

Praise for Advances in Financial Machine Learning

In his new book Advances in Financial Machine Learning, noted financial scholar
Marcos López de Prado strikes a well-aimed karate chop at the naive and often statis-
tically overfit techniques that are so prevalent in the financial world today. He points
out that not only are business-as-usual approaches largely impotent in today’s high-
tech finance, but in many cases they are actually prone to lose money. But López de
Prado does more than just expose the mathematical and statistical sins of the finance
world. Instead, he offers a technically sound roadmap for finance professionals to join
the wave of machine learning. What is particularly refreshing is the author’s empirical
approach—his focus is on real-world data analysis, not on purely theoretical meth-
ods that may look pretty on paper but which, in many cases, are largely ineffective in
practice. The book is geared to finance professionals who are already familiar with
statistical data analysis techniques, but it is well worth the effort for those who want
to do real state-of-the-art work in the field.”

Dr. David H. Bailey, former Complex Systems Lead,
Lawrence Berkeley National Laboratory. Co-discoverer of the

BBP spigot algorithm

“Finance has evolved from a compendium of heuristics based on historical financial
statements to a highly sophisticated scientific discipline relying on computer farms
to analyze massive data streams in real time. The recent highly impressive advances
in machine learning (ML) are fraught with both promise and peril when applied to
modern finance. While finance offers up the nonlinearities and large data sets upon
which ML thrives, it also offers up noisy data and the human element which presently
lie beyond the scope of standard ML techniques. To err is human, but if you really
want to f**k things up, use a computer. Against this background, Dr. López de Prado
has written the first comprehensive book describing the application of modern ML
to financial modeling. The book blends the latest technological developments in ML
with critical life lessons learned from the author’s decades of financial experience in
leading academic and industrial institutions. I highly recommend this exciting book
to both prospective students of financial ML and the professors and supervisors who
teach and guide them.”

Prof. Peter Carr, Chair of the Finance and Risk Engineering
Department, NYU Tandon School of Engineering

“Marcos is a visionary who works tirelessly to advance the finance field. His writing is
comprehensive and masterfully connects the theory to the application. It is not often
you find a book that can cross that divide. This book is an essential read for both
practitioners and technologists working on solutions for the investment community.”

Landon Downs, President and Cofounder, 1QBit

“Academics who want to understand modern investment management need to read
this book. In it, Marcos López de Prado explains how portfolio managers use machine
learning to derive, test, and employ trading strategies. He does this from a very
unusual combination of an academic perspective and extensive experience in indus-
try, allowing him to both explain in detail what happens in industry and to explain

how it works. I suspect that some readers will find parts of the book that they do not
understand or that they disagree with, but everyone interested in understanding the
application of machine learning to finance will benefit from reading this book.”

Prof. David Easley, Cornell University. Chair of the
NASDAQ-OMX Economic Advisory Board

“For many decades, finance has relied on overly simplistic statistical techniques
to identify patterns in data. Machine learning promises to change that by allowing
researchers to use modern nonlinear and highly dimensional techniques, similar to
those used in scientific fields like DNA analysis and astrophysics. At the same time,
applying those machine learning algorithms to model financial problems would be
dangerous. Financial problems require very distinct machine learning solutions.
Dr. López de Prado’s book is the first one to characterize what makes standard
machine learning tools fail when applied to the field of finance, and the first one to
provide practical solutions to unique challenges faced by asset managers. Everyone
who wants to understand the future of finance should read this book.”

Prof. Frank Fabozzi, EDHEC Business School. Editor of
The Journal of Portfolio Management

“This is a welcome departure from the knowledge hoarding that plagues quantitative
finance. López de Prado defines for all readers the next era of finance: industrial scale
scientific research powered by machines.”

John Fawcett, Founder and CEO, Quantopian

“Marcos has assembled in one place an invaluable set of lessons and techniques for
practitioners seeking to deploy machine learning techniques in finance. If machine
learning is a new and potentially powerful weapon in the arsenal of quantitative
finance, Marcos’s insightful book is laden with useful advice to help keep a curi-
ous practitioner from going down any number of blind alleys, or shooting oneself in
the foot.”

Ross Garon, Head of Cubist Systematic Strategies. Managing
Director, Point72 Asset Management

“The first wave of quantitative innovation in finance was led by Markowitz optimiza-
tion. Machine Learning is the second wave, and it will touch every aspect of finance.
López de Prado’s Advances in Financial Machine Learning is essential for readers
who want to be ahead of the technology rather than being replaced by it.”

Prof. Campbell Harvey, Duke University. Former President of
the American Finance Association

“How does one make sense of todays’ financial markets in which complex algo-
rithms route orders, financial data is voluminous, and trading speeds are measured
in nanoseconds? In this important book, Marcos López de Prado sets out a new
paradigm for investment management built on machine learning. Far from being a
“black box” technique, this book clearly explains the tools and process of financial

machine learning. For academics and practitioners alike, this book fills an important
gap in our understanding of investment management in the machine age.”

Prof. Maureen O’Hara, Cornell University. Former President of
the American Finance Association

“Marcos López de Prado has produced an extremely timely and important book on
machine learning. The author’s academic and professional first-rate credentials shine
through the pages of this book—indeed, I could think of few, if any, authors better
suited to explaining both the theoretical and the practical aspects of this new and
(for most) unfamiliar subject. Both novices and experienced professionals will find
insightful ideas, and will understand how the subject can be applied in novel and use-
ful ways. The Python code will give the novice readers a running start and will allow
them to gain quickly a hands-on appreciation of the subject. Destined to become a
classic in this rapidly burgeoning field.”

Prof. Riccardo Rebonato, EDHEC Business School. Former
Global Head of Rates and FX Analytics at PIMCO

“A tour de force on practical aspects of machine learning in finance, brimming with
ideas on how to employ cutting-edge techniques, such as fractional differentiation
and quantum computers, to gain insight and competitive advantage. A useful volume
for finance and machine learning practitioners alike.”

Dr. Collin P. Williams, Head of Research, D-Wave Systems

Advances in Financial Machine Learning

Advances in Financial
Machine Learning

MARCOS LÓPEZ DE PRADO

Cover image: © Erikona/Getty Images
Cover design: Wiley

Copyright © 2018 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

The views expressed in this book are the author’s and do not necessarily reflect those of the organizations
he is affiliated with.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages. The views expressed in this book are the author’s
and do not necessarily reflect those of the organizations he is affiliated with.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993, or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

ISBN 978-1-119-48208-6 (Hardcover)
ISBN 978-1-119-48211-6 (ePDF)
ISBN 978-1-119-48210-9 (ePub)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

let &hbox {char '046}www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Dedicated to the memory of my coauthor and friend,
Professor Jonathan M. Borwein, FRSC, FAAAS,

FBAS, FAustMS, FAA, FAMS, FRSNSW
(1951–2016)

There are very few things which we know, which are not capable of
being reduced to a mathematical reasoning. And when they cannot,
it’s a sign our knowledge of them is very small and confused. Where a
mathematical reasoning can be had, it’s as great a folly to make use of
any other, as to grope for a thing in the dark, when you have a candle
standing by you.

—Of the Laws of Chance, Preface (1692)
John Arbuthnot (1667–1735)

Contents

About the Author xxi

PREAMBLE 1

1 Financial Machine Learning as a Distinct Subject 3

1.1 Motivation, 3

1.2 The Main Reason Financial Machine Learning Projects Usually Fail, 4

1.2.1 The Sisyphus Paradigm, 4

1.2.2 The Meta-Strategy Paradigm, 5

1.3 Book Structure, 6

1.3.1 Structure by Production Chain, 6

1.3.2 Structure by Strategy Component, 9

1.3.3 Structure by Common Pitfall, 12

1.4 Target Audience, 12

1.5 Requisites, 13

1.6 FAQs, 14

1.7 Acknowledgments, 18

Exercises, 19

References, 20

Bibliography, 20

PART 1 DATA ANALYSIS 21

2 Financial Data Structures 23

2.1 Motivation, 23

ix

x CONTENTS

2.2 Essential Types of Financial Data, 23

2.2.1 Fundamental Data, 23

2.2.2 Market Data, 24

2.2.3 Analytics, 25

2.2.4 Alternative Data, 25

2.3 Bars, 25

2.3.1 Standard Bars, 26

2.3.2 Information-Driven Bars, 29

2.4 Dealing with Multi-Product Series, 32

2.4.1 The ETF Trick, 33

2.4.2 PCA Weights, 35

2.4.3 Single Future Roll, 36

2.5 Sampling Features, 38

2.5.1 Sampling for Reduction, 38

2.5.2 Event-Based Sampling, 38

Exercises, 40

References, 41

3 Labeling 43

3.1 Motivation, 43

3.2 The Fixed-Time Horizon Method, 43

3.3 Computing Dynamic Thresholds, 44

3.4 The Triple-Barrier Method, 45

3.5 Learning Side and Size, 48

3.6 Meta-Labeling, 50

3.7 How to Use Meta-Labeling, 51

3.8 The Quantamental Way, 53

3.9 Dropping Unnecessary Labels, 54

Exercises, 55

Bibliography, 56

4 Sample Weights 59

4.1 Motivation, 59

4.2 Overlapping Outcomes, 59

4.3 Number of Concurrent Labels, 60

4.4 Average Uniqueness of a Label, 61

4.5 Bagging Classifiers and Uniqueness, 62

4.5.1 Sequential Bootstrap, 63

4.5.2 Implementation of Sequential Bootstrap, 64

CONTENTS xi

4.5.3 A Numerical Example, 65

4.5.4 Monte Carlo Experiments, 66

4.6 Return Attribution, 68

4.7 Time Decay, 70

4.8 Class Weights, 71

Exercises, 72

References, 73

Bibliography, 73

5 Fractionally Differentiated Features 75

5.1 Motivation, 75

5.2 The Stationarity vs. Memory Dilemma, 75

5.3 Literature Review, 76

5.4 The Method, 77

5.4.1 Long Memory, 77

5.4.2 Iterative Estimation, 78

5.4.3 Convergence, 80

5.5 Implementation, 80

5.5.1 Expanding Window, 80

5.5.2 Fixed-Width Window Fracdiff, 82

5.6 Stationarity with Maximum Memory Preservation, 84

5.7 Conclusion, 88

Exercises, 88

References, 89

Bibliography, 89

PART 2 MODELLING 91

6 Ensemble Methods 93

6.1 Motivation, 93

6.2 The Three Sources of Errors, 93

6.3 Bootstrap Aggregation, 94

6.3.1 Variance Reduction, 94

6.3.2 Improved Accuracy, 96

6.3.3 Observation Redundancy, 97

6.4 Random Forest, 98

6.5 Boosting, 99

xii CONTENTS

6.6 Bagging vs. Boosting in Finance, 100

6.7 Bagging for Scalability, 101

Exercises, 101

References, 102

Bibliography, 102

7 Cross-Validation in Finance 103

7.1 Motivation, 103

7.2 The Goal of Cross-Validation, 103

7.3 Why K-Fold CV Fails in Finance, 104

7.4 A Solution: Purged K-Fold CV, 105

7.4.1 Purging the Training Set, 105

7.4.2 Embargo, 107

7.4.3 The Purged K-Fold Class, 108

7.5 Bugs in Sklearn’s Cross-Validation, 109

Exercises, 110

Bibliography, 111

8 Feature Importance 113

8.1 Motivation, 113

8.2 The Importance of Feature Importance, 113

8.3 Feature Importance with Substitution Effects, 114

8.3.1 Mean Decrease Impurity, 114

8.3.2 Mean Decrease Accuracy, 116

8.4 Feature Importance without Substitution Effects, 117

8.4.1 Single Feature Importance, 117

8.4.2 Orthogonal Features, 118

8.5 Parallelized vs. Stacked Feature Importance, 121

8.6 Experiments with Synthetic Data, 122

Exercises, 127

References, 127

9 Hyper-Parameter Tuning with Cross-Validation 129

9.1 Motivation, 129

9.2 Grid Search Cross-Validation, 129

9.3 Randomized Search Cross-Validation, 131

9.3.1 Log-Uniform Distribution, 132

9.4 Scoring and Hyper-parameter Tuning, 134

CONTENTS xiii

Exercises, 135

References, 136

Bibliography, 137

PART 3 BACKTESTING 139

10 Bet Sizing 141

10.1 Motivation, 141

10.2 Strategy-Independent Bet Sizing Approaches, 141

10.3 Bet Sizing from Predicted Probabilities, 142

10.4 Averaging Active Bets, 144

10.5 Size Discretization, 144

10.6 Dynamic Bet Sizes and Limit Prices, 145

Exercises, 148

References, 149

Bibliography, 149

11 The Dangers of Backtesting 151

11.1 Motivation, 151

11.2 Mission Impossible: The Flawless Backtest, 151

11.3 Even If Your Backtest Is Flawless, It Is Probably Wrong, 152

11.4 Backtesting Is Not a Research Tool, 153

11.5 A Few General Recommendations, 153

11.6 Strategy Selection, 155

Exercises, 158

References, 158

Bibliography, 159

12 Backtesting through Cross-Validation 161

12.1 Motivation, 161

12.2 The Walk-Forward Method, 161

12.2.1 Pitfalls of the Walk-Forward Method, 162

12.3 The Cross-Validation Method, 162

12.4 The Combinatorial Purged Cross-Validation Method, 163

12.4.1 Combinatorial Splits, 164

12.4.2 The Combinatorial Purged Cross-Validation
Backtesting Algorithm, 165

12.4.3 A Few Examples, 165

xiv CONTENTS

12.5 How Combinatorial Purged Cross-Validation Addresses
Backtest Overfitting, 166

Exercises, 167

References, 168

13 Backtesting on Synthetic Data 169

13.1 Motivation, 169

13.2 Trading Rules, 169

13.3 The Problem, 170

13.4 Our Framework, 172

13.5 Numerical Determination of Optimal Trading Rules, 173

13.5.1 The Algorithm, 173

13.5.2 Implementation, 174

13.6 Experimental Results, 176

13.6.1 Cases with Zero Long-Run Equilibrium, 177

13.6.2 Cases with Positive Long-Run Equilibrium, 180

13.6.3 Cases with Negative Long-Run Equilibrium, 182

13.7 Conclusion, 192

Exercises, 192

References, 193

14 Backtest Statistics 195

14.1 Motivation, 195

14.2 Types of Backtest Statistics, 195

14.3 General Characteristics, 196

14.4 Performance, 198

14.4.1 Time-Weighted Rate of Return, 198

14.5 Runs, 199

14.5.1 Returns Concentration, 199

14.5.2 Drawdown and Time under Water, 201

14.5.3 Runs Statistics for Performance Evaluation, 201

14.6 Implementation Shortfall, 202

14.7 Efficiency, 203

14.7.1 The Sharpe Ratio, 203

14.7.2 The Probabilistic Sharpe Ratio, 203

14.7.3 The Deflated Sharpe Ratio, 204

14.7.4 Efficiency Statistics, 205

14.8 Classification Scores, 206

14.9 Attribution, 207

CONTENTS xv

Exercises, 208

References, 209

Bibliography, 209

15 Understanding Strategy Risk 211

15.1 Motivation, 211

15.2 Symmetric Payouts, 211

15.3 Asymmetric Payouts, 213

15.4 The Probability of Strategy Failure, 216

15.4.1 Algorithm, 217

15.4.2 Implementation, 217

Exercises, 219

References, 220

16 Machine Learning Asset Allocation 221

16.1 Motivation, 221

16.2 The Problem with Convex Portfolio Optimization, 221

16.3 Markowitz’s Curse, 222

16.4 From Geometric to Hierarchical Relationships, 223

16.4.1 Tree Clustering, 224

16.4.2 Quasi-Diagonalization, 229

16.4.3 Recursive Bisection, 229

16.5 A Numerical Example, 231

16.6 Out-of-Sample Monte Carlo Simulations, 234

16.7 Further Research, 236

16.8 Conclusion, 238

Appendices, 239

16.A.1 Correlation-based Metric, 239

16.A.2 Inverse Variance Allocation, 239

16.A.3 Reproducing the Numerical Example, 240

16.A.4 Reproducing the Monte Carlo Experiment, 242

Exercises, 244

References, 245

PART 4 USEFUL FINANCIAL FEATURES 247

17 Structural Breaks 249

17.1 Motivation, 249

17.2 Types of Structural Break Tests, 249

xvi CONTENTS

17.3 CUSUM Tests, 250

17.3.1 Brown-Durbin-Evans CUSUM Test on Recursive
Residuals, 250

17.3.2 Chu-Stinchcombe-White CUSUM Test on Levels, 251

17.4 Explosiveness Tests, 251

17.4.1 Chow-Type Dickey-Fuller Test, 251

17.4.2 Supremum Augmented Dickey-Fuller, 252

17.4.3 Sub- and Super-Martingale Tests, 259

Exercises, 261

References, 261

18 Entropy Features 263

18.1 Motivation, 263

18.2 Shannon’s Entropy, 263

18.3 The Plug-in (or Maximum Likelihood) Estimator, 264

18.4 Lempel-Ziv Estimators, 265

18.5 Encoding Schemes, 269

18.5.1 Binary Encoding, 270

18.5.2 Quantile Encoding, 270

18.5.3 Sigma Encoding, 270

18.6 Entropy of a Gaussian Process, 271

18.7 Entropy and the Generalized Mean, 271

18.8 A Few Financial Applications of Entropy, 275

18.8.1 Market Efficiency, 275

18.8.2 Maximum Entropy Generation, 275

18.8.3 Portfolio Concentration, 275

18.8.4 Market Microstructure, 276

Exercises, 277

References, 278

Bibliography, 279

19 Microstructural Features 281

19.1 Motivation, 281

19.2 Review of the Literature, 281

19.3 First Generation: Price Sequences, 282

19.3.1 The Tick Rule, 282

19.3.2 The Roll Model, 282

CONTENTS xvii

19.3.3 High-Low Volatility Estimator, 283

19.3.4 Corwin and Schultz, 284

19.4 Second Generation: Strategic Trade Models, 286

19.4.1 Kyle’s Lambda, 286

19.4.2 Amihud’s Lambda, 288

19.4.3 Hasbrouck’s Lambda, 289

19.5 Third Generation: Sequential Trade Models, 290

19.5.1 Probability of Information-based Trading, 290

19.5.2 Volume-Synchronized Probability of Informed
Trading, 292

19.6 Additional Features from Microstructural Datasets, 293

19.6.1 Distibution of Order Sizes, 293

19.6.2 Cancellation Rates, Limit Orders, Market Orders, 293

19.6.3 Time-Weighted Average Price Execution Algorithms, 294

19.6.4 Options Markets, 295

19.6.5 Serial Correlation of Signed Order Flow, 295

19.7 What Is Microstructural Information?, 295

Exercises, 296

References, 298

PART 5 HIGH-PERFORMANCE COMPUTING RECIPES 301

20 Multiprocessing and Vectorization 303

20.1 Motivation, 303

20.2 Vectorization Example, 303

20.3 Single-Thread vs. Multithreading vs. Multiprocessing, 304

20.4 Atoms and Molecules, 306

20.4.1 Linear Partitions, 306

20.4.2 Two-Nested Loops Partitions, 307

20.5 Multiprocessing Engines, 309

20.5.1 Preparing the Jobs, 309

20.5.2 Asynchronous Calls, 311

20.5.3 Unwrapping the Callback, 312

20.5.4 Pickle/Unpickle Objects, 313

20.5.5 Output Reduction, 313

20.6 Multiprocessing Example, 315

Exercises, 316

xviii CONTENTS

Reference, 317

Bibliography, 317

21 Brute Force and Quantum Computers 319

21.1 Motivation, 319

21.2 Combinatorial Optimization, 319

21.3 The Objective Function, 320

21.4 The Problem, 321

21.5 An Integer Optimization Approach, 321

21.5.1 Pigeonhole Partitions, 321

21.5.2 Feasible Static Solutions, 323

21.5.3 Evaluating Trajectories, 323

21.6 A Numerical Example, 325

21.6.1 Random Matrices, 325

21.6.2 Static Solution, 326

21.6.3 Dynamic Solution, 327

Exercises, 327

References, 328

22 High-Performance Computational Intelligence and Forecasting
Technologies 329
Kesheng Wu and Horst D. Simon

22.1 Motivation, 329

22.2 Regulatory Response to the Flash Crash of 2010, 329

22.3 Background, 330

22.4 HPC Hardware, 331

22.5 HPC Software, 335

22.5.1 Message Passing Interface, 335

22.5.2 Hierarchical Data Format 5, 336

22.5.3 In Situ Processing, 336

22.5.4 Convergence, 337

22.6 Use Cases, 337

22.6.1 Supernova Hunting, 337

22.6.2 Blobs in Fusion Plasma, 338

22.6.3 Intraday Peak Electricity Usage, 340

22.6.4 The Flash Crash of 2010, 341

22.6.5 Volume-synchronized Probability of Informed Trading
Calibration, 346

CONTENTS xix

22.6.6 Revealing High Frequency Events with Non-uniform
Fast Fourier Transform, 347

22.7 Summary and Call for Participation, 349

22.8 Acknowledgments, 350

References, 350

Index 353

About the Author

Marcos López de Prado manages several multibillion-dollar funds for institutional
investors using machine learning algorithms. Over the past 20 years, his work has
combined advanced mathematics with supercomputing technologies to deliver bil-
lions of dollars in net profits for investors and firms. A proponent of research by
collaboration, Marcos has published with more than 30 leading academics, resulting
in some of the most-read papers in finance.

Since 2010, Marcos has also been a Research Fellow at Lawrence Berkeley
National Laboratory (U.S. Department of Energy’s Office of Science), where he
conducts research focused on the mathematics of large-scale financial problems and
high-performance computing at the Computational Research department. For the past
seven years he has lectured at Cornell University, where he currently teaches a grad-
uate course in financial big data and machine learning in the Operations Research
department.

Marcos is the recipient of the 1999 National Award for Academic Excellence,
which the government of Spain bestows upon the best graduate student nationally.
He earned a PhD in financial economics (2003) and a second PhD in mathematical
finance (2011) from Universidad Complutense de Madrid. Between his two doctor-
ates, Marcos was a postdoctoral research fellow of RCC at Harvard University for
three years, during which he published more than a dozen articles in JCR-indexed
scientific journals. Marcos has an Erd́ós #2 and an Einstein #4, according to the Amer-
ican Mathematical Society.

xxi

Preamble

Chapter 1: Financial Machine Learning as a Distinct Subject, 3

1

CHAPTER 1

Financial Machine Learning as a
Distinct Subject

1.1 MOTIVATION

Machine learning (ML) is changing virtually every aspect of our lives. Today ML
algorithms accomplish tasks that until recently only expert humans could perform.
As it relates to finance, this is the most exciting time to adopt a disruptive technology
that will transform how everyone invests for generations. This book explains scien-
tifically sound ML tools that have worked for me over the course of two decades,
and have helped me to manage large pools of funds for some of the most demanding
institutional investors.

Books about investments largely fall in one of two categories. On one hand we
find books written by authors who have not practiced what they teach. They contain
extremely elegant mathematics that describes a world that does not exist. Just because
a theorem is true in a logical sense does not mean it is true in a physical sense. On the
other hand we find books written by authors who offer explanations absent of any
rigorous academic theory. They misuse mathematical tools to describe actual obser-
vations. Their models are overfit and fail when implemented. Academic investigation
and publication are divorced from practical application to financial markets, and
many applications in the trading/investment world are not grounded in proper science.

A first motivation for writing this book is to cross the proverbial divide that sepa-
rates academia and the industry. I have been on both sides of the rift, and I understand
how difficult it is to cross it and how easy it is to get entrenched on one side. Virtue is
in the balance. This book will not advocate a theory merely because of its mathemat-
ical beauty, and will not propose a solution just because it appears to work. My goal
is to transmit the kind of knowledge that only comes from experience, formalized in
a rigorous manner.

3

4 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

A second motivation is inspired by the desire that finance serves a purpose. Over
the years some of my articles, published in academic journals and newspapers, have
expressed my displeasure with the current role that finance plays in our society.
Investors are lured to gamble their wealth on wild hunches originated by charlatans
and encouraged by mass media. One day in the near future, ML will dominate finance,
science will curtail guessing, and investing will not mean gambling. I would like the
reader to play a part in that revolution.

A third motivation is that many investors fail to grasp the complexity of ML appli-
cations to investments. This seems to be particularly true for discretionary firms mov-
ing into the “quantamental” space. I am afraid their high expectations will not be
met, not because ML failed, but because they used ML incorrectly. Over the com-
ing years, many firms will invest with off-the-shelf ML algorithms, directly imported
from academia or Silicon Valley, and my forecast is that they will lose money (to
better ML solutions). Beating the wisdom of the crowds is harder than recognizing
faces or driving cars. With this book my hope is that you will learn how to solve some
of the challenges that make finance a particularly difficult playground for ML, like
backtest overfitting. Financial ML is a subject in its own right, related to but separate
from standard ML, and this book unravels it for you.

1.2 THE MAIN REASON FINANCIAL MACHINE LEARNING
PROJECTS USUALLY FAIL

The rate of failure in quantitative finance is high, particularly so in financial ML. The
few who succeed amass a large amount of assets and deliver consistently exceptional
performance to their investors. However, that is a rare outcome, for reasons explained
in this book. Over the past two decades, I have seen many faces come and go, firms
started and shut down. In my experience, there is one critical mistake that underlies
all those failures.

1.2.1 The Sisyphus Paradigm

Discretionary portfolio managers (PMs) make investment decisions that do not fol-
low a particular theory or rationale (if there were one, they would be systematic PMs).
They consume raw news and analyses, but mostly rely on their judgment or intu-
ition. They may rationalize those decisions based on some story, but there is always
a story for every decision. Because nobody fully understands the logic behind their
bets, investment firms ask them to work independently from one another, in silos, to
ensure diversification. If you have ever attended a meeting of discretionary PMs, you
probably noticed how long and aimless they can be. Each attendee seems obsessed
about one particular piece of anecdotal information, and giant argumentative leaps
are made without fact-based, empirical evidence. This does not mean that discre-
tionary PMs cannot be successful. On the contrary, a few of them are. The point is,
they cannot naturally work as a team. Bring 50 discretionary PMs together, and they

THE MAIN REASON FINANCIAL MACHINE LEARNING PROJECTS USUALLY FAIL 5

will influence one another until eventually you are paying 50 salaries for the work of
one. Thus it makes sense for them to work in silos so they interact as little as possible.

Wherever I have seen that formula applied to quantitative or ML projects, it has
led to disaster. The boardroom’s mentality is, let us do with quants what has worked
with discretionary PMs. Let us hire 50 PhDs and demand that each of them produce an
investment strategy within six months. This approach always backfires, because each
PhD will frantically search for investment opportunities and eventually settle for (1)
a false positive that looks great in an overfit backtest or (2) standard factor investing,
which is an overcrowded strategy with a low Sharpe ratio, but at least has academic
support. Both outcomes will disappoint the investment board, and the project will
be cancelled. Even if 5 of those PhDs identified a true discovery, the profits would
not suffice to cover for the expenses of 50, so those 5 will relocate somewhere else,
searching for a proper reward.

1.2.2 The Meta-Strategy Paradigm

If you have been asked to develop ML strategies on your own, the odds are stacked
against you. It takes almost as much effort to produce one true investment strategy
as to produce a hundred, and the complexities are overwhelming: data curation and
processing, HPC infrastructure, software development, feature analysis, execution
simulators, backtesting, etc. Even if the firm provides you with shared services in
those areas, you are like a worker at a BMW factory who has been asked to build an
entire car by using all the workshops around you. One week you need to be a master
welder, another week an electrician, another week a mechanical engineer, another
week a painter . . . You will try, fail, and circle back to welding. How does that
make sense?

Every successful quantitative firm I am aware of applies the meta-strategy
paradigm (López de Prado [2014]). Accordingly, this book was written as a research
manual for teams, not for individuals. Through its chapters you will learn how to set
up a research factory, as well as the various stations of the assembly line. The role of
each quant is to specialize in a particular task, to become the best there is at it, while
having a holistic view of the entire process. This book outlines the factory plan,
where teamwork yields discoveries at a predictable rate, with no reliance on lucky
strikes. This is how Berkeley Lab and other U.S. National Laboratories routinely
make scientific discoveries, such as adding 16 elements to the periodic table, or
laying out the groundwork for MRIs and PET scans.1 No particular individual is
responsible for these discoveries, as they are the outcome of team efforts where
everyone contributes. Of course, setting up these financial laboratories takes time,
and requires people who know what they are doing and have done it before. But
what do you think has a higher chance of success, this proven paradigm of organized
collaboration or the Sisyphean alternative of having every single quant rolling their
immense boulder up the mountain?

1 Berkeley Lab, http://www.lbl.gov/about.

let &hbox {char '046}http://www.lbl.gov/about
http://www.lbl.gov/about

6 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

1.3 BOOK STRUCTURE

This book disentangles a web of interconnected topics and presents them in an
ordered fashion. Each chapter assumes that you have read the previous ones. Part
1 will help you structure your financial data in a way that is amenable to ML algo-
rithms. Part 2 discusses how to do research with ML algorithms on that data. Here
the emphasis is on doing research and making an actual discovery through a scien-
tific process, as opposed to searching aimlessly until some serendipitous (likely false)
result pops up. Part 3 explains how to backtest your discovery and evaluate the prob-
ability that it is false.

These three parts give an overview of the entire process, from data analysis to
model research to discovery evaluation. With that knowledge, Part 4 goes back to the
data and explains innovative ways to extract informative features. Finally, much of
this work requires a lot of computational power, so Part 5 wraps up the book with
some useful HPC recipes.

1.3.1 Structure by Production Chain

Mining gold or silver was a relatively straightforward endeavor during the 16th and
17th centuries. In less than a hundred years, the Spanish treasure fleet quadrupled
the amount of precious metals in circulation throughout Europe. Those times are
long gone, and today prospectors must deploy complex industrial methods to extract
microscopic bullion particles out of tons of earth. That does not mean that gold
production is at historical lows. On the contrary, nowadays miners extract 2,500
metric tons of microscopic gold every year, compared to the average annual 1.54
metric tons taken by the Spanish conquistadors throughout the entire 16th century!2

Visible gold is an infinitesimal portion of the overall amount of gold on Earth. El
Dorado was always there . . . if only Pizarro could have exchanged the sword for a
microscope.

The discovery of investment strategies has undergone a similar evolution. If a
decade ago it was relatively common for an individual to discover macroscopic alpha
(i.e., using simple mathematical tools like econometrics), currently the chances of that
happening are quickly converging to zero. Individuals searching nowadays for macro-
scopic alpha, regardless of their experience or knowledge, are fighting overwhelming
odds. The only true alpha left is microscopic, and finding it requires capital-intensive
industrial methods. Just like with gold, microscopic alpha does not mean smaller
overall profits. Microscopic alpha today is much more abundant than macroscopic
alpha has ever been in history. There is a lot of money to be made, but you will need
to use heavy ML tools.

Let us review some of the stations involved in the chain of production within a
modern asset manager.

2 http://www.numbersleuth.org/worlds-gold/.

let &hbox {char '046}http://www.numbersleuth.org/worlds-gold/
http://www.numbersleuth.org/worlds-gold/

BOOK STRUCTURE 7

1.3.1.1 Data Curators
This is the station responsible for collecting, cleaning, indexing, storing, adjusting,
and delivering all data to the production chain. The values could be tabulated or
hierarchical, aligned or misaligned, historical or real-time feeds, etc. Team mem-
bers are experts in market microstructure and data protocols such as FIX. They must
develop the data handlers needed to understand the context in which that data arises.
For example, was a quote cancelled and replaced at a different level, or cancelled
without replacement? Each asset class has its own nuances. For instance, bonds are
routinely exchanged or recalled; stocks are subjected to splits, reverse-splits, voting
rights, etc.; futures and options must be rolled; currencies are not traded in a central-
ized order book. The degree of specialization involved in this station is beyond the
scope of this book, and Chapter 1 will discuss only a few aspects of data curation.

1.3.1.2 Feature Analysts
This is the station responsible for transforming raw data into informative signals.
These informative signals have some predictive power over financial variables. Team
members are experts in information theory, signal extraction and processing, visual-
ization, labeling, weighting, classifiers, and feature importance techniques. For exam-
ple, feature analysts may discover that the probability of a sell-off is particularly high
when: (1) quoted offers are cancelled-replaced with market sell orders, and (2) quoted
buy orders are cancelled-replaced with limit buy orders deeper in the book. Such a
finding is not an investment strategy on its own, and can be used in alternative ways:
execution, monitoring of liquidity risk, market making, position taking, etc. A com-
mon error is to believe that feature analysts develop strategies. Instead, feature ana-
lysts collect and catalogue libraries of findings that can be useful to a multiplicity of
stations. Chapters 2–9 and 17–19 are dedicated to this all-important station.

1.3.1.3 Strategists
In this station, informative features are transformed into actual investment algorithms.
A strategist will parse through the libraries of features looking for ideas to develop
an investment strategy. These features were discovered by different analysts studying
a wide range of instruments and asset classes. The goal of the strategist is to make
sense of all these observations and to formulate a general theory that explains them.
Therefore, the strategy is merely the experiment designed to test the validity of this
theory. Team members are data scientists with a deep knowledge of financial mar-
kets and the economy. Remember, the theory needs to explain a large collection of
important features. In particular, a theory must identify the economic mechanism that
causes an agent to lose money to us. Is it a behavioral bias? Asymmetric information?
Regulatory constraints? Features may be discovered by a black box, but the strategy
is developed in a white box. Gluing together a number of catalogued features does not
constitute a theory. Once a strategy is finalized, the strategists will prepare code that
utilizes the full algorithm and submit that prototype to the backtesting team described
below. Chapters 10 and 16 are dedicated to this station, with the understanding that
it would be unreasonable for a book to reveal specific investment strategies.

8 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

1.3.1.4 Backtesters
This station assesses the profitability of an investment strategy under various sce-
narios. One of the scenarios of interest is how the strategy would perform if history
repeated itself. However, the historical path is merely one of the possible outcomes of
a stochastic process, and not necessarily the most likely going forward. Alternative
scenarios must be evaluated, consistent with the knowledge of the weaknesses and
strengths of a proposed strategy. Team members are data scientists with a deep under-
standing of empirical and experimental techniques. A good backtester incorporates
in his analysis meta-information regarding how the strategy came about. In partic-
ular, his analysis must evaluate the probability of backtest overfitting by taking into
account the number of trials it took to distill the strategy. The results of this evaluation
will not be reused by other stations, for reasons that will become apparent in Chapter
11. Instead, backtest results are communicated to management and not shared with
anyone else. Chapters 11–16 discuss the analyses carried out by this station.

1.3.1.5 Deployment Team
The deployment team is tasked with integrating the strategy code into the production
line. Some components may be reused by multiple strategies, especially when they
share common features. Team members are algorithm specialists and hardcore
mathematical programmers. Part of their job is to ensure that the deployed solution
is logically identical to the prototype they received. It is also the deployment team’s
responsibility to optimize the implementation sufficiently, such that production
latency is minimized. As production calculations often are time sensitive, this team
will rely heavily on process schedulers, automation servers (Jenkins), vectoriza-
tion, multithreading, multiprocessing, graphics processing unit (GPU-NVIDIA),
distributed computing (Hadoop), high-performance computing (Slurm), and par-
allel computing techniques in general. Chapters 20–22 touch on various aspects
interesting to this station, as they relate to financial ML.

1.3.1.6 Portfolio Oversight
Once a strategy is deployed, it follows a cursus honorum, which entails the following
stages or lifecycle:

1. Embargo: Initially, the strategy is run on data observed after the end date of the
backtest. Such a period may have been reserved by the backtesters, or it may
be the result of implementation delays. If embargoed performance is consistent
with backtest results, the strategy is promoted to the next stage.

2. Paper trading: At this point, the strategy is run on a live, real-time feed. In this
way, performance will account for data parsing latencies, calculation latencies,
execution delays, and other time lapses between observation and positioning.
Paper trading will take place for as long as it is needed to gather enough evi-
dence that the strategy performs as expected.

3. Graduation: At this stage, the strategy manages a real position, whether in iso-
lation or as part of an ensemble. Performance is evaluated precisely, including
attributed risk, returns, and costs.

BOOK STRUCTURE 9

4. Re-allocation: Based on the production performance, the allocation to gradu-
ated strategies is re-assessed frequently and automatically in the context of a
diversified portfolio. In general, a strategy’s allocation follows a concave func-
tion. The initial allocation (at graduation) is small. As time passes, and the strat-
egy performs as expected, the allocation is increased. Over time, performance
decays, and allocations become gradually smaller.

5. Decommission: Eventually, all strategies are discontinued. This happens when
they perform below expectations for a sufficiently extended period of time to
conclude that the supporting theory is no longer backed by empirical evidence.

In general, it is preferable to release new variations of a strategy and run them in
parallel with old versions. Each version will go through the above lifecycle, and old
strategies will receive smaller allocations as a matter of diversification, while taking
into account the degree of confidence derived from their longer track record.

1.3.2 Structure by Strategy Component

Many investment managers believe that the secret to riches is to implement an
extremely complex ML algorithm. They are setting themselves up for a disappoint-
ment. If it was as easy as coding a state-of-the art classifier, most people in Silicon
Valley would be billionaires. A successful investment strategy is the result of mul-
tiple factors. Table 1.1 summarizes what chapters will help you address each of the
challenges involved in developing a successful investment strategy.

Throughout the book, you will find many references to journal articles I have
published over the years. Rather than repeating myself, I will often refer you to
one of them, where you will find a detailed analysis of the subject at hand. All of
my cited papers can be downloaded for free, in pre-print format, from my website:
www.QuantResearch.org.

1.3.2.1 Data
� Problem: Garbage in, garbage out.
� Solution: Work with unique, hard-to-manipulate data. If you are the only user

of this data, whatever its value, it is all for you.
� How:
◦ Chapter 2: Structure your data correctly.
◦ Chapter 3: Produce informative labels.
◦ Chapters 4 and 5: Model non-IID series properly.
◦ Chapters 17–19: Find predictive features.

1.3.2.2 Software
� Problem: A specialized task requires customized tools.
� Solution: Develop your own classes. Using popular libraries means more com-

petitors tapping the same well.

let &hbox {char '046}www.QuantResearch.org
http://www.QuantResearch.org

10 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

TABLE 1.1 Overview of the Challenges Addressed by Every Chapter

Part Chapter Fin. data Software Hardware Math Meta-Strat Overfitting

1 2 X X
1 3 X X
1 4 X X
1 5 X X X

2 6 X
2 7 X X X
2 8 X X
2 9 X X

3 10 X X
3 11 X X X
3 12 X X X
3 13 X X X
3 14 X X X
3 15 X X X
3 16 X X X X

4 17 X X X
4 18 X X X
4 19 X X

5 20 X X X
5 21 X X X
5 22 X X X

� How:
◦ Chapters 2–22: Throughout the book, for each chapter, we develop our own

functions. For your particular problems, you will have to do the same, fol-
lowing the examples in the book.

1.3.2.3 Hardware
� Problem: ML involves some of the most computationally intensive tasks in all

of mathematics.
� Solution: Become an HPC expert. If possible, partner with a National Labora-

tory to build a supercomputer.
� How:
◦ Chapters 20 and 22: Learn how to think in terms of multiprocessing architec-

tures. Whenever you code a library, structure it in such a way that functions
can be called in parallel. You will find plenty of examples in the book.

◦ Chapter 21: Develop algorithms for quantum computers.

1.3.2.4 Math
� Problem: Mathematical proofs can take years, decades, and centuries. No

investor will wait that long.

BOOK STRUCTURE 11

� Solution: Use experimental math. Solve hard, intractable problems, not by proof
but by experiment. For example, Bailey, Borwein, and Plouffe [1997] found a
spigot algorithm for 𝜋 (pi) without proof, against the prior perception that such
mathematical finding would not be possible.

� How:
◦ Chapter 5: Familiarize yourself with memory-preserving data transforma-

tions.
◦ Chapters 11–15: There are experimental methods to assess the value of your

strategy, with greater reliability than a historical simulation.
◦ Chapter 16: An algorithm that is optimal in-sample can perform poorly out-

of-sample. There is no mathematical proof for investment success. Rely on
experimental methods to lead your research.

◦ Chapters 17 and 18: Apply methods to detect structural breaks, and quantify
the amount of information carried by financial series.

◦ Chapter 20: Learn queuing methods for distributed computing so that you
can break apart complex tasks and speed up calculations.

◦ Chapter 21: Become familiar with discrete methods, used among others by
quantum computers, to solve intractable problems.

1.3.2.5 Meta-Strategies
� Problem: Amateurs develop individual strategies, believing that there is such a

thing as a magical formula for riches. In contrast, professionals develop meth-
ods to mass-produce strategies. The money is not in making a car, it is in making
a car factory.

� Solution: Think like a business. Your goal is to run a research lab like a factory,
where true discoveries are not born out of inspiration, but out of methodic hard
work. That was the philosophy of physicist Ernest Lawrence, the founder of the
first U.S. National Laboratory.

� How:
◦ Chapters 7–9: Build a research process that identifies features relevant

across asset classes, while dealing with multi-collinearity of financial
features.

◦ Chapter 10: Combine multiple predictions into a single bet.
◦ Chapter 16: Allocate funds to strategies using a robust method that performs

well out-of-sample.

1.3.2.6 Overfitting
� Problem: Standard cross-validation methods fail in finance. Most discoveries in

finance are false, due to multiple testing and selection bias.
� Solution:
◦ Whatever you do, always ask yourself in what way you may be overfitting. Be

skeptical about your own work, and constantly challenge yourself to prove
that you are adding value.

12 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

◦ Overfitting is unethical. It leads to promising outcomes that cannot be deliv-
ered. When done knowingly, overfitting is outright scientific fraud. The fact
that many academics do it does not make it right: They are not risking any-
one’s wealth, not even theirs.

◦ It is also a waste of your time, resources, and opportunities. Besides, the
industry only pays for out-of-sample returns. You will only succeed after
you have created substantial wealth for your investors.

� How:
◦ Chapters 11–15: There are three backtesting paradigms, of which historical

simulation is only one. Each backtest is always overfit to some extent, and it
is critical to learn to quantify by how much.

◦ Chapter 16: Learn robust techniques for asset allocation that do not overfit
in-sample signals at the expense of out-of-sample performance.

1.3.3 Structure by Common Pitfall

Despite its many advantages, ML is no panacea. The flexibility and power of ML
techniques have a dark side. When misused, ML algorithms will confuse statisti-
cal flukes with patterns. This fact, combined with the low signal-to-noise ratio that
characterizes finance, all but ensures that careless users will produce false discov-
eries at an ever-greater speed. This book exposes some of the most pervasive errors
made by ML experts when they apply their techniques on financial datasets. Some of
these pitfalls are listed in Table 1.2, with solutions that are explained in the indicated
chapters.

1.4 TARGET AUDIENCE

This book presents advanced ML methods specifically designed to address the chal-
lenges posed by financial datasets. By “advanced” I do not mean extremely difficult to
grasp, or explaining the latest reincarnation of deep, recurrent, or convolutional neu-
ral networks. Instead, the book answers questions that senior researchers, who have
experience applying ML algorithms to financial problems, will recognize as critical.
If you are new to ML, and you do not have experience working with complex algo-
rithms, this book may not be for you (yet). Unless you have confronted in practice the
problems discussed in these chapters, you may have difficulty understanding the util-
ity of solving them. Before reading this book, you may want to study several excellent
introductory ML books published in recent years. I have listed a few of them in the
references section.

The core audience of this book is investment professionals with a strong ML back-
ground. My goals are that you monetize what you learn in this book, help us mod-
ernize finance, and deliver actual value for investors.

This book also targets data scientists who have successfully implemented ML
algorithms in a variety of fields outside finance. If you have worked at Google and
have applied deep neural networks to face recognition, but things do not seem to

REQUISITES 13

TABLE 1.2 Common Pitfalls in Financial ML

Category Pitfall Solution Chapter

1 Epistemological The Sisyphus paradigm The meta-strategy
paradigm

1

2 Epistemological Research through
backtesting

Feature importance
analysis

8

3 Data processing Chronological
sampling

The volume clock 2

4 Data processing Integer differentiation Fractional
differentiation

5

5 Classification Fixed-time horizon
labeling

The triple-barrier
method

3

6 Classification Learning side and size
simultaneously

Meta-labeling 3

7 Classification Weighting of non-IID
samples

Uniqueness weighting;
sequential
bootstrapping

4

8 Evaluation Cross-validation
leakage

Purging and
embargoing

7, 9

9 Evaluation Walk-forward
(historical) backtesting

Combinatorial purged
cross-validation

11, 12

10 Evaluation Backtest overfitting Backtesting on
synthetic data; the
deflated Sharpe ratio

10–16

work so well when you run your algorithms on financial data, this book will help
you. Sometimes you may not understand the financial rationale behind some struc-
tures (e.g., meta-labeling, the triple-barrier method, fracdiff), but bear with me: Once
you have managed an investment portfolio long enough, the rules of the game will
become clearer to you, along with the meaning of these chapters.

1.5 REQUISITES

Investment management is one of the most multi-disciplinary areas of research, and
this book reflects that fact. Understanding the various sections requires a practical
knowledge of ML, market microstructure, portfolio management, mathematical
finance, statistics, econometrics, linear algebra, convex optimization, discrete
math, signal processing, information theory, object-oriented programming, parallel
processing, and supercomputing.

Python has become the de facto standard language for ML, and I have to assume
that you are an experienced developer. You must be familiar with scikit-learn
(sklearn), pandas, numpy, scipy, multiprocessing, matplotlib and a few other libraries.

14 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

Code snippets invoke functions from these libraries using their conventional prefix,
pd for pandas, np for numpy, mpl for matplotlib, etc. There are numerous books on
each of these libraries, and you cannot know enough about the specifics of each one.
Throughout the book we will discuss some issues with their implementation, includ-
ing unresolved bugs to keep in mind.

1.6 FAQs

How can ML algorithms be useful in finance?

Many financial operations require making decisions based on pre-defined rules, like
option pricing, algorithmic execution, or risk monitoring. This is where the bulk of
automation has taken place so far, transforming the financial markets into ultra-fast,
hyper-connected networks for exchanging information. In performing these tasks,
machines were asked to follow the rules as fast as possible. High-frequency trading
is a prime example. See Easley, López de Prado, and O’Hara [2013] for a detailed
treatment of the subject.

The algorithmization of finance is unstoppable. Between June 12, 1968, and
December 31, 1968, the NYSE was closed every Wednesday, so that back office could
catch up with paperwork. Can you imagine that? We live in a different world today,
and in 10 years things will be even better. Because the next wave of automation does
not involve following rules, but making judgment calls. As emotional beings, subject
to fears, hopes, and agendas, humans are not particularly good at making fact-based
decisions, particularly when those decisions involve conflicts of interest. In those sit-
uations, investors are better served when a machine makes the calls, based on facts
learned from hard data. This not only applies to investment strategy development, but
to virtually every area of financial advice: granting a loan, rating a bond, classifying
a company, recruiting talent, predicting earnings, forecasting inflation, etc. Further-
more, machines will comply with the law, always, when programmed to do so. If a
dubious decision is made, investors can go back to the logs and understand exactly
what happened. It is much easier to improve an algorithmic investment process than
one relying entirely on humans.

How can ML algorithms beat humans at investing?

Do you remember when people were certain that computers would never beat humans
at chess? Or Jeopardy!? Poker? Go? Millions of years of evolution (a genetic algo-
rithm) have fine-tuned our ape brains to survive in a hostile 3-dimensional world
where the laws of nature are static. Now, when it comes to identifying subtle patterns
in a high-dimensional world, where the rules of the game change every day, all
that fine-tuning turns out to be detrimental. An ML algorithm can spot patterns in a
100-dimensional world as easily as in our familiar 3-dimensional one. And while we
all laugh when we see an algorithm make a silly mistake, keep in mind, algorithms
have been around only a fraction of our millions of years. Every day they get better
at this, we do not. Humans are slow learners, which puts us at a disadvantage in a
fast-changing world like finance.

FAQs 15

Does that mean that there is no space left for human investors?

Not at all. No human is better at chess than a computer. And no computer is better
at chess than a human supported by a computer. Discretionary PMs are at a disad-
vantage when betting against an ML algorithm, but it is possible that the best results
are achieved by combining discretionary PMs with ML algorithms. This is what has
come to be known as the “quantamental” way. Throughout the book you will find
techniques that can be used by quantamental teams, that is, methods that allow you
to combine human guesses (inspired by fundamental variables) with mathematical
forecasts. In particular, Chapter 3 introduces a new technique called meta-labeling,
which allows you to add an ML layer on top of a discretionary one.

How does financial ML differ from econometrics?

Econometrics is the application of classical statistical methods to economic and finan-
cial series. The essential tool of econometrics is multivariate linear regression, an
18th-century technology that was already mastered by Gauss before 1794 (Stigler
[1981]). Standard econometric models do not learn. It is hard to believe that some-
thing as complex as 21st-century finance could be grasped by something as simple
as inverting a covariance matrix.

Every empirical science must build theories based on observation. If the statistical
toolbox used to model these observations is linear regression, the researcher will fail
to recognize the complexity of the data, and the theories will be awfully simplistic,
useless. I have no doubt in my mind, econometrics is a primary reason economics
and finance have not experienced meaningful progress over the past 70 years (Calkin
and López de Prado [2014a, 2014b]).

For centuries, medieval astronomers made observations and developed theo-
ries about celestial mechanics. These theories never considered non-circular orbits,
because they were deemed unholy and beneath God’s plan. The prediction errors were
so gross, that ever more complex theories had to be devised to account for them. It was
not until Kepler had the temerity to consider non-circular (elliptical) orbits that all of
the sudden a much simpler general model was able to predict the position of the plan-
ets with astonishing accuracy. What if astronomers had never considered non-circular
orbits? Well . . . what if economists finally started to consider non-linear functions?
Where is our Kepler? Finance does not have a Principia because no Kepler means no
Newton.

Financial ML methods do not replace theory. They guide it. An ML algorithm
learns patterns in a high-dimensional space without being specifically directed. Once
we understand what features are predictive of a phenomenon, we can build a theo-
retical explanation, which can be tested on an independent dataset. Students of eco-
nomics and finance would do well enrolling in ML courses, rather than econometrics.
Econometrics may be good enough to succeed in financial academia (for now), but
succeeding in business requires ML.

What do you say to people who dismiss ML algorithms as black boxes?

If you are reading this book, chances are ML algorithms are white boxes to you.
They are transparent, well-defined, crystal-clear, pattern-recognition functions. Most

16 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

people do not have your knowledge, and to them ML is like a magician’s box: “Where
did that rabbit come from? How are you tricking us, witch?” People mistrust what they
do not understand. Their prejudices are rooted in ignorance, for which the Socratic
remedy is simple: education. Besides, some of us enjoy using our brains, even though
neuroscientists still have not figured out exactly how they work (a black box in itself).

From time to time you will encounter Luddites, who are beyond redemption. Ned
Ludd was a weaver from Leicester, England, who in 1779 smashed two knitting
frames in an outrage. With the advent of the industrial revolution, mobs infuriated by
mechanization sabotaged and destroyed all machinery they could find. Textile work-
ers ruined so much industrial equipment that Parliament had to pass laws making
“machine breaking” a capital crime. Between 1811 and 1816, large parts of Eng-
land were in open rebellion, to the point that there were more British troops fighting
Luddites than there were fighting Napoleon on the Iberian Peninsula. The Luddite
rebellion ended with brutal suppression through military force. Let us hope that the
black box movement does not come to that.

Why don’t you discuss specific ML algorithms?

The book is agnostic with regards to the particular ML algorithm you choose.
Whether you use convolutional neural networks, AdaBoost, RFs, SVMs, and so on,
there are many shared generic problems you will face: data structuring, label-
ing, weighting, stationary transformations, cross-validation, feature selection, fea-
ture importance, overfitting, backtesting, etc. In the context of financial modeling,
answering these questions is non-trivial, and framework-specific approaches need to
be developed. That is the focus of this book.

What other books do you recommend on this subject?

To my knowledge, this is the first book to provide a complete and systematic treatment
of ML methods specific for finance: starting with a chapter dedicated to financial data
structures, another chapter for labeling of financial series, another for sample weight-
ing, time series differentiation, . . . all the way to a full part devoted to the proper back-
testing of investment strategies. To be sure, there are a handful of prior publications
(mostly journal articles) that have applied standard ML to financial series, but that
is not what this book offers. My goal has been to address the unique nuisances that
make financial ML modeling particularly challenging. Like any new subject, it is fast
evolving, and the book will be updated as major advances take place. Please contact
me at mldp@quantresearch.org if there is any particular topic you would like to see
treated in future editions. I will gladly add those chapters, while acknowledging the
names of those readers who suggested them.

I do not understand some of the sections and chapters. What should I do?

My advice is that you start by reading the references listed at the end of the chapter.
When I wrote the book, I had to assume the reader was familiar with the existing
literature, or this book would lose its focus. If after reading those references the sec-
tions still do not make sense, the likely reason is that they are related to a problem
well understood by investment professionals (even if there is no mention of it in the

mailto:mldp@quantresearch.org

FAQs 17

literature). For example, Chapter 2 will discuss effective methods to adjust futures
prices for the roll, a problem known to most practitioners, even though it is rarely
addressed in textbooks. I would encourage you to attend one of my regular seminars,
and ask me your question at the end of my talk.

Why is the book so fixated on backtest overfitting?

There are two reasons. First, backtest overfitting is arguably the most important open
problem in all of mathematical finance. It is our equivalent to “P versus NP” in com-
puter science. If there was a precise method to prevent backtest overfitting, we would
be able to take backtests to the bank. A backtest would be almost as good as cash,
rather than a sales pitch. Hedge funds would allocate funds to portfolio managers
with confidence. Investors would risk less, and would be willing to pay higher fees.
Regulators would grant licenses to hedge fund managers on the basis of reliable evi-
dence of skill and knowledge, leaving no space for charlatans. In my opinion, an
investments book that does not address this issue is not worth your time. Why would
you read a book that deals with CAPM, APT, asset allocation techniques, risk man-
agement, etc. when the empirical results that support those arguments were selected
without determining their false discovery probabilities?

The second reason is that ML is a great weapon in your research arsenal, and a
dangerous one to be sure. If backtest overfitting is an issue in econometric analysis,
the flexibility of ML makes it a constant threat to your work. This is particularly the
case in finance, because our datasets are shorter, with lower signal-to-noise ratio, and
we do not have laboratories where we can conduct experiments while controlling
for all environmental variables (López de Prado [2015]). An ML book that does not
tackle these concerns can be more detrimental than beneficial to your career.

What is the mathematical nomenclature of the book?

When I started to write this book, I thought about assigning one symbol to each math-
ematical variable or function through all the chapters. That would work well if this
book dealt with a single subject, like stochastic optimal control. However this book
deals with a wide range of mathematical subjects, each with its own conventions.
Readers would find it harder to consult references unless I also followed literature
standards, which means that sometimes we must re-use symbols. To prevent any
confusion, every chapter explains the nomenclature as it is being used. Most of the
math is accompanied by a code snippet, so in case of doubt, please always follow
the code.

Who wrote Chapter 22?

A popular perception is that ML is a new fascinating technology invented or perfected
at IBM, Google, Facebook, Amazon, Netflix, Tesla, etc. It is true that technology firms
have become heavy users of ML, especially in recent years. Those firms sponsored
some of the most publicized recent ML achievements (like Jeopardy! or Go), which
may have reinforced that perception.

However, the reader may be surprised to learn that, in fact, U.S. National Labo-
ratories are among the research centers with the longest track record and experience

18 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

in using ML. These centers utilized ML before it was cool, and they applied it suc-
cessfully for many decades to produce astounding scientific discoveries. If predicting
what movies Netflix should recommend you to watch next is a worthy endeavor, so it
is to understand the rate of expansion of the universe, or forecasting what coastlines
will be most impacted by global warming, or preventing a cataclysmic failure of our
national power grid. These are just some of the amazing questions that institutions
like Berkeley Lab work on every day, quietly but tirelessly, with the help of ML.

In Chapter 22, Drs. Horst Simon and Kesheng Wu offer the perspective of a deputy
director and a project leader at a major U.S. National Laboratory specializing in large-
scale scientific research involving big data, high-performance computing, and ML.
Unlike traditional university settings, National Laboratories achieve scientific break-
throughs by putting together interdisciplinary teams that follow well-devised proce-
dures, with strong division of labor and responsibilities. That kind of research model
by production chain was born at Berkeley Lab almost 90 years ago and inspired the
meta-strategy paradigm explained in Sections 1.2.2 and 1.3.1.

1.7 ACKNOWLEDGMENTS

Dr. Horst Simon, who is the deputy director of Lawrence Berkeley National
Laboratory, accepted to co-author Chapter 22 with Dr. Kesheng Wu, who leads
several projects at Berkeley Lab and the National Energy Research Scientific
Computing Center (NERSC).3 ML requires extreme amounts of computing power,
and my research would not have been possible without their generous support and
guidance. In that chapter, Horst and Kesheng explain how Berkeley Lab satisfies the
supercomputing needs of researchers worldwide, and the instrumental role played
by ML and big data in today’s scientific breakthroughs.

Prof. Riccardo Rebonato was the first to read this manuscript and encouraged me
to publish it. My many conversations with Prof. Frank Fabozzi on these topics were
instrumental in shaping the book in its current form. Very few people in academia
have Frank’s and Riccardo’s industry experience, and very few people in the industry
have Riccardo’s and Frank’s academic pedigree.

Over the past two decades, I have published nearly a hundred works on this book’s
subject, including journal articles, books, chapters, lectures, source code, etc. In my
latest count, these works were co-authored with more than 30 leading experts in this
field, including Prof. David H. Bailey (15 articles), Prof. David Easley (8 articles),
Prof. Maureen O’Hara (8 articles), and Prof. Jonathan M. Borwein (6 articles). This
book is to a great extent also theirs, for it would not have been possible without their
support, insights, and continuous exchange of ideas over the years. It would take too
long to give them proper credit, so instead I have published the following link where
you can find our collective effort: http://www.quantresearch.org/Co-authors.htm.

Last but not least, I would like to thank some of my research team members for
proofreading the book and helping me produce some of the figures: Diego Aparicio,

3 http://www.nersc.gov/about.

let &hbox {char '046}http://www.quantresearch.org/Co-authors.htm
http://www.quantresearch.org/Co-authors.htm
let &hbox {char '046}http://www.nersc.gov/about
http://www.nersc.gov/about

EXERCISES 19

Dr. Lee Cohn, Dr. Michael Lewis, Dr. Michael Lock, Dr. Yaxiong Zeng, and
Dr. Zhibai Zhang.

EXERCISES

1.1 Are you aware of firms that have attempted to transition from discretionary
investments to ML-led investments, or blending them into what they call “quan-
tamental” funds?

(a) Have they succeeded?

(b) What are the cultural difficulties involved in this transition?

1.2 What is the most important open problem in mathematical finance? If this prob-
lem was resolved, how could:

(a) regulators use it to grant investment management licenses?

(b) investors use it to allocate funds?

(c) firms use it to reward researchers?

1.3 According to Institutional Investor, only 17% of hedge fund assets are managed
by quantitative firms. That is about $500 billion allocated in total across all
quantitative funds as of June 2017, compared to $386 billion a year earlier.
What do you think is driving this massive reallocation of assets?

1.4 According to Institutional Investor’s Rich List, how many quantitative invest-
ment firms are placed within the top 10 most profitable firms? How does that
compare to the proportion of assets managed by quantitative funds?

1.5 What is the key difference between econometric methods and ML? How would
economics and finance benefit from updating their statistical toolkit?

1.6 Science has a very minimal understanding of how the human brain (or any brain)
works. In this sense, the brain is an absolute black box. What do you think
causes critics of financial ML to disregard it as a black box, while embracing
discretionary investing?

1.7 You read a journal article that describes an investment strategy. In a backtest, it
achieves an annualized Sharpe ratio in excess of 2, with a confidence level of
95%. Using their dataset, you are able to reproduce their result in an independent
backtest. Why is this discovery likely to be false?

1.8 Investment advisors are plagued with conflicts of interest while making deci-
sions on behalf of their investors.

(a) ML algorithms can manage investments without conflict of interests. Why?

(b) Suppose that an ML algorithm makes a decision that leads to a loss. The
algorithm did what it was programmed to do, and the investor agreed to the
terms of the program, as verified by forensic examination of the computer
logs. In what sense is this situation better for the investor, compared to a
loss caused by a discretionary PM’s poor judgment? What is the investor’s
recourse in each instance?

(c) Would it make sense for financial advisors to benchmark their decisions
against the decisions made by such neutral agents?

20 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

REFERENCES

Bailey, D., P. Borwein, and S. Plouffe (1997): “On the rapid computation of various polylogarithmic
constants.” Mathematics of Computation, Vol. 66, No. 218, pp. 903–913.

Calkin, N. and M. López de Prado (2014a): “Stochastic flow diagrams.” Algorithmic Finance, Vol.
3, No. 1, pp. 21–42.

Calkin, N. and M. López de Prado (2014b): “The topology of macro financial flows: An application
of stochastic flow diagrams.” Algorithmic Finance, Vol. 3, No. 1, pp. 43–85.

Easley, D., M. López de Prado, and M. O’Hara (2013): High-Frequency Trading, 1st ed. Risk Books.
López de Prado, M. (2014): “Quantitative meta-strategies.” Practical Applications, Institutional

Investor Journals, Vol. 2, No. 3, pp. 1–3.
López de Prado, M. (2015): “The Future of Empirical Finance.” Journal of Portfolio Management,

Vol. 41, No. 4, pp. 140–144.
Stigler, Stephen M. (1981): “Gauss and the invention of least squares.” Annals of Statistics, Vol. 9,

No. 3, pp. 465–474.

BIBLIOGRAPHY

Abu-Mostafa, Y., M. Magdon-Ismail, and H. Lin (2012): Learning from Data, 1st ed. AMLBook.
Akansu, A., S. Kulkarni, and D. Malioutov (2016): Financial Signal Processing and Machine Learn-

ing, 1st ed. John Wiley & Sons-IEEE Press.
Aronson, D. and T. Masters (2013): Statistically Sound Machine Learning for Algorithmic Trading

of Financial Instruments: Developing Predictive-Model-Based Trading Systems Using TSSB,
1st ed. CreateSpace Independent Publishing Platform.

Boyarshinov, V. (2012): Machine Learning in Computational Finance: Practical Algorithms for
Building Artificial Intelligence Applications, 1st ed. LAP LAMBERT Academic Publishing.

Cerniglia, J., F. Fabozzi, and P. Kolm (2016): “Best practices in research for quantitative equity
strategies.” Journal of Portfolio Management, Vol. 42, No. 5, pp. 135–143.

Chan, E. (2017): Machine Trading: Deploying Computer Algorithms to Conquer the Markets, 1st
ed. John Wiley & Sons.

Gareth, J., D. Witten, T. Hastie, and R. Tibshirani (2013): An Introduction to Statistical Learning:
with Applications in R, 1st ed. Springer.

Geron, A. (2017): Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems, 1st ed. O’Reilly Media.

Gyorfi, L., G. Ottucsak, and H. Walk (2012): Machine Learning for Financial Engineering, 1st ed.
Imperial College Press.

Hackeling, G. (2014): Mastering Machine Learning with Scikit-Learn, 1st ed. Packt Publishing.
Hastie, T., R. Tibshirani, and J. Friedman (2016): The Elements of Statistical Learning, 2nd ed.

Springer-Verlag.
Hauck, T. (2014): Scikit-Learn Cookbook, 1st ed. Packt Publishing.
McNelis, P. (2005): Neural Networks in Finance, 1st ed. Academic Press.
Raschka, S. (2015): Python Machine Learning, 1st ed. Packt Publishing.

P A R T 1

Data Analysis

Chapter 2: Financial Data Structures, 23
Chapter 3: Labeling, 43
Chapter 4: Sample Weights, 59
Chapter 5: Fractionally Differentiated Features, 75

21

CHAPTER 2

Financial Data Structures

2.1 MOTIVATION

In this chapter we will learn how to work with unstructured financial data, and from
that to derive a structured dataset amenable to ML algorithms. In general, you do not
want to consume someone else’s processed dataset, as the likely outcome will be that
you discover what someone else already knows or will figure out soon. Ideally your
starting point is a collection of unstructured, raw data that you are going to process
in a way that will lead to informative features.

2.2 ESSENTIAL TYPES OF FINANCIAL DATA

Financial data comes in many shapes and forms. Table 2.1 shows the four essential
types of financial data, ordered from left to right in terms of increasing diversity. Next,
we will discuss their different natures and applications.

2.2.1 Fundamental Data

Fundamental data encompasses information that can be found in regulatory filings
and business analytics. It is mostly accounting data, reported quarterly. A particular
aspect of this data is that it is reported with a lapse. You must confirm exactly when
each data point was released, so that your analysis uses that information only after
it was publicly available. A common beginner’s error is to assume that this data was
published at the end of the reporting period. That is never the case.

For example, fundamental data published by Bloomberg is indexed by the last date
included in the report, which precedes the date of the release (often by 1.5 months). In
other words, Bloomberg is assigning those values to a date when they were not known.
You could not believe how many papers are published every year using misaligned

23

24 FINANCIAL DATA STRUCTURES

TABLE 2.1 The Four Essential Types of Financial Data

Fundamental Data Market Data Analytics Alternative Data

� Assets
� Liabilities
� Sales
� Costs/earnings
� Macro variables
� . . .

� Price/yield/implied
volatility

� Volume
� Dividend/coupons
� Open interest
� Quotes/cancellations
� Aggressor side
� . . .

� Analyst
recommendations

� Credit ratings
� Earnings

expectations
� News sentiment
� . . .

� Satellite/CCTV
images

� Google searches
� Twitter/chats
� Metadata
� . . .

fundamental data, especially in the factor-investing literature. Once you align the data
correctly, a substantial number of findings in those papers cannot be reproduced.

A second aspect of fundamental data is that it is often backfilled or reinstated.
“Backfilling” means that missing data is assigned a value, even if those values were
unknown at that time. A “reinstated value” is a corrected value that amends an incor-
rect initial release. A company may issue multiple corrections for a past quarter’s
results long after the first publication, and data vendors may overwrite the initial val-
ues with their corrections. The problem is, the corrected values were not known on
that first release date. Some data vendors circumvent this problem by storing multiple
release dates and values for each variable. For example, we typically have three val-
ues for a single quarterly GDP release: the original released value and two monthly
revisions. Still, it is very common to find studies that use the final released value and
assign it to the time of the first release, or even to the last day in the reporting period.
We will revisit this mistake, and its implications, when we discuss backtesting errors
in Chapter 11.

Fundamental data is extremely regularized and low frequency. Being so accessible
to the marketplace, it is rather unlikely that there is much value left to be exploited.
Still, it may be useful in combination with other data types.

2.2.2 Market Data

Market data includes all trading activity that takes place in an exchange (like CME)
or trading venue (like MarketAxess). Ideally, your data provider has given you a raw
feed, with all sorts of unstructured information, like FIX messages that allow you
to fully reconstruct the trading book, or the full collection of BWIC (bids wanted
in competition) responses. Every market participant leaves a characteristic footprint
in the trading records, and with enough patience, you will find a way to anticipate
a competitor’s next move. For example, TWAP algorithms leave a very particular
footprint that is used by predatory algorithms to front-run their end-of-day trading
(usually hedging) activity (Easley, López de Prado, and O’Hara [2011]). Human
GUI traders often trade in round lots, and you can use this fact to estimate what
percentage of the volume is coming from them at a given point in time, then associate
it with a particular market behavior.

BARS 25

One appealing aspect of FIX data is that it is not trivial to process, unlike fun-
damental data. It is also very abundant, with over 10 TB being generated on a daily
basis. That makes it a more interesting dataset for strategy research.

2.2.3 Analytics

You could think of analytics as derivative data, based on an original source, which
could be fundamental, market, alternative, or even a collection of other analytics.
What characterizes analytics is not the content of the information, but that it is not
readily available from an original source, and that it has been processed for you in
a particular way. Investment banks and research firms sell valuable information that
results from in-depth analyses of companies’ business models, activities, competition,
outlook, etc. Some specialized firms sell statistics derived from alternative data, for
example, the sentiment extracted from news reports and social media.

A positive aspect of analytics is that the signal has been extracted for you from a
raw source. The negative aspects are that analytics may be costly, the methodology
used in their production may be biased or opaque, and you will not be the sole
consumer.

2.2.4 Alternative Data

Kolanovic and Krishnamachari [2017] differentiate among alternative data produced
by individuals (social media, news, web searches, etc.), business processes (transac-
tions, corporate data, government agencies, etc.), and sensors (satellites, geolocation,
weather, CCTV, etc.). Some popular satellite image or video feeds include monitoring
of tankers, tunnel traffic activity, or parking lot occupancies.

What truly characterizes alternative data is that it is primary information, that is,
information that has not made it to the other sources. Before Exxon Mobile reported
increased earnings, before its market price shot up, before analysts wrote their com-
mentary of their latest filings, before all of that, there were movements of tankers
and drillers and pipeline traffic. They happened months before those activities were
reflected in the other data types. Two problematic aspects of alternative data are their
cost and privacy concerns. All that spy craft is expensive, and the surveilled company
may object, not to mention bystanders.

Alternative data offers the opportunity to work with truly unique, hard-to-process
datasets. Remember, data that is hard to store, manipulate, and operate is always the
most promising. You will recognize that a dataset may be useful if it annoys your data
infrastructure team. Perhaps your competitors did not try to use it for logistic reasons,
gave up midway, or processed it incorrectly.

2.3 BARS

In order to apply ML algorithms on your unstructured data, we need to parse it,
extract valuable information from it, and store those extractions in a regularized
format. Most ML algorithms assume a table representation of the extracted data.

26 FINANCIAL DATA STRUCTURES

Finance practitioners often refer to those tables’ rows as “bars.” We can distinguish
between two categories of bar methods: (1) standard bar methods, which are
common in the literature, and (2) more advanced, information-driven methods,
which sophisticated practitioners use although they cannot be found (yet) in journal
articles. In this section, we will discuss how to form those bars.

2.3.1 Standard Bars

Some bar construction methods are very popular in the financial industry, to the point
that most data vendors’ APIs offer several of them. The purpose of these methods is
to transform a series of observations that arrive at irregular frequency (often referred
to as “inhomogeneous series”) into a homogeneous series derived from regular
sampling.

2.3.1.1 Time Bars
Time bars are obtained by sampling information at fixed time intervals, e.g., once
every minute. The information collected usually includes:

� Timestamp
� Volume-weighted average price (VWAP)
� Open (i.e., first) price
� Close (i.e., last) price
� High price
� Low price
� Volume traded, etc.

Although time bars are perhaps the most popular among practitioners and aca-
demics, they should be avoided for two reasons. First, markets do not process infor-
mation at a constant time interval. The hour following the open is much more active
than the hour around noon (or the hour around midnight in the case of futures). As
biological beings, it makes sense for humans to organize their day according to the
sunlight cycle. But today’s markets are operated by algorithms that trade with loose
human supervision, for which CPU processing cycles are much more relevant than
chronological intervals (Easley, López de Prado, and O’Hara [2011]). This means that
time bars oversample information during low-activity periods and undersample infor-
mation during high-activity periods. Second, time-sampled series often exhibit poor
statistical properties, like serial correlation, heteroscedasticity, and non-normality of
returns (Easley, López de Prado, and O’Hara [2012]). GARCH models were devel-
oped, in part, to deal with the heteroscedasticity associated with incorrect sampling.
As we will see next, forming bars as a subordinated process of trading activity avoids
this problem in the first place.

2.3.1.2 Tick Bars
The idea behind tick bars is straightforward: The sample variables listed earlier
(timestamp, VWAP, open price, etc.) will be extracted each time a pre-defined number

BARS 27

of transactions takes place, e.g., 1,000 ticks. This allows us to synchronize sampling
with a proxy of information arrival (the speed at which ticks are originated).

Mandelbrot and Taylor [1967] were among the first to realize that sampling as a
function of the number of transactions exhibited desirable statistical properties: “Price
changes over a fixed number of transactions may have a Gaussian distribution. Price
changes over a fixed time period may follow a stable Paretian distribution, whose
variance is infinite. Since the number of transactions in any time period is random,
the above statements are not necessarily in disagreement.”

Ever since Mandelbrot and Taylor’s paper, multiple studies have confirmed that
sampling as a function of trading activity allows us to achieve returns closer to IID
Normal (see Ané and Geman [2000]). This is important, because many statistical
methods rely on the assumption that observations are drawn from an IID Gaussian
process. Intuitively, we can only draw inference from a random variable that is invari-
ant, and tick bars allow for better inference than time bars.

When constructing tick bars, you need to be aware of outliers. Many exchanges
carry out an auction at the open and an auction at the close. This means that for a
period of time, the order book accumulates bids and offers without matching them.
When the auction concludes, a large trade is published at the clearing price, for an
outsized amount. This auction trade could be the equivalent of thousands of ticks,
even though it is reported as one tick.

2.3.1.3 Volume Bars
One problem with tick bars is that order fragmentation introduces some arbitrariness
in the number of ticks. For example, suppose that there is one order sitting on the
offer, for a size of 10. If we buy 10 lots, our one order will be recorded as one tick.
If instead on the offer there are 10 orders of size 1, our one buy will be recorded as
10 separate transactions. In addition, matching engine protocols can further split one
fill into multiple artificial partial fills, as a matter of operational convenience.

Volume bars circumvent that problem by sampling every time a pre-defined
amount of the security’s units (shares, futures contracts, etc.) have been exchanged.
For example, we could sample prices every time a futures contract exchanges 1,000
units, regardless of the number of ticks involved.

It is hard to imagine these days, but back in the 1960s vendors rarely published
volume data, as customers were mostly concerned with tick prices. After volume
started to be reported as well, Clark [1973] realized that sampling returns by volume
achieved even better statistical properties (i.e., closer to an IID Gaussian distribution)
than sampling by tick bars. Another reason to prefer volume bars over time bars or
tick bars is that several market microstructure theories study the interaction between
prices and volume. Sampling as a function of one of these variables is a convenient
artifact for these analyses, as we will find out in Chapter 19.

2.3.1.4 Dollar Bars
Dollar bars are formed by sampling an observation every time a pre-defined mar-
ket value is exchanged. Of course, the reference to dollars is meant to apply to the

28 FINANCIAL DATA STRUCTURES

currency in which the security is denominated, but nobody refers to euro bars, pound
bars, or yen bars (although gold bars would make for a fun pun).

Let me illustrate the rationale behind dollar bars with a couple of examples. First,
suppose that we wish to analyze a stock that has exhibited an appreciation of 100%
over a certain period of time. Selling $1,000 worth of that stock at the end of the
period requires trading half the number of shares it took to buy $1,000 worth of that
stock at the beginning. In other words, the number of shares traded is a function
of the actual value exchanged. Therefore, it makes sense sampling bars in terms of
dollar value exchanged, rather than ticks or volume, particularly when the analysis
involves significant price fluctuations. This point can be verified empirically. If you
compute tick bars and volume bars on E-mini S&P 500 futures for a given bar size,
the number of bars per day will vary wildly over the years. That range and speed
of variation will be reduced once you compute the number of dollar bars per day
over the years, for a constant bar size. Figure 2.1 plots the exponentially weighted
average number of bars per day when we apply a fixed bar size on tick, volume,
and dollar sampling methods.

A second argument that makes dollar bars more interesting than time, tick, or
volume bars is that the number of outstanding shares often changes multiple times
over the course of a security’s life, as a result of corporate actions. Even after adjusting
for splits and reverse splits, there are other actions that will impact the amount of ticks
and volumes, like issuing new shares or buying back existing shares (a very common
practice since the Great Recession of 2008). Dollar bars tend to be robust in the face
of those actions. Still, you may want to sample dollar bars where the size of the bar is
not kept constant over time. Instead, the bar size could be adjusted dynamically as a
function of the free-floating market capitalization of a company (in the case of stocks),
or the outstanding amount of issued debt (in the case of fixed-income securities).

FIGURE 2.1 Average daily frequency of tick, volume, and dollar bars

BARS 29

2.3.2 Information-Driven Bars

The purpose of information-driven bars is to sample more frequently when new infor-
mation arrives to the market. In this context, the word “information” is used in a mar-
ket microstructural sense. As we will see in Chapter 19, market microstructure the-
ories confer special importance to the persistence of imbalanced signed volumes, as
that phenomenon is associated with the presence of informed traders. By synchroniz-
ing sampling with the arrival of informed traders, we may be able to make decisions
before prices reach a new equilibrium level. In this section we will explore how to
use various indices of information arrival to sample bars.

2.3.2.1 Tick Imbalance Bars
Consider a sequence of ticks {(pt, vt)}t=1,…,T , where pt is the price associated with
tick t and vt is the volume associated with tick t. The so-called tick rule defines a
sequence {bt}t=1,…,T where

bt =
⎧⎪⎨⎪⎩

bt−1 if Δpt = 0||Δpt
||

Δpt
if Δpt ≠ 0

with bt ∈ {−1, 1}, and the boundary condition b0 is set to match the terminal value bT
from the immediately preceding bar. The idea behind tick imbalance bars (TIBs) is to
sample bars whenever tick imbalances exceed our expectations. We wish to determine
the tick index, T, such that the accumulation of signed ticks (signed according to the
tick rule) exceeds a given threshold. Next, let us discuss the procedure to determine T.

First, we define the tick imbalance at time T as

𝜃T =
T∑

t=1

bt

Second, we compute the expected value of 𝜃T at the beginning of the bar, E0[𝜃T] =
E0[T](P[bt = 1] − P[bt = −1]), where E0[T] is the expected size of the tick bar,
P[bt = 1] is the unconditional probability that a tick is classified as a buy, and
P[bt = −1] is the unconditional probability that a tick is classified as a sell. Since
P[bt = 1] + P[bt = −1] = 1, then E0[𝜃T] = E0[T](2P[bt = 1] − 1). In practice, we
can estimate E0[T] as an exponentially weighted moving average of T values from
prior bars, and (2P[bt = 1] − 1) as an exponentially weighted moving average of bt
values from prior bars.

Third, we define a tick imbalance bar (TIB) as a T∗-contiguous subset of ticks
such that the following condition is met:

T∗ = arg min
T

{||𝜃T
|| ≥ E0 [T] |||2P

[
bt = 1

]
− 1|||}

30 FINANCIAL DATA STRUCTURES

where the size of the expected imbalance is implied by |2P[bt = 1] − 1|. When 𝜃T
is more imbalanced than expected, a low T will satisfy these conditions. Accord-
ingly, TIBs are produced more frequently under the presence of informed trading
(asymmetric information that triggers one-side trading). In fact, we can understand
TIBs as buckets of trades containing equal amounts of information (regardless of the
volumes, prices, or ticks traded).

2.3.2.2 Volume/Dollar Imbalance Bars
The idea behind volume imbalance bars (VIBs) and dollar imbalance bars (DIBs) is
to extend the concept of tick imbalance bars (TIBs). We would like to sample bars
when volume or dollar imbalances diverge from our expectations. Based on the same
notions of tick rule and boundary condition b0 as we discussed for TIBs, we will
define a procedure to determine the index of the next sample, T.

First, we define the imbalance at time T as

𝜃T =
T∑

t=1

btvt

where vt may represent either the number of securities traded (VIB) or the dollar
amount exchanged (DIB). Your choice of vt is what determines whether you are sam-
pling according to the former or the latter.

Second, we compute the expected value of 𝜃T at the beginning of the bar

E0[𝜃T] = E0

[
T∑

t|bt=1
vt

]
− E0

[
T∑

t|bt=−1
vt

]
= E0[T](P[bt = 1]E0[vt|bt = 1]

−P[bt = −1]E0[vt|bt = −1])

Let us denote v+ = P[bt = 1]E0[vt|bt = 1], v− = P[bt = −1]E0[vt|bt = −1], so
that E0[T]−1E0[

∑
t vt] = E0[vt] = v+ + v−. You can think of v+ and v− as decom-

posing the initial expectation of vt into the component contributed by buys and the
component contributed by sells. Then

E0[𝜃T] = E0[T](v+ − v−) = E0[T](2v+ − E0[vt])

In practice, we can estimate E0[T] as an exponentially weighted moving average
of T values from prior bars, and (2v+ − E0[vt]) as an exponentially weighted moving
average of btvt values from prior bars.

Third, we define VIB or DIB as a T∗-contiguous subset of ticks such that the
following condition is met:

T∗ = arg min
T

{|𝜃T | ≥ E0[T]|2v+ − E0[vt]|}

BARS 31

where the size of the expected imbalance is implied by |2v+ − E0[vt]|. When 𝜃T is
more imbalanced than expected, a low T will satisfy these conditions. This is the
information-based analogue of volume and dollar bars, and like its predecessors, it
addresses the same concerns regarding tick fragmentation and outliers. Furthermore,
it also addresses the issue of corporate actions, because the above procedure does
not rely on a constant bar size. Instead, the bar size is adjusted dynamically.

2.3.2.3 Tick Runs Bars
TIBs, VIBs, and DIBs monitor order flow imbalance, as measured in terms of ticks,
volumes, and dollar values exchanged. Large traders will sweep the order book, use
iceberg orders, or slice a parent order into multiple children, all of which leave a
trace of runs in the {bt}t=1,…,T sequence. For this reason, it can be useful to monitor
the sequence of buys in the overall volume, and take samples when that sequence
diverges from our expectations.

First, we define the length of the current run as

𝜃T = max

{
T∑

t|bt=1

bt,−
T∑

t|bt=−1

bt

}

Second, we compute the expected value of 𝜃T at the beginning of the bar

E0[𝜃T] = E0[T]max{P[bt = 1], 1 − P[bt = 1]}

In practice, we can estimate E0[T] as an exponentially weighted moving average of
T values from prior bars, and P[bt = 1] as an exponentially weighted moving average
of the proportion of buy ticks from prior bars.

Third, we define a tick runs bar (TRB) as a T∗-contiguous subset of ticks such that
the following condition is met:

T∗ = arg min
T

{𝜃T ≥ E0[T]max{P[bt = 1],1 − P[bt = 1]}}

where the expected count of ticks from runs is implied by max{P[bt = 1],
1 − P[bt = −1]}. When 𝜃T exhibits more runs than expected, a low T will satisfy
these conditions. Note that in this definition of runs we allow for sequence breaks.
That is, instead of measuring the length of the longest sequence, we count the number
of ticks of each side, without offsetting them (no imbalance). In the context of forming
bars, this turns out to be a more useful definition than measuring sequence lengths.

2.3.2.4 Volume/Dollar Runs Bars
Volume runs bars (VRBs) and dollar runs bars (DRBs) extend the above definition of
runs to volumes and dollars exchanged, respectively. The intuition is that we wish to
sample bars whenever the volumes or dollars traded by one side exceed our expec-
tation for a bar. Following our customary nomenclature for the tick rule, we need to
determine the index T of the last observation in the bar.

32 FINANCIAL DATA STRUCTURES

First, we define the volumes or dollars associated with a run as

𝜃T = max

⎧⎪⎨⎪⎩
T∑

t|bt=1

btvt,−
T∑

t|bt=−1

btvt

⎫⎪⎬⎪⎭
where vt may represent either number of securities traded (VRB) or dollar amount
exchanged (DRB). Your choice of vt is what determines whether you are sampling
according to the former or the latter.

Second, we compute the expected value of 𝜃T at the beginning of the bar,

E0[𝜃T] = E0[T]max{P[bt = 1]E0[vt|bt = 1], (1 − P[bt = 1])E0[vt|bt = −1]}

In practice, we can estimate E0[T] as an exponentially weighted moving average
of T values from prior bars, P[bt = 1] as an exponentially weighted moving aver-
age of the proportion of buy ticks from prior bars, E0[vt|bt = 1] as an exponentially
weighted moving average of the buy volumes from prior bars, and E0[vt|bt = −1] as
an exponentially weighted moving average of the sell volumes from prior bars.

Third, we define a volume runs bar (VRB) as a T∗-contiguous subset of ticks such
that the following condition is met:

T∗ = arg min
T

{𝜃T ≥ E0[T]max{P[bt = 1]E0[vt|bt = 1],

(1 − P[bt = 1])E0[vt|bt = −1]}}

where the expected volume from runs is implied by max{P[bt = 1]E0[vt|bt = 1],
(1 − P[bt = 1])E0[vt|bt = −1]}. When 𝜃T exhibits more runs than expected, or the
volume from runs is greater than expected, a low T will satisfy these conditions.

2.4 DEALING WITH MULTI-PRODUCT SERIES

Sometimes we are interested in modelling a time series of instruments, where the
weights need to be dynamically adjusted over time. Other times we must deal with
products that pay irregular coupons or dividends, or that are subject to corporate
actions. Events that alter the nature of the time series under study need to be treated
properly, or we will inadvertently introduce a structural break that will mislead our
research efforts (more on this in Chapter 17). This problem appears in many guises:
when we model spreads with changing weights, or baskets of securities where div-
idends/coupons must be reinvested, or baskets that must be rebalanced, or when an
index’s constituents are changed, or when we must replace an expired/matured con-
tract/security with another, etc.

DEALING WITH MULTI-PRODUCT SERIES 33

Futures are a case in point. In my experience, people struggle unnecessarily when
manipulating futures, mainly because they do not know how to handle the roll well.
The same can be said of strategies based on spreads of futures, or baskets of stocks or
bonds. In the next section, I’ll show you one way to model a basket of securities as if
it was a single cash product. I call it the “ETF trick” because the goal is to transform
any complex multi-product dataset into a single dataset that resembles a total-return
ETF. Why is this useful? Because your code can always assume that you only trade
cashlike products (non-expiring cash instruments), regardless of the complexity and
composition of the underlying series.

2.4.1 The ETF Trick

Suppose we wish to develop a strategy that trades a spread of futures. A few nuisances
arise from dealing with a spread rather than an outright instrument. First, the spread
is characterized by a vector of weights that changes over time. As a result, the spread
itself may converge even if prices do not change. When that happens, a model trading
that series will be misled to believe that PnL (the net mark-to-market value of profits
and losses) has resulted from that weight-induced convergence. Second, spreads can
acquire negative values, because they do not represent a price. This can often be
problematic, as most models assume positive prices. Third, trading times will not
align exactly for all constituents, so the spread is not always tradeable at the last
levels published, or with zero latency risk. Also, execution costs must be considered,
like crossing the bid-ask spread.

One way to avoid these issues is to produce a time series that reflects the value of $1
invested in a spread. Changes in the series will reflect changes in PnL, the series will
be strictly positive (at worst, infinitesimal), and the implementation shortfall will be
taken into account. This will be the series used to model, generate signals, and trade,
as if it were an ETF.

Suppose that we are given a history of bars, as derived from any of the methods
explained in Section 2.3. These bars contain the following columns:

� oi,t is the raw open price of instrument i = 1,… , I at bar t = 1,… , T .
� pi,t is the raw close price of instrument i = 1,… , I at bar t = 1,… , T .
�
𝜑i,t is the USD value of one point of instrument i = 1,… , I at bar t = 1,… , T .
This includes foreign exchange rate.

� vi,t is the volume of instrument i = 1,… , I at bar t = 1,… , T .
� di,t is the carry, dividend, or coupon paid by instrument i at bar t. This variable

can also be used to charge margin costs, or costs of funding.

where all instruments i = 1,… , I were tradeable at bar t = 1,… , T . In other words,
even if some instruments were not tradeable over the entirety of the time interval
[t − 1, t], at least they were tradeable at times t − 1 and t (markets were open and
able to execute orders at those instants). For a basket of futures characterized by an

34 FINANCIAL DATA STRUCTURES

allocations vector 𝜔t rebalanced (or rolled) on bars B ⊆ {1,… , T}, the $1 investment
value {Kt} is derived as

hi,t =
⎧⎪⎨⎪⎩

𝜔i,tKt

oi,t+1𝜑i,t

∑I

i=1
||𝜔i,t

|| if t ∈ B

hi,t−1 otherwise

𝛿i,t =

{
pi,t − oi,t if (t − 1) ∈ B

Δpi,t otherwise

Kt = Kt−1 +
I∑

i=1

hi,t−1𝜑i,t

(
𝛿i,t + di,t

)
and K0 = 1 in the initial AUM. Variable hi,t represents the holdings (number of
securities or contracts) of instrument i at time t. Variable 𝛿i,t is the change of mar-
ket value between t − 1 and t for instrument i. Note that profits or losses are being
reinvested whenever t ∈ B, hence preventing the negative prices. Dividends di,t are
already embedded in Kt, so there is no need for the strategy to know about them.

The purpose of 𝜔i,t

(∑I
i=1 |𝜔i,t|)−1

in hi,t is to de-lever the allocations. For series of

futures, we may not know pi,t of the new contract at a roll time t, so we use oi,t+1 as
the closest in time.

Let 𝜏i be the transaction cost associated with trading $1 of instrument i, e.g., 𝜏i =
1E − 4 (one basis point). There are three additional variables that the strategy needs
to know for every observed bar t:

1. Rebalance costs: The variable cost {ct} associated with the allocation rebal-
ance is ct =

∑I
i=1(|hi,t−1|pi,t + |hi,t|oi,t+1)𝜑i,t𝜏i, ∀t ∈ B. We do not embed ct in

Kt, or shorting the spread will generate fictitious profits when the allocation is
rebalanced. In your code, you can treat {ct} as a (negative) dividend.

2. Bid-ask spread: The cost {c̃t} of buying or selling one unit of this virtual ETF
is c̃t =

∑I
i=1 |hi,t−1|pi,t𝜑i,t𝜏i. When a unit is bought or sold, the strategy must

charge this cost c̃t, which is the equivalent to crossing the bid-ask spread of this
virtual ETF.

3. Volume: The volume traded {vt} is determined by the least active member in
the basket. Let vi,t be the volume traded by instrument i over bar t. The number

of tradeable basket units is vt = min
i

{
vi,t|hi,t−1|

}
.

Transaction costs functions are not necessarily linear, and those non-linear costs
can be simulated by the strategy based on the above information. Thanks to the ETF
trick, we can model a basket of futures (or a single futures) as if it was a single non-
expiring cash product.

DEALING WITH MULTI-PRODUCT SERIES 35

2.4.2 PCA Weights

The interested reader will find many practical ways of computing hedging weights
in López de Prado and Leinweber [2012] and Bailey and López de Prado [2012].
For the sake of completeness, let us review one way to derive the vector {𝜔t} used
in the previous section. Consider an IID multivariate Gaussian process characterized
by a vector of means 𝜇, of size Nx1, and a covariance matrix V, of size NxN. This
stochastic process describes an invariant random variable, like the returns of stocks,
the changes in yield of bonds, or changes in options’ volatilities, for a portfolio of N
instruments. We would like to compute the vector of allocations 𝜔 that conforms to
a particular distribution of risks across V’s principal components.

