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Preface

e ————

Over the last 40 years, academic researchers have made major break-
throughs in advancing modern practice in finance. These include portfolio
theory, corporate finance, financial engineering of derivative instruments,
and many other applications pertaining to financial markets overall.
Formal portfolio theory research saw major advances in the context of
normative choice modeling, including how to form an optimal pertiolio,
beginning with Harry Markowitz. Parallel with this, we saw new advances
in capital market theory in the context of descriptive equilibrium proposi-
tions in terms of the risk/return tradeoff, beginning with Bill Sharpe and
the Capital Asset Pricing Model (CAPM). Many related academic devel-
opments provided rich portfolio management insight, including Arbitrage
Pricing Theory (APT), market efficiency proposition, market anomalies,
and behavioral finance. .
Against this backdrop, it is therefore not surprising, over the past two
decades, that modernizing portfolio management has been the ambition
of hundreds of professional investment management practitioners as well
as fiduciaries. Driven by market demand and the search of higher returns;
a new breed of investment professionals has emerged — quants, ie,
quantitative professions with advanced degrees in science and economic/
finance, seeking to exploit market anomalies with increasing success.
As a result, quantitative equity investment strategies have been gain-
ing acceptance and popularity in the investment community. They are
deployed in many forms, from enhanced products :]mum to beat e
ket indices while limiting the amount of risk, m:bsPhlte Fetum Statepiey
(long-short hedge funds) that strive to produce positive return regardiess
of the overall market condition. i L
Quantitative equity portfolic management combines e o
advanced techniques from several disciplines. "‘d“dj"gﬁm_nml c;*‘nmm- .
ics, accounting, mathematics, and operational ‘““"th Althoug e
books are devoted to these disciplines, few deal mth-qmnﬁtaﬁvgsquitz_-
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investing in a systematic and mathematical framewaork that jg su
quantitative investment professionals and students with interesys
titative equity investing.

The motivation for this book is to provide a self-contained ¢
and detailed mathematical treatment of various topics that ser
tively as the foundation of quantitative equity portfolio mana

itable
n quan_

Verviey
Ve collge,

H : e gement,
many cases, we frame related problems in this field in mathematical ¢

and solve these problems with mathematical rigor while establishing aq
analytical framework. We also illustrate the mathematical concepts angd
solutions with numerical and empirical examples. In the process, we pro-
vide a review of quantitative investment strategies or factors accompanied
by their academic origins.
This book serves as a guide for practitioners in the field who are frus-
trated with certain naive treatments of many common modeling issues and
wish to gain in-depth insights from mathematical analysis. We hope that the
book will also serve as a text and reference for students in computational and
quantitative finance programs interested in quantitative equity investing out
of pure curiosity or in search of employment opportunities. As practitioners,
we feel strongly that current curriculum of many such programs is often light
on portfolio theory and portfolio management, and long on option pricing
theory and various microscopic views of market efficiency (or lack thereof).
_ As practitioners and active researchers in the field, we have selected top-
ics essential to quantitative equity portfolio management, from theoretical
foundation to recently developed techniques. Due to our variety of topics,
we adopt a flexible style: we employ theoretical, numerical, and empirical
approaches, when appropriate, for specific subjects within the book.
Many people have helped us in making this book possible. We aré
_gratfful to Joe Joseph of Putnam Investments who is responsible for many
ideas developed in Chapter 6, We thank Dan diBartolomeo of Northfield
and participants of Northfield research conferences for feedbacks to s€¥-
eral research presentations that have made their way into the book. Frank
Fabozzi and Gifford Fong also deserve credit in recognizing the value of
our research and publishing it in the Journal of Portfolio Management and
the Journal of Investment Management, respectively, We also thank ouf
colleagues at PanAgora and Putnam for helpful comments. Betty Ann¢
C.au, Craig Nolder, and Alec Kercheval of Florida State University pro®
vided encouragement and academic perspective for our effort. Others who
provided feedback to us include Artemiza Woodgate and Fred Copper:

Lu.l' but not least, we are very grateful to Jennifer Crotty for gdjmril]
assistance. Any errors, however, remain entirely ours,

Abstract

This book provides a self-contained overview, empirical examination, and
detailed mathematical treatment of various topics from financial econom-
ics/accounting, mathematics, and operational research that serve collec-
tively as the foundation of quantitative equity portfolio management. In
the process, we review quantitative investment strategies or factors that
are commonly used in practice, including value, momentum, and quality,
accompanied by their academic origins. We present advanced techni?ucs
and applications in return forecasting models, risk management, portfolio
construction, and portfolio implementation. Examples include optimal
multifactor models, contextual and nonlinear models, factor timing tech-
niques, portfolio turnover control, Monte Carlo valuation of firm values,
and optimal trading. _

We frame and solve related problems in mathematical terms a.nd also
illustrate the mathematical concepts and solutions with :‘u!menﬁfl and
empirical examples. This book serves as a guide for P“‘F“““‘“I“ = tl:f
field who wish to gain in-depth insights from mathematical ana dvils \ :
hope that the book will also serve asa text and. reference for students ¢
finance/economics, computational, and quantitative finance ?_":.g:_":z
interested in quantitative equity investing, out of pure curiosity
search of employment opportunities.
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CHAPTER 1

Introduction:
Beliefs, Risk,
and Process

#

T HIS BOOK IS ABOUT QUANTITATIVE EQUITY INVESTMENT STRATEGIES,
focusing on modern techniques and applications. Three fundamental
activities form the basis of a modern investment practice: in order to be
successtul, the investment team must have (1) a strong philosophy based
on commitment to a set of beliefs, (2) a clear approach in translating uncer-
tainty into an appropriate risk/return trade-off, and (3) a comprehensive

investment process from beginning to end.

1.1 BELIEFS
What do markets give us, and how do we believe we can go after it? This
two-part question is essential toa portfolio manager’s belief system. In
the premodern 1950s world of fundamental stock picking, the analysis
second part of the question = g9 for the “best”

focused exclusively on the ‘
stocks and enjoy the results. Inherent in this beliefis that one has sufficient

skill and is significantly blessed above others who compete in the same
game. Across a diverse spectrum of stock-picking techniques. there cer-
tainly have been (and are) some that win more than others. However, over
the years, formal academic research and practi verg
on the conclusion that it is difficult to win consistently if we account for
the proper risks, With consideration of the risks, we should think of the

game as well worth winning but not necessarily worth playing.

&
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...".s for the first part of the question, there has be
lution of beljefs, What does the opportunity set look like? How g
distributions of relative stock returns behave? Are these return diffe t: "
exploitable? In the 1960s, there began a tension surrou nding the tr:hncea
of past price and volume information in security returns — e

€n a Commgn evy

X “lel:hn{c
algeie : = : al
analysis.” A well-accepted investment approach was to study the patter
Ot past price returns in order to torecast future returns. As we will see {
: e in

later chz_lpt::-rs. the same underlying price data may be also relevant toda
though in the context of a modern, comprehensive process, A

As academics began to formally study return distributions, they gravi.
tated to a concept of “random walk.” They increasingly came to the con-
clusion that “price has no memory” (Lorie and Hamilton 1973). If the
investor’s technique is conditioned on some ad hoc price configuration,
there will be little value added because a random walk stock will
no profitable clues about future prices.

It was Fama (1970) who artfully formed and expanded the notion of
random walk into what he popularized as the efficient market hypoth-
esis (EMH), In summary, it is hard (if not impossible) to beat the market
depending on the investors’ information set. Past price data does not cut
it. Taken to an extreme, a very strong EMH belief is that all information,
both public and private, is not sufficient to beat the market, after consider-
ation of appropriate costs and proper risk specifications.

By the 1970s, variations of efficient markets beliefs were firmly implanted
in the brains of many financial economists. In fact, it was quite difficult
for a bright assistant professor of finance to publish any empirical findings
that disproved the EMH. However, by the early 1980s, the ambitious and
persistent academic empiricists found a way — just call it something else!
In the 1980s, there came a volume of formal literature that discovered inef-
ficiencies that could lead to abnormal returns if rigorously applied. The list
includes size effect, January effect, value irregularities, momentum effect,
etc. We called them anomalies' and reverently acknowledged in the con-
clusion that these discoveries (1) were likely not repeatable in the future
(now that we know them), (2) may be inconclusive because of pﬂteﬂti’l
“risk misspecification,” or (3) were lacking the proper allocation of I:O:o'tf
in the strategy. In a modern quantitative process we call these anomalies
“factors,” which are an in-depth topic of later chapters. _

What are our beliefs? What are the principles underlying our book? We
choose rather safe ones that are explained in many of the subsequent chap-
skill and return dispersion are the key drivers of opportunity.

give us

fers. Firsl-
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second, the market is not efficient, which, in many cases, is attributable 1o

investors’ irr,ﬂlium' behavior described by “behavioral finance.” Third, the
variables or factors we use 1o predict return must be grounded in financial
theory and reflect logical cause and effect. (Sunspots do not cutit.) Fourth,
true alpha-generation is available to practitioners who creatively combine
modern tools — econometrics, mathematics, investment theory, financial
accounting, psychology, operations research, and computer science. Fifth,
objective discipline is essential in the implementation of strategies. This is
not to say subjective judgment is lacking in the world of quantitative man-
agement — but it lies in perfecting the comprehensive portfolio system,
rather than in comprehending the perfect stock selection.

This comprehensive system is the core of quantitative investment process.
Active investment is about the processing of information. One must have
the best information as well as the best way to process and implement them
in a portfolio. With the advent of the information age, advance of financial
markets, and increasing computing power, quantitative investment process
provides a way of unifying all these together to deliver consistent returns. In
a way, this is analogous to combining the best machinery with the best oper-
ators. In the late 1960s, there was a common beliefin the U.S. Air Force that
advances in aeronautical engineering would obviate any role for the human
pilot. On the contrary, air superiority today resides with the force that com-
bines the best equipment with the best-trained pilots. The best equipment is
not knowable without design inputs from the best pilots.

1.2 RISK

The quantification of uncertainty is also one of the evolutionary hn?aje
throughs in the theory of investment during the last century. Franlk lKru.ght
(1921) laid the groundwork with a quite intuitive definitional distinction
between uncertainty and risk: (1) decision makers crudely n?emte ina \s.v.r[d
of random uncertainty, and (2) risk is a condition in 'fvhsch the dec1:smn
maker assigns formal mathematical probabilities to spt:mfy the unc?rtau_ﬂ}r.
Later, Von Neumann and Morgenstern (1944} formalized ﬂ:ll.t speclﬁcauun
of risk into microeconomic theory, laying a foundation for TI'IIU:'III decision
making under uncertainty with the concept of expected uuhty._

It was Markowitz (1952) who inaugurated the v§st body f'f literature we
know as modern portfolio theory (MPT). Markowitz C'J'mbuwfl the notion
that when a rational investor is faced with a setof sec_urfty choices lhal-f?t—
low a normal distribution, he or she will seek to maximize expected u_mhnr
b)’ formau’,v trgdin‘g off expeﬂtﬂd return with risk measured b]l'wﬂm.
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diminishing marginal utility for wealth, the
and the security weights are solved using the
rtfolio return distribution (see Chapter 2 for

In a world characterized by
optimal portfolio is specified
mean and variance of the po
a complete treatment).

Bill Sharpe’s article
lio concept to the next level by deve PRI
to describe the first formal capital market pricing ol risk fra lmewurk — the
capital asset pricing model (CAPM)." For this, he later received the Nobel
Prize. as did Harry Markowitz. Assuming frictionless markets and homo-
geneous expectat ions of investors, the pricing rel-.lltiunshi? is depicted .iu
terms of expected returns. The expected return of a security (or a portfo-
lio) consists of two parts: (1) market price of time — the risk-free rate and
(2) market price of risk — beta times the market excess return.

For investors, CAPM concludes that the market provides a fair risk pre-
mium — take systematic or market (beta) risk and be rewarded. As such,
prudent investments should be combinations of two passively managed
portfolios — the market portfolio and the risk-free portfolio; the precise
combination is governed by the risk tolerance of a particular investor.

In theoretical equilibrium, beta is the elasticity of the portfolio return
with the market and presents a linear trade-off between risk and return in
the long run, i.e., capital market line (CML). However, can’t we do better
in practice? Isn't what this book and myriads of writings before are about?

How can we generate alpha — the return above the CML that is in excess
of the risk? It takes positive skill!

in 1964 took the normative mean-variance portfo-
loping an equilibrium pricing model

1.2.1  Beta, Benchmarks, and Risk

Risk-adjusted positive skill is the true goal of the game. The development
of risk and capital market theory from the 19505, and i’or 30 yea I:h re-
after, ushered in a host of phenomena and participants to th years -nf

stand out. First, beginning in the 1980s, the attraction of ?I‘;s;:;:l:lg t;e:

benchmark — index such as the S&
P 500 —
Wells Fargo (BGI today), Mellon, 0 — exploded. Entrepreneurs at

and later, Van
offered passi el » vanguard and State Street,
fu::it ‘f::& a]:ief ::T: il':hadt funds with an efficient beta of 1 indrfow
new risk tools combined with the now acceptable belief

G e eitine Mrstegiey ‘e tray in the 19805, Manag-
: e (positi
increasingly exposed to benchmark cz:;a“
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— the influential pension plan consultants. Within the consulti firms
i T

th MPT devices o r.ondufl man-

designated benchmarks (growth/

AL onal, developed/emergi
Their objective was to provide service to institutional in\rr:trf;:ga‘ndﬂ:l;]e.

ieam. uscf'ame alpha from beta” by performing scientific attribution
:L-.t active managerd, as well a,s tp Pronounce an active strategy dead or alive,
The game was still worth “winning” but now had more talented officials
evaluating the “playing”

Third, enter hedge fund managers who got away with no benchmarks.
Hedge fund is not a new phenomenon — combining subjective long and
short positions (asset classes of securities) goes back to the 1960s. For exam-
ple, equity hedge funds are long-short — buy securities as well as sell bor-
rowed ones — but they are not necessarily market beta neutral. It is often
hard, if not impossible, to disentangle what is alpha and what is beta. For a
long time, nobody cared because most of the investors in the hedge funds
were high-net-worth individuals who had their eyes on the absolute returns,
not abstract geeks. Today, the situation has changed dramatically. Equity
market neutral managers (mostly quants) manage zero-beta funds with
refined risk management systems, and often deliver pure alpha. Institutional
investors are increasingly pursuing and paying handsomly foralpha, but -
unwilling to pay excessively for beta management. Hence, we have the rise
of market-neutral hedge funds with a new benchmark — cash.

1.3 QUANTITATIVE INVESTMENT PROCESS =it
What steps characterize a quanlitativc.im:ltstmmt process’ ¥ nah:rc
instruments in the toolbox of quantitative investment professio There

are at least five essential components.

. that forecasts

Alpha model: First and foremost 1$ i al?t::ismrfl::iﬂfﬂﬁ“d by the
excess return of stocks. If return d“m.b ufm it is often the expected
expected return and the standard deviation: &7

i under-
7 or sell, pverweight or
return that determines whethcr\!:h bvﬂfﬂ e P

weight, and the standard df_\“iﬂﬁ  random factorsthat represent
portfolio allocations. It js easier to e alpha factors Bt
non-compensated market risks than to - -

sent incremental rewards. The H.ilﬂ"‘as o 1l a5 superior systems. Itis
highly guarded, reflecting cr?:;rm“mhm the investment firm.

the most important differentia
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v Porttolio Managenen!

Risk models: Good quantitative estment |“f" ¢sses require sophisy,
cated risk tools that embody many *drivers’ of risk bevond the One.
factor CAPM — plain vanilla beta. Today, commercial risk Maodels
such as BARRA serve to isolate and control stock specific factorg
that measure unwanted risk. such as size, value and the like. How.
ever, some BARRA factors, first estimated in the mid-1980'%, over.
lap with potential stock-specific alpha factors, Ross and Roll (197,
1977) introduced the arbitrage pricing model (APT), and estimated
it with a set of four purely macroeconomic time-series actors, such
as the cvele of long-term interest rates, Later others ll!.‘\'!.'ll"‘k'd mure
complete specitications of macro models using such phenomenon as
economic growth, term structure of rates, inflation, ol and so on.
Salomon Brothers quantitative team first estimated a set of macro-
economic risk systems for local and global equity markets in the late
1950's Similarly, the Northfield Company delivered a portfolio opti-
mization package using a macro risk model in the 1990's.

Portfolio optimization: The normative machinery that calculates
the tradeoft between alpha factors (wanted risk) with risk factors
\unwanted risk) formally is the optimization tool, Effectively, port-
folio optimization formally combines both proprietary al;ﬂ:m with
exopenous risk to create the ex ante aptimum se :
subject to the risk appetite of the manager. M
active portfolios versus a benchm

tof portfolio weights,
anagers can optimize

e ark such as S&P 500 index, or
?"""“ cash tor market-neutral long/short portfolios, These tools
allow managers to dissect the ex ante risks

with their alphas. However, the
in risk model outputs. As we w
also, and it must be modeled 1o

and place their exposures
Fe is a tendency to be overconfident
ill see later, there is alpha model risk

achieve the best portfolio results.
p.u::f:f:tfqr:;:::rl:rl::iun: Risks and alphas change. The complete pro-
requires trading — turnoyer, Relatively high-turnover active
T:;:]t':.‘l:,: f:::‘:,tdk ::o-st allcmliun 0 trm'.sacl‘.itfn costs, S::!cc the
ik i,-.nucm-._-ld m;ﬂ;:pminun and computer networking tech-
i ove down the costs of trading — both
market pricing impact proportional to

volume. Neve

to nndumnes:‘::l:striramng. COSIS are positive and less subject

implementation process sr:::;:: Prices (and alphas). The modern
A rc‘ .

work 1o address the portfolio im ncludes o tisk/return frame-

Plementation, Ayget management

T
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firms and 'm'ukcmg-.' firms are incre

or commercial models 1 implemen
mizing implementation shortall

asingly relying on proprictary
ttrades with the goal of mini.
under uncertainty,

terformance attribution: Well, n the end does this all work? If o, how

much is working and how much i rmtdonm? Modern

managers perlorm
attributions regularly to ascribe

O post returns to ex ante factor X
sures. [0 increasingly imperative for active managers to identity their
skill vis-a-vis ex ante alpha efficacy, and to stiribute ex post rexults o
maintaining exposure of these alpha sources. Here quantitative man:

gers possess a clear advantage over pure fundamental nanagers.

Successiul investment firms would find o way to integrate these five
components together and constantly search for improvements in all of
them to stay ahead of the market and the competitors,

.41 Quantitative vs. Fundamental

It is inaccurate to say that fundamental managers dig deep at the solo stock
level, but have no models or disciplines. It is also unfair to sav that quan-
titative managers apply skills to so broad a set of stocks that the pmfcss
is superficial at the fundamental level, and often lahvlnl;l hllac.l-..- !m,\.., data:
entation. Many quantitative investment
based on not enly solid economic prin:

i intuiti this in Chapters
ciples, but also on sound fundamental intuition tumn;ln:w i :hm
| [ : it 8.
5 and 6). At the same time, Iumlammlalljnmtlug;;; e
' suristics, and not su
may be rules-of-thumb or ht.ur.lhII(.F. ":j O ey ki b
but the deep implementation of the o e ety
the lack of breadth. To repeat, quantitative mmagfw‘wms' g NI
perfecting the comprehensive podtiatd w:tm‘n'eﬂ stock selection.
management lies in deeply .;mnprehmdlni_t {_-r-.lﬁ ol q;uanmatlw invest-
In many instances, the underlying ¢ "I:!Ll}ﬁenml research, At a baskc
et aro v ARG gl mnlo:): and sell high — requiring
level, all investment strategies seek h"ll::}’uu" Cilianys (1938] developed
a measured viluation ""ﬂh‘“i'fl'ml'l undamental valuation of intrinsic
the first modern expression fof the fu

ket price that quan:
value — that a company’s stock should nc‘lliﬂl;"lfl? ;:ﬁmHT;pumnons of
lifies the present value of all it PRECER Tererunner of the now

el |
common dividend discount mod

mining nerds. This is a misrepres
strategies rely on factors that are
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flow valuation expressions. This valuation "“"“’W”"Lf is indisp_cnsab,[eh
fundamental analysis. Who can say it is not gu:mu.mt} ve analysis —
value bonds, even those with embedded options, similarly? . .
Notably, Benjamin Graham (1934, 1949) laid the In_undalum of funds,
mental investing, which deemphasizes movements of njarlun prices and
focus on a firm’s intrinsic value and fundamental an_nl:.*.-;rs. Warren Buffy
is perhaps the best-known disciple of Graham and “."er.s at icn.:ﬂ an impligjy
process firmly founded on the original valuation principals. Can quantia.
tive investing have a much closer affinity and be kindred spirit to the Bep
Graham principles? We provide some answers to this question in the book,

dnw!

Perhaps, some of the misperception about quantitative investing is self.
inflicted. After all, we are quants — as some would assume all it takes is
a brainy nerd and a fast computer, right? Many become easily get excited
about mean-variance optimization and Monte Carlo simulation but are
bored with balance sheet and cash-flow analysis. This is the wrong attitude,
perhaps. Some of the most valuable information, quantitative or funda-
mental, is only garnered through painstaking analysis of financial state:
ments. We hope readers would agree with this after reading the book.

1.4 INFORMATION CAPTURE

Investing without true information is just speculation. How do we know
we have true information that can predict security

predicting a market crash is not enough, eve

lhelsame vein, neit.her is finding the correct target prices for a couple of

smd_ns a pn?af of skill. The key to investment success is consistency in fore-
casting (skill) applied repeatedly (breadth)
We have Grinold and Kahn (2000) :

to th i i i

mental law of active management (F -ty it

LAM). It has become an important
:Liﬂ::::!, K for evaloating skillsin active management. In their fran?ework.
tional m-'IS n;ﬂtmrcd by t!‘ ¢ information coefficient (IC) — the cross-sec-
' correlation coefficient between, forecasts and sub 5.
Consistency is measured by the info sequent return

n,mfio“ ratio (IR) — the ratio of aver-

returns? On one level,
n if you are correct once. In

B
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Although FLAM represents a milestone in active portfolio management
en

theory, important practical extensions have Bone in two directions. First
we can reexamine FLAM and modify for portfolios with real world r.ln:n
straints. For instance, Grinold and Kahn (2000) compare the IR of long-
only portfolios with long-short portfolios. Clarke et al. (2002) gcnmligc

FLAM imlruducing the concept of transfer coefficient to approximate the
loss of in Inrm?:lmn due to constraints, These studies highlight the damp-
ening effect of overly stringent constraints on investment performance.
This awareness across the investment community has created increased
receplivity to long-short portfolios, either "pure” or constrained, in the
search of more consistent alpha (see Chapter 11),

The second extension, more subtle but arguably more significant, is
a multiperiod version of IR. Unknown to many, FLAM is a result for a
single period — the expected excess return to the targeted tracking error.
l')u.n and Hua (2004) first pointed out that, in-a multiperiod framework,
the standard deviation of 1C plays an important role in determining the
ex post tracking error, which is not necessarily the same as the ex ante
tracking error. This insight is further extended in Sorensen et al. (2004),
using an alternative expression for IR to curuhi_ne mulupleualphn factors
with optimal factor weights that achieves maximum IR (Chapter 4 and
Chapter 7). ;

a'\rulupcriml portfolio management is dynamic in natute, This dyr?amlf
{lesd ; ' straints (Sneddon 2005; Gri
link is amplified by portfolio turnover r-mn _ i
nold 2006). The turnover constraint, while .controllmg Aans = wu:s
inhibits information transfer to th-c‘puﬂful.:o.. Huhu:dﬁ':;l Ii:(f;l;:ﬂ pe
across alpha factors with differing ilnfﬂf"t':ﬂ"‘::nm ofimpoctant or:
Chapter 12). Such recent research raises the @ e sl
mative implications of the fundamental law and p
ods to modify i fox practi,cal ik ious substance in the investment

Quality information is the most prect re unconditional and one-size-
business. Simple yet naive models gt available. These simple models
fits-all do not capture all the infarmwﬂnidjosyncmic in nature. A one-
fall short in two ways. First stocks ar:s to the factor exposure
size-fits-all model assumes that all ﬂ-“m know this is not true. and are
in the same way all the time. _P"“"!'::e . |
beginning to analyze factor i ‘matket is inherently dynamic due

: . h? Second, the changing

systemize this approac \c factors and the

to influences from mﬂ‘wmm‘ it mmaf"l’h‘wm
players — firms, investors, €tc. s
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not pecessarily reman stable as the market enr:mnn;lmlﬂ L'h.ll'l‘él!:s. There
s a LroWIng I:Is! of academic Im.'r-.ﬂun:slu.'-.“'t'l'"l!! cong l::i“:‘l-ll t--:\PM. For
I‘""ac-'.wal purposes, how do we build a forecasting ﬂ:*‘: '~ . I«fl 15 aqaptiw
to allow its factor combination to change over [imes Ve cover this topic
¥ T\};:a:::u*fllh:s book goes deep into the elements ot Fl :\!\l.‘ Our pyr.
pose is to enrich this fra mework to highlight key elements of a moderp
process. It will be apparent that our approach is part art, part scienge,
part quantitative, and part fundamental. These steps may not be the ultj.
mate way to capture all the information, but thev represent considerable
improvement in our journey to build the perfect comprehensive portfolio

system.

1.4.1  Alpha

True risk-adiusted alpha has alwavs been scarce. Some refer to the search
for alpha as a zero-sum game. To win the game — using a baseball anal-
Ogy — & team must play well by having a high batting average, similar toa
high average IC. Skill combined with many times at bat is tantamount to
a high average IC. Great batters can't win if the game is rained out. Poor
batters can't win no matter how many times they get to the plate. To win
more games than its opponents, a team must play consistently throughout
the year by ‘mtt having prolonged shamps, analogous to a low standard
o o ot o o
slack, similar to a djvm:ﬁ'it‘lg;:i; :1] . UI'I\v-ers = 'h"fe > pu. k uP.the
2 team must play a lot of games:. and Ipha ?me 39w’ dE“SI.on e

players time at the plate is high. The

best team is expected to always wi i
¥s win the e o
4 10SS-Up in a seven-game series. division, but the play-off could be

Alphac i ¢
pha can also be allusive, and today’s alpha could be gone tomorrow or

ri:* H““I‘““Ch one thing is constant: investors
will contiriue to pursue risk Pension funds, endowments, and the like,
ment. It might be that the Ly
in part, ushered in better m otri
lhﬂreforehdmah@':;m of 3 Separating alpha from beta” and
ni’mh“l‘“hﬁthhmmm anding of the difference.
investors and the best prace; that pursuit by presenting

Practice of quantitative equity investing
in the search for alpha,

__ﬁ
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1.5 THE CHAPTERS
The rest of the book consists of 3 :
parts with
basics of MPT framework. We pre 0 11 chapters. Part 1 lays the

sent the modern portol
Markowitz through the CAPM and introduce mmcl:i'ﬁ&,]m theory from

ter 2. In Chapter 3, we develop mod
damental factor models, and ma

‘ pplications in Chap-
ern risk models to inchude APT, fun-
croeconomic risk models, with emphas
on Im\:' these are used in quantitative portfolio management,

Ink fm IL'we h:w:e 4. Ch:l..plfl's devoted to the development and imple-
mentation of quantitative factors that form the bases for security selec-
tion. Chapter 4 introduces the typical objective functions of IR and Sharpe
ratio, with a focus on cross-sectional estimation of the predictive power
of factors, represented by average information coefficient, and the inher-
ent risks of alpha strategies, represented by the standard deviation of IC.
Chapter 5 focuses on the broad set of factors that academics and practi-
tioners have researched over the last decade, We outline their economic
and behavior intuition and analyze their efficacy through the framework
developed in Chapter 4. Chapter 6 devotes attention to firm valuation
based on the discount cash flow method. It extends the one-path-one-
value approach to a multipath approach, which gives rise to measures of
confidence around the fair-value estimation. Lastly. Chapter 7 ptﬁtﬁ!s.
mathematical frameworks for constructing multifactor modds.. w::;
focus on exploiting the diversification benefit among factors and
mizing information ratio. _ )

Part 111, the final section, puts it all together with a s'fmor'dm'mdm
- £ 2 include 8. pm'tﬁ:)h‘.‘.l urnover
implementation issues. These inc Chapter - i

' 3 9. advanced alpha modeling techniques
alpha integration; Chapter : % 2
account for security context and nonlinear patternss Gupw_ : dim“_m

NPy Jealing with real-world portfolio constraint
factor timing; Chapter 11, ng { s costs i the
optimally; and lastly, Chapter 12, incorporating

comprehensive optimal strategy. heoretical analyses and empirical
Although we have tried to blend : either athe-

chapter tends t©
examination‘sthmushﬂmﬂ"mm‘:ﬁmmﬂmmmll‘t
on:tical::»re-ﬂq:si,ri:cu:llﬁrJ':ﬂS«'Cl"““'ms s Wmi&.&ﬂdm

7.8, 11, and 12. Chapters with more

VIOR FINANCE
AND BEHA' mmuﬂ-m""‘*“‘
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to have some basic understanding of its tenets, which will provide sg
insight into materials in the later chapters.

ALl ADVANCES IN pSYCHOLOGY L iga
n the 1960s, cognitive psychology began t0 df%”ib“ the brain as an infor.
mation processing device, s opposed to a stimulus-response machine
Psychologists such as Ward Edwards, Duncan Luce, .-Jum?s T‘f*—‘ITSk)" and
Daniel Kahneman began 1o explore cognitive models of decision-mak.
ing under uncertainty and to benchmark their models against neoclassi.
cal economic models of rational behavior. Their works had far-reaching
impact on finance as well as many other fields, such as economics, politi-
cal science. and consumer behavior. Kahneman and Tversky (1979) wrote
the seminal paper, “Prospect theory: Decision making under risk,” which
detailed an alternative model of choice under uncertainty — prospect
theory — in contrast to the expected utility theory from Von Neumann
and Morgenstern (1944). Prospect theory provided explanations for a
number of documented anomalies beyond the capabilities of the expected
utility theory. They also articulated the difference between a normative
model, such as the expected utility theory, and a descriptive model such as
{hcir prospect theory. Kahneman and Tversky (1984) noted, “The norma-
:::i;:ilﬁi:ki?ncor};crzed with the nature of rationality and the logic of
later work regarded the fram:nas ; t‘eie?ef not:as they should be. Theit
(1986) articulated four nurmatif 0ml i ff’-ﬂh.neman s

¢ rules underlying the expected utility

gl;ory; cancellation, transitivity, dominance, and invariance, They noted,
“Because th i : :

ese rl:l|i.‘5 e normatively essential but descriptively invalids
no theory of choice can be both g

accurate.” normatively adequate and descriptively

E:havinr:l EI'IEIEE ﬂourished in lht 90 ghts
19 i
: ; " ; . 5. Its research mtegrates msi

; cal e : .
tooted in alternative \I'icwnhatqu *mnﬂmﬂ !hEOry, with a foundation

: estio
(homo-economicus) and the notio n the assum
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= “.ea:-m unsatistactory efforts to explain market anomalies by ef-
cient market theorists, behavioral economists sokic : v =
to chalicge i key tenets of equilibrium pricing models: 1 afhg
ey l-mmat.es pricing discrepancies completely and (2) investors
behave ““Uf'la“‘."_- A f*le"“‘»s of papers, known as “Limits 1o Arbitrage,”
showed that 1rratwna.lhrg.- can have a substantial and VT
prices, and they provided a differing view from Friedman's (1953) X
arbitrage argument. In essence, this literature argued that the mn#: I
strategy designed to correct mispricing can be both risky and costly, ren-
dering it unattractive. On an intuitive level, risk simply comes from the
imperfection of the substitution, thus exposing the arbitrageur to funda-
mental risk. On a more sophisticated level, the arbitrageur also faces the
noise trader risk. Shleifer (2000) argued that irrationality is to some extent
unpredictable, and it is plausible for today’s mispricing to become even
more extreme tomorrow. In other words, convergence of price disloca-
tion is not a certainty. Hirshleifer (2001) argued that pricing equilibrium
reflects the beliefs of both rational and irrational traders, Because each
group has a risk-bearing capacity, both influence security prices. The years
of 1999 and 2000 are salient reminders, as many value shops mtfm! of
business when the market became more and more :mltmml. Eermm-
tal psychology documented a long list of behavioral biases of investars
when making decisions under risk. ershjc?fcr (2001) argued that h::d‘:”;
tic simplification, self-deception, and emotional loss of control pro

unified explanation for most biases.

i - . » i_nt}w
simplification as biases of prefermce.ml?mmseofthﬁa::slm ,
fact that humans have limited time, attention: mfmry. processing
capacity in tackling information and making
lem solving is simplified to a Tules=
Commonly cited behavioral anoma}# i
tal accounting, loss aversion, and representatt heuristic.

i | ceferred to it as biases of
Self-deception: Kahneman and Rm?e'(lﬁszr:f:med o s
judgment. Overconfidence: optimism, fattri bu

: wherein _
are the three major cognitive ﬂluﬂo::lit’r- Overconfidence relates
ate, sometimes significant’¥ ol

=50 nd
: udges of probabﬂﬂ? al
to the observation that E:’“rj s
that their predictions tend 10 fail more often than they pect-
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Optimism means that people display unrealistically rog
their own abilities and underestimate the likelihood of bad gy
comes over which they have no control. Biased scll‘--atlrihutiﬂn :
that phenomenon in which people attribute success to gkij and
failure to bad luck. Kahneman and Riepe (1998) noted, “The com.
bination of overconfidence and optimism is a potent brew, which
causes people to overestimate their knowledge, undcrustimm

risks, and exaggerate their ability to control events.”

Emotions and self-control: Hirshleifer (2001) posited that emotion could
overpower reason, For example, people who are in good moods are
more optimistic in their choices.

Al3 BEHAVIORAL MODELS

Three behavioral models, shown in Table 1.1, provide an integrated expla-
nation of several cross-sectional pricing anomalies, including short-term
price momentum (Jegadeesh 1993), long-term reversal of price momen:
tum (DeBondt and Thaler 1985), excess volatility (Shiller 1981), earnings
announcement drift (Ball and Brown 1968), earnings revision (Givoly and

Lakonishok 1979), analyst recommendations (Womack 1996), and the
value premium,

L. Daniel, Hirshleifer, and Subrahmanyam (DHS) (1998) assume that

Y Viewg of.
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TABLE 1.1 Summary of Behavioral Models

Short-Term  Long-Run
Departure from Momentum  Momentum Representative
Models EMH Assumptions  Continuation  Reversal Ament
HS 1. Investors are Underreaction ~ Overreaction 1, News watchers
boundely rational e
with limited
computational
capacity
2. Information
diffuses slowly
across the
population
DHS 1. Informed investars  Overreaction  More 1. The informed and
are overconfident overreaction  the risk-neutral
ahout their private price setter
information 2. The uninformed wli
2. Their the risk-averse price
overcanfidence taker
increase
progressively due
tor hiased
self-attribution
BSV Investors exhibit two  Underreaction Overreaction A d\::um:::l:ﬂ
biases in upduting belief At
their prior beliefs: mﬁh l: ling
conservatism and e Eering
representativeness

investors are overconfident about their private information, and |
their overconfidence increases gradually with the arrival of public
information with biased self-attribution. The pattern of increased
confidence leads to a prediction of the return pattern, manifested

2. Hong and Stein (HS) (1999) make two assumptions: (1) investors are

bounded rational, meaning that they b

ave limited intellectual capac-
g only a small subset of the

in short-run positive autocorrelation and long-run negative autocor”
relation. Specifically, overconfidence induces overreaction, which

pushes prices beyond the underlying fundamentals when informa-

tion is positive, and below the fundamentals when uegative*s“‘h

over- or underpricing is eventually eliminated as price reverts back

to fundamental, thus resulting in long-term return reversal, Short

term return continuation is traced to the progressive nature of thé

increased overconfidence, largely due to biased self-attribution. A$
an investor becomes more and more overconfident, he pushes the
stock price further and further away from its fair value, thus giving
rise to short-term momentum continuation.

ity and that they are rational in processin

available information; and (
population. They specifytwo
ers and momentum traders.
tions set security prices: On
similar behavior to 2 typical

; tiom,
observe some private 1“?::1‘!1[ b aad, momentun traders condition

hanges, an |
f information among news-watchers

and current prices. On the Oth
their forecasts only on pﬂst price
is simple. The slow diffusion ©
induces underre

actions in the short”

7) information diffuses slowly across the
bounded rational agents— news-watch-

Both are risk- ac
the one hand, news-watchers exhibit

fundamental manager in practice,

averse, and their interac-

and ignore information in past
d their forecast method

huﬂ;m'ﬂnmm leads to
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pasitively autocorrelated returns — momentum cont inuation, Up.
observing this predictable return pattern, momentum traders ;

tion their forecast only on past price changes and arbitrage the o«
opportumty. Arbitrage activity eventually leads to owrmqi]l?f
the long-horizon, creating dislocation between price and § J
tals. The reversion of price back to fundamental is the source th%
term momentum reversal.

b

- Barberis, Shieifer, and Vishny (BVS) (1998) suggest that invey.
tors exhibit two biases in updating their prior beliefs with public
information: conservatism and representativeness. Conservatisg
\Edwards 1968) states that investors are slow to change their belisk
in the face of new evidence; representativeness heuristic (T ;
and Kzhneman 1974) involves assessing the probability of an evem
by finding a “similar known” event and assuming that the proba-
bilities will be similar, e, "if it walks like a duck and quacks likea
duck, it must be a duck.” Conservatism underweights new informs-
tion and causes underreaction. For example, after a positive earnings:
surprise, conservatism means that the investor reacts insufficientiy.
creating a positive postannouncement drift. In contrast, after a series
of positive surprises, representativeness causes people to extrapolate
and overreact, pushing price beyond the fundamental value. This
eventually results in long-term momentum reversal.
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ENDNOTES

I. Anomalies: Pricing anomalies began to appear in the literature in the
1980s. An early example is firm size. Banz (1981) and Reinganum (1981)
concluded that small capitalization stocks earned higher average returi
than the CAPM might predict. Keim (1983) showed that much of the ahpﬂ"_
mal return to small stocks occurs in January (the “January Effecl“}..&mi' i
larly, the abnormal returns to cheap (value) stocks also received sismff‘“! I
attention, starting with Basu (1983), who documented that high-earnings:
yield (E/P) firms delivered positive abnormal returns. Rosenberg (1983]
further showed that stocks with high book-to-market ratios imﬂ:[:nﬂ'f'ﬁ"i.""l
others as a group. In the realm of technical analysis, new momentum strat* _l-
egies emerged. DeBondt and Thaler (1985) identified long-term remmb_ﬂ 1
returns to both winner and loser portfolios. Jegadeesh and Titman ﬂ”--;
further documented a short-term reversal (1st month after portfolio ﬁ"‘ %
mation) and an intermediate-term momentum continuation (2nd to I -
month after portfolio formation). Ball and Brown (1968) were the first 1¢
document the postearnings-announcement drift, in which the markss
appears to underreact to earnings news. Givoly and Lakonishok (19?‘91&9"' :
cluded that market reaction to analysts' earnings revisions was relativelf

2. ;!:;:*mrk ushered in a series of other important pieces: Arrow and Debret
(1954), Savage (1954), and Samuelson (1969),
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CHAPTER 2

Portfolio Theory

_—_—-___

TH E TRADITIONAL OBJECTIVE OF ACTIVE PORTFOLIO MANAGEMENT is
to consistently deliver excess return against a benchmark index with
a given amount of risk. The benchmark in question could be one of the
traditional market indices, such as the Standard & Poor's (S&P) 500 Index
and the Russell 2000 Index, or a cash return, such as Treasury bill rate,
or LIBOR, in the case of market-neutral hedge funds, To be successful,
quantitative equity managers must rely on four key components to their
investment process, First and foremost on the listisan alpha model, which
predicts the relative returns of stocks withina specified investment. The sec-
ond component is a risk model that estimates the risks of individual stocks
and the return correlations among different stocks. The third piece is a
portfolio construction methodology to combine both return forecasts and
risk forecasts to form an optimal portfolio. Lastly, one must have the port-
folio implementation process in place to execute the lrad.es. We present the
portfolio construction methodology in this chapter. P:lsk models, alpha
models, and portfolio implementations are introduced in later chapters.
Ever since the seminal work by Markowit (1959); the mean-variafce
optimization has served as the workhorse Sy A :f[::a nnrt;utrl:z
finance, including asset allocation, equity, _““d —ﬁ:,edbm:olvin P:n opti-
management. [t finds the appropriate portfolio weig :; 1§is apﬁfﬂlﬂtiﬂm
mization problem. There could be several vcrsuonsmn level of risk, and
one to maximize EIFECtﬂd pl.’)l'lfﬂ]iﬂ return fora g
another to minimize portfolio

variance for a required e;pcc:::l T;u:h':
i iective function,
Yet i to maximize an ub;eciuve
S us a multiple _(nski_amsiqn pummem) of

expected portfolio return min -
PE]
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fro = o . ofits shortcomings, one of them e

I i ‘f"frﬁinlf,;:f lT.Zﬂf ti:e inputs (noted by Pmctitiunerl: .
::: :Z -;1::\ L::dnm.ar;). uarlaﬂT; of portfolio cu:_mr_uctiu? n"n-et h‘nds aimed 1
overcome these shortcomings, the mean-variance optimization remainsg
care it of siodern portfolio management. A firm und-.-rsmlndlng of the
method and its intuition is thus essential to the umlcrstulnmng and suc.
cessful implementation of quantitative il]\'eslmcnt h:lt'alt.‘glrﬁ.
We shall first introduce the basic assumptions in the mean-variance
optimization. We then present the mathematical analysis for the prace-
dure, deriving the optimal portfolio and analyzing its implications. We
hall form the portfolio with minimal constraints in order to derive an
analytic solution, allowing us to develop insights and intuitions that might
otherwise be obscured in numerical simulations. We analyze two versions
of the mean-variance optimization: one for total risk and total return, and
the other for active risk and active return. The latter version can be used
for both an active portfolio managed against a traditional benchmark and
long-short hedge funds.
In this chapter, we also introduce the capital asset pricing model
(CAPM) as a risk model and consider optimal portfolios with a beta-neu-
tral constraint as well as a dollar neutral constraint. These portfolios can

be n_htamu:d by solving a constrained mean-variance optimization or by
finding a linear combination of characteristic portfolios.

21 DISTRIBUTIONS OF INVESTMENT RETURNS 2
Return and risk are two inherent cha isti

- aa l . -
limiting case being cash, which is riskrfizeeisms o e

the short term. The return o best described
. fan uncertain inw i i
G Ty g estment is
by a probability distribution. One of the mo ke : l

st challenging tasks in quan-

devoid of uncertainty — in

titative finance is to select a type of distribuy
T:]dels ? g!vﬂ; investment instrument and Yetis amendable to mathemat
Ical analysis. For stocks, the sim i s -
By ) plest choice is e

i r ' 1s either a normal or lognor-
. r:stnbu;:;)'n. l::uth.uf which have their advantages and disad Dfa s

. orma istribution, describing the return of ehe el
time period, can be denoted by r~ i

N 2 . |
expected return and & is the standard '-I;':'?ia!i’ where 1 is the average OF

number of stocks would also be

portfolio investing in #
distribution of multiple stocks

we denote the joint return
tiate normal distribution

normal, Figgy,
a5 a multivg

————
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¢~ N(wE), where 'z{’l"”-".w.-} is the return vector, w=(i, e ll']’
s the expected return vector, and }:zlﬁﬂ]- My

is Covari i
] dinay 7 o i the covariance matrix
among returns of difierent stocks. The covariance matrix is symmetric

with 0, =0 and positive definite. If we denote the portfolio weights by
lhe weight vector w :(Hq u\] . then the portfolio returns distribu-
tion is

r, —N(w'-p.w Ew). @y

Therefore, the portfolio expected returnis aweighted average of individual
expected returns, and the portfolio return variance is a quadratic function
of the weight vector.

several features of the normal distribution are undesirable or unreal-
stic when it is used to model stock returns, First, a stock investor has
only limited liability — he could not lose more than what he invested in.
Therefore, the return of a stock over any time horizon should never b:
less than —100%. But a normal distribution assigns nonzero probability
to losses of any size, even those exceeding ~100%, Second, if w:]m:lﬁ
that a single-period return for a stock is normfai. the cogrttrn wl: :g,th
over multiple periods is no longer normal. This can -be us nr;i” -
an example for just two periods. If the return for the first t;mm Lk
for the second period is £, the compound return OVEr :Dmtgeohh:
is r={l+rl ](1+rl)—-l=n+r:+l"|r:-Thc comPound re!u;n A
returns and their product. beca

: o dividual period i
sum of two individual p L the compound return is not

uct of two normal variables is not m;;rmarit
normal. However, note the following remal

+ ribution to model
+ There are other drawbacks in using "‘“orfnal-dm;?:::;,tlhws
stocks and returns. The normal dismbux::a::mm tails (higher
in reality, returns exhibit s.keW“e_” o8 0; normal distribution.
probabilities of 8 large loss of gain) than

Some of these issues are negated it {bution
stock returns, i.e., ln(l ® f) obeys ) nurm‘;]:g:;:b :
normal distribution not only eliminates return over multiple time
then ~100% but also assures that the w?iwmwmam“‘“m
periods is also lognormal. U“foﬂmmjmsl- Iheﬂfomwmﬁo mm;
tion of lognormal variables is not logn' stock returns are. This makes
will not be lognormal even if indi = =
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difficult for us to use lognormal distributions in portfolio analysis, There.
i 28 Sy T
r'nrctahhuugh we are aware of some of its limitations, we will use the nor.

a]’diql_‘]‘ibutiﬂn function to model stock returns throughout this book_
m -

211 Correlation Coefficient and Diversification

The concept of diversification refers to the fact that lht“lnta_ﬂ risk of a port.
folio is often less than the sum of all its parts. Diversification arises whep
the returns among different stocks are not perfectly correlated.

The correlation coefficient between two stocks relates to their covarj.
ance and standard deviations by

Piz= o

T 0,0, 22)

. ¥ s - H N

Itis known that |p,,|€1. When given the covariance matrix E=(0‘,-',) "
1=l

the standard deviations (UL.--

elements. The equivalent
matrix of N assets:

"0y ) are the square roots of its diagonal
of (2.2) in the matrix form gives the correlation

C=diag[c,",---.0;_-')Zdiag(5,",---.ﬁlﬂ)‘ (2.3)

In Equation 2.3, diag(ﬁ.".---.u;_.')

| i : denotes a diagonal matrix with
g, "“-GN] as diagonal elements and

zero elsewhere.

Example 2,1
Before we delve into any math

s |, : .
hypothetical example to illugt r:::!:il ;::l;stlt;;v ;_ﬁ““c“"s'der s
two stocks A and B, both pric Mg
first month, and then goes d
month. Stock B does the ap
up 100% in the second mg
have a correlation of -1 No

have gone nowhere with Our investments af
However, if we had investeq ; e

ation. Imagine
¢d at $L. Stock A goes up 100% 1o $2 in the
nw'n 30% and back 1o 81 again in the second
e dujwn 50% in the first month and then
:thf In this b}'pmhelical case, the two stocks

yif we haye Invested in either stock. we would

0 turbulent months.

our i::we;!ment by 56.25% after the 2 months, » We would have grown
It is informative to analyze the divergiﬁc,.“nn b
Just two stocks, The total Portfolio varian enefit of

g a portfolio of
ce is then
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5; = WI:G? +2p._,w.w36,ﬂz+w§u§, (24)
It 15 easy to see that when both weights are nonnegative,
W0, +w,0, ifpy, =1
G, =1 ywo]+wic! ifp, =0 . 2.5)
'w,-:}'l ~W,0,| ifp,,=~1

At one extreme, when the correlation is 1, the portfolio volatility is the
weighted sum of two stock volatilities, and there is no diversification ben-
efit. At the other extreme, when the correlation is -1, the portfolio volatil-
ity is the absolute difference of the two, and the diversification is at the
maximum. When the correlation is 0, the portfolio volatility is between
the two extremes. In this case, the variances are additive instead.

Example 2.2
For a portfolio of N stocks, assume each has the same return standard
deviation denoted by @ . Further assume the returns are uncorrelated,
and the portfolio return standard deviation is then

up=JinfU’=o gw,’ (2.6)

. isk declines as the
For an equally weighted portfolio, G =0/l e

square root of N. ; with the correla-
i We have just seen how the portfolio variance ey

n the underlying secu-
tion, It is also instructive to see hhr:-w it changes t.whn:mE el
i 3 i ing the s ; urities
rity weights change. Still using 2 the two risky sec
In other words, the portfolio is fully mm::d -.-aj:ame as a function of w,
under consideration. Figure 2.1 disﬂ;ﬁlathe plot, we et the weight to be
with 6, = 40%, @, =30%, and P2 =1

ow i hs .
shorting of bot . tocks
both negative and greater than 100% to altljc il ool
The portfolio variance (2.4)isa quadra funct the weight, and

altains the minimum when

tock example,

2.7

s E-!pmo'@z* -
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Portfolio Variance

0.00 . : ' ' ; ;

50% -25% 0% 25% S50% 75% 100% 125% 150%

FIGURE 2.1. Portfolio variance as a function of stock weight W,

This is the minimum variance portfolio that has the least risk. For
parameters used in Figure 2.1, the minimum occurs when w, = 30%, and
in this case the minimum portfolio volatility is 27%, smaller than either

of the individual volatilities.
2.2 OPTIMAL PORTFOLIOS

In this section, we shall derive var
objective functions.

ious optimal portfolios with different

2.2.1  Minimum Variance Portfolio

Surpplalnsx? there are N slc.:ackls in the investmentable universe and we have

afu ly invested portfolio investing 100% of the capital. The covariance

m i i i

m:t:;: J:n d:::::i :SAE: We are interested in finding the portfolio with
- Aninve his portfolio is only concerned

b
about the risk of the vector of ones by i=[1,”'-]) '

portfolio, Denot;
we have the followin P am.

B Oplimization proble

\

D

thmm nxn
it will soon be appf:rent. The problem can be solved by y
Lagrangian multipliers. We form a new objective t'unct:l = ke

1
Q(WJ}= EW'XW-!(W'-i—I]. (29)

The additional term in (2.9) is the Lagrangian multiplier times a con-
straint-related term. Taking the partial derivative of the new function
with respect to the weight vector and equating it to z¢ro yields the condi-
tion for the optimal weight

Iw-li=0 (2.10)

and solving for the weight vector gives

W= I|£-—Ii . [2.11)

where £ is the inverse matrix of Z. To determine the Lngmngmn m:il;
tiplier I, we substitute the weight vector into the constraint in Equati

2.8 to obtain

= 1 (212)
= (———”rli
) .19 |1 yields the minimum
Finally, substituting Equation 2.12into Equation M

variance portfolio weight vector

Sy (2.13)
o= P
| he budget ¢on-
ot (2.13) satishes !
It is easy to verify that the optimal wusil:t(
straint. Finally, the minimum variance |
! (2.14)
¢\ S = iy
s =("’mh) W s 'L ti_
€qual to the Lagrangian multiplier @12 - =
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) 22 Mean-Variance Optimal Porttolio with Cash

The minimum variance portfolio focuses solely on the risk ang igno

the expected return of the portfolio. Most investors prefer 4 balan
ce

between the two, provided they have return expectation for stocks, 1
mean-variance optimization serves as the main tool for Iimfing the opti.
mal portfolio with the maximum expected return for a given level of rigk
We first consider porttolios that include cash and denote its re \
r,and its weight by w,, We denote the expected return vector of N stocks
by f=( £, f ) . whichisa collection of forecasts generated by investor
through investment research. For the time being, we take these torecasted
rf:lulrns .1~ gncnlmp_ut.s. In Part [T of this book, we will ident ifv some quan.
I:anl.'e factors for forecasting stock returns, The mean-variance optimal
portfolio with a risk-aversion parameter A is

Maximize w,r, + w' f — I l[w'Iw]
3

(2.15)

subject to: w, +w' i =]

Note that cash is risk free

— 1t only contributes to
risk, at least for a singh ) to return but has no

A>0 determines the J:pmnd.upumimi“"- The risk-aversion parameter
i s ‘kl. cgree of influence that risk has on the portfolio. If
ing ﬂ.peclcd m::“ tr? drops out and the problem reduces to maximiz-

ncer the assumed budget constraint. The solution is

generally unbouy .

R, ; “d‘ﬁ because one can borrow unlimited amount from the
urnassetand invest that sym i the highe C

hand, if & — oo, (meaning the Bher return asset, On the other

J investor is !
the S extremely r .
e {];ptlma;rnrl:‘nlm would have 100 ip, cash and ]1 1-:Sk av.:.r T: am;: - thel}
€ problem (2.15) can be ¢ ; ave no risk at all,

- Nverted ing
tion problem for th T 0an unconstrained optimiza-
function. Writj :]":Hjck Wt’lghts by using the constraint in the Pb' ctive

. o Wit ng the constraing a8 W, = ~w'q 1 the abjecti
the objective function yields . and substituting it into

Maximize w’. f - : r
= MWB), i g - f-ri. (16

The vector f, represents the stocks’

weights are found by equating partj
(2.16) to zero, We have

EXCeSS retyrns

above cash Th imal
N sh. The optima
al dﬂl‘l\'ntwcs{ PH

f the objective function

turp b?

-
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Ihe following examples from solution (3 1= '
, g I . olution (2.17) help us gain insights to the
mean=variance optimization,
Example 2.3
When the covariance matrix is diagonal, i.e., when the stock returns are
uncorrelated, the optimal weight of an individual stock is

W= ;.f'u;’ = ; £’j ; (218)
Iherefore, in isolation, the optimal weight of stock is proportional to its
own excess return and inversely proportional to its own variance and the
risk-aversion parameter. Because of this relationship, the optimal weight
is in fact twice as sensitive to the standard deviation as to the expected
return on the margin, Mathematically, if the changes in the forecast and

standard deviation are small:
Aw, A, Ao, (2.19)
"": .fn gi
n will bring the same relative

nd, 4 relative increase in the
by a factor of two.

Hence, a relative increase in the expected rflu;n
increase in the optimal weight. On the “th'ﬁal e
stock volatility would bring down the optim

ffect of the corre
se of two stocks becats
ble. We have

: ¢ sient on the opti-
Jation coetheien
This example illustrates the € e theinverse ofa X2
mal weights, We choose theca

covariance matrix is readily availa

vl oot % e

2 0,0 e ey |
z___ Cl'l p |: 1 iy [‘_pi —‘P_-_ __’,
poa, %
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B ’ I i 1 -‘.IJ \]{'qu
u‘ub.‘l“““ “g lht INVerse m mto I yu l".!

o -'L!—P Ja
] ?L(I—p"} o = 0,0,
g (2.29)
w:= —1 . f"‘_p j-‘l
“afi-p*)le: o0,

In contrast to Equation 2.18, the optimal weight of each stock has one
additional term that is dependent on the expected return of the other
stock. Suppose the correlation coefficient is positive; then the additional
term would be negative — a reduction in optimal weight if the expected
excess return of the other stock is also positive. On the other hand, if the
correlation is negative, then the optimal weight would be increased if the
expected excess return of the other stock is positive. This is the essence of
diversification at work. With positive correlation, one should reduce the
combined weight of the two stocks to reduce overall risk. But with nega-

tive correlation, one should increase the combined weight because the
risks in two stocks are offsetting each other.

2.2.3  Mean-Variance Optimal Portfolio without Cash
The optimal portfolio with cash might be useful in determining appropri-
ate allocation between stocks and cash but

portfolio must be fully invested in stocks,
fund investors and instity

is of little use when an equity
Mnstuquitypnrlfolins for mutual
S are managed this way. Thus, we
Mization for fully invested portfo-
simply setting w_=0 2.15).

Because the bud int is now bind];ng, wcgml:;[ usel?hi me)thud
© Optimization problem (see Problem

tional investor
must consider the mean-variance opti

w=Zl 1 (i‘z-'_i)f_'_r (i)

L1 2 S| i'-r;"i —— (2.22)

The first term in the solution (2 22)isi
: *=2) i just the minimy i

m l I'h
1udep:ndem of t;fmh the forecast ang the risk~nv¢rsin:ar:‘r2f1::::l: t'I':';m
second term is affected by the forecast ang the risk*aver:i'nn paran'.lﬂer-
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pecause cash is excluded, we need not worry about excess retyr

n. Note the
following remark:

« ‘There are two cases in which the solution (2.22) reduces to the mjnj.
mum variance weights, The first is when A =>oo and the second term
vanishes. The second case is less obvious, and that is when all the
return forecasts are identical, i.e,, f=ki: again, the solution is iden
tical to the minimum variance solution. This iy intuitive; when all
returns are the same, the portfolio return will be the same as well,
Hence, the minimum variance portfolio is the mean-variance opti-
mal portfolio. Consequently, if we increase all the return forecasts by
an identical amount, the optimal solution remains unchanged.

The expected return and variance of the optimal partfolio are

s (rEfes (s

:f"w BT appeels
i'L oA i'E (.23
|
X I | {rz"}](f'z"f]—(i'l‘."f]
I:G') =w Iw = i'f'?f T
jven level
'““_4 E!'.pﬂl:tﬂd return j,l ]5 the maximum 'ExPEl:lﬂd retarn fDIﬁSl

= 4 2 al 'F.
of risk at & . As we change the ri"'k'“eﬂ,mn pﬂ;ﬁﬂr‘:‘lﬁ;:';::::‘ )
forms a curve called the efficient frontier in the

Example 2.5 R

icts such an efficient

The hyperbolic curve in FiE“"f‘ 2.4 d?:ﬁ:;:g: return forecasts, volatili-

portfolios of just three stocks W“lI“hF i vector just for simplicity), and
ties (we have written the volatilities into 2

correlation matrix.

0.5
10% e 3 o5
o=/ 30% | C=| 05 1
f=| 0% | i 05 05
-10% :
 which we will dis
er efficient frontick t).-.:u}.il ﬂlﬁ[‘“nr

inimum portfolio
return

The straight line depicts anoth and volatility of 24%. Asthe

next, For this set of inputs, the ™
Weighted portfolio with zero
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FIGURE 2.2. Efficient frontiers: the curved line is the efficient frontier of a
fully invested equity portfolio, and the straight line is the efficient frontier
of a long-short dollar neutral portfolio.

risk-aversion parameter descends from infinity, both the expected return

and risk of the optimal portfolio increase in a concave shape that is typical
of efficient frontiers.

224 Active Mean-Variance Optimization

In many cases, equity portfolios are managed against a benchmark, such
as the S&P 500 index or the Russell 2000 index. The return and risk of
these portfolios are measured relative to the benchmark and are called
active return and active risk. An active mean-variance optimal portfolio
is one that has the maximum expected active ret
active risk.

We can decompose the portfolio weights into benchmark weights and
““f‘: weights: w=b+a. Fecause both benchmark and portfolio weights
satisfy the budget constraint, the active weights must be dollar neutral

Le, a"i=0, In other words, overwei
: ol ghts{a,>t fectly bal-
anced or financed by underweights (g <0) Qi b peciectly By

For long-short market-neutral i
: equit iti
equity benchmarks no longer apply, lim:u o i

h d, & cash benc ;

sad. T th v ! ad, a cash benchmark is often

?und i:als: ;ZT;: the active weights are just the portfolio weights, 1f the
; ar neutral, then the weights must alse < g -

straint a’-i=0, Dollar neutral is not (e also satisfy the con-

shall see later in this chapter and ip Chap:::r:e as market neutral. As we

urn for a given level of

D EEE—

Given the expected return vector f. the expected active
2 . : i el
ctive risk in variance is a’'¥a . The objective of active
mization is to find optimal active weights through

urnis a"-f  The
Mean-variance opti-

Maximize a f--z-?.(a E'a:l

. {2.24)
subject tora’ i=0

The solution of this mean-variance optimization turns out to be identical
to the second term in Equation 2,22, The optimal active weights are

(R (ee ey

= % il _i.’l:.'-'i St {2.25)
« This solution has several features worth noting. First, it is inversely
proportional to the risk-aversion parameter. Therefore, depending
on investors risk appetite, the optimal weights are entirely scal-
able. Second, it is independent of the benchmark. Consequently, the
expected active return or alpha and the active risk are also |ndepcr_1-
dent of the benchmark. 1t is therefore theoretically feasible to uti-
lize or port it on any benchmark. In other words, two active equity
portfolios managed against two different equity b‘"Chmf"ks could
have the same active weights. For instance, the active weights of an
equity portfolio managed against S&P 500 index cﬂi.llddbe_[:}f :l:i;

as the weights of a long-short market-neutral hedge tund. This

idea behind the so-called portable alpha strategies, : n:: TE:: h::
excess return generated from a strategy c:m‘bf port ,?:,]v e
different benchmark. In reality, howeven this is not el;t Im%,;ﬂ}, et
for most traditional equity portfolios because thq‘ m o
e not included this type

the no-shorting rule. We have no! in Chapter 9 that
into the mean-variance 0PI T ‘T: ﬂ:zuusﬁints wiﬁlaller the
imposing this constraint and various other
optimal active weights greatly. pat provides
h 9 eights (2;25}’ at
One alternative form of the OF"mﬂ uctive WEig
More insights is the following: | , m 226
= .
n'=‘i2"{f'")- with =524
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“This is similar to the unconstrained upl_imal wcaHh_Hl |f2LI?J. Th.;?rc‘ the
lun;ca.sled are uniformly adjustcd F)y .”": rl'.k-itm:.mlh... Icrc, w;, “dllls.t the
forecasts by the Lagrangian multiplier to -.-n.surlt that the active weijghy,

dollar neutral. The only case in which the adjustment is not needed g
“;- U:-u or when i’E'f=0. This conditionality implies that the Origi.
:allf:;remstﬂ would give rise to a set nl'nplil.n.'?l weights a" :?L VEME that
are already dollar neutral. When it is not satisfied, we must adjust the fore.
casts according to Equation 2.26. |

The expected active return from the optimal weights (2.25) is

g (2 i)(ref)-(ir 'r)f-

s iz

(2.27)

The active risk in standard deviation, or, as it is often called, the expected
tracking error of the portfolio to the benchmark, is

o' = 5= J{Lr'i"f’zl_f_l‘[‘ili . e

A 'L

For a long-short dollar neutral hedge fund, these are not relative but abso-
lute return and risk. As both Equation 2.27 and Equation 2.28 have the

.r.a.melde?endencc on the risk-aversion parameter, the associated efficient
frontier is a straight line going through the origin

o G

g iiz-ll . (2.29)

Ther i {
R a.;m:ﬂ::? dlﬁﬂfn.l Ways to interpret this efficient frontier: one in
space for traditional portfolios, and the other in absolute space

for long-short hedge funds, The rar;
A e 1
return per unit of risk in termg er:; at: fepresents expected excess

: dard deviation. This is often
::'Ct::f:‘;ﬂd: :a;{:rr:fau:; ratio (IR) of the portfu]i:n"lhe psurtfﬂliﬂ'
; rantier ofter the maximym infi '
o b v e
ﬁonmrat::niata mfjpr::ilpdm;guii:.’ for one time period, this int’r:rm*
it i thie Bl e shall discugs multiple-period IR

- T

P‘Nﬂalhrhm.r .3

[n Figure 2.2, we graph this efficient frons
fronuer for a fully invested portfolio wil??l:eu;mnﬁm“h'&ﬁ
he two frontiers, the graph makes it possible mmmu..?m
I-"”'”"Jl” with a long-short hedge fund in absolute risk/return L -
‘Therefore, there are several features in Figure 22 mﬂ&t
the efficient frontier of the long-short hedge fund ﬂ“ﬁl&smmﬁm
efficient frontier of the fully invested portfolio. This indicae thas. for e

came amount of rihk.-i.c:.. above 24%, one can expect h‘ﬂ-"‘" AR S,
the hedge fund than from the fully invested portfolio. This e iicadts
because the average stock return in our input is 0%. Thus, fally §
portfolios take additional risk with no additional return, The second and
perhaps less obvious feature is that, whereas the risk of fully invested
portfolios has a minimum (24% in this case), the hedge fund risk can be
wargeted at any level without a minimum or maximum. In our example, if
an investor's risk preference is below 24%, the hedge fund is the only avail-
able investment choice. :

‘Third, the relative placement of two efficient frontiers can be quite dif
ferent if any of the inputs to mean-variance optimization changes. For
example, if the expected returns are increased by 10% for each stock and
the covariance matrix remain the same, the eﬂiciﬂ‘u frontier of the f:::
invested portfolio is lifted and becomes a better choice for mffl:dhe :
spectrum than the hedge fund. The expected returns of hedge ; port
folios remain unaffected because they depend on the rd:;'! differences
in returns, not the absolute level. This is shown in Figure 2.5

L

50%:

: i
FIGURE 2.3, Efficient frontiers sim wm
change in the expected returns: wbia s
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2.3 CAPITAL ASSET PRICING MODEL

At least two inputs are required in order 1o use m'm“”mriﬂﬂ_if Optimizy.
tion for portfolio construction. They are expected return forecasts
return covariance matrix. Additional inputs are practical constraings thay
are required for realistic portfolios. Le. Iin_'ut_s on smck‘ huldi_ngs and/or see.
tor weights. Forecasting returns and portfolio constraints will be discusseg
extensively in Part 1T and Part 111 of this book. For the remainder of this
chapter and the next, we focus on the covariance matrix.

So far, we have left the covariance matrix rather arbitrary in mean_
variance analysis. For a portfolio of N stocks, there are NN + l) 2 varj.
ances and covarances. For the stock market as a whole, or portfolios with
thousands of stocks, the estimation of so many parameters proves to be
an impossible task. CAPM, developed by Sharpe (1964), Tobin (1958), and
Lintner (1965}, provides a particular simple structure for the covariange
matrix.

Denoting the return of the overall market by r,, , CAPM stipulates that

individual stocks’ returns r is the sum of systematic return and specific
return

n=r+B,(n -1, )+, (2.30)

where r, is the risk-free rate. The systematic return is a function of beta
that measures the sensitivity of individual stocks’ returns to the market

return. It is given as the regression coefficient of r, vs. the market return
™
covir,r
B,= [ i H) - PinG,0y, — PiuG;
cov|r '7.\-.) Ty Gy
In Equation 2.31, p, . denotes the co
ry.and oy, denotes the volatility
is the specific return componen

rrelation coefficient between r,and
of market returns. The last term in (2.30)
tand is a normal random variable with

zero mean;
E~N (D,&,‘) i (2.32)
The volatility of the ifi i
e, SPeciic return 6, is ofien referred to as the specific

CAPM assumes that

- Fu t ' l.h'c
$tocks are alsq e rthermore

Pendent of one another.

- T——

Portiolio Theory o o
1-'_‘-.«-.cr1t'1.1111.'. the portfolio covariance st |
wise COVRHENCE IS likass through beta Maps each security’s paie-
it is worth noting that even when CA %
detine beta asin (2.31). If £ is3 e,

; eral covariance matr; _
weight vector of the market ora benchmark ponfnu:“:::lm?;: i
B=(P..-By) isgivenas ek

T
T bEb {2.33)

It is easy to show that, under CAPM, the covariance matrix is

£.=Bp'cy, + diag 67, - 63

=Pp'o+S (2.34)
BB - BB 6 0 0

— E .'. 3 Ui"" 0 k- 0
B.\‘BF B.\'ﬂu D 0 &.\

We have used § for the diagonal matrix consisting of sgrnﬁc\'anaﬂ:n-ﬁ.&m
For a portfolio with weight vector w, the Pm{ofi:; b:-tz is i
weighted average of stock betas B, =w’-B. The portictio Variance

separated into systematic variance and specific varia

"
5 3 3 2 12-35]
o: =Bioi+ Lo
il
mmdﬁﬂimmﬂ

This shows that the portfolio has W40 Ly icussion of risk con-
the other specific. Although we lﬂw. 1o 2 fow remarks ing the
tribution until the next chapter, We of risk:

. . - ]
relative importance of the two sourc

-auhmﬁ’d
+ We noticethe specific sk ofaPOTES B e stockispe
increasing number of stocks. ' Mwﬂmﬂ?ﬂ t&’:‘:
cific risks are the same wfumoiﬂéfﬂ-m“’“w&,@
would have the specific ‘W mﬁ#ﬁ&'ﬁkﬁmt :
cific volatility is 8y, N . Suppose —p
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FrﬁdmspocrmkWGMdbci%x~ﬁhiﬂﬂsuwksand1jm ]
400 stocks. The systematic risk. on the other h.lnd._does not
explicitly on the number of stocks: it is solely a function of
folio beta and market risk. Suppose the market volatility is 5

15%. A portfolio with unit beta would ha'-'f' 15% systematic :
itv. Therefore, a traditional long-only portfolio would have mog o
its risk in the market risk. However, a zero beta portfolio, typi

a long-short market-neutral portfolio, would have no systematic o
market risk. Al its risk is specific risk. Of course, this depends heay.
ily on the accuracy of beta estimation.

2.3.1 Optimal Portfolios under CAPM

We now have the special form of the covariance matrix (2.34) under
CAPM and will study the mean-variance optimization solution under it

In order 1o do so, we first must find the inverse of the covariance matrix.
Using the result from Problem 2.10, we obtain

L

Piogt_°t g
S -1..B8. (2.3¢)
where
_N ol (B, B.Y
K= =t = =5 v,
Z. @' P L& g ) @37

Inthesum x, each term i -
) is the ratio of svstemati i e ¥
. o iy 8 ) IC varianc : vari-
ance for an individual stock. nce to specific

the vector .
scaled by the specific variance. P.s'the components are BEY

CAPM, we once again conside Ptimal weights behave under
cash in which the 'E::ights ufth: - case of optimal portfolios including
; risky assets is given by an unconstrained

‘

Portiolic Theory ]
Let us denote
W=7
e 2.39)
s “the partial solution” given by the specific .
as } covariance matrix
forecasts. Then we see that i

:ﬂf=inz%=§ﬂwu=h (2.40)

It is the portfolio beta given by the partial solution (2.39). Combini
Equation 2.39 and Equation 2.40. we rewrite the optimal solution s in
Equation 2.38 as

wew Dby (a1
In terms of weight of a single stock, we have
| cov r;lri'
g ..,._.'_E‘igi'ﬂ—’v_-w' ——!—- [“ J. (llz;l
w, =Wy, [+x Bf 1] 14X 'B:

In other words, the optimal Wﬂiﬁh“":' stock “PI!‘EM WT& variance
ratio of its covariance with the Fl-l'tlal PW‘“'“
times a scalar. Note the following remarks:

.  VATIANCes are uncoT
« Ifthe excess return forecasts awwﬁﬁﬂ‘mn. in this special

related with the stocks’ beta .‘mmfmm the partial solution 239

case, theoptimalhﬁsh“m’dew: mmmlﬂd"i"
« In genm.wmdmmw.@n”#mbmmﬁ
step, we simply derive the partial the partia
risks. In the second step, We ™o ﬁd ¥ :
ance term. Note thal. if:ﬁ: :p- i
solution beta are of the b stock beta
the other hand, if B ‘::‘f rtia
effect is to reduce the beta of the P g




= T
Wk W e . L 3 |

' [ H - n )
The beta of the optimal portfolio is T
TABLE 2.1 Optimal Portfoligs with Three Stacks
, \ ¥ . e
? N ) 3 ﬁ ) B_n 9'1@ Systematic Specific Toul
B :ZIV.E'. = Waibi 14K 92 Stock Beta Risk Risk i
=] f=] =1 f {2 4 i 1.5 23t 0% ecas ‘r; v
5 ) 3 340
] ) 1.0 15% 30% T - TR
Buk _ B 3 s % ™ e
= ﬂu = = 3 0.5 8% 300, Ry
I+ 1+K

— 0% uw

respectively. Assuming a market risk of 15%, th
are 23%, 15%, and 8%, respectivel
at 30%. Combining the systemati
38%, 34%, and 31%, respectively.

With expected return of 10%, 0%, and -10%, the average forecast is
R i 1 6iB,B ¢ 0%. We have chosen A=2.5 for the optimal portfolio. The partial solution
Z(“I'B’] 5 Z Wy, 8, — e \IBL] using only forecast and specific risk is 44%, 0%, and -44%, respectively,
=t * The beta for this portfolio is 0.44. The optimal weight is 36%, -6%, and
—47%, respectively, with a beta of 0.23. As the partial solution has a posi-

We have used the definition (2.37) in the derivation. Because the Parameter
X is proportional to N, we conclude that, for a portfolio of reasonable size,
the beta of the optimal portfolio should be significantly less than B,

We next derive the specific risk of the optimal portfolio:

e stocks’ systematic risks
Y. The stocks’ specific risks are the same
¢ and specific risks yields the total risk of

f=1 '\

N

=2 (“"u 8 )E + 1 _E&,Ei_jﬂi 26,B, w, B tive beta, 0.44, and all stocks also have positive beta, the optimal weights
M) — = -0 B, ‘ .
i=i l+1c)' 8; Lae S are all less than the partial solution in order to reduce beta exposure. The
n (2.44) optimal portfolio has a systematic risk of 3.6%, a ispec;ﬁc r!sk of !;.P:r
i( ‘9 ]1 oybic 20° B and a total risk of 18.2%. The majority of the total risk s attributed to the
" dag\Woat ] MG s RaTek
=1 J (1 -Hc)- e specihc risk, at 96%.
N 2.3.2  Beta-Neutral Portfolios i il
b3 ; jve mean-
2 Z(w‘“af) -ouf; s el As we have seen from the last section, an active m

: : . For a long-only port-
pon 1+x [] +K)1 portfolio in general will have some beta exposure

i ive portfolio will have a beta
folio managed against a benchmark, thehi':t:f;]f:“ark. For instance, sup-

bias, affecting its relative return againstt Then a market return of 3%
pose the active portfolio is low beta, al 0.2.0 1.5%) or 50 basis points by
will cause an underperformance of 0.5% (= 0.

This shows that the s cific vari :
cific variance of the Ppc[- 1 o Hos O the optimal portfolio is the spe-

artial solution m; . d
portional to the beta of the pa 'NUs a correction term that is pro-

i i lio, this translates to

portfolio is then Ftial solution, The total risk of the optimal the portfolio. For a long-short market-neutral FT:-nfoded beta exposure is @

a pure loss of 50 basis points. 'Iheret?r?' a: I:tnii:lo force the active portfo-

o’ S (10 1 : N source of market risk. One way to elu'qu:; _We shall derive beta-neutral

< z[w' Bf) +(ﬂ) o= 2( wi;.ie[)z = __-q:‘ﬁ; (2.45) lio to have zero beta expfosure: e W o

- £ l+x ] optimal portfolios in this section- — ¢h beta-neutral constrai -
F.xam EAP e fat I siﬂlPlﬂ- & 4 We can ;

We shall consider an example Ple 2.7 M is surprisingly risk.

With three s

tral, its risk will consist entirely © spn:fi matrix § i (2.34) as.
Lattributes, 7y,

lio. Table 2.1 lists their relevan Optimization problem with the diag® :

ks and an optimal portfo-
e betas are L.5, 1.0, and 0.5,



T
Maximize w'-f - - rlw'Sw |

(2.46)
subject to: w' - B=0
We find the solution by using the Lagrangian multiplier method;
's'p
- l ] » =
= f-IB), withl= = . (2.4
wi=38*((-1P) ps B )

As S is a diagonal matrix, we can write the weights explicitly as in
* . 'c 1
3413 f = llﬂ z (e fi HJ [ Bi
= L=l N with = - (2.
e gk Zlfa; / ;9: =

We note that the solution in this case resembles optimal weights (2.18) in
which the covariance matrix was diagonal. By requiring beta neutrality,
we have effectively eliminated the market risk from the covariance matrix,

What remains is the specific risk. However, instead of the original fore-
cast, we now use a beta-adjusted forecast in (2.48),

i
» Ifthe forecasts and betas are such that Z":’E' =f'S"'B=0,ie., they

are orthogonal with respect to the matrix $', then no beta adjust:
ment is needed,

In addition 10 market-neutral portfolios, many long-sh hedge funds
also adhere o a dl‘.l"aj' neulral ny ong-snort ne ge

constraint, w’-i=0 . The solution for the
optimal weights with both constraints takes on in (2.48).
However, instead of adjusting the on the same form as in (2.48

forecasts just for the int, we
now need an additional adjustmen; for the] kb
cite the following results and leave

the derivation a8 an exercise. We have

Y
W.-:i l_;:. oL, I*'-"'.N .(2’49}

dollar neutral constraint. We.

(BB i)y sy
[ﬂrs lﬂ][i's "i)_(fs-lﬂl"

2o EaHEssY
3HSeHzn

(irs ti){rs 'B)-{ps e )
i (ﬁ's-'p)(n’s"a)-(fs*'p'}’

[, =

2.4 CHARACTERISTIC PORTFOLIOS —
So far in this chapter, we have been usingﬂwmﬂl_lﬂdﬂfw _
pliers to find optimal portfolios with various objective wﬁ&r {variance i
only for minimum variance portfolio and quadratic m"‘m o
optimal portfolio with forecasts) and Mm-mt!l i sl
and beta neutral). The form of these solutions 15 -

w =L E((-l1-1P) o

w. =‘tz-1f‘_¢2rti+"_z4p ’ - v .:. I'_‘

linear

This suggests that the opll'mll “"lh-u mrw' : Ww. '
Beneric expression — the inverse ufﬂ!l 0/d Afatl
ofattributes, Equationz..'alwnﬂiﬂ‘m ¥ B
return forecasts represented by_f.._ m,,f e

nd the beta by . Other examples 01
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factors and alpha factors, which appear later in the book. This
us to define characteristic portfolios for each attribute
general optimal weights as a combination of them.

mﬁﬁ‘fatﬁ
and express 3 Set

For a given attribute t, we define the characteristic portfolio as the

folio that has unit exposure to t and has the minimum variance Findi i
s oy - Findj
the characteristic portfolio is not hard (Problem 2.12). We have "8
L X't
AR (2.52)

There are two special characteristic portfolios. First, if the attribute f
, then the characteristic portfolio is the minimum variance portfolio of
(2.13). Second, if the attribute is beta, then the characteristic portfolio i

Ea
P’

Wi (2.53)

According to (2.33), beta is related to the benchmark by

Zb
B b'Eb’
Hence, (2.53) reduces to the benchmark w
sense (e.g., Grinold and Kahn,
same systematic risk accordin
folio has zero residual risk.
f=1 portfolios.

Efy definition, a characteristic portfolio has unit exposure in its own
-Tmnbutes. We can also calculate its exposures in mhir attributes. For
instance, the beta exposure for the characteristic ortfolio of fis ﬂ':w )
and the percentage invested for the characteristjc F;Drlfolio of f is l'-wj.

Using these exposures, we

» We can form optimal wei \ \

S weight 0=
sures to various attributes, ghts with desired exp

eights b. This makes intuitive

2000) because all B=1 portfolios have the
8 to CAPM, and only the benchmark port-
Therefore, it has the least total risk among all

o S Example 2.8
et us hrst hind the optimal portfolio with yni
exposure to beta. It is easy to show that w ru_n(ltﬂ“ ‘f“;:re ll:; ;f :::_‘; :i:
0 i -

exposure, and its exposure to f is 1—(B’-w ). ; d
mal weights we are looking for are ( f}( wp) - Therefore, the otk

E—

Wwe=—> L

1_~[|3* W, ](;7_;,;)[“': ~(B-w, )w,]. 2.54)

By combining characteristic portfolips of f

can find the optimal portfolio with unit exposure to f with both beta
tral and dollar neutral. As we noted above, the solution will be a ]I"f-"-'l-
combination of three characteristic portfalips: -

beta, and membership, we

W SOW towtow,. (2.55)

Imposing exposure constraints leads to a system of linear equations for
the unknown coefficients

a+e (' wy o (Ew )=
c,['B*-w,]+c:+c,(ﬂ*-w.)=o {2.56)

cb{i’-w,)ﬂz(i*-wp)ﬂ,zﬂ

The coefficients ¢’s can be found as

5 _I -]
¢ 1 fowy  Fow | [1
¢ [=| Bowy ! Bowi | (Ofs
_ I g

(2.57)
I:] if-wlr i""ﬂ

provided the inverse matrix exists (Problem 2.12) t exposure to the fore-

Both optimal weights (2.55) and (2.54) .hﬂ\'t uni (s 5
cast. Normally, we need to scale these weights by 2 risk-aversion para

evel of risk.
eter so that the final optimal portfolios have the targeted |

PROBLEMS
2.1 Derive the weight (2.7) that gives

the minimum variance.

verage) Given L periods fmvestment
average returnas

22 (Geometric vs. arithmetic aver
return -+, n , define arithmetic
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Define geometric average as

U_t‘_‘[“‘”l ][1+":}"'(1+r1 }]:._lz{l_[[]‘*‘ﬂj]j--—l.

(a) Prove H,SH,.

(b) Suppose r, = +0€,, where g, 'sare independent standard norma

l 3
variables. Prove thatas [ — oo, He=H— 2 g,

2.3 (Annualized volatility) It is customary in the financial indus
try to quote financial statistics on an annualized basis, For exam-
ple, monthly statistics have to be annualized. Suppose the average
monthly return is y and the monthly standard deviation is & .

(a) When the individual monthly returns are independent, prove that

the annualized average return is
1
Myeur =(1+p) =1

the annualized volatility is

o=\ 4 [ ~frra.
and, when o is small
O ad\.‘ﬁ[HuJ”.

(b) When the individual month)

Y returns are not dent, we
denote the autocorrelation of monthly retu,.:s b‘:depen

Show that, when & is small,

G G[l "rl.l}“ 12 +22p[i)+2ﬂp(2]+...+2p(1}]

=o(1+p)" /12+ Zi(lz-i]p(i)

2.4 Given two random variables r,r, with ' volatility ©,,0, and correla-
tion p, define two vectors on a plane, OA,0B , with lengths equal to
6,,0, and the angle between the two vectors given by

cosf=p.

Show that the volatility of r,+r, equals the length of vector AB.

2.5 Derive the mean-variance optimal weight (2.22) for a fully invested
portfolio.

2.6 Derive the active optimal weight (2.25).

2.7 Prove that the expected return (2.27) of 2 dulla: neutral, long-short
portfolio is always nonnegative. When is it zero: R

2.8 (Implied correlation.) When option contracts &r¢ B

implied volatilities
an index and its underlying stock:s. one can :sti:!:Pthemmfm ol
to derive an implied stock correlation, assum g
stocks, -
implied correlation using
(a) Derive an analytic formula for the Tfmib?ﬁﬁml and implied
stock weights in the index. implied stoc

index volatility. W e he
(b) It seems unrealistic to assume _‘gﬁ‘;‘ﬁrmimpudmmhﬁmr

same. Is there another interpretd i e correle
(¢) The covariance matrix of stocks with id :

tion is of the form
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E:dj:lg,(ﬂ] .'"-G.\'_J'C lliag{”l-"'-g,\- )

e
|
c=|"
P p |

Show that the inverse of the correlation matrix is

w-dp e g

o A -p |+(N—3]p =
|I-M{I+(N—1|p] : : i .

= —-p 1+ {N - 2]9

(d) For N=3, P=05, risk-aversion parameter A=100, fore-

casts of excess £ (a0 ; J -
return as f—(-?%.l%.—.%%), and volatilities a5

G = (40%,30%, 20%
three stocks and
in part (c).

], calculate optimal portfolio weights in the
cash using the inverse of the covariance matrix

2.9 The beta of a stock or g portfolio de

market, [n pends on what we choose as the

I‘ . 1=
or Russell 3;::-; w8 common ty choose an index such as S&P 500
58 as the market in calculating beta. Suppose we first

choose § ;
' us :
that S&P 500 index's beta :zeﬂ% o T \he market instead anid 68

95. Therefore, both beta of one index

n this be trye?

2.10 (a) Given I, an NxN identit
prove that

v5, the other is Jess than I, Ca

¥ matrix, and a vector a of length N,

#

(T+aa’)" <j 22"
1+a’.a

(b) Prove the inverse matrix of (2.34) is 2 36)

Partiolio Theory u 51

2.11 Derive the optimal portfoljg wei

h
aptimization frobli BAts (2.49) and (250 by solving the

Maximize w* ¢~ !
aximize w'.f ZJL[W'SW)

subject to: w' B=0 and w*.{ =0

2,12 Find the weights of a characteristic portfolio with minimum vari
ance and unit exposure to stock attribute L

2.13 Prove that the inverse in (2.57) exists when the vectors f B.and i are
not linearly dependent.
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Risk Models and
Risk Analysis

an. CAPITAL ASSET PRICING MODEL (CAPM), discussed in the previous
chapter, was originally developed as an equilibrium pricing model
and not as a risk model per se. Asa pricing model, its function is to pro-
vide return expectations of individual stocks given their betas vs. a market
portfolio and expected excess return of the market, thatis,

E(r=ry)=B[ E(r)-r } 6

In essence, CAPM states that the market should set prices of stocks
in a way such that their expected returns are proportional to their sys-
tematic risks measured by beta. Specific risks, on the other hand, can be
diversified away by holding portfolios of stocks and therefore shall not be
rewarded with excess returns.

Readers may have noticed
previous chapter. There we us

the
this is not the way we used CAPM in
editasarkkmodd.i,e.. the total risk of a

stock or a portfolio consists of systematic risk : I:;!' be'n:lﬁé‘i’“:l
specific risk, while leaving the expected returns a.“.je' g mﬁzm the same
standpoint it can be argued that both models oﬂg‘m::ﬁunh}-upﬁﬂ'
equation; however, the pricing model interprets the e:i;m .
tion, but the risk model interprets the e ww: how : and
This subtle yet obvious difference pecuts 10 rdlﬂ: cing models differ-
industry practitioners view and mnm‘f‘f a.ﬁ;{::dmm discovered
ently. For example, after a long list ﬁ?mns of slternative asset-pricing
“ontradicting CAPM prediction, variants © 3

e
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models were proposed in the academia to describe how ASSels are pric
the equilibrium. For example, Fama and French (1992) Proposed in
factor model with beta, market capitalization, and book-

e gr= O-price ratjg
describe prices. But from the practitioners point of view, this simpl}riq'ﬂ
the markﬂl
Still, risk models should encompass more, Specifically, some factors ma

not be priced or rewarded unconditionally th rough time, but they g dif
ferentiate cross-sectional security returns. In other words, it is conceivap,
to assume that there are nonpriced risk factors whose returns exhibit 4
low unconditional mean but high unconditional variance., Finding othe
priced factors would improve the descriptive accuracy of CAPM as g
ing model, but it would carry little implication for risk modeling. Ay
consequence, many practitioners use arbitrage pricing theory (APT) 1o
model risk models by incorporating a set of nonpriced risk factors in add;-
tion to priced factors, thereby constructing risk-adjusted portfolios and
managing portfolio risk in general. As readers shall discover later in the
book, many alpha models take on the same form as the risk models.
This is the approach we take in this book. In this chapter, we will
introduce multifactor risk models that are based on APT. We first briefly
describe the APT madel. Then, we outline three different variants of mul-
tifactor models: macroeconomic factor model, fundamental factor model

and statistical factor model. We also present concepts of risk contributions
which are important in risk ma nagement practice,

cates that there exist other priced factors in addition to

3.1 ARBITRAGE PRICING THEORY AND APT MODELS

APT has two main ingredients,

|
—a
The first is an assumption regarding the
security-return-generating process, and the second is the law of one price
— two identical items must have the same price. The return-generating pro*

cess requires that returns of any stocks be linearly related to a set of factors
or indices [

I'}=fl,u+b“f|+‘--+bm[x +ilye MI

In this case, there are K factors, Liyvuly, and b, is the sensiti\'i'r}'-&f
. : ] (] o
exposure of the i-th stock to the J-th factor. The last term g, is the stock”

specific return with zero mean, It jg assumed that all specific returns 8¢
uncorrelated with each other, as well as a] the factors.

