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Introduction

This book investigates optimal investment problems for stochastic financial
market models. It is addressed to academics and students, who are interested in
the mathematics of finance, stochastic processes, and optimal control, and also
to practitioners in risk management and quantitative analysis who are interested
in new strategies and methods of stochastic analysis.

There are many works devoted to the solution ofoptimal investmentproblems
for different models. In fact, the "optimality" of any strategy is not something
absolute but very much depends on a model (in particular, on prior distributions
of parameters such as the appreciation rates and the volatility). In other words,
any "optimal" strategy is optimal only for a given model ofprice evolution, for a
given utility function, and for a given probability measure (prior distributions).
On the other hand, strategies based on "technical analysis" are model-free: they
require only historical data. This is why the technical analysis is even more
popular among traders than the analysis based on stochastic models (see, e.g.,
survey and discussion in 1.0 et al. (2000».

Our aim is to reduce the gap between model-free strategies and strategies
that are "optimal" for stochastic models. We hope that specialists who prefer
methods of "teclmical analysis" (which are rather empirical) will be interested
in some of the new strategies suggested in this book and evaluated via stochastic
market models.

We consider an optimal investment problem for strategies based on histori
cal data with several new features. First, we introduce and investigate optimal
investment problems for strategies that use historical prices as well as trading
volume for underlying assets. It is shown in numerical experiments with real
data that the joint distribution of prices and volume contains important infor
mation; in fact, we improve the performance of strategy by including volume
in our consideration (note that "teclmical analysis" usually takes volume into
account). Second, our model involves additional constraints of a very general
type for the wealth process. In particular, these constraints cover the problem
of replication of a given claim with a guaranteed error bound (gap). More pre-
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cisely, our admissible strategies ensure almost surely, that the replication errors
do not exceed a given level. Note that the strategy is uniquely detennined by
the claim in the classical problem (for a complete market) of an exact replica
tion. In an incomplete market, where an exact replication is no longer generally
possible, it is sensible to consider replications with some gap, which in turn al
lows choice among many possible strategies. Finally, the utility function under
consideration in our model is a fairly general one, covering the mean-variance
criterion, noncontinuous functions, and nonlinear concave functions as special
cases. In particular, our general utility function and constraints incorporate
the so-called goal-achieving problem, mean-variance hedging, problems with
logical constraints, and many other problems. In addition, we consider some
special problems such as optimization with maximin criterion, optimal port
folio compression, and superreplication under uncertainty; some new filters
(estimators) for the appreciation rates of the stocks are given as an auxiliary
tools.

The results are based on a stochastic diffusion market model, but the depen
dence on the model is partially lifted in the following sense: some empirical
"model-free" strategies are presented, and they are shown to be apparently opti
mal for stochastic market models in the class of admissible strategies based on
historical prices only. This conclusion is correct for a special but very important
classes of prior distributions of market parameters. The corresponding class of
admissible strategies is such that the appreciation rates of stocks are not sup
posed to be directly observable, but should be estimated from the historical data
via some filters (estimators). The strategies based on filters presented in this
book outperfonn classic strategies based on Kalman-Bucy filters for the appre
ciation rates, and they are surprisingly simple; thus, they may be interesting for
practitioners.

There are two different types of market models: discrete-time models and
continuous-time models. Of course, the real stock prices are presented as time
series, so the discrete-time models are more realistic. However, it is commonly
recognized that the continuous-time models give a good description of real
(discrete-time) markets. Moreover, they lead to explicit and clear solutions of
many analytical problems including investment problems. On the other hand,
it appears that a fonnula for strategy derived for a continuous-time model can
often be effectively used after a natural discretization. In this book, some
"good" strategies in model-free discrete-time setting are presented, and then it
is shown that these strategies can be interpreted as optimal for some continuous
time stochastic model.

For stochastic market models, the price of the stocks evolves as a random
process with some standard deviations of the stock returns (volatility coeffi
cient, or volatility) and some appreciation rate; they are the often mentioned
parameters of a market. For a continuous-time model, it is assumed that the
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vector of stock prices S(t) evolves according to an Ito stochastic differential
equation, with the vector of appreciation rates a(t) as a coefficient of the drift,
and the volatility matrix a(t) as a diffusion coefficient.

The problem of optimal investment goes back to Merton (1969, 1973). He
found strategies that solve an optimization problem in which EU(X(T)) is to
be maximized, where X (T) represents the wealth at the final time T and U(.) is
a utility function. Ifmarket parameters are allowed to be directly observed, then
the optimal strategies (i.e. the current vector of stock portfolio) are functions
of the current vector (a(t), u(t), S(t), X(t)) for a general problem (see, e.g.,
the survey in Hakansson (1997) and Karatzas and Shreve (1998».

Another problem of wide interest is mean-variance hedging, or the problem
ofminimizingEIX(T)-e1

2 , whereeis agiven random claim. For this problem,
explicit solutions were obtained for the case of observable appreciation rates;
see, e.g., Follmerand Sondermann (1986), Duffie and Richardson (1991), Pham
et al. (1998), Kohlmann and Zhou (1998), Pham et al. (1998), and Laurent
and Pham (1999). The resulting optimal hedging strategies are combinations
of the Merton strategy and the Black and Scholes strategy, which depends on
the direct observation of the appreciation rates.

But in practice, (a(t),u(t)) has to be replaced by estimates based on his
torical data. Many papers have been devoted to estimations of (a(t), u(t)),
mainly based on modifications of the Kalman-Bucy filter or the maximum like
lihood principle (see, e.g., Lo (1988), Chen and Scott (1993), Pearson and Sun
(1994». In practice, the volatility coefficient can be currently estimated from
stock prices. For an idealized continuous-time market model, the volatility is an
explicit function of past historical prices (see (1.11) below). For the real mar
ket, the volatility can be calculated directly either from stock prices (historical
volatility) or from option prices for the given asset (implied volatility). There
is much ofempirical research on the distribution of the real volatility (see, e.g.,
Black and Scholes (1972), Hauser and Lauterbach (1997), Mayhew (1995».
Unfortunately, the process a(t) is usually hard to estimate in real-time markets,
because the drift term defined by a(t) is usually overshadowed by the diffusion
term defined by u(t). Thus, there is a problem of optimal investment with a
sufficient error in estimation of a(t). A popular tool for this problem is the
so-called "Separation Theorem" or "certainty equivalence principle": Agents
who know the solution to the optimal investment problemfor the case ofdirectly
observable a(t) can solve this problem by substituting E{a(t)IS(r), r < t}.
referred to as the real a(t) (or "certainty equivalent estimate") (see, e.g., Gen
notte (1986». Unfortunately, this principle does not hold in the general case
of nonlog utilities (see Kuwana (1995». Of course, one can hardly expect the
conditional expectation alone (i.e. the L2-estimate) to be the optimal estimate
of a(t) for all utilities in a wide class of possible estimates (which include, for
example, Bayesian estimates and Lq-estimates with q i= 2).
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If a(t) is Gaussian, then the pair E{a(t)18(r), r < t} and the conditional
variance perfectly describes the distribution Pa(t) ( ·18(r),r < t). Williams
(1977), Detempte (1986), Dothan and Feldman (1986), Gennotte (1986), and
Brennan (1998) obtained a solution of the investment problem for Gaussian
nonobservable a(·). In particular, they showed that for a case of a power utility
function, for which the certainty equivalence principle does not hold, a correc
tion of myopic strategy can be calculated via solution of a Bellman parabolic
equation (Brennan (1998». However, this approach cannot be extended to the
non-Gaussian case.

Karatzas (1997), and Karatzas and Zhao (1998) have obtained the first opti
mal strategies that are optimal in aclass ofstrategies determined by all historical
prices for a wide class of distribution of a, but under the crucial condition that
appreciation rates and volatilities do not depend on time. This assumption en
sures that optimal wealth has the forrnX(t) = H(8(t), t), where H(·) satisfies
a deterministic parabolic backward Kolmogorov equation of dimension n for
the market with n stocks. Even if one accepts this restrictive condition, the
solution of the problem is difficult to realize in practice for large n (say, n > 4),
since it is usually difficult to solve the parabolic equation. Karatzas (1997)
gave an explicit solution of a specific goal achieving problem for a case of one
stock with conditionally normal distribution. Karatzas and Zhao (1998) solved
a problem for n > 1 with a diagonal volatility matrix for a general utility func
tion. It can be added that, in a similar setting, Dokuchaev and Zhou (2001)
considered the problem as an extension of the goal-achieving problem into one
with specific bounded risk constraints. Dokuchaev and Teo (2000) used a sim
ilar approach and considered a more general setting, in terms of both the utility
function and the constraints.

In this book, we are study investment problems for the following different
cases:

(i) There are no equations for stock prices or any other model of evolution;
rather, there are only time series of historical prices. All market parameters
are unknown and nonobservable, their prior distribution is unknown and
they are not currently observed;

(ii) The evolution of stock prices is described by the ItO equation, where the
appreciation rate a(·) and the volatility u(·) are known ordirectly observable
and their prior distributions are known;

(iii) The appreciation rate a(·), the volatility u('), and the risk-free interest rate
r(t) are directly observable, but their prior distributions are unknown;

(iv) a(·) and u(·) are unknown and cannot be observed directly, but their prior
distributions are known, and a(·) and u(·) are currently estimated from
historical prices;
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(v) r(.), a(·), 0"(') and their prior distributions are unknown (but r(t) is directly
observable).

Incase (i), we can consider the problem only for a discrete-time setting, because
the real stock prices are given as time series; a(·) and 0"(') are completely
excluded from the model (Chapter 2).

Let us describe our motivation for studying the "model-free" case (i). As was
mentioned, if the market parameters can be directly observed, then the optimal
strategies (i.e. the current vector of stock portfolio) are functions of the current
vector of the volatilities and the appreciation rates. Moreover, their evolution
law is supposed to be known (i.e., the volatilities and the appreciation rates
evolve according to known equations). Such strategies are optimal for a given
evolution law and for a given utility function. However, if this evolution law is
changed, the optimality property of the strategy may disappear.

It is therefore tempting to look at strategies that do not employ any distribu
tion assumptions on stock evolution or utility functions. Such a strategy was
introduced first by Cover (1991) for the distribution of wealth between given
number of stocks (the so-called universal portfolio strategy). The algorithm
asymptotically outperforms the best stock in the market under some conditions
on stationarity. But it is not a bounded risk algorithm, because the wealth may
tend to zero for some ''bad'' samples of stock prices. Some statistical analysis of
performance of this strategy for real data has been done in Blredel et al. (1999).
It appears that the spectacular results of universal portfolios do not necessary
materialize for a given historical market.

Chapter 2 considers ageneric market model consisting of two assets only: a
risky stock and a risk-free bond (or bank. account). Following Cover (1991), we
also reduce assumptions on the probability distribution of the price evolution.
It is assumed that the price of the stock evolves arbitrarily with an interval
uncertainty. The dynamics of the bond is exponentially increasing, also with
interval uncertainty. Under such mild assumptions, the market is incomplete.
Section 2.2 presents a bounded risk strategy such that

(a) the strategy uses only stock price observations and does not require any
knowledge about the market appreciation rate, the volatility, or other parame
ters;

(b) the strategy bounds risk closely to the risk-free investment; and
(c) the strategy gives some additional gain from dealing with risky assets,

and this gain is mainly positive.
This strategy bounds risk closely to the risk-free investment, but it also uses

the risky asset. The additional gain is positive on average for any non-risk
neutral probability measure, under some additional assumptions for probability
distributions such that the market is still incomplete, though the strategy itself
does not use probability assumptions. Thus, this is a strategy for someone who
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basically prefers risk-free investments but accepts some bounded risk for the
sake of an additional gain.

Section 2.3 presents an empirical strategy that
(a) uses only stock price observations and does not require any knowledge

about the market appreciation rate, the volatility or other parameters;
(b) gives some systematic additional gain in comparison with the "buy-and

hold" strategy for a given risky asset; and
(c) has a risk similar to the "buy-and-hold" strategy, i.e., is a bounded risk

strategy if the risky asset is taken as a numeraire.
Again, the additional gain is positive on average for any non-risk-neutral

probability measure, under some additional assumptions for the probability
distributions, though the strategy itself does not use probability assumptions.

In other words, a strategy is presented for someone who has made the princi
pal decision to keep the given risky asset, but it admits some dynamic adjusting
of the total amount of shares to improve performance. In particular, it means
that this investor accepts a risk of losses in case of the stock falls. This model of
preferences can be realistic, for example, for a holder of the controlling share
of a company.

In Chapter 3, we consider "model-free" strategies of investments in options.
It is shown that there exists acorrectproportion between "put" and "call" options
with the same expiration time on the same underlying security (so-called long
strangle combination) so that the average gain is almost always positive for a
generic Black and Scholes stochastic model. This gain is zero if and only if
the market price of risk is zero. A paradox related to the corresponding loss of
option's seller is discussed.

In Chapter 4, we consider diffusion and multistock analogue of the model
free winning empirical strategy described in Theorem 2.2 from Chapter 2. This
strategy is extended to the case of a continuous diffusion market model, when
the trader does transactions at any time when the price variation exceeds a
given level. A number of transactions are known and finite, and the stopping
time is random (but the expectation of the stopping time is finite). Another
continuous-time variant of the strategy has an infinite number of transactions
and a fixed and given horizon. In both cases, the strategy is expressed as
an explicit function of historical prices. Again, the strategies ensure a positive
average gain for any non-risk-neutral probability measure. The strategies bound
risk, do not require forecasting the volatility coefficient and appreciation rate
estimation, anddepend on the historical volatility (Sections 4.4-4.5). Moreover,
the strategies ensure a positive average gain for all volatilities and appreciation
rates from awide class that includes random bounded volatilities. As the number
of the traded stocks increases, the strategies converge to arbitrage with a given
positive gain that is ensured with probability arbitrarily close to 1.
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We do not investigate the optimality ofmodel-free strategies in Chapters 2-4.
The optimality depends on a model: any "optimal" strategy is optimal only for
a given utility function and a given probability measure (Le., prior probability
distributions of parameters). However, it will be shown later in Chapter 9 that
the good performance of these strategies is based on some optimal properties:
these strategies are optimal for the investment problem with U(x) == log x
under a special but important hypothesis concerning the prior distribution of
parameters for the stochastic diffusion market model.

Chapter 5 considers a model where the process (r(·), a(·), u(')), which de
scribes the market parameters is currently observable (case (ii)). We give a
survey of the dynamical programming approach and derive Merton-type strate
gies. Further, a simpler method than dynamic programming is proposed: a
nonlinear parabolic Bellman equation is replaced for a finite-dimensional opti
mization problem and a linear parabolic equation. Under assumptions that an
only one scalar parameter of distribution of r(·), a(·), u(·) is known, we derive
an optimal strategy explicitly for a very general utility function.

In Chapter 6, we study the portfolio compression problem. By this we
mean that admissible strategies may include no more than m different stocks
concurrently, where m may be less than the total number n of available stocks.
Although this problem has not been treated extensively in the literature, it is
of interest to the investor. It is obviously not realistic to include all available
stocks in the portfolio; the total number of assets in the market is too large.
In fact, the number of stocks in the portfolio should be limited by the equity
in the account (say, several hundred stocks for a large fund, and less for an
individual investor) because of the need to have a large enough position in each
stock so that management fees and commissions are only a small proportion
of the value of the portfolio. There is no point in having too many stocks in a
small portfolio. Even in a large portfolio, it makes sense to limit the number of
stocks to those that can be watched closely. On the other hand, there should be a
certain minimum number of stocks so that a sufficient degree of diversification
can be achieved. For example, the need to limit the portfolio diversification
was mentioned by Murray (2000), who estimated that 256 stocks ought to be
enough even for some large mutual funds and it should certainly be enough for
the typical institutional or individual portfolio.

In Chapter 7, we do not assume to know the distributions of (r(· ), a(·), u(·))
(case (iii)). Following Cvitanic and Karatzas (1999) and Cvitanic (2000), we
consider instead the problem as a maximin problem: Find a strategy that max
imizes the infimum of EU(X(T)) over all admissible (r(·),a(·),u(,)) from
a given class; the process (r(·), a(·), u(·)) is supposed to be currently observ
able. For this problem, it is shown that the duality theorem holds under some
nonrestrictive conditions. Thus, the maximin problem, which as far as we
know, cannot be solved directly, is effectively reduced to a minimax 'prob-



xxiv DYNAMIC PORTFOUO STRATEGIES

lem. Moreover. it is proved that the minimax problem requires minimization
only over a single scalar parameter R even for a multistock market, where
R = fr lu(t)-l(a(t) - r(t)1)12dt. This interesting effect follows from the
result of Chapter 6 for the optimal compression problem. Using this effect, the
original maximin problem is solved explicitly; the optimal strategy is derived
explicitly via solution of a linear parabolic equation.

Cvitanic and Karatzas (1999). and Cvitanic (2000) consider related minimax
and maximin problems of minimizing E(6 - X(T))+ subject to X(T) ~ 6.
where 6 and 6 are given claims. for similar admissible strategies which allow
direct observations of appreciation rates (adapted to the driving Brownian mo
tion); however. the maximization over parameters in the dual minimax problem
was not reduced to the scalar minimization. and the explicit solution was not
given for the general case.

In Chapters 8--12 we consider the investment problem for a class of strate
gies of the form lI'(t) = f(8(r), 1/(r), r < t). where f(·) is a deterministic
function and 1/(') is a directly observable process correlated with the random
and nonobservable a(t) (for example.1/(t) can describe trading volume). The
condition that coefficients do not depend on time is dropped in Chapters 8-10
and 12. In this case. the optimal wealth X(t) is not a function of current stock
prices. We emphasize that the optimal investment problem has not been solved
before under these assumptions (Le.• for this class of strategies. random a(t).
and time dependent coefficients). In Chapter 9. we give a solution that does not
require the solution of a parabolic equation of high dimension. The solution in
Chapters 10 and 11 is based on linear parabolic equations. We assume that the
volatility and the appreciation rates are random and that they are not adapted to
the driving Wiener process. so the market is incomplete. In fact. we prove the
existence of an optimal strategy and find the optimal strategy in the following
two cases: (i) the utility function is the log. or (ii) the volatility is nonrandom
and 1/(t) =O. (However. some results such as the duality theorem in Chapter
12. are proved for the general case).

In Chapter 8. we show that there exists an optimal claim that is attainable
under some (mild) conditions. and we find this optimal claim. A general model
that allows us to take into account volume of trade or other observable market
data is introduced here. In Chapter 9 we obtain optimal strategies constructively
for some special cases. including isoelastic utilities. without solving aparabolic
equation. As a consequence. it is shown that the "certainty equivalence princi
ple" for power utilities can be reformulated with the following correction: the
"U-optimal filter" of a(t) must be derived (in place ofE{a(t)18(r),r < t}).
In general. this filter is neither E{a(t)18(r), r < t} nor any other function of
'Pa(t) ( '18(r), r < t). The only exception is the case of the logarithmic utility
function; for the case of Gaussian a(t). which has been studied by Gennotte
(1986). E{a(t)IS(r), r < t} can be found by the Kalman-Bucy filter.
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In this terminology, "U" refers to the fact that the filter depends on the utility
function in the problem. For the case of power utility, the V-optimal filter is
not a function of 'Pa(t) ( '18(7), 7 < t) even under the Gaussian assumption.
However, this estimate can be written as a conditional expectation ofa(t) under
a new measure, and this measure is obtained explicitly; i.e., a new, convenient
way of calculating the correction of the myopic strategy is given. Thus, under a
Gaussian assumption on a(t), the certainty equivalent estimate can be obtained
by a Kalman-Bucy filter, but with some corrections to the parameters.

One might think that a Gaussian prior is the most natural assumption; how
ever, our experiments with historical data show that the optimal strategy based
on this assumption (and using the Kalman-Bucy filter) is outperformed by a
strategy based on the assumption that a(t) has a distribution with a two-point
supporter. It is shown here that the joint distribution of prices and volume
contains important information; we improve the performance of a strategy by
including volume in the hypothesis on the prior distribution. The simple strate
gies introduced here appear to be rather interesting and deserve further statistical
evaluation for large data sets.

In Chapter 10, we present the solution of the optimal investment problem
with additional constraints and utility functions of a very general type, includ
ing discontinuous functions. Optimal portfolios are obtained for the class of
strategies based on historical prices under some additional restrictions on the
prior distributions of market parameters. More £recisely, it is assumed here
that O'(t) is deterministic and a(t) - r(t)l = Li=l 8iei(t), where 8i are ran
dom variables and ei(t) are deterministic and known vectors, L < +00. This
assumption allows us to express optimal investment strategies via the solution
of a linear deterministic parabolic backward equation.

In Chapter 11, an optimal portfolio is obtained for the class ofstrategies based
on historical prices under some additional conditions that ensure that the optimal

normalized wealth X(t) ~ exp{- f~ r(s)ds}X (t) and the optimal strategy are

functions of the current vector S(t) ~ exp{- f~ r(s)ds }8(t) of normalized
stock prices. In particular, these conditions are satisfied if O'(t) is deterministic
and if0', aare time independent. The solution is obtained for optimal investment
problems with very general utilities and additional constraints. A solution of a
goal-achieving problem and a problem ofEuropean put option replicating with
a possible gap are given among others. Explicit formulas for optimal claims
and numerical examples are provided.

InChapter 12, we do not assume to know the distributions of(r(')' a(·), 0'(,)),
and we do not use direct observation ofa(·), 0'(.). As in Chapter 7, we consider
the problem as a maximin problem: Find a strategy based on historical data
that maximizes the infimum of EU(X(T)) over all admissible distributions
of (r(·),a(·),O'(.)), where additional constraints are required to be satisfied
with probability 1 for all such admissible (r(·), a(·), 0'(.)). It is shown that the
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duality theorem holds under some nonrestrictive conditions. Thus, the maximin
problem which, as far as we know, cannot be solved directly, is effectively
reduced to a minimax problem. In fact, the original problem is solved for any
case in which the optimal investment problem can be solved for strategies based
on historical prices with nonobservable market parameters, but with known
distributions. Some of these cases are described in Chapters 9-11. For the
special case in which the distributions of parameters have support on a finite
set, the minimax problem is further reduced to a finite-dimensional optimization
problem.

Cvitanic and Karatzas (1999) and Cvitanic (2000) consider related minimax
and maximin problems for anotherclassofadmissible strategies that allow direct
observations of appreciation rates. In Chapter 12 we obtain the duality theorem
for the class strategies based on historical prices. Furthermore, we consider
more general utility functions and constraints.

In Chapter 13, some aspects of the replication of given claims are discussed.
This problem is connected with the solution of the optimal problems proposed
in the previous chapters, where the investment problem was decomposed into
two different problems: calculation of the optimal claim and calculation of
a strategy that replicates the optimal claim. In Chapter 13, some possibili
ties are considered for replicating the desired claim by purchasing options are
considered. In addition, an example is considered of an incomplete market
with transactions costs and with nonpredictable volatility, when replication is
replaced by rational superreplication.

The results presented in Section 2.2 and in Chapters 4 and 13 were obtained
by the author together with A.V. Savkin (Dokuchaev and Savkin (1997), (1998a)
and (1998b)). The results presented in Chapters 5 and 6, as well as in Chapters
8 and 9 for the case when 1] == 0, were obtained by the author together with
V.G. Haussmann (Dokuchaev and Haussmann (2001a), (2001b)). The duality
theorem from Chapter 12 was obtained by the author together with K.L. Teo for a
slightly less general case when 1] == 0 (Dokuchaev and Teo (1998)). The results
presented in Chapter 11 (Sections 11.2.1-11.2.3, and 11.3) were obtained by the
author together with X.Y. Zhou; furthermore, the proof of the results ofChapter
10 is based on the proofs from Dokuchaev and Zhou (2001), and Dokuchaev
and Teo (2000). The results presented in Section 2.3 and in Chapters 3, 7, and
10 were obtained by the author, as well as the results presented in Chapters 8,9,
and 12 for the case when 1](') =1= o.
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Chapter 1

STOCHASTIC MARKET MODEL

Abstract In this chapter we briefly describe the basic concepts of stochastic market models.
Further, we introduce a multystock stochastic continuous-time market model that
will be used in the following chapters, and we give some necessary definitions.

1.1. Brief introduction to stochastic market models
Consider a risky asset (stock, bond, foreign currency unit, etc.) with time

series prices 81,82,83,"" for example, daily prices. The premier model of
price evolution is such that 8k = 8(tk), where

8(t) = 8(0)eGHe(t), (1.1)

where ~(t) is a martingale, i.e., E{e(T)le(·)I[o,tj} = e(t) for any t and T > t.
For the simplest model, ~(t) is a Gaussian process,

E{e(t + At)le(')I[o,tj} = e(t),

Var [e(t + At) - e(t)] f"V 002 ·At \:It> 0, At> 0,

such that e(t + A) - e(t) does not depend on e(')I[o,tj for any t ~ O. Here
a E R, 00 E R are parameters.

It is convenient to rewrite equation (1.1) as the following Ito's equation:

d8(t) = 8(t)[a(t)dt +oo(t)dw(t)] , (1.2)

where w(t) is a Brownian motion, a(t) is the appreciation rate, oo(t) is the
volatility; and a and 00 are market parameters.

Let us discuss some basic properties of ItO's equation (1.2). The solution
8 (t) of this equation has the following properties:

• sample paths maintain continuity;
N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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• paths are nondifferentiable;

• paths are not absolutely continuous;

• if a, a are detenninistic, then

DYNAMIC PORTFOUO STRATEGIES

u 8(t + !);.t) 2 A
var S(t) = a ·u.t \:It> 0, !);.t > OJ

• ifa, a are detenninistic, then the law of S (t) is log-nonnal (i.e., its logarithm
follows a nonnallaw);

• if a, a are detenninistic, then the relative-increments [8(t)-S(T)]/8(T) are
independent of the a-algebra a(8(')I[o,Tj), 0::; T < t.

• if a, a are detenninistic and constant, then the relative increments law of
[8(t) - 8(T)]/8(T) is identical to the law of [8(t - T) - 8(0)]/8(0),
0::; T < t.

For a multistock market model, 8(t) = {8i(t)}, a = {ail, W = {Wi} are
vectors, and a = {aij} is a matrix.

We assume that there is a riskless asset (bond) with price

B(t) = B(O) exp (lt

r(S)dS) ,

where r(t) is a process of risk-free interest rates.
The portfolio is a process (-Y(,),.B(.» with values in R n x R, 10

(,I (t), ... "n(t», where li(t) is the quantity of the ith stock; and .B(t) is the
quantity of the bond.

A portfolio (,(,), 13('» is said to be self-financing if there is no income from
or outflow to external sources. In that case,

n

dX(t) = L Ii(t)d8i(t) + (3(t)dB(t).
i=1

It can be seen that

Let
1I"o(t) ~ .B(t)B(t),

1I"i(t) ~ li(t)Si(t), 1I"(t) = (11"1 (t), ... ,1I"n(t»T •

By the definitions, the process 1I"o(t) is the investment in the bond, and 1I"i(t) is
the investment in the ith stock. It can be seen that the vector 11" alone suffices to
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specify the self-financing portfolio. We shall use the tenn self-financing strategy
for a vector process 11"(') = (1I"t{t), ... ,1I"n(t)), where the pair (1I"o(t) ,1I"(t))
describes the self-financing portfolio at time t:

n

X(t) = L 1I"i(t) + 1I"o(t).
i=l

There are the following key problems:

• Optimal investment problem: To find a strategy ofbuying and selling stocks

• Pricing problem: To find a ''fair'' pricefor derivatives (i.e. options, jutures,
etc.)

There is an auxiliary problem:

• To estimate the parameters (a(t), u(t)) from market statistics.

In fact, the estimation of u(·) is easy, since u(t)u(t)T is an explicit function of
SO (see (1.11) below). The estimation of a(·) is much more difficult.

In this book, we shall study the optimal investment problem only, and we are
leaving the very important pricing problem out of consideration.

Ifa and u are constant and deterministic, then the process S(t) is log-nonnal
(i.e., the process {log Si(t)} is Gaussian). Empirical research has shown that
the real distribution of stock prices is not exactly log-nonnal. The imperfection
of the log-nonnal hypothesis on the prior distribution of stock prices can be
taken into account by assuming that a and u are random processes. This more
sophisticated model is much more challenging: for example, the market is
incomplete (Le., an arbitrary random claim cannot be replicated by an adapted
self-financing strategy).

Generic investment problem

We can state a generic optimal investment problem:

Maximize EU(X(T))

over self-financing strategies 11"(')'

Here T is the tenninal time, and U(.) is a given utility junction that describes
risk preferences. The most common utilities are log and power, Le., U(x) =
log x and U(x) = 5x6, 5 < 1.

There are many modifications of the generic optimal investment problem:

• optimal investment-consumption problems

• optimal hedging of nonreplicable claims
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• problem with constraints

• T= +00

• etc.

DYNAMIC PORTFOUO STRATEGIES

Some examples

For simplicity, let r(t) == r be constant.

EXAMPLE 1.1 Consider the trivial "buy-and-hold" strategy for the stock, such
that ,B(t) == 0 and -y(t) == X(O)S(O)-l. Then X(t) == S(t). Let 8 = min{t :
S(t) = Kert }, where K > 0 is a given number. Then X(8) = Kert a.s.,
where K may be large enough, and 8 < +00 a.s. But E8 = +00 for every
K t= So; hence this strategy cannot ensure the gain K in practice.

EXAMPLE 1.2 Consider the trivial "keep-only-bonds" strategy for the diffu
sion market model such that the portfolio contains only the bonds, -y(t) == O.
In that case the corresponding total wealth is X(t) == ,B(O)B(t) = ertX(O).

Merton's strategy

We describe now strategies that are optimal for the generic model with U(x) =
log x or U(x) = 8x6:

7I"(t) T = v(a(t) - r(t)l)T[Q(t)X(t) + f(t)],

where v = v(8) is a coefficient, Q(t) ~ (u(t)u(t) T)-l, r(t) is the interest rate
for a risk-free investment, and 1T ~ (1,1, ... , 1)T.

The tenn f(t) describes the correlation between (u, a) and w(·); if they are
independent, then f == O.

Note that these strategies require direct observationof (u, a). But, in practice,
the parameters a(·), u(·) need to be estimatedfrom historical market data. Thus,
the investment problem can be refonnulated as follows:

Maximize EU(X(T))

over strategies that use historical data only.

This problem is studied in Chapters 8-11 below.

1.2. Options market
Rather than trade directly in stocks, investors can purchase securities rep

resenting a claim - an option - on a particularly stock. This option gives the
holder the right to receive or deliver shares of stock under specified conditions.
The option need not be exercised: an investor can simply trade these derivative
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securities. Gains or losses will depend on the difference between the purchase
price and the sale price.

A call is an option to buy a stated amount of a particular stock at a specified
price. A put is an option to sell a stated amount ofa particular stock at a specified
price. An American put (call) option gives the owner the right to purchase (sell)
stated amount of a particular stock at a specified price at any time before the
specified expiration date. A European put (call) option gives the owner the
right to purchase (sell) stated amount of a particular stock at a specified price
only at the specified expiration date.

In the case of the standard call option of European type, the option writer
(seller) obligation is F(S(T)), where F(x) = (x-K)+ = max(O, x -K). In
the case of the standard put option of European type, the option writer (seller)
obligation is F(S(T)), where F(x) = (K - x)+ = max(O, x - K). Here,
K is the option striking price, T is the expiration time, S(T) is the underlying
stock price at the time T.

Profit and loss diagrams
Each type of option has its own profit and loss diagrams, which offer a con
venient way to see what happens with option strategies as the value of the
underlying security. The vertical axis of the diagrams reflects profits or losses
X on option expiration day resulting from a particular strategy, where the hor
izontal axis reflects the stock prices S. Figures 1.1 and 1.2 present profitlloss
diagrams for generic European put and call options, i.e., they show the wealth
of European call and put option holder as a function of the stock price at the
tenninal time.

We shall use profitlloss diagrams to demonstrate claims for different optimal
strategies.

Figure 1.1. Profitlloss diagram for long call: c is the price of the call option, S is the stock
price at the tenninal time, and K is the strike price.

S
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Figure 1.2. Profitlloss diagram for a long put: p is the price of the put option, S is the stock
price at the terminal time, and K is the strike price.

x

PBS

K

S

Black and Scholes model
Consider the generic model of a financial market consisting of a risk-free asset
(bond, or bank account) with price B(t) and a risky asset (stock) with price
S(t). We are given a standard probability space with a probability measure P
and a standard Wiener process (Brownian motion) w(t). The bond and stock
prices evolve as

d8(t) = a8(t)dt + u8(t)dw(t).

(1.3)

(1.4)

Here, r ~ 0 is the risk-free interest rate, U > 0 is the volatility, and a E R
is the appreciation rate. We assume that t E [0, T], where T > 0 is a given
terminal time. Equation (1.4) is ItO's equation.

Further, we assume that u, r, Bo= B(O) > 0 and 80 ~ 8(0) > 0 are given,
but a is unknown.

In the approach of Black and Scholes, the rational (fair) price of an option
with the option writer obligation eis the initial wealth that may be raised to e
by some investment transactions (see Black and Scholes (1973)).

DEFINITION 1.1 Let n be the set ofall values of the initial wealth Xo such
that there exists an admissible strategy such that

X(T) ~ e a.s.

Then thefair (rational) price 6 for the option with the claim ein this class of
admissible strategies is defined as

(] = inf Xo.
XoEII
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THEOREM 1.1 The fair price of an option does not depend on a, and it is
6 = E{eIa = r}.

Let
1 IX ~~(x) ~ IiC e- 2 dy,

y21r -00

d ~ log (SolK) +T (r + a
2

/ 2) d- = d _ aVT. (1.5)
- a~ ,

The premier result of the pricing theory in mathematical finance is the following
Black-8choles formula:

cBs(So,K,r,T,a) = So~(d) -Ke-rT~(d-), (1.6)

PBS(SO, K,r,T, a) = cBs(So,K,r,T,u) - So + Ke-rT
, (1.7)

where PBS(SO, K, r, T, u) denote the "fair" price for "put" option, and
CBS(SO, K, r, T, u) denote the "fair" price for "call" option (Black-Scholes
price). Here, So = S(O) is the initial stock price, K is the strike price, r
is the risk-free interest rate, a is the volatility, and T is the expiration time (see,
e.g., Strong (1994), Duffie (1988».

1.3. Continuous-time multistock stochastic market model
In this section, we describe the continuous-time diffusion stochastic market

model, which will be the main model for this book. Consider a diffusion model
of a market consisting of a risk-free bond or bank account with the price B(t),
t ~ 0, and n risky stocks with prices Si(t), t ~ 0, i = 1,2, ... , n, where
n < +00 is given. The prices of the stocks evolve according to

dS,(I) = 8,(1) ( ..(I)dl +t. u,;(I)dw; (I»), 1 > 0, (1.8)

where the Wi(t) are standard independent Wiener processes, ai(t) are appreci
ation rates, and Uij(t) are volatility coefficients. The initial price Si(O) > 0 is
a given nonrandom constant. The price of the bond evolves according to

B(t) = B(O)exp (lot r(S)dS) , (1.9)

where B(O) is a given constant that we take to be 1 without loss of generality
and r(t) is a random process of risk-free interest rate.
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(1.10)

(1.11)

We are given a standard probability space (O,:F, P), where 0 is the set of
all events, :F is a complete u-algebra of events, and P is a probability measure.
Introduce the vector processes (T denoted transpose)

w(t) = (W1(t), ,wn(t)) T ,

a(t) = (a1(t), ,an(t))T,

S(t) = (Sdt), ,Sn(t)) T

and the matrix process u(t) = {Uij(tn:,j=1 .
We assume that {w( t )}O<t<T is a standard Wiener process, and that a(t),

r(t), and u(t) are measurablerandom processes, independent of future incre
ments of w, such that

u(t)u(t)T ~ c1I n,

where C1 > 0 is a constant and In is the identity matrix in Rnxn. Under these
assumptions, the solution of (1.8) is well defined, if a and u are uniformly
bounded.

Set 1 £ (1, ... , 1)T ERn,

V(t) £ u(t)u(t)T,

Q(t) £ V(t)-1,

a(t) £ a(t) - r(t)l,

8(t) 6 u(t)-1a(t).

Let S(t) £ diag (S1 (t), ... , Sn(t)) be the diagonal matrix with the corre
sponding diagonal elements.

Let ~(t) £ (r(t), a(t), u(t)). Let {:Ff}O<t<T be the filtration generated by
the process (S(t), ~(t)) completed with theBuil sets of :F. Let {:Fr}O<t<T be
the filtration generated by the process (S(t), r(t)) completed with the null sets
of :F.

REMARK 1.1 The volatility coefficients can be effectively estimated from
Si(t). Infact, ifV(t) = {Vij(t)}f,j=1' then direct calculations show

rot Vii (r)dr = 2 rt
dsSf)) - 2 log Sift~J( Jo iT Si 0 '

rt IT ()d _ rt d(Si(T)Sj(T))
Jo Yij r r - Jo Si(T)Sj(T)

1 Si(t)Sj(t) 1 r t TT ()d 1 r t TT ( )d- og Si(O)Sj(O) - '2 Jo Yii r r - '2 Jo Yjj r r.

By (1.8),

dw(t) = u(t)-1S(t)-1 [dS(t) - S(t)a(t)dt]. (1.12)



Stochastic market model 11

(1.13)

By Remark 1.1, it follows that {Ff} coincides with the filtration generated by
the processes (S(t), r(t), V(t)). By (1.12), it follows that {Ff} coincides with
the filtration generated by the processes (w (t), j.£ (t)) .

Set
p(t) ~ exp ( - J~ r(s)ds) = B(t)-l,

S(t) ~ p(t)S(t).

It is easy to see that Ff coincides with the filtration generated by the processes
(S(t), j.£(t)).

Let

w.(t) ~ w(t) +I t

8(s)ds.

Let

Z(t) ~ exp (It
8(s) T dw(s) + ~I t

18(s)12dS) . (1.14)

Clearly,

Z(t) = exp (It

8(s) Tdw.(s) - ~I t

18(S)12dS) . (1.15)

Our standing assumptions imply that EZ(T)-l = 1. Define the (equivalent
martingale) probability measure p. by

~ = Z(T)-l.

Let E. be the corresponding expectation. Girsanov's Theorem implies that w.
is a standard Wiener process under p •. Then (w. (t), J.I.(t» also generate {Ft }

and P, p. have the same null sets.
It follows from (1.14) that

dZ(t) = Z(t)8(t)T dw.(t) = Z(t)a(t) T Q(t)S(t)-ldS(t), (1.16)

where S(t) ~ diag (Sl(t), ... ,Sn(t». Note that E.Z(T) = 1.

Portfolio and strategies

Let Xo > 0 be the initial wealth at time t = 0, and let X (t) be the wealth at
time t > 0, X(O) = Xo. We assume that

n

X(t) = 1ro(t) +L 1ri(t),
i=l

(1.17)

where the pair (1ro(t), 1r(t» describes the portfolio at time t. The process 1ro(t)
is the investment in the bond, and 1ri(t) is the investment in the ith stock,
1r(t) = (1rl(t), ... ,1rn(t))T, t ~ O.
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The portfolio is said to be self-financing if

dX(t) = 1I"(t)TS(t)-ldS(t) + 11"0(t)B(t)-ldB(t). (1.18)

It follows that for such portfolios,

dX(t) = r(t)X(t) dt + 1I"(t)T (li(t) dt + u(t) dw(t)) , (1.19)

n

1I"O(t) = X(t) - L 1I"i(t),
i=l

so 11" alone suffices to specify the portfolio; it is called a self-financing strategy.

DEFINITION 1.2 The process X(t) ~ p(t)X(t) is called the rwrmalized
wealth.

It satisfies

X(t) = X(O) + f:p(s)1I"(s)Tu(s)dw.(s)

= X(O) + f:p(s)1I"(s)TS(s)-ldS(s).
(1.20)

Special classes of admissible strategies are described below (see Definitions
5.1 and 8.2).

The following definition is standard

DEFINITION 1.3 Let ebe a given random variable. An admissible strategy
11"(.) is said to replicate the claim eifX (T, 11"(.» =e a.s.

Some notations

Throughout the book, a vector (strict) inequality will mean component-wise
(strict) inequalities; x{·} denotes the indicator function.

We shall denote by B([O, T]; E) the set of bounded measurable functions
f(t) : [0, T] ~ E for an Euclidean space E.

We shall use notations

4>+(X) ~ max(O,4>(x»,

4>-(x) ~ max(O, -4>(x»,

R~ ~ {x = (XllX2, ••• ,xn ) ERn: Xi ~ O,i = 1,2, ... ,n},
o 11
R~= {x = (Xl,X2, .•• ,Xn ) ERn: Xi> O,i = 1,2, ... ,n}.



II

MODEL-FREE EMPIRICAL STRATEGIES AND
THEIR EVALUATION



Chapter 2

TWO EMPIRICAL MODEL-FREE "WINNING"

STRATEGIES AND THEIR STATISTICAL

EVALUATION

Abstract In this chapter, we consider a generic market model that consists of two assets
only: a risky stock and a locally risk-free bond (or bank account). We reduce
assumptions on the probability distribution of the price evolution and assume that
the price of the stock evolves arbitrarily with interval uncertainty. The dynamics
of the bond is exponentially increasing along with interval uncertainty. Under
such mild assumptions, the market is incomplete. We further assume that only
historical prices are available. Thus, admissible strategies for this model are
similar to strategies from "technical analysis" and they are almost model free.
We present two original empirical strategies that bound risk closely to a risk
free numeraire and risky numeraire respectively. The important feature of the
strategies is that they guarantee a positive average gain for any non-risk-neutral
probability measure. Some statistical tests of profitability of these strategies as
applied to historical data are provided.

2.1. A generic discrete-time market model
We introduce a simplest model ofa market, consisting of the risk-free bond or

bank account with price Bk and the risky stock with tprice Sk, k = 0, 1,2, ....
The initial prices So > 0 and Bo > 0 are given nonrandom variables.

Set

In other words,

We assume that
(2.1)

Note that these conditions are not restrictive, since the usual change in real
stock market prices is about 1% and no more than 5% per day; in other words,

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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lek Iis about 0.01-0.05 in the case of everyday transactions; in this case,

Pk = 1 + interest rate/365.

Let Xo > 0 be the initial wealth at time k = O.
Let X k be the wealth at time k > O. We assume that the wealth Xk at time

k ~ 0 is
X k = f3kBk + 'YkSk, (2.2)

where f3k is the quantity of the bond portfolio, and 'Yk is the quantity of the stock
portfolio. The pair (f3k, 'Yk) describes the state of the bond-stocks securities
portfolio at time k. We call sequences of these pairs strategies.

We consider the problem of trading or choosing a strategy in a class of
strategies that does not use any information about the probability distribution
of the market dynamics or about the future variables of Sk. Some constraints
will be imposed on current operations in the market, or in other words, on
strategies.

DEFINITION 2.1 A sequence {(f3k, 'Yk)} is said to be an admissible strategy
if there exist measurable functions Fk : R 2k+2 4- R 2 such that

(f3k, 'Yk) T =Fk(SO, Bo, SI, Bll"" Sk, Bk).

