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Preface

It is sometimes hard for me to believe that the first edition of this book, published in

1988, was only 330 pages and 13 chapters long. The book has grown and been adapted

to keep up with the fast pace of change in derivatives markets.

Like earlier editions, this book serves several markets. It is appropriate for graduate

courses in business, economics, and financial engineering. It can be used on advanced

undergraduate courses when students have good quantitative skills. Many practitioners

who are involved in derivatives markets also find the book useful. I am delighted that

half the purchasers of the book are analysts, traders, and other professionals who work

in derivatives and risk management.

One of the key decisions that must be made by an author who is writing in the area of

derivatives concerns the use of mathematics. If the level of mathematical sophistication

is too high, the material is likely to be inaccessible to many students and practitioners. If

it is too low, some important issues will inevitably be treated in a rather superficial way.

I have tried to be particularly careful about the way I use both mathematics and

notation in the book. Nonessential mathematical material has been either eliminated

or included in end-of-chapter appendices and the technical notes on my website.

Concepts that are likely to be new to many readers have been explained carefully and

many numerical examples have been included.

Options, Futures, and Other Derivatives can be used for a first course in derivatives or

for a more advanced course. There are many different ways it can be used in the

classroom. Instructors teaching a first course in derivatives are likely to want to spend

most classroom time on the first half of the book. Instructors teaching a more advanced

course will find that many different combinations of chapters in the second half of the

book can be used. I find that the material in Chapter 36 works well at the end of either

an introductory or an advanced course.

What’s New in the Ninth Edition?
Material has been updated and improved throughout the book. The changes in the

ninth edition include:

1. New material at various points in the book on the industry’s use of overnight
indexed swap (OIS) rates for discounting.

2. A new chapter early in the book discussing discount rates, credit risk, and funding
costs.

3. New material on the regulation of over-the-counter derivatives markets.

4. More discussion of central clearing, margin requirements, and swap execution
facilities.
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5. Coverage of products such as DOOM options and CEBOs offered by the CBOE.

6. New nontechnical explanation of the terms in the Black–Scholes–Merton
formulas.

7. Coverage of perpetual options and other perpetual derivatives.

8. Expansion and updating of the material on credit risk and credit derivatives with
the key products and key issues being introduced early in the book.

9. More complete coverage of one-factor equilibrium models of the term structure

10. New release of DerivaGem with many new features (see below).

11. Improvements to the Test Bank, which is available to adopting instructors.

12. Many new end-of-chapter problems.

DerivaGem Software
DerivaGem 3.00 is included with this book. This consists of two Excel applications: the 
Options Calculator and the Applications Builder. The Options Calculator consists of 
easy-to-use software for valuing a wide range of options. The Applications Builder 
consists of a number of Excel functions from which users can build their own applica-
tions. A number of sample applications enabling students to explore the properties of 
options and use different numerical procedures are included. The Applications Builder 
software allows more interesting assignments to be designed. Students have access to the 
code for the functions.

DerivaGem 3.00 includes many new features. European options can be valued using 
the CEV, Merton mixed-jump diffusion, and variance gamma models, which are 
discussed in Chapter 27. Monte Carlo experiments can be run. LIBOR and OIS zero 
curves can be calculated from market data. Swaps and bonds can be valued. When swaps, 
caps, and swaptions are valued, either OIS or LIBOR discounting can be used.

The software is described more fully at the end of the book. The software is available 
for download from www.pearsonhighered.com/hull.

Slides
Several hundred PowerPoint slides can be downloaded from Pearson’s 
Instructor Resource Center or from my website. Instructors who adopt the text are 
welcome to adapt the slides to meet their own needs.

Instructor’s Manual
The Instructor’s Manual is made available online to adopting instructors by Pearson. It 
contains solutions to all questions (both Further Questions and Practice Questions), 
notes on the teaching of each chapter, Test Bank questions, notes on course organiza-
tion, and some relevant Excel worksheets.

Technical Notes
Technical Notes are used to elaborate on points made in the text. They are referred to 
in the text and can be downloaded from:

www.pearsonglobaleditions.com/hull

By not including the Technical Notes in the book, I am able to streamline the 
presentation of material so that it is more student-friendly.
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Introduction

In the last 40 years, derivatives have become increasingly important in finance. Futures
and options are actively traded on many exchanges throughout the world. Many
different types of forward contracts, swaps, options, and other derivatives are entered
into by financial institutions, fund managers, and corporate treasurers in the over-the-
counter market. Derivatives are added to bond issues, used in executive compensation
plans, embedded in capital investment opportunities, used to transfer risks in mortgages
from the original lenders to investors, and so on. We have now reached the stage where
those who work in finance, and many who work outside finance, need to understand
how derivatives work, how they are used, and how they are priced.

Whether you love derivatives or hate them, you cannot ignore them! The derivatives
market is huge—much bigger than the stock market when measured in terms of
underlying assets. The value of the assets underlying outstanding derivatives trans-
actions is several times the world gross domestic product. As we shall see in this chapter,
derivatives can be used for hedging or speculation or arbitrage. They play a key role in
transferring a wide range of risks in the economy from one entity to another.

A derivative can be defined as a financial instrument whose value depends on (or
derives from) the values of other, more basic, underlying variables. Very often the
variables underlying derivatives are the prices of traded assets. A stock option, for
example, is a derivative whose value is dependent on the price of a stock. However,
derivatives can be dependent on almost any variable, from the price of hogs to the
amount of snow falling at a certain ski resort.

Since the first edition of this book was published in 1988 there have been many
developments in derivatives markets. There is now active trading in credit derivatives,
electricity derivatives, weather derivatives, and insurance derivatives. Many new types
of interest rate, foreign exchange, and equity derivative products have been created.
There have been many new ideas in risk management and risk measurement. Capital
investment appraisal now often involves the evaluation of what are known as real
options. Many new regulations have been introduced covering over-the-counter deriva-
tives markets. The book has kept up with all these developments.

Derivatives markets have come under a great deal of criticism because of their role in
the credit crisis that started in 2007. Derivative products were created from portfolios of
risky mortgages in the United States using a procedure known as securitization. Many
of the products that were created became worthless when house prices declined.
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Financial institutions, and investors throughout the world, lost a huge amount of
money and the world was plunged into the worst recession it had experienced in
75 years. Chapter 8 explains how securitization works and why such big losses
occurred. As a result of the credit crisis, derivatives markets are now more heavily
regulated than they used to be. For example, banks are required to keep more capital
for the risks they are taking and to pay more attention to liquidity.

The way banks value derivatives has evolved through time. Collateral arrangements
and credit issues are now given much more attention than in the past. Although it
cannot be justified theoretically, many banks have changed the proxies they use for the
‘‘risk-free’’ interest rate to reflect their funding costs. Chapter 9, new to this edition,
discusses these developments. Credit and collateral issues are considered in greater
detail in Chapter 24.

In this opening chapter, we take a first look at derivatives markets and how they are
changing. We describe forward, futures, and options markets and provide an overview
of how they are used by hedgers, speculators, and arbitrageurs. Later chapters will give
more details and elaborate on many of the points made here.

1.1 EXCHANGE-TRADED MARKETS

A derivatives exchange is a market where individuals trade standardized contracts that
have been defined by the exchange. Derivatives exchanges have existed for a long time.
The Chicago Board of Trade (CBOT) was established in 1848 to bring farmers and
merchants together. Initially its main task was to standardize the quantities and
qualities of the grains that were traded. Within a few years, the first futures-type
contract was developed. It was known as a to-arrive contract. Speculators soon became
interested in the contract and found trading the contract to be an attractive alternative
to trading the grain itself. A rival futures exchange, the Chicago Mercantile Exchange
(CME), was established in 1919. Now futures exchanges exist all over the world. (See
table at the end of the book.) The CME and CBOT have merged to form the
CME Group (www.cmegroup.com), which also includes the New York Mercantile
Exchange, the commodity exchange (COMEX), and the Kansas City Board of Trade
(KCBT).

The Chicago Board Options Exchange (CBOE, www.cboe.com) started trading call
option contracts on 16 stocks in 1973. Options had traded prior to 1973, but the CBOE
succeeded in creating an orderly market with well-defined contracts. Put option
contracts started trading on the exchange in 1977. The CBOE now trades options on
over 2,500 stocks and many different stock indices. Like futures, options have proved to
be very popular contracts. Many other exchanges throughout the world now trade
options. (See table at the end of the book.) The underlying assets include foreign
currencies and futures contracts as well as stocks and stock indices.

Once two traders have agreed on a trade, it is handled by the exchange clearing
house. This stands between the two traders and manages the risks. Suppose, for
example, that trader A agrees to buy 100 ounces of gold from trader B at a future
time for $1,450 per ounce. The result of this trade will be that A has a contract to buy
100 ounces of gold from the clearing house at $1,450 per ounce and B has a contract to
sell 100 ounces of gold to the clearing house for $1,450 per ounce. The advantage of
this arrangement is that traders do not have to worry about the creditworthiness of the
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people they are trading with. The clearing house takes care of credit risk by requiring

each of the two traders to deposit funds (known as margin) with the clearing house to

ensure that they will live up to their obligations. Margin requirements and the operation

of clearing houses are discussed in more detail in Chapter 2.

Electronic Markets

Traditionally derivatives exchanges have used what is known as the open outcry system.

This involves traders physically meeting on the floor of the exchange, shouting, and

using a complicated set of hand signals to indicate the trades they would like to carry

out. Exchanges have largely replaced the open outcry system by electronic trading. This

involves traders entering their desired trades at a keyboard and a computer being used

to match buyers and sellers. The open outcry system has its advocates, but, as time

passes, it is becoming less and less used.

Electronic trading has led to a growth in high-frequency and algorithmic trading.

This involves the use of computer programs to initiate trades, often without human

intervention, and has become an important feature of derivatives markets.

1.2 OVER-THE-COUNTER MARKETS

Not all derivatives trading is on exchanges. Many trades take place in the over-the-

counter (OTC) market. Banks, other large financial institutions, fund managers, and

corporations are the main participants in OTC derivatives markets. Once an OTC

trade has been agreed, the two parties can either present it to a central counterparty

(CCP) or clear the trade bilaterally. A CCP is like an exchange clearing house. It

stands between the two parties to the derivatives transaction so that one party does not

have to bear the risk that the other party will default. When trades are cleared

bilaterally, the two parties have usually signed an agreement covering all their trans-

actions with each other. The issues covered in the agreement include the circumstances

under which outstanding transactions can be terminated, how settlement amounts are

calculated in the event of a termination, and how the collateral (if any) that must be

posted by each side is calculated. CCPs and bilateral clearing are discussed in more

detail in Chapter 2.

Traditionally, participants in the OTC derivatives markets have contacted each other

directly by phone and email, or have found counterparties for their trades using an

interdealer broker. Banks often act as market makers for the more commonly traded

instruments. This means that they are always prepared to quote a bid price (at which

they are prepared to take one side of a derivatives transaction) and an offer price (at

which they are prepared to take the other side).

Prior to the credit crisis, which started in 2007 and is discussed in some detail in

Chapter 8, OTC derivatives markets were largely unregulated. Following the credit

crisis and the failure of Lehman Brothers (see Business Snapshot 1.1), we have seen the

development many new regulations affecting the operation of OTC markets. The

purpose of the regulations is to improve the transparency of OTC markets, improve

market efficiency, and reduce systemic risk (see Business Snapshot 1.2). The over-the-

counter market in some respects is being forced to become more like the exchange-
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traded market. Three important changes are:

1. Standardized OTC derivatives in the United States must, whenever possible, be
traded on what are referred to a swap execution facilities (SEFs). These are
platforms where market participants can post bid and offer quotes and where
market participants can choose to trade by accepting the quotes of other market
participants.

2. There is a requirement in most parts of the world that a CCP be used for most
standardized derivatives transactions.

3. All trades must be reported to a central registry.

Market Size

Both the over-the-counter and the exchange-traded market for derivatives are huge. The

number of derivatives transactions per year in OTC markets is smaller than in exchange-

traded markets, but the average size of the transactions is much greater. Although the

statistics that are collected for the two markets are not exactly comparable, it is clear that

Business Snapshot 1.1 The Lehman Bankruptcy

On September 15, 2008, Lehman Brothers filed for bankruptcy. This was the largest
bankruptcy in US history and its ramifications were felt throughout derivatives
markets. Almost until the end, it seemed as though there was a good chance that
Lehman would survive. A number of companies (e.g., the Korean Development
Bank, Barclays Bank in the UK, and Bank of America) expressed interest in buying
it, but none of these was able to close a deal. Many people thought that Lehman was
‘‘too big to fail’’ and that the US government would have to bail it out if no purchaser
could be found. This proved not to be the case.

How did this happen? It was a combination of high leverage, risky investments, and
liquidity problems. Commercial banks that take deposits are subject to regulations on
the amount of capital they must keep. Lehman was an investment bank and not
subject to these regulations. By 2007, its leverage ratio had increased to 31:1, which
means that a 3–4% decline in the value of its assets would wipe out its capital. Dick
Fuld, Lehman’s Chairman and Chief Executive Officer, encouraged an aggressive
deal-making, risk-taking culture. He is reported to have told his executives: ‘‘Every day
is a battle. You have to kill the enemy.’’ The Chief Risk Officer at Lehman was
competent, but did not have much influence and was even removed from the executive
committee in 2007. The risks taken by Lehman included large positions in the
instruments created from subprime mortgages, which will be described in Chapter 8.
Lehman funded much of its operations with short-term debt. When there was a loss of
confidence in the company, lenders refused to roll over this funding, forcing it into
bankruptcy.

Lehman was very active in the over-the-counter derivatives markets. It had over a
million transactions outstanding with about 8,000 different counterparties. Lehman’s
counterparties were often required to post collateral and this collateral had in many
cases been used by Lehman for various purposes. It is easy to see that sorting out who
owes what to whom in this type of situation is a nightmare!
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the over-the-counter market is much larger than the exchange-traded market. The Bank

for International Settlements (www.bis.org) started collecting statistics on the markets

in 1998. Figure 1.1 compares (a) the estimated total principal amounts underlying

transactions that were outstanding in the over-the counter markets between June 1998

and December 2012 and (b) the estimated total value of the assets underlying exchange-

traded contracts during the same period. Using these measures, by December 2012 the

over-the-counter market had grown to $632.6 trillion and the exchange-traded market

had grown to $52.6 trillion.1

In interpreting these numbers, we should bear in mind that the principal underlying

an over-the-counter transaction is not the same as its value. An example of an over-the-

counter transaction is an agreement to buy 100 million US dollars with British pounds
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Figure 1.1 Size of over-the-counter and exchange-traded derivatives markets.

Business Snapshot 1.2 Systemic Risk

Systemic risk is the risk that a default by one financial institution will create a ‘‘ripple
effect’’ that leads to defaults by other financial institutions and threatens the stability
of the financial system. There are huge numbers of over-the-counter transactions
between banks. If Bank A fails, Bank B may take a huge loss on the transactions it
has with Bank A. This in turn could lead to Bank B failing. Bank C that has many
outstanding transactions with both Bank A and Bank B might then take a large loss
and experience severe financial difficulties; and so on.

The financial system has survived defaults such as Drexel in 1990 and Lehman
Brothers in 2008, but regulators continue to be concerned. During the market turmoil
of 2007 and 2008, many large financial institutions were bailed out, rather than being
allowed to fail, because governments were concerned about systemic risk.

1 When a CCP stands between two sides in an OTC transaction, two transactions are considered to have

been created for the purposes of the BIS statistics.
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at a predetermined exchange rate in 1 year. The total principal amount underlying this

transaction is $100 million. However, the value of the transaction might be only

$1 million. The Bank for International Settlements estimates the gross market value

of all over-the-counter transactions outstanding in December 2012 to be about

$24.7 trillion.2

1.3 FORWARD CONTRACTS

A relatively simple derivative is a forward contract. It is an agreement to buy or sell an

asset at a certain future time for a certain price. It can be contrasted with a spot

contract, which is an agreement to buy or sell an asset almost immediately. A forward

contract is traded in the over-the-counter market—usually between two financial

institutions or between a financial institution and one of its clients.

One of the parties to a forward contract assumes a long position and agrees to buy

the underlying asset on a certain specified future date for a certain specified price. The

other party assumes a short position and agrees to sell the asset on the same date for

the same price.

Forward contracts on foreign exchange are very popular. Most large banks employ

both spot and forward foreign-exchange traders. As we shall see in a later chapter, there

is a relationship between forward prices, spot prices, and interest rates in the two

currencies. Table 1.1 provides quotes for the exchange rate between the British pound

(GBP) and the US dollar (USD) that might be made by a large international bank on

May 6, 2013. The quote is for the number of USD per GBP. The first row indicates that

the bank is prepared to buy GBP (also known as sterling) in the spot market (i.e., for

virtually immediate delivery) at the rate of $1.5541 per GBP and sell sterling in the spot

market at $1.5545 per GBP. The second, third, and fourth rows indicate that the bank is

prepared to buy sterling in 1, 3, and 6 months at $1.5538, $1.5533, and $1.5526 per

GBP, respectively, and to sell sterling in 1, 3, and 6 months at $1.5543, $1.5538, and

$1.5532 per GBP, respectively.

Forward contracts can be used to hedge foreign currency risk. Suppose that, on

May 6, 2013, the treasurer of a US corporation knows that the corporation will pay

£1 million in 6 months (i.e., on November 6, 2013) and wants to hedge against exchange

rate moves. Using the quotes in Table 1.1, the treasurer can agree to buy £1 million

Table 1.1 Spot and forward quotes for the USD/GBP exchange
rate, May 6, 2013 (GBP ¼ British pound; USD ¼ US dollar;
quote is number of USD per GBP).

Bid Offer
Spot 1.5541 1.5545
1-month forward 1.5538 1.5543
3-month forward 1.5533 1.5538
6-month forward 1.5526 1.5532

2 A contract that is worth $1 million to one side and �$1 million to the other side would be counted as

having a gross market value of $1 million.
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6 months forward at an exchange rate of 1.5532. The corporation then has a long
forward contract on GBP. It has agreed that on November 6, 2013, it will buy £1 million
from the bank for $1.5532 million. The bank has a short forward contract on GBP. It
has agreed that on November 6, 2013, it will sell £1 million for $1.5532 million. Both
sides have made a binding commitment.

Payoffs from Forward Contracts

Consider the position of the corporation in the trade we have just described. What are
the possible outcomes? The forward contract obligates the corporation to buy £1 million
for $1,553,200. If the spot exchange rate rose to, say, 1.6000, at the end of the 6 months,
the forward contract would be worth $46,800 (¼ $1,600,000� $1,553,200) to the
corporation. It would enable £1 million to be purchased at an exchange rate of
1.5532 rather than 1.6000. Similarly, if the spot exchange rate fell to 1.5000 at the
end of the 6 months, the forward contract would have a negative value to the
corporation of $53,200 because it would lead to the corporation paying $53,200 more
than the market price for the sterling.

In general, the payoff from a long position in a forward contract on one unit of an
asset is

ST �K

where K is the delivery price and ST is the spot price of the asset at maturity of the
contract. This is because the holder of the contract is obligated to buy an asset worth ST
for K. Similarly, the payoff from a short position in a forward contract on one unit of
an asset is

K� ST

These payoffs can be positive or negative. They are illustrated in Figure 1.2. Because it
costs nothing to enter into a forward contract, the payoff from the contract is also the
trader’s total gain or loss from the contract.

STK

Payoff

0

(a)

STK

Payoff

0

(b)

Figure 1.2 Payoffs from forward contracts: (a) long position, (b) short position.
Delivery price ¼ K; price of asset at contract maturity ¼ ST .
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In the example just considered, K ¼ 1:5532 and the corporation has a long contract.
When ST ¼ 1:6000, the payoff is $0.0468 per £1; when ST ¼ 1:5000, it is�$0.0532 per £1.

Forward Prices and Spot Prices

We shall be discussing in some detail the relationship between spot and forward prices
in Chapter 5. For a quick preview of why the two are related, consider a stock that pays
no dividend and is worth $60. You can borrow or lend money for 1 year at 5%. What
should the 1-year forward price of the stock be?

The answer is $60 grossed up at 5% for 1 year, or $63. If the forward price is more
than this, say $67, you could borrow $60, buy one share of the stock, and sell it forward
for $67. After paying off the loan, you would net a profit of $4 in 1 year. If the forward
price is less than $63, say $58, an investor owning the stock as part of a portfolio would
sell the stock for $60 and enter into a forward contract to buy it back for $58 in 1 year.
The proceeds of investment would be invested at 5% to earn $3. The investor would end
up $5 better off than if the stock were kept in the portfolio for the year.

1.4 FUTURES CONTRACTS

Like a forward contract, a futures contract is an agreement between two parties to buy or
sell an asset at a certain time in the future for a certain price. Unlike forward contracts,
futures contracts are normally traded on an exchange. To make trading possible, the
exchange specifies certain standardized features of the contract. As the two parties to the
contract do not necessarily know each other, the exchange also provides a mechanism
that gives the two parties a guarantee that the contract will be honored.

The largest exchanges on which futures contracts are traded are the Chicago Board of
Trade (CBOT) and the Chicago Mercantile Exchange (CME), which have now merged
to form the CME Group. On these and other exchanges throughout the world, a very
wide range of commodities and financial assets form the underlying assets in the various
contracts. The commodities include pork bellies, live cattle, sugar, wool, lumber,
copper, aluminum, gold, and tin. The financial assets include stock indices, currencies,
and Treasury bonds. Futures prices are regularly reported in the financial press. Suppose
that, on September 1, the December futures price of gold is quoted as $1,380. This is the
price, exclusive of commissions, at which traders can agree to buy or sell gold for
December delivery. It is determined in the same way as other prices (i.e., by the laws of
supply and demand). If more traders want to go long than to go short, the price goes up;
if the reverse is true, then the price goes down.

Further details on issues such as margin requirements, daily settlement procedures,
delivery procedures, bid–offer spreads, and the role of the exchange clearing house are
given in Chapter 2.

1.5 OPTIONS

Options are traded both on exchanges and in the over-the-counter market. There are
two types of option. A call option gives the holder the right to buy the underlying asset
by a certain date for a certain price. A put option gives the holder the right to sell the

30 CHAPTER 1



underlying asset by a certain date for a certain price. The price in the contract is known

as the exercise price or strike price ; the date in the contract is known as the expiration

date or maturity. American options can be exercised at any time up to the expiration date.

European options can be exercised only on the expiration date itself.3 Most of the options

that are traded on exchanges are American. In the exchange-traded equity option

market, one contract is usually an agreement to buy or sell 100 shares. European

options are generally easier to analyze than American options, and some of the

properties of an American option are frequently deduced from those of its European

counterpart.

It should be emphasized that an option gives the holder the right to do something.

The holder does not have to exercise this right. This is what distinguishes options from

forwards and futures, where the holder is obligated to buy or sell the underlying asset.

Whereas it costs nothing to enter into a forward or futures contract, there is a cost to

acquiring an option.

The largest exchange in the world for trading stock options is the Chicago Board

Options Exchange (CBOE; www.cboe.com). Table 1.2 gives the bid and offer quotes for

some of the call options trading on Google (ticker symbol: GOOG) on May 8, 2013.

Table 1.3 does the same for put options trading on Google on that date. The quotes are

Table 1.3 Prices of put options on Google, May 8, 2013, from quotes provided by
CBOE; stock price: bid $871.23, offer $871.37.

Strike price June 2013 September 2013 December 2013
($) Bid Offer Bid Offer Bid Offer

820 5.00 5.50 24.20 24.90 36.20 37.50
840 8.40 8.90 31.00 31.80 43.90 45.10
860 14.30 14.80 39.20 40.10 52.60 53.90
880 23.40 24.40 48.80 49.80 62.40 63.70
900 36.20 37.30 59.20 60.90 73.40 75.00
920 n.a. n.a. 71.60 73.50 85.50 87.40

Table 1.2 Prices of call options on Google, May 8, 2013, from quotes provided by
CBOE; stock price: bid $871.23, offer $871.37.

Strike price June 2013 September 2013 December 2013
($) Bid Offer Bid Offer Bid Offer

820 56.00 57.50 76.00 77.80 88.00 90.30
840 39.50 40.70 62.90 63.90 75.70 78.00
860 25.70 26.50 51.20 52.30 65.10 66.40
880 15.00 15.60 41.00 41.60 55.00 56.30
900 7.90 8.40 32.10 32.80 45.90 47.20
920 n.a. n.a. 24.80 25.60 37.90 39.40

3 Note that the terms American and European do not refer to the location of the option or the exchange.

Some options trading on North American exchanges are European.
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taken from the CBOE website. The Google stock price at the time of the quotes was bid

871.23, offer 871.37. The bid–offer spread on an option (as a percent of the price) is

usually greater than that on the underlying stock and depends on the volume of trading.

The option strike prices in Tables 1.2 and 1.3 are $820, $840, $860, $880, $900, and

$920. The maturities are June 2013, September 2013, and December 2013. The June

options expire on June 22, 2013, the September options on September 21, 2013, and the

December options on December 21, 2013.

The tables illustrate a number of properties of options. The price of a call option

decreases as the strike price increases, while the price of a put option increases as the

strike price increases. Both types of option tend to become more valuable as their time to

maturity increases. These properties of options will be discussed further in Chapter 11.

Suppose an investor instructs a broker to buy one December call option contract on

Google with a strike price of $880. The broker will relay these instructions to a trader at

the CBOE and the deal will be done. The (offer) price indicated in Table 1.2 is $56.30.

This is the price for an option to buy one share. In the United States, an option contract

is a contract to buy or sell 100 shares. Therefore, the investor must arrange for $5,630 to

be remitted to the exchange through the broker. The exchange will then arrange for this

amount to be passed on to the party on the other side of the transaction.

In our example, the investor has obtained at a cost of $5,630 the right to buy 100

Google shares for $880 each. If the price of Google does not rise above $880 by

December 21, 2013, the option is not exercised and the investor loses $5,630.4 But if

Google does well and the option is exercised when the bid price for the stock is $1,000,

the investor is able to buy 100 shares at $880 and immediately sell them for $1,000 for a

profit of $12,000, or $6,370 when the initial cost of the options is taken into account.5

An alternative trade would be to sell one September put option contract with a strike

price of $840 at the bid price of $31.00. This would lead to an immediate cash inflow of

100� 31:00 ¼ $3,100. If the Google stock price stays above $840, the option is not

exercised and the investor makes a profit of this amount. However, if stock price falls and

the option is exercised when the stock price is $800, then there is a loss. The investor must

buy 100 shares at $840 when they are worth only $800. This leads to a loss of $4,000, or

$900 when the initial amount received for the option contract is taken into account.

The stock options trading on the CBOE are American. If we assume for simplicity

that they are European, so that they can be exercised only at maturity, the investor’s

profit as a function of the final stock price for the two trades we have considered is

shown in Figure 1.3.

Further details about the operation of options markets and how prices such as those

in Tables 1.2 and 1.3 are determined by traders are given in later chapters. At this stage

we note that there are four types of participants in options markets:

1. Buyers of calls

2. Sellers of calls

3. Buyers of puts

4. Sellers of puts.

4 The calculations here ignore commissions paid by the investor.
5 The calculations here ignore the effect of discounting. Theoretically, the $12,000 should be discounted from

the time of exercise to the purchase date, when calculating the profit.

32 CHAPTER 1



Buyers are referred to as having long positions ; sellers are referred to as having short

positions. Selling an option is also known as writing the option.

1.6 TYPES OF TRADERS

Derivatives markets have been outstandingly successful. The main reason is that they

have attracted many different types of traders and have a great deal of liquidity. When

an investor wants to take one side of a contract, there is usually no problem in finding

someone who is prepared to take the other side.

Three broad categories of traders can be identified: hedgers, speculators, and

arbitrageurs. Hedgers use derivatives to reduce the risk that they face from potential

future movements in a market variable. Speculators use them to bet on the future

direction of a market variable. Arbitrageurs take offsetting positions in two or more

instruments to lock in a profit. As described in Business Snapshot 1.3, hedge funds have

become big users of derivatives for all three purposes.

In the next few sections, we will consider the activities of each type of trader in more

detail.

1.7 HEDGERS

In this section we illustrate how hedgers can reduce their risks with forward contracts

and options.

Hedging Using Forward Contracts

Suppose that it is May 6, 2013, and ImportCo, a company based in the United States,

knows that it will have to pay £10 million on August 6, 2013, for goods it has purchased

from a British supplier. The USD–GBP exchange rate quotes made by a financial

institution are shown in Table 1.1. ImportCo could hedge its foreign exchange risk by

buying pounds (GBP) from the financial institution in the 3-month forward market
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Figure 1.3 Net profit per share from (a) purchasing a contract consisting of
100 Google December call options with a strike price of $880 and (b) selling a contract
consisting of 100 Google September put options with a strike price of $840.
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at 1.5538. This would have the effect of fixing the price to be paid to the British

exporter at $15,538,000.

Consider next another US company, which we will refer to as ExportCo, that is

exporting goods to the United Kingdom and, on May 6, 2013, knows that it will receive

£30 million 3 months later. ExportCo can hedge its foreign exchange risk by selling

£30 million in the 3-month forward market at an exchange rate of 1.5533. This would

have the effect of locking in the US dollars to be realized for the sterling at $46,599,000.

Note that a company might do better if it chooses not to hedge than if it chooses to

hedge. Alternatively, it might do worse. Consider ImportCo. If the exchange rate

Business Snapshot 1.3 Hedge Funds

Hedge funds have become major users of derivatives for hedging, speculation, and
arbitrage. They are similar to mutual funds in that they invest funds on behalf of
clients. However, they accept funds only from financially sophisticated individuals and
do not publicly offer their securities. Mutual funds are subject to regulations requiring
that the shares be redeemable at any time, that investment policies be disclosed, that
the use of leverage be limited, and so on. Hedge funds are relatively free of these
regulations. This gives them a great deal of freedom to develop sophisticated,
unconventional, and proprietary investment strategies. The fees charged by hedge
fund managers are dependent on the fund’s performance and are relatively high—
typically 1 to 2% of the amount invested plus 20% of the profits. Hedge funds have
grown in popularity, with about $2 trillion being invested in them throughout the
world. ‘‘Funds of funds’’ have been set up to invest in a portfolio of hedge funds.

The investment strategy followed by a hedge fund manager often involves using
derivatives to set up a speculative or arbitrage position. Once the strategy has been
defined, the hedge fund manager must:

1. Evaluate the risks to which the fund is exposed

2. Decide which risks are acceptable and which will be hedged

3. Devise strategies (usually involving derivatives) to hedge the unacceptable risks.

Here are some examples of the labels used for hedge funds together with the trading
strategies followed:

Long/Short Equities: Purchase securities considered to be undervalued and short those
considered to be overvalued in such a way that the exposure to the overall direction of
the market is small.

Convertible Arbitrage: Take a long position in a thought-to-be-undervalued conver-
tible bond combined with an actively managed short position in the underlying
equity.

Distressed Securities: Buy securities issued by companies in, or close to, bankruptcy.

Emerging Markets: Invest in debt and equity of companies in developing or emerging
countries and in the debt of the countries themselves.

Global Macro: Carry out trades that reflect anticipated global macroeconomic trends.

Merger Arbitrage: Trade after a possible merger or acquisition is announced so that a
profit is made if the announced deal takes place.

