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Preface

A man wanted to dock the tail of his horse. He consulted a wise man on how short to make it. “Make it as short as it pleases you,” said the wise man, “for, no matter what you do, some will say it is too long, some too short, and your opinion itself will change from time to time.”

This book is an introduction to stochastic processes. It covers most of the basic processes of interest except for two glaring omissions. Topics covered are developed in some depth, some fairly recent results are included, and references are given for further reading. These features should make the book useful to scientists and engineers looking for models and results to use in their work. However, this is primarily a textbook; a large number of numerical examples are worked out in detail, and the exercises at the end of each chapter are there to illustrate the theory rather than to extend it.

When theorems are proved, this is done in some detail; even the ill-prepared student should be able to follow them. On the other hand, not all theorems are proved. If a result is of sufficient intrinsic interest, and if it can be explained and understood, then it is listed as a theorem even though it could not be proved with the elementary tools available in this book. This freedom made it possible to include two characterization theorems on Poisson processes, several limit theorems on the ratios of additive functionals of Markov processes, several results on the sample path behavior of (continuous parameter) Markov processes, and a large number of results dealing with stopping times and the strong Markov property.

The book assumes a background in calculus but no measure theory; thus, the treatment is elementary. At the same time, it is from a modern viewpoint. In the modern approach to stochastic processes, the primary object is the behavior of the sample paths. This is especially so for the applied scientist and the engineer, since it is the sample path which he observes and tries to control. Our approach capitalizes on this happy harmony between the methods of the better mathematician and the intuition of the honest engineer.

We have also followed the modern trends in preferring matrix algebra and recursive methods to transform methods. The early probability theorist’s desire to cast his problem into one concerning distribution functions and Fourier transforms is understandable in view of his background in classical analysis and the notion of an acceptable solution prevailing then. The present generation, however, influenced especially by the availability of computers, prefers a characterization of the solution coupled with a recursive method of obtaining it to an explicit closed form expression in terms of the generating functions of the Laplace transforms of the quantities of actual interest.

The first part of the book is based on a set of lecture notes which were used by myself and several colleagues in a variety of “applied” courses on stochastic processes over the last five years. In that stage I was helped by P. A. Jacobs and C. G. Gilbert in collecting problems and abstracting papers from the applied literature. Most of the final version was written during my sabbatical stay at Stanford University; I should like to thank the department of Operations Research for their hospitality then. While there I have benefited from conversations with K. L. Chung and D. L. Iglehart; it is a pleasure to acknowledge my debt to them. I am especially indebted to A. F. Karr for his help throughout this project; he eliminated many inaccuracies and obscurities. I had the good fortune to have G. Lemmond to type the manuscript, and finally, the National Science Foundation to support my work.

E. ÇINLAR
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CHAPTER 1

Probability Spaces and Random Variables

The theory of probability now constitutes a formidable body of knowledge of great mathematical interest and of great practical importance. It has applications in every area of natural science: in minimizing the unavoidable errors of observations, in detecting the presence of assignable causes in observed phenomena, and in discovering the basic laws obscured by chance variations. It is also an indispensable tool in engineering and business: in deducing the true lessons from statistics, in forecasting the future, and in deciding which course to pursue.

In this chapter the basic vocabulary of probability theory will be introduced. Most of these terms have cognates in ordinary language, and the reader should do well not to fall into a false sense of security because of his previous familiarity with them. Instead he should try to refine his own use of these terms and watch for the natural context within which each term appears.

1.  Probability Spaces

The basic notion in probability theory is that of a random experiment: an experiment whose outcome cannot be determined in advance. The set of all possible outcomes of an experiment is called the sample space of that experiment.

An event is a subset of a sample space. An event A is said to occur if and only if the observed outcome ω of the experiment is an element of the set A.

(1.1)  EXAMPLE. Consider an experiment that consists of counting the number of traffic accidents at a given intersection during a specified time interval. The sample space is the set {0, 1, 2, 3, . . .}. The statement “the number of accidents is less than or equal to seven” describes the event {0, 1, . . ., 7}. The event A = {5, 6, 7, . . .} occurs if and only if the number of accidents is 5 or 6 or 7 or . . . .

[image: image]

Given a sample space Ω and an event A, the complement Ac of A is defined to be the event which occurs if and only if A does not occur, that is,

 

[image: image]

Given two events A and B, their union is the event which occurs if and only if either A or B (or both) occurs, that is,

 

[image: image]

The intersection of A and B is the event which occurs if and only if both A and B occur, that is,

 

[image: image]

The operations of taking unions, intersections, and complements may be combined to obtain new events. In particular, the following identities are of value:

 

[image: image]

The set Ω is also called the certain event. The set containing no elements is called the empty event and is denoted by Ø. Note that Ø = Ωc and Ω = Øc. Two events are said to be disjoint if they have no elements in common, that is, A and B are disjoint if
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If two events are disjoint, the occurrence of one implies that the other has not occurred. A family of events is called disjoint if every pair of them are disjoint.

Event A is said to imply the event B, written A ⊂ B, if every ω in A belongs also to B. To show that two events A and B are the same, then, it is sufficient to show that A implies B and B implies A.

If A1, A2, . . . are events, then their union
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is the event which occurs if and only if at least one of them occurs. Their intersection

 

[image: image]

is the event which occurs if and only if all of them occur.

Next, corresponding to our intuitive notion of the chances of an event occurring, we introduce a function defined on a collection of events.

(1.6)  DEFINITION. Let Ω be a sample space and P a function which asso ciates a number with each event. Then P is called a probability measure provided that

    (a)  for any event A, 0 ≤ P(A) ≤ 1;

    (b)  P(Ω) = 1;

    (c)  for any sequence A1, A2, . . . of disjoint events,

 

[image: image]

By axiom (b), the probability assigned to Ω is 1. Usually, there will be other events A ⊂ Ω such that P(A) = 1. If a statement holds for all ω in such a set A with P(A) = 1, then it is customary to say that the statement is true almost surely or that the statement holds for almost all ω ∈ Ω.

Axiom (c) above is a severe condition on the manner in which probabilities are assigned to events. Indeed, it is usually impossible to assign a probability P(A) to every subset A and still satisfy (c). Because of this, it is customary to define P(A) only for certain subsets A. Throughout this book we will avoid the issue by using the term “event” only for those subsets A of Ω for which P(A) is defined.

If the sample space Ω is {0, 1, 2, . . .} as in Example (1.1), then there are as many subsets of Ω as there are points on the real line. Therefore, it might be difficult to assign a probability to each event in an explicit fashion. Furthermore, almost any meaningful real-life problem requires considering much more complex sample spaces. Usually, in such situtations, the probabilities of only a few key events are specified and the remaining probabilities are left to be computed from the axioms (1.6a, b, c) by considering the various relationships which might exist between events. In fact, most of probability theory concerns itself with finding methods of doing just this. The following are the first few steps in this direction.

(1.7)  PROPOSITION. If A1, . . ., An are disjoint events, then

 

[image: image]

Proof. First, we establish that P(Ø) = 0. In (1.6c) we may take A1 = A2 = · · · = Ø. Then [image: image] also, and (1.6c) implies that P(Ø) = P(Ø) + P(Ø) + · · ·. But this is possible only if P(Ø) = 0, since 0 ≤ P(Ø) ≤ 1 by (1.6a).

Next, let A1, . . ., An be disjoint events, and define An + 1 = An + 2 = ··· = Ø. Then A1, A2, . . . are disjoint, and [image: image]. By (1.6c) we have [image: image], since P(An + 1) = P(An + 2) = ··· = P(Ø) = 0.

[image: image]

(1.8)  PROPOSITION. If A ⊂ B, then P(A) ≤ P(B).

Proof. If A ⊂ B, we can write

 

[image: image]

Since A and Ac ∩ B are disjoint, by (1.7),

 

[image: image]

By (1.6a), P(Ac ∩ B) ≤ 0; thus, P(B) ≤ P(A).

[image: image]

(1.9)  PROPOSITION. For any event A, P(A) + P(Ac) = 1.

Proof. The events A and Ac are disjoint, and by (1.7), P(A ∪ Ac) = P(Ac). On the other hand, A ∪ Ac = Ω, and P(Ω) = 1 by (1.6b).

[image: image]

Proposition (1.8) expresses our intuitive feeling that, if the occurrence of A implies that of B, then the probability of B should be at least as great as the probability of A. Proposition (1.9), restated in words, states that the probability that A does not occur is one minus the probability that A does occur.

Next is a theorem which is used quite often. It is useful in evaluating the probability of a “complex” event by breaking it into components whose probabilities may be simpler to evaluate.

(1.10)  THEOREM. If B1, B2, . . . are disjoint events with [image: image] Bi = Ω, then for any event A,

 

[image: image]

Proof. For any event A we can write

 

[image: image]

Since B1, B2, . . . are disjoint, A ∩ B1, A ∩ B2, . . . are disjoint. By (1.6c) then,

 

[image: image]

(1.11)  PROPOSITION. Let A1, A2, . . . be a sequence of events such that A1 ⊂ A2 ⊂ A3 ⊂ ···, and put [image: image]. Then

 

[image: image]

Proof. Let B1 = A1, [image: image], [image: image], . . . . Then B1, B2, . . . are disjoint, and

 

[image: image]

Thus, by (1.7),

 

[image: image]

Now taking limits,

 

[image: image]

But by (1.6c),

 

[image: image]

(1.12)  COROLLARY. Let A1, A2, . . . be a sequence of events such that A1 ⊃ A2 ⊃ A3 ⊃ . . ., and put [image: image]. Then

 

[image: image]

Proof. The sequence of events [image: image], [image: image], . . . satisfies [image: image] . . ., and by (1.5),

 

[image: image]

Thus, by Proposition (1.11),

 

[image: image]

By Proposition (1.9), P(A) = 1 − P(Ac), and [image: image] for any n. Thus,

 

[image: image]

Proposition (1.11) gives a continuity property of P: if the events A1, A2, . . . “increase to“ A, then their probabilities P(A1), P(A2), . . . increase to P(A). Corollary (1.12) is similar; if the events A1, A2, . . . “decrease to” A, then P(A1) P(A2), . . . decrease to P(A).

2.  Random Variables and Stochastic Processes

Suppose we are given a sample space Ω and a probability measure P. Most often, especially in applied problems, we are interested in functions of the outcomes rather than the outcomes themselves.

(2.1)  DEFINITION. A random variable X with values in the set E is a function which assigns a value X(ω) in E to each outcome ω in Ω.

[image: image]

The most usual examples of E are the set of non-negative integers [image: image] [image: image] the set of all integers {. . ., –1, 0, 1, . . .}, the set of all real numbers [image: image], and the set of all non-negative real numbers [image: image]. In the first two cases and, more generally, when E is finite or countably infinite, X is said to be a discrete random variable.

(2.2)  EXAMPLE. Consider the experiment of flipping a coin once. The two possible outcomes are “Heads” and “Tails,” that is, Ω = {H, T}. Suppose X is defined by putting X(H) = 1, X(T) = –1. Then X is a random variable taking values in the set E = {1, −1}. We may think of it as the earning of the player who receives or loses a dollar according as the outcome is heads or tails.

[image: image]

(2.3)  EXAMPLE. Let an experiment consist of measuring the lifetimes of twelve electric bulbs. The sample space Ω is the set of all 12-tuples ω = (ω1, . . ., ω12) where ωi ≥ 0 for all i. Then

 

[image: image]

defines a random variable on this sample space Ω. It represents the average lifetime of the 12 bulbs.

[image: image]

(2.4)  EXAMPLE. Suppose an experiment consists of observing the acceleration of a vehicle during the first 60 seconds of a race. Then each possible outcome is a real-valued right continuous function ω defined for 0 ≤ t ≤ 60, and the sample space Ω is the set of all such functions ω. For t ∈ [0, 60], let

 

[image: image]

for each ω ∈ Ω. Then Xt, Yt, and Zt are random variables on Ω. For the outcome ω, Xt(ω) is the acceleration at time t, Yt(ω) the velocity, and Zt(ω) the position.

[image: image]

Let X be a random variable taking values in a set E, and let f be a real-valued function defined on the set E. Then for each ω ∈ Ω, X(ω) is a point in E and f assigns the value f(X(ω)) to that point. By f(X) we mean the random variable whose value at ω ∈ Ω is f(X(ω)). A particular function of some use is the indicator function IB of a subset B of E; IB(x) is 1 or 0 according as x ∈ B or x ∉ B. Then IB(X) is a random variable which is equal to 1 if the event {X ∈ B} occurs and is equal to 0 otherwise. Quite often there will be a number of random variables X1, . . ., Xn and we will be concerned with functions of them. If X1, . . ., Xn take values in E, and if f is a real-valued function f defined on E × · · · × E = En, then f(X1, . . ., Xn) is a real-valued random variable whose value at ω ∈ Ω is f(X1(ω), . . ., Xn(ω)).

A stochastic process with state space E is a collection {Xt; t ∈ T} of random variables Xt defined on the same probability space and taking values in E. The set T is called its parameter set. If T is countable, especially if [image: image] [image: image], the process is said to be a discrete parameter process. Otherwise, if T is not countable, the process is said to have a continuous parameter. In the latter case the usual examples are [image: image] and [image: image]. It is customary to think of the index t as representing time, and then one thinks of Xt as the “state” or the “position” of the process at time t.

(2.5)  EXAMPLE. In Example (2.4) Yt is the velocity of the vehicle at time t, and the collection {Yt; 0 ≤ t ≤ 60} is a continuous time-parameter stochas tic process with state space [image: image]. Similarly for {Zt; 0 ≤ t ≤ 60}.

[image: image]

(2.6)  EXAMPLE. Consider the process of arrivals of customers at a store, and suppose the experiment is set up to measure the interarrival times. Then the sample space Ω is the set of all sequences ω = (ω1, ω2, . . .) of non-negative real numbers ωi. For each ω ∈ Ω and [image: image], we put Nt(ω) = k if and only if the integer k is such that ω1 + · · · + ωk ≤ t < ω1 + · · · + ωk + 1 (Nt(ω) = 0 if t < ω1). Then for the outcome ω, Nt(ω) is the number of arrivals in the time interval (0, t]. For each [image: image], Nt is a random variable taking values in the set E = {0, 1, . . .}. Thus, [image: image] is a continuous time-parameter stochastic process with state space E = {0, 1, . . . }. Considered as a function in t, for a fixed ω, the function Nt(ω) is non-decreasing, right continuous, and increases by jumps only; see Figure 1.2.1.

[image: image]

[image: image]

Figure 1.2.1 A possible realization of an arrival process. The picture is for the outcome ω = (1.2, 3.0, 1.7, 0.5, 2.6, . . .).

Let X be a random variable taking values in [image: image]. If [image: image], the set of all outcomes ω for which X(ω) ≤ b is an event, namely, the event {ω: X(ω) ≤ b}. We will write {X ≤ b} for short, instead of {ω: X(ω) ≤ b}, and we will write P{X ≤ b} for P{X ≤ b}. If a ≤ b, then

 

[image: image]

and Proposition (1.8) implies that

 

[image: image]

Noting that

 

[image: image]

and that the events {X ≤ a} and {a ≤ X ≤ b} are disjoint, we get, by (1.7),

 

[image: image]

Next, note that [image: image] for any sequence b1, b2, . . . increasing to + ∞. Since {X ≤ b1} ⊂ {X ≤ b2} ⊂ · · · by (2.7), Proposition (1.11) applies, and we have

 

[image: image]

Let b1, b2, . . . be a decreasing sequence with limn bn = b. Then {X ≤ b1} ⊃ {X ≤ b2} ⊃ · · · by (2.7), and [image: image]. Corollary (1.12), therefore,

 

[image: image]

In particular, if the bn decrease to – ∞, the limit in (2.11) becomes zero.

The function φ defined by

 

[image: image]

is called the distribution function of the random variable X. If φ is a distribution function, then (also see Figure 1.2.2)

(2.13)  (a)  φ is non-decreasing by (2.8),

(b)  φ is right continuous by (2.11),

(c)  limb→∞ φ(b) = 1 by(2.10),

(d)  limb→–∞ φ(b) = 0 by (2.11) again.

[image: image]

Figure 1.2.2 A distribution function is non-decreasing and right continuous and lies between 0 and 1.

In the opposite direction, if φ is any function defined on the real line such that (2.13a)–(2.13d) hold, then by taking

 

[image: image]

and letting

 

[image: image]

we see that X is a random variable with the distribution function φ. Hence, for any such function φ, there exists a random variable X which has φ as its distribution function.

Next, let X be a discrete random variable taking values in the (countable) set E. Then for any a ∈ E,

 

[image: image]

is a non-negative number, and we must have

 

[image: image]

The collection {π(a): a ∈ E} is called the probability distribution of X.

In the case of non-discrete X, it is sometimes possible to differentiate the distribution function. Then the derivative of the distribution function of X is called the probability density function of X.

(2.16)  EXAMPLE. Consider Example (2.2). If the probability of “Heads” is 0.4, then

 

[image: image]

The random variable X defined there takes only two values: −1 and +1, and

 

[image: image]

Then

 

[image: image]

(2.17)  EXAMPLE. In simulation studies using computers, the following setup is utilized in “generating random variables from a given distribution φ.”

A table of “random numbers” is a collection of numbers ω lying in the interval [0, 1] such that a number picked “at random” is in the interval [a, b] with probability b − a. In our terminology, what this means is that we have a sample space Ω = [0, 1] and a probability measure P on Ω defined so that P([a, b]) = b − a for all 0 ≤ a ≤ b 1. Then the event “the picked number ω is less than or equal to b,” that is, the event [0, b], has probability b.

Suppose the given distribution function φ is continuous and strictly increasing. Then for any ω ∈ Ω = [0, 1], there is one and only one [image: image] satisfying φ(a) = ω. Therefore, setting

 

[image: image]

defines a function X from Ω into [image: image] (see Figure 1.2.3).

[image: image]

Figure 1.2.3 Defining a random variable X with a given distribution function φ.

For any [image: image], X(ω) ≤ t if and only if ω ≤ φ(t), and consequently

 

[image: image]

In other words, the random variable X we have defined has the given function φ as its distribution.

Hence, by picking a number ω at random from a table of “random numbers” and then computing X(ω) corresponding to ω from Figure 1.2.3, one obtains a possible value of a random variable X having the distribution function φ.

[image: image]

(2.18)  EXAMPLE. A mid-course trajectory correction calls for a velocity increase of 135 ft/sec. The spacecraft’s engine provides a thrust which causes a constant acceleration of 15 ft/sec2. Based on this, it is decided to fire the engine for 9 seconds. But the engine performance indicates that the actual length of burn time will be a random variable T with

 

[image: image]

What is the increase in velocity due to this burn?

Let Ω be the set of all possible burn times, i.e., Ω = [0, ∞), and define T(ω) = ω. Then, for the outcome ω, the velocity increase will be

 

[image: image]

Thus,

 

[image: image]

Suppose we have, defined on the sample space Ω, a number of random variables X1, . . ., Xn taking values in the countable set E. Then the probabilities of any events associated with X1, . . ., Xn can be computed (by using the results of Section 1) once their joint distribution is specified by giving

 

[image: image]

for all n-tuples (a1, . . ., an) with ai ∈ E. In the case of random variables X1, . . ., Xn taking values in [image: image], the joint distribution is specified by giving

 

[image: image]

for all numbers [image: image]. Specification of these probabilities themselves can be difficult at times. The concept we introduce next simplifies such tasks (when used properly).

(2.19)  DEFINITION. The discrete random variables X1, . . ., Xn are said to be independent if

 

[image: image]

for all a1 . . ., an ∈ E. If the Xi take values in [image: image], they are said to be independent if

 

[image: image]

for all [image: image]. An infinite collection {Xt; t ∈ T} of random variables is called independent if any finite number of them are independent.

[image: image]

In particular, (2.21) implies, and is implied by, the condition that

 

[image: image]

for all intervals [image: image]

We close this section by illustrating the concept through examples.

(2.22)  EXAMPLE. Let X and Y be two discrete random variables taking values in {1, 2, 3, . . . }. Suppose

 

[image: image]

For any m = 1, 2, . . ., using Theorem (1.10) with A = {X = m} and Bi = {Y = i}, we get†

 

[image: image]

Similarly, for any n ∈ {1, 2, . . . }, using (1.10) with A = {Y = n} and Bi = {X = i} now, we get

 

[image: image]

Since

 

[image: image]

for all m and n, X and Y are independent.

[image: image]

(2.23)  EXAMPLE. Let X and Y be two discrete random variables taking values in [image: image] and having the joint distribution

 

[image: image]

Then, using Theorem (1.10) with A = {X = m} and Bi = {Y = i}, for any [image: image], we have (see the footnote below)

 

[image: image]

Similarly, using Theorem (1.10) again, for any [image: image],

 

[image: image]


Since P{X = m, Y = n) ≠ P{X = m}P{Y = n], X and Y are not independent.

[image: image]

(2.25)  EXAMPLE. Let X and Y be as in the preceding example. Then X and Y – X are independent. To show this, we note that

 

[image: image]

for all m, [image: image] and that

 

[image: image]

for any [image: image]. Using (2.24) with these results, we see that

 

[image: image]

for all m, [image: image], as claimed.

[image: image]

3.  Conditional Probability

Let Ω be a sample space and P a probability measure on it.

(3.1)  DEFINITION. Let A and B be two events. The conditional probability of A given B, written P(A | B), is a number satisfying

    (a)  0 ≤ P(A | B) ≤ 1,

    (b)  P(A | B) = P(A | B)P(B).

[image: image]

If P(B) > 0, then P(A | B) is uniquely defined by (3.1b). Otherwise, if P(B) = 0, P(A | B) can be taken to be any number in [0, 1].

For fixed B with P(B) > 0, considered as a function of A, P(A | B) satisfies the conditions (1.6) for a probability measure. That is,

(3.2)  (a)  0 ≤ P(A | B) ≤ 1,

(b)  P(Ω | B) = 1,

(c)  [image: image] provided the events A1, A2, . . . be disjoint; and thus Propositions (1.8)–(1.12) hold.

Heuristically, we think as follows. Suppose the outcome ω of the experiment is known to be in B, that is, B has occurred. Then event A can occur if and only if ω ∈ A ∩ B. And our estimate of the chances of A occurring given that B has occurred becomes the relative measure of A ∩ B with respect to B.

However, in practice, we usually have the various basic conditional probabilities specified, and our task then becomes the computation of other probabilities and conditional probabilities. The following proposition provides a simple tool for computing the probability of an event by conditioning on other events. It is sometimes referred to as the theorem of total probability.

(3.3)  THEOREM. If B1, B2, . . . are disjoint events with [image: image], then for any event A,

 

[image: image]

Proof. By Theorem (1.10),

 

[image: image]

and by (3.1b), P(A ∩ Bi) = P(A | Bi)P(Bi) for each i.

[image: image]

A simple consequence of this theorem is known as Bayes’ formula.

(3.4)  COROLLARY. If B1, B2, . . . are disjoint events with union Ω, then for any event A with P(A) > 0, and any j,
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Proof. Using (3.1b),
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Writing P(A) as the sum in Theorem (3.3) and using (3.1b) to write P(A ∩ Bj) = P(A | Bj)P(Bj) completes the proof.

[image: image]

(3.5)  EXAMPLE. A coin is flipped until heads occur twice. Let X and Y denote, respectively, the trial numbers at which the first and the second heads are observed. If p is the probability of heads occurring at any one trial, then
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where q = 1 – p, 0 < p < 1. By Theorem (1.10), for any m = 1, 2, . . .,
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Similarly, for any n = 2, 3, . . .,
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Thus, using Definition (3.1b),
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for any n = 2, 3, . . . and m = 1, 2, . . ., n – 1. That is, if it is known that the second heads occurred at the nth trial, the first heads must have occurred during the first n – 1 trials, and all these n – 1 possibilities are equally likely.

We have, for any m = 1, 2, . . ., n – 1 and n = 2, 3, . . .,
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but a more instructive computation is the following. For m = 1, 2, . . . and k = 1, 2, . . .,
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There are two conclusions to be drawn from (3.7): Y – X is independent of X, and Y – X has the same distribution as X.

[image: image]

(3.8)  EXAMPLE. Suppose the length of a telephone conversation between two ladies is a random variable X with distribution function

 

[image: image]

where the time is measured in minutes. Given that the conversation has been going on for 30 minutes, let us compute the probability that it continues for at least another 20 minutes. That is, we want to compute P{X > 50 | X > 30}. Since the event {X > 50, X > 30} is the same as the event {X > 50}, we have, by (3.1b),
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But by (1.9), P{X > t} = 1 – P{X ≤ t] = e−0.03t for any t ≥ 0. So
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Noting that e−0.6 = P{X > 20}, we have this interesting result: the probability that the conversation goes on another 20 minutes is independent of the fact that it has already lasted 30 minutes. Indeed, for any t, s ≤ 0,
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That is, the probability that the conversation continues another s units of time is independent of how long it has been going on. Or, at every instant t, the ladies’ conversation starts afresh!

[image: image]

4.  Exercises

(4.1)  An experiment consists of drawing three flash bulbs from a lot and classifying each as defective (D) or non-defective (N). A drawing, then, can be described by a triplet; for example, (N, N, D) represents the outcome where the first and the second bulbs were found non-defective and the third defective. Let A denote the event “the first bulb drawn was defective,“ B the event “the second bulb drawn was defective,” and C the event “the third bulb drawn was defective.”

(a)  Describe the sample space by listing all possible outcomes.

(b)  List all outcomes in A, B, B ∪ C, A ∪ C, A ∪ B ∪ C, A ∩ B, Ac ∩ Bc ∩ C, A ∩ Bc ∩ C, (A ∪ Bc) ∩ C, (A ∪ C) ∩ (Bc ∪ C).

(4.2)  Describe in detail the sample spaces for the following experiments:

(a)  Three tosses of a coin.

(b)  An infinite number of coin tosses.

(c)  Measurement of the speeds of cars passing a given point.

(d)  Scores of a class of 20 on an examination.

(e)  Measurement of noontime temperatures at a certain locality.

(f)  Observation of arrivals at a store.

(4.3)  An experiment consists of firing a projectile at a target and observing the position of the point of impact. (Suppose the origin of the coordinate system is placed at the target.) Then, an outcome is a pair ω = (ω1, ω2), where ω1 is the abscissa and ω2 the ordinate of the point of impact. The sample space Ω consists of all such pairs ω. For each ω ∈ Ω, let
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(a)  What do X, Y, Z stand for?

(b)  Suppose the probability measure P is such that
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Then show that X and Y are independent random variables with the same distribution function
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(4.4)  Let X, Y be as defined in (2.22), and put Z = X + Y. Compute

(a)  P{X = m, Z = k} for m = 5, k = 7 first, and in general after that;

(b)  P{X = 5 | Z = 7};

(c)  P{Z = 7 | X = 5};

(d)  P{Y = 3 | Z = 14};

(e)  P{X = 5, Y = 3 | Z = 8};

(f)  P{Z = 8 | X = 6, Y = 2}.

(4.5)  Let X be a discrete random variable with
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where p > 0, p + q = 1. Show that for any m, n ∈ {1, 2, . . .},
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(4.6)  Let X and Y denote, respectively, the number of babies born on a certain day in a hospital and the number of them which are boys. Suppose their joint distribution is
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Find P{X = n} and P{Y = m} for all m, n ∈ {0, 1, . . .}. Compute P{X = n | Y = m}, P{Y = m | X = n}, P{X – Y = k | X = n}, P{X – Y = k | Y = m}. Interpret the results.

(4.7)  Let A, B, and C be independent random variables with distributions indicated below:

 

[image: image]

What is the probability that

 

[image: image]

has real roots?

(4.8)  Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered.

A piece of equipment consists of three components in series: for the equipment to function, all three components must be functioning. Let X1, X2, and X3 be the respective lifetimes of the components 1, 2, and 3 measured in hours. Suppose
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If the lifetimes of the components are independent, what is the reliability of the equipment in a mission requiring 4,000 hours?

(4.9)  Let X be the lifetime of a component measured in hours, and let its distribution function be
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Given that the item has worked successfully for the first 3 hours, what is the probability that it does not fail within the next 1.5 hours?

In general, compute the conditional probability that X > t + s given that X > t.

(4.10)  A printing machine capable of printing any of n characters a1, . . ., an is operated by electrical impulses, each character, in theory, being produced by a different impulse. Suppose the machine has probability p(0 < p < 1) of producing the character corresponding to the impulse received, independent of past behavior. If it prints the wrong character, the probabilities that any of the (n – 1) other characters will appear are equal.

(a)  Suppose that one of the n impulses is chosen at random and fed into the machine twice, and that the character ai is printed both times. What is the probability that the impulse chosen is the one designed to produce ai?

(b)  Suppose now that ai was printed on the first trial and aj(j ≠ i) on the second. What is the probability that the impulse was designed to produce ai?

(c)  In (b), what is the probability that the impulse was designed to produce aj?

(d)  In (b), suppose that ai is printed on the first trial and that it is known only that some other character (not ai) appeared on the second. Does this change the answer to (b)?

[image: image]

Then said they unto him, Say now Shibboleth: and he said Sibboleth: for he could not frame to pronounce it right. Then they took him, and slew him.

THE BIBLE, THE BOOK OF JUDGES 12:6

Failure to distinguish between an outcome and an event is unlikely to have as severe a consequence as the fate which befell the warrior challenged by the men of ancient Gilead. Yet, probabilistic reasoning is a part of our culture today, and an appreciation of it cannot be acquired without developing a precise feeling for its essential ingredients.

It is important to remember always that an event is a collection of outcomes, while a random variable is a function. A random variable assigns a value to each outcome; a probability measure assigns a value to each event. One talks of the probability of an event, never of the probability of an outcome. A certain amount of confusion is caused by the historical mistakes made while the subject was developing, and the insistence of certain teachers on repeating them.

The present axiomatic foundations of the theory were laid by KOLMOGOROV [1] in 1933. Since then, the progress in probability theory has been very rapid. This progress was especially aided by the discovery of unsuspected applications to pure mathematics on the one hand, and by an ever increasing demand from other scientists and engineers on the other.



† As a reminder, 1 + x + x2 + · · · = 1/(1 – x) for x ∈ [0, 1). Also, in Example (2.23), 1 + x + x2/2! + x3/3! + · · · = ex for any [image: image].



CHAPTER 2

Expectations and Independence

Consider a large piece of land whose area we take to be one unit. The land is divided into n lots which, for purposes of buying and selling, are indivisible. Let Ω denote the whole land and P(A) the area of the region A. Let X(ω) denote the price per unit area of the lot containing the point ω. Then X takes only n values, say b1, b2, . . ., bn. The region on which X is equal to bk has area P{X = bk} and hence, the value of the total land is

 

[image: image]

Note that E[X] is, in a sense, the integral of the function X over the set Ω, and since the total area of Ω is P(Ω) = 1, E[X] is also the average unit price.

If we think of Ω as a sample space and P as a probability measure (as we may), then X becomes a random variable. The integral of X that we obtain is then called the expected value of X. The justification for the term “expected value” lies in our interpretation of E[X] as the average of X over Ω. This concept of integrating a random variable X over a sample space Ω with respect to a probability measure P extends also to arbitrary probability spaces. The present chapter is devoted to this and related concepts.

In Section 1 we give an account of expectation taking. Then in Section 2 we introduce conditional expectations and list many of their properties. The reader should study Section 1, and read Section 2 once or twice. He is urged not to dwell too long on Section 2 but to pass on to Chapters 3, 4, and 5 instead. In these later chapters there will be many opportunities to observe the workings of conditional expectations; by referring back to the cited theorems of this chapter, the reader will learn and appreciate them. Theorems on expectations and conditional expectations form the grammar of the language of probability, and are indispensable to anyone who wants to get acquainted with that language. But one does not start learning a language by memorizing the rules of grammar.

1.  Expected Value

Let Ω be a sample space, P a probability measure, and X a discrete random variable defined on Ω. Let the values X takes be [image: image] [image: image] and put Bn = {ω: X(ω) = bn}. Then B0, B1, . . . are disjoint and their union is Ω. The function X is equal to bn on the set Bn whose measure is P(Bn). So the integral of the function X with respect to the measure P is
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(we allow it to be + ∞). (See Figure 2.1.1.) Note that the right hand side divided by 1 = P(Ω) can also be looked upon as the weighted average of the function X with respect to the weight distribution given by P. Replacing P(Bn) by P{X = bn} in (1.1), we now make the following

[image: image]

Figure 2.1.1 Expected value of a discrete random variable is the sum of its values weighted by the corresponding probabilities.

(1.2)  DEFINITION. The expected value of a discrete random variable X taking values in the set [image: image] is

 

[image: image]

The preceding defines the expected value of X when it is a discrete non-negative random variable. We extend this first to arbitrary non-negative random variables and then to arbitrary random variables.

Suppose X is a non-negative real-valued random variable. Then it is possible to find discrete random variables X1, X2, . . . such that
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and

 

[image: image]

for all ω. Since each Xn is discrete, its expected value E[Xn] is well defined by (1.2). By our interpretation of E[Xn] as an integral it is easy to see that
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and it seems reasonable to make the following

(1.5)  DEFINITION. Let X be a non-negative random variable, and let X1, X2, . . . be discrete random variables satisfying (1.3) and (1.4). Then we define the expected value of X to be
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Finally, if X is an arbitrary real-valued random variable (not necessarily non-negative), and if we define
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and
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for all ω ∈ Ω, then both Y and Z are non-negative random variables, and

 

[image: image]

Definition (1.5) provides the meanings for the expected values of Y and Z, and we now make the following

(1.8)  DEFINITION. Let X be an arbitrary random variable with values in [image: image], and let Y and Z be defined by (1.6) and (1.7). Then

 

[image: image]

provided that at least one of the numbers E[Y] and E[Z] is finite. If E[Y] = E[Z] = + ∞, then X is said to have no expected value.

[image: image]

Definitions (1.2) and (1.8) are quite workable, but (1.5) is not. In fact, we have not even settled the matter of nonambiguity. If {Xn} is a sequence of discrete random variables increasing to X, and if {Yn} is another sequence of discrete random variables also increasing to X, then Definition (1.5) would put E[X] = limn E[Xn] and E[X] = limn E[Yn]. How do we know that these two numbers are the same ? Indeed, they are the same, as the proof of the next theorem shows. As a by-product we obtain a nice computational formula.

(1.9)  THEOREM. For any non-negative random variable X,
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Proof. First, suppose X is discrete with values in E. Then using Definition (1.2) and changing the order of summation and integration, we get (see Figure 2.1.2)

 

[image: image]

This establishes (1.10) for X discrete.

Let X be an arbitrary non-negative random variable, and let X1, X2, . . . be discrete random variables increasing to X. Then (1.11) applies to each

[image: image]

Figure 2.1.2 For non-negative discrete X, E[X] is the shaded area no matter how that is sliced.

Xn, and we have
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On the other hand, since the Xn increase to X, for any t ≥ 0,
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Thus, Proposition (1.1.11) applies to give
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It follows from (1.12) and (1.13) and the monotonicity of the convergence that, by Definition (1.5), we have
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This completes the proof.

[image: image]

We note that, in Definition (1.5), the sequence chosen to approximate X has nothing to do with the value E[X]. Formula (1.10) is in general easy to use if the distribution of X is known. (See Figure 2.1.3). In the case of discrete random variables taking integer values 0, 1, 2, . . ., it reduces further to a simpler sum:

(1.14)  COROLLARY. If X is a random variable taking values in [image: image] [image: image], then

 

[image: image]

[image: image]

Figure 2.1.3 Expected value of a non-negative random variable is the shaded area lying above its distribution function.

[image: image]

Figure 2.1.4. Expected value of the random variable X is the difference E[Y] – E[Z] of the two shaded areas.

In the case of arbitrary random variables, using Theorem (1.9) to compute E[Y] and E[Z] in Definition (1.8), we obtain (see Figure 2.1.4)

(1.15)  COROLLARY. For any real-valued random variable X,
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provided that at least one term on the right is finite.

In the formula given by (1.15), if we integrate by parts we obtain

(1.16)  COROLLARY. For any real-valued random variable X with distribution function φ,

 

[image: image]

provided the integral converges absolutely.

In computing a particular expectation, the choice of one formula over another is largely a matter of convenience. If there is a closed form expression for P{X > t}, in general, it is easier to use Theorem (1.9) and Corollary (1.15). Otherwise, it is easier to use Corollary (1.16) or its discrete equivalent, Definition (1.2).

(1.17)  EXAMPLE. The number of arrivals into a store during a specified time interval is a random variable X with
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Then, using Definition (1.2),
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(1.18)  EXAMPLE. The lifetime X of an item has the distribution
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This is a non-negative random variable; it is easier to compute E[X] by using Theorem (1.9). We obtain
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(1.19)  EXAMPLE. The intensity X of light falling on a certain surface has a distribution φ given by
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This distribution is called “the normal distribution with mean α and variance β2.” Using Corollary (1.16),
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(1.20)  EXAMPLE. A discrete random variable X has the distribution
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where p, q > 0, p + q = 1. If we use Definition (1.2),†
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On the other hand, if we choose to use Corollary (1.14), we first compute

 

[image: image]

for all [image: image]; then

 

[image: image]

(1.21)  EXAMPLE. A piece of equipment has two components whose life-times X and Y are independent random variables with distributions
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The equipment fails if either one of the two components does, namely, the lifetime of the equipment is Z = min(X, Y). To compute E[Z] we use Theorem (1.9). Now, Z > t if and only if both X > t and Y > t. So

 

[image: image]

where the second equality follows from the independence of X and Y (see Definition (1.2.21)). So

 

[image: image]

If X is a random variable taking values in E, and if f is a function from E into [image: image], then f(X) is a random variable with values in [image: image]. Given the distribution of X, one can obtain the distribution of Y = f(X) and, using that, compute the expected value of Y by using the formulae of the preceding propositions. However, it is much easier to think of E[Y] as the integral of the function Y with respect to P and obtain it as in Definition (1.2):

(1.22)  PROPOSITION. Let X be a discrete random variable taking values in E, and let f be a function from E into [image: image]. Then

 

[image: image]

provided the sum is absolutely convergent.

Proof. The random variable Y = f(X) takes the value f(a) on the set {X = a}, whose measure is P{X = a}. The integral of Y therefore is Σ f(a) P{X = a} where the summation is over all a ∈ E.

[image: image]

In the case of arbitrary (instead of discrete) random variables, the same reasoning gives the following

(1.23)  PROPOSITION. Let X be a random variable with values in E, and let f be a function from E into [image: image]. Then

 

[image: image]

provided that the integral be absolutely convergent.

Proof is omitted. If instead we had a function of more than one random variable, the preceding two propositions become as follows. Again, we omit the proof.

(1.24)  THEOREM. Let X1, . . ., Xn be random variables taking values in E, and let f be a function from E × · · · × E = En into [image: image]. Then

 

[image: image]

where φ is the joint distribution of X1, . . . Xn. In case X1, . . ., Xn are discrete, this becomes

 

[image: image]

where the summation is over all n-tuples a = (a1, . . ., an) with ai ∈ E

(1.25)  COROLLARY.

(a)   E[cX] = cE[X];

(b)   E[X + Y] = E[X] + E[Y];

(c)   E[c1X1 + · · · + cn Xn] = c1E[X1] + · · · + cn E[Xn].

Proof of (a) is immediate from Proposition (1.23), where we take f(a) = ca and then use Corollary (1.16). Proof of (b) follows from (1.24) by taking f(a, b) = a + b, and (c) is immediate from (a) and (b).

[image: image]

We note that in the preceding corollary, we made no assumption of independence: whether or not the random variables are independent, the expected value of any linear combination of them is equal to the same linear combination of their expectations. The following is the analog for the case of multiplication.

(1.26)  PROPOSITION. Let X and Y be two independent random variables taking values in E, and let g and h be two functions from E into [image: image]. Then

 

[image: image]

Proof for discrete X, Y. Put f(a, b) = g(a)h(b) in Theorem (1.24). Then
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But the independence of X and Y implies that
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for any a and b. So

 

[image: image]

The assumption of independence in this proposition is crucial: if X and Y are not independent, then E[g(X)h(Y)] might differ from E[g(X)]E[h(Y)].

For certain special functions f, E[f(X)] is given certain special names. In particular, if f(b) = bn then E[f(X)] = E[Xn] is called the nth moment of X about the origin. If f(b) = (b − μ)2, where μ = E[X], then E[f(X)] = E [(X – μ)2] is called the variance of X and is denoted by Var(X). If X is a non-negative integer-valued random variable, and if f(b) = αb for some α ∈ [0, 1], then E[f(X)] = E[αx] is a number between 0 and 1. Considered as a function of α ∈ [0, 1], G(α) = E[αx] is called the generating function of X. If X is a non-negative random variable, and if f(b) = e–αb for some α ≥ 0, then E[f(X)] is again a number between 0 and 1. Considered as a function of α, F(α) = E[e–αx] is called the Laplace transform of X.

The expected value of X is a rough guide to the value X is likely to be near. The variance of X measures the deviation of X from this likely value E[X]. If the variance is small, then X is more likely to be near E[X]. The following is an estimate that can be used when the distribution of X is not known. It is called Chebyshev’s inequality.

(1.27)  PROPOSITION. Let X be a random variable with expectation a and variance b2. Then for any ε > 0,
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Proof. Consider the expectation of the positive random variable Y = (X − a)2; it is E[Y] = b2. Now, E[Y] is the integral of Y over all of Ω, and as such it is greater than the integral of Y on the set {Y > ε2}. The measure of that set is P{Y > ε2}, and Y > ε2 on that set. So the integral must be greater than ε2P{Y > ε2}. That is,
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from which the proposition follows.
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In computing the variance it is usually worth noting that
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Following are some examples of these computations.

(1.29)  EXAMPLE. Consider the random variable X of Example (1.17). We had already computed E[X] = 8. Now, to obtain the variance we use the formula (1.28). To compute E[X2], note that it is easier to compute E[X(X − 1)] first and then use E[X2] = E[X(X − 1)] + E[X]. Now,

 

[image: image]

Hence,
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and
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Next we compute its generating function. We have
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for any α ∈ [0, 1]. Note that the derivative of G at α = 1 is
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whereas the second derivative of G at α = 1 is
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and the third derivative is
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(1.30)  EXAMPLE. Consider the lifetime X of the item discussed in Example (1.18). Its expectation was E[X] = 50. Now,
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and hence
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Computing the Laplace transform of X, we find
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We note that the derivative of F at α = 0 is

 

[image: image]

and that the second derivative at α = 0 is
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The results concerning the derivatives of the generating function in Example (1.29) hold in general: we have, for the generating function G of a non-negative integer-valued random variable X,
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where G(k) is the kth derivative of G. Similarly, the results in Example (1.30) concerning the Laplace transform also generalize. For any non-negative random variable X with Laplace transform F,
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It is also worth mentioning that a generating function determines the probability distribution associated with it; this is true because
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which means that P{X = n} is the coefficient of αn in the power-series expansion of G(α). Similarly, the Laplace transform determines the associated distribution function.

We close this section with two theorems on the expected value of the limit of a sequence of random variables. The first is called the monotone convergence theorem and the second the bounded convergence theorem. The proof of the first is the same as that of (1.9), and we will not repeat it; we also omit the proof of the second.

(1.34)  THEOREM. If X1, X2, . . . is a sequence of non-negative random variables increasing to the random variable X, then the expectations E[X1], E[X2], . . . increase to E[X].

(1.35)  THEOREM. Let X1, X2, . . be a sequence of random variables which are bounded in absolute value by a random variable Y such that E[Y] < ∞. If
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for almost all ω ∈ Ω, then
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2.  Conditional Expectations

Let Y be a discrete random variable taking values in [image: image], and let A be an event with P(A) > 0. Then the conditional probability that Y = b given the event A is (see (1.3.1))
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As b varies, this is called the conditional distribution of Y given the event A. We define the conditional expectation of Y given the event A as

 

[image: image]

In particular, when A = {X = a} for a discrete random variable X taking values in a set E,

 

[image: image]

is called the conditional expectation of Y given that X = a. As a varies, (2.3) defines a function f on E by

 

[image: image]

By the conditional expectation of Y given X, written E[Y | X], we mean the random variable f(X); that is,

 

[image: image]

where f is as defined by (2.4). The following definition is the generalized version of this.

(2.6)  DEFINITION. Let X1, . . ., Xn be discrete random variables taking values in E, and let Y be a discrete random variable with values in [image: image]. Then the conditional expectation of Y given X1, . . ., Xn is
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where for any n-tuple (a1, . . ., an) with ai ∈ E,

 

[image: image]

If Y is not discrete, then a similar definition is given in terms of its conditional distribution P{Y ≤ t | X1 = a1, . . ., Xn = an}. For example, if Y is non-negative,

 

[image: image]

where

 

[image: image]

for all a1, . . ., an ∈ E.

For any event A, its indicator function IA (which is such that IA(ω) = 1 or 0 according as ω ∈ A or not) is a random variable. Then we define the conditional probability of A given X1, . . ., Xn as

 

[image: image]

The following are some easy properties of conditional expectations. These are analogous to Propositions (1.22), (1.23), (1.24), and (1.25). We omit the proofs.

(2.10)  PROPOSITION. Let Y be a discrete random variable with values in E and g a function from E into [image: image]. Then
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(2.11)  PROPOSITION. Let Y1, . . ., Ym be discrete random variables with values in E, and let g be a function from Em into [image: image]. Then

 

[image: image]

(2.12)  COROLLARY. If Y1, . . ., Ym take values in [image: image] and c1, . . ., cm are constants, then

 

[image: image]

(2.13)  EXAMPLE. Let X and Y be two random variables with
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Let f(b) = E[Y | X = b], b = 1, 2. Then
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Thus,

 

[image: image]

(2.14)  EXAMPLE. Consider three random variables X, Y, and Z with joint distribution
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for K = 1, . . ., m – 1; m = 2, . . ., n – 1; n = 3, 4, . . ., where 0 < p < 1, p + q = 1.

Then for k = 1, . . ., m – 1; m = 2, 3, . . .;
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Thus, for k = 1, . . ., m – 1 and m = 2, . . ., n – 1, we have
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Hence, for k = 1, . . ., m – 1 and m = 2, 3, . . .,

 

[image: image]

Thus,

 

[image: image]

We note that for any bounded function g,
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so that

 

[image: image]

In particular, if g(b) = αb for some α ∈ [0, 1], then

 

[image: image]

The next proposition states that if the knowledge of X1 . . ., Xn determines Y completely, then the conditional expectation of Y given X1, . . ., Xn is equal to Y itself. The proof is very easy and we omit it.

(2.15)  PROPOSITION. If Y can be written as
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for some function f, then

 

[image: image]

Next is a very useful result used in situations where E[Y | X1, . . ., Xn] is easy to obtain or known somehow. Since E[Y | X1, . . ., Xn] is a random variable taking real values, we can talk about its expected value. That expected value is the same as the expectation of Y. In words, the expected value of any conditional expectation of Y is equal to the expected value of Y.

(2.16)  PROPOSITION. E[E[Y | Xl, . . ., Xn] = E[Y].

Proof for discrete Y, X1, . . ., Xn. Let
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then

 

[image: image]

On the other hand,
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Putting (2.18) into (2.17) and changing the order of summation, noting Definition (1.3.1) of conditional probabilities, we obtain

 

[image: image]

The next result is very important in the theory of stochastic processes. It shows how to obtain the conditional expectation of Y given X1, . . ., Xn when it is easy to obtain the same given X1, . . ., Xn plus some extra information contained in Xn+1, . . ., Xn+m.

(2.19)  THEOREM. For any n, m ≥ 1
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Proof for n = 2, m = 1, X1, X2, X3, Y discrete. Let Z = f(X1, X2, X3) = E[Y| X1, X2, X3] We need to show that

 

[image: image]

We have
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and
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Putting the two computations together, we get

 

[image: image]

since

 

[image: image]

by (1.3.1) and (1.3.2). Noting that (2.21) is the same as (2.20) completes the proof.

(2.22)  COROLLARY. If
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then

 

[image: image]

Proof. By Theorem (2.19) and Proposition (2.15),
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The preceding corollary has the following interpretation. Suppose, given X1, . . ., Xn + m, that the conditional expectation of Y depends only on X1, . . ., Xn. This means that, as far as predicting the value of Y is concerned, knowledge of X1, . . ., Xn makes further knowledge concerning Xn +1, . . ., Xn + m irrelevant. Therefore, the conditional expectation of Y given X1, . . ., Xn is the same as that of Y given X1, . . ., Xn + m.

A particular case of this happens to come up fairly often. Suppose we have E[Y | X1, . . ., Xn] computed; and suppose Y1, . . ., Ym are functions of X1, . . ., Xn, that is, Y1 = g1(X1, . . ., Xn), . . ., Ym = gm(X1, . . ., Xn). Then E[Y | X1, . . ., Xn, Y1, . . ., Ym] = E[Y | X1, . . ., Xn].

Another important concept is contained in the following theorem. Suppose {Y1, . . ., Ym} and {X1, . . ., Xn} are such that knowing the values of one set determines the values of the other. This is especially the case when Y1 = g1(X1, . . ., Xn), . . ., Ym = gm(X1, . . ., Xn) and conversely X1 = f1(Y1, . . ., Ym) . . ., Xn = fn(Y1, . . ., Ym). Then for any random variable Y, the conditional expectation of Y given X1, . . ., Xn is the same as the conditional expectation of Y given Y1, . . ., Ym. This is so since {X1, . . ., Xn} carries the same information as {Y1, . . ., Ym}. The proof is easy and will be omitted.

(2.23)  THEOREM. Suppose the collections {X1, . . ., Xn} and {Y1, . . ., Ym} are such that the knowledge of the random variables in one collection determines the values of the random variables in the other. Then for any Y,
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We close this section by giving an extension of the concept of independence.

(2.24)  DEFINITION. The set of random variables {Y1, . . ., Ym} is said to be independent of {X1, . . ., Xn} if
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for all non-negative functions g. Two stochastic processes {Yt; t ∈ T1} and {Xt; t ∈ T2} are said to be independent of each other if any finite collection {Yt1, . . ., Ytm} from the first is independent of any finite collection {Xs1, . . ., Xsn} from the second.

[image: image]

We note that in a collection of random variables, independence in the sense of (1.2.19) is equivalent to the independence, in the sense of (2.24), of any two subcollections. As such, we will not distinguish between the two.

Next is a new concept, that of conditional independence.

(2.25)  DEFINITION. {Y1, . . ., Ym} is said to be conditionally independent of {Z1, . . ., Zk} given {X1, . . ., Xn} provided that
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for all non-negative functions g. The collection {Yt; t ∈ T1} is said to be conditionally independent of the collection {Zt; t ∈ T2} given the collection {Xt; t ∈ T3} provided that for any finite collection {Yt1, . . ., Ytm} from the first and any finite collection {Zs1, . . ., Zsn} from the second,

 

[image: image]

for all non-negative functions g.

[image: image]

In words, {Y1, . . ., Ym} is conditionally independent of {Z1, . . ., Zk} given {X1, . . ., Xn} provided that, as far as predicting the value of any function of Y1, . . ., Ym is concerned, the extra knowledge provided by Z1, . . ., Zk loses all its significance once the values of X1, . . ., Xn are known.

(2.26)  EXAMPLE. Consider the random variables X, Y, Z of Example (2.14). We had shown that
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The right hand side being independent of X, we see that Z is conditionally independent of X given Y. We also note that Z is not independent of X.

[image: image]

(2.27)  EXAMPLE. Let X1, X2, . . . be a sequence of random variables with E[Xi] = μ for all i. Let N be a non-negative integer-valued random variable independent of X1, X2, . . . with E[N] = λ For each ω ∈ Ω, let
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We would like to compute E[Y]. We may think of X1, X2, . . . as the amounts spent by customers 1, 2, . . . and of N as the number of arrivals within the first hour. Then Y is the total revenue within that hour.

By Proposition (2.16),
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On the other hand, since N is independent of X1, X2, . . ., for n ≥ 1,

 

[image: image]

Hence

 

[image: image]

and by (2.28)

 

[image: image]

3.  Exercises

(3.1)  Find the expected value of the random variable X taking the values –5, 1, 4, 8, 10 with probabilities 0.3, 0.2, 0.2, 0.1, 0.2 respectively.

(3.2)  Consider the random variable X taking the values –2, 0, 2 with probabilities 0.4, 0.3, 0.3 respectively. Compute the expected values of X, X2, 3X2 + 5.

(3.3)  Compute the variance and the generating function of the random variable in Example (1.20).

(3.4)  A random variable X is said to have the uniform distribution over [a, b] if
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(a)   Compute E[X], Var(X), E[(X – a)/(b – a)].

(b)   Find the distribution of Y = (X – a)/(b – a).

(3.5)  Compute the variance and the Laplace transform of the lifetime in Example (1.21).

(3.6)  Compute the variance of the intensity of light in Example (1.19).

(3.7)  The headway X between two vehicles at a fixed instant is a random variable with
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Find the expected value and the variance of the headway.

(3.8)  Show that for any constants a and b,
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for any random variable X.

(3.9)  Show that for any two independent random variables X and Y,
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(3.10)  The lifetime X of a device has the distribution
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(a)   Show that E[X] = 1/c.

(b)   Show that (see also Example (1.3.8))
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(3.11)  Let X, Y be as defined in Example (1.2.23).

(a)   Compute E[X], E[Y – X], E[Y].

(b)   Find E[Y – X | X], E[Y | X].

(c)   Show by direct computation that E[E[Y | X]] = E[Y].

(3.12)  Suppose X1 X2, . . . are independent and identically distributed non-negative random variables with
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Let N be a non-negative integer-valued random variable which is independent of {X1, X2, . . .}, and let
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Let S0 = 0, S1 = X1, S2 = X1 + X2, . . ., and let Y = SN.

(a)   Compute E[Y | N], E[Y2|N].

(b)   Compute E[Y], E[Y2], Var(Y).

(c)   Show that for any [image: image],

 

[image: image]

where

 

[image: image]

[image: image]

The chapter just finished completes our account of the preliminaries necessary for studying stochastic processes. Especially in view of the monstrous looks of the last section, it seems all too advisable to inquire how the reader’s patience is holding out and to assure him that he will in time come to appreciate the true friendliness of these concepts. For a deeper treatment and for the proofs which we have omitted, we refer the reader to CHUNG [2].



†Note that, for x ∈ (0, 1), [image: image]. If we differentiate both sides we get [image: image] and [image: image].


CHAPTER 3

Bernoulli Processes and Sums of Independent Random Variables

Consider an experiment consisting of an infinite sequence of trials. Suppose that the trials are independent of each other and that each one has only two possible outcomes: “success” and “failure.” A possible outcome of such an experiment is (S, F, F, S, F, S, . . .), which stands for the outcome where the first trial resulted in success, the second and third in failure, fourth in success, fifth in failure, sixth in success, etc. Thus, the sample space Ω of the experiment consists of all sequences of two letters S and F, that is,

 

[image: image]

We next describe a probability measure P on all subsets of Ω. Let 0 ≤ p ≤ 1, and define q = 1 – p. We think of p and q as the probabilities of success and failure at any one trial. The probability of the event {ω: ω1 = S, ω2 = S, ω3 = F} should then be p · p · q = p2q, and the probability of the event {ω: ω1 = S, ω2 = F, ω3 = F, ω4 = F, ω5 = S} should be p · q · q · q · p = p2q3. For each n, we consider all events which are specified by the first n trials and define their probabilities in this manner. This, in addition to the conditions in Definition (1.1.6), completely specifies the probability P.

For each ω ∈ Ω and n ∈ {1, 2, . . .}, define Xn(ω) = 1 or 0 according as ωn = S or ωn = F. Then for each n, we have a random variable Xn whose only values are 1 and 0. It follows from the description of P that X1, X2, . . . are independent and identically distributed with P{Xn = 1} = p, P{Xn = 0} = q. In the first three sections of this chapter we will be interested in the properties of stochastic processes such as {Xn; n = 1, 2, . . .} and other processes defined in terms of {Xn}.

The process {Xn} is very simple in nature, and the answers to most problems raised here are easy to obtain. Our object here is to demonstrate some of the questions that are raised in studying a stochastic process, and to provide some experience in using the tools of Chapters 1 and 2.

The processes of Sections 2 and 3 provide two examples of sums of independent and identically distributed random variables. We collect results of a more general nature about such processes in Section 4 along with certain classical limit theorems.

1.  Bernoulli Processes

Let Ω be a sample space and P a probability measure on Ω. Let {Xn; n = 1, 2, . . .} be a sequence of random variables defined on Ω and taking only the two values 0 and 1.

(1.1)  DEFINITION. The stochastic process {Xn; n = 1, 2, . . .} is called a Bernoulli process with success probability p provided that

(a)   X1, X2, . . . are independent, and

(b)   P{Xn = 1} = p, P{Xn = 0} = q = 1 − p for all n.

[image: image]

(1.2)  EXAMPLE. Finished products coming off an assembly line are given a routine inspection. If the nth item is “defective” we put Xn = 1, otherwise Xn = 0. If the production process is “under control,” the successive items produced will show only random chance effects, and X1, X2, . . . will be independent. If, further, the defective rate p remains constant over time, then {Xn; n = 1, 2, . . .} will be a Bernoulli process.

[image: image]

(1.3)  EXAMPLE. At a certain fork on a road, about 62 percent of the vehicles turn left. We define Xn to be 1 or 0 according as the nth vehicle turns left or right. The random variables X1, X2, . . . are independent of each other if the drivers act independently of each other in choosing their directions to turn. Then {Xn; n = 1, 2, . . .} is a Bernoulli process with probability 0.62 for success.

[image: image]

(1.4)  EXAMPLE. Diameters of bearings coming off a production line are measured, and those that do not meet the specifications are rejected. Let Y1, Y2, . . . be the diameters in inches of the first, second, . . . bearings. Let a = 2.994 and b = 3.006 be the lower and the upper tolerance limits. Thus, the nth bearing is not rejected if and only if 2.994 ≤ Yn ≤ 3.006.

Suppose Y1, Y2, . . . are independent and identically distributed with the common distribution function φ given by
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(this is the normal distribution with mean 3 and variance (0.002)2). For each n let
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where B = [2.994, 3.006]. Then Xn is 1 if the nth bearing meets the specifications and is 0 otherwise. Since Y1, Y2, . . . are independent, X1, X2, . . . are also independent; and since the Yn have a common distribution, the Xn also have a common distribution. Hence, {Xn; n = 1, 2, . . .} is a Bernoulli process. The probability p = P{Xn = 1} is now computed as
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where the table for the standard normal distribution is used to obtain the last number (see Figure 3.4.3 on page 65).

[image: image]

Let {Xn; n = 1, 2, . . .} be a Bernoulli process with success probability p. Then for any n,
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for any α ≥ 0.

2.  Numbers of Successes

Let {Xn; n = 1, 2, . . .} be a Bernoulli process with probability of success p. We think of Xn as the number of successes at the nth trial. Define
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for each ω ∈ Ω. Then Nn is the number of successes in the first n trials, and Nn+m – Nn is the number of successes in the trials numbered n + 1, n + 2, . . ., n + m. In this section we are interested in the stochastic process [image: image] whose time parameter is discrete [image: image] and whose state space is discrete and again is {0, 1, . . .}.

We start with simple descriptive quantities. Using the definition of Nn, Corollary (2.1.25), and the result (1.5) above, we obtain
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for all n ≥ 1, and clearly, E[N0] = 0, so E[Nn] = np for all n ≥ 0. Similarly, using the result in Exercise (2.3.9) and the independence of X1, . . . Xn,
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by (1.6). From (2.2) and (2.3) we can get, by using the formula (2.1.28) for the variance,
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We could have computed [image: image] directly by noting that
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so that

 

[image: image]

This last computation indicates how to go about obtaining the higher moments of Nn.

Note that we have computed the expected value and variance without knowing the distribution of Nn. However, if one needs to compute E[g(Nn)] for arbitrary g, then we need the distribution of Nn. This we do next. The use of conditional probabilities in the proof below illustrates one of the main techniques found useful in studying stochastic processes.

(2.5)  LEMMA. For any n, [image: image]
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Proof. Fix n and k. Using Theorem (1.3.3) with A = {Nn+1 = k} and Bj = {Nn = j}, we get
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Since {X1, . . ., Xn} is independent of Xn+1, by Definition (2.2.24), Nn = X1 + · · · + Xn is independent of Xn+1. Using this fact along with Nn + 1 = Nn + Xn + 1, we obtain
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Putting this in (2.6), we obtain the desired result.

[image: image]

For n = 0, N0 = 0 and therefore P{N0 = 0} = 1, and P{N0 = k} = 0 for k ≠ 0. These, along with Lemma (2.5), specify the values of P{N1 = k}. The values of P{N1 = k} found, along with Lemma (2.5), give the values of P{N2 = k}, etc. Doing this a few steps, we obtain the table shown in Figure 3.2.1. From the table we recognize the nth row as the terms in the binomial expansion of (q + p)n. Then we prove this conjecture.

[image: image]

Figure 3.2.1 Using the probabilities P{Nn = k} in one row, one obtains the values P{Nn+1 = k} in the next row.

(2.7)  THEOREM. For any [image: image]
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Proof. For n = 0, the claim is true, since N0 = 0. We now make the induction hypothesis that the formula is true for n = m and all k. To complete the proof we need to show that, then, the claim is also true for n = m + 1 and all k. For n = m + 1, k = 0, Lemma (2.5) and the induction hypothesis give
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as claimed. For n = m + 1 and 0 < k ≤ m + 1, again by Lemma (2.5) and the induction hypthesis, we have
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so the claim is again true.

[image: image]

We have now specified the distribution of the number of successes in the first n trials. Noting that Nm+n – Nm = Xm+1 + · · · + Xm+n also is the sum of n independent and identically distributed Bernoulli variables, we deduce that the distribution of Nm+n – Nm is the same as that of Nn. This we state as a

(2.8)  COROLLARY. For any m, [image: image]
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independent of m.

The distribution figuring above is called the binomial distribution. As we had noted before, P{Nn = k} is the kth term in the binomial expansion of (q + p)n. The coefficient of the kth term is usually denoted by [image: image] (read n above k), that is,
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(2.10)  EXAMPLE.Using Corollary (2.8), we obtain
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So the corollary above enables us to compute the distribution of Nm+n – Nm for all n, m. But we still are not able to compute compound probabilities such as P{N5 = 4, N7 = 5, N13 = 8}. The means for doing that is furnished by the following

(2.11)  THEOREM. For any m, [image: image]
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for k = 0, . . ., n.

(2.12)  EXAMPLE. To illustrate the use of this theorem, suppose we are interested in evaluating the joint probability
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The event whose probability is desired is equal to the event {N5 = 4, N7 – N5 = 1, N13 – N7 = 3}. By Theorem (2.11), the random variable N13 – N7 is independent of N0, . . ., N7. Thus,
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Again by Theorem (2.11), N7 – N5 is independent of N0, . . ., N5 and therefore of N5 in particular. Hence,
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Putting all these together,

 

[image: image]

where the last line followed from Corollary (2.8), which was also put in Theorem (2.11).

Finally, suppose we want to compute E[N5 N8]. Writing N8 = N5 + (N8 – N5), we have
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where to get the last line we first used Corollary (2.1.25), and then used the independence of N5 and N8 – N5(which is implied by Theorem (2.11) above) to apply Proposition (2.1.26) on the expectation of the products of independent random variables. Now using (2.2) and (2.3), we have

 

[image: image]

Proof of Theorem (2.11). The random variables N0, . . ., Nm are completely determined by X1, . . ., Xm through (2.1), and conversely, N0, . . ., Nm completely determine X1, . . ., Xm through X1 = N1, X2 = N2 – N1, . . ., Xm = Nm – Nm−1. Hence, the knowledge of {N0, . . ., Nm} determines {X1, . . ., Xm} and vice versa. By Theorem (2.2.23), then,
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On the other hand, Nm+n – Nm = Xm+1 + · · · + Xm+n, and {Xm+1, . . ., Xm+n} is independent of {X1, . . ., Xm}. Hence, Definition (2.2.24) gives (note that, here, g(a, . . ., b) = I{k}(a + · · · + b))
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The last equality of the theorem follows now from Corollary (2.8).

[image: image]

We restate Theorem (2.11) in a slightly different wording:

(2.13)  COROLLARY. Let n0 = 0 < n1 < n2 < · · · < nj be integers. Then the random variables Nn1 – Nn0, Nn2 – Nn1, . . ., Nnj – Nnj−1 are independent.

Theorem (2.11) states that the increase in the value of the function N during the trials numbered m + 1, . . ., m + n is independent of the past history until m (this history being given by N0, . . ., Nm or, equivalently, by X1, . . ., Xm). Further, the distribution of that increase depends only on n (independent of m).

A stochastic process satisfying Theorem (2.11) or, equivalently, Corollary (2.13) is called a process with independent increments. Note that the independence of Nm+n – Nm from N0, . . ., Nm was proved without any appeal to the distribution of the Xn. Thus, Corollary (2.13) is true for any stochastic process [image: image] defined by
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with Y1, Y2, . . . being independent random variables. If the Yn are also identically distributed (in addition to being independent), then the distribution of the increment Zm+n – Zm does not depend on m. Then {Zn} is said to have stationary and independent increments.

Going back to Bernoulli processes, suppose we are given the past history until the time m, namely, we are given {N0, . . ., Nm} or, equivalently, we are given {X1, . . ., Xm}. Suppose we are to predict the value of a random variable Y depending on the future of the process {Nn}, namely, Y = g(Nm, Nm+1, . . .) for some function g. The next theorem states that, as far as predicting the value of Y is concerned, all past data concerning N0, . . ., Nm−1 become worthless provided that Nm be known.

(2.14)  THEOREM. Let Y be a random variable depending on a finite number of the random variables Nm, Nm + 1, . . .; that is, Y can be written as
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for some n and some function g. Then
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Proof. Since Nm+1 = Nm + Xm+1, . . ., Nm+n = Nm + Xm+1 + · · · + Xm+n, there is a unique function h such that
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Thus,

 

[image: image]

where the second summation is over all n-tuples i = (i1, . . ., in) of zeros and ones.

Since {Xm + 1, . . ., Xm+n} is independent of {X1, . . ., Xm}, by Theorem (2.2.23), {Xm + 1, . . ., Xm+n} is also independent of the random variables N0, . . ., Nm determined by {X1, . . ., Xm}. Hence,
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where π(i) = P{Xn = i} = p or q according as i = 1 or i = 0. On the other hand,
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by Proposition (2.2.15). Putting the last two results in (2.15), we obtain
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independent of N0, . . ., Nm−1. Finally, by Corollary (2.2.22), this implies that
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as was to be shown.

[image: image]

Theorem (2.14) above is satisfied by many processes of much less specific structure. Such processes are called Markov chains, and we will later study them at some length. The particular Markov chain we have, namely [image: image], has the further property mentioned in Corollary (2.13), and this makes our present job easier. The following is to illustrate the workings of Theorem (2.14).

(2.16)  EXAMPLE. We want to compute the conditional expectation of N11 given N5. We have
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The second equality made use of Corollary (2.2.12); to pass to the third equality we used the fact that E[N5 | N5] = N5 by Proposition (2.2.15), and the fact that N11 – N5 is independent of N5 by Corollary (2.13).

[image: image]

(2.17)  EXAMPLE. Let us compute E[N5 N8] again (cf. Example (2.12) for the same) to show that conditional expectations, used properly, can reduce the work involved.

By Proposition (2.2.16), E[N5N8 = E[E[N5N8 | N5]]. On the other hand,
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Hence,
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(2.18)  EXAMPLE. We want to compute
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By Theorems (2.2.19) and (2.14),
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Using the result of Example (2.16),
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so that
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Again applying Theorems (2.2.19) and (2.14) and Proposition (2.2.15) in that order,
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(that is, given N2 and N3, we need only N3 as far as predicting the future is concerned).

Writing N5 = N3 + (N5 – N3), then using Corollary (2.13) to deduce the independence of N5 – N3 and N3 we get
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We now have a number of theorems at our disposal to compute the probabilities or expectations related to the sequence {Nn}. In the next section we will obtain results of a similar nature about the sequence of times (random) at which the successes occur.

3.  Times of Successes

Let {Xn; n ≥ 1} be a Bernoulli process with probability p of success. For fixed ω ∈ Ω, consider the realization X1(ω), X2(ω), X3(ω), . . . of this process. This is a sequence of ones and zeros. Denote by T1(ω), T2(ω), . . . the indices corresponding to the successive ones. For example, if X1(ω) = 0, X2(ω) = 1, X3(ω) = 0, X4(ω) = 1, X5(ω) = 1, . . ., then T1(ω) = 2, T2(ω) = 4, T3(ω) = 5, . . . . Then Tk is the trial number at which the kth success occurs. In this section we are interested in the sequence of random variables {Tk; k ≥1}.