Note that Equation 3.2 is remarkably similar to Equation 2.34 in that i =

is a generalization of a single-factor m

odel, The covariance matrix of M:
returns given by (3.2) is then

EEE—
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E= BE B8, (3.3)
The matrix B is the exposure matriy Biven by
by by
B=| : g =(b,.---.h,‘.]. (3.4)
by N

The vector by, consists of stocks' exposures o the k-th factor. The matrix
¥, is the factor return covariance matrix

Op . O
L=l i S i . (3.5)

a0 O

Finally, similar to CAPM model, the matrix § is the dingonal of specific
risks. .
However, there are important differences between the CAPM risk
model and APT risk model. On the one hand, in 8 CAPM model, the ﬁ;y:
tor is explicitly prescribed as the market return, and the cxp;lsure h:n ;'
stack to the factor is defined as the beta of the slor:k On tl::! ::t [-:lundm
APT is very general. In an APT model, we do not know w;ﬂ e
lying factors are or the number of factors. Furthermore,
specify how to measure stocks exposure {0 the !lcmm e
The lack of a definitive form for APT mude‘is:;‘ﬂbom et il
First, it is challenging to test the lhm':y-ﬂm:;:&a:j'sm. e
relurn-generating process aod e FLETR Ll investgaion of
ibility also provides multiple approaches to e ek -aioet ok
stock returns. As a result of extensive inferes mmlﬁeil‘ several com-
both the academic and investment communities,
peting versions of multifactor risk "‘“de[:ﬂt models into three categories:
In general, we classify the multifactor wl
macroeconomic factor models, fundamen Jarge extent, is based on how
cal factor models, This classification: 1 8 20 el are the most
each model selects the factors, Macroecon

as ovements in interestrAIEs ERE
intuitive, Cyclical phenomena Mh.j.iuk aiodel (BARRA) is a so-called
tisk for stocks. The first commercial TISE
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fundamental approach. In the early 1980 many |

rs
the concept of beta too academic. So, the tundamental risk Modg| !““M

to capture some of astock's (porttolio’s) risk by lnmlclmg well ung
stock attributes. These tundamentals include valye (price ratios), g Woog

policy, earnings variability, firm size and so on Matistical lactoy

techniques syel as
ach in detaj), But onge

proaches use the same Method y,
derive factor returns and their covariance matrix, For g Comparison g !
see Lonnor (1995),

are based on tactors that are dertved by statistic al
cipal component analvsis. We shall cover them e

factors are selected. all three model aj

LT Macroeconomic Factor Models

Ihe fact that stock prices are sensitive to mcroeconomic factors, such g

cvonomy, should not COMe 354
nd based squarely in Vitluation
discounted cash flow model, stock price is the
aviments received by sharcholders (examples arethe
dividend discount model and the carnings cash flow model), Thus, macre-
ampany earnings and the required rte
investors would impact stock prices and do so differently,
For example, when the Federal Reserve cuts the interest rate, the stk
market as a whole generally responds favorably, because lower interst
rates not only stimulate the evonomy n-sulling in greater aggregate sam:
ng growth, but also reduce the required rate of return by shareholders.
That is, stocks have positive durations — |ike bonds (Leibowitz et al. Iw'
This effect is often st ronuer for companies with poorer mwﬂmtqlﬁ”
because of financial or Sperational leverages. Another example of a macr?
factor is the ail price. In general, a higher ojl price exerts a drag on the
economy and, therefore, hag o negative impact on the stock market (akif
to & tax). But the impact would be different for an airline where oil price
'S an input cost, an oil producer whege oll price reflects the selling price

and a saftware company that is relatively insulated from the oscillation®.
of ol price. "1

interest rate, inflation, and wrowth ot the
surprise ( Lable 3.1 1t is quite intuitive a
theory. In a straightforward

present value of futare p

evonomic factors that atfect both ¢
oL return by

was the original application of the four-factor macro APT model pasﬂ L
by Chen, Ross and Roll (1986), Duri

\ g the same time period, the
field Company also began to produce

_—*
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TABLE J:I Commeonly Used Macroeconomic Factors

Macroeconomic Factor

| Market return

2 Chinge tn short-term (nrenest rale
\ Change in industria) production

| Change in inflatioy

5 Term apread

[ Pefault spread

Change in oil price

to a set of factors: economic growth, long-term rates, short-term rates,
risky bond spreads (credit), inflation, exchange rate mmnu. nmll cap
premia and an overall market factor {CAPM beta). Effectively, this m
of macro-based risk model "dcc{:lmpuse? the simple une;amt (i:m
approach into several other cy\:licallva@blcf. Hu{;s;ru FI:,, ﬂ:.m# .
econometric problem due to a mu'lln:[me?nty . :::d Yo Ay
interest rates and the overall market are linked m_th e
credit spreads fall or small cap sluckl.slrisc. ather things e
overall market also reacts. Thus, Cmgrnup mmmmﬁ;m
advanced econometric procedures to 1t¢tﬂl\'ﬂj'£:;"sﬂm e
from the influence of others {&mmﬂﬂ:::- 1 Ak
the model so that each factor is additive -M«' ﬂuw .
With the selection and reﬁm‘d specification dm‘“ﬂm"‘mm o
factors, one then pnh:ud:s 1o “‘.‘m mﬂ?‘-‘ﬂ“ L
select factors through a time-series regression

K
e =q, *ﬂl(&-r’]*‘éb.j'*&.

; jods, and & for factors.
l for time periods,
Thcindcxiisﬁusmcks.ﬂ'mmdtxf s beta exposure 10 the mar-

: otk
kﬂ.andlhuxposumlo‘h‘““;’mmw B'mmi*""_ :
ing window of many uwﬂ'h:' matrix in the form of (3.4). The histor scal
stock, we obrain the expasuRt trix is the eific ik
Macroeconomic factor W““m; sk Mwﬂnﬁw
matrix, and the standard errof i _ el
of :m:h stock. e tel such 25 (3.6), because (“.I with

n a macroeconomic factor M return varation asi0c
are predetermined, the -

(£0)
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a factor depends on the cross sectional variation of the factor s
For instance, the cross-sectional variation associated with the my

I
tor for the time period f 1s ke!f,b

var(B)( ry, = ry ] i

The vector B consists of betas for all stocks. Therefore, if the
excess return for the time period is minimal, the mode| w
would contribute little to the cross-sectional v

ma
ould lmphrh
ariation of stock rety
The same is true for other macroeconomic factors when there are Lite

ss-seclional variahililynf.
stock returns that seems to be pervasive in the stock market?

economic shocks. What else can explain the cro

3.1.2 Fundamental Factor Models

Return and risk are often inseparable. If we are looking for the sourcesof

cross-sectional return variability, we need to look no further than places
where investors search for excess returns. So how do investors search for
excess returns? One way is doing fundamental research, in which analysts
Birst carry out an industry analysis, and then follow it by a fundamentil
analysis of companies, along the lines of valuation, qua]-it}', and investor
expectations, among other things. In essence, fundamental research aims
to forecast stock returns by analyzing the stocks’ fundamental attributes
Fundamental factor models follow a similar path in using the stocks' fun-
dan}c.nlal attributes to explain the return difference between stocks.
Using BARRA's (1998) U.S. Equity model as an example, there are two

groups of tulmﬂmenlnl factors: industry factors and style factors. (The:
latter are also referred 1o as ris |

5.) Borrowing from our earlier examplés
one would naturally expect an aj A
d1ﬂrre1=1!}- because they belong to different industries. The source of this'
return djﬂ’erevce might well be the oj| price, but it could also be somé
other underlying economic factors. In this case, the airline stock has'an’
exposure of one to the airline industry and zerg 1o all other industries
Similarly, thc.snﬂwa fe company only hys eXposure to the software indus® J
try. In most fundamental factor models, the expos
equal for all stocks in the same industr !

i : . ¥- For con QP

ate in multiple businesses, they ca Comce i

n have fractio tiple
industries. All together, there are between 5(: an:a;nef:::;T: ;:;:::‘: i

—
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TABLE 3.2 Commuonly Used Fundamental Faciors

Calegory

Fundamental Factor
Industry Irndustriey
Style Size
Style Book-10- price
Style Earning vield
Style Dividend yicld
Style Momentum
Style Growth
Style Earning variahility
Style Financial leverage
5[;;1-: Volutility
Style Trading activity

The second group of factors relates to the company-specific atttik.:uter.».
Table 3.2 provides a list of commonly used style factors; some a:; mt:;
tive, whereas others are not. Moreover, many ‘.’f Ehcm are ml;l::l;d ::me
simple CAPM beta, leaving some econometric SSSUEZ as 'i; i
for macro models. For example, the size factor mba.f»:_ on ci::sif i
italization of a company. The fact that market FIVU“P;‘““ o n?;ili o
and stock mutual funds into size ﬂt"-'!"'f""s' m‘:ch“ ?:;fu f!i.cse sl
small cap, and even micro cap, ’“ﬂms_d’ﬁmm af:Imr hook-to-price,
as a source of cross-sectional variability. Thl! m?tho;k value to market
also referred to as book-to-market, is the ml’?rna value investor, a stock
value of a company, one of the value mmum;-_h:a whereas a stock with
with a high book-to-price ratio would a?pmf are En book-to-price as an
a low book-to-price ratio looks expensive ::vlh investor, a low book-to-
alpha factor in Chapter 4). Hnwcwr: i vth expected by the market. A
price ratio reflects the prospect of high grot

th if the expectation
growth investor would be willing to pay for ‘hl:;f:?:cmrs‘ et
is justified. Thus, book-to-price, among few o defin

ith stocks.

between value stocks and growt rsies

There have been considerable contrave I} cap stocks have outperformed

and book-to-price factor. Historically: 5?1:-_“ stocks have done better than

large cap stocks, whereas high hﬂﬂk.mtim would be that small and value
low book-to-price stocks. One expland

e they have
th stocks; ﬂ\El’Efﬂ.m 1
stocks bear more risk than large and grow that they represent mar

' lanation is
should have high returns. (\nﬂth‘:;g_ ;ums are caused by investors”
ket inefficiency — the small and pre!

surrounding the size fictat
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behavior that is inconsistent with rational lh-cismn.makin

return to book-1o-price when we discuss alpha factors in the ia s N

ters. For now, we recognize it as a fundamental facyo, that js o

explaining cross-sectional return differences among stocks, M‘I‘
The other factors are briefly described in the fol

detailed description, see BARRA United States Equit

|nwing b
exf, .[h
bock.) The next two factors — earning vield and d;

¥ Version 3
vidend yield
measures price J
presents growth jp,
history or forward projec
stimate system (IBES), Eﬂmiq
deviation of Carning per shyp
quity ratio. Volatility js essentially yhy
I stock returns, Trading activity iy thy
turnover of shares traded. A stock’s exposures to these factors are quite

simple: they are simply the values of these attributes, One typically nos.

malizes these factors cross-sectionally so they have mean 0 and standard
deviation 1.

also valuation measures. The momentum factor
tum and relative strength. The growth factor re
ing and revenue based on either past
provided by the institutional brokers' e
variability is the historical standard
Financial leverage is the debt-1o-¢
standard deviation of the residua

Once the fundamenta) factors are select
EXposures to the factors are calculated for
Fegression against the actual return of
returns with cross-sectional factor ex
are called returns op Jactors for the
resemblance to the second pass
procedure,

For a given period t, the re
quent period against the fac

ed and the stocks’ normalized
a time period, a cross-sectiondl
stocks is run to fit cross-sections)
pasures. The regression coefficients.
time period. This procedure bears
of the Fama-MacBeth (1976) regression

BIESSion is run for the returns of the subse
tor exposure known at the time ¢

Rivk Mayed
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1o luture return variances and covariances, Hence, one <an pat
higher welghts on the more recent periods snd Lywer weighty on the
distant periods, This iy typically achieved by a weight scheme that
decays in the time, ie., <. o T,

---.m‘.m,l.uﬂhihmwhm

most recent period being 1 and ey The haif-life of the weights iy
H==InZInw.

« One additional issue is the estimation nfnuck-spuiﬁc tisks. ldeally,

for each stock, one would form a time series of rexiduals from the
Fama-MacBeth regression and use the volatility of the time series
an the specific risk. In practice, this is very hard 10 do. For instance,
some newly issued stocks simply have not beesy sround g enangh,
For this and other reasons, the specific risks are not estimated directly
and individually. They are partially estimated based on some of the
same fundamental characteristios that go into the factor model.

In summary, although the generic multifactor model pruvldﬁ a cleas
theoretical foundation, its actual construction is a d:unnn&:ﬁ.*'[:::
why many quantitative managers rely on commerciallyaval I'P;Lm“
els and spend most of their time and energy on ﬁndlnl:: e
for furecasting future returns. In the md. most gﬂ::mﬂ moidl_ S
have similar estimates of the total volatility or benc relative

a given portfolio.

11,3 Statistical Factor Models . B it
Statistical models are another type "f"“‘hdﬂ'j::;“ﬁ :MMF;:
ous two types, they pay no attention 1o historical retarns. The factors in
damental data and are purely based on incipal component analysis of
a statistical model are derived from the pr :
returns. The good news is that they b’d["ﬂ‘uw?
thusare good at cxpiaiNiF'S‘""’Lm, ﬂqmwmdm
price data which can be noise, and "":“ ¢isk for longterm horizons.
causality they may be weak at forecasting 2 statistical method hﬂﬂl_!’"‘

Principal component analysis % wptmwlm-;
the underlying structure of data sets combination of 13w M 5“-"0“
Its basic intuition is that it asks what combinations.

to the maximum variance among ll pos structure of interest

ﬁw“ﬂm

: o
good example of ity application in of bonds wﬁhﬂmm

rates, which corresponds to




any given period, vields of all maturities change diffe
we need many factors to describe the change in the 2

rently, It w, I
Yield curye 1,
principal component analysis reveals that three co Hm’ﬁ
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To illustrate these relationships mathematically, let us assume that
R={ri ), 18an (N*T) matrix representing returns of N securities duz-
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Mponents

of a linear combination of different points on the Curve chucm
majerity of variation of all the changes along the whole Curye. &
component corresponds to the level of vield curve, the second ¢g, by
to the slope, and the third corresponds to the curvature, "TeShond

Suppose the raw covariance matrix of stock returns is an
metric matrix X, with N being the number of stocks. Then
component analysis would decompose it into

I=LPL’",

where Pisadiagonal matrix P=dag(h, .- 3. ), with 0 >3y o8

being the eigenvalues of matrix T The matrix L is an orthogonal matmy
consisting of the eigenvectors '

Bl (1

ey : . |I
with I being the identity matrix. We shall denote [._as the matrix element
| as the row vector, and L as the column vector, Le., 'I

7 L L.- . (I:
= : - : |=“-.-"'-1-.-,|= 3
\ f—'.. L_‘_h} .
LN

I:LJ 26 :II' ﬂ—i:J
Tl e

Comparing Equation 3.9 1 Equation 33
tion 3.9 represents a model of N orthogona)
variances and‘ L being the exposure matrix of each security to the N
orthogonal principal component 5P¢ciﬁcally. the row vector l;

the exposure of the j-th stock 1o the N factors. Th lled the
factor loadings for each stock. . Rte also. ¢ -

« We can conclude that Equi-
factors, with A’ being theif

ing T nonoveriapping periods, and Q=(g4, ) isalsoan (N xT) matriz
reflecting returns of the N orthogonal principal componient factors during
the same T periods. R (security retarns) can be expressed as the product of
both L (factor exposure matrix) and Q (factor returns) as follows:

R=10Q. (3.13)
Because LL" =1, the factor return matrix Q can be derived by

Q=LR. (3.14)

Given (Q, we can now derive the retarn covariance m.a:n'_:s of the N prin-
cipal component factors. As shown in the following proof, it is equal to the
d:-.igcma] matrix of eigenvalues (P)

E=1QQ =L RxRL e
=LZL =L1PLL=P

+ Given R = LQ, each row vectar of L cormpo_nd::th: ﬁn:ﬂ“:;h
sures of each individual security, whum Q= 'm‘,{m i
column vector of L represents mnnt‘_rupﬁﬂ Mmdnbt =
ual orthogonal pﬁncipal'mmpmumﬁam, reader
ful not to confuse one with the other. .

: 5 a big differ-

Comparing Equation 3.9 wnh Equ_m.nn 3.3 also reveals 2 big

ence between the two. There is no specific

stocks, In reality, the number of
digit (Connor and Korajczyk 1988).
factor, then, in theory, the perceniage

) mponents as
The selection of principal € If there are
tant step in the modeling process:

seatistical factors is an Impor-
100 few factors, then the
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model does not adequately describe systematic risks, Ifthere arepe.
factors, the model might be overly fit; some of the factors Mighy b.nﬁ'
and lose their significance over subsequent periods, One my
tool that offers some help is the theory of random matrix (see, for ey

Plerou et al. 1999). By comparing the distribution foige"\’alueg u"‘!t
of a random matrix, one might be able to select only the factors tlm“‘
statistically significant and leave out other noise factors. b

3.2 RISK ANALYSIS

Previously, we presented a general framework of multifactor
described three different types of multifactor models. The r
this chapter is devoted to portfolio risk analysis under this
Risk analysis is an integrated part of portfolio management.
least two purposes. First, it reveals where the risks are
ing portfolio. An efficient portfolio should have
expect excess return, whether it is in sectors, al

stocks. This can be done by portfolio risk attribution. The second pur-
pose of risk analysis is to see how the portfolio’s risk characteristics might

change if we were to change the portfolio weights. This is achieved thmugh
analyzing marginal contribution to risk (MCR). We discuss the marginal
contribution to risk first,

rnodd“:“‘
emainder of
frameworh
It serves s
presentin anuuf.
risks in places where we
pha factors, or individul

321 Marginal Contribution to Risk

Given risk models, such as the ones in
weights w=fw..--

(3.3), (3.4), and (3.5), and portiollo

Wy ) , the tota] portfolio variance is

Ul:""'z“m':.w'ﬂ]}:.(l!'w)-bw'Sw. (16

s
= (W'B)E, (BJW)'I- wSw | (@-ﬂ!ﬂ

=

The marginal contribution to rig (MCR) from stock i is defined ¥

the partial derivative of & with respect to jig weight: MCR =Ba{'3ﬁ"l "Mi
- ) -
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measures the rate of change in g, as the weight w changes by an infini-
1esimal amount. We can calculate the vector of MCR as

MCR=.E _ _ BEB'w+Sw

_ _ BE B'w+Sw
MW (wB)E, (B'w)+ wisw

(3.18)

One can similarly define marginal contribution to systematic risk and
marginal contribution to specific risk because it is common in practice to
look at these two sources of risk separately. Mathematically, we have

: ;

MCR_. . =— BEBW _BEBwW (3.19)
et (w’B]E,(B'W] O_I.m
d
& Sw___Sw_ (3.20)

MCR =:ﬁ : O gt

: . binin
We have defined the portfolio systematic and spcutf:.; risks. Cam ining
the three definitions yields the relationship between three:

o =MCR. (321
Uq-nrmn: MCR + ——?’Mmﬂ MCR
5

atic MCR and specific NECR.. Wi:,h
atic risk and specific risk in the
to one; instead their squares

MCR is a weighted average of ?rstﬂ::m
the weights being the portions odos?:m e
total risk. Note that the weights
sum to one.

Example 3.1 .
: rd, Forinstance, suppase
The interpretation of MCRis rat l;et;:t;:lts::fﬂmf';‘:m S adid iiolpe Gk
- 1 | i
MCR is 0.1, then an increase 0

itude would
the same magnit
portfolio risk by 0.1%, wherea; a decrease of v
decrease the portfolio risk by the same amoun

322 Group Marginal Comibuion O FEL o angeinthe
We note that this simple inlﬁpmw::e:!s mhlnmwmamm
portfolio weight w, comes at the expe



: change the weight of a single security
cannot change the weigh single security alone. For €Xample el
L]

! ng-on]y e
n admlar nﬂ-llral :
then Wwe haw_- 10 eis
ase the short of ;
rmtl-ﬁ':r.r.u;,.:'i ]

in

not adjust the weight of a stock in a fully investeq lo
without adjusting the weight of another stock. Or,
short portfolio, if we increase the long of a stock,
decrease the long of another stock or incre
order to maintain the dollar neutrality.
To have a meaningful interpretation of MCR, it is better to con;

in combination of two or more stocks. For instance, ﬁﬂi
MCR, , =MCR, - MCR ’ By
of Increasing weight W, and simyl
by the same amount or, in other wordg
?:,uymg stock 7 and at the same time selling stock J- This can be usefyl
in making a trading decision from the risk perspective. For example, if

MCR, =01, '.\ICH =02, then MCR, =-0.1, implying that a trade of
buying 1% of stock i and selling 1% of stock j would lower the risk by 0.1%
Trading decision is not necess grop

. arily limited to pairs, :
of 51¢.u:l-:s.. as long as the aggregated change of all fh:— i::gﬁf: L:Z:m.grg
requirement can lze achieved by using a vector t=(r,.**-.f\- ]' represent-
ing pmpnrtion_s of trading in each stock and letting t-i=0, Recall thati
is the vector of ones. Then, the marginal contribution to risk for the lﬂ'k
L]

meastires the marginal contribution
taneously decreasing weight w

vector t would be
MCR, =t'-MCR . (3.3

For exampl, ( mple
€, @ Veéctor t= l.ﬂj'_'u‘?s : ¢ ] b
one unit of stock 1, buying 25,0, ”'0] would imply buying.

a half unjq ; |
units of stock 3 and stock 4. The i o selling three G B8 I

unit mi
size. If MCR =[D.l.ﬂ.2.ﬁ.3.0.3.. .‘J' - thE:I gt be e w5 WMJ!

MCR, =t"-MCR

4
=1-ﬂ.l+D.5-0.2-[J.?S*G.3-ﬂ.75-{]_3=—ﬂ.25» '

L ! when we analyze the msf!i‘“—l |
contribution of a sector in a long-shory i yEe
straints (see Problem 3.4). Add P oo with sector-neutral co

itional constrajpng the
. may b ed on
trades. For example, if the portfolio is beta neutral :nde ilﬂriq Sl

_—‘
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remain so after the trades,

then the vector t must also satisfy the equation
t°- ﬂ: .

321 Risk Contribution

Contribution to risk, or simply risk contribution, is a different way to
analvze portfolio risk. In contrast 1o MCR, which is a dynamic cnn.c:pl
regarding changes to a portfolio, contribution to risk is 3 static measure
of how the current portfolio risk is allocated among its constituents. For
portfolio managers, it is important to understand the makeup of the port-
folio risk so they know the bets are placed appropriately. For instance, for
a Pnrlf{'}llﬂ with a given level of tracking error against a benchmark, we
are interested in knowing how much of that tracking error is made up of
systematic and specific risks. Alternatively, we might be interested in the
contribution to risk from all the sectors. For a long-short portfolio, it is
common to ask how much risk is from the long side and how much from
the short side. Because contribution to risk adds up to the total risk, the
concept is also referred to as risk budgets. When one actively uses risk
budgets to construct portfolios instead of passively monitoring portfolio
risk contribution, the process is often called risk budgering

The concept of risk contribution is widely used in both risk manage-
ment and risk budgeting practices, in the areas of asset allocation as well
as active portfolio management (Litterman 1996, Lee and Lam 2001,
Wander et al. 2002, Winkelmann 2004). Despite the ubiquitous presence
of risks, questions have remained regarding their validft?'. The questmn;
stem from both the simple belief that risks are nunani-:iltwe and a lack of
financial intuition behind mathematical definitions o ll'!es.e_concepts. In
the remainder of the chapter. we shall define risk comrlbu.mn_ first and
then present a financial interpretation in terms of loss ﬂ-‘m?bulu?;:mbu-

The definition of risk contribution is related to the marginal ¢

. e : ve
tion to risk. For contribution to total risk, we ha

ion 3.24, using Equation 3.13, is

% _w8(BEBw+Sw) 629

(_:R:W@aw a

The vector form of Equat
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the operator & denotes element by element multiplicatio
. s '1. lI
A B lor two vectors of the same |['||",lfl. ] IS sy f“]'ll'n'.'c o

Prop M
that contributions to risk from all stocks add up 1o the tora] A 3}

riﬁk‘ i.!.' l.'
N
CR"i foli. Z"'f Y e
iml il ,Ju'.l l

Hence, Equation 3,26 constitutes

oy

as a risk decompositio
. i SIHON of the ju,
risk. We refer to it as the risk budget cqualtion I?i\'nfmg it by the h:lh'd‘

@, we abtain a percentage contribution to risk (1 R) from each stogk,

i3
W

i N
. I
PCR, =—% z R, =
==L, Y PCR sl (21

l Example 3.3
ot us look at a portfolio with two securities and with a covariance mntﬂm'

zl_ ﬂ: pﬂl“] -':.
ot teod) o

Then, the total risk wi : '
sk with w--(u-l,-.p_,J s

-
a= Tt b d
W o] I~%G,+2;)w,wln|ﬂ, ’

The risk contribution and PCR are

+ ‘g
CR, = pat O +Pwiw 0,0,
1.2
Wil +wiol

+2pwiw,0,0,
2ol :

PCR, = 2% *Pww,0,0
T B L e o
'UI 'H‘\',G’! +2pwl

W,0,a,

Thus, PCR is equivalent to variance
is the total variance of the portfolio wh,
ance and covariance attributable to gach

ecomposition. The denominatof
ereas the numerator s the varl
stock. Although it is true that the
i

h
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volatility or standard deviation s nonadditive
Ance are,
We can write PCR as

the variance and covari-

= . F""[“’."ﬂ“’:ﬂ*“‘";"{
PCR, = —)- =P.... (3.31)

coviwr + Wil owyr + w,r )

Written this way, the PCR s the ratio of beta of the return component
of u stock to the return of the whole portfolio.

.24 Feonomic Interpretation of Risk Cantribution

The interpretation of risk contribution is not as simple as the MCR. First,
a mere mathematical decomposition of risk does not necessarily qualify
it as risk contribution (Sharpe 2002). Second, because it is mathemati-
cally defined through marginal contribution to risk, various authors
have attempted to explain it in terms of the latter, For example, Grinold
and Kahn (2000) interpret it as “relative marginal contribution to risk.”
Farlier, Litterman (1996) also interpreted risk contribution in terms of
marginal analysis. However, these types of interpretations do not seem
to offer anything new beyond a recast of MCR. Because of the difficulty;
same expressed critical views toward risk contribution and even suggested
abandoning the concept altogether.

Does risk contribution have an independent, intuitive ﬁﬂmﬂi{ll inter-
pretation? 'The answer is yes. The interpretation is loss cnnlﬁhulhmn and
percentage contribution to loss. One of the common pressing questions fac-
ing portfolio managers in the event of a sizable loss is whatumfedymscom-
ponents are directly responsible for the disappointing portfolio losses. This
question can be addressed by using the theory of ‘““"_““““'l “P"";:ﬂm‘

We present the solution for a two-security portfolio '“_d ]‘“‘;':d BI'“'
eral case as an exercise (Problem 3.6). Suppose the po et fi : m
of size L; the expected percentage contribution to loss L (PCL) from secu

rity £ is the conditional expectation divided by the total loss L:
(winlwiatwan=b) (.32
P’CL. = - b
. itional
According to the theory of conditional m”ﬂl::::;" mlﬂ”mﬂiluﬂu'
expectation of a normal variable equals the unco i

_——*
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beta (which equals PCR, according to [3.31]) to the Biven v
case, the total portfolio return, times the difference
variable and its unconditional mean, We have

ariable, jg .
hEchen lhem'
PCL, = ‘?';9' +PCR, [ 1- 1"};“' = “.':!F.‘._: J: PCR, + ?

]

; il + Gal
PCL, = “-’-L”—-' + Pcu_.[ 1 “'LEE =l ]= PCR, + 2

b
We have defined

D, =PCR, w1, ~PCR,w

. (33
D, =PCR, w1, - PCR,w,u, %

It is easy to see that PCL, +PCL, =PCR, + PCR, =1 because D,==D,,

Equation 3.33 shows that the expected PCL bear close relationship to PCR
In fact, they are identical if D,=-D,=0. The tw

if the loss is large compared to D, and D,
which D, =-D, =¢. )

o are very close otherwise
. There are three instances in

* Case I: First, if p, and I,

; are both zero, then D, =D, =0, imply
ing PCL,=PCR, for an

¥ loss L. Therefore, PCR perfectly explains

the expected PCL. This cage applies to short investment horizons
where we can assume the expected returns to be zero. In practicts
much risk management analyses are indeed done over one-day of
one-week horizons,

« Case II: The second case is when
fore, its contribution to risk is ze

isa tr.ivial case in which the rémaining security accounts for 100%-‘%
the risk as well as 100% of the loss, However, this loss contributiol

remains approximately true if the security weight is small, and the

loss L is relatively large compared to D, and D
s

« Case IlI: The third and more interes

ting case arises when D; =
PCR,w\l, =PCR w1, =0, or equival

ently

Pk wil, (335
PCR, = pen (3.35)

one security has zero weight; there- :
ro. Consequently, D,=D,=0. This
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Fquation 3.35 is the first-order

. condition of marginal utility for an
optimal mean-variance portfolio,

Therefore, it implies that, for optimal
portfolios, PCR is equivalent to expected percentage contribution to the
portfolio’s total expected return, In other words, risk budgets become the
budgets of expected return for mean-variance optimal portfolios.

+ Sharpe (2002) discusses this property at length and suggests that
“risk-budgeting and risk-monitoring systems are best viewed in terms
of a budget of implied expected excess return and deviation from the
budget.” However, this equivalency is only true for mean-variance
optimal portfolios. For a real-world portfolio, which might not be
optimal in the mean-variance sense, our interpretation of PCR still
allows managers to estimate the likely contribution to a given loss.

In fact, Equation 3.33 allows us to estimate the impact of the portfolios”
suboptimality measured by D,'s on PCL. For instance, if the allocation to
security 1 is more than the mean-variance optimal weight, then D, .d"
This is because when the weight w, increases from the optimal weight,
the increase in its risk contribution dominates its increase in the expected
return contribution. Therefore, for a given loss L (<0), the percentage con-
tribution to loss PCL, will be greater than the percentage contribution to
risk PCR, because D/ L is positive,

« We further note that, when the loss L far exceeds lhf: quanh‘ly_[), 2
then PCL and PCR are approximately the same. '[I"ns ubscmt:lt:!n h:i
very relevant during financial crises when portfolio Ir.-ss:::-:E :;u 5
significantly higher than the expected returns. Co!-u:egm g;l e
contribution would be well captured by risk contribution.

i lativel
contrary, during quiet periods when portfolio losses are relatively

ibuti i ex post return attribution, is
small, loss contribution, or simply &x p i

unlikely to bear any relationship to risk contribution

. contribution

[n summary, contribution 10 et = mtqdi::if::lﬁhcn expected

to a given loss of the total portfolio. ety —variance optimal.

returns are each zero or when the poainio I m:;:n the given loss is

In other cases, the interpretation is ap?ﬂﬂe:::m the portfolio’s devia-

large compared to the value of D; s, whicl (2006) showed empirically

tion from mean-variance OP_tim“l“Y' QI::lwm“ portfolios explains
that risk contribution of stock/bond asse

etive equity Puﬂfﬂ].l‘lﬂi
the loss contribution. In the context phatBets
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contribution in terms of systematic risk and s
tor loss contribution from those sources,

pecihc rigk shoulq be
b

3.3 CONTRIBUTION TO VALUE AT RISK

We have shown that risk contribution can be rt‘u,nr&cd as logs ¢
= L 0ntré|:,1m \
L

We based our analysis on the conditional expectation
normal distribution, for which analytic formul
in reality, few returns follow normal distribution. For retur
longer investment horizons, they are log normal at best a
both skewness and excess kurtosis or fat tails. For nonnormal p
standard deviation as a risk measure is inadequate. A common suI:::il
for it is value at risk (VaR), which represents loss with a given cumul;,“'IIE
probability, We shall now extend our results to VaR contribution yi
Let us first define VaR. For a portfolio with normal dis[ributiu:ll. VaR is

simply the expected return plus a constant multiple of standard deviation
For a nonnormal distribution, a .

lowing equation:

of a muly

ns Meagy 4

VaR

Prob(r < VaR )= f p(r)dr=a, (3.36)

where -"’(r} is the probability density of the return distribution and o i

the cu mulative probability of loss, typically set at 59% or 19%. However, note
the following; ’ .

Mcv=9YaR o avar (530

As before, the contribution to Va

ginal contribution. Because VaR is a linear K
) ey ion
weights, it is mathematically true thy (Problem g‘;;‘sﬂﬂeous functio

vy
as are availaple H "

nd Oftgn exhih

(1-a)% VaR is defined through the fol.

Risa produet of weight and the mar*
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¥ C dVaR
Vak -—2“’1 'aw‘ . (3.38)

Hence, we have the VaR budget identity,
It turns out that contribution to VaR can also be interpreted as expected

contribution to loss, whose size equals VaR, The following proof is due to
Hallerbach (2003). Suppose a portfolio suffers a loss of size VaR, Le.,

o =W ++wun =VaR, (3.39)

Then, taking expectation of (3.39) with respect to the returns (r..---.r,,. }
vields

E(wyr; ++-+wyny |r, = VaR )= VaR. (3.40)

VaR is simply a constant in this process, Because the weights are regarded
as constants in the equation, the expectation on the left side can be written

as a linear combination:

iw,s[qh =VaR)=VaR. (3.41)

=t

Comparing Equation 3.38 and Equation 341 leads to

dVaR 3.42)
w‘E(ﬂlr’:VGR]r-'M '—’aw s (

Equation 3,42 is the interpretation we-hav? seughtlﬂ:s 1:}::::1;:;:03 ;;
VaR (on the right-hand side) equals contribution to:a i
{on the left-hand side). It further implies that tl:; mnrﬁmin e
VaR equals the expected security return given the po

However, nate the following: Bl

d dard deviation

+ Although contributions to risk in terms of h{:: :1:]’1::: e
and VaR have the same financial Intel’P""::d de.viirinn under nor-
subtle differences. First, in the case uf: ‘:1[:15 to risk are independent
mality assumption, percentage contriv

e
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PROBLEMS

3.1

3.2
3.3

34

3.5

of loss size. We have shown that, under some cirey

: ; ' A Mstap
approximate loss contributions with sufficient Accurae .ceﬁﬂ,q

less of the loss size. However, the interpretation of contril
r utj,

058 thal eXan|

hen Vag Chamb

S One must recaleylage s ap

VaR is rather restrictive — it only applies to the |
equals a given VaR. VaR contribution changes v
Therefore, for losses of different size
contribution.

Another difference is the computational complexity. Althoygh o
contribution based on standard deviation is easy to calculage iti
daunting task to calculate risk contribution to VaR becausea[;“ I:;
expressions are rarely available for VaR as functions of WEigrm.
Even when there is an analvtic expression, calculating its Pparti
derivative with respect to weights can be quite challenging (Choy
and Kritzman 2001, Chow et al. 2001). In most instances, one hag
to resort to Monte Carlo simulations to obtain VaR decomposi.
tion a.r..-.-.fell as VaR itself. One alternative is to use Cornish-Fisher
aPpruxlnlﬂllﬂll to VaR based on moments of the return distribu
lllIJn (Mina and Ulmer 1999, Jaschke 2000). The approximation
gIves rise to an algebraic expression of VaR, and it can be used o
calculate VaR contribution analytically (Qian 2006).

—

Suppose decaying weights are --- g1 ..,

for the most recent period being 1 and w<1. Prove the halflifedl
the weights is H=-In2/Ina. |

Prove Equation 3.26, i.e., risk contributions add up to the total risk:
For a long-short portfol
specific risk of a long (
contribution to specify

i0, prove (a) the marginal contribution

¢ is always positive,

F"_ﬂ 10"3_'0"13' portfolio where all the stock weights are nonnegatives
is it possible to have negative MCR?
In an active portfolio vs, a benchma

ol rk or a long-short portfolio, it i
typical to impose sector-neutral con ‘ -

straints

ZW,:UI

(L

(343

o @t ,m,1, with the weight

short) position is positive (negative), and (b}

3.6

37
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The marginal contribution to risk of the sector § could be defined as

MCR, :Zw,MCR, ; {3.44)

s

Find an interpretation of MCR; in terms of the leverage for the

sector.

This problem extends the results for risk contribution to portfolios
with N securities whose returns follow a multivariate normal distri-
bution, £~ N[.l.l.E] - Denote portfolio returnby r, = w5 ++w,ry
and the portfolio expected return by ji . Suppose the porttalio had a
loss L, prove that:

{a) The PCLis

PCL, =E{wir |, =L)/ L=PCR, + "I ERE  4s)

(b) The PCL is the same as PCR for all securities if

wiby _ wills _ Wy (3.46)

PCR, PCR, PCRy

() For a mean-variance optimal portfolio, Equation 3.46 holds.

(d) The conditional standard deviation of PCL 13

w'a’ -PCRG’ 347)
Wi, _ywiai-PCRi0" '
std[ " r,= L]
i i Creases
As the loss L increases, the conditional standard deviation dec
as | over L.
i w if flov)=
A scalar () is a linear homogenows function of fle®)
¢f (w) for any constant .
(a) The average return y1, and the sL
lio returns are linear homogeneo

'-;' "

Prove that
andard deviation G, of polrtﬁo-
s functions of portfolio weights
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{b) VaR is a linear homogeneous function of portfolio weights i

(c) For any linear homogeneous function fl EJ),

dw, (3.48)

3.8 This problem proves the VaR budget identity (3.38) by a direct para.
metric approach. Without loss of generality, we again assume P
portfolio of two securities whose returns have a joint probability dig.
tribution f(rl,rz) . Denote the portfolio return as r, =w,r, +wyr,. .

(a) Prove the probability of r, being less than the (l—-ﬂ)% VaRis
= | VaR—win )y

Prub[rrilVaR)=Idr, f(r.r)dr.=a. (3.49)

(b) Equation 3.49 defines VaR as an implicit function of w; and w;.
Prove that the partial derivative of VaR with respect to w; equals

f1f[r1. : VaR -w,rn, Jd"l
w
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Evaluation of
Alpha Factors

EAN-VARIANCE OPTIMIZATION AND RisK MODELS described in

Chapter 2 and Chapter 3 provide the theoretical foundation of
quantitative equity portfolio management. In Part 11 of the book, we dig
deeper into the key ingredients of the Modern Portfolio Theory (MPT)
paradigm. An important component of any successful investment strat-
egy is forecasting expected returns using alpha models. In this chapter. we
consider the process of selecting or evaluating return factors that go into
a comprehensive alpha model. In Chapter 5, we consider the typical set
of quantitative alpha factors used in practice and their performance. In
Chapter 6, we consider the firm valuation approach used in fundamenlfl
analysis and retool it for quantitative use. Chapter 7 presents the analyti-
cal framework for combining specific return factors into a comprehensive
multiple-factor model designed to lead to cansistent long-term perfor-
mance, The essence is to create an expected return/covariance ap pacs
to “factor diversification,” analogous to dassicu.l stock sclcclinnlmc:hnd;
discussed in Chapter 2. One additional dimension of fnctorhzrlh:ll :: 3
its associated portiolio turnover implication. We discuss { po

topic in Chapter 8,

41 ALPHA PERFORMANCE BENCHMARKS: THE Eﬂﬁi -
The evaluation of success of most iHMImt:n i Furc'l:\:c:? institutional
performance measurement, ona ms#mnd : ’i:nrﬁtrmdowmmu. the
investors, such as corporate pension plansand un

individual or retail
investment horizon is infinite, at least in theory. For in B
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investors who invest for retirement, the investment horizon can be years

or even decades. It is therefore important 10 have appropriate long-term

performance measures to not only build long-term investment strategies

but also to evaluate and compare different strategies. - 1
The two common risk/return measures that derive trom the CAPM

theary in Chapter 2 are the Sharpe ratio (SR) and the information ratio

(1R). Both assess the returns of a process (alpha factor or model) condi-
of risk. The SR conditions on total risk or volatility

tioned on a dimension
ratio of average excess return to the standard

of the portfolio, and is the
deviation of excess return

sp=t—=F, (4.1)

For example, assume a portfolio of U.S. large cap stocks has an annual
volatility of 15% and an excess return of 5% — the SR is 0.33. Intuitively,
one can interpret the SR as the accrued returns (benefit) per unit of total
risk (cost). In our example, U.S, large cap stocks delivered 33 basis points
(bps) of returns per unit of risk.

IR, on the other hand, has an added layer of relativity. It measures the
average of an active portfolio return (relative to a passive portfolio), rela-
tive to the increased volatility of the active portfolio, also relative to a pas-
sive portfolio. The pension consultant community introduced in Chapter
| makes considerable use of IR. It is particularly important in comparing
long-only (no shorting) professional equity managers to (1) other active
managers and (2) a passive benchmark that can be mimicked with rela-
tively low cost, like owning the entire S&P 500 index. “Tracking error” is
the common term to reference periodic deviation from the passive bench-
mark (or active risk). Thus, IR compares the average alpha over time to the
incremental benchmark-tracking risk (alpha volatility)

(v 4

o .2
IR cr(l:r.;l' (4.2)

For long-only portfolios managed against a benchmark, alpha is the
portfolio excess return over the bench mark; for long-short m:a.rktﬂ:l-l'le"m"t
portfolio, alpha is the excess return over cash, the benchmatk for most
Iunsﬁ]:'“rl products. Similar to SR, IR measures the accrued active retur?
per unitofactive risk. For a given level of tracking error, it is evident that W€
prefer a strategy with a higher IR to a strategy with a lower IR. In practicés

E i
\.fah.ri!llf}!l "' J“llph\‘ I -'.Itlﬂli ] B]’

grt'l”h" managers that achieve an IR abo

Jon : i ve 1 shoy .
.;ucc-'.'sﬁr'n!. The median IR over the |ast 20 years fnrldagh: “'-"I“tdemd quite
) 5 considerably less than 1. H - Ve large
investors 15 CONSIC + However, note the PUS
A ollowing.
B

-

geveral remarks should be made aboy; the use of IR ;
itis customary 1o quote IR on an annualizeg b N practice, Firgy,

- asis, w
slredm Is often rupt)rted on a much Sh“”ﬂ' hnrizgn shc;eas the ilpha
UCh as quarter]
y

or monthly. In these cases, one has 1o annualize the Ig.

important to emphasize that IR is a multiperiod sgati %‘Wﬂd‘hi;
Although it is straightforward to calculate €x post (n:.ﬂltca:_ metric.
given a history of periodic excess returns, it is much mur:e;i;ed: o
estimate ex ante or expected IR. Nevertheless, an ex ante IRwotluldl::

much more useful to investors as a guide for their future inves
allocations. tment

Itis useful to note that the IR definition is closely related to the -statis-
tics. Indeed, we can transform the IR into a t-stat that helps measure the
consistency of an alpha process as follows:

ta=" 2Ry, «3)

ofo)

where T'is the number of sample points. We can use IR to test the hypoth-
esis whether the expected alpha is statistically positive. For example, an
IR of .67 derived from 10 years of return history demonstrates statistical
significance of value added at the 95% confidence level.

42 SINGLE-PERIOD SKILL: INFORMATION COEFFICIENT
The information coefficient (IC) statistic (Grinhold 1989, Grinhold :"‘!
Kahn 2000) is a key building block in measuring the “alpha power of
a factor or Pprocess. We can imagine many ways o associate skill with a
Predictive factor, For example, we migbt merely count the success in terms
?f the number of securities in the portfolio over an interval :h‘“ Wt?f'lt
tUrmed an index-type benchmark. This would be a type of “hit 1':!;-‘-‘“I 2
Eum,.; out that a process that can deliver a hit rate of, say, 55 to
xc—epfmnal if it can be achieved consistently- s o Hiens
sqat-c 18 2 more formal measure of forecasting aipha pon St
Ustic that meagures the cross-sectional correlation o Lt
feturn forecasts coming from & factor and the
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ant in evaluating factors because of g

returns for securities. IC is import
hich is developed later i

translation into IR — our ultimate objective — W
the chapter through the following equation:

oo 1G
Tsd(ic)

Other things being equal, the higher the average IC for a factor is over
time, the better the reward-to-risk ratio. In addition, the more stable the

IC over time, the better the result.

421 RawlC
In order to analyze multiperiod IR for a strategy, we need to develop the IC
component of the strategy or factor that is embedded in IR. This analysis
first entails an extension of the simple one-period "raw 1C” for total return
correlation to a refined “risk-adjusted (i

Westart from single-period excess return, which isa function of portfo-
lio weights at a given time f and subsequent returns of stocks. Denote active
weights by w ={w|,.---.1v,,-) and subsequent returns by r = [ﬁ.---.{\.] -
We have suppressed the time index ( for the moment for clarity. The real-
ized excess return for the period is

a, =2‘w,|rI =w'r. (4.4)
=1

For a dollar-neutral long-short portfolio or a long-only portfolio
against a benchmark, we have w’-i=0. Therefore Equation 4.4 remains

unchanged if we replace returns with relative returns against the cross-
sectional average r

ﬁr=zwf(ﬁ—r')=w'-[r-ﬁ}, (4.5)

The summation in (4.5) is related to the covariance between the weight
vector and the return vector, Writing the covariance in terms of correld-

t:run and ::mss-secticna] dispersion (we reserve the use of standard devis*
tion for time-series measures), we have

T

Evaluatipn of
Alpha Fa
ICI0rg " as

o = Z'w'(r' -7 )=(N —|:'C0"(W-l‘}liisl:w]dis[r],

(4.6)

pecause both dispersions are positive, he excess
sign as the correlation term. In orde
we must, in general, overweight stock
ously underweight stocks with lower

gcncr.-ll direction of average return,

return hag th

T tcT generate positive excegs :e:l::
s with higher returng ang s'lmuhaw.:
returns. This is trye regardless of the

Example 4,1
It is easy to observe this in a simple two-stock example. Suppose we have
stock 1 and stock 2, and we overweight stock | by 5% (w, =5%) and
underweight stock 2 by 5% ( w, =-5% ), Consider two return scenarios A
and B. In scenario A, stock returns are 10 and 5% for stock | and stock 2,
respectively. In this case,

ot =5%-10%—5%:-5% = 0.25%,

or 25 basis points (bps). In scenario B, stock returns are -5% and -10% for
stock 1 and stock 2, respectively. We obtain positive alpha again, because

0= 5% (~5%)—5%:(~10%) =025%.

To connect excess return in (4.6) with the raw IC, which is the cross-
sectional correlation coefficient between the forecasts and the returns, We
are forced to make an unrealistic assumption that portfolio weights are
Proportional to the forecasts, i.e.

w=cf, or W‘a=q:! forall 7. (4‘?]

" mean, we have
A"‘*"’mng the forecasts have zero cross-sectional

% =iwf(ﬁ-‘?)=‘(” ijcasfe)ist) 8

IC =a:rr(f,r}
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Realized portfolio excess return i1s dpcn:npnnm{ into t'm'.cc‘inluitiv-
components — 1C iskill), dispersion of the forecasts |,L|1|‘|.\'1-L‘|||,1-|1]. and
dispersion of actual returns (opportunities). Because both ‘h-“'l'*t'fhlt'-m-':lrg-
always positive, the sign of excess return dst-pcnd.-'- on lllu- sign of the IC, A
high positive IC is desired. Typically, an IC of 0.1 or ].”Fh“ on an annual
basis is considered quite strong, depending on its time-series volatility,
Of course, if a factor f consistently has negative IC, we can just use ~fas g

tfactor.

4.2.2 Risk-Adjusted IC

Althoueh the aforementioned 1C definition facilitates an intuitive inter-
pn’m[h;n of portfolio excess return in terms of the three components, it has
a serious flaw. The problem arises from the unrealistic assumption of port-
folio weights in Equation 4.7. For a quantitative manager, such naive port-
folio weights are mean-variance optimal, only if the risk model consists

of a single diagonal matrix with equal diagonal elements, i.e., there is no
systematic risk in the market, and all stocks have the same specific risk.
From a realistic perspective, systematic risks do exist in the market, and
specific risks are uneven across stocks. Therefore, a portfolio constructed
by (4.7) is susceptible to unintended systematic risk exposures, In addi-
tion, it is inefficient in terms of the distribution of specific risk among the
stocks according to Chapter 2. An example is the book-to-price factor. If
we have used it in the same manner as in (4.7), the portfolio would have
had a low beta bias since high B/P stocks have historically had low beta on
average. As a result, the portfolio tends to underperform when the overall
market goes up — an unintended beta bet.

The traditional “raw IC,” based on raw forecasts and raw returns, is to
removed from realistic portfolios to be an effective alpha diagnostic. It
might serve as a preliminary check, but its applications are limited. What
we need is a new IC, a risk-adjusted 1C, which is consistent with a realistic
F‘””f"““ process, which strips out the systematic bias in the factor, and
\ncarporates uneven levels of specific risks in portfolio weight selection.
This new IC is linked directly to a realistic quantitative portfolio process:

and t.heremre serves as a better proxy of how the factor will perform in 3
portfolio context.

We define a risk-adjusted 1C by first solving a mean

tion to get the optimal weights of a market-neutral portfolio; second, W&

derive the single-period alpha using those weights and subsequent returns
and, third, we relate the alpha to a risk-adjusted 1C,

~variance optimiza-

.

Evalum 1
100 of Alph
a4 Factgrs
* n B
Given a lorecast vector f, we solye the followin
B Mean-y

mization to obtain portiolio weights w ariance opyj.

Maximize ' w- L, sy
L G MW Ew

subject o w’ = andw* B=q =

The covariance matrix is that of g multifactor model, i ¢

L=BLB'sS. (d.10)
The active weights are not only dollar neutral but

| . . also neutral 1o all risk
factors. Therefore, there will be no syste

matic risk in the final portiolio,
As a result, we can reduce the objective function in (4.9) to the following,
provided that we keep all the constraints

1,
Frw=2A(w"S-w), (4.11)

We can now solve the optimization analytically with Lagrangian mul-
tipliers. We switch from matrix notation to a summation form. The new
objective function including K + 1 Lagrangian multipliers (I for the dallar
neutral constraint and K for K risk factors) is:

Z,f.“', I 1 }“2 “*::5.: “ﬂ:i“';"ﬂi“'.ﬂu "“‘L‘i""lﬂp- (4.12)
- il

i=1
] (&)

Taking the partial derivative with respect to w, and equating it to zero
Bives
W ot :;': ) ’;"IEL_:'__"-!-,.ﬂJl - (#.13)
[ Gl'.

rtfolio weights are the risk-neutral

The values of the Lagrangian
tem of lin-

1 ['-qu-illjl}n 4.13 states the nPliITl.l.l] po
recasts divided by Aific variances
Eike y the specilic variances.

e Plicrs can be determined by the constraints through a sys

Car equati
“Quations, Denote

N

L XL {4.14)
f gty = 3y "
RI.}‘_\-'=I'5 Y ;G;
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The system of equations is

b (1) + (i, by oo+l (1D

: - 1=y, f
;” bi-l'+'ll b|-bl +"‘+IK bg-hn. bl . {415]

by i)+, by.by )+ +lk b .by =(by.f

The solution is given by

ib) - (b)) [ (L

b, b,.f,
b Ib* "L (a6)

b | ] by.i be.b) - by.by by.f)

Given the active weights, the portfolio excess return is the summed
product of the active weights and the actual returns

We now replace the return 7 by r,—ny—mp,, —r-—mygPy;, where
(m,,‘--.mx}. which are the returns to K risk factors, derived from the
cross-sectional ordinary least square (OLS) regression, We do so to
express returns in the same format as the forecast, and it does not change
the equation because of the constraints placed on the active weights. We
shall see in the following text that this is not just for cosmetic purposes.

Th.e value of m, is still undetermined but will become clear later. Risk-
adjusted forecast and return are defined as

E=fizh=1By~~lBy
uI

(4.18)
R == Ma =By == myfy,
0!

- T
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We have

N N
o= i =N Y ER,.

im]

iaf (4.19)
Therefore, excess return is a summed =k

and risk-adjusted returns, scaled by the risk.
From this point on, there are two direc

mon approach is to take the expectation of

of risk-adjusted forecasts
AVersion parameter.

tions 1o proceed. One com-

Equation 4.19 and assy
u!pﬂﬁfd security return is the prududof[C, specific risk, and score?;;:.::

is the standardized forecast (Grinold 1994), Sych Prescription is useful
in practice for translating z-scores into alpha forecasts. It can also lead
to an estimate of the single-period IR (Problem 4.3). However, this lin-
earity assumption is not theoretically valid with cross-sectional 2-scores.
In addition, as we shall see shortly, such prescription is not necessary in
deriving the IR.

In the second approach, we make no explicit assumption about the
expected return of individual stocks, because the excess return of an active
portfolio depends collectively on the cross-sectional correlation between
the forecasts and the actual returns, Similar to Equation 4.6, we recast
Equation 4.19 in terms of correlation and dispersions

@, =(N-1);"corr(E R, )dis(F )dis(R, ). (4.20)

Provided that the cross-sectional average of R, is zero. Thus, we choose
H‘i‘“m Equatinn 4.18 such that

avg(R,)=0- e’

Note we have reinserted the subscript t for all the tcrmsmcpt::;
“imber of stocks, The correlation between therisk- adjusted forecasts

o Fisk-adjusted returns is the risk-adjusted IC that we have sought, a6 i

is s ; tfolio. Note
t dlre‘:tl}' related to the excess return of a nskvmﬂmgtdnit the follow-

" Equation 420 js essentially a mathematical identity.

'ng feémarks.
’ _ . the risk-adjusted
First, it i obvious that for the same alpha &ﬁ::e_\‘i- in some cases,

€ could pe quite different from the raw IC.In
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This difference can lead to serioys
erformance, which is rigk.
which is not risk-adjusted.

they could be of different signs. 1
disparity between the real pnr_unlm Ew
adiusted, and a naive model performance. .
This can contribute to the “unexplained _ pufl.mn (often large and
volatile) of a univariate performance at.'mbu:mn. a P.-.Pum ex post
attribution tool used by practitioners 1n decomposing sources of
value that are added.
+ Second, the neutrality constraints on all risk factors embedded in
the risk-adjusted IC are rather restrictive. In practice, many portfo-
lios are constrained to have limited factor exposures, which are not
necessarily zero. Therefore, the risk-adjusted IC serves as an approx-
imated performance indicator for these pnrtmlins,‘ Overall, however,
it is more indicative of the realistic portfolio performance than the

raw [C.

Example 4.2

We use a three-stock example to illustrate the risk-adjusted IC in which the
only risk factor is the beta. Table 4.1 first lists the raw forecasts, followed
by their betas, risk-adjusted forecasts, actual returns, and risk-adjusted
returns. As we can see, the raw forecast f favors the first stock, is neutral on
the second stock, and dislikes the third stock. Stock 2 has the best return
(r) and is followed by stock 3; stock 1 has the worst return. The raw IC
between fand ris —0.24. Therefore, if we overweight stock 1, underweight
stock 3, and take no active weight on stock 2, according to f, we would have
a negative excess return.

However, stock 1 has a beta of 0.9, whereas stock 3 has a beta of 1.1. The
naive weights above would result in a low-beta bias, which a beta-neutral
portfolio would not allow. For a beta-neutral (also dollar neutral) partfu-
lio, the risk-adjusted forecast (F) is the determinant of performance and
they are 125, 1.25, and ~2.50 for the three stocks. In essence, to be dollar
neutral and beta neutral, we should overweight both stock 1 and stock 2b¥
the same amount and offset it by the underweight in stock 3. Because stock

TABLE 3.1  Forecast, Beta, and Return for the Three Stocks

g
Stock ! B = z ]
- o 0.9 1.25 5% 8.3%
L ! -2.50 0% _16.7%
___J'.J.'

Note: The specific risk is the same 20%,

__ﬁ
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2 peturns 15%, _Ih” beta-neutral portfyliq has a positiy,
calculate the risk-adjusted return R ang g Sitive excess regur, yw,
jctually 2 perfect L.
4.2.3  Target Tracking Error and the Risk-Aversion p.
- alameter

Because the portfolio above has no systematic
ing error (tracking error predicted by a risk model) is computed

- e ' u
residual variance. The model tracking error is the product oif)t:1 e
specific variance and the square of the actiy > som oF

‘e weights. Note that we
risk-model tracking error and target trackin : use
acking error interchan ;
have geably, We

risk, the risk-model track.

The residual variance is therefore the sum of the squares of the risk-
adjusted forecasts:

r v
Guu-d:‘i S }".' :\l ZE:

=3 VN1 [as(e)] ofos(e)] . @2
=) \"’NTIdjS(P,:I

We asstime that avg(F,)=0,an d this appmxjmatinn is quituccurateiu
Practice. Solvi ng for the risk-aversion parameter, we have

JN-1dis(E \ (4.24)

O el

=

 The risk-model tracking error (aka the targe! tracking Wm
e cross-sectional dispersion of the fﬂ'efm“ {cn.n i

of the number of stocks (breadth), but mwrét;l}g risk-aversion
version parameter, Scaling the forecasts e and

Quare root
10 the rig.q

Pﬂra on
t Meter by the same amount would have 0o effect

fack;
'Ng error all,
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Substituting Equation 4.24 into Equation 4.20, we obtain the maip
result for the single-period excess return

o, =1C,JN-16,,.dis(R,)=IC VNG dis(R,).  (4.25)

Therefore, the single-period excess return is the product of the risk-
adjusted IC (skill), square root of N (breadth), target tracking error (risk
budget), and dispersion of the risk-adjusted returns (opportunity). The
IC in the equation is the risk-adjusted IC. We have replaced N-1 by N,
which is justified when it is large enough.

Example 4.3
If the IC of a forecast is 0.05 for a given year, the number of stocks is
500, the targeted tracking error is 3%, and the dispersion of risk-adjusted
returns is 1, then the excess return for the year is 0.05-7500 -3%=3.35%.

424 Dispersion of the Risk-Adjusted Returns

Cross-sectional dispersion of stock returns can be considered as a mea-
sure of opportunity that exists in the market. Consider active positions in
just two stocks, long 5% in stock 1 and short 5% in stock 2. The result of
this pair trading would depend on the difference of the two stocks’ real-
ized returns, The larger the return difference, the greater will be the profit
or loss. In general, dispersion of raw or unadjusted returns can exhibit
great variation over time. The raw returns are influenced by the return to
risk factors, which are systematic and subject to macroeconomic and/or
profit cycles. What about the risk-adjusted returns defined in Equation
4.18, from which the risk factor returns have been subtracted?

In theory, the dispersion of risk-adjusted return should show little time=
series variation, given that the risk model correctly describes the stock
returns. To see this, we note that for each stock, the risk-adjusted retur?
is, in fact, the specific return (or residual return) scaled by speciﬁc risk.
Therefore, each R, is approximately a standard normal variable. The ‘.'“!"
ance of N such independent variables is a scaled chi-square distribution if :
their mean is zero. It can be proven that when N is large, the dispersion "
close to unity using the approximation of chi-square distribution (Keep~
ing 1995). Thus, when the number of stocks is large, say a few hun

the cross-sectional dispersion of the risk-adjusted returns is close 10 9%

Under this assumption, the Equation 4.25 is simplified to

w9

o =~IC,YNa, .

(4.26)
Equation 4.26 reveals the real benefit of replacin
risk-adjusted returns in the calculation nfem[:’e_v.s rgfxl:? B e,
|ess variable to worry about. Note the fol]nwjug remark: ¢ thus have gne
. In practice, the dispersion of risk-adjusted returns i
unity nor constant over time. There are .

the possible bias and variation. First, there stematic

; i - ] CO‘LIH be i1
tors missing from the risk model. In fact, thisisnlmzt 2 maj&-
if we are to believe there are separate alpha factors Sttn;d| t;z
are systematic estimation errors in the specific rmks Lastly, there
is a distinct possibility that a multifactor risk mudei.is mnply not
adequate. .

neither exactly

at least three reasons for

4.2.5 “Purified Alpha” and Its IC

A similar approach to remove systematic exposures embedded in any
alpha factor is to regress it against the risk factors and use only the residual
from the regression — purified alpha — as forecasts. In this way, the alpha
is “purified” and we can then calculate its IC — the cross-sectional cor-
relation coefficient between the purified alpha and the raw returns. Let us
denote the purified alpha by

£ e = 6=ty —nghy ==y, 4.27)

with 's being the regression coefficients, given by

1 )
‘"ﬂ 1.! 'l""f

' 1 h;'f y -
nfl e w naf [
My b’ 4 b;!f

_——‘
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manner of (4.7). Because this is usually not the case, the purified alpha jg
not so pure. Although the purified alpha and its IC represent an improve.
ment over the raw forecasts and the raw IC (4.8), it is not free of systematje
exposures under the risk model (4.10).

We demonstrate this by showing that the purified alpha is equivalent 1o
the risk-adjusted forecast when we have the following risk model

I=BE B +s'1, (4.29)

with 1 being an identity matrix, i.e., the specific risk is s for all stocks,
When this is the case, Equation 4.14 is just proportional to the inner
product

N
| ] ]
(xy)=x’8".y==") x,y,=—x"¥. (4.30
y Y= D RN= 5% )

-]
=]

And the solution of {4.16) for the Lagrangian multipliers reduces to the
solution of (4.28) for the regression coefficients, Therefore, the purified
alpha and the risk-adjusted forecast are proportional to each other.

When the specific risks are not identical, we can align purified alpha
in line with the risk-adjusted forecast by a weighted cross-sectional linear
regression, with weight for each stock being the inverse of its specific vari-
ance. In such a case, it can be proven the purified alpha equals the risk-
neutral forecast — the denominator of (4.13). This is left as an exercise.

4.3 MULTIPERIOD EX ANTE INFORMATION RATIO

Equation 4.25 is close to a mathematical identity. Although it is always
true ex post, we now use it ex ante by considering its expectation and stan-
dard deviation, i.., the expected excess return and the expected active
risk. Among the four terms affecting the excess return, we assume that
the number of stocks does not change over time, We also assume the risk-
model tracking error remains constant, implying we target the same |

of active risk at each rebalance of the portfolio, a typical practice for many
quantitative portfolio managers. There are good reasons for keeping the
target tracking error constant. First, varying the tracking error introduces
portfolio turnover or trading, purely based on cha nging risk aversion. See:

ond, and perhaps more importantly, for most quantitative factors, such 3 {
value and momentum, the dispersion of the forecasts does not seem 10 be

_ﬁ
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correlated with the dispersion of retupng. In other word. .

qot translate into realized opportunity in reality The: conviction does

that one does not benefit from varying active risks., + ILis reasonable
For the two remaining terms that do change over time,

: PR the IC |
associated with greater variability than the dispersion of elCis usually

) the risk-a
ceturns. The latter term, as we discussed earlier, should ﬂppm?m
equal unity, at least in theory. Therefore, as a first approximation, we lr:;

L]

itasa constant,

Assuming dis(R, ) is constant and equal to its mean
L] # A
excess return is

the expected

(1', = EJEGWNH&;[_[{;] - {4"3“

The expected excess return is therefore the product of the average IC
(skill), square root of N (breadth), the risk-model tracking error (risk
budget), and the dispersion of actual returns (opportunity). The expected
aclive risk is

6 = std(IC, ]VNG gudis(R, ). (4.32)

The standard deviation of IC measures the consistency of forecast
quality over time. Therefore, the active risk is the product of the stan-
dard deviation of IC (consistency), the square root of N (breadth), the risk-
model tracking error (risk budget), and the dispersion of actual returns
(opportunity),

The ratio of Equation 4.31 to Equation 4.32 produces the IR

IC, (4.33)

The IR is the ratio of the average IC to the standard deviation %

43 Fundamental Law of Active Management .
gjmﬂld (1989) proposed the Fundamental Law of Ache s
LAM) — IR is the product of IC and the square ro0t G157 isander:
e of eqy ity portfolios, the breadth of investment an::ukutﬂll
45 the number of stocks available. Grinold derived the rest :

L
§ = Bt s

II
0
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different approach (Problem 4.3). But it is easy to derive it from Equation
4.33. When the standard deviation of IC is

std(IC, )= J]\_r . (4.34)

we have

IR=ICN . (4.35)

Thus, the FLAM hinges on the assumption that the standard deviation
of IC over time equals 1/ \J!E . Moreover, under this assumption, the active
risk (4.32) reduces to

=0, dis(R, ). (4.36)

Thus, the active risk is close to the target tracking error given in our
previous discussion about the dispersion of risk-adjusted returns. There-
fore, one can conclude the FLAM depends on the assumption that tar-
get tracking error given by the risk model gives an accurate prediction of
active risk of alpha factors.

So when is Equation 4.34 true? This assumption is approximately cor-
rect if the underlying population correlation coefficient between the risk:
adjusted forecasts and the risk-adjusted return is constant over time, and
the standard deviation of IC over time is purely because of sampling error.
Suppose the underlying population correlation between F and R, is Pr
then the standard error of the sample correlation coefficient with a sample
of size N is (e.g., see Keeping 1995)

stderr(IC, ) ;,T_‘”'f : (4.37)

Because the IC is usually small, for example, on a quarterly horizﬂﬁ':

most of the quantitative alpha factors have IC less than 0.1, making
numerator of (4.37) close to unity, Therefore, the standard error of IC
indeed close to 1/ Y N . However, note the following remark:
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. Although the FLAM is theoretica]

s ¥ appeali
tance by practitioners, the asgum Ppealing and has wide ac

Ption about the

but rather a normative expression to ca
pture the essence of
man-

ager skill. For example, it implies the standard devia .

the same far different alpha factors. In the next mlin:n“:f ICis
from both theoretical and empirical standpaints that thi; is h:rf;g
true. Past research studies that confirmed the FLAM havé doms:

using Monte Carlo simulations with normative design rather than
descriptive accuracy.

4.3.2 Target Risk, Realized Risk, and £x Ante Risk

The true ex post active risk of an active portfolio is not necessarily equal to
the targeted risk. This should not be a surprise to anyone, because the tar-
geted risk is only an estimation based on risk models. There are a variety
of model errors pertaining to risk models. For instance, Hartmann et al.
(2002) studied the measurement error of risk models over a single rebal-
ancing period by analyzing the performance of risk models over a single,
relatively short period, during which the examined portfolios are bought
and held. The approach is to compare predicted tracking errors of a risk

model to the realized tracking errors, using either daily or weekly excess

returns, for many simulated portfolios. Hartman et al. (2002) attribute
the difference between the estimated risk and the ex post tracking error
to several reasons: estimation error in covariances in a risk model, time-
varying nature of covariances, serial autocorrelations of excess returns
and the drift of portfolio weights over a given period. Dcpendmsﬂ? hw
these influences play out in a given period, a risk model can EYErEEtiItNG,
35 well as underestimate with roughly equal probability, “F?" tracking
errors of simulated portfolios. There is no clear evidence of bias one Way

or the other, i |
In contrast, we focus on the active risk of an active FOI:‘lfullﬂ uufmt:li:
Pl rebalan ng periods, during which the active portfolio is mddﬁd?;”
.uditall)'. based on the alpha factors. Equation 4.32 a po{m_. e
:L‘Ilfe target risk that might be due to an entirely different reasan =
Uity in the IC over time. R )
: tis understandable that the variability of Icﬁlﬁ‘m:: dmﬁi .
“8. thehactive risk. For a thought experiment, jus i ﬁﬁiﬂ‘; Mﬁm&.
Tilegies, both taking the sameri sk-model tracking

-

™ .'Jr.&
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The first strategy is blessed with perfect |'urcsig|'l|‘ and generates Constany
excess return every single period. In other words, it has aconstant positive
IC for all periods such that std(/C,) is zero. No samphn‘g error has to he
considered. Such a risk-free strategy, admittedly hard to find, has constany
excess return, and thus no active risk whatsoever. However, the risk modg|
is not aware of the prowess of the strategy and dutifully predicts trncking
error G, all the time. In this case, the risk model undoubtedly overegti.
mates the active risk. In contrast, the second strategy is extremely volatile
with large swings in its excess return, i.e., its 1C varies between -1 and 4]
with a large std(IC, ). Asa result, its active risk might be much larger than
the risk-model estimate. Thus, the two strategies with identical risk-model
tracking errors have very different active risks in actuality.

In practice, the difference between active investment strategies is not
this extreme. All have some alpha model risk (volatility in IC), but few
swing between —1 and +1. However, our experience shows that risk-model
tracking error given by various commercially available risk models rou-
tinely, and sometimes seriously, underestimates the ex post active risk.
Other practitioners have also recognized this problem. For example, Free-
man (2002) notes that "if a manager is optimizing the long-short port:
folio, he or she better assume that the tracking error forecast (of a risk
model) will be at least 50% too low.” This underestimation could have seri-
ous practical consequences.

For this reason, we term std(IC,) as strategy risk, because it is tied to
an individual investment strategy that employs different alpha factors. It

is important to point out the difference between the terminologies used 50
far. Here is a summary:

* Risk-model tracking error: Denoted as O oud » it is the tracking error
or the standard deviation of excess returns estimated by a generic

risk model, such as BARRA, and it is also referred to as risk-lilﬂdd
risk or target tracking error.

Strategy :risk: Denoted as std( IC,), it is the standard deviation 0f
!C of an investment Strategy over time. It is unique to each active
investment strategy, conveying strategy-specific risk profile.

Active risk: Denoted as g » it is the active risk or tracking error ofan

investment strategy measured by the standard deviation of exces
returns over time,

&l

T —
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[Lis |m.~;.~:ih|c to segregate the strate

8Y risk into the sam
on in the 1C. Assuming the Ple error and true

cariali Wo are independent of each other, we

have
[s[d“C,]T= }:?+[U(IC,]T (4.38)

« Based on the analysis of risk-adjusted IC, the ratio {4.33) serves s
good proxy for a factor's efficacy in generating excess returns. This
will be used again in Chapter 7 where we use this ratio for multifac-
tor alpha models to derive optimal model weights,

433 A Better Estimation of IR

In reality, the variability in the dispersion of the risk-adjusted return
dis(R, ) is small but nonetheless nonzero. What happens to the IR if we
include this variability? The following insight from Equation 4.25 helps
us to understand how the interaction between the IC and the dispersion
affects the excess return, To produce a high positive excess return for a
single period, we need a high and positive IC, as well as a high disper-
sion. Conversely, when IC is negative, we wish for a low dispersion so that
the negative excess return would be small in magnitude. This argument
implies that over the long run, the performance will benefit from a positive
correlation between the IC (skill) and the dispersion (opportunity). On the
other hand, a negative correlation will hurt the average excess return.
The expected excess return including this correlation effect is

o =JNg,_,, {JE dis(R, )+p[ 16, dis(R, )]sud(tc,)nd[dh(ll, ]]} 4.39)

The additional term is simply the ‘“"“’i““f 3 th ﬂ“i:::diﬂ:
disi’frsinn. written in terms of the correlation bet¥ the i This is
Persion, and the standard deviations of the IC and the dispﬁ‘ﬂm- cle il .

eCayse for two random variables {x‘ y Jwe have E("T)=‘IJ’ cf:;l;;&
% The active risk including the variability of ﬂ“;:ﬁenl of variation (the
ﬂ:;\:d analytically (Problem 4.4). Bmllc:-'::;]'::rw the dispersion 'h'“

ard deviation over the mean) is mu Combining Equa-
r‘_Jl‘ the IC, the active risk is nppmximatﬂf!' unchanged. : '

'0n 4.39 with Equation 4,32 produces the new [R estimeie
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dis(R,) |

..|,\h|

IC, L dis
R+ 1€ dis(R,) | dis(R, )

= {4"‘
.'il\”: I -| ] ml

The second term captures the correlation effect on the IR, 1t has 1y,
components. The first is the correlation hetween the IC and the dispersiqy
over time, and the second term is the coethicient of variation of the disper.

sion. Note the following remark:

« Aswe mentioned earlier, the coefficient of variation l:tl'thl.'di:i['lcrsiun
is usually small. Therefore, the effect of the second term is Lypically
small unless the correlation between the [C and the Lli5|_1|_-r_‘;iu|-| gels
very high, either positive or negative. For most practical purposes,
Equation 4.33, i.¢., the first term in Equation 4.40, approximates [R
well enough. Nonetheless, Equation 4.40 is an improvement.

44  EMPIRICAL EXAMPLES
In the remainder of the chapter, we present some empirical findings con-
cerning active risk and IR of 60 alpha factors, encompassing a wide range
of well-known market anomalies. The focus is solely on these statistical
measures and not on the detailed description of the factors, which is the
subject of the next chapter. The goal of the empirical examination is to
demonstrate that Equation 4,32 is a more consistent estimator of ex ante
active risk, and IR is the ratio of average IC to the standard deviation of
IC. These examinations evaluate factors separately rather than jninl!jl'. We
shall discuss methads t:l'cumhining multiple alpl{a factors into a compos:
ite, later in Chapter 7,

First, a brief description of the data is in order. We apply the analysis
P2t universe of stocks in the Russell 3000 index from 1987 to 2003
the data is quarterly, and at the beginning of each quarter, we have avail-

able dlpha factor values for individual stacks in the universe, constructed
from various financial

;ll*::-k ﬁml-:mr T flnd specific risk for individual stocks in the univers
am;“ e:cli:::nﬂffﬂ Ub.' E3 equity risk model. Because of data availability
Wby outliers, the actual number of stocks is fewer than 3m
Uctuates from quarter 1o quarter. However, the fluctuation is insi§"

nificant and does not alter the analysis, :
"u:;u:.h:hb‘s‘““’“E of each quarter, we form optimal long-short portf:
al quarter, Subsequently, cross-sectional analyses of alpha ookl

1zl

data sources. In addition, we also have available

D
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frequency

FIGURE 4.1. Histogram ol the ex post active risk of equity alpha factors.
(From Qian, E.E. and Hua, R., Journal of Investment Management, Vol. 2,
Third Quarter, 2004. With permission.)

IC and dispersion of the risk-adjusted returns are computed on a quarterly
basis. We set the constant risk-model tracking error at 2.3% per quarter,
or 5% per annum. Additionally, to control risk exposures appropriately,
we neutralize active expusurt‘ﬁ b {s] all BARRA l'iSk factors [13 S}mmntic
risk factors and 55 industry risk factors) when rebalancing Prmf?lm i
quarter, Hence, the risk-model risk is 100% stock-specific according m. the
risk model. We collect the results on a quarterly basis scd thenanniliss

Figure 4.1 shows the histogram of ex post active risk of the 60 a]ph;
factors, Although the risk-model tracking error is targeted at 5% for &
Strategies, the ex post active risks differ widely with R uwr::
bias, indicating the risk model’s propensity to undtrﬁ_timm ﬂﬂ;; The
The average active risk is 7.7%, and their standard deviation is 1. 5.0%
highest active risk turns out to be 13.1%, whereas the wt isjlﬁf“h“;
In other words, almost all strategies EIP““’“M o highcl“ rm_k'fip'lﬂ’:n bias
what the risk model predicted. To gauge the risk model’s estima

in relative terms, we define a scaling constanks

x=std(ICNN e g i

1 P - | ‘I‘.F-Il p
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s abgri of ;hulsca"n!# constant « for a.ll 60 stray.
eﬁi:!st. Note that, for a majority of strategies, the model underestimates the
ex post active risk by 50% or more. o . :

Figure 4.3 shows the dispersion of rlsk_-'-hlljlhlt‘fl "“-‘ll“'"-“ "‘:'L'f time, |y
has an average of L01 and a standard deviation of 0.15. By this measure,
the BARRA US E3 equity model shows internal consistency,

Erequency

<60
0.70
0.80

8
=

1.00
1.10

973388888398 838

22.70

FIGURE 4.2. Histogram of the scaling constant x . (From Qian, E.E. and

Hua, R., Journal of Investment Management, Vol. 2, Third Quarter, 2004
With permission.)
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441 Two Alpha Factors

The strategy risks of these quantitative factors va
wonders about the statistical significance of (h
words, after '-‘!"P"(’E-""im-t'l}' controlling risk exposures specified by BARRA
s E3 model in our case, dncs‘lhc siatidasﬂ deviation of ICs provide addi-
tional insight regarding the risk profile of a particular alpha factor? The
answer to this question is "yes” in many cases. To demonstrate, we sélect
two value factors — gross profit-to-enterprise value {GP2EV) and forward
earnings yield based on IBES FY1 consensus forecast (E2P) — for a closer
gxamination.

In Table 4.2, we see that, even though we targeted 5% tracking error
for both factors, the realized tracking error is 6.9% for GP2EV and 8.7%
for E2P. The average alpha (excess return) for GP2EV is at 6.2% with an
[R of 0.90, and the average alpha for E2P is only 3.3% with an IR of 0.38.
Next we show the average IC, the standard deviation of IC, and the IR,
based on their ratio. As we can see, this approximation is very close to
the actual IR based on the excess returns, The average dispersion of risk-
adjusted returns is close to 1. Finally, we show the average number of
stocks included in the portfolios based on the two factors. The number is
lower for E2P because it is based on forward earning forecast, and many
firms had no analyst coverage. . _

We perform two tests on the standard deviation of the ICs. First, mvﬁ
the statistical significance of the difference bemen.the. two strateg.:;u i
using the E-test. Assuming both ICs are normally distributed, the
their variance

ry widely, Naturally, ane
eir differences, In other

_o'(i) (442)
= o’ (]C,]

' at 66, because
follows an F-distribution with both degrees _°f uﬁ::du::ﬁblt 4.2 shows
both standard deviations are estimated over 67 ¢

IR Dispersion Average

Average STDof IRof Average oflc ofic ® N_
Alpha  Alpha Alpha 1c s 101 2738
GPY gy  gow 050 N ER U G u
E2p 3% g% 038 LA% :Im,,,,..;: B Management.
%0urce: From Qian, E.E. and Hua, R fournabef IweEEEitts

Quarter, 2004, With permission.
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that for GP2EV and E2P, the standard deviation of IC is 2.7% and RETY
respectively, The variance ratio of the two factors is _H-. 27 = ‘-53-and¢'
equals 0.033. Thus, in this example, there 1s enough evidence 10 rejegy the
null hypothesis that these two factors (from the same value category) B
the same strategy risk at a 5% confidence level. Our results indicage thay
the strategy risks of factors selected from different categories, more oftep
than not, are stanstically different.

The second test concerns whether the individual factor’s strategy risk
is significantly higher than the pure sampling error — 1/N, We shall yge
the average of N to compute the sampling error, because its variation is
negligibly small. For this test, we find the confidence interval of the 1C
variance, based on the ex post value. 1f we denote the true or population
variance by o, then the ratio

mo” l_IL')

- (4.43)

e

follows a ¢ distribution with m=66 degrees of freedom. The lower and
upper conhidence limits for o7, are given, respectively, by

) HiIc :
ki X
The values of % and y; are given by
Plr'2x1)=2, p(ytsy?)=2 4.45)
(2x)=3, ¢ sxi) - (

For a chi-square distribution

g with 66 d Iues of
Xi and % correspondin 810G egrees of freedom, the va

: =1% are 99.3 and 40.2, respectively. Givet
the sample variance of each factor we use (4.44) to derive the limits fof

::;'l ::: s::;ﬁn::z ar{d we take their square roots as the confidence limits
tors. For 1h:f e\rmm!l Of IC. Table 4.3 shows the results for both fa¢°
the 99% cnnﬁ:::f Gi:%v‘ the sample IC standard deviation is 2.7% 8
the samplin c€ interval is between 2.2% and 3.5%. At the same time
lhhtonﬁde::::;w b‘;md on N'=2738 is only 1.9%, which lies ﬂll“id'.-
deviation s sj mt:wl ? 'n..'u" We can conclude that the true 1C standd®™
ghificantly higher than the sampling error. The same i true

__-ﬁ
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he 9% Confidence Interval
LE 4.3 The Y% Can e Interval for the S
TAR Error of 1C md"dmmmbﬂc Milmph-‘

ST of lm

Upper Limit Sampling Error & =

15% 19%
4% 204

1.7% 21.2%
14%

(if'ﬂ"

oM
N

for the earning vield, Its 99% confidence interval is I.'lﬂ%,{-ﬂg] but the
sampling error is only 2.0%. In fact, the significance is much higher than
the 99% indicated here (Problem 4.6).

44.2  Ex Ante Estimate of Active Risk and Information Ratio
The empirical results show that active risk consists of two companents:
risk-model tracking error and strategy risk, consistent with Equation 4.32.
Merely using the sampling error (1/ N ) could severely underestimate the
active risk of an active strategy. Based on this observation, practitioners
can use strategy risk in conjunction with a risk model to obtain a mare
consistent active risk forecast. As an illustration, we divide the sample
period into two halves: in-sample period (1986-1994) and out-of-sample
period (1995-2003). In the in-sample period, we estimate K according to
Equation 4.41 for each of the 60 equity strategies. Then, in the out-of-sam-
ple period, we adjust the risk-model tracking error by 1 X uﬂnsﬂ“w
specific x to compensate the risk models bias in estimating active Fisk. dn
other words, the adjusted risk-model target tracking error 15 O/
Because & is greater than one for almost all alpha factors, we have it
tively lowered our target tracking error according to the ""“l'f“ of x. i
Figure 4.4a shows the distribution of ex post active “’;ﬂ]“ in the out-0f
sample period, when we set the target tracking errorat SMX (thea active
risk-model tracking error), and, for comparison. Sigure 4"hmw
fisk of portfolios targeting the same tracking error 3t o in that the
fisk-model tracking error). We would like o ¢mPh”‘::;€;ﬂy e
Wjusted risk-model tracking error Ol 15 UNIQUE L0

8y d"l-"t"ﬂding on its x estimate, whereas the risk-model tracking

. 1o histograms, itis obvi-
:mm is the same for all strategies. From th@#;;'_‘:‘::m risk. The average
U that o), is a more consistent estimator vhen

' O el
. : 6% when using T
—Post active risk is 4.7% when using "-ﬂ':‘“h_mdh ser to our target of 3%

115 the expected ex post active risk is ™ iracking error. The

wﬂh no biﬂ‘ﬂ “’h = ‘d i §
3 ¢ using the j maﬂ o
it 76% when v

Mdard deviation of ex post active risk is 0. . .

and

= - "'II '-E|1
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y=0.4%41x + 0,0138
R2=0.5169

4.50% -

3.50%

| el

out-ob sunple strategy sk

(0] o o ©O
2.50% +—— o
| 00%3
| o 5
1.50% - T i ' J T Y T
1.50% 2.00% 250% 200% 350% 4.00%  450% 5.00% 5508
in-sample strategy rick

FIGURE 4.5. Scatter plot of in-sample strategy risk vs. out-of-sample strat-
egy risk. (From Qian, E.E. and Hua, R., Journal of Investment Manage-
ment, Vol. 2, Third Quarter, 2004. With permission.)

1.45% when using o, . It is apparent that in this shorter period, the
risk model experienced the similar problem of underestimating the true
active risks of many strategies. L
The application of the scaling constant x in the preceding estimation
constitutes a simplistic form of forecasting strategy risk — using i
egy risk estimated in the in-sample period as the forecast oy
sample period. OQur simplistic forecasting method e thm.swm
tisk persists from the in-sample to the out-of-sample period. One unpli::a-
tion of this methodology is the relative ranking of strategy risks - risks
the same in both periods. Figure 4.5 is the scatter plot of strategy e
Measured in the in-sample period (x-axis) vs. ﬂ“ out-of-nmpkmw risks
y-axis). The R-squared of the regression, using m-mmpk. 52%. Hence.
_m_exP]ain the variability of out-of-sample strategy r}m Isjum' with
18 plausible that, with this simple forecast ek R e assess port-
Quation 4.32, active managers can improve their ability 10 4555
folig active risk and IR.
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4.1

4.2

43

44

Equity P wtfolio Management

—

Correct Equation 4.6 when the weights are not dollar neutral, Ty,
result would be applicable to long-short hedge tunds with a Iun,E biag.

We obtain puriﬁt'ti .1.111|1.| l‘}' a \'.'('il.'.hll"tl cross-sectional r“'Bﬂ.‘!ﬁiqﬂ
of raw forecast vs. risk factors, It seeks to minimize the '””“Wing

function

=nyby, l
{4.46)

W : [ =, '”|hl- -
se-3 _.
inl G'

Prove that the solution of the regression coethicients is identical to
the Lagrangian multipliers of the risk-adjusted forecasts. 1s the cor-
relation coefficient between the purified alpha and realized return
the same as the risk-adjusted [C?

Derive the Fundamental Law of Active Management based on
expected excess return of individual securities. Assume the risk:
adjusted forecasts are normalized such that Lli!i{Fl ]=l :

(@) What is the equation for the risk-aversion parameter?

(b) Suppose the expected residual return is the product of volatility,
IC, and score (Grinold 1994), prove E(R, )= IC,E .

(€) Take the expectation of Equation 4.19 and show that

(L, ‘;ff.}\[?;

Glnn-.l.rl

(4.47)

(d) Interpret Equation 4.47 as o “one-period IR" — the ratio i
expected excess return to the risk-model risk.
We

6 derive variance of a product of two normal random variabled

(a) Prove: E(xy:|=

X F+paiay L
(h) Prove:

Ef ¢! = eyl ppd -
{* y ) 0.0."'211*0:0’,’.4-:’0:+c}f’+i'f‘+2p-’i-"}*ﬂ.“r' 4®

4.6

D —,
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i) Prove

A [, W= K | + . | N
\e.u(,\'.) =a.0, +p “:“i*-‘"ﬂiﬁ“u;.

(4.49)
' o, .0
(d) Show when ; <<l and % << I’ +the variance can be a .
imated by y
Var()= . =

This approximation justifies using of Equation 4.32 for the active risk
even when the dispersion of risk-adjusted returns is not constant.

Estimate standard deviation of 1C by numerical simulation, Suppose
for a port folio of 500 (N) stocks, the average 1€ s 0,05, Simulate fore-
casts and returns as a bivariate normal distribution with zero means
and standard deviation one and calculate the realized IC, Select
number of periods as M.

(a) Assuming there is no variation in the IC, show that the standard
deviation of the realized 1C approaches I/ VN .

(b) Suppose the IC is not constant over time, and its intrinsic varia-
tion is 0.05. Then, for each period, the IC is drawn from a normal

distribution of mean 0.05 and standard deviation ligudiilnmrﬂ
late cross-sectional forecasts and returns based on

and calculate the realized IC. Verify Equation 438,

ith 99%
For the factor gross profit to enterpl‘."“’ "ﬂmﬁ ::::ﬂﬁﬂl’l is
confidence coefficient, the lower limit of IC

2.2%, higher than the sampling error of 1.9%.

(a) What is the minimal value of y! that would ma
error fall into the confidence interval?

(b) Find the probability P(*2%i):
(€) Repeat question (a) and (b) for the factor E2P.

ke the sampling

n_‘
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Quantitative Factors

of Portfolio Mo

~ CHAPTER 4, WE DEVELOPED AN ANALYTIC FRAMEWORK 1o evalu-
Iale alpha factors. We now take a closer look at the typical quantita-
tive strategies (alpha factors) comprising three broad categories: value,
momentum, and quality. First, value factors seek to identify securities
which are trading at bargain prices, which is attributable to investors'
excessive pessimism. Second, momentum factors ride winners and expel
losers, exploiting investors’ inability to incorporate public information in
a timely manner. Third, quality factors identify companies that are more
likely to create shareholder value by avoiding the agency problem trap. In
this chapter, we explore the fundamental underpinnings nf these factors,
along with the relevant academic literature, We also examine factor con-

struction and historical performance.

5.1 VALUE FACTORS — : -
Value investing is a time-tested cornerstone of active secu-nty selection.
stocks that have relatively low prices translated
into ratios deflated by fundamental criteria such as dividends, book value,

; ue. Benjamin Graham,
earnings, cash flows, or other measures of firm val I

i i ith a margin of
: t Investon, associated value wit
e thstand adverse business devel-

safety, which enables the investment 1o wi B = "
opments, Warren Buffet termed Graham's value Phllm:phbﬂ:s :?r:ﬂnlg::
butt” approach to investing and said, “A cigar butt found on the

i . |
hﬂs L'l]'l].y one puﬂ'lefl in it may not uffe[‘-ml.lt‘.'h ﬂfﬂ. smoke, but the barg.lln
purchase’ will make that puffall profit.

The prescription is to buy

111
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A long list of academic literature has iiﬁwu-ml on d”F umenting the vajy,
phenomenon, beginning with Basu (197 ?5. and rcphcullcd by Jaffe g al,
(1989), Chan et al. (1991), and Fama and French (1992) all showing thyy
stocks with high fundamentals-to-price rﬂlluﬁ_{ﬂﬂ)'-l cArnings-to-price)
earn higher average returns. Rosenberg et 41 (1985) demonstrate thyy
stocks with high book-to-market ratios UUlPL"'?Um" the market. Additiop.
ally, Chan et al. (1991) find that a high ratio of cash-to-price also predicts
higher returns. Finally, Cohen and Polk (1998) illustrate that industry
adjustment to the book-to-market improves the Sharp ratio of portfolig
£xcess returns.,

Although academics agree that value stocks provide above-market
returns, they have considerable disagreements about whether this pre.
mium is a compensation for risk taking (beta) or a systematic exploitation
of irrational behavioral biases (alpha). Fama and French (1993, 1996) sug-
gest that the value premium is simply a compensation for higher system-
atic risk, namely, financial distress. They assert that companies with high
book-to-market ratios are under greater financial distress and more vul-
nerable to any downturns of the business cycle. In contrast, Lakonishok
et al. (1994) suggest that the value premium can be traced to investor's
biased cognitive inference that incorrectly extrapolates the past earn-

ings growth rate of firms. They suggest that investors are overly optimis-
tic about firms that have done well in the past and are overly pessimistic
about those that have done poorly. As a result, glamorous (low book-to-
market) stocks attract naive investors who push up the prices and, hence,

lower the expected returns of these securities, Lending more credence o I

this hypothesis, Rozeff and Zaman (1998) argue that insider buying escd-
lates as stocks change from the low cash-to-price to the high cash-to-pric®
category. Given that insiders know more than the general public about

company prospects, this supporfs the hypothesis that value premium B
not solely related to financial distress.

5.L1  Value Measures

There are a variety of ways to characterize a firm's intrinsic value. We &2
define ‘?’heapnc“ as high cash flow yield, high earnings yield, high d‘%
flmd .’_‘]E[d' o high book-to-market value. Whereas cash flow and €8
ngs yield emphasize the profitability of existing operations, assét
ratio is a measure of liquidation value, and dividend yield relates t0 divic

dend payout policy, v of

which typicall . : :
long-term profitabil ypically conveys management’s assessm

ity. Because stakeholders can be defined narroWly L .
.ﬁ' |\

- TS
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TABLE 5.1 Commonly Used Value Measure

=3 Equity ____\-_._____

Cilsh Flows CFO o Mﬂfhel \"ﬂiuc

FCF to Market Value %:: ::
EBITDA 1o BV
Gross Profit to EV
Farnings Net Income to Market Value NOPAT 10 EV
IBES FY 1 Forecast to Market Value
IBES Twelve-month Forecast to Market Value
pividends  Indicated Dividend Yield Dividends minos External
Dividends plus Net Share Repurchase to Financing to EV
Market Value
Asset Value Book to Price Net Operating Assets to EV
Sales lo EV

equity holders or broadly as enterprise holders (including both equity and
bond holders), matching the right intrinsic value with its corresponding
market value is an important consideration when computing value ratios.
Take earnings yield as an example. For equity holders, earnings yield is a
ratio of levered earnings (or net income before extraordinary items on the
income statement) divided by the market value of equity. In contrast, for
the enterprise version of earnings yield, the numerator is the “""m’_d'
earning (or net operating income after tax, aka NOPAT), and the denomi-
nator is the enterprise value that equals market value of equity plus market
Value of debt! minus excess cash. Table 5.1 lists commonly used value fac:
tors by their intrinsic measure and their stakeholder. e m&r‘:lf:
Appendix A5.1 for a detailed description of how we constructthese
factors with the Compustat database.)