(In other words, (3k and 'Yk do not depend on the ''future'', or on Sk+m, Bk+m
form> 0).

The main constraint in choosing a strategy is the so-called condition of self
financing.

DEFINITION 2.2 A strategy {(f3k,'Yk)} is said to be self-financing, if

Xk+l - X k = {3k (Bk+l - Bk) + 'Yk (Sk+l - Sk) . (2.3)

For the trivial, risk-free, "keep-only-bonds" strategy, the portfolio contains
only the bonds, 'Yk == 0, and the corresponding total wealth is Xk = /3oBk ==
n~=1 PmXo· Strategies that bound risk are said to be bounded risk strategies.
Some loss is possible for a strategy that deals with risky assets. It is natural to
estimate the loss and compare it with the "keep-only-bonds" strategy.

DEFINITION 2.3 The process Xk ~ (Xon~=1 Pm) -1 Xk is called the nor
malized wealth.

REMARK 2.1 This definition is slightlydifferentfrom Definition 1.2. To reduce
the difference, it suffices to assume that Xo = 1; thiscan be done without loss
ofgenerality.
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Notice that Xo = 1.

DEFINITION 2.4 Let {hk } be a sequence such that 0 < hk ~ 1, k =
1,2, ... ,n. An admissible strategy ({3k, 'Yk) is said to bea bounded risk strategy
with the bounds {hk }, ifX" ~ hk (Yk = 1,2, ...).

Set

k> 1,

We have that

8k = 8k- 1(1 + ek)·

PROPOSITION 2.1 Let {(Xk,'Yk)}~=1 be a sequence such that

- - 'Yk - -
Xk+1 - Xk = Xo (8k+1 - 8k), k = 0, 1, ...

Then Xk :£ XOII~=1 PmXk is the wealth corresponding to the strategy
({3k, 'Yk), where {3k = (Xk - 'YkXk)B;l, which is self-financing.

2.2. A bounded risk strategy
We present below a strategy that bounds risk closely to a risk-free investment

and guarantees at the same time a positive average gain for any non-risk-neutral
probability measure. The strategy uses only stock price observations and does
not require any knowledge about the market appreciation rate, the volatility, or
other parameters; it bounds risk closely to the risk-free investment, and it gives
some additional gain from trading of the risky asset, and this gain is mostly pos
itive. In fact, the additional gain is positive on average for any non-risk-neutral
probability measure, under some additional assumptions about probability dis
tributions such that the market is still incomplete, though the strategy itself does
not use probability assumptions. Thus, we present a strategy for someone who
basically prefers risk-free investments but accepts some bounded risk for the
sake of an additional gain.

2.2.1 The strategy
Set

Then 0 < Ck ~ 1 and 0 < Vk ~ 1.

f}.

Vo = 1, (2.4)
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(2.5)

Then the pair ({3k, 'Yk) is an admissible and self-financing strategy with the
corresponding wealth Xk and the normalized wealth Xk, and

(2.6)

(2.7)Xk ~..jVk,

for all admissible sequences 81, ••• , 8k, k = 1,2, ....

Notice that the strategy (2.5) at time k uses only {Bm , 8m , m ~ k}.

COROLLARY 2.1 Assume that lekl ~ c, where c E (0,1) is a given number.
Then the pair ({3k, 'Yk) is a bounded risk strategy with the bounds hk = (1 
c2)k/2.

Let n ~ 1 be a given integer. Denote by n+ the random number of positive
ek in the set {ek}~=I'

THEOREM 2.2 Let h > 0 be a constant. Assume that n -+ 00 and lekl =
n-1h. Then

X -t !(eh(2V-l) + eh(I-2v))
n 2 '

where II ~ n+/n.

Notice that (eY + e-Y )/2 > 1 (Vy E R, y f. 0).

COROLLARY 2.2 The strategy (2.5) ensures a positive gain for large n and
c = hn-1 in the case ofa "good" value ofll (II # 1/2).

For a real market, changes of stock prices are usually no more than 1%-5% per
day, hence lekl is about 0.01--0.05 for everyday transactions.

Consider examples of a possible gain and the maximum loss in comparison
with the risk-free "keep-only-bonds" strategy. Let n = 100, and let Pk == P be
a constant.

EXAMPLE 2.1 Let lekl ~ 0.05; then Vk = 0.9975k and X100 ~
0.997550plOO Xo = 0.8824p1OO Xo for all admissible 8 1, ... ,8100,
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If ek = ±0.05 and either II = 0.6 or II = 004, then X lOO = 1.3624p1OO Xo.
In other words, if II = 0.6, then there are 60% positive ek and 40% negative ek.

Ifek = ±0.05 and either II = 0.65 or II = 0.35, then X 100 = 2.0780p100Xo.

EXAMPLE 2.2 If lekl ~ 0.02, then Vk = 0.9996k and XlOO ~
0.999650p100Xo = 0.9802p100Xo

If ek = ±0.02 and either II = 0.6 or II = 004, then X 100 = 1.0597p100 Xo.
If ek = ±0.02 and either 11= 0.65 or II = 0.35, then X 100 = 1.1620p100.

2.2.2 Estimates of transaction costs
The problem of transactions costs for stochastic market models has been

widely studied (see, e.g., Black and Scholes (1972), Edirisinghe et at. (1993),
Jouini and Kallal (1995)). We show below that the transaction costs are not
crucially large for our strategy. Consider the strategy defined in Theorem 2.1.
In this section, we asswne for the sake of simplicity that Pk =1 and that there
exists a constant e > 0 such that lekl ~ e for all k. We assume that transaction
costs are

n-1
c(n) = J1. L Sk+1 I'Yk+1 - '"Yk I, (2.8)

k=O
where J1. > 0 is a given constant that presents the brokerage fee percentage.

Set
k

Sk ~ So II (1 - em).
m=l

By (2.5),

k = 0, 1,2, ... , n,

and

Hence
n-1

c(n) ~ J1. Xoe L Sk'
So k=O

Let n+, n_ and II be as defined in Section 2.2.1: n+ is the random number of
positiveek in the set {ek}k=l' n_ t:. n-n+. It can easily be seen that 2:i=k Sk
takes the maximwn value if ek = e 01k ~ n_), ek = -e 01k > n_). In this
case, we have that

L Sk=L(l+e)k,
k=O k=O

n n

L Sk=(l+et- L (l-e)k.
k=n_+1 k=n_+1
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~ 1J~2:::~Sk

~ IJXoe [2:::0 (1 + e)k + (1 + e)n- 2::~1 (1- e)k]

_ [(l+et-+l-l n_ l-(l-et +]
- IJXoe (l+e)-l + (1 + e) (1 - e) 1-(1-e) .

Hence we obtain the estimate of transaction costs

c(n) ~ IJXo [(1 + e)n_+1 - 1 + (1 + et- (1 - e)(1 - (1 - e)n+)] .

Let n be large, or n -+ +00. Assume that e ~ hn-1, where h > 0 is a given
constant. With this assumption, we have that

c(n) ~ IJXo [(1 + ~f-+l -1

+ (1 + ~)n_ (1 _ ~) [1 _ (1 _ ~) n+] ] .

Hence

lim sup c(n) ~ IJXo [(eh(1-1I) - 1) + eh(1-1I) (1 - e-hll ) ]
n-too

and transaction costs are limited over n -t 00.
Let e = hn-1. From Theorem 2.2, we have that

:in -t ~o (eh (211-1) + eh (1-211») as n-+ +00.

The value of IJ is about 0.01 in a real market; hence transaction costs are
reasonably small, in comparison with a possible gain for "good" values of II

(v # 1/2).

2.2.3 Average performance under probability assumptions
We suppose that there is a probability space such that ek and Pk are random

variables, k = 1, ... , n, where n > 0 is given. We repeat that

Bk = PkBk-1, Sk = PkSk-1 (1 + ek) , k = 1,2, ... ,n. (2.9)

Consider a probability measure PIS on the set of sequences {(ek, Pk) }~=l. Let
E IS denote the corresponding expectation and E IS { ·1· } denote a conditional
expectation.

DEFINITION 2.5 A measure PIS is said to be risk-neutral if

EIS {SkISk-1, Sk-2, ... ,So} = Sk-1 (Yk = 1, ... ,n).
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REMARK 2.2 By (2.9),

E~ {SkISk-1, Sk-2,"" So} = Sk (1 +E~ {eklek-1,'" ,6})·

Hence, if ek does not depend on ek- I, , 6, then the measure P ~ is risk-
neutral ifand only ifE~ek = 0 (Vk = 1, , n).

Let Ck and Vk be such as defined by (2.4).
Consider the classic stochastic Cox-Ross-Rubinstein model (see Cox et al.

(1979)). For this model, Pk are nonrandom, and ek are independent random
variables that have equal distribution and can have only two values, 01 and 02,
where 01,02 are given numbers, -1 < 01 < 0 < 02 < 1. It is easy to see that
Vk ~ (1 - max(o?,o~») k, k ~ O. Denote by P p the corresponding probability
measure, which is uniquely defined by the sequence {Pk} and a real number
P E (0,1) such that

p(ek = od = p, p(ek = 02) = 1- P (Vk = 1,2, ... ,n).

Let Ep denote the corresponding expectation. It is easy to see that a measure
P p is risk-neutral if and only if Epek = 0 (Vk), Le., 01P + 02(1 - p) = O.

THEOREM 2.3 Let (13k, "Yk) be the strategy defined in Theorem 2.1. For the
Cox-Ross-Rubinstein model, EpXk > 1 (Vk = 1,2, ... ,n) for any non
risk-neutral measure and EpXk = 1 (Vk = 1,2, ... , n) for any risk-neutral
measure.

Consider now a more general model. We assume that the random variables
ek take values in the interval [01,02], where -1 < 01 < 0 < ~ < 1, and Pk are
not necessary nonrandom. Under these assumptions, the market is incomplete.

THEOREM 2.4 Let P ~ be a probability measure on the set of sequences
Hek, Pk)}~=l such that ek does not depend on ek-1,.··, 6 for all k. Let
(13k, "Yk) be the strategy defined in Theorem 2.1. Then

k = 1,2, ... ,n,

and
- ( (2 2»)k/2Xk ~ 1 - max 01,02

Furthermore, if
(Vk = 1,2, ... ,n).

(2.10)

(2.11)

(2.12)

then E#Xn > 1for any non-risk-neutral measure P #' and E#Xk = 1 (Vk =
1,2, ... , n) for any risk-neutral measure P w
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REMARK 2.3 The condition (2.12) holdsfor the Cox-Ross-Rubinstein model.

Notice that the strategy defined in Theorem 2.1 does not depend on the proba
bility distributions of the stock appreciation rate or on the assumptions about a
stochastic model. It should be pointed out that this strategy is both profitable
in mean and risk bounded.

EXAMPLE 2.3 Consider a stochastic market model as in Theorem 2.3 and
a self-financing admissible strategy 'Yk = ~kSkl. Suppose that (2.12) holds.
Then

1 k-l ( - - )EI'Xk = 1 + Xo ~m=O EI''Ym Sm+l - Sm

= 1 + -io ~~;o EI''Ym~m+lSm = 1 + :to ~~;o EI'~m+lEI'~m.

Hence EWX"k > 1, and this strategy also ensures a positive average gain for any
non-risk-neutral measure P w But we have that the wealth will be negative for
large k for any sample sequence such that ~m+l~m < 0 (\I'm).

In Theorems 2.3 and 2.4, ~k are assumed to be independent. We now reduce
this assumption.

Denote by n+ the random number of positive ~k in the set {~k}~=l' n_ =
n - n+, II = n+ln. Let E > 0 be a given number. Introduce the following
function:

f(lI, e) = ~ [(1 + e)nll (1- e)n(l-II) + (1- e)nll (1 + e)n(l-II)]. (2.13)

Notice that f(lI, e) = f(1 - II, e) and f(O, e) = f(1, e) > 1.

PROPOSITION 2.2 Let~k take only two values, -e and +e, where e E (0,1)
is a given number, k = 1, ... , n. Then Xn = f (II, e) for the strategy defined
in Theorem 2.1.

The following example demonstrates that the strategy ensures a positive
average gain sometimes when EI'~k == 0, but ~k are not independent.

EXAMPLE 2.4 Consider a stochastic market model as in Proposition 2.2. Let
PI' be a given probability measure such that E~m == 0 and PI'(6 = 6 =
... = ~k) = 1, where k ~ n is a given number such that f(o, e) > 1, where
0= kin. It can be easily seen that if6 = E, then II> 0, and if 6 = -e, then
II < 1- 0. Hence El'f(lI, e) ~ f(o, e) = f(1- 15) > 1. Consider the strategy
defined in Theorem 2.1. By Proposition 2.2, EI'Xn ~ f(15, e) > 1.

2.2.4 Experiments with historical data
We have carried out the following experiments. We have applied our strategy

to given sequences {Sl,"" SlOO} of 100 daily prices of 10 leading Australian
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stocks (AMC, ANZ, LLC, MAY, MWB, MIM, NAB, NBH, NCP, and NFM),
taking all possible initial days from 1984 to 1996. For the sake of simplicity, we
assume that p is constant and p = 1 +0.07/250, where 250 is the approximate
number of trading days, and we have not taken into account the dividends
income of shareholders. We take the average over all such trials (the total
number was 19,024; in fact full 13 years of data were not available for all
the stocks). We have obtained the following result: in the case of the risk
free investment, plOO = 1.0284 and log plOO = 0.0280. For our strategy,
the average of XIOO/Xo is 1.0304, the minimal Xk/Xo over k = 1, ... ,100
is 0.8212, and the average of log(XlOO/Xo) is 0.0292. It appears that our
strategy reduces risk in comparison with the "buy-and-hold" strategy: for this
experiment, theminimalSk/Sl over k = 1, ... , 100 andover all trials is 0.2625.
Figure 2.1 shows an example of the performance of our strategy when applied
to the ANZ (Australia New Zealand) Bank stocks with daily transaction from
September 1, 1987, to January 21, 1988 (Le., for 100 trading days, including
the October 1987 market crash).

Figure 2.1. The resulting wealth XIc and the stock price Sic for the strategy (2.5) applied for
ANZ Bank stocks during 100 days from 1 September 1987 to 21 January 1988. -: values of
Sic; - - - -: values of X Ic when Xo = So; .. -: values of BIc when Bo = So.
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2.3. A strategy with a risky numeraire
Now we present a strategy that has approximately the same performance as

the "buy-and-hold" investment to the risky assets but that also bounds risk and
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gives a positive average gain in comparison with the "buy-and-hold" strategy
for any non-risk-neutral probability measure.

More precisely, we present a strategy with the following properties:

(a) The strategy uses only observations of stock prices and does not require
any knowledge about the market appreciation rate, the volatility, or other
parameters;

(b) It gives some systematic additional gain in comparison with the "buy-and
hold" strategy for a given risky asset;

(c) The risk for the strategy is similar to the risk for the "buy-and-hold" strategy;
i.e. it is a bounded risk strategy if the risky asset is taken as a numeraire.

We consider again a market model from Section 2.1 that consists of two
assets: a risky stock and a risk-free bond (or bank account). As in Section
2.1, we assume that the price of the stock evolves arbitrarily with the interval
uncertainty. The dynamics of the bond is exponentially increasing along with
the interval uncertainty. Under these assumptions, the market is incomplete. A
multi-period strategy will be presented that differs from the strategy of Cover
(1991) and has the properties (a)-(c). The additional gain is positive on average
for any non-risk-neutral probability measure, under some additional assump
tions about the probability distributions such that the market is still incomplete,
though the strategy itself does not use probability assumptions.

In other words, we present a strategy for an investor who wishes to keep the
given risky asset as acore portfolio but who also admits some dynamic adjusting
of the total amount of shares in order to improve performance. In particular,
this investor accepts a risk of huge losses if the stock falls. This model of
preferences can be realistic, as in the case of a holder of the controlling share
of a company.

2.3.1 The strategy
Let c > 0 be a parameter. Set
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THEOREM 2.5 Let

(2.14)

Then the pair (f3k, 'Yk) is an admissible and self-finll!!cing strategy with the
corresponding wealth Xk and the normalized wealth Xk, and

(2.15)

for all admissible sequences SI,"" Sk.

Notice that the strategy (2.14) uses at time k only Bk,Sk, Zj,k, j = 1,2, so we
need to store only two numbers Zj,k in addition to the current observation of
Bk' Sk' And these two numbers depend on {Bm,Sm, m ~ k} only.

COROLLARY 2.3 Assume that lekl ~ tl (Vk), where tl E (0,1). Then

- 2 2 2 k/2-Xk ~ (1 - t tl (1 - ud-) Sk·

Ift = 1, then Xk ~ 1/2forall possible Sk.

For a real market, changes in stock prices are usually no more than 1%- 5%
per day, hence lekl is about 0.01-0.05 for daily transactions.

2.3.2 Average performance on a probability space
We suppose that a probability space is given such that ek and Pk are random

variables. We repeat that

Bk = PkBk-l, Sk = PkSk-l (1 +ek), k = 1,2, ... ,n. (2.16)

Consider a probability measure P", on the set of sequences {(ek, Pk) }~=1' Let
E", and E", { .\. } denote the corresponding expectation and a conditional ex
pectation.

DEFINITION 2.6 A measure P", is said to be risk-neutral if

E", {Sk!Sk-I, ... ,So} = Sk-l Vk = 1, ... ,no

REMARK 2.4 By (2.16),

E", {SkISk-l,"" So} = Sk (1 +E", {eklek-ll'" ,6}).

Hence, if ek does not depend on ek-l, ,6, then the measure P", is risk-
neutral ifand only ifE",ek = 0 (Vk = 1, , n).
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THEOREM 2.6 Let PIi be a probability measure on the set of sequences
{(€k, Pk)}~=l such that €k does not depend on €k-l,"" 6 for all k. and
EIi€k EIi€m 2': 0 (Yk, m = 1,2, ... ,n). Let ({3k, 'Yk) be the strategy defined
in Theorem 2.5. Then EwY"n > 1for any non-risk-neutral measure PIi' and
EWY"k = 1 (Yk = 1,2, ... ,n) for any risk-neutral measure P w

REMARK 2.5 The market is incomplete under assumptions of Theorem 2.4.
The conditions ofthis theorem are satisfiedfor the Cox-Ross-Rubinstein model
ofcomplete market (Cox et al. (1979».

Notice that the strategy defined in Theorem 2.5 does not require the probability
distributions of the market parameters.

2.3.3 Experiments
We have carried out the following experiments. We have applied the strategy

with different parameter c to sequences {So, SI, ... , Sn}, where Sk ~ Pk/Po,
k = 1, ... , n, and sequences {Po, PI, ... ,Pn} are samples of daily price data
for 16 leading Australian stocks (AMC, ANZ, LEI, LLC, LLN, MAY, MLG,
MMF, MWB, MIM, NAB, NBH, NCM, NCp, NFM and NPC), taking all pos
sible initial days from 1984 to 1997. Thus, n is the number of periods, i.e., the
number of portfolio adjustments, or transactions. The length of the real-time
interval that corresponds to each single period is m days, where m is given.
The case of m = 1 corresponds to daily portfolio adjusting. For the sake of
simplicity, we assume that Pk = (1 + 0.07/250)m, where 250 is the approxi
mate number of trading days in one year. Thus, T = n x m/250is the length of
the real-time interval of running the strategy in each trial; T = 1 corresponds
to one year. Also, we have not taken into account the dividends income of
shareholders. We calculate the average of Xn and log Xn over all such trials
(the total number was 35,430 for n = 100 and m = 1; the full 13 years of data
were not available for all the stocks).

We compare the performance of the strategy with different c with the per
formance of the "buy-and-hold" strategy (i.e., when 'Yk == 1, Xk == Sk, and
Xk == Sk)' Also, we compare our results with the performance of the clas
sic Merton-type "myopic" strategy for the log utility function, which has the
following closed-loop form:

(2.17)

i.e., the normalized wealth evolves as

- - - Sk+l - Sk
Xk+l=Xk+Xk(a-r) - ,

U2Sk
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where a is the appreciation rate of the stocks, r is the risk-free interest rate and
(J is the volatility. Assume that we have allowed the use of posterior historical
data; the average of the appreciation rate for a single stock for this market falls
within the interval [0.14,0.16] and the volatility within [0.28,0.3]. Thus, we
applied the strategy (2.17) with a = 0.15, r = 0.07 and (J = 0.29.

The results of the experiments with different c, m, n are shown in Tables
2.1-2.3. It can be seen that:

• the average performance is robust with respect to changing in m with given
T, and the performance is better for a more frequent portfolio adjusting; and

• the average gain is proportional to the length of the time interval.

These findings show that the results are stable.
Further, it can be seen that c = 0.5 and c = 1.0 ensure systematically better

performance for both criteria .lnand log .In.
Note that there is a difference between the average of .ln = Sn for the

"buy-and-hold" strategy in Tables 2.2 and 2.3 for a given n, because Sn are
calculated as prices on different days for different m (for example, for m = 5
and m = 1, the difference is 4 days).

Figures 2.2 and 2.3 show examples of the performance of our strategy ap
plied with c = 1.5 to the ANZ (Australia New Zealand) Bank stocks with
daily transactions from September 1, 1987, to January 21, 1988 (including the
October 1987 market crash) and from January 3, 1995, to May 30, 1995.

It will be shown below in Chapter 10that the strategies introduced in Sections
2.2-2.3 are optimal for a generic investment problem under special assumptions
about the distribution of market parameters (see Remark 9.1).

Table 2.1. Performance of strategy (2.14) for the Australian market with n = 100, m = 1,
and T =0.4 (average over 38,266 trials).

'JYpeof Merton Buy-and-hold

strategy e =0.5 e =1.0 e =1.5 e=2.0 e= 2.5 strategy strategy

Xn 1.040 1.0499 1.0661 1.0907 1.1256 1.0269 1.0376

logXn 0.0106 0.0128 0.0136 -0.0072 -0.0293 0.0088 0.0091
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Table 2.2. Perlonnance of strategy (2.14) for the Australian market with n = 20, m = 5. and
T = 0.4 (average over 38,202 trials).

Type of Merton Buy-and-ho1d

strategy e=0.5 e = 1.0 e = 1.5 e = 2.0 e= 2.5 strategy strategy

Xn 1.0388 1.0458 1.0576 1.0745 1.0965 1.0248 1.0376

logXn 0.0092 0.0106 0.0083 -0.0178 -0.0880 0.0088 0.0091

Table 2.3. Perlonnance of strategy (2.14) for the Australian market with n =50, m =1, and
T =0.2 (average over 36,180 trials).

Type of Merton Buy-and-hold

strategy e= 0.5 e = 1.0 e = 1.5 e = 2.0 e= 2.5 strategy strategy

Xn 1.0185 1.0213 1.0259 1.0326 1.0416 1.0161 1.0176

logXn 0.0052 0.0065 0.0077 0.0079 0.0053 0.0053 0.0047

2.4. Proofs
ProofofProposition 2.1. We have that

A:+l ( - - ) A:-XA:+l - XA: = Xo IIm=I Pm XA:+l - XA: +XO(PA:+l - 1) IIm=I PmXA:

HI (- - )= TIm=1 Pm"fA: SA:+l - SA: + (PHI - l)XA:

= "fA: (SHI - PA:+lSA:) + (PHI -l)XA:

= "fA: (SA:+l - SA:) - (PHI -l)SA:"fA: + (Pk+I -l)XA:

= "fA: (SA:+l - SA:) + (PHI - 1) (XA: - SA:"fA:)

= "fA: (SA:+l - SA:) + (PHI - l){1A:BA:

= "fA: (SA:+l - SA:) + (BA:+l - BA:){1A:'

This completes the proof of the proposition. 0
ProofofTheorem 2.1. We have

tJA:~O (SA: -_SAl+!) = tJA:~O (CA:_+lSA: _ 1) .
2SA: SA: 2SA: SA:+l
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Figure 2.2. The resulting wealth XIc and the stock price Sic for the strategy (2.14) applied with
e = 1.5 for ANZ Bank stocks during 100 days from 1September 1987 to 21 January 1988. -:
values of XIc == Sic for the "buy-and-hold" strategy; - - - - -: values of X/c when Xo =So.
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Furthennore,

em 1- e~
1 + em = 1 + em = 1 - em'

Hence

=§a.+~
So Sic

- nk ( ) nk -frzL - nk ( ) nk l-e~- m=l 1 + em + m=l IHm - m=l 1 + em + m=l IHm'

Therefore, we obtain equation (2.6). Furthennore, (2.7) follows from (2.6) and
the elementary estimatey-l +y ~ 2 (Vy > 0). FromProposition 2.1, it follows
that X" is the total wealth for the self-financing strategy (2.5) which is defined
from the condition of self-financing. This completes the proof of Theorem 2.1.
o
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Figure 2.3. The resulting wealth X" and the stock price S" for the strategy applied with e =1.5
for ANZ Bank stocks during toO days from 3 January 1995 to 30 May 1995. -; values of
X" == SIc for "buy-and-hold" strategy; - - - - -: values of X" with Xo =So.
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ProofofTheorem2.2. Letn_ ~ n-n+; then n+ = lin and n_ = (1-1I)n.
By (2.6),

Xn = ~ [(1 + E)vn (1 - E)(l-v)n + (1 - E)vn (1 + c)(l-V)n] . (2.18)

Hence Xn -t ~ (eh(2v-l) + eh(1-2v») as n -t +00. This completes the
proof of Theorem 2.2. 0

Proof of Theorem 2.4. The estimate (2.11) follows from (2.7), and (2.6)
implies (2.10), since ~k are independent. Furthermore,

Hence, the inequality E",ekHE","YkSk ~ 0 follows from (2.12). Then, by
Remark 2.3, for a non-risk-neutral measure P "', there exists k E {1, ... ,n -1}



k = 1,2, ... ,no
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such that El£ek+lEI£'YkSk > O. By Proposition 2.1,

- k-l m (- - )EI£Xk = 1 + Em=o EI£~ 8m+l - 8m
_ 1 k-l -
- 1+ Xo Em=O EI£'Ymem+l8m

1 k-l -
= 1 + Xo Em=O El£em+lE I£'Ym8m.

This completes the proof of Theorem 2.4. 0
Theorem 2.3 is a special case of Theorem 2.4. 0
ProofofProposition 2.2. The proof follows from (2.13) and (2.7). 0
ProofofTheorem 2.5. We have

- -
Xk+l - Xk = ~ (Zl,k+l - Zl,k + Z2,k+l - Z2,k)

= ~ [Zl,k+lClek+l + Z2,k+lC2ek+d
1 [ - -] 51<±1 -51<= 2 CIZl,k+l + C2Z2,k+l SI<

= 'Yk (8k+l - 8k) .

Furthermore,

!& -! [n k l+C1em + nk l+c2em]
Sir. - 2 m=l l+el< m=l l+el<

= ~ n~=l (1 + tiel<) + n~=l ( 1 - tiel<)] ~ Vk

by the elementary estimate y-l +Y ~ 2 ('Vy > 0). It follows from Proposition
2.1 that Xk is the total wealth for the self-financing strategy (2.14), which
is defined from the condition of self-financing. This completes the proof of
Theorem 2.5. 0

ProofofTheorem 2.6. Set

ak ~ El£ek, Ek ~ Eak(1 + ak)-l.

We have
- k

EI£8k = nm=l (1 + am),
- l( k k )EI£Xk = 2 nm=l(l + clam) + nm=1(1 +C2am) ,

Then

Ewik - EI£Sk

= ! (n~=l (1 + (1 + E)am) + n~=l (1 + (1 - ~)am))

- n~=l (1 + am)

= n~=l(l + am) [~ (n~=1(1 + Em) +n~=1(1- Em)) -1] ~ 0,

and EI£Xk - EI£Sk = 0 only if ai = 0 ('Vi ~ k). This completes the proof of
Theorem 2.6. 0



Chapter 3

STRATEGIES FOR INVESTMENT IN OPfIONS

Abstract We consider strategies for invesbnent in options for the diffusion market model.
We show that there exists a correct proportion between put and call options in
the portfolio such that the average gain is almost always positive for a generic
Black and Scholes model. This gain is zero if and only if the market price of
risk is zero. A paradox related to the corresponding loss of option's seller is also
discussed.

3.1. Introduction and definitions
We consider strategies for investment in options for a generic stochastic

diffusion model of a financial market. It is asswned that there is a risky stock
and a risk-free asset (bond), and that European put and call on that stock are
available at the initial time. We consider only strategies for selecting an options
portfolio at the initial time. The selection of this portfolio is the only action of
the investor; after that, he or she waits until the expiration time to accept gain
or loss.

We show that there exists a correct proportion between put and call options
with the same expiration time, on the same underlying security (the so-called
long strangle combination), such that the average gain is almost always positive.
This gain is zero if and only if the market price of risk is zero, i.e., when the
appreciation rate of the stock is equal to the interest rate of the risk-free asset
(i.e., a =f:. r in (3.1)-(3.2) below). A paradox related to the corresponding loss
of option's seller is also discussed.

Definitions

Consider the generic model of a financial market consisting of a risk-free asset
(bond, or bank account) with price B(t) and a risky asset (stock) with price
S(t). We are given a standard probability space with a probability measure P

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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and a standard Brownian motion w(t). The bond and stock prices evolve as

dS(t) = as(t)dt + uS(t)dw(t).

(3.1)

(3.2)

Here r ~°is the risk-free interest rate, u >°is the volatility, and a E R is the
appreciation rate. We assume that t E [0, T], where T > °is a given terminal
time. Equation (3.2) is ItO's equation and can be rewritten as

(
u2t )S(t) = So exp at - 2 + uw(t) .

We assume that European put and call on that stock are available for that
price defined by the Black-Scholes formula.

Further, we assume that u > 0, r ~ 0, Bo > 0, and So > °are given, but
the constant a is unknown.

Let PBS (So, K, r, T, u) denote the Black-Scholes price for the put option,
and CBS (So, K, r, T, u) denote the Black-Scholes price for the call option. Here
So is the initial stock price, K is the strike price, r is the risk-free interest rate,
u is the volatility, and T is the expiration time.

We recall the Black-Scholes formula. Let

611:1: JC.q>(x) = . fiC e- 2 dy,
V 211" -00

d ~ log (So/K) +T (r +u
2/2) 1m (3.3)d- = d -uvT.

uVT '
Then

PBs(So,K,r,T,u) = CBS (So, K,r,T,u) -So+Ke-rT • (3.5)

Let X o be the initial wealth of an investor (i.e., at the initial t = 0), and let
X(T) be the wealth of the investor at the terminal time t = T.

Consider a vector (Kp, J1.p, Ke, J1.e) such that Kp > 0, J1.p ~ 0, K e > 0, J1.e ~
0. We shall use this vector to describe the following strategy: buy a portfolio
of options that consists of J1.p put options with the strike price K p and of J1.e call
options with the strike price K e, with the same expiration time T; thus,
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(assume that the options are available for the Black-Scholes price). We have
assumed that the investor does not take any other actions until the expiration
time. In that case, the terminal wealth at time t = T will be

X(T) = J1.p(Kp - S(T))+ + J1.e(S(T) - Kc)+. (3.7)

DEFINITION 3.1 The vector (Kp, J1.p, Ke, J1.e) is said to be a strategy.

For the case of a risk-free "hold-only-bonds" strategy, X(T) = erTXo. It is
natural to compare the results of any investment with the risk-free investment.

DEFINITION 3.2 The difference EX(T) - erT Xo is said to be the average
gain.

Note that the appreciation rate a in this definition is fixed but unknown. The
average gain for a strategy depends on a - r. For example, for a call option
holder, when J1.p = 0, the average gain is positive if a> r.

REMARK 3.1 There are standard terms for option combinations. If you own
both a put and a call with the same striking price, the same expiration date, on
the same underlying security, you are long a straddle, i.e., you own astraddle).
Strangles are similar to straddles, except the puts andcalls havedifferent striking
prices (see Strong (1994».

3.2. The winning strategy
Let dp and de be defined by (3.3), where d = d(K, So, T, r, CT) is defined

after substituting K = Kpor K = Ke, respectively.

THEOREM 3.1 Let J1.p > 0, J1.e >°and

J1.e 1 - ~(dp)

J1.P = ~(de) .
(3.8)

Then the average gainforthe strategy (Kp, J1.p, Ke, J1.e) ispositiveforany a =1= r,
i.e.,

Moreover,

EX(T) > erTXo Va =1= r. (3.9)

EX(T) = erTXo if a = r. (3.10)

For any (Kp , Ke , So, T, r, 0"), the proportion (3.10) is the only one which en
sures (3.8): for any other proportion J1.e/J1.p, there exists a E R such that the
average gain is negative.
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COROLLARY 3.1 Let the variableabe random, intiependentofw(,), andsuch
thatP(a :1: r) > O. Then EX(T) > erTXofor the strategyfrom Theorem 3.1.

Set

Q(x, t) ~ JJpPBS(X, Kp, r, T - t,O") + /loeCBs(X, Ke, r, T - t, 0"),

~(X, t) = dQ~, t) .

COROLLARY 3.2 Let (Kp, /lop, Kel /loe) be as in Theorem 3.1; then

~(So,O) = O.

(3.11)

(3.12)

JJe 164
/-lp - 836'

3.3. Numerical examples
EXAMPLE 3.1 Consider a straddle, Le., a combination of put and call op
tions with K p = K e = $25, So = $30, T = 0.25 (Le. the expiration
time is 3 months=25 years); r = 0.05 (Le., 5% annual), and 0" = 0.45 (i.e.,
45% annual). Then d = dp = de = 0.978, cp(d) = 0.836. We calculate
cBs(So,Kp,r,T,O") = 5.9625 and PBS(SO, Kp,T,T, 0") = 0.6519; the win
ning proportion is

Clearly, the pair (/-le, /lop) is uniquely defined from the system

To obtain the profitlloss diagram for the winning strategy from Example 3.1,
we need to select Xo. Let

We have that

CBs(So,Kp,r,T, 0") = 5.9625,

PBs(So,Kp,r,T,O") = 0.6519.

under the assumptions of Example 3.1. Then

Xo = 5.9625 + 0.6519 = 6.6144,
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Figure 3.1. Profitlloss diagram for a "winning" long straddle from Example 3.1:
Xo =CBS +PBS, where CBS is the Black-Scholes price of the call option, PBS is
the Black-Scholes price of the put option, S is the stock price at the terminal time,
and K p =Kc is the strike price for put and call.

37

x

Xo S

and
(J.Lp, J.Le) = (3.6311, 0.7123)

is the solution of the system

{
836J.Le = 164J.Lp

0.6519J.Lp + 5.9625J.Le = 6.6144.

Figure 3.1 shows the profit/loss diagram for a winning long straddle from Ex
ample 3.1.

EXAMPLE 3.2 Let So be arbitrary, K p = K c = So, T = 0.25, r = 0.05,
and u = 0.45. Then d = dp = de = 0.168, ep(d) = 0.567, and the winning
proportion is

433
567'

Again, let

t>.
Xo = PBS (So, Kp, r, T, u) + CBS (So, Kp, r, T, u).

We have that cBs(So,Kp,r,T,u) = 2.3841, and PBS(SO, Kp,r,T,u)
2.0736 under assumptions of Example 3.2. Then

Xo = 2.3841 + 2.0736 = 4.4577,
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Figure 3.2. Profitlloss diagram for a "winning" long straddle from Example 3.2:
Xo =CBS +PBS, where CBS is the Black-Scholes price of the call option, PBS is
the Black-Scholes price of the put option, S is the stock price at the terminal time,
and K p = K c = So is the strike price for put and call.

x

Xo s

and

(J.Lp, J.Lc) = (1.1447,0.8742)

is the solution of the system

{
567J.Lc = 433J.Lp

2.0736J.Lp + 2.3841J.£c = 4.4577.

Figure 3.2 shows profitJloss diagram for a "winning" long straddle from Exam
ple 3.2.

3.4. A consequence for the seller and a paradox
What about the option writer? This person is on the "other side of the market"from the
option buyer. Ignoring commissions, the options market is a zero sum game; aggregate
gains and losses will always net to zero. If the call buyer makes money. the call writer is
going to lose money. and vice versa.

-R. Strong, Speculative markets, 1994, p. 37

Considernow the result for a seller (writer) who has sold the options portfolio
described in Theorem 3.1 (Le., who is short the straddle described there). The
seller receives the premium Xoand must pay X(T) at time t = T. Figure 3.3
shows profitJloss diagram for a short straddle from Example 3.1.
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Figure 3.3. Profitlloss diagram for a short straddle from Example 3.1.
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Xo

•
So

S

Let Y(t) be the wealth, which was obtained by the seller from Yo = Xo
by some self-financing strategy. Let Y(T) = Y(T) - X(T) be the tenninal
wealth after paying obligations to options holder at the expiration time T.

Letus consider the possible actions of the sellers after receiving the premium.
The following strategy is most commonly presented in textbooks devoted to the
mathematical aspects of option pricing:

Strategy I: To replicate the claim X (T) using the replicating strategy.
As is known, the Black-Scholes price is defined as a minimum initial wealth
such that the option's random claim can be replicated. For Strategy I, the
number of shares is Ll(S(t), t) at any time t E [0, T], and Y(T) = 0 a.s., i.e.,
there is neither any risk nor any gain. Thus, it is doubtful that the seller uses
this strategy in practice.

Furthennore, it was mentioned in Strong (1994) [po 53] that in practice the
option writer just keeps the premium as real compensation for bearing the added
risk of foregoing future price appreciation or depreciation. Thus, the second
strategy is the following:

Strategy II: To invest the premium Xo into bonds, take no further actions
and waitfor the outcome ofthe price movement, similarly to the option's holder.

The seller who sells only put (or only call) options and uses Strategy II
puts his or her stake on the random events K p ~ S(T) (or S(T) ~ K c cor
respondingly). A gain by the holder implies a loss for the writer. The game
looks fair in the case of selling either put or call options separately, because we
know that the Black-8choles price is fair and that the chances for gain should
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be equal for buyer and seller (otherwise, either the ask or the bid will prevail).
But Theorem 3.1 implies that the seller will receive a nonpositive average gain
which is negative on average for any a =1= r, if he or she sells the combination
described in Theorem 3.1. In other words, we have a paradox:

A combination oftwo fair deals ofselling put and call options gives an
unfair deal.

The second paradox can be formulated as following:

We know that the Black-Scholes price is fair for buyers as well asfor
sellers (otherwise, either the ask or the bid will prevail). However,
we have found an options combination such that buying is preferable,
because the buyerhas nonnegative(and almostalwayspositive) average
gain but the seller has a nonpositive (almost always negative) average
gain.

In practice, unlike in for our generic model, brokers use sophisticated mea
sures such as insurance, long positions in stocks or other options, etc. to reduce
the risk, but that does not affect the core of the paradox.

A possible explanation is that the writer also use the premium Xoto receive
a gain from a =1= r by using some other strategies such as Merton's strategies
which are possibly more effective than the options portfolio. In other words,
a rational option seller does not use either risk-free replication of claims or
a "keep-only-bond')" strategy; rather he or she uses strategies that are able to
explore a ;f r.

3.5. Proofs
ProofofTheorem 3.1. Let P a be the conditional probability measure given

a. Let E a be the corresponding expectation. We denote by E. the expectation
that corresponds to the risk-neutral measure, when a = r. Set

h(a) ~ EaX(T).

By the definitions of X(T), it follows that

h(a) = J.LpE.(Kp - e(a-r)TS(T))+ + J.LeE.(e(a-r)TS(T) - Ke)+. (3.13)

As is known (see, e.g., Strong (1994) and Duffie (1988», the Black-Scholes
price can be presented as

PBs(So,K,r,T,O') = e-rTE.(K - S(T))+,

CBS(SO, K,r, T,O') = e-rTE.(S(T) - K)+.
(3.14)

Then

e-rTh(a) = /-tpPBs(e(a-r)T So, Kp, r, T, a) + J.LeCBs(e(a-r)T So, Ke,r, T, a).
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By the put and call parity fonnula, it follows that

e-rTh(a) = JLp [CBS (e(a-r)T So, Kp,r, T, 0") - e(a-r)TSo +Kp]

+JLeCBs(e(a-r)TSo, Ke, r, T, a).

41

(3.15)

The following proposition is well known (see, e.g., Strong (1994) [po 100]).

PROPOSITION 3.1 For any T > 0, K > 0, the following holds:

o
oX CBS(X, K, r, T, a) = ep(d),

where d is defined by (3.3).

Let de(a) and dp(a) be defined as dp and dc, respectively, with substituting
So for e(a-r)TSo. Set

y = y(a) ~ e(a-r)T, R(y) ~ h(T-llogy).

We have that
R(y(a)) == h(a);

then

d~~Y) = erTSo [(JLp(ep(dp(a)) - 1) + JLeep(de(a))].

By (3.8), it follows that
dR
dy (y)ly=l = o.

(Note that y = 1 if and only if a = 1.) It is known that

(3.16)

and the derivatives exist. Then R"(y) > 0 (Vy), Le., R(·) is strongly convex.
It follows that a = r is the only solition that minimizes h. By (3.6), (3.13), it
follows that

R(l) = erTXo.

The uniqueness of the proportion (3.8) follows from the uniqueness of JLe/JLp,
which ensures (3.16). This completes the proof of Theorem 3.1. 0

Corrolary 3.1 follows from (3.9) and (3.10). 0
Corrolary 3.2 follows from (3.15). 0



Chapter 4

CONTINUOUS-TIME ANALOGS OF "WINNING"
STRATEGIES AND ASYMPTOTIC ARBITRAGE

Abstract In this chapter, we consider two continuous-time analogue ofthe model-free win
ning empirical strategy defined inTheorem2.2, Chapter2. These two continuous
time strategies ensure a positive average gain for any non-risk-neutral probability
measure; the strategies bound risk and do not require forecasting of the volatility
coefficient and appreciation rate estimation. As the number of the traded stocks
increases, the strategies converge to arbitrage with a given positive gain that is
ensured with probability arbitrarily close to 1.

4.1. Introduction
In this chapter, we study continuous-time analogue ofthe model-free strategy

defined in Theorem 2.2, Chapter 2. Similar to the generic discrete-time model,
these two continuous-time strategies achieve the following two aims:

(i) to bound risk; and

(ii) to give a positive average gain.

These two aims are achieved for all possible appreciation rates and volatilities
from a wide class without volatility forecast and appreciation rate estimation.
In fact, the strategy ensures a positive average gain for all volatilities and ap
preciation rates from a wide class that includes random bounded volatilities.

The strategy described in Section 4.3 below is such that a trader makes
transactions at any time when the price deviation exceeds a given level. A
number of transactions are known and finite, and the stopping time is random
(but the expectation of the stopping time is finite).

The strategy described in Sections 4.4 and 4.5 requires continuous adjusting,
but the time interval is nonrandom and given. The explicit formulas do not
include the future values of volatility but include only the past stock prices
and cumulative integral of the past historical volatility. The strategy ensures
a positive average gain for all volatilities and appreciation rates from a wide

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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class that includes random bounded volatilities. As the number of traded stocks
increases, the strategies converge to arbitrage with a given positive gain that is
ensured with probability arbitrarily close to 1.