34 CHAPTER 1



is 1.4000 on August 24 and the company has not hedged, the £10 million that it has to

pay will cost $14,000,000, which is less than $15,538,000. On the other hand, if the

exchange rate is 1.6000, the £10 million will cost $16,000,000—and the company will

wish that it had hedged! The position of ExportCo if it does not hedge is the reverse. If

the exchange rate in August proves to be less than 1.5533, the company will wish that it

had hedged; if the rate is greater than 1.5533, it will be pleased that it has not done so.

This example illustrates a key aspect of hedging. The purpose of hedging is to reduce

risk. There is no guarantee that the outcome with hedging will be better than the

outcome without hedging.

Hedging Using Options

Options can also be used for hedging. Consider an investor who in May of a particular

year owns 1,000 shares of a particular company. The share price is $28 per share. The

investor is concerned about a possible share price decline in the next 2 months and

wants protection. The investor could buy ten July put option contracts on the

company’s stock with a strike price of $27.50. This would give the investor the right

to sell a total of 1,000 shares for a price of $27.50. If the quoted option price is $1, then

each option contract would cost 100� $1 ¼ $100 and the total cost of the hedging

strategy would be 10� $100 ¼ $1,000.

The strategy costs $1,000 but guarantees that the shares can be sold for at least $27.50

per share during the life of the option. If the market price of the stock falls below $27.50,

the options will be exercised, so that $27,500 is realized for the entire holding. When the

cost of the options is taken into account, the amount realized is $26,500. If the market

price stays above $27.50, the options are not exercised and expire worthless. However, in

this case the value of the holding is always above $27,500 (or above $26,500 when the cost

of the options is taken into account). Figure 1.4 shows the net value of the portfolio (after

taking the cost of the options into account) as a function of the stock price in 2 months.

The dotted line shows the value of the portfolio assuming no hedging.
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Figure 1.4 Value of the stock holding in 2 months with and without hedging.
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A Comparison

There is a fundamental difference between the use of forward contracts and options

for hedging. Forward contracts are designed to neutralize risk by fixing the price that

the hedger will pay or receive for the underlying asset. Option contracts, by contrast,

provide insurance. They offer a way for investors to protect themselves against adverse

price movements in the future while still allowing them to benefit from favorable price

movements. Unlike forwards, options involve the payment of an up-front fee.

1.8 SPECULATORS

We now move on to consider how futures and options markets can be used by

speculators. Whereas hedgers want to avoid exposure to adverse movements in the price

of an asset, speculators wish to take a position in the market. Either they are betting that

the price of the asset will go up or they are betting that it will go down.

Speculation Using Futures

Consider a US speculator who in February thinks that the British pound will strengthen

relative to the US dollar over the next 2 months and is prepared to back that hunch to

the tune of £250,000. One thing the speculator can do is purchase £250,000 in the spot

market in the hope that the sterling can be sold later at a higher price. (The sterling once

purchased would be kept in an interest-bearing account.) Another possibility is to take

a long position in four CME April futures contracts on sterling. (Each futures contract

is for the purchase of £62,500.) Table 1.4 summarizes the two alternatives on the

assumption that the current exchange rate is 1.5470 dollars per pound and the April

futures price is 1.5410 dollars per pound. If the exchange rate turns out to be 1.6000

dollars per pound in April, the futures contract alternative enables the speculator to

realize a profit of ð1:6000� 1:5410Þ � 250,000 ¼ $14,750. The spot market alternative

leads to 250,000 units of an asset being purchased for $1.5470 in February and sold for

$1.6000 in April, so that a profit of ð1:6000� 1:5470Þ � 250,000 ¼ $13,250 is made. If

the exchange rate falls to 1.5000 dollars per pound, the futures contract gives rise to a

ð1:5410� 1:5000Þ � 250,000 ¼ $10,250 loss, whereas the spot market alternative gives

rise to a loss of ð1:5470� 1:5000Þ � 250,000 ¼ $11,750. The spot market alternative

Table 1.4 Speculation using spot and futures contracts. One futures contract
is on £62,500. Initial margin on four futures contracts ¼ $20,000.

Possible trades

Buy £250,000
Spot price ¼ 1.5470

Buy 4 futures contracts
Futures price ¼ 1.5410

Investment $386,750 $20,000

Profit if April spot ¼ 1.6000 $13,250 $14,750

Profit if April spot ¼ 1.5000 �$11,750 �$10,250

36 CHAPTER 1



appears to give rise to slightly worse outcomes for both scenarios. But this is because
the calculations do not reflect the interest that is earned or paid.

What then is the difference between the two alternatives? The first alternative of
buying sterling requires an up-front investment of $386,750 ð¼ 250,000� 1:5470Þ.
In contrast, the second alternative requires only a small amount of cash to be
deposited by the speculator in what is termed a ‘‘margin account’’. (The operation
of margin accounts is explained in Chapter 2.) In Table 1.4, the initial margin
requirement is assumed to be $5,000 per contract, or $20,000 in total. The futures
market allows the speculator to obtain leverage. With a relatively small initial outlay,
the investor is able to take a large speculative position.

Speculation Using Options

Options can also be used for speculation. Suppose that it is October and a speculator
considers that a stock is likely to increase in value over the next 2 months. The stock
price is currently $20, and a 2-month call option with a $22.50 strike price is currently
selling for $1. Table 1.5 illustrates two possible alternatives, assuming that the spec-
ulator is willing to invest $2,000. One alternative is to purchase 100 shares; the other
involves the purchase of 2,000 call options (i.e., 20 call option contracts). Suppose that
the speculator’s hunch is correct and the price of the stock rises to $27 by December.
The first alternative of buying the stock yields a profit of

100� ð$27� $20Þ ¼ $700

However, the second alternative is far more profitable. A call option on the stock with a
strike price of $22.50 gives a payoff of $4.50, because it enables something worth $27 to
be bought for $22.50. The total payoff from the 2,000 options that are purchased under
the second alternative is

2,000� $4:50 ¼ $9,000

Subtracting the original cost of the options yields a net profit of

$9,000� $2,000 ¼ $7,000

The options strategy is, therefore, 10 times more profitable than directly buying the stock.

Options also give rise to a greater potential loss. Suppose the stock price falls to $15

by December. The first alternative of buying stock yields a loss of

100� ð$20� $15Þ ¼ $500

Table 1.5 Comparison of profits from two alternative
strategies for using $2,000 to speculate on a stock worth $20 in October.

December stock price

Investor’s strategy $15 $27

Buy 100 shares �$500 $700

Buy 2,000 call options �$2,000 $7,000
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Because the call options expire without being exercised, the options strategy would lead

to a loss of $2,000—the original amount paid for the options. Figure 1.5 shows the profit

or loss from the two strategies as a function of the stock price in 2 months.

Options like futures provide a form of leverage. For a given investment, the use of

options magnifies the financial consequences. Good outcomes become very good, while

bad outcomes result in the whole initial investment being lost.

A Comparison

Futures and options are similar instruments for speculators in that they both provide a

way in which a type of leverage can be obtained. However, there is an important

difference between the two. When a speculator uses futures, the potential loss as well as

the potential gain is very large. When options are used, no matter how bad things get,

the speculator’s loss is limited to the amount paid for the options.

1.9 ARBITRAGEURS

Arbitrageurs are a third important group of participants in futures, forward, and

options markets. Arbitrage involves locking in a riskless profit by simultaneously

entering into transactions in two or more markets. In later chapters we will see how

arbitrage is sometimes possible when the futures price of an asset gets out of line with

its spot price. We will also examine how arbitrage can be used in options markets. This

section illustrates the concept of arbitrage with a very simple example.

Let us consider a stock that is traded on both the New York Stock Exchange

(www.nyse.com) and the London Stock Exchange (www.stockex.co.uk). Suppose

that the stock price is $150 in New York and £100 in London at a time when the
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Figure 1.5 Profit or loss from two alternative strategies for speculating on a stock
currently worth $20.

38 CHAPTER 1

http://www.stockex.co.uk
http://www.nyse.com


exchange rate is $1.5300 per pound. An arbitrageur could simultaneously buy
100 shares of the stock in New York and sell them in London to obtain a risk-free
profit of

100� ½ð$1:53� 100Þ � $150�
or $300 in the absence of transactions costs. Transactions costs would probably
eliminate the profit for a small investor. However, a large investment bank faces very
low transactions costs in both the stock market and the foreign exchange market. It
would find the arbitrage opportunity very attractive and would try to take as much
advantage of it as possible.

Arbitrage opportunities such as the one just described cannot last for long. As
arbitrageurs buy the stock in New York, the forces of supply and demand will cause
the dollar price to rise. Similarly, as they sell the stock in London, the sterling price will
be driven down. Very quickly the two prices will become equivalent at the current
exchange rate. Indeed, the existence of profit-hungry arbitrageurs makes it unlikely that
a major disparity between the sterling price and the dollar price could ever exist in the
first place. Generalizing from this example, we can say that the very existence of
arbitrageurs means that in practice only very small arbitrage opportunities are observed
in the prices that are quoted in most financial markets. In this book most of the
arguments concerning futures prices, forward prices, and the values of option contracts
will be based on the assumption that no arbitrage opportunities exist.

1.10 DANGERS

Derivatives are very versatile instruments. As we have seen, they can be used for
hedging, for speculation, and for arbitrage. It is this very versatility that can cause
problems. Sometimes traders who have a mandate to hedge risks or follow an
arbitrage strategy become (consciously or unconsciously) speculators. The results
can be disastrous. One example of this is provided by the activities of Jérôme Kerviel
at Société Général (see Business Snapshot 1.4).

To avoid the sort of problems Société Général encountered, it is very important for
both financial and nonfinancial corporations to set up controls to ensure that deriva-
tives are being used for their intended purpose. Risk limits should be set and the
activities of traders should be monitored daily to ensure that these risk limits are
adhered to.

Unfortunately, even when traders follow the risk limits that have been specified, big
mistakes can happen. Some of the activities of traders in the derivatives market during
the period leading up to the start of the credit crisis in July 2007 proved to be much
riskier than they were thought to be by the financial institutions they worked for. As
will be discussed in Chapter 8, house prices in the United States had been rising fast.
Most people thought that the increases would continue—or, at worst, that house prices
would simply level off. Very few were prepared for the steep decline that actually
happened. Furthermore, very few were prepared for the high correlation between
mortgage default rates in different parts of the country. Some risk managers did express
reservations about the exposures of the companies for which they worked to the US real
estate market. But, when times are good (or appear to be good), there is an unfortunate
tendency to ignore risk managers and this is what happened at many financial
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institutions during the 2006–2007 period. The key lesson from the credit crisis is that
financial institutions should always be dispassionately asking ‘‘What can go wrong?’’,
and they should follow that up with the question ‘‘If it does go wrong, how much will
we lose?’’

SUMMARY

One of the exciting developments in finance over the last 40 years has been the growth
of derivatives markets. In many situations, both hedgers and speculators find it more
attractive to trade a derivative on an asset than to trade the asset itself. Some derivatives
are traded on exchanges; others are traded by financial institutions, fund managers, and
corporations in the over-the-counter market, or added to new issues of debt and equity
securities. Much of this book is concerned with the valuation of derivatives. The aim is

Business Snapshot 1.4 SocGen’s Big Loss in 2008

Derivatives are very versatile instruments. They can be used for hedging, speculation,
and arbitrage. One of the risks faced by a company that trades derivatives is that an
employee who has a mandate to hedge or to look for arbitrage opportunities may
become a speculator.

Jérôme Kerviel joined Société Général (SocGen) in 2000 to work in the compliance
area. In 2005, he was promoted and became a junior trader in the bank’s Delta One
products team. He traded equity indices such as the German DAX index, the French
CAC 40, and the Euro Stoxx 50. His job was to look for arbitrage opportunities.
These might arise if a futures contract on an equity index was trading for a different
price on two different exchanges. They might also arise if equity index futures prices
were not consistent with the prices of the shares constituting the index. (This type of
arbitrage is discussed in Chapter 5.)

Kerviel used his knowledge of the bank’s procedures to speculate while giving the
appearance of arbitraging. He took big positions in equity indices and created
fictitious trades to make it appear that he was hedged. In reality, he had large bets
on the direction in which the indices would move. The size of his unhedged position
grew over time to tens of billions of euros.

In January 2008, his unauthorized trading was uncovered by SocGen. Over a three-
day period, the bank unwound his position for a loss of 4.9 billion euros. This was at
the time the biggest loss created by fraudulent activity in the history of finance. (Later
in the year, a much bigger loss from Bernard Madoff’s Ponzi scheme came to light.)

Rogue trader losses were not unknown at banks prior to 2008. For example, in the
1990s, Nick Leeson, who worked at Barings Bank, had a mandate similar to that of
Jérôme Kerviel. His job was to arbitrage between Nikkei 225 futures quotes in
Singapore and Osaka. Instead he found a way to make big bets on the direction of
the Nikkei 225 using futures and options, losing $1 billion and destroying the 200-year
old bank in the process. In 2002, it was found that John Rusnak at Allied Irish Bank
had lost $700 million from unauthorized foreign exchange trading. The lessons from
these losses are that it is important to define unambiguous risk limits for traders and
then to monitor what they do very carefully to make sure that the limits are adhered to.
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to present a unifying framework within which all derivatives—not just options or

futures—can be valued.

In this chapter we have taken a first look at forward, futures, and options contracts.
A forward or futures contract involves an obligation to buy or sell an asset at a certain

time in the future for a certain price. There are two types of options: calls and puts.
A call option gives the holder the right to buy an asset by a certain date for a certain
price. A put option gives the holder the right to sell an asset by a certain date for a

certain price. Forwards, futures, and options trade on a wide range of different under-
lying assets.

Derivatives have been very successful innovations in capital markets. Three main

types of traders can be identified: hedgers, speculators, and arbitrageurs. Hedgers are in
the position where they face risk associated with the price of an asset. They use

derivatives to reduce or eliminate this risk. Speculators wish to bet on future movements
in the price of an asset. They use derivatives to get extra leverage. Arbitrageurs are in

business to take advantage of a discrepancy between prices in two different markets. If,
for example, they see the futures price of an asset getting out of line with the cash price,
they will take offsetting positions in the two markets to lock in a profit.
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Practice Questions (Answers in Solutions Manual)

1.1. What is the difference between a long forward position and a short forward position?

1.2. Explain carefully the difference between hedging, speculation, and arbitrage.

1.3. What is the difference between entering into a long forward contract when the forward
price is $50 and taking a long position in a call option with a strike price of $50?

1.4. Explain carefully the difference between selling a call option and buying a put option.

1.5. An investor enters into a short forward contract to sell 100,000 British pounds for US
dollars at an exchange rate of 1.5000 US dollars per pound. How much does the
investor gain or lose if the exchange rate at the end of the contract is (a) 1.4900 and
(b) 1.5200?

1.6. A trader enters into a short cotton futures contract when the futures price is 50 cents per
pound. The contract is for the delivery of 50,000 pounds. How much does the trader
gain or lose if the cotton price at the end of the contract is (a) 48.20 cents per pound
and (b) 51.30 cents per pound?
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1.7. Suppose that you write a put contract with a strike price of $40 and an expiration date
in 3 months. The current stock price is $41 and the contract is on 100 shares. What have
you committed yourself to? How much could you gain or lose?

1.8. What is the difference between the over-the-counter market and the exchange-traded
market? What are the bid and offer quotes of a market maker in the over-the-counter
market?

1.9. You would like to speculate on a rise in the price of a certain stock. The current stock
price is $29 and a 3-month call with a strike price of $30 costs $2.90. You have $5,800 to
invest. Identify two alternative investment strategies, one in the stock and the other in
an option on the stock. What are the potential gains and losses from each?

1.10. Suppose that you own 5,000 shares worth $25 each. How can put options be used to
provide you with insurance against a decline in the value of your holding over the next
4 months?

1.11. When first issued, a stock provides funds for a company. Is the same true of a stock
option? Discuss.

1.12. Explain why a futures contract can be used for either speculation or hedging.

1.13. Suppose that a March call option to buy a share for $50 costs $2.50 and is held until
March. Under what circumstances will the holder of the option make a profit? Under what
circumstances will the option be exercised? Draw a diagram illustrating how the profit
from a long position in the option depends on the stock price at maturity of the option.

1.14. Suppose that a June put option to sell a share for $60 costs $4 and is held until June.
Under what circumstances will the seller of the option (i.e., the party with the short
position) make a profit? Under what circumstances will the option be exercised? Draw a
diagram illustrating how the profit from a short position in the option depends on the
stock price at maturity of the option.

1.15. It is May and a trader writes a September call option with a strike price of $20. The stock
price is $18 and the option price is $2. Describe the trader’s cash flows if the option is held
until September and the stock price is $25 at that time.

1.16. A trader writes a December put option with a strike price of $30. The price of the option
is $4. Under what circumstances does the trader make a gain?

1.17. A company knows that it is due to receive a certain amount of a foreign currency in
4 months. What type of option contract is appropriate for hedging?

1.18. A US company expects to have to pay 1 million Canadian dollars in 6 months. Explain
how the exchange rate risk can be hedged using (a) a forward contract and (b) an option.

1.19. A trader enters into a short forward contract on 100 million yen. The forward exchange
rate is $0.0090 per yen. How much does the trader gain or lose if the exchange rate at the
end of the contract is (a) $0.0084 per yen and (b) $0.0101 per yen?

1.20. The CME Group offers a futures contract on long-term Treasury bonds. Characterize the
traders likely to use this contract.

1.21. ‘‘Options and futures are zero-sum games.’’ What do you think is meant by this?

1.22. Describe the profit from the following portfolio: a long forward contract on an asset and a
long European put option on the asset with the same maturity as the forward contract and
a strike price that is equal to the forward price of the asset at the time the portfolio is set up.
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1.23. In the 1980s, Bankers Trust developed index currency option notes (ICONs). These are
bonds in which the amount received by the holder at maturity varies with a foreign
exchange rate. One example was its trade with the Long Term Credit Bank of Japan. The
ICON specified that if the yen–US dollar exchange rate, ST , is greater than 169 yen per
dollar at maturity (in 1995), the holder of the bond receives $1,000. If it is less than
169 yen per dollar, the amount received by the holder of the bond is

1,000�max

�
0; 1,000

�
169

ST
� 1

��

When the exchange rate is below 84.5, nothing is received by the holder at maturity. Show
that this ICON is a combination of a regular bond and two options.

1.24. On July 1, 2011, a company enters into a forward contract to buy 10 million Japanese yen
on January 1, 2012. On September 1, 2011, it enters into a forward contract to sell
10 million Japanese yen on January 1, 2012. Describe the payoff from this strategy.

1.25. Suppose that USD/sterling spot and forward exchange rates are as follows:

Spot 1.5580

90-day forward 1.5556

180-day forward 1.5518

What opportunities are open to an arbitrageur in the following situations?

(a) A 180-day European call option to buy £1 for $1.42 costs 2 cents.

(b) A 90-day European put option to sell £1 for $1.49 costs 2 cents.

1.26. A trader buys a call option with a strike price of $30 for $3. Does the trader ever exercise
the option and lose money on the trade? Explain your answer.

1.27. A trader sells a put option with a strike price of $40 for $5. What is the trader’s maximum
gain and maximum loss? How does your answer change if it is a call option?

1.28. ‘‘Buying a put option on a stock when the stock is owned is a form of insurance.’’ Explain
this statement.

Further Questions

1.29. On May 8, 2013, as indicated in Table 1.2, the spot offer price of Google stock is $871.37
and the offer price of a call option with a strike price of $880 and a maturity date of
September is $41.60. A trader is considering two alternatives: buy 100 shares of the stock
and buy 100 September call options. For each alternative, what is (a) the upfront cost,
(b) the total gain if the stock price in September is $950, and (c) the total loss if the stock
price in September is $800. Assume that the option is not exercised before September and
if the stock is purchased it is sold in September.

1.30. What is arbitrage? Explain the arbitrage opportunity when the price of a dually listed
mining company stock is $50 (USD) on the New York Stock Exchange and $52 (CAD)
on the Toronto Stock Exchange. Assume that the exchange rate is such that $1 US dollar
equals $1.01 Canadian dollar. Explain what is likely to happen to prices as traders take
advantage of this opportunity.

Introduction 43



1.31. Trader A enters into a forward contract to buy an asset for $1,000 in one year. Trader B

buys a call option to buy the asset for $1,000 in one year. The cost of the option is $100.
What is the difference between the positions of the traders? Show the profit as a function

of the price of the asset in one year for the two traders.

1.32. In March, a US investor instructs a broker to sell one July put option contract on a stock.
The stock price is $42 and the strike price is $40. The option price is $3. Explain what the

investor has agreed to. Under what circumstances will the trade prove to be profitable?

What are the risks?

1.33. A US company knows it will have to pay 3 million euros in three months. The current

exchange rate is 1.3500 dollars per euro. Discuss how forward and options contracts can

be used by the company to hedge its exposure.

1.34. A stock price is $29. An investor buys one call option contract on the stock with a strike

price of $30 and sells a call option contract on the stock with a strike price of $32.50. The
market prices of the options are $2.75 and $1.50, respectively. The options have the same

maturity date. Describe the investor’s position.

1.35. The price of gold is currently $1,400 per ounce. The forward price for delivery in 1 year is
$1,500 per ounce. An arbitrageur can borrow money at 4% per annum. What should the

arbitrageur do? Assume that the cost of storing gold is zero and that gold provides no

income.

1.36. The current price of a stock is $94, and 3-month European call options with a strike price

of $95 currently sell for $4.70. An investor who feels that the price of the stock will

increase is trying to decide between buying 100 shares and buying 2,000 call options
(¼ 20 contracts). Both strategies involve an investment of $9,400. What advice would you

give? How high does the stock price have to rise for the option strategy to be more

profitable?

1.37. On May 8, 2013, an investor owns 100 Google shares. As indicated in Table 1.3, the share

price is about $871 and a December put option with a strike price of $820 costs $37.50.
The investor is comparing two alternatives to limit downside risk. The first involves

buying one December put option contract with a strike price of $820. The second involves

instructing a broker to sell the 100 shares as soon as Google’s price reaches $820. Discuss
the advantages and disadvantages of the two strategies.

1.38. A bond issued by Standard Oil some time ago worked as follows. The holder received no

interest. At the bond’s maturity the company promised to pay $1,000 plus an additional
amount based on the price of oil at that time. The additional amount was equal to the

product of 170 and the excess (if any) of the price of a barrel of oil at maturity over $25.

The maximum additional amount paid was $2,550 (which corresponds to a price of $40
per barrel). Show that the bond is a combination of a regular bond, a long position in call

options on oil with a strike price of $25, and a short position in call options on oil with a
strike price of $40.

1.39. Suppose that in the situation of Table 1.1 a corporate treasurer said: ‘‘I will have

£1 million to sell in 6 months. If the exchange rate is less than 1.52, I want you to give
me 1.52. If it is greater than 1.58, I will accept 1.58. If the exchange rate is between 1.52

and 1.58, I will sell the sterling for the exchange rate.’’ How could you use options to

satisfy the treasurer?
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1.40. Describe how foreign currency options can be used for hedging in the situation considered
in Section 1.7 so that (a) ImportCo is guaranteed that its exchange rate will be less than
1.5700, and (b) ExportCo is guaranteed that its exchange rate will be at least 1.5300. Use
DerivaGem to calculate the cost of setting up the hedge in each case assuming that the
exchange rate volatility is 12%, interest rates in the United States are 5%, and interest
rates in Britain are 5.7%. Assume that the current exchange rate is the average of the bid
and offer in Table 1.1.

1.41. A trader buys a European call option and sells a European put option. The options have
the same underlying asset, strike price, and maturity. Describe the trader’s position.
Under what circumstances does the price of the call equal the price of the put?
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Mechanics of
Futures Markets

In Chapter 1 we explained that both futures and forward contracts are agreements to

buy or sell an asset at a future time for a certain price. A futures contract is traded on an

exchange, and the contract terms are standardized by that exchange. A forward

contract is traded in the over-the-counter market and can be customized if necessary.

This chapter covers the details of how futures markets work. We examine issues such as

the specification of contracts, the operation of margin accounts, the organization of

exchanges, the regulation ofmarkets, theway in which quotes aremade, and the treatment

of futures transactions for accounting and tax purposes.We explain how some of the ideas

pioneered by futures exchanges are now being adopted by over-the-counter markets.

2.1 BACKGROUND

As we saw in Chapter 1, futures contracts are now traded actively all over the world. The

Chicago Board of Trade, the Chicago Mercantile Exchange, and the New York

Mercantile Exchange have merged to form the CME Group (www.cmegroup.com).

Other large exchanges include the InterContinental Exchange (www.theice.com) which

is acquiring NYSE Euronext (www.euronext.com), Eurex (www.eurexchange.com),

BM&F BOVESPA (www.bmfbovespa.com.br), and the Tokyo Financial Exchange

(www.tfx.co.jp). A table at the end of this book provides a more complete list of

exchanges.

We examine how a futures contract comes into existence by considering the corn

futures contract traded by the CME Group. On June 5 a trader in New York might call

a broker with instructions to buy 5,000 bushels of corn for delivery in September of the

same year. The broker would immediately issue instructions to a trader to buy (i.e., take

a long position in) one September corn contract. (Each corn contract is for the delivery

of exactly 5,000 bushels.) At about the same time, another trader in Kansas might

instruct a broker to sell 5,000 bushels of corn for September delivery. This broker

would then issue instructions to sell (i.e., take a short position in) one corn contract. A

price would be determined and the deal would be done. Under the traditional open

outcry system, floor traders representing each party would physically meet to determine

the price. With electronic trading, a computer would match the traders.
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The trader in New York who agreed to buy has a long futures position in one

contract; the trader in Kansas who agreed to sell has a short futures position in one

contract. The price agreed to is the current futures price for September corn, say

600 cents per bushel. This price, like any other price, is determined by the laws of

supply and demand. If, at a particular time, more traders wish to sell rather than buy

September corn, the price will go down. New buyers then enter the market so that a

balance between buyers and sellers is maintained. If more traders wish to buy rather

than sell September corn, the price goes up. New sellers then enter the market and a

balance between buyers and sellers is maintained.

Closing Out Positions

The vast majority of futures contracts do not lead to delivery. The reason is that most

traders choose to close out their positions prior to the delivery period specified in the

Business Snapshot 2.1 The Unanticipated Delivery of a Futures Contract

This story (which may well be apocryphal) was told to the author of this book a long
time ago by a senior executive of a financial institution. It concerns a new employee
of the financial institution who had not previously worked in the financial sector.
One of the clients of the financial institution regularly entered into a long futures
contract on live cattle for hedging purposes and issued instructions to close out the
position on the last day of trading. (Live cattle futures contracts are traded by the
CME Group and each contract is on 40,000 pounds of cattle.) The new employee was
given responsibility for handling the account.

When the time came to close out a contract the employee noted that the client was
long one contract and instructed a trader at the exchange to buy (not sell) one
contract. The result of this mistake was that the financial institution ended up with a
long position in two live cattle futures contracts. By the time the mistake was spotted
trading in the contract had ceased.

The financial institution (not the client) was responsible for the mistake. As a
result, it started to look into the details of the delivery arrangements for live cattle
futures contracts—something it had never done before. Under the terms of the
contract, cattle could be delivered by the party with the short position to a number
of different locations in the United States during the delivery month. Because it was
long, the financial institution could do nothing but wait for a party with a short
position to issue a notice of intention to deliver to the exchange and for the exchange
to assign that notice to the financial institution.

It eventually received a notice from the exchange and found that it would receive
live cattle at a location 2,000 miles away the following Tuesday. The new employee
was sent to the location to handle things. It turned out that the location had a cattle
auction every Tuesday. The party with the short position that was making delivery
bought cattle at the auction and then immediately delivered them. Unfortunately the
cattle could not be resold until the next cattle auction the following Tuesday. The
employee was therefore faced with the problem of making arrangements for the cattle
to be housed and fed for a week. This was a great start to a first job in the financial
sector!
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contract. Closing out a position means entering into the opposite trade to the original

one. For example, the New York trader who bought a September corn futures contract

on June 5 can close out the position by selling (i.e., shorting) one September corn futures

contract on, say, July 20. The Kansas trader who sold (i.e., shorted) a September contract

on June 5 can close out the position by buying one September contract on, say,

August 25. In each case, the trader’s total gain or loss is determined by the change in

the futures price between June 5 and the day when the contract is closed out.

Delivery is so unusual that traders sometimes forget how the delivery process works

(see Business Snapshot 2.1). Nevertheless, we will review delivery procedures later in

this chapter. This is because it is the possibility of final delivery that ties the futures

price to the spot price.1

2.2 SPECIFICATION OF A FUTURES CONTRACT

When developing a new contract, the exchange must specify in some detail the exact

nature of the agreement between the two parties. In particular, it must specify the asset,

the contract size (exactly how much of the asset will be delivered under one contract),

where delivery can be made, and when delivery can be made.

Sometimes alternatives are specified for the grade of the asset that will be delivered or

for the delivery locations. As a general rule, it is the party with the short position (the

party that has agreed to sell the asset) that chooses what will happen when alternatives

are specified by the exchange.2 When the party with the short position is ready to

deliver, it files a notice of intention to deliver with the exchange. This notice indicates

any selections it has made with respect to the grade of asset that will be delivered and

the delivery location.

The Asset

When the asset is a commodity, there may be quite a variation in the quality of what is

available in the marketplace. When the asset is specified, it is therefore important that the

exchange stipulate the grade or grades of the commodity that are acceptable. The

IntercontinentalExchange (ICE) has specified the asset in its orange juice futures

contract as frozen concentrates that are US Grade A with Brix value of not less than

62.5 degrees.

For some commodities a range of grades can be delivered, but the price received

depends on the grade chosen. For example, in the CME Group’s corn futures contract,

the standard grade is ‘‘No. 2 Yellow,’’ but substitutions are allowed with the price being

adjusted in a way established by the exchange. No. 1 Yellow is deliverable for 1.5 cents

per bushel more than No. 2 Yellow. No. 3 Yellow is deliverable for 1.5 cents per bushel

less than No. 2 Yellow.

The financial assets in futures contracts are generally well defined and unambiguous.

For example, there is no need to specify the grade of a Japanese yen. However, there are

1 As mentioned in Chapter 1, the spot price is the price for almost immediate delivery.
2 There are exceptions. As pointed out by J. E. Newsome, G.H.F. Wang, M.E. Boyd, and M. J. Fuller in

‘‘Contract Modifications and the Basic Behavior of Live Cattle Futures,’’ Journal of Futures Markets, 24, 6

(2004), 557–90, the CME gave the buyer some delivery options in live cattle futures in 1995.
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some interesting features of the Treasury bond and Treasury note futures contracts

traded on the Chicago Board of Trade. The underlying asset in the Treasury bond

contract is any US Treasury bond that has a maturity between 15 and 25 years. In the

Treasury note futures contract, the underlying asset is any Treasury note with a

maturity of between 6.5 and 10 years. In both cases, the exchange has a formula for

adjusting the price received according to the coupon and maturity date of the bond

delivered. This is discussed in Chapter 6.

The Contract Size

The contract size specifies the amount of the asset that has to be delivered under one

contract. This is an important decision for the exchange. If the contract size is too large,

many investors who wish to hedge relatively small exposures or who wish to take

relatively small speculative positions will be unable to use the exchange. On the other

hand, if the contract size is too small, trading may be expensive as there is a cost

associated with each contract traded.