512 Valye vs, Valuation: A Clarification :
' ; hw,mmm

We now clarify the philosophical difference Ty

"ivesting — r:o poEular agpmﬂCh"-‘s that are often: R mﬁﬂzzr:‘:

tioners as being interchangeable. As defined priced stocks with:

' buy the lowest priced stocks and sell the w mpmﬁhhdﬂ}' As

out considering the company's future ENW*I"% by firms with

::;h. Value strategies typically P“';hh;” SRR reflectionof
return on equity (ROE) and high financia. €7 kstopurchase

CIgar-bygy i“m:“&v [; comparison, valuation investing seeks 10 P k-
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securities whose market values are significantly lower than the;, fair 040 5 Quantitative Factors w 115
ations determined by Cl‘-‘mpﬂni‘—'sl profitability and growth Prﬂspec:ahl.’ \
Chapter 6, we will review valuation investing in detail.) (In 0.00 1

Let us use the book-to-price (B2P) ratio as an example, Valye inve .0.10
(sometimes referred to as deep value) buy the highest B2p stocks, wheras
valuation investors examine B2P ratios in conjunction with ROE i
sures so that the analysis is relative when selecting bargain purchages, 0[.;
regression is a common method to derive fair valuation qu:mti!.ati-mgj,r It
establishes the equilibrium pricing of ROE empirically and es!imateséu
extent to which market prices deviate from the equilibrium \raluatigﬁ,
Equation 5.1 presents the regression formula incorporating the relation. =080
ship between B2P and ROE, along with the coefficient estimate over the
sample period for stocks in the Russell 3000 universe,? In th is case, the
valuation investor buys securities with the highest regression residuals g,
reflecting the portion of cheapness, i.e., B2P not explained by cros_s-sec.l

-0.20
-0:30

-0.40

Coefficient of ROE

-0.50

1987/03
1989/03
1991/03
1893/03
1985/03
1987/03
1999/03
2001/03
2003/03

FIGURE 5.1. Time series of regression coefficient in Equation 5.1.

1iun;l differences in ROE. High ROE should command low B2P. Chesp TABLE 5.2 Pancl A — Top Ten Names for Value Strategy
:;; ST;rc those thaf %lave high B2P readings — after conditioning on Sector Ticker BP ROE DA
: d b.e n;ean coeﬂ?cmnts and t-statistics (in parentheses) are then conr- Discretionary BBI 1209 -2838 003
puted, based on the Fama-MacBeth regression method: Materials PCU 694 1966 004
Utilities CPN 357 L0 066
x Discretionary ~ TWRAQ 345 -3087 049
B 6 - 033ROE, +¢, 51) Financials GNW 335 483 005
(132) (-32 Industrials FADV 285 166 022
—32.6) Staples PTMK 236 o 042
The t-stat of - Financials NFS 244 b 001
bﬂ l sfat o ROE I5 ‘32-6‘ indicating a PEI’SIS[Enl negative cor[‘elﬂﬁﬂn' Disc[c[jum MECA 243 -18.95 ﬁ
veen ROE and B2P. That i, high ROE companies tend to have low Discretionary ~ XIDE a4 ““';‘; b
B2P ratio and vice yersa. Figure 5.1 plots the estimated coefficient of ROE Benes LB
thr{_:ugh time. The correlation js quite stable in the sample period with the TABLES.2 Pancl B — Top Ten Names for Valuation Sracg)
nu;{ce?blehexception during the stock market bubble otI'J 19;'9 and 2000: Bectoe Ticker gp  ROE DA
O further j - : 0.20
the two st mr illustrate the difference, Table 5.2 lists the top 10 stocks it Discretionary ~ XIDE A 'l:::; 0.5
R €gies at the end of 2004 along with B2P, ROE, and debt-1o" Technology SOHU l':: 1966 004
sset ratio (D/A). Pane] A presents th : : ks with Materials PCcU S 48 004
high B2P rati ¢ value strategy that buys stocks L 0 094
B ratios, low RQEg and hj g ; Financials CN 297 000
he Sy o bying ppper 1 Anancia eversge,Panel B Pt S R I
financial lever 16 igher exposure to ROE and lower ﬂpw ' Financials CSWC o w25 oM
i . Financials INC 0-:: TR 0.09
5!1 -3. I H 5 » TCIecom TALK J lm i Ms -
« -mpimportant Practical Considerations - Financials LEG ]l::: g T
impiement a rob - Financials GBL - D13
ust value Strategy, one has to carefully considef e Average: -5-‘"_‘5 c

following practical issues; e '-..ﬁ
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1d vs. PE ratio: To facilitate cross-sectional com

Earnings yie S,
. 1sed instead of PE ratio. Between

Pari
earnings yield should be u

s Positiva and
negative earning companies, the earnings ) llﬂ'- Mmeasure Provide
correct rank ordering, whereas the PE ratio I‘nl:-lﬂkf?]:ll)' makes Regay
earnings companies more attractive as the lower PE is considerad 1o be
cheaper. . ;

Peer group selection: Because cheapness is a relative CONCEpt dety.
mined through peer group comparison, how peer groups are CONstrugteg
becomes an important consideration. For example, when cheapnes; ;;
measured relative to the entire investable universe, it may result in a per-
sistent sector bias — buying sectors that are consistently cheaper (sucha
utilities) and shorting sectors that are more expensive (like technulogy},
In practice, sector classifications are n.'ummunly used as the peer group
for several reasons. First, it avoids persistent sector bets due to persistent,
cheap, or expansive valuation. Second, com monly used sector definitions
provide a reasonable number of securities in each sector, thus facilitating
a robust cross-sectional comparison. (This might not be true for many
industry or other partioning schemes in which the number of firms is
limited.) Third, companies, within the same sector, face similar operal-
ing challenges, such as economic cyclicality or secular changes induced
by technological innovations, and share comparable operation character-
istics such as margin, financial leverage, and growth rate. Lastly, many

risk models (like BARRA) furmalfy include sectors in the specification of
portfolio risk.

Stock- or enterprise-based
holder interests or the larger
the pros and cons

ratios: Value ratios can reflect either stock
circle of enterprise holder interests. What m
to consider in deciding the preferred choice? The dlfﬂf‘ ]
ence between stock- and enterprise-based ratios relates to financial lever

age. An unlevered (no debt) com : - for both
measures, wherea pany will have the same ratio _

ings. Stock-based & l-ugh"f" financia| leverage firm creates different read-
cycles th ratios, like E/P ratios, are more sensitive to econ .
¥ A enterprise-based ratios Jike NOPAT/EV, especially for thos¢
tffosace ai uch ag bnsiui material and energy. Because of the ﬂfﬁ:ﬁdd_
uced by financial leverage, the PE ratio prefers highﬂ"‘"‘;_

atits trough, w:l:hfc E;unomy is at its peak and unlevered firms when
by NU'PAT,'IEV i these companies are of the same cheapness i
- As such, we recommend enterprise-based measures fm':

companies in cyclical ind : o the
overall growth of the mz;::}i: % whose growth rate is tightly tied

T —

Quantitative Factorg .
- 14 Historical Performance of Valye Factors

How do the performances stack up for the typical valye factors? We con.
Gder eight value measures: cash flows from Operations to enterprise valye
(CEQ2EV), EBITDA (Earnings before Interest, Taxes, Depreciation, and
Amortization) to enterprise value (EBIDTA2EV), trailing 12-month earn.
ings vield (E2PFY0), earnings yield of IBES's EPS concensus estimate of
lh; next fiscal year (E2PFY1), dividends plus net repurchases to market
value (BB2P), net external financing to enterprise value (BB2EV), B2P.and
cales-to-enterprise value (S2EV). Factors are evenly selected from all cat.
egories to facilitate a cross-category comparison of historical performance
and their correlations.

To begin, we disclose the key elements in computing historical factor
performance. This same methodology will also apply to other backtest
results illustrated in the rest of this chapter.

1. Rank raw factor values by percentile within each sector to providea
more robust estimation and to avoid persistent sector bets.

2. The Russell 3000 Index is used as the sample universe through time
to avoid survivorship bias.

3. We exclude the financial sector from thisbacktestbecausésamuﬁ@
lose their meaning for financial companies, For example, one mﬂlfuf
components in CFO (Cash Flow from Clp.venahn:; Amwfkﬁ] Llr;ati;
tion is the year-over-year change in working Clp“mj a concept
meaningless for financial firms as they do not have inventory.

4. The backtesting sample period spans fm?l 1986 to 2::0“':- oo,

5. For the risk-adjusted information coeﬁcftnt (1C) camﬂ it
the exposures to beta, size, and size nonlinearity o Zero-

compute
6. Three-month forward returns are used to

performance. 2 4 to the

7. Portfolios are rebalanced on a quar F‘ﬂy b“is to;ms perform
forward-return horizon and to awdh-‘?edn! overls| jation of factor
period that typically results in hig

imates.
returns and biased standard error estim

and their
o4 of value factors 8
Table 5.3 shows historical performances of

Ly ﬁi.
time seriesstatistics:
Tequired turnover, The first three columns FepO!

next three
: n ratio (IR). The nex
justed IC-average, t-statistics, and informatio The last two columns

“olumns show the same set of statlstlcf-_fm]r;:m autocorrelation (CFA)
late to portfolio turnover. Cross-section?
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TABLE 5.3 Historical Performance of Value Factors (ICs)

—

ko Eerf{rr_mnce‘. r— ——____T!"‘%'

ICa  W{ICa) anC-.:]I IC WIC) IR(IC) CFs r-_&;

CFO2EV b 6RY 957 .13 "':.E{}”i- ?.92 0.82 83,79 lsl‘
EBITDAZEV ~ *525% 672 079 ‘ U576% 517 061 | e 1514
E2PFYD “389% 509 060 | 433% 381 045 | gegy I5ey
E2PFY1 “331% 367 043 | 3O7% 250 029 |ggou 504
BB2P 265% 287 034 | TIT2% 341 040 |sgye 125y
BB2EY 4% 572 067 | US13% 546 064 |79 o
B2P 143% 146 017 ‘ L54% L5208 |93 121%

S2EV =167% 379 045 “3.77% 351 041 | 96,0% 954
—

Note: * =90% confidence level; ** = 95% confidence level,

measures cross-sectional correlation of factor scores between two succes-
sive periods. TO is the quarterly turnover of long-short portfolios with
% targeted tracking error. More analysis regarding portfolio turnoveris
provided in Chapter 8.

Most noticeable in Table 5.3 is the consistent excess returns delivered by
these value factors, the VErY reason most active managers embrace value
INVesting as a cornerstone of their investment principles. In Table 5.3, the
achieved positive excess returns are significant at conventional statistical
significance levels, with B2p being the only exception, In general, these
results are robust across different performance measures: risk-adjusted
IC (ICa) and traditional 1C. Addilionally. IR of ICa is generally higher
than that of IC, whereas the average ICa is lower than the average of 1€
reflecting the importance of ys; ng a refined risk process in assessing factor
efficacy. For better visualization, Figure 5.2 presents a box chart of risk-

adjusted 10 including ki
; g higher mo, istributi & e
the positive shift in meang. bk i e e

with BB2EV pei most distributions also exhibit positive skew
S ;k- emg. the most Pronounced one. This general tendency o
m-' - €W provides an additional benefy of using value factors that Is
Ptured by IR, Note the follow; ng remark: .
* Three obseryay;
televant g 10NS are of intereg;. First, cash flow yield is the “N.-

y Cgory in f i _.
15 the leagt, Thi:y Perh:l;:mung et wheresss S U

reflects the noti “’:M 1
all notion that investors a ;
; E’;;::r::n:::;r;:: about 3 firm's ability to generate cash ﬂow!’mi;
earnings yield :ahg:r;ﬁl'm s liquidation value, Second, wlthm"

using trailing, reported earnings el

e ————
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CFO2EV *E..
o I e e
E2PFY0 S m ------------ 1
E2FFY1 e 3
BB2P yemTass—as O q @
BBZEV S IE- -
¥ . =< e SO :
S2EV e L= ST SR - @

Risk Adjusted information Coefficient (ICa)

FIGURE 5.2. Box plots of risk-adjusted IC for value factors,

a more effective forecast than using IBES FY1 EPS estimate. Usia_xg
reported EPS not only provides a higher average 1(.2 but also exhibits
a lower standard deviation of IC, leading to a Sl.gn.lﬁCﬂ.l\ﬂy better IR.
The finding contradicts a popular but rfﬂsguided belief cumr:tr:yr
held by practitioners that furwarddoul-.ung EPS IOFC:;;;;M f
gauge of value than the reported EPS, since the forwa . nwn:ip

sulates information pertaining to future de\-FelapF.lents._ T aﬁsm,;
empirical evidence supports (1) return prrd:ctab:hrid mpitn }lr e
from investor's under- or overreactions to the I'E'Pﬁ;;ﬂ = f?:rm-
(2) sell-side estimates failing to provide forwa_l‘dl-he f;:frted i
tion, orthogonal to the information i:ontamec.! ;:1 ; N
ings. The third observation is that the requi m‘?’““c""m el
factors varies between 100 and 150% per annum

85 and 95% on a quarterly basis.

Table 5.4 shows the excess returns of dcctle pmm for the
value factors. They are computed in the following ). s
"1 i m
i the bcginniﬂs of each PCnOd. M‘ll “T;l::gEEbP decibpmt
based on factor values of each security: e Mns the highest
folio contains the top. 10% of the “‘“’5 ntains the second highest
factor values, the second decile pr B -

10% of securities, etc.
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Quantitative Factors g o
= . haZeanbebExas 2. Excess return of each decile . -
| E a2 _%E Ze = 2SN -wog = equally weighted averagemwuﬁiﬁgﬁmm
, = e 1 the equally weighted return of the whale un; portiolio and
o erianigaaas e e ol s
o dosagrosferdy=copd S ) are reported in Table 5.4,
' Excess returns of decile portfolios facilitate 4 :
25:52828282835855 whether bylRg (s Sq ‘“’Wﬂmﬂmﬂmm
© =3 SgsdE deodrsisd e ers superior (lmfermr] lnve:;‘tmm.l perfommh&akm.hw
an examination of return linearity in the value dimension. Examini the
T performance of the top two and the bottom two deciles reveals that six of
zE 2222383887 E‘ = 3 the eight tested factors are capable of delivering both extreme winners and
Eagd s gseccoPpEas 1osers“-ithstalisticalsigniﬁcance.memmsmmwm
| yield using [BES estimate (E2PFY1). B2P is a weak differentiator of winners,
T 6B AT E B S and only the seventh decile provides statistically significant positive excess
e 3532223552233 returns. In addition, the sixth decile of E2PFY1 has significantly negative
- T i returns. CFO2EV delivers the most compelling performance, whose excess
returns are not only monotonically increasing from the worst to the best
gEsmse oI B e oy but also statistically significant for the top and bottom four deciles.
»$33538339853333¢3
i i v T i 51.5 Macro Influences on Value Factors
B e R ab et S wD The efficacy offactorstofﬂretastﬁammmmmisnmmm.hn.ﬂﬁ
eiknen oGS adca s 33z across different stocks and through time. We shall provide a more detailed
g =T UL T T e e R analysis of the cross—secﬁunalandtimcsaiuwiihﬂilriﬂwg"!d
g Chapter 10 and show how to capture these differences to build dynamic _
AP T o A S - mﬂdfls.lnthissection.wegivcnnmwiwﬁfwwm
§ Fiﬁiéi?i?iflda?ié "’Eimﬁinﬂumcethemurnprnﬁleafvﬂu.twwi:
P i £ g how strategy returns correlate with macroeconomic um::: (or defi--
§' I I kel e Practitioners in two ways: first, it hlghhsht'-ﬂ*P"“““‘l uitllhﬂ
&\ :,:, SaZ § g@ i?. i 2 §§ §§ i ':i'“"’f’.h’)chmployingvaluestrattgiﬁ‘f"l'I“EP'“biﬂmmmg";a;m'fsﬁeﬂ,'.ir
g 1 =L L0 L -..!.-.’.L=l___|_ R & ure“npeWemmmnammmm-%m
: y _'g . Understanding of the economic (risk) cycle 10 %
(lf 3835282525832 (1 & market environments by varying fctor PO ey rrurns
3 o1 ;? N S48 A5 :‘E T i 73 & 3 :l'... _Tab]e 5.5 provides a contemporaneous mmgmﬁ- =
£ C W |8 1t two market-based variables and one It efned sstheretum
< £ d‘:’;ms factors. They are: (l}mﬂﬁ-ﬁ;;'m and the Russell 3000 2
i 2 N b Vllfl‘e'nce between the Russell 3030 G defined .glkﬂlﬁ‘w Y
5 E ; g B a E _ We“e Index; (2) up-down stock markets, mwwm
= = 4 8§ 2 & E 1 g ighted return of the Russell 3000 Index;and ()¢ e

i
-

B s



12 1etinlio Manage 160t
2 L (,?l.l‘l itanve Equll\- Ifl ”l"l"l L l‘.lll.

L omanzagn Jefined by the parallel shift of the U.S.Treasurﬁ-ieldcum._
e B or down. For each regime variable, we ﬁl’stsﬂrtthffuuback[esﬁn.gm*
| _zgzgz222 periods '..nn:- thrc_e u_qual Subsamples, We report average of risk-adjusted
glSeFadFnas [Cs and its t-statistics for each subsample along with an F-test show
= & o - »
# | the significance of 1C variance through the introduction of the dtmgrmz
E FEEZELEREE macrovariable. The F-test result answers the question whether market
= g 3 _ @@= environments significantly influence performanccofvalueinvming.
£ Z Table 5.5 shows value strategy'dcmonslmted better performance when
le 222f 22 & * value index outperforms growth index, when the market drops, and when
T8 =88 the interest rate increases. Basically, value investing is a defensive strategy,
g & A0, ' other things being equal. Among the three macrovariables, value growth
T S e e is most significant, whereas yield curve shift is the least, as indicated by
Boan F & o oF g S their F values. Note the following points:
2 @ P + Cash flow yield (CFO2EV) is the most consistent factor across all
e g e e T market regimes and provides significant positive returnsin all market
. S regimes! In contrast, the least consistent is dividend yield (BB2P),
% A because its F values are significant for all three macrovariables. This
= U A E’. i ot reflects the dynamic nature of investor's preference toward high divi-
B RN dend paying stocks. Investors seem to only favor high-yielding secu-
R - rities when (1) value outperforms growth, (2) the market goes down,
|:§ ; fg j = ;3 f; = :f and (3) the interest rates go up. _
b S 5 : + B2P and S2EV are the two factursthutpl‘ﬂ“idfth‘m"pp;m!:
YSzgaaen for factor liming,astheirFmﬂsticsmthehlgl'{estm ﬁﬂ'!m
e 3 - : ¥ P s : -E.' value-growth regimes. When ﬁmedwrmﬂ}kmlﬂ”hmﬁmm“s
- exploit both factors' perverse performances in growt —
f 22 : g formin tfolios that are negatively expose il
t|8ESRZEEEELE| 2 BROICEE
HEIE R i b and Their ICs
215 : g 316 Correlations among Value Factors } relations. Over
3| =5 Z At any gi i fa res have cross-sectional co o
S A R eyl '+ any given time, factors sco 1 o Aswe discuss in Chap-
2 E i 3 : She588 :n time, factor ICs also have :imeser:escorrelﬂrl'i:i&-bmmtmm.m
1 Z g : 5 ter 7, these types of correlations are intercon! et is pricing the valua-
g = C correlations provide insight into how the mar is working
5 > P! - valuation is
= g?#a&g##zﬁ tion f; : 2 mnlﬂﬁ‘b““d at-b
T S RBELL X dctors overtime. That is, when flow and asset-based
z 3?!‘3‘??9?93 10 add posit; is it also the case for cash i
g i ¥ el ¢ positive returns, is it a ! lue factors. As !‘-!Pmed_'
é 3 200157 Table 5.6 shows correlations among gtueﬂllY high, rang-
= 5 time gar; : rious value 1Cs are ge0 diversifica-
" i eries correlations of the va i opp'ortuﬂ“?fw
() 3 i d
= g E EE .z . J‘E from 60 o 909, thus indicating hmmﬂ.l sectional score correlations,
< =g E E a B g p Fable 5.6 also shows the average cros== '
= cEddEada
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c s R e PR and it is also i]nlr.-rlcs:ii.'ns l::-, note that the:f (as a'ihm\rn in the upper

> £ & &0 7% Jre generally lower than the corresponding time-series iC correlation (as
gl1H BRI~ & hown in the lower echelon), The rank correlations of factor SCOTes across
E stocks will typu.‘a_lly exhibit lower readings than the correlation across the
S market pricing of the factors because factor scores contain more noise
slg $2248% % 5.2 QUALITY FACTORS
- PELEBTE & il Lr B
3 S similar to fundamental research, quality factors assess the health of a
E firm’s business and the competence of its company management, based
§ on information reported in the financial statements, In aggregation, these
S E2EFEEE 2 5 stors signal a firm's ability to create shareholder value in the future
Sld 2Rk Aao | ¥ 0 fact g : by
% 2 zRAGE NA decomposing a firm’s quality into two categories:
gE |. Competitiveness of business economics: Competitive business oper-
S ation is the engine that creates shareholder wealth. A firm’s com-
AR EREEE: etitive advantages, typically stemming from efficient operations,
I R l > W Aa P 3 ﬂg ﬁ'm
] IR R T T intellectual innovation, or market dominance, enable to
g deliver abnormal profits that are above the cost of capital.
g - 2. Competency of company management: Competent and honest com=
EE £8 ¢ EEEE pany management is the conduit that'lﬂnsfenlhemulqlumm
P E BEE AHKR of wealth created by the firm's business operation mshlrrehalh!-
@ ¢ translates effective business deci-
5 As such, competent managemen :
2 iORs | imarily to their shareholders instead
. sions into profits that accrue primarily o peforred a0 e
E = 2 » g £¥ £ 2 of more self-serving alternative motivations, o i &l
g :"h ; z | 2a4 o 214 agency problem. Factors in this category pitempt 40
= &l L t Al ororlom -E f roblem wherein the company MANaEs
3 y extent of any agency p : “Filie hold
5| é acts on its own behalf at the expense
F 1 (ERELEL|E Measured properly, quality factors Mfibmnm:mw-mﬁm
g E & $2adsEs ﬁ tions are sufficiently competitive mwﬁe directly to shareholders.

E i and whose management delivers business profits -

E E wn:.aut falling prey to agency P“:r":m .5 in four financial ratios to
= g i A # or illustrative purpose. we 0 Lo mwmw
£ g l § R % E g Measure the competitiveness of a firm: (1) retur nmopmﬂﬂsw
i - . e " {RN 4 W'stcm iIHOl y

OA); (2) cash flow return on lﬂ‘ e (OLinc). e

E . 8¢ (OL), and (4) increase in operating I.wﬂ use high gﬂﬂhﬂm =
8 § ind CFROI are proxies formm?ﬂitm;mm ympared WILLLEEE
“ E = ¥ "Ms deliver above-average investment bit of complexity. a8 it
g' E E 5 B E Beer Broups. Operating leverage ’dds,"“ — A i
- 2 E ad g -
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how much a firm borrows from its 1UPP|":” v c.'mlnmcrs_ Thftllfgh thE
ular course of business operations. Operaling 1“"‘Cr'_“"’c s T!’plu:alh, a legg
expensive way of borrowing cash when -;unﬂ‘*"_“"l “'“_I‘ “”'""Fmi levera
Thus, in order to minimize borroWing costs l_a R i,” ”Pt-'rullngupmm'
ywer over their suppliers or customers typ.

firms with strong bargaining pe \ .
ffort to decrease hinancial leyer.

ically increase operating leverages in gy
age. .(']I. is selected as a proxy of a firm’s bargaining I'""""_'L'T-
We select several factors to detect the presence ol an agency prob.
lem. These signals are earnings TT'*”"'P”I““““_ (an excessive ‘“Fff“ﬁt in
accounting accruals), excessive capital r.-xp-.'m.lllth.-r.. ;mdl cx:_-ug;mtc exter-
nal financing. The first two are -a}.'mplnmﬁ_ll't of the excessive use of cash by
company management at the expense of returning cas!? to shareholders;
the third signal highlights the unwarranted sourcing of cash by manage.
ment resulting in shareholder dilution. Two specific factors are chosen to
illustrate each phenomenon. Working capital increase (WCinc) and net
noncurrent asset increase (NCOinc) are earnings manipulation category
signals; incremental capital expenditures (icapx) and capital expenditure
growth (capxG) rank firm's capital expenditures, and external financing
to net operation asset (XF) and share count increase {sharelnc) measure
the amount of cash raised through external financing, Please refer to the
Appendix A5.2 provided at the end of this chapter for a detailed description
of how these quality factors are computed from the Compustat database.

5.2.1 Relationship among Quality Factors

Cash is the linkage connecting quality factors. Factors measuring cof™

petitiveness also gauge the level of cash flows generated through DSt
activities, RNOA and CFROI both measure cash generated through

ness transactions, and OL and OLinc measure cash borrowed from sUP™

pliers or customers, In other words, competitiveness factors measure
cash raised through the regular course of business operations; the bigg*f
the number is, the more competitive the business economics are. A€

problem-related factors measure the excessive use of cash as well 3 IN.

amount of cash raised through external financing. WCinc and N Co:g
estimate the use of cash in current and noncurrent accruals, and icaPX™
capx(s measures cash used in capital expenditures to facilitate long A
growth. Lastly, XF measures the amount of cash raised through debt

equity offerings in either private or public placements.

Equation 5.2 depicts the relationship connecting the aful’l'-m‘-"m !

quality factors. (Refer to the Appendix (Equation A5.3) providé .”.j-!‘
end of this chapter for a detailed derivation,) s
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ANOA +ACASH = AXF+ NI = Awe 4 ANCO+ACASH
53

[he terms in the equation are defined as follows:

ANOA : Change in net operation assets

AXF: Cash flow through external ﬁnnm:ing activities
NI: Net income in the current period

AWC: Change in net current assets (or working capitals)
ANCO : Change in net noncurrent assets

ACASH : Change in the cash level on the balance sheet from prior period
pividing Equation 5.2 by prior period's NOA, it becomes

XF + RNOA = WCinc + NCOinc + ACASH/ NOA 5.3

Equation 5.3 is the decomposition of change in NOA. The left-hand side
shows the sources of cash, whereas the right-hand side shows the uses of
cash. Cash can be raised either organically through business activities
(RNOA) or externally through financing activities (XF). Raised cash can
either be invested in working capital (WCinc) or noncurrent asset (NCO-
inc) through capital expenditure programs, or be left unused in the cash
dccount (ACASH/NOA).

5.2.2  Academic Research on Managerial

Behavior and Market Inefficiency
Over the last 20 years, researchers have tried to understand the pattern =
Managerial behavior in reporting corporate carnings. Hayn {1995:‘::
tended that firms manage earnings in order {o prevent FEpOCting %
Plotting the distribution of annual earning per share fﬁf’s) for the p::;
.l 963-1990, she found a concentration of reported earnings omwn-
Mst in excess of zero, and a dearth of reported earnings just :

She noted, “These results suggest that firms whose earnings 1€

' ; manipulations to
1 fall just below zero earnings point engage ?l'::;ﬂﬁ (1997) also con-

Ip them acro H k! hler . )
ss the red line,” Burgsta eport small losses
Cluded that 30 1o 40% of firms that would otherwise

et al. (1999) develaped
:“ﬂl'lnge earnings to report small Fmﬁ“‘ w&?ﬁ% in order-
Mode] ¢ illustrate how companies manipulate

: : being able to
:':::V'md 1) the possibility of red ink, 2) the threat :l; not being 3t
N recent performance, and 3) concern about not meeting
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Healy and Kaplan (1985) assert that managers Manipy

expectations. e der =W
enchmark if they can; if they cannot, they take g b

earnings to exceed 2 b ) i
shortfall in order to stockpile earnings "h"l“ e be Ef'”"d in future repoy
ing periods, a phenomenon known as llhe big bath. : .

To further understand managerial behavior, 3'~_=1d‘-‘"'llf research,
ers examine managers who are unable to report profits and as 3 resyly
must report losses. Given managers’ heightened concern with litigaigy
(Kasznik and Lev 1995) and their vast murle-.lsc in ownership of stock
options, managers are likely to mitigate their tendency to report logses
that are below analyst estimates in general and well below analyst egjj.
mates in particular. )

In contrast, when it comes to managing profit surprise, Levitt (195§)
found that managers attempt to report profits that meet or slightly beat
analyst estimates. Practitioners maintain that the negative market impli-
cation of reporting profits slightly short of analyst estimates is very signifi-
cant, As a result, if managers are unable to report quarterly earnings that
just meet or slightly beat analyst estimates, they may manipulate accruals
in order to report small positive surprise earnings and avoid small negs-
tive ones (Burgstahler and Eames 2003).

To quantify earnings management, Jones (1991), Dechow et al. (1995),
Sloan (1996), and Jeter and Shivakumar (1999) proposed methods
to estimate expected accruals after controlling for changes in a firm$
economic condition, such as the growth rate. In summary, this body
of research separates reported earnings into three components: discre:
tionary accruals, nondiscretionary accruals, and a cash flow componenl-
Discretionary accruals gauge company managgmgnt’s 5|_1|:|je-¢,:1_i1.r'i't]fht
estimating accruals and reporting earnings, and are used to Pfﬂﬂ'ﬂ!
level of earnings management at each firm. Nondiscretionary a
represent the expected level of accruals that are needed to acco
the firm’s growth, -

Two extensions of accrual measures were introduced recently ﬂﬁ“w
initial discovery by Healy (1985), First, Hribar and Collins (2002) ’M;:
that accruals can also be measured directly from the statement of cas
flows, They assert that a cash flow statement based measure is SUP"
to a balance sheet based measure, because balance sheet mmuﬂ“"
often @taminatd by the nonarticulated changes in current Mﬁ
resulting from mergers and acquisitions, discontinued ; m‘“‘
::Zd curréncy lransl:l;t.iuns. Second, Richardson et al. (2005) :;E"gid"

aly's narrow definition of accruals, which focuses on current il

|
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accruals (primarily AWC ), to.accommodate long-term operating accru-
als (ANCO ) and the change in the net financial assets ( AFIN *).

Why does accrual predict future returns? There are two schools of
thoughts. Sloan (1996) shows that the accrual component of earnings is
less persistent than the cash flow component due to managerial subjectiv-
ity involved in estimating accruals, He suggests that the investor fails to
comprehend the fact that firms manage their earnings by manipulating
reported accruals and thus create marketing mispricing. Alternatively,
Fairfield et al. (2003) attribute the return predictability to the market
mispricing of growth in NOA. They suggest that the lower pﬂmm
of accruals is likely to result from the conservative bias in accounting
and/or the diminishing economic return to marginal investments due to
competition.

5.2.3 Historical Performance of Quality Factors e
Table 5.7 displays the historical performance of selected __‘l“““" lml'lﬂ@f’-
To control for the level differences of these ratios across & peer com-
factor values are ranked within each sector to &al_ﬂmll”[“l’“* o Bachor
Parison, All signals generate excess returns, significantat 55 i

; : . positive returns, pointing
Measuring competitiveness deliver significant : |

to the impurlancﬂ unnvestingin firms with strong business econ . liﬁil:_ ant
*Ontrast, factors gauging the et R -
. HVREAC e ains the change n 08
: defined us the o ange in 'hm-m'll?ﬂ'mfmwwl . "’ .
¥tand preferred stocks.
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Risk Adjusted information Coefficient (ICa)

FIGURE 5.3. Box plots of risk-adjusted IC for quality factors.

negative returns, underscoring the importance of avoiding firms that
manipulate earnings, pursue excessive capital investment, or engage in
excessive equity or debt issuance,

Figure 5.3 shows the box chart of risk-adjusted ICs for quality factors.
Comparing the IC distribution of quality factors with that of value factors
(as shown in Figure 5.2), it can be seen that the statistical significance i
more pronounced for quality factors than value measures evidenced by the
higher average IC and lower standard deviation of IC (or strategy risk). Fof
example, 75% of the IC distribution of quality factors falls in the same direc-
tion (positive or negative), as predicted, with RNOA and capxG as the only
two exceptions. By this measure, quality factors have delivered an astonish*
ing record of consistency — most worked in more than 75% of our samplé
_per':ods between January 1987 and March 2005! The smaller strategy risk F
indicates that quality factors are more consistently priced by the market that
:.'alue factors and are less subject to macroeconomic or behavioral influences
1 a temporal sense. As such, value factors are better candidates for facto™
timing than quality factors, as value factors have higher time series disper
sion, which represents the opportunity to apply timing skill. B,

Table 5.7 also reveals that quality factor requires higher turnoyer ﬂlﬂ
value factors indicated by both lower CFA and higher TO in the last ™7
columns. This is true for OLinc, WCinc, NCOchg, and capxG becat®™
thq: represent the change of financial ratios measured between miﬁ.;
cessive financial statements, OLinc, WCinc, and NCOinc are I“M:

= Nl

e
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hetween (WO successive balance sheet statemen
ysing (WO successive cash flow statements,

[able 5.8 shows the excess returns of decile
tors. Interestingly, r;:turns to competitiveness-

ar relationships, whereas returns to apen r .

fwt_ Firms with high RNOA, CFROY, of,e 32; Pof::f:ﬂ‘;t‘:: :}ctn_m do
excess returns (as shown in the 8th, 9th, and 10th deciles); and m
inferior business economics destroy shareholder wealth at 19 statistical
significance (as shown in the lst, 2nd, and 3:4 deciles). It is also inter-
esting to note that the wealth destruction by inferior firms is more pro-
nounced than the wealth creation by superior firms, both in the level of
excess returns and t-statistics. This phenomenon can perhaps be traced to
the market structure wherein most active managers are bounded by long-
only portfolio mandates, which limit their ability to short stocks issued
by inferior firms, or to the disposition effect wherein investors held onto
their losers (inferior firms) for too long. '

Agency problem-related factors exhibit nonlinear return relationships,
with XF being the only exception. This nonlinear return response makes
intuitive sense. For icapx and capxG, the agency problem implies that
the act of pursuing excessive capital expenditure programs by manage-
ment is detrimental to shareholders as it is a symptom of the company
management pursuing their own interests at the expense of shareholders.
Such reasoning does not apply to the other extreme, and it is misguided
to extrapolate that the lowest capital spenders are the most beneficial to
shareholders. In fact, firms that underspend capital risk lnsing their com-
Petitive advantage and future growth prospects, both of which destroy
shareholder value as well. The best sets of firms are those who embark on
C?nliewmive capital expenditure programs (2nd and 3rd deciles) instead
of the ones not spending at all (1st decile). :

lFc:ur accruals-rilated igacmrs (WCing and Nﬂowlf:glr‘h:hsh“ readi :ymff
nal the ibili i ipulation in & CHmER X

possibility of earnings manipu o e periods and shifts.

“8ement defers costs from the current peri
‘*Venue recognitions from future periods to the current period A% o
high accounting accruals are detrimental to st  at the
*arnings of the current period are artificia :
“Xpense of fupyre periods. Eventually, these it 2 Dotslhewcmll
ﬂ:en \!i{][gnﬂy, CaUsinga precipitous dropmsmdl Tices. Mﬂm
P “NOmenon exhibit a linear relationship? In Oﬂm;reutrlam&—-:'ﬁmﬂ

portfolios for quality fac-
related factors e:hibi’t lin-

sham}l'ﬂldel‘ value when firms engage in the oppo
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. into future periods and pulling costs into the current period?
P ——s B B e rc\'anlLJ up negative accruals, which will dramatica]tyinﬂamfumumn..
[ FRELZEE ST L’@ - CR ng P'mhhnb} xpense of the current one; is still misleading and potentially
" S o 5, = _I:". z PR T RS SR e the exg : '
';';n = ?. :E ‘=f: ot T :,I < =S LML ! ki ings At { dishonest company managemmt.. In fact, l.hls fxlrmenegu
J5 - 3 a sign © | buildup is called a “big bath" in accounting literature. This
) 1k SEATES ement realizes that there is
e o = =T AR 22 m*-ﬂ »menon happens when corfmpn.ny mapag ;ME ::d p g
3E4FER 520 m 2T il Sl phen make the current period’s earnings look good an pursues
* 25 Zz¢8d e U P no way o treme by making current period look even worse in order to
: . i3 alternative extr b These firms do not deliver the best excess returns.
o s : e future €a i : ) »
S G288 zE5089328=F inflate future € those who exercise truthful, conservative accounting
BLELERERERR R The best firms are : ition (2nd and 3rd deciles, but not
v 2223 CEX disgs 73 °S 9301998 o5 in tormg A cAPE e _ ;
FenSe Sl Y ek x Pmdluh :
iy the 1At ibits a linear relationship, a stark contrast to both the capi-
S22 g8 oEzaREnE XF exhibits a li Linearity of returns to XF is likely
§5EakgRig] s aadsaas i | accruals factors. BT
'“”:!335"““-'='3:de’::=."‘.‘°9- al expenditure and acc ich explains the positive excess
M 32Z5sESzissSE 5 L s = LAt ExpEns formation asymmetry, which exp ;
AN R S related to infor h tive deciles. Information asymmetry pos-
deciles as well as the negal dhen e e
: S e w e ek return afiagement kgws Hore
28 ySaFgRieda? NR8=73 S S its that (1) company m rivate information, and (2) management
© 33382393 SiS€ 3 1SS nE g ment public due to itsac-:esstupld f Yingitbacktnlheﬂﬂl‘lllﬂuﬂ’
= i, Ry L | v i =4 = X i it - : ; | .
. : is inclined to retain the cash E:‘:l:xmaﬂaﬁmndng activities. As a result,
jated wi ;
: SR B dueto/tmicontsaisn e h back to shareholders (through dwiﬂﬂldsl
E8R2T=TngsE5uIentsng ement pays cas ir outlook for the firm is rosy.
w NS AR RE I I-"c' Seds=s238 ea company manag 0 only when their outlook in
AISETER AN R g T . aymen o
=g e - L) hu}'back, or debt repay I tive assessment
' signals a posi 4
5 Hence, paying back to Shawh{,!d“:mggement a phenomenon known is
P eR aB e TR g irm's business environment by man: tistical significance
T xT eF aSins BHECLEXRLS s firm’s business . interestingly, the sta .
A e ; = ,ET‘[”‘ ,_:_ ; s pdPasc E management signaling. Most : s kamm
A v:' : more pronounced for meana]esﬁ:alu‘h:ing-
£ | e~ firms pursing excessive extern
— — — —_ - —_— a— L o q
= a;-n:.nam—rm:mmmmﬁﬂp‘lﬁ.qmqﬁ , |
; :: doreca=sREE ] Faclors .
g™ r;;ni?'f?"f‘c.'f‘-?ﬂ?ﬂ?ﬂ?f-: 5.2.4  Macro Influences on Quality ; under different
= ] i AL AL - | acr ality
3 i 5 : turn profile of qu Its of value factors
3 : =% Table 5.9 examines the re mpared with the mtlleﬁ v b0 the
o H B = — = i hen "
AREEEEEEE LRI R orket environments. W ality fuctos are generally less sl DL
gl° 717193 Jlifsfdgcfoyas | ¥ (85 shown in Table 5.5), qu Y o value factors, indicat
: e Fr3u 2 i =y g changes in macroenvironments cth OHDY ;
£ : zeach| Slatistics, Two observations are wo higher Tive excess
i in ) ¥ Fad - = -] : A sy : . &
#iﬁ‘%a%az:x:meaaaggiggs_ 4 factors deliver higher negit e
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problem are most severely penalized wh

— - AT Y B W gy em
S e S = O = o= P . en the ma : i
= h ; § chifts from the pursuance of growth to the Pu“uﬁ‘:?s sentiment
LR L) time when investors are most worried about thepacenftheﬂw“ =
= FEFZE L2228 growth .mdrethinkthecxpectedretumsnnim'estmms, =58
Y = rl oMol T oMM e o ¢ ¥ atic I 1 i B :
G i i Y ® 0 i to 2 dr-l"'l-ﬂl'-_Sh"'“kﬂE_'-‘ in the duration assumption of Mnﬁ
g : . cash flow (DCF) valuation.
PIB 22222 e R d CFR i
3 S3RRF32535 + RNOA and CHEO! work bestin a grawth environment, and returns
K R B to both factors are significantly influenced by valye growth regimes
as indicated by F-statistics. Change in DCF durati i
E F 2 Ff 2P P2 EFEE i 1 g ph?sl
§EEZ2RE548 g role in this phenomenon. When DCF duration lengthens during a
g #n; TR s growth regime, cross-sectional ranking of valuation becomes more

SHS. AR iy correlated with RNOA or CFROI, thus generating higher returns to
both factors.

0.4
0.v

w T = o3 L oM
Lol I = ™~ S 5 1.-. F
L EEE L--f o e 5.2.5 Correlations among Quality Factors and Their ICs
R S de A RSE S Table 5.10 reports the correlationsamong quality factors: the upper echelon
< HECHE) g Niag i Hli shows time series correlation of risk-adjusted ICs, and the lower echelon
12|, 2222l pa'e 2 reports the average of cross-sectional correlation of factor scores. The two
E=?*:F151:-qv-=~§§§ y 5 e : iti 3 facto
IE iFddimtdaadd shaded areas contain correlations between competitiveness-related factors
| =i i:' A LI R that provide positive excess returns and agency-problem-reiated factors,
B 222 2l which, in contrast, deliver negative excess returns. Boldfaced correlation
£ =) _; i ‘_'f # *— F ? #£ F 5 = - % = " 2= . q‘ual'lff
R e B Re B numbers highlight significant diversification opportunities among
O A g T G e R . factors! Because we use the negativn:|:|I"tl'1v.!asenf!f"!""“"b‘l’m""'1“l"'d_f‘a’mts
; E when combining them with competitiveness-related F&c?ms. a ;mm"-'ll':
& e s e T HIC T g correlation actually translates into a negative IC correlation. Ffﬂrefﬂnf:sk
£ i BRI T RNOA and NCOinc provide an incredible opportumity m:sm”m':l:iﬁw
= e e e ) & .
g = g b= and to i i as their 1C correlation is astoni
FlZ3 8822z z £ 3 high o mmt?medm' of different signs. Table 5.12
3|52 $E33538258¢8 2 igh (48%), whereas their IC averages are imizing
AN e M RS B e simply highlights an important lesson for active managers — Maxi
(212 2aeeiesy £ 2 L the diversification benefit among quality factors.
ALIER RS R
= A5 T LU :i' 7 :L' - -; 5
= yhii 3 _MOMENTUMFACTORS 20
RS é - 1 into two categories:
E d &3 §, ;'i $ A E ﬁ § g Th'e Momentum phenomenon ﬁtwlmwpmmmﬂ;d:umnmis akin
o] G £ Price momentum and earnings momentum. PHEE 80 e ion to
A : 0 technica] ey ot price and volume 1B0F0
e T f chical analysis, which uses pa o the myriad of technical
< : g gé g : f y f:;d ot ture sacurity i RIS unl:emmmmm \
B 253 SiF 2 .& % =} g - "€ators (and their IooseinterpretadanS)"P“ EE
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St g f £@icdag | and documented by academic researchers whe applied
3= s Y 1N .4] techniques O assess trends and modern
e[ 1 cd . e TEWI'SEIS, and Proposed b }
£ :' explanations 1o justify the existence of these price Ea .
3 BEER:z22 o nmm,_,mlum"rn-..luse:. on past earnings changes as well ag the "mhg:f
G B 2 g | a forecasted earnings, ie., earnings revision factors. Tradiy; ik
z =2 L8 revision techniques make use of changes in consensus f’ﬂii earnings
Z supplied by sell-side analysts as a proxy for market mﬁumm‘:ﬁshﬂﬁmh
2. = ; : en i
el § R fE 22 bearish) toward a particular stock. This section Pmuesmxidu}hfhu.
: Eag d ﬂ'ﬂ gg | 23 erature review for price momentum, whereas e B onmigen emic lit-
z = "'":: earning momentum, s
6 vs THE :padeesh and Titman (1993) d ;
S|l ulfRER2 2 £ 2 2 2 ‘ ) document that when forming portfolios
S|ERSS =2>  5%F based on past returns, the past-winner portfolios will outperform the past-
3 = | E % i = a " loser portfolios over the next 2 to 12 months during 1965 1o lgﬂgmthe
‘_E U.S. markets, Thli!i ph'ennmenon is referred to as intermediate-term price
:: ,.-5- £z g gﬁ 222 R momentum continuation, Hotm-ver. the authors also find that past winners
16 2.?:5 b 2R underperformed past losers in the first month after portfolio formation,
- z | CEX ™ This anomaly is called short-term price momentum reversal.
.; -y E Price momentum anomalies and research have drawn considerable
': u B * E" ik ik oy .
E 5 é L £22 ?S §: attention as .WE“ as criticism. -For :-nany skeptics who have a hard time
el 2 SC R comprehending how such a simplistic strategy can generate abnormal
= Tt -
£l - returns, the price momentum anomaly is considered as a result of data
:é’ ¢ 2 fnlning from empirical finance researchers. Since price momentum was
=3 %5 initially documented in the US market, testing its existence in non-US
k 1Y 4 Markets can be considered as an out-of-sample test to assess the robust-
3 A _ﬁ ness of this phenomenon across global equity markets. With this in mind,
Vo B €y 3 Rouwenhorst (1998) applies the same price momentum strategy in 12
5| €513 2 European countries and finds similar results during 1980 to 1995. Theevi-
2 . g dech rejects the notion that price momentum is 2 result of data mining
5 2 ' 4nd argues for an alternative explanation.
B|lQ & =# s L. is simpl
tlEE 2 § 2 . To understand whether excess return from Pﬂ“-mﬂmtﬁd _y:_
oo = : ' risk premium in disguise, Fama and French (1993) attempted to used their
o 2 th guise, Fama _ et )
s = 2 : ree-factor ICAPM framework (market, P"w"-w'm , their dismay,
3 ] = ? eXplain intermediate- ice momentum anomaly. To their
% |22 2 th mediate-term pri : S A
Elg 'gn~ B - ¥ conceded that this anomaly cannot be explained by ap Paiia
S -, Sated with ¢py i ted systematic risks. Later on, Fama
’ ese previously documen : . as.
e ~nbl angd French'’ : undad-mlﬁd“d’ momentum a iy
e § & the o s three-factor model was extended lel becomes the new
g 38 " ! 'F.. l Stang urth-priced risk factor and the four factor mOAE BT ey
< g g =9 ard of asset pricing tests. * e
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lo ‘..\Pl un the e mormeintuim .illnlli.ih. Daniel et al, {:[]“” 8
i &

that investos % ml‘nl"m"h"“""" anl biased selt attvibution (e, c“ﬂ““h‘

dissonance) causes o brased revision ol Investors expectations i rey

o new fnformaion In response (0 new information, investors tend
anderreact i the beginning and then overveact i the long tep, uh;ﬂﬂ
al (19961 document that the price momentum anomaly is partially attri,
atable 1o underreactions 10 carnings news (aka carnings mMoment
Houg, Lim, and Stein (2000) suggest that slow dittussion of informatiy
it prices (most evident for bad news) causes an nitial underreaction g
news. More recently, Grinblatt and Han (2005) linked the momentum g
the disposition eflect — investors” tendency to sell winners and keep Joy
ers. Frazzint (2006) develops turther analysis based on mpimlmim{u
lossesh associated with individual stocks.

1o swmmarnse the above rillululmgs. the prive momentum unumalrk
commaonly attnibuted to:

Behavioral buss: Investors are more confident about their own privai
information concerninga company than about public information; and
this causes an initial underreaction to news. Such initial underreaction
eventually leads o ltlllg lerm overreactions. Furthermaore, lh.E dﬁﬂ“
of underreaction is influenced by investors’ mental accounting,

Imperfect information, Company-specific information is delayed '“‘_
uncertain as the management of o company has strong incentives
to promote good news and to hide bad news. This leads to delayed

and autocorrelated market reactions to bad news. Again, the ag
probiem i< at work here

Imperfect market structyre: Because most institutional money maneg
crs are not allowed to short-sell stocks, “informed”™ money manage®
are able to fully arbitrage Lood news by purchasing enough "'hwd
that company, but are unable to fully I&Ilhill’ﬂﬂ'l‘ bad news due i<
no short sell constraints, -

1o ascertain whether the o
across different market segm onit

fhicacy of a Price momentum strategy VA
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rrateny works better among stocks with low analyst Coverage. Finally, the
e l'”! analyst coverage is greater tor stocks that are past losers than for
ehide . — i
L winners This means price momentum strategy is more effective in
P

entifying losers than winners,
[[ULs )

[arnings Momentum Anomaly

3.
For more than 20 years, the earnings revision phenomenon has been
extensively do umented by a large amount of academic literature, Givoly
and 1 akonishok (1979) conclude that market reaction to analysts’ earn-
ings revisions 18 relatively slow, In addition, Givoly and Lakonishok (1980)
how that an investor who acts upon analysts’ earnings revisions can con-
distently outperform a buy-and-hold policy atter transaction costs.

Further studies find that large earnings revisions are more indicative
of subsequent earnings revisions and price drifts. Hawkins et al. (1984)
find that portfolios comprised the 20 stocks with the largest monthly
upward revisions in consensus estimates subsequently experienced
positive abnormal returns 75% of the time. Kerrigan (1984) shows that,
when the EPS forecast for a stock is subject to a large revision, In):suhse-
quent revisions within the year tend 1o be in the same direction. Richards
and Martin (1979) find that revisions in the first quarter represent new
information but the revisions in subsequent quarters do not, Dowen and
Rauman (1991) find that earnings revision anomaly is not n-plniﬂfd by
the small firm effect (Dowen and Bauman 1986), noris it ﬁ?"‘ﬂﬂdb’“h‘
neglect effect (Arbel et al. 1983).

532 Historical Performance of Momentum Factors

: ’ -tors and three
In this section, we sample three price momentum fa<

“orical performance of
earnings momentum factors to illustrate the historical pe

: st |-month return
Momentum strategics. For price momentum, the pa

, the past 9+
(ret]) captures the short-term reversal thu:-ncnﬂﬂm :hePu:r’;rm.edhm-
feturn excluding the first trailing month (ret9) t.ar;“ fred 9-moath returt
erm continuation of price momentum, and risk- ju

. , return o
(diRe19) captures interactions between past in the consensus EPS esti-
the earnings momentum category, the change in

p . ents, Hong and Stein (1999) found the T

::f.hl- [: rst, ::“ probitability of price momentum strategy decli nﬂ'ﬂ"’rﬁ. i
fm size: in other words, eve u 3

still profitable for la i n though price momentum s,

A ks, it i = il it
cap phenomenon, Second, it s prtdnmimmh-. mid »
|

™Mate between today and 9 month ago measures rsts upgrading
% nd )
NS (earnRev9), Purther, the ratio of the number of & JWWW'M

S estimate minus the pumber of analysts dow res Mﬂw
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holding size fixed, price \ et of analysts during the last 9 mot
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TABLE 5.11 Historical Performance of Momentum Factors

Performance ‘;;;;;.,

Ica tICs) IR(Ca)| IC  IC) IR(C) ET‘T?

retl eagg% 268 032 -0.72% -0.63 -0.07 3.0% any

re19 w7a0% 479 056 |T6I2% 397 047 |627%| e

adjRet9 620% 420 049 "642% 449 053 . 6L1% e

arnke® Seom 320 038 |395% 377 044|637 2y

earnDiff9 w5 0% 390 046 | **4.67% 423 050 |720% i

ltgRevd w3 22% 399 047 | TLEO% 319 038 | 37.0%| 3
Note: * = 90% confidence level; ** = 95% confidence level.

(earnDiff9). Note that earnRev9 measures the magnitude of change in
EPS levels, whereas earnDiff9 is mainly a directional measure ignaring
the magnitude of EPS changes. Lastly, the change in long-term growth
rate estimate during the trailing 9 months, ltgRev9, reflects a slower mov-
ing view of long-term profitability.

Unlike the ranking process applied to value and quality factors, the
performance of momentum factor is computed without sector neutraliz-
tion. As a result, momentum back-testing results as shown in this sec-
tion capture not only stock-specific momentum but also sector/industrf
momentum.

Results in Table 5.11 show momentum factors deliver significant post
tive excess returns (1987-2004); retl, which captures 1-month revers
delivers negative excess returns, as expected. Examining the 1C -
through time, momentum factors are generally more variable than qualty
factors, suggesting that momentum factors are more susceptible 0 shif
in' macroeconomic environments, similar to the observation for ¥
strategies. Figure 5.4 shows the box plots of risk-adjusted ICs for mome™
tum factors, ”

In implementing momentum strategies, it is most striking ﬂ'ﬂt‘oﬂi&
erable portfolio turnover is an onerous requirement to maintaiﬂ'l?%'
exposures. The average turnover for momentum, quality, and value ™
tors are 292, 169, and 141%, respectively. Compared with value W‘ﬁ
mumenmt,r_l strategies require more than twice the turnoven 200 Py
1}' strategies require aboul 20% more. Clearly, momentum 1““‘&:‘*
IDT%';‘;Q:"‘WM" ty. threa.s value investing is more a Slf.PFH“-‘f.M;
B Chaip ;ﬂi;oﬂﬁm for active managers. Implementation €0 ﬂ"“

) induced by maintaining proper factor exposures | “‘

::.- how IBES populates historical EPS estimates) mey plaY & i
Mingly anomalous finding. ' A

ot | @3

--------

ret9 | e R e
adjRet9 —._ PO ...

| 1
eamDiffd | rToereneeseseaeee.l "{:}n
NgRevs e E} “““ 1 |
02 01 00 01 02

Risk Adjusied information Coefficiant (ICa)
FIGURE 5.4. Box plots of risk-adjusted ICs for momentum factors.

cansiqcred in conjunction with the theoretical strategy profit when incor-
porating value, quality, and momentum strategies into the final model.
Table 5.12 reports decile performance of momentum factors. Three
observations stand out: First, in terms of the short-term reversal fac-
tor (retl), stocks with highest trailing 1-month returns deliver the worst
performance in the subsequent 3 months (10th decile). However, this
phenomenon is nonlinear, as the worst I-month losers (Ist decile) also
!.‘lelivered negative excess returns. Second, adjusting price momentum by
its contemporaneous residual risk enhances consistency of performance.
When compared with ret9, adjRet9 delivers better t-statistics in the 2nd,
3rd, dth, 7th, 8th, and 9th deciles. Third, earnings momentum factors
generally work for the best and worst ranking stocks. However, the lin-
carity of return response looks distorted by the sixth decile, ddi. vering
Significant negative excess returns across all three earning momentum
ctors. Upon a closer examination, this abnormal negative return is an
rtifact of how missing values are treated in the decile ranking p
Ccause stocks with missing scores historically delivered siguificast
Negatiy the analysis eliminates i
Bative excess returns, excluding them from | result,
ANomaly pertaining to the 6th decile, thus Mﬂ‘mw oG
OWever, we would i de mﬂﬂﬂdﬁmﬂmlmm
) caution readers s survivorship bias

MOmentum seore is a signal for underperformance, as Surviv -

ot
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e S 1.3 Macro Influences on Mome
§ c7F2e282888 2582 R e
£ Sadpgnsies o= o Table 5.13 examines the return profile of momentim fact
223 R ferent market regimes. Momentum profits are Cﬂnsidera:; under dif-
-: statistically insignificant when the valye index outperforms the €T and
o T S e index. Combining this observation with the fact that growth
o Anld_mi-dS=og ; for growth stocks (se momentum is more
eSS TS S important for grawth stocks (see Chapter 9), we conclude that the major
portion of momentum return comes from high-growth Minam.m-
4o - CREEE environment when the growth index Outperforms the value index
~rSebEnIabag el ld e 3 : uei Shifts
w O VK SR ANAS in the yield curve an angesmcredltsprtadalsosiguiﬁmﬂ?inﬂm
C e — R R R e L e - .
Tl Sy =Y momentum profits,
GT e ﬁi 528 2% 5.3.3.1 Correlations am_ong Momentum Factors and Their ICs
r SlS-Srisacsesn Table 5.14 reports correlations among momentum factors: the upper ech-
: elon shows time series correlations of ICs and the lower echelon shows the
: average of cross-sectional correlations of factor values, Similar to value fac- -
e $32T 25 3 2 =347 tors, IC correlations of momentum strategies are generally lower than cor-
LR Rl B B relations of factor values, Also, short-term reversal (retl) provides potential
' E diversification benefit to other momentum strategies as correlations are
S o = e = significantly positive (boldfaced numbers), whereas returns are of different
w TZHRISFERARIRS signs. However, one has to be mindful of its high turnover,
SE RSS9 TS TRE
« 3328328232598
s| PE8Seqgieesses
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® o= : ‘_:|- (=T E 5.14 Time Series IC Correlat
=] n el ISR T‘AHL - - |01'|,I "JpP“E‘h!Imjw o
& i e Factor Correlations (Lower Echﬂanjoanmunu:mFmchmsm
. rell ret9 i —_—
g 22 FIE 2R MR ks crmbits gges
RIS B e S re19 6.4% ~ WP i s
& ! adjRet? 4.3% 95,6% B N Wik SE
Sl3zs2222 carnRevd 10.9% 51.7% 52.6% b w'm ::::
h|= Mo S 0 & N ‘ d ¥
U| g o8 s e earnitf9 11.3% 52.5% 53.6% BO.1% 3
Z H o g . = u.“
' lighev9d 32% 20.8% 21.0% 20.2% 19.6% ==
FIEESER
E-TIT R B — R
= | () s
o ¢ -
W = M o;in ® g APPENDIX
3 .-:1 r"l:::. :E (=1
s A5.1  FACTOR DEFINITION
sl 2z gEﬁ 2 2 zhirsbs.ectiozljllus.lrale.'slhnw factors are constructed from the Compustat
258 & 23 ata ase. When applicable, we show the Compustat Quarterly item num-
¢ : ; ber in parentheses as a reference within each formula,
3 |
o o st Al
s|lgEEEL 8T CFO2EV : Cash flow from operations to enterprise value
R
:  CFOuos+ intExpiom X (1—tax_rate)
s £ % fﬁ £ 5 market_cap +debtios s wiy+ pfdioss —cashies)
@ S gt e
P : .% EBITDAZEV : Earnings before interest, taxes, and depreciation toenter-
gl |= 33 Zn3 2N prise value
.ﬂ - - :. - :
P : = salesion) — COGS) =G & A
HEREEEH S £ 1k market_cap-+debt o s+ pfd st =CasH
glE & F.p Sl s e
- - :' - - o\ - ml.
s _E 1 I E2PFY0: Trailing 12-month earnings to market cepi
AHEEL b i)
AR Ak income_before. =
% A T L - |:' - & g w ¥
gl |z 2zeiz2g(2
A hin S ¢ ization
i |2F-3igs3 E E2PFY1 ; IBES FY1 earnings to marketcapital
- i st
" T e % IBES_FY1_EPSxsnare_tC s
w 33 a mrarket_cap
z s : ? g e .
B R |
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BB2P : Net buvback o market capitalization

2 e repuirchase o — equily _ISSUance oeq
Sividend oss +t"-!h=-1_“'r"h b 4 — —‘ -I‘-h‘l._"

1 -
markel_cip

BB2EV : Nel external financing to enterprise value

dividend s + O _PEpUICILASE (03 - 0841 ‘i‘.'h[—hpunhdiﬁ"i 75 - o)

market_cap+ debtios « o1+ PFL-' w1 — ciashiose)

e

B2P : Book-to-market capitalization
COMUMON_equiry ose)
m..‘r‘.*'u‘l'_a.'tij"'
S2EV : Sales to enterprise value

slesions)

market_cap + debt o s 0511+ pfdioss) — cashiwss)

RNOA : Return on net operating assets

income:os+ intExpiaz) X (I—tax_rate)
equity s+ debt s & o)+ pfid oss) — cashisse)

CFROI: Cash flow from operations to net operating assets

CFO, lw.+r'1]r_E{cpmmx(f—£i"‘;."_'E)_—-
Cqu.l-tyhm:+d{£|f|m5*q5“+ Pfdf_mr—fﬁfﬁ'“l

OL : Operating liability to net operating assets

Fotal - assets o) - equity s — debt s & ast)— pfd (s
ﬂiﬂif)‘suaswdebﬂm. e Rﬁ!'ﬁ?— cashios)

qlﬂm“dl'l\'e Factors T

OLinc : Change in the ratio of operating lighili
g Ilablht-,- 10 net i
OpeTating assets

017_0[‘1—1
WCine : Change in working capitals to assets

wC, —-WC,.,

(sSels )

H'Jl[‘!’" li'.'{_: = fllr_lmff.‘:lm'"l.'ds."lmm—cm m“l“"‘ E E {06}

NCOinc : Change in net noncurrent assets to assets

NCO, - NCO,.,

ASSOTS|0as)
where NCO = TAwser—cur_assetsow— TLiosti+cur._Habowsi+ 1t debtie)
icapx : Capital expenditures minus depreciation expense

CaAPEX o) = depreciation:os)
aAssetsi)

capxG : Growth in capital expenditures

(sselsion)

XF : Net external financing to net operating 15setS

s~ ]
F—f‘id—m"ﬂ“*_fmnl__mpwrhamw—m-—w_w L
a]ui:);;m. +debt o - 81+ _tﬂ:m—.adnw

sharelnc : Change in shares ou!simdi“!_m-l e

shares, = sharsey

M-&l

fet] ; Trailing 1-month return
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et9 : Trailing 9-month returns skipping the first trailing month
I i

adjRet9 : Risk-adjusted 9-month return

rr.'f_':‘ s
residual _risk

earnRev9 : Change in IBES EPS estimate during the last 9 monthg
mean(EPS, )~ mean(EPS,.,)
std( EPS, )
earnDiff9 : IBES EPS diffusion during the last 9 months
#_of_up_anaysts— #_of_down_anaysts

#_of _analysts

ItgRev9 : Change in IBES long-term growth estimate during the last
9 months
mean(LTG,)-mean(LTG,,)
std(LTG,)

A5.2 NET OPERATING ASSETS (NOA) e
Most fundamental signals focus on the decomposition and anillﬂk‘ﬂ
hirm’s NOA, which is the amount of assets deployed to generalé =0

Pmr‘tz- 5“"';3"“1 quality factors listed above are ratios based on NOA. ﬂﬂr
Wwe take a closer look at its derivation, Yok
_ NOA can be derived from the balance sheet of a firm by Wﬁ
its asset, liability, and owner's equity accounts to reflect: (1) how =2
is financed and (2) where NOA is deployed. Table AS5.1 shows ﬂ“#ﬁ
ture of a balance sheet by connecting a firm's assets with its 11 ,ﬁﬂ
shareholders equity. To facilitate a discussion on NOA, each bals?%
account is sorted into four categories (shown in pa-reﬂihﬂw_)_=

assets (OA), operating liabilities (OL), financial assets (FA) nl:ﬁﬁ
B

liabilities (FL), To simpli i '
\ plify this discussion, we dro minority
preferred stock from this illustration, gl

F

EEE——
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TABLE A5.1  Balance Sheet Classification

Assels Liab & Cwney'
el cash (RA) s
: CA - cash {OA) .S “"a.::;'migﬁ.‘""““"
s SoE T
o] + NCL-kdebiion
3 + EQ(FL)
- TA = A

Note: CA = current assets; NCA = non-current sssets; Gl = current liabilities; NCL. = non-
current liabilities; EQ = owner's equity; cash = cash and shart-term
st_debt = debt in current lHabilities; lt_debt = long-term debt; and TA = total assets.

As shown in Equation 5.4, there are two ways to decompose NOAs. In
the analysis of the firm’s business operations (the operating side), NOA is
the net of operating assets (OA) and operating liabilities (OL). OA mea-
sures assets deployed to generate business activities (PP&E and inventory)
and activities of lending to supplier or customers (accounts receivables).
OL reflects borrowing from business partners (suppliers, customers, IRS,
or even employees) in the form of accounts payable, tax payable, or pen-
sion liabilities. Alternatively, NOA can also be analyzed from the firm’s
financing perspective, which equals the net of financial liabilities (FL) and
financial assets (FA), representing the net investments supplied by enter-
prise holders (both debt and equity). Assuming that the need for holding
cash (or short-term investments) is transitory, NOA calculation deducts
cash from FL, pretending as if cash were paid back to enterprise holders

NOA=0A-OL=FL=FA. Gl
Table A5.2 shows the rearranged balance sheet. The Mﬁmﬁ
illustrates how investments are deployed for operating mimremﬂ g
of cash), whereas the right-hand side demonstrates how In¥ can also be
faised (the source of cash), Furthermore, 0perating ¥ EECP )
decomposed into working capital (WC) and pet mm,ﬂﬁ
by nett ng current asset with current liabﬂiﬂﬁfﬂﬂ' - dﬁl!ﬂhw
Noncurrent liabilities. respectively. Combm‘ WM&- i
:Fr’“ debt, the financing side |:ue¢‘?i)lﬂ'=~ﬁ'ﬂ"'-"'l'f'w"‘l ily ’ NI
10 5.4 can now be recast as A -




i1 i | I Yy 1.!” 1.I1|L1 i'l'L r -lp.f'l e
l‘.l\'{' l'_fll“t }
15'] ] (_(:'Ui ; “t\.

car Accordir B o Net C pt'r. IIHF Asset
[A | y 1 'd Balance Accor 1 L]
B EAS.-! Rearral BE

ll—‘—ﬁ—_\\

L- FA)
OA-00I
: = = st_debt (FL)
CA - cash (U
ik It_debt (FL.
- CL-st debtOL) . _...... : JF:J :—'I :
T RCA OA) E ) -r tﬂ‘]'
- NCL - lt_debt (OL) = cash (Fa) _
NOA = NOA
= )

Equation 5.5 shows the level of NOA ata il Equation S:EShﬂ'l’i‘
the change in NOA from a prior period by lf‘kl"ﬂ the first-order d'ﬂ'e“?ﬂ_
of (5.5). Decomposition of ANOA is readily ﬂppi?.l‘ﬂll'l for the operating
side, which includes changes in both working capital and net num?urrm
assets, The financing side requires some explanation. The Fhange in debt
equals the net of debt issuances and debt repayments during the curre'u
period. Change in equity comprises two components: (1) the net of equity
issuances and buybacks, and (2) retained earnings that are equal to the
net of income and dividend. By aggregating all financing components, the
financing side becomes a combination of net external financing (XF) ané
net income (income), Equation 5.6 illustrates the decomposition of change
in NOA,

ANOA = AWC+ ANCO = Adebt + Aequity — Acash 54

®

= XF+income — Acash
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ENDNOTES
~ 1. In practice, book value of debt is used to
availability issue, proxy the market value due to data

1) -IIU "an“'Ill 1 ue |n“ucntl.' (lt Dutll!l.‘i al'ld to m\'Hi:
(l P ﬂ.mml‘ﬂm
n 41

tion, we use the ﬂ'li.ll'kﬂ-r(’lﬂli\?e p:rcenlije rankin Lima-
- of B2Pa -
cross-sectional regression. & nd ROE in each




CHAPTER O

valuation Techniques
and Value Creation

Vnunmw INVESTING SEEKS TO FIND BARGAIN PURCHASES at prices
that are significantly below the intrinsic value. Valuation techniques
model the intrinsic value of a firm by forecasting the economics of the
firm's business operations and its ability to create shareholder values on
a forward-looking basis. For active managers, valuation techniques can
complement traditional alpha factors (outlined in Chapter 5) in bottom-up
security selection. Valuation is aboutinvestingin firms whose economic net
worth is likely above its market price; in contrast, quantitative factors seck
to arbitrage inefficiencies rooted in behavioral phenomenon. One might
think that valuation approach has  lot in common with value factors such
as price-to-book, earning yield, etc. But this is not the case, mmﬁ’"
mer is based on forward-looking economic forecast and requiresan expllcil
forecast of the future, whereas the latter uses i'ﬂ@ﬂmﬁm‘&m’m‘
rent status i A ;

as a proxy for its future. tion analysishasbeen used mostly

Inthe investment uses industry, valual I
i< side, who fol-
by fundamental equity analysts, both the sll ide and bu side PG 0

low individual companies, estimate their business o St

the fa; . .
b e o oy ks
equity managers would have any s S PG

ber that fundamental analysis does contain information, S0 e

135 been used in quantitative models. For ﬂmﬁ;ﬁiﬂiﬁ revision, which

$Sue near-term earning estimates and mwmnknm knwnﬂ)ll‘ .

hi\'e fn.un ¥ n
d their way into quantitative factors. 1 B
"Bgregate forward-earning fummrmemuﬁm?*ﬂ e
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500 Index predicts market returns - ”I'j“:“sar")f thf‘ ACtug] o
. i« our view that yaluation analysis umlng mulnpermd long.
ings. It 1s our damental analysts, when applied appropriately, ca
forecasts by fur mcr;t processes. %

e s
Ve 0 uanlllaiwe INVES : - | .
o valuation analysis are quantitative in pap

fac  aspects of
Th.lentel:l::tli::z:}a:e guiit on rational economic I:nrecafsts that can be
to many normative assumpliﬂnf’, such as ralmnailt.y. Perpet“it)’- mea
m.ﬂ-sioln_ or even the validity ot CAPM. Hnweve'r. similar to many e
nomic models, valuation techniques place more importance on im-ﬂlli
consistency rather than descriptive accuracy.

In this chapter, we will first illustrate a discounted cash flow (DCF
framework. We shall pay particular attention to three subjects: the defisi
tian of free cash flow (FCF), drivers of value creation, and the forecasting
technique for the fade period. We then extend the one-path, one-life valu-
ation technique into a multipath scenario analysis that provides a distri-
bution of firm valuations, This probabilistic valuation framework is mor
suitable for forecasting excess returns for active managers given the inher-
ent uncertainty of forecasting the future.

6.1 VALUATION FRAMEWORK oL

Valuation frameworks take three forms: dividend discount modelsadj"
counted cash flow analysis, or economic-value-added appl‘ﬂa‘:h&“-w '
mented correctly, all should arrive at the same valuation outcome. I this
section, we focus on the discounted cash flow (DCF) framework. Asitsnaf
implies, DCF defines the intrinsic value of a firm as the sum of the F“#
values of all future cash flows accrued to shareholders in PefP’-t'ﬁtf‘ mnﬂ
mate goal of the valuation analysis is to compare the resulting mmﬂﬂk'“u
!c:- !he cufren[ equity market value and infer equity return forecast with e
relative difference. For instance, if the current stock Pl‘icé is at $10 ﬂd@

Dc:l Vﬂ]:uc is Slall, the stock is assumed to be undervalued by 20%-
‘iathematically, the firm’s intrinsic value is given by

pv=N"_f ;
=l (l+r)r
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perspectives. Second, we need to define the notion of free cash flow

Sh.mrtf]“’ld ers and identify the important drivers and sources that tre:l:
hareholder value. Third, analysts usually only provide explicit forecasts
for one business cycle, generally 5 to 10 years. How do we model business
economics and forecast beyond this explicit period? Fourth, we need 4

framework to estimate the discount rate, consistent with the firm’s growth
prospect a nd associated risks.

6.1.1 Firm Value: A Component-Based Approach

A firm's intrinsic enterprise value is not the same as its market value. It is
a gauge of a firm’s economic net worth in total. It is the sum of operating
value, excess cash, and the market value of other nonconsolidated equity
investments, For most firms, the majority of the firm value is in the oper-
ating value, derived from its future business activities, which is the hard:
est to estimate. As we shall discuss later; the operating value is the sum of
the present value of future free cash flows to the firm (FCFF),

We can also view the firm value from a finance perspective; a firm owes
debt to bondholders and preferred stockowners and is owned by minority
interest and shareholders of equity. Figure6.1 shows different operating
and finance components of the enterprise value of a firm. Equating the
two, we derive a fair equity value by subtracting market value nf del_bt.
preferred stocks, and minority interests from the total firm value in an.-
ure 6.2. This is the general framework, and we nOW discuss each compo-
nent in detail.

6.1.1.1  Operating Value ; i
Operating value refsresents the value B“’“mmd?hmuus:umm ﬁ:hceﬁﬁ
With the assumption that the company is @ goINg value of all
will continue in perpetuity. It equals the sum e me.]gr course of
future FCEF that are generated each year throvgh ﬂ:o of FCFF in the
Usiness operations. We shall have a et :ﬁﬁﬁﬁﬁ ShictEe
next section, Conceptually, FCFF "'q“a.ls the i ﬂﬂ-n? itals and capital
Plus non-cash expenses less the increase in’ = parhy
SXpenditures (CAPEX).

_ consummated. tisahree
; Figure 6.3 illustrates how operating value Isl asting FCFE onanannual

'¢P process accordin tion 6.1: (1) 4 :
: g to Equation _ FCEF discounted by

b:sis M perpetuity, (2) deriving the present “ﬂ"“ ::ullﬂﬂ'i" this term
€ Weighted average cost of capital (WACC) (we st

*horly), and (3 summing all present values:

)
=
L

X I-;_-" D
L -u__.-.-:é-l

i
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FIGURE 6.3, Operating value from discounted free cash flow,

FIGURE 6.1. Components of firm value

Operating Value

< Excess Cash snd Marketable Securnities

< Dther Equaty Investments

= Fom Value {or Enterprise Value)

- Market Valoe of Debt

- Murket Value of Prefermed Stocks
Munority Interests
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= Equity Valoe

> Shares owstanding

= Far Equity Value per Share

discounted by wacc

FGURE 6.2. Definition of fair value per share.
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As shown in Figure 6.3, it is useful to separate operating gt

existin ions #
& Operations and growth opportunities. The former rt{-'"’s"'"

?Or“a,:-n of the firm value should there be no firm growth. o~ !mlﬂ

lat
ter gauges the portion of the firm value generated from f
Opportunities. Mathematically, w

20 8 B on PN A0 W 0D AN AR WA 07 IR WD B0 30 T2 33 A 28 00 27 dn N 30 31 B2 3y 4 B

I

¢ have

23 4 80

OV = Z FCF_ — FCE, = FCP:"gL‘ '
{1+WACCy (1+ WACC) H
CY 4=(1+WACCY ZIH“’" @ gggggggg* §§2§§=
= F'G FCE - , —~FCF, ""HI"“:ﬂ:a:H ulﬂ““'m—‘
- Wacc” & (1+ WACCY
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g business would account for a biEBEr um

aturally, the existin . ‘ nt for &
fh; 01e|:aling yalue for firms in low-growth industries, whﬂm'&

the Pty I
um-.nh :mppurlunity term would account for a bigger portion for ...
grow

high-growth industries. Equation 6.3 shows this decomposition under
a;funfptinm that growth rate g is a constant and the discount rate Wage

is greater than g

gruwﬂ:l = (1+ WACC)

existing  WACC-g a?)
i WACC (1+g)" @3

OV  WACC-(l+g)' OV

Example 6.1
A hypothetical firm grows its FCF at a 5% annual pace perpetually, andis
WACC is 9%, Then

existing _ 9%-5%

~ L gmwlh_S%-(H—‘Tﬂ:sa%
Qv 9%.(1+5%)

OV 9%-(1+5%)

If the growth rate is 7% instead of 5%, the growth portion of OV
increases to 79%. '

Focusing on the percentage of value from growth relative t0 the 8
operating value, we have

E“_;""”_‘-_E[ 1

1 (64
oV vt =t :
1+gl " wacc WACC

The approximation is valid when the growth rate is not too wﬂ
shows that by hold_ing WACC constant, the percentage of Wﬂﬂ’
ir]?wth OPPOrtunities is close to a linear function of the O™ iy
dc;rr::i “'I}E“ h_"’ldinﬁ the growth rate constant, the P‘-""mu::ﬁ
ks incng unction of WACC. This is intuitive because @ h’#h“' ; ;ﬂ
¥ du“s:e];m the value of future cash flows but a higher ﬂd‘w
e Present value of future cash flows. By taking its P”tnnp#

® Fquation 6.4 can also be used to derive the relationship b¢

D —
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hange in the ratio and the changes in the growth
S ra
rate (see Problem 6.2). te and the discount

p.1.1.2  Excess Cash or Marketable Securitias

Excess cash or marketable securities represent the amouny of liquid f

cial instruments that are not required in Supporting business u ﬂr.un,
and can be distributed to enterprise holders. Excess cash is ;::EGT:;
a temporary imbalance of cash flows between npemiing and finance
activities, and this imbalance will eventually be eliminated through cash
distributions to either equity or debt holders, It is unnecessary to have a
separate DCF analysis of cash instruments because their value is accu-
rately reflected in their market price.

6.1.1.3  Other Nonconsolidated Equity Investments
Equity investments in other business entities that are not consolidated in
the FCFF forecast should be included as a separate line item in addition to
the operating value. Analysts should avoid double counting the value of a
subsidiary by including its valuation impact in both the operating value
and other equity investments, In theory, one should try to estimate the fair
value of the equity investments through some valuation techniques, which
certainly create an additional layer of work. However, when a subsidiary is
publicly traded and its value represents a small portion of the firm value,
we can simply use the market value of the subsidiary as the product of
market value per share and the number of shares held by the firm.

Now that we have covered all the items of the firm value on the operat:

ing side, we shall discuss items from a finance perspective.

6..0.4  Market Value of Debt and Preferred Stocks

Ideally, the market value, rather than the book value, of debt andy i

stocks : is. However, practitioners e
should be used in a DCF analysis ity analysts and manag-

Market value for several reasons. First, most e ’

ers lack access to pricing databases of fixed-income i :

43 Ao able rate variety and those by defi-
St corporate debt today is of the vamable /4

X : | features.
Mition should trade close to book, barring munz:‘“r:ml‘lﬂ value when

Therefore, book value is typically used in lieu albeit analysts are
::::irnaling the fair value of debt and ;meh o

., couraged 1o yse market value and tﬂ-m'“f" 1l portion of the firm
Sible, Again, when debt and pm&rrcd stuﬂkﬁ“"m‘u oy

Value, this should not be an issue.
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interest; thus, the extimated tair value ts ased nstead. There are (e o,
monly adopted approaches Ihe fiest 18 o use the book value of ity
interest repartesd an the balance sheet. The second approach is 1y C5timy)y
minority interest as 4 portion ol the gross equity value, Grosy AUty valye
is the residual of the hem value atter subtvacting the markey value “llihh
ard |~n'h“rh‘n! stocks, The appropr ate porton s deten mined h:,- g]-"_- Tatlo:
of minority interest expense (reported in the income statement) divided
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ated subskliaries. Typu ally, minority Mlerey
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Recurming Faring

Revurring earning excludes extraordinary items; it is earning before
tax LERTY minus tax expense and plus equity earnings.

b1 Le (ither Comsiderations
Figure 6.1 shows the major components of the intrinsic value of equite
Other adiustments are often made by fundamental analysts in order
achieve a more accurate estimation. For example, on the I‘IP'!'N““!“
other risk provisions are typically deducted from the firm value. O the
fnance side, the dilution effect of option grants is captured by either s
g up shates outstanding or adjusting the gross equity value d Es
0.2 FREE CASH FLOW i
g

CF s the partion of a cOMFE
allable for distribution to enterprise .‘
Pact on the firm's current or future M:‘

Heing the center of DCF analysis, F
perating cash flows that is avg
€S without any adverse im

economics, such gy
growth, competitive adly ofitabiliey: o bask :
on {nvestments. Ty facilivat * vt Lt et

; Lot
wids ¢ the discussion, it is helpful to have®
tu-l:;:;:::xnnf"r how the business operates, Figure ::4 shows & @
it 0 lh_‘ flow nf atypical business operation and thﬂ@'ﬁ
enterprise holders (creditors and shareholders! 855
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FIGURE 6 Business operations and free cash low,

physical entity of a firm, Several interesting points are discussed in the
fl.l||u'.\'mH lext

« Enterprise hoklers own financial assets, and this ownership grants
them the right to claim the residual cash flow generated through
business activities. In this ownership structire, enterprise holders.
are the principals wha provide capital, whereas the company man:
agement is the agent who acts on the enterprise holders behalf in
running daily business operations. In addition, creditors have a
higher seniority in exercising their claim on the residual cash flow
than sharcholders. For example, interest payments must be made
betore dividends can be distributed.

* Intermy of the business flow, a firm uml’"’?’mh physical gt
lectual assets to conduct ity business activities to wﬁm
Physical assets include property. plant; and equipmt‘ﬂl:u"’“_.w;m
working capital; intellectual assets are the Company starts with
'eam and the employees. The ecanomics "f'.' \ngayi who buy
evenue — qhe RIO8S proceeds received from ¢ Wdlm"- .
ampany goods, Business profitis the residual 3’““'“" o

[,_'- _"
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after deducting business eXpenses and ta ASS ) net Operating i%
Jfier tax (NOPAT). A portion of the NOPAT is plowed back as g,
vestment in order to sustain the firm’s grmleh and comper:
Jdvantage. Should NOPAT be larger 1Ihar.1 the reinvestmeny, the

generatesa positive ECF that can be dnstrm_huted to enterprise g

On the other hand, if the reinvestment is larger Fhan NOPAT, jy
is negative, and the firm wnuld.necd to eng?ge in external ﬁ“‘%
ing to solicit additional capital from enterprise holders to fund the

reinvestment.

« There are two types of FCF: free cash flow to firm (FCFF) and fre
cash flow to equity (FCEE). The former is the residual cash flow aysj.
able to enterprise holders, whereas the latter is the residual cash fiow
available to equity holders only, after principal and interest paymen
have been made to debt holders.

6.2.1 Definition of FCF

In Figure 6.5, we define FCF from items in income and cash flow: state-
ments. Starting with the revenue, FCFE is the residual portion after sub-
tracting four major components; operating expenses, taxes, incrementl

investments, and payments to creditors. We provide some detail for each
component as follows:

Revenue (Sales)
= Cost of Goods Sold (COGS)
- Selling, General, und Administrative Expenses (SGEA) —— s

= Earnings before Inteswate, tax, and depreciation (EBITDA)
= Depreciation & Amortization  —-.— =
# Other Operating Income (Exp)
= Opersting Income (EBIT)

* (1= Marginal Tay Ralsy —

—

= Net Operating Income afier Tax (NOPAT)
+ Depreciation & Amortiztion
= Increase in Working Capiray (WC)

= Capita) Expenditures (¢
- Other Investmenys _EA_PK]

= Free Cash Flow 15 Firm ¢
- e R {FCFF)

o Interen Expense (1= Tax Rate)
= Free Cash Flow 1o Equity (FCFE)

FIGURE 6.5. Definition of free cash flow
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. Operating expenses: These can be divided into three i

are cost of goods sold (COGS), selling, l uf%mr

costs (SGA), and depreciation expense. G : :
ated with raw material and l:l.h:'n}:i in manﬁ'fi:fi:: mﬁ“m
ers or in delivering services to them; SGA is the necessary r ;m:
incurred on the corporate level to support sales/marketing activit
legal, or human resource functions; and depreciation expense m’
from the aging of fixed assets such as PP&E. Operating income s reve-
nue less the operating expense. A related concept is the operating mar-
gin, which is the operating income divided by revenue; it measures the
profitability of a firm’s business operations. Holding revenue constant,
the lower the operating expenses, the more profitable is the business.

. Taxes: Tax includes levies from all levels of government: federal,
state, city, or local. In general, statutory marginal tax rate should be
used and short-term fluctuations in tax rate, due to prior losses or
tax incentive programs, should be adjusted on a one-time basis. As
mentioned before, operating income after tax is NOPAT,

+ Incremental investments: A firm regularly reinvests a portion of
NOPAT in itself in order to expand its business operations and to
sustain its competitive advantage. Incremental investments consist
of three parts: an increase in working capital (AWC), the incremer-
tal capital expenditure (ICAPEX), and other investments, Although
an increase in working capital reflects the additional resources
needed for fueling short-term growth, capital expenditure ﬂPﬂﬁ:“:
the capacity of business operation in order 10 achieve 10“3':;"“' '
growth. As shown in Figure 6.6, working capital is the net current
assets and current liabilities, ICAPEX isthe portion of capital expen

: pense; in
diture that is above depreciation and ’tthuﬁ;‘:‘g? I.::ﬂ)'- other
essence, it represents the economic addition ::hmh generate nonar- ;

investment includes outlays for acquisitions, s
ganic firm growth. NOPAT after incremental investments FCFF
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. Payment to creditors: Finally, there is payment to creditors, Inclug

iR and. However, the agency proble ; :
interest expense and debt repayment. FCFF after payment i FCFg. demant yp m might describe

4 symptom of earnings management (or even worse,
jjon) wherein costs are shifted from the current period to future peri

for the purpose of boosting reported earnings. The inconsisten ¢y hzt?d"
the two interpretations is exacerbated by the fact that most [undm:tﬂ:
analysts seek answers/guidance directly from the company mnmgcmﬂ;
11”[;-1!!!.{“”' resulting in a rosier forecast than what reality would uthurwtu'
suggest This underscores the importance of using a quantitative alpha
model in conjunction with valuation techniques 1o perform bottom-up
security selection. Quantitative models can help navigate around behay-
joral idiosyncrasies, whereas valuation techniques provide economic fore-
casts based on the assumption of rationality,

such an increase as

i + earnings manipula-
To summarize, FCFF for a given period is NOPAT less the in“fcmgmﬂ %
investments, which is the change in a firm's capital

FCFF = NOPAT — ACapital . ¢

6.2.2 Linkage between Operating and Finance Cash Flows

Bvits definition, in the long run, FCFF must equal payments to (or conts.
butions from) enterprise holders, But in the short run, this balance doe
not necessarily hold, and the temporal differences are reflected in the
change in the cash account on the balance sheet and the change in exter-
nal financing from the enterprise holders, i.c.,

6.3 MODELING THE BUSINESS ECONOMICS OF A FIRM

An integrated analysis of a firm's business economics — a firms ability to
create shareholder value — starts with the ratio of return on incremental
capital (RIC), followed by the decomposition of the RIC ratio, and ends
with a detailed analysis and forecast of various components that build
up the FCFF forecast, As we shall see later, modeling business econom-
ics focuses solely on a firm's operating activities and ignores finance
decisions.

ACASH = FCFF + AXF . (66)

Thus, if there is no change in the cash account, a negative FCFF means
that an additional capital infusion is required from either sharehaoldersof
creditors, whereas a positive FCFF implies that a portion of NOPAT will
be distributed to enterprise holders. In general, a temporary difference

between FCFF and cash flow from finance activities results in 4 change if

631 Ret - al Capital
Wiecash iccaust, eturn on Incremental Capita

RIC measures the expected incremental earnings generated by a daliat
of additional investment into a firm’s business operations, defined as the
fatio RIC = Alncome/ ACapital . Finance decisions are ignored because
this ratio is indifferent to the source of the additional capital. wthffﬂ;
deby financing, equity financing, or NOPAT. It focuses on the ‘I_“w:ﬁn,i.
how much profit can be generated through incremental oP:mm:!?l;mm
ties, Because RIC, measures the productivity of 2 firm in tu:;lu b
“quals the change in ANOPAT , and ACapita éqoals the SRS
“Perating assets ( ANOA ). So we can write

6.2.3  Agency Problem and Economic Forecast

An economic forecast typically focuses on a firm'’s business and igno™
the behavioral idiosyncrasies of company management — the agent —
it further assumes that all agents behave rationally. In the case ofa i
model, analysts often assume that the company management will act
the best interest of its shareholders and, conversely, shareholders wg:‘,pl
their company management when asked o contribute additio! h
Such tacit assumptions are necessary to derive an internally consist
firm fair value, < Hes
However,asillustrated by a long list of empirical research 00 !
the previous chapter, the reality is quite different because of the .inl’"
problem where the management does not always act in the e
ests of their shareholders, For example, an abnormal incredse iﬂ‘;w
tory could be interpreted rationally as a reflection of a short-term* .

ANOPAT ©%
- _Mm

o1 is the economic
The difference between the RIC and the mofﬂpml .

'v £
e creation (EVC) of a firm, s EVC=RIC-WACC:

T
SRR
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6.3.2 Decomposition of RIC
Incremental capital investments, which equals the change in net operat,
additional sales or revenues, which in turn translape

ing assel, generate '
introducing ASales into Equation 6.7, we cap

to additional income. By : !
decompose RIC into two major value drivers — profitability and scals
ability, measured by ANOPAT/ ASales and ASales’ ANOA respectively

Hence,

R]( L ANC[-)PAI- e j\[)l’ﬁ. I % lsfl]c'l - ]‘ll‘('rl-ﬂtlh“n}. w H-alﬁblllr}' [63]
ANOA ASales  ANOA

Profitability gauges the expected profit margin per one dollar of incre-
mental sales, whereas scalability reflects the additional capital investments
that are required to generate one more dollar of incremental sales, The two
measures vary widely across industries and across firms within the same
industry. The determinants of these two measures depend on the nature

of the business.

