„, and Dg• ,_,(= 
respectively. 

9. Pull-back of Schwartz distributions under Wiener mappings 
and the regularity of induced measures (probability laws) 

We now apply the results of the previous section to the study of re-
gularity and asymptotics of probability density of finite dimensional 
Wiener functionals. For this, we regard a d-dimensional Wiener func-
tional as a d-dimensional Wiener mapping F: W— Rd and discuss the 
pull-back of Schwartz tempered distributions on Rd under this mapping. 
This pull-back can be defined as an element in D_., i.e., as a generalized 
Wiener functionals, if the Wiener mapping satisfies certain conditions on 
regularity and non-degeneracy usually referred to as Malliavin's condi-
tions. If the Dirac delta function c5x  at x E Rd is pulled back by a Wiener 
mapping F: Rd, then the generalized expectation E[ôx(F)] of this 
pull-back  ö(F) coincides with the density Mx) of the probability law of 
functional F with respect to the Lebesgue measure on Rd. We can dis-
cuss the continuous or differentiable dependence on parameters of the 
pull-back thereby deduce the regularity of the probability density. 

So let (W, P) be the r-dimensional Wiener space and let F(w) = 
(Fl(w), F2(w), Fd(w)) be a mapping W— Rd. We assume that it is 
smooth in the following sense of Malliavin : 

(A.1) 	F  e  De,(Rd), i.e. P e De , 	I  = 1, 2, 	d. 

Then we can define 

(9.1) 	cru(w) = <DP(w), DP(w)> H , 	i,j = 1, 2, ••• , d 

and we know that au e D oe s The matrix cr(w) = (au(w)) is non-negative 
definite and hence det a(w) 0 for almost all w(P). cr(w) is called the 
Malliavin  con variance of F. 

Definition 9.1. We say that F is non-degenerate in the sense of Mal-
liavin if it satisfies 
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(A.2) 	(det a(w)) - i E n L9. 
1<p<0. 

Here it is understood that 1/0 = cc. 

Assume that F: W Rd satisfies Malliavin's conditions (A.1) 
and (A.2). For every e> 0, define c c  = OD by 

ride  — / 	+ — 
where (3u is Kronecker's delta. Then, setting (A) = (ca), we have 

i,j = 1, 2,...,  d because there exist tempered Cm-functions 
fu(x), i,j =  1, 2, 	, d on Ra2  such that 

j = 1, 2, 	, d. 

It is easy to prove by the chain rule that 

(9.2) 	Dy,  = 
k,1•01 

Furthermore it is easy to deduce from (A.2) that 

Dk711 	in  Lp(Hok) 

for every k = 0, 1,..., 1 < p  < co and i,  j  = 1, 2, , d where 
H®k =HO HO 0 H and (y1i) = (cu)_ 1 . This shows that 

E D., 	i,j .1, 2, 	, d. 

Also by (9.2), we have 

d 
(9.3) 	Dyii  = — E y ikyjiDcrki. 

k, 

Let 9$: Rd R be a tempered Cm-function. Then, by (8.24), 

D(0 oF) = 	10 0 F)DP 

Hence 

<D(00F), DP>if  = 	 DFJ, 
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= a‘o 0 F • au 

and therefore, 

(9.4) 	adi oF = yu < D(q5 F), DF>ff.  

Let g E Doe . Then, we obtain by (8.23) that 

° F(w) • g(w)P(dw) 

.A  f <D(0 o F)(w), yo(w)g(w)DP(w)> HP(dw) 

Fr Oo F(w) • Dly ij(w)g(w)DFi(w)113(dw) 

F(w) • 0,(w; g)P(dw) 

where 

0,(w; g) = Dly,i(w)g(w)DP(w)] 

(9.5) 	= 	{g(w) <Dy ii(w), DP(w)> H  

yij (w) <Dg(w), 	(w)> H  yu(w)g(w)LP(w)} 

by (8.26) and (8.30). Hence 

61k 0) 0 F(w) • g(w)P(dw) 

(9. 6) 

= fw  fbo F(W) • Oi l  „2, 	 (w; g)P(dw) 

where 45,,„2, • • • „k(w; g) E D. is determined successively by 

.251 1' 12 ,  • • • iv()V ; 	= 	ip(w; oii ,  (27 	• • N-1 ( 	; g)). 

We can conclude from (9.5) that Oil,  i2,  ik(w ; g) has a form 
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(9.7) 

where 

12 	ik(w;g) 

= W0(w)g(w) < Wi (w), Dg(w ) >R. + • • • 

+ < Wk(w), Dkg(w)>H ek 

e D.(H®u), 	y = 0, 1, 2, • • • 

which are obtained as polynomials in yu, F' and their derivatives. 
d 

Similarly we have for A = E (a/axi)2, 

f Fv(( 
1 ± X 2  — 4)k 0)0 F(w) • g(w)P(dw) 

(9.8) 

w rii° FM • 712k(w; g)P(dw) 

where /2k(w; g) e  D.  has a similar expression as (9.7). Indeed, rh k (w; g) 
is obtained in the same way as ik(w; g) with some more poly-
nomials of F multiplied in each step of the integration by parts. In par-
ticular, for every q>  1, 

(9 - 9) 	sup{ 	; 	g e Dq,2k, IIgllq.2k 	1 } < 

where  il  11 denotes the L 1 -norm. 
We introduce a system of Sobolev spaces on Rd as  follows:  Let 

.9'(Rd) be the real Schwartz space of rapidly decreasing Cm-functions 
on Rd. For 0 e 7(Rd) and k =  0, ± 1, + 2, • -• , introduce the norm 

(9.10) 	110112k = 11(1 +  1x12  — A/2)k9311. 

where II 	is the sup-norm on  Rd.  Let Y2k, k = 0, ± 1, ± 2, • - - 
be the completion of 5fi(R 2d) by the norm 	16. Then we have 

• - • C 5°2 C 	= : f(x) ; continuous on Rd and lim I f(x)I 

= ol sa_ 2  
n 52k = Y(R d ) and U 54'_2k =  

k>0 	 k>0 

Theorem 9.1. Let F: W Rd be a d-dimensional Wiener mapping 
satisfying Malliavin's conditions of (A.1) and (A.2). Then, for every 
p>  1 and k = 0, 1, 2, - • • , there exists a positive constant C 
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C(p, k; F) such that the following estimate holds: For every ç  

(9 - 11 ) 	il93°Filp, -2k 	CI 101-2k- 

(Note that 00F E D.). 

Proof Define q by 1/p 1/q = 1. Then by the duality 

110°  RP. —2k =  sup{ w  0 0 F(w) • g(w)P(dw); g 

 ligilczk -5. 1 } 

and, by (9.8) and (9.9), 

I w sbo F(w) • g( )P(dw)1 

1 	{ (1 + I xi 2  — 4/2)k(1 + 1 x 1 — 4/2) 	0 F(w) • 

X g(w)P(dw) 

= 1 w 	± Ix i 2 21/2)-k0 ° F(w) • lzk(w; g)P(dw)I 

11(1 	1x1 2  — Al2) - k 	121c( • ;.0J11 

5--  1101 —2412k( • ; 4011- 

Now (9.11) is established by setting C = C(p, k; F) to be the supremum 
in (9.9) 

Corollary. The mapping S°(Rd) n 	s3oF E D. can be extended 
uniquely to a continuous linear mapping 

.9" 2k 	ToF e Dp, —2k 

for every 1  < p  < CO and k =  0, 1, 2, - - - . In particular, for every 
T e 	ToF E.. D_ . is well-defined and 

00 

(9.12) 	ToFE  U  fl  pp. --2k. 
k=1 1<p<œ 

This ToF, denoted also by T(F), is called the pull-back of Schwartz 
distribution T E S'(Rd) on Rd by the Wiener mapping F: W— Ra, or the 
composite of distribution T on Rd and d-dimensional Wiener functional F. 
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The fact (9.12) is important because ToF can be coupled with test 
functionals in a class much larger than D.,: By introducing the nota-
tions 

OD 

(9.13) 	b.  =  n u Dp k 
	and 

1c.1 1<p<c4 

OD 

(9.14) 	L,.  = U n Dp.-1c) 
1<p<00 

if G e 	then G. ToF E  D_ 	well-defined and hence the gener- 
alized expectation 

	

E[G•ToF] = „_. <1, G•ToF> Doe  = 	<G,  To F>i5. 

is well-defined. 

Example 9.1. Let r = 1 and so W=  W0'. For W E W, set 

	

G(w) = exp{Œf 0  w(s) 2c/s}, 	R. 

Then G(w) E b. if and only if Cr < n2/8 and if f(x) is a C*-function on 
R with compact support, G(w)f(w(1)) E fr if o-  < 7r2/2. The proof of 
these facts can be easily provided by the formulas (6.9) and (6.10) of 
Section V1-6. Note that G(w) E D  and only if o-  O. 

The above result can be applied to show the existence of smooth 
density of the probability law  F(P) of F, i.e. the image measure of 
P under F. For this we first note the following fact. 

Lemma 9.1. Let ay  E Y`(R d) be the Dirac a-function at y E Rd  
and m be a positive integer. Then 

by E  9' :  and Daby  if m > LI and l ai  2k, 2 

where a = (a 1 ,, a2 , • - • , ad), a, E Z+, is a multi-index;  J cri = al 	az 

+ • • • + ad  and Da  is the differential operator: 
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Furthermore if in > d/2, then the mapping: 

Rd D y by  e Y-2m-2k 

is C 2k, i.e. 2k-times continuously differentiable. 

Proof. First we note that the operator A  = : (1 + lx 12  — 412) -1  

is defined by a kernel A(x, y): 

Af(x) = Rd  A(x, y)f(y)dy 

and A(x, y) is given by 

A(x, y) --- 	crpi(t, x, y)dt 

where pi(t, x, y) is defined in (6.12) of Section VI-6 (in the case d=2, 
but similarly in general). From this, we see that A(x, y) 0, A(x, y) 
is C° in (x, y) e (Rd X  Rd)\{(x, y), x = y}, and 

A(x, y) ---- const. x Ix — yl- (d-2) 	as Ix — Y1 4.0. 

Also it is immediately seen that 

A(x, y) ii(x, y), 	x, y G R d  

where Â(x, y) is the kernel of the operator A  = :(1 —  4 /2) - '. Hence 

± 1 x 1 2  — 412)-m6y)(x) 

= Rd  .f • • • A(x, yi)A(Yi, Y2) • • • Y)dYidY2 - • • dYnI-1 
.d J Rd 

S r - 	,-4-(x , yi )i(yi, y2) - 	1(Ym-1, Y)C 1Y1dY2 
Rd Rd 	Rd 

/1  \d 	eol=i<C, x-y> m  dt  
27r) J Rd ( 1 	R2I 2 )  

and the right-hand side is in .70  as a function of x if m > A From this 2 
we can easily deduce that 
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(1 ±  1x1 2  — zli2)n5y  E Yo 	for each y 

and the mapping Rd 2 y (1 ± I xI 2  — 	e Yo  is continuous 
provided m>  d/2. This proves the first assertion and the second as-
sertion can be proved similarly. The last assertion is obvious if we 
notice that 

(— 1)"t(Dy)„(5), 

where (Dy)„ is the differentiation with respect to the parameter y. 

Theorem 9.2. Let F: W Rd satisfy the conditions (A.1) and 
(A.2) and let  F(P) be the probability law of F. Then  F(P) has the 
smooth density pp(y) with respect to the Lebesgue measure dy on Rd 

and  pp(y) can be given by 

(9.15) 	p,(y) = E[(5,(F)] 

as generalized expectation of 45(F). More generally, for every multi-
index a, 

(9.16) 	(DapF)(y) = E[((.4,,),,6,)(F)] = E[( — 1 )1a1(Daby)(F)1. 

Proof. Let k be a non-negative integer. By the lemma above and the 
continuity of the mapping: B  T ToF  e D,  we can deduce 
at once that the mapping: 

Rd D y 5,(F) E Dp.-2m0—zk 

is Ck  where mo  = [d/2] + 1 and hence, for every g E D ,. 2m0+2k, 111,  
1 lq = 1, the mapping: Rd y 	E[g6y(F)] is C 2k . In particular, the 
mapping: Rd 2 y — E[gby(F)] e R is C -  if g  e b.,. Thus the mapping: 
Rd B y E[6y (F)] E R is C.  (9.15) can be verified by noting that for 
every 0 E Y(Rd) 

10 0(y)E[43y(F)1dy = E[f Rd  0(y)c5y(F)dy] 

= E[(fRd  95(.0b7( )dY) ° F] 

= E[f6 0 F]. 

Now (9.16) is obvious. 

In the above proof, it was shown that if g  e U Dp, 2m0+2k where mo p>1 
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[c//21 ± 1 and k is a non-negative integer, then the mapping: Rd D 
y E[gby(F)] is C2k. It is easy to see that 

(9.17) 	E[g(5(F)] = p,(y)E[giF = y] 

for almost all y such that My) > O. Thus we have obtained a regularity 
result for conditional expectation: 

Corollary. If g E U DP. 2m +2k where m o  = [d/2] + 1 and k is a 
P>' 0 

non-negative integer, the conditional expectation Efg IF = y] has a 
C2 -version  on the set fy;p,(y)>  O}.  In particular, it has a Cm-version 
on the same set provided g e 

Example 9.2. Let r =  d and F: W(= 	Rd be defined, for 
fixed t>  0 and x E Ra, by F(w) = x w(t). Then F E D.,(Rd)(actually 

P(Rd)) and au(w) = but, i,j = 1, 2, • • , d. Hence yu  = bult where 
bu  is Kronecker's delta and hence (A.1) and (A.2) are clearly satisfied. 
Let k e Cz7n(Rd) which is tempered in the sense Dak, la! 2m, are 
all polynomial growth order and 

lim k(x)I lxi 2  =  a  < co. 

If a is sufficiently small (actually it is sufficient to assume a < 1/20, we 
can easily see that 

g(w) = expt k(x w(s))ds E U 1)„. 2„,. 
0 	 p> 1 

Hence 

p(t, x, y): = p(y) = E[(exp{ k(x + w(s))ds1)(5,(x + w(t))] 

is C2k in y if k = m — m o  O. By the Feynman-Kac formula (Theorem 
3.2), it is easy to identify p(t, x, y) with the fundamental solution of heat 
equation 

au 	1 
= Tzlu + ku. 

The generalized Wiener functional by(x w(t)) is known as Donsker's 
b-function (cf. [210]). 
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Now we consider a family { Fa(w)},, E1  of d-dimensional Wiener 
functionals depending on a parameter a, the parameter set being 
assumed to be an m-dimensional interval I Rm, for simplicity. We 
assume that Fa  E D.(R d) for all a e / and also that, denoting by 
o-(a) = ((Map,  o 1(a) — <DIL D.Fir> the Malliavin covariance of Fa, 

suplidet 	< co 	for 1  < p  < CO. 
crEI 

Then it is clear that the constant Cc, = C(p, k; Fa) in Theorem 9.1 can 
be chosen such that 

sup Ca <  00.  «al  

Hence, for T e .99-2k, if we choose 0„ e 5°(R9 such that On  T in 
47-2k as n co, then for every 1  < p  <  00,  0„0F  a— ToFa  in Di,, —2k  
as n co uniformly in a E I. From this we can easily conclude the 
following: If the mapping: / 3 a E Doe  is continuous (2m-times 
differentiable) then, for 71  e .7- 2k , the  mapping:! a ToFa  E  D,, —2k  
is continuous for every 1  < p  < co (resp. the mapping: I D a — 
ToFa  e Dp, —2k-2m  is 2m-times differentiable for every 1  <p  < co). 
We can deduce from these facts the continuity or differentiability in 
a of the generalized expectation E[g4,- To Fa] if the mapping: / 3 a 

E  Dq,2k  is continuous or differentiable where lip + 1/q = 1. Note 
that, in the differentiable case, we have 

a 	d  a Ft 3T 
(To Fa) 	— 0 F 	= 	• • - , a«, 	 aa, 

which is easily verified by a limiting argument as O. 	T, Ç6 n  e .99(Ra). 

Finally, as an example of dependence on parameters, we discuss on 
the asymptotic expansion of Wiener functionals. Consider a family 
{F(e, w)} of E-valued Wiener functional depending on a parameter e E 
(0, 1] where E is a separable Hilbert space. We assume 

F(s, w) e Doe (E) 	for every e. 

We define F(e, w) = 0(em) in D oe (E) as e  L  0 if F(e, w) = 0(ein) in 
D,,, k (E)  for every 1  < p  < co and k e N as e 1,0, i.e. 

< 
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Let fo,fi, • • • e D(E). We define 

	

(9.17) 	Re, w) fo 	efi 	e2f2 ± • • • in  D(E) as s sj, 0 
if, for every n = 0, 1, 2, • - • , 

F(a, w) — (fo 	efi 	• • + enf,,) = 0(en+ 1 ) in  D(E) as e J.  0. 

Also, if { 0(e, w)} is a family of elements in D_.  depending  on e e 
(0, 1] and wo, W 1 , - • - E D„,(E), we define 

	

(9 - 18) 	'TP(e, 	 ekv1 	ev/2 	- • • in D,(E) as e 

if, for every n = 0, 1, 2, -. - , we can find k E N and 1  < p  < oo such 
that 

0(e, w), e  E (0, 1] and WO V/ 1 
	, yin  are all in D.„,_k(E) 

and 

0(e, w) 
— (Wo 	± • • • + ni/n) = 0(6'7+1 ) in Dp  . _k(E) as e 

We define L(E) and A. c.,(E) for general E in the same way as (9.13) 
and (9.14), i.e. 

00 

&(E) = fl U D,  k(E) 
k=1 1 <p < co  

and 

= kUcc fl  D p , _ k(E). 

If [G(e, w)} is a family of elements in b o„(E) depending on 8 (0.1] 
and go , gl , • • e b.,(E), we define 

(9.19) 	G(6, w) 	go  + 8g1  + a2g2 	. . . 	in ./).(E) as e 4, 0 

if, for every n = 0, 1, ---  and k e N, we can find 1  < p  < 09 such 
that 

G(s, w), e e (0, 1] and P- 

	

cp, 0)  g1, 	gn are all in D p , k(E) 

and 

G(6, w) — (go  ± egi  + • • • ± engn) = O(en) in D„, k(E) as el O. 
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If { V(e, w)) is a family of elements in b_JE) depending on a E (0,1] 
and if vo, w i , - - e b_.,(E), we define 

(9.20) 	V(8, w) 	± 	± • • • in b_.(E) as e 4, 0 

if, for every n = 0, 1, 2, • • • , we can find k e N such that 

V(e, w), 8 	(0,1] and y/o,  W, • • • , wn are all in n Dp ,_k(E) 
1<p<0. 

and, for every 1  < p  < co, 

V(8, w) 	8W1 	 Ent" = C(en+1) in Dp ,_k (E) as s 4, 0. 

Noting the continuity of multiplications in Sobolev spaces as given 
by inequalities (8.46) and (8.47), it is easy to prove the following: 

Proposition 9.3. (i) If F(s, iv) E D »(E) and G(e, e D .  (AO, 
s e (0,1] such that 

(9.21) 	F(s,  w)–'f0 	Efj, + • • • in D .(E) as s  L.  0 

with f, e D.(E), i =  0, 1, • • • and 

(9.22) 	G(e, w) — go  ± sgi  ± • • • in D. (resp. b.,) as e  d 0 

with g,  D.  (resp. 	i =  0, 1, • • • , then H(8, w) = G(s, w)F(8, w) 
satisfies 

(9.23) 	H(8, w) 	ho 	shi 	- • • in D.(E) (resp. b.(E)) as  s 4,0 

and ho , h1 , • • E D .(E) (resp. b.(E)) are obtained by the formal mul-
tiplication: 

(9. 24) 	ho = go.fo, hl = gof 	gifo, h2 = go.f2 	± afo, • • • • 

(ii) If G(s, 	E D..,(r).,) and sP(s, w) G b _ (.8') ,  e 	(0, 1] such 

that 

(9.25) 	G(s, w) 
	

go ± egi ± • • • in D., (resp. b oe ) as s .1. 0 

with g, E Doe  (resp. /J oe ), i = 0, 1, • - • and 



	

PULL-BACK OF SCHWARTZ DISTRIBUTIONS 	 387 

(9.26) 	0(e, w) 	00 + efbi + • • • in b_.(E) as e 0 

with 95, 	 i = 0, 1, • - - , then V(e, w) = G(e, w) 0(e, w) satis- 
fies 

(9.27) 	V(8, w) 	 ± • • • in b,(E) (resp. D,(E)) . 

as e 0 

and wo, W 1 , - E 	(resp. D_.(E)) are obtained by the formal 
multiplication: 

(9 - 28) 	Wo = g000,  w  = g001 	g100,  W2  = g002 ± g101 	g200, • - • • 

(iii) If G(e, 	E D ,. and 10(8 1  IN) E D,(E), e E (0, 1] such that 

(9.29) 	G(e, w) 	go  + egi  ± • • • in D. as e 4. 0 

with g, E D. , i 	0, 1, • • - and 

(9.30) 	0(e, w) 	00  ± esb i  + • • • in D„(E) as e  d. 0 

with rbi  E D_.(E), i =  0, 1, • • , then (9.27) holds in D_.(E) with 
rg, E D„(E),  j  = 0, 1, • - - given by (9.28) . 

Theorem 9.4. Let { F(e, w), e E (0,1]) be a family of elements in 
D(Rd) such that it has the asymptotic expansion: 

(9.31) 	F(e, w) fo 	± • • • 
	in D.,(Rd) 	as e 0 

with f E D„,(Rd), i =  0, 1, • • • and satisfies 

(9.32) 	faii(det cr(e)) -1 11„ < 00 for all 1  < p  < 00 
810 

where  ci(C) =  (o- 'J (e)) is the Malliavin covariance of F (e, w): orij (e) = 
<DF:(e,w), DP(e, w)> H . Let T 7'(Rd). Then 0(8, w) = T 0 F(e, w) 
has the asymptotic expansion in (and a fortiori in D„): 

(9.33) 	0(e, w) 	00  ± evi l  + • • 	in  » 	as e 0 

and 0, 	i =  0, 1, • • • are determined by the formal Taylor 
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expansion: 

	

0(e, w) = T(fo 	 E2f2 + - D 
(9.34) 	= Ecit (Dan 0 fo[efi 82f2 ± • • • 

= 00 + 801 

where (i) the summation is taken over all multi-indices and (ii) for every 
multi-index a = (a1 , a2 , • • • , ad) and a = (a1 , a2, • • - ,ad) E Rd, we 
set as usual 

a! = a1 !a2  - - ad ! and a" 	I aa na -1 -2 2  • • • acdcd. 

In particular, denoting al . alaxf, i = 1, 2, • • , d, 

= 7 (f0), 01 = 

02  = AfffaiTXfo)+ i c ififl(again(f0) 

03  = iti fl(atT)(fo) + 2-2T iplifaiainfo) 

1 	d  

	

± 	E ftfl.fiViaiakT(fo) — i,j,k-1 

and etc. Here 

.fk = (fki,.R, • - fk`') (E D. (Rd», k= 0, 1, 2, 

Remark. fo  E D.,,(Rd) satisfies the condition (A.2) by virtue of 
(9.32). 

Proof We set F(0, w) =fo, cup = <DA, Dig>11, Y(8) = (71M)): 
= cr-1 (e), e E [0,1]. Then it is easy to see from (9.32) that yo(e) has the 
asymptotic expansion: 

	

MO) 	en(1 ) 	82,41) 	- - - . 

with n5° 	Dc , 	= 1, 2, • • 	d, k = 1, 2, • - . 
First, we show that, for every k E N, we can find s e R and gio, 

951, • • , Ok-1 	1<rpl<  D„  such that 

TaF(e,w)E  n Dp.., 
	for all e E [0, 1] 

1<p<œ  

(9.35) 
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and 

(9.36) 	ToF(6, w) = 93 0 	e01 	 Q(6k) in 

ase4,0 

for all 1 < p  < cc. To prove this, we take m N so large that TS = 
(1 -I- I x I — 4/2) -mT is a bounded function on Rd, k-times continuously 
differentiable with bounded derivatives up to k-th order. Then, for 
every J E Doe,  we have, by the same integration by parts as (9.8), 

E[T  o  F(e, w) • J] = E[95  o  F(e, w). e(J)] 

where 4(.1) E . has a similar expression as (9.7): 

2m 
l(J) = E <P1(8, w), Du>„01 

i-o 

where P i(e, w) Dft (He'), i =  0, 1, - • - , 2m, which are polynomials 
in F(e, w), its derivatives and y(e). By the assumption on 95, we have 

0°Re7 = E 1-(D4)  0 10  • [F(8 , 10 — for + Vir(e, w) a• 

where for some constant M>  0, 

Vk0) 	M E 1 [F(6, w) — fo ]' l. 
!al =k 

Hence, for every p' E (1, 00), we can find C 1  > 0 such that 

11 V k(e, 	C i ek 	for all e E [0, 1]. 

Let q' E (1, oo) such that 1/p' + 1/q' = 1 and choose q such that 
q> q'. Then a positive constant C2  exists such that 

11/e(J)11, , 	C211J11q,2m 	for all e E [0, 1] and J E 

Hence, for all e e [0, 1] and J  

E[lik(e, w)18(J)]  I 	IIV 	w)Ilpfill e(J)II 

Also 

E 7(D a0) 0 fa  • [F(e, w) for 1 BM a • 

= 2m  E E < -1T(Da9s) fo • [F(e, w) — fo]aNe, w), 1:A1>i/el 
tem.0 la1 .Sk-2 	a • 

(9.37) 
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and since [F (s, w) — for P(e, w) has the asymptotic expansion 

[F(8 , 	fO]'  Pi(e 	81  a  ea, 4 0(w) ± 8 1' 1+1  ea,‘,1(w) + • • • 

in D"(Hei) as e 0, 

we have 

(9.37) = Z0(w) SZ1(w) ± • • 	8k-1 Zk-1(w) 	Uk(e, w) 

where 

2m 	1 
Z I(W) = o f - ea, G, DU> 170i. 

1=0 led 	
, • 

We can easily find C3  > 0 such that 

IE[Uk(8, w)] I S C3ek liJil q .2m 

for all s E [0, 1] and J  D. Set 

= 	E (Dliei(Daf3) 010 - 	1 = 0, 1, • • • , k  — 1. 
i=0 la! 	 a . 

It is easy to see that 

Ø,E  n D  P. —2 m 
1<p<cc 

and this, combined with the above, yields 

f E[T.F(s, w) • J] 	E[ç6J] I -6 (c1c2 + c3)8/1.7. 11,1.2m 

for all e E [0,1] and J E D. Hence we have 

k-1 
11 T 0 F(e, w) — E 810i  I lp, —2m :‘ (CI C2 + C3)8k 

 i=0 

where lip + 	= 1. It is clear in the above argument that p E (1, cc) 
can be chosen arbitrarily and thus (9.36) is obtained. 

It remains only to show that 0/  can be determined through the 
expression (9.34). Since 
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2m =E E (D*)'(-1--T(D c,((1 	lx1 2 	z112) —mT}) 0 fo  • 
1=0 lal+v=1 	a • 

we see that the mapping ...7'(Rd) D 	e /3_ 00  is continuous in the 
sense that for every n E N, there exist s>  0, p  e (1, co) and C such 
that 

110111, - - clIT11_2.. 

On the other hand, it is clear that 0/  is uniquely determined from T 
and must be calculated from the expression (9.34) in the case T 
5(R d). Hence, it must also be given by (9.34) for general T E YAR d). 
This completes the proof. 

10. The case of stochastic differential equations: Applications 
to heat kernels 

Let X = (X(t, x, w)) be the solution of a stochastic differential equa-
tion on ki given in the same way as in Section 2: 

(2 	
I X(0)=x  

= a(X(0)dwa(t) b(X(t))dt 
.1) 

X(0) = x 

which is realized on the r-dimensional Wiener space ( W, P). We assume, 
as before, that all coefficients cia(x) = (o(x)) and b(x) = (bi(x)) are C-
with bounded derivatives of all orders 1. We know from the results 
of Section 2 that, for almost all w  e  

(i) (t, x) —> X(t , x, w) is continuous, 
(ii) x —> X(t, x, w) is a diffeomorphism of  Rd.  

If Y(t) = (Y1(t)) is defined by 

a 
 Yi(t) = 	X
.
t(t, x, w), 

then Y(t) satisfies 

idY(t) = caX(t))Y(t)dwa(t) b'(X(t))Y(t)dt 
(2.16) 

where 

a 	 a  agxy, _ 	at (x) and b'(x)( = 	(x) 
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and I = (59 is the dx d identity matrix. The equations (2.1) and (2.16), 
put together, define a stochastic differential equation for the process 
r(t) = (X(t), Y(t)) and r(t) takes values in Rd xGL(d, R) which can be 
identified with the bundle of linear frames GL(Rd) over Rd. If we in-
troduce a system of vector fields  Va, a = 0, 1, 2, • • • , r by 

and 

a 
V(x) = o(x)-j-Tci, a= 1, 2, - • , r 

Vo(x) = W(x) — pi  4(404,7(4  aax, 

then (2.1) and (2.16) can be rewritten as 

IdX(t) =4.1 Va(X(t))  o  dwa(t) V o(X(t))dt 
(10.1) 

X(0) = x 

and 

(10.2) 

where 

I dY(t) = ± aVa(X(0)Y(t) 0 dwa(t) ± a v0(x(0)Y(t)dt 

I Y(0) = r i  

a (avexxvi  — 

Proposition 10.1. Let  z>  0 and x E Rd be fixed. Then 
(i) X(t, x, w) e D oe (Rd), i.e., Xt(t, x, w) 	D., i = 1, 2, • 	, d, 
(ii) the Malliavin covariance  o(t) = (e(t)), 04(0 

<MAO, DX.1(t)> H, is given by 

(10.3) 	cu(t) = 	fat [Y (t ) Y (s) - Va(X(spr [Y(t)Y(s) - iVa(X(s))j-ids. * 

Proof For X(t) = X(t, x, w), we define  X(t) = X (n) (t, x, w) as 

*  If A = (A )  is a d xd matrix and x = (xt) e Rd, we denote (Ax)' = j  , 

i = 1, 2, • • •, d. 
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in Section 2: 

(10.4) 	X (n) 	= x 	0' c,(X (n)  (0„(s))dwa(s) + St  o b(X (") (O n(s)))ds 

where 

ç6(s) = kl2n 	if s E [kl2n, (k ± 1)12n), k =  0, 1, • • • . 

We know that X (n) (t) e S and Illf (n) (t) — X(t)II„ — 0 as n co for 
every 1 < p  < oo . It is easy to see that D,,X (n) (t) = (DhX (n), i(t)), de-
fined by 

DhX"(t) = <DX (n) d(t), h> H, h E H 

satisfies 

D hX (n)  (t) = 	aaX (n)  n(S)))D hX (n) (0,i(S)) dW a(S) 
o 

1/ (X (n)  n(S)))D hX (n)  (0„(spds 	ft  0  cr a(X (n)  (0„(s))) lic(s)ds 
o 

and hence, if we denote 

Dhx(n)(t) 
=  Ç 	v)4/3(v)dv,  , 	h = (h13(0) e H, 

then 4U" 	t 	y, fi = 1, 2, • • , r, satisfies 

4 (n)  (V) = ft n (v) At 
r, 13 	 Cr(Ar (n) (n(S)))4Z)  CO, fi(V)dWa  (S) 

(10.5) 	+f,  
Vn(v) Ar

b' (X (n)  n(S)))4:), (5) fl(v)ds ±  

where 

V(V) = k/2" 	if  V E ((k 	1)/2", 101, k =  0, 1, ... 

By applying a slight modification of Lemma 2.1 to (10.4) and (10.5), we 
have, for every 1 < p  <  oc,  

(10.6) 	E[,rop
t] 
 I X (n)  (S) — X (S)1 P] —> 0 

and 
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(10.7) 	sup E[ sup I C7n (y) —  c 13(y)11 — 0 
0SySt 	se Cy,t) 

as n 	oo where c , fl(y), t 	y 	0, satisfies 

= 	 p(v)dwa(s) 

f:11(X(s))c,. fl(v)ds + 13(X(v)). 

Note that ft(y) is uniquely determined by (10.8) and is given by 

(10.9) 	p(y) = Y(t)Y(v) - 'o - fi(X(v)), 	fi = 1, 2, • • • , r. 

Indeed, it is immediately seen that fl(v) given by (10.9) is a solution of 
(10.8) and the uniqueness is obvious. This proves 

	

X(t) E n  D,, 1 (R") 	for each t 0 
1<p< = 

and 

(10.10) 	<DXJ(t), h> = fe e 4fl(v)1iP(v)dv, 	h e H 

where p(v) = (9dzi(y))1 From this, (10.3) can be concluded. Repeat- 
ing this argument as in the proof of Proposition 2.1, we see easily X(t) 

Next we shall investigate the assumption (A.2), namely the condition 

(10.11) 	(det u(t))' E fl L, 
1<p<oe 

where 0-(t ) = (au (t)) is the Malliavin covariance of X(t, x, w). It is easy 
to see that o-(t) can be written as 

(10.12) 	o-u(t) = E[Y (t)f,a(r(s))]'[Y(t)Nr(s)V ds 

where fva (r), r E GL(Rd), is defined by (2.34). Hence 

(10.13) 	o-(t)= 17(t)6(0Y(t)* * 

where 

* Y(t)* is the transpose of Y(t). 

(10.8) 
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(10.14) 	di-f(t) 	pi st.P.a(r(s))ft -a(r(s))ds. 

We have seen in Section 2 that 

E[]i Y(t)ii ±  II Y(1 ) -1  M P] < co 
	

for all 1 	p < co 

and hence (10.11) is equivalent to 

(10.15) 	(det d(0)- ' e n L p . 
1<p<co 

Note that Mr(t)), V X (Rd), is a d-dimensional Itâ' process such that 

(10.16) 
	Mr(t)) — f v (r(0)) pi s:0  fc ,,„3(r(s)) 0 dwa(s) 

f tofc ,,,,,,,j(r(s))ds 

as we know from (2.36) of Section 2. 
Now we obtain a general result on Ite) processes by which we can 

discuss the condition (10.15). First we state several simple lemmas. In 
the following, co ,  c1 , c2 , • • • and ao, al , a2, • • • are positive constants 
independent of n 1, 2, - - • and w E W. 

Lemma 10.1. Let 	W R be a real Wiener functional. Suppose 
that c1,  j  = 0, 1, 2, 3 exist such that 

(10.17) 	P[Iri] < n-Col 	exp[—c2nc 3], n 	1, 2, - - • . 

Then E[1 1 -  < 00 
	for all p 	1. 

The proof is obvious and is ommitted. 
Let 5" be the totality of dx d symmetric, non-negative definite 

matrices. For g = (g11) Yd and 1 = (P) E  sd-1 = { x E  Rd ;  I x ] = 

1),  we set 

ilgll = 	(gi3)2 1" 
4./7.1 

and g(1) = 	gu 1 1  I . 
i,j-1 

We write g 1  g2 , gl , g2  e 5" if gi  — g2  is non-negative definite. 