First, we perform a spectral decomposition, VW = WΛ, where the columns in W
are reordered so that the elements of Λ’s diagonal are sorted in descending order.
Second, given a vector of allocations 𝜔, we can compute the portfolio’s risk as 𝜎2 =
𝜔
′V𝜔 = 𝜔

′WΛW′
𝜔 = 𝛽

′Λ𝛽 = (Λ
1∕2𝛽)′(Λ

1∕2𝛽), where 𝛽 represents the projection of
𝜔 on the orthogonal basis. Third, Λ is a diagonal matrix, thus 𝜎

2 =
∑N

n=1 𝛽
2
nΛn,n,

and the risk attributed to the nth component is Rn = 𝛽
2
nΛn,n𝜎

−2 = [W′
𝜔]2

nΛn,n𝜎
−2,

with R′1N = 1, and 1N is a vector of N ones. You can interpret {Rn}n=1,…,N as the
distribution of risks across the orthogonal components.

Fourth, we would like to compute the vector 𝜔 that delivers a user-defined risk dis-

tribution R. From earlier steps, 𝛽 =
{
𝜎

√
Rn

Λn,n

}
n=1,…,N

, which represents the allo-

cation in the new (orthogonal) basis. Fifth, the allocation in the old basis is given by
𝜔 = W𝛽. Re-scaling 𝜔 merely re-scales 𝜎, hence keeping the risk distribution con-
stant. Figure 2.2 illustrates the contribution to risk per principal component for an

FIGURE 2.2 Contribution to risk per principal component

36 FINANCIAL DATA STRUCTURES

inverse variance allocation. Almost all principal components contribute risk, includ-
ing those with highest variance (components 1 and 2). In contrast, for the PCA port-
folio, only the component with lowest variance contributes risk.

Snippet 2.1 implements this method, where the user-defined risk distribution
R is passed through argument riskDist (optional None). If riskDist is None,
the code will assume all risk must be allocated to the principal component with
smallest eigenvalue, and the weights will be the last eigenvector re-scaled to match
𝜎 (riskTarget).

SNIPPET 2.1 PCA WEIGHTS FROM A RISK DISTRIBUTION R

def pcaWeights(cov,riskDist=None,riskTarget=1.):
Following the riskAlloc distribution, match riskTarget
eVal,eVec=np.linalg.eigh(cov) # must be Hermitian
indices=eVal.argsort()[::-1] # arguments for sorting eVal desc
eVal,eVec=eVal[indices],eVec[:,indices]
if riskDist is None:

riskDist=np.zeros(cov.shape[0])
riskDist[-1]=1.

loads=riskTarget*(riskDist/eVal)**.5
wghts=np.dot(eVec,np.reshape(loads,(-1,1)))
#ctr=(loads/riskTarget)**2*eVal # verify riskDist
return wghts

2.4.3 Single Future Roll

The ETF trick can handle the rolls of a single futures contract, as a particular case of a
1-legged spread. However, when dealing with a single futures contract, an equivalent
and more direct approach is to form a time series of cumulative roll gaps, and detract
that gaps series from the price series. Snippet 2.2 shows a possible implementation
of this logic, using a series of tick bars downloaded from Bloomberg and stored in a
HDF5 table. The meaning of the Bloomberg fields is as follows:

� FUT_CUR_GEN_TICKER: It identifies the contract associated with that price. Its
value changes with every roll.

� PX_OPEN: The open price associated with that bar.
� PX_LAST: The close price associated with the bar.
� VWAP: The volume-weighted average price associated with that bar.

The argument matchEnd in function rollGaps determines whether the
futures series should be rolled forward (matchEnd=False) or backward
(matchEnd=True). In a forward roll, the price at the start of the rolled series

DEALING WITH MULTI-PRODUCT SERIES 37

matches the price at the start of the raw series. In a backward roll, the price at the
end of the rolled series matches the price at the end of the raw series.

SNIPPET 2.2 FORM A GAPS SERIES, DETRACT IT FROM PRICES

def getRolledSeries(pathIn,key):
series=pd.read_hdf(pathIn,key='bars/ES_10k')
series['Time']=pd.to_datetime(series['Time'],format='%Y%m%d%H%M%S%f')
series=series.set_index('Time')
gaps=rollGaps(series)
for fld in ['Close','VWAP']:series[fld]-=gaps
return series

#———
def rollGaps(series,dictio={'Instrument':'FUT_CUR_GEN_TICKER','Open':'PX_OPEN', \

'Close':'PX_LAST'},matchEnd=True):
Compute gaps at each roll, between previous close and next open
rollDates=series[dictio['Instrument']].drop_duplicates(keep='first').index
gaps=series[dictio['Close']]*0
iloc=list(series.index)
iloc=[iloc.index(i)-1 for i in rollDates] # index of days prior to roll
gaps.loc[rollDates[1:]]=series[dictio['Open']].loc[rollDates[1:]]- \

series[dictio['Close']].iloc[iloc[1:]].values
gaps=gaps.cumsum()
if matchEnd:gaps-=gaps.iloc[-1] # roll backward
return gaps

Rolled prices are used for simulating PnL and portfolio mark-to-market values.
However, raw prices should still be used to size positions and determine capital con-
sumption. Keep in mind, rolled prices can indeed become negative, particularly in
futures contracts that sold off while in contango. To see this, run Snippet 2.2 on a
series of Cotton #2 futures or Natural Gas futures.

In general, we wish to work with non-negative rolled series, in which case we
can derive the price series of a $1 investment as follows: (1) Compute a time series
of rolled futures prices, (2) compute the return (r) as rolled price change divided
by the previous raw price, and (3) form a price series using those returns (i.e.,
(1+r).cumprod()). Snippet 2.3 illustrates this logic.

SNIPPET 2.3 NON-NEGATIVE ROLLED PRICE SERIES

raw=pd.read_csv(filePath,index_col=0,parse_dates=True)
gaps=rollGaps(raw,dictio={'Instrument':'Symbol','Open':'Open','Close':'Close'})
rolled=raw.copy(deep=True)
for fld in ['Open','Close']:rolled[fld]-=gaps
rolled['Returns']=rolled['Close'].diff()/raw['Close'].shift(1)
rolled['rPrices']=(1+rolled['Returns']).cumprod()

38 FINANCIAL DATA STRUCTURES

2.5 SAMPLING FEATURES

So far we have learned how to produce a continuous, homogeneous, and structured
dataset from a collection of unstructured financial data. Although you could attempt to
apply an ML algorithm on such a dataset, in general that would not be a good idea, for
a couple of reasons. First, several ML algorithms do not scale well with sample size
(e.g., SVMs). Second, ML algorithms achieve highest accuracy when they attempt to
learn from relevant examples. Suppose that you wish to predict whether the next 5%
absolute return will be positive (a 5% rally) or negative (a 5% sell-off). At any random
time, the accuracy of such a prediction will be low. However, if we ask a classifier to
predict the sign of the next 5% absolute return after certain catalytic conditions, we
are more likely to find informative features that will help us achieve a more accurate
prediction. In this section we discuss ways of sampling bars to produce a features
matrix with relevant training examples.

2.5.1 Sampling for Reduction

As we have mentioned earlier, one reason for sampling features from a structured
dataset is to reduce the amount of data used to fit the ML algorithm. This operation
is also referred to as downsampling. This is often done by either sequential sampling
at a constant step size (linspace sampling), or by sampling randomly using a uniform
distribution (uniform sampling).

The main advantage of linspace sampling is its simplicity. The disadvantages are
that the step size is arbitrary, and that outcomes may vary depending on the seed bar.
Uniform sampling addresses these concerns by drawing samples uniformly across the
entire set of bars. Still, both methods suffer the criticism that the sample does not nec-
essarily contain the subset of most relevant observations in terms of their predictive
power or informational content.

2.5.2 Event-Based Sampling

Portfolio managers typically place a bet after some event takes place, such as a struc-
tural break (Chapter 17), an extracted signal (Chapter 18), or microstructural phenom-
ena (Chapter 19). These events could be associated with the release of some macroe-
conomic statistics, a spike in volatility, a significant departure in a spread away from
its equilibrium level, etc. We can characterize an event as significant, and let the ML
algorithm learn whether there is an accurate prediction function under those circum-
stances. Perhaps the answer is no, in which case we would redefine what constitutes
an event, or try again with alternative features. For illustration purposes, let us discuss
one useful event-based sampling method.

2.5.2.1 The CUSUM Filter
The CUSUM filter is a quality-control method, designed to detect a shift in
the mean value of a measured quantity away from a target value. Consider IID

SAMPLING FEATURES 39

observations {yt}t=1,…,T arising from a locally stationary process. We define the
cumulative sums

St = max
{

0, St−1 + yt − Et−1

[
yt

]}
with boundary condition S0 = 0. This procedure would recommend an action at the
first t satisfying St ≥ h, for some threshold h (the filter size). Note that St = 0 when-
ever yt ≤ Et−1[yt] − St−1. This zero floor means that we will skip some downward
deviations that otherwise would make St negative. The reason is, the filter is set up to
identify a sequence of upside divergences from any reset level zero. In particular, the
threshold is activated when

St ≥ h ⇔ ∃𝜏 ∈ [1, t]
||||||

t∑
i=𝜏

(
yi − Ei−1

[
yt

])
≥ h

This concept of run-ups can be extended to include run-downs, giving us a sym-
metric CUSUM filter:

S+t = max
{

0, S+t−1 + yt − Et−1

[
yt

]}
, S+0 = 0

S−t = min
{

0, S−t−1 + yt − Et−1

[
yt

]}
, S−0 = 0

St = max
{

S+t ,−S−t
}

Lam and Yam [1997] propose an investment strategy whereby alternating buy-sell
signals are generated when an absolute return h is observed relative to a prior high
or low. Those authors demonstrate that such strategy is equivalent to the so-called
“filter trading strategy” studied by Fama and Blume [1966]. Our use of the CUSUM
filter is different: We will sample a bar t if and only if St ≥ h, at which point St is
reset. Snippet 2.4 shows an implementation of the symmetric CUSUM filter, where
Et−1[yt] = yt−1.

SNIPPET 2.4 THE SYMMETRIC CUSUM FILTER

def getTEvents(gRaw,h):
tEvents,sPos,sNeg=[],0,0
diff=gRaw.diff()
for i in diff.index[1:]:

sPos,sNeg=max(0,sPos+diff.loc[i]),min(0,sNeg+diff.loc[i])
if sNeg<-h:

sNeg=0;tEvents.append(i)
elif sPos>h:

sPos=0;tEvents.append(i)
return pd.DatetimeIndex(tEvents)

40 FINANCIAL DATA STRUCTURES

FIGURE 2.3 CUSUM sampling of a price series

The function getTEvents receives two arguments: the raw time series we wish
to filter (gRaw) and the threshold, h. One practical aspect that makes CUSUM filters
appealing is that multiple events are not triggered by gRaw hovering around a thresh-
old level, which is a flaw suffered by popular market signals such as Bollinger bands.
It will require a full run of length h for gRaw to trigger an event. Figure 2.3 illustrates
the samples taken by a CUSUM filter on a price series.

Variable St could be based on any of the features we will discuss in Chapters 17–
19, like structural break statistics, entropy, or market microstructure measurements.
For example, we could declare an event whenever SADF departs sufficiently from a
previous reset level (to be defined in Chapter 17). Once we have obtained this subset
of event-driven bars, we will let the ML algorithm determine whether the occurrence
of such events constitutes actionable intelligence.

EXERCISES

2.1 On a series of E-mini S&P 500 futures tick data:

(a) Form tick, volume, and dollar bars. Use the ETF trick to deal with the roll.

(b) Count the number of bars produced by tick, volume, and dollar bars on a
weekly basis. Plot a time series of that bar count. What bar type produces
the most stable weekly count? Why?

(c) Compute the serial correlation of returns for the three bar types. What bar
method has the lowest serial correlation?

REFERENCES 41

(d) Partition the bar series into monthly subsets. Compute the variance of returns
for every subset of every bar type. Compute the variance of those variances.
What method exhibits the smallest variance of variances?

(e) Apply the Jarque-Bera normality test on returns from the three bar types.
What method achieves the lowest test statistic?

2.2 On a series of E-mini S&P 500 futures tick data, compute dollar bars
and dollar imbalance bars. What bar type exhibits greater serial correlation?
Why?

2.3 On dollar bar series of E-mini S&P 500 futures and Eurostoxx 50 futures:

(a) Apply Section 2.4.2 to compute the {�̂�t} vector used by the ETF trick. (Hint:
You will need FX values for EUR/USD at the roll dates.)

(b) Derive the time series of the S&P 500/Eurostoxx 50 spread.

(c) Confirm that the series is stationary, with an ADF test.

2.4 Form E-mini S&P 500 futures dollar bars:

(a) Compute Bollinger bands of width 5% around a rolling moving average.
Count how many times prices cross the bands out (from within the bands
to outside the bands).

(b) Now sample those bars using a CUSUM filter, where {yt} are returns and
h = 0.05. How many samples do you get?

(c) Compute the rolling standard deviation of the two-sampled series. Which
one is least heteroscedastic? What is the reason for these results?

2.5 Using the bars from exercise 4:

(a) Sample bars using the CUSUM filter, where {yt} are absolute returns and
h = 0.05.

(b) Compute the rolling standard deviation of the sampled bars.

(c) Compare this result with the results from exercise 4. What procedure deliv-
ered the least heteroscedastic sample? Why?

REFERENCES

Ané, T. and H. Geman (2000): “Order flow, transaction clock and normality of asset returns.” Journal
of Finance, Vol. 55, pp. 2259–2284.

Bailey, David H., and M. López de Prado (2012): “Balanced baskets: A new approach to trading
and hedging risks.” Journal of Investment Strategies (Risk Journals), Vol. 1, No. 4 (Fall), pp.
21–62.

Clark, P. K. (1973): “A subordinated stochastic process model with finite variance for speculative
prices.” Econometrica, Vol. 41, pp. 135–155.

Easley, D., M. López de Prado, and M. O’Hara (2011): “The volume clock: Insights into the high
frequency paradigm.” Journal of Portfolio Management, Vol. 37, No. 2, pp. 118–128.

Easley, D., M. López de Prado, and M. O’Hara (2012): “Flow toxicity and liquidity in a high fre-
quency world.” Review of Financial Studies, Vol. 25, No. 5, pp. 1457–1493.

Fama, E. and M. Blume (1966): “Filter rules and stock market trading.” Journal of Business, Vol.
40, pp. 226–241.

42 FINANCIAL DATA STRUCTURES

Kolanovic, M. and R. Krishnamachari (2017): “Big data and AI strategies: Machine learning and
alternative data approach to investing.” White paper, JP Morgan, Quantitative and Derivatives
Strategy. May 18.

Lam, K. and H. Yam (1997): “CUSUM techniques for technical trading in financial markets.” Finan-
cial Engineering and the Japanese Markets, Vol. 4, pp. 257–274.

López de Prado, M. and D. Leinweber (2012): “Advances in cointegration and subset correlation
hedging methods.” Journal of Investment Strategies (Risk Journals), Vol. 1, No. 2 (Spring), pp.
67–115.

Mandelbrot, B. and M. Taylor (1967): “On the distribution of stock price differences.” Operations
Research, Vol. 15, No. 5, pp. 1057–1062.

CHAPTER 3

Labeling

3.1 MOTIVATION

In Chapter 2 we discussed how to produce a matrix X of financial features out of an
unstructured dataset. Unsupervised learning algorithms can learn the patterns from
that matrix X, for example whether it contains hierarchical clusters. On the other hand,
supervised learning algorithms require that the rows in X are associated with an array
of labels or values y, so that those labels or values can be predicted on unseen features
samples. In this chapter we will discuss ways to label financial data.

3.2 THE FIXED-TIME HORIZON METHOD

As it relates to finance, virtually all ML papers label observations using the fixed-time
horizon method. This method can be described as follows. Consider a features matrix
X with I rows, {Xi}i=1,…,I , drawn from some bars with index t = 1,…, T , where I ≤ T .
Chapter 2, Section 2.5 discussed sampling methods that produce the set of features
{Xi}i=1,…,I . An observation Xi is assigned a label yi ∈ {−1, 0, 1},

yi =
⎧⎪⎨⎪⎩
−1 if rti,0,ti,0+h < −𝜏
0 if |rti,0,ti,0+h| ≤ 𝜏

1 if rti,0,ti,0+h > 𝜏

where 𝜏 is a pre-defined constant threshold, ti,0 is the index of the bar immediately
after Xi takes place, ti,0 + h is the index of the h-th bar after ti,0, and rti,0,ti,0+h is the
price return over a bar horizon h,

rti,0,ti,0+h =
pti,0+h

pti,0

− 1

43

44 LABELING

Because the literature almost always works with time bars, h implies a fixed-time
horizon. The bibliography section lists multiple ML studies, of which Dixon et al.
[2016] is a recent example of this labeling method. Despite its popularity, there are
several reasons to avoid this approach in most cases. First, as we saw in Chapter
2, time bars do not exhibit good statistical properties. Second, the same threshold
𝜏 is applied regardless of the observed volatility. Suppose that 𝜏 = 1E − 2, where
sometimes we label an observation as yi = 1 subject to a realized bar volatility of
𝜎ti,0

= 1E − 4 (e.g., during the night session), and sometimes 𝜎ti,0
= 1E − 2 (e.g.,

around the open). The large majority of labels will be 0, even if return rti,0,ti,0+h was
predictable and statistically significant.

In other words, it is a very common error to label observations according to a
fixed threshold on time bars. Here are a couple of better alternatives. First, label per
a varying threshold 𝜎ti,0

, estimated using a rolling exponentially weighted standard
deviation of returns. Second, use volume or dollar bars, as their volatilities are much
closer to constant (homoscedasticity). But even these two improvements miss a key
flaw of the fixed-time horizon method: the path followed by prices. Every investment
strategy has stop-loss limits, whether they are self-imposed by the portfolio manager,
enforced by the risk department, or triggered by a margin call. It is simply unrealistic
to build a strategy that profits from positions that would have been stopped-out by the
exchange. That virtually no publication accounts for that when labeling observations
tells you something about the current state of the investment literature.

3.3 COMPUTING DYNAMIC THRESHOLDS

As argued in the previous section, in practice we want to set profit taking and stop-
loss limits that are a function of the risks involved in a bet. Otherwise, sometimes we
will be aiming too high (𝜏 ≫ 𝜎ti,0

), and sometimes too low (𝜏 ≪ 𝜎ti,0
), considering

the prevailing volatility.
Snippet 3.1 computes the daily volatility at intraday estimation points, applying a

span of span0 days to an exponentially weighted moving standard deviation. See the
pandas documentation for details on the pandas.Series.ewm function.

SNIPPET 3.1 DAILY VOLATILITY ESTIMATES

def getDailyVol(close,span0=100):
daily vol, reindexed to close

df0=close.index.searchsorted(close.index-pd.Timedelta(days=1))
df0=df0[df0>0]
df0=pd.Series(close.index[df0–1], index=close.index[close.shape[0]-df0.shape[0]:])
df0=close.loc[df0.index]/close.loc[df0.values].values-1 # daily returns

df0=df0.ewm(span=span0).std()
return df0

We can use the output of this function to set default profit taking and stop-loss
limits throughout the rest of this chapter.

THE TRIPLE-BARRIER METHOD 45

3.4 THE TRIPLE-BARRIER METHOD

Here I will introduce an alternative labeling method that I have not found in the liter-
ature. If you are an investment professional, I think you will agree that it makes more
sense. I call it the triple-barrier method because it labels an observation according to
the first barrier touched out of three barriers. First, we set two horizontal barriers and
one vertical barrier. The two horizontal barriers are defined by profit-taking and stop-
loss limits, which are a dynamic function of estimated volatility (whether realized
or implied). The third barrier is defined in terms of number of bars elapsed since the
position was taken (an expiration limit). If the upper barrier is touched first, we label
the observation as a 1. If the lower barrier is touched first, we label the observation
as a −1. If the vertical barrier is touched first, we have two choices: the sign of the
return, or a 0. I personally prefer the former as a matter of realizing a profit or loss
within limits, but you should explore whether a 0 works better in your particular
problems.

You may have noticed that the triple-barrier method is path-dependent. In order to
label an observation, we must take into account the entire path spanning [ti,0, ti,0 + h],
where h defines the vertical barrier (the expiration limit). We will denote ti,1 the time
of the first barrier touch, and the return associated with the observed feature is rti,0,ti,1

.
For the sake of clarity, ti,1 ≤ ti,0 + h and the horizontal barriers are not necessarily
symmetric.

Snippet 3.2 implements the triple-barrier method. The function receives four
arguments:

� close: A pandas series of prices.
� events: A pandas dataframe, with columns,
◦ t1: The timestamp of vertical barrier. When the value is np.nan, there will

not be a vertical barrier.
◦ trgt: The unit width of the horizontal barriers.

� ptSl: A list of two non-negative float values:
◦ ptSl[0]: The factor that multiplies trgt to set the width of the upper barrier.

If 0, there will not be an upper barrier.
◦ ptSl[1]: The factor that multiplies trgt to set the width of the lower barrier.

If 0, there will not be a lower barrier.
� molecule: A list with the subset of event indices that will be processed by a

single thread. Its use will become clear later on in the chapter.

SNIPPET 3.2 TRIPLE-BARRIER LABELING METHOD

def applyPtSlOnT1(close,events,ptSl,molecule):
apply stop loss/profit taking, if it takes place before t1 (end of event)
events_=events.loc[molecule]
out=events_[['t1']].copy(deep=True)

46 LABELING

if ptSl[0]>0:pt=ptSl[0]*events_['trgt']
else:pt=pd.Series(index=events.index) # NaNs
if ptSl[1]>0:sl=-ptSl[1]*events_['trgt']
else:sl=pd.Series(index=events.index) # NaNs
for loc,t1 in events_['t1'].fillna(close.index[-1]).iteritems():

df0=close[loc:t1] # path prices
df0=(df0/close[loc]-1)*events_.at[loc,'side'] # path returns
out.loc[loc,'sl']=df0[df0<sl[loc]].index.min() # earliest stop loss.
out.loc[loc,'pt']=df0[df0>pt[loc]].index.min() # earliest profit taking.

return out

The output from this function is a pandas dataframe containing the timestamps (if
any) at which each barrier was touched. As you can see from the previous description,
the method considers the possibility that each of the three barriers may be disabled.
Let us denote a barrier configuration by the triplet [pt,sl,t1], where a 0 means
that the barrier is inactive and a 1 means that the barrier is active. The possible eight
configurations are:

� Three useful configurations:
◦ [1,1,1]: This is the standard setup, where we define three barrier exit condi-

tions. We would like to realize a profit, but we have a maximum tolerance for
losses and a holding period.

◦ [0,1,1]: In this setup, we would like to exit after a number of bars, unless we
are stopped-out.

◦ [1,1,0]: Here we would like to take a profit as long as we are not stopped-out.
This is somewhat unrealistic in that we are willing to hold the position for as
long as it takes.

� Three less realistic configurations:
◦ [0,0,1]: This is equivalent to the fixed-time horizon method. It may still be

useful when applied to volume-, dollar-, or information-driven bars, and mul-
tiple forecasts are updated within the horizon.

◦ [1,0,1]: A position is held until a profit is made or the maximum holding
period is exceeded, without regard for the intermediate unrealized losses.

◦ [1,0,0]: A position is held until a profit is made. It could mean being locked
on a losing position for years.

� Two illogical configurations:
◦ [0,1,0]: This is an aimless configuration, where we hold a position until we

are stopped-out.
◦ [0,0,0]: There are no barriers. The position is locked forever, and no label is

generated.

Figure 3.1 shows two alternative configurations of the triple-barrier method. On
the left, the configuration is [1,1,0], where the first barrier touched is the lower
horizontal one. On the right, the configuration is [1,1,1], where the first barrier
touched is the vertical one.

THE TRIPLE-BARRIER METHOD 47

(a)

(b)

FIGURE 3.1 Two alternative configurations of the triple-barrier method

48 LABELING

3.5 LEARNING SIDE AND SIZE

In this section we will discuss how to label examples so that an ML algorithm can
learn both the side and the size of a bet. We are interested in learning the side of a
bet when we do not have an underlying model to set the sign of our position (long
or short). Under such circumstance, we cannot differentiate between a profit-taking
barrier and a stop-loss barrier, since that requires knowledge of the side. Learning the
side implies that either there are no horizontal barriers or that the horizontal barriers
must be symmetric.

Snippet 3.3 implements the function getEvents, which finds the time of the first
barrier touch. The function receives the following arguments:

� close: A pandas series of prices.
� tEvents: The pandas timeindex containing the timestamps that will seed every

triple barrier. These are the timestamps selected by the sampling procedures
discussed in Chapter 2, Section 2.5.

� ptSl: A non-negative float that sets the width of the two barriers. A 0 value
means that the respective horizontal barrier (profit taking and/or stop loss) will
be disabled.

� t1: A pandas series with the timestamps of the vertical barriers. We pass a
False when we want to disable vertical barriers.

� trgt: A pandas series of targets, expressed in terms of absolute returns.
� minRet: The minimum target return required for running a triple barrier search.
� numThreads: The number of threads concurrently used by the function.

SNIPPET 3.3 GETTING THE TIME OF FIRST TOUCH

def getEvents(close,tEvents,ptSl,trgt,minRet,numThreads,t1=False):
#1) get target
trgt=trgt.loc[tEvents]
trgt=trgt[trgt>minRet] # minRet
#2) get t1 (max holding period)
if t1 is False:t1=pd.Series(pd.NaT,index=tEvents)
#3) form events object, apply stop loss on t1
side_=pd.Series(1.,index=trgt.index)
events=pd.concat({'t1':t1,'trgt':trgt,'side':side_}, \

axis=1).dropna(subset=['trgt'])
df0=mpPandasObj(func=applyPtSlOnT1,pdObj=('molecule',events.index), \

numThreads=numThreads,close=close,events=events,ptSl=[ptSl,ptSl])
events['t1']=df0.dropna(how='all').min(axis=1) # pd.min ignores nan
events=events.drop('side',axis=1)
return events

Suppose that I = 1E6 and h = 1E3, then the number of conditions to evaluate
is up to one billion on a single instrument. Many ML tasks are computationally

LEARNING SIDE AND SIZE 49

expensive unless you are familiar with multi-threading, and this is one of them. Here
is where parallel computing comes into play. Chapter 20 discusses a few multipro-
cessing functions that we will use throughout the book.

Function mpPandasObj calls a multiprocessing engine, which is explained in
depth in Chapter 20. For the moment, you simply need to know that this function will
execute applyPtSlOnT1 in parallel. Function applyPtSlOnT1 returns the times-
tamps at which each barrier is touched (if any). Then, the time of the first touch is
the earliest time among the three returned by applyPtSlOnT1. Because we must
learn the side of the bet, we have passed ptSl=[ptSl,ptSl] as argument, and we
arbitrarily set the side to be always long (the horizontal barriers are symmetric, so
the side is irrelevant to determining the time of the first touch). The output from this
function is a pandas dataframe with columns:

� t1: The timestamp at which the first barrier is touched.
� trgt: The target that was used to generate the horizontal barriers.

Snippet 3.4 shows one way to define a vertical barrier. For each index in tEvents,
it finds the timestamp of the next price bar at or immediately after a number
of days numDays. This vertical barrier can be passed as optional argument t1
in getEvents.

SNIPPET 3.4 ADDING A VERTICAL BARRIER

t1=close.index.searchsorted(tEvents+pd.Timedelta(days=numDays))
t1=t1[t1<close.shape[0]]
t1=pd.Series(close.index[t1],index=tEvents[:t1.shape[0]]) # NaNs at end

Finally, we can label the observations using the getBins function defined in Snip-
pet 3.5. The arguments are the events dataframe we just discussed, and the close
pandas series of prices. The output is a dataframe with columns:

� ret: The return realized at the time of the first touched barrier.
� bin: The label, {−1, 0, 1}, as a function of the sign of the outcome. The function

can be easily adjusted to label as 0 those events when the vertical barrier was
touched first, which we leave as an exercise.

SNIPPET 3.5 LABELING FOR SIDE AND SIZE

def getBins(events,close):
#1) prices aligned with events
events_=events.dropna(subset=['t1'])
px=events_.index.union(events_['t1'].values).drop_duplicates()
px=close.reindex(px,method='bfill')

50 LABELING

#2) create out object
out=pd.DataFrame(index=events_.index)
out['ret']=px.loc[events_['t1'].values].values/px.loc[events_.index]-1
out['bin']=np.sign(out['ret'])
return out

3.6 META-LABELING

Suppose that you have a model for setting the side of the bet (long or short). You just
need to learn the size of that bet, which includes the possibility of no bet at all (zero
size). This is a situation that practitioners face regularly. We often know whether we
want to buy or sell a product, and the only remaining question is how much money
we should risk in such a bet. We do not want the ML algorithm to learn the side, just
to tell us what is the appropriate size. At this point, it probably does not surprise you
to hear that no book or paper has so far discussed this common problem. Thankfully,
that misery ends here. I call this problem meta-labeling because we want to build a
secondary ML model that learns how to use a primary exogenous model.

Rather than writing an entirely new getEvents function, we will make some
adjustments to the previous code, in order to handle meta-labeling. First, we accept a
new side optional argument (with default None), which contains the side of our bets
as decided by the primary model. When side is not None, the function understands
that meta-labeling is in play. Second, because now we know the side, we can effec-
tively discriminate between profit taking and stop loss. The horizontal barriers do not
need to be symmetric, as in Section 3.5. Argument ptSl is a list of two non-negative
float values, where ptSl[0] is the factor that multiplies trgt to set the width of
the upper barrier, and ptSl[1] is the factor that multiplies trgt to set the width
of the lower barrier. When either is 0, the respective barrier is disabled. Snippet 3.6
implements these enhancements.

SNIPPET 3.6 EXPANDING getEvents TO INCORPORATE
META-LABELING

def getEvents(close,tEvents,ptSl,trgt,minRet,numThreads,t1=False,side=None):
#1) get target
trgt=trgt.loc[tEvents]
trgt=trgt[trgt>minRet] # minRet
#2) get t1 (max holding period)
if t1 is False:t1=pd.Series(pd.NaT,index=tEvents)
#3) form events object, apply stop loss on t1
if side is None:side_,ptSl_=pd.Series(1.,index=trgt.index),[ptSl[0],ptSl[0]]
else:side_,ptSl_=side.loc[trgt.index],ptSl[:2]
events=pd.concat({'t1':t1,'trgt':trgt,'side':side_}, \

axis=1).dropna(subset=['trgt'])
df0=mpPandasObj(func=applyPtSlOnT1,pdObj=('molecule',events.index), \

numThreads=numThreads,close=inst['Close'],events=events,ptSl=ptSl_)

HOW TO USE META-LABELING 51

events['t1']=df0.dropna(how='all').min(axis=1) # pd.min ignores nan
if side is None:events=events.drop('side',axis=1)
return events

Likewise, we need to expand the getBins function, so that it handles meta-
labeling. Snippet 3.7 implements the necessary changes.

SNIPPET 3.7 EXPANDING getBins TO INCORPORATE
META-LABELING

def getBins(events,close):
’’’
Compute event's outcome (including side information, if provided).
events is a DataFrame where:
—events.index is event's starttime
—events[’t1’] is event's endtime
—events[’trgt’] is event's target
—events[’side’] (optional) implies the algo's position side
Case 1: (’side’ not in events): bin in (-1,1) <—label by price action
Case 2: (’side’ in events): bin in (0,1) <—label by pnl (meta-labeling)
’’’
#1) prices aligned with events
events_=events.dropna(subset=['t1'])
px=events_.index.union(events_['t1'].values).drop_duplicates()
px=close.reindex(px,method='bfill')
#2) create out object
out=pd.DataFrame(index=events_.index)
out['ret']=px.loc[events_['t1'].values].values/px.loc[events_.index]-1
if 'side' in events_:out['ret']*=events_['side'] # meta-labeling
out['bin']=np.sign(out['ret'])
if 'side' in events_:out.loc[out['ret']<=0,'bin']=0 # meta-labeling
return out

Now the possible values for labels in out['bin'] are {0,1}, as opposed to
the previous feasible values {−1,0,1}. The ML algorithm will be trained to decide
whether to take the bet or pass, a purely binary prediction. When the predicted label
is 1, we can use the probability of this secondary prediction to derive the size of the
bet, where the side (sign) of the position has been set by the primary model.

3.7 HOW TO USE META-LABELING

Binary classification problems present a trade-off between type-I errors (false posi-
tives) and type-II errors (false negatives). In general, increasing the true positive rate
of a binary classifier will tend to increase its false positive rate. The receiver operating

52 LABELING

FIGURE 3.2 A visualization of the “confusion matrix”

characteristic (ROC) curve of a binary classifier measures the cost of increasing the
true positive rate, in terms of accepting higher false positive rates.

Figure 3.2 illustrates the so-called “confusion matrix.” On a set of observations,
there are items that exhibit a condition (positives, left rectangle), and items that do not
exhibit a condition (negative, right rectangle). A binary classifier predicts that some
items exhibit the condition (ellipse), where the TP area contains the true positives
and the TN area contains the true negatives. This leads to two kinds of errors: false
positives (FP) and false negatives (FN). “Precision” is the ratio between the TP area
and the area in the ellipse. “Recall” is the ratio between the TP area and the area
in the left rectangle. This notion of recall (aka true positive rate) is in the context
of classification problems, the analogous to “power” in the context of hypothesis
testing. “Accuracy” is the sum of the TP and TN areas divided by the overall set of
items (square). In general, decreasing the FP area comes at a cost of increasing the
FN area, because higher precision typically means fewer calls, hence lower recall.
Still, there is some combination of precision and recall that maximizes the overall
efficiency of the classifier. The F1-score measures the efficiency of a classifier as the
harmonic average between precision and recall (more on this in Chapter 14).

Meta-labeling is particularly helpful when you want to achieve higher F1-scores.
First, we build a model that achieves high recall, even if the precision is not
particularly high. Second, we correct for the low precision by applying meta-labeling
to the positives predicted by the primary model.

THE QUANTAMENTAL WAY 53

Meta-labeling will increase your F1-score by filtering out the false positives, where
the majority of positives have already been identified by the primary model. Stated
differently, the role of the secondary ML algorithm is to determine whether a positive
from the primary (exogenous) model is true or false. It is not its purpose to come up
with a betting opportunity. Its purpose is to determine whether we should act or pass
on the opportunity that has been presented.

Meta-labeling is a very powerful tool to have in your arsenal, for four additional
reasons. First, ML algorithms are often criticized as black boxes (see Chapter 1).
Meta-labeling allows you to build an ML system on top of a white box (like a funda-
mental model founded on economic theory). This ability to transform a fundamental
model into an ML model should make meta-labeling particularly useful to “quanta-
mental” firms. Second, the effects of overfitting are limited when you apply meta-
labeling, because ML will not decide the side of your bet, only the size. Third, by
decoupling the side prediction from the size prediction, meta-labeling enables sophis-
ticated strategy structures. For instance, consider that the features driving a rally may
differ from the features driving a sell-off. In that case, you may want to develop an
ML strategy exclusively for long positions, based on the buy recommendations of
a primary model, and an ML strategy exclusively for short positions, based on the
sell recommendations of an entirely different primary model. Fourth, achieving high
accuracy on small bets and low accuracy on large bets will ruin you. As important as
identifying good opportunities is to size them properly, so it makes sense to develop
an ML algorithm solely focused on getting that critical decision (sizing) right. We will
retake this fourth point in Chapter 10. In my experience, meta-labeling ML models
can deliver more robust and reliable outcomes than standard labeling models.

3.8 THE QUANTAMENTAL WAY

You may have read in the press that many hedge funds are embracing the quanta-
mental approach. A simple Google search will show reports that many hedge funds,
including some of the most traditional ones, are investing tens of millions of dollars in
technologies designed to combine human expertise with quantitative methods. It turns
out, meta-labeling is exactly what these people have been waiting for. Let us see why.

Suppose that you have a series of features that you believe can forecast some
prices, you just do not know how. Since you do not have a model to determine the side
of each bet, you need to learn both side and size. You apply what you have learned in
Section 3.5, and produce some labels based on the triple-barrier method with sym-
metric horizontal barriers. Now you are ready to fit your algorithm on a training set,
and evaluate the accuracy of your forecasts on a testing set. Alternatively, you could
do the following:

1. Use your forecasts from the primary model, and generate meta-labels. Remem-
ber, horizontal barriers do not need to be symmetric in this case.

2. Fit your model again on the same training set, but this time using the meta-
labels you just generated.

3. Combine the “sides” from the first ML model with the “sizes” from the second
ML model.

54 LABELING

You can always add a meta-labeling layer to any primary model, whether that is an
ML algorithm, an econometric equation, a technical trading rule, a fundamental anal-
ysis, etc. That includes forecasts generated by a human, solely based on his intuition.
In that case, meta-labeling will help us figure out when we should pursue or dismiss
a discretionary PM’s call. The features used by such meta-labeling ML algorithm
could range from market information to biometric statistics to psychological assess-
ments. For example, the meta-labeling ML algorithm could find that discretionary
PMs tend to make particularly good calls when there is a structural break (Chapter
17), as they may be quicker to grasp a change in the market regime. Conversely, it
may find that PMs under stress, as evidenced by fewer hours of sleep, fatigue, change
in weight, etc. tend to make inaccurate predictions.1 Many professions require regular
psychological exams, and an ML meta-labeling algorithm may find that those scores
are also relevant to assess our current degree of confidence on a PM’s predictions.
Perhaps none of these factors affect discretionary PMs, and their brains operate inde-
pendently from their emotional being, like cold calculating machines. My guess is
that this is not the case, and therefore meta-labeling should become an essential ML
technique for every discretionary hedge fund. In the near future, every discretionary
hedge fund will become a quantamental firm, and meta-labeling offers them a clear
path to make that transition.

3.9 DROPPING UNNECESSARY LABELS

Some ML classifiers do not perform well when classes are too imbalanced. In those
circumstances, it is preferable to drop extremely rare labels and focus on the more
common outcomes. Snippet 3.8 presents a procedure that recursively drops obser-
vations associated with extremely rare labels. Function dropLabels recursively
eliminates those observations associated with classes that appear less than a fraction
minPct of cases, unless there are only two classes left.

SNIPPET 3.8 DROPPING UNDER-POPULATED LABELS

def dropLabels(events,minPtc=.05):
apply weights, drop labels with insufficient examples
while True:

df0=events['bin'].value_counts(normalize=True)
if df0.min()>minPct or df0.shape[0]<3:break
print 'dropped label',df0.argmin(),df0.min()
events=events[events['bin']!=df0.argmin()]

return events

1 You are probably aware of at least one large hedge fund that monitors the emotional state of their research
analysts on a daily basis.

EXERCISES 55

Incidentally, another reason you may want to drop unnecessary labels is this known
sklearn bug: https://github.com/scikit-learn/scikit-learn/issues/8566. This sort of bug
is a consequence of very fundamental assumptions in sklearn implementation, and
resolving them is far from trivial. In this particular instance, the error stems from
sklearn’s decision to operate with standard numpy arrays rather than structured arrays
or pandas objects. It is unlikely that there will be a fix by the time you are reading
this chapter, or in the near future. In later chapters, we will study ways to circumvent
these sorts of implementation errors, by building your own classes and expanding
sklearn’s functionality.

EXERCISES

3.1 Form dollar bars for E-mini S&P 500 futures:

(a) Apply a symmetric CUSUM filter (Chapter 2, Section 2.5.2.1) where the
threshold is the standard deviation of daily returns (Snippet 3.1).

(b) Use Snippet 3.4 on a pandas series t1, where numDays=1.

(c) On those sampled features, apply the triple-barrier method, where
ptSl=[1,1] and t1 is the series you created in point 1.b.

(d) Apply getBins to generate the labels.

3.2 From exercise 1, use Snippet 3.8 to drop rare labels.
3.3 Adjust the getBins function (Snippet 3.5) to return a 0 whenever the vertical

barrier is the one touched first.
3.4 Develop a trend-following strategy based on a popular technical analysis statistic

(e.g., crossing moving averages). For each observation, the model suggests a side,
but not a size of the bet.

(a) Derive meta-labels for ptSl=[1,2] and t1 where numDays=1. Use as
trgt the daily standard deviation as computed by Snippet 3.1.

(b) Train a random forest to decide whether to trade or not. Note: The decision
is whether to trade or not, {0,1}, since the underlying model (the crossing
moving average) has decided the side, {−1,1}.

3.5 Develop a mean-reverting strategy based on Bollinger bands. For each observa-
tion, the model suggests a side, but not a size of the bet.

(a) Derive meta-labels for ptSl=[0,2] and t1 where numDays=1. Use as
trgt the daily standard deviation as computed by Snippet 3.1.

(b) Train a random forest to decide whether to trade or not. Use as fea-
tures: volatility, serial correlation, and the crossing moving averages from
exercise 2.

(c) What is the accuracy of predictions from the primary model (i.e., if the sec-
ondary model does not filter the bets)? What are the precision, recall, and
F1-scores?

(d) What is the accuracy of predictions from the secondary model? What are the
precision, recall, and F1-scores?

let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/8566
https://github.com/scikit-learn/scikit-learn/issues/8566

56 LABELING

BIBLIOGRAPHY

Ahmed, N., A. Atiya, N. Gayar, and H. El-Shishiny (2010): “An empirical comparison of machine
learning models for time series forecasting.” Econometric Reviews, Vol. 29, No. 5–6, pp. 594–
621.

Ballings, M., D. van den Poel, N. Hespeels, and R. Gryp (2015): “Evaluating multiple classifiers for
stock price direction prediction.” Expert Systems with Applications, Vol. 42, No. 20, pp. 7046–
7056.

Bontempi, G., S. Taieb, and Y. Le Borgne (2012): “Machine learning strategies for time series fore-
casting.” Lecture Notes in Business Information Processing, Vol. 138, No. 1, pp. 62–77.

Booth, A., E. Gerding and F. McGroarty (2014): “Automated trading with performance weighted
random forests and seasonality.” Expert Systems with Applications, Vol. 41, No. 8, pp. 3651–
3661.

Cao, L. and F. Tay (2001): “Financial forecasting using support vector machines.” Neural Computing
& Applications, Vol. 10, No. 2, pp. 184–192.

Cao, L., F. Tay and F. Hock (2003): “Support vector machine with adaptive parameters in financial
time series forecasting.” IEEE Transactions on Neural Networks, Vol. 14, No. 6, pp. 1506–
1518.

Cervelló-Royo, R., F. Guijarro, and K. Michniuk (2015): “Stock market trading rule based on pattern
recognition and technical analysis: Forecasting the DJIA index with intraday data.” Expert
Systems with Applications, Vol. 42, No. 14, pp. 5963–5975.

Chang, P., C. Fan and J. Lin (2011): “Trend discovery in financial time series data using a case-
based fuzzy decision tree.” Expert Systems with Applications, Vol. 38, No. 5, pp. 6070–
6080.

Kuan, C. and L. Tung (1995): “Forecasting exchange rates using feedforward and recurrent neural
networks.” Journal of Applied Econometrics, Vol. 10, No. 4, pp. 347–364.

Creamer, G. and Y. Freund (2007): “A boosting approach for automated trading.” Journal of Trading,
Vol. 2, No. 3, pp. 84–96.

Creamer, G. and Y. Freund (2010): “Automated trading with boosting and expert weighting.” Quan-
titative Finance, Vol. 10, No. 4, pp. 401–420.

Creamer, G., Y. Ren, Y. Sakamoto, and J. Nickerson (2016): “A textual analysis algorithm for the
equity market: The European case.” Journal of Investing, Vol. 25, No. 3, pp. 105–116.

Dixon, M., D. Klabjan, and J. Bang (2016): “Classification-based financial markets prediction
using deep neural networks.” Algorithmic Finance, forthcoming (2017). Available at SSRN:
https://ssrn.com/abstract=2756331.

Dunis, C., and M. Williams (2002): “Modelling and trading the euro/US dollar exchange rate: Do
neural network models perform better?” Journal of Derivatives & Hedge Funds, Vol. 8, No. 3,
pp. 211–239.

Feuerriegel, S. and H. Prendinger (2016): “News-based trading strategies.” Decision Support Sys-
tems, Vol. 90, pp. 65–74.

Hsu, S., J. Hsieh, T. Chih, and K. Hsu (2009): “A two-stage architecture for stock price forecast-
ing by integrating self-organizing map and support vector regression.” Expert Systems with
Applications, Vol. 36, No. 4, pp. 7947–7951.

Huang, W., Y. Nakamori, and S. Wang (2005): “Forecasting stock market movement direction
with support vector machine.” Computers & Operations Research, Vol. 32, No. 10, pp. 2513–
2522.

Kara, Y., M. Boyacioglu, and O. Baykan (2011): “Predicting direction of stock price index movement
using artificial neural networks and support vector machines: The sample of the Istanbul Stock
Exchange.” Expert Systems with Applications, Vol. 38, No. 5, pp. 5311–5319.

Kim, K. (2003): “Financial time series forecasting using support vector machines.” Neurocomputing,
Vol. 55, No. 1, pp. 307–319.

let &hbox {char '046}https://ssrn.com/abstract=2756331
https://ssrn.com/abstract=2756331

BIBLIOGRAPHY 57

Krauss, C., X. Do, and N. Huck (2017): “Deep neural networks, gradient-boosted trees, random
forests: Statistical arbitrage on the S&P 500.” European Journal of Operational Research,
Vol. 259, No. 2, pp. 689–702.

Laborda, R. and J. Laborda (2017): “Can tree-structured classifiers add value to the investor?”
Finance Research Letters, Vol. 22 (August), pp. 211–226.

Nakamura, E. (2005): “Inflation forecasting using a neural network.” Economics Letters, Vol. 86,
No. 3, pp. 373–378.

Olson, D. and C. Mossman (2003): “Neural network forecasts of Canadian stock returns using
accounting ratios.” International Journal of Forecasting, Vol. 19, No. 3, pp. 453–465.

Patel, J., S. Sha, P. Thakkar, and K. Kotecha (2015): “Predicting stock and stock price index move-
ment using trend deterministic data preparation and machine learning techniques.” Expert
Systems with Applications, Vol. 42, No. 1, pp. 259–268.

Patel, J., S. Sha, P. Thakkar, and K. Kotecha (2015): “Predicting stock market index using fusion
of machine learning techniques.” Expert Systems with Applications, Vol. 42, No. 4, pp. 2162–
2172.

Qin, Q., Q. Wang, J. Li, and S. Shuzhi (2013): “Linear and nonlinear trading models with gradient
boosted random forests and application to Singapore Stock Market.” Journal of Intelligent
Learning Systems and Applications, Vol. 5, No. 1, pp. 1–10.

Sorensen, E., K. Miller, and C. Ooi (2000): “The decision tree approach to stock selection.” Journal
of Portfolio Management, Vol. 27, No. 1, pp. 42–52.

Theofilatos, K., S. Likothanassis, and A. Karathanasopoulos (2012): “Modeling and trading the
EUR/USD exchange rate using machine learning techniques.” Engineering, Technology &
Applied Science Research, Vol. 2, No. 5, pp. 269–272.

Trafalis, T. and H. Ince (2000): “Support vector machine for regression and applications to financial
forecasting.” Neural Networks, Vol. 6, No. 1, pp. 348–353.

Trippi, R. and D. DeSieno (1992): “Trading equity index futures with a neural network.” Journal of
Portfolio Management, Vol. 19, No. 1, pp. 27–33.

Tsai, C. and S. Wang (2009): “Stock price forecasting by hybrid machine learning techniques.”
Proceedings of the International Multi-Conference of Engineers and Computer Scientists,
Vol. 1, No. 1, pp. 755–760.

Tsai, C., Y. Lin, D. Yen, and Y. Chen (2011): “Predicting stock returns by classifier ensembles.”
Applied Soft Computing, Vol. 11, No. 2, pp. 2452–2459.

Wang, J. and S. Chan (2006): “Stock market trading rule discovery using two-layer bias decision
tree.” Expert Systems with Applications, Vol. 30, No. 4, pp. 605–611.

Wang, Q., J. Li, Q. Qin, and S. Ge (2011): “Linear, adaptive and nonlinear trading models for
Singapore Stock Market with random forests.” Proceedings of the 9th IEEE International Con-
ference on Control and Automation, pp. 726–731.

Wei, P. and N. Wang (2016): “Wikipedia and stock return: Wikipedia usage pattern helps to predict
the individual stock movement.” Proceedings of the 25th International Conference Companion
on World Wide Web, Vol. 1, pp. 591–594.

Żbikowski, K. (2015): “Using volume weighted support vector machines with walk forward testing
and feature selection for the purpose of creating stock trading strategy.” Expert Systems with
Applications, Vol. 42, No. 4, pp. 1797–1805.

Zhang, G., B. Patuwo, and M. Hu (1998): “Forecasting with artificial neural networks: The state of
the art.” International Journal of Forecasting, Vol. 14, No. 1, pp. 35–62.

Zhu, M., D. Philpotts and M. Stevenson (2012): “The benefits of tree-based models for stock selec-
tion.” Journal of Asset Management, Vol. 13, No. 6, pp. 437–448.

Zhu, M., D. Philpotts, R. Sparks, and J. Stevenson, Maxwell (2011): “A hybrid approach to com-
bining CART and logistic regression for stock ranking.” Journal of Portfolio Management,
Vol. 38, No. 1, pp. 100–109.

CHAPTER 4

Sample Weights

4.1 MOTIVATION

Chapter 3 presented several new methods for labeling financial observations. We
introduced two novel concepts, the triple-barrier method and meta-labeling, and
explained how they are useful in financial applications, including quantamental
investment strategies. In this chapter you will learn how to use sample weights to
address another problem ubiquitous in financial applications, namely that observa-
tions are not generated by independent and identically distributed (IID) processes.
Most of the ML literature is based on the IID assumption, and one reason many ML
applications fail in finance is because those assumptions are unrealistic in the case of
financial time series.

4.2 OVERLAPPING OUTCOMES

In Chapter 3 we assigned a label yi to an observed feature Xi, where yi was a function
of price bars that occurred over an interval

[
ti,0, ti,1

]
. When ti,1 > tj,0 and i < j, then yi

and yj will both depend on a common return rtj,0,min
{

ti,1,tj,1
}, that is, the return over the

interval
[
tj,0, min

{
ti,1, tj,1

}]
. The implication is that the series of labels,

{
yi

}
i=1,…,I ,

are not IID whenever there is an overlap between any two consecutive outcomes,
∃i ||ti,1 > ti+1,0 .

Suppose that we circumvent this problem by restricting the bet horizon to ti,1 ≤

ti+1,0. In this case there is no overlap, because every feature outcome is determined
before or at the onset of the next observed feature. That would lead to coarse mod-
els where the features’ sampling frequency would be limited by the horizon used to
determine the outcome. On one hand, if we wished to investigate outcomes that lasted
a month, features would have to be sampled with a frequency up to monthly. On the
other hand, if we increased the sampling frequency to let’s say daily, we would be

59

60 SAMPLE WEIGHTS

forced to reduce the outcome’s horizon to one day. Furthermore, if we wished to
apply a path-dependent labeling technique, like the triple-barrier method, the sam-
pling frequency would be subordinated to the first barrier’s touch. No matter what
you do, restricting the outcome’s horizon to eliminate overlaps is a terrible solution.
We must allow ti,1 > ti+1,0, which brings us back to the problem of overlapping out-
comes described earlier.

This situation is characteristic of financial applications. Most non-financial ML
researchers can assume that observations are drawn from IID processes. For exam-
ple, you can obtain blood samples from a large number of patients, and measure their
cholesterol. Of course, various underlying common factors will shift the mean and
standard deviation of the cholesterol distribution, but the samples are still indepen-
dent: There is one observation per subject. Suppose you take those blood samples,
and someone in your laboratory spills blood from each tube into the following nine
tubes to their right. That is, tube 10 contains blood for patient 10, but also blood from
patients 1 through 9. Tube 11 contains blood from patient 11, but also blood from
patients 2 through 10, and so on. Now you need to determine the features predictive
of high cholesterol (diet, exercise, age, etc.), without knowing for sure the choles-
terol level of each patient. That is the equivalent challenge that we face in financial
ML, with the additional handicap that the spillage pattern is non-deterministic and
unknown. Finance is not a plug-and-play subject as it relates to ML applications.
Anyone who tells you otherwise will waste your time and money.

There are several ways to attack the problem of non-IID labels, and in this chapter
we will address it by designing sampling and weighting schemes that correct for the
undue influence of overlapping outcomes.

4.3 NUMBER OF CONCURRENT LABELS

Two labels yi and yj are concurrent at t when both are a function of at least one com-
mon return, rt−1,t =

pt

pt−1
− 1. The overlap does not need to be perfect, in the sense of

both labels spanning the same time interval. In this section we are going to compute
the number of labels that are a function of a given return, rt−1,t. First, for each time
point t = 1,… , T , we form a binary array,

{
1t,i

}
i=1,…,I , where 1t,i ∈ {0, 1}. Variable

1t,i = 1 if and only if
[
ti,0, ti,1

]
overlaps with [t − 1, t] and 1t,i = 0 otherwise. Recall

that the labels’ spans
{[

ti,0, ti,1
]}

i=1,…,I are defined by the t1 object introduced in

Chapter 3. Second, we compute the number of labels concurrent at t, ct =
∑I

i=1 1t,i.
Snippet 4.1 illustrates an implementation of this logic.

SNIPPET 4.1 ESTIMATING THE UNIQUENESS OF A LABEL

def mpNumCoEvents(closeIdx,t1,molecule):
’’’
Compute the number of concurrent events per bar.
+molecule[0] is the date of the first event on which the weight will be computed
+molecule[-1] is the date of the last event on which the weight will be computed

AVERAGE UNIQUENESS OF A LABEL 61

Any event that starts before t1[molecule].max() impacts the count.
’’’
#1) find events that span the period [molecule[0],molecule[-1]]
t1=t1.fillna(closeIdx[-1]) # unclosed events still must impact other weights
t1=t1[t1>=molecule[0]] # events that end at or after molecule[0]
t1=t1.loc[:t1[molecule].max()] # events that start at or before t1[molecule].max()
#2) count events spanning a bar
iloc=closeIdx.searchsorted(np.array([t1.index[0],t1.max()]))
count=pd.Series(0,index=closeIdx[iloc[0]:iloc[1]+1])
for tIn,tOut in t1.iteritems():count.loc[tIn:tOut]+=1.
return count.loc[molecule[0]:t1[molecule].max()]

4.4 AVERAGE UNIQUENESS OF A LABEL

In this section we are going to estimate a label’s uniqueness (non-overlap) as its
average uniqueness over its lifespan. First, the uniqueness of a label i at time t is
ut,i = 1t,ic

−1
t . Second, the average uniqueness of label i is the average ut,i over the

label’s lifespan, ūi =
(∑T

t=1 ut,i

)(∑T
t=1 1t,i

)−1
. This average uniqueness can also

be interpreted as the reciprocal of the harmonic average of ct over the event’s lifes-
pan. Figure 4.1 plots the histogram of uniqueness values derived from an object t1.
Snippet 4.2 implements this calculation.

FIGURE 4.1 Histogram of uniqueness values

62 SAMPLE WEIGHTS

SNIPPET 4.2 ESTIMATING THE AVERAGE UNIQUENESS OF A
LABEL

def mpSampleTW(t1,numCoEvents,molecule):
Derive average uniqueness over the event's lifespan
wght=pd.Series(index=molecule)
for tIn,tOut in t1.loc[wght.index].iteritems():

wght.loc[tIn]=(1./numCoEvents.loc[tIn:tOut]).mean()
return wght

#———————————————————————————————————————
numCoEvents=mpPandasObj(mpNumCoEvents,('molecule',events.index),numThreads, \

closeIdx=close.index,t1=events['t1'])
numCoEvents=numCoEvents.loc[~numCoEvents.index.duplicated(keep='last')]
numCoEvents=numCoEvents.reindex(close.index).fillna(0)
out['tW']=mpPandasObj(mpSampleTW,('molecule',events.index),numThreads, \

t1=events['t1'],numCoEvents=numCoEvents)

Note that we are making use again of the function mpPandasObj, which speeds up
calculations via multiprocessing (see Chapter 20). Computing the average uniqueness
associated with label i, ūi, requires information that is not available until a future time,
events['t1']. This is not a problem, because

{
ūi

}
i=1,…,I are used on the training

set in combination with label information, and not on the testing set. These
{

ūi

}
i=1,…,I

are not used for forecasting the label, hence there is no information leakage. This
procedure allows us to assign a uniqueness score between 0 and 1 for each observed
feature, in terms of non-overlapping outcomes.

4.5 BAGGING CLASSIFIERS AND UNIQUENESS

The probability of not selecting a particular item i after I draws with replacement on
a set of I items is (1 − I−1)I . As the sample size grows, that probability converges to
the asymptotic value limI→∞ (1 − I−1)I = e−1. That means that the number of unique
observations drawn is expected to be (1 − e−1) ≈ 2

3
.

Suppose that the maximum number of non-overlapping outcomes is K ≤ I. Fol-
lowing the same argument, the probability of not selecting a particular item i after I
draws with replacement on a set of I items is (1 − K−1)I . As the sample size grows,

that probability can be approximated as (1 − I−1)I K
I ≈ e−

K
I . That means that the num-

ber of unique observations drawn is expected to be 1 − e−
K
I ≤ 1 − e−1. The implica-

tion is that incorrectly assuming IID draws leads to oversampling.
When sampling with replacement (bootstrap) on observations with

I−1 ∑I
i=1 ūi ≪ 1, it becomes increasingly likely that in-bag observations will

be (1) redundant to each other, and (2) very similar to out-of-bag observations.

BAGGING CLASSIFIERS AND UNIQUENESS 63

Redundancy of draws makes the bootstrap inefficient (see Chapter 6). For exam-
ple, in the case of a random forest, all trees in the forest will essentially be
very similar copies of a single overfit decision tree. And because the random
sampling makes out-of-bag examples very similar to the in-bag ones, out-of-bag
accuracy will be grossly inflated. We will address this second issue in Chapter
7, when we study cross-validation under non-IID observations. For the moment,
let us concentrate on the first issue, namely bagging under observations where
I−1 ∑I

i=1 ūi ≪ 1.
A first solution is to drop overlapping outcomes before performing the bootstrap.

Because overlaps are not perfect, dropping an observation just because there is a
partial overlap will result in an extreme loss of information. I do not advise you to
follow this solution.

A second and better solution is to utilize the average uniqueness, I−1 ∑I
i=1 ūi, to

reduce the undue influence of outcomes that contain redundant information. Accord-
ingly, we could sample only a fraction out['tW'].mean() of the observations, or
a small multiple of that. In sklearn, the sklearn.ensemble.BaggingClassifier
class accepts an argument max_samples, which can be set to
max_samples=out['tW'].mean(). In this way, we enforce that the in-bag
observations are not sampled at a frequency much higher than their uniqueness.
Random forests do not offer that max_samples functionality, however, a solution
is to bag a large number of decision trees. We will discuss this solution further in
Chapter 6.

4.5.1 Sequential Bootstrap

A third and better solution is to perform a sequential bootstrap, where draws are made
according to a changing probability that controls for redundancy. Rao et al. [1997]
propose sequential resampling with replacement until K distinct original observa-
tions appear. Although interesting, their scheme does not fully apply to our financial
problem. In the following sections we introduce an alternative method that addresses
directly the problem of overlapping outcomes.

First, an observation Xi is drawn from a uniform distribution, i ∼ U [1, I], that
is, the probability of drawing any particular value i is originally 𝛿

(1)
i = I−1. For the

second draw, we wish to reduce the probability of drawing an observation Xj with
a highly overlapping outcome. Remember, a bootstrap allows sampling with repeti-
tion, so it is still possible to draw Xi again, but we wish to reduce its likelihood, since
there is an overlap (in fact, a perfect overlap) between Xi and itself. Let us denote as
𝜑 the sequence of draws so far, which may include repetitions. Until now, we know

that 𝜑(1) = {i}. The uniqueness of j at time t is u(2)
t,j = 1t,j

(
1 +

∑
k∈𝜑(1) 1t,k

)−1
, as

that is the uniqueness that results from adding alternative j’s to the existing sequence
of draws 𝜑

(1). The average uniqueness of j is the average u(2)
t,j over j’s lifespan,

64 SAMPLE WEIGHTS

ū(2)
j =

(∑T
t=1 ut,j

)(∑T
t=1 1t,j

)−1
. We can now make a second draw based on the

updated probabilities
{
𝛿

(2)
j

}
j=1,…,I

,

𝛿
(2)
j = ū(2)

j

(
I∑

k=1

ū(2)
k

)−1

where
{
𝛿

(2)
j

}
j=1,..,I

are scaled to add up to 1,
∑I

j=1 𝛿
(2)
j = 1. We can now do a second

draw, update 𝜑(2) and re-evaluate
{
𝛿

(3)
j

}
j=1,…,I

. The process is repeated until I draws

have taken place. This sequential bootstrap scheme has the advantage that overlaps
(even repetitions) are still possible, but decreasingly likely. The sequential bootstrap
sample will be much closer to IID than samples drawn from the standard bootstrap
method. This can be verified by measuring an increase in I−1 ∑I

i=1 ūi, relative to the
standard bootstrap method.

4.5.2 Implementation of Sequential Bootstrap

Snippet 4.3 derives an indicator matrix from two arguments: the index of bars
(barIx), and the pandas Series t1, which we used multiple times in Chapter 3. As
a reminder, t1 is defined by an index containing the time at which the features are
observed, and a values array containing the time at which the label is determined. The
output of this function is a binary matrix indicating what (price) bars influence the
label for each observation.

SNIPPET 4.3 BUILD AN INDICATOR MATRIX

import pandas as pd,numpy as np
#———————————————————————————————————————
def getIndMatrix(barIx,t1):

Get indicator matrix
indM=pd.DataFrame(0,index=barIx,columns=range(t1.shape[0]))
for i,(t0,t1) in enumerate(t1.iteritems()):indM.loc[t0:t1,i]=1.
return indM

Snippet 4.4 returns the average uniqueness of each observed feature. The input is
the indicator matrix built by getIndMatrix.

BAGGING CLASSIFIERS AND UNIQUENESS 65

SNIPPET 4.4 COMPUTE AVERAGE UNIQUENESS

def getAvgUniqueness(indM):
Average uniqueness from indicator matrix
c=indM.sum(axis=1) # concurrency
u=indM.div(c,axis=0) # uniqueness
avgU=u[u>0].mean() # average uniqueness
return avgU

Snippet 4.5 gives us the index of the features sampled by sequential bootstrap. The
inputs are the indicator matrix (indM) and an optional sample length (sLength), with
a default value of as many draws as rows in indM.

SNIPPET 4.5 RETURN SAMPLE FROM SEQUENTIAL BOOTSTRAP

def seqBootstrap(indM,sLength=None):
Generate a sample via sequential bootstrap
if sLength is None:sLength=indM.shape[1]
phi=[]
while len(phi)<sLength:

avgU=pd.Series()
for i in indM:

indM_=indM[phi+[i]] # reduce indM
avgU.loc[i]=getAvgUniqueness(indM_).iloc[-1]

prob=avgU/avgU.sum() # draw prob
phi+=[np.random.choice(indM.columns,p=prob)]

return phi

4.5.3 A Numerical Example

Consider a set of labels
{

yi

}
i=1,2,3, where label y1 is a function of return r0,3, label

y2 is a function of return r2,4 and label y3 is a function of return r4,6. The outcomes’
overlaps are characterized by this indicator matrix

{
1t,i

}
,

{
1t,i

}
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 1 0
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

66 SAMPLE WEIGHTS

The procedure starts with 𝜑
(0) = ∅, and a uniform distribution of probability,

𝛿i =
1
3
, ∀i = 1, 2, 3. Suppose that we randomly draw a number from {1, 2, 3}, and

2 is selected. Before we make a second draw on {1, 2, 3} (remember, a bootstrap
samples with repetition), we need to adjust the probabilities. The set of observa-
tions drawn so far is 𝜑(1) = {2}. The average uniqueness for the first feature is ū(2)

1 =(
1 + 1 + 1

2

)
1
3
= 5

6
< 1, and for the second feature is ū(2)

2 =
(

1
2
+ 1

2

)
1
2
= 1

2
< 1. The

probabilities for the second draw are 𝛿(2) =
{

5
14

, 3
14

, 6
14

}
. Two points are worth men-

tioning: (1) The lowest probability goes to the feature that was picked in the first draw,
as that would exhibit the highest overlap; and (2) among the two possible draws out-
side 𝜑

(1), the greater probability goes to 𝛿
(2)
3 , as that is the label with no overlap to

𝜑
(1). Suppose that the second draw selects number 3. We leave as an exercise the

update of the probabilities 𝛿(3) for the third and final draw. Snippet 4.6 runs a sequen-
tial bootstrap on the

{
1t,i

}
indicator matrix in this example.

SNIPPET 4.6 EXAMPLE OF SEQUENTIAL BOOTSTRAP

def main():
t1=pd.Series([2,3,5],index=[0,2,4]) # t0,t1 for each feature obs
barIx=range(t1.max()+1) # index of bars
indM=getIndMatrix(barIx,t1)
phi=np.random.choice(indM.columns,size=indM.shape[1])
print phi
print 'Standard uniqueness:',getAvgUniqueness(indM[phi]).mean()
phi=seqBootstrap(indM)
print phi
print 'Sequential uniqueness:',getAvgUniqueness(indM[phi]).mean()
return

4.5.4 Monte Carlo Experiments

We can evaluate the efficiency of the sequential bootstrap algorithm through experi-
mental methods. Snippet 4.7 lists the function that generates a random t1 series for a
number of observations numObs (I). Each observation is made at a random number,
drawn from a uniform distribution, with boundaries 0 and numBars, where numBars
is the number of bars (T). The number of bars spanned by the observation is deter-
mined by drawing a random number from a uniform distribution with boundaries 0
and maxH.

SNIPPET 4.7 GENERATING A RANDOM T1 SERIES

def getRndT1(numObs,numBars,maxH):
random t1 Series
t1=pd.Series()

BAGGING CLASSIFIERS AND UNIQUENESS 67

for i in xrange(numObs):
ix=np.random.randint(0,numBars)
val=ix+np.random.randint(1,maxH)
t1.loc[ix]=val

return t1.sort_index()

Snippet 4.8 takes that random t1 series, and derives the implied indicator matrix,
indM. This matrix is then subjected to two procedures. In the first one, we derive the
average uniqueness from a standard bootstrap (random sampling with replacement).
In the second one, we derive the average uniqueness by applying our sequential boot-
strap algorithm. Results are reported as a dictionary.

SNIPPET 4.8 UNIQUENESS FROM STANDARD AND SEQUENTIAL
BOOTSTRAPS

def auxMC(numObs,numBars,maxH):
Parallelized auxiliary function
t1=getRndT1(numObs,numBars,maxH)
barIx=range(t1.max()+1)
indM=getIndMatrix(barIx,t1)
phi=np.random.choice(indM.columns,size=indM.shape[1])
stdU=getAvgUniqueness(indM[phi]).mean()
phi=seqBootstrap(indM)
seqU=getAvgUniqueness(indM[phi]).mean()
return {'stdU':stdU,'seqU':seqU}

These operations have to be repeated over a large number of iterations. Snippet 4.9
implements this Monte Carlo using the multiprocessing techniques discussed in
Chapter 20. For example, it will take about 6 hours for a 24-cores server to carry out
a Monte Carlo of 1E6 iterations, where numObs=10, numBars=100, and maxH=5.
Without parallelization, a similar Monte Carlo experiment would have taken about
6 days.

SNIPPET 4.9 MULTI-THREADED MONTE CARLO

import pandas as pd,numpy as np
from mpEngine import processJobs,processJobs_
#———————————————————————————————————————
def mainMC(numObs=10,numBars=100,maxH=5,numIters=1E6,numThreads=24):

Monte Carlo experiments
jobs=[]
for i in xrange(int(numIters)):

job={'func':auxMC,'numObs':numObs,'numBars':numBars,'maxH':maxH}
jobs.append(job)

68 SAMPLE WEIGHTS

FIGURE 4.2 Monte Carlo experiment of standard vs. sequential bootstraps

if numThreads==1:out=processJobs_(jobs)
else:out=processJobs(jobs,numThreads=numThreads)
print pd.DataFrame(out).describe()
return

Figure 4.2 plots the histogram of the uniqueness from standard bootstrapped sam-
ples (left) and the sequentially bootstrapped samples (right). The median of the
average uniqueness for the standard method is 0.6, and the median of the average
uniqueness for the sequential method is 0.7. An ANOVA test on the difference of
means returns a vanishingly small probability. Statistically speaking, samples from
the sequential bootstrap method have an expected uniqueness that exceeds that of the
standard bootstrap method, at any reasonable confidence level.

4.6 RETURN ATTRIBUTION

In the previous section we learned a method to bootstrap samples closer to IID. In
this section we will introduce a method to weight those samples for the purpose of
training an ML algorithm. Highly overlapping outcomes would have disproportionate
weights if considered equal to non-overlapping outcomes. At the same time, labels
associated with large absolute returns should be given more importance than labels

RETURN ATTRIBUTION 69

with negligible absolute returns. In short, we need to weight observations by some
function of both uniqueness and absolute return.

When labels are a function of the return sign ({−1, 1} for standard labeling or
{0, 1} for meta-labeling), the sample weights can be defined in terms of the sum of
the attributed returns over the event’s lifespan,

[
ti,0, ti,1

]
,

w̃i =
||||||

ti,1∑
t=ti,0

rt−1,t

ct

||||||
wi = w̃iI

(
I∑

j=1

w̃j

)−1

hence
∑I

i=1 wi = I. We have scaled these weights to add up to I, since libraries
(including sklearn) usually define algorithmic parameters assuming a default weight
of 1.

The rationale for this method is that we wish to weight an observation as a function
of the absolute log returns that can be attributed uniquely to it. However, this method
will not work if there is a “neutral” (return below threshold) case. For that case, lower
returns should be assigned higher weights, not the reciprocal. The “neutral” case is
unnecessary, as it can be implied by a “−1” or “1” prediction with low confidence.
This is one of several reasons I would generally advise you to drop “neutral” cases.
Snippet 4.10 implements this method.

SNIPPET 4.10 DETERMINATION OF SAMPLE WEIGHT BY
ABSOLUTE RETURN ATTRIBUTION

def mpSampleW(t1,numCoEvents,close,molecule):
Derive sample weight by return attribution
ret=np.log(close).diff() # log-returns, so that they are additive
wght=pd.Series(index=molecule)
for tIn,tOut in t1.loc[wght.index].iteritems():

wght.loc[tIn]=(ret.loc[tIn:tOut]/numCoEvents.loc[tIn:tOut]).sum()
return wght.abs()

#———————————————————————————————————————
out['w']=mpPandasObj(mpSampleW,('molecule',events.index),numThreads, \

t1=events['t1'],numCoEvents=numCoEvents,close=close)
out['w']*=out.shape[0]/out['w'].sum()

70 SAMPLE WEIGHTS

4.7 TIME DECAY

Markets are adaptive systems (Lo [2017]). As markets evolve, older examples are
less relevant than the newer ones. Consequently, we would typically like sample

weights to decay as new observations arrive. Let d [x] ≥ 0,∀x ∈
[
0,
∑I

i=1 ūi

]
be the

time-decay factors that will multiply the sample weights derived in the previous sec-

tion. The final weight has no decay, d
[∑I

i=1 ūi

]
= 1, and all other weights will be

adjusted relative to that. Let c ∈ (−1 , 1] be a user-defined parameter that determines
the decay function as follows: For c ∈ [0, 1], then d [1] = c, with linear decay; for c ∈
(−1, 0), then d

[
−c

∑I
i=1 ūi

]
= 0, with linear decay between

[
−c

∑I
i=1 ūi,

∑I
i=1 ūi

]
and d [x] = 0 ∀x ≤ −c

∑I
i=1 ūi. For a linear piecewise function d = max {0, a + bx},

such requirements are met by the following boundary conditions:

1. d = a + b
∑I

i=1 ūi = 1 ⇒ a = 1 − b
∑I

i=1 ūi.

2. Contingent on c:

(a) d = a + b0 = c ⇒ b = (1 − c)
(∑I

i=1 ūi

)−1
, ∀c ∈ [0, 1]

(b) d = a − bc
∑I

i=1 ūi = 0 ⇒ b =
[
(c + 1)

∑I
i=1 ūi

]−1
, ∀c ∈ (−1, 0)

Snippet 4.11 implements this form of time-decay factors. Note that time is not
meant to be chronological. In this implementation, decay takes place according

to cumulative uniqueness, x ∈
[
0,
∑I

i=1 ūi

]
, because a chronological decay would

reduce weights too fast in the presence of redundant observations.

SNIPPET 4.11 IMPLEMENTATION OF TIME-DECAY FACTORS

def getTimeDecay(tW,clfLastW=1.):
apply piecewise-linear decay to observed uniqueness (tW)
newest observation gets weight=1, oldest observation gets weight=clfLastW
clfW=tW.sort_index().cumsum()
if clfLastW>=0:slope=(1.-clfLastW)/clfW.iloc[-1]
else:slope=1./((clfLastW+1)*clfW.iloc[-1])
const=1.-slope*clfW.iloc[-1]
clfW=const+slope*clfW
clfW[clfW<0]=0
print const,slope
return clfW

It is worth discussing a few interesting cases:

� c = 1 means that there is no time decay.
� 0 < c < 1 means that weights decay linearly over time, but every observation

still receives a strictly positive weight, regardless of how old.

CLASS WEIGHTS 71

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Time

2006 2008 2010 2012 2014 2016

FIGURE 4.3 Piecewise-linear time-decay factors

� c = 0 means that weights converge linearly to zero, as they become older.
� c < 0 means that the oldest portion cT of the observations receive zero weight

(i.e., they are erased from memory).

Figure 4.3 shows the decayed weights, out['w']*df, after applying the decay
factors for c ∈ {1, .75, .5, 0,−.25,−.5}. Although not necessarily practical, the pro-
cedure allows the possibility of generating weights that increase as they get older, by
setting c > 1.

4.8 CLASS WEIGHTS

In addition to sample weights, it is often useful to apply class weights. Class weights
are weights that correct for underrepresented labels. This is particularly critical in
classification problems where the most important classes have rare occurrences (King
and Zeng [2001]). For example, suppose that you wish to predict liquidity crisis,
like the flash crash of May 6, 2010. These events are rare relative to the millions of
observations that take place in between them. Unless we assign higher weights to
the samples associated with those rare labels, the ML algorithm will maximize the
accuracy of the most common labels, and flash crashes will be deemed to be outliers
rather than rare events.

ML libraries typically implement functionality to handle class weights. For exam-
ple, sklearn penalizes errors in samples of class[j], j=1,…,J, with weighting
class_weight[j] rather than 1. Accordingly, higher class weights on label j will
force the algorithm to achieve higher accuracy on j. When class weights do not add up
to J, the effect is equivalent to changing the regularization parameter of the classifier.

72 SAMPLE WEIGHTS

In financial applications, the standard labels of a classification algorithm
are {−1, 1}, where the zero (or neutral) case will be implied by a predic-
tion with probability only slightly above 0.5 and below some neutral thresh-
old. There is no reason for favoring accuracy of one class over the other,
and as such a good default is to assign class_weight='balanced'. This
choice re-weights observations so as to simulate that all classes appeared with
equal frequency. In the context of bagging classifiers, you may want to con-
sider the argument class_weight='balanced_subsample', which means that
class_weight='balanced' will be applied to the in-bag bootstrapped samples,
rather than to the entire dataset. For full details, it is helpful to read the source code
implementing class_weight in sklearn. Please also be aware of this reported bug:
https://github.com/scikit-learn/scikit-learn/issues/4324.

EXERCISES

4.1 In Chapter 3, we denoted as t1 a pandas series of timestamps where the first
barrier was touched, and the index was the timestamp of the observation. This
was the output of the getEvents function.

(a) Compute a t1 series on dollar bars derived from E-mini S&P 500 futures
tick data.

(b) Apply the function mpNumCoEvents to compute the number of overlapping
outcomes at each point in time.

(c) Plot the time series of the number of concurrent labels on the primary axis,
and the time series of exponentially weighted moving standard deviation of
returns on the secondary axis.

(d) Produce a scatterplot of the number of concurrent labels (x-axis) and the
exponentially weighted moving standard deviation of returns (y-axis). Can
you appreciate a relationship?

4.2 Using the function mpSampleTW, compute the average uniqueness of each label.
What is the first-order serial correlation, AR(1), of this time series? Is it statisti-
cally significant? Why?

4.3 Fit a random forest to a financial dataset where I−1 ∑I
i=1 ūi ≪ 1.

(a) What is the mean out-of-bag accuracy?

(b) What is the mean accuracy of k-fold cross-validation (without shuffling) on
the same dataset?

(c) Why is out-of-bag accuracy so much higher than cross-validation accuracy?
Which one is more correct / less biased? What is the source of this bias?

4.4 Modify the code in Section 4.7 to apply an exponential time-decay factor.
4.5 Consider you have applied meta-labels to events determined by a trend-following

model. Suppose that two thirds of the labels are 0 and one third of the labels
are 1.

(a) What happens if you fit a classifier without balancing class weights?

let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/4324
https://github.com/scikit-learn/scikit-learn/issues/4324

BIBLIOGRAPHY 73

(b) A label 1 means a true positive, and a label 0 means a false positive. By
applying balanced class weights, we are forcing the classifier to pay more
attention to the true positives, and less attention to the false positives. Why
does that make sense?

(c) What is the distribution of the predicted labels, before and after applying
balanced class weights?

4.6 Update the draw probabilities for the final draw in Section 4.5.3.
4.7 In Section 4.5.3, suppose that number 2 is picked again in the second draw. What

would be the updated probabilities for the third draw?

REFERENCES

Rao, C., P. Pathak and V. Koltchinskii (1997): “Bootstrap by sequential resampling.” Journal of
Statistical Planning and Inference, Vol. 64, No. 2, pp. 257–281.

King, G. and L. Zeng (2001): “Logistic Regression in Rare Events Data.” Working paper, Harvard
University. Available at https://gking.harvard.edu/files/0s.pdf.

Lo, A. (2017): Adaptive Markets, 1st ed. Princeton University Press.

BIBLIOGRAPHY

Sample weighting is a common topic in the ML learning literature. However the prac-
tical problems discussed in this chapter are characteristic of investment applications,
for which the academic literature is extremely scarce. Below are some publications
that tangentially touch some of the issues discussed in this chapter.

Efron, B. (1979): “Bootstrap methods: Another look at the jackknife.” Annals of Statistics, Vol. 7,
pp. 1–26.

Efron, B. (1983): “Estimating the error rote of a prediction rule: Improvement on cross-validation.”
Journal of the American Statistical Association, Vol. 78, pp. 316–331.

Bickel, P. and D. Freedman (1981): “Some asymptotic theory for the bootstrap.” Annals of Statistics,
Vol. 9, pp. 1196–1217.

Gine, E. and J. Zinn (1990): “Bootstrapping general empirical measures.” Annals of Probability,
Vol. 18, pp. 851–869.

Hall, P. and E. Mammen (1994): “On general resampling algorithms and their performance in dis-
tribution estimation.” Annals of Statistics, Vol. 24, pp. 2011–2030.

Mitra, S. and P. Pathak (1984): “The nature of simple random sampling.” Annals of Statistics, Vol.
12, pp. 1536–1542.

Pathak, P. (1964): “Sufficiency in sampling theory.” Annals of Mathematical Statistics, Vol. 35, pp.
795–808.

Pathak, P. (1964): “On inverse sampling with unequal probabilities.” Biometrika, Vol. 51, pp. 185–
193.

Praestgaard, J. and J. Wellner (1993): “Exchangeably weighted bootstraps of the general empirical
process.” Annals of Probability, Vol. 21, pp. 2053–2086.

Rao, C., P. Pathak and V. Koltchinskii (1997): “Bootstrap by sequential resampling.” Journal of
Statistical Planning and Inference, Vol. 64, No. 2, pp. 257–281.

let &hbox {char '046}https://gking.harvard.edu/files/0s.pdf
https://gking.harvard.edu/files/0s.pdf

CHAPTER 5

Fractionally Differentiated Features

5.1 MOTIVATION

It is known that, as a consequence of arbitrage forces, financial series exhibit low
signal-to-noise ratios (López de Prado [2015]). To make matters worse, standard sta-
tionarity transformations, like integer differentiation, further reduce that signal by
removing memory. Price series have memory, because every value is dependent upon
a long history of previous levels. In contrast, integer differentiated series, like returns,
have a memory cut-off, in the sense that history is disregarded entirely after a finite
sample window. Once stationarity transformations have wiped out all memory from
the data, statisticians resort to complex mathematical techniques to extract what-
ever residual signal remains. Not surprisingly, applying these complex techniques on
memory-erased series likely leads to false discoveries. In this chapter we introduce a
data transformation method that ensures the stationarity of the data while preserving
as much memory as possible.

5.2 THE STATIONARITY VS. MEMORY DILEMMA

It is common in finance to find non-stationary time series. What makes these series
non-stationary is the presence of memory, i.e., a long history of previous levels that
shift the series’ mean over time. In order to perform inferential analyses, researchers
need to work with invariant processes, such as returns on prices (or changes in log-
prices), changes in yield, or changes in volatility. These data transformations make
the series stationary, at the expense of removing all memory from the original series
(Alexander [2001], chapter 11). Although stationarity is a necessary property for
inferential purposes, it is rarely the case in signal processing that we wish all mem-
ory to be erased, as that memory is the basis for the model’s predictive power. For
example, equilibrium (stationary) models need some memory to assess how far the

75

76 FRACTIONALLY DIFFERENTIATED FEATURES

price process has drifted away from the long-term expected value in order to gen-
erate a forecast. The dilemma is that returns are stationary, however memory-less,
and prices have memory, however they are non-stationary. The question arises: What
is the minimum amount of differentiation that makes a price series stationary while
preserving as much memory as possible? Accordingly, we would like to generalize
the notion of returns to consider stationary series where not all memory is erased.
Under this framework, returns are just one kind of (and in most cases suboptimal)
price transformation among many other possibilities.

Part of the importance of cointegration methods is their ability to model series with
memory. But why would the particular case of zero differentiation deliver best out-
comes? Zero differentiation is as arbitrary as 1-step differentiation. There is a wide
region between these two extremes (fully differentiated series on one hand, and zero
differentiated series on the other) that can be explored through fractional differentia-
tion for the purpose of developing a highly predictive ML model.

Supervised learning algorithms typically require stationary features. The reason
is that we need to map a previously unseen (unlabeled) observation to a collection
of labeled examples, and infer from them the label of that new observation. If the
features are not stationary, we cannot map the new observation to a large number of
known examples. But stationarity does not ensure predictive power. Stationarity is a
necessary, non-sufficient condition for the high performance of an ML algorithm. The
problem is, there is a trade-off between stationarity and memory. We can always make
a series more stationary through differentiation, but it will be at the cost of erasing
some memory, which will defeat the forecasting purpose of the ML algorithm. In this
chapter, we will study one way to resolve this dilemma.

5.3 LITERATURE REVIEW

Virtually all the financial time series literature is based on the premise of making
non-stationary series stationary through integer transformation (see Hamilton [1994]
for an example). This raises two questions: (1) Why would integer 1 differentia-
tion (like the one used for computing returns on log-prices) be optimal? (2) Is over-
differentiation one reason why the literature has been so biased in favor of the efficient
markets hypothesis?

The notion of fractional differentiation applied to the predictive time series analy-
sis dates back at least to Hosking [1981]. In that paper, a family of ARIMA processes
was generalized by permitting the degree of differencing to take fractional values.
This was useful because fractionally differenced processes exhibit long-term persis-
tence and antipersistence, hence enhancing the forecasting power compared to the
standard ARIMA approach. In the same paper, Hosking states: “Apart from a passing
reference by Granger (1978), fractional differencing does not appear to have been
previously mentioned in connection with time series analysis.”

After Hosking’s paper, the literature on this subject has been surprisingly scarce,
adding up to eight journal articles written by only nine authors: Hosking, Johansen,
Nielsen, MacKinnon, Jensen, Jones, Popiel, Cavaliere, and Taylor. See the references
for details. Most of those papers relate to technical matters, such as fast algorithms for

THE METHOD 77

the calculation of fractional differentiation in continuous stochastic processes (e.g.,
Jensen and Nielsen [2014]).

Differentiating the stochastic process is a computationally expensive operation.
In this chapter we will take a practical, alternative, and novel approach to recover
stationarity: We will generalize the difference operator to non-integer steps.

5.4 THE METHOD

Consider the backshift operator, B, applied to a matrix of real-valued features {Xt},
where BkXt = Xt−k for any integer k ≥ 0. For example, (1 − B)2 = 1 − 2B + B2,
where B2Xt = Xt−2, so that (1 − B)2Xt = Xt − 2Xt−1 + Xt−2. Note that (x + y)n =∑n

k=0

(
n
k

)
xkyn−k =

∑n
k=0

(
n
k

)
xn−kyk, for n a positive integer. For a real number

d, (1 + x)d =
∑∞

k=0

(
d
k

)
xk, the binomial series.

In a fractional model, the exponent d is allowed to be a real number, with the
following formal binomial series expansion:

(1 − B)d =
∑∞

k=0

(
d
k

)
(−B)k =

∑∞
k=0

∏k−1
i=0 (d − i)

k!
(−B)k

=
∑∞

k=0
(−B)k

k−1∏
i=0

d − i
k − i

= 1 − dB + d(d − 1)
2!

B2 − d(d − 1)(d − 2)
3!

B3 +⋯

5.4.1 Long Memory

Let us see how a real (non-integer) positive d preserves memory. This arithmetic
series consists of a dot product

X̃t =
∞∑

k=0

𝜔kXt−k

with weights 𝜔

𝜔 =

{
1,−d,

d(d − 1)
2!

,−d(d − 1)(d − 2)
3!

, . . . , (−1)k
k−1∏
i=0

d − i
k!

, . . .

}

and values X

X =
{

Xt, Xt−1, Xt−2, Xt−3, . . . , Xt−k, . . .
}

78 FRACTIONALLY DIFFERENTIATED FEATURES

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

0 1 2

0.0
0.25
0.5
0.75
1.0

3 4 5

FIGURE 5.1 𝜔k (y-axis) as k increases (x-axis). Each line is associated with a particular value of d ∈
[0,1], in 0.1 increments.

When d is a positive integer number,
∏k−1

i=0
d−i
k! = 0,∀k > d, and memory beyond

that point is cancelled. For example, d = 1 is used to compute returns, where∏k−1
i=0

d−i
k! = 0,∀k > 1, and 𝜔 = {1,−1, 0, 0,…}.

5.4.2 Iterative Estimation

Looking at the sequence of weights, 𝜔, we can appreciate that for k = 0,… ,∞, with
𝜔0 = 1, the weights can be generated iteratively as:

𝜔k = −𝜔k−1
d − k + 1

k

Figure 5.1 plots the sequence of weights used to compute each value of the frac-
tionally differentiated series. The legend reports the value of d used to generate each
sequence, the x-axis indicates the value of k, and the y-axis shows the value of 𝜔k.
For example, for d = 0, all weights are 0 except for 𝜔0 = 1. That is the case where
the differentiated series coincides with the original one. For d = 1, all weights are 0
except for 𝜔0 = 1 and 𝜔1 = −1. That is the standard first-order integer differentia-
tion, which is used to derive log-price returns. Anywhere in between these two cases,
all weights after 𝜔0 = 1 are negative and greater than −1.

Figure 5.2 plots the sequence of weights where d ∈ [1, 2], at increments of 0.1.
For d > 1, we observe 𝜔1 < −1 and 𝜔k > 0, ∀k ≥ 2.

Snippet 5.1 lists the code used to generate these plots.

THE METHOD 79

1.0
1.25
1.5
1.75
2.0

1.0

0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

1 2 3 4 5

FIGURE 5.2 𝜔k (y-axis) as k increases (x-axis). Each line is associated with a particular value of d ∈
[1,2], in 0.1 increments.

SNIPPET 5.1 WEIGHTING FUNCTION

def getWeights(d,size):
thres>0 drops insignificant weights
w=[1.]
for k in range(1,size):

w_=-w[-1]/k*(d-k+1)
w.append(w_)

w=np.array(w[::-1]).reshape(-1,1)
return w

#———————————————————————————————————————-
def plotWeights(dRange,nPlots,size):

w=pd.DataFrame()
for d in np.linspace(dRange[0],dRange[1],nPlots):

w_=getWeights(d,size=size)
w_=pd.DataFrame(w_,index=range(w_.shape[0])[::-1],columns=[d])
w=w.join(w_,how='outer')

ax=w.plot()
ax.legend(loc='upper left');mpl.show()
return

#———————————————————————————————————————-
if __name__=='__main__':

plotWeights(dRange=[0,1],nPlots=11,size=6)
plotWeights(dRange=[1,2],nPlots=11,size=6)

80 FRACTIONALLY DIFFERENTIATED FEATURES

5.4.3 Convergence

Let us consider the convergence of the weights. From the above result, we can see

that for k > d, if 𝜔k−1 ≠ 0, then
|||| 𝜔k

𝜔k−1

|||| = ||| d−k+1
k

||| < 1, and 𝜔k = 0 otherwise. Conse-

quently, the weights converge asymptotically to zero, as an infinite product of factors
within the unit circle. Also, for a positive d and k < d + 1, we have d−k+1

k
≥ 0, which

makes the initial weights alternate in sign. For a non-integer d, once k ≥ d + 1, 𝜔k
will be negative if int[d] is even, and positive otherwise. Summarizing, lim

k→∞
𝜔k = 0−

(converges to zero from the left) when int[d] is even, and lim
k→∞

𝜔k = 0+ (converges to

zero from the right) when Int[d] is odd. In the special case d ∈ (0, 1), this means
that −1 < 𝜔k < 0,∀k > 0. This alternation of weight signs is necessary to make
{X̃t}t=1,.…,T stationary, as memory wanes or is offset over the long run.

5.5 IMPLEMENTATION

In this section we will explore two alternative implementations of fractional differ-
entiation: the standard “expanding window” method, and a new method that I call
“fixed-width window fracdiff” (FFD).

5.5.1 Expanding Window

Let us discuss how to fractionally differentiate a (finite) time series in practice. Sup-
pose a time series with T real observations, {Xt}, t = 1,… , T . Because of data limita-
tions, the fractionally differentiated value X̃T cannot be computed on an infinite series
of weights. For instance, the last point X̃T will use weights {𝜔k}, k = 0,… , T − 1,
and X̃T−l will use weights {𝜔k}, k = 0,… , T − l − 1. This means that the initial
points will have a different amount of memory compared to the final points. For each

l, we can determine the relative weight-loss, 𝜆l =
∑T

j=T−l |𝜔j|∑T−1
i=0 |𝜔i| . Given a tolerance level

𝜏 ∈ [0, 1], we can determine the value l∗ such that 𝜆l∗ ≤ 𝜏 and 𝜆l∗+1 > 𝜏. This value
l∗ corresponds to the first results {X̃t}t=1,…,l∗ where the weight-loss is beyond the
acceptable threshold, 𝜆t > 𝜏 (e.g., 𝜏 = 0.01).