« Profitability: A firm’s profitability depends on the competitive struc-
ture of the industry as well as the part of the value system in which
2 firm's business model resides. The business model determines how
much economic value the firm creates, between its upstream suppli-
ers and its downstream customers. The competitive structure gov
erns the portion of economic value that can be retained by the firmm.
Michael E. Porter (1985) provides structured analyses of both.

« Scalability: Scalability depends on the nature of the business. Fof
example, capital-intensive industries are often less scalable, and co
sequently it is typically harder for firms in these industries 10 create
shareholder value through growth. In contrast, industries with
fixed cost are the prime candidates for business expansions.

6.3.3  Further Decompositions of RIC
Equation 6.8 can be further decomposed into its underlying drivers oY

NOPAT = (Sales— COGS - SGA — DA} (1 - taxRate) (©9
ANOA = AWC + (CAPEX ~ DA)+ AotherAssets

Assuming the tax rate does not chan . g9int?
i ' - Equation
Equation 6.8 yields ge, substituting Eq

———*
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_ACOGS ASGA  ADa

Pr-.ilt;a'inllt}"—'[l : _4
ASales  ASales  ASales J"U- taxHate)

1 AWC APE 6.
lability  ASales +( C;P::x ‘am- J+ Motherhngs
i ' ales  ASales ASales
profitability of a firm depends on the followin
. 8 four subcomponents:

« Cost of goods sold (COGS): It contains both labor and raw mate-
rial costs. It measures direct costs in producing final products. |
.In

order to be successful, firms subject to price competition must have
a lower-than-industry COGS structure,

« Selling, general, and administrative expense (SGA): It contains costs
associated with marketing expenses and corporate overhead, such as
human resource, legal, or administrative functions. For firms rely-
ing on product differentiation, 4 higher-than-industry SGA is typs-
cally required to maintain their competitive advantage.

« Depreciation and amortization (DA): Depreciation is associated
with the use of tangible, long-term assets — PP&E. Amortization is
the charge against acquil‘l&d, nnntangiblr assets, such as patents.

+ Tax rate: Tax rate is a percentage of the net operating income paid for
all governmental levies.

Salability has the following three subcomponents:

* Change in working capital (AWC): This is associated with the addi-
tional resources that are needed to accommodate short-term 5'“""1‘
Needs, such as proper level of inventory. increase in accounts fecerv®
able, etc,

* Incremental capital expenditures (ICAPEX); It represerts i n:::'
CAPEX and DA. It is the additional capita! W::hl:vemhigbﬁ
fent assets to expand operating capacity in order 0.
long-term growth.

. forms of invest-
Change in other assets: This item captures other ]
Ments that are not part of the prior tWo categories:

R1C and all the relevant <O

<

Figure
Mﬁun 6.7 summarizes the structure of
S discussed so far. ;
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RIC = ANOPAT ANOA
Soelh ooly ot —
Pmﬁmbiﬁm prensil ;n.m:m it “Tﬂumm e :

ANDPAT/ASales (ANOA/ ASales) !

madrpin  deprocighion A caitit il

o) | x |

we |
AWC | ICAPEX | Alhhier

-t

AEBITDA  ADA | 4y pusRate)

“ASales ASaie ASales ASales il
—— o
migierial  overhrod
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ASales  ASales

FIGURE 6.7. Modeling business economics.

6.3.4 RIC Decomposition and FCFF Forecast

We shall use the decompositions of RIC to forecast FCFF. Starting with
Equation 6.5, we have

FCFF, = NOPAT, — ACapital, = NOPAT, — ANOA,

NOPAT,
=Sales, SEIJ_ESL — ASales

I

ANOA, 611
" ASales,

NOPAT, .l‘.SaJes,.[ Asales, ]"

= Sales, =D e
Sales, Sales, | ANOA,

The first ratic NOPAT, /Sales, is the profit margin. For 5impliﬂl}'-"‘"
assume it is constant and estimated based on historical measures-

. j 1 jois
ond ratio ASales, /Sales, is the revenue growth rate g,.,. The third rati¢

the scalability measure defined earlier. Equation 6.11 becomes

(617

)

FCFF, =Sadl:!i‘l:pl't:ul”llal:lilit}'1 —gm(scalabi]ity,]d].

el

« The FCFF margin FCFF, /Sales, is profitability, _gm(xalablhtf;m.s-
i

3 E fi
Intuitively, FCFF margin, at time s positively correlated with?

profitability and scalability, and negatively correlated
growth rate due to the required reinvestment,

Valuati iy
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63,5 Firm Value
As a first approximation, we derive
DCE model by assuming the firm
growth rate & Profitability and

the firm operating valye using the
will grow Perpetually ar 5 constant
scalability are aleg assumed to be

8 denoted as p and s respectively 1o represent their expected ﬂﬂ'ﬂ*
n addition, the appropriate WACC is w, which is grea!erthin“ T]: -
firm value is given by =

. 5. (1 ol I
ov=Y - [ f(gl(_Pﬂi = L

r =§,(p-g/5)—
l-rw) P g”w g

The barred variables denote expected value and §, is the initial sales at
time O.

Example 6.2
A hypothetical firm currently generates one dollar of sales §, Its profit-
ability and scalability are 10% and 2, respectively. Its sales will grow ata
5% annual pace perpetually, and its WACC is 9%. The fair value for this
firm is
$1x(10%—5%/2)(1+5%)
(9%—5%)

=$§1.97.

10%-2. The EVC of this firm is 11%.

6.3.5.1 Sensitivities
Bﬂs‘.‘d on :6 l 3]* Wwe can deri\'e lhc SénSi.l'Wll‘.ieSOfl
Qus inputs, We have

he firm valug to the vari-

A0V_ 1 BOV_ K-S
ov p-g/s | OV s(p-8
aov_as, AOV_ Ly =
ov s oV (w=g

sov _

[-iiTys +—.L]Ag

_—*
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TABLE 6.1 Sensitivity of DCF Inputs

Input Sensitivity
Profitability 13.33
Scalabziity 0.17
Growth 19.29
Sales 1
Weighted average cost ot capital -25

Table 6.1 shows the sensitivity of the fair value for each DCF input iz
our example. For instance, 1% increase in profitability would results
13% increase in fair value. In terms of the absolute magnitude of sene.
tivities, the fair value is most sensitive to the WACC estimate, followed by

growth rate and profitability. The scalability is the least sensitive input

64 COST OF CAPITAL

So far we have denoted the discount rate as WACC. We provide this explic
itly in this section. The cost of capital represents the opportunity costse
all the capital providers — creditors and shareholders — whose funds cs
be invested in other opportunities. The WACC is simply the sum of o8
of capital for each of the capital provider times their proportion of

capital structure. Most valuation and corporate finance books discussti
estimation of WACC extensively. We shall skip a detailed discussion ‘ﬁ’

construction and instead highlight several important, practical cons&®
ations for equity managers.

k,-S+k, -(1—taxRate)- B+k,-P (619
= :

WACC=

In the definition, k.k,andk_are the cost of equity, debt, MF@;
stocks, respectively; and S, B, a;d P are the market values of equith: i
and preferred stocks, respectively, The total market value of the firm
S+<B=+P it
 The cost of equity k is determined by the risk of equity investme® "y
s common for practitioners to use a required return fma%
cost of equity. The cost of debt is determined primarily by the cOrPO™"
yield and the same is true for preferred stock. Note the following: -j'

. m_dmmemunbecmﬁmutwhhthew#“@‘:ﬁﬁ

S —
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¢rroneous estimation ufuperaling\-a]“e.hm B
estimated cash flow, its discount rate should h&ﬂm‘m
the other hand, WACC is the appropriate rate to di equity. Op

[he discount rate estimation should pe 1
Complex methodology not only diverts kept as simple a5 m
otherwise be devoted to forecast FCFF but also '-““_ “’mm%.
rior ex post performance. Often, complex and “F"‘"_ ¥ —
estimation is fudged in order to achieve a “vaj t_ mﬂm&’.‘“
because the fair value is most sensitive to a unit change in WACC
estimate as illustrated in the previous section '

A check on the WACC can be done by looking at the yields on the
company’s debt or the yields implicit to its credit rating. Generally, equity
holders would want around 2% more than the cost of 2 s loag:
term (10 vears) debt. P

6.5 EXPLICIT PERIOD, FADE PERIOD,
AND TERMINAL VALUE

To forecast FCFF into perpetuity, the DCF valuation l'nmﬂl'tltblﬂh
the forecasting horizon into three periods — the explicit period, fade
period, and constant growth period. Our discussion ﬂm&’hﬂw
on modeling the business economics in the explicit period, M =
cally spans over 5 to 10 years. The fade period is the forecasting horizoa
beyond the explicit period during which the firm matares and graduslly

competition will eventually eliminate all ecanom deliver .#*
(EVC=RIC-WACC), which reflects 3 frms 'ﬂmw

return on investments than the b : -- -
ﬁﬁ’nﬂm all

Growth rage ades to long-run GDPS""* S for an extended.
that 5 l:(m{pany can gf:ow faster than hwﬁl‘ﬂm
Period of time, because the mdﬂﬂ'm
be bigger than the total output of the €000
3ls0 suggests that the long-term risk- 1T F0
Proxy for the economic ﬂmﬂkm o
to ll‘"'llg-tlern:l risk-free rate in perpett
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Mathematically, we have

RIC,., =(RIC, -WACC)x F + WACC

il
g“lzm_,—;-,)xﬁ+r, {ﬁ.lﬂ

In the formula, the long-term risk-free rate is r,, and F j the

1

function that declines from 1 to 0 during the fade period. Given

- ; R[Cam
growth forecasts, FCFF in the fade period can be derived as
FCFE, = NOPAT, —ANOA,
= NOPAT, ~ANOPAT,,, /RIC,,,
(6.17)

=NOPAT, - NOPAT, xg,,, /RIC

ol

=NOPAT, x(1-g,.,/RIC,,,)

Figure 6.8 shows an example of an exponential decay (fade function)
applied to the RIC and growth rate forecasts in the fade period. Exponen:
tial decay is characterized by the half-life — the amount of time it take

the value of the function to drop by one half. In the example, the halflif
is 6 years,

| — - ——
b
140y | EPlicit Period . FadePerlod .,‘:;-
! compatitive advantage starls .
1o fade due o competiien

oM
V2348487 B 1213 14 48 14 47 ll!iwszamssﬂﬂl‘”"

I = e — WA
FIGURE 6.8. The fade period,
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Local Risk Free Rage 1A}
-__a_-_' + Global Equity Risk Premium [B)
L + Conmpany Premium Discount C
Cost Of Equity |D-Avn{|
Local Risk Free Rale |A]
a + Gilabal Debt Risk Premiym |E]
- + Company Premium/Disgount (]
Cost OFf Debt [F=A+E+C)
Price per Share [G] 3708
Shires Outstanding [H] TS
= * Market Value of Equity [I=G*H| 19741
3 Book Value of Debt |J] 20
MVEY% [K=1/(1+0)) 9934
MYD% [L=J/{1+31] 0,7%|
| WACC [M=(D*KHL*F)] | By

FIGURE 6.9. Weighted average cost of capital for CAKE.

Lastly, in the final stage after the fade period, the firm grows at the con-
stant risk-free rate with the RIC the same as the WACC. A terminal value
can be obtained for the remaining FCFFE.

6.6 AN EXAMPLE: CHEESECAKE FACTORY, INC. ("Cﬁkfi' -
We have established the entire DCF process th.r ﬁm-mmm]::,c :h;
trate how it applies in practice, we devote this section to f:;.uhr 3
intrinsic value of Cheesecake Factory, Inc. (lifkf:n Cf’:he?ﬁlmn ihebe
taurant chain specializing in upscale casual dining. We “"m The RIC
estimation of the discount rate using a straightforward e il
and its subcomponents are then modeled ﬁ!_flhe Ch“s::ing- valueis esti-
‘0 pave the way for FCFF forecasts, In addition, thf :fmd e el
Mated as the summation of three time |Nﬂ1‘3'js di wity value is consum-
Period, fade period, and terminal value. Fmali};li

Mated and compared with the current market

6.6,1 Weighted Average Cost of Capital Iwﬁm of equity (COE)
Yigure 6.9 shows WACC as a weighted avee to the market
Nd (2) cost of debt (COD). Their weighting is methods of estimating

Qur

Value of equity and the book value of drb;;; example, ﬂﬂﬁmnﬂ“ |

COE and cop are simple but practical-
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three parts: a local risk-free rate, the global equity risk Premiug,
company- specific premium (or discount). Although the loca] l‘islf.-ﬁ‘ee- ;
changes from country to country, the global equity risk Premiypy, ; ®
same for all companies, We also note that our risk-free rate is g B_-
(instead of real); therefore in order Lo be consistent, our FCRg &

are also estimated on a nominal basis. Company-specific Premiup i
catch-all term, based on different beliefs of how assets are priced. Ifut:
subscribes to the notion of CAPM, the company-specific premium reflecy
each company’s beta to the market. Should one use the Fama-Fren
three-factor model. the catch-all term would reflect the company
sures to market capitalization, book-to-price, and beta. COD has a simjy
structure, and CAKE has no preferred stock.

6.6.2 Return on Incremental Capital (RIC) and FCFF

Figure 6.10 shows the RIC forecast in the explicit period and the FCFF
forecast for FY1. To ensure that the RIC forecast is realistic and possibly
errs on the conservative side, it is useful to prepare a side-by-side com:
parison with the 5-year historical average and IBES consensus estimates
The RIC forecast for CAKE is 13.8%, with the profit margin being 73%
and asset utilization being 1.89. That is, CAKE is expected to retain 7.3¢3
profit for every dollar of sales and it is expected to generate $1.89 of incre
mental sales per one dollar of reinvestment. With the WACC estimated
at 8.4%, CAKE is expected to deliver abnormal return of 5.4% (= 138%~
8.4%) to its shareholders — a positive value company.

For the fiscal year 1 (FY1), assuming CAKE's sales is $1399 million ¥
the NOPAT margin being 7.3%, CAKE will earn $102 million (=13
7.3%). The expected reinvestment (or ANOA) is $154 million, '
the product of FY1 sale (51399 million), sale growth (20.8%) and
inverse of scalability (0.53 = 1.89"). Because the expected rein
(3154 million) is greater than the expected NOPAT (8102 million) CM::
has a negative FCFF of $52 million, In other words, CAKE is *-‘-"P‘cud#
raise $52 million of cash through external financing in FYL i
10 its extraordinary pace of growth at 20.8% per annum which '

funded through internal cash generation.
6.6.3 Operating Value
an®

As shown in Figure 6.11, the operating value is estimated as _ﬂ“ i

theee parts: (1) the present value of FCFE in the explicit period
present value of FCFF in the fade period, and (3) the present

. 'y
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=i | B
e T——
Eﬂim"l Iﬂn
= Sales Growth Rate |A] = ——'E | IBESu |
= = 8% 19.9¢
[ FY1 Sales |B] 1399 '——-—-—.____aii_
g1 E =
RITDA Margin [C —
o EBI ; -.'ll}_.in[ | 147 s i
-‘_:E - Dept Sales [D] . 15% % !
z ( 'u«'r-ﬂmsl \_T-'-fgm [E=C-D] H2% 10.5% 1125
& | =TaxRas[F] 8% 6% | un
NOPAT Margin |G=E*(1-F)| 1% 1% Ta%
CAPEX ' ASales [H] % 377
= - Depr | ASales {1 16.5% 14.3%
z ICAPEX / ASales [J=H-I] 55.4% e
T: + AWorking Capital | ASales [K] 5% 0%
i + ANet Other Assets / ASales [L] 0.0%, 1
- ASales | ANOA [M=1/{J+K+L)] 189 159
RIC [N=G*M| 138% 175%
-
o - WACC [O] Ra% 84%
value creation [=N-0] 53% 9.1%
12/2006 (E)
Current vear's forecasted sales [=B] 1399
- EBITDA [P=A*C] 208
= - Depr & Amort [Q=A*D] 49
; = Oiperating Income [R] 156
T | - Taxes [S=R*F] H
- NOPAT [T=R-5] :ﬂ
CAPEX [U=H*A"B] 210
- Depr & Amon {Q=A"D or A*B*1] L
S | - ICAPEX (R-U-Q] 61
% + A Working Capinal [S=K*A"B] i
+ ANet Other Assets [T=L*A®B] ::4
= ANOA [U=R+5+T]
= FCFF |=T-1] i S
? ' of CAKE.
FIGURE 6,10, Business economics and FCFF forecasts
termij Bt iod l:w..}ﬂlﬂ}. RIC ﬂ'i.sm_ s
Minal value. In the explicit period (== mmmﬁ
Const T FCFF margin in these
Stant resulting in the same

: as sales. |

NOPAT, ANOA, and FCFE all grow at th’ - years. Ch

. In this example, we choose a fade perc n -
ifferen fade horizons does not change the MMN e

"8 s its duration is greater than 30 . L=

NOting : '
B[Ing in the computation. . [l
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Woa12 200712 100412 2009712 i

E;plicil Period g ag Rt J04% 208N 10E% -
lf‘nm¢ albBe - L 13.8% 12.5% m'

. it s 18% L 1 ) . =
RIC ; 2040 2404 57 Operating Value from Existing Bus
on ]T:: “:H: 4 I 217 op g ng Business 35%) 1,001
B s 3 2 27 2 + Operating Value fi
o R T e o 1o
FCIF (0%, Ap wam a8 SO Z 5| = Operating Value == =
! ' - : 74 25
PVIFCFT) T = .59 o6 T i é + Excess cash and markelable securities oS =
- —— 3 M2 2004712 201502 ees  MOMG12 2047 “— = e .
Exle Rored 1,D-In]::-‘? mllny:“. MII:"'-- I56%  143% 4.3% 4.11": uﬂ: ’.:: + MV of equity and other investments ]
Lmowth =LA Ladind : by |

L 2. 9h  119% 116% 8.5% K.5% ! 1 .
- . 1 LMY — MV of provision for risks and charges 1 ]
m"mr iH‘I lE: iﬁ('] “'E; t": :;E; ]k:?: _Jﬂ Firm Value/Enterprise Value
: - - 5 -
:;p: e 138 -1z -3 91 16 1999 . ,g p ot 100% 2820
: oot T BOL_ 9L IO e oL L G0 uy = 3 | - MV of debt, pref & other oblgations % 2
FUFCEE) E O I i (1] N =g L e
Terminal Yalue 205012 -
NOPAT 4378 = Equity value 994, 2.799)
Terminal Valoe 51021 .
r e o + Shares Qutstanding %5
PV(Terminal Valug) 1370 =
E = Equity value/ share 3564
=
icit peri i i 2 i 37.95
FIGURE 6.1, Explicit period, fade period, and terminal value for CAKE, Current price / share \
6%
Under / (over) valued %

* RIC fade: RIC is exponentially faded at 10% each year from 13.8%to
WACC 8.4%. This results in a RIC of 13.2% for 2011.

» NOPAT in 2011: NOPAT for the year 2011 is based on 2010 NOPAT

and 2010 ANOA and the 2011 RIC from the preceding step. We
have

FIGURE 6.12. Valuation summary for CAKE.

to reinvest in its business operations. Thus, ANOA is expemdto-:
0 for years beyond 2050, and NOPAT is equal to FCFF. Tﬂmm.-_
value is $52,021 million ($4,378 million divided by 8.4%). Fm;alg;& ‘

terminal value of $52,021 million is discounted back to today and is

NOPAT,q, =NOPAT;,, + ANOPAT,, worth $1,370 million.

=NOPAT g, + (ANOA 31 X RIC 1) 6.6.4  Valuation Summary

Based on the DCF calculation of operating w' Flsumj:'l’iuwﬁiﬂ.(w
detailed valuation components for CAKE. Setting Shr fnbuliﬂﬂs from each
otal firm value) to 100%, we can break down ‘h’.@iﬂm Figure 612, the
Valuation component in percentage extes Am:-rdi:sﬁuf the enterprise
OPerating value is the biggest slice, #Cﬂﬂ'f“nﬂs ur spect is the
Value; within the operating value, CAKE A value. Inall, asof the
h'giﬂt‘St contributor, delivering 62% Ofthe..cncti?'ﬁs'e is fairly priced by ﬂ“

%€ we conducted this valuation an s analysisof
Market at a small premium of 6%. Based on this mostly dﬂl’“'d‘ﬂ .
Ponents, it is clear that the intrinsic valie O : g
on jig futur.e gromh rate. As seen from thEtlm' !

.dlt.i"“al Capital infusion to ﬂq"“‘d i far

1 s Emwth,AsamuthmuW ks

=217 +(327-13.2%) = 260 '

» Growth fade: The growth rate in 2011 is calculated as (NOP’.*T':;’
NOPAszn =1), which equals 20%, It is then exponentiﬂul' '
10% each year to the long-term risk-free rate of 4.2%. P

« ANOA est.l'matiun: Because ANOA is defined as the rgqui'l'td Hk
vestment in order to achieve next year's NOPAT growth 8%
estimated by NOPAT, X(8us1 [RIC,,)

= (L R ﬁﬂlﬂ“
'ﬂgﬁl

: ﬁrmfnnl'. value: Lastly, the terminal value is a perpetual ﬂlu;rﬂ‘"
@ firm with no growth. Specifically, CAKE is expected 10
$4378 million of NOP

level AT in 2050, and its NOPAT will &y
evel in years beyond 2050, as well, Because CAKE is 10* ,ﬂ#"
achieve any NOPAT growth after year 2050, it is als0 70 < iiﬂ
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turns positive after more than 10 years. S]'Il-lLlid.]l[ deviate from
forecast of 20.8%, CAK E's relative prenmmjfdiscount from
stock price will change as well, pert.mps.l significantly so.

This example therefore also highlights the sensitivity of .
analysis to the underlying growth assumptions. We shall noy i
multlipalh sensitivity analysis to firm valuation and devise Various
obtain the standard error of fair value.

th! iy
its CUrry,

Ways iy

6.7 MULTIPATH DISCOUNTED CASH FLOW ANALYsis

So far, our discussion has focused on how to model them
such as RIC or growth rate, as DCF inputs to forecast a company’s cash flg
and to determine its enterprise value (EV). In reality, ex post mliMd
these drivers are subject to many exogenous influences. For example, differ
ent economic environments, boom or bust, would influence the expect
growth rate of a particular company and subsequently result in a diffe-
ent EV estimation. The same argument is true for the forecasts of a firmi
profitability and scalability, which jointly determine the RIC forecast, This
highlights the stochastic nature of DCF analysis, in which FCFF is new
certain, Using one single set of DCF inputs to determine EV is inadequitt
at least and erroneous at worst. This is similar to the dilemma of valuisg
morigage-backed-securities (MBS), whose cash flow is uncertain due D
the prepayment option of homeowners and its sensitivity to changes 'ﬂ“i’f
interest rate. In the DCF analysis, FCFF depends more on managements
execution of the business plan, and the outcome can be pmbabiﬁﬁtiﬁw
fore, a probabilistic approach to the firm valuations is warranted.
competent analysts model the future as a set of possible outcomes
probability distribution to quantify the likelihood of each scenario. i
Similar to MBS valuation, we shall use Monte Carlo sim

determine a distribution of EVs in a two-step process.

°

* Model inputs as random variables: Similar to a scenario ﬂﬁﬁ
parametric or nonparametric statistical techniques can - HIP thi
to df.-lr:rmine the joint probability distribution of DCF inputs-
section, we use a multivariate normal distribution. st

. Mﬂ{ntt Carlo simulation: We simulate DCF inputs bgsedﬂﬂ ME‘:P“”J
butionand then derive an arrayof EV for all possible scenarios:

1o 1
EV then becomes a probability weighted average. Itis imp"“f"twpﬂ

th_"" the expected EV no longer represents a particular scenan®
itis an unbiased forecast incorporating all possible outcomes:

T
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we will start with the sensitivity analysis that hel
rant DCF inputs. Inputs with high sensitivity ought
more <are We then show how to conduct a multi
flow (MDCF) analysis through Monte Carlo simu

qruct a set of new valuation analytics i-ﬂl:ﬂrl'-"ﬂmﬁng statistical measares
(to be viewed in conjunction with the valuation upside) and discuss the;

relevance to investment decision making. We shall continue to use CAKE
45 an example.

Pﬂoﬁrm'ifnmpo.-.
1o be forecasted with
Path discounted caqh

671 Sensitivity Analysis

The aim of sensitivity is to determine how much fair value changes given
changes in the underlying inputs. Furins!an:c,furlhcﬂhmahl‘mwy,
Inc., an investment manager would ask, “ls CAKE an attractive invest-
ment if it were to deliver an 8% NOPAT margin instead of 7.3% (from the
original forecast)? How sensitive is CAKE's valuation upside to different
NOPAT margin inputs?”

Mathematically, if the valuation is a linear function of the input, we
need to consider the first derivative (or slope) of valuation with respect to
the input. On the other hand, if the function is nonlinear, we also need to
at least consider the second derivative (or curvature). This is entirely anal-
0gous to the concept of duration/convexity in bond mh‘i’mdﬁz
gamma in option analysis. We shall in fact use delta/gamma for the

and second derivatives.
. ] resent the corre-
Jse g icular DCF input and Uto rep :
Use x to represent a particular pu -+ case for the DCF input,

sponding valuation upside. Suppose x, is the i
and [T[-.'l',,J is the valuation upside. We can th :
* Ax and compute the resulting valuation upside Ut%®
tWo sensitivity measures are
U[x.,+-'-"-"}‘U{x“-h}
defta=————3—

©17)

U[:r.,+.-lx)+U[xﬁ-5x)-ZU %)
T [Ax]l

! In term of graphical intert:lm“io“s‘_m
\:‘EE"CY line passing through the base €4
e A positive delta indicates that

ng: nltcrna[i\.ﬂy‘ it means that valuation
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 increases. A positive gamma indicates a convex curve, apg ,

gamma indicales a concave curve. A convex curve is more hcnlﬁci;d I_EL—-—"_'_'_ —
investors when compared to a concave curve. When a curye is cg . WOE — =
the magnitude of the changein upside is greater when the input "'aluth _T___h_'_'_““———
up than when it goes down. 00 I _nng'
o
6.7.2 CAKE as an Example 10,07 r ! op_n""
In the preceding section, we discussed the base case of CAKFEs é - ﬂﬂunﬂnn . __,n"ouw
analysis. Figure 6.13 shows a graphical illustration of CAKE's sensitis; E:.' |[ Bang o
analysis. Panel A contains inputs variables related to profitability; pang llpmses | o] h““luu
B and panel C relate to scalability and WACC, respectively. Among 4] | - oo | W
inputs, valuation upside is most sensitive to changes in WACC, followed | ) nﬂoﬂ'o 1
by EBITDA, depreciation, and growth rate. CAKE's valuation outcomeis 3" c |
least sensitive to changes in the tax rate, working capital, and ICAPEX. Iy = e e oM B E Rt
terms of the curvature, WACC is again the most pronounced one. w o F g S RESE R
Figure 6.14 shows delta, gamma, and valuation upsides of CAKE unde | Ry ch.'usm:]
different scenarios. As expected, the WACC's delta is the largest followed
by EBITDA, depreciation, and growth — confirming previous graphicil
observation. Deltas of incremental capital expenditures, working capial
change, and tax rate are relatively small and inconsequential. For exampie @
a) Fu
i % |
S0% |\ —
0% e —— —— il ) ; | &
= ola—
= p =
E X% | 1 'm:_r 304 b 2=m1| hh\i e
¥, N T = loox, | | =iip _____,__-—————'——'__'_“__d
% L T |
10w L oo
-
EEEEREEEET s ¢ 28888800
@M =P _D_M
FIGURE 6.13. Sensitivity of DCF inputs: (a) profitability ratios. (b) 'aw HGU“ 6.3, (continued)

ity ratios, and (c) WACC.,
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o " s ) 2301 (A 1148, R
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Tax's 9 12 I8 N (1 Ll “:
Growth 49 a3 5 T
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FIGURE 6.14. Delta and gamma of DCF inputs.

a 1% change in WACC (i.e., from 8.4 to 9.4%) results in a 27% Chﬂnitin
valuation upside (i.e., from —6% to —33%), whereas a 1% change in thety
rate induces only about a 3% change in upside. In other words, a changeis
the WACC is ten times more influential than a change in the taxrate ofthe
same amount. Gammas for most inputs are inconsequential — meanisg
curves are fairly linear — except for WACC. It is also interesting 1o no
that all gammas are positive.

Delta and gamma can be used to approximate the new valuation upsi
given a change in the input from the base case. This is a useful tool to gats#
the upside of a new scenario without going through a full DCF analysi
Based on a Taylor expansion, we have

U(xy+Ax)=U(x, )+delta- Ax+ % gamma-[i‘axr .

6.8 MULTIPATH DCF ANALYSIS (MDCF) ~~_—=
T]-.Lt' sensitivity analysis can test the robustness of the firm ﬂluﬂi
ation. But it does not provide a distribution of possible oulﬁﬂm‘f
M[}CF_ approach provides that distribution by simulating w{ﬁ
?Cfurdmg 10 anappropriate distribution and then computing <@ CIFC" -
ing firm values. As a result, MDCF not only properly gauges e il
firm valuation, or valuation upside when compared to the m‘rk;tﬁﬁ""
b: talso provides a standard error estimate that can be used © &5
the }::tlf:sﬁzc: :‘1; a paf'tir.lular_DCF valuation. A iy ,uﬁﬁ\"
Y. companies in high-growth, competitive industri gt
ten.:hnnlugy, would exhibit larger standard errors reflecting #ﬂﬂ" #
tainly of these firms' future cash flows, when compared wibS #
low-growth, stable industries, such as utilities. This “:';
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.| about firms that are more transparent i i
he sall Lin their .
Feparting practice

vs. those that are m_urr: opaque. For investment managers, quantitati
Lol fundamental alike, an accurate standard error estimate i;qu:;t!m
| vestment SUCCess, because portfolios should be formed on mofbml;
return and risk. This risk/return trade-off might be apparent 1o quantita-
jve managers; it is not so for fundamental analysts, many of whom stil]
I single-path DCF approach and recommend the buy highest upside
stocks, an action that subjects their portfolios to higher volatility due to
greater forecast errors. For example, high valuation upside may be an arti-
fact of high forecast error. In contrast, we advocate using standard error
in conjunction with expected valuation upside to derive an error-adjusted
upside that is better suited for active valuation investing,

6.8.1 Modeling DCF Inputs as Random Variables

We first model DCF inputs as random variables that are normally dis-
tributed, parameterized by both the mean and the covariance matrix. We
continue to use CAKE as an example and model the EBITDA margin and
growth rate as the only two random variables by holding all other inputs
as constants. We select these two inputs because valuation upside is most
sensitive to these two company-specific inputs, as shown in the previous
section,

Panel A of Figure 6,15 shows CAKE's EBITDA margin and growth rate
through time, including forward-looking [BES forecasts. A Wm
matrix is modeled using an exponential weighting ache, s
more emphases on IBES forward information and less weight on the po¥”
tion of history that are more distant from today. We m‘-dm'v ral:l
0f 15% to construct the covariance estimate as shown in EQUates &li.l“:
accommodate a reasonable starting point, we set 4, and o, fo the e B of
Weighted mean and standard deviation of the whole o ﬂnnisi'.
fiSUr: 6.15 shows the covariance matrix estimate sad m{;ﬂﬂ the
:::diq'.mion 6.20. @ is the decay rﬂllﬁ- B “‘"“ L g
tion ”C! deviation estimate for each time Pcm{lti.m'.‘ 3

of either growth rate or EBITDA margin at :

p‘i_r=u' ‘:+{l—u}'m-ﬁ.'

o7, = ou(fy =ty P HO= O T
-}, i B

SO S T

_ﬁ
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(al
: : CHITINA) | sidiGrawen
Datr Sabis EBITDA: Lr.mullh wid(F EIII i h rm\\
il e :j‘ l.' I1 1,358% ::UI‘I" I\I‘II:;'&Q
) 2 I R T4 17 LR T L . 4
fizx.':f 118163 ER.LL] 21.91% | u 4 I"S:. ‘::im
12771604 958 23 13.70% I5.25% i *4"- [T ‘-——E?h_:\
1272003 TR 1430 1R53% $A9 5400 s o]
122002 64197 14.28% 20.93% !.fh:- ST, _t;ﬁh
122001 51913 13:52% 23.01% L% 4.90% -mu's
1272000 43828 13.65% 26.13% 160 4 Ky 'EUW:‘
1271999 T AR 12.02% 11.02% 1.67% 5.1R% ‘“-m:
111998 265322 i G0 27.15% |EI% 55T 250,
121947 208 59 0% 0, 12% | e_w-. 5 G, il.-m,
121996 160,31 12164 16 82% L 32% .49% T
(RO LLE s L181% 36800 1.34%% 6.271%, 31I_'H,-
1271954 £5.59 14.66% 27.69% 1.45% 5 64% 41!9..-;
11193 67,03 13.60% 1.50%% (% e
—2a |
)]

Growth EBITDAY,
Growth 0.002224 0,004 04
EBITDA%: <0, OO0 04 0.0001 64

FIGURE 6.15. Stochastic modeling of DCF inputs: (a) time-series data and
(b) covariance estimate,

Panel A reveals three interesting operating characteristics of CAKES
business,

« Negative correlation between margin and growth: CAKE's profi
ability is significantly negatively correlated with its growth it
As CAKE's business started to mature, it delivered higher EBITDA
margin with lower revenue growth. For example, between 1994 ané
1997, CAKE's sales expanded at an annualized rate of 32% and deli®
ered 12.7% EBITDA margin on average. In contrast, between
and 2007, CAKE's sales growth is expected to slow down to 2014
per annum with its EBITDA margin increasing to 14.9%.

* Growth rate is more volatile than EBITDA margin: This pher®

enon is generally true for most firms. Company manage™

rate budgeting process and internal expense control, than its &%

growth, which has many exogenous influences such as ©
preference or the econ omy,

l()pera!ing risk decreases as CAKE's business matures:
ity of CAKE's EBITDA margin and growth rate has d‘:ﬁﬁ
y true

nificantly over its history. This phenomenon is also typi¢
most successful firms,

more control over the EBITDA margin, through the usé of corP®

'rbe""hz
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"
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W
ST " I ey ™
z i - .T N i L oy ™ l‘; —— ::
E e N -|l 1 ™ e It'.-.- - © N ™
= e ™ M P s, bt T
m

Growth Rate 1 E E 5 .-

FIGURE 6,16, Monte Carlo simulation of valuation upside: (a) table and (b}
graph.

682 Monte Carlo Simulation

In this illustration, Monte Carlo simulation is condu : -
Ously varying both EBITDA margin and growth rate, cmgiwn‘;
Sible Scenarios. Figure 6.16 shows CAKE's valuation l:ml'ﬁlﬂﬁ to
*enario; Figure 6,17 shows the probability Gl highlighted
the bivariate normal distribution. Starting fm.m e bﬁ::. i1 possible
¥ @ gray.shaded background in Panel A of bol‘-hrm“” increasing and
:ﬂ Ues are selected for each DCF input by symmﬂmdﬂd '
“CTeasing the base case input by one half of a s derived from the

;Ilm: Panel A of Figure 6.16 tabulates Wluafhﬁnd“w th rate, and Fl“d
ferent combinations of EBITDA mafslm':l'w iflustrate the changes if

o Figure 6,16 uses a surface graph to vi

cted by simultane-
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FIGURE 6.17. Probability distribution (bivariate normal): (a) table and
graph,

upside. Panel A of Figure 6,17 presents a discrete form of the ivariate 1%

mal probability distribution, and Panel B illustrates it gnphicauf-‘
the following;

the
* The base case scenario produces a negative 6% upside, which 8
same as shown in Figure 6.12; the probability of the base ﬂﬂl.’u
nario is 5,3%, given the covariance estimate shown in Figu®

* The best scenario is when both the EBITDA margin and _B ,;u"’l

are the highest, delivering a 2479% upside. Similarly, the worst

Valuation Tec hnitues ane Value Creation g
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when both inputs are the lowest, producin
ever, hoth scenarios are extremely unlikely 1
ahilities are close Lo zero. The near
extreme values of both inputs, b
between the growth and margin,

B 2 68% downside. How.
0 happ-en.anmhcirpmb-
“2ero probability is due to not only
ut also to the negative correlation
| If the correlation were significam}

positive, probabilities of these extreme cases would have been mm-:

likely. This highlights the importance of the correlation matrix in
MDCF analysis, which further captures each firm's unique competi-

tive environment by incorporating the dynamics among DCF inputs,

Figure 6.18 gra phically displays nthcrinter:sting DCF analyticsacross
all likely scenarios. As shown in Panel A, CAKE needs to borrow cish to
finance its growth and its FCF margin would turn positive when it were
to slow down revenue expansion and maintain higher EBITDA margin.
Panel B reveals that CAKE'S ecanomic value creation is directly linked
to the level of EBITDA margin. This is somewhat artificial by construc-
tian, as we hold scalability a constant in this set of Monte Carlo simula-
tions. Interested readers can include scalability as an additional random
variable in the construction of simulated scenarios. Lastly, the amount
of operating value, coming from growth opportunities, is jointly deter-
mined by both the EBITDA margin and growth rate, It is the highest
when both inputs are at their peaks,

6.8.3  Analytical Results of MDCF
MDCF provides a new set of analytics that are better suited f"'i aCeive
security selection by incorporating forecast errors. For exarnplef inftod
ofinvesting in stocks with positive expected valuation upside, “fw.:mm-
3gers should select underpriced stocks with small standard deviations of
upside, Sj milarly, active managers should underweight ﬂw"lu.ed i
With small forecast errors. This suggests a ratio of expected g
*tandard deviation as an alternative value measure.
. The following formulas show the construction of
“lated with valuation upside, denoted by U,

= ih ]
0= ' ad(U)=\| ) px =1
z”- aly/ (6.20)

MDCE analytics asso-

& =
HUy=——_ u>0)= P
! std(Lr)’ ik mzﬂ
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FIGURE 6.18. Other DCF analytics: (2) Y1 free cash flow mgrglﬂ |

Sales), (b) FY1 economic value added (EVA = RIC ~ WACC): lnd[dw
centage of operating value from growth.
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1736%
1533% X
{

13.31% N

EBITDAY

11.28%

13.53%
15.94%
18.36%

FIGURE 6.18. (continued)

Figure 6.19 shows these measures for CAKE, along with ather statis-
tics. Comparing the expected valuation downside (=7%) with the forecast
error of 19.6%, CAKE's overpricing is not significant witha t-stat u.f -0'3'
That is, CAKE's valuation could easily become an upside, should its busi-
ness fundamental improve from the current forecast. :

More '1'|1'-'i'3r'-'aliun.-:FI can be obtained from the MDCF analysis. Fi“:;
CAKE is likely to engage in external financing in F‘l'!. in ﬂl'd;f to W-“::d
it5 sales expansion, The pmbnbility of having enough internally f _.
cash in FY1 is only 12.8%. Second, without a doubt, CAKE < thpfis
tive shareholder value (where RIC > WACC) —3 quality ?:P;fgabﬂm
“Xpected to generate excess returns for its shareholders. 'ei.ﬁt]?’ i
of having 5 positive value creation is 99.9% — near F:rtmnt}r. sl
Statisticg reconfirms that future growth oppnrtuml’!l' P]‘fimrccmisf‘?f
fole in determining CAKE's operating value. The “P“sla.‘f of the time
upe”““g value coming from growth is 59.6%; ?mt ting value.
Browth Will account for more than half of C-‘\Kss.ﬂw:iﬁ::ﬂqﬂiﬁmgm*

Hi.h':d on the aforementioned analysis. CAKE s 2 iti

i wth
"8 firm, which derives mugch of its firm value from g1
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[Percent Upside
E(%s Upside) ———_.J,%
STD{% Upside) 19.6%
1% Upside) 034
Upsitle Probabiliry 33.8%
Downside Probabulity 6.0%
FCF Margin (FCFF/Sales)
E{FCFF Sales) -3.7%
Prob{ FCFF/Sales > U) 12.8%
Economic Value Added
E(EVA) 5.3%
Prob{EWVA > ) 99.9%,
Operating Value
E(% from Existing Bus): 37.4%
E("& from Growth}: 59.6%
Prob(%u from Existing Bus > 50%) 88.4%

FIGURE 6.19. Multipath DCF analytics.

CAKE would require external financing in FY1 and beyond, in order oo
sustain its business expansion. It is currently slightly overpriced. Howeve,
if its business economics remain strong, this overpricing could quicky
turn into underpricing. As such, CAKE's investment appeal should notbe
rejected simply based on the current overpricing alone.

6.9 SUMMARY

Discovering attractive investment opportunities takes two different form
— one stemming from arbitraging behavioral inefficiencies and the otbe
built on rational economic forecast. Valuation techniques bdﬂﬂE"'d’
latter and model a firm'’s intrinsic value based on many normative assum
tions: rationality, perpetuity, going concern, mean reversion, ar the

ity of CAPM. Valuation analysis is a technique that helps active mande®?

to better understand the business economics of a firm from the i
perspectives,

« What is the business model and what are the oM
advantages?

of
* What are the set of value drivers and how does competitior
them?

N cin®
» How sensitive is each DCF input and how does 3 change =
input affects valuation outcome?

* What is the standard error of valuation upside and what 855

tical confidence of having a positive upside?

Valuation Technigues and Valye Creatin
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Although a one-path, one-life DCP analysis provide 4
the firm value, it _‘5"' lﬂiidquua[e. often mﬂectingpn?e:cu:;:;mmﬂim of
ple erroneous belief of a single analyst. Instead, the multj ht and pogsi.
cash flow (MDCF) analysis should be used path discounted

: : to properly accoun fo
ible scenarios and their probabilities, The dictrit 1 s
pJ.tLI:-I} » the distribution of upside esti.

mation from such analysis should provide more robust infiormati for
ion

achive Mmanagers.

PROBLEMS

6.1 Derive formula in Equation 6.2 with the following assumptions: (1)

WACC is the discount rate, (2) g is the perpetual growth rate of FCF
and (3] FCFFE, is the free cash flow to the firm a1 year 0. :

6.2 Given Equation 6.4, show that the change in the ratio of value from
growth opportunities to the total operating value is given by

&[swﬂlHH_l_]Jj_l
ov WACC (1 )

A[ grth:__L A{wacc)
ov l+g (WACC]I

(6.21)

6.3 Prove that the book value equals the present value of futurecash flows.
when discount rate equals expected rate of return on investment.

54 Derive the firm operating value of (6.13).

85 One way of estimating required capital expen.dimre is to cus::;
late historical capital expenditures (CAPEX,{ ‘."'“h ’;:“;MS e
Increase (ASales, ) directly. However, the stability of suc d"“;“
mation of CAPEX/ASales is poor, because _135"]“ is typia N
through time, Alternatively, it can be estimated as follows. Dervve

the formula below:

| PPE
CAPEX DA ), -'-+5(1-*)-
E(m]”ﬁ[salﬁ} RS
mortaaton. g s the growth Fte
t, and equipment-

Where DA s depreciation and @
Sales, and nPPE is net property, plan
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6.6 Repeat MDCF analysis of the Cheesecake Factory, [nc. s
scalability ratio as an additional random variable. Miclyg,
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ENDNOTES =

" 1 The assumption of no growth simplifies the u:nnm
ues. Should one assume that a irm grows at the risk-free rate perpet -
the terminal period, one also needs to estimate the scalabilit talre

: ¥ ratio in
terminal period to compute the expected reinvestment rate each year
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Multifactor

Alpha Models

— _‘__

n Chapter 4 (see also Qian & Hua 2004), we presented an analytic frame-
Iwork to evaluate individual alpha factors based on the risk-adjusted
information coefficient (IC). The ratio of average IC to the standard devia-
tion of IC serves as a proxy for the information ratio (IR) of active strate-
gies that employ the alpha factors. We then devoted the next two chapters
to the examination of several alpha factors on an individual basis. In
practice, alpha models almost always employ multiple factors instead of
a single one. So then, the question naturally arises: how to blend these
factors optimally into a composite alpha modef? The combination of these
factors is not restricted to quantitative factors. For instance, some invest:
ment firms conduct both fundamental and quantitative resnrches: How
to combine them into a single forecasting process, in terms of ranking or
scores, presents a similar challenge. :

In this chapter, we extend the analytic l'rammi'k to denve‘factt]l;
Weights in a multifactor alpha model. Our objective is to maximize _
IR of the multifactor model. The approach is similar to a ma:n-\r:r:;‘:
OPlimization. The difference is that we now replace a me cg f1C
With a portfolio of factors. Thus, average ICand standard' dgv_mtiun of

|, risk-neutral factor

fesemble the ex d risk of dollar neutrd
pected return and i _ : factat
Portfolios. I addition, correlations between ICs of different poLs

; ; : benefits. It
iol."m also play an essential role in delivering the dl"‘;'ﬂ:ﬁ:ih?m“ the
*IMportant to note that the correlation between ICsis i

" rrelation of returns
“Orrelatjon between factor scores. The former 1S the cort =
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to factor portfolios across time, ‘-*-'hﬂl'fi‘f the k‘:“*"’ is the crogs.
correlation of factor scores at a given time. We will show gha:;hﬂi
celations among ICs play a crucial role in determining the Optima| i
2 o werghrﬁ. whereas correlations among factor scoreg Ph}'a “ﬂh
role. Theoretically, it is tempting to assume that the two are idemhl.l.'
empirical evidence seems to prove the SOOI

This chapter consists of four sections. In the first section, we deriye
analytical expression of the composite IC of a multifactor alpha model
a single period. We define a multifactor model as one that lineadym
bines scores of individual alpha factors to create a composite fﬂmr.auﬁ;_.
a composite score), and a composite IC is the IC of the composite sge
The efficacy (or the expected performance) of a multifactor alpha medt
hecomes the IR of its single-period ICs through time. A similar approac
is illustrated in Chapter 4. In the second section, the analytical expres
sion of a composite IR is derived with the assumption that cross-sections
factor-score correlations do not change over time. This time invans
assumption makes analytical derivations tractable, so we can solve forth
optimal model weighting that achieves the highest IR of the compoii
torecast. In the third section, we discuss the important difference betwes
cross-sectional factor score correlation and time-series IC correlation &
the context of multifactor model building. We also suggest a practic
procedure to deal with the time variability of factor-score correlatiost
In the last section, we examine the statistical linkage between our
optimization framework and the Fama-MacBeth regression ]
Specifically, we provide cautionary notes to practitioners who would i

to apply a Fama-MacBeth-like regression framework to derive .
model weights,

71 SINGLE-PERIOD COMPOSITE IC

OF A MULTIFACTOR MODEL o
As in Chapter 4, we will first consider a single-period excess mdi
m.m"r“‘” rmodel, which s alinear combination of M factors E’Pﬂ
with the weight vector v =[-,-,I_|,.1’..,'I"“l1 J‘ . The weight vector, 0n€€= 5
ihiu remain constant over time, To put it differently, we are ﬂ g
optimal weighting of a constan linear multifactor model. There 8% #'

complex alpha models that could be nonlinear and/or dynami _w: =
cover them in later chapters, L

To link model performance 1o realistic portfolio impkm‘"ﬁ"'a
assume all factors are risk-adjusted according to the anal}’“"l "
g

i

_—-‘
Multifactor Alpha Modet; o -

jII_,_;r-,m-L:' in Chapter 4. Therefore, the composite risk-adjusted ,
factor s

ation:
linear combinatio

M
F =ZVJF, ;

The composite will also be risk-adjusted in the sense that the associated
active p"-.'tfr;liu will be neutral to all risk factors and is mean-variance
optimal. Now we treat the composite factor F. as a single factor and use
the analytic framework presented in Chapter 4.

Recall from Chapter 4 that the single-period excess return of an alphs
factor is expressed as a function of the covariance between the factor and
the risk-adjusted return. To clarify the notation, F, represents the risk-
adjusted composite factor available at the beginning of period ¢, whereas
R is the risk-adjusted return during period L.

{71)

_(~¥-1)
o, =< T

cov(E, R, )
! {7.2)

= L"‘l;:—lla:m'fr(!{.;.ll, Jdis(E, JdisiR.)

{ ]

risk-adjusted return:

cuv(F‘ R ]:m\-{ipju.n' ]:iy'm\"ﬁpn,)

= 73

::i:i v,fC.;dB( F, ]Jd’uﬂ,}

=

In the second line of the prﬂfdmﬂm

::"'afianl:us in terms of [Cs and dispersions. Mm.ﬂgmw&
tnat the tisk-aversion parameter is ﬂ]-‘l’"“d m in the case of &
“ould have a targeted tracking erroF. The

c »
Mpogire alpha factor is
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JN-1dis(E,)
y R s

O el t.'.g

 §

The dispersion of the composite factor depends on the mode wei
cross-sectional covariances among different factor score

Bhts ang
8- Denoting i

cross-sectional covariance between two Eal]g_‘trﬂf-“ t:_\' 3.;‘.: ‘-”C“"’[F. ,.F"] nd
- Ar R T am 1% ' = K the & s

the factor covariance matrix by @ (‘D.,, Lt 1€ diSpersion of the e

posite is given by

dis(f{,)=\/;"dﬁ,v : 3

Substituting Equation 7.5, Equation 7.4, and Equation 7.3 into Equation
7.2 yields

a,=1C NN-lo,,.dis(R,). (78
Further,

M

D vic, dis(E, )

f{.‘,_,=cnrr(FmRI}=._"-I. M
J\r'di,v

Equation 7.6 provides the excess return of a multifactor ﬂ_lphg maiH'l

15 essentially of the same form as in the single-factor case, except ﬁgﬂlﬂ
IC 15 that

; _ of 3 composite factor given in (7.7) instead of a single one.

""'"n:‘“ﬂe IC is a linear combination of individual factor 1C8 and P

weights are factor weight v times the ratio of individual fa ctordl-i?"‘- %
& vidua

to composite factor dis ; MAtio el iugivic e

persion. Among the four terms in (7.6), the
ber of stocks, the tar . B -uﬂ“"i
' get trackin . « 0 of risks
returns have either litt] g error, and the dispersion .

ol 85

€ OF No time-series variation, $0 W€ N

that. they are constant throughout the remainder of the chapm_-ww

E’:SI:EC; on the other hand, has many time-varying componen'® g

diE 1Cs.of the underlying alpha factors IC,,, their €rOS*™"
i dls(l:‘-r) «and their covariance matrix @, .

Multifactor Alpha Models o

Example 7.1
guppose we have two factors K, and F,.
gis( ) =" and d"s[F! 1:115 » and the factor
¢ covariance matrix is

&= 1 0.5-1-05 (1 02
05-1:05 05 J (025 25/

h‘.ﬂpp(lﬁl_‘ we t?ql.lﬂ”)' Wl’-'.lghl these two ﬁlClUTS', the dlspﬂﬁiﬂn of the com-
posite factor is

-l ofly (3

In a given period, we have
correlation is 0.5, Then the

lacto

0.25 025)\05

= 0.5 +0.25.0.5 +2:0.25:05" =066

Example 7.2
Suppose that, in the given period, the ICs of factor 1 and fe!rctor 2are0.15
and 0.20, respectively. Then the IC of the composite factor is

M
wIC, dis( F i
Ic :,-;_ ’ ( ”)=0'5'0'15*1+u‘5'0'20'0-'3=10.11+0.03=ﬂ-19-
Jv'@v 0.66

[}

IE this case, the composite IC is greater than the IC of factor § i
than that of factor 2. compos
The previous examples illustrate the relationship bet* .P:h;of ﬂPﬂﬂ:z
IC and individual ICs for a single period. The majof hich depends
alpha modelj ng is to maximize the IR over multiple ngiods r‘:ﬂC Itseems
"otonly on the average 1C but also on Th'm“d“dmm mis:h!“‘m
highly unlikely that there exists a full analytic solution for €4 quadratic
r? that maximizes the IR based on (7.6) because ;:Ppﬂn i
lmn.l in the denominator, There are several possi and another involves
15 problem. One involves analytical mﬂﬁ;a We shall start with
ll:"sf‘_"mﬂliun of alpha fnﬂgrs'inmoﬂhoﬂm'l ﬁ;nallﬁm to be constant
h "Wtical approximation by sssuming wﬂzwmw ‘?

5 TOugh time. Factor orthogonalization and ..
SR 7
. I“I'.‘-"f '

discussed in the second half of this chapte®:
- o
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ALPHA MODEL:
i~ fﬂﬂiimm DERIVATION
In this section, we derive an ana[)’tic_a_l exprf:ssiun of the Optima]
weighting that achieves the highest intormation ratio, under the Mody
tion that the factor covariance matrix st.a‘;s unchanged over time, vy Fa
explore how factor standardization affects the IC of a c“mposizgf:
Then, the analytical expression of IR is derived for a composite i
tor alpha model, linking the composite IR to the time-serieg Dr]Csof]fk-
individual alpha factor. Based on this expression Uf‘:ﬂmpﬂsitem,m
analytically for the optimal model weighting that achieves the
composite IR. In this derivation, we assume that model weighting s )y,
time invariant. Lastly, we provide a brief discussion of why Maximizig
the single-period IC of a composite model does not achieve optimality

721 Factor Standardization

If we assume that the factor covariance matrix is time invariant, the
composite IC becomes a constant linear combination of model weights
and individual ICs. To simplify things further, we standardize all indi-
vidual factors such that their dispersion is always unity over time, i&,
d'is[_Fu): 1, forall i,t. It is common to standardize all factors in practit
and there are several potential benefits for doing so. First, it “equalizes’
the contribution of individual factors to the overall model for a_gi‘»‘!ﬂﬂ""lr
model weights. Second, it immunizes the composite model from changet
in the dispersions of the factors, thus reducing portfolio turnuveﬁﬂ”‘i_'
ated with such changes. More importantly, there is little direct empiri

evidence indicating that such turnover adds value. Note the following

* Standardizing individual factors before combining them into 3
fllpha model amounts to rescaling the model weights putting
in the same units for comparison, Moreover, as the disp:ﬁ'?_‘“-
factors change over time, the rescaling weights are also thnﬂﬂ“’

In other words, standardizing factors actually leads to implicit 8%
varying alpha models,

Example 7.3 o
s ) Example 7.1, whose original d " ol

€ given period is 0.5, by multiplying it by 2, The first factor !L-d{ﬁ'-
standardized. Suppose we still equally weight the two sund”dm
tors; the effective weights on the original factors are 1/3and 2/% 55

We will standardize factor 2in

Multifactor Alpha Mot ¥ i

that during the next period, the dis

lso : Persion of fact
1,hu,caa the dispersion of factor 2 changes to 1, We wu:;; _ton,s,
factor 1 by duubling it while |Eﬂ.\|’ing factor 2 untouc a"‘hﬂim:

i hed. In this peri
equally weighted model of the standardized factor woulq i‘r:;:ﬁmd.m
e weight of 2/3 and 1/3 on the original factors. Sk

I . .
with factor standardization, the composite IC for time ¢ s

® 1 i 1y
i ] V,ICJ=— i e
Jvoy & rgll" G 74)

The covariance matrix @ reduces to the correlation matrix of factors
because all factors are standardized. The composite the IC can be seen asa
linear combination of the ICs of the underlying factors scaled by a constant
1, which is the dispersion of the composite factor (7.5). Another important
feature of Equation 7.8 is that the composite IC remains unchanged if the
factor weights are all scaled by the same constant.

7.2.2 IR of the Composite IC

We now calculate the expected IC and the standard deviation of IC to
obtain the IR, We start with a two-factor example.

Example 7.4
If there are two factors, then we have

IC,;=

1
< [v,IC,_,+v]ICu)=;{v,IC,_,+v,I'C1,]. (7.9)
vll + v;‘ +2v, VP :

The correlation between the two factors is P -“hi‘h'im.um . B
posite IC is a linear

assumed to be constant over time. The expected com
combination of individual ICs is

uf} = == (710)
IC. = '—i_-(v, IC, """:IG‘) ;
3nd the standard deviation of the IC 8
s[d(,f{':{)"_- %ﬂd(ﬁfq; +VIIC”] {7.11]

VoL, +1i0k, + 2HViPar R RS

]

| -
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= stween the two lactors is denote
The IC correlation btl-“t_L“ he d'- The “'[ij b _p“ﬁ?"hdm
standard deviations of ICs are @, and G, . The IR, in thijg Case the

of average IC 1o the standard deviation of 1C, is Tt
("| [C)+v, I(,'_J
IR = S .
VYO, +Vi0, + AT o TN e 1y

For a general model with M factors, we can denote the average |t
by a vector ]C={H,'.Jt.'_:.---.H.;.- . and the IC covariances by matry
M AL
Z,.=p,c) . Then the average and standard deviation of a compogie
el 15|

IC are

g 1% |
1€ = vIC,=—v"-1C
EZ - T

r o

MM
std(IC, )= LJZZ PO O, = i,,‘\r'.}:;,..v

iml ]

and the IR is

X
5]

Zm{, IC, .

IR - = " _ VG (M
. f“ o - Jv'-E,,_ v
Jzzv'hpu HGMIUIr._

b=l )

A e dispersion of the composite fa¢ cﬂl‘f'l“
spends on Cross-sectional factor-score correlations — has

cort®

dlf"PPEd out of the IR equation, However, the time-series ICM :
tions remain, and the | correlation matrix determines the #55

deviation of composite [C over time, and thus its active I

723 Optimal Mo Weights

g (¥
::,'c;" el ﬁ‘_“d the optimal madel weights that maximize :IIBL‘#-
the composite alpha factor, We note that IR in (7.14) '

* Thescale constant 1 —th

o

T —

Multifise g Alpha Modety 3

sss-sectit mal factor-score correlation matriy is a
CrossT

; canstant through g
e i 66 although the IR optimization probl e

. €m is similar to mean-vagi.
ance optimization, there are important differences, The objective function
is the mean/standard deviation ratio, and there is no risk-aversion param-
ser, As a result, any constant multiple of optimal weights will also be opti-
mal because they give rise to the same IR, [n theory, there is no need for the
weight to sum up to 100%. However, in practice, we often do so customarily,

This 15 an unconst rained optimization, Tuking the partial derivative of
(7.14) with respect to the weights yields

o) e (vic)Ew pe
dy I‘,»_z”_ v f'c"*E,,--t‘Jw !

Equating the partial derivatives to zero, we have

(v'-Z, -v)lc::(v'-rﬁ]z,_ v, (7.16)
The solution for the optimal weights is

v =sE,/IC, 7.17)
e select 5 such
where s is an arbitrary, generally positive constant. We c:nhmj el

that the sum of its optimal weights is 1. Substituting the opt
nto (7.14) gives the optimal IR:

. I e {?-la]
.’R- - Ic ':::".l [C .

variance solution for

* The optimal weight (7.17) is akin m.the m_ﬂnmh. [;cu. identical to
the optimal portfolio of securities lﬂ‘hfdmsfar investment consul-
the solution of optimal manager e Ipha factors. This indi
tants, where the “managers” in the S ':::coml""“e degends 5%
Cates that the weight of an alpha factor i also on its IC corfelation
only an its own risk/return trade-off but

with other factors’ 1Cs.

The optimal weight v can also be ¢ Shows
_Jones (1998)
Without an intercept term. Britten-J b

Variance (MV) optimal weights 0 BEHEEE
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One of the benefits of this alternative approach is that we €an ghy,.
standard errors for the optimal weights. We leave the Proof 4
exercise (see Problem 7.4). an

Example 7.5

We illustrate the optimal mode! weights in a two-factor case in which

!_‘" P 2 IC: ]
W= }___p:,: \ G a, 5_1_. |
= : (g
s | IC:_PuxlC
<ig :p:_ Cie. Ow,Ok, 1

Equation 7.19 states that the optimal weight of a factor is determinedby
two terms. The first term is the ratio of the average IC to the variance of iC
The second term, carrying a negative sign, is proportional to the IC core
lation and the average 1C of the other factor. Therefore, if a factor has high
IC correlations with other factors, then its model weight will be negatively
affected. On the other hand, if a factor has low and/or negative IC corres
tions with other factors, its model weight will be positively affected.

For a model with two factors, the optimal IR can also be explicitly writ
fen as

IR = VIR "jRg ~2p,: IR IR,

o

V1=Piric
For two factors with given IRs, the optimal IR will be h’ﬁh“'nu::
correlation is lower. Figure 7.1 plots the optimal IR as 2 function =
correlation for given values of two individual IRs. The two [R;H'emf
0.5, respectively. As the IC correlation changes from —0.5 1005, tlll#
mal IR declines from 1.5 to 1,0. When the IC correlation i-"t"o's‘dﬁ
are strong diversification benefits between the two factors, mdi“ i
bined optimal IR is much higher than both individual IRs- FOT J
the IC correlation increases, the diversification benefit shri
reaches 0.5 and above, the benefit disappears enti
10 bet against one of the factors (see Problem 7.6), i.e.

Uizeq |

1R*
- T ———p——
1e | [
5 P | I A=
1 —
| il T =
= | —
| | n—_._J__-__
1
A B
|

|,!j‘""'--..

&5 <04 —03] =02 -0i

[IN] o2 & At gs

Pirx

AGURE 7.1, The optimal IR as a function of IC correlation between the two
factors whose IRs are 1.0 and 0.5, respectively. f

Although such a factor model is theoretically correct. in practice it is
highly improbable to implement such a solution. This is so because, when
the IC correlation is high and positive, the optimal model will try 1o arbi-
trage one factor against another; i.e., place positive weight on the facter
with higher IR, and negative weight on the factor with lower IR. Thus, the
outcome of such a model is extremely sensitive to the estimation accuracy
of the IR difference. If the model happens to be wrong in this regard, &
would put the wrong weights on the wrong factors.

724 An Empirical Example

Tﬂ illustrate an empirical application of Equation ﬂi“#“**f‘
'rom each factor category discussed in Chapter 5: cash flow from operasion
10 enterprise value (CFO2EV) from the value category, extemsl Bnaac
ing (XF) from the quality category. and the 9-month price MOmERLIT

(Ret9) from the momentum category: For each facot. ¥ ai:‘a:
“d_‘“d.i\isttd IC on a quarterly basis using 'h' Rossell ”:;;m in
“miverse. The time span of our data s from 1967 12 mﬁ:ﬂﬁhﬂch
EL“-'E also compute ﬂ,wm!,c'ﬂﬁﬂw . ﬂ.w
ha;;‘“’- factors so that we can dﬂ’ﬂ'ﬂ’”"m*ﬁ. - X
on the three factors. ~ are listed in Table 7-

The average [Cs and the standard Mﬁﬁ"wh 1

with the annualized IR. Because we us -
Ris simply twice the ratio of average IC 1o B

the standand devistion
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TABLE 7.1 Average IC and Standard Deviation of 1C for the Three Factorg

CFO2EV XF
RN 1 n‘“
- AN
Average IC 0.05 l"u‘l 005
Standard deviation i Sho
2.09 1.91 b
Annualized IR = ______________1_|£H
TABLE 7.2 Weights of Alpha Models and Corresponding IR
IR CFO2EV XF Retg
w 268 3B% 50% 2%
W 33 69% 1% LY
____-__-'—

of IC. As we can see from this table, both the value factor CFO2EV and the
quality factor XF have high IR mainly due to a low standard deviation of
IC, i.e., the excess returns associated with these twao factors tend to exhibi
low volatility. On the other hand, the momentum factor has the samelesl
of average IC as the other two, but its standard deviation is almost twiceas
high, resulting in lower IR for the factor.

With standard deviations of IC and the IC correlation matrix fin
Table 7.4), we construct the IC covariance matrix and then derive the opti
malalpha model that maximizes IR, using (7.17). The weights of the optim!
model are shown as w* in Table 7.2, In this case, we have 69% in CFCZE":_
and 32% in Ret7, but ~1% in XF. The XF factor itself has an IR of 191 b
because it is highly correlated with the factor CFO2EV, which has  hightt
IR and lower correlation with Ret9, the XF factor gets no weight in the opt*
mal alpha model. To see the importance of IC correlation more djm“_f'“
also derive another set of weights with a diagonal IC covariance matfi*
letting IC correlations be zero, This is shown as w in Table 7.2and has
38,and 12% in XF, CFO2EV, and Ret9, respec{ivel;'. However, the [Rof B
model is only 2.68, whereas the maximum IR with w* is 3.23-

725 Maximum Single-Period IC

'UIVc have found the optimal model weights v that maximize the g
ﬂlﬂd |R.. One could also focus on model weights that maximize i
gle-period IC. The optimal weights for a single-period IC de
average 1Cs and the factor correlation matrix @
From (7.8 = obisin ™
St ) '-\'E llake the partial derivative with respect to ¥ 10 obtai®
optimality condition, Following steps similar 1o (7.16) and (A7) W

‘
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resaIc, (721
i..

[he solution is proportional to the inverse of the

e . ACL0T covarg
orrelation) matrix times the IC. dasd
(L

[f the factor correlation matrix Femains constant over time
the solution that achieves the maximum average IC aver muylt
However, the efficacy of an alpha model is not

{72115 also
iple periods.
: in the average IC but in
the ratio of the average IC to the standard deviation of IC, The weights in
(7.21) totally ignore the standard deviation of IC. Therefore, there is o
guarantee that its IR would be high. A prime example of factars with high
average 1C but high standard deviation of IC is the I-month price reversal
factor. In addition, the 1-month reversal factor tends to have low factor
correlation with other low-frequency factors. Hence, a model that maxi-
mizes the average 1C would have significant weight in the 1-month price
reversal factor. However, such a model is likely to have a low IR and, to
make matters worse, extremely high turnover. We shall discuss the subject
of portfolio turnover in detail in later chapters,

73 FACTOR CORRELATION VS. IC CORRELATION

The optimal model weights depend strongly on IC correlations but not on
factor correlations. We have shown that, when we assume that the factor
correlations stay constant over time, it completely drops out of the analysis
asfaras IR is cLIchrncd. Although it is important to distinguish bemﬂ_ﬂ
them, the two are in fact interrelated. In this section we analyze their
relationship.

73 Relationship in a Single Period

We continue to use the two-factor case as an example. Suw

@ single period, the two standardized factors have 2 mrwilt be con-

% =corr(F,,,F,, ). The ICs of the two factors s Fn:edfamr corre-

Strained by the factor correlation. Imaging the casewheret el

lation ig unity; then we know that the two factors mm&cturcm!h-

ind the two [Cs must be the same. On the other W-I"h:tbu' However,

tion jg ~1, then the two ICs must be the opposite of each .

“hen the factor correlation falls somewhere ICs.

ca!ﬂ?’"- itleads to a much looser constraint on the two ™

nr,: F general cases, the two 1Cs — 1Gu and IC
%2 3%3 correlation matrix:

4
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T (s R (ot
C: jf-l” l Eli:.l

(2
1C,, L 1 i
Because C has to be positive definite, its determinant must be nOnnegatiy,
We have
11 0l .~ G S|, ,~ |C
detC= G G :
011 1 | 2 _ Gy Qo (123)
=1-6},, - IC, - IC}, +20,,,IC,,IC,, 20 t
o FIGURE 7.2. Feasible region of IC for two factors with correlation of 0.5.
K:n:.' +IC§.= ‘2¢1:,1 ‘rcl.eIC:,: +¢:22‘: -1=0. (7.24)
1 T T
For a given factor correlation, the expression on the left side describes e | /"T"-’W I &|
an ellipse on the (IC,,,IC,, )-plane, and the two ICs must lie inside the | N
ellipse. Figure 7.2 plots the ellipse and the region within for a factor carté: - 9% ,r’r "‘-.___‘ '
lation of 0.5. The major axis of the ellipse lies on the line IC,, = IC;; a0 | 5o [
the minor axis on the line IC,, =-IC,, . This is true as long as O 20. g “‘1'
When the factor correlation is negative, the two axes switch places. Sta- s i B H
tistically, the two ICs can be anywhere inside the ellipse. As mm; s [ ==
the graph, the possibilities are numerous: they can be both positivé bo W=
negative, or have Opposite signs. " —0.75 {—
’\_’“’th'“' way to look at the influence of the factor correlation on the 40 o I e i hs A
ICs is to express IC, in terms of IC,, §,5,and a residual 1C, TCaus 2 100 075 os0 025 000 025 050
Score Comelation
S i s (29 {
2 12 1+ I"_¢'I! 'IC!J.I.' FlGURE 7.3, WElghling of ICs with score Coﬂ‘dﬂm
r ol umber between -1
th:‘“'* e suppress the subscript ¢ for clarity. The residual IC, IC‘” ol “Orrelation JC,,, is completely free, i€ it can beany 0 +i-05 and
- a;umlan:an between security returns and the residual I'actﬂf;' wors 1 and 1. Baged .-,‘,:'1{7 25), IC, can be as high s 1C;=9u°1C:
¢‘ an: r:':“ ng out F,. Because the correlation between the two ! mpY 3 low g4 IC,=0,,-IC, - =05 - _ yination of IC, and
g:: - t . two fact{?rs are standardized, the residual factor, Ex J:h'l ot We can also iutsr]:ll".?lt IC, asa weighted, linear ::Et:ion 9, - Figure 7.3
reia ;‘ 1 }%E. and it is orthogonal to F,. It is easy to prove that IIt‘d'ﬁ Cay whose weightingisa function of the mmndth Onl--m influence
100 Iy between the residual factor €, , and the return s i hows how the weighting of IC; and IGeys varies . 2

other terms by (7.25). Furthermore, as €,, is orthogonal to K the ! -
SRR G |-
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| IC, 1G,
C=| IC, 1 05, 5
IC., Oy 1 )

Because C has to be positive definite, its determinant must be nopp
FOCALD o Dl .
We have

rl:_":- {D I Ic 1
) g

l 0y, " 124 +1C,,|
sl gy

detC= , | Mic,, 1 EICM

=1-¢%, - IC}, - IC;, +29,,,IC, ,IC,, 20

ar

IC, +1C3, = 20,,,IC,,IC,, +¢1,, —1<0. (i
For a given factor correlation, the expression on the left side describes
an ellipse on the (IC,,,IC,, )-plane, and the two ICs must lie inside the
ellipse. Figure 7.2 plwlms the eljipse and the region within fora faﬂﬂ'm
lation of 0.5. The major axis of the ellipse lies on the line IC;; =IC,,.d
the minor axis on the line IC,, =-IC,, . This is true as long as #m!'
When the factor correlation is negative, the two axes switch P"“’;
tistically, the two ICs can be anywhere inside the ellipse: Asmw
the graph. the possibilities are numerous: they can be both P‘Wﬁf“’_ i
negative, or have opposite signs. AR
Another way to look at the influence of the factor cﬂrﬁlﬂ@'_@ﬂ?
ICs is to express IC, in terms of IC,, 6,, , and a residual IGs 1Can®
-2
IC,=0,,-IC, +J1-¢}, - IC,yy - *
We suppress the subscript t for clarity. The residual 1c
elatian betss =ApLEfore anty. 1he ot flﬂ':‘
B i €en security returns and the resid b
Sisandthe tws g oo the correlation between m,ﬂ, "
€:=FE~¢.F and it _ﬂrEr:Landardmd. - :_-esndual e ﬂiﬁ
relation IC.. Lbctwu:t: ogonal to F,. It is easy to ProVe = jge
other mrm';v (7.25), F ¢ residual factor €,,, and the refUr Lo o
+43). Furthermore, as e, is orthogonal 10 B

i Whose weighting is a function of the score
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—

0.75 1

FIGURE 7.2. Feasible region of IC for two factors with correlation of 0.5.

[—=—1C{t1) —IC=2.1)|

—
075 -_H‘l“‘l .'.’.._".‘_u;-"' | \
051 -

& 4 ¢ \
S o5 f
[-] |I
g 0 +—
8
2—0.25 E=—
-05
075
1 . 3 -
_gsg 075 -100
100 o075 o050 026 000 025

rouee s, Weighting of 1Cs with score correlations.
:“:Elation IC,,, is completely free, i.e. 1tmbem!nu£n.b:fﬁ__rbﬂ—:"‘m
‘: lq:; Based on (7.25), IC, can be as high 28 1=t 10T >

'35 IC, =,y -IC, — 10 + o R |
Wecan also interpret IC, u‘awishtcd.-llmﬂ’cﬁﬂ!"iw Sl

Owy how the wﬁshﬂnsof Ic, tﬂd !clh“m
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of IC, is linearly PT“P“"“”NI 10 9z ranging from 1 1o -, Whereg,

influence of 1C,,, is not only always positive but also a concaye funcy;, .
¢ M e iy
As such, IC,,, generally exhibits more influence in d‘.lerrmmng Ic B
IC,. For example, when 6y, is equal to 0.975 — extremely close ¢,
_ the weights for IC, and IC,, | are0.97

. 4 per-
fect-score correlation - Sand 02

respectively, implying that IC,,, still c:smm_:lnds a material inflyeqc, L
contrast, when factor scores are close to being uncorrelated, suuch g
being equal to 0.025, the weights for IC, .md_ I(:’E_.J are 0,025 and U,'J';-q;
respectively. In this instance, the influence of IC, is no longer materjy|

7.3.2  Multiperiod IC Correlations

The discussion so far has focused on the ICs and factor correlation of
a single period, and they are calculated based on a cross section of iy
risk-adjusted forecast vectors and risk-adjusted returns of N stocks. As
we extend from a single period to multiple periods, all three correlation
coefficients in matrix (7.22) fluctuate, forming time-series or distribu-
tions. For instance, IC,, and IC,, each has sample (theoretical} and
empirical distributions. Our interest is on the statistical properties of theit
distribution.

One of the major findings from Chapter 4 is that, even though the naé
estimation for the standard deviation of IC is 1/ JE or the sampilngel'f_ﬂﬁ
with N being the number of stocks, empirically the IC standard deviabos
for the majority of alpha factors we considered, is much higher than ¢
naive estimation. With two or more factors, we are interested in the ‘“'
relation between their ICs over time because they play a cracial k¢
determining the IR of multifactor alpha models. In this section, we b
present a naive estimation of the IC correlation and then examine IC o
relations er‘xpiri;atly_ o

One naive estimate of IC correlation follows the general thﬂfﬂ' i
ple covariance matrix based an a multivariate normal distributio” jshat!
certain assumptions, the sample covariance matrix follows & iCs
distribution (see Muirhead 1982), and the covariance between -
given by the following equation:

ﬂ;ﬂl

H'hf
The left-hand side is the covariance between the two 1CS: On r'b:,ﬂf

hand side, N'is the number of stocks; the barred variables ar¢ e

cov(IC,,,IC,, )= %;(ﬁu +E.—féz)-

™ el

y -
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_tor correlations and the averages of ICs, I ;
i’ k melk'.i.‘.lheavt

of fa
sually small, We dpproximate Equation 7

the alph rageiCof

26 by

a factorsis u

cov (G, 1C;, )= std( 1€, Jsd(ic, Jeorr(ic, 1c, )= | O (7.27)
=8 02

Therefore, we have

corr(IC,,IC, )= __E‘l.__ o b
T N (1, {6 A2

Equation 7.28 is the naive estimation of the IC correlation. Furthermore,
when the standard deviations of ICs are solely due to sampling error, they
are equal to 1/ IN ie., std(IC, ) = std IC, )=1 IN . Ifthat were the case,
then the IC correlation would be approximately the same as the average
factor correlation, i.e., curr[fCl,IC_,F O -

When the standard deviations of ICs are greater than the sampling
error, the IC correlation, as demonstrated in Chapter 4 and according to
(7.28), should be in theory of the same sign as the factor correlation but less
than the factor correlation. For models with more than two factors, Equa-
tion 7.28 applies to every pairwise IC correlation.

* Previous researchers seem to have focused solely on factor correla-
tion, ignoring IC correlation, For analysis of multiperiod IR, we have
established a theoretical link between the IC correlation and the fac-
tor correlation, which is only valid under the most idnf-'l_l assump-
tions. Although the link provides some thearetical }'fmffﬂl“"“ t‘f"
Previous research using factor correlation, it also highlights their
limitation,

Example 7.6
[fthe aye

. rage factor correlation is 0.5, N =1000, i
::ﬂs Ofboth ICs are 1/4/N , ie. 0032, then the [€ mﬂd;hn:ﬁ&w:;:
'3, However, if the standard deviations of ICare o

L ; = i half the
;::!: the IC correlation should be 0.5/(1000X004x0051=023
r

tOrrelation,

andifthe standard devia-

“

1
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FGURE 7.4. Quarterly factor correlations between CFO2EV and XE

733 Empirical Examination of Factor Correlation and IC Correlad

It is probably safe to say that, in reality, many stmp]ifyil'lll assump o
underlying theoretical models of the stock market break down: e
instance, stock returns are generally not normally distributed:

saw another example in Chapter 4 in the standard deviation uﬂcf' :

now examine another case concerning the 1C correlation. 3

Continuing the empirical example in the last section, T8 ﬂwﬂu
the average and standard deviation of factor correlations wce;mﬂ“'u
period. It s interesting to note that the correlation between itis
XF has an average of 0.31 and a standard deviation of i ”!#’aﬂ -
nificantly positive. The correlation between CFO2EV and Rﬁﬂl,w
negative, whereas the correlation between XF and Ret? js slight aﬂﬂ
Figure 7.4 plots the time series of the factor correlations bet W*
and XE Ttis initially low in 1987 and then increases to around * ==
Since then it has been fluctuating between 0.3 and 0.4:

. gl
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[ABLE =4 The 1C Correlations of Three Factors

CFO2EY _—AT'—‘-———-—_._.

Reto

CPOLEN 1.00 073 050
xF 1.00 AR
Ret? o 100
TABLE 7.5 Sampling Errors of Time-Series 1C Correlations

o P std(p) 2-51d Interval
oIC_XE IC_CFO2EV) 0.7 008 (0.56, 0.59)
pllC_RI 19, 10 UFOZEY) 01,50 000 (<0071, -0.29)
plIC_RETY, K XK - -0.22 [N (~0.43, 0.02)

The carrelations of risk-adjusted ICs for the three factors are Ptt'@ﬂl‘l‘!!d
in Table 74. We note that they are significantly different from the factor
correlations seen in Table 7.3 For example, the IC correlation between
CFO2EV and XF is 0.73, which is significantly higher than the average fac-
tor correlation of 0.31, indicating that the diversification benefit between
these two factors is not as strong as it would seem, On the other hand, the
IC correlation between CFO2EV and Ret9 is =05, which is significantly
lower than the factor correlation between the two. This seems to be a gen-
eral phenomenon for value factors and price momentum factors as the IC
diversification between them is significantly better than what the factor
correlation would otherwise indicate. Lastly, the IC correlation between the
quality factor XF and the price momentum factor Retd is ﬂish':h’ nogRtive:
In our example, two out of the three 1€ correlations are ﬂsﬂl"""““.y
different from the factor correlations even if we take into account the vari-
ability of factor correlations over the entire period. We can “""“h"::
confidence interval of IC correlations to provide : T:m
Handard deviation of 1C correlation is approxi tely givenbyin '
Ple IC and the number of quarters Q (Keepings 1993)

-pp) b P 729
udtpa.-)-g;rgf(\"* Q-1

T'hle 75 shﬂm th.e nmp‘in‘ ermor af'ﬂiﬂm“ ; IC =

a5 their e atandand deviation confidence intersat. A1

Al score correlations fall ﬂﬂ-ﬂ'lhgl_l‘-w
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interval. In fact, for the first two pairs, thefr average factor COFrelay;
outside the three standard deviations confidence interval.

7 POSITE ALPHA MODEL
. &?#4 ORTHOGONALIZED FACTORS

Qur analysis so far has focused on building c&?ﬂ‘?usmm
risk-adjusted factors. We have shown _lhal the uplllma.l weights of factors
depend on average ICs and the covarlancle ma.tnx of ICs. This provi

important insights into factor diversification: factors with low Jo corre.
lations are more desirable than factors with high IC correlation, as {he

“US-Iig

previous example illustrates.

We have made several simplifying assumptions, though. First, we stan.
dardized all risk-adjusted factors so that their cross-sectional dispersiong
remain unity. Second, we assumed that correlations among factors an
constant pver time. These assumptions made the problem of optimizing
IR analytically tractable and led to our solution for the optimal weights
and insight about factor diversification.

However, factor correlations are time varying, as we have shown in the
last section in Figure 74. The fact that the variation in factor correlations
is relatively small compared to the IC volatility justifies our approxini
tion approach. Nevertheless, it would be desirable to derive a solution
without this simplification. We can do so with orthugonalized ﬁmﬂ-
Factor orthogonalization can be viewed as another step in preprocessifh
factors along with factor standardization. When the procedure is Garfie
out in every time period, the factor correlations will always be 260 %
thus constant. -

When the factors are both orthogonal and standardized, the ’msk‘
period IC of a composite (7.8) reduces to

" b
1€,y = D I o
Yiiv i=l
m::]zcla:-:ﬁ :‘-‘:ES are now the only terms that vary in time, ghem&
ctly that of (7.14), and the previous solution 2

weights applies without any approximation. J |
‘LA

741 Gram-Schmidt Procedure M
i ::z@on mathematical technique, the Gram-Schmid® |
quentially makes each factor orthogonal to previously 07

-~
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o RO have M fact

factors. SUPPOSE W have ors (F,E.-F, ) that b stan
Jardized. \-\-_’ith no particular order, the first fa:l]or F wai,;ebt;tet; :
orthogonal factor, ie., B’ =F , with the super. I Gt

= script denotin
ized factors. Then the second orthogonal factor is defined ass orthogonal-

G -
F = ﬁ(!’z—m.ﬁ’). (7.31)

where Py = P is the cross-sectional correlation between F, and F’,which

is the same as the correlation between F, and F, . The orthagonli .
tor F! is the factor F, with the effect of E’ taken out. The ratio I':il—ﬁi,

makes F; standardized. Moving on to the third factor, let Py and py, be
the correlation between F, and E' and F, and F;, respectively, which are
calculated after we have derived the orthogonalized factor. Then,

E= m (Ps_liup:"‘bul:l“) (7.32)

is a standardized factor orthogonal to both F andF’. In general, sup-
pose (F.”.'--.F;'_,] are orthogonalized factors; then, for the factor F,,
we first calculate its correlations with (I-‘,".---.F;,.) and denote them by
Pois iRy ) . The orthogonalized factor is given by

F; N =3 a 21 A (Fp _ﬁplFf-ﬁsz;"'"-ﬁp.plp;—l)- [:"-33]
\(l_p-"‘ “Pea—  Ppp

The factor F: is proportional to the component of E,, which is uncorre-
lated with the previous orthogonlized factors.

Orthogonal factors produced by the Gram-Schmidt procedure can
altest whether or not the original factors have indepcﬂd-ﬁﬂ_l.infmmﬂloﬂ
bout forwarg returns. This is true if the IC ofan orth“ﬂ"ml'ud.&cw %
*till pasitive and significant. However, if the IC of an mmdzz:ﬂ_i;
Inr beﬁﬁlfnes insignificant or even changes sign, its weight in the opt

Odel will likely change dramatically:

7 W idt Procedure’
2 Optimal Mocdel with the Gram-Schmidt Proce i e
"W do we combine the orthogonalized factors into an optima’ &1PT

PR ; thatis

Modelp Recall the solution for weights of the op alpl'll\mﬂﬂ e

_—‘
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TABLE 7.6  Average 1C and srandard Deviation ol 1C for the Three Grlh“ﬂﬂnalw

Factors _____‘\
CFO2EV.0 XF.o Retg g
. 0.06 0.02 et
Average IC 0.03 ’
Standard deviation 0.05 i 0.09
¥ pe
Annualized 1R 209 __‘ll-s-....___

given by v’ =5£E11_f2 in (7.17), wlufre s .is‘the i::nverse ;?f the IC copy
riance matrix, IC is the average l( of thfe factors, and s isa scalar, The
optimal model of orthogonalized factors tul](.\ws the same form. We ljys,
trate it with the three factors used in the previous example: cash flow fror
operating to enterprise value (CFO2EV), external financing (XF), and 9.
month return (Ret9). In the Gram-Schmidt procedure, we have picked
CFO2EV as the first factor, XF as the second, and Ret9 as the third.
Table 7.6 lists the average IC, the standard deviation of the orthogonal
ized factors, and the IR. As CFO2EV is the first factor, the orthogonalized
version CFO2EV.o0 is the same as the original factor. The second factor
XF.o differs significantly from the original factor. Compared to Table?3,
both the average IC and the standard deviation of IC decrease, and thelR
is less than that of the original factor. The reason is that the factor correl#
tion between XF and CFO2EV is reasonably high, and hence the Oﬂ_hoﬂ'
nalization procedure greatly affects XF. On the other hand, the last fact

Ret9 has little correlation with the other two factors, so Ret.0 18
same as Ret9.

« As the example shows, the Gram-Schmidt procedurg Bﬂ'j'-‘“ ﬂf;
that have high correlations with other factors, This is €5P€= YA
for factors in the same factor category: for example, |
and dividend yield in the value category.

L

Table 7.7 shows the IC correlations of the ::u"tI’mrgt‘-'ﬂiﬂi""""l m::ﬁ
general, we should expect ICs of the orthogonalized factors ¥ (C oy
related than the original factors because their factor correlatior® ottt
structed to be zero, This seems to be true for two pairs of tﬁﬁ
CFO2EV.0 and XF.0 have IC correlation of 0.34 compared 10 " e
9.01'1{- ﬁ

relation of 0.73 for CFO2EV and d Ret
3 XF. Factors XF.0 and 5= . ortf’
relation of -ﬂ-ﬂJcom'pargd to the IC correlation of -02,‘.! fol' M

factors {Table 7.2). However, the other IC correlation betW® ﬁ
‘and Ret9.0 shows 1o change. A - gl |

Mulify amework devel
"B in this book relies on the riskcadjusted ICS dw;

Multifactor Alpha Models i

jABLE7.7 The IC Correlations of Three Orthogonalized Factors
=T CFO2EV.o

XEo Reto.o
CFO2EVO 1.00 034 e
XFo Loo -0
Ret9.0 1.00

TABLE 7.8 Weights of Alpha Models and Corréspanding IR Based an the Th
Orthogonalized Factors

IR CFO2EV.0 XEo Ret90
W, 285 40% 47% 13%
w* 3.30 61% 98 30%

Table 7.8 shows the sets of weights of optimal alpha models based on
the orthogonalized factors — one with the full IC covariance matrix and
the other with diagonal IC covariance matrix. Compared to Table 7.4, the
optimal weight w* has a positive 9% in XF.0, and the IR increases slightly.
The IR of w, shows greater improvement from that of Table 7.4 because
the IC correlations of the orthogonalized factors play a lesser role in deter-
mining the optimal IR, Note the following:

« Another method of factor orthogonalization is principal component
analysis, or PCA. The principal components (PC) of [F"F"".'.F"}
are their linear combinations. The first PC is the lineas .mmbl-m'
tion of (F,,F,,:-,F, ) that has the largest cross-sectional dispersion,
and the second PC is the combination of (E.F; ""‘F"'). . .
to the first PC that has the largest cmwm"f'i d.;spcmun. e
50 on. The PCA technique is theoretically appealing, buf ichok ‘:::
Practical difficulty. Because principal ‘“mpmfm - “mw
change in signs, one has to ensure that “same PCslmmlmm of factors
time, This could be a challenge if the correlation S '

changes drastically over time.

”5  FAMA-MACRETH REGRESSION'

A=—aND OPTIMAL ALPHA MODEL

ﬂ;huush most practitioners recognize the '-"'““5‘ . % '.
*sources in terms of IR improvement, heESPC o oy geveloped
Ctor alpha model vary widely. The analytical and

|- L
= s -
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their correlations. One of the key facts for a multifactor alph,

that the excess returns from individual factors are essentially adgig;y.. ]

overall excess returnis a linear combination of individual excesg
whereas the factor correlations enter the linear combination lhm‘-lsh;
scaling factor. _

There are practitioners who employ other statistical framewgry
derive forecasts based on empirical asset pricing back-test Procedur
<uch as the Fama-MacBeth (1973) regression, which consists of a serjes
cross-sectional OLS regressions. Even though the Fama-MacBeth
sion is simple to implement and intuitively appealing, it is used in moy
asset pricing studies to ascertain whether a factor is priced. The question
is whether it provides an analytical foundation for combining multiple
alpha sources.

To answer this question, we should first give an economic interprets-
tion of the regression coefficients in a cross-sectional OLS regression, The
key question is whether the regression coefficients represent the exces
returns of certain active portfolios, and, if they do, what are the alpha fic:
tors behind these active portfolios?

7.51 Univariate OLS Regression

When there is just one independent factor in the cross-sectional regre

sion, the interpretation is straightforward. Suppose the mﬂﬁ“i.onm
the form

I', =u!+ﬁrfr' aﬂ

Then the coefficient is

8 =c0v(r,.f,) = corr(r,,f,)djs(r,) | g;ﬂ
' var(,) dis(f,) |
13

\"f'hen the factor is standardized, the regression coefficient is I\G-IJ!’# ,
dispersion of realized returns, i.e.,

g
Comparing Equation 736 with Equation 76, we see thats 2 12 ot

regression coefficient is proportional to theexﬁmutul‘ﬂ""f”

B, =corr(r,.f, )dis(r, ).