Our approach in Sections 4.4 and 4.5 can be summarized as follows. In
the Black-Scholes model, the equation for wealth is a backward parabolic
equation such that the corresponding boundary value problem is well posed
with the Couchy condition at the terminal time and is ill posed with the Couchy
condition at the initial time. In our solution, there are no specific claims at the
terminal time that present a problem of option replication. We have found a
special variant ofthe Couchy conditionat the initial time such that this, generally
speaking, ill posed boundary value problem has a solution, and this solution
has the desired properties. In other words, we have freedom to select a strategy
as well as a claim that has to be replicated, and we use this freedom to select
a special claim given in (4.12) and (4.20) below such that the corresponding
replication strategy has the desired properties.

4.2. Definitions
Consider the diffusion model of a securities market consisting of a risk-free

bond orbank account with aprice B(t), t ~ 0, and risky stocks with prices Si (t),
t ~ 0, i = 1,2, ... ,N. We consider cases of both N < +00 and N = +00.
The prices of the stocks evolve according to the stochastic differential equations

where ai(t) is the appreciation rate, Ui(t) is the volatility coefficient, and Wi(t)
is the standard Wiener process. The initial price Si(O) > 0 is given and non
random. The price of the bond evolves according to

B(t) = ertB(O), t ~ 0, (4.2)

where r ~ 0 and B(O) are given constants.
In practice, the volatility coefficients Ui(t) can be estimated from the mea

surement Si(t), but the task is more difficult for the appreciation rate ai(t),
which is harder to estimate than Ui(t). Hence we assume that Ui(t) can be
observed at the current time but cannot be forecasted and that ai (t) cannot be
observed and forecasted.

We assume that Wi(') are independent processes. Thus, this model corre
sponds to the model from Chapter 1 with a diagonal matrix volatilty.

Let :Ff,n be the right-continuous monotony increasing filtration of complete
u-algebras of events generated by {Si(tHf=l' n ::; N.

Let:Ff ~ :FtS,N.
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Introduce the vector processes

a(n)(t) ~ (al(t), ,an(t)) ,

u(n)(t) ~ (Ul(t), ,UN(t)) ,

s(n) (t) ~ (SI (t), ,Sn(t)) ,

a(t) ~ a(N)(t), u(t) ~ u(N)(t), S(t) ~ S(N) (t),

S(t) = e-rtS(t).

Let V be the set of all u (.) such that ui (t) are bounded random processes
that are progressively measurable with respect to J=t, i = 1, ... , N.

Let A be the set of all a(·) such that ai(t) are bounded random processes
and a(t) does not depend on Wi(t + s) - Wi(t), s > 0, i = 1, ... , N.

Let.A C A be the set of a(·) E A such that all ai(t) are non-random
processes, i = 1, ... , N.

Let X(O) be the initial wealth at time t = 0 and X(t) be the wealth at time
t > O. Though the number of available assets is infinite, we assume that only a
finite number of them are traded by the agent and that the wealth X (t) at time
t ~ 0 is

n

X(t) = f3(t)B(t) +L 'Yi (t)Si (t).
i=1

(4.3)

(4.4)

Here n ~ Nand n < +00, f3(t) is the quantity of the bond portfolio, 'Yi(t)
is the quantity of the i stock portfolio, and 'Y(t) = (-Yl (t), ... ,'Yn(t) ), t ~ O.
The pair (f3 (. ), 'Y(')) describes the state of the bond-stocks securities portfolio
at time t. We call these pairs strategies.

We consider the problem of investment or choosing a strategy.

DEFINITION 4.1 Let (u(·),a(·)) E V x A be fixed. A pair (f3('),'Y(')) =
(f3 (-), 'Yl (-), 'Y2 ('), ... , 'Yn (-)) is said to be an admissible strategy ifn < +00,
n ~ N, and f3(t), 'Yi(t), 'Yi(t)Si(t), i = 1, ... , n, are random processes that
are progressively measurable with re.spect to the filtration FtS,n and such that

E I[ 1f3(t)12dt < +00,

E I[ (1'Y(t)12 + ~?=1 Si (t)2'Yi (t)2) dt < +00 VT> O.

The main constraint in choosing a strategy is the so-called condition of self
financing.

DEFINITION 4.2 A pair (f3('),'Y(')) is said to be self-financing if
n

dX(t) = f3(t)dB(t) +L 'Yi(t)dSi(t).
i=1

(4.5)
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In fact, any admissible self-financing strategy has the fonn

(4.6)
'Y(t) = (-r1 (t), 'Y2(t), ... ,'Yn(t)) = r (t, s(n) (.) I[o,t]) ,

(3( t) - X(t)-Ei 1 'Yi(t)S;(t)
- B(t) ,

where r(t,') : 0(0, t)n -+ Rn is a functional, t ~ O. For different a(·), the
random processes ((3(t), 'Y(t)) with the same r(t,') in (4.6) may be different.
Hence it will also be convenient to introduce strategies defined by r(t, .).

DEFINITION 4.3 A functional r(t,') : 0(0, t)n -+ R n , t ~ 0, is said to
be an admissible CL-strategy (closed-loop strategy) if the corresponding pair
({3( '), 'Y(')) defined by (4.6) is admissible.

D 4 4 The X-() tJ. -rt X(t) , II d he I' dEFINITION . l, process t = e X(O) lS ca e t norma lze

wealth.

Notice that X(O) = 1.

REMARK 4.1 This definition is slightly different from Definition 1.2. To elim
inate the difference, it suffices to assume that X o= 1; this can be done without
loss ofgenerality.

4.3. Unbounded horizon: piecewise constant strategies
Consider the simplest case of the market model described above, with n =

N = 1. We assume here that a(t), u(t) are nonrandom processes, and that the
process a(t) is square integrable on all finite intervals [0, T], 61 ~ u(t)2 ~ 62
(Yt) a.s., where 61, 62 are constants, 62 > 61 > O.

Let:Ff be the filtration generated by the process S(t).

DEFINITION 4.5 Let M be the set ofMarkov stopping times for the filtration
:Ff such that EO < +00, (J ~ 0for (J E M.

REMARK 4.2 It is important that E(J < +00 for the stopping times in this
definition. It can be seenfrom Example 1.1 that there exists a trivial arbitrage
without this restriction (a strategy that ensures positive gain with zero risk is
said to be arbitrage).

DEFINITION 4.6 Let 8 E M, and let h(t) be a random function. A pair
((3(.), 'Y(')) i<; said to be a bounded risk strategy with the bounds h(·) for the
stopping time 8 if

X(t) ~ h(t) Yt E [0,8] a.s.

for all admissible a(·).
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Let n E Jj, E E (0,1), and T > 0 be given. We assume that T E (0, +00]; in
other words, the case ofT = +00 is not excluded.

Let
r(t 0) ~ er(O-t) 8(t) - 1 0 _< 0 _< t.
.. , 8(0)'

Then

8(t) = er(t-O)8(0)(1 + ((0, t)), 0 ~ 0 ~ t, ((0,0) = O.

Introduce the stopping times

00 A 0, Ok ~ T I\inf {t: t > Ok-I, 1((t,Ok-I)1 = E}, k = 1, ... ,no
Let

n ~ max{k: 0k-l < T, k = 1, ... ,n},
A A

8k = 8(Ok), Bk = B(Ok), k = 0,1, ... ,n,
Pk ~ exp(r(Ok - Ok-I)), ~k ~ S: Ole p - 1 = ((Ok, Ok-d·

Ie-I Ie

It is easy to see thatEOk < +oo,Ok EM ('v'k) and I~kl = Efor k = 1, ... ,n-l,
I~nl ~ E,

Sk = Pk8k-I(1 + ~k), Bk = PkBk-l, k = 1, ... , n. (4.7)

Let

vk~(I-E2)k, k=O,I, ... ,n-l, Vn~(I-E2)n-I(I-~~).

THEOREM 4.1 Let

I
Xk ~ X~O) (~+ e2r81e V~~Q),

'Vk ~ X(O) ( I _ e2r81e Vlt~Q)
I - 2 "SO Slt'

13k ~ Xlt1l:Slt, k = 0, 1,2, ... , n.

Introduce the rantiomfunction h(t) such that h(t) = (1 - £)(1 - £2)k/2 for
t E [Ok,Ok+d. Furthermore, introduce the functions "((t), 13(t), X(t) such that

13(t) = 13k, "((t) = "(k, t E (Ok,Ok+tl, k = 0, 1,2, ... , n,

X(t) = 13(t)B(t) + "((t)8(t), t ~ 0.

Then the pair (13 (.), ,,((.)) is an admissible and self-financing bounded risk
strategy with the bounds h(t), the corresponding wealth X(t), the normalized

wealth X(t) ~ e-rt if~~, and

(4.9)
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(4.12)

(4.16)

THEOREM 4.2 Let a(t) == a, a(t) == a be nonrandom constants, T = +00,
and n == n. Then EOn < +00. Furthermore, EX(On) > 1 ifand only ifa =1= r,
and EX(On) = 1 ifand only ifa = r.

4.4. Continuous-time strategies for a single stock market
with a finite horizon

In this Section, we assume that N = n = 1. Introduce the random function

v(t) ~ It
a2(s)ds.

We shall employ the notation cosh(y) ~ (eY + e-Y ) /2.
THEOREM 4.3 Let

6 X(O) (8(t) 8(0))
X(t) = -2- 8(0) + exp {2rt - v(t)} 8(t) ,

6 X(O) ( 1 8(0) )
,(t) = -2- 8(0) - exp {2rt - v(t)} 8(t)2' (4.13)

f3(t) ~ X(t) ~7t~t)8(t). (4.14)

Then, for any (a(·),a(·)) E V x A, the pair (.8(·),,(·)) is an admissible and
self-financing strategy with the corre.\ponding wealth X (t). Theformula (4.13)
gives a bounded risk strategy with the bound C(t) = exp{ -v(t)/2}, and

X(t) ~ exp {- v~)} 'v'(a(·),a(·)) E V x A, 'v't ~ 0 a.s., (4.15)

where X(t)is the corresponding normalized wealth. Moreover,

EX(t) = cosh (J~ a(s)ds - rt)

'v'(a(·),a(·)) E V x A, 'v't ~ 0,

andif(a(·),a(·)) E V x A, then

EX(t) > 1 ifand only if ! rt
a(s)ds =1= r. (4.17)

t Jo



(4.18)
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REMARK 4.3 The bounded risk strategy defined in Theorem 4.3 does not de
pend on aCt) and the future values of volatility.

REMARK 4.4 Iffor all t > 0 the second inequality (4.17) does not hold, i.e.,
J~ a(s)ds = r ("It> 0), then a(s) =: r. The strategy defined in Theorem 4.3 is
arbitrage (i.e., risk-free profit that is positive with nonzero probability) ifand
only if(4.17) holds' and u =: O.

4.5. Strategies for a multi-stock market
In this section, we assume that N :::; +00, 1 :::; n < +00. Set

i
t 1 n

viet) ~ ul(s)ds, vet) ~ 2"~ Viet).
o n i=l

Furthennore, for k = 0, ... , 2n - 1, t > 0, and x = (Xl, ... , X n ) ERn,
Xi > 0 ("Ii), introduce the functions

AI(t) ~ ~ L~=l (J~ ai(s)ds - rt), A2(t) ~ -AI(t),

A ~ lin A ~ -linGdx) = (XIX2" ·Xn) , G2(X) = (XIX2" ·Xn) ,

G ( ) ~ G/c(x) k - 2 (4 19)
k X - G/c(S(O» ' - 1, , .

UI(t) ~ ~ (~-1) L~l Viet), U2(t) ~ ~ (~+ 1) L~=i viet),

~k(t)~e-u/c(t), k=1,2.

Set

~1(A A)H(x, t) = 2 HI(x, t) + H2(x, t) .

THEOREM 4.4 Let

X(t) ~ H(e-rtS(t), t),

X(t) ~ ertX(O)X(t) = H(S(t), t),

'"Yi(t) ~ X~O) ni(t) (HI(S(t), t) - H2(S(t), t)) ,

'"Y(t) ~ bl(t), ... ,';'n(t)), (jet) ~ X(t)-E~(t)i(t)Si(t).

(4.20)

(4.21)
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Then, for any (u(·),a(·)) E V x A, the pair ({3(t),'Y(t)) is an admissible and
self-financing strategy with the corresponding wealth X(t) and the normalized
wealth X(t). Theformula (4.21) gives a bounded risk strategy with the bound
C(t) = e-v(t), and

X(t) ~ e-v(t) 'v'(u(·) ,a(·)) E V x A 'v't > 0 a.s., (4.22)

where X(t)is the corresponding normalized wealth. Moreover,

(4.23)

'v't> 0,

EX(t) = L:k=1,2cosh(Ak(t))

'v'(u(·),a(·)) E V x.A,

andif(u(·),a(·)) E V x.A. then

EX(t) > 1 ifand only if 3k E {1, 2}: Ak(t) # O. (4.24)

For T > 0, v > 0, introduce the class V(v, T) c V of all u(·) such that

1 n-L vi(T) ~ v 'v'n a.s.,
n i=l

(4.25)

where Vi(t) are as defined in (4.18).

COROLLARY 4.1 ForanyT > 0, v> 0,

X(t) ~ e-v/2n = (1 - en)

'v'(u(·),a(·)) E V(v,T) x A, 'v't E [O,T] a.s.,
(4.26)

where
en £ 1 - exp {- v } ~ v -t 0 as n -t +00.

2n 2n
In other words, the maximum loss for the strategies defined in Theorem 4.4
converges to zero as the number n oftraded stocks increases.

4.6. Definitions for asymptotic arbitrage
It can be concluded that, as the number of stocks increases, the proposed

strategies converge to arbitrage. A risk-free profitable strategy is said to be
arbitrage. Harrison and Pliska (1981) have shown that arbitrage does not ex
ist in the diffusion stochastic market model. But some types of arbitrage as
a limit or as asymptotic arbitrage do exist for models with an infinite number
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of assets. One definition of asymptotic arbitrage was introduced by Kabanov
and Kramkov (1994). Another related definition is that of the so-called "free
lunch" (Harrison and Kreps (1979». There are many results concerning the
existence or nonexistence of "free lunches" and asymptotic arbitrage. For ex
ample, it is known that free lunches do not exist in a diffusion market model
with sequences of strategies that are piecewise constant with a bounded number
of switehings, and free lunches do exist in the case of an unlimited number of
switehings and unlimited borrowing (see, e.g., Dalang et al. (1990), Duffie and
Huang (1986), Frittelli and Lakner (1992), Harrison and Kreps (1979), Jouini
and Kallal (1995), Jouini (1996), Kreps (1981), Kabanov and Kramkov (1998),
Klein and Schachermayer (1996». The strategies introduced above are con
tinuously changing; they do not require unlimited borrowing and information
about future values ofvolatility, and it will be shown that they ensure asymptotic
arbitrage of the first kind introduced by Kabanov and Kramkov (1994). More
over, these strategies ensure a strengthened version of asymptotic arbitrage: a
fixed positive gain is ensured with probability 1 - € for arbitrarily small € > 0
for a wide class of volatilities and appreciation rates that includes all bounded
random volatilities.

DEFINITION 4.7 Let T > 0 be fixed, and let C(t) be a random process such
that C(t) E (0,1] for all t a.s. An admissible CL-strategy r(t,·) is said to be
a bounded risk strategy with the bound C(·) if

X(t) ~ C(t) 'v'(u(·),a(·» E V x A 'It E [O,T] a.s.

The following definition is a particular case of the classical definition of
arbitrage (see Harrison and Pliska (1981».

DEFINITION 4.8 Let(u(·),a(·)) E VxAbegiven, ({3(t),'Y(t»beanadmis
sible self-financing strategy. and X(t) be the corresponding normalized wealth.
Let T > 0 be a given nonrandom time. Let

P(X(T) ~ 1) = 1, P(X(T) > l) > o.

Then this strategy is said to be arbitrage.

The following definition is a particular case of the definition of asymptotic
arbitrage from Kabanov and Kramkov (1994, 1998).

DEFINITION 4.9 Let (u(.),a(.» E V x A and T > 0 be given. Let
({3(m)(t),'Y(m)(t», m = 1,2, ... be a sequence of admissible self-financing
strategies, X (t) be the corresponding total wealth, x(m) (t) be the correspond
ing normalized wealth, and x(m) (0) = X(O) ('1m). Suppose that there exist
real numbers It > 1. Po > 0 such that for any € > 0 there exists a number m
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such that
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p(x(m)(T) ~ K) ~ Po,

x(m)(t) ~ l- c "1m ~ m, "It E [0, T] a.s.

Then the sequence (~(m)(t),'Y(m)(t)) is said to be a~ymptotic arbitrage ofthe
first kind.

The following definitions strengthen the requirements ofDefinition 4.9; they
assume a positive gain with probability arbitrarily close to 1, and a class of
(u('), a(·)) is included in the consideration.

DEFINITION 4.10 Let B ~ V x A be a given subset of the set V x A. Let
r(m)(t, .), m = 1,2, ... be a seguence of admissible CL-strategies, X(t) be
the corresponding total wealth, x(m)(t) be the normalized wealth, x(m)(o) =
X(O) ("1m). LetT> obe given. SupposethatthereexistsarealnumberK > 1
such thatforany (u(·),a(·)) E B, c > 0, C1 > 0, C2 > 0, there exists a number
msuch that

p(x(m)(T) ~ K - cd ~ 1 - c2,

x(m)(t) ~ 1 - c "1m ~ m, "It E [0, T] a.s.

Then the sequence r(m)(t,.) is said to be a~ymptotic arbitrage that almost
guarantees the gain K for the cia')s B.

DEFINITION 4.11 Let B ~ V x A be a given subset of the set V x A. Let
r(m)(t, .), m = 1,2, ... be a sequence ofadmissible CL-strategies, X(t) be the
corresponding total wealth, x(m) (t) be the normalized wealth, and x(m) (0) =
X(O) ("1m). LetT> obe given. Suppose that there exists a real number K > 1
such that for any c > 0, C1 > 0, C2 > 0 there exists a number msuch that

p(x(m) (T) ~ K -' cd ~ 1 - C2,

x(m)(t)~1-c Vm~m, V(u('),a('))EB, VtE[O,T] a.s.

Then the sequence r(m)(t,.) is said to be ~ymptotic arbitrage that almost
guarantees the gain K uniformly on the ciass B.

We cannot conclude yet that (4.24) and (4.26) ensure asymptotic arbitrage as
it defined in Definitions 4.9 - 4.11 because a lower boundary of gain is not
established. In the following section, we give some sufficient conditions that
ensure asymptotic arbitrage.
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4.7. Asymptotic arbitrage for the strategy (4.21)
In this section, we assume that N = +00. Let T >°be a fixed time. Let

oi(T) ~1T
aj(t)dt - rT, i = 1,2, ....

ForO> 0, introduce the set A(O, T) c A such that for any a(·) E A(O, T),
there exists a number nsuch that

1 n
- LOi(T) ~ 0 Vn> n a.s.
n i=l

THEOREM 4.5 Let T > 0, v > 0, 0 > °be fixed. Consider the sequence
of the strategies (.B(t), "((t)) = (.B(n) {t), "(n) (t)), defmed in Theorem 4.4. Let
x(n) be the corresponding total wealth. Then

(i)Forany (a{·),a(·)) E V(v,T) x A(O,T). C > 0, there exists a number
n such that

Ex(n}(T) ~ X{O) cosh(O),

x(n} (t) ~ 1 - c Vn ~ n Vt E [0, T] a.s.
(4.28)

(ii) For any (a(·),a(·)) E V(v,T) x A(O,T). c > 0, Cl > 0, C2 > 0, there
exists a number n such that

p (x(n}{T) ~ cosh(O) - Cl) ~ 1 - C2,

x(n}(t) ~ 1- C Vn ~ n Vt E [O,T) a.s.
(4.29)

(iii) Let Au c A(O, T) be a set such that there exists a number nsuch that
(4.27) holdsfor all a(·) E Au. Then for any C > 0, Cl > 0, C2 > 0, there exists
a number n such that

P (x(n}{T) ~ X(O)(cosh(O) -Ed) ~ 1-£2,

i(n}{t) ~ 1 - € (4.30)

Vn ~ n V{a{·),a(·)) E V(v,T) x Au Vt E [O,T] a.s.

COROLLARY 4.2 (i) For any fixed (a(·),a(·)) E V(v,T) x A(O,T,n). the
sequence ofstrategies in Theorem 4.5 is a~ymptotic arbitrage of the first kind
for time T (Definition 4.9).

(ii) This sequence is asymptotic arbitrage that almost guarantees the gain
cosh(O) > 1for the class V(v, T) x A(O, T)jor time T (Definition 4.10).
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(iii) This sequence is asymptotic arbitrage that almost guarantees the gain
cosh(8) > 1 uniformly on the class V(v, T) x Aufor time T (Dejinition 4.11).

REMARK 4.5 The strategy (,B(n) (t), 'Y(n) (t» may be approximated by strate
gies (,B(n,m) (t), 'Y(n,m) (t)), m = 1,2,3, ..., which are constant at the interval,;
(ITjm,(l + I)Tjm), 1 = O,I, ... ,m -I, and such that Elx(n,m)(T)
x(n)(T)1 2 -+ 0 as m -+ +oofor the corresponding values ofwealth. Hence
thejirst inequalities in (4.28H4.30) may be ensured as a limitfor these piece
wise constant strategies, but the second inequalities there can be guaranteed
only with a probability close to 1, but not almost surely.

4.8. Proofs
ProofofTheorem 4.1. It is easy to see that er8

/c = n~=l Pm. Consider the
strategy defined in Theorem 2.1 applied to the discrete-time market model (4.7).
The result of the strategy (4.8) coincides with the result of the strategy (2.5).
Hence (4.9) and (4.10) hold. The corresponding total wealth is continuous,
and therefore the underlying piecewise constant admissible strategy (4.8) is
self-financing.

By (4.8),

Furthermore,

By Proposition 2.1,

X(t) = X(8k) + x~O) [S(t) - S(8k)]

= X(8k) + x'Y('O) S(8k)(t, tk-l)

= X(8k)(I- E) + (t, tk-d X-reO)Sk + EXk

~ X(8k)(l- E).

Therefore, (4.11) holds. This completes the proof of the theorem. 0
ProofofTheorem 4.2. We have that

where y(t, 8) is the solution of the Ito's equation

{
dy(t,8) = (a - r)y(t, 8)dt +O'y(t, 8)dw(t),

y(8,8) = 1.

Hence 8k - 8k-l are independent because of the Markov property of the process
y(.). Also, W(8k) - w(8k- 1) are independent. Hence ek are independent. We
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have that y(t, 0) ~ 0 a.s. for all t,O, and

Eek =Ey(Ok-l, Ok-d + (a - r)E f~lc_l y(t, Ok-ddt - 1

= (a - r)E f~lc_l y(t, Ok-ddt.

Hence E{k > 0 (Vk) if a > r, E{k < 0 (Vk) if a < r, and E{k = 0 (Vk) if
a = r. All the assumptions of Theorem 2.4 hold. This completes the proof of
the theorem. 0

LetQ ~ {(x,t) = (Xl, ... ,Xn,t); t > 0, Xi> °(Vi)}, 1 ~ n ~ N,
n < +00.

PROPOSITION 4.1 Let(cr(·),a(·)) E VxAbefixed. LetH(x,t)bearandom
continuous function of (x, t) E Rn+l which has derivatives H~ E C(Qo),
H~:& E C(Qo), and fI; E Loo(Qo) for any bounded domain Qo C Q. Assume
that H(x, t) is progressively measurable with re.spect to :Ff,N and thatfor all
T > 0, there exist constants C > 0, C >°such that

IHHx, t)/ + IH~(X, t)1 + IH~x(x, t)1 ~ C(lxi C + Ixl-c + 1)

V(x, t) E Q; t ~ T.
(4.31)

Furthermore, assume that the following equality holds in the space Loo(Q):

Introduce the processes

X(t) ~ H(e-rtS(t), t) = H(S(t), t),

ii(t) ~ aaH (S(t), t), i(t) ~ (idt), ... ,in(t)),
Xi

(4.33)

(4.34)

(4.35)

Then the pair (p(t), i(t)) is an admissible and self-financing strategy with the
corresponding normalized wealth X(t).

Proof. It can be easily seen that the process S;l(t) evolves as

dSi-1(t) = (-ai(t) + O"i(t)2) S;l(t)dt + O"i(t)S;l(t)dwi(t), t > O.
(4.36)
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From (4.1) and (4.36), we have that
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supEISi(t)IP < +00, supEISi(t)-lIP < +00 'Vp> 1, 'Vi = 1, ... ,n.
t5,T t5,T

By (4.31), the processes fi(t), t(t), Si(t)ti(t) are square integrable and (4.4)
holds; hence (fi(t),t(t)) is an admissible self-financing strategy.

To complete the proof of Proposition 4.1, we have to show that (4.5) holds
for ert X(t), fi(t), t(t). To do so it is sufficient to find dX(t). The function
fI(x, t) is random, and hence Ito's formula is not applicable formally. But
dX (t) may be obtained from the Ito-Ventssel formula, which is similar to the
standard Ito's formula for this case when fI(x, t) is absolutely continuous by t
(for a case ofcontinuous fI;, see Rozovskii (1990); for a case of noncontinuous
fI; see Dokuchaev (1994». This completes the proof of Proposition 4.1. 0

PROPOSITION 4.2 Let G(x) be a deterministic function that has continuous
derivatives G~,G~x in the open domain {x = (Xl, ... , Xn ): Xi > 0 ('Vi)}.
Let ~(t) be a random absolutely continuous function that has a derivative ~f E
Loo(O, T)forany 0 < T < +00. Assume that ~(t) is progressively measurable
with re!Jpect to :Ff,n. Furthermore, let

in Loo(O, T) for all X = (Xl, ... ,xn), Xi > 0 ('Vi), T > O. Then the function
fI(x, t) = G(x)~(t) satisfies all the a~sumptions ofProposition 4.2.

PROPOSITION 4.3 Thefunctions G(x) = Gk(x) and ~(x) = ~k(X) defined
in (4.19) satisfy all thea~sumptions ofProposition 4.2. Thefunctions fI(x, t) =
Hk(X, t) and fI(x, t) = H(x, t) defined in (4.20) satisfy all the assumptions of
Proposition 4.1.

The proofs Propositions 4.2-4.3 are straightforward and will be omitted.
Theorem 4.3 is a special case of Theorem 4.4 with n = N = 1.
ProofofTheorem 4.4. Applying Propositions 4.1-4.3, we obtain the strategy

(4.21).
It can be easily seen that

Ul(t) + U2(t) = ~ [k (k - 1) + k(k + 1)] 2:?=l Vi(t)

= ~ 2:~=1 Vi(t) = 2v(t).
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Thisyieldsll-um(t) = -lI-,-Uk(t). We have that Gdx) =G2 (x)-1. By
(4.21),

i(t) =! (G1(S(t))e-Uk(t) +G2(S(t))e-um(t))

= e-V(t)~(GdS(t))exp{lI(t) - Ul(t)}

+ exp{lI(t) - U2 (t)}G2(S(t))-l).

Apply the elementary inequality y-l + Y ~ 2 ('Vy > 0) for all k. It yields
i(t) ~ e-v(t). Hence (4.22) holds.

By (4.1), we have that

Si(t) = Si(O) exp(l t
ai(s)ds +I t

ui(S)dwi(S) - Vi~t)), i = 1, ... , N.

Furthermore, the corresponding equations (4.19) may be rewritten as

Ifa(·) E A, then cti(t) is nonrandom for all i. In this case, (4.19) yields

EGk(S(t))e-Uk(t)

= Eexp~~l ( OiJt) - v~~) + kJ~ ui(S)dwi(S) - Uk(t))

_ ~n o· E ~n (1 ft ()d () 1Vi (t) )- exp LJi=l ~ exp LJi=l nJo Ui s Wi s - 7i"2" -2-

= exp~~ ~ = eAk(t)
LJs=l n .

The expectation there is a standard expectation of an exponent of a summa of
stochastic integrals (see, e.g., Karatzas and Shreve (1988), p. 191). We have
that A2(t) = -At{t). Hence

EX(t) = ~E (G1(St)e-U1(t) + G2(St)e-U2 (t))

= ~ (eA1(t) + e-A1(t)) ,

and (4.23) holds. This completes the proof of Theorem 4.4. 0
Proof of Theorem 4.5. The second inequalities in (4.28)-(4.30) hold by

Corollary 4.2. Recall that by (4.19)

ut{T) = (~ - 2~ ) ~?:l vi(T), u2(T) = (~ + 2~ ) ~~l vi(T).
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Set

We have that
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x(n) (T) = ~ [(8;1(~~~~~f:....%:g?) lin exp{ -U2L l (T) - rT}

+ ( 81 082 0 ..·8,,(0 ) lin exp{-u (T) + rT}]
81 T 82 T .. ·8" T 0

= ~ [exp L:~=l (OiiT ) - v~~'P + TJi)

+ exp L::=l (- Oif) - v~~:p - TJi) ].

Hence

(4.38)

The expectation here is a standard expectation of products of exponents of
stochastic integrals TJi. This completes the proof of Theorem 4.5 (i).

Furthennore, by (4.38),

x(n)(T) ~ e-lI(T) cosh(.,pn + Ipn),

where

By (4.25),

{

v(T) ~ 0,

I 1

2 as n ~ +00.

Ellpnl2= ;&E L:~=l f[ ui(t)dwi(t) ::; *~°
(4.39)

Let n > 0, £3 E (0,8) be such that

{

ell(T)(cosh(8) - £1) ::; cosh(8 - £3),

P(llpnl ~ £3) < £2,

l.,pnl ~ 8

a.s. '<In> n.
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These ii, c3 do exist by (4.39). For Theorem 4.5 (ii), ii depends on a(·). For
Theorem 4.5 (iii), ii depends on Au. We have that

P (.i(n)(T) ~ (cosh(8) - cd)
~ P (e-v(T) cosh(tPn + fPn) ~ cosh(8) - cl)
~ P (cosh(tPn + fPn) ~ cosh(8 - c3))

~ P (ItPn + fPnl ~ 8 - c3)

~ P (ItPnl ~ 8, IfPnl < c3)

~ P (ItPnl ~ 8) - P (lfPnl ~ c3)

~ 1- C2.

This completes the proof ofTheorem 4.5. 0
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OPTIMAL STRATEGIES FOR THE
DIFFUSION MARKET MODEL
WITH OBSERVABLE PARAMETERS



Chapter 5

OPTIMAL STRATEGIES WITH DIRECT
OBSERVATION OF PARAMETERS

Abstract We consider an optimal investment problem for a market consisting of a risk
free bond or bank account and a finite number of risky stocks with correlated
stock prices. It is assumed that the stock prices evolve according to an Ito's
stochastic differential equation. The parameters (interest rate, appreciation rate,
and volatilities) need not be adapted to the driving Brownian motion, so the
market is incomplete. The main assumption here is that all the market parameters,
including the appreciation rates, are directly observable. That the condition is
restrictive.

5.1. The market model
Consider the continuous-time market model introduced in Section 1.3, Chap

ter 1. This market consists of a risk-free bond or bank account with the price
B(t), t ::::: 0, and n risky stocks with prices Si(t), t ::::: 0, i = 1,2, ... , n, where
n < +00 is given. The prices of the stocks evolve according to

where the Wi(t) are standard independent Wiener processes, ai(t) are appreci
ation rates, and Uij(t) are volatility coefficients. The initial price Si(O) > 0 is
a given nonrandom constant. The price of the bond evolves according to

B(t) = B(O)exp (It
r(S)dS) , (5.2)

where B(O) is a given constant that we take to be 1 without loss of generality,
and r(t) is a random process of risk-free interest rate.

We assume that{w(t) }O<t<T is astandard Wiener process and thata(t), r(t),
and u(t) are uniformly bounded, measurable random process, independent of

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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future increments of w, such that qIn ~ a(t)a(t)T, where Cl > 0 is a constant
and In is the identity matrix in R nxn . Under these assumptions the solution of
(5.1) is well defined, but the market is incomplete.

In Section 1.3, we introduced the processes a(t) ~ a(t) - r(t)l, J.L(t) ~
(r(t),a(t),a(t» and the filtration {FtlO<t<T' generated by the process
(S(t), J.L(t)) completed with the null sets of F.-By (1.12), it follows that {Ff}
coincides with the filtration generated by the processes (w(t),J.L(t)).

It is easy to see that Ff coincides with the filtration generated by the processes
(S(t), J.L(t», where

p(t) ~ exp ( -1t
r(S)dS) = B(t)-l, S(t) ~ p(t)S(t).

Let w*(t), Z*(t), Z(t) and P* be such as in Section 1.3. Note that
2E* logZ(T) = -J.

Let Xo > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at
time t > 0, X(O) = Xo. We assume that

n

X(t) = 1I"0(t) +L 1I"i(t),
i=l

(5.3)

where the pair (11"0 (t), 1I"(t)) describes the portfolio at time t. The process 1I"0(t)
is the investment in the bond, 1I"i(t) is the investment in the ith stock, and
1I"(t) = (1I"dt), ... , 1I"n(t))T, t ~ O.

The process X(t) ~ p(t)X(t) is called the normalized wealth.

DEFINITION 5.1 Letgt beafiltration. LetE«(}.) be theclassojall (}t-adapted
processes 11"(') such thatjor a sequence ojstopping times, {Tk} with Tk t T
a.s.

• J[1c (11I"(t)Ta(t)1 + 11I"(t)Ta(t)12) dt < 00 a.s.

• X(T) ~ limk-too X(Tk) exists a.s.

• E*X(T) = Xo.

A process 11"( .) E f; (g.) is said to be an admissible strategy with corresponding
wealth X (.). Ofcourse if the first condition in Definition 8.2 holds with Tk = T,
then the other two are redundant. It turns out that the replicating strategies we
use are given by the first spatial derivative of the solution of the heat equation
and therefore may not be sufficiently regular at t = T to allow us to take
Tk = T. For an admissible strategy 11"(')' X(t, 11"(')) denotes the corresponding
total wealth and X(t I 11"(')) the corresponding normalized total wealth.
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Optimal investment problem
Let T > 0, iJ c R, and Xo E iJ be given. Let U(·) : iJ ~ RU {-oo} such
that U(Xo) > -00.

We may state our problem as follows: Find an admissible self-financing
strategy 1f(.) that solves the following optimization problem:

Maximize EU(X(T,1f('))) over 1f(') E E(F~)

. {X(O,1f('))=xo,
subject to _ A

X(T,1f(')) ED a.s.

(5.4)

(5.5)

5.2. Solution via dynamic programming
We solve here the optimal portfolio selection problem, but in our incomplete

market. We find that in our setting there is no hedging of the coefficients. Let
us explain. In the setting generally assumed in finance, cf. Merton (1990),
Sec. 15.5, the coefficients, JL = (r, a, a), are assumed to satisfy an Ito equation
with driving Wiener process (Brownian motion) (w(·), w(· )), where w(·) is a
Wiener process that is independent on w(·), Le.

dJL(t) = (3(B(t), S(t), JL(t), t)dt +aJ1.,S(B(t), S(t), JL(t) , t)dw(t)

+aJ1.(B(t), S(t), JL(t), t)dw(t).
(5.6)

To Markovianize the problem, we use the state variables X(t), B(t), S(t), and
JL(t).

DEFINITION 5.2 Let EM be the class ofaliFf-adapted processes 1f(') such
that there exists a measurable function f : [0, T] x R x (R x R n x R x R n x
R nxn ) ~ R n such that 1f(t) = f(t, X(t), B(t), S(t), JL(t)).

A process 1f(') E EM is said to be a Markov strategy. Set

J(x, b, s, jJ., t) ~

sUP71"(')Ef:
M

E{U(B(T)-l X(T))I(X(t), B(t), S(t), JL(t)) = (x, b, s, jJ.)}.

Let iJ = R. Then the Bellman equation, satisfied formally by the value
function (derived utility function) J(x, b, s, JL, t) is (if we denote the matrix
diag (Sl,"" sn) by S)

max{Jt(x, b, s, JL, t) + Jx(x, b, s, J.I., t)[rx + 1fTal + Jb(x, b, s, JL, t)rb
71"

+Js(X, b, s, JL, t)T Sa) + JIJ.(X' b, s, JL, t) T (3(x, b, s, JL, t)
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+ ~Jx,x(x, b, s, p., t)1rT (j(jT 1r + ~tr [Js,s(x, b, s, p., t)S(j(jT S]

+~tr [J""", (x, b, s, p., t)(j""S (x, b, s, p., t)(j""S (x, b, s, p., t)T

+(j"'(x, b, s, p., t)(j"'(x, b, s, p., t)T)] + Jx,s(x, b, s, p., t)S(j(jT1r

+Jx,,,,(x, b, s, p., t)(j""S(jT 1r

+tr [Js,,,, (x, b, s, p., t)(j""S (x, b, s, p., t)(jT S]) = 0,

J(x, b, s, p., T) = U(xjb).

Then the optimal 11" is (fonnally)

1r(t) =

The first tenn on the right-hand side gives the usual mean-variance type of
strategy, the second, due to correlation between wealth and stock prices, is
absent if S(t) is not required as a state variable, e.g., if a Mutual Fund theorem
hold; and the third depends on the correlation between S (or w) and p. and
is considered to represent a hedge against future unfavorable behavior of the
coefficients. Note that the Bellman equation is degenerate: the coefficient
matrix for the second-order derivatives has a rank of at most 1 + 2n + n2,

whereas there are 3 + 2n + n2 variables. The difference of 2 in the numbers
arises from including B(t) as a state variable (this might be avoided in some
cases) and from the fact that the noise driving X(t) is the same as that driving
S(t). This outcome is unavoidable. Hence there may not exist a solution J
with second-order derivatives. If p. is independent of w, then (j""s = 0 and
B, S can be dropped as state variables. In this case the coefficients are said to
be unhedgeable and the policy "myopic".

5.3. Solution via optimal claim
Set

8(t) ~ (j(t)-la(t),

R(t) ~ a(t)TQ(t)a(t) = 18(t)12 ,

R ~ f[ R(t)dt,
- 6 R
R=T'

6
J=ER,

6 - 1 tr(t)=R- foR(s)ds.

(5.7)
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We shall present a solution of the investment problem that allows us allow to
deal with coefficients that are not necessarily generated by adiffusion. We show
rigorously that in the isoelastic utility case, i.e., when U(x) = t5-1x6 (15 < 1,
tS =1= 0) or U(x) = log x, the correlation terms are absent provided (in the power
case) that the random variable R is independent of w. We do not require that
the coefficients I.t be independent of w. Moreover, ifR is constant, then again
these terms are absent without specification of the form of U.

5.3.1 Some additional assumptions
CONDITION 5.1 There exists a measurable set A ~ R, and a measurable
function F(·,·) : (0,00) x A ~ Dsuch thatfor each z > 0, x= F(z, A) is a
solution ofthe optimization problem

Maximize zU(x) - AX over x E D.

Moreover, this solution is unique for a.e. z > 0.

(5.8)

CONDITION 5.2 There exist ,\ E A, C > 0. and CO E (0, 1/(2J)) such that
F(·,'\) is piecewise continuous on (0,00), F(Z(T), ,\) is P *-integrable. and

{
E*{F(Z(T),'\)} = Xo,

IF(z,'\)1 ~ CzC010g z 'Vz > 0.

CONDITION 5.3 At least one of the following conditions hold,,:

(i) U(x) == log(x) and D = [0, +00); or

(ii) The random variable R is constant.

(5.9)

CONDITION 5.4 F(x, A) = C1 (xt +Co. where C1 i- 0, Co and II :f. °are
constants, and the random variable R and the process w(·) are independent.

REMARK 5.1 It is clear that Condition 5.1 is required to allow maximization
of the Lagrangian. Condition 5.2 ensures that the optimal terminal wealth is
replicable, and Condition 5.3 allows us to find the optimal, i.e., replicating,
strategy explicitly. Condition 5.4 is a useful weakening ofCondition 5.3(ii)for
special utility junctions.

5.3.2 Special cases
It is easy to see that these conditions are satisfied in many examples.

LEMMA 5.1 Conditions 5.1 and 5.2 hold in thefollowing cases:
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(i) Logarithmic utility. iJ = [0, +00), U(x) = In(x), Xo > 0, A = (0,00),
F(z,>.) = z/>.,'\ = l/Xo.

(ii) Power utility. Assume R is constant (so R = J). iJ = [0, +00), U(x) =
1lx6, Xo > 0, where 8 < 1, 8 =1= 0, A = (0,00), F(z, >.) = (z/>') 1-0,

,\ = xg-1 exp{ 1~6 ~}.

(iii) Mean-variance utility. Assume R is constant. iJ = R, U(x) = -kx2 +cx,
where k E Rand c ~ 0, Xo > 0, F(z, >.) = (c - >./z)/(2k), ,\ =
(c - 2kXo)e-R.

(iv) AssumeRisconstant. iJ = [0,+00), U(x) = -x6+x, where 8 = 1+1/1,
and 1> 0 is an integer, Xo > 8-1, A = (-00,0], F(z, >.) = (1- >./z)'8-1,

,\ is a (negative) zero ofa polynomial ofdegree 1.

(v) Goal-achieving utility. Assume R is constant. iJ = [0, 00) and

U(x) = {O if0~ x < a,
1 ifx ~ a,

0< Xo < a, R > 0, A = (0,00) and

F(z,>.) ~ {

a

E {O,a}

o

if0 < >. < z/a,

if>' = z/a,

if>' > z/a,

and ,\ is the solution of

4P (lOg>. + loga + ..fR) = 1- Xo
..fR ..fR 2 a'

where 4P is the cumulative of the normal distribution.

For case (v) above, Condition 5.2 fails if R = O. Note that the boundedness of
the coefficients J.L implies that R is bounded and hence E.Z(T)q < 00 for any
q E R. This outcome is sufficient for the integrability of F(Z(T),'\) in the
above cases. Note also that Condition 5.4 is satisfied in cases (i)-(iii).

5.3.3 Replicating special claims
We show that claims of a certain kind (the kind that we need for our optimiza

tion problem) are among those that can be replicated in our incomplete market.
Moreover, the assumption that the £2 norm (in time) of the market price of risk
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(5.10)

is non-random allows us to exhibit the replicating strategy explicitly using a
transformation of the heat equation.

LEMMA 5.2 LetR> ObeconstantandletfO: (0,00) -+ Rbeapiecewise
continuous function such that If(x)1 ~ CXC01og:z; ('rIx > 0), where C >°and
CO E (0, (2J)-1) are constants.

(a) The Cauchy problem

{

8H (x t) + Rx2 8
2
H (x t) - °at' 2" 8:z;2 , -,

H(x, T) = f(x).

has a unique solution H(·) E C2,l((O, 00) X (0, T)), with H(x, t) -+ f(x) a.e.
ast-+T-.

(b) lfin addition f(Z(T)) is P*-integrable, then there exists a self-financing
admissible strategy 1r(') E ~(.r~), with corre.\ponding wealth X(t), that repli
cates the claim B(T)f(Z(T)). 1r and X are given by

1r(t)T = B(t)~~(Z(t),r(t))Z(t)a(t)TQ(t),

X(t) = B(t)H(Z(t), r(t)),
(5.11)

where thefunction H(·,·) : (0,00) x [O,T] -+ R is the solution of(5.1O).
Moreover

(5.12)

Note thatC2,l((O, 00) x (0, T)) denotes the set offunctions defined on (0, 00) x
(0, T), which are continuous and have two continuous derivatives in the first
variable and one in the second.