Lemma 10.2. Let ri and fi be .7d-valued Wiener functionals such 
that ?I a.s. Suppose that c„ i = 0, 1, 2, 3,4 exist such that lira co 
a.a.w. and 
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(10.18) 	sup  P[(/) < n-ci] 	c2  exp[— c3nc4], for n = 1, 2, - • - . 
lesd-1 

Then 

E[(det 	<  œ 	for all 1  < p  < oo. 

Proof. Let W {Iv; 	and 	c0 }. Then P( W) = 1. Set 

W„(I) = {w e fr; fi(i) ni )  for 1 Sd -1  and n = 1, 2, • - • . 

Then (10.18) implies that P[W„(1)c] 	c2  exp[— c3nc4]. If w 	W, 

fl(1) — 	2c0  II — 	for all 1,1' E Sd -1 . 

Clearly there exist 1, E Sd-1 , i=  1, 2, • • • , m such that 

in  

u (/  5d-1 ;  Ii  — /kJ < 1/(4conc0) = Sd-1  
k-1 

where m csn<d- l'ci for some e5 .  Then, w e n wn(lk) implies that 
k-1 

inf #(1) 	11(2nci) 
Ill -1 

and hence det 	1/(2nci)di 2. Since det 	det 	if w e -117, we have 

P[det < 1/(2nc1)4] 	P[( ir." 1 : W„(10 } c] k   

< cspi (d-Oci -2  
C exp[— c3nc4] ao  exp [— 

By Lemma 10.1, we have 

E[(det 0'1 < co 	for all 1  < p  < co 

which completes the proof. 

In the following, we consider the case  when '7 = (e) E .7" is given 
by 

r I r 

71"  = feli(S)fWdS 
0 a-.1 

and s 'fa(S)  e Rd,  a =-- 1, 2, • • • ,  r,  are { 	}-adapted continuous 
processes where (A) is the proper reference family on W for the r- 
dimensional Wiener process w(t) = (wa(t)) canonically realized on 
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(W, P). By Lemma 10.2, we can easily conclude the following: 

Lemma 10.3. Suppose that there exist constants c„ i = 0,1, 2, 3, 4 
and { as, }-stopping times 0 al  a2  1 such that I fa(s)I co  for 
s E (cr i , a2], a = 1, 2, - - - , r a.s. and 

a 2 
(10.19) sup P[± lEsd-i a—lfai 

[I • fa(s)Pds <  n i] 	c2  exp[— c3ric4], 

for every n = 1, 2, 

where 

d 

1 • fa(s) = E  1/(s).  
(=1  

Then 

ERdet /)-P] < co 	for all 1 < p  < co. 

Proof is immediate if we notice 

1(1) = gi-  : [1  • fa(s)rds 

and choose 

r cr2 
fl ij -= E f fetc(s)fle  (s)ds, 	i, j 1, 2„ d, 

«=1 01 

in Lemma 10.2. 

As usual, we call a continuous { R, }-adapted process 4(t): [0, co) 
--. R an Itô process with the characteristic 4a(t), a = 0, 1, - • • , r, if 

(t) = (0) --11 f ro Us)dwa(s) ± E .0(.5,)ds 

where (s), a . 0, 1, - - - , r, are 1 RA-adapted measurable processes 
such that 

r i ± f i (s) i 2  cis ± j I ()(s) 1 ds < 00 
cr=1 0 	 0 

for every t > 0, a.s. 

We are now in position to state a key result for 1tô processes which 
plays a fundamental role in obtaining sufficient conditions for (10.15). 
This result is first obtained in a weaker form by Malliavin [107] and then 
improved by ideas of Kusuoka and Stroock (cf. [211] and [212]). 
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Lemma 10.4. (Key lemma). Let 4(0 be an Itô process with char-
acteristics a = 0, 1, - • - , r. Assume furthermore, that to(t) is 
also an Itô process with characteristics to , a(t), a = 0, 1, - - • , r. Suppose 
that there exist c„ i = 0, 1, 2, 3 and {  .9 }-stopping times 0 a l  

1 such that 
(i) for almost all w (P) 

1 t(s) 1 + a*, 1 4.(s) 1 + 1 40(s) 1 + 	1 40, fl(s) 1 	co 
for all s E  1 0- 19 

and 
(ii) for every n = 1, 2, • • • 

P[a2  —  o  < 	cl  exp [— c2nc3]. 

Then for every given c4, there exist c,, i = 5, 6, 7, 8 (which depend 
only on co , c1 , c2,  e3  and c4) such that 

1'a2A(61+11n)
t  

2A(a1-1-1/n) 
(10.20) 	P[ 	it(s)1 2ds 	11,1°5, 	 14,r(s)1 2ds 

cri 
 

cr.-4 u 1 

1 inc4] 	e6 exp r C7nc8i 

for every n = 1, 2, • • - . 

Here we present a proof of this lemma along the lines of [203] and 
[232]. It should be remarked that a much simplified different proof was 
given recently by Norris [222]. First we give a series of probabilistic 
lemmas. 

Lemma 10.5. Let  K>  0 and 1(r) be a one-dimensional continuous 
semimartingale 

X(t) =  1(0) m(t) A(t) 

such that <m>(t) =
Ç 

 a(s)ds, A(t) = r 0  fl(s)ds and I a(s) I 	K,  J  fl(s) i 

< K. Then 

4  P(a.  <2) 	exp [— a2/(81(2)] 
N/na 

for all 	a>  0 	and 	2 e (0, a12K] 
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where ca  = inf { t; I X(t) — X(0)1 >  a }. 

Proof* By Theorem 11-7.2', there exists a one-dimensional Brow-
nian motion b(t) (b(0) = 0) such that 

X(t) X(0) = b(<m>(t)) A(t). 

Since { 1X(t) — X(0)1 > a} c {1b(<m)(0)1 >a/2} U { A(t)i > a/2}, 
we have o-a  (a/2K) A (60 1 2/1C) where da/ 2  = inf{ t; lb(t)I > al2}. 
Hence, if 0  <2  < al2K 

P(o-,  <2) < P(da12  < 

8  4 
27rIa  L12  e

-x212"  dx < 
N/27rK2a

(K2 exp[— a21(8K2)]) 

4.../1/(na) exp[— a21(8K2)] 

This completes the proof. 

Before stating the next lemma, we shall prepare some notation. For a 
finite interval I and a square-integrable function a(s) defined on  I,  we set 

ol (a) = 	l j [a(s)2  — aids 

where 

1 
d 	i a(s)ds. 

It is easy to see that 

Mai ±  a2) 	ai(al) + a' f(az). 

Lemma 10.6. Let b = (b(t)) be a one-dimensional Brownian motion. 
Then for every a > 0 and  &> 0, 

a (10.21) 	P(010,03(b)  <8) 	Nr2-exP[—  2 e2 1- 

Proof Without loss of generality, we may assume that b(0) = O. 
We use the following well known expansion formula of b(t) in Fourier 
series:  

* The proof was essentially given in Theoren IV-2.1. We shall repeat it however 
because of its importance. 
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(cos 27rkt — 1) 	sin 2nkt  
b(t) 	14 40  ± ,N/ 2 	41c 	27rk 	+ 77k 	27rk 

where { r.1 , 
71k } are independent random variables with common distri-

bution N(0, 1) ([75], [136]).* Then 

œ [ cos 2nkt _L  sin  27rict  b(t) — b(s)ds = (t — 112)4 0  + 2X.I4k 	11` 27rk 2nk 

and since { cos2nkt and {(t — 1/2), sin 27zict} are mutually orthogonal 
in  22([0, 1]), we have 

010,1 j (b) 	E 1 (27 rk) 2  

Hence for  z>  0, 

E(e- 2% 2'72) E(exp{ — 2z2gul(27rk)2 }) 

E(exp{ — z 2412,127r 2k2 }) = 11 (1 ± z2  lee)-112 
Icc.1 	 1c-1 

N/z/sinh z < .V2e-z/2. 

Consequently 

P(c < e) exp[2z 2s2] E(exp[— 2z2a2]) Nrf exp[2z2e2  — z/4] 

and by setting z 	1/1682  we have 

(10.22) 	P(o. < e) :5_ N/ 2 exP[ 	2-1782] 

1  
Since f 

N/
—
a 

b(at)I 	b(t)}, we have aal0, 13(b) 	a 0a3 (b). Then(10.21) 

follows from (10.22) 

Lemma 10.7. Let b(t) be a one-dimensional Brownian motion on 
[0, A] where A is a positive constant. Then, for every 0 < y < 1/2, there 
exist positive constants a l , a2, a3  such that 

(10.23) 	P[ sup 
b(t) 	b(s)1v 	> n] 	ai exp[— (22,2°3] 

t,setO,A] 	it — Si' 
t#s 

* N(0, 1) stands for the normal distribution with mean 0 and variance 1. 
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for every n = 1, 2, •- - . 

Proof -  First we note 

I b(t) 	b(s) I  (10.24) P[ sup 	, 	i y 	< °C) 1 = 1 for every 0 < y < 1/2. 1,se[0.A] 	it — tos 

Indeed it is proved in the proof of Corollary to Theorem 1-4.3 that 

P[ sup 
4,mm A] 

ts 

1 X(t ) — X(S)I  
< 001 = 1 I t — S 

for any continuous stochastic process X(t), t E [0, A], satisfying 

E[1X(t) — X(s)11 	M  I t  — s1'+fi, 	t, s 	[0, A], 

where a, 13, M are positive constants and a is any constant such that 
0 < a < Ra. Since 

E[lb(t) — 1 (s)1 21= (2m — 1 ) (2m — 3) • • • 3 x 1 >< It — 51 m,  

in  = 1, 2, • - • , 

(10.24) is now easily concluded. 

For one-dimensional Wiener space ( W0', P) with time interval res-
tricted to [0, A], set 

0701,7W Œ W01 ; liWily < 

where 

1 w(t) — w(s)1  
Ilwily = sup lw(s)1 	sup 

OSs<tSil 	t — SI Y  

Then W.  is a Banach space which is however not separable and, if 
0 < y < 1/2, (10.24) implies that P( W07)  = 1. If W7  is the closure of 
the Cameron-Martin Hilbert space H with respect to  il  II-norm, then 
Wy  is a separable Banach space with respect to 11 11 7-norm and it is 
easy to see that 

W0 Œ W 
	

if  0<  y < y' < 1/2. 

In particular, P( W,) = 1 for every 0 < y < 1/2. Then applying Ferni- 
que's theorem to the separable Banach space B = Wy  for 0 < y < 1/2, 
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we have 

Kt : 	 < co 	for some e >  0. 

Hence 

P[ 
sup ib(t) — b(s)i  > 

1:).r•CrA 	It - Si' 

> tz] Kgexpj- n = 1, 2, • • - . 

For completeness, we give a proof of Fernique's theorem following 
Kuo [210].  

Fernique's theorem: If B is a separable real Banach space with norm 
II  Il  and p is a mean zero Gaussian measure 	(i.e. t/(x), I E B' c 
L z (B, p) and it is a mean zero Gaussian system with respect to p). 
Then e >  0 exists such that 

Proof Consider the product probability space (B x B, p  Ø  p). Then 

x 	Y d an x y  for (x, y) B  X B 

are B-valued random variables over this probability space such that 
they are mutually independent and both of them are p-distributed. 
Hence, for t < s < 0, 

PD X II 	PDXII > 
= p p(  II X 2Y11  < p  it(  1172Y11  > 

= p  ®(l 1 7 - Y 11 	s and lix:Nz+TYll  > 

P 	PO 11x11 — 	 ../Ts and  11x11 	iiYil > N/Tt) 

and Dili > t„)-12-15 ) P 	> 	 

= 	> 	) 
t — s  1 2  

 • 
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For given a > 0, define 4, n = 0, 1, • • - by to  --.- s and tn+ 1 = 8 + 
Then 

(,/T)n+' — 1  
tn = 	— 1 s = (wyr1 - 1) WT ± 1)s. 

Set 

an  = P(IIXII > tn)/Al1x11 S .51). 

Then 

an+i = p(Ilxil > s + N/T t )1 1411)4 	s) 

= 1-1(I!4 > s + ,■/ 2 tn)P(iixii 	s)/(il(iixil 	45))2  

and applying the above obtained inequality to the numerator, we obtain 

an+i 	P(iixli > tn)2i(1u(iixii 	s))2  = 

Hence 

an  < ar = exp[2n log ao], 

that is 

n+1 

glIXII >  (2 T  — 1)(24  + os) ..- glIx11 	s)exppn log ad, 

n = 1, 2, • • - . 

Choose s so large that 

glixIl _.< s) > 0 and ao  = p(lixli > s)/glixEl ._._ s) < 1. 

Then the estimate obtained above can be written in the form 

1 t(11xli > u) _. b exp[— aul 	for all u 	c 

with some positive constants a, b, c and the Fernique theorem follows 
at once from this. 

Let n(t), t e [0, 1], be an 1tô process with bounded characteristic 
ri a(s). By Theorem 11-7.2', we can find a Brownian motion b(t) such that 

71(t) = 71(0) + b(a(t)) ± sr  o n o(s)ds 



I f(s)1 2ds > e2  for some a > 0 such that e3 < 22K3o ar 2 
a 

then 

sr, 

404 
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where 

a(t) 	(s) 2ds. 
a-i 

Hence Lemma 10.7 implies immediately the following: 

Lemma 10.8. Let q(t), t e [0, 1], be an Itô process with bounded 
characteristics. 

Then ci, i =  0, 1, 2 exist such that 

(10.25) 	P[ sup 	it 	 > n] 	co  exp[— c1nc2], 

for n = 1, 2, • • • 

Finally we need the following real variable lemma due to Kusuoka 
and Stroock. 

Lemma 10.9. Let f(t) be a continuous function on [a, b] and set 

g(t) = g(a) 	f:f(s)ds, t E [a, b]. 

If 

11(t) 	f (s) I  sup 	 K 
ass<tsb 	it — s1 113  

and 

(10.26) 	(b — a)a 2t0,„,(g) 	2-133-1K-9 6110 _ (0-1112 .  

Proof is easily provided if we note that, first to  E [a, b] exists such 
that 

I f(t0)1 > a(b 	a)- ' 12  

and then an interval I, I c [a, b], exists with length e 3K-32-3 (b — 
on which  f is of constant sign and  I II  e2-1(b a)-1  /2 . We now note 
that there exists tl E I such that 
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1  g(t i ) =  i7) (ii;-)  (C) — 	ing(t)dt. 

Then 

(b 	 (g(s) —g) 2ds 

f (s)ds} 2dt 
Çi  

- e24-1 (b 	(t — t 1 )2dt 

- (48) -1 820 — 	 I / I 3  

which completes the proof. 

Proof of the key lemma. In proving (10.20), we may clearly assume 
n 2 and co  1. In the following a, and d„ i = 1, 2, • • • are positive 
constants independent of n and w. We know(Theorem 11-7.2') that a one-
dimensional Brownian motion B(t) with B(0) = 0 exists such that 

t(t) = Val) 	B(A(t)) 	g(t), 	t 	1 

where 

A(t) = at1 	It a(s)I 2ds and g(t) = f i 40(s)ds. 

r 	 (cri+1 /n) fa2A 
W1 = 	 f 4 a(t) I 2dt 	1/nc4] 

aO  

W2 = f
a2MCI 1+11n) 

I t(t) 1 2dt < Vie s]. 

Here c, is given and cs  will be determinded later. Set 

j'a2A(0 1-1-1/r ) 
W1,1 = [ 	I U1 ) I 2dt 	1/(2nc4), A(02 A (CI + 1/n)) < 1/nail 

and 

W1,2 =  [11(g2 A (al + 1/n))  

Set 

and 
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Then 

(10.27) 	W1 c W1.1 U W1.2 if a l 	C4  ± 1 

since 

linai 	1/ne4+' 	1/(2nc4) for n 	2. 

Set 

W3 — [C.2 — 

1L(t) 	to(s)  TV, = [ sup 	 < 12]  
i ss<tsa2 	1 	S  1 1 / 3  

and 

W5 = [ sup IB(t)1 < 
0SrSI/nal 

By Lemma 10.9, we can find a3  such that 

W3 n W4 n [j.  I  o(t) i zdt 	1/(2n`4)]  

(10.28) 

W3, n [o-t(g) 

where In  = [a l , a l  ± 1/ni. Hence 

W3 rl Coln(g) < 1 lna3) f 	o(t)1 2dt 	1/(211`4)1 In   

(10.29) 

We have 

n ws n w3 
C  [sup1B(A(0)1 < 1/n°2] r1 W3 

rein  

[(B (A(. ))) 	1/n]  n W3 

[ot(B(A( - ))) 	11(4na3)] n W3 

if a2  > a3/2 ± 1. Also 
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072 n  W3  c tf 14(t)1 2ds/IL < 1/729-11 fl W3 

C [Grt ( ) < 1/nc5-1 ] n 073 

c [01„(4) < ightnam n W5 

if c, > a3  ± 3. Since 

	

,n(g) 	or , n(B(A( •))) 

if a2  > a312 + 1 and c, a3  3, 

n Fv2 n W3  fl Tv, 
(10.30) c [o(g) < 1/na3]  n Fv1.1 Cl W3 

C 

by (10.29). Hence, if al 	+ 1,  a2>  a3/2 ± 1 and c5  > a3  3, 

n F172 c W U W u 
By Lemma 10.5, 

(10.31) 	P[W,c] 	dlexp[— d2nai -2a2] 	if a l  > 2a2. 

Hence we can conclude, by the assumption (ii) in Lemma 10.4, Lemma 
10.8 and (10.31), that if c, 	a3  + 3 and al  > (a3  ± 2) V (c4  ± 1), 

(10.32) 	PEW 1 , 1  n 072] 	d3exp[— d4nds]. 

Next we estimate P( W1 . 2  n W2). The idea is to use the fact 
aj (B(A(• ))) is comparatively larger than a-1(g) if the interval I is 
sufficiently small. If w e 073 ,  I c 0.21 We divide In  into nm equal 
intervals 

1.  71,k 	[0.1 ± 	, 	(k 	1)112""n], k = 0, 1, ••• , 12m— 1 

where we choose in  N such that 

(10.33) 	In > a,. 

Then if w E  W3  

1 (t)  j 2dt 
=

1 40- i ) 	B(A(t)) 	g(t)1 2dt 

	

nac 	 I  ndc 

I 4(0. 1) + B(s) 	g(A-'(s))12dA-1(s) 
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> 1 	R@ B(s) g(A -1 (s))1 2ds. 
CO SA  

Here we note that 

pi  1 4.(s) 1 2 	Co 

by the assumption (i) in Lemma 10.4 and we set 

A(In,k) = {A(t); t 

Set 

.1k = [A(o1 + kIni+m), A(a i 	kln""n) + 1 Inal+1, 

k = 0, 1, • • • , nm — 1. 

Then, setting g(s) = 

073 n IA(4.01 	llnai+m) 

= W3 n 	n, k) 4 

c iv3  (1 	I 4(t ) I 2dt 	if 1 	+ B(s) g(s)1 2c1s) 
rbk 	 Co J k  

Since 

w3 n 	14(t)1 2dt 
mk 

Fv3n{f 	14(012dt 
1n.k 

14 	
(13( • ) 	• ))) co 

 
;k 

(ft( 

 Co [,k(B) 	k(0121. 

g(s) = 	40(u)du and 	I 40(0 I 	co  on [cri, crzi, 

we have 

ig(t) —g(s)i 	co l A -1 (t) 	A -1 (s)1. 

Therefore, setting t o 	A(a l 	klni+m), 

o•k(g) < 	1   f ig(t) 	g(t0)1 2dt 
141 k 

2 
CI)  f 

k 

 0. -1 (t) — A -1(02dt 
J 
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cg[A -1 (A(o - 	(k 	1)In i+m))— A -1 (41 ( 7 1 	kln i+m))) 2  

d/n2+ 2'n 

if W E W3 n 	1/nal+m } and hence 4 c A(/ k). Therefore 

W3 rl [ajk(B) 	2c0/n'+'71 , I A(I„,k)1 	1Inal+- 1 

Set 

c Fv3  n [f 	14(012ds 	141   (  c° ) 2  i+m — 

43,k 	 Co 	n 

Co 

n2+3m+al l- 

W6 = no 	> 2comi+m }. k   

Since 

..-1 
A(Gr2 A (0- 1 + 1/n)) = A(cil + 1/n) = E IA(4 	llnal 

k =0 

on W3 n WI, 27 

there exists k such that A(4 .,. 01 	1/nai+m. Hence 

WI , 2 n W3 n W6 

nm-1 
C  U 	f A(I„, k) I 	+m, anc(B) > 2co/n l+ni} n W3 

k 

nm-1 
C U 	14(01 2dS 	CoIn 2+37n+  al  n W3 

loci() in,k 

f02A (al -1-11n) 	z 
C { 	 14(S)I ds 	11n 2+3"1 +4 1} 

since we assumed c o  L- 1. Therefore if c5 L 2 ± 3m ± al, 

W12 fl Ff72 c  WU  

and by Lemma 10.6 (note that A(o- i 	k12 1 +m) is a stopping time for 
B(t)), 

nm -1 
P [W 	E flo-jk(B) 2Coln i+m 1 

k=0 

rim-1 • E d6exp1— d71 Jk ( 1 /121+m)-2] 
k 0 

▪ d8exp[— doen÷2-ai] 
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cisexp[— ci 9n2] 

because of (10.33). Noting the assumption (ii) in Lemma 10.4, we have 
thus obtained 

(10.34) 	P[wi, n 072) dioexp[— dundi2]. 

Therefore, if c, is chosen sufficiently large, (10.32) and (10.34) imply the 
estimate (10.20) because W1  n Fv.2 c n 072) n 072). 
This completes the proof of Lemma 10.4. 

Remark 10.1. In the key lemma, the variable n e N can be replaced 
obviously by a continuous variable T E [1, co). 

Remark 10.2. By examining the above proof carefully, we can de-
duce the following: Let 0 (0, 1] and we assume in Lemma 10.4 that 
4(0, 4a(t), ai  and o-2  may depend on the parameter 0 but they satisfy 
the same assumptions (i) and (ii) where the constants co , cl , c2 , c3  are in-
dependent of O. Then, for any given c4  there exist c„ i = 5, 6, 7, 8, 9, 10 
(which depend only on co , cl , c2, c3 , c4  and hence are independent of 0, 
in particular) such that 

ser2A071+1/0 P[ 	lt(s)1 2ds 	 fuzA(al lt,.(s)I 2ds 	Oincai 
a1 	 cr..0 

c6nc7exp[— c80c9nclo] for all n = 1, 2, ••• and 0 	(0, 1]. 

Now we return to the stochastic differential equation (10.1). We in-
troduce the following notation: for V 

(V„, V) = [Va, V] 	a = 1, 2, • • • , r 

(10.35) 

(vo , 	[vo, 	+-L±[v
P 

[Va' vV]]. 
 

Then, by (10.16), we have 

•fv(r(t)) — •fv(r(0)) 

(10.36) 
r E.fi va , vms» dwa(s) 

a=31 0 	 0 
1 • f[1/0,11(*))ds 

= 	S t  1 • fora  v)(r(s))dwa(s) 	1 - for°, v) (r(s))ds 
a ■1 0 	 0 
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for every 1 E Sd- ' and V E (Rd). For each n = 0, 1, • • • , define a 
set En  c (Rd) successively by 

E0 = VI, V2, • • • , 

(10.37) 

E,, = {(Va, V); V E 	a = 0,1, 	, r} 

for n = 1, 2, 

and set 

(10.38) 	±„ = Eo U 	U - • - U E„, 	for n = 0, 1, • • • 

Now we introduce the following hypoellipticity condition of Hiirmander 
type for the vector fields Va, a = 0, 1, • • - , r. 

Definition 10.1. We say that Va, a = 0, 1, • • • , r satisfy the assump-
tion (H) at x  E Rd if there exists M e N and A 1 , A2, ' Ad e 
such that A i (x), A2(4, • • • , A d(x) are linearly independent. 

Cleary (H) is satisfied at x if and only if there exists M E N such 
that 

(10.39) 	inf E [1 • A(x)}z > 0. 
leSd - 1 rie±,1,1 

If (10.39) is satisfied, then we can find ô>  0 and bounded neighbor-
hood U(x) in Rd and U(/) in GL(d, R) of x and I = (65) respectively 
such that 

(10.40) 	inf E [1 -fA (x)] 2  6 	if r E U(X)x U(/). 
1eSd - 1 Ae.tm 

Set a = inf {s; r(s) 	U(x)xU(1)} where r(s) is the solution of (10.1) 
and (10.2) put together. Set o- i  a 0 and cr2  = a-  A 1. Then a l  and (72 
satisfy the condition (ii) of Lemma 10.4 by Lemma 10.5. Cleary 

inf 	
2+ (Cr 1+1 /n) E [1 • h(r(s))]2  }cis 	6In 

AGÊ m 

on the set 

Wn = [G2 — 	1In] 

and  PEW:]  ai exp[— azn], n = 1, 2, ... . Let N = #(4,1). Then for 



dY(t) = et avaGroDY(t) 0 dwœ(t) ± ea vo(X(o)dt 1 
(10.2)8  

Y(0) =  I. 
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every I E Sd-I , we can find a0 , al, • • , œk , 0 	k 	M such that 
r and 

ak
(r(s))Pds 	.31(nN) 	on 077, 

ao. 	. . , ak = 	(Vak-12( •  • • (Val) V0)) • • 
). 

Noting (10.36) and applying the key lemma successively, we can easily 
deduce the following: For each j =  0, 1, • - , k, there exist positive 
constant ct , i , i=  1, 2, 3, 4, independent of n = 1, 2, • • • and  J Œ Scr- i 
such that 

r

al
meri +i in) 

	

P[ 	[I • A ra , al. 	al  (r(S))] 2dS 	11 -e1.1 

C2 , 1exp[ —  c3 , inc4i] 	for all n 	1, 2, • • - . 

In particular, we can conclude that positive constants ct, i = 1, 2, 3, 4 
exist independent of n such that 

sup P[± fa2  [1 • f,a(r(s))rds n-ci] 
JE id-1 	 ai 

c2exp[— c3n84] 	 for every n = 1, 2, " • . 

By Lemma 10.3 and (10.14), we obtain 

	

(10.43) 	il(det 6(1)) -1 11, < co 	for all 1 < , < co. 

Now introduce a parameter 1 > E > 0 and consider the following 
stochastic differential equations 

1 	a0  

(10.41) 

where 

r, 0 	az, • • - , ak  

falMa2+1/71) 
f V a0. 	" cl  

(10.42) 

(10. 1)e 

and 

IdX(t) = e  V,(X(t))  o  dwec(t) e2 V0(X(t))dt 
a-1 

X(0) = x 

Denote the solution by re(t) = (Xe(t), Ye(t)). It is immediately seen that 
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{r(e 2t), t 	} is equivalent in law to { e(t), t 	0}. In particular, r(s2) 
is equivalent in law to r8(1) and 68(1) defined similarly for r8(t) is equiva-
lent in law to 6- (5 2). Suppose that { Va , a = 0, 1, • • • , r} satisfy the con-
dition (H) at x. We can give the same arguments as above for the vector 
field V, e e (0, 1], where V:. = 8Va, a = 1, 2, • - • , r and Vt, = eV 0 . 
In this case, however, o>  0 above is replaced by 6ak for some k E N 
and 0>  0 which is independent of e e (0, 1] and we apply the key 
lemma in a generalized form as stated in Remark 10.2. Finally we 
obtain, instead of (10.42), 

8 
r 	crZ 

sup P [ I j1 • fv e(re(s))Pds 

	

IESd-1 a=1  J 8 	 a 
a 1 

c2nc3exp[— c 4585n 8 6] 

< ekn-cil 

for n = 1, 2, • • • and  s E (0,1] where ci, i = 1, 2, 3, 4, 5, 6 are inde-
pendent of n and e. Here af and al are also defined in the same way for 
the process re(t). From this we can deduce, as above, the following 
estimate: 

P [det 68(1) 	+] a, Ta2exp[— a3sa4Ta5] 

for all T E [1, co) and s E (0, 1] where ai, i = 1, 2, 3, 4, 5 are positive 
constants independent of e and T. We can now conclude that 

(10.44) 	adet de(1)) - ' II, = adet a(e2)) -1 11„ 	K 1 (p)e-K2 

for all p E (1, co) and E 	i] 

where Ki(P) > 0 may depend on p but not on 8 and  1<2 > 0 does not 
depend on p and 8. 

Thus we obtain the following result due to Kusuoka and Stroock. 

Theorem 10.2. Let Vo,  V1 , - • • , V, satisfy the assumption (H) at 
E Rd. Then, for every t>  0, X(t, x, w) e .,(Rd) and it satisfies 

(A. 2): More precisely, there exists a positive constant  1<2  and for every 
1  < p < oo, there exists a positive constant Ki (p) such that 

(10.45) 	I i(det a(t)) -i iip 	Ki(p)t -K2 

for all t E 	I] and 1  < p  < co. 

Remark 10.3. If (H) is satisfied everywhere in a domain D  C  Ra,  the 
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estimate (10.44) holds uniformly in x E 15 for every 15  c D. This is 
clear from the above proof'. 

Thus if (H) is satisfied at x E Rd, then for any Schwartz distribution 
T e T(X(t, x, w)) E D. is defined for every t>  O. In parti-
cular, (5y (X(t, x, w)) is defined for every y e Rd and 

p(t, x, y) = E[6(X(t, x, w))] 

which is C-  in y, coincides with the fundamental solution of 

where 

A = ± V2  + V * 
2 a=1 

i.e. 

u(t, x) = 
Rd

p(t, x, y)f(y)dy 

solves the initial value problem 

au = Au, ult..° =f  

uniquely among tempered (i.e. of polynomial growth) solutions for a 
tempered function f on Rd. More generally, for g(w) e 

E[g(w)(5y(X(t, x, w))] 

is well-defined. In particular, if C(x) is a tempered C--function such that 
C(x) K for some constant  K>  0, then 

g(w) = exp[f C(X(s, x, w))ds]  

and 

E[g(w)(5y(X(t, x, w))] = pc (t, x, y) 

* The vector field Va  is regarded as a differential operator. 
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is the fundamental solution of 

au 
= + C)u. 

Now assume that  Va, a 0, 1, - • , r, are bounded on Rd and 
satisfy (H) at x E Rd.  Let 95(0 be a C--function on Rd such that 56(4) = 1 
if RI 1/3 and gi(4) = 0 if 2/3. Let y E Rd and define 

z — y if 
w(z) \ ix —YI 

x * y 

1 if x = y. 

Then ty(5y  = (5,, and hence 

p(t, x, y) = Ef6y(X(t, x, w))] = E[ty(X(t, x, w))6 y(X(t, x, w))]. 

By the integration by parts as discussed in Section 9, this is easily seen 
to be a finite sum 

Elat(X(t, x, w))F i(w)] 

where at(x) is of the form of a finite sum 

bi(x)Dflitp(x) 

with bounded continuous functions  b(x) and Ft(w) e D is a polynomial 
in the components of X(t, x, w), their derivatives and [det a(t)] -1 . By 
Lemma 10.5, we can deduce that 

P[ I X(t, x, w) — xi 	Ix — yi/3] 	ai exp[— a2 1 x y1 2/t} 

where a l  and a2  are positive constants independent of x, y Rd and 
t 	[0, T]. Combining this with (10.44), we obtain the following estimate: 

Theorem 103. Suppose that Va, a -----  0, 1, • • • , r, are bounded 
and satisfy (H) everywhere in a domain D of Rd. Then, I) > 0 exists and 
for every compact set K D and  T>  0, positive constans c1  and c2 
exist such that 

(10.46) 	p(t, x, y) 	-- 	c2 lx - Y I 2/z] 

forai!  t E 	21, x K and y E Rd. 
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Next, we shall study the short time asymptotics of the fundamental 
solution p(t, x, y). For this we introduce, as before, a parameter 6 E 
(0, 1] and consider the equations (10.1)8  and (10.2) . We denote the 
solutions by X 8(t, x, w) and Ye(t, x, w), sometimes more simply by X 8(t) 
and Ye(t), respectively. Then we have 

(10.46) 	p(82, x, y) = E[(5y(X8(1, x, w))], 	x, y e Rd. 

We introduce the following notation: For a = (a1, de2, • 

{ 0, 1, 2, • • • , r}n, m = 1, 2, • • • , we set 

Hall = m ± #{v; a, = 0 } . 

Also, let 

t 
Sa(t, 1V) = f 0 dW œ l(t 1) f ri  0 dW a202) • • • i'r m  I 0  dwam(t m) 

o 	o 	 o 

be a multiple stochastic integral in the Stratonovich sense for a = 
(a 1 , a2 , • • • , am) OE { 0, 1, 2, • • • , r } 7n where we set w°(t) — t. 

Theorem 10.4. Let x e Rd be fixed. Then X8(1, x, w)  
has the asymptotic expansion 

	

(10.47) 	X 8(1, x, w) —fc, ± efi  ± s2f2  ± • • • 	in D.,(Rd) as e ,l, 0 

and f„ E D oe (Rd), n -.-- 0, 1, • - • , are given by 

	

(10.48) 	fe  -- x 

and 

	

(10.49) 	fn  = E 	 • • Pa2(vai )(x)scr(1, w), 
a:aas-. 

n =-. 1, 2, • • • . 

Here the vector field Va, regarded as a differential operator, is denoted 
by Pa , i.e. 

P-a(f)(x) = V:c(x)—
a f 

(x), f e C-(Rd —› R) 
axt 

and 

a = 0, 1, • • • , r. 
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In particular, 

(10.50) 	fl (w) = a
=1

Va(x)wa(1). 

The expression in (10.47) is uniform in x E K for any bounded set K 
in Rd. 

Proof. The proof is easily provided by successive applications of the 
Itô formula: 

X8(1, x, w) — x 
i 

= e ± J. '  V a(X 8(s)) 0 dwf.' + e 2f Vo(Xe(s))ds 
«=1 0 	 0 

= e Ê V a(x)W1(1) ± e ± si [va(xAs »  _ va(x), . dwf 
«-.1cr..] 	 1 	0 

±  62$i 
 0 V 0(X e(S))CIS 

= ef 1 + 82[0±:.1  Sl f : { i's  0 Pa2(V ai )(X8(14) 0  dWa2(1)) 0 dWal(S) 

± ji  : Vo(Xe(spds ± EXT.i  f i  o t i‘os  P.0( VaXX8(updu } 0 dw a(s)] 

= ef, + e2[V0(x) ± Ê.  Ê P.2(va 1 )(x)s(cel.a2)(1)1 
al =1  a2 =1  

+ e2[ at i  .ti j.iti..30  ( rice ce 2(V 1 )(X 8  (0) —.- Pa 2( Va 1 )(X)) ° dW œ2(14) ) 

° dW e  1  (s) ± E [ v0 (x. (0)  _ vo(x)ids 

+ ea4 DE Po(  Va)  (Xe(u))du) 0 dwa (3)] 

and so on. Continuing this process and applying Theorem III-3. 1, it 
is easy to see that 

X8(1, x, w)  =fo  ± efi  + - • - + cif. ± O(e) 

in  L(Rd) for every p E (1, co). Since DkX 8(t, x, w) [h 1 , h2 , • • - , h ]  
are determined successively by stochastic differential equations as we 
saw in the proof of Proposition 10.1, it is easy to conclude that 

DkX8(1, x, w) = f(k) ± efi(k)  ± • - • 87; f„(k) ± o(e'3+1) 
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in Li,(H" C) Rd) as e ,I, O. This completes the proof. 