The correct size for a contract clearly depends on the likely user. Whereas the value of

what is delivered under a futures contract on an agricultural product might be $10,000

to $20,000, it is much higher for some financial futures. For example, under the

Treasury bond futures contract traded by the CME Group, instruments with a face

value of $100,000 are delivered.

In some cases exchanges have introduced ‘‘mini’’ contracts to attract smaller inves-

tors. For example, the CME Group’s Mini Nasdaq 100 contract is on 20 times the

Nasdaq 100 index, whereas the regular contract is on 100 times the index. (We will cover

futures on indices more fully in Chapter 3.)

Delivery Arrangements

The place where delivery will be made must be specified by the exchange. This is

particularly important for commodities that involve significant transportation costs. In

the case of the ICE frozen concentrate orange juice contract, delivery is to exchange-

licensed warehouses in Florida, New Jersey, or Delaware.

When alternative delivery locations are specified, the price received by the party with

the short position is sometimes adjusted according to the location chosen by that party.

The price tends to be higher for delivery locations that are relatively far from the main

sources of the commodity.

Delivery Months

A futures contract is referred to by its delivery month. The exchange must specify the

precise period during the month when delivery can be made. For many futures

contracts, the delivery period is the whole month.

The delivery months vary from contract to contract and are chosen by the exchange

to meet the needs of market participants. For example, corn futures traded by the CME

Group have delivery months of March, May, July, September, and December. At any

given time, contracts trade for the closest delivery month and a number of subsequent

delivery months. The exchange specifies when trading in a particular month’s contract

will begin. The exchange also specifies the last day on which trading can take place for a
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given contract. Trading generally ceases a few days before the last day on which delivery

can be made.

Price Quotes

The exchange defines how prices will be quoted. For example, in the US crude oil

futures contract, prices are quoted in dollars and cents. Treasury bond and Treasury

note futures prices are quoted in dollars and thirty-seconds of a dollar.

Price Limits and Position Limits

For most contracts, daily price movement limits are specified by the exchange. If in a

day the price moves down from the previous day’s close by an amount equal to the

daily price limit, the contract is said to be limit down. If it moves up by the limit, it is

said to be limit up. A limit move is a move in either direction equal to the daily price

limit. Normally, trading ceases for the day once the contract is limit up or limit down.

However, in some instances the exchange has the authority to step in and change the

limits.

The purpose of daily price limits is to prevent large price movements from occurring

because of speculative excesses. However, limits can become an artificial barrier to

trading when the price of the underlying commodity is advancing or declining rapidly.

Whether price limits are, on balance, good for futures markets is controversial.

Position limits are the maximum number of contracts that a speculator may hold.

The purpose of these limits is to prevent speculators from exercising undue influence on

the market.

2.3 CONVERGENCE OF FUTURES PRICE TO SPOT PRICE

As the delivery period for a futures contract is approached, the futures price converges

to the spot price of the underlying asset. When the delivery period is reached, the

futures price equals—or is very close to—the spot price.

To see why this is so, we first suppose that the futures price is above the spot price

during the delivery period. Traders then have a clear arbitrage opportunity:

1. Sell (i.e., short) a futures contract

2. Buy the asset

3. Make delivery.

These steps are certain to lead to a profit equal to the amount by which the futures price

exceeds the spot price. As traders exploit this arbitrage opportunity, the futures price

will fall. Suppose next that the futures price is below the spot price during the delivery

period. Companies interested in acquiring the asset will find it attractive to enter into a

long futures contract and then wait for delivery to be made. As they do so, the futures

price will tend to rise.

The result is that the futures price is very close to the spot price during the delivery

period. Figure 2.1 illustrates the convergence of the futures price to the spot price. In

Figure 2.1a the futures price is above the spot price prior to the delivery period. In
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Figure 2.1b the futures price is below the spot price prior to the delivery period. The
circumstances under which these two patterns are observed are discussed in Chapter 5.

2.4 THE OPERATION OF MARGIN ACCOUNTS

If two investors get in touch with each other directly and agree to trade an asset in the
future for a certain price, there are obvious risks. One of the investors may regret the

deal and try to back out. Alternatively, the investor simply may not have the financial
resources to honor the agreement. One of the key roles of the exchange is to organize
trading so that contract defaults are avoided. This is where margin accounts come in.

Daily Settlement

To illustrate how margin accounts work, we consider an investor who contacts his or
her broker to buy two December gold futures contracts on the COMEX division of the
New York Mercantile Exchange (NYMEX), which is part of the CME Group. We
suppose that the current futures price is $1,450 per ounce. Because the contract size is
100 ounces, the investor has contracted to buy a total of 200 ounces at this price. The
broker will require the investor to deposit funds in a margin account. The amount that

must be deposited at the time the contract is entered into is known as the initial margin.
We suppose this is $6,000 per contract, or $12,000 in total. At the end of each trading
day, the margin account is adjusted to reflect the investor’s gain or loss. This practice is
referred to as daily settlement or marking to market.

Suppose, for example, that by the end of the first day the futures price has dropped by
$9 from $1,450 to $1,441. The investor has a loss of $1,800 (¼ 200� $9), because the
200 ounces of December gold, which the investor contracted to buy at $1,450, can now be

sold for only $1,441. The balance in the margin account would therefore be reduced by
$1,800 to $10,200. Similarly, if the price of December gold rose to $1,459 by the end of

Time

(a) (b)

Futures
price

Spot
price

Time

Futures
price

Spot
price

Figure 2.1 Relationship between futures price and spot price as the delivery period is
approached: (a) Futures price above spot price; (b) futures price below spot price.
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the first day, the balance in the margin account would be increased by $1,800 to $13,800.

A trade is first settled at the close of the day on which it takes place. It is then settled at the

close of trading on each subsequent day.

Note that daily settlement is not merely an arrangement between broker and client.

When there is a decrease in the futures price so that the margin account of an investor

with a long position is reduced by $1,800, the investor’s broker has to pay the exchange

clearing house $1,800 and this money is passed on to the broker of an investor with a

short position. Similarly, when there is an increase in the futures price, brokers for

parties with short positions pay money to the exchange clearing house and brokers for

parties with long positions receive money from the exchange clearing house. Later we

will examine in more detail the mechanism by which this happens.

The investor is entitled to withdraw any balance in the margin account in excess of

the initial margin. To ensure that the balance in the margin account never becomes

negative a maintenance margin, which is somewhat lower than the initial margin, is set.

If the balance in the margin account falls below the maintenance margin, the investor

receives a margin call and is expected to top up the margin account to the initial margin

level by the end of the next day. The extra funds deposited are known as a variation

margin. If the investor does not provide the variation margin, the broker closes out the

position. In the case of the investor considered earlier, closing out the position would

involve neutralizing the existing contract by selling 200 ounces of gold for delivery in

December.

Table 2.1 Operation of margin account for a long position in two gold futures
contracts. The initial margin is $6,000 per contract, or $12,000 in total; the
maintenance margin is $4,500 per contract, or $9,000 in total. The contract is entered
into on Day 1 at $1,450 and closed out on Day 16 at $1,426.90.

Day
Trade

price ($)
Settlement
price ($)

Daily
gain ($)

Cumulative
gain ($)

Margin account
balance ($)

Margin
call ($)

1 1,450.00 12,000
1 1,441.00 �1,800 �1,800 10,200
2 1,438.30 �540 �2,340 9,660
3 1,444.60 1,260 �1,080 10,920
4 1,441.30 �660 �1,740 10,260
5 1,440.10 �240 �1,980 10,020
6 1,436.20 �780 �2,760 9,240
7 1,429.90 �1,260 �4,020 7,980 4,020
8 1,430.80 180 �3,840 12,180
9 1,425.40 �1,080 �4,920 11,100

10 1,428.10 540 �4,380 11,640
11 1,411.00 �3,420 �7,800 8,220 3,780
12 1,411.00 0 �7,800 12,000
13 1,414.30 660 �7,140 12,660
14 1,416.10 360 �6,780 13,020
15 1,423.00 1,380 �5,400 14,400
16 1,426.90 780 �4,620 15,180
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Table 2.1 illustrates the operation of the margin account for one possible sequence of

futures prices in the case of the investor considered earlier. The maintenance margin is

assumed to be $4,500 per contract, or $9,000 in total. On Day 7, the balance in the
margin account falls $1,020 below the maintenance margin level. This drop triggers a

margin call from the broker for an additional $4,020 to bring the account balance up to

the initial margin level of $12,000. It is assumed that the investor provides this margin by
the close of trading on Day 8. On Day 11, the balance in the margin account again falls

below the maintenance margin level, and a margin call for $3,780 is sent out. The investor

provides this margin by the close of trading on Day 12. On Day 16, the investor decides to
close out the position by selling two contracts. The futures price on that day is $1,226.90,

and the investor has a cumulative loss of $4,620. Note that the investor has excess margin

on Days 8, 13, 14, and 15. It is assumed that the excess is not withdrawn.

Further Details

Most brokers pay investors interest on the balance in a margin account. The balance in
the account does not, therefore, represent a true cost, provided that the interest rate is

competitive with what could be earned elsewhere. To satisfy the initial margin require-

ments, but not subsequent margin calls, an investor can usually deposit securities with
the broker. Treasury bills are usually accepted in lieu of cash at about 90% of their face

value. Shares are also sometimes accepted in lieu of cash, but at about 50% of their

market value.

Whereas a forward contract is settled at the end of its life, a futures contract is, as we

have seen, settled daily. At the end of each day, the investor’s gain (loss) is added to

(subtracted from) the margin account, bringing the value of the contract back to zero.
A futures contract is in effect closed out and rewritten at a new price each day.

Minimum levels for the initial and maintenance margin are set by the exchange

clearing house. Individual brokers may require greater margins from their clients than
the minimum levels specified by the exchange clearing house. Minimum margin levels

are determined by the variability of the price of the underlying asset and are revised

when necessary. The higher the variability, the higher the margin levels. The mainten-
ance margin is usually about 75% of the initial margin.

Margin requirements may depend on the objectives of the trader. A bona fide hedger,
such as a company that produces the commodity on which the futures contract is

written, is often subject to lower margin requirements than a speculator. The reason is

that there is deemed to be less risk of default. Day trades and spread transactions often
give rise to lower margin requirements than do hedge transactions. In a day trade the

trader announces to the broker an intent to close out the position in the same day. In a

spread transaction the trader simultaneously buys (i.e., takes a long position in) a

contract on an asset for one maturity month and sells (i.e., takes a short position in)
a contract on the same asset for another maturity month.

Note that margin requirements are the same on short futures positions as they are on
long futures positions. It is just as easy to take a short futures position as it is to take a

long one. The spot market does not have this symmetry. Taking a long position in the

spot market involves buying the asset for immediate delivery and presents no problems.
Taking a short position involves selling an asset that you do not own. This is a more

complex transaction that may or may not be possible in a particular market. It is

discussed further in Chapter 5.
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The Clearing House and Its Members

A clearing house acts as an intermediary in futures transactions. It guarantees the

performance of the parties to each transaction. The clearing house has a number of
members. Brokers who are not members themselves must channel their business

through a member and post margin with the member. The main task of the clearing
house is to keep track of all the transactions that take place during a day, so that it can

calculate the net position of each of its members.

The clearing house member is required to provide initial margin (sometimes referred to
as clearing margin) reflecting the total number of contracts that are being cleared. There

is no maintenance margin applicable to the clearing house member. Each day the
transactions being handled by the clearing house member are settled through the clearing

house. If in total the transactions have lost money, the member is required to provide
variation margin to the exchange clearing house; if there has been a gain on the

transactions, the member receives variation margin from the clearing house.

In determining initial margin, the number of contracts outstanding is usually
calculated on a net basis. This means that short positions the clearing house member

is handling for clients are offset against long positions. Suppose, for example, that the
clearing house member has two clients: one with a long position in 20 contracts, the

other with a short position in 15 contracts. The initial margin would be calculated on
the basis of 5 contracts. Clearing house members are required to contribute to a

guaranty fund. This may be used by the clearing house in the event that a member
fails to provide variation margin when required to do so, and there are losses when the

member’s positions are closed out.

Credit Risk

The whole purpose of the margining system is to ensure that funds are available to pay

traders when they make a profit. Overall the system has been very successful. Traders
entering into contracts at major exchanges have always had their contracts honored.

Futures markets were tested on October 19, 1987, when the S&P 500 index declined by
over 20% and traders with long positions in S&P 500 futures found they had negative

margin balances. Traders who did not meet margin calls were closed out but still owed
their brokers money. Some did not pay and as a result some brokers went bankrupt

because, without their clients’ money, they were unable to meet margin calls on
contracts they entered into on behalf of their clients. However, the clearing houses

had sufficient funds to ensure that everyone who had a short futures position on the
S&P 500 got paid off.

2.5 OTC MARKETS

Over-the-counter (OTC) markets, introduced in Chapter 1, are markets where compa-

nies agree to derivatives transactions without involving an exchange. Credit risk has
traditionally been a feature of OTC derivatives markets. Consider two companies, A

and B, that have entered into a number of derivatives transactions. If A defaults when
the net value of the outstanding transactions to B is positive, a loss is likely to be taken

by B. Similarly, if B defaults when the net value of outstanding transactions to A is
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positive, a loss is likely to be taken by company A. In an attempt to reduce credit risk,
the OTC market has borrowed some ideas from exchange-traded markets. We now
discuss this.

Central Counterparties

We briefly mentioned CCPs in Section 1.2. These are clearing houses for standard OTC
transactions that perform much the same role as exchange clearing houses. Members of
the CCP, similarly to members of an exchange clearing house, have to provide both
initial margin and daily variation margin. Like members of an exchange clearing house,
they are also required to contribute to a guaranty fund.

Once an OTC derivative transaction has been agreed between two parties A and B, it
can be presented to a CCP. Assuming the CCP accepts the transaction, it becomes the
counterparty to both A and B. (This is similar to the way the clearing house for a
futures exchange becomes the counterparty to the two sides of a futures trade.) For
example, if the transaction is a forward contract where A has agreed to buy an asset
from B in one year for a certain price, the clearing house agrees to

1. Buy the asset from B in one year for the agreed price, and

2. Sell the asset to A in one year for the agreed price.

It takes on the credit risk of both A and B.
All members of the CCP are required to provide initial margin to the CCP.

Transactions are valued daily and there are daily variation margin payments to or
from the member. If an OTC market participant is not itself a member of a CCP, it can
arrange to clear its trades through a CCP member. It will then have to provide margin
to the CCP. Its relationship with the CCP member is similar to the relationship between
a broker and a futures exchange clearing house member.

Following the credit crisis that started in 2007, regulators have become more con-
cerned about systemic risk (see Business Snapshot 1.2). One result of this, mentioned in
Section 1.2, has been legislation requiring that most standard OTC transactions between
financial institutions be handled by CCPs.

Bilateral Clearing

Those OTC transactions that are not cleared through CCPs are cleared bilaterally. In
the bilaterally-cleared OTC market, two companies A and B usually enter into a master
agreement covering all their trades.3 This agreement often includes an annex, referred to
as the credit support annex or CSA, requiring A or B, or both, to provide collateral.
The collateral is similar to the margin required by exchange clearing houses or CCPs
from their members.

Collateral agreements in CSAs usually require transactions to be valued each day. A
simple two-way agreement between companies A and B might work as follows. If, from
one day to the next, the transactions between A and B increase in value to A by X (and
therefore decrease in value to B by X), B is required to provide collateral worth X to A.
If the reverse happens and the transactions increase in value to B by X (and decrease in
value to A by X), A is required to provide collateral worth X to B. (To use the

3 The most common such agreement is an International Swaps and Derivatives Association (ISDA) Master

Agreement.
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terminology of exchange-traded markets, X is the variation margin provided.) Collateral
agreements and the way counterparty credit risk is assessed for bilaterally cleared
transactions is discussed further in Chapter 24.

It has traditionally been relatively rare for a CSA to require initial margin. This is
changing. New regulations introduced in 2012 require both initial margin and variation
margin to be provided for bilaterally cleared transactions between financial institu-
tions.4 The initial margin will typically be segregated from other funds and posted with
a third party.

Collateral significantly reduces credit risk in the bilaterally cleared OTC market (and
will do so even more when the new rules requiring initial margin for transactions
between financial institutions come into force). Collateral agreements were used by
hedge fund Long-Term Capital Management (LTCM) for its bilaterally cleared deri-
vatives 1990s. The agreements allowed LTCM to be highly levered. They did provide
credit protection, but as described in Business Snapshot 2.2, the high leverage left the
hedge fund exposed to other risks.

Business Snapshot 2.2 Long-Term Capital Management’s Big Loss

Long-Term Capital Management (LTCM), a hedge fund formed in the mid-1990s,
always collateralized its bilaterally cleared transactions. The hedge fund’s investment
strategy was known as convergence arbitrage. A very simple example of what it might
do is the following. It would find two bonds, X and Y, issued by the same company
that promised the same payoffs, with X being less liquid (i.e., less actively traded)
than Y. The market places a value on liquidity. As a result the price of X would be
less than the price of Y. LTCM would buy X, short Y, and wait, expecting the prices
of the two bonds to converge at some future time.

When interest rates increased, the company expected both bonds to move down in
price by about the same amount, so that the collateral it paid on bond X would be
about the same as the collateral it received on bond Y. Similarly, when interest rates
decreased, LTCM expected both bonds to move up in price by about the same
amount, so that the collateral it received on bond X would be about the same as the
collateral it paid on bond Y. It therefore expected that there would be no significant
outflow of funds as a result of its collateralization agreements.

In August 1998, Russia defaulted on its debt and this led to what is termed a
‘‘flight to quality’’ in capital markets. One result was that investors valued liquid
instruments more highly than usual and the spreads between the prices of the liquid
and illiquid instruments in LTCM’s portfolio increased dramatically. The prices of
the bonds LTCM had bought went down and the prices of those it had shorted
increased. It was required to post collateral on both. The company experienced
difficulties because it was highly leveraged. Positions had to be closed out and LTCM
lost about $4 billion. If the company had been less highly leveraged, it would
probably have been able to survive the flight to quality and could have waited for
the prices of the liquid and illiquid bonds to move back closer to each other.

4 For both this regulation and the regulation requiring standard transactions between financial institutions to

be cleared through CCPs, ‘‘financial institutions’’ include banks, insurance companies, pension funds, and

hedge funds. Transactions with non-financial institutions and some foreign exchange transactions are exempt

from the regulations.
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Figure 2.2 illustrates the way bilateral and central clearing work. (It makes the
simplifying assumption that there are only eight market participants and one CCP).
Under bilateral clearing there are many different agreements between market partici-
pants, as indicated in Figure 2.2a. If all OTC contracts were cleared through a single
CCP, we would move to the situation shown in Figure 2.2b. In practice, because not all

OTC transactions are routed through CCPs and there is more than one CCP, the market
has elements of both Figure 2.2a and Figure 2.2b.5

Futures Trades vs. OTC Trades

Regardless of how transactions are cleared, initial margin when provided in the form of

cash usually earns interest. The daily variation margin provided by clearing house
members for futures contracts does not earn interest. This is because the variation
margin constitutes the daily settlement. Transactions in the OTC market, whether
cleared through CCPs or cleared bilaterally, are usually not settled daily. For this
reason, the daily variation margin that is provided by the member of a CCP or, as a

result of a CSA, earns interest when it is in the form of cash.

Securities can be often be used to satisfy margin/collateral requirements.6 The market
value of the securities is reduced by a certain amount to determine their value for
margin purposes. This reduction is known as a haircut.

2.6 MARKET QUOTES

Futures quotes are available from exchanges and several online sources. Table 2.2 is
constructed from quotes provided by the CME Group for a number of different
commodities at about noon on May 14, 2013. Similar quotes for index, currency,

and interest rate futures are given in Chapters 3, 5, and 6, respectively.

The asset underlying the futures contract, the contract size, and the way the price is

(a) (b)

CCP

Figure 2.2 (a) The traditional way in which OTC markets have operated: a series of
bilateral agreements between market participants; (b) how OTC markets would
operate with a single central counterparty (CCP) acting as a clearing house.

5 The impact of CCPs on credit risk depends on the number of CCPs and proportions of all trades that are

cleared through them. See D. Duffie and H. Zhu, ‘‘Does a Central Clearing Counterparty Reduce

Counterparty Risk,’’ Review of Asset Pricing Studies, 1 (2011): 74–95.
6 As already mentioned, the variation margin for futures contracts must be provided in the form of cash.
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Table 2.2 Futures quotes for a selection of CME Group contracts on commodities
on May 14, 2013.

Open High Low Prior
settlement

Last
trade

Change Volume

Gold 100 oz, $ per oz

June 2013 1429.5 1444.9 1419.7 1434.3 1425.3 �9.0 147,943

Aug. 2013 1431.5 1446.0 1421.3 1435.6 1426.7 �8.9 13,469

Oct. 2013 1440.0 1443.3 1424.9 1436.6 1427.8 �8.8 3,522

Dec. 2013 1439.9 1447.1 1423.6 1437.7 1429.5 �8.2 4,353

June 2014 1441.9 1441.9 1441.9 1440.9 1441.9 þ1.0 291

Crude Oil 1000 barrels, $ per barrel

June 2013 94.93 95.66 94.50 95.17 94.72 �0.45 162,901

Aug. 2013 95.24 95.92 94.81 95.43 95.01 �0.42 37,830

Dec. 2013 93.77 94.37 93.39 93.89 93.60 �0.29 27,179

Dec. 2014 89.98 90.09 89.40 89.71 89.62 �0.09 9,606

Dec. 2015 86.99 87.33 86.94 86.99 86.94 �0.05 2,181

Corn 5000 bushels, cents per bushel

July 2013 655.00 657.75 646.50 655.50 652.50 �3.00 48,615

Sept. 2013 568.50 573.25 564.75 568.50 570.00 þ1.50 19,388

Dec. 2013 540.00 544.00 535.25 539.25 539.50 þ0.25 43,290

Mar. 2014 549.25 553.50 545.50 549.25 549.25 0.00 2,638

May 2014 557.00 561.25 553.50 557.00 557.00 0.00 1,980

July 2014 565.00 568.50 560.25 564.25 563.50 �0.75 1,086

Soybeans 5000 bushel, cents per bushel

July 2013 1418.75 1426.00 1405.00 1419.25 1418.00 �1.25 56,425

Aug. 2013 1345.00 1351.25 1332.25 1345.00 1345.75 þ0.75 4,232

Sept. 2013 1263.75 1270.00 1255.50 1263.00 1268.00 þ5.00 1,478

Nov. 2013 1209.75 1218.00 1203.25 1209.75 1216.75 þ7.00 29,890

Jan 2014 1217.50 1225.00 1210.75 1217.50 1224.25 þ6.75 4,488

Mar. 2014 1227.50 1230.75 1216.75 1223.50 1230.25 þ6.75 1,107

Wheat 5000 bushel, cents per bushel

July 2013 710.00 716.75 706.75 709.75 710.00 þ0.25 30,994

Sept. 2013 718.00 724.75 715.50 718.00 718.50 þ0.50 10,608

Dec. 2013 735.00 741.25 732.25 735.00 735.00 0.00 11,305

Mar. 2014 752.50 757.50 749.50 752.50 752.50 0.00 1,321

Live Cattle 40,000 lbs, cents per lb

June 2012 120.550 121.175 120.400 120.575 120.875 þ0.300 17,628

Aug. 2012 120.700 121.250 120.200 120.875 120.500 �0.375 13,922

Oct. 2012 124.100 124.400 123.375 124.125 123.800 �0.325 2,704

Dec. 2013 125.500 126.025 125.050 125.650 125.475 �0.175 1,107
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quoted are shown at the top of each section of Table 2.2. The first asset is gold. The
contract size is 100 ounces and the price is quoted as dollars per ounce. The maturity
month of the contract is indicated in the first column of the table.

Prices

The first three numbers in each row of Table 2.2 show the opening price, the highest
price in trading so far during the day, and the lowest price in trading so far during the
day. The opening price is representative of the prices at which contracts were trading
immediately after the start of trading on May 14, 2013. For the June 2013 gold contract,
the opening price on May 14, 2013, was $1,429.5 per ounce. The highest price during the
day was $1,444.9 per ounce and the lowest price during the day was $1,419.7 per ounce.

Settlement Price

The settlement price is the price used for calculating daily gains and losses and margin
requirements. It is usually calculated as the price at which the contract traded im-
mediately before the end of a day’s trading session. The fourth number in Table 2.2
shows the settlement price the previous day (i.e., May 13, 2013). The fifth number
shows the most recent trading price, and the sixth number shows the price change from
the previous day’s settlement price. In the case of the June 2013 gold contract, the
previous day’s settlement price was $1,434.3. The most recent trade was at $1,425.3,
$9.0 lower than the previous day’s settlement price. If $1,425.3 proved to be the
settlement price on May 14, 2013, the margin account of a trader with a long position
in one contract would lose $900 on May 14 and the margin account of a trader with a
short position would gain this amount on May 14.

Trading Volume and Open Interest

The final column of Table 2.2 shows the trading volume. The trading volume is the
number of contracts traded in a day. It can be contrasted with the open interest, which is
the number of contracts outstanding, that is, the number of long positions or, equiva-
lently, the number of short positions.

If there is a large amount of trading by day traders (i.e, traders who enter into a
position and close it out on the same day), the volume of trading in a day can be greater
than either the beginning-of-day or end-of-day open interest.

Patterns of Futures

Futures prices can show a number of different patterns. In Table 2.2, gold, wheat, and
live cattle settlement futures prices are an increasing function of the maturity of the
contract. This is known as a normal market. The situation where settlement futures
prices decline with maturity is referred as an inverted market.7 Commodities such as
crude oil, corn, and soybeans showed patterns that were partly normal and partly
inverted on May 14, 2013.

7 The term contango is sometimes used to describe the situation where the futures price is an increasing function

of maturity and the term backwardation is sometimes used to describe the situation where the futures price is a

decreasing function of the maturity of the contract. Strictly speaking, as will be explained in Chapter 5, these

terms refer to whether the price of the underlying asset is expected to increase or decrease over time.
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2.7 DELIVERY

As mentioned earlier in this chapter, very few of the futures contracts that are entered
into lead to delivery of the underlying asset. Most are closed out early. Nevertheless, it
is the possibility of eventual delivery that determines the futures price. An under-
standing of delivery procedures is therefore important.

The period during which delivery can be made is defined by the exchange and varies
from contract to contract. The decision on when to deliver is made by the party with
the short position, whom we shall refer to as investor A. When investor A decides to
deliver, investor A’s broker issues a notice of intention to deliver to the exchange

clearing house. This notice states how many contracts will be delivered and, in the case
of commodities, also specifies where delivery will be made and what grade will be
delivered. The exchange then chooses a party with a long position to accept delivery.

Suppose that the party on the other side of investor A’s futures contract when it was
entered into was investor B. It is important to realize that there is no reason to expect
that it will be investor B who takes delivery. Investor B may well have closed out his or
her position by trading with investor C, investor C may have closed out his or her
position by trading with investor D, and so on. The usual rule chosen by the exchange
is to pass the notice of intention to deliver on to the party with the oldest outstanding
long position. Parties with long positions must accept delivery notices. However, if the
notices are transferable, long investors have a short period of time, usually half an
hour, to find another party with a long position that is prepared to take delivery in
place of them.

In the case of a commodity, taking delivery usually means accepting a warehouse
receipt in return for immediate payment. The party taking delivery is then responsible

for all warehousing costs. In the case of livestock futures, there may be costs associated
with feeding and looking after the animals (see Business Snapshot 2.1). In the case of
financial futures, delivery is usually made by wire transfer. For all contracts, the price
paid is usually the most recent settlement price. If specified by the exchange, this price is
adjusted for grade, location of delivery, and so on. The whole delivery procedure from
the issuance of the notice of intention to deliver to the delivery itself generally takes
about two to three days.

There are three critical days for a contract. These are the first notice day, the last
notice day, and the last trading day. The first notice day is the first day on which a notice
of intention to make delivery can be submitted to the exchange. The last notice day is
the last such day. The last trading day is generally a few days before the last notice day.
To avoid the risk of having to take delivery, an investor with a long position should
close out his or her contracts prior to the first notice day.

Cash Settlement

Some financial futures, such as those on stock indices discussed in Chapter 3, are settled
in cash because it is inconvenient or impossible to deliver the underlying asset. In the
case of the futures contract on the S&P 500, for example, delivering the underlying asset

would involve delivering a portfolio of 500 stocks. When a contract is settled in cash, all
outstanding contracts are declared closed on a predetermined day. The final settlement
price is set equal to the spot price of the underlying asset at either the open or close of
trading on that day. For example, in the S&P 500 futures contract traded by the CME
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Group, the predetermined day is the third Friday of the delivery month and final
settlement is at the opening price.

2.8 TYPES OF TRADERS AND TYPES OF ORDERS

There are two main types of traders executing trades: futures commission merchants
(FCMs) and locals. FCMs are following the instructions of their clients and charge a
commission for doing so; locals are trading on their own account.

Individuals taking positions, whether locals or the clients of FCMs, can be categor-
ized as hedgers, speculators, or arbitrageurs, as discussed in Chapter 1. Speculators can
be classified as scalpers, day traders, or position traders. Scalpers are watching for very
short-term trends and attempt to profit from small changes in the contract price. They
usually hold their positions for only a few minutes. Day traders hold their positions for
less than one trading day. They are unwilling to take the risk that adverse news will
occur overnight. Position traders hold their positions for much longer periods of time.
They hope to make significant profits from major movements in the markets.

Orders

The simplest type of order placed with a broker is a market order. It is a request that a
trade be carried out immediately at the best price available in the market. However, there
are many other types of orders. We will consider those that are more commonly used.

A limit order specifies a particular price. The order can be executed only at this price or
at one more favorable to the investor. Thus, if the limit price is $30 for an investor
wanting to buy, the order will be executed only at a price of $30 or less. There is, of
course, no guarantee that the order will be executed at all, because the limit price may
never be reached.

A stop order or stop-loss order also specifies a particular price. The order is executed
at the best available price once a bid or offer is made at that particular price or a less-
favorable price. Suppose a stop order to sell at $30 is issued when the market price
is $35. It becomes an order to sell when and if the price falls to $30. In effect, a stop
order becomes a market order as soon as the specified price has been hit. The purpose
of a stop order is usually to close out a position if unfavorable price movements take
place. It limits the loss that can be incurred.

A stop–limit order is a combination of a stop order and a limit order. The order
becomes a limit order as soon as a bid or offer is made at a price equal to or less
favorable than the stop price. Two prices must be specified in a stop–limit order: the stop
price and the limit price. Suppose that at the time the market price is $35, a stop–limit
order to buy is issued with a stop price of $40 and a limit price of $41. As soon as there is
a bid or offer at $40, the stop–limit becomes a limit order at $41. If the stop price and the
limit price are the same, the order is sometimes called a stop-and-limit order.

A market-if-touched (MIT) order is executed at the best available price after a trade
occurs at a specified price or at a price more favorable than the specified price. In effect,
an MIT becomes a market order once the specified price has been hit. An MIT is also
known as a board order. Consider an investor who has a long position in a futures
contract and is issuing instructions that would lead to closing out the contract. A stop
order is designed to place a limit on the loss that can occur in the event of unfavorable
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price movements. By contrast, a market-if-touched order is designed to ensure that

profits are taken if sufficiently favorable price movements occur.