5.3.4 Calculating the optimal strategy
Let U+(x) ~ max(O, U(x)) and let F(·,·) be as in Condition 5.1.

THEOREM 5.1 (i) Let R = O. Then the trivial strategy 1r(t) == 0 is the unique
optimal strategy for the problem (5.4H5.5).

(ii) Assume Conditions 5.1, 5.2, and 5.3, and let R > O.
(a) lfCondition 5.30) hold,;, let H(x, t) ~ x/~; and
(b) ifCondition 5.3(ii) holds, let H(x, t) be the solution of(5.10) for fO =

F(.,~).

Then the strategy 1r(.) E ~(.r:a), defined a\'

{)H
1r(t)T = B(t) ax (Z(t), r(t))Z(t)a(t)T Q(t), (5.13)
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is optimal for the problem (5.4)-(5.5), and X(t) = B(t)H(Z(t), T(t)) i.Y the
corresponding wealth with X(O) = Xo. This strategy replicates the claim
B(T)F(Z(T), ~). lfE U+(F(Z(T),~))< +00 and either the uniqueness in
Condition 5.1 holdsfor aU z or the law ofZ. (T) has a density, then the optimal
strategy is unique.

REMARK 5.2 Even under the imposed restrictions, Theorem 5.1 is used ef
fectively for calculation of optimal strategy for random R in maximin setting
(Theorem 7.1 below).

COROLLARY 5.1 Let IJ{-) and w(·) be independent. Then the set ofaU). such
that Condition 5.2 is satisfied is uniquely defined by R, and the function F(.,).)
does not depend on the choice of). from this set. Moreover, the probability
distribution of the optimal normalized wealth is uniquely defined by R (i.e.,
does not depend on IJ{-) given R).

5.3.5 The case of myopic strategies
PROPOSITION 5.1 Assume Conditions 5.1, 5.2, 5.3(ii) and 5.4. Then

H(x, t) = C1().)Xv exp {~1I(1I - l)(T - t)R} + Co

(5.14)1I"(t)T = lIB(t)(X(t) - Co)ii(t) T Q(t).

is the solution of(5.1O) with f(x) = F(x, ).), and the optimal strategy has the
form

It now follows that the solution of the problem (5.10), and hence the optimal
strategy, can be written explicitly for cases (i)-(iv) in Lemma 5.1. For cases
(ii)-(iv) we require also that R be non-random although we relax this for cases
(ii) and (iii) in the next Corollary. For case (iv),1r = Li 1I"i, where the 1I"i are

expressions of the form (5.14) with corresponding Xi. In fact, X = Li Xi

and this decomposition depends on ).. For case (v), H can be written in terms
of the normal cumulative distribution function, so again the optimal strategy
can be solved explicitly provided that R is non-random.

COROLLARY 5.2 Assume Conditions 5.1 and 5.4, and assume Condition 5.2
under the conditional probability given R. Then the optimal strategy is

1I"(t)T = lIB(t)(X(t) - Co)ii(t) T Q(t), (5.15)

where the normalized wealth is given by

{
d_X(T) = lI(X(t) - Co)ii(t) T Q(t)S(t)-ldS(t),

X(O) = X o.
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(5.16)

This result is a generalization of the case of "totally unhedgeable" coeffi
cients, cf. Karatzas and Shreve (1998), Chapter 6, Example 7.4. We see that
the result holds for a larger class of utility functions than just the power utility
functions, and the independence of the parameters and the Brownian motion
can be relaxed considerably (when utility is only derived from terminal con
sumption). In fact, the corollary applies to cases (i)-(iii) in Lemma 5.1.

Here is another example where our theory applies, i.e., the optimal invest
ment strategy is myopic, although this is not apparent from the corresponding
Bellman equation. Assume that a(t) == a is constant in t and independent of
w(·). Let iii, i = 1,2, be given random matrices in R nxn that are independent
of w('), and let t > °be fixed. Let r' be any Markov time with respect to Ft.
Assume that

(t)~{O"l' ift~[r,r+t) where r~r'I\(T-t).
(J 0"2, ift E [r,r+t) '

Then R does not depend on w(·) (though JLO does). For suitable U, we may
apply Corollary 5.2 to obtain a strategy depending only on current wealth. If
aand O"i are nonrandom, then R is nonrandom, the market is still incomplete,
and according to Theorem 5.1 the strategy is myopic.

REMARK 5.3 Our result is still validwithout Condition 5.3, ifour nonrandom
Tin (5.4)-(5.5) is replaced by T' = inf{t: R(t) = R}.

5.4. Proofs
Proof of Lemma 5.2. By assumption, Rand J = T R are nonrandom.

Consider the following Cauchy problem:

{ a: (y, t) + ~~:~ (y, t) = 0,

V(y, T) = f(ey- J / 2), y E R.

Let

p(y, t) ~ v!21r(: _ t)R exp (2R(i!~ t)) . (5.17)

This is the the fundamental solution of (5.16). By assumption, we have that

If(eY)1 ~ CeCOy2 Vy E R,

CO < 2) ~ 2R(~-t) Vt E [0, T).

Then the integral

r+ oo

V(y, t) = J-00 p(y - Yo, t)f(eYO -
J

/
2 )dyo (5.18)
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converges, and V(y, t) E 0 2,1 (R X (0, T)) is a solution of the problem (5.16)
such that V(y, t) -+ f(ey- J / 2 ) a.s as t -+ T-. Then

6 ( Rt )H(x,t) = V log x + 2,t

is a solution of (5.10) in the desired sense.
Note that r(T) = T and dr(t)ldt = R(t)1R. Set

H(x, t) ~ H(x, r(t)).

Then

We define

{
¥f(x, t) + R~t) x2~:~ (x, t) = 0,

H(x, T) = f(x).

1I"(t)T ~ B(t)9Jl(Z(t), t)Z(t)a(t)TQ(t),

X(t) ~ B(t)iI(Z(t), t).

(5.19)

Let us show that X is the wealth, Le. X(t) = X(t,1I"('))' Applying ItO's
fonnula to B(t)iI(Z(t), t) and using (1.16), gives

aH
dX(t) = r(t)X(t) dt + B(t) ax (Z(t), t)Z(t)O(t)T dw.(t),

which is equivalent to (8.5) under our definition of 11"; hence X is the wealth
corresponding to 11". If11" is admissible, then it replicates the claim B (T)f (Z(T),
with initial wealth Xo.

The integrability of 11", cf. Definition 8.2, follows if we take Tk = T - 11k

and observe that 9Jl(Z(t) , t) is bounded pathwise for t ~ Tk, since 9Jl(x, t)
is continuous on (0,00) x (0, T). The second requirement of Definition 8.2
follows from the continuity of X(t) = B(t)iI(Z(t), t), and the last follows
from (5.12). So 11" is admissible.

It remains to establish (5.12). Let

fk(X) = {fo(X) if If(x)1 ~ k,
otherwise.

Let Hk(X, t) be the corresponding solution of (5.19) and let Xk(t) be the cor
responding wealth. Then Xk(t) = iIk(Z(t) , t). Since

limHk(Z(t), t) = Hk(Z(T), T) = fk(Z(T)) a.s.,
ttT
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and since IHk(x, t)1 ~ k, then by dominated convergence,
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limE.Xk(t) = E.!k(Z(T)).
ttT

Since Xk is a martingale for t < T, we then have Xk(O) = E.!k(Z(T».
Further,

IH(l,O) - Hk(l,O)1 = { p(-z,0)1!(ez- J /
2 )ldz -+ 0,

} {z:I/(ez - J /2)I>k}

since H(l, 0) = f p(-z, 0)1!(ez- J / 2 )ldz < 00, cf. (5.17)-(5.18). Hence

X(O) = H(l, 0) = limk Hk(l, 0)

= limk Xk(O) = limk E.!(Z(T» = E.!(Z(T».

This completes the proof of Lemma 5.2. 0
Let us establish a similar result in the case where Condition 5.3(i) holds.

LEMMA 5.3 IfCondition 5.3(i), is satisfied then

e~ F(Z(T),~) = Z(T)Xo,

~ = xol,
EU(e) = J /2 + log Xo,

and B(T)t is replicated by 1r, where

1r(t) = B(t)XoZ(t)a(t)T Q(t).

Proof. F(z,,x) = z/,x. From (5.9), we have>' = X0
1

• Now EU{e) =
E log[XoZ(T)] = J /2 + log Xo. Let X(t) ~ Z(t)Xo. Then

X(t) = X o +IT

XoZ{s)8(s) T dw.(s),

and this is the normalized wealth corresponding to 1r as given, cf. (1.20). 0
Let U-(x) ~ max(O, -U(x)); define a set of claims by

'It ~ {~: ~ is.1"T-measurable, E.I~I < +00, EU-(~) < oo},

and define :Ii : 'It -+ R, i = 0, 1 by
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Let us now define the claims attainable in D,

Consider the problem

Maximize .10(e) over e E Wo· (5.20)

PROPOSITION 5.2 Assume Conditions 5.1, 5.2, and 5.3. The optimization
problem (5.20) has the solution e= F(Z(T), ~).

Proof From Condition 5.2, it follows that E.lel < 00 and E.e = Xo. Let
us show that EU- (e) < 00. For k = 1,2, ... , introduce the random events

along with their indicator functions X(k), respectively. The number e achieves
the unique maximum of the function Z(T)U(e) - ~e over the set D, and
Xo E D. Hence for all k = 1,2, ... ,

EX(k) (u(e) - Z.(T)~e) ~ EX(k) (U(Xo) - Z.(T)~Xo)

~ -IU(Xo)I-I~Xol·

Since EZ.(T)lel = E.ltl < +00, then EU-(t) < 00, and hence t E W.
Let L(e, >') ~ .1o(e) - >'.11 (e), where e E Wand>' E R. We have

L(e, >') = E(U(e) - >.Z.(T)e) + >'Xo. (5.21)

Let
7](>') ~ F(Z(T), >') = F(Z.(T)-l, >.). (5.22)

From Condition 5.1, it follows that for any wEn, the random number 7](>')
provides the maximum in the set D for the function under the expectation in
(5.21).

Lemmas 5.2 and 5.3 imply the attainability of e, so e E WO. Furthermore,

(5.23)

Lete E Wo be arbitrary. We have that .11(e) = 0 and .11(e) = O. Then

.1o(e) - .1o(e) = .1o(e) + )..11 (e) -.1o(e) - ~.11(e)

= L(e,~) - L(t,).) ~ O.
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Hence eis an optimal solution of the problem (5.20). 0
The following Lemma will prepare us for the proof of Theorem 5.1.

LEMMA 5.4 Assume Conditions 5.1,5.2, and5.3. Lete ~ F(Z(T), ~). Then
(i) E U-(e) < 00, eED a.s.; and
(ii) ifE U+(e) < +00 and either the uniqueness in Condition 5.1 holds'for

all z or the law ofZ(T) has a density, then eis unique (i.e., even for different
~, the corre.sponding eagree a.s.).

Proof Part (i) is seen to hold from the proof of Proposition 5.2.
To show (ii), note that ifEU+(e) < +00, then L(e)) < +00. LeteE Wo

be an optimal solution of the problem (5.20). Let ~ be any number such that
(5.9) holds. It is easy to see that

L(e',~) = JO(e') ~ Jo(e) = L(e, ~).

From Condition 5.1 it follows thate = 1J(~) provides the maximum in the setD
of the function under the expectation in (5.21) with oX = ~. Hence both eand
e maximize L(·, ~). It follows that e' must also maximize the function under
the expectation in (5.21) a.s., and hence e' = 1J(~) a.s. from the uniqueness
assertion in Condition 5.1. Thus (ii) is satisfied. This completes the proof of
Lemma 5.4. 0

Proof of Theorem 5.1. If R = 0, then Z.(T) = 1, and hence the optimal

claim eis nonrandom. The only strategy that replicates the nonrandom claim
is the trivial risk-free strategy, and (i) follows. From Lemmas 5.3 and 5.2, it
follows that 11" is admissible and replicates B(T){ The optimality follows from
Proposition 5.2.

Let us show the uniqueness of the optimal strategy. By Lemma 5.4 (ii), tis
the unique solution of the auxiliary problem (5.20). Hence if 11" and 11"' are two
optimal strategies, they must both lead to the same wealth at time T. If we set
Y(t) = X(t, 11"'(')) - X(t, 11"('))' then from (8.5) we obtain

{
dY(t) = r(t)Y(t) dt + (1I"'(t) - 1I"(t))TC7(t) dw.(t),

Y(T) = O.

Hence, given tt, (Y(t), (71"' (t) - 1I"(t))T C7(t)) is a solution ofthe corresponding
backward stochastic differential equation

{
dY(t) = r(t)Y(t) dt + y(t) dw.(t),

Y(T) = O.

The theory of such equations cf. Yong and Zhou (1999), Theorem 2.2, p. 349
implies that the equation has a unique solution, (Y, y) := (0, 0). It follows that
11"' = 11" a.e. a.s. This completes the proof of Theorem 5.1. 0
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ProofofCorollary 5.1. Under Condition 5.3 (i) the minimum is unique, and
under Condition 5.3 (ii), Z.j(T) under P is conditionally log-normal given IJ.
with parameters depending only on the constant R, and hence is unconditionally
log-normal, with parameters depending only on the constant R. Then the proof
follows. 0

ProofofProposition 5.1. Direct verification shows that H is a solution of
(5.10) and

aH(x,t) _ [H( t) - G]ax x - v x, o·

The result follows. 0
ProofofCorollary 5.2. Let ER(.r:a ) be the enlargement ofE(F~) produced

by replacing the filtration Ft by Ffl generated by Ft and R in the definition.
With P(·) replaced by P('IFJl), we may apply Proposition 5.1 to obtain the
optimal 1r in the feedback form (5.14). It follows that 1r lies in the smaller
control set E(.r:a ); therefore, 1f' is optimal in this class, and hence optimal for
the original problem. 0



Chapter 6

OPTIMAL PORTFOLIO COMPRESSION

Abstract In this chapter, we consider the problemofoptimal portfolio compression. By this
term we mean that admissible strategies may include no more than m different
stocks concurrently, where m may be less than the total number n of available
stocks.

6.1. Problem statement and definitions
Consider themarketmodel from Chapters I and 5. We shall use all definitions

and notations from these chapters. We study now the portfolio compression
problem when admissible strategies may include no more than m different
stocks concurrently, where m may be less than the total number n of available
stocks. Although this problem has not been treated extensively in the literature,
it is of interest to the investor. It is obviously not realistic to include all available
stocks in the portfolio; the total number of assets in the market is too large. In
fact, the number of stocks in the portfolio should be limited by the equity in the
account because of the need to have a large enough position in each stock so that
management fees and commissions are only a small proportion of the value of
the portfolio. There is no point in having too many stocks in a small portfolio.
Even in a large portfolio, it makes sense to limit the number of stocks.

Furthermore, it should be pointed out that the optimal solution ofthe invest
ment problem with fixed and finite number of assets may be useless for a large
market with infinite or very large number of assets. The following example
demonstrates that the optimal solution of investment problem from Chapter 5
need to be revised for a case when n ~ +00.

EXAMPLE 6.1 Consider the problem (5.4H 5.5) with U(x) == log x for an
extending set of underlying assets, i.e. when n -7 +00. Let ai(t) = a~n)(t)

and a(t) = a(n) (t) be the corresponding appreciation rates and volatilities.
N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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Assume that

DYNAMIC PORTFOLIO STRATEGIES

(6.1)
n

L ai(O) -+ +00 as n -+ +00 a.s.
i=1

(It should be pointed out that the assumption (6.1) is quite natural since the
market price ofrisk is usually positive.) For the sake ofsimplicity, assume that
u(t) == Un, where 0 > OisaconstantandIn is the identity matrix in Rnxn. By
Proposition 5.1, the optimal strategy for any n is 1I"(t)T = (1I"t{t), ... ,1I"n(t)),
where 1I"i(t) = 0-2X(t)ai(t) ('eli) and X{t) = x(n){t) is the corre.~ponding

wealth. The process
n

1I"o(t) ~ X(t) - L 1I"i{t)
i=1

is the corresponding investment in the risk-Jree bond for the optimal strategy.
By (6.1),

n n

L 1I"i(O) = 0-2X(O) L ai{O) -+ +00 as n -+ +00 a.s.
i=1 i=1

Hence

This property ofthe optimal strategy lead,; to a paradox and contradicts market
practice.

We define classes of strategies where the portfolios at anyone time may
contain no more than a predetermined number of securities. Let m be a given
integer, 0 ~ m ~ n, and let M m be the collection of subsets of {I, ... , n},
each of which contains at most m elements.

Let gt be a filtration, and let E(g.) be a class of admissible strategies 11"{.) =
(1I"1(-),.··,1I"n(·)).

DEFINITION 6.1 Denote by Im(g.) the set of random gt-adaptedfunctions
I: [O,T] x n t-+ Mm.

We shall denote I~ = Im{F~). Let g: be a filtration such that g: ~ Ft ('v't).

DEFINITION 6.2 Let IE In{g.). Denote by E{I{·), g~) the set ofall strate
gies 11"(') in E(g~)forwhich 1I"i{t) = 0 ifi fj. I{t).

DEFINITION 6.3 Let E{m, g., g~) be the set of all strategies 11"{') in E{g~)

such that there exists IE Im(g.) for which 1I"i(t) = 0 ifi fj. I{t).
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(6.3)

Problem statement

Let 1 ~ m ~ n, T > O. Let T > 0 and let m > 0 be an integer. Let iJ C R,
and let Xo E iJ be given. Let gt be a filtration such that gt ~ :Ft ('Vt). Let
U{·) : iJ ~ R U {-<X)} such that U{Xo) > -00.

Our general statement of the problem follows: Find an admissible self
financing strategy 11"{.) which solves the following optimization problem:

Maximize EU{X{T,1I"{'))) over 11"{') E E{m,g.,:F.a) (6.2)

. { X(O,1I"(')) = Xo,
subject to _ ~

X(T,1I"('))ED a.s.

The condition X(T, 11"( .)) ~ 0 may represent a requirement for a minimal
normalized terminal wealth.

In Chapter 5, we studied the problem for a case of m = n.

Some additional definitions

Let m be an integer, 0 ~ m ~ n. We introduce more notation.
For a given I E M m , we denote by £(1) the linear subspace of Rn such

that x = (Xl"", X n ) E £(1) if and only if Xi = 0 for all i rt 1.
Let p(l) E Rnxn be the projection of R n onto £(1). fu other words,

P{l) = {p(i,i)(lHiJ=I' where

p(i,i)(i) ~ {01 if i = j, i Ei
if i # j or i (j. I.

It follows that

bT p(l)V(t)p(l)b ~ cdP{l)bI2 'Vb ERn,

so p(l)V(t)p{l) is invertible on £(1). Hence there exists a unique matrix
Q(i, t) = {Q(i,j) (l, t)}r,i=l E Rnxn such that

Q(i,j){l, t) = 0 if i rt I or j rt I

and

p(i)V(t)p{l)Q{l, t)x = P{l)V(t)Q{l)x = X 'Vx E £(l).

If m = 0 and i = 0 E M m , then we assume that Q{l, t) is the zero matrix
in R nxn.

Further, set
ii(l, t) ~ V(t)Q(l, t)ii(t). (6.4)
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It can be seen that

ii(l, t)T Q(t)ii(l, t) = ii(t)T Q(l, t)ii(t)

and
ii(l, t) TQ(t)ii(l, t) = a(t)T Q(l, t)a(t).

For a given 1(·) E In, set

ii1(t) £ ii(I(t), t),

L1(t) £ L(I(t)), P1(t) ~ P(I(t)),

Q1(t) £ Q(I(t), t).

We shall use the notation ii1, P *1 , E*1, and Z1 for ii, P *, E 1, and Z defined
for the corresponding ii(·) = ii1(-), but with u('), r(·) unchanged.

Auxiliary market

It will be useful for the proof of the results below to introduce an auxiliary
market.

SetIm £ Im(g.). Consider an arbitrary 1= 1(·) E Im and an auxiliary
market defined by (5.1)-(5.2) with substitution a(·) = a1('); we shall call it the
I-market.

LEMMA 6.1 For any 1(·) E Im and any strategy 11"(-) E E(I(.), g.), the
wealth obtained with the strategy 11"(') is the samefor both - the original market
and the I-market.

6.2. Optimal strategy for portfolio compression
Consider the optimal investment problem (6.2)-(6.3) and asswne that Con

ditions 5.1, 5.2, and 5.3 are satisfied.
An individual investor may feel that she can only reasonably keep track

of a limited number of stocks, or with finite capital wishes not to spread the
investments too thinly, hence decides to hold at most m stocks in her portfolio at
anyone time. A function I EIm, defined above, will specify which m stocks
she holds at any time. If we restrict Im to consist of constant functions only
(i.e., gt =:F8), then this restriction amounts to choosing the m "best" stocks
initially and then trading in the market consisting of these m stocks only. On the
other hand, we may take Im to consist of IJ-adapted processes taking values in

M m , where IJ(t) £ (r(t), ii(t) ,u(t)). This form ofIm is not unreasonable. In
fact, the rational investor, when choosing her portfolio, will want to maximize
potential return while minimizing risk. Since these factors depend only on the
coefficient processes, /1-, it is reasonable to asswne that I is IJ adapted. In this
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(6.5)

(6.6)

case, if the parameters JI. are nonrandom, then the functions I E Im will be
nonrandom but possibly time varying.

Recall that we write Jl.I(t) for (r(t), aI(t), u(t)). We strengthen Condi
tions 5.2 and 5.4 somewhat.

A t.
CONDITION 6.1 For all I E Im, there exist >. = >'1 E A, C > 0 and
Ci) E (0, 1/(2JI)), such that F(·, >'1) is piecewise continuous on (0,00),
F(ZI(T), >'1) is P .I-integrable. and

{
E.I{F(ZI(T), >'I)} = X o,

IF(z, >'1)1 ~ CzCO logz Vz > O.

CONDITION 6.2 (i) For all I E Im, there exist >'Rl ~ >'1 E A a.s., C > 0

and CRI ~ CI E (0, 1/(2RI)) a.s.. such that F(· ,>'1) is a.s. piecewise
continuous on (0,00), F(ZI(T), >'1) is a.s. P.I(·! RI)-integrable, and

{
E.I{F(ZI(T), >'1) IRI} = X oa.s.,

IF(z, >'1)1 ~ Czcllogz Vz> 0 a.s.

(ii) F(x, >') = C1(>')XV + Co. where Cd>') =f:. 0, Co and v =f:. 0 are constants.

We say that j dominates I if Rj ~ RI, a.s. and P{Rj > RI} > O.

THEOREM 6.1 Leti E Im. AssumeConditions5.1and6.1andthatU+(x) ~
const (Ixl + 1), Jl.I and w are independent for all I E Im, and the random
variable R j is constant. Then the strategy 1I"j(')' defined in Theorem 5.1 (with
a(·) = aj(-) belongs to the class i::(m,Fa), and

EU(X(T,1I"j(')) > EU(X(T,1I"('))

for any strategy 11" E i::(m, Fa) such that j dominates the corresponding I.

Observe that Jl.I amd w are independent, in particular, if Im contains only
JI.-adapted processes, and JI.(') and w(·) are independent.

COROLLARY 6.1 In Theorem 6.1, thea.~·sumptionin(ii)thatRj be nonrandom
can be replaced by Condition 6.2, and then Condition 6.1 can be dropped.

COROLLARY 6.2 Assume the hypotheses of either Theorem 6.1 or Corol
lary 6.1. If there exists j E Im such that Rj = maxIEIm RI a.s., then
1I"j(') if optima/for the problem (5.4)-(5.5). It is unique if j is.

An interesting consequence is that the optimal j E Im does not depend
on U(·) or iJ - just choose the m stocks that provide a.s. the largest (in
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(6.7)

the £2 sense) market price of risk. Because of the almost sure maximization
requirement, this cannot always be done. However, if Im contains at least the
J.L-adapted functions, then

i(t) E arg max a(t)T QM(t)a(t),
MEMm

where QM ~ QI with 1(·) == M.

REMARK 6.1 Even under the imposed restrictions, Theorem 6.1 is used effec
tively for calculation of optimal strategy for random R in the maximin setting
(Theorem 7.1 below).

6.3. A bond market: compression of the bond portfolio
We can also apply our theory to a zero-coupon bond market based on a

generalization of the Vasicek interest rate model. In the Vasicek model, the
market price of risk is constant, cf. Lamberton and Lapeyre (1996), Section
6.2.1. Our () is their -q. We can generalize to () a nonrandom function of t, so
R is non-random. Given a progressively measurable u(·) : [0, T] x n -t [0, T]
such that u(t) 2: t, a.s., we can construct the rolling bond P(t, u(t)), which
expires at time u(t). If u(t) == t, this gives the usual bond-based construction
of B. If u(t) = [t] + 1, this consists of a sequence of one-year bonds rolled
over at expieration. In a market consisting of the bank account B and a finite
number such bonds and with a utility that satisfies Conditions 5.1 and 5.2 as
well as U+(x) ::s: const (Ixl + 1), we can deduce that optimal strategies exist
and that one of them requires only one bond (with nonzero volatility) to be held
in the optimal portfolio. Since there is only one driving Brownian motion, this
result is not surprising.

Consider a model of a bond market such the one described in Lamberton
and Lapeyre (1996), Section 6.2.1. Let:Fr be a filtration generated by a scalar
Wiener process w(t). Let r(t) be adapted to:Fr, and let B(t) be the "risk
free" asset defined by (5.2). For each u E (0, T) and t < u, this asset is
available for buying and selling a zero-coupon bond with price P(t, u) such
that P(u, u) = 1. We assume that the investor can buy and sell bonds on this
market. It is shown cf. Lamberton and Lapeyre (1996), Section 6.2.1 that if
this bond market is arbitrage-free, then there exists an :Fr -adapted process q(t)
such that

+ ft- q(s)dw(s)

- ~ ftu q(s)2dS ) l.rr}.
On the other hand, under some mild conditions, any :Fr-adapted process q(t)
defines an arbitrage-free bond market with prices (6.7).
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We consider a special case when q(t) is a deterministic process. This case is
a modification of the Vasicec model, where q(t) is a constant (see Lamberton
and Lapeyre (1996), p. 127).

By Proposition 6.1.3 from Lamberton and Lapeyre (1996), for any u, there
exists an ;:r-adapted process C1u ( t) such that

dtP(t, u) = P(t, u)([r(t) - q(t)C1u(t)]dt + C1u(t)dw(t)).

Then we can treat this market as a modification of the stock market, where the
set of risky assets is {P(·, u), u E (0, TH. We will call it the bond market.

Introduce the set :EB(m) of self-financing strategies 1I"(t)
(1I"U l(t)(t), ... ,1I"Um(t)(t)) for the bond market which allows to contain
in portfolio no more than m bonds at time t and which contains strategies with
similar properties as strategies from :E(m, :F.a , :F.a ) for stocks market. Let
X(t) = X(t, 11"(' )) be the corresponding normalized wealth. As for the stock
market, we have that

m

dX(t) = L B(t)-11l"u;(t) (-q(t)C1u;(t)dt + C1u;(t)dw(t)) . (6.8)
i=l

Consider the problem (5.4)-(5.5) for the bond market.
Let u(·) : [0, T] x f! -+ [0, T] be a given function that is progressively

measurable with respect to ;:r and such that u(t) ~ t. Consider the set
EB(l, u(·)) C EB(l) of strategies that allows the portfolio to contain at time
t only bonds with maturity u(t). Introduce an auxiliary "stock" with the price
Su(t) defined by the equations

dSu(t) = Su(t) (q(t)C1u(t)dt + C1u(t)dw(t)) , t > 0, (6.9)

where C1u(t) £ C1u(t) (t). Consider an auxiliary market that consists ofa risk-free
asset B(t) and the stock Bu(t). We shall call this market the (B, Bu) market.

LEMMA 6.2 Let U+(x) ~ const (Ixl + 1). Assume Conditions 5.1 and 5.2
for the problem (5.4)-(5.5) stated for the (B, Bu ) market. Then there exists a
unique optimal strategy in the class :EB (1, u(. )) for this problem, and optimal
normalized wealth X(T) does not depend on u(·) or on the optimal value of
EU(X(T)).

THEOREM 6.2 Under the assumptions of Lemma 6.2, there exists a unique
optimal strategy in the class :E B (l,u(')) for the problem (5.4)-(5.5) stated
for the bond market. The optimal strategy and the probability distribution of
optimal X(T) and EU(X(T)) are same as in Lemma 6.2, where they are
defined for the (B, Bu ) market.
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COROLLARY 6.3 For any integer m > 0, there exists an optimal strategy in
the class EB(m) for the problem (5.4)-(5.5) for the bond market. The optimal
X(T) and EU(X(T)) are same as in Theorem 6.2, where they are definedfor
m = 1, and as in Lemma 6.2, where they are definedfor the (B, Bu ) market;
i.e., the optimalX(T) and EU(X(T)) do not depend on m.

REMARK 6.2 In Lemma 6.2, the optimal strategy is uniquely defined by u(.).
InCorollary 6.3, theoptimal claim X(T) can be replicated by different strategies
if m > 1; in that case, an optimal strategy is not unique.

In fact, solution of optimal investment problems without compression is
known for many different models of the bond market, for example, with several
driving Brownian motions (see, e.g., Rutkowski (1997), Bielecki and Pliska
(2001)).

6.4. Proofs
ProofofLemma 6.1. It is easy to see that

We have from (6.10) that Pj(t)a(t) = Pj(t)aj(t), so

1I"(t)T Pj(t)[u(t) dw(t) + aj(t) dt) = 1I"(t)TPj(t)[u(t) dw(t) + a(t) dt).

Then the proof follows from from (1.20). 0
ProofofTheorem 6.1. For the given i, let us introduce a new market Con

sider the auxiliary market defined by (5.1)-(5.2) with a(·) replaced by aj('); we

shall call it the i-market. For 11" E E(i( '), ora), we have 1I"(t)T = 1I"(t)T Pj(t),
and from (6.10) we have Pj(t)a(t) = Pj(t)aj(t), so

1I"(t)TPj(t)[u(t) dw(t) + aj(t) dt) = 1I"(t)TPj(t)[u(t) dw(t) + a(t) dt).

It follows from (1.20) that the wealth which is obtained with the strategy 11"(')
is the same for both markets - for the original market and for the i-market 
even though w. is different in the two markets.

Note that the assumptions of Theorem 6.1 suffice for uniqueness of the op
timal strategy, cf. Theorem 5.1, because under (i) the minimum is unique,
and under (ii), Z.j(T) under P is conditionally log-normal given J.t with pa
rameters depending only on the constant Rj. and therefore is unconditionally

log-normal, and hence has a density. Then we can al2Ply Theorem 5.1 to the i
market to obtain the unique optimal strategy 1I"j E ~(.1'.a). We show first that
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1rj(t) = B(t)W!-(Zj(t), Tj(t»)Zj(t)Q(t)aj(t)

= B(t)~~ ((Zj(t), Tj(t»)Zj(t)Q(t)V(t)Qj(t)Pj(t)a(t) (6.11)

= B(t) ~~ (Zj(t), Tj(t) )Zj(t)Qj(t)Pj(t)a(t).

We have used that Q(t) = V(t)-l. Since Qj(t) maps Lj(t) into Lj(t), then

1rj(t) E Lj(t) for all t, so 1rj(-) E E(m,.1"~), i.e., Pj(t)1rj(t) == 1rj(t). Let

Xj(t) be the corresponding normalized wealth. By Theorem 5.1, there exists

AJj tJ. Aj E A such that Xj(T) = F(Zj(T), Aj).

Now assume j dominates I, and consider a new auxiliary market that we shall
call the 1+-market: we assume that this market consists of the bond B (t) and
the stocks Sl(t), ... ,Sn(t), Sn+l(t), where the stock prices Sl(t), ... ,Sn(t)
are defined by (5.1), replacing a(·) by a1('), and where Sn+l(t) is defined by
the equation

dSn+l(t) = Sn+l(t) ((r(t) +a)dt + dWn+l(t» , (6.12)

with

tJ. JRj - R1 (6.13)
a= T'

and with wn+l (t) a scalar Wiener process independent of (w(·), ",(.». Of
course, the filtration for this market, {.1":}, will be larger than {.1"t } (it includes
information on Wn+l and a). It is easy to see that the corresponding numbers
J1+ and R1+ for the 1+-market are

R1+ = R1 + a 2T = Rjl J1+ = Jr + a 2T = Jj' (6.14)

It follows that if (ii) holds, then the distribution of Z1+(T) under P .1+ and
of Zj(T) under p.j are both log-normal with mean equal to 1 and variance of
the log equal to R1+ = Rj> hence the same. Thus

and by Lemma 5.2,

Lemma 5.3 implies the same result if (i) holds. Then Conditions 5.1-5.3
are satisfied for the 1+-market. By Theorem 5.1 applied to the 1+-market,
there exists a unique optimal strategy for the problem (5.4)-(5.5) for the class
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E+(m, g., Fa) for this market (which is the analogue of the class E(m, g., F.a)
for the original market). Let X1+(t) be the corresponding normalized wealth
for the 1+-market.

In case (i), Lemma 5.3 and (6.14) imply EU(X1+(T)) = Jj/2 + logXo =
EU(Xj(T)). Similarly, in case (ii), (6.14) implies

EU(X1+(T)) = E*I+{ZI+ (T)U(F(ZI+ (T), Aj))}

= E*j{Zj(T)U(F(Zj(T), Aj))} (6.15)

= EU(Xj(T)).

Now consider an arbitrary strategy 1T(') E t(m, g., F~), with corresponding
I dominated by i, as a strategy in the 1+-market, with the investment in stock
(n + 1) equal to zero identically. By Theorem 5.1 the unique optimal strategy
in the 1+-market holds a nonzero multiple of° in stock (n + 1); hence 1T(') is
not optimal. Then by (6.15),

EU(X(T,1T)) < EU(X1+(T)) = EU(Xj(T)).

This completes the proof of Theorem 6.1. 0
Proof of Corollary 6.1. For given I E I m , introduce the filtration FE

generated by J.I" S, and RI; it is an enlargement of the filtration {Ft}. Let

t:-n ~ t I (m, g., F.1). Recall that W is still Brownian motion because of the
independence of w and /10[. We will work with the conditional probability,
P('IFJ), rather than with P. Uniqueness of the optimal strategy still holds
under this measure.

As in the proof of Corollary 5.2 applied to the i-market, the strategy 1Tj(t) =

vB(t)[X(t) - Co]Q(t)aj(t) E t(Fa ) is optimal in t! :) E(F~). Moreover,
as in (6.11),1Tj E t(m,g.,F~).

Proceeding as in the proof of Theorem 6.1, we can define the 1+
market. Then F t+ is generated by (M(-), 0, w('), W n+1 (-)) and Ft by
(J.I,I(-),o,w(·),wn+t{·),R1+). The corresponding set of policies is denoted

by E~:l' Again, R1+ = Rj> and the conditional distribution of ZI+ under
p *1+ given R1+ is the same as the conditional distribution of Zj under P *j
given Rjo Then (6.15) becomes

E{U(X1+(T)) IR1+} = E*I+ {ZI+(T)U(F(ZI+ (T), Aj)) IR1+}

= E*j{Zj(T)U(F(Zj (T), Aj)) IRj}

= E{U(Xj(T)) IRj}.

Taking expectations gives

E{U(X1+(T))} = E{U(Xj(T))}. (6.16)
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Any 1r E E(FQ
), with corresponding I dominated by i, can be considered as a

(nonoptimal) element of E~:l' and so (6.16) implies

EU(X(T,1I")) < EU(X/+(T)) = EU(X(T, 1I"j))' 0

ProofofLemma 6.2. The corresponding variable R is constant; then Con
ditions 5.3(ii) holds. It can be seen that Theorem 5.1 holds for n = 1 if the
condition of boundedness of a(t) and O"(t)-l is replaced by the less restrictive
condition of boundedness of O(t) only. Then there exists the unique optimal
strategy in the class EB (I, u(')), and the optimal X(T) depends only on 0(·),
i.e., on q(.). 0

ProofofTheorem 6.2. It is easy to see that the wealth processes for the bond
market and for the auxiliary (B, Su) market are driven by the same equation.
o

Proof of Corollary 6.3. It suffices to prove that if Corollary 6.3 holds for
m, then by implication it should hold for m + 1. To prove this, it suffices
to show that for any claim attainable in EB(m + 1), there exists a replicating
strategy from EB(m). By (6.8), for any time t, the wealth will be not changed if
11"m+1(t) is replaced by zero, and, at the same time, 1I"k(t) is replaced by 1I"k (t) +
1I"m+dt)O"um+l (t)O"Uk (t)-l, where k E {I, ... , m} is such that O"Uk (t) =I O.
This completes the proof. 0

The proof of Corollary 6.2 is obvious.



Chapter?

MAXIMIN CRITERION FOR OBSERVABLE BUT
NONPREDICTABLE PARAMETERS

Abstract In this chapter, it is assumed that the risk-free rate, the appreciation rates, and the
volatility rates of the stocks are all random; they are not adapted to the driving
Brownian motion, and their distributions are unknown, but they are currently
observable. Admissible strategies are based on current observations of the stock
prices and the aforementioned parameters. The optimal investment problem
is stated as a problem with a maximin performance criterion. This criterion
is to ensure that a strategy is found such that the minimum of utility over all
distributions of parameters is maximal. It is shown that the duality theorem
holds for the problem and that the maximin problem is reduced to the minimax
problem, with minimization overa single scalarparameter (even for a multistock
market). This interesting effect follows from the result of Chapter 6 for the
optimal compression problem. Using this effect, the original maximin problem
is solved explicitly; the optimal strategy is derived explicitly via solution of a
linear parabolic equation.

(7.2)

7.1. Definitions and problem statement
Similarly to Chapter 5, we consider the market model from Section 1.3. The

market consists of a risk-free bond or bank account with price B(t), t ~ 0,
and n risky stocks with prices Si(t), t ~ 0, i = 1,2, ... , n, where n < +00 is
given. The prices of the stocks evolve according to

dSi(t) = Si(t) (ai(t)dt +t O'ij(t)dWj(t)) , t > 0, (7.1)
1=1

where the Wi(t) are standard independent Wiener processes, ai(t) are appreci
ation rates, and O'ij(t) are volatility coefficients. The initial price Si(O) > 0 is
a given nonrandom constant The price of the bond evolves according to

B(t) = B(O) exp (It
r(S)dS) ,

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002



90 DYNAMIC PORTFOliO STRATEGIES

where B(O) is a given constant that we take to be 1 without loss of generality,
and r(t) is the random process of the risk-free interest rate.

As usual, we assume that w (.) is a standard Wiener process on a given
standard probability space (n,F,p), where n = {w} is a set of elementary
events, F is a complete a-algebra of events, and P is a probability measure.

Set Jj(t) ~ (r(t), ii(t), a(t)), where ii(t) ~ a(t) - r(t)l.
We describe now distributions of Jj(') and what we suppose to know about

them.
We assume that there exist a finite-dimensional Euclidean space E, a compact

subset TeE, and a measurable function

M(t,') = (Mr(t, '), Ma(t, '), Mq(t, .)) ,

M(·) : [0, T] x T ~ R x R n x R nxn

that is uniformly bounded and such that M (t, a) is continuous in a E T for all
t, and the matrix Mq(-)-l is uniformly bounded.

DEFINITION 7.1 Let A(T) be a set of all random processes ,l(t)
(r'(t),ii'(t),a'(t)) such that there exists a random vector 8 : n ~ T in
dependent ofw(·) and such that

{

r'(t) =Mr (t, 8)

ii'(t) =Ma (t, 8)

a'(t) =M q (t, 8).

Let
()~(t) ~ a(t)-lii(t)

be the risk premium process given Jj(')' Set

Set

(7.3)

(7.4)

(7.5)

Rmin ~ inf Rw
~(')EA(T)

We assume that Jj(') E A(T) and this is the only information available about
distribution on Jj(')' Moreover, we are not supposed to know E, T and M(·);
we know only the fact of their existence and the value ofRmin'
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EXAMPLE 7.1 Let n = 1, E = R N , where N > 0 is an integer, T = [O,I]N,
and

(Mr(a, t), Mq(a, t)) == (r, a),

M ( ) - [(k-1)T kT)
a a, t - ak, tEN 'N ,

a = (a1,'" ,aN) E T,
k=I, ... ,N.

where r, a are constants. Then A(T) is the set of all processes f.L(t)
(r( t), a(t), a(t)) such that

r(t) == r, a(t) == a,

a(t)=8k, tE [(k,;)T,kJ), k=I, ... ,N,

where 8 = (81, ... , 8 N) is aN-dimensional random vector independent of
w('), 18kl ~ 1.

REMARK 7.1 It is easy to see that our description of the class of admissible
f.L(.) covers a setting when the minimum of Rp. over the class is given, or when
the class of admissible f.LO is defined by a condition Rp. E [R1' R2], where
R1,R2 are given, 0 ~ R1 < R2 ~ +00. (It suffices to choose an appropriate
pair (6, M(·)).)

Notice that the solution of (7.1) is well defined for any f.L(.) E A(T), but the
market is incomplete.

Fora E r, set

JLa(t) ~ (Mr(t, a), Ma(t, a), Mq(t, a)),

where Mq(t,a) and Ma(t,a) are as in Definition 7.1.
Let:Ff C :F be the filtration of complete a-algebras of events generated by

the process (S(t), f.L(t)), t ~ O. Let E(:F~) be the class of admissible strategies
introduced in Definition 5.1, Chapter 5.

Let X(O) > 0 be the initial wealth at time t = 0, and let X(t) be the wealth
at time t > O. Let X(t) be the normalized wealth.

By the definitions of E(:F~) and:Ff, any admissible self-financing strategy
is of the form

1I"(t) = r(t, [S(·),f.L(-)]lro,tj), (7.6)

wherer(t,·): B([O,t]jRnxRxRnxRnxn) -+ Rnisameasurablefunction,
t ~ O.

Clearly, the random processes 11"(') with the same ro in (7.6) may be dif
ferent for different f.L(.) = (r(·), a( .), a(·)). Hence we also introduce strategies
defined by r(·): the function r(·) in (7.6) is said to be a CL-strategy (closed
loop strategy).
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DEFINITION 7.2 LetC be the class ojallfunctions r(t,') : B([O,t]jRn x
R x Rn x Rnxn) -7 Rn, t ~ 0 such that the corre.sponding strategy 11"(')
defined by (7.6) belongs to E(:F,G)jorany JL(') = (r(·),a(·),u(·)) E A(7)
and

sup E rT
11I"(t) 1

2 dt < 00.
1£(')=Po('): neT 10

Afunction r(·) E C is said to be an admissible CL-strategy.

Let the initial wealth X (0) be fixed. For an admissible self-financing strategy
11"(') such that 1I"(t) = r(t, [8(·), JL(-)]I[o,tj), the process (1I"(t), X(t)) is uniquely
defined by r(-) and JL(-) = ,{r('),a(')'u(')) given w(·). We shall use the
notation X(t, r(·), JL(')) and X(t, r(.), JL(')) to denote the corresponding total
wealth and nonnalized wealth. Furthennore, we shall use the notation 8(t) =
8(t,JL(-)) and S(t) = S(t,JL(')) to emphasize that the stock price is different
for different JL(-).