3 |

Multifactor Alpha Model
-52 OLS Regression with Multiple Factors

when there are multiple factors, the OLS regression coefficients are
jonger the ICs of individual factors, unless the factors are uncorr no
However, what are their economic interpretations in the context of excess

returns? T develop insight into this question, we consider the case with
o factors and derive the coefficients explicitly. The regression equation
is

r, =, +ﬁufu +B:Jf2'.r- (7.37)

The coefficients in terms of variances and covariances are given by

[E; H;: ) ]'[:g:]"“['J 039

Again, we have assumed that the factors are standardized, with variance
being 1, and p, denotes the factor or score correlation. Inverting the
matrix and multiplying the 1Cs gives

B, =I%(IC.—pr=)dis{rJ
~P (7.39)
1 H
B = 161G Jis(x)

We have sy i ity. The

) ppressed subscript ¢ for clarity. 5

E::m of ICs, with the factor correlation cnm as one m“:m

u hen the two factors are uncorrelated, the coefficients arc )

Nivariate regression coefficients f

: s .1 return contribution

e 1:1\! economic interpretation of P, is the mf"?q"‘"“{_ B it the
i 1 after netting out the influence of £,. 51““’_“']?' i cF

"ginal return contribution of f; after con L CL TS

T : ontribution of I 1 mtwoseparate
u::“ fhls. we note that both B, and B, Eﬂ!fl_’-.‘d"'mdm cocadest I

va ﬁ':‘;:la‘e OLS regressions with cmsa-eecmmﬂ] L et :

le. For instance, to derive ﬂpmﬁﬁtmﬂ g,

f=phiten:
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The residual is then €, = f,—pf,. To be consistent with factor Standgpy
ization, we standardize the residual so that its cross-sectional dispersiﬂi;

is unity:
_f,-pf,

3 S .
1 |'I —p* {.7-11]

ICs of both E;, (standardized residual) and €, (raw residual) are th

same:

= cm’[i.__:-"\.' = H_-"__L '.Q.IE?

e = e 243
16 dis(r) J1-p° o

In the second univariate regression, let B.e, , bethe coefficient estimate
herein the cross-sectional return, £, 5
f €, is the independent vatl-
is exactly the same as B,

of a cross-sectional regression, W
the dependent variable, and raw residual «
able. As the following equation shows, B, |

B, = cov(g,;.x) _ cov(f,—pfsr) _IC =P IC; gig(y)=p,. 04
E o var(g,) 1-p’ 1-p°

Similarly, the IC of factor 2 with factor | regressed out is

;n_ - I_{:‘! -pIC, {iﬂl

C,

e
Comparing Equation 739, Equation 7.42, and Equation 744 shov3
multivariate regression coefficients are related to residual ICS %

— —1 is =

i Ji-p* Idet w
3 1 3

ﬁ] = chldis[!‘) at»lt.l

b

Multifactor Alpha Models m

. The residual 1C is, in essence, the information coe

| | fhicie com
posite factor whose weights are related to the factor miﬁ? F
. on. For

example, IC, is the IC of factor é1-1=“1‘9f- [ i 3
on the factor correlation, the residual IC could Eeverf dlf?qx nding
the 1C of the individual factor. crent from

Example 7.7

Suppose IC, =02, IC,=0.1, and p=08. Then the residual ICs are
. =(02-08-0.1)/V1-08° =02 and IC, =(0.1-08:02)/\i-08 =
_0.1, Even though both factors have positive ICs, one residual IC is posi-
ive and the other is negative! This is due to the high correlation between
the two factors. If the correlation is reduced to 0.5 from 0.8, the residual
{Cs are 1C, =0.17 and IC,=0.0, respectively. The second factor is ren-
dered as having no information.

When the factor correlation is negative, the residual ICs are going to be
higher than the original ICs. The lesson is that one should not interpret
multivariate regression coefficients as returns to alpha factors; instead,
they are marginal returns to alpha factors after netting out influences
from other factors. Especially, they should not be used in performance
attribution of alpha factors. This is particularly problematic or simply
wrong when the factors from the same category have high correlations, as
we have seen in Chapter 5. For instance, earnings yield and cash flow yield
tend to have high factor-score correlation, as both are constructed with
the price as the denominator. Just because one worked better than the
other in terms of higher IC, we cannot conclude that the lesser one had a
Negative contribution to the portfolio return.

753 Fama-MacBeth Regression and Asset Pricing Tests

Fima-Macbeth regression is commonly used by academic ﬁ
' ascertain whether a factor is priced by the market d'nrmll:tk e
“ontrolling for other known, priced factors such as beta. of'mnltipl;
Si2¢, or price momentum, The procedure consists OF:' peries ;
regressions for each cross section of securitics: ' it
1955-sectional returns form the depcnﬂenrwﬁabm and W{.m&m{;’;‘
*€onsist of two parts: control variables and asetoftested ;

frol Variables are deployed to ensure that the tested pricing Mmﬂm
ploy penomend: In other Words

::m subsumed by other known Pricing
test of whether the factor in question

——
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information. For illustrative purpuse_. let us assume that- fiisy
variable and f, is the factor in question. Each cross-sectional ety
at time 1 is furmulated as I, =0, +Bi.rfL.l +L—3-"'!.f1‘l . Fa‘:t"?r t.-z is Cons;

as a priced factor if its time series t-stat = B./ Sldﬁﬁg,z.} ‘SASIE“iﬁ“nﬂydif_
ferent from zero. [n other words, should t(B,,) be sigrflﬁcanﬂ}. differey
from zero, then f; is said to be priced b}; the market after controlling fy
the known asset pricing phenomenon of _f1 S

Equation 7.45 shows this residual eatle-:l dlr‘ectiy because it connegy
the OLS regression coefficients to the Ile of res.adu:.ﬂ factors. When facigr
correlation p is stable and the return dispersion is constant, it is
seen that the Fama-MacBeth f-stat is proportional to the IR of residul
factors. '

The interpretation of multivariate regression coefficients as coefficients
of univariate regressions of return vs. residual factors provides criticl
insight into the results of the Fama-MacBeth regression. It turns u:utthn
this interpretation remains true as we add control variables (or nsk_ fac:
tors) and more alpha factors into the OLS regression. Suppose we hate

r=u+bll:+"‘+bx1x +ﬂ|f|+"*+ﬁlf[,1 U‘“]

where (I,,-+, 1) are control variables and [f, 2 45 f;,) are alpha facto®
then the coefficient B, can be obtained in the following steps ﬁ;mﬂﬁ
cross section at a given time t, and these steps are repeated throu
derive a time series of estimates of B; (see appendix for proaf).

» Step 1: We regress factor f; against all control variables wictly
ing alpha factors simultaneously. o
auet

Ao d run
« Step 2; We take the residual of the regression in Step 130

variate regression of returns against the residual to obtaint ¥ um'

he 1CO
Similar to Equation 7.45, the coefficient B, is related '© it:ion' of
residual, the dispersion of the actual return, and the disp :
residual. e

- of the P
« There is a connection between the residual 1C and th;illf a&‘"“ ‘u]
fied alpha in Chapter 4. The purified alpha is an &P 1 g

et
the risk factors regressed out, The residual IC that “‘““Pd with

hs-:wz___

multivariate regression (7.46) is the IC of an alp
only the risk factors but also all other alpha factor® %

Multifactor Alpha § -

is an alpha signal so “pure” that it is orthogonal

and other alpha factors. to both risk factors

25.4 Multifactor Model through Fama-MacBeth Regression

Although multivariate regression coefficients should be interpreted as
roturn sensitivities to residual factor scores, a maive application of the
Fama-MacBeth regression in deriving factor returns and optimal model
weighting would result in erroneous model estimation due to factor-score
correlations. There are two methods to alleviate the problem. First, recall
if the factors are uncorrelated, and then the coefficients become sensitive
to the factors and proportional to the factors’ ICs. Thus, one simple way to
avoid the collinear problem is to sequentially orthogonalize factor scores
through the Gram-Schmidt procedure before each cross-sectional OLS
regression. Then, using the coefficients, we can estimate the average ICs
and covariances of IC to derive the optimal alpha model. This is the same
model derived under the Gram-Schmidt procedure.

In the second method, one may choose not to orthogonalize the factors.
Given the interpretation of regression coefficients in the Fama-MacBeth
regression, one can still construct a multifactor model using the regres-
sion coefficients based on residual ICs. As we have shown, the residual IC
can be easily derived from the Fama-MacBeth regression coefficients. We
can find optimal weights that maximize the IR of the residual ICs, i€,
the average of residual IC to its standard deviation. This is sirfﬂfﬂr 1o our
3pproach of finding optimal weights based on the ICs of individual fac-
tors, However, there is one crucial difference. Models constructed th.rol-jsl!
the Fama-MacBeth regression coeflicients are no longer modc‘ls h{ ::
Priginal factors, Rather, they should be used as models of the l'!;f'i“a. doal
;:r:. To apply the weights of the model, one must first find the el

€tors by performing multivariate regression 08 €8€7 CALCLY
Other fa,;_-mes andico ng,lpm ¢ a weighted sum of the residual factors as the
“Omposite madel.,
ot o nd el
it hercui:\?ef ot e e ﬂt“gll::'atvo*eﬂln the tW 0
the T"lt;deft ;qus Ins.lea.d on the mmehffriglml factorsand m,mﬂthtt .
MaXimig at maximizes the IR of t : 'm“.mmuw.w"“‘““
Opimg) es the IR of the residual ﬁdo;;ﬂd be cranid
f the 4 model of the residual factors COVEE = opem
'"h]n::-glml factors because the residual <

1on of the original factors. For tsee

residual factors is analo-

o

D
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residual factors are € ={t’,—pf;]I J1-p* and E,, =(§:_pr]/\(1?'!

1f the model weights for the residual factors are v, and v, , we haye

Conversely, a model of original factors can be transformed to a model of

residual factors:

- v tpy, - Vatpy '
VW= 2T 3 (748
! rl-P' 1—p*

Because of this linear transformation between the two sets of models;
optimal models that maximize the information ratio utilizing either orige
nal factors or standardized residual factors are identical, provided thvlt‘bg_
factor correlations are constant over time. This is because the relaﬁur_ﬂlliv
between the residual IC and the original IC, and the relationship.hetm
the standardized residual factor and the original factorsareli (s

for example, Equations 7.41 and 7.42). L
For ll'l::': general case, denoting this constant linear relﬂtwﬂiﬁi'”
matrix P, we have

4

g=P-fandIC;=P-IC.
red 0
The average residual IC and its covariance matrix arg__fﬂﬂf 1—-&.‘;
average of the original IC and its covariance matrix by 1C =" i
L, =P’L,P. The optimal weights (see Problem 7.9) for the P2
tors are simply o :

¢ v=E1C isthe optimal weights for the or | factof®
the two composites with respective optimal weights are €9 “‘t : _'-— .

Tt

vi E=vP 'PE=vE.

MU"“ﬂClﬂr,\%, ok Lo

. Another alternative for constructing a multifactor

using Fama-MacBeth regression is i modd
mined combination of alpha facturst:l:ﬁl-:;t;g:“!g: predeter-
(Yang, 2005). Unlike the multivariate setting, we nr:,w bn:“ s
composite alpha factor whose regression coefficient is dmﬂm
to its IC after the effects of the risk factors are netted out. ;hm
no residual effect involving other alpha factors. This is a m:sf
purified alpha for a composite factor, and the regression coefficient
is simply the multifactor IC times the dispersion of actual returris.
When we carry out Fama-MacBeth regression over multiple time
periods, the t-stat of the regression coefficient is a proxy of the IR for
the predetermined combination of the alpha factors. This serves asa
good indicator of portfolio performance for the given model. To find
the optimal alpha model, however, we have to search for the optimal
weights that maximize the f-stats of the regression coefficients by
numerical means.

PROBLEMS

71

72

?Us

74

Calculate the dispersion and IC of the composite factor in Example
7.1 and 7.2 if the factor weights are 1/3 and 2/3, respectively.

Prove that the model weights that maximize single-period [C of (7.8)
is (7.21).

Verify (7.17) to satisfy Equation 7.16.
sum of the model weights equals 1.

Assume that there are M alpha factors

T periods. We derive the optimal r nodel
by the follow ing OLS regression:

Find the value of s so that the

whose ICs are measured over

{ = ICxv + 1 . =
" . -y o)

(o (e (P
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Prove that
@ v=(1c1c) (1c"i);
(b) 1CIC=Ec +ICIC 5

i ():‘,"f.l_c:-iii z“g_) ;
(@ (@cIoy =Zg+——; .
- 1+IC Z,/1IC
T lC
) v=———-
1+1C EIC
75 Derive the optimal IR (7.20) for two-factor models.

76 Extend Figure 7.1 to the full range of IC correlation from -1 101
Show that, when the IC correlation is greater than 0.5, the optimal
model weight of factor 2 is negative.

7.7 Prove that factor F; in (7.33) is orthogonal to (F{’.---*P;,l),

78 Given two residual terms €, , = f, —p,f, and &, =H,=pf; s calculate
their correlation coefficient.

79 Derive Equation 7.48.

7.10 (a) Suppose the standardized residual factors are related 10 the g

2 jth aver
nal factor through €=P-f . Prove that 1Cz= p-IC. (b W:l%ﬁd

ages and covariance matrix of residual ICs given by IC; = fized
X, =P'E, P, show that the optimal weights for the stan si"]
residual factors are related to the optimal weights for the oF
factorsby v, =Py,

APPENDIX _1/‘;55
In this appendix, we prove that a multivariate linear Iegrcﬁﬁ":ﬂi'-
decomposed into two separate regressions: one between indepe” -lﬁfﬂ

ables and the other between a dependent variable and the € ! g
pendent vari variate ,,grﬁd"::

first regression, This property is inherent to the multi

A71 _INVERSE OF A PARTITIONED MATRIX )

We first present the follow i g
5 ing result for the invers matriX
l;:t;ll. Gl'fcnt square matrix X, we partition it as block g
iagonal blocks X, and Z, are nonsingular square MY ¥

s
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I= [ L, L,
z‘:2I Eu ;

(7.52)
Pefine
=%, 5 i 5
Ly, =E,-5,L'%, : (7.53)
Then the inverse is given by
a i -3y ¥
Lo, ) o

A72  DECOMPOSITION OF MULTIVARIATE REGRESSION
For a multivariate regression y = XP+e€, the coefficient vector is given by
- o, > - =

H—{_x*x} X'y . Suppose all variables have zero mean. The covariance
ﬂluur:x of independent variables x is Z-—-(U,;)i e the standard devia-
tion of the dependent variable y is G, and the correlations between the
';depﬂndenl variables and the dependent variable are (EPEs ‘l} - Then
the regression coefficient can be written as

B=E-|s‘ {?'SBJ

: "
a:: Vector s consists of covariances between the independent variables
the dependent variable, i.c.

5= (5| 0,0, kO 0"_‘}' .

* Partition the independent variables into
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where x, consistsof k; factorsand x, consistsof K, fﬂclurg.and k

1 +k!;__-i

-lhe fﬂelﬁCiE|lt yvector E and the vector § can also bL’ Parﬁtiﬂn!d im
0

The covariance matrix £ can also be written as in (7.52), in which ¢z,
X, and I, are the cm*.armm.e nl;?trxces for x; and x,, respectj
and X, =X, is the covariance matrix between x, and x, . ACCﬂrd‘u;g

(7.55), we have
ﬂ= ( ﬂL }:E. b X b ] 5,
B. . L, LI, 85

Using the inverse matrix (7.54) gives

Iy

v o

rﬂ‘] ]: b 8 TR I [st r '
ﬂ: _EE'.!E.‘.IE;!I.! E:_i.l 5;

We now focus our attention on the coefficient f§, and obtain

B, =E|_11.151‘21_:EI:E.:;:J5:+ &1

Next, we carry out the two-stage regression. First, we regress X, 'w
x,. As both dependent and independent variables are vectors it Fm::
the regression coefficient is in fact a matrix in a form similar to (739

it equals )%, . Hence, the residual of this regression is

€,=%,-x,Z3%,.

oting ™

The second regression is to regress y vs. the residual £.2-*  forn®
regression coefficient by B,, we can write its solution in the he ¥

(7.55), with the covariance matrix being that of the resi
tor s being the covariances between yand the residuals;i€s

B, = I, cov(y.€1) -

Mullifactmmpha” g -

covariance matrix of g, is

The
z. =21,—E,,£1;};u=zml G60)
[he covariances between y and the residuals are
cov(y.€,s)=8,~E,E}ls,. (7.60)
combining these, we have
f-—'h =K 8~ L,E,2 0. {7.62)

To prove B, =ﬂ, from Equation 7.57 and Equation 7,62, we need fo
prove that

LiELE,, =555,
or
b or0 HECS 0 )
Substituting (7.53) into the preceding matrices gives
(B~ E, B0, BB = BBl (BBl )-
Multiplying the matrices leads to an identity
PR o T R - %

Equation 7,63 furnishes our proof for B, =Pr-
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CHAPTER 8

e =

portfolio Turnover and
optimal Alpha Model

HE DELIVERED VALUE OF AN INVESTMENT PROCESS relies on two
Tpam; the theoretical value of the alpha skill (the gross paper profit)
and the cost of implementation (the unrealized paper profit). The larger
the former and the smaller the latter, the happier is the investor. Clearly,
the total assets under management influence the latter. A strategy might
be profitable with small assets under management and unprofitable with
larger assets under management; as assets grow, transaction costs grow.
Recently, Kahn and Shaffer (2005) pointed out that one remedy o “"
“size” problem is to reduce portfolio turnover. This is-a sensible sugges-
tion. However, their work is based on a hypothetical relationship between
turnover and expected alpha that might be too general to be applicable- _

In Chapter 7, we developed a framework to constructan D’ifﬁm‘] alpha
model in the absence of transaction costs (Sorensen, Qian, Schoen, Hua
2004). In this chapter, we present an analytical extension to mug::tgilplﬂ
models with portfolio turnover. In practice, many alpha models are not
‘onstructed in such an integrated framework. Typically, managers $oopt
an alpha model first (with little consideration given to t P
throw the list into an optimizer, setting turnover constraints to lnndl:u .
fansactions costs. There are two drawbacks to this B model, and
STetes difficulty in knowing the true effctivenes o the £iP82 vy
tz}e u:s does not allow managers to adjust the alpha model along 10

S€ts under management grow. e costs

Tllr Majority of imp::menlﬁion costs are mmg.: ﬁm

be exchange fees, broker commissions: ' _—

turnover) and then

i

¢
E
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impact on prices when buying or selling stocks. We shall diseyg
detail in a later chapter. In general, the trading cost varies frop, st l
stock; for a given trade size, it is lower for large liquid stocks ang hi
small illiquid stocks. On an aggrega:cd portfolio level, the tota) COst ghy
be proportional to the amount of trading or portfolio turnover. Thém
as a first step to estimate transaction costs, we shall estimate P“mblimu,:
over of different quantitative factors and their associated investmen Slnu:
gies. We then integrate both “paper” alpha as well as transaction COsts jnyg
model construction by optimizing IR under various turnover Constraiptg

The issue of portfolio turnover is closely related to the information hori
zons of forecasts. If the information horizon of a factor is short, it only pre.
dicts returns within a short period after information about factor become
known; then we need to update the information frequently and rebalanc
the portfolio, causing high portfolio turnover. On the other hand, if the
information horizon of a factor is long, it has predictive power long afies
the factor became known; we only need to update the factor and rebalance
the portfolio infrequently. The portfolio turnover associated with suchfic
tors will be low. Depending on the predictive power of different factors, e
optimal alpha model may favor one kind of factors over another kind.

In this chapter, we first examine portfolio turnover of fixed-weigh
portfolios due only to rebalance. We then present a general discussiod
about the information horizon and derive an analytical formula for pert
folio turnover conditioned on changes in forecasts.' This solution allo%s
us to estimate portfolio turnover for different quantitative alpha et
and related investment strategies. We find that portfolio turnover o
endogenous in a complete system, and factor autocorrelation is ﬂkﬂ;ﬂi'
enous ingredient. We then present an analytic framework for bﬂ‘ﬂd“"l -
optimal alpha model with turnover constraints. In the final sectiof #
chapter, we analyze the effect of bypassing small trades —a common P
tice by portfolio managers, on portfolio turnover and portfolio pefu®

8.1 _PASSIVE PORTFOLIO DRIFT b
Weights of a passive or buy-and-hold portfolio would drift P‘-‘“HW
price changes of the securities. Suppaose the portfolio weights at thE==

ning of a period are W:—(M ares ,WH) and they sum to onei€r i

_—*
Portfolio Turnover and Optima| Alpha Model u 3
"5

o, assume the returns for the period are r=(;—n..

Als . g
y for the period is

folio returr

"rﬂ] 'Thgﬂ.lhepnﬂ.

N

T ==
r_,,—w = E Wir .

The new portfolio weight is given by

“a"! :M‘ l

I = nnbeni (81)
[
Compared to the old weights, the difference for a given stock is
W 1+r, W \n—T,
Aw,=w] —w = { ]*w,= (' ’). (8.2)

l+r, I+r,,

« When the weight of a stock is positive (a long position), it is easy
to see that Aw, >0 if r;>r, and Aw; <0 if r, <r, . In other words,
the weight would drift higher (lower) if its return is higher (lower)
than the portfolio return. On the other hand, if the weight ofa stock
is negative (a short position), the opposite is true: the weight would
drift lower (higher) if its return is higher (lower) than the portfolio
return. In essence, the winning long positions get longer, whereas
the losing short positions get shorter.

Enmplt 8.1 the

For a two-stock portfolio with equal weight of 50% o li“the'lil 15%

ﬂ:[ums are 10% al‘ld 2[}%. respel:ﬁvety, The Pﬂl'tfﬂlll) I\‘.'lIlrl'l i.E o
¢ new portfolio weights are :

) 0.5(1+02)
d_ Mz.;y.g*. g =i‘£{rﬁ-——

=522%.
W
1.15

Example 8.2 : e

j'-%1"[; Javea long-short portfolio of two stocks; whose -w;lushts “ﬂn 3
(:?ﬁ. respectively, relative to capital held in c.:::m m _ ﬂﬂ‘k’
'ﬂur:sl:re 10% and 20%, mspesﬂ'l-’!l)‘wlndcﬁh s 2 porﬁ"“"l
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r, = 100%:10%+100%(~20% ) +100%- 2% = —gog

The new weights are

1 IDGE(_I-!-ID%)

i =— £=119%,
M e
L —100%(1+20%)
wy = ——————==—130%,
: 1-8%
100%(1+2%
Wiy =— [——)=111%.
; 1-8%

Note that when the portfolio return r, is small, the change in weightsis
approximately i

Awixwl(r;-rp). (83)

8.2 TURNOVER OF FIXED-WEIGHT PORTFOLIOS
For fixed-weight portfolios, we try to maintain constant portfolio weight
over time to correct the portfolio drift. The examples are equally i
stock portfolios or fixed-weight stock/bond asset allocation ann
we have shown, the weights of a portfolio would change dueto ther faed
returns of the underlying components. Therefore, to maintain the &
weights, the portfolio needs to be rebalanced periodically. - 1_13
| I
Turnover Definition L
Let us first define portfolio turnover in terms of changesin P““W T
If the targeted weights are w"™™ =(w:"",---, w:"’)‘ ,and the curreatP I, |
weights are w*" =[Wf“- i Wf.-“] , then the amount of turnoyer
move the portfolio to the targeted weights is* -

8.21

_1 3 rew o old
T3 2w
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. new weight is greater than the
If the mew welg , current m%}n' ie, w™ i
- peed 10 buy the difference w!™ —w™ 0On the uthuh;nd.;f'm:;:
eight is less than the current weight, i.e., wi™ <y we need to sel by
|y . Because the amount of buying normally offsets the

of selling, we div ide the total sum of two to obtain the one-way turnover
In practice, some use the two-way turnover, which is double the ane-way

turnover.

Example 8.3

if we replace a long-only portfolio entirely by another portfolio of new
securities, the turnover is 100% because i

T=%(Zw}"’+zwf"}=l, or 100%..

« In practice, the portfolio turnover, like other measures, is.quoted on
an annual basis. Intuitively, a portfolio with 100% turnover turns
itself over in | year. In other words its average holding period for
a stock is 1 year. A turnover of 200% implies the average holding
period is 6 months, and a turnover of 50% implies the average hold-
ing period is 2 years.

Example 8.4 ewdig R
In Example 8.1, to get back to an equally weighted portfolio, we by 2.2%
ofstock 1 and simultaneously sell 2.2% of stock 2. Thus, the one way turn-
over is 2,29, w4y o

Examples$
In Example 8.2, to get back to the original leverage ratio of 100% long.
100% short, and 1m§:cash; we sell 19% of stock 1 and buy back or cover

3“*°fstuck-z.1h¢mm1.-_ " g o - ...~1
T

be. his example, the amounts of buying
tua"“ﬁﬂimfthe : St A

D
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T= : |']q'ma19'.*::j+ll';=-i.=3f}%_
7

R Tr me answer. The general prﬂnfnf this st 2
This yields the sa 8 aumﬁ““kt
a5 an exercise.

8.2.2 Turnover due 1o Drift

For a fixed-weight port folio, the turnover is solely due to portfolip Teby)
ancing to correct the portfolio drift due to price movement. Theref
combining Equation 8.4 and Equation 8.2, we have

1 N l L

We first gain some insight by considering an equally weighted loog
only portfolio, i.e., w, =1'N . Then,

T_z[hr;'}z‘iw'_2{1+rp]~2“ o

The turnover is thus related to the average of absolute return differenss
between individual stocks and the portfolio. This is intuitive. When 3
returns are the same for all stocks, there is no drift of portfolio ’*
and therefore there is no need to rebalance. When the rﬂurnw
dispersion is large, the drift of portfolio weights is large and leads 10472
rebalancing turnover, oo 1T

We further improve our results and understanding Dfl’“ﬁ-_’ #t
over by obtaining an analytical approximation for (8.6). We assu® :
return r forms a continuous distribution, for simplicity, @ $db
bution, rr-N{F.dIJ. where r is the average return dﬂmd‘&

their dispersion. The individual stock returns r’s are samples ﬁf‘ﬂn

distribution. Then, the sample average of (8.6) is an lPFrM
expectation :

Portiolio Turnover and Optima)
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Jote he average return and the portfolio 1 it o
gme. HOWEYER for an equally weighted portiolio, we have Ft?ﬁl‘::
¢ 3

therelOTE E{ir—7; J W= T o :
.|‘lrILI mean, the expectation of its absolute value u?:Y ributed m

we have (Problem 8.2)
-4 {2
Elr=r=./°
(r-7) J; d. o

Ihe expected absolute return difference is the return dispersion ti
4 constant, Combining (8.8) and (8.7) yields the " times

weighted portfolio

14
cally.

d

TE(H?}E' 839)

The turnover for rebalancing the drift is directly proportional to the
cross-sectional dispersion of stock returns during the rebalancing period.
Furthermore, the turnover is inversely related to the average return of
stocks: higher (lower) returns lead to lower (higher) turnover. m
the effect tends to be small unless the average return is significantly posi-

tive or negative.

Example 8.6 o]
Suppose the average stock return is 2% and the dispersion is 15% for 3-
Month period, then the turnover for a quarterly rebalanced of an equally
weighted portfolio is about 5,9%. The annual turnover would be 23.3%.

823 More Results on Rebalance Tumover _
Most portfolios encountered in practice are not equally weighted. Thelf
W“WMonlymbﬂ'mhm'mmm = N
Tturns of mogt portfolios mmmﬂfﬂmﬁm -

;"'::- We shall generalize Mumm

rurnover of more
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weights and the subsequent returns. However., this positive conely
. For portf o
fixed weights, thisisa reasonable assumption, When the weight

typically small and the etfect on turnover is negligible,

£ and

returns are i,-,,JL,I:L-|1L|,_-n1, we recast I-'_¢1|L|.-|l'|nn 8.5 as an “"P‘L'Clilliun
of

product of two terms, which can be written as a product of tw
dent expectations, i.¢.,

= e i 2t ) gyl

N

| S
Sl )E{wﬂﬂy-ﬂj— i f%k-gn

.'!{I-l r _.3!|:I+ar‘1

The expectation of the absolute value of weight is just the averageofhe
absolute weights. For long-only portfolios, the weights are all positive, and

the sumis 1, For long-short portfolios, the sum of absolute weights equats
to portiolio leverage L. Hence,

’L:_'l_([i‘.r )EUJ"—FF:) {ﬂ.HI

» With L = 1 for long-only portfolios, Equation 8.11 is upp"ﬂu‘h
both long-only and long-short portfolios. The turnover s, there!
directly proportional to the portfolio leverage. If a P‘Ul’tfﬂlin-l‘im
long and 25% short, the leverage is 150%. Therefore, the ¢

turnover would be 50% higher than a long-only portfolio with 3%
lar characteristics.

etk
When the average stock return 7 differs from the portfoﬂﬂ eetut® ¥

The
the expectation in (8.11) can still be derived using special functior®

derivation is given as an exercise (Problem 8.3). Using the l‘."“n"#

" oy

m
Miog

0 i“d‘hl
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i (8.12), Ar=n,=T is the difference between the
he average stock n.‘ll.l!'n. L is the leverage of the
cross-sectit nal dispersion of the stock returns.

A notable difference between (8.12) and (8.9) is that any difference
petween the portfolio return and the average return contributes to hi
wrnover. The magnitude of the turnover increase depends on the ratio
of the return difference to the stock-return dispersion, When the catio s
¢mall, the increase in turnover is small. However, when the ratio is high,
the increase in turnover could be significant. Thus, portfolios that either
underperform or outperform the market average require higher turnover
1o rebalance to the original weights than a portfolio with average return.

portfolio, and d is the

8.3 TURNOVER DUE TO FORECAST CHANGE

So far, our results on rebalance turnover are derived for portfolios with
fixed weights. Although these portfolios are not indexed portfolio, they
are not actively managed either, and they tend to have low turnover com-
pared to actively managed portfolios. For active portfolios that are actively
managed with an alpha model, it is reasonable to assume that most of the
portfolio turnover is caused by changes in the model forecasts, whereas
portfolio drift plays a secondary role. Trading a portfolio according to the
new model forecasts raises the expected return of the portfolio but also
incurs transaction costs associated with portfolio turnover. Itis important
for managers to balance this trade-off. To do that, we need to know how
much turnover is induced by forecast changes.

Consider turnover IIWEI‘); single trading period, in ""l_'i':h the “ﬁf:e
weights change from w! to wi"' . We assume the new active \nteighwﬁﬁ;‘
tach security result from an unconstrained mean-variance op mm;ar e
based on residual return and residual risk, respectively, at time {38
(from Chapter 4):

il

o LE w”t=-1"§:" A
T e e A G

) 5 city, we

E'and B are risk-adjusted forecasts at tand [+ p?.:m&zmnuibﬂ

u:‘"“ assumed all stock-specific risks remain & tant the targeted tracking

Stocks remaing unchanged. If we hold const#: parmﬂﬂ is given

‘;;l'nr Cua for the portfolio, then the risk-a

_‘
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JN=1dis(F') _ v’ﬁdis[@_I )

) yand A -
Gllllhlr! [a.]“

t
Gll:m[ul

Substituting (8.14) into (8.13) gives

w' = O model fll Wit = G"*.t'-!."_ ‘.i:m
=19 N1 13

in which F' and "' are now standardized with disgﬁ'}:]l dis[ﬁmlﬂ
In other words, they are merely z-scores. Note the fo lowing; :

» During the period from f to f+ 1, the active weight would change
to W, due to price movement, and turnover arises when we rebyl
ance portfolio weights from W/ to w!"'. For the following caleuls
tion, we ignore the weight drift and calculate turnover solely dugto
forecast changes. In most cases, this is an excellent approximatione

portfolio turnover, because the majority of the turnover is createdby
changes in the forecasts,

The portfalio turnover caused by forecast changes, according to defia
tion (8.4), is

N N |prel _pr .

T= I_ZI Pt sl o Bt Grnndz[ E: i.l ‘,&ﬂ
W, Wij= — .

i 2IN-14 o,

IL is apparent that the turnover is linearly proportional to the tan
tracking error.

The most difficult aspect of analyzing turnover is d.-.alingwkhd"‘z
lute value function. Our way to solve this problem is to app '
turnover in Equation 8.16 as the expectation of the absolute .
two continuous variables that underlie two sets of forecasts. WG-MI :
on standard statistical theory to evaluate various mﬁﬂm-_ .

end, we rewrite (8.16) as i ‘t.
- r &
r e < =il _ P [ il
Ol 1| [IE=E]] e
2 N o.‘ o 2 U | .

i=i

_—ﬁ
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to evaluate the expectation,
uu-ncd [orecast and the stock-
2Jo-(ILE RS "
risk (.17) can be writlen as

(i oider we assume that the changes in the

specific risk are independent, There.

[ore

r-oms gl 1)

2 (8.18)

The second expectation can be evaluated as the average of the recip-
cocals of specific risks. It is immediately clear that the higher the specific
risks, the lower the turnover. To evaluate the first expectation, we note that
both sets of forecasts have a standard deviation of 1. We further assume
they form a bivariate normal distribution with mean 0, and the cross-sec-
l'mrlnﬂ correlation between the two sets of consecutive forecasts is pju'IhEs
is simply the lag 1 autocorrelation of the risk-adjusted forecasts. When the
forecast autocorrelation is high, then the change in forecasts is minimal,
and the turnover should be low. Conversely, if the forecast autocorrela-
tion is low, then the forecast change is significant, and the turnover will
be high.

Because both forecasts are normally distributed, the change P -F Is:

stilla normal distribution with 0 meanand standard deviation ._2(1'91) i
We have (Problem 8.2)

E(i Frol n =i\%§ , (8.19)

Substituting (8.19) into (8.18) yields
4 \E‘-"w 1_I;...’,:E_[.';’.]. 8.20)
Equation 8,2 represents our solution for the hﬂfﬁ‘;‘:dﬁm

*N Unconstrained long-short portfolio.” It
"¢ Wmover s higher:

" The higher the tracking error B
B erl ) mﬂtdﬂ!'
The larger the number of stocks (proportional to the 4 .



244 = Quantitative Equity P rtfolio Managemen)

« The lower the I'nruc-.xtc! m_zlumrrclulmn (crtis;i:stfctiunal COTraa
between the consecutive forecasts), p, ='.‘-Urr( Frl Sy,

« The lower the average stock-specific risk

It confirms our intuitions regarding the impact of target tract:
error and cross-sectional correlation between forecasts o the tury
In addition, Equation 8.20 indicates that turnover js PTOpOrtiong|
both the square root of N and the targeted tracking error. -‘ift‘nrdi:u
to the results of Chapter 4, the paper excess return of a I""ng'shﬂﬂpo;
folio is similarly proportional to the square root of breadth gr Nand
the target tracking error, This would imply the net expected return gy,
behaves as such.

Example 8.6
When stock-specific risks are the same for all stocks and equals gy, fe
turnover is reduced to

Na
T= el “ =, . [lﬂ]
J; G, Py

For a long-short portfolio with N =500, 6, =5%. 0, =30, an
Py =039, the one-time turnover would be

500 5%
T= [ 22 % oo =eatl
ERPTTE kil

The forecast autocorrelation p ; =corr[ F'*"',F') is most relevant ﬁ’&:
analysis of turnover. There is considerable intuition behind this: if g
were perfect correlation between the forecasts, then the weightsar® .'ﬁ

cal, and there is no turnover. When the correlation is not pﬂlfﬂ%
be turnover, and at the other extreme: Turnover will beat the F’“w
if the correlation is ~1. In this case, all weights flip signs.'andmf:;nw
reverses itself. The dependence of turniover on the forecast e #
is th h functi i ‘e i 1 We
rough function (j1-p, , which is plotted in Figure 8:1- Y= ¢
that the turnover is a decreasing function of forecast autocorr® il
function behaves close to a linear function for most of the ol
e

e -
drops more precipitously when p  is greater than 0.8. ol ',r

‘
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FIGURE 8.1. The dependence of turnover on the forecast autocorrelation.

8.3.1 Leverage and Turnover

Portfolio turnover is also a function of leverage: the higher the leverage,
the higher the turnover. To derive the relationship between the two, we
first obtain an analytic expression for the leverage. We have

N a N F,,

: (8.22)
=, JN E[J—f:‘l = O el JEE(!E“; E[é] |

. - Fll=J2'r.
Because F* s a standard normal variable, we have E(I‘F‘U Jz—’_

Thﬂ’l!fﬂ-re,
! 1
L= Eﬂa,ﬂﬁ[ ;].‘
n

i i . the square
Portfolig leverage is proportional to the target mc_iuns.umr i
SN - : f specific risks. Combining
{8 +and the average of the reclpmﬂf o

“23) and (8.20) yields
> LEE-I"PJ

(8.23)
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The turnover is directly proportional to the leverage. However :
: +Dg
tollowing: 16 the

« Because the turnover is proportional to leverage, it is certain
transaction costs will increase linearly with Im'i:rnge_ Bor E!Ia:
a market-neutral long-short portfolio with 4:] levt:ragg (200%
and 200% short) would have twice as much turnover g5 3 portfol,
with 2:1 leverage (100% long and 100% short).

8.3.2 Forecast Autocorrelations of Quantitative Factors

Table 8.1 shows the serial autocorrelation of a select group of quantits.
tive factors. These factors are risk-adjusted, and we have neutralized 3
their exposures to the BARRA risk factors in the USE3 risk model, The
details are given in Chapter 5. We report the average forecast autocorrels-
tions between quarterly data. These factors fall into three broad categories
momentum, value, and quality. We observe that value factors, in genenl
have the highest forecast autocorrelation and thus the lowest turnover
Among the three value factors listed, the cash flow factor has the lowst
autocorrelation, whereas the book-to-price and earning-to-price have very
high autocorrelations,

The momentum factors have the lowest forecast autocorrelation, this
the highest turnover. Interestingly, the long-term growth revision hasd
very low autocorrelation, implying a short-term investment horizon fo¢
the factor. The 9-month price momentum factor and the 9-month earnité
momentum factor have the same level of autocorrelation, around 04,
also note that for price momentum factors, the autocorrelation i
as the time window used for return calculation lengthens up 1 12

TABLE 8.1 Summary Statistics of Forecast
Autocorrelation of Quantitative Factors

Category Factors A‘U’l(ﬂ, )
Momentum EarnRev® 0.64
Ret9Monx] 0.60
LigRevo 0.37
Value E2PFY0 0'95__
B2P 0.9
CFO2EV 0.5
Quality RNOA 0.89
NCOine L

™
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herefore, On€ should use alonger time window 1o mieasur

| A
objective is to reduce turnover.

if the
Ile':t' quality factors have autocorrelations between that of value and
momentum factors. Return on net operating assets (RNOA) has an ao-
orelation 0f 0.89, w}_!,f.-reas external financing (XF) has an autocorrelation
of 0.76. The accrual factor or increase in net noncurrent assets NCOinc,
has an autocorrelation of 0.80,

¢ price momen.

g4 TURNOVER OF COMPOSITE FORECASTS

The _pn-ucding sections provide the relationship between the forecast-
induced turnover and the forecast autocorrelation. Most alpha models
consist of multiple factors. Therefore, to analyze turnover of a composite
model, we start from the autocorrelation of composite forecasts, which
depends on the autocorrelations of individual factors, as well as cross-
correlation of different factors. By changing the model weights of the
composite forecast, we not only change the information ratio (IR) of the
composite forecast but also its autocorrelation and turnover. We shall
study the autocorrelation here and later integrate it into the amalysis of
optimal information ratio.

84.1 Two-Factor Composite A
In a two-factor case, the composite forecasts are linear m'l\b“':::“
E=v,F +v.E,, in which both F, and F, are standardized and ¥, anc;
are weights, The autocorrelation of the composite factor is

ot ol =
cov(E B ) =vipia +vips” R i iy
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. a - . - = e ha"'e f=ie
is serial autocorrelation of the same factor. If we haye s o =5
o p 24y 7 (]

cross-correlation between two diflerent factors. Hepge the gy
e ay

where p.**' is the correlation between F' and F'*! If w

tion of the composite factor is

-|p!'.p;!.'-l + r-:'p;-[-I +, 1“. {p:-’ &l + pl‘,;ﬂ)

e b O, TR T :
Vi + Vi +2vvipy (825

» The autocorrelation of the composite factor depends op W
' : - i
well as serial auto- and cross-correlation of factors

e It can pe
that the autocorrelation of the composite factor will be high i the
i

two factors have high serial auto- and cross-correlation, but jay
temporaneous correlation. This would imply =

‘ R lower portfolig yyp,
over for the composite forecast.

Example 8.7
Suppose the serial autocorrelations of two factors are Pl =08 and
tr+l _ sl : 11+
Pz =039, the serial cross-correlations are pi{” =0.6 and pL =06,
the contemporaneous correlation pi; =0.5, then,

_ 0.8v] +0.9v +1.2vv,

Py

3 3
VitV vy

For an equally weighted composite factor v, =v, =0.5, the serial autr
correlation is 0.97, which is higher than both individual autocorrelations
All the correlation coefficients can be put into a single correlation
matrix — the correlation matrix for the stacked vector (F;’"-Pi""ﬁ EJ

B2 p e p

c=Rlles 1 g gl ¥
Bolei e a1 e |
BONeE" pgv g 1

We shall make use of this correlation matrix later in the d"l’:‘ﬁ

we formulate the problem of optimizing IR under constraint of port i
turnover constraint. The correlation matrix must be positive detis

general. Therefore, all correlations are not independent. |;:|

r
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We shall assume _1h|: forecasts have Stat'lnnary cortelat

_ i ion g
«uch that Py Pi Ticture,

S serial Autocorrelation of Moving -‘\Verages

\hen a time seTies signa? is volatile, it can be smoothed USing some types of
noving aVErages. In our Ir:fmework. moving averages canalso be thought of
1 composite factors —a linear combination of new and past information.
A natural question s, “why would we use outdated information in the fore.
._'.!.?-LQE" One tends to think that a forecast based on thcmnstreugm informa-
ion is hetter than the lagged forecast, in terms of more predictive power for
subsequent returns, i.e., better IC or better IR. This may be true. However,
if the market is not efficient, then there is no reason to believe that the inef-
ficiency could only be exploited with the most recent information.

A second and more pertinent reason to use lagged forecast is that mov-
ing averages lead to higher serial autocorrelation and thus lower turn-
over. Despite possible information decay of lagged forecasts, the trade-off
between lost paper profit and saving in transaction cost can lead us to
include the lagged forecasts in the composite model.

We analyze the moving averages of forecasts in the same way as we
analyzed composite forecasts. Given forecast series (F‘ B .F"l.---). we
form a moving average of order L as ;

1=1
F‘“ = Z"’IF'-' . m
=0

‘ For instance, if L=2 then E.= s’,,F-' +le'" . The serial autocorrela-
ton of K, is given by

s cm'(v,l" + P,F'".v.,l"" 'H‘fj

Pre m(v,!"' +‘v,F"‘j. » @)
Va¥y +(“'§ +¥ )p’j (IJ+ x,v,p,_(ﬂ
i v§+l’f+1"u"vp'!(t} -
R of B with
hs:"’ use p, (i) to demthe@tﬁﬂ-lummfﬁ'm_:cw _
pu:nd p,(0)=1. . _a {i}’hulﬂpmdﬂiﬂ
of (g Biven the serial autocorrelations Pyl """ he correlation

31)is a function of the weights, ¥, and ¥y BEtEs
] .

- |-'.

1 [} II. =

1

e e —
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FIGURE 8.2. Serial autocorrelation of forecast moving average with | =1
and p,(1)=090, andp,(2)=081.

is invariant to a scalar, we assume v, +v, =1. Figure 8.2 shows a casefn
which the serial autocorrelation of the moving average is higher than the
serial autocorrelation of the forecast itself. Therefore, using moving aver
ages within an alpha model would reduce portfolio turnover. Figure82
plots the correlation of (8.31) as a function v, — the weight of the laggel
forecast for p, (1)=090, p, (2)=0.81. When v, =0, the moving avera¢
is identical to the origina) forecast, so the serial autocorrelation is 09.4 |
v, increases, the lagged forecast is added to the moving average, the serd
autocorrelation of E/, increases; it reaches a maximum of 0.95 at % =%
when the terms are equally weighted. As v, changes from 0.5 10 L
autocorrelation declines from the maximum to 0.9.

Inclusion of lagged forecast would increase the serial autocﬂff'm::
as long as Pr(-’-) is above a certain threshold, When p;(ZJ is belo ™
threshold, the moving average would actually have a lower serial autoe®

H:latil:ll‘l ill'ld [hus hlgher turngveh The ‘.ralue 'Df ‘he thrﬂs}“}[d is H’
8.7)

o, (2)=2[p, (1] -1 o

For example, when Py [ I)=0.90 s the threshold for p; {3) A aﬂwﬁ
Pr(1)=0.8, the threshold for Py (2) is only 0.28, These an®
ily exceeded for most factors encountered  in practice. Thus, &) o
concluded in general that using moving averages of forecas ,muld_ .
the serial autocorrelation and reduce portfolio turnover. =

‘1 &1

7"
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: composites of Moving Averages
g3 o

most gcncral composite model would include m
ple factors. Putting the previous two sections to
scorrelation of composites of moy

The oving averages of
multi . gether, we analyze
the aul ) R : 1ng averages. The new compos-
s have tWO dimensions of inclusion: factor dimension and time dimen.

Jon Assuming there are M factors, each of which hasa moving average of
] o L -

sder L, we write the composite as

’ :

M L=
f = -l
e d S
b=l =)

(8.33)

An intuitive way to construct (8.33) is through a two-step process: The
first step is to form a moving average for ¢ach factor, and the second step
is to combine all moving averages together. For expository clarity, we con-
sider the case of two factors and one lag, i.e.,

E . =V F +vgF +v,F +v B (8.34)

It is still possible to calculate the serial autocorrelation of (8.34) alge-
braically as in the previous two cases, but the expression is more cum-
bersome. The autocorrelation can be written succinctly in terms °[
matrix multiplication. To this end, we denote the weights in (3.34) as 2

i stacked wvector
Ve Wy Vn) . We consider the s

Vector, v= Vii
{FJ".FJ" B S 0 R ) and denote its correlation matrixas

g |
(1 o o o o A
ol 1 el o A P
(] - 3 35)
c=B [oil o TR R L;;. (8.33)
B [l -pl S eusipii B
= 2 w h '
B lloit o3t mf A L "’;J
E'0\oi o 3 Pm P2
I : . [get pe*). We next denote the
Ss € Matrix, the element is Pl =cor (B‘M’P":,L the 4x4 matrixin

thg 4 mall‘ix in the upper-lﬂ& mm[nfc as Gl-
PPet-right corrier of G as Dy b€

e
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0.1 1,0 1.0 .
:l. : P P: ] P::ﬂ _gifferent return hnrl.zons such as one month, three months, or
Con P2 ’ Pn Pa :;e;eaﬁt‘f called the horizon IC. These two ICs are interrelated, as the fo
= . Lo . y e d s, ] -
P Pa 1 Pir |owing analysis Shows

P P2 P 1
8.5.1 Lagged IC

pid it il g3 (8.3 we denote the IC as the cm‘.ss-seclinna[correlatinn coefficient between the
ol g pl pr e factor value at the stotf of time ra-nd the security return over time period
o pl  p  plf e J 5 = .:urr[Fr R, ] . Consider this the standard IC measure. An example
0.0 Lo Lo i« the first quarter return IC. The factor values are observed December 31,
e [ e b 1nd the return period is January to March.
The lagged IC is the correlation coefficient between time t factor
Then, the variance of E,, is I values and a later period (lagged 1, 2, or more quarters) return vector,
ICicr =corr(Fr.R,.,]. with lag L. For example, using factor readings on
var (Fr'_w):v'-(:_‘ ‘v (837 December 31, we can correlate lagged returns for later periods (second
quarter ([ = 1]), third quarter [{=2]), and so on. The IC will typically decay
: in power as the lag increases. The decay rate differs across different types
snd Ui coveriance of factors such as momentum and value. Typically, the ICs of momentum
factors decay much faster than ICs of value factors.
coV{ElpEm )=V -D, v (83
852 Horizon IC
Therefore, the serial autocorrelation of F',,, is Another variant of the standard IC is the horizon IC. We define horizon IGI
] asthe IC of a factorata given time, f, for subsequent returns over multipe-
_V'Dyv e riod horizons. For example, if we have factor values i@hbkﬂnﬁinbﬂ
D™ v.C, v . 3, we are interested in its correlations with cumulative returns nﬂt
quarter, next two quarters, next three quarters, etc, We denote ]l:“i;m:
Equation 8.39 is the most general expression of the autocorrelationdlt the risk-adjusted cumulative returns from period ¢ to period £+, hors

2on IC and denote IC} = corr(E,, R ) 'h=n’l':".":H#th{=W}g
For example, 1! is the standard IC for the return in period f,40d Gy 2
the correlation between the factor and the return vectors over the next s
months (periods 1 and 2),

compns.ile model with multiple factors and multiple lags, from u
can derive its corresponding portfolio turnover.

8.5 INFORMATION HORIZON AND LAGGED FORECA -

The prtewuus sections show that usi ng moving averages of foreces® h;th 853 The Relationship between LEESEd Ic aﬂ'ﬁm"lc et

potential benefit of reducing portfolio turnover due to the increa* alon* Although the | + decays with the lag, the horizon ICofteR
serial autocorrelation of the forecasts, However, turnover mdud% . Wiehagged IC. typically dmi::tﬁlb- o st the cumulative
would not achieve the goal of delivering high risk-adjusted GW T 'ﬂultlperiudt fhe ].‘9“20“’ atmsl::is ] j to the single-period return
We must also study their information content in terms of the infor®” 3 YR, =(1 :e :‘m 1n the Jorfzom & J“l When the periods returnedare
coefficient of lagged forecasts, i.e., lagged IC. 1=t "Mall, iy Py :](HRH.)“-?-I-&-I _ ‘._Tn'.,,;;‘;v.-«*nﬂr!’ﬁ"ﬁ“‘”‘ -
Another way of studying the information content of 1g82d " the horizgn Icﬂ-fppmxima_ by n""r s i =
is to look at the information hotizon of a given forecast in PEFEE yields e e

Im O el

i e s
L. g} O BT =



15‘ | | Qu'}n"[a“i\‘ an'I Y ' “I-I. ik g : “w [ 1 m
3 I: % 8 % F { ”ﬁ) 8] |UI‘I Over Jnd .l |
Wit ) 5' I““,'-““-l t M t D‘Hmlm

020 i" | = —
| i . :
| | . Lariods. However, the horizon IC is e
5 - P - ventually d
g [~ . "l. jeclinIng lagged 1Cs. ragged down by
‘ . *'l ST | the ¢
0.10 & _ . 154 Horizon IC and the Trading Horizon
| I | o ‘!-i..“_- Frl'}"‘.“ itV for the horizon IC to Increase ".“ﬁa[h, with the -
et i ' S Joes not pecessarily mean tharr weican increase the total IC for a longer
o | | ! A rading horizom. Longer trading horizons allow fewer opportunities to
0 ) ! .If B 3 rchalance oF fewer chances along the time dimension. Therefore, the hori-
0.05 | [—e—LaggediC || | ) ,on 1C suffers from reduced breadth.
=4 1 1 i
{= == - Horizon IC ! J| Example 8.9

010 - L suppose both forecasts and returns are of quarterly frequency. The quar-

erly 1C has a mean of 0.1 and a standard deviation'0f 0.2. Then, the quar-
erlv IR is 0.5, and the annualized IR is 0.5V4 =1. Letus assume the lagged
{Cs with lag 1, 2, and 3 quarters all behave the same way as the regular IC,
and they are all uncorrelated. Then, according to Equation 841, the hori-
son 1C of | vear, or 4 quarters, will have a mean of 4:0.1'y4=02 and
a standard deviation of \ﬁ 0.2/ VG =0.2. Hence, the annual IR is also
| — the same as the annualized IR of quarterly trading. There is no differ-
ence in terms of the performance. Note the following:

+ This example highlights the importance of comparing horizon
ICs with different horizons on the same-horizon basis. This can be
achieved by simply comparing the horizon 1C divided by Vi1 the
square root of the horizon length. We call this the effective E-hﬂ.“
given horizon, In Example 8.9, the effective IC of the quarterly and

annual horizon are the same.

_ Even though the annualized IR of the quarterly and annual re i
8 identical in this case, the amount of Pw“b"wm:. U:mﬁm
Inthe former case, we trade four times I:'E"F.""‘rat"'ﬂwm.I m&ﬁ
O¥er is four times the quarterly turnover. In the Ithen = iy
: !"“'f- The question is, “which has less WM the

’,l s ¢asy to compare the turnover of the mvbcﬁﬂ “ﬁngm' Ni=py s
aedeatler Accordingto(8.20),theturnoveris proport des.
De ich p, is the serial autocorrelation of the fo The

Note the autocarrelation function of the forecast bY .-P" ;

T‘ﬂmrnmrhrqmnmtnmpWi? . -
I:;:nhl turnover for annual trading is prOPOrtett
neeif p (1)=09 and py(4)=09'=0% i

FIGURE 8.3. Lagged IC and horizon IC of a signal.

‘:U\.{E'Rf + R.--I +'”+Rl*-')

5 (Eis{ E )dis(R, +R PORPLT) i

(4]

"~

I

If we further assume that the risk-adjusted returns from different per
ods are uncorrelated,' then

IC,,+IC,, ., ++ -
IG =™ J;%l‘ +ICH+;‘__a‘_g(ﬂ_-)JJ':. 4l

The horizon IC is an average of lagged 1Cs times the square rootoftX
horizon length. Note that the horizon IC covers returns of multiple A
and thelagged ICscover forecasts of single intervals for future periods
pose there is no information decay in the lagged forecasts, i tblh#‘
ICs were the same as the IC with no lag, ie, IC,, =1Cua e .
Then from Equation 8.41 we have IC; =IC, ,N1+1 ‘.JIn this cases ‘Mw
zon IC is IC times the square root of the h'::rimn length, and w
increases as the horizon lengthens. ol

Even when there is information decay, the horizon IC can mﬂﬂ“’
increase with the horizon length. It would then decline as the H‘;
lengthens further and the lagged IC declines more rapidly- Figure &i‘*
ane such case, in which the initial period IC is 0.10. The la i *
with lag 1, 0.06 with lag 2, and so on, It reaches 0 with 188 3 “d elo
negative thereafier. The horizon IC increases at first. For exsmpt®

is 0.128 for returns over the next 2 periods and 0:139 for FettE

=
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FIGURE 8.4. Effective IC, effective turnover, and their ratio.

a1-p,(1)=126 and \[1-p,(4) =0.59.

Under these assumptions, the turnover of annual trading is less thar
half the turnover of quarterly trading.

We define a ratio of effective IC to effective turnover for a given horite
as

Gy ae Effective IC
ST Effective Turnover

Ic/\ier _ Icl+t

,-/lnp(fﬂ)f(_;:i-m

The effective IC is adjusted for trading opportunity, and the effec?®
turnover is the turnover per unit period.

, e
Figure 8.4 plots the effective IC based on the data in Figure™ '-T

(847

declines linearly as the horizon extends, We also plotthe effective

: . h)s F[l)
assuming the autocorrelation function of the forecast 1% P( g
and p(1)=09. The effective turnover drops rather rapidly =

a‘ﬂ')
then declines steadily as the horizon extends further. As@ hpt:

turnover ratio (scale on the right axis) first increases as the I
zon extends from one quarter to the second and third quartﬂ'__'#d!

starls to decrease as the horizon extends beyond four ,:Fmtﬂﬁ' 2y
following: 1l

-
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The effective i(I.-‘tlurnm'cr ratio provides one convenient way to esti-

" pate the trade-off between paper alpha and trading cost for differem
\rading horizons, once the horizon IC and the autocorrelations of the
forecast are calculated. We caution that in practice, one should not
e it to obtain the optimal rebalance horizon. The ratio itself doesn't
reflect the true economic benefit or cost. In practice, the rebalance
horizon is often determined by. the flow of market and company
information (e.g., see Chapter 10).

86 OPTIMAL ALPHA MODEL UNDER
TURNOVER CONSTRAINTS

m;ﬁ}-scs on the portfolio turnover due to fntw.tst char}gr and on
lagged and horizon ICs provide the foundation for building optimal alpha
models under a turnover constraint, The key insight is that one shm:lld use
lagged forecasts as part of an alpha model, even if the lagged ICs‘mlghtbe
weaker than the current ICs, because including lagged forecasts increases
forecast autocorrelation and thus lowers the portfolio turnover. :

The trade-off between the lagged IC and the forecast autocorrelation
determines how much weight an alpha model has in the lagged forecasts.
For instance, value factors often have little information a;d:;ly — the past
information is as good as new. In this case, we can
weights to the ]ag:Ed value factors. On the other hand, mmu:ad ﬁ:
tors tend to lose their luster after a couple of periods. meﬂ:ge o
update them more frequently, and hence assign less weight to the
momentum factors.

The constrained optimization, however, lacks A : lﬂ
Therefore, we use a numerical solution to derive optimal weigh
lactor model,

861 Constrained Optimization

FDI' Expnsitqr? clar“y’ we agam cmsi{]ﬁr the :
l:e lag, The following equation (same as E‘I“’::: their values
p P2 model based on the two fcton S ey, composite
i;;\; Yol +vy ) +v, R~ +vyF |« The autocol i

a by Equation 8.39

8.34) would

, p,ﬁ oL
F L—-i'_'i L
Plom = ¥7-Co¥ ;

*
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where the matrices C, and D, are defined in (8.36). we sha

turnover constraint as an equality constraint on the f‘-‘rﬂ:nst]::x: (A) Aaverage 1€

tion, because we have proven forecast-induced turnover jg 4 fum:'mh 5 —

p; - provided the target tracking error, the number of Stocks, l:iﬂu : J— R

stock-specific risks are given. the T B e \
The objective is to maximize the IR of the alpha model, which is 006 L= - Av(IC E2P)|

imated by the ratio of average IC to the standard deviation of IC, p
the average IC ole'.F_f.F."" . 38 ') by IC and the IC coy,

H S e

driance matri b 04 e
AR . o T N e S LR S

., the optimization problem is LR
] 002
b v':1C
Maximize: IR = — \
NV v : ;

(8.4 0o L —
v'D, v

5 b Ij = 1
5L }t!l.‘t to: S———=n

The target autocorrelation is denoted by p,, which we shall vary s
different optimization runs. The autocorrelation constraint is quadratic
in nature. Thus, (8.43) is a nonlinear optimization with a quadratic con
straint, which does not seem to have an analytic solution. However, L8 (B) Standard Deviation of IC
easy to solve with numerical means, and we shall do so in the following 012
example. We note that the problem can be extended to include morefi l

tors and multiple lags, \
009

1 ¥ - w
We present a numerical example of an optimal alpha model with [mll.li : D06 o T e -l e -
constraint, using two factors. The first factor mimics a momenptum =
in that the IR is high with no lag but decays quickly over time and 8745

on the 9-month price momentum excluding the last month mﬂgmm:i - '-—:._- i:i:g:::gl’_’/’/

The second factor mimics a value factor in that the IR starts 0ut h“;,w

decreases very slowly as the lag increases and is based on the mmbw' S : _—__-——___—_—.—_—3

price ratio of the current fiscal year (E2PFY0) on a sectﬂf'rdaﬂ“ det o 1 ' -
Figure 8.5 depicts their behavior in terms of average IC, Mﬁﬂ’

ation of IC, and IR. We use PM to denote the price momenmmw

and E2P to denote the earning yield factor. These sample ‘95 i;lmeﬁ
from the universe of Russell 3000 stocks from 1987 to 2004 *% (g

L 4

8.6.2 A Numerical Example: The Inputs

- Lag

HGUIEH 5. Ave X rd dﬂtﬂﬂﬂn . . (a) average
g 5. Average IC, standard de , factors: (a) averdg
extends to 3 lags, which, with quarterly data, corresponds t0 o et "‘c‘:'ﬂmmm and earning yield factor and *ﬁj:c!w :
3 quarters or 9 months ago. From Figure 8.5a, we observe thl#n M | (b) standargd devigtion of 1G> and (o) IR of IC.
IC of the momentum factor is high when there is no lag but I£< i

P

"

-l

of1C and IR lr‘:!""1."_ Wﬂ



ative Equity Portfalio Management

260 = Qu,‘ll"llll
(C) IR of IC
150 |.-————______ el —_—_‘__‘_-_--_‘—h‘*\
|
A |
——_-\M__J
-.--'-.-‘-. |

ol \
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2 The IC Correlation Matr ,

TABLE " Momentum and Eaminsljil';j;‘?i::rmd i Vi forthe Price

— pPM 0 E2P 0 PM_1 E2P_1 PM 2 Ep 2 PM3 E2p
B0 1.00 -0.42 0.86 037 D78 p2s 0.6] 3
gap 0 -0.42 1.00 -0.44 092  .p3 0.84 -0‘19 -:;:
- 0,86 =044 LO0  -045 DBE 35 071 -030
gap| =0.37 0.92 =045 100 -0.33 0.94 -ﬂJﬂ D.sﬁ
M2 0,78 -0.31 D88 033 L00  -028 023 -0
E2p_2 -0.26 084 -036 094 028 100 038 - ose
M 3 0,61 -0.29 071 -030 083 -0z LO0  -030
WS 019 078 030 086 02 0% 0% |00

--= - |R_E2P

0.60 B -
—é—IR_ M
0.30

pon L :

Lag

FIGURE 8.5 (continued).

linearly with a rapid rate. When the lag reaches three, the lagged IC¥
essentially zero, i.e., the momentum factor 9 months ago has no informs
t_icln for next quarter's returns. In contrast, the average IC of the value
!_acmr is lower when there is no lag, but it only drops slightly when the b
s ong and remains at the same level as the lag increases further. There s
little information decay for this value factor, and this remains true W
:::;igirf:’:‘fb?“""d three, l:.)ur example illustrates the drastically i
o ml. ; 1nfarm.at|:::n content of these two factors. Figur® 4
st ndard deviations of ICs are relatively stable with mpﬁ“
g for both factors, However, the standard deviation ofIC isluBI:; e

th i
€ momentum factor, Figure 8.5¢ plots the annualized IR in tef?

ratio of average IC 1o the
o tand: iati g
the pattern of average ICIS andard deviation of IC. As expected:

Figure 8.5 show feam 3
5 shows that both | fom’
6. a0d 9 months 4g5, 41) factors with current value, values = 0.

, e 068
months. Thys, with twg e predictability for returns Vet WM

factﬂrs and hﬂ eishl', o
sources of nd three lags, we have .
the ICy of :;Pdlza: 1o compute the IR of a composite model, m‘dﬂ
them. Table 5 ;:dua! components, we also need IC correlationd M
mh!cr"m;dpr::wd“ the correlation matrix of the eight alph* ﬂ ¥
mbendenotelagx.ﬁaw: noted in the last €h®=

momentum factor and value factors tend to have a negative IC correlation,
afact again reflected in the table. For instance, the ICsof PM_0 and E2P 0
have a correlation of —0.42, indicating significant diversification benefir.
The diversification extends to the ICs of the lagged forecasts. For example,
the ICs of PM_I and E2P_I have a correlation of —-0.45, and the ICs of
PM_0 and E2P_1 have a correlation of —0.37 . The IC correlations among
the same factors but of different lags are high, indicating less diversifica-
tion of information. However, note that the correlation drops as the time
span increases between the forecasts, For instance, for the PM factor, the
correlation is 0.86 between PM_0 and PM_1, 0.78 between PM_0 and
PM_2, and 0.61 between PM_0 and PM_3. For the value factor, the cor-
relations are even higher, 0,92 between E2P_0 and E2P_1, 0.84 between
E2P_0 and E2P_2, and 0.78 between E2P_0.and E2P_3,

To compute the autocorrelation of a composite factor, we need to
specify the factor correlation matrix between factors of different Iags.
e, the matrix C, It is displayed in Table 8.3. Notice there are four lags in
Table 8.3, This is because we need to consider autocorrelation (with one
lag) of forecasts that are made of factors of three lags. We note o

Telatjg, or having different lags are high, with E2P
_~20ns among the same factor having high serial autocorrelation of

Top Nearly to zero, These values indicate that the PM factor :

:h " Wrnover than the value factor, even though its IR e m#ﬂ‘ﬂ
1€ the correlations between PM and E2P of difierent 146 &
*gnificantly different from their IC correlations:
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The Factor Correlation Matrix of Current and Lagped Valyes Gt
Momentum and Earning Yield Factor Pice

oML 0 E2p.0 PM_I E2P_1 PM 2 E2P 2 P“—"m
I < By

TABLE 8.3

PM_0 {00 -008 068 000 040 005 009 008 g fig
Ezp-_u 008 100 -009 094 -006 084 001 073 gq "
PM_I 068 -009 100 -0.08 0.68 000 040 005 gg M:
E2p1 000 094 -008 100 -0.09 094 -0.06 084 g i
PM2 040 -006 068 -009 100 -008 068 000 qu 0t
F2p 2 005 084 D00 0.94 -0.08 .00 -0.09 0.94 -0.06 s
PM 3 009 001 040 -006 068 -0.09 100 -D.08 (g 000
F2p3 008 073 005 084 000 094 -008 100 -009 gy
PM.4 007 003 009 001 040 -006 068 -009 100 -
E2P4 009 061 008 073 005 084 000 094 -008 1

TABLE 8.4 The Optimal Weights of the Composite Model for Different Levels
of Autocorrelation and Their Optimal IR

p, IR PMO E2P.0 PM_1 E2P_1 PM_2 E2P 2 PM3 EX}
]
085 230 45%  55% 0% 0% 0% 0% 0% 0%
086 233 43%  57% 0% 0% 0% 0% 0% 0%
087 236 1%  59% 0% 0% 0% 0% 0% 0%
088 238 9% 6% 0% 0% 0% 0% 0% O
089 239 36% 6% O% 0% 0% 0% 0% O
050 238 3%  es% 0% 0% 0% o
091 237 % 65% 4% o% 0% 0% om OW
052 236 28% es% 74 0% 0% 0% 0% 0
UD.:: 233 4% 6% 10% 0% 0% 0% 0% ::
M2 u% s g% 4% 0% 1% 0%
09 3 %
u.- > 23 18% 50% 12%, 8% 0% 4% 0% o
M 209 sk 3% 1w jos . 2% 7% 2N
097 | "y
B N% % e%  waw osw  nx W=
N
8.6, - -
G.b 3 A Numerical Example: The Results ' o
iven the in N r a seried”
s puts, We.miw. the optimization problem (8.43) for !; W
relation of;:? rrelations, ranging from 0.85 to 0,97, Note that the ,pdv‘
weights for 15 0.68, and the autocorrelation of E2P is 0.94. The - anl
i each autocorrelation target ith the €975
_ together wi :
Inﬂ lRIlc‘prmmed in T:!hlc 8.4. B p"r ge ".1 S

fro 7 Boes from 0,85 to 0.97, the optimal TR AT 1 p gh
Om 2,30 16 2.39 ang then decreases to 1.88 w:P; Py M%

1 When the autocorrelation is at 0,89 and the optio®! i

(= S
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The Aggregated Optimal Weights of the Composite Model with

TABI.‘E 8. Autocorrelation Targets and Associated [Rs
R PM E2P W, W, w, w,
p'. 20 45% 55% 100% 0% 0% 0%
0 g 43% 57% 100% 0% 0% 0%
O s 41% 59% 100% 0% 0% 0%
'”3; a4 39% 61% 100% 0% 0% 0%
E::-.' 219 36% 64%  100% 0% 0% 0%
g 238 35% 65% 98% 1 0% 0%
P 35% 65% 96% 4% 0% 0%
o9 236 35% 65% 93% 7% 0% 0%
093 233 3% 66% 88% 10% 0% 1%
0o 228 33% 67% 79% 15% 1% 4%
0gs 221 30% 70% 68% 20% 4% 8%
(.96 2.09 30% 70% 37% 21% 9% 13%
097 1.88 28% 2% 42% 23% 16% 19%

are 36% PM_0 and 64% E2P_0 with no lagged factors. We remark that
this is the unconstrained model because it has the maximum IR. When
the autocorrelation target is below 0.9, optimal weights do not contain any
lagged factors. When the autocorrelation target is at 0.9 and above, the
lagged factors join the optimal model, whereas the weights of PM_0 and of
F!FJ] decline, PM_1 is the first lagged forecast to get into the model, and
is followed by E2P_1, E2P_2, and E2P_3. The other two lagged-momen-
m factors, PM_2 and PM_3, never obtain any significant weight in the
;mde], This is consistent with the information input, because PM_2 and
M.3 have both low IC and low autocorrelation with PM_0. In contrast,
Ef P factors have consistent IC and high autocorrelation. :
ﬂrai:,alm assess the aggregated effect of forecast autocorrelation con-
into p;lm the factor level and on individual lags. We aggregate TaNe 8.4
Table g 5and E2P and into lags of 0, 1, 2, and 3, and show the result:s in
- We see that as p; increases from 0.85 to 0.97, the PM weight
2, % from 45 to 28%, whereas the E2P weight increases from 55 to
8 lnm:;:.. hile, the weight with no lag decreases from 100 to 42%, offset
ind, th &m the weights of the lagged factors, first, factors with one lag
*13ctors with two and three lags. However, note the following:
mﬂ"‘f" .th“ maximum IR occurs when p; isat 0.89 and thg asso-
IR gegy 7 mal model weights include no lagged factors, the model
es very little as Py increases. For example, when py isat
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0.93, the model TR s 2.33 vs, the maximum of 2,39, The

in the IR implies only a slight drop of the expected ilphy whlui 2
) 'ﬂl

the increase of ;11|Im'nrrt't-l1ll=“ could lead 1o much |c&s tl-lrnmq.
ang

thus less transactian cost

Tosee the effect of autocorrelation on both the IR and turnover, we ¢yl
late the latter, on an annual basis, for a long-short portfolio with N - g
target risk @, =4%, and stock-specific risk a, = 3, According |,:
{8,21). The results are graphed in Figure 8.6, First, note the extremely by
turnover when the autocorrelation is low; it is nearly 550% when [
0,89, However, the most important feature of the graph is in the differan
rates of decrease for the [R and turnover as p, increases, Mthnugh the
turnover drops consistently, the [R changes rather slowly except when the
autocorrelation reaches a very high level. Note the following

+ Because the turnover drops more rapidly than the IR, it is easy to et
that the maximum net expected return might be achieved withan
alpha model at a higher autocorrelation, not at p, =089, At highe
autocorrelations, we would be likely to include lagged factors in the
model

D S - S
—

1o p—.-l-_.;_

1%

:,TLu._“,_____‘__m . .

A A R T R

Furecast Autacorrelation

. L lﬂl
mu“;.:r':‘mn:' ::' ‘ﬂd:;urlfnlln turnover of opllmll dﬁlﬂmﬁ*‘
Wutocorrelation, The | the left axi® =
tumw«uahumtheﬁshl_“ut R scale is on _
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[he Gross Excess Return and Net Excess RHeturns under Different

TABLI h.6 [ransaction Cost Assumptions for Portlolios
Nel Return  Net Heturn  Net Return

n tuross Heturn Turnover (fh5%) (1.0%) {1.5%)
¥ 330 519% LAL LY 6.00% 281% ETY
L 9.32% 617% 6.24% 3.15% 0.07%
g 9.43% S04% 6,46% 1A% 0.52%
||r.h K 9.51% 571% 6.66% 3 40% 0.95%
046 2.9 09.55% 7% 6.81% d08W 1.35%
o 1M 9,53% 521N 6,93% £,32% L71%
aal 137 9,50 AU 7.03% 4.56%% 2.0H%
ot 236 9 A4% A6 7,11% 4TA% 245%
i .1 9.35% A14'% 7.15% A497% 2.T0%
o] 228 EARES AN T11% 5.09% L07%
195 221 8% 36N, 69K 5.14% 3.30%
9% 2104 A.135% 1300%% 6. 7 5.06% 341%
0497 | BH 7.53% ZH5% . 1O 4.68% 3.25%

Nute: N = 3000, target ridk a__, =4%, and tlm:k-gpcciﬁl: risk &= 30%.

Toexamine explicitly the trade-off between a lower IR and a lower port-
follo turnover at higher forecast autocorrelations, we compute the net
eipected return by imposing different levels of transaction costs, We assume
the transaction is a linear propartion of the portfolio turnover. For example,
50 basis points (bps) or 0.5%, a turnover of 100% would cost us 0.5% of
Jees return, and a turnover of 200% would cost us 1% of excess return.
B lst e gross returns given by the IR times the target tracking
1% turnover, and net returns with different transaction cost assumptions.
‘l'h “Xpected, the gross return is maximized at p, =089, where the

i W the maximum. However, the net return attains its maximum al
u pcr_p" When the cost is 0.5%, the maximum net return of 7.15% is
"‘ﬂmr ; 4313' '*'_htre the gross IR is 2.33 but the turnover drops to 436%

Nt “;:hls model outperforms the model with p, =0.89 by 34 bps
T :;f 5. en the transaction cost is higher at 1,0%, the maximum net
gt 4% is at p, =095, where the paper IR is 2.21 but the turn-
D =0gy o dUces 1o 369%. This model outperforms the model with
or ¥ 106 bps per year. At 1.5% cost for 100% turnover, the optimal
rn"‘“l "L return of 3,.41% would be at p, =096 . This model outper-
Mith thcﬂ'l'r::dﬂ with p, =0.89 by over 200 bps per year. Alpha models
Heory (hee "correlations would include significant weights of lagged
Able 8.4). Note the following;

7R - Ff. 0™

S —m—— p———
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+ The net return and the optimal model is sensitive to the IR 3
tion. If the IR is lower than those in the example, thep forg
level of cost, the maximum net return is achieved with Models o
even higher p; . In other words, when the information content of
factors is lower, we need to pay even more attention to reduce
folio turnover to reduce transaction costs.” This inevitably lﬂdsu;
more weight in the lagged factors, especia lly lagged value factors,

We plot in Figure 8.7 the return data: the gross return, and the -
return with three transaction cost assumptions from Table 86, The
square on each curve denotes the maximum return, As the transactipy
cost increases, the net return gets lower and lower. This is especially trye
for the left side of the return curves because of higher turnover. The right
side of the curves drops to a lesser extent because the turnover is lower. s
a result, the point of maximum net return shifts to the right. Another fes:
ture of the graph is that, when the transaction cost is high enough, opti
mal models with low autocorrelations or high turnover can have negativ
net returns. [n contrast, optimal models with high autocorrelation have3
better chance to yield positive net returns.

oo —

— =
90% = —
B0%

~
TP =3 e il ===
F.!.D'-’u'—':'-'---“ '-.',.l

>
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- SMr\L[_IEéQES AND TURNOVER
S,"'f'”’_‘_-:mim so far in this chapter assumes that all trades suggested
The Lln.sw’{- ortfolios are executed. In practice, portfolio managers often
by OPHTS pm,-n judgment when implementing portfolio trades recom-
nstl ;]1;1r” li;:iizaiiun. ‘They might alter the size of certain trades, for
oends ':1-.:.] on information about the companies not captured by the
mm::ﬂ'i; ¢;|L-\' might elect to ignore small trades based on the belief that
n;ui‘ \:nall trades would not have a meaningful impact on the portfolio
:n:i its performance. : ‘

How do small trades affect portfolio turnover and portfolio perfor-
mance? In this section, we analyze the trade-off between turnover reduc-

tion and performance impact when small trades are neglected.

§71 Alpha Exposure

Leaving small trades out reduces the alpha exposure of an optimal port-
folio. We first calculate the alpha exposure or the expected return of a full
implementation of optimal weights. It is the sum of active weights times
the forecasts, At time ¢, with optimal weights of Equation 8.13, the alpha
exposure is the sum of weight times factor value

o-$r- LSt}

ini

(8.44)

4 Note that the forecasts are not yet standardized. Substituting the risk
"“1sion parameter in (8.14) gives

o' = NG gstd(F'). (8.45)

fwe = s de .
Sume f!=1Czq,, then std(P‘ ): IC and the alpha exposure is

ot =N IC. (8.46)

Note
Rniil:a: this is the original form of the fundamental law of active
By the ! (Grinold 1989),
o g t1, the forecasts or alpha factors have changed from ff

+ Th
Crefore, the alpha exposure of the portfolio is also changed.
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t+1, the new alpha exposure iSHh

: it from t to
ming no drift from 3
Assuming d factor value at £+1:

uct of optimal weights at ran
; N ” N
af.m = ZM-'_!__F:“" - }i ;E[f—l — ;.: prstd(F! Jﬁtd(]:'*l]

= p, JT\JTG“MMStd(lF! > ) = p f v;‘?\'I_'O-l'nm.',:l E

es
l.lmpmd_ |

1 m«ﬁ

p, is simply the E'“t”"'”m'lmff"? of lh:a lrisk-adjuslted forecast. Note that g,
alpha decay or the ratio of &'**' to " is p,, which is always less than gg
S0, the alpha exposure declines in proportion to the forecast autocorrelatioy
Relating to the previous results, we note that the alpha exposure decling
slowly with value factors but rapidly with momentum factors.

We opt to analyze the alpha exposure instead of the information coeff.
cient to simplify the analysis. Equation 8.47 can also be expressed in termsf
lagged IC. The two are equivalent only if the lagged IC declines accordingio
the forecast autocorrelation. We note that this might be the case in practice.

When we reoptimize at t+1 and rebalance to form a new optimal port
folio, we regain the original exposure. In other words, after all trades, the
alpha exposure "' reverts back to o, with an increase of

Au=g™ - =[_1—P,]JEGMIC* (848
~ Thetumnover required in the rebalance, to regain the prior alphaexposit
is the turnover caused by the change in forecasts and is given in (8.20)

N 1
T H - = L
ncnmdd 1 ppE[GJ'

872 Turnover Reduction of Small Trades

If ‘ 1 b g reducti®
1 e elect to ignore small trades, it is obvious that there will bea'wd"#:

In turnover, HDW‘H‘ it ¢ will :
are interested in their i8alsolikely the alpha exposure

: respective rates of decrease. e
mE:nIs:dcr a trade-size threshold, below which trades will not b‘n!ﬂ'
= “;ﬁn other words, at time r+1, if the difference between the ne¥

ght and the old one isabove the threshold, we adopt ﬂ““":ﬂ,‘ I

We ignore the trade, and ﬂ#’lpﬁ‘m
s = »and the active weight
0 gain some insighy regarding the trade-off between i

and turnover, we consider the case in which all M,Wedﬁfdﬁff
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. this assumption, a trade-size threshold is equivalent to a

- ] \.1 :
o same: UN€e 15t difference by the following relationship

[hrf:hoki in fore¢
thres

(8.49)

e threshold is the weight difference €, then the threshold in

o se th
suppose ! ;
SupF sed forecast difference would be

he gandardi

gp=—t 0 (8.50)

( I 1+l i 1 O roded | pter _ ptl
T(e. )= Wy =Wl=—==="yms FT-F|. (851)
{ } 2”;“- ! 25‘:’& M{Zﬂ' |

By assumption, AE = E'*' —F' is normally distributed with zero mean
and standard deviation s= 2{1— Py ) , the resulting turnover s related to
aconditional expectation of the normal variable

. [AF|< N-E( AF[|aR|>e,)

HEDeg
2N T x? ’z ei]
= ——— P == =N Ao -_—
2ns J-xe::p[ 25t ]dx “SHP[ 25

g

(8.52)

Substitye:
lituting Equation 8.52 into Equation 8.51 yields

r(E.}=l"§§f I—p, ﬂp(_:s_f;]ﬂ(n)m[-;—ﬁ]. (8.53)

ThE rtduttd 5

MCLOf e
n thy fuenn

i Sma|)

rnover with a threshold in the trading size equals the
'ginal turnover and an exponential function of the thresh-
:““" difference, which represents the reduction in turnover
fades are not executed.
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Example 8.10
According to Example 8.6, for a long—shur.t portfolio wity Ne
O i = 5%, 0, =30% .and p, =03, 'heﬂnc"tln:leturnoverwouldbrm'
Suppose we do not execute any traF]e below 0.3% or 30 bps. The hre
for difference in the risk-adjusted forecast would be

g, NG, _0.3%+/500-30%
g N = 0.40

"
O el 3%

The turnover reduction ratio is then

ex [——E;— ]=E}ip ——{E.‘-l—):— =0.67
o a(1-p,) 4(1-0.1) '

Therefore, the turnover after eliminating small trades of less than 30bp
would be 67% of the original turnover, Figure 8.8 plots this ratio ¥ the

threshold in trading size. As the threshold gets larger turnover decreasts
rather rapidly.

8.73 Decrease in Alpha Exposure

To _calculate the alpha exposure for a given threshold, we note tlwdt
active weights are now a mixture of the optimal weights at £ and the of
mal weights at #+1: when the forecast difference is below thet

A TEYTO)

o [

1§, [0 [ —

070 — |

060 —0r |
050 |

UL U S—

L4 Ty T S—

m — | =B
0o — | P —1
oo L == —_ ﬁ
0 15 0 45 @ P o0 108 m i _'.-P_‘
e Trading Threshold (bps) ﬁﬂ; ﬂ o
~URE 8.8, p, g fa0
Original turngvey Lo arnover with trading threshold 86 £ 155, +F

b O ot = 5% , 0, =30% , and Py
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tive weight 18 unchanged, whereas when the difference is above the
the JLDE d. the active weight is rebalanced according to the new forecast.
threshitish

ine »d forecast b
\We define @ mixed for y

- | B if [F~F
F= :

g (8.54)
F'"', otherwise

The alpha exposure with a threshold is then the sum of the product of
the mixed forecast and the factor value at t+1, i.e,,

N o N
ar-r(eh )=?L_ll_zg.-_ﬁm=;~flzﬁ'ﬁm
= : =

(&

=0 s VNE(E'E™ )-std(F™) (8.55)

= G s VN IC-E(E'E)

We have used std(F“'):IC in (8.55). Note that when the trading
threshold is 0, all trades are executed. We have E I:,"F,"')=E f:‘,"'f".-"')=1.
fmd the alpha exposure is fully restored. When the trading threshold is
nfinity, no trades are executed. We have E(F}‘E’"FE(E'EH )= Py

For general cases, we evaluate the expectation E[ﬁ;'}:}"‘) analytically in
"N appendix, We have

E(F )24 58 e [":F J
(FF J 1+Jﬁrexp[ Es:t} zd’.?;;

WE ha‘fe us & =
! ed 5= f2(1— ,and ®(-) is the error function. Substitut-
"88.56) into (5.5 5) yie(lds pr) ()

Qi [E.,)=u"'{o)[l+ 5% exp[_ _:%]_%;[%JJ (8.57)

Figy |

lh”iiuli:a'g Plots the ratio o' (e, )/c'"'(0) as a function of the trade

the Braph '-::ing the same parameters as in Figure 8.8. As we can see from
-0 the threshold is 0, all trades are carried out, and the ratio

(8.56)

s = A

8

[y
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FIGURE 8.9, Ratio of alpha exposure with trading threshold to full expe
sure (N =500, 0,4 =5%, 0,=30%,and p,=09).

is unity, As the threshold increases, the alpha exposure declines i
slowly at first. For instance, if the size threshold is 30 bps, the alpha expe
sure 15 0.985 of the full exposure. Recall that at 30 bps, the portfolio fatk
over is 67% of the full turnover, This reveals a favorable trade-off betvee?
turnover reduction and loss in alpha exposure. As the trade size fulht
increases, the alpha exposure drops more rapidly. When the éi28 lhl'ﬂh
old is large enough, very few trades are carried out (see Figure 84 I8
alpha exposure converges to the pretrade level given by (8:47) g
t."l.-'lllllpl{'. 35 0.9 of the full exposure. L
h{::ﬂ L.!;t; ‘fl""" view the alpha-turnover trade-off directly. :I‘hE quﬁ:ﬂ‘
ing trade :""'"Wmcmnl alpha exposure can be obtained with the e
Brades. Figure 8.10 plots this relationship. The horizontal axis %
the ol

remaing {
e I:g l.urmfver. 3s & percentage of the total turnover, and
* 18 the alpha increase, also as aper

. 3 full increase. ObY
end point of the cyry centage of full inc

and ¢ torresponds to no trades without any alpht P
pi.uk:::-?;lllc;:‘“‘d Pointof the curve corresponds to all trades and fﬁﬂ
not lineqr, Wit;k:;c shape of the curve indicates that the trade-0ff1# ‘ud!"ﬂ : I
0% of tuppy 0% turnover, we can get 70% of the alpha increasé: "

wver the alpha increase would be 80%, Note the MW 3

* Quranglys; g
trades :f’p:r‘:ﬁs lend some support to the practice uf@%‘
Cayeats, Fj i ir"'F"l‘"“*ﬂr!t-:!tin»n. However, there are 'W"H* ;
WS the trade. off betweery furnover redug |

ﬁﬂn Ai.

th: racking error of the mixed weights i8 8-1“"'.’)’
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|
Incremental Alpha Exposure
Hl”" " [
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Rl
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Remaining Turnover (%)

FIGURE 8.10. Percentage of alpha exposure increase asa function of remain-
ing p[}r[li‘}“ﬂ turnover (N = 500, 0. =5%, a, =30% ,and Py =09 ).

exposure reduction has to be carefully weighed in each case, where
the target tracking error and number of stocks in the portfolio are
important inputs. Second, our analysis considers only a single rebal-
ance. Additional analysis is needed to provide insights to the trade-
off between turnover reduction and alpha exposure H‘dfkfﬂﬂ“ for
multiple-period rebalances. Finally, we note that the analysis needs to r
be generalized to the impact of small trades on ICs and lagged 1Cs. |

8.74  Effect on Tracking Error T

Optimal portfolios are often constructed with a targeted mdﬂl:!. euﬂﬂf
Does the practice of ignoring small trades have any effectan :I.h:ﬂ r;mnlg
€rtor of the portfolio? There are reasons to suspect . h tlllc same
they exit, is small, Both sets of active weights are d“im:: :;,Eﬂ track-
larget tracking error. 1f all trades are carried out, then :ﬂ'tht trades are
"8 ector should be @1, At the other extreme, if 100€ O EE- T co

Xecuted, the tracking error remains at Gumdd signoring por ixture of old

hen small trades are ignored, the active weights are & T

=2 : s_y],mm-
gt "eW.and they are related to the forecast & 'dcﬂnﬁmmadmmml.ur

-ﬂ..We hl\"

Variance of J* . because it is easy to se¢ E('l-=L

o "’wﬂ“[(P T] "

(m.
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-portfolio has 125% long and I
24 Cur por i g and 25% Ei'l!}rt‘lnlhe f .
j00%. Suppose it returned 7%, whereas the “"aw“ | will
2%, and the return dispersion is 155, Calculate lh:g:v l'eluimm::
rurnover required for rchalancing. L
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Inlhl.‘;i}‘rpt"‘dix'“"-‘ I'p]'-il'\q_*”li'll. 1'.“.'- ) ‘:I toralle, 7 I'"-’fli'furglm

less of the cutoff for the small trades, the tracking error of the
e85 0

p“ﬂl'u'lin
not affected at all. 3

OBLEMS D ="
FE ._) SLEVO — | —
81 (@ Supp:m.nurini:iul holding is 100% cash, and we invest it flll[ﬂn
a portfolio of stocks. Calculate the turnover using formuly (b4

5 Prove that the forecast change F™ - pt

: has a standard deviation
of \J2(1-py)-

4.6 Suppose we have three different forecasts, with different levels of

autocarrelations at 0.7, 0.8, and 0.9, rc!’P“-ﬁ‘-’Ejj’. Calculate the rela-
tive levels of turnover for the three forecasts,

(b) Prove that the definition (8.4) is valid when one “fihep
holdings is cash. oy

8.2 Suppose the return is normally distributed with zero meg
2~ .‘\-'[U.d" ] Prove that

E(x)= \ch.

8.3 Suppose r—| '[r.d"'.]. Let x=r-r ,then x~ N(U.dﬂ)-
(4) Show that

87 (a) Prove that the serial autocorrelation of moving average of (8.31)
has an extreme value when v, =v,.

(b) When is the extreme value a maximum and when is it a
minimum?

88 Suppose the forecast follow an AR(1) process, ie, F"' =aF +€',
where a<1 and the forecast vector F' and the error vector €' are
independent. Suppose all forecast vectors are standardized with
dis(F')=1.

(a) Show that p, [1J=a, Py (2)=a’.and.in general, !'-‘f(lr-)”'1 C

(b) Show that for AR(1) process, p,(2)=a" is always above the
threshold of (8.32); hence, moving averages of .th: forecasts have
higher series autocorrelation and lower portfolio turnover.

89 Prove the relationship between the lagged IC and the horizon IC

E('r-;ﬂ”: E(L‘" f-'“'l). with Ar=r ~7.