A discretionary order or market-not-held order is traded as a market order except

that execution may be delayed at the broker’s discretion in an attempt to get a better

price.

Some orders specify time conditions. Unless otherwise stated, an order is a day order

and expires at the end of the trading day. A time-of-day order specifies a particular

period of time during the day when the order can be executed. An open order or a good-

till-canceled order is in effect until executed or until the end of trading in the particular

contract. A fill-or-kill order, as its name implies, must be executed immediately on

receipt or not at all.

2.9 REGULATION

Futures markets in the United States are currently regulated federally by the Commodity

Futures Trading Commission (CFTC; www.cftc.gov), which was established in 1974.

The CFTC looks after the public interest. It is responsible for ensuring that prices are

communicated to the public and that futures traders report their outstanding positions

if they are above certain levels. The CFTC also licenses all individuals who offer their

services to the public in futures trading. The backgrounds of these individuals are

investigated, and there are minimum capital requirements. The CFTC deals with

complaints brought by the public and ensures that disciplinary action is taken against

individuals when appropriate. It has the authority to force exchanges to take disciplin-

ary action against members who are in violation of exchange rules.

With the formation of the National Futures Association (NFA; www.nfa.futures.

org) in 1982, some of responsibilities of the CFTC were shifted to the futures industry

itself. The NFA is an organization of individuals who participate in the futures

industry. Its objective is to prevent fraud and to ensure that the market operates in

the best interests of the general public. It is authorized to monitor trading and take

disciplinary action when appropriate. The agency has set up an efficient system for

arbitrating disputes between individuals and its members.

The Dodd–Frank act, signed into law by President Obama in 2010, expanded the

role of the CFTC. It is now responsible for rules requiring that standard over-the-

counter derivatives be traded on swap execution facilities and cleared through central

counterparties.

Trading Irregularities

Most of the time futures markets operate efficiently and in the public interest. However,

from time to time, trading irregularities do come to light. One type of trading

irregularity occurs when an investor group tries to ‘‘corner the market.’’ 8 The investor

group takes a huge long futures position and also tries to exercise some control over the

supply of the underlying commodity. As the maturity of the futures contracts is

8 Possibly the best known example of this was the attempt by the Hunt brothers to corner the silver market in

1979–80. Between the middle of 1979 and the beginning of 1980, their activities led to a price rise from $6 per

ounce to $50 per ounce.
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approached, the investor group does not close out its position, so that the number of
outstanding futures contracts may exceed the amount of the commodity available for
delivery. The holders of short positions realize that they will find it difficult to deliver
and become desperate to close out their positions. The result is a large rise in both
futures and spot prices. Regulators usually deal with this type of abuse of the market by
increasing margin requirements or imposing stricter position limits or prohibiting trades
that increase a speculator’s open position or requiring market participants to close out
their positions.

Other types of trading irregularity can involve the traders on the floor of the
exchange. These received some publicity early in 1989, when it was announced that
the FBI had carried out a two-year investigation, using undercover agents, of trading on
the Chicago Board of Trade and the Chicago Mercantile Exchange. The investigation
was initiated because of complaints filed by a large agricultural concern. The alleged
offenses included overcharging customers, not paying customers the full proceeds of
sales, and traders using their knowledge of customer orders to trade first for themselves
(an offence known as front running).

2.10 ACCOUNTING AND TAX

The full details of the accounting and tax treatment of futures contracts are beyond the
scope of this book. A trader who wants detailed information on this should obtain
professional advice. This section provides some general background information.

Accounting

Accounting standards require changes in the market value of a futures contract to be
recognized when they occur unless the contract qualifies as a hedge. If the contract does
qualify as a hedge, gains or losses are generally recognized for accounting purposes in
the same period in which the gains or losses from the item being hedged are recognized.
The latter treatment is referred to as hedge accounting.

Consider a company with a December year end. In September 2014 it buys a March
2015 corn futures contract and closes out the position at the end of February 2015.
Suppose that the futures prices are 650 cents per bushel when the contract is entered
into, 670 cents per bushel at the end of 2014, and 680 cents per bushel when the
contract is closed out. The contract is for the delivery of 5,000 bushels. If the contract
does not qualify as a hedge, the gains for accounting purposes are

5,000� ð6:70� 6:50Þ ¼ $1,000
in 2014 and

5,000� ð6:80� 6:70Þ ¼ $500

in 2015. If the company is hedging the purchase of 5,000 bushels of corn in February
2015 so that the contract qualifies for hedge accounting, the entire gain of $1,500 is
realized in 2015 for accounting purposes.

The treatment of hedging gains and losses is sensible. If the company is hedging the
purchase of 5,000 bushels of corn in February 2015, the effect of the futures contract is
to ensure that the price paid is close to 650 cents per bushel. The accounting treatment
reflects that this price is paid in 2015.
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In June 1998, the Financial Accounting Standards Board issued Statement No. 133

(FAS 133), Accounting for Derivative Instruments and Hedging Activities. FAS 133

applies to all types of derivatives (including futures, forwards, swaps, and options). It

requires all derivatives to be included on the balance sheet at fair market value.9 It
increases disclosure requirements. It also gives companies far less latitude than previously

in using hedge accounting. For hedge accounting to be used, the hedging instrument

must be highly effective in offsetting exposures and an assessment of this effectiveness is

required every three months. A similar standard, IAS 39, has been issued by the Inter-

national Accounting Standards Board.

Tax

Under the US tax rules, two key issues are the nature of a taxable gain or loss and the

timing of the recognition of the gain or loss. Gains or losses are either classified as
capital gains or losses or alternatively as part of ordinary income.

For a corporate taxpayer, capital gains are taxed at the same rate as ordinary income,

and the ability to deduct losses is restricted. Capital losses are deductible only to the

extent of capital gains. A corporation may carry back a capital loss for three years and

carry it forward for up to five years. For a noncorporate taxpayer, short-term capital
gains are taxed at the same rate as ordinary income, but long-term capital gains are

subject to a maximum capital gains tax rate of 15%. (Long-term capital gains are gains

from the sale of a capital asset held for longer than one year; short-term capital gains

are the gains from the sale of a capital asset held one year or less.) For a noncorporate

taxpayer, capital losses are deductible to the extent of capital gains plus ordinary

income up to $3,000 and can be carried forward indefinitely.

Generally, positions in futures contracts are treated as if they are closed out on the

last day of the tax year. For the noncorporate taxpayer, this gives rise to capital gains

and losses that are treated as if they were 60% long term and 40% short term without

regard to the holding period. This is referred to as the ‘‘60/40’’ rule. A noncorporate

taxpayer may elect to carry back for three years any net losses from the 60/40 rule to
offset any gains recognized under the rule in the previous three years.

Hedging transactions are exempt from this rule. The definition of a hedge transaction

for tax purposes is different from that for accounting purposes. The tax regulations

define a hedging transaction as a transaction entered into in the normal course of

business primarily for one of the following reasons:

1. To reduce the risk of price changes or currency fluctuations with respect to
property that is held or to be held by the taxpayer for the purposes of producing
ordinary income

2. To reduce the risk of price or interest rate changes or currency fluctuations with
respect to borrowings made by the taxpayer.

A hedging transaction must be clearly identified in a timely manner in the company’s

records as a hedge. Gains or losses from hedging transactions are treated as ordinary
income. The timing of the recognition of gains or losses from hedging transactions

generally matches the timing of the recognition of income or expense associated with

the transaction being hedged.

9 Previously the attraction of derivatives in some situations was that they were ‘‘off-balance-sheet’’ items.
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2.11 FORWARD vs. FUTURES CONTRACTS

The main differences between forward and futures contracts are summarized in Table 2.3.

Both contracts are agreements to buy or sell an asset for a certain price at a certain future

time. A forward contract is traded in the over-the-counter market and there is no

standard contract size or standard delivery arrangements. A single delivery date is usually

specified and the contract is usually held to the end of its life and then settled. A futures

contract is a standardized contract traded on an exchange. A range of delivery dates is

usually specified. It is settled daily and usually closed out prior to maturity.

Profits from Forward and Futures Contracts

Suppose that the sterling exchange rate for a 90-day forward contract is 1.5000 and that

this rate is also the futures price for a contract that will be delivered in exactly 90 days.

What is the difference between the gains and losses under the two contracts?

Under the forward contract, the whole gain or loss is realized at the end of the life

of the contract. Under the futures contract, the gain or loss is realized day by day

because of the daily settlement procedures. Suppose that trader A is long £1 million in

a 90-day forward contract and trader B is long £1 million in 90-day futures contracts.

(Because each futures contract is for the purchase or sale of £62,500, trader B must

purchase a total of 16 contracts.) Assume that the spot exchange rate in 90 days

proves to be 1.7000 dollars per pound. Trader A makes a gain of $200,000 on the 90th

day. Trader B makes the same gain—but spread out over the 90-day period. On some

days trader B may realize a loss, whereas on other days he or she makes a gain.

However, in total, when losses are netted against gains, there is a gain of $200,000

over the 90-day period.

Foreign Exchange Quotes

Both forward and futures contracts trade actively on foreign currencies. However,

there is sometimes a difference in the way exchange rates are quoted in the two

markets. For example, futures prices where one currency is the US dollar are always

quoted as the number of US dollars per unit of the foreign currency or as the number

Table 2.3 Comparison of forward and futures contracts.

Forward Futures

Private contract between two parties Traded on an exchange

Not standardized Standardized contract

Usually one specified delivery date Range of delivery dates

Settled at end of contract Settled daily

Delivery or final cash settlement
usually takes place

Contract is usually closed out
prior to maturity

Some credit risk Virtually no credit risk
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of US cents per unit of the foreign currency. Forward prices are always quoted in the
same way as spot prices. This means that, for the British pound, the euro, the
Australian dollar, and the New Zealand dollar, the forward quotes show the number
of US dollars per unit of the foreign currency and are directly comparable with futures
quotes. For other major currencies, forward quotes show the number of units of the
foreign currency per US dollar (USD). Consider the Canadian dollar (CAD). A
futures price quote of 0.9500 USD per CAD corresponds to a forward price quote
of 1.0526 CAD per USD (1:0526 ¼ 1=0:9500).

SUMMARY

A very high proportion of the futures contracts that are traded do not lead to the
delivery of the underlying asset. Traders usually enter into offsetting contracts to close
out their positions before the delivery period is reached. However, it is the possibility of
final delivery that drives the determination of the futures price. For each futures
contract, there is a range of days during which delivery can be made and a well-defined
delivery procedure. Some contracts, such as those on stock indices, are settled in cash
rather than by delivery of the underlying asset.

The specification of contracts is an important activity for a futures exchange. The two
sides to any contract must know what can be delivered, where delivery can take place,
and when delivery can take place. They also need to know details on the trading hours,
how prices will be quoted, maximum daily price movements, and so on. New contracts
must be approved by the Commodity Futures Trading Commission before trading
starts.

Margin accounts are an important aspect of futures markets. An investor keeps a
margin account with his or her broker. The account is adjusted daily to reflect gains or
losses, and from time to time the broker may require the account to be topped up if
adverse price movements have taken place. The broker either must be a clearing house
member or must maintain a margin account with a clearing house member. Each
clearing house member maintains a margin account with the exchange clearing house.
The balance in the account is adjusted daily to reflect gains and losses on the business
for which the clearing house member is responsible.

In over-the-counter derivatives markets, transactions are cleared either bilaterally or
centrally. When bilateral clearing is used, collateral frequently has to be posted by one
or both parties to reduced credit risk. When central clearing is used, a central counter-
party (CCP) stands between the two sides. It requires each side to provide margin and
performs much the same function as an exchange clearing house.

Forward contracts differ from futures contracts in a number of ways. Forward
contracts are private arrangements between two parties, whereas futures contracts are
traded on exchanges. There is generally a single delivery date in a forward contract,
whereas futures contracts frequently involve a range of such dates. Because they are not
traded on exchanges, forward contracts do not need to be standardized. A forward
contract is not usually settled until the end of its life, and most contracts do in fact lead
to delivery of the underlying asset or a cash settlement at this time.

In the next few chapters we shall examine in more detail the ways in which forward
and futures contracts can be used for hedging. We shall also look at how forward and
futures prices are determined.
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Practice Questions (Answers in Solutions Manual)

2.1. Distinguish between the terms open interest and trading volume.

2.2. What is the difference between a local and a futures commission merchant?

2.3. Suppose that you enter into a short futures contract to sell July silver for $17.20 per
ounce. The size of the contract is 5,000 ounces. The initial margin is $4,000, and the
maintenance margin is $3,000. What change in the futures price will lead to a margin call?
What happens if you do not meet the margin call?

2.4. Suppose that in September 2015 a company takes a long position in a contract on May
2016 crude oil futures. It closes out its position in March 2016. The futures price (per
barrel) is $88.30 when it enters into the contract, $90.50 when it closes out its position,
and $89.10 at the end of December 2015. One contract is for the delivery of 1,000 barrels.
What is the company’s total profit? When is it realized? How is it taxed if it is (a) a hedger
and (b) a speculator? Assume that the company has a December 31 year-end.

2.5. What does a stop order to sell at $2 mean? When might it be used? What does a limit
order to sell at $2 mean? When might it be used?

2.6. What is the difference between the operation of the margin accounts administered by a
clearing house and those administered by a broker?

2.7. What differences exist in the way prices are quoted in the foreign exchange futures
market, the foreign exchange spot market, and the foreign exchange forward market?

2.8. The party with a short position in a futures contract sometimes has options as to the
precise asset that will be delivered, where delivery will take place, when delivery will take
place, and so on. Do these options increase or decrease the futures price? Explain your
reasoning.

2.9. What are the most important aspects of the design of a new futures contract?

2.10. Explain how margin accounts protect investors against the possibility of default.
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2.11. A trader buys two July futures contracts on orange juice. Each contract is for the delivery
of 15,000 pounds. The current futures price is 160 cents per pound, the initial margin is
$6,000 per contract, and the maintenance margin is $4,500 per contract. What price
change would lead to a margin call? Under what circumstances could $2,000 be with-
drawn from the margin account?

2.12. Show that, if the futures price of a commodity is greater than the spot price during the
delivery period, then there is an arbitrage opportunity. Does an arbitrage opportunity
exist if the futures price is less than the spot price? Explain your answer.

2.13. Explain the difference between a market-if-touched order and a stop order.

2.14. Explain what a stop–limit order to sell at 20.30 with a limit of 20.10 means.

2.15. At the end of one day a clearing house member is long 100 contracts, and the settlement
price is $50,000 per contract. The original margin is $2,000 per contract. On the following
day the member becomes responsible for clearing an additional 20 long contracts, entered
into at a price of $51,000 per contract. The settlement price at the end of this day is
$50,200. How much does the member have to add to its margin account with the
exchange clearing house?

2.16. Explain why collateral requirements will increase in the OTC market as a result of new
regulations introduced since the 2008 credit crisis.

2.17. The forward price of the Swiss franc for delivery in 45 days is quoted as 1.1000. The
futures price for a contract that will be delivered in 45 days is 0.9000. Explain these two
quotes. Which is more favorable for an investor wanting to sell Swiss francs?

2.18. Suppose you call your broker and issue instructions to sell one July hogs contract.
Describe what happens.

2.19. ‘‘Speculation in futures markets is pure gambling. It is not in the public interest to allow
speculators to trade on a futures exchange.’’ Discuss this viewpoint.

2.20. Explain the difference between bilateral and central clearing for OTC derivatives.

2.21. What do you think would happen if an exchange started trading a contract in which the
quality of the underlying asset was incompletely specified?

2.22. ‘‘When a futures contract is traded on the floor of the exchange, it may be the case that
the open interest increases by one, stays the same, or decreases by one.’’ Explain this
statement.

2.23. Suppose that, on October 24, 2015, a company sells one April 2016 live cattle futures
contract. It closes out its position on January 21, 2016. The futures price (per pound) is
121.20 cents when it enters into the contract, 118.30 cents when it closes out its position,
and 118.80 cents at the end of December 2015. One contract is for the delivery of 40,000
pounds of cattle. What is the total profit? How is it taxed if the company is (a) a hedger
and (b) a speculator? Assume that the company has a December 31 year-end.

2.24. A cattle farmer expects to have 120,000 pounds of live cattle to sell in 3 months. The live
cattle futures contract traded by the CME Group is for the delivery of 40,000 pounds of
cattle. How can the farmer use the contract for hedging? From the farmer’s viewpoint,
what are the pros and cons of hedging?

2.25. It is July 2014. A mining company has just discovered a small deposit of gold. It will
take 6 months to construct the mine. The gold will then be extracted on a more or less
continuous basis for 1 year. Futures contracts on gold are available with delivery
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months every 2 months from August 2014 to December 2015. Each contract is for the
delivery of 100 ounces. Discuss how the mining company might use futures markets for
hedging.

2.26. Explain how CCPs work. What are the advantages to the financial system of requiring all
standardized derivatives transactions to be cleared through CCPs?

Further Questions

2.27. Trader A enters into futures contracts to buy 1 million euros for 1.3 million dollars in
three months. Trader B enters in a forward contract to do the same thing. The exchange
rate (dollars per euro) declines sharply during the first two months and then increases for
the third month to close at 1.3300. Ignoring daily settlement, what is the total profit of
each trader? When the impact of daily settlement is taken into account, which trader has
done better?

2.28. Explain what is meant by open interest. Why does the open interest usually decline during
the month preceding the delivery month? On a particular day, there were 2,000 trades in a
particular futures contract. This means that there were 2,000 buyers (going long) and 2,000
sellers (going short). Of the 2,000 buyers, 1,400 were closing out positions and 600 were
entering into new positions. Of the 2,000 sellers, 1,200 were closing out positions and 800
were entering into new positions. What is the impact of the day’s trading on open interest?

2.29. One orange juice futures contract is on 15,000 pounds of frozen concentrate. Suppose
that in September 2014 a company sells a March 2016 orange juice futures contract for
120 cents per pound. In December 2014, the futures price is 140 cents; in December 2015,
it is 110 cents; and in February 2016, it is closed out at 125 cents. The company has a
December year end. What is the company’s profit or loss on the contract? How is it
realized? What is the accounting and tax treatment of the transaction if the company is
classified as (a) a hedger and (b) a speculator?

2.30. A company enters into a short futures contract to sell 5,000 bushels of wheat for 750 cents
per bushel. The initial margin is $3,000 and the maintenance margin is $2,000. What price
change would lead to a margin call? Under what circumstances could $1,500 be with-
drawn from the margin account?

2.31. Suppose that there are no storage costs for crude oil and the interest rate for borrowing or
lending is 5% per annum. How could you make money if the June and December futures
contracts for a particular year trade at $80 and $86, respectively?

2.32. What position is equivalent to a long forward contract to buy an asset at K on a certain
date and a put option to sell it for K on that date.

2.33. A company has derivatives transactions with Banks A, B, and C that are worth
þ$20 million, �$15 million, and �$25 million, respectively, to the company. How much
margin or collateral does the company have to provide in each of the following two
situations?
(a) The transactions are cleared bilaterally and are subject to one-way collateral agreements

where the company posts variation margin but no initial margin. The banks do not have
to post collateral.

(b) The transactions are cleared centrally through the same CCP and the CCP requires a
total initial margin of $10 million.
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2.34. A bank’s derivatives transactions with a counterparty are worth þ$10 million to the bank
and are cleared bilaterally. The counterparty has posted $10 million of cash collateral.
What credit exposure does the bank have?

2.35. The author’s website (www.rotman.utoronto.ca/�hull/data) contains daily closing
prices for crude oil and gold futures contracts. You are required to download the data
for crude oil and answer the following:

(a) Assuming that daily price changes are normally distributed with zero mean, estimate
the daily price movement that will not be exceeded with 99% confidence.

(b) Suppose that an exchange wants to set the maintenance margin for traders so that it is
99% certain that the margin will not be wiped out by a two-day price move. (It
chooses two days because the margin calls are made at the end of a day and the trader
has until the end of the next day to decide whether to provide more margin.) How
high does the margin have to be when the normal distribution assumption is made?

(c) Suppose that the maintenance margin is as calculated in (b) and is 75% of the initial
margin. How frequently would the margin have been wiped out by a two-day price
movement in the period covered by the data for a trader with a long position? What do
your results suggest about the appropriateness of the normal distribution assumption?
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Hedging Strategies
Using Futures

Many of the participants in futures markets are hedgers. Their aim is to use futures
markets to reduce a particular risk that they face. This risk might relate to fluctuations
in the price of oil, a foreign exchange rate, the level of the stock market, or some other
variable. A perfect hedge is one that completely eliminates the risk. Perfect hedges are
rare. For the most part, therefore, a study of hedging using futures contracts is a study
of the ways in which hedges can be constructed so that they perform as close to perfect
as possible.

In this chapter we consider a number of general issues associated with the way hedges
are set up. When is a short futures position appropriate? When is a long futures
position appropriate? Which futures contract should be used? What is the optimal size
of the futures position for reducing risk? At this stage, we restrict our attention to what
might be termed hedge-and-forget strategies. We assume that no attempt is made to
adjust the hedge once it has been put in place. The hedger simply takes a futures
position at the beginning of the life of the hedge and closes out the position at the end
of the life of the hedge. In Chapter 19 we will examine dynamic hedging strategies in
which the hedge is monitored closely and frequent adjustments are made.

The chapter initially treats futures contracts as forward contracts (that is, it ignores
daily settlement). Later it explains an adjustment known as ‘‘tailing’’ that takes account
of the difference between futures and forwards.

3.1 BASIC PRINCIPLES

When an individual or company chooses to use futures markets to hedge a risk, the
objective is usually to take a position that neutralizes the risk as far as possible.
Consider a company that knows it will gain $10,000 for each 1 cent increase in the
price of a commodity over the next 3 months and lose $10,000 for each 1 cent decrease
in the price during the same period. To hedge, the company’s treasurer should take a
short futures position that is designed to offset this risk. The futures position should
lead to a loss of $10,000 for each 1 cent increase in the price of the commodity over
the 3 months and a gain of $10,000 for each 1 cent decrease in the price during this
period. If the price of the commodity goes down, the gain on the futures position
offsets the loss on the rest of the company’s business. If the price of the commodity
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goes up, the loss on the futures position is offset by the gain on the rest of the
company’s business.

Short Hedges

A short hedge is a hedge, such as the one just described, that involves a short position in
futures contracts. A short hedge is appropriate when the hedger already owns an asset
and expects to sell it at some time in the future. For example, a short hedge could be
used by a farmer who owns some hogs and knows that they will be ready for sale at the
local market in two months. A short hedge can also be used when an asset is not owned
right now but will be owned at some time in the future. Consider, for example, a US
exporter who knows that he or she will receive euros in 3 months. The exporter will
realize a gain if the euro increases in value relative to the US dollar and will sustain a
loss if the euro decreases in value relative to the US dollar. A short futures position
leads to a loss if the euro increases in value and a gain if it decreases in value. It has the
effect of offsetting the exporter’s risk.

To provide a more detailed illustration of the operation of a short hedge in a specific
situation, we assume that it is May 15 today and that an oil producer has just negotiated
a contract to sell 1 million barrels of crude oil. It has been agreed that the price that will
apply in the contract is the market price on August 15. The oil producer is therefore in
the position where it will gain $10,000 for each 1 cent increase in the price of oil over the
next 3 months and lose $10,000 for each 1 cent decrease in the price during this period.
Suppose that on May 15 the spot price is $80 per barrel and the crude oil futures price
for August delivery is $79 per barrel. Because each futures contract is for the delivery of
1,000 barrels, the company can hedge its exposure by shorting (i.e., selling) 1,000
futures contracts. If the oil producer closes out its position on August 15, the effect
of the strategy should be to lock in a price close to $79 per barrel.

To illustrate what might happen, suppose that the spot price on August 15 proves to
be $75 per barrel. The company realizes $75 million for the oil under its sales contract.
Because August is the delivery month for the futures contract, the futures price on
August 15 should be very close to the spot price of $75 on that date. The company
therefore gains approximately

$79� $75 ¼ $4

per barrel, or $4 million in total from the short futures position. The total amount
realized from both the futures position and the sales contract is therefore approximately
$79 per barrel, or $79 million in total.

For an alternative outcome, suppose that the price of oil on August 15 proves to be
$85 per barrel. The company realizes $85 per barrel for the oil and loses approximately

$85� $79 ¼ $6

per barrel on the short futures position. Again, the total amount realized is approxi-
mately $79 million. It is easy to see that in all cases the company ends up with
approximately $79 million.

Long Hedges

Hedges that involve taking a long position in a futures contract are known as long
hedges. A long hedge is appropriate when a company knows it will have to purchase a
certain asset in the future and wants to lock in a price now.
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Suppose that it is now January 15. A copper fabricator knows it will require 100,000
pounds of copper on May 15 to meet a certain contract. The spot price of copper is
340 cents per pound, and the futures price for May delivery is 320 cents per pound. The
fabricator can hedge its position by taking a long position in four futures contracts
offered by the COMEX division of the CME Group and closing its position on May 15.
Each contract is for the delivery of 25,000 pounds of copper. The strategy has the effect
of locking in the price of the required copper at close to 320 cents per pound.

Suppose that the spot price of copper on May 15 proves to be 325 cents per pound.
Because May is the delivery month for the futures contract, this should be very close to
the futures price. The fabricator therefore gains approximately

100,000� ð$3:25� $3:20Þ ¼ $5,000

on the futures contracts. It pays 100,000� $3:25 ¼ $325,000 for the copper, making the
net cost approximately $325,000� $5,000 ¼ $320,000. For an alternative outcome,
suppose that the spot price is 305 cents per pound on May 15. The fabricator then
loses approximately

100,000� ð$3:20� $3:05Þ ¼ $15,000

on the futures contract and pays 100,000� $3:05 ¼ $305,000 for the copper. Again, the
net cost is approximately $320,000, or 320 cents per pound.

Note that, in this case, it is clearly better for the company to use futures contracts
than to buy the copper on January 15 in the spot market. If it does the latter, it will pay
340 cents per pound instead of 320 cents per pound and will incur both interest costs
and storage costs. For a company using copper on a regular basis, this disadvantage
would be offset by the convenience of having the copper on hand.1 However, for a
company that knows it will not require the copper until May 15, the futures contract
alternative is likely to be preferred.

The examples we have looked at assume that the futures position is closed out in the
delivery month. The hedge has the same basic effect if delivery is allowed to happen.
However, making or taking delivery can be costly and inconvenient. For this reason,
delivery is not usually made even when the hedger keeps the futures contract until the
delivery month. As will be discussed later, hedgers with long positions usually avoid
any possibility of having to take delivery by closing out their positions before the
delivery period.

We have also assumed in the two examples that there is no daily settlement. In
practice, daily settlement does have a small effect on the performance of a hedge. As
explained in Chapter 2, it means that the payoff from the futures contract is realized day
by day throughout the life of the hedge rather than all at the end.

3.2 ARGUMENTS FOR AND AGAINST HEDGING

The arguments in favor of hedging are so obvious that they hardly need to be stated.
Most nonfinancial companies are in the business of manufacturing, or retailing or
wholesaling, or providing a service. They have no particular skills or expertise in
predicting variables such as interest rates, exchange rates, and commodity prices. It

1 See Section 5.11 for a discussion of convenience yields.
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makes sense for them to hedge the risks associated with these variables as they become

aware of them. The companies can then focus on their main activities—for which

presumably they do have particular skills and expertise. By hedging, they avoid un-

pleasant surprises such as sharp rises in the price of a commodity that is being purchased.

In practice, many risks are left unhedged. In the rest of this section we will explore

some of the reasons for this.

Hedging and Shareholders

One argument sometimes put forward is that the shareholders can, if they wish, do the

hedging themselves. They do not need the company to do it for them. This argument is,

however, open to question. It assumes that shareholders have as much information as the

company’s management about the risks faced by a company. In most instances, this is

not the case. The argument also ignores commissions and other transactions costs. These

are less expensive per dollar of hedging for large transactions than for small transactions.

Hedging is therefore likely to be less expensive when carried out by the company than

when it is carried out by individual shareholders. Indeed, the size of futures contracts

makes hedging by individual shareholders impossible in many situations.

One thing that shareholders can do far more easily than a corporation is diversify

risk. A shareholder with a well-diversified portfolio may be immune to many of the

risks faced by a corporation. For example, in addition to holding shares in a company

that uses copper, a well-diversified shareholder may hold shares in a copper producer,

so that there is very little overall exposure to the price of copper. If companies are acting

in the best interests of well-diversified shareholders, it can be argued that hedging is

unnecessary in many situations. However, the extent to which managers are in practice

influenced by this type of argument is open to question.

Hedging and Competitors

If hedging is not the norm in a certain industry, it may not make sense for one

particular company to choose to be different from all others. Competitive pressures

within the industry may be such that the prices of the goods and services produced by

the industry fluctuate to reflect raw material costs, interest rates, exchange rates, and so

on. A company that does not hedge can expect its profit margins to be roughly

constant. However, a company that does hedge can expect its profit margins to

fluctuate!

To illustrate this point, consider two manufacturers of gold jewelry, SafeandSure

Company and TakeaChance Company. We assume that most companies in the industry

do not hedge against movements in the price of gold and that TakeaChance Company is

no exception. However, SafeandSure Company has decided to be different from its

competitors and to use futures contracts to hedge its purchase of gold over the next

18 months. If the price of gold goes up, economic pressures will tend to lead to a

corresponding increase in thewholesale price of jewelry, so that TakeaChance Company’s

gross profit margin is unaffected. By contrast, SafeandSure Company’s profit margin will

increase after the effects of the hedge have been taken into account. If the price of gold

goes down, economic pressures will tend to lead to a corresponding decrease in the

wholesale price of jewelry. Again, TakeaChance Company’s profit margin is unaffected.

However, SafeandSure Company’s profit margin goes down. In extreme conditions,

74 CHAPTER 3



SafeandSure Company’s profit margin could become negative as a result of the ‘‘hedging’’

carried out! The situation is summarized in Table 3.1.

This example emphasizes the importance of looking at the big picture when hedging.

All the implications of price changes on a company’s profitability should be taken into

account in the design of a hedging strategy to protect against the price changes.

Hedging Can Lead to a Worse Outcome

It is important to realize that a hedge using futures contracts can result in a decrease or

an increase in a company’s profits relative to the position it would be in with no

hedging. In the example involving the oil producer considered earlier, if the price of oil

goes down, the company loses money on its sale of 1 million barrels of oil, and the

futures position leads to an offsetting gain. The treasurer can be congratulated for

having had the foresight to put the hedge in place. Clearly, the company is better off

than it would be with no hedging. Other executives in the organization, it is hoped, will

appreciate the contribution made by the treasurer. If the price of oil goes up, the

company gains from its sale of the oil, and the futures position leads to an offsetting

loss. The company is in a worse position than it would be with no hedging. Although

the hedging decision was perfectly logical, the treasurer may in practice have a difficult

time justifying it. Suppose that the price of oil at the end of the hedge is $89, so that the

company loses $10 per barrel on the futures contract. We can imagine a conversation

such as the following between the treasurer and the president:

President: This is terrible. We’ve lost $10 million in the futures market in the space
of three months. How could it happen? I want a full explanation.