X 8(1, x, w) is not uniformly non-degenerate in the sense of (9.32) 
because fo  = x which is completely degenerate. However, if we consider 

X 8(1, x, w) — x  
F(e, w) — 

e 1 

then we have the following: 

Theorem 10.5. The family F(e, w), 8E (0, 1] defined above, satisfies 
(9.32) if and only if (A(x)) defined by 

"41-1(X)  = :Ê  V(x) VI(x)  
ce...1 

is non-degenerate, i.e. det(Au(x)) > 0. 

Proof. Since 

F(e, w) —fi ± 8.f2 + e2f3 ± - - • in D .,(Rd) 

where ft  are given in Theorem 10.4 and the Malliavin covariance of f, 
coincides with A(x) = (Au (x)), A(x) must be non-degenerate in order 
that F(e, w) satisfies (9.32). Conversely, suppose that det(Ai-1 (x)) > O. 
Denoting by or(e) = (o-0(8)) the Malliavin covariance of F (e, w), we have 
by Proposition 10.1 that 

afe) = f
i 
 Y8(1)( Ye(s)) - ' A(X 8(s))[ Ye(1)(Y 8(s)) -1 ]* ds. 
0 

Set 

T = inf( s; ( Y 8(s)) - ' A(X 8(s))((Y 8(s))_l)* 	A(x)12}. 

Applying Lemma 10.5, it is easy to see that 

P[-r <  1 172] ..-_ ci exp[— c2n`3], 	n = 1, 2, • • - , 

where ci , i . 1, 2, 3, are positive constants independent of s E (0, 1] 
and n. Note also 

sup Ildet(Y8(1))11„ < co 	for all p E (1, 00) 
ye (0,1) 
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because (Ye(t)) -1  is the solution of the equation (2.27) in which a, and 
h' are replaced by saa' and 62b' respectively. Then 

det c(e) 	(det Ye(1)) 2detf A(1Ya(s))- ' A(Xe(s))(( Y e(s)) -')*ds 

2d (det r(1)) 2det(A(x))(1 A •T)d 

and we can now easily conclude that 

sup lidet(a(6)) -1 11„ < CO 
se (0,1) 

which complete the proof. 

for all p  E (1, co), 

Suppose that det(A(x)) > 0. Then by Theorem 9.4, T(F(e, x, w)), 
T ...7(Rd), has the asymptotic expansion in 	Since 

Jx(X€(1, x, w)) =  Jx(x €F(6, w)) = e`d(50(F(e, w)), 

we have the following: 

Theorem 10.6. Suppose that det(A(x)) > 0. Then (5(Xe(1, x, w)) 
has the following asymptotic expansion in  ö as e 

(10.51) 	45„(X€(1, x, w)) 	6-d(00 + 60 1  + 8'02 + • • ) 

and  Pk  E 	can be obtained explicitly by Theorem 9.4: 

(10.52) 	00 = &(f ) 

and 

(10.53) 	0k(w) = 	E 	
I  ai! 

 Da(50(11).1:11fan 

for k=  1, 2, 

where f, = (fi)  is given by (10.49),f by (10.50) in particular. In (10.53), 
the summation extends over all a = (a 1 , a2 , • • • , al) E 1 , 2 , • • • , 
d}' and n = (nl , nz , • • , 	2, I = 1, 2, • • such that n 1  + n2 

a  

! 	I + • • • -1- — I = k. Also Da  = aa i  aa2 	-= 	 and a acre  a k 	xic  

/ if a = (ai , a2, • • , al). 
From this we see that E[Ok(w)] = 0 if k is odd since, then, (P k( — 
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= — Ok(w) and the mapping: WDIV--->-VVE W preserves the me-
asure P. 

Corollary. Suppose that det A(x) > 0 where A(x) = (Au(x)). Then 
p(t, x, x),  t>  0, x e  Rd,  has the asymptotic expansion 

(10.55) 	p(t, x, x) 	t -12(co(x) 	c i (x)t 	- • -) 

and ci(x) is given by 

(10.56) 	ci(x) = E[4521], 	i = 0, 1, • - 

where 0, is given by (10.52) and (10.53). 
In particular 

co  = {(27r)a det A(x)} - ' 12 . 

Remark 10.4. We can discuss by a similar method the asymptotic 
expansion of p(t, x, x) in the degenerate case det A(x) =  0 under some 
hypoellipticity condition and also the expansion of p(t, x, y), x y, as 
t 0, cf. [192], [212], [214], [215] and [228]. 

We now consider an application of our results to heat kernels on 
manifolds. Let M be a compact Riemannian manifold and b E 

Let e(t, x, y) be the fundamental solution of the heat equation 

au 	1 
—497  = A mu b(u) 

utt-0  =f  

where A M  is the Laplce-Beltrami operator for the Riemannian metric 
g on M i.e. 

u(t, x) = m e(t, x, y)f(y)m(dy) (m(dy): the Riemannian volume) 

solves the above initial value problem. Let r(t, r, w) 	(X(t, r, w), 
e(t, r, w)) be the stochastic moving frame realized on the d-dimensional 
Wiener space ( W, P) by the solution of stochastic differential equation 
(4.43) with the initial value ro  r E 0(M). Let (Sy  be the Dirac 6-func-
tion at y e M, i.e. the Schwartz distribution on M such that 

(5y(0) = ç(y) 	for every gi E F(M). 
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Then we can define 6,(X(t, r, w)) e h._ and e(t, x, y) can be expressed 
as 

e(t, x, y) = Efr5y (X(t, r, w))] 

where n(r) = x. Actually, we can extend our results obtained so far to 
the case of  manifolds: We can develop a general theory of Wiener 
mappings with values in manifolds and pull-back of Schwartz distribu-
tions on M by these mappings. We do not go into details on these topics, 
however, only referring interested readers to [230] and [190]. 

In order to apply our results above to the asymptotic expansion of 
e(t, x, x), we take two bounded coordinate neighborhoods U1  and U, of 
x such that U1  c U2, view U, as a part in Rd and extend the Rieman-
nian metric (gu(y)) and the vector field b = (bi(Y)) outside U2 to a metric 
g' = (4(x)) and a vector field b' (b"(x)) on Rd respectively, so that 
ej(y) =bu  and b"(y) = 0 near 00. Let e'(t, x, y) be the fundamental 
solution of the heat equation 

	

au 	
Ll'u 
	 on Rd 

where .4' is the Laplace-Beltrami operator for g'. Then we have 

	

(10.57) 	sup 1 e(t, z, y) — e'(t, z, 1 1)1 	el exPi— c2/t] 	as t 0 
JP, se U1 

for some positive constants c, and c2 . For the proof, let V E C(R 4) with 
support contained in U1  and set 

u(t, z) 	[e(1, z, Y) — e i(t, z, 	det g(Ady, 
u 

Then u is a solution of 

au 	1 
on U2 = AMU  ± b(u)  

and 

liM li(t, Z) =0 	on U2. 
r 1 0 

z E U2. 

By 's formula applied to u(t–s, X y) where X, X(s, r, w) with n(r) = 
z, we deduce that 
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u(t, z) = E[u(t — X,); 	t], 	z 	U2 

where 

a = inf{ t;  X 	19U2 }.  

Hence 

(10.58) 	I u(t, z)! 	sup 	u(s, 	, 	z e U2 
se [0, t] , e8u2 

Noting that e(t, z, y) and e(t, z, y) have estimates similar to (10.46), in 
particular, 

sup 	I e(s, .Y) — 	y)i 	cl exP[—  c214, 	s E [0, 1] eau2,yeui  

we obtain from (10.58) that 

I u(t, z)I 	cl(exp[— c2t])livh 1 , z E U1, t 	(0,1]  

and (10.57) follows from this. 
Hence, in order to obtain the asymptotic expansion of e(t, x, x) in 

powers of small t, we can instead take e'(t, x, x). This e' can be given by 
a generalized Wiener functional expectation as 

e'(e2,  X, x) = EP5x(X 8(1, x, w)] 

where X 8(t, x, w) is the solution of the following stochastic differential 
equation on Rd: 

dr(t) = EA crik (X(t))dwk(t) — 8 2[ jt i gik(X(t))rik(X(t)) 

+ bi(X(t))]cli 

X(0) =  X.  

Here, we denote the components of the above extended g' and h' by 
gu  and Y rik  is the Christoffel symbol for gu. Also, (gu) is the inverse 

d 
of (g11) and (a.;) is the square-root of (gu), so that gu = E atkaL. Then, 

k=1 

in the same way as above, we can obtain 

e(t, x, x) = t - d 12(c0(x) 	tci (x) ± • • -) 
	as t 

and each  c1(x) can be expressed explicitly by a generalized Wiener func- 



(5.4) 
ti lt_ o  = a 
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tional expectation. Usually, c i(x) is a very complicated polynomial in 
components of curvature tensor, their covariant derivatives and the 
vector fields b. By choosing our coordinates to be normal for the metric 
g, we can compute these expectations to obtain 

co(x) = (270-4 / 2  

and 

ci (x) = (270 -d12 (T1. --2R(x) — Idiv(b)(x) — i - iibii 2(x)) 

where R(x) = R1(x) is the scalar curvature. However the details are left 
to the reader. For related topics, cf. [217] and [231]. 

Finally we apply our method to prove the Gauss-Bonnet-Chern 
theorem. Let M be a compact oriented manifold of even dimension d 
= 2/. As Section 4, let A p(M), p . 0, 1, - • • , d be the spaces of 
differential p-forms and 

A(M) = C) A (M). 
22C1 	P  

Consider the heat equation on A(M) 

where 0 = — (d + •5)(d ± (5) = — (d6 ± (5d) is the Laplacian of de 
Rham-Kodaira. In Section 5, we solved this initial value problem by a 
probabilistic way in the form (5.32) where U(t, r) is the scalarization of 
u(t, x). For given r = (x, e) E 0(M), there is a canonical isomorphism 

F: AR d —> ÂT:(M) 	for each 	p = 0, 1, • • • , d, 

and hence 

d 	p 	 d 	p 

f: ARd  --- E 0 AR' :  — AT(M) = E C) AT:(M), 
p=0 	 p-0 

defined by 

F(öa ,  A (5a2  A • - - A 6aP) = Pri A fe2  A • — PP 
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where {fl, f 2, • • , fd} is the ONB in  T(M) which is dual to the 
ON B e = {e l , e2, • , ed } in T x(M) and 6" is defined by 6" = (0, 

or—ds 

• • • 0, 1, 0, • • , 0), (cf. Section 5). Using this isomorphism, the 
scalarization Fa  E C - (0(M)—>AR d) of a e A(M) can be written as 

	

Fa(r) = P - '(a(x)), 	r = (x, e) 0(M). 

Then by (5.32), the solution u(t, x) of (5.4) is expressed as 

	

(10.59) 	u(t , r) = P 	E[M(t ,  r, w) f(t, r,  w)' a(X(t, r, w))] 

where r(t , r, w) 	(X(t, r, w), e(t, r, w)) is the stochastic moving frame, 
i.e. the solution of (5.5). Note that the right-hand side of (10.59) is in-
dependent of a particular choice of a frame r (x, e) E 0(M) over x: 
This just corresponds to the fact that U(t, r) = P - lu(t,x) is 0(d)-equi-
variant, (cf. Section 5). Hence 

u(t, x) = m e(t, x, y)a(y)m(dy) 

and the fundamental solution 

e(t, x, y) E Hom(A Ty* (M), AT(M)) 

can be expressed by a generalized Wiener functional expectation as 

	

(10.60) 	e(t, x, y) = 	E[17  M(t, r, w)F(t, r, w)' c5 y(X(t, r, w))]. 

We now introduce the decomposition 

A(M) = A ,(M) (:) _(M) 

where 

A ,(M) = E c) A p(M) and  4(M) = E sAp(M). 
p:even 	 .P:odd 

Define a linear operator (— 1)" on il(M) by 

	

co 	if co A,(M) 
(— 1)F co =[ 

	

1— w 	if co E A_(M). 

Then the operator Q = (d +6) satisfies 

Q( —  = (— 1)FQ, 



APPLICATIONS TO HEAT KERNELS 	 425 

i.e., { (— 1)F, Q) = (— 1)FQ 	Q(— 1)F = 0. In particular, Q sends 
A ±(M) into A z.(M). For 0, let HA  = e A(M); E]co ).co  = ) 
and 1;  =  {co E A .± (M); Dco ;co = 0). Then HA  = Ht Hi-  and 
0 dim HA  < 00 (cf. [145]). We have 

(10.61) 	dim Ht = dim I r 	if  2 > 0,  

because the mapping Q: 11,t —> HA-  is an isomorphism. Indeed, if co 
E  Ht ,  then 

DQo.) = — Q 3co = QDco 

showing that Qco e H, . If co E HZ and Qco = 0, then co = (Q 2co)1.1. 
= 0 showing that the mapping Q:  Ht  —› Hr is one to one. Finally if 
co E Hj , then 0) = Q[(Qco)12] and (Q(.0)/2  e HZ showing that the 
mapping Q:  Ht  —› 11,17 is onto. 

In the same way, we define the decomposition 

AT:(M) = A ± T(M) e A _TAM), x e M, 

and 

ARd = A + Rd C) A_Rd. 

Then (— 1)F E End(A T (M)) and (— 1)F e End(ARd) are defined 
similary as above. For A E End(A T (M)) or A  e  End(AR4), define 
the supertrace Str(A) of A by 

Str(A) = Tr((— 1)FA). 

If A e End(A 71(M)) leaves A ± T:(M) invariant, then clearly 

Str(A) = Tr(A /1_,(27(m) ) — Tr(A I A_(T.,*(m)). 

Now we claim that 

(10.62) 	Str[e(t, x, x)]m(dx) = X(M), 	t>  0 

X(M) being the Euler characteristic of M, (cf. [145]). Indeed, by the 
eigenfunction expansion of e(t, x, y), 

e(t, x) Y) = e-Int  E 	vs(x) 0 OY) 
n••0 	7:49N2 in Eltn 
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for some 0 20  < 21  < - - and hence 

(10.63) 
	Str[e(t, x, x)] 

= E  e-at E 110(41 2  -2_ c 	 4 A nt 	E 	110(1 2 
0:0141B in H 	

.0 
ifn 	 95:0NB in  Ej  

where ll ll is the Riemannian norm of AT:(M). Hence 

f Str[e(t, x, x)]m(dx) = °tP  e- lnt(dim H1+.  — dim H;772) 
m 	 ..0 

and, noting (10.61), this is equal to 

d 

dim I/6" — dim H,T E (— oPaim H(M) 
p =.° 

where 1-1),(M) = {(0 A(M); Do = 0 is the space of harmonic p-
forms. Since 

dim  H(M) = p-th Betti number of M 

by the de Rham theorem, (cf. [145]) (10.62) is proved. Hence if we can 
show that 

(10.64) 	Str[e(t, x, x)] = C(x) 	o(1) 

as t 1,0 uniformly on M, then 

X(M) 	m C(x)m(dx). 

Now we show that (10.64) actually holds and we identity the limit C(x) 
with an explicit polynomial in terms of curvature tensor as given by 
(10.89) below. This result was first obtained by Patodi [223] : In the same 
way as above, e(t, x, x) e End(A TIM) has the asymptotic expansion 

e(t, x, x) 	t -'(co(x) 	c i (x)t + • • • + cz(x)t' 	c1+1(x)P+ 1  ± • • • ) 

as t 0, 

where 1 = d/2 and ci(x) E End(A T:M), i = 0, 1, • - , cg(x) being a 
very complicated polynomial in components of curvature tensor and 
its covariant derivatives. However, Patodi showed that a remarkable 
cancellation takes place for the supertrace, namely, 
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Str[ci(x)] = 0, 	j  = 0, 1, • • • , 1 — 1 

and furthermore, Str [ci(x)] is a polynomial of curvature tensor only, 
the terms involving covariant derivatives being completely cancelled. 
After Patodi, many simpler proofs were invented (cf. Gilkey [202], Getz-
ler [201] etc.). A probabilistic method was first given by Bismut [193]. 
Our method, like Bismut, consists in obtaining cancellation at the level 
of functionals before taking expectation which simplifies much the 
proof of cancellation. 

In the study of short time asymptotics of e(t, x, x), we may assume 
as before, by choosing a coordinate neighborhood and extending the 
components of the metric to whole Euclidean space, that the metric 
tensor gii(y) are defined globally on Rd and furthermore, we may choose 
a normal coordinate around x so that x is the origin of Rd and near the 
origin 

	

(10.65) 	g 1(y) = 6 1j 	Rimkj (0)ynyk ± 0(1 y  3)  

and 

11 

	

(10.66) 	17k(Y) --= 	(0)yin 	(0)y" 	0(1y1 2). 3 	J nan 	 3  . ,rn 

Let (gu(y)) and (ai(y)) be the inverse of (go(y)) and the square root of 
(gu(x)) respectively. Consider the following stochastic differential equa-
tion on Rd x GL(d, R) with a parameter e (0, 1]: 

(10.67) 

dr(t) = eat(X(t))dw k (t) — 78 2  glk(X(0)1"gX(t))dt 

dei(t) = — 1,,(X(t)»(t) 0 drn(t) 

i,j = 1, 2, • -• , d. 

(X(0),  e(0)) = (0, I) 

Denote this solution by re(t) = (Xe(t), ee(t)) and their components by 
X 8(t) 1  and ee(t); respectively. We know that re(t) E 0(M) = (y, e) e 
Rd x GL(d, R); g u(y)eiaei = 6ap ) for all t 0 a.s. and that { re(t) } is 
equivalent in law to (r(e 2t, r, w)} where r(t, r, w) is the solution of 
(5.5). Let  178(t) End(ARd) be defined by 

(10.68) 	178(t): cY' A 6'1  A - • • A 61' 

--> es(t)" A es(t) i2 A • • A eqtY° 



428 	 DIFFUSION PROCESSES ON MANIFOLDS 

where e8(t) 1  = (eg(t), ee(t)' 2, • - • , 6.6(00 e Rd, i = 1, 2, - - , cl. De-
fine  M 8(t) e End(ARd) by the unique solution of 

IdM(t) 	- 1 
e2M(t)D2I —Ji k (r e(t))i 2 m 

	

(10.69) 	dt 
— 

M(0) = .1, 

(cf.(5.30)) of Section 5 for notations). Then, by (10.60), we can conclude 
that 

e(e2, x, x) = e(e2, 0, 0) 

(10.70) 

= E[W(1).17e(1)(5 0(X 8(0)], 	e E (0, 11 

By (10.65), (10.66) and (10.67), we can easily deduce as in Theorem 10.4 
that 

	

(10.71) 	X8(1) = ew(1) 	0(e2) in  D(Rd)  as e 4. 0 

and, by Theorem 10.5, we see that r(1)/e is uniformly non-degenerate 
in the sense of (9.32). Hence by Theorem 9.4, we have 

	

(10.72) 	60(X8(1)) = e-460(w(1)) 	0(e-d-") in r) --  as e ,j, O. 

Similarly by (10.65), (10.66) and (10.67), we can deduce 

(10.73) 
e8(1)5 =+ 	Rumk(0)}1 wk (s) 0 dwm(s) 

0(e3) in  ñœ 	as e 4, 0,  j, j = 1, 2, • • - , d. 

From (10.67) and (10.68), we see that He(t) is the unique solution of 

	

(10.74) 	H8(0 = I ± E 178(s)  o  d 0 8(s) 

where 08(t) is an End(ARd)-valued semimartingale defined by 

d 

	

(10.75) 	08(t) = D1 (0 8(t)) = E egoara, 
"I— 1  

(cf. (5.23) for notations) where 08(t) is Rd x Rd-valued semimartingale 
given by 
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(10.76) 	Off(t) = — 	r7;,i(xe(s)) 0 dr(s)m. 

By (10.66) we can deduce 

	

(10.77) 	015(t) = e 2C1i(t) 	0(0 in  D. as el 0, 

where 

1 
Cu(t) 	—[Rim i  k(0) Rumk(0)if wk(s) o dwin(s), 3 	 0 

1, 2, • • • , d. 

By (10.74), we have 

(10.78) H8(1) = I + 178(s)  o  d62(s) 

r, 
= ++08(1) f s

0 
11802) de 802) des(ti) 

J 0  

I ee(1) 	1068(0  o  d6 8(t1) 

03) 	03) 	02) 	01 ) 
00 011  178 	o 

de 8 	o  de 8 	o  do 8  

and so on. Hence, setting 

	

(10.79) 	A m  = 	" • • f tm  de80,,,) 0 des0„, i) 0 • • 0 de801 ), 
0 0 	0 

it is easy to conclude 

	

(10.80) 	178(1) =  f  ± A l  ± • • • + A l  ± 0(e21 + 2) 

in D.(End(ARd)) as s  J 0. 

Furthermore, by (10.77), we can deduce for each in  = 1, 2, - • • that 

= e2m 	• • - 	0 	0] 0 dDi[COm_i)] 0 Sift' 	f'-' dDi[C( 0 0 	0 (10.81) 
- • . 0 dD I [C(t i )] 	0(e2m+') in D.,(End(ARd)) as e 

On the other hand, denoting by Je(t) the Rd (D  R4  C) Rd C) Rd-valued 
process Juk „,(r 8(t))/2, we see from (10.69) that 
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m8(1)=I±s2so mew132[/80Adt 

I + e$ '  

+ 	foti  Ms(taVe(t202[P(tiAdtzdt 

and so on. Hence, setting 

%inn- 

	

(10.82) 	B„ = 	1.1  J."  • 	1  15 2[P00].152[Je(tn-i)] . 	 • • • b2[P(t1)] 
0 0 	0 

Cit nifitn_i • • • dti, 

it is easy to conclude that 

	

(10.83) 	M 8(1) =  1+  B1 + ••• ± 	0(a21 + 2) 

in D.,(End(ARd)) as e 4, 0. 

Furthermore, it is easy to deduce of each n = 1, 2, • - , that 

	

(10.84) 	B = 	(152[J])n 	0(en+i) in D.,(End(ARd)) as e,j, 
n! 

where J J8(0) = (R uk,„(0)12) E Rd 0 Rd 0 Rd 0 Rd. 

We now need the following algebraic lemma: 

Lemma 10.10. Assume that d = 21 is even. 
(i) Let a1 , az , • • • , a„, E R d  0 Rd and b 1 , bz, • • • , b„ E Rd (D 

Rd 0 Rd C) Rd. Let A E End(ARd) be a product of Dda D1[a2], • 
Nan] and 152[b1 ], 152[b2], • • • 152[bi,] in some order. Then 

	

(10.85) 	Str(A) = 0 if m 2n < d  = 21. 

(ii) Let b = (b uk„,) E Rd 0 Rd (D Rd 0 Rd and suppose it satisfies 

(10.86) 
bgfkm = bfikm = kink  = bknaj 

bukin 	 = O. 

and 

Then 
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Str(05 2([01) 
1 

(10.87) 
2'

E 	sgn(v)sgn(p)b, (1)v (2) p (1) p (2) 
Ev, p c(2l) 

X  b, (3)  „(4) it (3) p (4) • • • b (21-1)v (21)/3  (21-1) /i  (21) 

where S(2/) is the permutation group of order 21. 

Proof will be given at the end of this section. 

Remark 10.5. The curvature tensor Rijk m  satisfies the relation (10.86). 

By (i) of Lemma 10.10, we have 

Str[B„A„] = 0 if 2n m < 21 = d. 

If 2n m = 2/ and  m>  0 or if 2n m>  21, then by (10.81) and 
(10.84), 

B„A„, = 0(82m+ 2n) = 0(621+1) in A.,(End(ARd)) as e .1, 0. 

Hence we obtain by (10.80) and (10.83) that 

Str[M8(1)./78 (1)] = enStr[Bi] 	0(821 + 1) in  D. 	as e 

Therefore, it follows from (10.84), (10.87) and Remark 10.5 that 

(10.88) 

c.21 
Str [Afe(1)/P(1)] = ""it StrViziR1Jk,(0)/21)9  + 0421 +9 

521 

2211! , peS(2 
sgn(v)sgn(u)R„ (1) y  (2) A (1) it (2)(0) 

v 4-1  0 

X Ry (3) v (4) IL (3) p (4) (0) ' ' Rv (21-1) v (21) p (24-1) F(21)(0) 

0(g21 + 1 ) in D., 	as e O. 

Combining this with (10.70), (10.71) and (10.72) and noting 

E[450(w(1))] = (270 -d/2  = (27r)- ' 

we finally obtained the following: 

Str[e(e2, 0, 0)] = E[Str[M 8(1)//E(1)}60(X8(1))} 

(10.89) 	1  E 
2"n'l! 	

sgn(v)sgn(y)R, (1) v (2) (1) /4 (2) (0) ,pes(21) 
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X R,(3) v (4) (3)p (4) (0) • • • R v  (21-1) v (21) p (21-1) (21) (°) 

± 0(e) 

as eJ.0. 

It is clear that 0(e) in (10.89) can be estimated uniformly with respect to 
x e M which we take to be the origin of the normal coordinate. 

Generally, denoting by .lifk„,(r) the scalarization of the curvature 
tensor Rukm (x) as before, define a function C(r) on 0(M) by 

C(r) — 	,„ 1 
,„ E 	./ sgn(v)sgn(u) : 	 , v (1) v (2)p (1) p (2) (r) 

(10.90) 	X 4, (3) v (4) p (3) p (4) (r) - 4(21-1) v (2/) (2z—i) (2/) (r), r E 0(M). 

It is easy to see that 

C(ra) = C(r) 	for every a 0(d) 

and hence C(r) depends only on n(r) = x E 0(M). Thus we may write 
C(r) by C(n(r)). This function C(x) on M is known as the Chern polyno-
mial. We have now established (10.64) and therefore 

X (m) = 	c(x)m(d)c). 

This formula is known as the Gauss-Bonnet-Chem theorem. In the case 
d  =  2, C(x) = K(x)12n where 

K(x) R1212(x)  
det(gu(x)) 

is the Gauss total curvature and hence 

2
17r Jr

m K(x)m(dx) = x(M) = 2(1 — g) 

where g is the genus of the surface M. This is the classical Gauss-Bonnet 
theorem. 

Proof of Lemma 10.10. A direct proof may be found in Patodi 
[223]. Following [194], we now give a proof based on a unifying idea 
of supersymmetry. Let 

d 	p 

AR d  = E 9 ARd be the exterior algebra over Rd and 4, ai  e End(ARd) 
po  
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be defined by (5.19) and its dual. Let A cRa be the complexification of 
ARd and let y, 	End(A cRd), i = 1, 2, • • • , 2d, be defined by 

721-1=  a1  ± 
i= 1, 2, ••• ,d. 

Yzi =  /i  (a? — a1) 

Then from (5.20) we have { y„ yi } = 2611  I and yr = y,. For every subset 
K =  Lui, P2, • • • ; 111c), PI < Pz < • - 	pk  of { 1, 2, • • - , 2d} let 

yir  = 	":71)k (k — 1) 1 2 yp 1)i42 	 and 

y= I.  

Then yi = I and ylc̀  = yx. Also, it is easy to see that 

Tr(y4) = 
if A ± 

if A = 0. 

Indeed if A ± ç, let 1u 1  = 	E A} and let I = AMp l }. Then, 
if #A = k = even, 

Tr(y4) 	—  D"' Tr(Y/4 1  • YÂ) 

	

= 	(N/=-1-.)k- iTr(y,i- • Yp i ) 

(/____)k- iTr(y,„ • yi7) 

= — Tr(y4) 

and hence, Tr(y9) = O. If  #A = odd, choose p E A and write 

Tr(y4) = Tr(Yp • YpYA) = — Tr(yp • y A • y11)  

	

= 	Tr(y„ • 7,1  • yi": 1 ) = — Tr(YA)• 

Hence Tr(y4) = O. 
It is easy to see that the system { yi }, where K is a subset of { 1, 2, - • • , 

2d }, forms a basis of End(AcRd): Independence of this system is easily 
seen from 

if K K' 

	

Tr(yEy,,) 	= d 	
if  K= K'. 

Also, dim End(A cRd) = (24)2  -= 22d = the number of the system { yx} 
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and the assertion follows. Thus every A e EndA(Rd) is expressed 
uniquely as 

	

(10.91) 	A = . 4.  Cr(A)y, 	CE (A) E C 

and 

	

(10.92) 	Tr(A) = 2dC 0(A). 

(10.92) is known as the Berezin formula. Next we claim that 

	

(10.93) 	(— OF -= (— WY (1, 2, • • • , 2d) • 

Indeed, if we denote the right-hand side by a, then { yi1 , a } = 0 and hence 
{ ar, a } = 0, i = 1, 2, - • - , d. From this, it is easy to conclude a = 
( — OF if we can show that a • co = co for co e .4(Rd) = C. But 

72k- iY2k= •• ■■/ — naka4kc  — alc ak) 

and hence 

Y2k-1Y2k6) = N/— la) 
	

if co e C. 

Thus 

aw  = (_ odGi .....- 02d(2d - 1.)  /2(4%/  Ocico  = (___ ly1W _ 02d2co  = Co.  

Hence, combining this with (10.92), we have 

	

(10.94) 	Str(A) = Tr((— OFA) = (— 1)d2dC(1 , 2, . . . , 24  (A). 

Now the proof of (i) is easy:  If we express A in the form (10.91), 
then, in each term, y's appear at most 2m ± 4n times. Hence if m + 2n < 
d, 

C(1, 2, - - - , 2d)(A) = 0. 

For the proof of (ii), we first note that 

132P1= 	b Y Y2y k y 23 0, k, m...1  fficm 21 1 2 —1 2rn- 1 

± a polynomial in y's of degree 2 

(10.95) 
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if (buk ,n) satisfies (10.86). Indeed, omitting the summation sign for 
repeated indices, we have 

Da] 	jkina;le  aidam 

1 VI 	 ••• 
— 	27tV lrokik„,yiyiykym 

where = y2, or y21 ... 1  and the exponent e depends only on the way of 
this choice. Noting the well-known property of (biik,n) satisfying (10.86) 
that the alternation over any three indices vanishes, it is easy to deduce that 

biikm a:"aja: a„, 

1 f 
= 24 t L'ijkmY21Y2JY2k-lY2m-1 	b tilcmY  2f-1 Y2j- 1Y2kY2m 

• bijkmY2t Y2.1- 1Y2k- 1 Y2m 	bilkmY21- 1 Y2IY2kY2m- 1 

blikmY2iY21- 1 Y2kY2m- 1 — biikmY2i- 1 Y2 jY2k- 1 Y2m 

+ a polynomial in y's of degree 2. 

It is easy to deduce from (10.86) that the first two terms are equal and the 
remaining four terms cancel. Hence the proof of (10.95) is finished. From 
this and (10.94), we can easily conclude (10.87). 

Remark 10.5. If we take another supertrace 

Str (2)  (A) = Tr[y (2, 	A) 

and do the same calculation as above, we can obtain the Hirzebruch 
signature theorem. Main difference in this case is that A. in (10.83) does 
not disappear in the process of cancellation, that is, an effect of the paral-
lel translation operator /14 (1) remains in the final form of signature 
theorem. For details, cf. [204]. Indeed, we can give a similar probabilistic 
proof of Atiyah-Singer index theorem for every classical complex, cf. 
[193] and [224]. 





CHAPTER VI 

Theorems on Comparison and Approximation 
and their Applications 

1. A comparison theorem for one-dimensional Itti processes 

Suppose now that we are given the following: 
(i) a strictly increasing function defined on [0, co) such that p(0) = 0 

and 

(1.1) 
	

10,r0-2  d  = co; 

(ii) a real continuous function a(t, x) defined on [0, co) x r such that 

(1.2) 	I a(t,x) — a(t,y)1 -Ç 	x y I), 	x, y  E R',  t > 0; 

(iii) two real continuous functions b i (t, x) and b2(t, x) defined on 
[0, co) x r such that 

(1.3) 	b i (t, x) < b 2(t, x) 	t > 0, x e R.  

Let (Q,,,-,P) be a probability space with a reference family  

Theorem 1.1. * Suppose that we are given the following stochastic 
processes: 

(1) two real (,7;)-adapted continuous processes xi(t,co) and x2(t,co); 
(2) a one-dimensional VD-Brownian motion B(t,co) such that 

B(0) = 0, a.s.; 

* This theorem covers the previous results obtained by e.g. Skorohod [150], Yamada 
[182] and Malliavin [108). 
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(3) two real (9-)-adapted well-measurable processes )6 1 (t,w) and 
)62(4* 
We assume that they satisfy the following conditions with probability one: 

(1.4) 	xi(t) — x1(0) = St°  a(s,xi(s))dB(s) 5:131 (s)ds, 	i = 1, 2, 

(1.5) 	x,(0) 	x2(0), 

(1.6) 	/Mt) 	b,(t,x 1 (t)) 	for every t > 0, 

OM 	/32(t ) b2(t,x2(t)) 	for every t > O. 

Then, with probability one, we have 

(1.8) 	xi(t) 	x2(t) 	for every t > O. 

Furthermore, if the pathwise uniqueness of solutions holds for at least one 
of the following stochastic differential equations 

(1.9) 	dX(t) = or(t,X(t))dB(t) 	k(t,X(t))dt, 	i = 1, 2, 

then the same conclusion (1.8) holds under the weakened condition 

(1.3)' 	b i(t,x) 	bAt,x) 	for t > 0, x E 	. 

Proof. * By a usual localization argument we may assume that 
cs(t,x) and k(t,x) are bounded. 

Step 1. We assume that b i (t,x) is Lipschitz continuous, i.e., there 
exists a constant  K> 0 such that 

I bi(t,x) — bi(t,y) 	Klx — yl, 	x, y E 	. 

Choose a sequence wn(u), n = 1, 2, ... of continuous functions as in 
the proof of Theorem IV-3.2 and set 

* The following proof is due to T. Shiga [146]. 
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It is easy to see that q3„ E C 2(R 1 ), gin(x) =  O for x < 0, 0 < gY„(x) < 1 and 
ç(x) t x+ as n 	co. An application of Itô's formula yields 

= l(n) + 12(n) -I- 13(n), 

where 

I(n) = sbaxi(3) — x2(s)) 10"(s ,x1(s)) — a (s 2(s)))d B(s), 

12(n) = o gxi(s) —  x2(s)) {fl i(s) — 2(s)}ds 

and 

13(n) = j2-* 	çax1(s) —x2(s)) (s i(s)) — 0-(s ,x 2(s))1 2  ds • 

It is clear that E(1 i(n)) =  0 and 

E(13(n)) 	j"  0  0Ax i(s)— x 2( s)) xi(s) —  x2(s)1) 2ds) 

Also, 

h(n). Egx,(0—x2(0){ms,x,(0) — b 2(s ,x 2(s))) ds 

----Eoax,(s)—x2(.0{ms,x1(s))— b i(s ,x2(s))1 ds 

d-E0axi(s)—x2(s)){bi(s,,(s))—b2(s,x2(s))) ds 

r  
95:(x i(s) —  x2(s)) i(s 	b i(s As))) ds 

▪ K  I  IE.„14)›.x2(43  xi(s) 	x2(s) ds  
Jo  

▪ Kf @,.(s) x2(s)) ds• J 

Hence, by letting n 	co, we have 

nxi(t) — x2(t))+] KE[ r  0  (x(s) — x2(s))+ ds] 

= K E((x i(s) x2(s)nds 
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We can deduce from this that 

ERx i(t) — x 2(t))+] = 0 	for all t 0, 

that is 

P(xi(t) x 2(t)) = 1 	for all t > 0, 

and so by the continuity of paths we conclude that (1.8) holds. 
If instead we assume that b2(t,x) is Lipschitz continuous, then a 

similar argument leads to the same conclusion (1.8). 