From our earlier discussion, it is clear that 𝜆l∗ depends on the convergence speed
of {𝜔k}, which in turn depends on d ∈ [0, 1]. For d = 1, 𝜔k = 0, ∀k > 1, and 𝜆l =
0, ∀l > 1, hence it suffices to drop X̃1. As d → 0+, l∗ increases, and a larger portion
of the initial {X̃t}t=1,…,l∗ needs to be dropped in order to keep the weight-loss 𝜆l∗ ≤ 𝜏.
Figure 5.3 plots the E-mini S&P 500 futures trade bars of size 1E4, rolled forward,
fractionally differentiated, with parameters (d = .4, 𝜏 = 1) on the top and parameters
(d = .4, 𝜏 = 1E − 2) on the bottom.

The negative drift in both plots is caused by the negative weights that are added
to the initial observations as the window is expanded. When we do not control for
weight loss, the negative drift is extreme, to the point that only that trend is visi-
ble. The negative drift is somewhat more moderate in the right plot, after controlling

IMPLEMENTATION 81

–1

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

1

0

400

600

800

1000

1200

1400

1600

1800

2000

2

3

4

5

6

7

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

0.00

–0.05 400

600

800

1000

1200

1400

1600

1800

2000

0.05

0.10

0.15

0.20

0.25

(a)

(b)

FIGURE 5.3 Fractional differentiation without controlling for weight loss (top plot) and after control-
ling for weight loss with an expanding window (bottom plot)

82 FRACTIONALLY DIFFERENTIATED FEATURES

for the weight loss, however, it is still substantial, because values {X̃t}t=l∗+1,…,T are
computed on an expanding window. This problem can be corrected by a fixed-width
window, implemented in Snippet 5.2.

SNIPPET 5.2 STANDARD FRACDIFF (EXPANDING WINDOW)

def fracDiff(series,d,thres=.01):
’’’
Increasing width window, with treatment of NaNs
Note 1: For thres=1, nothing is skipped.
Note 2: d can be any positive fractional, not necessarily bounded [0,1].
’’’
#1) Compute weights for the longest series
w=getWeights(d,series.shape[0])
#2) Determine initial calcs to be skipped based on weight-loss threshold
w_=np.cumsum(abs(w))
w_/=w_[-1]
skip=w_[w_>thres].shape[0]
#3) Apply weights to values
df={}
for name in series.columns:

seriesF,df_=series[[name]].fillna(method='ffill').dropna(),pd.Series()
for iloc in range(skip,seriesF.shape[0]):

loc=seriesF.index[iloc]
if not np.isfinite(series.loc[loc,name]):continue # exclude NAs
df_[loc]=np.dot(w[-(iloc+1):,:].T,seriesF.loc[:loc])[0,0]

df[name]=df_.copy(deep=True)
df=pd.concat(df,axis=1)
return df

5.5.2 Fixed-Width Window Fracdiff

Alternatively, fractional differentiation can be computed using a fixed-width window,
that is, dropping the weights after their modulus (|𝜔k|) falls below a given threshold
value (𝜏). This is equivalent to finding the first l∗ such that |𝜔l∗ | ≥ 𝜏 and |𝜔l∗+1| ≤ 𝜏,
setting a new variable �̃�k

�̃�k =
{

𝜔k if k ≤ l∗

0 if k > l∗

and X̃t =
∑l∗

k=0 �̃�kXt−k, for t = T − l∗ + 1,… , T . Figure 5.4 plots E-mini S&P
500 futures trade bars of size 1E4, rolled forward, fractionally differentiated
(d = .4, 𝜏 = 1E − 5).

This procedure has the advantage that the same vector of weights is used
across all estimates of {X̃t}t=l∗,…,T , hence avoiding the negative drift caused by an

IMPLEMENTATION 83

0.14

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

0.18

0.16

400

600

800

1000

1200

1400

1600

1800

2000

0.20

0.22

0.24

0.26

0.28

0.30

FIGURE 5.4 Fractional differentiation after controlling for weight loss with a fixed-width window

expanding window’s added weights. The result is a driftless blend of level plus noise,
as expected. The distribution is no longer Gaussian, as a result of the skewness and
excess kurtosis that comes with memory, however it is stationary. Snippet 5.3 presents
an implementation of this idea.

SNIPPET 5.3 THE NEW FIXED-WIDTH WINDOW FRACDIFF
METHOD

def fracDiff_FFD(series,d,thres=1e-5):
’’’
Constant width window (new solution)
Note 1: thres determines the cut-off weight for the window
Note 2: d can be any positive fractional, not necessarily bounded [0,1].
’’’
#1) Compute weights for the longest series
w=getWeights_FFD(d,thres)
width=len(w)-1
#2) Apply weights to values
df={}

84 FRACTIONALLY DIFFERENTIATED FEATURES

for name in series.columns:
seriesF,df_=series[[name]].fillna(method='ffill').dropna(),pd.Series()
for iloc1 in range(width,seriesF.shape[0]):

loc0,loc1=seriesF.index[iloc1-width],seriesF.index[iloc1]
if not np.isfinite(series.loc[loc1,name]):continue # exclude NAs
df_[loc1]=np.dot(w.T,seriesF.loc[loc0:loc1])[0,0]

df[name]=df_.copy(deep=True)
df=pd.concat(df,axis=1)
return df

5.6 STATIONARITY WITH MAXIMUM MEMORY PRESERVATION

Consider a series {Xt}t=1,…,T . Applying the fixed-width window fracdiff (FFD)
method on this series, we can compute the minimum coefficient d∗ such that the
resulting fractionally differentiated series {X̃t}t=l∗,…,T is stationary. This coefficient
d∗ quantifies the amount of memory that needs to be removed to achieve stationar-
ity. If {Xt}t=l∗,…,T is already stationary, then d∗ = 0. If {Xt}t=l∗,…,T contains a unit
root, then d∗ < 1. If {Xt}t=l∗,…,T exhibits explosive behavior (like in a bubble), then
d∗ > 1. A case of particular interest is 0 < d∗ ≪ 1, when the original series is “mildly
non-stationary.” In this case, although differentiation is needed, a full integer differ-
entiation removes excessive memory (and predictive power).

Figure 5.5 illustrates this concept. On the right y-axis, it plots the ADF statistic
computed on E-mini S&P 500 futures log-prices, rolled forward using the ETF trick

1.0

0.8

0.6

0.4

adfStat (right)
corr

–10

–20

–30

–40

0

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5.5 ADF statistic as a function of d, on E-mini S&P 500 futures log-prices

STATIONARITY WITH MAXIMUM MEMORY PRESERVATION 85

(see Chapter 2), downsampled to daily frequency, going back to the contract’s incep-
tion. On the x-axis, it displays the d value used to generate the series on which the
ADF statistic was computed. The original series has an ADF statistic of –0.3387,
while the returns series has an ADF statistic of –46.9114. At a 95% confidence level,
the test’s critical value is –2.8623. The ADF statistic crosses that threshold in the
vicinity of d = 0.35. The left y-axis plots the correlation between the original series
(d = 0) and the differentiated series at various d values. At d = 0.35 the correlation
is still very high, at 0.995. This confirms that the procedure introduced in this chapter
has been successful in achieving stationarity without giving up too much memory. In
contrast, the correlation between the original series and the returns series is only 0.03,
hence showing that the standard integer differentiation wipes out the series’ memory
almost entirely.

Virtually all finance papers attempt to recover stationarity by applying an integer
differentiation d = 1 ≫ 0.35, which means that most studies have over-differentiated
the series, that is, they have removed much more memory than was necessary to
satisfy standard econometric assumptions. Snippet 5.4 lists the code used to produce
these results.

SNIPPET 5.4 FINDING THE MINIMUM D VALUE THAT PASSES THE
ADF TEST

def plotMinFFD():
from statsmodels.tsa.stattools import adfuller
path,instName='./','ES1_Index_Method12'
out=pd.DataFrame(columns=['adfStat','pVal','lags','nObs','95% conf','corr'])
df0=pd.read_csv(path+instName+'.csv',index_col=0,parse_dates=True)
for d in np.linspace(0,1,11):

df1=np.log(df0[['Close']]).resample('1D').last() # downcast to daily obs
df2=fracDiff_FFD(df1,d,thres=.01)
corr=np.corrcoef(df1.loc[df2.index,'Close'],df2['Close'])[0,1]
df2=adfuller(df2['Close'],maxlag=1,regression='c',autolag=None)
out.loc[d]=list(df2[:4])+[df2[4]['5%']]+[corr] # with critical value

out.to_csv(path+instName+'_testMinFFD.csv')
out[['adfStat','corr']].plot(secondary_y='adfStat')
mpl.axhline(out['95% conf'].mean(),linewidth=1,color='r',linestyle='dotted')
mpl.savefig(path+instName+'_testMinFFD.png')
return

The example on E-mini futures is by no means an exception. Table 5.1 shows the
ADF statistics after applying FFD(d) on various values of d, for 87 of the most liquid
futures worldwide. In all cases, the standard d = 1 used for computing returns implies
over-differentiation. In fact, in all cases stationarity is achieved with d < 0.6. In some
cases, like orange juice (JO1 Comdty) or live cattle (LC1 Comdty) no differentiation
at all was needed.

86 FRACTIONALLY DIFFERENTIATED FEATURES

T
A

B
L

E
5.

1
A

D
F

St
at

is
ti

c
on

F
F

D
(d

)
fo

r
So

m
e

of
th

e
M

os
t

L
iq

ui
d

F
ut

ur
es

C
on

tr
ac

ts

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

A
D

1
C

ur
nc

y
−

1.
72

53
−

1.
86

65
−

2.
28

01
−

2.
97

43
−

3.
95

90
−

5.
44

50
−

7.
73

87
−

10
.3

41
2

−
15

.7
25

5
−

22
.5

17
0

−
43

.8
28

1
B

O
1

C
om

dt
y

−
0.

70
39

−
1.

00
21

−
1.

58
48

−
2.

40
38

−
3.

42
84

−
4.

89
16

−
7.

06
04

−
9.

50
89

−
14

.4
06

5
−

20
.4

39
3

−
38

.0
68

3
B

P
1

C
ur

nc
y

−
1.

05
73

−
1.

49
63

−
2.

32
23

−
3.

46
41

−
4.

89
76

−
6.

91
57

−
9.

88
33

−
13

.1
57

5
−

19
.4

23
8

−
26

.6
32

0
−

43
.3

28
4

B
T

S1
C

om
dt

y
−

1.
79

87
−

2.
14

28
−

2.
76

00
−

3.
70

19
−

4.
85

22
−

6.
24

12
−

7.
81

15
−

9.
46

45
−

11
.0

33
4

−
12

.4
47

0
−

13
.6

41
0

B
Z

1
In

de
x

−
1.

65
69

−
1.

87
66

−
2.

39
48

−
3.

21
45

−
4.

28
21

−
5.

94
31

−
8.

33
29

−
10

.9
04

6
−

15
.7

00
6

−
20

.7
22

4
−

29
.9

51
0

C
1

C
om

dt
y

−
1.

78
70

−
2.

12
73

−
2.

95
39

−
4.

16
42

−
5.

73
07

−
7.

95
77

−
11

.1
79

8
−

14
.6

94
6

−
20

.9
92

5
−

27
.6

60
2

−
39

.3
57

6
C

C
1

C
om

dt
y

−
2.

37
43

−
2.

95
03

−
4.

16
94

−
5.

89
97

−
8.

08
68

−
10

.9
87

1
−

14
.8

20
6

−
18

.6
15

4
−

24
.1

73
8

−
29

.0
28

5
−

34
.8

58
0

C
D

1
C

ur
nc

y
−

1.
63

04
−

2.
05

57
−

2.
72

84
−

3.
83

80
−

5.
23

41
−

7.
31

72
−

10
.3

73
8

−
13

.8
26

3
−

20
.2

89
7

−
27

.6
24

2
−

43
.6

79
4

C
F

1
In

de
x

−
1.

55
39

−
1.

93
87

−
2.

74
21

−
3.

92
35

−
5.

50
85

−
7.

75
85

−
11

.0
57

1
−

14
.6

82
9

−
21

.4
87

7
−

28
.9

81
0

−
44

.5
05

9
C

L
1

C
om

dt
y

−
0.

37
95

−
0.

71
64

−
1.

33
59

−
2.

20
18

−
3.

26
03

−
4.

74
99

−
6.

95
04

−
9.

45
31

−
14

.4
93

6
−

20
.8

39
2

−
41

.1
16

9
C

N
1

C
om

dt
y

−
0.

87
98

−
0.

87
11

−
1.

10
20

−
1.

46
26

−
1.

97
32

−
2.

75
08

−
3.

92
17

−
5.

29
44

−
8.

42
57

−
12

.7
30

0
−

42
.1

41
1

C
O

1
C

om
dt

y
−

0.
51

24
−

0.
84

68
−

1.
42

47
−

2.
24

02
−

3.
25

66
−

4.
70

22
−

6.
86

01
−

9.
28

36
−

14
.1

51
1

−
20

.2
31

3
−

39
.2

20
7

C
T

1
C

om
dt

y
−

1.
76

04
−

2.
07

28
−

2.
75

29
−

3.
78

53
−

5.
13

97
−

7.
11

23
−

10
.0

13
7

−
13

.1
85

1
−

19
.0

60
3

−
25

.4
51

3
−

37
.5

70
3

D
M

1
In

de
x

−
0.

19
29

−
0.

57
18

−
1.

24
14

−
2.

11
27

−
3.

17
65

−
4.

66
95

−
6.

88
52

−
9.

42
19

−
14

.6
72

6
−

21
.5

41
1

−
49

.2
66

3
D

U
1

C
om

dt
y

−
0.

33
65

−
0.

45
72

−
0.

76
47

−
1.

14
47

−
1.

61
32

−
2.

27
59

−
3.

33
89

−
4.

56
89

−
7.

21
01

−
10

.9
02

5
−

42
.9

01
2

D
X

1
C

ur
nc

y
−

1.
57

68
−

1.
94

58
−

2.
73

58
−

3.
84

23
−

5.
31

01
−

7.
35

07
−

10
.3

56
9

−
13

.6
45

1
−

19
.5

83
2

−
25

.8
90

7
−

37
.2

62
3

E
C

1
C

om
dt

y
−

0.
27

27
−

0.
66

50
−

1.
33

59
−

2.
21

12
−

3.
31

12
−

4.
83

20
−

7.
07

77
−

9.
62

99
−

14
.8

25
8

−
21

.4
63

4
−

44
.6

45
2

E
C

1
C

ur
nc

y
−

1.
47

33
−

1.
93

44
−

2.
85

07
−

4.
15

88
−

5.
82

40
−

8.
18

34
−

11
.6

27
8

−
15

.4
09

5
−

22
.4

31
7

−
30

.1
48

2
−

45
.6

37
3

E
D

1
C

om
dt

y
−

0.
40

84
−

0.
53

50
−

0.
79

48
−

1.
17

72
−

1.
66

33
−

2.
38

18
−

3.
46

01
−

4.
70

41
−

7.
43

73
−

11
.3

17
5

−
46

.4
48

7
E

E
1

C
ur

nc
y

−
1.

21
00

−
1.

63
78

−
2.

42
16

−
3.

54
70

−
4.

98
21

−
7.

01
66

−
9.

99
62

−
13

.2
92

0
−

19
.5

04
7

−
26

.5
15

8
−

41
.4

67
2

E
O

1
C

om
dt

y
−

0.
79

03
−

0.
89

17
−

1.
05

51
−

1.
34

65
−

1.
73

02
−

2.
35

00
−

3.
30

68
−

4.
51

36
−

7.
01

57
−

10
.6

46
3

−
45

.2
10

0

STATIONARITY WITH MAXIMUM MEMORY PRESERVATION 87
E

O
1

In
de

x
−

0.
65

61
−

1.
05

67
−

1.
74

09
−

2.
67

74
−

3.
85

43
−

5.
50

96
−

7.
91

33
−

10
.5

67
4

−
15

.6
44

2
−

21
.3

06
6

−
35

.1
39

7
E

R
1

C
om

dt
y

−
0.

19
70

−
0.

34
42

−
0.

63
34

−
1.

03
63

−
1.

53
27

−
2.

23
78

−
3.

28
19

−
4.

46
47

−
7.

10
31

−
10

.7
38

9
−

40
.0

40
7

E
S1

In
de

x
−

0.
33

87
−

0.
72

06
−

1.
33

24
−

2.
22

52
−

3.
27

33
−

4.
79

76
−

7.
04

36
−

9.
60

95
−

14
.8

62
4

−
21

.6
17

7
−

46
.9

11
4

FA
1

In
de

x
−

0.
52

92
−

0.
85

26
−

1.
42

50
−

2.
23

59
−

3.
25

00
−

4.
69

02
−

6.
82

72
−

9.
24

10
−

14
.1

66
4

−
20

.3
73

3
−

41
.9

70
5

F
C

1
C

om
dt

y
−

1.
88

46
−

2.
18

53
−

2.
88

08
−

3.
85

46
−

5.
14

83
−

7.
02

26
−

9.
68

89
−

12
.5

67
9

−
17

.8
16

0
−

23
.0

53
0

−
31

.6
50

3
F

V
1

C
om

dt
y

−
0.

72
57

−
0.

85
15

−
1.

05
96

−
1.

43
04

−
1.

83
12

−
2.

53
02

−
3.

62
96

−
4.

94
99

−
7.

82
92

−
12

.0
46

7
−

49
.1

50
8

G
1

C
om

dt
y

0.
23

26
0.

00
26

−
0.

46
86

−
1.

05
90

−
1.

74
53

−
2.

67
61

−
4.

03
36

−
5.

56
24

−
8.

85
75

−
13

.3
27

7
−

42
.9

17
7

G
C

1
C

om
dt

y
−

2.
22

21
−

2.
35

44
−

2.
74

67
−

3.
41

40
−

4.
48

61
−

6.
06

32
−

8.
48

03
−

11
.2

15
2

−
16

.7
11

1
−

23
.1

75
0

−
39

.0
71

5
G

X
1

In
de

x
−

1.
54

18
−

1.
77

49
−

2.
46

66
−

3.
44

17
−

4.
73

21
−

6.
61

55
−

9.
36

67
−

12
.5

24
0

−
18

.6
29

1
−

25
.8

11
6

−
43

.3
61

0
H

G
1

C
om

dt
y

−
1.

73
72

−
2.

14
95

−
2.

83
23

−
3.

90
90

−
5.

32
57

−
7.

38
05

−
10

.4
12

1
−

13
.7

66
9

−
19

.8
90

2
−

26
.5

81
9

−
39

.3
26

7
H

I1
In

de
x

−
1.

82
89

−
2.

04
32

−
2.

62
03

−
3.

52
33

−
4.

75
14

−
6.

57
43

−
9.

27
33

−
12

.3
72

2
−

18
.5

30
8

−
25

.9
76

2
−

45
.3

39
6

H
O

1
C

om
dt

y
−

1.
60

24
−

1.
99

41
−

2.
66

19
−

3.
71

31
−

5.
17

72
−

7.
24

68
−

10
.3

32
6

−
13

.6
74

5
−

19
.9

72
8

−
26

.9
77

2
−

40
.9

82
4

IB
1

In
de

x
−

2.
39

12
−

2.
82

54
−

3.
58

13
−

4.
87

74
−

6.
58

84
−

9.
06

65
−

12
.7

38
1

−
16

.6
70

6
−

23
.6

75
2

−
30

.7
98

6
−

43
.0

68
7

IK
1

C
om

dt
y

−
1.

73
73

−
2.

30
00

−
2.

77
64

−
3.

71
01

−
4.

86
86

−
6.

35
04

−
8.

21
95

−
9.

86
36

−
11

.7
88

2
−

13
.3

98
3

−
14

.8
39

1
IR

1
C

om
dt

y
−

2.
06

22
−

2.
41

88
−

3.
17

36
−

4.
31

78
−

5.
81

19
−

7.
98

16
−

11
.2

10
2

−
14

.7
95

6
−

21
.6

15
8

−
29

.4
55

5
−

46
.2

68
3

JA
1

C
om

dt
y

−
2.

47
01

−
2.

72
92

−
3.

39
25

−
4.

46
58

−
5.

92
36

−
8.

02
70

−
11

.2
08

2
−

14
.7

19
8

−
21

.2
68

1
−

28
.4

38
0

−
42

.1
93

7
JB

1
C

om
dt

y
−

0.
20

81
−

0.
43

19
−

0.
84

90
−

1.
42

89
−

2.
11

60
−

3.
09

32
−

4.
57

40
−

6.
30

61
−

9.
94

54
−

15
.0

15
1

−
47

.6
03

7
JE

1
C

ur
nc

y
−

0.
92

68
−

1.
20

78
−

1.
75

65
−

2.
53

98
−

3.
55

45
−

5.
02

70
−

7.
20

96
−

9.
68

08
−

14
.6

27
1

−
20

.7
16

8
−

37
.6

95
4

JG
1

C
om

dt
y

−
1.

74
68

−
1.

80
71

−
2.

06
54

−
2.

54
47

−
3.

22
37

−
4.

34
18

−
6.

06
90

−
8.

05
37

−
12

.3
90

8
−

18
.1

88
1

−
44

.2
88

4
JO

1
C

om
dt

y
−

3.
00

52
−

3.
30

99
−

4.
26

39
−

5.
72

91
−

7.
56

86
−

10
.1

68
3

−
13

.7
06

8
−

17
.3

05
4

−
22

.7
85

3
−

27
.7

01
1

−
33

.4
65

8
JY

1
C

ur
nc

y
−

1.
26

16
−

1.
58

91
−

2.
20

42
−

3.
14

07
−

4.
37

15
−

6.
16

00
−

8.
82

61
−

11
.8

44
9

−
17

.8
27

5
−

25
.0

70
0

−
44

.8
39

4
K

C
1

C
om

dt
y

−
0.

77
86

−
1.

11
72

−
1.

77
23

−
2.

71
85

−
3.

88
75

−
5.

56
51

−
8.

02
17

−
10

.7
42

2
−

15
.9

42
3

−
21

.8
65

1
−

35
.3

35
4

L
1

C
om

dt
y

−
0.

08
05

−
0.

22
28

−
0.

61
44

−
1.

07
51

−
1.

63
35

−
2.

41
86

−
3.

56
76

−
4.

87
49

−
7.

75
28

−
11

.7
66

9
−

44
.0

34
9

A
t

a
95

%
co

nfi
de

nc
e

le
ve

l,
th

e
A

D
F

te
st

’s
cr

iti
ca

l
va

lu
e

is
−

2.
86

23
.A

ll
of

th
e

lo
g-

pr
ic

e
se

ri
es

ac
hi

ev
e

st
at

io
na

ri
ty

at
d
<

0.
6,

an
d

th
e

gr
ea

t
m

aj
or

ity
ar

e
st

at
io

na
ry

at
d
<

0.
3.

88 FRACTIONALLY DIFFERENTIATED FEATURES

5.7 CONCLUSION

To summarize, most econometric analyses follow one of two paradigms:

1. Box-Jenkins: Returns are stationary, however memory-less.

2. Engle-Granger: Log-prices have memory, however they are non-stationary.
Cointegration is the trick that makes regression work on non-stationary series,
so that memory is preserved. However the number of cointegrated variables is
limited, and the cointegrating vectors are notoriously unstable.

In contrast, the FFD approach introduced in this chapter shows that there is no
need to give up all of the memory in order to gain stationarity. And there is no need
for the cointegration trick as it relates to ML forecasting. Once you become familiar
with FFD, it will allow you to achieve stationarity without renouncing to memory (or
predictive power).

In practice, I suggest you experiment with the following transformation of your
features: First, compute a cumulative sum of the time series. This guarantees that
some order of differentiation is needed. Second, compute the FFD(d) series for var-
ious d ∈ [0, 1]. Third, determine the minimum d such that the p-value of the ADF
statistic on FFD(d) falls below 5%. Fourth, use the FFD(d) series as your predictive
feature.

EXERCISES

5.1 Generate a time series from an IID Gaussian random process. This is a memory-
less, stationary series:

(a) Compute the ADF statistic on this series. What is the p-value?

(b) Compute the cumulative sum of the observations. This is a non-stationary
series without memory.

(i) What is the order of integration of this cumulative series?

(ii) Compute the ADF statistic on this series. What is the p-value?

(c) Differentiate the series twice. What is the p-value of this over-differentiated
series?

5.2 Generate a time series that follows a sinusoidal function. This is a stationary
series with memory.

(a) Compute the ADF statistic on this series. What is the p-value?

(b) Shift every observation by the same positive value. Compute the cumulative
sum of the observations. This is a non-stationary series with memory.

(i) Compute the ADF statistic on this series. What is the p-value?

(ii) Apply an expanding window fracdiff, with 𝜏 = 1E − 2. For what mini-
mum d value do you get a p-value below 5%?

(iii) Apply FFD, with 𝜏 = 1E − 5. For what minimum d value do you get a
p-value below 5%?

BIBLIOGRAPHY 89

5.3 Take the series from exercise 2.b:

(a) Fit the series to a sine function. What is the R-squared?

(b) Apply FFD(d= 1). Fit the series to a sine function. What is the R-squared?

(c) What value of d maximizes the R-squared of a sinusoidal fit on FFD(d).
Why?

5.4 Take the dollar bar series on E-mini S&P 500 futures. Using the code
in Snippet 5.3, for some d ∈ [0, 2], compute fracDiff_FFD(fracDiff
_FFD(series,d),-d). What do you get? Why?

5.5 Take the dollar bar series on E-mini S&P 500 futures.

(a) Form a new series as a cumulative sum of log-prices.

(b) Apply FFD, with 𝜏 = 1E − 5. Determine for what minimum d ∈ [0, 2] the
new series is stationary.

(c) Compute the correlation of the fracdiff series to the original (untransformed)
series.

(d) Apply an Engel-Granger cointegration test on the original and fracdiff series.
Are they cointegrated? Why?

(e) Apply a Jarque-Bera normality test on the fracdiff series.

5.6 Take the fracdiff series from exercise 5.

(a) Apply a CUSUM filter (Chapter 2), where h is twice the standard deviation
of the series.

(b) Use the filtered timestamps to sample a features’ matrix. Use as one of the
features the fracdiff value.

(c) Form labels using the triple-barrier method, with symmetric horizontal bar-
riers of twice the daily standard deviation, and a vertical barrier of 5 days.

(d) Fit a bagging classifier of decision trees where:

(i) The observed features are bootstrapped using the sequential method
from Chapter 4.

(ii) On each bootstrapped sample, sample weights are determined using the
techniques from Chapter 4.

REFERENCES

Alexander, C. (2001): Market Models, 1st edition. John Wiley & Sons.
Hamilton, J. (1994): Time Series Analysis, 1st ed. Princeton University Press.
Hosking, J. (1981): “Fractional differencing.” Biometrika, Vol. 68, No. 1, pp. 165–176.
Jensen, A. and M. Nielsen (2014): “A fast fractional difference algorithm.” Journal of Time Series

Analysis, Vol. 35, No. 5, pp. 428–436.
López de Prado, M. (2015): “The Future of Empirical Finance.” Journal of Portfolio Management,

Vol. 41, No. 4, pp. 140–144. Available at https://ssrn.com/abstract=2609734.

BIBLIOGRAPHY

Cavaliere, G., M. Nielsen, and A. Taylor (2017): “Quasi-maximum likelihood estimation and boot-
strap inference in fractional time series models with heteroskedasticity of unknown form.”
Journal of Econometrics, Vol. 198, No. 1, pp. 165–188.

let &hbox {char '046}https://ssrn.com/abstract=2609734
https://ssrn.com/abstract=2609734

90 FRACTIONALLY DIFFERENTIATED FEATURES

Johansen, S. and M. Nielsen (2012): “A necessary moment condition for the fractional functional
central limit theorem.” Econometric Theory, Vol. 28, No. 3, pp. 671–679.

Johansen, S. and M. Nielsen (2012): “Likelihood inference for a fractionally cointegrated vector
autoregressive model.” Econometrica, Vol. 80, No. 6, pp. 2267–2732.

Johansen, S. and M. Nielsen (2016): “The role of initial values in conditional sum-of-squares esti-
mation of nonstationary fractional time series models.” Econometric Theory, Vol. 32, No. 5,
pp. 1095–1139.

Jones, M., M. Nielsen and M. Popiel (2015): “A fractionally cointegrated VAR analysis of economic
voting and political support.” Canadian Journal of Economics, Vol. 47, No. 4, pp. 1078–1130.

Mackinnon, J. and M. Nielsen, M. (2014): “Numerical distribution functions of fractional unit root
and cointegration tests.” Journal of Applied Econometrics, Vol. 29, No. 1, pp. 161–171.

P A R T 2

Modelling

Chapter 6: Ensemble Methods, 93
Chapter 7: Cross-Validation in Finance, 103
Chapter 8: Feature Importance, 113
Chapter 9: Hyper-Parameter Tuning with Cross-Validation, 129

91

CHAPTER 6

Ensemble Methods

6.1 MOTIVATION

In this chapter we will discuss two of the most popular ML ensemble methods.1 In the
references and footnotes you will find books and articles that introduce these tech-
niques. As everywhere else in this book, the assumption is that you have already used
these approaches. The goal of this chapter is to explain what makes them effective,
and how to avoid common errors that lead to their misuse in finance.

6.2 THE THREE SOURCES OF ERRORS

ML models generally suffer from three errors:2

1. Bias: This error is caused by unrealistic assumptions. When bias is high, the
ML algorithm has failed to recognize important relations between features and
outcomes. In this situation, the algorithm is said to be “underfit.”

2. Variance: This error is caused by sensitivity to small changes in the training
set. When variance is high, the algorithm has overfit the training set, and that
is why even minimal changes in the training set can produce wildly different
predictions. Rather than modelling the general patterns in the training set, the
algorithm has mistaken noise with signal.

1 For an introduction to ensemble methods, please visit: http://scikit-learn.org/stable/modules/
ensemble.html.

2 I would not typically cite Wikipedia, however, on this subject the user may find some of the illustrations
in this article useful: https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff.

93

http://scikit-learn.org/stable/modules/ensemble.html.
http://scikit-learn.org/stable/modules/ensemble.html.
let &hbox {char '046}https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff.
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff.

94 ENSEMBLE METHODS

3. Noise: This error is caused by the variance of the observed values, like unpre-
dictable changes or measurement errors. This is the irreducible error, which
cannot be explained by any model.

Consider a training set of observations {xi}i=1,…,n and real-valued outcomes
{yi}i=1,…,n. Suppose a function f [x] exists, such that y = f [x] + 𝜀, where 𝜀 is white
noise with E[𝜀i] = 0 and E[𝜀2

i] = 𝜎
2
𝜀
. We would like to estimate the function f̂ [x]

that best fits f [x], in the sense of making the variance of the estimation error

E[(yi − f̂ [xi])
2
] minimal (the mean squared error cannot be zero, because of the noise

represented by 𝜎
2
𝜀
). This mean-squared error can be decomposed as

E
[
(yi − f̂ [xi])

2
]
=
⎛⎜⎜⎜⎝E[f̂ [xi] − f [xi]]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

bias

⎞⎟⎟⎟⎠
2

+ V[f̂ [xi]]
⏟⏟⏟

variance

+ 𝜎
2
𝜀

⏟⏟⏟

noise

An ensemble method is a method that combines a set of weak learners, all based
on the same learning algorithm, in order to create a (stronger) learner that performs
better than any of the individual ones. Ensemble methods help reduce bias and/or
variance.

6.3 BOOTSTRAP AGGREGATION

Bootstrap aggregation (bagging) is an effective way of reducing the variance in fore-
casts. It works as follows: First, generate N training datasets by random sampling with
replacement. Second, fit N estimators, one on each training set. These estimators are
fit independently from each other, hence the models can be fit in parallel. Third, the
ensemble forecast is the simple average of the individual forecasts from the N models.
In the case of categorical variables, the probability that an observation belongs to a
class is given by the proportion of estimators that classify that observation as a mem-
ber of that class (majority voting). When the base estimator can make forecasts with
a prediction probability, the bagging classifier may derive a mean of the probabilities.

If you use sklearn’s BaggingClassifier class to compute the out-of-bag
accuracy, you should be aware of this bug: https://github.com/scikit-learn/scikit-
learn/issues/8933. One workaround is to rename the labels in integer sequential
order.

6.3.1 Variance Reduction

Bagging’s main advantage is that it reduces forecasts’ variance, hence helping address
overfitting. The variance of the bagged prediction (𝜑i[c]) is a function of the number
of bagged estimators (N), the average variance of a single estimator’s prediction (�̄�),

let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/8933
let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/8933
https://github.com/scikit-learn/scikit-learn/issues/8933
https://github.com/scikit-learn/scikit-learn/issues/8933

BOOTSTRAP AGGREGATION 95

and the average correlation among their forecasts (�̄�):

V

[
1
N

N∑
i=1

𝜑i[c]

]
= 1

N2

N∑
i=1

(
N∑

j=1

𝜎i,j

)
= 1

N2

N∑
i=1

(
𝜎

2
i +

N∑
j≠i

𝜎i𝜎j𝜌i,j

)

= 1
N2

N∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
�̄�

2 +
N∑

j≠i

�̄�
2
�̄�

⏟⏟⏟

= (N − 1)�̄�2
�̄�

for a fixed i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= �̄�

2 + (N − 1)�̄�2
�̄�

N

= �̄�
2

(
�̄� + 1 − �̄�

N

)
where 𝜎i,j is the covariance of predictions by estimators i,j;

∑N
i=1 �̄�

2 =∑N
i=1 𝜎

2
i ⇔ �̄�

2 = N−1 ∑N
i=1 𝜎

2
i ; and

∑N
j≠i �̄�

2
�̄� =

∑N
j≠i 𝜎i𝜎j𝜌i,j ⇔ �̄� = (�̄�2N(N − 1))−1∑N

j≠i 𝜎i𝜎j𝜌i,j.

The equation above shows that bagging is only effective to the extent that �̄� <

1; as �̄� → 1 ⇒ V[1
N

∑N
i=1 𝜑i[c]] → �̄�

2. One of the goals of sequential bootstrapping
(Chapter 4) is to produce samples as independent as possible, thereby reducing �̄�,
which should lower the variance of bagging classifiers. Figure 6.1 plots the standard
deviation of the bagged prediction as a function of N ∈ [5, 30], �̄� ∈ [0, 1] and �̄� = 1.

FIGURE 6.1 Standard deviation of the bagged prediction

96 ENSEMBLE METHODS

6.3.2 Improved Accuracy

Consider a bagging classifier that makes a prediction on k classes by majority voting
among N independent classifiers. We can label the predictions as {0,1}, where 1
means a correct prediction. The accuracy of a classifier is the probability p of labeling
a prediction as 1. On average we will get Np predictions labeled as 1, with variance
Np(1 − p). Majority voting makes the correct prediction when the most forecasted
class is observed. For example, for N = 10 and k = 3, the bagging classifier made
a correct prediction when class A was observed and the cast votes were [A, B, C] =
[4,3,3]. However, the bagging classifier made an incorrect prediction when class
A was observed and the cast votes were [A, B, C] = [4,1,5]. A sufficient condition
is that the sum of these labels is X >

N
2

. A necessary (non-sufficient) condition is

that X >
N
k

, which occurs with probability

P
[
X >

N
k

]
= 1 − P

[
X ≤

N
k

]
= 1 −

⌊
N∕k

⌋∑
i=0

(
N
i

)
pi(1 − p)N−i

The implication is that for a sufficiently large N, say N > p(p − 1∕k)−2, then

p >
1
k
⇒ P[X >

N
k

] > p, hence the bagging classifier’s accuracy exceeds the average
accuracy of the individual classifiers. Snippet 6.1 implements this calculation.

SNIPPET 6.1 ACCURACY OF THE BAGGING CLASSIFIER

from scipy.misc import comb
N,p,k=100,1./3,3.
p_=0
for i in xrange(0,int(N/k)+1):

p_+=comb(N,i)*p**i*(1-p)**(N-i)
print p,1-p_

This is a strong argument in favor of bagging any classifier in general, when
computational requirements permit it. However, unlike boosting, bagging cannot
improve the accuracy of poor classifiers: If the individual learners are poor classifiers
(p ≪

1
k
), majority voting will still perform poorly (although with lower variance).

Figure 6.2 illustrates these facts. Because it is easier to achieve �̄� ≪ 1 than p >
1
k
,

bagging is more likely to be successful in reducing variance than in reducing bias.
For further analysis on this topic, the reader is directed to Condorcet’s Jury Theo-

rem. Although the theorem is derived for the purposes of majority voting in political

BOOTSTRAP AGGREGATION 97

FIGURE 6.2 Accuracy of a bagging classifier as a function of the individual estimator’s accuracy (P),
the number of estimators (N), and k= 2

science, the problem addressed by this theorem shares similarities with the above
discussion.

6.3.3 Observation Redundancy

In Chapter 4 we studied one reason why financial observations cannot be assumed to
be IID. Redundant observations have two detrimental effects on bagging. First, the
samples drawn with replacement are more likely to be virtually identical, even if they
do not share the same observations. This makes �̄� ≈ 1, and bagging will not reduce
variance, regardless of N. For example, if each observation at t is labeled according
to the return between t and t + 100, we should sample 1% of the observations per
bagged estimator, but not more. Chapter 4, Section 4.5 recommended three alternative
solutions, one of which consisted of setting max_samples=out['tW'].mean() in
sklearn’s implementation of the bagging classifier class. Another (better) solution
was to apply the sequential bootstrap method.

The second detrimental effect from observation redundancy is that out-of-bag
accuracy will be inflated. This happens because random sampling with replacement
places in the training set samples that are very similar to those out-of-bag. In
such a case, a proper stratified k-fold cross-validation without shuffling before
partitioning will show a much lower testing-set accuracy than the one estimated
out-of-bag. For this reason, it is advisable to set StratifiedKFold(n_splits=k,
shuffle=False)when using that sklearn class, cross-validate the bagging classifier,
and ignore the out-of-bag accuracy results. A low number k is preferred to a high

98 ENSEMBLE METHODS

one, as excessive partitioning would again place in the testing set samples too similar
to those used in the training set.

6.4 RANDOM FOREST

Decision trees are known to be prone to overfitting, which increases the variance of
the forecasts.3 In order to address this concern, the random forest (RF) method was
designed to produce ensemble forecasts with lower variance.

RF shares some similarities with bagging, in the sense of training independently
individual estimators over bootstrapped subsets of the data. The key difference with
bagging is that random forests incorporate a second level of randomness: When
optimizing each node split, only a random subsample (without replacement) of the
attributes will be evaluated, with the purpose of further decorrelating the estimators.

Like bagging, RF reduces forecasts’ variance without overfitting (remember, as
long as �̄� < 1). A second advantage is that RF evaluates feature importance, which
we will discuss in depth in Chapter 8. A third advantage is that RF provides out-of-bag
accuracy estimates, however in financial applications they are likely to be inflated (as
discussed in Section 6.3.3). But like bagging, RF will not necessarily exhibit lower
bias than individual decision trees.

If a large number of samples are redundant (non-IID), overfitting will still take
place: Sampling randomly with replacement will build a large number of essen-
tially identical trees (�̄� ≈ 1), where each decision tree is overfit (a flaw for which
decision trees are notorious). Unlike bagging, RF always fixes the size of the boot-
strapped samples to match the size of the training dataset. Let us review ways
we can address this RF overfitting problem in sklearn. For illustration purposes,
I will refer to sklearn’s classes; however, these solutions can be applied to any
implementation:

1. Set a parameter max_features to a lower value, as a way of forcing discrep-
ancy between trees.

2. Early stopping: Set the regularization parameter min_weight_fraction_
leaf to a sufficiently large value (e.g., 5%) such that out-of-bag accuracy con-
verges to out-of-sample (k-fold) accuracy.

3. Use BaggingClassifier on DecisionTreeClassifier where max_
samples is set to the average uniqueness (avgU) between samples.

(a) clf=DecisionTreeClassifier(criterion='entropy',max_
features='auto',class_weight='balanced')

(b) bc=BaggingClassifier(base_estimator=clf,n_estimators=
1000,max_samples=avgU,max_features=1.)

4. Use BaggingClassifier on RandomForestClassifier where max_
samples is set to the average uniqueness (avgU) between samples.

3 For an intuitive explanation of Random Forest, visit the following link: https://quantdare.com/random
-forest-many-is-better-than-one/.

https://quantdare.com/random-forest-many-is-better-than-one/.
https://quantdare.com/random-forest-many-is-better-than-one/.

BOOSTING 99

(a) clf=RandomForestClassifier(n_estimators=1,criterion=
'entropy',bootstrap=False,class_weight='balanced_
subsample')

(b) bc=BaggingClassifier(base_estimator=clf,n_estimators=
1000,max_samples=avgU,max_features=1.)

5. Modify the RF class to replace standard bootstrapping with sequential boot-
strapping.

In summary, Snippet 6.2 demonstrates three alternative ways of setting up an RF,
using different classes.

SNIPPET 6.2 THREE WAYS OF SETTING UP AN RF

clf0=RandomForestClassifier(n_estimators=1000,class_weight='balanced_subsample',
criterion='entropy')

clf1=DecisionTreeClassifier(criterion='entropy',max_features='auto',
class_weight='balanced')

clf1=BaggingClassifier(base_estimator=clf1,n_estimators=1000,max_samples=avgU)
clf2=RandomForestClassifier(n_estimators=1,criterion='entropy',bootstrap=False,

class_weight='balanced_subsample')
clf2=BaggingClassifier(base_estimator=clf2,n_estimators=1000,max_samples=avgU,

max_features=1.)

When fitting decision trees, a rotation of the features space in a direction that
aligns with the axes typically reduces the number of levels needed by the tree. For this
reason, I suggest you fit RF on a PCA of the features, as that may speed up calculations
and reduce some overfitting (more on this in Chapter 8). Also, as discussed in Chapter
4, Section 4.8, class_weight='balanced_subsample'will help you prevent the
trees from misclassifying minority classes.

6.5 BOOSTING

Kearns and Valiant [1989] were among the first to ask whether one could combine
weak estimators in order to achieve one with high accuracy. Shortly after, Schapire
[1990] demonstrated that the answer to that question was affirmative, using the pro-
cedure we today call boosting. In general terms, it works as follows: First, generate
one training set by random sampling with replacement, according to some sample
weights (initialized with uniform weights). Second, fit one estimator using that train-
ing set. Third, if the single estimator achieves an accuracy greater than the acceptance
threshold (e.g., 50% in a binary classifier, so that it performs better than chance), the
estimator is kept, otherwise it is discarded. Fourth, give more weight to misclassified
observations, and less weight to correctly classified observations. Fifth, repeat the
previous steps until N estimators are produced. Sixth, the ensemble forecast is the
weighted average of the individual forecasts from the N models, where the weights

100 ENSEMBLE METHODS

FIGURE 6.3 AdaBoost decision flow

are determined by the accuracy of the individual estimators. There are many boosting
algorithms, of which AdaBoost is one of the most popular (Geron [2017]). Figure 6.3
summarizes the decision flow of a standard AdaBoost implementation.

6.6 BAGGING VS. BOOSTING IN FINANCE

From the above description, a few aspects make boosting quite different from
bagging:4

� Individual classifiers are fit sequentially.
� Poor-performing classifiers are dismissed.

4 For a visual explanation of the difference between bagging and boosting, visit: https://quantdare.com/
what-is-the-difference-between-bagging-and-boosting/.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/.
https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/.

EXERCISES 101

� Observations are weighted differently in each iteration.
� The ensemble forecast is a weighted average of the individual learners.

Boosting’s main advantage is that it reduces both variance and bias in forecasts.
However, correcting bias comes at the cost of greater risk of overfitting. It could
be argued that in financial applications bagging is generally preferable to boost-
ing. Bagging addresses overfitting, while boosting addresses underfitting. Overfit-
ting is often a greater concern than underfitting, as it is not difficult to overfit an
ML algorithm to financial data, because of the low signal-to-noise ratio. Further-
more, bagging can be parallelized, while generally boosting requires sequential
running.

6.7 BAGGING FOR SCALABILITY

As you know, several popular ML algorithms do not scale well with the sample size.
Support vector machines (SVMs) are a prime example. If you attempt to fit an SVM
on a million observations, it may take a while until the algorithm converges. And even
once it has converged, there is no guarantee that the solution is a global optimum, or
that it is not overfit.

One practical approach is to build a bagging algorithm, where the base estima-
tor belongs to a class that does not scale well with the sample size, like SVM.
When defining that base estimator, we will impose a tight early stopping condition.
For example, in sklearn’s SVM implementation, you could set a low value for the
max_iter parameter, say 1E5 iterations. The default value is max_iter=-1, which
tells the estimator to continue performing iterations until errors fall below a toler-
ance level. Alternatively, you could raise the tolerance level through the parame-
ter tol, which has a default value tol=1E-3. Either of these two parameters will
force an early stop. You can stop other algorithms early with equivalent parameters,
like the number of levels in an RF (max_depth), or the minimum weighted fraction
of the sum total of weights (of all the input samples) required to be at a leaf node
(min_weight_fraction_leaf).

Given that bagging algorithms can be parallelized, we are transforming a large
sequential task into many smaller ones that are run simultaneously. Of course, the
early stopping will increase the variance of the outputs from the individual base esti-
mators; however, that increase can be more than offset by the variance reduction asso-
ciated with the bagging algorithm. You can control that reduction by adding more
independent base estimators. Used in this way, bagging will allow you to achieve fast
and robust estimates on extremely large datasets.

EXERCISES

6.1 Why is bagging based on random sampling with replacement? Would bagging
still reduce a forecast’s variance if sampling were without replacement?

102 ENSEMBLE METHODS

6.2 Suppose that your training set is based on highly overlap labels (i.e., with low
uniqueness, as defined in Chapter 4).

(a) Does this make bagging prone to overfitting, or just ineffective? Why?

(b) Is out-of-bag accuracy generally reliable in financial applications? Why?

6.3 Build an ensemble of estimators, where the base estimator is a decision tree.

(a) How is this ensemble different from an RF?

(b) Using sklearn, produce a bagging classifier that behaves like an RF. What
parameters did you have to set up, and how?

6.4 Consider the relation between an RF, the number of trees it is composed of, and
the number of features utilized:

(a) Could you envision a relation between the minimum number of trees needed
in an RF and the number of features utilized?

(b) Could the number of trees be too small for the number of features used?

(c) Could the number of trees be too high for the number of observations avail-
able?

6.5 How is out-of-bag accuracy different from stratified k-fold (with shuffling) cross-
validation accuracy?

REFERENCES

Geron, A. (2017): Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems, 1st edition. O’Reilly Media.

Kearns, M. and L. Valiant (1989): “Cryptographic limitations on learning Boolean formulae and
finite automata.” In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pp. 433–444, New York. Association for Computing Machinery.

Schapire, R. (1990): “The strength of weak learnability.” Machine Learning. Kluwer Academic
Publishers. Vol. 5 No. 2, pp. 197–227.

BIBLIOGRAPHY

Gareth, J., D. Witten, T. Hastie, and R. Tibshirani (2013): An Introduction to Statistical Learning:
With Applications in R, 1st ed. Springer-Verlag.

Hackeling, G. (2014): Mastering Machine Learning with Scikit-Learn, 1st ed. Packt Publishing.
Hastie, T., R. Tibshirani and J. Friedman (2016): The Elements of Statistical Learning, 2nd ed.

Springer-Verlag.
Hauck, T. (2014): Scikit-Learn Cookbook, 1st ed. Packt Publishing.
Raschka, S. (2015): Python Machine Learning, 1st ed. Packt Publishing.

CHAPTER 7

Cross-Validation in Finance

7.1 MOTIVATION

The purpose of cross-validation (CV) is to determine the generalization error of an
ML algorithm, so as to prevent overfitting. CV is yet another instance where stan-
dard ML techniques fail when applied to financial problems. Overfitting will take
place, and CV will not be able to detect it. In fact, CV will contribute to overfitting
through hyper-parameter tuning. In this chapter we will learn why standard CV fails
in finance, and what can be done about it.

7.2 THE GOAL OF CROSS-VALIDATION

One of the purposes of ML is to learn the general structure of the data, so that we
can produce predictions on future, unseen features. When we test an ML algorithm
on the same dataset as was used for training, not surprisingly, we achieve spectacular
results. When ML algorithms are misused that way, they are no different from file
lossy-compression algorithms: They can summarize the data with extreme fidelity,
yet with zero forecasting power.

CV splits observations drawn from an IID process into two sets: the training set
and the testing set. Each observation in the complete dataset belongs to one, and only
one, set. This is done as to prevent leakage from one set into the other, since that
would defeat the purpose of testing on unseen data. Further details can be found in
the books and articles listed in the references section.

There are many alternative CV schemes, of which one of the most popular is k-
fold CV. Figure 7.1 illustrates the k train/test splits carried out by a k-fold CV, where
k = 5. In this scheme:

1. The dataset is partitioned into k subsets.

2. For i= 1,…,k

103

104 CROSS-VALIDATION IN FINANCE

FIGURE 7.1 Train/test splits in a 5-fold CV scheme

(a) The ML algorithm is trained on all subsets excluding i.

(b) The fitted ML algorithm is tested on i.

The outcome from k-fold CV is a kx1 array of cross-validated performance met-
rics. For example, in a binary classifier, the model is deemed to have learned some-
thing if the cross-validated accuracy is over 1/2, since that is the accuracy we would
achieve by tossing a fair coin.

In finance, CV is typically used in two settings: model development (like hyper-
parameter tuning) and backtesting. Backtesting is a complex subject that we will dis-
cuss thoroughly in Chapters 10–16. In this chapter, we will focus on CV for model
development.

7.3 WHY K-FOLD CV FAILS IN FINANCE

By now you may have read quite a few papers in finance that present k-fold CV
evidence that an ML algorithm performs well. Unfortunately, it is almost certain that
those results are wrong. One reason k-fold CV fails in finance is because observations
cannot be assumed to be drawn from an IID process. A second reason for CV’s failure
is that the testing set is used multiple times in the process of developing a model,
leading to multiple testing and selection bias. We will revisit this second cause of
failure in Chapters 11–13. For the time being, let us concern ourselves exclusively
with the first cause of failure.

Leakage takes place when the training set contains information that also appears
in the testing set. Consider a serially correlated feature X that is associated with labels
Y that are formed on overlapping data:

A SOLUTION: PURGED K-FOLD CV 105

� Because of the serial correlation, Xt ≈ Xt+1.
� Because labels are derived from overlapping datapoints, Yt ≈ Yt+1.

By placing t and t + 1 in different sets, information is leaked. When a classifier
is first trained on (Xt, Yt), and then it is asked to predict E[Yt+1|Xt+1] based on an
observed Xt+1, this classifier is more likely to achieve Yt+1 = E[Yt+1|Xt+1] even if X
is an irrelevant feature.

If X is a predictive feature, leakage will enhance the performance of an already
valuable strategy. The problem is leakage in the presence of irrelevant features, as
this leads to false discoveries. There are at least two ways to reduce the likelihood of
leakage:

1. Drop from the training set any observation i where Yi is a function of informa-
tion used to determine Yj, and j belongs to the testing set.

(a) For example, Yi and Yj should not span overlapping periods (see Chapter 4
for a discussion of sample uniqueness).

2. Avoid overfitting the classifier. In this way, even if some leakage occurs, the
classifier will not be able to profit from it. Use:

(a) Early stopping of the base estimators (see Chapter 6).

(b) Bagging of classifiers, while controlling for oversampling on redundant
examples, so that the individual classifiers are as diverse as possible.

i. Set max_samples to the average uniqueness.

ii. Apply sequential bootstrap (Chapter 4).

Consider the case where Xi and Xj are formed on overlapping information, where
i belongs to the training set and j belongs to the testing set. Is this a case of informa-
tional leakage? Not necessarily, as long as Yi and Yj are independent. For leakage to
take place, it must occur that (Xi, Yi) ≈ (Xj, Yj), and it does not suffice that Xi ≈ Xj or
even Yi ≈ Yj.

7.4 A SOLUTION: PURGED K-FOLD CV

One way to reduce leakage is to purge from the training set all observations whose
labels overlapped in time with those labels included in the testing set. I call this
process “purging.” In addition, since financial features often incorporate series that
exhibit serial correlation (like ARMA processes), we should eliminate from the train-
ing set observations that immediately follow an observation in the testing set. I call
this process “embargo.”

7.4.1 Purging the Training Set

Suppose a testing observation whose label Yj is decided based on the information set
Φj. In order to prevent the type of leakage described in the previous section, we would

106 CROSS-VALIDATION IN FINANCE

like to purge from the training set any observation whose label Yi is decided based on
the information set Φi, such that Φi ∩ Φj = ∅.

In particular, we will determine that there is informational overlap between two
observations i and j whenever Yi and Yj are concurrent (see Chapter 4, Section 4.3),
in the sense that both labels are contingent on at least one common random draw. For
example, consider a label Yj that is a function of observations in the closed range t ∈
[tj,0, tj,1], Yj = f [[tj,0, tj,1]] (with some abuse of notation). For example, in the context
of the triple-barrier labeling method (Chapter 3), it means that the label is the sign of
the return spanning between price bars with indices tj,0 and tj,1, that is sgn[rtj,0,tj,1

]. A
label Yi = f [[ti,0, ti,1]] overlaps with Yj if any of the three sufficient conditions is met:

1. tj,0 ≤ ti,0 ≤ tj,1
2. tj,0 ≤ ti,1 ≤ tj,1
3. ti,0 ≤ tj,0 ≤ tj,1 ≤ ti,1

Snippet 7.1 implements this purging of observations from the training set. If the
testing set is contiguous, in the sense that no training observations occur between
the first and last testing observation, then purging can be accelerated: The object
testTimes can be a pandas series with a single item, spanning the entire testing
set.

SNIPPET 7.1 PURGING OBSERVATION IN THE TRAINING SET

def getTrainTimes(t1,testTimes):
’’’
Given testTimes, find the times of the training observations.
—t1.index: Time when the observation started.
—t1.value: Time when the observation ended.
—testTimes: Times of testing observations.
’’’
trn=t1.copy(deep=True)
for i,j in testTimes.iteritems():

df0=trn[(i<=trn.index)&(trn.index<=j)].index # train starts within test
df1=trn[(i<=trn)&(trn<=j)].index # train ends within test
df2=trn[(trn.index<=i)&(j<=trn)].index # train envelops test
trn=trn.drop(df0.union(df1).union(df2))

return trn

When leakage takes place, performance improves merely by increasing k → T ,
where T is the number of bars. The reason is that the larger the number of testing
splits, the greater the number of overlapping observations in the training set. In many
cases, purging suffices to prevent leakage: Performance will improve as we increase
k, because we allow the model to recalibrate more often. But beyond a certain value

A SOLUTION: PURGED K-FOLD CV 107

FIGURE 7.2 Purging overlap in the training set

k∗, performance will not improve, indicating that the backtest is not profiting from
leaks. Figure 7.2 plots one partition of the k-fold CV. The test set is surrounded by
two train sets, generating two overlaps that must be purged to prevent leakage.

7.4.2 Embargo

For those cases where purging is not able to prevent all leakage, we can impose
an embargo on training observations after every test set. The embargo does not
need to affect training observations prior to a test set, because training labels Yi =
f [[ti,0, ti,1]], where ti,1 < tj,0 (training ends before testing begins), contain informa-
tion that was available at the testing time tj,0. In other words, we are only con-
cerned with training labels Yi = f [[ti,0, ti,1]] that take place immediately after the
test, tj,1 ≤ ti,0 ≤ tj,1 + h. We can implement this embargo period h by setting Yj =
f [[tj,0, tj,1 + h]] before purging. A small value h ≈ .01T often suffices to prevent
all leakage, as can be confirmed by testing that performance does not improve
indefinitely by increasing k → T . Figure 7.3 illustrates the embargoing of train
observations immediately after the testing set. Snippet 7.2 implements the embargo
logic.

108 CROSS-VALIDATION IN FINANCE

FIGURE 7.3 Embargo of post-test train observations

SNIPPET 7.2 EMBARGO ON TRAINING OBSERVATIONS

def getEmbargoTimes(times,pctEmbargo):
Get embargo time for each bar
step=int(times.shape[0]*pctEmbargo)
if step==0:

mbrg=pd.Series(times,index=times)
else:

mbrg=pd.Series(times[step:],index=times[:-step])
mbrg=mbrg.append(pd.Series(times[-1],index=times[-step:]))

return mbrg
#———————————————————————————————————————
testTimes=pd.Series(mbrg[dt1],index=[dt0]) # include embargo before purge
trainTimes=getTrainTimes(t1,testTimes)
testTimes=t1.loc[dt0:dt1].index

7.4.3 The Purged K-Fold Class

In the previous sections we have discussed how to produce training/testing splits
when labels overlap. That introduced the notion of purging and embargoing, in the

BUGS IN SKLEARN’S CROSS-VALIDATION 109

particular context of model development. In general, we need to purge and embargo
overlapping training observations whenever we produce a train/test split, whether
it is for hyper-parameter fitting, backtesting, or performance evaluation. Snippet 7.3
extends scikit-learn’s KFold class to account for the possibility of leakages of testing
information into the training set.

SNIPPET 7.3 CROSS-VALIDATION CLASS WHEN OBSERVATIONS
OVERLAP

class PurgedKFold(_BaseKFold):
’’’
Extend KFold class to work with labels that span intervals
The train is purged of observations overlapping test-label intervals
Test set is assumed contiguous (shuffle=False), w/o training samples in between
’’’
def __init__(self,n_splits=3,t1=None,pctEmbargo=0.):

if not isinstance(t1,pd.Series):
raise ValueError('Label Through Dates must be a pd.Series')

super(PurgedKFold,self).__init__(n_splits,shuffle=False,random_state=None)
self.t1=t1
self.pctEmbargo=pctEmbargo

def split(self,X,y=None,groups=None):
if (X.index==self.t1.index).sum()!=len(self.t1):

raise ValueError('X and ThruDateValues must have the same index')
indices=np.arange(X.shape[0])
mbrg=int(X.shape[0]*self.pctEmbargo)
test_starts=[(i[0],i[-1]+1) for i in \

np.array_split(np.arange(X.shape[0]),self.n_splits)]
for i,j in test_starts:

t0=self.t1.index[i] # start of test set
test_indices=indices[i:j]
maxT1Idx=self.t1.index.searchsorted(self.t1[test_indices].max())
train_indices=self.t1.index.searchsorted(self.t1[self.t1<=t0].index)
if maxT1Idx<X.shape[0]: # right train (with embargo)

train_indices=np.concatenate((train_indices,indices[maxT1Idx+mbrg:]))
yield train_indices,test_indices

7.5 BUGS IN SKLEARN’S CROSS-VALIDATION

You would think that something as critical as cross-validation would be perfectly
implemented in one of the most popular ML libraries. Unfortunately that is not the
case, and this is one of the reasons you must always read all the code you run, and a
strong point in favor of open source. One of the many upsides of open-source code is

110 CROSS-VALIDATION IN FINANCE

that you can verify everything and adjust it to your needs. Snippet 7.4 addresses two
known sklearn bugs:

1. Scoring functions do not know classes_, as a consequence of sklearn’s
reliance on numpy arrays rather than pandas series: https://github.com/scikit-
learn/scikit-learn/issues/6231

2. cross_val_score will give different results because it passes weights to
the fit method, but not to the log_loss method: https://github.com/scikit-
learn/scikit-learn/issues/9144

SNIPPET 7.4 USING THE PurgedKFold CLASS

def cvScore(clf,X,y,sample_weight,scoring='neg_log_loss',t1=None,cv=None,cvGen=None,
pctEmbargo=None):

if scoring not in ['neg_log_loss','accuracy']:
raise Exception('wrong scoring method.')

from sklearn.metrics import log_loss,accuracy_score
from clfSequential import PurgedKFold
if cvGen is None:

cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged
score=[]
for train,test in cvGen.split(X=X):

fit=clf.fit(X=X.iloc[train,:],y=y.iloc[train],
sample_weight=sample_weight.iloc[train].values)

if scoring=='neg_log_loss':
prob=fit.predict_proba(X.iloc[test,:])
score_=-log_loss(y.iloc[test],prob,

sample_weight=sample_weight.iloc[test].values,labels=clf.classes_)
else:

pred=fit.predict(X.iloc[test,:])
score_=accuracy_score(y.iloc[test],pred,sample_weight= \

sample_weight.iloc[test].values)
score.append(score_)

return np.array(score)

Please understand that it may take a long time until a fix for these bugs is agreed
upon, implemented, tested, and released. Until then, you should use cvScore in Snip-
pet 7.4, and avoid running the function cross_val_score.

EXERCISES

7.1 Why is shuffling a dataset before conducting k-fold CV generally a bad idea in
finance? What is the purpose of shuffling? Why does shuffling defeat the purpose
of k-fold CV in financial datasets?

7.2 Take a pair of matrices (X, y), representing observed features and labels. These
could be one of the datasets derived from the exercises in Chapter 3.

let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/6231
let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/6231
https://github.com/scikit-learn/scikit-learn/issues/6231
https://github.com/scikit-learn/scikit-learn/issues/6231
let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/9144
let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/9144
https://github.com/scikit-learn/scikit-learn/issues/9144
https://github.com/scikit-learn/scikit-learn/issues/9144

BIBLIOGRAPHY 111

(a) Derive the performance from a 10-fold CV of an RF classifier on (X, y), with-
out shuffling.

(b) Derive the performance from a 10-fold CV of an RF on (X, y), with shuffling.

(c) Why are both results so different?

(d) How does shuffling leak information?

7.3 Take the same pair of matrices (X, y) you used in exercise 2.

(a) Derive the performance from a 10-fold purged CV of an RF on (X, y), with
1% embargo.

(b) Why is the performance lower?

(c) Why is this result more realistic?

7.4 In this chapter we have focused on one reason why k-fold CV fails in financial
applications, namely the fact that some information from the testing set leaks into
the training set. Can you think of a second reason for CV’s failure?

7.5 Suppose you try one thousand configurations of the same investment strategy,
and perform a CV on each of them. Some results are guaranteed to look good,
just by sheer luck. If you only publish those positive results, and hide the rest,
your audience will not be able to deduce that these results are false positives, a
statistical fluke. This phenomenon is called “selection bias.”

(a) Can you imagine one procedure to prevent this?

(b) What if we split the dataset in three sets: training, validation, and testing?
The validation set is used to evaluate the trained parameters, and the testing
is run only on the one configuration chosen in the validation phase. In what
case does this procedure still fail?

(c) What is the key to avoiding selection bias?

BIBLIOGRAPHY

Bharat Rao, R., G. Fung, and R. Rosales (2008): “On the dangers of cross-validation: An exper-
imental evaluation.” White paper, IKM CKS Siemens Medical Solutions USA. Available at
http://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf.

Bishop, C. (1995): Neural Networks for Pattern Recognition, 1st ed. Oxford University Press.
Breiman, L. and P. Spector (1992): “Submodel selection and evaluation in regression: The X-random

case.” White paper, Department of Statistics, University of California, Berkeley. Available at
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/197.pdf.

Hastie, T., R. Tibshirani, and J. Friedman (2009): The Elements of Statistical Learning, 1st ed.
Springer.

James, G., D. Witten, T. Hastie and R. Tibshirani (2013): An Introduction to Statistical Learning,
1st ed. Springer.

Kohavi, R. (1995): “A study of cross-validation and bootstrap for accuracy estimation and
model selection.” International Joint Conference on Artificial Intelligence. Available at
http://web.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf.

Ripley, B. (1996): Pattern Recognition and Neural Networks, 1st ed. Cambridge University Press.

let &hbox {char '046}http://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf
http://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf
let &hbox {char '046}http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/197.pdf
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/197.pdf
let &hbox {char '046}http://web.cs.iastate.edu/protect $elax hbox {char '236}$jtian/cs573/Papers/Kohavi-IJCAI-95.pdf
http://web.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf

CHAPTER 8

Feature Importance

8.1 MOTIVATION

One of the most pervasive mistakes in financial research is to take some data, run
it through an ML algorithm, backtest the predictions, and repeat the sequence until
a nice-looking backtest shows up. Academic journals are filled with such pseudo-
discoveries, and even large hedge funds constantly fall into this trap. It does not matter
if the backtest is a walk-forward out-of-sample. The fact that we are repeating a test
over and over on the same data will likely lead to a false discovery. This methodolog-
ical error is so notorious among statisticians that they consider it scientific fraud, and
the American Statistical Association warns against it in its ethical guidelines (Amer-
ican Statistical Association [2016], Discussion #4). It typically takes about 20 such
iterations to discover a (false) investment strategy subject to the standard significance
level (false positive rate) of 5%. In this chapter we will explore why such an approach
is a waste of time and money, and how feature importance offers an alternative.

8.2 THE IMPORTANCE OF FEATURE IMPORTANCE

A striking facet of the financial industry is that so many very seasoned portfolio
managers (including many with a quantitative background) do not realize how easy
it is to overfit a backtest. How to backtest properly is not the subject of this chapter;
we will address that extremely important topic in Chapters 11–15. The goal of this
chapter is to explain one of the analyses that must be performed before any backtest
is carried out.

Suppose that you are given a pair of matrices (X, y), that respectively contain
features and labels for a particular financial instrument. We can fit a classifier on
(X, y) and evaluate the generalization error through a purged k-fold cross-validation
(CV), as we saw in Chapter 7. Suppose that we achieve good performance. The next

113

114 FEATURE IMPORTANCE

natural question is to try to understand what features contributed to that performance.
Maybe we could add some features that strengthen the signal responsible for the clas-
sifier’s predictive power. Maybe we could eliminate some of the features that are only
adding noise to the system. Notably, understanding feature importance opens up the
proverbial black box. We can gain insight into the patterns identified by the classifier
if we understand what source of information is indispensable to it. This is one of the
reasons why the black box mantra is somewhat overplayed by the ML skeptics. Yes,
the algorithm has learned without us directing the process (that is the whole point
of ML!) in a black box, but that does not mean that we cannot (or should not) take
a look at what the algorithm has found. Hunters do not blindly eat everything their
smart dogs retrieve for them, do they?

Once we have found what features are important, we can learn more by conducting
a number of experiments. Are these features important all the time, or only in some
specific environments? What triggers a change in importance over time? Can those
regime switches be predicted? Are those important features also relevant to other
related financial instruments? Are they relevant to other asset classes? What are the
most relevant features across all financial instruments? What is the subset of features
with the highest rank correlation across the entire investment universe? This is a much
better way of researching strategies than the foolish backtest cycle. Let me state this
maxim as one of the most critical lessons I hope you learn from this book:

SNIPPET 8.1 MARCOS’ FIRST LAW OF
BACKTESTING—IGNORE AT YOUR OWN PERIL

“Backtesting is not a research tool. Feature importance is.”
—Marcos López de Prado

Advances in Financial Machine Learning (2018)

8.3 FEATURE IMPORTANCE WITH SUBSTITUTION EFFECTS

I find it useful to distinguish between feature importance methods based on whether
they are impacted by substitution effects. In this context, a substitution effect takes
place when the estimated importance of one feature is reduced by the presence of
other related features. Substitution effects are the ML analogue of what the statistics
and econometrics literature calls “multi-collinearity.” One way to address linear sub-
stitution effects is to apply PCA on the raw features, and then perform the feature
importance analysis on the orthogonal features. See Belsley et al. [1980], Goldberger
[1991, pp. 245–253], and Hill et al. [2001] for further details.

8.3.1 Mean Decrease Impurity

Mean decrease impurity (MDI) is a fast, explanatory-importance (in-sample, IS)
method specific to tree-based classifiers, like RF. At each node of each decision
tree, the selected feature splits the subset it received in such a way that impurity is

FEATURE IMPORTANCE WITH SUBSTITUTION EFFECTS 115

decreased. Therefore, we can derive for each decision tree how much of the overall
impurity decrease can be assigned to each feature. And given that we have a forest of
trees, we can average those values across all estimators and rank the features accord-
ingly. See Louppe et al. [2013] for a detailed description. There are some important
considerations you must keep in mind when working with MDI:

1. Masking effects take place when some features are systematically ignored
by tree-based classifiers in favor of others. In order to avoid them, set
max_features=int(1)when using sklearn’s RF class. In this way, only one
random feature is considered per level.

(a) Every feature is given a chance (at some random levels of some random
trees) to reduce impurity.

(b) Make sure that features with zero importance are not averaged, since the
only reason for a 0 is that the feature was not randomly chosen. Replace
those values with np.nan.

2. The procedure is obviously IS. Every feature will have some importance, even
if they have no predictive power whatsoever.

3. MDI cannot be generalized to other non-tree based classifiers.

4. By construction, MDI has the nice property that feature importances add up to
1, and every feature importance is bounded between 0 and 1.

5. The method does not address substitution effects in the presence of correlated
features. MDI dilutes the importance of substitute features, because of their
interchangeability: The importance of two identical features will be halved, as
they are randomly chosen with equal probability.

6. Strobl et al. [2007] show experimentally that MDI is biased towards some pre-
dictor variables. White and Liu [1994] argue that, in case of single decision
trees, this bias is due to an unfair advantage given by popular impurity func-
tions toward predictors with a large number of categories.

Sklearn’s RandomForest class implements MDI as the default feature impor-
tance score. This choice is likely motivated by the ability to compute MDI on the
fly, with minimum computational cost.1 Snippet 8.2 illustrates an implementation of
MDI, incorporating the considerations listed earlier.

SNIPPET 8.2 MDI FEATURE IMPORTANCE

def featImpMDI(fit,featNames):
feat importance based on IS mean impurity reduction
df0={i:tree.feature_importances_ for i,tree in enumerate(fit.estimators_)}
df0=pd.DataFrame.from_dict(df0,orient='index')
df0.columns=featNames
df0=df0.replace(0,np.nan) # because max_features=1

1 http://blog.datadive.net/selecting-good-features-part-iii-random-forests/.

let &hbox {char '046}http://blog.datadive.net/selecting-good-features-part-iii-random-forests/
http://blog.datadive.net/selecting-good-features-part-iii-random-forests/

116 FEATURE IMPORTANCE

imp=pd.concat({'mean':df0.mean(),'std':df0.std()*df0.shape[0]**-.5},axis=1)
imp/=imp['mean'].sum()
return imp

8.3.2 Mean Decrease Accuracy

Mean decrease accuracy (MDA) is a slow, predictive-importance (out-of-sample,
OOS) method. First, it fits a classifier; second, it derives its performance OOS accord-
ing to some performance score (accuracy, negative log-loss, etc.); third, it permutates
each column of the features matrix (X), one column at a time, deriving the perfor-
mance OOS after each column’s permutation. The importance of a feature is a func-
tion of the loss in performance caused by its column’s permutation. Some relevant
considerations include:

1. This method can be applied to any classifier, not only tree-based classifiers.

2. MDA is not limited to accuracy as the sole performance score. For example,
in the context of meta-labeling applications, we may prefer to score a classifier
with F1 rather than accuracy (see Chapter 14, Section 14.8 for an explanation).
That is one reason a better descriptive name would have been “permutation
importance.” When the scoring function does not correspond to a metric space,
MDA results should be used as a ranking.

3. Like MDI, the procedure is also susceptible to substitution effects in the pres-
ence of correlated features. Given two identical features, MDA always con-
siders one to be redundant to the other. Unfortunately, MDA will make both
features appear to be outright irrelevant, even if they are critical.

4. Unlike MDI, it is possible that MDA concludes that all features are unimpor-
tant. That is because MDA is based on OOS performance.

5. The CV must be purged and embargoed, for the reasons explained in Chapter 7.

Snippet 8.3 implements MDA feature importance with sample weights, with
purged k-fold CV, and with scoring by negative log-loss or accuracy. It measures
MDA importance as a function of the improvement (from permutating to not permu-
tating the feature), relative to the maximum possible score (negative log-loss of 0, or
accuracy of 1). Note that, in some cases, the improvement may be negative, meaning
that the feature is actually detrimental to the forecasting power of the ML algorithm.

SNIPPET 8.3 MDA FEATURE IMPORTANCE

def featImpMDA(clf,X,y,cv,sample_weight,t1,pctEmbargo,scoring='neg_log_loss'):
feat importance based on OOS score reduction

if scoring not in ['neg_log_loss','accuracy']:

raise Exception('wrong scoring method.')

from sklearn.metrics import log_loss,accuracy_score

cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged cv

scr0,scr1=pd.Series(),pd.DataFrame(columns=X.columns)

FEATURE IMPORTANCE WITHOUT SUBSTITUTION EFFECTS 117

for i,(train,test) in enumerate(cvGen.split(X=X)):
X0,y0,w0=X.iloc[train,:],y.iloc[train],sample_weight.iloc[train]
X1,y1,w1=X.iloc[test,:],y.iloc[test],sample_weight.iloc[test]
fit=clf.fit(X=X0,y=y0,sample_weight=w0.values)
if scoring=='neg_log_loss':

prob=fit.predict_proba(X1)
scr0.loc[i]=-log_loss(y1,prob,sample_weight=w1.values,

labels=clf.classes_)
else:

pred=fit.predict(X1)
scr0.loc[i]=accuracy_score(y1,pred,sample_weight=w1.values)

for j in X.columns:

X1_=X1.copy(deep=True)
np.random.shuffle(X1_[j].values) # permutation of a single column

if scoring=='neg_log_loss':
prob=fit.predict_proba(X1_)
scr1.loc[i,j]=-log_loss(y1,prob,sample_weight=w1.values,

labels=clf.classes_)
else:

pred=fit.predict(X1_)
scr1.loc[i,j]=accuracy_score(y1,pred,sample_weight=w1.values)

imp=(-scr1).add(scr0,axis=0)
if scoring=='neg_log_loss':imp=imp/-scr1
else:imp=imp/(1.-scr1)
imp=pd.concat({'mean':imp.mean(),'std':imp.std()*imp.shape[0]**-.5},axis=1)
return imp,scr0.mean()

8.4 FEATURE IMPORTANCE WITHOUT SUBSTITUTION EFFECTS

Substitution effects can lead us to discard important features that happen to be redun-
dant. This is not generally a problem in the context of prediction, but it could lead
us to wrong conclusions when we are trying to understand, improve, or simplify a
model. For this reason, the following single feature importance method can be a good
complement to MDI and MDA.

8.4.1 Single Feature Importance

Single feature importance (SFI) is a cross-section predictive-importance (out-of-
sample) method. It computes the OOS performance score of each feature in isolation.
A few considerations:

1. This method can be applied to any classifier, not only tree-based classifiers.

2. SFI is not limited to accuracy as the sole performance score.

3. Unlike MDI and MDA, no substitution effects take place, since only one feature
is taken into consideration at a time.

4. Like MDA, it can conclude that all features are unimportant, because perfor-
mance is evaluated via OOS CV.

118 FEATURE IMPORTANCE

The main limitation of SFI is that a classifier with two features can perform better
than the bagging of two single-feature classifiers. For example, (1) feature B may be
useful only in combination with feature A; or (2) feature B may be useful in explain-
ing the splits from feature A, even if feature B alone is inaccurate. In other words,
joint effects and hierarchical importance are lost in SFI. One alternative would be
to compute the OOS performance score from subsets of features, but that calcula-
tion will become intractable as more features are considered. Snippet 8.4 demon-
strates one possible implementation of the SFI method. A discussion of the function
cvScore can be found in Chapter 7.

SNIPPET 8.4 IMPLEMENTATION OF SFI

def auxFeatImpSFI(featNames,clf,trnsX,cont,scoring,cvGen):

imp=pd.DataFrame(columns=['mean','std'])
for featName in featNames:

df0=cvScore(clf,X=trnsX[[featName]],y=cont['bin'],sample_weight=cont['w'],
scoring=scoring,cvGen=cvGen)

imp.loc[featName,'mean']=df0.mean()
imp.loc[featName,'std']=df0.std()*df0.shape[0]**-.5

return imp

8.4.2 Orthogonal Features

As argued in Section 8.3, substitution effects dilute the importance of features mea-
sured by MDI, and significantly underestimate the importance of features measured
by MDA. A partial solution is to orthogonalize the features before applying MDI and
MDA. An orthogonalization procedure such as principal components analysis (PCA)
does not prevent all substitution effects, but at least it should alleviate the impact of
linear substitution effects.

Consider a matrix {Xt,n} of stationary features, with observations t = 1,… , T and
variables n = 1,… , N. First, we compute the standardized features matrix Z, such
that Zt,n = 𝜎

−1
n (Xt,n − 𝜇n), where 𝜇n is the mean of {Xt,n}t=1,…,T and 𝜎n is the standard

deviation of {Xt,n}t=1,…,T . Second, we compute the eigenvalues Λ and eigenvectors
W such that Z′ZW = WΛ, where Λ is an NxN diagonal matrix with main entries
sorted in descending order, and W is an NxN orthonormal matrix. Third, we derive
the orthogonal features as P = ZW. We can verify the orthogonality of the features
by noting that P′P = W′Z′ZW = W′WΛW′W = Λ.

The diagonalization is done on Z rather than X, for two reasons: (1) centering the
data ensures that the first principal component is correctly oriented in the main direc-
tion of the observations. It is equivalent to adding an intercept in a linear regression;
(2) re-scaling the data makes PCA focus on explaining correlations rather than vari-
ances. Without re-scaling, the first principal components would be dominated by the

FEATURE IMPORTANCE WITHOUT SUBSTITUTION EFFECTS 119

columns of X with highest variance, and we would not learn much about the structure
or relationship between the variables.

Snippet 8.5 computes the smallest number of orthogonal features that explain at
least 95% of the variance of Z.

SNIPPET 8.5 COMPUTATION OF ORTHOGONAL FEATURES

def get_eVec(dot,varThres):
compute eVec from dot prod matrix, reduce dimension
eVal,eVec=np.linalg.eigh(dot)
idx=eVal.argsort()[::-1] # arguments for sorting eVal desc
eVal,eVec=eVal[idx],eVec[:,idx]
#2) only positive eVals
eVal=pd.Series(eVal,index=['PC_'+str(i+1) for i in range(eVal.shape[0])])
eVec=pd.DataFrame(eVec,index=dot.index,columns=eVal.index)
eVec=eVec.loc[:,eVal.index]
#3) reduce dimension, form PCs
cumVar=eVal.cumsum()/eVal.sum()
dim=cumVar.values.searchsorted(varThres)
eVal,eVec=eVal.iloc[:dim+1],eVec.iloc[:,:dim+1]
return eVal,eVec

#---
def orthoFeats(dfX,varThres=.95):

Given a dataframe dfX of features, compute orthofeatures dfP
dfZ=dfX.sub(dfX.mean(),axis=1).div(dfX.std(),axis=1) # standardize
dot=pd.DataFrame(np.dot(dfZ.T,dfZ),index=dfX.columns,columns=dfX.columns)
eVal,eVec=get_eVec(dot,varThres)
dfP=np.dot(dfZ,eVec)
return dfP

Besides addressing substitution effects, working with orthogonal features provides
two additional benefits: (1) orthogonalization can also be used to reduce the dimen-
sionality of the features matrix X, by dropping features associated with small eigen-
values. This usually speeds up the convergence of ML algorithms; (2) the analysis is
conducted on features designed to explain the structure of the data.

Let me stress this latter point. An ubiquitous concern throughout the book is the
risk of overfitting. ML algorithms will always find a pattern, even if that pattern is
a statistical fluke. You should always be skeptical about the purportedly important
features identified by any method, including MDI, MDA, and SFI. Now, suppose
that you derive orthogonal features using PCA. Your PCA analysis has determined
that some features are more “principal” than others, without any knowledge of the
labels (unsupervised learning). That is, PCA has ranked features without any possible
overfitting in a classification sense. When your MDI, MDA, or SFI analysis selects
as most important (using label information) the same features that PCA chose as

120 FEATURE IMPORTANCE

FIGURE 8.1 Scatter plot of eigenvalues (x-axis) and MDI levels (y-axis) in log-log scale

principal (ignoring label information), this constitutes confirmatory evidence that the
pattern identified by the ML algorithm is not entirely overfit. If the features were
entirely random, the PCA ranking would have no correspondance with the feature
importance ranking. Figure 8.1 displays the scatter plot of eigenvalues associated with
an eigenvector (x-axis) paired with MDI of the feature associated with an engenvector
(y-axis). The Pearson correlation is 0.8491 (p-value below 1E-150), evidencing that
PCA identified informative features and ranked them correctly without overfitting.

I find it useful to compute the weighted Kendall’s tau between the feature impor-
tances and their associated eigenvalues (or equivalently, their inverse PCA rank). The
closer this value is to 1, the stronger is the consistency between PCA ranking and fea-
ture importance ranking. One argument for preferring a weighted Kendall’s tau over
the standard Kendall is that we want to prioritize rank concordance among the most
importance features. We do not care so much about rank concordance among irrele-
vant (likely noisy) features. The hyperbolic-weighted Kendall’s tau for the sample in
Figure 8.1 is 0.8206.

Snippet 8.6 shows how to compute this correlation using Scipy. In this exam-
ple, sorting the features in descending importance gives us a PCA rank sequence
very close to an ascending list. Because the weightedtau function gives higher
weight to higher values, we compute the correlation on the inverse PCA ranking,
pcRank**-1. The resulting weighted Kendall’s tau is relatively high, at 0.8133.

PARALLELIZED VS. STACKED FEATURE IMPORTANCE 121

SNIPPET 8.6 COMPUTATION OF WEIGHTED KENDALL’S TAU
BETWEEN FEATURE IMPORTANCE AND INVERSE PCA RANKING

>>> import numpy as np
>>> from scipy.stats import weightedtau
>>> featImp=np.array([.55,.33,.07,.05]) # feature importance
>>> pcRank=np.array([1,2,4,3]) # PCA rank
>>> weightedtau(featImp,pcRank**-1.)[0]

8.5 PARALLELIZED VS. STACKED FEATURE IMPORTANCE

There are at least two research approaches to feature importance. First, for each secu-
rity i in an investment universe i = 1,… , I, we form a dataset (Xi, yi), and derive the
feature importance in parallel. For example, let us denote 𝜆i,j,k the importance of
feature j on instrument i according to criterion k. Then we can aggregate all results
across the entire universe to derive a combined Λj,k importance of feature j accord-
ing to criterion k. Features that are important across a wide variety of instruments are
more likely to be associated with an underlying phenomenon, particularly when these
feature importances exhibit high rank correlation across the criteria. It may be worth
studying in-depth the theoretical mechanism that makes these features predictive. The
main advantage of this approach is that it is computationally fast, as it can be paral-
lelized. A disadvantage is that, due to substitution effects, important features may
swap their ranks across instruments, increasing the variance of the estimated 𝜆i,j,k.
This disadvantage becomes relatively minor if we average 𝜆i,j,k across instruments
for a sufficiently large investment universe.

A second alternative is what I call “features stacking.” It consists in stacking all
datasets {(X̃i, yi)}i=1,…,I into a single combined dataset (X, y), where X̃i is a trans-
formed instance of Xi (e.g., standardized on a rolling trailing window). The purpose
of this transformation is to ensure some distributional homogeneity, X̃i ∼ X. Under
this approach, the classifier must learn what features are more important across all
instruments simultaneously, as if the entire investment universe were in fact a single
instrument. Features stacking presents some advantages: (1) The classifier will be fit
on a much larger dataset than the one used with the parallelized (first) approach; (2)
the importance is derived directly, and no weighting scheme is required for combining
the results; (3) conclusions are more general and less biased by outliers or overfitting;
and (4) because importance scores are not averaged across instruments, substitution
effects do not cause the dampening of those scores.

I usually prefer features stacking, not only for features importance but whenever a
classifier can be fit on a set of instruments, including for the purpose of model predic-
tion. That reduces the likelihood of overfitting an estimator to a particular instrument
or small dataset. The main disadvantage of stacking is that it may consume a lot of

122 FEATURE IMPORTANCE

memory and resources, however that is where a sound knowledge of HPC techniques
will come in handy (Chapters 20–22).

8.6 EXPERIMENTS WITH SYNTHETIC DATA

In this section, we are going to test how these feature importance methods respond
to synthetic data. We are going to generate a dataset (X, y) composed on three kinds
of features:

1. Informative: These are features that are used to determine the label.

2. Redundant: These are random linear combinations of the informative features.
They will cause substitution effects.

3. Noise: These are features that have no bearing on determining the observation’s
label.

Snippet 8.7 shows how we can generate a synthetic dataset of 40 features
where 10 are informative, 10 are redundant, and 20 are noise, on 10,000 obser-
vations. For details on how sklearn generates synthetic datasets, visit: http://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.

SNIPPET 8.7 CREATING A SYNTHETIC DATASET

def getTestData(n_features=40,n_informative=10,n_redundant=10,n_samples=10000):
generate a random dataset for a classification problem
from sklearn.datasets import make_classification
trnsX,cont=make_classification(n_samples=n_samples,n_features=n_features,

n_informative=n_informative,n_redundant=n_redundant,random_state=0,
shuffle=False)

df0=pd.DatetimeIndex(periods=n_samples,freq=pd.tseries.offsets.BDay(),
end=pd.datetime.today())

trnsX,cont=pd.DataFrame(trnsX,index=df0),
pd.Series(cont,index=df0).to_frame('bin')

df0=['I_'+str(i) for i in xrange(n_informative)]+
['R_'+str(i) for i in xrange(n_redundant)]

df0+=['N_'+str(i) for i in xrange(n_features-len(df0))]
trnsX.columns=df0
cont['w']=1./cont.shape[0]
cont['t1']=pd.Series(cont.index,index=cont.index)
return trnsX,cont

Given that we know for certain what feature belongs to each class, we can evaluate
whether these three feature importance methods perform as designed. Now we need

let &hbox {char '046}http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
let &hbox {char '046}http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

EXPERIMENTS WITH SYNTHETIC DATA 123

a function that can carry out each analysis on the same dataset. Snippet 8.8 accom-
plishes that, using bagged decision trees as default classifier (Chapter 6).

SNIPPET 8.8 CALLING FEATURE IMPORTANCE FOR
ANY METHOD

def featImportance(trnsX,cont,n_estimators=1000,cv=10,max_samples=1.,numThreads=24,
pctEmbargo=0,scoring='accuracy',method='SFI',minWLeaf=0.,**kargs):

feature importance from a random forest

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier

from mpEngine import mpPandasObj

n_jobs=(-1 if numThreads>1 else 1) # run 1 thread with ht_helper in dirac1

#1) prepare classifier,cv. max_features=1, to prevent masking

clf=DecisionTreeClassifier(criterion='entropy',max_features=1,
class_weight='balanced',min_weight_fraction_leaf=minWLeaf)

clf=BaggingClassifier(base_estimator=clf,n_estimators=n_estimators,
max_features=1.,max_samples=max_samples,oob_score=True,n_jobs=n_jobs)

fit=clf.fit(X=trnsX,y=cont['bin'],sample_weight=cont['w'].values)
oob=fit.oob_score_
if method=='MDI':

imp=featImpMDI(fit,featNames=trnsX.columns)
oos=cvScore(clf,X=trnsX,y=cont['bin'],cv=cv,sample_weight=cont['w'],

t1=cont['t1'],pctEmbargo=pctEmbargo,scoring=scoring).mean()
elif method=='MDA':

imp,oos=featImpMDA(clf,X=trnsX,y=cont['bin'],cv=cv,sample_weight=cont['w'],
t1=cont['t1'],pctEmbargo=pctEmbargo,scoring=scoring)

elif method=='SFI':
cvGen=PurgedKFold(n_splits=cv,t1=cont['t1'],pctEmbargo=pctEmbargo)
oos=cvScore(clf,X=trnsX,y=cont['bin'],sample_weight=cont['w'],scoring=scoring,

cvGen=cvGen).mean()
clf.n_jobs=1 # paralellize auxFeatImpSFI rather than clf

imp=mpPandasObj(auxFeatImpSFI,('featNames',trnsX.columns),numThreads,
clf=clf,trnsX=trnsX,cont=cont,scoring=scoring,cvGen=cvGen)

return imp,oob,oos

Finally, we need a main function to call all components, from data generation to
feature importance analysis to collection and processing of output. These tasks are
performed by Snippet 8.9.

SNIPPET 8.9 CALLING ALL COMPONENTS

def testFunc(n_features=40,n_informative=10,n_redundant=10,n_estimators=1000,
n_samples=10000,cv=10):

test the performance of the feat importance functions on artificial data
Nr noise features = n_features—n_informative—n_redundant
trnsX,cont=getTestData(n_features,n_informative,n_redundant,n_samples)

124 FEATURE IMPORTANCE

dict0={'minWLeaf':[0.],'scoring':['accuracy'],'method':['MDI','MDA','SFI'],
'max_samples':[1.]}

jobs,out=(dict(izip(dict0,i)) for i in product(*dict0.values())),[]
kargs={'pathOut':'./testFunc/','n_estimators':n_estimators,

'tag':'testFunc','cv':cv}
for job in jobs:

job['simNum']=job['method']+'_'+job['scoring']+'_'+'%.2f'%job['minWLeaf']+ \
'_'+str(job['max_samples'])

print job['simNum']
kargs.update(job)
imp,oob,oos=featImportance(trnsX=trnsX,cont=cont,**kargs)
plotFeatImportance(imp=imp,oob=oob,oos=oos,**kargs)
df0=imp[['mean']]/imp['mean'].abs().sum()
df0['type']=[i[0] for i in df0.index]
df0=df0.groupby('type')['mean'].sum().to_dict()
df0.update({'oob':oob,'oos':oos});df0.update(job)
out.append(df0)

out=pd.DataFrame(out).sort_values(['method','scoring','minWLeaf','max_samples'])
out=out['method','scoring','minWLeaf','max_samples','I','R','N','oob','oos']
out.to_csv(kargs['pathOut']+'stats.csv')
return

For the aesthetically inclined, Snippet 8.10 provides a nice layout for plotting fea-
ture importances.

SNIPPET 8.10 FEATURE IMPORTANCE PLOTTING FUNCTION

def plotFeatImportance(pathOut,imp,oob,oos,method,tag=0,simNum=0,**kargs):
plot mean imp bars with std
mpl.figure(figsize=(10,imp.shape[0]/5.))
imp=imp.sort_values('mean',ascending=True)
ax=imp['mean'].plot(kind='barh',color='b',alpha=.25,xerr=imp['std'],

error_kw={'ecolor':'r'})
if method=='MDI':

mpl.xlim([0,imp.sum(axis=1).max()])
mpl.axvline(1./imp.shape[0],linewidth=1,color='r',linestyle='dotted')

ax.get_yaxis().set_visible(False)
for i,j in zip(ax.patches,imp.index):ax.text(i.get_width()/2,

i.get_y()+i.get_height()/2,j,ha='center',va='center',
color='black')

mpl.title('tag='+tag+' | simNum='+str(simNum)+' | oob='+str(round(oob,4))+
' | oos='+str(round(oos,4)))

mpl.savefig(pathOut+'featImportance_'+str(simNum)+'.png',dpi=100)
mpl.clf();mpl.close()
return

EXPERIMENTS WITH SYNTHETIC DATA 125

FIGURE 8.2 MDI feature importance computed on a synthetic dataset

Figure 8.2 shows results for MDI. For each feature, the horizontal bar indicates
the mean MDI value across all the decision trees, and the horizontal line is the stan-
dard deviation of that mean. Since MDI importances add up to 1, if all features were
equally important, each importance would have a value of 1/40. The vertical dotted
line marks that 1/40 threshold, separating features whose importance exceeds what
would be expected from undistinguishable features. As you can see, MDI does a very
good job in terms of placing all informative and redundant features above the red dot-
ted line, with the exception of R_5, which did not make the cut by a small margin.
Substitution effects cause some informative or redundant features to rank better than
others, which was expected.