Treasurer: The purpose of the futures contracts was to hedge our exposure to the

price of oil, not to make a profit. Don’t forget we made $10 million
from the favorable effect of the oil price increases on our business.

President: What’s that got to do with it? That’s like saying that we do not need

to worry when our sales are down in California because they are up in
New York.

Treasurer: If the price of oil had gone down . . .

President: I don’t care what would have happened if the price of oil had gone
down. The fact is that it went up. I really do not know what you were
doing playing the futures markets like this. Our shareholders will

expect us to have done particularly well this quarter. I’m going to have
to explain to them that your actions reduced profits by $10 million. I’m
afraid this is going to mean no bonus for you this year.

Table 3.1 Danger in hedging when competitors do not hedge.

Change in
gold price

Effect on price of
gold jewelry

Effect on profits of
TakeaChance Co.

Effect on profits of
SafeandSure Co.

Increase Increase None Increase

Decrease Decrease None Decrease
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Treasurer: That’s unfair. I was only . . .

President: Unfair! You are lucky not to be fired. You lost $10 million.

Treasurer: It all depends on how you look at it . . .

It is easy to see why many treasurers are reluctant to hedge! Hedging reduces risk for the

company. However, it may increase risk for the treasurer if others do not fully under-

stand what is being done. The only real solution to this problem involves ensuring that

all senior executives within the organization fully understand the nature of hedging

before a hedging program is put in place. Ideally, hedging strategies are set by a

company’s board of directors and are clearly communicated to both the company’s

management and the shareholders. (See Business Snapshot 3.1 for a discussion of

hedging by gold mining companies.)

3.3 BASIS RISK

The hedges in the examples considered so far have been almost too good to be true. The

hedger was able to identify the precise date in the future when an asset would be bought

or sold. The hedger was then able to use futures contracts to remove almost all the risk

arising from the price of the asset on that date. In practice, hedging is often not quite as

straightforward as this. Some of the reasons are as follows:

1. The asset whose price is to be hedged may not be exactly the same as the asset
underlying the futures contract.

Business Snapshot 3.1 Hedging by Gold Mining Companies

It is natural for a gold mining company to consider hedging against changes in the
price of gold. Typically it takes several years to extract all the gold from a mine.
Once a gold mining company decides to go ahead with production at a particular
mine, it has a big exposure to the price of gold. Indeed a mine that looks profitable at
the outset could become unprofitable if the price of gold plunges.

Gold mining companies are careful to explain their hedging strategies to potential
shareholders. Some gold mining companies do not hedge. They tend to attract
shareholders who buy gold stocks because they want to benefit when the price of
gold increases and are prepared to accept the risk of a loss from a decrease in the
price of gold. Other companies choose to hedge. They estimate the number of ounces
of gold they will produce each month for the next few years and enter into short
futures or forward contracts to lock in the price for all or part of this.

Suppose you are Goldman Sachs and are approached by a gold mining company
that wants to sell you a large amount of gold in 1 year at a fixed price. How do you
set the price and then hedge your risk? The answer is that you can hedge by
borrowing the gold from a central bank, selling it immediately in the spot market,
and investing the proceeds at the risk-free rate. At the end of the year, you buy the
gold from the gold mining company and use it to repay the central bank. The fixed
forward price you set for the gold reflects the risk-free rate you can earn and the lease
rate you pay the central bank for borrowing the gold.
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2. The hedger may be uncertain as to the exact date when the asset will be bought
or sold.

3. The hedge may require the futures contract to be closed out before its delivery
month.

These problems give rise to what is termed basis risk. This concept will now be explained.

The Basis

The basis in a hedging situation is as follows:2

Basis ¼ Spot price of asset to be hedged� Futures price of contract used

If the asset to be hedged and the asset underlying the futures contract are the same, the

basis should be zero at the expiration of the futures contract. Prior to expiration, the basis
may be positive or negative. From Table 2.2, we see that, on May 14, 2013, the basis was
negative for gold and positive for short maturity contracts on corn and soybeans.

As time passes, the spot price and the futures price for a particular month do not

necessarily change by the same amount. As a result, the basis changes. An increase in
the basis is referred to as a strengthening of the basis ; a decrease in the basis is referred
to as a weakening of the basis. Figure 3.1 illustrates how a basis might change over time

in a situation where the basis is positive prior to expiration of the futures contract.

To examine the nature of basis risk, we will use the following notation:

S1 : Spot price at time t1

S2 : Spot price at time t2

F1 : Futures price at time t1

F2 : Futures price at time t2

b1 : Basis at time t1

b2 : Basis at time t2.

Time

t1 t2

Futures price

Spot price

Figure 3.1 Variation of basis over time.

2 This is the usual definition. However, the alternative definition Basis ¼ Futures price� Spot price is

sometimes used, particularly when the futures contract is on a financial asset.
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We will assume that a hedge is put in place at time t1 and closed out at time t2. As an
example, we will consider the case where the spot and futures prices at the time the
hedge is initiated are $2.50 and $2.20, respectively, and that at the time the hedge is
closed out they are $2.00 and $1.90, respectively. This means that S1 ¼ 2:50, F1 ¼ 2:20,
S2 ¼ 2:00, and F2 ¼ 1:90.

From the definition of the basis, we have

b1 ¼ S1 � F1 and b2 ¼ S2 � F2

so that, in our example, b1 ¼ 0:30 and b2 ¼ 0:10.
Consider first the situation of a hedger who knows that the asset will be sold at time t2

and takes a short futures position at time t1. The price realized for the asset is S2 and the
profit on the futures position is F1 � F2. The effective price that is obtained for the asset
with hedging is therefore

S2 þ F1 � F2 ¼ F1 þ b2

In our example, this is $2.30. The value of F1 is known at time t1. If b2 were also known
at this time, a perfect hedge would result. The hedging risk is the uncertainty associated
with b2 and is known as basis risk. Consider next a situation where a company knows it
will buy the asset at time t2 and initiates a long hedge at time t1. The price paid for the
asset is S2 and the loss on the hedge is F1 � F2. The effective price that is paid with
hedging is therefore

S2 þ F1 � F2 ¼ F1 þ b2

This is the same expression as before and is $2.30 in the example. The value of F1 is
known at time t1, and the term b2 represents basis risk.

Note that basis changes can lead to an improvement or a worsening of a hedger’s
position. Consider a company that uses a short hedge because it plans to sell the
underlying asset. If the basis strengthens (i.e., increases) unexpectedly, the company’s
position improves because it will get a higher price for the asset after futures gains or
losses are considered; if the basis weakens (i.e., decreases) unexpectedly, the company’s
position worsens. For a company using a long hedge because it plans to buy the asset,
the reverse holds. If the basis strengthens unexpectedly, the company’s position worsens
because it will pay a higher price for the asset after futures gains or losses are
considered; if the basis weakens unexpectedly, the company’s position improves.

The asset that gives rise to the hedger’s exposure is sometimes different from the
asset underlying the futures contract that is used for hedging. This is known as cross
hedging and is discussed in the next section. It leads to an increase in basis risk. Define
S
�
2 as the price of the asset underlying the futures contract at time t2. As before, S2 is

the price of the asset being hedged at time t2. By hedging, a company ensures that the
price that will be paid (or received) for the asset is

S2 þ F1 � F2

This can be written as
F1 þ ðS�

2 � F2Þ þ ðS2 � S
�
2 Þ

The terms S�
2 � F2 and S2 � S

�
2 represent the two components of the basis. The S�

2 � F2

term is the basis that would exist if the asset being hedged were the same as the asset
underlying the futures contract. The S2 � S

�
2 term is the basis arising from the difference

between the two assets.
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Choice of Contract

One key factor affecting basis risk is the choice of the futures contract to be used for

hedging. This choice has two components:

1. The choice of the asset underlying the futures contract

2. The choice of the delivery month.

If the asset being hedged exactly matches an asset underlying a futures contract, the first

choice is generally fairly easy. In other circumstances, it is necessary to carry out a

careful analysis to determine which of the available futures contracts has futures prices

that are most closely correlated with the price of the asset being hedged.

The choice of the delivery month is likely to be influenced by several factors. In the

examples given earlier in this chapter, we assumed that, when the expiration of the

hedge corresponds to a delivery month, the contract with that delivery month is chosen.

In fact, a contract with a later delivery month is usually chosen in these circumstances.

The reason is that futures prices are in some instances quite erratic during the delivery

month. Moreover, a long hedger runs the risk of having to take delivery of the physical

asset if the contract is held during the delivery month. Taking delivery can be expensive

and inconvenient. (Long hedgers normally prefer to close out the futures contract and

buy the asset from their usual suppliers.)

In general, basis risk increases as the time difference between the hedge expiration

and the delivery month increases. A good rule of thumb is therefore to choose a

delivery month that is as close as possible to, but later than, the expiration of the

hedge. Suppose delivery months are March, June, September, and December for a

futures contract on a particular asset. For hedge expirations in December, January,

and February, the March contract will be chosen; for hedge expirations in March,

April, and May, the June contract will be chosen; and so on. This rule of thumb

assumes that there is sufficient liquidity in all contracts to meet the hedger’s

requirements. In practice, liquidity tends to be greatest in short-maturity futures

contracts. Therefore, in some situations, the hedger may be inclined to use short-

maturity contracts and roll them forward. This strategy is discussed later in the

chapter.

Example 3.1

It is March 1. A US company expects to receive 50 million Japanese yen at the end

of July. Yen futures contracts on the CME Group have delivery months of March,

June, September, and December. One contract is for the delivery of 12.5 million

yen. The company therefore shorts four September yen futures contracts on

March 1. When the yen are received at the end of July, the company closes out

its position. We suppose that the futures price on March 1 in cents per yen is

0.9800 and that the spot and futures prices when the contract is closed out are

0.9200 and 0.9250, respectively.

The gain on the futures contract is 0:9800� 0:9250 ¼ 0:0550 cents per yen. The

basis is 0:9200� 0:9250 ¼ �0:0050 cents per yen when the contract is closed out.

The effective price obtained in cents per yen is the final spot price plus the gain on

the futures:

0:9200þ 0:0550 ¼ 0:9750
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This can also be written as the initial futures price plus the final basis:

0:9800þ ð�0:0050Þ ¼ 0:9750

The total amount received by the company for the 50 million yen is 50� 0:00975
million dollars, or $487,500.

Example 3.2

It is June 8 and a company knows that it will need to purchase 20,000 barrels of

crude oil at some time in October or November. Oil futures contracts are currently

traded for delivery every month on the NYMEX division of the CME Group and

the contract size is 1,000 barrels. The company therefore decides to use the

December contract for hedging and takes a long position in 20 December con-

tracts. The futures price on June 8 is $88.00 per barrel. The company finds that it

is ready to purchase the crude oil on November 10. It therefore closes out its

futures contract on that date. The spot price and futures price on November 10

are $90.00 per barrel and $89.10 per barrel.

The gain on the futures contract is 89:10� 88:00 ¼ $1:10 per barrel. The basis

when the contract is closed out is 90:00� 89:10 ¼ $0:90 per barrel. The effective

price paid (in dollars per barrel) is the final spot price less the gain on the

futures, or

90:00� 1:10 ¼ 88:90

This can also be calculated as the initial futures price plus the final basis,

88:00þ 0:90 ¼ 88:90

The total price paid is 88:90� 20,000 ¼ $1,778,000.

3.4 CROSS HEDGING

In Examples 3.1 and 3.2, the asset underlying the futures contract was the same as the

asset whose price is being hedged. Cross hedging occurs when the two assets are

different. Consider, for example, an airline that is concerned about the future price

of jet fuel. Because jet fuel futures are not actively traded, it might choose to use heating

oil futures contracts to hedge its exposure.

The hedge ratio is the ratio of the size of the position taken in futures contracts to the

size of the exposure. When the asset underlying the futures contract is the same as the

asset being hedged, it is natural to use a hedge ratio of 1.0. This is the hedge ratio we

have used in the examples considered so far. For instance, in Example 3.2, the hedger’s

exposure was on 20,000 barrels of oil, and futures contracts were entered into for the

delivery of exactly this amount of oil.

When cross hedging is used, setting the hedge ratio equal to 1.0 is not always

optimal. The hedger should choose a value for the hedge ratio that minimizes the

variance of the value of the hedged position. We now consider how the hedger can do

this.
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Calculating the Minimum Variance Hedge Ratio

The minimum variance hedge ratio depends on the relationship between changes in the
spot price and changes in the futures price. Define:

�S: Change in spot price, S, during a period of time equal to the life of the hedge

�F : Change in futures price, F , during a period of time equal to the life of the
hedge.

We will denote the minimum variance hedge ratio by h
�. It can be shown that h� is the

slope of the best-fit line from a linear regression of �S against �F (see Figure 3.2). This

result is intuitively reasonable. We would expect h� to be the ratio of the average change
in S for a particular change in F .

The formula for h� is:

h
� ¼ �

�S
�F

ð3:1Þ

where �S is the standard deviation of �S, �F is the standard deviation of �F , and � is

the coefficient of correlation between the two.

Equation (3.1) shows that the optimal hedge ratio is the product of the coefficient of

correlation between �S and �F and the ratio of the standard deviation of �S to the
standard deviation of �F . Figure 3.3 shows how the variance of the value of the
hedger’s position depends on the hedge ratio chosen.

If � ¼ 1 and �F ¼ �S, the hedge ratio, h
�, is 1.0. This result is to be expected, because

in this case the futures price mirrors the spot price perfectly. If � ¼ 1 and �F ¼ 2�S, the

ΔF

ΔS

Figure 3.2 Regression of change in spot price against change in futures price.
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hedge ratio h
� is 0.5. This result is also as expected, because in this case the futures price

always changes by twice as much as the spot price. The hedge effectiveness can be

defined as the proportion of the variance that is eliminated by hedging. This is the R
2

from the regression of �S against �F and equals �2.
The parameters �, �F , and �S in equation (3.1) are usually estimated from historical

data on �S and �F . (The implicit assumption is that the future will in some sense be

like the past.) A number of equal nonoverlapping time intervals are chosen, and the

values of �S and �F for each of the intervals are observed. Ideally, the length of each

time interval is the same as the length of the time interval for which the hedge is in

effect. In practice, this sometimes severely limits the number of observations that are

available, and a shorter time interval is used.

Optimal Number of Contracts

To calculate the number of contracts that should be used in hedging, define:

QA : Size of position being hedged (units)

QF : Size of one futures contract (units)

N
� : Optimal number of futures contracts for hedging.

The futures contracts should be on h
�
QA units of the asset. The number of futures

contracts required is therefore given by

N
� ¼ h

�
QA

QF

ð3:2Þ
Example 3.3 shows how the results in this section can be used by an airline hedging the

purchase of jet fuel.3

Hedge ratio

h*

Variance of
position

Figure 3.3 Dependence of variance of hedger’s position on hedge ratio.

3 Derivatives with payoffs dependent on the price of jet fuel do exist, but heating oil futures are often used to

hedge an exposure to jet fuel prices because they are traded more actively.
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Example 3.3

An airline expects to purchase 2 million gallons of jet fuel in 1 month and decides

to use heating oil futures for hedging. We suppose that Table 3.2 gives, for

15 successive months, data on the change, �S, in the jet fuel price per gallon

and the corresponding change, �F , in the futures price for the contract on

heating oil that would be used for hedging price changes during the month. In

this case, the usual formulas for calculating standard deviations and correlations

give �F ¼ 0:0313, �S ¼ 0:0263, and � ¼ 0:928:
From equation (3.1), the minimum variance hedge ratio, h�, is therefore

0:928� 0:0263

0:0313
¼ 0:78

Each heating oil contract traded by the CME Group is on 42,000 gallons of

heating oil. From equation (3.2), the optimal number of contracts is

0:78� 2,000,000

42,000

which is 37 when rounded to the nearest whole number.

Table 3.2 Data to calculate minimum variance hedge ratio
when heating oil futures contract is used to hedge purchase of
jet fuel.

Month
i

Change in
heating oil futures
price per gallon

ð¼ �F Þ

Change in
jet fuel

price per gallon
ð¼ �S Þ

1 0.021 0.029

2 0.035 0.020

3 �0.046 �0.044

4 0.001 0.008

5 0.044 0.026

6 �0.029 �0.019

7 �0.026 �0.010

8 �0.029 �0.007

9 0.048 0.043

10 �0.006 0.011

11 �0.036 �0.036

12 �0.011 �0.018

13 0.019 0.009

14 �0.027 �0.032

15 0.029 0.023
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Tailing the Hedge

The analysis we have given so far is correct if we are using forward contracts to hedge.
This is because in that case we are interested in how closely correlated the change in the
forward price is with the change in the spot price over the life of the hedge.

When futures contracts are used for hedging, there is daily settlement and series of
one-day hedges. To reflect this, analysts sometimes calculate the correlation between
percentage one-day changes in the futures and spot prices. We will denote this
correlation by �̂, and define �̂S and �̂F as the standard deviations of percentage one-
day changes in spot and futures prices.

If S and F are the current spot and futures prices, the standard deviations of one-day
price changes are S�̂S and F �̂F and from equation (3.1) the one-day hedge ratio is

�̂
S�̂S
F �̂F

From equation (3.2), the number of contracts needed to hedge over the next day is

N
� ¼ �̂

S�̂SQA

F �̂FQF

Using this result is sometimes referred to as tailing the hedge.4 We can write the result as

N
� ¼ ĥ

VA

VF

ð3:3Þ

where VA is the dollar value of the position being hedged (¼ SQA), VF is the dollar
value of one futures contract (¼ FQF ) and ĥ is defined similarly to h

� as

ĥ ¼ �̂
�̂S
�̂F

In theory this result suggests that we should change the futures position every day to
reflect the latest values of VA and VF . In practice, day-to-day changes in the hedge are
very small and usually ignored.

3.5 STOCK INDEX FUTURES

We now move on to consider stock index futures and how they are used to hedge or
manage exposures to equity prices.

A stock index tracks changes in the value of a hypothetical portfolio of stocks. The
weight of a stock in the portfolio at a particular time equals the proportion of the
hypothetical portfolio invested in the stock at that time. The percentage increase in the
stock index over a small interval of time is set equal to the percentage increase in the
value of the hypothetical portfolio. Dividends are usually not included in the calcula-
tion so that the index tracks the capital gain/loss from investing in the portfolio.5

4 See Problem 5.23 for a further discussion in the context of currency hedging.
5 An exception to this is a total return index. This is calculated by assuming that dividends on the

hypothetical portfolio are reinvested in the portfolio.
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If the hypothetical portfolio of stocks remains fixed, the weights assigned to individual

stocks in the portfolio do not remain fixed. When the price of one particular stock in the

portfolio rises more sharply than others, moreweight is automatically given to that stock.

Sometimes indices are constructed from a hypothetical portfolio consisting of one of

each of a number of stocks. The weights assigned to the stocks are then proportional to

their market prices, with adjustments being made when there are stock splits. Other

indices are constructed so that weights are proportional to market capitalization (stock

price � number of shares outstanding). The underlying portfolio is then automatically

adjusted to reflect stock splits, stock dividends, and new equity issues.

Stock Indices

Table 3.3 shows futures prices for contracts on three different stock indices on May 14,

2013.

The Dow Jones Industrial Average is based on a portfolio consisting of 30 blue-chip

stocks in the United States. The weights given to the stocks are proportional to their

prices. The CME Group trades two futures contracts on the index. One is on $10 times

the index. The other (the Mini DJ Industrial Average) is on $5 times the index. The

Mini contract trades most actively.

The Standard & Poor’s 500 (S&P 500) Index is based on a portfolio of 500 different

stocks: 400 industrials, 40 utilities, 20 transportation companies, and 40 financial

institutions. The weights of the stocks in the portfolio at any given time are pro-

portional to their market capitalizations. The stocks are those of large publicly held

companies that trade on NYSE Euronext or Nasdaq OMX. The CME Group trades

two futures contracts on the S&P 500. One is on $250 times the index; the other (the

Mini S&P 500 contract) is on $50 times the index. The Mini contract trades most

actively.

The Nasdaq-100 is based on 100 stocks using the National Association of Securities

Dealers Automatic Quotations Service. The CME Group trades two futures contracts.

Table 3.3 Index futures quotes as reported by the CME Group on May 14, 2013.

Open High Low Prior
settlement

Last
trade

Change Volume

Mini Dow Jones Industrial Average, $5 times index

June 2013 15055 15159 15013 15057 15152 þ95 88,510

Sept. 2013 14982 15089 14947 14989 15081 þ92 34

Mini S&P 500, $50 times index

June 2013 1630.75 1647.50 1626.50 1630.75 1646.00 þ15.25 1,397,446

Sept. 2013 1625.00 1641.50 1620.50 1625.00 1640.00 þ15.00 4,360

Dec. 2013 1619.75 1635.00 1615.75 1618.50 1633.75 þ15.25 143

Mini NASDAQ-100, $20 times index

June 2013 2981.25 3005.00 2971.25 2981.00 2998.00 þ17.00 126,821

Sept. 2013 2979.50 2998.00 2968.00 2975.50 2993.00 þ17.50 337
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One is on $100 times the index; the other (the Mini Nasdaq-100 contract) is on $20

times the index. The Mini contract trades most actively.

As mentioned in Chapter 2, futures contracts on stock indices are settled in cash, not

by delivery of the underlying asset. All contracts are marked to market to either the

opening price or the closing price of the index on the last trading day, and the

positions are then deemed to be closed. For example, contracts on the S&P 500 are

closed out at the opening price of the S&P 500 index on the third Friday of the

delivery month.

Hedging an Equity Portfolio

Stock index futures can be used to hedge a well-diversified equity portfolio. Define:

VA : Current value of the portfolio

VF : Current value of one futures contract (the futures price times the contract size).

If the portfolio mirrors the index, the optimal hedge ratio can be assumed to be 1.0 and

equation (3.3) shows that the number of futures contracts that should be shorted is

N
� ¼ VA

VF

ð3:4Þ

Suppose, for example, that a portfolio worth $5,050,000 mirrors the S&P 500. The

index futures price is 1,010 and each futures contract is on $250 times the index. In this

case VA ¼ 5,050,000 and VF ¼ 1,010� 250 ¼ 252,500, so that 20 contracts should be

shorted to hedge the portfolio.

When the portfolio does not mirror the index, we can use the capital asset pricing

model (see the appendix to this chapter). The parameter beta (�) from the capital

asset pricing model is the slope of the best-fit line obtained when excess return on the

portfolio over the risk-free rate is regressed against the excess return of the index over
the risk-free rate. When � ¼ 1:0, the return on the portfolio tends to mirror the return

on the index; when � ¼ 2:0, the excess return on the portfolio tends to be twice as

great as the excess return on the index; when � ¼ 0:5, it tends to be half as great; and

so on.

A portfolio with a � of 2.0 is twice as sensitive to movements in the index as a

portfolio with a beta 1.0. It is therefore necessary to use twice as many contracts to

hedge the portfolio. Similarly, a portfolio with a beta of 0.5 is half as sensitive to

market movements as a portfolio with a beta of 1.0 and we should use half as many

contracts to hedge it. In general,

N
� ¼ �

VA

VF

ð3:5Þ

This formula assumes that the maturity of the futures contract is close to the maturity

of the hedge.

Comparing equation (3.5) with equation (3.3), we see that they imply ĥ ¼ �. This is
not surprising. The hedge ratio ĥ is the slope of the best-fit line when percentage one-

day changes in the portfolio are regressed against percentage one-day changes in the

futures price of the index. Beta (�) is the slope of the best-fit line when the return from

the portfolio is regressed against the return for the index.
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We illustrate that this formula gives good results by extending our earlier example.
Suppose that a futures contract with 4 months to maturity is used to hedge the value of
a portfolio over the next 3 months in the following situation:

Value of S&P 500 index ¼ 1,000

S&P 500 futures price ¼ 1,010

Value of portfolio ¼ $5,050,000

Risk-free interest rate ¼ 4% per annum

Dividend yield on index ¼ 1% per annum

Beta of portfolio ¼ 1:5

One futures contract is for delivery of $250 times the index. As before, VF ¼
250� 1,010 ¼ 252,500. From equation (3.5), the number of futures contracts that should
be shorted to hedge the portfolio is

1:5� 5,050,000

252,500
¼ 30

Suppose the index turns out to be 900 in 3 months and the futures price is 902. The gain
from the short futures position is then

30� ð1010� 902Þ � 250 ¼ $810,000

The loss on the index is 10%. The index pays a dividend of 1% per annum, or 0.25%
per 3 months. When dividends are taken into account, an investor in the index would
therefore earn �9.75% over the 3-month period. Because the portfolio has a � of 1.5,
the capital asset pricing model gives

Expected return on portfolio�Risk-free interest rate

¼ 1:5� ðReturn on index�Risk-free interest rateÞ
The risk-free interest rate is approximately 1% per 3 months. It follows that the expected
return (%) on the portfolio during the 3 months when the 3-month return on the index

Table 3.4 Performance of stock index hedge.

Value of index in three months: 900 950 1,000 1,050 1,100

Futures price of index today: 1,010 1,010 1,010 1,010 1,010

Futures price of index
in three months: 902 952 1,003 1,053 1,103

Gain on futures position ($): 810,000 435,000 52,500 �322,500 �697,500

Return on market: �9.750% �4.750% 0.250% 5.250% 10.250%

Expected return on portfolio: �15.125% �7.625% �0.125% 7.375% 14.875%

Expected portfolio value in three
months including dividends ($): 4,286,187 4,664,937 5,043,687 5,422,437 5,801,187

Total value of position
in three months ($): 5,096,187 5,099,937 5,096,187 5,099,937 5,103,687
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is �9.75% is

1:0þ ½1:5� ð�9:75� 1:0Þ� ¼ �15:125

The expected value of the portfolio (inclusive of dividends) at the end of the 3 months is

therefore

$5,050,000� ð1� 0:15125Þ ¼ $4,286,187

It follows that the expected value of the hedger’s position, including the gain on the

hedge, is

$4,286,187þ $810,000 ¼ $5,096,187

Table 3.4 summarizes these calculations together with similar calculations for other

values of the index at maturity. It can be seen that the total expected value of the

hedger’s position in 3 months is almost independent of the value of the index.

The only thing we have not covered in this example is the relationship between futures

prices and spot prices. We will see in Chapter 5 that the 1,010 assumed for the futures

price today is roughly what we would expect given the interest rate and dividend we are

assuming. The same is true of the futures prices in 3 months shown in Table 3.4.6

Reasons for Hedging an Equity Portfolio

Table 3.4 shows that the hedging procedure results in a value for the hedger’s position

at the end of the 3-month period being about 1% higher than at the beginning of the

3-month period. There is no surprise here. The risk-free rate is 4% per annum, or 1%

per 3 months. The hedge results in the investor’s position growing at the risk-free rate.

It is natural to ask why the hedger should go to the trouble of using futures contracts.

To earn the risk-free interest rate, the hedger can simply sell the portfolio and invest the

proceeds in a risk-free instrument.

One answer to this question is that hedging can be justified if the hedger feels that

the stocks in the portfolio have been chosen well. In these circumstances, the hedger

might be very uncertain about the performance of the market as a whole, but

confident that the stocks in the portfolio will outperform the market (after appropriate

adjustments have been made for the beta of the portfolio). A hedge using index futures

removes the risk arising from market moves and leaves the hedger exposed only to the

performance of the portfolio relative to the market. This will be discussed further

shortly. Another reason for hedging may be that the hedger is planning to hold a

portfolio for a long period of time and requires short-term protection in an uncertain

market situation. The alternative strategy of selling the portfolio and buying it back

later might involve unacceptably high transaction costs.

Changing the Beta of a Portfolio

In the example in Table 3.4, the beta of the hedger’s portfolio is reduced to zero so that

the hedger’s expected return is almost independent of the performance of the index.

6 The calculations in Table 3.4 assume that the dividend yield on the index is predictable, the risk-free interest

rate remains constant, and the return on the index over the 3-month period is perfectly correlated with the

return on the portfolio. In practice, these assumptions do not hold perfectly, and the hedge works rather less

well than is indicated by Table 3.4.
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Sometimes futures contracts are used to change the beta of a portfolio to some value
other than zero. Continuing with our earlier example:

S&P 500 index ¼ 1,000

S&P 500 futures price ¼ 1,010

Value of portfolio ¼ $5,050,000

Beta of portfolio ¼ 1:5

As before, VF ¼ 250� 1,010 ¼ 252,500 and a complete hedge requires

1:5� 5,050,000

252,500
¼ 30

contracts to be shorted. To reduce the beta of the portfolio from 1.5 to 0.75, the
number of contracts shorted should be 15 rather than 30; to increase the beta of the
portfolio to 2.0, a long position in 10 contracts should be taken; and so on. In general,
to change the beta of the portfolio from � to ��, where � > ��, a short position in

ð�� ��ÞVA

VF

contracts is required. When � < ��, a long position in

ð�� � �ÞVA

VF

contracts is required.

Locking in the Benefits of Stock Picking

Suppose you consider yourself to be good at picking stocks that will outperform the
market. You own a single stock or a small portfolio of stocks. You do not know how
well the market will perform over the next few months, but you are confident that your
portfolio will do better than the market. What should you do?

You should short �VA=VF index futures contracts, where � is the beta of your
portfolio, VA is the total value of the portfolio, and VF is the current value of one
index futures contract. If your portfolio performs better than a well-diversified portfolio
with the same beta, you will then make money.

Consider an investor who in April holds 20,000 shares of a company, each worth $100.
The investor feels that the market will be very volatile over the next three months but that
the company has a good chance of outperforming the market. The investor decides to use
the August futures contract on the S&P 500 to hedge the market’s return during the three-
month period. The � of the company’s stock is estimated at 1.1. Suppose that the current
futures price for the August contract on the S&P 500 is 1,500. Each contract is for delivery
of $250 times the index. In this case, VA ¼ 20,000� 100 ¼ 2,000,000 and
VF ¼ 1;500� 250 ¼ 375,000. The number of contracts that should be shorted is therefore

1:1� 2,000,000

375,000
¼ 5:87

Rounding to the nearest integer, the investor shorts 6 contracts, closing out the
position in July. Suppose the company’s stock price falls to $90 and the futures price
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of the S&P 500 falls to 1,300. The investor loses 20,000� ð$100� $90Þ ¼ $200,000 on

the stock, while gaining 6� 250� ð1,500� 1,300Þ ¼ $300,000 on the futures contracts.

The overall gain to the investor in this case is $100,000 because the company’s stock
price did not go down by as much as a well-diversified portfolio with a � of 1.1. If the

market had gone up and the company’s stock price went up by more than a portfolio
with a � of 1.1 (as expected by the investor), then a profit would be made in this case

as well.

3.6 STACK AND ROLL

Sometimes the expiration date of the hedge is later than the delivery dates of all the

futures contracts that can be used. The hedger must then roll the hedge forward by
closing out one futures contract and taking the same position in a futures contract with

a later delivery date. Hedges can be rolled forward many times. The procedure is known
as stack and roll. Consider a company that wishes to use a short hedge to reduce the risk

associated with the price to be received for an asset at time T . If there are futures
contracts 1, 2, 3, . . . , n (not all necessarily in existence at the present time) with

progressively later delivery dates, the company can use the following strategy:

Time t1: Short futures contract 1

Time t2: Close out futures contract 1
Short futures contract 2

Time t3: Close out futures contract 2
Short futures contract 3
..
.