For any JL(-) E A(7), introduce the process Z(t, JL('))
Z(t, [8(·), JL(-)] I[O,tj) defined by the equation

{
dZ(t,JL(-)) = Z(t,JL(.))a(t)TQ(t)S(t)-ldS(t)

(7.7)
Z(O,JL(')) = 1.

Then

Z(t, JL(')) = exp (It
81£(s)T dw(s) + ~It

181£(s)12dS) .

Our standing assumptions imply that EZ(T,JLn(·))-l = 1 for all a E r.
Define the (equivalent martingale) probability measure p~ by

~ = Z(T,JLn(·))-l.

Let E~ be the corresponding expectation.

Problem statement

Let T > 0 and the initial wealth Xo be given. Let U(.) : R -7 R U {- oo} be
a given measurable function such that U(Xo) < +00. Let iJ c R be a given
convex set, X o E b.

We may stateour general problem as follows: Find an admissibleCL-strategy
r(-) and the corresponding self-financing strategy 11"(') E E(:F,G) that solves
the following optimization problem:

Maximize min EU(X(T,r('),JL(-))) over r(-) (7.8)
I£(-)EA(T)
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. { X(O, r(·), p(.)) = Xo,
subject to _ A

X(T,r(·),p(·)) ED a.s. \7'p(.) E A(T).

93

(7.9)

DEFINITION 7.3 Let Co be the set ofall admissible CL-strategies ro E C
such that

X(T,r(.),p(.)) E b a.s. \7'p(.) E A(T).

The problem (7.8)-(7.9) can be rewritten as

Maximize min EU(X(T,r(.),p(.))) over ro E Co. (7.10)
"'(')EA(T)

Clearly, the maximin setting has no sense if, for example, p(t) == e, where
e is a random element of R x Rn x Rnxn which is constant in time; one can
identify e instantly. However, the optimal solution for a more general case
needs knowledge about distribution of future values of ",(.).

EXAMPLE 7.2 Let n = 1, r ~ {all a2}, where aj E R. Let

i.e.,

(Mr(a,t),Ma(a,t» == (r,a),

(r(t),a(t» == (r,a),

M ( t) = {aI' t < T/2
q a, a, t ~ T /2,

q(t) = {all t < T/2
e, t ~ T/2,

where r, aare constants, and e is a random variable independent ofw(·) which
can have only two values, al and a2. Let", E [0,1) and ",(.) E A(T) be given.
Consider the problem

Maximize ElogX(T,ro,,,,o» over r(·)

b· t t {X(O, r('),p(,)) = Xo,su ~ec 0 _
X (T, r(·), ",(.» ~ ",Xo a.s.

By Theorem 5.1, it follows that ife == al or e == aI, then the optimal strategy
exists, and if '" =1= 0, then the corresponding optimal strategies for these two
cases differs at the time interval [0, T/2) (see, e.g., Lemma 7.1 below). Hence
the optimal strategy can not be obtained from observations of historical a(t)
and S(t) without knowledge of future distributions. The only exception is the
case", = 0, when the optimal strategy given ",(.) is myopic.
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The case of myopic strategies
PROPOSITION 7.1 Let Xo = X(O) > °and let one of the following condi
tions is satisfied:

(i) U(x) = log(x), D = [0, +00);

(ii) U(x) = xo, D = [0, +00), where ~ < 1, ~ i: 0;

(iii) U(x) = -kx2 + ex, D = R, where k E Rand c ~ 0.

Then there exists Co, C1, lJ E R such that C1 i: 0, lJ i: °are constants, and
that the optimal strategy 11"(') E E(.r~)for the problem (7.8)-(7.9) has theform

1I"(t)T = lJB(t)(X(t) - Co)ii(t) T Q(t),

where X(t) is the corresponding normalized wealth. This solution is optimal
for the problem

Maximize EU(X(T, r(·), I-t(.))) over f(-) (7.11)

fo r any I-t(-).

Some additional assumptions
To proceed further, we assume that Condition 5.1 remains in force throughout
this chapter. Moreover, we impose the following additional conditions.

CONDITION 7.1 For any ° E T, there exist).o: E A. C = Co: > 0, and
CO = CO,o: E (0, 1/(2RJLQ)) such that F(·, ).) is piecewise continuous on (0, 00),
F(Z(T, I-to: (-)) , ).0:) is P~-integrable, and

{
E~{F(Z(T, I-to:(-)), ).o:)} = X o,

IF(z, ).0:)1 ~ CzC010g z \lz > 0.

CONDITION 7.2 The function U(x) : R ~ R is either concave or convex in
x E D. and there exist constants c > 0, P E (1,2], q E (0,1] such that

IU(x)1 ~ c(lxlP + 1),

IU(x) - U(xdl ~ c(1 + Ixl + Ixtl)2-q Ix - x11 Q \Ix, Xl ED.
(7.12)

Notice that condition (7.12) is not restrictive if D is bounded.

CONDITION 7.3 At least one of the following conditions holds:

(i) The setTis eitherfinite orcountable, i.e., T = {01, 02, ... }, where oi E E;
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(ii) The function (Mr(t, a), Mq(t, a)) does not depend on a, i.e., Mr(t, a) ==
Mr(t) andMq(t, a) == Mq(t), andCondition 7.2 is satisfiedwith p E (1,2).

Note that Condition 7.3(i) looks restrictive, but in fact it is rather technical,
since the total number of elements of 7 may be unbounded.

EXAMPLE 7.3 Let k >°be a integer. Let n = 1,

(r(t), a(t)) == (r, ii), u(t) = {~,
t<T
t?: T,

where r > 0, a, and if are constants, T and e are random variables such that
the pair (T, e) is independent of w(·), and such that

161 E {0,t,···,ki l,1}, T E {o, t, ... ,kil, 1} .

Then Condition 7.3(i) is satisfied with E = R 2 ,

7= {a= (al,a2): lall E {O,k, ... , ki l,1}, a2 E {O,k, ... ,kil,l}},

(Mr(a,t),Ma(a,t)) == (r,a), Mq(a,t) = {if, tt >< a2
aI, _ a2.

7.2. Optimal solution of the maximin problem
ForgivenR > o,'x E A,letthefunctionH(·) = H(·, R,'x) : R+ x [0, T] -+

R be the solution of the following Cauchy problem:

{
~~ (x, t, R,'x) _+ 2~x2a;J (x, t, R,'x) = 0,

(7.13)
H(x, T, R,'x) - F(x, ,X).

Introduce a function f(t,·) : B([O, t]; R n x R x R n x R nxn) x (0, +00) x
A -+ R n such that

f( t, [S(·), J1.(.)] I[O,tj ,R, ,X)

~ B(t) f!- [Z(t, J1.(.)) , TJL (t, R), R,'x] Z(t, J1.{-) )a(t)T Q(t),

where the process Z(t,J1.(-)) is defined by (7.7) and where

)
~ T (t 2

TJL(t,R = T(t, [S(·), J1.(·)]I[O,tj, R) = R Jo IOJL(s) I ds.

Further, for a given a E 7, R ?: 0, let CL-strategy f 0(-, R) be defined as

f o(t, [S(·),J1.(-)]I[o,tj,R) ~ {~(t, [SO,J1.{-)]I[o,tj,R, 'xo) ~~ ~ ~~,
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where 81'(') is defined by (7.4).
To fonnulate our main result, we shall need some results from Chapters 5-6,

and these are summarized in the following lemma.

LEMMA 7.1 (i) For any R > 0, ..x E A, the problem (7.13) has a unique
solution H(·,R,..x) E 0 2,1((0,00) X (O,T)), with H(x,t,R,..x) ~ F(x,..x)
a.e. as t ~ T-.

(ii) For any a E r, the strategy

ro(t, [8(·), Jl(' )lI[O,tj, Rpc.)

~ B(t)~~ [Z(t'Jl(.»,Tp(t,RPa),Rpa,).o] Z(t,Jl(-)a(t)TQ(t)

belongs to Co and

EU(X(T, r0(-, Rpa ), Jlo(-))) 2 EU(X(T, r(.), Jlo(')))

VT(·) E Co, 'Va E r. (7.14)

(iii) Thefunctions F(·, ).0), H(·, Rpa , ).0), r0(-, Rpal as well as the prob
ability distribution of the optimal normalized wealth X(T, r0('), Jlo(-))) are
uniquely defined by Rpa .

(iv) Let ai E r, i = 1,2 be such that RP1 < Rp2 , where Jli ~ Jloi' Then

EU(X{T, t 01 (., Rp1 ), JlIO» < EU{X{T, t 02(-, Rp2 ), Jl2{'»)'

THEOREM 7.1 Let Rmin be known.
(i) If Rmin = 0, then the trivial strategy, r(·) == 0, is the unique optimal

strategy in Cfor the problem (7.8H7.9).
(ii) Let Rmin > 0, and let & E T be such that Rfi. = Rmin, where p, ~ Jlo'

Then the strategy

ro(t, [8(·), Jl(-)lI[O,tj, Rfi.) = f(t, [8(·), Jl(-)]I[o,tj, Rmin, ).0) (7.15)

belongs to Co and is optimal in Cfor the problem (7.8)-(7.9).

COROLLARY 7.1 The optimal strategy for the problem (7.8)-(7.9) does not
depend on (T,M('))' ifRmin is fixed.

7.3. Proofs
Proof of Proposition 7.1. We have that Condition 5.1 is satisfied with

F(x,..x) = 0 1 (x)V + 00, where 0 1 i- 0,00 and l/ i- °are constants. Then
the proof follows from Corollary 5.2. 0

Proof ofLemma 7.1. Statements (i)-(iii) follow immediately from Lemma
5.2, Theorem 5.1, and Corollary 5.1. Let us show that statement (iv) holds.



Maximin criterion for observable but nonpredictable parameters 97

Let Ql E T and Q2 E T be such that RI-'l < R1-'2' where JJi ~ JJa;' Further,
let (Ja2 (.) be a process that is independent of (JJal (.), w (. )) and has the same
distribution as JJa2 (.) E A(n. Consider anew auxiliary market with 2n stocks
that consists of two independent groups of stocks that correspond to JJal (.) and
{Ja2 (.) (their driving Brownian motions and coefficients are independent). Then
statement (iv) is a special case of Theorem 6.1, applied for the new market. 0

Additional definitions

Without loss of generality, we describe the probability space as follows: 0 =
T x 0', where 0' = G([O, T]; Rn). We are given a a-algebra F' of subsets of
0' generated by cylindrical sets, and a a-additive probability measure P' on F'
generated by w(·). Furthermore, let Fr be the a-algebra of all Borel subsets
of T, and F = Fr @F'. We assume also that each JJ(') E A(n generates
the a-additive probability measure LIp, on Fr (this measure is generated bye
which corresponds to JJ(')'

Let tR(F~) be the enlargement of t(F~) produced by replacing the fil
tration Ff by FtR generated by Ff and RI-' in the definition. (Note that the
corresponding strategies are not adapted to JJ(t).)

By the definitions of ER(.1".a), any admissible self-financing strategy from
this class is of the form

where r(t,·) : B([O, t]; R x R n x R N ) X R ~ R n is a measurable function,
t ~ O. With P(·) replaced by P('1 Ff!), we may apply Theorem 5.1 to obtain
the optimal1r in the class ER(.1".a) for any JJ{-) E A(T) (the optimal strategy
depends on random Rp,).

o

For a function r(t,') : G([O, t]; R~J x B([O, t]; R x R n x Rnxn) x R+ --t

R n, introduce the following norm:

DEFINITION 7.4 Let cf be the set of all admissible CL-strategies
qt, .) : B([O, t]; R x Rn x R N ) X R ~ Rn such that 1r(t) =
qt, [8(·), JJ(')] I[O,tj, Rp,) E t R(.1".a) for any JJ(') E A(n, IIr(·)lIx < +00
and

X(T, r(·), JJ(')) E iJ a.s. V'JJ{-) E A(T).

In fact, Cf is a subset of a linear space offunctions with the norm (7.16).
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7.3.1 A duality theorem
To prove Theorem 7.1, we need the following duality theorem.

THEOREM 7.2 Thefollowing hold\':

SUPr(o)ECJl infj'EA(T) EU(X(T, r(·), jj(-)))

= infj'OEA(T) sUPr(')ECJl EU(X(T, r(·), jj(')))'

(7.17)

To prove Theorem 7.2, we need several preliminary results, which are presented
below as lemmas. The first of which is

LEMMA 7.2 Thefunction X(T, r(·), jj(')) is linear in r(·).

Proof By (1.20), it follows that X(t) = X(t, r(·), jj(')) satisfies

X(t) = X(O) + 2:~1 f~ p(T)ri(T, [8(·, jj('))' jj('))l[o,r], R) (ai(t)dt

+2:';=1 Uij(t)dWj(T)).

(7.18)
It is easy to see that X(T, r(.), jj(')) is linear in r(.). This completes the proof.
o
LEMMA 7.3 ThesetCf is convex.

Proof Letp E (0,1), jj(') E A(T), r(i)(.) E cf, i = 1,2, and

r(-) ~ (1 - p)r(i)(t) +pr(i)(.).

By Lemma 7.2, it follows that

X(T, r(·), JL(')) = (1 - p)X(T, r(I)(.), JL(-)) +pX(T, r(2)(.), JL(-)).

Furthermore, the setb is convex; then X(t, r (. ), jj(. )) E b a.s. This completes
the proof. 0

LEMMA 7.4 There exists a constant c > 0 such that

EIX(T,r(·),JLa(-))12 ::; c(ljr(-)lIi + X~) Vr(·) E cf, Va E T

Proof. For a r(·) E cf, let

x(t) ~ X(t, r(·), JLa(-)), 1r(t) ~ r(t, [8(·, JLa(-)), jj('))l[o,t], Rj'),

1r(t) = (1rl(t), ... ,1rn(t)).
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By (7.18), it follows that

{

dx(t) = p(t) E~=I1Ti(t) (Ej=1 CTijdwj(t) + a(t)dt) ,

x(O) = XQ•

99

This is a linear Ito stochastic differential equation, and it is easy to see that the
desired estimate is satisfied. This completes the proof. 0

LEMMA 7.5 Fora given a E T, the function

EU(X(T, r('), JL(')))

is continuous in r(·) E c{f.

Proof. Letr(i)(.) E C{fandX(i)(t) ~ X(t,r(i)(·),JLa(-)),i = 1,2. By
Lemmas 7.2 and 7.4, it follows that

EIX(I)(T) - X(2)(T)12 ~ cllr(1)(-) - r(2)(')lIk,

where c > 0 is a constant. Then

lEU (X(I)(T)) - EU (X(2) (T)) I
~ CIE [(1 + IX(I)(T)1 + IX(2) (T) 1)2-QIX (I) (T) - X(2) (T)IQ]

11k'
~ Cl [E (1 + IX(I)(T)1 + IX(2)(T)lr] [EIX(I)(T) _ X(2) (TW] 11k

~ C2 (1 + IIr(l) {·)lIx + r(2){')lIx) 11k' IIr(l)0 - r(2)OIl~r,

where Ci > 0 are constants, q is as defined in Condition 7.2, k ~ 2/q, k' ~
k/(k - 1) = 2/{2 - q). This completes the proof. 0

Let

Fora E T, set

J'(r(·),a) ~ EU(X(T,r(·),JLa(·))).

LEMMA 7.6 Let Condition 7.3(ii) hold,;. Then, for a given r(-) E c{f, the
function J'(r( '), a) is continuous in a E T.

Proof. Let r(-) E C{f and ai E T, i = 1,2. Set
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where J,£.(t) ~ [r(t) ,0, a(t)]. By Girsanov's Theorem (see, e.g., Gihman and
Skorohod (1979)), it follows that

IEU(Y01 ) -EU(Y02 ) I= IE[z.(aI, T) - z.(a2, T)]U(Y.) I
~ cIElz.(al,T) - z.(a2,T)I(I¥.IP + 1)

~ C2 (Elz.(a1, T) - Z.(02, TW') IN (EIY.IP + l)q)l/q

( )
l/q'

~ C3 Elz.(al' T) - z.(a2, T)I" (EIY.12 + l)q)l/
q

~ C4 (Elz.(a1, T) - Z.(02, T)lq') l/q' (IIr(·)IIi + l)l/q,

where p E (1,2) is as defined in Conditions 7.2 and 7.3(ii),

q' = -q
q-l

and Ci > 0 are constants.
Furthermore, it is easy to see that for an 0 E A, we have z.(o, T) = y(T),

where y(t) = y(t, a) is the solution of the equation

{
dy(t) = y(t)Ma(t, a)T Mu (t)-1 Tdw(t),

y(O) = 1.

It is well known that y(T) depends on a E 7 continuously in L" (O,:F, P)
(see, e.g., Krylov (1980, Ch.2)). Hence

Elz.(OI, T) - Z.(02, TW' -+ 0 as 01 -+ 02.

This completes the proof. 0
Let V be the set of all a-additive probability measures on :Fr. We consider

Vas a subset of 0(7; R)·. (If the set 7 is at most countable, then we mean
that 0(7; R) is B(7; R).) Let V be equipped with the weak· topology in the
sense that

LEMMA 7.7 The set V is compact and convex.

Proof. The convexity is obvious. It remains to show the compactness of the
set V. In our case, 7 is a compact subset of finite-dimensional Euclidean space.
Now we note that the Borel a-algebra of subsets of 7 coincides with the Baire
a-algebra (see, e.g., Bauer (1981)). Hence, V is the set of Baire probability
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measures. By Theorem N.lA from Warga (1972), it follows that V is compact.
This completes the proof. 0

We are now in the position to give a proof of Theorem 7.2.
ProofofTheorem 7.2. For a r(.) ECf,wehaveJ'(rO,') E C(T;R) and

EU(X(T, r(·), JL('))) = frdvlL(a)EU(X(T, r(.), JLo(')))

= frdvlL(a)J'(r(·),a),

where VILO is the measure on T generated bye, which corresponds to JL(')'
Hence, EU(X(T, r(.), JLO)) is uniquely defined by Vw Let

J(r(.),vlL ) ~ EU(X(T,r('),JL(')))'

By Lemma 7.7, J(f(·), v) is linear and continuous in v E V given f(·).
To complete the proof, it suffices to show that

sup inf J(r(.), v) = inf sup J(r(.), v). (7.19)
rOEcJl /lEV /lEV r(')ECJl

We note that J(r('), v) : Cf x V -+ R is linear in v. By Lemmas 7.2 and
7.5-7.6, it follows that J(r(.), v) is either concave or convex in r(·) and that
J(f(·), v) : cf x V -+ R is continuous in v for each r(·) and continuous in
ro for each v. Furthermore, cf and V are convex and V is compact. By the
Sion Theorem (see, e.g., Parthasarathy and Ragharan (1971, p.123», it follows
that (7.19), and hence (7.17), are satisfied. This completes the proof ofTheorem
7.2. D

We are now in the position to give a proof of Theorem 7.1.

7.3.2 Proof of Theorem 7.1
Let & E T be such that Rp, = Rmin, where {.t(.) ~ JL&O. By Lemma

7. 1(iii)-(iv), it follows that

EU(X(T, r&(-, Rp,), M·))) ~ EU(X(T, r 0(-, RILe»' JLoO)) 'Va E r.
(7.20)

(If Rp,l = RILe>' then statement (iii) is applicable; if Rp, < RILe>' then statement
(iv) is applicable).

Let JLO E A(T) be arbitrary, and let VILO be the measure on T generated
bye, which corresponds to f.L(.). By (7.20), it follows that

EU(X(T, r&(-,Rp,), {.to)) ~ frdvlL(a)EU(X(T, roh RlLo),JLoO))

= sUPrOECJl EU(X(T, r(.), JLO))

'VJLO E A(T).
(7.21)
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By (7.14), (7.21), and Theorem 7.2 it follows that the pair (it(.), taO) is a
saddle point for the problem (7.8)-(7.9). This completes the proof of Theorem
7.1. 0
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Chapter 8

STRATEGIES BASED ON HISTORICAL PRICES
AND VOLUME: PROBLEM STATEMENT
AND EXISTENCE RESULT

Abstract We consider the investment problem in the class of strategies that do not use
direct observations of the appreciation rates of the stocks but rather use historical
market data (Le., stock prices and volume of trade) and prior distributions of the
appreciation rates. We formulate the problem statement and prove the existence
of optimal strategy for a general case.

8.1. The model
We consider the market model from Section 1.3. The market consists of a

risk-free bond or bank account with price B(t), t ~ 0, and n risky stocks with
prices Si(t), t ~ 0, i = 1,2, ... , n, where n < +00 is given. The prices of the
stocks evolve according to

dSi(t) = Si(t) (ai(t)dt +t aij(t)dWj(t)), t> 0, (8.1)
3=1

where the Wi(t) are standard independent Wiener processes, ai(t) are appreci
ation rates, and aij(t) are volatility coefficients. The initial price Si(O) > 0 is
a given non-random constant. The price of the bond evolves according to

B(t) = B(O) exp(It r(s )dS), (8.2)

where B(O) is a given constant that we take to be 1 without loss of generality,
and r(t) is the random process of the risk-free interest rate.

We are given a standard probability space (n,F,p), where n = {w} is
a set of elementary events, F is a complete a-algebra of events, and P is a
probability measure.

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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We shall use again the vector processes

w(t) = (Wl(t), ,Wn(t))T, S(t) = (Sl(t)"",Sn(t))T,

a(t) = (al(t), ,an(t))T, ii(t) = a(t) -r(t)l,

p(t) ~ exp ( - I~ r(s)ds) = B(t)-l, S(t) ~ p(t)S(t)

and the matrix process u(t) = {Uij(t)}~,j=l'

We asswne that w(·) is a standard Wiener process on the given probability
space and that a(t), r(t), and u(t) are measurable random processes such that

u(t)u(t)T ~ d n ,

where c > 0 is a constant and In is the identity matrix in R nxn . Furthermore,
we asswne that w(·) and (r(·),u(·)) are independent processes and that the
process (r(t), u(t)) is uniformly bounded.

By Remark 1.1, it follows that the volatility coefficients can be effectively
estimated from Si(t). However, (1.11) may not produce satisfactory results,
because actual computations require time discretization. Another approach is
to use the implied volatility, but then the possible illiquidity of the option market
and time discretization for numerical purposes again pose complications. In
any case, we shall ignore these difficulties here. It is more difficult to estimate
the appreciation rate ai(t); in fact, an estimator ofai(t) is not satisfactory when
the volatility is sufficiently large. In view of this, we assume that r(t) and S(t)
are directly observable (which is natural), and we consider two cases - when
a(t) is currently directly observable and when a(t) is not directly observable
but the distribution of ii(t) is known.

An additional observable process

We assume that there is a random process that describes some additional avail
able information about the market (in addition to stock prices and the interest
rate); this process is directly observable. More precisely, we assume that there
exists an integer N > 0 and a random process 77(t) = (77dt), ... ,77N(t)) that
is currently observable. For example, 77(t) can describe prices at external mar
kets, the difference between bid and ask prices for underlying assets, the size
of deviation of prices of options on underlying assets near Black-Scholes price,
weather, level of unemployment, or any other factors, which can be correlated
with the appreciation rates of the stocks. However, the most important example
is when N = nand 77i(t) is the trading volume for the ith stock at time t. It
will be shown below in nwnerical experiments with real data that the joint dis
tribution of prices and volwne contains an important information; we improve
the performance of a strategy by including volume in our consideration.
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In this chapter and in Chapters 9 and 12, we shall consider the general case
of random 1]('); in the rest of this book, we shall assume that 1](t) == 0 (i.e.,
only the stock prices and the interest rate are available).

The prior distributions of parameters

To describe the prior distribution of a(·) and 1](')' we assume that there exist
linear Euclidean spaces E and Eo, a measurable set r ~ E, random vectors
e :n -+ r and eo :n -+ Eo, and measurable functions

A(t,') : r x C([O, t]; Rn ) x B([O, t]; R X R N
) -+ Rn

and
Fo(t,') : Eo x B([O, t]; R x R n -+ R N

such that

a(t) == A (t, e, [8(·), r(.), 1](')]I[O,tl) ,

1](t) = Fo(t, eo, [r(·), 80]I[o,tl)'

We are given a probability measure 1I(') on r that describes the probability
distribution of e. We assume that the probability distribution of eo is also
known. Further we assume that

• e, 8 0 , w('), (r(·), 0-(-)) are mutually independent; and

• e, eo, A(·), FoO are such that the solution of (8.1) is well defined as the
unique strong solution of Ito's equation, and

sup la(t)\ < 00 a.s., supEla(t)12 < +00.
t t

The dependence on 8(·) is included for a technical reason, because it is
important for a special problem of portfolio compression.

Under these assumptions, the market is incomplete.
Notice that for the simplest model, it suffices to set a(·) = e(·) for a pro

cess e(t) independent of (r(·), w('), u('), 1]('))' However, our setting allows
important models such as

a(t) == e(t)f(1](t)) + r(t),

where 1](t) is the trade volume and fO is a function (for example, f(y) =
arctgy).

Another example of a reasonable model is

a(t) == e(t) + ~ rt

r(s)lds - r(t)l,
t 10

where a sharp increase of r(t) implies a short-time decrease of a(t).
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The wealth and strategies

Let Xo > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at
time t > 0, X(O) = X o. We assume that

n

X(t) = 1ro(t) +L 1ri(t) ,
i=l

(8.3)

where the pair (1ro(t), 1r(t)) describes the portfolio at time t. The process 1ro(t)
is the investment in the bond, 1ri(t) is the investment in the ith stock, and
1r(t) = (1rt{t), ... ,1rn(t)) T, t ~ O.

Let S(t) ~ diag (Sl(t), ... ,Sn(t)) and S(t) ~ diag (Sl(t), ... ,Sn(t)) be
diagonal matrices with the corresponding diagonal elements. The portfolio is
said to be self-financing if

dX(t) = 1r(t)T S(t)-ldS(t) +1ro(t)B(t)-ldB(t). (8.4)

It follows that for such portfolios,

dX(t) = r(t)X(t) dt + 1r(t)T (a(t) dt + O"(t) dw(t)) , (8.5)

n

1ro(t) = X(t) - L 1ri(t),
i=l

so 1r alone suffices to specify the portfolio; it is called a self-financing strategy.

DEFINITION 8.1 The process X(t) ~ p(t)X(t) is called the normalized
wealth

It satisfies

X(t) X(O) +I t

p(s)1r(s)T (a(s)ds + er(s)dw(s))

- X(O) +I t

B(s)-l1r(s)TS(S)-ldS(s). (8.6)

Let {Ft}09:5T be the filtration generated by the process (r(t), S(t), 1J(t))
completed with the null sets of F.

Further, let {Ft }O<t<T be the filtration generated by the process
(a(t), r(t), O"(t), S(t)) completed with the null sets of .1', and let {n,71}o<t<T
be the filtration generated by the process (a(t), r(t), O"(t), S(t), 1J(t)) completed
with the null sets of F.

Let Qt be a filtration.
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DEFINITION 8.2 Let E(g.) be the class ofall gt-adapted processes 1r(') such
that

• J[ (11r(t)Ta(t)1 + 11r(t)Tu(t)12) dt < 00 a.s., and

• there exists a constant q1r such that P{X(t) - Xo ~ q1r' "It E [0, Tn = 1.

A process 1r(') E E(g.) is said to be an admissible strategy with corresponding
wealth X(·).

For an admissible strategy 1r('), X(t,1r(')) denotes the corresponding total
wealth, and X(t, 1r(')) the corresponding nonnalized total wealth.

Note that by definition, admissible strategies from E(F) use observations
of (r(t), S(t), 1J(t)) only. For these strategies, the processes X(t) and X(t) are
F t adapted.

8.2. A general problem and special cases
In this section, we describe a general optimal investment problem and several

important special cases.

8.2.1 The general problem with constraints
Let T > °and Xo be given. Let m > °be an integer. Let U(·,·) :

o 0

RxC([O,T] -+R~.) -+ RU{-oo}andG{-,·): RxC([O,T] -+R~.) -+ Rm
be given measurable functions such that EU(Xo,S(·)) < +00.

We may state our general problem as follows: Find an admissible self
financing strategy that solves the following optimization problem:

Maximize EU(X(T, 1r(')), S(·)) over 1r(')

b· tt {X(O,1r('))=xo,su ~ec 0 _ _

G(X(T, 1r(')), S(·)) ~° a.s.

(8.7)

(8.8)

8.2.2 Special cases of constraints and costs functions
As can be seen from the following examples, the general setting (8.7)-(8.8)

covers many important special problems.

Optimization of a portfolio with pre-determined positions

The general setting of the investment problem (8.7)-(8.8) covers a special,
but quite realistic case, namely,when a portfolio consists of several different
types of investments. For example, consider a case when the total portfolio
includes the· following: (i) a given portfolio of options (for example, selected
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(8.12)

by the rule introduced in Chapter 3), and (ii) a dynamically adjusted portfolio of
stocks. In other words, we assume that the total wealth is divided into two parts
(portfolios) X(t) = X'(t)+X"(t), where X'(t) is the price of the dynamically
adjusted stock portfolio and X" (t) is the price of the fixed portfolio of options.
The problem is to select a strategy for e adjustment.

Let the portfolio of options be such that X"(T) = 4>(8(·)), where
4>0 : C([O, T]; R n ) is a deterministic function that describes the set of
payoff functions for the options. (For example, if the portfolio consists of
European call options with strike price K and the expiration time T, then
4>(8(·)) = N· (S(T) - K)+, where N is the total amount of the options). Let
X'(O) and X"(O) be given. Let U(·) : R -+ R be a utility function.

We may state a problem of maximization ofEU(X(T)) via variations of the
dynamically adjusted portfolio:

Maximize EU(X'(T, 11"(.)) + 4>(8(·))) over 11"(.) (8.9)

subject to X'(0,1I-(-)) = X'(O). (8.10)

Clearly, this problem is a special case of the problem (8.7)-(8.8).

Criterion with a synthetic numeraire

Let 11"'(.) E E(F.) be a given strategy such that the corresponding normalized
wealth is being considered as a numeraire. This situation can occur when the
strategy 11"'(.) is given and an investor wishes to examine a performance of
small deviations of this strategy using the wealth X(t, 11"'(. )) as a numeraire.
The corresponding optimization problem can be stated as the follows. Let
U(·,·) : R x R -+ R U {-oo} and G(·,·) : R x R -+ R m be given
measurable functions. Consider the problem

Maximize EU(X(T, 11"(.)), X(T, 11"'(.))) over 11"(.) (8.11)

. { X(0,1I"(·)) = Xo,subject to _ _
G(X(T, 11"(.)), X(T, 11"'(.))) ~° a.s.

It can be easily seen that this problem is a special case of the problem (8.7)-(8.8).

Hedging with bounds on risk

Let hiO : C([O, T]j Rn) -+ R be given functions, i = 1,2, .... such that°~ hdy) ~ h2 (y) ~ +00 Ny E C([O, T]j Rn». Consider the constraints

h1(8(·)) ~ X(T,1I"(.)) ~ h2(S(·)) a.s. (8.13)

These constraints correspond to G(x, y) = 1- X{h1(y) ~ X ~ h2 (y)}, where
X denotes the indicator function.
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(8.15)

Hedging with logical constraints
o

Let Gj{-,') : Rx R+.-t R, i = 1,2, be given functions. The following
special case of the constraints (8.8) is called a logical-type constraint:

If Gt{X(T, 11"('))' 8(·)) SO, then G2(X(T, 11"(')), 8(·)) SO a.s.
(8.14)

This constraint corresponds to

G(x,y) = X{Gl(X,y) SO} - X{G2(X,y) SO}.

Hedging of claims with different criterions

Let h(·) : C([O, T]j Rn) -t R be a given function. Let ( ~ h(8(·)). (For

example, ( = li(8(T)) or ( = li (JoT S(t)dt), where li : R n -t R is a given

function). Let V(·,·) : R x R -t R be a given function. The following is a
special case of the general cost function (8.7):

Maximize EV(X(T, 11"(')), ().

In particular, if V(x, y) = X{y ~ x}, then (8.15) reduces to

Maximize P(X(T, 11"(')) ~ ().

On the other hand, if V(x, y) = -Ix - y16, 0 > 1, then (8.15) reduces to

Minimize EIX(T,1I"(')) _ (16.

Conditional criteria

LetVt{·,'): RxC([O, T]j R n) -t R, V2(-): C([o,T]jRn) -t R,i = 1,2,
be given functions. The following is a special case of the problem (8.7), where
the following conditional probability criterion is its cost function:

Maximize P (Vl(X(T, 11"(,)),8(·)) Sol V2(8(·)) so) . (8.16)

This criterion corresponds to U(x, y) = x{Vi (x, y) SO} . x{V2(x) SO}.

8.3. Solution via dynamic programming
In this section, we describe briefly the classical approach of dynamical pro

gramming to the optimal investment problems with nonobservable appreciation
rates (see, e.g., Williams (1977), Detempte (1986), Dothan andFeldman (1986),
Gennotte (1986), Brennan (1998».

Let
a(t) ~ E{ii(t)l.rt},
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w(t) ~ w(t) - lot a(s)-l[a(s) - a(s)]ds.

The following lemma is well known (see Liptser and Shyryaev (1977, p. 278,
Theorem 7.12).

LEMMA 8.1 Assume that the process a(t) is determiniJ·tic. Then w(t) is a
Wiener process, and the equation for stock prices (8.1) can be rewritten as

dS,(t) ~ S,(t) ([il;(t) + r(t))dt +t. CT,; (t)dw;(t)). t > O. (8.17)

COROLLARY 8.1 Thefiltration generated by (S(t), r(t), a(t)) coincides with
the filtration Ft.

Thus, the problem (8.7)-(8.8) is reduced to a problem with directly observable
parameters, as described in Chapter 5. However, this problem can be solved
explicitly in some special cases only (see Chapter 5). In particular, this problem
can be solved via the dynamic programming approach described in Section 5.2,
Chapter 5, if the following holds:

• G(·) == 0, U(x, y) == U(x, y(T)), y E C([O, T]; R n ); and

• the process p.(t) ~ (r(t), a(t), a(t)) evolves as described by eq. (5.6),
Chapter 5, with a-p. == 0, Le.,

dp.(t) = {3(B(t), S(t), p.(t), t)dt + aP.'s(B(t), S(t), p.(t), t)dw(t).
(8.18)

In other words, the dynamic programming approach can be applied when the
problem can be Markovianized and there are no constraints. We present below
the optimal strategy for this case (which is in fact defined by (5.6), Chapter 5
with a-p. == 0).

DEFINITION 8.3 Let t M be the class of all processes 11"(') E t(F) such
that there exists a measurable function f : [0, T] x R x (R x Rn x R x
Rn x Rnxn ) -+ Rn such that 1I"(t) = f(t, X(t), B(t), S(t), p.(t)), where
p.(t) ~ (r(t),a,a(t)).

Set

J(x, b, s, p., t) ~

sUP7r(')EtM E{U(X(T), S(T)) I(X(t), B(t), S(t), p.(t)) = (x, b, s, p.)}.
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Then the Bellman equation, satisfied fonnally by the value function (derived
utility function), J(x, b, s, 1-', t), is (denoting the matrix diag (S1,'.' ,sn) by S)

max1r { Jt(x, b, s, 1-', t) + Jx(x, b, s, 1-', t)(rx + 'TrT a)

+Jb(X, b, s, 1-', t)rb + Js(x, b, s, 1-', t)TSa
+J~(x, b, s, 1-', t) T f3(x, b, s, 1-', t)

+~Jx,x(x, b, s, 1-', t)'TrTuuT 'Tr + ttr [Js,s(x, b, s, 1-', t)SuuTS]

+!tr [J~,~(x, b, s, 1-', t)u~'S(x, b, s, 1-', t)u~'S (x, b, s, 1-', t) T]

+Jx,s(x, b, s, 1-', t)SuuT 'Tr + Jx,~(x, b, s, 1-', t)u~'su T 'Tr

+tr [Js,~(x, b, s, 1-', t)u~'S (x, b, s, 1-', t)uT S]) = 0,

J(x,b,s,I-',T) = U (~'~).

Then the optimal'Tr is (fonnally)

(8.19)

The first tenn on the right-hand side gives the usual mean-variance type of
strategy; the second, due to correlation between wealth and stock prices, is
absent if S(t) is not required as a state variable, e.g., if a Mutual Fund theorem
holds; and the third depends on the correlation between S (or w) and I-' and
is considered to represent a hedge against future unfavorable behavior of the
coefficients. Note that the Bellman equation is degenerate: there are only n
driving Wiener processes and 2 + n + n 2 variables. Hence there may not exist
a solution J with second-order derivatives.

As an example, consider an important special case when a = a(t) is a con
stant Gaussian vector. In tis case, the problem can be Markovianized: the
process E{(a, aaT )1Ft } ) satisfies a special case ofIto's equation (8.18), which
describes the Kalman-Bucy filter (see Liptser and Shyryaev (1977). For ex
ample, let n = 1, a(t) == a, and let a be Gaussian, Vara = v~, and Ea = O.
Further, let u(t) == u be a nonrandom constant. Then the Kalman-Bucy filter
gives

{

da(t) = ~ [d~~i - a(t)dt] ,
v(t)2

dv(t) = -~dt,

a(O) = ao, v(O) = vo.

Here v(t) = E{(a - a)2IFt}.
We present below a more convenient version of (8.19). Assume that

(r(t), u(t)) is deterministic. Let the prior distribution of a be such that there
exist an integer M > 0 and measurable functions ~(.) : RMxn --* R M , f(·) :
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R M X R -+ R M , uY(.) : R M x R -+ RMxn, o'Y(.) : R M x R -+ R MxM

and an observable process y(t) such that

ii(t) == 4>(y(t), t),

and y(t) is the solution of the Ito equation

dy(t) = f(y(t), t)dt +uY(y(t), t)dw(t) +O'Y(y(t) , t)dw(t),

where w(·) is a Wiener process of dimension N that is independent on w(·).
In particular, this setting may cover the case when y(t) = (ii(t), S(t), 1J(t)),
where 1J(t) is the process of market data introduced above.

DEFINITION 8.4 Let EM,Y be the claJ~') ofall processes 11"(') E E(J=:) such
that there exists a measurable function ¢ : [0, T] x R X R N X R -+ R n such
that 1I"(t) = f(t, X(t), y(t)).

Assume that
U(x,S(·)) == U(x, y(T)) , G(·) == 0.

Set

V(x, y, t) ~ sUP1r(')EI:M,y E{U(X(T), y(T)) I(X(t), y(t)) = (x, y)}.

Then the Bellman equation, satisfied formally by the value function (derived
utility function), V(x, y, t), is (denoting the matrix diag (Sl,"" sn) by S)

max1r { ltt(x, y, t) +p(t)Vx(x, y, t)P1l"T 4>(y, t) + Vy(x, y, t)T f(x, y, t)

+~p(t)2Vx,x(x, y, t)1I"T uuT 11"

+~ tr [Vy,y(x, y, t) [uY(y, t)uY(y, t)T+O'Y(x, y, t)O'~(x, y, t)T]]
+p(t) tr [Vx,y(x, y, t)SuuY(y, t)T 11"]} = 0,

V(x,y, T) = U (x,y).

Then the optimal 11" is (formally)

1I"(t) = _ Vx(X_(t), y(t), t) Q(t)ii(t) _ S(t) VX,y(~(t), y(t), t) .
Vx,x(X(t), y(t), t) Vx,x(X(t), y(t), t)

Unfortunately, this dynamic programming approach cannot be applied to prob
lems with constraints and to problems that can not be Markovianized. Fur
thermore, it can be difficult to solve numerically nonlinear degenerate Bellman
equations. We describe below some alternative methods.
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8.4. Additional definitions
Set

Z ~ exp (IT
(U(t)-la(t)) T dw(t) + ~ l T

lu(t)-la(t) 12dt) . (8.20)

Since u(·) -1a(-) is independent of w(·) with bounded trajectories, then
EZ-1 = 1.

Define the (equivalent) probability measure p. by

dP. = Z-l
dP .

Let E. be the corresponding expectation.

REMARK 8.1 It follows that for 11"(') E E(.r:), the normalized wealth
X(t,1I"(')) is a P.-supermartingale with E.X(t,1I"(')) ~ Xo and
E.IX(t,1I"(·))1 ~ IXol + 2Iq1rl·

Rather than employing usual technique of changing the Brownian motion
using an equivalent martingale measure, we will change the stock price process
to one that has the distribution ofa risk-neutral price under the original measure.
The technique relies on the law-uniqueness of the solution of the S.D.E. Let
8.(t) ~ (8.t{t), ... ,8.n (t)) be the solution of the equation

{
d8.(t) = S.(t) (r(t)ldt +u(t)dw(t)), t > 0, (8.21)

8.(0) = 8(0),

where S.(t) ~ diag (8.1(t), ... ,8.n (t)) is the corresponding diagonal matrix.
Let 8.(t) ~ p(t)8.(t), and let

S. (t) ~ diag (8.1 (t), ... ,8.n (t)), S. (t) ~ diag (8.1(t), ... ,8.n (t))

be diagonal matrices with the corresponding diagonal elements.
Fora E T, set

1J.(t) = (t, eo, [r(·), 8.(·)]I[0,tj),

A(t, a) ~ A(t, a, [8(·), r(.), 1J(-)ho,tj),

A.(t, a) ~ A(t, a, [8.(·), r(.), 1J. (')][O,tl)'

For each a E T, introduce the process z(a, t) as a solution of the equations

{
dz(a,t) = z(a,t)A(t,a)T Q(t)S(t)-ld8(t),

(8.22)
z(a,O) = 1.
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z ~ /, dv(a)z(a, T).

Xt = G([O,t];Rn) x B([O,t];R) x B([O,t);RN ),

Xt = G([O,t];Rn) x B([O, t); Rn) x B([O,t)jR) x B([O,t);RN ).

Set

a*(t) ~ A*(t, 6) = A(t, e, [8*(·), r(·), 1/* (·)ho,t]),

a*(t) = a*(t) + r(t),

Z* ~ exp (IT

(u(t)-la*(t)) T dw(t) - ~IT

lu(t)-la*(t) 12dt). (8.23)

By definition, for each .rT-measurable random variable~, there exists a mea
surable function ifJ : XT ~ R such that ~ = 4J(8 (.), r(· ), 1J( .) ). We shall use

the notation ~* for the random number ~* ~ 4J(8*(·), r(·), 1J*(.)).

PROPOSITION 8.1 There exists a mea.\urablejunction 'l/J(.) : XT ~ R such
that Z* = 'l/J(8*(·),a*(·),r(·)) and Z = 'l/J(8(·),a(·),r(·)) a.s. Moreover,
z(a,T) = 'l/J(8(.),A(·,a),r(·)).

Let

z* ~£dv(a)'l/J(8*(·),.A*(·,a),r(·)) ~ ¢(8*0,r(.),1/*(.)).

Moreover, it follows from Proposition 8.1 that Z = ¢(8(·), r(·), 1/(.)). Finally,
since e is independent of (r(·), w(·), u(·), 1/0) and hence of (8*, r, 1/*(.)), it
follows that

and

Z* = E(Z*18*(·),r(·),1/*(·))

Z = Ldv(a)'l/J(8(·),A(·,a),r(·),1/(·)).