Figure 8.3 shows that MDA also did a good job. Results are consistent with those
from MDI’s in the sense that all the informed and redundant features rank better than
the noise feature, with the exception of R_6, likely due to a substitution effect. One not
so positive aspect of MDA is that the standard deviation of the means are somewhat
higher, although that could be addressed by increasing the number of partitions in
the purged k-fold CV, from, say, 10 to 100 (at the cost of 10× the computation time
without parallelization).

Figure 8.4 shows that SFI also does a decent job; however, a few important fea-
tures rank worse than noise (I_6, I_2, I_9, I_1, I_3, R_5), likely due to joint effects.

FIGURE 8.3 MDA feature importance computed on a synthetic dataset

FIGURE 8.4 SFI feature importance computed on a synthetic dataset

REFERENCES 127

The labels are a function of a combination of features, and trying to forecast them
independently misses the joint effects. Still, SFI is useful as a complement to MDI
and MDA, precisely because both types of analyses are affected by different kinds of
problems.

EXERCISES

8.1 Using the code presented in Section 8.6:

(a) Generate a dataset (X, y).

(b) Apply a PCA transformation on X, which we denote Ẋ.

(c) Compute MDI, MDA, and SFI feature importance on (Ẋ, y), where the base
estimator is RF.

(d) Do the three methods agree on what features are important? Why?

8.2 From exercise 1, generate a new dataset (Ẍ, y), where Ẍ is a feature union of X
and Ẋ.

(a) Compute MDI, MDA, and SFI feature importance on (Ẍ, y), where the base
estimator is RF.

(b) Do the three methods agree on the important features? Why?

8.3 Take the results from exercise 2:

(a) Drop the most important features according to each method, resulting in a
features matrix X⃛.

(b) Compute MDI, MDA, and SFI feature importance on (X⃛, y), where the base
estimator is RF.

(c) Do you appreciate significant changes in the rankings of important features,
relative to the results from exercise 2?

8.4 Using the code presented in Section 8.6:

(a) Generate a dataset (X, y) of 1E6 observations, where 5 features are informa-
tive, 5 are redundant and 10 are noise.

(b) Split (X, y) into 10 datasets {(Xi, yi)}i=1,…,10, each of 1E5 observations.

(c) Compute the parallelized feature importance (Section 8.5), on each of the 10
datasets, {(Xi, yi)}i=1,…,10.

(d) Compute the stacked feature importance on the combined dataset (X, y).

(e) What causes the discrepancy between the two? Which one is more reliable?

8.5 Repeat all MDI calculations from exercises 1–4, but this time allow for masking
effects. That means, do not set max_features=int(1) in Snippet 8.2. How do
results differ as a consequence of this change? Why?

REFERENCES

American Statistical Association (2016): “Ethical guidelines for statistical practice.” Commit-
tee on Professional Ethics of the American Statistical Association (April). Available at
http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf.

let &hbox {char '046}http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf
http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf

128 FEATURE IMPORTANCE

Belsley, D., E. Kuh, and R. Welsch (1980): Regression Diagnostics: Identifying Influential Data and
Sources of Collinearity, 1st ed. John Wiley & Sons.

Goldberger, A. (1991): A Course in Econometrics. Harvard University Press, 1st edition.
Hill, R. and L. Adkins (2001): “Collinearity.” In Baltagi, Badi H. A Companion to Theoretical Econo-

metrics, 1st ed. Blackwell, pp. 256–278.
Louppe, G., L. Wehenkel, A. Sutera, and P. Geurts (2013): “Understanding variable importances

in forests of randomized trees.” Proceedings of the 26th International Conference on Neural
Information Processing Systems, pp. 431–439.

Strobl, C., A. Boulesteix, A. Zeileis, and T. Hothorn (2007): “Bias in random forest variable impor-
tance measures: Illustrations, sources and a solution.” BMC Bioinformatics, Vol. 8, No. 25,
pp. 1–11.

White, A. and W. Liu (1994): “Technical note: Bias in information-based measures in decision tree
induction.” Machine Learning, Vol. 15, No. 3, pp. 321–329.

CHAPTER 9

Hyper-Parameter Tuning with
Cross-Validation

9.1 MOTIVATION

Hyper-parameter tuning is an essential step in fitting an ML algorithm. When this
is not done properly, the algorithm is likely to overfit, and live performance will
disappoint. The ML literature places special attention on cross-validating any tuned
hyper-parameter. As we have seen in Chapter 7, cross-validation (CV) in finance is
an especially difficult problem, where solutions from other fields are likely to fail. In
this chapter we will discuss how to tune hyper-parameters using the purged k-fold
CV method. The references section lists studies that propose alternative methods that
may be useful in specific problems.

9.2 GRID SEARCH CROSS-VALIDATION

Grid search cross-validation conducts an exhaustive search for the combination of
parameters that maximizes the CV performance, according to some user-defined
score function. When we do not know much about the underlying structure of the
data, this is a reasonable first approach. Scikit-learn has implemented this logic in
the function GridSearchCV, which accepts a CV generator as an argument. For
the reasons explained in Chapter 7, we need to pass our PurgedKFold class (Snip-
pet 7.3) in order to prevent that GridSearchCV overfits the ML estimator to leaked
information.

129

130 HYPER-PARAMETER TUNING WITH CROSS-VALIDATION

SNIPPET 9.1 GRID SEARCH WITH PURGED K-FOLD
CROSS-VALIDATION

def clfHyperFit(feat,lbl,t1,pipe_clf,param_grid,cv=3,bagging=[0,None,1.],
n_jobs=-1,pctEmbargo=0,**fit_params):

if set(lbl.values)=={0,1}:scoring='f1' # f1 for meta-labeling
else:scoring='neg_log_loss' # symmetric towards all cases
#1) hyperparameter search, on train data
inner_cv=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged
gs=GridSearchCV(estimator=pipe_clf,param_grid=param_grid,

scoring=scoring,cv=inner_cv,n_jobs=n_jobs,iid=False)
gs=gs.fit(feat,lbl,**fit_params).best_estimator_ # pipeline
#2) fit validated model on the entirety of the data
if bagging[1]>0:

gs=BaggingClassifier(base_estimator=MyPipeline(gs.steps),
n_estimators=int(bagging[0]),max_samples=float(bagging[1]),
max_features=float(bagging[2]),n_jobs=n_jobs)

gs=gs.fit(feat,lbl,sample_weight=fit_params \
[gs.base_estimator.steps[-1][0]+'__sample_weight'])

gs=Pipeline([('bag',gs)])
return gs

Snippet 9.1 lists function clfHyperFit, which implements a purged
GridSearchCV. The argument fit_params can be used to pass sample_weight,
and param_grid contains the values that will be combined into a grid. In addition,
this function allows for the bagging of the tuned estimator. Bagging an estimator is
generally a good idea for the reasons explained in Chapter 6, and the above function
incorporates logic to that purpose.

I advise you to use scoring='f1' in the context of meta-labeling applications,
for the following reason. Suppose a sample with a very large number of negative (i.e.,
label ‘0’) cases. A classifier that predicts all cases to be negative will achieve high
'accuracy' or 'neg_log_loss', even though it has not learned from the features
how to discriminate between cases. In fact, such a model achieves zero recall and
undefined precision (see Chapter 3, Section 3.7). The 'f1' score corrects for that
performance inflation by scoring the classifier in terms of precision and recall (see
Chapter 14, Section 14.8).

For other (non-meta-labeling) applications, it is fine to use 'accuracy' or
'neg_log_loss', because we are equally interested in predicting all cases. Note
that a relabeling of cases has no impact on 'accuracy' or 'neg_log_loss', how-
ever it will have an impact on 'f1'.

This example introduces nicely one limitation of sklearn’s Pipelines : Their
fit method does not expect a sample_weight argument. Instead, it expects a
fit_params keyworded argument. That is a bug that has been reported in GitHub;
however, it may take some time to fix it, as it involves rewriting and testing much
functionality. Until then, feel free to use the workaround in Snippet 9.2. It creates a

RANDOMIZED SEARCH CROSS-VALIDATION 131

new class, called MyPipeline, which inherits all methods from sklearn’s Pipeline.
It overwrites the inherited fit method with a new one that handles the argument
sample_weight, after which it redirects to the parent class.

SNIPPET 9.2 AN ENHANCED PIPELINE CLASS

class MyPipeline(Pipeline):
def fit(self,X,y,sample_weight=None,**fit_params):

if sample_weight is not None:
fit_params[self.steps[-1][0]+'__sample_weight']=sample_weight

return super(MyPipeline,self).fit(X,y,**fit_params)

If you are not familiar with this technique for expanding classes, you may want
to read this introductory Stackoverflow post: http://stackoverflow.com/questions/
576169/understanding-python-super-with-init-methods.

9.3 RANDOMIZED SEARCH CROSS-VALIDATION

For ML algorithms with a large number of parameters, a grid search cross-validation
(CV) becomes computationally intractable. In this case, an alternative with good sta-
tistical properties is to sample each parameter from a distribution (Begstra et al. [2011,
2012]). This has two benefits: First, we can control for the number of combinations
we will search for, regardless of the dimensionality of the problem (the equivalent
to a computational budget). Second, having parameters that are relatively irrelevant
performance-wise will not substantially increase our search time, as would be the
case with grid search CV.

Rather than writing a new function to work with RandomizedSearchCV, let us
expand Snippet 9.1 to incorporate an option to this purpose. A possible implementa-
tion is Snippet 9.3.

SNIPPET 9.3 RANDOMIZED SEARCH WITH PURGED K-FOLD CV

def clfHyperFit(feat,lbl,t1,pipe_clf,param_grid,cv=3,bagging=[0,None,1.],
rndSearchIter=0,n_jobs=-1,pctEmbargo=0,**fit_params):

if set(lbl.values)=={0,1}:scoring='f1' # f1 for meta-labeling
else:scoring='neg_log_loss' # symmetric towards all cases
#1) hyperparameter search, on train data
inner_cv=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged
if rndSearchIter==0:

gs=GridSearchCV(estimator=pipe_clf,param_grid=param_grid,
scoring=scoring,cv=inner_cv,n_jobs=n_jobs,iid=False)

else:

http://stackoverflow.com/questions/576169/understanding-python-super-with-init-methods
http://stackoverflow.com/questions/576169/understanding-python-super-with-init-methods

132 HYPER-PARAMETER TUNING WITH CROSS-VALIDATION

gs=RandomizedSearchCV(estimator=pipe_clf,param_distributions= \
param_grid,scoring=scoring,cv=inner_cv,n_jobs=n_jobs,
iid=False,n_iter=rndSearchIter)

gs=gs.fit(feat,lbl,**fit_params).best_estimator_ # pipeline
#2) fit validated model on the entirety of the data
if bagging[1]>0:

gs=BaggingClassifier(base_estimator=MyPipeline(gs.steps),
n_estimators=int(bagging[0]),max_samples=float(bagging[1]),
max_features=float(bagging[2]),n_jobs=n_jobs)

gs=gs.fit(feat,lbl,sample_weight=fit_params \
[gs.base_estimator.steps[-1][0]+'__sample_weight'])

gs=Pipeline([('bag',gs)])
return gs

9.3.1 Log-Uniform Distribution

It is common for some ML algorithms to accept non-negative hyper-parameters only.
That is the case of some very popular parameters, such as C in the SVC classifier
and gamma in the RBF kernel.1 We could draw random numbers from a uniform
distribution bounded between 0 and some large value, say 100. That would mean that
99% of the values would be expected to be greater than 1. That is not necessarily the
most effective way of exploring the feasibility region of parameters whose functions
do not respond linearly. For example, an SVC can be as responsive to an increase in C
from 0.01 to 1 as to an increase in C from 1 to 100.2 So sampling C from a U [0, 100]
(uniform) distribution will be inefficient. In those instances, it seems more effective to
draw values from a distribution where the logarithm of those draws will be distributed
uniformly. I call that a “log-uniform distribution,” and since I could not find it in the
literature, I must define it properly.

A random variable x follows a log-uniform distribution between a > 0 and b > a
if and only if log [x]∼U

[
log [a] , log [b]

]
. This distribution has a CDF:

F [x] =
⎧⎪⎨⎪⎩
log [x] − log [a]
log [b] − log [a]

for a ≤ x ≤ b

0 for x < a
1 for x > b

From this, we derive a PDF:

f [x] =
⎧⎪⎨⎪⎩

1

x log
[
b∕a

] for a ≤ x ≤ b

0 for x < a
0 for x > b

Note that the CDF is invariant to the base of the logarithm, since
log

[
x
a

]
log

[
b
a

] =
logc

[
x
a

]
logc

[
b
a

]
for any base c, thus the random variable is not a function of c. Snippet 9.4 implements

1 http://scikit-learn.org/stable/modules/metrics.html.
2 http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.

let &hbox {char '046}http://scikit-learn.org/stable/modules/metrics.html.
http://scikit-learn.org/stable/modules/metrics.html.
let &hbox {char '046}http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.
http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.

RANDOMIZED SEARCH CROSS-VALIDATION 133

1000

800

600

400

200

0
–5 0 0

0

1000

2000

3000

4000

5000

6000

7000

8000

250 500 750 10005

FIGURE 9.1 Result from testing the logUniform_gen class

(and tests) in scipy.stats a random variable where [a, b] = [1E − 3, 1E3], hence
log [x]∼U

[
log [1E − 3] , log [1E3]

]
. Figure 9.1 illustrates the uniformity of the sam-

ples in log-scale.

SNIPPET 9.4 THE logUniform_gen CLASS

import numpy as np,pandas as pd,matplotlib.pyplot as mpl
from scipy.stats import rv_continuous,kstest
#———————————————————————————————————————
class logUniform_gen(rv_continuous):

random numbers log-uniformly distributed between 1 and e
def _cdf(self,x):

return np.log(x/self.a)/np.log(self.b/self.a)
def logUniform(a=1,b=np.exp(1)):return logUniform_gen(a=a,b=b,name='logUniform')
#———————————————————————————————————————
a,b,size=1E-3,1E3,10000
vals=logUniform(a=a,b=b).rvs(size=size)
print kstest(rvs=np.log(vals),cdf='uniform',args=(np.log(a),np.log(b/a)),N=size)
print pd.Series(vals).describe()
mpl.subplot(121)
pd.Series(np.log(vals)).hist()
mpl.subplot(122)
pd.Series(vals).hist()
mpl.show()

134 HYPER-PARAMETER TUNING WITH CROSS-VALIDATION

9.4 SCORING AND HYPER-PARAMETER TUNING

Snippets 9.1 and 9.3 set scoring='f1' for meta-labeling applications. For
other applications, they set scoring='neg_log_loss' rather than the standard
scoring='accuracy'. Although accuracy has a more intuitive interpretation, I
suggest that you use neg_log_loss when you are tuning hyper-parameters for an
investment strategy. Let me explain my reasoning.

Suppose that your ML investment strategy predicts that you should buy a secu-
rity, with high probability. You will enter a large long position, as a function of the
strategy’s confidence. If the prediction was erroneous, and the market sells off instead,
you will lose a lot of money. And yet, accuracy accounts equally for an erroneous buy
prediction with high probability and for an erroneous buy prediction with low proba-
bility. Moreover, accuracy can offset a miss with high probability with a hit with low
probability.

Investment strategies profit from predicting the right label with high confidence.
Gains from good predictions with low confidence will not suffice to offset the losses
from bad predictions with high confidence. For this reason, accuracy does not provide
a realistic scoring of the classifier’s performance. Conversely, log loss3 (aka cross-
entropy loss) computes the log-likelihood of the classifier given the true label, which
takes predictions’ probabilities into account. Log loss can be estimated as follows:

L [Y , P] = −log [Prob [Y |P]] = −N−1
N−1∑
n=0

K−1∑
k=0

yn,klog
[
pn,k

]
where

� pn,k is the probability associated with prediction n of label k.
� Y is a 1-of-K binary indicator matrix, such that yn,k = 1 when observation n was

assigned label k out of K possible labels, and 0 otherwise.

Suppose that a classifier predicts two 1s, where the true labels are 1 and 0. The first
prediction is a hit and the second prediction is a miss, thus accuracy is 50%. Figure 9.2
plots the cross-entropy loss when these predictions come from probabilities ranging
[0.5, 0.9]. One can observe that on the right side of the figure, log loss is large due to
misses with high probability, even though the accuracy is 50% in all cases.

There is a second reason to prefer cross-entropy loss over accuracy. CV scores a
classifier by applying sample weights (see Chapter 7, Section 7.5). As you may recall
from Chapter 4, observation weights were determined as a function of the observa-
tion’s absolute return. The implication is that sample weighted cross-entropy loss
estimates the classifier’s performance in terms of variables involved in a PnL (mark-
to-market profit and losses) calculation: It uses the correct label for the side, probabil-
ity for the position size, and sample weight for the observation’s return/outcome. That

3 http://scikit-learn.org/stable/modules/model_evaluation.html#log-loss.

http://scikit-learn.org/stable/modules/model_evaluation.html#log-loss

EXERCISES 135

FIGURE 9.2 Log loss as a function of predicted probabilities of hit and miss

is the right ML performance metric for hyper-parameter tuning of financial applica-
tions, not accuracy.

When we use log loss as a scoring statistic, we often prefer to change its sign,
hence referring to “neg log loss.” The reason for this change is cosmetic, driven by
intuition: A high neg log loss value is preferred to a low neg log loss value, just
as with accuracy. Keep in mind this sklearn bug when you use neg_log_loss:
https://github.com/scikit-learn/scikit-learn/issues/9144. To circumvent this bug, you
should use the cvScore function presented in Chapter 7.

EXERCISES

9.1 Using the function getTestData from Chapter 8, form a synthetic dataset of
10,000 observations with 10 features, where 5 are informative and 5 are noise.

(a) Use GridSearchCV on 10-fold CV to find the C, gamma optimal hyper-
parameters on a SVC with RBF kernel, where param_grid={'C':[1E-
2,1E-1,1,10,100],'gamma':[1E-2,1E-1,1,10,100]} and the scor-
ing function is neg_log_loss.

(b) How many nodes are there in the grid?

(c) How many fits did it take to find the optimal solution?

(d) How long did it take to find this solution?

let &hbox {char '046}https://github.com/scikit-learn/scikit-learn/issues/9144
https://github.com/scikit-learn/scikit-learn/issues/9144

136 HYPER-PARAMETER TUNING WITH CROSS-VALIDATION

(e) How can you access the optimal result?

(f) What is the CV score of the optimal parameter combination?

(g) How can you pass sample weights to the SVC?

9.2 Using the same dataset from exercise 1,

(a) Use RandomizedSearchCV on 10-fold CV to find the C,
gamma optimal hyper-parameters on an SVC with RBF kernel,
where param_distributions={'C':logUniform(a=1E-2,b=
1E2),'gamma':logUniform(a=1E-2,b=1E2)},n_iter=25 and
neg_log_loss is the scoring function.

(b) How long did it take to find this solution?

(c) Is the optimal parameter combination similar to the one found in exercise 1?

(d) What is the CV score of the optimal parameter combination? How does it
compare to the CV score from exercise 1?

9.3 From exercise 1,

(a) Compute the Sharpe ratio of the resulting in-sample forecasts, from point 1.a
(see Chapter 14 for a definition of Sharpe ratio).

(b) Repeat point 1.a, this time with accuracy as the scoring function. Compute
the in-sample forecasts derived from the hyper-tuned parameters.

(c) What scoring method leads to higher (in-sample) Sharpe ratio?

9.4 From exercise 2,

(a) Compute the Sharpe ratio of the resulting in-sample forecasts, from point
2.a.

(b) Repeat point 2.a, this time with accuracy as the scoring function. Compute
the in-sample forecasts derived from the hyper-tuned parameters.

(c) What scoring method leads to higher (in-sample) Sharpe ratio?

9.5 Read the definition of log loss, L [Y , P].

(a) Why is the scoring function neg_log_loss defined as the negative log loss,
−L [Y , P]?

(b) What would be the outcome of maximizing the log loss, rather than the neg-
ative log loss?

9.6 Consider an investment strategy that sizes its bets equally, regardless of the fore-
cast’s confidence. In this case, what is a more appropriate scoring function for
hyper-parameter tuning, accuracy or cross-entropy loss?

REFERENCES

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kegl (2011): “Algorithms for hyper-parameter optimiza-
tion.” Advances in Neural Information Processing Systems, pp. 2546–2554.

Bergstra, J. and Y. Bengio (2012): “Random search for hyper-parameter optimization.” Journal of
Machine Learning Research, Vol. 13, pp. 281–305.

BIBLIOGRAPHY 137

BIBLIOGRAPHY

Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee (2002): “Choosing multiple parameters for
support vector machines.” Machine Learning, Vol. 46, pp. 131–159.

Chuong, B., C. Foo, and A. Ng (2008): “Efficient multiple hyperparameter learning for log-
linear models.” Advances in Neural Information Processing Systems, Vol. 20. Available at
http://ai.stanford.edu/~chuongdo/papers/learn_reg.pdf.

Gorissen, D., K. Crombecq, I. Couckuyt, P. Demeester, and T. Dhaene (2010): “A surrogate model-
ing and adaptive sampling toolbox for computer based design.” Journal of Machine Learning
Research, Vol. 11, pp. 2051–2055.

Hsu, C., C. Chang, and C. Lin (2010): “A practical guide to support vector classification.” Technical
report, National Taiwan University.

Hutter, F., H. Hoos, and K. Leyton-Brown (2011): “Sequential model-based optimization for gen-
eral algorithm configuration.” Proceedings of the 5th international conference on Learning and
Intelligent Optimization, pp. 507–523.

Larsen, J., L. Hansen, C. Svarer, and M. Ohlsson (1996): “Design and regularization of neural net-
works: The optimal use of a validation set.” Proceedings of the 1996 IEEE Signal Processing
Society Workshop.

Maclaurin, D., D. Duvenaud, and R. Adams (2015): “Gradient-based hyperparameter optimization
through reversible learning.” Working paper. Available at https://arxiv.org/abs/1502.03492.

Martinez-Cantin, R. (2014): “BayesOpt: A Bayesian optimization library for nonlinear optimization,
experimental design and bandits.” Journal of Machine Learning Research, Vol. 15, pp. 3915–
3919.

let &hbox {char '046}http://ai.stanford.edu/protect $elax hbox {char '236}$chuongdo/papers/learn_reg.pdf
http://ai.stanford.edu/~chuongdo/papers/learn_reg.pdf
let &hbox {char '046}https://arxiv.org/abs/1502.03492
https://arxiv.org/abs/1502.03492

P A R T 3

Backtesting

Chapter 10: Bet Sizing, 141
Chapter 11: The Dangers of Backtesting, 151
Chapter 12: Backtesting through Cross-Validation, 161
Chapter 13: Backtesting on Synthetic Data, 169
Chapter 14: Backtest Statistics, 195
Chapter 15: Understanding Strategy Risk, 211
Chapter 16: Machine Learning Asset Allocation, 221

139

CHAPTER 10

Bet Sizing

10.1 MOTIVATION

There are fascinating parallels between strategy games and investing. Some of the
best portfolio managers I have worked with are excellent poker players, perhaps more
so than chess players. One reason is bet sizing, for which Texas Hold’em provides a
great analogue and training ground. Your ML algorithm can achieve high accuracy,
but if you do not size your bets properly, your investment strategy will inevitably
lose money. In this chapter we will review a few approaches to size bets from ML
predictions.

10.2 STRATEGY-INDEPENDENT BET SIZING APPROACHES

Consider two strategies on the same instrument. Let mi,t ∈ [−1, 1] be the bet size of
strategy i at time t, where mi,t = −1 indicates a full short position and mi,t = 1 indi-
cates a full long position. Suppose that one strategy produced a sequence of bet sizes
[m1,1, m1,2, m1,3] = [.5, 1, 0], as the market price followed a sequence [p1, p2, p3] =
[1, .5, 1.25], where pt is the price at time t. The other strategy produced a sequence
[m2,1, m2,2, m2,3] = [1, .5, 0], as it was forced to reduce its bet size once the market
moved against the initial full position. Both strategies produced forecasts that turned
out to be correct (the price increased by 25% between p1 and p3), however the first
strategy made money (0.5) while the second strategy lost money (−.125).

We would prefer to size positions in such way that we reserve some cash for the
possibility that the trading signal strengthens before it weakens. One option is to
compute the series ct = ct,l − ct,s, where ct,l is the number of concurrent long bets at
time t, and ct,s is the number of concurrent short bets at time t. This bet concurrency is
derived, for each side, similarly to how we computed label concurrency in Chapter 4
(recall the t1 object, with overlapping time spans). We fit a mixture of two Gaussians

141

142 BET SIZING

on {ct}, applying a method like the one described in López de Prado and Foreman
[2014]. Then, the bet size is derived as

mt =
⎧⎪⎨⎪⎩

F[ct] − F[0]

1 − F[0]
if ct ≥ 0

F[ct] − F[0]

F[0]
if ct < 0

where F[x] is the CDF of the fitted mixture of two Gaussians for a value x. For exam-
ple, we could size the bet as 0.9 when the probability of observing a signal of greater
value is only 0.1. The stronger the signal, the smaller the probability that the signal
becomes even stronger, hence the greater the bet size.

A second solution is to follow a budgeting approach. We compute the maximum
number (or some other quantile) of concurrent long bets, maxi{ci,l}, and the max-
imum number of concurrent short bets, maxi{ci,s}. Then we derive the bet size as

mt = ct,l
1

maxi{ci,l}
− ct,s

1
maxi{ci,s}

, where ct,l is the number of concurrent long bets at

time t, and ct,s is the number of concurrent short bets at time t. The goal is that the
maximum position is not reached before the last concurrent signal is triggered.

A third approach is to apply meta-labeling, as we explained in Chapter 3. We fit a
classifier, such as an SVC or RF, to determine the probability of misclassification, and
use that probability to derive the bet size. 1 This approach has a couple of advantages:
First, the ML algorithm that decides the bet sizes is independent of the primary model,
allowing for the incorporation of features predictive of false positives (see Chap-
ter 3). Second, the predicted probability can be directly translated into bet size. Let us
see how.

10.3 BET SIZING FROM PREDICTED PROBABILITIES

Let us denote p [x] the probability that label x takes place. For two possible outcomes,
x ∈ {−1, 1}, we would like to test the null hypothesis H0 : p [x = 1] = 1

2
. We compute

the test statistic z =
p[x=1]− 1

2√
p[x=1](1−p[x=1])

= 2p[x=1]−1

2
√

p[x=1](1−p[x=1])
∼ Z, with z ∈ (−∞,+∞)

and where Z represents the standard Normal distribution. We derive the bet size as
m = 2Z [z] − 1, where m ∈ [−1, 1] and Z [.] is the CDF of Z.

For more than two possible outcomes, we follow a one-versus-rest method. Let
X = {−1,… , 0,… , 1} be various labels associated with bet sizes, and x ∈ X the pre-
dicted label. In other words, the label is identified by the bet size associated with it. For
each label i = 1,… , ‖X‖, we estimate a probability pi, with

∑‖X‖
i=1 pi = 1. We define

1 The references section lists a number of articles that explain how these probabilities are derived. Usu-
ally these probabilities incorporate information about the goodness of the fit, or confidence in the
prediction. See Wu et al. [2004], and visit http://scikit-learn.org/stable/modules/svm.html#scores-and-
probabilities.

http://scikit-learn.org/stable/modules/svm.html#scores-and-probabilities

BET SIZING FROM PREDICTED PROBABILITIES 143

FIGURE 10.1 Bet size from predicted probabilities

p̃ = maxi{pi} as the probability of x, and we would like to test for H0 : p̃ = 1‖X‖ .2 We

compute the test statistic z =
p̃− 1‖X‖√
p̃(1−p̃)

∼ Z, with z ∈ [0 , +∞). We derive the bet size

as m = x (2Z [z] − 1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∈[0,1]

, where m ∈ [−1, 1] and Z [z] regulates the size for a prediction

x (where the side is implied by x).
Figure 10.1 plots the bet size as a function of test statistic. Snippet 10.1 implements

the translation from probabilities to bet size. It handles the possibility that the predic-
tion comes from a meta-labeling estimator, as well from a standard labeling estimator.
In step #2, it also averages active bets, and discretizes the final value, which we will
explain in the following sections.

SNIPPET 10.1 FROM PROBABILITIES TO BET SIZE

def getSignal(events,stepSize,prob,pred,numClasses,numThreads,**kargs):
get signals from predictions
if prob.shape[0]==0:return pd.Series()
#1) generate signals from multinomial classification (one-vs-rest, OvR)
signal0=(prob-1./numClasses)/(prob*(1.-prob))**.5 # t-value of OvR
signal0=pred*(2*norm.cdf(signal0)-1) # signal=side*size

2 Uncertainty is absolute when all outcomes are equally likely.

144 BET SIZING

if 'side' in events:signal0*=events.loc[signal0.index,'side'] # meta-labeling
#2) compute average signal among those concurrently open
df0=signal0.to_frame('signal').join(events[['t1']],how='left')
df0=avgActiveSignals(df0,numThreads)
signal1=discreteSignal(signal0=df0,stepSize=stepSize)
return signal1

10.4 AVERAGING ACTIVE BETS

Every bet is associated with a holding period, spanning from the time it originated to
the time the first barrier is touched, t1 (see Chapter 3). One possible approach is to
override an old bet as a new bet arrives; however, that is likely to lead to excessive
turnover. A more sensible approach is to average all sizes across all bets still active at a
given point in time. Snippet 10.2 illustrates one possible implementation of this idea.

SNIPPET 10.2 BETS ARE AVERAGED AS LONG AS THEY ARE
STILL ACTIVE

def avgActiveSignals(signals,numThreads):
compute the average signal among those active
#1) time points where signals change (either one starts or one ends)
tPnts=set(signals['t1'].dropna().values)
tPnts=tPnts.union(signals.index.values)
tPnts=list(tPnts);tPnts.sort()
out=mpPandasObj(mpAvgActiveSignals,('molecule',tPnts),numThreads,signals=signals)
return out

#———————————————————————————————————————
def mpAvgActiveSignals(signals,molecule):
’’’
At time loc, average signal among those still active.
Signal is active if:

a) issued before or at loc AND
b) loc before signal's endtime, or endtime is still unknown (NaT).

’’’
out=pd.Series()
for loc in molecule:

df0=(signals.index.values<=loc)&((loc<signals['t1'])|pd.isnull(signals['t1']))
act=signals[df0].index
if len(act)>0:out[loc]=signals.loc[act,'signal'].mean()
else:out[loc]=0 # no signals active at this time

return out

10.5 SIZE DISCRETIZATION

Averaging reduces some of the excess turnover, but still it is likely that small trades
will be triggered with every prediction. As this jitter would cause unnecessary

DYNAMIC BET SIZES AND LIMIT PRICES 145

FIGURE 10.2 Discretization of the bet size, d= 0.2

overtrading, I suggest you discretize the bet size as m∗ = round
[

m
d

]
d, where d ∈

(0, 1] determines the degree of discretization. Figure 10.2 illustrates the discretiza-
tion of the bet size. Snippet 10.3 implements this notion.

SNIPPET 10.3 SIZE DISCRETIZATION TO PREVENT
OVERTRADING

def discreteSignal(signal0,stepSize):
discretize signal
signal1=(signal0/stepSize).round()*stepSize # discretize
signal1[signal1>1]=1 # cap
signal1[signal1<-1]=-1 # floor
return signal1

10.6 DYNAMIC BET SIZES AND LIMIT PRICES

Recall the triple-barrier labeling method presented in Chapter 3. Bar i is formed
at time ti,0, at which point we forecast the first barrier that will be touched. That
prediction implies a forecasted price, Eti,0

[pti,1
], consistent with the barriers’ settings.

In the period elapsed until the outcome takes place, t ∈ [ti,0, ti,1], the price pt fluctuates
and additional forecasts may be formed, Etj,0

[pti,1
], where j ∈ [i + 1, I] and tj,0 ≤ ti,1.

In Sections 10.4 and 10.5 we discussed methods for averaging the active bets and

146 BET SIZING

discretizing the bet size as new forecasts are formed. In this section we will introduce
an approach to adjust bet sizes as market price pt and forecast price fi fluctuate. In the
process, we will derive the order’s limit price.

Let qt be the current position, Q the maximum absolute position size, and q̂i,t the
target position size associated with forecast fi, such that

q̂i,t = int[m[𝜔, fi − pt]Q]

m [𝜔, x] = x√
𝜔 + x2

where m [𝜔, x] is the bet size, x = fi − pt is the divergence between the current market
price and the forecast, 𝜔 is a coefficient that regulates the width of the sigmoid func-
tion, and Int [x] is the integer value of x. Note that for a real-valued price divergence
x, −1 < m [𝜔, x] < 1, the integer value q̂i,t is bounded −Q < q̂i,t < Q.

The target position size q̂i,t can be dynamically adjusted as pt changes. In particu-
lar, as pt → fi we get q̂i,t → 0, because the algorithm wants to realize the gains. This
implies a breakeven limit price p̄ for the order size q̂i,t − qt, to avoid realizing losses.
In particular,

p̄ = 1|q̂i,t − qt|
|q̂i,t|∑

j=|qt+sgn[q̂i,t−qt]| L

[
fi,𝜔,

j

Q

]

where L[fi,𝜔, m] is the inverse function of m[𝜔, fi − pt] with respect to pt,

L[fi,𝜔, m] = fi − m

√
𝜔

1 − m2

We do not need to worry about the case m2 = 1, because |q̂i,t| < 1. Since this
function is monotonic, the algorithm cannot realize losses as pt → fi.

Let us calibrate 𝜔. Given a user-defined pair (x, m∗), such that x = fi − pt and m∗ =
m [𝜔, x], the inverse function of m [𝜔, x] with respect to 𝜔 is

𝜔 = x2(m∗−2 − 1)

Snippet 10.4 implements the algorithm that computes the dynamic position size
and limit prices as a function of pt and fi. First, we calibrate the sigmoid function,
so that it returns a bet size of m∗ = .95 for a price divergence of x = 10. Second,
we compute the target position q̂i,t for a maximum position Q = 100, fi = 115 and
pt = 100. If you try fi = 110, you will get q̂i,t = 95, consistent with the calibration
of 𝜔. Third, the limit price for this order of size q̂i,t − qt = 97 is pt < 112.3657 < fi,
which is between the current price and the forecasted price.

DYNAMIC BET SIZES AND LIMIT PRICES 147

SNIPPET 10.4 DYNAMIC POSITION SIZE AND LIMIT PRICE

def betSize(w,x):
return x*(w+x**2)**-.5

#———————————————————————————————————————
def getTPos(w,f,mP,maxPos):

return int(betSize(w,f-mP)*maxPos)
#———————————————————————————————————————
def invPrice(f,w,m):

return f-m*(w/(1-m**2))**.5
#———————————————————————————————————————
def limitPrice(tPos,pos,f,w,maxPos):

sgn=(1 if tPos>=pos else -1)
lP=0
for j in xrange(abs(pos+sgn),abs(tPos+1)):

lP+=invPrice(f,w,j/float(maxPos))
lP/=tPos-pos
return lP

#———————————————————————————————————————
def getW(x,m):
0<alpha<1
return x**2*(m**-2–1)

#———————————————————————————————————————
def main():

pos,maxPos,mP,f,wParams=0,100,100,115,{'divergence':10,'m':.95}
w=getW(wParams['divergence'],wParams['m']) # calibrate w
tPos=getTPos(w,f,mP,maxPos) # get tPos
lP=limitPrice(tPos,pos,f,w,maxPos) # limit price for order
return

#———————————————————————————————————————
if __name__=='__main__':main()

As an alternative to the sigmoid function, we could have used a power function
m̃ [𝜔, x] = sgn [x] |x|𝜔, where 𝜔 ≥ 0, x ∈ [−1, 1], which results in m̃ [𝜔, x] ∈ [−1, 1].
This alternative presents the advantages that:

� m̃ [𝜔,−1] = −1, m̃ [𝜔, 1] = 1.
� Curvature can be directly manipulated through 𝜔.
� For 𝜔 > 1, the function goes from concave to convex, rather than the other way

around, hence the function is almost flat around the inflexion point.

We leave the derivation of the equations for a power function as an exercise. Figure
10.3 plots the bet sizes (y-axis) as a function of price divergence f − pt (x-axis) for
both the sigmoid and power functions.

148 BET SIZING

1.0

0.5

0.0

–0.5

–1.0
–1.0 –0.5 0.0 0.5 1.0

FIGURE 10.3 f [x] = sgn [x] |x|2 (concave to convex) and f [x] = x(.1 + x2)−.5 (convex to concave)

EXERCISES

10.1 Using the formulation in Section 10.3, plot the bet size (m) as a function of the
maximum predicted probability (p̃) when ‖X‖ = 2, 3,… , 10.

10.2 Draw 10,000 random numbers from a uniform distribution with bounds
U[.5, 1.].

(a) Compute the bet sizes m for ‖X‖ = 2.

(b) Assign 10,000 consecutive calendar days to the bet sizes.

(c) Draw 10,000 random numbers from a uniform distribution with bounds
U [1, 25].

(d) Form a pandas series indexed by the dates in 2.b, and with values equal
to the index shifted forward the number of days in 2.c. This is a t1 object
similar to the ones we used in Chapter 3.

(e) Compute the resulting average active bets, following Section 10.4.

10.3 Using the t1 object from exercise 2.d:

(a) Determine the maximum number of concurrent long bets, c̄l.

(b) Determine the maximum number of concurrent short bets, c̄s.

(c) Derive the bet size as mt = ct,l
1
c̄l
− ct,s

1
c̄s

, where ct,l is the number of con-

current long bets at time t, and ct,s is the number of concurrent short bets at
time t.

BIBLIOGRAPHY 149

10.4 Using the t1 object from exercise 2.d:

(a) Compute the series ct = ct,l − ct,s, where ct,l is the number of concurrent
long bets at time t, and ct,s is the number of concurrent short bets at time t.

(b) Fit a mixture of two Gaussians on {ct}. You may want to use the method
described in López de Prado and Foreman [2014].

(c) Derive the bet size as mt =
⎧⎪⎨⎪⎩

F[ct]−F[0]

1−F[0]
if ct ≥ 0

F[ct]−F[0]

F[0]
if ct < 0

, where F [x] is the CDF

of the fitted mixture of two Gaussians for a value x.

(d) Explain how this series {mt} differ from the bet size series computed in
exercise 3.

10.5 Repeat exercise 1, where you discretize m with a stepSize=.01,
stepSize=.05, and stepSize=.1.

10.6 Rewrite the equations in Section 10.6, so that the bet size is determined by a
power function rather than a sigmoid function.

10.7 Modify Snippet 10.4 so that it implements the equations you derived in exer-
cise 6.

REFERENCES

López de Prado, M. and M. Foreman (2014): “A mixture of Gaussians approach to mathematical
portfolio oversight: The EF3M algorithm.” Quantitative Finance, Vol. 14, No. 5, pp. 913–930.

Wu, T., C. Lin and R. Weng (2004): “Probability estimates for multi-class classification by pairwise
coupling.” Journal of Machine Learning Research, Vol. 5, pp. 975–1005.

BIBLIOGRAPHY

Allwein, E., R. Schapire, and Y. Singer (2001): “Reducing multiclass to binary: A unifying approach
for margin classifiers.” Journal of Machine Learning Research, Vol. 1, pp. 113–141.

Hastie, T. and R. Tibshirani (1998): “Classification by pairwise coupling.” The Annals of Statistics,
Vol. 26, No. 1, pp. 451–471.

Refregier, P. and F. Vallet (1991): “Probabilistic approach for multiclass classification with neural
networks.” Proceedings of International Conference on Artificial Networks, pp. 1003–1007.

CHAPTER 11

The Dangers of Backtesting

11.1 MOTIVATION

Backtesting is one of the most essential, and yet least understood, techniques in the
quant arsenal. A common misunderstanding is to think of backtesting as a research
tool. Researching and backtesting is like drinking and driving. Do not research under
the influence of a backtest. Most backtests published in journals are flawed, as the
result of selection bias on multiple tests (Bailey, Borwein, López de Prado, and Zhu
[2014]; Harvey et al. [2016]). A full book could be written listing all the different
errors people make while backtesting. I may be the academic author with the largest
number of journal articles on backtesting1 and investment performance metrics, and
still I do not feel I would have the stamina to compile all the different errors I have
seen over the past 20 years. This chapter is not a crash course on backtesting, but a
short list of some of the common errors that even seasoned professionals make.

11.2 MISSION IMPOSSIBLE: THE FLAWLESS BACKTEST

In its narrowest definition, a backtest is a historical simulation of how a strategy would
have performed should it have been run over a past period of time. As such, it is a
hypothetical, and by no means an experiment. At a physics laboratory, like Berkeley
Lab, we can repeat an experiment while controlling for environmental variables, in
order to deduce a precise cause-effect relationship. In contrast, a backtest is not an
experiment, and it does not prove anything. A backtest guarantees nothing, not even
achieving that Sharpe ratio if we could travel back in time in our retrofitted DeLorean
DMC-12 (Bailey and López de Prado [2012]). Random draws would have been dif-
ferent. The past would not repeat itself.

1 http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=434076; http://www.QuantResearch.org/.

151

let &hbox {char '046}http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=434076
http://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=434076
let &hbox {char '046}http://www.QuantResearch.org/
http://www.QuantResearch.org/

152 THE DANGERS OF BACKTESTING

What is the point of a backtest then? It is a sanity check on a number of variables,
including bet sizing, turnover, resilience to costs, and behavior under a given scenario.
A good backtest can be extremely helpful, but backtesting well is extremely hard. In
2014 a team of quants at Deutsche Bank, led by Yin Luo, published a study under the
title “Seven Sins of Quantitative Investing” (Luo et al. [2014]). It is a very graphic
and accessible piece that I would advise everyone in this business to read carefully.
In it, this team mentions the usual suspects:

1. Survivorship bias: Using as investment universe the current one, hence ignor-
ing that some companies went bankrupt and securities were delisted along the
way.

2. Look-ahead bias: Using information that was not public at the moment the
simulated decision would have been made. Be certain about the timestamp for
each data point. Take into account release dates, distribution delays, and backfill
corrections.

3. Storytelling: Making up a story ex-post to justify some random pattern.

4. Data mining and data snooping: Training the model on the testing
set.

5. Transaction costs: Simulating transaction costs is hard because the only way
to be certain about that cost would have been to interact with the trading book
(i.e., to do the actual trade).

6. Outliers: Basing a strategy on a few extreme outcomes that may never happen
again as observed in the past.

7. Shorting: Taking a short position on cash products requires finding a lender.
The cost of lending and the amount available is generally unknown, and
depends on relations, inventory, relative demand, etc.

These are just a few basic errors that most papers published in journals make rou-
tinely. Other common errors include computing performance using a non-standard
method (Chapter 14); ignoring hidden risks; focusing only on returns while ignor-
ing other metrics; confusing correlation with causation; selecting an unrepresentative
time period; failing to expect the unexpected; ignoring the existence of stop-out lim-
its or margin calls; ignoring funding costs; and forgetting practical aspects (Sarfati
[2015]). There are many more, but really, there is no point in listing them, because of
the title of the next section.

11.3 EVEN IF YOUR BACKTEST IS FLAWLESS, IT IS
PROBABLY WRONG

Congratulations! Your backtest is flawless in the sense that everyone can reproduce
your results, and your assumptions are so conservative that not even your boss could
object to them. You have paid for every trade more than double what anyone could
possibly ask. You have executed hours after the information was known by half the
globe, at a ridiculously low volume participation rate. Despite all these egregious

A FEW GENERAL RECOMMENDATIONS 153

costs, your backtest still makes a lot of money. Yet, this flawless backtest is probably
wrong. Why? Because only an expert can produce a flawless backtest. Becoming
an expert means that you have run tens of thousands of backtests over the years. In
conclusion, this is not the first backtest you produce, so we need to account for the
possibility that this is a false discovery, a statistical fluke that inevitably comes up
after you run multiple tests on the same dataset.

The maddening thing about backtesting is that, the better you become at it, the
more likely false discoveries will pop up. Beginners fall for the seven sins of Luo et al.
[2014] (there are more, but who’s counting?). Professionals may produce flawless
backtests, and will still fall for multiple testing, selection bias, or backtest overfitting
(Bailey and López de Prado [2014b]).

11.4 BACKTESTING IS NOT A RESEARCH TOOL

Chapter 8 discussed substitution effects, joint effects, masking, MDI, MDA, SFI,
parallelized features, stacked features, etc. Even if some features are very important,
it does not mean that they can be monetized through an investment strategy. Con-
versely, there are plenty of strategies that will appear to be profitable even though they
are based on irrelevant features. Feature importance is a true research tool, because it
helps us understand the nature of the patterns uncovered by the ML algorithm, regard-
less of their monetization. Critically, feature importance is derived ex-ante, before the
historical performance is simulated.

In contrast, a backtest is not a research tool. It provides us with very little insight
into the reason why a particular strategy would have made money. Just as a lottery
winner may feel he has done something to deserve his luck, there is always some
ex-post story (Luo’s sin number three). Authors claim to have found hundreds of
“alphas” and “factors,” and there is always some convoluted explanation for them.
Instead, what they have found are the lottery tickets that won the last game. The
winner has cashed out, and those numbers are useless for the next round. If you would
not pay extra for those lottery tickets, why would you care about those hundreds of
alphas? Those authors never tell us about all the tickets that were sold, that is, the
millions of simulations it took to find these “lucky” alphas.

The purpose of a backtest is to discard bad models, not to improve them. Adjust-
ing your model based on the backtest results is a waste of time . . . and it’s danger-
ous. Invest your time and effort in getting all the components right, as we’ve dis-
cussed elsewhere in the book: structured data, labeling, weighting, ensembles, cross-
validation, feature importance, bet sizing, etc. By the time you are backtesting, it
is too late. Never backtest until your model has been fully specified. If the backtest
fails, start all over. If you do that, the chances of finding a false discovery will drop
substantially, but still they will not be zero.

11.5 A FEW GENERAL RECOMMENDATIONS

Backtest overfitting can be defined as selection bias on multiple backtests. Backtest
overfitting takes place when a strategy is developed to perform well on a backtest, by

154 THE DANGERS OF BACKTESTING

monetizing random historical patterns. Because those random patterns are unlikely to
occur again in the future, the strategy so developed will fail. Every backtested strategy
is overfit to some extent as a result of “selection bias”: The only backtests that most
people share are those that portray supposedly winning investment strategies.

How to address backtest overfitting is arguably the most fundamental question
in quantitative finance. Why? Because if there was an easy answer to this question,
investment firms would achieve high performance with certainty, as they would invest
only in winning backtests. Journals would assess with confidence whether a strategy
may be a false positive. Finance could become a true science in the Popperian and
Lakatosian sense (López de Prado [2017]). What makes backtest overfitting so hard to
assess is that the probability of false positives changes with every new test conducted
on the same dataset, and that information is either unknown by the researcher or not
shared with investors or referees. While there is no easy way to prevent overfitting, a
number of steps can help reduce its presence.

1. Develop models for entire asset classes or investment universes, rather than
for specific securities (Chapter 8). Investors diversify, hence they do not make
mistake X only on security Y. If you find mistake X only on security Y, no matter
how apparently profitable, it is likely a false discovery.

2. Apply bagging (Chapter 6) as a means to both prevent overfitting and reduce
the variance of the forecasting error. If bagging deteriorates the performance of
a strategy, it was likely overfit to a small number of observations or outliers.

3. Do not backtest until all your research is complete (Chapters 1–10).

4. Record every backtest conducted on a dataset so that the probability of backtest
overfitting may be estimated on the final selected result (see Bailey, Borwein,
López de Prado, and Zhu [2017a] and Chapter 14), and the Sharpe ratio may
be properly deflated by the number of trials carried out (Bailey and López de
Prado [2014b]).

5. Simulate scenarios rather than history (Chapter 12). A standard backtest is a
historical simulation, which can be easily overfit. History is just the random
path that was realized, and it could have been entirely different. Your strategy
should be profitable under a wide range of scenarios, not just the anecdotal
historical path. It is harder to overfit the outcome of thousands of “what if”
scenarios.

6. If the backtest fails to identify a profitable strategy, start from scratch. Resist
the temptation of reusing those results. Follow the Second Law of Backtesting.

SNIPPET 11.1 MARCOS’ SECOND LAW OF BACKTESTING

“Backtesting while researching is like drinking and driving.
Do not research under the influence of a backtest.”

—Marcos López de Prado
Advances in Financial Machine Learning (2018)

STRATEGY SELECTION 155

11.6 STRATEGY SELECTION

In Chapter 7 we discussed how the presence of serial conditionality in labels defeats
standard k-fold cross-validation, because the random sampling will spatter redundant
observations into both the training and testing sets. We must find a different (true
out-of-sample) validation procedure: a procedure that evaluates our model on the
observations least likely to be correlated/redundant to those used to train the model.
See Arlot and Celisse [2010] for a survey.

Scikit-learn has implemented a walk-forward timefolds method.2 Under this
approach, testing moves forward (in the time direction) with the goal of preventing
leakage. This is consistent with the way historical backtests (and trading) are done.
However, in the presence of long-range serial dependence, testing one observation
away from the end of the training set may not suffice to avoid informational leakage.
We will retake this point in Chapter 12, Section 12.2.

One disadvantage of the walk-forward method is that it can be easily overfit. The
reason is that without random sampling, there is a single path of testing that can
be repeated over and over until a false positive appears. Like in standard CV, some
randomization is needed to avoid this sort of performance targeting or backtest opti-
mization, while avoiding the leakage of examples correlated to the training set into
the testing set. Next, we will introduce a CV method for strategy selection, based on
the estimation of the probability of backtest overfitting (PBO). We leave for Chapter
12 an explanation of CV methods for backtesting.

Bailey et al. [2017a] estimate the PBO through the combinatorially symmetric
cross-validation (CSCV) method. Schematically, this procedure works as follows.

First, we form a matrix M by collecting the performance series from the N trials.
In particular, each column n = 1,… , N represents a vector of PnL (mark-to-market
profits and losses) over t = 1,… , T observations associated with a particular model
configuration tried by the researcher. M is therefore a real-valued matrix of order
(TxN). The only conditions we impose are that (1) M is a true matrix, that is, with the
same number of rows for each column, where observations are synchronous for every
row across the N trials, and (2) the performance evaluation metric used to choose the
“optimal” strategy can be estimated on subsamples of each column. For example, if
that metric is the Sharpe ratio, we assume that the IID Normal distribution assumption
can be held on various slices of the reported performance. If different model configu-
rations trade with different frequencies, observations are aggregated (downsampled)
to match a common index t = 1,… , T .

Second, we partition M across rows, into an even number S of disjoint submatrices
of equal dimensions. Each of these submatrices Ms, with s = 1,… , S, is of order
(T

S
xN).

Third, we form all combinations CS of Ms, taken in groups of size S
2
. This gives a

total number of combinations

(
S

S∕2

)
=
(

S − 1
S∕2 − 1

)
S

S∕2
= . . . =

S∕2−1∏
i=0

S − i
S∕2 − i

156 THE DANGERS OF BACKTESTING

For instance, if S= 16, we will form 12,780 combinations. Each combination c ∈ CS

is composed of S∕2 submatrices Ms.
Fourth, for each combination c ∈ CS, we:

1. Form the training set J, by joining the S∕2 submatrices Ms that constitute c. J is

a matrix of order
(T

S
S
2
xN

)
=
(T

2
xN

)
.

2. Form the testing set J̄, as the complement of J in M. In other words, J̄ is the(T
2

xN
)

matrix formed by all rows of M that are not part of J.

3. Form a vector R of performance statistics of order N, where the n-th item of R
reports the performance associated with the n-th column of J (the training set).

4. Determine the element n∗ such that Rn ≤ Rn∗ , ∀n = 1,… , N. In other words,
n∗ = argmaxn{Rn}.

5. Form a vector R̄ of performance statistics of order N, where the n-th item of
R̄ reports the performance associated with the n-th column of J̄ (the testing
set).

6. Determine the relative rank of Rn∗ within R̄. We denote this relative rank as �̄�c,
where �̄�c ∈ (0, 1). This is the relative rank of the out-of-sample (OOS) per-
formance associated with the trial chosen in-sample (IS). If the strategy opti-
mization procedure does not overfit, we should observe that Rn∗ systematically
outperforms R̄ (OOS), just as Rn∗ outperformed R (IS).

7. Define the logit 𝜆c = log
[

�̄�c

1−�̄�c

]
. This presents the property that 𝜆c = 0 when

Rn∗ coincides with the median of R̄. High logit values imply a consistency
between IS and OOS performance, which indicates a low level of backtest
overfitting.

Fifth, compute the distribution of ranks OOS by collecting all the 𝜆c, for c ∈ CS.
The probability distribution function f (𝜆) is then estimated as the relative frequency
at which 𝜆 occurred across all CS, with ∫

∞
−∞ f (𝜆)d𝜆 = 1. Finally, the PBO is estimated

as PBO = ∫
0
−∞ f (𝜆)d𝜆, as that is the probability associated with IS optimal strategies

that underperform OOS.
The x-axis of Figure 11.1 shows the Sharpe ratio IS from the best strategy selected.

The y-axis shows the Sharpe ratio OOS for that same best strategy selected. As it can
be appreciated, there is a strong and persistent performance decay, caused by backtest
overfitting. Applying the above algorithm, we can derive the PBO associated with this
strategy selection process, as displayed in Figure 11.2.

The observations in each subset preserve the original time sequence. The random
sampling is done on the relatively uncorrelated subsets, rather than on the observa-
tions. See Bailey et al. [2017a] for an experimental analysis of the accuracy of this
methodology.

STRATEGY SELECTION 157

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5
0.5 1.0 1.5 2.0 2.5 3.0

SR IS

Prob[SR OOS<0]=0.74

[SR OOS]=0.87+–0.75*[SR IS]+err | adjR2=0.17

1 | OOS Perf. Degradation
S

R
 O

O
S

FIGURE 11.1 Best Sharpe ratio in-sample (SR IS) vs Sharpe ratio out-of-sample (SR OOS)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
–8 –6 –4 –2 0

Logits

1 | Hist. of Rank Logits

Prob Overfit=0.74

Fr
eq

ue
nc

y

2 4 6

FIGURE 11.2 Probability of backtest overfitting derived from the distribution of logits

158 THE DANGERS OF BACKTESTING

EXERCISES

11.1 An analyst fits an RF classifier where some of the features include seasonally
adjusted employment data. He aligns with January data the seasonally adjusted
value of January, etc. What “sin” has he committed?

11.2 An analyst develops an ML algorithm where he generates a signal using closing
prices, and executed at close. What’s the sin?

11.3 There is a 98.51% correlation between total revenue generated by arcades and
computer science doctorates awarded in the United States. As the number of
doctorates is expected to grow, should we invest in arcades companies? If not,
what’s the sin?

11.4 The Wall Street Journal has reported that September is the only month of the
year that has negative average stock returns, looking back 20, 50, and 100 years.
Should we sell stocks at the end of August? If not, what’s the sin?

11.5 We download P/E ratios from Bloomberg, rank stocks every month, sell the top
quartile, and buy the long quartile. Performance is amazing. What’s the sin?

REFERENCES

Arlot, S. and A. Celisse (2010): “A survey of cross-validation procedures for model selection.”
Statistics Surveys, Vol. 4, pp. 40–79.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014): “Pseudo-mathematics and financial
charlatanism: The effects of backtest overfitting on out-of-sample performance.” Notices of the
American Mathematical Society, Vol. 61, No. 5 (May), pp. 458–471. Available at https://ssrn
.com/abstract=2308659.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017a): “The probability of backtest over-
fitting.” Journal of Computational Finance, Vol. 20, No. 4, pp. 39–70. Available at http://ssrn
.com/abstract=2326253.

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk,
Vol. 15, No. 2 (Winter). Available at https://ssrn.com/abstract=1821643.

Bailey, D. and M. López de Prado (2014b): “The deflated Sharpe ratio: Correcting for selection
bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No. 5,
pp. 94–107. Available at https://ssrn.com/abstract=2460551.

Harvey, C., Y. Liu, and H. Zhu (2016): “. . . and the cross-section of expected returns.” Review of
Financial Studies, Vol. 29, No. 1, pp. 5–68.

López de Prado, M. (2017): “Finance as an industrial science.” Journal of Portfolio Manage-
ment, Vol. 43, No. 4, pp. 5–9. Available at http://www.iijournals.com/doi/pdfplus/10.3905/jpm
.2017.43.4.005.

Luo, Y., M. Alvarez, S. Wang, J. Jussa, A. Wang, and G. Rohal (2014): “Seven sins of quantitative
investing.” White paper, Deutsche Bank Markets Research, September 8.

Sarfati, O. (2015): “Backtesting: A practitioner’s guide to assessing strategies and avoiding pit-
falls.” Citi Equity Derivatives. CBOE 2015 Risk Management Conference. Available at
https://www.cboe.com/rmc/2015/olivier-pdf-Backtesting-Full.pdf.

https://ssrn.com/abstract=2308659
https://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2326253
http://ssrn.com/abstract=2326253
let &hbox {char '046}https://ssrn.com/abstract=1821643
https://ssrn.com/abstract=1821643
let &hbox {char '046}https://ssrn.com/abstract=2460551
https://ssrn.com/abstract=2460551
http://www.iijournals.com/doi/pdfplus/10.3905/jpm.2017.43.4.005
http://www.iijournals.com/doi/pdfplus/10.3905/jpm.2017.43.4.005
let &hbox {char '046}https://www.cboe.com/rmc/2015/olivier-pdf-Backtesting-Full.pdf
https://www.cboe.com/rmc/2015/olivier-pdf-Backtesting-Full.pdf

BIBLIOGRAPHY 159

BIBLIOGRAPHY

Bailey, D., J. Borwein, and M. López de Prado (2016): “Stock portfolio design and backtest
overfitting.” Journal of Investment Management, Vol. 15, No. 1, pp. 1–13. Available at
https://ssrn.com/abstract=2739335.

Bailey, D., J. Borwein, M. López de Prado, A. Salehipour, and J. Zhu (2016): “Backtest overfitting in
financial markets.” Automated Trader, Vol. 39. Available at https://ssrn.com/abstract=2731886.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017b): “Mathematical appendices to: ‘The
probability of backtest overfitting.’” Journal of Computational Finance (Risk Journals), Vol.
20, No. 4. Available at https://ssrn.com/abstract=2568435.

Bailey, D., J. Borwein, A. Salehipour, and M. López de Prado (2017): “Evaluation and rank-
ing of market forecasters.” Journal of Investment Management, forthcoming. Available at
https://ssrn.com/abstract=2944853.

Bailey, D., J. Borwein, A. Salehipour, M. López de Prado, and J. Zhu (2015): “Online
tools for demonstration of backtest overfitting.” Working paper. Available at https://ssrn
.com/abstract=2597421.

Bailey, D., S. Ger, M. López de Prado, A. Sim and, K. Wu (2016): “Statistical overfitting and backtest
performance.” In Risk-Based and Factor Investing, Quantitative Finance Elsevier. Available at
ttps://ssrn.com/abstract=2507040.

Bailey, D. and M. López de Prado (2014a): “Stop-outs under serial correlation and ‘the triple
penance rule.’” Journal of Risk, Vol. 18, No. 2, pp. 61–93. Available at https://ssrn.com/
abstract=2201302.

Bailey, D. and M. López de Prado (2015): “Mathematical appendices to: ‘Stop-outs under serial
correlation.’” Journal of Risk, Vol. 18, No. 2. Available at https://ssrn.com/abstract=2511599.

Bailey, D., M. López de Prado, and E. del Pozo (2013): “The strategy approval decision: A Sharpe
ratio indifference curve approach.” Algorithmic Finance, Vol. 2, No. 1, pp. 99–109. Available
at https://ssrn.com/abstract=2003638.

Carr, P. and M. López de Prado (2014): “Determining optimal trading rules without backtesting.”
Working paper. Available at https://ssrn.com/abstract=2658641.

López de Prado, M. (2012a): “Portfolio oversight: An evolutionary approach.” Lecture at Cornell
University. Available at https://ssrn.com/abstract=2172468.

López de Prado, M. (2012b): “The sharp razor: Performance evaluation with non-normal returns.”
Lecture at Cornell University. Available at https://ssrn.com/abstract=2150879.

López de Prado, M. (2013): “What to look for in a backtest.” Lecture at Cornell University. Available
at https://ssrn.com/abstract=2308682.

López de Prado, M. (2014a): “Optimal trading rules without backtesting.” Lecture at Cornell Uni-
versity. Available at https://ssrn.com/abstract=2502613.

López de Prado, M. (2014b): “Deflating the Sharpe ratio.” Lecture at Cornell University. Available
at https://ssrn.com/abstract=2465675.

López de Prado, M. (2015a): “Quantitative meta-strategies.” Practical Applications, Institutional
Investor Journals, Vol. 2, No. 3, pp. 1–3. Available at https://ssrn.com/abstract=2547325.

López de Prado, M. (2015b): “The Future of empirical finance.” Journal of Portfolio Management,
Vol. 41, No. 4, pp. 140–144. Available at https://ssrn.com/abstract=2609734.

López de Prado, M. (2015c): “Backtesting.” Lecture at Cornell University. Available at https://ssrn.
com/abstract=2606462.

López de Prado, M. (2015d): “Recent trends in empirical finance.” Journal of Portfolio Management,
Vol. 41, No. 4, pp. 29–33. Available at https://ssrn.com/abstract=2638760.

let &hbox {char '046}https://ssrn.com/abstract=2739335
https://ssrn.com/abstract=2739335
let &hbox {char '046}https://ssrn.com/abstract=2731886
https://ssrn.com/abstract=2731886
let &hbox {char '046}https://ssrn.com/abstract=2568435
https://ssrn.com/abstract=2568435
let &hbox {char '046}https://ssrn.com/abstract=2944853
https://ssrn.com/abstract=2944853
https://ssrn.com/abstract=2597421
https://ssrn.com/abstract=2597421
let &hbox {char '046}ttps://ssrn.com/abstract=2507040
ttps://ssrn.com/abstract=2507040
https://ssrn.com/abstract=2201302
https://ssrn.com/abstract=2201302
let &hbox {char '046}https://ssrn.com/abstract=2511599
https://ssrn.com/abstract=2511599
let &hbox {char '046}https://ssrn.com/abstract=2003638
https://ssrn.com/abstract=2003638
let &hbox {char '046}https://ssrn.com/abstract=2658641
https://ssrn.com/abstract=2658641
let &hbox {char '046}https://ssrn.com/abstract=2172468
https://ssrn.com/abstract=2172468
let &hbox {char '046}https://ssrn.com/abstract=2150879
https://ssrn.com/abstract=2150879
let &hbox {char '046}https://ssrn.com/abstract=2308682
https://ssrn.com/abstract=2308682
let &hbox {char '046}https://ssrn.com/abstract=2502613
https://ssrn.com/abstract=2502613
let &hbox {char '046}https://ssrn.com/abstract=2465675
https://ssrn.com/abstract=2465675
let &hbox {char '046}https://ssrn.com/abstract=2547325
https://ssrn.com/abstract=2547325
let &hbox {char '046}https://ssrn.com/abstract=2609734
https://ssrn.com/abstract=2609734
https://ssrn.com/abstract=2606462
https://ssrn.com/abstract=2606462
let &hbox {char '046}https://ssrn.com/abstract=2638760
https://ssrn.com/abstract=2638760

160 THE DANGERS OF BACKTESTING

López de Prado, M. (2015e): “Why most empirical discoveries in finance are likely wrong, and what
can be done about it.” Lecture at University of Pennsylvania. Available at https://ssrn.com/
abstract=2599105.

López de Prado, M. (2015f): “Advances in quantitative meta-strategies.” Lecture at Cornell Univer-
sity. Available at https://ssrn.com/abstract=2604812.

López de Prado, M. (2016): “Building diversified portfolios that outperform out-of-sample.” Jour-
nal of Portfolio Management, Vol. 42, No. 4, pp. 59–69. Available at https://ssrn.com/
abstract=2708678.

López de Prado, M. and M. Foreman (2014): “A mixture of Gaussians approach to mathematical
portfolio oversight: The EF3M algorithm.” Quantitative Finance, Vol. 14, No. 5, pp. 913–930.
Available at https://ssrn.com/abstract=1931734.

López de Prado, M. and A. Peijan (2004): “Measuring loss potential of hedge fund strategies.”
Journal of Alternative Investments, Vol. 7, No. 1, pp. 7–31, Summer 2004. Available at
https://ssrn.com/abstract=641702.

López de Prado, M., R. Vince, and J. Zhu (2015): “Risk adjusted growth portfolio in a finite invest-
ment horizon.” Lecture at Cornell University. Available at https://ssrn.com/abstract=2624329.

https://ssrn.com/abstract=2599105
https://ssrn.com/abstract=2599105
let &hbox {char '046}https://ssrn.com/abstract=2604812
https://ssrn.com/abstract=2604812
https://ssrn.com/abstract=2708678
https://ssrn.com/abstract=2708678
let &hbox {char '046}https://ssrn.com/abstract=1931734
https://ssrn.com/abstract=1931734
let &hbox {char '046}https://ssrn.com/abstract=641702
https://ssrn.com/abstract=641702
let &hbox {char '046}https://ssrn.com/abstract=2624329
https://ssrn.com/abstract=2624329

CHAPTER 12

Backtesting through Cross-Validation

12.1 MOTIVATION

A backtest evaluates out-of-sample the performance of an investment strategy using
past observations. These past observations can be used in two ways: (1) in a narrow
sense, to simulate the historical performance of an investment strategy, as if it had
been run in the past; and (2) in a broader sense, to simulate scenarios that did not
happen in the past. The first (narrow) approach, also known as walk-forward, is so
prevalent that, in fact, the term “backtest” has become a de facto synonym for “histor-
ical simulation.” The second (broader) approach is far less known, and in this chapter
we will introduce some novel ways to carry it out. Each approach has its pros and
cons, and each should be given careful consideration.

12.2 THE WALK-FORWARD METHOD

The most common backtest method in the literature is the walk-forward (WF)
approach. WF is a historical simulation of how the strategy would have performed in
past. Each strategy decision is based on observations that predate that decision. As
we saw in Chapter 11, carrying out a flawless WF simulation is a daunting task that
requires extreme knowledge of the data sources, market microstructure, risk manage-
ment, performance measurement standards (e.g., GIPS), multiple testing methods,
experimental mathematics, etc. Unfortunately, there is no generic recipe to conduct
a backtest. To be accurate and representative, each backtest must be customized to
evaluate the assumptions of a particular strategy.

WF enjoys two key advantages: (1) WF has a clear historical interpretation. Its
performance can be reconciled with paper trading. (2) History is a filtration; hence,
using trailing data guarantees that the testing set is out-of-sample (no leakage), as
long as purging has been properly implemented (see Chapter 7, Section 7.4.1). It is a

161

162 BACKTESTING THROUGH CROSS-VALIDATION

common mistake to find leakage in WF backtests, where t1.index falls within the
training set, but t1.values fall within the testing set (see Chapter 3). Embargoing is
not needed in WF backtests, because the training set always predates the testing set.

12.2.1 Pitfalls of the Walk-Forward Method

WF suffers from three major disadvantages: First, a single scenario is tested (the his-
torical path), which can be easily overfit (Bailey et al. [2014]). Second, WF is not
necessarily representative of future performance, as results can be biased by the par-
ticular sequence of datapoints. Proponents of the WF method typically argue that
predicting the past would lead to overly optimistic performance estimates. And yet,
very often fitting an outperforming model on the reversed sequence of observations
will lead to an underperforming WF backtest. The truth is, it is as easy to overfit a
walk-forward backtest as to overfit a walk-backward backtest, and the fact that chang-
ing the sequence of observations yields inconsistent outcomes is evidence of that
overfitting. If proponents of WF were right, we should observe that walk-backwards
backtests systematically outperform their walk-forward counterparts. That is not the
case, hence the main argument in favor of WF is rather weak.

To make this second disadvantage clearer, suppose an equity strategy that is back-
tested with a WF on S&P 500 data, starting January 1, 2007. Until March 15, 2009,
the mix of rallies and sell-offs will train the strategy to be market neutral, with low
confidence on every position. After that, the long rally will dominate the dataset, and
by January 1, 2017, buy forecasts will prevail over sell forecasts. The performance
would be very different had we played the information backwards, from January 1,
2017 to January 1, 2007 (a long rally followed by a sharp sell-off). By exploiting a
particular sequence, a strategy selected by WF may set us up for a debacle.

The third disadvantage of WF is that the initial decisions are made on a smaller
portion of the total sample. Even if a warm-up period is set, most of the information
is used by only a small portion of the decisions. Consider a strategy with a warm-up
period that uses t0 observations out of T. This strategy makes half of its decisions(

T−t0
2

)
on an average number of datapoints,

(
T − t0

2

)−1 (
t0 +

T + t0
2

)
T − t0

4
= 1

4
T + 3

4
t0

which is only a 3
4

t0
T
+ 1

4
fraction of the observations. Although this problem is atten-

uated by increasing the warm-up period, doing so also reduces the length of the
backtest.

12.3 THE CROSS-VALIDATION METHOD

Investors often ask how a strategy would perform if subjected to a stress scenario
as unforeseeable as the 2008 crisis, or the dot-com bubble, or the taper tantrum, or

THE COMBINATORIAL PURGED CROSS-VALIDATION METHOD 163

the China scare of 2015–2016, etc. One way to answer is to split the observations
into two sets, one with the period we wish to test (testing set), and one with the
rest (training set). For example, a classifier would be trained on the period January
1, 2009–January 1, 2017, then tested on the period January 1, 2008–December 31,
2008. The performance we will obtain for 2008 is not historically accurate, since
the classifier was trained on data that was only available after 2008. But historical
accuracy was not the goal of the test. The objective of the test was to subject a strategy
ignorant of 2008 to a stress scenario such as 2008.

The goal of backtesting through cross-validation (CV) is not to derive histori-
cally accurate performance, but to infer future performance from a number of out-
of-sample scenarios. For each period of the backtest, we simulate the performance of
a classifier that knew everything except for that period.

Advantages

1. The test is not the result of a particular (historical) scenario. In fact, CV
tests k alternative scenarios, of which only one corresponds with the histori-
cal sequence.

2. Every decision is made on sets of equal size. This makes outcomes compara-
ble across periods, in terms of the amount of information used to make those
decisions.

3. Every observation is part of one and only one testing set. There is no warm-up
subset, thereby achieving the longest possible out-of-sample simulation.

Disadvantages

1. Like WF, a single backtest path is simulated (although not the historical one).
There is one and only one forecast generated per observation.

2. CV has no clear historical interpretation. The output does not simulate how the
strategy would have performed in the past, but how it may perform in the future
under various stress scenarios (a useful result in its own right).

3. Because the training set does not trail the testing set, leakage is possible.
Extreme care must be taken to avoid leaking testing information into the train-
ing set. See Chapter 7 for a discussion on how purging and embargoing can
help prevent informational leakage in the context of CV.

12.4 THE COMBINATORIAL PURGED CROSS-VALIDATION METHOD

In this section I will present a new method, which addresses the main drawback of the
WF and CV methods, namely that those schemes test a single path. I call it the “com-
binatorial purged cross-validation” (CPCV) method. Given a number 𝜑 of backtest
paths targeted by the researcher, CPCV generates the precise number of combina-
tions of training/testing sets needed to generate those paths, while purging training
observations that contain leaked information.

164 BACKTESTING THROUGH CROSS-VALIDATION

PathsS15S14S13S12S11S10S9S8S7S6S5S4S3S2S1
G1 5xxxxx
G2 5xxxxx
G3 5xxxxx
G4 5xxxxx
G5 5xxxxx
G6 5xxxxx

FIGURE 12.1 Paths generated for 𝝋 [6, 2] = 5

12.4.1 Combinatorial Splits

Consider T observations partitioned into N groups without shuffling, where groups
n = 1,… , N − 1 are of size ⌊T∕N⌋, the Nth group is of size T − ⌊T∕N⌋ (N − 1), and⌊.⌋ is the floor or integer function. For a testing set of size k groups, the number of
possible training/testing splits is(

N
N − k

)
=

∏k−1
i=0 (N − i)

k!

Since each combination involves k tested groups, the total number of tested groups

is k
(

N
N−k

)
. And since we have computed all possible combinations, these tested

groups are uniformly distributed across all N (each group belongs to the same num-
ber of training and testing sets). The implication is that from k-sized testing sets on
N groups we can backtest a total number of paths 𝜑 [N, k],

𝜑 [N, k] = k
N

(
N

N − k

)
=

∏k−1
i=1 (N − i)

(k − 1)!

Figure 12.1 illustrates the composition of train/test splits for N = 6 and k = 2.

There are
(

6
4

)
= 15 splits, indexed as S1,… ,S15. For each split, the figure marks with

a cross (x) the groups included in the testing set, and leaves unmarked the groups that
form the training set. Each group forms part of 𝜑 [6, 2] = 5 testing sets, therefore this
train/test split scheme allows us to compute 5 backtest paths.

Figure 12.2 shows the assignment of each tested group to one backtest path. For
example, path 1 is the result of combining the forecasts from (G1, S1), (G2, S1),

PathsS15S14S13S12S11S10S9S8S7S6S5S4S3S2S1
G1 554321
G2 554321
G3 554321
G4 554321
G5 554321
G6 554321

FIGURE 12.2 Assignment of testing groups to each of the 5 paths

THE COMBINATORIAL PURGED CROSS-VALIDATION METHOD 165

(G3, S2), (G4, S3), (G5, S4) and (G6, S5). Path 2 is the result of combining forecasts
from (G1, S2), (G2, S6), (G3, S6), (G4, S7), (G5, S8) and (G6, S9), and so on.

These paths are generated by training the classifier on a portion 𝜃 = 1 − k∕N of the
data for each combination. Although it is theoretically possible to train on a portion
𝜃 < 1∕2, in practice we will assume that k ≤ N∕2. The portion of data in the training
set 𝜃 increases with N → T but it decreases with k → N∕2. The number of paths
𝜑 [N, k] increases with N → T and with k → N∕2. In the limit, the largest number of
paths is achieved by setting N = T and k = N∕2 = T∕2, at the expense of training the
classifier on only half of the data for each combination (𝜃 = 1∕2).

12.4.2 The Combinatorial Purged Cross-Validation Backtesting Algorithm

In Chapter 7 we introduced the concepts of purging and embargoing in the context
of CV. We will now use these concepts for backtesting through CV. The CPCV back-
testing algorithm proceeds as follows:

1. Partition T observations into N groups without shuffling, where groups
n = 1,… , N − 1 are of size ⌊T∕N⌋, and the Nth group is of size T −⌊T∕N⌋ (N − 1).

2. Compute all possible training/testing splits, where for each split N − k groups
constitute the training set and k groups constitute the testing set.

3. For any pair of labels (yi, yj), where yi belongs to the training set and yj belongs
to the testing set, apply the PurgedKFold class to purge yi if yi spans over a
period used to determine label yj. This class will also apply an embargo, should
some testing samples predate some training samples.

4. Fit classifiers on the
(

N
N−k

)
training sets, and produce forecasts on the respec-

tive
(

N
N−k

)
testing sets.

5. Compute the 𝜑 [N, k] backtest paths. You can calculate one Sharpe ratio from
each path, and from that derive the empirical distribution of the strategy’s
Sharpe ratio (rather than a single Sharpe ratio, like WF or CV).

12.4.3 A Few Examples

For k = 1, we will obtain𝜑 [N, 1] = 1 path, in which case CPCV reduces to CV. Thus,
CPCV can be understood as a generalization of CV for k > 1.

For k = 2, we will obtain 𝜑 [N, 2] = N − 1 paths. This is a particularly interesting
case, because while training the classifier on a large portion of the data, 𝜃 = 1 − 2∕N,
we can generate almost as many backtest paths as the number of groups, N − 1. An
easy rule of thumb is to partition the data into N = 𝜑 + 1 groups, where 𝜑 is the

number of paths we target, and then form
(

N
N−2

)
combinations. In the limit, we can

assign one group per observation, N = T , and generate 𝜑 [T , 2] = T − 1 paths, while
training the classifier on a portion 𝜃 = 1 − 2∕T of the data per combination.

166 BACKTESTING THROUGH CROSS-VALIDATION

If even more paths are needed, we can increase k → N∕2, but as explained earlier
that will come at the cost of using a smaller portion of the dataset for training. In prac-
tice, k = 2 is often enough to generate the needed 𝜑 paths, by setting N = 𝜑 + 1 ≤ T .

12.5 HOW COMBINATORIAL PURGED CROSS-VALIDATION
ADDRESSES BACKTEST OVERFITTING

Given a sample of IID random variables, xi ∼ Z, i = 1,… , I, where Z is the standard
normal distribution, the expected maximum of that sample can be approximated as

E[max{xi}i=1,…,I] ≈ (1 − 𝛾) Z−1
[
1 − 1

I

]
+ 𝛾Z−1

[
1 − 1

I
e−1

]
≤
√

2log [I]

where Z−1 [.] is the inverse of the CDF of Z, 𝛾 ≈ 0.5772156649⋯ is the Euler-
Mascheroni constant, and I ≫ 1 (see Bailey et al. [2014] for a proof). Now suppose
that a researcher backtests I strategies on an instrument that behaves like a martingale,
with Sharpe ratios {yi}i=1,…,I , E[yi] = 0, 𝜎2[yi] > 0, and yi

𝜎[yi]
∼ Z. Even though the

true Sharpe ratio is zero, we expect to find one strategy with a Sharpe ratio of

E[max{yi}i=1,…,I] = E[max{xi}i=1,…,I]𝜎[yi]

WF backtests exhibit high variance, 𝜎[yi] ≫ 0, for at least one reason: A large
portion of the decisions are based on a small portion of the dataset. A few observations
will have a large weight on the Sharpe ratio. Using a warm-up period will reduce the
backtest length, which may contribute to making the variance even higher. WF’s high
variance leads to false discoveries, because researchers will select the backtest with
the maximum estimated Sharpe ratio, even if the true Sharpe ratio is zero. That is
the reason it is imperative to control for the number of trials (I) in the context of WF
backtesting. Without this information, it is not possible to determine the Family-Wise
Error Rate (FWER), False Discovery Rate (FDR), Probability of Backtest Overfitting
(PBO, see Chapter 11) or similar model assessment statistic.

CV backtests (Section 12.3) address that source of variance by training each clas-
sifier on equal and large portions of the dataset. Although CV leads to fewer false
discoveries than WF, both approaches still estimate the Sharpe ratio from a single
path for a strategy i, yi, and that estimation may be highly volatile. In contrast, CPCV
derives the distribution of Sharpe ratios from a large number of paths, j = 1,… ,𝜑,
with mean E[{yi,j}j=1,…,𝜑

] = 𝜇i and variance 𝜎2[{yi,j}j=1,…,𝜑
] = 𝜎

2
i . The variance of

the sample mean of CPCV paths is

𝜎
2[𝜇i] = 𝜑

−2 (
𝜑𝜎

2
i + 𝜑 (𝜑 − 1) 𝜎2

i �̄�i

)
= 𝜑

−1
𝜎

2
i

(
1 + (𝜑 − 1) �̄�i

)
where 𝜎

2
i is the variance of the Sharpe ratios across paths for strategy i, and �̄�i is

the average off-diagonal correlation among {yi,j}j=1,…,𝜑. CPCV leads to fewer false

EXERCISES 167

discoveries than CV and WF, because �̄�i < 1 implies that the variance of the sample
mean is lower than the variance of the sample,

𝜑
−1
𝜎

2
i ≤ 𝜎

2 [
𝜇i

]
< 𝜎

2
i

The more uncorrelated the paths are, �̄�i ≪ 1, the lower CPCV’s variance will be,
and in the limit CPCV will report the true Sharpe ratio E[yi] with zero variance,
lim

𝜑→∞ 𝜎
2[𝜇i] = 0. There will not be selection bias, because the strategy selected

out of i = 1,… , I will be the one with the highest true Sharpe ratio.
Of course, we know that zero variance is unachievable, since𝜑 has an upper bound,

𝜑 ≤ 𝜑

[
T , T

2

]
. Still, for a large enough number of paths 𝜑, CPCV could make the vari-

ance of the backtest so small as to make the probability of a false discovery negligible.
In Chapter 11, we argued that backtest overfitting may be the most important open

problem in all of mathematical finance. Let us see how CPCV helps address this prob-
lem in practice. Suppose that a researcher submits a strategy to a journal, supported
by an overfit WF backtest, selected from a large number of undisclosed trials. The
journal could ask the researcher to repeat his experiments using a CPCV for a given N
and k. Because the researcher did not know in advance the number and characteristics
of the paths to be backtested, his overfitting efforts will be easily defeated. The paper
will be rejected or withdrawn from consideration. Hopefully CPCV will be used to
reduce the number of false discoveries published in journals and elsewhere.

EXERCISES

12.1 Suppose that you develop a momentum strategy on a futures contract, where
the forecast is based on an AR(1) process. You backtest this strategy using the
WF method, and the Sharpe ratio is 1.5. You then repeat the backtest on the
reversed series and achieve a Sharpe ratio of –1.5. What would be the mathe-
matical grounds for disregarding the second result, if any?

12.2 You develop a mean-reverting strategy on a futures contract. Your WF backtest
achieves a Sharpe ratio of 1.5. You increase the length of the warm-up period,
and the Sharpe ratio drops to 0.7. You go ahead and present only the result with
the higher Sharpe ratio, arguing that a strategy with a shorter warm-up is more
realistic. Is this selection bias?

12.3 Your strategy achieves a Sharpe ratio of 1.5 on a WF backtest, but a Sharpe
ratio of 0.7 on a CV backtest. You go ahead and present only the result with
the higher Sharpe ratio, arguing that the WF backtest is historically accurate,
while the CV backtest is a scenario simulation, or an inferential exercise. Is this
selection bias?

12.4 Your strategy produces 100,000 forecasts over time. You would like to derive
the CPCV distribution of Sharpe ratios by generating 1,000 paths. What are the
possible combinations of parameters (N, k) that will allow you to achieve that?

12.5 You discover a strategy that achieves a Sharpe ratio of 1.5 in a WF backtest. You
write a paper explaining the theory that would justify such result, and submit

168 BACKTESTING THROUGH CROSS-VALIDATION

it to an academic journal. The editor replies that one referee has requested you
repeat your backtest using a CPCV method with N = 100 and k = 2, including
your code and full datasets. You follow these instructions, and the mean Sharpe
ratio is –1 with a standard deviation of 0.5. Furious, you do not reply, but instead
withdraw your submission, and resubmit in a different journal of higher impact
factor. After 6 months, your paper is accepted. You appease your conscience
thinking that, if the discovery is false, it is the journal’s fault for not having
requested a CPCV test. You think, “It cannot be unethical, since it is permitted,
and everybody does it.” What are the arguments, scientific or ethical, to justify
your actions?

REFERENCES

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk,
Vol. 15, No. 2 (Winter). Available at https://ssrn.com/abstract=1821643.

Bailey, D. and M. López de Prado (2014): “The deflated Sharpe ratio: Correcting for selection
bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No. 5,
pp. 94–107. Available at https://ssrn.com/abstract=2460551.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014): “Pseudo-mathematics and finan-
cial charlatanism: The effects of backtest overfitting on out-of-sample performance.” Notices
of the American Mathematical Society, Vol. 61, No. 5, pp. 458–471. Available at http://ssrn
.com/abstract=2308659.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017): “The probability of backtest overfit-
ting.” Journal of Computational Finance, Vol. 20, No. 4, pp. 39–70. Available at https://ssrn
.com/abstract=2326253.

let &hbox {char '046}https://ssrn.com/abstract=1821643
https://ssrn.com/abstract=1821643
let &hbox {char '046}https://ssrn.com/abstract=2460551.
https://ssrn.com/abstract=2460551.
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
https://ssrn.com/abstract=2326253
https://ssrn.com/abstract=2326253

CHAPTER 13

Backtesting on Synthetic Data

13.1 MOTIVATION

In this chapter we will study an alternative backtesting method, which uses his-
tory to generate a synthetic dataset with statistical characteristics estimated from the
observed data. This will allow us to backtest a strategy on a large number of unseen,
synthetic testing sets, hence reducing the likelihood that the strategy has been fit to
a particular set of datapoints.1 This is a very extensive subject, and in order to reach
some depth we will focus on the backtesting of trading rules.

13.2 TRADING RULES

Investment strategies can be defined as algorithms that postulate the existence of a
market inefficiency. Some strategies rely on econometric models to predict prices,
using macroeconomic variables such as GDP or inflation; other strategies use fun-
damental and accounting information to price securities, or search for arbitrage-like
opportunities in the pricing of derivatives products, etc. For instance, suppose that
financial intermediaries tend to sell off-the-run bonds two days before U.S. Treasury
auctions, in order to raise the cash needed for buying the new “paper.” One could
monetize on that knowledge by selling off-the-run bonds three days before auctions.
But how? Each investment strategy requires an implementation tactic, often referred
to as “trading rules.”

There are dozens of hedge fund styles, each running dozens of unique investment
strategies. While strategies can be very heterogeneous in nature, tactics are relatively
homogeneous. Trading rules provide the algorithm that must be followed to enter
and exit a position. For example, a position will be entered when the strategy’s signal

1 I would like to thank Professor Peter Carr (New York University) for his contributions to this chapter.

169

170 BACKTESTING ON SYNTHETIC DATA

reaches a certain value. Conditions for exiting a position are often defined through
thresholds for profit-taking and stop-losses. These entry and exit rules rely on param-
eters that are usually calibrated via historical simulations. This practice leads to the
problem of backtest overfitting, because these parameters target specific observations
in-sample, to the point that the investment strategy is so attached to the past that it
becomes unfit for the future.

An important clarification is that we are interested in the exit corridor conditions
that maximize performance. In other words, the position already exists, and the ques-
tion is how to exit it optimally. This is the dilemma often faced by execution traders,
and it should not be mistaken with the determination of entry and exit thresholds
for investing in a security. For a study of that alternative question, see, for example,
Bertram [2009].

Bailey et al. [2014, 2017] discuss the problem of backtest overfitting, and provide
methods to determine to what extent a simulated performance may be inflated due
to overfitting. While assessing the probability of backtest overfitting is a useful tool
to discard superfluous investment strategies, it would be better to avoid the risk of
overfitting, at least in the context of calibrating a trading rule. In theory this could be
accomplished by deriving the optimal parameters for the trading rule directly from
the stochastic process that generates the data, rather than engaging in historical sim-
ulations. This is the approach we take in this chapter. Using the entire historical sam-
ple, we will characterize the stochastic process that generates the observed stream
of returns, and derive the optimal values for the trading rule’s parameters without
requiring a historical simulation.

13.3 THE PROBLEM

Suppose an investment strategy S invests in i = 1,… I opportunities or bets. At each
opportunity i, S takes a position of mi units of security X, where mi ∈ (−∞,∞). The
transaction that entered such opportunity was priced at a value miPi,0, where Pi,0
is the average price per unit at which the mi securities were transacted. As other
market participants transact security X, we can mark-to-market (MtM) the value of
that opportunity i after t observed transactions as miPi,t. This represents the value of
opportunity i if it were liquidated at the price observed in the market after t trans-
actions. Accordingly, we can compute the MtM profit/loss of opportunity i after t
transactions as 𝜋i,t = mi(Pi,t − Pi,0).

A standard trading rule provides the logic for exiting opportunity i at t = Ti. This
occurs as soon as one of two conditions is verified:

�
𝜋i,Ti

≥ �̄�, where �̄� > 0 is the profit-taking threshold.
�
𝜋i,Ti

≤ 𝜋, where 𝜋 < 0 is the stop-loss threshold.

These thresholds are equivalent to the horizontal barriers we discussed in the con-
text of meta-labelling (Chapter 3). Because 𝜋 < �̄�, one and only one of the two exit
conditions can trigger the exit from opportunity i. Assuming that opportunity i can

THE PROBLEM 171

be exited at Ti, its final profit/loss is 𝜋i,Ti
. At the onset of each opportunity, the goal

is to realize an expected profit E0[𝜋i,Ti
] = mi(E0[Pi,Ti

] − Pi,0), where E0[Pi,Ti
] is the

forecasted price and Pi,0 is the entry level of opportunity i.

Definition 1: Trading Rule: A trading rule for strategy S is defined by the set of
parameters R := {𝜋, �̄�}.

One way to calibrate (by brute force) the trading rule is to:

1. Define a set of alternative values of R, Ω := {R}.

2. Simulate historically (backtest) the performance of S under alternative values
of R ∈ Ω.

3. Select the optimal R∗.

More formally:

R∗ = argmax
R∈Ω

{SRR}

SRR =
E[𝜋i,Ti

|R]

𝜎[𝜋i,Ti
|R]

(13.1)

where E [.] and 𝜎 [.] are respectively the expected value and standard deviation of
𝜋i,Ti

, conditional on trading rule R, over i = 1,… I. In other words, equation (13.1)
maximizes the Sharpe ratio of S on I opportunities over the space of alternative trading
rules R (see Bailey and López de Prado [2012] for a definition and analysis of the
Sharpe ratio). Because we count with two variables to maximize SRR over a sample
of size I, it is easy to overfit R. A trivial overfit occurs when a pair (𝜋, �̄�) targets a
few outliers. Bailey et al. [2017] provide a rigorous definition of backtest overfitting,
which can be applied to our study of trading rules as follows.

Definition 2: Overfit Trading Rule: R∗ is overfit if E

[
E
[
𝜋j,Tj

|||R∗
]

𝜎

[
𝜋j,Tj

|||R∗
]
]
<

MeΩ

[
E

[
E
[
𝜋j,Tj

|||R]
𝜎

[
𝜋j,Tj

|||R]
]]

, where j = I + 1,… J and MeΩ [.] is the median.

Intuitively, an optimal in-sample (IS, i ∈ [1, I]) trading rule R∗ is overfit when it
is expected to underperform the median of alternative trading rules R ∈ Ω out-of-
sample (OOS, j ∈ [I + 1, J]). This is essentially the same definition we used in chap-
ter 11 to derive PBO. Bailey et al. [2014] argue that it is hard not to overfit a backtest,
particularly when there are free variables able to target specific observations IS, or
the number of elements in Ω is large. A trading rule introduces such free variables,

172 BACKTESTING ON SYNTHETIC DATA

because R∗ can be determined independently from S. The outcome is that the backtest
profits from random noise IS, making R∗ unfit for OOS opportunities. Those same
authors show that overfitting leads to negative performance OOS when Δ𝜋i,t exhibits
serial dependence. While PBO provides a useful method to evaluate to what extent
a backtest has been overfit, it would be convenient to avoid this problem in the first
place.2 To that aim we dedicate the following section.