(3.1)  EXAMPLE.We have the following model as an approximation of the traffic flow through a fixed point on an uncongested highway. The time axis is divided into intervals of length 1 second each. If there is a vehicle crossing during the nth second, we put Xn = 1; otherwise put Xn = 0. The traffic flow is such that the numbers of vehicles passing the fixed point in disjoint time intervals are independent. If, furthermore, the traffic density remains constant over time, then the sequence {Xn; n ≥ 1} is a Bernoulli process. Now, Nn is the number of vehicles passing the fixed point in the interval (0, n], and Tk is the second during which the kth vehicle crosses the given point.

[image: image]

There is a fundamental relation between the times of successes Tk and the numbers of successes Nn. Fix ω ∈ Ω; suppose that for the realization ω, the kth success has occurred at or before the nth trial; that is, suppose Tk(ω) ≤ n. Then the number of successes in the first n trials must be at least k; that is, we must have Nn(ω) ≥ k. Thus, if Tk(ω) ≤ n, then Nn(ω) ≥ k. Conversely, if Nn(ω) ≥ k, then Tk(ω) ≤ n.

Another relation between the Tk and the Nn is obtained as follows. Fix ω ∈ Ω again, and suppose Tk(ω) = n. This implies that for that realization ω, there were exactly k – 1 successes in the first n – 1 trials and a success occurred at the nth trial, that is, Nn−1(ω) = k – 1 and Xn(ω) = 1. Conversely, if Nn−1(ω) = k – 1 and Xn(ω) = 1, then Tk(ω) = n. We state these two relationships next as a lemma, and then use them to obtain the distribution of the Tk from the known distribution of the Nn.

(3.2)  LEMMA. For any ω ∈ Ω, k = 1, 2, . . ., and n ≥ k, we have

(a)   Tk(ω) ≤ n if and only if Nn(ω) ≥ k,

(b)   Tk(ω) = n if and only if Nn−1(ω) = k − 1, Xn(ω) = 1.

(3.3)  THEOREM. For any k ∈ {1, 2, . . .},
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Proof. Fix k ∈ {1, 2, . . .} and n ≥ k. By Lemma (3.2a) the event {Tk ≤ n} is equal to the event {Nn ≥ k}. Hence,
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which implies (3.4) when P{Nn = j] is replaced by its value, using Theorem (2.7).

By Lemma (3.2b) the events {Tk = n} and {Nn – 1 = k – 1, Xn = 1} are the same, and by Definition (2.2.24) of independence, Xn and Nn – 1 are independent. Hence,
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which yields the formula (3.5) when the two probabilities on the right are evaluated using (2.7) and the definition of the Xn.

[image: image]

The preceding theorem, in principle, enables us to compute probabilities and expectations concerning only one of the Tk. In order to consider more complex events involving several of the Tk, we need to know more about the structure of the process {Tk; k = 1, 2, . . .}. In fact this will further yield theorems which considerably simplify the computations of quantities such as E(Tk), Var(Tk), etc.

Fix ω ∈ Ω and suppose T1(ω) = 3, T2(ω) = 4, T3(ω) = 5, T4(ω) = 12. Then, in order that T5(ω) = 17, we must have X13(ω) = 0, X14(ω) = 0, X15(ω) = 0, X16(ω) = 0, X17(ω) = 1. More generally, in order that T5(ω) = 12 + m, we must have X12+1(ω) = 0, . . ., X12+m–1(ω) = 0, X12+m(ω) = 1. We note that, given T4, the information concerning T1, T2, and T3 had no value in predicting T5. In fact the same is true in predicting T5 – T4. These observations lead to the following two theorems. (Throughout the following we have T0 = 0, and T1, T2, . . . as the times of the first, second, . . . successes in a Bernoulli process {Xn;n ≥ 1} with probability p of success in any one trial.)

(3.6)  THEOREM. For any [image: image] and n ≥ k,
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independent of T0, . . ., Tk – 1.

Proof. Fix k and n and consider the conditional probability f(T0, . . ., Tk) on the left, that is, for integers 0 = a0 < a1 < · · · < ak = a we have
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If n ≤ ak = a, then this conditional probability is zero. Otherwise, if n > ak = a, in order that Tk = a, Tk + 1 = n, we must have Xa + 1 = 0, . . ., Xn – 1 = 0, Xn = 1. Hence,

 

[image: image]

We have shown that

 

[image: image]

and the right hand side is independent of T0, . . ., Tk – 1 in both cases.
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The preceding theorem shows that given the time Tk of the kth success, the time of the (k + 1)th success is conditionally independent of T0, . . ., Tk – 1. In fact, the proof has shown something stronger: from (3.7) we have
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which implies the following

(3.8)  PROPOSITION. For any [image: image],
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for all m ∈ {1, 2, . . .}.

In words, then, the time between two successes is independent of the times of previous successes. The distribution appearing here is called the geometric distribution. For purposes of increased articulation we now restate this proposition.

(3.9)  PROPOSITION. T1, T2 − T1, T3 − T2, . . . are independent and identically distributed random variables with the geometric distribution
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as the common distribution.

Thus, each Tk is the sum of k independent and identically distributed random variables. In this regard, there is no difference between the processes {Nn} and {Tn}. The difference lies in the distribution of the increments Nn+1 − Nn and Tn+1 − Tn. During the discussion following Theorem (2.12) and Corollary (2.13) we mentioned that Corollary (2.13) holds for any process {Zn} where Zn is the sum of n independent and identically distributed random variables. Hence it also holds for the process {Tn}:

(3.10)  COROLLARY. Let 0 = n0 < n1 < · · · < nj be integers. Then the random variables Tn1 − Tn0, Tn2 − Tn1. . ., Tnj − Tnj − 1 are independent. Furthermore, the distribution of Tm+n − Tm is independent of m.

Of course, the distribution of Tm+n − Tm is the same as the distribution of Tn, and this was computed in Theorem (3.3). As we had mentioned after Theorem (3.3), we are now in a much better position to compute expectations and complex-looking probabilities.

It follows from the distribution of Tk+1 − Tk given in Proposition (3.9) that
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(see Example (2.1.20) for this computation and the footnote there to help in the next computation). Similarly,
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and using the formula (2.1.28),
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We can use these results to obtain similar ones about Tk without using the distribution (given in (3.3)) of Tk directly. Writing Tk = T1 + (T2 − T1) + · · · + (Tk − Tk − 1), since the expectation of a sum is the sum of the expectations (cf. Corollary (2.1.25)), (3.11) yields
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Coupling the result of (2.3.9) with the independence of T1, T2 − T1, . . ., Tk − Tk − 1(cf. Proposition (3.9) for this), we get
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from (3.13). The reader might want to compute Var(Tk) directly from the distribution of Tk given in Theorem (3.3) in order to appreciate the values of Propositions (3.8) and (3.9). The following could not be computed without such propositions.

(3.16)  EXAMPLE. consider P{T1 = 3, T5 = 9, T7 = 17}. The event in question is the same as the event {T1 = 3, T5 − T1 = 6, T7 − T5 = 8}. Since, by Corollary (3.10), T1, T5 − T1, T7 − T5 are independent, we can write
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where the last equality is again obtained from (3.10). Now using Theorem (3.3) to evaluate these, we obtain
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(3.17)  EXAMPLE. A certain component in a large system has a lifetime whose distribution can be approximated by π(m) = pqm − 1, m ≥ 1. When the component fails, it is replaced by an identical one. Let T1, T2, . . . denote the times of failure; then Uk = Tk − Tk − 1 is the lifetime of the kth item replaced. Since the components are identical,
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and the items have independent lifetimes. Thus {Tk} can be looked upon as the times of “successes” in a Bernoulli process. Past records indicate that the first three failures occurred at times 3, 12, and 14. We would like to estimate the time of the fifth failure.

By Theorem (3.6),
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Writing T5 = T3 + (T5 − T3), using Corollary (2.2.12) to write the conditional expectation as the sum of the conditional expectations, noting that E[T3 | T3] = T3 by Proposition (2.2.15) and that E[T5 − T3 | T3] = E[T5 − T3] by the independence of T5 − T3 from T3 (this is by Corollary (3.10)), we have
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Hence, the quantity of interest is
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If p = 0.60, this is 17.33.
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(3.18)  EXAMPLE. In the preceding example suppose that each item costs c dollars when new. Assuming that α dollars today is worth 1 dollar during the next period, we now compute the expected total discounted value of all future expenditures on this component.

It is assumed that the discount rate remains the same throughout. Therefore, c dollars spent at time n is worth cαn dollars at present. Note that α is less than 1; if the “inflation” rate is 0.06, for example, then α = 1/(1 + 0.06).

Fix ω ∈ Ω; the kth replacement occurs at time Tk(ω). That kth item costs c dollars, and therefore its discounted value is
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Thus, the total discounted cost is
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The expected value of a sum being the sum of the expectations (cf. Theorem (2.1.34)), we have
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Writing Tk = T1 + (T2 − T1)+ · · · + {Tk − Tk − 1), noting that T1, T2 − T1, . . ., Tk − Tk − 1 are independent by Proposition (3.9), and applying Proposition (2.1.26) on the expected value of such products, we obtain

 

[image: image]

Since T1, T2 − T1, . . . have the same geometric distribution,
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Hence,
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We close this section with a generalization of the computations appearing in Example (3.18). Suppose that the value of the amount spent at time n is equal to f(n) in terms of present worth. In the preceding example we had f(n) = cαn. Now we only assume that f(n) ≥ 0 for all n. In fact, the result (3.19) below holds for any f for which Σ f(n) is absolutely convergent.

We would like to compute
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Without further information on f, it looks as if we have to use Theorem (3.3). But we can do better if we examine the sum [image: image]. If, for ω ∈ Ω, T1(ω) = 2, T2(ω) = 5, T3(ω) = 10, T4(ω) = 11, etc., then S(ω) = f(2) + f(5) + f(10) + f(11) + · · · . Note that 2, 5, 10, 11, . . . are precisely those indices n for which Xn(ω) = 1, and that S(ω) = f(1) X1(ω) + f(2) X2(ω) + f(3) X3(ω) + · · ·. This is true in general, and we can write
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The rest is easy:
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4.  Sums of Independent Random Variables

In comparing the stochastic structures of the process [image: image] of Section 2 and the process [image: image] of Section 3, as revealed for example by Corollaries (2.13) and (3.10) respectively, we see that they are very much alike. As we mentioned before, this is due to the facts that N1 − N0, N2 − N1, . . . are independent and identically distributed and that T1 − T0, T2 − T1, . . . are also independent and identically distributed. It is this property that we now will put in a general setting.

Let Y1, Y2, . . . be a sequence of independent and identically distributed random variables, and define for each [image: image]
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We are interested in the stochastic process [image: image] and, especially, its limiting behavior as n approaches infinity. These limit theorems have applications in data collection and statistical estimation, and we shall point out the way they are used.

The following property is immediate from the definition of the Zn and Definition (2.2.24) of independence.

(4.2)  PROPOSITION. The stochastic process [image: image] has stationary and independent increments; that is,

(a)   Zn1 − Zn0, Zn2 − Zn1, . . ., Znk − Znk−1 are independent for any integers 0 ≤ n0 ≤ n0 < n1 < · · · < nk; and

(b)   the distribution of Zn + m − Zn is independent of n.

Conversely, if a process {Zn} has stationary independent increments, then taking n0 = 0, n1 = 1, . . ., nk = k shows that Z1 − Z0, Z2 − Z1, . . . are independent and identically distributed. Hence, all discrete parameter processes with stationary independent increments are obtained in this manner.

Proposition (4.2) can be used to prove, just as in Theorem (2.14), the following result: in words, as far as predicting the value of a random variable W depending on the future Zn, Zn + 1, . . . of the process {Zn} is concerned, all past information concerning Z0, . . ., Zn − 1 becomes worthless once the present value Zn is given.

(4.3)  PROPOSITION. Suppose W = g(Zn, Zn + 1, . . .) for some function g ≥ 0 and some integer [image: image]. Then
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The following computations are easily made by using the definition of Zn given by (4.1). Suppose
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Then (4.1) and Corollary (2.1.25) give
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and (4.1), the independence of Y1, Y2, . . ., and (2.3.9) imply
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(4.7)  EXAMPLE. Successive customers arriving at a gas station for fuel spend independent amounts. Let Y1, Y2, . . . be the amounts (measured in dollars) demanded by the first, second, . . . customers. Then Zn is the amount demanded by the first n customers. If an average demand is 4.87 dollars, then the amount demanded by the first 9 customers has the expected value 9 × 4.87 = 43.83 dollars.

[image: image]

In the preceding example it is easy to convince ourselves (by considering the independence of the actions of different customers) that Y1, Y2, . . . are independent and identically distributed. But how do we find out the expected value a or, more generally, the common distribution function φ ? We start considering the problem of estimating the expected value E(Yn) = a first.

Noting that E[Zn] = na, it seems reasonable to take the average amount demanded by the first n customers, namely Zn/n, as an estimate for a. Since by (4.6) and (2.3.8)
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we see that this estimate gets better, as far as the variance is concerned, as n gets larger. In fact, using Chebyshev’s inequality (2.1.27), we have
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for any ε > 0. Hence, by taking the number n of our observations large enough, we can make the estimate Zn/n as close to its intended value as we desire. Taking limits as n → ∞ in (4.8), we obtain

(4.9)  PROPOSITION. For any ε > 0,
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This is called the weak law of large numbers. Returning to our estimation problem, as we observe the process, we are getting a possible realization ω in the sample space. If we observe a total of n customers, then the values we obtain are Y1(ω), Y2(ω), . . ., Yn(ω) for some ω ∈ Ω. So our estimate of a is Zn(ω)/n = (1/n) (Y1(ω) + · · · + Yn(ω)). Though the preceding proposition indicates the reasonableness of using this estimate, it is too weak for the real purpose we had. We need a stronger result which assures us that the observed average Zn(ω)/n is close to a as n → ∞. This indeed is true and is called the strong law of large numbers.

(4.10)  THEOREM. For almost all ω ∈ Ω,
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(4.11)  EXAMPLE. Suppose, in Example (1.3), that we do not know the probability p that a vehicle turns left. Since X1, X2, . . . are independent and identically distributed with E[Xn] = p, the theorem above applies to the number Nn of vehicles turning left to give
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for almost all ω. Thus, if we observe the number of vehicles turning left and divide that number by the total number of vehicles arriving at the junction, we obtain an estimate of p. If the observation lasts long enough, our estimate will be very close to the actual value p. Of course, this is as we would expect, and it is nice to have the assurance of Theorem (4.10).
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The simple-looking estimation of the expected value a in Theorem (4.10) also settles our second problem, namely, the estimation of the “unknown” distribution function φ. Having observed the values Y1(ω), Y2(ω), . . ., Yn(ω), it seems reasonable to estimate φ(t) by the proportion of the Yk(ω) observed to be less than or equal to t. This proportion is
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Note that IB(x) = 1 or 0 according as x ∈ B or x ∉ B, so the sum on the right is the number of Yk(ω) falling to the left of t; see Figure 3.4.1. Next we show that Fn(t, ω) is very close to φ(t) if n is large enough.
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Figure 3.4.1 The empirical distribution for eight observations giving Y1(ω) = 4.8, Y2(ω) = −1.1, Y3(ω) = 1.2, Y4(ω) = 6.5, Y5(ω) = 3.6, Y6(ω) = 6.1, Y7(ω) = −3.2, and Y8(ω) = 3.0.

(4.13)  PROPOSITION. For every t ∈ [image: image],
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for almost all ω.

Proof. Fix t; let Xk = I(−∞, t](Yk). Then X1, X2, . . . are independent and identically distributed random variables taking only the values 1 and 0, that is, {Xk} is a Bernoulli process with success at trial k meaning Yk ≤ t. So the probability of success is
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Now, note that Fn(t, ω) = Nn(ω)/n is the average number of successes in the first n trials. Applying Theorem (4.10) to the process {Nn} we get (as in Example (4.11))
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For fixed n and ω, t → Fn(t, ω) is a step function increasing at each number Yk(ω) by a jump of magnitude 1/n. It is called the empirical distribution based on n observations. Proposition (4.13) shows that for large n it approximates the distribution function φ.

We have seen in Proposition (4.9) that for large n the average Zn/n is close to the expected value a of the increments Yk. Somewhat better information is contained in the following famous result. It is called the central limit theorem.

(4.14)  THEOREM. For any t ∈ [image: image],
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We omit the proof. In words, for large n, the distribution of the sum Zn is approximately the normal distribution with mean na and variance nb2. As with the weak law and strong law of large numbers, this theorem also holds for any distribution for the Yn provided that the variance b2 is finite.

The standard normal distribution φ is defined by
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The corresponding density function f (defined by [image: image] is drawn in Figure 3.4.2. Since f(y) = f(−y) for all y, we have
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Figure 3.4.2 The standard normal density function f. In the table of Figure 3.4.3, the value φ(x) is the area under f to the left of x.

In view of this relation, it is sufficient to list the values of φ(x) for x positive only. This is done in the table in Figure 3.4.3.

[image: image]

Figure 3.4.3 Values of the standard normal distribution φ for positive x. For negative x use this table along with (4.16).

(4.17)  EXAMPLE. Consider a Bernoulli process with success probability p = 0.5. Then applying (4.14) to the process [image: image] of success counts, we get
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Next, applying (4.14) to the process [image: image] of the times of successes, noting that now a = E(Tn + 1 − Tn) = 1/p = 2 and b2 = Var(Tn+ 1 − Tn) = q/p2 = 2 by (3.11) and (3.13),
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For n = 50, for example,
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is approximately equal to (using the table in Figure 3.4.3)
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Similarly,
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is approximately equal to
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5.  Exercises

(5.1)  Consider a possible realization ω = (S, F, F, F, S, S, F, S, . . .) of a sequence of independent trials with two possible outcomes, S and F. For this particular ω what are the values of the random variables

(a)  X1, X2, . . ., X8;

(b)  N0, N1, . . ., N8;

(c)  T0, T1, T2, T3, T4?

(5.2)  In Example (1.2) let the defective rate be p = 0.05. What is the probability that the first, second, and third items inspected are all defective? What is the probability that exactly one of the first, second, or third items is defective?

(5.3)  For the process described in Example (1.3), compute and interpret the following quantities.

(a)  P{N1 = 0, N2 = 0, N3 = 1, N4 = 1}

(b)  P{N1 = 1, N3 = 2, N4 = 2}

(c)  P{N8 = 6, N15 = 12}.

(5.4)  For the problem introduced in Example (1.4), what is the expected number of bearings, among the first 400 produced, which do not meet the specifications?

(5.5)  For p = 0.8, compute

(a)  E[N3], E[N7], E [N3 + 4N7]

(b)  Var(N3), Var(N7 − N3)

(c)  E[6N4 + N7 | N2].

(5.6)  Consider Bernoulli trials with probability p = 0.8 for success. Suppose that the first five trials resulted in, respectively, S, F, F, S, S. What is the expected value of N3 + 2N7 given this past history?

(5.7)  Generalize the result of Example (2.16) by showing that for any n, [image: image],
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(5.8)  Repeat the steps of the proof of Theorem (2.14) to show the truth of the particular result that
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(5.9)  Hypergeometric distribution. Let k, m, n be integers with k ≤ m + n. Show that for any integer j with 0 ≤ j ≤ m, 0 ≤ k − j ≤ n,
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This defines a probability distribution in j; it is called the hypergeometric distribution. Note that Nm can be replaced by the sum Xn1 + · · · + Xnm of any m variables selected from X1, . . ., Xm + n.

(5.10)  In Example (1.2), suppose the items are packaged in boxes of 100 each. A sampling inspection plan calls for rejecting a box if a sample of 5 drawn from that box contained one or more defectives. What is the probability that a box containing exactly 4 defectives is rejected?

(5.11)  In Example (3.1) suppose the rate of crossings is 4 vehicles per minute. Compute and interpret the following quantities.

(a)  p = P{Xn = 1},

(b)  P{T4 − T3 = 12}

(c)  E[T4 − T3], E[T13 − T3]

(d)  Var(T2 + 5T3].

(5.12)  Repeat the proof of Theorem (3.6) to show that
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if the event {T7 ≤ 16} occurs.

(5.13)  Show, by following the steps of Example (3.17), that

 

[image: image]

(5.14)  Compute the following (and compare with (2.2.14)):

(a)  P{T, = k, T2 = m, T3 = n}

(b)  P{T3 = n | T1 = k, T2 = m}

(c)  E[T3 | T1 = k, T2 = m]

(d)  E[g(T3) | T1, T2] for g(b) = αb, α ∈ [0, 1].

(5.15)  If a random variable T has the geometric distribution, then
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for all n and m. Show that the converse is also true: if a discrete random variable T is such that
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for all m, [image: image], then T has a geometric distribution.

(5.16)  The probability that a given driver stops to pick up a hitchhiker is p = 0.04; different drivers, of course, make their decisions to stop or not independently of each other. Given that our hitchhiker counted 30 cars passing her without stopping, what is the probability that she will be picked up by the 37th car or before?

(5.17)  Continuation. Suppose the arrivals of cars themselves are as described in Example (3.1) with 4 vehicles per minute. Then “success” for the hitchhiker occurs at time n provided that both an arrival occurs at n and that car stops to pick her up. Let T be the time (in seconds) she finally gets a ride.

(a)  Find the distribution of T; compute E(T), Var(T).

(b)  Given that after 5 minutes (during which 12 cars pass by) she is still there, compute the expected value of T.

(5.18)  A young man and an irate husband are to fight a duel. Each has a large supply of ammunition, and at stated intervals each fires once at the other. On any given shot, the probability that the first man kills the second is p1 and the probability that the second kills the first is p2 (it is possible that they both get killed). We assume that the succeeding rounds of the duel are independent and the probabilities remain constant.

(a)  Find the probability that the duel lasts exactly 13 rounds.

(b)  Find the probability that the young man comes out alive.

(c)  Find the probability that the duel lasts exactly 13 rounds with the young man alive at the end.

(5.19)  Consider a computer equipped for time-sharing (simultaneous use by more than one person). Suppose each customer uses time in one-minute blocks, and the probability that a given customer is using the computer during a given minute is 0.30.

(a)  Suppose there are 30 customers and the computer can handle only 10 at a time. What is the probability that it is overloaded during any minute?

(b)  Suppose the computer can handle 10 at a time and it is desired to have the probability of overload during any minute to be less than 0.10. How many customers should there be?

(5.20)  In Example (4.7), the number of customers arriving at the station during a certain hour is a random variable N with distribution
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Compute the expected value and variance of the total sales ZN during that hour if the expected value and variance of a single sale are 3.67 and 2.24 respectively.

(5.21)  Let Y1, Y2, . . . be independent and identically distributed random variables taking values in [image: image]. Then if we put Z0 = 0, Z1 = Y1, Z2 = Y1 + Y2, . . ., we see that Z0 ≤ Z1 ≤ Z2 ≤ · · ·. We think of Zn as the time of the nth arrival into a store (the stochastic process [image: image] is called a renewal process). Let Nt be the number of arrivals during (0, t].

(a)  Show that
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for all [image: image] and [image: image].

(b)  Show that for almost all ω,
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(c)  Note that ZNt is the time of the last arrival before time t and that ZNt + 1 is the time of the next arrival after time t.

(d)  Use the strong law of large numbers on Zn/n and the result of (b) above to show that, almost surely,
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where a is the expected value of Yn.

(e)  It follows from (c) that ZNt ≤ t ≤ ZNt + 1. From this we have
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Using (d) and (b), now show that
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for almost all ω.

[image: image]

In addition to Bernoulli processes, this chapter tried to cover various limit theorems which by now have become part of the lore of probability theory. Our object was to show the motivation behind the early work in probability theory rather than to give a systematic coverage of it. The weak and strong laws of large numbers and the central limit theorems are the glorious chapters of the classical theory. For two elegant introductions to these subjects we refer the reader to the books by CHUNG [2] and LAMPERTI [1]. For further limit theorems on sums of random variables the complete reference is the book by GNEDENKO and KOLMOGOROV [1].


CHAPTER 4

Poisson Processes

The Poisson process arises in many applications, especially as a model for the arrival process at a store, for the arrivals of calls at a telephone exchange, for the arrivals of radioactive particles at a Geiger counter, etc. Just as we employed the terminology of “successes” in discussing the Bernoulli process, we will now employ the term “arrival” with the understanding that its real meaning will vary, depending on the application involved.

Let Ω be a sample space and P a probability. Suppose that for each realization ω ∈ Ω and each t ≥ 0, we have a non-negative integer Nt(ω). In applications, Nt(ω) will stand for the number of arrivals in the interval [0, t] for the realization ω Thus, for fixed ω ∈ Ω, the mapping t → Nt(ω) is a step function; the times of its jumps correspond to instants of arrivals, and each jump is of size one (namely, if there are group arrivals, we agree to call the arrival of a group one arrival). The resulting family {Nt; t ≥ 0} of random variables is an arrival process. This is a stochastic process with continuous time parameter and discrete state space [image: image].

Suppose our observations of the process in the past have convinced us that the distribution of the number of arrivals Nt + s − Nt in the interval (t, t + s] depends only on s and not on t. Suppose further that we have been able to find no correlation between the number of arrivals Nt + s − Nt in the interval (t, t + s] and the arrivals during [0, t]. This second property can be given a justification by noting that an arrival process is the result of the actions of very large numbers of people; and if these actions are independent, as is usually the case, the number of arrivals in (t, t + s] should be independent of the arrivals in [0, t].

In Sections 1, 2, and 3 different aspects of such an arrival process will be examined. In particular, it will be shown that the simple qualitative observations above completely specify the probabilistic structure of the process. Sections 4 and 5 will consider the superposition (merging together) and decomposition of arrival processes. Finally, in Sections 6 and 7 we will discuss the modifications that are necessary when the hypotheses outlined above do not all hold. For example, in most “real life” applications, the distribution of Nt + s − Nt depends both on s and t. We then will show how to reduce the study of such a process to the original case, and conversely (for use in simulation studies), how to obtain such a process from the simpler ones.

This is an important chapter and is worth studying carefully.

1.  Arrival Counting Process

Let Ω be a sample space and P a probability measure on it. Throughout the following, by an arrival process we will mean a stochastic process N = {Nt; t ≥ 0} defined on Ω such that for any ω ∈ Ω, the mapping t → Nt(ω) is non-decreasing, increases by jumps only, is right continuous, and has N0(ω) = 0. See, for example, Figure 4.1.1.

[image: image]

Figure 4.1.1 The function Nt(ω) for the realization ω ∈ Ω for which the arrival times are T1(ω) = 0.4, T2(ω) = 0.6, T3(ω) = 1.8, T4(ω) = 2.1, T5(ω) = 2.4, . . . .

(1.1)  DEFINITION. An arrival process N = {Nt; t ≥ 0} is called a Poisson process provided that the following axioms hold:

(a)   for almost all ω, each jump of t → Nt(ω) is of unit magnitude;

(b)   for any t, s ≥ 0, Nt + s − Nt is independent of {Nu; u ≤ t};

(c)   for any t, s ≥ 0, the distribution of Nt + s − Nt is independent of t.

[image: image]

In the definition, axiom (b) expresses the independence of the number of arrivals in (t, t + s] from the past history of the process until time t. In particular, it implies that Nt + s − Nt is independent of Nt1, Nt2, . . ., Ntn provided that t1, t2, . . ., tn ≤ t (cf. Definition (2.2.24) of independence). As the knowledge of Nt1, . . ., Ntn is equivalent to that of Nt1, Nt2 − Nt1, . . ., Ntn − Ntn−1 Theorem (2.2.23) implies that Nt + s − Nt is independent of Nt1, Nt2 − Nt1, . . ., Ntn − Ntn−1 when t1, . . . tn ≤ t Taking t1 < t2 < . . . < tn in these arguments, and iterating, we reach the conclusion that Nt1, Nt2, − Nt1, . . ., Ntn, − Ntn−1, are independent; that is, the numbers of arrivals in disjoint time intervals are independent. Comparing this with Corollary (3.2.13), we see that a Poisson process is the continuous time-parameter version of the counting process for Bernoulli trials. Or somewhat more generally, what we have is an example of a continuous time-parameter process with stationary and independent increments; here axiom (1.1c) gives the stationarity, and axiom (1.1b) gives the independent increments property.

Our definition of the Poisson process is completely qualitative. What is surprising is that these qualitative axioms completely specify the distribution of Nt and, thereby, the probability law of the whole process. The following results are directed at obtaining this distribution. Throughout this section N = {Nt; t ≥ 0} is a Poisson process.

(1.2)  LEMMA. For all t ≥ 0,
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for some constant λ ≥ 0.

Proof. The number of arrivals in [0, t + s] is zero if and only if there are no arrivals in either [0, t] or (t, t + s]; that is, the event {Nt + s = 0} is equal to the event {Nt = 0, Nt + s − Nt = 0}. Therefore, by the independence of Nt + s − Nt from Nt,
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On the other hand, by the stationarity axiom (1.1c),
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Hence, the function f(t) = P{Nt = 0} satisfies the equations
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for all t, s ≥ 0.

Then it is known that either f(t) = 0 for all t ≥ 0 or else f(t) has the form
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for some constant λ ≥ 0. This completes the proof once we show that f(t) does not vanish identically. If f(t) were 0 for all t > 0, then for any t and almost all ω, Nt + s(ω) − Nt(ω) ≥ 1 no matter how small s is. This in turn implies, by writing Nt = Nt1 + (Nt2 − Nt1) + · · · + (Ntn − Ntn−1) with t1 < t2 < · · · < tn = t, that Nt(ω) ≥ n for almost all ω and any n. Hence, if f(t) = 0 for all t ≥ 0, then Nt(ω) = + ∞ for all t for almost all ω, thus contradicting the finiteness of Nt(ω).

[image: image]

The case λ = 0 corresponds to the degenerate case where Nt = 0 identically for all t. This case will be excluded from further consideration. Within the next proof we will need the fact that E[Nt] < ∞; this can be proved using Proposition (2.2), to be given later, which will use only the definition and (1.2).

(1.5)  LEMMA. We have
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Proof. Let h(t) = P{Nt ≥ 2}. Since Nt(ω) ≥ 2 implies Nt + s(ω) ≥ 2, by Proposition (1.1.8), h(t) ≤ h(t + s), that is, h is non-decreasing. Let [image: image]; then t ≤ 1/nt and 1/t < nt + 1. Hence h(t) ≤ h(l/nt), and
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As t ↓ 0, nt ↑ ∞ and (nt + 1)/nt ↓ 1. Therefore, to show that h(t)/t → 0 as t → 0, it is sufficient to show that nh(l/n)→ 0 as n → ∞.

Divide the unit interval [0, 1] into n subintervals of length 1/n each, and let Sn(ω) be the number of these subintervals during which there were two or more arrivals for the realization ω. We can think of Sn as the number of successes in n Bernoulli trials, where by “success at the kth trial” is meant having two or more arrivals during the kth subinterval. Then the probability of success at any one trial is p = h (l/n), and hence
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By axiom (1.1a), for almost all ω ∈ Ω, the minimum time between two arrivals in [0, 1] is some number δ(ω) > 0. If n is large enough to have 1/n < δ(ω), then no subinterval can contain two arrivals and we must have Sn(ω) = 0. Hence, for almost all ω
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Finally, Sn cannot be greater than the number of arrivals in [0, 1]; namely, the Sn are bounded by N1, whose expected value E[N1] is finite. Therefore the bounded convergence theorem (2.1.35) applies, and from (1.7) we get

 

[image: image]

In view of (1.6), this completes the proof.

[image: image]

(1.8)  LEMMA. We have
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where λ is the constant appearing in Lemma (1.2).

Proof. We have P{Nt = 1} = 1 − P{Nt = 0} − P{Nt ≥ 2}. Thus, by Lemmas (1.2) and (1.5),
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The next theorem gives the distribution of Nt and, in view of axioms (1.1b) and (1.1c), specifies the joint distribution of Nt1, Nt2, . . ., Ntn for any n ≥ 1 and [image: image].

(1.9)  THEOREM. If {Nt; t ≥ 0} is a Poisson process, then for any t ≥ 0,
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for some constant λ ≥ 0.

Proof. Let G(t) = E[αNt]. Writing Nt + s = Nt + (Nt + s − Nt), using the independence of Nt + s − Nt from Nt by axiom (1.1b) to apply Proposition (2.1.26), and using the stationarity axiom (1.1c), we get
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Since G(t) = ∑ αn P{Nt = n} ≥ P{Nt = 0} = e−λt, G does not vanish for any t, and G(t + s) = G(t)G(s) can be satisfied only if
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Note that g(α) is the derivative of G at t = 0, that is, since G(0) = 1 and

[image: image]
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By Lemma (1.2), the first limit is −λ; by Lemma (1.8), the second limit is αλ; and by Lemma (1.5), for α ∈ [0, 1],
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Putting these results in (1.11), we see that g(α) = −λ + λα, and (1.10) becomes
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We thus have shown that for all α ∈ [0, 1],
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The equality of these two power series in α implies that the corresponding coefficients are equal to each other, that is,
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as was to be shown.

[image: image]

So far, λ is only a constant without any particular meaning attached to it. We now note that for any t ≥ 0,
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Thus λ is the expected number of arrivals in an interval of unit length, or in other words, λ is the arrival rate. Incidentally, a computation similar to the one in Example (2.1.29) shows that
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also. The distribution appearing in the preceding theorem is called the Poisson distribution with parameter λt.

The next corollary combines Theorem (1.9) with the axioms on stationarity and the independence of increments.

(1.15)  COROLLARY. Let N = {Nt; t ≥ 0} be a Poisson process with rate λ. Then for any s, t ≥ 0,
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Proof. By axiom (1.1b), Nt + s − Nt is independent of {Nu; u ≤ t}; this implies the first equality. By axiom (1.1c), P{Nt + s − Nt = k} = P{Ns = k}. By Theorem (1.9), this last number is e−λs(λs)k/k!.

[image: image]

(1.16)  EXAMPLE. Let N be a Poisson process with rate λ = 8. We would like to compute
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The event in question is equal to the event {N2.5 = 17, N3.7 − N2.5 = 5, N4.3 − N3.7 = 14}. By the independence of increments, N2.5, N3.7 − N2.5, and N4.3 − N3.7 are independent; and by Corollary (1.15), they have the Poisson distributions with respective parameters 8 × 2.5 = 20, 8(3.7 – 2.5) = 9.6, 8(4.3 – 3.7) = 4.8. Hence, the probability desired is
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From the practical point of view, checking to see if the axioms (1.1b) and (1.1c) hold for a particular process can be quite difficult. The following theorem reduces the checks involved considerably.

(1.17)  THEOREM. N = {Nt; t ≥ 0} is a Poisson process with rate λ if and only if

(a)   for almost all ω each jump of Nt(ω) is of unit magnitude, and

(b)  for any t, s ≥ 0,
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Proof is omitted. The theorem states the following. Suppose that, as far as predicting the expected number of arrivals during (t, t + s] is concerned, the past history of arrivals before t has no value and that expectation is a constant λ times the length of the interval in question. Then that process is Poisson. Of course, if N is a Poisson process, then (1.17a) and (1.17b) are quite readily seen to hold. What is surprising is that the seemingly mild condition (1.17b) implies the axioms (1.1b) and (1.1c).

The preceding theorem gives the simplest qualitative characterization of the Poisson process. It is easy to use, especially in situations where there is strong a priori evidence to suggest the independence of Nt + s − Nt from the past history of arrivals before t. The next theorem is useful in the opposite situation, where the independence axiom is hard to check but there are enough data to obtain the distribution of the number of arrivals falling in various time sets. Before stating this theorem we extend our notation somewhat.

Let N be a Poisson process with rate λ. For any subset B of [image: image] we write NB (ω) for the number of arrivals falling in B for the realization ω. For example, if B = (t, t + s], then NB = Nt + s − Nt; if B = [0, t], then NB = Nt − N0 = Nt; if B is the union of two disjoint intervals (t, u] and (s, υ], then NB = N(t, u] + N(s, υ] = Nu − Nt + Nυ − Ns.

If B is an interval of length b, then by Theorem (1.9), the distribution of NB is Poisson with parameter λb. Next let A and B be two disjoint intervals with respective lengths a and b, say, A = (t, t + a], B = (s, s + b]. Then NA and NB are independent random variables having the Poisson distribution with respective parameters λa and λb. From the stationarity axiom, NB has the same distribution as NC where C = (t + a, t + a + b], and NA and NC are still independent. Therefore, NA + NB has the same distribution as NA + NC. But the latter is the number of arrivals in (t, t + a + b] and hence has the Poisson distribution with parameter λ(a + b). Thus we have shown that NA + NB has the Poisson distribution with parameter λ(a + b). The same argument goes through for any number of intervals and shows the necessity part of the following

(1.18)  THEOREM. N is a Poisson process with rate λ if and only if
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for any subset B of [image: image] which is the union of a finite number of disjoint intervals whose lengths sum up to b.

Proof of necessity was already outlined, and we omit the proof of sufficiency. As we mentioned before, the strength of the theorem lies in its avoidance of conditional expectations and distributions in characterizing the Poisson process. This is useful in situations where there are no intuitive reasons to expect axiom (1.1b) to hold. In words, this theorem states that an arrival process is Poisson with rate λ if the distribution of the number of arrivals occurring during any time set B is Poisson with parameter λ times the “length” of B.

Suppose next that the number of arrivals in an interval B = (t, t + b] is known to be k but the exact times of these k arrivals are not known. The next proposition shows that given NB = k, each one of those k arrival times has the uniform distribution over the interval B independent of the times of the other k − 1 arrivals. In this sense, knowing the number of arrivals in an interval B yields no information on the times of those arrivals (other than the trivial information that they fall in B).

(1.19)  PROPOSITION. Let A1, . . ., An be disjoint intervals with union B, let a1, . . ., an be their respective lengths, and set b = a1 + · · · + an. Then for [image: image],
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Proof. The event {NA1 = k1, . . ., NAn = kn} implies {NB = k}; therefore, the conditional probability in question is equal to
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Since A1, . . ., An are disjoint, NA1, . . ., NAn are independent, and
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which becomes the desired result after rearrangement.

[image: image]

We close this section with a few remarks on the estimation of the parameter λ and the long-run behavior of N. We already computed E[Nt] to be λt. For any integer n, we can write Nn as the sum of n independent and identically distributed random variables (namely, Nn = N1 + (N2 − N1) + · · · + (Nn − Nn−1)), each one of which has the expected value λ. Thus, by the strong law of large numbers (3.4.10), for almost all ω,
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From this it is easy to see that
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for almost all ω. This is the strong law of large numbers for the Poisson process. By this result, we are justified in estimating λ by the average number of arrivals Nt(ω)/t we observed during the course of our observations.

A similar reasoning based on writing Nt as the sum of a large number of independent and identically distributed random variables also yields a central limit theorem:
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for any [image: image]. Namely, if λt is large enough, Nt has the normal distribution with mean λt and variance λt. For practical purposes, the approximation is quite good if λt ≥ 10.

2.  Times of Arrivals

Let N be a Poisson process with rate λ For almost all ω ∈ Ω, the function t → Nt(ω) is non-decreasing and right continuous and increases by jumps of size one. Such a function is completely determined by the times of its jumps; let these be T1(ω), T2(ω), . . . . Then T1, T2, . . . are the successive instants of arrivals.

We have seen in Lemma (1.2) that if t is an arbitrary point in time, the probability that there are no arrivals in (t, t + s] is e−λs, independent of the history of arrivals before t. The same result happens to hold even when the arbitrary time point t is replaced by a time of arrival, say Tn; namely,
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where {Nu; u ≤ Tn} is the history of the process until the time Tn of the nth arrival. Noting that the event {NTn+s − NTn = 0} is equal to the event {Tn + 1 − Tn > s}, and that the information contained in the history {Nu; u ≤ Tn} is the same as that contained in {T1, . . ., Tn}, what we have can be restated as follows (we write T0 = 0 for convenience):

(2.2)  PROPOSITION. For any n ≥ 0,
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In other words, the interarrival times T1, T2 − T1, T3 − T2, . . . are independent and identically distributed random variables with the common distribution being
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The distribution (2.3) above is called the exponential distribution with parameter λ. It is differentiable, and the probability density function corresponding to it is
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Note that this density function is monotone decreasing. As a result, an inter-arrival time is more likely to have a length in [0, s] than a length in [t, t + s] for any t. Thus, a Poisson process has more short intervals than long ones. Therefore, a plot of the times of arrivals on a line looks, to the naive eye, as if the arrivals occur in clusters.

Another property, usually referred to as the memorylessness of the exponential distribution, is the prime reason for the pleasant independence properties of the Poisson process: if a random variable X has an exponential distribution, then
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and conversely, if X has this property, then it must have an exponential distribution. That is, knowing that an interarrival time has already lasted t units does not alter the probability of its lasting another s units.

In certain applied situations it is more efficient to work with the times of arrivals. Then it is of value to find conditions on interarrival times which guarantee that the counting process will be Poisson. The answer turns out to be that the conditions of (2.2) above are sufficient. We omit the proof of this result :

(2.5)  THEOREM. Let T1, T2, . . . be the successive times of arrivals of an arrival process N = {Nt; t ≥ 0}. Then N is a Poisson process with rate λ if and only if the interarrival times T1, T2 − T1, . . . are independent and identically distributed exponential random variables with parameter λ.

(2.6)  EXAMPLE. An item has a random lifetime whose distribution is exponential with parameter λ. When it fails, it is immediately replaced by an identical item; and when that fails, it is replaced by another identical item; etc. What this means is that the lifetimes X1, X2, . . . of the successive items in use are independent and identically distributed random variables with distribution
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If T1, T2, . . . are the times of successive failures, then T1 = X1, T2 = X1 + X2, . . .; and we see that the conditions of Theorem (2.5) are satisfied by the sequence T1, T2, . . . . Hence, if Nt is the number of failures in [0, t], we may conclude by Theorem (2.5) that the process of failures {Nt; t ≥ 0} is Poisson with rate λ.

[image: image]

It follows from the fact that Tn + 1 − Tn has an exponential distribution with parameter λ that the expected value of an interarrival time in a Poisson process is (we are using Theorem (2.1.9))
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and the variance is (see Example (2.1.30) for an illustration)
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By writing Tn = T1 + (T2 − T1) + · · · + (Tn − Tn−1) and using the fact that the expectation of a sum is the sum of the expectations, we obtain from (2.7) that
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Using the independence of T1, T2 − T1, . . ., Tn − Tn−1. proved in (2.2) to apply (2.3.9) (namely, that the variance of a sum of independent random variables is the sum of the variances), we obtain from (2.8) that
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Similarly, various higher moments of Tn may be obtained by utilizing Proposition (2.2) once such moments are obtained for one interarrival time.

(2.11)  EXAMPLE. In Example (2.6), suppose λ = 0.0002 (time is measured in hours). Then the expected lifetime of an item is E[Xn] = 1/λ = 5,000 hours, and the variance is Var(Xn) = 1/λ2 = 25 × 106 hours2. Hence, if a piece of equipment contains 3 such items connected so that the second starts functioning as soon as the first fails, and the third starts functioning as soon as the second fails, then the lifetime of this equipment is T3 = X1 + X2 + X3. It has mean E[T3] = 3/λ = 15,000 hours and the variance Var(T3) = 3/λ2 = 75 × 106 hours2.
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(2.12)  EXAMPLE. In Example (2.6), again suppose that the items are replaced as soon as they fail. Suppose the cost of a replacement is β dollars, and suppose the discount rate of money is a α > 0, so that one dollar spent at time t has the present value e−αt (typically, α is the interest rate). Then for the realization ω ∈ Ω, time of the nth failure is Tn(ω), and the present value of the cost of replacement is β exp(−αTn(ω)), Summing this over all n, we obtain the present value of all future replacement costs; this is
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We are interested in the expected value of C. Since the expected value of a sum is the sum of the expectations,
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For fixed n we can write Tn = T1 + (T2 − T1) + · · · + (Tn − Tn−1) where T1, T2 − T1, . . ., Tn − Tn−1 are independent and identically distributed. Hence, using Proposition (2.1.26)
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Since the distribution of T1 is exponential with parameter λ,
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Hence, remembering that 1 + x + x2 + · · · = 1/(1 − x) for x ∈ [0, 1),
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In particular, if the mean lifetime is 5,000 hours, replacement cost 800 dollars, and the interest rate 24 percent per year, then β = 800, λ = 1/5,000, α = 0.24/(365 × 24) = 0.01/365, and hence E[C] = 800 × 36,500/5,000 = 5840 dollars.

[image: image]

Though in many computations we can do without the distribution of Tn, there are situations when it is helpful to know it. One way of obtaining the distribution of Tn would be to invert the Laplace transform of Tn, which is E[e−αTn] = [λ/(α + λ)]n. However, it is easier (and smarter) to observe first that for any realization ω, the time T5(ω) of the fifth arrival is before t if and only if the number of arrivals Nt(ω) in [0, t] is equal to five or more. This reasoning gives, for any n and t,
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From this equality between two events we obtain, by (1.9),

(2.14)  PROPOSITION. For any n ∈ {1, 2, . . . },
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The distribution of Tn is called the Erlang-n distribution. It is a member of the gamma family of distributions. It is differentiable, and the derivative is
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It is important to distinguish this probability density function t → λ(λt)n−1 e−λt/(n − 1)! of the random variable Tn taking values in [image: image] from the distribution n → e−λt(λt)n/n! of the discrete random variable Nt.

(2.16)  EXAMPLE. Taking a certain fixed point on a highway, let U1, U2, · · · be the successive interarrival times of vehicles at this point. Suppose U1, U2,· · · are independent and identically distributed random variables with the distribution
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We are interested in the distribution of the number Mt of vehicles crossing this fixed point during [0, t].

First we observe that the distribution of Uk given is the Erlang-2 distribution. Thus, we may think of each Uk as being the sum of two interarrival times in a Poisson process with rate λ. That is, the times vehicles cross the given point may be thought of as U1 = T2, U1 + U2 = T4, U1 + U2 + U3 = T6, . . . where T1, T2, . . . are the times of arrivals in a Poisson process {Nt} with rate λ. Then the number Mt(ω) of vehicles crossing is equal to 6 if and only if the Poisson process N has, for that realization ω, 12 or 13 arrivals in [0, t]. So for any t ≥ 0,
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Next is a computational result which extends that of Example (2.12) to situations where the interest rate, instead of remaining constant over time as in (2.12), may vary as a function of time. Again we assume that T1, T2, . . . are the times of arrivals of a Poisson process with rate λ.

(2.17)  PROPOSITION. For any non-negative function f on [image: image],
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Proof. Using Proposition (2.1.23), noting that the probability density function of Tn is given by (2.15),
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Hence,
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We can now re-do the computations of Example (2.12): E[C] = λ ∫ f, where f(t) = βe−αt. So ∫ f = β/α, and E[C] = λβ/α.

We close this section by giving a more general version of the property (2.1) with which we started. In certain situations, one is interested in the number of arrivals occurring in an interval (T, T + s] where T is a random variable instead of a fixed number. It turns out that for a certain class of random times T, the independence of Nt + s − NT from the past history {Nu; u ≤ T] until T is still preserved, and furthermore, the distribution of Nt + s − NT is again Poisson with parameter λs. Such “good” random times T are characterized by the property that for any number t ≥ 0, one can determine whether the event {T ≤ t} has occurred or not by knowing the history {Nu; u ≤ t} of the arrival process until the time t. Such random times are called stopping times. For example, the time T6 of the sixth arrival is a stopping time, since we can tell whether T6 ≤ 3.7 or not by knowing what the arrival process looked like until the time t = 3.7 (and similarly for any other t). The first time T when an interarrival time exceeds a certain critical value c is a stopping time (this is, for example, the random time when a pedestrian completes crossing a highway if he needs a gap of c time units in traffic in order to cross safely).

(2.18)  THEOREM. For any number s ≥ 0 and any stopping time T,
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Proof is omitted. Note that Proposition (2.2) is a special case, where T = Tn and k = 0.

(2.19)  EXAMPLE. The times vehicles cross a fixed point on a highway form a Poisson process with rate λ vehicles per second. A pedestrian arrives at this point at time 0 wanting to cross the highway. He needs 4 seconds to cross it. Therefore, for the realization ω, if T1(ω) ≤ 4, T2(ω) − T1(ω) ≤ 4, . . ., T6(ω) − T5(ω) ≤ 4, and T7(ω) − T6(ω) > 4, then the time T(ω) he completes crossing is T6(ω) + 4; if the first interval greater than 4 were T13(ω) − T12(ω), then T(ω) would have been T(ω) = T12((ω) + 4. The time T is a stopping time (because the picture of N in the interval [0, t] is sufficient for us to tell whether T ≤ t or not).

After he completes crossing, he will have escaped his doom by less than 2 seconds with probability
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(2.20)  EXAMPLE. Arrivals of buses at a certain stop form a Poisson process with rate λ = 0.2 buses per minute. (Though the arrival times are scheduled, when the average time between arrivals is short as is the case here, traffic delays, etc., introduce enough variation to make the arrival process become a Poisson process.) An inspector from the bus company arrives at the stop with the fifth bus after 9:00 A.M. We are interested in the distribution of the number of buses he will count during the one hour he plans to stay there. If 9:00 A.M. corresponds to time t0 = 120 (i.e., if the time origin is taken to be 7:00 A.M.), then the time the inspector arrives is
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This random time T is a stopping time; therefore, the distribution of the number of buses he will count in the next 60 minutes is
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3.  Forward Recurrence Times

Let {Nt; t ≥ 0} be a Poisson process with rate λ, let T1, T2, . . . be the successive arrival times, and set T0 = 0. Fix ω ∈ Ω and t ≥ 0. For the realization ω, the number of arrivals in [0, t] is Nt(ω), the time of the last arrival before t is TNt(ω)(ω), and the time of the next arrival is TNt(ω) + 1(ω). Then the time since the last arrival is t − TNt(ω)(ω), and the length of the time from t until the next arrival is
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In a different context, in Example (2.6), Vt is the remaining lifetime of the item in use at time t.

(3.1)  THEOREM. We have
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independent of t.

Proof. {Vt ≤ u} = {TNt+1 − t ≤ u} = {TNt+1 − t > u}c = {TNt+1 > t + u}c = {Nt+u − Nt = 0}c. Thus,
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In words, then, the time from t until the next arrival is independent of the past history of the process until t. Furthermore, it has the same distribution as any interarrival time. In particular, no matter how long it has been since the last arrival, the probability of waiting u more units for the next arrival to occur remains the same.

As a result, E[Vt] = 1/λ. Note that E[Tn+1 − Tn] is also equal to l/λ and that
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Thus, the interval [TNt, TNt+1) which covers the instant t is longer, on the average, than an ordinary interval [Tn, Tn+1) between two arrivals.

(3.2)  EXAMPLE. Suppose the buses arrive at a bus stop according to a Poisson process at the rate of one every five minutes. You arrive at the bus stop in the evening at time t = 617.23 (measured in minutes starting from 7:00 in the morning). Theorem (3.1) implies that the waiting time until the next bus arrives has the same distribution as if you just missed the last one. The expected waiting time until the next bus is 5 minutes. In fact we can show that the expected time since the arrival of the last one is also 5 minutes (this latter depends, in general, on t, but becomes 5 for large t). Comparing the expected length of the interval within which you have happened to arrive (namely, 10 minutes) with the bus company’s claim that their buses arrive on the average every 5 minutes, you may be annoyed. You are right in feeling annoyed; so is the company in their claim. If it is any comfort, look at it this way: it takes a larger than average interval to contain an instant distinguished enough to be your arrival time.

[image: image]

4.  Superposition of Poisson Processes

Let L = {Lt; t ≥ 0} and M = {Mt; t ≥ 0} be two Poisson processes, independent of each other, with respective rates λ and μ. For each ω ∈ Ω and t ≥ 0, let
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Then the process N = {Nt; t ≥ 0} is called the superposition of the processes L and M (see also Figure 4.4.1).

[image: image]

Figure 4.4.1 Times of arrivals of the superposition process N are obtained by putting together the arrival times of the processes L and M.

(4.2)  THEOREM. N is a Poisson process with rate v = λ + μ.

(4.3)  EXAMPLE. Let Lt be the number of vehicles arriving at an intersection in (0, t] from one direction, and let Mt be the number of vehicles arriving in (0, t] from the other direction. Then Nt is the number of vehicles arriving at the intersection from both directions during (0, t]. If the arrivals from the two directions are independent Poisson processes with respective rates λ and μ, then the total arrival process is also a Poisson process and has rate v = λ + μ.

[image: image]

Proof of (4.2). By Theorem (1.18), it is sufficient to show that, for any time set B which is the union of a finite number of disjoint intervals of total length b, the number NB of arrivals during B has the Poisson distribution with parameter vb. By definition, NB = LB + MB, and LB and MB are independent Poisson distributed random variables with respective parameters λb and μb. Hence,
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for any [image: image] (as a reminder, the last sum is 1 since it is the sum of all the terms of the distribution of the number of successes in n trials where the probability of success in one trial is p = λ/(λ + μ)).

[image: image]

Poisson processes are unique in this regard. For example, if L and M are independent renewal processes (that is, the times between arrivals of the L process are independent and identically distributed but with a distribution which is not necessarily exponential, and similarly for M), and if their superposition N = L + M turns out to be a renewal process, then all three processes must be Poisson.

When one considers how restrictive the axioms for a Poisson process are, it looks rather unreasonable that it should come up in real life as often as it does. An explanation for this phenomenon can be based on the observation that, quite often, an arrival process being examined is the superposition of a large number of uniformly sparse arrival processes. For example, the arrivals of phone calls at a telephone exchange is the superposition of the times of calls of the individual subscribers. As there are a large number of subscribers, compared with the total telephone traffic, the contributions of the individual subscribers are each infinitesimal. It can then be shown that the superposition process is approximately a Poisson process.

5.  Decomposition of a Poisson Process

Let N = {Nt; t ≥ 0} be a Poisson process with rate λ. Let {Xn; n = 1, 2, . . .} be a Bernoulli process, independent of N, with p for probability of success; and let Sn be the number of successes in the first n trials. Suppose that the nth trial is performed at the time Tn of the nth arrival. For a realization ω ∈ Ω, the number of trials performed during [0, t] is Nt(ω), and therefore the number of successes obtained during [0, t] is
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and the number of failures is
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Figure 4.5.1 Those arrival times of N at which successes occur form the process M and those at which failures occur form the process L.

(5.3)  THEOREM. The processes M = {Mt; t ≥ 0} and L = {Lt; t ≥ 0} are Poisson with respective rates λp and λq (q = 1 − p). Furthermore, L and M are independent of each other.

(5.4)  EXAMPLE. Vehicles arriving at a junction turn left or right with probabilities 0.60 and 0.40 independent of each other. Arrivals at the junction form a Poisson process with λ = 30 vehicles per minute. Then the vehicles turning left form a Poisson process with parameter 30 × 0.60 = 18, and the vehicles turning right form a Poisson process with parameter 30 × 0.40 = 12. The two traffic streams thus created are independent of each other.
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(5.5)  EXAMPLE. Vehicles stopping at a roadside restaurant form a Poisson process N with rate λ = 20 per hour. A vehicle has 1, 2, 3, 4, or 5 persons in it with respective probabilities 0.30, 0.30, 0.20, 0.10, and 0.10. We would like to find the expected number of persons arriving at the restaurant within one hour.

Let N1, N2, . . ., and N5 be the number of vehicles arriving (within one hour) with 1, 2, . . ., and 5 passengers. By Theorem (5.3), N1, . . ., N5 are Poisson distributed with respective parameters 6, 6, 4, 2, 2. Hence, E[N1], . . ., E[N5] are 6, 6, 4, 2, 2, and the expected value of the number of persons arriving is
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Proof of Theorem (5.3). In view of Theorem (1.17), it is sufficient to show that
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for any s, t ≥ 0.

The event {Mt + s − Mt = m, Lt + s − Lt = k} is equal to the event {Nt + s − Nt = m + k, Mt + s − Mt = m}, which is in turn equal to the event
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On the other hand, knowledge of the random variables {Mu, Lu; u ≤ t} is equivalent to that of
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Since N is a Poisson process, and since the processes N and S are independent, the random variable Nt + s − Nt is independent of [image: image]; similarly, since the number of successes in the trials numbered Nt + 1, . . ., Nt + s is independent of the past history X1, . . ., XNt, and since S and N are independent, SNt + s − SNt is independent of [image: image]. Hence, event A is independent of [image: image], and we have that the left-hand side of (5.6) is equal to
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by the independence of S and N. By (3.2.8), the distribution of Sn+m+k − Sn is the same as that of Sm+k; thus,
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which is equal to the right-hand side of (5.6).
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6.  Compound Poisson Processes

In this section we will remove the restriction (1.1a) in the definition of a Poisson process, and thus allow jumps of any size.

Throughout we will take Z = {Zt; t ≥ 0} to be a stochastic process such that for any ω ∈ Ω, the mapping t → Zt(ω) is right continuous and real-valued, has Z0(ω) = 0, and increases or decreases by jumps only.

(6.1)  DEFINITION. Z is said to be a compound Poisson process provided that

(a)  for almost all ω ∈ Ω, the function t → Zt(ω) has only finitely many jumps in any finite interval;

(b)  for any t and s ≥ 0, Zt + s − Zt is independent of the past history {Zu; u ≤ t} until t;

(c)  for any t, s ≥ 0, the distribution of Zt + s − Zt, depends only on s (independent of t).
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Let Z be a compound Poisson process. By axiom (6.1a) it has only finitely many jumps in any finite interval; therefore, the jump times can be ordered. For each ω ∈ Ω, let T1(ω), T2(ω), . . . be the times of the first jump, the second jump, . . ., and let X1(ω), X2(ω), . . . be the magnitudes of the corresponding jumps.

It follows from (6.1b) that the number of jumps in an interval (t, t + s] is independent of the past history in [0, t], and by (6.1c), the distribution of the number of jumps in (t, t + s] is independent of t. Hence, T1, T2, . . . must be the arrival times in a Poisson process N = {Nt; t ≥ 0}; that is, if Nt is the number of jumps of Z in (0, t], then N is a Poisson process. The process Z differs from N by the fact that the magnitudes of the jumps of Z are random variables instead of being all equal to one. Moreover, it follows again from (6.1b) and (6.1c) that the jump sizes X1, X2, . . . are independent and identically distributed random variables which are, furthermore, independent of T1, T2, . . . .

Conversely, if T1, T2, . . . are the arrival times in a Poisson process and if X1, X2, . . . are independent and identically distributed random variables which are also independent of the Tn, then the process Z obtained by summing all the Xi for which Ti ≤ t to make up Zt is a compound Poisson process. Thus, we have the following qualitative characterization. See Figure 4.6.1 for a possible realization.

(6.2)  PROPOSITION. Z is a compound Poisson process if and only if its jump times form a Poisson process and the magnitudes of its successive jumps are independent and identically distributed random variables independent of the jump times.

(6.3)  EXAMPLE. Arrivals of customers into a store form a Poisson process N. The amount of money spent by the nth customer is a random variable Xn which is independent of all the arrival times (including his own) and all the amounts spent by others. The total amount spent by the first n customers is Yn = X1 + · · · + Xn if n ≥ 1, and we set Y0 = 0. Since the number of customers arriving in (0, t] is Nt, the sales to customers arriving in (0, t] total Zt, = YNt. Our hypotheses on N and the Xn are such that the process Z = {Zt; t ≥ 0} is a compound Poisson process.

[image: image]
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Figure 4.6.1 A compound Poisson process increases or decreases, by random amounts, at the times of arrivals of a Poisson process. For the realization ω pictured, arrival times are T1(ω) = 1.5, T2(ω) = 3.7, T3(ω) = 4.2, T4(ω) = 4.5, . . ., and the jump sizes associated are X1(ω) = 2.2, X2(ω) = −0.8, X3(ω) = −1.2, X4(ω) = 0.5, . . . .

(6.4)  EXAMPLE. The times between the successive failures of a computer are independent and identically distributed exponential variables. With each failure there is associated a cost of repair. The costs associated with different failures are independent and identically distributed, and furthermore, the cost of a repair is independent of the times of failures. If Z, is the cumulative cost in (0, t], then Z = {Zt; t ≥ 0} is a compound Poisson process.
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Suppose Z is a compound Poisson process whose jumps occur at rate λ and by discrete amounts, that is, the random variables X1, X2, . . . take values in a countable set [image: image]. For each ω ∈ Ω, let [image: image],[image: image], . . . be the number of jumps of Z in (0, t] whose magnitudes were exactly equal to a, equal to b, . . . (see Example (5.5) for the approach we are following). Then Theorem (5.3) applies to show that the processes Na, Nb, . . . are independent Poisson processes with rates λ(a) = λP{Xi = a}, λ(b) = λP{Xi = b}, . . . This yields the following representation of Z: for any t ≥ 0 and ω ∈ Ω,
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where Na, Nb, . . . are independent Poisson processes with rates λ(a), λ(b), . . . .

The representation (6.5) can be used to obtain any quantity concerning Z from the results already obtained for Poisson processes. For example, suppose a, b, . . . ≥ 0, and consider the Laplace transform of Zt. By the independence of Na, Nb, . . . in (6.5), Proposition (2.1.26) applies, and
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For a Poisson process M with rate μ, for any β ≥ 0,

 

[image: image]

Using this result repeatedly with β = αa, αb, . . . and μ = λ(a), λ(b), . . ., we get
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Conversely, if a process Z has the Laplace transform (6.6) for Zt for all t ≥ 0, then Z is a weighted sum of independent Poisson processes with rates λ(i), i ∈ E.

A somewhat more general approach makes use of the structure of Z outlined in Proposition (6.2) by conditioning on the number of jumps, as was done previously in Example (2.2.27).

If the number of jumps Nt of Z in (0, t] is n, then Zt is the sum of n independent and identically distributed random variables. Hence, if E[Xi] = μ and the rate of jumps is λ, then
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which gives, by proposition (2.2.16),
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This approach can also be used to compute the Laplace transform of Zt in the case where all the jumps are upward. We then get

(6.9)  PROPOSITION. Suppose the jump times of Z form a Poisson process with rate λ and that the magnitudes of jumps are independent and identically distributed non-negative random variables, independent of the jump times, with distribution φ. Then for any α ≥ 0 and t ≥ 0,
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where
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Proof. By the independence of the Xi from N, since Zt = X1 + · · · + Xn when Nt = n, n ≥ 1,
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Since the Xi are independent of each other, by Proposition (2.1.26),
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We have thus shown that
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and by Proposition (2.2.16),
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since for any β ≥ 0,
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Note that we can write
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by letting λ(u) = λφ(u). Then (6.10) becomes
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which is the continuous analog of (6.6). Analogous to the case where the jump sizes are discrete random rariables, we have the following result. Consider those jumps of Z whose magnitudes fall in the interval (a, b]; then the instants at which those jumps occur form a Poisson process with rate
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independent of the jumps with other sizes.

It follows from axiom (6.1c) that the distribution of any increment Zt + s − Zt is the same as that of Zs. By axiom (6.1b), the increments Zt1 − Zt0, . . ., Ztn − Ztn−1 are independent of each other for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn. Thus, once the distribution of Zt is known for all t, the joint distribution of any number m of variables Zs1, . . ., Zsm can be computed easily. Hence, the probability law of the process Z is completely specified once we are given the rate of jumps λ and the distribution φ of the jump sizes.

7.  Non-Stationary Poisson Processes

In Definition (1.1), axioms (a) and (b) are quite applicable to many real-life arrival processes, but (c) is not. Usually, the rate of arrivals will depend on the time of day, etc. In this section we will study those arrival processes which satisfy only (1.1a) and (1.1b).

Consider an arrival process N; that is, for any ω ∈ Ω, the mapping t → Nt(ω) is non-decreasing, increases by jumps only, is right continuous, and has N0(ω) = 0.

(7.1)  DEFINITION. N is said to be a possibly non-stationary Poisson process provided that

(a)  for almost all ω, t → Nt(ω) has jumps of size one only;

(b)  for any t, s ≥ 0, the random variable Nt + s − Nt is independent of the past history {Nu; u ≤ t} until t.
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We will refer to N as a stationary Poisson process if it further satisfies (1.1c). Let N be a non-stationary Poisson process and let
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Since Nt + s ≥ Nt, E[Nt + s] ≥ E[Nt]; that is, a is a non-decreasing function. If a sequence of numbers tn decreases to t, then Ntn decreases to Nt by the right continuity of N. By the monotone convergence theorem (2.1.34), this implies that, then, a(tn) decreases to a(t). Hence a is a non-decreasing right continuous function. We will, for the time being, assume that a is, in fact, continuous. We define the time inverse of a by
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Then a look at Figure 4.7.1 will show that τ is also non-decreasing. Suppose that we have constructed a clock which reads t when the actual time is τ(t). The next theorem states that if one were to reckon time according to this clock, then the arrival process he is observing would be a stationary Poisson process.

[image: image]

Figure 4.7.1 Constructing the clock τ from the function a.

(7.4)  THEOREM. Let N be a non-stationary Poisson process, suppose a is continuous, and define
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for all t ≥ 0 and ω ∈ Ω. Then M = {Mt; t ≥ 0} is a stationary Poisson process with rate 1.

Proof. Fix t, s ≥ 0 and put t′ = τ(t), t′ + s′ = τ(t + s). Then
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By axiom (7.1b), Nt′ + s′ − Nt′ is independent of the past history {Nu; u ≤ t′}. Hence, the right-hand side of (7.5) is equal to
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Since a is continuous, a(t′) = a(τ(t)) = t, and similarly a(t′ + s′) = t + s. Putting these in (7.6), we obtain
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By Theorem (1.17), (7.7) implies that M is a Poisson process with rate equal to one.
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The following corollary restates (7.4) in terms of the times of arrivals. The proof is evident from Figure 4.7.2.

(7.8)  COROLLARY. Let a be a continuous non-decreasing function. Then T1, T2, . . . are the arrival times in a non-stationary Poisson process N with
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Figure 4.7.2 T1, T2, . . . form a non-stationary Poisson process with expectation function a if and only if S1, S2, . . . form a stationary Poisson process with rate 1.

E[Nt] = a(t) if and only if a(T1), a(T2), . . . are the arrival times in a stationary Poisson process with rate 1.

Let N be a non-stationary Poisson process with expectation function a. Almost surely, an arrival Tn falls in the interval (t, t + s] if and only if a(Tn) falls in the interval (a(t), a(t + s)]. Hence the number of arrivals in (t, t + s] is equal to the number of a(Tn) falling in the interval (a(t), a(t + s)]. By Corollary (7.8), the latter random number has the Poisson distribution with parameter 1 × (a(t + s) − a(t)). We have thus proved the following quantitative result.

(7.9)  PROPOSITION. If N is a non-stationary Poisson process with a continuous expectation function a, then
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for any t, s ≥ 0; here
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The preceding proposition is an example of how to use Theorem (7.4) and Corollary (7.8) to reduce a computation concerning a non-stationary Poisson process to a computation about a stationary one. Next is another result, again obtained by the same method, but now on the times of arrivals.

(7.10)  PROPOSITION. Let T1, T2, . . . be the successive arrival times of a non-stationary Poisson process with a continuous expectation function a. Then for any n,
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Before proving this, we note that the interarrival times are no longer independent as in a stationary Poisson process. However, they still have conditionally exponential distributions.

Proof. The event A = {a(Tn+1) > a(Tn + t)} implies the event {Tn+1 − Tn > t}, which in turn implies the event B = {a(Tn+1) ≥ a(Tn + t}. Thus,

 

[image: image]

The T1, . . ., Tn determine a(T1), . . ., a(Tn) and a(Tn + t). Therefore, by Corollary (7.8), a(Tn+1) − a(Tn) is independent of T1, . . ., Tn, and has the exponential distribution with parameter one. Hence,
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By the same reasoning,
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also, since P{X ≥ t} = P{X > t} for any random variable X having an exponential distribution. This completes the proof in view of the double inequality above.
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(7.11)  EXAMPLE. The times when successive demands occur for an expensive “fad” item (such as a certain model computer) form a non-stationary Poisson process N with the arrival rate at time t being
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that is,
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The total demand N∞ for this item throughout [0, ∞) has the Poisson distribution with parameter 625. If, based on this analysis, the company has manufactured exactly 700 such items, the probability of a shortage would be
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Using the normal distribution to approximate this, we have
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The time of sale of the last item is T700; since T700 ≤ t if and only if Nt ≥ 700, its distribution is
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(7.12)  EXAMPLE. In considering stochastic systems with non-stationary Poisson arrivals, simulation is used quite often (more often than needed, in fact) as a quick method of “solution.” It seems desirable, therefore, to mention how Corollary (7.8) can be used to generate a possible realization of arrival times from a non-stationary Poisson process with a given continuous expectation function a.