(8.24)

8.5. Existence result for the general case
8.5.1 Auxiliary problem and additional assumptions

Auxiliary optimization problem. Our approach is to investigate the prob
lem (8.7)-(8.8) via the following finite-dimensional optimization problem:

o

For q E R, A E R, y E G([O, T) ~R~.),

Maximize qU(x, y) - AX over X E R: G(x, y) ~ 0. (8.25)
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This problem will be used in the following way. We obtain an optimal claim as
a solution of the problem (8.25) with the random number q depending on S(.).
Then, the corresponding admissible self-financing strategy, which replicates
the claim, is obtained readily.

Let
o

J(y) ~ {x E R : G(x, y) ~ O}, y E G([O, T] ~R~). (8.26)

To proceed further, we assume that the following conditions are satisfied.

CONDITION 8.1 At least one ofthe following conditions hold'):
(i) U(x, y) =log x, Xo >°and G(·) =0; or
(ii) The process u(t) is nonrandom and known, and the processes a(-) and

r(·) are independent.

CONDITION 8.2 There exists a measurable set A ~ R and a measurable
o

functionF(·): (0,00) X G([O,T] ~R~) x A~ Rsuchthatforeachz > 0,
o

Y E G([O, T] ~R~), >. E A,

x= F(z, y, >.)

is a solution ofthe optimization problem (8.25).

CONDITION 8.3 There exist). E A such that E.IF(Z, S(·), ).)1 < +00 and

E.F(Z, S(.),).) = Xo. (8.27)

CONDITION 8.4 ThefunctionG(·) is such that there exists ameasurablefunc
tion f(·) : G([O, T]j~n) ~ R such that Elf(S.(·))12 < +00, Ef(S.(·)) =
Xo and G(f(S(·)), S(·)) ~°a.s.

Conditions 8.1-8.4 are satisfied for the special cases described in Chapters 9-11
with appropriately chosen parameters.

8.5.2 Existence result
We solve our original problem in two steps. First we show that

EU(F(Z, S(.),).)) is an upper bound for the expected utility of normalized
terminal wealth for 1r(') E E(F.). Then we find sufficient conditions for this
claim to be attainable. This establishes the optimality of a strategy that repli
cates the claim (if attainable).

Let F(·) be as in Condition 8.2.
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THEOREM 8.1 With,X as in Condition 8.3, let

e~ F(Z, S(·), 'x). (8.28)

Then

(i) EU-(e,S(.)) < 00, G(e,S(.)) ~ ooa.s.

(ii) Let F(z, x,'x) be the unique solution of the optimization problem (8.25)

with>,='x,andletEU+(e,S(.)) <+00. Theneisunique(i.e. evenfor
different ,x, the corresponding eagree up to equivalency).

(iii) EU(e, SO) ~ EU(X(T, 11"(')), S(.)), "171"(.) E ~(F.).

(iv) Let one ofthe following two conditions be satisfied:

(a) U(x,y) == log x, G(·) == 0; or

(b) 1](t) == 0 (i.e., there is now additional available information).

Then the claim B(T)e is attainable in ~(.r.), and there exists a unique repli
cating strategy in ~(.r.). This strategy is optimal for the problem (8.7)-(8.8).

In other words, B(T)e is an optimal contingent claim for the problem (8.7)

(8.8) (if eis attainable). Thus, the optimal investment problem is reduced to
the replication of the claim B(T)t,

8.6. The optimal strategy as a conditional expectation
In this section, we assume that the optimal claimedefined in Theorem 8.1 ise= F(Z), where FO : R ~ R is a measurable detenninistic function (Le.,

G(x,y) and U(x,y) do not depend on x). In addition, up to the end of this
section, we assume that

E = B([O, T]; R n ),

A(t, e, [8(·), r(·), 1]Ol!o,tj) == 8(t).

We give a solution for a case of differentiable F(.). We obtain the optimal
strategy only as a conditional expectation of a given random variable. Though
this approach does not give an explicit solution, itopens the way for using Monte

Carlo simulation. Let Condition 8.1 (ii) be satisfied so that8a (t) ~ O'(t)-la(t)
is nonrandom. Set

z.(a, t) ~ exp (f~ 8a(s) T dw(s) - ! f~ 18a(sWds) ,

Z.(t) ~ fA dll(a)z.(a, t).
(8.29)
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THEOREM 8.2 Assume
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(i) there exists F'(x) ~ dF(x)/dx;

(ii) there exists c > 0 such that E*IF'(Z)I2+E < +00;

(iii) the function (F(x), F'(x») is either bounded or Holder; and

(iv) the functions 00 (,) are bounded, uniformly in a E .A, right continuous, and
ofbounded variation.

Let f(t,') : B([O, t]; RR) ~ R be a measurable function defined a:;

f(t, w(')I[O,tl) ~ E {F'(Z*(T»'lt(t, T)I.rt } ,

where

'It(t, T) ~Ldv(a)z* (a, T)Oo(t).

Then E J[ If(t, w(')1[0,tl)1 2dt < +00, and

(* = E(* +IT

f(t, WOI[O,tl)Tdw(t).

COROLLARY 8.2 Under the assumptions ofTheorem 8.2, there exists a mea
surable function fo(t,') : B([O, t]; RR) ~ R such that f(t, w(')I[O,tl) 
fo(t, S*(')I[O,tl)' For such fo('), thefollowing holds:

( = Xo +IT

fo(t, SOI[O,tl)TU(t)-lS(t)-ldS(t).

The strategy n-(t) = B(t)fo(t, SOI[O,tl)TU(t)-l replicates B(T)(, belongs to
E(J=:), and is optimalfor the problem (8.7H8.8) in the class E(J=:).

8.7. Proofs
ProofofProposition 8.1. It follows from (1.11) that there exists a measurable

function V(t,') : C([O, t]; RR) ~ RRXR such that

V(t) = V(t, SOI[O,tl) == V(t, S*(·)I[O,tl) (8.30)

up to equivalency. By (8.30), it follows that

Q(t) = Q(t, S(·)I[O,tl) == Q(t, S*(')I[O,tl)
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up to equivalency, where Q(t,') : 0([0, t]; R n ) -+ R nxn is a measurable
function. Then

log Z = IT

ii(t) T Q(t, S(')I[o,tj) [S(t)-ldS(t) - r(t)ldt - ~ii(t)dt] ,

and

10gZ. = IT

ii.(t? Q(t1S.OI[0,tj) [S.(t)-ldS.(t) - r(t)ldt - ~ii.(t)dt] .

This completes the proof of Proposition 8.1.0

PROPOSITION 8.2 Let ¢ : XT -+ R be a measurable junction such that
E¢-(S(·), ii(·), r(·), 7](')) < +00, and let ¢ be a similarjunction but with no
dependence on ii. Then

E¢(S(·), ii(·), r(·), 7]0) = EZ.¢(S.(·), ii.(·), r(·), 7].(')), (8.31)

E¢(S(·), r(·), 7](')) = EZ.¢(S.(·), r(·), 7].( ')), (8.32)

E.¢(S(·), r(·), 7](')) = E¢(S.(·), r(·), 7].('))' (8.33)

Proof By assumptions, (e,eo,r(·),O"(·)) does not depend on w(·). Then
to prove (8.31), it suffices to prove

E {¢(S(.), a('),r('), 7](·))le, eo, r(·), O"(')}

= E { Z.¢(S.(·), a.(·), r(·), 7]. (·))Ie, eo, r(·), O"(')} a.s.
(8.34)

Thus, for the next paragraph, without loss of generality, we will suppose that
(e, 80, r(·), 0"(')) is deterministic.

By Girsanov's Theorem, the process

w(t) ~ w(t) -itO"(s)-la.(s)ds

is a Wiener process on the the probability spaces defined by the probability
measure P such that dP / rIP = Z •. Furthermore, equations (8.1) and (8.21)
can be rewritten as

dS(t) = S(t) [a(t)dt +O"(t))dw(t)] ,

dS.(t) = S.(t) [a.(t)dt + O"(t))dw(t)].
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Since (e, eo, r(·), u(·)) are taken asdetenninistic, the processes S(·) andS.(·)
have the same distribution on the probability spaces defined by P and P, respec
tively, and (8.34), and hence (8.31) follow. Further, (8.32) follows by taking
conditional expectation in (8.31). Finally, using Proposition 8.1 and (8.31),

E.¢(S(.),r(·),1]O) = EZ-l¢(S(·),r(·),1]O)

= E"p(S(·), a(·), r(·), 1](')) -1 ¢(S(·), r( '),1]('))

= EZ."p(S. ('), a. ('), r(·), 1]. (.)) -1¢(S. ('), r(·), 1]. (.))

= E¢(S.( '), r(·), 1]. (.))

= E¢(S.( '), r(·), 1]. (.)).

o
Introduce a class q. of random numbers (claims) e that are FT-measurable

with EU-(e,S(·)) < 00 andE.(e)- < 00.

Set
q.o~{eEq.: E.e=Xo, G(e,S(·))~Oa.s.}.

By definition, for each e E q., there exists a measurable function ¢ : XT -+ R
such that e = ¢(S('), r(·), 1]('))' Recall that we use the notation e. for the
random number e. ~ ¢(S.(·), r(·), 1]0).

Now define t. ~ F(Z., S.(.).). If we define ¢ by t = ¢(S('), r(·), 1]('))'
then t. = ¢(S.(·), r(·), 1].('))'

By Proposition 8.2, for e E q.o,

X o = E.~ = EZ-l</>(S(·), r(·), 1]('))

= E"p(S(·), a(·), r(·), 1]('))-1 ¢(S('), r(.), 1]('))

= EZ."p(S.(·), a(·), r(·), 1].(.))-I¢(S.(·), r(·), 1].('))

= E¢(S.(·),r(·),1].(·)) = Ee•.
(8.35)

Define :Ii : q. -+ R, i = 0, 1 by

Consider the problem

Maximize Jo(e) over e E q.o· (8.36)

PROPOSITION 8.3 The optimization problem (8.36) has solution t t:;.

F(Z, S('), 'x), where'x is given by Condition 8.3.
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(8.37)

Proof By Condition 8.3 and Proposition 8.2, it follows thatE. lei = Ele.I<
+00. By Condition 8.3 again, E.e = Xo•

Let L(e,'\) ~ .1o(e) - ,\.11 (e), where e E ~ and ,\ E R. By Proposition
8.2,

L(e,'\) = E(Z.U(e.,8.(·)) - ,\e.) + ,\Xo

We have that the process S.(-) satisfies (8.21), where the processes f(t) and
a(t) are independent of e. Hence e. does not depend on e for any eE ~o.

Then

L(e,'\) = E (z.u(e., 8.(·)) - ,\e.) + ,\Xo·

By Condition 8.2, it follows that for any wEn, the random number e. provides
the maximum over y E J(8.(·)) for the function Z.U(y, 8.(·)) - ~y.

Let us show that EU-(e, 8(.)) < 00. For k = 1,2, ..., introduce the
random events

n~k) ~ {-k ~ U(e., 8.(·)) ~ O}, nCk) ~ {-k ~ U(e, 8.(·)) ~ O},

along with their indicator functions, X~k) and XCk), respectively. The numbere. provides the unique maximum of the function z.U(e., 8.(·)) - ~e. over
J(8.(·)), and G(Xo, 8.(·)) ~ O. Hence by Girsanov's Theorem again, we
have, for all k = 1,2, ... ,

EXCk)U(e, 8(-)) - Ex~k) ~e. = EX~k) (z.u(e~, 8.(.)) - ~e.)

~ EX~k) (z.U(Xo, 8.(.)) - >.xo)

= ExCk)U(Xo,8(·)) - >.xoP(n~k»)

~ -IU(Xo, 8(-))1- I>'Xol

> -00.

Furthermore, we have that E.lel = Ele.1 < +00. Hence EU-(e, 8(.)) < 00,

leading to eE ~.
Further,

Let e E ~o be arbitrary. We have that .11 (e) = 0 and .11 (e) = 0; then

.1o(e) - .10(e) = .1o(e) + >'.11 (e) - .10 (e) - >'.11 (e) = L(e, >') - L(e, >') ~ O.

Hence eis an optimal solution of the problem (8.36). 0
ProofofTheorem 8.1. Parts (i) and (iii) follow from Proposition 8.3.
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(8.38)

To show (ii), note that if EU+(e, 8(-)) < +00, then L(e,5.) < +00. Let
e' E cI>o be an optimal solution of the problem (8.36). Let 5. be any number
such that Condition 8.3 holds. It is easy to see that

L(e',).) = .Jo(e') ~ .Jo(e) = L(e, ).).

By assumptions, it follows that e. provides the unique maximum in the set
J(8.(.)) of z.U(e., 8.(.)) - ).e•. Thus, e~ = e., e= eand e= 1J()') a.s.
for any). from Condition 8.3. Thus (ii) is satisfied.

To show (iv), note that if Condition 8.1(i) is satisfied, then the claim is
attainable (see Theorem 9.2). Let Condition 8.1(ii) be satisfied. Then e=
4>(w(,)), where 4>(-) : B([O, T]; R n ) -+ R is a measurable functions. By the
martingale representation theorem,

e. = Ee. + iT f(t, w(-)I[o,tj)T dw(t) ,

where f(t,') : B([O, t]; Rn ) -+ R is a measurable function such that
foT If(t, w(-)l[o,tj)12dt < +00 a.s. There exists a unique measurable func

tion fo(t,') : B([O, t]; Rn) -+ R such that f(t, w(-) I[O,tj) == fo(t,8.(·)![O,tj)'
Thus,

e. = Ee. + foT fo(t, 8.(·)I[o,tj)Tdw(t)

= Ee. + J;{ fo(t, 8. (')I[O,tj)TU(t)-lS.(t)-ld8.(t).

But E.e = Xo. It follows that

e= X o+ iT fo(t, S(')I[o,tj)Tu(t)-lS(t)-ldS(t).

By (8.5), the strategy n-(t)T = B(t)fo(t, S( ')I[o,tj)TU(t)-l replicates B(T)e,
and it can be seen that it belongs to E(.r.). This completes the proof ofTheorem
8.1. 0

ProofofTheorem 8.2. It is easy to see that

Yk > 0 3c> 0 : k-1 ~ x ~ k => W(x, ).)1 + IF'(x,).) I~ c.

IfTk ~ T 1\ inf{t > 0 : z.(a, t) ¢ [k-1 , k] for some a E A}, k> 1, then
Tk -+ +00 as k -+ +00 a.s. because of the uniform bound on 8a .

Since

z.(a, t) = exp ( - fro,tj d8a (s) T w(s) +8a (t)Tw(t)

- 8a (O)Tw(O) - ~ J~ 18a(S)12dS).
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thenforagivena,z*(a,Tk) = cPk(W(o), a), where cPk(-, a) : C([O, T]; Rn) ~
R is a measurable function that has the Frechet derivative

1 1~lim -[cPk(h(·) + cp('),a) - cPk(h(·), a)] = df.Lk(h(·), t, a)p(t) (8039)
e~Oc 0

for any p(o) E C([O, T]; R n
), where f.Lk(h(o), t, a) is a right-continuous, 1 x n

valued function of bounded variation in t. From (8.38) and (8.39), we find

{

0 ift < 0
I-lk(h(·), t, a) = O-cPk(o, a)8a (t) T if 0 ~ t < Tk

ift~Tk.

Let t E (0, T) be fixed. Then

1dll(a) r df.Lk(W(·),s,a) = W(t,Tk)T o
.A J(t,Tkl

Set f,*k = F(Z*(Tk), x). By Clark's formula,

A A rTk T
e*k = Ee*k + Jo h(t,w(o)l[o,tj) dw(t),

where fk(t,') : B([O, t]; R n ) ~ R is a measurable function defined by

fk(t, w(o)l[o,tj) = E {F'(Z*(Tk), ~)w(t,Tk)l.7=t}

(Clark (1970». It can be seen that Z*(Tk) and f,*k converge in Lq(O, P,.7=, R)
to Z*(T) and f,* respectively, as k ~ +00 for any q > 1. Moreover, wet, Tk)
converges in Lq(O, P,.7=, R) to wet, T) as k ~ +00 for any q > 1 uniformly
in t < T. Then

E1T

Ih(t,wOI[o,71) - f(t,w(o)l[o,TlWdt ~ 0 as k ~ +000

The proof follows. 0
ProofofCorollary 8.2. We have that E*f, = X o, and

A A T - T
e* = Ee* + fo fo(t, S*(o)l[o,tj) dw(t)

T - T 1- 1-= X o+ fo fo(t, s*(o)l[o,tj) u(t)- S*(t)- dS*(t).

Hence the strategy 1T(t) = B(t)fo(t, S(o)I[O,tj)TU(t)-1 replicates B(T){ It
can be seen that 11"(') E E(J=.). 0



Chapter 9

SOLUTION FOR LOG AND POWER UTILITIES
WITH mSTORICAL PRICES AND VOLUME

Abstract We present the explicit solution of an optimal investment problem without addi
tional constraints for log and power utility functions. Results are shown results
for numerical experiments with historical data.

Assume that the conditions imposed in Chapter 8 are satisfied. Up to the end
of this chapter, we assume that the following additional condition is satisfied.

CONDITION 9.1 At least one of the following conditions holds:
(i) U(x, y) == logx, Xo > 0 and G(·) == 0; or
(ii) the process u(t) is nonrandom and known, the processes a(-) and r(· )

are independent, and

E = B([O, T]; R n ),

1J(t) == 0;

A(t, 8, [8(·), r(·), 1J(')][O,tj) == E>(t),

i.e., A(t, a) = A(t, a, [8(·), r(·), 1J(')ho,tj) == a(t).

9.1. Replicating special polynomial claims
We now find the replicating strategy for a special claim B(T) ~~l iF,

where i is as defined in Chapter 8 and where mi are inregers.
Set

'Y(al, ... ,am) ~ exp{t loT A(t, ai)TQ(t)A(t, aj)dt} .
••)=1
i<j

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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Note that in case m = 1, we have -y(od == 1. IfCondition 9.1 (ii) holds, then

-Y(Ol, ... ,Om) ~exp{t IT
Oi(t)TQ(t)Oj(t)dt}.

1,3=1
i<j

Define

G(m) ~ r dv(od'" dv(omh(Ol,"" om).JAm
LEMMA 9.1 Let ( ~ zm, where m > 0 is an integer; and as~ume that either
m = 1 or Condition 9.1 (ii) holds. Further; assume that G(m) < 00. Then

(= 1m dV(Ol)···dv(omh(Ol, ... ,Om)Z (fOk,T), (9.1)
A k=l

E.( = G(m).

If the strategy

belongs to t(F), then this strategy replicates B (TK ifand only if

X(O) = E.(.

(9.2)

(9.3)

(9.4)

Note that G(m) < 00 and the strategy (9.3) belong to t(F) if, for example,
a(t) is uniformly bounded or a(t) is Gaussian with small enough variance.

6 A - A 6 N
LEMMA 9.2 Let ( = F(Z), where F(z) = Ei=l GiZffli + Go, and mi > 0
are integers, Gi E R. Let G(mi) < 00 and the strategy (9.3) belong to f::(J=:)
for all m = mi. Then a strategy that belongs to f::(J=:) and replicates B(T)(
exists ifand only ifX(O) = E",(. If the replicating strategy exists, then it is

N

1r(t) = L Gi1ri(t), (9.5)
i=l

where 1ri(t) is the strategy defined by (9.3) with m = mi.
A N -

THEOREM 9.1 Let ~ = Ei=l GiZffli + Go, where mi > 0 are integers,
Gi E R. Let G(mi) < 00 and the strategy (9.3) belong to E(J=:) for all
m = mi. Then the optimal strategy for the problem (8.7H8.8) in the class
t(.1'.) exists, is unique, replicates B(T)t, and is defined by (9.5).

In the next sections, we shall apply this result to several utility functions.
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9.2. Log utility and minimum variance estimation of a

In this section, we assume that Condition 8.1 (i) holds, Le., we do notassume
that u(t) is nonrandom.

THEOREM 9.2 Let U(x) == log x, Xo > 0 and (0, +00) ~ b. Then
(i) The unique optimal solution in the class E(.r~) ofthe problem (8.7H8.8)

is
1I"(t)T £ X(t)ii(t)TQ(t), (9.6)

where X(t) = X(t, 11"(')) is the correjponding wealth.
(ii) The optimal solution in the class E(F) ofthe problem (8.7)-(8.8) is

1l"(t)T ~ XoB(t) i dv(a)z(a,t)A(t,a)T Q(t). (9.7)

In that case,

X(t,1l"(·)) = XoB(t)i dv(a)z(a, t),

and X (t, 1l"(.)) > 0 a.s. for all t.

9.3. Power utility
Now we assume that Condition 8.1 (ii) holds. From (9.2) we have

E.{zm} = G(m), but we can also compute an expectation under P as follows.
Since

then (9.1) with m = 1- 1 implies the following.

LEMMA 9.3 For any integer I > 0,

E{Z'-I} = G(l). (9.9)

Let F(·) be as defined in Condition 8.2.

THEOREM 9.3 Let (0,+00) ~ D, XO > 0, U(x) == xo, 0 = (l-I)/lfor
some integerl > I, and G(l) < 00. Then

(i) F(z,y,>.) == zl(o/>.)',.5. = OX0
1
/
1(E.Z1)1/1, N = I, Go = 0, G1 =

(0/.5.)', ml = 1.
(ii) The unique optimal solution in the class E(,r:G) ofthe problem (8.7H8.8)

is
1I"(t)T ~ 1X(t, 1I"(.))ii(t)T Q(t),

where X (t, 11"(')) is the corresponding wealtk

(9.10)
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(iii) The optimal solution in the class E(.1".) ofthe problem (8.7H8.8) is

In that case,

and X(t, jf(.)) > 0 a.s. for all t. Moreover,

EU(X(T, jf(.))) = XgG(l)1-0. (9.13)

9.4. Filters (estimators) for the appreciation rate
The optimal solution of the problem (8.7)-(8.8) under Conditions 5.1-8.3

in the class E(,r:a) is presented in Chapter 5 under some additional conditions
on the utility function. By definition of E(,r:a), this solution has the form
1r(t) = r(t, [S(·),i.i(·), r(·), 17(')]![O,tl)' where r(t,') : Xt -+ Rn is a measur
able function.

DEFINITION 9.1 Let 1r(t) = r(t, [8(·), ii(·), r('),17(')]I[o,tl) be an optimal
solution ofthe problem (8.7)-{8.8) in the class E(,r:a), wherer(t,·) : Xt -+ R n

is a measurablefunction. Further, let fr(t) be an optimal solution ofthe problem
(8.7H8.8) in the class E(.r.), and let there exists an n-dimensional.rt-adapted
random vector process a(t) such that fr(t) == r(t, [8(·),a(.),r(·),17(·)]I[o,tl)'
Then a(t) is said to be the U-optimalfilter ofii(t) with re.spect to the problem
(8.7H8.8).

We then say that a(t) + r(t)l is the V-optimal filter of the appreciation rate
a(t).

Note that we do not assume that a(t) is a function of the current conditional
distribution Pa(t) ( ·18(r),r < t) of ii(t).

COROLLARY 9.1 (i) Under the conditions of Theorem 9.2, when U(x) _
log x, the U-optimal filter ofii(t) with re:;pect to the problem (8.7H8.8) is

A XoB(t) (
a(t) = X(t, jf(.)) J

A
dll(a)z(a, t)A (t,a, [8(·), r('), 17(')l[o,tl) ,

where X(t, jf(.)) is the wealth defined by (9.8).

(9.14)



Solutionfor log and power utilities with historical prices and volume 129

(ii) The process a(t) defined by (9.14) is such that a(t) = E{a(t)IFt }, i.e., it
is the minimum variance estimate in the class ofestimates basedon observations
ofS(t), r(t), 17(t) given (A, v(·)). The optimal expected utility is

E log X(T, 71"(.)) = ~E iT a(t)TQ(t)a(t)dt+logXo. (9.15)

We will see below that the estimate it(t) under the assumptions of Theorem
9.3, when U(x) = x'-l/', differs from E{a(t)IS(r), r < t} and, in general,
is not a function of the current conditional distribution pii(t) (·IS(r), r < t) of
a(t). However, we can write it as a conditional expectation of a if we change
measure. Let us do so.

Let b(t) = {bi(t)}~=l E A' be a process such that for any measurable
BcA',

P(b(·) E B) = G~l)Ldv(aI) .. ·dv(a,h(al,'" ,a,).

Let

A, ~ {t"'0: a;(·) E A} C;; B([O, T); Rn
),

and let Vl(-) be the probability distribution on A, of the process E~=l bi(t). To
obtain Pz, we replace v and A by VI and A, respectively.

COROLLARY 9.2 Under the conditions of Theorem 9.3, the U-optimal filter
ofa(t) with respect to the problem (8.7H8.8) is

A Q(t)-l71"(t) -1 _
a(t) = IX(t,71"(.)) = 1 Ez{a(t) 1Ft}, (9.16)

where X(t, 71"(.)) is the wealth defined by (9.12).

In particular, if v(·) describes the distribution of a Gaussian random vector
8(t) = a(t) = a that does not depend on time, then b(t) = b is a Gaussian
vector and has the probability density function

1 I (T
G(l) ep(xI)··· ep(Xl) exp~ io xiQ(t)Xjdt,

',J=1 0
i<j

where ep(.) is the probability density function of a. In other words, v, (.) is

the distribution defined by the random vector E~=l bi, where bi are correlated
Gaussian variables with the same distribution as a; the correlation can be cal
culated from 1'(.). This means that Kalman-Bucy filters can be employed to
calculate a(t).
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9.5. Portfolio compression for log utility
We use the notations of Chapter 6 here. Let m be given, 0 < m < n.

Consider the following problem:

Maximize ElogX(T,1I"(-))) over 11"(') E E(m,.1:,.1:) (9.17)

. { X(0,1I"(')) = Xo,subject to _
X (T, 11"(')) ~ 0 a.s.

(9.18)

Set
0,(1, t) ~ V(t)Q(1, t)P(l)a(t) = V(t)Q(1, t)a(t). (9.19)

Then the strategy

THEOREM 9.4 Assume that U(x) == logx, Xo > 0 and (0,+00) ~ b, i.e.
they are as in Theorem 9.2. Let i(-) E Im(.1:) be such that

i(t) E argmax leM
m

0,(1, t) T Q(t)a(1, t) for a.e. t a.s. (9.20)

n(t)T = X(t, n('))aj(t)T Q(t), (9.21)

where X (t, n(·)) is the corresponding wealth, belongs to the class E(m, :F., .1:)
and is optimalfor the original problem (9.17H9.18) in the class E(m,.1:, .1:).

9.6. Some experiments with historical data
We have carried out the following experiment. Using daily price data from

1984 to 1997 for 16 leading Australian stocks (AMC, ANZ, LEI, LLC, LLN,
MAY, MLG, MMF, MWB, MIM, NAB, NBH, NCM, NCP, NFM and NPC),
we generated samples of price data for one synthetic stock for a time window
of length T as {S(t)he[to,to+T) ~ {Si(t)/Si(to)}te[to,to+T) where Si(t) is
the price of the ith stock, i = 1,2, ... ,16, and where the various samples
correspond to the possible values of i and of to. We accepted the hypothesis
that the stock price S(.) for this model is a continuous process on the interval
[0, T] that satisfies (8.1) with n = 1. Thus, we have a set of paths. The
distribution is described by (8.1) with two unknown processes a(t) and O'(t) as
parameters.

In theory, the distribution of (a(t), 0' ( t) ) can be estimated from the given data,
but this is a difficult problem, since typically the effect ofa(.) is overshadowed
by that of the diffusion term. Instead, we examine the impact on the optimal
expected utility of three different prior hypotheses about the distribution of a
for the simple case of log utility.

We consider the case of daily adjustment of the portfolio and trading with
100 periods, which corresponds to T = 100/365 x 7/5 = 0.4 (since on average
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there are at most five trading days in a week). In fact, the full 13 years of data
was not available for all the stocks, but with T = 100 (trading) days tv 0.4
years, we have 38,737 trials. Expectations are taken as averages over this
collection of samples. Since the evaluation of a strategy can only be made after
one collects the results of using it many times (Le., either for different stocks
or for different time intervals), we claim that our model and our experiment are
not unreasonable.

By Corollary 9.1, the optimal strategy in the class E(F) for the log utility
function is

{

1i"(t) = k(t)X(t),

k(t) ~ E{k(t)l.rt},

k(t) ~ u(t)-2a(t).

It is seen that k(t) = u(t)-2E{a(t)I.rt} depends on the prior of a, i.e., on
(A, 1I('))' We assumed that r(t) == 0.07. Using the data with (1.11) gives u(t),
which oscillates around 0.29, so we take u(t) == 0.29.

Let us describe the three hypotheses that we examined in our experiment.

Hypothesis 1. a(t) = a does not depends on t and is Gaussian with param
eters Vara = Vo and Ea = ao.

Hypothesis2. There exist numbers k1 andk2suchthatP(k(t) == ki) = 0.5,
i = 1,2 (Le., k(t) can take only two values).

Hypothesis 3. There exist numbers kl and k2 such that

P( k(t) == ki/(T/(t))) = 0.5,

where

i = 1,2,

A y(t)
T/(t) = Y(t)'

litY(t) ~ - y(s)ds,
t 0

f(x) ~ arctg (Cx) ,
arctg (C)

and where y(t) is the trading volume at the time t for the underlying stock,
with C > 0 as a parameter.

Note that Hypothesis 3 takes into account trading volume and assumes that the
appreciation rate is positively correlated with trading volume. The function
arctg here was chosen empirically, mostly because of its role in the neural
network approach (and it appears that this choice ensures a good performance).

Figure 9.6 shows an example of the daily trading volume and daily prices for
ANZ (Australia New Zealand) Bank stocks from September 1, 1987, to January
21, 1988 (Le., for 100 trading days, including the October 1987 market crash).



132 DYNAMIC PORTFOLIO STRATEGIES

Figure 9.1. The trading volume and the stock price for ANZ Bank stocks during 100 trading
days from 1 September 1987 to 21 January 1988: -: values of stock price; ... : values of
trading volume.
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Under Hypothesis 1, E{aiFtl = a(t) can be found using Kalman-Bucy
filtering (see, e.g., Brennan (1998», and then the optimal strategy is defined by
(9.22). In fact,

{

da(t) = ~ [dt~;) - a(t)dt] ,

dv(t) = - v~t dt,

a(O) = aQ, v(O) = VQ.

Here v(t) = E{(a - a)2IFt }. If VQ = 0, then ais a nonrandom constant.



Solution for log and power utilities with historical prices and volume 133

Under Hypotheses 2, the equation for the optimal strategy (9.22) can be
rewritten as

i(t) = ~XoB(t) L zi(t)ki, (9.23)
i=1,2

where Zi(t) = z(ki , t) are defined by (8.22), which, after Euler approximation,
is

where S(tj) is the normalized stock price at time tj'
Under Hypotheses 3, the equation for the optimal strategy (9.22) can be

rewritten as

i(t) = ~XoB(t) L zi(t)ki!(TJ(t)),
i=1,2

(9.24)

where Zi(t) = Z(ki, t) are defined by (8.22), which, after Euler approximation,
is

S(tHd - S(tj)
Zi(tj+l) = Zi(tj) + zi(tj)ki!(TJ(tj)) - .

8(tj)

Finally, we found that the average oflog[S(T)j8(0)] is 0.0091. This is the
expected utility of the "buy-and-hold" strategy.

In Tables 9.1, 9.2, and 9.3, we exhibit the impact of these hypotheses on
the performance of the strategy (9.22). For Table 9.1, we assume Hypothesis
1 and give the optimal expected utility for various values of the first two mo
ments (ao, vol of the Gaussian distribution of a. The best value, i.e., maximum
expected utility, in Table 9.1 is 0.0098 and is attained at

ao = 0.04, Vo = 0.05.

For Tables 9.2 and 9.3, we assume Hypotheses 2 and 3 (respectively) with
- - t>. t>.

various values for the parameters 0 and k, where k = (k1 + k2)j2 and 0 =
(k2 - kdj2 (clearly, the pair (k,o) uniquely defines (k1 , k2». In Table 9.2,
maxElogX(T) = 0.0140 is attained at

k = 0.75, o= 1.5, i.e., k1 = 2.25, k2 = -0.75. (9.25)

In Table 9.3, max E log X(T) = 0.0404 is attained at

k = 0.75, a= 1.5, C = 0.5 (9.26)

It is interesting to note that Hypothesis 3 outperforms Hypothesis 1 under
most of the parameter values tested, and all three outperform the buy-and
hold strategy. Moreover, this result is quite robust under variations: we obtain
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Table 9.1. Average log X(T) for strategies based on Gaussian Hypothesis 1 for various pa
rameter values of Gaussian distribution of ii.

Vo =0 Vo = 0.01 VO = 0.05 VO = 0.15 Vo = 0.25

ao = 0.01 0.0030 0.0034 0.0044 0.0050 0.0042

iio = 0.04 0.0091 0.0093 0.0098 0.0096 0.0082

ao = 0.07 0.0088 0.0091 0.0097 0.0093 0.0076

iio = 0.10 -0.0160 -0.0119 0.0003 0.0029 0.0012

Table 9.2. Average logX(T) for strategies based on two-point Hypothesis 2 for various pa-
rameter values.

6 =0.5 6 =1.0 6 =1.5 6 =2.0 6 = 2.5

k=O.65 0.0117 0.0134 0.0137 0.0099 -0.0173

k=0.75 0.0119 0.0136 0.0140 0.0099 -0.0195

k=O.85 0.0115 0.0134 0.0139 0.0093 -0.0219

k=0.95 0.0107 0.0128 0.0135 0.0082 -0.0247

k=1.05 0.0095 0.0117 0.0126 0.0062 -0.0277

similar results when we change T or the frequency of portfolio adjustment
(with adjustment every 2, 3, and 10 days). Also, the result remains basically
unchanged when we exclude some of the stocks from the trials. For example,
for strategies based on Hypothesis 3 for daily transactions during 50 trading
days, average log X(T) is 0.0177 with C = 0.5, 8 = 0.5, and k= 0.75.

In summary, we show that a relaxation of the Gaussian hypothesis on the
distribution of aand taking into account trading volume can give a stable gain
with strategies that basically are as simple as the classic strategies where it is
assumed that a(t) is given.

REMARK 9.1 Now it can be seen that the simplestmodel-free empirical strate
gies defined in Theorems 2.1 and 4.3 appear to be optimal for the investment
problem with U(x) == log x under a special case of Hypothesis 2, when
k1 + k2 = 1. Similarly, the strategies defined in Theorem 2.5 appear to be
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Table 9.3. Average log X(T) for strategies based on Hypothesis 3 considering trading volume
with various parameter values for (C, 6, k).

6 =0.2 6 =0.5 6 = 1.5 6 = 1.5

k = 0.75 k = 0.75 k = 0.65 k = 0.75

C = 0.25 -0.0045 0.0186

C=0.5 0.0385 0.0404 0.0219 0.0248

C= 0.75 0.0361 0.0377 0.0277 0.0280

C=l 0.0371 0.0347 -0.0036 0.0238

C=2 0.0140 0.0238

C=3 0.0256

C=4 0.0241

optimal for the investment problem with U(x) = log x under a special case
of Hypothesis 2, when k1 + k2 = 2. The strategies do not require the prob
ability distributions of the market parameters, but, as can be seen from our
experiments, a good performance is achieved for parameters that correspond to
a realistic prior distribution (in particular, the strategy from Theorem 2.5 with
£ = 1.5 corresponds to k1 = 2.5, k2 = 0.5).

9.7. Proofs
ProofofofLemma 9.1. It is easy to see that

Then

z(a, T) = exp(I[ (CT-1(t).A (t, a)) T CT(t)-lS(t)-ldS(t)

- ~ IoT ICT- 1(t).A(t,a)1
2

dt).

zm = IAm dll(at}··· dll(am)exp (2:r=l I[ (CT(t)-l.A (t, ak))T

x CT(t)-lS(t)-ldS(t) - ~ 2:~1 I[ ICT(t)-l.A (t, ak) 1
2dt),

and (9.1) holds.
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Further, the assumptions imply that 'Y is nonrandom for any given (nonran
dom) {Ok}r=l c A. Then

dz CEr=l Ok, t)

= z O:r=l Ok, t) [a(t)-l A(t, L:r=l Ok)] T a(t)-lS(t)-ldS(t),

(9.27)

dz. (t."" t) = z. (t."" t) [<7(t)-1 .4.(t,t.".rdw(t) ,

since dw(t) = a(t)-lS.(t)-ldS.(t). But a- l A is independent of w(·), so

E.z (fOk, T) = Ez. (fOk, T) = 1. (9.28)
k=l k=l

Now (9.2) follows by taking expectation in (9.1).
Since

dX(t) = B(t)-ln-(t)TS(t)dS(t)

= fATn dv(od'" dv(omh(Ol"" ,Om)dz(L~=lOk, t),

then

X(T) = X(O)

+ JATn dv(od···dv(om)-r(ol, ... ,Om) [Z(L:r=lOk,T) -1]

=X(O) -E.(+(

and the replication result follows. 0
Proofs ofLemma 9.2 and Theorem 9.1 follow immediately from Lemma 9.1

and Theorem 8.1.
ProofofTheorem 9.2. By (1.11), the process Q(t) is Y t adapted, and there

fore the strategy (9.6) belongs to the class E(ya.). It follows from results
presented in Chapter 5 that this strategy is optimal in this class. Then (i) fol
lows.

For the log utility function, we have

A _ A Z ZXo -e= F(Z, >') = -;;- = -- = ZXo,
>. E.Z
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since

E.Z = E. fA dll(a)z(a, T)

= fA dll(a)E.z(a, T) = fA dll(a)Ez.(a, T) = 1,

cf. (9.28). So m = 1 and'Y = 1.
Now (9.7), (1.20), and (8.22) imply that

X(t) = Xo Ldll(a)z(a, t),

and hence (9.8) follows. Since z(a, t) > 0 for all a, then X(t) > 0 a.s for all
t.

Finally, 11" E E(.1':), so the optimality of 11" follows from Theorem 9.1.0
ProofofCorollary 9.1. By (9.14) and (9.8),

1I"(t)T ~ X(t, 1I"(.))a(t)T Q(t),

and by (9.6) the optimal strategy in E(;::a) is

1I"(t)T =X(t,1I"('))ii(t)TQ(t).

Hence there exists a measurable function r(t,') : B([O, t]j Rn x R x
C([O, t]jRn) -+ Rn such that

1I"(t) == r(t, iiOI [O,tj, r(')I[o,tj, SOI[o,tj),

7T(t) == r(t, a(·)I[o,tj, r(')I[o,tj, S(·)I[o,tj),

and by Definition 9.1, a(t) is the required estimate of ii(t).
Let us show (ii). We shall employ the notation

Y(t 11"(')) ~ log X(t, 11"('))
, B(t)Xo .

Let 82 be the set of all processes a(t) : [0, T] -+ R n that are progressively

measurable with respect to F t and such that E foT la(t)1 2dt < +00. For any
a(·) E 82, define

1i"(t)T ~ X(t, 1i"(.))a(t)T Q(t),

where X(t, 1i"(')) ~ B(t)X(t) and XO is found from (1.20) using 11"T =
BX aTQ. Then

rt
( - - 1 rt

)Y(t,1i"(')) = Jo a(s)T Q(s)S(s)-ldS(s) - 2Jo a(s)T Q(s)a(s)ds ,
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EY(T, n(·))

= ~E f[ (-Iu(t)-l(a(t) - a(t))12+ a(t)TQ(t)a(t)) dt.
(9.29)

Set a'(t) ~ E{a(t)I.1"t}. By the Jensen inequality, a'(·) E 82. Consider the
corresponding strategy

1r'(t)T ~ X(t, 1r'(.))a'(t)T Q(t). (9.30)

It is well known that EY(T, 1r' (.)) ~ EY(T, n(·)) for all1i"(·) that correspond
to a(·) E 82, so the strategy (9.30) is optimal over all these n(·). Then (9.15)
and the proof of Corollary 9.1 follow if a(·) E 8 2 .

Let us show that a(·) E 8 2• For any K > 0, set

TK ~ inf{ t E [0, T]: 1t
la(s)12ds >1t

la'(s)12ds + K }.

As usual, we take TK = T if the set is empty. Note that

ElogX(TK,1l"(·)) ~ ElogX(TK,1r'(·)) VK> 0, (9.31)

because if (9.31) fails, then

EY(T,1rK(-)) > EY(T, 1l"(.)),

where

1rK(t) ~ {::(t) t ~ TK
1r(t) t > TK.

Further, let XK(t) denote the indicator function of the event {t < TK}, and let

As in (9.29), we have

EY(TK,n(·))

= !EfoTK (-Iu(t)-l(a(t) -a(t))l2 +a(t)TQ(t)a(t)) dt (9.32)

= ~E foT (-lu(t)-l(aK(t) - aK(t)W + aK(t)TQ(t)aK(t)) dt.

Then the process E{aK(t)l.1"t} = XK(t)E{a(t)I.1"t} = XK(t)a'(t) gives the
maximum of EY(TK, n(·)). It follows from (9.31) that

XK(t)a(t) = XK(t)a'(t)
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for t E [0, T] and K > O. Thus, TK = T a.s. for any K > 0, and

a'O = a(·), a(·) E 8m .

Then (9.15) and (ii) follow. 0
Proof of Theorem 9.3. Part (i) is straightforward, and (ii) follows from

Chapter 5, Corollary 5.1. Part (iii) follows from Lemma 9.1. Since

-,
- A - A XoZ

X(T,1I"(')) = F(Z, >.) = G(I) ,

then (9.13) follows from Lemma 9.3. 0
ProofofCorollary 9.2. The first equality in (9.16) follows from (9.10). This

and (9.11) and (9.12) imply

A( ) fAI dv(ad'" dv(a,h(a1,"" aZ)z(2:~ak, t) 2:~ ak(t) T
Ia t = I '

fAI dv(ad'" dv(a,h(a1"'" aZ)z(2:1 ak, t)

i.e.,
fA dVl(b)z(b,t)b(t)T

Ia(t) = --=.1-::---__--,---,-_

fAI dVI(b)z(b, t)

Comparing this with Corollary 9.1 (i) and (9.8), we see that Ia(t) is the certainty
equivalent estimate for the problem with U(x) == log x and with the prior
distribution of e = ii(·) described by A, and VIO. By Corollary 9.1 (iii),
a(t) = 1-1EI{ii(t)IFt}. This completes the proof of Corollary 9.2.0

ProofofTheorem 9.4. Let 1(.) E Im(F). Consider the problem (8.7)-(8.8)
for the I-market. By Theorem 9.2, the unique optimal strategy is

1I"r(t) ~ X(t, 1I"r(·))Q(t)E{iir(t)IFt }

= X(t,1I"r(·))Q(t)E{iir(t)IFd = X(t, 1I"r(·))Q(t)ar(t).

We have

1I"(t) = X(t, 1I"rO)Q(t)ar(t)

= X(t, 1I"r(' ))Q(t)V(t)Qr(t)Pr(t)a(t) = X(t,1I"r(' ))Qr(t)Pr(t)a(t).