13.4 OUR FRAMEWORK

Until now we have not characterized the stochastic process from which observations
𝜋i,t are drawn. We are interested in finding an optimal trading rule (OTR) for those
scenarios where overfitting would be most damaging, such as when 𝜋i,t exhibits serial
correlation. In particular, suppose a discrete Ornstein-Uhlenbeck (O-U) process on
prices

Pi,t = (1 − 𝜑) E0[Pi,Ti
] + 𝜑Pi,t−1 + 𝜎𝜀i,t (13.2)

such that the random shocks are IID distributed 𝜀i,t ∼ N (0, 1). The seed value for
this process is Pi,0, the level targeted by opportunity i is E0[Pi,Ti

], and 𝜑 determines
the speed at which Pi,0 converges towards E0[Pi,Ti

]. Because 𝜋i,t = mi(Pi,t − Pi,0),
equation (13.2) implies that the performance of opportunity i is characterized by the
process

1
mi

𝜋i,t = (1 − 𝜑)E0[Pi,Ti
] − Pi,0 + 𝜑Pi,t−1 + 𝜎𝜀i,t (13.3)

From the proof to Proposition 4 in Bailey and López de Prado [2013], it can be
shown that the distribution of the process specified in equation (13.2) is Gaussian
with parameters

𝜋i,t ∼ N

[
mi

(
(1 − 𝜑) E0[Pi,Ti

]
t−1∑
j=0

𝜑
j − Pi,0

)
, m2

i 𝜎
2

t−1∑
j=0

𝜑
2j

]
(13.4)

and a necessary and sufficient condition for its stationarity is that𝜑 ∈ (−1, 1). Given a
set of input parameters {𝜎,𝜑} and initial conditions {Pi,0, E0[Pi,Ti

]} associated with
opportunity i, is there an OTR R∗ := (𝜋, �̄�)? Similarly, should strategy S predict a
profit target �̄�, can we compute the optimal stop-loss 𝜋 given the input values {𝜎,𝜑}?
If the answer to these questions is affirmative, no backtest would be needed in order
to determine R∗, thus avoiding the problem of overfitting the trading rule. In the next
section we will show how to answer these questions experimentally.

2 The strategy may still be the result of backtest overfitting, but at least the trading rule would not have
contributed to that problem.

NUMERICAL DETERMINATION OF OPTIMAL TRADING RULES 173

13.5 NUMERICAL DETERMINATION OF OPTIMAL TRADING RULES

In the previous section we used an O-U specification to characterize the stochastic
process generating the returns of strategy S. In this section we will present a pro-
cedure to numerically derive the OTR for any specification in general, and the O-U
specification in particular.

13.5.1 The Algorithm

The algorithm consists of five sequential steps.

Step 1: We estimate the input parameters {𝜎,𝜑}, by linearizing equation (13.2)
as:

Pi,t = E0[Pi,Ti
] + 𝜑(Pi,t−1 − E0[Pi,Ti

]) + 𝜉t (13.5)

We can then form vectors X and Y by sequencing opportunities:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0 − E0[P0,T0
]

P0,1 − E0[P0,T0
]

⋯
P0,T−1 − E0[P0,T0

]
⋯

PI,0 − E0[PI,TI
]

⋯
PI,T−1 − E0[PI,TI

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,1
P0,2
⋯

P0,T
⋯

PI,1
⋯

PI,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0[P0,T0
]

E0[P0,T0
]

⋯
E0[P0,T0

]
⋯

E0[PI,TI
]

⋯
E0[PI,TI

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.6)

Applying OLS on equation (13.5), we can estimate the original O-U parameters
as,

�̂� = cov [Y , X]
cov [X, X]

𝜉t = Y − Z − �̂�X (13.7)

�̂� =
√

cov[𝜉t, 𝜉t]

where cov [⋅, ⋅] is the covariance operator.

Step 2: We construct a mesh of stop-loss and profit-taking pairs, (𝜋, �̄�).

For example, a Cartesian product of 𝜋 = {− 1
2
𝜎,−𝜎,… ,−10𝜎} and �̄� =

{ 1
2
𝜎, 𝜎,… , 10𝜎} give us 20 × 20 nodes, each constituting an alternative trading

rule R ∈ Ω.

174 BACKTESTING ON SYNTHETIC DATA

Step 3: We generate a large number of paths (e.g., 100,000) for 𝜋i,t applying
our estimates {�̂�, �̂�}. As seed values, we use the observed initial conditions
{Pi,0, E0[Pi,Ti

]} associated with an opportunity i. Because a position cannot
be held for an unlimited period of time, we can impose a maximum holding
period (e.g., 100 observations) at which point the position is exited even though
𝜋 ≤ 𝜋i,100 ≤ �̄�. This maximum holding period is equivalent to the vertical bar
of the triple-barrier method (Chapter 3).3

Step 4: We apply the 100,000 paths generated in Step 3 on each node of the 20 ×
20 mesh (𝜋, �̄�) generated in Step 2. For each node, we apply the stop-loss and
profit-taking logic, giving us 100,000 values of 𝜋i,Ti

. Likewise, for each node
we compute the Sharpe ratio associated with that trading rule as described in
equation (13.1). See Bailey and López de Prado [2012] for a study of the con-
fidence interval of the Sharpe ratio estimator. This result can be used in three
different ways: Step 5a, Step 5b and Step 5c).

Step 5a: We determine the pair (𝜋, �̄�) within the mesh of trading rules that is
optimal, given the input parameters {�̂�, �̂�} and the observed initial conditions
{Pi,0, E0[Pi,Ti

]}.

Step 5b: If strategy S provides a profit target 𝜋i for a particular opportunity i, we
can use that information in conjunction with the results in Step 4 to determine
the optimal stop-loss, 𝜋i.

Step 5c: If the trader has a maximum stop-loss 𝜋i imposed by the fund’s man-
agement for opportunity i, we can use that information in conjunction with the
results in Step 4 to determine the optimal profit-taking 𝜋i within the range of
stop-losses [0,𝜋i].

Bailey and López de Prado [2013] prove that the half-life of the process in equation
(13.2) is 𝜏 = − log[2]

log[𝜑]
, with the requirement that 𝜑 ∈ (0, 1). From that result, we can

determine the value of 𝜑 associated with a certain half-life 𝜏 as 𝜑 = 2
−1∕

𝜏 .

13.5.2 Implementation

Snippet 13.1 provides an implementation in Python of the experiments conducted in
this chapter. Function main produces a Cartesian product of parameters (E0[Pi,Ti

], 𝜏),
which characterize the stochastic process from equation (13.5). Without loss of gen-
erality, in all simulations we have used 𝜎 = 1. Then, for each pair (E0[Pi,Ti

], 𝜏),
function batch computes the Sharpe ratios associated with various trading
rules.

3 The trading rule R could be characterized as a function of the three barriers, instead of the horizontal
ones. That change would have no impact on the procedure. It would merely add one more dimension
to the mesh (20 × 20 × 20). In this chapter we do not consider that setting, because it would make the
visualization of the method less intuitive.

NUMERICAL DETERMINATION OF OPTIMAL TRADING RULES 175

SNIPPET 13.1 PYTHON CODE FOR THE DETERMINATION OF
OPTIMAL TRADING RULES

import numpy as np
from random import gauss
from itertools import product
#———————————————————————————————————————
def main():

rPT=rSLm=np.linspace(0,10,21)
count=0
for prod_ in product([10,5,0,-5,-10],[5,10,25,50,100]):

count+=1
coeffs={'forecast':prod_[0],'hl':prod_[1],'sigma':1}
output=batch(coeffs,nIter=1e5,maxHP=100,rPT=rPT,rSLm=rSLm)

return output

Snippet 13.2 computes a 20 × 20 mesh of Sharpe ratios, one for each trading
rule (𝜋, �̄�), given a pair of parameters (E0[Pi,Ti

], 𝜏). There is a vertical barrier, as the
maximum holding period is set at 100 (maxHP=100). We have fixed Pi,0 = 0, since it
is the distance (Pi,t−1 − E0[Pi,Ti

]) in equation (13.5) that drives the convergence, not
particular absolute price levels. Once the first out of three barriers is touched, the exit
price is stored, and the next iteration starts. After all iterations are completed (1E5),
the Sharpe ratio can be computed for that pair (𝜋, �̄�), and the algorithm moves to the
next pair. When all pairs of trading rules have been processed, results are reported
back to main. This algorithm can be parallelized, similar to what we did for the triple-
barrier method in Chapter 3. We leave that task as an exercise.

SNIPPET 13.2 PYTHON CODE FOR THE DETERMINATION OF
OPTIMAL TRADING RULES

def batch(coeffs,nIter=1e5,maxHP=100,rPT=np.linspace(.5,10,20),
rSLm=np.linspace(.5,10,20),seed=0):
phi,output1=2**(-1./coeffs['hl']),[]
for comb_ in product(rPT,rSLm):

output2=[]
for iter_ in range(int(nIter)):

p,hp,count=seed,0,0
while True:

p=(1-phi)*coeffs['forecast']+phi*p+coeffs['sigma']*gauss(0,1)
cP=p-seed;hp+=1
if cP>comb_[0] or cP<-comb_[1] or hp>maxHP:

output2.append(cP)
break

176 BACKTESTING ON SYNTHETIC DATA

mean,std=np.mean(output2),np.std(output2)
print comb_[0],comb_[1],mean,std,mean/std
output1.append((comb_[0],comb_[1],mean,std,mean/std))

return output1

13.6 EXPERIMENTAL RESULTS

Table 13.1 lists the combinations analyzed in this study. Although different values
for these input parameters would render different numerical results, the combina-
tions applied allow us to analyze the most general cases. Column “Forecast” refers
to E0[Pi,Ti

]; column “Half-Life” refers to 𝜏; column “Sigma” refers to 𝜎; column
“maxHP” stands for maximum holding period.

In the following figures, we have plotted the non-annualized Sharpe ratios that
result from various combinations of profit-taking and stop-loss exit conditions. We
have omitted the negative sign in the y-axis (stop-losses) for simplicity. Sharpe ratios

TABLE 13.1 Input Parameter Combinations Used in the Simulations

Figure Forecast Half-Life Sigma maxHP

16.1 0 5 1 100
16.2 0 10 1 100
16.3 0 25 1 100
16.4 0 50 1 100
16.5 0 100 1 100
16.6 5 5 1 100
16.7 5 10 1 100
16.8 5 25 1 100
16.9 5 50 1 100
16.10 5 100 1 100
16.11 10 5 1 100
16.12 10 10 1 100
16.13 10 25 1 100
16.14 10 50 1 100
16.15 10 100 1 100
16.16 − 5 5 1 100
16.17 − 5 10 1 100
16.18 − 5 25 1 100
16.19 − 5 50 1 100
16.20 − 5 100 1 100
16.21 − 10 5 1 100
16.22 − 10 10 1 100
16.23 − 10 25 1 100
16.24 − 10 50 1 100
16.25 − 10 100 1 100

EXPERIMENTAL RESULTS 177

are represented in grayscale (lighter indicating better performance; darker indicat-
ing worse performance), in a format known as a heat-map. Performance (𝜋i,Ti

) is
computed per unit held (mi = 1), since other values of mi would simply re-scale per-
formance, with no impact on the Sharpe ratio. Transaction costs can be easily added,
but for educational purposes it is better to plot results without them, so that you can
appreciate the symmetry of the functions.

13.6.1 Cases with Zero Long-Run Equilibrium

Cases with zero long-run equilibrium are consistent with the business of market-
makers, who provide liquidity under the assumption that price deviations from current
levels will correct themselves over time. The smaller 𝜏, the smaller is the autoregres-

sive coefficient (𝜑 = 2
−1∕

𝜏). A small autoregressive coefficient in conjunction with
a zero expected profit has the effect that most of the pairs (𝜋i,𝜋i) deliver a zero
performance.

Figure 13.1 shows the heat-map for the parameter combination {E0[Pi,Ti
], 𝜏, 𝜎} =

{0, 5, 1}. The half-life is so small that performance is maximized in a narrow range of
combinations of small profit-taking with large stop-losses. In other words, the optimal
trading rule is to hold an inventory long enough until a small profit arises, even at the
expense of experiencing some 5-fold or 7-fold unrealized losses. Sharpe ratios are

Forecast=0 � H-L=5 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

3

2

1

0

–1

–2

–3

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.1 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {0, 5, 1}

178 BACKTESTING ON SYNTHETIC DATA

Forecast=0 � H-L=10 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.2 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {0, 10, 1}

high, reaching levels of around 3.2. This is in fact what many market-makers do in
practice, and is consistent with the “asymmetric payoff dilemma” described in Easley
et al. [2011]. The worst possible trading rule in this setting would be to combine a
short stop-loss with a large profit-taking threshold, a situation that market-makers
avoid in practice. Performance is closest to neutral in the diagonal of the mesh, where
profit-taking and stop-losses are symmetric. You should keep this result in mind when
labeling observations using the triple-barrier method (Chapter 3).

Figure 13.2 shows that, if we increase 𝜏 from 5 to 10, the areas of highest and
lowest performance spread over the mesh of pairs (𝜋, �̄�), while the Sharpe ratios
decrease. This is because, as the half-life increases, so does the magnitude of the

autoregressive coefficient (recall that 𝜑 = 2
−1∕

𝜏), thus bringing the process closer to
a random walk.

In Figure 13.3, 𝜏 = 25, which again spreads the areas of highest and lowest per-
formance while reducing the Sharpe ratio. Figure 13.4 (𝜏 = 50) and Figure 13.5
(𝜏 = 100) continue that progression. Eventually, as 𝜑 → 1, there are no recognizable
areas where performance can be maximized.

Calibrating a trading rule on a random walk through historical simulations would
lead to backtest overfitting, because one random combination of profit-taking and
stop-loss that happened to maximize Sharpe ratio would be selected. This is why
backtesting of synthetic data is so important: to avoid choosing a strategy because
some statistical fluke took place in the past (a single random path). Our procedure

EXPERIMENTAL RESULTS 179

0.4

0.2

0.0

–0.2

–0.4

10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

Forecast=0 ⏐ H-L=25 ⏐ Sigma=1

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.3 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {0, 25, 1}

Forecast=0 � H-L=50 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.20

0.15

0.10

0.05

0.00

–0.05

–0.10

–0.15

–0.20

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.4 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {0, 50, 1}

180 BACKTESTING ON SYNTHETIC DATA

Forecast=0 � H-L=100 � Sigma=1

10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.100

0.075

0.050

0.025

0.000

–0.025

–0.050

–0.075

–0.100

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.5 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {0, 100, 1}

prevents overfitting by recognizing that performance exhibits no consistent pattern,
indicating that there is no optimal trading rule.

13.6.2 Cases with Positive Long-Run Equilibrium

Cases with positive long-run equilibrium are consistent with the business of a
position-taker, such as a hedge-fund or asset manager. Figure 13.6 shows the results
for the parameter combination {E0[Pi,Ti

], 𝜏, 𝜎} = {5, 5, 1}. Because positions tend to
make money, the optimal profit-taking is higher than in the previous cases, centered
around 6, with stop-losses that range between 4 and 10. The region of the optimal
trading rule takes a characteristic rectangular shape, as a result of combining a wide
stop-loss range with a narrower profit-taking range. Performance is highest across all
experiments, with Sharpe ratios of around 12.

In Figure 13.7, we have increased the half-life from 𝜏 = 5 to 𝜏 = 10. Now the opti-
mal performance is achieved at a profit-taking centered around 5, with stop-losses that
range between 7 and 10. The range of optimal profit-taking is wider, while the range of
optimal stop-losses narrows, shaping the former rectangular area closer to a square.
Again, a larger half-life brings the process closer to a random walk, and therefore
performance is now relatively lower than before, with Sharpe ratios of around 9.

In Figure 13.8, we have made 𝜏 = 25. The optimal profit-taking is now centered
around 3, while the optimal stop-losses range between 9 and 10. The previous squared

EXPERIMENTAL RESULTS 181

Forecast=5 � H-L=5 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

12

10

8

6

4

2

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.6 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {5, 5, 1}

Forecast=5 � H-L=10 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

8

6

4

2

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.7 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {5, 10, 1}

182 BACKTESTING ON SYNTHETIC DATA

Forecast=5 � H-L=25 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

2.5

2.0

1.5

–1.0

–0.5

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.8 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {5, 25, 1}

area of optimal performance has given way to a semi-circle of small profit-taking with
large stop-loss thresholds. Again we see a deterioration of performance, with Sharpe
ratios of 2.7.

In Figure 13.9, the half-life is raised to 𝜏 = 50. As a result, the region of optimal
performance spreads, while Sharpe ratios continue to fall to 0.8. This is the same
effect we observed in the case of zero long-run equilibrium (Section 13.6.1), with
the difference that because now E0[Pi,Ti

] > 0, there is no symmetric area of worst
performance.

In Figure 13.10, we appreciate that 𝜏 = 100 leads to the natural conclusion of
the trend described above. The process is now so close to a random walk that the
maximum Sharpe ratio is a mere 0.32.

We can observe a similar pattern in Figures 13.11 through 13.15, where E0[Pi,Ti
] =

10 and 𝜏 is progressively increased from 5 to 10, 25, 50, and 100, respectively.

13.6.3 Cases with Negative Long-Run Equilibrium

A rational market participant would not initiate a position under the assumption that
a loss is the expected outcome. However, if a trader recognizes that losses are the
expected outcome of a pre-existing position, she still needs a strategy to stop-out that
position while minimizing such losses.

We have obtained Figure 13.16 as a result of applying parameters
{E0[Pi,Ti

], 𝜏, 𝜎} = {−5, 5, 1}. If we compare Figure 13.16 with Figure 13.6, it

EXPERIMENTAL RESULTS 183

Forecast=5 � H-L=50 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.9 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {5, 50, 1}

Forecast=5 � H-L=100 � Sigma=1

10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.10 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {5,100,1}

184 BACKTESTING ON SYNTHETIC DATA

Forecast=10 � H-L=5 � Sigma=1

10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.11 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {10, 5, 1}

Forecast=10 � H-L=10 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

18

16

14

12

10

8

6

4

2

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.12 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {10, 10, 1}

EXPERIMENTAL RESULTS 185

Forecast=10 � H-L=25 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

8

7

6

5

4

3

2

1

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.13 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {10, 25, 1}

Forecast=10 � H-L=50 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.14 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {10, 50, 1}

186 BACKTESTING ON SYNTHETIC DATA

Forecast=10 � H-L=100 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.6

0.5

0.4

0.3

0.2

0.1

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.15 Heat-map for {E0[Pi,Ti
], 𝜏,𝝈} = {10, 100, 1}

Forecast=–5 � H-L=5 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–2

–4

–6

–8

–10

–12

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.16 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−5, 5, 1}

EXPERIMENTAL RESULTS 187

appears as if one is a rotated complementary of the other. Figure 13.6 resembles a
rotated photographic negative of Figure 13.16. The reason is that the profit in Figure
13.6 is translated into a loss in Figure 13.16, and the loss in Figure 13.6 is translated
into a profit in Figure 13.16. One case is a reverse image of the other, just as a
gambler’s loss is the house’s gain.

As expected, Sharpe ratios are negative, with a worst performance region centered
around the stop-loss of 6, and profit-taking thresholds that range between 4 and 10.
Now the rectangular shape does not correspond to a region of best performance, but
to a region of worst performance, with Sharpe ratios of around −12.

In Figure 13.17, 𝜏 = 10, and now the proximity to a random walk plays in our
favor. The region of worst performance spreads out, and the rectangular area becomes
a square. Performance becomes less negative, with Sharpe ratios of about −9.

This familiar progression can be appreciated in Figures 13.18, 13.19, and 13.20,
as 𝜏 is raised to 25, 50, and 100. Again, as the process approaches a random walk,
performance flattens and optimizing the trading rule becomes a backtest-overfitting
exercise.

Figures 13.21 through 13.25 repeat the same process for E0[Pi,Ti
] = −10 and 𝜏

that is progressively increased from 5 to 10, 25, 50, and 100. The same pattern, a
rotated complementary to the case of positive long-run equilibrium, arises.

Forecast=–5 � H-L=10 � Sigma=1

10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–2

–4

–6

–8

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.17 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−5, 10, 1}

188 BACKTESTING ON SYNTHETIC DATA

Forecast=–5 � H-L=25 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–0.5

–1.0

–1.5

–2.0

–2.5

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.18 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−5, 25, 1}

Forecast=–5 � H-L=50 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.19 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−5, 50, 1}

EXPERIMENTAL RESULTS 189

Forecast=–5 � H-L=100 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–0.05

–0.10

–0.15

–0.20

–0.25

–0.30

–0.35

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.20 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−5, 100, 1}

Forecast=–10 � H-L=5 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–2.5

–5.0

–7.5

–10.0

–12.5

–15.0

–17.5

–20.0

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.21 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−10, 5, 1}

190 BACKTESTING ON SYNTHETIC DATA

Forecast=–10 � H-L=10 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–2

–4

–6

–8

–10

–12

–14

–16

–18

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.22 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−10, 10, 1}

Forecast=–10 � H-L=25 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–1

–2

–3

–4

–5

–6

–7

–8

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.23 Heat-map for {E0[Pi,Ti
], 𝜏,𝝈} = {−10, 25, 1}

EXPERIMENTAL RESULTS 191

Forecast=–10 � H-L=50 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

–1.6

–1.8

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.24 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−10, 50, 1}

Forecast=–10 � H-L=100 � Sigma=1
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

10
.09.
5

9.
0

8.
5

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

S
to

p-
Lo

ss

Profit-Taking

FIGURE 13.25 Heat-map for {E0[Pi,Ti
], 𝜏, 𝜎} = {−10, 100, 1}

192 BACKTESTING ON SYNTHETIC DATA

13.7 CONCLUSION

In this chapter we have shown how to determine experimentally the optimal trading
strategy associated with prices following a discrete O-U process. Because the deriva-
tion of such trading strategy is not the result of a historical simulation, our procedure
avoids the risks associated with overfitting the backtest to a single path. Instead, the
optimal trading rule is derived from the characteristics of the underlying stochastic
process that drives prices. The same approach can be applied to processes other than
O-U, and we have focused on this particular process only for educational purposes.

While we do not derive the closed-form solution to the optimal trading strategies
problem in this chapter, our experimental results seem to support the following OTR
conjecture:

Conjecture: Given a financial instrument’s price characterized by a discrete
O-U process, there is a unique optimal trading rule in terms of a combination
of profit-taking and stop-loss that maximizes the rule’s Sharpe ratio.

Given that these optimal trading rules can be derived numerically within a few
seconds, there is little practical incentive to obtain a closed-form solution. As it is
becoming more common in mathematical research, the experimental analysis of a
conjecture can help us achieve a goal even in the absence of a proof. It could take years
if not decades to prove the above conjecture, and yet all experiments conducted so
far confirm it empirically. Let me put it this way: The probability that this conjecture
is false is negligible relative to the probability that you will overfit your trading rule
by disregarding the conjecture. Hence, the rational course of action is to assume that
the conjecture is right, and determine the OTR through synthetic data. In the worst
case, the trading rule will be suboptimal, but still it will almost surely outperform an
overfit trading rule.

EXERCISES

13.1 Suppose you are an execution trader. A client calls you with an order to cover a
short position she entered at a price of 100. She gives you two exit conditions:
profit-taking at 90 and stop-loss at 105.

(a) Assuming the client believes the price follows an O-U process, are these
levels reasonable? For what parameters?

(b) Can you think of an alternative stochastic process under which these levels
make sense?

13.2 Fit the time series of dollar bars of E-mini S&P 500 futures to an O-U process.
Given those parameters:

(a) Produce a heat-map of Sharpe ratios for various profit-taking and stop-loss
levels.

(b) What is the OTR?

REFERENCES 193

13.3 Repeat exercise 2, this time on a time series of dollar bars of

(a) 10-year U.S. Treasure Notes futures

(b) WTI Crude Oil futures

(c) Are the results significantly different? Does this justify having execution
traders specialized by product?

13.4 Repeat exercise 2 after splitting the time series into two parts:

(a) The first time series ends on 3/15/2009.

(b) The second time series starts on 3/16/2009.

(c) Are the OTRs significantly different?

13.5 How long do you estimate it would take to derive OTRs on the 100 most liquid
futures contracts worldwide? Considering the results from exercise 4, how often
do you think you may have to re-calibrate the OTRs? Does it make sense to pre-
compute this data?

13.6 Parallelize Snippets 13.1 and 13.2 using the mpEngine module described in
Chapter 20.

REFERENCES

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk,
Vol. 15, No. 2, pp. 3–44. Available at http://ssrn.com/abstract=1821643.

Bailey, D. and M. López de Prado (2013): “Drawdown-based stop-outs and the triple penance rule.”
Journal of Risk, Vol. 18, No. 2, pp. 61–93. Available at http://ssrn.com/abstract=2201302.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014): “Pseudo-mathematics and finan-
cial charlatanism: The effects of backtest overfitting on out-of-sample performance.” Notices
of the American Mathematical Society, 61(5), pp. 458–471. Available at http://ssrn.com/
abstract=2308659.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017): “The probability of backtest over-
fitting.” Journal of Computational Finance, Vol. 20, No. 4, pp. 39–70. Available at http://ssrn
.com/abstract=2326253.

Bertram, W. (2009): “Analytic solutions for optimal statistical arbitrage trading.” Working paper.
Available at http://ssrn.com/abstract=1505073.

Easley, D., M. Lopez de Prado, and M. O’Hara (2011): “The exchange of flow-toxicity.” Journal of
Trading, Vol. 6, No. 2, pp. 8–13. Available at http://ssrn.com/abstract=1748633.

let &hbox {char '046}http://ssrn.com/abstract=1821643
http://ssrn.com/abstract=1821643
let &hbox {char '046}http://ssrn.com/abstract=2201302
http://ssrn.com/abstract=2201302
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2326253
http://ssrn.com/abstract=2326253
let &hbox {char '046}http://ssrn.com/abstract=1505073
http://ssrn.com/abstract=1505073
let &hbox {char '046}http://ssrn.com/abstract=1748633
http://ssrn.com/abstract=1748633

CHAPTER 14

Backtest Statistics

14.1 MOTIVATION

In the previous chapters, we have studied three backtesting paradigms: First, histor-
ical simulations (the walk-forward method, Chapters 11 and 12). Second, scenario
simulations (CV and CPCV methods, Chapter 12). Third, simulations on synthetic
data (Chapter 13). Regardless of the backtesting paradigm you choose, you need to
report the results according to a series of statistics that investors will use to compare
and judge your strategy against competitors. In this chapter we will discuss some
of the most commonly used performance evaluation statistics. Some of these statis-
tics are included in the Global Investment Performance Standards (GIPS),1 however a
comprehensive analysis of performance requires metrics specific to the ML strategies
under scrutiny.

14.2 TYPES OF BACKTEST STATISTICS

Backtest statistics comprise metrics used by investors to assess and compare various
investment strategies. They should help us uncover potentially problematic aspects of
the strategy, such as substantial asymmetric risks or low capacity. Overall, they can be
categorized into general characteristics, performance, runs/drawdowns, implementa-
tion shortfall, return/risk efficiency, classification scores, and attribution.

1 For further details, visit https://www.gipsstandards.org.

195

let &hbox {char '046}https://www.gipsstandards.org.
https://www.gipsstandards.org.

196 BACKTEST STATISTICS

14.3 GENERAL CHARACTERISTICS

The following statistics inform us about the general characteristics of the backtest:

� Time range: Time range specifies the start and end dates. The period used to
test the strategy should be sufficiently long to include a comprehensive number
of regimes (Bailey and López de Prado [2012]).

� Average AUM: This is the average dollar value of the assets under manage-
ment. For the purpose of computing this average, the dollar value of long and
short positions is considered to be a positive real number.

� Capacity: A strategy’s capacity can be measured as the highest AUM that deliv-
ers a target risk-adjusted performance. A minimum AUM is needed to ensure
proper bet sizing (Chapter 10) and risk diversification (Chapter 16). Beyond
that minimum AUM, performance will decay as AUM increases, due to higher
transaction costs and lower turnover.

� Leverage: Leverage measures the amount of borrowing needed to achieve the
reported performance. If leverage takes place, costs must be assigned to it. One
way to measure leverage is as the ratio of average dollar position size to average
AUM.

� Maximum dollar position size: Maximum dollar position size informs us
whether the strategy at times took dollar positions that greatly exceeded the
average AUM. In general we will prefer strategies that take maximum dollar
positions close to the average AUM, indicating that they do not rely on the
occurrence of extreme events (possibly outliers).

� Ratio of longs: The ratio of longs show what proportion of the bets involved
long positions. In long-short, market neutral strategies, ideally this value is close
to 0.5. If not, the strategy may have a position bias, or the backtested period may
be too short and unrepresentative of future market conditions.

� Frequency of bets: The frequency of bets is the number of bets per year in
the backtest. A sequence of positions on the same side is considered part of the
same bet. A bet ends when the position is flattened or flipped to the opposite
side. The number of bets is always smaller than the number of trades. A trade
count would overestimate the number of independent opportunities discovered
by the strategy.

� Average holding period: The average holding period is the average number of
days a bet is held. High-frequency strategies may hold a position for a fraction
of seconds, whereas low frequency strategies may hold a position for months
or even years. Short holding periods may limit the capacity of the strategy. The
holding period is related but different to the frequency of bets. For example,
a strategy may place bets on a monthly basis, around the release of nonfarm
payrolls data, where each bet is held for only a few minutes.

� Annualized turnover: Annualized turnover measures the ratio of the average
dollar amount traded per year to the average annual AUM. High turnover may
occur even with a low number of bets, as the strategy may require constant
tuning of the position. High turnover may also occur with a low number of

GENERAL CHARACTERISTICS 197

trades, if every trade involves flipping the position between maximum long and
maximum short.

� Correlation to underlying: This is the correlation between strategy returns
and the returns of the underlying investment universe. When the correlation is
significantly positive or negative, the strategy is essentially holding or short-
selling the investment universe, without adding much value.

Snippet 14.1 lists an algorithm that derives the timestamps of flattening or flipping
trades from a pandas series of target positions (tPos). This gives us the number of
bets that have taken place.

SNIPPET 14.1 DERIVING THE TIMING OF BETS FROM A SERIES
OF TARGET POSITIONS

A bet takes place between flat positions or position flips

df0=tPos[tPos==0].index
df1=tPos.shift(1);df1=df1[df1!=0].index
bets=df0.intersection(df1) # flattening

df0=tPos.iloc[1:]*tPos.iloc[:-1].values
bets=bets.union(df0[df0<0].index).sort_values() # tPos flips

if tPos.index[-1] not in bets:bets=bets.append(tPos.index[-1:]) # last bet

Snippet 14.2 illustrates the implementation of an algorithm that estimates the aver-
age holding period of a strategy, given a pandas series of target positions (tPos).

SNIPPET 14.2 IMPLEMENTATION OF A HOLDING PERIOD
ESTIMATOR

def getHoldingPeriod(tPos):

Derive avg holding period (in days) using avg entry time pairing algo

hp,tEntry=pd.DataFrame(columns=['dT','w']),0.
pDiff,tDiff=tPos.diff(),(tPos.index-tPos.index[0])/np.timedelta64(1,'D')
for i in xrange(1,tPos.shape[0]):

if pDiff.iloc[i]*tPos.iloc[i-1]>=0: # increased or unchanged

if tPos.iloc[i]!=0:
tEntry=(tEntry*tPos.iloc[i-1]+tDiff[i]*pDiff.iloc[i])/tPos.iloc[i]

else: # decreased

if tPos.iloc[i]*tPos.iloc[i-1]<0: # flip

hp.loc[tPos.index[i],['dT','w']]=(tDiff[i]-tEntry,abs(tPos.iloc[i-1]))
tEntry=tDiff[i] # reset entry time

else:

hp.loc[tPos.index[i],['dT','w']]=(tDiff[i]-tEntry,abs(pDiff.iloc[i]))
if hp['w'].sum()>0:hp=(hp['dT']*hp['w']).sum()/hp['w'].sum()
else:hp=np.nan
return hp

198 BACKTEST STATISTICS

14.4 PERFORMANCE

Performance statistics are dollar and returns numbers without risk adjustments. Some
useful performance measurements include:

� PnL: The total amount of dollars (or the equivalent in the currency of denom-
ination) generated over the entirety of the backtest, including liquidation costs
from the terminal position.

� PnL from long positions: The portion of the PnL dollars that was generated
exclusively by long positions. This is an interesting value for assessing the bias
of long-short, market neutral strategies.

� Annualized rate of return: The time-weighted average annual rate of total
return, including dividends, coupons, costs, etc.

� Hit ratio: The fraction of bets that resulted in a positive PnL.
� Average return from hits: The average return from bets that generated a profit.
� Average return from misses: The average return from bets that generated a

loss.

14.4.1 Time-Weighted Rate of Return

Total return is the rate of return from realized and unrealized gains and losses,
including accrued interest, paid coupons, and dividends for the measurement
period. GIPS rules calculate time-weighted rate of returns (TWRR), adjusted for
external cash flows (CFA Institute [2010]). Periodic and sub-periodic returns are
geometrically linked. For periods beginning on or after January 1, 2005, GIPS
rules mandate calculating portfolio returns that adjust for daily-weighted external
cash flows.

We can compute the TWRR by determining the value of the portfolio at the time
of each external cash flow.2 The TWRR for portfolio i between subperiods [t − 1, t]
is denoted ri,t, with equations

ri,t =
𝜋i,t

Ki,t

𝜋i,t =
J∑

j=1

[(ΔPj,t + Aj,t)𝜃i,j,t−1 + Δ𝜃i,j,t(Pj,t − Pj,t−1)]

Ki,t =
J∑

j=1

P̃j,t−1𝜃i,j,t−1 + max

{
0,

J∑
j=1

P̃j,tΔ𝜃i,j,t

}

2 External cash flows are assets (cash or investments) that enter or exit a portfolio. Dividend and interest
income payments, for example, are not considered external cash flows.

RUNS 199

where

�
𝜋i,t is the mark-to-market (MtM) profit or loss for portfolio i at time t.

� Ki,t is the market value of the assets under management by portfolio i through
subperiod t. The purpose of including the max {.} term is to fund additional
purchases (ramp-up).

� Aj,t is the interest accrued or dividend paid by one unit of instrument j at time t.
� Pj,t is the clean price of security j at time t.
�
𝜃i,j,t are the holdings of portfolio i on security j at time t.

� P̃j,t is the dirty price of security j at time t.
� Pj,t is the average transacted clean price of portfolio i on security j over subpe-

riod t.
� P̃j,t is the average transacted dirty price of portfolio i on security j over subperiod

t.

Cash inflows are assumed to occur at the beginning of the day, and cash outflows
are assumed to occur at the end of the day. These sub-period returns are then linked
geometrically as

𝜑i,T =
T∏

t=1

(1 + ri,t)

The variable 𝜑i,T can be understood as the performance of one dollar invested in
portfolio i over its entire life, t = 1,… , T . Finally, the annualized rate of return of
portfolio i is

Ri = (𝜑i,T)−yi − 1

where yi is the number of years elapsed between ri,1 and ri,T .

14.5 RUNS

Investment strategies rarely generate returns drawn from an IID process. In the
absence of this property, strategy returns series exhibit frequent runs. Runs are unin-
terrupted sequences of returns of the same sign. Consequently, runs increase down-
side risk, which needs to be evaluated with proper metrics.

14.5.1 Returns Concentration

Given a time series of returns from bets, {rt}t=1,…,T , we compute two weight series,
w− and w+:

r+ = {rt|rt ≥ 0}t=1,…,T

r− = {rt|rt < 0}t=1,…,T

200 BACKTEST STATISTICS

w+ =
⎧⎪⎨⎪⎩r+t

(∑
t

r+t

)−1⎫⎪⎬⎪⎭t=1,…,T

w− =
⎧⎪⎨⎪⎩r−t

(∑
t

r−t

)−1⎫⎪⎬⎪⎭t=1,…,T

Inspired by the Herfindahl-Hirschman Index (HHI), for ||w+|| > 1, where ||.|| is the
size of the vector, we define the concentration of positive returns as

h+ ≡

∑
t

(
w+

t

)2 − ||w+||−1

1 − ||w+||−1
=
⎛⎜⎜⎜⎝

E
[(

r+t
)2
]

E
[
r+t
]2

− 1

⎞⎟⎟⎟⎠
(||r+|| − 1

)−1

and the equivalent for concentration of negative returns, for ||w−|| > 1, as

h− ≡

∑
t

(
w−

t

)2 − ||w−||−1

1 − ||w−||−1
=
⎛⎜⎜⎜⎝

E
[(

r−t
)2
]

E
[
r−t
]2

− 1

⎞⎟⎟⎟⎠ (||r−|| − 1)−1

From Jensen’s inequality, we know that E[r+t]2 ≤ E[(r+t)2]. And because
E[(r+t)2]

E[r+t]2 ≤

||r+||, we deduce that E[r+t]2 ≤ E[(r+t)2] ≤ E[r+t]2||r+||, with an equivalent bound-
ary on negative bet returns. These definitions have a few interesting properties:

1. 0 ≤ h+ ≤ 1

2. h+ = 0 ⇔ w+
t = ||w+||−1,∀t (uniform returns)

3. h+ = 1 ⇔ ∃i|w+
i =

∑
t w+

t (only one non-zero return)

It is easy to derive a similar expression for the concentration of bets across months,
h [t]. Snippet 14.3 implements these concepts. Ideally, we are interested in strategies
where bets’ returns exhibit:

� high Sharpe ratio
� high number of bets per year, ||r+|| + ||r−|| = T
� high hit ratio (relatively low ||r−||)
� low h+ (no right fat-tail)
� low h− (no left fat-tail)
� low h [t] (bets are not concentrated in time)

RUNS 201

SNIPPET 14.3 ALGORITHM FOR DERIVING HHI
CONCENTRATION

rHHIPos=getHHI(ret[ret>=0]) # concentration of positive returns per bet
rHHINeg=getHHI(ret[ret<0]) # concentration of negative returns per bet
tHHI=getHHI(ret.groupby(pd.TimeGrouper(freq='M')).count()) # concentr. bets/month
#——
def getHHI(betRet):

if betRet.shape[0]<=2:return np.nan
wght=betRet/betRet.sum()
hhi=(wght**2).sum()
hhi=(hhi-betRet.shape[0]**-1)/(1.-betRet.shape[0]**-1)
return hhi

14.5.2 Drawdown and Time under Water

Intuitively, a drawdown (DD) is the maximum loss suffered by an investment between
two consecutive high-watermarks (HWMs). The time under water (TuW) is the time
elapsed between an HWM and the moment the PnL exceeds the previous maximum
PnL. These concepts are best understood by reading Snippet 14.4. This code derives
both DD and TuW series from either (1) the series of returns (dollars=False)
or; (2) the series of dollar performance (dollar=True). Figure 14.1 provides an
example of DD and TuW.

SNIPPET 14.4 DERIVING THE SEQUENCE OF DD AND TuW

def computeDD_TuW(series,dollars=False):
compute series of drawdowns and the time under water associated with them
df0=series.to_frame('pnl')
df0['hwm']=series.expanding().max()
df1=df0.groupby('hwm').min().reset_index()
df1.columns=['hwm','min']
df1.index=df0['hwm'].drop_duplicates(keep='first').index # time of hwm
df1=df1[df1['hwm']>df1['min']] # hwm followed by a drawdown
if dollars:dd=df1['hwm']-df1['min']
else:dd=1-df1['min']/df1['hwm']
tuw=((df1.index[1:]-df1.index[:-1])/np.timedelta64(1,'Y')).values# in years
tuw=pd.Series(tuw,index=df1.index[:-1])
return dd,tuw

14.5.3 Runs Statistics for Performance Evaluation

Some useful measurements of runs statistics include:

� HHI index on positive returns: This is getHHI(ret[ret>=0]) in
Snippet 14.3.

202 BACKTEST STATISTICS

FIGURE 14.1 Examples of drawdown (DD) and time under water + (TuW)

� HHI index on negative returns: This is getHHI(ret[ret<0]) in
Snippet 14.3.

� HHI index on time between bets: This is getHHI(ret.groupby
(pd.TimeGrouper (freq='M')).count()) in Snippet 14.3.

� 95-percentile DD: This is the 95th percentile of the DD series derived by
Snippet 14.4.

� 95-percentile TuW: This is the 95th percentile of the TuW series derived by
Snippet 14.4.

14.6 IMPLEMENTATION SHORTFALL

Investment strategies often fail due to wrong assumptions regarding execution costs.
Some important measurements of this include:

� Broker fees per turnover: These are the fees paid to the broker for turning the
portfolio over, including exchange fees.

� Average slippage per turnover: These are execution costs, excluding broker
fees, involved in one portfolio turnover. For example, it includes the loss caused
by buying a security at a fill-price higher than the mid-price at the moment the
order was sent to the execution broker.

� Dollar performance per turnover: This is the ratio between dollar per-
formance (including brokerage fees and slippage costs) and total portfolio
turnovers. It signifies how much costlier the execution could become before
the strategy breaks even.

EFFICIENCY 203

� Return on execution costs: This is the ratio between dollar performance
(including brokerage fees and slippage costs) and total execution costs. It should
be a large multiple, to ensure that the strategy will survive worse-than-expected
execution.

14.7 EFFICIENCY

Until now, all performance statistics considered profits, losses, and costs. In this sec-
tion, we account for the risks involved in achieving those results.

14.7.1 The Sharpe Ratio

Suppose that a strategy’s excess returns (in excess of the risk-free rate), {rt}t=1,…,T ,
are IID Gaussian with mean 𝜇 and variance 𝜎

2. The Sharpe ratio (SR) is defined as

SR = 𝜇

𝜎

The purpose of SR is to evaluate the skills of a particular strategy or investor.
Since 𝜇, 𝜎 are usually unknown, the true SR value cannot be known for certain. The
inevitable consequence is that Sharpe ratio calculations may be the subject of sub-
stantial estimation errors.

14.7.2 The Probabilistic Sharpe Ratio

The probabilistic Sharpe ratio (PSR) provides an adjusted estimate of SR, by remov-
ing the inflationary effect caused by short series with skewed and/or fat-tailed returns.
Given a user-defined benchmark3 Sharpe ratio (SR∗) and an observed Sharpe ratio ŜR,
PSR estimates the probability that ŜR is greater than a hypothetical SR∗. Following
Bailey and López de Prado [2012], PSR can be estimated as

P̂SR
[
SR∗] = Z

⎡⎢⎢⎢⎢⎣
(

ŜR − SR∗
)√

T − 1√
1 − �̂�3ŜR +

�̂�4 − 1

4
ŜR

2

⎤⎥⎥⎥⎥⎦
where Z [.] is the cumulative distribution function (CDF) of the standard Normal dis-
tribution, T is the number of observed returns, �̂�3 is the skewness of the returns, and
�̂�4 is the kurtosis of the returns (�̂�4 = 3 for Gaussian returns). For a given SR∗, P̂SR
increases with greater ŜR (in the original sampling frequency, i.e. non-annualized), or
longer track records (T), or positively skewed returns (�̂�3), but it decreases with fatter

3 This could be set to a default value of zero (i.e., comparing against no investment skill).

204 BACKTEST STATISTICS

FIGURE 14.2 PSR as a function of skewness and sample length

tails (�̂�4). Figure 14.2 plots P̂SR for �̂�4 = 3, ŜR = 1.5 and SR∗ = 1.0 as a function of
�̂�3 and T.

14.7.3 The Deflated Sharpe Ratio

The deflated Sharpe ratio (DSR) is a PSR where the rejection threshold is adjusted to
reflect the multiplicity of trials. Following Bailey and López de Prado [2014], DSR
can be estimated as P̂SR [SR∗], where the benchmark Sharpe ratio, SR∗, is no longer
user-defined. Instead, SR∗ is estimated as

SR∗ =
√

V
[{

ŜRn

}](
(1 − 𝛾) Z−1

[
1 − 1

N

]
+ 𝛾Z−1

[
1 − 1

N
e−1

])
where V[{ŜRn}] is the variance across the trials’ estimated SR, N is the number
of independent trials, Z [.] is the CDF of the standard Normal distribution, 𝛾 is the
Euler-Mascheroni constant, and n = 1,… , N. Figure 14.3 plots SR∗ as a function of
V[{ŜRn}] and N.

The rationale behind DSR is the following: Given a set of SR estimates, {ŜRn},
its expected maximum is greater than zero, even if the true SR is zero. Under the
null hypothesis that the actual Sharpe ratio is zero, H0 : SR = 0, we know that the
expected maximum ŜR can be estimated as the SR∗. Indeed, SR∗ increases quickly
as more independent trials are attempted (N), or the trials involve a greater variance
(V[{ŜRn}]). From this knowledge we derive the third law of backtesting.

EFFICIENCY 205

FIGURE 14.3 SR∗ as a function of V[{ŜRn}] and N

SNIPPET 14.5 MARCOS’ THIRD LAW OF BACKTESTING. MOST
DISCOVERIES IN FINANCE ARE FALSE BECAUSE OF ITS
VIOLATION

“Every backtest result must be reported in conjunction with all the trials
involved in its production. Absent that information, it is impossible to assess
the backtest’s ‘false discovery’ probability.”

—Marcos López de Prado
Advances in Financial Machine Learning (2018)

14.7.4 Efficiency Statistics

Useful efficiency statistics include:

� Annualized Sharpe ratio: This is the SR value, annualized by a factor
√

a,
where a is the average number of returns observed per year. This common annu-
alization method relies on the assumption that returns are IID.

� Information ratio: This is the SR equivalent of a portfolio that measures its per-
formance relative to a benchmark. It is the annualized ratio between the average
excess return and the tracking error. The excess return is measured as the portfo-
lio’s return in excess of the benchmark’s return. The tracking error is estimated
as the standard deviation of the excess returns.

� Probabilistic Sharpe ratio: PSR corrects SR for inflationary effects caused
by non-Normal returns or track record length. It should exceed 0.95, for the

206 BACKTEST STATISTICS

standard significance level of 5%. It can be computed on absolute or relative
returns.

� Deflated Sharpe ratio: DSR corrects SR for inflationary effects caused by
non-Normal returns, track record length, and multiple testing/selection bias.
It should exceed 0.95, for the standard significance level of 5%. It can be com-
puted on absolute or relative returns.

14.8 CLASSIFICATION SCORES

In the context of meta-labeling strategies (Chapter 3, Section 3.6), it is useful to
understand the performance of the ML overlay algorithm in isolation. Remember that
the primary algorithm identifies opportunities, and the secondary (overlay) algorithm
decides whether to pursue them or pass. A few useful statistics include:

� Accuracy: Accuracy is the fraction of opportunities correctly labeled by the
overlay algorithm,

accuracy = TP + TN
TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and FN is the number of false negatives.

� Precision: Precision is the fraction of true positives among the predicted
positives,

precision = TP
TP + FP

� Recall: Recall is the fraction of true positives among the positives,

recall = TP
TP + FN

� F1: Accuracy may not be an adequate classification score for meta-labeling
applications. Suppose that, after you apply meta-labeling, there are many more
negative cases (label ‘0’) than positive cases (label ‘1’). Under that scenario, a
classifier that predicts every case to be negative will achieve high accuracy, even
though recall=0 and precision is undefined. The F1 score corrects for that flaw,
by assessing the classifier in terms of the (equally weighted) harmonic mean of
precision and recall,

F1 = 2
precision ⋅ recall

precision + recall

As a side note, consider the unusual scenario where, after applying meta-
labeling, there are many more positive cases than negative cases. A classi-
fier that predicts all cases to be positive will achieve TN=0 and FN=0, hence
accuracy=precision and recall=1. Accuracy will be high, and F1 will not be
smaller than accuracy, even though the classifier is not able to discriminate
between the observed samples. One solution would be to switch the definitions

ATTRIBUTION 207

of positive and negative cases, so that negative cases are predominant, and then
score with F1.

� Negative log-loss: Negative log-loss was introduced in Chapter 9, Section 9.4,
in the context of hyper-parameter tuning. Please refer to that section for details.
The key conceptual difference between accuracy and negative log-loss is that
negative log-loss takes into account not only whether our predictions were cor-
rect or not, but the probability of those predictions as well.

See Chapter 3, Section 3.7 for a visual representation of precision, recall, and
accuracy. Table 14.1 characterizes the four degenerate cases of binary classification.
As you can see, the F1 score is not defined in two of those cases. For this reason,
when Scikit-learn is asked to compute F1 on a sample with no observed 1s or with
no predicted 1s, it will print a warning (UndefinedMetricWarning), and set the F1
value to 0.

TABLE 14.1 The Four Degenerate Cases of Binary Classification

Condition Collapse Accuracy Precision Recall F1

Observed all 1s TN=FP=0 =recall 1 [0,1] [0,1]
Observed all 0s TP=FN=0 [0,1] 0 NaN NaN
Predicted all 1s TN=FN=0 =precision [0,1] 1 [0,1]
Predicted all 0s TP=FP=0 [0,1] NaN 0 NaN

When all observed values are positive (label ‘1’), there are no true negatives or
false positives, thus precision is 1, recall is a positive real number between 0 and 1
(inclusive), and accuracy equals recall. Then, F1 = 2 recall

1+recall
≥ recall.

When all predicted values are positive (label ‘1’), there are no true negatives or
false negatives, thus precision is a positive real number between 0 and 1 (inclusive),
recall is 1, and accuracy equals precision. Then, F1 = 2 precision

1+precision
≥ precision.

14.9 ATTRIBUTION

The purpose of performance attribution is to decompose the PnL in terms of risk
classes. For example, a corporate bond portfolio manager typically wants to under-
stand how much of its performance comes from his exposure to the following risks
classes: duration, credit, liquidity, economic sector, currency, sovereign, issuer, etc.
Did his duration bets pay off? What credit segments does he excel at? Or should he
focus on his issuer selection skills?

These risks are not orthogonal, so there is always an overlap between them. For
example, highly liquid bonds tend to have short durations and high credit rating, and
are normally issued by large entities with large amounts outstanding, in U.S. dollars.
As a result, the sum of the attributed PnLs will not match the total PnL, but at least we
will be able to compute the Sharpe ratio (or information ratio) per risk class. Perhaps
the most popular example of this approach is Barra’s multi-factor method. See Barra
[1998, 2013] and Zhang and Rachev [2004] for details.

208 BACKTEST STATISTICS

Of equal interest is to attribute PnL across categories within each class. For exam-
ple, the duration class could be split between short duration (less than 5 years),
medium duration (between 5 and 10 years), and long duration (in excess of 10 years).
This PnL attribution can be accomplished as follows: First, to avoid the overlapping
problem we referred to earlier, we need to make sure that each member of the invest-
ment universe belongs to one and only one category of each risk class at any point in
time. In other words, for each risk class, we split the entire investment universe into
disjoint partitions. Second, for each risk class, we form one index per risk category.
For example, we will compute the performance of an index of short duration bonds,
another index of medium duration bonds, and another index of long duration bonds.
The weightings for each index are the re-scaled weights of our investment portfolio,
so that each index’s weightings add up to one. Third, we repeat the second step, but
this time we form those risk category indices using the weights from the investment
universe (e.g., Markit iBoxx Investment Grade), again re-scaled so that each index’s
weightings add up to one. Fourth, we compute the performance metrics we discussed
earlier in the chapter on each of these indices’ returns and excess returns. For the sake
of clarity, in this context the excess return of a short duration index is the return using
(re-scaled) portfolio weightings (step 2) minus the return using (re-scaled) universe
weightings (step 3).

EXERCISES

14.1 A strategy exhibits a high turnover, high leverage, and high number of bets, with
a short holding period, low return on execution costs, and a high Sharpe ratio.
Is it likely to have large capacity? What kind of strategy do you think it is?

14.2 On the dollar bars dataset for E-mini S&P 500 futures, compute

(a) HHI index on positive returns.

(b) HHI index on negative returns.

(c) HHI index on time between bars.

(d) The 95-percentile DD.

(e) The 95-percentile TuW.

(f) Annualized average return.

(g) Average returns from hits (positive returns).

(h) Average return from misses (negative returns).

(i) Annualized SR.

(j) Information ratio, where the benchmark is the risk-free rate.

(k) PSR.

(l) DSR, where we assume there were 100 trials, and the variance of the trials’
SR was 0.5.

14.3 Consider a strategy that is long one futures contract on even years, and is short
one futures contract on odd years.

(a) Repeat the calculations from exercise 2.

(b) What is the correlation to the underlying?

BIBLIOGRAPHY 209

14.4 The results from a 2-year backtest are that monthly returns have a mean of 3.6%,
and a standard deviation of 0.079%.

(a) What is the SR?

(b) What is the annualized SR?

14.5 Following on exercise 1:

(a) The returns have a skewness of 0 and a kurtosis of 3. What is the PSR?

(b) The returns have a skewness of -2.448 and a kurtosis of 10.164. What is the
PSR?

14.6 What would be the PSR from 2.b, if the backtest had been for a length of 3 years?
14.7 A 5-year backtest has an annualized SR of 2.5, computed on daily returns. The

skewness is -3 and the kurtosis is 10.

(a) What is the PSR?

(b) In order to find that best result, 100 trials were conducted. The variance of
the Sharpe ratios on those trials is 0.5. What is the DSR?

REFERENCES

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk,
Vol. 15, No. 2, pp. 3–44.

Bailey, D. and M. López de Prado (2014): “The deflated Sharpe ratio: Correcting for selection
bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No. 5.
Available at https://ssrn.com/abstract=2460551.

Barra (1998): Risk Model Handbook: U.S. Equities, 1st ed. Barra. Available at http://www
.alacra.com/alacra/help/barra_handbook_US.pdf.

Barra (2013): MSCI BARRA Factor Indexes Methodology, 1st ed. MSCI Barra. Avail-
able at https://www.msci.com/eqb/methodology/meth_docs/MSCI_Barra_Factor%20Indices_
Methodology_Nov13.pdf.

CFA Institute (2010): “Global investment performance standards.” CFA Institute, Vol. 2010, No. 4,
February. Available at https://www.gipsstandards.org/.

Zhang, Y. and S. Rachev (2004): “Risk attribution and portfolio performance measurement—
An overview.” Working paper, University of California, Santa Barbara. Available at http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.7169.

BIBLIOGRAPHY

American Statistical Society (1999): “Ethical guidelines for statistical practice.” Available at
http://www.amstat.org/committees/ethics/index.html.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014): “Pseudo-mathematics and finan-
cial charlatanism: The effects of backtest overfitting on out-of-sample performance.” Notices
of the American Mathematical Society, Vol. 61, No. 5. Available at http://ssrn.com/abstract=
2308659.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2017): “The probability of backtest over-
fitting.” Journal of Computational Finance, Vol. 20, No. 4, pp. 39–70. Available at http://ssrn.
com/abstract=2326253.

Bailey, D. and M. López de Prado (2012): “Balanced baskets: A new approach to trading and hedging
risks.” Journal of Investment Strategies (Risk Journals), Vol. 1, No. 4, pp. 21–62.

Beddall, M. and K. Land (2013): “The hypothetical performance of CTAs.” Working paper, Winton
Capital Management.

let &hbox {char '046}https://ssrn.com/abstract=2460551
https://ssrn.com/abstract=2460551
http://www.alacra.com/alacra/help/barra_handbook_US.pdf
http://www.alacra.com/alacra/help/barra_handbook_US.pdf
let &hbox {char '046}https://www.msci.com/eqb/methodology/meth_docs/MSCI_Barra_Factor%20Indices_Methodology_Nov13.pdf
let &hbox {char '046}https://www.msci.com/eqb/methodology/meth_docs/MSCI_Barra_Factor%20Indices_Methodology_Nov13.pdf
https://www.msci.com/eqb/methodology/meth_docs/MSCI_Barra_Factor%20Indices_Methodology_Nov13.pdf
https://www.msci.com/eqb/methodology/meth_docs/MSCI_Barra_Factor%20Indices_Methodology_Nov13.pdf
let &hbox {char '046}https://www.gipsstandards.org/.
https://www.gipsstandards.org/.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.7169
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.7169
let &hbox {char '046}http://www.amstat.org/committees/ethics/index.html
http://www.amstat.org/committees/ethics/index.html
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2326253
http://ssrn.com/abstract=2326253

210 BACKTEST STATISTICS

Benjamini, Y. and Y. Hochberg (1995): “Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing.” Journal of the Royal Statistical Society, Series B (Method-
ological), Vol. 57, No. 1, pp. 289–300.

Bennet, C., A. Baird, M. Miller, and G. Wolford (2010): “Neural correlates of interspecies perspec-
tive taking in the post-mortem Atlantic salmon: An argument for proper multiple comparisons
correction.” Journal of Serendipitous and Unexpected Results, Vol. 1, No. 1, pp. 1–5.

Bruss, F. (1984): “A unified approach to a class of best choice problems with an unknown number
of options.” Annals of Probability, Vol. 12, No. 3, pp. 882–891.

Dmitrienko, A., A.C. Tamhane, and F. Bretz (2010): Multiple Testing Problems in Pharmaceutical
Statistics, 1st ed. CRC Press.

Dudoit, S. and M.J. van der Laan (2008): Multiple Testing Procedures with Applications to
Genomics, 1st ed. Springer.

Fisher, R.A. (1915): “Frequency distribution of the values of the correlation coefficient in samples of
an indefinitely large population.” Biometrika (Biometrika Trust), Vol. 10, No. 4, pp. 507–521.

Hand, D. J. (2014): The Improbability Principle, 1st ed. Scientific American/Farrar, Straus and
Giroux.

Harvey, C., Y. Liu, and H. Zhu (2013): “. . . And the cross-section of expected returns.” Working
paper, Duke University. Available at http://ssrn.com/abstract=2249314.

Harvey, C. and Y. Liu (2014): “Backtesting.” Working paper, Duke University. Available at
http://ssrn.com/abstract=2345489.

Hochberg Y. and A. Tamhane (1987): Multiple Comparison Procedures, 1st ed. John Wiley and
Sons.

Holm, S. (1979): “A simple sequentially rejective multiple test procedure.” Scandinavian Journal
of Statistics, Vol. 6, pp. 65–70.

Ioannidis, J.P.A. (2005): “Why most published research findings are false.” PloS Medicine, Vol. 2,
No. 8, pp. 696–701.

Ingersoll, J., M. Spiegel, W. Goetzmann, and I. Welch (2007): “Portfolio performance manipulation
and manipulation-proof performance measures.” Review of Financial Studies, Vol. 20, No. 5,
pp. 1504–1546.

Lo, A. (2002): “The statistics of Sharpe ratios.” Financial Analysts Journal, Vol. 58, No. 4
(July/August), pp. 36–52.

López de Prado M., and A. Peijan (2004): “Measuring loss potential of hedge fund strategies.”
Journal of Alternative Investments, Vol. 7, No. 1 (Summer), pp. 7–31. Available at http://ssrn
.com/abstract=641702.

Mertens, E. (2002): “Variance of the IID estimator in Lo (2002).” Working paper, University of
Basel.

Roulston, M. and D. Hand (2013): “Blinded by optimism.” Working paper, Winton Capital Man-
agement.

Schorfheide, F. and K. Wolpin (2012): “On the use of holdout samples for model selection.” Amer-
ican Economic Review, Vol. 102, No. 3, pp. 477–481.

Sharpe, W. (1966): “Mutual fund performance.” Journal of Business, Vol. 39, No. 1, pp. 119–138.
Sharpe, W. (1975): “Adjusting for risk in portfolio performance measurement.” Journal of Portfolio

Management, Vol. 1, No. 2 (Winter), pp. 29–34.
Sharpe, W. (1994): “The Sharpe ratio.” Journal of Portfolio Management, Vol. 21, No. 1 (Fall), pp.

49–58.
Studený M. and Vejnarová J. (1999): “The multiinformation function as a tool for measuring stochas-

tic dependence,” in M. I. Jordan, ed., Learning in Graphical Models. MIT Press, pp. 261–296.
Wasserstein R., and Lazar N. (2016) “The ASA’s statement on p-values: Context, process, and

purpose.” American Statistician, Vol. 70, No. 2, pp. 129–133. DOI: 10.1080/00031305.2016.
1154108.

Watanabe S. (1960): “Information theoretical analysis of multivariate correlation.” IBM Journal of
Research and Development, Vol. 4, pp. 66–82.

let &hbox {char '046}http://ssrn.com/abstract=2249314
http://ssrn.com/abstract=2249314
let &hbox {char '046}http://ssrn.com/abstract=2345489
http://ssrn.com/abstract=2345489
http://ssrn.com/abstract=641702
http://ssrn.com/abstract=641702

CHAPTER 15

Understanding Strategy Risk

15.1 MOTIVATION

As we saw in Chapters 3 and 13, investment strategies are often implemented in terms
of positions held until one of two conditions are met: (1) a condition to exit the posi-
tion with profits (profit-taking), or (2) a condition to exit the position with losses (stop-
loss). Even when a strategy does not explicitly declare a stop-loss, there is always
an implicit stop-loss limit, at which the investor can no longer finance her position
(margin call) or bear the pain caused by an increasing unrealized loss. Because most
strategies have (implicitly or explicitly) these two exit conditions, it makes sense to
model the distribution of outcomes through a binomial process. This in turn will help
us understand what combinations of betting frequency, odds, and payouts are uneco-
nomic. The goal of this chapter is to help you evaluate when a strategy is vulnerable
to small changes in any of these variables.

15.2 SYMMETRIC PAYOUTS

Consider a strategy that produces n IID bets per year, where the outcome Xi of a
bet i ∈ [1, n] is a profit 𝜋 > 0 with probability P[Xi = 𝜋] = p, and a loss −𝜋 with
probability P[Xi = −𝜋] = 1 − p. You can think of p as the precision of a binary
classifier where a positive means betting on an opportunity, and a negative means
passing on an opportunity: True positives are rewarded, false positives are pun-
ished, and negatives (whether true or false) have no payout. Since the betting out-
comes {Xi}i=1,…,n are independent, we will compute the expected moments per
bet. The expected profit from one bet is E[Xi] = 𝜋p + (−𝜋)(1 − p) = 𝜋(2p − 1). The
variance is V[Xi] = E[X2

i] − E[Xi]
2, where E[X2

i] = 𝜋
2p + (−𝜋)2(1 − p) = 𝜋

2, thus

211

212 UNDERSTANDING STRATEGY RISK

V[Xi] = 𝜋
2 − 𝜋

2(2p − 1)2 = 𝜋
2[1 − (2p − 1)2] = 4𝜋2p(1 − p). For n IID bets per

year, the annualized Sharpe ratio (𝜃) is

𝜃[p, n] =
nE[Xi]√
nV[Xi]

=
2p − 1

2
√

p(1 − p)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

t−value of p
under H0 : p = 1

2

√
n

Note how 𝜋 cancels out of the above equation, because the payouts are symmet-
ric. Just as in the Gaussian case, 𝜃[p, n] can be understood as a re-scaled t-value.
This illustrates the point that, even for a small p >

1
2
, the Sharpe ratio can be made

high for a sufficiently large n. This is the economic basis for high-frequency trading,
where p can be barely above .5, and the key to a successful business is to increase
n. The Sharpe ratio is a function of precision rather than accuracy, because passing
on an opportunity (a negative) is not rewarded or punished directly (although too
many negatives may lead to a small n, which will depress the Sharpe ratio toward
zero).

For example, for p = .55, 2p−1

2
√

p(1−p)
= 0.1005, and achieving an annualized Sharpe

ratio of 2 requires 396 bets per year. Snippet 15.1 verifies this result experimen-
tally. Figure 15.1 plots the Sharpe ratio as a function of precision, for various betting
frequencies.

2.0 n=0
n=25
n=50
n=75
n=100

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600

FIGURE 15.1 The relation between precision (x-axis) and sharpe ratio (y-axis) for various bet frequen-
cies (n)

ASYMMETRIC PAYOUTS 213

SNIPPET 15.1 TARGETING A SHARPE RATIO AS A FUNCTION OF
THE NUMBER OF BETS

out,p=[],.55
for i in xrange(1000000):

rnd=np.random.binomial(n=1,p=p)
x=(1 if rnd==1 else -1)
out.append(x)

print np.mean(out),np.std(out),np.mean(out)/np.std(out)

Solving for 0 ≤ p ≤ 1, we obtain −4p2 + 4p − n
𝜃

2+n
= 0, with solution

p = 1
2

(
1 +

√
1 − n

𝜃
2 + n

)
This equation makes explicit the trade-off between precision (p) and frequency

(n) for a given Sharpe ratio (𝜃). For example, a strategy that only produces weekly
bets (n = 52) will need a fairly high precision of p = 0.6336 to deliver an annualized
Sharpe of 2.

15.3 ASYMMETRIC PAYOUTS

Consider a strategy that produces n IID bets per year, where the outcome Xi
of a bet i ∈ [1, n] is 𝜋+ with probability P[Xi = 𝜋+] = p, and an outcome 𝜋−,
𝜋− < 𝜋+ occurs with probability P[Xi = 𝜋−] = 1 − p. The expected profit from
one bet is E[Xi] = p𝜋+ + (1 − p)𝜋− = (𝜋+ − 𝜋−)p + 𝜋−. The variance is V[Xi] =
E[X2

i] − E[Xi]
2, where E[X2

i] = p𝜋2
+ + (1 − p)𝜋2

− = (𝜋2
+ − 𝜋

2
−)p + 𝜋

2
−, thus V[Xi] =

(𝜋+ − 𝜋−)2p(1 − p). For n IID bets per year, the annualized Sharpe ratio (𝜃) is

𝜃[p, n,𝜋−,𝜋+] =
nE[Xi]√
nV[Xi]

=
(𝜋+ − 𝜋−)p + 𝜋−

(𝜋+ − 𝜋−)
√

p(1 − p)

√
n

And for 𝜋− = −𝜋+ we can see that this equation reduces to the symmetric

case: 𝜃[p, n,−𝜋+,𝜋+] = 2𝜋+p+𝜋+
2𝜋+

√
p(1−p)

√
n = 2p−1

2
√

p(1−p)

√
n = 𝜃[p, n]. For example, for

n = 260,𝜋− = −.01,𝜋+ = .005, p = .7, we get 𝜃 = 1.173.
Finally, we can solve the previous equation for 0 ≤ p ≤ 1, to obtain

p = −b +
√

b2 − 4ac
2a

214 UNDERSTANDING STRATEGY RISK

where:

� a = (n + 𝜃
2)(𝜋+ − 𝜋−)2

� b = [2n𝜋− − 𝜃
2(𝜋+ − 𝜋−)]

(
𝜋+ − 𝜋−

)
� c = n𝜋2

−

As a side note, Snippet 15.2 verifies these symbolic operations using SymPy Live:
http://live.sympy.org/.

SNIPPET 15.2 USING THE SymPy LIBRARY FOR SYMBOLIC
OPERATIONS

>>> from sympy import *
>>> init_printing(use_unicode=False,wrap_line=False,no_global=True)
>>> p,u,d=symbols('p u d')
>>> m2=p*u**2+(1-p)*d**2
>>> m1=p*u+(1-p)*d
>>> v=m2-m1**2
>>> factor(v)

The above equation answers the following question: Given a trading rule charac-
terized by parameters {𝜋−,𝜋+, n}, what is the precision rate p required to achieve a
Sharpe ratio of 𝜃∗? For example, for n = 260,𝜋− = −.01,𝜋+ = .005, in order to get
𝜃 = 2 we require a p = .72. Thanks to the large number of bets, a very small change
in p (from p = .7 to p = .72) has propelled the Sharpe ratio from 𝜃 = 1.173 to 𝜃 = 2.
On the other hand, this also tells us that the strategy is vulnerable to small changes in
p. Snippet 15.3 implements the derivation of the implied precision. Figure 15.2 dis-
plays the implied precision as a function of n and 𝜋−, where 𝜋+ = 0.1 and 𝜃

∗ = 1.5.
As 𝜋− becomes more negative for a given n, a higher p is required to achieve 𝜃

∗ for
a given 𝜋+. As n becomes smaller for a given 𝜋−, a higher p is required to achieve 𝜃∗

for a given 𝜋+.

SNIPPET 15.3 COMPUTING THE IMPLIED PRECISION

def binHR(sl,pt,freq,tSR):
’’’
Given a trading rule characterized by the parameters {sl,pt,freq},
what's the min precision p required to achieve a Sharpe ratio tSR?
1) Inputs
sl: stop loss threshold
pt: profit taking threshold
freq: number of bets per year

let &hbox {char '046}http://live.sympy.org/
http://live.sympy.org/

ASYMMETRIC PAYOUTS 215

FIGURE 15.2 Heat-map of the implied precision as a function of n and 𝜋−, with 𝜋+ = 0.1 and 𝜃
∗ = 1.5

tSR: target annual Sharpe ratio
2) Output
p: the min precision rate p required to achieve tSR
’’’
a=(freq+tSR**2)*(pt-sl)**2
b=(2*freq*sl-tSR**2*(pt-sl))*(pt-sl)
c=freq*sl**2
p=(-b+(b**2–4*a*c)**.5)/(2.*a)
return p

Snippet 15.4 solves 𝜃[p, n,𝜋−,𝜋+] for the implied betting frequency, n. Figure 15.3
plots the implied frequency as a function of p and 𝜋−, where 𝜋+ = 0.1 and 𝜃

∗ = 1.5.
As 𝜋− becomes more negative for a given p, a higher n is required to achieve 𝜃

∗ for
a given 𝜋+. As p becomes smaller for a given 𝜋−, a higher n is required to achieve 𝜃∗

for a given 𝜋+.

SNIPPET 15.4 COMPUTING THE IMPLIED BETTING FREQUENCY

def binFreq(sl,pt,p,tSR):
’’’
Given a trading rule characterized by the parameters {sl,pt,freq},
what's the number of bets/year needed to achieve a Sharpe ratio
tSR with precision rate p?
Note: Equation with radicals, check for extraneous solution.

216 UNDERSTANDING STRATEGY RISK

FIGURE 15.3 Implied frequency as a function of p and, with = 0.1 and = 1.5

1) Inputs
sl: stop loss threshold
pt: profit taking threshold
p: precision rate p
tSR: target annual Sharpe ratio
2) Output
freq: number of bets per year needed
’’’
freq=(tSR*(pt-sl))**2*p*(1-p)/((pt-sl)*p+sl)**2 # possible extraneous
if not np.isclose(binSR(sl,pt,freq,p),tSR):return
return freq

15.4 THE PROBABILITY OF STRATEGY FAILURE

In the example above, parameters 𝜋− = −.01,𝜋+ = .005 are set by the portfolio man-
ager, and passed to the traders with the execution orders. Parameter n = 260 is also set
by the portfolio manager, as she decides what constitutes an opportunity worth bet-
ting on. The two parameters that are not under the control of the portfolio manager
are p (determined by the market) and 𝜃

∗ (the objective set by the investor). Because
p is unknown, we can model it as a random variable, with expected value E [p]. Let
us define p

𝜃
∗ as the value of p below which the strategy will underperform a target

Sharpe ratio 𝜃
∗, that is, p

𝜃
∗ = max{p|𝜃 ≤ 𝜃

∗}. We can use the equations above (or the
binHR function) to conclude that for p

𝜃
∗=0 = 2

3
, p < p

𝜃
∗=0 ⇒ 𝜃 ≤ 0. This highlights

THE PROBABILITY OF STRATEGY FAILURE 217

the risks involved in this strategy, because a relatively small drop in p (from p = .7
to p = .67) will wipe out all the profits. The strategy is intrinsically risky, even if the
holdings are not. That is the critical difference we wish to establish with this chapter:
Strategy risk should not be confused with portfolio risk.

Most firms and investors compute, monitor, and report portfolio risk without real-
izing that this tells us nothing about the risk of the strategy itself. Strategy risk is not
the risk of the underlying portfolio, as computed by the chief risk officer. Strategy risk
is the risk that the investment strategy will fail to succeed over time, a question of far
greater relevance to the chief investment officer. The answer to the question “What
is the probability that this strategy will fail?” is equivalent to computing P[p < p

𝜃
∗].

The following algorithm will help us compute the strategy risk.

15.4.1 Algorithm

In this section we will describe a procedure to compute P[p < p
𝜃
∗]. Given a time

series of bet outcomes {𝜋t}t=1,…,T , first we estimate 𝜋− = E[{𝜋t|𝜋t ≤ 0}t=1,…,T], and
𝜋+ = E[{𝜋t|𝜋t > 0}t=1,…,T]. Alternatively, {𝜋−,𝜋+} could be derived from fitting a
mixture of two Gaussians, using the EF3M algorithm (López de Prado and Foreman
[2014]). Second, the annual frequency n is given by n = T

y
, where y is the number of

years elapsed between t = 1 and t = T . Third, we bootstrap the distribution of p as
follows:

1. For iterations i = 1,… , I:

(a) Draw ⌊nk⌋ samples from {𝜋t}t=1,…,T with replacement, where k is the num-
ber of years used by investors to assess a strategy (e.g., 2 years). We denote
the set of these drawn samples as {𝜋(i)

j }j=1,…,⌊nk⌋.
(b) Derive the observed precision from iteration i as pi =

1⌊nk⌋‖{𝜋(i)
j |𝜋(i)

j > 0}
j=1,…,⌊nk⌋‖.

2. Fit the PDF of p, denoted f [p], by applying a Kernel Density Estimator (KDE)
on {pi}i=1,…,I .

For a sufficiently large k, we can approximate this third step as f [p] ∼
N[p̄, p̄(1 − p̄)], where p̄ = E[p] = 1

T
‖{𝜋(i)

t |𝜋(i)
t > 0}t=1,…,T‖. Fourth, given a thresh-

old 𝜃
∗ (the Sharpe ratio that separates failure from success), derive p

𝜃
∗ (see Sec-

tion 15.4). Fifth, the strategy risk is computed as P[p < p
𝜃
∗] = ∫

p
𝜃
∗

−∞ f [p]dp.

15.4.2 Implementation

Snippet 15.5 lists one possible implementation of this algorithm. Typically we would
disregard strategies where P[p < p

𝜃
∗] > .05 as too risky, even if they invest in low

volatility instruments. The reason is that even if they do not lose much money, the
probability that they will fail to achieve their target is too high. In order to be deployed,
the strategy developer must find a way to reduce p

𝜃
∗ .

218 UNDERSTANDING STRATEGY RISK

SNIPPET 15.5 CALCULATING THE STRATEGY RISK IN PRACTICE

import numpy as np,scipy.stats as ss
#———————————————————————————————————————
def mixGaussians(mu1,mu2,sigma1,sigma2,prob1,nObs):

Random draws from a mixture of gaussians
ret1=np.random.normal(mu1,sigma1,size=int(nObs*prob1))
ret2=np.random.normal(mu2,sigma2,size=int(nObs)-ret1.shape[0])
ret=np.append(ret1,ret2,axis=0)
np.random.shuffle(ret)
return ret

#———————————————————————————————————————
def probFailure(ret,freq,tSR):

Derive probability that strategy may fail
rPos,rNeg=ret[ret>0].mean(),ret[ret<=0].mean()
p=ret[ret>0].shape[0]/float(ret.shape[0])
thresP=binHR(rNeg,rPos,freq,tSR)
risk=ss.norm.cdf(thresP,p,p*(1-p)) # approximation to bootstrap
return risk

#———————————————————————————————————————
def main():

#1) Parameters
mu1,mu2,sigma1,sigma2,prob1,nObs=.05,-.1,.05,.1,.75,2600
tSR,freq=2.,260
#2) Generate sample from mixture
ret=mixGaussians(mu1,mu2,sigma1,sigma2,prob1,nObs)
#3) Compute prob failure
probF=probFailure(ret,freq,tSR)
print 'Prob strategy will fail',probF
return

#———————————————————————————————————————
if __name__=='__main__':main()

This approach shares some similarities with PSR (see Chapter 14, and Bailey and
López de Prado [2012, 2014]). PSR derives the probability that the true Sharpe ratio
exceeds a given threshold under non-Gaussian returns. Similarly, the method intro-
duced in this chapter derives the strategy’s probability of failure based on asymmetric
binary outcomes. The key difference is that, while PSR does not distinguish between
parameters under or outside the portfolio manager’s control, the method discussed
here allows the portfolio manager to study the viability of the strategy subject to the
parameters under her control: {𝜋−,𝜋+, n}. This is useful when designing or assessing
the viability of a trading strategy.

EXERCISES 219

EXERCISES

15.1 A portfolio manager intends to launch a strategy that targets an annualized SR of
2. Bets have a precision rate of 60%, with weekly frequency. The exit conditions
are 2% for profit-taking, and –2% for stop-loss.

(a) Is this strategy viable?

(b) Ceteris paribus, what is the required precision rate that would make the
strategy profitable?

(c) For what betting frequency is the target achievable?

(d) For what profit-taking threshold is the target achievable?

(e) What would be an alternative stop-loss?

15.2 Following up on the strategy from exercise 1.

(a) What is the sensitivity of SR to a 1% change in each parameter?

(b) Given these sensitivities, and assuming that all parameters are equally hard
to improve, which one offers the lowest hanging fruit?

(c) Does changing any of the parameters in exercise 1 impact the others? For
example, does changing the betting frequency modify the precision rate,
etc.?

15.3 Suppose a strategy that generates monthly bets over two years, with returns
following a mixture of two Gaussian distributions. The first distribution has
a mean of –0.1 and a standard deviation of 0.12. The second distribution has
a mean of 0.06 and a standard deviation of 0.03. The probability that a draw
comes from the first distribution is 0.15.

(a) Following López de Prado and Peijan [2004] and López de Prado and Fore-
man [2014], derive the first four moments for the mixture’s returns.

(b) What is the annualized SR?

(c) Using those moments, compute PSR[1] (see Chapter 14). At a 95% confi-
dence level, would you discard this strategy?

15.4 Using Snippet 15.5, compute P[p < p
𝜃
∗=1] for the strategy described in exercise

3. At a significance level of 0.05, would you discard this strategy? Is this result
consistent with PSR[𝜃∗]?

15.5 In general, what result do you expect to be more accurate, PSR[𝜃∗] or
P[p < p

𝜃
∗=1]? How are these two methods complementary?

15.6 Re-examine the results from Chapter 13, in light of what you have learned in
this chapter.

(a) Does the asymmetry between profit taking and stop-loss thresholds in OTRs
make sense?

(b) What is the range of p implied by Figure 13.1, for a daily betting frequency?

(c) What is the range of p implied by Figure 13.5, for a weekly betting fre-
quency?

220 UNDERSTANDING STRATEGY RISK

REFERENCES

Bailey, D. and M. López de Prado (2014): “The deflated Sharpe ratio: Correcting for selection
bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No.
5. Available at https://ssrn.com/abstract=2460551.

Bailey, D. and M. López de Prado (2012): “The Sharpe ratio efficient frontier.” Journal of Risk, Vol.
15, No. 2, pp. 3–44. Available at https://ssrn.com/abstract=1821643.

López de Prado, M. and M. Foreman (2014): “A mixture of Gaussians approach to mathematical
portfolio oversight: The EF3M algorithm.” Quantitative Finance, Vol. 14, No. 5, pp. 913–930.
Available at https://ssrn.com/abstract=1931734.

López de Prado, M. and A. Peijan (2004): “Measuring loss potential of hedge fund strate-
gies.” Journal of Alternative Investments, Vol. 7, No. 1 (Summer), pp. 7–31. Available at
http://ssrn.com/abstract=641702.

let &hbox {char '046}https://ssrn.com/abstract=2460551
https://ssrn.com/abstract=2460551
let &hbox {char '046}https://ssrn.com/abstract=1821643.
https://ssrn.com/abstract=1821643.
let &hbox {char '046}https://ssrn.com/abstract=1931734
https://ssrn.com/abstract=1931734
let &hbox {char '046}http://ssrn.com/abstract=641702
http://ssrn.com/abstract=641702

CHAPTER 16

Machine Learning Asset Allocation

16.1 MOTIVATION

This chapter introduces the Hierarchical Risk Parity (HRP) approach.1 HRP portfo-
lios address three major concerns of quadratic optimizers in general and Markowitz’s
Critical Line Algorithm (CLA) in particular: instability, concentration, and under-
performance. HRP applies modern mathematics (graph theory and machine learning
techniques) to build a diversified portfolio based on the information contained in the
covariance matrix. However, unlike quadratic optimizers, HRP does not require the
invertibility of the covariance matrix. In fact, HRP can compute a portfolio on an
ill-degenerated or even a singular covariance matrix, an impossible feat for quadratic
optimizers. Monte Carlo experiments show that HRP delivers lower out-of-sample
variance than CLA, even though minimum-variance is CLA’s optimization objec-
tive. HRP produces less risky portfolios out-of-sample compared to traditional risk
parity methods. Historical analyses have also shown that HRP would have performed
better than standard approaches (Kolanovic et al. [2017], Raffinot [2017]). A practi-
cal application of HRP is to determine allocations across multiple machine learning
(ML) strategies.

16.2 THE PROBLEM WITH CONVEX PORTFOLIO OPTIMIZATION

Portfolio construction is perhaps the most recurrent financial problem. On a daily
basis, investment managers must build portfolios that incorporate their views and
forecasts on risks and returns. This is the primordial question that 24-year-old Harry
Markowitz attempted to answer more than six decades ago. His monumental insight

1 A short version of this chapter appeared in the Journal of Portfolio Management, Vo1. 42, No. 4,
pp. 59–69, Summer of 2016.

221

222 MACHINE LEARNING ASSET ALLOCATION

was to recognize that various levels of risk are associated with different optimal
portfolios in terms of risk-adjusted returns, hence the notion of “efficient frontier”
(Markowitz [1952]). One implication is that it is rarely optimal to allocate all assets
to the investments with highest expected returns. Instead, we should take into account
the correlations across alternative investments in order to build a diversified portfolio.

Before earning his PhD in 1954, Markowitz left academia to work for the RAND
Corporation, where he developed the Critical Line Algorithm. CLA is a quadratic
optimization procedure specifically designed for inequality-constrained portfolio
optimization problems. This algorithm is notable in that it guarantees that the exact
solution is found after a known number of iterations, and that it ingeniously circum-
vents the Karush-Kuhn-Tucker conditions (Kuhn and Tucker [1951]). A description
and open-source implementation of this algorithm can be found in Bailey and López
de Prado [2013]. Surprisingly, most financial practitioners still seem unaware of CLA,
as they often rely on generic-purpose quadratic programming methods that do not
guarantee the correct solution or a stopping time.

Despite of the brilliance of Markowitz’s theory, a number of practical problems
make CLA solutions somewhat unreliable. A major caveat is that small deviations in
the forecasted returns will cause CLA to produce very different portfolios (Michaud
[1998]). Given that returns can rarely be forecasted with sufficient accuracy, many
authors have opted for dropping them altogether and focusing on the covariance
matrix. This has led to risk-based asset allocation approaches, of which “risk parity” is
a prominent example (Jurczenko [2015]). Dropping the forecasts on returns improves
but does not prevent the instability issues. The reason is that quadratic programming
methods require the inversion of a positive-definite covariance matrix (all eigenvalues
must be positive). This inversion is prone to large errors when the covariance matrix
is numerically ill-conditioned, that is, when it has a high condition number (Bailey
and López de Prado [2012]).

16.3 MARKOWITZ’S CURSE

The condition number of a covariance, correlation (or normal, thus diagonalizable)
matrix is the absolute value of the ratio between its maximal and minimal (by moduli)
eigenvalues. Figure 16.1 plots the sorted eigenvalues of several correlation matrices,
where the condition number is the ratio between the first and last values of each line.
This number is lowest for a diagonal correlation matrix, which is its own inverse.
As we add correlated (multicollinear) investments, the condition number grows. At
some point, the condition number is so high that numerical errors make the inverse
matrix too unstable: A small change on any entry will lead to a very different inverse.
This is Markowitz’s curse: The more correlated the investments, the greater the need
for diversification, and yet the more likely we will receive unstable solutions. The
benefits of diversification often are more than offset by estimation errors.

Increasing the size of the covariance matrix will only make matters worse, as each
covariance coefficient is estimated with fewer degrees of freedom. In general, we need
at least 1

2
N(N + 1) independent and identically distributed (IID) observations in order

FROM GEOMETRIC TO HIERARCHICAL RELATIONSHIPS 223

5

4

3

2

1

0

0 10 20 30

Identity

Correlated

III-Conditioned

Singular

Variable #

E
ig

en
va

lu
es

40

FIGURE 16.1 Visualization of Markowitz’s curse
A diagonal correlation matrix has the lowest condition number. As we add correlated investments, the
maximum eigenvalue is greater and the minimum eigenvalue is lower. The condition number rises quickly,
leading to unstable inverse correlation matrices. At some point, the benefits of diversification are more than
offset by estimation errors.

to estimate a covariance matrix of size N that is not singular. For example, estimating
an invertible covariance matrix of size 50 requires, at the very least, 5 years of daily
IID data. As most investors know, correlation structures do not remain invariant over
such long periods by any reasonable confidence level. The severity of these challenges
is epitomized by the fact that even naı̈ve (equally-weighted) portfolios have been
shown to beat mean-variance and risk-based optimization out-of-sample (De Miguel
et al. [2009]).

16.4 FROM GEOMETRIC TO HIERARCHICAL RELATIONSHIPS

These instability concerns have received substantial attention in recent years, as
Kolm et al. [2014] have carefully documented. Most alternatives attempt to achieve
robustness by incorporating additional constraints (Clarke et al. [2002]), introducing
Bayesian priors (Black and Litterman [1992]), or improving the numerical stability
of the covariance matrix’s inverse (Ledoit and Wolf [2003]).

All the methods discussed so far, although published in recent years, are derived
from (very) classical areas of mathematics: geometry, linear algebra, and calculus. A
correlation matrix is a linear algebra object that measures the cosines of the angles

224 MACHINE LEARNING ASSET ALLOCATION

between any two vectors in the vector space formed by the returns series (see Calkin
and López de Prado [2014a, 2015b]). One reason for the instability of quadratic opti-
mizers is that the vector space is modelled as a complete (fully connected) graph,
where every node is a potential candidate to substitute another. In algorithmic terms,
inverting the matrix means evaluating the partial correlations across the complete
graph. Figure 16.2(a) visualizes the relationships implied by a covariance matrix of
50 × 50, that is 50 nodes and 1225 edges. This complex structure magnifies small
estimation errors, leading to incorrect solutions. Intuitively, it would be desirable to
drop unnecessary edges.

Let us consider for a moment the practical implications of such a topological struc-
ture. Suppose that an investor wishes to build a diversified portfolio of securities,
including hundreds of stocks, bonds, hedge funds, real estate, private placements,
etc. Some investments seem closer substitutes of one another, and other investments
seem complementary to one another. For example, stocks could be grouped in terms
of liquidity, size, industry, and region, where stocks within a given group compete
for allocations. In deciding the allocation to a large publicly traded U.S. financial
stock like J. P. Morgan, we will consider adding or reducing the allocation to another
large publicly traded U.S. bank like Goldman Sachs, rather than a small community
bank in Switzerland, or a real estate holding in the Caribbean. Yet, to a correlation
matrix, all investments are potential substitutes to one another. In other words, corre-
lation matrices lack the notion of hierarchy. This lack of hierarchical structure allows
weights to vary freely in unintended ways, which is a root cause of CLA’s instability.
Figure 16.2(b) visualizes a hierarchical structure known as a tree. A tree structure
introduces two desirable features: (1) It has only N − 1 edges to connect N nodes,
so the weights only rebalance among peers at various hierarchical levels; and (2) the
weights are distributed top-down, consistent with how many asset managers build
their portfolios (e.g., from asset class to sectors to individual securities). For these
reasons, hierarchical structures are better designed to give not only stable but also
intuitive results.

In this chapter we will study a new portfolio construction method that addresses
CLA’s pitfalls using modern mathematics: graph theory and machine learning. This
Hierarchical Risk Parity method uses the information contained in the covariance
matrix without requiring its inversion or positive-definitiveness. HRP can even com-
pute a portfolio based on a singular covariance matrix. The algorithm operates in
three stages: tree clustering, quasi-diagonalization, and recursive bisection.

16.4.1 Tree Clustering

Consider a TxN matrix of observations X, such as returns series of N variables over T
periods. We would like to combine these N column-vectors into a hierarchical struc-
ture of clusters, so that allocations can flow downstream through a tree graph.

First, we compute an NxN correlation matrix with entries 𝜌 = {𝜌i,j}i,j=1,…,N ,
where 𝜌i,j = 𝜌[Xi, Xj]. We define the distance measure d : (Xi, Xj) ⊂ B → ℝ ∈

[0, 1], di,j = d[Xi, Xj] =
√

1
2
(1 − 𝜌i,j), where B is the Cartesian product of items

FROM GEOMETRIC TO HIERARCHICAL RELATIONSHIPS 225

10
9

8

7

6

5

4

3

2

1

0

49

48

47

46

45

44

43

42

41
40

39383736
35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16
15

14 13 12 11

(a)

(b)

13
18

14

15

4

5
17

31

10

33

32

38

37

39

36

35 34

11

12
3

16 1

0
6

21
20

19

2

7

23 22

24

8

9

28

29

30

26

2527

FIGURE 16.2 The complete-graph (top) and the tree-graph (bottom) structures
Correlation matrices can be represented as complete graphs, which lack the notion of hierarchy: Each
investment is substitutable with another. In contrast, tree structures incorporate hierarchical relationships.

226 MACHINE LEARNING ASSET ALLOCATION

in {1,… , i,… , N}. This allows us to compute an NxN distance matrix D =
{di,j}i,j=1,…,N . Matrix D is a proper metric space (see Appendix 16.A.1 for a proof),
in the sense that d[x, y] ≥ 0 (non-negativity), d[x, y] = 0 ⇔ X = Y (coincidence),
d[x, y] = d[Y , X] (symmetry), and d[X, Z] ≤ d[x, y] + d[Y , Z] (sub-additivity). See
Example 16.1.

{𝜌i,j} =
⎡⎢⎢⎢⎣

1 .7 .2

.7 1 −.2

.2 −.2 1

⎤⎥⎥⎥⎦ → {di,j} =
⎡⎢⎢⎢⎣

0 .3873 .6325

.3873 0 .7746

.6325 .7746 0

⎤⎥⎥⎥⎦
Example 16.1 Encoding a correlation matrix 𝝆 as a distance matrix D

Second, we compute the Euclidean distance between any two column-vectors

of D, d̃ : (Di, Dj) ⊂ B → ℝ ∈ [0,
√

N], d̃i,j = d̃[Di, Dj] =
√∑N

n=1 (dn,i − dn,j)
2
. Note

the difference between distance metrics di,j and d̃i,j. Whereas di,j is defined on column-
vectors of X, d̃i,j is defined on column-vectors of D (a distance of distances). There-
fore, d̃ is a distance defined over the entire metric space D, as each d̃i,j is a function
of the entire correlation matrix (rather than a particular cross-correlation pair). See
Example 16.2.