Step 2. In the general case we choose b(t,x) such that 

b i(t,x) < b(t,x) < b 2(t,x) 

and b(t,x) is Lipschitz continuous. Let X(t) be the unique solution of the 
following stochastic differential equation 

dX(t) a(t,X(t))dB(t) b(t,X(t))dt 

1 X(0) = x 2(0) . 

Then the result from step 1 gives that X(t) x 2(t) and xi(t) X(t) for 
all t > 0 as. Consequently we can conclude that (1.8) holds. 

Step 3. We now turn to the proof of the second assertion. We assume 
that the pathwise uniqueness of solutions holds for one of the stochastic 
differential equations (1.9), say for i = 1. Let X(t) be the solution of the 
equation 

idX(t) = a(t,X(t))dB(t) b i(t,X(t))dt 
(1.10) 

X(0) = x 1 (0) . 

For  e> 0, let X (±8) (t) be the solutions of 

f dX(t) = a(t,X(t))dB(t) (bi(t,gt)) ± 8)dt 

1 
 

1(0) = x1 (0) 

respectively. By what we have already proven, 

X(t) X(t) X(t) 	for every t > 0, 
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and if 0 <e2  < el , then 

X8(t) < X (-82) (t) and X (+82) (t) < X (4'1 °(t) for every t > 0. 

Hence by the continuity of b i (t,x) and the pathwise uniqueness of solu-
tions for (1.10), we have 

lim X (-8) (t) = lim X(t) = X(t) 	for every t > O. ell) 	€10 

Again applying what we have already proven to xi(t) and X (+O W, we have 

	

(1.11) 	xi (t) Ç X(t) 	for every t > 0 

since )6) 1 (0 Ç b1(t,x1(0) a.s. and b i (t,x) < b i (t,x) ± e. Hence, by let-
ting e  1 0 in (1.11), 

	

(1.12) 	x1 (t) Ç X(t), 	for every t > O. 

Since /32(t) > b2(t,x 2(t)) a.s. and b 2(t,x) > b i (t,x) — c, we have 
X>(t) < x2(t); letting e I 0 gives 

X(t) Ç x2(t) 	for every t > O. 

Combining this with (1.12) we obtain the inequality 

xi(t) Ç X(t) < x2(t), 	for every t > 0, 

which completes the proof of the second assertion. 

2. An application to an optimal control problem 

As an example of an application of the comparison theorem in the pre-
vious section we shall consider the following stochastic optimization prob-
lem. 

Let k(r) be a non-decreasing and non-negative function defined 
on [0, oo). Let (Be ,  ut) be a system of stochastic processes defined on a 
probability space (Q,Y -,P) with a reference family VD such that 

(i) B, (Bo  = 0) is a d-dimensional  (Y)-Brownian motion and 
(ii) ut  is a d-dimensional (9";)-well measurable process such that 

I ut i < 1 for all t > 0 a.s. 
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Such a system (Be , :i t) is called an admissible system or an admissible 
control. Let xE Rd be given and fixed. For a given admissible system, the 
response 1," is defined by 

(2.1) 	X7 = x + B„ + 
0 
 usds. 

The optimization problem then is to minimize the expectation E(k(IXZD) 
among all possible admissible systems. The solution is given as follows. 

Let U(y) be defined by 

(2.2) 	U(y) = 
1 0, 

y ERd\ {0} 

y = 0 ERd. 

Consider the following stochastic differential equation 

dX, = dB, + U(X,)dt 
(13) 	xo x.  

By the corollary to Theorem IV-4.2 we know that a solution (Al, BD exists 
uniquely. Set 

(2.4) 	uf = U(X°). 

Then the admissible system (./3°,4) gives an optimal control; that is, for 
any admissible system (B„u,), we have 

(2.5) 	E(k(IX 111)) 	E(k(IXT I)). 

We shall now prove this fact as a simple consequence of Theorem 1.1. 
It was originally obtained by Bend [3] by different techniques. 

Theorem 2.1. Let (B„u,) be any given admissible system and, for a 
fixed x  Rd , let the response Ira be defined by (2.1). Then on an ap-
propriate probability space we can construct Rd-valued processes {it') 
and 1,*1 such that 

(0 fxs:} 	{±», 
Ix°1 2 

{ t=} 
and 

for every t > 0, a.s. 
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Corollary. Let Wd C([0, oo) 	Rd) and F(w) be a non-negative 
Borel function on Wd with the following property: 

(2 	
if w 1 ,w2  Wd and I w 1(t) < 1 w2(t) I for every t 0, then 

.6) 
F(w1 ) Ç Rw2). 

Then for any admissible system (B„ u1) we have 

(2.7) 	E(F(X!)) E(F(.r)). 

That is, the solution {X} of (2.3) is optimal in the sense of minimizing the 
expectation of F(X!). 

Note that the particular case of F(w) = k ( I w(1)1) clearly satisfies 
(2.6). 

In order to prove the theorem we first state the following lemma. 

Lemma 2.1. Let  (X1 ,  131) be a pair of d-dimensional continuous (9;)- 
adapted processes defined on a probability space (0 ,Y --,P) with a refer-
ence family (..F;) such that {B,} is a d-dimensional Brownian motion with 

O. Let (Y„B;) be a similar pair defined on another space (Q' P') 
with (97). Then we can construct a probability space (6,..".") .P) with a 
reference family (...74 ) and a triple (S-1 ,2 1 ,S'1) of d-dimensional  (/)-
adapted processes such that 

(X„ B 	(Ît ,  ht), 
(Yr, 13) 	:g1) 

and 
(iii) (fi t) is a d-dimensional (..9 )-Brownian motion. 

The proof follows in exactly the same way as in Theorem IV-1.1. 

Proof of the theorem. Let (B„ur ) be a given admissible system and 
Xru= x+.131 + St°  u scis be the response. Let (Xf',Bf) be a solution of (2.3). 
Choose an 0(d)-valued Borel function (pii (x)) such that 

(2.8) p 11(x) = xii x  1  
x =  (x',  x2, . . . , xd) k 0 

x = 0. 

Set .11, = fro p(X)c1B, and IT: = ito p(X)dB:. Then we have 

(2.9) 	= x $ p_ 1 (X)dB :  f uscis 
0 
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and 

-1 	0 	0 t 
(2.10) 	.1",' =x+ 	

0 
f

o
p (X s)dB + II(XDds. 

Now we apply Lemma 2.1 to (X,13-t) and (Xf',.i3f). We then have a triple 
/4) of (9-)-adapted processes on a probability space with a re-

ference family (9) such that {Ê,} is a d-dimensional (9 )-Brownian mo-
tion and (X;', 131t) (2?7,Êt), (X7,13f) (±ajt). Clearly there exists an 
(9;)-well measurable d-dimensional process {4,} such that 14,1 < 1 for 
every t > 0 and 

= x Sto p-i(dt)dij + ro ztds. 

Applying Itô's formula to xi(t) = 	1 2  and x2(t) = I j 2, we have 

dx2(t) = 2-t•p-landh, + 217.4,dt + d dt 

= 21 t;14 + [2±a:• ± didt 

= 2,/ x2(t) dij + 	ûr  d] dt 

and 

dx,(t) = 2it•p-'(hdfil +  2Î.  U(hdt d dt 

= 21,t1d.fi + [-21.t1 + d]dt 

[-2,./xl(t) d]dt, 

where hr  = 01, M, • • • , 	(Note that [x-p-1(x)]1 = 	xj(P -1 (x))ii 

x 	6(1 1 x1). 	Set 	0-(t,x) = 2,fx  V  0, 	b i (t,x) = b2(t,x) = 

‘17 /M t) = —2  ),./TIT)-F- d and /32(t) =-- 22?7•iir±d. Then 
clearly /Mt)  = b i(t, x i(t)) and  fl 2(t)  —21 1'1 J +d = b2(t, x2(t)). As we 
shall see in the next lemma, the pathwise uniqueness of solutions holds for 
the stochastic differential equation 

(2.11) 
dX(t) = a(t, X(t))dB(t) + 	X(t))dt 

2(X(t)V0) 112dB(t) + [-2(1(t)V 0)" 2  + d]dt. 

Therefore we can apply the second assertion of Theorem 2.1 and obtain 
the result that xi(t) < x2(t) for all t > 0, a.s., that is 1 it1 < 1.t1 for 
all t 0, a.s. 
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Lemma 2.2. The pathwise uniqueness of solutions holds for the 
equation (2.11). 

Proof First we remark that the maximal and minimal solutions of 
(2.11) exist; that is, there exist strong solutions Xi  =FI (Xi (0),B) and 
X2 = F2(X2(0), B) of (2.11) such that if (X(t), B(t)) is any solution of (2.11) 
and X1 (0)=X(0)---- X2(0), then X i(t) < X(t) X2(t) for every t 0, a.s. 
Indeed, choose smooth functions  b 1 (x) and b 2) (x) such that 

M')(x) < b»(x) < • - • < b°(x) < • • < b(x) < 

• • • < b 2) (x) < • • • < b 2 (x) < b 2 (x) 

and 

lim N(x) =  Jim  b 2 (x) = b(x). 
n-.00 

Here b(x) = 	x) = —2(xV 0) 112 +d. Then the solutions  X(t) of 

I dX(t) = o-(t,X(t))dB(t) ± b' ) (X(t))dt 

1 X(0) = x 

satisfy that  X(t) < Xn+i(t), n = 1, 2, .. , by Theorem 1.1 and we set 
Fi (x, B) = lim X ( .). F2(x, B) is similarly defined. Clearly they possess 

the above property. Set 

b(z) dz i s(x) 	.
11 

 exp 
1  2z 	j 

x > O. 

Then s(0+) >  —00 if d = 1 and s(0+) = — co if d > 2. First we 
consider the case d = 1. By Itô's formula 

s(Xw) ._ smo» . f  s'(X(s)o -(s,X(s))dB(s) 

for any solution X(t) of (2.11) with 1(0) > O. Hence we have 

E(s(X(t))) = E(s(X(0))). 

From this we can conclude that  X1 (t) = X 2(t) a.s. for all t > 0 if X/(0) = 
12(0) a.s. This implies the pathwise uniqueness of solutions for (2.11). 
If d > 2, we see by Theorem 3.1 given below that inf X(t) > 0 a.s. for every 
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T>  0 if X(0) > 0 a.s. The uniqueness of solutions for (2.11) can be 
easily deduced from this; we leave the details to the reader. 

The optimization problem discussed above is a special example of 
stochastic control problems. For the recent development of the stochastic 
control theory, we refer the reader to Krylov [91].*' 

3. Some results on one-dimensional diffusion processes* 2  

Let / = (1, r) be an open interval in IC ( — co 1<  r < co). Let 
a(x) and b(x) be sufficiently smooth real valued functions* 3  on I such that 
0-2(x) > 0 for all x I. For x e I, the stochastic differential equation 

(3 1) 	
IdX(t) = a(X(t))dB(t) b(X(t))dt 

X(0) x 

has a unique solution Xx(t) up to the explosion time e= lirn T„, where 
nt. 

inf It; Xx(t) 	[an , b,]1 (a„ and b„(n = 1, 2, . . .) are chosen such that 
/ < a„ <b <r and an  land b. f  r). By the same proof as in Lemma 
IV-2.1, we can show that limXx(t) exists and is equal to 1 or r a.s. on 

tTe 
the set {e < col We define Xx(t) to be this limit for t > e on the set 
{e < co} . Let Fir, be the set of all continuous paths w: [0, co) — [1, r] 
such that w(0) E I and w(t) = w(e(w)) for all t > e(w): = inf {t; w(t) ---- I 
or w(t) = r} . e(w) is called the explosion time of the path w. Then Xx 
= {Xx(t)} defines a Ikrvalued random variable with e[Xx] = e. Let P., be 
the probability law on #71  of Xx. As we saw in Chapter IV, {P„} defines 
a diffusion process on I. It is called the minimal L-diffusion, where the 
differential operator L is defined by 

(3.2) 	L = 0-2(x) -d-)72d2 	b(x) 

Let c E/ be fixed and set 

(3.3) 	s(x) = exp I— a2 	dzi dy. 

* 1  In particular, this book contains important results by Krylov on the estimates for the 
distributions of stochastic integrals, an extension of It8's formula and stochastic 
differential equations with measurable coefficients. 
*2  Cf. [73] for more complete information. 
* 3  In the following discussion it is sufficient to assume that a and b are of class C'. 
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Then s(x) is a strictly increasing smooth function on / satisfying 

(3A) 	Ls(x) a.- 0 	on I. 

Theorem 3.1. (1) If s(/+) =  —oc  and s(r-) = co, then 

(3.5) 	Px(e = co) = Px(frrit X(t) = r) = Px(lim X(t) = 1) = 1 

	

ti .0 	 ri . 

for every x.* In particular, the process is recurrent, i.e. Px(o-y  <oc) = 1 
for every x, y E I where o•y  = inf It ; X(t) = y} . 

(2) If s(/±) > —oc and s(r-) = co, then lim X(t) exists a.s. (Px) and 
tie 

(3.6) 	Px(lim X(t) = I) -=-- Px(sup X(t) < r) = 1 
tie 	 t<e 

for every x. A similar assertion holds if the roles of / and r are inter-
changed. 

(3) If s(/+) > — co and s(r-) < 00, then lim X(t) exists a.s. and 
rie 

s(r-) —s(x)  (3.7) 	Px(lim X(t) = I) = 1 — Px(lim X(t) = r) — 
tie 	 tie 	 s(r-) —s(1+) ' 

Thus the process is not recurrent in cases (2) and (3). 

Proof Let 1<a<x<b<r and 7 ' = inf ft; X,15[a, b ]}  . By Itô's 
formula and (3.4), 

tAr 
sgx(t A t-» — s(x) = fo  s'(Xx(s))c7(Xx(s))dB(s) 

and hence 

Ex[s(X(t A 1-))] = s(x). 

By letting t t oc, we have 

Ex[s(X(r))] = s(a)Px(X(r) = a) -I- s(b)Px(X(r) = b) = s(x). 

Combining this with 

1 = Px(X(c) = a) ± Px(X(r) = b) 

* i(t) = X(t, w) = W(t), w E C. Also e = e(w). 
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we have 

s(b) — s(x) 
(3.8) P.Mr) = — s(b)  — 

 

Px(X(T) = b)— 
s(x) — s(a) 
s(b) — s(a)* 

Suppose s(r—) = —s(1-1-) = 00. Then 

lim P„(X(r) = b) = 1. 
a 11 

Hence 

Px(sup X(t) b) lim P.,(X(r) b) = 1 
a 11 

for every b < r and consequently Px(sup 	= r) = 1. Similarly 

Px(inf X(t) = 1) -- 1. Now it is easy to conclude the assertion of (1). Next, 

assume that s(/±) > —co and s(r—) = 00. We can deduce as above that 

(3.9) Px(inf X(t) = 1) =  I .  

Now rl' h  = S(X(t A T)) — s(1+) is a non-negative martingale and, letting 
a 1 and b t r, we can easily see that Y, = s(X(t A e))— s(1±) is a non- 
negative supermartingale. Consequently Hai Y.  = lim S(X) s(l+) exists 

r co 	 tie  
as a finite limit a.s. (Theorem 1-6.4). Therefore lirn X, exists a.s. and in 

Ile 

view of (3.9) we must have (3.6). 
The proof of (3) is similar and thus omitted. 

Let I < c < r be fixed and set 

2  f exp 	2b(z)  ,7_11.fc ___[ 2b(z) 	chi  (3.10) 	ic(x) 	 c 0.2(z) CI4 	c  ÇAY 	1-44' 0.201) "4" 

x E I.  

Lemma 3.1. Let u(x) be the unique solution of 

{

Lu(x) = u(x) 

u(c) = 1 

zi(c) = O. 
(3.11) 
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Then 

(3.12) 	1 ± K(x) ..<__ u(x) .... exp {ic(x)} , 	x 	I. 

Proof. u(x) is the solution of (3.11) if and only if it satisfies 

u(x) = 1 + fc  ds(y) f 3: u(z)dm(z), 

where 

Y 2b(z)  ,rizi ,,... 
ds(y) ..=- exP [— j*,  a2(z ) 14 "Y  

and 

, 	z 2b(11)  d,71  1 	d z. dm(z) = z exp LI', 0.2( 7) -/ 0.2(z) 

Hence 

u(x) = :Éo  uk (x) 

with  u0(x) 	1 and  u(x) ----- f: ds(Y) i. 
 

u„_ 1 (z)dm(z). Clearly  u(x) ..,._ 0 
and  u1 (x) — ic(x). Consequently 

u(x) _-_ 1 ± u 1 (x) = 1 ± K(x). 

On the other hand, if we suppose that 

u(z) < K(z)n/n!, 

then 

u ÷ (x) = sxc ds(y) f:u n(z)dm(z) < -rilly s: ds(y) 5:/c(z)ndm(z) 

5: ds(y)„(y). E dm(z) = if- 1  s: ic(y)ndk(y)] 

— 
(n + 1)!* 

Consequently 
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u(x) = °±. un(x) < 2 K(x)n  — exp {K(x)} . 
n=0 n! 

Remark 3.1. It is obvious that 
(i) K(r-) < co  = s(r-) c oo 

and 
(ii) K(l+) < 00 s(/±) > —oc.  

Theorem 3.2. (1) If K(r-) = K(1±) =  cc,  then 

	

(3.13) 	Px(e = co) = 1 	for all x 1. 

(2) If ic(r-) < co or K(l+) < co, then 

	

(3.14) 	P „(e C co) > 0 	for all x e I. 

(3) 
P x(e c co) = 1 	for all xe/ 

if and only if one of the following cases occurs 
(i) K(r-) c co and Ic(l+) < co. 
(ii) K(r-)  <00  and s(l+) =-- —co. 
(iii)K (l+) < co and s(r-) = co. 

Proof. Let u(x) be defined by (3.11). LetICa-Cx <b Cr and 
-c.  = inf It; X(t) (a, b)} . By Itô's formula 

de-tu(X(t)) = e -tu'(X(t))o -(X(t))dB(t) ± e -t(—u(X(t)) + (Lu)(X(t)))dt 

:= e-tu'(X(t))47(X(t))dB(t) 

and hence e-tAlu(X(t A 1-)) is a martingale. Letting al I and b t r we 
immediately see that exp (—t A e)u(X(t A e))  is a non-negative superrnar- 
tingale. If K(r-) = K(1±) =  oc,  then by Lemma 3.1, lim u(x) = 

xi 1 
lim u(x) = co. Consequently P x(e c oo)> 0 is impossible because ti—m-
xtr 
exp(—(t A e))u(X(t A e)) is bounded as.  as a non-negative supermartingale. 
This proves (1). 

Next suppose that K(r-) c CO. Without loss of generality, we may 
assume that c < x. Let f =inf {t; X(t) = c}. By Lemma 3.1, u(r-) < co 
and hence 

(3.15) 	exp (—t A 1-')u(gt A -0) is a bounded Px-martingale. 
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Consequently 

(3.16) 	u(x) Ex[exP (— t A Ilu(X(t A 7))]. 

Letting t t co in (3.16), we have 

u(x) = Ex[exp (—e)u(r-); lirn X(t) = r] 
t I eAT 1  

Ex[exp (—T')u(c); lirn X(t) = c]. 
t eAT I  

If Ex[exp(-e); lirn X(t) = r] = 0 then we have 
t eATI 

	

U(X) 	u(c)Ex[exp (—I"); un , x(t) 	u(c). t ti Ai  

This is clearly a contradiction. Therefore Ex[exp(—e); lim X(t) = r] > 
1 eAT' 

which implies that P x(e < co) > O. 
Finally we shall prove (3). If K(r-) < oo and if none of (i), (ii) or (iii) 

hold then we must have s(1+) > oo and K(/+) = 00. Then Px(lim X(t) = 
tie  

1) > 0. Since exp(— t A e)u(X(t A e)) is a non-negative supermartineale 
and lirn u(x) = co, we must have e =  co a.s. on the set Ilim X(t) = 11. 

x 1 	 tic  

Consequently P x(e = oo) > 0. Therefore if Px (e  <00) = 1, then at least 
one of the conditions (i), (ii) and (iii) must hold. 

It is now sufficient to show that each of conditions (i), (ii) and (iii) 
implies that P x(e < oo) = 1 for all x. First we shall assume (i). Define 
G(x, y), x, y e by 

(s(x) — s(1-))(s(r-) 	s(y))  
s(r-) — s(1+) 

(s(y) — s(1-))(s(r-) 	s(x))  
s(r-) — s(1+) 

x < y, 

y 

If f(x) is a bounded continuous function on I, then the condition (i) implies 
that 

u(x) = G(x, y)f(y)m(dy) 

is a bounded function. In particular 

u 1 (x) = G(x, y)m(dy) 
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is a bounded function. It is easy to prove that u e C2(/), u(/-1-) u(r-) 
0 and Lu = —f. In particular, Lu i  = —1. Hence by Itô's formula, 

tAe 

ui(X(t A 	-1- tAe = 	ualf(s))dB(s). 

Consequently 

—Ex(ui (X(t A e))) u1 (x) = Ex(t A e). 

Letting t  f  co yields  u1 (x) = Ex(e) < co. This proves that P x(e  <00)  
1. Next we shall assume (ii). For each n = 1, 2, . . . , set an  = 
inf ; X(t) 1+1/n1 and a, = inf {t;X(t) = r} . Then lim d„ A a,  = e. 

ntco 
By the result of case (i), Px(c7„ A a, <00) = 1 for all x. By Theorem 3.1, 
Ern Px(c7„› ar) = 1 since s(r —) < co and s(1+) = —co. Clearly {(71. < 
,, too  

00} = U {ar < el.} and hence P,(o-,. < 00) = 1. Consequently 

Px(e < co) = Px(0*, = e co) = 1. 

(iii) is obtained by interchanging the roles of 1 and r. 

4. Comparison theorem for one-dimensional projection of diffusion 
processes 

Let a = (o(x)) be a sufficiently smooth function: Rd x 	a(x) 
ERdORd and b = (V(x)) be a sufficiently smooth function: Rd D 

b(x) Rd . We consider a diffusion process X = (X(t)) on Rd defined by the 
solutions of the following stochastic differential equation 

(4.1) 	dXit  = 	 bi(Ig)dt, 	i = 1, 2, . , d. 

The diffusion X is defined up to the explosion time e (cf. Chapter IV, 
Section 2). As explained in Section 6 of Chapter IV, this is the diffusion 
process generated by the differential operator 

(4.2) 	L = E aq(x) 	82  +  E  bt (x) a  
2 4.1-1 	aXiaX1 	a7ci 



Set 

(4.3) 

(4.4) 

and 

d 	aP ap a(x) = E cif (x) (x)— (x) 
t.1•.1 	axg 	axi 

b(x) = (Lp)(x)1 a(x), 	X E R d\S 
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where 

d 
agi(x) =  

k-1 

Let p(x) be a smooth real function on Rd and let I = = p(x); x E 
R"}. Then I is an interval in  R'.  Let S be the set (possibly empty) of all 
x ERd  such that p(x) is an end point of I. Let /° be the maximal open 
interval contained in I and 1-  be the minimal closed interval in [—oo, co] 
which contains I. We assume that 

	

an 	an 	) 112 

	

117p(x)f = (‘ au(x)—r 	(x) > 0 	for all x E R d\S. 
1./-1 	axi  

leg) = sup a(x), 
(4.5) 	 xeD(;.p) 

b+(0 = sup b(x), 
D(;p) 

a-(0 = inf a(x) 
xerg.4;p) 

b-g) = inf b(x),  c  
xED (;p) 

where D(c;p) = Ix; p(x) 	for 	/°• We assume that a±( )  and 
b(c) are locally Lipschitz continuous functions on P and a±0 > O. 

On the interval /0  we consider the following four minimal diffusion 
processes ±± = ( ±(t)) which are generated by the operators L*± respec-
tively; 

(4.6) 

I 1d 2  L++ = a+  g) 

1d 2  
= ce(0 

(

1d2  
+ 

' 1d2  L-- = ai0 cTe 

b-(0 c4), 

b+(0 tfij, 

b-g) 14). 
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Each of the diffusions is given as in Section 3; thus, the sample paths 
±±(t) are defined for all t > 0 and are 1-valued continuous paths with 

I\/° as traps. 
Let X, be a sample path of the above diffusion (4.1) starting at x0  E 

Rd\S and set 

= inf It; t < e, 	. 

We assume that if C < co then lim p(X) exists in Ï.  We set  p(X)  
s 

lim p(X) for t > C. Thus  p(X) is defined for all t > 0 as an 1-valued 
51 
continuous path. 

Theorem 4.1 ([54 ]). Let xo  E Rd\S be fixed and  ç2  = p(x0)E /° •  Let 
X = (X e) be the above diffusion starting at x0 . Then we can construct 1- 
valued continuous stochastic processes n  „ , 17— , , on the same 
probability space such that the following properties (i), (ii) and (iii) hold. 

(i) OM has the same law as ( p(X,)). 

(ii) ( ip±) has the same law as 	= 	±(t)) starting at c for each 
of four combinations of ±±. 

(iii) If we set 

and 

r  = max 77, 
os.st 

min ?is  

1P = max 71p± 
	npt =  min  r/P, 

then with probability one we have 

(4.7) 	?V- 	< fit+ 	for all t > 

and 

(4.8) 	e- 	77, < + 	for all t > O. 

Proof. For simplicity we assume that C = oc a.s. and that (c-±)  are 
all conservative diffusion processes on P; the general case can be proved 
with a slight modification. 

Set 

0+0) .E [a(nla+(p(Mds and P(t ) fgo[a(X)1(2-(p(X3))}ds. 
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Then clearly 

ç$(t) ._<_ t < Olt) 	for all t > 0. 

Let w+(t) and wit) be the inverse functions of t i— 93+(t) and t 1---- 0-0) 
respectively and set 

XI+)  = X(w+(t)) 	and X,!-)  = X( -(t)). 

As in Chapter IV, Section 4, we see that 4+)  =  (X ( )'  ,X (+)2, ... , 
4+) d) and 4-)  = (1{ -",X -)2,. . • ,X,(-) d) satisfy the following sto- 
chastic differential equations with appropriate d-dimensional Brownian 
motions g+) = (g+)1,.g+)2, ... ,BP-)d) with BP-)  = 0 and X-)  = 
(B -) ',B1 -)2, • • . ,Bt  (-)d) with B,;-)  = 0 respectively: 

dXrf' ) ' . (a+(p(XP-) ))1a(4+) ))" 2  ± o-1(XP"))dir ) k 
k-1 

(4.9) ± [a÷(p(X+) ))1a(XP-) )1Y(XP-) )dt, 	i = 1,2, ... •, d 

AT )  = xo, 

clAT ) ! = (a-(p(AT)))1a(Xr))" 2  to l(X -' ) )(1.1r) k 
(4.10) -I- [a-(p(X -)))1a(4 - )Abs(4 -) )dt, 	i . 1,2, ... 

{ 	

= .x0 . 

, d 

By Itô's formula, 

(4.11) 

and 

fdp(V )) = (a+(p(V )))1a(V ) ))" 2 c'  crii(V) )-ai (X+))dBroi 
I,J-1 	aXi  

± [a+(p(X+ )))1a(V ) )] (Lp)(V ) )dt 

P(XS+)) = o 

(4.12) 

[ dp(Al -)) = (a-(p(X f -)))1a(AT ) ))' /2  A 	 1-Pci(X -))dX -» 

± [(1-(P(XrDla(X: -)ALPXxl -))dt 

P(10-)) = •)- 

Hence, if we set 
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d n 
1120-XXID ap 

) (X 

	

".»"" 	
i E 	(11a(XP ))) 	; 	P))d.B )j 1,± 

4J1 0 	 aXi  

then (fit) and (7) are 1-dimensional Brownian motions and we have 

idp(X iç+)) = (a+(p(XN))" 2ditf  
(4.13) 

IS±)) 

and 

idpar )) = (a-(p(X " -)))) 2dit a -(p(X -'))b(X -' ) )dt 
(4.14) 

Pgrin = 

Let = p(X) and 17 = p(X -)). Then by (4.13) and (4.14) we have 

	

(4.15) 	
de = (a+m)ii2a7 + a+  (e)b(4 -0)dt 

7111-  — o  

and 

	

(4.16) 	
&17 ' 	= (aOlT)) 112dr3  ± sz-(17)b(X --) )dt 

77(3.  = 

Consider the following stochastic differential equation 

	

(4.17) 	I de +  = (a+07;F+D1/2cdt  

t 	= 

In Theorem 1.1, take 

	

X 1 (t) ---= e, 	X2(t) = e+, 
a(t, = 02+0112) fl(t) = b(4+) )a+00, fl2(t) =  

and 

b i(t , = b20, = b +  (0a+  

Since we assumed that a+(0 and b+g) are locally Lipschitz continuous, 
the pathwise uniqueness of solutions holds for the equation (4.17) and 
hence, by Theorem 1.1, we have 
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(4.18) 	ittf 	n;F+ 	for all t 	0, 	a.s. 

Similarly, if e-  is the solution of the stochastic differential equation 

(4.19) 	
I de- 	(a+(g--))11' 2d-§ ± a+ 	-)dt 

rit" = &s ,  

then we have 

(4.20) 	e- 	ri;F 	for all t > 0, 	a.s. 

Also, if e+ is the solution of the stochastic differential equation 

{ 47+  = (a-077 +))1/2dit a(q;+)b+07+)dt 
(4.21) 

= 

then we have 

(4.22) 	TIT 	17+ 	for all t > 0, 	a.s. 

and if 777 is the solution of 

(4.23) 	
= (a-  (777 -))' ' 2  di" + OE-01;7lb- (77 -)dt 

then 

(4.24) 	777 	Fr 	for all t 0, 	as.  

Finally, set 1, p(X 3. Then, since 

max tr,' = max „ 	min e 	min 77, 
ossst 	ostsv±co 	0ss15.= 	oss vi- ct) 

and t < 1,v+e (t), we have 

(4.25) max e max tb and min e min 77,.
ossst 	ossst 	ossst 	oscst 

Similarly, using the fact that t > v-(t), we have 

(4.26) 	max riT < max 1, and min ris: >  min ,,. 
0<.st 	0<sr 	 Ost 	0<st 
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Combining (4.18), (4.24), (4.25) and (4.26), we have 

F77- =  max tj; - max Ç max 77 s  = 
0<sst 	ossst 	0<sst 

and 

= max Is  < max np <  max — = 
0<sst 

Similarly we can obtain 

qr 

This proves the theorem. 

Remark 4.1. If a(x) in Theorem 4.1 depends only on p(x), i.e., if there 
exists a function cl(0 defined on I such that a(x) = 11(p(x)), then  a(c) 

	

= ji() and therefore we may assume that  i 	/7+ and rjt -  = 
In this case we have 

17- 
	

for all t > 0, 	a.s. 

As an application of Theorem 4.1 we shall now investigate the possi-
bility of explosions for non-singular diffusions. Let X=(1(0) be the d-
dimensional diffusion process determined by the solution of (4.1). We 
assume d > 2 and det (au (x)) > 0 for all x E Rd . Our problem then is to 
find a criterion which determines whether or not explosion happens in 
finite time, i.e., whether e is finite or infinite. It is easy to see that X(t) 
leaves any bounded set containing 1(0) in a finite time a.s., and hence we 
may assume for this problem that au(x) = (5" and  b(x) = 0 for  J  x  < 1 

d 
and 	= 1, 2, ... , d. Let p(x) I xj 212 = E (x02/2, xRd. Then 

= [0, 00) and S =  {O}.  In this case, 

d 
a(x) = E ati(x)xixl 

and 

b(x) = 	a"(x)I2 	bt(x)xl) 	for x e R\ {O}.  

Following (4.5), we set 
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a+(r) = max a(x), 	a(r) = min a(x) 

and 

1)+0 = max b(x), 	b-(r)= min b(x) 
xi 

for r  E (0, co). It is easy to see that these functions are locally Lipsc-
hitz continuous and a*(r)> 0 for r E 00). Let r+ (4-) and r -  = 
(r7) be the minimal diffusion processes generated by the operators 

1 d 2  a+(r) 	c71-.2 + b+(r)-d-i-.41 ) 

and 

1 d 2  
a(r)  (Ter.2 + b(r)  efir ) 

respectively. Set 

c+(r)= exp 2b+(u)du, 	c(r) = exp fri  2b1(u)du 

and 

1 s+(r) = f 	uu 	s(r) =fr c-1(u) du 
c+(u) ' 

for r E (0, co). By the 

s+(r) = 3 -(r) — 

above assumption, 

—(41 	1) (10 -1  —1) 

— log r 

d > 2 

d = 2 

for r E(0,1). Hence s+(0 -) = s-(0 -) = — 00. By Theorem 3.2, if e+ 
and e-  are the explosion times for (r+(t)) and (r-(t)) respectively, then 

(e+ = co} = 1 or P).-  {e+ < co} = 1 	for r E (0, co) 

accordingly as 
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1 [11c+(r)] [c+(u)la +(u)idudr =  co or < co ; 

also 

{e- = co} = 1 or PT {e-  00} = 1 	for r 	co) 

accordingly as 

Se: [ 11c-(r)] g[c -(u)la-(u)) dudr = oo or < 00. 

Here Pit and P,7-  are the probability laws of r+ = (r+(t)) with r+(0)=r 
and r -  = (r-(t)) with  r(0)=r respectively. By Theorem 4.1, we may 
assume that 

max  r(s) < max I X(s)1 2/2 max r+(s), a.s. 
ossst 	ossst 	 ossst 

and hence 

a.s. 

Consequently we have the following result. 

Theorem 4.2. (Hashiminsky (46]). Let Px  be the probability law of the 
solution X = (X(t)) with X(0) = x of (4.1). 

(i) If 

11c+(r) i [c+(u)I a+(u)kludr = co, 

then Px(e =  cc)  = 1 for all x Rd . 

(ii) If 

fc: 11c-(r) f rl ic-(u)la-(u)]dudr < co, 

then Px(e < co) = 1 for all x Rd . 

5. Applications to diffusions on Riemannian manifolds 

First we shall introduce some necessary notions in differential geome- 

try- 
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Let M be a d-dimensional complete Riemannian manifold and 17  
be the Riemannian connection (cf. Chapter V, Section 4). To every pair 
X,Y EX(M) we associate a mapping Rxy : X(M)— X(M), called the 
curvature transform, by 

(5.1) 	RXY = Pr  CX.Y3 (Fgr y — FrVx). 