First, draw the function a as in Figure 4.7.2. To get one possible realization, we do the following:

(a)   set s0 = 0, t0 = 0;

(b)   for n = 1, 2, . . .

  (i)   pick a “random number” ωn from the tables,

 (ii)   compute xn = −log ωn,

(iii)   compute sn = sn−1 + xn,

(iv)   enter sn on the vertical axis in the figure drawn above, and read the corresponding number tn on the horizontal axis (as in Figure 4.7.2).

The sequence of numbers t1, t2, t3, . . . obtained gives a possible realization of the arrival process desired.

In the language of probability theory, what we have done is the following. We have taken a sample space Ω which is the set of all possible sequences ω = (ω1, ω2, . . .) of numbers ωi in [0, 1]. A probability P is constructed on Ω in such a way that for any n and numbers a1, . . ., an in [0, 1],
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A sequence {Xn; n = 1, 2, . . .} of random variables is defined by

 

[image: image]

Then for any b1, . . ., bn ≥ 0,

 

[image: image]

that is, X1, X2, . . . are independent and identically distributed with the common distribution being the exponential one with parameter 1. Then by Theorem (2.5), S1 = X1, S2 = X1 + X2, S3 = X1 + X2 + X3, . . . are the arrival times of a stationary Poisson process with rate 1. By entering the Sn on the vertical axis to read off the Tn on the horizontal one (on a graph of the function a) we obtain a sequence T1, T2, . . . which are the arrival times of the non-stationary Poisson process N with the expectation function a, by Corollary (7.8). In the simulation procedure outlined above, the sequence ω = (ω1, ω2, . . .) of “random numbers” ωn picked is a possible outcome in the sample space Ω we have constructed. The numbers x1, x2, . . . computed were the actual values X1(ω), T2(ω), . . . of the random variables X1, X2, . . . corresponding to this outcome ω. Similarly, the numbers t1, t2, . . . that were obtained are the actual values T1(ω), T2(ω), . . . corresponding to this particular ω.

[image: image]

Finally, before ending this section, we briefly consider the case where the expectation function a is not continuous. We have shown that a is necessarily non-decreasing and right continuous. Since it is non-decreasing, the left-hand limit a(t−) = lims ↑ t a(s) exists for all t. Suppose now that for a particular point t, a(t−) ≠ a(t), and let α = a(t) − a(t −). Then the number of arrivals Nt − Nt− occurring at exactly t has the expected value α > 0. By axiom (7.1a), this random variable Nt − Nt− is either 0 or 1; therefore, its expectation is also the probability that it is equal to 1, that is,

 

[image: image]

Thus, we may think of such a point t as the time at which an arrival is scheduled but might fail to materialize with probability 1 − α.

If a has jumps of magnitudes α1, α2, . . . at the fixed times t1 t2, . . ., then the above analysis shows that there will be an arrival at exactly ti with probability αi, i = 1, 2, . . . .

A general non-stationary Poisson process is, then, composed of two streams of arrivals:

 

[image: image]

The possible jump times of Nf are fixed; these times are the points of discontinuity of a; and the probability of an arrival at such a fixed time t is a(t) − a(t−). If we write a f(t) for the sum of all the jumps of a in [0, t], that is, if

 

[image: image]

then

 

[image: image]

is a continuous non-decreasing function. The second component Nc in the decomposition (7.14) is a non-stationary Poisson process with the expectation function ac. To this component, then, our previous propositions are applicable.

(7.17)  EXAMPLE. Arrivals of customers at a single-barber shop form a non-stationary Poisson process. On a particular day, there are appointments made for 12: 00, 12: 20, 1: 00, 3: 40, 4: 20, 4: 40. Past experience indicates that an appointment is kept with probability α = 2/3. Customers without appointments arrive at the rate of 1 per hour during the first 3 hours, at the rate of 0.4 during the next 2 hours, and at the rate of 0.2 per hour during the last hour. The expectation function a is the sum of af and ac shown in Figure 4.7.3.

[image: image]

Figure 4.7.3 Expectation functions for scheduled and unscheduled arrivals at a barber shop.

The number of customers arriving with appointments during the first 4 hours is [image: image]; it has the distribution (noting that there are 4 scheduled during that interval)

 

[image: image]

The distribution of the number arriving without appointments during this same time is (noting that ac(4) = 3.4)

 

[image: image]

The probability that the total number N4 to arrive is 8 is, since Nf and Nc are independent,

 

[image: image]

8.  Exercises

(8.1)  Let N = {Nt; t ≥ 0} be a Poisson process with rate λ = 15. Compute

(a)  P{N6 = 9},

(b)  P{N6 = 9, N20 = 13, N56 = 27},

(c)  P{N20 = 13 | N6 = 9},

(d)  P{N6 = 9 | N20 = 13}.

(8.2)  Let N be a Poisson process with rate λ = 2. Compute

(a)  E[Nt], Var(Nt),

(b)  E[Nt + s | Nt].

(8.3)  Arrivals of passengers at a bus stop form a Poisson process N with rate [image: image] per minute. Assume that a bus has left at time t = 0 leaving no customers behind. Let T denote the time of arrival for the next bus; then the number of passengers present when it arrives will be NT. We suppose that T is independent of N and has the distribution φ.

(a)  Compute E[NT | T] and [image: image].

(b)  Compute E[NT] and Var(NT) for

 

[image: image]

(8.4)  A store promises to give a small gift to every thirteenth customer to arrive. If the arrivals of customers form a Poisson process with rate λ,

(a)  find the probability density function of the times between the lucky arrivals;

(b)  find P{Mt = k] for the number of gifts Mt given in the interval [0, t].

(8.5)  Arrivals of customers into a store form a Poisson process N with rate λ = 20 per hour. Find the expected number of sales made during an eight-hour business day if the probability that a customer buys something is 0.30.

(8.6)  Consider the road network pictured in Figure 4.8.1. The inputs are Poisson processes with the rates indicated, and the probabilities of a vehicle choosing the indicated directions are written on the arrows. Describe the traffic flow on each branch of the network.

[image: image]

Figure 4.8.1 Network of Exercise (8.6).

(8.7)  A department store has 3 doors. Arrivals at each door form Poisson processes with rates λ1 = 110, λ2 = 90, λ3 = 160 customers per hour. 30% of all customers are male. The probability that a male customer buys something is 0.80, and the probability of a female customer buying something is 0.10. An average purchase is worth $4.50.

(a)  What is the average worth of total sales made in a 10 hour day?

(b)  What is the probability that the third female customer to purchase anything arrives during the first 15 minutes? What is the expected time of her arrival ?

(8.8)  Considering the traffic on the road pictured in Figure 4.8.2, the following is known. The number of vehicles passing the point A in an hour follows the Poisson distribution with mean 60; 20% of these vehicles are trucks. The number of vehicles passing B in an hour is also Poisson distributed with mean 80; 30% of these are trucks. In general, 10% of all vehicles stop at the restaurant. The number of persons in a truck is one; the number of passengers in a car is equal to 1, 2, 3, 4, or 5 with respective probabilities 0.30, 0.30, 0.20, 0.10, and 0.10.

[image: image]

Figure 4.8.2 Picture for Exercise (8.8).

(a)  Find the expected value E[Z] of the number of persons Z arriving at the restaurant within that one hour.

(b)  Compute E[αz], for α ∈ [0, 1].

(8.9)  A device is subject to shocks which occur according to a Poisson process N with rate λ. The device can fail only due to a shock, and the probability that a given shock causes failure is p independent of the number and times of previous shocks. Let K be the total number of shocks the device takes before failure, and let T = TK be the time of failure.

(a)  Compute E[T], Var(T).

(b)  Compute E[T | K].

(c)  Compute E[T | K > 9].

(8.10)  Mixtures of Poisson Processes. Let X be a random variable taking values in E = {a, b, . . .} with distribution π = (π(a), π(b), . . .). For each i ∈ E, let N(i) be a Poisson process with rate λ(i). Suppose the processes N(a), N(b), . . . are independent of each other and of X. Define, for each t ∈ [0, ∞),

 

[image: image]

The process N = {Nt; t ≥ 0} is then called the mixture of N(a), N(b), . . . according to the distribution π. (This is a misnomer, since N is in fact one of the N(a), N(b), . . . picked at random; the computation below explains the name better).

(a)  Show that for any t ≥ 0,

 

[image: image]

(b)  Show that in general, N does not have independent increments.

(8.11)  Suppose T1, T2, . . . are the arrival times of a Poisson process with rate λ, and let f be a non-negative function. Show that

 

[image: image]

(Hint: First show this to be true for simple functions f, then use the fact that any function f ≥ 0 is the increasing limit of a sequence of simple functions.)

(8.12)  Continuation. Compute the expected value and variance of Z = Σ f(Tn) by using (8.11). (Hint: Use (8.11) to obtain E[e−αz] first for α ≥ 0.)

(8.13)  Continuation. Suppose T1, T2, . . . are the arrival times of a non-stationary Poisson process N with a continuous expectation function a. Show that for any function f ≥ 0,

 

[image: image]

Use this to compute

 

[image: image]

(8.15)  It can be shown that if (8.14) holds for all functions f ≥ 0, then T1, T2, . . . form a non-stationary Poisson process with the continuous function a as the expectation function. Use this result to show that the superposition of two independent non-stationary Poisson processes without fixed discontinuities is again a non-stationary Poisson process.

[image: image]

The learned Bishop Hall, I mean the famous Dr. Joseph Hall, who was Bishop of Exeter in King James the First’s reign, tells us in one of his Decads, at the end of his devine art of meditation, imprinted at London, in the year 1610, by John Beal, dwelling in Aldersgate-street, “That it is an abominable thing for a man to commend himself;”—and I really think it is so.

And yet, on the other hand, when a thing is executed in a masterly kind of fashion, which thing is not likely to be found out;—I think it is full as abominable, that a man should lose the honour of it, and go out of the world with the conceit of it rotting in his head.

This is precisely my situation.

For in this long chapter which by accident became too long, as in all my chapters, there is a skillful blending of the abstract with the practical, the merit of which has all along, I fear, been overlooked by my reader,—not for want of penetration in him,—but because ’tis an excellence seldom looked for, or expected indeed, in a work on stochastic processes.

—This is vile work.—For which reason, from the beginning, you see, I have constructed the main work and the adventitious parts of it with such intersections, and have so complicated and involved the practical and the abstract that the two, which were thought to be at variance with each other, are reconciled as one wheel within another, and the whole machine, in general, has been kept a-going.1

I have given a qualitative definition which enables the practitioner to decide, using his intuition, whether or not the Poisson process provides a plausible model for the phenomenon he is interested in. The method used for the proof of Theorem (1.9) is close to that of KHINTCHINE [1]. The proof of Lemma (1.5) is the neatest known to us; it is based on a recent proof by CHUNG [3]. Most textbooks include this lemma as an axiom within the definition, with claims of it being intuitively clear. Somehow, why it should be intuitive has always escaped us.

Theorem (1.17) is due WATANABE [1]; it is a nice example of how abstract mathematics, honestly executed, can yield the most intuitive and practical results. Theorem (1.18) is due to RÉNYI [1]; its proof is a rare example of using quantitative data to prove stochastic independence. In most instances, such things as independence are matters of assumption to be checked by statistical means.



1Fashioned after Tristram Shandy by Laurence Sterne, Chap. XXII.


CHAPTER 5

Markov Chains

This and the next three chapters are devoted to stochastic processes whose futures are conditionally independent of their pasts provided that their present values be known. The present chapter is to introduce the fundamental notions and terminology of such processes.

The theory of Markovian processes comprises the largest and the most important chapter in the theory of stochastic processes; this importance is further enhanced by the many applications it has found in both the physical, biological, and social sciences and in engineering and commerce.

The subject matter and the notations to be used are introduced in Section 1. It is usual to think of a Markov chain as the sequence of states entered by a system evolving in time, or the sequence of positions occupied by a moving particle. In Section 2, we consider the process as an observer at a fixed position would see it: that is, the successive times at which that position is visited by the moving particle. It turns out that much can be learned about the motion as a whole from such fragmentary data. Section 3 introduces a classification of states which provides the tools for accomplishing this.

1.  Introduction

Let Ω be a sample space and P a probability measure on it. Consider a stochastic process X = {Xn; [image: image]} with a countable state space E; that is, for each [image: image] = {0, 1, . . .} and ω ∈ Ω, Xn(ω) is an element of the countable set E. It is customary to say “the process is in state j at time n” to mean Xn = j. Thus, Xn is referred to as the state of the process X at time n, and the set E is called the state space of the process X.

(1.1)  DEFINITION. The stochastic process X= {Xn; [image: image]} is called a Markov chain, provided that

 

[image: image]

for all j ∈ E and [image: image].

[image: image]

A Markov chain, then, is a sequence of random variables such that for any n, Xn + 1 is conditionally independent of X0, . . . , Xn − 1 given Xn. That is, the “next” state Xn + 1 of the process is independent of the “past” states X0, . . . , Xn − 1 provided that the “present” state Xn be known.

Throughout the discussion we will restrict ourselves to Markov chains for which the conditional probability

 

[image: image]

is independent of n. This restriction is convenient from the computational point of view and, as Exercise (4.13) shows, does not cause any loss of generality from the theory. The probabilities P(i, j) are then called the transition probabilities for the Markov chain X, and a Markov chain X satisfying (1.2) is said to be time-homogeneous if emphasis is needed. It is customary to arrange the P(i, j) into a square array and to call the resulting matrix P the transition matrix of the Markov chain X. If E = {0, 1, . . .}, for example, the transition matrix is

 

[image: image]

Following are the principles of notation we will follow regarding matrices and vectors.

(1.3)  NOTATIONS. If M(i, j) are real numbers defined for all i, j in some countable set E, then by M we denote the matrix whose (i, j)-entry is M(i, j). Conversely, if M is a matrix, by M(i, j) we mean the (i, j)-entry of M. We will denote the column vectors by lower case letters such as f, g, h, . . . , and the row vectors by lower case Greek characters such as π, v, . . . . If f is a column vector, f(i)is its i-entry; if π is a row vector, π(j) is its j-entry. Column vectors are to be thought of as functions defined on E, and when it is clear that we are talking of a function f we will take the liberty of displaying it as f = (a, b, . . .) for typographical ease, even though we are still thinking of it as a column vector.

The identity matrix will always be denoted by I; so I(i, j) = 1 or 0 according as i = j or i ≠ j. Any vector or matrix whose every entry is zero will be denoted by 0. The column vector of ones will be denoted by 1; so 1(i) = 1 for all i. For any j, we will write 1j for the column vector whose every entry is zero except the j-entry, which is one; so 1j(i) = I{j}(i) = 1 or 0 according as i = j or i ≠ j.

Equalities and inequalites between vectors (or between matrices) are always term by term. So M ≥ 0 means M(i, j) ≥ 0 for all i, j; f ≤ g means f(i) ≤ g(i) for all i.

[image: image]

Every entry of a transition matrix P is non-negative, and the terms in any one row sum to unity. Such matrices are given a special name.

(1.4)  DEFINITION. Let P be a square matrix of entries P(i, j) defined for all i, j ∈ E. Then P is called a Markov matrix over E provided that

    (a)  for any i, j ∈ E, P(i, j) ≥ 0, and

    (b)  for each [image: image].

Thus, the transition matrix of a Markov chain is a Markov matrix. Conversely, for any given Markov matrix over a countable set E, it is possible to construct a sample space Ω, a probability P on all subsets of Ω, and random variables X0, X1, . . . on Ω taking values in E such that X = {Xn} is a Markov chain whose transition matrix is the given matrix. In such constructions, it is usual to take Ω to be the set of all sequences ω = (ω0, ω1, ω2, . . .) with ωi ∈ E for every i and to define Xn(ω) = ωn. Then every realization ω is the sequence of states being observed corresponding to that realization.

Let X be a Markov chain with transition matrix P and state space E, and let i, j, k ∈ E be fixed. From the elementary definition (1.3.1) of conditional probabilities, we can write

 

[image: image]

On the other hand, by Definition (1.1),

 

[image: image]

and by the time-homogeneity condition (1.2),

 

[image: image]

Hence,

 

[image: image]

This method of proof gives, by induction, the following more general result.

(1.5)  THEOREM. For any n, m ∈ [image: image] with m ≥ 1 and i0, . . . , im ∈E,

 

[image: image]

Taking n = 0 and using Definition (1.3.1) of conditional probabilities yields the following

(1.6)  COROLLARY. Let π be a probability distribution on E, and suppose

 

[image: image]

for all i ∈ E. Then for any m ∈ [image: image] and i0, . . . , im ∈ E,

 

[image: image]

This corollary shows that the joint distribution of X0, . . . , Xm is completely specified for every m once the initial distribution π and the transition matrix P are known. By using Theorem (1.1.10) as many times as necessary, we can then get the joint distribution of Xn1, . . . , Xnk for any integer k ≥ 1 and n1, . . . nk ∈ [image: image]. The following are some results in this direction.

For any h, i, j, k ∈ E we can write, from Theorem (1.5),

 

[image: image]

from this, it follows through Theorem (1.1.10) that

 

[image: image]

We now note that summing the terms P(i, j)P(j, k) over all j ∈ E yields the (i, k)-entry of the square of the matrix P, which is P2(i, k) in our system of notation. Putting this in the equation above, we get

 

[image: image]

But the sum on the right is the (h, k)-entry of the product of the matrices P and P2, that is, the (h, k)-entry of the third power of the matrix P, which is written as P3(h, k) in our system. Hence, we have shown that

 

[image: image]

for all h, k ∈ E and [image: image]. By iteration, the same proof yields the following general result.

(1.7)  PROPOSITION. For any m ∈ [image: image],

 

[image: image]

for all i, j ∈ E and [image: image] (in particular, for m = 0, P0 = I).

In words, the probability that the chain moves from state i to state j in m steps is the (i, j)-entry of the mth power of the transition matrix P. Obviously, for any m, [image: image]

 

[image: image]

which in open form becomes

 

[image: image]

Equation (1.8) is called the Chapman-Kolmogorov equation; it states that starting at state i, in order for the process X to be in state j after m + n steps, it must be in some intermediate state k after the mth step and then move from that state k into state j during the remaining n steps.

In some applications, the powers Pm of the transition matrix P are desired for a large number of m. Then it may be worth considering the various matrix-theoretic methods available for such computations. Some such results may be found in the appendix at the end of this book.

(1.9)  EXAMPLE. Let X = {Xn; [image: image]} be a Markov chain with state space E = {a, b, c} and transition matrix

 

[image: image]

Then

 

[image: image]

The two-step transition probabilities are given by

 

[image: image]

so that, for example,[image: image].

(1.10)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2}, initial distribution [image: image], and transition matrix

 

[image: image]

Then

 

[image: image],

and in general, using the techniques explained in the appendix,

 

[image: image]

We have

 

[image: image]

(1.11)  EXAMPLE. Number of successes in Bernoulli process. Let Nn denote the number of successes in n Bernoulli trials, where the probability of a success in any one trial is p. Then Theorem (3.2.11) implies that {Nn; n ≥ 0} is a Markov chain. Here the state space is {0, 1, 2, . . .}, the initial distribution is π(0) = 1, π(j) = 0, j ≥ 1; and the transition probabilities are

 

[image: image]

The transition matrix is

 

[image: image]

We then have, by Theorem (3.2.11) again,

 

[image: image]

(1.12)  EXAMPLE. Let Tn be the time of the nth success in a Bernoulli process. Then Theorem (3.6) of Chapter 3 shows that {Tn; n ≥ 0} is a Markov chain. The state space is {0, 1, 2, . . .}; T0 = 0, so that the initial distribution is π(0) = 1, π(1) = π(2) = ··· = 0; and the transition probabilities are

 

[image: image]

by Proposition (3.3.8). The transition matrix then is

 

[image: image]

The m-step transition probabilities can be obtained by multiplying P by  itself m times. But we have already computed these in Theorem (3.3.3):

 

[image: image]

(Note that the second equality is justified by the independence of Tn + m − Tn and Tn; see Corollary (3.3.10).)

[image: image]

(1.13)  EXAMPLE. Independent trials process. Let X0, X1, . . . be independent discrete random variables with the common distribution

 

[image: image]

Then since Xn + 1 is independent of X0. . . , Xn,

 

[image: image]

and

 

[image: image]

Hence, {Xn; n ≥ 0} is a Markov chain. Its initial distribution is π, and its transition matrix is

 

[image: image]

Note that all the rows of P are identical and that Pm = P for all m ≥ 1. Conversely, if {Xn; n ≥ 0} is a Markov chain whose transition matrix has all the rows identical, then X0, X1, . . . are independent and identically distributed.

[image: image]

(1.14)  EXAMPLE. Sums of independent random variables. Let Y1, Y2, . . . be independent and identically distributed discrete random variables with probability distribution {pk; k = 0, 1, 2, . . .}. Put

 

[image: image]

Then since Xn + 1 = Xn + Yn + 1,

 

[image: image]

by the independence of Yn + 1 and X0, . . . , Xn. Thus, {Xn; n ≥ 0} is a Markov chain whose transition probabilities are

 

[image: image]

or in matrix form,

 

[image: image]

Comparing this with the transition matrix in Example (1.12), we note that the latter is a special case with pk = pqk − 1, k = 1, 2, . . . .

[image: image]

(1.15)  EXAMPLE. Let Y1, Y2, . . . be independent identically distributed random variables each taking values in {0, 1, 2, 3, 4} with the common distribution (p0, p1, p2, p3, p4).

Let X0 = 0 and define

 

[image: image]

(For example, if for some ω ∈ Ω, Y1(ω) = 2, Y2(ω) = 4, Y3(ω) = 4, Y4(ω) = 1, Y5(ω) = 3, Y6(ω) = 4, . . . , then we have X0(ω) = 0, X1(ω) = 2, X2(ω) = 1, X3(ω) = 0, X4(ω) = 1, X5(ω) = 4, X6(ω) = 3, . . . .)

Then {Xn; n ≥ 0} is a Markov chain with state space {0, 1, 2, 3, 4} and transition matrix

 

[image: image]

Note that in this example, not only each row, but also each column sums to one. Such matrices are called doubly Markov.

[image: image]

(1.16)  EXAMPLE. Inventory Theory. A commodity is being stocked to satisfy a continuing demand. The inventory policy is described by specifying two non-negative critical values s and S, with s < S. The inventory level is checked periodically at fixed times t0, t1, t2, . . . . If the stock on hand at tn is less than or equal to s, then by immediate procurement the stock level is brought up to the level S. On the other hand, if the stock level is greater than s, then no replenishment is undertaken.

Let Zn be the total demand for the commodity during the interval [tn − 1, tn), and let Xn be the stock on hand just before the time tn. Then for any ω ∈ Ω,

 

[image: image]

Now, then,

 

[image: image]

if and only if

 

[image: image]

Thus, if the demand Zn + 1 for the commodity in the interval [tn, tn + 1) is independent of X0. . . . , Xn − 1 given the value of Xn then {Xn ≥ 0} is a Markov chain with state space E = {0, 1, . . . , S}.

[image: image]

(1.17)  EXAMPLE. Remaining Lifetime. Consider some piece of equipment which is now in use. When it fails, it is replaced immediately by an identical one. When that one fails it is again replaced by an identical one, and so on. Let pk denote the probability that a new item lasts for k units of time, k = 1, 2, . . . . Let Xn be the remaining lifetime of the item in use at time n. Then for fixed ω,

 

[image: image]

where Zn + 1(ω) is the lifetime of the item installed at n. Since the lifetimes of successive items installed are independent, Zn + 1, is independent of X0, X1, . . . , Xn. Thus, (1.18) implies that {Xn, n ≥ 0} is a Markov chain with state space {0, 1, 2, . . .}.

Let P(i, j) be the transition probabilities. For i ≥ 1,

 

[image: image]

and for i = 0,

 

[image: image]

for any j = 0, 1, . . . . Thus, the transition matrix is

 

[image: image]

The definition of a Markov chain stated that the next state of the process is independent of the past provided that the present state be known. Next we will show that a stronger statement is also true: the past and the future are conditionally independent given the present.

(1.19)  THEOREM. Fix [image: image], and let Y be a bounded function of the random variables Xn, Xn + 1. . . . Then

 

[image: image]

Proof. It is sufficient to prove this for a random variable Y which is a function of finitely many of the Xn, Xn + 1, . . . , say Y = f(Xn, Xn + 1, . . . , Xn + m) for some m ∈ [image: image] and some bounded function f from Em + 1 into [image: image]. If m = 0, then the claim holds trivially by Proposition (2.2.15). Now we make the induction hypothesis that the claim holds for any bounded random variable of the form f(Xn, . . . , Xn + m), and proceed to show that the claim then holds for any bounded Y = g(Xn, . . . , Xn + m, Xn + m + 1).

By Theorem (2.2.19),

 

[image: image]

On the other hand, using the Markov property at time n + m,

 

[image: image]

for some f. The last expression being a function of only Xn, . . . , Xn + m, the induction hypothesis applies and we have

 

[image: image]

where we used Theorem (2.2.19) in writing the last equality. The proof now follows from (1.20) and (1.21).

[image: image]

A closer look at the proof of the preceding theorem yields also a nice computational formula.

(1.22)  PROPOSITION. For any [image: image] and any bounded function f on E × E × ···, we have

 

[image: image]

Proof. It is sufficient to show this for a function f whose values depend only on a finite number of its arguments, say f(a0, a1, . . .) = g(a0, . . . , am). Then, using Theorem (1.5),

 

[image: image]

which is also the expression for E[gX0, . . . , Xm) | X0 = i].

[image: image]

Putting the results of the two preceding propositions together, we obtain the following useful

(1.23)  COROLLARY. Let f be a bounded function on E × E × ···, and let

 

[image: image]

Then for any [image: image],
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We have shown in Theorem (1.19) that the past and the future of a Markov chain are independent provided that the “present” state be known; here, by “present” was meant a fixed time n. In various applications a similar concept of independence is needed with “present” replaced by a random time T. It turns out that for certain random times T, the past {Xm; m ≤ T} and the future {Xm; m ≥ T} are conditionally independent given the “present” state XT. When this holds for a random time T the strong Markov property is said to hold at time T. In particular, the strong Markov property holds for random times T having the property that for every [image: image], the occurrence or non-occurrence of the event {T ≤ n} can be determined by looking at the values of X0, . . . , Xn; in other words, for every [image: image], there is a function fn such that f(X0(ω), . . . , Xn(ω)) = 1 or 0 according as T(ω) ≤n or T(ω) > n. Such random times are called stopping times. (See also (4.2.18) for the same concept.)

For example: the first time X visits a certain state is a stopping time; the first time X visits a certain set of states is a stopping time; the kth time X visits a fixed set of states is a stopping time; the last time a state is visited is not a stopping time. The sum of two stopping times is a stopping time. The smaller (or the larger) of two stopping times is again a stopping time. Every constant non-negative integer is a stopping time.

A stopping time T may equal + ∞ for certain ω; in that case XT(ω)(ω) is not well defined, since we have not yet defined X∞(ω). We now introduce the following conventions to handle such situations. First we append an extra state, which we denote by Δ, to the state space. We then define X(ω) = Δ for all ω. Finally, we make the convention that any function f defined on E is automatically extended to E ∪ {Δ} by setting f(Δ) = 0. This way, if T(ω) = ∞, then f(XT(ω)(ω)) =f(Δ) = 0. These conventions are useful in simplifying the statements of the following theorems.

(1.24)  THEOREM. For any stopping time T,
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for all bounded functions f on E × E × ···.

Proof is omitted. Computation of the quantity on the right of the expression in (1.24) is quite simple because of time-homogeneity. Just as in Proposition (1.22) and Corollary (1.23), we have the following

(1.25)  PROPOSITION. Let f be a bounded function on E × E × · · ·, and let
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Then for any stopping time T,
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A particular case of interest is when f(a0, a1, . . .) = 1 or 0 according as am = j or am ≠ j, where j ∈ E is fixed and m ∈ [image: image] is fixed. Then

 

[image: image]

and
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Now Proposition (1.25) yields the following alternative statement of the strong Markov property at T.

(1.26)  COROLLARY. For any stopping time T,
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for all m ∈ [image: image] and j ∈ E.

In other words, the randomness of the “present” time does not alter our computations. In particular,
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as before for the case of constant times T.

2.  Visits to a Fixed State

Throughout this section X = {Xn; [image: image]} is a Markov chain with state space E and transition matrix P. Instead of writing P{A | X0 = i} we simply write Pi{A}; and similarly, instead of E[Y | X0 = i] we write Ei[Y]. For fixed i ∈ E, Pi is a probability measure on Ω and Ei is the corresponding expectation operator.

Let j ∈ E be fixed, and for each ω ∈ Ω, let Nj(ω) be the number of times j appears in the sequence X0(ω), X1(ω), X2(ω), . . . . Then Nj(ω) is the total number of visits to state j by the process X for the realization ω. If Nj(ω) is finite, then X eventually leaves state j never to return; that is, there is an integer n such that Xn(ω) = j and Xm(ω) ≠ j for m > n (this n will, of course, depend on ω). On the other hand, if Nj(ω) = ∞ for a realization ω, then X visits j again and again (and there is no integer n with Xm(ω) ≠ j for all m > n). For purposes of predicting the future, it is a matter of some importance to determine whether an ω of the former type (that yields only finitely many visits to j) or an ω of the latter type (that yields infinitely many visits to j) is to come up. Our objective here is to obtain criteria for settling this matter. In this section and the next, a number of reasonably simple criteria will be obtained in terms of the given data (which are the transition probabilities P(i, k)).

For each ω ∈ Ω, the realization X0(ω), X1(ω), . . . of the process X is a sequence of elements of E; let T1(ω), T2(ω), . . . be the successive indices n ≥ 1 for which Xn(ω) = j as long as there are such n. It may be that there is no such n: then we put T1(ω) = T2(ω) − T1(ω) = · · · = + ∞ it may be that j appears only a finite number m of times: then we let T1ω), . . . , Tm(ω) be the successive n for which Xn(ω) = j and let Tm + 1 (ω) − Tm(ω) = Tm + 2 − Tm + 1(ω) = ··· = ∞. Then T1, T2, . . . are the times of successive visits to state j; see Figure 5.2.1 for a realization.

[image: image]

Figure 5.2.1 For the realization ω pictured here, the times of visits to j are 4, 6, 7, 9, . . . .

For any [image: image], Tm(ω) ≤ n if and only if j appears in {X1(ω), . . . , Xn(ω)} at least m times. Thus, every Tm is a stopping time, and by Theorem (1.24), the strong Markov property holds at Tm; namely, the future after Tm is independent of the past before Tm given XTm. On the other hand, by the way the Tm are defined, XTm = j on {Tm < ∞}. Hence, every time the process X visits j, the past loses all its influence upon the future. In particular we have the following.

(2.1)  PROPOSITION. For any i ∈ E and finite integers k, m ≥ 1
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Proof. For fixed j and m, T = Tm is a stopping time. The event {Tm + 1 − Tm = k} is the same as the event {XT + 1 = ≠ j, ···, XT + k − 1 ≠ j, XT + k = j}. Hence, by Proposition (1.25),
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where g(Δ) = 0 and g(j) = Pj{X1 ≠ j, . . . , Xk − 1 ≠ j, Xk = j} = Pj{T1 = k}. Setting h(n) = g(j) for all n > ∞ and h(∞) = g(Δ) = 0, we see that g(XT) = h(T) by the definition of XT. Thus, using the fact that {Xn; n ≤ T} includes {T1, . . . , Tm} to apply Theorem (2.2.19), and then applying Corollary (2.2.22), we get
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which is as desired.
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Computation of the probability Pj{T1 = k} is easy. More generally, let
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For k = 1,
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and for k ≥ 2,
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by Proposition (1.22). Within the summation, the first factor is P(i, b) and the second is Fk − 1(b, j). Thus, we have
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Hence, for k = 1, the probabilities F1(i, j) are the same as the transition probabilities, and for larger k, (2.4) provides a recursive formula. The following illustrates this computation.

(2.5)  EXAMPLE. Consider a Markov chain with state space E = {1, 2, 3} and the transition matrix
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and let j = 3. Let us define fk(i) = Fk(i, j) for i = 1, 2, 3. Then f1 is the third column of P, and for k ≥ 2 we have
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where Q is the matrix obtained from P by replacing its jth column by zeros; that is,
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Thus,
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that is,
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Thus, starting at 1, the process never visits 3, that is,
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Starting at 2, the first visit to 3 occurs at time k with probability [image: image]; hence, the probability that 3 is never visited is, starting at 2,
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Starting at 3, the probability that the first return to 3 occurs at time k is given as Fk(3, 3); the probability that X never returns to 3 is

 

[image: image]

For each pair (i, j) we define
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that is, F(i, j) is the probability that, starting at i, the Markov chain X ever visits j. Summing over all k in (2.4), we see that the probabilities F(i, j) satisfy
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For each j, this is a system of linear equations in F(i, j) and may be used to solve for the F(i, j). However, very shortly we will have a better method available (cf. Section 1 of Chapter 6).

Consider now the number of visits Nj(ω) to j by the process X for the realization ω. Note that for any ω, Nj(ω) = m if and only if T1(ω) < ∞, . . . , Tm(ω) < ∞, and Tm + 1(ω) = + ∞. By Proposition (2.1), the events {T1 < ∞}, {T2 − T1 < ∞}, . . . , {Tm − Tm − 1 < ∞}, {Tm + 1 − Tm = + ∞} are independent and their probabilities are, starting at i, F(i, j), F(j, j), . . . , F(j, j), 1 − F(j, j) respectively. Hence we have the following

(2.8)  PROPOSITION. Let Nj be the total number of visits to j. Then
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and for i ≠ j,
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By summing over all m in (2.9) we obtain the probability that, starting at j, Nj is finite. If F(j, j) = 1, then every term is zero and this sum is zero. If F(j, j) < 1, what we have there is the geometric distribution and the sum is unity. We put this next as a

(2.11)  COROLLARY. We have

 

[image: image]

If F(j, j) = 1, then Nj = + ∞ with probability one if the initial state is j; therefore, Ej[Nj] = + ∞ in this case. Otherwise, if F(j, j) < 1, Nj has the geometric distribution with success probability p = 1 − F(j, j) starting at j; then Ej[Nj] = l/p = 1/(1 − F(j, j)). These and similar computations for the case i ≠ j give the following: Let
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The matrix R whose (i, j)-entry is R(i, j) is called the potential matrix of X.

(2.13)  COROLLARY. We have
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and
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(here, 1/0 = ∞, 0·∞ = 0).

Corollary (2.11) is of great significance. It shows that the number F(j, j) determines whether or not a state j will be visited infinitely often. If our computations yielded F(j, j) = 1, then for almost any ω, the realization of the process will visit j infinitely often; such a state j will be called recurrent. If, on the other hand, our computations show F(j, j) < 1, then for almost any ω the realization of X will visit j only finitely many times, so that after a last visit to j, state j will never be entered again; such a state j is called transient because it disappears after a while.

The computations of the expected numbers of visits to various states can be made directly, without using Corollary (2.13). In fact, in practice, it is easier to compute the R(i, j) first and then use (2.13) to compute the F(i, j).

Let 1j be the function whose every entry is zero except the j-entry, which is one; that is, 1j(k) = 1 or 0 according as k = j or k ≠ j (see also Notation (1.3)). For an ω ∈ Ω, 1j(Xn(ω)) is 1 or 0 according as X is in j or not at time n for that ω. Thus, 1j(Xn(ω)) is the number of visits to j at time n, and
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By the monotone convergence theorem,
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In matrix notation this becomes
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If the powers of P are computed beforehand, then (2.16) may be used to compute R. In general, however, it is easier to note first that the potential matrix R satisfies
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which yields
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In the case where E is finite, (2.17) is a useful computational tool once we figure out which R(i, j) are finite and which are not. In the next section we will develop such criteria which, in many cases, will reduce the task involved to a simple inspection of the matrix P. We will pick up the computational problem itself in the next chapter.

3.  Classification of States

Let X be a Markov chain with state space E and transition matrix P. Let T be the time of first visit to state j (this was denoted by T1 for fixed j in the preceding section), and let Nj be the total number of visits to j as before.

(3.1)  DEFINITION. (a) State j is called recurrent if
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otherwise, if Pj{T = + ∞} > 0, then j is called transient.

(b) A recurrent state j is called null if
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otherwise, it is called non-null.

(c) A recurrent state j is said to be periodic with period δ if δ ≥ 2 is the largest integer for which
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otherwise, if there is no such δ ≥ 2, j is called aperiodic.

[image: image]

If j is recurrent, then by definition F(j, j) = 1; in other words, j is recurrent if and only if, starting at j, the probability of returning to j is one. Since F(j, j) = 1 implies that R(j, j) = + ∞ by Corollary (2.13), the expected number of returns to j is infinite. In fact, as Corollary (2.11) implies, the actual number of returns is infinite almost surely. Thus, j is recurrent if and only if
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which is also equivalent to
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Conversely, if j is transient, then F(j, j) < 1 and there is a positive probability 1 − F(j, j) of never returning to j. In this case, Corollary (2.11) implies that the total number of returns to j is finite with probability one, and Corollary (2.13) implies that the expected number of returns to j is finite also. Thus, j is transient if and only if
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which is also equivalent to
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If j is transient, R(j, j) < ∞; since R(i, j) = F(i, j)R(j, j) ≤ R(j, j) by Corollary (2.13), R(i, j) < ∞ for all i ∈ E. By (2.15), R(i, j) is the sum of Pn(i, j) for all n; therefore R(i, j) can be finite only if Pn(i, j) → 0 as n → ∞. If j is recurrent, then R(j, j) = + ∞, and we are no longer able to deduce easily whether Pn(j, j) will be zero or positive in the limit. It turns out that if j is recurrent null, then the fact that the expected time between two returns to j is infinite implies that limn Pn(j, j) is zero. The following is the basic limit theorem; we are listing it here without proof to enhance further the meanings behind the classification introduced above (see (2.28) in Chapter 9 for a proof).

(3.2)  THEOREM. (a) If j is transient or recurrent null, then for any i ∈ E,
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(b) If j is recurrent non-null aperiodic, then
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and for any i ∈ E,
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If j is periodic with period δ then a return to j is possible only at steps numbered δ, 2δ, 3δ, . . . . Then the same is true of the time of the second return, and the time of the third return, and so on. Starting at j, the process can be back in state j at time n if and only if n is either the time of the first return or the time of the second return or the time of the third return, etc. Hence, if j is periodic with period δ, then
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In other words, we have the following

(3.4)  CRITERION. Let δ be the greatest common divisor of the set of all n ≥ 1 for which Pn(j, j) > 0. If δ = 1, then j is aperiodic. If δ ≥ 2, then j is periodic with period δ.

In order to tell whether Pn(j, j) > 0 or not, we do not need to compute Pn(j, j). Since, for example,
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P3(j, j) > 0 if and only if there are two states i and k such that P(j, i), P(i, k), and P(k, j) are all positive. More generally, Pn(j, j) > 0 if and only if there are i1, . . . , in ∈ E such that P(j, i1), P(i1, i2), . . . , P(in − 1, j) are all positive. This idea turns out to be very useful in the classification of states, and we now formalize it.

We will say that state j can be reached from i, and write i → j, if there exists an integer n ≥ 0 such that Pn(i, j) > 0. Thus, for i ≠ j, i →j if and only if F(i, j) > 0. Since P0(j, j) = 1 > 0, any state j can be reached from itself. In order that i → j, there must be a sequence i1, i2, . . . , in of states such that P(i, i1) > 0, P(i1, i2) > 0, . . . , P(in, j) > 0. For otherwise, if there is no such sequence, Pn(i, j) = 0 for all n and therefore i [image: image] j.

(3.5)  DEFINITION. (a) A set of states is said to be closed if no state outside it can be reached from any state in it.

(b) A state forming a closed set by itself is called an absorbing state.

(c) A closed set is irreducible if no proper subset of it is closed.

(d) A Markov chain is called irreducible if its only closed set is the set of all states.
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If for some state i, P(i, j) = 0 for all j ≠ i, then no state j can be reached from i. In that case {i} is a closed set, that is, i is absorbing. The converse is also easy to see. Thus, absorbing states can be located easily:

(3.6)  CRITERION. State j is absorbing if and only if P(j, j) = 1.

The following is a simple criterion for irreducibility; its proof follows directly from the definition.

(3.7)  CRITERION. A Markov chain is irreducible if and only if all states can be reached from each other.

In general, if C is a closed set, then deleting from the transition matrix P those rows and columns which correspond to states not in C leaves another Markov matrix. If C consists of a single closed set, that is, if C is irreducible, then the chain restricted to C is an irreducible Markov chain with this new Markov matrix as the transition matrix. We put this next as a

(3.8)  PROPOSITION. Let C = {c1, c2, . . .} ⊂ E be a closed set and define
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Then Q is a Markov matrix.

In finding the closed sets it is helpful to note that we have

(3.9)  PROPOSITION. If i → j and j → k, then i → k.

Proof. If i → j, then there is r ≥ 0 such that pr(i, j) > 0. Similarly, if j → k, there is s ≥ 0 such that Ps(j, k) > 0. Then for n = r + s, using (1.8),

 

[image: image]

so that i → k by definition.

[image: image]

To find the closed set C containing a state i we proceed as follows. First, all states j for which P(i, j) > 0 must be in C. Now by the preceding proposition, all k for which P(j, k) > 0 for some j ∈ C must be in C too. We proceed in this fashion until we can no longer add any more states to our collection.

(3.10)  EXAMPLE. Consider a Markov chain with state space E = {a, b, c, d, e} and transition matrix
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To find all the closed sets it is usually helpful to draw a graph with the states as vertices and draw a directed line from i to j if P(i, j) > 0. Doing that, we get Figure 5.3.1 below. From this we see that from {b, d} the set {a, c, e} can be reached but not vice-versa. Thus, once the process leaves the states {b, d}, neither b nor d can ever be visited again.

The closed sets are {a, c, e} and {a, b, c, d, e}. Since there are two closed

[image: image]

Figure 5.3.1 Transition graph of the Markov chain of Example (3.10): vertices are the states, and a directed line from i to j means p(i, j) > 0.

sets, the chain is not irreducible. Deleting the second and the fourth rows and columns, we have
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which is the Markov matrix corresponding to the restriction of X to the closed set {a, c, e}.

If the states were relabeled so that 1 = a, 2 = c, 3 = e, 4 = b, 5 = d, then the transition matrix corresponding to this labeling of states becomes
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which is in a form that makes analysis easier. Indeed, the tools we are developing next will enable us to conclude immediately from what has been said that the states a, c, and e are recurrent non-null aperiodic and that the states b and d are transient.

[image: image]

We start with the following useful

(3.11)  LEMMA. If j is recurrent and j → k, then k → j and F(k, j) = 1.

Proof. If j → k then k can be reached from j without returning to j in the process. Let α > 0 be the probability of that event. Once k is reached, the probability of never visiting j again is 1 − F(k, j). Thus, for the probability 1 − F(j, j) of never returning to j we have
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But since j is recurrent, 1 − F(j, j) = 0 by Definition (3.1). Since α > 0, we must therefore have 1 − F(k, j) = 0. This shows that F(k, j) = 1 and k → j.

In particular this means that if j → k but k [image: image] j for some k, then j must be transient. The following solidarity theorem complements the preceding lemma by stating that if j is recurrent and j → k, then k is also recurrent.

(3.12)  THEOREM. From a recurrent state only recurrent states can be reached.

Proof. Suppose j is recurrent and j → k. We need to show that k is then recurrent.

Since j → k there is an integer r such that Pr(j, k) > 0. Since j → k and j is recurrent, k → j by Lemma (3.11), and therefore, there is an integer s such that Ps(k, j) > 0. Pick the smallest such integers r and s, and put
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Since {Xs + n + r = k} ⊃ {Xs = j, Xs + n = j, Xs + n + r = k}, we have
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Hence,

 

[image: image]

Since j is recurrent, R(j, j) = ∞; thus, since β > 0, this expression implies that R(k, k) = + ∞ also, and therefore, k is recurrent.

[image: image]

From this theorem we know that no transient state can be reached from any recurrent state. Thus, the set of all recurrent states is closed. Within this set, however, there may be more than one closed set.

(3.13)  LEMMA. For each recurrent state j there exists an irreducible closed set C which includes j.

Proof. Let j be recurrent and C the set of all states which can be reached from j. This is obviously a closed set. We need to show that if i, k ∈ C then i → k.

If i ∈ C, then j → i. Since j is recurrent, Lemma (3.11) implies that i → j. Thus, if k ∈ C is another state, then j → k, and by Proposition (3.9), i → k.
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The following is one of the main results of this section. Its proof follows directly from Lemma (3.13) and will be omitted.

(3.14)  THEOREM. In a Markov chain the recurrent states can be divided, in a unique manner, into irreducible closed sets C1, C2, . . . .

In addition to the closed set C = C1 ∪ C2 ∪ · · ·, of recurrent states, the chain will in general contain transient states as well. It is possible for the recurrent states to be reached from a transient state (but not vice versa).

On the basis of Proposition (3.8) and Theorem (3.14), we see that if the states are relabeled in an appropriate manner, the transition matrix can be put in the form
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where P1, P2, . . . are the Markov matrices corresponding to the sets C1, C2, . . . of states. If we restrict our attention to one of these sets we obtain an irreducible Markov chain. Thus, the following theorem, together with (3.14), completes the picture.

(3.16)  THEOREM. Let X be an irreducible Markov chain. Then either all states are transient, or all are recurrent null, or all are recurrent non-null. Either all states are aperiodic, or else if one is periodic with period δ, then all states are periodic with the same period δ.

Proof. Let j, k be any two states. Since X is irreducible, by Criterion (3.7),

 

[image: image]

This in turn implies that there are integers r and s such that Pr(j, k) > 0 and Ps(k, j) > 0. Pick the smallest such r and s and put
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then β > 0.

(a) If k is recurrent, then by (3.17) and Theorem (3.12), j is also recurrent. If k is transient, then j must also be transient (otherwise, if j were recurrent, (3.17) and (3.12) would imply that k is recurrent).

(b) Suppose k is recurrent null; then by Theorem (3.2), Pm(k, k) → 0 as m → ∞. Since, as in the proof of (3.12),
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we also have that Pn(j, j) → 0 as n → ∞. Since j is recurrent, this can happen only if it is also null, again by (3.2). Interchanging the roles of j and k, we see that, conversely, if j is recurrent null so is k.

(c) Suppose k is periodic with period δ. Since
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by (3.3), s + r must be a multiple of δ. Therefore, if n is not a multiple of δ, then n + s + r is not a multiple of δ either, and the left-hand side of (3.18) is zero. Since β > 0, then, Pn(j, j) = 0 whenever n is not a multiple of δ. Therefore, j must be periodic with period δ′ ≥ δ by Criterion (3.4).

But if j is periodic with period δ′, then reversing the roles of j and k, we must have that k is periodic with period δ ≥ δ′. Thus δ = δ′ and j and k have the same period.
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(3.19)  COROLLARY. Let C be an irreducible closed set of finitely many states. Then no state in C is recurrent null.

Proof. If one state in C were recurrent null, then all the states in C would be recurrent null by Theorem (3.16). Then by Theorem (3.2),
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for all i, j ∈ C. But for each i ∈ E and n ≥ 0,[image: image], so that

 

[image: image]

But the sum in (3.21) has only finitely many terms, so interchanging the order of summation and limit, we have
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by (3.20). This contradicts (3.21). So there can be no null states in C.
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The same proof goes through for the following

(3.22)  COROLLARY. If C is an irreducible closed set with finitely many states, then it has no transient states.

The preceding two corollaries yield the following statement when applied to Markov chains with a finite state space. If E is finite, then no state is recurrent null, and not all states are transient.

(3.23)  EXAMPLE. Consider the Markov chain with state space E = {1, 2, . . . , 10} and transition matrix
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Its transition graph is shown in Figure 5.3.2. We see from this graph that {1, 3}, {2, 7, 9}, and {6} are irreducible closed sets. These closed sets may be reached from the states 4, 5, 8, and 10 (but not vice versa). By Lemma (3.11), the states 4, 5, 8, and 10 are transient. By Corollaries (3.19) and (3.22), none of the states 1, 3, 2, 7, 9, or 6 is transient or recurrent-null. States 1 and 3 form one irreducible closed set of recurrent non-null aperiodic states, states 2, 7, and 9 another, and state 6 another. State 6 is absorbing.
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Figure 5.3.2 Transition graph for the Markov chain of Example (3.23) and its reduction corresponding to the groupings of irreducible closed sets.

By relabeling the states we can put P in the form described by (3.15). We have
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(3.24)  EXAMPLE. Consider the Markov chain {Nn} where Nn is the number of successes in the first n trials of a Bernoulli process (Example (1.11)). For any j, we have j → j + 1 but not vice versa. Thus, by Lemma (3.11), j cannot be recurrent. Hence, all states of this Markov chain are transient.

[image: image]

(3.25)  EXAMPLE. Consider Example (1.17); suppose p1, p2, . . . all positive. Then 0 → j for any j in one step, and we have j → j – 1 → j – 2 →. . . → 2 → 1 → 0. Thus, all states can be reached from each other, and by Criterion (3.7) the Markov chain is irreducible. Since P1(0, 0) = p1 > 0, state 0 is aperiodic. Then by Theorem (3.16), all states are aperiodic.

Return to state 0 occurs if the lifetime of the equipment is finite. The probability that the lifetime is finite is ∑j pj = 1. Thus, F(0, 0) = ∑j pj = 1, and state 0 is recurrent. By Theorem (3.16) this implies that all states are recurrent. If the expected lifetime ∑j jpj = + ∞, then 0 is null and therefore all states are recurrent null. If ∑j jpj < ∞, then 0 is non-null and all states are recurrent non-null aperiodic.

[image: image]

In the case where there are only finitely many states, we have all the tools we need to classify the states. In summary: we first identify the irreducible closed sets; then by using Theorem (3.16) and Corollaries (3.19) and (3.22) we conclude that all states belonging to an irreducible closed set are recurrent non-null; the remaining states (if there are any) are transient; periodicity is determined by applying Criterion (3.4) to each irreducible closed set and then using Theorem (3.16).

In the case where there are infinitely many states, as Examples (3.24) and (3.25) show, it is possible to have irreducible closed sets with infinitely many states all of which are transient or recurrent null. Then, applying Theorem (3.26), we can determine whether they are all recurrent non-null or not. In the latter case, if they are not recurrent non-null, applying Theorem (3.29) below we can determine whether they are transient or not. (Of course, if the states are not recurrent non-null and are not transient, then they must all be recurrent null.) The following two theorems, then, complete our account of the classification of states for the present. The proofs will be provided later in Chapter 6; see Theorem (6.2.1) and Proposition (6.4.5) ff.

(3.26)  THEOREM. Let X be an irreducible Markov chain, and consider the system of linear equations
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Then all states are recurrent non-null if and only if there exists a solution v with
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If (3.27) and (3.28) have a solution v, then v(j) > 0 for every j ∈ E, and there are no other solutions.

(3.29)  THEOREM. Let X be an irreducible Markov chain with transition matrix P, and let Q be the matrix obtained from P by deleting the k-row and the k-column for some k ∈ E. Then all states are recurrent if and only if the only solution of
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is h(i) = 0 for all i ∈ E0; here E0 = E − {k}.

(3.31)  EXAMPLE. Random walks. Let X be a Markov chain with state space E = {0, 1, 2, . . .} and the transition matrix
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where 0 < p < 1, q = 1 − p. This chain is called a random walk, and is used to describe the walk of a sufficiently intoxicated person: if he is at position i after step n, his next step leads him to either i + 1 or i − 1 with respective probabilities p and q except that at i = 0 there is a barrier and when he hits it he is sure to step back to 1.

All states can be reached from each other, and by Criterion (3.7), the chain is irreducible. Starting from 0, to come back to 0 the process must take as many steps to the left as to the right. Hence, the return to 0 can occur only at steps numbered 2, 4, 6, 8, . . .; that is, state 0 is periodic with period δ = 2. Since X is irreducible, by Theorem (3.16), all states are periodic with period 2. By the same theorem, either all states are transient, or all are recurrent null, or all are recurrent non-null.

To find out whether the states are recurrent non-null we use Theorem (3.26). The equation v = vP, that is, Equation (3.27), becomes (we write vi = v(i))
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etc. Solving the first equation for v1, the second for v2, and so on, we obtain
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etc. That is, any solution of (3.27) is of the form
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for some constant v0 ≥ 0.

If P < q, then p/q < 1 and
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and by choosing
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we can make the sum ∑vj = 1. Hence, if p < q,
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is a solution for (3.27) and (3.28), and in this case all states are recurrent non-null.

On the other hand, if p ≥ q, then the solution (3.33) of (3.27) is such that ∑vj is either 0 (this is true if v0 = 0) or infinite (this is true if v0 ≠ 0). Hence there is no way of satisfying (3.28) and (3.27) together, and the states are not recurrent non-null.

If P ≥ q, therefore, either all states are recurrent null or all states are transient. To distinguish between the two cases we use Theorem (3.29). Excluding the row and the column corresponding to state 0, we obtain
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Now the equation h = Qh gives, writing hi = h(i),

 

[image: image]

The typical equation is hi = qhi − 1 + phi + 1. Writing hi = phi + qhi passing the term phi to the right and the term qhi − 1 to the left, we get
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and directly from the first equation,
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Iterating on i in (3.35), we obtain
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from which we have, for any i ≥ 1,
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We have thus shown that any solution of the equation h = Qh is of the form
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where c is some constant.

If p = q, then (3.37) shows that hi = ic for all i ≥ 1, and the only way to have 0 ≥ hi ≥ 1 for all i is by choosing c = 0. That is, if p = q, the only solution of (3.30) is h = 0, which implies by Theorem (3.29) that all states are recurrent. (Since we know they are not recurrent non-null, they must be recurrent null.)

If P > q, then choosing c = 1 − (q/p), we get
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which satisfies 0 ≤ hi ≤ 1 for all i. Hence, in this case all states are transient.

To summarize: if p < q, then all states are recurrent non-null periodic with period 2; if p = q, then all states are recurrent null periodic with period 2; if p > q, then all states are transient.

[image: image]

4.  Exercises

(4.1)  Let X be a Markov chain with state space E = {a, b, c}, transition matrix

 

[image: image]

and the initial distribution [image: image]. Compute the following (recall the notation Pi(·)= P{· | X0 = i}):

(a)  Pa{X1 = b, X2 = b, X3 = b, X4 = a, X5 = c},

(b)  Pc{X1, = a, X2 = c, X3 = c, X4 = a, X5 = b},

(c)  Pa{X1 = b, X3 = a, X4 = c, X6 = b},

(d)  P{X1 = b, X2 = b, X3 = a},

(e)  P{X2 = b, X5 = b, X6 = b).

(4.2)  Let X be a Markov chain with state space E = {r, w, b, y} and transition matrix
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(a)  Compute P{X5 = b, X6 = r, X7 = b, X8 = b | X4 = w}.

(b)  Compute
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for the function f with values 2, 4, 7, and 3 at r, w, b and y respectively.

(c)  Compute the distribution {Fk(i, j); k = 1, 2, . . .} of the first passage time from state i to state j for (i, j) = (w, b) by direct inspection. Do the same for (i, j) = (b, b).

(4.3)  Classify the states of the Markov chain of Example (1.9).

(4.4)  Classify the states of the Markov chains with the following transition matrices:



	(a)

	[image: image]




	(b)

	[image: image]




	(c)

	[image: image]




	(d)

	[image: image]




	(e)

	[image: image]




	(f)

	[image: image]





(4.5)  In Example (1.17), suppose p1 = p3 = p5 = · · · = 0, [image: image], [image: image], p6 = 0, [image: image], p10 = p12 = · · · = 0. Classify all the states.

(4.6)  Consider an irreducible Markov chain with transition matrix P. Show that, if P(j, j) > 0 for some j, then all states are aperiodic.

(4.7)  In Example (1.16) suppose the reviews are weekly, so that t0 = 0, t1 = 1, t2 = 2, . . .; and suppose the critical values are set at s = 3 and S = 8. Suppose that the demand process is Poisson with parameter λ = 4 per week, and that the demand during a week is independent of the inventory on hand.

(a)  Show that X is a Markov chain with state space E = {0, 1, . . . , 8} and transition matrix
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where
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(b)  Starting with the maximum amount possible, what is the probability that a shortage occurs before the period ends?

(c)  Starting with the maximum possible, find the probability that no replenishment will be necessary at t1 and t2.

(d)  Starting with i = 4 units, what is the distribution of the time until the first replenishment ?

(4.8)  Let Xn denote the capital of a gambler at the end of the nth play. His strategy is as follows. If his capital is 4 dollars or more, then he bets 2 dollars which earn him 4, 3, or 0 dollars with respective probabilities 0.25, 0.30, 0.45. If his capital is 1, 2, or 3 dollars, then he plays more conservatively, bets 1 dollar, and this earns him either 2 or 0 dollars with respective probabilities 0.45 and 0.55. When his capital becomes 0, he stops.

(a)  Let Yn + 1 be the net earnings at the (n + 1)th play, that is, Xn + 1 = Xn+Yn + 1. Compute
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(b)  Show that X = {Xn; [image: image]} is a Markov chain.

(c)  Compute the transition probabilities for X.

(d)  Classify the states.

(4.9)  Classify the states of the Markov chain of Example (1.17) by using Theorems (3.26) and (3.29).

(4.10)  Age process. In Example (1.17) again, instead of considering the remaining lifetime at time n, let us consider the age Yn of the equipment in use at time n. For any n, Yn + 1 = 0 if the equipment failed during the period n + 1, and Yn + 1 = Yn + 1 if it did not fail during the period n + 1.

(a)  Show that

 

[image: image]

(b)  Show that {Yn; [image: image]} is a Markov chain with state space E = {0, 1, . . .} and the transition matrix

 

[image: image]

(c)  Classify the states of this Markov chain.

(4.11)  Bernoulli–Laplace model of diffusion. Consider two urns each of which contains m balls; b of these 2m balls are black, and the remaining 2m − b are white. We say that the system is in state i if the first urn contains i black balls (then it also contains m − i white balls, and the second urn contains b − i black and m − b + i white balls). Each trial consists of choosing one ball at random from each urn and interchanging the two.

Show that the successive states of this system form a Markov chain, and compute the transition probabilities.

This is a probabilistic model of the flow of two incompressible fluids between two containers.

(4.12)  Space–time processes. Suppose X = {Xn; [image: image]} is a Markov chain with state space E and transition probabilities P(i, j). Let N0 be a random variable taking values in [image: image] which is independent of X. For each [image: image], let Nn = N0 + n, and define Yn to be the pair (Xn, Nn).

(a)  Show that Y = {Yn; [image: image]} is a Markov chain with the countable set F = E × [image: image] as its state space.

(b)  Compute the transition probabilities P((i, i′), (j, j′)) for this Markov chain.

Such a Markov chain Y is called a space–time process.

(4.13)  Non-time-homogeneous processes. Suppose X = {Xn; [image: image]} is a Markov chain in the sense of Definition (1.1) but is not necessarily time-homogeneous; that is,

 

[image: image]

may also depend on n.

Let N0 be a random variable taking values in [image: image] and which is independent of X.

Define

 

[image: image]

for every [image: image],

(a)  Show that Y = {Yn; [image: image]} is a time-homogeneous Markov chain with a countable state space.

(b)  Compute the transition probabilities P((i, i′), (j, j′)) for this Markov chain.

(4.14)  K-dependent processes. Let X = {Xn; [image: image]} be a stochastic process taking values in a countable state space E. Suppose there exists an integer K ∈ [image: image] such that

 

[image: image]

for every j ∈ E and [image: image], n ≥ K. In other words, given all the past, the future depends only on the last K values. Such a process X is called a K-dependent chain. For K = 1, we have the ordinary Markov chains. Their theory can, however, be reduced to that of the ordinary Markov chains by the following device.

For each [image: image], let

 

[image: image]

Then Y = {Yn; [image: image]} is a stochastic process taking values in the countable set F = EK = E × · · · × E. Show that Y is an ordinary Markov chain.

[image: image]

Our subject matter is named after A. A. MARKOV, who laid the foundations of the theory in a series of papers starting in 1907. He considered the finite state space case and showed that limits of the transition probabilities Pn(i, j) exist in the case of an aperiodic chain with only one recurrent class. MARKOV’S first application was to give a rigorous solution of the urn problem of Exercise (4.11), which was first posed by DANIEL BERNOULLI in 1769 and later analyzed by LAPLACE in 1812. Another interesting application was an investigation of the way the vowels and consonants alternate in Russian literature. MARKOV carried out such a study on Pushkin’s Eugene Onegin and Aksakov’s The Childhood Years of Bagrov’s Grandson.

The early work on Markov chains was restricted to the finite state space case, and matrix theory played an important role. For a fairly detailed account of the work of this period we refer the reader to M. FRÉCHET [1].

The infinite state space case was introduced A. N. KOLMOGOROV [2]. The present probabilistic approach to studying Markov chains was first championed by FELLER [2]. Much of the present terminology originates from the book by FELLER [3].


CHAPTER 6

Limiting Behavior and Applications of Markov Chains

This chapter is to complete the elementary treatment of Markov chains that we started in the preceding chapter. We will first consider the computation of the expected number R(i, j) of visits to j and the probability F(i, j) of ever reaching j, both starting at i. Considering the recurrent states we will show how to compute the probability Pn(i, j) of being in state j at time n, starting at i, for large n. Studying the periodic states is easily reduced to the aperiodic case, and we will show how to do that. Then we will take up the computation of the probability of remaining in a set of transient states forever. Finally, we will give a brief treatment of two important models in queueing theory and an introduction to branching processes.

Throughout, Ω will be a fixed sample space and P a fixed probability measure on it. For a Markov chain X defined on it we will write, as we did before, Pi(A) for the conditional probability P{A | X0 = i] and, similarly, write Ei [Z] for the conditional expectation E[Z | X0 = i].

1.  Computation of R and F

Let X be a Markov chain with state space E and transition matrix P. Let R(i, j) be the expected number of visits to state j starting at i, and let F(i, j) be the probability of ever reaching j starting from i; these were defined by (5.2.12) and (5.2.6). We first take up the computation of the potential matrix R.

Suppose j is a recurrent state. Then by Definition (5.3.1), F(j, j) = 1; and by Corollary (5.2.13) this implies that R(j, j) = + ∞. Furthermore, by the same corollary, if j can be reached from i, then F(i, j)< 0 and R(i, j) = ∞ again. If, on the other hand, j cannot be reached from i, then F(i, j) = 0 and R(i, j) = 0. Hence, for j recurrent,

 

[image: image]

If j is transient and i recurrent, then by Theorem (5.3.12) j cannot be reached from i; therefore, in that case F(i, j) = 0 and
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Thus, the only remaining case which is not trivial is when both i and j are transient.

Let D denote the set of all transient states, and let Q and S be the matrices obtained from P and R, respectively, by deleting all the rows and columns corresponding to the recurrent states; that is,
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If the states are labeled so that the recurrent states precede the transient ones, then as in (5.3.15), we can write P in the form
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by defining K and L suitably. Then for any m ∈ [image: image]

 

[image: image]

where Qm is the mth power of Q (similarly for Km but not for Lm). Thus, from (5.2.15),
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which shows that
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Now the computation of S is not difficult: noting that

 

[image: image]

we have

 

[image: image]

that is, S satisfies the two systems of linear equations (1.7), and we may use either one to solve for S. In particular, if D is finite, (1.7) shows that the finite-dimensional matrix 5 is the inverse of the matrix I − Q; that is,

(1.8)  PROPOSITION. If there are only finitely many transient states, then
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On the other hand, when the set D of transient states is infinite, it is possible to have more than one solution to the system (1.7). In that case, the next theorem shows that S is the smallest possible solution:

(1.9)  THEOREM. S is the minimal solution of
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Proof. We know by (1.7) that S satisfies (1.10). To show that it is the minimal solution, let Y be another solution. Then we have
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Replacing Y on the right by I + Q Y, we get
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and repeating thus,
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for any [image: image], since Qn + 1 ≥ 0 and Y ≥ 0. Now taking limits in (1.11) as n → ∞, we get Y ≥ S as claimed.

[image: image]

If Y is another solution, then Y = I + QY and S = I + QS together imply that H = Y − S ≥ 0 satisfies H = QH. Then every column of H satisfies h = Qh, h ≥ 0. Moreover, every column of S is bounded (since S(i, j) = F(i, j)S(j, j) for i ≠ j). It follows that S is the unique solution of (1.10) if and only if the only bounded solution of h = Qh is h = 0, or equivalently, if and only if

 

[image: image]

implies h = 0. For further discussion of this point we refer the reader to Section 4 (see also Section 2 of Chapter 7).

(1.12)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, 3, 4, 5, 6, 7, 8} and transition matrix

[image: image]

States 1, 2, and 3 are recurrent non-null aperiodic and form an irreducible class. States 4 and 5 form another irreducible class of recurrent non-null aperiodic states. States 6, 7, and 8 are transient; from these states only 1, 2, and 3 can be reached.

Here
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so using Proposition (1.8) above, we get
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Thus, the potential matrix R for this Markov chain is
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Next we consider the computation of the probability F(i, j) of ever reaching j from i. If i and j are both recurrent and belong to the same irreducible closed set, then by Lemma (5.3.11),

 

[image: image]

If i is recurrent and j transient, or if i and j are recurrent but belong to different irreducible sets, then
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If i and j are both transient, then R(i, j) < ∞, and by Corollary (5.2.13) we have

 

[image: image]

for i ≠ j, and the R(i, j) may be obtained by using (1.8) or (1.9) above.

The only remaining case is when i is transient and j recurrent. The computations are simplified somewhat by the following.

(1.16)  LEMMA. Let C be an irreducible closed set of recurrent states. Then for any transient state i,
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for all j, k ∈ C.

Proof. For j, k ∈ C, by Lemma (5.3.11), F(j, k) = F(k, j) = 1. Thus, once the chain reaches any one of the states of C, it also visits all the other states. Hence, F(i, j) = F(i, k) is the probability of ever entering the set C from i.

[image: image]

In view of this lemma we need only talk about the probability of reaching an irreducible recurrent set. Let C1, C2, . . . be the irreducible recurrent classes, and let D be the set of all transient states. Suppose the states are labeled so that the states in C1 precede those in C2, and so on, and the transient states are after all the recurrent ones. Then the transition matrix P is in the form (5.3.15). Since we are interested only in ever reaching Cj, we may lump all the states of Cj together to make one absorbing state. The matrix of transition probabilities then becomes
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where

 

[image: image]

The probability of ever reaching the absorbing state j from the transient state i by the chain with the transition matrix [image: image] is the same as that of ever reaching Cj from the transient state i by the original chain with the transition matrix P.

We now rewrite [image: image] as
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by defining B as the matrix with columns b1, b2, . . .; that is,
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Then, for any [image: image] the nth power of [image: image] is

 

[image: image]

where

 

[image: image]

Evidently, Bn(i, j) is the probability that starting from i, the chain enters the recurrent class Cj at or before the nth step. Hence, if we put
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then G(i, j) is the probability of ever reaching the set Cj from the transient state i; that is, we have proved the following

(1.22)  PROPOSITION. Let Q be the matrix obtained from P by deleting all the rows and columns corresponding to the recurrent states, and let B be defined as in (1.19) for each transient i and recurrent class Cj. Compute S by using either (1.8) or (1.9), and put
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Then for each transient state i and recurrent class Cj,

 

[image: image]

for all k ∈ Cj.

If there is only one recurrent class and if there are only finitely many transient states, then the computations involved disappear. For in that case, the matrix B becomes a column vector, and since P1 = 1, we have B + Q1 = 1, or B = 1 − Q1. Putting this in (1.20), we obtain Bn = 1 − Qn1, so in the limit we have G = 1 − limn Qn1. Since ∑ Qn < ∞, lim Qn = 0, and since there are only finitely many states, Q is a finite-dimensional matrix. Thus limn (Qn1) = (lim Qn)1 = 0, and G = 1. Hence we have also proved the following.

(1.23)  COROLLARY. Let i be a transient state from which only finitely many transient states can be reached. Furthermore, suppose that there is only one recurrent class C which can be reached from i. Then F(i, j) = 1 for all j ∈ C.