{di,j} =
⎡⎢⎢⎢⎣

0 .3873 .6325

.3873 0 .7746

.6325 .7746 0

⎤⎥⎥⎥⎦ → {d̃i,j}i,j={1,2,3} =
⎡⎢⎢⎢⎣

0 .5659 .9747

.5659 0 1.1225

.9747 1.1225 0

⎤⎥⎥⎥⎦
Example 16.2 Euclidean distance of correlation distances

Third, we cluster together the pair of columns (i∗, j∗) such that (i∗, j∗) =
argmin(i, j)i≠j{d̃i,j}, and denote this cluster as u[1]. See Example 16.3.

{d̃i,j}i,j={1,2,3} =
⎡⎢⎢⎢⎣

0 .5659 .9747

.5659 0 1.1225

.9747 1.1225 0

⎤⎥⎥⎥⎦ → u[1] = (1, 2)

Example 16.3 Clustering items

Fourth, we need to define the distance between a newly formed cluster u[1] and the
single (unclustered) items, so that {d̃i,j} may be updated. In hierarchical clustering
analysis, this is known as the “linkage criterion.” For example, we can define the

FROM GEOMETRIC TO HIERARCHICAL RELATIONSHIPS 227

distance between an item i of d̃ and the new cluster u[1] as ḋi,u[1] = min[{d̃i,j}j∈u[1]
]

(the nearest point algorithm). See Example 16.4.

u[1] = (1, 2) → {ḋi,u[1]} =
⎡⎢⎢⎢⎣

min [0, .5659]

min [.5659, 0]

min [.9747, 1.1225]

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0

0

.9747

⎤⎥⎥⎥⎦
Example 16.4 Updating matrix {d̃i,j} with the new cluster u

Fifth, matrix {d̃i,j} is updated by appending ḋi,u[1] and dropping the clustered
columns and rows j ∈ u[1]. See Example 16.5.

{d̃i,j}i,j={1,2,3,4} =

⎡⎢⎢⎢⎢⎢⎣

0 .5659 .9747

.5659 0 1.1225

.9747 1.1225 0

0

0

.9747

0 0 .9747 0

⎤⎥⎥⎥⎥⎥⎦
{d̃i,j}i,j={3,4} =

[
0 .9747

.9747 0

]

Example 16.5 Updating matrix {d̃i,j} with the new cluster u

Sixth, applied recursively, steps 3, 4, and 5 allow us to append N − 1 such clusters
to matrix D, at which point the final cluster contains all of the original items, and the
clustering algorithm stops. See Example 16.6.

{d̃i,j}i,j={3,4} =

[
0 .9747

.9747 0

]
→ u[2] = (3, 4) → Stop

Example 16.6 Recursion in search of remaining clusters

Figure 16.3 displays the clusters formed at each iteration for this example, as well
as the distances d̃i∗,j∗ that triggered every cluster (third step). This procedure can be
applied to a wide array of distance metrics di,j, d̃i,j and ḋi,u, beyond those illustrated in
this chapter. See Rokach and Maimon [2005] for alternative metrics, the discussion
on Fiedler’s vector and Stewart’s spectral clustering method in Brualdi [2010], as

228 MACHINE LEARNING ASSET ALLOCATION

0.0
3 1 2

0.2

0.4

0.6

0.8

1.0

FIGURE 16.3 Sequence of cluster formation
A tree structure derived from our numerical example, here plotted as a dendogram. The y-axis measures
the distance between the two merging leaves.

well as algorithms in the scipy library.2 Snippet 16.1 provides an example of tree
clustering using scipy functionality.

SNIPPET 16.1 TREE CLUSTERING USING SCIPY FUNCTIONALITY

import scipy.cluster.hierarchy as sch
import numpy as np
import pandas as pd
cov,corr=x.cov(),x.corr()
dist=((1-corr)/2.)**.5 # distance matrix
link=sch.linkage(dist,'single') # linkage matrix

This stage allows us to define a linkage matrix as an (N − 1)x4 matrix with struc-
ture Y = {(ym,1, ym,2, ym,3, ym,4)}m=1,…,N−1 (i.e., with one 4-tuple per cluster). Items
(ym,1, ym,2) report the constituents. Item ym,3 reports the distance between ym,1 and

2 For additional metrics see:

http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.cluster.hierarchy.linkage.html

http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.cluster.hierarchy.linkage.html

FROM GEOMETRIC TO HIERARCHICAL RELATIONSHIPS 229

ym,2, that is ym,3 = d̃ym,1,ym,2
. Item ym,4 ≤ N reports the number of original items

included in cluster m.

16.4.2 Quasi-Diagonalization

This stage reorganizes the rows and columns of the covariance matrix, so that the
largest values lie along the diagonal. This quasi-diagonalization of the covariance
matrix (without requiring a change of basis) renders a useful property: Similar invest-
ments are placed together, and dissimilar investments are placed far apart (see Fig-
ures 16.5 and 16.6 for an example). The algorithm works as follows: We know that
each row of the linkage matrix merges two branches into one. We replace clusters
in (yN−1,1, yN−1,2) with their constituents recursively, until no clusters remain. These
replacements preserve the order of the clustering. The output is a sorted list of original
(unclustered) items. This logic is implemented in Snippet 16.2.

SNIPPET 16.2 QUASI-DIAGONALIZATION

def getQuasiDiag(link):
Sort clustered items by distance
link=link.astype(int)
sortIx=pd.Series([link[-1,0],link[-1,1]])
numItems=link[-1,3] # number of original items
while sortIx.max()>=numItems:

sortIx.index=range(0,sortIx.shape[0]*2,2) # make space
df0=sortIx[sortIx>=numItems] # find clusters
i=df0.index;j=df0.values-numItems
sortIx[i]=link[j,0] # item 1
df0=pd.Series(link[j,1],index=i+1)
sortIx=sortIx.append(df0) # item 2
sortIx=sortIx.sort_index() # re-sort
sortIx.index=range(sortIx.shape[0]) # re-index

return sortIx.tolist()

16.4.3 Recursive Bisection

Stage 2 has delivered a quasi-diagonal matrix. The inverse-variance allocation is opti-
mal for a diagonal covariance matrix (see Appendix 16.A.2 for a proof). We can take
advantage of these facts in two different ways: (1) bottom-up, to define the variance of
a contiguous subset as the variance of an inverse-variance allocation; or (2) top-down,
to split allocations between adjacent subsets in inverse proportion to their aggregated
variances. The following algorithm formalizes this idea:

1. The algorithm is initialized by:

(a) setting the list of items: L = {L0}, with L0 = {n}n=1,…,N

(b) assigning a unit weight to all items: wn = 1, ∀n = 1,… , N

230 MACHINE LEARNING ASSET ALLOCATION

2. If |Li| = 1, ∀Li ∈ L, then stop.

3. For each Li ∈ L such that |Li| > 1:

(a) bisect Li into two subsets, L(1)
i ∪ L(2)

i = Li, where |L(1)
i | = int[1

2
|Li|], and

the order is preserved

(b) define the variance of L(j)
i , j = 1, 2, as the quadratic form Ṽ (j)

i ≡

w̃(j)′

i V (j)
i w̃(j)

i , where V (j)
i is the covariance matrix between the constituents

of the L(j)
i bisection, and w̃(j)

i = diag[V (j)
i]−1 1

tr[diag[V(j)
i]

−1
]
, where diag[.] and

tr[.] are the diagonal and trace operators

(c) compute the split factor: 𝛼i = 1 −
Ṽ(1)

i

Ṽ(1)
i +V(2)

i

, so that 0 ≤ 𝛼i ≤ 1

(d) re-scale allocations wn by a factor of 𝛼i, ∀n ∈ L(1)
i

(e) re-scale allocations wn by a factor of (1 − 𝛼i), ∀n ∈ L(2)
i

4. Loop to step 2

Step 3b takes advantage of the quasi-diagonalization bottom-up, because it defines
the variance of the partition L(j)

i using inverse-variance weightings w̃(j)
i . Step 3c

takes advantage of the quasi-diagonalization top-down, because it splits the weight
in inverse proportion to the cluster’s variance. This algorithm guarantees that 0 ≤

wi ≤ 1, ∀i = 1,… , N, and
∑N

i=1 wi = 1, because at each iteration we are splitting the
weights received from higher hierarchical levels. Constraints can be easily introduced
in this stage, by replacing the equations in steps 3c, 3d, and 3e according to the user’s
preferences. Stage 3 is implemented in Snippet 16.3.

SNIPPET 16.3 RECURSIVE BISECTION

def getRecBipart(cov,sortIx):
Compute HRP alloc
w=pd.Series(1,index=sortIx)
cItems=[sortIx] # initialize all items in one cluster
while len(cItems)>0:

cItems=[i[j:k] for i in cItems for j,k in ((0,len(i)/2),\
(len(i)/2,len(i))) if len(i)>1] # bi-section

for i in xrange(0,len(cItems),2): # parse in pairs
cItems0=cItems[i] # cluster 1
cItems1=cItems[i+1] # cluster 2
cVar0=getClusterVar(cov,cItems0)
cVar1=getClusterVar(cov,cItems1)
alpha=1-cVar0/(cVar0+cVar1)
w[cItems0]*=alpha # weight 1
w[cItems1]*=1-alpha # weight 2

return w

A NUMERICAL EXAMPLE 231

This concludes a first description of the HRP algorithm, which solves the allo-
cation problem in best-case deterministic logarithmic time, T (n) =

(
log2 [n]

)
, and

worst-case deterministic linear time, T (n) = (n). Next, we will put to practice what
we have learned, and evaluate the method’s accuracy out-of-sample.

16.5 A NUMERICAL EXAMPLE

We begin by simulating a matrix of observations X, of order (10000x10). The cor-
relation matrix is visualized in Figure 16.4 as a heatmap. Figure 16.5 displays the
dendogram of the resulting clusters (stage 1). Figure 16.6 shows the same correlation
matrix, reorganized in blocks according to the identified clusters (stage 2). Appendix
16.A.3 provides the code used to generate this numerical example.

On this random data, we compute HRP’s allocations (stage 3), and compare them
to the allocations from two competing methodologies: (1) Quadratic optimization,
as represented by CLA’s minimum-variance portfolio (the only portfolio of the effi-
cient frontier that does not depend on returns’ means); and (2) traditional risk parity,
exemplified by the Inverse-Variance Portfolio (IVP). See Bailey and López de Prado
[2013] for a comprehensive implementation of CLA, and Appendix 16.A.2 for a

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 16.4 Heat-map of original covariance matrix
This correlation matrix has been computed using function generateData from snippet 16.4 (see Section
16.A.3). The last five columns are partially correlated to some of the first five series.

232 MACHINE LEARNING ASSET ALLOCATION

1.2

1.0

0.8

0.6

0.4

0.2

0.0
9 2 10 1 7 3 6 54 8

FIGURE 16.5 Dendogram of cluster formation
The clustering procedure has correctly identified that series 9 and 10 were perturbations of series 2, hence
(9, 2, 10) are clustered together. Similarly, 7 is a perturbation of 1, 6 is a perturbation of 3, and 8 is a
perturbation of 5. The only original item that was not perturbated is 4, and that is the one item for which
the clustering algorithm found no similarity.

derivation of IVP. We apply the standard constraints that 0 ≤ wi ≤ 1 (non-negativity),
∀i = 1,… , N, and

∑N
i=1 wi = 1 (full investment). Incidentally, the condition number

for the covariance matrix in this example is only 150.9324, not particularly high and
therefore not unfavorable to CLA.

From the allocations in Table 16.1, we can appreciate a few stylized features:
First, CLA concentrates 92.66% of the allocation on the top-5 holdings, while
HRP concentrates only 62.57%. Second, CLA assigns zero weight to 3 investments
(without the 0 ≤ wi constraint, the allocation would have been negative). Third,
HRP seems to find a compromise between CLA’s concentrated solution and tra-
ditional risk parity’s IVP allocation. The reader can use the code in Appendix
16.A.3 to verify that these findings generally hold for alternative random covariance
matrices.

What drives CLA’s extreme concentration is its goal of minimizing the portfolio’s
risk. And yet both portfolios have a very similar standard deviation (𝜎HRP = 0.4640,
𝜎CLA = 0.4486). So CLA has discarded half of the investment universe in favor of
a minor risk reduction. The reality of course is that CLA’s portfolio is deceitfully
diversified, because any distress situation affecting the top-5 allocations will have a
much greater negative impact on CLA’s than on HRP’s portfolio.

A NUMERICAL EXAMPLE 233

5

4

2

7

3

9

1

10

6

8

8 6 10 1 9 3 7 2 4 5

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 16.6 Clustered covariance matrix
Stage 2 quasi-diagonalizes the correlation matrix, in the sense that the largest values lie along the diagonal.
However, unlike PCA or similar procedures, HRP does not require a change of basis. HRP solves the
allocation problem robustly, while working with the original investments.

TABLE 16.1 A Comparison of Three Allocations

Weight # CLA HRP IVP

1 14.44% 7.00% 10.36%
2 19.93% 7.59% 10.28%
3 19.73% 10.84% 10.36%
4 19.87% 19.03% 10.25%
5 18.68% 9.72% 10.31%
6 0.00% 10.19% 9.74%
7 5.86% 6.62% 9.80%
8 1.49% 9.10% 9.65%
9 0.00% 7.12% 9.64%
10 0.00% 12.79% 9.61%

A characteristic outcome of the three methods studied: CLA concentrates weights on a few investments,
hence becoming exposed to idiosyncratic shocks. IVP evenly spreads weights through all investments,
ignoring the correlation structure. This makes it vulnerable to systemic shocks. HRP finds a compromise
between diversifying across all investments and diversifying across cluster, which makes it more resilient
against both types of shocks.

234 MACHINE LEARNING ASSET ALLOCATION

16.6 OUT-OF-SAMPLE MONTE CARLO SIMULATIONS

In our numerical example, CLA’s portfolio has lower risk than HRP’s in-sample.
However, the portfolio with minimum variance in-sample is not necessarily the one
with minimum variance out-of-sample. It would be all too easy for us to pick a partic-
ular historical dataset where HRP outperforms CLA and IVP (see Bailey and López
de Prado [2014], and recall our discussion of selection bias in Chapter 11). Instead, in
this section we follow the backtesting paradigm explained in Chapter 13, and evaluate
via Monte Carlo the performance out-of-sample of HRP against CLA’s minimum-
variance and traditional risk parity’s IVP allocations. This will also help us under-
stand what features make a method preferable to the rest, regardless of anecdotal
counter-examples.

First, we generate 10 series of random Gaussian returns (520 observations, equiv-
alent to 2 years of daily history), with 0 mean and an arbitrary standard deviation of
10%. Real prices exhibit frequent jumps (Merton [1976]) and returns are not cross-
sectionally independent, so we must add random shocks and a random correlation
structure to our generated data. Second, we compute HRP, CLA, and IVP portfolios
by looking back at 260 observations (a year of daily history). These portfolios are re-
estimated and rebalanced every 22 observations (equivalent to a monthly frequency).
Third, we compute the out-of-sample returns associated with those three portfolios.
This procedure is repeated 10,000 times.

All mean portfolio returns out-of-sample are essentially 0, as expected. The critical
difference comes from the variance of the out-of-sample portfolio returns: 𝜎2

CLA =
0.1157, 𝜎2

IVP = 0.0928, and 𝜎
2
HRP = 0.0671. Although CLA’s goal is to deliver the

lowest variance (that is the objective of its optimization program), its performance
happens to exhibit the highest variance out-of-sample, and 72.47% greater variance
than HRP’s. This experimental finding is consistent with the historical evidence in De
Miguel et al. [2009]. In other words, HRP would improve the out-of-sample Sharpe
ratio of a CLA strategy by about 31.3%, a rather significant boost. Assuming that the
covariance matrix is diagonal brings some stability to the IVP; however, its variance
is still 38.24% greater than HRP’s. This variance reduction out-of-sample is critically
important to risk parity investors, given their use of substantial leverage. See Bailey
et al. [2014] for a broader discussion of in-sample vs. out-of-sample performance.

The mathematical proof for HRP’s outperformance over Markowitz’s CLA and
traditional risk parity’s IVP is somewhat involved and beyond the scope of this chap-
ter. In intuitive terms, we can understand the above empirical results as follows:
Shocks affecting a specific investment penalize CLA’s concentration. Shocks involv-
ing several correlated investments penalize IVP’s ignorance of the correlation struc-
ture. HRP provides better protection against both common and idiosyncratic shocks
by finding a compromise between diversification across all investments and diversifi-
cation across clusters of investments at multiple hierarchical levels. Figure 16.7 plots
the time series of allocations for the first of the 10,000 runs.

Appendix 16.A.4 provides the Python code that implements the above study.
The reader can experiment with different parameter configurations and reach similar
conclusions. In particular, HRP’s out-of-sample outperformance becomes even

OUT-OF-SAMPLE MONTE CARLO SIMULATIONS 235

0.30

0.25

0.20

0.15

0.10

0.05

0.00
2 4 6 8 10 12

(b)

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
2 4 6 8 10 12

(a)

FIGURE 16.7 (a) Time series of allocations for IVP.
Between the first and second rebalance, one investment receives an idiosyncratic shock, which increases
its variance. IVP’s response is to reduce the allocation to that investment, and spread that former exposure
across all other investments. Between the fifth and sixth rebalance, two investments are affected by a com-
mon shock. IVP’s response is the same. As a result, allocations among the seven unaffected investments
grow over time, regardless of their correlation.
(b) Time series of allocations for HRP
HRP’s response to the idiosyncratic shock is to reduce the allocation to the affected investment, and use that
reduced amount to increase the allocation to a correlated investment that was unaffected. As a response to
the common shock, HRP reduces allocation to the affected investments and increases allocation to uncor-
related ones (with lower variance).
(c) Time series of allocations for CLA
CLA allocations respond erratically to idiosyncratic and common shocks. If we had taken into account
rebalancing costs, CLA’s performance would have been very negative.

236 MACHINE LEARNING ASSET ALLOCATION

0.30

0.25

0.20

0.15

0.10

0.05

0.00
2 4 6

(c)
8 10 12

FIGURE 16.7 (Continued)

more substantial for larger investment universes, or when more shocks are added,
or a stronger correlation structure is considered, or rebalancing costs are taken into
account. Each of these CLA rebalances incurs transaction costs that can accumulate
into prohibitive losses over time.

16.7 FURTHER RESEARCH

The methodology introduced in this chapter is flexible, scalable and admits multiple
variations of the same ideas. Using the code provided, readers can research and eval-
uate what HRP configurations work best for their particular problem. For example, at
stage 1 they can apply alternative definitions of di,j, d̃i,j and ḋi,u, or different clustering
algorithms, like biclustering; at stage 3, they can use different functions for w̃m and
𝛼, or alternative allocation constraints. Instead of carrying out a recursive bisection,
stage 3 could also split allocations top-down using the clusters from stage 1.

It is relatively straightforward to incorporate forecasted returns, Ledoit-Wolf
shrinkage, and Black-Litterman–style views to this hierarchical approach. In fact,
the inquisitive reader may have realized that, at its core, HRP is essentially a robust
procedure to avoid matrix inversions, and the same ideas underlying HRP can be
used to replace many econometric regression methods, notorious for their unstable
outputs (like VAR or VECM). Figure 16.8 displays (a) a large correlation matrix of
fixed income securities before and (b) after clustering, with over 2.1 million entries.
Traditional optimization or econometric methods fail to recognize the hierarchical
structure of financial Big Data, where the numerical instabilities defeat the benefits
of the analysis, resulting in unreliable and detrimental outcomes.

Kolanovic et al. [2017] conducted a lengthy study of HRP, concluding that “HRP
delivers superior risk-adjusted returns. Whilst both the HRP and the MV portfolios
deliver the highest returns, the HRP portfolios match with volatility targets much
better than MV portfolios. We also run simulation studies to confirm the robustness

FURTHER RESEARCH 237

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

(a)

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

(b)

FIGURE 16.8 Correlation matrix before and after clustering
The methodology described in this chapter can be applied to problems beyond optimization. For example,
a PCA analysis of a large fixed income universe suffers the same drawbacks we described for CLA. Small-
data techniques developed decades and centuries ago (factor models, regression analysis, econometrics)
fail to recognize the hierarchical nature of financial big data.

238 MACHINE LEARNING ASSET ALLOCATION

of our findings, in which HRP consistently deliver a superior performance over MV
and other risk-based strategies […] HRP portfolios are truly diversified with a higher
number of uncorrelated exposures, and less extreme weights and risk allocations.”

Raffinot [2017] concludes that “empirical results indicate that hierarchical cluster-
ing based portfolios are robust, truly diversified and achieve statistically better risk-
adjusted performances than commonly used portfolio optimization techniques.”

16.8 CONCLUSION

Exact analytical solutions can perform much worse than approximate ML solutions.
Although mathematically correct, quadratic optimizers in general, and Markowitz’s
CLA in particular, are known to deliver generally unreliable solutions due to their
instability, concentration, and underperformance. The root cause for these issues is
that quadratic optimizers require the inversion of a covariance matrix. Markowitz’s
curse is that the more correlated investments are, the greater is the need for a diversi-
fied portfolio, and yet the greater are that portfolio’s estimation errors.

In this chapter, we have exposed a major source of quadratic optimizers’ instabil-
ity: A matrix of size N is associated with a complete graph with 1

2
N(N − 1) edges.

With so many edges connecting the nodes of the graph, weights are allowed to rebal-
ance with complete freedom. This lack of hierarchical structure means that small
estimation errors will lead to entirely different solutions. HRP replaces the covariance
structure with a tree structure, accomplishing three goals: (1) Unlike traditional risk
parity methods, it fully utilizes the information contained in the covariance matrix,
(2) weights’ stability is recovered and (3) the solution is intuitive by construction.
The algorithm converges in deterministic logarithmic (best case) or linear (worst
case) time.

HRP is robust, visual, and flexible, allowing the user to introduce constraints or
manipulate the tree structure without compromising the algorithm’s search. These
properties are derived from the fact that HRP does not require covariance invertibil-
ity. Indeed, HRP can compute a portfolio on an ill-degenerated or even a singular
covariance matrix.

This chapter focuses on a portfolio construction application; however, the reader
will find other practical uses for making decisions under uncertainty, particularly in
the presence of a nearly singular covariance matrix: capital allocation to portfolio
managers, allocations across algorithmic strategies, bagging and boosting of machine
learning signals, forecasts from random forests, replacement to unstable econometric
models (VAR, VECM), etc.

Of course, quadratic optimizers like CLA produce the minimum-variance port-
folio in-sample (that is its objective function). Monte Carlo experiments show that
HRP delivers lower out-of-sample variance than CLA or traditional risk parity meth-
ods (IVP). Since Bridgewater pioneered risk parity in the 1990s, some of the largest
asset managers have launched funds that follow this approach, for combined assets in
excess of $500 billion. Given their extensive use of leverage, these funds should bene-
fit from adopting a more stable risk parity allocation method, thus achieving superior
risk-adjusted returns and lower rebalance costs.

INVERSE VARIANCE ALLOCATION 239

APPENDICES

16.A.1 CORRELATION-BASED METRIC

Consider two real-valued vectors X, Y of size T , and a correlation variable 𝜌[x, y], with
the only requirement that 𝜎[x, y] = 𝜌[x, y]𝜎[X]𝜎[Y], where 𝜎[x, y] is the covariance
between the two vectors, and 𝜎[.] is the standard deviation. Note that Pearson’s is not
the only correlation to satisfy these requirements.

Let us prove that d[x, y] =
√

1
2
(1 − 𝜌[x, y]) is a true metric. First, the Euclidean

distance between the two vectors is d[x, y] =
√∑T

t=1 (Xt − Yt)
2. Second, we z-

standardize those vectors as x = X−X̄
𝜎[X]

, y = Y−Ȳ
𝜎[Y]

. Consequently, 0 ≤ 𝜌[x, y] = 𝜌[x, y].
Third, we derive the Euclidean distance d[x, y] as,

d[x, y] =

√√√√ T∑
t=1

(xt − yt)
2 =

√√√√ T∑
t=1

x2
t +

T∑
t=1

y2
t − 2

T∑
t=1

xtyt

=
√

T + T − 2T𝜎[x, y] =

√√√√√√√2T

⎛⎜⎜⎜⎝1 − 𝜌[x, y]
⏟⏟⏟

=𝜌[x,y]

⎞⎟⎟⎟⎠ =
√

4Td[x, y]

In other words, the distance d[x, y] is a linear multiple of the Euclidean distance
between the vectors {X, Y} after z-standardization, hence it inherits the true-metric
properties of the Euclidean distance.

Similarly, we can prove that d[x, y] =
√

1 − |𝜌[x, y]| descends to a true metric on

the ℤ/2ℤ quotient. In order to do that, we redefine y = Y−Ȳ
𝜎[Y]

sgn [𝜌[x, y]], where sgn [.]
is the sign operator, so that 0 ≤ 𝜌[x, y] = |𝜌[x, y]|. Then,

d[x, y] =

√√√√√√√2T

⎛⎜⎜⎜⎝1 − 𝜌[x, y]
⏟⏟⏟

=|𝜌[x,y]|
⎞⎟⎟⎟⎠ =

√
2Td[x, y]

16.A.2 INVERSE VARIANCE ALLOCATION

Stage 3 (see Section 16.4.3) splits a weight in inverse proportion to the subset’s vari-
ance. We now prove that such allocation is optimal when the covariance matrix is
diagonal. Consider the standard quadratic optimization problem of size N,

min
𝜔

𝜔
′V𝜔

s.t. : 𝜔
′a = 1I

240 MACHINE LEARNING ASSET ALLOCATION

with solution 𝜔 = V−1a
a′V−1a

. For the characteristic vector a = 1N , the solution is the

minimum variance portfolio. If V is diagonal, 𝜔n =
V−1

n,n∑N
i=1 V−1

i,i

. In the particular case of

N = 2, 𝜔1 =
1

V1,1
1

V1,1
+ 1

V2,2

= 1 − V1,1

V1,1+V2,2
, which is how stage 3 splits a weight between

two bisections of a subset.

16.A.3 REPRODUCING THE NUMERICAL EXAMPLE

Snippet 16.4 can be used to reproduce our results and simulate additional numerical
examples. Function generateData produces a matrix of time series where a number
size0 of vectors are uncorrelated, and a number size1 of vectors are correlated.
The reader can change the np.random.seed in generateData to run alternative
examples and gain an intuition of how HRP works. Scipy’s function linkage can be
used to perform stage 1 (Section 16.4.1), function getQuasiDiag performs stage 2
(Section 16.4.2), and function getRecBipart carries out stage 3 (Section 16.4.3).

SNIPPET 16.4 FULL IMPLEMENTATION OF THE HRP ALGORITHM

import matplotlib.pyplot as mpl
import scipy.cluster.hierarchy as sch,random,numpy as np,pandas as pd
#———————————————————————————————————————
def getIVP(cov,**kargs):

Compute the inverse-variance portfolio
ivp=1./np.diag(cov)
ivp/=ivp.sum()
return ivp

#———————————————————————————————————————
def getClusterVar(cov,cItems):

Compute variance per cluster
cov_=cov.loc[cItems,cItems] # matrix slice
w_=getIVP(cov_).reshape(-1,1)
cVar=np.dot(np.dot(w_.T,cov_),w_)[0,0]
return cVar

#———————————————————————————————————————
def getQuasiDiag(link):

Sort clustered items by distance
link=link.astype(int)
sortIx=pd.Series([link[-1,0],link[-1,1]])
numItems=link[-1,3] # number of original items
while sortIx.max()>=numItems:

sortIx.index=range(0,sortIx.shape[0]*2,2) # make space
df0=sortIx[sortIx>=numItems] # find clusters
i=df0.index;j=df0.values-numItems
sortIx[i]=link[j,0] # item 1

REPRODUCING THE NUMERICAL EXAMPLE 241

df0=pd.Series(link[j,1],index=i+1)
sortIx=sortIx.append(df0) # item 2
sortIx=sortIx.sort_index() # re-sort
sortIx.index=range(sortIx.shape[0]) # re-index

return sortIx.tolist()
#———————————————————————————————————————
def getRecBipart(cov,sortIx):

Compute HRP alloc
w=pd.Series(1,index=sortIx)
cItems=[sortIx] # initialize all items in one cluster
while len(cItems)>0:

cItems=[i[j:k] for i in cItems for j,k in ((0,len(i)/2), \
(len(i)/2,len(i))) if len(i)>1] # bi-section

for i in xrange(0,len(cItems),2): # parse in pairs
cItems0=cItems[i] # cluster 1
cItems1=cItems[i+1] # cluster 2
cVar0=getClusterVar(cov,cItems0)
cVar1=getClusterVar(cov,cItems1)
alpha=1-cVar0/(cVar0+cVar1)
w[cItems0]*=alpha # weight 1
w[cItems1]*=1-alpha # weight 2

return w
#———————————————————————————————————————
def correlDist(corr):

A distance matrix based on correlation, where 0<=d[i,j]<=1
This is a proper distance metric
dist=((1-corr)/2.)**.5 # distance matrix
return dist

#———————————————————————————————————————
def plotCorrMatrix(path,corr,labels=None):

Heatmap of the correlation matrix
if labels is None:labels=[]
mpl.pcolor(corr)
mpl.colorbar()
mpl.yticks(np.arange(.5,corr.shape[0]+.5),labels)
mpl.xticks(np.arange(.5,corr.shape[0]+.5),labels)
mpl.savefig(path)
mpl.clf();mpl.close() # reset pylab
return

#———————————————————————————————————————
def generateData(nObs,size0,size1,sigma1):

Time series of correlated variables
#1) generating some uncorrelated data
np.random.seed(seed=12345);random.seed(12345)
x=np.random.normal(0,1,size=(nObs,size0)) # each row is a variable
#2) creating correlation between the variables
cols=[random.randint(0,size0–1) for i in xrange(size1)]
y=x[:,cols]+np.random.normal(0,sigma1,size=(nObs,len(cols)))
x=np.append(x,y,axis=1)

242 MACHINE LEARNING ASSET ALLOCATION

x=pd.DataFrame(x,columns=range(1,x.shape[1]+1))
return x,cols

#———————————————————————————————————————
def main():

#1) Generate correlated data
nObs,size0,size1,sigma1=10000,5,5,.25
x,cols=generateData(nObs,size0,size1,sigma1)
print [(j+1,size0+i) for i,j in enumerate(cols,1)]
cov,corr=x.cov(),x.corr()
#2) compute and plot correl matrix
plotCorrMatrix('HRP3_corr0.png',corr,labels=corr.columns)
#3) cluster
dist=correlDist(corr)
link=sch.linkage(dist,'single')
sortIx=getQuasiDiag(link)
sortIx=corr.index[sortIx].tolist() # recover labels
df0=corr.loc[sortIx,sortIx] # reorder
plotCorrMatrix('HRP3_corr1.png',df0,labels=df0.columns)
#4) Capital allocation
hrp=getRecBipart(cov,sortIx)
print hrp
return

#———————————————————————————————————————
if __name__=='__main__':main()

16.A.4 REPRODUCING THE MONTE CARLO EXPERIMENT

Snippet 16.5 implements Monte Carlo experiments on three allocation methods:
HRP, CLA, and IVP. All libraries are standard except for HRP, which is provided
in Appendix 16.A.3, and CLA, which can be found in Bailey and López de Prado
[2013]. The subroutine generateData simulates the correlated data, with two types
of random shocks: common to various investments and specific to a single investment.
There are two shocks of each type, one positive and one negative. The variables for
the experiments are set as arguments of hrpMC. They were chosen arbitrarily, and the
user can experiment with alternative combinations.

SNIPPET 16.5 MONTE CARLO EXPERIMENT ON HRP
OUT-OF-SAMPLE PERFORMANCE

import scipy.cluster.hierarchy as sch,random,numpy as np,pandas as pd,CLA
from HRP import correlDist,getIVP,getQuasiDiag,getRecBipart
#———————————————————————————————————————
def generateData(nObs,sLength,size0,size1,mu0,sigma0,sigma1F):

Time series of correlated variables
#1) generate random uncorrelated data

REPRODUCING THE MONTE CARLO EXPERIMENT 243

x=np.random.normal(mu0,sigma0,size=(nObs,size0))
#2) create correlation between the variables
cols=[random.randint(0,size0–1) for i in xrange(size1)]
y=x[:,cols]+np.random.normal(0,sigma0*sigma1F,size=(nObs,len(cols)))
x=np.append(x,y,axis=1)
#3) add common random shock
point=np.random.randint(sLength,nObs-1,size=2)
x[np.ix_(point,[cols[0],size0])]=np.array([[-.5,-.5],[2,2]])
#4) add specific random shock
point=np.random.randint(sLength,nObs-1,size=2)
x[point,cols[-1]]=np.array([-.5,2])
return x,cols
#———————————————————————————————————————

def getHRP(cov,corr):
Construct a hierarchical portfolio
corr,cov=pd.DataFrame(corr),pd.DataFrame(cov)
dist=correlDist(corr)
link=sch.linkage(dist,'single')
sortIx=getQuasiDiag(link)
sortIx=corr.index[sortIx].tolist() # recover labels
hrp=getRecBipart(cov,sortIx)
return hrp.sort_index()
#———————————————————————————————————————

def getCLA(cov,**kargs):
Compute CLA's minimum variance portfolio
mean=np.arange(cov.shape[0]).reshape(-1,1) # Not used by C portf
lB=np.zeros(mean.shape)
uB=np.ones(mean.shape)
cla=CLA.CLA(mean,cov,lB,uB)
cla.solve()
return cla.w[-1].flatten()

#———————————————————————————————————————
def hrpMC(numIters=1e4,nObs=520,size0=5,size1=5,mu0=0,sigma0=1e-2, \

sigma1F=.25,sLength=260,rebal=22):
Monte Carlo experiment on HRP
methods=[getIVP,getHRP,getCLA]
stats,numIter={i.__name__:pd.Series() for i in methods},0
pointers=range(sLength,nObs,rebal)
while numIter<numIters:

print numIter
#1) Prepare data for one experiment
x,cols=generateData(nObs,sLength,size0,size1,mu0,sigma0,sigma1F)
r={i.__name__:pd.Series() for i in methods}
#2) Compute portfolios in-sample
for pointer in pointers:

x_=x[pointer-sLength:pointer]
cov_,corr_=np.cov(x_,rowvar=0),np.corrcoef(x_,rowvar=0)
#3) Compute performance out-of-sample
x_=x[pointer:pointer+rebal]

244 MACHINE LEARNING ASSET ALLOCATION

for func in methods:
w_=func(cov=cov_,corr=corr_) # callback
r_=pd.Series(np.dot(x_,w_))
r[func.__name__]=r[func.__name__].append(r_)

#4) Evaluate and store results
for func in methods:

r_=r[func.__name__].reset_index(drop=True)
p_=(1+r_).cumprod()
stats[func.__name__].loc[numIter]=p_.iloc[-1]-1

numIter+=1
#5) Report results
stats=pd.DataFrame.from_dict(stats,orient='columns')
stats.to_csv('stats.csv')
df0,df1=stats.std(),stats.var()
print pd.concat([df0,df1,df1/df1['getHRP']-1],axis=1)
return

#———————————————————————————————————————
if __name__=='__main__':hrpMC()

EXERCISES

16.1 Given the PnL series on N investment strategies:

(a) Align them to the average frequency of their bets (e.g., weekly observations
for strategies that trade on a weekly basis). Hint: This kind of data alignment
is sometimes called “downsampling.”

(b) Compute the covariance of their returns, V.

(c) Identify the hierarchical clusters among the N strategies.

(d) Plot the clustered correlation matrix of the N strategies.

16.2 Using the clustered covariance matrix V from exercise 1:

(a) Compute the HRP allocations.

(b) Compute the CLA allocations.

(c) Compute the IVP allocations.

16.3 Using the covariance matrix V from exercise 1:

(a) Perform a spectral decomposition: VW = WΛ.

(b) Form an array 𝜀 by drawing N random numbers from a U[0, 1] distribution.

(c) Form an NxN matrix Λ̃, where Λ̃n,n = N𝜀nΛn,n(
∑N

n=1 𝜀n)−1, n = 1,… , N.

(d) Compute Ṽ = WΛ̃W−1.

(e) Repeat exercise 2, this time using Ṽ as covariance matrix. What allocation
method has been most impacted by the re-scaling of spectral variances?

16.4 How would you modify the HRP algorithm to produce allocations that add up
to 0, where |wn| ≤ 1, ∀n = 1,… , N?

16.5 Can you think of an easy way to incorporate expected returns in the HRP
allocations?

REFERENCES 245

REFERENCES

Bailey, D. and M. López de Prado (2012): “Balanced baskets: A new approach to trading and
hedging risks.” Journal of Investment Strategies, Vol. 1, No. 4, pp. 21–62. Available at
http://ssrn.com/abstract=2066170.

Bailey, D. and M. López de Prado (2013): “An open-source implementation of the critical-line
algorithm for portfolio optimization.” Algorithms, Vol. 6, No. 1, pp. 169–196. Available at
http://ssrn.com/abstract=2197616.

Bailey, D., J. Borwein, M. López de Prado, and J. Zhu (2014) “Pseudo-mathematics and
financial charlatanism: The effects of backtest overfitting on out-of-sample performance.”
Notices of the American Mathematical Society, Vol. 61, No. 5, pp. 458–471. Available at
http://ssrn.com/abstract=2308659.

Bailey, D. and M. López de Prado (2014): “The deflated Sharpe ratio: Correcting for selection
bias, backtest overfitting and non-normality.” Journal of Portfolio Management, Vol. 40, No. 5,
pp. 94–107.

Black, F. and R. Litterman (1992): “Global portfolio optimization.” Financial Analysts Journal,
Vol. 48, pp. 28–43.

Brualdi, R. (2010): “The mutually beneficial relationship of graphs and matrices.” Conference Board
of the Mathematical Sciences, Regional Conference Series in Mathematics, Nr. 115.

Calkin, N. and M. López de Prado (2014): “Stochastic flow diagrams.” Algorithmic Finance, Vol. 3,
No. 1, pp. 21–42. Availble at http://ssrn.com/abstract=2379314.

Calkin, N. and M. López de Prado (2014): “The topology of macro financial flows: An applica-
tion of stochastic flow diagrams.” Algorithmic Finance, Vol. 3, No. 1, pp. 43–85. Available at
http://ssrn.com/abstract=2379319.

Clarke, R., H. De Silva, and S. Thorley (2002): “Portfolio constraints and the fundamental law of
active management.” Financial Analysts Journal, Vol. 58, pp. 48–66.

De Miguel, V., L. Garlappi, and R. Uppal (2009): “Optimal versus naive diversification: How inef-
ficient is the 1/N portfolio strategy?” Review of Financial Studies, Vol. 22, pp. 1915–1953.

Jurczenko, E. (2015): Risk-Based and Factor Investing, 1st ed. Elsevier Science.
Kolanovic, M., A. Lau, T. Lee, and R. Krishnamachari (2017): “Cross asset portfolios of tradable risk

premia indices. Hierarchical risk parity: Enhancing returns at target volatility.” White paper,
Global Quantitative & Derivatives Strategy. J.P. Morgan, April 26.

Kolm, P., R. Tutuncu and F. Fabozzi (2014): “60 years of portfolio optimization.” European Journal
of Operational Research, Vol. 234, No. 2, pp. 356–371.

Kuhn, H. W. and A. W. Tucker (1951): “Nonlinear programming.” Proceedings of 2nd Berkeley
Symposium. Berkeley, University of California Press, pp. 481–492.

Markowitz, H. (1952): “Portfolio selection.” Journal of Finance, Vol. 7, pp. 77–91.
Merton, R. (1976): “Option pricing when underlying stock returns are discontinuous.” Journal of

Financial Economics, Vol. 3, pp. 125–144.
Michaud, R. (1998): Efficient Asset Allocation: A Practical Guide to Stock Portfolio Optimization

and Asset Allocation, 1st ed. Harvard Business School Press.
Ledoit, O. and M. Wolf (2003): “Improved estimation of the covariance matrix of stock returns

with an application to portfolio selection.” Journal of Empirical Finance, Vol. 10, No. 5,
pp. 603–621.

Raffinot, T. (2017): “Hierarchical clustering based asset allocation.” Journal of Portfolio Manage-
ment, forthcoming.

Rokach, L. and O. Maimon (2005): “Clustering methods,” in Rokach, L. and O. Maimon, eds., Data
Mining and Knowledge Discovery Handbook. Springer, pp. 321–352.

let &hbox {char '046}http://ssrn.com/abstract=2066170
http://ssrn.com/abstract=2066170
let &hbox {char '046}http://ssrn.com/abstract=2197616
http://ssrn.com/abstract=2197616
let &hbox {char '046}http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
let &hbox {char '046}http://ssrn.com/abstract=2379314
http://ssrn.com/abstract=2379314
let &hbox {char '046}http://ssrn.com/abstract=2379319
http://ssrn.com/abstract=2379319

P A R T 4

Useful Financial Features

Chapter 17: Structural Breaks, 249
Chapter 18: Entropy Features, 263
Chapter 19: Microstructural Features, 281

247

CHAPTER 17

Structural Breaks

17.1 MOTIVATION

In developing an ML-based investment strategy, we typically wish to bet when there
is a confluence of factors whose predicted outcome offers a favorable risk-adjusted
return. Structural breaks, like the transition from one market regime to another, is
one example of such a confluence that is of particular interest. For instance, a mean-
reverting pattern may give way to a momentum pattern. As this transition takes place,
most market participants are caught off guard, and they will make costly mistakes.
This sort of errors is the basis for many profitable strategies, because the actors on
the losing side will typically become aware of their mistake once it is too late. Before
they accept their losses, they will act irrationally, try to hold the position, and hope
for a comeback. Sometimes they will even increase a losing position, in desperation.
Eventually they will be forced to stop loss or stop out. Structural breaks offer some of
the best risk/rewards. In this chapter, we will review some methods that measure the
likelihood of structural breaks, so that informative features can be built upon them.

17.2 TYPES OF STRUCTURAL BREAK TESTS

We can classify structural break tests in two general categories:

� CUSUM tests: These test whether the cumulative forecasting errors signifi-
cantly deviate from white noise.

� Explosiveness tests: Beyond deviation from white noise, these test whether the
process exhibits exponential growth or collapse, as this is inconsistent with a
random walk or stationary process, and it is unsustainable in the long run.

249

250 STRUCTURAL BREAKS

◦ Right-tail unit-root tests: These tests evaluate the presence of exponential
growth or collapse, while assuming an autoregressive specification.

◦ Sub/super-martingale tests: These tests evaluate the presence of exponen-
tial growth or collapse under a variety of functional forms.

17.3 CUSUM TESTS

In Chapter 2 we introduced the CUSUM filter, which we applied in the context of
event-based sampling of bars. The idea was to sample a bar whenever some variable,
like cumulative prediction errors, exceeded a predefined threshold. This concept can
be further extended to test for structural breaks.

17.3.1 Brown-Durbin-Evans CUSUM Test on Recursive Residuals

This test was proposed by Brown, Durbin and Evans [1975]. Let us assume that at
every observation t = 1,… , T , we count with an array of features xt predictive of a
value yt. Matrix Xt is composed of the time series of features t ≤ T , {xi}i=1,…,t. These
authors propose that we compute recursive least squares (RLS) estimates of 𝛽, based
on the specification

yt = 𝛽

′

t xt + 𝜀t

which is fit on subsamples ([1, k + 1], [1, k + 2],… , [1, T]), giving T − k least squares
estimates (𝛽k+1,… , 𝛽T). We can compute the standardized 1-step ahead recursive
residuals as

�̂�t =
yt − 𝛽

′

t−1xt√
ft

ft = �̂�
2
𝜀

[
1 + x

′

t

(
X

′

t Xt

)−1
xt

]
The CUSUM statistic is defined as

St =
t∑

j=k+1

�̂�j

�̂�
𝜔

�̂�
2
𝜔
= 1

T − k

T∑
t=k

(�̂�t − E[�̂�t])
2

Under the null hypothesis that 𝛽 is some constant value, H0 : 𝛽t = 𝛽, then St ∼
N[0, t − k − 1]. One caveat of this procedure is that the starting point is chosen arbi-
trarily, and results may be inconsistent due to that.

EXPLOSIVENESS TESTS 251

17.3.2 Chu-Stinchcombe-White CUSUM Test on Levels

This test follows Homm and Breitung [2012]. It simplifies the previous method by
dropping {xt}t=1,…,T , and assuming that H0 : 𝛽t = 0, that is, we forecast no change
(Et−1[Δyt] = 0). This will allow us to work directly with yt levels, hence reducing the
computational burden. We compute the standardized departure of log-price yt relative
to the log-price at yn, t > n, as

Sn,t = (yt − yn)
(
�̂�t

√
t − n

)−1

�̂�
2
t = (t − 1)−1

t∑
i=2

(Δyi)
2

Under the null hypothesis H0 : 𝛽t = 0, then Sn,t ∼ N[0, 1]. The time-dependent
critical value for the one-sided test is

c
𝛼
[n, t] =

√
b
𝛼
+ log[t − n]

These authors derived via Monte Carlo that b0.05 = 4.6. One disadvantage of this
method is that the reference level yn is set somewhat arbitrarily. To overcome this
pitfall, we could estimate Sn,t on a series of backward-shifting windows n ∈ [1, t],
and pick St = sup

n∈[1,t]
{Sn,t}.

17.4 EXPLOSIVENESS TESTS

Explosiveness tests can be generally divided between those that test for one bubble
and those that test for multiple bubbles. In this context, bubbles are not limited to price
rallies, but they also include sell-offs. Tests that allow for multiple bubbles are more
robust in the sense that a cycle of bubble-burst-bubble will make the series appear to
be stationary to single-bubble tests. Maddala and Kim [1998], and Breitung [2014]
offer good overviews of the literature.

17.4.1 Chow-Type Dickey-Fuller Test

A family of explosiveness tests was inspired by the work of Gregory Chow, starting
with Chow [1960]. Consider the first order autoregressive process

yt = 𝜌yt−1 + 𝜀t

where 𝜀t is white noise. The null hypothesis is that yt follows a random walk, H0:
𝜌 = 1, and the alternative hypothesis is that yt starts as a random walk but changes at
time 𝜏

∗T , where 𝜏
∗ ∈ (0, 1), into an explosive process:

H1 : yt =
{

yt−1 + 𝜀t for t = 1,… , 𝜏∗T

𝜌yt−1 + 𝜀t for t = 𝜏
∗T + 1,… , T , with 𝜌 > 1

252 STRUCTURAL BREAKS

At time T we can test for a switch (from random walk to explosive process) hav-
ing taken place at time 𝜏

∗T (break date). In order to test this hypothesis, we fit the
following specification,

Δyt = 𝛿yt−1Dt[𝜏
∗] + 𝜀t

where Dt[𝜏
∗] is a dummy variable that takes zero value if t < 𝜏

∗T , and takes the value
one if t ≥ 𝜏

∗T . Then, the null hypothesis H0 : 𝛿 = 0 is tested against the (one-sided)
alternative H1 : 𝛿 > 1:

DFC
𝜏
∗ = 𝛿

�̂�
𝛿

The main drawback of this method is that 𝜏∗ is unknown. To address this issue,
Andrews [1993] proposed a new test where all possible 𝜏

∗ are tried, within some
interval 𝜏∗ ∈ [𝜏0, 1 − 𝜏0]. As Breitung [2014] explains, we should leave out some of
the possible 𝜏

∗ at the beginning and end of the sample, to ensure that either regime
is fitted with enough observations (there must be enough zeros and enough ones in
Dt[𝜏

∗]). The test statistic for an unknown 𝜏
∗ is the maximum of all T(1 − 2𝜏0) values

of DFC
𝜏
∗ .

SDFC = sup
𝜏
∗∈[𝜏0,1−𝜏0]

{DFC
𝜏
∗}

Another drawback of Chow’s approach is that it assumes that there is only one
break date 𝜏

∗T , and that the bubble runs up to the end of the sample (there is no
switch back to a random walk). For situations where three or more regimes (random
walk → bubble → random walk …) exist, we need to discuss the Supremum Aug-
mented Dickey-Fuler (SADF) test.

17.4.2 Supremum Augmented Dickey-Fuller

In the words of Phillips, Wu and Yu [2011], “standard unit root and cointegration tests
are inappropriate tools for detecting bubble behavior because they cannot effectively
distinguish between a stationary process and a periodically collapsing bubble model.
Patterns of periodically collapsing bubbles in the data look more like data generated
from a unit root or stationary autoregression than a potentially explosive process.” To
address this flaw, these authors propose fitting the regression specification

Δyt = 𝛼 + 𝛽yt−1 +
L∑

l=1

𝛾lΔyt−l + 𝜀t

where we test for H0 : 𝛽 ≤ 0, H1 : 𝛽 > 0. Inspired by Andrews [1993], Phillips and
Yu [2011] and Phillips, Wu and Yu [2011] proposed the Supremum Augmented

EXPLOSIVENESS TESTS 253

–2

20182016201420122010200820062004

0.75

1.00

1.25

1.50

1.75

C
lo

se
 p

ric
e

(a
fte

r
E

T
F

 tr
ic

k)

S
A

D
F

2.00

2.25

2.50

0

2

4

6

FIGURE 17.1 Prices (left y-axis) and SADF (right y-axis) over time

Dickey-Fuller test (SADF). SADF fits the above regression at each end point t with
backwards expanding start points, then computes

SADFt = sup
t0∈[1,t−𝜏]

{ADFt0,t} = sup
t0∈[1,t−𝜏]

{
𝛽t0,t

�̂�
𝛽t0,t

}

where 𝛽t0,t is estimated on a sample that starts at t0 and ends at t, 𝜏 is the minimum
sample length used in the analysis, t0 is the left bound of the backwards expanding
window, and t = 𝜏,… , T . For the estimation of SADFt, the right side of the window
is fixed at t. The standard ADF test is a special case of SADFt, where 𝜏 = t − 1.

There are two critical differences between SADFt and SDFC: First, SADFt is com-
puted at each t ∈ [𝜏, T], whereas SDFC is computed only at T . Second, instead of
introducing a dummy variable, SADF recursively expands the beginning of the sam-
ple (t0 ∈ [1, t − 𝜏]). By trying all combinations of a nested double loop on (t0, t),
SADF does not assume a known number of regime switches or break dates. Figure
17.1 displays the series of E-mini S&P 500 futures prices after applying the ETF trick
(Chapter 2, Section 2.4.1), as well as the SADF derived from that price series. The
SADF line spikes when prices exhibit a bubble-like behavior, and returns to low levels
when the bubble bursts. In the following sections, we will discuss some enhancements
to Phillips’ original SADF method.

17.4.2.1 Raw vs. Log Prices
It is common to find in the literature studies that carry out structural break tests on raw
prices. In this section we will explore why log prices should be preferred, particularly
when working with long time series involving bubbles and bursts.

254 STRUCTURAL BREAKS

For raw prices {yt}, if ADF’s null hypotesis is rejected, it means that prices are
stationary, with finite variance. The implication is that returns yt

yt−1
− 1 are not time

invariant, for returns’ volatility must decrease as prices rise and increase as prices
fall in order to keep the price variance constant. When we run ADF on raw prices,
we assume that returns’ variance is not invariant to price levels. If returns variance
happens to be invariant to price levels, the model will be structurally heteroscedastic.

In contrast, if we work with log prices, the ADF specification will state that

Δlog[yt] ∝ log[yt−1]

Let us make a change of variable, xt = kyt. Now, log[xt] = log[k] + log[yt], and
the ADF specification will state that

Δlog[xt] ∝ log[xt−1] ∝ log[yt−1]

Under this alternative specification based on log prices, price levels condition
returns’ mean, not returns’ volatility. The difference may not matter in practice for
small samples, where k ≈ 1, but SADF runs regressions across decades and bubbles
produce levels that are significantly different between regimes (k ≠ 1).

17.4.2.2 Computational Complexity
The algorithm runs in (n2), as the number of ADF tests that SADF requires for a
total sample length T is

T∑
t=𝜏

t − 𝜏 + 1 = 1
2

(T − 𝜏 + 2)(T − 𝜏 + 1) =
(

T − 𝜏 + 2

2

)
Consider a matrix representation of the ADF specification, where X ∈ ℝTxN and

y ∈ ℝTx1. Solving a single ADF regression involves the floating point operations
(FLOPs) listed in Table 17.1.

This gives a total of f (N, T) = N3 + N2(2T + 3) + N(4T − 1) + 2T + 2 FLOPs
per ADF estimate. A single SADF update requires g(N, T , 𝜏) =

∑T
t=𝜏 f (N, t) + T − 𝜏

FLOPs (T − 𝜏 operations to find the maximum ADF stat), and the estimation of a full
SADF series requires

∑T
t=𝜏 g(N, T , 𝜏).

Consider a dollar bar series on E-mini S&P 500 futures. For (T , N) = (356631,3),
an ADF estimate requires 11,412,245 FLOPs, and a SADF update requires
2,034,979,648,799 operations (roughly 2.035 TFLOPs). A full SADF time series
requires 241,910,974,617,448,672 operations (roughly 242 PFLOPs). This number
will increase quickly, as the T continues to grow. And this estimate excludes noto-
riously expensive operations like alignment, pre-processing of data, I/O jobs, etc.
Needless to say, this algorithm’s double loop requires a large number of operations.
An HPC cluster running an efficiently parallelized implementation of the algorithm
may be needed to estimate the SADF series within a reasonable amount of time.
Chapter 20 will present some parallelization strategies useful in these situations.

EXPLOSIVENESS TESTS 255

TABLE 17.1 FLOPs per ADF Estimate

Matrix Operation FLOPs

o1 = X′y (2T − 1)N

o2 = X′X (2T − 1)N2

o3 = o−1
2 N3 + N2 + N

o4 = o3o1 2N2 − N

o5 = y − Xo4 T + (2N − 1)T

o6 = o
′

5o5 2T − 1

o7 = o3o6
1

T − N
2 + N2

o8 =
o4[0, 0]√
o7[0, 0]

1

17.4.2.3 Conditions for Exponential Behavior
Consider the zero-lag specification on log prices, Δlog[yt] = 𝛼 + 𝛽log[yt−1] + 𝜀t.
This can be rewritten as log[ỹt] = (1 + 𝛽)log[ỹt−1] + 𝜀t, where log[ỹt] = log[yt] +

𝛼

𝛽

.

Rolling back t discrete steps, we obtain E[log[ỹt]] = (1 + 𝛽)tlog[ỹ0], or E[log[yt]] =
− 𝛼

𝛽

+ (1 + 𝛽)t(log[y0] + 𝛼

𝛽

). The index t can be reset at a given time, to project the
future trajectory of y0 → yt after the next t steps. This reveals the conditions that
characterize the three states for this dynamic system:

� Steady: 𝛽 < 0 ⇒ limt→∞E[log[yt]] = − 𝛼

𝛽

.

◦ The disequilibrium is log[yt] − (− 𝛼

𝛽

) = log[ỹt].

◦ Then E[log[ỹt]]
log[ỹ0]

= (1 + 𝛽)t = 1
2

at t = − log[2]
log[1+𝛽]

(half-life).
� Unit-root: 𝛽 = 0, where the system is non-stationary, and behaves as a martin-

gale.

� Explosive: 𝛽 > 0, where limt→∞E[log[yt]] =

{
−∞, if log [y0] < 𝛼

𝛽

+∞, if log [y0] > 𝛼

𝛽

.

17.4.2.4 Quantile ADF
SADF takes the supremum of a series on t-values, SADFt = supt0∈[1,t−𝜏]{ADFt0,t}.
Selecting the extreme value introduces some robustness problems, where SADF esti-
mates could vary significantly depending on the sampling frequency and the specific
timestamps of the samples. A more robust estimator of ADF extrema would be the
following: First, let st = {ADFt0,t}t0∈[0,t1−𝜏]. Second, we define Qt,q = Q[st, q] the q
quantile of st, as a measure of centrality of high ADF values, where q ∈ [0, 1]. Third,
we define Q̇t,q,v = Qt,q+v − Qt,q−v, with 0 < v ≤ min{q, 1 − q}, as a measure of dis-
persion of high ADF values. For example, we could set q = 0.95 and v = 0.025. Note

256 STRUCTURAL BREAKS

that SADF is merely a particular case of QADF, where SADFt = Qt,1 and Q̇t,q,v is not
defined because q = 1.

17.4.2.5 Conditional ADF
Alternatively, we can address concerns on SADF robustness by computing
conditional moments. Let f [x] be the probability distribution function of st =
{ADFt0,t}t0∈[1,t1−𝜏], with x ∈ st. Then, we define Ct,q = K−1 ∫

∞
Qt,q

xf [x]dx as a mea-

sure of centrality of high ADF values, and Ċt,q =
√

K−1 ∫
∞

Qt,q
(x − Ct,q)2f [x]dx as

a measure of dispersion of high ADF values, with regularization constant K =
∫
∞

Qt,q
f [x]dx. For example, we could use q = 0.95.

By construction, Ct,q ≤ SADFt. A scatter plot of SADFt against Ct,q shows that
lower boundary, as an ascending line with approximately unit gradient (see Figure
17.2). When SADF grows beyond −1.5, we can appreciate some horizontal trajec-
tories, consistent with a sudden widening of the right fat tail in st. In other words,
(SADFt − Ct,q)∕Ċt,q can reach significantly large values even if Ct,q is relatively
small, because SADFt is sensitive to outliers.

Figure 17.3(a) plots (SADFt − Ct,q)∕Ċt,q for the E-mini S&P 500 futures prices
over time. Figure 17.3(b) is the scatter-plot of (SADFt − Ct,q)∕Ċt,q against SADFt,
computed on the E-mini S&P 500 futures prices. It shows evidence that outliers in st
bias SADFt upwards.

–2

–2

–1

0

1

2

3

4

0 2 4 6

FIGURE 17.2 SADF (x-axis) vs CADF (y-axis)

EXPLOSIVENESS TESTS 257

2

4

6

8

10

12

14

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

Time

(a)

2

(b)

4 60–2

2

4

6

8

10

12

14

FIGURE 17.3 (a) (SADFt − Ct,q)∕Ċt,q over time (b) (SADFt − Ct,q)∕Ċt,q (y-axis) as a function of
SADFt (x-axis)

258 STRUCTURAL BREAKS

17.4.2.6 Implementation of SADF
This section presents an implementation of the SADF algorithm. The purpose of this
code is not to estimate SADF quickly, but to clarify the steps involved in its estima-
tion. Snippet 17.1 lists SADF’s inner loop. That is the part that estimates SADFt =

sup
t0∈[1,t−𝜏]

{
𝛽t0,t

�̂�
𝛽t0,t

}, which is the backshifting component of the algorithm. The outer

loop (not shown here) repeats this calculation for an advancing t, {SADFt}t=1,…,T .
The arguments are:

� logP: a pandas series containing log-prices
� minSL: the minimum sample length (𝜏), used by the final regression
� constant: the regression’s time trend component
◦ 'nc': no time trend, only a constant
◦ 'ct': a constant plus a linear time trend
◦ 'ctt': a constant plus a second-degree polynomial time trend

� lags: the number of lags used in the ADF specification

SNIPPET 17.1 SADF’S INNER LOOP

def get_bsadf(logP,minSL,constant,lags):
y,x=getYX(logP,constant=constant,lags=lags)
startPoints,bsadf,allADF=range(0,y.shape[0]+lags-minSL+1),None,[]
for start in startPoints:

y_,x_=y[start:],x[start:]
bMean_,bStd_=getBetas(y_,x_)
bMean_,bStd_=bMean_[0,0],bStd_[0,0]**.5
allADF.append(bMean_/bStd_)
if allADF[-1]>bsadf:bsadf=allADF[-1]

out={'Time':logP.index[-1],'gsadf':bsadf}
return out

Snippet 17.2 lists function getXY, which prepares the numpy objects needed to
conduct the recursive tests.

SNIPPET 17.2 PREPARING THE DATASETS

def getYX(series,constant,lags):
series_=series.diff().dropna()
x=lagDF(series_,lags).dropna()
x.iloc[:,0]=series.values[-x.shape[0]-1:-1,0] # lagged level
y=series_.iloc[-x.shape[0]:].values

EXPLOSIVENESS TESTS 259

if constant!='nc':
x=np.append(x,np.ones((x.shape[0],1)),axis=1)
if constant[:2]=='ct':

trend=np.arange(x.shape[0]).reshape(-1,1)
x=np.append(x,trend,axis=1)

if constant=='ctt':
x=np.append(x,trend**2,axis=1)

return y,x

Snippet 17.3 lists function lagDF, which applies to a dataframe the lags specified
in its argument lags.

SNIPPET 17.3 APPLY LAGS TO DATAFRAME

def lagDF(df0,lags):
df1=pd.DataFrame()
if isinstance(lags,int):lags=range(lags+1)
else:lags=[int(lag) for lag in lags]
for lag in lags:

df_=df0.shift(lag).copy(deep=True)
df_.columns=[str(i)+'_'+str(lag) for i in df_.columns]
df1=df1.join(df_,how='outer')

return df1

Finally, Snippet 17.4 lists function getBetas, which carries out the actual
regressions.

SNIPPET 17.4 FITTING THE ADF SPECIFICATION

def getBetas(y,x):
xy=np.dot(x.T,y)
xx=np.dot(x.T,x)
xxinv=np.linalg.inv(xx)
bMean=np.dot(xxinv,xy)
err=y-np.dot(x,bMean)
bVar=np.dot(err.T,err)/(x.shape[0]-x.shape[1])*xxinv
return bMean,bVar

17.4.3 Sub- and Super-Martingale Tests

In this section we will introduce explosiveness tests that do not rely on the standard
ADF specification. Consider a process that is either a sub- or super-martingale. Given

260 STRUCTURAL BREAKS

some observations {yt}, we would like to test for the existence of an explosive time
trend, H0 : 𝛽 = 0, H1 : 𝛽 ≠ 0, under alternative specifications:

� Polynomial trend (SM-Poly1):

yt = 𝛼 + 𝛾t + 𝛽t2 + 𝜀t

� Polynomial trend (SM-Poly2):

log[yt] = 𝛼 + 𝛾t + 𝛽t2 + 𝜀t

� Exponential trend (SM-Exp):

yt = 𝛼e𝛽t + 𝜀t ⇒ log[yt] = log[𝛼] + 𝛽t + 𝜉t

� Power trend (SM-Power):

yt = 𝛼t𝛽 + 𝜀t ⇒ log[yt] = log[𝛼] + 𝛽log[t] + 𝜉t

Similar to SADF, we fit any of these specifications to each end point t = 𝜏,… , T ,
with backwards expanding start points, then compute

SMTt = sup
t0∈[1,t−𝜏]

{||𝛽t0,t
||

�̂�
𝛽t0,t

}

The reason for the absolute value is that we are equally interested in explosive
growth and collapse. In the simple regression case (Greene [2008], p. 48), the vari-

ance of 𝛽 is �̂�2
𝛽
= �̂�

2
𝜀

�̂�
2
xx(t−t0)

, hence limt→∞ �̂�
𝛽t0,t

= 0. The same result is generalizable

to the multivariate linear regression case (Greene [2008], pp. 51–52). The �̂�
2
𝛽

of a

weak long-run bubble may be smaller than the �̂�2
𝛽

of a strong short-run bubble, hence
biasing the method towards long-run bubbles. To correct for this bias, we can penal-
ize large sample lengths by determining the coefficient 𝜑 ∈ [0, 1] that yields best
explosiveness signals.

SMTt = sup
t0∈[1,t−𝜏]

{ ||𝛽t0,t
||

�̂�
𝛽t0,t

(t − t0)𝜑

}

For instance, when 𝜑 = 0.5, we compensate for the lower �̂�
𝛽t0,t

associated with

longer sample lengths, in the simple regression case. For 𝜑 → 0, SMTt will exhibit
longer trends, as that compensation wanes and long-run bubbles mask short-run bub-
bles. For 𝜑 → 1, SMTt becomes noisier, because more short-run bubbles are selected
over long-run bubbles. Consequently, this is a natural way to adjust the explosiveness

REFERENCES 261

signal, so that it filters opportunities targeting a particular holding period. The features
used by the ML algorithm may include SMTt estimated from a wide range of𝜑 values.

EXERCISES

17.1 On a dollar bar series on E-mini S&P 500 futures,

(a) Apply the Brown-Durbin-Evans method. Does it recognize the dot-com
bubble?

(b) Apply the Chu-Stinchcombe-White method. Does it find a bubble in 2007–
2008?

17.2 On a dollar bar series on E-mini S&P 500 futures,

(a) Compute the SDFC (Chow-type) explosiveness test. What break date does
this method select? Is this what you expected?

(b) Compute and plot the SADF values for this series. Do you observe extreme
spikes around the dot-com bubble and before the Great Recession? Did the
bursts also cause spikes?

17.3 Following on exercise 2,

(a) Determine the periods where the series exhibited

(i) Steady conditions

(ii) Unit-Root conditions

(iii) Explosive conditions

(b) Compute QADF.

(c) Compute CADF.

17.4 On a dollar bar series on E-mini S&P 500 futures,

(a) Compute SMT for SM-Poly1 and SM-Poly 2, where 𝜑 = 1. What is their
correlation?

(b) Compute SMT for SM-Exp, where 𝜑 = 1 and 𝜑 = 0.5. What is their corre-
lation?

(c) Compute SMT for SM-Power, where 𝜑 = 1 and 𝜑 = 0.5. What is their cor-
relation?

17.5 If you compute the reciprocal of each price, the series {y−1
t } turns bubbles into

bursts and bursts into bubbles.

(a) Is this transformation needed, to identify bursts?

(b) What methods in this chapter can identify bursts without requiring this
transformation?

REFERENCES

Andrews, D. (1993): “Tests for parameter instability and structural change with unknown change
point.” Econometrics, Vol. 61, No. 4 (July), pp. 821–856.

262 STRUCTURAL BREAKS

Breitung, J. and R. Kruse (2013): “When Bubbles Burst: Econometric Tests Based on Structural
Breaks.” Statistical Papers, Vol. 54, pp. 911–930.

Breitung, J. (2014): “Econometric tests for speculative bubbles.” Bonn Journal of Economics, Vol.
3, No. 1, pp. 113–127.

Brown, R.L., J. Durbin, and J.M. Evans (1975): “Techniques for Testing the Constancy of Regression
Relationships over Time.” Journal of the Royal Statistical Society, Series B, Vol. 35, pp. 149–
192.

Chow, G. (1960). “Tests of equality between sets of coefficients in two linear regressions.” Econo-
metrica, Vol. 28, No. 3, pp. 591–605.

Greene, W. (2008): Econometric Analysis, 6th ed. Pearson Prentice Hall.
Homm, U. and J. Breitung (2012): “Testing for speculative bubbles in stock markets: A comparison

of alternative methods.” Journal of Financial Econometrics, Vol. 10, No. 1, 198–231.
Maddala, G. and I. Kim (1998): Unit Roots, Cointegration and Structural Change, 1st ed. Cambridge

University Press.
Phillips, P., Y. Wu, and J. Yu (2011): “Explosive behavior in the 1990s Nasdaq: When did exuberance

escalate asset values?” International Economic Review, Vol. 52, pp. 201–226.
Phillips, P. and J. Yu (2011): “Dating the timeline of financial bubbles during the subprime crisis.”

Quantitative Economics, Vol. 2, pp. 455–491.
Phillips, P., S. Shi, and J. Yu (2013): “Testing for multiple bubbles 1: Historical episodes of exuber-

ance and collapse in the S&P 500.” Working paper 8–2013, Singapore Management University.

CHAPTER 18

Entropy Features

18.1 MOTIVATION

Price series convey information about demand and supply forces. In perfect mar-
kets, prices are unpredictable, because each observation transmits everything that is
known about a product or service. When markets are not perfect, prices are formed
with partial information, and as some agents know more than others, they can exploit
that informational asymmetry. It would be helpful to estimate the informational con-
tent of price series, and form features on which ML algorithms can learn the likely
outcomes. For example, the ML algorithm may find that momentum bets are more
profitable when prices carry little information, and that mean-reversion bets are more
profitable when prices carry a lot of information. In this chapter, we will explore ways
to determine the amount of information contained in a price series.

18.2 SHANNON’S ENTROPY

In this section we will review a few concepts from information theory that will be
useful in the remainder of the chapter. The reader can find a complete exposition in
MacKay [2003]. The father of information theory, Claude Shannon, defined entropy
as the average amount of information (over long messages) produced by a stationary
source of data. It is the smallest number of bits per character required to describe the
message in a uniquely decodable way. Mathematically, Shannon [1948] defined the
entropy of a discrete random variable X with possible values x ∈ A as

H[X] ≡ −
∑
x∈A

p[x]log2p[x]

263

264 ENTROPY FEATURES

with 0 ≤ H[X] ≤ log2[‖A‖] where: p[x] is the probability of x; H[X] = 0 ⇔

∃x|p[x] = 1; H[X] = log2[‖A‖] ⇔ p[x] = 1‖A‖ for all x; and ‖A‖ is the size of the

set A. This can be interpreted as the probability weighted average of informational
content in X, where the bits of information are measured as log2

1
p[x]

. The rationale for

measuring information as log2
1

p[x]
comes from the observation that low-probability

outcomes reveal more information than high-probability outcomes. In other words,
we learn when something unexpected happens. Similarly, redundancy is defined as

R[X] ≡ 1 − H[X]
log2[‖A‖]

with 0 ≤ R[X] ≤ 1. Kolmogorov [1965] formalized the connection between redun-
dancy and complexity of a Markov information source. The mutual information
between two variables is defined as the Kullback-Leibler divergence from the joint
probability density to the product of the marginal probability densities.

MI[X, Y] = Ef [x,y]

[
log

f [x, y]
f [x]f [y]

]
= H[X] + H[Y] − H[X, Y]

The mutual information (MI) is always non-negative, symmetric, and equals zero
if and only if X and Y are independent. For normally distributed variables, the mutual
information is closely related to the familiar Pearson correlation, 𝜌.

MI[X, Y] = −1
2
log[1 − 𝜌

2]

Therefore, mutual information is a natural measure of the association between
variables, regardless of whether they are linear or nonlinear in nature (Hausser and
Strimmer [2009]). The normalized variation of information is a metric derived from
mutual information. For several entropy estimators, see:

� In R: http://cran.r-project.org/web/packages/entropy/entropy.pdf
� In Python: https://code.google.com/archive/p/pyentropy/

18.3 THE PLUG-IN (OR MAXIMUM LIKELIHOOD) ESTIMATOR

In this section we will follow the exposition of entropy’s maximum likelihood esti-
mator in Gao et al. [2008]. The nomenclature may seem a bit peculiar at first (no pun
intended), but once you become familiar with it you will find it convenient. Given a
data sequence xn

1, comprising the string of values starting in position 1 and ending in
position n, we can form a dictionary of all words of length w < n in that sequence,
Aw. Consider an arbitrary word yw

1 ∈ Aw of length w. We denote p̂w[yw
1] the empirical

probability of the word yw
1 in xn

1, which means that p̂w[yw
1] is the frequency with which

let &hbox {char '046}http://cran.r-project.org/web/packages/entropy/entropy.pdf
http://cran.r-project.org/web/packages/entropy/entropy.pdf
let &hbox {char '046}https://code.google.com/archive/p/pyentropy/
https://code.google.com/archive/p/pyentropy/

LEMPEL-ZIV ESTIMATORS 265

yw
1 appears in xn

1. Assuming that the data is generated by a stationary and ergodic
process, then the law of large numbers guarantees that, for a fixed w and large n, the
empirical distribution p̂w will be close to the true distribution pw. Under these cir-
cumstances, a natural estimator for the entropy rate (i.e., average entropy per bit) is

Ĥn,w = − 1
w

∑
yw

1 ∈Aw

p̂w

[
yw

1

]
log2p̂w

[
yw

1

]
Since the empirical distribution is also the maximum likelihood estimate of the

true distribution, this is also often referred to as the maximum likelihood entropy
estimator. The value w should be large enough for Ĥn,w to be acceptably close to the
true entropy H. The value of n needs to be much larger than w, so that the empirical
distribution of order w is close to the true distribution. Snippet 18.1 implements the
plug-in entropy estimator.

SNIPPET 18.1 PLUG-IN ENTROPY ESTIMATOR

import time,numpy as np
#———————————————————————————————————————
def plugIn(msg,w):

Compute plug-in (ML) entropy rate
pmf=pmf1(msg,w)
out=-sum([pmf[i]*np.log2(pmf[i]) for i in pmf])/w
return out,pmf

#———————————————————————————————————————
def pmf1(msg,w):

Compute the prob mass function for a one-dim discrete rv
len(msg)-w occurrences
lib={}
if not isinstance(msg,str):msg=''.join(map(str,msg))
for i in xrange(w,len(msg)):

msg_=msg[i-w:i]
if msg_ not in lib:lib[msg_]=[i-w]
else:lib[msg_]=lib[msg_]+[i-w]

pmf=float(len(msg)-w)
pmf={i:len(lib[i])/pmf for i in lib}
return pmf

18.4 LEMPEL-ZIV ESTIMATORS

Entropy can be interpreted as a measure of complexity. A complex sequence con-
tains more information than a regular (predictable) sequence. The Lempel-Ziv (LZ)

266 ENTROPY FEATURES

algorithm efficiently decomposes a message into non-redundant substrings (Ziv and
Lempel [1978]). We can estimate the compression rate of a message as a function of
the number of items in a Lempel-Ziv dictionary relative to the length of the message.
The intuition here is that complex messages have high entropy, which will require
large dictionaries relative to the length of the string to be transmitted. Snippet 18.2
shows an implementation of the LZ compression algorithm.

SNIPPET 18.2 A LIBRARY BUILT USING THE LZ ALGORITHM

def lempelZiv_lib(msg):
i,lib=1,[msg[0]]
while i<len(msg):

for j in xrange(i,len(msg)):
msg_=msg[i:j+1]
if msg_ not in lib:

lib.append(msg_)
break

i=j+1
return lib

Kontoyiannis [1998] attempts to make a more efficient use of the information
available in a message. What follows is a faithful summary of the exposition in Gao
et al. [2008]. We will reproduce the steps in that paper, while complementing them
with code snippets that implement their ideas. Let us define Ln

i as 1 plus the length
of the longest match found in the n bits prior to i,

Ln
i = 1 + max

{
l||xi+l

i = xj+l
j for some i − n ≤ j ≤ i − 1, l ∈ [0, n]

}
Snippet 18.3 implements the algorithm that determines the length of the longest

match. A few notes worth mentioning:

� The value n is constant for a sliding window, and n = i for an expanding
window.

� Computing Ln
i requires data xi+n−1

i−n . In other words, index i must be at the center
of the window. This is important in order to guarantee that both matching strings
are of the same length. If they are not of the same length, l will have a limited
range and its maximum will be underestimated.

� Some overlap between the two substrings is allowed, although obviously both
cannot start at i.

LEMPEL-ZIV ESTIMATORS 267

SNIPPET 18.3 FUNCTION THAT COMPUTES THE LENGTH OF THE
LONGEST MATCH

def matchLength(msg,i,n):
Maximum matched length+1, with overlap.
i>=n & len(msg)>=i+n
subS=''
for l in xrange(n):

msg1=msg[i:i+l+1]
for j in xrange(i-n,i):

msg0=msg[j:j+l+1]
if msg1==msg0:

subS=msg1
break # search for higher l.

return len(subS)+1,subS # matched length + 1

Ornstein and Weiss [1993] formally established that

lim
n→∞

Ln
i

log2[n]
= 1

H

Kontoyiannis uses this result to estimate Shannon’s entropy rate. He estimates the

average
Ln

i

log2[n]
, and uses the reciprocal of that average to estimate H. The general

intuition is, as we increase the available history, we expect that messages with high
entropy will produce relatively shorter non-redundant substrings. In contrast, mes-
sages with low entropy will produce relatively longer non-redundant substrings as
we parse through the message. Given a data realization x∞−∞, a window length n ≥ 1,
and a number of matches k ≥ 1, the sliding-window LZ estimator Ĥn,k = Ĥn,k[xn+k−1

−n+1]
is defined by

Ĥn,k =

[
1
k

k∑
i=1

Ln
i

log2[n]

]−1

Similarly, the increasing window LZ estimator Ĥn = Ĥn

[
x2n−1

0

]
, is defined by

Ĥn =

[
1
n

n∑
i=2

Li
i

log2[i]

]−1

The window size n is constant when computing Ĥn,k, thus Ln
i . However, when

computing Ĥn, the window size increases with i, thus Li
i, with n = N

2
. In this

268 ENTROPY FEATURES

expanding window case the length of the message N should be an even number to
ensure that all bits are parsed (recall that xi is at the center, so for an odd-length mes-
sage the last bit would not be read).

The above expressions have been derived under the assumptions of: stationarity,
ergodicity, that the process takes finitely many values, and that the process satisfies
the Doeblin condition. Intuitively, this condition requires that, after a finite number
of steps r, no matter what has occurred before, anything can happen with positive
probability. It turns out that this Doeblin condition can be avoided altogether if we
consider a modified version of the above estimators:

H̃n,k = 1
k

k∑
i=1

log2[n]

Ln
i

H̃n = 1
n

n∑
i=2

log2[i]

Li
i

One practical question when estimating H̃n,k is how to determine the window
size n. Gao et al. [2008] argue that k + n = N should be approximately equal to
the message length. Considering that the bias of Ln

i is of order [1
/
log2[n]] and

the variance of Ln
i is order [1∕k], the bias/variance trade-off is balanced at around

k ≈ [
(
log2 [n]

)2
]. That is, n could be chosen such that N ≈ n +

(
log2 [n]

)2
. For

example, for N = 28, a balanced bias/variance window size would be n ≈ 198, in
which case k ≈ 58.

Kontoyiannis [1998] proved that Ĥ[X] converges to Shannon’s entropy rate with
probability 1 as n approaches infinity. Snippet 18.4 implements the ideas discussed
in Gao et al. [2008], which improve on Kontoyiannis [1997] by looking for the max-
imum redundancy between two substrings of the same size.

SNIPPET 18.4 IMPLEMENTATION OF ALGORITHMS DISCUSSED
IN GAO ET AL. [2008]

def konto(msg,window=None):
’’’
* Kontoyiannis’ LZ entropy estimate, 2013 version (centered window).
* Inverse of the avg length of the shortest non-redundant substring.
* If non-redundant substrings are short, the text is highly entropic.
* window==None for expanding window, in which case len(msg)%2==0
* If the end of msg is more relevant, try konto(msg[::-1])
’’’
out={'num':0,'sum':0,'subS':[]}
if not isinstance(msg,str):msg=''.join(map(str,msg))
if window is None:

points=xrange(1,len(msg)/2+1)

ENCODING SCHEMES 269

else:
window=min(window,len(msg)/2)
points=xrange(window,len(msg)-window+1)

for i in points:
if window is None:

l,msg_=matchLength(msg,i,i)
out['sum']+=np.log2(i+1)/l # to avoid Doeblin condition

else:
l,msg_=matchLength(msg,i,window)
out['sum']+=np.log2(window+1)/l # to avoid Doeblin condition

out['subS'].append(msg_)
out['num']+=1

out['h']=out['sum']/out['num']
out['r']=1-out['h']/np.log2(len(msg)) # redundancy, 0<=r<=1
return out

#———————————————————————————————————————
if __name__=='__main__':

msg='101010'
print konto(msg*2)
print konto(msg+msg[::-1])

One caveat of this method is that entropy rate is defined in the limit. In the words
of Kontoyiannis, “we fix a large integer N as the size of our database.” The theorems
used by Kontoyiannis’ paper prove asymptotic convergence; however, nowhere is a
monotonicity property claimed. When a message is short, a solution may be to repeat
the same message multiple times.

A second caveat is that, because the window for matching must be symmetric
(same length for the dictionary as for the substring being matched), the last bit is
only considered for matching if the message’s length corresponds to an even number.
One solution is to remove the first bit of a message with odd length.

A third caveat is that some final bits will be dismissed when preceded by irreg-
ular sequences. This is also a consequence of the symmetric matching window. For
example, the entropy rate for “10000111” equals the entropy rate for “10000110,”
meaning that the final bit is irrelevant due to the unmatchable “11” in the sixth and
seventh bit. When the end of the message is particularly relevant, a good solution may
be to analyze the entropy of the reversed message. This not only ensures that the final
bits (i.e., the initial ones after the reversing) are used, but actually they will be used
to potentially match every bit. Following the previous example, the entropy rate of
“11100001” is 0.96, while the entropy rate for “01100001’ is 0.84.

18.5 ENCODING SCHEMES

Estimating entropy requires the encoding of a message. In this section we will review
a few encoding schemes used in the literature, which are based on returns. Although

270 ENTROPY FEATURES

not discussed in what follows, it is advisable to encode information from fractionally
(rather than integer) differentiated series (Chapter 4), as they still contain some
memory.

18.5.1 Binary Encoding

Entropy rate estimation requires the discretization of a continuous variable, so that
each value can be assigned a code from a finite alphabet. For example, a stream of
returns rt can be encoded according to the sign, 1 for rt > 0, 0 for rt < 0, removing
cases where rt = 0. Binary encoding arises naturally in the case of returns series sam-
pled from price bars (i.e., bars that contain prices fluctuating between two symmetric
horizontal barriers, centered around the start price), because |rt| is approximately
constant.

When |rt| can adopt a wide range of outcomes, binary encoding discards poten-
tially useful information. That is particularly the case when working with intraday
time bars, which are affected by the heteroscedasticity that results from the inhomo-
geneous nature of tick data. One way to partially address this heteroscedasticity is
to sample prices according to a subordinated stochastic process. Examples of that
are trade bars and volume bars, which contain a fixed number of trades or trades for
a fixed amount of volume (see Chapter 2). By operating in this non-chronological,
market-driven clock, we sample more frequently during highly active periods, and
less frequently during periods of less activity, hence regularizing the distribution of|rt| and reducing the need for a large alphabet.

18.5.2 Quantile Encoding

Unless price bars are used, it is likely that more than two codes will be needed. One
approach consists in assigning a code to each rt according to the quantile it belongs
to. The quantile boundaries are determined using an in-sample period (training set).
There will be the same number of observations assigned to each letter for the overall
in-sample, and close to the same number of observations per letter out-of-sample.
When using the method, some codes span a greater fraction of rt’s range than others.
This uniform (in-sample) or close to uniform (out-of-sample) distribution of codes
tends to increase entropy readings on average.

18.5.3 Sigma Encoding

As an alternative approach, rather than fixing the number of codes, we could let
the price stream determine the actual dictionary. Suppose we fix a discretization
step, 𝜎. Then, we assign the value 0 to rt ∈ [min {r} , min {r} + 𝜎) , 1 to rt ∈
[min {r} + 𝜎, min {r} + 2𝜎) and so on until every observation has been encoded with

a total of ceil
[

max{r}−min{r}
𝜎

]
codes, where ceil [.] is the ceiling function. Unlike quan-

tile encoding, now each code covers the same fraction of rt’s range. Because codes
are not uniformly distributed, entropy readings will tend to be smaller than in quantile

ENTROPY AND THE GENERALIZED MEAN 271

encoding on average; however, the appearance of a “rare” code will cause spikes in
entropy readings.

18.6 ENTROPY OF A GAUSSIAN PROCESS

The entropy of an IID Normal random process (see Norwich [2003]) can be
derived as

H = 1
2

log[2𝜋e𝜎2]

For the standard Normal, H ≈ 1.42. There are at least two uses of this result. First,
it allows us to benchmark the performance of an entropy estimator. We can draw
samples from a standard normal distribution, and find what combination of estimator,
message length, and encoding gives us an entropy estimate Ĥ sufficiently close to
the theoretically derived value H. For example, Figure 18.1 plots the bootstrapped
distributions of entropy estimates under 10, 7, 5, and 2 letter encodings, on messages
of length 100, using Kontoyiannis’ method. For alphabets of at least 10 letters, the
algorithm in Snippet 18.4 delivers the correct answer. When alphabets are too small,
information is discarded and entropy is underestimated.

Second, we can use the above equation to connect entropy with volatility, by noting

that 𝜎H = eH−1∕2√
2𝜋

. This gives us an entropy-implied volatility estimate, provided that

returns are indeed drawn from a Normal distribution.

18.7 ENTROPY AND THE GENERALIZED MEAN

Here is an interesting way of thinking about entropy. Consider a set of real numbers
x = {xi}i=1,…,n and weights p = {pi}i=1,…,n, such that 0 ≤ pi ≤ 1, ∀i and

∑n
i=1 pi =

1. The generalized weighted mean of x with weights p on a power q ≠ 0 is defined as

Mq[x, p] =

(
n∑

i=1

pix
q
i

)1∕q

For q < 0, we must require that xi > 0,∀i. The reason this is a generalized mean
is that other means can be obtained as special cases:

� Minimum: limq→−∞ Mq[x, p] = mini{xi}
� Harmonic mean: M−1[x, p] =

(∑n
i=1 pix

−1
i

)−1

� Geometric mean: limq→0 Mq[x, p] = e
∑n

i=1 pilog[xi] =
∏n

i=1 xi
pi

� Arithmetic mean: M1[x, {n−1}i=1,…,n] = n−1 ∑n
i=1 xi

272 ENTROPY FEATURES

1.551.501.45

(a)

1.401.351.30
0

5

10

15

D
eg

re
e

20

25

30
h = 1.42

None
count
mean
std
min
25%
50%
75%
max

901.0
1.43
0.03
1.33
1.41
1.43
1.46
1.52

1.351.301.251.20

(b)

1.151.10
0

5

10

15

D
eg

re
e

20

25
h = 1.42

None
count
mean
std
min
25%
50%
75%
max

901.0
1.21
0.04
1.11
1.18
1.21
1.24
1.32

FIGURE 18.1 Distribution of entropy estimates under 10 (top), 7 (bottom), letter encodings, on mes-
sages of length 100

ENTROPY AND THE GENERALIZED MEAN 273

1.081.061.041.02

(c)

1.000.980.960.94
0

5

10

15

D
eg

re
e

20

25
h = 1.42

None
count
mean
std
min
25%
50%
75%
max

901.0
1.01
0.03
0.95
0.99
1.01
1.03
1.08

0.540.520.500.480.46

(d)

0.440.420.40
0

5

10

15

D
eg

re
e

25

20

40

35

30

h = 1.42

None
count
mean
std
min
25%
50%
75%
max

901.0
0.46
0.02
0.41
0.45
1.46
1.47
1.52

FIGURE 18.1 (Continued) Distribution of entropy estimates under 5 (top), and 2 (bottom) letter encod-
ings, on messages of length 100

274 ENTROPY FEATURES

� Weighted mean: M1[x, p] =
∑n

i=1 pixi

� Quadratic mean: M2[x, p] =
(∑n

i=1 pix
2
i

)1∕2

� Maximum: limq→+∞ Mq[x, p] = maxi{xi}

In the context of information theory, an interesting special case is x = {pi}i=1,…,n,
hence

Mq[p, p] =

(
n∑

i=1

pip
q
i

)1∕q

Let us define the quantity Nq[p] = 1
Mq−1[p,p]

, for some q ≠ 1. Again, for q < 1 in

Nq[p], we must have pi > 0,∀i. If pi =
1
k

for k ∈ [1, n] different indices and pi = 0
elsewhere, then the weight is spread evenly across k different items, and Nq[p] = k
for q > 1. In other words, Nq[p] gives us the effective number or diversity of items in
p, according to some weighting scheme set by q.

Using Jensen’s inequality, we can prove that
𝜕Mq[p,p]

𝜕q
≥ 0, hence

𝜕Nq[p]

𝜕q
≤ 0.

Smaller values of q assign a more uniform weight to elements of the partition, giving
relatively more weight to less common elements, and limq→0 Nq[p] is simply the total
number of nonzero pi.

Shannon’s entropy is H[p] =
∑n

i=1 −pilog[pi] = −log[limq→0 Mq[p]] =
log[limq→1 Nq[p]]. This shows that entropy can be interpreted as the logarithm
of the effective number of items in a list p, where q → 1. Figure 18.2 illustrates how
the log effective numbers for a family of randomly generated p arrays converge to

20 40 60

q

80 1000

3.4

3.6

3.8

4.0

lo
g

ef
fe

ct
iv

e
nu

m
be

r 4.2

4.4
q = 1 limit

FIGURE 18.2 Log effective numbers for a family of randomly generated p arrays

A FEW FINANCIAL APPLICATIONS OF ENTROPY 275

Shannon’s entropy as q approaches 1. Notice, as well, how their behavior stabilizes
as q grows large.

Intuitively, entropy measures information as the level of diversity contained in a
random variable. This intuition is formalized through the notion of generalized mean.
The implication is that Shannon’s entropy is a special case of a diversity measure
(hence its connection with volatility). We can now define and compute alternative
measures of diversity, other than entropy, where q ≠ 1.

18.8 A FEW FINANCIAL APPLICATIONS OF ENTROPY

In this section we will introduce a few applications of entropy to the modelling of
financial markets.

18.8.1 Market Efficiency

When arbitrage mechanisms exploit the complete set of opportunities, prices instan-
taneously reflect the full amount of available information, becoming unpredictable
(i.e., a martingale), with no discernable patterns. Conversely, when arbitrage is not
perfect, prices contain incomplete amounts of information, which gives rise to pre-
dictable patterns. Patterns occur when a string contains redundant information, which
enables its compression. The entropy rate of a string determines its optimal com-
pression rate. The higher the entropy, the lower the redundancy and the greater the
informational content. Consequently, the entropy of a price string tells us the degree
of market efficiency at a given point in time. A “decompressed” market is an effi-
cient market, because price information is non-redundant. A “compressed” market is
an inefficient market, because price information is redundant. Bubbles are formed in
compressed (low entropy) markets.

18.8.2 Maximum Entropy Generation

In a series of papers, Fiedor [2014a, 2014b, 2014c] proposes to use Kontoyiannis
[1997] to estimate the amount of entropy present in a price series. He argues that,
out of the possible future outcomes, the one that maximizes entropy may be the most
profitable, because it is the one that is least predictable by frequentist statistical mod-
els. It is the black swan scenario most likely to trigger stop losses, thus generating a
feedback mechanism that will reinforce and exacerbate the move, resulting in runs in
the signs of the returns time series.

18.8.3 Portfolio Concentration

Consider an NxN covariance matrix V, computed on returns. First, we compute an
eigenvalue decomposition of the matrix, VW = WΛ. Second, we obtain the factor
loadings vector as f

𝜔
= W′

𝜔, where 𝜔 is the vector of allocations,
∑N

n=1 𝜔n = 1.1

1 Alternatively, we could have worked with a vector of holdings, should the covariance matrix had been
computed on price changes.

276 ENTROPY FEATURES

Third, we derive the portion of risk contributed by each principal component (Bailey
and López de Prado [2012]) as

𝜃i =
[f

𝜔
]2
i Λi,i∑N

n=1[f
𝜔

]2
nΛn,n

where
∑N

i=1 𝜃i = 1, and 𝜃i ∈ [0, 1], ∀i = 1,… , N. Fourth, Meucci [2009] proposed
the following entropy-inspired definition of portfolio concentration,

H = 1 − 1
N

e−
∑N

n=1 𝜃ilog[𝜃i]

At first, this definition of portfolio concentration may sound striking, because 𝜃i
is not a probability. The connection between this notion of concentration and entropy
is due to the generalized mean, which we discussed in Chapter 18, Section 18.7.