In local coordinates (xl, x2 , 	, xd), 

(5.2) 	RxyZ = XlY/Zk.R aiajak  

where X = Xid„ Y = ra, and Z = 	= aax,) ; furthermore, 

(5.3) 	<Raja i  k a a > = Rijki * and Rijki 	gihRh  jkl 1 

where Ri  jki was defined in Chapter V, Section 5 by 

Di 
 iki 	akfi i,} — a, t il  -F { al 	( 

 Ii 
 a) — 	I i  l a» 

A plane section at x e M is a 2-dimensional subspace of  T(M). 
Let be a plane section at x and let X, YE Tx(M) be an orthonormal 
basis for The sectional curvature K() of is defined by 

K() = <Rxr Y,X>. 

It can be shown that  K(c)  depends on alone and is independent of the 
particular choice of X and Y. In local coordinates, 

K(c)= X t rY kXl-Rijki 

if X = ra„ Y = rai  and {X, Y) are orthonormal. For X E3E(M) such 
that II XII = ,AX, X> .1, the Ricci curvature p(X) of the direction X 
is defined by 

where {X, Y2> • • • Yd} is an orthonormal basis at Tx(M) for each x and 
{ {X, Y,) } is the plane section generated by X and Y,. p(X) is independent 
of the choice of { Y2, Y3) - • Y} .  In local coordinates, 

* <., .> is the inner product in each tangent space. 
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p(X) = XIX I Ru  and Ru  = Rk  ijk 

where X = Xla i  with 11X11 = 1. 

Definition 5.1. M is called a space of constant curvature if KM is 
independent of both the choice of the plane section  ç at each x eM and 
of the point x 

Definition 5.2. Let y: / ---. M be a smooth curve. y is called a geo- 

desic if the tangent vectors y= dy are parallel along y; in local coor- 
* 	dt 

dinates, y(t) = 0,1(0 ,y2(t ) ,  ... ,yd(o) is a geodesic if and only if 

d2yk 
(5.4) 	—

dt2 
(t) + I lc A& dY i  . 0  

t " dt dt 	' 
t E  I.  

The following are a consequence of the existence and uniqueness 
theorems for the differential equation (54) :*2  for every x E M and X E 
Tx(M) there exists a unique open interval J(X) in RI which contains 0 
such that 

(i) there exists a geodesic y: J(X) — M such that y(0) = x and 
y*(0) = X; 

(ii) if a < 0  < b  and c: (a,b) --M is geodesic such that c(0) = x 
and c*(0) = X, then (a,b) c J(X) and c(t) = y(t) for t e (a,b). 

Definition 5.3. The above geodesic y is denoted by yx• We set 

T(M)= {X e T(M);  le  J(X)} 
.„------------____ 

and define the exponential mapping exp : T(M)  —p M by 

(5.5) 	exp X = yx(1). 

It is also denoted by exp xX. Clearly exp tX = Mt). 
Set 

ro  = r 0(M) = max {r; there exists a ball in Txo  (M) of radius r about 
0 on which expxo  is a diffeomorphism} . 

* 1  By Schur's theorem, the first property implies the second property if d 3 ([7]). 
*2  e.g. [47]. 
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If M is a simply connected space of constant curvature c then r0  is given 
as 

(5.6) 	ro(c)  [o0, 

c › o 
c 	O. 

We also state the following fact known as Meyer's theorem. If the lower 
bound of the Ricci curvature is not less than (d—Da2  > O * then M is com-
pact and the diameter of M is not greater than nla. Furthermore, the fun-
damental group of M is finite ([7] and [122]). 

Let c = (9 1 ,92 ,  . . . , od- ') be the spherical polar coordinate on the 
sphere in Tx0(M). (r = d(x 0,x),0',02, . . . ,0d-1) induces a local coordi-
nate in a neighbourhood U of x0, called the geodesic polar coordinate, by 
the exponential map 

(r, I-- expxo  It. 

Under this local coordinate, the Riemannian metric has the form 

(go  = t 1 o \ 
k 

where ( 1i(r,0',0 2, . . . ,0d - ')) is a Riemannian metric on the geodesic 
sphere S(x0 7)= {x; d(x0,x) . r, x e M} . The Laplace-Beltrami opera-
tor has the following expression 

(5.7) 
A = 4+ 	1Met G (ara c'W6)--n--,-.a 

1 	d-1  a (._, — a ) 	 E —, g i „Met G wi  + 
^/det G , ao 

where G . (gii) ([47]). 
Let h be the Jacobian determinant of exp o. Then we have 

(5.8) —a log h + d — 1 — .j 
r 	

.- log „Met G . ar 	 ar 

Also, if M is a space of constant curvature c, then 

* We assume  a> O. 
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a 	a 
(5.9) 	— log A/det G = —ar log A, 	0 < r < r o(c), 

ar 

where 

(. 1.— sin 

	

I 
	

ii_c r)  d-1 

, 	C > 0 

	

A = A(r, c) = rd-1, 	 C = 0 

	

(

I 	 d-1 

	

,--- sinh,,Z="--J r) , 	c < O. 
V —c 

The following lemma plays an important role in our further discussions. 

Lemma 5.1. Let the Ricci curvature p(X) satisfy that 

(d — 1)b p(X), 	X E T(M), 	ilXii = 1, 

and the sectional curvature K( )  satisfy that 1(0 < a for every plane 
section Then we have 

a 	a 	d — 1 

	

log h 	log A(r,b) r e (0, rx0(M)) 

— log h > —a log A(r,a) a 	 d — 1 
ar 	ar 

and 

(ii) 	h(r) 	A(r, b)/r" 1 , 	r e (0, rxo(M)) 

h(r) 	A(r, a)/r'', 	r e (0, ro(a)). 

For a proof, see [7] (pp. 253 — 256) and [42]. 

Generally, a coordinate mapping 0:U — Rd, 	M is called a nor- 
mal coordinate mapping at x 0-1 (0) if the inverse images of rays through 
OC Ra  are geodesics. A normal coordinate neighborhood N, the domain 
of a normal coordinate mapping 0, has the property that every y e N can 
be joined to 0- '(0) by a unique geodesic in N. As a corollary to Lemma 
5.1 we have the following. 

r e (0, ro(a)) 

Corollary. If the Ricci curvature p satistes p(X) > (d — 1)c, X e 
T(M), 	= 1, X E M, then the volume of a normal coordinate ball 
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B(x0 ;r) is smaller than or equal to the volume of a normal coordinate ball 
of the same size in the simple space form of constant curvature c. 

By the simple space form we mean the sphere if c>  0, the Euclidean 
space if c =  0 and the hyperbolic space if c < 0, (cf. [7], p 256). 

Now we shall apply the comparison theorem to the Brownian mo-
tions on M. Let xo  E Mbe  fixed and let B(xo ,r)---=. E M; d(x 0,x) < r} . 
For a fixed r* < r x0(M), let X ---- (X e) be the minimal Brownian motion on 
B(xo,r*). As we saw in Chapter V, Section 4 and Section 8 the transition 
probability density p(t,x,y) of X exists with respect to the Riemannian 
volume m(dx): 

P x(X e clY) = P(t, x, Y)m(dY); 

moreover p(t, x, y) is Cc') in (0, co) x B(xo,r*)X B(x o ,r*) and p(t, x, Y) 
= p(t, y, x). Let r* < r o(c) and let (0)) be the minimal L (c) -diffu-
sion on (0, r*), where the operator L (c)  is given by 

(c) 	1 I d 2 	I d 	1 dl 	1 	1 	d I 	d1 
L 	VcP 	log A(r ' c)) cT-) = -f" 	 ° Tr)* 

Let us assume that d > 2. Then 

s(r) 
Y Af(Z, C) d \ dz Afro,c)  5, *1 f exp(—ji 	a — 

ro 	 ro rikZ, C.1 
At_ _ 1  a 

rp 1.1 k.Y5 r-') 

satisfies s(0 ±) = co. Hence the results of Section 3 imply that 0 cannot 
be reached in a finite time for 	Also, the transition probability density 

(c) (t, c , ri) exists with respect to the measure A(1, c)dli, is CC°  in (0, co) x 
(0, r*)x (0, r*) and satisfies p ( c) (t, q) p (cqt,q, Noting now (5.7), 
(5.8) (5.9) and Lemma 5.1, the comparison theorem immediately implies 
the following results. 

Theorem 5.1. Let the Ricci curvature p(X) satisfy that (d — 1)b < p(X) 
for all X E T(M), 11X11 = 1 and x M. (Let the sectional curvature 
K() satisfy that  K(c) < a for all plane sections at every point x.) Let us 
fix r* such that 0 < r* < r 0(M) (respectively 0 r* < r o(a)).* 2  Then 
we can construct, on a suitable probability space, the above diffusions 
(Xe)  and (V) ) ( respectively (I) and (Va)) ) such that ab)  = d(x0,10) 

* 1  0 < r o  <r*. 
*2  We have automatically that r* r o(b) (respectively r* r.0(M)). 
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(respectively ao= ckx,,,x o» and the following is satisfied: if r = d(x0,Xe), 
then 

(5.10) 	> r, 	(respectively Ca) < r,) 

for t > 0, a.s. 

Corollary 1. (A.Debiard-B.Gaveau-E.Mazet [14]). 
(i)  

lim p (b ) (t, r, r 1) p(t, y, xo), y = (r, 0), 0 < r < r* 
el l() 

(respectively Hm p ( a) (t, r, r 1 ) 	p(t, y,  x0)).  
ri  1 0 

(ii) If C is the explosion time (i.e. the hitting time to r* for (0) ) (res-
pectively (C1))) and the hitting time to 613(xo,r*) for  (Xe)),  then gb) (C) < 
Ey(C), y = (r, 0), 0  < r  < r* (respectively E;.a)(C) Ey(C)) where E,(.0  
and Ex  stand for the expectations with respect to the probability measures 
of (C) ) with a)  = r and (X,) with X0  =  x respectively. 

Remark 5.1. 0 is an entrance boundary for ()) and (C) ) in the sense 
of Itô-McKean [73]. It is well known then that limp (a) (t, r, r1 ) and 

.110 

lim p ( b) (t, r, r1) exist. 
r110 

The proof is immediate from the above theorem and the corollary to 
Lemma 5.1. 

Corollary 2. Let M be a connected, complete d-dimensional Rie-
mannian manifold (d 2) with non-positive sectional curvature for 
all plane sections. Furthermore, we assume that the Ricci curvature p 
satisfies the condition 

0 p(X) (d — 1)c> co, X T(M), ILX1I = 1, x E M, 

then (X,) is conservative i.e., 

P(t, x, M) = 1 	for all x e M. 

Proof Without loss of generality, we may assume that M is simply 
connected because the Brownian motion on M is obtained as the pro-
jection of the Brownian motion on the universal covering space g of M. 
Then r* = co by the Cartan-Hadamard theorem ([7]) and the assertion 
follows immediately from the theorem. 
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In this result, the condition on sectional curvature can be dropped. 
For details, cf. [186] and [206]. Similarly, we see that if M is a complete 
simply connected Riemannian manifold and satisfies the condition 

0>  a > IC(0 > —00 	for all plane sections 

then  (Xe)  is non-recurrent. 
Further applications of comparison theorems, especially, applications 

to the smallest eigenvalue of the Laplacian, can be found in Azencott [191] 
Malliavin [108], A. Debiard-B. Gaveau-E. Mazet [14] and M. Pinsky [140]. 

6. Stochastic line integrals along the paths of diffusion processes 

Let M be a manifold and y be a smooth bounded curve in M. Then 
the line integral f y a is defined for any differential 1-form a. Now let 
X = (X(t)) be an M-valued quasimartingale, i.e., t f(X(t)) is a quasi-
martingale in the sense of Chapter III, Section 1, for every f Fo(M). 
We can then also define the "stochastic" line integral firco, ,,3  a along the 
curve {X(s), s [0,t]} for any differential 1-form a by making use of 
stochastic calculus; moreover the resulting process t fi..E0, 0  a is a 
quasimartingale. One standard way of defining this is as follows. 

We choose a locally finite covering {W.) of M consisting of coordi-
nate neighborhoods and choose coverings {U„ }  and { V.} of M such that 

CI„ V„ 	W„. 

Define sequences {or} and {1)} of stopping times by 

re )  = inf {t ;  t >  oler 1 , X, 	U„) 

kn) 	inf It ;  t > Tr, Xt 	V,,} 

Let a a i(x)dxf and X(t) = (XV)), 	t <  o,  under the local 
coordinate in  W. We define fX[0,rj a by setting 

d fak (71)  At 

a=E EE 	(at) (X(s))0dr(s) 
XEO, 	71.•1 km1 k(")  At 

where {v.} is a partition of unity subordinate to {U}. It is easy to see that 
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Salo t]  a is well defined and is independent of the particular choice of co-
ordinate neighbourhoods (cf. [50] and [51]). In the following, we shall 
restrict ourselves to the case when X(t) is a non-singular diffusion on M. 

As we shall see, f xmo  a can be defined more directly in this case. 
Let M be a d-dimensional manifold and X = (X(t)) be a non-singular 

diffusion process on M. As we saw in Remark V-4.2, we may assume that 
M is a Riemannian manifold and X(t) is obtained as the projection onto 
M of the process r(t) on 0(M) which is the solution of 

(6 1) 	
dr(t) E k(r(tpodwk(t) r, 0(r(0)dt 

.  
r(0) = r. * 

Here {El , r2, . .. , Ed } is the system of canonical vector fields corres-
ponding to the Riemannian connection and re  is the horizontal lift of a 
vector field b on M. The projection X(t)= *OA of r(t) onto M is the 

diffusion process on M generated by the operator Ti  A d-b. For simplicity, 

we shall assume that X(t) is conservative. Let a E AM) be a differential 
1-form and (ti l (r),  ã2(r), 	, eid(r)) be its scalarization. Recall that 
«,(r) = a(x)e1, i 	1, 2, . . . , d, if a(x) = a j (x)dxl and r = (x', ep in 
local coordinates. Let a(b) e F(M) be defined by a(b)(x) = a i(x)bt(x) if 

a  a = at(x)dxi and b = 11'(x) — in local coordinates. axt 

Definition 6.1. We set 

(6.2) 	xto, rj  a = fo  eik (r(spodwk(s) 	f:a(b)(X(s))ds. 

1XTO, tj a is called the stochastic line integral of a e A l(M) along the curve 
{X(s), s G [0, 	. 

This definition coincides with the above mentioned one. Indeed, if 
U is a coordinate neighbourhood and a < 1-  are any stopping times 
such that X(t) E U for all t e [a, then 

ak(r(s))odwk(s) 	a(b)(X(s))ds 

= f:ag(s))[e(s)ode(s) bi(X(s))ds] 

* As in Chapter V, Section 4, (wk(t)) is the canonical realization of the d-dimensional 
Wiener process. 
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= ai(X(s))0dXf(s) 	for any t e [a, T]. 
a 

It is obvious that t 	a is a quasimartingale. Its canonical XEO, t3 

decomposition is given in the following theorem. 

Theorem 6.1. 

(6.3) 	a = 
0 

iik(r(s))dw k (s) fo  (a(b) — —1 (5a) (X(s))ds 
KO, rI 	 2 

where 6:  4 1 (M). F(M) is defined as in Chapter V, Section 4. 

Proof We have 

fxco,o a  = Sto dk(r(sDodw k(s) fo a(b)(X(spds 

(Te k (r(s))dw k(s) 	fto d[a k (r(s))]•dwk(s) 

sto a(b)(X(s))ds. 

Since r(t) is the solution of (6.1), 

d[eik(r(s))i= (L i cik)(r(s))odwi(s) + 	k)(r(s))ds 

and hence 

d[a k(r(s))]•dwk(s)= (r. j d k)(r(s))dwi(s)•dwk(s) 

= crokxr(mds. 

By Proposition V-4.1, we have 

Ekdk = (Vcr)kk 

where 1070,11 is the scalarization of the (0,2)-tensor Va. Consequently 

rikcik  = (17a)11eikel„ 

and by (4.22) and (5.14) of Chapter V, 
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rikak = i(1 7a)11elek= gu(17a)11  = 
k 1 	 1 

Example 6.1. Let M = R 2  and X = (X 1 (t), 12(t)) be the two dimen-
sional Brownian motion. If 

1 
a = (x'dx2  x2dx% == (x1. 1 x2),  

then 

o X1 (s)dX2(s) st  
xtoir a= 	

oX2(s)dri(s)}. 
l  

This stochastic integral in the case X(0) = 0 was introduced by P. Lévy 
([1001 and [101]) as the stochastic area enclosed by a Brownian curve and 
its chord. We set 

(6.4) 

and 

S(t) = a  =' ff Xi (s)dX2(s) xto,o 	2 	0 f t  X2(s)dX1(s)} 0 

r(t) = X 1 (t) 2 	12(t) 2  

Then by Itô's formula, 

(6.5) 	r(2t)2  = sto  r(s)d13 1 (s) 	t 

where 

t Xi(s) 	X2(s) 
Bi(t)=

o r(s) 
dXi(s)  +o—

r(s) 
dX2(s). 

Clearly the system of martingales (S(t),B i(t)) satisfies the relations 

03 1 ,BI >, = t, <13 1 ,S>, = 0 and <S,S>, = 	
0 

r(s) 2ds. Let B2(t) Sq6t) 4  
where O r  is the inverse function of 

— 1 sr
D 

r(s)2ds. 4  
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By Theorem 11-73, the Brownian motions NO and B2(t) are mutually 
independent. We suppose from now on that X(0) = x is a fixed point in 
W.  Then we know that r(t) is the pathwise unique solution of (6.5) with 
r(0) I x I (Chapter IV, Example 8.3). In particular, this implies that 

s < I] c ofBi(s), s tj, and consequently the processes {B2(t)} 
and {r(O} are mutually independent. Thus we have obtained the following 
result. The stochastic area S(t) has the expression 

(6.6) 	S(t) = B2 (-1,T. 

 

I t 

 r(s) 2ds) 

where B 2(t) is a one-dimensional Brownian motion independent of the pro-
cess {r(O}. Suppose that X(0)=x # O. Then X(t)# 0 for all t > 0 and 
hence we can introduce the polar coordinate representation:  X1(t) = 
r(t)cos0(t) and X2(t) = r(t)sin0(t). An application of Itô's formula yields 

dS(t) 	fr(t)cos0(t)sin0(t)dr(t) 	r(0 2(cos0(0)2d0(t) 

— r(t)cose(t)sin0(t)dr(t) 	r(t) 2(sinO(t)) 2d0(t)} 

= 	r(t) 2d0(t), 2 

and hence 

S(t) = to  r(s) 2d9(s). 

Then 

6(0:= 0(t) — 0(0) =--  

2 <and consequently d<B I ,j>, = 	d B i , S>, 0 and 
r(t) 2  

dO, = 4)4  d<S, S>, = r(tY dt 

Again by Theorem 11-7.3, there exists a Brownian motion {B3(t)} 
(B3(0) = 0) independent of {B i (t)} (and hence independent of the process 
{r(0)) such that 
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0'(t) = B3  (r i* 1.3). 

The formula 

(6.7) 
11 (t) = r(t) cos[0(0) ± B 3(5 to  ,.* ds)] 

12(t) = r(t) sin [0(0) ±  B3 (f  Tc+,. )2  ds)] 

is known as the skew product representation of two dimensional Brownian 
motion. 

As an application of (6.6) we can obtain the following formula in the 
case X(0) =-- 0: 

(6.8) 	E(etac") = (cosh ) --1 	for 	e R. 

Indeed, noting the independence of {B2(t)} and {r( O} , we have 

Waco) . E(exp [g B2 (4- fo  r(S) 2dS)1) 

= E (exp [— i 5 or  r(s) 2ds1) 

= {E(exp [— §; 
 s: 

q(s)2d
])

}
2 

where n(t) is a one-dimensional Brownian motion with 1(0) = 0. Since 

1,77.1  ?Act)} 4 {7(O} for every c>  0, 

E(egs") ) = .IE (exp [— i 2  t2  . J: 
2 	7l(S)2dS1)1 2. 

Therefore it is sufficient to prove the formula (Cameron-Martin [10] and 
Kac [80]) 

(6.9) 	E(exp [— 
A j" 

	= (cosh ,ID), -112 	(.1 > 0). 

Let K(t, s) = t As and consider the eigenvalue problem in  2'2([0, 1D: 



{ an = [(n ± .
1 ._) 7 ]2  , 

gSn = A/T sin (n ± 1 Inx  
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A. f
i 

IC(t,$)0(s)ds = At). 
0 

The eigenvalues and eigenfunctions are given by 

n = 0, 1, ... . 

Now it is easy to see that 

,i(t )=-_:t. 0 -Anon(t) 

where the . are independent random variables with common distribution 
N(0,1). Then 

r i 

j 0 ,12(s)ds _— 

and hence 

NO T. : 9  

1 
E(exp[—A j 	 - 	1  . q 	ii 2(s)ds]) = ° E (exp [— 1  ,1) = II ,‘,/ 0 	A. 	'3-0 	

1 ± 

-112 

21- 

8 	

A. 

=  fio (1 ± 	.1. ) 

	

- 	(2n ± o1/42 	= (cosh "r5), -112. 

We can also obtain a formula which is more detailed than (6.8) 
(Gaveau [33]). Let X(t) be the two dimensional Brownian motion with 
1(0) = 0. Then for every x e R2,  t>  0 and e R, 

(6.10) 	E(egs (" I X(t) = x) — 	exp [(1 — 2- coth§-9 1- 2t  1. 2 	 2   2sinh t  2 

(6.8) is an easy consequence of (6.10) and hence the following proof 
also provides us with another proof of (6.8) (or (6.9)). * 

* Still another proof of (6.9) may be found in [114]. 
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Proof. By the rotation invariance of the Brownian motion it is easy 
to  see that 

E(egs ( c)  I X(t) = x) = g eicsco I r(t) = r) 

where r = lx ( . By (6.6), we have 

E(e t) I X(t) = x) = E (exp [— -12- f to  r(s) 2dslIr(t) ----= r). 

But we know (Chapter V, Section 3) that 

u(t, x) = E((exp [—a E l  x + X(s)I 2dspf(x+X(t))),  t>  0, x E R2, 

where a>  0 is a given constant, is the solution of the initial value problem 

(6.11) 
{ au --.

1  
eu — aixi2u 

ult..° =1 

Let {H„(x); n ---- 0, 1, . . . } be the Hermite polynomials and set 
= (exp [—Ix 1 TH„(x i)Hin(x2) for x = (xi ,x2) and n, m = 0, 1, '. . . . 
Since 0 satisfies 

(A — 1 xj 2)0 „ m  ± 2(n + m + 1)0, m  = 0, 

we can solve (6.11) by the method of eigenfunction expansion: 

u(t, x) = $R2 pe,(t, x, y)f(y)dy 

where 

CC 

pa(t, x, y) = E cvla(n+mi-ilt e„ m(x)en,n(y) 
n,rn I= 0 

and 

e„ m(x) = (nn!m!2"-m(2a)- 1 12)-1 /2ya%on((20  '4x).  

A formula on Hermite polynomials yields 
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2 co 

	

	 2 2 H a2a) 1 m  -xi) H.02a) 1  /4Yi) .,-,-(,, 1\ 
pa(t,x,y)= 11 E e- - '4' a v-jrvt e—  •'177 (xi  +yi  )12  n  

1■ 1 m..0 	 ,s/ z 2nn!(2a)--114  

(6.12) 	 exp[—".2a 2  coth,/27:et[x? —2xiyisecht +.31]] 

Therefore, 

E(egs (t )  11(t)  = x) = p4218(t, 0, x) 6 exp [— C) 1  

_ 
 t exp [(1 — -4.- coth 	1 1.  

. 
2 sinh 2 

Finally we consider the three dimensional process 

1(14 ) = V1(t), X2(t), X 3(0)+ SOD, 

where (X,(t), X 2(t)) is a two-dimensional Brownian motion and S(t) is 
defined by (6.4). It is a diffusion process on R3  with generator 

1 A = —2 (LT + Li), 

where 

a 	x2  a 	a 	x, a L, = T7ci  — .T rx3  and L2 = a--)72 + 	. 

a It is a degenerate diffusion, but since [L,„L 2] = L 1 L2  — L2L1 

dim ,,C {L b  L2} x  .3 for every x. Thus the smooth transition probability 
density p(t, x, y) exists by Theorem V-8.1. It is easy to obtain from 
(6.10) that 

p(t, 0, x) = ( z,t) 2  f -. soe  . 	h /2 ° exp 1 4 m 	- i  /- x3  

 

 

xi + .4 	/2  1 ,,,,, 
— 2t tanh /21 "`" X = ( C 1 ) x25 x3) 

= il 
i..1 	 ,,./2,z sinh ,/27tt (2a)- ' ' 2  

x = (x1, x2), 	Y = (Y1, Y2). 
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(cf. Gaveau [33]). Also, by Example 8.1 given below, we see that the 
topological support .7(1)x) of the law Px  of {X(t)} with X(0) = x is the 
whole space WI = {w; C([0, co) — R3), w(0) . For a further de-
tailed study of this diffusion, we refer the reader to Gaveau [33]. 

Remarks 6.1. The formulas (6.8) and (6.10) can be obtained more 
directly by the following Fourier series expansion, (cf. [33], [216]): Let 
X(t) = (X'(t), X 2(t)) be a two-dimensional Brownian motion such that 
X(0) .---- 0 and set, for i = I and 2, 

41()  N/Tf ' sin 2nkt WO) and 
0 

7.7k)  =  /J cos 22rkt dr(t), 
o 

k =  1, 2, • • - . 

Note that { X1(1), X2(1 ), . a", 7, 	7g2) , k = 1, 2, • • } is a system 
of independent Gaussian random variables with mean 0 and variance 1. 
Let 5(1) be the stochastic area: 

S(1) = 1 	xi (s)dx 2(s) x 2(s)dx , (s)}. Tf-   
Then it admits the following expansion in the sense of  22(P) and almost 
surely: 

(*
) S(1) =  Ê-2)--;r1c-  f  (?1

(

c1) 	1/-2—X1(1))2) 	(77 (2) 	.\/-2— X2(1))4icl) }. 
ki  

This can be deduced, at least heuristically, from the Fourier series ex-
pansion of Xi(t): 

XV) = tX i(1) N/72 (Vi t sin 27cks ds eft  cos 271ks ds) 
Ic=.1 	0 	 0 

i =  1,2. 

It can be proved rigorously as follows: For F(s, t) Y2([0, 11 2), the mul-
tiple stochastic integral 

ri ri  
1(F) = J J  F(s,t)dX1(s)dX2(t) 

is defined to be the iterated stochastic integral 
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J 	F(s, t)dX 1 (s)}dX 2(s). 

This is well-defined because, setting 

= [X' (u) , X 2  (v) ; 	u 	1,0 	y 	t} 	for Ot<1, 

OW:  j. F(s, t)dXJ(s) is (F )-adapted measurable process and X2(t) 
o 

is an (F)-Brownian motion. It is easy to see that I(F) is also given by 

I'l

F(s, odx2(0 }dr(s)  

	

0 	0 

and that, if F, GE22([0, 1]), then 

ri ri  
I(F) —  1(G) }2]  = J J  [F(s, t) — G(s, t)P dsdt. 

In particular, if Fn , FE272([0, T]2) and F 7, F in -ZAP, 1 1 2), then 
I(F) --> I(F) in 2'2(P). Also it is clear that, if F(s, t) = f(s)g(t), 
YAP, ID, then 

ri 
I(F) 	o 	of(s)dr(s)jt  g(s)dX 2(s). 

Now define F(s, 	..Z2([0 , 112) by 

1 1/2, 	0,s-t - 1 
F(s, t) = 

— 1/2,0 	t < s 	1. 

Then I(F) = S(1). Also F(s, t) can be expanded into Fourier series in 
-F2([0, 1 ]2): 

- 
 F(s, t) = 
I  (cos 27rk,s — .,/2.-) sin 2nkt  

27rk 

sin  2nks(cos 2nkt —  

27rk 

Now, (*) can be easily calculated in  2'2(P)-sense and, since this is a sum 
of independent random variables, a.s. covergence also holds. 

Then, if la I  <2n, 
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I: = E[es ( "  I  IND =  x',  X2(1) = x2 1 

= E[exP[g, 	Og" — N/Tx'Ai2) 01,2)  .../2x2AP )  I]] 

= n E[exp[ 27ric —; (IN) - N/2xl)U,2)11E[exp[ -2--0(2) 
kPX 1 	 27ck 

N/T x2AP )]] 

for  (x',  x2) e R 2 . We see easily that, if a E R, 

E[exp[ 2÷Ek 00 — N/T ciAL 2)11 

E[exp[ 27r6  k 	07?)  — N/Ta)tP ) 11 

= (20-  hf jlex.p[ 	- N/Taly — (x2  + y 2)121dxdy 

2  = (1 —  (2:k )2)112 
 exp[(1 	(-E—rick  )a2]. 

Hence 

= kfii(1 	)2) -1  exprk2_, (1 —( 	27r5k  )2) -1( 2°-k  )2 1 x 

o- 
= 2 sin cr/2 exPR 1  —c" 	2 cot ° )Ix1 21 2  

by using well-known formulas 

sin x .7C2 	 1 	co 	1 

	

COt X -= + 2x E 	 n=1 x2_ n2n2 • n2n2 )2 	X 

 

By an analytic continuation and the scaling property of the Wiener 
process, we obtain (6.10). The proof of (6.8) is similar. 

For another interesting proof of (6.10), Cf. Yor [236 ] . 
Example 6.2. Let M be a Riemannian manifold. The horizontal 

Brownian motion r {r(t)} is a diffusion process on 0(M) determined by 
the equation (6.1) with ro = 0: 

I 
 (6 	
dr(t) = 17,#(0)0dw/c(t) 

.13) 
r(0) = r. 
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Let b be a vector field on M. The differential 1-form co(b) is defined as 
a usual by co(b) = b 1(x)dx1  where  b1(x) = gii (x)bi(x) and b = bi(x) axt* 

It is easy to see that the scalarizations of b and co(b) coincide: 

co(b),(r)= b 1(x)e 	bl(x)f5 = 	I  = 1, 2, ... , d. 

Suppose that bt( r) = co(b) 1(r) is bounded on 0(M) for i = 1, 2, ... , d. 
Then 

(6.14) 	M(t) =-- exp { it f 0  bt(r(s))dwt(s) — -1- st0  t rhs(r(s))Pds) 

is an exponential martingale. By the transformation of the drift determined 
by M(t) (cf. Chapter IV, Section 4.1), we obtain a d-dimensional Wiener 
process }V(t) ---= (}V(t)) where ITV) = W (t ) — fo bt(r(s))ds. The equation 
(6.1) now becomes 

Idr(t)= L.  k(r(t))odifi k (t) + 1:0(r(t))dt 
(6.15) 

r(0) = r 

where 4, is a vector field on 0(M) given by ro(r)= bk(r)r, k(r). It is im-
mediately seen that ro  coincides with the horizontal lift of b. Thus the solu-
tion of (6.1) is obtained from the solution of (6.13) by the transformation 
of drift determined by M(t). In particular, the diffusion generated by the 

1 operator -2-4+-b is obtained from the Brownian motion by the same 

transformation. Note that  M(t)  can also be expressed in the form 

M(t) = exp [ 	 t f 	co(b) + 1 — j.  6[co(b)KX(spds 
. XEO. d 	 2 o 

—1  f I fro(b)11 2(X(spds] 
2 0 

t 
=---- exp [f 	co(b) — .1 f o div(b)(X(s))ds 

xco,19 

—-12- f o 11b11 2(X(s))ds]. 

This follows immediately from (6.3) and 
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ti bi(r)2  = t elefki(x)b i(x) = gll(x)bi(x)b,(x) 

gii(x)bl(x)bi(x) = libliz(x). 

7. Approximation theorems for stochastic integrals and stochastic 
differential equations 

As we have seen in this book, stochastic integrals and solutions of 
stochastic differential equations are most important and typical examples 
of Wiener functionals. If, in these definitions of integrals or equations, a 
Brownian path is replaced by a smooth path, then they are defined by using 
ordinary calculus and we are thus provided with functionals defined on 
smooth paths. A question naturally arises: if we substitute in these func-
tionals defined on smooth paths an approximation of Wiener process (i.e., 
a process consisting of smooth sample paths which converge to Brownian 
paths uniformly a.s.), do they converge to original Wiener functionals? 
Since these functionals are usually not continuous in the uniform topology 
of the path space, the answer is negative in general and the limiting Wiener 
functionals, if they exist, need to be modified according to ways of 
approximations. For such familiar approximations as piecewise linear 
approximations or regularizations by convolution (mollifiers), however, 
the answer is affirmative if we adopt the symmetric multiplication in the 
definition of stochastic integrals or stochastic differential equations. 

Let ( W0P,Pw) be the r-dimensional Wiener space * with the usual ref-
erence family {A} . Pw is simply denoted by P below. The shift operator 
O (t > c): is defined by (19,w)(s) = w(t+s)— w(t). We shall 
consider the following class of approximations for a Wiener process. 

Definition 7.1. By an approximation of a Wiener process, we mean 
a family (B3(t,w)=(.8/(t,w),B(t,w), . .. ,B(t,w))), 5>0  of r-dimensional 
continuous processes defined over the Wiener space (W, P) such that 

(i) for every w, t 	w) is piecewise continuously differentiable, 
(ii) B6(0,w) is A-measurable, 
(iii) .13,5(t -1-1a5,w) = B(t, 0 k6w) - w(k6) for every k = 1, 2, . . . , t 0 

and w, 
(iv) 

EA(0,w)] = 0 	for i = 1, 2, . . . , r, 

* FV,; = [w E C([0, 00) 	R r); W(0) = 0} and Pvi is the Wiener measure on K. 
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E[ 1 40,w) 1 6] Ç_. a53 	for i =-- 1, 2, . . . , r,* 

ER f
a 

11 	.._ )1(s,w)ids) 6] 	c63 	for i = 1, 2, ... , r, 
0 

where 

d 131(s ,w) =-- --d-s- B's(s,w). 

If {135(t,w)} j>0  satisfies the above conditions, then for every T>  0 
we have that 

(7.1) 	E{ max 1 w(t) — Ba(t,w)1 2} --- 0 
05r7' 

as  fl  O.  O. 

Thus {13 50 10} 6>0 actually approximates the Wiener process {w(t)} . (7.1) 
is an obvious consequence of Theorem 7.1 below. A simple application of 
Holder's inequality yields that 

E[( f: I iY,,i (s,w) I doPic f: I A.Ns,w) i dsf 2 - • • ( f 50  I /Yil(s,w) I d)]  
1 < ci62(P1÷1)2±—+P m)  if p, ..... 1 and pi  4-p2-1- - - - -1- pm  < 6. 

By (iii), this estimate also holds if fg is replaced by 'r m. Again by 
Holder's inequality, it follows that 

n 1 (5 	 n2.6 	 , Eff f Ikji (s ,w) I dsr 	1Y ( . I 62(s ,w) I ds r • • - ( . 
nmc5 

 II) 5' " (s ,w)I del 0 	 .i o 	 j 0  

(7.2) 	 1 c.7,-(pi+p2 „,) < c 1 nlin3,2 • • • nz,',Ino- 

if 1 < p„ p 1 +p 2 + • • • +pm  < 6 and n, e Z+ . 