(1.24)  EXAMPLE. In Example (1.12) above, from the set of transient states {6, 7, 8} only the recurrent irreducible set {1, 2, 3} can be reached. By using R computed above along with (1.15), we obtain the F(i, j) for i, j ∈ {6, 7, 8}. The F(i, j) for i, j ∈ {1, 2, 3, 4, 5} follow from (1.13) and (1.14). Finally, for i ∈ {6, 7, 8} and j ∈ {1, 2, 3} we can apply the preceding corollary. The resulting matrix F is
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(1.25)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, . . . , 7} and transition matrix
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There are two recurrent classes: C1 = {1, 2} and C2 = (3, 4, 5}. Lumping the states of C1 and C2 into two absorbing states, we get a new transition matrix

 

[image: image]

Thus,
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Hence the matrix of the probabilities F(i, j) is
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(1.26)  EXAMPLE. Let Xn be the total assets (measured in dollars) of a certain firm at the end of the nth year of its existence. If Xn = 0 at some time n, then the firm is said to be bankrupt, and we put Xn + 1 = Xn + 2 = · · · = 0. From any other state it is possible to reach (of course, not necessarily in one year) the state 0. Suppose X = {Xn; n ≥ 0} is a Markov chain. By our hypothesis, state 0 is absorbing and all other states are transient, and the transition matrix is in the form
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Though we have only one recurrent class, the probability of ever reaching it is not necessarily equal to one (as it would have been if the state space were finite). Putting S = I + Q + · · ·, and g = Sb, we have that
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This is not necessarily one, and the probability that the firm never goes bankrupt is (if it was started with an initial capital of i dollars)

 

[image: image]

2.  Recurrent States and the Limiting Probabilities

It follows from Theorem (5.3.14) that the recurrent states can be divided into irreducible closed sets in a unique manner. Therefore, it is sufficient to consider one irreducible recurrent set of states. By Proposition (5.3.8) the restriction of the chain to a closed set is also a Markov chain. Hence, we may restrict ourselves without loss of generality to irreducible recurrent Markov chains.

Let X be a Markov chain with state space E and transition matrix P. Part of the following theorem was already listed as Theorem (5.3.26) to aid in classifying the states of an irreducible Markov chain.

(2.1)  THEOREM. Suppose X is irreducible and aperiodic. Then all states are recurrent non-null if and only if the system of linear equations

 

[image: image]
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has a solution π. If there exists a solution π then it is strictly positive, there are no other solutions, and we have
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for all i, j ∈ E.

Proof. Suppose all the states are recurrent non-null. Then by Lemma (5.3.11), F(i, j) = 1 for all i, j ∈ E; and therefore, by Theorem (5.3.2), the limits

 

[image: image]

exist, and furthermore,
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For any finite subset A of E,
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and in the limit, as n → ∞, this implies by (2.5) that
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Since this is true for any finite subset A, we see by taking a sequence of such subsets A increasing to E that
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If the strict inequality were to hold in (2.7) for some j, then summing both sides over j and noting that ∑j P(k, j) = 1, we would have that ∑j γ(j) > ∑k γ(k). This being absurd, we must have
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Now (2.8) and (2.6) show that γ is a solution to (2.2) and (2.3).

To show that there is only one solution, let π be a solution to (2.2) and (2.3). Then in matrix notation, π = πP, which by iteration gives π = πP = πP2 = ··· = πPn; that is,
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Now taking limits in (2.9), by the bounded convergence theorem (Theorem (2.1.35) applied to the sequence Yn(i) = Pn(i, j) of “random variables” defined on the probability space (E, π)), we get
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that is, there is only one solution π and (2.4) holds.

It remains to show that the existence of a solution π to (2.2) and (2.3) implies that all the states are recurrent non-null. Supposing otherwise, if the states were not recurrent non-null, then (2.9) will still hold, and (2.10) will become
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which contradicts ∑ π(j)= 1.
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By Corollaries (5.3.19) and (5.3.22), an irreducible chain X with finitely many states has no null states and no transient states. Hence, we have the following (we are using the matrix notation explained in (5.1.3))

(2.11)  COROLLARY. If X is an irreducible aperiodic Markov chain with finitely many states, then
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has a unique solution. The solution π is strictly positive, and
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for all i, j ∈ E.

A probability distribution π which satisfies (2.2), namely π = πP, is called an invariant distribution for X (or, sometimes, for P).

Theorem (2.1) states that if an irreducible aperiodic Markov chain has an invariant distribution, then all its states are recurrent non-null. Otherwise, if it has no invariant distribution, then all its states are either transient or recurrent null.

The justification for the term “invariant” comes from the fact that π = πP = πP2 = . . . = πPn for any n; therefore, if π is the initial distribution of X, that is, if
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then also
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for any [image: image].

The preceding two propositions show how to obtain the limiting probabilities limn →∞ Pn(j, j) for recurrent, non-null, aperiodic states j. Namely, consider the irreducible closed set containing j, and solve for the invariant distribution for the restriction of X to that set. Furthermore, we know by Theorem (5.3.2) that
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for any i and recurrent aperiodic j. Once the F(i, j) are computed as in the preceding section, this completes the specifications of the limits of Pn(i, j) for all such j. In the next section we will show a simple device to handle the periodic states as well.

(2.14)  COMPUTATIONAL HINT. If π is a solution of π = πP, then any constant c times π is again a solution. Since the equations πP = π and π1 = 1 have at most one solution, any solution of πP = π can differ from it by at most a constant term of multiplication. In solving πP = π and π1 = 1, therefore, it is best to solve πP = π first and then normalize the resulting solution (by dividing each term by the sum of all the terms) to satisfy the remaining equation π1 = 1. Furthermore, in the finite state space case, the equations of πP = π are not linearly independent; therefore, one can throw one of the equations out of consideration.

(2.15)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, 3}, and transition matrix
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Clearly, all states are recurrent non-null aperiodic. The invariant distribution is obtained by solving for π in πp = π, π1 = 1. We first solve for π in π = πP, which is, in open form,
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We can delete one of these equations; the worst-looking one is the third, so we do not consider it. To obtain a solution to the first two, we take a wholesome number for π(1) to start out with, say π(1) = 60. Then the first equation gives π(2) = (60 − 60 × 0.3)/0.6 = 70, and the second gives π(3) = (70 − 60 × 0.5)/0.4 = 100. Hence (60, 70, 100) is a solution for π = πP; any constant times that is again a solution; and the particular solution whose terms add up to one is the constant 1/(60 + 70 + 100) times (60, 70, 100). That is, the unique solution of π = πP and π1 = 1 is
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By Theorem (2.1) (or Corollary (2.11), which is also applicable),
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(2.16)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, 3, 4, 5, 6, 7} and transition matrix
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Then the states 1 and 2 form one irreducible closed set and the states 3, 4, and 5 another. The remaining states are transient.

Theorem (2.1) applies to each irreducible closed set separately. Thus, for

 

[image: image]

the invariant distribution is found by solving π = πP1, π1 = 1; doing that we obtain [image: image]. Similarly, for
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the invariant distribution was found to be [image: image] in Example (2.15).

Using the methods of Section 1 to compute the probabilities F(i, j), we obtain (see also Example (1.25))
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(note that these are the only needed values). Hence, it follows from (2.13) and (2.1) that
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(2.17)  EXAMPLE. Random Walks. Consider the Markov chain X with state space E = {0, 1, . . .} and transition matrix
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It is clear that X is irreducible and that all states are aperiodic (since 0 is obviously so). See (5.3.31) for a similar chain.

In open form π = πP gives (we write πi for π(i)),
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Starting with π0 = 1, the first equation yields π1 = p/q, the second yields π2 = (p/q − p)/q = p2/q2, the third yields π3 = (p2/q2 − p · p/q)/q = p3/q3, and so on. Hence,
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is a solution for π = πP; and any other solution is of the form (c, cp/q, cp2/q2, . . .) for some constant c.

If p ≥ q, then the sum of the terms of any solution is either not finite (if we take c ≠ 0) or is equal to 0 (if we take c = 0). In either case, the sum cannot be 1, and hence πP = π, π1 = 1 has no solution in the case p ≥ q.

On the other hand, if p < q then by taking c = 1 − p/q we obtain a solution to πP = π, π1 = 1. Thus, in this case, all the states are recurrent non-null aperiodic, and
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(2.18)  EXAMPLE. Consider the remaining lifetime problem of Example (5.1.17). In open form, the equation π = πP becomes (we write πi for π(i))
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Taking π0 = 1 and solving these equations successively, we obtain a solution v:
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It is possible to normalize this to obtain a solution to πP = π, π1 = 1 if and only if
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is finite. Note that m is the expected lifetime of one of the components. So if the expected lifetime m is infinite, all states are recurrent null and limn Pn(i, j) = 0. If, on the other hand, the expected lifetime m is finite, then all states are recurrent non-null, and
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[image: image]

The preceding example yields an interesting interpretation of the limiting probabilities. By Proposition (5.2.1), for any Markov chain X, the times between visits to a fixed state j are independent and identically distributed. Therefore, we may think of entrances to state j as the times of failure in a system like that in Example (5.1.17). In other words, if we define Yn as the time from n until the next visit to state j, then {Yn; n ≥ 0} is a Markov chain as in Example (5.1.17); and the chain Y in state 0 if and only if the chain X is in state j. Then the expected time m(j) between two successive visits of X to state j becomes the expected lifetime. Thus, by Example (2.18) above, the probability Pj{Yn = 0} has the limit l/m(j). But the event {Yn = 0} is the same as the event {Xn = j). Hence, we have proved the following.

(2.19)  PROPOSITION. Let j be an aperiodic recurrent non-null state, and let m(j) be the expected time between two returns to j. Then
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In other words, the limiting probability π(j) of being in state j is equal to the rate at which j is visited. So if the mean time between visits to j is m(j) = 7.2, for example, then j is being visited once every 7.2 steps on the average, and therefore the limiting probability of being in state j is π(j) = 1/7.2. In fact, a somewhat more precise statement holds:

(2.21)  PROPOSITION. Let j be a recurrent non-null aperiodic state, and let π(j) be as in (2.20). Then for almost all ω ∈ Ω,
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In other words, if we were to observe the process X, the average number of visits to j during the first n steps is equal to π(j) for large n. Of course, this is of practical value in estimating the probabilities π(j) from the data.

If f is a bounded function defined on E, then
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therefore, applying the preceding proposition to each term separately, we see that the following is plausible.

(2.22)  COROLLARY. Suppose X is an irreducible recurrent Markov chain having a limiting distribution π. Then for any bounded function f defined on E,
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almost surely.

Of course, π being a row vector and f a column vector, we have
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A similar statement also holds for the expectations:

(2.23)  COROLLARY. Suppose X is an irreducible recurrent Markov chain with a limiting distribution π. Then for any bounded function f on E,
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independent of i.

In other words, if f(j) is the reward received whenever X is in j, then both the expected average reward in the long run and the actual average reward in the long run converge to the constant π f.

Next, consider the ratio of the total reward received during the steps 0, 1, . . . , n by using the reward function f to the total received during the same period by using an alternative reward function g. If the hypotheses of (2.22) and (2.23) hold, then it is easy to see that
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almost surely; and a similar statement holds for the ratio of the expectations. Of course, (2.24) becomes (2.22) upon taking g = 1.

The formula (2.24) also holds under less restrictive conditions; that is, when X is only recurrent (and can be null or periodic or both). The following are two theorems which summarize such results. We omit the proofs.

(2.25)  THEOREM. Let X be an irreducible recurrent chain with transition matrix P. Then
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has a strictly positive solution; any other solution is a constant multiple of that one.

(2.26)  THEOREM. Suppose X is irreducible recurrent, and let ν be a solution of ν = νP. Then for any two functions f and g on E for which the two sums
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converge absolutely and at least one is not zero, we have
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independent of i, j ∈ E. Moreover, we also have
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for almost all ω ∈ Ω.

Any non-negative solution of ν = νP is called an invariant measure for X. Theorem (2.25) above states that any irreducible recurrent chain X has an invariant measure, and this is unique up to multiplication by a constant. Furthermore, if X is also non-null, then ν1 = ∑ ν(j) is finite, and ν is a constant multiple of the limiting distribution π satisfying πP = π and π1 = 1. On the other hand, it is worth noting that the existence of an invariant measure ν for X does not imply that X recurrent (for example, the Markov chain of (2.17) with p > q is transient and has an invariant measure).

By using Theorem (2.26), we can attach an intuitive meaning to an invariant measure ν of an irreducible recurrent chain X. In (2.26), taking f = 1k and g = 1j we see that for i = j,
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In other words, ν(k)/ν(j) is equal to the ratio of the expected number of visits to k during the first n steps to the expected number of returns to j during the same period, in the limit, as the number of steps n approaches infinity. It can further be shown that ν(k)/ν(j) is also equal to the expected number of visits to k between two visits to j.

3.  Periodic States

In the discussion of limiting probabilities we had to leave out the periodic states momentarily. This is mainly due to minor complications which make otherwise simple results appear hard. In this context, we need worry only about the recurrent periodic states. By Theorem (5.3.14), the recurrent states can be divided into disjoint closed sets C1, C2, . . . . Each one of these, taken by itself, defines an irreducible Markov chain with recurrent states. Thus, it is sufficient for us to consider only an irreducible Markov chain with periodic recurrent states. By Theorem (5.3.16), then, all states have the same period. The following is the main result.

(3.1)  LEMMA. Let X be an irreducible Markov chain with recurrent periodic states with period δ. Then the states can be divided into δ disjoint sets B1, B2, . . . , Bδ such that P(i, j) = 0 unless i ∈ B1 and j ∈ B2, or i ∈ B2 and j ∈ B3, . . . , or i ∈ Bδ and j ∈ B1.

Proof. Consider a fixed state 0 and a state j. Since the chain is irreducible, states 0 and j can be reached from each other; that is, there exist integers r and s such that Pr(0, j) > 0, β = Ps(j, 0) > 0. We also have, from the Chapman-Kolmogorov equation, that
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If Pm(0, j) > 0, then Pm + s(0, 0) > 0. Since state 0 has period δ, Pm + s(0, 0) > 0 implies that m + s = kδ for some integer k. Hence, Pm(0, j) > 0 implies that m = kδ − s. Since s is fixed, this means that Pm(0, j) is positive only if m = α, α + δ, α + 2δ, . . . and the number α is a characteristic of the state j. Then we put j in the set Bα.

Thus Bα is the set of all states which can be reached from 0 only in steps numbered α, α + δ, α + 2δ, . . .; and Bα + 1 is the set of all states that can be reached from the state 0 in steps numbered α + 1, α + δ + 1, α + 2δ + 1, . . . . Hence P(i, j) = 0 unless i ∈ Bα and j ∈ Bα + 1 for some α = 1, . . . , δ (if α = δ we take Bα + 1 = B1).

(3.3)  EXAMPLE. Suppose the transition matrix P of an irreducible Markov chain is
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(suppose the states are numbered 1, 2, 3, 4, 5, 6, and 7). Note that in one step, from states 1 and 2, only the states 3, 4, and 5 can be reached. From states 3, 4, and 5 only 6 and 7 can be reached in one step; and from 6 and 7 a step leads to either 1 or 2. Hence, we have that all states are periodic with period 3. Then, in the proof of the preceding lemma, if we take state 0 to be state 7 of this one, we get B1 = {1, 2}, B2 = {3, 4, 5}, B3 = {6, 7}, and the chain travels cyclically through B1, B2, and B3.

Obviously, from B1, in one step the Markov chain reaches B2, in two steps B3, and in three steps B1. The powers of P will reflect this. For example,
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and
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It is important to note that the matrix [image: image] is of the form
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Thus, the chain corresponding to[image: image] has three closed sets: B1, B2, and B3, and each one of these is irreducible, recurrent, and aperiodic. Then the theory of Section 2 applies to compute [image: image], [image: image], and [image: image] separately.

[image: image]

Next is a theorem which reduces the study of periodic states to that of aperiodic case by formalizing what is said in the preceding example.

(3.7)  THEOREM. Let P be the transition matrix of an irreducible Markov chain with recurrent periodic states of period δ, and let B1, . . . , Bδ be as defined in Lemma (3.1). Then in the Markov chain with transition matrix [image: image], the classes B1, B2, . . . , Bδ are irreducible closed sets of aperiodic states.

Proof. In δ steps, the Markov chain defined by P moves from B1 to B1, from B2 to B2, . . . , from Bδ to Bδ. Hence, [image: image] is of the form
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where Pα(i, j) = Pδ(i, j) for i, j ∈ Bα. This shows that B1, . . . , Bδ are closed sets for the new chain. Since δ steps of the original chain correspond to one step in the new chain with matrix [image: image], states of the [image: image] chain are aperiodic.
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It follows from Lemma (3.1) that if i ∈ Bα, then
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Thus, Pn(i, j) does not have a limit as n → ∞ except when all the states are null (in which case Pn(i, j) → 0 for all i, j as n → ∞). However, the limits of Pnδ + m(i, j) exist as n → ∞ but are dependent on the initial state i.

(3.10)  THEOREM. Let P and the Bα be as in (3.7) and suppose the chain is non-null. Then for any m ∈ {0, 1, . . . , δ − 1},
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The probabilities π(j), j ∈ E, form the unique solution of
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Proof. It follows from Theorem (3.7) that the chain corresponding to [image: image] has δ irreducible classes each one of which is recurrent, non-null, and aperiodic. Let π1, . . . , πδ be the limiting distributions corresponding to B1, . . . , Bδ, and let π(j) = πα(j) if j ∈ Bα.

Let m ∈ {0, 1, . . . , δ − 1} be fixed, suppose i ∈ Bα, and let β = α + m (mod δ). Now,
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since Pm(i, k) = 0 unless k ∈ Bβ, Pnδ(k, j) = 0 unless j ∈ Bβ also. For k, j ∈ Bβ, limn Pnδ(k, j) = π(j) independent of k by the preceding paragraph. Putting this in (3.13), by the bounded convergence theorem, we obtain (3.11).

There remains to show that π is the unique solution of (3.12). The uniqueness is immediate: by Theorem (2.25), π = πP has only one solution up to multiplication by a constant, and the normalization in (3.12) fixes that constant. To show that π satisfies π = πP, first suppose P is in the canonical form
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and let [image: image] be as in (3.8). Since πα = παPα and π = (π1, . . . , πδ), (3.8) shows that π satisfies π = πPδ. Now πP = (πPδ)P = (πP)Pδ implies, by the uniqueness of the solution of να = ναPα up to multiplication by a constant, that
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where c1, . . . , cδ are positive constants. On the other hand, multiplying π with P in the form (3.14) directly, we obtain
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From this and (3.15) we have c1π1 = πδKδ, which implies c1π11 = πδ Kδ1, which yields c1 = 1, since π11 = 1 and πδKδ1 = πδ1 = 1. Similarly, c2 = · · · = · · · = cδ = 1. In view of (3.15), this completes the proof.
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For ratio limit theorems we refer the reader to Theorems (2.25) and (2.26). In particular, if X is recurrent non-null periodic with period δ, then taking f = 1j and g = 1 in (2.26) yields
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(3.16)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, 3, 4, 5} and transition matrix
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This chain is irreducible, recurrent, non-null, and periodic with period δ = 2. The cyclic classes are B1 = {1, 2, 3} and B2 = {4, 5}. An invariant measure ν (satisfying ν = νP) is ν = (32, 60, 8, 40, 60). Hence,
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and
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(3.17)  EXAMPLE. Consider the Markov chain of Example (5.3.31) for p < q. We had shown there that all states are recurrent, non-null, and periodic with period δ = 2. The cyclic classes are B1 = {0, 2, 4, . . .} and B2 = {1, 3, 5, . . .}. We had obtained a solution to ν = νP with
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To normalize, since
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we multiply each term by 1 − p/q. Thus, the invariant distributions corresponding to the classes B1 and B2 are
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and
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respectively. Hence,
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and
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4.  Transient States

If a Markov chain X has only finitely many transient states, then it eventually will leave the set of transient states never to return. On the other hand, if there are infinitely many transient states, it is possible for the chain to remain in the set of transient states forever.

(4.1)  EXAMPLE. Consider Example (5.1.14) and suppose the trivial case p0 = 1 is excluded. Then all states are transient, and the chain travels from one transient state to another. If the initial state is i, then the chain stays forever in the set {i, i + 1, i + 2, . . .}. It is clear in this case that in the limit, as n → ∞, Xn(ω) → ∞ for almost all ω.
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Let A be a subset of the state space E, and let Q be the matrix obtained from P by deleting all the rows and columns corresponding to states which are not in A. Then for i, j ∈ A, the (i, j)-entry of the nth power of Q is
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and in particular,
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It is clear that the event {X1 ∈ A, . . . , Xn ∈ A} is implied by the event {X1 ∈ A, . . . , Xn + 1 ∈ A}. Hence, the number above in (4.3) decreases as n increases. Let
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clearly, f(i) is the probability that starting at i ∈ A, the chain stays in the set A forever. For its computation we have the following.

(4.5)  PROPOSITION. The function f is the maximal solution of the system
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Either f = 0 or supi∈A f(i) = 1.

Proof. Let fn(i) = ∑A Qn(i, j), then we had already noted that f0 ≥ fi ≥ f2 ≥ · · · and f = limn fn. Since Qn + 1 = QQn, we have
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so in the limit we have
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by the bounded convergence theorem. This shows that f satisfies (4.6). Let h be another solution; then h ≤ 1 implies that Qnh ≤ Qn1 = fn. Since Qnh = h, we see that h ≤ fn and therefore h ≤ f.

To prove the last statement, suppose f ≠ 0; then c = supi∈A f(i) > 0, and clearly f ≤ c1. Thus, f = Qnf ≤ cQn1 = cfn for all n, which in the limit gives f ≤ cf. This is possible only if c = 1.
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An application of this to the classification of states was given as Theorem (5.3.29). We now are in a position to prove that theorem.

Proof of (5.3.29). Fix the particular state chosen, and name it 0. Since X is irreducible, it is possible to go from 0 to some i ∈ A = E − {0}. If the probability f(i) of remaining in A forever is f(i) = 0 for all i ∈ A, then with probability one, the chain will leave A and enter 0 again. Hence, if the only solution to (5.3.30) is h = 0, then state 0 is recurrent, and that in turn implies that all states are recurrent.

Conversely, if all states are recurrent, then the probability of remaining in the set A forever must be zero, since 0 will be reached with probability one from any state i ∈ A (by Lemma (5.3.11)).

[image: image]

(4.7)  EXAMPLE. Consider the Markov chain X of Example (5.3.31) again. We had shown that if p > q, all states are transient. We had obtained, as a solution to Qh = h, 0 ≤ h ≤ 1,
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since supi f(i) = 1, this is the maximal solution. We now have the interpretation that starting at state 7, for example, the probability of staying forever within the set {1, 2, 3, . . .) is equal to 1 − (q/p)7. Note that if the initial state i is greater, then the probability of remaining in (1, 2, . . .} is also greater.

Further, it is clear from the shape of the matrix P that the restriction of P to the set {k, k + 1, . . .} is the same as the matrix Q on page 137. Hence, for any k ∈ {1, 2, . . .},
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for all i ≥ 0.
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For any subset A of E, let fA(i) denote the probability of remaining forever in A given the initial state i ∈ A. If A is an irreducible recurrent class, then fA = 1. If A any proper subset of an irreducible recurrent class, then fA = 0. If A is a finite set of transient states, then fA = 0 again. The only non-trivial case, then, is when A is an infinite set of transient states. Even then, it is possible that fA = 0. On the other hand, if fA ≠ 0, then by (4.5) the set
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is not empty (here ε > 0), and furthermore, fA1 ≠ 0. By repeating this we may obtain a sequence A1, A2, A3, . . . of subsets of A such that
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and
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for which fA1 ≠ 0, fA2 ≠ 0, fA3 ≠ 0, . . . . Typically, the Markov chain X travels through such a sequence of sets on its way toward “infinity.”

5.  Applications to Queueing Theory: M/G/1 Queue

Consider a system where “customers” arrive requiring “service,” and where there are some restrictions on the service that can be provided. Usually, arrivals form a stochastic process, and the service times of customers are random variables. If the number of “servers” is limited, then some customers will experience delays before they can be served. Queueing theory studies the general characteristics of such systems.

The terms customer, server, service time, and waiting time may acquire different meanings in different applications. For example, customers may be patients arriving at a doctor’s office; then the doctor is the server, and the service times are the examination times. Or customers may be calls arriving at a telephone exchange; then the servers are the trunk lines, and the service times are the lengths of conversations. Or customers may be aircraft arriving at an airport requiring to land; then the runways are the servers, and a waiting time is the time spent by an aircraft circling around the airport.

In this section and the next we present a streamlined introduction to queueing theory by considering the queue-size process in two single-server queueing systems. Our objective is to give two examples of complex stochastic processes which can be studied by identifying a Markovian structure imbedded in them.

In the remainder of this section we are considering a single-server queueing system subject to a Poisson process of arrivals and an arbitrary distribution for service times, which are assumed to be independent of each other and of the arrival process. The shorthand notation M/G/1 refers to such a queue.

For a possible outcome ω of such a system, we will denote by Nt(ω) the number of arrivals occurring during the time interval [0, t]; by Z1(ω), Z2(ω), . . . the service times of the customers who depart first, second, . . .; and by Yt(ω) the number of customers in the system (waiting or being served) at time t. We are assuming that the arrival process N = {Nt; t ≥ 0} is a Poisson process with rate a and that the service times Z1, Z2, . . . are independent of each other and of the process N and have the same distribution function φ.

We are interested in the queue-size process Y = {Yt; ≥ 0}. However, this process is hard to deal with directly because the future of the process from t onward depends not only on the present value Yt but also on the amount of time already spent serving the customer being served at that time t. This difficulty disappears if we consider the future of Y from a time T of departure onward. Accordingly, we define Xn to be the number of customers in the system just after the instant of the nth departure, and assume (for reasons of simplicity) that the time origin is chosen to be an instant of departure. The following provides the reason for our interest in the process X = {Xn; = 0, 1, . . .}.

(5.1)  THEOREM. X is a Markov chain with the transition matrix
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where
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Proof. We need to show that
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and that
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Let T be the time of the nth departure, and let Z = Zn + 1 (the service time of the (n + 1)th customer). If Xn > 0, the service time of the (n + 1)th customer starts at T and lasts until T + Z; during this time, there will be NT + Z − NT arrivals, and therefore the queue size just after the (n + 1)th departure will be Xn + (NT + Z − NT) − 1. On the other hand, if Xn = 0, then the server will remain idle until the (n + 1)th customer arrives, say at S; then his service will start and last until S + Z; during this time there will be Ns + Z − Ns arrivals occurring, and these arrivals will be precisely the ones left behind by the (n + 1)th departure. Hence,
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From the independence of the arrival process from the service times and the fact that in a Poisson process the number of arrivals during an interval of length Z has a distribution which depends only on Z, it follows that
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and similarly when T is replaced by S. This together with (5.6) shows that (5.4) holds.

To show (5.5), first we note that

 

[image: image]

Now if i = 0, from (5.6) we have
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If i > 0, then from (5.6) again,
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This completes the proof.
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It is clear from an inspection of (5.2) that the Markov chain X is irreducible and aperiodic. By Theorem (5.3.16), either all states are recurrent non-null, or all are recurrent null, or all are transient. It turns out that depending on whether the parameter
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is less than one, equal to one, or greater than one, all three cases are possible. The parameter r is called the traffic intensity. Being the expected number of arrivals during a service time, it is a good measure of the long-run behavior of the queue size: if r > 1, it is clear that the server will be unable to keep up with the arrivals, and the queue size will increase to infinity (in which case all the states are transient). If r ≤ 1, the server will be able to clear the work load presented to him, so we expect the queue to be empty again and again; in other words, the state 0 will be recurrent and therefore all states will be recurrent. However, if r = 1, our analysis will show that the times between returns to zero will have infinite expectation so that all the states are then recurrent null. Following is a precise development leading up to the results heuristically described in these remarks.

We introduce the notation
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and note that
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(5.14)  PROPOSITION. The chain X is recurrent non-null aperiodic if and only if r < 1.

Proof. In view of Theorem (2.1), we need to show that
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has a solution if and only if r < 1. Writing πj for π(j), the equations (5.15) are
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For each j, add the equations for π0, . . . , πj side by side and solve for πj + 1 q0. This gives
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It is clear that for any fixed π0 ≥ 0, this system of equations has a unique non-negative solution. Hence (5.15) has a non-negative solution which is unique up to multiplication by a constant.

Next we test for (5.16). Summing all the equations (5.17) side by side, noting that q0 = 1 − r0 and that r0 + r1 + ··· = r, we have
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If r < 1, (5.18) implies
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so (5.16) is satisfied by taking
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Hence, if r < 1, all states are recurrent non-null aperiodic, and the unique invariant distribution is obtained from (5.19) and (5.17).

On the other hand, if r ≥ 1, the equality (5.18) can hold only if either π0 = 0 (which implies π1 = π2 = ··· = 0 by (5.17)) or π0 > 0 and [image: image]. In either case, we see that (5.16) cannot hold; consequently, if r ≥ 1, X is not recurrent non-null.
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The preceding proof gave, as a by-product, the set of equations which must be solved in order to obtain the limiting distribution in the recurrent non-null case. The following completes the picture in this respect.

(5.20)  THEOREM. The limits π(j) = limn→∞ Pn(i, j) exist for all j ∈ E and are independent of the initial state i. If r ≥ 1, then π(j) = 0 for all j. If r < 1, then
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and, for any j ∈ {1, 2, . . .},
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where Sjk is the set of all k-tuples α = (α1, . . . , αk) of integers αi ≥ 1 with α1 + ··· + αk = j.

Proof. If r ≥ 1, the preceding proposition shows that all states are recurrent null or transient. In either case, Theorem (5.3.2) implies that the limits π(j) are all zero.

If r < 1, all states are recurrent non-null aperiodic, and by Theorem (2.1) the limiting distribution exists independent of the initial state and is the unique solution of (2.2) and (2.3). From the proof of (5.14) above, it follows that (5.19) and (5.17) specify this distribution. It is easy to see that (5.21) and (5.22) hold; and directly from the second equation in (5.17) we obtain [image: image], which is the same as that given by (5.23) for j = 1. To complete the proof, we make the generalized induction hypothesis that (5.23) is true for all j = 1, . . . , n and show that (5.23) is then also true for j = n + 1.

Let Sjk be as defined above, and define
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for all j ≥ k ≥ 1. First observe that separating the sum over β = αk + 1 from the rest, we can write
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Now, for j = n + 1, (5.17) gives
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Replacing π0 + π1 by its value (1 − r)/q0 and using the induction hypothesis for π2, π3, . . . , πn + 1, we obtain
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by (5.25). But this is precisely (5.23) for j = n + 1.
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Before moving on to a consideration of the transient case, we now discuss a few consequences of the recurrent non-null case. We had already computed the limiting distribution in this case. With that known we can, in principle, compute E[Xn], Var(Xn), etc., in the limit as n → ∞. However, it is easier to use formula (5.6) for this purpose: we rewrite it as
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by defining Un = 1 − 10(Xn) and letting Mn denote the number of arrivals during the (n + 1)th service. Note that in the recurrent non-null case,
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and that E[Mn] = r = ab as in (5.11); and using (4.1.14) for the expected value of the square of a Poisson-distributed random variable,

 

[image: image]

where
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Now taking the square of both sides in (5.26) and noting that Xn Un = Xn and [image: image], we obtain
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Taking expectations on both sides, observing that Mn is independent of both Xn and Un, and letting n → ∞, we obtain by using (5.27) and (5.28) that
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where we put q = limn E[Xn]. Solving for q in (5.29), we obtain
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These results are useful in discussing the characteristics of the system at large. The following is a useful device in order to deduce from these some measure of the plight of the individual customers. Let Wn be the time spent waiting by the nth customer, and let Vn = Wn + Zn (that is, Vn is the time spent in the system). Observe that if the service is on a first-come, first-served basis, then the customers that will be left behind by the nth customer will be exactly those who arrived during the time interval between the instant Sn of arrival and the instant Sn + Vn of departure of that nth customer. Thus,
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The distribution of the random variable on the right depends only on Vn, and therefore, all quantities of interest concerning Vn (and Wn) can be obtained from this relation and the known results concerning Xn in the limit. We leave these as exercises for the reader; cf. Exercises (8.19) and (8.20).

We return to the classification of states in the case r ≥ 1 and to the computation of probabilities of the queue never becoming empty. First consider the probability fk(j) that starting from the state k + j, the Markov chain X never enters the set {0, 1, . . . , k}. From Proposition (4.5) it follows that the function fk is the maximal solution of the system of equations Qh = h, 0 ≤ h ≤ 1 where Q is the matrix obtained from P by deleting all rows and columns corresponding to the states 0, . . . , k. Doing this, we obtain
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Observe that Q does not depend on k; therefore, fk(j) = f0(j) for all j and k. We put this useful observation next.

(5.33)  LEMMA. The probability that X never enters {0, 1, . . . , k} starting from k + j is the same as the probability f(j) that X never enters 0 starting from j.

Next we compute this probability f(j) of the queue never becoming empty if it started with j customers. Of course, this will be zero if X is recurrent and therefore, when the next theorem is put together with Proposition (5.14), we conclude that X is recurrent non-null if r < 1, recurrent null if r = 1, and transient if r > 1.

(5.34)  THEOREM. Let f(j) be the probability that the queue, starting with j customers, never becomes empty. Then
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where β is the smallest number in [0, 1] satisfying
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This number β is strictly less than one if and only if the traffic intensity r > 1. Therefore, X is transient if and only if r > 1.

Proof. We observe from the shape (5.2) of the transition matrix P that starting from j + 1, in order for the queue to become empty, it must first reach j. Therefore, starting from j + 1, the queue can avoid becoming empty either by never reaching j or, if it does reach j, by never becoming empty starting from j. Since the probability of never reaching j starting with j + 1 customers is f(1) by Lemma (5.33), this argument implies that
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Putting f(1) = 1 − β and solving this recursively, we obtain (5.35). There remains to compute β.

By Proposition (4.5), f is the maximal solution of h = Qh, 0 ≤ h ≤ 1 with Q as given by (5.32). From the first equation of h = Qh we see that f must satisfy
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which, upon putting the values (5.35) in, implies that β satisfies the equation (5.36). Since f is the maximal such solution, β must be the smallest possible solution of (5.36).

Finally, we need to show that β < 1 (and therefore that f ≠ 0, which in turn implies that X is transient) if and only if r > 1. Consider the function
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This is non-negative, increasing, and has an increasing derivative (cf. Figure 6.5.1). This implies that the graph of G can intersect the line H: H(β) = β at most once in (0, 1) (of course they always intersect at β = 1). Consider the derivative G′(1) at 1. If G′(1) > 1, the point of intersection β is strictly less than one; otherwise, if G′(1) ≤ 1, then G and H have no point of intersection in (0, 1) and the smallest number β desired is 1. Finally, note that G′(1) = r.
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It is possible to use the foregoing results about the imbedded Markov chain X to study the actual queue-size process {Yt; t ≥ 0} in continuous time. It can be shown, for example, that the limiting distribution limt→∞ P{Yt = j} (j = 0, 1, . . .) is exactly the same as the π we computed in Theorem (5.20) above. For results of this nature we refer the reader to Chapter 10.

[image: image]

Figure 6.5.1 Since G(0) > 0, G(1) = 1, and G′(1) = r > 1, the curve G intersects the line H at least once. Since G is convex, it cannot intersect H twice in (0, 1).

6.  Queueing System G/M/1

Consider a single-server queueing system with exponentially distributed service times which are independent of each other and of the arrival process, and with an arrival process where the successive interarrival times are independent and identically distributed. We will let a denote the parameter of the service time distribution and let φ denote the interarrival time distribution. Then qn defined by (5.3) becomes the probability that the server completes exactly n services during an interarrival time provided that there are that many customers available to be served. We define rn = qn + 1 + qn + 2 + · · · as before and let
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so that r is the expected number of services which the server is capable of completing during an interarrival time.

If r ≥ 1, then the server can keep up with arrivals, and we expect the queue size to be recurrent; if r < 1, then the queue size is likely to increase to infinity, and the process is transient. Note that this queueing system is the dual of the system M/G/1 studied in the preceding section. This duality comes about by the reversed roles of the interarrival times and service times. Therefore, with r fixed, when one system is transient the other is recurrent and vice versa. Later we will make these heuristic remarks more precise. The duality mentioned extends somewhat further and enables us to obtain the limiting distribution of the queue size for the G/M/1 system as a function of the probabilities of never becoming empty in the M/G/1 system. There is a similar functional relationship between the limiting distribution of the queue size for the M/G/1 system and the probabilities of never becoming empty for the G/M/1 system.

In this section we denote by [image: image] the number of customers present in the system just before the time Tn of the nth arrival.

(6.1)  THEOREM. [image: image] is a Markov chain with state space E = {0, 1, . . .} and transition matrix
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Proof. Let Mn + 1 be the number of services completed during the (n + 1)th interarrival time [Tn, Tn + 1). Then
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that is, [image: image] is the number of customers that were there before the nth arrival plus the nth customer less those whose services were completed during the next interarrival time. It follows from (6.3) that to show that X* is a Markov chain, it is sufficient to show that Mn + 1 is conditionally independent of the past history before Tn given the present number [image: image]. But this follows from the independence of the service times and interarrival times and the fact that by the memorylessness of the exponential distribution, the remaining service time of the customer who was being served at time Tn (if any) has the same exponential distribution as any service time.

Furthermore, the above reasoning shows that as long as there are customers to be served, the conditional distribution of the number of services completed will be Poisson: with Z = Tn + 1 − Tn,
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Taking expectations with respect to Z, which is independent of [image: image], we obtain
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Putting (6.3) and (6.4) together, we see that the transition probabilities P*(i, j) are as claimed.

[image: image]

It is clear from an inspection of (6.2) that the Markov chain X* is irreducible aperiodic. Therefore all the states are of the same type. The following theorem shows that they are all recurrent non-null if and only if r > 1.

(6.5)  THEOREM. X* is recurrent non-null if and only if r > 1. If r > 1, the limiting distribution

 

[image: image]

is given by
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where β is the unique number satisfying
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If r ≤ 1, then π*(j) = 0 for all j.

Proof. By Theorem (2.1), X* is recurrent non-null if and only if ν = νP*, ν1 = 1 has a solution; and if there is a solution, then π* = ν. Writing out the equations for ν = νP*, we obtain (observe that the initial equation uses rn = qn + 1 + qn + 2 + · · ·)
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Let a function f be defined by
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Now the equation for ν0 gives an equation for f(1), summing the equations for ν0 and ν1 yields an equation for f(2), and so on. We obtain
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In other words, f satisfies
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with Q as defined by (5.32), and we are interested in a solution of this satisfying
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Remembering that Q was obtained from P by deleting the 0th row and column, we conclude by Proposition (4.5) that such a solution f exists if and only if the chain X is transient. By Theorem (5.34), this is true if and only if r > 1. If r > 1, the solution for f is given by (5.35), where β satisfies (5.36), which is the same relation as (6.8).

Solving for ν, by using (6.9), out of the expression (5.35) for f, we obtain
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which is the same as the claimed limiting distribution π*. This completes the proof, since the last statement, that r ≤ 1 implies π* = 0, follows directly from Theorem (5.3.2).
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The limiting distribution obtained in the recurrent non-null case, then, is a geometric distribution. It is easy to work with, and in particular, we see that
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It is worth mentioning that this last result may be used, in practice, to estimate β directly; so after ascertaining that the model fits the system of practical interest, all one needs is an estimate of the average number of customers in the system just before an arrival. Once this number [image: image] is obtained, (6.10) may be used to estimate [image: image] by setting [image: image]. In other words, if one is interested only in the queue-size process, one does not need to estimate the probabilities qn or try to solve the equation (6.8) for β.

It is easy to relate these results to the waiting times of the individual customers. Let Wn be that of the nth customer. Then, if the service is on a first-come, first-served basis, the nth customer’s waiting time will be equal to the sum of the service times of those customers whom he found there upon his arrival. That is, Wn is equal to the sum of [image: image] random variables each of which has the exponential distribution with parameter a. From the interpretation of the geometric distribution in its relation to the time of first success in a sequence of Bernoulli trials (cf. Chapter 3 for details), we may think of Wn for large n as the time of first success with trials being performed at the times of arrivals in a Poisson process with rate a (note that there is a trial at time 0 in this setup). From the results on decomposition of Poisson processes (cf. Chapter 4) we see that Wn will have an exponential distribution, for large n, with parameter equal to a times the probability of success 1 − β, except that at t = 0 there is a probability of immediate success equal to 1 − β. Hence,
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Some further quantities of interest can be obtained from this by straight-forward methods. We leave some of these as exercises.

We return to the queue size process X* and consider it when it is not recurrent non-null, namely, when r ≤ 1. The next theorem shows that when r < 1, X* is transient and when r = 1, X* is recurrent null. In the transient case we compute the probability that the queue never becomes empty given the number of initial customers.

(6.12)  THEOREM. X* is transient if and only if r < 1. If r < 1, the probability f*(j) that the queue starting with j customers never becomes empty is given by
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where the π(j) are given by (5.21), (5.22), and (5.23).

Proof. In view of Proposition (4.5), f* is the solution of h = Q*h, 0 ≤ h ≤ 1, where Q* is obtained from P* by deleting the 0th row and column. Then the equations for h = Q*h become (write f*(j) = hj)
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Define π0 = q0h1, π1 = (1 − q0)h1, and let πj = hj − hj − 1 for j = 2, 3, . . . . Then the first equation of (6.14), along with π0 = q0h1, implies the two equations
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and subtracting the equation for hj − 1 from the one for hj for j = 2, 3, . . . yields
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In other words, π satisfies π = πP with P as given in (5.2), and we are interested in the solution of π = πP with ∑πj = limj hj = 1. From Theorem (5.14), such a solution exists if and only if r < 1. When r < 1, the solution is given by (5.21), (5.22), and (5.23), and the solution π is connected to h by the relation hj = π0 + · · · + πj. This completes the proof.
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A special case of some interest is the single-server queueing system with Poisson arrivals and exponential service times (usually denoted by M/M/1 queue). One may consider it either as a special M/G/1 queue or as a special G/M/1 queue. It is easier, from the computational point of view, to take it as a special case of the G/M/1 queue with the interarrival distribution
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(and, of course, exponential service times with parameter a).

To compute the limiting distribution of the queue size [image: image] just before the nth arrival, we use Theorem (6.5). Now, to solve for β in (6.8), first note that
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Thus, equation (6.8) becomes
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We know that 1 is a solution. To obtain the other, we see that when r = a/λ > 1 we have, as the smallest solution,
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So we have
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It turns out, though it is not at all apparent from anything which precedes this, that we also have
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for the queue size Yt at time t, and similarly
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for the queue size Xn just after the nth departure (cf. Exercise (8.21) for this).

For a different formulation of this problem we refer the reader to Section 6 of Chapter 8. For the general G/M/1 queue and its time-dependent behavior, see Section 7 of Chapter 10.

7.  Branching Processes

Consider some objects which can generate additional objects of the same kind. An initial set of objects, which we call the initial generation, have “children” that make up the first generation, and they in turn have children which form the second generation, and so on. We are interested in the sizes of successive generations, the possibility of extinction, and the total size of all the generations.

Let N(n, i) be the number of children born to the ith individual of the nth generation (supposing there is such an individual). Our basic assumption is that the random variables N(n, i), [image: image] are independent and identically distributed. This implies that the number of children born to an individual does not depend on the past history or on how many other individuals are present, or on how many children others have. We let
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be the common distribution, and define
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Let Xn be the size of the nth generation. If Xn = 0, the population is said to be extinct by the nth generation; then Xn + 1 = 0 also. Otherwise, if Xn = i > 0, then Xn + 1 is equal to N(n, 1) + · · · + N(n, i). That is, for any [image: image],
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It follows that X = {Xn; n = 0, 1, . . .} is a Markov chain with state space E = {0, 1, . . .}. X is called a branching process.

(7.4)  EXAMPLE. Electron multipliers. The device consists of a series of plates; each electron, as it strikes the first of these plates, gives rise to a random number of electrons which in turn strike the second plate, and so on. Here Xn is the number of electrons produced at the nth plate, and we are interested in its distribution for various n.
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(7.5)  EXAMPLE. Extinction of families. Let p0, p1, p2, . . . be the respective probabilities that a man has 0, 1, 2, . . . sons, let each son have the same probabilities for sons of his own, and so on. Furthermore, suppose that the number of sons a man has is not influenced by either the family history or the numbers of sons his brothers and cousins may have. Then the numbers Xn of descendants in the male line in the nth generation form a branching process. We are interested in the distribution of Xn and in the probability that the male line eventually becomes extinct.

[image: image]

As usual, we write Pi for the conditional probability P{• | X0 = i} and write Ei for the corresponding expectation.

(7.6)  PROPOSITION. The transition probabilities Pn(i, j) satisfy
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where G0(α) = α and
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Proof will be left as an exercise. Evidently, Gn(α) is E1[αxn], and (7.7) can be explained as follows. If the initial generation consists of i individuals, then the population is composed of i subpopulations, each initiated by one individual, progressing simultaneously, independent of each other, and according to the same laws.

It follows from the definition (7.3) that state 0 is absorbing; let T the time of absorption; that is, let
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Then T is called the time of extinction. If T < ∞, the population becomes extinct after some finite number of generations, and we are interested in the probability of the event {T < ∞}.

If p0 = 0, then X0 ≤ X1 ≤ · · · and T = + ∞ almost surely, starting with i ≥ 1 individuals. If p0 > 0 and p0 + p1 = 1, then X0 ≥ X1 ≥ · · · and T < ∞ almost surely (in fact, [image: image]. We exclude these trivial cases and assume that
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The following is the main result of this section.

(7.10)  THEOREM. Suppose (7.9) holds. Then for any i ∈ E,
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If m ≤ 1, then η = 1. If m > 1, then η is the unique number satisfying
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Proof. Let T1, T2, . . . be the times of extinction of the sub-processes initiated by the first, second, . . . individuals of the initial generation. Then T1, T2, . . . are independent and P{Ti < ∞} = η for some number η independent of i. If X0 = i, then T is the maximum of T1, . . . , Ti, and therefore T < ∞ if and only if T1 < ∞, . . . , Ti < ∞. These yield (7.11).

To compute the number η, let f(i) = Pi{T = + ∞} = 1 − ηi; then f(i) is the probability that starting at i ≥ 1, the chain X remains forever in {1, 2, . . .}. By Proposition (4.5), therefore, f is the maximal solution of h = Qh, 0 ≤ h ≤ 1, where Q is obtained from P by deleting the 0th row and column. In particular, then,
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that is, the number η satisfies α = G(α). Moreover, by the maximality of f, η is the minimal solution of α = G(α).

Since P0 > 0, G(0) = p0 > 0; since p0 + p1 < 1, G is convex; and obviously, G(1) = 1. Thus the graph of G can intersect the line H(α) = α at most twice in [0, 1] (see Figure 6.5.1). If G′(1) = m ≤ 1, then G and H intersect only at α = 1 and therefore η = 1. If G′(1) = m > 1, then they intersect twice: at α = 1 and at α = η < 1.
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Under the assumptions (7.9), all states i ≥ 1 are transient and can be reached from each other. Hence, for almost all ω limn Xn(ω) is either 0 or + ∞. If T(ω) < ∞, then Xn(ω) = 0 for some finite n and therefore for all large n; that is, T(ω) < ∞ if and only if limn Xn(ω) = 0. Thus we have the following limiting behavior.

(7.13)  PROPOSITION. For almost all ω,

 

[image: image]

Therefore, for any i ∈ E,
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where η is the number defined in Theorem (7.10).

To summarize, if the mean number m of children born to an individual is less than or equal to one, then the population becomes extinct with probability one after only finitely many generations. If m > 1, however, there are two possibilities: the population may become extinct after finitely many generations (this has probability η if the initial size is one), or the population never becomes extinct and instead its size grows to infinity (this has probability 1 − η).

(7.16)  EXAMPLE. In Example (7.5), suppose pk = bck − 1 for k = 1, 2, . . . with b and c > 0 and b + c < 1 (then p0 = a = 1 − b/(1 − c)). Then G(α) = a + bα/(1 − cα), so the equation G(α) = α is equivalent to (α − 1)(cα − α) = 0, whose two roots are α = 1 and α = a/c. If b ≤ (1 − c)2, then the smallest root is η = 1. Otherwise, if b > (1 − c)2, the smallest root is η = a/c < 1. Thus, a family for which m = b/(1 − c)2 ≤ 1 will become extinct (on the male side) with probability one. If m = b/(1 − c)2 > 1, the family will become extinct with probability η = a/c and will grow to become a very large clan with probability 1 − η = 1 − a/c.
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Finally, we consider the cumulative size of all generations, that is,
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If T(ω) is finite, then Y(ω) is the sum of a finite number of finite quantities; therefore, T(ω) < ∞ implies Y(ω) < ∞. If T(ω) is infinite, then Y(ω) is the sum of infinitely many terms each of which is equal to one or more; therefore, T(ω) = ∞ implies Y(ω) = ∞. We list this observation next along with the probability distribution of Y.

(7.18)  PROPOSITION. For any ω, Y(ω) < ∞ if and only if T(ω) < ∞. Therefore,
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Moreover, for any β ∈ [0, 1),
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where the number F(β) is the unique solution of
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Proof. We have already shown the first statement; (7.19) follows from it and the expression (7.11). To show (7.20), suppose X0 = i; then Y is the sum of the numbers Y1, Y2, . . . , Yi of total descendants of the first, second, . . . , ith individual of the initial generation. Now (7.20) is immediate from the fact that Y1, Y2, . . . are independent and identically distributed. For fixed β ∈ (0, 1),
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Now, X1 + X2 + · · · is the total size of the population whose 0th generation is the first one of the original population. Then, by Proposition (5.1.22) and the already shown result (7.20),
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Putting (7.23) into (7.22), we obtain the result that
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Thus the number F(β) satisfies α = βG(α), and clearly F(β) ≤ P1{Y < ∞} = η. For β < 1 the graph of α → βG(α) takes the value βp0 > 0 at α = 0, is convex in (0, 1), and is equal to βG(1) = β < 1 at α = 1. Therefore, that graph can intersect the bisector H(α) = α only once.
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Considering the expected numbers of individuals, note that
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so that Ei[Xn] = imn and
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That is, if m < 1, the population size is finite and has the finite expectation i/(1 − m). If m = 1, the population size is finite with probability one, but its expected value is infinite. If m > 1, the population size is finite with a probability less than one and, of course, its expectation is infinite.

(7.26)  EXAMPLE. Consider an M/G/1 queueing system (see Section 5 for the description). Customers who are initially there form the 0th generation, those arriving during their service times form the first generation, and so on. Let N(n, i) be the number of customers arriving during the service time of the ith individual of the nth generation. These are independent and identically distributed, and therefore describe a branching process. The number Y defined by (7.17) is the total number of customers served during the first busy period. If Y < ∞, then the busy period lasts only a finite length of time. Thus, the queue-size process is recurrent non-null if, in addition, Ei[Y] < ∞. Propositions (7.13) and (7.18) contain information on these points; the results are the same as those obtained in Section 5. Furthermore, (7.20) and (7.21) yield the distribution of the number of customers served during a busy period starting with i customers.

[image: image]

8.  Exercises

(8.1)  Compute the potential matrices R corresponding to the following transition matrices:
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(8.2)  Compute the probabilities F(i, j) of ever reaching j from i for all i, j for the Markov chains with transition matrices given above in (8.1a), (8.1b), (8.1c), and (8.1d).

(8.3)  Considering the Markov chain of Example (5.3.10), compute

(a)   the potential matrix R,

(b)   the limiting distribution.

(8.4)  Compute the limiting distributions for the Markov chains of

(a)   Example (5.1.9),

(b)   Example (5.1.10).

(8.5)  Consider the Markov chain of Example (5.3.23) and

(a)   compute, for all i, j ∈ E, the probability F(i, j) of ever reaching j from i;

(b)   compute the limiting distribution limn Pi{Xn = j}, j ∈ E, for every initial state i ∈ E;

(c)   compute the expected value of the recurrence time of each state.

(8.6)  Compute the limiting distribution for the Markov chain of Example (5.1.15) (see also the next exercise).

(8.7)  Let X be an irreducible aperiodic Markov chain with m < ∞ states, and suppose its transition matrix P is doubly Markov. Show that then
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is the limiting distribution.

(8.8)  Compute the limiting distribution of the age Yn of the machine in use at time n as n → ∞ in Exercise (5.4.10).

(8.9)  Compute the limiting distribution of the number of black balls in the first container in Exercise (5.4.11).

(8.10)  Let X be an irreducible Markov chain having the invariant distribution π = (0.2, 0.1, 0.3, 0.2, 0.2).

(a)    Compute the limit of the expected average reward
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as n → ∞ for the function f = (3, −1, 2, −5, 3).

(b)   Compute the limit of the ratio
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as n → ∞ with f as given in part (a) and g = (2, − 1, 2, − 3, 0).

(8.11)  Consider the Markov chain of Example (5.3.10) (see also (8.3) above), and let f = (2, 8, −3, −5, 6) be defined on its state space. Compute the limiting value of the average actual reward
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as n → ∞.

(8.12)  Consider the Markov chain of Example (1.12) (see also Example (1.24) later).

(a) Compute the limit of Pn as n → ∞.

(b) Find the expected value of the recurrence time of each state.

(c) Compute the limit of the expected average reward
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as n →∞ for f = (0, −1, 2, 4, −3, 4, 6, 3) for each initial state i.

(8.13)  Consider the Markov chain of Example (1.25), and let g be defined as
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(a) Compute g for f = (2, 3, 0, 0, 0, 2, 1).

(b) Compute g for f = (0, 0, 2, 1, −1, 0, 0).

(c) Compute g for f = (2, 3, 2, 1, −1, 2, 1).

(d) Compute g for arbitrary f = (f(1), . . . , f(7)).

(8.14)  Let X be a Markov chain with state space E = {a, b} and transition matrix
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and suppose that a reward of g(i, j) units is received for every jump from i to j where
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(a) Considering the reward received at the mth jump, show that
 [image: image]

if f is defined by
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(b) Compute the average expected reward
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in the limit as n → ∞.

(8.15)  Let X be a Markov chain with state space E and transition matrix P. Suppose a reward of g(i, j) units is received for every jump from i to j. Suppose X is irreducible and has an invariant distribution π.

(a) Show that for any initial state i,
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(b) Show that
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almost surely. (Hint: the sequence {Y = (Xn, Xn + 1); n = 0, 1, . . .} is a Markov chain.)

(8.16)  Consider the periodic Markov chain of Example (3.3).

(a) Show that there is an invariant distribution, although it is not the limiting distribution (which does not exist).

(b) Compute P3n, P3n + 1, P3n + 2 in the limit as n → ∞.

(c) Compute the limit
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for f = (2, 5, 4, 2, −1, −4, 6).

(8.17)  Consider two gamblers whose capitals sum to 7 dollars, so that as soon as one has all seven dollars the other is ruined and the game stops. Plays form independent trials with even chances for winning and losing. Let Xn be the capital of the first gambler at the end of the nth play.

(a) Show that X is a Markov chain with state space E = {0, . . . , 7} and transition probabilities P(i, i − 1) = P(i, i + 1) = 1/2 for i = 1, . . . , 6 and P(0, 0) = P(7, 7) = 1.

(b) Compute the probability f(i) = F(i, 0) of eventual ruin for the first player for each possible initial capital i.

(8.18)  Consider an M/G/l queueing system. Show that, for a given arrival rate a and mean service time b, the expected queue size in the long run is minimized when the service times are deterministic constants equal to b. Compute, explicitly, π0, π1, and π2 in this case of deterministic service times.

(8.19)  Waiting times in an M/G/1 queue. In the notation of Section 5, use the relation (5.31) to show that
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Use this to compute limn → ∞ E[Vn] and limn → ∞ E[Wn].

(8.20)  Continuation. Use (5.31) to show that
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holds for the limiting distribution π of the queue size and the limiting distribution
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of the time spent in the system by a customer. This formula determines the distribution ψ by identifying its Laplace transform:
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(8.21)  Consider the limiting distribution π given in Theorem (5.20), and suppose that the service distribution is exponential with parameter μ.

(a) Show that qn = (μ/a)(a/(a + μ))n + 1 by using the results of Chapter 4 on the Laplace transforms of times of arrivals in a Poisson process.

(b) Show that r = (a/(a + μ)n + 1, n = 0, 1, . . . and that
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for j ≥ k ≥ 1.

(c) Show that when r = a/μ < 1,
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by putting the results obtained in (a) and (b) above into the formulas of (5.20).

Compare this result with those given in (6.15), (6.16), and (6.17).

(8.22)  It is known, from direct statistical studies, that the expected queue size in the long run for a G/M/1 queueing system is q = 4.8 customers. Find the limiting distribution of the queue size and compute the variance.

(8.23)  Consider an M/G/1 queue (single server, Poisson process of arrivals, independent and identically distributed service times) with a finite waiting room of capacity m. Then all customers who arrive to find the waiting room full (namely, m + 1 customers in the system) leave the system never to return. Let Xn be the number of customers in the system just after the nth departure.

(a) Show that X = {Xn; [image: image]} is a Markov chain with state space E = {0, 1, . . . , m} and transition matrix
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where qn is the probability that exactly n arrivals occur during a service time and where rn = qn + 1 + q n + 2 + · · ·.

(b) Compute the limiting distribution π explicitly for m = 3, and then for arbitrary m.

(8.24)  Consider a G/M/1 queue with a waiting room of capacity m − 1. A customer finding m customers upon his arrival cannot join the system and leaves never to return. Let [image: image] be the queue size just before the nth arrival.

(a) Show that [image: image] is a Markov chain with state space E = {0, 1, . . . , m} and transition matrix
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(b) Note that if the states were relabeled so that [image: image], [image: image], . . . , [image: image], then the transition matrix [image: image] corresponding to this labeling would be

 

[image: image]

where P is the transition matrix of Exercise (8.23).

(c) Conclude from this that the limiting distribution π* of the Markov chain X* is related to the limiting distribution π of X through
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(8.25)  Prove Proposition (7.6).

(8.26)  Extinction of families. For the distribution given in Example (7.16), show that for each [image: image], the distribution of Xn has the form
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again. (Hint: use induction to show that Gn(α) = an + bnα/(1 − cnα)).

(8.27)  Continuation. In (7.16), let b = 0.4 and c = 0.2 (then a = 0.5 and η = 1). Compute the generating function F of the total size Y of the population.

(8.28)  Nuclear chain reactions. Here the individuals are certain nuclear particles. Each particle has a certain probability p of scoring a hit, in which case it produces 3 particles. With probability q = 1 − p the particle moves out of the system without a hit. If the number of particles grows to infinity, then there occurs an explosion; otherwise, the process dies out. Compute the probability of explosion when p = 0.4, starting with one particle.

[image: image]

With the exception of Section 4, this chapter is devoted to questions of recurrence and existence of limits. Such questions are usually grouped under the heading of ergodic results. In rough terms, ergodicity refers to the equality of space averages and time averages. It is exemplified best by the result of Corollary (2.22): in it, the left-hand side is a time average, whereas the right-hand side is a weighted average over the state space.

Of the ergodic results we listed, Theorem (2.26) is the most general. A similar limit theorem holds, in fact, for chains with more than one irreducible class. We refer to CHUNG [1, P. 90 ff.] for proofs and further results. In the case where the state space is not discrete, results of this nature are usually referred to under headings such as DOEBLIN ratio limit theorems or the CHACON-ORNSTEIN theorem. For such results a good reference is the monograph by OREY [1].

Concerning the limiting behavior of transient Markov chains, all we have been able to say is that such a chain moves out of every finite set and travels toward “infinity.” Possible ways of achieving this and the behavior in the states near infinity are subjects of investigation in the boundary theory of Markov chains. Interested readers should read the paper by FELLER [4], or the book by CHUNG [1, P. 112 ff.], which has a more probabilistic and clearer picture.

The discovery of imbedded Markov chains in queues by KENDALL [1] has had a healthy influence on queueing theory and stimulated the interest in the theory of Markov chains. Even then, the power of direct theoretical attacks is still underrated, and there is too much reliance on old-fashioned mathematics. Interested readers should compare our direct solution in Theorem (5.20) with the method of generating functions which is generally employed. On the other hand, it is sometimes difficult to avoid them. The theory of branching processes makes heavy use of such methods by its very nature.

Our introduction to that topic is limited to the case where the time parameter is discrete, the state space is countable, and there is only one type. Such a branching process is called a GALTON-WATSON process after their pioneering work on the problem of extinction of families amongst English peers. For the general theory we refer the reader to the comprehensive and scholarly treatise by HARRIS [1].


CHAPTER 7

Potentials, Excessive Functions, and Optimal Stopping of Markov Chains

This chapter is an introduction to the modern theory of Markov chains, which, happily, is also becoming increasingly important in applications. The two sections on optimal stopping illustrate an important class of applications.

This chapter can be read independently of Chapter 6, and the dependence on Chapter 5 is slight. As usual, Ω is a fixed sample space, P a probability measure on it; if X is a Markov chain on this probability space, then we write Pi for the probability measure which makes i the initial state, and denote by Ei the corresponding expectation.

1.  Potentials

Let [image: image] be a Markov chain with state space E and transition matrix P, and let g be a function defined on E and taking values in [image: image]. Suppose that at each time n we are given a “reward” whose amount depends on the state X is in at that time: if X is in state j, then the reward is g(j) units. For example, if the realization ω ∈ Ω is such that X0(ω) = 3, X1(ω) = 5, X2(ω) = 4, X3(ω) = 2, . . ., then the respective rewards obtained at times 0, 1, 2, 3, . . . are g(3), g(5), g(4), g(2), . . . units. Furthermore, suppose that all future rewards are being discounted in such a way that one unit of reward at time n has the present worth of αn units; here α is a number in [0, 1]. Then for the realization ω ∈ Ω, the successive states visited are X0(ω), X1(ω), X2(ω), . . ., and the rewards received at times 0, 1, 2, . . . have the respective present worths of g(X0(ω)), αg(X1(ω)), α2g(x2(ω)), . . . . We are interested in the expected value of the total discounted return; starting at i, this quantity is

 

[image: image]

For α ∈ [0, 1] and g non-negative, the function Rαg defined by (1.1) is called the α-potential of the function g. When α = 1, instead of writing R1g, we simply write Rg and call Rg the potential of g; in other words,

 

[image: image]

These definitions are extended to any g for which (1.1) and (or) (1.2) make sense. A function f is said to be an α-potential if f = Rαg for some function g. Similarly, f is said to be a potential if f = Rg for some g.

(1.3)  EXAMPLE. Let g = 1j for some fixed j, that is, let g(k) = 1 or 0 according as k = j or k ≠ j. Then [image: image] is simply the total number of visits to j, and Rg(i) = Ei[∑ g(Xn)] is the expected number of visits to j starting at i; in other words, for g = 1i we have Rg(i) = R(i, j). Thus, for any, j the j-column of the matrix R is a potential. The same is true of a linear combination of any number of the columns of R.

[image: image]

It is possible for a potential to take on infinite values; for example R1j(i) is infinite whenever j is recurrent and can be reached from i. On the other hand, if α < 1 and g is bounded, then Rαg is also bounded. To see this, suppose g is bounded by some constant c; then the sum on the right-hand side of (1.1) is bounded by c∑ αn = c/(1 – α), and therefore the expectation of that sum is also bounded by the same number c/(1 – α).

(1.4)  PROPOSITION. For any α ∈ [0, 1] and g ≥ 0,
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where the matrix Rα is given by
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Proof. Noting that

 

[image: image]

we have

 

[image: image]

as claimed.

[image: image]

The matrix Rα is called the α-potential matrix of X. When α = 1, instead of R1 we simply write R and call it the potential matrix of X. The matrix R is precisely the matrix whose computation was discussed in Section 1 of Chapter 6. For α < 1, we now supply the following computational result.

(1.5)  PROPOSITION. Let α ∈ [0, 1), and let g be a bounded non-negative function on E. Then f = Rαg is the unique bounded solution of the system of linear equations

 

[image: image]

Proof. Since f = Rαg = g + αPg + α2P2g + · · ·, we have αPf = αPg + α2P2g + α3P3g + · · · and hence f – αPf = g. Thus, Rαg is a solution of (1.6). To show that it is the only solution, let f be a bounded solution of (1.6), and put h = f – Rαg. Since both f and Rαg are bounded, h is bounded; and since f = g + αPf and Rαg = g + αPRαg, h satisfies h = αPh. Multiplying both sides by αP, we get h = α2P2h; and repeating this, we obtain that
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for all n. Since h is bounded, say by c, Pnh is bounded by the same constant c. Therefore, since α < 1, αnPnh → 0 as n → ∞, This and (1.7) imply that h = 0, which completes the proof in view of the definition of h.

[image: image]

In particular, taking g = 1j in Proposition (1.5), we see that the j-column of the matrix Rα is the unique bounded solution of (I – αP)f = 1j. Thus, we have

(1.8)  COROLLARY. For any α ∈ [0, 1), Rα is the unique solution of the system of linear equations
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In particular, if the state space E is finite,
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(1.9)  EXAMPLE. Suppose X has the transition matrix

 

[image: image]

and let g = (1, 5). In this case, the α-potential matrix Rα is
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Hence,

 

[image: image]

In particular, if α = 0.9, this becomes [image: image].

[image: image]

(1.10)  EXAMPLE. Consider the remaining-lifetime problem of Example (5.1.17). Suppose g(j) is the maintenance cost per year for a machine whose remaining useful life is j, j ≥ 1; and interpret g(0) as the difference between the price of the new machine and the salvage value of the old. Then Rαg(i) is the present value of all future costs of maintenance and replacement if the machine starting at time 0 has i years of remaining life.

If the firm’s earnings average 20% of its investments, then 1 dollar today is worth 1.20 dollars next year, and the applicable discount factor α is α = 1/1.20 = 5/6. To make a concrete example, let us suppose that the lifetime of a machine has the geometric distribution with average lifetime of 2.5 years; that is (since the mean of the geometric distribution pqn − 1 is 1/p), we have

 

[image: image]

Finally, let us suppose that g = (1200, 600, 240, 100, 100, 100, . . .) and that initially a new machine is installed at time zero.

Then the sum of all future costs of maintenance and replacement (discounted with factor [image: image]) has the expected value f(0) = R5/6g(0). To compute this we use Proposition (1.5). Now,
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so that the system of equations to be solved becomes, writing fj for f(j),
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Solving the second, third, fourth, . . . equations recursively, we get

 

[image: image]

and so on. Now, the first equation becomes
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Carrying out the arithmetic involved, we find

 

[image: image]

which was the quantity desired.

[image: image]

In certain applications one is interested in the reward obtained during a certain period. If this period is fixed, then the computation is simple: for example,-the total discounted reward obtained during the first m transitions is [image: image], whose expectation is, starting from i,
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Noting that

 

[image: image]

we see that the quantity in (1.11) is
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Since Pm f(i) = Ei[f(Xm)] for any bounded function f, we can rewrite (1.12) as

 

[image: image]

It is clear that the last term in (1.13) is the contribution of the rewards obtained at times m, m + 1, m + 2, . . . . This contribution is αm[g(Xm) + αg(Xm+1) + · · ·], and to show that its expectation, given the initial state i, is Ei[αmRαg(Xm)], we could have used Corollary (5.1.23). A third explanation of the result is the most intuitive: At time m, considering the future states of X, one is observing [image: image], [image: image], [image: image], . . . . The sequence [image: image], [image: image], . . . is again a Markov chain with the same transition probabilities as X; and the reward associated with it has the expectation Rαg(j) if [image: image]. In other words, for someone who looks into the future after m, that future looks the same as the future after time 0 would look to someone considering it at time 0. Hence, the expectation of all discounted rewards in the future after m has the present worth of [image: image] at time m. The expected value, starting at i, of the discounted value of this is Ei[αmRαg(Xm)].

The considerations above also hold in the more general case where the fixed time m is replaced by a random time T. The results then follow from Proposition (5.1.25). Recall that a non-negative integer-valued random variable T is a stopping time if and only if, for each [image: image], the occurrence or non-occurrence of the event {T ≤ n} can be determined once X0, . . ., Xn are known (refer to the discussion preceding (5.1.24) for examples).

(1.14)  THEOREM. For any stopping time T and non-negative function g,
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Proof. Define Wm = g(Xm) + αg(Xm+1) + · · · for [image: image]. We need to show that
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First, note that Ei[W0] = Rαg(j), and therefore,

 

[image: image]

by the strong Markov property applied at T; see Proposition (5.1.25). Second, the values of the stopping time Tare fixed by the history {Xn; n ≤ T}; therefore,

 

[image: image]

Now the desired result follows upon taking expectations on both sides and using Proposition (2.2.16).