18.8.4 Market Microstructure

Easley et al. [1996, 1997] showed that, when the odds of good news / bad news are
even, the probability of informed trading (PIN) can be derived as

PIN = 𝛼𝜇

𝛼𝜇 + 2𝜀

where 𝜇 is the rate of arrival of informed traders, 𝜀 is the rate of arrival of uninformed
traders, and 𝛼 is the probability of an informational event. PIN can be interpreted as
the fraction of orders that arise from informed traders relative to the overall order
flow.

Within a volume bar of size V, we can classify ticks as buy or sell according to
some algorithm, such as the tick rule or the Lee-Ready algorithm. Let VB

𝜏
be the

sum of the volumes from buy ticks included in volume bar 𝜏, and VS
𝜏

the sum of the
volumes from sell ticks within volume bar 𝜏. Easley et al. [2012a, 2012b] note that
E[|VB

𝜏
− VS

𝜏
|] ≈ 𝛼𝜇 and that the expected total volume is E[VB

𝜏
+ VS

𝜏
] = 𝛼𝜇 + 2𝜀. By

using a volume clock (Easley et al. [2012c]), we can set the value of E[VB
𝜏
+ VS

𝜏
] =

𝛼𝜇 + 2𝜀 = V exogenously. This means that, under a volume clock, PIN reduces to

VPIN = 𝛼𝜇

𝛼𝜇 + 2𝜀
= 𝛼𝜇

V
≈ 1

V
E
[||2VB

𝜏
− V||] = E

[||2vB
𝜏
− 1||]

where vB
𝜏
= VB

𝜏

V
. Note that 2vB

𝜏
− 1 represents the order flow imbalance, OI

𝜏
, which is

a bounded real-valued variable, where OI
𝜏
∈ [−1, 1]. The VPIN theory thus provides

a formal link between the probability of informed trading (PIN) and the persistency
of order flow imbalances under a volume clock. See Chapter 19 for further details on
this microstructural theory.

EXERCISES 277

Persistent order flow imbalance is a necessary, non-sufficient condition for adverse
selection. For market makers to provide liquidity to informed traders, that order flow
imbalance |OI

𝜏
| must also have been relatively unpredictable. In other words, market

makers are not adversely selected when their prediction of order flow imbalance is
accurate, even if |OI

𝜏
| ≫ 0. In order to determine the probability of adverse selection,

we must determine how unpredictable the order flow imbalance is. We can determine
this by applying information theory.

Consider a long sequence of symbols. When that sequence contains few redundant
patterns, it encompasses a level of complexity that makes it hard to describe and pre-
dict. Kolmogorov [1965] formulated this connection between redundancy and com-
plexity. In information theory, lossless compression is the task of perfectly describing
a sequence with as few bits as possible. The more redundancies a sequence contains,
the greater compression rates can be achieved. Entropy characterizes the redundancy
of a source, hence its Kolmogorov complexity and its predictability. We can use this
connection between the redundancy of a sequence and its unpredictability (by market
makers) to derive the probability of adverse selection.

Here we will discuss one particular procedure that derives the probability of
adverse selection as a function of the complexity ingrained in the order flow imbal-
ance. First, given a sequence of volume bars indexed by 𝜏 = 1,… , N, each bar
of size V, we determine the portion of volume classified as buy, vB

𝜏
∈ [0, 1]. Sec-

ond, we compute the q-quantiles on {vB
𝜏
} that define a set K of q disjoint subsets,

K = {K1,… , Kq}. Third, we produce a mapping from each vB
𝜏

to one of the dis-
joint subsets, f : vB

𝜏
→ {1,… , q}, where f [vB

𝜏
] = i ⇔ vB

𝜏
∈ Ki, ∀i ∈ [1, q]. Fourth, we

quantize {vB
𝜏
} by assigning to each value vB

𝜏
the index of the subset K it belongs to,

f [vB
𝜏

]. This results in a translation of the set of order imbalances {vB
𝜏
} into a quan-

tized message X = [f [vB
1], f [vB

2],… , f [vB
N]]. Fifth, we estimate the entropy H[X] using

Kontoyiannis’ Lempel-Ziv algorithm. Sixth, we derive the cumulative distribution
function, F[H[X]], and use the time series of {F[H[X

𝜏
]]}

𝜏=1,…,N as a feature to pre-
dict adverse selection.

EXERCISES

18.1 Form dollar bars on E-mini S&P 500 futures:

(a) Quantize the returns series using the binary method.

(b) Quantize the returns series using the quantile encoding, using 10 letters.

(c) Quantize the returns series using the sigma encoding, where 𝜎 is the stan-
dard deviation of all bar returns.

(d) Compute the entropy of the three encoded series, using the plug-in method.

(e) Compute the entropy of the three encoded series, using Kontoyiannis’
method, with a window size of 100.

18.2 Using the bars from exercise 1:

(a) Compute the returns series, {rt}.

(b) Encode the series as follows: 0 if rtrt−1 < 0, and 1 if rtrt−1 ≥ 0.

278 ENTROPY FEATURES

(c) Partition the series into 1000 non-overlapping subsets of equal size (you
may have to drop some observations at the beginning).

(d) Compute the entropy of each of the 1000 encoded subsets, using the plug-
in method.

(e) Compute the entropy of each of the 1000 encoded subsets, using the Kon-
toyiannis method, with a window size of 100.

(f) Compute the correlation between results 2.d and 2.e.

18.3 Draw 1000 observations from a standard Normal distribution:

(a) What is the true entropy of this process?

(b) Label the observations according to 8 quantiles.

(c) Estimate the entropy using the plug-in method.

(d) Estimate the entropy using the Kontoyiannis method:

(i) using a window size of 10.

(ii) using a window size of 100.

18.4 Using the draws from exercise 3, {xt}t=1,…,1000:

(a) Compute yt = 𝜌yt−1 + xt, where 𝜌 = .5, y0 = 0.

(b) Label {yt} the observations according to 8 quantiles.

(c) Estimate the entropy using the plug-in method.

(d) Estimate the entropy using the Kontoyiannis method

(i) using a window size of 10.

(ii) using a window size of 100.

18.5 Suppose a portfolio of 10 holdings with equal dollar allocations.

(a) The portion of the total risk contributed by the ith principal component is
1

10
, i = 1,… , 10. What is the portfolio’s entropy?

(b) The portion of the total risk contributed by the ith principal component is
1 − i

55
, i = 1,… , 10. What is the portfolio’s entropy?

(c) The portion of the total risk contributed by the ith principal compo-
nent is 𝛼 1

10
+ (1 − 𝛼)(1 − i

55
), i = 1,… , 10, 𝛼 ∈ [0, 1]. Plot the portolio’s

entropy as a function of 𝛼.

REFERENCES

Bailey, D. and M. López de Prado (2012): “Balanced baskets: A new approach to trading and
hedging risks.” Journal of Investment Strategies, Vol. 1, No. 4, pp. 21–62. Available at
https://ssrn.com/abstract=2066170.

Easley D., M. Kiefer, M. O’Hara, and J. Paperman (1996): “Liquidity,information, and infrequently
traded stocks.” Journal of Finance, Vol. 51, No. 4, pp. 1405–1436.

Easley D., M. Kiefer and, M. O’Hara (1997): “The information content of the trading process.”
Journal of Empirical Finance, Vol. 4, No. 2, pp. 159–185.

Easley, D., M. López de Prado, and M. O’Hara (2012a): “Flow toxicity and liquidity in a high
frequency world.” Review of Financial Studies, Vol. 25, No. 5, pp. 1547–1493.

let &hbox {char '046}https://ssrn.com/abstract=2066170.
https://ssrn.com/abstract=2066170.

BIBLIOGRAPHY 279

Easley, D., M. López de Prado, and M. O’Hara (2012b): “The volume clock: Insights into the high
frequency paradigm.” Journal of Portfolio Management, Vol. 39, No. 1, pp. 19–29.

Gao, Y., I. Kontoyiannis and E. Bienestock (2008): “Estimating the entropy of binary time series:
Methodology, some theory and a simulation study.” Working paper, arXiv. Available at
https://arxiv.org/abs/0802.4363v1.

Fiedor, Pawel (2014a): “Mutual information rate-based networks in financial markets.” Working
paper, arXiv. Available at https://arxiv.org/abs/1401.2548.

Fiedor, Pawel (2014b): “Information-theoretic approach to lead-lag effect on financial markets.”
Working paper, arXiv. Available at https://arxiv.org/abs/1402.3820.

Fiedor, Pawel (2014c): “Causal non-linear financial networks.” Working paper, arXiv. Available at
https://arxiv.org/abs/1407.5020.

Hausser, J. and K. Strimmer (2009): “Entropy inference and the James-Stein estimator, with applica-
tion to nonlinear gene association networks,” Journal of Machine Learning Research, Vol. 10,
pp. 1469–1484. http://www.jmlr.org/papers/volume10/hausser09a/hausser09a.pdf.

Kolmogorov, A. (1965): “Three approaches to the quantitative definition of information.” Problems
in Information Transmission, Vol. 1, No. 1, pp. 1–7.

Kontoyiannis, I. (1997): “The complexity and entropy of literary styles”, NSF Technical Report #
97.

Kontoyiannis (1998): “Asymptotically optimal lossy Lempel-Ziv coding,” ISIT, Cambridge, MA,
August 16–August 21.

MacKay, D. (2003): Information Theory, Inference, and Learning Algorithms, 1st ed. Cambridge
University Press.

Meucci, A. (2009): “Managing diversification.” Risk Magazine, Vol. 22, pp. 74–79.
Norwich, K. (2003): Information, Sensation and Perception, 1st ed. Academic Press.
Ornstein, D.S. and B. Weiss (1993): “Entropy and data compression schemes.” IEEE Transactions

on Information Theory, Vol. 39, pp. 78–83.
Shannon, C. (1948): “A mathematical theory of communication.” Bell System Technical Journal,

Vol. 27, No. 3, pp. 379–423.
Ziv, J. and A. Lempel (1978): “Compression of individual sequences via variable-rate coding.” IEEE

Transactions on Information Theory, Vol. 24, No. 5, pp. 530–536.

BIBLIOGRAPHY

Easley, D., R. Engle, M. O’Hara, and L. Wu (2008): “Time-varying arrival rates of informed and
uninformed traders.” Journal of Financial Econometrics, Vol. 6, No. 2, pp. 171–207.

Easley, D., M. López de Prado, and M. O’Hara (2011): “The microstructure of the flash crash.”
Journal of Portfolio Management, Vol. 37, No. 2, pp. 118–128.

Easley, D., M. López de Prado, and M. O’Hara (2012c): “Optimal execution horizon.” Mathematical
Finance, Vol. 25, No. 3, pp. 640–672.

Gnedenko, B. and I. Yelnik (2016): “Minimum entropy as a measure of effective dimensionality.”
Working paper. Available at https://ssrn.com/abstract=2767549.

let &hbox {char '046}https://arxiv.org/abs/0802.4363v1.
https://arxiv.org/abs/0802.4363v1.
let &hbox {char '046}https://arxiv.org/abs/1401.2548.
https://arxiv.org/abs/1401.2548.
let &hbox {char '046}https://arxiv.org/abs/1402.3820.
https://arxiv.org/abs/1402.3820.
let &hbox {char '046}https://arxiv.org/abs/1407.5020.
https://arxiv.org/abs/1407.5020.
let &hbox {char '046}http://www.jmlr.org/papers/volume10/hausser09a/hausser09a.pdf.
http://www.jmlr.org/papers/volume10/hausser09a/hausser09a.pdf.
let &hbox {char '046}https://ssrn.com/abstract=2767549.
https://ssrn.com/abstract=2767549.

CHAPTER 19

Microstructural Features

19.1 MOTIVATION

Market microstructure studies “the process and outcomes of exchanging assets under
explicit trading rules” (O’Hara [1995]). Microstructural datasets include primary
information about the auctioning process, like order cancellations, double auction
book, queues, partial fills, aggressor side, corrections, replacements, etc. The main
source is Financial Information eXchange (FIX) messages, which can be purchased
from exchanges. The level of detail contained in FIX messages provides researchers
with the ability to understand how market participants conceal and reveal their inten-
tions. That makes microstructural data one of the most important ingredients for
building predictive ML features.

19.2 REVIEW OF THE LITERATURE

The depth and complexity of market microstructure theories has evolved over time,
as a function of the amount and variety of the data available. The first generation of
models used solely price information. The two foundational results from those early
days are trade classification models (like the tick rule) and the Roll [1984] model. The
second generation of models came after volume datasets started to become available,
and researchers shifted their attention to study the impact that volume has on prices.
Two examples for this generation of models are Kyle [1985] and Amihud [2002].

The third generation of models came after 1996, when Maureen O’Hara, David
Easley, and others published their “probability of informed trading” (PIN) theory
(Easley et al. [1996]). This constituted a major breakthrough, because PIN explained
the bid-ask spread as the consequence of a sequential strategic decision between liq-
uidity providers (market makers) and position takers (informed traders). Essentially,
it illustrated that market makers were sellers of the option to be adversely selected by

281

282 MICROSTRUCTURAL FEATURES

informed traders, and the bid-ask spread is the premium they charge for that option.
Easley et al. [2012a, 2012b] explain how to estimate VPIN, a high-frequency estimate
of PIN under volume-based sampling.

These are the main theoretical frameworks used by the microstructural literature.
O’Hara [1995] and Hasbrouck [2007] offer a good compendium of low-frequency
microstructural models. Easley et al. [2013] present a modern treatment of high-
frequency microstructural models.

19.3 FIRST GENERATION: PRICE SEQUENCES

The first generation of microstructural models concerned themselves with estimating
the bid-ask spread and volatility as proxies for illiquidity. They did so with limited
data and without imposing a strategic or sequential structure to the trading process.

19.3.1 The Tick Rule

In a double auction book, quotes are placed for selling a security at various price levels
(offers) or for buying a security at various price levels (bids). Offer prices always
exceed bid prices, because otherwise there would be an instant match. A trade occurs
whenever a buyer matches an offer, or a seller matches a bid. Every trade has a buyer
and a seller, but only one side initiates the trade.

The tick rule is an algorithm used to determine a trade’s aggressor side. A buy-
initiated trade is labeled “1”, and a sell-initiated trade is labeled “-1”, according to
this logic:

bt =
⎧⎪⎨⎪⎩

1 if Δpt > 0
−1 if Δpt < 0
bt−1 if Δpt = 0

where pt is the price of the trade indexed by t = 1,…, T , and b0 is arbitrarily set to
1. A number of studies have determined that the tick rule achieves high classifica-
tion accuracy, despite its relative simplicity (Aitken and Frino [1996]). Competing
classification methods include Lee and Ready [1991] and Easley et al. [2016].

Transformations of the {bt} series can result in informative features. Such trans-
formations include: (1) Kalman Filters on its future expected value, Et[bt+1]; (2)
structural breaks on such predictions (Chapter 17), (3) entropy of the {bt} sequence
(Chapter 18); (4) t-values from Wald-Wolfowitz’s tests of runs on {bt}; (5) fractional
differentiation of the cumulative {bt} series,

∑t
i=1 bi (Chapter 5); etc.

19.3.2 The Roll Model

Roll [1984] was one of the first models to propose an explanation for the effective
bid-ask spread at which a security trades. This is useful in that bid-ask spreads are a
function of liquidity, hence Roll’s model can be seen as an early attempt to measure

FIRST GENERATION: PRICE SEQUENCES 283

the liquidity of a security. Consider a mid-price series {mt}, where prices follow a
Random Walk with no drift,

mt = mt−1 + ut

hence price changes Δmt = mt − mt−1 are independently and identically drawn from
a Normal distribution

Δmt∼N
[
0, 𝜎2

u

]
These assumptions are, of course, against all empirical observations, which sug-

gest that financial time series have a drift, they are heteroscedastic, exhibit serial
dependency, and their returns distribution is non-Normal. But with a proper sampling
procedure, as we saw in Chapter 2, these assumptions may not be too unrealistic. The
observed prices, {pt}, are the result of sequential trading against the bid-ask spread:

pt = mt + btc

where c is half the bid-ask spread, and bt ∈ {−1, 1} is the aggressor side. The Roll
model assumes that buys and sells are equally likely, P[bt = 1] = P[bt = −1] = 1

2
,

serially independent, E[btbt−1] = 0, and independent from the noise, E[btut] = 0.
Given these assumptions, Roll derives the values of c and 𝜎

2
u as follows:

𝜎
2 [Δpt

]
= E

[(
Δpt

)2
]
−
(
E
[(
Δpt

)])2 = 2c2 + 𝜎
2
u

𝜎

[
Δpt,Δpt−1

]
= −c2

resulting in c =
√

max{0,−𝜎[Δpt,Δpt−1]} and 𝜎
2
u = 𝜎

2[Δpt] + 2𝜎[Δpt,Δpt−1]. In
conclusion, the bid-ask spread is a function of the serial covariance of price changes,
and the true (unobserved) price’s noise, excluding microstructural noise, is a function
of the observed noise and the serial covariance of price changes.

The reader may question the need for Roll’s model nowadays, when datasets
include bid-ask prices at multiple book levels. One reason the Roll model is still
in use, despite its limitations, is that it offers a relatively direct way to determine the
effective bid-ask spread of securities that are either rarely traded, or where the pub-
lished quotes are not representative of the levels at which market makers’ are willing
to provide liquidity (e.g., corporate, municipal, and agency bonds). Using Roll’s esti-
mates, we can derive informative features regarding the market’s liquidity conditions.

19.3.3 High-Low Volatility Estimator

Beckers [1983] shows that volatility estimators based on high-low prices are more
accurate than the standard estimators of volatility based on closing prices. Parkinson

284 MICROSTRUCTURAL FEATURES

[1980] derives that, for continuously observed prices following a geometric Brownian
motion,

E

[
1
T

T∑
t=1

(
log

[
Ht

Lt

])2
]
= k1𝜎

2
HL

E

[
1
T

T∑
t=1

(
log

[
Ht

Lt

])]
= k2𝜎HL

where k1 = 4log[2], k2 =
√

8
𝜋

, Ht is the high price for bar t, and Lt is the low price
for bar t. Then the volatility feature 𝜎HL can be robustly estimated based on observed
high-low prices.

19.3.4 Corwin and Schultz

Building on the work of Beckers [1983], Corwin and Schultz [2012] introduce a bid-
ask spread estimator from high and low prices. The estimator is based on two prin-
ciples: First, high prices are almost always matched against the offer, and low prices
are almost always matched against the bid. The ratio of high-to-low prices reflects
fundamental volatility as well as the bid-ask spread. Second, the component of the
high-to-low price ratio that is due to volatility increases proportionately with the time
elapsed between two observations.

Corwin and Schultz show that the spread, as a percentage of price, can be estimated
as

St =
2 (e𝛼t − 1)

1 + e𝛼t

where

𝛼t =
√

2𝛽t −
√
𝛽t

3 − 2
√

2
−
√

𝛾t

3 − 2
√

2

𝛽t = E

[
1∑

j=0

[
log

(Ht−j

Lt−j

)]2
]

𝛾t =
[

log

(
Ht−1,t

Lt−1,t

)]2

and Ht−1,t is the high price over 2 bars (t − 1 and t), whereas Lt−1,t is the low price over
2 bars (t − 1 and t). Because 𝛼t < 0 ⇒ St < 0, the authors recommend setting negative

FIRST GENERATION: PRICE SEQUENCES 285

alphas to 0 (see Corwin and Schultz [2012], p. 727). Snippet 19.1 implements this
algorithm. The corwinSchultz function receives two arguments, a series dataframe
with columns (High,Low), and an integer value sl that defines the sample length used
to estimate 𝛽t.

SNIPPET 19.1 IMPLEMENTATION OF THE CORWIN-SCHULTZ
ALGORITHM

def getBeta(series,sl):
hl=series[['High','Low']].values
hl=np.log(hl[:,0]/hl[:,1])**2
hl=pd.Series(hl,index=series.index)
beta=pd.stats.moments.rolling_sum(hl,window=2)
beta=pd.stats.moments.rolling_mean(beta,window=sl)
return beta.dropna()

#———————————————————————————————————————-
def getGamma(series):

h2=pd.stats.moments.rolling_max(series['High'],window=2)
l2=pd.stats.moments.rolling_min(series['Low'],window=2)
gamma=np.log(h2.values/l2.values)**2
gamma=pd.Series(gamma,index=h2.index)
return gamma.dropna()

#———————————————————————————————————————-
def getAlpha(beta,gamma):

den=3–2*2**.5
alpha=(2**.5–1)*(beta**.5)/den
alpha-=(gamma/den)**.5
alpha[alpha<0]=0 # set negative alphas to 0 (see p.727 of paper)
return alpha.dropna()

#———————————————————————————————————————-
def corwinSchultz(series,sl=1):

Note: S<0 iif alpha<0
beta=getBeta(series,sl)
gamma=getGamma(series)
alpha=getAlpha(beta,gamma)
spread=2*(np.exp(alpha)-1)/(1+np.exp(alpha))
startTime=pd.Series(series.index[0:spread.shape[0]],index=spread.index)
spread=pd.concat([spread,startTime],axis=1)
spread.columns=['Spread','Start_Time'] # 1st loc used to compute beta
return spread

Note that volatility does not appear in the final Corwin-Schultz equations. The
reason is that volatility has been replaced by its high/low estimator. As a byproduct
of this model, we can derive the Becker-Parkinson volatility as shown in Snippet 19.2.

286 MICROSTRUCTURAL FEATURES

SNIPPET 19.2 ESTIMATING VOLATILITY FOR HIGH-LOW PRICES

def getSigma(beta,gamma):
k2=(8/np.pi)**.5
den=3–2*2**.5
sigma=(2**-.5–1)*beta**.5/(k2*den)
sigma+=(gamma/(k2**2*den))**.5
sigma[sigma<0]=0
return sigma

This procedure is particularly helpful in the corporate bond market, where there
is no centralized order book, and trades occur through bids wanted in competition
(BWIC). The resulting feature, bid-ask spread S, can be estimated recursively over a
rolling window, and values can be smoothed using a Kalman filter.

19.4 SECOND GENERATION: STRATEGIC TRADE MODELS

Second generation microstructural models focus on understanding and measuring
illiquidity. Illiquidity is an important informative feature in financial ML models,
because it is a risk that has an associated premium. These models have a stronger
theoretical foundation than first-generation models, in that they explain trading as
the strategic interaction between informed and uninformed traders. In doing so, they
pay attention to signed volume and order flow imbalance.

Most of these features are estimated through regressions. In practice, I have
observed that the t-values associated with these microstructural estimates are more
informative than the (mean) estimates themselves. Although the literature does not
mention this observation, there is a good argument for preferring features based on
t-values over features based on mean values: t-values are re-scaled by the standard
deviation of the estimation error, which incorporates another dimension of informa-
tion absent in mean estimates.

19.4.1 Kyle’s Lambda

Kyle [1985] introduced the following strategic trade model. Consider a risky asset
with terminal value v ∼ N[p0,Σ0], as well as two traders:

� A noise trader who trades a quantity u = N[0, 𝜎2
u], independent of v.

� An informed trader who knows v and demands a quantity x, through a market
order.

The market maker observes the total order flow y = x + u, and sets a price p accord-
ingly. In this model, market makers cannot distinguish between orders from noise

SECOND GENERATION: STRATEGIC TRADE MODELS 287

traders and informed traders. They adjust prices as a function of the order flow imbal-
ance, as that may indicate the presence of an informed trader. Hence, there is a positive
relationship between price change and order flow imbalance, which is called market
impact.

The informed trader conjectures that the market maker has a linear price adjust-
ment function, p = 𝜆y + 𝜇, where 𝜆 is an inverse measure of liquidity. The informed
trader’s profits are 𝜋 = (v − p)x, which are maximized at x = v−𝜇

2𝜆
, with second order

condition 𝜆 > 0.
Conversely, the market maker conjectures that the informed trader’s demand is a

linear function of v: x = 𝛼 + 𝛽v, which implies 𝛼 = − 𝜇

2𝜆
and 𝛽 = 1

2𝜆
. Note that lower

liquidity means higher 𝜆, which means lower demand from the informed trader.
Kyle argues that the market maker must find an equilibrium between profit max-

imization and market efficiency, and that under the above linear functions, the only
possible solution occurs when

𝜇 = p0

𝛼 = p0

√
𝜎

2
u

Σ0

𝜆 = 1
2

√
Σ0

𝜎
2
u

𝛽 =

√
𝜎

2
u

Σ0

Finally, the informed trader’s expected profit can be rewritten as

E [𝜋] =
(
v − p0

)2

2

√
𝜎

2
u

Σ0
= 1

4𝜆

(
v − p0

)2

The implication is that the informed trader has three sources of profit:

� The security’s mispricing.
� The variance of the noise trader’s net order flow. The higher the noise, the easier

the informed trader can conceal his intentions.
� The reciprocal of the terminal security’s variance. The lower the volatility, the

easier to monetize the mispricing.

288 MICROSTRUCTURAL FEATURES

2.00
1e–3

1.751.501.251.000.750.500.250.00
0

2000

4000

6000

8000

10000

12000

14000

16000

FIGURE 19.1 Kyle’s Lambdas Computed on E-mini S&P 500 Futures

In Kyle’s model, the variable 𝜆 captures price impact. Illiquidity increases with
uncertainty about v and decreases with the amount of noise. As a feature, it can be
estimated by fitting the regression

Δpt = 𝜆

(
btVt

)
+ 𝜀t

where {pt} is the time series of prices, {bt} is the time series of aggressor flags, {Vt} is
the time series of traded volumes, and hence {btVt} is the time series of signed volume
or net order flow. Figure 19.1 plots the histogram of Kyle’s lambdas estimated on the
E-mini S&P 500 futures series.

19.4.2 Amihud’s Lambda

Amihud [2002] studies the positive relationship between absolute returns and illiq-
uidity. In particular, he computes the daily price response associated with one dollar
of trading volume, and argues its value is a proxy of price impact. One possible imple-
mentation of this idea is

|||Δlog
[
p̃
𝜏

]||| = 𝜆

∑
t∈B

𝜏

(
ptVt

)
+ 𝜀

𝜏

where B
𝜏

is the set of trades included in bar 𝜏, p̃
𝜏

is the closing price of bar 𝜏, and
ptVt is the dollar volume involved in trade t ∈ B

𝜏
. Despite its apparent simplicity,

Hasbrouck [2009] found that daily Amihud’s lambda estimates exhibit a high rank

SECOND GENERATION: STRATEGIC TRADE MODELS 289

1.00
1e–9

0.6 0.80.40.20.0
0

5000

10000

15000

20000

FIGURE 19.2 Amihud’s lambdas estimated on E-mini S&P 500 futures

correlation to intraday estimates of effective spread. Figure 19.2 plots the histogram
of Amihud’s lambdas estimated on the E-mini S&P 500 futures series.

19.4.3 Hasbrouck’s Lambda

Hasbrouck [2009] follows up on Kyle’s and Amihud’s ideas, and applies them to
estimating the price impact coefficient based on trade-and-quote (TAQ) data. He uses
a Gibbs sampler to produce a Bayesian estimation of the regression specification

log
[
p̃i,𝜏

]
− log

[
p̃i,𝜏−1

]
= 𝜆i

∑
t∈Bi,𝜏

(
bi,t

√
pi,tVi,t

)
+ 𝜀i,𝜏

where Bi,𝜏 is the set of trades included in bar 𝜏 for security i, with i = 1,…, I, p̃i,𝜏 is
the closing price of bar 𝜏 for security i, bi,t ∈ {−1, 1} indicates whether trade t ∈ Bi,𝜏
was buy-initiated or sell-initiated; and pi,tVi,t is the dollar volume involved in trade
t ∈ Bi,𝜏 . We can then estimate 𝜆i for every security i, and use it as a feature that
approximates the effective cost of trading (market impact).

Consistent with most of the literature, Hasbrouck recommends 5-minute time-bars
for sampling ticks. However, for the reasons discussed in Chapter 2, better results can
be achieved through stochastic sampling methods that are synchronized with market
activity. Figure 19.3 plots the histogram of Hasbrouck’s lambdas estimated on the
E-mini S&P 500 futures series.

290 MICROSTRUCTURAL FEATURES

1e–7
43210

0

2500

5000

7500

10000

12500

15000

17500

FIGURE 19.3 Hasbrouck’s lambdas estimated on E-mini S&P 500 futures

19.5 THIRD GENERATION: SEQUENTIAL TRADE MODELS

As we have seen in the previous section, strategic trade models feature a single
informed trader who can trade at multiple times. In this section we will discuss
an alternative kind of model, where randomly selected traders arrive at the market
sequentially and independently.

Since their appearance, sequential trade models have become very popular among
market makers. One reason is, they incorporate the sources of uncertainty faced by
liquidity providers, namely the probability that an informational event has taken
place, the probability that such event is negative, the arrival rate of noise traders,
and the arrival rate of informed traders. With those variables, market makers must
update quotes dynamically, and manage their inventories.

19.5.1 Probability of Information-based Trading

Easley et al. [1996] use trade data to determine the probability of information-based
trading (PIN) of individual securities. This microstructure model views trading as
a game between market makers and position takers that is repeated over multiple
trading periods.

Denote a security’s price as S, with present value S0. However, once a certain
amount of new information has been incorporated into the price, S will be either SB
(bad news) or SG (good news). There is a probability 𝛼 that new information will
arrive within the timeframe of the analysis, a probability 𝛿 that the news will be bad,

THIRD GENERATION: SEQUENTIAL TRADE MODELS 291

and a probability (1 − 𝛿) that the news will be good. These authors prove that the
expected value of the security’s price can then be computed at time t as

E
[
St

]
=
(
1 − 𝛼t

)
S0 + 𝛼t

[
𝛿tSB +

(
1 − 𝛿t

)
SG

]
Following a Poisson distribution, informed traders arrive at a rate 𝜇, and unin-

formed traders arrive at a rate 𝜀. Then, in order to avoid losses from informed traders,
market makers reach breakeven at a bid level Bt,

E
[
Bt

]
= E

[
St

]
−

𝜇𝛼t𝛿t

𝜀 + 𝜇𝛼t𝛿t

(
E
[
St

]
− SB

)
and the breakeven ask level At at time t must be,

E
[
At

]
= E

[
St

]
+

𝜇𝛼t

(
1 − 𝛿t

)
𝜀 + 𝜇𝛼t

(
1 − 𝛿t

) (SG − E
[
St

])
It follows that the breakeven bid-ask spread is determined as

E
[
At − Bt

]
=

𝜇𝛼t

(
1 − 𝛿t

)
𝜀 + 𝜇𝛼t

(
1 − 𝛿t

) (SG − E
[
St

])
+

𝜇𝛼t𝛿t

𝜀 + 𝜇𝛼t𝛿t

(
E
[
St

]
− SB

)
For the standard case when 𝛿t =

1
2
, we obtain

𝛿t =
1
2
⇒ E

[
At − Bt

]
=

𝛼t𝜇

𝛼t𝜇 + 2𝜀

(
SG − SB

)
This equation tells us that the critical factor that determines the price range at

which market makers provide liquidity is

PINt =
𝛼t𝜇

𝛼t𝜇 + 2𝜀

The subscript t indicates that the probabilities 𝛼 and 𝛿 are estimated at that point
in time. The authors apply a Bayesian updating process to incorporate information
after each trade arrives to the market.

In order to determine the value PINt, we must estimate four non-observable param-
eters, namely {𝛼, 𝛿,𝜇, 𝜀}. A maximum-likelihood approach is to fit a mixture of three
Poisson distributions,

P[VB, VS] = (1 − 𝛼)P[VB, 𝜀]P[VS, 𝜀]

+ 𝛼(𝛿P[VB, 𝜀]P[VS,𝜇 + 𝜀] + (1 − 𝛿)P[VB,𝜇 + 𝜀]P[VS, 𝜀])

292 MICROSTRUCTURAL FEATURES

where VB is the volume traded against the ask (buy-initiated trades), and VS is the
volume traded against the bid (sell-initiated trades).

19.5.2 Volume-Synchronized Probability of Informed Trading

Easley et al. [2008] proved that

E
[
VB − VS

]
= (1 − 𝛼) (𝜀 − 𝜀) + 𝛼 (1 − 𝛿) (𝜀 − (𝜇 + 𝜀)) + 𝛼𝛿 (𝜇 + 𝜀 − 𝜀)

= 𝛼𝜇 (1 − 2𝛿)

and in particular, for a sufficiently large 𝜇,

E[|VB − VS|] ≈ 𝛼𝜇

Easley et al. [2011] proposed a high-frequency estimate of PIN, which they named
volume-synchronized probability of informed trading (VPIN). This procedure adopts
a volume clock, which synchronizes the data sampling with market activity, as cap-
tured by volume (see Chapter 2). We can then estimate

1
n

n∑
𝜏=1

|||VB
𝜏
− VS

𝜏

||| ≈ 𝛼𝜇

where VB
𝜏

is the sum of volumes from buy-initiated trades within volume bar 𝜏, VS
𝜏

is
the sum of volumes from sell-initiated trades within volume bar 𝜏, and n is the number
of bars used to produce this estimate. Because all volume bars are of the same size,
V , we know that by construction

1
n

n∑
𝜏=1

(
VB
𝜏
+ VS

𝜏

)
= V = 𝛼𝜇 + 2𝜀

Hence, PIN can be estimated in high-frequency as

VPIN
𝜏
=

∑n
𝜏=1

||VB
𝜏
− VS

𝜏

||∑n
𝜏=1

(
VB
𝜏
+ VS

𝜏

) =
∑n

𝜏=1
||VB

𝜏
− VS

𝜏

||
nV

For additional details and case studies of VPIN, see Easley et al. [2013]. Using
linear regressions, Andersen and Bondarenko [2013] concluded that VPIN is not a
good predictor of volatility. However, a number of studies have found that VPIN
indeed has predictive power: Abad and Yague [2012], Bethel et al. [2012], Cheung
et al. [2015], Kim et al. [2014], Song et al. [2014], Van Ness et al. [2017], and Wei
et al. [2013], to cite a few. In any case, linear regression is a technique that was already
known to 18th-century mathematicians (Stigler [1981]), and economists should not
be surprised when it fails to recognize complex non-linear patterns in 21st-century
financial markets.

ADDITIONAL FEATURES FROM MICROSTRUCTURAL DATASETS 293

19.6 ADDITIONAL FEATURES FROM MICROSTRUCTURAL
DATASETS

The features we have studied in Sections 19.3 to 19.5 were suggested by mar-
ket microstructure theory. In addition, we should consider alternative features that,
although not suggested by the theory, we suspect carry important information about
the way market participants operate, and their future intentions. In doing so, we will
harness the power of ML algorithms, which can learn how to use these features with-
out being specifically directed by theory.

19.6.1 Distibution of Order Sizes

Easley et al. [2016] study the frequency of trades per trade size, and find that
trades with round sizes are abnormally frequent. For example, the frequency rates
quickly decay as a function of trade size, with the exception of round trade sizes
{5, 10, 20, 25, 50, 100, 200,…}. These authors attribute this phenomenon to so-
called “mouse” or “GUI” traders, that is, human traders who send orders by clicking
buttons on a GUI (Graphical User Interface). In the case of the E-mini S&P 500, for
example, size 10 is 2.9 times more frequent than size 9; size 50 is 10.9 times more
likely than size 49; size 100 is 16.8 times more frequent than size 99; size 200 is 27.2
times more likely than size 199; size 250 is 32.5 times more frequent than size 249;
size 500 is 57.1 times more frequent than size 499. Such patterns are not typical of
“silicon traders,” who usually are programmed to randomize trades to disguise their
footprint in markets.

A useful feature may be to determine the normal frequency of round-sized trades,
and monitor deviations from that expected value. The ML algorithm could, for exam-
ple, determine if a larger-than-usual proportion of round-sized trades is associated
with trends, as human traders tend to bet with a fundamental view, belief, or convic-
tion. Conversely, a lower-than-usual proportion of round-sized trades may increase
the likelihood that prices will move sideways, as silicon traders do not typically hold
long-term views.

19.6.2 Cancellation Rates, Limit Orders, Market Orders

Eisler et al. [2012] study the impact of market orders, limit orders, and quote can-
cellations. These authors find that small stocks respond differently than large stocks
to these events. They conclude that measuring these magnitudes is relevant to model
the dynamics of the bid-ask spread.

Easley et al. [2012] also argue that large quote cancellation rates may be indicative
of low liquidity, as participants are publishing quotes that do not intend to get filled.
They discuss four categories of predatory algorithms:

� Quote stuffers: They engage in “latency arbitrage.” Their strategy involves
overwhelming an exchange with messages, with the sole intention of slowing
down competing algorithms, which are forced to parse messages that only the
originators know can be ignored.

294 MICROSTRUCTURAL FEATURES

� Quote danglers: This strategy sends quotes that force a squeezed trader to
chase a price against her interests. O’Hara [2011] presents evidence of their
disruptive activities.

� Liquidity squeezers: When a distressed large investor is forced to unwind her
position, predatory algorithms trade in the same direction, draining as much
liquidity as possible. As a result, prices overshoot and they make a profit (Carlin
et al. [2007]).

� Pack hunters: Predators hunting independently become aware of one another’s
activities, and form a pack in order to maximize the chances of triggering a cas-
cading effect (Donefer [2010], Fabozzi et al. [2011], Jarrow and Protter [2011]).
NANEX [2011] shows what appears to be pack hunters forcing a stop loss.
Although their individual actions are too small to raise the regulator’s suspi-
cion, their collective action may be market-manipulative. When that is the case,
it is very hard to prove their collusion, since they coordinate in a decentralized,
spontaneous manner.

These predatory algorithms utilize quote cancellations and various order types in
an attempt to adversely select market makers. They leave different signatures in the
trading record, and measuring the rates of quote cancellation, limit orders, and market
orders can be the basis for useful features, informative of their intentions.

19.6.3 Time-Weighted Average Price Execution Algorithms

Easley et al. [2012] demonstrate how to recognize the presence of execution algo-
rithms that target a particular time-weighted average price (TWAP). A TWAP algo-
rithm is an algorithm that slices a large order into small ones, which are submitted
at regular time intervals, in an attempt to achieve a pre-defined time-weighted aver-
age price. These authors take a sample of E-mini S&P 500 futures trades between
November 7, 2010, and November 7, 2011. They divide the day into 24 hours, and
for every hour, they add the volume traded at each second, irrespective of the minute.
Then they plot these aggregate volumes as a surface where the x-axis is assigned
to volume per second, the y-axis is assigned to hour of the day, and the z-axis is
assigned to the aggregate volume. This analysis allows us to see the distribution of
volume within each minute as the day passes, and search for low-frequency traders
executing their massive orders on a chronological time-space. The largest concentra-
tions of volume within a minute tend to occur during the first few seconds, for almost
every hour of the day. This is particularly true at 00:00–01:00 GMT (around the open
of Asian markets), 05:00–09:00 GMT (around the open of U.K. and European equi-
ties), 13:00–15:00 GMT (around the open of U.S. equities), and 20:00–21:00 GMT
(around the close of U.S. equities).

A useful ML feature may be to evaluate the order imbalance at the beginning of
every minute, and determine whether there is a persistent component. This can then be
used to front-run large institutional investors, while the larger portion of their TWAP
order is still pending.

WHAT IS MICROSTRUCTURAL INFORMATION? 295

19.6.4 Options Markets

Muravyev et al. [2013] use microstructural information from U.S. stocks and
options to study events where the two markets disagree. They characterize such
disagreement by deriving the underlying bid-ask range implied by the put-call parity
quotes and comparing it to the actual bid-ask range of the stock. They conclude that
disagreements tend to be resolved in favor of stock quotes, meaning that option quotes
do not contain economically significant information. At the same time, they do find
that option trades contain information not included in the stock price. These findings
will not come as a surprise to portfolio managers used to trade relatively illiquid prod-
ucts, including stock options. Quotes can remain irrational for prolonged periods of
time, even as sparse prices are informative.

Cremers and Weinbaum [2010] find that stocks with relatively expensive calls
(stocks with both a high volatility spread and a high change in the volatility spread)
outperform stocks with relatively expensive puts (stocks with both a low volatility
spread and a low change in the volatility spread) by 50 basis points per week. This
degree of predictability is larger when option liquidity is high and stock liquidity
is low.

In line with these observations, useful features can be extracted from comput-
ing the put-call implied stock price, derived from option trades. Futures prices only
represent mean or expected future values. But option prices allow us to derive the
entire distribution of outcomes being priced. An ML algorithm can search for pat-
terns across the Greek letters quoted at various strikes and expiration dates.

19.6.5 Serial Correlation of Signed Order Flow

Toth et al. [2011] study the signed order flow of London Stock Exchange stocks,
and find that order signs are positively autocorrelated for many days. They attribute
this observation to two candidate explanations: Herding and order splitting. They
conclude that on timescales of less than a few hours, the persistence of order flow is
overwhelmingly due to splitting rather than herding.

Given that market microstructure theory attributes the persistency of order flow
imbalance to the presence of informed traders, it makes sense to measure the strength
of such persistency through the serial correlation of the signed volumes. Such a fea-
ture would be complementary to the features we studied in Section 19.5.

19.7 WHAT IS MICROSTRUCTURAL INFORMATION?

Let me conclude this chapter by addressing what I consider to be a major flaw in the
market microstructure literature. Most articles and books on this subject study asym-
metric information, and how strategic agents utilize it to profit from market makers.
But how is information exactly defined in the context of trading? Unfortunately, there
is no widely accepted definition of information in a microstructural sense, and the
literature uses this concept in a surprisingly loose, rather informal way (López de
Prado [2017]). This section proposes a proper definition of information, founded on
signal processing, that can be applied to microstructural studies.

296 MICROSTRUCTURAL FEATURES

Consider a features matrix X = {Xt}t=1,…,T that contains information typically
used by market makers to determine whether they should provide liquidity at a par-
ticular level, or cancel their passive quotes. For example, the columns could be all of
the features discussed in this chapter, like VPIN, Kyle’s lambda, cancellation rates,
etc. Matrix X has one row for each decision point. For example, a market maker may
reconsider the decision to either provide liquidity or pull out of the market every
time 10,000 contracts are traded, or whenever there is a significant change in prices
(recall sampling methods in Chapter 2), etc. First, we derive an array y = {yt}t=1,…,T
that assigns a label 1 to an observation that resulted in a market-making profit, and
labels as 0 an observation that resulted in a market-making loss (see Chapter 3 for
labeling methods). Second, we fit a classifier on the training set (X, y). Third, as new
out-of-sample observations arrive 𝜏 > T , we use the fit classifier to predict the label
ŷ
𝜏
= E

𝜏
[y

𝜏
|X]. Fourth, we derive the cross-entropy loss of these predictions, L

𝜏
, as

described in Chapter 9, Section 9.4. Fifth, we fit a kernel density estimator (KDE) on
the array of negative cross-entropy losses, {−Lt}t=T+1,…,𝜏 , to derive its cumulative
distribution function, F. Sixth, we estimate the microstructural information at time t
as 𝜙

𝜏
= F[−L

𝜏
], where 𝜙

𝜏
∈ (0, 1).

This microstructural information can be understood as the complexity faced by
market makers’ decision models. Under normal market conditions, market makers
produce informed forecasts with low cross-entropy loss, and are able to profit from
providing liquidity to position takers. However, in the presence of (asymmetrically)
informed traders, market makers produce uninformed forecasts, as measured by high
cross-entropy loss, and they are adversely selected. In other words, microstructural
information can only be defined and measured relative to the predictive power of
market makers. The implication is that {𝜙

𝜏
} should become an important feature in

your financial ML toolkit.
Consider the events of the flash crash of May 6, 2010. Market makers wrongly

predicted that their passive quotes sitting on the bid could be filled and sold back at
a higher level. The crash was not caused by a single inaccurate prediction, but by the
accumulation of thousands of prediction errors (Easley et al. [2011]). If market mak-
ers had monitored the rising cross-entropy loss of their predictions, they would have
recognized the presence of informed traders and the dangerously rising probability
of adverse selection. That would have allowed them to widen the bid-ask spread to
levels that would have stopped the order flow imbalance, as sellers would no longer
have been willing to sell at those discounts. Instead, market makers kept providing
liquidity to sellers at exceedingly generous levels, until eventually they were forced to
stop-out, triggering a liquidity crisis that shocked markets, regulators, and academics
for months and years.

EXERCISES

19.1 From a time series of E-mini S&P 500 futures tick data,

(a) Apply the tick rule to derive the series of trade signs.

(b) Compare to the aggressor’s side, as provided by the CME (FIX tag 5797).
What is the accuracy of the tick rule?

EXERCISES 297

(c) Select the cases where FIX tag 5797 disagrees with the tick rule.

(i) Can you see anything distinct that would explain the disagreement?

(ii) Are these disagreements associated with large price jumps? Or high
cancelation rates? Or thin quoted sizes?

(iii) Are these disagreements more likely to occur during periods of high
or low market activity?

19.2 Compute the Roll model on the time series of E-mini S&P 500 futures tick
data.

(a) What are the estimated values of 𝜎2
u and c?

(b) Knowing that this contract is one of the most liquid products in the world,
and that it trades at the tightest possible bid-ask spread, are these values
in line with your expectations?

19.3 Compute the high-low volatility estimator (Section19.3.3.) on E-mini S&P 500
futures:

(a) Using weekly values, how does this differ from the standard deviation of
close-to-close returns?

(b) Using daily values, how does this differ from the standard deviation of
close-to-close returns?

(c) Using dollar bars, for an average of 50 bars per day, how does this differ
from the standard deviation of close-to-close returns?

19.4 Apply the Corwin-Schultz estimator to a daily series of E-mini S&P 500
futures.

(a) What is the expected bid-ask spread?

(b) What is the implied volatility?

(c) Are these estimates consistent with the earlier results, from exercises 2
and 3?

19.5 Compute Kyle’s lambda from:

(a) tick data.

(b) a time series of dollar bars on E-mini S&P 500 futures, where

(i) bt is the volume-weighted average of the trade signs.

(ii) Vt is the sum of the volumes in that bar.

(iii) Δpt is the change in price between two consecutive bars.

19.6 Repeat exercise 5, this time applying Hasbrouck’s lambda. Are results consis-
tent?

19.7 Repeat exercise 5, this time applying Amihud’s lambda. Are results consis-
tent?

19.8 Form a time series of volume bars on E-mini S&P 500 futures,

(a) Compute the series of VPIN on May 6, 2010 (flash crash).

(b) Plot the series of VPIN and prices. What do you see?

19.9 Compute the distribution of order sizes for E-mini S&P 500 futures

(a) Over the entire period.

(b) For May 6, 2010.

298 MICROSTRUCTURAL FEATURES

(c) Conduct a Kolmogorov-Smirnov test on both distributions. Are they sig-
nificantly different, at a 95% confidence level?

19.10 Compute a time series of daily quote cancellations rates, and the portion of
market orders, on the E-mini S&P 500 futures dataset.

(a) What is the correlation between these two series? Is it statistically signif-
icant?

(b) What is the correlation between the two series and daily volatility? Is this
what you expected?

19.11 On the E-mini S&P 500 futures tick data:

(a) Compute the distribution of volume executed within the first 5 seconds of
every minute.

(b) Compute the distribution of volume executed every minute.

(c) Compute the Kolmogorov-Smirnov test on both distributions. Are they
significantly different, at a 95% confidence level?

19.12 On the E-mini S&P 500 futures tick data:

(a) Compute the first-order serial correlation of signed volumes.

(b) Is it statistically significant, at a 95% confidence level?

REFERENCES

Abad, D. and J. Yague (2012): “From PIN to VPIN.” The Spanish Review of Financial Economics,
Vol. 10, No. 2, pp.74-83.

Aitken, M. and A. Frino (1996): “The accuracy of the tick test: Evidence from the Australian Stock
Exchange.” Journal of Banking and Finance, Vol. 20, pp. 1715–1729.

Amihud, Y. and H. Mendelson (1987): “Trading mechanisms and stock returns: An empirical inves-
tigation.” Journal of Finance, Vol. 42, pp. 533–553.

Amihud, Y. (2002): “Illiquidity and stock returns: Cross-section and time-series effects.” Journal of
Financial Markets, Vol. 5, pp. 31–56.

Andersen, T. and O. Bondarenko (2013): “VPIN and the Flash Crash.” Journal of Financial Markets,
Vol. 17, pp.1-46.

Beckers, S. (1983): “Variances of security price returns based on high, low, and closing prices.”
Journal of Business, Vol. 56, pp. 97–112.

Bethel, E. W., Leinweber. D., Rubel, O., and K. Wu (2012): “Federal market information technology
in the post–flash crash era: Roles for supercomputing.” Journal of Trading, Vol. 7, No. 2, pp.
9–25.

Carlin, B., M. Sousa Lobo, and S. Viswanathan (2005): “Episodic liquidity crises. Cooperative and
predatory trading.” Journal of Finance, Vol. 42, No. 5 (October), pp. 2235–2274.

Cheung, W., R. Chou, A. Lei (2015): “Exchange-traded barrier option and VPIN.” Journal of Futures
Markets, Vol. 35, No. 6, pp. 561-581.

Corwin, S. and P. Schultz (2012): “A simple way to estimate bid-ask spreads from daily high and
low prices.” Journal of Finance, Vol. 67, No. 2, pp. 719–760.

Cremers, M. and D. Weinbaum (2010): “Deviations from put-call parity and stock return predictabil-
ity.” Journal of Financial and Quantitative Analysis, Vol. 45, No. 2 (April), pp. 335–367.

Donefer, B. (2010): “Algos gone wild. Risk in the world of automated trading strategies.” Journal
of Trading, Vol. 5, pp. 31–34.

REFERENCES 299

Easley, D., N. Kiefer, M. O’Hara, and J. Paperman (1996): “Liquidity, information, and infrequently
traded stocks.” Journal of Finance, Vol. 51, No. 4, pp. 1405–1436.

Easley, D., R. Engle, M. O’Hara, and L. Wu (2008): “Time-varying arrival rates of informed and
uninformed traders.” Journal of Financial Econometrics, Vol. 6, No. 2, pp. 171–207.

Easley, D., M. López de Prado, and M. O’Hara (2011): “The microstructure of the flash crash.”
Journal of Portfolio Management, Vol. 37, No. 2 (Winter), pp. 118–128.

Easley, D., M. López de Prado, and M. O’Hara (2012a): “Flow toxicity and liquidity in a high
frequency world.” Review of Financial Studies, Vol. 25, No. 5, pp. 1457–1493.

Easley, D., M. López de Prado, and M. O’Hara (2012b): “The volume clock: Insights into the high
frequency paradigm.” Journal of Portfolio Management, Vol. 39, No. 1, pp. 19–29.

Easley, D., M. López de Prado, and M. O’Hara (2013): High-Frequency Trading: New Realities for
Traders, Markets and Regulators, 1st ed. Risk Books.

Easley, D., M. López de Prado, and M. O’Hara (2016): “Discerning information from trade data.”
Journal of Financial Economics, Vol. 120, No. 2, pp. 269–286.

Eisler, Z., J. Bouchaud, and J. Kockelkoren (2012): “The impact of order book events: Mar-
ket orders, limit orders and cancellations.” Quantitative Finance, Vol. 12, No. 9, pp. 1395–
1419.

Fabozzi, F., S. Focardi, and C. Jonas (2011): “High-frequency trading. Methodologies and market
impact.” Review of Futures Markets, Vol. 19, pp. 7–38.

Hasbrouck, J. (2007): Empirical Market Microstructure, 1st ed. Oxford University Press.
Hasbrouck, J. (2009): “Trading costs and returns for US equities: Estimating effective costs from

daily data.” Journal of Finance, Vol. 64, No. 3, pp. 1445–1477.
Jarrow, R. and P. Protter (2011): “A dysfunctional role of high frequency trading in electronic mar-

kets.” International Journal of Theoretical and Applied Finance, Vol. 15, No. 3.
Kim, C., T. Perry, and M. Dhatt (2014): “Informed trading and price discovery around the clock.”

Journal of Alternative Investments, Vol 17, No. 2, pp. 68-81.
Kyle, A. (1985): “Continuous auctions and insider trading.” Econometrica, Vol. 53, pp. 1315–

1336.
Lee, C. and M. Ready (1991): “Inferring trade direction from intraday data.” Journal of Finance,

Vol. 46, pp. 733–746.
López de Prado, M. (2017): “Mathematics and economics: A reality check.” Journal of Portfolio

Management, Vol. 43, No. 1, pp. 5–8.
Muravyev, D., N. Pearson, and J. Broussard (2013): “Is there price discovery in equity options?”

Journal of Financial Economics, Vol. 107, No. 2, pp. 259–283.
NANEX (2011): “Strange days: June 8, 2011—NatGas Algo.” NANEX blog. Available at

www.nanex.net/StrangeDays/06082011.html.
O’Hara, M. (1995): Market Microstructure, 1st ed. Blackwell, Oxford.
O’Hara, M. (2011): “What is a quote?” Journal of Trading, Vol. 5, No. 2 (Spring), pp. 10–15.
Parkinson, M. (1980): “The extreme value method for estimating the variance of the rate of return.”

Journal of Business, Vol. 53, pp. 61–65.
Patzelt, F. and J. Bouchaud (2017): “Universal scaling and nonlinearity of aggregate price impact in

financial markets.” Working paper. Available at https://arxiv.org/abs/1706.04163.
Roll, R. (1984): “A simple implicit measure of the effective bid-ask spread in an efficient market.”

Journal of Finance, Vol. 39, pp. 1127–1139.
Stigler, Stephen M. (1981): “Gauss and the invention of least squares.” Annals of Statistics, Vol. 9,

No. 3, pp. 465–474.
Song, J, K. Wu and H. Simon (2014): “Parameter analysis of the VPIN (volume synchronized prob-

ability of informed trading) metric.” In Zopounidis, C., ed., Quantitative Financial Risk Man-
agement: Theory and Practice, 1st ed. Wiley.

Toth, B., I. Palit, F. Lillo, and J. Farmer (2011): “Why is order flow so persistent?” Working paper.
Available at https://arxiv.org/abs/1108.1632.

let &hbox {char '046}www.nanex.net/StrangeDays/06082011.html
www.nanex.net/StrangeDays/06082011.html
let &hbox {char '046}https://arxiv.org/abs/1706.04163.
https://arxiv.org/abs/1706.04163.
let &hbox {char '046}https://arxiv.org/abs/1108.1632.
https://arxiv.org/abs/1108.1632.

300 MICROSTRUCTURAL FEATURES

Van Ness, B., R. Van Ness, and S. Yildiz (2017): “The role of HFTs in order flow toxicity and stock
price variance, and predicting changes in HFTs’ liquidity provisions.” Journal of Economics
and Finance, Vol. 41, No. 4, pp. 739–762.

Wei, W., D. Gerace, and A. Frino (2013): “Informed trading, flow toxicity and the impact on intra-
day trading factors.” Australasian Accounting Business and Finance Journal, Vol. 7, No. 2,
pp. 3–24.

P A R T 5

High-Performance
Computing Recipes

Chapter 20: Multiprocessing and Vectorization, 303
Chapter 21: Brute Force and Quantum Computers, 319
Chapter 22: High-Performance Computational Intelligence and Forecasting

Technologies, 329

301

CHAPTER 20

Multiprocessing and Vectorization

20.1 MOTIVATION

Multiprocessing is essential to ML. ML algorithms are computationally intensive,
and they will require an efficient use of all your CPUs, servers, and clusters. For
this reason, most of the functions presented throughout this book were designed
for asynchronous multiprocessing. For example, we have made frequent use of a
mysterious function called mpPandasObj, without ever defining it. In this chap-
ter we will explain what this function does. Furthermore, we will study in detail
how to develop multiprocessing engines. The structure of the programs presented
in this chapter is agnostic to the hardware architecture used to execute them,
whether we employ the cores of a single server or cores distributed across mul-
tiple interconnected servers (e.g., in a high-performance computing cluster or a
cloud).

20.2 VECTORIZATION EXAMPLE

Vectorization, also known as array programming, is the simplest example of paral-
lelization, whereby an operation is applied at once to the entire set of values. As a
minimal example, suppose that you need to do a brute search through a 3-dimensional
space, with 2 nodes per dimension. The un-vectorized implementation of that Carte-
sian product will look something like Snippet 20.1. How would this code look if you
had to search through 100 dimensions, or if the number of dimensions was defined
by the user during runtime?

303

304 MULTIPROCESSING AND VECTORIZATION

SNIPPET 20.1 UN-VECTORIZED CARTESIAN PRODUCT

Cartesian product of dictionary of lists
dict0={'a':['1','2'],'b':['+','*'],'c':['!','@']}
for a in dict0['a']:

for b in dict0['b']:
for c in dict0['c']:

print {'a':a,'b':b,'c':c}

A vectorized solution would replace all explicit iterators (e.g., For. . .loops)
with matrix algebra operations or compiled iterators or generators. Snippet 20.2
implements the vectorized version of Snippet 20.1. The vectorized version is prefer-
able for four reasons: (1) slow nested For. . .loops are replaced with fast itera-
tors; (2) the code infers the dimensionality of the mesh from the dimensionality of
dict0; (3) we could run 100 dimensions without having to modify the code, or need
100 For. . .loops; and (4) under the hood, Python can run operations in C or
C + + .

SNIPPET 20.2 VECTORIZED CARTESIAN PRODUCT

Cartesian product of dictionary of lists
from itertoolsimport izip,product
dict0={'a':['1','2'],'b':['+','*'],'c':['!','@']}
jobs=(dict(izip(dict0,i)) for i in product(*dict0.values()))
for i in jobs:print i

20.3 SINGLE-THREAD VS. MULTITHREADING VS.
MULTIPROCESSING

A modern computer has multiple CPU sockets. Each CPU has many cores (proces-
sors), and each core has several threads. Multithreading is the technique by which
several applications are run in parallel on two or more threads under the same core.
One advantage of multithreading is that, because the applications share the same core,
they share the same memory space. That introduces the risk that several applications
may write on the same memory space at the same time. To prevent that from hap-
pening, the Global Interpreter Lock (GIL) assigns write access to one thread per core
at a time. Under the GIL, Python’s multithreading is limited to one thread per pro-
cessor. For this reason, Python achieves parallelism through multiprocessing rather
than through actual multithreading. Processors do not share the same memory space,
hence multiprocessing does not risk writing to the same memory space; however, that
also makes it harder to share objects between processes.

SINGLE-THREAD VS. MULTITHREADING VS. MULTIPROCESSING 305

Python functions implemented for running on a single-thread will use only a frac-
tion of a modern computer’s, server’s, or cluster’s power. Let us see an example of
how a simple task can be run inefficiently when implemented for single-thread exe-
cution. Snippet 20.3 finds the earliest time 10,000 Gaussian processes of length 1,000
touch a symmetric double barrier of width 50 times the standard deviation.

SNIPPET 20.3 SINGLE-THREAD IMPLEMENTATION OF A
ONE-TOUCH DOUBLE BARRIER

import numpy as np
#———————————————————————————————————————
def main0():

Path dependency: Sequential implementation
r=np.random.normal(0,.01,size=(1000,10000))
t=barrierTouch(r)
return

#———————————————————————————————————————
def barrierTouch(r,width=.5):

find the index of the earliest barrier touch
t,p={},np.log((1+r).cumprod(axis=0))
for j in xrange(r.shape[1]): # go through columns

for i in xrange(r.shape[0]): # go through rows
if p[i,j]>=width or p[i,j]<=-width:

t[j]=i
continue

return t
#———————————————————————————————————————
if __name__=='__main__':

import timeit
print min(timeit.Timer('main0()',setup='from __main__ import main0').repeat(5,10))

Compare this implementation with Snippet 20.4. Now the code splits the previous
problem into 24 tasks, one per processor. The tasks are then run asynchronously in
parallel, using 24 processors. If you run the same code on a cluster with 5000 CPUs,
the elapsed time will be about 1/5000 of the single-thread implementation.

SNIPPET 20.4 MULTIPROCESSING IMPLEMENTATION OF A
ONE-TOUCH DOUBLE BARRIER

import numpy as np
import multiprocessing as mp
#———————————————————————————————————————
def main1():

Path dependency: Multi-threaded implementation
r,numThreads=np.random.normal(0,.01,size=(1000,10000)),24
parts=np.linspace(0,r.shape[0],min(numThreads,r.shape[0])+1)
parts,jobs=np.ceil(parts).astype(int),[]
for i in xrange(1,len(parts)):

jobs.append(r[:,parts[i-1]:parts[i]]) # parallel jobs

306 MULTIPROCESSING AND VECTORIZATION

pool,out=mp.Pool(processes=numThreads),[]
outputs=pool.imap_unordered(barrierTouch,jobs)
for out_ in outputs:out.append(out_) # asynchronous response
pool.close();pool.join()
return

#———————————————————————————————————————
if __name__=='__main__':

import timeit
print min(timeit.Timer('main1()',setup='from __main__ import main1').repeat(5,10))

Moreover, you could implement the same code to multiprocess a vectorized func-
tion, as we did with function applyPtSlOnT1 in Chapter 3, where parallel processes
execute subroutines that include vectorized pandas objects. In this way, you will
achieve two levels of parallelization at once. But why stop there? You could achieve
three levels of parallelization at once by running multiprocessed instances of vector-
ized code in an HPC cluster, where each node in the cluster provides the third level
of parallelization. In the next sections, we will explain how multiprocessing works.

20.4 ATOMS AND MOLECULES

When preparing jobs for parallelization, it is useful to distinguish between atoms
and molecules. Atoms are indivisible tasks. Rather than carrying out all these tasks
sequentially in a single thread, we want to group them into molecules, which can be
processed in parallel using multiple processors. Each molecule is a subset of atoms
that will be processed sequentially, by a callback function, using a single thread. Par-
allelization takes place at the molecular level.

20.4.1 Linear Partitions

The simplest way to form molecules is to partition a list of atoms in subsets of equal
size, where the number of subsets is the minimum between the number of processors
and the number of atoms. For N subsets we need to find the N + 1 indices that enclose
the partitions. This logic is demonstrated in Snippet 20.5.

SNIPPET 20.5 THE linParts FUNCTION

import numpy as np
#———————————————————————————————————————
def linParts(numAtoms,numThreads):

partition of atoms with a single loop
parts=np.linspace(0,numAtoms,min(numThreads,numAtoms)+1)
parts=np.ceil(parts).astype(int)
return parts

ATOMS AND MOLECULES 307

It is common to encounter operations that involve two nested loops. For example,
computing a SADF series (Chapter 17), evaluating multiple barrier touches (Chapter
3), or computing a covariance matrix on misaligned series. In these situations, a linear
partition of the atomic tasks would be inefficient, because some processors would
have to solve a much larger number of operations than others, and the calculation
time will depend on the heaviest molecule. A partial solution is to partition the atomic
tasks in a number of jobs that is a multiple of the number of processors, then front-
load the jobs queue with the heavy molecules. In this way, the light molecules will
be assigned to processors that have completed the heavy molecules first, keeping all
CPUs busy until the job queue is depleted. In the next section, we will discuss a more
complete solution. Figure 20.1 plots a linear partition of 20 atomic tasks of equal
complexity into 6 molecules.

20.4.2 Two-Nested Loops Partitions

Consider two nested loops, where the outer loop iterates i = 1,… , N
and the inner loop iterates j = 1,… , i. We can order these atomic tasks
{(i, j)|1 ≤ j ≤ i, i = 1,… , N} as a lower triangular matrix (including the main
diagonal). This entails 1

2
N(N − 1) + N = 1

2
N(N + 1) operations, where 1

2
N(N − 1)

are off-diagonal and N are diagonal. We would like to parallelize these tasks by
partitioning the atomic tasks into M subsets of rows, {Sm}m=1,…,M , each composed

of approximately 1
2M

N(N + 1) tasks. The following algorithm determines the rows
that constitute each subset (a molecule).

20191817161514131211

Task #

10987654321

FIGURE 20.1 A linear partition of 20 atomic tasks into 6 molecules

308 MULTIPROCESSING AND VECTORIZATION

The first subset, S1, is composed of the first r1 rows, that is, S1 = {1,… , r1}, for a
total number of items 1

2
r1(r1 + 1). Then, r1 must satisfy the condition 1

2
r1(r1 + 1) =

1
2M

N(N + 1). Solving for r1, we obtain the positive root

r1 =
−1 +

√
1 + 4N(N + 1)M−1

2

The second subset contains rows S2 = {r1 + 1,… , r2}, for a total number of items
1
2
(r2 + r1 + 1)(r2 − r1). Then, r2 must satisfy the condition 1

2
(r2 + r1 + 1)(r2 − r1) =

1
2M

N(N + 1). Solving for r2, we obtain the positive root

r2 =
−1 +

√
1 + 4

(
r2

1 + r1 + N(N + 1)M−1
)

2

We can repeat the same argument for a future subset Sm = {rm−1 + 1,… , rm},
with a total number of items 1

2
(rm + rm−1 + 1)(rm − rm−1). Then, rm must satisfy the

condition 1
2
(rm + rm−1 + 1)(rm − rm−1) = 1

2M
N(N + 1). Solving for rm, we obtain the

positive root

rm =
−1 +

√
1 + 4

(
r2

m−1 + rm−1 + N(N + 1)M−1
)

2

And it is easy to see that rm reduces to r1 where rm−1 = r0 = 0. Because row num-
bers are positive integers, the above results are rounded to the nearest natural number.
This may mean that some partitions’ sizes may deviate slightly from the 1

2M
N(N + 1)

target. Snippet 20.6 implements this logic.

SNIPPET 20.6 THE nestedParts FUNCTION

def nestedParts(numAtoms,numThreads,upperTriang=False):
partition of atoms with an inner loop
parts,numThreads_=[0],min(numThreads,numAtoms)
for num in xrange(numThreads_):

part=1+4*(parts[-1]**2+parts[-1]+numAtoms*(numAtoms+1.)/numThreads_)
part=(-1+part**.5)/2.
parts.append(part)

parts=np.round(parts).astype(int)
if upperTriang: # the first rows are the heaviest

parts=np.cumsum(np.diff(parts)[::-1])
parts=np.append(np.array([0]),parts)

return parts

MULTIPROCESSING ENGINES 309

1 2 3 4 5 6 7 8

Task #

0 0
1 2 3

Taskgroup #

4 5 6

5

10

15

20

25

30

35

40

5

10

A
m

ou
nt

 o
f W

or
k

T
ot

al
 A

m
ou

nt
 o

f W
or

k

15

20

25

9 10 11 12 13 14 15 16 17 18 19 20

FIGURE 20.2 A two-nested loops partition of atoms into molecules

If the outer loop iterates i = 1,… , N and the inner loop iterates j = i,… , N, we can
order these atomic tasks {(i, j) |1 ≤ i ≤ j , j = 1,… , N} as an upper triangular matrix
(including the main diagonal). In this case, the argument upperTriang=Truemust
be passed to function nestedParts. For the curious reader, this is a special case of
the bin packing problem. Figure 20.2 plots a two-nested loops partition of atoms of
increasing complexity into molecules. Each of the resulting 6 molecules involves a
similar amount of work, even though some atomic tasks are up to 20 times harder
than others.

20.5 MULTIPROCESSING ENGINES

It would be a mistake to write a parallelization wrapper for each multiprocessed func-
tion. Instead, we should develop a library that can parallelize unknown functions,
regardless of their arguments and output structure. That is the goal of a multiprocess-
ing engine. In this section, we will study one such engine, and once you understand
the logic, you will be ready to develop your own, including all sorts of customized
properties.

20.5.1 Preparing the Jobs

In previous chapters we have made frequent use of the mpPandasObj. That function
receives six arguments, of which four are optional:

310 MULTIPROCESSING AND VECTORIZATION

� func: A callback function, which will be executed in parallel
� pdObj: A tuple containing:
◦ The name of the argument used to pass molecules to the callback function
◦ A list of indivisible tasks (atoms), which will be grouped into molecules

� numThreads: The number of threads that will be used in parallel (one processor
per thread)

� mpBatches: Number of parallel batches (jobs per core)
� linMols: Whether partitions will be linear or double-nested
� kargs: Keyword arguments needed by func

Snippet 20.7 lists how mpPandasObj works. First, atoms are grouped into
molecules, using linParts (equal number of atoms per molecule) or nestedParts
(atoms distributed in a lower-triangular structure). When mpBatches is greater than
1, there will be more molecules than cores. Suppose that we divide a task into 10
molecules, where molecule 1 takes twice as long as the rest. If we run this process in
10 cores, 9 of the cores will be idle half of the runtime, waiting for the first core to pro-
cess molecule 1. Alternatively, we could set mpBatches=10 so as to divide that task
in 100 molecules. In doing so, every core will receive equal workload, even though
the first 10 molecules take as much time as the next 20 molecules. In this example,
the run with mpBatches=10will take half of the time consumed by mpBatches=1.

Second, we form a list of jobs. A job is a dictionary containing all the informa-
tion needed to process a molecule, that is, the callback function, its keyword argu-
ments, and the subset of atoms that form the molecule. Third, we will process the
jobs sequentially if numThreads==1 (see Snippet 20.8), and in parallel otherwise
(see Section 20.5.2). The reason that we want the option to run jobs sequentially is
for debugging purposes. It is not easy to catch a bug when programs are run in mul-
tiple processors.1 Once the code is debugged, we will want to use numThreads>1.
Fourth, we stitch together the output from every molecule into a single list, series, or
dataframe.

SNIPPET 20.7 THE mpPandasObj, USED AT VARIOUS POINTS IN
THE BOOK

def mpPandasObj(func,pdObj,numThreads=24,mpBatches=1,linMols=True,**kargs):
'''
Parallelize jobs, return a DataFrame or Series
+ func: function to be parallelized. Returns a DataFrame
+ pdObj[0]: Name of argument used to pass the molecule
+ pdObj[1]: List of atoms that will be grouped into molecules
+ kargs: any other argument needed by func

1 Heisenbugs, named after Heisenberg’s uncertainty principle, describe bugs that change their behavior
when scrutinized. Multiprocessing bugs are a prime example.

MULTIPROCESSING ENGINES 311

Example: df1=mpPandasObj(func,(’molecule’,df0.index),24,**kargs)
'''
import pandas as pd
if linMols:parts=linParts(len(argList[1]),numThreads*mpBatches)
else:parts=nestedParts(len(argList[1]),numThreads*mpBatches)
jobs=[] for i in xrange(1,len(parts)):

job={pdObj[0]:pdObj[1][parts[i-1]:parts[i]],'func':func}
job.update(kargs)
jobs.append(job)

if numThreads==1:out=processJobs_(jobs)
else:out=processJobs(jobs,numThreads=numThreads)
if isinstance(out[0],pd.DataFrame):df0=pd.DataFrame()
elif isinstance(out[0],pd.Series):df0=pd.Series()
else:return out
for i in out:df0=df0.append(i)
df0=df0.sort_index()
return df0

In Section 20.5.2 we will see the multiprocessing counterpart to function
processJobs_ of Snippet 20.8.

SNIPPET 20.8 SINGLE-THREAD EXECUTION, FOR DEBUGGING

def processJobs_(jobs):
Run jobs sequentially, for debugging
out=[]
for job in jobs:

out_=expandCall(job)
out.append(out_)

return out

20.5.2 Asynchronous Calls

Python has a parallelization library called multiprocessing. This library is the
basis for multiprocessing engines such as joblib,2 which is the engine used by
many sklearn algorithms.3 Snippet 20.9 illustrates how to do an asynchronous call
to Python’s multiprocessing library. The reportProgress function keeps us
informed about the percentage of jobs completed.

2 https://pypi.python.org/pypi/joblib.
3 http://scikit-learn.org/stable/developers/performance.html#multi-core-parallelism-using-joblib-parallel.

let &hbox {char '046}https://pypi.python.org/pypi/joblib
https://pypi.python.org/pypi/joblib
http://scikit-learn.org/stable/developers/performance.html#multi-core-parallelism-using-joblib-parallel

312 MULTIPROCESSING AND VECTORIZATION

SNIPPET 20.9 EXAMPLE OF ASYNCHRONOUS CALL TO
PYTHON’S MULTIPROCESSING LIBRARY

import multiprocessing as mp
#———————————————————————————————————————
def reportProgress(jobNum,numJobs,time0,task):

Report progress as asynch jobs are completed
msg=[float(jobNum)/numJobs,(time.time()-time0)/60.]
msg.append(msg[1]*(1/msg[0]-1))
timeStamp=str(dt.datetime.fromtimestamp(time.time()))
msg=timeStamp+' '+str(round(msg[0]*100,2))+'% '+task+' done after '+ \

str(round(msg[1],2))+' minutes. Remaining '+str(round(msg[2],2))+' minutes.'
if jobNum<numJobs:sys.stderr.write(msg+'\r')
else:sys.stderr.write(msg+'\n')
return

#———————————————————————————————————————
def processJobs(jobs,task=None,numThreads=24):

Run in parallel.
jobs must contain a ’func’ callback, for expandCall
if task is None:task=jobs[0]['func'].__name__
pool=mp.Pool(processes=numThreads)
outputs,out,time0=pool.imap_unordered(expandCall,jobs),[],time.time()
Process asynchronous output, report progress
for i,out_ in enumerate(outputs,1):

out.append(out_)
reportProgress(i,len(jobs),time0,task)

pool.close();pool.join() # this is needed to prevent memory leaks
return out

20.5.3 Unwrapping the Callback

In Snippet 20.9, the instruction pool.imap_unordered() parallelized expand-
Call, by running each item in jobs (a molecule) in a single thread. Snippet 20.10
lists expandCall, which unwraps the items (atoms) in the job (molecule), and exe-
cutes the callback function. This little function is the trick at the core of the multipro-
cessing engine: It transforms a dictionary into a task. Once you understand the role
it plays, you will be able to develop your own engines.

SNIPPET 20.10 PASSING THE JOB (MOLECULE) TO THE
CALLBACK FUNCTION

def expandCall(kargs):
Expand the arguments of a callback function, kargs[’func’]
func=kargs['func']
del kargs['func']
out=func(**kargs)
return out

MULTIPROCESSING ENGINES 313

20.5.4 Pickle/Unpickle Objects

Multiprocessing must pickle methods in order to assign them to different processors.
The problem is, bound methods are not pickable.4 The work around is to add func-
tionality to your engine, that tells the library how to deal with this kind of objects.
Snippet 20.11 contains the instructions that should be listed at the top of your mul-
tiprocessing engine library. If you are curious about the precise reason this piece of
code is needed, you may want to read Ascher et al. [2005], Section 7.5.

SNIPPET 20.11 PLACE THIS CODE AT THE BEGINNING OF YOUR
ENGINE

def _pickle_method(method):
func_name=method.im_func.__name__
obj=method.im_self
cls=method.im_class
return _unpickle_method,(func_name,obj,cls)

#———————————————————————————————————————
def _unpickle_method(func_name,obj,cls):

for cls in cls.mro():
try:func=cls.__dict__[func_name]
except KeyError:pass
else:break

return func.__get__(obj,cls)
#———————————————————————————————————————
import copy_reg,types,multiprocessing as mp
copy_reg.pickle(types.MethodType,_pickle_method,_unpickle_method)

20.5.5 Output Reduction

Suppose that you divide a task into 24 molecules, with the goal that the engine assigns
each molecule to one available core. Function processJobs in Snippet 20.9 will
capture the 24 outputs and store them in a list. This approach is effective in problems
that do not involve large outputs. If the outputs must be combined into a single output,
first we will wait until the last molecule is completed, and then we will process the
items in the list. The latency added by this post-processing should not be significant,
as long as the outputs are small in size and number.

However, when the outputs consume a lot of RAM, and they need to be combined
into a single output, storing all those outputs in a list may cause a memory error. It
would be better to perform the output reduction operation on the fly, as the results
are returned asynchronously by func, rather than waiting for the last molecule to
be completed. We can address this concern by improving processJobs. In particular,

4 http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-
multiprocessing-pool-ma.

let &hbox {char '046}http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-multiprocessing-pool-ma
let &hbox {char '046}http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-multiprocessing-pool-ma
http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-multiprocessing-pool-ma
http://stackoverflow.com/questions/1816958/cant-pickle-type-instancemethod-when-using-pythons-multiprocessing-pool-ma

314 MULTIPROCESSING AND VECTORIZATION

we are going to pass three additional arguments that determine how the molecular
outputs must be reduced into a single output. Snippet 20.12 lists an enhanced version
of processJobs, which contains three new arguments:

� redux: This is a callback to the function that carries out the reduction.
For example, redux=pd.DataFrame.add, if output dataframes ought to be
summed up.

� reduxArgs: This is a dictionary that contains the keyword arguments that must
be passed to redux (if any). For example, if redux=pd.DataFrame.join,
then a possibility is reduxArgs={'how':'outer'}.

� reduxInPlace: A boolean, indicating whether the redux operation
should happen in-place or not. For example, redux=dict.update and
redux=list.append require reduxInPlace=True, since appending a list
and updating a dictionary are both in-place operations.

SNIPPET 20.12 ENHANCING processJobs TO PERFORM
ON-THE-FLY OUTPUT REDUCTION

def processJobsRedux(jobs,task=None,numThreads=24,redux=None,reduxArgs={},
reduxInPlace=False):

'''
Run in parallel
jobs must contain a ’func’ callback, for expandCall
redux prevents wasting memory by reducing output on the fly
'''
if task is None:task=jobs[0]['func'].__name__
pool=mp.Pool(processes=numThreads)
imap,out,time0=pool.imap_unordered(expandCall,jobs),None,time.time()
Process asynchronous output, report progress
for i,out_ in enumerate(imap,1):

if out is None:
if redux is None:out,redux,reduxInPlace=[out_],list.append,True
else:out=copy.deepcopy(out_)

else:
if reduxInPlace:redux(out,out_,**reduxArgs)
else:out=redux(out,out_,**reduxArgs)

reportProgress(i,len(jobs),time0,task)
pool.close();pool.join() # this is needed to prevent memory leaks
if isinstance(out,(pd.Series,pd.DataFrame)):out=out.sort_index()
return out

Now that processJobsRedux knows what to do with the outputs, we can also
enhance mpPandasObj from Snippet 20.7. In Snippet 20.13, the new function
mpJobList passes the three output reduction arguments to processJobsRedux.

MULTIPROCESSING EXAMPLE 315

This eliminates the need to process an outputed list, as mpPandasObj did, hence
saving memory and time.

SNIPPET 20.13 ENHANCING mpPandasObj TO PERFORM
ON-THE-FLY OUTPUT REDUCTION

def mpJobList(func,argList,numThreads=24,mpBatches=1,linMols=True,redux=None,
reduxArgs={},reduxInPlace=False,**kargs):

if linMols:parts=linParts(len(argList[1]),numThreads*mpBatches)
else:parts=nestedParts(len(argList[1]),numThreads*mpBatches)
jobs=[]
for i in xrange(1,len(parts)):

job={argList[0]:argList[1][parts[i-1]:parts[i]],'func':func}
job.update(kargs)
jobs.append(job)

out=processJobsRedux(jobs,redux=redux,reduxArgs=reduxArgs,
reduxInPlace=reduxInPlace,numThreads=numThreads)

return out

20.6 MULTIPROCESSING EXAMPLE

What we have presented so far in this chapter can be used to speed-up, by several
orders of magnitude, many lengthy and large-scale mathematical operations. In this
section we will illustrate an additional motivation for multiprocessing: memory man-
agement.

Suppose that you have conducted a spectral decomposition of a covariance matrix
of the form Z′Z, as we did in Chapter 8, Section 8.4.2, where Z has size TxN. This
has resulted in an eigenvectors matrix W and an eigenvalues matrix Λ, such that
Z′ZW = WΛ. Now you would like to derive the orthogonal principal components
that explain a user-defined portion of the total variance, 0 ≤ 𝜏 ≤ 1. In order to do
that, we compute P = ZW̃, where W̃ contains the first M ≤ N columns of W, such that
(
∑M

m=1 Λm,m)(
∑N

n=1 Λn,n)−1 ≥ 𝜏. The computation of P = ZW̃ can be parallelized by
noting that

P = ZW̃ =
B∑

b=1

ZbW̃b

where Zb is a sparse TxN matrix with only TxNb items (the rest are empty), W̃b is a
NxM matrix with only NbxM items (the rest are empty), and

∑B
b=1 Nb = N. This spar-

sity is created by dividing the set of columns into a partition of B subsets of columns,
and loading into Zb only the bth subset of the columns. This notion of sparsity may
sound a bit complicated at first, however Snippet 20.14 demonstrates how pandas

316 MULTIPROCESSING AND VECTORIZATION

allows us to implement it in a seamless way. Function getPCs receives W̃ through
the argument eVec. The argument molecules contains a subset of the file names in
fileNames, where each file represents Zb. The key concept to grasp is that we compute
the dot product of a Zb with the slice of the rows of W̃b defined by the columns in Zb,
and that molecular results are aggregated on the fly (redux=pd.DataFrame.add).

SNIPPET 20.14 PRINCIPAL COMPONENTS FOR A SUBSET OF THE
COLUMNS

pcs=mpJobList(getPCs,('molecules',fileNames),numThreads=24,mpBatches=1,
path=path,eVec=eVec,redux=pd.DataFrame.add)

#——————————————————————————————————————
def getPCs(path,molecules,eVec):

get principal components by loading one file at a time
pcs=None
for i in molecules:

df0=pd.read_csv(path+i,index_col=0,parse_dates=True)
if pcs is None:pcs=np.dot(df0.values,eVec.loc[df0.columns].values)
else:pcs+=np.dot(df0.values,eVec.loc[df0.columns].values)

pcs=pd.DataFrame(pcs,index=df0.index,columns=eVec.columns)
return pcs

This approach presents two advantages: First, because getPCs loads dataframes
Zb sequentially, for a sufficiently large B, the RAM is not exhausted. Second, mpJob-
List executes the molecules in parallel, hence speeding up the calculations.

In real life ML applications, we often encounter datasets where Z contains billions
of datapoints. As this example demonstrates, parallelization is not only beneficial in
terms of reducing run time. Many problems could not be solved without paralleliza-
tion, as a matter of memory limitations, even if we were willing to wait longer.

EXERCISES

20.1 Run Snippets 20.1 and 20.2 with timeit. Repeat 10 batches of 100 executions.
What is the minimum elapsed time for each snippet?

20.2 The instructions in Snippet 20.2 are very useful for unit testing, brute force
searches, and scenario analysis. Can you remember where else in the book have
you seen them? Where else could they have been used?

20.3 Adjust Snippet 20.4 to form molecules using a two-nested loops scheme, rather
than a linear scheme.

20.4 Compare with timeit:

(a) Snippet 20.4, by repeating 10 batches of 100 executions. What is the mini-
mum elapsed time for each snippet?

BIBLIOGRAPHY 317

(b) Modify Snippet 20.4 (from exercise 3), by repeating 10 batches of 100 exe-
cutions. What is the minimum elapsed time for each snippet?

20.5 Simplify Snippet 20.4 by using mpPandasObj.
20.6 Modify mpPandasObj to handle the possibility of forming molecules using a

two-nested loops scheme with an upper triangular structure.

REFERENCE

Ascher, D., A. Ravenscroft, and A. Martelli (2005): Python Cookbook, 2nd ed. O’Reilly Media.

BIBLIOGRAPHY

Gorelick, M. and I. Ozsvald (2008): High Performance Python, 1st ed. O’Reilly Media.
López de Prado, M. (2017): “Supercomputing for finance: A gentle introduction.” Lecture materials,

Cornell University. Available at https://ssrn.com/abstract=2907803.
McKinney, W. (2012): Python for Data Analysis, 1st ed. O’Reilly Media.
Palach, J. (2008): Parallel Programming with Python, 1st ed. Packt Publishing.
Summerfield, M. (2013): Python in Practice: Create Better Programs Using Concurrency, Libraries,

and Patterns, 1st ed. Addison-Wesley.
Zaccone, G. (2015): Python Parallel Programming Cookbook, 1st ed. Packt Publishing.

let &hbox {char '046}https://ssrn.com/abstract=2907803.
https://ssrn.com/abstract=2907803.

CHAPTER 21

Brute Force and Quantum Computers

21.1 MOTIVATION

Discrete mathematics appears naturally in multiple ML problems, including hier-
archical clustering, grid searches, decisions based on thresholds, and integer opti-
mization. Sometimes, these problems do not have a known analytical (closed-form)
solution, or even a heuristic to approximate it, and our only hope is to search for it
through brute force. In this chapter, we will study how a financial problem, intractable
to modern supercomputers, can be reformulated as an integer optimization problem.
Such a representation makes it amenable to quantum computers. From this example
the reader can infer how to translate his particular financial ML intractable problem
into a quantum brute force search.

21.2 COMBINATORIAL OPTIMIZATION

Combinatorial optimization problems can be described as problems where there is a
finite number of feasible solutions, which result from combining the discrete values
of a finite number of variables. As the number of feasible combinations grows, an
exhaustive search becomes impractical. The traveling salesman problem is an exam-
ple of a combinatorial optimization problem that is known to be NP hard (Woeginger
[2003]), that is, the category of problems that are at least as hard as the hardest prob-
lems solvable is nondeterministic polynomial time.

What makes an exhaustive search impractical is that standard computers evaluate
and store the feasible solutions sequentially. But what if we could evaluate and store
all feasible solutions at once? That is the goal of quantum computers. Whereas the
bits of a standard computer can only adopt one of two possible states ({0, 1}) at once,
quantum computers rely on qubits, which are memory elements that may hold a linear
superposition of both states. In theory, quantum computers can accomplish this thanks

319

320 BRUTE FORCE AND QUANTUM COMPUTERS

to quantum mechanical phenomena. In some implementations, qubits can support
currents flowing in two directions at once, hence providing the desired superposition.
This linear superposition property is what makes quantum computers ideally suited
for solving NP-hard combinatorial optimization problems. See Williams [2010] for
a general treatise on the capabilities of quantum computers.

The best way to understand this approach is through a particular example. We
will now see how a dynamic portfolio optimization problem subject to generic trans-
action cost functions can be represented as a combinatorial optimization problem,
tractable to quantum computers. Unlike Garleanu and Pedersen [2012], we will not
assume that the returns are drawn from an IID Gaussian distribution. This problem
is particularly relevant to large asset managers, as the costs from excessive turnover
and implementation shortfall may critically erode the profitability of their investment
strategies.

21.3 THE OBJECTIVE FUNCTION

Consider a set on assets X = {xi}, i = 1,… , N, with returns following a multivari-
ate Normal distribution at each time horizon h = 1,… , H, with varying mean and
variance. We will assume that the returns are multivariate Normal, time-independent,
however not identically distributed through time. We define a trading trajectory as
an NxH matrix 𝜔 that determines the proportion of capital allocated to each of the N
assets over each of the H horizons. At a particular horizon h = 1,… , H, we have a
forecasted mean 𝜇h, a forecasted variance Vh and a forecasted transaction cost func-
tion 𝜏h [𝜔]. This means that, given a trading trajectory 𝜔, we can compute a vector of
expected investment returns r, as

r = diag[𝜇′
𝜔] − 𝜏 [𝜔]

where 𝜏 [𝜔] can adopt any functional form. Without loss of generality, consider the
following:

�
𝜏1 [𝜔] =

∑N
n=1 cn,1

√||𝜔n,1 − 𝜔
∗
n
||

�
𝜏h [𝜔] =

∑N
n=1 cn,h

√||𝜔n,h − 𝜔n,h−1
||, for h = 2,… , H

�
𝜔
∗
n is the initial allocation to instrument n, n = 1,… , N

𝜏 [𝜔] is an Hx1 vector of transaction costs. In words, the transaction costs associ-
ated with each asset are the sum of the square roots of the changes in capital allo-
cations, re-scaled by an asset-specific factor Ch = {cn,h}n=1,…,N that changes with
h. Thus, Ch is an Nx1 vector that determines the relative transaction cost across
assets.

AN INTEGER OPTIMIZATION APPROACH 321

The Sharpe Ratio (Chapter 14) associated with r can be computed as (𝜇h being net
of the risk-free rate)

SR [r] =
∑H

h=1 𝜇
′

h𝜔h − 𝜏h [𝜔]√∑H
h=1 𝜔

′
hVh𝜔h

21.4 THE PROBLEM

We would like to compute the optimal trading trajectory that solves the problem

max
𝜔

SR [r]

s.t. :
N∑

i=1

|𝜔i,h| = 1, ∀h = 1,… , H

This problem attempts to compute a global dynamic optimum, in contrast to the
static optimum derived by mean-variance optimizers (see Chapter 16). Note that non-
continuous transaction costs are embedded in r. Compared to standard portfolio opti-
mization applications, this is not a convex (quadratic) programming problem for at
least three reasons: (1) Returns are not identically distributed, because 𝜇h and Vh
change with h. (2) Transaction costs 𝜏h [𝜔] are non-continuous and changing with h.
(3) The objective function SR [r] is not convex. Next, we will show how to calcu-
late solutions without making use of any analytical property of the objective function
(hence the generalized nature of this approach).

21.5 AN INTEGER OPTIMIZATION APPROACH

The generality of this problem makes it intractable to standard convex optimization
techniques. Our solution strategy is to discretize it so that it becomes amenable to
integer optimization. This in turn allows us to use quantum computing technology to
find the optimal solution.

21.5.1 Pigeonhole Partitions

Suppose that we count the number of ways that K units of capital can be allocated
among N assets, where we assume K > N. This is equivalent to finding the number
of non-negative integer solutions to x1 +…+ xN = K, which has the nice combina-

torial solution
(

K + N − 1
N − 1

)
. This bears a similarity to the classic integer partitioning

problem in number theory for which Hardy and Ramanujan (and later, Rademacher)
proved an asymptotic expression (see Johansson [2012]). While order does not mat-
ter in the partition problem, order is very relevant to the problem we have at hand.

322 BRUTE FORCE AND QUANTUM COMPUTERS

Asset 1

Asset 2

Asset 3

Asset 1

Asset 2

Asset 3

Units of capital Units of capital

FIGURE 21.1 Partitions (1, 2, 3) and (3, 2, 1) must be treated as different

For example, if K = 6 and N = 3, partitions (1, 2, 3) and (3, 2, 1) must be treated as
different (obviously (2, 2, 2) does not need to be permutated). Figure 21.1 illustrates
how order is important when allocating 6 units of capital to 3 different assets. This
means that we must consider all distinct permutations of each partition. Even though
there is a nice combinatorial solution to find the number of such allocations, it may
still be computationally intensive to find as K and N grow large. However, we can use
Stirling’s approximation to easily arrive at an estimate.

Snippet 21.1 provides an efficient algorithm to generate the set of all parti-
tions, pK,N =

{
{pi}i=1,…,N|pi ∈ 𝕎,

∑N
i=1 pi = K

}
, where 𝕎 are the natural numbers

including zero (whole numbers).