(b) Show that

i ArY
st ol o PR

.10 [Grinold and Stuckelman 1993] We optimize d quadratic uli‘l:;
function U(W]:ﬁv-ﬂ.si\a’w‘.in which fis the alpha forecast

Wis trading amount. I
@ Fin(d t)he optimal w’ and show that the
u o =f1/(2_ml]. . .
b) Suppase we wish to cut the trade in halh L:$ ;;:hff.‘:';":
that U[wm).u;;su'(w'). Therefore, We the value-added in

-l

¥ <
2 b i
Where "f(}‘)=£'lluxp(-:’]dt is the error functiof

»
{":] Un i 3 . i fi it
show fﬁ:’llmmmm for the exponential and error f“ﬂfl

wtility is

i
E(x-ar). 24 |, (8r) added by half of portfolio turnover. HOWEeE
-0 Var| ' | this case s not the expected alpha but the wtlY:
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(c) How much is the expected alpha being reduced jf the
in half? %

(d) Let w, =kw', p<k<1. Plot the utility ratio U )/“(»ﬂ
.

function of k.

x
we have E Ix)*-—— ;
Hence, :heremmmngexpgchﬂmhﬁm

GEETEN |Se,}]=3[

APPENDIX

A8.1 REDUCTION IN ALPHA EXPOSURE

We evaluate the expectation in alpha exposure when ﬂnal!
neglected. As defined in the main text, F' and F"*' are norn

variables with 0 mean, standard de\'latu}n 1,and col'rdmaq P
dom variable F~ is defined as &

F._ F-'llifp .FJHISSF
F™', otherwise

The alpha exposure of the modified weight is related to the expectatios
E(FF). P

Because the new variable is contingent on the difference be

MF"'.wedeﬁneancwmndom variable x=F' —F'"*'.
y=F" Then,

F":H—;r and Py It s 3 il L
cv(x,y)=p, -1 l=s. E(y) 4 m(‘)"z"@ﬂ-
sing condton! expectarion, we have ol

)]s
-E[E[F'.F'u i H!.z,]]-m{g[ﬁﬂ,‘%‘
HEbcr)ie e, o[y

1{ :grlx. Hﬂ,)]*ﬂ["(!" ”f
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811 Constancy of Tracking Error

To calculate the tracking error of a portfolio with a lradinglhmshﬂld
= Iw:

- AN a simils ray L1
evaluate the expectation E (F ) | inasimilar way. U

ables x and 3, we have
E[(F'}:l E1E“F'}"]_~;]|-

(P i e e () o e}
|

sing the Sime v

E

E{E

[.""+-"]:]"_' x EEF}JrE{E[ '.'l]t. xZE;} . (884

|
1
E{Eix:-rl.\'r-r y' l X, X|SEg }+E{E[ y ]t !.r 2!-:,}
= E(_‘I-':]+E(.\.': X, x| <€, }-i- E[Z_t[-l(;.":c. X SEF]]

Previously, we have shown var( }']= E( v }=1 ,and E(?’II]=-;'S*

stituting them into (8.64), we observe the last two terms cancel each otb
while the first term is unity, Hence,

E“rr]=L

REFERENCES, |
Gri _____.__./
rmn}l:{i;:éc.. The fundamental law of active management, Journal afw

ﬂﬁnﬂid 3 (g;mrrr!. ‘-"ﬂl. 131 No. 3, 3[}—37. S?TIHB 1989.
P";"J'c;ff;rn;da:mcke{man' M., The value-added/turnover
Kahn, R.N.and Shaﬁﬂf:: ment, Vol. 19, No. 4, 8-17, Summer 1993. : weﬂ”"

IS, The surprising small impact of asset

alpha, ; growl 2005
Qian, £, Hf::mﬂj of Portfolio Management, Vol, 32, No. 1, 49-60: Fal ,ﬂ‘

R'i aﬂd Tijnt . -M'
portiol; iney. I, Portfolio turnover of quanti Fint
&gl i;:';?:}f: ceeding of the 2nd IASTED International Confere®®
Tefisen, £ 1 Q.‘:g and Applications, Cambridge, MA, 2004. st
Active rnananh:nE Hua, R, and Schoen, R., Multiple alfh® No-&
Winter 2004 L, Journg| of Portfoli Management, vol. 31, NS

j

fmmiﬂ-"“'" g

Partiolio Turnover and Optimal Alpha Model
279

EF\D_‘\'?"‘_TEE —

7| Turnover can also be caused by flows in and

out of a portfolio, These

alance, and they are easy
analysis,

percentage change of the

forced turnovers are not due to portfolio reb
to analyze. We shall exclude them from our
» Our definition of turnover measures the
portfolio vs. portfolio capital, which is most relevant in terms of
amount of trading. There are other variations that use total portfolio
leverage or notational exposures as denominators,
3. For constrained portfolios such as long-only portfolios, the turniover
can be substantially less, since constraints work to suppress changes
in porttolio weights (Qian et al. 2004),
4. If there is short-term reversion between consecutive period returns,
then the horizon IC will be higher.
. Itis not hard to imagine this situation might apply to market segments
that are relatively less inefficient, such as U.S. large cap stocks.

Y
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cHapter 9

advanced Alpha
Modeling Techniques

UANTITATIVE EQUITY PORTFOLIO MANAGEMENT relies on both the
Qakpha model and the risk model to construct a mean-variance effi-
cient portfolio. The alpha model forecasts the excess return of each secu-
rity by identifying pricing inefficiencies, whereas the risk model forecasts
the covariance structure of the security return. The former delivers value
added of active management in the form of portfolio returnsin excess of its
benchmarks; the latter provides portfolio risk control and diversification
benefit. Although each plays a different role, both depend on the assump-
tion of a return generating equation in constructing their forecasts.

In this chapter, we shall take a closer lookat the return-generating equa-
tion behind most traditional quantitative models and present mdtling
techniques that provide a structured framework in relaxing many strin-
gentassumptions behind the traditional approach. Specifically, we will F'_"t
discuss three assumptions behind the commonly used rctur.n*iﬁ_ﬂﬂ'ﬂ_nni
£quation: “one size fits all,” “bigger is always better,” and "ume_md:ﬁ
dence.” We will then discuss various advanced modeling e
“an achieve better alpha forecasts by relaxing the frst to _assuntvﬂ""s
Both assumptions are cross-sectional in nature. The t-ec_hmquﬁ ; il
contextual alpha modeling, sector modeling, and nonlineat cfect ting
'8, We will address the third assamption in Chapter 10 by highligh
Severa| time-varying modeling techniques.

F
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e e o ST :
Equation 9.1 postulates @ generic retiirn-generating equagie Whig
i Whi

rns in terms of exposures to factors, Scc"'rih."
inear combination of attributed returns to factors thag Pcs%"m
rog,

9] THE RETURN-GENERATING EQUATION

expresses security retu
isal
sectional explanatory power.

n=b,+b, 0+ +bd. +e,.

1, li

In the equation, r, is the return of stock i, b,,-<b, are factor ey
sures of the stock, and I, -+, I, are factor returns, The residunlpm;um
security return that is not attributed, is called security specific return ang
is expressed as € . Note that in Equation 9.1 we dropped the subscrip ¢
time to simplify the notation. This equation serves as the core of risk mat
els in Chapter 3. The covariance matrix of returns is given by

E=BXB'+S, 8

where L, is the factor return covariance matrix, B is the exposure mairk
rfnd § is the diagonal specific variance matrix. Equation 9.2 forms ti
foundation of many commercially available risk models, such as BARRA
Northfield, or Citigroup GRAM. The only difference among them is
set of factors selected. For example, BARRA uses fundamental factor
whereas Northfield employs mostly macro economic factors. .
Perhaps, due to its academic origin and popularity in commcrcil]#
madels, many active managers also adopt framework similar 10 (A

constructing their propriet | - ifically, they b
expected return as prietary alpha models. Specifically

E“}“aﬁl"’:"‘“"";fm"ul o
where (.rn-‘"-fm}
the factor weights
mgthﬂds Of SEIE{u

aﬂﬂ'i {Sﬂt Chapte
which makes the

w %
are cross-sectional alpha factors and ("'l’"_"_ o

that are related to expected factor return: -
ng the factor weights vary greatly among 'ﬂﬁ‘;ﬂﬁ
7 for the discussion), most methods ¢ L
t‘ullnwing three unrealistic assumptions:
Onesize fits gy,

1 + 'np
Security, th " Equation9.3, the factor weights are the $2%

U8 making it a one-size-fits-all approach. 4 .
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practitioners recognize the conditional nature of
their intuitions ind significant support from em
example, Daniel et al. (1999) find that moment
ger for growth stocks, and Asness (1997) finds
work, in general, but less so for stock with high

factor returns, and
pirical research, For
um effects are stron-
that valye strategies
momentum,

Bigger is always better: Because (9.3) s linear, itimplies that the expected
security return is linearly proportional to the factor expostre, For
example, if buying cheap stocks is a good thing, then purch itig
deep value securities must produce the best investment results. In
reality, practitioners are often aware of the fact that deep value secu-
rities are often cheap for a reason. For example, Bruce and Morillo
(2003) find that expected returns of securities with extreme factor
values tend to break away from their linear expectations, sometimes
in a fairly dramatic way.

Time independence: The last assumption deals with the constancy of fac-
tor weights over time, making it an unconditional model. In reality,
factor returns change through time, depending on various macro-
economic regimes or even different calendar events. This time-vary-
ing behavior is ignored in (9.3),

In all, the linear one-size-fits-all relurngenmﬂ'ns equation Fr“idﬁ
a resilient foundation for risk models. However, the same ﬂ“'j"’* is
an inadequate foundation for forecasting the expected Seculy o
mostly due to the linearity assumption. Such inadequacy is born aut '?f
the fact that security markets are quasi-efficient wherein many sophisti-
cated managers try to arbitrage the same set of behavioral phenamenon.
Simplistic alpha models such as (9.3) deliver inferior portiolio cxcess
Telurns. In the rest of this chapter, we shall present seraia
Modeling techniques. :

92 CONTEXTUALMODELNG
In. Practice, linking a stock’s ranking signal of factorto wﬂ:ﬁﬁmﬁ
“Signing it an apprapriate weight is a matter of context: f_p“ depends.
timely Security selection criterion is conditional: Simply s
ahnlr “*ample, many researchers demonﬁﬂ“*-mt-m;::h. je fuctors, the
"tl\':‘ is often conditional on the type of ﬁ"_“' othet (2001) and Beneish
“ lutmr.-m horizon, or some other dimension- Sloan aali
*(2001) call this interdependency of security factors EEEEE
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cozsoned active managers know that value investing focuses oy
AEASOT . * :
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gLE 9.1 Definition of Factor Composites
[ T, H 3 TA . =) =
R nce of quality; at the s i
covering cheap stocks with 2 e I s > : “mc‘m Composite Factors
3 . ke to balance positive momentum with ; Comp*
o seks 10 q‘u.ll !
nvesting often s de ek e - i v zan (V) M"“Wﬂﬂﬁ
S -ls-d,o:'.ﬂ assertion nnds substantiation ip Priog sluat Sale
d"ﬂl!‘rﬂ‘*‘ this andy y : Q = . !locmamwh
Jemic studies. For exampie. Daniel and Titman (1999) find that Earnings yield (historical)
- effects are Stronger tor erowth stocks. Asness (1997) finds thay Earnings yield (BES FY1}
[Sm Clichia> aik =2s b b - : 4 !
srategies work, in general, but less so tor stocks with high m EBIT to enterprise value
strategies Mk : = =. G .
- 3 narticularly relevant study, Scott et al. (1999) focuses on p Qwerating Efficiency (OE) Increase in ascet turnover ratlo
03 ks ; i i . I = =
vheary and investor overconfidence. They provide empirical evidence thy Level of operating leverage
rational value investors should emphasize cheapness (as in dogs), where Cashflow. from-cperation to sales
L s should let winners run — with the prospect of futus sccounting Accrual (AA) Accounting sccruals (balance sheet)
el \: xu” 0| d.\l h 2004) also d s y =
good news. Piotroski L_g.ﬂt land ] o anram (J _ tfmunSt-mtlh exiernal Financing (EF) External & A :
ane <hould focus on different sets of inancial statement information whes Debt issuance 1o net operating assets
analyzing stocks with different book-to-price ratios. Taken together, thes Equity issuance v net opersting sssets
stedies (2nd others) point to the importance of analyzing the efficacy o Share count increase
alpha factors within carefully selected security universes — the contextal Momentum (MO} Six-month price momentum
- o A\ ‘m
analysis of active strategies wm
Earnings surprise scare
921 Factor Categories

Source From Sorensen, EH. Hua, R, and (Qan, E., Journal of Porgiolic Managemere,
Vol 32, No, 1, 2336, Fall 2005, With permission.

To illustrate contextual dynamics, we introduce five composite facto®
representing the set of investing philosophies discussed in Chapeet
Table 9.1 describes the description of these composites. To ﬂ?““'_*-
essence of the value investing that buys cheap stocks, we create the 1

nive value (RV) factor, 2 composite encompassing two types d”
Aess measures: the earnings yield and the asset value. We title Mﬁ#
relative value because cheapness is gauged in the context of 8 ETEL
20d. in this study, we use sector as the peer group for compariso® it

tionally, to represent the premise of the fundamental investing. "¢ w
the analysis of the ente b

922 Security Contexts

We illustrate the interplay among factors along the Siinntiont m
risk characteristics: value, growth, and earning variability. Aloog =

three ¢o : rprise Pmﬁ!abiiit}', accrued to i A Now value measure, hlﬂhm Wﬂ' rafte, and hﬂlﬂl’l
o mMposite facu:tr_s: (1) the operating efficiency {DE} f-:: " ...-' - e The
ing u:‘nuugtimf q,: 5 Labzhl‘}‘ to generate shareholder value, {2} M We use the book-to-price “mg-w.ﬁ'ﬁ fﬁ M_ ,I with market
s e A) factor measuring the accuracy and the DOEC g ¥alue for the book-to-price ratio implies ® 3567 1 yupar is
lm'm" :;“1; reporting practice, and (3) the external B Y. but this is not relevant to the € A nch (1996), who
ing corporate ex ring the hazard of self-serving Im.‘ 18 the interpretation Whm or financial |
the ohi ::rf“flns at the expense of ‘hugﬁﬂllh' Mmﬂtmﬁm hﬁﬂk—to;pﬂc_e mmﬂn W.MW
S 0 o Gy g o i gy company: Speciicall. ve 40 SERC L e rossion
of the intermediate. or (MO), which consists aliy, indication dh:ghqamlﬂd.l . m#ﬂ!""‘““""
the earnings €-erm price momentum, the earning® D'ﬁnﬂdumm;hm R



i

86 = L Yot I||I 1 Managoment
. I hl-ill\l'lfpl”\ Pt el
,.Ilu”'l

r \U-PUHL"I H—.“'[”\' on LfI\'ChElIlCI]l {H(”.J ﬂ“d Ihcir "

| X post
fithicult li " Contryg,
face a dithcult operating environme i
nt angd
1

¥ |
llll'o'c\tnmj

:l:;‘:t:txlf exceeds the average ROI of a broad universe,
quality companies usuall b
expected to deliver i.|1||.'|'|ur i_.‘}"L'“'“"!-‘-.r" e l[h_ . itferent Compe
ing, superior vs. inferion, i.\rlr.‘n_md“““ different challenges facing <,
pany ||1.1l1-lgl.'llli‘“|- ane battles from l.‘ th'lf.'l'll‘ri-,ﬂ.t‘ld competitive P"S’Illﬂmh
survive, whereas the other protects ils uluupvllln'c '.ll.l'k“ﬂ.l'ltﬂgc by fend;
off competition. These intuitions are confirmed in the studjes by Piotray
(2000) and Mohanram (2004). Theretore, we argue that investors shoulg
also focus their attentions on a ditlerent set of factors when |."."'.|1u21|_'|1|g“1e
return appeal of companies with different book-to-price ratios,

Our second risk characteristic sorts companies based on thﬂirgronﬁ
rate, creating contexts containing high-growth and low-growth conpe
nies. The rational behind this contextual dimension is well documents
by Scott et al. (1999, 2003). Linking the behavioral science findings with
the valuation theory, Scott et al. show that momentum investing (riding
winners and looking for good news) is more important when selecting
high-growth stocks, whereas selecting low-growth stocks should focw
more on cheapness. The ditference can be traced to how investors estimale
the fair value of a business, The fair value estimate typically comprises
two parts: the present value of existing business and the present value o
future growth opportunities, For a low-growth company whose futufe
growth prospect is limited, the value of its existing business dominatesit
fair \rl'ilhlt' and, more Importantly, valuation ratios (i.e., cash-flow Yi“lda
Farnings yield) provide an accurate ranking of the relative cheapness d
S o o R
ties. As such, I‘ncu:;rf; r[tll::[ ||'li?‘ p.l.‘esem vahlue ni- n!mre E.ww;]igr {lfw
Browth play more P;nn1in .ﬂrL hﬂ.’_ﬂ.hlf 5 pre:.:l IF[mg lht.qu 1

- entroles in determining the fair value: end®
ng with the observation that lnwﬂﬂr;g.’m

ing this vatuation reasoni
o their overconfidence, Scott et al UL&*”
predictor of h revision factor, a proxy of good news, 18 €
Our fasy j © EXCESS returns of growth stocks. art
ahg“ly dimer:;h':ﬂ-'ol::} diﬂbrenllnles {(jrnpa nies aluns the eal:'nlﬂﬁ -
10n. This conte b L e ; the '
P’“‘“ﬁtnhililr bias contextual selection is inspired by : dﬂ'
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the past- Das et al. (1998) provide a more Figorous exam
in

: inatio -
yon and derive the same conclusion, n of this

\hf.'”“”lc’ d Lﬂslh'.". Bucktrs et ill.
:bml the same bias in European analysts' forecasts, 1 all if:amingilf?aw
" TE-

casts #re less trustworthy for companies whose €ArNings are more vari-
able, it 18 OUF conjecture that investors should focys their attentions on
the quality of earning u."d the competence of Management to remedy the
jeficiency of earnings forecasts. Similarly, investors should rely more on
analysts' forecasts when selecting stable-earning companies because these
forecasts are more reliable.

9.3 MATHEMATICAL ANALYSIS

OF CONTEXTUAL MODELING
IELEMC premise of contextual modeling is that the efficacies of alpha fac-
tors are different among stocks across the different contexts. By using dif-
ferent aptimal weights across the contexts, we will achieve a higher overall
information ratio.

931 A One-Factor Example

The following one-factor example provides some intuition to the approach.
Suppose we have a single context that divides the stock universe into two
halves: one high and one low, Let us also assume for the moment that we
st have a single alpha factor. We are interested in how the fn:lt::r per
forms overall if it performs differently in the two halves. According to
Chapter 4, a single-period excess return is given by (Equation 4. 19)

N N
= = ) E g k] [9’.“

ul

::;“-‘ F.is risk-adjusted forecast, R, is the risk-adjusted e c:'] ;;:::
'Der of stocks, and A is the risk-aversion Pmmte:;kuniwmiﬂm

c}poﬂ‘r“““ to a targeted tracking error. Breaking the s e rewrite (94)
My A —
ki Wlves — high and low, according to the context

= =’“"ir:a =’“"EHR+L“'§F.R- 03
-l

(0
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Now,
tive universe §Ives

writing all three sums in terms of risk-adjusted ICg in the

N -1dis(F)dis( R )= : x1C dis( B, ]dis(RH]+_?_;',
XIC,dis(F, )dis(R,)

For simplicity, we have omitted the subscript 1. We shall assume al] ),
dispersions of forecasts and return are the same, which leads to

I 1
IC:E'ILH—FE‘ICLI (87

The overall IR is obtained by the ratio of average IC to the standir!
deviation of IC

R IE:H+E:_

(o4

3 2 y
JGH +0; +2p4 040,

Equation (9.8) gives the overall IR in terms of IC statistics in thehigh
and low contexts,

Example 9.1

Suppose the factor only works in the high dimension, but not in the ¥

dimension, i€, ICL=0. Thep

IR [EH Pﬁ

VOu+0] +2p, ,0,0,

If the < s 1P
B ch:;‘rr?atlon.af ICs is not negative, this overall IR wﬂ]bc!ﬂ'“
& lactor in the high dimension alone, i.e. J

(95
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his example illustrates the fact that when  factor does not add value in
low dimension: still using it would dilute the IR of the factor because it

tht!' Loise or risk without additional returns. The simple remedy for this

Jd.:;]em < to not use the factor in the low dimension. In other words, we

_‘;:H ot take any exposure to the factor in the low dimension stock. In

'L,..rmh' of factor weight, it is simply zero for low dimension stocks.

9.3.2 Optimal Factor Weights across the Context

setting the factor 10 zero for the low dimension stocks in the previous
cxample represents a simple solution, but it is not necessarily the optimal
one. If we denote the factor weight by v, and v, in the high and low dimen-
sion, then the overall IR becomes

IR= Ll — : (9.11)
J VHOY + V0] +2051040Vy¥y

The optimal weight can be found by the following

ICk . ICu
! " ThEa
VH - GH ..—E h . (9‘12]
vy IC: = ICx
ﬂi “HL UHG]_

_With parameters in Example 9.1, the optimal weights are v,;li* :1::
Y1=-25%. The optimal IR is at 1.02, slightly shove tte !R inst the
dimension. Thus, the optimal weights would have us i lusm'"ﬂrml!vl!
f‘ﬂcto,- in the low dimension, not because efwhe.added Sher®
’Sltlce-lhe average IC is zero), but mwofmf:mnt modeling is t©

""ltllh multiple factors, the objective gf cuﬂ factors in high and
Maximize the gverall IR with optimal W&_E'Ms .of- . Vs[v ‘i¢]=
" dimensions, There are M factors and the weights 2 £

WYy, s Vi Vg Vaes 0 "HJ_-.]_ 3 mwnf :

el
iE = (féﬂ .I‘él. }=(}El.ﬂ iEﬂ l"‘lfénﬂj.&u .Eﬂi."?'mi‘)l l

ingd

overall IRis given
by " 2Mx2M IC covariance matrixis Zic: The OV .
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v ]E_

IR=—F——.
 AD S, 813

The optimal weights are given by

v «Z1IC. o

The proportional constant is determined by normalization of the
weights.

94 EMPIRICAL EXAMINATION

OF CONTEXTUAL APPROACH
In this section we present a series of empirical tests to illustrate theTF;
ence of contextual asset pricing, We use the Russell 1000 Index as the seci-
rity universe, for the time period from December 1986 to September 2004
Data sources include (1) the Compustat quarterly database for financial
characteristics; (2) the IBES US historical detail database for consensis

earnings estimates; and (3) the BARRA US E3 database for price, returm.
and risk factor characteristics,

94.1  Risk-Adjusted [Cs

W’u first compare the risk-adjusted ICs between sample partitions =
ing to the BARRA definitions of value, growth, and earnings
Along these BARRA risk dimens

y ions, we compare the average
vanance of IC,

Pertaining to the high and low security contexts, for e
compasite alpha factors.

of the selected
Presents these comparisons (15 in all — 3 risk d]_mﬂ‘f””’

Table 9.2
and 5 alpha Measures). We calculate the two-sample f-test for the mulk;-

value stocks, B, fctor is significa ntly different between high- an [lHt
5. Both the two-sample t-test and the F-test are si 58
low-value (low book-to-price ratio) stocks the 1C is 1>

contra - A :
5y lhE:E:g‘:l:[?gant]L of .044 for high-value stocks. This demﬂ:’“'#
dependent externa) ﬁnancing factor is priced is indeed ;“ aﬂlw

: = More im ;i
(Not E Portant for discounted fi than high-pr'c b
mm:vtha: discounted firm meqps hi hu: f r?hi h—pricedﬁrﬂ”y:
¥ Value.) Externa] f gh value, and hig  pet™
contriby flan

te to thi cing costs and expected invest
® this contextual dependency, Dilution of sha
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(311
b
68
68
68

238E&3

.14

Qlan, E., Journal of Portfelio Management, Vol, 32, No. 1, 23-36,

65
68
]
68
68
68
68
68
68
64
F Test
ad
68
68
68
68

pval  df {num) df (denom)

F Test
pval df (num) df (denom)

_F"l‘e-il ]
pval  df (num) &f (denom)

270
0.051
0177

0.005

0
0.163
0.HH3
0.066
0.048

F
0.764
3318 0.000

1.037
2450 0,000
1.567

1.623
848 0.012

492  0.100
605  (.053

1.613
0.720
0.504
0.711
F
F
1
1
1

p-Value
0.991
0.296
0.058
0,041
0.117
0.043
(000
0.015
0.205
0n.011
p-Value
0
0,880
0.021
0.R02

L
0011
-1.050
i
2.019
0151
2343
=0.252

-1912

3460
-1.577

5.702

2.461

1.274

2571
Two-Sample t Test

2,046

Two-Sample t Test

Two-Sample t Test

Low

Low
076
039
0036
045
0.074

0.069 0.079

0.047

L]

0.037
0.057
0.072

5TD

High
0.043  0.050
0.041
0.061

STD
High Low

STD
High
0105 0
0.051
0049
0,055
0,094

Panel B Growth Dimension

0.113 0062
0,043 0.042
0.060 0,039
0054 0.043

0092 0,072

Panel C Variability Dimension

Low
0.049
0.019

0.032

0038 D018

Fall 2005, With permission,

“an
Mean
High Low
RV 0023 0023
OE 0045 0029
AN D033

EP

M

High
RV 0022 0022
OE 0032 0.040

AA D027 0.042

EF

Mean
High Low
RV 0003 0.034
OFE 0061

0.044 0015
0028 0017

TABLE 9.2 Compariscn of Risk-Adjusted [Cs in Different Risk Dimensions

Panel A Value DMimension
AA 0044 0022
MO 0.059 0023
MO D034 0038
Source: From Sorensen, EI., Mua, IL, and

MO 0031
EF
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Panel B shows that investors r't‘f'f'-ll'd high-gr “"_"[h Companies foy o
servative accounting (AA), high OE, '“‘“'Fl better Pt and earningg petfor.
mance (MQ). In contrast, cheapness of share price (RV) is an importy
return driver for low-growth compa nies, with both the averageand the stz
dard deviation of ICs significantly different at 5% level when comparedyg
high-growth companies. Our empirical n:sull_s .are consistent with the ope,
documented by Scott et al. (1999); and, in addition, we highlight the impoy.
tance of conservative accounting and operating efficiency as impartay
return drivers for high-growth companies. Consistent with Asness (1997,
we find the average IC of momentum factor (MO) in the high-growth stocks
is more than twice the size of the average in the low-growth stocks.

Panel C focuses on the earnings variability dimension. Operating eff
ciency (OF) and EF factors are more indicative of the future stock returss
of companies with variable earnings, as shown in their two-sample -ests
which are significant at a 5% level. On the other hand, RV and AA have
almost identical average IC across the partitions, However, their standaré
deviations of ICs, the risk endogenous to the active strategies of applying
RV and AA, are significantly different. .

To summarize, Table 9.2 is generally consistent with the theory of rabl:
nal pricing that is conditional. Using univariate average IC com '
over tl-fe 1986-2003 period, we find that the market is more .
:z;zu:g:ﬁi;‘ﬁl‘_‘:!’- CO‘I'ISI‘.'I'I:"aI_ive accounting, and posi.tive ﬂl::‘g:;
e e wil:h ]:‘L ing with hlgh-gmwu? and/or high-Pnccd fll":l ;
W i!Im!.gr"c:w-f:rs. The m?rket is much more focused ;mwh 58l

shareholder-friendly managements when BIO%0 o,
stake, and much less focused h k prices: b (oSS
differences in |C ave i s.mf : thglw’ﬂ
Ll appear::es and IC standard devm?mn across. i oslmw
tual difference, where e growth dimension induces i

) as the variability dimension induces the
942 IC Correl atiors 3
Table 9.3 re.
factors in

e:::t&:m the I'lC correlation matrices among the Lt W
and after the :;Z.l]l:e O risk partitions, In each case, the n“ﬂ-mb;w'
Before we Comm:mﬂg“ 2 cortelations for higher ﬂ. J M

on the correlation difference across W'
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MLE arrelations of Risk-Adjusted 1Cs
TAl o
;;] A Value Dimension
a
JE AA

C EF MO
R (0.28/0.16 —:].ZZID.BI ~0.08/0.63 11044
OF LA2(0.50 0.16/0.24 0241019
AA 0.21/0.09 0.17/0.14
EF 018/-0.23
panel B Growth Dimension

OE AA EF MO
v -0.22/0.19 0.14/-0.08 0.45/-0.08 -071/-0.25
OE 0.36/0.25 0,16/0.27 0.2800.21
AA 0.23/0.21 -0, 18/0.01
EF =0.3210.26
panel C Variability Dimension

OE AA EF MO
mv ~0.16/0.12 ~0.18/0.19 0:19/0.29 ~0,60/-0.38
OE 0.30/0.37 0,26/0.38 048/0,10
AA 0,28/0,19 0.19/0.04
EF 0.05/-0.23

Nate: In each cell, the number before the slash shows correlation of the high context and
the number after the slash displays correlation for the low context.
Surce: From Sorensen, E.H,, Hua, R., and Qian, E., Journal of Portfolio Manag b
32, No. 1, 23-36, Fall 2005, With permission.

general patterns are worth noting. First, the IC correlation between RV
and momentum (MO) is always negative, providing dl""'ﬂﬁum::hm
" an active strategy by including both factors. Wﬂd'_m' o Su:
among the three composite factors from the same o msz‘m to
OF, AA, and EF, are not only all positive in general, but 'Mvalut fac-
Tather stable across the risk partiﬁnns ‘]]-.i;d,‘thc relative .
ends 1o haye small and often negative correlations

1l 7 momentum
?,,- the market generally prices quality andm each at the expense of
the Totating between cheapnm-nnd momenturh

¢, due to perhaps changes in risk aversior the high
e erices derived from
ind |:,:l A compares the two correlation ma and AA and between

W value contexts, The correlations petween RV tocks; the two
rr:rd- EF show the biggest differences. In HS“‘“‘L‘“_WM
Nions gre ~0.22 and —D;BB._I‘BEPE‘ﬂWIY' wherest

tor
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- canaderahiy higher at 0.21 83
the Two CrTEADIONS AT ORI LS5 & and 0.63,

The other notabie Jifference is the “'!I:'t‘:..mnn between MO m“?
Q18 i highovaive ctocks and ~0.23 10 low-value stocks, .-\.lung lhe%:
dimension (Panel Bl agun the relative value causes mog of the

vion differences. lts correlations W ith OF, AA, and EF all ﬂi?"gm.m.
the partition. The correlation between RV and MO is Negative in o
NT‘:-‘.-'.?u::_-. gt it s remarkably low at -0.71 among high-growh Sl
I\m:-.g, the varmbility dimension (Fanel C), the differences el :
coefhcients are smaller comparad to those in Panel A and B. In

MO Bas lower correlation with other factors in low-variability ekt

1 high-varability stocks

943 Optumal Factor Weights and Their Difterences

In this section, we soive for the optimal weights of the composite alihy
factor using the IR maximization framework outlined in Chapter 7, We
shall refer to 3 combination of alpha factors as an alpha model. In eschol
the six nisk partitions, we find the optimal weights of the five composie
factors using the IC averages and IC covariances over the whole sampe
perrod. Based on the differences of these inputs shown in Table 8.2 s
Table 9.3, we naturally expect different alpha models in each high/lowrist
partition. However, are these weight differences statistically st
e devise several ways to answer this question. In this section, we
form several direct tests on the optimal weights themselves. lﬂﬂ-*“
the performance differences induced by weighting differences. focusd
o their slpha-producing capabilities. .,
To test the statistical significance of the difference between w
weights, we adopt 3 bootstrapping procedure as follows, similar M
| the b
<al ICs; jointly for all five commo - cach of the SE=*

weights, This is
; Tepeated . i
éfupt;mﬁgm . one thousand times to obtain one

Adv ’
anced '\Hﬂw]ﬁm . 3
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Mean STD
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i 430 5. 79 48 4l B3 %
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fanel B Growth Dimension
Mean §TD Diifference (High-Low)
High low High low AvgSede Mg Sl
Ay 37 bl 13 73 =15 =Y 15
oF 527 169 T8 &3 L9} L T 1)
AA 187 33 50 28 =18 =ite 1]
IF 4.0 167 39 i 03 =23 §3
M 129 103 40 50 04 s &3
Panel C Variability Dimension
Mean ST Difference (High-Low)
High  Low High low Agtur Ay S
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® 3w mo A &S s s ::
Whel »EENS &3 15 14 -3 .
¥ oms s 66 St ot ey B
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Sme From Sarensen, gmmnuﬂmam‘ﬂ#ﬁﬂ-ﬂ"“
F2.No 1, 23-35, Fall 2005, With permission.
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Towing remarks

Firat, maodel welphts of the high prowth context (Pane| )]
L] ] 4

and yfy
Jow value context (ranel A) e "-m'”l"‘hl)' stimilar,

Perhap, iy,
points 10 @ sl af common ¢ hallenges facing high-priced ang high.

ot firms, the most praainent of which is to maintain et

aperating vesults ¢ .I|'1H|'-'l{ by the OF tactor. However, we note (e

model weights in the I“Eh"-'djur
anad the low growth contexts are guite diflerent, In the high-value

peverse inlerenee does no "'I'F']"'

context, the most pronunent wethit (43%) 18 in EF factor, wheres
i1 the low- growth context, the model welghts are relatively equitable
for all five Tactors, Note the relative value (RV) is weighted 23% here,
whereas it never receives more than 10% elsewhere,

o Second, we notice that in the growth dimension (Panel B), wheres
the RV factor's weight is substantially higher in the low-growth
dimension than in the high growth dimension, with a mean:stan
dard error ratio of -2 5, consistent with the results by Scott etal
(1999); the MO factor’s weight is only slightly higher in the high
prowth hall (12.9%) than in the lower half (10.3%). The reason for
this s the higher strategy risk of the MO factor in the high-growth
context (Table 9.2, Panel 8 than in its counterpart in the low:
vonlex|,

* Table 9.4 unveily primary return drivers for each security contet

e e e et i

itk o more than 40% of a model. e?

E| S :::':r 1:::1': ‘:_:Iili:‘ l:l:t;u'u role in };-.n'erniphg the zri:lzhr!’ M

- tor both high-priced an o
aive EF tor discounted firms and to honest

Agement, gauged by conservative ; tin pm;b:tu‘
for fiems. wigly stable eary . |\-l. earnings rqu:\r ;mll mﬂ”
further hmhhp,m the d“.'“lﬂ “r_mm' These wr;: M#M
.muml."!'.ml of lrm.li'.lulu;l‘;:]l“w Ilmdn]um:y S HER

* Adro _ e
tors w:t:‘:l‘:'::; :::I:: and growth dimensions, there ;'::ﬂil
Hrowth. Hoiieve eights, OF gnd EE in value and df w,p'

oAk 3 . v i
0rs show signific £1083 the variability dimension fone ¥

W0t weighy ditference. w0

.

hirms, (o comsery

wntitative models,

=

Acdvane

edl Alpha Madeling Techniques w 297

l 1||.I|||!I Wi nele the -'-I"J'-”'i-ﬂ“t"d wcighl in !hrcnrpuratc qualhy ““pr
e sum Of weights in OF, AA, and EF accounts for over 70w, ,,m:
Lk F = g f . ¥
e welght 11 ,L|.....1.-.1 all -..Im'.s. ”lllﬂ confirms the importance of finan-
| stalerment amlysis in active equity management,
L s

ad 4 Model Distance

(yble 9.5 tests for significance in differences between the optimal weights
intly. For comparison, we first construct a static one-size-fits-all model
without any contextual partitioning, using the same resampling proce-
dure. The hest row of Panel A shows the resampled efficient weights for
s static model and the rest of Panel A show the weights from the previ-
ok sechon,

lo compare the factor weights jointly, we employ two measures, The
first meastre is the distance between two models, defined as

d_JE'iw'-ﬁw
- o

where Aw is the difference in model weights, and k equals five, the num-
ber of factors in the model, It is the root mean squnrcoflhmplimh*ﬁlh‘
differences. Panel B of Table 9.5 displays the distances between different
pairs of madels. Several interesting observations are worth noting. First,
the static model is most similar to the high-variability contextual model
and most dissimilar to the high-value contextual model. Second, when
“mparing the two contextual models pertaining to same risk dionere
$on, the value dimension has the hlshc“ ITlDd"] di’mm fﬂ"ﬂ“ed b‘!';::
?'“‘-\'Ih dimension, whereas variability dimension has d“ ml::twﬂn
l?nl"' Third, consistent with the observation above, the distance

i Ifigh growth model and the low-value model fs also very low. e

hereas the distance measure does not incorporate the ﬂlmPl:w dﬁ:

ur secand measure does, Panel C and D of Table 9.5 provide !

stics
:quar"' statistics between models and their p-value. Note i o

s 1 of the resd
Wej, Ighm!l‘_r'mmcu'i-:. as we are testing whether the mea mf

Ofone model belongs to the ensemble of the
Ay, RS
L‘hu:,hrr model, When the models are interchanged: ¢ Appendix A%
fo aued- ‘esulting in a different chi-square statistic. {S:m findings:
Fh-“ “lailed technical note.) Panel D unveils three i the static model
% shown an the first row (and the first columnh (e SEEEEEE

(9.15)

~. Ay
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tive Equity POrtiols vt ferent from the contextual models o the growth and
&l L = r i r
298 ® Quantita tistically di ) s at a 5% level. However, contextyal models along the
BEES T ns ; .
4 Weight Comparison 2 ?vuhlt’ ‘mﬂenm?‘qn are not statistically different from the staric e
BLE9.S Pairvie o I Afficiest Poctfeliol ¥ jability dimenst ing model weights of the high and low contexts for
. e it y ; ar ; oakiognl: i
E——-——;'I—“-ﬁwsof Resamp - AA EF Mo \.H‘ \d, when comp lue and growth dimensions exhibit significant dif:
i i 1.6 36.3 13,0 65 SELEI isk dimension, va " bility dimension is questionable. Third, further
. 41. aach 115 : variabill : -growth
. R1000 2 16.7 20.4 43.0 1.0 ':!L1 ces, whereas the ervation, shewii TaHIEeA Redn s high
One-size High 9.0 <5 24.4 5.1 1784 jeren ptiating the Ohherl'-’a i e model. the p-value is either 0.28 when
Jal 3 ! cubsta ; ow-valu 2 ing with
Vaiue Lo 6. a7 16.7 14.0 129 su del is similar to ﬂ;e m the low-value context or 0.26 when testing
37 s 33,3 16.7 103 o -ovariance fro A e
Growth  High 2.8 g 272 2.5 64 using the cov h covariance; neither is significant.
Low ‘_q 6.1 &/ a 5 1 the high-Bm“"
lity  High ) 7.0 411 0. - l
Varahility 73 s de
Low e N tual Alpha Mo textual
wth Variable 94.5 Contex [. ion confirm the benefits oftht_ o
fodel Distance Value ity —_ [ the previous section d part of the results
Punel fcMode One-size "~ High Low  High Low The results of t Ifd]_J quantitative alpha models, a:ul gbe applicable to
h Low i3 8 ach in building : ions sh
RI000  Hig 7 127 7.1 approach in th dimension (. :
00 212 94 1L 147 28 P g the value and grow ks, as our partitions along these
One-size R1000 ; 14.4 232 46 concerning ith styled benchmarks, benchmarks are
Vil High 2L e 71 169 N ortfolio mandates wit Y ith how many styled 2 -
Value 94 244 0.0 e N2 1 P 2 = arﬂ}r consistent w ith core bt'“:hm”ks‘ In par
Low : il 0.0 198 dimensions are p. dates with co beats
2 L5 07 74 what about man analysis that
Growth  High “'; L 198 0.0 o0 110 defined. chevfr-_ y ontextual model based on our an approach in
4l k:.", 147 117 ol 1o 00 I ticular, can we build a ¢ 12 In this section, we propose ditioned on the
asiality, © High : 2 13.2 17855874 the one-size-fits-all model? ically selected and con ' .
Low 8.7 =29 = _ ightings are dynamically nce between contex
- Variablé which factor weighting mpare the performa tic model. As these
Panel C: Chi-Squared Statistics Value Soenit W risk characteristics. Then, we C; P:Prnach and thes ides some
o _ a ith this a - 39
T:ﬁe High Low  High Low 56 M tal models constructed wzﬂ: of factors, this comparison provi
5 ; » Py
| 0 - A g e T | models employ the same se ic factor welghtings. imple-
One-size R1000 0, 1 15.9 1Ll e, 5 fdyna:mﬁ isk dimension, 3
Value High 69.0 0.0 656 39. = 170 i nsight into added value o levance of each risk vth, variabil-
Low 320 32 00 si ;4:9 13 18 To further illustrate the rel evl model, named value, g ith a single risk
Growth  High 156 O ?37 00 | AbAGEES ent four variants of contextua three models are built W For example,
syl s ST 3"'2 142 86 Iﬁ. o0 ",and comprehensive, The first ) indicated by their “’m;:ishﬁng, from
Variability High : ; : ;;‘;' i;-g S 77 ! imengjon (two security contexts' it ke Wnn 11, the fac-
o : - Varishk the growtpy contextual model derive contexts only. In2 of high-growth
Panel D: p-vajge of cm-squafed Test B, Growth __———-" the high-gmwth and the low-E"’c:’::a lmm_@mbmﬁf'::“ﬁm are deter-
Onedize Wi W t'“'»\ﬂ:igi!'l['ll'lg for a particular sto T hts of the combl tual model
RIO0D  High Low e " low-pr vtk model, and relative weig prehensive contextt return
Onessize  Rypog 1000 0000 0010 0.0 003 Mingg ol th rate. The compreit thus generating r=2t
Value High  g009 1000 0000 0000 O < By the stock’s s tual dimensions, 1 contexts. .
Low g9 0000 1000 0264 g—g; o 0 accqung all thmmftﬂ  from all six security ple and m-ﬁﬁh_ :
Gowth  1igh 0002 0000 0282 1000 e "Casts baged an optimal weights fre hmneddmc:iwhd:mal‘m' .
" Low 0.000 0001 0000  0.000 u‘D?l To Provide 5 more efficient use of our employ the cro MW '
Variability High oo 0008 0001 poo7 O P hate o fajr perf; compnrlm“ periods into
Low 0,002 n 0.000 0.1 A ey Ormance
, 000 0,041 Ma Ure
iy :m ST?;*"- EH.. Hua, R, 4ng Qian, E., Journal of Portfolie
123236, Fall 2095 W

“Specifically, we first divide our sample

* With permission,
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chronologically with equal duration. We then EI&.I one of the sybp,.
e kel sampl period, and the remaining nine _--,|_|b|:,en-mi'i

the in-sample period. Although efficient model weights (for b, thee
and contextual models) are estimated in tl'_n;- in-sample perind throy
our IR optimization framework, the scores llt'ref35[s} are computeq

on the estimated factor weights for the out-of-sample perinds Wi
the model performance is also computed. This exercise is repeateg lrn
times for each of the ten subperiods, whose out-of-sample resuls b
then stringed together to calculate performance statistics. Although w
realize this approach creates chronological inconsistency in terms of the
sequencing of the in-sample, out-of-sample periods, it is free of potenti
bias caused by a particular choice of in-sample, out-of-sample periods.

9.5 PERFORMANCE OF CONTEXTUAL MODELS

951 Risk-Adjusted Portfolios

Table 9.6 compares model efficacy in terms of the excess returns generated
by dollar-neutral portfolios, a comparison that incorporates realisticpor-
folio optimization constraints. Rebalanced on a quarterly basis, portfolios

TABLE9.6 Performance Comparison of Optimal Dollar-Neutral Portfolios
Panel A: Model Performance

e —

Static Value

Growth Variable
Alpha 7 A1% 8.53% B.34% 7.95%
iR 1.56 163 1.66 1.54
Panel B: Pairwise Performance Comparison
Static Value Growth Variable
Staric ~-1.13% ~1.13% -{),54%
; (**-439)  (=_y475)  (**-3.68)
! (~0,02) (*245)
Growth ! 1 L:m, 0.00% 0.59%
= **4.75) (0.02) **3.34)
Variabiliry 0,54% ~0.58% -0.59%, {
o (**3.64) (*-1.45) (**-3.34)
o
} (0.23) (0.19) (**4.46)

:;az Sorensen, EH, Hua, R, and Crian, E., Journal dw
« e 1, 33236, Fall 2005, With permission
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4re formed for '{“Ch ﬁ‘ﬁdel "imi_”fg at the highﬂt model score exposures,
Jiven that their annua ized tracking error ig targeted at 5% and they have
:-—w exposure to market beta and size, Panel A shows the excess Teturn and
iR of each model on an annual basis, Whereas the static model has the
jowest excess return and the comprehensive model produces the highest
pxcess return and IR, all models generate excellent performance,

We also compare model performance in a pairwise manner with the
average and the t-statistic of performance differences through time. Spe-
cifically, each cell in Panel B represents the excess performance between
the “active” model indicated by the row title and the "benchmark™ mode!
indicated by the column title. As shown on the first column of Panel B,
contextual modeling enhances partfolio returns when compared to the
static model. The enhancement of quarterly returns ranges from 116 to
0,54%. According to the t-statistic (number in parentheses), the compre-
hensive contextual model provides the most consistent out-performance
with a t-statistic of 6.06, followed by the growth contextuzl model witha
t-statistic of 4.75, Also worth noting is the observation that incorporating
cither the value or the growth dimension captures a significant portion
of performance improvement, as the comprehensive implementation only
outperforms both models by 3 bps annually, shown on the last row: Lastly,
the superior ex post performance, delivered b}'thevlluemﬂg'lm:’lh mﬂ‘i‘
els, underscores the importance of the model distance test, which indicates
asignificant difference vs, the static model for models along |henlu.emd
the growth dimensions, but not for the nm]:i!:t]" dimension. m
the model distance test provides a pathway of selecting contextual
that are likely to deliver better ex post returns.

952 Asset Pricing Tests (Fama-MacBeth Regression

- odeling from
Table 9.7 documents the advantage of : ,_-;:iﬂl'lll! de

“,m asset pricing perspective. That is, incorporafing stocks are priced.

Cies provides a better, more accurate description OfROW k employed by
“"mﬂfing the commonly accepted analytical TS estimated
d5gep Pricing studies, we apply the Fama-MacBe .blﬂi-!

TINS to model “ﬂmmuﬂhmm'%m&M'

: Panel A answers the question as 10 '

]ﬂw‘f“" asset pricing information that is ot
N this test, the dependenl variable is a 3-m-m'll-|'|

"Planatory variables are beta, size, the staic mode e

"l <ontextual score (the contextual score netted o1t
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Test

Residual  Residual Residyg
Beta  Size Static Comparison  Value Growth v -

TABLE 9.7 Fama-MacBeth Regression
BB ——

Panel A: Residual Contextual Scores vs,

50 1.046 i

Comprehensive _0.262 0035 1650 :

=03y (-0:1) (129) (6.8]
Value -0288 -0.069 1.649 0.937

(-03) (-0.2) (13.0) {6.6)
Growth -0.262 -0.018 1.633 0.970

(-03) (-0.1) (129) (5.8)
Variability -0.223 0023 16l 7

(=0.2) (-0.1) (1300 (43)
Panel B: The Residual Static Score vs. Contextual Scores

Residual

Beta  Size  Static Comparison Value Growth Variabiliy
Comprehensive -0.263 -0,035 -0.559 1.915

-03) (-01) (-3.8) {14.2)
Value -0.287 -0068 -0274 1.913

(-03) (-02) (-2.1) (13.1)
Growth -0.262 -0018 0400 1913

-0.3) (-0.1) (-23) (13.9)
Variability 0224 0023 _pa4as ¥

(-02) (-0.1) (-2.7)

Note: () containg t-statistic,

5 e Yol 3
atirce; From Sorensen, EH., Hua R, and Qian, E., fournal afParﬂ'nHﬂ W‘ﬂ'

No. 1, 23-36, Fal) 2005, With permission.

s -Asshowni score :
Prehens nin Panel A, the residual oricitE
. mn::; :ﬂ::;xltual model does indeed capture additional .“" ﬁ“"* l#ﬁ

s Ustatistic is 6,9, Similar results are also U5

i
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he three risk-dimension specific models are tested
cange from 6.6 10 1.5 — all significant at 5 195 leve]

panel B shows the result of a complementary question to the

inswered by Panel A. Is the static model statistically dominated b m
extual models in the asset pricing test? In other words, doesﬂ:s:?i;
score add value when orthogonalized by contextug] scores? To answer :}Inis
question, we include the residual of static score and contextual scores in
this set of Fama-MacBeth regressions. The residual score is computed by
stripping the portion of variance of the static score that can be explained
by the contextual score through OLS regression, the same procedure used
in tests shown in Panel A. As shown in Panel B, the contextual score does
provide return forecasts that dominate the forecasts of the static mode]
statistically; and the return to the static score residual is not only negative
but also statistically significant with a t-statistic of -3.8. Again, similar
results are also found in tests of the three risk-dimension specific scores.
The t-statistics in these three tests range from -2.1 to =2.7.

and their t-statistics

9.6 SECTOR VS, CONTEXTUAL MODELING

Analternative way to accommodate different sets of return drivers for each
security is sector-based alpha modeling. This approach is fairly popular
Among quantitative practitioners, and it calls for a unique model for each
sector, an approach that bears a strong resemblance to how fundamen-
tal research is typically organized in investment firms. A sectnr-urimufi
*u“d‘*memal research makes intuitive sense. For fundamental mrd-i.'n
S more cost efficient to have fundamental analysts act as sector special-
'St who cover companies with similar business dynamics, as opposed to
Beneralists who need to be experts in the full range of bﬂsfﬂfﬁ'ﬂ!“d‘l’b
Given that human mental capacity is limited, sector specialists should
have a better chance of correctly processing categorically similar iﬂ;’;“"
tmr." In comparison, when generalists face the challenge “’fmis o:l';
:‘TE:ZE spectrum of information, the ability to process it well
rved for the most experienced. _

However, iy is ambigu?u;lﬂ.ﬂwmi‘kﬂ lmﬂiamdtsshﬂuu di&ncms
In ::;s in general, simply because their business cconomics oo Mm
|mesl:f words, it is hard to find a conjecture supporting ol difier o
icar ' Over- or underreaction to market mfnrm':u“;m s

*MPany when compared with a computer MARURCEEE
rflﬂ:dthe Other hand, some sectors are indeed d‘lﬂ"ﬂmt S They
10 regulation or significantly different business. mode e
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ont company management with different challenges to add Share.
holder value, and perhaps warrant d SEpargse mc.fd_c}. In. the Uy, foy
example, there are three broad sector Cél[t‘gur!c‘.'.\-: ulllllll?.-':;,, h_“mCials. i
industrials. The industrial sector 15 a catch-all sector, which includes con-

panies not belonging to either utility or inancial sectors. Similar traits g

conlr

shared among industrials companies.

Competitiveness: They belong to competitive industries wherein com.
panies compete for business and to generate shareholder value,

Business economics: They share similar business economics. Goodsare
manufactured and services are rendered. A company’s ability to cre-
ate shareholder value depends on (1) its value add in the value chain
and (2) the company’s competitive standing to retain a portion ofthe
added value.

Management challenges: To be successful, company management Leams
face similar challenges and engage in similar activities: working
capital management, capital allocation decision, corporate financing
activities, and business operation enhancement.

In contrast, the utility sector is primarily a regulated, cost-plus industey
wherein company profits are both protected as well as capped by gover
mental regulations, Asa result, operating efficiency loses its I."E]E‘I"l“."“'l'a
determining how competitive a company is. Capital allocation !
arc.h:gmlml'““ driven rather than market driven.

The reason why the financial sector deservesa separate model is becal
of the sigpiﬁcancc of interest rates. As a result, many alpha factors that a7
relevant for industrial companies lose their meanings for the finan i

tor. For exa worki o
Cortk i mple, working capital is not relavent not only becausé ofihe
panies do not

Operating assets a
sition to model fi

Produce inventories, but also because cash is?ﬂt .
s cash is interest bearing, It is also an appﬂhb':snb' ik
Insurance, prey nancial companies on the industry level b EIT)"[d

Property and casualty, real estate investment trust {R

diversifieq fi ]
; nanci i
fatios are q als (such as brokers and investment manager pot 0

ni :
{5t g ¥ Meaningful for one particular financial in fdw,y.

For exam i i
: ple, loan loss 14 matrix ]
Combined rapiq is for insura S provision is a relevent oﬁ‘ﬂw’

(FFO) is for REITs, nce companies, and funds from OF o
Ef?ftlre, ’ qchie®
more cmﬂml‘:"l::late the appropriate return drivers l;f“":owﬁﬂ
5L quantitative alpha models should inee™®= =

v
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FIGURE 9.1. Modeling hierarchy.

contextual and sector modeling techniques. Figure 9.1 shows a modeling
hierarchy that combines both sector modeling and contextual modeling
techniques. There are two hierarchical levels: sector modeling being the
irst level and contextual modeling being the second. On the first level, a
cross-section of securities is partitioned into three nonoverlapping sectors:
industrial, financial, and utility. Within financial, securities are modeled
on the industry level to reflect differences in business operations. Contex-
tual modeling resides on the second level for industrial firms and forms
overlapping contextual partitions to capture return idiosyncrasies rooted
in behavioral differences. Note the following remarks:

* The combination of contextual and sector modeling enhances quan-
titative models with greater forecast accuracies (greater conviction in
forecasts), a trait typically reserved for fundamental w_mmsﬂ-“-_-s'm*
ilar to fundamental research, these advanced fnr:chmfls techniques
first categories companies based on their business !ﬂﬂmﬂm‘f'.:d
Arm characteristics and then applies a set of relevant m"'lif” 9 odci
Cast their future returns individually. [n doing 50, 8 URAGHE m@
's ailored for each security whose firm characteristics dictate €3¢

dividual customization.

: and adapts
tcume’““al modeling is a dynamic process W;’:’: ok of
© the progression of a company’s life cycle. For ;

. A different a
lﬂday; successful firms (such ﬁ_MacromﬁJ were very ol

“cade ago i ¢ f their firm chtﬂcminiﬂrﬂfh an expec
erms ol lity. As o firm evolves:

tgi:n“"h rate, value ratios, or earnings st:b]:d cont 2
"OUgh time, jts characteristics dllmﬂth models in forecastl i
:adﬂptﬁ to this clmhsg byappb’iﬂs di ] i .
™e security through time.




B Db

artfolio Management

06 m Quantitative Equity P

97 MODELING ygl”}[“iEf‘E_tr_FEETb__j‘\
ﬂ:ﬁ-.ﬁ@li;ch as Equation 9.3 assume that the expected retury o
cscafityla linearly prnpnrtimml to its lncmlr-miu‘es (or e_"P“Sures]. For
.iu.st.mcc.. for a value factor, say, the b_nﬂk-‘lﬂ -price ratio, holding everything
else equal, the linearity assumption m\ph.cs thata deep-value security wi
provide the best pay-off. However, practitione’s have long been aware of
the fact that deep-value stocks are often riddled with opera'tmg difficulties
as well as bankruptcy risk. In other words, they are cheap for a reason i
the subsequent returns actually |
with B2P as a factor would not capture this effect.

In this section, we shall discuss a modeling framework for nonlinear
effects, with a particular emphasison the prosand cons of such anapproach
and its design considerations. We illustrate the approach using the empir-
ical result of how the market prices capital expenditures (CAPEX) and
suggest a rationale for why it is not linear. We will then show how to trans:
form CAPEX through a nonlinear conditioning framework to provide
better return forecast.

ag other stocks. However, linear models

9.7.1 Capital Expenditures

Figure 9.2 shows the returns of 20 bins of stocks, ranked by the ﬁdﬂt
value of CAPEX, in box plots. Rank 1 represents stocks with the h“#'
est CAPEX — overspenders — whereas rank 20 represents ﬂ“h'_
the lowest CAPEX — underspenders. In general, companies with ol
CAPEX have lower average returns, However, the average returns are®
linear, and this is particularly true for highly ranked stocks =
spenders. In other words, CAPEX is more effective in idﬂﬂwus.w
loverspenders) than win i i be tr to ¢
ners. This nonlinear effect can B
a5""?!'11:'5-' problem, which states that the interest of company man‘%
often in conflict with the interest of shareholders. In the case °fM
'_:GTpan}' management has the prupf_-nsit-y to uverwtpﬂnd by #
:: :h: “:""“ on equity (ROE) projects, an action that eveatt G&lﬁ‘
g rel older \talue destruction. This is the reason why h;‘:@w
TPanies consistently deliver negative excess returns. Alt M '

EAPEX 15 a Sy > & i
or undr.-rﬁpcnf.lempmm of e gency problem, low CEPEK uﬂ?‘. |

tive aﬂ\'amagﬂ

rs deliver low excess return due to shrinki®® qult Ll
and obsg] . Asa ™ ofh
¢te manufacturing technology: 2%~ cﬂ'# .

FElurn response 1o CAPE mpﬂﬂ'u
‘s EX is a concave function with e
Providing the best returns, < ' -1

|: ]i i
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FIGURE 9.2. Fractile backtest of capital expenditure,

972 Nonlinear Effect Models
There are many ways to capture nonlinear effects. One simple way is to
Model the expected return using a polynomial by adding quadratic and
even cubic terms of the factor values. The end result is still a Emrm?dd
but With nonlinear factors. This approach is straightforward and flexible,
But it often lacks economic intuition. With sufficient data m_ining. one
s the risk of finding a relationship that is statistically significant, but
Nonethelegs spurious.
anrfbbm“ approach is to condition the factor vn!ue on other m
tip Putes. In the case of CAPEX, we ask “What ls_ﬂ’l-‘— =PPW£T

_flal ful'm that associatﬁcml(.mﬁnmmms. o:.nswﬂ‘in

5 Question, we go back to one of the primary phjlmnphjesouﬂimd e
%E‘ler 6. That is, we purchase quality companies that ;:hu uperﬁxlm v
hof d:rshareholder value in the future. How does CAPEX D v
Shargy, ¢ generation? One of the important links bt CAPE

o Older valye i the expected ROE. Should a-company o o'
Projects (high-ROE projects), it is shareholder value enhancing

ile
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in these projects. On the other hand, f“mpﬂn‘ics withoyt -
not spend at all, because spending CAPEy o h.

There are other links, such as fu[um;:m }
For the interest of this section, we Wiﬂ‘:li

engage
while projects should
areholders’ capitals.

wastes sh pita
the cost of equity:

praspects of
ROE as the link.

We now discuss each approach in detail,

Quadratic models: Here, we simply add a second-order term of g,

original factor to the linear model. In the case of a single factor, i,
model is

r-_—'l.‘n'.-'p'hF"'l':F:‘l‘E. (gviﬁl

Combining a quadratic term with its linear counterpart can provide
4 better fit to a return response that exhibits nonlinear behavior
The shape of the function (9.16) depends on the signs of coefficients
Assume the coefficient of the linear term is positive. Then, the shape
is concave if v, <0 and convex if v, >0. To model the CAPEX fac-
tor, we would have v, <0, The expected return increases with the
factor, reaches the maximum at F=-v, /2v, and declines asthefac
tor increases further. Companies with extremely high or low C’P‘
tal expenditures do not represent quality firms, whereas cOmp
with reasonable, conservative capital expenditures do.

Conditional models: We can use another variable to partition the et
mation universe into subgroups and construct linear models in €
subgroup. In the case of CAPEX, we use ROE as the 0 :
vari§b5€ and create a dummy d?ngh . which is binary -1 fOl"‘:';';
parj.lcs with high historical ROE and 0 for companies with 1o i
Im:lca.l ROE. Equation 9.17 isolates the dynamics of how upﬂ
priced for companies with high-ROE projects or those without-

r=v, +v:'ﬁupn +v3d"'l* M‘FWGI+£'

Fﬂ I - . o] ol
*1ow-ROE companies, the model coefficient is ¥, and for B

compani .
: panies, the model coefficient is v, + ¥y 24
nieraction models: ), 3 @W o
; : One ¢ with CA% ’
o e <an also use ROE together ﬂdﬂ‘“

Zun ation ?
mode ¢., the product of the two. Equ 1afe®
oo tl:;bmh ROE and CAPEX and their inm:tlon-%!

captures the nonlinear effect. mumtns the co8™ &
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. positive, the expected return is high fo
; t T companies with h;
.nd high CAPEX, and also for Companies ml_:;ﬂa"“hh!gh o
CAPEX. However, the expected return js low for mROE md -
. mpanies with
high ROE and low CAPEX, and companies with i
e A0 low ROE and high
r=vy+wF + viF o +v,F,,,Fm +E. (9.18)
In general, it is common to see interaction variables in valuation-based
factor return estimation, as valuation theary suggests that growth
rate, return on invested capital, and cost of capital interact in prod-
uct terms as well as their linear forms.

973 Linking CAPEX to Shareholder Value Creation

We combine quadratic and conditional models together to link capital
expenditures and shareholder value creation. Specifically, Equation 9.8
shows a functional form that associates CAPEX and ROE with expected
value creation and future return forecast.

+v,F T [‘,!Fw +V;F:'u Jre. (019)

r="'0+':1"tE e

apex

Figure 9.3 shows the empirical estimation and compares the original
cﬁPEJ{ score (shown horizontally) with the transformed one (shown ver-
tically). Because the universe is broken into high- and low-ROE companies,

Conditioned on ROE
_'__1__.|__.l———1———'-

1.0 —
05 =

0.0 =

20 4 60 B0 10
Houg GAPX: Ol Score
£9.3, Transformation of the CAPEX factor:



tHolio Management
quity Por A

Ouantitative E
- d Alpha Modeling Techniques & 379

two fitted lines are shown. The I‘f“"”— i -rePr-:semgl I““"RUE R = q—____‘___\__‘_
whereas the upper one represents h:gh—m_?lt- firms. (:]blvmusl_ 7 high'R{);
firms deliver higher returns than Iqﬁmv-ﬂlif. hirms. It is mtercsting to ngy ’ Df :
that for firms without worthwhile projects, the .return response i fairie g :
linear. That is, lower (or even no) capital expenditures bode well, e g s
for low-ROE firms, as they will most likely waste shareholder capital, ¢y S g s
the other hand, the return response for high-ROE firms is ap Upwary, E o
sloping, concave curve. The best firms are those :whn have high-Rog P, E < ;
ects and spend conservatively on capital expenditures, : p
©
By =
60,74 Related Practical Issues > o ;
When we introduce new variables to model nonlinear effects, it s impar. - &
tant to consider their correlations with existing factors to avoid the myl S : - | !
ticolinearity problem. In practice, factors are either normalized z-scores 0 in i pi = ur

or percentile. The former is approximately normally distributed witha Percentile of the original score

restricted range from -3 to +3, and the latter is approximately uniformly .
Siftrluted betieenand 1 FIGURE 9.4. Continuous slope dummy.
both piecewise linear models. Specifically, bath approaches first compart-
mentalize the cross-sectional security universe into homogeneous sub-
Broups wherein securities tend to behave the same, and then form a set of
Piecewise linear models, one for each of the subgroups.

What makes them different and when should these spproschies be
*Pplied? In general, the contextual modeling approach selects subgroups
;.:?at are homogenous to many different alpha facters. For example,

Bh-growth stocks’ responses to cheapness, quality, and momentum
:L::!Expeﬂ"'d to differ from low-growth stocks. In this case, the contex-
ineamﬂdt'hllg approach is more appropriate. On the o[hﬂ.' hand, no;:-
afm-er EEEFT modeling typically addresses one factor 'a'x a hmf.v. likf-ttc
sub Mentioned CAPEX example. The security universe s partitioned into

STOUps within each context that are expected to have different retarn

reg 0
Ponses to the original factor value.

Cal'inenriry among factors: The correlation between the quadraliclmn
and the linear term depends strongly on the distribution of the origi:
nal factors. The correlation is minimal if the z-scores are used and
the distribution is approximately normal (see Problem 9.5). On the
other hillld, the correlation is E‘xlremely hlgh if the percentﬂﬁ‘ are
used (see Problem 9.6), The high correlation subsequently resultsin
an unstable estimation. Forty nately, we can use the Gram->
Emcedun: to address this collinearity issue, as outlined in
7. The same is true for the correlation between the interactio
(product of two factors) and the original factors.

G iti o
u::_dmmmi dummy: The aforementioned examples use 2 step fun¢
16n as the conditional dummy wherein there are only tWe pwg.

values — g or | One i . 4 turt
: issue with thi that the ré -
with this approach is frot roach, instead of a

cast will . Rl
: d_’ﬂﬂge dramatically when a security is re-categ W il benefit of selecting the piecewise linear app e
010 1 or vice versy P : 4 ugl'w Wbl 2 g the p maintain parsimonious
OUS 8D function ag o PLODIEACOREEE Parameger; honlinear modeling approach, is to maT are more read-
10n as shown in Figure 9.4. i]}. avai] Mzation. In addition, traditional linear staumcsmrpm

e hﬂble' easier to understand, and more i‘nluitivcftfi
feren i enefit of 4 simultaneous estimation is the ability
"ord Onlinear effects across various contextual dimen i

*Nonliney, effects may also be ¢ ontextually d:pmd:nt» ;

9.75 Nonlinear Effect e to capture dif-

Inquisitive * ontextual Model i W ' sions. In other
reads ma : chte ™,

ear effect model; 'Y see that the conditional factor approattt’ W
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» cimultatieous estimation will also deal with ildl‘.liliﬂl‘lﬂl di;lri

h bllt*
I iy 5 Al
uil ['{_.'i'-‘.l.ilﬂ] Jween a _'!H'PL' (lu m D"I]

issues, such as the . my and a COnteyy
dimension. However, the argument against simultaneous egtimntiun.
overfitting, because the number of independent variables incrcages 'w'ull:
the introduction of nonlinear terms, resulting in a dramatic decreage

the degrees of freedom.

9.7.6 Empirical Results
To compare the improvement in forecast efficacy, Figure 9.5 shows ip
decile returns of CAPEX factor for the Russell 2000 security universe, The
panel on the left shows the decile performance of the original CAPEX fyc.
tor and the panel on the right shows the transformed (new) CAPEX fac.
tor. Note that the factor return for the new CAPEX score is close to bej
linear, whereas the return for the original factor is clearly not. This sup.
ports our conjecture that a piecewise linear framework with parsimonious
parameterization can provide enough flexibility to capture the nonlinear
effects, without resorting to a full-bloom nonlinear model.

Modeling nonlinear effects has important implications for the per
formance of different portfolios. We note that most of the performance

CAPX: Old CAPX’: KW
—
e | o | I
Kl
u .
- - o .
:IU - r @ IE
- G'I‘T: ."‘_: .
e e L R 9
bt H W& E
AR i
o4 R/ii: fi* AL
) e SR 1B
¢ | ¥
2 i :
¥ s;—

D ‘-I i j!l N !
Advanced Alpha Modeling Techniques =
13

3

rovement for the new CAPEX factor
;:::hlv ranked Sli!ﬂlf-“ P?' (.:APEK. As discc:;::: o '-'hé:lng ﬂdt m
original form. is effective in identifying losers dnetniths PEX, in its
jem, but it does not add much value in picking winners _;'}:l:::? prab-
original factor is not very useful for long-only P“l*tfuliu;, w52 r. the
mostly come from “avoiding” losers for th ' s

e long-only portfol;
CAPEX factor is now suited for lnng~only portfn]io:u:o “flﬂl::-:-n:h:hmnw
portfolios, because it symmetrically adds value both on the winnger 0

the loser sides.

9.8 SUMMARY

In this chapter we highlighted two stringent assumptions behind a typical
linear return forecasting model. These assumptions are not supported by
empirical evidence and they impede the effectiveness of return forecasts. To
improve return forecasting models, we introduced two advanced alphé mod-
eling techniques: contextual alpha modeling and nonlinear effect modeling,
Both modeling approaches still utilize multifactor linear alpha mod-
els. However, a set of piecewise linear models are estimated and created
simultaneously, one for each of the subuniverses that are carefully selected
to ensure securities are homogenous within. When forecasting the future
return of a security, different models are selected for each security dynam-
ically, depending on the relevance between each model and the particular
security. Relevance is governed by the secu:it}"s_altﬁhﬂlts suchas gm'l\fﬂl
rate, P/E ratio, or ROE. Nonlinear effects can be modeled in several differ-
ent ways, including quadratic, conditional, or interaction models.

PROBLEMS

the
%1 Find the condition under which the overall IR (9.9) is lower than t

high dimension IR. it
%2 Derive the optimal weight (9.12) and calculate the optimal TR W

Parameters in Example 9.1. L U e that

9 coeffici

3 Plot the function (9.16) for various values °f _ ﬁ,::ttﬁ: (b) the
[ﬁ]l the maximum return is at F=-»/2;>0 0 pg;thfw:.:'.
Minimum retuen is at F=-%/2%<0 for ¥

factor, which case would apply? - - o e
both ero o (16) 304 1

Suppose factor mean and error mean are % =0 =
tor is standardized. Then prove that Yo ¥ =5
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i . distributed variable with zery

9.5 Supposexisa normally dis o b,
that x and x* are

9.6 Supposexis uniformly distributed in the interval [U.I

the correlation between X and ¥ is V15/4=0.97

uncorrelated.

] - Prove g,

APPENDIX )
A91 MODEL DISTANCE TEST

To gauge the ﬂgniﬁmveighting difference — the Im
attributing the cause solely to chance — we hnntsl_rap the IC sample tg
<imulate the inherent randomness of the weight estimation procedure by
systematically int roducing sampling errors into estimates. The bootstrap-
ping procedure, similar to the one introduced by Michaud (1998), samples
historical ICs, with replacement, one thousand times wherein one thoo
sand sets of optimal weights are derived, one for each sample. This exer
cise is repeated for each security context to generate the set of resample
weightings and the average of these weightings. We coin this average, v,
as the efficient factor weights — a convention dubbed by Michaud (1938),
To illustrate how model distance is determined and tested, let us assume
that v, and V, are the vector of efficient factor weights and the ensemble
of resampled model weightings for the first security cuntext.uﬁpccﬁ_'f'dﬁ
and that v, and V, are those for the second context, The vector of weight
ing difference is simply the difference between v, and v,, Av=¥, """:'
The equation below shows the chi-squared statistic when the weighting
difference is tested against the sampling error generated from the seco™®
security context. The degree of freedom for this chi -squared test B
number of factors minus one, because factor weights sum up to 100%:

(920

s hv A iy,

where A" is the inverse of the covariance matrix for either V, or Vs be
As different covariance matrix, estimated from either V; OF Yoty
selected to compute the chi-squared statistic, significance test re8

albeit &

vary depending on the relative “tightness” of these covariances i

same weighting difference is in question. Figure 9.6 shows & i
sional schematic plot of factor

weighting difference i signific
w'i:mu distribution on (he right
with V's more diffused distriby
Mificant distances for the 1wo dj

ance when using the co\'ﬂﬂ‘ . pifid”
is tighter while the result is nﬂwﬂ‘g
tion. The dashed circles ar€ ¥ =
stributions, respectively:

weights for a visual demonstr? dﬁ,

FIGURE 9.6. A two-dimensional projection of ensembles of optimal model

weights. (From Sorensen, E.H., Hua, R., and Qian, E., Journal of Portfolio
Management, Vol. 32, No. 1, 23-36, Fall 2005. With permission.)
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ractor Timing Models

— %

Is CHAPTER 9, WE EXTENDED THE TRADITIONAL LINEAR ALPHA MODEL
in two dimensions: one is the nonlinear mapping of single alpha factors
and the other is the contextual modeling, which constructs different opti-
mal alpha models in different cross sections. The second extension made
the model dynamic in the cross-sectional dimension, but we still have
constant weights over time, In this chapter, we investigate alpha models
with factor timing features that are dynamic through time as well.

Factor timing carries the promise of delivering superior and mare con-
sistent excess returns and it is a popular topic among quantitative man-
agers. Similar to other market-timing strategies such as tactical asset
allocation, the aim is to increase exposures to factors that are expected
10 perform positively and to decrease exposures {0 those that are not. An
effective timing mechanism can further raise excess returns delivered by
analpha model. In essence, a factor timing model has time-varying factor
weights, ie.,

M

B E"i (t)Fﬁr - L

=l

Jn:].;e composite forecast is a weighted average of alpht ar(:j*upiidﬂ?
Ntrast to constant weight models, the factor weights ¥i{%

Nge over i 1
e or u.me'. and ri* ﬁm Mlnr

focyy OF timing can be applied t0 both alpha
.ab;’“ & set of macroeconomic, ma
“¢ 35 conditioning instruments. The em

_derived, or even
a5 MW-@"W“
n
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understandable, as they constitule the i‘:ﬂlr'_:di‘”_"ts f‘lf a!pha models,
it is potentially less rewarding because a P tactors, with smaller time.
o variations, offer less uppmllumty t.n added value. Rig %
tors, on the other hand, can have ‘“_[g“ t“"e‘“_”“_ ‘:ﬂ‘-“'“ Variation, eye,
though their average returns ,mrﬂj time rare -nul_sxgmhcant‘ 1'10“7‘_3"'31'. Horp
can identify periods when risk la"—“‘“ is expested fo haw.z A positive infy.
mation coeflicient (IC), one can use it as an alpha fact_ﬂr in those perigds
In this chapter, we will discuss two avenues of partitioning ficty
returns through time: calendar timing and macro economic timing W
will review research publications in these areas and use U.S. market and
selected major non-U.S. markets as examples to show empirical back-eg
results. We shall also discuss the portfolio implementation issues thatare
associated with factor timing and its design considerations.

series retur

101 CALENDAR EFFECT: BEHAVIORAL REASONS

In this section, we shall illustrate calendar conditioning on certain tradi
tional risk factors, especially those concerning investment quality. Retarn

profiles of these factors are characterized by low unconditional mcamﬂ::
1o

high unconditional variance. Hence, unconditional exposures
risks are not compensated but skilled timers could reap generous fEE
Specifically, we examine a strategy that longs high-risk, [Uw-qua]ﬂ?m
in the first half of a calendar year and shorts them in the secor .
In this section, we document potential profit opportunities pert
both U8, and some major non-U.S. markets. factors
What could cause the seasonal pattern of returns to these ris!i o
which is related to the familiar January effect?’ We suggest that nﬂﬂ*#
behavior, specifically their risk preference, exhibits a season! P: comm®
aresult, returns to many factors that measure investment risk @ bed
stocks exhibit a calendar pattern.* This phenomenon ﬁFPeaﬁmM
long event, encapsulating the January effect as a prumiﬂent'w
Suc.h a phenomenon reflects: (1) the investors’ beliefin the hﬂﬂdﬂ
cation benefit and (2) the annual frequency with which they ev&="

i ;
fvestment performance. Note the following: g\’lﬂ‘

Carrying this logic one step further, as most investors T

their performance on a quarterly basis, our bEhBViO,fuwwa
\:;}u!d a]'sc.l suggesta quarterly pattern in which return 1hd b‘!wﬂ

b
Factor Til'ﬂing Models m -

months. Empirical tests show that such 5 Pattern does exist in the
; ) . in
U.S. although it is less prominent compared to the
annual pattern,
Although the notion of time diversification has been applied and
jcbated in terms of asset allocation for investment harizons s
nultiple years, it seems to be equally applicable in a shorter, ye
ble, time frame of I year, in explaining the calendar effect.

panning
t repeat-

10.1.1 seasonal Behavioral Phenomenon

The reason why calendar events might dictate investors' risk tolerance
can be traced to the debate about the validity of time diversification, first
articulated by Samuelson (1963).” For practical purposes, we can assume
that a large percentage of investors evaluate their performance annually
on December 31,' which is a common evaluation date. In this case, the
evaluation horizon is the longest in January and shortest in December.
When the evaluation period is long, the investment decision in selecting
risky investments is analogous to the choice of whether or not to partici-
pate in a series of high-risk, high-reward bets, In contrast, the constraint
of a short evaluation horizon induces investment behavior that is similar
to the choice of accepting a single risky bet. As illustrated by Samuelson
(1963), investors are more risk tolerant when participating in a series of
bets, pinning their hope on a misguided interpretation of the law of large
numbers. Consequently, this common evaluation period gives rise o
varying lengths of evaluation horizons during the course of a year, elicit-
ing changing risk aversion. As such, investors' preference for risky stocks
exhibits calendar seasonality, their risk tolerance being highestin January
ind then gradually decreasing with December being th’wﬁnﬁﬂ:
murf:. as the calendar date shifts from December 31 toJanuary ]';m
bu"r_:s: sentiment toward low-quality companies l:]:ddm:;' :;I:l
e Is One, ‘f'\-'hi-::h causes an lmbalance'bet_\mﬂ WFKF;I? Kl
. OW-quality stocks. As such, excessive demand qu effect.
sy of low-quality stocks in January, giving rise to the January :
_ Y g «re reflected in rewurns
b ,,.; consequences of this risk-aversion patern &r¢ risk in the context
ious factors measuring company risk We define sk
‘:lndamem L ch ics of a company; 8 cpmmm? practice 3 -
Ity map, e with stable earnings et
e ey agers. In general, a company financing i8 typically 3ss0-

urn op ip : valive '
Ciagg N investments, and conservative T ﬁmwﬂ‘?‘
ok wifh quality and low investment risk. *" hishwufm
ibits characteristics to the contrary: (5P =
e _ 1
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2 Factor Timing Moq : ndl L
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factors are illustrated in the next $tLI'L""-:’ We explolre the calendar% Utility

i termis of the seasonal pattern of returns to these risk factors,

in te :

cture regarding the reason behind the calendar effec

Qur conje e : i
amisguided belief in time diversification and

Ui by

on two premises: vl , theanp,
performance review that investors, especially professional mg . e
ers, must undergo. Both of these topics have received attentiopg fmmlhg

academic community.

10.1.2 The Controversy over Time Diversification

The time diversification controversy emerges from the question, “Cay
investment risk be diversified through time as prescribed by the lay of
large numbers?” Samuelson (1963) proved mathematically that investory o
should not change their exposure to risky assets based on their time hogj. FIGURE 10.1. Standard utility function.
zon, assuming investors utility function equals the logarithm of terminal
wealth. Additionally, Kritzman and Rich (1998) clarified the time diversi
fication debate and stated that the subjects that merit discussion are Sam-
uelson’s assumptions: (1) investors’ risk aversion is independent of wealth
changes, (2) investment returns are random, and (3) investment returnis
the only source of wealth accumulation.

Fisher and Statman (1999) questioned the descriptive accuracy of Sam- =
uelson’s first assumption, in which an investor is risk averse and theinfe o - Gains
tor's utility is a function of terminal wealth, an axiomatic tenetof expected
utility theory modeling rational decision-making under uncertainty. The!
suggested that when prospect theory, introduced by Kahnemaﬂﬂfldﬁff'
sky (1979, 1992), is used in place of the standard utility assuﬂle,ﬂf
plausible for an investor to achieve a higher expected utility as the i
ment horizon lengthens. The difference emerges from the wltl?- ﬁ:iﬂ!ﬂz
of prospect theory, in which an investor is loss averse and his ¥*% e IGURE 10.2. Value function of prospect theory.
derived from changes in wealth with respect to a reference POy, A

' When evaluati . | MW"MM
35 his current wealth, Th : : hetwiean!& mdud i b aluating risk over dj_ﬂ'mnttimthﬂﬁm_ s sy Ael
ity function and th ipedto/cifidmgcitge dquﬂ" “S equally causes investors to overlook the fact that the magnitude OF

Value (Utility)

: ¢ value function of prospect theory are f g Possible |nsses § ! > ath  As such, investors
Figure 10,1 and Figure 10.2. In Figure 10.1, according 10 €XP= b Ppear to 5 m-::rea.scs with the mw:stm. ok .Nwm-ww
theory, an investor's writies B . th — &5 0 fo be more risk tolerant as the horizon [engthcih with the
Concave stor's utility is a function of terminal weal il m,,..lﬁkm h:'_ls only on the fact that the probability of losses d.mjmshes W
the \ra]u::“e "epresenting risk-averse behavior, whereas H!lw# "izon, without Abptcnricle cachouit the increased magnitude
is mnm&'ﬂrﬂctmg is defined in terms of gains and losses: chavi? EEEE Potential losges, A R ﬂfF“"
1ma“mm or gajul'ls and convex for losses, repl’ﬂsenﬂns tw E%.mm"icﬂlly. Dlaen {1997} m“ved ﬂﬂ! sum}‘l aye:0 Iy
Psychol n. This convex value function for losses eXagBe™™ M 'onal investors confirmed tions of prospect '

logical cogt of _ i,wimpi‘ﬂ I Predicy; confirmed predictions o° P*
losses, caygi otsmall losses and dampens the holoB” Ons of expected utility theory, This is Prova™
'Ng an investor o treat losses equallfa-aﬂ_'”t A pecte
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because most pm!’esslt‘n'-l’ investors rl'!il.’:&:i'l'.ll‘t‘ their performance rejy;
gither to a benchmark, 3 competitors average, U_r both. Thﬂffnrg‘ h
calue added is in terms of gain and loss, as pres-:r_|h_ed by prospect
In particular, Olsen found mu.nev ma nageg- exhibit loss aversion as
dicted by the value function of prospect l_h::ury and that money Managey
also bel;-e\-z in the benefit of time diversihcation.

1013 Annual Performance Review

Prior studiesindicate the frequency with which investors review theirpor.
folio performance can influence investment results. For example, Benarig
and Thaler (1995) showed that the historical equity risk premium, whic
seems unreasonably large when compared to risk-free returns, is acty.
ally consistent with the conjecture that average investors evaluate thetr I
[.‘L‘Ill'lfgllﬂ.‘i on an annual basis. In addition, they argued that the attractive.

ness of risky investments depends on how often an investor evaluates his
portfolio, rather than his investment horizon. Brown et al. (1996) exan-
ined the behavior of mutual fund managers and characterized the mutual
fund industry as a multiperiod, multigame tournament where portfalio
managers participate each year as contestants. In other words, each }Wii
portraved as one of the repeating games that starts on January | and endé
on December 31. As a whole, these studies point to investors' propensi
10 evaluate performance on an annual basis and its behavioral effects 08
investors.

For individual investors, Benartzi and Thaler (1995) 5“83"”‘?:‘
huu?ehnld budget planning, tax reporting, and comprehensive Ye&
pertormance Teports 1rigg¢r annual pt'rformance Waluﬂtim' Fﬁl’ﬁﬁ'

tutional investors, annual evaluation, and to a lesser degree 30
fualuaticn_. are the result of the “agency problem.” To Prg:gct(b&!"!
l::i::;:s ‘:?;:‘iiiutiunal_inv_estnrs routinely evaluate whetl:}er M::‘:;
paid. Mareov are delivering adequate performance 10 usl:lfY
consequenc e.r' aﬂnuai_ ?ﬂ'rtor‘mance evaluation mmﬁ MM ‘
s in dﬂenmmng managers’ compensation’and S¥U

tinued also b g

as if tb::ll?tﬂ?mem‘ Consequently, professional managers 25 qd

oL (1996) atrip s OFi2OM s just one year. Alternativeh ' gpur
fibuted the heightened focus of annual

Performance | : dis
wtion uf::::umplled and ranked by business publ;cttiﬂ'-'_" "‘Hﬁ:
Analytica] Servi:::h s o MO S -
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0.2 Testable Hypotheses

e belief in time diversification coupled with performance
:vich' gives rise to the calendar effect. To Lesta::::n :Ell'!:lt. two testable
potheses are examined. The main hypothesis emerges from the predic

o that returns to quality stocks are higher in the second half of 2 cal:
ndar year when compared with returns in the first half. We shall exclude
she months of June and July because they are in the middle of a calendar
cear, when investors’ risk preference is neutral. Hence, factor returns in
hese 2 months are primarily driven by other market influences, such as

carnings announcements, and possibly the Russell index reconstitution
which occurs in June of each year. .

Hypothesis |
E(factor return|January - May) = E(factor return{July - December}:
The first null hypothesis is that the expected factor returns from
January to May and from July to December are the same.

Hypothesis IT
offactor mrum]]anuaryvhdsfbﬂiﬁ!ﬂﬂfmﬂﬂrw’:
In addition to the return hypotheses, we argue that investment
risks associated with these calendar partitions are comparable. This
hypothesis distinguishes our behavioral explanation from 2 "“l |
halsed alternative, in which varying levels of risk are
with commensurate returns.
022 Definition of Quality i
i‘:‘i dfﬁl.'litiun of quality is similar to that of traditional & l ders
?‘h::. In terms of a company’s dem i -quali
m_-ﬁskmanagemem's ability to aﬂbﬁ!t“ﬁﬂimr .
companies* exhibit the following characteristcs
- Superior economic value creation: high returns ot
y dssets (RNOA) or high returns on equity (WJ‘ _
; Low financial leverage: low debttoassets =4
COverage e Al




ity Pl Banapeinei

il = { Jpnibative |

4, Superior market value creatin high v yeur tatal ety

4 ”'Ph ‘”""'“4” o vil by i i bl IrlHll | KL LR I I"'“h fitio

i, Positive enriiigs anthook: high earnings revision
i L] ’

y Srable earninjge stoann high eacnings stability

Although sl of e D s el v planatony et for the etom,
wetional dispersion of sto bovetirns, thos at least gualifying H“-mn"*
fctors, markets only reward twa ol them according to ncenditiony)
anset pricing shuddhen: endrlngs revision and the price 1w book falka? [y
othet Wllffl'l. reliiens b Phese bwis Do Laars live i puhlll\u' “vrmup ""r“ﬂh‘.
wheteas retiri 1o the sther five are not signilicantly different from 0,

Hewever, an we demonsteate in the hn”nwlﬂ}{ texl, when conditimed
o cadendar months, eapecinlly on the semannual divisions, retums
these nonpriced eiak factors exhibit a calendar pattern with a ﬂumﬂmllf
negative bins in the est hall, and ot the samme Geme, o conaistently positin
bias i the second hall. As for the two alpha factors, thele returns are alie
bitgher i the second half tian i the fiest lall

020 Dot and Test Methodology

the data sample for this study comtaing securities in the Russell »
Inder, and the wmple period covers January 1947 to “Ptmw

Punidbamental data vsed to comst e qu,]hl:,‘ fie tors coe from thw
pustat quarterdy database, and price-, return-, and risk-related 'I.'““
supplied by the BARRA USES mendel Ced

16 tucilitate empirical fests, we fiest compute the f’lk"‘d'm £

eaih manth as dencrilied i ¢ haptor 4. These monthly |.(;“u|lllﬂw
fl';_"‘ WO gronps representing semiannual partitions of A M,s
hr::"l"n::l"'l;lrf wused to 1emt Hypothesis | mentioned earlier. Tﬂﬂw
mean diff " Sgnilicance of the difference In 1C average, we €00 e
Wetence tesiy 1w samnple (- test and Wilcoxon rank i:llifv‘"d

wample | ey Adkuimey |} ;
vl bt |y ! distrl .
Mandipd deviaticns are ¢ Wi nm'millr the W

. the

- fferont. We report the (-statistié o

w: p:j:':::“‘ :’ Proeddam of hiu test. ‘o lesan the normality M g
M Uhe Wilcomon rank test, in which ranking diff ¥

parad letwegy, et -
0 v e oY BEOUPS, Shmilarly, we repart

i hm: VRSt 11, e oxanmsine the difference It
"0t 190 Grcups wsing thie P-test,

i

v"'

——

P Vimiong SAvaty T 7]
[ v A |I|-III.””'i| Hesults

e the seasonal return patterns usitig bok charng

We fu
TR if Priee v nibain lac g and the pice W-hrmi nitko :m

genmattation because these factors have bheen thormughly atalysed in
(e e ademie literatuine in an uneanditions], COOR- S Tionl aaset pricing
(atnewntle. o contrast, our results cast hight from a calendar: candition.
e perapecive

i VIIII lr:f,“'" 1%, the risk-adjusted 1€ of 6 month price momentum i
oltated and plotted in various partitions of calendar months, Panel A
w10 disteibutions of four calendar partitions (January, February-
My, Augist November, and December), and Panel B displays 1€ distrs.
hutions for each calendar month, Using the price momentum factor as &
quality promy, returns to quality are perverse in the fient hialf of the cal:
endar year, s shown in Panel A, with January being the most negative
month. Hewever, in the second half, investors purchase stocks with high
price mormentim at the exponse of those with low-price momentum. This
flight 1o quality behavior iv especially pronounced in December.

the unconditional average of lﬁlliquluchﬂlﬂﬂﬂwmnlﬂlm
line This qualifies the 36 -month price maormenturm s i wmfﬂ'h'
i the market does not compensate investors who take such risk uncon:
dionally. Huwever, when examining the calendar effect more clonely,
“idence shows that investors prefer lerw - cuality stocks in the first half of
the calendar year and then change thelr minds in the mund_ltllf'bﬂdi*
"0 thosse law- quality stocks purchased in the first half

Figure 10,4 showa similar results for price-to-hook. Liow price-to-book
Windicative of Jow quality and reflects the destruction of 'hlm::
::1;"' by w peticular company. As ilustrated, investors l:'::: fow
Inl;::;l securitien in the earlior part of  year and reverse m"{'::m“.