[image: image]

(1.15)  EXAMPLE. Consider the problem of Example (1.10) above. Suppose we are interested in the expected value of all discounted costs until the time of second failure, given that initially the machine has a lifetime of 3 years. Let T be the time of second failure; then T(ω) = n if and only if Xn(ω) = 0 and 0 appears in X0(ω), . . ., Xn−1(ω) only once. Thus, T(ω) > n if {X0(ω), . . ., Xn(ω)} contains at most one zero; and T(ω) ≤ n otherwise. Therefore T is a stopping time; and what we are asked to compute is
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for α and g given in (1.10). By the preceding theorem,

 

[image: image]

and f = Rαg was computed in Example (1.10) above. We had, first of all,
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By the definition of T, XT = 0 provided that T is finite; and T is almost surely finite, since state 0 is recurrent (see Example (5.3.25) for this). Hence, Rαg(XT) = Rαg(0) = f(0) = 4600.80, and
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Starting at 3, the first visit to 0 occurs at time 3, and the second at the time of failure of the new machine. Hence,

 

[image: image]

Putting this result in the expression for a above, we have

 

[image: image]

If g is bounded and α < 1, then Theorem (1.14) is useful in computing
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especially when Rαg is already known as in the preceding example. If α = 1, or if g is such that Rαg takes infinite values, or both, Theorem (1.14) might yield an expression such as + ∞ = h(i) + ∞, which is worthless in computing h(i). It is possible to compute h directly, without computing potentials, at least for a large class of stopping times, by solving a simple system of linear equations:

(1.17)  THEOREM. Let T be the time of first visit to a subset A of E, that is, let
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and let h be defined by (1.16) for some bounded function g and some number α ∈ [0, 1]. Then h satisfies
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Proof. Let [image: image]; W is a functional of the chain X, say, W = f(X0, X1, . . .) for some fixed function f. If X0(ω) ∈ A then T(ω) = 0 and hence W(ω) = 0. So h(i) = 0 for i ∈ A.

Consider next an ω such that X0(ω) ∉ A. Then [image: image] where [image: image] = inf[image: image]. Therefore we can write [image: image] by letting

 

[image: image]

Note that [image: image] is the same functional of the sequence (X1, X2, . . .) as W is of (X0, X1, . . .); that is, [image: image] for the same f for which W = f(X0, X1, . . .). Therefore, by Corollary (5.1.23),
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Hence, for i ∉ A, using Proposition (2.2.16), we obtain
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which is as claimed by (1.18).
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(1.19)  EXAMPLE. Let X be a Markov chain with state space E = {a, b, c, d} and transition matrix
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We are interested in computing

 

[image: image]

for g = (5, 3, 1, 4) and T = inf{n: Xn = d}.

It is easy to see that Rg(i) = + ∞ for each state i; therefore, Theorem (1.14) yields + ∞ = h(a) + ∞, which is quite useless in obtaining h(a). Using Theorem (1.17), we obtain
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Solving these, we get h(c) = 2, 0.7h(b) = 3.6 + 0.4h(a), and the desired number [image: image].

[image: image]

2.  Excessive Functions

Let X be a Markov chain with state space E and transition matrix P. Let f be a finite-valued function defined on E, and let α be a number in [0, 1].

(2.1)  DEFINITION. The function f is said to be α-excessive provided that f ≥ 0 and f ≥ αPf. If f is 1-excessive, then it is simply called excessive .

[image: image]

We may think of f(j) as the reward promised for being in state j. Then αn f(Xn) is the present worth of the reward promised for time n, and its expected value is Ei[αn f(Xn)] = αnPn f(i) if the initial state is i. Supposing that f is α-excessive, we have f ≥ αPf, which implies (αP)f ≥ (αP)(αPf) = α2P2f; repeating this, we have f ≥ αPf ≥ α2P2f ≥ · · · ≥ αnPnf. Hence, if f is α-excessive,
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for any i ∈ E. In other words, no matter what the initial state i is, the reward we can get at time 0 is greater than or equal to the expected worth of any future reward.

The function 1 is excessive since P1 = 1. If a function f is α-excessive and c > 0 is a constant, then the function cf is also α-excessive. If f is α-excessive and if β < α, then f ≥ αPf ≥ βPf, which shows that f is also β-excessive. If f and g are two α-excessive functions, then f + g ≥ αPf + αPg = αP(f + g), which implies that f + g is also α-excessive.

Throughout the following, α is a number in [0, 1] unless specified otherwise. In the next proposition, by f ∧ g we mean the function whose i-entry is the smaller of f(i) and g(i).

(2.3)  PROPOSITION. If f and g are α-excessive, then so is f ∧ g.

Proof. Since f ∧ g ≤ f, αP(f ∧ g) ≤ αPf. Similarly, αP(f ∧ g) ≤ αPg. Since f, g are α-excessive, f ≥ αPf ≥ αP(f ∧ g) and g ≥ αPg ≥ αP(f ∧ g). Thus, f ∧ g ≥ αP(f ∧ g). Since f, g ≥ 0, f ∧ g ≥ 0 also.
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(2.4)  PROPOSITION. If f is the α-potential of a non-negative function and is finite, then f is α-excessive.

Proof. Suppose g ≥ 0 and f = Rαg. Then
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and trivially, f ≥ 0.
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The preceding proposition provides a large number of α-excessive functions. In particular, for any α < 1 and j ∈ E, the function f defined by f(i) = Rα(i, j) is an α-excessive function. Of course, any non-negative linear combination of such functions is also α-excessive.

The following theorem, called the Riesz decomposition theorem, shows that an excessive function can be written as the sum of a potential and a harmonic function (h is harmonic if h ≥ 0, h = Ph).

(2.5)  THEOREM. Any excessive function f has the form
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where g ≥ 0, h ≥ 0, and h satisfies
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Proof. Let f be excessive and put g = f − Pf. Since f ≥ Pf, g ≥ 0. We can write
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which gives, by replacing f on the right by g + Pf, f = g + Pg + P2f; iterating in this manner, we obtain
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In the limit, as n → ∞, the first term on the right converges to Rg. For the second term, noting that
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we see that
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exists, that h ≥ 0, and that by the bounded convergence theorem
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Hence, f = Rg + h, with g and h as claimed.

[image: image]

The next result is very useful in applications.

(2.8)  PROPOSITION. Any excessive function f is an α-potential for every α < 1.

Proof. Since f is excessive, f ≥ Pf ≥ αPf for α < 1. Then defining g = f − αPf, we see that g ≥ 0 and that we can write
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Repeatedly replacing f on the right by g + αPf, we obtain
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Since f ≥ Pf ≥ · · · ≥ Pnf, 0 ≤ αn+1Pn+1f ≤ αn+1f. In the limit as n → ∞, αn+1f → 0, since α < 1. Thus, as n → ∞, αn+1Pn+1f → 0, and we have
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The same proof goes through for the following generalization:

(2.9)  PROPOSITION. Suppose f is α-excessive. Then for any β < α, f is the β-potential of some non-negative function g.

We had noted earlier that if a reward function f is excessive, then the expected worth of a reward at time n is less than the value of a reward at time 0 (see (2.2) for this). Here, the fixed time n can be replaced by certain random times. Again, recall that a random variable T is a stopping time if and only if knowledge of X0, . . ., Xn completely determines whether T ≤ n or not [image: image]. Also recall the conventions preceding (5.1.24).

(2.10)  THEOREM. If f is α-excessive, then
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for all i ∈ E and all stopping times T.

Proof. By Proposition (2.9), for any β < α, we can write f = Rβg for some g ≥ 0. Thus, for any stopping time T, Theorem (1.14) yields

 

[image: image]

Now taking limits as β ↑ α, we obtain the desired result.

[image: image]

Next suppose T and S are two stopping times such that T(ω) ≤ S(ω) for all ω ∈ Ω (for example, T and S may be the respective times of the first and second visits to a set of states). Since the passage of time reduces the expected worth of a reward, when the reward function f is excessive, we would expect the expected value of a reward at time T to be more than that of a reward at time S. This is indeed the case, as the next theorem shows. (Note also that when T = 0 identically, this yields the preceding result (2.10).)

(2.11)  THEOREM. If f is α-excessive, then for all i,
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for any two stopping times T and S with T ≤ S.

Proof. For β ≤ α we can write f = Rβg for some function g ≥ 0 by using Proposition (2.9). Then by Theorem (1.14),
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since
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by the hypothesis that T ≤ S. Now taking limits on both sides of (2.12), as β ↑ α, we obtain the desired result.
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In the next section we will deal with computing excessive functions satisfying certain added conditions. Such computations are reduced to simple inspections in the case of irreducible recurrent Markov chains. The following is the cause of this simplification.

(2.13)  PROPOSITION. Suppose X is irreducible recurrent. Then any excessive function f is constant.

Proof. By Theorem (2.10), f(i) ≥ Ei[f(XT)] for any stopping time T. Let T be the time of first visit to state j. Since X is irreducible recurrent, T is finite with probability one for any initial state i. By the definition of T, the process X is in state j at time T if T is finite. Hence, XT = j with probability one, and Ei[f(XT)] = f(j). We have thus shown that
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Since this holds for all i and j, we must have f(i) = c for some constant c ≥ 0 for all i ∈ E.

[image: image]

The preceding proposition applies to each irreducible recurrent class of a Markov chain separately.

(2.14)  PROPOSITION. For any excessive function f, f(i) = f(j) for all i and j in the same irreducible recurrent class.

Proof is immediate from that of (2.13) once we note that if i and j are in the same irreducible recurrent class, then they can be reached from each other with probability one.

[image: image]

3.  Optimal Stopping

Let X be a Markov chain with state space E and transition matrix P, and let f be a bounded function defined on E.

The matrix P and the function f are known to us, and we are allowed to observe the process X as long as we desire. We may stop whenever we want; if at the time of stopping the process is in state j, we receive a payoff of f(j) units, and the game is over. If we never stop, then the payoff is zero. We are interested in optimizing the payoff.

(3.1)  EXAMPLE. Consider the gambling machine pictured in Figure 7.3.1 When the specified number of coins are dropped, the machine starts and one of the five characters lights up; suppose it is X0(ω) = J. By pushing the STOP button, the player can get f(J) = 3 coins if he wants to. If he pushes the CONTINUE button, then either Q or K will light up with the probabilities indicated on the proper arrows. Noting that the payoff in either case is higher than at J, the player pushes the CONTINUE button, and character Q lights up (that is, X1(ω) = Q). Here he faces a harder decision: by stopping there he is sure to get f(Q) = 4 coins; whereas, if he continues, he has a chance to make 6 coins as well as running the risk of getting nothing. Since, after Q, A and 2 light up with probabilities [image: image] and [image: image] respectively, if he continues, the expected payoff is [image: image] coins. This amount being higher than f(Q) = 4, he chooses not to stop and pushes the CONTINUE button. It turns out that X2(ω) = A, and he receives f(A) = 6 coins, and the machine turns off.

[image: image]

Figure 7.3.1 Optimal stopping machine. It pays the amount corresponding to the character which was lit at the time the stop button was pushed.

We will show shortly that the optimal strategy is to continue if the lit character is J or Q and to stop if the lit character is K, A, or 2 (in the case of the latter because the machine turns off by itself anyway). Thus, depending on chance, a player using the optimal strategy will end up with either 5, or 6, or 0 coins. For example, if the realization ω happens to be such that X0(ω) = K, then the optimal stopping time is T(ω) = 0, and the payoff is f(K) = 5. If X0(ω) = Q, X1(ω) = 2, then the optimal stopping time is T(ω) = 1, and the payoff is f(2) = 0. If X0(ω) = Q and X1(ω) = A, the optimal stopping time is T(ω) = 1 again, and the payoff is f(A) = 6. It is worth noting that the term “optimal,” which we will make precise, does not necessarily yield the maximum payoff for every realization.

[image: image]

It is clear that the time of stopping is a random variable T whose value is determined by the path X0, X1, . . . of the chain X. At each time n, the decision to stop or to continue must be made on the basis of the knowledge of the path available at that time. Hence, for any ω ∈ Ω, whether T(ω) = n or not must be determined completely by the path X0(ω), X1(ω), . . ., Xn(ω) observed until that time n. Since this is true for every n, T is a stopping time.

At the time T of stopping the process is in state XT, and therefore the payoff is f(XT). (Recall the convention introduced in the paragraph preceding (5.1.24): X∞ is defined to be Δ, where Δ is a point not in E; any function f defined on E is automatically extended to E ∪ {Δ} by setting f(Δ) = 0. Hence, if T(ω) = ∞, then the corresponding payoff is f(XT(ω)(ω)) = f(Δ) = 0.) The choice of a stopping time T corresponds to choosing a strategy. For different stopping times T, the expected payoffs Ei[f(XT)] will differ. We are interested in choosing a stopping time T for which this is maximized. We now state our problem:

(3.2)  PROBLEM. (a) Compute the function
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where the supremum is over all possible stopping times T.

(b) Find a stopping time T0 such that
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The function f is called the payoff function, and the function υ defined by (3.3) is called the value of the game. A stopping time T0 satisfying (3.4) is called an optimal stopping time.

(3.5)  EXAMPLE. Returning to (3.1), we now formulate the problem. There, X is a Markov chain with state space E = {A, K, Q, J, 2} and transition matrix
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The payoff function is f = (6, 5, 4, 3, 0). States A and 2 are absorbing; starting from either, the chain remains in the initial state. Therefore, υ(A) = 6, υ(2) = 0. Starting from the state Q, if we stop immediately the payoff is f(Q) = 4; if not the next step leads to either A or 2. Thus, not stopping gives an expected payoff of [image: image]. This being the best possible, υ(Q) = 4.5. Starting from K, stopping immediately yields a payoff f(K) = 5; if not, the chain might move to A (with probability [image: image] and a payoff f(A) = 6 there), or it might move to Q (with probability [image: image], and starting from Q, our analysis shows an expected payoff υ(Q) = 4.5). Thus, by not stopping at K, the optimal expected payoff becomes [image: image]; whereas stopping at K gave f(K) = 5. Hence, it is better to stop immediately at K; then the expected payoff is υ(K) = f(K) = 5. Starting at J, it is silly to stop. By waiting one step more, either K lights up and we can make υ(K) = 5, or Q lights up and the expected payoff starting there is υ(Q) = 4.5. Hence, starting at J, the optimal strategy is to wait; and then the expected payoff becomes [image: image].

Hence, for this example, the value of the game is given by υ = (6, 5, 4.5, 4.833, 0). The optimal strategy is to stop only when the lit character is either A, or K, or 2; in other words, T0 is the time of first visit to the set of states {A, K, 2}. Note that this set is also the set of states j for which f(j) = υ(j).



[image: image]

(3.6)  EXAMPLE. Let X be an irreducible recurrent Markov chain, and suppose f ≥ 0. Let c = supi f(i), and suppose that there is at least one state j for which f(j) = c. (If the state space E is finite, c is the maximum value f attains, and there will always be at least one j for which f(j) is equal to c.)

Let T0 be the time of first visit to that state j such that f(j) = c. Since X is irreducible and j is recurrent, for any initial state i, T0 < ∞ and XT0 = j with probability one. Hence, for any i ∈ E, Ei[f(XT0)] = c, and since f ≤ c, this makes the maximum possible for the expectation Ei[f(XT)] for any stopping time T. Hence,
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for all i ∈ E, and T0 is an optimal stopping time.
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(3.7)  EXAMPLE. Let X be irreducible recurrent again, but with infinite state space E = {1, 2, 3, . . . }. Suppose the payoff function f is given by f(i) = 1 – 1/i, i ∈ E.

For the stopping time Tj of the time of first visit to state j, we have Pi{Tj < ∞, XTj = j} = 1; hence
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Hence, since the supremum over all stopping times T must be greater than or equal to the supremum over the Tj alone,
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for all i; and since f ≤ 1, it follows trivially that υ ≤ 1. Hence, υ = 1; but in this case there is no optimal stopping time. For any stopping time T, either XT = Δ and f(XT) = 0 or XT ∈ E and f(XT) = 1 – 1/XT < 1; thus f(XT) < 1 and Ei[f(XT)] < 1 = υ(i).

The difficulty here is caused by the fact that the state space E is infinite. We will later show that although there is no optimal stopping time T0 in the sense of (3.4), for any ε > 0 we can find a stopping time Tε satisfying
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Indeed, in this example, the time Tε of first visit to the set of states A = {j: 1 – 1/j ≥ 1 – ε} is such a stopping time.

[image: image]

In the examples above we have been able to exploit the special features of the Markov chains involved to figure out the value υ of the game and the optimal strategy if there is one. Examples (3.5) and (3.6) show that at least in the finite state space case, the optimal stopping time is the time of first visit to the set of states j for which f(j) = υ(j). This turns out to be true in general.

The following characterizes the value υ of the game defined by (3.3).

(3.8)  THEOREM. The value function υ is the minimal excessive function greater than or equal to the payoff function f.

(3.9)  COMPUTATIONAL NOTE. This theorem shows that in the case when the state space E is finite, the value of the game can be found by using the methods of linear programming. Since υ is excessive, υ ≥ 0, υ ≥ Pυ; since υ majorizes f, υ ≥ f; and υ is the minimal such function, so ∑i υ(i) must be minimized. The resulting linear programming problem is:
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subject to
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for all i ∈ E.

Proof of Theorem (3.8). First we show that υ is excessive. Since f is bounded, say by c, (3.3) shows that υ is bounded by c as well; so υ is finite-valued. Clearly, υ ≥ 0; to show that υ ≥ Pυ, let ε > 0 be arbitrary. By the definition of υ(j), there exists a stopping time Tj (possibly depending on ε) such that
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Of course, Tj is a function of j, X1, X2, . . .; say Tj = t(j, X1, . . .). Now let T = 1 + t(X1, X2, . . .); that is, T is the stopping time corresponding to the strategy which waits at n = 0, and if X1 = j, then uses the strategy corresponding to Tj thereafter. Then for any i ∈ E, (3.10) gives
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Since υ is the supremum of Ei[f(XT)] over all T, this shows that
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Since ε was arbitrary, this means that υ ≥ Pυ and υ is an excessive function.

Since T = 0 is a possible stopping time, υ(i) = supT Ei[f(XT)] ≥ Ei[f(X0)] = f(i) for all i.

Hence, υ is excessive and υ ≥ f; to show that υ is the minimal such function, let g be an excessive function and suppose g ≥ f. Since g is excessive, by Theorem (2.10),
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for any stopping time T. Since g ≥ f, g(XT) ≥ f(XT), and (3.11) implies that
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for all stopping times T; hence, g ≥ υ also. This completes the proof.

[image: image]

Note that we have also proved the following not so obvious result.

(3.12)  COROLLARY. For any bounded function f, there is a minimal excessive function majorizing it.

Combining Theorem (3.8) with the fact that for an irreducible recurrent Markov chain, all excessive functions are constants (cf. Proposition (2.13)), we obtain the following simple result.

(3.13)  COROLLARY. If X is irreducible recurrent, then υ is equal to the constant c = supj f(j).

This corollary applies separately to each irreducible recurrent set of states. In other words, using Theorem (3.8) in conjunction with Proposition (2.14), we obtain the following:

(3.14)  COROLLARY. If C is an irreducible recurrent set of states, then for all i ∈ C, υ(i) is equal to the constant c = supj∈C f(j).

This corollary shows that in computing υ, the only non-trivial part is the computation of υ(i) for transient states i. Before giving some numerical examples, we give the following main result characterizing the optimal stopping time.

(3.15)  THEOREM. Suppose the state space E is finite. Then the time T0 of the first visit to the set
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is an optimal stopping time; that is, for any ω ∈ Ω,
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To prove this we shall need the following

(3.18)  LEMMA. Let T be the time of first visit to a fixed set A of states. If g is an excessive function, then the function h defined by
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is also excessive.

Proof. Let T be the time of first visit to A, and let S be the time of first visit to A at or after time 1; that is, for any ω ∈ Ω, let
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If X0(ω) ∈ A, then T(ω) = 0 < 1 ≤ S(ω); if X0(ω) ∉ A, then T(ω) = inf{n ≥ 1: Xn(ω) ∈ A} = S(ω). Hence, for any ω ∈ Ω, T(ω) ≤ S(ω); and it is clear that both T and S are stopping times. Since g is excessive, Theorem (2.11) implies that
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On the other hand, if T = t(X0, X1, . . .) for some function t, then S = 1 + t(X1, X2, . . .); hence by Corollary (5.1.23)
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which implies that
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This together with (3.19) shows that h ≥ Ph, and since h ≥ 0 obviously, h is excessive.
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Proof of Theorem (3.15). To show that T0 defined by (3.17) is optimal, we need to show that
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is equal to υ(i) for each i. It is clear that h ≤ υ. To show the reverse inequality, we will first show that h is excessive and that h ≥ f; then, since υ is the minimal excessive function satisfying υ ≥ f (cf. Theorem (3.8)), υ ≤ h as well.

If the event {T0 < ∞} occurs, then XT0 ∈ A and f(XT0) = υ(XT0) by the definition (3.16) of A; otherwise, if {T0 = + ∞} occurs, then XT0 = X∞ = Δ and f(Δ) = υ(Δ) = 0. Hence f(XT0) = υ(XT0), and (3.20) becomes
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The function υ is excessive by Theorem (3.8), and by Lemma (3.18), (3.21) implies that h is also excessive.

Next we show that h ≥ f. For i ∈ A, Pi{T0 = 0} = 1, and therefore h(i) = Ei[f(XT0)] = f(i). Suppose for a moment that for some i ∉ A, h(i) < f(i). Since E is finite, there is a state j ∉ A at which the difference f(i) – h(i) is maximized; let c = f(j) – h(j) be this maximum value. Since h is excessive and the sum of two excessive functions is also excessive, the function h + c is excessive. By the way c is picked, h + c ≥ f. Since υ is the minimal excessive function majorizing f (cf. Theorem (3.8)), we must have υ ≤ h + c, which implies that
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Since υ ≥ f, this is possible only if υ(j) = f(j), in which case j ∈ A. This contradicts the assumption that j ∉ A. Hence, h(i) ≥ f(i) for all i. This completes the proof.
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If the payoff function f is excessive, then υ = f, and the optimal stopping time is T0 = 0. This is a further confirmation of the intuitive remarks made before about excessive functions.

If one were to draw the functions f and υ on the same paper, the graphs of f and υ would coincide at the points of A, and the graph of υ would lie above that of f; in other words, at the points of A, the function f “supports” the graph of υ. This picture suggests that the set A = {f = υ} be called the support set.

The following sometimes simplifies the task of computing υ.

(3.22)  CRITERION. A state j belongs to the support set A if and only if there exists an excessive function h ≥ f with h(j) = f(j).

Proof. If j ∈ A, υ(j) = f(j), and υ is excessive. In the other direction, let h be an excessive function such that h ≥ f and h(j) = f(j). Then by Theorem (3.8), h ≥ υ and υ(j) ≤ h(j) = f(j). Since υ ≥ f, υ(j) = h(j) and j ∈ A.
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(3.23)  EXAMPLE. Let X be the Markov chain of Example (6.1.25), and let the payoff function f be f = (2, 0, 1, 3, 2, 4, 2.5). States 1 and 2 form an irreducible closed set, states 3, 4, and 5 form another, and states 6 and 7 are transient. By Corollary (3.14),
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and by Criterion (3.22), since h = (4, 4, . . ., 4) is clearly excessive with h ≥ f and h(6) = f(6), state 6 is in the support set, and
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It remains to compute υ(7). From υ ≥ Pυ and υ ≥ f we get
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respectively. The first inequality gives υ(7) ≥ 3; thus υ(7) is the smallest number greater than 3 and 2.5. Hence, the value of the game is given by
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the support set is

 

[image: image]

and the optimal stopping time is
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namely, the time of first visit to the set A = {1, 4, 6}.

Let X(ω) denote the sequence of states realized by the Markov chain X corresponding to the outcome ω ∈ Ω. For ω0 with X(ω0) = (7, 5, 3, 4, 3, 5, . . .), the actual time of stopping is T0(ω0) = 3 and the actual payoff obtained is f(X3(ω0)) = f(4) = 3. For ω1 with X(ω1) = (7, 7, 7, 7, 7, 7, 1, 1, 2, 1, . . .) the stopping time is T0(ω1) = 6 and the actual payoff is f(X6(ω1)) = f(1) = 2 (imagine the poor gambler’s disgust for turning down a payoff of 2.5 exactly 6 times to get the payoff of 2 at the end; but that is hindsight: he did have a good chance of getting 4 or 3). For ω2 with X(ω2) = (4, 3, 5, 3, . . .), the stopping time is T0(ω2) = 0, and the actual payoff is f(4) = 3.

(3.24)  EXAMPLE. Let X be a Markov chain with state space E = {a, b, c, d, e} and transition matrix
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and let the payoff function be f = (5, 12, 7, 6, 8).

States a and b are absorbing; states c, d, and e are transient. By Corollary (3.14), υ(a) = 5, υ(b) = 12. Now, the equations to be satisfied by υ(c) = x, υ(d) = y, υ(e) = z become

 

[image: image]

From the first equation we get 0.8x ≥ 0.8z, that is, x ≥ z. Since z ≥ 8, it follows that x ≥ z and x ≥ 7 can both be satisfied by taking x = z. The remaining equations become
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[image: image]
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The points (y, z) satisfying (3.25) are to the right of the line G = {(y, z): 0.8y − 0.5z = 1.5}, and the points (y, z) satisfying (3.26) are above the line H = {(y, z): − 0.3y + 0.9z = 5.8}. Drawing these as in Figure 7.3.2, we see that y + z is minimized at the intersection of lines G and H, namely, at the point [image: image]. Hence, the value of the game υ is
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The support set is

 

[image: image]

and the optimal stopping time is the time of absorption to the set A. So the optimal strategy is to hope for absorption into b and bear the consequences.
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(3.28)  EXAMPLE. Let X be a Markov chain with state space E = {0, 1, 2, . . ., 9} and transition matrix

[image: image]

Figure 7.3.2 Points (x, y) satisfying (3.25) are to the right of line G, and those satisfying (3.26) are above line H. The sum y + z is minimized at the point [image: image].
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The payoff function is drawn in Figure 7.3.3 (with lines between the actual points for clarity).

States 0 and 9 are absorbing, the remaining states are transient. Clearly, υ(0) = υ(9) = 0. The equations for υ ≥ Pυ now become
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In other words, the value υ(i) at the point i is above the line connecting υ(i − 1) and υ(i + 1). Thus, the function υ is concave. So υ is the minimum concave function lying above f. This function is drawn by dashed lines in Figure 7.3.3. One can see that the support A literally supports υ.

[image: image]

In the case of infinite state spaces, we have seen in Example (3.7) that it is possible for the game not to have an optimal stopping time. However, for any ε > 0, there is a strategy which yields an expected payoff of at least υ(i) – ε for all i. Such a strategy is called ε-optimal.

[image: image]

Figure 7.3.3 function f supports υ at the points of the support set {0, 2, 3, 6, 9}.

(3.29)  THEOREM. Let Tε be the time of first visit to the set
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Then
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Proof. The function h defined by
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is excessive by Lemma (3.18), since υ is excessive and Tε is the time of first visit to a set.

Let c = supi[f(i) − h(i)], and suppose c > 0. Then the function h + c ≥ f, and is excessive, and therefore by Theorem (3.8) h + c ≥ υ. As c > 0, there is a state j for which
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Now f(j) > h(j) + c – ε ≥ υ(j) – ε implies that f ∈ Aε, which in turn implies that, starting at j, Tε = 0 and XTε = j almost surely. Therefore, h(j) = υ(j); and since υ ≥ f, h(j) ≥ f(j), which is a contradiction to (3.32). So c must not be positive; that is, h ≥ f. Therefore, by Theorem (3.8), h ≥ υ.

On the event {Tε < ∞}, XTε ∈ Aε, and therefore f(xTε) ≥ υ(xTε) – ε. The same also holds on {Tε = + ∞}, since there, xTε = Δ and f(Δ) = υ(Δ) = 0. Thus,
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as desired.
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4.  Games with Discounting and Fees

In applications of the optimal stopping problem, in addition to the payoff at the end, there are costs and penalties for waiting.

(4.1)  EXAMPLE. A man is selling his house, for which he is asking $47,000, but he will also consider lower offers. Arrivals of prospective buyers form a Poisson process with rate λ = 2 per month. As far as the nth customer is concerned, the worth of the house is Yn, so unless the house is sold before his arrival, he offers $47,000 or Yn, whichever is smaller. If the offer is acceptable to the owner, the sale is completed. If not, the owner rejects the offer and the customer leaves never to return. The owner is able to make 15% per year on his investments, and the rate of inflation is about 6% per year.

Supposing that Y0, Y1, . . . are independent and identically distributed random variables with values in {35,000, . . ., 50,000}, the successive offers made form a Markov chain X, where Xn = min(Yn, 47,000). The problem is an optimal stopping problem with two added features:

(a) Because of inflation, an offer of y by the next customer to arrive is actually worth
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(b) By rejecting an offer of x today, the owner is losing the opportunity to earn (noting that the net earning rate is 15 – 6 = 9%)
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between now and the time of arrival of the next customer.

Taking these two factors into account, a present offer x must be compared with the expected discounted value of the next offer less the lost earnings due to rejection.

[image: image]

First we take up the effect of discounting. Let X be a Markov chain with state space E and transition matrix P, and let f be a bounded function defined on E. Suppose the discount factor is α ∈ [0, 1]. Then if T is the time of stopping, the payoff is f(XT), and the present worth of this payoff is αT f(XT). We are interested in maximizing the expected value of this by choosing the stopping time T properly. Let
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where the supremum is taken over all possible stopping times of the Markov chain X. As before, υ is called the value of the game. The next theorem shows that υ is the minimal α-excessive function majorizing f. The proof is exactly the same as that of Theorem (3.8) and can be obtained from the latter by replacing “excessive” by “α-excessive” and “P” by “αP” throughout.

(4.3)  THEOREM. The value υ of the game is the minimal α-excessive function which is greater than or equal to f.

Computationally, if E is finite, this means that υ is the solution of the linear programming problem
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subject to
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A note of warning may be in order here. When α < 1, we no longer have Corollary (3.14) to aid in the computation of υ. In general, an α-excessive function of an irreducible recurrent chain is not constant.

Just as in the undiscounted case, the optimal stopping time is the time of first entrance to the support set A = {f = υ}. We will omit the proofs of the next two theorems, as they can be obtained easily from the proofs of their respective analogs.

(4.4)  THEOREM. If E is finite, the optimal stopping time is the time of first entrance to the set A = {j: f(j) = υ(j)}; in other words, if T = inf{n ≥ 0: Xn ∈ A}, then
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(4.5)  THEOREM. For any ε > 0 let Aε = {j: f(j) ≥ υ(j) – ε}. Then the time of first entrance to the set Aε is ε-optimal. In other words, if T = inf{n: Xn ∈ Aε}, then
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(4.6)  EXAMPLE. Let X be a Markov chain with state space E = {a, b, c} and transition matrix
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Suppose f = (6, 5, 3) and α = 0.75. In open form, υ = (x, y, z) must satisfy
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Criterion (3.22) applies to give x = 6, since (6, 6, 6) is α-excessive. Then (4.7) implies that y = 5, and (4.8) implies that z = 3.643. Hence,
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and the optimal stopping time is the time of first entrance to the set
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Note the effect of discounting in this problem. If there were no discounting, the support set would have been simply {a}. Because of discounting, α is small enough to make it optimal to stop at b as well.

[image: image]

Finally, we consider the case where in addition to discounting, there is a continuation cost to be paid before the next state is revealed. At each time n, if the game has not stopped at or before n, then a fee of g(Xn) is to be paid. Here g is a bounded non-negative function on E. Hence, the cost of playing the game is, when discounted,

 

[image: image]

and the quantity to be maximized is the expected value of the discounted payoff diminished further by this amount. We define, for α ∈ [0, 1), f ≥ 0, and g ≥ 0,
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to be the maximum value of the discounted net gain. Now our problem is to compute this function υ and find an optimal stopping time.

We will first reduce this seemingly more complex problem to the case with no fees. Then, using Theorems (4.3), (4.4), and (4.5) above, we will obtain both computational formulas for υ and a characterization of the optimal time to stop.

By Theorem (1.14), for any stopping time T,
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where Rαg is the α-potential of g. Hence, if we put
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then we can write from (4.10) that
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It is clear from this that [image: image] is the value of a game with no fees and with payoff function [image: image], and that the optimal stopping time for the game with payoff function [image: image] and no fees is equal to the optimal stopping time with payoff function f and fee schedule g.

By Theorem (4.3), [image: image] is the minimal α-excessive function majorizing [image: image]; that is, [image: image] is the minimal solution of
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In view of the definition of [image: image],
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which shows that [image: image] if and only if
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It is clear from (4.11) that [image: image] if and only if υ ≥ f, and the inequality [image: image] implies that υ ≥ – Rαg. (This last relation υ ≥ – Rαg always holds If f and g are non-negative.) We have thus proved the following theorems:

(4.15)  THEOREM. The function υ defined by (4.10) is the minimal solution of
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(4.16)  THEOREM. If E is finite, then the optimal stopping time is the time of first entrance to the set
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(4.17)  THEOREM. If T is the time of first entrance to the set
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then
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(4.18)  EXAMPLE. Let X be a Markov chain with state space E = {1, 2, 3, 4, 5} and transition matrix

 

[image: image]

Suppose the fee schedule is g = (0, 1, 1, 2, 0), the payoff function f = (17, 5, 2, 4, 3), and the discounting factor [image: image].

The inequalities to be considered are
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It is obvious that υ(1) = 17; putting this in the second line, we see that [image: image]; this put in the third line gives [image: image]; the fourth line now gives υ(2) = 5; and finally, the last line implies that [image: image]. So

 

[image: image]

and the optimal strategy is to stop at the time of first entrance to the set A = {1, 2}.

For example, if the outcome ω turns out to be such that X0(ω) = 5, X1(ω) = 4, X2(ω) = 4, X3(ω) = 1, . . ., then this strategy would stop the game at time T(ω) = 3. The fees paid are g(5) = 0 at n = 0, and g(4) = 2 at times n = 1, 2. The net gain is, therefore,
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If the outcome ω turned out to make X0(ω) = 5, X1(ω) = 4, X2(ω) = 4, . . ., X8(ω) = 4, X9(ω) = 1, . . ., then the strategy would yield an actual discounted net gain of

 

[image: image]

Knowing that the player had the opportunity to receive f(5) = 3, or α f (4) – g(5) = 3, . . ., we may think him foolish, but . . . .

[image: image]

There is a slightly more complex version of the last problem that is worth mentioning. In some applications, cost of continuation is likely to depend not only on the present state but also on the next. Suppose [image: image] is a bounded function on E × E, and suppose that a fee [image: image] is collected after every transition from i to j. Hence, if the stopping time T(ϖ) = 5, the fees collected are [image: image] X1(ϖ)) at time n = 1, [image: image], X2(ϖ)) at n = 2, . . ., [image: image], X5(ϖ)) at n = 5 Then the problem is to optimize
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Noting that
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with
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we have
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and using Proposition (5.1.25),
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Putting (4.21) into (4.19), we see that our problem becomes the optimization of
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where g is given by (4.20). But this is precisely the problem whose solution is described by Theorems (4.15), (4.16), and (4.17).

5.  Exercises

(5.1)  Compute the potential of g for the Markov chain of

(a)  Exercise (6.8.1a) for g = (1, 3, 0).

(b)  Exercise (6.8.1b) for g = (0, 0, 1, –2).

(c)  Exercise (6.8.1c) for g = (1, 3, 1, 1, 2).

(d)  Exercise (6.8.1d) for g = (0, 0, 1, –1, 3).

(5.2)  Compute the α-potential of g for the Markov chain of

(a)  Exercise (6.8.1a) for α = 0.8 and g = (1, 3, 0).

(b)  Exercise (6.8.1b) for α = 0.75 and g = (1, –1, 1, –2).

(c)  Exercise (6.8.1c) for α = 0.6 and g = (1, 2, 0, 0, 0).

(5.3)  Consider the Markov chain of Example (5.2.5), and let g = (0, 5, 15).

(a)  Compute the α-potential of g for arbitrary α ≤ 1.

(b)  Let T be the time of first visit to state 3. Compute
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(5.4)  Consider a Markov chain X with state space E = {a, b, c} and transition matrix P given in Exercise (6.8.1a), and let g = (1, 3, 4).

(a)  Compute [image: image] for the stopping time T of the time of first visit to state c.

(b)  Note that the result is the same as R ĝ(a) as computed in (5.1) above for ĝ = (1, 3, 0). Explain the reason for this, and use it to compute [image: image] for the stopping time T of the time of first visit to the set {b, c}.

(5.5)  Generalization. Let X be a Markov chain with state space E and transition matrix P, and let T be the time of first visit to a subset A of E. For each [image: image] and ϖ ∈ Ω define
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where Δ is a point not in E.

(a)  Show that [image: image] is a Markov chain with state space Ac ∪ {Δ}.

(b)  Compute the transition matrix [image: image] of Y.

(c)  Show that for any function g ≥ 0 defined on E, we have (note that g(Δ) = 0, as always)
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for every i ∈ Ac and α ∈ [0, 1].

(5.6)  Consider the Markov chain Y of Exercise (5.4.10); in other words, Yn is the age of the machine used at time n where every failure is immediately replaced by a new one. Suppose the probabilities pj are as given in Example (1.10) so that, in the notation of (5.4.10) we have qj = 0.6 for all j.

(a)  Show that for any α ∈ [0, 1] and i = 0, 1, . . .,

 

[image: image]

(b)  Suppose the cost of (buying and) maintaining a machine of age j is given by g(j), where g = (3000, 200, 200, 500, 600, 400, 200, 100, 100, 100, . . .), and suppose the discount factor is α = 0.8. If the age of the machine initially in use is X0 = 3, compute the expected value of the total discounted cost of maintenance and replacement.

(5.7)  Continuation. In the problem of Exercise (5.6) let T be the time of the fifth failure.

(a)  Find the expected value of the total discounted cost before T; in other words, compute
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for α = 0.8 and g as given in (5.6).

(b)  Find the expected value of the undiscounted cost for the same period, namely
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by first computing the discounted value for arbitrary α and then letting α → 1.

(5.8)  Show that f = (2, 5, 2, 4, 2) is an excessive function for the Markov chain X of Exercise (5.3.10).

(5.9)  Show that f = (7, 6, 7, 5) is not excessive for the Markov chain X of Exercise (6.8.1b), but that it is α-excessive for α = 0.8.

(5.10)  Consider the Markov chain x with transition function as in Exercise (6.8.1a). Show that any excessive function is of form f = a(l, 1, 0) + b(3, 2, 0) + c(1, 1, 1), where a, b, and c are arbitrary non-negative numbers.

(5.11)  Use Theorem (2.5) to show that an excessive function f is a potential if and only if Pnf → 0 as n → ∞.

(5.12)  Prove that if f is excessive and g is a non-negative potential, then h = f ∧ g is also a potential.

(5.13)  Show that any excessive function of a transient Markov chain is the limit of a non-decreasing sequence of potentials. (Hint: Supposing the state space is E = {0, 1, . . .}, let [image: image]. Then fn = f ∧ gn is the required sequence of potentials.)

(5.14)  Consider the optimal stopping problem of Examples (3.1) and (3.5). What are the actual payoffs obtained by using the optimal strategy for the realizations ϖ for which

(a)  X(ϖ) = (J, Q, A, A, . . .)

(b)  X(ϖ) = (j, Q, 2, 2, . . .),

(c)  X(ϖ) = (K, Q A, A, . . .)

(d)  X(ϖ) = (K, Q, 2, 2, . . .)

(5.15)  Consider the Markov chain of Example (5.2.5), and let the payoff function be f = (0, 2, 6).

(a)  Compute the value of the game of optimal stopping of this chain. What is the optimal stopping time?

(b)  What is the actual payoff obtained by using the optimal strategy if the outcome ϖ were such that X(ϖ) = (2, 2, 3, 2, 1, 1, 1, . . .)? What is the actual payoff if X(ϖ) = (2, 2, 2, 1, 1, . . .)?

(5.16)  Consider the problem of optimal stopping of the Markov chain of Example (5.3.10) given the payoff function f = (1, 5, 2, 4, 3).

(a)  Compute the value function υ. Find the optimal stopping time T0.

(b)  Compute the probability distribution
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of the actual payoff received given that the initial state is d.

(c)  Compute υ(d) = Ed[f(XT0)] by using the distribution obtained in (b) (and check the result with that obtained in (a)).

(5.17)  Consider the problem of optimal stopping of the Markov chain of Example (5.3.23) with the payoff function f = (0, 2, 1, 2, 4, 0, 0, 3, 1, 1). Find the optimal stopping time and the expected value of the payoff using the optimal strategy.

(5.18)  Let X be a Markov chain with two states, and let the rows of its transition matrix be [image: image] and [image: image]. Suppose the payoff function is f = (5, 3), and suppose a discount factor of α = 0.6 is applicable. Find the optimal stopping time, and compute the expected value of the discounted payoff under the optimal strategy.

(5.19)  Let X be a Markov chain whose transition matrix has the rows [image: image], [image: image], [image: image]. Consider the problem of optimal stopping of this chain when the discount factor is α = 0.8 and the payoff function f = (4, 2, 1). Find the value of this game and the optimal stopping time.

(5.20)  Consider the optimal stopping problem of the Markov chain X with state space E = {a, b} transition matrix P, payoff function f, and fee function g given as
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Find the optimal stopping time and the value of the game.

(5.21)  Solve the problem of Exercise (5.20) above in the presence of discounting with α = 0.7.

(5.22)  Consider the problem of optimal stopping of the Markov chain X with state space E = {a, b, c}, transition matrix P, payoff function f, and fee function g, where
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Find the optimal stopping time.

(5.23)  Consider the problem of Exercise (5.22) again, but now with discounting. What is the smallest value of the discount factor α under which the optimal stopping time remains the same as in the case with no discounting?

(5.24)  Consider the same problem as in Exercise (5.22) above but now with data
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(a)  Find the optimal stopping time in the case of no discounting.

(b)  Do the same with discounting when α = 0.8.

(5.25)  Consider the same problem as in Exercise (5.22) above, but now the state space is E = {1, 2, 3, 4, 5} and the data are
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(a)  Find the optimal stopping time with no discounting.

(b)  Find the optimal stopping time with discounting with α = 0.8.

(5.26)  Consider a two-state Markov chain with transition probabilities [image: image], [image: image] (the other two numbers are [image: image] and [image: image]). Consider the problem of optimal stopping of this chain when the payoff function is f = (5, 3), no discounting, a fee of 1 dollar for every step, and the added feature that the player has only 2 dollars (so that if he has not stopped before, he must stop at n = 2).

(a)  Show that the optimal stopping time T0 is given by
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for every ϖ.

(b)  Compute the value of the game
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(c)  Compare the result of part (a) with the case where the player has an unlimited amount of capital, so that he does not have to stop at any predetermined time.

(5.27)  Selling an asset. Find the optimal strategy for selling the house in Example (4.1).

(5.28)  Time-Dependent Payoffs. Let X be a Markov chain with state space E and transition matrix P. Suppose we have a non-negative function fn defined on E for each [image: image]. Consider the problem of optimal stopping of X if the payoff is fn(j) for stopping at time n in state j. (fn = αnf gives the special case of discounting; fn = f for n < ν and fn = 0 for n ≥ ν gives the “finite horizon” case of Exercise (5.26).)

(a)  Let [image: image] be the space-time Markov chain associated with X described in Exercise (5.4.12); [image: image] has the state space [image: image]. Show that the problem under consideration is equivalent to that of optimal stopping of the chain [image: image] with payoff function [image: image] on Ê defined by [image: image].

(b)  Let [image: image] be the value of the game of stopping [image: image], and define [image: image]. Show that the υm are the maximal solutions of
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(c)  Suppose that E is finite and that fν = fν+1 = · · · = 0 for some integer ν. Then show that
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is an optimal stopping time.

(5.29)  Consider the optimal stopping problem with time-dependent payoff functions fn for a Markov chain X with transition matrix P, where
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and f4 = f5 = · · · = 0 (state space is E = {a, b, c}).

(a)  Find the optimal stopping time T0.

(b)  Find the value of T0(ϖ) for each one of the realizations X(ϖ) = (b, b, c, a, b, . . .), X(ϖ) = (c, c, b, b, c, . . .), X(ϖ) = (c, a, a, b, . . .), X(ϖ) = (c, c, a, a, . . .), X(ϖ) = (a, b, b, c, . . .).

(5.30)  Consider the problem of the preceding exercise, and further suppose that a fee of gn(i) must be paid at time n if the state Xn is i in order to continue the game. That is, we want to optimize
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by choosing the stopping time T properly.

Find the optimal stopping time T0 with the data P, fn as given before in (5.29), and
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(5.31)  Consider the problem of the preceding exercise with discounting with factor α = 0.9. Find the optimal stopping time and compute the value of the game.

[image: image]

Until very recently, topics such as potentials and excessive functions were considered to be of only theoretical interest. Fortunately, this is no longer the case, as the applications to optimal stopping problems alone illustrate. We have been able to give only a sketchy introduction to these very important topics. The interested reader will find an extensive treatment in the book by KEMENY, SNELL, and KNAPP [I].

It is usual with many authors to introduce potentials by referring to the classical potential theory and by drawing analogies with the amount of work which must be done in order to bring a particle of unit charge from infinity to a point x in the presence of other charged particles here and there. Considering the background of the modern student of stochastic processes, this attempt reminds us of the following.

A man was delegated the responsibility of explaining the facts of life to his nine-year-old nephew, presumably because the father was too shy to do it himself.

“You know how it is with the birds and the bees, don’t you?” starts the uncle hopefully.

“What about the birds and the bees?” asks the young boy, quite puzzled.

“Well, you know, the birds and the bees . . .” starts the uncle again but has to stop seeing the confusion in junior’s face. After several such unsuccessful attempts, he exclaims:

“You know how human beings reproduce, don’t you?!”

“Of course,“ answers the boy, “everybody knows that!”

“Well,” says the uncle, quite relieved, “it is the same with the birds and the bees.”

Well, it is the same with classical potential theory.

Our formulation and development of the optimal stopping problem follows that given in DYNKIN and YUSHKEVICH [1]. That book also contains a number of other very interesting topics all explained in a clear, readable style.


CHAPTER 8

Markov Processes

In considering Markov chains, we thought in terms of a system which moved from one state to the next in such a manner that the future of the process was conditionally independent of its past provided that the present state be known. There we had concentrated on such things as the chances of moving from one state to another in a fixed number of steps, or the number of steps it takes for the process to move from a state into another, or the number of times the process visited a certain state during the first so many transitions. In applications, when considering processes which are running on “real time,” this meant concentrating on the transitions but ignoring the actual times spent in between the transitions.

The processes we will introduce in this chapter will remedy this by allowing us to take into account not only the changes of state, but also the actual times spent in between.

In Section 1 we give an introduction to Markov processes and discuss the Markov and strong Markov properties. Section 2 is on the sample path behavior of Markov processes. Times spent in a state, jumps between states, and times between jumps are examined in Section 3. These structural properties are used in Section 4 to obtain computational results on potentials and infinitesimal generators. Limiting properties of the transition functions and ratios of additive functionals are discussed in Section 5 in terms of the similar results for (discrete time) chains. Finally, in Section 6, birth and death processes are discussed briefly and a number of examples from queueing theory are given.

1.  Markov Processes

Let E be a countable set, and for each ω ∈ Ω and [image: image], let Yt(ω) be an element of E. For fixed t, this defines a random variable Yt taking values in E, and the collection of all these random variables is a stochastic process [image: image] with a continuous time parameter. The set E is called the state space of Y, and the process is said to be in state j at time t if Yt = j. If an outcome ω ∈ Ω is fixed, then the values Yt(ω) define a function t → Yt(ω) from [image: image] into E. A typical realization of the process Y, namely the function t → Yt(ω) for a typical fixed ω, will be as in Figure 8.1.1. Our aim will be the clarification of the stochastic structure of Y and of its functionals.

The following definition is the continuous time version of the definition of a Markov chain.

(1.1)  DEFINITION. The stochastic process [image: image] is said to be a Markov process with state space E provided that for any t, s ≥ 0 and j ∈ E,
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The conditional probability appearing above may, in general, depend on both t and s (in addition to j and the value of Yt). When
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is independent of t ≥ 0 for all i, j ∈ E and s ≥ 0, the process Y is said to be a time-homogeneous Markov process. For fixed i, j ∈ E, the function t → Pt(i, j) is called a transition function; and the family of matrices Pt, t ≥ 0, of the transition functions Pt(i, j) is simply called the transition function of the Markov process Y. Throughout, we will limit ourselves to time-homogeneous Markov processes and will omit mentioning the qualifier “time-homogeneous.”

[image: image]

Figure 8.1.1 A possible realization of a continuous time process.

Concerning the transition functions, we observe that
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for every i, j ∈ E and t, s > 0. Of these, (1.3) and (1.4) are self-evident, and (1.5) is the Chapman-Kolmogorov equation for the continuous time case (cf. (5.1.8) for the discrete-parameter case). To show (1.5), we use (1.2) to write the left-hand side of (1.5) as
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By the Markov property,
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Hence,
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Corresponding to Theorem (5.1.5) we have the following.

(1.6)  PROPOSITION. For any integer [image: image], numbers 0 ≤ t0 < t1 < ··· tn in [0, ∞), and states i0, i1, · · ·, in in E, we have
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Hence, the joint distribution of Yt0, . . ., Ytn is specified by the initial distribution π of Y0 and the transition function (Pt) of the process. This result also enables one to go in the converse direction: Suppose we are given a probability distribution π and a transition function (Pt) over E satisfying (1.3), (1.4), and (1.5). Then it is always possible to construct a sample space Ω, random variables Yt from Ω into E, and a probability measure P on Ω in such a manner that over (Ω, P), the process Y is a Markov process with state space E, initial distribution π, and transition function (Pt). In such constructions it is usual to take Ω to be the set of all functions ω from [0, ∞) into E, to define Yt(ω) = ω(t) for every t ≥ 0 and ω ∈ Ω, and first specify the probabilities of events of the form
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by
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and then extend the definition of P(A) to other events A by using the axioms (1.1.6) and the various available results on the possibility of such extensions. This way every outcome ω ∈ Ω is also the realization of Y corresponding to that ω. In thinking of such matters we will think of ω as the realization even when that is not strictly true.

(1.7)  EXAMPLE. Poisson Process. Let N = {Nt; t ≥ 0} be a Poisson process. Then by axiom (4.1.1b),
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which implies that N is a Markov process. By Corollary (4.1.15), for some λ,

 

[image: image]

Hence, the transition function (Pt) of this Markov process has the form
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where pt, is the Poisson distribution with parameter λt, i.e.,
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(1.8)  EXAMPLE. Compound Poisson Processes. Let Y be a compound Poisson process (cf. Definition (4.6.1)) taking integer values. Then (4.6.1b) implies that Y is a Markov process with state space E = {. . ., −1, 0, 1, . . .}. Further, by (4.6.1b) and (4.6.1c),
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where

 

[image: image]

Hence, the transition function (Pt) for this Markov process is

 

[image: image]

(1.9)  EXAMPLE. Markov chains subordinated to Poisson processes. Let [image: image] be a Markov chain with state space E and transition matrix K, and let N = {Nt; t ≥ 0} be a Poisson process with rate λ which is independent of [image: image]. Consider a system which moves from one state of E to another in such a way that the successive states visited form the Markov chain [image: image] and the times of jumps (times at which the system changes its state) form the Poisson process N. Then, Nt being the number of jumps in (0, t], the system is in state [image: image] at time t. In other words, if T1, T2, . . . are the arrival times of N and T0 = 0, then [image: image] for all t in the time interval [Tn, Tn+1). Then Y = [Yt; t ≥ 0} is a Markov process. The intuitive argument for this is as follows. Suppose we are given the past history of Y before t and are asked to predict Yt+s. Knowing Yt = i, if we know further that there will be Nt+s − Nt = n transitions during (t, t + s], then the probability that Yt+s = j becomes the probability that the Markov chain [image: image] moves from the state Yt = i to the state j in exactly n steps. This conditional probability is Kn(i, j) where Kn is the nth power of K. Furthermore, the number of transitions to take place during (t, t + s] is independent of the past history (by the fundamental property of Poisson processes, it is independent of the knowledge about Nu, u ≤ t, which {Yu, u ≤ t} may provide; and by the independence of N and [image: image], it is independent of the knowledge about [image: image] which {Yu, u ≤ t} might provide). Hence, given all the past history before t, the probability of n transitions during (t, t + s] is simply e−λs(λs)n/n!. Thus, if the event {Yt = i} has occurred, then
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Somewhat more formally, the arguments above can be written as
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Here, the first equality sign is justified by using Theorem (2.2.19); the second equality follows from the construction of Y and the fact that [image: image] is a Markov chain independent of N; the third follows from the independence of Nt+s − Nt from {Yu; u ≤ t} and from the fact that its distribution is Poisson; and the final equality sign uses Corollary (2.2.22).

In fact, in addition to showing that Y is a Markov process, we have also computed its transition function: it is given by
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We will return to this example again. In a sense, this example has all the characteristics of all the Markov processes with finite state spaces. We will make this “sense” more precise later in Section 4 (see Theorem (4.31) there).

For a concrete example, suppose [image: image] is the Markov chain of Example (5.1.10). Then the state space is E = {1, 2}, and
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Suppose further that the Poisson process has rate λ = 15. Then Pt(1, 1) becomes
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Similar computations for the other Pt(i, j) yield
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(1.10)  EXAMPLE. M/M/1 queueing system. Suppose the arrivals of customers at a service facility form a Poisson process. If a customer arrives to find the server idle, his service starts immediately; otherwise, if he finds the server busy, he waits until it is his turn to be served. The time spent serving a customer is independent of all the other service times and of the arrival process. Service times are exponentially distributed. We are interested in the process {Yt; t ≥ 0}, where Yt is the number of customers in the system (waiting or being served) at time t.

Suppose we have been observing the process until time t and know, in particular, the number of customers Yt that are in the system. To predict the number Yt+s of customers that are there at time t + s, we think as follows: Yt+s is equal to the sum of Yt and the number of arrivals during (t, t + s] less the number of services completed during (t, t + s]. The number of arrivals during (t, t + s] is independent of everything else that went on before t. As to the services, because of the exponential distribution’s lack of memory, the remaining service time of the customer being served at time t (if any) is independent of how long that service has been going on; and it is clear that the other service times are completely independent of the past. Hence, the number of services completed during (t, t + s] can depend only on Yt and the arrivals during (t, t + s], and this dependence is only because one cannot serve nonexistent customers. This analysis shows that Y is a Markov process. Unlike the preceding examples, its transition function cannot be displayed explicitly with easy computations.

We will return to this example a number of times and will give various extensions of it later in Section 6.

[image: image]

Just as with Markov chains, the definition of Markov processes implies several stronger statements. The next theorem states that the future and the past are conditionally independent given the present state.

(1.11)  THEOREM. Let Y be a Markov process, and let t ≥ 0 be fixed. Then {Ys; s ≥ t} and {Yu; u ≤ t} are conditionally independent given Yt.

Proof. From the definition of conditional independence (cf. Definition (2.2.25)), what this means is that for any n, m ∈ [image: image], 0 ≤ t1 < . . . < tn = t ≤ tn+1 < . . . < tn+m and any bounded function g on Em we have
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Now let Xk = Ytk for k = 1, . . ., n + m. The resulting statement to be proved is Theorem (5.1.19), whose proof goes through word for word.

[image: image]

For the computation of expectations, the following is useful. It is equivalent to (5.1.22) and (5.1.23), whose proofs are easy to adapt to the present case.

(1.12)  PROPOSITION. For any m ∈ [image: image], numbers t ≥ 0 and 0 ≤ s1 < ··· < sm and any bounded function f on Em,
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where
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Proof is omitted. The next question to raise is whether “the independence of the past and the future given the present” holds when random times play the role of “present.” It turns out that it holds for certain stopping times when Y is sufficiently smooth. A random variable T taking values in [0, + ∞] is said to be a stopping time for Y provided that, for every finite t ≥ 0, the occurrence or non-occurrence of the event {T < t} can be determined from the history {Yu; u ≤ t} of the process Y until that time t. Then, by {Yu; u ≤ T} we mean the history of Y until the stopping time T. The following, then, is the analog of Theorems (5.1.24) and (4.2.18). The meaning of “standardness” for Y will be explained in the next section: these are the processes which we will restrict ourselves to from Theorem (2.5) onward.

(1.14)  THEOREM. Suppose Y is standard. Then, for any m ∈ [image: image], numbers 0 ≤ s1 < . . . < sm and any positive function f on Em, we have
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for all stopping times T; here g is as defined by (1.13).

In particular, by taking m = 1 and f = 1j for some fixed j ∈ E, we obtain
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This is called the strong Markov property at T.

2.  Sample Path Behavior

Let Y be a Markov process with a countable state space E and transition function (Pt). In this section we are interested in the properties of the sample paths t → Yt(ω) for typical ω.

To discuss such things as smoothness for a sample path, we need to specify a topology on the state space first. Therefore, throughout the remainder of this chapter we assume that E is given the discrete topology, that is, we assume that every subset of E is open. Then for any ω ∈ Ω, and sequence tn decreasing to t,
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for some i ∈ E if and only if Ytn(ω) = i for all n ≥ n0 for some integer n0 possibly depending on ω. In particular, if E is a subset of the integers, then the discrete topology on E coincides with the ordinary one.

Arbitrary Markov processes can have highly irregular sample paths. To insure the existence of a version with some regularity properties, we impose a continuity condition on the transition function: We assume that
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then (Pt) is said to be a standard transition function.

When (2.2) holds, Pt(i, i) → 1 as t ↓ 0 for every i ∈ E; conversely, this property implies (2.2), since ∑j Pt (i, j) = 1 for all t. It follows from (1.5) that
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for all t and s, which by iteration implies that Pt(i, i) ≥ [Pu(i, i)]n for u = t/n. Since Pt(i, i) → 1 as t ↓ 0, Pu(i, i) > 0 for u small enough, and therefore, Pt(i, i) ≥ [Pu(i, i)]n > 0. Hence, as a particular consequence of (2.2) we have that Pt(i, i) > 0 for all t ≥ 0. The following is a more complete account. We omit the proof.

(2.3)  PROPOSITION. Fix i, j ∈ E; the function t → Pt(i, j) vanishes either everywhere or nowhere in (0, ∞); in either case, it is continuous everywhere.

For a Poisson process N, the probability that a fixed point t0 is a time of arrival was zero; in other words, for any fixed t, P{Nt = Ns} goes to one in the limit as s approaches t. This property is called stochastic continuity and is also true for more general Markov processes.

(2.4)  PROPOSITION. Y is stochastically continuous; that is, for any t ≥ 0,
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Proof. For any initial state i,
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As u ↓ 0, (2.2) implies that 1 − Pu(j, j) → 0, which in turn implies that P{Yt ≠ Yt+u | Y0 = i} → 0 by the bounded convergence theorem. Since this is true for any i, a second application of the bounded convergence theorem yields the result that P{Yt ≠ Yt+u} → 0 as u → 0.

Next we consider the limit from left. For i ∈ E,
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for any finite subset A of E. As u ↓ 0, Pu(j, j) → 1 by (2.2), and Pt–u(i, j) → Pt(i, j) by Proposition (2.3). Hence, as u ↓ 0, the right-hand side approaches ∑j∈APt(i, j), which in turn increases to one as A increases to E. Thus, P{Yt–u = Yt, | Y0 = i} → 1 as u ↓ 0, and the proof is complete since this holds for all i.

[image: image]

Stochastic continuity does not imply the continuity of the sample paths. For example, a Poisson process N is stochastically continuous, but t → Nt(ω) has infinitely many jumps for any typical ω. Usually, for almost all ω, the path t → Yt(ω) of a Markov process Y will have many discontinuities (see Figure 8.1.1 for a typical picture). In general, stochastic continuity does not even imply almost sure continuity at a fixed point: for fixed t0, the set Ω0 of all ω for which t → Yt(ω) is continuous at t0 may be such that P(Ω0) < 1. However, P(Ω0) = 1 if Y has no instantaneous states (see (2.12) for the definition). Nevertheless, stochastic continuity enables us to modify the paths t → Yt(ω) to obtain certain desirable properties. [image: image] is said to be a modification of Y if [image: image] for every t.

The next theorem summarizes what can be done. We need to add an extra point Δ to the state space so that the modified version has the state space E ∪ {Δ}. If E = {0, 1, . . .}, then Δ should be +∞; otherwise, in any ordering of the elements of E, the extra point Δ should correspond to +∞.

(2.5)  THEOREM. It is possible to modify Y, without altering its probability law, in such a way that the resulting version has the following property: For any ω ∈ Ω and t ∈ [image: image], either

(a)   Yt(ω) = Δ and Ytn(ω) → Δ for any sequence tn ↓ t;

or

(b)   Yt(ω) = i for some i ∈ E, there are sequences tn ↓ t such that Ytn(ω) → i, and for any sequence tn ↓ t such that Ytn(ω) has a limit in E, we have lim Ytn(ω) = i.

Proof is omitted. From here on we let Y denote the modified version. Since Y is a modification of the original version Y0, we have [image: image] almost surely for any t. Therefore, in particular,
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So the addition of Δ to the state space is for purposes of smoothness: for any ω, if Yt0(ω) = Δ, then t → Yt(ω) is right continuous at t0. In fact, even for other states we almost have right continuity:

(2.7)  COROLLARY. For any ω ∈ Ω and t ∈ [image: image], if there is a sequence tn ↓ t such that lim Ytn(ω) = i ∈ E, then Yt(ω) = i.

Proof. Since lim Ytn(ω)is in E, case (a) does not hold, and Yt(ω) is in E. Then (b) implies that lim Ytn(ω) = Yt(ω).
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Note that in case (2.5b), we have not excluded the possibilities that for some sequences tn ↓ t the sequence Ytn(ω) does not have a limit or has the limit Δ. These possibilities cannot arise if Yt(ω) = i implies Yt+s(ω) = i for all s ∈ (0, ε) for some ε > 0; because, then, lim Ytn(ω) = i for all sequences tn ↓ t. We are thus led to examine the length of time Y spends in a state after entering it.

We define Wt as the length of time the process Y remains in the state being occupied at the instant t; that is, for every ω ∈ Ω and t ≥ 0,
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We then have the following important

(2.9)  THEOREM. For any i ∈ E and t ≥ 0,
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for some number λ(i) ∈ [0, + ∞] (if λ(i) = + ∞, then e−λ(i)u = 0 for all u ≥ 0).

Proof. By the time homogeneity of Y, the conditional probability in question is independent of t. For fixed i, then, let it be denoted by f(u). Since the event {Wt > u + υ} is equal to the event {Wt > u, Wt+u > υ}, we have
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If Yt(ω) = i and Wt(ω) > u, then Yt+u(ω) = i and that knowledge makes all the past history useless as far as predicting the future is concerned. Hence, the second factor on the right is equal to
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The function f is bounded by 0 and 1, and (2.10) and (2.11) show that it also satisfies f(u + υ) = f(u)f(υ) for all u, υ ≥ 0. Therefore, it must be of the form f(u) = e−cu for some constant c ≥ 0, possibly c = +∞; and this constant c might depend on the state i being fixed.

[image: image]

(2.12)  DEFINITION. A state i is called absorbing if λ(i) = 0, stable if 0 < λ(i) < ∞, and instantaneous if λ(i) = +∞.
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If i is absorbing and if {Yt = i} occurs, then Yt+s = i for all s ≥ 0; in other words, if Y enters i, then it stays there forever.

If i is a stable state, then
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in other words, if Y is in i at time t, it stays there a positive but finite time further.

Finally, if i is instantaneous,
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which means that the process jumps out of an instantaneous state as soon as it enters it.

The following theorem clarifies (2.5) further.

(2.15)  THEOREM. For almost all ω ∈ Ω and any t ∈ [image: image], one of the following three possibilities holds:

(a)   Yt(ω) = Δ; then lim Ytn(ω) = Δ for any sequence tn ↓ t.

(b)   Yt(ω) = i where i ∈ E is either stable or absorbing; then lim Ytn(ω) = i for any sequence tn ↓ t.

(c)   Yt(ω) = i where i ∈ E is instantaneous; then lim Ytn(ω) = i for some sequences tn ↓ t, lim Ytn(ω) = Δ for some other sequences tn ↓ t, and lim Ytn(ω) does not exist for still other sequences tn ↓ t.

Proof. Case (a) is the same as in (2.5). In case (b), if Yt(ω) = i for some stable or absorbing state i, then by (2.13) there is an interval [t, t + ε) of positive length ε throughout which Yu(ω) = i. It follows that lim Yu(ω) = i as u ↓ t.

In case (c), it follows from Theorem (2.5) that for some sequence tn ↓ t, we have lim Ytn(ω) = i. Since i is instantaneous, (2.14) implies that there are instants s arbitrarily close to t at which Ys(ω) ≠ i. To show the second possibility, let sn ↓ t be selected so that Ysn(ω) ≠ i. Since E ∪ {Δ} is compact, there is some subsequence (tn) of (sn) such that lim Ytn(ω) exists. If the limit is in E, then it must be i by part (b) of Theorem (2.5), which implies that Ytn(ω) = i for infinitely many tn by (2.1), which in turn contradicts the fact that Ytn(ω) ≠ i for any tn. Hence, lim Ytn(ω) is not in E, that is, lim Ytn(ω) = Δ. The third possibility in case (c) follows from the other two.

[image: image]

The sample path behavior described by part (c) above is not easy to visualize. The process jumps out of an instantaneous state i as soon as it enters i, but also returns to i infinitely often within arbitrarily short times. In fact, returns are often enough to make the amount of time spent in i positive: this follows upon observing that for any ε ≥ 0
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which is positive since Ps(i, i) > 0 for all s ≥ 0.

We will soon restrict ourselves to Markov processes with no instantaneous states. It is worth mentioning, however, that this is not as harmless as it might look at first. The presence of an instantaneous state will show itself in the observational data. Moreover, there are examples of Markov processes with one, two, or any number of instantaneous states; and there are examples where all states are instantaneous.

On the other hand, in at least two important cases there can be no instantaneous states: when there are only finitely many states, and when t → Yt is right continuous.

(2.17)  PROPOSITION. If E is finite, then no state is instantaneous.

Proof. Let tn be a sequence decreasing to t. By (2.6), Ytn ∈ E almost surely for each n and therefore for all n; that is, for almost all a ω, Ytn(ω) ∈ E for all n. This implies that Ytn(ω) = i for some i ∈ E for infinitely many n, since there are only finitely many states. Hence, there is some subsequence (sn) such that sn ↓ t and Ysn(ω) = i for all sn. Therefore, lim Ytn(ω) ≠ Δ no matter how the sequence tn is chosen. This shows that case (c) of Theorem (2.15) cannot arise.
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(2.18)  PROPOSITION. The mapping t → Yt(ω) is right continuous for almost all ω if and only if there are no instantaneous states.

Proof. If there are no instantaneous states, for almost all ω, either case (a) or case (b) of (2.15) holds at every t0; and in either case t → Yt(ω) is right continuous at t0. If there is an instantaneous state i, then for Y0 = i, case (c) of (2.15) applies to imply that Ys(ω) has two possible limits as s ↓ 0; and thus t → Yt(ω) is not right continuous.

[image: image]

In fact, if there are no instantaneous states, then t → Yt is right continuous and has left-hand limits everywhere.

Next we consider the set of times spent in a fixed stable state. For a stable state i, let
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By (2.13) the set Gi(ω) is composed of intervals each one of which is of positive length. By Theorem (2.9), the lengths of these intervals are independent and identically distributed with an exponential distribution; in other words, if the component intervals of Gi were laid next to each other, then we would obtain a Poisson process with parameter λ(i). Therefore, in a finite interval [0, t] there are only finitely many intervals belonging to Gi. Moreover, by (2.15b), these intervals are all of the form [), that is, closed on the left and open on the right. We have thus proved the following (see Figure 8.2.1 for the typical picture):

[image: image]

Figure 8.2.1 The set Gi(ω) of times spent in a stable state i is a union of disjoint intervals of positive length.

(2.20)  THEOREM. Let i be a stable state. Then for almost all ω ∈ Ω, the time set Gi(ω) is a countable union of disjoint intervals each of which has positive length; each component interval has the form [); and there are only finitely many components in Gi(ω) ∩ [0, t].

Finally, suppose Yt(ω) = i where i is stable. Then t ∈ Gi(ω), and by the preceding theorem, there is a maximal interval [S(ω), T(ω)) which includes t, throughout which the process remains in state i. The condition we are introducing next insures that the state to be entered at time T(ω) is not the special point Δ. Note that T(ω) = t + Wt(ω), where Wt is as defined by (2.8). This condition will remain in force throughout the remainder of this chapter.

(2.21)  CONDITION. If Yt = i where i is stable, then the next state Yt+Wt to be entered is j for some j ∈ E.

Consequently, if the process Y enters Δ at a finite time ζ, it must do so by going over a sequence of stable states Xn with limit Δ and not by a jump from a stable state into Δ. If the state space E = {0, 1, 2, . . .}, then Condition (2.21) states that all jumps are of finite magnitude.