Time tn: Close out futures contract n� 1
Short futures contract n

Time T : Close out futures contract n.

Suppose that in April 2014 a company realizes that it will have 100,000 barrels of oil

to sell in June 2015 and decides to hedge its risk with a hedge ratio of 1.0. (In this
example, we do not make the ‘‘tailing’’ adjustment described in Section 3.4.) The current

spot price is $89. Although futures contracts are traded with maturities stretching several
years into the future, we suppose that only the first six delivery months have sufficient

liquidity to meet the company’s needs. The company therefore shorts 100 October 2014
contracts. In September 2014, it rolls the hedge forward into the March 2015 contract.

In February 2015, it rolls the hedge forward again into the July 2015 contract.

Table 3.5 Data for the example on rolling oil hedge forward.

Date Apr. 2014 Sept. 2014 Feb. 2015 June 2015

Oct. 2014 futures price 88.20 87.40
Mar. 2015 futures price 87.00 86.50
July 2015 futures price 86.30 85.90
Spot price 89.00 86.00
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One possible outcome is shown in Table 3.5. The October 2014 contract is shorted

at $88.20 per barrel and closed out at $87.40 per barrel for a profit of $0.80 per barrel;

the March 2015 contract is shorted at $87.00 per barrel and closed out at $86.50 per

barrel for a profit of $0.50 per barrel. The July 2015 contract is shorted at $86.30 per

barrel and closed out at $85.90 per barrel for a profit of $0.40 per barrel. The final

spot price is $86.

The dollar gain per barrel of oil from the short futures contracts is

ð88:20� 87:40Þ þ ð87:00� 86:50Þ þ ð86:30� 85:90Þ ¼ 1:70

The oil price declined from $89 to $86. Receiving only $1.70 per barrel compensation

for a price decline of $3.00 may appear unsatisfactory. However, we cannot expect total

compensation for a price decline when futures prices are below spot prices. The best we

can hope for is to lock in the futures price that would apply to a June 2015 contract if it

were actively traded.

In practice, a company usually has an exposure every month to the underlying asset

and uses a 1-month futures contract for hedging because it is the most liquid. Initially it

enters into (‘‘stacks’’) sufficient contracts to cover its exposure to the end of its hedging

horizon. One month later, it closes out all the contracts and ‘‘rolls’’ them into new

1-month contracts to cover its new exposure, and so on.

As described in Business Snapshot 3.2, a German company, Metallgesellschaft,

followed this strategy in the early 1990s to hedge contracts it had entered into to supply

commodities at a fixed price. It ran into difficulties because the prices of the commod-

ities declined so that there were immediate cash outflows on the futures and the

expectation of eventual gains on the contracts. This mismatch between the timing of

the cash flows on hedge and the timing of the cash flows from the position being hedged

led to liquidity problems that could not be handled. The moral of the story is that

potential liquidity problems should always be considered when a hedging strategy is

being planned.

Business Snapshot 3.2 Metallgesellschaft: Hedging Gone Awry

Sometimes rolling hedges forward can lead to cash flow pressures. The problem was
illustrated dramatically by the activities of a German company, Metallgesellschaft
(MG), in the early 1990s.

MG sold a huge volume of 5- to 10-year heating oil and gasoline fixed-price
supply contracts to its customers at 6 to 8 cents above market prices. It hedged its
exposure with long positions in short-dated futures contracts that were rolled
forward. As it turned out, the price of oil fell and there were margin calls on the
futures positions. Considerable short-term cash flow pressures were placed on MG.
The members of MG who devised the hedging strategy argued that these short-term
cash outflows were offset by positive cash flows that would ultimately be realized on
the long-term fixed-price contracts. However, the company’s senior management
and its bankers became concerned about the huge cash drain. As a result, the
company closed out all the hedge positions and agreed with its customers that the
fixed-price contracts would be abandoned. The outcome was a loss to MG of
$1.33 billion.
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SUMMARY

This chapter has discussed various ways in which a company can take a position in

futures contracts to offset an exposure to the price of an asset. If the exposure is such

that the company gains when the price of the asset increases and loses when the price of

the asset decreases, a short hedge is appropriate. If the exposure is the other way round

(i.e., the company gains when the price of the asset decreases and loses when the price

of the asset increases), a long hedge is appropriate.

Hedging is a way of reducing risk. As such, it should be welcomed by most

executives. In reality, there are a number of theoretical and practical reasons why

companies do not hedge. On a theoretical level, we can argue that shareholders, by

holding well-diversified portfolios, can eliminate many of the risks faced by a company.

They do not require the company to hedge these risks. On a practical level, a company

may find that it is increasing rather than decreasing risk by hedging if none of its

competitors does so. Also, a treasurer may fear criticism from other executives if the

company makes a gain from movements in the price of the underlying asset and a loss

on the hedge.

An important concept in hedging is basis risk. The basis is the difference between the

spot price of an asset and its futures price. Basis risk arises from uncertainty as to what

the basis will be at maturity of the hedge.

The hedge ratio is the ratio of the size of the position taken in futures contracts to the

size of the exposure. It is not always optimal to use a hedge ratio of 1.0. If the hedger

wishes to minimize the variance of a position, a hedge ratio different from 1.0 may be

appropriate. The optimal hedge ratio is the slope of the best-fit line obtained when

changes in the spot price are regressed against changes in the futures price.

Stock index futures can be used to hedge the systematic risk in an equity portfolio.

The number of futures contracts required is the beta of the portfolio multiplied by the

ratio of the value of the portfolio to the value of one futures contract. Stock index

futures can also be used to change the beta of a portfolio without changing the stocks

that make up the portfolio.

When there is no liquid futures contract that matures later than the expiration of the

hedge, a strategy known as stack and roll may be appropriate. This involves entering

into a sequence of futures contracts. When the first futures contract is near expiration, it

is closed out and the hedger enters into a second contract with a later delivery month.

When the second contract is close to expiration, it is closed out and the hedger enters

into a third contract with a later delivery month; and so on. The result of all this is the

creation of a long-dated futures contract by trading a series of short-dated contracts.
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Practice Questions (Answers in Solutions Manual)

3.1. Under what circumstances are (a) a short hedge and (b) a long hedge appropriate?

3.2. Explain what is meant by basis risk when futures contracts are used for hedging.

3.3. Explain what is meant by a perfect hedge. Does a perfect hedge always lead to a better
outcome than an imperfect hedge? Explain your answer.

3.4. Under what circumstances does a minimum variance hedge portfolio lead to no hedging
at all?

3.5. Give three reasons why the treasurer of a company might not hedge the company’s
exposure to a particular risk.

3.6. Suppose that the standard deviation of quarterly changes in the prices of a commodity is
$0.65, the standard deviation of quarterly changes in a futures price on the commodity
is $0.81, and the coefficient of correlation between the two changes is 0.8. What is the
optimal hedge ratio for a 3-month contract? What does it mean?
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3.7. A company has a $20 million portfolio with a beta of 1.2. It would like to use futures
contracts on a stock index to hedge its risk. The index futures price is currently standing
at 1080, and each contract is for delivery of $250 times the index. What is the hedge that
minimizes risk? What should the company do if it wants to reduce the beta of the
portfolio to 0.6?

3.8. In the corn futures contract traded on an exchange, the following delivery months are
available: March, May, July, September, and December. Which of the available
contracts should be used for hedging when the expiration of the hedge is in (a) June,
(b) July, and (c) January.

3.9. Does a perfect hedge always succeed in locking in the current spot price of an asset for a
future transaction? Explain your answer.

3.10. Explain why a short hedger’s position improves when the basis strengthens unexpectedly
and worsens when the basis weakens unexpectedly.

3.11. Imagine you are the treasurer of a Japanese company exporting electronic equipment to
the United States. Discuss how you would design a foreign exchange hedging strategy and
the arguments you would use to sell the strategy to your fellow executives.

3.12. Suppose that in Example 3.2 of Section 3.3 the company decides to use a hedge ratio of
0.8. How does the decision affect the way in which the hedge is implemented and the
result?

3.13. ‘‘If the minimum variance hedge ratio is calculated as 1.0, the hedge must be perfect.’’ Is
this statement true? Explain your answer.

3.14. ‘‘If there is no basis risk, the minimum variance hedge ratio is always 1.0.’’ Is this
statement true? Explain your answer.

3.15. ‘‘For an asset where futures prices are usually less than spot prices, long hedges are likely
to be particularly attractive.’’ Explain this statement.

3.16. The standard deviation of monthly changes in the spot price of live cattle is (in cents per
pound) 1.2. The standard deviation of monthly changes in the futures price of live cattle
for the closest contract is 1.4. The correlation between the futures price changes and the
spot price changes is 0.7. It is now October 15. A beef producer is committed to
purchasing 200,000 pounds of live cattle on November 15. The producer wants to use
the December live cattle futures contracts to hedge its risk. Each contract is for the
delivery of 40,000 pounds of cattle. What strategy should the beef producer follow?

3.17. A corn farmer argues ‘‘I do not use futures contracts for hedging. My real risk is not the
price of corn. It is that my whole crop gets wiped out by the weather.’’ Discuss this
viewpoint. Should the farmer estimate his or her expected production of corn and hedge
to try to lock in a price for expected production?

3.18. On July 1, an investor holds 50,000 shares of a certain stock. The market price is $30 per
share. The investor is interested in hedging against movements in the market over the next
month and decides to use the September Mini S&P 500 futures contract. The index
futures price is currently 1,500 and one contract is for delivery of $50 times the index. The
beta of the stock is 1.3. What strategy should the investor follow? Under what circum-
stances will it be profitable?

3.19. Suppose that in Table 3.5 the company decides to use a hedge ratio of 1.5. How does the
decision affect the way the hedge is implemented and the result?
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3.20. A futures contract is used for hedging. Explain why the daily settlement of the contract
can give rise to cash-flow problems.

3.21. An airline executive has argued: ‘‘There is no point in our using oil futures. There is just
as much chance that the price of oil in the future will be less than the futures price as there
is that it will be greater than this price.’’ Discuss the executive’s viewpoint.

3.22. Suppose that the 1-year gold lease rate is 1.5% and the 1-year risk-free rate is 5.0%. Both
rates are compounded annually. Use the discussion in Business Snapshot 3.1 to calculate
the maximum 1-year gold forward price Goldman Sachs should quote to the gold-mining
company when the spot price is $1,200.

3.23. The expected return on the S&P 500 is 12% and the risk-free rate is 5%. What is the
expected return on an investment with a beta of (a) 0.2, (b) 0.5, and (c) 1.4?

Further Questions

3.24. It is now June. A company knows that it will sell 5,000 barrels of crude oil in September.
It uses the October CME Group futures contract to hedge the price it will receive. Each
contract is on 1,000 barrels of ‘‘light sweet crude.’’ What position should it take? What
price risks is it still exposed to after taking the position?

3.25. Sixty futures contracts are used to hedge an exposure to the price of silver. Each futures
contract is on 5,000 ounces of silver. At the time the hedge is closed out, the basis is $0.20
per ounce. What is the effect of the basis on the hedger’s financial position if (a) the trader
is hedging the purchase of silver and (b) the trader is hedging the sale of silver?

3.26. A trader owns 55,000 units of a particular asset and decides to hedge the value of her
position with futures contracts on another related asset. Each futures contract is on 5,000
units. The spot price of the asset that is owned is $28 and the standard deviation of the
change in this price over the life of the hedge is estimated to be $0.43. The futures price of
the related asset is $27 and the standard deviation of the change in this over the life of the
hedge is $0.40. The coefficient of correlation between the spot price change and futures
price change is 0.95.
(a) What is the minimum variance hedge ratio?
(b) Should the hedger take a long or short futures position?
(c) What is the optimal number of futures contracts with no tailing of the hedge?
(d) What is the optimal number of futures contracts with tailing of the hedge?

3.27. A company wishes to hedge its exposure to a new fuel whose price changes have a 0.6
correlation with gasoline futures price changes. The company will lose $1 million for each
1 cent increase in the price per gallon of the new fuel over the next three months. The new
fuel’s price changes have a standard deviation that is 50% greater than price changes in
gasoline futures prices. If gasoline futures are used to hedge the exposure, what should the
hedge ratio be? What is the company’s exposure measured in gallons of the new fuel?
What position, measured in gallons, should the company take in gasoline futures? How
many gasoline futures contracts should be traded? Each contract is on 42,000 gallons.

3.28. A portfolio manager has maintained an actively managed portfolio with a beta of 0.2.
During the last year, the risk-free rate was 5% and equities performed very badly
providing a return of �30%. The portfolio manager produced a return of �10% and
claims that in the circumstances it was a good performance. Discuss this claim.
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3.29. The following table gives data on monthly changes in the spot price and the futures price
for a certain commodity. Use the data to calculate a minimum variance hedge ratio.

Spot price change þ0.50 þ0.61 �0.22 �0.35 þ0.79
Futures price change þ0.56 þ0.63 �0.12 �0.44 þ0.60

Spot price change þ0.04 þ0.15 þ0.70 �0.51 �0.41
Futures price change �0.06 þ0.01 þ0.80 �0.56 �0.46

3.30. It is July 16. A company has a portfolio of stocks worth $100 million. The beta of the
portfolio is 1.2. The company would like to use the December futures contract on a stock
index to change the beta of the portfolio to 0.5 during the period July 16 to November 16.
The index futures price is currently 1,000 and each contract is on $250 times the index.
(a) What position should the company take?
(b) Suppose that the company changes its mind and decides to increase the beta of the

portfolio from 1.2 to 1.5. What position in futures contracts should it take?

3.31. A fund manager has a portfolio worth $50 million with a beta of 0.87. The manager is
concerned about the performance of the market over the next 2 months and plans to use
3-month futures contracts on the S&P 500 to hedge the risk. The current level of the index is
1,250, one contract is on 250 times the index, the risk-free rate is 6% per annum, and the
dividend yield on the index is 3% per annum. The current 3-month futures price is 1,259.
(a) What position should the fund manager take to hedge all exposure to the market over

the next 2 months?
(b) Calculate the effect of your strategy on the fund manager’s returns if the index in

2 months is 1,000, 1,100, 1,200, 1,300, and 1,400. Assume that the 1-month futures price
is 0.25% higher than the index level at this time.

3.32. It is now October 2014. A company anticipates that it will purchase 1 million pounds of
copper in each of February 2015, August 2015, February 2016, and August 2016. The
company has decided to use the futures contracts traded in the COMEX division of the
CME Group to hedge its risk. One contract is for the delivery of 25,000 pounds of copper.
The initial margin is $2,000 per contract and the maintenance margin is $1,500 per
contract. The company’s policy is to hedge 80% of its exposure. Contracts with maturities
up to 13 months into the future are considered to have sufficient liquidity to meet the
company’s needs. Devise a hedging strategy for the company. (Do not make the ‘‘tailing’’
adjustment described in Section 3.4.)

Assume the market prices (in cents per pound) today and at future dates are as in the
following table. What is the impact of the strategy you propose on the price the company
pays for copper? What is the initial margin requirement in October 2014? Is the company
subject to any margin calls?

Date Oct. 2014 Feb. 2015 Aug. 2015 Feb. 2016 Aug. 2016

Spot price 372.00 369.00 365.00 377.00 388.00
Mar. 2014 futures price 372.30 369.10
Sept. 2014 futures price 372.80 370.20 364.80
Mar. 2015 futures price 370.70 364.30 376.70
Sept. 2015 futures price 364.20 376.50 388.20
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APPENDIX

CAPITAL ASSET PRICING MODEL

The capital asset pricing model (CAPM) is a model that can be used to relate the

expected return from an asset to the risk of the return. The risk in the return from an

asset is divided into two parts. Systematic risk is risk related to the return from the

market as a whole and cannot be diversified away. Nonsystematic risk is risk that is

unique to the asset and can be diversified away by choosing a large portfolio of different

assets. CAPM argues that the return should depend only on systematic risk. The CAPM

formula is7

Expected return on asset ¼ RF þ �ðRM � RF Þ ð3A:1Þ

where RM is the return on the portfolio of all available investments, RF is the return on

a risk-free investment, and � (the Greek letter beta) is a parameter measuring

systematic risk.

The return from the portfolio of all available investments, RM, is referred to as the

return on the market and is usually approximated as the return on a well-diversified

stock index such as the S&P 500. The beta (�) of an asset is a measure of the sensitivity

of its returns to returns from the market. It can be estimated from historical data as the

slope obtained when the excess return on the asset over the risk-free rate is regressed

against the excess return on the market over the risk-free rate. When � ¼ 0, an asset’s

returns are not sensitive to returns from the market. In this case, it has no systematic

risk and equation (3A.1) shows that its expected return is the risk-free rate; when

� ¼ 0:5, the excess return on the asset over the risk-free rate is on average half of the

excess return of the market over the risk-free rate; when � ¼ 1, the expected return on

the asset equals to the return on the market; and so on.

Suppose that the risk-free rate RF is 5% and the return on the market is 13%.

Equation (3A.1) shows that, when the beta of an asset is zero, its expected return is 5%.

When � ¼ 0:75, its expected return is 0:05þ 0:75� ð0:13� 0:05Þ ¼ 0:11, or 11%.

The derivation of CAPM requires a number of assumptions.8 In particular:

1. Investors care only about the expected return and standard deviation of the return
from an asset.

2. The returns from two assets are correlated with each other only because of their
correlation with the return from the market. This is equivalent to assuming that
there is only one factor driving returns.

3. Investors focus on returns over a single period and that period is the the same for
all investors.

4. Investors can borrow and lend at the same risk-free rate.

5. Tax does not influence investment decisions.

6. All investors make the same estimates of expected returns, standard deviations of
returns, and correlations betweeen returns.

7 If the return on the market is not known, RM is replaced by the expected value of RM in this formula.
8 For details on the derivation, see, for example, J. Hull, Risk Management and Financial Institutions, 3rd

edn. Hoboken, NJ: Wiley, 2012, Chap. 1.
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These assumptions are at best only approximately true. Nevertheless CAPM has proved
to be a useful tool for portfolio managers and is often used as a benchmark for
assessing their performance.

When the asset is an individual stock, the expected return given by equation (3A.1) is
not a particularly good predictor of the actual return. But, when the asset is a well-
diversified portfolio of stocks, it is a much better predictor. As a result, the equation

Return on diversified portfolio ¼ RF þ �ðRM � RF Þ
can be used as a basis for hedging a diversified portfolio, as described in Section 3.5.
The � in the equation is the beta of the portfolio. It can be calculated as the weighted
average of the betas of the stocks in the portfolio.
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Interest Rates

Interest rates are a factor in the valuation of virtually all derivatives and will feature
prominently in much of the material that will be presented in the rest of this book. This
chapter deals with some fundamental issues concerned with the way interest rates are
measured and analyzed. It explains the compounding frequency used to define an
interest rate and the meaning of continuously compounded interest rates, which are
used extensively in the analysis of derivatives. It covers zero rates, par yields, and yield
curves, discusses bond pricing, and outlines a ‘‘bootstrap’’ procedure commonly used by
a derivatives trading desk to calculate zero-coupon Treasury interest rates. It also covers
forward rates and forward rate agreements and reviews different theories of the term
structure of interest rates. Finally, it explains the use of duration and convexity measures
to determine the sensitivity of bond prices to interest rate changes.

Chapter 6 will cover interest rate futures and show how the duration measure can be
used when interest rate exposures are hedged. For ease of exposition, day count
conventions will be ignored throughout this chapter. The nature of these conventions
and their impact on calculations will be discussed in Chapters 6 and 7.

4.1 TYPES OF RATES

An interest rate in a particular situation defines the amount of money a borrower
promises to pay the lender. For any given currency, many different types of interest rates
are regularly quoted. These include mortgage rates, deposit rates, prime borrowing
rates, and so on. The interest rate applicable in a situation depends on the credit risk.
This is the risk that there will be a default by the borrower of funds, so that the interest
and principal are not paid to the lender as promised. The higher the credit risk, the
higher the interest rate that is promised by the borrower.

Interest rates are often expressed in basis points. One basis point is 0.01% per annum.

Treasury Rates

Treasury rates are the rates an investor earns on Treasury bills and Treasury bonds.
These are the instruments used by a government to borrow in its own currency.
Japanese Treasury rates are the rates at which the Japanese government borrows in
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yen; US Treasury rates are the rates at which the US government borrows in US dollars;

and so on. It is usually assumed that there is no chance that a government will default

on an obligation denominated in its own currency. Treasury rates are therefore totally

risk-free rates in the sense that an investor who buys a Treasury bill or Treasury bond is

certain that interest and principal payments will be made as promised.

LIBOR

LIBOR is short for London Interbank Offered Rate. It is an unsecured short-term

borrowing rate between banks. LIBOR rates have traditionally been calculated each

business day for 10 currencies and 15 borrowing periods. The borrowing periods range

from one day to one year. LIBOR rates are used as reference rates for hundreds of

trillions of dollars of transactions throughout the world. One popular derivatives

transaction that uses LIBOR as a reference interest rate is an interest rate swap (see

Chapter 7). LIBOR rates are published by the British Bankers Association (BBA) at

11:30 a.m. (UK time). The BBA asks a number of different banks to provide quotes

estimating the rate of interest at which they could borrow funds just prior to 11:00 a.m.

(UK time). The top quarter and bottom quarter of the quotes for each currency/

borrowing-period combination are discarded and the remaining ones are averaged to

determine the LIBOR fixings for a day. Typically the banks submitting quotes have a

AA credit rating.1 LIBOR is therefore usually considered to be an estimate of the short-

term unsecured borrowing rate for a AA-rated financial institution.

In recent years there have been suggestions that some banks may have manipulated

their LIBOR quotes. Two reasons have been suggested for manipulation. One is to

make the banks’ borrowing costs seem lower than they actually are, so that they appear

healthier. Another is to profit from transactions such as interest rate swaps whose cash

flows depend on LIBOR fixings. The underlying problem is that there is not enough

interbank borrowing for banks to make accurate estimates of their borrowing rates for

all the different currency/borrowing-period combinations that are used. It seems likely

that over time the large number of LIBOR quotes that have been provided each day will

be replaced by a smaller number of quotes based on actual transactions in a more liquid

market.

The Fed Funds Rate

In the United States, financial institutions are required to maintain a certain amount of

cash (known as reserves) with the Federal Reserve. The reserve requirement for a bank

at any time depends on its outstanding assets and liabilities. At the end of a day, some

financial institutions typically have surplus funds in their accounts with the Federal

Reserve while others have requirements for funds. This leads to borrowing and lending

overnight. In the United States, the overnight rate is called the federal funds rate. A

broker usually matches borrowers and lenders. The weighted average of the rates in

brokered transactions (with weights being determined by the size of the transaction) is

termed the effective federal funds rate. This overnight rate is monitored by the central

bank, which may intervene with its own transactions in an attempt to raise or lower it.

Other countries have similar systems to the US. For example, in the UK the average of

1 The best credit rating category is AAA. The second best is AA.
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brokered overnight rates is termed the sterling overnight index average (SONIA) and, in

the euro zone, it is termed the euro overnight index average (EONIA).

Both LIBOR and the federal funds rate are unsecured borrowing rates. On average,

overnight LIBOR has been about 6 basis points (0.06%) higher than the effective

federal funds rate except for the tumultuous period from August 2007 to December

2008. The observed differences between the rates can be attributed to timing effects, the

composition of the pool of borrowers in London as compared to New York, and

differences between the settlement mechanisms in London and New York.2

Repo Rates

Unlike LIBOR and federal funds rates, repo rates are secured borrowing rates. In a repo

(or repurchase agreement), a financial institution that owns securities agrees to sell the

securities for a certain price and buy them back at a later time for a slightly higher

price. The financial institution is obtaining a loan and the interest it pays is the

difference between the price at which the securities are sold and the price at which

they are repurchased. The interest rate is referred to as the repo rate.

If structured carefully, a repo involves very little credit risk. If the borrower does not

honor the agreement, the lending company simply keeps the securities. If the lending

company does not keep to its side of the agreement, the original owner of the securities

keeps the cash provided by the lending company. The most common type of repo is an

overnight repo which may be rolled over day to day. However, longer term arrange-

ments, known as term repos, are sometimes used. Because they are secured rates, a repo

rate is generally slightly below the corresponding fed funds rate.

The ‘‘Risk-Free’’ Rate

Derivatives are usually valued by setting up a riskless portfolio and arguing that the

return on the portfolio should be the risk-free interest rate. The risk-free interest rate

therefore plays a key role in the valuation of derivatives. For most of this book we will

refer to the ‘‘risk-free’’ rate without explicitly defining which rate we are referring to.

This is because derivatives practitioners use a number of different proxies for the risk-

free rate. Traditionally LIBOR has been used as the risk-free rate—even though LIBOR

is not risk-free because there is some small chance that a AA-rated financial institution

will default on a short-term loan. However, this is changing. In Chapter 9, we will

discuss the issues that practitioners currently consider when they choose the ‘‘risk-free’’

rate and some of the theoretical arguments that can be advanced.

4.2 MEASURING INTEREST RATES

A statement by a bank that the interest rate on one-year deposits is 10% per annum

sounds straightforward and unambiguous. In fact, its precise meaning depends on the

way the interest rate is measured.

2 See L. Bartolini, S. Hilton, and A. Prati, ‘‘Money Market Integration,’’ Journal of Money, Credit and

Banking, 40, 1 (February 2008), 193–213.
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If the interest rate is measured with annual compounding, the bank’s statement that
the interest rate is 10% means that $100 grows to

$100� 1:1 ¼ $110

at the end of 1 year. When the interest rate is measured with semiannual compounding,
it means that 5% is earned every 6 months, with the interest being reinvested. In this
case, $100 grows to

$100� 1:05� 1:05 ¼ $110:25

at the end of 1 year. When the interest rate is measured with quarterly compounding,
the bank’s statement means that 2.5% is earned every 3 months, with the interest being
reinvested. The $100 then grows to

$100� 1:0254 ¼ $110:38

at the end of 1 year. Table 4.1 shows the effect of increasing the compounding frequency
further.

The compounding frequency defines the units in which an interest rate is measured. A
rate expressed with one compounding frequency can be converted into an equivalent
rate with a different compounding frequency. For example, from Table 4.1 we see that
10.25% with annual compounding is equivalent to 10% with semiannual compound-
ing. We can think of the difference between one compounding frequency and another to
be analogous to the difference between kilometers and miles. They are two different
units of measurement.

To generalize our results, suppose that an amount A is invested for n years at an
interest rate of R per annum. If the rate is compounded once per annum, the terminal
value of the investment is

Að1þ RÞn

If the rate is compounded m times per annum, the terminal value of the investment is

A

�
1þ R

m

�mn

ð4:1Þ

When m ¼ 1, the rate is sometimes referred to as the equivalent annual interest rate.

Table 4.1 Effect of the compounding frequency on the
value of $100 at the end of 1 year when the interest rate
is 10% per annum.

Compounding frequency Value of $100
at end of year ($)

Annually (m ¼ 1) 110.00

Semiannually (m ¼ 2) 110.25

Quarterly (m ¼ 4) 110.38

Monthly (m ¼ 12) 110.47

Weekly (m ¼ 52) 110.51

Daily (m ¼ 365) 110.52
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Continuous Compounding

The limit as the compounding frequency, m, tends to infinity is known as continuous

compounding.3 With continuous compounding, it can be shown that an amount A

invested for n years at rate R grows to

Ae
Rn ð4:2Þ

where e is approximately 2.71828. The exponential function, e
x, is built into most

calculators, so the computation of the expression in equation (4.2) presents no problems.

In the example in Table 4.1, A ¼ 100, n ¼ 1, and R ¼ 0:1, so that the value to which A

grows with continuous compounding is

100e0:1 ¼ $110:52

This is (to two decimal places) the same as the value with daily compounding. For most

practical purposes, continuous compounding can be thought of as being equivalent to
daily compounding. Compounding a sum of money at a continuously compounded rate

R for n years involves multiplying it by e
Rn. Discounting it at a continuously com-

pounded rate R for n years involves multiplying by e
�Rn.

In this book, interest rates will be measured with continuous compounding except
where stated otherwise. Readers used to working with interest rates that are measured

with annual, semiannual, or some other compounding frequency may find this a little

strange at first. However, continuously compounded interest rates are used to such a great

extent in pricing derivatives that it makes sense to get used to working with them now.

Suppose that Rc is a rate of interest with continuous compounding and Rm is the

equivalent rate with compounding m times per annum. From the results in equa-

tions (4.1) and (4.2), we have

Ae
Rcn ¼ A

�
1þ Rm

m

�mn

or

e
Rc ¼

�
1þ Rm

m

�m

This means that

Rc ¼ m ln

�
1þ Rm

m

�
ð4:3Þ

and

Rm ¼ mðeRc=m � 1Þ ð4:4Þ

These equations can be used to convert a rate with a compounding frequency of m times

per annum to a continuously compounded rate and vice versa. The natural logarithm
function ln x, which is built into most calculators, is the inverse of the exponential

function, so that, if y ¼ ln x, then x ¼ e
y.

Example 4.1

Consider an interest rate that is quoted as 10% per annum with semiannual

compounding. From equation (4.3) with m ¼ 2 and Rm ¼ 0:1, the equivalent rate

3 Actuaries sometimes refer to a continuously compounded rate as the force of interest.
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with continuous compounding is

2 ln

�
1þ 0:1

2

�
¼ 0:09758

or 9.758% per annum.

Example 4.2

Suppose that a lender quotes the interest rate on loans as 8% per annum with
continuous compounding, and that interest is actually paid quarterly. From
equation (4.4) with m ¼ 4 and Rc ¼ 0:08, the equivalent rate with quarterly
compounding is

4� ðe0:08=4 � 1Þ ¼ 0:0808

or 8.08% per annum. This means that on a $1,000 loan, interest payments of
$20.20 would be required each quarter.

4.3 ZERO RATES

The n-year zero-coupon interest rate is the rate of interest earned on an investment that
starts today and lasts for n years. All the interest and principal is realized at the end of
n years. There are no intermediate payments. The n-year zero-coupon interest rate is
sometimes also referred to as the n-year spot rate, the n-year zero rate, or just the n-year
zero. Suppose a 5-year zero rate with continuous compounding is quoted as 5% per
annum. This means that $100, if invested for 5 years, grows to

100� e
0:05�5 ¼ 128:40

Most of the interest rates we observe directly in the market are not pure zero rates.
Consider a 5-year government bond that provides a 6% coupon. The price of this bond
does not by itself determine the 5-year Treasury zero rate because some of the return on
the bond is realized in the form of coupons prior to the end of year 5. Later in this
chapter we will discuss how we can determine Treasury zero rates from the market
prices of coupon-bearing bonds.

4.4 BOND PRICING

Most bonds pay coupons to the holder periodically. The bond’s principal (which is also
known as its par value or face value) is paid at the end of its life. The theoretical price
of a bond can be calculated as the present value of all the cash flows that will be
received by the owner of the bond. Sometimes bond traders use the same discount rate
for all the cash flows underlying a bond, but a more accurate approach is to use a
different zero rate for each cash flow.