Wer part of the year. However, the aggregated average

A
1A

::“r;h fegative, reflecting the fact that the unconditional refur to price
K18 negative, and it is an alpha factor when
|”,! ]
* Results of Hypothesis Tests
i | in
T":Lq:'“ll"' factoen tested Individually and M:rﬂ;lr ;n uw':“
gyt Eampirical reaults, with both the I a0d loecn I
I"'le';n""'w reject the null hypothesis 1 {or all quality Fﬂ:‘ i
Metiogg "Wnificance, (Note that * denotes 8 90% & oL
‘[uuu,; " V5% confidence level ) This unders ib""""'t“m“ e
PrOmlon, i which returis to quality are mueh Hl“'_ i
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= 41y, similar tests are also conducted :
- BT 1 Lastly, sim conduct h‘!"ﬂlchldm!
g TXx®m® oo @ e !:‘.L-‘-mlwf”"m the sample to demnmlmteumthe” rhm.rgml
g = i:':'.lrlml;:}*llcnlﬂmfmm- ﬁ%ﬂ;“- results c?rruhorateour ‘ ‘.lm
¥ .. aeplore the temporal dynamics i v
g3 - o = peip 0 'Eh eriot‘ls- l‘)s"u iy 3 svide
| 8 TEEEEE: I3 ihe cample into TWO Subp: i 7-1994 and 1995-2003. p 1 A of
; f - Table 10.2 shows the results for l9§?~l%4,mhmgmm !
Bl for 1995-2003. The calendar effect is observed in both subperiods with the
33z = § s 2% 8 first period being more statistically significant than the second. In par-
b3 [ ) T T T ricular, RNOA and ROE measures are no longer significant in the second
= R hali. although the signs are still consistent with the prediction. Potential
B 8 & s B D § & explanations of the temporal differences can perhaps be traced to other
macroeconomic influences, such as the market state or the monetary pol-
icy environment;® alternatively, the diminishing profitability can perhaps
[ = _% ST8ss § g g § be linked to the adaptive market efficiency.
t/icdcscSsase | :
5 1026 Quarterly Evaluation Horizon
%’ 5 TIR-ER =288 Examining the existence of the seasonality on a quarterly basis offers a
Rl R AR R further extension of the calendar effect. Because quarterly performance
reporting is also common for both mutual funds and personal accountsa
P, seasonal pattern of returns should also be observed, To verify this, we par- .
si2gz S3%3q 3 tition the monthly ICs into beginning months (January, April. July.and
sl " 30 e G October) and ending manths (March, June, September, and December) of -
sl¥liscs52s ss calendar quarters. Table 10.3 reports results of quarterly tests. We make.
f-'_|-§'_ ig 2285 : === I Ih"ﬁ?!l'lcv.\.ting remarks: s 1) E .
= | E e o Ny .W"
:"_| 2 i * The evidence from the qunmrtytestaliﬁl'ﬂm"‘i' £ i .'
z 2 SLrS52253R% _a because the signs are negaﬁwauwa“wwma“_h!h
LI RS R Rk low-qualitybiasin the beginning months sod s Kgh iy
E. R R the ending months. As expected, the quarterly seasond :
g 5 fi B : WMS
3 £ - ormly less prominent than their annual counterp: ataS%
‘-E =l 1 rut of the 9 tested factors still show WW 'in'
% ; ? 1 ;"fl. In nddilim.thewﬁmwstm#m_ e to begin- -
. 53 the annual test (Table 10.1): investment risks pertainia 8 55
- £ "ing and ending months are similar. It 08
g E 3 L | » = 1 "
,5 2 ‘3 g 1025 1 S5 . x ‘4.
- z . “ Nom-US, Markets: = . =
- = & .§ _é E If‘heexl ; Sy T et 44
&L g 2 § : the g 24100 behind the calendar efect i M EC i pon-US.
" : g 3 ﬁ E2 %Phennmmg!n-u_mmd:_, aland mﬂmgﬂaaﬂl
< Hgﬂ_j?i Therefore, tests conducted in non-UsS: B 0

rs -
A -
e T e



FaclanhninsM: i & 321

——

S

99 9 1LL0 L0010 |/FE0 €€0T #I€1 SEED. LE0-
99 99 P10 60'1 9RO 8SBIL. EIE1 SS00 vl
99 59 09£0 9zl 100 F99T.e 6821 5100 e
99 99 0 P4 & | 210 1061 9o1EL 1IZT0  ETI-
99 99 LFE0 860 F0O0'0 £091.. 0TEL 2000 BUEue
99 99 010’0 06 Ten 9ZI'0 D061 ¥ 0Tl £E10 =
W 99 ££0°0 0L Tas FEOD  £921.. LETT 1E0°0 BUTan
a9 99 9810 651 L1000 B0Ll.. 9871 <000 88'T-e
09 99 60€°0 671 9000  1£91.. 00€1 1000 BLE-us
jpwousp jpumu  3npes-d | anpeA-d M p  onpEp-d )
1531 -2ouenrey Ajdweg-om], 153] UOXOI[IAL 153 -1 Adweg-om],
suapend) Jepuafe)) Jo syiuojy Surpug 3 sa suopy Suluuidag oyl €01 J1EVL
- — — ——— — —S= s I-I.l..{-_ﬁ s o — s &
e L os'g sz'a oo [ F2 Pt =R BT i o
1. (2 3 oro ZL'0 HILD =8 "is Rt ] b T A G )
¥ o b ol 0400 1L i S5O0 L 18 | 5
I r S0 €80 0z00  1£9.. g8 TIOO £ETue . .
T+ + cEED £EET LI0D ¥99.. SR 6100 OV T
I H g98'0 901 £8¢70 8€8 8V 95¢0) £6'0~
ik b id ££0°0 SH las FeEC0 fog g6l 6670 VI B
I+ i L1€°0 %0 S60°0 ] 978 LL0°0 6L T
IF i d F060 FO'T 0zo'o 4% 88 8100 [ § i WNUANOJY 3311 Juom-0¢
= jpwouap Jpuwnu Infep-d E | anpep-d M jp  anpep-d 1
w. T jsap-acuwuep apdureg-omp 153 UBXOI[IM 153 -) ajdures-om],
..um.., £007-S661 (9)
s 6% &€ 6820 760 0000  ¥ibe 6L 00000 LT Aipqeas sfunurey
w 6t 6E RT9°0 LTl 000 Shia. gL 0000 L€ e P01 . 1
m. 6E L5 9160 L6 0000 1€€.. 6'SL 0000 e onuy adeia0)) S|
- 65 6f LOF0 1€l 8RO TI9 99s 9500 F6' 1= SRSy -01-1Pd .« I
3 6% 6f STT0 81 000D Obtas st 0000 SOF—s yoog—01-PHd
v 66 3 9060 6% 0000 OBf.. @9z 0000 SFFas tnﬂM“
= 6E 6t FTFO 61 noo'o [ LoL 0000 (g
S 6§ 6€ g0 €90 PIOD  SHS.. TRC  BE00 11 Tve worstaay sfurEg yrow Tl
g HE HE 6120 Fa 0000 6TFss L2 0000 IE=w WRUAON UG JIIOU-9E
W< Jp wouap jpwnu  anpep-d 4 anpep-d M P anpes-d 1
. S = " 3sap UDXDMIA 1831 -1 ajdwies-om],
“ 153 -aouEires ddues-om], 153 U I'M 111 ajdwes scet-ciet o
L e
= spouadqns 4q sasTELS LFEIRS ro1 18vL



i C Iartiolo Vidnd SErTeii
332 wm Quantitative Equity Portic

nities. In addition, indigenous cultur,) differ,

ervable deviations in some of these markets mﬂ"'iu
¢ of behavioral influences. For example, ,, ket
ascertaining whether the Chinese R

New- Ilv
rn accordingly in Asian markets WE;F
&

global return opportt
could also impose obs
ing the multifaceted natur
particularly interested in

shifts the cycle of calendar patte
Hong Kong'. =

Our non-U.S. sample covers the period from |ﬂnu:‘1r}; 1990 to Ditey
ber 2003 and holdings of the Citigroup broad market index constitute h,
<ecurity universe. The risk-adjusted IC is calculated similarly to the Us,
tests, c_;{cepl that the BARRA GEM risk model supplies the risk loadings
Fundamental data items come from the World Scope database with 4 4.
month lag to avoid look-ahead bias. The same definitions of quality prox:
ies are Te;lt‘:d in this exercise, except we use return volatility in place of
earnings variability. We perform a two-sample f-test and an F-test" ip
selected major markets.

In Table 10.4, Panel A reports the t-statistic and the p-value, in paren-
theses, of the two-sample t-tests. Calendar seasonality is prominently
observed in the UK., France, and Japan, in which all tested factors show
negative readings, with a majority tested significant at a 10% level. Cana:
dian evidence is weaker with eight (out of nine) factors showing the right
negative readings, only to fall short in statistical confidence with just three
being significant. In all, evidences gathered in the aforementioned fout
markets provide supports for calendar phenomenon. However, there are
two noticeable exceptions: Hong Kong and Germany. :

For the Hong Kong market, calendar seasonality is not observed I
T?ble 10.4. To ascertain whether the review date is inﬂuenoedb?‘c"u_w;l.
differences, Table 10.5 reports test results using February as the‘“d
calendar year instead of December to accommodate the Chinese A
year calendar, which starts mostly in February'. As shown in panel 5

:casuna]it}' becomes more noticeable in Hong Kong as seven (out 0!.
actors

show negative readings, whereas the test results becomé Hﬂ:ﬁ
camly_ weaker in the other markets, especially in France. This sﬂf:fw
trast, induced by a calendar shift, perhaps exemplifies the hﬂww
nous cultural differences impose systematic beha

8in observable variations in the formation dw 0¥

indige
ultimarely resultin

dar phenomen
elect March

show Negative

on. Table 10.6 shows a more remarkable cOntTe= -

rﬂ.di.ﬂsﬂ in the Hq-na Kons market, ﬁﬂd fﬂu[

=023 (0D.41)
020 (0.58)

Hong Kong

Japan

-0.51 10,31

**_310 (D.00

0.07)

0.04)

Canada

*~-1.52
.'-I.?g

Germany

-0.38 (0.35)
*-1.51 (0.07)

France

*~1.45 (0.08)
**-1.86 (0.03)

UK.
“*-2.74 (0.00)
*=-2.71 (0.00)

Sumumary Statistics of Non-LLS. Markets

TABLE 10.4

(A} Two-Sample t-Test (1990-2003)

3 as the end of a calendar year'*; In this test all qf he w

12-month Earnings Revision

RNOA
ROE

‘36-manth Price Momentum

i
1.63 (0.95)
1.05 (0.85)
-1.06 (0.15)
-0.23 (0.41)
0.37 (0.64)
“—1.47 (0.07)

— e,

-0.55 (0.29
**-2.32 (0.01
**_3.57 (0.00
**-2.92 (0,00

- —

0.25

0.18

0.03

0,25
(0.20)
1.02 (0.85)
~0.88 (0.19)

— T et

~0.68
-0.84

-0.68
-0.94
=_1.94

2.51 (0.99)
1.57 (0.94)
**-1.74 (0.04)
0.76 (0,78)
1.33 (0.91)

=1.21 (0.11)
=091 (0.18)
**-2.08 (0.02)
=*—1.68 (0.05)
=117 (0.12)
*~1.48 (0.07)
**=1.99 (0.02)

~1.18 (0.12)
~0.66 (0.25)
*-1.37 (0.09)
*4.2.09(0.02}
*_2,07(0.02)

=1 * Debt-to-Assets

-1 * Debt-to-Market

(B) F-Test (1990-2003)

1.07 (0.77)
0.86 (0.53)
0.74 (0.21)
0.95 (0.83)
1.08 (0.75)
1.30(0,27)

0.94 (0.79)
1.03 (0.90)

Japan
1.21 (0.43)

~1.14 (0.13)
“=_269 (0.00)
1,86 (0.01)
111 (0.66)
1.15 (0.55)
1,09 (0.71)
1.15 (0.56)
129 (0.29)
1.25 (0.35)

0.71 (014}

1.28 (0.30)
0,66 (0.08)
1.00 {0.99)
0.74 (0.20)
0,94 (0.80)
0.79(0.32)
0,62 (0.04)
1.38 (0.18)
0,85 (0.48)

Canada

0.31 (0.62)
**_2.62 (0.00)
*21.74 (0.02)
1.28 (0.31)
1.08 (0.75)
118 (0.49)
1.26 (0.34)
0.89 (0.62)
0,67 (0.09)
1.20 (0.44)
.99 (0,98)

111 (0.67)

0.70 (0.13)
0.87 (0.55)
1.03 {0.89)
4.94 (0.81)
10,96 (0.85)
0.98 {0.92)
1.30 (0.27)

1.00 (1.00)

100(0.98)

099 (0.97)
1.10 {0.68)

1.08 (0.74)

-0.58 (0.28)
-0,14 (0.44)
107 (0.78)
“1.08 (0.76)
1,00 {0.99)
114 (0.58)
*%1.60 (0.05)
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=1 * Debt-to-Markst
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significant at the 5% le\_-el. In mrturasll. ?;eusumflit‘.f is I“‘:' longer obse

in other markets. Why is the seasona pd-ttt'rn stronger in Hong KDngw-
March as the end of the annual cycle instead of February? e % ith
yet anather behavioral reason — the tax j.'elar cycle, which ends in My,
for both personal and corporate tax reporting. Our supposition does
involve tax-loss-selling activities, because there is no Capital gaing ta
Hong Kong. Because the end of the tax assessment period Provides g
opportunity to plan thean nual household budget, it is plausible to assume
that investors also elect this date to review the performance of their port.
folios. When combined with the misguided time-diversification benefi,
March 31 may still induce seasonal changes in investors’ risk preferences
even in the absence of the capital gains tax.

For Germany, the results are mixed and puzzling. When quality is
defined as earnings revision, price-to-book ratio, or low volatility, eur
hypothesis is confirmed at the 90% significance level; but when quality
is defined as the return on investments or the interest coverage ratio, our
canjecture is rejected at 90% significance level. Germany is the only mar-
ket rejecting our conjecture, on the grounds of significant contradictions
rather than a set of random testing outcomes. Further research is needed
to understand the disparity between different quality factors.

103 SEASONAL EFFECT OF EARNINGS ANNOUNCEMENT

.l" the US,, companies file financial statements and announce their earp*
Ings on a quarterly basis, and most U.S. companies adopt calendar quarté®
3 their fiscal reporting periods, thus inducing another systematic

dar pattern related to the cross-sectional dispersion of security ret™

;II?: &0 mc.al Evid-..ance that follows will show the cross-setﬂﬂﬂﬂmﬁ
mﬂ]-:‘:l:lﬂﬂ 15 COHSISIEntl}' h;gher around the earnings announ ‘d
g Z::?nuary- A;frii. July, and October) for the previous qﬂ"“'rwl
e ohnt off:ﬁ the quiet period (February, May, August, and !:tﬂk‘ﬂ
the preannon . (March, June, September, and Decembed) P
iy b;;‘lcemenl or warning period, during which the ;etul’ﬂ W
the Janug E;En thns"’_“f announcement and quiet perlodi_- In W
during h{:;: ]a:ﬁt also induces abnormal increases in retﬂ_mou pedl?
the last section ial’)’ and December. Following the cunje.cturg_' s ,;’lﬁ'

year end, causi;; n:::?mf reset their investment horizon (helf :
ment decisiong, is sL:'hm;in(.prefs.'l'en»::mr to change along withw_ '
return dispersion ; h: +1tis plausible to expect a hlg.ht'{ P ﬂﬂ_"
"both January and December when :

Fam“mlmsi“m " 337
hecause investors adjust their portiolio hold;
! T
ncreased risk appetite. S 10 reflect their
i Return dispersion is one component of excess re

Chapter the excess returns are proportional to the return dispersion.
Therefore, the seasonal.pﬂttern of return dispersion carries 3t lexstifs
implications for portfolio management: portfolio trading strategy and ex
ost tracking error. However, we first examine empirical evidence of the
ceasonal pattern of return dispersions.

11_1011[!"\.'

According to

1031 Empirical Evidence

panel A of Figure 10.5 shows cross-sectional dispersion across four calen-
dar partitions: January, February to June, July to November, and Decem-
ber. Two interesting observations can be gleaned. First, the dispersions
in January and December are higher than in other months. Although
median return dispersions in January and December are similar (shown
as the bar in the middle of the box), January months are skewed to the
right. In other words, extremely high return dispersions are most likely to
happen in January than in any other months. Second, return dispersion in
the first half seems lower than that of the second half.

The other source of return dispersion variations can be attributed to
earnings announcements in certain periods of a calendar year. Compa-
nies release their earning numbers shortly after the end ofuchulm-
dar quarter and some prerelease warnings before the quaﬂtr_cﬂﬂﬁr S
effort to manage investors' expectations. Earnings news ChpcE !l?t di
0 adjust security prices and to reestablish the pricing ‘qmbm :
;c:“]ﬁ“g in higher cross-sectional return c:lisll"ﬂ"‘i""‘-':“''5'-“"”‘“1:l RESHRLE

flouncement season. :

[MWE divide calendar months into three subgroups: ﬂ“m P“h&
e June, September, and Decernberh e S0 ey Moy
onlary:. April, July, and Octobes), and the QU PRRC Py e
Pfrii:tl i"lnd November). Panel B ﬂf Figure 162 period has the highest
o, "8 in these subperiods. The anﬂﬂ“.ﬂ'-'w“t-__ and the quiet period.
hag :“eEE:rsion, followed by the mwwﬂ"

st cross-sectional return dis o omend:
mg’&*‘emin_the_ammﬁw:m%%whpmmmh&ﬁ-r
the mnn:;?"tmnn to disentangle these €18 bt dummy variables 8%
!““hldgd Y cross-sectional return &mﬂwi’lwnﬁ =1
Ing upg “lmwmwmmmghwmﬁﬂs |

N Whether a month (1) is January: L Vel
e i LS ..HI.-I 1

we sel up
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(@) CABLE 10.7 Summary Statistics: Dispersion of Risk-Adjusted Ret =.
14 —— T
i | pegression SUAETEE
x = 0.328
= yqultiple B
g 13 ' ; 0.107
g thu‘.l]’t.
E ,-h‘lil.]h[L'LJ R Square 0.089
W 12 1 51;1111»11‘:[ Lrror 0.119
% J Ohservations 201
g 11
£ TR .
§ | Coefficients  Standard Error  -Stat p-Valse
SR 5_ Intercept 1.021 0.015 70370 100
5 : isan 0.029 0.033 0.867 0,387
S .
% 0o 5 D 0.018 0,034 0520 0,604
2 S isWarning 0.060 0.022 2738 0.007
8 08 isAnnouncement 0.088 0.022 3972 0000
]
Jan Feb-June July-Nov Dec. warning period, or (4) falls in the announcement period. Table 10.7 displays
Calendar Month

the regression result and summary statistics. Both warning and announce-
ment periods indicated as “isWarning” and “isAnnouncement” respectively,
i are significant at the 1% level, thus confirming both periods have signifi-
| cantly higher dispersions than the quiet period. January and December are
not significant at the conventional level, but theyare nonetheless positive

tad Retum
Ll
a

1032 Portfolio Trading Strategy

T understand why changes in expected cross-sectional return disper-
‘?0" may influence portfolio implementation, we recall the demmpo:
'n of the ex post portfolio returns, shown in Equation 4.25 in Chapter
,:' =ICVN O sdis(R, ) . Holding breadth N md model Md[:i:fi
m:dd constant, the portfolio return for a single gﬂfﬂd d:g;cmnt "
e 257 skill, measured as the risk-adjusted mﬁmﬁﬂ:il R
Wusr‘i::ﬁnt opportunity represented by the cross-sectiona CBEZ=
] returns, Fora manager with a cons tant, return
E?rt ' Would produce higher returns in the months Wﬁ:m his or
h;P :l::lluns and lower returns mlwwmmmm
- "is the same ac ths. ' e :
Anno g across all months. _ - ediately before.
. | g ore itis more beneficia totradeaportolOIM ™ L Cy
Eamings Reporting Season S gl . '8h. is : ) '.=portf0|ml.¢w et
PCURE10.3, Crongsascri ' SR | e ;:._irsm" months, because it enhances portunity: Furtherore:
ditioning o e e UOmal dispersion of risk-adjusted 1T oo | - ik 8¢ Of the increased vestimal’ O por iy, by a8
season, F month and (b) conditioning on earAine* More y,, "4Nager could “spend” portfolio WL L rng -
S "TNover immediately before b e
.'I.J-’.”-' b E &

Cross-Sectional Dispersion of Risk-adjusi

Warﬁ.m
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104 MACRO [IMING MODELS

Factor timing research is @ close sibling of market ti|11i||g—;¢;:;mh
have generated significant amount of interest from acadenmics 88 well
practitioners. Similar sets ot explanatory variables are deployed |y hﬁlﬁ
areasto provide an elficient ime-sertes conditioning, inan t’rfurttuqthm
2 better performance when compared to a buy-and-hold strategy. In thy
section, we document some of the macro timing approaches applied 1
both market return and quantitative equity factor conditionings.

A macro factor timing approach must be used with caution, For every
set ot vartables discovered to have explanatory power, one can easfly find
literature questioning the robustness, the practicality, or sometimes the
relevance of such a dise overy, }"yrhups this highlig]“s the pﬂtmﬁl.lm
of data mining in factor timing research as it has limited data sampls
'j‘"“‘” compared with cross-sectional research, and the fleeting natre®
hctor timing discoveries, as investors quickly learn and adopt.

104 Conditional Factors

I general, the
four sets of expl
factor retupps,

body of factor/market timing research has docu!
anatory variables that possess time-series predictabill

Table 10.8 provides a detailed list of these variables.

o

Mark ;
t':l::t :l::eh Variables in this category measure the mudfﬁu
di and markets, in an effort to capture gither b

: . d
: i til:;“(::mnﬂ orweak ucgn.;,my) or the Pﬂ}"-'h ol ogil-'ﬂnl de{nlﬁm
o nndn; Population in general, e.g., greed or fear. FWW
and divi nfsnc!q ;llljsg} used the terms preml-um. dﬂfﬂ“]tw ﬂw
Predictybye .. 1 1O Capture the business cycle and co

le Patterns jp stock and bond returns. Similld?"

it !

Al

AL

He

Fautor Himing Modeh, & 14y

o 0 vty Used Explanstony Varlables = B
Fequrity s equity eisk premiuim

yaobd volatilivy (e, VIX),

tearnvings yield, F-hilly, dividend

st market
return, value spread, eacnings growtly 1;:::? i

Do tetm spread, credin speead, and bood yield
plicy Monetary policy regime, Fed funds rate,
Peanomic Mealth, Glhp

ket

M T

and M1 money ¢ h
growth, industiial produgtion, pi

indlicaton, NAPM Mirvey, aind expected INES pmlil h
Tntlation consumer price e, producer price index Ind-lﬂl

i'!llrl.'-

i iion

IIIIIIII‘|1|,||1II Tviwe

Cays wansumption, hosehold net worth, and lahor income

Janinnit

and Shivakumar (2002) applied the same set of macro factors to

explain the momentum profit. On the other hand, Cooper et al.

(2004) found that momentum profit depends on whether the mar-

ket delivered positive or negative returns in the recent past. Astiess

et al. (2000) showed that the value-growth style return is predict-
able, and they used both the value spread and the eamings growth
spread as explanatory variables, In this case, the spread is measured
as the return difference between the growth and the value portfolios.
Arnott et al. (1989) used the equity risk premium and market volatil:
ity to forecast returns to the BARRA risk factors™, Lastly, Kao and
shumaker (1999) applied both the term spread and the credit spread
to forecast value-growth style returns in the equity market,

Monetary policy: Monetary-policy-related variables provide three dif-
ferent gauges: the monetary policy stance of the Federal Reserve, the
short-term interest rate (¢.g. Fed Funds rate), and the money supply
(e, M1). Jensen et al. (1996, 1997, 1998, and 2000) o e
etal. (2005) found that monetary policy environment — W
o restrictive — influences the broad market return, :tyl: oot
sector ratation, as well as the commaodity and bond '“"“F"'- ‘;m
(1989) also found the percentage change in M1 money SupplY
entiates returns to certain BARRA risk factors,

feonomic condition: Beonomic variables directly mm;::;r b:ht;
health of the economy or the inflation risk. Arnoit (1989) e
the percentage change in the Leading Indicators and the PBARRA
thange in the producer price index (PP1) predict “Tth:-ﬂl”‘"d
factor returns, Kao and Shumaker (1999) used :
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GDP growth and the consumer price index (CPI) tq fore,

Cast ¢
month forward return -“["“"“l between value a nd Browth, % .

pnml-l‘i"-fd indicators: This branch of researches flls .
* Mg

=I;nu n tcr-:}rclstal
n ?nwull:hs <onditiy,
is weak and vice versa), by employing consumption Browth

of the explanatory variables. For example, Campbell angd Cochryy,
(1999) explained several asset-pricing phenomena through the Usef
a theoretical model that is driven by a consumption growth Process
in conjunction with a slow-moving external habit to the standard
utility function. Lettau and Ludvigson (2001) provided an empiricil
examination, They found that the consumption-wealth ratio (cay) -
the error term from the cointegration relation among consumption,
wealth, and labor income — is a better forecaster of future equity
market returns at short and intermediate horizons when compared
with traditional market variables, e.g., dividend yield, Recently, Gu
(2003) showed that combining cay with a measure of stock marke
volatility substantially improves the equity market return forecast

Consum ey
financial economics and focuses on explaining the

nature of the equity risk premium (i.¢., high whe

10:4.2 Empirical Findings

In this section, we continue the examination of the return profiles of the
nine quality factors used in the calendar modeling section, by condition
ing them on two state variables measuring the monetary policy and the
broad market return, We also examine the interplay between c@
scasonality and these two state variables to see whether certain matd
conditions enha nce/diminish the calendar effect.

Monetary policy regime: Jensen et al. (1996) postulated that monéti?

policy — restrictive or expansive — regulates aggregate molﬂﬂ
uluuuts;

Ply induces a direcy influence on business conditions, and

oy - - ag Le |
BOVerns changes in investors' risk preference (or risk P
Under an

look is rosier,
exhibit flight.
ity firms, |
mode, inves

and investors demand lower equity risk premt

contrast, when the Federal Reserve is in the
1015 fear negative economic shocks and the B

E::I‘:I};ili”" of an immediate recession. They demand M%ﬁ’
pun;l:: “MUM and consequently exhibiy Right-to-quality =5
AsIng quality Companies, :-.
e
I

X pansive monetary environment, the “D"m?‘ and:

from-quality behayior by purchasing cheap: ';:[ﬂl :
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panel A of Table 10.9 shows the monthi
; the ‘-gpunhiw |JL'rim|, and the

y lrisk-adjuhtcd IC for the fu))
Festrictive period. The inpirical

ol . : ity factors are consistently higher
in the restrictive period than in the expansive period. Furthermgre qual

ity fuctors not only delivered higher returns (mean) in the e¥iadve
eriod but also scored higher risk-adjusted returns (£-statistic),

panel B displays the test results of both the mean difference and the
wariance difference between the two policy regimes. The difference in
mean is fairly pronounced. Five factors show significance with the two.
sample t-test and six with the Wilcoxon test, We also note that two factors,
price-to-book and negated debt-to-market, show significant difference in

sample.
(s are unanimous — returns to qual

variance at the 5% level, Interestingly, both ratios exhibit negative returns

in the expansive period and positive returns in the restrictive period. As
bath ratios measure bankruptcy risk, these results suggest that financial
distress is consistently positively priced in the expansive period, caus-
ing the default premium to tighten, Our result corroborates the conjec-
lure proposed by Fama and French (1989). Most interestingly, our data
can be viewed as an out-of-sample test of their conjecture, as it spans
1987 10 2003. Our result suggests that the phenomenon persisted after its
discn\‘cry. .

[0 assess how the monetary policy interacts with calendar seasonality,
Wecreate a composite quality factor that equally weights the nine selected
quality factors. Returns to the quality composite are then collated based on
both calendar (first half or second half) and monetary policy (expansive
" restrictive), resulting in four regimes: expansive first half, restrictive
st half, expansive second half, and restrictive second hall. Fi '3‘“““
shows the hox chart of the distribution of quality returns in these four
Pirtitions, Two observations are worth noting:

I The spread between the risk-adjusted [Cs in mwuﬂ:sﬂﬂﬁ::lr
And restrictive second half partitions is mun‘dm“ﬁ:'k reference
his evidence supports the conjecture that m"."“""’ ; ¢
depends op both calendar events as well as business €O

L g ances,

b H“Snrding the order of importance betweent mm::“irn: policy-
Salendar seasonality is more pronounced lhll'l risk-adjusted

I ' expansive second half p’uﬂiﬁ"“'m, " ..Wriuriik"

€ Whereqs the restrictive first half P"ﬂw et

Idjum.d Ic, . kg
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AIGURE 10.6. Distributions of risk-adjusted ICs conditioned on monetary

policy and calendar partitions.

L] Lo
g LA
00’0 L W
LSOO LBGE.
SE0'D SO6E.
910 T4
ra i) BELY sn
199°0 rLsk
R0 L50b.
anjup-d M

153, UOXOD 1M

344 8 Quantitative Equity

L [} C YR ] Lo ]
LY L4 LR oL
s£ &l S0 HHD
74 L FHG'0 o
SZ FET QL0'0 P90
SL rel Q6L°0 K01
S L} ROL0 1
G el 960°0 £Fls
SL | L1T°0 BLD
Jp wouap jpuwnu  anpa-d 4
12 -dunuep apdueg-om|,
LT AL TLSND BRI sLl |
QL £ 9EHDD SEI00 Gl £9'T
9L ot S (1 S L £l a0
YL RL'E PREON LT Ll
LT G RERDN cEl 1Hye
9L DH'Y  BLS | L W
UTA sve  1é L | T
QL LAY YOl LHRTOW0 ET4 | FE'e
QL 8 P R L U | £L0
w0 8 1 (L] unaga w0 g 1

PO AR

pupaag aspsuedsy

S990'0  L00°0
HEQOD Du 100
b L HC BT R D
QRPN L4000
) G Il (AL
1cwn
g1rnn
mean
LSRN G500
(L] [TLETTY

10T
10
66l
10
T
108
10z
Tils
148
o 8

Market return environment: In this section, we examiné whether the
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risk preference. We note that Cooper’s mdﬂﬁu“ isa
§ test results; Panel A shows

and has ngo i
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market state, proposed by Cooper et al. (2004),
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1 assume expected return is a constant thyg
Intertemporal CAPM (ICAPM) was proposed to r'-'1'r-'-..*l the
a long list of empirical research pointed
ary countercyclically with busi

explanations, whicl rough lime
“m“'i“"ananlt
assumption, and 10 the fyqy thay
the price of risk seems L0V . . ness *:Uﬂliil'mm
_ that is, the risk premium is high ﬂwln-n the L'L'(.'l!]ﬂl'l'l'\" 18 weak, ang j; X
low when the economy is booming, For example, Fama and Freng (1989,
suggested that both common stacks and ln|11-'.-i'-‘|:'ﬂ bonds contain g tery,
premium and a default premi.um._ The term premium relates (o shnrl-um
business cycles and compensates for exposure (o discount-rate shocks e,
the duration risk); the default premium relates to long-term business eni.
sodes and compensates for the return sensitivity to unexpected changes in
husiness conditions. They conjectured that when economic conditions ane
poor, income is low and stock and bond returns must be high to induce
substitution from consumption to investment. When times are sood,mj
income is high, asset returns clear at lower levels.

Employing the same set of variables used by Fama and French (198¢)
Chordia and Shivakumar (2002) showed that momentum profits are
explained by common macroeconomic variables that are related to the
business cycle. They attribute the momentum profits to cross-sectionil
differences in conditional expected returns that are predicted by standard
macroeconomic variables and assert that the residual portion of stock:
specific momentum contributes little to st rategy payoffs. They attributed
momentum profits to cross-sectional differences in conditionally expectsd
returns that are predicted by standard macroeconomic variables.

Calrnphctl and Cochrane (1999) provided an economic explanatio
why I“Sk Premiaare countercyclical to business conditions. They
L:“l‘;::’:izf :‘f:?:; :t:[:ck.t. .P.ri marily hec:\use. they dt.:! Ptﬂ.lfl]r’ in m
il S;;ch f: urns are correlated with d.eclmes in W'-'*lll
i e r:rlls Zt.m.bu.tm lo the habl{_ formation ﬁ;?:md'l e
Tesponses 1o it 'Ihi: s ~]|~.mml-5 bes the percepton cfing 5'1:|ll' i
why cunsumers.' re urF:s.riL f’lngml fealm:e it hcl::;‘lu rd!wﬂ-‘-ﬂ
recent changes ip ::?ms:m 5:,,5,_ of wall-being oftes .scen:;s fm.mmrﬂ‘“
As such, they C“niecturudp tfn :har! - lh‘j < -c;ain why T
SIOns are 5o feared even tho T: hal_-ul. persiatenon S ﬂpnlai : ““'I'

Interestingly, the habi o n:g' their effects on output are e seem®
e asimilar peychalog; ation hypothesis and prospect '
Bical profile of how one evaluates 0D

being —
e fbmﬁ:cming more on the change in wealth/consumption
¢ level of weallhrmnsumptiun. ‘

e*,.aﬂ_‘._f 1
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3 Mechanism of the Economy
i ; B 3 45 R -t
" ool of thought is primarily based on economic theg

ja S¢ .r ryofa regate
Thi ply. Similar to other economic theorjes, o

1CI11.1|1L1 and sup it takes a rational
> « of the market and expands on the explanation articulated by Fama
vie

and l;r‘-'1\£tl (1984), On -..I more intuitive level, Jensen et al, (1996) postu-
jated that monetary Fl.lill-l.')“ regul_afus aggregate money supply, induces a
jrectinfluence on business cu!'ndl:mns..and ultimately governs changesin
awestors’ risk preference (or risk premium). They showed that monetary
geingency provides additional explanatory power of future stock returns
1 excess of what can be explained by business condition variables. Spe-
dfically, they found that business conditions explain future stock returns
only in expansive monetary policy periods, but not restrictive periods.

Ona more detailed level, Jensen et al, (2000) also documented the use of
monetary policy to forecast industry rotation. They argue that expansive
monetary policy induces excess aggregate supply of money and encour-
ages higher levels of discretionary consumer spending. Hence, the indus-
tries that are more reliant on discretionary consumer spending appear to
be more sensitive to changes in the monetary environment, [n a similar
vein, practitioners are aware of the three different phases of sector rota-
tion: starting with the early cyclical (sectors more influenced by discre-
Honary consumer spending), followed by the late cyclical (sectors more
sensitive to corporate spending, such as technology and capital G‘Pm-ﬁ‘
tures, or sensitive to commodity prices), and ending with the defensive
lsectors least sensitive to business conditions, such as utilities and phar-
Maceuticals), We note that this line of reasoning deviates from the argu-
:Tm of time-varying risk premia. Instead, it focuses ﬂﬂthfl P‘:::::bi:
anl:']l:uut?}ut relationship of the economy. Using 3‘“1:“: ";::m‘ i,
wh"g‘f; th'-'_““"}'ing risk premia are associated u;lt Wr1 u: S

tcu:n: ¢ input-output reletionsm? is associat ﬁndlngtﬁf andeslys
'“Gdri-.»e::ft-mwun both arguments is ceﬁnrzl'::;':“mwd by M

ik industry rnemefnum prol.its. (2002) showed that mac:

Onom i (1_999). Chordia and Shivakumar Y. et ovoing
the digcqy Ctvanablcs explain industry mumm:;:nzfymd Ozbas (2005)
lised 1 ["' rate argument. On the other hand, Bureau of Economic
Anglye: PUt-Output Benchmark Survey of the

“’fsm;mm’ to link industries into either upstream or downstream
l

jces. They found significant
strategy, thus favoring the
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irrational Behavioral Inefticiency

104.3.3 _ _
The behavioral finance literature attributes most asset Pricing anom,
& e R - H
1o human behavioral and cognitive biases. Theories were Pmpnuﬁib
L]

explain the price mumentumﬂmmmalies (Daniel et al. 1998; ang Hang,
Stein 1999). Cooper et al. (CGH, 2004) e:-;len_dcd these behaviory| theqy;
and linked momentum profits to the state of the market. They foung i
intermediate-term price momentum profits exclusively followed Petiods
when the market delivered positive excess returns in the past, I COntras,
momentum profits are generally flat or negative after down markets, CGl
explained this asymmetry by linking aggregate investor overconfidencey
increasing market prices. In addition, CGH also questioned the rohyg.
ness of findings presented by Chordia and Shivakumar (2002) and shoyg
that macroeconomic variables did not capture the asymmetry in momen-
tum profits, Lastly, testing CGH's hypotheses in non-U.S. markets, Huang
(2005) found qualified supports for the 17 countries in the MSCI index
Note the following remark:

+ Different explanations have potentially different implications for
future predictability of returns. Should profit potential arise from
behavioral biases, it is natural to expect such profit to diminishl?ﬂ
its discovery, eventually to a level that can only clear transactiol
costs. On the other hand, should profit opportunity arise from tak
ing nondiversifiable risk, it is natural to expect such pmﬁt to last,®
the pricing equilibrium is jointly determined by both hedgers
arbitragers, Ironically, investors and consultants may ”‘k'_ )
"h"“ld managers be compensated for excess return that comes
risk taking?” The ultimate judgment must be left to the investor*

10.5 SUMMARY
Factor timin
cal literatyre

£ 15 a promising area of research. Theoretical and 0
has pointed to various avenues of achieving @ MO

:z]‘:r:lc f:ctnr selection lhrouEh time. The arsenal ofcgnd.l.liﬂ(:;“;‘rw
4N be sorted into tg f ol dar events _
state, (3) monetary p ve categories: (1) calen: ol

olicy, (4) di f economic conditi® L.
(5) : ' rect measure of econ f
4 r:;l::urmpuumhased ratios. The exact reason why these wﬁf: m
a cnnstn::;n: returns is still being debated, with little hope m'
- ' general, it (1 7
compensation fﬂge ral, there are three schools of thought-* p}iﬂ’

i " risk taki : onomy ¥ '
tional behaviora| inciﬁ;;ls): (2) mechanism of the economY:

4

V
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the promised bt‘:_k'ﬁtsl of factor ﬂr:?ing must meet a rigoroys Strategy

i diligent portfolio 1n?plemenmt|un. Several implementation jssyes

:wsr ve considered to provide a more encompassing view,

factor selection: Factor timing can be applied to both alpha and risk fac-
tors. Alpha factors are the ingredients of alpha models and they are
, natural choice. However, returns to alpha factors typically co;lsis:
of large means (positive or negative) and, more importantly, small
standard deviations. Risk factors, on the other hand, have small
mean returns but large standard return deviations. Therefore, risk
factors may provide better opportunities and investment returns in
factor timing,

Transaction cost: Because a timing strategy selects factor weightings
dynamically through time, it generates model turnover and subse-
quently results in increased portfolio turnover and transaction cost.
Proper estimation and control of implementation cost is an impor-
tant component of a successful timing strategy.

Strategy breadth: The breadth of factor timing strategies is much lower
than a traditional bottom-up stock selection model, pointing to a
lower expected IR. Thus, managers must allocate their risk budget
appropriately between bottom-up equity models and factor timing
strategies based on their expected information ratio.

Data mining hazard: Because of the limited observations of time-series
data when compared to cross-sectional data, it is more likely to
misconstrue spurious correlations as profit opportunities through
Misguided dara mining exercises. To this end, managers must adopt
3 fundamental belief of why factor returns are predictable. Such a

ief would guide them to reject those Empiﬁ':a] results without
*UPporting priors, despite their statistical significance:

Mtf"ig] Uncertainty: In factor timing models, m",.;grtalr;l')'d;’:‘ .:snmn-
u’om: (1) the specification of conditioning mab[-ﬁ' ijfactor‘xl""
oo ol time-varying factor returns, (3) the estimation © ortunities.
Ures for eac security, and (4) the pérsi,stenne.ofpruﬁl opp

A -
lh‘;'t"‘,"‘m' and Chordia (2006) proposed & factor BB ol o
ino MCOrporates model uncertainty usinga B“Y::: and overconfi-

ln ! i [
dei bee" approach mitigates model misspecific
Ceg in modtl rﬁrmst_&.

E—
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ENDNOTES

’Tﬂw lang list of explanations for the January effect include tax-loss selling
(Givoly and Ovadia 1983; Reignanum 1983; Chen and Signal 2001, 2003),
window dressing (Bildersee and Kahn 1987; Haugen and Lakonishok 1998),
performance hedging (Haugen and Lakonishok 1998; Ackert and Athanas-
sakos 1998; Athanassakos 2002), bid-ask bounce (Branch and Echevarria
1991; Blume and Stambaugh 1983; Conrad and Kaul 1993), and omitted risk
factors (Seyhun 1993).

. Evidence of the calendar effect was also documented previously. Arnott et
al. (1989) showed that the time-series variation of returns to BARRA factors
can be explained by calendar dummy variables, one for each month, in 2
regression framework. Kao and Shumaker (1999) demonstrated the calen-
dar seasonality of the value-growth style spread.

. Kritzman and Rich (1998) clarified the debate and articulated Samuelson's
assumptions. Fisher and Statman (1999) suggested that when prospect the-
ory is used in place of the standard utility assumption, it'is P|2“Sib'f for
an investor to achieve a higher expected utility as the investment horizon
lengthens. Olsen (1997) found money managers not nnl]rexhibll loss I’"'ﬂ"
sion (as predicted by the value function of prospect theory) butalso believe
in the benefit of time diversification. b

4. Benartzi and Thaler (1995) also suggested the historical equity MPH’*

Mium is consistent with the assumption that investors evaluate their port-

folios on an annual basis, Brown et al, (1996) related the 0 fﬂﬂil‘s

:c[a"n;'m' performance in the mutual fund industry to how performance is

Mpiled and ranked by business publications. :
We' “quate high- (low-) zualllr mnEP‘anies with low- (hiﬂh‘h'i:‘dwmmﬁ
15 1S generally true in normal market conditions. One co “*E-ed =
c“':"len.:litzun breaks down when the high-quality stocks mm: vidence
of Ome high-risk stocks, such as the case of Nifty Fifty, We and stock-
oo cha link in the negative correlations between these faﬂol;m ific
phecificrisk, which imply high-quality stocks tend to exhibit oue 5P<<
6, Eﬂrn::;:r::tet? readers can get the results fl‘“';;_t;:’m 1d Lakonishok
(1979) Vision phenomenon was documen (1984), and Ri
s Hﬁwklns et al. (1984), Arnott (1985), Kerrigan ratio were doc-
ey« 1 (1979), among others. Returns (o Wk““"’:hk:‘hmg
™ed extensively in the value premium literature, 4
1) and Fama and French (1993, 1996).
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If

13,

15.

Please see Cooper et al, (2004} a nd Jensen et al. (1997),

- We report the F-test results in Panel B of Table 10,4 and Table 10.5:and do

- The first partition contains the ICs of the months between April and Auges

) o Managemient
i Equity Portioli |
| | Uunnlnnlm

(1993, 1995) documented three Phases
short-term reversal (1 month), i"“'fmnd|::r Mite
continuation (2-12 months), and long-term reversal (13- mr:-nth:hr'r'
categorize our price mamentum factor ‘:1'. a nonpriced risk facyor bccl,:, We
has a 36-month horizon 'J“'J*]P-“”l‘f“"l"* all of th'j' three phases, i
For example, a price-10 book of 0.5 means that for every dollay Investeq |
company. only $0.50 can y,'liFFL'CEL'(I 10 be recouped .h}l that i“\"ﬂs!m_ Wher::
the other $0.50 is the loss via the regular course of business Operatipng '

Jegadeesh and Titman
momentum anomaly:

We choose the Chinese New Year for the following three reasons, Fipy
sccording to the Chinese heritage, the Chinese New Year marks the fﬂ'ﬂui
the previous year and the beginning of another new year. Second, comps.
nies that operate in the countries that officially celebrate the Chingse New
Year typically pay the annual bonus to their employee right before the hol,
day. Third, extended vacation is typical so that family members and rels.
tives can get together for the occasion, a tradition similar 1o Thanksgiving
in Western cultures, The celebration usually starts at the end of January or
the beginning of February and lasts for the subsequent 15 days:

Japan does not celebrate the Chinese New Year as an exchange holiday,
whereas Hong Kong does,

not provide further discussion in the text because their conclusions con-
form to the findings in prior sections and they are intuitively apparent,
In this test, the first partition contains the 1Cs of the months between March

al'lld July and the second partition covers months from Qctober (o February
of the next year.

and the second partition covers months from November to March of the
next Yﬂa T. th
Equity risk premium is measured by S&P 500 earnings yield mious o

Treasury bill yield; market volatility is defined as the 6-m
returns on the S&P 500,

D 4

cHarTer 11

portfolio Constraints
and Information Ratio

ﬁ

ESIDES THE PORTFOLIO TURNOVER CONSTRAINTS discussed in
B( “hapter 8, there are other forms of portfolio constraints that portfo-
lio managers in practice have to abide by. One such form of constraint is
risk exposure constraint. We have discussed this when we developed the
risk-adjusted information coefficients, which analyzed factors with their
exposure to risk factors being neutralized. The reason for neutralizing or
limiting exposure to these factors, such as market, size, growth, etc. (see
Chapter 3 for more), is to control systematic risk of active portfolios and
0 generate excess returns that are stock specific and have low correlation
with market returns.

Another form of constraint is the halding constraint for stocks, which
““ sveral variations. For example, one can require that any individual
ot I',""“"S in a portfolio be no more than a certain percentage of ths!
E:;:::,m ~In terms of active weights, one can require that m{:;::dt:::;
i 1::.- weight l_:c less than a certain pE:l'Ctl.'It;agE. Thﬂl:.constmd by
i“Elhed ontrolling the specific risk of individual ho I:Em ke i
Port *u“maB‘i‘_ that the poor performance of any single st o
Mich 5 s;ct“l‘ilﬂs constraints can also be placed on :11 ;:.w sttt
N be 45 ?f bounds for an active portfolio. A typic € i wanbedin
uniry b::ﬂtm bets, and for a global equity port
Hiy ' <y
hng.:::vm' by far the most prevalent form of holding constl'liﬂl kr
Y Constraing, which requires portfolios to be long in all stocks, —ﬁ}
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he weights have t0 he nonnegative. In other words, it prohibits
the weights :

. 2 One
ks, Thus, the constraint 1s often reterred to as 3 . ;

shorting stoc : . shory
2 Lund the world, the overwhelming major; ;
in the US. and aroun B majority of i

portfolios were managed as ija_ﬂ':%-f”"?-' _}""!idl-in.s before equity I““E-shu.n
hedge funds became more -.zL._.;-pt.uhle in l_w late 1990s and early 201y,
cvcr; though they had existed 511Icclti1c.]9(;k]§_ However, these hfdge fund;
are generally only available to institutional investors and high'"ﬂ‘wmh
mdih\-idurll!i- Mutual funds, which are a typical choice for most retail inye.
tors. are still almost exclusively long-only funds. Given the influence of
the Inng‘nui}' constraints in the investment industry, one can ask: “Is the
no-short rule a good rule?”

Generally, the answer is no, because it hinders managers' abiliiyw gen-
erate excess returns, However, to some, shorting is associated with lever
age and even appears unpatriotic. From a risk perspective, shorting stock
outright can be a risky proposition. In contrast to buying a stock, where
one can only lose 100% of the investment, shorting stock can lead tolosses
well above the initial investment'. However, these risks are well contralled
in a risk-managed portfolio.

The no-short rule limits investment opportunities to generate reluri
Consider the goal of active investment: beating the market-cap weighted
benchmark subject to typical tracking error constraints. The C'dp'“'fi!uhmd
index Goliaths are heavily weighted toward a set of large cap stocks. FM
example, the largest 4% of the Standard & Poor’s (S&P) 500 names Fi
Prise about 70% of the index weight. In contrast, the smallest 15?" oo
z:t':;::lll}cz% {-,r |he. index. If the active manager’s ski.ll alii]i:;:;s ;
beliefs in < E-::;ITE-EE‘. how can he ‘L?fin? He cannot eﬂ:ICIIEI.ﬂ Yweiﬂhmm
v ”ﬁhr"basualucks. W|th r:-ouunal limits (r.lo negat;\'en » oS
s .unes. there is insufficient funding for the b < by ok

; "Ple, managers can only underweight the small sto€&
basis points (their welght i B & 4 negl 5
<aSt. This implies o ght in the index) when they hawmus rom e
Views on small o ng-only managers can only :.de l‘ﬂﬂl_ m@_fﬂ"“
stocks half of the time: when the farecast is P8

the fact thag ]g_rg*Pw
maosi italimats . a e
lion of stocks wﬂi‘t‘hiﬂp"‘ﬂhﬁ“ ion-weighted benchmarks have onlf

COnstraj mall benchmark weights, the impact of thes e
it i i!:;i:l)lrlr::'n: I;e Portfolio return cluu.!dtﬂplm‘”"ﬁ‘*uir o ﬂsﬂii;nﬁ;ﬁ
estimate the mnnr both portfolio managers and investors {0555
o ,\E"““d‘f of the likely impact. ¢ ihye 1oPB”
COnstraint thay tfulul_m" i8 to make partial relaxation a1 In'twﬂ
resides in the traditional investment Eujdell_l_'“_’*' _

[ gt

il

v
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Jlting portfolios can invest in both long and short, and continue to

inst their respective benchmarks. We refer hereafter to these
|11,;:1-1.m“!_m,'f long-short porr_,-‘hﬁos. For example, the manager might buy a
'?:;,::.J»I;"P”wﬂl in long-equity positions and sell a 25% exposure in short-
:“H_ positions with the net result being 100% long systematic risk. How-
"L'jlr the total leverage to the alpha source is 150% (125% long and 25%
::r'n, Although the constrained long-short portfolios might be subopti-
al compared to the market neutral portfolio (with derivatives), it offers
«onsiderable benefit over “handcuffed” long-only portfolios.

We shall provide results on long-only and constrained long-short port-
iliosin this chapter. This analysis presents an analytical challenge because
the long-only constraint, or range constraint on portfolio weights, is an
inequality constraint. With equality constraints such as risk neutral or
sector neutral, we can find exact solutions to the optimal long-short port-
folio weights. Our analysis so far has been based on the long-short port-
folio setting, and we can establish an analytical relationship between the
risk-adjusted information coefficient (IC) and the portfolio excess return.
In contrast, with an inequality constraint, an analytical solution for the
optimal weights does not exist, and a solution can only be found through
mumerical means.

We present an efficient numerical method for solving the mean-vari-
e optimization problems with range constraints, making it possible to
"nalyze the impact of the long-only constraint, or any other form of range
?::::t”:;::“”" very efficiently. It can be seen that t.he impact vari:sofwit:l dif-
lm,mmm_mrm even though it is generally negn.twc'm the F[o;m a OW::
" ﬁnse::t ratio (IR). A closely related question is, how [R Improves

¢ long-only constraint to allow short positions.

n, .
'elﬁrstCTOR NEUTRAL CONSTRAINT
Iors, Ag analyze the impact of the sector neutral constraint on alpha .fac-
Yield o e stated earlier in Chapter 5, for value factors such as earnings
tive hagi ok-to-price, ane typically needs to employ them ona sector-rela-
Hich a4 tt.: ere are at least two reasons for this, One is that some mﬂ
+ Wtilgie chnology, always look more expensive than other sectors:
fait due to their higher growth prospects. Therefore, using value
e ‘fchnghom any adjustment would cause 4 permanent underweight in
ooy X “BY sector and a permanent overweight in the utility sector. The
Mein : u;-relmd- reason is that these factors appear to be mut:lf.lﬁs effec-
“ting sector returns than relative stock returns within sectors.

the res
e .Il_i,'ﬂ-




{1 " lodin MNanagior 1ent
llﬂ ] Lantily Live t I‘lll]'\ S ! 1
¥ P, 1

Return Decompe i Hion

11.1.]

We can analyze a factor’s sector selection and stock selection abiljy
s LU Ll 3 i . e \ . 1y
Jecomposing 115 EXCEss returns. From Chapter 4, Equation 4.19, we I-.‘, b
ack ! e

Wi =A '2.'1;14,,
i, Z i - t1[|-|

where Fis the risk-adjusted forecast, R is the risk-adjusted returp

W l hﬂk

risk-aversion parameter that calibrates the targeted tracking error, and y
is the number of stocks. Suppose the stock universe consists of §

. sector,
s= 1,2, -8, and in sector s there are N stocks, such that

Z-\‘. . I\'l + L{\.l. I'“'N\ = N - “].1'
i=l

We can then rewrite (11.1) into a summation over sectors, ie.,

o, =4 ZZ! Ryl (1LY

where £ and R are the risk-adjusted forecast and return of the i-thstok
in s-th sector. We define the sector mean of forecasts and returns as

N N

T . l (IH:'

". = . [a = 3 }
N, E,, E,and R, : E R,

The overall Averages are given by

5 N 3 N {11-51
fl - i I_‘ - il M ] .
,Z, N and R 21 N R,
e
10 they are often cloge 1, #ero In practice. Equation 11.3 can [

Gt
22[*" “E4E)R~R+R) e

Lol I

L

. 'EZ[("}.-F‘,)(}Q" “R)+R,(E, _E)+E(h‘n}mml "'..
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ndand third terms vanish by the definition of the averages. There-
el
|hrl||_L f
fare. wi' have
|

" AIZi[r(j-;,—F,){R”-RIJI]+J."2N.ER,. (11.7)

| inferpretation of the first term is straightforward: it is the excess return
1t " ] J

serated by the sector relative risk-adjusted forecast, The second term is
(Wi R [ ) :

; lated 1o the seclor €Xcess return, which can be rewritten as

[k

) ZW R =A -NZ ‘:r' ER =\ 'NZ i{r ~F)(R,-R). (11.8)

= il Wm|

Thus, it is proportional to a weighted covariance between the aggre-
gited sector forecast and the aggregated sector return, or excess return
generated by the forecast on a sector level. Hence, we can write the excess
return as the sum of the sector-relative excess return and the sector excess
relurn and use this framework to analyze individual alpha factors.

: Example 11.1
lable 11.1 provides a simple illustration with two sectors and three stocks
I each sector, In sector 1, stock 1 has the lowest forecast while stock 3
hasthe highest forecast, This is also true in sector 2. We observe that the
:;:llal 'EIUms in both sectors have the same ranking. Hence, we conclude
t.wﬂhm each sector the forecasts must have positive excess returns.
i_*l\'ﬂrag;_- lorecast is -1 for sector 1 and 1 for sector 2, respectively, pre-
'«t::ﬁu higher return for sector 2; instead, the average return is 5% for
bwry nd 5% for sector 2, In this case, the prediction for sector returns
"8 Note the folluwing remark:

The decomposition of excess return essentially involves the decompo-

ﬁ{‘lt]'n ! the covariance between the forecasts and the actual returns.

:ur::ﬂr]y' the variance of active returns can be decomposed into (a)

Ave p:‘-'turn Variance within sectors and (b) sector return wri:;ce

tive § oblem 11.2). This decomposition can shed I!ght on [hle a-

'““Enl\i’mmem opportunities in “pure” stock selection and in secmr

Y o FOT global equity partfolios that are managed with coun
>“0tion and stack selection, a similar analysis applies.
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TABLE 1 1.1 An I‘.\amplr of Twa Sectors and
Three Stacks in Fach Sectar

I —

sector Stock  F R(%) F-pf
e i
1 | ~1.50 U0 0,50
y 2 1.00 5.0 0.00
1 3 -0.50 L0 0.50
) | 050 100 0,50
) 2 .60 5.0 0.00
5 3 1.50 0.0 0.50

1112 Sector Constraint on Individual Factors

Table 11.2 shows the empirical results for the set of quantitative factors
outlined in Chapter 5. Portfolio alpha (overall) is decomposed into stock
selection alpha and sector timing alpha according to Equation 117 IR s
the ratio of average return divided by the standard deviation of returns for
each of the three alpha streams through time.

In general, sector timing alpha is of the same sign as the stock selection
alpha, meaning that taking sector bets does increase alpha, However, the
levels of the two sets of IR are quite different, with the stock selection I
consistently higher than the sector timing IR. This indicates that quanti
tative factors are better at selecting stocks bottom-up than making top-
down sector calls,

One factor warrants closer examination: the short-term price mome®
tum reversal factor (retl). The stock selection and sector timing alphs
have different signs, and the short-term momentum reversal Ph“_'nu;;
fon is much more pronounced within each sector rather then within with
whole market. The IR of ret] without sector neutralization is 044 .':
pasitive number for IR), whereas it is 0.76 with sector neutralizatio®
;::;T:i;:;gl? short-term sector momentum actually crhi‘b“:h?lr:w M
Nk e he“w";’-'”tmlt'. lh::“ Is, sectors that outperformed in ot

nners again in the next 3 months, whereas STOLE=T Noi¢

Performed in the last month tend to be losers in the next 3 MO
the following remari-

g | ong 094"
:‘anml, factors that forecast stock returns are not o
"Ning sector returns. Hence, in order to build “ f

casti . e
ting models and implement sector rotation $ g

;ﬂmhlfﬂr additional factors and Pussiblf." -4

™.
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Empiric al Result in the LS. Market Using R3000 as the Universe

f‘:ﬂ_i_[__.l_l-'f' = Overall Stock Selection Sector Timing
Alpha IR Alpha IR Alpha IR

i 667% L1l 6.39% 094 027% 020

CFO2 o 5.26% 073 473% 062 054% 0.4

£ rll l.r,':' 3.90% 0.58 3.35% 0.47 056% 038
2ol 3 % 037 284% 031 048% 036

: :’5;'4, 265% 0,30 1.96% 025 0.69% 028
g EB;H, 4.24% 0.65 3.79% 0.64 0.45% 0.28
o 143% 015 105% 0.1 038% 031
SIEV 3.67% .40 3. 44% 0.35 0.23% 0.19
ENOA 3.05% 042 2.83% 0,39 0.21% 0.18
CFROL 5.43%) 0.91 5.35% 097 0.08% 0,08

ol 166% 091 162% 095 0.04% 004

% | Oling 3.60% 107 359 104 ok 005
Dlwane  S397%  -090  -392% <089 -005% -008
3 | NCOine S315%  -068  -300%  -066  -010%  -0.40
2 iapx 300% <070 -295% <070 -0.05% 0.0
capsy ~1.99% -0.50 ~2.00% -0,50 0.01% 0.01
XF -450%  -095 ~4.25% =100 -0.25% 0,08
sharelnic ~228%  -0.52 -207%  -0.52 -0.21%  -0.12

g| ™ -4.36%  -044 -660%  -0.76 224% 0N
: “{'-‘ 2.95% 0.22 3,19% 0.25 -024%  -0.06
g | iRes 629% 049 5.22% 051 Lo8% 024
3 | HmRevy 390% 038 425% 056  -035% -0.10
L SumDiy 510% 046 552% 067 -042% -0

1.
2 UneG/SHORT RATIO OF AN

D — NSTRAINED PORTFOLIO

Hraingg naly-;,fng the impact of long-only and other types of range con-

I"’"fuu:,w Will first study the long/short ratio of an unconstrained active

Enerain ¥ @ benchmark, because it represents the optimal setting of

te “ttiveg €Xcess returns, In this case, as the portfolio is unconstrained,

Mark Portfolio should be just the long-short portfolio. The bench-

h"‘ikre " effect on the active portfolio, but it becomes relevant when

e E?te- the active weight with the benchmark weights to obtain the

ey 4010 Weights, The distribution of the benchmark weights plays
“Mining the long/short ratio of portfolios that are managed
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nchmark. Therefore, we will first examine

vainst that be _ s
e a statistical model for it,

empirtcally and present

that dmrih‘ﬂinﬂ

11.2.1 Distribution of Benchmark Weights

Almost all cap'ttalimljnn-ln'uscd benchmarks, to varying degress N
more stocks with small weights than large weights, Qver time, &;e dw:
tribution might change, for example, due to stocks' relative ptrr“rmnn:
However, the overall shape remains intact. Consider the S&p 500 ndey
at February 2006. The stock with the largest weight was Exxon Mo
at 3.347%, and the stock with the smallest weight was Dana Corp (g
bankrupt) at 0.006%, or 0.6 bps (basis points). The mean weight is 0,200
whereas the median is 0.100%, demonstrating the skewness of the digy.
bution. The top 10 names accounts for roughly 20% of the index weigh,
whereas the bottom half of the stocks accounts for only 13.5%. Figure 1L1
shows the histogram of the benchmark weights. It can be seen that there
are only a handful of stocks with weights above 1%.

Anather way of analyzing the distribution of benchmark weights isthe
cumulative sum of ranked stock weights. Figure 11.2 displays the sum
a function of the number of stocks included; the thick line is for the S&
300 index, whereas the thin, dashed line is based on a fitted model with
lognormal distributions that is described below. The function rises ¥
rapidly at first and approaches 1 at a very slow rate in the end.

The model of the benchmark weights shown in Figure 11.218 :
alognormal distribution. Fora random variable x>0, it followsa W

.mai. distribution if In(x) is normally distributed. The probability
18 given by:

based on

plelina)et __ | (0E-H) (]

X042 20°

Fi _

sl.:::: fl -li;sh.uwa.s the probability density with =0, and O
St dlslrlbutiun resembles that of Fism.“_], but?hf pﬂ"ﬁ.
age cha wll-de' The lognormal distribution, often used to GW
""‘-'illl'ltsunlglcli " Sock price, ranges from zero to infinity: Asthe® W
wim:e restricted ta (0,1), we need to rescale the }(:pguﬂl'ﬂ’I ll""#

ii'[? hm:nﬂ'ul‘ Purpose. If we mexb‘fi Wafhﬂlgﬂﬂﬂ ‘ ¢ .
t0n should be : T e
P L

-

i
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AGURE 11.1. Histogram of benchmark weights in S&P 500 index as of
February 2006.
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RE 1 :
e fnuh' Cumulative weights of ranked benchmark weight: the solid

* ™€ S&P 500 index and the thin, dashed line is for the model.

plxlw0.k)= k- p(ke,0). (11.10)

———



D

portiolio Constraints and Information Ratio m 367

366 = Quantitative Equity portfolio Management

ws the scaled density function with factor k = 305.

(&) bles the histogram of S&P 500 index weights in

p=0,and o= 1.195

08 . 3 = ——— Hal“"‘

0T

22 Simulation of Benchmark Weights

[I-,rl,“n':,ld and Kahn (2000) provided an algorithm to simulate benchmark

weights based on a scaled lognormal distribution. For a given number of

qus N in the benchmark, a parameter ¢ is used to characterize the con-

;dn[m[ion of the index. If ¢ = 0, the index is equally weighted. As ¢ increases,

becomes mare concentrated. The algorithm has four steps:

i-05

N

3. Find the value of the standard normal variable that has the cumula-

! I : y : ; 2 % e tive probability p, i.e., y,=®" { P ) . where @' is the inverse of the |
|

cumulative density function.

a6 H-

the index

1. Discretize the probability interval (0,1) with p; =1~ vi=heoN.

3, Transform y, to a lognormal variable using s =tIP{CJ’.]  c being the ! ‘

concentration parameter. J N ¢

4. Scale s to obtain benchmark weight b, =5, ;; 251 .
=l
i Figure 11.4 shows the simulated benchmark weights for several values
on:“'lt curves are the cumulative total of weights ranked in descending
B - - e . ]hE‘ curve for ¢ = 0, i.e., an equally weight benchmark, is a straight
- — - *As cincreases, the benchmark becomes top heavy with a few stocks

\ Welny; I
_— —__4_—»——"""/’ “PYing more weight within the benchmark. ||'.

L ".}L}
- 0 Long/Short Ratia of a Single Stock

r
;'_/ the ;:ﬁ::; chto obtaining the long/short ratio of a portfolio is to calculate
4_/// Mar, an.? ! ratio of a single stock and then sum up across the bench-
j " M=ltp Chapter 4, we know that the long-short portfolio weights are
Bk gpg s Where F is the risk-adjusted forecast, o, is the stock-specific

& \4"' _f' ,‘,“' f s v Wlateq ik 5 the risk-aversion parameter. The risk-aversion parameter is
- ¢ larget tracking error by

/ g it
r:'?“‘:::‘:i‘;:itw Probability density function of the losnon'ﬂdﬂi' m’ﬂmpﬂ'ﬂ e
() with k = 305‘,‘ =0, and 6=1.195. (b) Scaled lognorma - it e

1] . 4_.4_______________...

-
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FIGURE 11.4. Cumulative weights of ranked benchmark stocks for different
values of ¢.

We have assumed that the risk-adjusted forecast is standardized. iz

dis(F) = | and is of zero mean, and N is the number of stocks. Hence the
active weight is given by

W, = (L1

N
The benchmark weights are b with Zb. =1,and b 20.

Ll =1 o i
* Normally, benchmark weights are all positive. We will a!b‘#
to be zero if the stock is an out-of-benchmark bet. Hence 185

hotation, the stock universe includes stocks both in and out of
benchmark.

G;\'cn the active weight (11.12) and the benchmark weight b, lp:;:
::;l::'- wﬂsht.m Astockis W =w, +b, If W,>0,itisa
If ve ;:’: n:: :;: short .posiIi(Im‘ | il
stock i, accordys t the risk-adjusted forecast is normally d-i-"‘::t dﬁ“ﬂl
tion with zer B 10 (11.12), the active weight follows 3 norm
U mean angd standard deviation :
i

g
5 = T"’L_
"IN,

olio Management I : !
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FIGURE 11.5. The probability density function of the total weight of a stock
with 0.3% benchmark weight and 30% specific risk.

Hence, the total weight W, =w,+b, follows a normal distribution with
mean b and standard deviation 5.

Example 11.2
Consider an active portfolio with 3% targeted tracking error with 500
stocks. If the stock-specific risk is 30%, then

3%

5= m:ﬂ.ﬁ.

The active position has a standard deviation u.l' 45 I_:ps. lft_he m
weight of the stock is 0.3%, or 30 bps, the density distribution of
weight looks as in Figure 11.5. = ol

The probability of W, being a short position is given by

(W, <n)=ﬁ‘-‘iup[1x—;—:‘}—a}¢. (11.14)

neti W evaluated at 0.
It is simply the cumulative function of W,

Because b, 20, (11.14) is always less than one half, 1 & = 0, the probability
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i< exactly one half This is rclf\'ant fu-r stocks out of the benchmg _
.;..lsn true for long-short portfolios \:s'l_t Iwu_l a b:_:ncl? mark. For the L
sidered in Example 11.2, the pl‘t‘lba‘ll‘rllltfw'- c_nt it being 1." a short POsition j o
55%. We are likely to prefer 2 short position for a given stock i the g ahuq
E:mdjttnns are met: (1) the lower the forecast, (2) the smaller the b lm.-q
weight, (3) the smaller the specific risk, (4) the lower the risk-aversion p,
eter: and (5) the higher the target tracKing error, ceteris paribys,

. We note that the probability is for multiple periods, At any g
period, depending on the forecast for the stock. the Position couldp,
either positive (long) or negative (short). This is true for all stocks

11.2.4 Portiolio Average Long/Short Ratio
The total short position of the whole portfolio is simply the sum of g

positions, i.€.,
g zuj = 2 (w,+b,). (1035

w+i <l

Similarly, the total long is

L=y W=y (w+b). (118

W= W+l =0

In our notation, short positions are weights that are negative, BT,;.
the artive weights are dollar neutral, the sum of total long and to8! o
should be just the tota benchmark weights, i.e., L + §= 1. Howe¥ el

E:‘ﬂ.‘ period, the total long and short are not fixed. For instanc 5
thre\..asls happen to be high for small stacks and low for large ;

WLP:T:. then the total short would be lower, as we am'moﬂ o
of ﬂegat?ve sm?!.] stocks and underweight large ones, reducing
pentobe hiPﬂmftlons. The situation would be reversed if the -
10 under gh or large stocks but low for small stocks. Them W=

weight smal] stocks, often leading to short positions: i

We are interested i
For the shorts, ::ehda: the averages of the total long and

N
S=ZE(W;+bi|w‘-+b,<O). !

su]
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We simply calculate the average short position for each stock and sum
them up. As the weight of stock i follows a normal distribution, we have

-
E(w, +b,|w,+b f:U): \f?_l-_m .[{x+b'}up[h;_;_:1 Jd,;

(11.18)

J b

The function cdf is the cumulative density function evaluated at b for the
normal distribution with zero mean and standard deviation 5.

Example 11.3
Consider the case of the stock in Example 11.2. The benchmark weight is
0.3%, or 30 bps. The standard deviation of the active position is 0.45%, or
45 bps. Substituting them into (11.18), we obtain the average short position
of -0.07%, or -7 bps.

Example 11.4
For out-of-benchmark stocks or long-short portfolio, we have b = 0. Then

(e tied
E(w,}w,v:l}]: sz_ J.‘!xjﬁu,'
VNG e

Assuming constant specific risk 0, =0y, then §=-_J;: :
a

With simulated benchmark weights b, Equation 11:17 and Equ_l-
tion 11,18 give rise to the average long/short ratio fn_l the total porlﬁ:;:.
which is a function of two parameters: the concentration parameter ¢,

the targeted tracking error Gy - Similar results have been obtained by

Clarke et al, (2004). Figure 116 show the results for a fixed value of 1;:’
varying targeted tracking error. It plots four curves. First, thecf::mm
long plus short (L+S) is always at 100%. The next two curves ars;m: i
long and short. As the tracking error increases, the lungs:nd e
increase in magnitude, with long exceeding Iﬂﬂ%md urtl m;rm_ig
More negaﬁw.mmuofincrm&irhnthﬂmismushb' .

_2) 4 y he top. When the
fourth for the total leverage (L-S), and it sits on the
tn:iun?ﬂu:mu.unsmhew-wim‘? gtk i
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FIGURE 11.6. The long/short ratio of active portfolios with 500 stocks with
¢ = 1.2 and specific risk at 40% for all stocks.

tracking error is at 2.5%, the long is 131%, the short is -31%, and the toul
leverage is 162%. When the tracking error reaches 5%, the long/short ati
16 179%/-79%, and the total leverage is 258%. In this case, if an invesi
has $100 in capital, he would buy $179 worth of stocks (long) and b
row and sell $79 worth of other stocks. There should be no overlappié
between the longs and the shorts. ;
 Figure 117 shows the change in the long/short ratio as the b‘"m
index ¢ changes. The tracking error is fixed at 2.5%, and again our beoh
:::k h“f' 300 stocks, and the specific risk is set at 40% for all Swd's’ A

se¢ trom the graph, the long, the short, and the total leverage incres®
the léngfshon ::tﬁﬁ When. ¢ is zero for an equally Weish'fd W
¢ increases angd 1}:0 b Jaste et ias I |;rll=‘i'im

Mg e benchmark becomes increasingly “_’"‘_’n Jlﬁ,ﬂ
and the otq] Ee\:::ﬂ%e& At ¢ = 1.2, the long/short ratio fh;;l a0 ®
135%/—35% B¢ is 162%. As ¢ reaches 1.5, the long/ J"F

38¢ 33 ¢ goes from 1.210 1.5.

Vith 2 total leverage of 170%, So there is an increa¥ ® =5

ol

755, -~
Levernge
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FIGURE 11.7. The long/short ratio of active portfolios with 500 stocks and
specific risk at 40% for all stocks. The tracking error is 2.5%. The bench-
mark index ¢ changes from 0 (equally weighted benchmark) to 1.5.

R g~
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FIGURE 11.8. The total leverage of optimal portfolios as a function of both
benchmark index ¢ and tracking error. The benchmark has 500 stocks and

specific risk is 40% for all stocks.
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1.3 LONG-ONLY P IRTFOLIOS

When the long-only constraintis placed on a portfolig, i i.':;'q‘“"\

) - Uivy
4 range constraint on active positions of all stocks: they Mug alhkm
Y MUt alwygy

wreater than the negative of their ben hmark weights, e, WoReh W
the no-short rule, the porttolios long/short ratio would be I[}{]‘WU“&I.\' '_“'
is obviously ditferent from the long/short ratio of UNConstraine ;L\unb
lios. On the stock level, it is exped ted that the optimal w{‘iﬂl"ﬁﬂlllhmml
types of portiolios are different, resulting in different performance
portfolios with low tracking errors, the difference in weights might noyf
so large. However, for portfolios with high tracking errors, the difference
can be very significant, In this section, we shall analyze ll':t'mlpaclnl'llu
long-only constraint on portfolio weights and |“-"'T-l""“-mt't‘lﬂ"-h.‘li'.'rgtm_
egies, [n practice, most long-only porttolios are managed with maximin
weight constraints in addition to the no-short constraint, The sameis e
tor long-short porttolios, for which the range of stock weights is genetally
constrained. However, as there is no benchmark for long-short portiolis
the range is absolute, not relative to a benchmark.

The disadvantage of long-only portfolios managed against marke
cap-weighted benchmarks has been stated previously at the stock leve
The asymmelry also _».r,'\'urcl}- reduces the opportunity sel for |I.3HE'MI1
managers who maintain minimal portfolio exposure o systematic s
risk. With 4 size risk constraint, the active positions of a portfulio s
be roughly balanced among stocks with similar market cap. Since thith
ot 'lhl-t'.lli‘.\'il'l.ﬂl.' among small stocks due to the long-only constraint
"p}':::‘j:':‘:rh:::dh::.‘}:“ Up more active positions and sI"cnd:kIL: . :
e L‘Iﬁ;_irn.t .:t; "'“mj'"““f large stocks, wIT::re Ilhc I.mmutrlﬂ ;
A active portfolin : '1|| l;m Oids lass dll,‘lm' i dm‘;}’ SUUII“”
unkverso could h“““"_'l V3% targeted tracking error in the

Ve close to 50% of active risk in the S&P 100,
11.3.1 Constrained Long-Short 1y stfolios l'd
rifoliot

[:-.Un-ﬁl d 1
rained long shory portfolios lie between long-only PUI M“
0 B

uﬂcunhlr“]“:d .
w . vy . \
125% Portiolios. Such porttolios, for example, MIgY

slag , Wit
the 1n1q'i“l:: ndsell short 25% stocks, so the et result s #ll 1,?:1"
ErRge ratio of 125% + 25% = L50%,. Whereas the ¢0 M

T : ) ;
Portioliog, F:;:’lful:;,n_ Might still be stboptimal cnmpnrl.‘d to “"m;lw
€Y offer vonsiderable henefit aver long-only port

Ve gained |
Ncreasing acceptance with institutional investers:
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With some .Ihllll_‘.' to shart, the const rained |“m: short portiolios allevi-

ate some of the problems discussed previously. ‘Therefore, in theory, one
should expect them to deliver higher risk-adjusted returns than their long
only counterparts. However, there is an additional cost for the constrained
long-short porttalios that is absent in the long-only portfolios that is due
to the leverage. To see the leverage cost, it is important to understand the
mechamsm ot long-short investing. Although standard financial theory
olten invokes the concept of a self-financing portfolio that implies costless
leverage, in practice, leverage is not free. Suppose an investor has $100.
With long-only porttolios, the investor can buy $100 worth of stocks and
the leverage ratio is 11 As no barrowing is invalved, there is no leverage
cost. With a 125/25 porttolio, the investor buys $100 worth of stocks with
his own capital. He then borrows $25 to buy an additional $25 worth of
stocks, and at the same time borrows $25 worth of stocks to sell. From
a pure theoretical standpoint, the short proveeds of $25 would be used
to buy the additional $25 long with no additional cost. However, from 4
practical standpoint, used by prime brokers tor pricing, the investor has
bought $25 worth of stocks on margin, whereas the short proceeds of $25
is kept at the broker as collateral for the short positions, The short proceed
carns an interest rebate from the brokers, but the rate is alwavs lower than
the financing cost on the long side, Therefore, the interest rate spread on
the 325 is a cost that the investor must bear.”

Example 11.5
Suppose the spread between the financing and the rebate is 1%, the addi
tional cost for 125/25 portfolios would be 0.25% or 25 bps. Similarly, the
additional cost for 150/50 portiolios would 0.5% or 50 bps.

11,12 Numerical Methods for MV Optimization
with Range Constraints

An analytical solution does not exist for optimal weights of long-only port-
falins, n.r range-constrained portfolios, in gﬂ'l:"l“l'.. We shall carry out our
analysis through numerical means, The problem 1.“".5 in the general cate:
gory of quadratic programming, in which we maximize a gquadratic uhjn
tive function subject to linear constraints, as well as range const rfnma.. For
large-scale problems with thousands of stocks, finding numerical solu-
Hons of general problems can be time consuming. However, there exists
an efficient algorithm for the special case in which the covariance matrix




5 o Mandasement
rive Equity Portic lic :

llﬂs " \‘th"hl"‘l

Parttolio Constraints and Information Rati
| ansiraints 4 atio m 377
This would be true il we neutralize all the

optinize with |
ased on the Kuhn-Tucker condition for a

i .ii.n_.:nnal
ﬂl-‘*‘-"uw; Jnd

b
Ihe algorithm 18 cke

: AN .. Thea wendiy provides g atad
w:.thmequ.lhhmn.xlr.nm:._l ¢ apy | o Aol rl

¢ the Kuhn-Tucker condition for the general optimization Probleg
(4

its application to me

SVSI;‘!““
- K fig
residual alphas and specific risks, Our numerical algorithm finds the optimal weights and the Lagrang

jan rmntlt;ldlrls:tvwliwly. i‘“ step m, we have the weight w" and multi-
pliers (0BG Ty AT IE the weights violate the range constraint, we
proc ced as tollows;

an-variance optimization, which is to fing ﬂu%

he foll Wing . .-‘\lnlrl-.- range constraints to the “’t'ighl w:“=“m(ﬂlln[u':".lf')‘,_|)‘
active weights w in the [oHo -
mal active welk « Update Lagrangian multipliers for range constraints with

:\1.“"“1“:- r 74 I-.“H = ' = l: “'!-'“ =txd J;bm P Zlnﬁ.!w,q" .

Subiject to: « Update Lagrangian multipliers for dollar neutral and beta-neutral

s : constraints with the solution from the system of linear equations in
w Ews T st (g ] b LU |
which
A i N
wiiz0andw -B=0 '
\.l'? |- le.rf u:
w=U <0, and L, =w, S0, fori=1,--N. il

(see Chapter 4) and 1" is the vector of newly updated Lagrangian

r 5 YIN 3 % E r - .
The vector fis the forecast vector, the covariance matrix X=BEB +, multipliers from the previous step.
and o, 15 the target tracking error, The equality c-.mstmintsmw
neutral and market neutral w' i=0, and w’-B=0. The range constranfs

are

i

|
PR (b ) e bl (b S (=1 .5

T" \\h| .il~'+j:‘l ',|h1.h* “"b""‘"lrl :lelub‘ I.' “i;.h‘.f"l 1}
W, _l-r, 5". ﬂ.nl.l .L' =W '."'L.l. fnrl' = !:""N |

.
[

The Kuhn-Tucker condition imph._-g that the solution takes the H‘

B0 (D) 07 (B oot B (BB )= By -1 )
ing form;

1

' « Calculate the tracking error of w™™ and update the Lagrangian
213 f. or

multiplier for the tracking error

W=

W, = fimb=bby —lyby — _En 0. ‘T;!.
2ha;

TR

In the solution, I, is the

straint; by are the

it by ang hiare

Lagrangian multiplier for the dollar ™

Lagrangian multipliers for market ™
the Lagrangian multipliers for the “PP‘I
€Tror Constrainy. vand A g the Lagrangian mu[llp]iﬂf'ﬁ‘l" .

- As only one of | 1 onzerd:
them intg One: h:i..-it. of ly and Iy can be m :

+ Calculate the new weights wi™ by

i sl _"_r-tlb Lo
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FIGUREN.9. Optimal active weights of unconstrained and long-onh
portfolios.

?_f!lert}:isc steps, we have the weight w"' and multipliers !{,‘"J}""f"f-
o MU The new weights are checked against the range constraints

there is violat; ( ; '
; ::_u Violation, the foregoing steps are repeated until there is no i
violation,

| Example 11.6

:;S:':'f:h': Preceding algorithm to find long-only GP[imi] pm;:

af ¢ 1,2 f,a nnf-_T abenchmark of 500 stocks that has a concentrahie®
2, and compare the

Both portfoliog have a tar

assumed to have 5 Specific

weight of 2% for all stocks

gclcd 1racking error ﬂf 3%, 'ql.l'll.‘.{ I.“
risk of 35%, We also imposeam . ot
normal distribyy, ion. | 113wt et et m..:‘d
P ﬁ .|gurc 119 plots the forecasts vs. both s¢t8 s
A Straight line H'iltn rl.: i the gt il “Ptimd
:he forecasty, The u’:tin::rg
Calurey, (1) There are ma

Acive wey !

l:nmhmnf;h[;‘g “fwk' with tiny benchmark weights, due 10 M g

which Bagia m:“n“ aclive weights also seem to fall on ® :
Per slope and 4 negative intercept on the Y=

ny small negative weights. They e 1098 %;

s¢ weights to unconstrained OPlif"“l S
m:.kﬂ'
acti®

‘il

h the origin, Indeed, they are ,]:ml"‘“‘
weights of the long-only portfolio mﬂ”ﬂ
all |

==
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negative active weights also fall on this line, Mathematicatly, this is due
1o a smaller Lagrangian multiplier for the tracking error constraint in the
long- only aptimization than its counterpart in the unconsteained apti-
mization (the slope is inversely proportional to A in Equation 11.20).
in addition, the Lagrangian multiplier for the dollar neutral constraint
is positive This implies that large positive, active weights are magnified
whereas smaller positive ones are shrunk; and (3) Many stocks with posi
tive forecasts will end up with negative active weights, as underweights
in stocks with small benchmark weights are not sufficient to fund over-
weights, Note the following remiark:

« In the unconstrained optimal portfolio, the active weights and the
forecasts have perfect correlation, However, in the constrained
portfolio, the correlation is less than perfect. This correlation can
be used as a gauge of the stringency of the constraint. Alternatively,
it measures the extent to which the forecasts are reflected in the
portiolio, Clarke et al. (2002) coined the term transfer cooflicient
for a variation of this correlation. In our example, this correlation

is about 0.7,

Figure 11,10 plots the active weights vs. the benchmark weights, In
Figure 11.10a for an unconstrained portfolio, the active weights are inde-
pendent of the benchmark. In Figure 11.10h, for the long-anly portfolio,
the active weights are bounded below by the benchmark, and there is a

negative correlation between the two.

' TION RATIO OF LONG-

b IJ%E.#N.:SSTSNG-SHORT PORTFOLIOS

Unconstrained optimal portfolios -have intrinsic long/short leverage
ratios, depending on portfolio and benchmark characteristics such as
target tracking error, benchmark concentration, stmlf-ipcclfrc risks, and
the number of stocks in the benchmark and portfolio. In theory, these
long/short ratios are optimal for given portfolio mlndaics_ in terms of
maximizing the IR, Runge constraints such as long-only or limited short-

ing wauld reduce the theoretical IR

With the numerical algorithm described earlier, we now analyze the
information ratio of long-only, as well as canstrained long-short portio-
lios. There are many practical reasons that might prevent portfolio man-

ined optimal portfolios.
agers from fully implementing the unconstrain :
Sume cmurrulnrl are institational, For example, prime brokers might
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leverage, the hig}:: al:¢ €08t related, As mentioned earli€”

the financing cast T addition. portt
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leverage require higher turnover, resulting in higher transaction costs, a
component often missed in some previous analysis of long-short pnrlf.u-
lios (see Chapter 8). Therefore, there is a need to distinguish between theo-
retical IR and net IR that account for both leverage and transaction costs.
However, note the following remark:

« Some other issues arise in long-short investing that must be consid-
ered. For example, the number of stocks in a long-short portfolio will
be much higher than that in a long-only portfolio. This might not be
a big issue for quantitative managers, but it could impose additional
work on fundamental managers.

To better understand the benefit of constrained long-short portfolios
compared to long-only portfolios, we carry out numerical simulations for
long-only portfolios and long-short portfolios with varying amounts of
short positions. In the simulation, we first calculate the “paper” or theo-
retical excess returns from portfolio weights and returns, and then deduct
financing costs according to the portfolio’s leverage and by transaction
costs according to portfolio turnover.

1141 Simulation Assumptions
Simulation results depend on a host of parameters, which are listed in
detail as follows:

« Investment universe and benchmark: To be consistent with our dis-
cussion of unconstrained optimal portfolios, we choose a universe
of 500 stocks and portfolios that are managed against a 500-stock
index, with the index concentration being measured by the param-

eter ¢. Stock-specific risk is 35% for all stocks.
« Tracking error target: We choose a series of tracking error targets
ranging from 1 to 5%,
' raints through
« Long/short ratio: We impose the bungfshm_-l ratio const
a ::g:se constraint on individual stocks. -Snrt!ng from long-only
portfolios, which have a constraint on the weights as w, 20, we
gradually loosen the constraint to w, 2 s, where s is the short posi-
tion allowed in individual stocks. For instance, if s = 0.1%, we can
short each stock by a maximum of 10 bps. As s grows. the total short

] ch the unconstrained
iti and the partiolio would approa : '
optimal portoli. We alsose the maximum acive weightat £3%.
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constraints on the individual stocks, the only other S nd
; I g =
straint is the dollar neutral constraint. Holio iy, £ . £ s
. y i ofNgx £% £% 2. o
; Furccnsfs:wl-‘smmlﬂted forecastin !h”f””“”fnf’m‘ﬂ“}'disg ih é = i § § § E
. r o i
scores. We also assume consecutive forecasts have autocory II g £ :a; £ £ o
/ - . . v i elal = F £ . 3
which is one of the factors influencing portfolio turnoyer Tal:loﬂp_,, S =% B £ § 5 g 2a e g g
3 3 s o = P - e 5 L
factors are turgeltracklng error and the leverage rati € Othey k= § d.d wia Ea gllE =
8 ratio (see Chapierg) = g B
« Information coefficient and returns: The risk-adj & - B § g LR % £ e; =
. adjusted returng g 4 TEY %% $3 he gzgg|a £
simulated based on the IC — the cross-sectional correlation cof 3 ei SS W= a&a|ly >
ficient between the forecast and the returns. Two parameters chy z £ 5 R o é g
H ~ e = . : = ¥ E A -
acterize the random nature of IC: the average IC and the standar Z = i ?, E 35 Ta Aad 88 & 2z
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? 34 whereas the ||'|l.'tl!i.‘llt.l| IR ol ll'll;.‘
equaling 2.24

amn 1) is only 1.5%.
]hi.‘ next two rows ol '['.‘.lhll.' 11.3 l't'].\lII'l “li..' |I'Ih'll ]l‘l|'|g

Imlg-nni)‘ port!’u]inm

and straj
pnﬂlulln.s ane L _ AN, he v
long and the total short both increase. Because the long minys oty

always 100%, we omit the short from the table. For instance, the s
£ ;;nlull'ill."'i-\'!l"“?- 127% on average and its theoretical IRis lﬂ].Tnb* I
shows that pnrllhlm turnover increases with lc\'::rngt‘. It averages 64%
the long-only portfolio and about 94% for the unconstrained portial
These numbers are based on our assumption of a forecast autocorrelayy
of 0.25. The turnover for the unconstrained portfolio is consistent wig
the results in Chapter 8 As we can see, the turnovers for the |
portfalios are much lower, 1t 1s easy to understand that range constraint
have a dampening effect on portfolio turnover, because they prohibit pus
falios from adjusting fully to changes in forecasts, which is why theyha
4 negative impact on investment performance (Qian et al. 2004), Whats
startling is that Table 11,3 shows that turnover is a linear function of lewe
age. The ratio of turnover to total long is about 0.64 for all portfolios.
To calculate the net average alpha, we assume that the spread betwe
the 'lnng !i.n;-.ncing and the short rebate is 1%, and the transaction (%
:::1::;::‘:; lul.‘r“_h.[,urmwe_r' 1 ht‘lsv rates are reasonable and OOW
S 10 practice, the financing and rebate spread is subjectfﬂ'?

tiation wi '
such ith prime brokers, and transaction costs depend on many '
UCh as commissions, b o

d/ask spreads ‘ 1. Using the®
average alpha, we then Sk spreads, and market impac
the IR dml\s from 1.59 f

calculate the net IR. For the long-onl¥ :
portfolio, the R ¢ 10 138, a decrease of 0.21, For the unconst :“.
due to the high rops from 2.24 to 1,77, a much larger decreasé €5
Lastly e %\-#T\T:.wmgf cost and higher transaction costs. ﬁndl'#
ftio of the [R of 4 mpute both theoretical and net IR decay, dei®
Porttolio. For jpg

their turnover. As we relax the short cop

he constrained portfalios to that of the L "l

the ““Etlnstmmtdﬂ:‘;h tht‘ ]“"E“ﬂﬂl)' portfolio’s Ihﬁlmtml I_B ’f‘"
Portfolio (colump ﬁ).. UL its net IR is 78% of the unconstri™ ‘;

of the UNCONStraineg Mith an average of 133% long, achieVes lﬁ"’
ol (g INE st row of Table 11.3 80 Lot

k .
Hlive weights in the €t al. 2002), defined as the correlation =

¢ constrained partfolios and the forecasts I 0

or
‘“’“ﬁ::::nu are close to the theoretical TR deca¥.
y. y

N ol
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FIGURE 11,11, The theoretical and net IR as shown for Tablel1.3. (From
Sorensen, E.H., Hua, R., and Qian, E.. fournal of Portfolio Management,
Vol. 33, No. 2, 1-9, Winter 2007. With permission.)

Figure 11.11 displays both the theoretical IR and net IR as a function
of total long portfolio positions. We note two features of this graph. First,
the rate of increase in IR with a loosening of short constraint is higher in
terms of theoretical IR than in terms of net IR. This is due to the higher
leverage and transaction costs associated with less constrained portfolios.
Second, both curves are not straight lines. The marg.irul.l 'Il:ll’.'_ﬂ‘ilﬂ' in IR
seems to be the strongest for long-only portfolios, and it diminishes as the
short constraints are relaxed further,

1143 Risk Allocation of Long-Only and Long-Short Portfolios

One of the reasons for the low IR of the lnug-unl}'pm:nft:ilh;sis that they
have inferior allocation of active risk- If a signal has ‘ rm pndicifw
the optimal allocation of active risk

should be the same across the size spectrun, However, this is not the case

for the long-only portfolios, becau
Ltun stocks with large h;?:g:w;ﬂ

ution to the active risk of 3% from ol risk from the
with different constraints. The long-only port Qi.iﬂs:::t:imm
largest quintile, 17% in the second largest quin

3 quintiles each contribute roughly 13% As we loosen the
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FIGURE 11.12, Risk contributions from quintiles of stocks. The active riski
3%, There are 500 stocks and each quintile has 100 stocks: quintile | hasti
top 100 stocks of the largest weights. whereas quintile 5 has the bottom 10
stocks of the smallest weights. In each quintile, there are 11 pﬂrlfﬂﬁnﬂ:ﬁm
lefi to right) ranging from the long-only portfolio to the unconstrained ¢
strained. (From Sorensen, E.H., Hua, R., and Qian, E., Journal of
Management, Vol. 33, No. 2, 1-9, Winter 2007. With permiSSiﬂﬂJ'

tl:e contribution from the st quintile decreases, whereas the rest €007

" -

.D;lm.zm' until we reach the unconstrained portfolio where all g

L . :
ribute the equal and optimal amount — 20% to the active risk

Nda e ;
1.44 Simulation Results: Stochastic IC

S:: ;f[‘;‘: c‘-::i:rlymg assumptions for the simulation in the prev «m‘j
A S ancy of the IC. Thig ass,un1ptign_hnw¢wmlsofl?ut ot
gies bring ;dg.s.hm"“ by Qian and Hua (2004), active invest™e”
TN Wonal risk, which is not captured by generic ﬂ;:d‘t‘#
result the realizeq or ex post tracking error often Iﬂ#

target o )
risk, Ca; Exﬂnre tracking error. 'Thig additional risk, referred 10 ”ﬂ:ﬂ b
€ represented by the i IC, mdaf el

ized track; : ntertemporal variation of ,

that cnnsi::.g .:; ;nr 'S then a function of the standard deviat mﬂ‘é

IR of ap ac:iv[:[ih -4 intertemporal variation and the 5":.:'”{ e
C1o the standarg dl': s strategy is then given by the r& "

iation of IC, i.e,
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o
sd(Ic)’

For example, if the intertemporal variation of IC is 0.02, then the standard
deviation of IC is

stdl( rCJ=Jh.m=+ ;‘ =Jn.m!+5i— =0.49.
00

The IR of unconstrained portfolios with the additional strategy risk is
then IR=0.1/0.049=2.04, compared to the previous value of 2.24 when
the IC was constant.