SNIPPET 21.1 PARTITIONS OF k OBJECTS INTO n SLOTS

from itertools import combinations_with_replacement
#———————————————————————————————————————
def pigeonHole(k,n):

Pigeonhole problem (organize k objects in n slots)
for j in combinations_with_replacement(xrange(n),k):

r=[0]*n
for i in j:

r[i]+=1
yield r

AN INTEGER OPTIMIZATION APPROACH 323

21.5.2 Feasible Static Solutions

We would like to compute the set of all feasible solutions at any given hori-
zon h, which we denote Ω. Consider a partition set of K units into N assets,
pK,N . For each partition {pi}i=1,…,N ∈ pK,N , we can define a vector of abso-

lute weights such that |𝜔i| = 1
K

pi, where
∑N

i=1 |𝜔i| = 1 (the full-investment con-
straint). This full-investment (without leverage) constraint implies that every weight
can be either positive or negative, so for every vector of absolute weights
{|𝜔i|}i=1,…,N we can generate 2N vectors of (signed) weights. This is accom-
plished by multiplying the items in {|𝜔i|}i=1,…,N with the items of the Carte-
sian product of {−1, 1} with N repetitions. Snippet 21.2 shows how to gen-
erate the set Ω of all vectors of weights associated with all partitions, Ω ={{ sj

K
pi

}|||{sj}j=1,…,N
∈ {−1, 1}x… x{−1, 1}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N

,{pi}i=1,…,N ∈ pK,N
}

.

SNIPPET 21.2 SET 𝛀 OF ALL VECTORS ASSOCIATED WITH
ALL PARTITIONS

import numpy as np
from itertools import product
#———————————————————————————————————————
def getAllWeights(k,n):

#1) Generate partitions
parts,w=pigeonHole(k,n),None
#2) Go through partitions
for part_ in parts:

w_=np.array(part_)/float(k) # abs(weight) vector
for prod_ in product([-1,1],repeat=n): # add sign

w_signed_=(w_*prod_).reshape(-1,1)
if w is None:w=w_signed_.copy()
else:w=np.append(w,w_signed_,axis=1)

return w

21.5.3 Evaluating Trajectories

Given the set of all vectors Ω, we define the set of all possible trajectories Φ as the
Cartesian product of Ω with H repetitions. Then, for every trajectory we can evalu-
ate its transaction costs and SR, and select the trajectory with optimal performance
across Φ. Snippet 21.3 implements this functionality. The object params is a list of
dictionaries that contain the values of C, 𝜇, V.

324 BRUTE FORCE AND QUANTUM COMPUTERS

SNIPPET 21.3 EVALUATING ALL TRAJECTORIES

import numpy as np
from itertools import product
#———————————————————————————————————————
def evalTCosts(w,params):

Compute t-costs of a particular trajectory
tcost=np.zeros(w.shape[1])
w_=np.zeros(shape=w.shape[0])
for i in range(tcost.shape[0]):

c_=params[i]['c']
tcost[i]=(c_*abs(w[:,i]-w_)**.5).sum()
w_=w[:,i].copy()

return tcost
#———————————————————————————————————————
def evalSR(params,w,tcost):

Evaluate SR over multiple horizons
mean,cov=0,0
for h in range(w.shape[1]):

params_=params[h]
mean+=np.dot(w[:,h].T,params_['mean'])[0]-tcost[h]
cov+=np.dot(w[:,h].T,np.dot(params_['cov'],w[:,h]))

sr=mean/cov**.5
return sr

#———————————————————————————————————————
def dynOptPort(params,k=None):

Dynamic optimal portfolio
#1) Generate partitions
if k is None:k=params[0]['mean'].shape[0]
n=params[0]['mean'].shape[0]
w_all,sr=getAllWeights(k,n),None
#2) Generate trajectories as cartesian products
for prod_ in product(w_all.T,repeat=len(params)):

w_=np.array(prod_).T # concatenate product into a trajectory
tcost_=evalTCosts(w_,params)
sr_=evalSR(params,w_,tcost_) # evaluate trajectory
if sr is None or sr<sr_: # store trajectory if better

sr,w=sr_,w_.copy()
return w

Note that this procedure selects an globally optimal trajectory without relying on
convex optimization. A solution will be found even if the covariance matrices are
ill-conditioned, transaction cost functions are non-continuous, etc. The price we pay
for this generality is that calculating the solution is extremely computationally inten-
sive. Indeed, evaluating all trajectories is similar to the traveling-salesman problem.

A NUMERICAL EXAMPLE 325

Digital computers are inadequate for this sort of NP-complete or NP-hard problems;
however, quantum computers have the advantage of evaluating multiple solutions at
once, thanks to the property of linear superposition.

The approach presented in this chapter set the foundation for Rosenberg et
al. [2016], which solved the optimal trading trajectory problem using a quantum
annealer. The same logic can be applied to a wide range on financial problems
involving path dependency, such as a trading trajectory. Intractable ML algorithm
can be discretized and translated into a brute force search, intended for a quantum
computer.

21.6 A NUMERICAL EXAMPLE

Below we illustrate how the global optimum can be found in practice, using a digital
computer. A quantum computer would evaluate all trajectories at once, whereas the
digital computer does this sequentially.

21.6.1 Random Matrices

Snippet 21.4 returns a random matrix of Gaussian values with known rank, which
is useful in many applications (see exercises). You may want to consider this code
the next time you want to execute multivariate Monte Carlo experiments, or scenario
analyses.

SNIPPET 21.4 PRODUCE A RANDOM MATRIX OF A GIVEN RANK

import numpy as np
#———————————————————————————————————————
def rndMatWithRank(nSamples,nCols,rank,sigma=0,homNoise=True):

Produce random matrix X with given rank
rng=np.random.RandomState()
U,_,_=np.linalg.svd(rng.randn(nCols,nCols))
x=np.dot(rng.randn(nSamples,rank),U[:,:rank].T)
if homNoise:

x+=sigma*rng.randn(nSamples,nCols) # Adding homoscedastic noise
else:

sigmas=sigma*(rng.rand(nCols)+.5) # Adding heteroscedastic noise
x+=rng.randn(nSamples,nCols)*sigmas

return x

Snippet 21.5 generates H vectors of means, covariance matrices, and transaction
cost factors, C, 𝜇, V. These variables are stored in a params list.

326 BRUTE FORCE AND QUANTUM COMPUTERS

SNIPPET 21.5 GENERATE THE PROBLEM’S PARAMETERS

import numpy as np
#———————————————————————————————————————
def genMean(size):

Generate a random vector of means
rMean=np.random.normal(size=(size,1))
return rMean

#———————————————————————————————————————
#1) Parameters
size,horizon=3,2
params=[]
for h in range(horizon):

x=rndMatWithRank(1000,3,3,0.)
mean_,cov_=genMean(size),np.cov(x,rowvar=False)
c_=np.random.uniform(size=cov_.shape[0])*np.diag(cov_)**.5
params.append({'mean':mean_,'cov':cov_,'c':c_})

21.6.2 Static Solution

Snippet 21.6 computes the performance of the trajectory that results from local (static)
optima.

SNIPPET 21.6 COMPUTE AND EVALUATE THE STATIC SOLUTION

import numpy as np
#———————————————————————————————————————
def statOptPortf(cov,a):

Static optimal porftolio
Solution to the "unconstrained" portfolio optimization problem
cov_inv=np.linalg.inv(cov)
w=np.dot(cov_inv,a)
w/=np.dot(np.dot(a.T,cov_inv),a) # np.dot(w.T,a)==1
w/=abs(w).sum() # re-scale for full investment
return w

#———————————————————————————————————————
#2) Static optimal portfolios
w_stat=None
for params_ in params:

w_=statOptPortf(cov=params_['cov'],a=params_['mean'])
if w_stat is None:w_stat=w_.copy()
else:w_stat=np.append(w_stat,w_,axis=1)

tcost_stat=evalTCosts(w_stat,params)
sr_stat=evalSR(params,w_stat,tcost_stat)
print 'static SR:',sr_stat

EXERCISES 327

21.6.3 Dynamic Solution

Snippet 21.7 computes the performance associated with the globally dynamic optimal
trajectory, applying the functions explained throughout the chapter.

SNIPPET 21.7 COMPUTE AND EVALUATE THE
DYNAMIC SOLUTION

import numpy as np
#———————————————————————————————————————
#3) Dynamic optimal portfolios
w_dyn=dynOptPort(params)
tcost_dyn=evalTCosts(w_dyn,params)
sr_dyn=evalSR(params,w_dyn,tcost_dyn)
print 'dynamic SR:',sr_dyn

EXERCISES

21.1 Using the pigeonhole argument, prove that
∑N

n=1

(
N
n

)
= 2N − 1.

21.2 Use Snippet 21.4 to produce random matrices of size (1000, 10), sigma=1 and

(a) rank=1. Plot the eigenvalues of the covariance matrix.

(b) rank=5. Plot the eigenvalues of the covariance matrix.

(c) rank=10. Plot the eigenvalues of the covariance matrix.

(d) What pattern do you observe? How would you connect it to Markowitz’s
curse (Chapter 16)?

21.3 Run the numerical example in Section 21.6:

(a) Use size=3, and compute the running time with timeit. Repeat 10
batches of 100 executions. How long did it take?

(b) Use size=4, and timeit. Repeat 10 batches of 100 executions. How long
did it take?

21.4 Review all snippets in this chapter.

(a) How many could be vectorized?

(b) How many could be parallelized, using the techniques from Chapter 20?

(c) If you optimize the code, by how much do you think you could speed it up?

(d) Using the optimized code, what is the problem dimensionality that could
be solved within a year?

21.5 Under what circumstances would the globally dynamic optimal trajectory match
the sequence of local optima?

(a) Is that a realistic set of assumptions?

(b) If not,

328 BRUTE FORCE AND QUANTUM COMPUTERS

(i) could that explain why naı̈ve solutions beat Markowitz’s (Chapter 16)?

(ii) why do you think so many firms spend so much effort in computing
sequences of local optima?

REFERENCES

Garleanu, N. and L. Pedersen (2012): “Dynamic trading with predictable returns and transaction
costs.” Journal of Finance, Vol. 68, No. 6, pp. 2309–2340.

Johansson, F. (2012): “Efficient implementation of the Hardy-Ramanujan-Rademacher formula,”
LMS Journal of Computation and Mathematics, Vol. 15, pp. 341–359.

Rosenberg, G., P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. López de Prado (2016): “Solv-
ing the optimal trading trajectory problem using a quantum annealer.” IEEE Journal of Selected
Topics in Signal Processing, Vol. 10, No. 6 (September), pp. 1053–1060.

Williams, C. (2010): Explorations in Quantum Computing, 2nd ed. Springer.
Woeginger, G. (2003): “Exact algorithms for NP-hard problems: A survey.” In Junger, M., G.

Reinelt, and G. Rinaldi: Combinatorial Optimization—Eureka, You Shrink! Lecture notes in
computer science, Vol. 2570, Springer, pp. 185–207.

CHAPTER 22

High-Performance Computational
Intelligence and Forecasting
Technologies
Kesheng Wu and Horst D. Simon

22.1 MOTIVATION

This chapter provides an introduction to the Computational Intelligence and Forecast-
ing Technologies (CIFT) project at Lawrence Berkeley National Laboratory (LBNL).
The main objective of CIFT is to promote the use of high-performance computing
(HPC) tools and techniques for analysis of streaming data. After noticing the data
volume being given as the explanation for the five-month delay for SEC and CFTC
to issue their report on the 2010 Flash Crash, LBNL started the CIFT project to apply
HPC technologies to manage and analyze financial data. Making timely decisions
with streaming data is a requirement for many business applications, such as avoid-
ing impending failure in the electric power grid or a liquidity crisis in financial mar-
kets. In all these cases, the HPC tools are well suited in handling the complex data
dependencies and providing a timely solution. Over the years, CIFT has worked on
a number of different forms of streaming data, including those from vehicle traffic,
electric power grid, electricity usage, and so on. The following sections explain the
key features of HPC systems, introduce a few special tools used on these systems,
and provide examples of streaming data analyses using these HPC tools.

22.2 REGULATORY RESPONSE TO THE FLASH CRASH OF 2010

On May 6, 2010, at about 2:45 p.m. (U.S. Eastern Daylight Time), the U.S. stock
market experienced a nearly 10% drop in the Dow Jones Industrial Average, only to
recover most of the loss a few minutes later. It took about five months for regulatory

329

330 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

agencies to come up with an investigation report. In front of a congressional panel
investigating the crash, the data volume (~20 terabytes) was given as the primary rea-
son for the long delay. Since HPC systems, such as those at National Energy Research
Scientific Computing (NERSC) center,1 routinely work with hundreds of terabytes
in minutes, we should have no problem processing the data from financial markets.
This led to the establishment of the CIFT project with the mission to apply the HPC
techniques and tools for financial data analysis.

A key aspect of financial big data is that it consists of mostly time series. Over the
years, the CIFT team, along with numerous collaborators, has developed techniques
to analyze many different forms of data streams and time series. This chapter provides
a brief introduction to the HPC system including both hardware (Section 22.4) and
software (Section 22.5), and recounts a few successful use cases (Section 22.6). We
conclude with a summary of our vision and work so far and also provide contact
information for interested readers.

22.3 BACKGROUND

Advances in computing technology have made it considerably easier to look for com-
plex patterns. This pattern-finding capability is behind a number of recent scientific
breakthroughs, such as the discovery of the Higgs particle (Aad et al. [2016]) and
gravitational waves (Abbot et al. [2016]). This same capability is also at the core
of many internet companies, for example, to match users with advertisers (Zeff and
Aronson [1999], Yen et al. [2009]). However, the hardware and software used in sci-
ence and in commerce are quite different. The HPC tools have some critical advan-
tages that should be useful in a variety of business applications.

Tools for scientists are typically built around high-performance computing (HPC)
platforms, while the tools for commercial applications are built around cloud comput-
ing platforms. For the purpose of sifting through large volumes of data to find useful
patterns, the two approaches have been shown to work well. However, the marquee
application for HPC systems is large-scale simulation, such as weather models used
for forecasting regional storms in the next few days (Asanovic et al. [2006]). In con-
trast, the commercial cloud was initially motivated by the need to process a large
number of independent data objects concurrently (data parallel tasks).

For our work, we are primarily interested in analyses of streaming data. In particu-
lar, high-speed complex data streams, such as those from sensor networks monitoring
our nation’s electric power grid and highway systems. This streaming workload is not
ideal for either HPC systems or cloud systems as we discuss below, but we believe
that the HPC ecosystem has more to offer to address the streaming data analysis than
the cloud ecosystem does.

Cloud systems were originally designed for parallel data tasks, where a large num-
ber of independent data objects can be processed concurrently. The system is thus

1 NERSC is a National User Facility funded by U.S. Department of Energy, located at LBNL. More infor-
mation about NERSC can be found at http://nersc.gov/.

let &hbox {char '046}http://nersc.gov/
http://nersc.gov/

HPC HARDWARE 331

designed for high throughput, not for producing real-time responses. However, many
business applications require real-time or near-real-time responses. For example, an
instability event in an electric power grid could develop and grow into a disaster in
minutes; finding the tell-tale signature quickly enough would avert the disaster. Simi-
larly, signs of emerging illiquidity events have been identified in the financial research
literature; quickly finding these signs during the active market trading hours could
offer options to prevent shocks to the market and avoid flash crashes. The ability to
prioritize quick turnaround time is essential in these cases.

A data stream is by definition available progressively; therefore, there may not be a
large number of data objects to be processed in parallel. Typically, only a fixed amount
of the most recent data records are available for analysis. In this case, an effective way
to harness the computing power of many central processing units (CPUs) cores is to
divide the analytical work on a single data object (or a single time-step) to many CPU
cores. The HPC ecosystem has more advanced tools for this kind of work than the
cloud ecosystem does.

These are the main points that motivated our work. For a more thorough com-
parison of HPC systems and cloud systems, we refer interested readers to Asanovic
et al. [2006]. In particular, Fox et al. [2015] have created an extensive taxonomy for
describing the similarities and differences for any application scenario.

In short, we believe the HPC community has a lot to offer to advance the state-of-
the-art for streaming analytics. The CIFT project was established with a mission to
transfer LBNL’s HPC expertise to streaming business applications. We are pursuing
this mission via collaboration, demonstration, and tool development.

To evaluate the potential uses of HPC technology, we have spent time working
with various applications. This process not only exposes our HPC experts to a variety
of fields, but also makes it possible for us to gather financial support to establish a
demonstration facility.

With the generous gifts from a number of early supporters of this effort, we estab-
lished a substantial computing cluster dedicated to this work. This dedicated com-
puter (named dirac1) allows users to utilize an HPC system and evaluate their appli-
cations for themselves.

We are also engaged in a tool development effort to make HPC systems more
usable for streaming data analysis. In the following sections, we will describe the
hardware and software of the dedicated CIFT machine, as well as some of the demon-
stration and tool development efforts. Highlights include improving the data handling
speed by 21-fold, and increasing the speed of computing an early warning indicator
by 720-fold.

22.4 HPC HARDWARE

Legend has it that the first generation of big data systems was built with the spare
computer components gleaned from a university campus. This is likely an urban
legend, but it underscores an important point about the difference between HPC
systems and cloud systems. Theoretically, a HPC system is built with custom

332 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

QDR Infiniband
+ 100 Gbps to ANI

File Servers (8) (/home) 160TB

Gateway Nodes (16)

ESNet
10Gb/s

Q
D

R
 InfiniB

and

A
ggregation S

w
itch

R
outer

ANI
100 Gb/s

Mgt Nodes (12)

Compute Servers
504 Nodes at ANL
720 Nodes at NErsc
 Intel Nehalem
 8 cores/node

Active Storage
Servers
FLASH/SSD Storage

Big Memory
Servers
1 TD of Memory per node
15 at ANL / 2 at NERSC

GPU Servers
266 Nvidia cards at ANL

FIGURE 22.1 Schematic of the Magellan cluster (circa 2010), an example of HPC computer cluster

high-cost components, while cloud systems are built with standard low-cost com-
modity components. In practice, since the worldwide investment in HPC systems
is much smaller than that of personal computers, there is no way for manufacturers
to produce custom components just for the HPC market. The truth is that HPC
systems are largely assembled from commodity components just like cloud systems.
However, due to their different target applications, there are some differences in
their choices of the components.

Let us describe the computing elements, storage system, and networking system in
turn. Figure 22.1 is a high-level schematic diagram representing the key components
of the Magellan cluster around year 2010 (Jackson et al. [2010]; Yelick et al. [2011]).
The computer elements include both CPUs and graphics processing units (GPUs).
These CPUs and GPUs are commercial products in almost all the cases. For example,
the nodes on dirac1 use a 24-core 2.2Ghz Intel processor, which is common to cloud
computing systems. Currently, dirac1 does not contain GPUs.

The networking system consists of two parts: the InfiniBand network connecting
the components within the cluster, and the switched network connection to the out-
side world. In this particular example, the outside connections are labeled “ESNet”
and “ANI.” The InfiniBand network switches are also common in cloud computing
systems.

The storage system in Figure 1 includes both rotating disks and flash storage.
This combination is also common. What is different is that a HPC system typically
has its storage system concentrated outside of the computer nodes, while a typical
cloud computing system has its storage system distributed among the compute
nodes. These two approaches have their own advantages and disadvantages. For
example, the concentrated storage is typically exported as a global file system to all
computer nodes, which makes it easier to deal with data stored in files. However, this
requires a highly capable network connecting the CPUs and the disks. In contrast,

HPC HARDWARE 333

the distributed approach could use lower-capacity network because there is some
storage that is close to each CPU. Typically, a distributed file system, such as the
Google file system (Ghemawat, Gobioff, and Leung [2003]), is layered on top of a
cloud computing system to make the storage accessible to all CPUs.

In short, the current generation of HPC systems and cloud systems use pretty much
the same commercial hardware components. Their differences are primarily in the
arrangement of the storage systems and networking systems. Clearly, the difference
in the storage system designs could affect the application performance. However,
the virtualization layer of the cloud systems is likely the bigger cause of application
performance difference. In the next section, we will discuss another factor that could
have an even larger impact, namely software tools and libraries.

Virtualization is generally used in the cloud computing environment to make the
same hardware available to multiple users and to insulate one software environment
from another. This is one of the more prominent features distinguishing the cloud
computing environment from the HPC environment. In most cases, all three basic
components of a computer system—CPU, storage, and networking—are all virtual-
ized. This virtualization has many benefits. For example, an existing application can
run on a CPU chip without recompiling; many users can share the same hardware;
hardware faults could be corrected through the virtualization software; and appli-
cations on a failed compute node could be more easily migrated to another node.
However, this virtualization layer also imposes some runtime overhead and could
reduce application performance. For time-sensitive applications, this reduction in per-
formance could become a critical issue.

Tests show that the performance differences could be quite large. Next, we briefly
describe a performance study reported by Jackson et al [2010]. Figure 22.2 shows the
performance slowdown using different computer systems. The names below the hor-
izontal axis are different software packages commonly used at NERSC. The left bar
corresponds to the Commercial Cloud, the middle bar to Magellan, and the (some-
times missing) right bar to the EC2-Beta-Opt system. The non-optimized commercial

FIGURE 22.2 The cloud ran scientific applications considerably slower than on HPC systems (circa
2010)

334 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

IB
14

12

10

8

6

4

2

0
32 64 128 256

P
er

fo
rm

an
ce

512 1024

Commercial Cloud

10G - TCPoEth

10G - TCPoEth Vm

FIGURE 22.3 As the number of cores increases (horizontal axis), the virtualization overhead becomes
much more significant (circa 2010)

cloud instances run these software packages 2 to 10 times slower than on a NERSC
supercomputer. Even on the more expensive high-performance instances, there are
noticeable slowdowns.

Figure 22.3 shows a study of the main factor causing the slowdown with the soft-
ware package PARATEC. In Figure 2, we see that PARATEC took 53 times longer
to complete on the commercial cloud than on an HPC system. We observe from Fig-
ure 3 that, as the number of cores (horizontal axis) increases, the differences among
the measured performances (measured in TFLOP/s) become larger. In particular, the
line labeled “10G- TCPoEth Vm” barely increases as the number of cores grows. This
is the case where the network instance is using virtualized networking (TCP over Eth-
ernet). It clearly shows that the networking virtualization overhead is significant, to
the point of rendering the cloud useless.

The issue of virtualization overhead is widely recognized (Chen et al. [2015]).
There has been considerable research aimed at addressing both the I/O virtualization
overhead (Gordon et al. [2012]) as well as the networking virtualization overhead
(Dong et al. [2012]). As these state-of-the-art techniques are gradually being moved
into commercial products, we anticipate the overhead will decrease in the future, but
some overhead will inevitably remain.

To wrap up this section, we briefly touch on the economics of HPC versus cloud.
Typically, HPC systems are run by nonprofit research organizations and universi-
ties, while cloud systems are provided by commercial companies. Profit, customer
retention, and many other factors affect the cost of a cloud system (Armburst et al.
[2010]). In 2011, the Magellan project report stated that “Cost analysis shows that
DOE centers are cost competitive, typically 3–7 × less expensive, when compared to
commercial cloud providers” (Yelick et al. [2010]).

A group of high-energy physicists thought their use case was well-suited for
cloud computing and conducted a detailed study of a comparison study (Holzman
et al. [2017]). Their cost comparisons still show the commercial cloud offerings as

HPC SOFTWARE 335

approximately 50% more expensive than dedicated HPC systems for comparable
computing tasks; however, the authors worked with severe limitations on data
ingress and egress to avoid potentially hefty charges on data movement. For complex
workloads, such as the streaming data analyses discussed in this book, we anticipate
that this HPC cost advantage will remain in the future. A 2016 National Academy of
Sciences study came to the same conclusion that even a long-term lease from Ama-
zon is likely 2 to 3 times more expensive than HPC systems to handle the expected
science workload from NSF (Box 6.2 from National Academies of Sciences, [2016]).

22.5 HPC SOFTWARE

Ironically, the real power of a supercomputer is in its specialized software. There are a
wide variety of software packages available for both HPC systems and cloud systems.
In most cases, the same software package is available on both platforms. Therefore,
we chose to focus on software packages that are unique to HPC systems and have the
potential to improve computational intelligence and forecasting technologies.

One noticeable feature of the HPC software ecosystem is that much of the appli-
cation software performs its own interprocessor communication through Message
Passing Interface (MPI). In fact, the cornerstone of most scientific computing books
is MPI (Kumar et al. [1994], Gropp, Lusk, and Skjellum [1999]). Accordingly, our
discussion of HPC software tools will start with MPI. As this book relies on data pro-
cessing algorithms, we will concentrate on data management tools (Shoshami and
Rotem [2010]).

22.5.1 Message Passing Interface

Message Passing Interface is a communication protocol for parallel computing
(Gropp, Lusk, and Skjellum [1999], Snir et al. [1988]). It defines a number of point-
to-point data exchange operations as well as some collective communication oper-
ations. The MPI standard was established based on several early attempts to build
portable communication libraries. The early implementation from Argonne National
Lab, named MPICH, was high performance, scalable, and portable. This helped MPI
to gain wide acceptance among scientific users.

The success of MPI is partly due to its separation of Language Independent Spec-
ifications (LIS) from its language bindings. This allows the same core function to
be provided to many different programming languages, which also contributes to
its acceptance. The first MPI standard specified ANSI C and Fortran-77 bindings
together with the LIS. The draft specification was presented to the user community
at the 1994 Supercomputing Conference.

Another key factor contributing to MPI’s success is the open-source license used
by MPICH. This license allows the vendors to take the source code to produce their
own custom versions, which allows the HPC system vendors to quickly produce their
own MPI libraries. To this day, all HPC systems support the familiar MPI on their
computers. This wide adoption also ensures that MPI will continue to be the favorite
communication protocol among the users of HPC systems.

336 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

22.5.2 Hierarchical Data Format 5

In describing the HPC hardware components, we noted that the storage systems in
an HPC platform are typically different from those in a cloud platform. Correspond-
ingly, the software libraries used by most users for accessing the storage systems are
different as well. This difference can be traced to the difference in the conceptual
models of data. Typically, HPC applications treat data as multi-dimensional arrays
and, therefore, the most popular I/O libraries on HPC systems are designed to work
with multi-dimensional arrays. Here, we describe the most widely used array format
library, HDF5 (Folk et al. [2011]).

HDF5 is the fifth iteration of the Hierarchical Data Format, produced by the HDF
Group.2 The basic unit of data in HDF5 is an array plus its associated information
such as attributes, dimensions, and data type. Together, they are known as a data set.
Data sets can be grouped into large units called groups, and groups can be organized
into high-level groups. This flexible hierarchical organization allows users to express
complex relationships among the data sets.

Beyond the basic library for organizing user data into files, the HDF Group also
provides a suite of tools and specialization of HDF5 for different applications. For
example, HDF5 includes a performance profiling tool. NASA has a specialization of
HDF5, named HDF5-EOS, for data from their Earth-Observing System (EOS); and
the next-generation DNA sequence community has produced a specialization named
BioHDF for their bioinformatics data.

HDF5 provides an efficient way for accessing the storage systems on HPC plat-
form. In tests, we have demonstrated that using HDF5 to store stock markets data
significantly speeds up the analysis operations. This is largely due to its efficient com-
pression/decompression algorithms that minimize network traffic and I/O operations,
which brings us to our next point.

22.5.3 In Situ Processing

Over the last few decades, CPU performance has roughly doubled every 18 months
(Moore’s law), while disk performance has been increasing less than 5% a year. This
difference has caused it to take longer and longer to write out the content of the CPU
memory. To address this issue, a number of research efforts have focused on in situ
analysis capability (Ayachit et al. [2016]).

Among the current generation of processing systems, the Adaptable I/O System
(ADIOS) is the most widely used (Liu et al. [2014]). It employs a number of data
transport engines that allow users to tap into the I/O stream and perform analytical
operations. This is useful because irrelevant data can be discarded in-flight, hence
avoiding its slow and voluminous storage. This same in situ mechanism also allows it
to complete write operations very quickly. In fact, it initially gained attention because
of its write speed. Since then, the ADIOS developers have worked with a number of
very large teams to improve their I/O pipelines and their analysis capability.

2 The HDF Group web site is https://www.hdfgroup.org/.

let &hbox {char '046}https://www.hdfgroup.org/
https://www.hdfgroup.org/

USE CASES 337

Because ADIOS supports streaming data accesses, it is also highly relevant to
CIFT work. In a number of demonstrations, ADIOS with ICEE transport engine was
able to complete distributed streaming data analysis in real-time (Choi et al. [2013]).
We will describe one of the use cases involving blobs in fusion plasma in the next
section.

To summarize, in situ data processing capability is another very useful tool from
the HPC ecosystem.

22.5.4 Convergence

We mentioned earlier that the HPC hardware market is a tiny part of the overall com-
puter hardware market. The HPC software market is even smaller compared to the
overall software market. So far, the HPC software ecosystem is largely maintained
by a number of small vendors along with some open-source contributors. Therefore,
HPC system users are under tremendous pressure to migrate to the better supported
cloud software systems. This is a significant driver for convergence between software
for HPC and software for cloud (Fox et al. [2015]).

Even though convergence appears to be inevitable, we advocate for a convergence
option that keeps the advantage of the software tools mentioned above. One of the
motivations of the CIFT project is to seek a way to transfer the above tools to the
computing environments of the future.

22.6 USE CASES

Data processing is such an important part of modern scientific research that some
researchers are calling it the fourth paradigm of science (Hey, Tansley, and Tolle
[2009]). In economics, the same data-driven research activities have led to the wildly
popular behavioral economics (Camerer and Loewenstein [2011]). Much of the recent
advances in data-driven research are based on machine learning applications (Qiu
et al. [2016], Rudin and Wagstaff [2014]). Their successes in a wide variety of fields,
such as planetary science and bioinformatics, have generated considerable interest
among researchers from diverse domains. In the rest of this section, we describe a
few examples applying advanced data analysis techniques to various fields, where
many of these use cases originated in the CIFT project.

22.6.1 Supernova Hunting

In astronomy, the determination of many important facts such as the expansion speed
of the universe, is performed by measuring the light from exploding type Ia super-
novae (Bloom et al. [2012]). The process of searching the night sky for exploding
supernovae is called synoptic imaging survey. The Palomar Transient Factory (PTF)
is an example of such a synoptic survey (Nicholas et al. [2009]). The PTF telescopes
scan the night sky and produce a set of images every 45 minutes. The new image is
compared against the previous observations of the same patch of sky to determine

338 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

FIGURE 22.4 Supernova SN 2011fe was discovered 11 hours after first evidence of explosion, as a
result of the extensive automation in classification of astronomical observations

what has changed and to classify the changes. Such identification and classification
tasks used to be performed by astronomers manually. However, the current number of
incoming images from the PTF telescopes is too large for manual inspection. An auto-
mated workflow for these image processing tasks has been developed and deployed
at a number of different computer centers.

Figure 22.4 shows the supernova that was identified earliest in its explosion pro-
cess. On August 23, 2011, a patch of the sky showed no sign of this star, but a faint
light showed up on August 24. This quick turnover allowed astronomers around the
world to perform detailed follow-up observations, which are important for determin-
ing the parameters related to the expansion of the universe.

The quick identification of this supernova is an important demonstration of the
machine learning capability of the automated workflow. This workflow processes the
incoming images to extract the objects that have changed since last observed. It then
classifies the changed object to determine a preliminary type based on the previous
training. Since follow-up resources for extracting novel science from fast-changing
transients are precious, the classification not only needs to indicate the assumed type
but also the likelihood and confidence of the classification. Using classification algo-
rithms trained on PTF data, the mislabeling of transients and variable stars has a
3.8% overall error rate. Additional work is expected to achieve higher accuracy rates
in upcoming surveys, such as for the Large Synoptic Survey Telescope.

22.6.2 Blobs in Fusion Plasma

Large-scale scientific exploration in domains such as physics and climatology are
huge international collaborations involving thousands of scientists each. As these

USE CASES 339

collaborations produce more and more data at progressively faster rates, the exist-
ing workflow management systems are hard-pressed to keep pace. A necessary
solution is to process, analyze, summarize, and reduce the data before it reaches the
relatively slow disk storage system, a process known as in-transit processing (or in-
flight analysis). Working with the ADIOS developers, we have implemented the ICEE
transport engine to dramatically increase the data-handling capability of collaborative
workflow systems (Choi et al. [2013]). This new feature significantly improved the
data flow management for distributed workflows. Tests showed that the ICEE engine
allowed a number of large international collaborations to make near real-time collabo-
rative decisions. Here, we briefly describe the fusion collaboration involving KSTAR.

KSTAR is a nuclear fusion reactor with fully superconducting magnets. It is
located in South Korea, but there are a number of associated research teams around
the world. During a run of a fusion experiment, some researchers control the physics
device at KSTAR, but others may want to participate by performing collaborative
analysis of the preceding runs of the experiment to provide advice on how to config-
ure the device for the next run. During the analysis of the experimental measurement
data, scientists might run simulations or examine previous simulations to study para-
metric choices. Typically, there may be a lapse of 10 to 30 minutes between two suc-
cessive runs, and all collaborative analyses need to complete during this time window
in order to affect the next run.

We have demonstrated the functionality of the ICEE workflow system with two
different types of data: one from the Electron Cyclotron Emission Imaging (ECEI)
data measured at KSTAR, and the other involving synthetic diagnostic data from the
XGC modelling. The distributed workflow engine needs to collect data from these
two sources, extract a feature known as blobs, track the movement of these blobs,
predict the movement of the blobs in the experimental measurements, and then pro-
vide advices on actions to be performed. Figure 22.5 shows how the ECEI data is
processed. The workflow for the XGC simulation data is similar to what is shown in
Figure 22.5, except that the XGC data is located at NERSC.

FIGURE 22.5 A distributed workflow for studying fusion plasma dynamics

340 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

To be able to complete the above analytical tasks in real-time, effective data man-
agement with ICEE transport engine of ADIOS is only part of the story. The second
part is to detect blobs efficiently (Wu et al. [2016]). In this work, we need to reduce
the amount of data transported across wide-area networks by selecting only the nec-
essary chunks. We then identify all cells within the blobs and group these cells into
connected regions in space, where each connected region forms a blob. The new algo-
rithm we developed partitions the work into different CPU cores by taking full advan-
tage of the MPI for communication between the nodes and the shared memory among
the CPU cores on the same node. Additionally, we also updated the connected com-
ponent label algorithm to correctly identify blobs at the edge, which were frequently
missed by the earlier detection algorithms. Overall, our algorithm was able to iden-
tify blobs in a few milliseconds for each time step by taking full advantage of the
parallelism available in the HPC system.

22.6.3 Intraday Peak Electricity Usage

Utility companies are deploying advanced metering infrastructure (AMI) to capture
electricity consumption in unprecedented spatial and temporal detail. This vast and
fast-growing stream of data provides an important testing ground for the predictive
capability based on big data analytical platforms (Kim et al. [2015]). These cutting-
edge data science techniques, together with behavioral theories, enable behavior ana-
lytics to gain novel insights into patterns of electricity consumption and their under-
lying drivers (Todd et al. [2014]).

As electricity cannot be easily stored, its generation must match consumption.
When the demand exceeds the generation capacity, a blackout will occur, typically
during the time when consumers need electricity the most. Because increasing gener-
ation capacity is expensive and requires years of time, regulators and utility compa-
nies have devised a number of pricing schemes intended to discourage unnecessary
consumption during peak demand periods.

To measure the effectiveness of a pricing policy on peak demand, one can analyze
the electricity usage data generated by AMI. Our work focuses on extracting base-
line models of household electricity usage for a behavior analytics study. The baseline
models would ideally capture the pattern of household electricity usage including all
features except the new pricing schemes. There are numerous challenges in establish-
ing such a model. For example, there are many features that could affect the usage
of electricity but for which no information is recorded, such as the temperature set
point of an air-conditioner or the purchase of a new appliance. Other features, such
as outdoor temperature, are known, but their impact is difficult to capture in simple
functions.

Our work developed a number of new baseline models that could satisfy the above
requirements. At present, the gold standard baseline is a well-designed randomized
control group. We showed that our new data-driven baselines could accurately pre-
dict the average electricity usage of the control group. For this evaluation, we use a
well-designed study from a region of the United States where the electricity usage is
the highest in the afternoon and evening during the months of May through August.

USE CASES 341

Though this work concentrates on demonstrating that the new baseline models are
effective for groups, we believe that these new models are also useful for studying
individual households in the future.

We explored a number of standard black-box approaches. Among machine learn-
ing methods, we found gradient tree boosting (GTB) to be more effective than oth-
ers. However, the most accurate GTB models require lagged variables as features
(for example, the electricity usage a day before and a week before). In our work, we
need to use the data from year T-1 to establish the baseline usage for year T and year
T + 1. The lagged variable for a day before and a week before would be incorporating
recent information not in year T-1. We attempted to modify the prediction procedure
to use the recent predictions in place of the actual measured values a day before and a
week before; however, our tests show that the prediction errors accumulate over time,
leading to unrealistic predictions a month or so into the summer season. This type of
accumulation of prediction errors is common to continuous prediction procedures for
time series.

To address the above issue, we devised a number of white-box approaches, the
most effective of which, known as LTAP, is reported here. LTAP is based on the fact
that the aggregate variable electricity usage per day is accurately described by a piece-
wise linear function of average daily temperature. This fact allows us to make pre-
dictions about the total daily electricity usage. By further assuming that the usage
profile of each household remains the same during the study, we are able to assign
the hourly usage values from the daily aggregate usage. This approach is shown to
be self-consistent; that is, the prediction procedure exactly reproduces the electricity
usage in year T–1, and the predictions for the control group in both year T and T + 1
are very close to the actual measured values. Both treatment groups have reduced
electricity usages during the peak-demand hours, and the active group reduced the
usage more than the passive group. This observation is in line with other studies.

Though the new data-driven baseline model LTAP predicts the average usages of
the control group accurately, there are some differences in predicted impact of the new
time-of-use pricing intended to reduce the usage during the peak-demand hours (see
Figure 22.6). For example, with the control group as the baseline, the active group
reduces its usage by 0.277 kWh (out of about 2 kWh) averaged over the peak-demand
hours in the first year with the new price and 0.198 kWh in the second year. Using
LTAP as the baseline, the average reductions are only 0.164 kWh for both years. Part
of the difference may be due to the self-selection bias in treatment groups, especially
the active group, where the households have to explicitly opt-in to participate in the
trial. It is likely that the households that elected to join the active group are well-suited
to take advantage of the proposed new pricing structure. We believe that the LTAP
baseline is a way to address the self-selection bias and plan to conduct additional
studies to further verify this.

22.6.4 The Flash Crash of 2010

The extended time it took for the SEC and CFTC to investigate the Flash Crash of
2010 was the original motivation for CIFT’s work. Federal investigators needed to

342 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

+ +

+
+ + + +

+
+ +

+
+

+

+

+

+

+

+
+ +

+

+

+

+

+

90 T

T+1

GTB(T)

GTB(T+1)

M(T)

M(T+1)

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

(a)

(b)

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0

+

+ +

+
+ + + +

+
+ +

+
+

+

+

+

+

+

+
+ +

+

+

+

+

+

90 LTAP(T)

LTAP(T+1)

M(T)

M(T+1)

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0

+

FIGURE 22.6 Gradient tree boosting (GBT) appears to follow recent usage too closely and therefore
not able to predict the baseline usage as well as the newly develop method named LTAP. (a) GTB on
Control group. (b) LTAP on Control group. (c) GTB on Passive group. (d) LTAP on Passive group. (e)
GTB on Active group. (f) LTAP on Active group

USE CASES 343

+ +

+
+

+

+
+

+

+
+

+

+

+

+

++
+

++

+

+

+

+

+ +
+

90 T

T+1

GTB(T)

GTB(T+1)

M(T)

M(T+1)

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

(c)

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0

+
+

+

+
+

+

+
+

+

+

+

+

++
+

++

+

+

+

+

+ +
+

90

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

(d)

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0+ +

LTAP(T)

LTAP(T+1)

M(T)

M(T+1)

FIGURE 22.6 (Continued)

sift through tens of terabytes of data to look for the root cause of the crash. Since
CFTC publicly blamed the volume of data to be the source of the long delay, we
started our work by looking for HPC tools that could easily handle tens of terabytes.
Since HDF5 is the most commonly used I/O library, we started our work by applying
HDF5 to organize a large set of stock trading data (Bethel et al. [2011]).

344 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

+
+

+

+

+ +
+ + +

+

+

+

++
+

++
+

+

+

+
+

+

+

90

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

(e)

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0

+ +

T

T+1

GTB(T)

GTB(T+1)

M(T)

M(T+1)

+
+

+

+
+

+

+
+

+

+

+

+

++
+

++

+

+

+

+

+ +
+

90

85

80

75

70

65

60

Te
m

pe
ra

tu
re

 (
°F

)

55
0 5 10 15

Hour

(f)

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
h)

20 25
0.5

1.0

1.5

2.0+ +

LTAP(T)

LTAP(T+1)

M(T)

M(T+1)

FIGURE 22.6 (Continued)

Let us quickly review what happened during the 2010 Flash Crash. On May 6,
at about 2:45 p.m. (U.S. Eastern Daylight Time), the Dow Jones Industrial Average
dropped almost 10%, and many stocks traded at one cent per share, the minimum
price for any possible trade. Figure 22.7 shows an example of another extreme case,
where shares of Apple (symbol AAPL) traded at $100,000 per share, the maximum

USE CASES 345

FIGURE 22.7 Apple Stock price on May 6, 2010, along with HHI and VPIN values computed every 5
minutes during the market hours

possible price allowed by the exchange. Clearly, these were unusual events, which
undermined investors’ faith and confidence in our financial markets. Investors
demanded to know what caused these events.

To make our work relevant to the financial industry, we sought to experiment with
the HDF5 software, and apply it to the concrete task of computing earlier warn-
ing indicators. Based on recommendations from a group of institutional investors,
regulators, and academics, we implemented two sets of indicators that have been
shown to have “early warning” properties preceding the Flash Crash. They are the
Volume Synchronized Probability of Informed Trading (VPIN) (Easley, Lopez de
Prado, and O’Hara [2011]) and a variant of the Herfindahl-Hirschman Index (HHI)
(Hirschman [1980]) of market fragmentation. We implemented these two algorithms
in the C++ language, while using MPI for inter-processor communication, to take
full advantage of the HPC systems. The reasoning behind this choice is that if any
of these earlier warning indicators is shown to be successful, the high-performance
implementation would allow us to extract the warning signals as early as possi-
ble so there might be time to take corrective actions. Our effort was one of the
first steps to demonstrate that it is possible to compute the earlier warning signals
fast enough.

For our work, we implemented two versions of the programs: one uses data orga-
nized in HDF5 files, and another reads the data from the commonly used ASCII text
files. Figure 22.8 shows the time required to process the trading records of all S&P
500 stocks over a 10-year timespan. Since the size of the 10-year trading data is
still relatively small, we replicated the data 10 times as well. On a single CPU core
(labeled “Serial” in Figure 22.8), it took about 3.5 hours with ASCII data, but only
603.98 seconds with HDF5 files. When 512 CPU cores are used, this time reduces to
2.58 seconds using HDF5 files, resulting in a speedup of 234 times.

On the larger (replicated) dataset, the advantage of HPC code for computing these
indices is even more pronounced. With 10 times as much data, it took only about 2.3

346 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

FIGURE 22.8 Time to process 10-year worth of SP500 quotes data stored in HDF5 files, which takes
21 times longer when the same data is in ASCII files (603.98 seconds versus approximately 3.5 hours)

times longer for the computer to complete the tasks, a below-linear latency increase.
Using more CPU makes HPC even more scalable.

Figure 22.8 also shows that with a large data set, we can further take advantage of
the indexing techniques available in HDF5 to reduce the data access time (which in
turn reduces the overall computation time). When 512 CPU cores are used, the total
runtime is reduced from 16.95 seconds to 4.59 seconds, a speedup of 3.7 due to this
HPC technique of indexing.

22.6.5 Volume-synchronized Probability of Informed Trading Calibration

Understanding the volatility of the financial market requires the processing of a vast
amount of data. We apply techniques from data-intensive scientific applications for
this task, and demonstrate their effectiveness by computing an early warning indicator
called Volume Synchronized Probability of Informed Trading (VPIN) on a massive
set of futures contracts. The test data contains 67 months of trades for the hundred
most frequently traded futures contracts. On average, processing one contract over 67
months takes around 1.5 seconds. Before we had this HPC implementation, it took
about 18 minutes to complete the same task. Our HPC implementation achieves a
speedup of 720 times.

Note that the above speedup was obtained solely based on the algorithmic
improvement, without the benefit of parallelization. The HPC code can run on parallel
machines using MPI, and thus is able to further reduce the computation time.

The software techniques employed in our work include the faster I/O access
through HDF5 described above, as well as a more streamlined data structure for stor-
ing the bars and buckets used for the computation of VPIN. More detailed information
is available in Wu et al. [2013].

USE CASES 347

FIGURE 22.9 The average false positive rates (𝛼) of different classes of futures contracts ordered
according to their average.

With a faster program to compute VPIN, we were also able to explore the para-
metric choices more closely. For example, we were able to identify the parameter
values that reduce VPIN’s false positive rate over one hundred contracts from 20%
to only 7%, see Figure 22.9. The parameter choices to achieve this performance are:
(1) pricing the volume bar with the median prices of the trades (not the closing price
typically used in analyses), (2) 200 buckets per day, (3) 30 bars per bucket, (4) sup-
port window for computing VPIN = 1 day, event duration = 0.1 day, (5) bulk volume
classification with Student t-distribution with 𝜈 = 0.1, and (6) threshold for CDF of
VPIN = 0.99. Again, these parameters provide a low false positive rate on the totality
of futures contracts, and are not the result of individual fitting.

On different classes of futures contracts, it is possible to choose different parame-
ters to achieve even lower false positive rates. In some cases, the false positive rates
can fall significantly below 1%. Based on Figure 22.9, interest rate and index futures
contracts typically have lower false positive rates. The futures contracts on commodi-
ties, such as energy and metal, generally have higher false positive rates.

Additionally, a faster program for computing VPIN allows us to validate that the
events identified by VPIN are “intrinsic,” in the sense that varying parameters such
as the threshold on VPIN CDF only slightly change the number of events detected.
Had the events been random, changing this threshold from 0.9 to 0.99 would have
reduced the number of events by a factor of 10. In short, a faster VPIN program also
allows us to confirm the real-time effectiveness of VPIN.

22.6.6 Revealing High Frequency Events with Non-uniform Fast
Fourier Transform

High Frequency Trading is pervasive across all electronic financial markets. As algo-
rithms replace tasks previously performed by humans, cascading effects similar to
the 2010 Flash Crash may become more likely. In our work (Song et al. [2014]), we

348 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

brought together a number of high performance signal-processing tools to improve
our understanding of these trading activities. As an illustration, we summarize the
Fourier analysis of the trading prices of natural gas futures.

Normally, Fourier analysis is applied on uniformly spaced data. Since market
activity comes in bursts, we may want to sample financial time series according to an
index of trading activity. For example, VPIN samples financial series as a function of
volume traded. However, a Fourier analysis of financial series in chronological time
may still be instructive. To this purpose, we use a non-uniform Fast Fourier Transform
(FFT) procedure.

From the Fourier analysis of the natural gas futures market, we see strong evi-
dences of High Frequency Trading in the market. The Fourier components corre-
sponding to high frequencies are (1) becoming more prominent in the recent years
and (2) are much stronger than could be expected from the structure of the market.
Additionally, a significant amount of trading activity occurs in the first second of
every minute, which is a tell-tale sign of trading triggered by algorithms that target a
Time-Weighted Average Price (TWAP).

Fourier analysis on trading data shows that activities at the once-per-minute fre-
quency are considerably higher than at neighboring frequencies (see Figure 22.10).
Note that the vertical axis is in logarithmic scale. The strength of activities at once-
per-minute frequency is more than ten times stronger than the neighboring frequen-
cies. Additionally, the activity is very precisely defined at once-per-minute, which
indicates that these trades are triggered by intentionally constructed automated events.
We take this to be strong evidence that TWAP algorithms have a significant presence
in this market.

We expected the frequency analysis to show strong daily cycles. In Figure 22.10,
we expect amplitude for frequency 365 to be large. However, we see the highest

FIGURE 22.10 Fourier spectrum of trading prices of natural gas futures contracts in 2012. Non-uniform
FFT identifies strong presence of activities happening once per day (frequency = 366), twice per day
(frequency = 732), and once per minute (frequency = 527040 = 366*24*60).

SUMMARY AND CALL FOR PARTICIPATION 349

amplitude was for the frequency of 366. This can be explained because 2012 was
a leap year. This is a validation that the non-uniform FFT is capturing the expected
signals. The second- and third-highest amplitudes have the frequencies of 732 and
52, which are twice-a-day and once-a-week. These are also unsurprising.

We additionally applied the non-uniform FFT on the trading volumes and found
further evidence of algorithmic trading. Moreover, the signals pointed to a stronger
presence of algorithmic trading in recent years. Clearly, the non-uniform FFT algo-
rithm is useful for analyzing highly irregular time series.

22.7 SUMMARY AND CALL FOR PARTICIPATION

Currently, there are two primary ways to construct large-scale computing platforms:
the HPC approach and the cloud approach. Most of the scientific computing efforts
use the HPC approach, while most of the business computing needs are satisfied
through the cloud approach. The conventional wisdom is that the HPC approach occu-
pies a small niche of little consequence. This is not true. HPC systems are essential to
the progress of scientific research. They played important roles in exciting new sci-
entific discoveries including the Higgs particle and gravitational waves. They have
spurred the development of new subjects of study, such as behavioral economics, and
new ways of conducting commerce through the Internet. The usefulness of extremely
large HPC systems has led to the 2015 National Strategic Computing Initiative.3

There are efforts to make HPC tools even more useful by accelerating their adop-
tion in business applications. The HPC4Manufacturing4 effort is pioneering this
knowledge transfer to the U.S. manufacturing industry, and has attracted consider-
able attention. Now is the time to make a more concerted push for HPC to meet other
critical business needs.

In recent years, we have developed CIFT as a broad class of business applications
that could benefit from the HPC tools and techniques. In decisions such as how to
respond to a voltage fluctuation in a power transformer and an early warning signal
of impending market volatility event, HPC software tools could help determine the
signals early enough for decision makers, provide sufficient confidence about the pre-
diction, and anticipate the consequence before the catastrophic event arrives. These
applications have complex computational requirements and often have a stringent
demand on response time as well. HPC tools are better suited to meet these require-
ments than cloud-based tools.

In our work, we have demonstrated that the HPC I/O library HDF5 can be used to
accelerate the data access speed by 21-fold, and HPC techniques can accelerate the
computation of the Flash Crash early-warning indicator VPIN by 720-fold. We have
developed additional algorithms that enable us to predict the daily peak electricity

3 The National Strategic Computing Initiative plan is available online at https://www.whitehouse.gov/
sites/whitehouse.gov/files/images/NSCI%20Strategic%20Plan.pdf. The Wikipedia page on this topic
(https://en.wikipedia.org/wiki/National_Strategic_Computing_Initiative) also has some useful links to
additional information.

4 Information about HPC4Manufacturing is available online at https://hpc4mfg.llnl.gov/.

https://www.whitehouse.gov/sites/whitehouse.gov/files/images/NSCI%20Strategic%20Plan.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/NSCI%20Strategic%20Plan.pdf
let &hbox {char '046}https://hpc4mfg.llnl.gov/
https://hpc4mfg.llnl.gov/
https://en.wikipedia.org/wiki/National_Strategic_Computing_Initiative

350 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

usage years into the future. We anticipate that applying HPC tools and techniques to
other applications could achieve similarly significant results.

In addition to the performance advantages mentioned above, a number of pub-
lished studies (Yelick et al. [2011], Holzman et al. [2017]) show HPC systems to
have a significant price advantage as well. Depending on the workload’s requirement
on CPU, storage, and networking, using a cloud system might cost 50% more than
using a HPC system, and, in some cases, as much as seven times more. For the com-
plex analytical tasks described in this book, with their constant need to ingest data
for analysis, we anticipate the cost advantage will continue to be large.

CIFT is expanding the effort to transfer HPC technology to private companies,
so that they can also benefit from the price and performance advantages enjoyed by
large-scale research facilities. Our earlier collaborators have provided the funds to
start a dedicated HPC system for our work. This resource should make it considerably
easier for interested parties to try out their applications on an HPC system. We are
open to different forms of collaborations. For further information regarding CIFT,
please visit CIFT’s web page at http://crd.lbl.gov/cift/.

22.8 ACKNOWLEDGMENTS

The CIFT project is the brainchild of Dr. David Leinweber. Dr. Horst Simon brought
it to LBNL in 2010. Drs. E. W. Bethel and D. Bailey led the project for four years.

The CIFT project has received generous gifts from a number of donors. This
work is supported in part by the Office of Advanced Scientific Computing Research,
Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research also uses resources of the National Energy Research Sci-
entific Computing Center supported under the same contract.

REFERENCES

Aad, G., et al. (2016): “Measurements of the Higgs boson production and decay rates and coupling
strengths using pp collision data at

√
s = 7 and 8 TeV in the ATLAS experiment.” The Euro-

pean Physical Journal C, Vol. 76, No. 1, p. 6.
Abbott, B.P. et al. (2016): “Observation of gravitational waves from a binary black hole merger.”

Physical Review Letters, Vol. 116, No. 6, p. 061102.
Armbrust, M., et al. (2010): “A view of cloud computing.” Communications of the ACM, Vol. 53,

No. 4, pp. 50–58.
Asanovic, K. et al. (2006): “The landscape of parallel computing research: A view from Berkeley.”

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley.

Ayachit, U. et al. “Performance analysis, design considerations, and applications of extreme-scale in
situ infrastructures.” Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE Press.

Bethel, E. W. et al. (2011): “Federal market information technology in the post Flash Crash era:
Roles for supercomputing.” Proceedings of WHPCF’2011. ACM. pp. 23–30.

let &hbox {char '046}http://crd.lbl.gov/cift/
http://crd.lbl.gov/cift/

REFERENCES 351

Bloom, J. S. et al. (2012): “Automating discovery and classification of transients and variable stars
in the synoptic survey era.” Publications of the Astronomical Society of the Pacific, Vol. 124,
No. 921, p. 1175.

Camerer, C.F. and G. Loewenstein (2011): “Behavioral economics: Past, present, future.” In
Advances in Behavioral Economics, pp. 1–52.

Chen, L. et al. (2015): “Profiling and understanding virtualization overhead in cloud.” Parallel Pro-
cessing (ICPP), 2015 44th International Conference. IEEE.

Choi, J.Y. et al. (2013): ICEE: “Wide-area in transit data processing framework for near real-time
scientific applications.” 4th SC Workshop on Petascale (Big) Data Analytics: Challenges and
Opportunities in Conjunction with SC13.

Dong, Y. et al. (2012): “High performance network virtualization with SR-IOV.” Journal of Parallel
and Distributed Computing, Vol. 72, No. 11, pp. 1471–1480.

Easley, D., M. Lopez de Prado, and M. O’Hara (2011): “The microstructure of the ‘Flash Crash’:
Flow toxicity, liquidity crashes and the probability of informed trading.” Journal of Portfolio
Management, Vol. 37, No. 2, pp. 118–128.

Folk, M. et al. (2011): “An overview of the HDF5 technology suite and its applications.” Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases. ACM.

Fox, G. et al. (2015): “Big Data, simulations and HPC convergence, iBig Data benchmarking”: 6th
International Workshop, WBDB 2015, Toronto, ON, Canada, June 16–17, 2015; and 7th Inter-
national Workshop, WBDB 2015, New Delhi, India, December 14–15, 2015, Revised Selected
Papers, T. Rabl, et al., eds. 2016, Springer International Publishing: Cham. pp. 3–17. DOI:
10.1007/978-3-319-49748-8_1.

Ghemawat, S., H. Gobioff, and S.-T. Leung (2003): “The Google file system,” SOSP ’03: Proceed-
ings of the nineteenth ACM symposium on operating systems principles. ACM. pp. 29–43.

Gordon, A. et al. (2012): “ELI: Bare-metal performance for I/O virtualization.” SIGARCH Comput.
Archit. News, Vol. 40, No. 1, pp. 411–422.

Gropp, W., E. Lusk, and A. Skjellum (1999): Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press.

Hey, T., S. Tansley, and K.M. Tolle (2009): The Fourth Paradigm: Data-Intensive Scientific Discov-
ery. Vol. 1. Microsoft research Redmond, WA.

Hirschman, A. O. (1980): National Power and the Structure of Foreign Trade. Vol. 105. University
of California Press.

Holzman, B. et al. (2017): “HEPCloud, a new paradigm for HEP facilities: CMS Amazon Web
Services investigation. Computing and Software for Big Science, Vol. 1, No. 1, p. 1.

Jackson, K. R., et al. (2010): “Performance analysis of high performance computing applications
on the Amazon Web Services Cloud. Cloud Computing Technology and Science (CloudCom).
2010 Second International Conference. IEEE.

Kim, T. et al. (2015): “Extracting baseline electricity usage using gradient tree boosting.” IEEE
International Conference on Smart City/SocialCom/SustainCom (SmartCity). IEEE.

Kumar, V. et al. (1994): Introduction to Parallel Computing: Design and Analysis of Algorithms.
Benjamin/Cummings Publishing Company.

Liu, Q. et al., (2014): “Hello ADIOS: The challenges and lessons of developing leadership class I/O
frameworks.” Concurrency and Computation: Practice and Experience, Volume 26, No. 7, pp.
1453–1473.

National Academies of Sciences, Engineering and Medicine (2016): Future Directions for NSF
Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017–2020.
National Academies Press.

Nicholas, M. L. et al. (2009): “The Palomar transient factory: System overview, performance, and
first results.” Publications of the Astronomical Society of the Pacific, Vol. 121, No. 886, p. 1395.

Qiu, J. et al. (2016): “A survey of machine learning for big data processing.” EURASIP Journal on
Advances in Signal Processing, Vol. 2016, No. 1, p. 67. DOI: 10.1186/s13634-016-0355-x

352 HIGH-PERFORMANCE COMPUTATIONAL INTELLIGENCE

Rudin, C. and K. L. Wagstaff (2014) “Machine learning for science and society.” Machine Learning,
Vol. 95, No. 1, pp. 1–9.

Shoshani, A. and D. Rotem (2010): “Scientific data management: Challenges, technology, and
deployment.” Chapman & Hall/CRC Computational Science Series. CRC Press.

Snir, M. et al. (1998): MPI: The Complete Reference. Volume 1, The MPI-1 Core. MIT Press.
Song, J. H. et al. (2014): “Exploring irregular time series through non-uniform fast Fourier trans-

form.” Proceedings of the 7th Workshop on High Performance Computational Finance, IEEE
Press.

Todd, A. et al. (2014): “Insights from Smart Meters: The potential for peak hour savings
from behavior-based programs.” Lawrence Berkeley National Laboratory. Available at
https://www4.eere.energy.gov/seeaction/system/files/documents/smart_meters.pdf.

Wu, K. et al. (2013): “A big data approach to analyzing market volatility.” Algorithmic Finance. Vol.
2, No. 3, pp. 241–267.

Wu, L. et al. (2016): “Towards real-time detection and tracking of spatio-temporal features: Blob-
filaments in fusion plasma. IEEE Transactions on Big Data, Vol. 2, No. 3, pp. 262–275.

Yan, J. et al. (2009): “How much can behavioral targeting help online advertising?” Proceedings of
the 18th international conference on world wide web. ACM. pp. 261–270.

Yelick, K., et al. (2011): “The Magellan report on cloud computing for science.” U.S. Department
of Energy, Office of Science.

Zeff, R.L. and B. Aronson (1999): Advertising on the Internet. John Wiley & Sons.

let &hbox {char '046}https://www4.eere.energy.gov/seeaction/system/files/documents/smart_meters.pdf
https://www4.eere.energy.gov/seeaction/system/files/documents/smart_meters.pdf

Index

Page numbers followed by f or t refer to figure or table, respectively.

Absolute return attribution method,
68–69

Accounting data, 23, 169
Accuracy

binary classification problems and,
52, 52f

measurement of, 206
AdaBoost implementation, 100, 100f
Adaptable I/O System (ADIOS),

336–337, 339, 340
Alternative data, 24t, 25
Amihud’s lambda, 288–289, 289f
Analytics, 24t, 25
Annualized Sharpe ratio, 205
Annualized turnover, in backtesting, 196
Asset allocation

classical areas of mathematics used
in, 223–224

covariance matrix in, 223, 224, 225f,
229, 231f, 232, 234

diversification in, 4, 9, 222, 224, 234,
238

Markowitz’s approach to, 221–222
Monte Carlo simulations for,

234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

practical problems in, 222–223, 223f
quasi-diagonalization in, 224, 229,

233f
recursive bisection in, 224, 229–231
risk-based, 222. See also Risk-based

asset allocation approaches
tree clustering approaches to,

224–229, 225f, 228f, 232f
Attribution, 207–208
Augmented Dickey-Fuller (ADF) test,

253, 254, 256. See also Supremum
augmented Dickey-Fuller (SADF)
test

Average holding period, in backtesting,
196

Average slippage per turnover, 202

Backfilled data, 24, 152
Backtesters, 8
Backtesting, 139–244

bet sizing in, 141–148
common errors in, 151–157

353

354 INDEX

Backtesting (Continued)
combinatorial purged cross-validation

(CPCV) method in, 163–167
cross-validation (CV) for, 104,

162–163
customization of, 161
definition of, 151
“false discovery” probability and,

205
flawless completion as daunting task

in, 152–153, 161
general recommendations on,

153–154
machine learning asset allocation and,

223–244
purpose of, 153
as research tool, 153, 154
strategy risk and, 211–218
strategy selection in, 155–156, 157f
synthetic data in, 169–192
uses of results of, 161
walk-forward (WF) method of,

161–162
Backtest overfitting, 4

backtesters’ evaluation of probability
of, 8

bagging to reduce, 94–95, 100
combinatorial purged cross-validation

(CPCV) method for, 166–167
concerns about risk of, 17, 119
cross-validation (CV) method and,

103, 155
decision trees and proneness to, 97
definition of, 153–154, 171
discretionary portfolio managers

(PMs) and, 5
estimating extent of, 154
features stacking to reduce, 121–122
general recommendations on, 154
historical simulations in trading rules

and, 170–172, 178–179, 187
hyper-parameter tuning and, 129
need for skepticism, 11–12
optimal trading rule (OTR)

framework for, 173–176

probability of. See Probability of
backtest overfitting (PBO)

random forest (RF) method to reduce,
98, 99

selection bias and, 153–154
support vector machines (SVMs) and,

101
trading rules and, 171–172
walk-forward (WF) method and, 155,

162
Backtest statistics, 195–207

classification measurements in,
206–207

drawdown (DD) and time under water
(TuW) in, 201, 202f

efficiency measurements in, 203–206
general description of, 196–197
holding period estimator in, 197
implementation shortfall in, 202–203
performance attribution and, 207–208
performance measurements in, 198
returns concentration in, 199–201
runs in, 199
run measurements in, 201–202
time-weighted rate of returns

(TWRR) in, 198–199
timing of bets from series of target

positions in, 197
types of, 195

Bagging, 94–97, 123
accuracy improvement using, 95–96,

97f
boosting compared with, 99–100
leakage reduction using, 105
observation redundancy and, 96–97
overfitting reduction and, 154
random forest (RF) method compared

with, 98
scalability using, 101
variance reduction using, 94–95, 95f

Bars (table rows), 25–32
categories of, 26
dollar bars, 27–28, 28f, 44
dollar imbalance bars, 29–30
dollar runs bars, 31–32

INDEX 355

information-driven bars, 26, 29–32
standard bars, 26–28
tick bars, 26–27
tick imbalance bars, 29–30
tick runs bars, 31
time bars, 26, 43–44
volume bars, 27, 44
volume imbalance bars, 30–31
volume runs bars, 31–32

Becker-Parkinson volatility algorithm,
285–286

Bet sizing, 141–148
average active bets approach in, 144
bet concurrency calculation in,

141–142
budgeting approach to, 142
dynamic bet sizes and limit prices in,

145–148
holding periods and, 144
investment strategies and, 141
meta-labeling approach to, 142
performance attribution and, 207–208
predicted probabilities and, 142–144,

143f
runs and increase in, 199
size discretization in, 144–145, 145f
strategy-independent approaches to,

141–142
strategy’s capacity and, 196

Bet timing, deriving, 197
Betting frequency

backtesting and, 196
computing, 215–216, 216f
implied precision computation and,

214–215, 215f
investment strategy with trade-off

between precision and, 212–213,
212f

strategy risk and, 211, 215
targeting Sharpe ratio for, 212–213
trade size and, 293

Bias, 93, 94, 100
Bid-ask spread estimator, 284–286
Bid wanted in competition (BWIC), 24,

286

big data analysis, 18, 236, 237f, 330,
331–332, 340

Bloomberg, 23, 36
Boosting, 99–100

AdaBoost implementation of, 100,
100f

bagging compared with, 99–100
implementation of, 99
main advantage of, 100
variance and bias reduction using,

100
Bootstrap aggregation. See Bagging
Bootstraps, sequential, 63–66
Box-Jenkins analysis, 88
Broker fees per turnover, 202
Brown-Durbin-Evans CUSUM test, 250

Cancellation rates, 293–294
Capacity, in backtesting, 196
Chow-type Dickey-Fuller test, 251–252
Chu-Stinchcombe-White CUSUM test,

251
Classification models, 281–282
Classification problems

class weights for underrepresented
labels in, 71–72

generating synthetic dataset for, 122
meta-labeling and, 51–52, 142,

206–207
Classification statistics, 206–207
Class weights

decision trees using, 99
functionality for handling, 71–72
underrepresented label correction

using, 71
Cloud systems, 330–331, 334–335
Combinatorially symmetric

cross-validation (CSCV) method,
155–156

Combinatorial purged cross-validation
(CPCV) method, 163–167

algorithm steps in, 165
backtest overfitting and, 166–167
combinatorial splits in, 164–165, 164f

356 INDEX

Combinatorial purged cross-validation
(CPCV) method (Continued)

definition of, 163
examples of, 165–166

Compressed markets, 275
Computational Intelligence and

Forecasting Technologies (CIFT)
project, 329

Adaptable I/O System (ADIOS) and,
337

business applications developed by,
349–350

Flash Crash of 2010 response and,
341–343

mission of, 330, 331, 337
Conditional augmented Dickey-Fuller

(CADF) test, 256, 256f, 257f
Correlation to underlying, in

backtesting, 196
Corwin-Schultz algorithm, 284–286
Critical Line Algorithm (CLA), 221

description of, 222
Markowitz’s development of, 222
Monte Carlo simulations using,

234–236, 235f–236f, 242–244
numerical example with, 231–233,

232f, 233f, 233t
open-source implementation of, 222
practical problems with, 222–223,

223f
Cross-entropy loss (log loss) scoring,

133–134, 135f
Cross-validation (CV), 103–110

backtesting through, 104, 162–163
combinatorial purged cross-validation

(CPCV) method in, 163–167
embargo on training observations in,

107–108, 108f
failures in finance using, 104
goal of, 103
hyper-parameter tuning with,

129–135
k-fold, 103–109, 104f
leakage in, 104–105
model development and, 104

overlapping training observations in,
109

purpose of, 103
purging process in training set for

leakage reduction in, 105–106,
107f

sklearn bugs in, 109–110
CUSUM filter, 38–40, 40f
CUSUM tests, 249, 250–251
CV. See Cross-validation

Data analysis, 21–90
financial data structures and, 23–40
fractionally differentiated features

and, 75–88
labeling and, 43–55
sample weights and, 59–72

Data curators, 7
Data mining and data snooping, 152
Decision trees, 97–99
Decompressed markets, 275
Deflated Sharpe ratio (DSR), 204, 205f
Deployment team, 8
Dickey-Fuller test

Chow type, 251–252
supremum augmented (SADF),

252–259, 253f, 257f
Discretionary portfolio managers

(PMs), 4–5, 15
Discretization of bet size, 144–145,

145f
Diversification, 4, 9, 222, 224, 234,

238
Dollar bars, 27–28, 28f, 44
Dollar imbalance bars (DIBs), 29–30
Dollar performance per turnover, 202
Dollar runs bars (DRBs), 31–32
Downsampling, 38
Drawdown (DD)

definition of, 201
deriving, 201
example of, 202f
run measurements using, 202

Dynamic bet sizes, 145–148

INDEX 357

Econometrics, 14, 85
financial Big Data analysis and, 236
financial machine learning versus, 15
HRP approach compared with, 236,

237f
investment strategies based in, 6
paradigms used in, 88
substitution effects and, 114
trading rules and, 169

Efficiency measurements, 203–206
annualized Sharpe ratio and, 205
deflated Sharpe ratio (DSR) and, 204,

205f
information ratio and, 205
probabilistic Sharpe ratio (PSR) and,

203–204, 204f, 205–206, 218
Sharpe ratio (SR) definition in, 203

Efficient frontier, 222
Electricity consumption analysis,

340–341, 342f–343f
Engle-Granger analysis, 88
Ensemble methods, 93–101

boosting and, 99–100
bootstrap aggregation (bagging) and,

94–97, 101
random forest (RF) method and,

97–99
Entropy features, 263–277

encoding schemes in estimates of,
269–271

financial applications of, 275–277
generalized mean and, 271–275,

274f
Lempel-Ziv (LZ) estimator in,

265–269
maximum likelihood estimator in,

264–265
Shannon’s approach to, 263–264

ETF trick, 33–34, 84, 253
Event-based sampling, 38–40, 40f
Excess returns, in information ratio,

205
Execution costs, 202–203
Expanding window method, 80–82, 81f
Explosiveness tests, 249, 251–259

Chow-type Dickey-Fuller test,
251–252

supremum augmented Dickey-Fuller
(SADF) test, 252–259, 253f, 257f

Factory plan, 5, 11
Feature analysts, 7
Feature importance, 113–127

features stacking approach to,
121–122

importance of, 113–114
mean decrease accuracy (MDA) and,

116–117
mean decrease impurity (MDI) and,

114–116
orthogonal features and, 118–119
parallelized approach to, 121
plotting function for, 124–125
random forest (RF) method and, 98
as research tool, 153
single feature importance (SFI) and,

117–118
synthetic data experiments with,

122–124
weighted Kendall’s tau computation

in, 120–121
without substitution effects, 117–121
with substitution effects, 114–117

Features stacking importance, 121–122
Filter trading strategy, 39
Finance

algorithmization of, 14
human investors’ abilities in, 4, 14
purpose and role of, 4
usefulness of ML algorithms in, 4,

14
Financial data

alternative, 25
analytics and, 25
essential types of, 23, 24t
fundamental, 23–24
market, 24–25

Financial data structures, 23–40
bars (table rows) in, 25–32

358 INDEX

Financial data structures (Continued)
multi-product series in, 32–37
sampling features in, 38–40
unstructured, raw data as starting

point for, 23
Financial Information eXchange (FIX)

messages, 7, 24, 25, 281
Financial machine learning

econometrics versus, 15
prejudices about use of, 16
standard machine learning separate

from, 4
Financial machine learning projects

reasons for failure of, 4–5
structure by strategy component in,

9–12
Fixed-time horizon labeling method,

43–44
Fixed-width window fracdiff (FFD)

method, 82–84, 83f
Flash crashes, 296

class weights for predicting, 71
“early warning” indicators in,

345
high performance computing (HPC)

tools and, 347–348
signs of emerging illiquidity events

and, 331
Flash Crash of 2010, 296, 329–330,

341–345
F1 scores

measurement of, 206
meta-labeling and, 52–53

Fractional differentiation
data transformation method for

stationarity in, 77–78
earlier methods of, 76–77
expanding window method for,

80–82, 81f
fixed-width window fracdiff (FFD)

method for, 82–84, 83f
maximum memory preservation in,

84–85, 84f, 86t–87t
Frequency. See Betting frequency

Fundamental data, 23–24, 24t
Fusion collaboration project, 338–340,

339f
Futures

dollar bars and, 28
ETF trick with, 33–34
non-negative rolled price series and,

37
single futures roll method with, 36–37
volume bars and, 27

Gaps series, in single future roll method,
36–37

Global Investment Performance
Standards (GIPS), 161, 195, 198

Graph theory, 221, 224
Grid search cross-validation, 129–131

Hasbrouck’s lambda, 289, 290f
Hedging weights, 35
Herfindahl-Hirschman Index (HHI)

concentration, 200, 201
HHI indexes

on negative returns, 202
on positive returns, 201
on time between bets, 202

Hierarchical Data Format 5 (HDF5),
336

Hierarchical Risk Parity (HRP)
approach

econometric regression compared
with, 236, 237f

full implementation of, 240–242
Monte Carlo simulations using,

234–236, 235f–236f, 242–244
numerical example of, 231–233, 232f,

233f, 233t
practical application of, 221
quasi-diagonalization in, 224, 229
recursive bisection in, 224, 229–231
standard approaches compared with,

221, 236–238

INDEX 359

traditional risk parity approach
compared with, 231–232, 233t,
234, 235f

tree clustering approaches to,
224–229, 225f, 228f, 232f

High-frequency trading, 14, 196, 212
High-low volatility estimator, 283–284
High-performance computing (HPC),

301–349
ADIOS and, 336–337, 339, 340
atoms and molecules in

parallelization and, 306–309
CIFT business applications and,

349–350
cloud systems compared with,

334–335
combinatorial optimization and,

319–320
electricity consumption analysis

using, 340–341, 342f–343f
Flash Crash of 2010 response and,

329–330, 341–345
fusion collaboration project using,

338–340, 339f
global dynamic optimal trajectory

and, 325–327
hardware for, 331–335, 332f, 333f,

334f
integer optimization approach and,

321–325, 322f
multiprocessing and, 304–306,

309–316
objective function and, 320–321
pattern-finding capability in, 330–331
software for, 335–337
streaming data analysis using, 329
supernova hunting using, 337–338,

338f
use cases for, 337–349
vectorization and, 303–304

Holding periods
backtesting and, 196
bet sizing and, 144
estimating in strategy, 196, 197

optimal trading rule (OTR) algorithm
with, 174, 175

triple-period labeling method and,
46

Hyper-parameter tuning, 129–135
grid search cross-validation and,

129–131
log loss scoring used with, 133–134,

135f
randomized search cross-validation

and, 131–133

Implementation shortfall statistics,
202–203

Implied betting frequency, 215–216,
216f

Implied precision computation,
214–215, 215f

Indicator matrix, 64–65, 66, 67
Information-driven bars (table rows),

26, 29–32
dollar imbalance bars, 29–30
dollar runs bars, 31–32
purpose of, 29
tick imbalance bars, 29–30
tick runs bars, 31
volume imbalance bars, 30–31
volume runs bars, 31–32

Information ratio, 205
Inverse-Variance Portfolio (IVP)

asset allocation numerical example of,
231–233, 232f, 233f, 233t

Monte Carlo simulations using,
234–236, 235f–236f, 242–244

Investment strategies
algorithmization of, 14
bet sizing in, 141
evolution of, 6
exit conditions in, 211
human investors’ abilities and, 4, 14
log loss scoring used with

hyper-parameter tuning in,
134–135, 135f

360 INDEX

Investment strategies (Continued)
profit-taking and stop-loss limits in,

170–171, 172, 211
risk in. See Strategy risk
structural breaks and, 249
trade-off between precision and

frequency in, 212–213, 212f
trading rules and algorithms in,

169–170
Investment strategy failure probability,

216–218
algorithm in, 217
implementation of algorithm in,

217–218
probabilistic Sharpe ratio (PSR)

similarity to, 218
strategy risk and, 216–217

K-fold cross-validation (CV), 103–109
description of, 103–104, 104f
embargo on training observations in,

107–108, 108f
leakage in, 104–105
mean decrease accuracy (MDA)

feature with, 116
overlapping training observations in,

109
purging process in training set for

leakage reduction in, 105–106,
107f

when used, 104
Kyle’s lambda, 286–288, 288f

Labeling, 43–55
daily volatility at intraday estimation

for, 44–45
dropping unnecessary or

under-populated labels in, 54–55
fixed-time horizon labeling method

for, 43–44
learning side and size in, 48–50
meta-labeling and, 50–53
quantamental approach using, 53–54

triple-barrier labeling method for,
45–46, 47f

Labels
average uniqueness over lifespan of,

61–62, 61f
class weights for underrepresented

labels, 71–72
estimating uniqueness of, 60–61

Lawrence Berkeley National Laboratory
(LBNL, Berkeley Lab), 18, 329,
331

Leakage, and cross-validation (CV),
104–105

Leakage reduction
bagging for, 105
purging process in training set for,

105–106, 107f
sequential bootstraps for, 105
walk-forward timefolds method for,

155
Lempel-Ziv (LZ) estimator, 265–269
Leverage, in backtesting, 196
Limit prices, in bet sizing, 145–148
Log loss scoring, in hyper-parameter

tuning, 133–134, 135f
Log-uniform distribution, 132–133
Look-ahead bias, 152

Machine learning (ML), 3
finance and, 4, 14
financial machine learning separate

from, 4
HRP approach using, 221, 224
human investors and, 4, 14
prejudices about use of, 16

Machine learning asset allocation,
223–244. See also Hierarchical
Risk Parity (HRP) approach

Monte Carlo simulations for,
234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

quasi-diagonalization in, 224, 229,
233f

INDEX 361

recursive bisection in, 224, 229–231
tree clustering approaches to,

224–229, 225f, 228f, 232f
Market data, 24–25, 24t
Markowitz, Harry, 221–222
Maximum dollar position size, in

backtesting, 196
Maximum likelihood estimator, in

entropy, 264–265
Mean decrease accuracy (MDA) feature

importance, 116–117
computed on synthetic dataset,

125–126, 126f
considerations in working with,

116
implementation of, 116–117
single feature importance (SFI) and,

127
Mean decrease impurity (MDI) feature

importance, 114–116
computed on synthetic dataset, 125,

125f
considerations in working with, 115
implementation of, 115–116
single feature importance (SFI) and,

127
Message Passing Interface (MPI), 335
Meta-labeling, 50–55

bet sizing using, 142
code enhancements for, 50–51
description of, 50, 127
dropping unnecessary or

under-populated labels in, 54–55
how to use, 51–53
quantamental approach using, 53–54

Meta-strategy paradigm, 5, 6, 11, 18
Microstructural features, 281–296

alternative features of, 293–295
Amihud’s lambda and, 288–289, 289f
bid-ask spread estimator

(Corwin-Schultz algorithm) and,
284–286

Hasbrouck’s lambda and, 289, 290f
high-low volatility estimator and,

283–284

Kyle’s lambda and, 286–288, 288f
microstructural information definition

and, 295–296
probability of informed trading and,

290–292
Roll model and, 282–283
sequential trade models and, 290
strategic trade models and, 286
tick rule and, 282
volume-synchronized probability of

informed trading (VPIN) and, 292
Mixture of Gaussians (EF3M),

141–142, 149, 217–219
Model development

cross-validation (CV) for, 104,
108–109

overfitting reduction and, 154
single feature importance method

and, 117
Modelling, 91–135

applications of entropy to, 275
backtesting in, 153
cross-validation in, 103–110
econometrics and, 15
ensemble methods in, 93–101
entropy features in, 275–277
feature importance in, 113–127
hyper-parameter tuning with

cross-validation in, 129–135
market microstructure theories and,

281–282
three sources of errors in, 93

Monte Carlo simulations
machine learning asset allocation and,

234–236, 235f–236f, 242–244
sequential bootstraps evaluation

using, 66–68, 68f
Multi-product series, 32–37

ETF trick for, 33–34
PCA weights for, 35–36, 35f
single future roll in, 36–37

National laboratories, 5, 10, 18
Negative (neg) log loss scores

362 INDEX

Negative (neg) log loss scores
(Continued)

hyper-parameter tuning using,
133–134, 135f

measurement of, 207
Noise, causes of, 93
Non-negative rolled price series, 37

Optimal trading rule (OTR) framework,
173–176

algorithm steps in, 173–174
cases with negative long-run

equilibrium in, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium in, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
in, 177–180, 177f, 178f, 179f

experimental results using simulation
in, 176–191

implementation of, 174–176
overfitting and, 172
profit-taking and stop-loss limits in,

173–208, 176–177, 192
synthetic data for determination of,

192
Options markets, 295
Ornstein-Uhlenbeck (O-U) process,

172–173
Orthogonal features, 118–119

benefits of, 119
computation of, 119
implementation of, 118–119

Outliers, in quantitative investing, 152
Overfitting. See Backtest overfitting

Parallelized feature importance, 121
PCA (see Principal components

analysis)
Performance attribution, 207–208
Plotting function for feature importance,

124–125

PnL (mark-to-market profits and losses)
ETF trick and, 33
performance attribution using,

207–208
as performance measurement, 198
rolled prices for simulating, 37

PnL from long positions, 198
Portfolio construction. See also

Hierarchical Risk Parity (HRP)
approach

classical areas of mathematics used
in, 223–224

covariance matrix in, 223, 224, 225f,
229, 231f, 232, 234

diversification in, 4, 9, 222, 224, 234,
238

entropy and concentration in,
275–276

Markowitz’s approach to, 221–222
Monte Carlo simulations for,

234–236, 235f–236f, 242–244
numerical example of, 231–233, 232f,

233f, 233t
practical problems in, 222–223, 223f
tree clustering approaches to,

224–229, 225f, 228f, 232f
Portfolio oversight, 8–9
Portfolio risk. See also Hierarchical

Risk Parity (HRP) approach; Risk;
Strategy risk

portfolio decisions based on, 221–222
probability of strategy failure and,

217
strategy risk differentiated from,

217
Portfolio turnover costs, 202–203
Precision

binary classification problems and,
52–53, 52f

investment strategy with trade-off
between frequency and, 212–213,
212f

measurement of, 206
Predicted probabilities, in bet sizing,

142–144, 143f

INDEX 363

Principal components analysis (PCA)
hedging weights using, 35–36,

35f
linear substitution effects and, 118,

119–121
Probabilistic Sharpe ratio (PSR)

calculation of, 203–204, 204f
as efficiency statistic, 203, 205–206
probability of strategy failure,

similarity to, 218
Probability of backtest overfitting (PBO)

backtest overfitting evaluation using,
171–172

combinatorially symmetric
cross-validation (CSCV) method
for, 155–156

strategy selection based on estimation
of, 155–156, 157f, 171

Probability of informed trading (PIN),
276, 290–292

Probability of strategy failure, 216–218
algorithm in, 217
implementation of algorithm in,

217–218
probabilistic Sharpe ratio (PSR),

similarity to, 218
strategy risk and, 216–217

Profit-taking, and investment strategy
exit, 211

Profit-taking limits
asymmetric payoff dilemma and,

178–180
cases with negative long-run

equilibrium and, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium and, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
and, 177–180, 177f, 178f, 179f

daily volatility at intraday estimation
points computation and, 44–45

investment strategies using, 170–171,
172

learning side and size and, 48

optimal trading rule (OTR) algorithm
for, 173–174, 176–177, 192

strategy risk and, 211
triple-barrier labeling method for,

45–46, 47f
Purged K-fold cross-validation (CV)

grid search cross-validation and,
129–131

hyper-parameter tuning with,
129–135

implementation of, 105–106, 107f
randomized search cross-validation

and, 131–133
Python, 14

Quantamental approach, 4, 15, 53–54
Quantamental funds, 19
Quantitative investing

backtest overfitting in, 113, 154
failure rate in, 4
meta-strategy paradigm in, 5
quantamental approach in, 53
seven sins of, 152, 153

Quantum computing, 319–328

Random forest (RF) method, 97–99
alternative ways of setting up,

98–99
bagging compared with, 98
bet sizing using, 142

Randomized search cross-validation,
131–133

Recall
binary classification problems and,

52, 52f
measurement of, 206

Reinstated value, 24
Return attribution method, 68–69
Return on execution costs, 203
Returns concentration, 199–201
RF. See Random forest (RF)

method
Right-tail unit-root tests, 250

364 INDEX

Risk. See also Hierarchical Risk Parity
(HRP) approach; Strategy risk

backtest statistics for uncovering, 195
entropy application to portfolio

concentration and, 276
liquidity and, 7, 286
ML algorithms for monitoring, 14
PCA weights and, 35–36, 35f
portfolio oversight and, 8
profit taking and stop-loss limits and,

44
structural breaks and, 249
walk-forward (WF) approach and,

161
Risk-based asset allocation approaches,

222
HRP approach comparisons in,

236–238
structural breaks and, 249

Risk parity, 222. See also Hierarchical
Risk Parity (HRP) approach

HRP approach compared with
traditional approach to, 231–232,
233t, 234, 235f

Rolled prices, 37
Roll model, 282–283

Sample weights, 59–72
average uniqueness of labels over

lifespan and, 61–62, 61f
bagging classifiers and uniqueness

and, 62–63
indicator matrix for, 64–65
mean decrease accuracy (MDA)

feature importance with, 116
number of concurrent labels and,

60–61
overlapping outcomes and, 59–60
return attribution method and, 68–69
sequential bootstrap and, 63–68
time-decay factors and, 70–71, 72f

Sampling features, 38–40
downsampling and, 38
event-based sampling and, 38–40, 40f

Scalability
bagging for, 101
sample size in ML algorithms and,

38, 101
Scikit-learn (sklearn)

class weights in, 71
cross-validation (CV) bugs in,

109–110
grid search cross-validation in,

129–130
labels and bug in, 55, 72, 94
mean decrease impurity (MDI) and,

115
neg log loss as scoring statistic and

bug in, 134
observation redundancy and bagging

classifiers in, 97
random forest (RF) overfitting and,

98–99
support vector machine (SVM)

implementation in, 101
synthetic dataset generation in, 122
walk-forward timefolds method in,

155
Selection bias, 153–154, 167
Sequential bootstraps, 63–68

description of, 63–64
implementation of, 64–65
leakage reduction using, 105
Monte Carlo experiments evaluating,

66–68, 68f
numerical example of, 65–66

Shannon, Claude, 263–264
Sharpe ratio (SR) in efficiency

measurements
annualized, 205
definition of, 203
deflated (DSR), 204, 205f
information ratio and, 205
probabilistic (PSR), 203–204, 204f,

205–206, 218
purpose of, 203
targeting, for various betting

frequencies, 212–213
Shorting, in quantitative investing, 152

INDEX 365

Signal order flows, 295
Simulations, overfitting of, 154
Single feature importance (SFI),

117–118, 125–127, 126f
Single future roll, 36–37
Sklearn. See Scikit-learn
Stacked feature importance, 121–122
Standard bars (table rows), 26–28

dollar bars, 27–28, 28f, 44
purpose of, 26
tick bars, 26–27
time bars, 26, 43–44
volume bars, 27, 44

Stationarity
data transformation method to ensure,

77–78
fractional differentiation applied to,

76–77
fractional differentiation

implementation methods for,
80–84

integer transformation for, 76
maximum memory preservation for,

84–85, 84f, 86t–87t
memory loss dilemma and, 75–76

Stop-loss, and investment strategy exit,
211

Stop-loss limits
asymmetric payoff dilemma and,

178–180
cases with negative long-run

equilibrium and, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium and, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
and, 177–180, 177f, 178f, 179f

daily volatility computation and,
44–45

fixed-time horizon labeling method
and, 44

investment strategies using, 170–171,
172, 211

learning side and size and, 48

optimal trading rule (OTR) algorithm
for, 173–174, 176–177, 192

strategy risk and, 211
triple-barrier labeling method for,

45–46, 47f
Storytelling, 162
Strategists, 7
Strategy risk, 211–218

asymmetric payouts and, 213–216
calculating, 217, 218
implied betting frequency and,

215–216, 216f
implied precision and, 214–215,

215f
investment strategies and

understanding of, 211
portfolio risk differentiated from,

217
probabilistic Sharpe ratio (PSR)

similarity to, 218
strategy failure probability and,

216–218
symmetric payouts and, 211–213,

212f
Structural breaks, 249–261

CUSUM tests in, 250–251
explosiveness tests in, 249, 251–259
sub- and super-martingale tests in,

259–261
types of tests in, 249–250

Sub- and super-martingale tests, 250,
259–261

Supernova research, 337–338, 338f
Support vector machines (SVMs), 38,

101
Supremum augmented Dickey-Fuller

(SADF) test, 252–259, 253f, 257f
conditional ADF, 256, 256f,

257f
implementation of, 258–259
quantile ADF, 255–256

Survivorship bias, 152
SymPy Live, 214
Synthetic data

backtesting using, 169–192

366 INDEX

Synthetic data (Continued)
experimental results using simulation

combinations with, 176–191
optimal trading rule (OTR)

framework using, 173–176

Tick bars, 26–27
Tick imbalance bars (TIBs), 29–30
Tick rule, 282
Tick runs bars (TRBs), 31
Time bars

description of, 26
fixed-time horizon labeling method

using, 43–44
Time-decay factors, and sample

weights, 70–71, 72f
Time period, in backtesting, 196
Time series

fractional differentiation applied to,
76

integer transformation for stationarity
in, 76

stationarity vs. memory loss dilemma
in, 75–76

Time under water (TuW)
definition of, 201
deriving, 201
example of, 202f
run measurements using, 202

Time-weighted average price (TWAP),
24, 294

Time-weighted rate of returns (TWRR),
198–199

Trading rules
investment strategies and algorithms

in, 169–170

optimal trading rule (OTR)
framework for, 173–176

overfitting in, 171–172
Transaction costs, in quantitative

investing, 152
Tree clustering approaches, in asset

allocation, 224–229, 225f, 228f,
232f

Triple-barrier labeling method, 45–46,
47f, 145

Turnover costs, 202–203

Variance
boosting to reduce, 100
causes of, 93
ensemble methods to reduce, 94
random forest (RF) method for, 97–98

Vectorization, 303–304
Volume bars, 27, 44
Volume imbalance bars (VIBs), 30–31
Volume runs bars (VRBs), 31–32
Volume-synchronized probability of

informed trading (VPIN), 276, 282,
292

Walk-forward (WF) method
backtesting using, 161–162
overfitting in, 155, 162
pitfalls of, 162
Sharpe ratio estimation in, 166
two key advantages of, 161–162

Walk-forward timefolds method, 155
Weighted Kendall’s tau, 120–121
Weights. See Class weights; Sample

weights

	Title Page
	Copyright
	Dedication
	Epigraph
	Contents
	About the Author
	Preamble
	1 Financial Machine Learning as a Distinct Subject
	Part 1: Data Analysis
	2 Financial Data Structures
	3 Labeling
	4 Sample Weights
	5 Fractionally Differentiated Features

	Part 2: Modelling
	6 Ensemble Methods
	7 Cross-Validation in Finance
	8 Feature Importance
	9 Hyper-Parameter Tuning with Cross-Validation

	Part 3: Backtesting
	10 Bet Sizing
	11 The Dangers of Backtesting
	12 Backtesting through Cross-Validation
	13 Backtesting on Synthetic Data
	14 Backtest Statistics
	15 Understanding Strategy Risk
	16 Machine Learning Asset Allocation

	Part 4: Useful Financial Features
	17 Structural Breaks
	18 Entropy Features
	19 Microstructural Features

	Part 5: High-Performance Computing Recipes
	20 Multiprocessing and Vectorization
	21 Brute Force and Quantum Computers
	22 High-Performance Computational Intelligence and Forecasting Technologies

	Index