To illustrate this, consider the situation where Treasury zero rates, measured with
continuous compounding, are as in Table 4.2. (We explain later how these can be
calculated.) Suppose that a 2-year Treasury bond with a principal of $100 provides
coupons at the rate of 6% per annum semiannually. To calculate the present value of
the first coupon of $3, we discount it at 5.0% for 6 months; to calculate the present
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value of the second coupon of $3, we discount it at 5.8% for 1 year; and so on.
Therefore, the theoretical price of the bond is

3e�0:05�0:5 þ 3e�0:058�1:0 þ 3e�0:064�1:5 þ 103e�0:068�2:0 ¼ 98:39
or $98.39.

Bond Yield

A bond’s yield is the single discount rate that, when applied to all cash flows, gives a
bond price equal to its market price. Suppose that the theoretical price of the bond we
have been considering, $98.39, is also its market value (i.e., the market’s price of the
bond is in exact agreement with the data in Table 4.2). If y is the yield on the bond,
expressed with continuous compounding, it must be true that

3e�y�0:5 þ 3e�y�1:0 þ 3e�y�1:5 þ 103e�y�2:0 ¼ 98:39

This equation can be solved using an iterative (‘‘trial and error’’) procedure to give
y ¼ 6:76%.4

Par Yield

The par yield for a certain bond maturity is the coupon rate that causes the bond price to
equal its par value. (The par value is the same as the principal value.) Usually the bond is
assumed to provide semiannual coupons. Suppose that the coupon on a 2-year bond in
our example is c per annum (or 1

2
c per 6 months). Using the zero rates in Table 4.2, the

value of the bond is equal to its par value of 100 when

c

2
e
�0:05�0:5 þ c

2
e
�0:058�1:0 þ c

2
e
�0:064�1:5 þ

�
100þ c

2

�
e
�0:068�2:0 ¼ 100

This equation can be solved in a straightforward way to give c ¼ 6:87. The 2-year par
yield is therefore 6.87% per annum. This has semiannual compounding because
payments are assumed to be made every 6 months. With continuous compounding,
the rate is 6.75% per annum.

More generally, if d is the present value of $1 received at the maturity of the bond,
A is the value of an annuity that pays one dollar on each coupon payment date, and m

Table 4.2 Treasury zero rates.

Maturity (years) Zero rate (%)
(continuously compounded)

0.5 5.0
1.0 5.8
1.5 6.4
2.0 6.8

4 One way of solving nonlinear equations of the form f ðyÞ ¼ 0, such as this one, is to use the Newton–Raphson

method. We start with an estimate y0 of the solution and produce successively better estimates y1, y2, y3, . . .

using the formula yiþ1 ¼ yi � f ðyiÞ=f 0ðyiÞ, where f 0ðyÞ denotes the derivative of f with respect to y.
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is the number of coupon payments per year, then the par yield c must satisfy

100 ¼ A
c

m
þ 100d

so that

c ¼ ð100� 100dÞm
A

In our example, m ¼ 2, d ¼ e
�0:068�2 ¼ 0:87284, and

A ¼ e
�0:05�0:5 þ e

�0:058�1:0 þ e
�0:064�1:5 þ e

�0:068�2:0 ¼ 3:70027

The formula confirms that the par yield is 6.87% per annum.

4.5 DETERMINING TREASURY ZERO RATES

One way of determining Treasury zero rates such as those in Table 4.2 is to observe the
yields on ‘‘strips.’’ These are zero-coupon bonds that are synthetically created by traders
when they sell coupons on a Treasury bond separately from the principal.

Another way to determine Treasury zero rates is from Treasury bills and coupon-
bearing bonds. The most popular approach is known as the bootstrap method. To
illustrate the nature of the method, consider the data in Table 4.3 on the prices of five
bonds. Because the first three bonds pay no coupons, the zero rates corresponding to
the maturities of these bonds can easily be calculated. The 3-month bond has the effect
of turning an investment of 97.5 into 100 in 3 months. The continuously compounded
3-month rate R is therefore given by solving

100 ¼ 97:5eR�0:25

It is 10.127% per annum. The 6-month continuously compounded rate is similarly
given by solving

100 ¼ 94:9eR�0:5

It is 10.469% per annum. Similarly, the 1-year rate with continuous compounding is
given by solving

100 ¼ 90eR�1:0

It is 10.536% per annum.

Table 4.3 Data for bootstrap method.

Bond principal
($)

Time to maturity
(years)

Annual coupon�

($)
Bond price

($)

100 0.25 0 97.5
100 0.50 0 94.9
100 1.00 0 90.0
100 1.50 8 96.0
100 2.00 12 101.6

� Half the stated coupon is assumed to be paid every 6 months.
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The fourth bond lasts 1.5 years. The payments are as follows:

6 months: $4

1 year: $4

1.5 years: $104.

From our earlier calculations, we know that the discount rate for the payment at the end
of 6 months is 10.469% and that the discount rate for the payment at the end of 1 year is
10.536%.We also know that the bond’s price, $96, must equal the present value of all the
payments received by the bondholder. Suppose the 1.5-year zero rate is denoted by R. It
follows that

4e�0:10469�0:5 þ 4e�0:10536�1:0 þ 104e�R�1:5 ¼ 96
This reduces to

e
�1:5R ¼ 0:85196

or

R ¼ � lnð0:85196Þ
1:5

¼ 0:10681

The 1.5-year zero rate is therefore 10.681%. This is the only zero rate that is consistent
with the 6-month rate, 1-year rate, and the data in Table 4.3.

The 2-year zero rate can be calculated similarly from the 6-month, 1-year, and
1.5-year zero rates, and the information on the last bond in Table 4.3. If R is the
2-year zero rate, then

6e�0:10469�0:5 þ 6e�0:10536�1:0 þ 6e�0:10681�1:5 þ 106e�R�2:0 ¼ 101:6

This gives R ¼ 0:10808, or 10.808%.
The rates we have calculated are summarized in Table 4.4. A chart showing the zero

rate as a function of maturity is known as the zero curve. A common assumption is that
the zero curve is linear between the points determined using the bootstrap method.
(This means that the 1.25-year zero rate is 0:5� 10:536þ 0:5� 10:681 ¼ 10:6085% in
our example.) It is also usually assumed that the zero curve is horizontal prior to the
first point and horizontal beyond the last point. Figure 4.1 shows the zero curve for our
data using these assumptions. By using longer maturity bonds, the zero curve would be
more accurately determined beyond 2 years.

In practice, we do not usually have bonds with maturities equal to exactly 1.5 years,
2 years, 2.5 years, and so on. The approach often used by analysts is to interpolate

Table 4.4 Continuously compounded zero rates
determined from data in Table 4.3.

Maturity
(years)

Zero rate (%)
(continuously compounded)

0.25 10.127
0.50 10.469
1.00 10.536
1.50 10.681
2.00 10.808
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between the bond price data before it is used to calculate the zero curve. For example, if
it is known that a 2.3-year bond with a coupon of 6% sells for 98 and a 2.7-year bond
with a coupon of 6.5% sells for 99, it might be assumed that a 2.5-year bond with a
coupon of 6.25% would sell for 98.5.

4.6 FORWARD RATES

Forward interest rates are the future rates of interest implied by current zero rates for
periods of time in the future. To illustrate how they are calculated, we suppose that zero
rates are as shown in the second column of Table 4.5. The rates are assumed to be
continuously compounded. Thus, the 3% per annum rate for 1 year means that, in
return for an investment of $100 today, an amount 100e0:03�1 ¼ $103:05 is received in
1 year; the 4% per annum rate for 2 years means that, in return for an investment of
$100 today, an amount 100e0:04�2 ¼ $108:33 is received in 2 years; and so on.

The forward interest rate in Table 4.5 for year 2 is 5% per annum. This is the rate of
interest that is implied by the zero rates for the period of time between the end of the
first year and the end of the second year. It can be calculated from the 1-year zero
interest rate of 3% per annum and the 2-year zero interest rate of 4% per annum. It is
the rate of interest for year 2 that, when combined with 3% per annum for year 1, gives
4% overall for the 2 years. To show that the correct answer is 5% per annum, suppose
that $100 is invested. A rate of 3% for the first year and 5% for the second year gives

100e0:03�1
e
0:05�1 ¼ $108:33

at the end of the second year. A rate of 4% per annum for 2 years gives

100e0:04�2

which is also $108.33. This example illustrates the general result that when interest rates
are continuously compounded and rates in successive time periods are combined, the
overall equivalent rate is simply the average rate during the whole period. In our
example, 3% for the first year and 5% for the second year average to 4% over
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Figure 4.1 Zero rates given by the bootstrap method.
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the 2 years. The result is only approximately true when the rates are not continuously

compounded.

The forward rate for year 3 is the rate of interest that is implied by a 4% per annum

2-year zero rate and a 4.6% per annum 3-year zero rate. It is 5.8% per annum. The

reason is that an investment for 2 years at 4% per annum combined with an investment

for one year at 5.8% per annum gives an overall average return for the three years of

4.6% per annum. The other forward rates can be calculated similarly and are shown in

the third column of the table. In general, if R1 and R2 are the zero rates for maturities

T1 and T2, respectively, and RF is the forward interest rate for the period of time

between T1 and T2, then

RF ¼ R2T2 � R1T1

T2 � T1
ð4:5Þ

To illustrate this formula, consider the calculation of the year-4 forward rate from the

data in Table 4.5: T1 ¼ 3, T2 ¼ 4, R1 ¼ 0:046, and R2 ¼ 0:05, and the formula gives

RF ¼ 0:062.
Equation (4.5) can be written as

RF ¼ R2 þ ðR2 � R1Þ
T1

T2 � T1
ð4:6Þ

This shows that, if the zero curve is upward sloping between T1 and T2 so that R2 > R1,

then RF > R2 (i.e., the forward rate for a period of time ending at T2 is greater than the

T2 zero rate). Similarly, if the zero curve is downward sloping with R2 < R1, then

RF < R2 (i.e., the forward rate is less than the T2 zero rate). Taking limits as T2
approaches T1 in equation (4.6) and letting the common value of the two be T , we

obtain

RF ¼ Rþ T
@R

@T

where R is the zero rate for a maturity of T . The value of RF obtained in this way is

known as the instantaneous forward rate for a maturity of T . This is the forward rate

that is applicable to a very short future time period that begins at time T . Define Pð0; T Þ
as the price of a zero-coupon bond maturing at time T . Because Pð0; T Þ ¼ e

�RT , the

Table 4.5 Calculation of forward rates.

Year ðnÞ Zero rate for an
n-year investment
(% per annum)

Forward rate
for nth year

(% per annum)

1 3.0

2 4.0 5.0

3 4.6 5.8

4 5.0 6.2

5 5.3 6.5
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equation for the instantaneous forward rate can also be written as

RF ¼ � @

@T
lnPð0; T Þ

If a large financial institution can borrow or lend at the rates in Table 4.5, it can lock

in the forward rates. For example, it can borrow $100 at 3% for 1 year and invest the
money at 4% for 2 years, the result is a cash outflow of 100e0:03�1 ¼ $103:05 at the end

of year 1 and an inflow of 100e0:04�2 ¼ $108:33 at the end of year 2. Since 108:33 ¼
103:05e0:05, a return equal to the forward rate (5%) is earned on $103.05 during the
second year. Alternatively, it can borrow $100 for four years at 5% and invest it for

three years at 4.6%. The result is a cash inflow of 100e0:046�3 ¼ $114:80 at the end of the

third year and a cash outflow of 100e0:05�4 ¼ $122:14 at the end of the fourth year.
Since 122:14 ¼ 114:80e0:062, money is being borrowed for the fourth year at the forward

rate of 6.2%.

If a large investor thinks that rates in the future will be different from today’s forward
rates, there are many trading strategies that the investor will find attractive (see Business

Snapshot 4.1). One of these involves entering into a contract known as a forward rate

agreement. We will now discuss how this contract works and how it is valued.

4.7 FORWARD RATE AGREEMENTS

A forward rate agreement (FRA) is an over-the-counter transaction designed to fix the

interest rate that will apply to either borrowing or lending a certain principal during a
specified future period of time. The usual assumption underlying the contract is that the

borrowing or lending would normally be done at LIBOR.

If the agreed fixed rate is greater than the actual LIBOR rate for the period, the

borrower pays the lender the difference between the two applied to the principal. If the

reverse is true, the lender pays the borrower the difference applied to the principal.

Because interest is paid in arrears, the payment of the interest rate differential is due at
the end of the specified period of time. Usually, however, the present value of the

payment is made at the beginning of the specified period, as illustrated in Example 4.3.

Example 4.3

Suppose that a company enters into an FRA that is designed to ensure it will

receive a fixed rate of 4% on a principal of $100 million for a 3-month period
starting in 3 years. The FRA is an exchange where LIBOR is paid and 4% is

received for the 3-month period. If 3-month LIBOR proves to be 4.5% for the

3-month period, the cash flow to the lender will be

100,000,000� ð0:04� 0:045Þ � 0:25 ¼ �$125,000

at the 3.25-year point. This is equivalent to a cash flow of

� 125,000

1þ 0:045� 0:25
¼ �$123,609

at the 3-year point. The cash flow to the party on the opposite side of the trans-
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action will be þ$125,000 at the 3.25-year point or þ$123,609 at the 3-year point.
(All interest rates in this example are expressed with quarterly compounding.)

Consider an FRA where company X is agreeing to lend money to company Y for the
period of time between T1 and T2. Define:

RK : The fixed rate of interest agreed to in the FRA

RF : The forward LIBOR interest rate for the period between times T1 and T2,
calculated today5

RM : The actual LIBOR interest rate observed in the market at time T1 for the
period between times T1 and T2

L: The principal underlying the contract.

We will depart from our usual assumption of continuous compounding and assume

that the rates RK, RF , and RM are all measured with a compounding frequency
reflecting the length of the period to which they apply. This means that if

T2 � T1 ¼ 0:5, they are expressed with semiannual compounding; if T2 � T1 ¼ 0:25,
they are expressed with quarterly compounding; and so on. (This assumption corres-
ponds to the usual market practice for FRAs.)

Normally company X would earn RM from the LIBOR loan. The FRA means that it
will earn RK. The extra interest rate (which may be negative) that it earns as a result of

Business Snapshot 4.1 Orange County’s Yield Curve Plays

Suppose a large investor can borrow or lend at the rates given in Table 4.5 and thinks
that 1-year interest rates will not change much over the next 5 years. The investor can
borrow 1-year funds and invest for 5-years. The 1-year borrowings can be rolled over
for further 1-year periods at the end of the first, second, third, and fourth years. If
interest rates do stay about the same, this strategy will yield a profit of about 2.3%
per year, because interest will be received at 5.3% and paid at 3%. This type of
trading strategy is known as a yield curve play. The investor is speculating that rates in
the future will be quite different from the forward rates observed in the market today.
(In our example, forward rates observed in the market today for future 1-year periods
are 5%, 5.8%, 6.2%, and 6.5%.)

Robert Citron, the Treasurer at Orange County, used yield curve plays similar to
the one we have just described very successfully in 1992 and 1993. The profit from
Mr. Citron’s trades became an important contributor to Orange County’s budget
and he was re-elected. (No one listened to his opponent in the election, who said his
trading strategy was too risky.)

In 1994 Mr. Citron expanded his yield curve plays. He invested heavily in inverse
floaters. These pay a rate of interest equal to a fixed rate of interest minus a floating
rate. He also leveraged his position by borrowing in the repo market. If short-term
interest rates had remained the same or declined he would have continued to do well.
As it happened, interest rates rose sharply during 1994. On December 1, 1994,
Orange County announced that its investment portfolio had lost $1.5 billion and
several days later it filed for bankruptcy protection.

5 The calculation of forward LIBOR rates is discussed in Chapters 7 and 9.
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entering into the FRA is RK � RM . The interest rate is set at time T1 and paid at

time T2. The extra interest rate therefore leads to a cash flow to company X at time T2 of

LðRK � RMÞðT2 � T1Þ ð4:7Þ

Similarly there is a cash flow to company Y at time T2 of

LðRM � RKÞðT2 � T1Þ ð4:8Þ

From equations (4.7) and (4.8), we see that there is another interpretation of the

FRA. It is an agreement where company X will receive interest on the principal between

T1 and T2 at the fixed rate of RK and pay interest at the realized LIBOR rate of RM.

Company Y will pay interest on the principal between T1 and T2 at the fixed rate of RK

and receive interest at RM. This interpretation of an FRA will be important when we

consider interest rate swaps in Chapter 7.

As mentioned, FRAs are usually settled at time T1 rather than T2. The payoff must

then be discounted from time T2 to T1. For company X, the payoff at time T1 is

LðRK � RMÞðT2 � T1Þ
1þ RMðT2 � T1Þ

and, for company Y, the payoff at time T1 is

LðRM � RKÞðT2 � T1Þ
1þ RMðT2 � T1Þ

Valuation

An FRA is worth zero when the fixed rate RK equals the forward rate RF .
6 When it is

first entered into RK is set equal to the current value of RF , so that the value of the

contract to each side is zero.7 As time passes, interest rates change, so that the value is

no longer zero.

The market value of a derivative at a particular time is referred to as its mark-to-

market, or MTM, value. To calculate the MTM value of an FRAwhere the fixed rate of

interest is being received, we imagine a portfolio consisting of two FRAs. The first FRA

states that RK will be received on a principal of L between times T1 and T2. The second

FRA states that RF will be paid on a principal of L between times T1 and T2. The payoff

from the first FRA at time T2 is LðRK � RMÞðT2 � T1Þ and the payoff from the second

FRA at time T2 is LðRM � RF ÞðT2 � T1Þ. The total payoff is LðRK � RF ÞðT2 � T1Þ and is

6 This can be regarded as the definition of what we mean by forward LIBOR. In an idealized situation where

a bank can borrow or lend at LIBOR, it can artificially create a contract where it earns or pays forward

LIBOR, as shown in Section 4.6. For example, it can ensure that it earns a forward rate between years 2 and 3

by borrowing a certain amount of money for 2 years and investing it for 3 years. Similarly, it can ensure that

it pays a forward rate between years 2 and 3 by borrowing a certain amount of money for 3 years and lending

it for 2 years.
7 In practice, this is not quite true. A market maker such as a bank will quote a bid and offer for RK, the bid

corresponding to the situation where it is paying RK and the offer corresponding to the situation where it is

receiving RK. An FRA at inception will therefore have a small positive value to the bank and a small negative

value to its counterparty.
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known for certain today. The portfolio is therefore a risk-free investment and its value
today is the payoff at time T2 discounted at the risk-free rate or

LðRK � RF ÞðT2 � T1Þe�R2T2

where R2 is the continously compounded riskless zero rate for a maturity T2.
8 Because

the value of the second FRA, where RF is paid, is zero, the value of the first FRA,
where RK is received, must be

VFRA ¼ LðRK � RF ÞðT2 � T1Þe�R2T2 ð4:9Þ

Similarly, the value of an FRA where RK is paid is

VFRA ¼ LðRF � RKÞðT2 � T1Þe�R2T2 ð4:10Þ

By comparing equations (4.7) and (4.9), or equations (4.8) and (4.10), we see that an
FRA can be valued if we:

1. Calculate the payoff on the assumption that forward rates are realized (that is, on
the assumption that RM ¼ RF ).

2. Discount this payoff at the risk-free rate.

We will use this result when we value swaps (which are porfolios of FRAs) in Chapter 7.

Example 4.4

Suppose that the forward LIBOR rate for the period between time 1.5 years and
time 2 years in the future is 5% (with semiannual compounding) and that some
time ago a company entered into an FRA where it will receive 5.8% (with semi-
annual compounding) and pay LIBOR on a principal of $100 million for the
period. The 2-year risk-free rate is 4% (with continuous compounding). From
equation (4.9), the value of the FRA is

100,000,000� ð0:058� 0:050Þ � 0:5e�0:04�2 ¼ $369,200

4.8 DURATION

The duration of a bond, as its name implies, is a measure of how long on average the
holder of the bond has to wait before receiving cash payments. A zero-coupon bond
that lasts n years has a duration of n years. However, a coupon-bearing bond lasting
n years has a duration of less than n years, because the holder receives some of the cash
payments prior to year n.

Suppose that a bond provides the holder with cash flows ci at time ti (1 6 i 6 n). The
bond price B and bond yield y (continuously compounded) are related by

B ¼
Xn
i¼1

cie
�yti ð4:11Þ

8 Note that RK, RM , and RF are expressed with a compounding frequency corresponding to T2 � T1, whereas

R2 is expressed with continuous compounding.
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The duration of the bond, D, is defined as

D ¼
Pn

i¼1 ticie
�yti

B
ð4:12Þ

This can be written

D ¼
Xn
i¼1

ti

�
cie

�yti

B

�

The term in square brackets is the ratio of the present value of the cash flow at time ti to
the bond price. The bond price is the present value of all payments. The duration is
therefore a weighted average of the times when payments are made, with the weight
applied to time ti being equal to the proportion of the bond’s total present value
provided by the cash flow at time ti. The sum of the weights is 1.0. Note that, for the
purposes of the definition of duration, all discounting is done at the bond yield rate of
interest, y. (We do not use a different zero rate for each cash flow in the way described in
Section 4.4.)

When a small change �y in the yield is considered, it is approximately true that

�B ¼ dB

dy
�y ð4:13Þ

From equation (4.11), this becomes

�B ¼ ��y
Xn
i¼1

citie
�yti ð4:14Þ

(Note that there is a negative relationship between B and y. When bond yields increase,
bond prices decrease. When bond yields decrease, bond prices increase.) From equa-
tions (4.12) and (4.14), the key duration relationship is obtained:

�B ¼ �BD�y ð4:15Þ
This can be written

�B

B
¼ �D�y ð4:16Þ

Equation (4.16) is an approximate relationship between percentage changes in a bond
price and changes in its yield. It is easy to use and is the reason why duration, first
suggested by Frederick Macaulay in 1938, has become such a popular measure.

Consider a 3-year 10% coupon bond with a face value of $100. Suppose that the yield
on the bond is 12% per annum with continuous compounding. This means that
y ¼ 0:12. Coupon payments of $5 are made every 6 months. Table 4.6 shows the
calculations necessary to determine the bond’s duration. The present values of the
bond’s cash flows, using the yield as the discount rate, are shown in column 3 (e.g., the
present value of the first cash flow is 5e�0:12�0:5 ¼ 4:709). The sum of the numbers in
column 3 gives the bond’s price as 94.213. The weights are calculated by dividing the
numbers in column 3 by 94.213. The sum of the numbers in column 5 gives the duration
as 2.653 years.

DV01 is the price change from a 1-basis-point increase in all rates. Gamma is the
change in DV01 from a 1-basis-point increase in all rates. The following example
investigates the accuracy of the duration relationship in equation (4.15).
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Example 4.5

For the bond in Table 4.6, the bond price, B, is 94.213 and the duration, D, is

2.653, so that equation (4.15) gives

�B ¼ �94:213� 2:653��y

or

�B ¼ �249:95��y

When the yield on the bond increases by 10 basis points (¼ 0:1%), �y ¼ þ0:001.
The duration relationship predicts that �B ¼ �249:95� 0:001 ¼ �0:250, so that

the bond price goes down to 94:213� 0:250 ¼ 93:963. How accurate is this?

Valuing the bond in terms of its yield in the usual way, we find that, when the

bond yield increases by 10 basis points to 12.1%, the bond price is

5e�0:121�0:5 þ 5e�0:121�1:0 þ 5e�0:121�1:5 þ 5e�0:121�2:0

þ5e�0:121�2:5 þ 105e�0:121�3:0 ¼ 93:963

which is (to three decimal places) the same as that predicted by the duration

relationship.

Modified Duration

The preceding analysis is based on the assumption that y is expressed with continuous

compounding. If y is expressed with annual compounding, it can be shown that the

approximate relationship in equation (4.15) becomes

�B ¼ �BD�y

1þ y

More generally, if y is expressed with a compounding frequency of m times per year,

then

�B ¼ � BD�y

1þ y=m

Table 4.6 Calculation of duration.

Time
(years)

Cash flow
($)

Present
value

Weight Time � weight

0.5 5 4.709 0.050 0.025

1.0 5 4.435 0.047 0.047

1.5 5 4.176 0.044 0.066

2.0 5 3.933 0.042 0.083

2.5 5 3.704 0.039 0.098

3.0 105 73.256 0.778 2.333

Total : 130 94.213 1.000 2.653
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A variable D
�, defined by

D
� ¼ D

1þ y=m

is sometimes referred to as the bond’s modified duration. It allows the duration relation-
ship to be simplified to

�B ¼ �BD
��y ð4:17Þ

when y is expressed with a compounding frequency of m times per year. The following
example investigates the accuracy of the modified duration relationship.

Example 4.6

The bond in Table 4.6 has a price of 94.213 and a duration of 2.653. The yield,
expressed with semiannual compounding is 12.3673%. The modified
duration, D�, is given by

D
� ¼ 2:653

1þ 0:123673=2
¼ 2:499

From equation (4.17),
�B ¼ �94:213� 2:4985��y

or
�B ¼ �235:39��y

When the yield (semiannually compounded) increases by 10 basis points (¼ 0:1%),
we have �y ¼ þ0:001. The duration relationship predicts that we expect �B to be
�235:39� 0:001 ¼ �0:235, so that the bond price goes down to 94:213� 0:235 ¼
93:978. How accurate is this? An exact calculation similar to that in the previous
example shows that, when the bond yield (semiannually compounded) increases by
10 basis points to 12.4673%, the bond price becomes 93.978. This shows that the
modified duration calculation gives good accuracy for small yield changes.

Another term that is sometimes used is dollar duration. This is the product of modified
duration and bond price, so that �B ¼ �D$�y, where D$ is dollar duration.

Bond Portfolios

The duration, D, of a bond portfolio can be defined as a weighted average of the
durations of the individual bonds in the portfolio, with the weights being proportional
to the bond prices. Equations (4.15) to (4.17) then apply, with B being defined as the
value of the bond portfolio. They estimate the change in the value of the bond portfolio
for a small change �y in the yields of all the bonds.

It is important to realize that, when duration is used for bond portfolios, there is an
implicit assumption that the yields of all bonds will change by approximately the same
amount. When the bonds have widely differing maturities, this happens only when there
is a parallel shift in the zero-coupon yield curve. We should therefore interpret
equations (4.15) to (4.17) as providing estimates of the impact on the price of a bond
portfolio of a small parallel shift, �y, in the zero curve.

By choosing a portfolio so that the duration of assets equals the duration of liabilities
(i.e., the net duration is zero), a financial institution eliminates its exposure to small
parallel shifts in the yield curve. But it is still exposed to shifts that are either large or
nonparallel.
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4.9 CONVEXITY

The duration relationship applies only to small changes in yields. This is illustrated in
Figure 4.2, which shows the relationship between the percentage change in value and
change in yield for two bond portfolios having the same duration. The gradients of
the two curves are the same at the origin. This means that both bond portfolios
change in value by the same percentage for small yield changes and is consistent with
equation (4.16). For large yield changes, the portfolios behave differently. Portfolio X

has more curvature in its relationship with yields than portfolio Y. A factor known as
convexity measures this curvature and can be used to improve the relationship in
equation (4.16).

A measure of convexity is

C ¼ 1

B

d
2
B

dy2
¼

Pn
i¼1 cit

2
i e

�yti

B

From Taylor series expansions, we obtain a more accurate expression than equa-
tion (4.13), given by

�B ¼ dB

dy
�yþ 1

2

d
2
B

dy2
�y

2 ð4:18Þ
This leads to

�B

B
¼ �D�yþ 1

2
Cð�yÞ2

For a portfolio with a particular duration, the convexity of a bond portfolio tends to be
greatest when the portfolio provides payments evenly over a long period of time. It is
least when the payments are concentrated around one particular point in time. By

Δy

ΔB
B

X

X

Y

Y

Figure 4.2 Two bond portfolios with the same duration.
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choosing a portfolio of assets and liabilities with a net duration of zero and a net

convexity of zero, a financial institution can make itself immune to relatively large

parallel shifts in the zero curve. However, it is still exposed to nonparallel shifts.

4.10 THEORIES OF THE TERM STRUCTURE OF INTEREST RATES

It is natural to ask what determines the shape of the zero curve. Why is it sometimes

downward sloping, sometimes upward sloping, and sometimes partly upward sloping

and partly downward sloping? A number of different theories have been proposed. The

simplest is expectations theory, which conjectures that long-term interest rates should

reflect expected future short-term interest rates. More precisely, it argues that a forward

interest rate corresponding to a certain future period is equal to the expected future zero

interest rate for that period. Another idea, market segmentation theory, conjectures that

there need be no relationship between short-, medium-, and long-term interest rates.

Under the theory, a major investor such as a large pension fund or an insurance

company invests in bonds of a certain maturity and does not readily switch from one

maturity to another. The short-term interest rate is determined by supply and demand

in the short-term bond market; the medium-term interest rate is determined by supply

and demand in the medium-term bond market; and so on.

The theory that is most appealing is liquidity preference theory. The basic assumption

underlying the theory is that investors prefer to preserve their liquidity and invest funds

for short periods of time. Borrowers, on the other hand, usually prefer to borrow at fixed

rates for long periods of time. This leads to a situation in which forward rates are greater

than expected future zero rates. The theory is also consistent with the empirical result

that yield curves tend to be upward sloping more often than they are downward sloping.

The Management of Net Interest Income

To understand liquidity preference theory, it is useful to consider the interest rate risk

faced by banks when they take deposits and make loans. The net interest income of the

bank is the excess of the interest received over the interest paid and needs to be carefully

managed.

Consider a simple situation where a bank offers consumers a one-year and a five-year

deposit rate as well as a one-year and five-year mortgage rate. The rates are shown in

Table 4.7. We make the simplifying assumption that the expected one-year interest rate

for future time periods to equal the one-year rates prevailing in the market today.

Loosely speaking this means that the market considers interest rate increases to be just

as likely as interest rate decreases. As a result, the rates in Table 4.7 are ‘‘fair’’ in that

they reflect the market’s expectations (i.e., they correspond to expectations theory).

Table 4.7 Example of rates offered by a bank to its customers.

Maturity (years) Deposit rate Mortgage rate

1 3% 6%
5 3% 6%
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Investing money for one year and reinvesting for four further one-year periods give the

same expected overall return as a single five-year investment. Similarly, borrowing

money for one year and refinancing each year for the next four years leads to the same

expected financing costs as a single five-year loan.

Suppose you have money to deposit and agree with the prevailing view that interest

rate increases are just as likely as interest rate decreases. Would you choose to deposit

your money for one year at 3% per annum or for five years at 3% per annum? The

chances are that you would choose one year because this gives you more financial

flexibility. It ties up your funds for a shorter period of time.

Now suppose that you want a mortgage. Again you agree with the prevailing view

that interest rate increases are just as likely as interest rate decreases. Would you choose

a one-year mortgage at 6% or a five-year mortgage at 6%? The chances are that you

would choose a five-year mortgage because it fixes your borrowing rate for the next five

years and subjects you to less refinancing risk.

When the bank posts the rates shown in Table 4.7, it is likely to find that the majority

of its depositors opt for one-year deposits and the majority of its borrowers opt for five-

year mortgages. This creates an asset/liability mismatch for the bank and subjects it to

risks. There is no problem if interest rates fall. The bank will find itself financing the

five-year 6% loans with deposits that cost less than 3% in the future and net interest

income will increase. However, if rates rise, the deposits that are financing these 6%

loans will cost more than 3% in the future and net interest income will decline. A 3%

rise in interest rates would reduce the net interest income to zero.