We have used that Q(t) = V(t)-l. Since Qr(t) maps Lr(t) into Lr(t), then
1I"r(t) E Lr(t) for all t, so

7r(') E E(m, g.),

i.e., Pj (t)7r(t) = 7r(t).
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X(T,1IJ(.») = X(O)exp(foT(a(t)-la[(t»Ta(t)-lS(t)-lS(t)

- ~ f;{ a[(t)T Q(t)a[(t)dt),

and

- 1 rT
T Jr

EU(X(t,1IJ('») = 2E Jo a[(t) Q(t)a[(t)dt + log Xo = "2 + log Xo·

It is easy to see that optimal 1(·) satisfy (9.20) and the strategy (9.21) is optimal.
This completes the proof of Theorem 9.4. 0



Chapter 10

SOLUTION FOR GENERAL UTILITIES AND
CONSTRAINTS VIA PARABOLIC EQUATIONS

Abstract We present the solution of an optimal investment problem with additional con
straints and utility functions ofa very general type, including discontinuous func
tions. Optimal portfolios are obtained in the class of strategies based on histor
ical prices, when a(t) is random and unobsetvable, but under some additional
restrictions on the prior distributions of market parameters. Optimal investment
strategies are expressed via solution of a linear deterministic parabolic backward
equation.

10.1. The model
In this chapter, we consider a special case of the model described in Section

8.1. We assume that all conditions imposed in Sections 8.1-8.5 are satisfied
and that the process 1J(t) == 0, i.e., the filtration:Ft is generated by (S(t), r(t)).
In addition, we impose the following restriction on prior distribution of the ap
preciation rate a(t): we assume that there exist an integer L > 0, deterministic
and known vector processes ei(-) E B([O, T]; Rn), and random variables 8i(-),
i = 1, ... , L, such that

L

ii(t) ~ a(t) - r(t)l = I: 8iei(t).
i=1

(10.1)

To describe the prior distribution of a(·), we assume that r = R L . Let e :
n -+ R L be defined as e = (81, •.. , 8L). We are given a probability measure
v( .) on r that describes the probability distribution of e.

We assume that the following conditions are satisfied:

• 0'(t) is deterministic;

• e, w(·), r(·) are mutually independent; and

• the process (r(t), O'(t)) is uniformly bounded.
N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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Under these assumptions, the solution of (8.1) is well defined, but the market
is incomplete.

10.2. Problem statement
Let M ~ L be an integer. Consider the following system:

{
dY(t) = f(Y(t), t)dt + b(Y(t), t)S(t)-ld8(t),

(10.2)
Y(O) = O.

Here f(·) : R M x R ~ R M and b(·) : R M X R ~ R Mxn are deterministic
functions. We assume that the functions b(y, t), 8b(y, t)j8y, 82b(y, t)j8y2,
f(y, t), 8f(y, t)j8y, and 82 f(y, t)j8y2 are uniformly bounded and Holder.

Let T > 0, and X(O) be fixed. Let M > 0 be an integer. Let U(·,·) :
R x R M ~ Rand G(·,·) : R x R M ~ Rm be given measurable functions.

We may state our general problem as follows: Find an admissible self
financing strategy 11"(') that solves the following optimization problem:

Maximize EU(X(T, 11"(')), Y(T)) (10.3)

(lOA)

(10.5)

(10.6)

. { X(0,1I"(')) = X(O),
subject to _

G(X(T, 11"(')), Y(T)) ~ 0 a.s.

Clearly, this problem is a special case of the problem (8.7)-(8.8).

EXAMPLE 10.1 Let cp(.) : R n x R ~ R n , U(·,·) : R x R n ~ Rand
G(·,·) : RxRn ~ Rmbegivenmeasurablefunctions. Considerthefollowing
problem:

Maximize EU ( X(T, 11"(')),~T cp(8(t), t)dt)

. { X(0,1I"(')) = X(O),
subject to ( - T - )

G X(T,1I"(·)),Jo cp(S(t),t)dt ~ 0 a.s.

Consider processes Pi(t), i = 1,2 such that

I
dPl (t) = ~ ( { Sj~) exp [J1(t) - n::~~l J~ Ujk(S )2ds]};=1 't) ,

dP2(t) = S(t)-ldS(t),

Pi(O) = 0, i = 1,2.

Clearly,

J~cp P~(t) ~;~~~ ~ J~ (Tjk(s)2ds.
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It is easy to see that the problem (10.5)-(10.6) is a special case of the problem
(10.3)-(10.4), where Y(t) = (Pdt), P2(t)), M = 2n.

EXAMPLE 10.2 Let 11 E (0, T], i = 1, ... , K, T1 < T2 < ... < TK.
Let U(·,·) : R x (Rn)K -+ Rand G(·,·) : R x (Rn)K -+ Rm be given
measurable functions. Consider the following problem:

Maximize EU(X(T, 11"(')), S(Tt}, ... ,S(TK))

. { X(0,1I"(')) = X(O),subject to _ _ _
G(X(T, 11"(')), S(Tt}, ... ,S(TK)) ~ 0 a.s.

Consider processes Pi(t) = {P/}j=l such that

(10.7)

(10.8)

dP.(t) = {S(t)-ldS(t), t < 11, P.(O) = 0, i = 1, ... , K.
• 0, t > Ti •

Clearly,

n/(t) = {lOg. fJ~((~ + ~ E~=l J~ (Jjk(s)2ds, t < Tir[ , i = 1, ... , K.
PI (Ti), t > Ti

It is easy to see that the problem (10.7)-(10.8) is a special case of the problem
(10.3)--(10.4), where Y(t) = (P1(t), ... ,PK(t)), M = K . n.

10.3. Additional assumptions
Auxiliary optimization problem. Similarly to Chapter 8, we shall investi

gate the optimal investment problem via the following finite-dimensional opti
mization problem:
For z E R, y E R M, A E R,

Maximize zU(x, y) - AX over X E R: G(x, y) ~ O. (10.9)

This problem will be used in the following way. We obtain an optimal claim as a
solution of the problem (10.9) with the random variable z depending on Y(T).
Then, the corresponding admissible self-financing strategy, which replicates
the claim, is obtained readily.

Let
J(y) ~ {x E R: G(x,y) ~ O}, Y E R M

. (10.10)

To proceed further, we assume that the following conditions are satisfied.
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(10.12)

CONDITION 10.1 The function G(·) is such that there exists a measur
able function of polynomial growth F'(·) : C([o,T];Rn) ~ R such that
EF'(S.(·)) = X(O) and G(F'(S(.)), y(T» ~ 0 a.s.

CONDITION 10.2 There exists a measurable set A ~ R, and a measurable
functionF(·,·,·): (0,00) xRM xA ~ Rsuchthatforeachz > 0, y E R M,

,xEA,
x= F(z,x,,x)

is the unique solution ofthe optimization problem (10.9).

CONDITION 10.3 There exist ). E A such thatE.IF(Z, 8(.), ).)1 < +00 and

E.F(Z, 8(·),).) = Xo. (10.11)

CONDITION 10.4 Thefunctions f(·), f3(.) are such that
T - -1 - .d}i(t) = ei(t) Q(t)S(t) dS(t), ~ = 1, ... , L,

where L and ei(t) are as in (10.1).

Note that the last condition does not implies a loss of generality (since the
dimension M ofY(·) can be arbitrarily increased).

10.4. A boundary problem for parabolic equations
Introduce the Banach space yl of functions u(·) : R M X [0, T] ~ R with

the norm

lIu(o)II:v. ~ (S~PEIU(Y(t),I)I' +Ef I:(Y(I), 1)1
2

dtf2
PROPOSITION 10.1 Let CO : RM ~ R be a measurable function such
that EC(Y.(T))2 < +00 and EC(Y(T))2 < +00. Then there exists an
admissible strategy 11"(')) = (11"1 (t), ... ,1I"n(t)) E E(.r.) that replicates the
claim B(T)C(Y(T)) if and only ifEC(Y.(T» = X(O), where X(O) is the
initial wealth. Furthermore,

1I"i(t) = p(t)-1:: (Y(t), t)b(Y(t), t), X(t) = V(Y(t), t),

where X(t) is the corresponding normalized wealth at time t > 0 and the
function V(·,·) : R M x [0, t] ~ R is such that

I
~(x, t) +~~1 g~ (x, t)Ji(x, t)

+~Tr{ ~:~(x,t)b(x,t)O"(t)O"(t)Tb(x,t)} =0,

V(x, T) = C(x).
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The problem (10.12) admits a solution in the class yl.

10.5. The optimal strategy
Let Z, Z., Z, and Z. be as defined in Chapter 8. Let w(·) : R M -+ R be

such that

(We recall that the measure dv(a) = dv(al, ... , aLl describes the prior dis
tribution of ({II, ... , fh) in (10.1).)

LEMMA 10.1 Thefollowing holds:

Z = w(Y(T)), Z. = w(Y.(T)).

Let <p(x, A) : R M x A -+ R be such that

<p(x, A) ~ F (w(x), x, A). (10.13)

THEOREM 10.1 With Aas in Condition 10.3, there exists an admissible self
financing strategy 1r(') = (1rdt), ... ,1rn (t)) E E(.1'.) that replicates the claim
<p(Y(T) , A). This strategy is an optimal solution ofthe problem (1O.7HlO.8),
and

1rj(t) = p(t)-l :~ (Y(t), t)b(Y(t), t), X(t) = V(Y(t), t), (10.14)

where X(t) is the corresponding normalized wealth at time t > 0, and where
V(x, t) : RM x [0, T] -+ R is the solution ofthe partial differential equation
(10.12) with the condition

V(x, T) = <p(x, A).

Moreover, ifF(z, x, A) is the unique solution ofthe optimization problem (10.9)
with A= A, and ifE U+ (t, Y (T)) < +00, then the optimal strategy i,y unique:
all optimal processes X(t) and 1r(t) are same (equivalent) for all A, provided
that Condition 10.3 is satisfied.

The following proposition may be useful.
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PROPOSITION 10.2 Let there exist constants CO > 0, C > 0, such that

IF(z, y, ~)I ~ CO(ZC + z-c + lylC + 1),

U(x,y) ~ co(x2 + lylC + 1),
M 0

Vy = (Yl,'" ,YM) E R ,Vx E J(y), Vz ER+ .

Then EU+(t,Y(T)) < +00.
Notice that

V(x, t) ~ kM P.(dy, T, x, t)ep(y,~) = E {ep(Y.(T), ~)IY.(t) = x},

(10.15)
where P.(dy, r, x, t) as a function of dy is the conditional probability distribu
tion for the vector Y.(r) given the condition Y.(t) = x, where 0 ~ t ~ r. In
particular, the condition (10.11) has the form

( P.(dx, T, 0, O)ep(x,~) = X(O).
JRM

Notice that for most important particular cases to be considered below,
IRM P.(dx, T, 0, O)ep(x, >') is a monotonic decreasing function of >.. Thus,

it is not difficult to carry out the calculation of>' from (10.11) if ep(.) is known.
Chapter 11 will provide an explicit formula for ep(.) for several special problems.

10.6. Proofs
Proof of Lemma 10.1. It suffices to prove that .2. = tJ1(Y.(T)). By the

definitions,

z. = exp ( L:f=l I[(u(t)-lei(}i(t))Tdw(t)

- ~ I[ lu(t)-l L:f=l (}iei(tWdt) (10.16)

= exp (L:f=l (}il'i.(T) - ~ I[ IU(t)-l L:f=l ei(tWdt) .

Then the proof follows. D
Proof of Proposition 10.1. Let an admissible self-financing strategy 11"0

be such that X(T,1I"(')) = C(Y(T)) a.s. It is required to show that X(O) =
EC(Y.(T)). Let XO = X(., 11"('))' For an a E r, it follows from the
application of Girsanov's Theorem (see, e.g., Karatzas and Shreve (1991» to
the conditional probability space given the condition a = a that, for any B E B,

P(S(·) E B) = 0 if and only if P(S.(-) E B) = O. (10.17)
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In other words, the sets of samples for the processes S.(·) and SO are P
indistinguishable. Thus there exists a probability measure p. such that S(t) is
a martingale. Let E. be the corresponding mathematical expectation. We have

dX(t) = p(t)1T(t)S(t)-ldS(t),

X(O) = X(O), X(T) = G(Y(T)).

The process S(t) is a martingale with respect to the probability measure p •.
Hence X(O) = E.C(Y(T)) = EC(Y.(T)).

Let X(O) = EG(Y.(T)). It is required to show that the strategy defined in
the Proposition 10.1 does exists and is admissible.

Assume that G(.) has a finite support inside an open domain in R M , and let
the function GO be smooth enough. Then the problem (10.12) has a classical
solution. Thus, V(x, t) is a classical solution of (10.12). Using Ito's formula,
we obtain again

dX(t) = p(t)1T(t)TS(t)-ldS(t), X(T) = G(Y(T)). (10.18)

To continue, let Z(t) ~ u(t) T 1T(t). Consider the conditional probability space
given (r(·), 8). With respect to the conditional probability space, it follows
from (10.18) that

{
d_X(t) =p(t)Z(t)Tdw(t) +p(t)Z(t)Tu(t)-lE{iilr(·),8}dt,

X(T) = G(Y(T)).
(10.19)

Note that equation (10.19) is linear. The solution (Z(t), X(t)) of the stochastic
backward equation (10.19) is a square integrable process (see, e.g., Theorem
2.2 of Yong and Zhou (1999), Chapter 7, or Proposition 2.2 of El Karoui et al.
(1997».Thus, it can be shown that there exists a constant CO, independent of
GO, such that

SUPtE {IX(t)121r(·), 8} +E{J[ IZ(t)12dtl r(·), e }
~ COE {G(Y(T))21 r(·), 8 } a.s.

for all a E r. Hence

(10.20)

Let G(·) be a general measurable function satisfying the conditions specified
in the proposition. Then, there exists a sequence {C(i) (')}, where G(i)(.) has
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finite support inside the open domain R M and is smooth enough, such that

Elc(i)(Y(T)) - C(Y(T)W ~ 0 as i ~ 00.

Let X(i)(.), 1I"(i)(.), V(i)(.) be the corresponding processes and functions. It
can be shown that there exist a solution V(·) of (10.12) as a limit of V(i)(.) in
yl.

By (10.20) and the linearity of (10.19), it follows that

SUPt EIX(i)(t) -X(j)(t)1 2 + E f;[ 11I"(i)(t) - 1I"(i)(t))12dt

S coEIC(i)(Y(T)) - C(j)(Y(T))12 -+ 0 as i -+ 00.

Thus, {X(i)(.)}, {1I"(i)(.)} are Cauchy sequences in the space of square !nte
grable processes, and hence it can be shown that the corresponding limits X(·),
11"(') exist and are square integrable processes. This completes the proof. 0

ProofofTheorem 10.1 follows from Proposition 10.1 and Theorem 8.1. 0
ProofofProposition 10.2 follows from Lemma 10.2 below.

LEMMA 10.2 For k = 0, 1, sUPoEr Ez(a, T)k zc < +00 (Vc E R).

Proof. It is easy to see that

sup Ez(a, T)C < +00 Vc E R,
oEr

and

SUPoEr Ez(a, T)k ZC

= sUPoErEz(a, T)k (Irdll(ad z(al' T)) C < +00 (Vc> 0).

For any c < 0, the function yC is convex and

SUPOErEz(a, T)k ZC = sUPoErEz(a, T)k (Irdll(adz(uI, T)) C

S sUPoErEz(a, T)k Irdll(al)z(al, Ty

< +00.

This completes the proof. 0



Chapter 11

SPECIAL CASES AND EXAMPLES:

REPLICATING WITH GAP AND
GOAL ACHIEVING

Abstract In this chapter, the optimal portfolio is obtained for the class of strategies based
on historical prices under some additional conditions that ensure that the optimal
normalized wealth X(t) and the optimal strategy 11'(t) are functions of the current
vector S(t) of the normalized stock prices. In particular, these conditions are
satisfied if O'(t) is deterministic and 0', aare time independent. A solution of a
goal achieving problem and a solution of a problem of optimal replication of a
European put option with a possible gap will be given among others. Explicit
formulas for optimal claims and numerical examples are provided.

11.1. Additional assumptions and problem statement
We shall consider the following special case of the problem (10.3)-(10.4)

from Chapter 10. Let T > 0 and Xo be given. Let m > 0 be an integer.
Let U(·,·) : R x Rn -t RU {-oo} and G(·,·) : R x Rn -t Rm be given
measurable functions such that EU(Xo,S(T)) < +00.

We may state our general problem as follows: Find an admissible self
financing strategy that solves the following optimization problem:

Maximize EU(X(T,1I"(·)),S(T)) over 11"(')

. { X(O,1I"(')) = X(O),
subject to _ _

G(X(T,1I"(·)),S(T)) ~ 0 a.s.

(11.1 )

(11.2)

We shall assume in this chapter that the matrix u(t) is deterministic and that
the vector

fJ~ (U(t)-l)TO(t)

does not depend on time, where

O(t) ~ U(t)-l(i(t) = u(t)-l[a(t) - r(t)l].

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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Clearly, this condition is satisfied if r = ret), a = aCt) and a = aCt) are
constant in time. To describe the prior distribution of a(·), we assume that
r = Rn and e = 8. We take as given a probability measure veda) on
r = {a} that describes the probability distribution of e = 8.
PROPOSITION 11.1 The problem (l1.1H11.2) is a special ca'ie of the prob
lem (lO.7HlO.8), where L = M = nand

yet) = {Yi(tnf=l' Yi(t) ~ log ~:i~~ + ~ ~j=l J~ aij(s)2ds,

dYi(t) = Si(t)-ldSi(t).

LetFt , Z, Z, F(.),). andt ~ F(Z, Y(T),).) be such as defined in Chapter
10 with L = M = n. Let X(t) be the optimal normalized wealth defined in
Theorem 10.1.

COROLLARY 11.1 There exist functions 'ljJ(.) : R n --t R, f(·) : R n x R --t

Rand H (.) : R n x R --t R such that

Z = 'ljJ(S(T)), e= f(S(T), ).),

X(t) = H(S(t), t), 1I"(t)T = p(t)-l ~~ (S(t), t)S(t) = f!(S(t), t)S(t).
(11.3)

Clearly, f(x,,x) = F('ljJ(x), x, ,x).
It is easy to see that

log Si(t) = log Si(O) + J~ ai(s)ds

-~ ~j=l J~ aij(s)2ds + ~j=l J~ aij(s)dwj(s),

log Si.(t) = log Si(O) - ~ ~j=l J~ arj(s)ds + ~j=l J~ aij(s)dwj(s).

From these formulas, it follows that S(t2 has a conditional log-normal proba
bility density function given li(·), while S.(t) has an unconditional log-normal
probability density function. In fact, Set) also has a probability density func
tion. Letp(x, t) be the probability density function for the vector Set), and let
P.(x, t) be the probability density function for the vector S.(t).

PROPOSITION 11.2 The following hold\':

'ljJ(x) = p(x, T), Z = p(S... (T), T) . (11.4)
P.(x, T) P. (S. (T), T)
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PROPOSITION 11.3 Thejunction H(·) is such that

H(x, t) ~ Ln P.(Y, T, x, t)f(y, ~)dy = E {f(8.(T), ~)18.(t) = x},
+

(11.5)
where P.(Y, 7, x, t) as a junction of y is the conditional probability density
junction for the vector 8.(7) given the condition 8.(t) = x, where 0 ~ t ~ 7.
In particular; P.(x, t) = P.(x, t, 8(0), 0), and (10.11) has the form

( P.(x, T)f(x, ~)dx = X(O).
JR+.

An explicit fonnula for ¢(x) is given below for the case ofnoncorrelated stocks,
i.e., Uij = 0 (Vi t- j). In that case, it is known that the explicit fonnula for
P.(Y, T, x, t) is given by

n

P.(y,7,X,t) = IIp~i)(Yi,7,xi,t),
i=l

(11.6)

where x = (Xl,"" xn), Y = (YI, ....,Yn) and

(i) (. . t) ~ I -(In(Yi)-ln(xi)+u?j(t-r)/2)2 (11.7)
p. Yz, 7, xz, - XiO"iiv'21T(t-r) exp 2u?i(t-r)

Fori = 1, ... ,n,let

(11.8)

(11.9)

11.2. Explicit formulas for optimal claims for special cases
In this section, we study some particular cases of U(.) and G(.).

11.2.1 Goal-achieving problem
Let kl' k2 be such that -00 < kl < k2 < +00. For any admissible strategy

1r('), introduce the stopping times
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Let X(O) be an initial wealth with k1 < X(O) < k2 •

Consider the following goal-achieving problem:

Maximize P (71 ~ 72) over 11"(')

Subject to X(0,1I"(')) = X(O).

(11.10)

(11.11)

(11.12)

We now show that this problem is a particular case of the problem (10.3).

PROPOSITION 11.4 Let G(x, y) = X{kl:Sx92}' U(x, y) = X{k2~X}' where
X is the indicator function. Then Conditions 10.1-10.2 hold, with

F( A) = {k2 ifl - qk2 ~ -qk1
Z, X, k1 ifl - qk2 < -qkt.

where q ~ AIz. Furthermore, the assumptions ofTheorem 10.1 hold.

Thus, by definition,

(11.13)

and

H(x, t) = kl + (k2 - kl)P (1/J(S.(T» ~ 5.(k2 - kdIS.(t) = x)

= k1 + (k2 - kt) JR+P.(y, T, x, t)X{,p(y)~X(k2-kl)}dy,
(11.14)

where P.(y, T, x, t) is the probability density function for S.(T) conditional
on S.(t) = x. For the case when (Iij = 0 for i i= j, the functions t/J(.) and
P.(y, T, x, t) are defined explicitly in (11.6) and (11.9).

THEOREM 11.2 The problem (11.1) with parameters specified in Proposition
11.4 and the problem (11.10H 11.11) have the same optimal value ofthe func
tionals to be maximized. Moreover, an optimal strategy (as given in Theorem
10.1) for the problem (11.1) with parameters specified in Proposition 11.4 is
also optimal for the problem (11.10H 11.11).

The above proof also leads to the following result immediately.

COROLLARY 11.2 Under the assumptions of Proposition 11.4, any optimal
strategy for the problem (l1.lOH11.11) must satisfy P(71/\ 72 < T) = O.

Corollary 11.2 shows that, for an optimal strategy, the first time when the
wealth achieves k1 or k2 occurs only at t = T. In other words, stopping the
investment before the expiration time T cannot be optimal.
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11.2.2 Mean-variance criteria
The following proposition is devoted to the problem that is close to the

Markowitz formulation of mean-variance optimal portfolio selection (see
Markowitz (1952», where the expectation of a return is to be maximized and
the dispersion of the return is to be minimized.

PROPOSITION 11.5 Let G(x, y) == 0, U(x, y) = -kx2 + ex, where c E R,
k E R, k > 0, c ~ O. Then Conditions 10.1-10.2 hold, with

c-q t1 >.
F(z, y, >') = 2k' q = -;.

In this case, equation (10.11) has an unique solution

.x = 2k (2k - X(O)) (JR,+ p;~::~r dX)-l

= 2k (2k - X(O)) (E"'(S~(T») -1.

(11.15)

Again, the above result can be verified directly. Moreover, it follows by
Lemma 10.2 that the integrand in (11.15) is integrable.

11.2.3 ' Nonlinear concave utility functions
o

Let G(x, y) = X{hl(y)~x~h2(Y)}' where hi :R+ -+ [-00, +00]. Further, let
o

U(x, y) == U(x) :R+-+ R be a concave differentiable function. Then the
problem (11.1)-(11.2) can be rewritten as

Maximize EU(X(T,1I"('))) over 11"(') (11.16)

. { X(0,1I"(')) = X(O),subject to _ _ _
hi (X(T, 11"('))) ~ X(T, 11"(')) ~ h2 (X(T, 11"('))) a.s.

(11.17)

PROPOSITION 11.6 Assume that hi, U are such that thefollowing holds:

o

(i) whenever h :R+ -+ R is a function of polynomial growth, so are
max(h1(y), h(y)) and min(h2 (y), h(y));

(ii) -00 ~ h1(y) ~ h2(y) ~ +00 for all y;

(iii) EhdS.(T)) < X(O) < Eh2(S.(T));
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(iv) U'(x) : (0, +00) -t (0, +00) is a bijection (i.e., a one-to-one mapping),
and there exist constants C > 0, 0 < C1 < 1, and C2 > 0 satisfying

IU(x)1 ~ C(XC1 + x-C2 + 1), lV(x)1 ~ C(XC2 + x-C2 + 1), \Ix> 0,
(11.18)

where V(x) is the converse function ofU'(x).

Then Assumption 10.2 hold~', with

(11.19)

where q ~ AIz. In this case, equation (10.11) ha~' a unique solution. Further
more, ifh1(y) ~ 0 (\ly), h2(Y) == +00, and V(x) = Kx- k , where K > 0,
k > 0 are constants, then

(11.20)

The proof is omitted here, since it can be checked directly.
Notice if U~f) = In(x), then V(x) = x-1

; if U(x) = X
l
/
D

, 8 > 1, then
V(x) = (8x)- ,where fJ' = fJ(fJ - 1)-1.

Also, it is a direct consequence of Lemma 10.2 that the integrand in (11.20)
is integrable.

11.2.4 Nonconnected J(y)
o

Assume that for each y ER+ there exist an integer N(y) > 0 and real
numbers ai(y), bi (y) such that

J(y) = u(u[:(r) [ai(Y), bi(y)]) u (ao(Y), +00),

where J(y) is defined in (10.10), and

ao(Y) ~ +00, -00 < ai(Y) ~ bj(y) < +00, i = 1, ... , N(y).

Let

M(y) ~ {ao(Y), a1 (y), ... ,aN(y) (y), b1(y), ... ,bN(y)(y)},

and let int J be the interior of the set J.
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PROPOSITION 11.7 (i) Let U(x,y) == -kx2 + ex, where k E R, c ~ O.
Then Condition 10.2 hold", with

F(z Y A) = { F(q) ifF(q) E int J(y)
, , argmaxxEM(y)U(X,y)-qx ifF(q)f/.intJ(y), (11.21)

where F(q) == (c - q)j(2k) and q ~ Ajz.
(ii) Let U(x,y) == lnx. Then Condition 10.2 hold" with F(·) defined by

(11.21) and with F(q) == Ijq.
(iii) Let U(x, y) == x l /6, where d > 1. Then Condition 10.2 holds, with

F(·) defined by (11.21) and with F(q) == (dq)-6', where d' ~ d(d _1)-1 and

q ~ AjZ.
(iv) Let U(x, y) == _y6 + y, where d = 1 + 1jm and m > 0 is an integer.

Then Condition 10.2 holds, with F(·) defined by (11.21) and with F(q) ==
(1 - q)mc5-m and q ~ Ajz.

(v) Let U(x, y) == -Ih(y) - x16, where d > 1, J1. E (1,15) and where
o

h(·) : R+-t R is afunction ofpolynomial growth. Then Condition 10.2 hold",
with F(·) defined by (11.21) and with F(q) == _signqlqjc5l l /(6-l) +h(y) and
q~AjZ.

Notice that the case considered in (v) corresponds to the following problem
of claim hedging with nonquadratic criterion:

Minimize EIX(T) - rp(S(T))I6.

The following theorem is for the problem of claim hedging with bounds on
risk (see (8.13».

o

THEOREM 11.3 Let hi (-) : R+-t R, i = 1, 2 be functions of polynomial
growth such that G(x,y) = 1 - X{hl(y) ~ X ~ h2(y)} and 0 ~ hl(Y) <
h2(Y) (V'y). Let F(z, y, A) be as defined in Condition 10.2. Furthermore, let
either

{ F(z, y, >') -+ h, (y) as q -t 0,

F(z, y, A) -t h2 (y) a~' q -t +00 (V'x)

or

{ F(z, y, >') -+ h,(y) as q-tO

F(z, y, A) -t hl (y) as q -t +00 (V'y) ,

where q ~ Ajz. Then there exists a >. > 0 such that (10.11) holds.
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11.3. Numerical examples
11.3.1 Solution of the goal-achieving problem

We present a numerical solution of the goal achieving problem (11.10)
(11.11), with the following parameters:

n = 1, 8(0) = 1.6487, X(O) = 1, T = 1,

r(t) =0, u = u(t) =0.5,

k2 = 1.2, k 1 = 1/1.2 = 0.8333,

P(a(t) =ad = P(a(t) =a2) = 1/2,

where
al = 0.2, a2 = log(2 - eO.2 ).

Note that under this assumption, E8(T) = 8(0).
With these parameters, the optimal claim f(x, oX) is given by the formula

f( oX) - {1/1.2 if x E (1.1070, 2.3490)
x, - 1.2 if x ft (1.1070, 2.3490),

with oX = 2.5915.
Furthermore, by (11.3) and (11.5), we have

X(t) = H(8(t), t),

where

(11.22)

r1.1070 - ( T t )dJo p. y, , ,x y

+ J2:3790 p. (y, T, t, x )dy) ,
(11.23)

(11.24)
The strategy can be easily calculated from (11.3), (11.23), and (11.24).

The wealth process associated with the optimal strategy is given by the fol
lowing:

X(t) = 0.8 +0.3666 [1- P (8.(T) E (1.1070, 2.3490)18(t))] .

Figure 11.1 shows H(x, 0) and the optimal claim f(x, oX) = H(x, T). Figure
11.2 shows the profitlloss diagram for the corresponding optimal strategy.
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Figure 11.1. The optimal claim f(x,5.) and H(x,O) for goal achieving with kl = 1/1.2,
k2 =1.2. -: values of H(x, 0); - - - -: values of f(x, 5.) =H(x, T).
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11.3.2 Optimal replication of a put option with a possible
gap

Consider a problem of optimal replication of a European put option with a
possible gap. This problem is a particular case of the problem (l 1.16)-{1 1.17).
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We present a numerical solution with the following parameters:

n = 1, U(x) = In(x), 8(0) = 1.6487, X(O) = 1, T = 1,

r(t) =0, a = a(t) =0.5,

h1(x) = (8(0) - x)+,

{

(28(0) - x)+ if x ~ 1.88(0)
h2 (x) =

0.28(0) if x > 1.88(0),

P(a(t) =od = P(a(t) =02) = 1/2,

where
01 = 0.2, 02 = log(2 - eO.2).

With these parameters, we have

Eh1(8.(T)) = 0.3255, Eh2(8.(T)) = 1.717,

and the optimal claim f(x, -X) is given by the formula

{

h1(X) if'ljJ(x)/-X ~ h1(x)
f(x,).) = 'ljJ(x)/-X if h1(x) :- 'ljJ(x)/-X < h2(x)

h2 (x) if'ljJ(x)/>.. ~ h2 (x),

with -X = 0.8923. The function 'ljJ(x) is defined in Theorem 11.1:

1 (x) 40i (Oi 2)
'ljJ(x) = 2.~ 8(0) eXP "2 - 20i .

1-1,2

Therefore, the strategy can be calculated by virtue of (11.3).
Figure 11.3 depicts H(x,O) and the optimal claim f(x, -X) = H(x, T).

Figure 11.4 shows the profitlloss diagram for the corresponding optimal strat
egy.

11.3.3 Solution with logical constraints
Consider the following optimal investment problem involving a single-stock

market with logical constraints:

subject to

Maximize P(X(T, 11"(')) ~ 1.1· X(O))

X(O,1I"(')) = X(O),

X(T, 11"(.)) ~ 0.5· X(O),

if 18(0) -8(T)1 < 0.2 ·8(0)

then X(T, 11"(')) ~ 0.9· X(O).

(11.25)
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Figure 11.3. The optimal claim f(x,~) and H(x, 0) for replication of a put option with a gap.
..... : values of hi (x), h2(x); -; values of H(x, 0); - - - -: values of f(x,~) =H(x, T).
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Figure 11.4. Profitlloss diagram for replication of put option with gap:
X(T) - X(O) = H(S(T), T) - X(O).
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This problem is a special case of the problem (11.1)-(11.2). We present a
numerical solution with the following parameters:

n = 1, 8(0) = X(O) = 1.6487, T = 1,

r(t) == 0, u = u(t) == 0.5,

P(a == ad = P(a == a2) = 1/2,
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where
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01 = 0.2, 02 = log(2 - eO.
2

).

With these parameters, the optimal claim f(x,~) is given by

{

0.5· X(O) if ~/'IjJ(x) > 1, Ix - 8(0)1> 0.28(0)
f(x,~) = 0.9· X(O) if y'IjJ(x) > 1, Ix - 8(0)1 S 0.28(0)

1.1· X(O) if Aj'IjJ(x) S 1,

where ~ = 2.751 is obtained numerically. The function 'IjJ(x) defined in Theo
rem 11.1 is

1 (x) 4Q; (Oi 2)
'IjJ(x) = "2 ,2: 8(0) exp 2 - 20i •

1=1,2

(11.26)

Figure 11.5 shows the initial wealth, H(x,O), given 8(0) = x, and the
optimal claim f(x, ~), i.e., the final wealthgivenS(T) = x (for the definition of
H, see (11.5)). It is observed that although H(x, 0) is smooth, the optimalclaim
is discontinuous and piecewise constant as a consequence of the logical-type
constraints. With the obtained optimal claim, we can calculate the admissible
self-financing strategy at each given time t E [0, T] depending only on the stock
price at that given time as follows:

T 8H-
lI"(t) = ax (8(t), t)S(t), t E [0, T].

The corresponding wealth at each time t E [0, T] is X(t) = H(8(t), t), which
also depends only on the current stock price.

Notice that the optimal strategy is well defined in accordance with Definition
8.2 (i.e. it is a square integrable process). However, it has a property in common
with the goal-achieving problem studied in Karatzas (1997), Dokuchaev and
Zhou (2001): EI1I"(t)12 -+ +00 as t -+ T - O.

11.4. Proofs
The proofofPropositions 11.4 and 11.1 is straightforward and will be omitted

here.
ProojojCoroliary 11.1. We have that

z.(o, T) = exp (0TJ[ u(t)dw(t) - ~ J[ lu(t)Taldt) ,
T -Jo u(t)dw(t) = v(8.(T)),

o

where the function v(·) = {vi(-)}f=1 :R~ -+ R n is such that
n T

( ) 6 Xi 1~1 2 { }n
Vi X = log 8-(0) + "2 L- Uij(S) ds, x = Xi i=1'

1 j=1 °
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Figure 11.5. Optimal claim I(x, X) and H(x, 0) for the problem with logical constraints. -;
values of H(x, 0); - - - -; values of f(x,~) = H(x, T).
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Then there exists a measurable function t/J(.) : R n -+ R such that Z* 
t/J(S*(T)). To complete the proof, it suffices to set H(x, t) ~ V(v(x), t). 0

ProofofProposition 11.3. It is easy to see that

{
~(x, t) + ~ E~=l XiXj 8~:tfxj (x, t) E~=lUik (t)Ujk (t) = 0, (11.27)

H(x, T) = f(x, '\).

It can be seen that (11.27) is the backward Kolrnogorov equation for the distri
bution of S* (t). Then the proof follows. 0

ProofofProposition 11.2. We have that Z = t/J(S*(T)), where t/J : R n -+
R is a measurable function. By Girsanov's Theorem, it follows that for any
bounded measurable function ¢(.) : R n -+ R, we have

JRn p(x, T)¢(x)dx = Jrdv(a)E {¢(8(T)) Iii = a}
+

= IT dv(a) IR~ E { z(a, T)qI~.(T))Ia~ a, S. (T) ~ x} P.(x, T)dx

= Jrdv(a) JR+ E {z(a, T) I8*(T) = x} ¢(x)p*(x, T)dx

= JRn t/J(x)¢(x)p*(x, T)dx.
+
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This yields
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tjJ(X) = p(X, T) .
P.(x, T)

This completes the proof. 0
ProofofTheoremll.3. Bythedefinitionofj(·), we have hI (x) ~ j(x, A) ~

h2(x). By assumptions, Elhi(S.(T))1 < +00. Let

g(A) ~ Ej(S.(T), A).

By the Lebesgue Dominated Convergence Theorem, it follows that either

{ g(>.) -+ Ehl(~.(T)) as A -+ +00,

g(A) -+ Eh2(S.(T)) as A -+ 0+,

or

{ g(>.) -+ Eh2(~.(T)) as A -+ +00,

g(A) -+ EhdS.(T)) as A-+O+.

By Condition 10.1, there exists a measurable function of polynomial growth
F'(·) : G([O, T];Rn) -+ Rsuch thatEF'(S.(·)) = X(O) and

hI(S(T)) ~ F'(S(·)) ~ h2(S(T)) a.s.

Hence

and
EhI(S.(T)) ~ X(O) ~ Eh2(S.(T)).

Thus, there exists a A > 0 such that (10.11) holds. This completes the proof.
o

ProofofTheorem 11.1. For any fixed a E T, letp~i) (Xi, t) be the probability

density function for the stock price Si(t). Furthermore, let p~i) (Xi, t) be the
probability density function for the stock price Si(t) with ai(-) == T. It is easy
to see that

Si(T) = Si(O) exp {J-ti - a! +ei} ,

where /-Li, ai are defined in (11.8) and ei are independent Gaussian random
variables such that

(11.28)
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Let

Then

/-2
-((c;-IL;)2-c~) ci/.L; _II.~ (~. )P-; IJ"; 1I.'(iJ~-2rT)-1I.2

exp ':2 ' = exp~ exp~ = ~ exp '"" 2 '"I .
21J"; IJ"; 21J"; SilO) 21J";

This yields

P(i)(X' T) (X' )P-;/iJ1a z, _ z 8;. - -- e,
P~z)(Xi'T) Si(O)

where (Ji is defined in (11.8). Furthermore, we have

n n

Pa(x,t) = IIpii)(xi,t), P.(x,t) = IIp~i)(xi,t),
i=1 i=1

(11.29)

x = (Xl, ... ,Xn ).

(11.30)
From (11.28)-{11.30), we obtain (11.9). This completes the proof. 0

Proofof Theorem 11.2. Let G' be the set of admissible 11"(') such that the
constraints in (11.2) hold. Denote by J'(1I"(')) and J"(1I"(')) the functionals to
be maximized in (11.1) and (11.10), respectively.

Suppose 11"(.) is an optimal strategy for the problem (11.10)-(11.11). Con
struct the following strategy:

1I-(t) = {1I"(t), t ~ 1",
0, t> 1",

where
A

T = Tl /\ 1"2.

Clearly, 11-(.) E G' and J'(1I-(.)) = J"(1I"(')). Hence

sup J'(1I"(')) ~ supJ"(1r(·)).
?r(')EG' ?r(')

On the other hand, let 1i'(.) be the optimal strategy for the problem (11.1). This
strategy is unique and is given by (11.5), (11.3), and(l1.13). Thecorresponding
optimal normalized wealth process X(t) is given by (11.3) and (11.14). It
can be easily seen from these equations that X(t) E (kl, k2 ) ('tit < T) a.s.,
where X(t) is the corresponding optimal normalized wealth process. Hence
J'(1i'(')) = J"(1i'(')), leading to

sup J'(1I"(.)) ~ supJ"(1I"(·)).
?r(' )EG' ?r(')

This completes the proof. 0



Chapter 12

UNKNOWN DISTRIBUTION: MAXIMIN
CRITERION AND DUALITY APPROACH

Abstract In this chapter. a case is studied in which the appreciation rates, volatilities,
and their prior distributions are unknown. The optimal investment problem is
stated as a problem with a maximin performance criterion. This criterion is to
ensure that a strategy is found such that the utility minimum over all distributions
of parameters is maximal. It is shown that the duality theorem holds for the
problem. Thus, the maximin problem is reduced to the minimax problem. This
minimax problem is computationally a much easier problem.

12.1. Definitions and problem statement
Similarly to Chapter 8, we consider the market model from Section 1.3. The

market consists of a risk free bond or bank account with price B(t), t ~ 0, and
n risky stocks with prices Si(t), t ~ 0, i = 1,2, ... , n, where n < +00 is
given. The prices of the stocks evolve according to

dS,(t) = S,(t) ( a;(t)dt +t. <7,; (t)dw; (t)), t > 0, (12.1)

where the Wi(t) are standard independent Wiener processes, ai(t) are appreci
ation rates, and CTij(t) are volatility coefficients. The initial price Si(O) > 0 is
a given nonrandom constant The price of the bond evolves according to the
following equation

B(t) = B(O) exp (I t

r(s)ds) , (12.2)

where B(O) is a given constant that we take to be 1 without loss of generality,
and r(t) is the random process of the risk-free interest rate.

As usual, we assume that w(·) is a standard Wiener process on a given
standard probability space (O,.r, P), where 0 = {w} is a set of elementary
events, .r is a complete CT-algebra of events, and P is a probability measure.
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Set JL{t) ~ (r{t), a{t), <i{t)), where a{t) ~ a{t) - r{t)l.
Similarly Chapter 8, we assume that there exists an integer N > °and a

random process 'f}{t) = ('f}l{t), ... ,'f}N{t)) that is correlated with stock prices
and that is currently observable. We as~ume that all the paths of'f}(t) are bounded
and that there exist a linear Euclidean space Eo, a random vector 9 17 : n -+ Eo,
and a measurable function

Fo{t,') : Eo x B{[O, t]j Rn x R x Rn x Rnxn) -+ R N

such that
'f}{t) = Fo{t, 9 o, [S{'),JL{')l!o,tj) \:ft.

We assume that the distribution of 90 is known. (An important example is a
model when 'f}{t) describes trade volume; see Chapter 8).

We describe now distributions of JL{') and what we suppose to know about
them.

We assume that there exist a finite-dimensional Euclidean space E, acompact
subset 7 c E, and a measurable function

M(t,') : 7 x Eo xC ([O, t];Rn) -+ R x Rn x Rnxn,

which is uniformly bounded and such that M{t, a, e) is continuous in a E 7
for all t and eE C{[O, t); R). Let

M(t,') = (Mr(t, '), Ma(t, '), Mq(t,·)) ,

where
Mr(t,') : 7 x Eo xC ([0, t]; R n ) -+ R,

Ma(t,') : 7 x Eo xC ([0, t];Rn) -+ R n ,

Mq(t,·): 7 x Eo x C([O,t];Rn) -+ Rnxn.

We assume that the matrix MqO- 1 is uniformly bounded.
We assume that 60, 7, Fo{') and M{·) are such that the solution of (12.1)

for JL{t) = M{t, a, 60, 8{·)lro,tj) is well defined for any a E 7 as the unique
strong solution of Ito's equation. Let 80 {') denote the corresponding solution.

Fora E r, set

Mr(t, a) ~ Mr (t, a, 90, 80 01[0,tj) ,

Ma(t,a) ~ Ma (t,a,60,80 {')1[0,tj) ,

Mq{t, a) ~ Mq (t,a,60,SoOlro,tj)'

For an a E 7, set
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(12.3)

Furthermore, we shall use the notation S(t) = S(t, J.t(.)) and S(t) = S(t, J.t(.))
to emphasize that the stock price is different for different J.t( .). Clearly, So:(t) =

S(t, J.to: (-)).

DEFINITION 12.1 Let A(T) be a set of all random processes J.t'(t) =
(r'(t),a'(t),u'(t)) such that there exists a random vector e : n -+ r in
dependent of(w(·), 6 0, r(·), u(·)) such that

{

~:(t) ~ ~r (t,~),
a (t) = M Q (t,e),

u'(t) == Mq (t, e).