3.  Structure of a Markov Process

Throughout this section Y is a Markov process with state space E and standard transition function (Pt). We assume that E has the discrete topology, and that the extra point Δ is the “point at infinity” if E is not finite. Finally, we assume that t → Yt(ω) is right continuous for almost all ω ∈ Ω. By Proposition (2.18) this is equivalent to assuming that there are no instantaneous states. Until page 250 we further suppose that all states are stable.

For almost all ω ∈ Ω, the path t → Yt(ω) can be described as follows (we write Y(t, ω) = Yt(ω) for typographical ease): Initially, at time T0(ω) = 0, the process is in some state X0(ω) = Y(0, ω). It remains in that state for some positive time; and at the end, at some time T1(ω), it jumps to a new stable state X1(ω) = Y(Tx(ω), ω). The process remains in the new state for some positive time; and at some time T2(ω) jumps to another state X2(ω) = Y(T2(ω), ω). Then it stays there until some later time T3(ω), at which it jumps again, to some state X3(ω) = Y(T3(ω), ω); and so on (see Figure 8.3.1 for the picture). In this section we will examine the underlying structure of Y as defined by these Xn and Tn.

In terms of the waiting time Wt from t until the instant of the next change of state (see (2.8) for the definition), we define

 

[image: image]
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Figure 8.3.1 A realization of a Markov process with stable states. For the realization ω drawn, the successive states visited are X0(ω) = 2, X1(ω) = 3, X2(ω) = 1, X3(ω) = 2, . . ., and the successive jump times are T1(ω) = 0.8, T2(ω) = 1.2, T3(ω) = 2.3, . . . .

The times T0 T1, T2, . . . are the instants of transitions for the process Y, and X0, X1, X2 . . . are the successive states visited by Y. If Xn = i, the interval [Tn, Tn+1) is said to be a sojourn interval in i. Since all states are stable, almost surely, 0 < WTn < ∞ for each n by (2.13), and each Xn is in E by Condition (2.21).

The following theorem shows that [Xn; [image: image]] is a Markov chain, and Tn+1 − Tn has an exponential distribution with the parameter depending on Xn. This is an important result.

(3.3)  THEOREM. For any [image: image], j ∈ E, and u ∈ [image: image] we have
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if {Xn = i} occurs. Here, Q(i, j) ≥ 0, Q(i, i) = 0, and ∑j Q(i, j) = 1.

Proof. Fix j, n, and u. First we note that Tn is a stopping time: this follows since tn(ω) ≤ t if and only if there are 0 < s1 < s2 < . . . < sn < t such that Y0(ω) ≠ Ys1(ω) ≠ . . . ≠ Ysn(ω), and the existence of such s1 . . ., sn can be determined once Ys(ω) is known for all s ≤ t.

We put T = Tn for simplicity. Then Tn+1 − Tn = WT and Xn+1 = Y(T + WT). Clearly, knowing X0, . . ., Xn, T0 . . ., Tn is equivalent to knowing Yt for all t ≤ Tn = T. Hence, the left-hand side of (3.4) is
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By the strong Markov property (cf. Theorem (1.14)), this in turn is equal to g(YT) = g(Xn), where
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To complete the proof we need to show that g(i) has the form
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We can write (3.5) as
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First, by Theorem (2.9),
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On the other hand, the event {Y0 = i, W0 > u} is the same as {Ys = i; s ≥ u},

and given that W0 > u we have W0 = u + Wu. Thus,

 

[image: image]

independent of u by Proposition (1.12). Putting (3.8) and (3.9) into (3.7) yields (3.6).
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Putting u = 0 in (3.4) yields the following

(3.10)  COROLLARY. The sequence X0, X1, X2, . . . of successive states visited form a Markov chain with the transition matrix Q.

It follows from Theorem (3.3) that
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independent of j; in other words, the distribution of a sojourn time depends only on the state in which that sojourn passes and not on the next state. By iteration, we can obtain the following

(3.11)  COROLLARY. For any [image: image], i0, . . ., in ∈ E, and u1, . . ., un ∈ [image: image] we have
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In other words, the times between transitions are conditionally independent of each other given the successive states being visited, and each such sojourn time has an exponential distribution with the parameter dependent on the state being visited. This and the fact that the successive states visited form a Markov chain clarify the structure of a Markov process.

(3.12)  EXAMPLE. Consider the queueing process M/M/1 introduced in Example (1.10). There, the times of transitions are the instants at which the queue size changes. If the change is due to an arrival, then the queue size increases by one; and if the change is due to a departure, then it decreases by one.

If {Xn = 0} occurs, then the next change must be due to an arrival, which means that Xn+1 = 1 with probability one, and furthermore, Tn+1 − Tn has the same distribution as the time until the next arrival, which is exponential  with parameter a. Thus,
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Suppose next that {Xn = i}, i ≥ 1, occurs. Let A be the time from Tn until the instant of next arrival, and let S be the time from Tn until the instant of completion of service being carried on. Then A and S are exponentially distributed random variables with respective parameters a and b and are independent of each other. Furthermore, Tn+1 − Tn = min(A, S), which means that
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in other words,
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Concerning the queue size after the next change of state, we note that Xn+1 = i + 1 if S > A and Xn+1 = i − 1 if S < A (the third possibility, A = S, has probability zero). Thus,
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Using Proposition (2.2.16), we get

 

[image: image]

Thus, for i ≥ 1, (3.14)
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To summarize, then, (λ(0), λ(1), . . .) = (a, a + b, a + b, . . .), and (writing p = a/(a + b), q = b/(a + b) for simplicity)
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In applications, as the preceding example illustrates, the data for a Markov process are usually given in terms of the parameters λ(i) and the transition probabilities Q(i, j). We will shortly see, in the next section, that the structure outlined above is also the starting point in many computations. There are, however, two further points to be attended to: namely, the problem of absorbing states and whether the Markov chain X and the transition times Tn specify Y completely.

We take up absorbing states first. Suppose Xn(ω) and Tn(ω) are defined by (3.1) and (3.2) for n = 0, 1, . . ., m, and suppose Xm(ω) = i where i is absorbing. Then, we know that Yt(ω) = i for all t ≥ Tm(ω). Using the definition (2.8) of Wt, we get Tm+1(ω) = + ∞, but (3.1) cannot be used further to get rm+2(ω), etc. (since W∞ is not defined), and more seriously, (3.2) gives Xm+1(ω) = Y∞(ω) = Δ. To limit Xn(ω) to the state space E, and to define Xn(ω) and tn(ω) beyond m, we now introduce the following definitions.
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and
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for each [image: image]. If there are no absorbing states, these definitions reduce to (3.1) and (3.2). It is easy to see that the following holds.

(3.18)  REMARK. If Y is right continuous, and if (Xn, tn) are defined by (3.15)–(3.17), then Theorem (3.3) and its corollaries (3.10) and (3.11) remain true. If i is an absorbing state, then it is an absorbing state for the Markov chain X as well. Thus, the transition matrix Q of the Markov chain can be used to classify the states as absorbing or stable: Q(i, i) = 1 for an absorbing state i, and Q(i, i) = 0 for a stable state i.
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Next we take up the question of whether Y can be defined in terms of the Xn and Tn. It follows from the definitions (3.15)–(3.17) that
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for any ω ∈ Ω. Hence, Y can be defined by (3.19) in terms of X and the Tn provided that any t > 0 belong to the interval [Tn (ω), Tn+1(ω)) for some n; in other words, provided that
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for almost all ω. Note that, writing Yt− (ω) for [image: image] Ys(ω), in general we have,
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If ζ(ω) < ∞, case (a) of Theorem (2.15) applies, and there are infinitely many transitions within any ε neighborhood of ζ(ω). Therefore, if ζ < ∞ with a positive probability, it is impossible to talk of a next jump after ζ, and we cannot define Y constructively beyond ζ. Such questions as the behavior of Y at Δ are the subject matter of the boundary theory of Markov processes. We will not go into it here but instead will give criteria for recognizing whether ζ is finite or not.

(3.22)  DEFINITION. The process Y is said to be a regular Markov process provided that for almost all ω ∈ Ω,

(a)   t → Yt(ω) is right continuous, and

(b)   ζ(ω) = supn Tn(ω) = +∞.
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The following are some easily applied criteria for determining regularity.

(3.23). THEOREM. If λ(i) < c for all t ∈ E for some constant c < ∞, then Y is regular.

Proof. From Corollary (3.11) we have, since e−λ(i)t ≥ e−ct under the hypothesis,
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The right side is the joint distribution of the first n interarrival times in a Poisson process with rate c. Thus,
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Since T0 ≤ T1 ≤ . . ., we have {T0 ≤ t} ⊃ {T1 ≤ t} ⊃ . . . and the intersection is ∩n{Tn ≤ t} = (sup Tn ≤ t}. Hence, by Corollary (1.1.12),
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So, ζ < ∞ with probability zero.

[image: image]

If there are only finitely many states, then by Proposition (2.17) there are no instantaneous states and by (2.18) Y is right continuous. Then picking c to be the largest of the λ(i), we see that the hypothesis of the preceding theorem is satisfied. We thus have the following pleasant

(3.24)  COROLLARY. If E is finite, then Y is regular.

If the initial state i is recurrent in the Markov chain X, then it will be visited infinitely often, and each visit will last an exponential time with parameter λ(i). The sum of an infinite number of random variables with the same exponential distribution is infinite (this follows by taking the random variables in question as the interarrival times in a Poisson process), and therefore, the total time spent in that recurrent state i alone is infinite; and lim Tn must be larger than that. Hence we have proved the following.

(3.25)  THEOREM. Suppose there are no instantaneous states, and suppose every state is recurrent in the Markov chain X. Then Y is a regular Markov process.

The arguments leading up to the preceding theorem remain good if the Markov chain X does not stay forever in a set of transient states:

(3.26)  COROLLARY. Suppose the probability is zero that the Markov chain X stays forever in a set of transient states. If there are no instantaneous states, then Y is regular.

Finally, to show that not all processes are regular, we list the following theorem without proof.

(3.27)  THEOREM. Suppose there exists a set A of transient states such that starting in A, the chain X has a positive probability of staying forever in A. Let R = ∑n Qn, and suppose
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for some i ∈ A. Then Y is not regular.

The reason for the conclusion can be seen as follows. Chain X, and therefore Y, can stay in A forever. The expected number of visits to j is R(i, j), and each visit lasts an exponential time with mean 1/λ(j). Hence, the sum appearing in (3.27) is the expected amount of time spent in all the states of A; and since this is finite, the time spent itself must not be infinite.

(3.28)  EXAMPLE. Pure Birth Process. This is used to depict the size of a bacterial colony; Yt is the “size” of the population at time t. There are no “deaths,” and the size increases without end. The question is whether the population size can become infinite in a finite time.

Stochastically, this is a slight generalization of the Poisson process where the time between the nth and the (n + 1)th arrivals is exponentially distributed as before but now with a mean 1/λ(n) depending on n. (In the population model, it is argued that the more individuals there are in the population, the shorter the time until the next birth.)

Hence the Markov chain {Xn} is very simple; if the initial size is X0(ω) = i, then X2(ω) = i + 1, X2(ω) = i + 2, . . . . Thus, if X0 = i, the time Tn of the nth transition is the sum of n exponentially distributed independent random variables with means 1/λ(i), 1/λ(i + 1), . . ., 1/λ(i + n − 1). Hence,
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so that, by the monotone convergence theorem (2.1.34),
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If the latter sum is finite, that is, if
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then (3.29) implies that
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almost surely no matter what the initial state i is. If, however, the sum in (3.30) is infinite, then it can be shown that limn Tn = + ∞ almost surely.

[image: image]

4.  Potentials and Generators

This section is devoted to the computational aspects of Markov processes and to the relationships between the transition function and the other, more elementary, data such as the λ(i) and Q(i, j) of Theorems (2.9) and (3.3).

Throughout this section we take Y = {Yt; t ≥ 0} to be a regular Markov process with state space E and transition functions Pt(i, j). We will write Pi{A} for the conditional probability P{A | Y0 = i}, and we will denote the corresponding expectations by Ei.

We have shown in Theorem (3.3) and its corollaries (3.10) and (3.11) that the successive states visited by Y form a Markov chain X = {Xn; [image: image]} and that the sojourn time Tn+1 − Tn in state Xn has an exponential distribution with parameter λ(i) if Xn = i (see also Remark (3.18)). Because Y is regular, for any t there is a sojourn interval [Tn, Tn+1) which contains t, and therefore (3.19) defines Y completely in terms of X and the Tn. Let Q be the transition matrix of X, and let λ(i) be the parameter of the exponential distribution of a sojourn time in i.

The following results relate the transition functions Pt(i, j) to the data Q(i, j) and λ(i) and vice versa.

(4.1)  LEMMA. For any i, j ∈ ζ and t ∈ [image: image],
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Proof. If i is absorbing, then λ(i) = 0 and Pt(i, j) = I(i, j), so the claim holds. Suppose t is stable and first write
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If T1 >, then Yt = Y0, so
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If {T1 ≤ t} occurs, then the strong Markov property (1.15) at T gives
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which yields
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The proof is completed by putting (4.3) and (4.4) into (4.2).
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The following is the main result relating the Pt(i, j) to Q(i, j) and λ(i).

(4.5)  THEOREM. For any i, j ∈ E the function t → Pt(i, j) is differentiable and the derivative is continuous. At t = 0 the derivative is
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For arbitrary t ≥ 0,
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Proof. In the expression of Lemma (4.1) we first make a change of variable t − s = u to write
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By proposition (2.3), u → Pu(k, j) is continuous. Now the bounded convergence theorem applies to show that u → ∑k Q(i, k) Pu(k, j) is continuous. Thus, the integral on the right defines a function which has a continuous derivative.

Taking derivatives, we obtain
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As t ↓, 0, this becomes
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which is the same as (4.6). Putting this back in (4.9), we obtain the first equality in (4.7). To obtain the second equality in (4.7) we use Pt+s = PtPs, differentiate with respect to s, and evaluate it at s = 0.
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If the transition function (Pt) is known, then its derivative at t = 0 is A, and this determines Q and λ: namely, λ(i) = −A(i, i); if λ(i) > 0 then Q(i, j) = A(i, j)/λ(i); and if λ(i) = 0 then Q(i, j) = 0 for all j ≠ i. Of course, Q(i, i) = 0 if i is stable and 1 if i is absorbing.

Consider next the converse problem where Q and λ, and therefore A, are known and Pt is to be computed. One method is to solve the infinite system of differential equations (given by (4.7))
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or

 

[image: image]

If (Pt) were a numerical-valued function, the solution of either would have been eAt. A similar result holds in general with the interpretation of eAt as
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This we put next without proof.

(4.13)  THEOREM. For any t ≥ 0 we have
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The differential equations (4.10) and (4.11) are called, respectively, Kolmogorov’s backward and forward equations. The fact that (Pt) is defined by its derivative at t = 0 makes these results interesting. For this reason A is called the generator of the process Y.

If the state space E is finite, there are certain matrix-theoretic methods of attack for computing Pt from A by using (4.13) (cf. Appendix). However, unless A has some special structure, such computations are very difficult in the case of infinite E. In this case, an alternate line of attack is provided by considering the potentials, defined for α ≥ 0,
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Since Pt(i, j) is continuous in t, its Laplace transform Uα(i, j) determines it uniquely. Thus, if Uα(i, j) is known for all α in some interval, then Pt(i, j) can be obtained by inverting the Laplace transform.

However, this is not the real reason for our interest in Uα. Let g be a non-negative function defined on the state space E, and let α ≥ 0 be a fixed number. We now think of g(j) as the rate of reward being received when the process λ is in state j, and of α as the discount rate such that one unit received at time t has the present worth of e−at. Then the rate of reward at time t is g(Yt), and the total discounted reward is
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We are interested in the expected value of this random variable given the initial state i. Motivated by this, we define, for any non-negative function g,
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The function Uαg defined by (4.15) is called the α-potential of g for the process Y. If α = 0, instead of U0g we simply write Ug and call it the potential of g for Y. The operator Uα for a fixed α ≥ 0 is called the α-potential operator of Y. The family [Uα; α ≥ 0} is called the resolvent of (Pt).

Passing the expectation in (4.15) inside the integral, and noting that
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we see that
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where Uα is the matrix defined by (4.14). Thus, to obtain the α-potential of g, we need to multiply the matrix Uα by the column vector g.

In various applications the following analog of (7.1.14) for the continuous time turns out to be useful.

(4.16)  THEOREM. For any stopping time T,
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for all i ∈ E α, ≥ 0, and g ≥ 0.

Proof. We need to show that if f = Uαg,
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Making a change of variable s = t − T, we write
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Now using (2.2.16) and (1.14) in succession, we get
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This is the desired result (4.17).
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A particular application of the preceding theorem reduces the computation of Uαg to that of solving a system of linear equations.

(4.18)  THEOREM. Let g be a bounded function and α > 0. Then f = Uαg is the unique solution of the system of linear equations
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Proof. In Theorem (4.16) let the stopping time T be the time of the first jump T1 Then Yt = Y0 for all t < T, so
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On the other hand, YT = X1 and we have
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Adding (4.19) and (4.20) side by side, noting that by (4.16) the left side is f(i), and rearranging the terms, we get
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Using (4.6) to put λ(i)I(i, j) − λ(i)Q(i, j) = − A(i, j) yields the equation f is claimed to satisfy.

To show that f = Uαg is the only solution, let [image: image] be another solution and note that, then, [image: image] satisfies (αI − A)h = 0; that is,
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Using (4.11), we now have
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Integrating this from 0 to s, we have
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Thus, h = e−αsPsh. Since h is bounded and Ps is a Markov matrix, Psh is bounded by some constant. Thus, letting s → ∞, we see that h = 0 since e−αs → 0.
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(4.22)  EXAMPLE. Suppose Y is a Markov process with state space E = {a, b, c} and generator
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If α = 0.1 and g = (2, 5, 4), then the α-potential of g satisfies (αI − A)f = g, which in this instance becomes (we write f = (x, y, z))
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The solution is
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In particular, if g = 1j, then f = Uαg is the j-column of the matrix Uα Thus, the matrix Uα can be obtained by solving
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If there are only finitely many states, (4.23) implies that
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Most of these computations can be simplified by a device which is applicable to a large class of Markov processes; namely, those for which λ(i) ≤ c for all i for some constant c. In particular, this class includes all Markov processes with finitely many states. The idea involved is that of reducing the problems considered to the case of Markov processes of the type discussed in Example (1.9). We take this up once more.

Suppose [image: image] is a Markov chain with a transition matrix K, and suppose N is a Poisson process with rate c and is independent of [image: image]. Define [image: image] for all t. Then we know from Example (1.9) that [image: image] is a Markov process with transition function
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Then Uα is easy to compute: since
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which gives
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The right side of this is Rβ = ∑βnKn with β = c/(α + c), and the computation of Rβ was discussed earlier in Chapter 7.

Now consider the generator A corresponding to the process [image: image]. If [image: image], then the chain stays in i for exactly n steps with probability K(i, i)n−1 (1 – K(i, i)), and given that it is moving out of i, the probability that it moves into j is K(i, j)/(1 − K(i, i)). Therefore, a sojourn of [image: image] in state i is the sum of n interarrival times of N with probability pqn−1 where p = 1 – K(i, i). From our results of Section 5 of Chapter 4, then, a sojourn in state i has the exponential distribution with parameter
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The successive states visited by [image: image] form a Markov chain X which moves through the same states as [image: image] but without repetitions of any state. The transition probabilities for X are, if i is not absorbing,
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Hence, the generator A of [image: image] is
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which in matrix notation becomes
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Starting with a given generator A, we can reverse the above computations provided that (4.29) holds for some constant c > 0 and Markov matrix K. It is clear from (4.28) that this is always possible if λ(i) ≤ c for all i, for then the matrix
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is a Markov matrix. We thus have proved the following

(4.31)  THEOREM. Suppose λ(i) ≤ c for all i for some finite constant c. Then (4.25) holds with K defined by (4.30).

In other words, if Y is a Markov process with λ(i) ≤ c for all i, then we may think of Y as if it were the process [image: image]. Since both Y and [image: image] have the same transition function Pt,
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which in turn implies that the expectation of any random variable defined in terms of Yt, t ≥ 0, is equal to that obtained by replacing the Yt’s by [image: image].

(4.32)  EXAMPLE. Let Y be a Markov process with state space E = {r, w, b} and generator
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Now λ(r) = 2, λ(w) = 3, λ(b) = 1. For c we can choose any number greater than or equal to 3. Let us pick c = 3. Then
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and
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Consider now the distribution of the first passage time from state w into state r. For the Markov chain [image: image] with transition matrix K, this takes place at exactly the nth step with probability Fn(w, r), where
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From the way Pt is expressed, then, the first passage time from w to r is the time of the nth arrival with probability Fn(w, r), where the arrivals form a Poisson process N with parameter c = 3. Hence, letting T be the time of first entrance to r, we have
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5.  Limit Theorems

Let [image: image] be a regular Markov process with state space E and transition function (Pt). Let X be the underlying Markov chain, and let Q denote its transition matrix (see (3.3) ff. for the precise definitions).

For a fixed state j ∈ E, let the lengths of successive sojourns in j be denoted by W1 W2, . . . . These are independent and identically distributed random variables with the common distribution being exponential with parameter λ(j). Thus, were these laid end to end, one would obtain a Poisson process with parameter λ(j); that is, W1, W1 + W2, . . . form a Poisson process with rate λ(j).

If state j is transient for the Markov chain X, then the total number N of visits to j is finite with probability one, and starting in state i, its distribution is (cf. Proposition (5.2.8))
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where F(i, j) is the probability of ever reaching j from i. Then the total time spent in state j is the sum of N exponential random variables:
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and this is finite with probability one. In fact we have the following

(5.3)  PROPOSITION. If state j is transient, then
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Proof. The number of visits N to j is determined by the Markov chain X, whereas the sojourn times W1, W2, . . . are independent of X. Hence, from (5.2),
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Using (5.1) and the fact that W1, W1 + W2, . . . form a Poisson process (we write p(t, n) for the probability of n arrivals during [0, t]), we see that the right side is equal to
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which is as claimed.
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In other words, the total amount of time spent in a transient state j is finite with probability one; and it has the exponential distribution with parameter λ(j)(1 − F(j, j)) provided that the initial state is j. From this it is easy to compute the expected value of the total time spent in j:

(5.4)  COROLLARY. If j is transient, then
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where R(i, j) is the expected number of visits to j, starting from i.

Computation of R was discussed in Chapter 6; once this is done, the expected total time spent in j is easy to obtain. It is clear from the foregoing that we have the following

(5.5)  PROPOSITION. If state j is transient, then
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In the case of a recurrent state j, (5.2) still holds for the total time spent in j. By Corollary (5.2.11), the number of visits to j is infinite provided that it ever be reached. If j is reached, then the total time spent there is infinite with probability one. That is,
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and
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Throughout the remainder of this section we will limit ourselves to Markov processes Y which are irreducible recurrent, that is, to the processes whose underlying Markov chains are irreducible recurrent. In view of the preceding remarks, this is without any loss of generality.

The limiting behavior of the transition functions Pt(i, j) as t → ∞ is just as in the case of Markov chains except that it is made simpler by the disappearance of periodicity.

Since the underlying Markov chain X is irreducible recurrent, by Theorem (6.2.25), there is a unique (up to multiplication by a constant) solution to
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which is strictly positive. The ratio ν(i)/ν(j) had the interpretation of being the expected number of visits to i in between two visits to j. Now consider a time interval starting with an entrance to the state j and ending with the next entrance to j. This cycle starts with an interval of expected length 1/λ(y) spent visiting j, and then there are other intervals spent in states i ≠ j; the expected number of visits to i is ν(i)/ν(j), and each visit to i lasts an expected time of 1/λ(i) units. Hence, the expected length of the cycle considered is
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therefore the ratio of the expected value of the time spent in j to that of the total length of the cycle is
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Hence, the proportion of time the process Y spends in j is equal to this value π(j), and as should be expected, this is also the probability that the process is in state j at time t for very large t. These arguments prove (see (10.5.22) for the missing link) the following basic limit

(5.11)  THEOREM. Let Fbe an irreducible recurrent Markov process. Then for any j ∈ E,
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exists and is independent of the distribution of Y0.

The limiting probabilities π(j) are as given by (5.10). Therefore, either all π(j) are zero, or else every π(j) is positive.

In particular, if E is finite, the limiting probabilities are all positive. In the case where E is not finite, if the denominator in (5.10) is infinite, then π(j) = 0 for all j, and the process Y is said to be null. Otherwise, if the denominator in (5.10) is finite, then π(j) > 0 for every j, and ∑π(j) = 1. In this case, Y is said to be non-null. Note that the nullness of Y is independent of the corresponding notion for the underlying Markov chain X. Also note that by the same token, a positive limiting distribution for Y might exist even though X has no such positive distribution, and vice versa.

If the generator A of the process Y is readily available, then we can obtain n either by (5.10) and (5.8) or, more directly, from the following

(5.13)  COROLLARY. Let Y be irreducible recurrent. Then the system of linear equations
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has a unique (up to multiplication by a constant) solution μ which is strictly positive. The limiting probabilities π(j) of (5.12) are then given by
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(where we interpret 1/+∞ as 0).

Proof. It follows from the definition (4.6) of A that (5.14) holds if and only if the vector v defined by
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satisfies (5.8). The existence, uniqueness, and positivity of μ now follow from the corresponding properties for ν. The formula (5.15) follows from (5.10), (5.12), and (5.16).
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By Theorem (4.5), the derivative of (Pt) at t is equal to APt = PtA. Since the limits (5.12) exist, in particular
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exists and is as given by (5.10). In fact, this could be obtained from noting that the derivative at t must become zero in the limit so that limt PtA = limt APt = 0. The preceding corollary further shows that the limits can be passed inside the summations implied, and

 

[image: image]

It is also possible to reverse these arguments to prove (5.13), but our method is better.

It follows from (4.13) relating Pt to A that a row vector μ satisfies
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for all t ≥ 0 if and only if μA = 0. A vector μ satisfying (5.18) is called an invariant measure, and Corollary (5.13) above implies the following

(5.19)  PROPOSITION. Let Y be irreducible recurrent. Then there exists a strictly positive invariant measure μ. Any other invariant measure is a constant multiple of μ.
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If the sum ∑j μ(j) < ∞ then by dividing every entry by this sum if necessary, we may assume that μ is also a probability distribution. Then μ = π, where π is the vector of limiting probabilities defined in (5.12). Indeed, if Y0 has the distribution π, then (5.18) implies that
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for all t. This is to explain the term “invariant distribution.”

(5.20)  EXAMPLE. Let Y be a Markov process with generator
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Then the equations for μA = 0 become, with μ = (x, y, z),
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One of these equations is a linear combination of the other two; and we may throw one out, say the third. Choosing x = 42, the remaining two equations become
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which can be solved easily to yield z = 33, y = 72. Hence, one particular solution of μA = 0 and μPt = μ is μ = (42, 72, 33), and any other solution is a constant multiple of this. In particular, cμ with [image: image] is
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and this is the vector of limiting probabilities.
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For other examples of these computations we refer the reader to Section 6 on applications.

Throughout the preceding discussion we had been working with the generator A or the transition function Pt. In some applications, the data concerning A are hard to collect because such data are obtained by observing the process continuously in time. The next theorem shows that, as far as computing the invariant vector μ and the limiting probabilities π(j) is concerned, it is sufficient to observe the process Y at the instants of arrivals of a Poisson process independent of Y. We recall that Uα denotes the α-potential operator of Y defined by (4.14).

(5.21)  THEOREM. μA = 0 if and only if
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Proof. By (4.7) we have PtA = APt, which implies that U1A = AU1 upon taking integrals on both sides. This fact along with (4.23) implies
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If μA = 0, then μU1 − μ = 0. If μU1 = μ, then μA = μU1A = μ(U1 − I) = μ − μ 0.
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To see the significance of the preceding theorem, first note that by the definition of Uα,

definition of Uα,
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where S is a random variable independent of Y having the exponential distribution
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with parameter 1. It is clear that U1(i, j) ≥ 0 and Σj U1(i, j) = 1, that is, U1 is a Markov matrix.

Now let S1, S2, . . . be the times of arrivals in a Poisson process with rate λ = 1, and suppose this Poisson process is independent of the Markov process. If we define S0 = 0 and put
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then it follows that the stochastic process [image: image] is a Markov chain with transition probabilities
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Since any state j is recurrent in Y, the amount of time spent in state j is infinite with probability one; that is, the set Gj = {t: Yt =j} has infinite “length.” Therefore, the number of the Sn that fall in this set Gj must also be equal to infinity. But this number is exactly the number of times [image: image] becomes equal to j. This argument shows that every state j is a recurrent state for the Markov chain [image: image] as well. Similarly, [image: image] is also irreducible. Therefore, by Theorem (6.2.25), there exists an invariant measure μ for this Markov chain [image: image]; that is, μ = μU1. What the preceding theorem states is that this μ is also invariant for the Markov process Y.

This result becomes more striking when μ is an invariant probability distribution. Then μ(j) is equal to the proportion of time spent in state j by the Markov process Y. According to the theorem above, μ(j) is also the frequency with which [image: image] visits j.

Finally, we remark that the theorem remains unaltered when U1 is replaced there by αUα for any fixed α > 0.

(5.25)  EXAMPLE. Work Sampling. Successive tasks performed by an office worker form a Markov chain with finitely many states, and each task takes an exponential time. It is desired to find the percentages of time spent by this office worker in performing his various duties.

By Theorem (5.21), it is sufficient to record the tasks he was working on at the instants S0, S1, S2, . . . where these “sampling times” are picked in advance, without knowledge of the worker’s schedule, in such a way that S1 – S0, S2 – S1, . . . are independent and exponentially distributed random variables with parameter α. If the number of times the worker was seen performing the task j during the first n observations at the times S1, . . ., sn is equal to Nj(n), then Nj(n)/n is approximately equal to the percentage π(j) of time he spends in performing the task j.
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Let f and g be two functions defined on E. As usual, we interpret f(j) and g(j) as the rates of rewards obtained at times t where Yt = j. The question we now address ourselves to is, if we are given a choice, which of the two reward rate schedules f and g should we pick in order to optimize our return? The total rewards obtained during [0, t] using f and g are, respectively,
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In general, if Y is irreducible recurrent and f and g are non-negative, both At and Bt will increase to infinity as t → ∞. But the rates at which they do so can be compared by considering the ratios At/Bt or Ei[At]/Ei[Bt] for large t. Below we will show that both of these ratios go, in the limit, to the same number.

Suppose Y is irreducible recurrent non-null. Then it has a limiting probability distribution μ, and we may interpret μ(j) as the expected value of the time spent in j during one unit of time in the long run. In other words,
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Since we can write
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(5.27) implies that
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(note that μ is a row vector, f a column vector, and μf the scalar product of the two). A similar result holds for Bt’ and therefore we have
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The following theorem states that this result is true even when μ is merely an invariant measure (and not necessarily a probability distribution).

(5.29)  THEOREM. Suppose g ≥ 0 and μg is positive and finite. Then for any f ≥ 0 and any i, j ∈ E,
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independent of i and j. Moreover,
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with probability one, independent of the initial state.

The processes A = {At; t ≥ 0} and B = {Bt; t ≥ 0} defined by (5.26) are examples of a larger class of functionals of the Markov process Y known as additive functionals. In general, A = {At; t ≥ 0} is said to be an additive functional of the Markov process Y provided that

(a)   A0 = 0 and t → At is right continuous and non-decreasing almost surely;

(b)   for any [image: image], the value At is completely determined by the past history {Ys; s ≤ t} of Y before t;

(c)   for any t ≥ 0 and s > 0, the value of the increment At+S – At depends only on the values {Yu; t ≤ u ≤ t + s} and this only through the shape of the function u → Yu in that interval [t, t + s].

(5.30)  EXAMPLE. For any non-negative function f defined on E,
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defines an additive functional A of Y. In this case t → At is continuous.Conversely, if Y is a regular Markov process, then every continuous additive functional A is of this form.

[image: image]

(5.32)  EXAMPLE. Let f be a non-negative function defined on E × E, and suppose f(i, i) = 0 for every i. Then, if we denote by Ys− the value of Y just before s, f(Ys−, Ys) is zero for all s except the instants s of jumps from one state to another. Let
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be the sum of all the jumps of the function s → f(Ys−, Ys) recorded during [0, t. In other words,
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where X is the underlying Markov chain and the Tn the times of jumps for Y. Then B is an additive functional. In this case, t → Bt stays constant except at the jump points Tn of Y, at which times it jumps by the respective amounts f(Xn−1, Xn).

In particular, if we take f(i, j) = 1 for all i ≠ j, then Bt becomes the number of jumps of Y during (0, t]. If we take f(i, j) = 0 for all i, j except for f(i0, j0) = 1, then Bt becomes the number of times Y jumps from i0 into j0 during (0, t]. By taking f(i, j) = 0 for all i, j except for f(i, j) = 1 when i ≠ j and j ∈ B for some set B ⊂ E, we obtain the number of visits to states j in B during the time interval (0, t].

[image: image]

Though we are not able to prove this here, it is known that any additive functional of a regular Markov process is the sum of two additive functionals A and B, where A is of the form (5.31) and B is of the form (5.33).

The following extends Theorem (5.29) to all additive functionals. We omit the proof.

(5.34) THEOREM. If A and B are any two additive functionals of the process Y, then
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where
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and similarly for μB. Moreover,
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with probability one for any initial state i.

We end this section by giving a computational formula for μA when Y has an invariant distribution. As we had remarked earlier, any additive functional of a regular Markov process Y is of the form
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where f ≥ 0 is a function defined on E, and where g ≥ 0 is a function defined on E × E satisfying g(i, i) = 0 for all i. Then, if μ is the invariant distribution of Y and if A is its generator defined by (4.6), then
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(the subscript A in μA refers to the additive functional A = {At; t ≥ 0} and not to the generator!).

6. Birth and Death Processes

This is an important class of Markov processes with applications in biology, demography, and queueing theory. Here Yt depicts the size of a population at time t, and the state space is E = {0, 1, . . .}. A “birth” increases the size by one; a “death” decreases it by one. Let Vt and Wt be respectively the lengths of times from t until the instants of the next birth and the next death. The basic assumptions are that, if Yt = i, then for some λ(i) and p(i)
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and
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These imply that Y = {Yt; t ≥ 0} is a Markov process.

It is convenient to define ai. = p(i)λ(i) and bi = (1 – p(i))λ(i), i ∈ E, so that ai and bi can be thought as the respective time rates of births and deaths at an instant at which the population size is i. The parameters ai and bi are arbitrary non-negative numbers, except that b0 = 0 and no pair (ai, bi) is equal to (0, 0). It follows from (4.6) that the generator of the process Y is
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The underlying Markov chain X has the transition probabilities Q(i, i – 1) = 1 – Q(i, i + 1) = bi/(ai + bi) for i ≥ 1 and Q(0, 1) = 1. Let R(i, j) be the expected number of visits to j starting from i. Since each visit to j lasts 1/λ(j) units of time on the average, the expected time spent in state j is equal to, starting with j,
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If the sum
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then the process is not regular. It turns out that in the converse direction, the divergence of the sum in (6.5) is also sufficient for Y to be regular.

If Y is not regular, then the population size reaches infinity in a finite time with a positive probability. Otherwise, if Y is regular, then the population size remains finite with probability one. Even then, it is possible that the size grows in time to have an infinite limit. In particular, this is the case when Y is regular but transient.

(6.6)  EXAMPLE. Suppose ai = ia, bi = ib for some a, b > 0. This corresponds to the case where each individual of the population has an exponential lifetime with parameter b, and each individual can give birth to another after an exponential time with parameter a. Then the underlying Markov chain X has the transition matrix Q with Q(0, 0) = 1, Q(i, i + 1) = p, Q(i, i – 1) = 1 – p for i ≥ 1, where p = a/(a + b). Of course, λ(0) = 0, λ(i) = i(a + b) for i ≥ 1.

In this case, the λ(i) are not bounded. If a ≤ b, then the X chain is absorbing and therefore Y is regular by Theorem (3.25) (cf. Example (5.3.31) for this chain). Even if a < b, the sum in (6.5) becomes
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which means that the process is regular. Hence, P{Yt < ∞} = 1 for any t; but when a > b there is a tendency for growth, and
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for all j, that is, in the limit as t → ∞, the population size becomes infinite.
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Going back to the general birth and death process, by Corollary (5.13), a limiting distribution exists if and only if vA = 0 has a solution satisfying v1 = 1. For A given by (6.3), the equation vA = 0 becomes, with v = (1, v1, v2, . . .),
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Solving these consecutively, we get
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Hence, a limiting distribution exists if and only if
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If c < ∞, then the limiting distribution is
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Otherwise, if c = + ∞, then
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In the remainder of this section we discuss applications of this general model to the theory of Markovian queues.

(6.11)  EXAMPLE. M/M/1/∞ queue. This is the process discussed in Examples (1.10) and (3.12). Customers arrive according to a Poisson process with rate a, service times are exponential with mean 1/b, there is a single server, and infinite queues are permissible. Here, Yt is the number of customers int he system at time t. Y is a special birth and death process where
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Writing r = a/b, the sum c of (6.8) is
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Hence, if r = a/b < 1, then there is a limiting distribution, and using (6.9), that limiting distribution is
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Otherwise, if r ≥ 1, then P{Yt = j} → 0 for all j as t → ∞. The ratio r is called the traffic intensity for the system. If r < 1, the arrival rate is less than the service “rate” possible, and the queue size does not grow to infinity. If r ≥ 1, arrivals occur faster than the server can handle.

[image: image]

(6.13)  EXAMPLE. M/M/1/m queue. This is a queueing system exactly as the preceding one except that the waiting room has finite capacity m – 1. Hence, starting with less than m customers, the total number in the system cannot exceed m; that is, a customer arriving to find m or more customers in the system leaves and never returns (we do allow initial sizes of greater than m, however).

The generator for the queue size process is of shape (6.3) with

 

[image: image]

The states m + 1, m + 2, . . . are all transient; C = {0, 1, . . ., m} is recurrent irreducible set. We leave the computation of the limiting distribution as an exercise.
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(6.14)  EXAMPLE. M/M/S/∞ queue. Arrivals form a Poisson process with rate a, service times are exponential with mean 1/b, there are s servers, and the waiting room is of infinite size. If there are i < s customers in the system, then i servers are busy working independently of each other, and thus
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If i ≥ s, then all s servers are busy, and
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Hence, the queue size process is a birth and death process with
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If is easy to see that a limiting distribution exists if and only if r = a/sb < 1.

[image: image]

(6.16)  EXAMPLE. M/M/S/∞ queue with non-identical servers. This system is just like the preceding one except that the service times (though still expo nential) have different means depending on the server. Suppose for simplicity that s = 2. Suppose the mean service time is 1/b′ for the first server and 1/b″ for the second; and suppose the policy is to work the second server only when there are two or more customers in the system, so that if the first server becomes idle while the second is busy, then the customer switches to the first server immediately. Arguing as in (6.14), we see that
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This process has a positive limiting distribution if and only if a/b < 1.
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(6.17)  EXAMPLE. M/M/∞ queue. Arrivals form a Poisson process with rate a, service times are exponential with mean l/b, and there are infinitely many servers so that no customer ever waits. In this case (6.15) holds for all i ≥ 0. Thus, the constant c of (6.8) is, writing r = a/b,
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no matter what a, b ≥ 0 are. Therefore, we see from (6.9) that the limiting distribution is
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which we recognize as the Poisson distribution with parameter r.

This model applies to very large parking lots; then the customers are the arriving vehicles, servers are the stalls, and the service times are the times vehicles remain parked.

Another application is to the kinetic theory of gases. Then the arrivals are gas molecules entering a fixed region, and service times are the times spent in that region by the molecules. If the temperature is low, molecules do not interact very much and the model fits well.

This model also fits the short-run behavior of the size (measured in terms of the number of families living in them) of larger cities. Then arrivals are the families moving into the city, and a service time is the amount of time spent there by a family before it moves out. The national experience in the United States is that 1/b is about 4 years. If the city has a stable population size of about 1,000,000 families (note that the mean and variance of the Poisson distribution in (6.18) are both r = a/b), then the arrival rate must be a = 250,000 families per year. Hence, on the average a quarter of a million new families move in every year and about the same number move out. Yet, the size of the city remains fairly constant: We can approximate the distribution (6.18) by the normal distribution with mean r and variance r, which means that for large t,
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that is, the number of families in the city is about one million plus or minus three thousand. Of course, this model is rather crude: it does not take into account possible interactions between families, and the term “family” itself is not defined.
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(6.19)  EXAMPLE. M/M/S/∞ queue with balking. Arrivals form a Poisson process with rate a, services are exponential with mean l/b, there are s servers, and there is no limit on the number of customers allowed in. Furthermore, an arriving customer is permitted to balk: if he finds the system too crowded, he may leave; but once he joins the system he cannot change his mind later. Suppose the probability of joining the queue is pi, if there are i customers in the system at the time of arrival. Thus, if the queue size at time t is Yt = i, and if there were no service completions during [t, t + u], then the probability that there are no additions to the queue during [t, t + u] is
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Hence, the process Y is a Markov process with
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that is, λ(i) = ai + bi with ai = api, and the generator is the same as (6.3) but with
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The model fits barbershop-type situations well. If the queue size has a negative effect upon joining probabilities, then pi decreases as i increases. Sometimes, a large queue size will attract further customers, which means that pi increases as i increases.

[image: image]

(6.20)  EXAMPLE. Machine repair problem. Suppose there are m machines serviced by one repairman. Each machine runs without failure, independent of all others, an exponential time with mean 1/a. When it fails, it waits until the repairman can come to repair it, and the repair itself takes an exponentially distributed amount of time with mean l/b. Once repaired, the machine is as good as new.

If the number of failed machines at time t is Yt = i, then there are m – i machines working, and the time until the next failure is exponential with parameter (m – i)a if no machines are repaired in the meantime. Hence, Y has the generator A of (6.3) but with
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and
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Since Y0 ∈ {0, . . ., m}, so is Yt for all t. Restricted to {0, . . ., m}, then, Y is a recurrent Markov process. The limiting distribution is
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where
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7.  Exercises

(7.1)  Show that
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is a transition function. For a Markov process Y with this transition function on the state space E = {a, b}, compute

 

[image: image]

(7.2)  Suppose the arrivals at a counter form a Poisson process with rate λ, and suppose that each arrival is of type a or type b with respective probabilities p and q(p, q > 0, p + q = 1), independent of all past data. Let Yt be the type of the last arrival before t. Show that Y is a Markov process with state space E = {a, b} and transition function
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(7.3)  Let W be the time until the first jump of the process Y of Exercise (7.1).

(a)   Use Proposition (1.6) to justify writing
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(b)   Use this to compute Pa {W > t}. (Hint: e−x ≅ 1 – x for small x, and (1 + (x/n))n → ex as n → ∞ for any x.)

(c)   Check your result against Theorem (2.9).

(7.4)  Use the method of the preceding exercise to compute the distributions of the sojourn times in states a and b for the Markov process Y of Exercise (7.2). Check your result against that obtained directly by using the decomposition arguments for Poisson processes.

(7.5)  Classify (as stable or instantaneous) the states of the Markov process of Exercise (7.2) by using the results of the preceding exercise. Draw the picture of the set Ga (ω) = {t ≥ 0: Yt(ω) = a} for a typical realization ω.

(7.6)  Show that the transition matrix of the imbedded Markov chain X of the Markov process of (7.1) is
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(7.7)  Consider a system whose successive states form a Markov chain X with state space E = {a, b, c} and transition matrix
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Suppose the lengths of sojourns in states a, b, and c are all independent of each other and have exponential distributions with parameters λ(a) = 2, λ(b) = 5, λ(c) = 3. Compute the generator A of the Markov process Y describing the evolution of this system.

(7.8)  Let Y be a two-state Markov process whose sojourn distributions have the parameters a and b (a and b are positive).

(a)   Show that the generator A must be
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(b)   In Theorem (4.31) choose c = a + b to obtain
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with p = b/(a + b), q = a/(a + b) for the transition matrix of the chain [image: image].

(c)   Use this to compute Pt. Conclude from the form of this Pt that any two-state Markov process can be thought of as if it were obtained by the mechanism of Exercise (7.2).

(d)   Use the result of part (b) to compute the α-potential matrix Uα directly by (4.26).

(7.9)  For the Markov process Y of Exercise (7.1), compute the α-potential matrix Uα directly by using (4.14).

(7.10)  Let Y be the Markov process of Exercise (7.7). Compute the α-potential matrix Uα.

(7.11)  Let Y be a Markov process with generator
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and let g be the function g = (15, 32, 27); the state space is E = {a, b, c}.

(a)   Compute[image: image].

(b)   For the first entrance time T = inf{t ≥ 0: Yt = c}, compute Ea [e−αT] for α > 0.

(c)   Compute
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(d)   Compute
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by letting α ↓ 0 in part (c).

(7.12)  Let Y be the same process as in (7.11), and let g be as before. Let X be the underlying Markov chain of Y, and T1, T2, . . . the jump times.

(a)   For the same first entrance time T, compute
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by considering the values of T and [image: image] in terms of the Xn and Tn.

(b)   Compute [image: image] by taking the expected value of the result obtained in (a).

(7.13)  Consider the queueing system M/M/l of Example (1.10) with the following modification: the capacity of the system is two, so an arriving customer who finds two customers in the system must leave immediately and does not return.

(a)   Show that, then, the queue size process Y is a Markov process with state space E = {0, 1, 2} and generator
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(b)   Compute the α-potential matrix Uα for the case a = 2, b = 8 by using (4.24).

(c)   Invert the Laplace transforms Uα(i, j) to obtain the transition functions Pt(i, j).

(7.14)  Suppose that a penalty cost of one dollar per unit time is applicable for each customer present in the system of Exercise (7.13). Suppose the discount rate is α. Show that the expected total discounted cost is, starting at i, Uαg(i), where g = (0, 1, 2). Compute this for every i.

(7.15)  Continuation. Suppose a penalty of one dollar is paid at time t if a customer arrived at instant t to find the system full (and therefore was turned away). If S1, S2, . . . are the times of arrivals, then the total discounted value of this penalty is
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(a)   Show that
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(Hint: Over each sojourn interval [Tn, Tn+1) on which Y is equal to 2, the arrivals of customers to be rejected form a Poisson process with rate a .)

(b)   Show that
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(7.16)  Consider the Markov process Y of Exercise (7.11), and let g = (15, 32, 27) as before.

(a)   Find the limiting distribution π(j) = limt→∞ Pi{Yt = j} for all i, j ∈ E.

(b)   Compute the time average limt→∞ Bt/t for

 

[image: image]

(7.17)  Consider a Markov process Y with state space E = {a, b, c, d} and generator
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(a)   Find the limiting distribution π.

(b)   Compute the average expectation
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for f = (1, 2, –1, –2).

(c)   Compute
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for f as in part (b) and g = (–1, 3, –1, 4).

(7.18)  Let Y be a Markov process which moves through the states a, b, and c in the cyclic order a, b, c, a, b, c, . . . with sojourns in states a, b, c having the respective expectations 1, 3, and 5. Compute the limiting distribution for this process.

(7.19)  Let Y be a Markov process with state space E = {r, w, b} and suppose every jump from i to j brings a reward f(i, j). The generator A and this function f are given as
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(a)   Compute the limiting distribution for Y.

(b)   Compute the limit, as t → ∞, of the average reward Bt/t where
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(7.20)  Compute the limiting distribution of the queue size in Example (6.13).

(7.21)  Compute the limiting distribution of the queue size in Example (6.14) when a = 8, b = 3.5, s = 3.

(7.22)  Compute the limiting distribution of the queue size in Example (6.16) for the case where a = 8, b′ = 4, b″ = 6.

(7.23)  In Example (6.19) let a = 3, b = 2, s = 2, p0 = 1, p2 = [image: image], p3 = [image: image] P4 = P5 = · · · = 0. Compute the limiting distribution.

(7.24)  Excessive functions. Let Y be a Markov process with state space E and transition function Pt. A function f ≥ 0 on E is said to be excessive provided that f ≥ Pt f for all t > 0 and limt↓ 0 Pt f = f.

When E is finite, show using (2.2) that a function f ≥ 0 on E is excessive if and only if f ≥ Pt f for all t > 0.

(7.25)  Continuation. Suppose E is finite. Show that a function f ≥ 0 is excessive if and only if
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for all α > 0; here Uα is the α-potential matrix of Y.

(7.26)  Continuation. Show that for any g ≥ 0, the potential f = Ug is excessive.

(7.27)  Continuation. Show that f ≥ 0 is excessive if and only if
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(7.28)  Show that f ≥ 0 is excessive if and only if
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for all stopping times T.

(7.29)  Let Q be the transition matrix of the underlying Markov chain X of Y. Show that f ≥ 0 is excessive for Y if and only if
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(7.30)  Optimal stopping. Let f be an arbitrary function on E (assume E is finite), and define
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where the supremum is taken over all stopping times T.

(a)   Show that υ is excessive and υ ≥ f.

(b)   Show that if h is another excessive function with h ≥ f, then h ≥ υ as well.

(c)   Show that
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is an optimal stopping time in the sense that
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Compared with Markov chains, the continuous time version of this chapter needs a much higher level of sophistication in the tools required. In Section 2 we made an attempt to describe the sample path behavior of Markov processes. This is properly handled through measurability and separability arguments which, however, we could not use in this elementary book. The interested reader should consult CHUNG [1] for an almost complete account of the theory of discrete state-space Markov processes.

The treatment given here for right continuous processes, on the other hand, is fairly complete. By considering the jump times and the successive states visited in an explicit fashion, we were able to obtain many results which are difficult to get by purely analytic techniques. Incidentally, this technique is just the explicit version of that which lurks behind the analytical doings of FELLER in his famous paper [1].

Concerning the ergodic limit theorems of Section 5, we should mention that the methods used are those of Markov renewal theory, an account of which will be found in Chapter 10. Of the somewhat lesser-known results put in here, Theorem (5.21) is due to NAGASAWA and SATO [1], and Theorems (5.29) and (5.34) are due to AZEMA, DUFLO, and REVUZ [1].

If the reader enjoyed this chapter, then he might want to ask what lies further ahead and how he might prepare himself for a life of randomness. If so, I would advise him first to rebuild the foundations of his knowledge of probabilities by studying a book such as NEVEU [1]; then study the general theory of stochastic processes through a book such as DELLACHERIE [1]; then read the theory of Markov processes in a general setting, say through BLUMENTHAL and GETOOR [1]. And this is a most straightforward Christian piece of advice.


CHAPTER 9

Renewal Theory

In all the stochastic processes we have studied so far, an important property has been the existence of times, usually random, from which onward the future of the process is a probabilistic replica of the original process. In Markov chains and Markov processes, for example, if the initial state is i, then the times of successive entrances to that state i play this role; and this fact in turn enables us to obtain many of the limiting results we listed before. This “regeneration” property may hold in much more general situations, and when it holds, surprisingly sharp results can be obtained by the methods to be developed here.

In the first section we introduce renewal processes; in the second section the regeneration idea mentioned above is made precise, and the tools needed to take advantage of it are introduced. The tools are results concerning the solution, and the limiting properties of the solution, of the so-called renewal equation. Then, in Section 3, some generalizations are introduced to allow the regeneration times to start later than the time origin. A number of exercises in Section 4 provide more examples of situations where renewal theory has been useful.

1.  Renewal Processes

Consider a fixed phenomenon, and let W1, W2, . . . be the times between its successive occurrences. Then
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define the times of occurrence, assuming that the time origin is taken to be an instant of such an occurrence.

(1.2)  DEFINITION. The sequence [image: image] is called a renewal process provided that W1, W2, . . . be independent and identically distributed non-negative random variables. Then the Sn are called renewal times.

(1.3)  EXAMPLE. Let S0, S1, . . . be the successive instants at which vehicles cross a certain fixed point on a highway. If the successive headways W1, W2, . . . are independent of each other, and if they all have the same distribution, then [image: image] is a renewal process. In particular, if the headway distribution is exponential, then the renewal process S becomes the sequence of arrival times in a Poisson process.

[image: image]

(1.4)  EXAMPLE. Consider an item installed at time S0 = 0. When it fails it is replaced by an identical item; when that item fails, it in turn is replaced by a new item; and so on. Suppose the lifetimes of the successive items are U1, U2, . . . and that the replacements take V1, V2, . . . units of time. Hence, the successive new items start working at times S0 = 0, S1 = U1 + V1, S2 = S1 + U2 + V2, S3 = S2 + U3 + V3, . . . It is reasonable to assume that U1, U2, . . . are independent and identically distributed, and further that V1, V2, . . . are independent and identically distributed and are independent of the lifetimes. Then W1 = U1 + V1, W2 = U2 + V2, . . . are also independent and identically distributed, and hence S0, S1, . . . form a renewal process.

[image: image]

It follows from the definition that the joint distribution of any number of the Sn can be determined once the distribution function of the times between renewals is specified. We will take this computation up after we introduce the following definition. We are writing φ(dx) for dϕ(x) throughout.

(1.5)  DEFINITION. Let φ be a distribution function on [image: image], and let f be a non-negative function defined on [image: image] which is bounded over any finite interval [0, t]. Then the function φ * f defined by
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is called the convolution of ϕ and f.
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It follows that φ * f is non-negative and bounded over finite intervals, so the operation can be repeated: we write φ * (φ * f) as φ2 * f and write ϕn * f for the nth iterate.

In particular, when f is replaced by a distribution function ψ the resulting convolution φ * ψ is again a distribution function. To see the significance of φ * ψ, suppose X and Y are two independent random variables taking values in [image: image], and let φ and ψ be their respective distributions. Then using Proposition (2.2.16), we have
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for any t ≥ 0. That is, φ * ψ is the distribution of the sum X + Y of the independent random variables X and Y with distributions φ and ψ. Since the roles of X and Y can be reversed, we see that for any two distributions φ and ψ,
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When φ and ψ are the same, we write φ2 for φ * φ, and further define φ3 = φ * φ2 = φ * φ * φ, φ4 = φ * φ3, etc. Defining φ0 to be the distribution function 1 defined by
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we can then write
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for all [image: image]. The distribution ϕn so defined is called the n-fold convolution of φ with itself. From the interpretation (1.6) we see that ϕn is the distribution of the sum of n independent random variables each of which has the same distribution φ.

Throughout the remainder of this section, [image: image] is a renewal process, and F is the distribution of the interrenewal times. It follows from the preceding discussion that for any m, the distribution of Sn+m − Sn is the m-fold convolution Fm of F with itself (independent of n). Along with the independence of the increments, this implies that
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Next we consider the number of renewals Nt in the interval [0, t]; this is
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where IA(x) = 1 or 0 according as x ∈ A or [image: image]. Note that N0(ω) ≥ 1 always, and that [image: image]. Thus, the event {Nt = k} is equal to the event {Sk − 1 ≤ t; Sk > t} = {Sk − 1 ≤ t} ∩ {Sk − 1 ≤ t}c, and {Sk ≤ t ⊂ {Sk − 1 ≤t} since Sk > Sk − 1. Thus, for any k = 1, 2, . . .,
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One can compute the expected number of renewals in [0, t] by using this distribution; however, it is easier to use (1.10) directly:
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The function
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is called the renewal function corresponding to the distribution F.

The renewal function R plays the same role in renewal theory as the potential matrix R does in the theory of Markov chains. In fact, the sequence S is a Markov chain with state space E = [0, ∞], since the conditional distribution of Sn+1 given S0, . . . ., Sn depends only on Sn. Moreover, the definition (1.13) shows R to be an operator similar to the potential R defined by (5.2.16), and analogous to the potential of a function in the sense of (7.1.2) we have the following result. Here and throughout this chapter, it is important to note that R(0) ≥ 1. Therefore, in the integral (1.15) for instance, one must not forget the term R(0)f(0) which is to be added to the integral over (0, ∞).

(1.14)  PROPOSITION. Suppose F(0) < 1. Then R is right continuous, non-decreasing, and finite. The number Rf defined by
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is finite for any bounded function f defined on [image: image] and vanishing outside a finite interval. For any f ≥ 0 on [image: image],
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Proof. We will show the finiteness of R(t) in Lemma (1.16) below. We now complete the proof assuming that R(t) < ∞ for all t.

First, observe that t → Nt is non-decreasing and right continuous by the definition (1.10). Thus, R is non-decreasing. To show right continuity, let t0, t1, . . . be a sequence decreasing to t. By the right continuity of the process N, the random variables Ntn decrease to Nt. Moreover, Ntn ≤ Nt0 for all n, and E[Nt0] = R(t0 < ∞ by hypothesis. Thus, the bounded convergence theorem applies, and we have
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Hence, R is right continuous.

If f is bounded by c and vanishes outside [0, t] then ∑f(Sn) ≤ cNt and Rf ≤ cR(t) < ∞. To prove the formula (1.15), first note that for f = I(s, t] we have Rf = E[Nt − Ns = R(t) − R(s), so (1.15) holds. If f is a linear combination of finitely many such indicator functions, that is, if f is simple, then (1.15) holds again, since the expectation of a sum is the sum of the expectations and the integral of a sum is the sum of the integrals. For arbitrary f ≥ 0 we can find a sequence fn increasing to f such that each fn is simple. Then the monotone convergence theorem shows that Rfn → Rf and ∫ R(ds)fn(s) → ∫ R(ds)f(s). This completes the proof.
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(1.16)  LEMMA. If F(0) < 1, then R(t) < ∞ for every t < ∞.

Proof. Let t be fixed. Since F(0) < 1 and F is right continuous, there is some b > 0 such that F(b) < 1. Choose k ∈ [image: image] such that t ≤ kb. The event {Sk ≤ t} implies the event {Sk ≤ kb}, which in turn implies that the event {W1 > b, . . ., Wk > b} has not occurred. Thus,
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where β > 0. Similarly, the event {Smk ≤ t} implies the event {Sk – S0 ≤ t, . . ., Smk – Smk−k ≤ t}; thus,
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Finally, since {Smk+j ≤ t} implies {Smk ≤ t}
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Putting this into (1.12) and noting (1.17), we obtain
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and this is finite, since β > 0.

(1.18)  EXAMPLE. Suppose F(t) = 1 − e−λt, t ≥ 0. Then, the renewal process is actually a Poisson process with an arrival at time 0. Hence, R(t) = 1 + λt for all t ≥ 0.
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(1.19)  EXAMPLE. Suppose F(t) = 1 – e− λ(t−b), t ≥ b, in Example (1.3). This means that a headway (measured in time units) is equal to the sum of a constant b and an exponentially distributed random variable with mean 1/λ (this tends to hold under moderate traffic conditions where the drivers experience a slight amount of restriction in their movements; here b is the reaction time of a driver and no headway can be less than that).

Now Fn is the distribution of the sum of the constant nb and n independent exponentially distributed random variables; thus,
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and
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(1.20)  EXAMPLE. Let [image: image] be a Markov chain with a discrete state space, and let j be a fixed state. Let S1, S2, . . . be the successive step numbers at which state j is visited. If the initial state is j, then the times S1, S2 − S1, . . . between returns are independent and identically distributed, by Proposition (5.2.1). Hence, if X0 = j, then [image: image] is a renewal process. (This fact can be used to prove Theorem (5.3.2) by using the renewal theory to be developed; see Example (2.22) for this.)

Consider the renewal function R for this process S. Since the number of visits to j during [0, t] is
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we have

 

[image: image]

where Pn(i, j) are the n-step transition probabilities. Note that in this case all the Sn are integer-valued, so R is a step function whose jumps are restricted to the times 0, 1, 2,
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Returning to an arbitrary renewal process, we note that the case F(0) = 1 is the trivial case where S0 = S1 = S2 = · · · = 0. We will exclude this case from further consideration and always assume that F(0) < 1 (then R(t) < ∞ for all t).

(1.21)  DEFINITION. A renewal process S is said to be recurrent if Wn < ∞ almost surely for every n; otherwise, S is called transient. S is said to be periodic with period δ if the random variables W1, W2, . . . take values in a discrete set {0, δ, 2δ, . . .} and δ is the largest such number. Otherwise, if there is no such δ > 0, S is said to be aperiodic.

S is recurrent or transient according as F(∞) = limt→∞ F(t) = 1 or < 1. If S is periodic with period δ, then the distribution F is constant over intervals of form [nδ, nδ + δ), and all its jumps occur at points of the form nδ, [image: image]; clearly, δ is the greatest common divisor of the set of points x at which F(x) > F(x−) = limy ↑ x F(y). A distribution function all of whose jumps occur at points of the form nδ for some δ > 0 is said to be arithmetic with span δ. For example, if F jumps only at 0.2, 0.6, 0.65, then F is arithmetic with span 0.05. If F jumps only at [image: image] and 3, then Fis not arithmetic (since there is no number δ such that both [image: image] and 3 are integer multiples of δ). If F has a density it is not arithmetic.

If S is recurrent, then F(+ ∞) = limt→∞ F(t) = 1 and vice versa. When S is recurrent, all the Sn are finite and therefore N∞ = supt, Nt = + ∞ with probability one. Of course, as a result, R(+ ∞) = limt→∞ R(t) = + ∞ as well. In this case the following is the main limit theorem on the behavior of the renewal function. We define
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that is, m is the expected value of the times between successive renewals. In interpreting the next theorem, and others to come, 1/m is equal to zero whenever m = +∞.

(1.23)  THEOREM. If S is recurrent aperiodic, then
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for any τ > 0. If S is recurrent and periodic with period δ, then the same result holds provided that τ be an integer multiple of δ.

Proof is omitted. As an immediate corollary we have the following elementary result.

(1.24)  COROLLARY. If S is recurrent, then
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A somewhat finer result will be given later. The following strong law of large numbers can be proved by carrying out the steps indicated in Exercise (3.5.21).

(1.25)  PROPOSITION.If S is recurrent, then
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for almost all ω ∈ Ω.

Next suppose S is transient. This happens if and only if
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For example, the renewal process formed by the times of successive entrances to a fixed state j of a Markov process is transient if and only if j is transient.

If S is transient, then there is a positive probability 1 – F(∞) that an interval Wn is of infinite length. Then Sk − 1 < ∞ and Sk = Sk+1 = · · · = + ∞ if and only if {W1 < ∞, . . ., Wk−1 < ∞ and Wk = + ∞} occurs; the probability of this event is F(∞)k−1(1 – F(∞)). Of course, this is also the probability that the total number of renewals in [0, ∞) is equal to k; that is, if
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then
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This implies in particular that the total number of renewals N is finite with probability one and that its expected value is
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Still assuming that S is transient, let
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then L is the time of the last renewal and is also called the lifetime of the renewal process S. Clearly, L = SN–1 < ∞. The following proof provides a good example of the “renewal-theoretic reasoning” to be made formal in the next section.

(1.31)  PROPOSITION. If S is transient, then
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Proof Let f(t) = P{L > t}. If the event {t < S1 < ∞} occurs, then
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If, on the other hand, the event {S1 ≤ t} occurs, then the lifetime L is equal to the sum of S1 and the lifetime of the renewal process Ŝ with Ŝ0 = 0, Ŝ1 = S2 – S1, Ŝ2 = S3 – S1, . . . . This latter renewal process has the same probability law as the former, and hence,
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Therefore,
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By Theorem (2.3) below the solution is
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(here we used (1.13) to obtain R * F = R – 1).
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It is clear from (1.31) that L is finite with probability one. The expected value of L may be obtained directly from its distribution; however, it is easier to use the arguments of the preceding proof: If S1 = + ∞, then L = 0; if S1 < ∞, then L is the sum of S1 and the lifetime of the renewal process whose time origin is at S1 and whose successive intervals are S2 – S1, S3 – S2, . . . . Hence,
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from which we solve for E[L] to obtain
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(1.33)  EXAMPLE. Pedestrian Delay Problem. Consider the traffic model of Example (1.3). Suppose, at time t = 0, a pedestrian (or a vehicle on a side street) arrives at that fixed point and wants to cross the highway. To cross it, the pedestrian needs τ units of time; therefore he starts crossing at L = Sn if and only if W1 ≤ τ, . . ., Wn ≤ τ, and Wn+1 > τ. We see that L is the lifetime of the renewal process Ŝ whose nth interval is given by

 

[image: image]

If the distribution of Wn is φ, then that of Ŵn is
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Hence, the delay the pedestrian experiences has the distribution
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where R = ∑Fn. The expected delay is, from (1.32),
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In particular, if the traffic flow is a Poisson process with rate λ, then φ(t) = 1 – e−λt, t ≥ 0, and
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(1.34)  EXAMPLE. Geiger Counters of type II. Particles arrive at the counter according to a renewal process. At time t = 0, a particle arrives, is registered, and locks the counter for a fixed time τ. If there are no arrivals during [0, τ], then the counter gets unlocked at time τ, the next particle to arrive gets registered, and the counter is locked again for a time of length τ. If an arrival occurs during a locked period, it does not get registered, but it extends the locked period so that the counter remains locked until τ units of time passes after that arrival.

If W1, W2, . . . are the successive interarrival times, then the counter gets unlocked for the first time at Sn + τ = W1 + · · · + Wn + τ if and only if W1 ≤ τ, . . ., Wn ≤ τ, Wn+1 > τ. Thus, the length of the first locked period is equal to L + τ, where L is the lifetime of the renewal process Ŝ with intervals defined by
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The distribution of the length of a locked period can be obtained just as in the preceding example once the distribution φ of the Wn is known.

[image: image]

2.  Regenerative Processes and Renewal Theory

Consider a stochastic process Z = {Zt; t ≥ 0} with state space E. Suppose that every time a certain phenomenon occurs, the future of the process Z after that time becomes a probabilistic replica of the future after time zero. Such times (usually random) are called regeneration times of Z, and the process Z is then said to be regenerative. For example, if Z is a Markov chain or a Markov process with a countable state space E and if j is a fixed state, then every time at which state j is entered is a time of regeneration for Z starting at j. For another example, let Zt be the queue size at time t for a single-server queueing system subject to a Poisson process of arrivals and independent and identically distributed service times. Suppose the time origin is taken to be an instant of departure which left behind exactly j customers. Then every time a departure occurs leaving behind j customers, the future of Z after such a time has exactly the same probability law as the process Z had starting at time zero.

We will formalize the concept of regeneration later, in Definition (2.18), after developing the theory needed to exploit it. For the present, to motivate this theory, let Z be a regenerative process with a discrete state space, and consider the probability f(t) that Zt = i for some fixed state i. As in the proof of (1.31), we condition the event {Zt = i} on the time S1 of first regeneration, and argue as follows. The process Z regenerates itself at S1, and the future process [image: image] defined by [image: image] has the same probability law as Z itself. Given S1, if S1 = s ≤ t, then [image: image], and therefore,
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Hence, if we define
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then we have

 

[image: image]

This equation is called a renewal equation. The results we will be obtaining in this section will enable us to solve such equations for f and to study the behavior of the solution f for large t. Hence, by means of the theory we will develop, studying the behavior of Z is reduced to computing the function g.

This theory is called renewal theory, and it is the main tool for studying regenerative processes in the absence of further properties. Conversely, it is this applicability to regenerative processes which makes renewal theory the most important tool in elementary probability theory.

Renewal theory is the study of the so-called renewal equation
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where F is a distribution function on [image: image] and f and g are functions which are bounded over finite intervals. It is assumed that F and g are known, and the problem is to solve for f and examine its behavior at infinity. Concerning the solution, we have

(2.3)  THEOREM. The renewal equation (2.2) has one and only one solution; it is
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where R = ∑ Fn is the renewal function corresponding to F.

Proof. It follows from (1.13) that
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which shows that R * g is a solution to (2.2). If f is another solution, then h = f – R * g must satisfy h = F * h, which implies that
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for all n. It follows from the finiteness of R(t) that Fn(t) → 0 as n → ∞ for any fixed t. Hence, as n → ∞, Fn * h(t) → 0, which implies that h(t) = 0.
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In the case where the renewal process S associated with the distribution F is transient, the limiting behavior of the solution R * g is easy to see:

(2.4)  PROPOSITION. If F(∞) < 1, then
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provided that g(∞) = limt→∞ g(t) exists.

In the recurrent case the key result follows from Theorem (1.23) and provides the limiting behavior of R * g(t) for large t for a certain class of functions g which we introduce next.

Let g ≥ 0 be a function which is bounded over finite intervals, and for b > 0 define
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and put
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(2.6)  DEFINITION. The function g is said to be directly Riemann integrable (notation: [image: image]) provided that the sums (2.5) both converge for every b > 0 and that
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If [image: image], then
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where the last integral is the usual Riemann integral of g over [0, ∞). Hence, direct Riemann integrability implies Riemann integrability. Some results in the converse direction will be put after the following theorem. This is the main limit theorem of this section and is sometimes referred to as the key renewal theorem. It implies Theorem (1.23) and, as the proof will show, is implied by (1.23). As before, the number m appearing below is the expected value defined by (1.22), and 1/m is to be taken as zero when m is infinite.