Let us introduce the following notations: 

(7.3) 	sii (t, 6):.---- -1TE 1_21. E px,,wvi i(s,w)  _ Bxs,w,p5(s,w)idsi 

* c,  c',  cl , c2, . . . are positive constants independent of 5. 
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and 

(7.4) 	co (t, 3): = E 	14f5(s,w)[13i(t,w) 	.13(s,w)]ds} 

for i,j = 1, 2, ... , r and  t>  O. Clearly (su(t,3)) is a skew-symmetric 
r x r-matrix for each t and 6. We shall make the following assumption. 

Assumption 7.1. There exists a skew-symmetric r x r-matrix (su) 
such that 

(7.5) 	su( 6 , 6) 	s j 	as 6 O.* 

Set 

1 (7.6) 	c11  = s , 

, 
T 

.g,  v • , = 1, 2, . 	, r. 

Lemma 7.1. Let k(6): (0, 1] 	such that k(6)  f co as 6 O. 
Then 

(7.7) 	lim c1i (k(6)6, 6) = cu. 
510 

Proof. We set 6* = k(6)6. Then for every n = 1, 2, ... , 
n-1 	(k+1),5 

2n6 su (n6, 6) = E E[ 	w)i3i(s, w) Bics(s, w)14(s, w)} ds} 
Jr01 

n-1 	$45 
= E E[ .1(4s, Ok6w) w i(k(5»ka(s, °law) km0 	0 

—o(s, ek,w) + wi(m))131(s, 07,610} ds1 
71 

= 2126s, f(6, + E[w1(k6)(Als(ô, eko) — No, oko» 
- wi(k6)(46, ok,w) — 	okom 

2n(5 su (6, 3) + 
n-1
kNi  {E[W i(k6)]E[B(b, 117) B(O, w)] 

- E[wi(k(5)]E[1(ô, w) 	w)]} 

* We may consider the case that s11(677 , 	sc, for some sequence 6. 1. O. All results 
below also hold in this case if we replace PI by the sequence {ô}.  
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= 2n6s1 j (6, 5). 

Hence 

6*sij (6, 6) 

= 6* sii(6* , 6) 

.---- E[f 06*  ii- (K3(s, w).1316(s, wpds] — E[ .1'6*  13(5(s, w)14(s, w)ds] 
0 

= •-f' E[46* , w).13J6(6* ,w)] — E[13:5(0 , w)13(0, w)] 

+ E[ $6*  ns, w){.13i(6* , w) — Bi5(s, w)} ds] 0 
— E[13,6(6* , w) {46* , w) — NO, w)}] 

1 = —2 
E[(40 , Gow) ± W(61)(40 , 0 ow) ± w 1((5*))] 

1 — E[40, w)06(0, w)] -I- 6* cu(6* , (5) 2 
—E[(NO, 0 ow) + w 1(61)(13(0, 0 ow) ±  w(((5*)  — 40 , w))] 

1 	 1 
=.- -- -I  . E[Bi6(0, w).13f5(0, w)] + --2- Erwl(P)wl(6*)] 

1 — -2- E[40 , w)I3i15(0 , w)] ± 6* c i ; (6* , (5) — E[40 , w)B-(0 , w)] 

— E [IV(6*)wl ((5*)] ± Erwi (P)BO, w)] 

r= 6* c, j (6* , 6) — 4- E[W(6*)wi (6*)] — EPA w).13g0 , w)] 

+ E[w 1(6*)40, w)]. 

The assertion is now clear since 

E[W(c5*)wl (6*)] =-- 6 i j 6* , 

I E[40 , w)B(0 , w)1I _.<._ (E [40 , w)2])" 2  (E[40 ,  w)2])1 2 
 

.' C26 = o(P) 

and 

I E[wl (6*).13(O , w)]I < (E[w -  $5*)2])" 2  (E[40  , 02])1 /2 
< c36*11261/2 = 0(0*). 
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Before stating our main results, we shall first give several examples. 
Let 45 be the space of continuously differentiable functions 0 on [0, l ] such 

that Op = 0, 0(1) = 1. Let  ç  = c4 0 and zI kwi = ws(k6+ 6) — wi(k6). 

Example 7.1. Choose 0' E 	i = 1, 2, . . . , r, and set 

(7.8) 	B(t, w) = wi(k6) + 0'((t — la 5)15)4kw i  

if kb < t < (k + 1)6, k = 0, 1, . . 

It is easy to see that {B6(t, w)) j>0  satisfies all conditions (i) 	(vi) of 
Definition 7.1 and hence it is an approximation of a Wiener process. For 
example, 

E[ 	.(s, w) ds} 6] = E[I z ow' 1 49( 	(s) I ds) 6  

= 15( J.: 9Y(s)ids)6(53 . 

Also, it is clear that s11(6, 6) = 0 and hence Assumption 7.1 is satisfied with 
1  = O. (Thus cij  = -2- oil  in this example.) If, in particular, Ot(t) = t 

for i = 1, 2, . . . , r, then {B5(t,w)}5>0 is the familiar piecewise linear 
approximation. 

Example 7.2. (McShane [115]). Let r = 2 and choose OE i = 1, 2. 
Set 

wi(k(5) 	95'((t 	Ic(5)/(5)Ak wr, (7.9) 	B(t, w) = 
wl(k6) + 0 3-Vt Ic6)104 kW, 

jkw  lAkw2 0,  

4kw'4kw2  < 

if kb < t < (k + 

It is easy to see that {B6(4 w)} e>0  is an approximation of a Wiener 
process. In this case, however, 

1 —
2 

j.  {B(s, w)hi(s, w) — B(s, w)h(s, w)) cis 

I A °Iv': °w21  (1  — 2  01 511(s)02(s)ds), 
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and hence Assumption 7.1 is satisfied with 

siz-----  fr  0 — 2 f : v.5 1 (s)9(s)ds). 

Example 7.3 (mollifiers). Let p be a non-negative C--function whose 
support is contained in [0, 1 1  and Rp(s)ds =--- 1. Set 

p5(s) = -;15-p( 3-A 	for 6 > 0 

and 

(7.10) 	1/(t, w) = f °ID  wr(s)p j(s — t)dy = 	+ t)p 5(s)ds 

for i = 1, 2, . . . , r. 

It is easy to verify that {BA w)). 4>o  is an approximation of a Wiener 
process. Indeed, (i) — (iv) in Definition 7.1 are obvious and (v) and (vi) 
are verified as follows. We have 

1 40, w) I 2'n .--- ( f : ,s÷--s- wl(6s)p(s)ds) 21n6m 

and hence 

E[ I B:5(0,w) I 21 = (51nEk So'  wi(s)p(s)ds) 2'1. 

Also, 

(s, w) ---- — -,1T j90  wt(s+60pV)d 

and hence 

EK 1 30  1 ki(s,w)Ids) 21 

= E[( 5 01  I hi6(6s, w)lds) 21627ft 

= E[C f: I fo  wV(s + -))11()d i (1021 
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= ER $ 10 1 : wi(6,(:)—(t5 - 	lds.) 27115m 

= ER fo  f: 	+ )1)'(0(glds) 2mibin. 

Clearly s1 (6,6). 0 and consequently Assumption 7.1 is satisfied with 
su  = O. 

First, we shall consider the approximation of stochastic integrals. Let 
a be a differential 1-form on Rr  given by 

a = ita,(x)dxg. 
1.■ 

We shall assume that all partial derivatives of ai(x), i = 1, 2, ... , r, 
are bounded. In particular, we have 

I  ai(x)1 .< K(1 + Ix!),I  = 1, 2, ... , r, 

for some positive constant K. Set 

(7.11) 	A(t, a; w) = a = 	al(w(spodwl(s) 
ve CO, t3 	1..1 	0 

and 

(7.12) 	A(t, a; B5) = a = 	ai(B5(sphf5(s)ds. 
B o 	I 0 

Theorem 7.1. Let {B5(t, w)} 6>c, be an approximation of a Wiener 
process satisfying Assumption 7.1. Then 

(7.13) 
lim E[ sup I A(t, a; B5) A(t, a; w) 
610 r  , e E sii  agaj(w(s))ds 19 = 0 

.1 0 1,1■ 1 

a for every T>  O. Here 81a, = 	«1. 

Proof. * It is sufficient to show that 

* We are indebted to S. Nakao for the main idea of the proof. 
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(7.14) 
lim E[ sup I f u(B6(s, w))hi(s, w)ds 4510 	t:orST 	0 

0 4}V(S)) 0 dW i(S) — E ( stjui(wwds 1 9 = 0 

for every T> 0 and j = 1, 2, . . . , r. Here U: Rr 	R is a C2-function 
a such that all partial derivatives are bounded and ut(x) = 	u(x). 

First we shall introduce the following notation. Choose n(6): (0,11 — 
Z÷  such that 

(7.15) 	n(6)46 0 and n(b) co as 6 O. 

We shall then write 

(7.16) 	3=  n(6)6, 

(7.17)  
= (k 1)3 

M(3) = kj 
if kg < s (k 

and 

(7.18) 	m(t) = tn(t)(6) = 

Integration by parts yields 

s(k+i); 
u(. 13 As, wpd 13 w) 

(k+1)3 

	

= UUMS, 	ifis [13J6((k 1)S-  w) — B- 16  (s, wAds 
kg 

= u(13,5(k3, w))[13l6(k3 +  3,  w) — Bgki -5 , w)} 

(7.19) 
(k+1)3 	11)))11gS, IONICS + 3, w) 	w)]ds 

i.1 
= (1413#8, VII)) — u(w(a)))[B-((k ± 1)3, w) Bk 3, w)] 

u(w(ki -5))[.815((k +  1)3,  w) 	w' ((k 	OS)] 
—u(w(a))[13i6(k3, w) wi(k3)] 

	

u(w(ki -5))[wi((k 	1)3) 	wl(ki -5)] 

	

(k+1)4 u,(13,5 	 13 (s, w))1Vs, wX((k ± 1)j , w) Bi(s, w)]ds. 
i.1 
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Also, 

Err G3) 
UQMS, WDdA i5(s, IV) 

= —u(B 6(t, w))[Bijatr(g), w) Bic5(t, w)] 
u(B6([t] —(3), wp[Bg[t]+(g), w) — Biat] —(3), w)] 

(7.20) 	ito  itct3....  (1)  u1(B6(s, w)).4s, w)[B 1,5([t]+(g), w) — B(5(s, w)]ds 

—[u(136(t, w)) — u(B 6([t] -(3), w))][B!5([t]+(j), w) — Bf 5(t, w)] 

—[u(B6([t] -(3), w)) — u(w([1 -(3)))][B;15([t]+(3), w) — Bi(t, w)] 

- u(w(ft] -(3)))[4[t]+(6), w) 	w)] 

u(B6([t]-(3), wp[Bi([1+(3), w) — Bg[t] -(g), w)] 

cr3_ cn u,(B6(s, w))131(s, w)[Bgt]÷(j), w) 	.139:5(s, w)]ds. 
i-I 

By (7.19) and (7.20) we have 

f uums, wpdBxs, _ fr u(w(,),odwi(s) f: . i .s.„,.„(w(s))ds 
0 

f u(B6(s, w))dBf5(s, w) 	u(w(s))dwl(s) 	c (w(s))ds 
0 	 0 i-1 

=-- 	[u(B6(t, w)) — u(BA[t] -(c-5), wp][B ;15([t]+(3), w) 	Bits(t, w)] 
[- u(B6([t] -(3), w)) u(w(ft] -(g)))][Bgt]+(g), w) — B ikt, w)] 

- u(wat] -(g)))[Bifftr(g), w) — Bi(t, w)] 

• [u(B 6([t] -(g), w)) u(w({tr (3)))][Bgtr (3), w) — BX[t] -(3),w)] 
▪ u(wat] -(3)))[B-Ati÷(3), w) BONS), w)] 

fro_ a) 	WDIVS, WABgt Ng), — 	wAds 

—u(wati(g)))[w i  — w iatl-CM 

• [u(w([t]13)))(wl(t) 	@N3))) — ll(WW)dWi(S)] 
Dr (I) 

— 'ter  (3)  g cuur(w(s))ds, 

nt1 + 	[u(Bk,--5, w))  — u(w(ks-))][Bwk + 1)3, — 
kO 

(7.21) 
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m(0-1 
+ u(w(k6))[13i((k + 1)3, w) — wi((k + 1)35)] 

— 11-1  il(W(kj))[Nkj, — Wi(k3)1 

mkt 1  u(w(ke-5))(w1((k + 1)3) — (k if)) — 	(3)  • [ 	 u(w(s))dw (s)] 

m:tno 1  f (kkg+1)3 	— u,(w(ki .5))11)Xs , w)[B15((k +  1)3,  w) 

— Bi(s, w)]ds 

+ mkt 1  umki-5» fkg:+ 1)1.k (s, w)(.13J,5  ((k +  1)3,  w) 

— Bi(s, w)) —  c(3, (S)]& 
m%--1 

± k.  uf(w(kgprc,f (c-5, — 

m(0-1 
(k  

	

E E 	+1)8  rui(w(kr5)) — u i(w(spids c 

	

k-O 	kJ 

: =  Mt) + I2(t) +  13(t ) + Mt) + 4(t ) + P6(t) + Mt) 

± Mt) + M t) +  110(t) +  111 (t ) + 11 2(t) 11 3(t)  

+ 	+ As(t ) + A ri,(t) 

It is clear that 

	

(7.22) 	Mon 14(0 11 	0 	as 	0 

and, by a martingale inequality, 

Er sup 1113(t) 40)[ 2] 	C4E[f Iii(Watlig) )) U(W(1))] 2dt] 

	

(7.23) 	05t5T 	 0 
0 	 as 	O. 

By Lemma 7.1, it is clear that 

	

(7.24) 	E[ sup 111 6(t )1 2] — 0 	as (5 I O. 
05t5T 

We have 

Er sup I A 7(t) f 



490 	COMPARISON AND APPROXIMATION THEOREMS 

C 5  EK ST J  wl ([4 -  (g)) — wf(s)  I  ds)9 
o 

(7.25) < c sT  É  f: E[i w'r ([4 -  (8)) — wl (s)1 2]ds 

< cs T2rg ---- 0 	as 	1 0. 

Also, by (7.2), 

goszpr 1/1 (t)1 2] 

< c6  E[ sup A (t , w) — BAti -  (S.), w)) 2  (BAN+ (g), w) — 	w))9 

CO+ a) 
C6± E[ sup ( I 	J h 	w) I ds)2  ( $511-4)  I  E1(S, 11,7) ds)9 i-1 	ostsT  J  Et)– (3)  

rk-f-1)3 	 (k+1)3 

(7  -26) — c6. 1 E[02,2(Tç J kb 	
i3,15(; }V) dS) 2( f ics 	IVS, 101 ds)9 

• C6 tmf 	f(k+i)j I t(5.  W) I ds) 2( (k+1)3  hic( 9  W) dS)21 
1-1 k –0 	k3 	 kb 

C6(M(T) + 1) it1  E[(is: I 	w) I ds)2( f:i ha(s w) I ds)1 

• c7(m(T) + 1)n(6) 4  (52 

< csn(6) 36 — 0 	as 6 1 O. 

As for I2(t), 

E[ SUP 1 12(t)19 
05rÇT 

< C9E[0s5T 13 ( 16([t]–(g), w) 	wiatr(g))) 2  

x (Biqa' (j), w) — Bi(t, w))9 
3+ (31 

< C 

	

	E[ sup (B(15([t](3), IV) — Wi(N–05)))2( 
Er 

0 

 3– cy) I NS, )01 (1 )
1 O<KT 

Oc+1)3 
= C9 E[ max (41c -S, w) wg(a)) 24 	1/4(s, w)ids) 2] iml 	Otk<m(T) 	 kb 

(7.27)  < c9 ± nf E[(B(kj, w) w‘(kj)) 2( 	113'gs, w)Ids) 2] 

c9(m(T) + 1) E[(40, w)) 2( fjo  Il(s, w)! ds) 2] 

c9(m(T) + 1) A {E[(130, w)) 4)EK I I kAs 	ds)411 1 / 2 

 JO  



r cr

Er3

p  03) 

CI3 
I h (0, w) I ds j I -6164, w)i ds1 2] 

Ii3(s, w)  I  ds I PAS 10] GIS} 

▪ c16E[ sup { 
OÇrT f Et] ) 

DTI-  OD 

(k+1)3 
• C 17 nif E[ { $  

k-O 	 kS (7.31) 
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• cio(m(T) 	1)(32n(b)4 62)112 

< c ' A(6) — 0 	as c51 O. 

In the case of Mt), we have 

E[ sup Ih(t)11 
05r5 T 

Et3 ÷ 63, 
• C12 E[  sup  (1 ± I iv([1-01))1 2)( 	 w)  I ds')9 - 	Ot-T 	 (d) 

< Ci2± {E[ sup (1 + WO) 2)2lE[ max ( 
(k+1)3 

A O v,s(s, 	lds)1} 112  
ti 	05r-ST 	 05k5mtn 

(7.28) < c13(E[  70(  fk(k3+1)3  h (s,  w)idsnin 

▪ cam(T) + 1) n ( 5)4 62) 1 /2  
• c15(n(5) 36) 1/2  — 0 	as 6 O.  

Similarly, as in (7.27) and (7.28), we can prove that 

	

(7.29) 	Er sup 14(0 j —0 	as 6 0 
ost<T 

and 

	

(7.30) 
	

E[ sup I /5(t)11 	0 
	

as  ô40.  
0<r-T 

For  161(t),  

E[ sup 1g(t)12] 

• ci,(n(T) + 1)E[{ f: 	Olds s: '(s, w) I  th}  

c 18  n(6)6 n"1144j2  

c 0(6) 36 	0 	as 6 1 0. 

As for Mt), 

E[ sup I /7(t)12] 
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c, 9E[0s27.( 1 + I watr(g)) I 2) osmI wi(t) 	NZ» 1 1 
• c20 {E[00:xm  °sups  wqt + kg) — w i(a)il) 1 /2  

(7 .32) 	C20 { E E[c .1,,, w/o ± kg) — w j(kr5) IT 1 /2 

_<c20 {(m(T) 	1)E[  sup  wi (t) I ill 1/2 

 [fl 	

tivislfs12]1 /2 

(45)(5 	" 

= c21(45)6) 1/  as (5 1 O. 

We estimate 110(t)  by 

E[0.sz 1 hat) 1 2] 

.(0-1 
• E[ sup E [u(B 6(k5 , w)) u(w(kS' m 1  ))12 	[Bi15((k 	1)3 , w) 0<t7" k—O 	 k—O — Nkj, 

▪ Er7g I  MBA j5, IV» — ii(W(kiN2 m(g)  1 [Bg(k 1)S.  , w) 

(7.33) 	 Nkig, w)] 2] 

- {E[m(T) m(g ]  [11( 8 6(kj , w)) — u(w(ke -5))111 

m -1 
X  E[m(T) 	[B16((k 	, w) 	Bis(kS',1014}  1/2 

- C22M(T) Im(g0  1 E[148160, 	wW)  I]  
m(7)-1 

X 	 Bit5((k + 1)3, w) — B-:5(kg w) i41 12  
< c23m(T) 2  {2E[1B.:5(0, w)1 4] ± EEJ w(3)1 1} 1/2  
< C24M(T) 233 

< c2577(6)-1  — 0 	 as 5 1 O. 

In the case of /11(t), we first note that 

igu(w(k3))(B:5((k +  1)5,  w) wl((k 1)3)) 

u.(w(k -040, e(k+„,w) 
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is an {.,} -martingale where n = °(n-1-2)3• Hence, by a martingale 
inequality, 

Efon-l ill(1)11  
E[ max 11n(w)1 2] 

osnsm(T)-1 

C26E[Ilm(T)-1(V)1 21 

m(7)-1 
(7.34) 	e26  E E[u(w(k3))2(40, 19(k+1),YW))9 

m(7)-1 
- C26 	EN(w(ki5))1ERNO, w)) 2] 

< c27m(T)5 
= c28120)- ' — 0 

We can show in the same way that 

(7.35) 	E[ sup J 112(0 
Clr$T 

as  c50.  

as  ôJ,0. 

As for P14(t), 

ET sup 1 A4(t)1 2] (:)T 
m(t)-1 fk+1)3 

E[ sup { E 	[ 14,04(s, 	— zi,(w(kg))1 t(s ,w) 
Clt<T k=0 k3 

X  all(k+1)3  
w) egjcisl 2] 

mon -1s(k+i); 
E[{ E 	[ zi,(13 , w)) 	ui(w(IcS)) I S(s, w)I 

k3 

r (k+1)3 
I 	w) I gIds1 

14  

(7.36) 	r 	m(7)-1 roc-i-us 	 1 s—k3 
C29 E E[{ E 	[J B(0,0k3w) + 	1V77, oldw)dri I /-1 	k3 	 0 

r (k+1)3
x I ns, w) I j k3 	I 13 (c,W)1 ck1c1s) 21 

• m(7)-1 :1(ki-1)43 
< C29M(T) E Ef E 	K I Bs(0, eaw) I /-1 	k ■ O 	k3 

rs- 	 r(k+1)3 
j 	hi5012 6$143 }V) I CIO I IV'S./ w) 	id 	I Èidg, /V) dflds} 

• c29m(T) 2  E[ { 	w) I f: ivs, 	ds I hi(s, w) I ds 
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+ f: if3m, w)Idri 5: 1 hexs, 141)1 ds f: !kg, w)  I ck- } 

_< 	A {E[I 	w)1 2( 	I 1)S(s, w)! ds.) 2( 5:1h1cy(s, w)Ids) 2] 

13t5(1, w)Idzi) 2( sjo i hfs(s, w)1 2ds)2( f 30  I Si(s, w)i 2ds)21). 

c30rrz(T)2  E  [E[I .13S(0, w) 11" 3ER 5:113'S(s, w)Ids) 3  

X  ( f 	s,  w) I ds)9213  

± ER fo lt 11, w)1d1) 2( 5: 	w)lds) 2( 	i3xs, Ids)1} 

1  
C31 noy 52 (6(n(6)6  63)2" + n(6)663) 

< c32n(6)43 — 0 	as 6  j O. 

Finally we shall prove that 

(7.37) 	E[ sup J  11, 5(019 — 0 	as  O j O. 
05tT 

For this, we first note that 

(7.38) 	Jcii(j, (5)= (54(i-5,  ô  + (3 — 6)cti (3 — 6, 6) 

where 

c*,(3, 6) = E[ 	, WAB!5(3 ,W) — Bi(s,w)]dsil 6. 

Hence 

A 5(t) = 4 777:11  Iii(W(kg» f si )  1.1416(s, w)(B/6((k 	1)3, w) 	B(s, w)) 

— cu(S — 6, 6)) ds 
m(r) — 1 

(7.39) 	+ E ui(w(ki -5)) S k3+6  (1.31AS WXB((k 	1) -6-  , w) 13'(s, w)) 
IctO 

cri(5, 6)) ds 

= : Ji(t) 	 J2(t). 
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It is easy to see that 

In(w) ;to  %mks.» fac+1); 	WXBSak 1)g ,w) 
4+5 

— BRS, 	— Cii(3 — 6, 6)} 

= o u,(w(kg)) $ 30-6 	01c1+5141)(4C-3  —  ô, 0  kJ+ SW) 

— .8):5(St  Oki+ 5W)) 	1(3 — 6, 6)} 

is an (.7.„) -martingale where Y  =aiori. 1)8+6. Consequently 

E[ sup I ./i(t) 2] 
osrs r 

E[ max I thd 9 
0<wsni(T)-1 

C„E[1 1.1m(T)-1 19 
m(T)-1 

C33 5-i. ED 11 (W (k (-5))2( s30-  0,15(51 0  4+8W)(ni-5 	(5, ekg+aw) rro 
— L (s, 0,4+0)) cig — 6, (5)} ds) 2] 

cum(T)ER f 	w)(Brg — (5, w) — B ci(s, w)) 0 
(7.40) 	 — eig — (5, 6)) ds)2] 

0-4 
c„in(T)EI( j 0  {- 131s, w)(BR'S — 6, 	B- (s,  w))} )2J  

c„m(T)EK 	w) I ds)2( 5:1 13a(s, w)Ids) 2] 

C35  t-R-(5—)6 n(6)462  

= c35n(6)36 	0 	as 6 O. 

Also 

E[ sup I J2(t)1 2] 0.‹,<T 
(7.41) 	 m(t)-1 /4+6 

C 36E[ sup E I J 	ths, w)M(k + 1)g, w) 05t5T icC) 
— BRs, w))) ds1) 2  m(T) 262c*(g, 6)9. 

By (7.38) and Lemma 7.1, we have 
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as  54.O  

and consequently 

(7.42) 	m(T)21520(3, 3)2 	c37 (.1 ei(ig , <5.))2 	0 	as (5 0. 

On the other hand, 

E[ sup ( Y1-1  Skj+6  .13E34, W)(B ij(kS 	14,) 	Bc's(s , w))ds1) 2] citT IC= 0 	14  
▪ E[ sup m(t)mt 

k-0  1 
 ( j 14+6  .13gs, w)(41cil 	, w) B(s , w))ds) 2] 

• 	k3 

▪ in(n m(go  1 ER :33+6  hf5(s, w)(13: 5(1d 	.15 , w) 	BRs, wpds .)2] 

= m(7) 2  ER s6  0 13'5(s, w)(B(3 , w) 	w))ds) 2] 

c 3 en(T) 2  {ER 5 05  Bi6(s , w)(46, w) — B.:5(s ,w))ds) 2] 

ERB:5(6, w) — 	w)) 2(4(-5 , w) — 	w))9} 
a 

c 38m(T) 2  {Er( 5 o i i3S(s , w)Ids) 2( 0 11.3:5(s , w)I ds) 2] 

+ ER fb 	, w)  f  ds) 2  {BO, Ow)  — 	OM 
0 

(3470) — WPM 11 
1 	 Â2 _j_ 62no» 

C39 n( 15)262 V" i as 	0. 

This completes the proof. 

Next we obtain an approximation theorem for solutions of stochastic 
differential equations. Such theorems have been discussed by several 
authors: McShane [115], Wong-Zakai [181], Stroock-Varadhan [158], 
Kunita [93], Nakao-Yamato [126], Malliavin [106] and Ikeda-Nakao-
Yamato [52]. Our result covers most of these results in a unified way. Main 
idea of the proof is due to S. Nakao. 

Let 

(7.43) 

d 	 a 	d 	 a A o  = E 11(x)— and A ,, = E (4,(x) 

	

cix i-1 	axt 
n = 1, 2, .. . , r 
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be vector fields on Rd such that ani E Ci(Rd) and b' E Rd). Let 
{/35(t,w)} oc, be an approximation of Wiener process defined on the Wiener 
space 0/8- , P). We assume that {B5(t,w)} 6>0  satisfies the Assumption 7.1. 
Consider the following equations * 1  

(7.44) 

and 

(7.45) 

dX5(t,w) = ti  A„(X5(t, w))dH51(t,w) + Ao(X,s(t,w))dt { 
X5(0, w) .---- x 

[.. dX(t,w) = i ,  A n(X(t, w))o dwn(t) + A o(X(t, w))dt t 
+ E s „„,[A„,A„,](X(t, w))dt 

lninr. 

X(0, w) =  X.  

These are equivalent to the respective integral equations 

(7.44)' 	r(t, w) x' = 	f a (15(s, w))131 	
0 

i(s, w)ds F bi (X , w))ds 
n=1 0  

and 

(7.45)' 
X' (t, w) 	= 	a ,Vf(s , w))drtin(s) 	bt(X(s , w))els 

n=1 0 

Cnm 
$

t  of (d  '..)(X(s , w))ds i = 1, 2, . . . , d ,  
n,mml a=1 

For any given x e Rd, the solutions of (7.44) and (7.45) are unique; we 
shall denote them by  Xô = ,X ,W» and X = (X(t,x,w)). In the fol-
lowing discussion, the common initial value x is arbitrary but fixed and so 
we shall often suppress it. 

Theorem 7.2. For every T>  0 we have 

(7.46) 	lira E[ sup IX(t, w) — X5(t,  w) 1 2]  = 0. 
510 	05t7' 

Proof.* 2  First we note by (7.44)' that 

* 1 We use the same notations as in Chapter V. 
*2 In the following, K, K„ K2,  ... are positive constants. S has the same meaning as 
in the proof of Theorem 7.1. 
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(7.47) 	XXt, — 	 w) I K(±,  f: I IPA w)i du (t 

for every 0 < s t. We have for each  i=  1, 2, . , d  that 

(7.48) 	X(t, w) — r(t, : = Hi(t) 112(t) + H3 + H4(t) 

where 

113 (t) = 	ft 	a(X6(s, w)).t(s, w)ds 
Ctr 
r  

(7.49) 	 o-,;(X(s, wpde(s) 
n1 (:)C) (3) 

— C ,, 

J 	
(01 cra0(X(S, WDdS, 

n,m1 a - 1 tr3 —  (8) 

112(t) = 	J 	wpt(s, w)ds 
n■ 1 

Ea—  (8) r  
(7.50) 	 an(X(s, w))dwn(s) 

—c.
n J 	

gaaavos, w»ds}, 
in-, a-1 	a 	

a 
 

H3  = S8  OVAS, 
•

wpt(s, w)ds 	f a(X(s, wpdwn(s) 
(7.51) 	n■ 1 0 	 n.11 0 

C nm agraaGrimms, OdS 

	

n,r41 	J 0 

and 

(7.52) 	H4(t) = f D bf(X6(s, w))ds — o bs(X(s, wpds. 

It is clear that 

(7.53) Ej sup I 114(t)19 
131-st 

K 1 41 '.
ti  

E[IX5(s, 
O  

— X(8, w)lids 

for every 0 < ti  < T. 

We now write 

111 (t) = HO) —  É  1112(t) — 1113(t). 
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Then it is obvious that 

(7.54) 	E[ sup I H13(t) I 9 	K232. 
0<r< T 

By a similar estimate as for (7.28), we have 

(7.55) E[ sup I Hi  I(t) I 2] K3(n(6)3(5) 1 /2. 

Also 

H 2(t) a(Xatj -(3), w))(wn(t) — wnat] -(g))) 

(cr(X(s, w)) — ol,(X([tr(S), w)))dwn(s) 
DJ-a) 

: = H 21(t) 	H722(t). 

By a similar estimate as for (7.32), we have 

(7.56) 	E[ sup I H'121 (t)1 Ç_ K4(n(3)b--)1 /2.  

As for 1/722(t), 

E[ sup I 11122(t) I 2i ost-T 
k3-1-t 

< E[ sup sup [ f (o-(X(s, w)) — 0(Xas] -(3), w)))dwn(s)) 9 
osksm(T) 0sts3 

m(7) E E'[E[ sup [ 	(o.,;(X(s, y, w)) 	o-,;(y))dwn(s)} 11 2J y-•X(k3,w1)
1 
 * 

k-0 	0StS8  J 0 

(7.57)  < K,  mg: 	'8  

	

LIEL j 0 04X(s, 3 1, 	0"(0)2dsi I y—x(ks,w1)] 

m(T)  a 3 

	

K6 E E E'[E[ f o "Ns, Y, 	I 2ds]  I P"X(k3,wf)] 
k—O 

3 
K7(m(T) + 1)  I  [s s9ds 

JO  

< K83. 

Here we used the estimate 

I Xi(s, y,. w) y.1 1 2 	K9[( 	5:c r(X(, y, w))dwng)) 2  

* E' stands for the integration with respect to w'. 
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+ fro  P(X(, 	* 

and hence 

E[I (s, y, w) 	Y i  11 	IC 10(s + s2). 

Putting these estimate together, we conclude that 

(7.58) 	E[ sup 1H1 (t)19 = o(1) 	as 6  j O. 
ost< T 

It is obvious that 1 H,I < sup I Hi(t) I and hence 
0 T 

(7.59) 	E[1 I/ 9 	o(1) 	as 6  j O. 

Finally we shall estimate  1f2(t). We have 

r (k+1)3 0.(x8(s,w))11s,  ods  
ks 

w»[Bgok+ 03, — Bk3, w)] 

+ f(k+"' afiaxxAs, w»[± 61(X AS, WDÈ(S, It) bP(X OA 
0=1 kb 	 1=1 

X [BI6VIC -I- 1)3, 	— 	w)]ds 

: =--- Mk) ± .11(k). 
13- 1  

Also 

= aL(X6(k3 — 6, w))(wn((k+1)(3) w 1 (1c3)) 

▪ [1:724(k3,w)) ol,(X 6(1d — 6, w))](133((k+1)3, w) — 137 5(k3, w)) 

crL(X5(k3 — 6, w))(.13((k+1)3, w) — wn((k-1-1)3)) 

▪ af(Xs(kg —  O,  w))(w"(a) Bg(kg , w)) 

:= .111(k) + .112(k) + .113(k) + .1 14(k). 

Hence, writing 112(t) =-- H(t), 
n-1 

H(t) = 11(t) + 12(t) + 13(t) ±  14(t ) Mt), 

* [5'] is the coefficient of the vector field Ao 	E sn.[A„,  Ami.  
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where 

m(r)- 1 

	

(7.60) 	Mt) = E J11(k) — j 	0-,;(X(s, wpdwn(s) 
k-1 	 3 

mo)-1 

	

(7.61) 	11(t) = E J 1
1 
(k)

2 	
i . 2, 3, 4 

k..1  

and 

d 	m(r) — 1 [r]- (3) r 

	

(7.62) 	15(t)  = E { E J i(k) —1 	Ecy  (Oa fla)(X(s, wpds} . 
0..1 	k..1 	 3 	I-1 	11  

First we write I1(t) as 

Ct3- (3) 
11 (t)  . f s 	raf,(X,5([4-(c-5) — 6, w)) — cr if(X(s, w))idwn(s) 

and then use a martingale inequality to obtain 

E[otitipti 1I1(01 2] 	Kl iE[111 (t On 

K12 f u 13 (3)  En X A[s] -(3) — 6, w) — X(s, w)iids 
J 

(7.63) 
-5: Ki3 { f lo  E[ I Xj(s, w) — X(s, w) rids 

+  fCt3-  a) En X,5([9]-0-5) — 6, w) — X ,s(s, w) I 9ds} 
s 

K14 { Sr: E[IX5(s, w) — X(s, w)1 2]ds 

FT 	r 	rEsTi-  (3) 

+j 
 3 E[  .in1 (  J [4- (s)- 6 1 hg, w) I dD2  + (3 + (Mc's) 

.. 1c15{ 5 1: E[i x (s, w) — ms, w) I 9cis + n(6)261 

for every 0 t1  < T. 

In the case of 12(t ), 

E[0227. 1 1 At) 19 

m(71-1 
:5_ E[ E (0-1(xj(kg

2 
w» — 0-,;(xAkif — 	6, w))) 2  

k■ 1 	n  
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.(T)-1 
x E (Bij(k-F 1)c-5, w) 	B2(kg, w))2] 

k-1 

(7.64) -.a< K16 {n1(7) 7"(E-1 	Xj(kj, w) — Xj(kc -5 — (5, w)1 4} 
k-1 

m(: )-1 3  E[ 	 ./3 Bx(k+1)3, w) 	3(k4:5 X m(T) 	 , w) I /I 1/2  

• K27On(7)262m(T)282)1 /2 

• K18(n(6)) -1  -- 0 
	

as (5 O. 