What is the information ratio of long-only and constrained long-short
portfolios, if the IC is stochastic? Table 11.4 shows the simulation results
that take into account the additional intertemporal variation of IC, in this
case, at 0.02. First, notice the unconstrained portfolio (column 11) has a
realized tracking error of 3.28%, even though the target is 3%, due to the
additional strategy risk and the theoretical IR is 2.04, as indicated earlier.
Second, we note that the realized tracking error for the long-only portiolio
is 3.08%, not too different from the target. As a result, its IR is 1.52, only
slightly lower than 1.59 in the previous case; and as we relax the no-short
constraint, the realized tracking error increases. These results indicate
that more stringent range constraints have the potential benefit of control-
ling ex post tracking error when there is additional strategy risk. In other
words, relaxing Iong-unl';' constraints could puimtiall}' lead to higher ex
post tracking error, and portfolio managers must pay extra attention to
risk management.

The other characteristics of the portfolios, such as total long and turn-
over, stay the same, so additional costs remain unchanged. g weves, the
net IR is lower in Table 11.4 than in Table 11.3 due to the higher reahzlfd
tracking error. Here, the net IR goes from L3 for the long-only portfolio

1o 161 for the long-short portfolio. . .
Table 11.4 also indicates that the transfer coefficient is no longer a reli-

even for the theoretical IR. For instance, the long-
of 0,70, but the theoretical IR decay
When strategy risk grows, we find
IR decay grows as

able gauge of IR decay,
only portfolio has a transfer coefficient
is slower at 0,74 and the net IR is 0.82. !
that the difference between the transfer coefficient and
well.

e
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E- 233 £33 5% 8% 888 PROBLEMS
H 11.1 Calculate the return decomposition for Example 11.1.
-E 3 = ‘:-E ; = ’3 % -E E 5 T 28 11.2 (Variance decomposition) Cross-sectional return variance is gi
s Aad =7 99 NS e by
E 8 wg EE F ;
= e T EZ =z = = ~ 2 2Z2= 3 =21
283 5% S8 @3 a8l 1= b(R-RJ.
= =
E; = E :f:‘ = é 2 :3.-:' ;’_: { 3 =2h where b cﬂu_hibethtbcnchmrkweigbtinrﬂp-wighudm
£ SMa = S #e- Soo or & =1 N for equally-weighted variance.
: = s s o . {a) Prove that the variance can be decomposed as
3] ~285 2% 22 23 zegl"
= S - - S S we= o&c|s g : N “15 e
2 ;=3 3 hlR-R)+) B(R-R). a2y
= £ = 22 BE ¥ k-t = s i
5233 2% 2§ 3s 3333
- ;- = = = 2 - e =
é i where g:Z& for stocks in the sector s, ie, the sector
£E s 2 FF &
S| " 53382 5% 53 3383 o et
= = 2 (b) Interpretthe decompositionas A :
: 5 E e F 2 = i sdtmnnaudmhminwo&hmmhmtmagmmda
i3] “5:8 SR S8 -E T 28 3 ? 1.3 Assume the benchmark weight of a stock is b, and it active weight
:-1 % of a stock is given by
E 2 2 o
2l ~3zm B SE 53 zauls ousF
j - - —_. F S o - = = o 5 g 'i‘-l%?
z No,
H ..ﬁfig.:_sgf g_,hsg_
S Ams &R S& B wA G : the factor F is uniformly
3= Ao Sa w = 22 S5 : distribation. assume : -
=3 = Instead of the normal B one This uniform
NS 55 . = Wm&mmmmﬁ:n:"m r——_——
31§~ 33z £33 53 £ z4E8 distribation describes factors that are percentile raaking
z - =3 == ¢ 3 normalized z-scores. o
g - F and therefore the range of ¥
:i| - (a) Fmdthwd ¥ *:"ijh‘th'
E = 05 . that the total position
£l (b) Find the probability i
= = = 3 : 6.5 (c) Find the average Jong/shart £
= 3 z "E b i N "
z 22¢ £y a% S, iz "
1 > E E E gt
"t I3 B2 52 53 &4

= T
1.‘|i"lk:|_-:| l—'_-i’-L_ e e R ——
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financing cost is the federal funds rate ol

: 3
the short rebate is the federal funds rate minus 75 bps, w{;:f?""
. R

leverage cost for (a) a constrained 130/30 portfolio ang (b)amg
neutral portfolio with 100 long and 100 short? et

1.4 Suppose the

11.5 If the active weights are given by the Kuhn-Tucker condition ke
5 ire o
late the transfer coefhcient.
116 A forecast model has an average IC of 0.1 for a universe of 500 ¢

Suppose the 1C has no intertemporal variation so that tle funds.
mental law of active management holds.

(a) What is the model's IR?

(b} Suppose the model is uniformly effective across all 500 stacks
What is the model’s IR when applied to each quintile?

{c) What is the optimal allocation of active risk across the five qQuin
tiles if excess returns from five quintiles are uncorrelated?

APPENDIX

A1 MEAN-VARIANCE OPTIMIZATION
WITH RANGE CONSTRAINTS =

(}wr‘n aforecast vector f, we maximize the following objective functien®
abtain portfolio weights w I

’ 1
f 'W-ll-{w’-E-w) ;

In additi . g
w (::E“;n 10 the dollar neutral and market neutral constraints: 1" i
isweq ‘;h'i '-I'-'E also have range constraints on individual 8%
E reland ¥ of M :
As the ap uare vectors of lower and upper bound foral i

i B¢ constraintg
cal solutign for the o

€an be foupg throy

McCUfmick “933}.&]} Kuhn-Tucker conditions. For details, Pw.d :

e are inequality constraints, there is no
Ptimization problem. However, a numeficé

general optimization P
specify 1h first present the conditions fﬂ! ap :
c“ﬂﬁninul l em fﬂr Iht m“*mimenplim“ .W fon Y

S—

duction of range constra

e/
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Suppose the problem is to maximize p(w) subject to g,[w]Sﬂ for
j=1,:=-;m , then define the Lagrangian function L by

L(w)=p[w]—il,gj[w). (11.23)

[l

The Kuhn-Tucker conditions are

a'_-'-‘, Eiw, W,

" ] ) W
rif[“') - 'P[ w_]_ _Zfl qgsFM =n| rﬂriﬂ l‘_“.N . ‘11'24)
f=l

and

g,(w)s0. 1,20, andlg,(w)=0, forj=1-m.  (11.25)

We note that condition (11.24) is the same for equality constraints. How-
ever, condition (11.25) is different for inequality constraints, and states
that (1) the inequality constraints must be satisfied, of course; (2) the
Lagrangian multipliers must be nonnegative; and (3) either the Lagrang-
ian multiplier is 0, or the constraints are binding.

A11.1.2  Kuhn-Tucker Conditions for 'Mear:t—\-'ariance
Optimization with Range Constraints

When the range of weight fora stock is constrained h‘y L $w, <U,, wecan
represent the constraint with two inequality constraints; w, - U, =0 and

L -w, < 0in the form ufg{w)_sﬂ. _ )
For a portfalio of N stocks, we could have a maximum of 2N inequality

constraints:
w; =, S0, and L=w, <0, fori=leN. (11.26)

on (11.22) also needs to be m he intro-
: netian (11.22) also needs to be modified with t
e lfm. Previously, the risk-aversion parameter was

' ror, because with
a free parameter used to achieve the targeted tracking error, | |
dullnrpneu'mj and market neutral constraints the optimal weights are

[ 1 -
-y - - - A
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Sﬂaiﬂ.ble; '\.‘-l*h int\-qu“]i[?{ CU“S'r'ﬂintS, tht‘ ﬂptlmal “’eights are
scalable. Hence, we need to set targeted tracking error 4 =

nulunh

i addiy:
constraint. The optimization problem becomes d"’"ﬂ_il
Maximize: f*- w
Subject to:
’ 2
w-E-w=0
s (1)

wi=0,andw -B=0

w,—U, <0,and L, -w, <0, fori=1,+- N

The Lagrangian function for the problem is then

K
L{w)=F A" B L) (1) YA (")
=] um

N

STl o]

Now & denotes the Lagrangian multiplier for the tracking error i

for_lst:aim, l,is the Lagrangian multiplier for the dollar neutral
e = IS
Lyandl,, =1, N : o
/ 2l =4 N are the [ : o the range &=
straints on N stocks, e Lagrangian multipliers for _

The Kuhn-Tucker condition for (11.28) is
aL[w) = - T3
‘—é—ll-v—--‘-‘f—lo'l.f.‘w—’qi-zf.bi‘"(13—1:):“'
=]
“"h!’l.‘t ila(

e A = R | —
m"'hil’liers.'l"];:E Jw), Eﬂdh:[“‘..._;}x) are vectors of L
“quality constraints must be satisfied, 1.6

w -2'\\':3_;-;“‘ W'-i=ﬂ.mdw'-3-"—'°'-

In addition
for the Tange constraints, we have

»K are the Lagrangian multipliers for the K risk f“m‘d
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120, w,~U, <0, andl, (w, U, )=0

’ 5 (11.30)
!’z 20. Lf_'l"l" 50. ﬂnd JII(L"—“”]=0

Equation 11.29 can be solved as

K

] 2

w=ﬁ2"[f—1ui— E i,b,—l,+|1]:-2-%z"fd_ (11.31)
=l

Hence, the optimal weights must be of the form of Equation 11.31, which
resembles the optimal weights of unconstrained portfolios with forecasts
adjusted for various constraints and then scaled by A to give the targeted
tracking error,

When the range constraint is nonbonding, ie., L <w, <U,, we have
[,=0andl,=0 according to the condition (11.30). If w,=Uj, i.e., the
weight is at the upper bound, then [, 20and [, =0. Similarly. if w, =L,
i.e., the weight is at the lower bound, then l,=0andl;, 20. Therefore,
between [, and[,, only one of them can be nonzero.

When the covariance matrix is that of a multifactor model, ie.,
I=BE,B’'+8, Equation 11.31 can be simplified to

e (11.32)
,ﬂ—’n‘“’n —eeslyby —l,+1y,
alip 2o}

e o d the fundamen:
Clarke, R, de Silva, H., and Thorley, 8., Portfolio constraints and t ]
3 :alﬁﬂa:eosfliziw management, Financial Analysts Journal, Vol. 58, No. 5,
48-66, September-October 2002. : _ _
Clarke, R., des;ﬁv& H., and Thorley, S., Toward more information em port
folios, Journal of Portfolio Management, Vol. 31, No, 1, 54-63, Fall 2 R
Grinold, R.C. and Kahn, RN, mﬁﬂimfg_ g;;'n; ::;?:n&tm mvutmg.m 3

cial A t¢ Journal, Vol. 56, No - ,
rm.i.x.ﬂuﬁf K.N., snhmduﬁuequitzy;“nmmgiﬁ. Journal of Portfolio
Management, Vol. 32, No. 2, 45-55, Spring 2006. . -
McCormick, G.P, Nonfinear Programming: Theary, Algerithms, and Applica

tions, Wiley, 1983, New York.




. @

394 m Quaniitative Equity Partiolio Management

i d Hua, R, Active risk and information ratjo, Journa
Qun.}i:::&‘rrra:ﬁ. Vol. 2., No. 3, ED—H_ ; _1“(14: i od I"Pm""ﬂl
Qun, E, Hua, R.. and Ti!nt:}:. J.s Pf.'-rirohlu lurnover of ‘TU“H‘ilatiw.reh, -

pnrtl’u!im. Praceeding of the ;’_”d [;.;_:\TEH.fm.-_-mm[,_"m; C"”ffrern:ulp'
cial Engineering and Applications, Lan1br1-.igc. MA, 2004, *
Sorensen, E., Hua, R,, and Qian, E., Aspect of constrained long-shory po

Journal of Portfolio Management, Vol. 33, No. 2, 12-22, Winger zuu?ﬁllm

ENDNOTES

1. A simple example suffices to illustrate this point. "rm
§10, all one can lose is $10 if the stock’s price goes all the way down o zery
in the event of bankruptcy. Shorting a stock at $10 with an initia) margin of
say $10, if the stock price goes up to $15, one loses $5, i.e., 50% of the initia]
investment. If the stock price goes to $20, one loses the entire $10 inyest-
ment, and if the stock price goes above $20, the loss would exceed theinitil
investment and additional cash is needed.

- Jacobs and Levy (2006) depicts an alternative structure set up by prime
brokers, based conceptually on financing additional long positions with-
shorting. While the structure has certain tax advantages, it bears the same
leverage cost.

b

D

CHAPTER 1 2

Transaction Costs and
Portfolio Implementation

RADING STOCKS INCURS TRANSACTION cosTS. So far, we have not

dealt explicitly with the impact of transaction costs on equity portfo-
lio management, with the exception of Chapter 8, where we built optimal
alpha models under an aggregate portfolio turnover constraint. However,
portfolio turnover is just a proxy for transaction costs, which are often
stock specific; trading illiquid stocks would have higher costs than trading
liquid stocks even if turnover is the same. Therefore, to fully understand
the impact of transaction costs on portfolio management, it is important
to incorporate stock-level detail in the analysis.

In this chapter, we study two areas of portfolio management that would
benefit from the inclusion of transaction costs, One is portfolio construc-
tion or portfolio optimization and the other is portfolio implementation.
The processes of portfolio optimization with transaction costs and portfo-
lio implementation should be integrated. Simply put, we cannot know the
exact transaction costs without knowing exactly how the portfolio would
be implemented. In other words, the transaction costs depend on changes
of portfolio (in shares or in portfolio weights), as well as the way the port-
folio will be traded, If we denote changes in portfolio by the weight dif-
ferences, Aw =w—w,. where w, is the initial weight vector and w is the
optimal weight vector, the transaction costs should bea function ¢(Aw), in
which the function form c(.) would be determined by how the trades are
executed in addition to the liquidity attributes of stocks. After the function
¢(.) is determined, the transaction cost ¢(Aw) is incorporated into the
Portfolio optimization process as another term in the objective function.
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In practice, the two processes o= s sludieq Separately, A,
some simple transaction COst functions are uﬁffd in the portfoig gy
sation. In this book, we follow this research direction and leave
re research.

: thes
grated approach to futu inte

121 COMPONENTS OF TRANSACTION COSTS

To determine a reasonable form for function c() m
different companents of transaction costs. Broadly speaking, ‘hmurcnm
kinds of transaction costs: fixed costs and variable costs, The fixed cogts
are related to trade commissions and bid/ask spreads. There could be add.
tional service fees but they are often included in the commission, Trade
commissions are often quoted at some cost per share whether it is a buyor
a sell order. For instance, it could be 2¢ per share. In this case, the costisa
linear function of the traded amount or the number of trade tickets.

The bid/ask spread is another form of fixed cost because it resultsin
investors getting paid less if they were to sell a stock, while paying moreif
they were to buy a stock. For instance, the spread might be $10.00/51010,
meaning a seller receives $10.00 per share but a buyer has to pay $i0.10.2
extra of 10¢ per share. If nothing changes, a round trip of trading out
result in aloss of 10¢ per share for the investor. For this reason, we oK
’;}“ii;h‘“hi:ﬁla@ciated with the bid/ask spread as l‘?alf I:I'E:ihil!

G vilingls oo : cost is the d..aﬁ‘ercnce between e1.thc'f : et
- Hecause the cost is on a per-share basis, it is al$0®

&
Il dilml}uni. -_. :- E

lute va

lue of the portfolie weight change,
I:[ Aw } =

* The funey , walue
o ll;rt';trmn [12._!} is al'Wayg positive with the gbsollﬂe M'
is di coefficients are positive, Also, the PI‘OP"“‘M“@#

: Tf[ﬂ'ml [ﬂ]‘ d s ] 1

ifferent stocks. This is a result of M b

Song, i ! !
or d:lﬁ'l.'rct“ b]d,l'ask *Preﬂdﬂ. for different ﬂmm Do

Ence, we 5 :
“an model the fixed cost as a constant vector times ! ,J

ﬂ'-'ﬂ‘\'f=9,;&w|!+ﬁz‘ﬁwl1+...+eﬂiﬁwxl.. ] | ’

Y
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j0¢ and a commission of 5¢ per share. The transaction costs would be
¢ =(0.05+0.05)-100,000=$10,000, or a loss of 0.01%, or | basis point,
on the total portfolio. In terms of Equation 12.1, the coefficient equals
B=0.002, which is cost per share at 10¢ divided by the share price at $50.
It can be proved that in terms of percentage loss to the total portfolio, the
coefficient @ equals transaction cost per share divided by the share price
{Problem 12.1).

The other component of transaction costsis variable costs, which include
market impact and opportunity costs. Market impact refers to the price
change due to investors' trading and it occurs when trade size exceeds the
quote depth currently available. For instance, we would like to sell 100,000
shares of stock in Example 12.1. However, the bid at $50 is only for 50,000
shares. If we want to sell the additional 50,000 rather quickly, the price is
most likely to drop due to the resulting supply and demand imbalance and
we might have to accept that lower price to fill the order. The difference
between the new price and the bid price prior to the sell order gives rise to
the market impact component of total transaction costs.

Thus, the transaction costs associated with market impact are not lin-
ear. It is small when the trade size is small but it increases dramatically
when the trade size becomes large. For a single stock, one possibility is to
model it by a square function

‘(ﬁ""f)= lllr(ﬁ“':)l- y, 20. (12.2)

As we shall see shortly, the simplicity of (12.2) makes portfolio optimi-
zation easy.

Example 12.2
Continue with Example 12.1. Suppose the quote depth is only 50,000
shares at the selling price of $50 and we have to sell 1!1-@ remain-
ing 50,000 shares at the price of $49.80. The total transaction cost is
©=$0,05100,000+ $0,05- 50,000+ $0.25-50,000 = $20,000 , or twenty rhmla-
sand dollars, This is equivalent to 20¢ per share, a loss of 0.02%, or 2 bam
Points, on the total portfolio. If we model the total cost using Equation

12.2, then the coefficient is given by

._._.f—-- ::l g'-?!—-“ =0.08.
Yo law) (%)
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ltiple stocks, or a basket of stocks, the Market
on the ditferent stocks can be .:m'rei.t“ ad, Selling e ok <l
stocks would cause 3 greater market ‘lmpucl on both stocks thsn g
‘ hile buying the other. We can model the transaction coe.

Costy

When trading mu

ane stock w , : :
ssociated with market impact tor a basket of stocks using
4

cl_lw]=_‘t\\"-\|ﬁ Aw . (23

To ensure that the transaction costs are always positive, the matriy ¥
must be positive definite.

Another type of variable cost is the opportunity cost, which is assog:
ated with the return impact of trades not getting executed. For instance,
investors often use limit orders instead of market orders to buy stocks, ia
order to reduce market impact. However, if the stock price fails to reach
the limit order price, the trade would not be executed. If the stock price
continues to rise, then the investor loses the opportunity to participatein
the gain on the stock. Compared to the other components of transaction

costs, the opportunity cost is the hardest to estimate. We shall noteo®
sider it in the book.

122 OPTIMAL PORTFOLIOS WITH
TRANS#\CTION COSTS: SINGLEASSET ~ ~——
sblem of incorporating transaction costs into the formation ofop¥

mal portfy ; :
| partfolios is often not analytically tractable. We shall discuss i

<al m ; : «
ellh_nds to solve it later in the chapter. However, for 3 w1
asset, it is possible to 3 4

; nalyze and solve th blem analytically 855
€an gain valuahle nsights from it gt~

The prc

1221 :

5 Single Asset with Quadratic Costs

o B-Varia T . i

COsts {s rtlat?:; OPlimization with the addition of quadratic
) J ‘ eﬂ. » - i

Costs are given ¥ 35Y 10 treat so we shall consider it first-T!

0 the form of (12,2), The optimization problem inf=

-

<an be writtep
- 3]
e Ulw)= f - gt —y(wse)
-
Tht unknw

Teturn fﬂfeqn;nuu the G?Iim_a[ weight w, and the pﬂl‘ﬂ“‘tﬂ
+ the risk of the asset; A, the nsk-‘c“’ﬂ’im

- g— e B
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w,, the initial weight; and W, the transaction cost coefficient. We can
i!-;mk of (12.4) as the allocation decision between a single risky asset and
cash. The coefficient  in this case measures market impact of the cost for
a 100% turnover. As opposed to the problem with linear transaction cost,
the utility function in (12.4) is well behaved. The cost term is analogous
to a variance term, relative to the current position. Taking the derivative
with respect to w gives rise to

U'(w)= f-ho w2y (w-w,). (12.5)

The optimal weight is given by U’(W] =0, and we have

o = L2 (12.6)

= ot 2 :

The optimal weight (12.6) is a function of the transaction cost coeffi-
cient y . When y=0, then

vewc L (12.7)

The weight w is optimal when there are no transaction costs. At the
other extreme, when \ is very large compared to both the forecast and

the risk term, then w' — w, slowly. %
Let Aw =w —w, be the optimal trade with transaction costs and

Ai = —w, be the optimal trade without transaction costs. Equation 12.8
shows that Aw’ is a fraction of AW, and the scaling constant is the ratio
of the transaction coefficient to the risk coefficient in the utility function
(12.4).

2 -
- oywy . fAOTW, W W, 5 g)
Example 12.3

Suppose that a single asset has a yolatility @ is 15%, and we have a return
forecast of 15%. The risk-aversion parameter is 10, and the current position
is 50%, We can calculate the optimal weight with no transaction costs at
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FIGURE 12.1. Optimal weight of a single asset with quadratic transaction
costs. The initial weight is 50%, and the optimal weight with no trall-'ﬁf'
tion costs is 66.7%. Note that the optimal weight is always above the initia
weight.

f 0.15

==

pre = 66.7%.
A 10(0.15)

.Therefure. we should be buying more. However, the amount “fh:f:
will bE lcmPETEd b‘,’ the transaction costs. Suppusg \v’ :ﬂll = . _i.

sponds to transaction costs of 10% on 100% turnover. We then hav®

_ ptimal weights for value of ¥ ﬁomq .ﬂa& I
Optimal weight declines rather quicklf_at ﬁ“ out¥"
ne slows. When y=0.5, the optimal weight ¥ 5 o

Note the following remark:

* With Quadratic tradi

transact;, )
On costs will be small when the weight 5

Figure 121 plots the o
We can tee, ‘he
the rate of dec|j
atrade of 395,

ing costs, there will always D€ 59
is, because the value of the qud g ose o
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weight. Tlhis makes some sense, because the market impact only
becomes important when the trade size exceeds the quote depth.

12.2.2  Single Asset with Linear Cosls

We now consider mean-variance optimization with the addition of trans-
action costs given in the form of (12.1). The optimization problem in this
case can be written as

maximize U(w]:j-w-%l Y = Blw—w,|. (12.9)

9 is the transaction cost coefficient, measuring the cost of 100% turn-
over. Solving Problem 12.9 poses certain analytical challenges because the
absolute value function is not differentiable at the origin.

When there are no transaction costs, i.e, 8=0, however, the optimal
weight is w , given by (12.7). When 8>0, the problem can be formulated
in terms of weight change: Aw=w=W,. Using w=w,+Aw, we can
rewrite the utility function as

U(ﬁw):f.(ﬁ.w+w,,)—ild’{ﬂw+ w,,)z—ﬂi.&w[ o
12.10

= u(%){w (- Aw—0[An~ 120 (Aw}‘}
The total utility is  sum of the current utility, a constant, given by
U(w,):fwn = %MJ“‘::

and the change in utility caused by the change in weight. The weight w is
also a constant given by Equation 12.7.
The change in utility is then

_, e
8U=U(aw)-U{m)=ratawaw-0fanl-330" () )

with Aw=W=W,
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timal weight change musl maximize the cha nge in Ulility '*'hidl

—(. In other words, at a minimum, we cap Maingg
h no trading. To find the maximum, we ngy, mn';ﬁ

The op!
is zero when AW
current utility wit

three cases. _ . o -
The first case is when w=Wg. i.e., when the npumal WE;ght di

ing the transaction costs is equal lﬂr”:li““lif‘} ‘lf‘l'ﬁigzl- liis -::.ubvic:-us in lhu
case we should not trade at all. Mathematically, Aw=0 is the Optimg]
solution for utility (12.10); because any trading would cause the utility g
o dOWE. L L : .

When w#w,, the initial position is not optimal, at least if there wer
no transaction costs. There is a possibility that we can increase the gl
ity of (12.10) by trading, Because both the second and the third terms,
associated with transaction costs and variance, are negative whenever
there is trading (either buy or sell), the trading must at least make the first
term positive, This implies Aw must be of the same sign as AW =W=-w,.
Therefore, in the second case, we consider W > w,, i.e., the optimal weight'
in absence of transaction costs is greater than the initial weight, indicating
buy. As argued, we should look for solution Aw=0. In other words, we
should look to buy to increase the utility. _

If Aw20, we have |Aw= Aw. The utility function becomes differet:
tiable with the derivative =

U‘[ﬁw):lﬁlaﬁlﬁeﬂmz{ﬁw)' 'I('___-_ g
Setting U'(&w]=0 yields

ﬁw' = W. —w‘}:Aﬁf—i=ﬁ,ﬁ'-wr'
Ao’

We have defined

ve ™ Oplimal weight associ : transaction cost
tive abp[-ml" or cost weigh, ociated with the transactie= oo
10N 12,13 is the opt than ®

2810, 0 whep imal weight if Aw" is greater
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ﬁi‘ 2“". (12.15}

This condition implies that we would only buy when the costless buy-
ing, i.e., AW , exceeds the cost weight w,_. On the other hand, when Aw" is
less than zero, the costless buying does not clear the hurdle of cost weight,
then (12.13) is certainly not the optimal weight, because it leads to a reduc-
tion in utility (12.10). Here, we have a situation in which we would buy if
there were no transaction costs, but would not if the transaction cost were
factored in. The best course to follow is therefore to stay put: no trade, i.e.,
Aw’ =0.

The analysis applies equally to the last case, in which W < w,. We leave
it as an exercise. To summarize the results, we have the optimal trading

Aw-w,, whendw>w,
Aw =40, when [Aw|<w, {12.16)
Aw+w,, whenAw<w,

Figure 12.2 shows the results. Both buys and sells are reduced by the
amount, w,, and there is a zone of inaction when the costless trading is

less than the cost weight. _
Alternatively, we can rewrite the optimal weight as

w’=~£§aw,._ (12.17)

Note that the optimal weight w is equivalent to an optimal solution
e m!la;fno upmsal:tiﬂn E.o.m' but with an adjusted forecast of f —Q.
Therefore, we would buy only if the forecast is high enough t{: offset the
transaction costs, such that the optimal weight with the cost-adjusted fore-
cast is still greater than the current weight. Note the following remark:

. : the analysis is that we buy only if the cost-adjusted
gr:c:l:is I?_t‘r;?:tm lﬂdsgi buy decision. In other words, we trim
the forecast of a possible buy by the transaction cost, and the adjusted
optimal weight must still be higher than the current weight inlo;qer
for us to trade, In the same vein, we sell only if the cost-adjusted
forecast, f +0, in the case of a sell (see Problem 12.2), still leads to

N e - o ey
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FIGURE 12.2. Relationship among the optimal trading Aw’, the costes

trading A%, and the cost weight w, when transaction cost is a linearfu
tion with respect to the size of a trade.
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FIGURE 12.3. Optimal weight of a single asset with linear transaction costs.
The initial weight is 50%, and the optimal weight with no transaction
costs is 66.7%. There is no trading when the transaction costs goes beyond
a critical value.

Therefore, we are buying less as the costs get higher. The critical value is
8=0.0375, at which the optimal weight becomes the current weight at
50%,

Figure 12.3 plots the optimal weights for values of @ from 0 to 0.05. As
we can see, the optimal weight declines linearly and it reaches the initial
weight when 8 hits the critical value of 0.0375 and stays there.

123 OPTIMAL PORTFOLIOS WITH
TRANSACTION COSTS: MULTIASSETS

Having solved the problem of the optimal weight for a single asset, we now
analyze the problem for multiasset portfolios.

12.3.1 Multiasset with Quadratic Costs !
With a multiasset portfolio, the quadratic mnsacﬁon_ cost is given in :}!e
form of (12.3), in which Aw=w—W;. The optimization problem in this

case can be written as

maximize U(wl]lni'-w-ilﬁt"ﬁ'{ﬁ"r w(aw).  (218)
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Note that for an active portfolio vs. a benchmark, the weigit
the active weights and for a market-neutral long/short Portiolio the .
vector is the absolute weights. We have left out other constraingg g
the impact of fransaction costs. isolye

The solution of (12.18) can be tound .umlf.'ticull‘\- using the En“w[w
equation:

U :f—;‘LEw—J'i"lw—wl }:0_
3w

(1219
We have
w':[\:{}:;.:v) I“‘-rl'ly\\‘,.}, (12,20

In (12.20), both X and y are square matrices and f is the forecast ves-
tor. Note that it reduces to (12.6) when both matrices are diagonal. In the
case, we are simply optimizing uncorrelated individual assets.

1232 Portfolio Dvnamics

Equation 12.20 gives rise to a dynamic relationship of portfolio weight
Over ime. Applving (12.20) iteratively, we have

w.=(AZ+29) (£ + 29w,

.._fﬁl WZ+2w)”
W, =(AZ+2y)" vl v) £

+(2w)(hz+ 29) (2w)wis
“VE+29) [+ AL, +A"f,-z+---+a't‘fr-="”“]
The matrix A s defined as

A=(ax+ Zw]"' 2y .

Al of
1onship, one can build a dynamic ' !
' Supplemented by a dynamic model of for®

f=
CRESRE g b,
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and lagged ICs

€, =corr(€,,,x,). (12.24)

Sneddon (2005) has shown that under simplified assumptions, one can
derive the multiperiod information ratio (IR) in a semi-analvtical frame-
work that gives valuable insights regarding the combination of forecast
signals. His results are consistent with our finding in Chapter 8 (see Gri-
nold 2006 for additional analysis on this topic). For instance, he finds
that when incorporating transaction costs, the multiple-period IR can
be increased, compared to that of a single-period IR given by the funda-
mental law of active management, by overweighting the tortoise — signals
with lower information coefficient (IC) but slow information decay — and
underweighting the hare — signals with higher IC but fast information
decay. It remains to be seen if his model can be extended to include more
realistic factor and return structures.

12.3.3  Multiasset with Linear Costs: Mathematical Formulation

The linear transaction cost of a multiasset portfolio is given previously
in (12.1). In terms of a vector of the transaction cost coefficients, @,
and the vector of absolute value of weight changes, w=w, . thc. Cost is
0 w-w, =0 Aw . Thus, the mean-variance cost optimization is

n= i .

1 - ) i 59
maximize U(w)=fw-_JwEw-0"dw.  (12.39

case, the problem is not analytically tractable
od: when the covariance matrix is diagonal.
absolute-value function.

umerically, however, in a number of ways.
For example, one can approximate the absolute-value fum:tionhh_r some
smooth functions. In this chapter we shall present a l'm-![l'lmi- a; l:; mbu&.r.
mulates the transaction cost term in term of two. new \rug s ys
and sells. and solve the reformulated problem with standard quadratic

programming. buy vector w, and sell vector w,. Then the

We define two new vectors, ; ;
new ;ortﬁ::u weights are a combination of the current weights, the buys

and the sells

Unlike the single-asset
unless all assets are uncorrelat
because of the presence of the

The problem can be solved n

w=W, E W~ Wy (12.26)
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foth the buys and the sell are nonnegative, w, =0, w29 |, e
! # Wy

ents of the two vectors are cither positive or zero, It is alsg Noted thyy N
buvs and sells are mutually exclusive: for every stock we either havey
or sell but never both These properties enable us 1o replace the by,

value of weight change by

AW W, bw, {]zlm

Substituting both (12.26) and (12.27) into (12.25), we have

E'I[w’ r"wll‘wll w.} .I}‘-"{wn'wu 'w'.}.!'l:.whiwl'*wj)

0 (w,tw,)

1228
”[“’-.]1“ AEw, H]' wy [ ~f 4+ 2L Ew, -ﬂ]"“’i

8
2*-[“',|Lw,l 2w, Ew, + witw,)

As before, the initia) utility is

U(w,)= 1w, -L'}.w,‘,l‘.wu .

The

wecinr bjective fiine titin of (12.28) can be written In terms ﬂfl‘d

which ¢ ambiney both huyn and sells, Le., ﬁ
w ;{“’« .['
w, ) '

and y Wacked forogagy vecioy

,,__[ fI3w, -0
“Avrdw,-0)'

B
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and an -i“l-",l'lli'l'i“'d coviriance malrix
. x b3
el
| 5 5 J (12.31)
Cambining the equations preceding, we have
4 I 9 F g
Ulw)=Ufw, |+ F W JAWOL W (12.32)

The optimization problems with objective function (12.32) can be salved
numerically using quadratic programming,

Several constraints can be placed on the augmented weight vector W io
address practical implementation concerns. The first constraint is W 2 0.
Another constraint is related to dollar neutrality; Le., the total amount of
buys and sells should balance. This is a linear equality constraint

wh d=wid, or W=,

The vector § I & vector of ones, of length N, and

: [
{2)
If desired, we can add the turnover canstraint as
I
Wl g1, withl; = i

T'is the muaximum turnover allowed and L, isa vector of ones, of length

2N,

Finally, we can require range constraints on the optimal weights

[ w W, 4wy =W =W, (12,33

in terms of the augmented weight vector W. Thisis left as an exercise, Note

the following

-,

e ———
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. We have not imposed the condition that the buys ang th
mutually exclusive on the new optimization problep
need to Ido that because that would certainly result ip 5
<olution. It is easy to see this in a single-asset case, gy
w._and w, are positive; then, the new weight defined by the
m"qlhe two would achieve a higher value of utility. For example,
wy 2w >0, then 1-'.'1J =wyz—ws and w; =0 increases the u
because it has the same mean and variance but less transactio
COsts.

e selly ..
Thfl't l:n
Subupgjm'i

« The augmented covariance matrix (12.31) is singular, but this isny
necessarily an issue for quadratic programming. The matrix cn
be modified using the fact that the buys and the sells are mutually
exclusive, i.e, wy,w,, =0 for every stock. Consequently, we can st
the diagonal elements of both [—E] matrices — upper-right and
bottom-left corners in (12.31) — to zeros.

1234
W

Multiasset with Linear Costs: Numerical Example 1

¢ apply the numerical method to a portfolio of 20 stocks. We start Wﬁ
a _njarket neutral long/short initial portfolio. We then simulate nmﬁlﬁ
of forecasts and use the forecasts to rebalance the portfolio, incorpos
= !rm?acti.;m costs. Other inputs are the covariance matrix z
transaction cost coefficient ©. For simplicity, we take I asa &g

matrix with specific risk of 35% for all stocks. The transaction e
assumed to be 29 for all stock

4 target tracking error of
nd specific risk. we
Standard deviation 1.

Fi : 5o
squigureal;:liims 1!1& fnrecasts vs. the initial pDrthtiﬂ weishl;:m
5¢e, whereas the :'Ffll'rnal P_mfﬂim with maximum mmu\‘ﬂ:- the oF°
casts, they are m‘.lal weights are in general agwgme_nt a__.

not aligned perfectly, For instance, a stock with :

Of —3.2% hag 3 we
W i pres
TL2% has a yeei - Bt of 10,35, whereas another stock with 2 ,

R o
and the initia] :Jg‘:: .Lg%. The overall correlation bmeﬂis‘l i
The optim o 515 only 0,48, and the expected return is 3

s. All portfolios, initial and opti . ;ﬁ
10%. The forecasts are products of Kp ;‘

will let IC = 0.2, and the z-scores have 0 mﬂuj|

CONstraim T: weights are the solution of (12.32) withﬂut ih‘;
hfftl;ts i:sdmts}l: % One-way turnover is about 36%: A7
€ opti . perf
on of .97, °Ptimal weights are aligned almost P g

© only reason that they do not lie 08 ™
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FIGURE 12.4. Scatter plot of forecasts vs. initial weights and optimal weights
with maximum portfolio turnover.

is due to the 8=2% transaction costs we imposed. Thr:- expected return is
8.5% gross of transaction cost and 7.0% net of transaction costs. The gross
return is simply the sum of weights times the e:rpeded returns and the net
return is the gross return minus the transaction costs, 6 times two~$y
turnover. It is also worth noting that out of the 20 stocks, npiyllﬂ stocks,
those whose initial weights are too deviated from the optima we;gl::;_
show any meaningful weight change. The other 10 stocks are preven
from trading due to the transaction costs. :
[mpnsingsadditim:lal turnover constraints impacts n:n:pt;zal ,m
and expected returns. Figure 12.5 shows the gross 12t ‘e mp
returns as a function of allowed turnover. When no turnover is per :
both returns are the same as the return of the initial portfolio. As we al!.:;r
more and mare turnover, both returns increase, with the gap between t
two widening as the costs increases.
i slows down asthe turn-
. te of increase in the net return
Note.th:tmlhemmm a result, when the turnover is 20%, the net return
e . from the initial 4.2%. This represents

rease of 2.3%
:sr:.::gl;ns;:mm increase in net returm, with about 55% of total

turnover.
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FIGURE 12.5. The gross and net expected returns as a function of allowsd
portfolio turnover,

_ _P'Euﬂ? 12.6 shows the change in portfolio weights from the initial port
tolio weights. If Aw >0, we buy the stock, whereas if Aw <0, wesell ¥
stock. As _rmted before, only ten stocks show weight changes if lﬂ'ﬂm
:Ji:‘nnvur is allowed. As we see from Figure 12.6, this number b SRS
- ::12: turnover is constrained. For example, at 4% tumum.lﬂl_tb'_il‘r_v.

s that are marked in Figure 12.4 are traded. The limited W%

budget i inc
8et is allocated to them, because their positions are most e

with their return project: '
Projection and trading them increases portfolio I-’ﬁ
Most. As the turnover limit b PO the tF

, isincreased, the trade list expands @
sizes
€xpand for stocks that are already on the list.

* We note that the size of buys and sell are monotonic ﬁmﬂw

th re
€ turnover, If we were to buy a stock, we would buy moct,

tu ]
rnover is allowed Up to optimal weight. 4

35 Multia R 0
s »etwith Linear Costs: Numerical Examp.fez' " L3

Optima] Weish:::;mph' We study the impact of transactiof ©=
Stocks, For each &Yt;:w"?g the level of @, which is ﬂ“’uﬂ:
"Wnover congtriy, Optimal portfolio is constructed witho"

Nts, Hence, the resulting turnover is the

iated wi -
With the given transaction costs.

12,
In
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FIGURE 12.6. The change of optimal weights from the initial weights as the
turnover is increased. Out of 20 stocks, 10 show no weight change; they all
lie on the line Aw =0. The remaining 10 stocks show increasing change in
weight as more turnovers are permitted.

Figure 12.7 shows the change of the optimal weights from the initial
weight, which is the same for all levels of 8, when the transaction costs
increase. When 8=0, i.e., the problem is transaction-cost free, the weight
changes are at their maximum for both buys and sells. The difference is
just essentially Aw=w-—wj,. As O increases, the weight changes for all
the stocks shrink toward 0.

« 'We note that the decline in weight changes follows different patterns
for different stocks. Some of them follow a straight line with differ-
ing slopes, whereas others are piecewise linear. This feature reflects
the nonlinear nature of the objective function and its solution.

Another noteworthy feature of Figure 12.7 is that all weight changes
have the same signs as those for 8=0. In other words, if a stock is a buy
(sell) from the optimization with no transaction costs, then it w‘ill bc a l:ru;y
(sell) in the optimization with transaction costs. If this s true, it points to
an alternative method of constructing an optimal portfolio with t-ran.-u.;:.
tion costs, using & two-step approach. In the first step, we run an opli-
mization without transaction costs. This is relatively simple as we do not
encounter the absolute value function in the objection function (12.25).
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FIGURE 12.7. The difference between the optimal weights and the initia
weights for varying levels of transaction costs 0.

The solution of this step would provide us a buy list and a sell list. Inthe
second step, we optimize again but with prescribed transaction costs, With
ThE. buy and sell lists available, we can now specify the range of optimil
\-\I-'Elghls as w2w, fora buy and w € w, forasell . The associated transse
tion costs will be w—1w, fora buy and w, — w fora sell. Consequently, ¥
remove the difficulty of dealing with the absolute value function in (be
U_b'l'-‘““’e function, The resulting optimization problem can be solved 72
tinely. However, we caution readers that this may not always be the e

12, 5
Dz 1_PORTFOLIO TRADING STRATEGIES #
ti;{euﬂf;inl‘lal p-'.‘)rtft:-liu weights are determined, the changes frﬂlﬂwﬂ;‘l
Thep {:alﬂl;ﬂ WELgh‘!s are the resulting trades that need to be imp! m#
mﬂﬂgemgmﬂurtfnhu trading strategies is to implement the t n:: -

manner. In certain cases, it might be DPtimaI ".} mﬂw !

ment the ful ¢

rades, due to ¢ . h
i ' either i nals or
tion costs, In Practice decay in return sig )

. 1 t -

which mighy the tri this can also arise due to the use 0 M
costs. We ts!'m]'l:'l ¢ triggered by price movement resulting if quyﬂ

tobe im !le consider such cases in our treatment 80

ETe are at i‘:ml‘-‘med in the portfolio strategies. 1™
tation proges & st two conflicting objectives in the Portfolw[hc.' i

*9n the one hand, one would like to implemﬁ:;w

e

a8 “H}ﬂ as s
Possible o getto the optimal portfolio. The optim®!
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the m ulxm:lum ux;‘tucted return for a specific risk target. Any delay could
pui.cnlleI”} _re.«'ull ina ?uss of return, and both the expectation and the
variance ol ll'll'.!.l Pljlt.'l'lllﬂl loss grow over time. On the other hand. trans-
action costs rom market impact are a direct function of the speed with
which the trades are executed. For large trade sizes, immediate execution
would cause the greatest market impact. Breaking it in pieces and trading
them over an extended period of time would reduce the market impact but
at the risk of return loss and tracking error mismatch versus the optimal
portfolio, as well as higher fixed costs such as commissions and fees.

For a portfolio of stocks to be traded with both buys and sells, one must
consider the trade basket as a whole. For instance, an imbalance between
buys and sells might cause an intended net market exposure. The corre-
lation between different stocks is another important issue. For buys and
sells that are highly correlated in terms of stock returns, one would like to
synchronize the trades, because doing so would reduce systematic expo-
sure. However, if these trades have different market impacts, one would
like to execute them at different speeds to minimize the transaction cost.
It is therefore necessary to find a balance between the two.

The trading horizon — the length of time we allocate to implement the
trades — is another important factor. For trades that are easy to implement
based on liquidity, the trading horizon should be short. For difﬁFult trades,
the trading horizon can be longer. For a given set of tn?des. it is bel..ler 1o
optimize the trading horizon as well as the actual trade implementation.

12.5 OPTIMAL TRADING STRATEGIES: SINGLE STOCK

The problem of optimal trading strategies can b? fotmula:ed 'mathcm?u-
cally through an optimization in which the objective f“'!""”“ “’“25':5
of expected return shortfall, return variance, and fmﬂﬂ“"':"ﬂn costs. Lri-
nold and Kahn (2000) considered this problem in continuaus ”"’f u:rd
Almgren and Chriss (2000) used a discrete setting for their analysis. We

shall work with the continuous-time case for simplicity in the notations.

We start with the case of a single stock for which the trade is denoted by

: horizon | 0,T |. Wedenote
Aw .Supposethetrad:willbecamedautowrd‘ne a [ 91) Ao it

the state of the trade at time £ in proportion of thetotal tmdﬁ : h r]d 1]
h(0)=0 and h(T)=1. The trade shortfall is A(t)Aw=Aw= wl A 1]
Suppose the stock’s expected return over the horizon is n.cunstam f: then
the return shortfallis f .&w[h{t)-l_]. Denoting the stock’s risk by @, the

shortfall variance is a’{nw]'[ﬁ[!]-l]).w; model the transaction costs

pa
_.
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bytwo terms onerela[edmtheﬁxedmslandlhemherrelatedtuthern
YW S

impact. The fixed cost isassumed tu.be —ff-_‘tw?T (changein the term) o
c>0. It is easy to see that the cost is prop.urtmnal to the trade s, '

i< new here is that the cost ml]. be proportional to the trading hurjzun; !
longer the horizon. the more often we have to trafie ?at smaller Sizﬂ)ﬂnm
more we have to pay for fixed costs suchas commissions and fee, Fipqf :
approximate the cost of market impact as being proportional to the

- . - . ar 2
of trading speed, or the derivative of holding: (.-fna,f) [h(;)} L Cﬁmhiuiq

all four terms and integrating over the time interval [U.T] gives the
objective function

T T

,r:_[,r.xw[h(r}-1}::-%1]::* (aw)' [h(e)-1T de-claw)

0 0

(1234

T

J :it—qrj'[lw):[}][r]]:dt

1]

The additional two parameters are A (the risk-aversion pa -
 (the cost coefficient for market impact). We can simplify 02344
scaling it by a positive term (Awy,

lfifz!Jl,f*[”(')ﬂ]-cww[s(f]]f_‘Ew[h(,)#l]’}m.:uz.ﬁa;

We have i "”f.-"l(ﬂlw] and =.:I;”i.f3w-:>u . The goal ofﬂPﬁmﬁ!_ ﬁ;

ing strategies is to fi : € 8 76), Note
following. © find the solution h(t) that maximizes (12 e

Z’ﬁ:i:ﬁﬂn tl‘te.forecastand the direction of the trades f*’ '
In this ca:; l:;m“'f- Or negative. It is zero when the forec®
i € objective function is the same for I”_
ia f iﬂdJSE" D[ders{dwqu )_ When thefﬂfm‘tu # -
withap _‘f."'{aw] is positive when both have the ’ﬂ::
POsitive forecast or sell with a negative fum;ut :

o OPposite signs: buy wi ve fo
Witha POsitive Ko . signs: bll}f with a ﬂeﬂ‘ﬁ
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« The first three terms of (12.35) are all implementation costs, alpha or
transaction costs — whereas the last term is implementation risk. The
problem of optimal trading strategies is thus similar to a mean-vari-
ance problem of portfolio construction. For a given level of imple-
mentation risk, there exists an optimal solution with minimum
implementation costs. Similar to the efficient frontier of mean-vari-
ance optimization, the optimal trading strategies for varying imple-
mentation risks form an efficient risk-cost frontier.

» The fixed term has been missing in previous work in optimal trading
strategies. Because it is always a cost and it increases with T, it has the
effect of shortening the optimal trading horizon when we allow T to
be free later in the chapter.

12.5.1  Optimal Solution with Fixed Trading Horizon

We first treat the trading horizon T as fixed, i, the amount of time
needed to execute a trade has been determined, maybe by some heuristic
estimation or based on traders' experience. We will now solve for the opti-
mal solution h(t) for ¢ in [0,1]. In the next section, we shall also find the
optimal trading horizon.

The mathematical technique for solving this type of optimization prob-
lem is the calculus of variation. Denote the integrand of (12.35) by

()= £.[W(e)-1]-ee~w[ile) ] 320 [n(e)1]" 236

Then the solution is given by the following differential equation

d|oL|_dl (12.37)
de| 9k | on
From (12.36), we have
aL F
oh (12.38)
E{'.a - —ko?(h=1
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Substituting (12.38) int0 (12.37) yields

ah-iath=—(f, + Aa?).
. {12,35]

Dividing the equation by 2y leads to the following U"dinaryd]ﬂ-"m
tial equation (ODE)

J‘“ it :'Lﬁl
2y’ € 2y (1240

}f-g%:-s—g" withs=

For the newly defined parameter, we have g 20 and s has the same sign

as f . The boundary condition is h[f}]=ﬂ and f?(T]= I'. However, note the
following:

« Because the trading horizon T is fixed, the fixed-cost term is then
known, and it does not enter the solution. However, it will playa
significant role when we have a flexible trading horizon.

We will first consider the solution for the following two special cases

Casel:s=g=0

This. occurs when both forecast and risk-aversion parameter ‘l"‘“.’:
Now the differential equation reduces to h=0. The solution 3
therefore

h(t)= .

,_
T

Th';l E[:t;i.?al snlluzian is linear, implying a constant 5P“d & ‘i
h; i.m -In this case, only the market impact matters. To rec .
Pact, the optimal trading strategy is to break the t_ﬂ]d'j,

rin :
% the trade horizon, Furthermore, the total cost’

e

Transaction Costs and Partfolio Implementation m 419

Note that the total costs as a function of T go to infinity when T goes 1o
either zero or infinity. It reaches a minimumif T = w_c_ dfe =0,
the total cost decreases to zero as the trading horizon Ie;tglhc;u to
infinity, which is an unrealistic result,

Casellig=10

In this case, the risk-aversion parameter is zero. Now the differential
equation reduces to h=~s. The solution is therefore

h(r]=—;|’+af+b. (12.43)

The constant a and b can be determined by the boundary condition.
Therefore, we have

h(e)= %4-;:(1'—!). (12.44)

Equation 12.44 consists of the solution (12.41) and a quadratic term
that vanishes at both = 0 and t = T. The trading speed is given by

ﬁ(:)_=-;;+ %—sf x (12.45)

Figure 12.8 plots the solution for three cases, all with g =0 but v.rith
three different values of s. The solution for the case with s = 0 is a straight
line. When s > 0, by its definition the term f_is positive, implying either
a positive forecast for a buy or a negative forecast for a sell. Hence, there
is a need to execute the trade as soon as possible in order to reduce alpha
shortfall, This is indeed the case for the optimal solution. the dotted line,
which lies above the linear solution. The slope, or the speed of the trade, is
higher Inltm[lf and then slows down as time approaches T. On the "“f""
hand, when s < 0, the term f, is then negative, implying either a ntgnuv:
forecast for a buy or a positive forecast for a sell. Contrary to the previ-
ous case, there is incentive to delay the trade as long as possible, because
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FIGURE 12.8. The optimal trading paths for three special cases: the solid

line is for the case s = g = 0, the dotted line is for g = 0, s > 0, and the dashed
lineis for g= 0,5 <0.

the trade itself leads to lower alpha. Therefore, the optimal solution, the
dashed line, lies below the linear solution. The trade fills slowly frst and
then speeds up as the time approaches T.

Itis actually possible for the solution (12.44) for h(t) to move out o
range (0,1}, For instance, when s > 0, h(t) could be greater than 1. Onthe
other hand, when s < 0, h(t) could be less than 0. This implies that the o

ti : ; e
1on may actually switch the direction of the trade during the courseof

trading! In other words. i _
strategy could have us e were to buy 1000 sha

i5 Ve us buy 1100 shares and later sell the extra 100 shar®
E:eli:elg?;;;n likely in practice, because the trading would hiwﬁ
trading mlmin:h.?ms had l‘)ten bought. It could happen in the e ot
that we have 5 st: the trading horizon is too long, coupl .with_ Wi
this combination utr:i forecast and a relatively weak market @uu“-?'
first buy as many mathematical optimal trading strategy ™ wﬂ
¥ shares as possible to generate returns and the gt

to reach .
W “'Wldt;d:;m' Bacause the trading cost is low, this

; ter than i % :
%lll"! 12. ‘H“St v M" Onc-wuy smlegy. :
"8y Whiose m:;m rises oy s situation. The durudlimumM .
The culprit in this
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FIGURE 12.9. Optimal trading paths for two different trading horizons.

If we allow the trading horizon to be free and optimize it together with
the trading path, the horizon will be shortened to T~ and the associated
optimal path, the dashed line, will never cross the line i = 1. The case of
the free trading horizon is solved in the following section.

12.5.1.1 The General Case

When the parameter g is nonzero, the general solution of ODE (12.40) is
the expaonential functions exp(-gt) and exp(gt?), which can be combined
into hyperbolic functions. The particular solution is given by

—gh=—s—¢ orh:l-l-g—s; .
We have (Grinold & Kahn 2000)
s
k{f)hainh{gt}+bmﬂl-ﬁnh(gf)+l+g—]-

The constanit a and b are determined by the boundary condition; there-
fore we have

—
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FIGURE 12.10. Five different optimal trading paths, two of which are identi-
cal to those in Figure 12.7, The other three are for cases with g> D._Twuflf
them have a moderate value of g, whereas the steepest path, the thu‘_lsobﬂ
line, has the highest value of g, corresponding to extreme risk aversion.

5
[HE)cosh(gT}ﬁ—sl-

ﬁ(']= sinh(g']'] : sinh(gr)—[1+i=][cosh(31)“1]'m’m

g

To see the effect of £ or variance of shortfall, on the optimal tﬂdm‘

5t . H
p;fh‘igi:;;uﬁi:llﬂz s:::in:m (1?.46] in F‘:.gure l]'.Z.]HJ. ?::::;r;;u[f:ﬁ:
and have v rigk-a\:e“- 'wo of them are identical to o dlines et
them are the ¢ ton (g=0) but nonzero s. The s {n both &%
et urrespr?ndlng trading paths with nonzero g M
regard| A4ing path is above the previous one, indicating fastef =
Bardless of the forecast. This makes intuitive sense because s

aversi . -
of hi 1:: would cayse investors to desire speedy execution af the &
‘.:‘rgh r “a\ﬂ“flion costs, and

en risk . A ¥

tnithacs, ¢ Aversion dominates both the return shortfall he

solid line i‘::?timal trading strategy is immediate executio™
then flatteng o+ 210 illustrates this point. It rises rather =
out. It can be shown mathematically that a5 & SH

s

b & "
i
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h(l)—bl—exp[‘—gt), if t is near 0;

(12.47)
h{t)— c:rp[—g{T-—r)]. if t is near T.
Example 12.5
Consider the case of s = 0 in (12.46). Then the solution reduces to
h(t)=coth(gT)sinh( gt)-cosh(gt)+1. (12.48)

We obtain the implementation costs as

" i}

I{c“,+1|I[f;(fJT}dr=c_T+qu’[émth(g?‘]‘k%csch’(g'r)] (12.49)

and the implementation risk in terms of variance is

T

0‘j[h[t)—ler=q‘[-;gcoth(g?']——?z:csch‘[g?']]. (12.50)

Taking the square root of (12.50) gives rise to the implementation risk
in standard deviations. '

Figure 12.11 plots the implementation costs Vs. the ﬂsk. for varying
degrees of risk aversion. The cost is positive in the graph and isa declining
function of risk. Each point of the curve curr‘csponds.m a different trad-
ing strategy, depending on different levels of _nsl-; avgrmr.l. illustrating th!e
trade-off between risk and cost. When the risk aversion is high, tht optu-.
mal trading sfrategy would be to trade fast to reduce hf!pieznen‘tgtic:n Inf
but incur higher cost. On the other hand, whlj'n the ns;:m a\feman hsi :e,-
the optimal trading strategy focuses on lowering cost but incurs hig

implementation risk.

12.5.2 Optimal Trading Horizon

The analysis so far has assumed_a ﬁ:ﬂd
ity, the trading horizon is not precisely
itself. For instance, for trades that are easy

small fraction of the average .imlymh.lm&
short; whereas for trades that are difficult to

trading horizon. However, in real-
lmoﬁ and depends on the trade
to implement, the trade sizeisa
and the trading horizon can be
fill, the trading horizon must
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FIGURE 12.11. The implementation cost-risk frontier for optimal trading
strategies. The parameters are  =0.05%, 6=35%,and T =0.02. Weals
set ¢_=0, which does not affect the shape uf the curve, because the fixed
cost is a constant for fixed T, independent of risk aversion.

be lerlhgthened. The trading horizon may also be dependent on investo! 3
aversion to risks of shortfall. If the risk aversion is high, then the horizot
is short; and if the risk aversion is low, then the horizon might be long®
IMathematicall:.', we can treat the trading horizon as a part of the oF*
mization problem. In other words, we should let T be free or ub
and we can then solve the optimization problem for both the OP"'“”'IM
g path h(t) and the optimal T, In reality, there might be some P'—"cmﬂ“_
;f;rimms on the trading horizon; for instance, one might “n!:;,,pﬂ
1€ trade ahead of a long weekend, It is nevertheless useful 1 €55
this with the trye optimal, Hﬁ
The mathematica] problem is to maximize the objective fum‘ﬂ:?
with both h(f) and f, i ilarly €%
boundary T. The problem can simil mﬂ‘ﬁ»

. ree
with the caleulys of variation as follows, The optimal path h{t) m

same differentia| €quation

dioL|_oL
dt| oh | oh’
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L(h)- ol s

oh (12.51)

=T

a.[. . LY
Because - - =—2yhand L=—c, ~y(h| att=Tequation (12.51) leads
to

¢, ~w(h) +2y(k) =y (i) =c,=0

(12.52)
r C &
h|T)=[— =p
(7)- 2
Hence, the free trading horizon gives rise to a condition on the trading
speed at T, which allows us to find the optimal trading time as well as the
optimal trading path. Note the following:

« We have taken the positive root for h (T) because h{t) is a monotoni-
cally increasing function if we do not allow the trading strategies 1o
switch the direction of trades: From h(0) = 0 and k(T) = 1, we con-
clude k() 20.

« Ifc =0,ie.,the fixed cost of transaction is neglected, ttfen the condi-
tion becomes /i (T) = 0. As the trade gets filled, the u-_admgat the end
of the trading horizon gets slower and slower, coming to a smooth

stop at the end.

Example 12.6 - -
Consider the mwhkhgzn{z_mﬁskmrsim}. e solution hie) is
(lgiﬂj:rn:iforﬂ:e trading speed h (1) is (12.45). Hence, (12.52) gives rise to

It af _1_£=J§=,
"(T}=}'+'1_—"T—-T 2 Vv 4

“This is a quadratic equation for T and the solution is

e
N
=
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» ‘The optimal trading horizon exists when 7, is positive: 3 pogjyi.. fo
cast for a buy or negative forecast for a sell, In this Case, the tmd.q._
horizon increases with the market impact cost y and

Aw. In other words, if the trade is costly and la rge, we shoulg :

more time. The trading horizon also decreases with the alpha f,

and the fixed cost. If alpha shortfall is severe or if the fixed cog sl

we should execute the trade sooner. Arge

The optimal trading horizon does not always exist, If [ is Negative
— negative forecast for a buy or positive forecast for a se]] —
the magnitude of the forecast exceeds that of the fixed cost | fl>e,
then there is no optimal trading horizon. In other words, the Ubﬁmﬂ
trading horizon is infinite, because the trade in these circumstances
would reduce the return. Coupled with a high forecast, we would gain
more if we delayed the trade for as long as possible. These cases might
not occur in practice, but one should be aware of the possibilities.

[fc=0, i.e, there is no fixed cost, then Equation 12.53 reduces to

T

Yy Aw|

Vf

(1254

Example 12.7

Consider the case s = 0 (zero forecast) as in Example 12.5. From (1248

we have

H(T)= g[coth g7 )cosh T - sin(g7) | = & = - 12515

sinh(gT)

Therefore, the Optimal trading horizon is given by

s 0 M enr
sinh(gT) purT_gml[p)'

Written i
ten in terms of the original parameters, we have

T= ‘_2._1_ sinh? Ao’ i.ﬁ.h] )
Ao 2
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In general, the optimal trading horizon lengthensif Aw (the trade size)
increases, if W (market impact) increases, and if ¢ (fixed cost) decreases.
It also lengthens if Ac® (risk aversion) decreases, because the function
sinh ' (x)/x isa declining function of x.

12.6 OPTIMAL TRADING STRATEGIES:

PORTFOLIOS OF STOCKS
Much of the analysis of single-stock trading strategies can be extended
to multiple stocks, or a portfolio of stocks. We shall formulate the prob-
lem first and then find the optimal solution. We shall also allow for the
optimal trading horizon T. For a portfolio of stock trades, we also discuss
additional constraints one might wish to impose during the trading.

12.6.1 Formulation

Suppose we have trades in N stocks, and the trade sizes are
(."nw, Awy, -, Awy, ] We denote the trading path by a vector of function
h(r) =Dﬁ (1) fly(r)I. At any given time ¢, the portfolio position rela-
tive to the final position is [;’m-, (h, —1]..‘3.»-_.(.':, -1 ), veey Ay, [h,,. ~1]].At
the beginning of the trade, we have h,(0]=0. i=1,--N and at the end
of the trade h,{T}:l. i=1,:--,N . These are the boundary conditions for
's.

The optimal tradingstrategy for a portfolio of tradesis found bym‘:rﬁmiz-
ing an objective function similar to that of a single trade: First, the instan-
taneous return shortfall is given by fidw, Fl,—l}+ f,Aw,(hg—l]drm
+ fuBwy (hy —=1)= 2 +(h=1), in which f's are return forecasts and the
vector f_:{ﬂ;\wl.m,‘fx&w”} and the vﬁ:l:or l=[l."-, l] . The vari-
ance of the return shortfall for a given time  is

Aw, (H, -1}

—1), -, Awy (s =1) |E :
[““"{’" 1y (B )] Awy(hy-1))|- (238)

(h-1) 2. (5-1)
The matrix };,[ﬁ}:ﬂ is the covariance matrix of returns, and

E = (a,d.w,.ﬁ.w, ):H mm;:rise&pmdm&_the return covariance matrix

and the trade size,




i ¢ ””!“\1 N y]F‘lc‘l,‘-.‘L'lT'Illl |
4 1a we tql,” or A
Ia [ ] QUE.IF.I )Y ¥ l‘

Gimilar to the single-stock trade, there are two components of
i 1 osts. We model the fixed costsasa multiple of the trading ho:ia::.
tion Co5ie- . P L AL L e
and the constant is given by ¢, =AM :.+L"A“ 2 ¥ endwy The T
able costs — the instantaneous market impact — is related to the spest
LS
of the trading inall N stocks
[ Awh,
[,iu-]fl,.--'«m""-hx J‘["‘ : =h'¥,h, (1259
Awhy

N
where I, =(¥,dw,Aw '. o
Combining all four terms and integrating them over time gives the
objective function of trading strategies

f=j£{h.1i]dr. with
L(bb)=t, [h(t)-1]-c,-h(t) wh). (280

-%).[h[r)—ljzn[h[r]-l]

1262 Solutions of Optimal Trading Strategies

We deri : . h the:
_ :d"""'e the differential equation for the optimal trading P“‘h"'mh'ﬂ
Caleulus of variatipn. We have

oL -
e (U

and d( oL } dl.

dr\ oh )~ 5 Bivesriseto

2.h(t)-1Z, h(r)=—g, -A%

e

Kigtoot
urnmE the Matrix ‘ll' is I'“\'l!l'ﬁhle g "

we can rewrite (13"52].'

I l
h‘*}“s‘l’;lzih(l}.:*l‘y*lf _}_Ill'lzﬂ'-'
2 W S 2 w Y.
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The particular solution of (12.63) is obtained by setting h=0
h(r]:%t;‘f_ +1. (12.64)
The general solution is of the form h(t] = v-exp( pt) and

[p*l- ]_: Y.'L, ]v =0. (12.65)

It follows that p* must be an eigenvalue of the matrix %‘P_‘_ 'T. andv

the corresponding eigenvector, both of which can be found by standard
numerical routines. Note the following:

« Assuming the matrix %‘l‘;'l‘., is positive definite, there will be N
positive eigenvalues and N eigenveciors, and there will be 2N gen-

eral solutions. The weights for these solutions can be found using 2N
boundary conditions,

12.6.3 Optimal Trading Horizon

When the trading horizon is free, we can find the optimal trading horizon
using the condition similar to (12.51). In the case of a portfolio trade, we
have

-y +, 9L(h.h)
L(hh)-h"— =0. (12.66)
& =T
Using (12.60) and (12.61) gives
1':.*--1'-|'1L_T =c,i (12.67)

The condition is similar to (12.52) and can be combined with the opti-
mal trading solution of the last section to find the optimal 7.

12.6.4 Portiolio Constraints :
When trading a portfolio of stocks, one often has to maintain the bal-
ance between orders so that the portfolio meets a set of constraints. An

" .‘ -‘i ‘_-‘ll
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constraint is the dollar-neutral constraing;

¢ buys matches that of sells. Other constraints can pe risk N
amount 0 . we might want the portfolio to be beta neytry) at all y
For instance, W .mts can be expressed as time,

l.,‘:\'ampie '.‘lf Sui:h

These linear constra
h" =I{)
) ':!2.5&1
where h is the trading path for all stoc ks and g a vector oot
There are a couple of ways to find the optimal trading Strategies wig,
such linear constraints, for example, the method of eliminatiop and the
method of the Lagrangian multiplier (Kirk 1970).

PROBLEMS

12.1 Prove that the coefficient 6 in Equation 12.1 is given by the cost per
share divided by the share price.

12.2 Consider the case in which w <w, . Prove that the optimal weighti

. JL’B. it {0 <,
W =

AG* Ao’
{ W, otherwise

(128

12.3 Prove that the critical value of 8, above which there is n® trade %

given by gzﬁ |

0, =hc’ w—-w,l.

both 19

single asset when there ar Y
2d quadratic iransaction costs, by maximizing the “nwwl

12.4 Find the optimg] position of a
a

U{W)::f,w__lzlﬂ.}wz__Biw__wo]_w(w__wn]!.

125 g,
) Prove that he utility function in (12.25) can be writteh * r

U(w)=L*[wu]+}.[1w]' E(ﬁ_wu)"'%l(ﬁ\'c'), z(ﬁw),or.lnd_&_

with W=y 5 no .-I" o
Costs, and = as the optimal weights with 8

- .
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(b) prove th?ft the optimal weights must satisfy the condition
(Aw) Z(W-w,)20, ie, the vector of weight changes must be
in the same direction as [ir—w”}.

12.6 Express the range constraint {12.33) as linear

inequality constraints
on the augmented vector W,

12.7 Verify that solution (12.46) satisfies both the differential equation
and the boundary conditions,

12.8 For the optimal trading solution (12.48), prove that the implementa-

tion cost is given by (12.49) and the implementation risk is given by
{12.50).

12.9 For the general optimal trading solution (12.46) and free T, show
that the optimal trading horizon T satisfies equation

scosh(gT )+ gpsinh(gT )=s+g°.

APPENDIX
CALCULUS OF VARIATION
We derive the ODE for the optimal trading strategy and the optimal trad-
ing horizon using calculus of variation.
Given a functional, a real-valued function of functions

I{h.ﬂ=j£[h[r).ii(r}.t:]d:.

in which 4{0)=0and h(T)=1,and Tis free, then the change in the func-
tional is

8 = J(h+8h,T +8T)-I(h.T)

:rTfL[h(,)+5;,,ﬁ{:)+ﬂLr]dr-]L[h{t},li(r],r]d:

Splitting the first integral in two, we have
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8] = ].{[_[h{:)+6h.."-.i[r}+|3f;.r]— L[It(f).!’i(l}'f]}dl

TelaT
= J L[h(r)+ ﬁh,!}(r)+8}i.r}dt

|

The second term is approximated by

T+8T

j L[{e)+on e+ 8ot Jde = L[ (). ().t ] 8T +o(8T). (273
A
The notation o) denotes the higher-order term. The first term canbe
approximated by Taylor expansion
T T a.L
. i ' al gt
HL[H{!:H Eth(.'}Jrﬁh.!‘l— f,[h(r_],h{l }.r]}dr = .Hﬁh a—h*‘ah'a_ﬁ]&"

a
i

Intr:grating by parts the term containing 8h yields
T
J{L[h(r)+ﬁh.ﬁ(f)+ﬁ}},:]- L[h(t),}i(t),:]}di
T -
L dL d 9L dL
!ﬁ"{aa = a};}du[&h -‘a—g]

When Tis fixed, we have h= 4 i=

2

-

wehave

=T

T . When T is free;

PSR () () 1) =) TP

Thmfere. I I

Bh(T)F (1)5.
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Combining (12.73), (12.74), and (12.75) gives

.
ll=5}=‘|‘ﬁh{{-—”—‘ daL]dH(L-&%E] 8T (12.76)

=T

oh X dt a'h

for optimal path and optimal trading horizon. Because Equation 12.76 is
true for the arbitrary function 8k and arbitrary increment 87 , we must

have
dfdL) oL .
dit\ah) an '

and

L
4% =,
(L "oh )L

For fixed T, only the ODE has to be satisfied.
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Benchmark(s)
active portfolio vs., 406
alpha performance, Bl
capitalization based, 358, 364
cash benchmark, 34
equity henchmark, 35
expected tracking error of portfolio to,
1
hedge funds, 5
weight(s), 368, 369
cumulative weights, 365
distribution of, 363, 364
histogram of, 365
simulation of, 367, 371
Beta
-adjusted forecast, 43
CAPM, 57,59
exposure, market risk and, 43
Hid/ask spreads, 196
Big bath, 128, 133
Bond markets, 121-123
Book-to-price ratio, 54, 59, 86, 114, 146,
285
Boatstrapping procedure, 204, 314
f!.ul[um.up H‘curity Wlﬂtlmn, 155
BSV model, see Barberis, Shleifer, wnd
Vishny mode)
B2P, see Book-to-price ratin

Budget constraint, 28

Bureau of Econnmic Analysis (REA)

My
Businesy

EConnmicy, 304
tompetitivenesy of, 125

FCFF forecasty and, 177
modeling of, 17

HPETations, free cagh flyw
scalabilipy and, 6

C

Talou)
Calendy, - iation, 434

F efiect, 314
0] perf .:f- 323-336

EMpinics| resilis, usmh'"' 322
nan.Q) g Markeys, 329336
“valustion horizgn, 335

and, 163
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seasonal behaviorg] phenom
39-320
time diversification ang, 320-323
Calendar partitions, CTOss-sectigng)
dispersion across, 337
Calendar seasonality
monetary policy and, 343

Enan,

CAPLEX, see Capital cxpenditurey
Capital
allocation decisions, 304
cost of, 172-173
market line (CML), 4
weighted average cost of, 157, 160, 172
Capital asset pricing model (CAPM), 4,
24, 38, 53
Capital expenditures (CAPEX), 157, 306
fractile backtest of, 307
marketl pricing of, 306
shareholder value and, 307, 309
Capitalization
-hased benchmarks, 358, 364
book-to-market, 146
CAPM, see Capital assct pricing model
Cash Flow from Operating Activities
(CFO), 117
Cash flow from operations to enterpris
value (CFO2EV), 117 123, 205

216 t (CPROT

Cash flow return on inves
125 )
Ve 17
Cash flow stalement, balance sheet ]
CFO, see Cash Flow from e 4.’
Activities Lioos¥
CFO2EV, see Gash flow from oF"’""'

enterprise value "
CFROI see Cash flow retord 0%
investments e E‘
CGH hypotheses, 350 -
Characteristic portfolio, 840
Chi-square dist ribution, 92
Chi-squared test, 314 =
Citigroup, 56 -
broad market index. 332
GRAM, 282 1ine R
CML.mCﬂpiulmlfmw- \
COGS, sex Cost of goods ¥

Composite factor dispersion, 198
(omposite forecast, 247, 317
Compustal database, 126, 145, 290
Conditional dummy, 310
Conditional models, 308
Conditioning variables, categories of,
350
Canstrained long-short portfolios, 359,
4
Consumption
-based indicarors, 342
~wealth ratio, 342
Contextual model(s), 300-303
Contextual modeling, 263-287
Cornish-Fisher approximation, 74
Correlation coefficient, 26, 31
Cost-adjusted forecast, 403
Cast of goods sold (COGS), 165, 169
Cost-risk frontier, 424
Covariance matrix, 228
augmented, 409, 410
calculation of, 60
CAPM, 39
diagonal, 31
inverse of, 314
Credit spread, equity markel, Ml
Cross-sectional factor autocorrelation
117-118

D

DA, se¢ Debt-to-asset ratio

DA, see Depreciation and amaortization

Dhaniel, Hirshleifer, und Subrahmanyam
(DHS) model, 14

DCF, see Discounted cash flow

DDM, see Dividend discount model

Debt-to-asset ratio (D/A), 114

Diebi-ja-equity ratio, 60 -

Depreciation and amortization (DA), 165

169 .
DHS model, see Daniel, Hirshleifer, and
Subrahmanyam
Discounted cash flow (DCF), 156, 159
Discount rate uﬂm!hn. 173
Discretionaty accruals, 128
Diversification, benefit of, 26
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Dividend discount model (DDM), 7
Dollar neutral constraint, 44, 379, 382
392, 430

E

Earning(s)
before Interest, Taxes, Depreciation,
and Amortization (EBITDA),
117
befare tax (ERT), 162
estimales, near-term, 155
managements, quantification of, 128
manipulitions, 127
momentum, 138
anomaly, 139
facturs, 141
jper share (EPS), 127
revisions, 137, 139,345
seasonal effect of, 336
variability, 286
yield, PE ratio vs., 116
EBITDA, see Earnings before Interest,
Taxes, Depreciation, anid
Amortization
EBT, see Earning before tax
Economic value creation (EVC), 167
EF factor, see External financing factor
Efficient frontier, risk/return space, 33
Efficient market hypothesis (EMH), 2
EMH. see Efficient market hypothesis
Enterprise
~based ratios, 116
holders, 112-113
value (EV), 180
EPS, see Earning per ahare
BV, see Enterprise value
EVC, ser Economic value creation
E' anlé ﬁ“l 97, 386
Excess cash, 161 I
Excess returm(s)
decomposition of, 86, 361
gross, 166
net, 266
Sharp ratio of, 112

c.period, 197
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Explicit period, 173, 178
Ex post artribution tool, 80
Exposure

constratnts, 47

matrix, 35

Esternal financing (EF or XF) lactor, 126,
150, 205, 216, 284, 285, 292, 296

F

Factor timing models, 317-356
calendar effect (behavioral reasons),
1§-312
calendar effect (empirical results),
121-336
macro timing models, 340-350
seasonal effect of earnings
announcement, 336 -340
Fade period, 173, 174, 178
Fama-French three-factor model, 176
Fama-MacBeth regression
assel pricing tests and, 221
estimated returns and, 30
multifactor mode) through, 223
optimal alpha model and, 217
1-stat, 222, 225
FI{Z-F. see Free cash flow
;:;‘; ::' ;:: cash flow to equity
' cash flow to firm
Financial assels (FA), 148, 149
‘;l"anilli'lluh*.llties (FL), 148, 149
irm
eeonomic value creatinn of, 167
profitability of, 168

value, 157 -162, 168
Fixed-weighy i
FL, see Finap,
FLAM

Portfolios, turnover of, 2
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adjusted, 43
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lagged, 250-252
risk-adjusted, 88, 287, 360
Free cash flow (ECF), 156, 162-167
Free cash flow to equity (FCEE), 164
Free cash flow o firm (FCER), 157, 164
cconomic principles, 173
'll'll'l.'l.'{i.'il, R 1C ;Iug:unpnﬂi“nn Ilnd, Im
margin, 170, 177
RIC and, 176
F-test, 123, 290, 326
Fundamental law of active managemen
(FLAM), 8, 95
assumption, 96
portfolio management and, 9
Funds rom operations (FFQ), 304

G

GP2EV, see Gross profit-lo-enterprise
value

Gram-Schmidt procedure, 214,310

Gross profit-to-enterprise value (GP2EV),
103

Giross return, 266

Growth-value markets, definition of, 121

H '.;

Hedge fund(s) o
benchmark, 5 ‘
efficient frontier of, 37 : 1
long-short dollar neutrak 36

managers, 5
market neutral. 23
Heuristic simplification, 13
High-growth companies, 286
Holding constraints, 357 8
Hong and Stein (HS) model 1
Horizon(s)
IC, 253
information decay *
information, 252
trading, 255
fixed, 417, 418
flexible, 418, 425 =
optimal, 423, 426, 44
HS model, see Hong

ﬂﬂg’w A

IBES, see Institutional brokers' estimate

system

1C, see Information coeflicient
ICAPEX, see Incremental capital

expenditure

ICAPM, see Intertemporal CAPM
Implementation

costs, 233, 423
risk, 423

Increase in operating leverage (OLing),

125

Incremental capital expenditure

{ICAPEX), 165, 169, 182

Industry

competitive steucture of, 168
mamentum profis, 349

[nequality constraints, 392
Information

caplure, 8-10

decay, 254, 261

horizon, lagged forecasts and, 252
imperfect, 138

Information coefficient (1C), 8,83, 195,

318, 359
effective, 256
horizon, 253
lngged, 253, 260
muaximum average, 207
maximum single-period, 206
purified alpha and, 93
raw, B4, B6
residual, 220,222
risk-adjusted IC, 84, 56, 89, 90, 1 18, 213
risk factor with positive, 318
single-period composite, 196

:stability, 140

standurd deviation, 96, 104, 199,201
stochastic, 382, 386
volatility, 98, 214

Information ratio (IR); 8 36, 82, 117, 195,

359
active risk and, 105
alpha model, 258 :
pifiect of sutocorrelation on, 264
estimation of, 99

index m 439

expected, 83
multiperiod, 94, 407
nel, 382
optimal, 204
realized. 83
Institutional brokers' estimate system
(IBES}, 60, 290
Institutional investars, 5
Intelligent Investor, The, 111
Interaction models, 308
Intermediate-term price momentum
continuation, 137
Intertemporal CAPM (JCAPM), 348
Intrinsic value, fundamental valuation
ol, 7
IR, see Information ratio

J

Junuary effect, 318

K

Kuhn~Tucker condition, 376, 390, 391, 392

L

Lagged forecast(s)
information horizon and, 252
seriil autocorrelation and, 250
Lagged IC, 253, 260
decline of, 264
forecast autocorrelation and, 257
Lagrangian multiplicrs, 29, 87, 76,430
Leverage
optimal portfolios, 373
ratio, 237
target tracking error and, 245
LIROR, 23
Linear models, 306
Lipper Analytical Services, 122
Liquidity, 140
Long-only constraints. 58

Long-only portfolios, A74-379

constrained long-short portiolios.
37375
information ratio of, 287
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risk allocation ol, LER]
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Long short portfoliofs), 40, 13
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turnover of, 118
risk allocativn of, 385
leverage of, M ]
Low-growth model, 299
Low-growth stocks, 286

M

Macroecanomic factor(s)
commonly used, 57
models, 55, 56
Macro models, 6, 57
Macro timing models, 340-350
conditional factors, 340-342
sources of predictability, 347-350
Management signaling, 133
Manageriul behavior, 127
Marginal contribution to risk (MCR),
6d-69, 75
Marginal return contribution, 219
Market(s)
anomalies, 13, 100
inethiciency, 127, 303
thak, source of, 43

sentimeont, proxy for, 137
state, 340, 349

tate varable, Vaa
Heucture, imperfect, 13
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Modern portiolio theor ¥
Momentum A r:lljlm
tactor(s), 135145, 284, 292
correlations among, 143
decile performance for, 142
|:_.|rlnl1p..~ momentum anomaly, 134
forecast autocorrelation, 246
historical performance, 139-142
lagged-, 263
macro influences, 143-148
risk-adjusted 1Cs for, 141
Monetary policy, 341
cilendar seasonality and, 343
intluence, 344
regime, 342
rigk-adjusted 1Cs and, 345
Monte Carlo simulation, 187-189
Muoving averages
compuosites of, 251
serial autocorrelation of, 249
MPT, see Modern portfolio theory
MSCT index, 350
Multiassets portfolio dynamics, 40541
with linear costs, 407-414
with quadratic costs, 405-406
Multipath discounted cush flow mnﬂﬂ-
analysis, 180192, 193
modeling DCF inputsas random
variables, 185186 i
Muonte Carlo simulation: 187-18%
sensitivity analysis 181182 .
Multiperiod portfolio managemer’ I
Multivariate rﬂgruainn.dt“ .
of, 227 i

N

NCO, se¢ Noncurrenl assets

NCOine, see Noncurrent assel

Net excess return, 266

Net IR, 382

Net IR decay, 384 :

Net operating asseld (NOA): H:

Net operating incomé after 055

113, 164, 167 1

{EV ratio, 116 AR
margin, 176 u

NOA, see Net operating assets

wanconsolidated equity investments, 161

Momcurrent asset increase (NCOine),
126

Moncurrent assets (NCO), 149

wonlinear elfect models, 307

NUOPAT, see Net operating income alter
tax

Northiield model, 282

Nao-short rule, 158

O

OA, see Operating assels
ODE, see Ordinary differential equation
OB, see Operating efliciency
OL, see Operating linhilities
OLine, see Increase in operating leverage
018 regression, see Ordinary least square
regression
Operating assets (OA), 148, 149
Operating efficlency (OFE) factor, 284, 285,
292
Operating expenses, 165
Opetating labilities (OL), 146, 148, 149
Operating risk, 186
Operating value, 157, 159, 176
Opportunity cost. 173
Optimal portfoliofs), 28-37
active mean-variance optimization,
M-37
expected return, 33
mean-variance
with cash, 30-32 "
without cash, 32«
minimum varianee portfolio, 28-29
total risk of, 42
Optimization, Kuhn-Ticker condition
for, 376, 390
Ordinary differential equation (ODE)
418, 419,421 |
Ordinary least squiaee (OLS) reressian.

HH, 303
cross-sectional, 218,233
with multiple factors, 219
optimal weight derived from: 203
unlvariste, 218 oy i
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Orthogonalized factor, 215
Cutvof-sample test, 137

P

Partitioned matrix, (nverse of, 226
Passive portfolio drift, 234
PC, see Principul components
PCL, see Percentage contribution 1o loss
PCR, see Percentage contribution to risk
PE ratin, earnings yield vs. 116
Percentage contribution to loss (PCL), 69
Percentage contribution to risk (PCR), 68
Portable alpha strategies, 35
Portfoliofs), see also Optimal portfoliots)
benchmark, 39, 46
beta, 41
beta:neutral, 43
charscieristic, 45-47
constrained lang-short, 359, 374
long only, 374-379
long:shart, 40, 43
aptimization, 6, 195
range-constrained, 375
suboptimality, 71
varlance, 23-24, 17, 88
volatility, 27, 28
Partiolio theory, 2351
capital asset pricing model, 3845
beta-neutral portfalios, 43-45
aptimal portfoliox under CAPM,
10-43
characteristic partfolios, 45-47
PP&E, sea Property, plant, and equipment
PP, see Producer price index
Preferred stocks, market value of, 161
Price-to-book ratio, 325
Price momentuim, 145
anomalies, 137
1 correlation matrix for, 61
intermediate-term, 350
reversal factor, short:term, 362
visk-adjusted 1C, 326
strategy, profitability of 138
Principal component analysis, 61,62
Prinlpal components (PC), 217
producer price index (PP, 341
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Property, plant. and equipment (PP&E),

163, 163

Prospect theory, 12

atility assumption and, 320

value function of, 321, 322
Psychology

advances in, 12

behavior finance and, 11-12
Purified alpha, 93, 222

Q

Quadratic models, 308
Quality
definition of, 323, 336
factor(s), 125
historical performance of, 129
macro influences on, 133, 134
relationship among, 126
Quantitative equity portfolio
management, 281
Quantitative investment process, 5-8
Quote depth 397, 401

R

Random walk, 2
Random matrix, 64
Range constraint(s)

mﬂ::;:;:;c; :ptimiaalion with, 390
Raw IC, g4, 86
Realized risk, 97

lance lurnover, 239

Regression coefficient, 1

Relative value (RV) i 3 O 113
6

lor, 284, 285, 297

Resample weigh

« 295
hu_d“'”ictnr. 208
Aesidual ¢, 299

Residua) Telii,
92
'ﬂllm(.}

Jeverating equation
b
kh::::r“"" (ROE), 113, 306, 335

el capial (icy, 167
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Return on investment (ROT), 286

Return on net operating assets {
125, 130, 247, 323

Reward-to-risk ratio, 84

RNOA),

RIC, see Return on increment ;
Risk(s), 3-5 el
active, 34, 97, 98
standard deviation, 36
budgeting, 67
contribution, 67, 69
factors, BARRA, 101, 341
implementation, 423
indices, 58
market, source of, 43
stock-specific, 61, 244, 369
slrategy, 98, 130, 386
systematic, 46
Risk-adjusted IC, 84, 86
Risk-adjusted return(s), 197
dispersion of, 92, 102
variability in dispersion of, 99
Risk-aversion parameter, 23-24, 241,416
mean-variance optimal portfolio with
30
target tracking error and, 91, 367
transaction cost and, 404
Riskless arbitrage, 12
Risk models, 53-77

arbitrage pricing theory and models *

macroeconomic factor modes: .
56-58 e =
statistical factor A,
contribution to value at ik ﬂ'ﬂ
Risk analysis, 64-72 s
group marginal contribution 1
65-67 e
marginal mnmbminn..tﬂ'#'*' ;
risk contribution, 67-6%
RNOA, see Return on net 0P
ROE, see Return onequity r-. F
RO, see Return on lnﬂ'“mt
Russell 1000 Index, 290
Russell 3000 index, 100, 114+

S

Sales-to-enterprise value (S2ZEV), 17,
146
salomon Brothers, 56
Sampling error, 104
Scalability, 168, 170
Sector
constraint, 357
excess return, 361
forecasting models, 362
modeling hierarchy, 305
neutral constraint, 359
rotation, 341
timing alpha, 362
Self-attribution, biased, 14
Self-control, 14
Self-deception, 13
Selling, general, and administrative costs
(SGA), 165, 169
Serial autocorrelation(s), 248
S2EV, see Sales-to-enterprise value
SGA, see Selling, general, and
administrative costs
Sharpe ratio (SR), 82,112
Short-term price momentum reversal,
137
Small trades, turnover and, 267, 268
Specific risk, 38
Specific variance, 39
S&P 500 index, see Standard & Poor’s 500
Index
SR, see Sharpe ratio
Stakeholders, definition of, 112-113
Standard deviation, 64
active risk in, 36 _
factor correlations, 212
IC, 201 .
Standard & Poor's (S&P) 500 index, 4,23,
82, 155-156, 358
Statistical factor models, 61
Stochastic IC, 382, m
Strategy risk, 98, 130, 386
Supplier of liquidity, 140,
Survivorship bias, 117,
Systematic risk, 46
Systematie variance, 39
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T
Target tracking error, 97, 198
Tax(es), 165
rate, 169

reporting, 322, 336
Taylor expansion approximation, 432
Technical analysis, 2
Term structure, 6, 19, 61
Terminal value, 173, 178
Time diversification
benefit, investor belief in, 318
calendar effect and, 319, 323
controversy over, 320
Total risk, risk contribution and, 67
Tracking error, 64, 82
Trading horizan(s)
fixed. 417, 418
flexible, 418
free, 425
horizan IC and, 255
length of, 415
optimal, 423, 426, 429, 431,433
Trading paths, optimal, 420
Trading strategies
optimal (portfolio of stocks), 427-430
optimal trading horizon, 429
optimal trading strategies (single
stock), 415-427
Transaction costs, 351
bid/ask spreads, 396
Fﬂﬁ_ﬁﬂ“h 401
commissions, 396
components of transaction costs,
396-398
market impact, 397
opportunity cost, 173, 396
proxy for, 395
Transfer coefficient, 379
definition of, 384
Turnover
definition, 236
due o drift, 238 :
effect of aulocorrelation on, 264
‘effective, 256 * W
forecast-induced, 243, 258
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rebalance, 239
small trades and, 267, 268

U
Uncertainty, quantification of, 3
Utility

assumption, prospect theory and,

320
function, differentiable, 402
initial, 408

Y

Valuation framework, 156-162
Value
chain, 304
enterprise, 180
funciion, definition of, 320
terminal, 173, 178
Value at risk (VaR), 72
budget identity, 73
contribution change, 74
marginal contribution to, 72
VaR, e Value a1 risk
Variance
J:c-ampusu.mn. PCR and, 58
ralo, 104

Volatility
annualized, 48
definition of, 60
IC, 98, 214

W

WACC, see Weighted average cost of
capital

WC, see Working capital

WCing, see Working capital increase

Weighted average cost of capital (WACE),
157, 160, 172, 175

Wilcoxen rank test, 324, 325, 328, 343

Wishart distribution 210

Working capital (WC), 149, 165, 169

Working capital increase (WCing), 126

World Scope database, 332

X

XF, see External hnancing

Z

Zero-beta funds, 5
Zero risk aversion, 425
z-score, 89, 310, 410
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