(2.8)  THEOREM.If [image: image], F(∞) = 1, and F is not arithmetic, then
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If F(∞) = 1, F is arithmetic with span δ, and [image: image] converges, then
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Proof. (a) By (1.13), R * F = R – 1, so R * (1 – F) = 1. Since the function 1 – F is monotone,
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and choosing b so that F(b) < 1 we see that
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Since any interval can be partitioned into a finite number of intervals of smaller length, (2.11) holds for any b > 0.

(b) Suppose F is not arithmetic. For fixed b > 0 and [image: image] let in be the indicator function of the interval [nb, nb + b), that is, in(x) = 1 or 0 according as nb ≤ x < nb + b or not. Then R * in(t) = R(t – nb) – R(t – nb – b) for t > nb + b and hence, by Theorem (1.23),
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(c) Next let h = ∑ncnin, where the constants cn ≥ 0 are such that ∑cn < ∞. By (2.11), R * in(t) ≤ βb, and hence

 

[image: image]

Taking limits as t → ∞ by using (2.12), and then letting k go to infinity, we obtain
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(d)For [image: image], let [image: image] and [image: image] in the notations preceding (2.6). Then
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and (2.13) applies to [image: image] and [image: image] to yield
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The proof is completed by using (2.14) and (2.15), letting b → 0, and using the definition of direct integrability.

(e) For the arithmetic case the proof needs to be modified slightly by taking b = δ and passing to the limit only over lattices of form {x + nδ; [image: image]}.
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The following puts together some results on direct integrability which are encountered quite often.

(2.16)  PROPOSITION, (a) Let g ≥ 0 be continuous and vanishing outside a finite interval; then [image: image].

(b) Let g ≥ 0 be bounded and continuous; then [image: image] if and only if [image: image] for some b > 0.

(c) Let g ≥ 0 be monotone non-increasing; then [image: image] if and only if g is Riemann integrable.

(d) Let g ≥ 0 and let φ be a distribution function on [image: image]. If [image: image], then [image: image] as well.

Proof. Proofs of (a), (b), and (c) are immediate from the definition. To prove (d), first we observe that it is sufficient to show it for [image: image] of form g = ∑cnin where in is the indicator function of [nb, nb + b) for some fixed b > 0. For such a g and for t ∈ [nb, nb + b) = An,
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Noting that
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and that
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we obtain
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Hence,
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as needed.
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As a first application of the renewal theory developed above, we now give a refinement of Corollary (1.24), which stated that for large t the renewal function varies as t/m. To estimate the behavior of the difference
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we first note that f satisfies the renewal equation f = g + F * f with
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This function g is monotone, and

 

[image: image]

where υ2 is the variance of an interrenewal time. Thus, applying Theorem (2.8) yields the proof of the following

(2.17)  PROPOSITION. If S is aperiodic and υ2 < ∞, then
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The remainder of this section is devoted to the applications of renewal theory to regenerative processes. We start by making the concept of regeneration more precise.

Consider a stochastic process Z = {Zt; t ≥ 0} with state space E. For technical reasons, we assume that E has a topology and that the paths t → Zt(ω) are right continuous for almost all ω ∈ Ω. We recall that a random time T is called a stopping time of Z provided that for every t, whether or not the event {T ≤ t} has occurred can be determined once the history {Zu; u ≤ t} before t is known.

(2.18)  DEFINITION. The process Z = {Zt; t ≥ 0} is said to be regenerative provided that there exists a sequence S0, S1, . . . of stopping times such that

(a)[image: image] is a renewal process,

(b) for any n, [image: image], [image: image] and any bounded function f defined on En,
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Property (2.18b) is called the regeneration property applied at Sm, and the times S0, S1, . . . are called the regeneration times. To understand (2.19) better, let Wt = f(Zt+t1, . . ., Zt+tn); and let [image: image] be the future process obtained from Z by taking T = Sm as the time origin, that is, let [image: image] for all u ≥ 0. First note that

 

[image: image]

Then, observe that (2.19) contains two statements:
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Of these, (2.20) states that the future process [image: image] is independent of the past history {Zu; u ≤ T} before T, and (2.21) states that the probability law of [image: image] is the same as that of Z.

Let Z = {Zt; t ≥ 0} be a regenerative process with regeneration points [image: image], and let F be the distribution function of the times between regenerations. Define, for an open subset A ⊂ E,
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and let
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By the regeneration property applied at S1,
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Hence, the function f satisfies
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This is a renewal equation; by Theorem (2.3) its solution is f = R * g with g(t) = K(t, A). We put this next.

(2.24)  PROPOSITION. Let Z be a regenerative process with state space E. Then for any t ≥ 0 and open A ⊂ E,
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where k is as defined by (2.22) and R is the renewal function of the imbedded renewal process S.

Following is the main limit theorem for regenerative processes.

(2.25)  THEOREM. Let A be such that t → K(t, A) is Riemann integrable in the ordinary sense.

    (a)   If S is recurrent aperiodic and m < ∞, then
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    (b)   If S is recurrent periodic with period δ and m < ∞, then

 

[image: image]

    (c)   If S is recurrent and m = ∞, then
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Proof follows easily from Proposition (2.24) and Theorem (2.8). We should only note that, in case (a), the function t → K(t, A) is directly integrable. This follows from observing that it is Riemann integrable by hypothesis and that it is bounded by the function 1 – F which is directly integrable, by Proposition (2.16c), since 1 – F is monotone and its integral is m < ∞.
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(2.26)  EXAMPLE. Let Zt be the time from t until the instant of next renewal in a renewal process S; that is,
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Then Z is a regenerative process with state space E = [0, ∞]. For A = (y, ∞],
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By Proposition (2.24), then,

 

[image: image]

If S is recurrent aperiodic and m < ∞, then the monotone function t → g(t) = 1 – F(t + y) is in [image: image], since
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Hence, by Theorem (2.8),
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(2.27)  EXAMPLE. In Example (1.4), let Zt(ω) = 1 or 0 according as the item is working or being replaced at time t for the outcome ω ∈ Ω. Then Z = {Zt; t ≥ 0} is a regenerative process with state space E = {0, 1}. If φ and ψ are the respective distributions of the lifetime and replacement time and A = {1}, then
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and Proposition (2.24) yields, with R = ∑Fn, F = φ * ψ,
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If the mean lifetime is
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and the mean replacement time b, then m = a + b, and in the recurrent aperiodic case we have
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by Theorem (2.25).
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(2.28)  EXAMPLE. Markov chains. Let X be a Markov chain with initial state j. If we define Zt = Xn for all t ∈ [n, n + 1), we obtain a regenerative process Z = {Zt; t ≥ 0} with regeneration times Sn being the times of successive visits to the fixed state j. In this case,
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If j is a transient state, then S is transient, and by Proposition (2.4) we have
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If j is recurrent null, the same is true by (2.25c). Suppose next that j is recurrent non-null. If state j is aperiodic, then S is periodic with δ = 1; if state j is periodic with period δ, then S is periodic with period δ. By Theorem (2.25b), then, we have

 

[image: image]

where m is the mean recurrence time of state j. This constitutes the proof of Theorem (5.3.2).
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(2.29)  EXAMPLE. Markov Processes. Let Z be a Markov process with initial state j. Then Z is a regenerative process with regeneration times Sn being the instants of successive entrances to state j.Now,
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by Theorem (8.3.3). If state j is transient, then by Proposition (2.4), we have
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Otherwise, if state j is recurrent (the corresponding renewal process S is automatically aperiodic), Theorem (2.25a, c) gives
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where m(j) is the mean recurrence time of j.
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3.  Delayed and Stationary Processes

In certain applications the time S0 of the first renewal is not necessarily the time origin. For example, in the pedestrian delay problem of Example (1.33), the instant t = 0 at which the pedestrian arrives does not necessarily coincide with a time of arrival of a vehicle. To handle such situations we introduce the following

(3.1)  DEFINITION. A sequence [image: image] is called a delayed renewal process provided that [image: image] be a renewal process and that S0 ≥ 0 be independent of Ŝ.

[image: image]

In other words, if S is a delayed renewal process, then at the time S0 of the first renewal there starts a renewal process Ŝ. Similarly, we define a delayed regenerative process to be a process Z having a sequence S of stopping times which form a delayed renewal process and is such that Definition (2.18b) holds. For example, for any initial state i, the times of successive entrances to a fixed state j in a Markov process form a delayed renewal process. Any Markov process is a delayed regenerative process; any M/G/1 queueing process is a delayed regenerative process; etc.

There are no new tools needed. In handling a delayed regenerative process, first we condition the event or expectation in question on the time S0 of first regeneration, and then we use the fact that at S0 there starts an ordinary regenerative process. The following treatment of delayed renewal processes will provide several examples of this.

Let G be the distribution of S0, and let F denote the common distribution of the interrenewal times S1 – S0, S2 – S1, . . . Note that a delayed renewal process becomes an ordinary renewal process when G(t) = 1 for all t ≥ 0, that is, when S0 = 0 almost surely.

Writing Sn = S0 + (Sn – S0) and noting the independence of S0 from Sn – S0 shows that the distribution of Sn is the convolution of those of S0 and Sn – S0 which are G and Fn respectively; namely,

 

[image: image]

As before, let Nt be the number of renewals occurring in the interval [0, t]; we still have (1.10) holding: [image: image]. Thus, just as in (1.12), we have

 

[image: image]

Defining

 

[image: image]

as before in (1.13), we now have

 

[image: image]

The limiting behavior of this expectation is similar to that of R; this, of course, would be expected, since the influence of the initial distribution should disappear in the long run, provided that the first renewal ever occurs.

(3.4)  THEOREM. (a) If F(∞) < 1, then
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    (b)   If F(∞) = 1 and F is not arithmetic, then
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for any τ > 0. If F(∞) = 1 and F is arithmetic with span δ, the same holds for τ an integer multiple of δ, as t → ∞ over 0, δ, 2δ, . . . .

Proof. If F(∞) < 1, the result claimed is immediate from Proposition (2.4) applied to (3.3).

For the recurrent case F(∞) = 1, first note that [image: image] [image: image] for t > τ, where
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It is clear that [image: image]; therefore, by Proposition (2.16d), [image: image], and

 

[image: image]

The proof in the non-arithmetic case now follows from Theorem (2.8). In the arithmetic case, when τ = jδ for some integer j,
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thus, from Theorem (2.8) again, we get
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as desired.

[image: image]

Next consider the time Vt from t until the instant of next renewal; the time of the first renewal after t is SNt, so
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The process {Vt; t ≥ 0} is a delayed regenerative process. In (2.26) we had computed the distribution of Vt for the regenerative case. That result now applies to the regenerative process {VS0+u; u ≥ 0}, and we have
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for any y ≥ 0. To obtain the distribution of Vt, we first observe that Vt = S0 – t if {S0 > t} occurs, and that Vt = VS0+u with u = t – s if {S0 = s ≤ t} occurs; this argument yields
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Evaluating this and using (3.6), we obtain
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The second term on the right is G * R * g(t) with g(t) = 1 – F(t + y). Replacing G * R by [image: image], we obtain the following

(3.7)  PROPOSITION. For any t ≥ 0 and y ≥ 0,
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A case of special interest occurs when G is the limiting distribution of Vt as t → ∞ in a renewal process; that is, when
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Intuitively, this case corresponds to a renewal process that had been going on for a long time before t = 0. As would be expected, then, [image: image], and the distribution of Vt as given in (3.7) becomes independent of t. For these and other reasons to be listed below, a delayed renewal process S is called a stationary renewal process if G is as given by (3.8).

(3.9)  PROPOSITION. If S is stationary, then
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Proof. From (3.3) we have [image: image], which now becomes
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Making a change of variable z = x + y, and then changing the order of integration, we obtain
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since R * (1 – F) = 1 identically.

[image: image]

(3.10)  PROPOSITION. If S is stationary, then
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independent of t.

Proof. Putting [image: image] in the formula given by (3.7), we obtain
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as claimed.

[image: image]

The process V = {Vt; t ≥ 0} is an example of a Markov process with a non-discrete state space; that is, V is a stochastic process with state space E = [0, ∞], and it satisfies
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for any t, s ≥ 0 and interval subset B of E. In fact, the right-hand side above is equal to Ps (Vt, B), where
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where Hs(B) = P{Vs ∈ B} is as computed in Proposition (3.7). Note now that V0 = S0, so that G is the initial distribution of the Markov process V. What Proposition (3.10) states is that (3.8) is the invariant distribution of V. The process V here is the continuous-time analog of the Markov chain of Example (5.1.17). What we showed above are the analogs to (6.2.18).

Proposition (3.10) shows that at any time t, the interval from t until the next renewal has the distribution G independent of t. Of course, once that first renewal after t occurs, there starts a new renewal process. Thus, the future of S from any time t onward has the same probability law as S itself. The following are two ways of expressing this; we omit the formal proofs.

(3.12)  THEOREM. S is a stationary renewal process if and only if the joint distribution of Vt+t0, . . ., Vt+tn is the same as that of Vt0, . . ., Vtn for any t ≥ 0, [image: image], and [image: image].

(3.13)  THEOREM. S is a stationary renewal process if and only if the joint distribution of Nt1 − Nt0, . . ., Ntn − Ntn−1 is the same as that of Nt+t1 − Nt+t0, . . ., Nt+tn − Nt+tn−1 for any t ≥ 0, [image: image], and [image: image].

The simplest stationary renewal process is the Poisson process. That the Poisson process is stationary follows from the fact that
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independent of t. We see, in particular, that if F(t) = 1 – e−λt, t ≥ 0, then
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Now the question arises as to whether there are other renewal processes where the distribution of Vt is the same as that of an interrenewal time; in other words, are there distribution functions F satisfying (3.14) which are not exponential? The answer is, no. For if F satisfies (3.14), then it must be continuous (since the left side is an integral of a right-continuous function) and therefore differentiable (since then the left side is the integral of a continuous function). Taking derivatives on both sides, we see that
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The left-hand side of (3.15) is the derivative of –log[l – F(t)]; hence the only solution of (3.15) and therefore of (3.14) is
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4.  Exercises

(4.1)  Let F be a distribution, Fn its n-fold convolution with itself, and R = ∑ Fn the corresponding renewal function. Define the Laplace transforms

 

[image: image]

(a)  Show that the Laplace transform of Fn is (Fα)n.(Hint: Fn is the distribution of the sum W1 + · · · + Wn.)

(b)  Use this to show that
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(4.2)  Let F(t) = 1 – e−3t – 3te−3t, t ≥ 0.

(a)  Show that
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(b)  Invert Rα to obtain
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(c)  Compute the limits indicated in Theorem (1.23), Corollary (1.24), and Proposition (2.17) directly from (b).

(4.3)  Prove Proposition (1.25).

(4.4)  Wald’s lemma. Let Nt be the number of renewals in [0, t] of a renewal process S, and consider the time SNt of the first renewal after t.

(a)  Show that SNt can be written as
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(b)  Change the order of summation to obtain
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(c)  Use the independence of Sk and Wk+1 to compute
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(4.5)  Use Wald’s lemma to compute the expected value of the time Vt from t until the next renewal. Use this to compute limt→∞E[Vt] via the formula given in Proposition (2.17).

(4.6)  Let Ut be the time since the last renewal before t in a renewal process S, that is, let Ut = t − SNt−1.

(a)  Show that f(t) = P{Ut > x} satisfies, for fixed x, the renewal equation
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(b)  Show that for t > x
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(c)  Show that the limit as t → ∞ of P{Ut > x} is the same as the limit given for Vt = SNt – t in Example (2.26).

(4.7)  Let Ut = t – SNt −1 and Vt = SNt – t, that is, Ut and Vt are, respectively, the time since the last renewal and time to the next renewal at t.

(a)  For fixed x, y ≥ 0 show that f(t) = P{Ut > x, Vt > y} satisfies the renewal equation f = g + F *f with
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(b)  Show that when m < ∞,
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(4.8)  Let S be a renewal process with interval distribution F and renewal function R, and let U and V be as defined in the preceding exercise. Show that the following are equivalent.

(a)  S forms a Poisson process.

(b)  R(t) = 1 + λt for some constant λ > 0 for all t ≥ 0.

(c)  E[Vt] = c for some constant c > 0 independent of t.

(d)  [image: image] for all t ≥ 0.

(4.9)  Counters of type II. In Example (1.34), let T0 = 0, T1, T2, . . . be the times of successive registrations. Show that T is a renewal process and compute the distribution G of the times between registrations. Compute limt→∞ Mt/t for the number Mt of registrations during [0, t].

(4.10)  Continuation. Suppose the locked period effected by an arriving particle is a random variable (rather than a constant τ). Let Vn be the length of the locked period caused by the nth particle. Suppose V1, V2 . . . are independent and have the same distribution ψ.

(a)  Compute the distribution of the length of a locked period.

(b)  Compute the distribution G of the time between two registrations.

(c)  Compute the limit of the average Mt/t of registrations per unit time.

(4.11)  Counters of type I. Arrivals at a counter form a renewal process with interarrival distribution F. An arriving particle which finds the counter free gets registered and locks it for a time of length τ. Arrivals during a locked period have no effects whatsoever. Suppose t = 0 is a time of registration.

(a)  Show that the successive times of registrations form a renewal process, and compute the distribution G of the times between registrations.

(b)  Find the probability that the counter is locked at time t.

(c)  Compute the ratio Mt/Nt of the number of registered particles to the number of arrivals during [0, t] in the limit as t → ∞.

(4.12)  Continuation. In the preceding exercise, suppose that the locked period effected by a registered particle is a random variable with distribution ψ independent of the arrival times and of the other locked periods. Do (a), (b), and (c) of (4.11) for this more general setup.

(4.13)  In the problem of Examples (1.4) and (2.27), let Wt be the cumulative time during (0, t] which is spent working, that is, let
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with Z as defined in (2.27). Compute E[Wt]. Show that Wt/t → a/(a + b) almost surely as t → ∞. (Hint: Use (1.25) and the fact that Ŵn = WSn is a sum of n independent identically distributed random variables.)

(4.14)  Interval reliability. For the problem of Examples (1.4) and (2.27) let fx(t) be the probability that the item is in working condition at time t and will remain so at least x more units of time.

(a)  Write the renewal equation which fx satisfies; solve it to show that
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(b)  Compute the limit of fx(t) for fixed x as t → ∞.

(4.15)  Failure rate function. Let the lifetime W of an item have distribution φ, and assume that φ has a right-hand derivative φ′ Then
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is called the failure rate function for W. To explain this, show that
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A failure rate function is non-negative and finite. Show that it defines the distribution φ by
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(4.16)  Continuation. Show that W has an exponential distribution if and only if its failure rate is constant. (This is the case where the item is the same as new as long as it lasts.) Show that the Weibull distribution
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has increasing failure rate if b > 1 and decreasing failure rate if b < 1.

(4.17)  Age replacement. In Example (1.4), suppose the replacements take no time, and instead of replacing only the failed items, suppose the rule is to replace whenever the item in use fails or has been in use τ units of time. We now distinguish between replacements and failures. Let φ be the distribution of the lifetimes.

(a)  Show that successive replacement times Sn form a renewal process, and compute the distribution F of the time between two replacements.

(b)  Show that if Nt is the number of replacements during [0, t],
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(4.18)  Continuation. Show that the successive failure times T0, T1, . . . form a renewal process with the distribution G between two failures being given by
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Show that the average number of failures Mt/t (per unit time) has the limit, as t → ∞,
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(4.19)  Continuation. It is of interest to know if reducing τ improves reliability. The answer is yes if φ has an increasing failure rate. Following are the steps leading up to this assertion. For fixed t, let f(τ) = 1 – G(t), and assume φ is differentiable and has an increasing failure rate.

(a)  Show that for any integer k ≥ 1, the derivative f′(τ) ≤ 0 for τ in the interval (t/(k + 1), t/k). Show the same for τ > t.

(b)  Show that f is continuous at points of the form τ = t/k. This together with (a) shows that f is non-increasing.

(c)  Conclude from this that 1 − G(t) ≥ 1 − φ(t).

(4.20)  Randomized age replacement. In Exercise (4.17), suppose that the nth item is replaced whenever it fails or has been in use Yn units of time, whichever comes first; here Y1, Y2, . . . are (instead of all being equal to a constant τ) independent and identically distributed random variables independent of the lifetimes. Let φ be the distribution of lifetimes and ψ the distribution of Yn.

(a)  Show that the times Sn of successive replacements form a renewal process, and compute the distribution F of the times between replacements.

(b)  Show that the times of failures Tn form a renewal process with distribution G of the time between two failures satisfying
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(c)  Compute the expected value mf of the time between two failures directly from (b) to find
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(4.21)  Continuation: Reliability at t for x units of time. This is the probability that the item in use at time t will last at least x more units of time without replacement; let this be denoted by fx(t).

(a)  Show that for fixed x, the function fx satisfies the renewal equation f = g + F * f with
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(b)  Compute the limit of fx(t) as t → ∞.

(4.22)  Optimal replacement policy. In the problem of Exercise (4.20), suppose that a replacement costs a units if the item being replaced had failed and b units otherwise; take b = 1, a > b, and put c = a – b. Let Mt and Nt be respectively the numbers of failures and replacements during [0, t].

(a)  Show that the average cost per unit time is, in the long run,
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(b)  To minimize this cost by choosing ψ properly, show first that we can
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by defining f(x) = 1 + cϕ(x), [image: image].

(c)  Suppose φ is continuous, let h = f/g, and choose the number τ ∈ [0, + ∞] so that h(τ) ≥ h(x) for all x.Show that then
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for any distribution ψ. Conclude from this that the optimal replacement policy is to replace the item whenever it fails or has been used for τ units of time.

(4.23)  Continuation. Show that if the lifetimes have the exponential distribution, the optimal policy is to replace only when failures occur. If, on the other hand, the lifetimes have a strictly increasing failure rate function r, then τ is the only point satisfying
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(4.24)  Decomposition of renewal processes. Let S be a renewal process with interval distribution F, and let T1, T2. . . be the successive trial numbers at which a “success”has occurred in a Bernoulli process with probability of success p at any one trial;as usual, we set T0 = 0. Show that Ŝn = STn form a renewal process with interval distribution
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(4.25)  Superposition of renewal processes. Let S1 and S2 be two independent renewal processes with the same interval distribution F which has a density function f. Let S = S1 ∨ S2 be the set of all points which belong to either S1 or S2 or both. Then S is called the superposition of S1 and S2. Show that S is a renewal process if and only if both S1 and S2 are Poisson processes.

[image: image]

Renewal theory is one of the main tools in the elementary theory of probability. A renewal process, by itself, does not have a rich enough structure to be of much interest. The main importance of renewal theory is, therefore, largely due to its applications to regenerative processes and to the elegant formalism of the renewal equation. In this light, the importance of the renewal function itself is due to its use as a potential operator and not to its connection with the expectations of the numbers of renewals.

The present treatment follows FELLER [7] fairly closely; for omitted proofs and extensions we refer the reader there. For refinements we refer the reader to the stimulating account given by SMITH [2].


CHAPTER 10

Markov Renewal Theory

In this chapter we will introduce a class of processes which includes as special cases all the processes which we have examined so far. Its theory combines renewal theory with the theory of Markov chains to create tools that are more powerful than those which either could provide. For purposes of picturing such a process, we think of a particle (or system) which moves from one state to another with random sojourn times in between; the successive states visited form a Markov chain, and a sojourn time has a distribution which depends on the state being visited as well as the next state to be entered. Such a process becomes a Markov process if the distributions of the sojourn times are all exponential independent of the next state; it becomes a Markov chain if the sojourn times are all equal to one; and it becomes a renewal process if there is only one state.

Throughout the chapter Ω is a fixed sample space and P a probability measure on it.

1.  Markov Renewal Processes

Suppose we have defined, for each [image: image], a random variable Xn taking values in a countable set E and a random variable Tn taking values in [image: image] such that 0 = T0 ≤ T1 ≤ T2 ≤ · · ·.

(1.1)  DEFINITION. The stochastic process (X, T) = {Xn, Tn; [image: image]} is said to be a Markov renewal process with state space E provided that
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for all [image: image], j ∈ E, and [image: image].

[image: image]

We will always assume that (X, T) is time-homogeneous: that is, for any i, j ∈ E, [image: image],

 

[image: image]

independent of n. The family of probabilities Q = {Q(i, j, t): i, j ∈ E, [image: image]} is called a semi-Markov kernel over E.

For each pair (i, j), the function t → Q(i, j, t) has all the properties of a distribution function except that
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is not necessarily one. Indeed, it is easy to see from (1.3) that
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that is, the P(i, j) are the transition probabilities for some Markov chain with state space E. It follows from (1.2) and (1.4) that
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for all [image: image] and j ∈ E. This implies, in particular, the following

(1.7)  PROPOSITION. X = {Xn; [image: image]} is a Markov chain with state space E and transition matrix P.

If P(i, j) = 0 for some pair (i, j), then Q(i, j, t) = 0 for all t; we then define Q(i, j, t)/P(i, j) = 1. With this convention, we define
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Then for each pair (i, j) the function t → G(i, j, t) is a distribution function. From (1.3), (1.6), and (1.8) we deduce the following interpretation:

 

[image: image]

Using this result together with (1.2), we obtain the following important statement on the structure of (X, T).

(1.10)  PROPOSITION. For any integer n ≥ 1 and numbers [image: image],

 

[image: image]

in words, the increments T1 − T0, T2 − T1, … are conditionally independent given the Markov chain X0, X1, …, with the distribution of Tn + 1 − Tn depending only on Xn and Xn + 1.

In particular, if the state space E consists of a single point, then the increments are independent and identically distributed: namely, we have

(1.11)  COROLLARY. If E consists of a single point, then {Tn; [image: image]} is a renewal process.

This result, together with Proposition (1.7), justifies the term “Markov renewal process” somewhat. The full justification, however, is contained in Proposition (1.7) and the following important

(1.12)  PROPOSITION. Let j ∈ E be fixed, and define [image: image] as the successive Tn for which Xn = j. Then [image: image] is a (possibly delayed) renewal process.

Proof follows from Corollary (1.11) above and the theorem to be stated next. Before we can state it, however, we need some conventions. First, we append a new point Δ to E, and set X∞(ω) = Δ, T∞(ω) = + ∞ for all ω ∈ Ω. Then we extend the definition of a Markov renewal process slightly to allow for Tn(ω) to take on the value + ∞, but only if Xn(ω) = Δ.

(1.13)  THEOREM. Let D be a fixed subset of E, and let N0, N1, N2, … be the successive indices n ≥ 0 such that Xn ∈ D. For each [image: image], define
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Then [image: image] is a Markov renewal process with state space D ∪ {Δ}.

Proof will be omitted; we merely remark that (X, T) is a Markov chain with a two-dimensional state space [image: image], and the present theorem follows from applying the strong Markov property at the stopping times Nn to this chain (X, T).

To see the reasons for the conventions introduced in the paragraph preceding the theorem, consider a finite set D of transient states in E. Then the chain X enters D only finitely many times with probability one. Therefore, for almost all ω ∈ Ω, there is a finite integer n = n(ω) such that Nn(ω) = Nn + 1(ω) = ··· = + ∞. Then by the conventions introduced, we have [image: image] and [image: image].

Going back to Proposition (1.12), we see that to each state j ∈ E there corresponds a renewal process Sj; the superposition of all these renewal processes gives the points Tn, [image: image]; the renewal process which contributed the point Tn is the jth one if and only if Xn = j; the types of the successive points, namely X0, X1, …, form a Markov chain.

Another convenient picture in describing a Markov renewal process is provided by the process Y = {Yt; t ≥ 0} defined by putting, for each t ≥ 0 and ω ∈ Ω,
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where Δ is a point not in E.

(1.15)  DEFINITION. The stochastic process Y = {Yt; t ≥ 0} defined by (1.14) is called the minimal semi-Markov process associated with (X, T).

[image: image]

We may think of Yt as the state at time t of some system or particle which moves from one state to another with random sojourn times in between. The length of a sojourn interval [Tn, Tn + 1) is a random variable whose distribution depends on both the state Xn being visited and the state Xn + 1 to be visited next. The successive states visited form a Markov chain; given that sequence, the successive sojourn times are conditionally independent.

(1.16)  EXAMPLE. Markov Processes. It follows from Theorem (8.3.3) that if Q has the form
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for all i, j, t for some function λ(i), i ∈ E, then Y is a Markov process. Conversely, every regular Markov process is a semi-Markov process.

[image: image]

(1.17)  EXAMPLE. Traffic Theory. This model of traffic flow is supposed to hold well when the interactions between different vehicles are limited to nearest-neighbor interactions. Let T0 = 0, T1, T2, … be the positions (in time or space) of the vehicles along a highway; and let Xn denote the “type” of the nth vehicle (for example, whether the nth vehicle is a car or a truck, whether it is a “leader” or a “follower” in a platoon, its make, weight, or speed). Usually X = {Xn} is a Markov chain, and the headway Tn + 1 − Tn depends only on the types Xn and Xn + 1. Then (X, T) is a Markov renewal process.

[image: image]

(1.18)  EXAMPLE. Counters of Type I: Arrivals at a particle counter form a Poisson process with rate λ. An arriving particle which finds the counter free gets registered and locks it for a random duration with distribution function ψ. Arrivals during a locked period have no effect. Let T0 = 0, T1, T2, … be the successive instants of changes in the state of the counter, and write Xn = 1 or 0 according as the nth change locks or frees the counter. Then {Xn, Tn; [image: image]} is a Markov renewal process with state space E = {0, 1}. In this case, if Q(t) denotes the matrix whose (i, j)th entry is Q(i, j, t), then

 

[image: image]

Here, the semi-Markov process Y associated with (X, T) indicates the state of the counter.

[image: image]

(1.19)  EXAMPLE. M/G/1 queue. We refer the reader to the sections on queues at the end of Chapter 6 for a more detailed description of this queueing system as well as of the G/M/1 queue to be discussed below. This is a single-server queueing system subject to a Poisson process of arrivals with rate a and independent service times with the common distribution φ. Let T0 = 0, T1, T2, … be the instants of successive departures, and let Xn be the number of customers left behind by the nth departure. Then (X, T) = {Xn, Tn; [image: image]} is a Markov renewal process. If Q(t) is the matrix whose (i, j)th entry is Q(i, j, t), then we have
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where

 

[image: image]

and

 

[image: image]

Note that the P(i, j) = Q(i, j, ∞) are as given before in Chapter 6 for this Markov chain X. There we obtained the limiting behavior of Xn; here, by the methods we will develop, we will obtain the behavior of the queue size at any time t.

[image: image]

(1.20)  EXAMPLE. G/M/1 queue. Let T0 = 0, T1, T2, … be the instants of successive arrivals, and let Xn be the number of customers in the system just before the nth arrival. Then (X, T) = {Xn, Tn; [image: image]} is a Markov renewal process. If φ is the distribution of the interarrival times and a is the parameter of the service distribution, then the semi-Markov kernel Q* is given by
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where the qn(t) are as defined above in (1.19), and

 

[image: image]

Again, the methods to be developed below will enable us to study the time-dependent behavior of the queue size.

[image: image]

2.  Markov Renewal Functions and Classification of States

Let (X, T) = {Xn, Tn; [image: image]} be a Markov renewal process with a semi-Markov kernel Q over a countable state space E. Throughout this section we will write Pi{A} for the conditional probability P{A | X0 = i} and, similarly, Ei for the conditional expectations given {X0 = i}. Throughout this chapter, all integrals of form [image: image] are integrals over the closed set [0, t]. Finally, to avoid trivialities, we assume throughout that for all i ∈ E
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Let us define

 

[image: image]

for all [image: image]. Then
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for all t ≥ 0; and for n ≥ 0 we have the recursive relation
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where the integration is over [0, t]. The probability argument for (2.4) is as follows: in order that Xn + 1 = k and Tn + 1 ≤ t, the first transition must occur at some time s smaller than t into some state j, and then, starting from j, the remaining n transitions should take no longer than t − s units of time and end with state k.

For each fixed state j ∈ E, the instants Tn for which Xn = j form a possibly delayed renewal process Sj by Proposition (1.12). The number of renewals during [0, t] of this renewal process is
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By assumption (2.1), the probability that all the [image: image], are equal to [image: image] is zero. Therefore, by Proposition (9.1.14), the expected number of renewals in a finite interval is finite. Hence,
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is finite for any i, j ∈ E and t < ∞.

The functions t → R(i, j, t) are called Markov renewal functions and the collection R = {R(i, j, ·): i, j ∈ E} of these functions is called a Markov renewal kernel. We mention once more the fact that R(i, j, ·) is a renewal function, namely the one corresponding to the renewal process Sj.

Let F(i, j, t) be the distribution of the first passage time from state i to state j, that is, let
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and let F(j, j, t) be the distribution of the time between two successive occurrences of j, that is, let
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(note that [image: image]). Then it follows from (9.1.13) and (9.3.3) that
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and

 

[image: image]

where Fn(j, j, ·) is the n-fold convolution of the distribution F(j, j, ·) with itself.

Once the R(i, j, t) are obtained from (2.5), the preceding two expressions can be used to solve for the first-passage distributions F(i, j, t). Computationally, especially if the state space E is finite, a feasible method is to use Laplace transforms. For α ≥ 0, we define
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and for α > 0,
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It follows from (2.8) and (2.9) that
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and conversely,
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Next we concentrate on the computation of Rα. It follows from (2.4) that the Laplace transform [image: image] of Qn(i, j, t) satisfies
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for all [image: image]. Hence [image: image] is precisely the nth power of the matrix Qα; that is,
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and this holds for n = 0 with the usual convention that the 0th power of any matrix is the identity matrix.

In matrix notation, (2.5) implies that
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which implies that
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or equivalently,
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(2.20)  PROPOSITION. If E is finite, then
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If E is not finite, then Rα is the minimal solution of
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Proof. If E is finite, the conclusion is immediate from (2.19). Suppose E is infinite: then (2.19) shows that Rα is a solution of (2.21); to show that Rα is the minimal solution, let M be another solution. Then
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and repeatedly replacing M on the right by I + QαM, we obtain
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Taking limits as n → ∞ we see that M ≥ Rα.

[image: image]

This proposition is the generalization of both Corollary (7.1.8) and Theorem (7.2.5). For example, since a Markov chain may be looked upon as a Markov renewal process with Tn = n, we have Qα = e−α P, and then the preceding proposition is exactly the same as (7.1.8) with α < 1 replaced by e−α. In (7.1.8) and (9.2.3) we had shown further that there is only one solution. From the computational point of view, it is important to know when the solution is unique. The question is tied in with the possibility of having infinitely many transitions in a finite time; this was encountered earlier with Markov processes as well, and we refer the reader to Section 3 of Chapter 8 for examples. We will treat this matter more fully in the next section. For the present, we merely mention that Rα is the unique solution of the equation (2.21) having bounded columns (note that Rα(i, j) = Fα(i, j)Rα(j, j) ≤ Rα(j, j), so every column of Rα is bounded by some number) if and only if the only bounded solution of Qαh = h is h = 0. The latter is true, in particular, when E is finite, or when every state is recurrent, or when there are only finitely many transient states.

We end this section by giving a classification of states.

(2.22)  DEFINITION. State j ∈ E is said to be recurrent, or transient, or aperiodic, or periodic with period δ respectively if the corresponding renewal process [image: image] is recurrent, or transient, or aperiodic, or periodic with period δ.

[image: image]

If state j is recurrent, then it is also recurrent for the Markov chain X; similarly, j is transient if and only if j is transient for the Markov chain X. The recurrence question therefore reduces to that in the Markov chain X, and we refer the reader to Chapter 5 for a full treatment. Periodicity, however, has nothing to do with periodicity in the Markov chain X. A state j can be periodic in (X, T) without being periodic for the Markov chain X, and conversely, j can be periodic for X and aperiodic for (X, T). The periodicity question is as with a renewal process: that is, j is periodic in (X, T) with period δ if and only if the distribution F(j, j, t) is arithmetic with span δ. The following are some results reducing this to tests concerning the elementary data, namely, the Q(i, j, t).

(2.23)  PROPOSITION. If i and j can be reached from each other, then either they are both aperiodic or they are both periodic. In the latter case they have the same period.

Before proving this we list the following as an immediate

(2.24)  COROLLARY. If X is irreducible, then either all states are aperiodic in (X, T) or they are all periodic. In the latter case they all have the same period.

Proof of (2.23). Let i and j in question be fixed, let D = {i, j}, and consider the Markov renewal process [image: image] defined in Theorem (1.13). It is clear that the renewal times [image: image] and [image: image] are the same whether they are obtained from (X, T) or [image: image]. Hence, it is sufficient to consider the periodicity question in [image: image]. This is a three-state Markov renewal process if X0 ∈ D; and if the states are ordered as i, j, Δ, then the semi-Markov kernel corresponding to it is simply
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for some H, K, L, and M with none vanishing. For the return distributions we easily have
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where * denotes convolution.

Suppose i is periodic with period δ. Then all the points of increase of F(i, i, ·) belong to B = {0, δ, 2δ, … }. Now (2.25) shows that the points of increase of H, K * L, K * M * L, … all are in B. A point of increase c ∈ B of K * L * M is of the form c = a + b, where a ∈ B is a point of increase for K * L and b is one for M. Since a, c ∈ B, we must have b ∈ B as well. Hence, all points of increase of H, K * L, M are in B. This implies, through (2.26), that the points of increase of F(j, j, ·) are also in B, that is, j is periodic with a period δ′, which is an integer multiple of δ. Reversing the argument, i must be periodic with period δ equal to an integer multiple of δ′. Thus, δ = δ′ as well.

[image: image]

The following shows how to recognize periodicity by examining the semi-Markov kernel Q.

(2.27)  PROPOSITION. If X is irreducible and the states are periodic with period δ, then every Q(i, j, t) is a step function with jumps in the set
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for some δij ≥ 0. Moreover, if P(i0, i1), P(i1, i2), . . . , P(in − 1, in) > 0 and i0 = in, then δi0i1 + δi1i2 + · · · + δin − 1in is equal to an integer multiple of δ.

Proof. If it is possible to go from i to j in one step by taking a units of time and b units of time, and c is such that it is possible to go from j to i in c units of time, then both a + c and b + c must be multiples of δ. Therefore, their difference b − a is an integer multiple of δ. This shows that both a and b are of the form δij + nδ with [image: image]. The reasoning behind the second statement is similar.

[image: image]

3.  Markov Renewal Equations

Just as the real usefulness of renewal theory lies in its applicability to regenerative processes, the real power of Markov renewal theory lies in its usefulness in dealing with semi-regenerative processes. We will now introduce the system of equations which generalizes the renewal equation in a natural manner, and leave the applications to semi-regenerative processes aside until we get to Sections 5 and 6.

Throughout this section (X, T) = {Xn, Tn; [image: image]} is a Markov renewal process with a semi-Markov kernel Q, Qn is the nth iterate of Q, and R = ∑ Qn is the Markov renewal kernel corresponding to Q. The class of functions which we will be working with will be denoted by [image: image] these are functions [image: image] such that for every i ∈ E, the function t → f(i, t) is bounded over finite intervals, and for every fixed [image: image], the function i → f(i, t) is bounded. In particular, we note that for any fixed j ∈ E, the functions (i, t) → Q(i, j, t) and (i, t) → R(i, j, t) both belong to [image: image].

For any function [image: image], the function Q * f defined by

 

[image: image]

is well defined, and Q * f belongs to [image: image] again. Hence, the operation can be repeated, and the nth iterate Qn * f is given by
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If f ≥ 0, we can replace Q on the right side of (3.1) by R and still have a well-defined function which we will denote by R * f; that is, for [image: image], f ≥ 0
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A function [image: image] is said to satisfy a Markov renewal equation if for all i ∈ E and [image: image],
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for some function [image: image]. Here the point of view is that g and Q are known and the problem is to solve for f and study the limiting behavior of t → f(i, t) as t → ∞.

To avoid certain unpleasant difficulties, we will limit ourselves to functions [image: image] which are non-negative; we denote this set by [image: image]. Using the notation introduced in (3.1), the Markov renewal equation (3.4) of interest now becomes
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Formally, (3.5) is the same as a renewal equation. Indeed, it becomes one if E consists of a single state. Just as in that simpler case, R * g is a solution, but we no longer have uniqueness without further conditions. The following is the result; it generalizes both (7.2.5) and (9.2.3).

(3.6)  THEOREM. The Markov renewal equation (3.5) has a solution R * g. Every solution f is of the form

 

[image: image]

where h satisfies

 

[image: image]

Proof. Replacing f on the right side of (3.5) by g + Q * f repeatedly, we obtain
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Since g ≥ 0, the term in parenthesis increases to R * g, whereas Qn + 1 * F decreases to some function h. Thus, f = R * g + h. Since h is the limit of the monotone sequence f, Q * f, Q2 * f, . . . we have
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Since R(i, j, t) = ∑n Qn(i, j, t) is finite,
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for any i, j ∈ E and t < ∞. If there are only finitely many states, this implies that
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for any [image: image]. Therefore, if E is finite, h = Q * h implies h = Qn * h, which implies that h = 0, and we have the following

(3.9)  COROLLARY. If E is finite, then
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is the only solution of (3.5).

The following are some criteria for deciding when R * g is the only solution. First we show that a non-zero solution to (3.8) exists if and only if there is a non-zero bounded solution, and then give several criteria for the latter.

(3.10)  PROPOSITION. There is a solution h ≠ 0 to (3.8) if and only if
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has a solution h ≠ 0.

Proof. If (3.11) has a non-trivial solution, the solution is also a non-trivial solution to (3.8). Suppose next that (3.8) has a non-trivial solution. Then there is some b > 0 such that h(t) ≠ 0 for some t < b, and then β = sup{h(i, t): i ∈ E, t ≤ b} is positive. Now define
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Then
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and since k ≤ 1,
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It follows from (3.12) and (3.13) that k ≥ Q * k, which by iteration gives
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Hence, ĥ = limn Qn * k exists, and by the monotonicity of the convergence, it satisfies ĥ = Q * ĥ. This and the obvious fact that 0 ≤ ĥ ≤ 1 shows that ĥ is a solution to (3.11). Furthermore, ĥ is not trivial, since (3.12) implies
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Thus ĥ(i, t) ≠ 0 for some i and t < b.
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The following is a qualitative condition which is equivalent to the statement that the only solution of (3.11) is h = 0.

(3.14)  PROPOSITION. The only solution of (3.11) is h = 0 if and only if
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is almost surely infinite.

Proof. Since T0 ≤ T1 ≤ T2 ≤ · · ·, the probability
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decreases as n → ∞, and the limit is
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Since the convergence to f is monotone, and since fn + 1 = Q * fn we must have
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Hence, f is a solution of (3.11). Moreover, if h is any other solution, h ≤ 1 implies that
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for all n, which in turn shows that h ≤ f.

If the only solution of (3.11) is h = 0, then f, being a solution, must be zero and thus L = + ∞ almost surely. Conversely, if L = + ∞ almost surely, then f = 0, and f being the maximal solution of (3.11), we must have h = 0 as the only solution of (3.11).

[image: image]

The following are two easy criteria which imply that the lifetime L defined by (3.15) is infinite almost surely.

(3.16)  PROPOSITION. If all states are recurrent, then L = + ∞ almost surely.

Proof. If state i is recurrent, then starting at i, the renewal process [image: image] has infinite lifetime. Since [image: image] is a subset of {Tn; [image: image]}, the supremum of {Tn, [image: image]} is at least as great as that of [image: image]. Hence, [image: image]. This being true for every i ∈ E, we must have L = + ∞ almost surely.

[image: image]

We see that the argument of the proof goes through if the set of recurrent states is reached with probability one no matter what the initial state is. We thus have

(3.17)  COROLLARY. If the probability of staying in the set of transient states forever is equal to zero, then L = + ∞ almost surely.

In particular, the condition of the preceding corollary holds if there are only finitely many transient states:

(3.18)  COROLLARY. If there are only finitely many transient states, in particular if there are only finitely many states, then L = ∞ almost surely.

The following is a condition on the sojourn times which makes L = ∞ almost surely.

(3.19)  PROPOSITION. If for some b > 0
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for all i ∈ E and for some constant c < 1, then L = + ∞ almost surely.

Proof. The condition implies that
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for all i ∈ E if φ is defined as
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This in turn implies that
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for all i ∈ E, t ≥ 0, if ϕn is the n-fold convolution of φ with itself. Since φ(0) = c < 1, limn ϕn(t) = 0 for all [image: image], and this implies that
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for every i ∈ E and [image: image]. Hence, L = + ∞ almost surely.

[image: image]

It follows from (3.18) that in order for the lifetime L to be finite, there must be infinitely many transient states within which the chain X can remain forever. Furthermore, the sojourn times in these states must be short enough for the sum to be finite. The following is a sufficient condition for L to be finite with a positive probability.

(3.20)  PROPOSITION. If there exists a set A of transient states such that
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for some i ∈ A (here m(j) = Ej[T1]), then Pi{L < ∞} > 0.

We omit the proof and only note that for j transient, the renewal function R(j, j, t) approaches a finite limit as t → ∞, and R(i, j) = R(i, j, ∞) = F(i, j, ∞) R(j, j, ∞) = F(i, j) R(j, j), where the quantities R(i, j), F(i, j), and R(j, j) are as computed by considering only the Markov chain X.

A simple Markov renewal process with finite lifetime is the one where X moves from i to i + 1, from i + 1 to i + 2, and so on, and the sojourn time in state i has mean 1/2i. Then X is transient, we can take A to be the whole space E = {0, 1, . . .}, and then
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So all the transitions of this process will fall in a finite interval. For other examples in the case of Markov processes we refer the reader to Section 3 of Chapter 8. In particular, note that Theorem (8.3.23), Corollary (8.3.24), Theorem (8.3.25), Corollary (8.3.26), and Theorem (8.3.27) are the specialized versions of the results of this section.

4.  Limit Theorems

For fixed i, j ∈ E, the function R(i, j, ·) is a possibly delayed renewal function. Its limiting behavior, therefore, can be obtained from Theorem (9.3.4): If state j is transient and i ≠ j, then
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which is exactly the expected number of visits to j by the Markov chain X starting at i. For the computation of F(i, j) and R(j, j) we refer the reader back to the first section of Chapter 6.

If state j is recurrent aperiodic, then Theorem (9.3.4) implies that
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where η(j) is the inverse of the expected value of the time between two returns to state j. In the case where j is recurrent periodic with period δ, the same holds when τ is a multiple of δ.

The behavior of the individual renewal functions R(i, j, ·) can thus be obtained directly from renewal theory. In this section we concentrate on the computation of quantities such as the η(j) appearing in (4.2), and more importantly, on the investigation of the limiting behavior of the solutions of Markov renewal equations. The main results are (4.3), (4.9), and (4.17).

As far as computing η(i) is considered, it is sufficient to consider only the irreducible recurrent class which contains i. Therefore, the following theorem should be applied to each recurrent class separately to obtain the η(i) for all i in that recurrent class.

(4.3)  THEOREM. Suppose X is irreducible recurrent, and let v be an invariant measure for X, that is, let v be a solution of
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Then the inverse of the mean recurrence time of state i in (X, T) is
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where
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(4.6)  REMARK. It follows from Theorem (6.2.25) that the system of linear equations (4.4) has only one (up to multiplication by a constant) solution. In matrix notation, (4.4) becomes v = vP; and in interpreting vm in (4.5) we recall that v is to be thought of as a row vector and m as a column vector, so that

 

[image: image]

Using the interpretation of v(j)/v(i) as the expected number of visits to j between two visits to i, (4.5) yields the following explanation. The mean recurrence time of i is the sum, over all states j, of the expected time spent in j between two returns to i; the term corresponding to j is equal to the product of v(j/v(i) and the expected sojourn time m(j) in each visit to j.

Proof of (4.3). Let a be the mean recurrence time of i; then η(i) = 1/a. Define
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Then

 

[image: image]

where D = E − {i}. Changing the order of summation this becomes, with N = inf{n ≥ 1: Xn = i},
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where we have put

 

[image: image]

and F(k, i) is the probability of ever reaching i from k. Since X is irreducible recurrent, F(k, j) = 1 for all k, j. Concerning μ(i, j), = v(j)/v(i). we note that it is the expected number of visits to j starting at i, before returning to i; hence μ(i, j) = v(j)/v(i). Putting these in the last expression of (4.8), taking the sums indicated, and noting that
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we arrive at

 

[image: image]

Since η(i) = 1/a, this completes the proof.

[image: image]

One pleasant consequence of the preceding theorem is that the mean recurrence times can be computed directly from the elementary data, without computing the distributions F(i, i, t). Next we consider the limiting behavior of the solutions of the Markov renewal equation. In the case of finitely many states this reduces immediately to renewal theory:

(4.9)  PROPOSITION. Let (X, T) be an irreducible aperiodic Markov renewal process with a finite state space E. Then

 

[image: image]

provided that each one of the functions g(j, ·) be directly Riemann integrable. Here v is a solution of v = vP and m(i) is the mean sojourn time in state i.

Proof. Since E is finite, the limit in question is equal to
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To obtain the limit as t → ∞ of the jth term, we note that R(i, j ·) is a delayed renewal function, and we can write it as the convolution of F(j, j, ·) and R(j, j, ·). Since g(j, ·) is directly Riemann integrable, by Proposition (9.2.16), so is the convolution of F(i, j, ·) with g(j, ·). Thus, applying the renewal theorem (9.2.8) with R = R(j, j, ·) and g = F(i, j ·) * g(j, ·), we obtain
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since F(i, j,+∞) = 1 by the irreducibility and recurrence of (X, T). Putting this result in (4.11) and replacing η(j) by its value (4.5), we obtain (4.10).
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In the case of infinitely many states, however, we can no longer pass the limit in (4.10) inside the summation without some justification. The class of functions g which permit this turns out to be the following analog of the class of directly Riemann integrable functions.

Consider the class [image: image] of functions introduced in Section 3, and write [image: image] if [image: image] and g ≥ 0. Let π be a positive measure on E. Then the function [image: image] is said to be directly integrable with respect to π provided that the sums
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both be finite for any b > 0 and [image: image] as b → 0. We then write [image: image]

The following summarizes some of the useful facts about [image: image]. Here we write [image: image] for the class of directly Riemann integrable functions introduced in Definition (9.2.6), and we put πg for the function defined by
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(4.15)  PROPOSITION. (a) If [image: image] then [image: image], and the sums (4.12) and (4.13) both converge, as b → 0, to the value
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(b) Suppose [image: image] and ∫πg(t)dt < ∞. Then [image: image] if and only if the sum in (4.12) is finite for some b > 0.

(c) Suppose [image: image] is such that t → g(j, t) is monotone decreasing for each j. Then [image: image] provided that πg(0) < ∞ and ∫πg(t)dt < ∞.

(d) Suppose [image: image] and [image: image] and 0 ≤ f ≤ g. Then [image: image] provided that each f(i, ·) be Riemann integrable.

(e) Suppose [image: image] and let, for each j,

 

[image: image]

for some distribution φ(j, ·). Then [image: image] as well.

Proof (a) For any interval [image: image],

 

[image: image]

In view of the definitions of [image: image] and [image: image], this is sufficient to show that [image: image]. Since [image: image], πg is Riemann integrable in the ordinary sense and γ < ∞ is well defined. The above approximation shows that this number γ is also the limit of the sums in (4.12) and (4.13).

(b) Suppose [image: image], and [image: image] for b = 1. Then (4.12) and (4.13) are finite for all b > 0, and all we need to show is the convergence of their difference to zero as b → 0. Pick ω > 0; choose N such that
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Next, choose a finite subset D of E, possibly depending on N, such that
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Finally, choose [image: image] so large that, for b = 1/K, with An = [nb, nb + b),
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That N and D can be so selected follows from the finiteness of the sum (4.12) for b = 1. That K can be so chosen follows from the integrability of πg and the finiteness of D. Now, for b = 1/K, with An = [nb, nb + b)
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Since ε > 0 is arbitrary, this proves (b).

(c) When each g(j, ·) is monotone decreasing,
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Thus, πg(0) < ∞ and ∫ πg < ∞ imply that [image: image], and this implies, in view of part (b), that [image: image].

(d) Proof is immediate from part (b).

(e) Let An = [nb, nb + b). From the proof of Proposition (9.2.16d) we have that
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Thus

 

[image: image]

The last term is finite since [image: image], and in view of (b) part above, this completes the proof since

 

[image: image]

This completes the proof of Proposition (4.15). [image: image]

The following is the main limit theorem of Markov renewal theory.

(4.17)  THEOREM. Suppose (X, T) is irreducible recurrent, let v be a positive solution of v = vP, and let m(i) denote the mean sojourn time in state i as before in (4.3). If [image: image], then
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in the aperiodic case, and

 

[image: image]

in the case where the states are periodic with period δ; here δij is the first jump point of the distribution F(i, j, ·) of the first passage time from i to j.

Proof. Define a new kernel [image: image] by
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Then [image: image] is non-decreasing and right continuous, and if [image: image][image: image], we have [image: image] and [image: image]. So [image: image] is a semi-Mar-kovian kernel. It is easy to see that the iterates [image: image] of [image: image] are related to [image: image] by the same formula: [image: image], so for the Markov renewal functions [image: image] corresponding to [image: image] we have
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We see that in particular, [image: image] and that we have, by (2.9),
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for i ≠ j, where [image: image] is the distribution of the first passage time from j to i in the Markov renewal process corresponding to [image: image].

Using (4.22) in computing f = R * g, we obtain
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where

 

[image: image]

For fixed i, since [image: image], Proposition (4.15e) applies to show that the function [image: image] defined as [image: image] is in [image: image], and this in turn implies, by Proposition (4.15a), that [image: image] is in [image: image]. There remains to apply the key renewal theorem (9.2.8) to (4.23). In the aperiodic case this yields, through Theorem (4.3),
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as desired.

We omit the proof in the periodic case. [image: image]

The heart of the preceding theorem is that the condition of direct integrability of g with respect to v implies the direct Riemann integrability of [image: image] defined by (4.24). If more is known about the process, for example, if the [image: image] can be calculated explicitly, then the condition on g can be relaxed.

The preceding proof introduced a dual process which can be used further to obtain limits of certain important ratios. For this purpose we need the following technical result.

(4.25)  LEMMA. Let φ be a non-decreasing function defined on [image: image] and with φ(t + b) − φ(t) ≤ c for all t for some constant c and b > 0. Then for any non-decreasing right continuous function g we have

 

[image: image]

Proof will be omitted. We note that, being a renewal function, each Markov renewal function R(i, j, ·) satisfies the hypothesis of (4.25) regarding φ; see (9.2.11) for this.

(4.26)  PROPOSITION. Let (X, T) be an irreducible recurrent Markov renewal process, and let g(k, ·) be a right continuous non-decreasing function. Then for any h, i, j, k ∈ E,

 

[image: image]

where v is a solution of v = vP. In particular, for any h, i, j, k ∈ E,

 

[image: image]

Proof. Using Lemma (4.25) with φ = R(j, j ·) and g = F(i, j, ·), we obtain, since F(i, j,+ ∞) = 1 by hypothesis,

 

[image: image]

On the other hand, applying Lemma (4.25) with φ = R(i, i, ·) and [image: image][image: image] to the right-hand side of (4.22), we have

 

[image: image]

In particular, (4.29) and (4.30) together imply that

 

[image: image]

To obtain (4.28), we write

 

[image: image]

and apply (4.30), (4.31), and (4.29) respectively to the first, second, and third factors on the right. Finally, (4.27) follows from (4.28) and Lemma (4.25) applied to the left-hand side of (4.27) with φ = R(j, k, ·) and g = g(k, ·).[image: image]

It is interesting to note that the limit of the ratio (4.28), for example, does not depend on the distributions of the sojourn times.

5.  Semi-Markov Processes

Let (X, T) be a Markov renewal process with state space E and semi-Markov kernel Q. Define, as before in (3.14), L = supn Tn; then L is the lifetime of (X, T). If E is finite or if X is irreducible recurrent, then L = + ∞ almost surely. But it is possible, if there are infinitely many transient states which can be reached from each other with very small sojourn times in between, for the lifetime L to be finite with a positive probability. We refer to Proposition (3.14) and the propositions following it for a complete picture.

In this section we will be interested in the process Y = {Yt; t ≥ 0} defined by (1.14), that is,

 

[image: image]

where Δ is a point not in E. The continuous time parameter process so defined is called the minimal semi-Markov process associated with (X, T). In terms of Y, the times T1, T2, . . . are the successive times of transitions for Y, and X0, X1, X2, . . . are the successive states visited (this picture should be taken with some reserve: we allow transitions from a state into itself in X, and such transitions are not noticeable to an observer of the path of Y).

If the semi-Markov kernel Q has the same form as in Example (1.16), then Y is a Markov process. Otherwise Y is not Markovian. The word semi-Markov comes from the somewhat limited Markov property which Y enjoys, namely, that the future of Y is independent of its past given the present state provided the “present” is a time of jump. We will study the process Y by the techniques developed in this chapter so far. This treatment is parallel to, and in fact extends, that of Markov processes which we put in Chapter 8.

We start with a consideration of the transition probabilities. For i, j ∈ E, t ≥ 0, let

 

[image: image]

where, as before, we write Pi for the conditional probability given {X0 = i}. In the proposition below, R is the Markov renewal kernel corresponding to Q, and h is defined by

 

[image: image]

(5.4)  PROPOSITION. For any i, j ∈ E and t ≥ 0

 

[image: image]

Proof, (a) We first show that Pt (i, j) satisfies

 

[image: image]

We have

 

[image: image]

On the set {T1 > t} we have Yt = X0, and clearly Pi{T1 > t} = h(i, t); hence, the first term on the right is I(i, j) h(i, t). To obtain the second term, first observe that it is equal to

 

[image: image]

Consider the Markov renewal process [image: image] obtained by setting [image: image] and [image: image] for all [image: image]. The semi-Markov process Ŷ associated with [image: image] is the same as Y except that the time origin of Ŷ is the time T1 of first transition for Y; therefore Yt = Ŷt−s if T1 = s. On the other hand, [image: image] has the same probability law as (X, T), and therefore [image: image][image: image]. Thus

 

[image: image]

Putting this into (5.6), the latter expression becomes

 

[image: image]

which is the second term on the right of (5.5).

(b) For fixed j, if we put f(i, t) = Pt(i, j), we see that f satisfies a Markov renewal equation f = g + Q * f with g(i, t) = 0 for all i except i = j, for which it is h(j, t). It follows from Theorem (3.6) that

 

[image: image]

is a solution, and to complete the proof we need to show that this is the desired solution.

If L = ∞ almost surely, then by (3.6), (3.10), and (3.14), this is the only solution, and we are finished. Otherwise, we need to show that
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since, by the definition (5.1) of Y,

 

[image: image]

The left side of (5.7) is R * h(i, t); and noting that h = 1 − Q * 1, we have

 

[image: image]

This completes the proof since, by the proof of (3.14),

 

[image: image] [image: image]

Using the preceding result we can compute the expected time spent in a particular state by the process Y. Let U(i, j, t) be the expected time spent in j during [0, t] by the process starting at i; that is,

 

[image: image]

where 1j(k) = 1 or 0 according as k = j or k ≠ j. Passing the expectation inside the integral, noting that Et [li(Yg] = Ps(i, j), and using Proposition (5.4), we obtain the following

(5.9)  PROPOSITION. For any i, j ∈ E and t ≥ 0,

 

[image: image]

We will call U the potential function of Y. To see its relation to the potentials introduced for Markov processes in (8.4.15) we note the following: Let [image: image], and define

 

[image: image]

with the usual convention that f (Δ, s) = 0 for all s. If we interpret f(j, t) as the rate of reward being received at an instant t at which the state is j, then Uf(i, t) becomes the expected value of the total reward received during [0, t] starting at state i. In particular, if the rate of reward depends only on the state, namely, if f(j, t) = g(j) independent of t, then

 

[image: image]

is exactly the α-potential of g starting at i. Moreover, for α = 0, if we drop the superscript, (5.11) becomes the potential of g starting at i.

To compute Uf for [image: image], we first pass the expectation inside the integral and note that Ps (i, j) ds is simply U(i, j, ds). So

 

[image: image]

For the α-potential of g we have

 

[image: image]

where for any i, j ∈ E and α > 0,

 

[image: image]

with Rα defined by (2.11), and (see also (2.10))

 

[image: image]

We next relate the recurrence properties of (X, T) to those of Y by considering the total amount of time spent by Y in various states. Starting at i, the total time spent in j has the expectation

 

[image: image]

Using Proposition (5.4) to evaluate Pt(i, j) and changing the order of integration in the expression obtained, we have

 

[image: image]

where m(j) = ∫ h(j, u) du is the mean sojourn time in state j. It follows that if j is recurrent, then U(i, j) = + ∞ unless F(i, j) = 0. If F(i, j) = 0, then U(i, j) = 0. And if j is transient, then U(i, j) = R(i, j) m(j), which is finite or infinite according as m(j) < ∞ or m(j) = + ∞ unless F(i, j) = 0.

In the recurrent case we may obtain somewhat more precise information by considering certain ratios:

(5.18)  THEOREM. Let X be irreducible recurrent and let v be an invariant measure, namely, let v satisfy v = vP. Then
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for all i, j, h, k ∈ E provided that at least one of m(j) and m(k) be finite. Moreover, if at least one of m(j) and m(k) is finite, then

 

[image: image]

almost surely.

Proof. The first limit in (5.19) follows from the form of U(i, j, t) given in Proposition (5.9) and Lemma (4.25). The second limit in (5.19) follows from (5.9) again and Proposition (4.26). We omit the proof of (5.20). [image: image]

In the case where vm = ∑j v(j) m(j) < ∞, we may sum over all j in the second limit in (5.19) and (5.20). This yields

(5.21)  COROLLARY.Suppose X is irreducible recurrent, v satisfies v = vP, and vm < ∞. Then
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Moreover, almost surely,

 

[image: image]

The preceding corollary provides an intuitive explanation for the following limit theorem, whose proof is immediate from the main limit theorem (4.17), Proposition (5.4), and the fact that h(k, ·) is monotone non-increasing with integral m(k).

(5.22)  THEOREM. Suppose X is irreducible recurrent, v is a solution of v = vP, and m(k) < ∞. Then for any i ∈ E,
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in the aperiodic case, and

 

[image: image]

in the case where the states are periodic with period δ; here δik is the first jump point of the distribution F(i, k, ·), and the summation on the right is over all n for which x + nδ ≥ δik.

In the case of a regular Markov process Y, the sojourn distributions are all exponential, and therefore all states are aperiodic. Moreover,

 

[image: image]

so the limit claimed in (5.22) is precisely (8.5.10), and we have thus also proved Theorem (8.5.11).

We end this section with a comment on the definition of a semi-Markov process. Starting with a Markov renewal process (X, T), if we define the process Y by (5.1), then Δ plays the role of an absorbing state. In some situations, however, one has to start with a process Y which is defined for all t ∈ [0, ∞) and which is similar to a semi-Markov process, but Δ is not absorbing. Namely, if T1, T2, . . . are the successive jump times of Y and if X0, X1, X2, . . . are the successive states visited by Y, then (X, T) is a Markov renewal process, but the process Y is defined beyond L = lim Tn so that Δ is not absorbing. This is the case, for example, if Y is a Markov process with no instantaneous states, and the jump times T1 T2, . . . are such that L = sup Tn < + ∞ with a positive probability. Then Δ behaves worse than an instantaneous state, and the analysis becomes much harder. In such a case, the number Pt(i, j) we have in (5.4) is the probability of {Yt = j and L > t} given Y0 = i, and the relation between Pi{Yt, = j} and the semi-Markov kernel Q is more complex. In this case, the Markov renewal equation (5.5) still holds, but it has more than one solution. To obtain all possible solutions, by Theorem (3.6), we are led to examine all possible solutions to h = Q * h, which, as we have seen in (3.14) ff. , has to do with the behavior of the Markov chain X on transient states near the “infinity” Δ. The problem, which is usually referred to as the boundary theory, is a generalization of the boundary theory for Markov processes. At this writing, there are no good results known.

It is possible, on the other hand, to obtain a number of limiting results under suitable regularity conditions even if Y has infinitely many jumps in a finite interval. In the next section we introduce a class of such processes (see Example (6.6) in particular).

6.  Semi-Regenerative Processes

A stochastic process Z = {Zt; t ≥ 0} was called regenerative, roughly speaking, if there existed certain random times forming a renewal process at each of which the future of Z became a probabilistic replica of the process itself. Such random times were then called times of regeneration for Z. We will now weaken this concept by letting the future after a time of regeneration depend also on the “state” of a Markov renewal process at that time. Just as the real importance of renewal theory came from its applications to regenerative processes, the importance of the Markov renewal theory comes from applications to semi-regenerative processes.

A random variable T taking values in [0, + ∞] is called a stopping time for Z provided that for any t < ∞, the occurrence or non-occurrence of the event {T ≤ t} can be determined once the history {Zu; u ≤ t} of Z before t is known. If T is a stopping time for Z, we denote by {Zu; u ≤ T} the history of Z before the stopping time T.

(6.1)  DEFINITION. Let Z = {Zt; t ≥ 0} be a stochastic process with a topological state space F, and suppose that the function t → Zt(ω) is right continuous and has left-hand limits for almost all ω. The process Z is said to be semi-regenerative if there exists a Markov renewal process (X, T) with infinite lifetime satisfying the following:

(a) for each [image: image] is a stopping time for Z;

(b) for each [image: image] is determined by {Zu; u ≤ Tn};

(c) for each [image: image], and function f defined on Fm and positive,

 

[image: image]

 

[image: image]

In this definition Ei and Ej refer to the expectations given the initial state for the Markov chain X. Condition (a) is the same as in (9.2.18); without it neither (b) nor the left-hand side of (c) would have any meaning. Condition (b) means that an observer of the process Z can tell Xn if he has watched Z until the time Tn. Condition (c) is the most important; it considers a random variable Wn = f(ZTn + t1, . . . , ZTn + tm) which is a function of the values that Z takes at the future times Tn + t1, . . . , Tn + tm. The left-hand side of (c) is the conditional expectation of Wn as computed by an observer who has watched Z until the “present” time Tn. To a second observer who takes Tn as the time origin, the same random variable will appear as [image: image][image: image] where [image: image], and therefore, if he is told that the “state” at time [image: image][image: image] is [image: image] (which is the initial state as far as he is concerned), his expectation of the random variable in question will be the quantity on the right-hand side of (c). The process is semi-regenerative if the two observers come up with the same answer; in other words, if the extra information that the first observer has concerning the past of Z is worthless as far as predicting the future is concerned.

(6.2)  EXAMPLE. Regenerative processes. This is the case where in the condition (6.1c) the right-hand side does not depend on the state Xn at all. This is much stronger than what we require of semi-regenerative processes.[image: image]

(6.3)  EXAMPLE. Semi-Markov processes. Let (X, T) be a Markov renewal process with infinite lifetime, and let Y be the semi-Markov process associated with it (defined by (5.1)). Then Y is semi-regenerative, and we have already seen how Markov renewal theory is used to study the process Y. Let us further define

 

[image: image]

for all t ≥ 0, and put Zt = (Yt, Vt), t ≥ 0. Then Z is a semi-regenerative process with state space F = E × [image: ]+. We show this first for the case T0 = 0 < T1 < T2 < · · ·. Then t → Vt is continuous and decreasing everywhere except at T0, T1 T2, . . . , at which it jumps from the left-hand value of zero to the right-hand values T1 − T0, T2 − T1, T3 − T2, . . . . Hence, T1, T2, . . . are the first, second, . . . jump times of V, and as such each one is a stopping time of V, and therefore of Z. For each n, Xn = YTn, and therefore Xn is determined by the history of Z until Tn. Finally, the check for condition (c) follows from the Markov renewal property of (X, T). So Z is semi-regenerative. More generally, when 0 = T0 ≤ T1 ≤ T2 ≤ · · ·, we define [image: image], as the first jump time of [image: image] as the second jump time of V, and so on, and set [image: image]. Then Z is semi-regenerative provided [image: image] is a Markov renewal process. But the latter follows from the strong Markov property applied to (X, T) after noting that [image: image], where N0 = 0, N1 = inf{n > 0: Tn > 0}, N2 = inf{n > N1 : Tn > TN1}, etc.

Without more explanations we point out a number of other semi-regenerative processes connected with a given Markov renewal process (X, T) with infinite lifetime. Let Y be the semi-Markov process associated with (X, T), let V be as defined in (6.4), and define

 

[image: image]

Then Ut is the time since the last transition of Y before the instant t. The two-dimensional process Z = (Y, U) is semi-regenerative; its state space is [image: image] [image: image]. Still another semi-regenerative process is (Y, U, V), whose state space is [image: image].