Similarly as for (7.34), we can show that 

	

(7.65) 	E[ sup J 1,(t )J 2] 	K 19(n(45))-i — 0 	as (5 0 1)r•T 

and 

	

(7.66) 	El sup 114(t )19 K2D(n(5)) -1  — 0 	as (5 O. ospsT 

Finally we shall consider 15(t). Write Mt) as 

15(t) = 

where 

1g(t) =1 1  .11(k) — nt .1 f k+1)3  ej 018,5(3,9(X(s, w))ds 
k-1 	 Ic■ 1 	.1..1 

±. m(f1 f(k+1)3 
[(0.  II a fiaXX , IV)) 

k-1 

(ala 	c$R5 , w))]131(s, w)[.13g((k+1)8, w) 	Bg(s, w)]ds 

J  (k+1)3  OP  a a fl,0(X 45(3, W))(.132((k+1)S .  147) — 133(s, w))ds 
loa1 	Id 

f (k+1)3  (17 f a fla 	Ak , Wpfi3; 15(.5` W)035((k +1)S , Y1 ,) 
10.1 k-.1 	Id  

— Bg(s, w)) 	ch,(3, c5)]ds 

▪É rT-1 ac+l)g  [(allaflo-fs)(Xe(k(-5, w)) — gaorD(X(s, w))]ds  c,„ .i - 1 k...1 Jkd 
r m(r)-1 

• E E 3(alafial)(X6(kg, w))(c,„(3, 6) — c in) 
k■ 1 
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:iii(t) /no) 	. 1 /i53(t) + 	I4(t)  + 	/w). 

It is obvious that 

	

(7.67) 	E[ sup 11155(t) 9 	K21(c j„( -5, (5) — c1 )2  = o(1). 
ostsT 

As for /'54(t), 

E[ sup 1E54(t)19 ostst 

$t:,  I (aliapol,)(x5GYNS), 	— (o'faficr)(X(s , w))1 ds) 21c1„ 

TE[ 
 f

I (09,301)(xaqs] -(3), 	— Wafla)(X(s, w)) 2dsjc,„ 
0 

	

(7.68) 	
K22 is t  E[IX(s, w) X6([4 -(3), w)19ds 

K 23[ _Ft  E[IX(s, w) — X 6(s , w) 'WS 
o 

± 	Ell X 	11,) — X 5([3] –  (CT), 	I ids] 
0 

E[i X(s , w) — X 6(s , w)  I  lds ± n(6)2(5]. 

for 0 < < T. 

In the case of 52 

E[ sup I /52(t) osts T 

	

m(0– I f(k+1)3 	 (1C-1-1)J 
E[ sup ( E 	otta,cri,ms, w)) Ids I 	hg(s , w)ids)1 (xis T low I 	kJ 	 kb 

	

(7. 69) 	K25 E[ mg1 	k(1c: 1) 3  I h;52  (S.  VV) Ids} 2] 

- < K 26(5 2m(T) in( ig 1 Ef( i':+1)3  1 /32(s, w)] ds') 2] 

< K263 2m(T) 2n(ô)2  
< K 21n(6)2  — 0 	as (5 O. 

We estimate 1i51 (t) by 

< K24[ f" Q 
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E[ sup  J P (t)f 2]  
Ct<r. T 

K28 	E[ 771()-: I fk":+1)3  rb(S, 	— X 	TO 1,5(kj, 	041,5, VV) 1 

	

	 dS 

rk+1)3 x  	113. (s,  w) ds}  
J 

< K29E1 { rn 	 (k+ 1) ' hixs, 	ds i5)f ("'" hxs, 	dS 
k-1 	1.2.1 	kS 	 k3 

(7.70) Xf
(k+1)3 

hg(S , 	dS} 
kb 

d 	m(T)-1 
< K30 E m(T) E tER 

1=4 	 k-1 

f (k+ 1)3 
Bxs, 

kb 
ds)2( j‘ (k+1)3 

kJ 

. 
113J6(s , w) I ds.) 2  

(k+1)3 
X ( 	1/31(S, 1.01 d S) 21 

k3 

r(k+1).3  
„ 	IV'S .1 01 ds) 2(  I 	I h(s w) I ds)11 

< K31m(T) 2(n(6)663  n(6)664) 

	

< K 32n(6)46 	0 	 as  ô 1 0. 

By repeating the same proof as for (7.37) we see that 

	

(7.71) 	E[ sup I /6(t)11 	K33(11(6) 36 + 	cj ,  (5))2 	n(c5)-1) 	0 
0:ÇrST 

as  f0. 0. 

Now combining (7.67), (7.68), (7.69), (7.70) and (7.71), we obtain the 
estimate 

tI 

	

(7.72) 	E[ sup I 15(011 	K34 	X(s, w) — X ,5(s , w)I 2]ds 	o(1) 

	

0:5_r<ti 	 0 

as  t50,  

where o(1) is uniform in t1 E [0, T]. By (7.63), (7.64), (7.65), (7.66) and 
(7.72), we have 

	

(7.73) 	E[ sup 1 1/2(t) 1 2] < K35 fol  En X (S 	— X (s, w)Ilds o(1), 

where again o(1) is uniform in t 1  E [0,T]. Finally, by (7.53), (7.58), (7.59) 
and (7.73), we have 
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E[ sup 15(t, w) X(t , w)19 

(7.74) 	
K36 E E[ x(5(s, _ 	Ids o(1). 

As before o(1) is uniform in t 1  E [0, 1 ]. (7.46) then follows from (7.74) by 
a standard argument. This completes the proof. 

Remark 7.1. If the vector fields A 1 , A2, . . . A, are commutative, 
i.e., [A n , A m] = 0 for n,  m = 1, 2, . . . , r, then the limiting process of 
(X5(t, w)) does not depend on the choice of the approximation {/35(t, w)} 
as Theorem 7.2 shows. But this is seen more directly in this case if we notice 
that X(., w) is a continuous functional on WI; by the result of Doss (Ex-
ample 2.2 of Chapter III , Section 2). If A1, A2, , A, are not commuta-
tive, however, X(- ,w) is not continuous on in and the limiting processes 
of X5(., w) are controlled by {s,i}. For piecewise linear approximations or 
approximations by mollifiers, we have s, = 0 and so the limiting process 
is the solution of the stochastic differential equation corresponding to 
vector fields A 1 , A2, . ,A r  and to A o  as was defined in Chapter V, 
Section 1. 

Remark 7.2. In the proof of Theorem 7.2, we have actually shown that 

(7.75) 	lirn sup E[ sup I X5(t, x, w) — X(t, x, w)19 = O. 
810 xeRd 

In the following, we shall restrict ourselves to a class of piecewise 
linear approximations. It is an open question whether our results below 
can also be obtained for more general class of approximations. We shall 
assume that the coefficients a n' and 11 of vector fields  A 0, A 1 , . .. , A, are 
Cœ and bounded together with derivatives of all orders. In the following 
discussion, the terms involving the coefficients 11 do not cause any trouble 
and so we shall assume, just for simplicity of notations, that A o  O. Thus 
we consider the stochastic differential equation 

(7.76) 	dX(t) = o -(X(t))0dw(t).* 

Also, setting for each n = 1, 2, . 

w(t) = n 	tlwfj-l+ (t- L) w(j+ 1 11 

* We shall use the matrix notations below; in particular a = (aD and w = (wr). 
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if 1<i‹.i+ 1 
n - 	

0 1 2 	• 	• 

we consider the following ordinary differential equation 

dX 	 dw„ 

	

(7.77) 	—dt " (t) a(X„(t))—dt (t). 

The solutions of (7.76) and (7.77) with the initial value  x Rd  are denoted 
by X(t,x,w) and X„(t,x,w), respectively. 

Lemma 7.2. Let T and N be arbitrary given positive constants. Then 
we have 

	

(7.78) 	sup sup E[ sup 11D" X „(s, x, w)111 < co 
n 

for every p > 2 and multi-index a. 

Proof First we consider the case a = (0, 0, . . . , 0), i.e., Dal; 
=  X,.  We denote 

Akw w 
tk ± 1\ 	w i 1_ .2j 

n 	knI 

Then, if 
 

X„(t, x, w) 	x, 

r---- 	a(X„(s, x, )0)4  k W  ds n 
k In 

--= a (X „( , x,  w)) zi k wn(t 

f [ a(X „(s, x, w)) — a 
J kin L 

x, w))1ds A k w n 

and hence 

X„(t, x, w) x 

C4f1  (7(4 k  =.-.  X,  w))AkW 
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Ent1-1 j• (k+1) In [ 
+ E 	a(X„(s, x, w)) — (x44.  x, w))]ds d kw n 

k..0 kin 

+ a (2 ! „([1-A , x , w)), („tj w 	frA)n 

E 
 [a(X„(s, x, w)) — a (X „(111  , x, w))]ds 4 [„flw n 
nt3/n 

:= 11 (t ) + 12(t ) + 13(t ) + MO. 

By Theorem III-3.1, 

E[ sup 11/1(t)11P1 ostsr 

KiE 
 [(

t nil  li I 7 (X n ( ITC1  ; ; 147))112)1n—P12 *1 
k ■ O 

< K2n' l2ri–p12 

 1C2 < CO . 

Also 

E[ sup I /2(0 I 1 
(KKT 

[ntg-1 f( lc+1)/n [ 
< TP- inP-IE[sup E ii 	0-(x„(s, x, IV» 

07' icnNa 0 	kin 

—a (X„( 17i, x, w))]ds A kwIllnP * 2  

[

(n –1  li f(k-1-1)/n[ 
TP-1nP-1E E I 	a(Xp, x, w))

k••0 J kin 

— ca (X„( n2._ 1r iii x, w] (k+:)inE[) I) 1[0.ds

(r

zlkwIll n nP  

(s, x, w)) < TP-inP`'nPn-(P-1)  
k...0 J kin 

— CT (xi,(1 , x, 147))] 4  kWII P 1 419  n 

Cn71-1 (k-I-1)/n 
K3nP E 	E[IIX „(s, x, w) — X „ 	, x, w)liP 11A kwillds 

k•■ 0 	kln 

* 1  K1 , K2, . . . are positive constants independent of n and x. 
* 2 Generally, if A 1 , A2, 	, Ak are matrices of the same type  11E  AdIP  ( E  IIA11)'  

IIAIIIP. 
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P 
CnT1 - 1 j'(k+j)/n 

< K 3722  E Erii 	ug„(u, x, w)).4 kwduirliA kwillds 
k—O 	k/n 	J kln 

< K 3n2P E En71-1 f(k+1)/n 	
s 

lo.10 k/n 	
EK S 

k/n 

< 
EnT1-1 E f(k+1)/n 

s 
kln 

—17 ds E(Itzl kwil 2P) 

< K 5n2Pn -(P+ 1)  71-12  

= Ks  < co . 

As for Mt), 

gon1113(t)111 

..-Ç_E[ sup ila (X„ 
05tT 

1[121 
x, w))AD,r3wiii 

< K6E[ SUP 11 4 End 34'ill 
0‹tST 

< K 6g max liA kwill 
O^k^ [nTJ  

< K 6  Enizikwpi 

< KAnT) + 1)12 -P 12  

< Kg < 00  . 

Finally as in the estimate for 12(t ), 

E[ sup 110)11] 

E[ sup
E 	ii(c(Xs, w» 

O 	nt3/n t.ST  

0. (xn ant} , x, w)))A rn6 w1lpdsinpn - (p-1)  
n 

(Enc3+1)/n 
< E[ sup 	llo(X„(s, x, w)) 

Ent31n 

(x ( ['1 

 — o- 	, x, w))iniziEnt]wil Pds]n 

< K9nrE EF 
	

HX„(s, x, 	X„( 14 , x, w)11114 kwiiPds] 
k=.0 	kln 

< 

x, w»11 114kwIlduYi 4kwillds 
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Kio  < co . 

Consequently, we have obtained the estimate 

(7.79) 	E[ sup 1IX„(t, x, 	K110. -I- I xi 1- cistsr 

Thus (7.78) is proved for a = (0, 0, 	, 0). 
Next, we consider the case of the first order derivatives. Setting 

Y„(t, x, 	= a  
xin(t' 

 x, w))  and Da 
 =

(—
a ai), 

we have 

Y „(t, x, w) = I + f
o

Da(X„(s, x, w )) Y„(s, x, w)h„(s)ds. * 

Hence 

Y„(t, x, w) I 

Ent] — 1 

= X.0  Dab „(4-  W))Y n ( 1+1 	W)4 kW 

r(k+1)in[ 

Da(X„(s, x, w)) 
k-O J k/n 

—DCAr(X 	, x, w))1cis Y„( 17ci  , x, w) kw n 

End-1 (k+1)In 

+ E 	Da(X(s, x, w))(Y„(s, x, w) — 	, x, w))dszl kwn 
kirs 

• Da(X 	x, w)) 
yn ant] x, w)tljw n(t k n 

[Da(X„(s, x, w)) 
End/n 

- Dcr(X„( frint]  , x, w))] ds Y„( Elid , x, w).el kw n 

Da(X„(s, x, w))(Y.(s, x, w) — Y„(fr-ILIn  , x, w))ds zi k w n 
EntJ/n 

: = 1(t) ± At) 	At) ± 4(t) ± At) 	6(t) 

* We use the following notations: for A = 	B = OD and C = (ca), ABC (4) 
where di = E almca. It is easy to see  IJ ABC 	IIAIIIIBIIHC IJ  where II All =  OE  I a,€t 2)"2 . ,a 



E[ sup 	1(t)11] ostst, 

Ki 2E 

< ICI 3E[( cnitig 1  (7.80) 

[(c ntkt 3-1 	Da 

Y.( 1- 14 

„ ?it  

x, 

w))11211  Y,(174 X, W) i 2) Pil n-p/2 

n–P/2  
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Let t, G [0, T]. By Theorem 111-3.1, 

K i4n- ' Cnti—  I  E (HY .(4 , x w)ii P ) 
km0 

K14  I E( sup Y„(s, x, w)Il)dt. 

As for J2(t), 

E[ sup 11.12(t)111 

= E r  sup 111-1  f (k+1)  [Dcr(X n(s x, w)) 
Lostst, km0 	kin 

D a (X „ ( Ti  ,  x,  w))] d s 	,  x,  w) A k w Ile 

– I 	(1c-}-1)/n 
< TP-in2P-1E[ 	

End 
sup E 	[Dag „(s, x, w)) osts_t , km0 	kin 

	

— Da(X 	, X, w))]ds Y„(1- , x, 	kwiil 

TP -1 	E En13-1  [Ilf (k+1)  In  [Da(X  (S, X, 10) 
km0 	 kin 

— Da(X (-17+ , X, w))]dy  f44,  x, w). I kwill 

< rnigIfkacin+l)in  E[jI{Do -(X „(s, x, w)) 

(7.81) 	 Da- (X„Vici , x, w))} Y„( 	x, 

K isre E 
Ent13-1 f (k+1)/n 

km• 0 	kin 
 

	

Enti — 	(k-I- 1)/n 	[ 

	

P E 	E 
Ss 

= K i5n2  

	

km0 	kin 	 kln 
n(u, x, 	z kw dull' 
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x Y„( , x, 19)11124413.r 

Enti]-1 f
/n 

 k+1)/n s 	kn ) 
P  

	

<  K16n2P 	
0 k 	

dS E[111' 4 174 x, w)II P  11 4  kw11 2P1 E 
10.  

Cnt1I-1 (k+1)/n I 

	

= K16n 2P  E 	- 4y. E[IIY 	x, w)111E[11 4  kw11 21 

	

1‘. 0 	k/n 

Cnri]-1 	 I k Ki7n2Pn- (P+ 1) n-P E 	x, 
k-o 

	

= 1G7n- i 	E[11 .Y„(—n , 
Ent i 3-1 

K17 	E[ sup II Y(s, x, 

	

0 	(:).s.D. 

For ./3(t) 

E[ sup  11J3(t)111 orst, 

sup II 
Ent1-1 fk-1-1)/n 

E 	E 	Dagn(s, x, w))(Y„(s, x, w) [ 
ostst, k■O kln 

(7.82) 	 — 17„( 14 , x, w))ds A kw 

TP—i nP[a  ig1 
	

E[11Da(X „(s, x, w))1111Y „(s, x, w) 

— 	, 	kw1I'lds 

[nt1]-1 r (k+i),„ 

	

P E 	 k 
E[ Knin 	 1117  „(s, x, w) — 	, x, w)I1PlIzI kwIdds. 

k/n 

k 1 
If  

n — 

	

I1Y (s,, x, w) 	, x, 41 2  

ill ian Da(X„(u, x, wDY„(u, x, w).61 kw dull 2n2  

<_ n211.44 2  rs  J kIn 
Pc:1-(X „(u, x, w))1I 2du,,(u, x, w)(1 2du 

Ichs 

K19n2114kw112(s 	4)..fskh, Yn(u ' )c, w)112du  
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K20 ill AkW 11 2 11 Yn(4 9 X, }V ) ir 

± nikikWil 2fskin  II Yn(u, x, w) — Y„( Tik  , x, w)II 2  dui. 

From this inequality, we obtain the following estimate: 

I! Y„(s, x, w) — 	x,w)II 2  

.'_ K2011 4k W 11 2 11 3799(Tik  9 X9 w)112  exP 11C2onliAkw11 2 (s — 4)1. 

and consequently, 

(7.83) 
IIY.(s, X, 11)) — Yn( lyCi  , X, W)1IP 

< KniizikwliPii Y44 , .,c, w)IIP exp  {K22114kw11 2} . 

Substituting (7.83) into (7.82) yields 

E[ sup ]1./3 (t)11/ 
oststt 

rnt1 1-1 	[.. __ (k 	x 	. i p  
K23nP11-1  A E 11 -rn if , , 

w 
)11 ] 

(7.84) 	 x Eni4kwil 2P exp{K22lizikwii 2}] 

IC24  In  En-1 E[11Y ( 14 ' X' W)I1P] — 	lc ,=.0 

._ 
rt1 

K24  j  E[ sup  I ] Y,P, x, w)11Pldt Ç1  osse 

since 

E[Pkwii 2P exPIK22lizikwill] 

= f 
RT

(27r+1 ) -1-12  I Xi 2P  exp {K2, ix1 2  — lil  ixiidx 

< K2512-P 

4(0 is estimated as follows: 

E[ sup 11./4(t)11P] 
ost<t i  

for sufficiently large n. 
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[na 
=E[ sup liDcr(X7,(M , x, 14)) r , x, + (t — n  ) 4Ent3will ostst l 	n 	 n 

< KuE[suP Ilynr , x, w)11' IlAcnt]wld ostst i 	n 

(7.85) < 
K26 Eri3  E[ii Y.( 1-rci  , x, w)li P lizikwIll 

• K27n-P i2E7  E [II Y „(4 , x, w)111 
k—O 

Ç< K28 (ni-P 12  j E[ sup IlY n(s, x, w)111dt o 	ostst 
t] i  + n-P I2E{IIY „ (

[n—
n , x, w)Ill- 

In the case of .15(t), 

ECos<urizi llJ5(t)111 
: 

< K29nE[ sup f 	IIX,i(s, x, w) — 
ost, Ennin 

X 
 n(

kit-1 , x, w)I1Pds 
n 

(7.86) 	 x [IL
([ni]

, x, w)lilizikwild 

< K 30n1-Pn- ' E] E(IIY t,( 14 , x, 
k-o 

t, 
< K 30 (ni -P f E[ sup 11 Y n(s, x, w)IIP]dt 

O 1:).„-<,. 

[ni l ] 
+ n-PE[IlYn (—

n 
, x, w)11P1) 

by the same estimate as for J2(t). As for Mt), 

E[0:121  11.16(011] 
Usti] f(lc-1-1)/n 

.-,_ 	 k K„n E 	E[II Yjs, x, w) — Y „(—n , x, w)1111, 4 oviiPids 
kb kin 

(7.87) < K32n -' `E)  E[IIY 	' x' w ) HP1 Ic—C1 
._ Kn(ni-P Sti  L[ sup  IlYn(s ,  x, w)IIP]dt 

O ossst 

+ n-RE[ily . 
[nt ] 
(-1. , x, w) iii 

n 



Y:5 112(4 x,  14)) 	axiiaxi2 
62 	i  

if„(t, X, 117). 
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by the same estimate as for J3(0. Combining (7.80), (7.81), (7.84), (7.85), 
(7.86) and (7.87) together, it is easy to conclude that 

E[ sup llY „(t, x, 	K330 	f E[ sup II Y„(s, x, 0st-sr, 	 0<sst 

By a standard truncation argument, we can easily deduce from this that 

(7.88) 	El sup Y „(t , x, w)111 	K33e-33T 
OSrST 

Thus (7.78) is proved for every a such that I al = 1.* 1  
Now we proceed to the case of I a = 2. First we note that if 

kln 	t (k 	1)1n, we have 

(7.89) 	 x,  w) —  x(4, x,  w)11P] 'fun-  P13  

and, also by (7.83) and (7.88), 

(7.90) 	E[llY „(t, x, w) — 	x, w)11 17] 	K3,n-P12. 

Set 

Then 

d r St 
I 7  .16120 , 111) = E E cravjs, x, wpikrici")2(s , x,  w)(s)d s 

k-1 a=1 0 

d 	r 	t 

+ E E  I  a(x" (s 	w)) 1,,./Y (s P , wYf Y (s x w) 2 	• i -0"(s)ds * 2  a n 	 n 	 ,n  
k,1=1 cc-1 0 

We denote the second term on the right by «(t, x, w). Then, denoting as 

d 	r 	Cnt3-1fm-F1)/n 

	

a n(t, x, w) = E  E[  E 	• + 	• 

	

Ici-1 ,1-1 a.21 m-0 	min 	J. Crulln 

*lit was actually proved that sup can be strengthened to sup. 
IxKiv 

a *2 	t — (MX)/ 	 i(x) and ag(x)ii  — 	ogx). 
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d 	r 
= E E (111 (t  ; k, I, a) ± H2(t ; k, 1, a)), 

k.1-1 a-1 

Em9-1 
H (t k, I, a) = E 49-:(Xn  

m=0 
1+2  2 , X ON)) 

kl 

m  
W)

k 
Y (L2 , x, 

) 1 	!I 12 
Ca3 - 1 • 0,2+ 	r n  

+ E 	Laa(x„(s, x, w»ik, — or:.(x„(1, x, w)y ids 
0 min 

Y „( 1+21  , x wr Y ( 1-1-1  , x, 	21,„wan ' 	h n 	j2  
[nt]-1S 	

(J 
(m-1-1)/n 

+ E 	ag „(s, x, wpik [Y n(s , x, w)sh — Y„(T, , x, w)]ds 
m=0 mln 

X l'.( 1-A , x, w)  1m 1 n 

Ent]-1 r (m+I)In 

+ E 	oax,i(s, WidUs, x, w», [Us, w)$ 2  .-o 

• x w) jcls A men 

= K1(t) + K2(t) ± K3(t) ± K4(t). 

Then, by Theorem 111-3.1 and (7.88), 

1 c1171- 'm E[ sup K i 0)1] < K36E[ n (- 	E 11)74— , X, 
0<tT 	 n  w)

p
11 4)

2 
 < K 37 < co . 

Also, by (7.89) with p replaced by 2p, 

gosupiK2(t)11 

CnT3-1 	 f(m+1)In 
< K3snP-1 E nPn-(1'- ' )  

m—O 	 mln 
E[I IX„(s, x, w) 

— X „(11  , x, w)11"1
1/2 

 ds E[IlY„(72  , x, 414]
1/4 

 EH A mu/a app/4 

< K39 < 00 . 

Using (7.90), similar estimates hold for K 3(t) and K4(t). Thus we obtain 

E[ sup 1111 (t; k, I, a)IP] 	K40 < °3  • 

More easily we can obtain 

E[ sup I 1/2(t; k,  1, a)I 	K41 <  00  • 
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Therefore 

sup E[ sup 11 a n(t, 	Ç K42 < °3  • 
n. x 	 T 

Using this, 

sup E[ sup YM(t, 
77. x 

can be proved as in the case of Yn(t, x, w). By continuing this process step 
by step we can complete the proof of Lemma 7.2. 

Now (X(t, x, w), Y(t, x, w), . . . ) is the solution of stochastic differential 
equation 

I
dX(t) = 0 -(X(t))0dw(t) 

dY(t) 7  Dcy(xoDY(t)odw(t) 

X(0) = x 

Y(0) 7  1 

The coefficients of this equation are not bounded and we cannot apply 
Theorem 7.2 directly. But Lemma 7.2 enables us to apply a standard 
truncation argument as in the proof of Lemma 2.1 of Chapter V and ob-
tain the following: for every T>  0 and  N>  0, 

	

(7.91) 	urn  supErsup I Da X „(t, x, w) — Da X(t, x, w)JP] = 0 
n-oe ixi<N (:)T 

for every p 2 and multi-index a. Then, as in the proof of Proposition 
V-2.2, we can obtain the following result. 

Theorem 7.3. For every T>  0 and  N>  0, 

	

(7.92) 	lim E[ sup sup Da X „(t, x, w) — Da X(t, x, w)11 = 
05s5 T 

for every p > 2 and multi-index a. 

We have assumed that coefficients are bounded together with all of 
their derivatives. Now we assume only that coefficients are Coe and that the 
stochastic differential equation and approximating ordinary differential 

w)11 < co 

0 
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equations possess global solutions for each fixed initial value. By a stand- 
ard truncation argument, we can easily deduce from (7.92) the following: 

Corollary. There exists a subsequence {nk} such that, with probability 
one, 

Da X„k(t, x, 	D' 1(t, x, w) 

as k 	co  compact uniformly in (t, x) for every multi-index a. * 1  

8. The support of diffusion processes 

Let cri(x) and b((x),  j  = 1, 2, . . . , d, k 	1, 2, . . . , r, be bounded 
smooth functions on Rd with bounded derivatives* 2  and consider the 
stochastic differential equation 

(8 	
ddr(t) 	clEk(X(t)).dBk(t) li(X(tpdt , i 

 .1) 
X(0) = x, 	 i =  1, 2, ... , d. 

Let Px  be the probability law of the solution X= {X(t)} . Then as we saw 
in Chapter IV, the system {fix} of probabilities on WI constitutes the 
unique diffusion measure generated by the operator A, where 

(8.2) 	Af(x) = 	 axia2-afxj  + gi(x) zi  00, f e C/(Rd), 

(8.3) 	au(x) =  É Gr ik(X)01(X) 
c I 

and 

idr (8.4) 	P(x) = 11(x) + NNI(  cik(x))01(x). 

Now the path space Wd is a Fréchet space with the metric defined in 
Chapter IV, Section 1, or equivalently, the topology of Wd is defined by 

* 2  The subsequence {nk } can be chosen from any given subsequence of 1, 2, ... , 
n, ... . 
*2  To be precise, the following discussions will be valid if creC(Ra), beC1,(Rd) and 
the second order derivatives of c are uniformly continuous. 
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the system of seminorms Ill • 11T T>  0} where 

(8.5) 	IIwM T = max I  w(t) I 	for w Wd. 
OT 

The purpose of this section is to describe the topological support g(P,) 
of the measure Px, i.e., the smallest closed subset of Wd that carries prob-
ability 1. In order to do this we need to introduce the following subclasses 
of the space rvj = Wr; w(0) = ; 

cgp c Wg  

where 

5; = {93  e RI; t 	93(t) is piecewise smooth} 

and 

gi = E Wot ; t 	go is smooth} . 

For 0 e 9',, and x Rd, we obtain a d-dimensional curve =(x, 0) 
0)) by solving of the ordinary differential equation 

(8.6) 
4 = al( t)0(t)dt b%)dt* 

/owl 

x, 	i = 1, 2, .. . , d. 

We define the subclasses 9' x and .9'; of Wd by 

(8 .7) 	5' x  = {Mc, 0); ç5 51 • 

and 

(8.8) 	50„x = g(x, 0); 0 E 

It is easy to see that the closures in Wd of  92 x and gpx coincide; i.e., .7x 
g If,. Now we can state the main theorem due to Stroock and Varadhan 

[158]. 

Theorem 8.1. .92(P, )  = .9" 	for every x e Rd. 

* 	ds6 
9 = dt  
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Proof. First we shall prove the inclusion .9'(P)  c  7x  For each 
n = 1, 2, ... and t > 0, we set t n  = [2nt ]/2n and in  = ([2nt] ± 1)/2n. Let 
{B(t)} be a given r-dimensional Brownian motion with B(0) = 0 and de-
fine  {B(t)} by 

( 	1n)  Bun). 

	

\ (in — 	 t 
 ± (in  — tn) Bn(t)= 	tn) 

Then Be  e.7„ and hence 	B) 9;.  By Theorem 7.2, we can con- 
clude that 	Be) 	lin  Wd in probability. Hence P,7- 12:---Px  as n 	co 
where Pf is the probability law of 	Be). Thus 

Pn(SP,I) 	P ( 9 7) = 1 

and consequently .99x =  7 	.7(11x). 
The converse inclusion (Px) D S." will follow immediately from 

the following theorem. We consider the equation (8.1) on the Wiener space 
(W , pn with respect to the canonical realization of the Wiener process; 
its solution is denoted by Xx=(X(t, w)). 

Theorem 8.2. For every 	T>  0 and E> 0, 

(8.9) 	Pw(11Xx — 	011T < €111w — 011 < 	1 as  c5 O.  

Remark 8.1. It is well known that Pw(Ilw — 011T < > 0 for every 
0 ES" , T>  0 and (5 > 0, i.e., 5'(Pw) = K. Indeed, by the result of 
Chapter IV, Section 4, 

Pw(Ilw — 0112,  < 6) = EPw (MM: 11wIlT < 15) > 

where 

M(w) = exp [—  E  ST0  ftk(s)dwk(s) — sr  0  liS(s)J 2  dsi. 

To prove Theorem 8.2 we first introduce several lemmas. 

Lemma 8.1. There exist positive constants c l  and c.2  such that 

(8.10) 	P w(11w11 T < 	c 1  exp(— -464) as  e4. O.  
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Proof Let  P,.  be the r-dimensional Wiener measure starting at XERr ; 

so, in particular, P0  = Pw. Let D= Ix e R';  1 X 1 < 1) and set 

a(w) = inf 	{t; w(t) D} 	for W E W.  

Then u(t, x)=Exff(w(t))/ kg)>,,], x E D,  t>  0, is the solution of the initial 
value problem 

au 	1 , 	in D, 

ul aD  

1 r-0 	f 

Consequently 

u(t, x) = cnt,  en  0„(x)  S D pin(y)f(y)dy, 

where 0 <  1 < 22  <  113 < • • • are eigenvalues and 
responding eigenfunctions of the eigenvalue problem 

4-40 + 20 = 0 in D, 

Ç1aD O.  = 

In particular, 

PrT1wIlr < 	Pv(1,12txT iw(t)1 < e) = Pw( max 
0<t<T 

= PW( max I w(t) < 1) = Pw(a(w) > Tle2) 
ot-7782 

e—  nr  82  n(0) 	0„(y)dy, 
tr. 1 	 D 

and consequently 

PP7(11 W il T < 	e-11 7782  01 (
3) 	01(y)dY 

are cor- 

1 ew(1/62) 1 < 

Therefore (8.10) is proved with 
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ci  01(0) 0i(x)dx 	and c2  = 

Lemma 8.2. Set 

	

(8.11) 	1"(t) 	ffo [W(s)dwi(s) 	wl(s)dwi(s)] 

for i,j = 1, 2, . . . , r. 

Then we have 

	

(8.12) 	lira sup Pnlieiiir> Aiô iliwiiT <(5I = O. 
Mt co 0<c5S1 

Proof. Let i j be fixed and set 

a(t) = 	5:[(wE) 2(s) 	(w1)2(s)]ds. 

We have remarked in Section 6 that B(t): = 1ff(a -4(t)) is a Brownian 
motion independent of {(W92(t)±(w-9 2(t)) (and hence, independent of 
the radial process {I w(t)I) and, in particular, of 11w11 T). Then 

Pile II T>  M6 iiiwliT < = pvf mactmiT > Mo  j  liwli < 
[ o nly7,14 I B(s)I > MO] = pw[0,177.4  B(s)I > Mj, 

and this proves (8.12). 

Corollary. Let 

	

(8.13) 	(t) = f o W(s)odwi(s), 	i,j = 1, 2, ... , r. 

Then for all i,j = 1, 2, ... , r, 

	

(8.14) 	lirn sup Prv(irliT > MO I liwiir < (5) = O. 
Aft. o<as1 

In particular, for every e > 0, 

(8.15) 	P'(jjuJjj> 6 I  114 T < (5) — 0 	as 6 	O. 
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Proof Since 

1 
T W(t)wi(t) — if(t) — 

(8.14) follows at once from (8.12). 

The following is a key lemma for the proof of Theorem 8.2. 

Lemma 8.3. Letf(x): Rd — R be bounded and uniformly continuous. 
Then for all e>  0 and ij = 1, 2, ... , r, 

(8.16) 	Psi( II fof(X(s, w))dV i(s)lir > e i Il W il T < 6) ---)' 0 as 6  O.  

Proof. First we shall assume that f e C7(R 4). Then by Itô's formula, 

f(X(s))egu(s) 
o 

= f(X(t))u(t) — f 'ofi (X(s))craX(s)gii(s)dwk(s) 

_E (Af)(X(s))cu(s)ds — f 01  f(X(s))cri(X(s))wl(s)ds *i 

: — 11 (t) ± 12(t ) + 13(t ) ±  14(1).  

Clearly it is sufficient to show that 

P rv ( liii(t)IIT > g I ilwilT < (5) — 0 

as 6 1 0 for every e > 0 and i = 1, 2, 3, 4. This follows from (8.15) 
for i = 1 and i = 3 and it is obvious for i = 4. So we only consider 12(1 ). 
For simplicity we set ak (x) = —fi(x)a(x). Then, by It'ô's formula, 

12(t ) = J'  ak(eY(S)g li(S)dW k (S) 

= ak(XON V(t)W k(t) —  s:  ak,/(X(S)) 01nMSDNS)W k ÇSWW 7n(S) *2  

af *1 f , = — ..We also adopt the usual convention for summation. 
ax' 

a 
*2  ak,i(x)=  

J,: 
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—510  (Aa k)(X(s))V(s)wk(s)ds 

— ak(X(s))wk(s)cgu(s) 

- cej(gspwl(s)ds — Ei-/(s)ak,r(X(s))(4(X(s))6kmds 

	

ro

- 	

wk(s)ak,i(X(s))cri(X(s))w i(s)ds 

= Ji(t) 	J2(t) 	J3(t) + .1 4(t) + J5(t) 	6(t ) 	J,(t). 

Again it is sufficient to show that 

Pw(ii4(t)iiT>  CI liWilT < ) —  0 

as 6 0 for all E > 0 and = 1, 2, . . . , 7. This is no problem for i 
1, 3, 5, 6, 7. By Theorem 11-7.2', there exists a one-dimensional Brownian 
motion B(t) such that 

J2(t) = 

where 

a(t) = <J2, J2), =-- o gu(s)rjakdak,,pa"1(X(s))wk(s)w ki (s)ds. 

Now 

PW (11.1.2(t)11T> 8  I  lI W l I < (5) 

	

P w 	> MO I iiwilT < (5) 

Pw(ii.12(t)iiT> 8 2 	T MO 	T < (5). 