We assume that JL(') E A(T) and that this is the only information available
about the distribution on JL(')'

Under these assumptions the solution of (12.1) is well defined, but the market
is incomplete.

Let F t C F be the filtration of complete u-algebras of events generated
by the process (r(t), S(t), 1J(t)), t ~ O. Let E(F.) be the class of admissible
strategies introduced in Chapter 8.

Let Xo > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at
time t > O. Let X(t) be the normalized wealth.

By the definitions of E(F.) and Ft , any admissible self-financing strategy is
of the form

1I"(t) = r(t, [r(·), SO, 1JOll[o,tj), (12.4)

where r(t,') : B([O, t]; R x Rn x R N ) -+ Rn is a measurable function, t :?: O.
Clearly, the random processes 11"(') with the same ro in (12.4) may be dif

ferent for different J.I.(') = (r(·), a(·), u(·)). Hence we introduce also strategies
defined by r(·).

DEFINITION 12.2 Let Cbe the class ofall functions r(t,·) : C([O, t]; R x
R n x R N

) -+ R n, t ~ 0, such that the corre~ponding strategy 11"(') defined by
(12.4) belongs E(F,Q) for any JLO = (r(·),a(·), u(·)) E A(T) and

sup E (T 111"(t) 1
2 dt < 00.

~O=~a(-): aET 10
Afunction r(.) E Cis said to be an admissible CL-strategy (closed-loop strat
egy).

Let the initial wealth X(O) be fixed. For an admissible self-financing strategy
11"(') such that 1I"(t) = r(t,[r(·),S(·),1JOll[o,tj), the process (1I"(t),X(t)) is
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uniquely defined by r(·) and J.'(-) = (r(·), a(·), u(·)) given eo, w(·). We shall
use the notation X(t, r(·), J.'(')) and X (t, r(·), J.'(-) to denote the correspond
ing total wealth and normalized wealth.

DEFINITION 12.3 Let ~ = 4>(8(·,J.'(-),11(·)), where 4> : B([O,T];RnR x
R n x Rnxn x R N ) ~ R is a measurablefunction. Let the initial wealth X(O)
and time T > 0 be fixed An admissible self-financing strategy 71"(') is said to
replicate the claim ~ given the initial wealth X(O) if

X(T,r(-),J.'(-) = ~ a.s. '1J.'(') E A(T).

The claim ~ is said to be attainable.

Problem statement

Let T > 0 and X o be given. Let m > 0 be an integer. Let U(·, .) : R x
o 0

G([O, T] ~R~.) ~ R U {-oo} and G(-,·) : R x G([O, T] ~R~.) ~ Rm be

given measurable functions such that EU(Xo,S(·)) < +00.
We may stateour general problem as follows: Find an admissible CL-strategy

r(-) E Co and the corresponding self-financing strategy 71"(') E 1:(.1:) that
solves the following optimization problem:

Maximize min EU(X(T, r(·), J.'('))' 8(., J.'('»)) over r(-) E C
p(')EA(T)

(12.5)

. { X(O, r(·), J.'(')) = Xo,
subject to _ _

G(X(T, r(·), J.'(-», 8(·, J.'(-») ~ 0 a.s. VJ.'(-) E A(T).
(12.6)

As usual, a vector inequality means component-wise inequalities.

DEFINITION 12.4 Let Co be the set ofall admissible CL-strategies ro E C
such that

G(X(T,r('),J.'(.)),8(.,J.'('))) ~ 0 a.s. '1p.O E A(T).

The problem (12.5)-(12.6) can be rewritten as

Maximize min EU(X(T,r(.),J.t(.»,8(.,J.t(.»)) over r(-) E Co.
p(')EA(T)

(12.7)
Let

o

J(y) ~ {x E R: G(x, y) ~ O}, Y E G([O, T]; R~.). (12.8)
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To proceedfurther, we assume that the following Conditions 12.1-12.3 below
remain in force throughout this chapter.

CONDITION 12.1 There exist constants p E (1,2], q E (0,1]. c > 0. Ci > 0,
i = 0, 1,2, such that

U(x, y) ~ ~ (x2+ 2:~1 SUPt (Yi(t)Cl +Yi(t)-C2) + 1),
IU(x, y)1 ~ c(lxlP + 1),

IU(x,y) - U(xlly)1 ~ c(1 + Ixl + Ixtl)2-q Ix - xllq

o

'ty = y(.) E G([O,T];R~.), "Ix, Xl E J(y).

CONDITION 12.2 At least one ofthe following conditions holds:

(i) Thesetlisatmostcountable, i.e., 1= {al,a2, ...}. whereai E E;

(ii) The junction (Mr(t, a, (, e), Mu(t, a, (, en does not depend on a given
( E Eo and e E G([O, t]j Rn), i.e.• Mr(t,a,(,e) == Mr(t,(,e) and
Mu(t, a, (, e) == Mu(t, (, e), andCondition 12.1 is satisfiedwithp E (1,2).

Condition 12.2(i) looks restrictive, but in fact it is rather technical, since the
total number of elements of I is unbounded.

CONDITION 12.3 The junction G(·) is such that G(y, x) > 0 ('ty < 0,
o

"Ix E G([O, T]j R+». and there exists an attainable claim e such that
G(B(T)-le, S(T, JL('») ~ 0 a.s. for all JL{-) E A(T).

By Condition 12.3, it follows that Co =I- 0: Co contains the CL-strategy which
replicates the claim e.
12.2. A duality theorem

Without loss of generality, we describe the probability space as follows:
0= I x 0', where

0' = G([O, T]j Rn ) x Eo.

We are given a a-algebra F' of subsets of 0', and we assume that there is a a
additive probability measure P' on F' generated by (w (. ), eo). Furthermore,
let Fr be the a-algebra of all Borel subsets of I, and let F = Fr ® F'.
We assume also that each JL{-) E A(T) generates the a-additive probability
measure vI-' on Fr (this measure is generated bye, which corresponds to
JL('».

o
THEOREM 12.1 Let the set J(y) be convex for all y E G([O, T]j R+). and

o
let the function U(x,y) : R x G([O, T]j R+) ~ R be convex in x E J(y)for
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o

each y E 0([0, T); R~.). Then
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SUPr(')ECO infI£EA(T) EU(X(T, r(·), J.t(.)), S(" J.t(-))

= infl£{o}EA(T) sUPr(')ECo EU(X(T, r(·), J.t(-)), 8(·, J.t(.))).

(12.9)

12.3. Duality approach to the maximin problem
The problem (12.5)-(12.6) is a very difficult problem to solve. However, by

virtue of Theorem 12.1, it is possible to replace the original maximin problem
(12.5)-{12.6) by a minimax problem. This corresponding minimax problem is
sometimes much easier to solve.

Suppose that, for a given J.t(.) E A(D, we can solve the following auxiliary
problem:

Maximize EU (X(T, ro, J.tO), 8(·, J.tO)) over r(.) E Co, (12.10)

or, equivalently,

Maximize EU ( X(T, r(.), J.t(-)), S(·, J.tO)) over r(-)

. { X(O, r(.), J.t(.)) = Xo,
subject to _ _

G(X(T, f(·), J.tO), S(·, J.t(.))) ~ 0 a.s.

Let f 1£ (.) be an optimal solution for this problem. Consider the auxiliary prob
lem

Minimize EU (X(T, f 1£('), J.t(.)), 8(·, J.t(.))) over J.tO E A(D·
(12.11)

Letit(·) be an optimal solution of the problem (12.11). Then, by Theorem 12.1,

it follows that f ~ (.) is an optimal solution of the original maximin problem
(12.5)-{12.6).

Thus, an algorithm that solves the problem (12.5)-{12.6) can be described
as follows:

• For an J.tO, find the optimal solution f 1£ (.) of the problem (12.10).

• Find the it(.) that solves the problem (12.11).

• Then the strategy f ~(.) is optimal for the problem (12.5)-(12.6).

The solution of the problem (12.1 0) has been discussed in Chapters 8-11.
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12.4. Minimizing with respect to a(.)
We now consider the problem (12.11) under the assumptions of Corollary

11.1, Chapter 11. Let F (.) be such as defined in Chapter 11. For a given
~(.) E A(T), we have

E U (X(T,f'(.),~(.))),S(T,~(.)))

= fA vii(da) fRn Po(x, T)U(Jii(x, Aii ), x)dx,
+

where

(12.12)

and where Po(x, T) and p*(x, T) are, respectively, the probability density func
tions for S(T) with given u(·) and a(t) == Ma(t, a), r(t) == Mr(t, a). Let Aii

be such that

Consider the case in which 7 = {a(1), ... , a(N)}, where N is an integer.
Let

Clearly, each vii (·) can be described in tenns of a vector of weights I l:>.

(It, ... ,IN) E ~N such that

In this case, the problem (12.11) is reduced to a finite-dimensional optimization
problem:

Maximize

~~lIi fR+Po(i)(x, T)U[F(~~ll/;~il;~r),x, A) ,X]dX
o

over (1, A) E ~N X R+ (12.13)

subject to

r (T)F(~N 1 P",(i) (z,T) ,)d X
JR+ P* X, LJi=l i p.(z,T) ,X, 1'\ X = Q.
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12.5. An iUustrative example
Consider the following problem:

Maximize minElnX(T,r(.),JS('))
p.

(12.14)

(12.15)
. { X(O,r(·),JS(·)) = Xo,

subJect to A

0.95· Xo ~ X(T, r(-}, JS(-}) ~ 1.1· Xo·

This problem is a special case of the problem (12.5)-(12.6). We present a
numerical solution with the following parameters:

n = 1, 8(0) = 1.6487, Xo = 1, T = 1, a = a(t) == 0.5,

T = {a(I), aP)}, where a(l) = 0.2, a(l) = log(2 - eO.2),

and Ma(t,a) == a, Mq(t,a) == 0.5.
For any JS(-} E A(T), the optimal claim is

X(T) = erTX(T) = erT f{£(S(T), 5.),

where f(x,5.) = f(x, 5., a,a) is defined in Corollary 11.1, Chapter 11. For
this special case,

{

0.95· Xo iftPp.(x)/5. < 0.95· Xo
fp.(x,5.) = tPp.(x)/5. if 0.95 . ~o ~ tPp,(x)/5. ~ 1.1· X o

1.1· X o iftPp.(x)/).. > 1.1· Xo.

The corresponding function tPp.(x) defined in (12.12) is

( )

40(1)

tPp.(X) = .L li 8~0) exp (~i - 2an '
1=1,2

(12.16)

(12.17)

where li = li(JS(-}) ~ P(a = a(i)), i = 1,2.
It is not difficult to carry out the numerical calculation to obtain the optimal

solution of the corresponding problem (12.13) (iI, i2,5.), where

5. = 0.9781, i1 = 0.5455, i2 = 1 - i1• (12.18)

Hence, the strategy t(-} = t(.,fi(.),5.), defined in Corollary 11.1 with
f(x,5.) = f{£(x, 5.), is optimal for the corresponding problem (12.14)-(12.15),
and the "worst" fi(.) is such that p(a = a(i)) = ii. For this example, the
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"worst" distribution ofa is pure stochastic (Le., the ais not a deterministic vec
tor). Thus, it can be concluded that the duality theorem does not hold for this
problem if the class of random vectors a of the appreciation rates is replaced
by the class of deterministic vectors.

We also obtain numerically that

ElnX{T,ro,P(')) = 0.004.

This means that

ElnX{T,f'{'),JL{')) ~ 0.004 'VJLO E A{T).

For comparison, note that

ElnX{T,ro{-),JL{-) = 0 'VJL{-) E A{T),

where ro{') == 0 is the risk-free strategy.
Figure 12.1 shows the function fjs{x,).) that describes the optimal claim.

For the given optimal claim, it is not difficult to calculate the corresponding
strategy and the corresponding normalized wealth X{t) = H{S{t), t), where
H{·) is the function defined by (11.5). Figure 12.1 shows H{x,O) which was
calculated numerically.

Figure 12.1. The optimal claim for the example (12.14)-(12.15) with maximin criterion. -:
values of H(x, 0); - - - -: values of fA (x,.x) = H(x, T).
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12.6. Proofs
To prove Theorem 12.1, we need several preliminary results, which are pre

sented below as lemmas.

LEMMA 12.1 Thefunction X(T, r(·), J.t(.)) is linear in r(.).

Proof By (1.20), it follows that X(t) = X(t,r(·),J.tO) satisfies

X(t) = X(O) + 2:f=1 I~ p(r)ri(r, [r(·), S(·, J.tO), 1JOl[o,rj) (ai(t)dt

+ 2:j=1 Uij(t)dWj(r)).

(12.19)
It is easy to see that X(T, r (.), J.t (.)) is linear in r (.). This completes the proof.
o
LEMMA 12.2 The set Co is convex.

Proof Letp E (0,1), J.t{-) E A, r(i)(.) E Co, i = 1,2, and

r(·) ~ (1- p)r(i)(t) + pr(i)(.).

By Lemma 12.1, it follows that

X(T, r(·), J.t(-)) = (1 - p)X(T, r(1)(.),J.t(.)) +pX(T, r(2)(.),J.t(.)).

Furthermore, G(X(t, r(i)(.), J.t( ')), S(·, J.t(.))) ::; 0 a.s., i = 1,2. The set J(y)
0__

is convex for all y E C([O,T);R+); then G(X(t,r(·), J.t(.)) , S(·,J.t(·))) ::; 0
a.s. This completes the proof. 0

o
Forafunctionr(t,'): B([O,t);R+) xC([O, t]; R+) xB([O,t);RN ) --t Rn ,

introduce the following norm:

(

n T )1/2
1Ir(·)lIx ~ sup LE r r i (t,[r(.),S(·,J.t(·)),1JOll[o,tj)2dt .

p.=p.a(·), aET i=1 Jo
(12.20)

By the definition of Co, it follows that IIr{-)lIx < +00 for all ro E Co. Thus,
Co is a subset of a linear space of functions with the norm (12.20).

LEMMA 12.3 There exists a constant c > 0 such that

EIX(T,r(·), J.ta(·)) 1
2 ::; c(lIr(')lIi + X~) vr(·) E Co, Va E r.

Proof. For a r(·) E Co, let x(t) ~ X(t,r(·),J.taO), 1r(t) ~
r(t, [r(·), S(·, J.ta(-)), 1J(')]I[O,tj), 1r(t) = (1r1(t), ... ,1rn (t)). By (12.19), it
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follows that

{

dx(t) = p(t) E~111"i(t) (Ej=1 uijdwj(t) + a(t)dt) ,

x(O) = X o.

175

This is a linear Ito stochastic differential equation, and it is easy to see that the
desired estimate is satisfied. This completes the proof. 0

LEMMA 12.4 For a given a El, the function

EU(X(T, r(.), llaO), 8(',llaO))

is continuous in ro E Co.

Proof. Letr(i)O E CoandX(i)(t) ~ X(t,r(i)('),llaO),i = 1,2. By
Lemmas 12.1 and 12.3, it follows that

where c > 0 is a constant. Then

lEU (X(I)(T), 8(., llaO))) - EU (X(2) (T), 8(., Ila('))) I
~ C1E [(1 + IX(I)(T)1 + IX(2) (T)1)2-QIX (1)(T) - X(2) (TW]

11k'

~ C1 [E (1 + IX(I)(T) I+ IX(2)(T)lf] [EIX(I)(T) _ X(2)(T)12] 11k

~ C2 (1 + IIr(1) (·)lIx + r(2)(')lIx)1 /k' IIr(1)O - r(2)(·)II~k,

where Ci > 0 are constants, q is as defined in Condition 12.1, k ~ 2/q,
k' ~ k/(k - 1) = 2/(2 - q). This completes the proof. 0 .

Set

Ma.(t, a) ~ Ma(t, a, eo, S.(·)I[o,tj) ,

Mu.(t,a) ~ Mu (t,a,80,S.(·)1[0,tj)'

For an a E I, set

~ - -1 -O.(t,a) = Mu.(t,a) Ma.(t,a),

where Mu • (t, a) and Ma• (t, a) are as defined above. Let
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J'(r(·), a) ~ EU (X(T, r(.), J.'oO), S(·, J.'oO)) .

LEMMA 12.5 Let Condition 12.2(ii) holds. Then, for a given ro E Co, the
function J'(f(.), a) is continuous in a E r.

Proof Let r(.) E Co and ai E 7, i = 1,2. Set

Yo ~ X(T,r(·),J.'oO), a E 7,

where J.'.(t) ~ [r(t), 0, a(t)]. By Girsanov's Theorem applied given 8 0 , it
follows that

IE U(YOll S(·, J.'Ol (.))) - EU(Y02 ' S(., J.'02 (·)))1

= \E[z.(al, T) - z.(a2, T)]U(Y., S.(·, J.'.(·)))I

~ cIElz.(al, T) - z.(a2, T)!(IY.IP + 1)

~ C2 (Elz.(al ,T) - z.(a2, T)lq') I/q' (EIY.IP + 1)q)l/q

~ C3 (Elz.(al, T) - z.(a2, TW') IN (EIY.1 2 + 1)q)l/q

~ C4 (Elz.(al ,T) - z.(a2, TW') I/q' (IIr (.)lIi + 1)I/q,

where p E (1,2) is as defined in Condition 12.1 and 12.2(ii),

and Ci > 0 are constants.
Furthermore, it is easy to see that for an a E A, we have z. (a, T) = y(T),

where y(t) = y(t, a) is the solution of the equation

{
dy(t) = y(t)Ma.(t, a)T MO'.(t, a)-I T dw(t) ,

y(O) = 1.

It is well known that y(T) depends on a E 7 continuously in Lq' (O,:F, P)
(see, e.g., Krylov (1980, Chapter 2)). Hence

This completes the proof. 0
Let V be the set of all a-additive probability measures on :Fr. We consider

Vas a subset of 0(7; R)·. (If the set 7 is at most countable, then we mean
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that C(7; R) is B(7; R).) Let V be equipped with the weak· topology in the
sense that

LEMMA 12.6 The set V is compact and convex.

Proof The convexity is obvious. It remains to show the compactness of the
set V. In our case, T is a compact subset of finite-dimensional Euclidean space.
Now we note that the Borel u-algebra of subsets of T coincides with the Baire
u-algebra (see, e.g., Bauer (1981)). Hence, V is the set of Baire probability
measures. By Theorem N.l,4 from Warga (1972), it follows that V is compact.
This completes the proof. D

We are now in the position to give a proof of Theorem 12.1.
ProofofTheorem 12.1. Forar(·) E Co, we have J'(r(.),,) E C(T;R) and

EU(X(T, r(·), J.t(. )),8(·, J.t(.)))

= fTdvP.(a)EU(X(T, r(.), J.ta(-)), 8(·, J.ta(-))) = fTdvP.(a)J'(r(·), a),

where vp. (.) is the measure on T generatedbye that corresponds to J.t (. ). Hence,

EU (X(T, r( '), J.t(')), 8(T, J.t(.))) is uniquely defined by vp. given ,(.). Let

J(r(.), Vp.) ~ EU (X(T, r(·),J.t(·)), 8(·, J.t(-))) .

By Lemma 12.6, J(r(.), v) is linear and continuous in v E V given r(·).
To complete the proof, it suffices to show that

sup inf J(r('),v) = inf sup J(r(·),v).
r(')ECoIlEV IIEV r (')ECo

(12.21)

We note that J(r(·), v) : Co x V ~ R is linear in v. By Lemmas 12.1,
12,4 and 12.5, it follows that J(r(·), v) is concave in r(-), and J(r(.), v) :
Co x V ~ R is continuous in v for each r (.) and continuous in r (.) for each
v. Furthennore, Co and V are convex and V is compact. By the Sion Theorem
(see, e.g., Parthasarathy and Ragharan (1971, p. 123)), it follows that (12.21),
and hence (12.9), are satisfied. This completes the proof of Theorem 12.1. D



Chapter 13

ON REPLICATION OF CLAIMS

Abstract In Chapters 5 and 8, the solution of the optimal investment problem was decom
posed on two different problems: calculation of the optimal claim and calculation
of a strategy to replicate the optimal claim. In this chapter, we discuss some as
pects of replication of given claims. First, some possibilities are considered for
replicating the desired claim by purchasing options. Second, an example is con
sidered of an incomplete market with transactions costs and with nonpredictable
volatility, when replication is replaced for rational superreplication.

13.1. Replication of claims using option combinations
In previous chapters, we studied strategies that use buying and selling stocks

to replicate an optimal claim. For the real market, there exist some other possi
bilities: one can replicate the desired claim using combinations of derivatives,
for example, put and call options.

Combinations of options

Combination are strategies in which the investor simultaneously holds long or
short options of different types. If an investor combines different options, he
or she can obtain different piecewise profit/loss diagrams, where the number of
pieces is proportional to the number of different options.

Figures 1.1 and 1.2 in Chapter 1 present profit/loss diagrams for generic
European put and call options, i.e., they show the wealth of the European call
and put option holder as a function of the stock price at the terminal time.
Figures 13.1 and 13.2 here present profit/loss diagrams for corresponding short
positions for generic European put and call options, i.e., they show the wealth
of the European call and put option seller as a function of the stock price at the
terminal time. Different combinations of functions in Figures 1.1,1.2, 13.1, and
13.2 gives different piecewise profit/loss diagrams. There are some popular
combinations:

N. Dokuchaev, Dynamic Portfolio Strategies: Quantitative Methods and Empirical
Rules for Incomplete Information © Kluwer Academic Publishers 2002
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Figure 13.1. Profitlloss diagram for a short call: c is the price of the call option, S is the stock
price at the terminal time, and K is the strike price.

x
c

s

Figure 13.2. Profitlloss diagram for a short put: p is the price of the put option, S is the stock
price at the terminal time, and K is the strike price.

x
p

K s

• covered call = long stock + short call

• protective put = long stock + long put

• long spread= long call + short call

• long straddle = long call + long put
(If you own both a put and a call with the same striking price and expiration
date on the same underlying security, you are long a straddle, i.e., you own
a straddle)

• strangles are similar to straddles, except the puts and calls have different
striking prices

Recall that a winning combination of put and call options was presented in
Chapter 3.
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Figure 13.3. Profit/loss diagram for a standard long straddle. Xo = c +p, where c is the price
of the call option, p is the price of the put option, S is the stock price at the terminal time, and
K is the strike price.

x

X o= c+p s

As an example, Figure 13.3 shows the profit/loss diagram for the long strad
dle, which consists of equal amounts of put and call options.

Figure 13.4 shows the profit/loss diagram for the "winning" long straddle
with put and call options that was derived in Example 3.1, Chapter 3.

Figure 13.4. Profit/loss diagram for the "winning" long straddle from Example 3.1, Chapter 3.

x

Xo s

Replication using option combinations

Consider optimal claims such as these presented in numerical examples in
Chapter 11. Any of the functions f(x,~) can be approximated by piecewise
functions that are payoff functions of combinations of European put and call
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options, together with long or short positions in the underlying stock. If an
investor chooses to purchase the corresponding combination of options, then
he or she will have the same tenninal wealth as in the case when one replicates
the corresponding claim by buying and selling stocks, with the same initial
wealth.

EXAMPLE 13.1 Consider the example from Section 12.5, i.e., the following
optimal investment problem:

Maximize mjnElnX(T, r(·),J.L(·))
a

. { X(O,ro,J.L(·)) = X(O),
subject to ~

0.95· X(O) ~ X(T,r(·),J.L(·)) ~ 1.1· X(O).

A numerical solution was presented with the following parameters:

(13.1)

(13.2)

n = 1, 8(0) = $1.6487, X(O) = $1,

T = 1, a(t) == 0.5,

:Ei=I,2 P(a == a(i)) = 1, where a(1) = 0.2, a(l) = log(2 - eO.2).

For any J.L(') E A, the optimal claim is

rT- rT - ~X(T) = e X(T) = e fp.(S(T), ,x),

where

{

0.95· X(O)
fp.(x,)..) = 'l/Jp.(x)/)..

1.1· X(O)

if'l/Jp.(x)/).. < 0.95· X(O)
if 0.95 . X(O) ~ 'l/Jp.(x)/).. ~ 1.1· X(O) (13.3)
if'l/Jp.(x)/).. > 1.1· X(O).

The corresponding function 'l/Jp.(x) is defined by (12.12)(12.18).
Figure 12.1 shows the function fp.(x, )..), which describes the optimal claim

given S(T) = x. For the given optimal claim, it is not difficult to calculate the
corresponding replicating strategy and the corresponding normalized wealth
X(t) = H(S(t), t), where H(·) is the function defined by (11.5).

On the other hand, the optimal claim in Figure 12.1 can be approximated
closely enough by a claim generated by a combination of two put options (long
and short) and two call options (long and short) (the long condor combination,
in terms of Strong (1994), p. 72). This combination can be constructed by the
following way:

• buy 0.55 put options with strike price $1.03;

• write 0.55 put options with strike price $0.76;
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• buy 0.16 call options with strike price $1.95;

• write 0.16 call options with strike price $2.9.

Figure 13.5 shows that the two claims are close. Thus, the option combina
tion described above gives an approximate solution of the optimal investment
problem (13.1)-(13.2).

Figure 13.5. Approximation of the optimal claim for the problem (12.14)--(12.15) by a com
bination of put and call options. -: values of the claim for the option combination; - - - -:
values of the optimal claim.
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Superreplication under uncertainty and transaction
costs

In this section, the diffusion model of a financial market is modified and
investigated under the assumption that the volatility coefficient may be time
varying, uncertain, and random. Moreover, in our modified model, transaction
costs are taken into account. It is shown that there exists a superreplicating
strategy for the European type claims. The strategy is obtained by solving a
nonlinear parabolic partial differential equation.

On the impact of transaction costs and uncertainty for volatility

In the classic Samuelson and Black-Scholes model, the volatility is assumed to
be given and fixed, and transaction costs are not taken into account. However,
in any real financial market, transaction costs have to be taken into account.
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Furthermore, empirical research shows that the real volatility is time-varying,
random, and correlated with stock prices (see Black and Scholes (1973».

Because the volatility coefficient appears in the formulas defining the struc
ture of hedging and optimal strategies, the estimation of the volatility from
usually incomplete statistical data of stock prices is of a special importance
(see Day and Levis (1992), Kupiec (1996), Taylor and Xu (1994». Manyau
thors emphasize that the main difficulty in modifying the Black-5choles model
is taking into account the fact that the volatility does depend (as it is shown by
statistics) on both time and stock prices. Christie (1982» has shown that the
volatility is correlated with stock prices. Lauterbach and Schultz (1990) note
that the Black-5choles option pricing model consistently misprices warrants
(see also Hauser and Lauterbach (1997».

In modified Black-Scholes models, a number of formulas and equations for
volatility were proposed (see, e.g., Hull and White (1987) and also Christie
(1982), Finucame (1989), Johnson and Shanno (1987), , Masi et al. (1994),
Scott (1987». Following Avellaneda et ai. (1995), Avellaneda and Paras
(1995), we assume that the bounds of the volatility are given.

Another problem arises outofthe desire to take into account transaction costs.
Black and Scholes (1972) noted that in real financial markets, transaction costs
are quite large. Many authors remark that the return volatility is correlated
with the trade volume, transactions costs and stock prices (Grossman and Zhou
(1996), Kupiec (1996». A number of mathematical models with transaction
costs were proposed (see Bielecki and Pliska (1999), Davis and Norman (1990),
Edirisinghe et al. (1993), Leland (1985), Taksar et al. (1988». Similarly
to Leland (1985) and Grossman and Zhou (1996), we investigate a financial
market model where the costs of the high-frequency component of the portfolio
are taken into account. In addition to the results obtained in the cited papers, we
consider the sufficient and necessary conditions of superreplication. Further,
we consider a model with the costs of jumps for the portfolio as well as with
uncertain volatility.

13.2.1 Market model and problem setting
Consider the single-stock diffusion model of a financial market consists of

two assets: the risk-free bond or bank account B = (B(t))t>o and the risky
stock S = (S(t)h~o. In this model, it is assumed that the dynamics of the
stock is described by the stochastic differential equation

dS(t) = S(t)[adt + adw(t)], t> 0, (13.4)

where a is the appreciation rate, a is the volatility coefficient, and w(t) is the
standard Wiener process. The initial price So > 0 is a given nonrandom value.
The dynamics of the bond is described by

B(t) = ertBo, (13.5)
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where r 2: 0 and Boare given constants.
We assume that a = a(t) and (J = (J(t) are random processes that are square

integrable and do not depend on the future. In other words, a(t) and (J(t) do
not depend on w(t + h) - w(t) for h > O.

In the classic Black and Scholes model, cr is supposed to be known and fixed,
and a is arbitrary and unknown. Our aim is to take into account transaction
costs and the fact that the volatility coefficient cr does depend on both time t
and the stock price S(t). In our model, the main assumptions are related to the
upper and lower bounds of the volatility coefficient and the nature of transaction
costs.

ASSUMPTION 13.1 The volatility coefficient (J = (J( t) satisfies the following
condition: (J1 ::; (J(t) ::; u2for some constants Ub U2, where 0 < (J1 ::; (J2.

Let Xo > 0 be the initial wealth at time t = 0 of the investor. The total wealth
of the investor at time t > 0 is

X(t) = (3(t)B(t) + -y(t)S(t). (13.6)

Here -y(t) is the quantity of the stock and (3(t) is the quantity of the bond. The
pair ((3(t), -y(t)) describes the state of the securities portfolio attime t. We call
such pairs strategies. Some constraints will be imposed later upon operations
in the market, or, in other words, upon strategies.

REMARK 13.1 In previous chapters, we have used the term strategy for the
process of the investment in the stock 1I"(t) ~ -y(t)S(t). The vector 11" alone
suffices to .\pecify the portfolio for a self-financing strategy for a model without
transaction costs.

The main constraint in choosing a strategy in the classical problem without
transaction costs is the so-called condition ofself-financing.

DEFINITION 13.1 Apair ((3(.), -y(.)) is said to be self-financing in afinancial
market model without transaction costs if

dX(t) = (3(t)dB(t) + -y(t) dS(t). (13.7)

As usual, we denote S(t) = e-rtS(t) and X(t) = e-rtX(t); the process
X(t) is said to be the normalized wealth.

Our aim is to extend this definition and the corresponding results to the case
of transaction costs and uncertain volatility.

DEFINITION 13.2 A pair ({3(.),-y(,)) is said to be an admissible strategy if
the following conditions hold:
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(i) ,(t), ,8(t) are square integrable random processes that do not depend on
the future (in otherword'i, ,8(t) and o-(t) do not depend on w(t +k) - w(t)
fork> 0);

(ii) the process ,(t) is piecewise continuous a.s. (almost surely);

(iii) there exists a set ofopen random time intervals Ik C [0, T], 1k = (Tk,Tt)
such that Tk, ~~ are Marlwv time moments, 1k n1m = ofor k =I=- m a.s.,
mes {[O, T]\ Uk=1 1k} = °a.s., where N ~ +00 is a random number of
intervals, and ,(t) has the differential

d,(t) = ;Y(t)dt + i(t)dw(t) for t E 1k;

(iv) there exists afunction G(x, t) : R x R -+ R such that

,(t) = G(S(t), t),

and G(x, t) is bounded on any bounded domain; and

(v) the processes a(th(t) and ,(t)S(t) are square integrable.

(13.8)

Here mes denotes the Lebesque measure.
We also give a more constructive description of admissible strategies. For

this, we notice that a strategy (,8(. ), ,(.» is admissible if ,8(t) satisfies all the
above assumptions, ,(t) = G(S(t), t), where G(x, t) : R x [0, T] -+ R is
a function bounded on any bounded domain and of a polynomial growth, and
there exists a set of domains Dk, k = 1,2, ..., with piecewise CI-smooth
boundaries 8Dk, such that

REMARK 13.2 The corresponding intervals 1k are maximum connected open
intervalsh = {t: (S(t), t) E Dm }. Further, the set [0, T]\uf=l 1k is the setof
time moments when (S(t), t) E Uk>18Dk, and this set is an a.s. continuous (or
noncountable) Kantor type set with-zero Lebesque measure; Dk = Dk U8Dk.

We introduce some transaction cost for the time interval [0, t] as

where >'(t) is a given nonnegative random function that depends on
(,8(,), '('), S(·»I[o,tj, and Ck are the costs for the jump in the stock portfo
lio quantity.
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DEFINITION 13.3 An admissible strategy (,8('),'Y(')) is said to be self
financing in afinancial market with transaction costs if

X(t) = Xo + J: ,8(7")dB(7") + J: 'Y(7")dS(7")

-J: >'(7")d7" - L:k : Tk <t Ck, t > O.
(13.9)

ASSUMPTION 13.2 We assume that

>'(t) = c(t) 1i'(t)S(t) I,

where c(t) is a random function and c(t) E [0, c]ior all t > 0, where c~ 0 is
a given constant. Furthermore, we assume that

where cp(.) is a given nonnegative function.

In other words, the transaction cost over the time period (0, t] is

In this asswnption, the continuous "slow" change of the quantity of the stock
portfolio 'Y(t) is not taken into account. A similar asswnption was introduced
by Leland (1985) for the analysis of the trade volume and the volatility in a
financial market (see also Grossman and Zhou (1996)).

Note that the case of c= 0, cp == 0 corresponds to zero transaction cost.
We can now rewrite Definition 13.3.

DEFINITION 13.4 An admissible strategy (.8(·),'Y(·)) is said to be self
financing in afinancial market with transaction costs if

X(t) = Xo+J: ,8(7")dB(7") +J: 'Y(7")dS(7") - J: c(7") 1i'(7")S(7")1 d7"

- L:k : Tk <t cp(I'Y(7"k) - 'Y(7":_1)I).

Problem of superreplication

Consider the problem of replication of a given claim. Let ~ = F(S(T)) be
a random claim, where F(x) : R -+ R is a given nonnegative function and
T > 0 is a given time.
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(13.10)

DEFINITION 13.5 A strategy (8(·),')'(')) is said to superreplicate a claim
F(S(T)) for the market with transaction costs and uncertain volatility if the
following conditions holds:

(i) ({3(.),')'(,» is admissible and self-financing, and the function G in (13.8)
depends on parameterscT1, a1, Co 11'(.), T, F(·); and

(ii)
X(T) ~ F(S(T)) a.s.

for all admissible c(t), a(t).

In the approach ofBlack and Scholes, the option price is the initial wealth which
may be raised to the option-writer obligation by some investment transactions.
Following this approach, we define the fair (rational) price of a claim.

DEFINITION 13.6 Let II be the set ofall values ofthe initial wealth Xo such
that there exists an admissible superreplicating strategy for the claim F(S(T).
Then, the fair (rational) price Cfor the claim in this class ofadmissible strate
gies is defined as

C = inf X O•
XoEII

DEFINITION 13.7 A strategy (')'('),{3(.) that superreplicates the claim
F(S(T) with the initial wealth X(O) is said to be rational if Xo = 6, where
Cis the fair (rational) price of the claim.

13.2.2 Superreplicating strategy
We assume that F(x) is piecewise smooth and IF(x)1 + IdF(x)jdxl ~

const(lxl + 1). Furthermore, we assume that one of the following conditions
holds:

(i) The function F(x) is a convex function and there are nonzero transaction
costs (in other words, Cf:. 0, 11' =I- 0).

(ii) The function F(x) may be nonconvex, but the transaction costs are absent
(in other words, C= 0, c(t) == 0, lp(x) == 0).

Notice that the function F(x) = (x - K)+ from the standard European call
option is convex.

Suppose H (x, t) is asolution of the boundary value problem for the nonlinear
parabolic equation

{
W(x, t) + ~ maxUE [UI,(2) {a2x2~;t (x, t)} + CO'2! ~xIf (x, t)1 x2 = 0,

H(x, T) = F(x).
(13.11)
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in the domain x > 0, t E [0, T]. It is known that this equation has a unique
solution with locally square integrable derivatives (see Krylov (1987)).

Furthermore, let

X(t) = H(S(t), t) +I t
a(t)dt,

where

a(t) ~ maxUE[Ul,(2) {u2_~(t)2S(t)2~;t(S(t), t) }

+ (W2 - c(t)a(t)) I~:lf (S(t), t)1 S(t)2.

Let X(t) ~ ertX(t),

aH - R( ) = X(t) - ,(t)S(t)
,(t) = ax (S(t), t), ~ t B(t)'

(13.12)

(13.13)

(13.14)

Now we are in a position to present the main results of this chapter.

THEOREM 13.1 The strategy (13.14) is a superreplicating strategy for the
claim ertF(S(T)), and the corre,sponding normalized wealth X(t) is defined
in (13.12).

THEOREM 13.2 The rational price of the claim ertF(S(T)) is

6 = H(So,O). (13.15)

COROLLARY 13.1 The strategy (13.14) is a rational strategy that superrepli
cates the claim ertF(S(T)).

Application to the Black and Scholes model
We shall extend the Black and Scholes results to the case of the uncertain
volatility coefficient and transactions costs.

COROLLARY 13.2 Let F(x) be a convex function. Then

1 {+oo ( { tfT
2
}) (2)H(x,t)=.;'iff}_oo F xexp fTyvt-T exp -; dy,

(13.16)
where

(13.17)
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Moreover, ifF(x) = (x - K)+, where K >°is a constant, then the rational
price ofthe claim ertF(S(T)) is

where

6 = H(So, O) = SoN(d+) - KN(d_L (13.18)

d ( A tmT)-1 (1 So ± T(2)± = (7V.l n K -2- .

N(d±) is the cumulative standard normal distribution evaluated at d±,

1 IX ~N(x) = tn= e- 2 dy.
v211" -00

13.3. Proofs
PROPOSITION 13.1 Let F(x) be a convex function. Then the solution ofthe
equation (13.11) coincides with the solution ofthe equations

{
9Jf(x, t) + !&2x2~:lf (x, t) = °
H(x, T) = F(x),

where fJ = J(7~ + 2W2.

(13.19)

(
Xl + X2 )H(XI'O) + H(XI'O) < 2H 2 ,0.

Consider the classical problem of the option pricing with the volatility coeffi
cient (7 = & and without transaction costs. Let

Proof Let H(x, t) be a solution of (13.19). Suppose that there exists to E
[0, T) such that the function H (" to) is not convex. Since T is arbitrary and the
coefficients of the equations are constants, it is enough to consider only to = 0.
Suppose the function H(·, 0) is not convex. Then there exist Xl > 0, X2 > °
such that

Set
;y(t) ~ (,(l)(t) + ,(2) (t)) /2.

Clearly, there exists P(t) such that (P(t), i(t)) is a self-financing strategy. Let
X(t) be the corresponding wealth. It is easy to see that (P(t), i(t)) is a super
replicating strategy and that Xo < H(So,O). However, this result contradicts
•• _.... .. ,...... I" .- F?'I n\·
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function, H(·, t) is convex for any time t, and H;x(x, t) ~ O. Hence, equation
(13.11) holds. This completes the proof of Proposition 13.1. D

Proof ofTheorem 13.1. Let F(·) be a convex function. From Proposition
13.1, equations (13.16) and (13.19) hold for H defined by (13.11). Let

aH
G(x, t) = ax (x, t).

The fundamental solution for (13.19) is known (see Proposition 11.3 and (11.6),
and, e.g., Shyryaev et ai. (1994)):

H(x, t) ~ r P.(Y, T, x, t)F(y)dy,
JR'+

where P.(y, r, x, t) as a function of y is the conditional probability density
function for the vector S.(r) given the condition S.(t) = x, where 0 ~ t ~ r.
More precisely,

_ ( ) 6 1 -(In(Yi) -In(x) +&2(t - r)/2)2
P. y, r, x, t = x&J21f(t _ r) exp 2&2(t - r)

Using this solution, we can obtain the explicit formula for G and conclude that G
has continuous derivatives G~, G~, G~x in Qfor any domain Q = D x (0, T.),
where DC R+, T. E (O,T) (or G E C~,l(Q)).

Clearly, this strategy is admissible with

aG - - ~H - -
l'(t) = ax (S(t), t)O"(t)S(t) = 8x2 (S(t), t)a(t)S(t),

I ~H - \-2-\(t) = c(t) ax2 (S(t), t)a(t) S (t).

From Ito's formula and (13.12) and (13.13), we have that

dX(t) = dtH(S(t), t) + a(t)dt

= G(S(t), t)dS(t)

+ (!1Jl-(S(t), t) + !a(t)2S(t)2o;xf (S(t), t») dt +a(t)dt

= G(S(t), t)dS(t) - -\(t)dt.

Hence the strategy is self-financing. Furthermore, it is easy to see that a(t) ~ 0
and (13.10) hold.

In the case ofzero transaction cost, we do notneed the existence ofderivatives
G~, G~, G~x, and the proof is similar. This completes the proof of Theorem
13.1. 0
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Proof of Theorem 13.2. In the classic case of zero transaction costs and a
known constant volatility (when c = 0, cp == 0, U1 = (2), we have X(T) =
F(S(T)) for the replicating strategy, and fair price is 6 = E*F(S(T)), where
E* is the expectation by such probability measure that S(t) is a martingale
and, hence, that 6 is the rational (fair) price. We cannot use this method in
our case because we have only inequality X(T) 2: F(S(T)), and the values
X(T) - F(S(T)) depend on strategies. However, we can use another approach
that does not use martingale properties.

Let (b(t)'-Ht)) be some other superreplicating strategy, -y(t) = G(S(t), t),
X(t) be the corresponding normalized wealth, and C = Xo < 6. Suppose
that u(t) == U2, c(t) == c. Introduce the following function:

il(x, t) = 1x

G(y, t)dy.

Let Ik be the random time intervals introduced above for admissible strategies
k = 1, ... ,N. We have from Ito's formula that

Here we use some version of Ito's formula for a function with nonsmooth
derivatives (see Krylov (1988) and Dokuchaev (1994». The condition of self
financing and (13.10) give us that

J;{ G(S(t), t)dS(t)

= X(T) - Xo + J;{ A(t)dt +~k Ok = F(S(T)) +e+ JoT A(t)dt - Xo.

Here e2: 0 is some random value. Denote

- /). 8il 1 2 2&il _ I82ill 2
£H = at + 2"U2X 8x2 + CO"2 8x2 x.

Then

~:=1{he £il(S(t), t)dt + H(S(rk+1)' rk+1) - il(S(rt), rt)}

= il(S(T), T) - il(So, 0) - F(S(T)) - e+ Xo,

where t 2: °is some random value. Denote by X the space W;,1(Q)* that is
dual to the Sobolev space W;,1(Q), Q = D x [0, T], where D C (0, +00) is
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an arbitrary interval. The elementeE X is said to be nonnegative if (e, J) 20
for every f E Wi,l(Q) such that f(x, t) 2 O. In this sense, £H ~ 0 as the
element of X. Then H(x, 0) ~ H(x,O) because of (13.11). This completes
the proof of Theorem 13.2. 0

ProofofCorollary 13.1. The proof is straightforward.
Proof of Corollary 13.2. The fundamental solution for equation (13.19) is

known, and (13.19) holds for H defined by (13.12) (see, e.g., Shyryaev et al.
(1994». From Proposition 13.1, the equations (13.11) hold for this H. For
F(x) = (x - K)+, the formula for 6 is a consequence of the Black-Scholes
result. This completes the proof. 0
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