[image: image]

(6.6)  EXAMPLE. General semi-Markov processes. Instead of starting with a Markov renewal process and then defining Y in terms of it, we now define Y directly. Let E = {0, 1, 2, . . .}, and suppose Y = {Yt; t ≥ 0} is a right continuous stochastic process taking values in E ∪ {∞}. Suppose that for any i ∈ E, the time set Hi = {t: Yt = i) is a union of countably many disjoint intervals whose lengths add up to infinity; the right continuity of Y implies that the component intervals of Hi are closed on the left and open on the right. For the special state + ∞ we suppose that the time set H∞ = {t: Yt = ∞} contains no open intervals and that its length [image: image] ds is well defined and equal to zero. Moreover, we suppose that no jump of Y is of infinite magnitude. In other words, the process Y may go to and come from the state + ∞ but the manner in which it can do so is severely restricted.

Concerning its probabilistic behavior we suppose the following. For any finite set A ⊂ E, if S is the time of first entrance to A by Y, then we have

 

[image: image]

for any random variable Ws = f(Ys + t1, . . . , Ys + tm); here W0 = f(Yt1, . . . , Ytm), f ≥ 0 is defined on Em, 0 ≤ t1 < · · · < tm, and Ei is the expectation given Y0 = i, i ∈ E.

The process Y we have defined is very close to the semi-Markov processes examined in the preceding section. If T1 T2, . . . are the successive times of jumps of Y, and if sup Tn = ∞ almost surely, then Y is precisely a simple semi-Markov process associated with (X, T), where the Tn are the jump times and Xn = YTn .But if L = sup Tn < ∞ with positive probability, what we have is much more complex than the minimal semi-Markov process associated with this (X, T). Note that now YL + ∞, but the process Y does not stay there for any length of time, and Y is already defined beyond L. It can be shown that every state i ∈ E is transient for the Markov chain X, but the process Y spends infinite time in state i. In other words, though the number of visits to i is finite in the interval [0, L), the process Y comes back to i after L again and again. The times S1 S2, . . . of successive visits to that fixed state i form, as before, a renewal process; and by our hypothesis on the time set Hi = {t: Yt = i}, this renewal process S is recurrent.

To see that Y is semi-regenerative we take a fixed finite subset D ⊂ E which contains the initial state; let T1, T2, . . . be the successive times of visits to that fixed set D, and set X0 = Y0, T0 = 0, Xn = YTn (more precisely, T1 = inf{t: Ys ≠ Y0 for some s ≤ t and Yt ∈ D}, T2 = inf{t > T1: Ys ≠ X1 for some s ∈ (T1, t] and Yt ∈ D}, and so on). Each Tn is a stopping time, Xn clearly belongs to the history until Tn, and condition (6.1c) follows from (6.7) by a repeated application of the latter. In particular, (6.7) implies that (X, T) is a Markov renewal process. [image: image]

Other examples of semi-regenerative processes are the Markov processes studied in Chapter 8, and some queueing processes which we will take up specially in the next section.

When Z is semi-regenerative, the Markov renewal process (X, T) figuring in Definition (6.1) is called its embedded process. It is possible to have more than one Markov renewal process embedded in the same semi-regenerative process. In such a situation, we may use different embedded ones to study the different aspects of Z.

The following are the main theorems of this section.

(6.8)  THEOREM. Let Z be a semi-regenerative process with state space F, let (X, T) be a Markov renewal process imbedded in Z, and let Q and R be the semi-Markov kernel and the Markov renewal kernel corresponding to (X, T). Define, for any suitable set A ⊂ F,

 

[image: image]

and

 

[image: image]

Then for any i ∈ E and t ≥ 0, we have

 

[image: image]

Proof. We can write

 

[image: image]

Now, by the regeneration property (6.1c),

 

[image: image]

So

 

[image: image]

This is a Markov renewal equation, and by Theorem (3.6), (6.11) is a solution of it. That this is the only solution follows from (3.10), (3.14), and the hypothesis that (X, T) has infinite lifetime (see Definition (6.1)).[image: image]

(6.12)  THEOREM. In the hypothesis of Theorem (6.8), suppose further that (X, T) is an irreducible aperiodic recurrent process, let v be an invariant measure for X, let m(j) = Ej[T1], and suppose vm < ∞. Then

 

[image: image]

provided that t → Kt(j, A) be Riemann integrable for each j ∈ E.

Proof. The function t → h(j, t) = Pj{T1 > t} is monotone decreasing and integrable with ∫ h(j, t) dt = m(j). Thus, it is in [image: image]. Since Kt(j, A) ≤ h(j, t) and since t → Kt(j, A) is integrable by hypothesis, this implies that t → Kt(j, A) is also in [image: image]. Now (6.13) follows from Proposition (4.9) provided that E be finite.

Suppose next that E is not finite. We can write

 

[image: image]

where Y is the semi-Markov process associated with (X, T). The process (Z, Y) is semi-regenerative with the same imbedded Markov renewal process (X, T), and using Theorem (6.8) above, we have

 

[image: image]

Since t → Kt (j, A) is directly Riemann integrable, from the key renewal theorem we obtain

 

[image: image]

where η(j) = ν(j)/νm by Theorem (4.3).

On the other hand, let D be a finite subset of E which includes the initial state i, and define the Markov renewal process [image: image] as in Theorem (1.13). Then [image: image] is an irreducible aperiodic recurrent Markov renewal process which is also imbedded in Z. Using the arguments of the first paragraph of this proof with [image: image] replacing (X, T), we see that the limit, as t → ∞, of Pt(i, A) exists. This fact, along with (6.14) and (6.16), implies

 

[image: image]

If the strict inequality held for some A, then using the inequality for the complement of A and noting that Pt(i, A) + Pt(i, Ac) = 1, we would have

 

[image: image]

which is absurd since Kt(j, A) + Kt(j, Ac) = Pj{T1 > t}, and the integral of this is m(j), and ∑η(j) m(j) = 1. Hence, in (6.17) the equality must hold for every A. [image: image]

The following are some applications of the preceding two theorems.

(6.18)  EXAMPLE. Semi-Markov processes. Let (X, T) be an irreducible recurrent Markov renewal process and let Y, V, U be as defined in Example (6.3). Since (Y, V) is semi-regenerative, we have
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by Theorem (6.8), since the kernel K in (6.9) now is

 

[image: image]

with h(i, t) = Pi{T1 > t} = 1 − ∑j Q(i, j, t) as before. Applying the limit theorem (6.12), we obtain, when (X, T) is irreducible recurrent aperiodic and m(j) < ∞,

 

[image: image]

Similarly, noting that

 

[image: image]

we have, from Theorem (6.8) applied now to the semi-regenerative process (Y, U, V),

 

[image: image]

Using Theorem (6.12) next, when (X, T) is recurrent aperiodic and m(j) < ∞,

we get

 

[image: image]

Various other quantities of interest concerning (Y, U, V) can be obtained by similar means. [image: image]

(6.23)  EXAMPLE. System availability. Consider a piece of equipment with a finite number of components; suppose that the failure of any one component is a failure for the equipment itself. Let T0 = 0, T1 T2, . . . . be the times of successive failures, and let Xn be the type of the component causing the nth failure. The time Tn + 1 − Tn between two failures is the sum of the repair time of the component which failed at Tn and a failure-free interval following the repair. We suppose all components have exponential lifetimes, with the component j having the parameter λ(j); and suppose that the repair time of the component j has distribution φ(j, ·). Under these assumptions, (X, T) is a Markov renewal process with semi-Markov kernel Q given by

 

[image: image]

where λ = ∑ λ(i). Note that

 

[image: image]

independent of i, so {λ(j)} is also the invariant measure.

Now let Yt be the component which caused the last failure before t, and define Wt as 1 or 0 according as the equipment is working or under repair at time t. Then (Y, W) is a semi-regenerative process. Since

 

[image: image]

Theorem (6.8) yields

 

[image: image]

and Theorem (6.12) gives, supposing that the mean repair times b(j) are finite,

 

[image: image]

In this example the times Tn of failures form a renewal process with the distribution of Tn + 1 − Tn being F = φ * ψ, where φ(t) = ∑ φ(i, t) λ(i)/λ and ψ(t) = 1 − e−λt. Because of this, the above results can also be obtained by using renewal theory. But it is easier to obtain them by the present methods. [image: image]

7.  Applications to Queueing Theory

In Examples (1.19) and (1.20) we showed the existence of Markov renewal processes embedded in the queue size processes of M/G/1 and G/M/1 queueing systems. In Chapter 6 we studied the underlying Markov chains. We now bring together these results to obtain the time-dependent behavior of the queue size processes. The methods we are using also apply to more general queueing systems.

We start with the M/G/1 queueing system. We use the notations introduced in Example (1.19) and Section 5 of Chapter 6. We denote by Yt the number of customers present in the system at time t. Y = {Yt; t ≥ 0} is then a semi-regenerative process with state space E = {0, 1, 2, . . .}; its embedded Markov renewal process is (X, T), which was described in (1.19). We let R denote the Markov renewal kernel corresponding to Q in (1.19). For each i, k ∈ E, t ≥ 0, define

 

[image: image]

Using Theorem (6.8) to compute this, we obtain the following

(7.2)  THEOREM. For any i, k ∈ E and t ≥ 0,

 

[image: image]

where

 

[image: image]

Proof. In view of (6.8) we need only to show that K(t, j, k) = Pj{Yt = k, T1 > t} is as claimed in (7.4). For j > 0, the first departure time T1 is the same as the first service time; therefore, T1 > t with probability 1 − φ(t), and given that, Yt = k if and only if there are k − j arrivals during [0, t]. This explains (7.4) for j > 0. For j = 0 and k = 0, K(t, j, k) is merely the probability that there are no arrivals in [0, t], Suppose, finally, that j = 0 and k > 0; then in order that Yt = k and T1 > t, there must be an arrival at some time t − s before t, the service time starting at t − s must last at least s units, and during that time interval [t − s, t] there must be k − 1 arrivals. This explains K(t, j, k) for j = 0, k > 0. [image: image]

As before, let b be the mean service time (which we assume is finite). Then the recurrence properties of (X, T) are determined by the traffic intensity r = ab. It follows from Proposition (6.5.14) and Theorem (6.5.34) that the underlying Markov chain X is recurrent non-null if r < 1, recurrent null if r = 1, and transient if r > 1. In the recurrent non-null case r < 1, the limiting distribution π of the Markov chain X was computed in Theorem (6.5.20). The following theorem shows that the limiting behavior of Y is the same as that of X.

(7.5)  THEOREM. The limits

 

[image: image]

exist and are independent of i. If r ≥ 1, then π(j) = 0 for all j ∈ E. If r < 1, then the π(j) are given by (6.5.21)–(6.5.23).

Proof. (a) Transient case. Suppose r > 1; then (X, T) is transient, and we have from (7.3)

 

[image: image]

provided that K(∞, j, k) = limt→∞ K(t, j, k) exist for all j, k. In fact, these limits exist and are all zero; to see this we use (7.4) and the approximations K(t, 0, 0) = e−at, K(t, 0, k) ≤ ψ * (1 − φ)(t), and K(t, j, k) ≤ 1 − φ(t) for j, k > 0; here, and later,

 

[image: image]

(b) Recurrent case. Suppose r ≤ 1; then X is irreducible recurrent. Moreover, the sojourn time in state 0 has an exponentially distributed component; this implies that Q(0, j, t) is not a step function, and by Proposition (2.25), all states are aperiodic in (X, T).

From (7.4) we have K(t, 0, 0) = e−at, K(·, 0, k) ≤ ψ * (1 − φ) for any k > 0, and K(·, j, k) ≤ 1 − φ for j, k > 0. It is clear that e−at is directly Riemann integrable; 1 − φ is directly Riemann integrable since it is monotone and is integrable (integral equal to b), and ψ * (1 − φ) is directly integrable by (9.2.16d). These facts show that t → K(t, j, k) is directly Riemann integrable for every j, k.

Therefore, the key renewal theorem applies to each one of the terms in (7.3), and we have

 

[image: image]

where η(j) is the mean recurrence time of j in (X, T). By Theorem (4.3) we have η(j) = v(j)/∑ v(i)m(i), where v is some invariant measure for X. We now have m(i) = b for all i > 0 and m(0) = b + 1/a. So if r = 1, we have ∑v(i) m(i) = v(0)/a + ∑v(i) = ∞, which implies that η(j) = 0 for all j, which in turn implies via (7.6) that lim Pt(j, k) = 0 in that case. In case r < 1, we may choose v to be the limiting distribution π of X given in Theorem (6.5.20). Then we have, noting that ∑ π(i) m(i) = 1/a,

 

[image: image]

To complete the proof, there remains to show that putting (7.7) into (7.6) yields π(k). We put this computational result as a separate lemma. [image: image]

(7.8)  LEMMA. Let π be the limiting distribution of X. Then for any k ∈ E,

 

[image: image]

Proof. Let the quantity on the left be denoted by v(k). To show that v(k) = π(k) for all k it is sufficient to show, by the uniqueness theorems for power series, that the two series

 

[image: image]

are equal for all z ∈ [0, 1). Changing the order of summations and the integration, using (7.4), with λ = a − az for short, we have

 

[image: image]

where

 

[image: image]

On the other hand, using the system of linear equations π = πP, we obtain

 

[image: image]

after noting that F(z) defined by (7.10) is also ∑ qjZJ.

Solving for π(0)(1 − z)F(z) in (7.11), putting the result in (7.9), we obtain

 

[image: image]

Thus, H(z) = G(z) as claimed for all z < 1.

[image: image]

Finally, we consider the cumulative time spent in particular states. Suppose a “penalty” cost of f(k) units per unit time is applicable whenever the process is in state k. Then the total cost during [0, t] has the expected value

 

[image: image]

if the initial number of customers was i.

(7.13)  THEOREM. For any i ∈ E and t ≥ 0
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where, in the notations of Theorem (7.2),

 

[image: image]

[image: image]

For the limit, as t → ∞, of the average cost we have the following

(7.15)  THEOREM. Suppose the traffic intensity r = ab < 1. Then

 

[image: image]

independent of the initial state i; here π is the limiting distribution given in (6.5.20), and f is non-negative and bounded.

Proof. The limit of interest is the limit of U f(i, t)/t as t → ∞. Noting that ∑k U(i, k t)/t is bounded by one, we see by the bounded convergence theorem that

 

[image: image]

Writing U(i, k t)/t = [U(i, k, t)/R(i, k, t)/t]·[R(i, k, t)/t], and applying (4.27) to the term U(i, k, t)/R(i, k, t), we obtain, from the form of U(i, k, t) given in (7.14),

 

[image: image]

By Lemma (7.8) the last term is π(k), and together with (7.16), this completes the proof.

[image: image]

We next consider the dual queueing system G/M/1. We denote the embedded Markov renewal process by (X*, T*), and the queue size process by Y*, that is, [image: image] is the number of customers, at time t, in the system of Example (1.20). Then Y* is a semi-regenerative process with (X*, T*) embedded in it. It is worth mentioning that t → Yt is taken to be right continuous, so at the time [image: image] of the nth arrival we have [image: image]. Since [image: image] is different from [image: image], we mention once more that, below, [image: image].

We denote by R* the Markov renewal kernel corresponding to Q* described in (1.20), and let

 

[image: image]

The proof of the following theorem parallels that of (7.2), and we will omit it.

(7.18)  THEOREM. For any i, k ∈ E and t ≥ 0,
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where

 

[image: image]

Let [image: image] dt; that is, b is the mean interarrival time. By Theorem (6.6.12), the underlying Markov chain X* is transient if r = ab < 1 and recurrent otherwise. In the recurrent case, Theorem (6.6.5) shows that X* is non-null if r = ab > 1 and null otherwise. If r > 1, the limiting distribution of X* is given by
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where β < 1 is the number satisfying

 

[image: image]

Finally, when r = 1, the proof of (6.6.5) shows that an invariant measure is
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Before listing the main limit theorem, we note that the process (X*, T*) is aperiodic if and only if the arrival process is aperiodic. Otherwise, if the arrivals can occur only at times 0, δ, 2δ, 3δ, . . . , then (X*, T*) is periodic with period δ. This follows immediately from the definition of periodicity for a state in (X*, T*) and the fact that the [image: image] are the times of arrivals.

(7.23)  THEOREM. If ab < 1, or if ab = 1 and the variance d2 of an interarrival time is finite, then
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for all i, k ∈ E. If ab > 1 and the arrival process is aperiodic, then
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If ab > 1 and the arrival process is periodic with period δ, then for any x ∈ [0, δ) we have
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where

 

[image: image]

Proof. (a) Case ab < 1. Let [image: image] denote the number of customers in the system just before the first arrival after t. Since [image: image], we have
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Let S be the last time the process Y* was in a state j ≤ k, that is, let [image: image], where [image: image]. If ab < 1, then X* is transient. Therefore, when ab < 1, N is finite with probability one, and thus [image: image] is finite with probability one, and we have
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On the other hand, the last term in (7.27) is [image: image], since [image: image] implies that S ≥ t. Hence, when ab < 1, (7.27) and (7.28) complete the proof.

(b) Case ab = 1. We still have (7.27) holding, and to show that [image: image] → 0 we need only show that
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The process Y+ is semi-regenerative, and using Theorem (6.8), we have (for fixed k)
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where

 

[image: image]

Since ab = 1, the invariant measure v is given by (7.22). We now show that g defined by (7.31) is in [image: image]. It is clear that g(j, ·) is right continuous and decreasing; furthermore,
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and

 

[image: image]

It follows from Proposition (4.15c) that g is in [image: image]. We now may apply Theorem (4.17) to (7.30); this shows that (7.29) holds, since vm = ∑ v(i)b = ∞ in the present case.

(c) Case ab > 1, T* aperiodic. We may now take v to be the limiting distribution π* given in (7.20). Since ∑ π(i)m(i) = b, Theorem (6.12) applies to give
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Now, in view of (7.21),
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so that

 

[image: image]

Putting (7.33) in (7.32) yields the desired result.

(d) Case ab > 1, T* periodic, follows similarly by a direct application of Theorem (6.12) (except that the computations involved are somewhat longer).



[image: image]

A special case of some interest is the one where the arrivals are scheduled to occur at times 1, 2, 3, . . .; that is, φ(t) = 0 for t < 1 and φ(t) = 1 for t ≥ 1. If a > 1, then we have ab = a > 1, and the limit result (7.25) is applicable. Now, β = e−(a − aβ), δ = 1, c(x) = βx.

8.  Exercises

(8.1)  Let (X, T) be a Markov renewal process with state space E = {a, b} and semi-Markov kernel Q given as
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(a) Compute the transition matrix P for the Markov chain X.

(b) Compute the conditional distributions G(i, j, ·) of the sojourn time in state i given that the next state is j for all i, j.

(8.2)  Let (X, T) be as in (8.1). Supposing that X0 = a, X1 = a, X2 = b, X3 = b, compute the conditional distributions

(a) P{T1 ≤ x, T2 − T1 ≤ y, T3 − T2 ≤ z | X0, X1, X2, X3},

(b) P{T1 ≤ t | X0, X1, X2, X3}.

(8.3)  In Example (1.17) of traffic flow, suppose T1, T2, . . . are the positions of successive vehicles along a highway at a fixed instant. There are two types of vehicles: cars and trucks, which will be shortened to cr and tr respectively. Suppose the successive types form a Markov chain X with transition probabilities P(cr, cr) = 0.8 and P(tr, tr) = 0.1; and suppose the headways, measured in feet, between different types have the distributions
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(a) Compute the semi-Markov kernel Q for (X, T).

(b) Compute the distribution F(tr, tr, ·) of the distance between two trucks.

(c) Find an expression for the expected number of trucks in the interval [0, x] of the highway.

(d) Find the ratio of the number of trucks to the number of vehicles on the highway.

(8.4)  A machine has two components a and b whose lifetimes are exponential with respective parameters 0.01 and 0.04. The machine fails if either component fails, and the repair times are random with respective distributions σ and ψ for a and b. Let Yt be a, b, or c according as, at time t, the component a is being repaired, the component b is being repaired, or the machine is working.

(a) Show that Y is a semi-Markov process with the semi-Markov kernel
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where φ(t) = 1 − e−0.05t.

(b) Compute Pc{Yt = j} for all j.

(8.5)  Clustered renewal processes. This provides a model for situations where a failure might go undetected for some time, thereby causing secondary failures. Suppose the lifetime of an item has the distribution φ. When it fails, it may cause secondary failures with distribution ψ for the times between. The probability of detection at a time of failure is p; and once detected, the failed item is replaced by an identical one. Let Xn be 1 or 2 according as the nth failure is a primary or secondary failure, and let Tn be the time of the nth failure.

(a) Show that (X, T) is a Markov renewal process with semi-Markov kernel
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(b) Find the distribution F(1, 1, ·) of the time between two primary failures.

(c) Find the distribution of the number of secondary failures between two primary ones.

(8.6)  Continuation. Suppose each failure costs one dollar and the replacement cost for the item is eight dollars. Find the limit, as t → ∞, of the average expected cost for the interval [0, t]; in other words, find
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(8.7)  Consider the machine in Exercise (8.4). Suppose repairing a costs 18 dollars per unit time, repairing b costs 4 dollars per unit time, and the machine earns 10 dollars per unit time when it is working. Compute the limit, as t → ∞, of the average net earnings (here g = (− 18, −4, 10))
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assuming that the mean repair times are m(a) = 2 and m(b) = 1 for a and b.

(8.8)  Counters of type I. Particles arriving at a counter can be separated into N types (either by their physical natures or by their energy levels or by some other characteristic). Let Xn and Tn be the type and time of arrival, respectively, of the nth particle. Suppose (X, T) is a Markov renewal process with a semi-Markov kernel Q (and state space E = {1, 2, . . . , N}). An arriving particle which finds the counter free gets registered and locks it for some random time with distribution ψ(i, ·) if its type is i. Arrivals during a locked period have no effects whatsoever.

(a) Let [image: image], [image: image], [image: image], . . . be the times of successive registrations and [image: image], [image: image], [image: image], . . . the types of the particles registered. Show that [image: image] is a Markov renewal process.

(b) Show that the semi-Markovian kernel [image: image] corresponding to [image: image] is
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(c) Show that when X is irreducible recurrent with invariant measure ν, [image: image] is irreducible recurrent with an invariant measure [image: image] satisfying
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(8.9)  Continuation. Let P(t, i, j) be the probability, starting with a type i registration, that the counter is locked at time t with a type j registration as the last one.

(a) Compute P(t, i, j).

(b) Compute [image: image].

(8.10)  Continuation. Compute the ratio of the number of registrations to the number of arrivals for the type j particles in the long run.

(8.11)  Counters of type II. An arriving particle which finds the counter free gets registered and locks the counter for some random length of time. A particle which finds the counter locked does not get registered, but erases the influence of all the previous particles, and locks the counter for some random time. Let Xn be the type and Tn the time of arrival for the nth particle. Suppose (X, T) is a Markov renewal process with a semi-Markov kernel Q with state space E = {1, . . . , N}, N < ∞; and let ψ(i, ·) be the distribution of the locked period effected by a type i particle.

(a) Let Yt be the type of the last particle arriving before t, and let Wt be 1 or 0 according as the counter is locked or free at time t. Show that
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satisfies a Markov renewal equation
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with
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(b) Compute Pi{Yt = k, Wt = 1}.

(c) Supposing that X is irreducible recurrent with limiting distribution π, compute the limit as t → ∞ of the average time spent locked during [0, t], that is, compute
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(8.12)  Continuation. Let [image: image], [image: image], [image: image], . . . be the times of successive registrations and [image: image], [image: image], [image: image], . . . the corresponding particle types.

(a) Show that [image: image] is a Markov renewal process.

(b) Let [image: image] be the semi-Markov kernel corresponding to [image: image]. Show that for fixed k, [image: image] satisfies a “Markov renewal equation”
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where [image: image].

(c) Let [image: image] be defined by (2.3) and (2.4) by replacing Q in those expressions by [image: image], and let [image: image]. Show that the solution for [image: image] is
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(d) Find the limit of the ratio [image: image] of the expected number of registrations to the expected number of arrivals, during the interval [0, t] starting with a registration of type i, for the particles of type j.

(8.13)  Generalized Markov renewal equations. A function [image: image] is said to satisfy a general Markov renewal equation if f = g + Q * f for some function [image: image] and generalized semi-Markov kernel Q: each Q(i, y, ·) is a mass function as before, but 2; ∑i Q(i, j, + ∞) ≤ 1 (instead of being equal to one). Suppose the state space E is finite, and let R = ∑ Qn as before, with the Qn defined by (2.3) and (2.4).

(a) Show that f = R * g is the unique solution of [image: image].

(b) Show that each R(i, j, ·) is still a renewal function (possibly delayed).

(c) Show that if Q is irreducible and ∑j Q(i, j, + ∞) < 1 for some i, then R(i, y, + ∞) < ∞ for all i, y.

(8.14)  Pedestrian delay problem. Consider the traffic flow model of Exercise (8.3). Suppose the speeds of the vehicles are almost all equal, and by choosing the time unit properly, we take this speed to be one foot per unit of time. Suppose a pedestrian arrives at the highway, to cross it, just as a car is passing by. To cross it, he accepts a gap of x units with probability φ(x) or ψ(x) according as the approaching vehicle is a car or a truck. He evaluates the gaps independent of his previous decisions, and he does not become impatient.

(a) Find the distribution of the delay W before he is able to start crossing.

(b) Compute the expected value of W.

(8.15)  General semi-Markov processes. Let Y be a semi-Markov process in the sense of Example (6.6). Let T be the time of its first jump, define Q(i, j, t) = Pi{YT = j, T ≤ t}, and let [image: image] be the expected number of visits to j by Y during [0, t] given the initial state i.

(a) Show that [image: image].

(b) Show that [image: image] if and only if
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(8.16)  Continuation. Let D ⊂ E be a finite set; let [image: image], [image: image], [image: image], . . . be the successive times Y visits D, and let [image: image].

(a) Show that [image: image] is a Markov renewal process embedded in the semi-regenerative process Y.

(b) If [image: image] is the semi-Markovian kernel corresponding to [image: image], and if [image: image] is as defined in (8.15), then show that [image: image] for all i, j [image: image] D.

(c) Show that for i, j [image: image] D,

 

[image: image]

where

 

[image: image]

(8.17)  Continuation. Let U be as defined by (5.8), but for the present process Y.

(a) Show that Proposition (5.9) holds with R there replaced by [image: image]. Similarly for (5.12), (5.14), and (5.17).

(b) Show that (5.19), (5.20), (5.21), and (5.22) all hold provided that i, j, h, k [image: image] D, that R there be replaced by [image: image], that v(j)/v(k) there be replaced by the expected number of visits to by [image: image] between two visits to k, and that vm/v(j) there be replaced by the expected value of the time between two visits to j.

(8.18)  Virtual waiting time in G/M/l queue. Let Vt be the amount of time the server needs to serve all the customers who are in the system at time t; then Vt is called the backlog at t, or the virtual waiting time at t.

(a) Show that
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(b) Show that when ab ≤ 1, limt Pi{Vt ≤ x} = 0 for all x < ∞.

(c) Show, when ab > 1 and the arrivals are aperiodic, that
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(8.19)  M/G/1 queue with finite capacity. Consider the queueing system described in Exercise (6.8.23). Give a treatment of this system in continuous time by using the methods of Section 7 for the corresponding infinite capacity system.

(8.20)  G/M/1 queue with finite capacity. Consider the system described in Exercise (6.8.24). Give a treatment, paralleling that of Section 7, of the time-dependent behavior of this system.

[image: image]

To those readers who think this book could have done just as well without this last chapter, I should point out the special reason for its inclusion: This chapter is based on ÇINLAR [1].

Semi-Markov processes were introduced by LÉVY [1] and SMITH [1] at the same time, independent of each other. The term Markov renewal process is due to PYKE [1], who gave an extensive treatment of many aspects of such processes in a series of papers. Our treatment of Sections 3 and 4 parallels FELLER [4], [5], and [6]. For generalizations in several directions and further references to recent research see ÇINLAR [2], [3].


Afterword

The two glaring omissions alluded to in the foreword are the theories of Brownian motion and martingales. In an effort to keep the mathematical level low, we had to work without the tools of measure theory and real real analysis. In the case of martingales and Brownian motion, this restriction would allow only a shallow, superficial treatment. That being at variance with our tastes, it seemed best to omit them altogether. The interested reader will find a good introduction to martingales in NEVEU [1]. LAMPERTI [1] gives a lucid introduction to Brownian motion; and DYNKIN and YUSHKEVICH [1] discuss some related problems of modern interest. The definitive work on Brownian motion and other Markov processes with continuous paths is the book by ITÔ and MCKEAN [1].

This should satisfy most readers. To the remaining insistent few, I own myself a debtor for those two items. I shall pay off this debt in due time, along with my other book-debts, which, in addition to a chapter on martingales, include one on the horses wearing them, another on the people who play the horses, and their chamber-maids, green-gowns, and old hats. For now, this is the end of our

INTRODUCTION TO STOCHASTIC PROCESSES


APPENDIX

Non-Negative Matrices

Throughout the following all matrices are finite-dimensional. They are all square unless otherwise specified. We shall avoid declaring their dimensions unless it is necessary. In particular, in writing AB, it will be understood that the number of columns of A is equal to the number of rows of B, so that their product makes sense. Matrices will be denoted by capital letters such as A, B, C; column vectors by small letters such as f, g, h; and row vectors by small Greek letters such as π, ν. The identity matrix is denoted by I, the column vector of ones by 1, of zeros by 0. Our purpose here is to supplement the computational aspects of the theory of Markov chains with finitely many states.

1.  Eigenvalues and Eigenvectors

We assume that the reader is either familiar with most of the following summary or willing to accept the stated results without proofs.

Given a matrix A, the determinant

 

[image: image]

defines a polynomial φ on the field of complex numbers. Then φ is called the characteristic polynomial of A. If A is n × n, then φ is a polynomial of degree n, and the characteristic equation ϕ(x) = 0 has exactly n roots λ1, . . ., λn. The complex numbers λ1, . . ., λn so obtained are called the eigenvalues of A. In other words, λ is an eigenvalue of A if and only if φ(λ) = det(λI – A) = 0. An eigenvalue λ is said to be simple if λ appears only once among the  λ1, . . ., λn. If λ appears m ≥ 2 times among λ1, . . ., λn, then the eigenvalue λ is said to have multiplicity m.

If λ is an eigenvalue of A, then there exists at least one column vector f ≠ 0 satisfying
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then f is called an eigenvector of A corresponding to the eigenvalue λ. Conversely, if (1.2) holds for some scalar λ and vector f ≠ 0, then λ is an eigenvalue of A and f is an eigenvector corresponding to it.

If f is an eigenvector, so is cf for any constant c ≠ 0. Up to this multiplication by a constant, there exists exactly one eigenvector corresponding to λ when λ is simple. When λ has multiplicity m, it has at most m linearly independent eigenvectors corresponding to it.

Since the determinant of a matrix is the same as that of its transpose, A and its transpose AT have the same characteristic polynomial and, therefore, the same eigenvalues. If g is an eigenvector of AT corresponding to λ, then its transpose π = gT satisfies
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Then the row vector π is called a row eigenvector of A corresponding to λ. Since πT is an eigenvector of AT, everything that is said about eigenvectors is true also for row eigenvectors.

If f is an eigenvector corresponding to an eigenvalue λ, then f is linearly independent of all the eigenvectors corresponding to eigenvalues distinct from λ. Thus, if A is n × n and the eigenvalues λ1, . . ., λn are all distinct, then the eigenvectors f1, . . ., fn corresponding to λ1, . . ., λn form a linearly independent set of vectors. Therefore, the matrix N = [f1 . . . fn] whose jth column is fj is a non-singular matrix and has an inverse N−1. Noting that Afj = λj fj, we can write AN = ND by letting D to be the diagonal matrix whose diagonal entries are λ1, . . ., λn. This shows that we have
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In the converse direction, suppose there is a diagonal matrix D and a non-singular matrix N such that (1.4) holds. Then each diagonal entry of D is an eigenvalue of A, the jth column of N is an eigenvector corresponding to the eigenvalue appearing as jth diagonal entry of D, and the ith row of N−1 is a row eigenvector corresponding to the eigenvalue appearing as the ith diagonal entry of D.

A matrix A for which the representation (1.4) is possible with D diagonal is said to be diagonalizable. If all the eigenvalues of A are distinct, then A is diagonalizable. But the distinctness of eigenvalues is not necessary for A to be diagonalizable; all that is needed is the existence, corresponding to each eigenvalue which has multiplicity greater than one, of as many linearly independent eigenvectors as the multiplicity of that eigenvalue.

The form (1.4) is also useful in computations of the powers of a given matrix, etc. If A = NDN−1 then A2 = NDN−1 − NDN−1 = ND2N−1, and by induction
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Since Dk is just the diagonal matrix whose diagonal entries are the kth powers of the eigenvalues λ1, . . ., λn, it is easy to compute. Moreover, (1.5) can be used to compute
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where

 

[image: image]

In computing eigenvalues there is no need to take any determinants (which is computationally clumsy). The easiest relation to use is the following: the sum of the eigenvalues of A is equal to the sum of the diagonal entries of A. The latter sum is called the trace of A, and what was just said is that
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where λ1, . . ., λn are the eigenvalues of A. More generally, since the eigenvalues of Ak are the kth powers of the eigenvalues of A,

 

[image: image]

If A is n × n, there are n eigenvalues to compute; the n equations needed can be obtained from (1.9) for k = 1, . . ., n.

To see why these relations hold we first note that whether A is diagonalizable or not, there is a non-singular matrix N and a lower-triangular (all entries above the diagonal are zero) matrix D such that A = NDN−1. Since φ(x) = det(xI – A) = det(N(xI – D)N−1) = det(N)det(xI – D)det(N−1) = det(xI – D), the eigenvalues of A are the same as those of D. But since D is lower-triangular, det(xI – D) = (x − λ1) · · · (x − λn) where λ1, . . ., λn are the diagonal entries of D. Hence, the eigenvalues of A are the diagonal entries of D. Next, note that Ak = NDN−1 NDN−1 . . . NDN−1 = NDkN−1, and the matrix Dk is lower-triangular since D is. Hence, the eigenvalues of Ak are the diagonal entries of Dk. But the diagonal entries of Dk are the kth powers of the corresponding diagonal entries of D, and the latter are the eigenvalues of A. Thus, the eigenvalues of Ak are [image: image] if the eigenvalues of A are λ1, . . ., λn. This shows that (1.9) holds if (1.8) holds. To show (1.8), we first observe that tr(AB) = tr(BA):

 

[image: image]

We apply this to A = NDN−1 : tr(A) = tr(N(DN−1)) = tr(DN−1N) = tr(D). Since the diagonal entries of D are the eigenvalues of A, the trace of D is just the sum of them. Hence (1.8) holds.

2.  Spectral Representations

We limit ourselves to diagonalizable matrices. Accordingly, suppose we can write A = NDN−1, where D is diagonal. Let the diagonal entries of D be λ1, . . ., λn; let the columns of N be f1, . . ., fn; and let the rows of N−1 be π1, . . ., πn; that is,

 

[image: image]

Since N−1 N = I, we have, for the scalar πj fk,

 

[image: image]

We next define Bk to be the matrix obtained by multiplying the column vector fk (looked upon as an n × 1 matrix) with the row vector πk (looked upon as a 1 × n matrix); that is, Bk = f kπk, or more explicitly,

 

[image: image]

It follows from (2.2) that

 

[image: image]

Finally, the representation A = NDN−1 with (2.1) means that

 

[image: image]

in other words, (2.5)

 

[image: image]

This representation of A in terms of the eigenvalues λk and the matrices Bk defined by (2.3) is called the spectral representation of A. In addition to displaying all the eigenvalues and eigenvectors in an explicit fashion, the representation (2.5) can also facilitate certain computations. For example, it follows from (2.4) that for the kth power of A we have

 

[image: image]

and (2.6) in turn yields

 

[image: image]

The expressions (2.6) and (2.7), in the case of Markov matrices or generators, provide the means for computing the k-step transition probabilities and the transition functions. Furthermore, they may be used to obtain the limits of Ak, as k → ∞, and of etA, as t → ∞, along with estimates of rates of convergence and bounds for the errors involved in certain approximations. We will return to these topics after the next section; in the meantime, we give the following examples to illustrate the concepts mentioned.

(2.8)  EXAMPLE. Let

 

[image: image]

It follows from the observation P1 = 1 that λ1 = 1 is an eigenvalue and f1 = 1 is an eigenvector corresponding to it. Since the trace of P is 0.8 + 0.7 = 1.5, and since the trace is equal to the sum of the eigenvalues, the other eigenvalue must be λ2 = 0.5. The row eigenvector π1 corresponding to λ1 = 1 and satisfying π1 f1 = 1 is π1 = (0.6, 0.4). Hence, B1 = f1π1 is

 

[image: image]

and since (2.6) gives P0 = I = B1 + B2 for k = 0, we have

 

[image: image]

The spectral representation for Pk becomes

 

[image: image]

In the limit, as k → ∞, (0.5)k approaches zero, and we get

 

[image: image]

To obtain an estimate of the speed of convergence, note that

 

[image: image]

for all i, j. This shows that Pk converges to P∞ geometrically fast, and even for moderate values of k, say k = 10, P∞ approximates Pk up to the third decimal place.

[image: image]

(2.9)  EXAMPLE. Consider the matrix A which is the generator of a Markov process with three states; let

 

[image: image]

One eigenvalue is λ1 = 0, corresponding to which we have an eigenvector f1 = 1 and a row eigenvector π1 = (0.3, 0.6, 0.1). The trace of A is − 2 − 2 − 6 = − 10, and the trace of A2 is (4 + 2) + (2 + 4 + 6) + (6 + 36) = 6 + 12 + 42 = 60. Since λ1 = 0, these mean that λ2 + λ3 = − 10, [image: image]. Putting λ2 = x and λ3 = y, we see that y = − 10 − x and x2 + 100 + 20x + x2 = 60; that is, x2 + 10x + 20 = 0. Solving it, we obtain [image: image], [image: image]. An eigenvector corresponding to λ2 is [image: image], and a row eigenvector for the same λ2 is [image: image], which is normalized to have π2 f2 = 1. It follows that

 

[image: image]

and since B1 + B2 + B3 = A0 = I,

 

[image: image]

Hence,

 

[image: image]

with B1, B2 and B3 as computed above. Taking limits, as t → ∞, we obtain

 

[image: image]

and we have, for any t,

 

[image: image]

In other words, Pt, converges to P∞ exponentially fast.

[image: image]

3.  Positive Matrices

The following theorem, which was proved by Perron in 1907, is the basic result on non-negative matrices. Its applications to non-negative matrices will be found in the next section.

(3.1)  THEOREM. Let P be a strictly positive matrix, that is, P(i, j) > 0 for all i, j. Then P has an eigenvalue α which is real, positive, simple, and strictly greater than the absolute value of any other eigenvalue. To this maximal eigenvalue there corresponds a strictly positive eigenvector.

(3.2)  REMARK. Define

 

[image: image]

that is, a and b are the smallest and the largest row sums. If a = b, then the maximal eigenvalue α = a; otherwise, if a < b, then a < α < b. If P is a Markov matrix, then P1 = 1, which shows that α = 1 is the maximal eigenvalue.

[image: image]

Proof of (3.1). Let S be the set of all λ ≥ 0 such that λf ≤ Pf for some vector f with 0 ≤ f ≤ 1. Define b as in (3.2). Consider an element λ of S; for some f we have λf ≤ Pf; this implies that if c = sup j f(j),

 

[image: image]

which implies (upon choosing i so that f(i) = c) that λ ≤ b. Hence the set S is a subset of [0, b] and, being bounded, must have its supremum α in [0, b]. We will show that

 

[image: image]

is the desired eigenvalue.

Choose αn ∈ S such that lim αn = α. For each αn, there is 0 ≤ fn ≤ 1 such that αnfn ≤ Pfn. Since 0 ≤ fn ≤ 1 for all n, we may choose a subsequence which converges to some vector f, 0 ≤ f ≤ 1. Then we have αf ≤ Pf. In fact, we must have αf = Pf. For otherwise, Pf − αf ≥ 0 and Pf − αf ≠ 0 imply P(P − αf) > 0 by the strict positivity of P. This means that, for [image: image] have a [image: image], which implies that we can pick ε > 0 small enough to have [image: image]. Thus α + ε ∈ S, which contradicts the definition (3.4) of α. Hence, α f = Pf; α is an eigenvalue; f is an eigenvector; and f ≥ 0 implies Pf > 0, which implies f > 0 and α > 0.

Let λ be an eigenvalue of P; let λg = Pg. Then, taking absolute values on both sides, we get | λ | h ≤ Ph for h(i) = | g(i)|. This implies that | λ | ∈ S and hence | λ | ≤ α. In fact, if | λ | = α, then λ = α. For if | λ | = α, then αh ≤ Ph implies αh = Ph, which together with λg = Pg implies that g = ch for some constant c. Then, we must have λh = Ph, which shows that λ is real and therefore λ = | λ | = α.

Let g be an eigenvector corresponding to α; define h = | g|. Then αg = Pg implies αh ≤ Ph, which implies αh = Ph, and therefore h > 0. So no eigenvector g corresponding to a can have any zero entries. This implies that to the eigenvalue α there corresponds only one eigenvector (up to multiplication by a constant). Otherwise, if there were two linearly independent eigenvectors f and g corresponding to α, then we could choose the numbers c and d such that the eigenvector cf + dg has at least one zero entry.

Finally, to show that α is a simple root of φ(x) = 0, we will show that the derivative ϕ′(α) of φ at α is non-zero. We have ϕ′(α) = ∑ jR(j, j) with R = Rα, where Rx is the adjoint matrix of (xI − P); that is, Rx satisfies

 

[image: image]

Since φ(α) = 0, R = Rα satisfies αR = PR. Hence, every column of R is an eigenvector corresponding to α, and by the uniqueness of f satisfying αf = Pf, we have

 

[image: image]

for some numbers π(j). Conversely, R also satisfies RP = αR, which shows that every row of R is a row eigenvector corresponding to α. Since a row eigenvector of P is a column eigenvector of the transpose PT of the matrix P, we see by applying the preceding statements to the positive matrix PT that any row eigenvector of P corresponding to α must be strictly positive (up to multiplication by a constant). Hence, π figuring in (3.5) above is a constant c ≠ 0 times ν > 0 satisfying αν = νP. Hence ∑jR(j, j) ≠ 0. This completes the proof of (3.1).

[image: image]

(3.6)  REMARK. Continuing the last paragraph of the above proof, we note that the derivative ϕ′ must be positive at α since α is the largest root of φ(x) = 0. So the constant c there must be positive, and we must have R(i, j) > 0 for all i, j.

[image: image]

(3.7)  REMARK. It might be worth proving the remark made about the maximal eigenvalue of a strictly positive Markov matrix (see Remark (3.2)). Since, then, P1 = 1, the number 1 is an eigenvalue. On the other hand, it was shown within the first paragraph of the preceding proof that the set S is contained in [0, b] where b = ∑ jP(i, j) = 1. So we must have α = 1.

4.  Non-Negative Matrices

Perron’s theorem generalizes to non-negative matrices in an essentially unchanged form. This section is devoted to showing how to reduce the general case to Perron’s case.

A matrix P is called non-negative if P(i, j) ≥ 0 for all i, j. The concepts of irreducibility and periodicity for Markov chains depended only on the locations of positive entries rather than on the actual values of the entries. Therefore these concepts remain the same for arbitrary non-negative matrices. For the sake of completeness we will give the definitions here in matrix language.

By a permutation of a square matrix P we mean a permutation of the columns of P combined with the same permutation of the rows (this corresponds to relabeling the states in the Markov chain case). A matrix P is called reducible if there exists a permutation which puts it in the form

 

[image: image]

where P1, Q1 are square. Otherwise, P is called irreducible. If P is reducible to the form (4.1), the matrices P1 and Q1 may be further reducible. Carrying out this process a number of times, P can finally be put in the form

 

[image: image]

where all the diagonal blocks are square and the matrices on the diagonal, namely P1, P2, . . ., Pk, Q1, . . ., Qm, are all irreducible. This is called the normal form of a reducible matrix.

If P is in the normal form (4.2), then its characteristic polynomial is

 

[image: image]

where φ1, φ2, . . ., φk, ψ1, . . ., ψm are the respective characteristic polynomials of P1, P2, . . ., Pk, Q1, . . ., Qm. Hence the eigenvalues of P are the eigenvalues of P1, . . ., Pm, Q1, . . ., Qk put together. Therefore, there is no loss of generality in restricting ourselves to irreducible matrices below.

Among irreducible matrices P we need to distinguish two types: those for which Pk > 0 for some k (and therefore for all k large), and those for which there is no such k. In the case of a transition matrix P, these are respectively the aperiodic and periodic ones. Accordingly, an irreducible non-negative matrix P is called aperiodic if Pk > 0 for some k. Otherwise, it is called periodic with period δ ≥ 2 if there exists a permutation which puts it in the form

 

[image: image]

where the diagonal blocks are square (but A1, . . ., Aδ probably are not square). Then the powers of P are all of a specific form, and in particular,

 

[image: image]

where the matrices P1, . . ., Pδ are all irreducible aperiodic and

 

[image: image]

The following theorem was proved by Frobenius in a series of three papers published in 1908, 1909, 1912. As we shall see, it can be reduced to Perron’s theorem fairly easily.

(4.7)  THEOREM. Let P be an irreducible non-negative matrix. Then P has an eigenvalue α which is real, positive, and simple. For any other eigenvalue λ of P we have | λ | ≤ α. To this maximal eigenvalue a there corresponds a strictly positive eigenvector.

If P is aperiodic, then for any other eigenvalue λ of P we actually have | λ | < α. If P is periodic with period δ, then there are exactly δ eigenvalues λ1, . . ., λδ with absolute values exactly equal to α. These eigenvalues are all distinct and are given by

 

[image: image]

where c is the complex number c = e2πi/δ, [image: image]

Proof. (a) Aperiodic case. Suppose P is irreducible aperiodic. Then there is some integer k such that Pk is strictly positive. By Perron’s theorem (3.1), Pk has an eigenvalue β which is real, positive, simple and which is greater than | λ | for any other eigenvalue λ of Pk. But the eigenvalues of Pk are the kth powers of the eigenvalues of P. Hence, there is an eigenvalue α of P such that ak = β and | α | > | λ | for any other eigenvalue λ of P. Next, let f be an eigenvector of P corresponding to a. Then Pf = af implies that Pkf = αkf = βf. By Perron’s theorem, the eigenvector f corresponding to β can be taken to be strictly positive. Taking f > 0, we see that Pf > 0 and hence αf > 0, which means a is a real positive number.

(b) Periodic case. Suppose P is irreducible and is periodic with period δ, and assume that it is already in the form (4.4). Then Pδ is in the form (4.5) with P1, . . ., Pδ irreducible aperiodic. Applying the preceding paragraph to each Pi separately, we see that Pi has an eigenvalue βi which is real, positive, and simple and exceeds all other eigenvalues in absolute value, and to which there corresponds a strictly positive (unique up to a constant factor) eigenvector fi. Note that by (4.6),

 

[image: image]

for all i = 1, . . ., δ (we are identifying 0 with δ here and below. Since Ai−1 ≠ 0 and fi > 0, the vector Ai −1 fi ≠ 0. Moreover, it satisfies

 

[image: image]

that is, the maximal eigenvalue βi of Pi is an eigenvalue of Pi − 1. Therefore, we must have βi ≤ βi − 1, which implies, since i is arbitrary, that

 

[image: image]

Putting (4.10) together with (4.9), we see that we can take

 

[image: image]

in which case

 

[image: image]

Finally, define α = β1/δ, c = e2πi/δ, and put

 

[image: image]

where the partitioning of D and f is in accord with that of P as given in (4.4). Then, defining λ1, . . ., λδ as in (4.8), we see that (4.11), (4.12), and (4.13) imply

 

[image: image]

In other words, each one of the numbers λ1, . . ., λδ is an eigenvalue; and, in particular, λ1 = α is real, positive, and simple and has the strictly positive eigenvector f corresponding to it. This completes the proof.

[image: image]

The following summarizes the situation in the case of irreducible Markov matrices. The proof follows by using (3.2) and (3.7) together with Theorem (4.7).

(4.15)  COROLLARY. Let P be an irreducible Markov matrix. Then the number 1 is a simple eigenvalue of P. For any other eigenvalue λ of P we have | λ | ≤ 1. If P is aperiodic, then | λ | < 1 for all other eigenvalues of P. If P is periodic with period δ, then there are δ eigenvalues with absolute value one. These are all distinct and are

 

[image: image]

To the eigenvalue 1 there corresponds a unique (up to a constant factor) strictly positive row eigenvector.

(4.16)  EXAMPLE. Suppose P has rows (0.6, 0.4), (0.2, 0.8). The maximal eigenvalue is 1; the other eigenvalue is tr(P) − 1 = 0.4.

(4.17)  EXAMPLE. Suppose

 

[image: image]

The maximal eigenvalue is 1. Since tr(P) = 0.2 + 0.5 + 0.6 = 1.3 and tr(P2) = (0.04 + 0.06) + (0.06 + 0.25 + 0.12) + (0.12 + 0.36) = 1.01, the other two eigenvalues λ2 = x, λ3 = y satisfy

 

[image: image]

solving for x, we obtain y = 0.3 − x and 2x2 − 0.6x + 0.08 = 0. So x2 − 0.3x + 0.04 = 0, which yields [image: image], [image: image]. Hence the eigenvalues of P are

 

[image: image]

Note that the absolute values of the eigenvalues distinct from 1 are both equal to [image: image], which is definitely smaller than 1.

To the maximal eigenvalue 1 there corresponds the column eigenvector 1 and the row eigenvector (4, 16, 17).

[image: image]

(4.18)  EXAMPLE. Let

 

[image: image]

The matrix P is irreducible and periodic with period 2. Now,

 

[image: image]

The eigenvalues of the 2 × 2 matrix on the upper left-hand corner are, by inspection, 1 and −0.22. This is sufficient to compute all the eigenvalues of P: We note that in the proof of Frobenius’ theorem, in the periodic case, (4.9) holds for any eigenvalue βi of Pi. This implies the following

(4.19)  REMARK. The set of eigenvalues of a periodic irreducible matrix P, regarded as a system of points in the complex plane, goes over into itself under a rotation of the plane by the angle 2π/δ.

Returning to our example, since 1 and −0.22 are eigenvalues for P2, their square roots 1, −1, [image: image], and [image: image] will have to be eigenvalues for P. There remains one eigenvalue to guess; by Remark (4.19), that eigenvalue will have to go into itself under a rotation of the plane by the angle of 180 degrees. So that remaining eigenvalue must be 0.

[image: image]

 

[image: image]

Figure A.4.1 Eigenvalues of the matrix P with period 2.

(4.20)  EXAMPLE. Suppose P is a 5 × 5, irreducible, periodic Markov matrix with period 3. Then its eigenvalues are

 

[image: image]

(because, by (4.19), for any eigenvalue λ ≠ 0, the image λe2πi/3 of λ under a rotation of the plane by 120 degrees is again an eigenvalue).

[image: image]

5.  Limits and Rates of Convergence

In this section we will limit ourselves to consideration of irreducible aperiodic Markov matrices. If P is irreducible but periodic with period δ, then what we are saying holds for each one of the irreducible aperiodic matrices P1, . . ., Pδ on the diagonal of Pδ. If P is reducible, then again, what we have to say here applies to each irreducible block separately. The following is the basic theorem.

(5.1)  THEOREM. Let P be an irreducible aperiodic Markov matrix. Then for all i, j,

 

[image: image]

independent of i. The row vector π is the unique solution of

 

[image: image]

Moreover, the convergence in (5.2) is geometric: there exist constants α > 0 and 0 ≤ β < 1 such that

 

[image: image]

for all i, j. Here β can be taken to be the largest number amongst the absolute values of the eigenvalues of P excluding the eigenvalue 1.

Proof. We will prove this only in the case where P is diagonalizable. By Corollary (4.15), the largest eigenvalue of P is 1; to this there corresponds a column eigenvector, which we can take to be f = 1, and a row eigenvector π, which we can take to be that satisfying (5.3). Then in the spectral representation (2.5) for P we have

 

[image: image]

for all i, j. Now, (2.6) becomes

 

[image: image]

Since P is aperiodic, the absolute values | λ2|, . . ., | λn| are all strictly less than 1; therefore, as k → ∞, [image: image]. This shows that

 

[image: image]

which is the same as (5.2) in view of (5.5).

Going back to (5.6) we have, for any i, j,

 

[image: image]

Now let

 

[image: image]

Now β < 1, and we have, in (5.7),

 

[image: image]

Finally, let

 

[image: image]

Then (5.8) yields

 

[image: image]

which is the desired expression (5.4).

[image: image]

(5.10)  REMARK. Note that the estimate in (5.4) can be replaced by better estimates such as (5.8). However, (5.4) is quite good for many purposes, for it gives qualitative assurance that Pk(i, j) converges to π(j) very fast.

In fact, it is easy to show that the smallest entry infiPk(i, j) on the jth column increases to π(j) as k increases; and the largest entry supiPk(i, j) in the jth column decreases to π(j). Therefore, if the powers Pk of P are computed for a few k, by comparing the smallest and the largest entries on a fixed column, we can tell how close the entries on that column are to their common limiting value.

[image: image]

(5.11)  EXAMPLE. Suppose

 

[image: image]

The eigenvalues are 1 and 0.1. The limiting probabilities π(j) are easily computed to be [image: image]. So

 

[image: image]

We have

 

[image: image]

In the case of 2 × 2 matrices it is easily seen that α is the largest of the π(j) and β = | tr(P) − 1 |.

[image: image]

(5.12)  EXAMPLE. Consider the matrix P of Example (4.17). The limiting distribution π is [image: image]. So
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and

 

[image: image]

and we can take α to be 2.

[image: image]

(5.13)  EXAMPLE. Consider the periodic matrix P of Example (4.18). Note that we have

 

[image: image]

so that π1AB = π1, π2 BA = π2 can be satisfied by taking π1 to be a solution of π1AB = π1 and setting π2 = π1A. Using the 2 × 2 matrix AB on the upper left-hand corner of P2, we obtain π1 = (70, 52) as a solution to π1AB = π1. Then π2 = π1A becomes π2 = (40, 47, 35). Suitable normalizations yield

 

[image: image]

Since the eigenvalues of P2 were 1, −0.22, 1, −0.22, and 0, we see that

 

[image: image]

and similarly

 

[image: image]

[image: image]

A complete treatment of non-negative matrices is given in Chapter 13 of GANTMACHER [I]. It is usual for books on matrices to prove FROBENIUS’ theorem directly without making use of the notion of periodicity. Such proofs are long and difficult. By reversing the historical order of things, that is, by using Markov-chain-theoretic thinking to prove FROBENIUS’ theorem rather than vice versa, we have obtained a much simpler proof.
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Answers to Selected Exercises

Chapter 1

(4.2)   (a)   Ω = {(ω1, ω2, ω3): ωi = H or T, i = 1, 2, 3}.

           (b)   Ω = {(ω1, ω2, . . .): ωi = H or T, i = 1, 2, . . .}.

           (c)   Ω = {(ω1, ω2, . . .): − ∞ < ωi < + ∞, i = 1, 2, . . .}.

           (d)   Ω = {(ω1, . . ., ω20): ωi ∈ {0, 1, . . ., 100}, i = 1, 2, . . ., 20}.

           (e)   Ω = {(ω1, ω2, . . .): −100 ≤ ωi ≤ 150}.

           (f)   Ω = {(ω1, ω2, . . .): 0 ≤ ωi < ∞, i = 1, 2, . . .}.

(4.4)   (a)   0.64 × 0.25; 0.64 × 0.2k − 2, m ∈ {1, . . ., k − 1}, k ∈ {2, 3, . . .}.

           (b)   [image: image].

           (c)   0.16.

           (d)   [image: image].

           (e)   [image: image].

           (f)   1.

(4.6)   [image: image]

(4.8)   e− 1.32.

(4.10)   (a)   [image: image].

           (b)   [image: image].

           (c)   Same as (b).

           (d)   Same as (b).

Chapter 2

(3.2)   −0.2, 2.8, 13.4.

(3.4)   (a)   [image: image].

           (b)   P{Y ≤ t} = t, 0 ≤ t ≤ 1.

(3.6)   β2.

(3.12)   (a)   aN, b2N + a2N2.

           (b)   ac, a2(d2 + c2) + b2c, a2d2 + b2c.

Chapter 3

(5.2)   0.053; 3 × 0.05 × 0.952.

(5.4)   1.04.

(5.6)   10.2.

(5.10)   0.19.

(5.14)   (a)   p3qn − 3 for k ≥ 1, m ≥ k + 1, n ≥ m + 1.

           (b)   pq n − m − 1, n ≥ m + 1.

           (c)   [image: image].

           (d)   [image: image].

(5.16)   1 − 0.967

(5.18)   (a)   [(1 − p1)]12[p1 + p2 − p1p2].

           (b)   [image: image].

           (c)   [(1 − p2)(1 − p2)]12[1 − p2]p1.

(5.20)   110; 470.5.

Chapter 4

(8.2)   (a)   2t, 2t.

           (b)   Nt + 2s.

(8.4)   (a)   [image: image].

           (b)   [image: image].

(8.8)   (a)   28.56.

           (b)   exp[−14 + 6.72α + 3.12α2 + 2.08α3 + 1.04α4 + 1.04α5].

(8.12)   [image: image].

Chapter 5

(4.2)   (a)   0.096.

           (b)   14.41.

           (c)   Fk(w, b) = 0.4k − 1 0.6, k ≥ l; F1(b, b) = 0.2, F2(b, b) = 0.8.

(4.4)   (a)   1 and 3 are recurrent non-null aperiodic; 2 and 4 are transient.

           (b)   1, 3, and 4 are recurrent non-null aperiodic; 2 and 5 are transient.

           (c)   All states are recurrent non-null aperiodic.

           (d)   4 and 7 are transient; others are recurrent non-null aperiodic.

           (e)   2 is transient; others are recurrent non-null. 7 is absorbing; 4 and 6 are aperiodic; 1, 3, and 5 are periodic with period 2.

           (f)   1, 2, 3, 4, and 6 are recurrent non-null periodic with period 3; other states are transient.

(4.8)   (a)   1 if i = 0, k = 0; 0.45 if i ∈ {1, 2, 3], k = 1; 0.55 if i ∈ {1, 2, 3}, k = −1; 0.25 if i ≥ 4, k = 2; 0.30 if i ≥ 4, k = 1; 0.25 if i ≥ 4, k = −2; 0 otherwise.

           (c)   Rows are (1, 0, 0, . . .); (0.55, 0, 0.45, 0, . . .); (0, 0.55, 0, 0.45, 0, . . .); (0, 0, 0.55, 0, 0.45, 0, . . .); (0, 0, 0.45, 0, 0, 0.30, 0.25, 0, . . .); (0, 0, 0, 0.45, 0, 0, 0.30, 0.25, 0, . . .); . . . .

           (d)   0 is absorbing; all others are transient.

Chapter 6

(8.2)   (a)   [image: image]

           (b)   [image: image]

           (c)   [image: image]

           (d)   [image: image]

(8.4)   (a)   [image: image].

           (b)   [image: image].

(8.6)   [image: image].

(8.8)   [image: image].

(8.10)   (a)   0.7.

           (b)   [image: image].

(8.12)   (a)   [image: image]

           (b)   [image: image].

           (c)   [image: image].

(8.14)   (b)   [image: image].

(8.16)   (a)   ν = (232, 363, 237, 58, 300, 333, 262).

           (c)   [image: image].

(8.18)   π0 = 1 − ab; π1 = (1 − ab)(eab − 1); π2 = (1 − ab)(e2ab − eab − abeab).

(8.22)   [image: image].

(8.28)   For p = 0.4, η = 0.823.

Chapter 7

(5.2)   (a)   [image: image]

           (b)   [image: image]

           (c)   [image: image]

(5.4)   (a)   [image: image].

           (b)   [image: image].

(5.14)   (a)   6.

           (b)   0.

           (c)   5.

           (d)   5.

(5.16)   (a)   [image: image]; T0 = inf{n ≥ 0: Xn ∈ {b, e}}.

           (b)   [image: image], [image: image], 0 for k = 5, 3, other.

           (c)   [image: image].

(5.18)   T0 = 0; υ = (5, 3).

(5.20)    υ = (5, 4); T0 = inf{n ≥ 0: Xn = a}.

(5.22)   υ = (7, 4, 3); T0 = inf{n: Xn ∈ {a, c}}.

(5.24)   (a)   υ = (4, 2, 2); T0 = inf{n: Xn ∈{a, b}}.

           (b)   [image: image]; T0 = inf{n: Xn ∈ {a, b}}.

(5.26)   [image: image].

(5.30)[image: image]

Chapter 8

(7.8)   (c)   [image: image].

           (d)   [image: image].

(7.10)   [image: image].

(7.12)   (a)   [image: image].

           (b)   [image: image].

(7.14)   [image: image].

(7.16)   (a)   [image: image].

           (b)   [image: image].

(7.18)   [image: image].

(7.20)   [image: image].

(7.22)   [image: image].

Chapter 9

(4.2)   (c)   Limits are [image: image], [image: image], [image: image] respectively.

(4.10)   (a)   [image: image].

           (b)   [image: image].

           (c)   [image: image].

(4.12)   (a)   [image: image].

           (b)   [image: image].

           (c)   [image: image].

(4.14)   (b)   [image: image].

(4.20)   1 − F = (1 − φ)(1 − ψ).

Chapter 10

(8.2)   (a)   (1 − e−5x)(1 − e−2y)(1 − e−2z −2ze− 2z).

           (b)   [image: image].

(8.4)   (b)   [image: image] where R = ∑ Qn and h(j, ·) = 1 − σ, 1 − ψ, 1 − φ respectively for j = a, b, c.

(8.6)   (1 + 8p)m with [image: image].

(8.10)   [image: image] where [image: image], ν = νP; [image: image] and ν satisfy (8.9c).
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	324
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    A

Absorbing states, 127, 243

Additive functionals, 269

    ratio limit theorems, 270

Age processes, 141

Almost all, almost surely, 3

Aperiodicity; see periodicity

Arrival processes, 71

Arrival rate, 75

    B

Bayes’ formula, 15

Bernoulli-Laplace model of diffusion, 141

Binomial coefficients, 48

Binomial distribution, 48

Birth and death processes, 271

Bounded convergence theorem, 33

Branching processes, 183

Busy period in queueing, 188

    C

Central limit theorem, 64

Certain event, 2

Chapman-Kolmogorov equation:

    for Markov chains, 110

    for Markov processes, 234

Chebyshev’s inequality, 30

Closed sets, 127

Clustered renewal processes, 358

Complement of an event, 2

Compound Poisson processes, 91

Conditional distributions, 33

Conditional expectations, 34

Conditional independence, 39

Conditional probability, 14, 34

Convolutions, 284

Counters:

    of type I, 309, 316, 359

    of type II, 292, 308, 359

    D

Direct integrability, 332

Direct Riemann integrability, 295

Discrete random variables, 6

Discrete topology, 240

Disjoint events, 2

Distribution function, 9

    arithmetic, 289

    empirical, 64

    estimation of, 63

Doubly Markov matrices, 114

    E

Electron multipliers, 184

Empty event, 2

Erlang-n distribution, 83

Event, 1

Excessive functions, 204

Expected value, 22 ff.

Exponential distribution, 80

    memorylessness of, 17, 80

Extinction of families, 184, 193

    F

Failure rate function, 309

Fee function, 222

Forward recurrence times, 85 ff.

    G

Gamma distribution, 83

Generating function, 30

Generators, 256

Geometric distribution, 56

    H

Harmonic functions, 205

Hypergeometric distribution, 66

    I

Identity matrix, 108

Independence, 12, 39

Independent increments, 50, 61

Independent trials process, 113

Indicator function, 7

Instantaneous states, 243

Intersection, 2

Interval reliability, 309

Invariant measures:

    for Markov chains, 160

    for Markov processes, 265

Inventory theory, 115, 140

Irreducibility, 127

    J

Joint distribution, 12

    K

Key renewal theorem, 295

Kolmogorov’s backward equation, 255

    L

Laplace transform, 30

Laws of large numbers, 62

    M

Machine repair problem, 276

Markov chains:

    invariant distribution, 154

    invariant measure, 160

    irreducible, 127

    K-dependent, 142

    limiting distribution, 152

    non-time-homogeneous, 142

    potentials, 196

    ratio limit theorems, 159

    recurrent, 152

    subordinated to Poisson processes, 236

    time homogeneity, 107

Markov matrix, 108

Markov processes:

    generators, 256

    irreducibility, 263

    limiting probabilities, 264

    modification of, 241

    potentials, 256

    recurrence, 263

    regular, 251

    time-homogeneity, 233

    transition functions, 233

Markov renewal equations, 324 ff.

    generalized, 360

Markov renewal functions, 319

Markov renewal kernel, 319

Markov renewal processes, 313 ff.

    classification of states, 321

    embedded, 346

    lifetime, 327

Mixtures of Poisson processes, 103

Moments, 30

Monotone convergence theorem, 33

    N

Normal density function, 64

Normal distribution, 27, 45, 64

    table for, 65

Nuclear chain reactions, 194

Null states, 125

    O

Optimal replacement policy, 311

Optimal stopping time, 208

Optimal strategies, 210

    ε-optimal strategies, 219, 221

    P

Parameter set, 7

Payoff function, 210

    time-dependent, 230

Pedestrian delay problem, 291, 361

Periodic states, 125

Periodicity:

    for Markov chains, 160

    for renewal processes, 289

    for Markov renewal processes, 321

Poisson distribution, 76

Poisson processes, 71 ff.

    decompositions, 88

    mixtures, 103

    non-stationarity, 94

    superpositions, 87

Potential matrix, 123, 144, 197

Potential operators, 256

Potentials:

    in renewal theory, 286

    of Markov chains, 196

    of Markov processes, 256

    of semi-Markov processes, 339

Probability density function, 10

Probability distribution, 10

Probability measure, 3

Pure birth processes, 252

    Q

Queueing system G/M/1, 178, 317

    finite waiting room, 193

    time dependence, 354

    virtual waiting time, 361

    waiting times, 181

Queueing system M/G/1, 169, 317

    busy period, 188

    finite waiting room, 192

    time-dependence, 350

    traffic intensity, 171

    waiting times, 175, 192

Queueing system M/M/1, 182, 238

Queueing system M/M/1/m, 274

Queueing system M/M/1/∞ 273

Queueing system M/M/s/∞, 274

    non-identical servers, 274

    with balking, 275

Queueing system M/M/∞, 275

    R

Random numbers, 10

Random variables, 6

Random walks, 135, 156, 168

Ratio limit theorems:

    for Markov chains, 160

    for Markov processes, 269

    in Markov renewal theory, 336

Recurrent states, 125, 152

Regenerative processes, 298

    delayed, 302

Reliability theory, 103

    age replacement, 310, 311

    interval reliability, 309

    see also Replacements

Remaining lifetimes, 115, 157

Renewal equation, 293

Renewal function, 286

Renewal processes, 68, 284 ff.

    decomposition of, 312

    delayed, 302

    lifetime, 290

    periodicity, 289

    recurrence, 288

    stationary, 305

    superposition of, 312

Renewal times, 284

Replacements, 80, 82, 92, 311, see also Reliability theory

Resolvent, 256

Riesz decomposition theorem, 205

    S

Sample space, 1

Selling an asset, 221

Semi-Markov processes, 337 ff.

    generalized, 345

    minimal, 316, 337

    potentials, 339

Semi-Markovian kernel, 314

Semi-regenerative processes, 343

Simulation, 10, 98

Sojourn interval, 247

Space-time processes, 142

Stable states, 243

Stationary and independent increments, 50, 61, 72

Stochastic continuity, 240

Stochastic processes, 7

    independence of, 39

    parameter set of, 7

    with stationary and independent increments, 50, 61

Stopping times, 84, 118, 209, 239

Strong law of large numbers, 62

    for Markov chains, 160

    for Poisson processes, 79

    for renewal processes, 69

Strong Markov property, 117, 239

Superposition, 87

Support set, 215

System availability, 349

    T

Time inverse, 95

Total probability, theorem of, 15

Traffic flow, 83, 85, 87, 89, 316

Traffic intensity, 273

Transient states, 125

Transition functions, 234

    standard, 240

Transition graph, 128

Transition matrix, 107

Transition probabilities, 107

    U

Uniform distribution, 41

Union of events, 2

    V

Value of a game, 210, 221

Variance, 30

    W

Wald’s lemma, 307

Weak law of large numbers, 62

Weibull distribution, 310
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