By (8.14), we can choose M>  0 for any given 17 >  0 such that the first 
term on the right is less than ri for all 1 > O. Clearly gull <  MO 
and liwii T < e5  imply that a(t) a(T) c364,* and hence 

Prr(II' 2(t)11 T > lI'II T ^ MO, 11w1IT < (5) 

Pw( max IB(t)i > =-- P'( max  I B(t)1 > el ..„fi; 62) 
oc3ads 	 osts, 

* In the following, c3 , c4, ... are positive constants independent of 6. 
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2 
	I

— exp [ 
	

c4 exp[— c 5 ?(5-z] 

By Lemma 8.1, 

P(IlwIlT < 	es exP [ e7 'Id • 

Hence 

PF F(11.12(t)iiT > 8, 'WIT 	MO f Iiwil r < (5) 

< c8  exp 
[ 	4,982 	cz  
	 — 0 	as 45 O. (54 

Consequently, 

lim P w( liJz(t)IIT > e  J  ilwil T < 	717 .10 

and since / is arbitrary, we obtain the desired conclusion. Next we 
consider Mt). 

J4(t) = — go  k (X(s))wk (s)wi(s)dwl(s) — 	aims»wk(s)ds 

= Ki(t) 1C2(t). 

Then it is obvious that for any e > 0 

Pv1(11K2(011 T > I 11 411 T < b) — 0 	as d O. 

ICI (t) is a martingale with 

<K1 , K1> = [a k(X(s))14# (s)wi(s)] 2  ds. 

Therefore, if 11w II  r < 6 then <K1,107. c11(54. 
argument as above we can conclude that 

P W  (11K1(t)11 T > e  j IlWlI< 6) 	c, 2 exp[ 

as (5 I O. Thus (8.16) is proved for f c(Rd). 
uniformly continuous and choose f„ Cil(Rd) 

By repeating the same 

c1362 	c1462] --•- 0 (54 

Now suppose that f is 
such that f„ 	f uni- 
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formly. Set 

= frof(X(s))cgu(s) — f rof„(X(s))cei(s) 

= ro (f f„)(X(s))wg(s)dwi(s) 	f (f—  f„)(X(s))ds. 

Then, for any given e>  0, we have by the same argument as above that 

e  I  iiwilr < 

Ç  p w lif o (f fi)(X(s)* ((s)dwi(s)IIT> ÷ 11WIIT<(5) 

ci , exp [ cl6e2 	 2 
tif—A112621.-- 5 exp[ 	c168

Tif—  fiii  
for all large n and 0 < < 1. Hence 

Pw( 	rof(X(S))4 17  (011 T >  C 11)4,11 7.< 

_.13 "r( II frof,(x(s))4"(s)11T>1 I 11w112,  < (3) 

+ Pw( HUT > 1 11 11 < 

For given ,7>  0, we can choose n such that the second term is less than 
/ for all 0 < 6 <1. Then letting tr5 0 the first term tends to O. 
Consequently 

‘ 1:51. .01 Pw( j f(X(s))cg if(s)iiT > 8  I 11Wilr < 6) 
I o 

and since pi is arbitrary, the proof of (8.16) is now complete. 

Proof of Theorem 8.2. First we shall prove (8.9) when At) O. In 
this case,  c  = (Ux, OD is the solution of 

i•C = bV i)dt 

[o = x. 

Now 
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XV) — V(t) = 
ft 

 ciJk(X(Modw k(s) + E [bi(X(s)) — b`Uds. 

We shall prove that 

(8.17) 	Pw( ilf to  af,(X(s))0dwk(s)11, > e I liwil, < 6) — 0 

as 455 1 0 for every e > O. By Itô's formula 

fo uikmmodwk (s) 

=0-1,Giv ,,wk (t)_Ewk (s) ocky (gs)))  

.01,(X0)wk (t)_E(4,,(Xs))01,2(40)wkwodwm(s) * 

— S to ot,(X(s))Y(X(s))wk(s)ds 

: --- I1 (t) ± 12(t) + I3(t). 
It is sufficient to show that for every e >  0 and i = 1, 2, 3, 

12w( ill t(t)II > 8  1 *II r < 6) --` 0 
	

as 15 1 O. 

Only the case of i = 2 needs to be examined. Then 

12(t ) = — s to al,i(X(sX(sDodenz(s) 

--. — E0-ik,i(X(s))01„(x(s))dem(s)  

— 2' fro axan[0-ek.,Kgs»,(x(o)wk(s)&amds 

../, (0 ±,(t ) , 

and we can conclude that for every e >  0 and i = 1, 2 

Pw(Vi(t)iir > c 1 liwilr < o) --- 0  as 6 1 O. 

* 01 1  = . 	axi k 	- 
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Indeed, it is obvious for i=2 and the case i. 1 follows from Lemma 8.3. 
On the set 

{w; lif ro  ciags»ode(s)liT  <e},  

we have 

1 X(t) — (t)I 	e Kf t  o fX(s) — (s)! ds 

where K is a positive constant. Hence 1 X(t) — (t)1 < set. This, com-
bined with (8.17), yields 

Pw( Mt) 	(t)117, >  C  I  ilwilT < — 

as 	0 for every 8 > O. 
Now we consider the case of general 0 	Set 

M(w) = exp 	iSk(s)dwk(s) — f: I fSI(s)2ds} 

and define the measure p on  W(T): = the restriction of ff7;on the interval 
[0, 7 ]  by 

d.P M(w). dPw 

Then by Theorem IV-4.1,  w(t) w(t)-0(t) is an r-dimensional Brownian 
motion for  P,  and X(t) satisfies 

X(t )  =  x E0-(40) .d,p(s) 	X(s))ds 

where Rs, x) = b(x)+ cr(x)As). * Since  = g0c, OD satisfies 

dc  = 	t)dt 

= x, 

we can conclude from the above that for every e>  0, 

* Thus we need to consider the case that the drift b dependent on r and b e C1([0, co) x 
Rd). All the above results remain valid in such a case with an obvious modification of the 
proof. 
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(8.18) 	P(IIX (t) — 	> 6  I 	< 45) 	0 	as 6 1 O. 

Noting that 

M(w) = exp 	(T)wk (7") — 	T  Wk(S)51.5.1c (S)dS — 4-fOT  iS (s)2d} O   

is continuous in w (i.e., if —  W T  — 0, then  M(w) 
— MO), 

(8.18) implies that 

111T1 P W  (ilgt) 	< 8  IllW 	017. < 10 

PW(IIX — 	< llw — 	< (5)  
lo E w(M : IIX(t) — IIr < e, ilw — OilT < 

x 
EFT ilw — 0ii < c5) 	1. 

P711w — 	< 45) 

Example 8.1. Let Lo, LI,  ... , 4 be vector fields on Rd whose coe-
fficients (in the Euclidean coordinates) are bounded and smooth with 
bounded derivatives. Let Xx = (X(t, w)) be the solution of 

i dX(t) = L-1 
 Limtpodwi(t ) + Lo(x(t ))dt 

x(0). x. 

Let P „ be the probability law of Xx. Theorem 8.1 implies that 

= {(x , 0); 0 e .9' ). 

(x, 95) is the solution of the dynamical system 

{

cit4 = Lgr)skt) + Lo( t). 

0 = x: 

It is known (cf. [95]) that {4x, 0); 0 	.9' 1 contains all curves  i r  such 
that 

dtb . z
( h) + Lath) 

{ 
dt 
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where Z is an element of the Lie algebra eC(L1, L2, 	4) generated by 
LI, L2, . . 4. In particular, if ALI, L2, . 	4) has rank d at every 
point, {4x,0); 	} = 	= {w E Wd ; W(0) = x} and conse- 
quently 

(12x) = 

Example 8.2. (maximum principle). Let A be the differential operator 
defined by (8.2). A function defined in a domain D c Rd is said to be A-
subharmonic in D if it is upper semicontinuous and Au > 0 (in a certain 
weak sense to be specified later). A classical maximum principle for the 
Laplacian asserts that any subharmonic function in D which attains its 
maximum in D must be a constant. If the operator A is degenerate, how-
ever, such a maximum principle no longer holds in general. For example, 
if d = 2, 

32 	a  
A= ax? X  = (xi , x2) 

and D is any domain intersecting the x i -axis, the function u(x) defined by 

{ 0 	 if 	x2  > 0 
u(x) = 

—xi 	if 	x2  < 0 

is a nonconstant A-subharmonic function which attains its maximum in 
D. 

We are interested in the following problem. For a given domain D 
and a point x E D, we want to determine a (relatively) closed subset D(x) 
of D having the following properties: 

	

(8.19) 	for any A-subharmonie function u(y) in D such that u(x) = max 
yeD(x) 

u(y), it holds that u(y) = u(x) for every y ED(x), 

	

(8.20) 	D(x) is maximal with respect to the property (8.19): i.e., if z E 
D\D(x), then there exists an A-subharmonic function u(y) in D such that 
u(x) = max u(y) and u(z) <u(x). 

It is clear that D(x) is uniquely determined if it exists. The support 
theorem 8.1 enables us to describe the set D(x). Before proceeding, how-
ever, we shall first make precise the notion of A-subharmonicity. For 
simplicity we shall restrict ourselves to locally bounded functions. Let 
Px  be the probability law of the solution of (8.1). Let D be a domain in Rd 
and {D„} be a compact exhaustion of D: D. are bounded subdomains of 
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D such that .13,, c Dn±i  and U D. =D. Let an = an(w) = inf {t; w(t) 

Definition 8.1. A function u(x) defined in D is said to be A-sub-
harmonic in D if 
(i) it is locally bounded and upper semicontinuous and 
(ii) for each n = 1, 2, ... and x E D, t 	u(w(t A o-n)) — u(x) is a 
Px-submartingale. 

If u is in C2(D), then u(w(t A cf.)) — u(x) =  a martingale ± 
stona„ (Au)(w(s) , )as From this it is easy to see that u is A-subharmonic if 
and only if Au > 0 in D. 

Now we shall describe the set D(x). For simplicity, we shall assume 
that D has the property that 

sup E,[
0 
 4-(w(s))ds] < 09 

YeD  

for every compact set K c D, where r = 	= inf It;  w(t)D} . Choose 
a compact exhaustion {D„ }  of D. Then the above assumption clearly im-
plies that sup Ey [crn] < co for every n. Set 

yeD n  

(8.21) 	D(x) = 	e 59, t0 >  0 such that y = 	0(4) 

and Mx, 95)(t); t 	[0, t oil c 	D. 

Theorem 8.3.* D(x) possesses the properties (8.19) and (8.20). 

Proof First we shall prove that the set D(x) defined by (8.21) possesses 
the property (8.19). Let y ED(x). It follows from Theorem 8.1 that for 
every neighbourhood U of y there exists an n such that Px(o- u  < an) > 0, 
where a u  = cr u(w) = inf It; w(t) . Let u(x) be an A-subharmonic 
function in D such that u(x) = max u(z). Then 

zeD(x) 

u(x) 	Ex(u(w(cr u  A an))) ; 

moreover, Theorem 8.1 implies that Px(w(a u  A a.) D(x)) = 1. Con-
sequently, Px(u(w(cr u  A an))  = u(x)) ----- 1. In particular, u(w(c u)) = u(x) on 
the set (cr u  < o}. From this it is easy to find a sequence z 
that zn  — y and  u(z) = u(x). Then 

* This was first proven by Stroock-Varadhan [1581, but they only discussed the case of 
operators of parabolic type. 
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u(x) > u(y) > lim u(z) =-- 
n•CO 

that is, u(y) = u(x). 
Next we shall prove that D(x) defined by (8.21) possesses the property 

(8.20). For this we need the following lemma. 

Lemma 8.4. Iff is a nonpositive continuous function in D with com-
pact support, then the function u defined by 

u(y) = Ey [ flof(w(s))ds] 

is a bounded A-subharmonic function in D. 
Assuming this lemma for a moment, we shall now complete the proof 

of Theorem 8.3. Let z E D\D(x). Then by Theorem 8.1 we can easily find 
a bounded neighbourhood U of z such that Px(o-u  = 0. We choose a 
nonpositive continuous function f in D such thatf(z) = —1 and f(y) = 0 
if y U. Set 

u(y) = 	01-f(w(s))ds]. 

Then u is a bounded nonpositive A-subharmonic function in D such that 
u(x) =0 and u(z)  <0.  This proves that D(x) possesses the property (8.20). 

Proof of Lemma 8.4. u is bounded because of the above assumption 
on D. First we shall prove that it is upper semicontinuous. We saw in 
the proof of Proposition V-2.1 that if X(t, x) is the solution of (8.1), then 
for every t>  0, Rd D x X(t, x) E Wd  is continuous a.s. Then we 
can easily see that 

X 	i ir<TEx(. , )03 )  

is lower semicontinuous a.s. and hence 

it<trx-c•,x)3) f(X0, 

is upper semicontinuous a.s. The upper semicontinuity of 

X 	u(x) = Ex[ of(w(s))ds] = 	EU(XO, x))1 (,<,c1( .. x)31 ] dt 

follows at once from Fatou's lemma. 
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Next we shall prove that t 	u(w(t A an)) is a Px-submartingale for 
every n. It suffices to prove that Ex [u(w(o-  A c ))]  > u(x) for every 
stopping time G. But this is a consequence of the following formula 
(Dynkin's formula) which is immediately obtained from the strong Markov 
property:  

aAcr, 

Ex [u(w(c7 A un))] 	 u(x) = 	o  f(w(s))ds]. 

9. Asymptotic evaluation of the diffusion measure for tubes around 
a smooth curve 

Consider a non-singular diffusion process X on a manifold M. We 
are sometimes interested in the following questions: given two smooth 
curves starting at the same point, which one is more probable for the diffu-
sion process, or, among all possible smooth curves connecting two given 
points, which one is most probable for the diffusion process? One way to 
answer these questions is to evaluate the measure of tubes around a smooth 
curve ([154]). As we know from Chapter V, Section 4, we may assume that 
M is a Riemannian manifold and the diffusion is generated by the operator 
A where 

1 A --- 	b . 

Here z1 is the Laplace-Beltrami operator and b is a vector field. The 
Riemannian distance p(x, y) is defined (if x and y is sufficiently near) as the 
minimum length of a geodesic curve from x to y. For a given smooth curve 
0: [0, M such that 0(0) = x, we want to evaluate 

= P z  fw; p(X t(w), At)) 	c for all t 	[0,  T]}.  

If for any two such curves 0 and /g, 

lim 14(0)/g(V) e l° 

exists and can be expressed as 

. 

exp  [J  14(s), 95(spds — f L(V/(s), w(s))ds] 
o 

by some function L(2, x) on the tangent bundle TM, the above questions 
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can be answered in terms of the function L Such a function is called the 
Onsager-Machlup function by physicists (cf. [20], [41], [56] and [134] . 
For simplicity, we discuss here the case of M = Rd and obtain the func-
tion L: we refer the reader to [199] and [227] for the results in general 
manifolds. 

So let M = Rd and let {Px} be the diffusion measure (on Wd) generated 
by the operator 

1 d 	a A =--- 4 ± Eb1(x) 
—2— 	1-1 	axt (zi = t ' a 2' 

 

We shall assume that bt(x) ECi(Rd), i = 1,2, ... , d. Let  Pi"  be the 
d-dimensional Wiener measure (on Wd) starting at 0. By Lemma 8.1, we 
know that 

(9.1) 	Pw(11w11, < a) — c exp [— ve  ] *1 

where Ai  is the first eigenvalue of the eigenvalue problem in D= fx E Rd; 
1x1 <1) given by 

1 
(9.2) 

rb I an = 0, 

and c = 01(0) SD93 1(x)dx,  f3 1(x) being the normalized eigenfunction for Ai. 
In the following, T>  0 and x Rd are arbitrary but fixed. 

Theorem 9.1. Let 0: [0, 1 ] -- Rd be a smooth curve* 2  such that 
0(0) =-- x. Then we have (writing b(x) = (bi(x), b2(x), . . . , bd(x)) 

P x(w: ilw — 9 3 117- < 0 

(9.3) 	— exp [—.• f oT  1 b(rb(s)) — As)I 2ds 

— - 11. I T0  (div b)(0(s))ds] P w(li wii T < 8) 

" "" C exp ( — -1-' J. : 1 b(95(s)) — As) 1 2  ds 

, •T A l T1 j 	
. _ + 0  (div b)(0(sDds) exP [— "T as e 1 O. 

   

* 1 11w1I T  = max rw(t)1, w e Wd. 
(mr7. 

* 2 It is sufficient to assume that 95 e C2([0, 7 ] — Rd). 
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Here (div b)(x) ,.--- i -a  bg(x). i-laxi 

Corollary. The Onsager-Machlup function L(.t, x) is given, up to an 
additive constant, by 

11 (9.4) 	L(.t, x) = — 	 11 — b(x)1 2  — 	 (div b)(x). 
2 	 2 

Proof By the transformation of drift discussed in Chapter IV, Section 
4-1, we have 

(9.5) 	P 	=„(B) Ew(exp [f OT  b(x + w(s))dw(s) 

— - 12• - LT  lb(x ± w(s))1 2ds]; B) 

for  BŒ  0( Wd). Similarly, 

Pw(B) = Ew[exp[— f oT  i5(s)dw(s) — s To  1(s) 2d3]  
(9.6) 

By combining (9.5) and (9.6), we have 

Px(iiw — Oiir < 8) 

(9.7) 	.-- Ew [exp [— i'  or  g'5(s)dw(s) — 1 f : IAS)1 2CIS 

+ f 2.  0  b(w(s) ± 0(s))d[w(s) ± 0(3)] - $p  0  1b(w(s) + 0(s))1 2ds] 

: ilwilT < el 

If w satisfies *II T  < s, then 

	

I f
r . T 	. 

AS) dW WI = I AT)w(T) — f w(s)k 	._. s)dsI Aie,  *2  
J o 	 0 

* 1  For w e Wd and xeR,w+xe Wd is defined by [w + 42') = w(t) + x. 
*2  A1, A2, . . . and K1, K2, . . . are positive constants independent of e. 
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I  b(w(s) 0(s)V(s)ds — 40(s))0(s)ds 	A28  0 	 0 

r T 

 

and 

"T  
j Ib(W(S) 	As)) I 2  dS 	140(S))1 2  d SI 	A,e. 

We immediately have from this that 

f lAs)— /*Ks»! 2ds — (Ai+ A2+ A3)E] 

(9.8) .Ç  F w 	T<  Enexp[ oT  b(w(s) qS(s))dw(s)] wil T < el} -1  

exp [— fr. k$(s) — b(o(s))12ds 0-p ,A2-FA3)8] • 

Consequently it is sufficient to show that 

(9.9) E'r[exp[S 0  b(w(s) 	0(s))dw(s) 	To  (div b) (9i(s))ddl IlwII  r  < 

--1 	 as  e0.  

Now 

Jo 
	0(s))dw(s) + f (div b)(0(s))ds 

foT  b(0(s))dw(s) 	i‘or  b i  j(0(5)* (S)dW i  (3) * 

+ 	TO  (div b)(93(s))ds 	T  (s,  w)dw'(s) 
- 

where 

(9.10) 	stoi(s,w) = Kw(s)-1-0(s)) 	bi(0(s)) — 	bli(0(s))w-f(s). 

Since 
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r  r 
I j b(9i(s))dw(s) I ..' il az 

O  if liwilT <8, 

(9.9) is equivalent to 

d T 
E W [expi E f bi,o(s»wi(s)dwi(s) 4J-1 0 

(9.11) 	± -1- i' r  (div b)(gi(s))ds + i S T  O '  i(s w)dws(s)11114 7. < 8] 2 	0 	 imi 0  
—I-  1 
	

as e 1 O. 
Note that 

4
t1  $T bli(fii(s))w(s)dwi(s) + 1 f To  (div b)(0(s))ds 

= it f or  bV0(s)) [wi(s)dw i(s) ± 4- ou  ds] 

=-- it $T  bij(ks»cgii(s) 

where 

t 
Mt) = f wi(s) odw i(s). 

0 

Generally, if random variables 371 , Y2 satisfy 

lim Ew[ ec Y' I Ilwlir < 8] 	1, 
slo 

i= 1,2 

for every real constant c, then 

Uri Ew[expfYI + 1r 2]  1 liwlIT < 4 
el° 

-._ lim {Ew( exp[2171] I Ilwil r  < 8) Evi( exp[2Y21 I liwii r  <8)}" 2  
elo 

< I, 

and similary 

11mE w(exp(—Yi—Y2) I *HT < 0 .., I. 
siO 
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But 

Ew( exp[Yi 	Y2] I iiwilT < e)E w( exg— 	Y21 I iiwiiT < 
+ Y2]  [ 	 Y  1E 4' exp [ 	exp 	2  2  2 	 ] i iiwilT < 2= 1 2 

and hence 

urn  Ew( exp[Yi + Y2] I  IIwlI < 
To" 

{LTD E}7( exP(— — Y2) I Ilwil < 8)} 	1. 
810 

In conclusion, we have 

lim Ew( exp[Yi  + Y2]  I  iiwiir < = 1. ito 

This result can be extended easily to an arbitrary number of random 
variables: if Y Y2,  22 • • • 2 Yn satisfy 

hm Ew( exp[cYd  I  1134, 11 2- < s) Ç 1 
el° 

for every real constant c and i =-- 1, 2, ... n, then 

lim Ew( exp[Yi  + Y2+ • • • + Y.] I iiwilT < = 1. 
810 

Noting this fact, (9.11) will follow if we can show that for every real 
constant c and  i, j = 1, 2, ... , d, 

	

(9.12) 	lim  E '(  exp[c .1* o li(çi(s))d J(s)] J liwilT < e) 	1 o 

and 

	

(9.13) 	Jim  Ew[exp[e 1* 	(s, w)chv i  (3)] I Iiwil T < 	1 
810 	

. 0  

First we shall prove (9.13). Since 

jcNs, w)i < A 5e2 
	

on the set {Iv; *117 < 8} , 
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we have 

FR'( II I o c(Pf(s, w)dw g(s)117.> 6 i iiwilr < e) 

 

i1762  — A88
21  Ki exp [ — K2 ea €

4 

 

< A 6 exp if 0 < e < K33 

  

by a standard estimate as in the proof of Theorem 8.2. From this it is easy 
to conclude that 

(9.14) 	Jim  Evg( exp [ lc j. 01(s, w)dwi(s)I 	< 8) = 1. 
al0 	 0 

Indeed, for each (50  > 0 and 0  <s  < K3e50, 

EW( exp [ ( c f 0,(s, w)dw l(s)i]  I  liwl  T < c) 
0 

	

.[U 	 KA 

	

< e50 ± KU.  exp[— —64
2]ck Kie 60  exP[—  	• 

Jo 

(9.14) follows by first letting s  j 0 and then letting 60  j O. 
Finally we shall prove (9.12). By writing et,' = c(x) it is sufficient to 

show that 

(9.15) 	Lim Ew(exp[ 
 J  c(93(s))d -"(s)]  I  iiwil T < s) < 1 zio O 

for every c(x) E Cl(Rd). Now 

S T°  c(0(s)) cgit(s) 	c(0(T))Vi(T) 	.fi(s)d[c(0(s))]. 
 O 

Also 	— w 1(t)wj(t) — e(t) where /u(t) is defined by (8.11). As 

we saw in the proof of Lemma 8.2, 

?Mt) = BP4-. 	[(wi)2(s) 	(w1)2(s)ids) 

where B is a Brownian motion independent of the radial process t I  w(t)I} 
(and hence independent of  II  wil T). Then 
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7' 

E V1( expf .1. 0  c(q3(s))cg"(s)] i ilwil T  < 8)  

< eic4e2  Ew(exp[K, max 1B(t)  J])  
o<t< -41-7e2T 

e 	] 
= 64'02 	—7—r  exp [—Ti exp [-T 	K5x x 

c°  '8[2- 	
_X 2  

S o   

 

as e 1 O. 

 

This completes the proof. 

In Chapter V, Section 4, we saw that the diffusion {P,} is symmetriza- 
d 

ble if and only if the differential 1-form co defined by co. E bt(x)dxt is 
i-.1 

given as co = dF for some F e CIRd — R), or equivalently the line 
integral fy  CO vanishes along every closed smooth curve. Using Theorem 
9.1, this condition can be restated as follows. 

Theorem 9.2. The diffusion {P.,} is symmetrizable if and only if 

	

(9.16) 	- P Ow — O HT <8) 
 lirn x 

eloPAw — OAT < 8)
— 1 

for every x and every smooth curve 0: [0, 1 ] 
 , Rd such that 0(0) = 

0(T) = x. Here the curve qi_ is defined by 

	

(9.17) 	04) =  «T —  t), 	0 < t < T. 

Proof. By Theorem 9.1, the limit in (9.16) is equal to 

exp(2 .1. : b(9i(s))ç6(s)ds) = exp(2 S o w). 

Thus (9.16) holds if and only if S o  co = O. 

A similar probabilistic characterization of the symmetry was obtained 
by Kolmogorov [871 in the case of a Markov chain. 
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Chern polynomial, 432 
Christoffel symbol, 282 
comparison theorem, 437 

—for one-dimensional projection 
of diffusion processes, 452 

compensated sum, 63 
compensator, 60 
complete, I 
complete probability space, 1 
complex Brownian motion, 155 
complex manifold, 341 
component of connection, 278 
conditional expectation, 12 
conformal mortingale, 155 
connection 

affine—, 278 
—compatible with the 
Riemannian metric, 281 

component of—, 278 
—of Levi-Civita, 282 
Riemannian—, 282 
symmetric (torsion free)—, 281 
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conservative, 203 
convergence 

—almost everywhere (almost surely), 
8 

—in law, 8 
—in probability, 8 

coordinate neighborhood, 247 
holomorphic—, 341 

countably determined, 14 
counting measure, 43 
covariant derivative, 279 
covariant differentiation, 278 
curvature 

Gauss total—, 432 
scalar—, 423 
space of constant—, 462 

tensor, 297 
—transform, 461 

differential one (p) form, 277 
diffusion, 204 

A -- , 205, 213 
(A, L)--,  218 
Bessel—, 237 
Gaussian—, 232 
Kahler—, 344 
linear—, 232 
—measure, 204 
—measure generated by A,  205, 213 
—measure generated by  (A, L.), 218 
—process, 205 

boundary distinguished. 349 
Doob-Kolmogorov's inequality, 28 
Doob-Meyer's decomposition 

theorem, 34 
drift 

—term, 160 
transformation of—, 192, 225 
—vector field, 284 

d -system, 22 

elastic barrier Brownian motion, 211 
equi-integrable, 30 
equivariant, 280 
Euler characteristic, 425 
excursion, 123, 325 

—formula, 328 
—interval, 123, 325 
—of Brownian motion, 123 

existence theorem, 167 
expectation, 11 

conditional—, 12 
generalized, 356 

explosion time, 172, 173, 248 
exponential mapping, 462 
exponential martingale, 149 

exponential quasimartingale, 149 
extension, 89 

standard—, 89 
exterior derivative, 277 
exterior product, 277 

Fernigue's theorem, 402 
Feynman—Kac 

—formula, 274, 383 
—type weiglt, 306 

finite dimensional distribution, 17 
first hitting time, 23, 316 
Fisk integral, 97, 101 
flow of diffeomorphisms, 254 
frame, 267 

unitary —, 345 
Fubini-type theorem (for stochastic 

integrals), .116 
fundamental solution, 420,435 
fundamental tensor field, 251 

Gaussian diffusion, 232 
Gauss-Bonnet-Chern theorem, 432 
generalized expectation, 365 
generalized Wiener functional, 364 
geodesic, 462 

—polar coordinate, 463 
Girsanov transfomation, 192 

harmonic form, 292 
heat equation, 269 

—for tensor field, 297 
heat kernel, 391 
Hilbert-Schmidt norm, :160 
holomorphic coordinate neighboi hood, 347 
Hermite  polynomial, 150, 354 
Hermitian metric, 343 
horizontal, 279 

—Brownian motion, 298 
canonical—vector fields, 280 
—Laplacian, 298 
—lift, 279, 280 

•  —subspace, 279 
hypercontractivity (of Ornstein-

Uhlenbeck semigroup), 367 
hypoellipticity problem, 416 

image measure, 2, 
independent 

mutually—, 11 

—of a cr-ifield, 11 
induced measure, 2 

the regularity of, 375 
inequality 

Doob-Kolmogorov's—, 28 



Jensen's—, 12 
moment—for martingales, 110 

initial distribution, 40, 205 
inner regular, 3 
integrable ( p -th, square), 11 
integrable increasing process, 35 

natural—, 35 
invariant measure, 290 
Itô's formula, 66 

—in the complex form, 157 
10 process, 64 
Itô's stochastic integral, 45 

Jensen's inequai lity, 12 

KAhler 
—diffusion, 341, 344 
—manifold, 344 
—metric, 344 

Knight's theorem, 86 , 92,156 

Langevin's equation, 233 
Laplace-Beltrami operator, 285 
Laplacian 

de Rham-Kodaira's—, 292 
horizontal—, 298 

last exit formula, 328 
last exit time, 316 
Lèvy 

—Khinchin formula, 65 
—measure, 65 
—process, 65 

life time, 205 
linear diffusion, 232 
Lobachevskii Brownian motion, 347 
local conformal martingal, 155 
local coordinate, 247 

—conplex—, 342 
local martingale, 52 
local time,  113,220 

—of Brownian motion, 113 
Lp-multipliplier theorem, 369 
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exponential—, 149 
local—, 52 
localconformal—, 155 
locally square-integrable—, 52 
—part, 98 
—problem, 74 
square-integrable—, 47 
—term, 160 

—transform, 25 
—with reversed time, 31 

maximum principle, 529 
measurable 

—mapping, 1 
—process, 21 
—space, I 
universally—, 1 

Meyer's theorem (on the equivalence 
of Sobolciv norms), 365 

minimal 
— A-diffusion, 290 
—Brownian motion, 211 

modification, 266 
right continuous—, 33 

mollifier, 485 
moment inqualities for 

martingales, 	110 
motion with random acceleration, 

202 
multiplicative operator functional 
(MOF),  318,321 

natural, 35 
non-degenerate, 288 
non-sticky, 221 
normal component (of d -form), 309 
normal coordinate mapping, 464 
normal derivative, 309 
normally reflecting diffusion process, 

313, 325, 341 
number operator, 356 

Malliavin convariance, 375 
Malliavin's stochastic calculus 

variation, 349 
manifold, 247 

complex—, 341 
Kahler—, 344 
Riemannian—, 281 
—with boundary, 308 

Markovian system, 204 
strongly—, 204 

Markov time, 22 
martingale, 25 

conformal—, 155 

one-dimensional diffusion process, 446 
Onsager-Machlup function, 533 

of 	optimal control problem, 441 
optional sampling theorem, 26, 34 
optional stopping, 25 
Ornstein-Uhlenbeck 

—'s Brownian motion, 233 
—operator, 356 
—process, 351 
—semigroup, 356 

-system, 22 
parallel displacement, 279 

stochastic—, 297 
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pathwise uniqueness, 162 
piecewise linear appoximation, 484 
Pitman's theorm, 140 
plane section, 461 
polynominal functional, 351 
point function, 43 
point process, 43 

characteristic measur of—, 43 
(97)-adapted—, 59 
—of Brownian excursions, 125 
—of the class (QL), 59 
Poisson—, 43, 140 
0. -finite—, 59 
stationary—, 43 

Poisson point process, 43 
(.97)—, 60 

Poisson random measure, 42 
intensity mesure of—, 43 
mean measure of—, 43 

predictable, 21,25 
probability, 1 

—space, 1 
—distribution, 2 
—law, 2 

process 
adapted—, 21 
bounded—, 21 
continuous—, 16 
measurable—, 21 
—of time change, 102, 197 
predictable—, 21 
right-continuous—, 21 
well-measurable—, 21 

proper reference family, 27 
pull-back of Schwartz distributions 
(under a Wiener mapping) ;  379 

quadratic variational process, 53 
quasimartingale, 98 

canonical decomposition of—, 98 
bounded variation  part of—, 98 
exponential—, 149 
martingale part of—, 98 

random variable, 2 
complex—, 2 
d-dimensional—, 2 
real—, 2 

reference family, 20 
proper—, 27 

reflecting (barrier), Brownian motion, 
119, 209, 314 

regular 
—condiuitnal probability, 13, 15 
—submartingale, 38 

relatively compact, 7  

Ricci curvature, 461 
Ricci tensor, 302 
Riemannian 

—connection, 282 
—manifold, 281 
—metric, 281 

scalarization, 280 
sectional curvature, 461 
semi-martingale, 64 

continuous martingale part of—, 64 
representaion theorem of—, 84 

a-field, 1 
right-continuous—, 20 
topological—, 1 

skew product, 472 
Skorohod equation, 121 
Sobolov norm of Wiener functionals, 

362 
Sobolov space of Wiener functionals, 

364, 365 
smooth functional, 352 
sojourn time density, 113 
solution, 161 

—admitting of explosions, 172 
strong—, 163 
uniqueness of—, 162, 221 

standard measurable space, 13 
state space, 203 
sticky, 221 

non--, 221 
stochastic area, 470 
stochastic differential, 97, 98 
stochastic differential equation, 159 

- Markovian type, 161 
—of the jump type, 244 
time homogeneous—, 161 
—, time independent Markovian 

type, 161 
—with respect to Poisson point 

process, 244 
—with respect to quasimartingale, 

103 
stochastic integral 

Itô's—, 45 
—with respect to the Brownian 

motion, 49 
—with respect to a martingale, 55, 

57 
—with respect to point processes, 

59 
stochastic line integral, 468 
stochastic moving frame, 298, 424 
stochastic parallel displacement, 297 
stopping time, 22, 204 
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Stratonovich integral, 97, 101 
strong Markov property 

—of Brownian motion, 78 
—of Poisson point process, 78 

strongly Markovian system, 204 
strong renewal property, 78 
subharmonic, 529, 530 
submartingale, 25 

regular—, 38 
—of class (DL), 35 

successive approximation, 180 
sum, 77 
supermartingale, 25 
supertrace, 425 
suppprt, 517 
symmetric multiplication, 97, 100 
symmetrizable, 290 

locally—, 291 
tangent component (of p-form), 309 
tangent space, 247 
tangent vector, 247 
tensor, 276. 297 
tensor field, 277 

fundamental—, 281 
scalarization of—, 280 

terminal point, 203 
tight, 7 
time change, 102,  197,225 

process of—, 102, 197 
torsion free, 281 
torsion tensor, 281 
total, 206 
transformation of Brownian motion, 

224 

transformation of drift, 192, 225 
transition probability, 204 
transition semigroup, 290 

uniqueness 
—in the sense of probability law, 

162 
—of the regular conditional 

probability, 13 
—of the solutions, 162, 221 

universally measurable, 1 

variance, 11 
vector field, 248 

basic—, 280 
--, 248 

system of canonical horizontal—, 
280 

weakly convergent, 4 
Weitzenbbck's formula, 301 
well-measurable, 21 
Whiteney's imbedding theorem, 253 
Wiener 

—functional, 349 
genesalized—functional, 350, 364 
--'s homogeneous chaos 354 
mapping, 375 
—martingale, 100 
—measure, 40 
—process, 40 

Williams's decomposition theorem, 
135, 146 

Williams's description of Brownian 
excursion law, 144 
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