It is the job of the asset/liability management group to ensure that the maturities of

the assets on which interest is earned and the maturities of the liabilities on which

interest is paid are matched. One way it can do this is by increasing the five-year rate on

both deposits and mortgages. For example, it could move to the situation in Table 4.8

where the five-year deposit rate is 4% and the five-year mortgage rate 7%. This would

make five-year deposits relatively more attractive and one-year mortgages relatively

more attractive. Some customers who chose one-year deposits when the rates were as in

Table 4.7 will switch to five-year deposits in the Table 4.8 situation. Some customers

who chose five-year mortgages when the rates were as in Table 4.7 will choose one-year

mortgages. This may lead to the maturities of assets and liabilities being matched. If

there is still an imbalance with depositors tending to choose a one-year maturity and

borrowers a five-year maturity, five-year deposit and mortgage rates could be increased

even further. Eventually the imbalance will disappear.

The net result of all banks behaving in the way we have just described is liquidity

preference theory. Long-term rates tend to be higher than those that would be predicted

by expected future short-term rates. The yield curve is upward sloping most of the time. It

is downward sloping only when the market expects a steep decline in short-term rates.

Table 4.8 Five-year rates are increased in an attempt to match
maturities of assets and liabilities.

Maturity (years) Deposit rate Mortgage rate

1 3% 6%
5 4% 7%
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Many banks now have sophisticated systems for monitoring the decisions being made
by customers so that, when they detect small differences between the maturities of the

assets and liabilities being chosen by customers they can fine tune the rates they offer.
Sometimes derivatives such as interest rate swaps (which will be discussed in Chapter 7)
are also used to manage their exposure. The result of all this is that net interest income

is usually very stable. This has not always been the case. In the United States, the failure
of Savings and Loan companies in the 1980s and the failure of Continental Illinois in

1984 were to a large extent a result of the fact that they did not match the maturities of
assets and liabilities. Both failures proved to be very expensive for US taxpayers.

Liquidity

In addition to creating problems in the way that has been described, a portfolio where
maturities are mismatched can lead to liquidity problems. Consider a financial institu-

tion that funds 5-year fixed rate loans with wholesale deposits that last only 3 months.
It might recognize its exposure to rising interest rates and hedge its interest rate risk.

(One way of doing this is by using interest rate swaps, as mentioned earlier.) However,
it still has a liquidity risk. Wholesale depositors may, for some reason, lose confidence

in the financial institution and refuse to continue to provide the financial institution
with short-term funding. The financial institution, even if it has adequate equity

capital, will then experience a severe liquidity problem that could lead to its downfall.
As described in Business Snapshot 4.2, these types of liquidity problems were the root

cause of some of the failures of financial institutions during the crisis that started
in 2007.

SUMMARY

Two important interest rates for derivative traders are Treasury rates and LIBOR rates.

Treasury rates are the rates paid by a government on borrowings in its own currency.
LIBOR rates are short-term lending rates offered by banks in the interbank market.

Business Snapshot 4.2 Liquidity and the 2007–2009 Financial Crisis

During the credit crisis that started in July 2007 there was a ‘‘flight to quality,’’ where
financial institutions and investors looked for safe investments and were less inclined
than before to take credit risks. Financial institutions that relied on short-term
funding experienced liquidity problems. One example is Northern Rock in the United
Kingdom, which chose to finance much of its mortgage portfolio with wholesale
deposits, some lasting only 3 months. Starting in September 2007, the depositors
became nervous and refused to roll over the funding they were providing to Northern
Rock, i.e., at the end of a 3-month period they would refuse to deposit their funds for
a further 3-month period. As a result, Northern Rock was unable to finance its assets.
It was taken over by the UK government in early 2008. In the US, financial
institutions such as Bear Stearns and Lehman Brothers experienced similar liquidity
problems because they had chosen to fund part of their operations with short-term
funds.
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The compounding frequency used for an interest rate defines the units in which it is
measured. The difference between an annually compounded rate and a quarterly
compounded rate is analogous to the difference between a distance measured in miles
and a distance measured in kilometers. Traders frequently use continuous compound-
ing when analyzing the value of options and more complex derivatives.

Many different types of interest rates are quoted in financial markets and calculated by
analysts. The n-year zero or spot rate is the rate applicable to an investment lasting for
n years when all of the return is realized at the end. The par yield on a bond of a certain
maturity is the coupon rate that causes the bond to sell for its par value. Forward rates are
the rates applicable to future periods of time implied by today’s zero rates.

The method most commonly used to calculate zero rates is known as the bootstrap
method. It involves starting with short-term instruments and moving progressively to
longer-term instruments, making sure that the zero rates calculated at each stage are
consistent with the prices of the instruments. It is used daily by trading desks to
calculate a Treasury zero-rate curve.

A forward rate agreement (FRA) is an over-the-counter agreement that an interest
rate (usually LIBOR) will be exchanged for a specified interest rate during a specified
future period of time. An FRA can be valued by assuming that forward rates are
realized and discounting the resulting payoff.

An important concept in interest rate markets is duration. Duration measures the
sensitivity of the value of a bond portfolio to a small parallel shift in the zero-coupon
yield curve. Specifically,

�B ¼ �BD�y

where B is the value of the bond portfolio, D is the duration of the portfolio, �y is the
size of a small parallel shift in the zero curve, and �B is the resultant effect on the value
of the bond portfolio.

Liquidity preference theory can be used to explain the interest rate term structures
that are observed in practice. The theory argues that most entities like to borrow long
and lend short. To match the maturities of borrowers and lenders, it is necessary for
financial institutions to raise long-term rates so that forward interest rates are higher
than expected future spot interest rates.
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Practice Questions (Answers in Solutions Manual)

4.1. A bank quotes an interest rate of 14% per annum with quarterly compounding. What is
the equivalent rate with (a) continuous compounding and (b) annual compounding?
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4.2. What is meant by LIBOR and LIBID. Which is higher?

4.3. The 6-month and 1-year zero rates are both 10% per annum. For a bond that has a life of
18 months and pays a coupon of 8% per annum (with semiannual payments and one
having just been made), the yield is 10.4% per annum. What is the bond’s price? What is
the 18-month zero rate? All rates are quoted with semiannual compounding.

4.4. An investor receives $1,100 in one year in return for an investment of $1,000 now.
Calculate the percentage return per annum with:
(a) Annual compounding
(b) Semiannual compounding
(c) Monthly compounding
(d) Continuous compounding.

4.5. Suppose that zero interest rates with continuous compounding are as follows:

Maturity
(months)

Rate
(% per annum)

3 8.0
6 8.2
9 8.4

12 8.5
15 8.6
18 8.7

Calculate forward interest rates for the second, third, fourth, fifth, and sixth quarters.

4.6. Assume that a bank can borrow or lend at the rates in Problem 4.5. What is the value of
an FRA where it will earn 9.5% for a 3-month period starting in 1 year on a principal of
$1,000,000? The interest rate is expressed with quarterly compounding.

4.7. The term structure of interest rates is upward-sloping. Put the following in order of
magnitude:
(a) The 5-year zero rate
(b) The yield on a 5-year coupon-bearing bond
(c) The forward rate corresponding to the period between 4.75 and 5 years in the future.

What is the answer when the term structure of interest rates is downward-sloping?

4.8. What does duration tell you about the sensitivity of a bond portfolio to interest rates.
What are the limitations of the duration measure?

4.9. What rate of interest with continuous compounding is equivalent to 15% per annum with
monthly compounding?

4.10. A deposit account pays 12% per annum with continuous compounding, but interest is
actually paid quarterly. How much interest will be paid each quarter on a $10,000 deposit?

4.11. Suppose that 6-month, 12-month, 18-month, 24-month, and 30-month zero rates are,
respectively, 4%, 4.2%, 4.4%, 4.6%, and 4.8% per annum, with continuous compound-
ing. Estimate the cash price of a bond with a face value of 100 that will mature in
30 months and pays a coupon of 4% per annum semiannually.

4.12. A 3-year bond provides a coupon of 8% semiannually and has a cash price of 104. What
is the bond’s yield?
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4.13. Suppose that the 6-month, 12-month, 18-month, and 24-month zero rates are 5%, 6%,
6.5%, and 7%, respectively. What is the 2-year par yield?

4.14. Suppose that zero interest rates with continuous compounding are as follows:

Maturity
(years)

Rate
(% per annum)

1 2.0
2 3.0
3 3.7
4 4.2
5 4.5

Calculate forward interest rates for the second, third, fourth, and fifth years.

4.15. Suppose that 9-month and 12-month LIBOR rates are 2% and 2.3%, respectively. What
is the forward LIBOR rate for the period between 9 months and 12 months? What is the
value of an FRA where 3% is received and LIBOR is paid on $10 million for the period.
All rates are quarterly compounded. Assume that LIBOR is used as the risk-free
discount rate.

4.16. A 10-year 8% coupon bond currently sells for $90. A 10-year 4% coupon bond currently
sells for $80. What is the 10-year zero rate? (Hint : Consider taking a long position in two
of the 4% coupon bonds and a short position in one of the 8% coupon bonds.)

4.17. Explain carefully why liquidity preference theory is consistent with the observation that
the term structure of interest rates tends to be upward-sloping more often than it is
downward-sloping.

4.18. ‘‘When the zero curve is upward-sloping, the zero rate for a particular maturity is greater
than the par yield for that maturity. When the zero curve is downward-sloping the reverse
is true.’’ Explain why this is so.

4.19. Why are US Treasury rates significantly lower than other rates that are close to risk-free?

4.20. Why does a loan in the repo market involve very little credit risk?

4.21. Explain why an FRA is equivalent to the exchange of a floating rate of interest for a fixed
rate of interest.

4.22. A 5-year bond with a yield of 11% (continuously compounded) pays an 8% coupon at
the end of each year.
(a) What is the bond’s price?
(b) What is the bond’s duration?
(c) Use the duration to calculate the effect on the bond’s price of a 0.2% decrease in its

yield.
(d) Recalculate the bond’s price on the basis of a 10.8% per annum yield and verify that

the result is in agreement with your answer to (c).

4.23. The cash prices of 6-month and 1-year Treasury bills are 94.0 and 89.0. A 1.5-year bond
that will pay coupons of $4 every 6 months currently sells for $94.84. A 2-year bond that
will pay coupons of $5 every 6 months currently sells for $97.12. Calculate the 6-month,
1-year, 1.5-year, and 2-year zero rates.
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4.24. ‘‘An interest rate swap where 6-month LIBOR is exchanged for a fixed rate of 5% on a
principal of $100 million for 5 years involves a known cash flow and a portfolio of nine
FRAs.’’ Explain this statement.

Further Questions

4.25. When compounded annually an interest rate is 11%. What is the rate when expressed with
(a) semiannual compounding, (b) quarterly compounding, (c) monthly compounding,
(d) weekly compounding, and (e) daily compounding.

4.26. The table below gives Treasury zero rates and cash flows on a Treasury bond. Zero rates
are continuously compounded.
(a) What is the bond’s theoretical price?
(b) What is the bond’s yield?

Maturity
(years)

Zero
rate

Coupon
payment

Principal

0.5 2.0% $20

1.0 2.3% $20

1.5 2.7% $20

2.0 3.2% $20 $1,000

4.27. A 5-year bond provides a coupon of 5% per annum payable semiannually. Its price is 104.
What is the bond’s yield? You may find Excel’s Solver useful.

4.28. Suppose that LIBOR rates for maturities of 1, 2, 3, 4, 5, and 6 months are 2.6%, 2.9%,
3.1%, 3.2%, 3.25%, and 3.3% with continuous compounding. What are the forward
rates for future 1-month periods?

4.29. A bank can borrow or lend at LIBOR. The 2-month LIBOR rate is 0.28% per annum
with continuous compounding. Assuming that interest rates cannot be negative, what is
the arbitrage opportunity if the 3-month LIBOR rate is 0.1% per year with continuous
compounding. How low can the 3-month LIBOR rate become without an arbitrage
opportunity being created?

4.30. A bank can borrow or lend at LIBOR. Suppose that the 6-month rate is 5% and the
9-month rate is 6%. The rate that can be locked in for the period between 6 months and
9 months using an FRA is 7%. What arbitrage opportunities are open to the bank? All
rates are continuously compounded.

4.31. An interest rate is quoted as 5% per annum with semiannual compounding. What is the
equivalent rate with (a) annual compounding, (b) monthly compounding, and (c) con-
tinuous compounding.

4.32. The 6-month, 12-month, 18-month, and 24-month zero rates are 4%, 4.5%, 4.75%, and
5%, with semiannual compounding.
(a) What are the rates with continuous compounding?
(b) What is the forward rate for the 6-month period beginning in 18 months?
(c) What is the value of an FRA that promises to pay you 6% (compounded semi-

annually) on a principal of $1 million for the 6-month period starting in 18 months?
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4.33. What is the 2-year par yield when the zero rates are as in Problem 4.32? What is the yield
on a 2-year bond that pays a coupon equal to the par yield?

4.34. The following table gives the prices of bonds:

Bond principal
($)

Time to maturity
(years)

Annual coupon�

($)
Bond price

($)

100 0.50 0.0 98

100 1.00 0.0 95

100 1.50 6.2 101

100 2.00 8.0 104

� Half the stated coupon is assumed to be paid every six months.

(a) Calculate zero rates for maturities of 6 months, 12 months, 18 months, and 24 months.
(b) What are the forward rates for the following periods: 6 months to 12 months,

12 months to 18 months, and 18 months to 24 months?
(c) What are the 6-month, 12-month, 18-month, and 24-month par yields for bonds that

provide semiannual coupon payments?
(d) Estimate the price and yield of a 2-year bond providing a semiannual coupon of 7%

per annum.

4.35. Portfolio A consists of a 1-year zero-coupon bond with a face value of $2,000 and a
10-year zero-coupon bond with a face value of $6,000. Portfolio B consists of a 5.95-year
zero-coupon bond with a face value of $5,000. The current yield on all bonds is 10% per
annum.
(a) Show that both portfolios have the same duration.
(b) Show that the percentage changes in the values of the two portfolios for a 0.1% per

annum increase in yields are the same.
(c) What are the percentage changes in the values of the two portfolios for a 5% per

annum increase in yields?

4.36. Verify that DerivaGem 3.00 agrees with the price of the bond in Section 4.4. Test how
well DV01 predicts the effect of a 1-basis-point increase in all rates. Estimate the duration
of the bond from DV01. Use DV01 and Gamma to predict the effect of a 200-basis-point
increase in all rates. Use Gamma to estimate the bond’s convexity. (Hint: In DerivaGem,
DV01 is dB=dy, where B is the price of the bond and y is its yield measured in basis points,
and Gamma is d 2B=dy2, where y is measured in percent.)
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Determination of
Forward and

Futures Prices

In this chapter we examine how forward prices and futures prices are related to the spot

price of the underlying asset. Forward contracts are easier to analyze than futures

contracts because there is no daily settlement—only a single payment at maturity. We

therefore start this chapter by considering the relationship between the forward price

and the spot price. Luckily it can be shown that the forward price and futures price of

an asset are usually very close when the maturities of the two contracts are the same.

This is convenient because it means that results obtained for forwards are usually also

true for futures.

In the first part of the chapter we derive some important general results on the

relationship between forward (or futures) prices and spot prices. We then use the results

to examine the relationship between futures prices and spot prices for contracts on stock

indices, foreign exchange, and commodities. We will consider interest rate futures

contracts in the next chapter.

5.1 INVESTMENT ASSETS vs. CONSUMPTION ASSETS

When considering forward and futures contracts, it is important to distinguish between

investment assets and consumption assets. An investment asset is an asset that is held

for investment purposes by at least some traders. Stocks and bonds are clearly

investment assets. Gold and silver are also examples of investment assets. Note that

investment assets do not have to be held exclusively for investment. (Silver, for

example, has a number of industrial uses.) However, they do have to satisfy the

requirement that they are held by some traders solely for investment. A consumption

asset is an asset that is held primarily for consumption. It is not normally held for

investment. Examples of consumption assets are commodities such as copper, crude

oil, corn, and pork bellies.

As we shall see later in this chapter, we can use arbitrage arguments to determine

the forward and futures prices of an investment asset from its spot price and other

observable market variables. We cannot do this for consumption assets.
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5.2 SHORT SELLING

Some of the arbitrage strategies presented in this chapter involve short selling. This
trade, usually simply referred to as ‘‘shorting’’, involves selling an asset that is not

owned. It is something that is possible for some—but not all—investment assets. We
will illustrate how it works by considering a short sale of shares of a stock.

Suppose an investor instructs a broker to short 500 shares of company X. The broker

will carry out the instructions by borrowing the shares from someonewho owns them and
selling them in the market in the usual way. At some later stage, the investor will close out
the position by purchasing 500 shares of company X in the market. These shares are then
used to replace the borrowed shares so that the short position is closed out. The investor
takes a profit if the stock price has declined and a loss if it has risen. If at any time while

the contract is open the broker has to return the borrowed shares and there are no other
shares that can be borrowed, the investor is forced to close out the position, even if not
ready to do so. Sometimes a fee is charged for lending the shares to the party doing the
shorting.

An investor with a short position must pay to the broker any income, such as
dividends or interest, that would normally be received on the securities that have been
shorted. The broker will transfer this income to the account of the client from whom

the securities have been borrowed. Consider the position of an investor who shorts
500 shares in April when the price per share is $120 and closes out the position by
buying them back in July when the price per share is $100. Suppose that a dividend of
$1 per share is paid in May. The investor receives 500� $120 ¼ $60,000 in April when
the short position is initiated. The dividend leads to a payment by the investor of

500� $1 ¼ $500 in May. The investor also pays 500� $100 ¼ $50,000 for shares when
the position is closed out in July. The net gain, therefore, is

$60,000� $500� $50,000 ¼ $9,500

assuming there is no fee for borrowing the shares. Table 5.1 illustrates this example and
shows that the cash flows from the short sale are the mirror image of the cash flows
from purchasing the shares in April and selling them in July. (Again, this assumes no
borrowing fee.)

Table 5.1 Cash flows from short sale and purchase of shares.

Purchase of shares
April: Purchase 500 shares for $120 �$60,000
May: Receive dividend þ$500
July: Sell 500 shares for $100 per share þ$50,000

Net profit ¼ �$9,500

Short sale of shares
April: Borrow 500 shares and sell them for $120 þ$60,000
May: Pay dividend �$500
July: Buy 500 shares for $100 per share

Replace borrowed shares to close short position
�$50,000

Net profit ¼ þ$9,500
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The investor is required to maintain a margin account with the broker. The margin

account consists of cash or marketable securities deposited by the investor with the

broker to guarantee that the investor will not walk away from the short position if the

share price increases. It is similar to the margin account discussed in Chapter 2 for

futures contracts. An initial margin is required and if there are adverse movements (i.e.,

increases) in the price of the asset that is being shorted, additional margin may be

required. If the additional margin is not provided, the short position is closed out. The

margin account does not represent a cost to the investor. This is because interest is

usually paid on the balance in margin accounts and, if the interest rate offered is

unacceptable, marketable securities such as Treasury bills can be used to meet margin

requirements. The proceeds of the sale of the asset belong to the investor and normally

form part of the initial margin.

From time to time regulations are changed on short selling. In 1938, the uptick rule

was introduced. This allowed shares to be shorted only on an ‘‘uptick’’—that is, when

the most recent movement in the share price was an increase. The SEC abolished the

uptick rule in July 2007, but introduced an ‘‘alternative uptick’’ rule in February 2010.

Under this rule, when the price of a stock has decreased by more than 10% in one day,

there are restrictions on short selling for that day and the next. These restrictions are

that the stock can be shorted only at a price that is higher than the best current bid

price. Occasionally there are temporary bans on short selling. This happened in a

number of countries in 2008 because it was considered that short selling contributed to

the high market volatility that was being experienced.

5.3 ASSUMPTIONS AND NOTATION

In this chapter we will assume that the following are all true for some market

participants:

1. The market participants are subject to no transaction costs when they trade.

2. The market participants are subject to the same tax rate on all net trading profits.

3. The market participants can borrow money at the same risk-free rate of interest as
they can lend money.

4. The market participants take advantage of arbitrage opportunities as they occur.

Note that we do not require these assumptions to be true for all market participants. All

that we require is that they be true—or at least approximately true—for a few key

market participants such as large derivatives dealers. It is the trading activities of these

key market participants and their eagerness to take advantage of arbitrage opportun-

ities as they occur that determine the relationship between forward and spot prices.

The following notation will be used throughout this chapter:

T : Time until delivery date in a forward or futures contract (in years)

S0 : Price of the asset underlying the forward or futures contract today

F0 : Forward or futures price today

r : Zero-coupon risk-free rate of interest per annum, expressed with continuous
compounding, for an investment maturing at the delivery date (i.e., in T years).
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The risk-free rate, r, is the rate at which money is borrowed or lent when there is no credit
risk, so that the money is certain to be repaid. As discussed in Chapter 4, participants in
derivatives markets have traditionally used LIBOR as a proxy for the risk-free rate, but
events during the crisis have led them to switch to other alternatives in some instances
(see Chapter 9 for a further discussion of this).

5.4 FORWARD PRICE FOR AN INVESTMENT ASSET

The easiest forward contract to value is one written on an investment asset that provides
the holder with no income. Non-dividend-paying stocks and zero-coupon bonds are
examples of such investment assets.

Consider a long forward contract to purchase a non-dividend-paying stock in
3 months.1 Assume the current stock price is $40 and the 3-month risk-free interest
rate is 5% per annum.

Suppose first that the forward price is relatively high at $43. An arbitrageur can borrow
$40 at the risk-free interest rate of 5% per annum, buy one share, and short a forward
contract to sell one share in 3 months. At the end of the 3 months, the arbitrageur delivers
the share and receives $43. The sum of money required to pay off the loan is

40e0:05�3=12 ¼ $40:50

By following this strategy, the arbitrageur locks in a profit of $43:00� $40:50 ¼ $2:50
at the end of the 3-month period.

Suppose next that the forward price is relatively low at $39. An arbitrageur can
short one share, invest the proceeds of the short sale at 5% per annum for 3 months,
and take a long position in a 3-month forward contract. The proceeds of the short
sale grow to 40e0:05�3=12 or $40.50 in 3 months. At the end of the 3 months, the
arbitrageur pays $39, takes delivery of the share under the terms of the forward
contract, and uses it to close out the short position. A net gain of

$40:50� $39:00 ¼ $1:50

is therefore made at the end of the 3 months. The two trading strategies we have
considered are summarized in Table 5.2.

Under what circumstances do arbitrage opportunities such as those in Table 5.2 not
exist? The first arbitrage works when the forward price is greater than $40.50. The
second arbitrage works when the forward price is less than $40.50. We deduce that for
there to be no arbitrage the forward price must be exactly $40.50.

A Generalization

To generalize this example, we consider a forward contract on an investment asset with
price S0 that provides no income. Using our notation, T is the time to maturity, r is the
risk-free rate, and F0 is the forward price. The relationship between F0 and S0 is

F0 ¼ S0e
rT ð5:1Þ

1 Forward contracts on individual stocks do not often arise in practice. However, they form useful examples

for developing our ideas. Futures on individual stocks started trading in the United States in November 2002.
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If F0 > S0e
rT , arbitrageurs can buy the asset and short forward contracts on the asset. If

F0 < S0e
rT , they can short the asset and enter into long forward contracts on it.2 In our

example, S0 ¼ 40, r ¼ 0:05, and T ¼ 0:25, so that equation (5.1) gives

F0 ¼ 40e0:05�0:25 ¼ $40:50

which is in agreement with our earlier calculations.

A long forward contract and a spot purchase both lead to the asset being owned at

time T . The forward price is higher than the spot price because of the cost of

financing the spot purchase of the asset during the life of the forward contract. This

point was overlooked by Kidder Peabody in 1994, much to its cost (see Business

Snapshot 5.1).

Example 5.1

Consider a 4-month forward contract to buy a zero-coupon bond that will mature

1 year from today. (This means that the bond will have 8 months to go when the

forward contract matures.) The current price of the bond is $930. We assume that

the 4-month risk-free rate of interest (continuously compounded) is 6% per an-

num. Because zero-coupon bonds provide no income, we can use equation (5.1)

with T ¼ 4=12, r ¼ 0:06, and S0 ¼ 930. The forward price, F0, is given by

F0 ¼ 930e0:06�4=12 ¼ $948:79

This would be the delivery price in a contract negotiated today.

Table 5.2 Arbitrage opportunities when forward price is out of line with spot
price for asset providing no income. (Asset price ¼ $40; interest rate ¼ 5%;
maturity of forward contract ¼ 3 months.)

Forward Price ¼ $43 Forward Price ¼ $39

Action now : Action now :

Borrow $40 at 5% for 3 months Short 1 unit of asset to realize $40

Buy one unit of asset Invest $40 at 5% for 3 months

Enter into forward contract to sell
asset in 3 months for $43

Enter into a forward contract to buy
asset in 3 months for $39

Action in 3 months : Action in 3 months :

Sell asset for $43 Buy asset for $39

Use $40.50 to repay loan with interest Close short position

Receive $40.50 from investment

Profit realized ¼ $2.50 Profit realized ¼ $1.50

2 For another way of seeing that equation (5.1) is correct, consider the following strategy: buy one unit of the

asset and enter into a short forward contract to sell it for F0 at time T . This costs S0 and is certain to lead to a

cash inflow of F0 at time T . Therefore S0 must equal the present value of F0; that is, S0 ¼ F0e
�rT , or

equivalently F0 ¼ S0e
rT .
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What If Short Sales Are Not Possible?

Short sales are not possible for all investment assets and sometimes a fee is charged for
borrowing assets. As it happens, this does not matter. To derive equation (5.1), we do
not need to be able to short the asset. All that we require is that there be market
participants who hold the asset purely for investment (and by definition this is always

true of an investment asset). If the forward price is too low, they will find it attractive to
sell the asset and take a long position in a forward contract.

Suppose that the underlying investment asset gives rise to no storage costs or income.

If F0 > S0e
rT , an investor can adopt the following strategy:

1. Borrow S0 dollars at an interest rate r for T years.

2. Buy 1 unit of the asset.

3. Short a forward contract on 1 unit of the asset.

At time T , the asset is sold for F0. An amount S0e
rT is required to repay the loan at this

time and the investor makes a profit of F0 � S0e
rT .

Suppose next that F0 < S0e
rT . In this case, an investor who owns the asset can:

1. Sell the asset for S0.

2. Invest the proceeds at interest rate r for time T .

3. Take a long position in a forward contract on 1 unit of the asset.

At time T , the cash invested has grown to S0e
rT . The asset is repurchased for F0 and the

investor makes a profit of S0e
rT � F0 relative to the position the investor would have

been in if the asset had been kept.

As in the non-dividend-paying stock example considered earlier, we can expect the
forward price to adjust so that neither of the two arbitrage opportunities we have
considered exists. This means that the relationship in equation (5.1) must hold.

Business Snapshot 5.1 Kidder Peabody’s Embarrassing Mistake

Investment banks have developed a way of creating a zero-coupon bond, called a
strip, from a coupon-bearing Treasury bond by selling each of the cash flows under-
lying the coupon-bearing bond as a separate security. Joseph Jett, a trader working
for Kidder Peabody, had a relatively simple trading strategy. He would buy strips and
sell them in the forward market. As equation (5.1) shows, the forward price of a
security providing no income is always higher than the spot price. Suppose, for
example, that the 3-month interest rate is 4% per annum and the spot price of a strip
is $70. The 3-month forward price of the strip is 70e0:04�3=12 ¼ $70:70.

Kidder Peabody’s computer system reported a profit on each of Jett’s trades equal to
the excess of the forward price over the spot price ($0.70 in our example). In fact, this
profit was nothing more than the cost of financing the purchase of the strip. But, by
rolling his contracts forward, Jett was able to prevent this cost from accruing to him.

The result was that the system reported a profit of $100 million on Jett’s trading
(and Jett received a big bonus) when in fact there was a loss in the region of
$350 million. This shows that even large financial institutions can get relatively
simple things wrong!
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5.5 KNOWN INCOME

In this section we consider a forward contract on an investment asset that will provide a
perfectly predictable cash income to the holder. Examples are stocks paying known
dividends and coupon-bearing bonds. We adopt the same approach as in the previous
section. We first look at a numerical example and then review the formal arguments.

Consider a long forward contract to purchase a coupon-bearing bond whose current
price is $900. We will suppose that the forward contract matures in 9 months. We will
also suppose that a coupon payment of $40 is expected after 4 months. We assume that
the 4-month and 9-month risk-free interest rates (continuously compounded) are,
respectively, 3% and 4% per annum.

Suppose first that the forward price is relatively high at $910. An arbitrageur can
borrow $900 to buy the bond and short a forward contract. The coupon payment has a
present value of 40e�0:03�4=12 ¼ $39:60. Of the $900, $39.60 is therefore borrowed at
3% per annum for 4 months so that it can be repaid with the coupon payment. The
remaining $860.40 is borrowed at 4% per annum for 9 months. The amount owing at
the end of the 9-month period is 860:40e0:04�0:75 ¼ $886:60. A sum of $910 is received
for the bond under the terms of the forward contract. The arbitrageur therefore makes
a net profit of

910:00� 886:60 ¼ $23:40

Suppose next that the forward price is relatively low at $870. An investor can short the
bond and enter into a long forward contract. Of the $900 realized from shorting the
bond, $39.60 is invested for 4 months at 3% per annum so that it grows into an amount
sufficient to pay the coupon on the bond. The remaining $860.40 is invested for
9 months at 4% per annum and grows to $886.60. Under the terms of the forward
contract, $870 is paid to buy the bond and the short position is closed out. The investor
therefore gains

886:60� 870 ¼ $16:60

The two strategies we have considered are summarized in Table 5.3.3 The first strategy in
Table 5.3 produces a profit when the forward price is greater than $886.60, whereas the
second strategy produces a profit when the forward price is less than $886.60. It follows
that if there are no arbitrage opportunities then the forward price must be $886.60.

A Generalization

We can generalize from this example to argue that, when an investment asset will
provide income with a present value of I during the life of a forward contract, we have

F0 ¼ ðS0 � IÞerT ð5:2Þ
In our example, S0 ¼ 900:00, I ¼ 40e�0:03�4=12 ¼ 39:60, r ¼ 0:04, and T ¼ 0:75, so that

F0 ¼ ð900:00� 39:60Þe0:04�0:75 ¼ $886:60

3 If shorting the bond is not possible, investors who already own the bond will sell it and buy a forward

contract on the bond increasing the value of their position by $16.60. This is similar to the strategy we

described for the asset in the previous section.
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This is in agreement with our earlier calculation. Equation (5.2) applies to any investment
asset that provides a known cash income.

If F0 > ðS0 � IÞerT , an arbitrageur can lock in a profit by buying the asset and
shorting a forward contract on the asset; if F0 < ðS0 � IÞerT , an arbitrageur can lock
in a profit by shorting the asset and taking a long position in a forward contract. If
short sales are not possible, investors who own the asset will find it profitable to sell the
asset and enter into long forward contracts.4

Example 5.2

Consider a 10-month forward contract on a stock when the stock price is $50. We
assume that the risk-free rate of interest (continuously compounded) is 8% per
annum for all maturities. We also assume that dividends of $0.75 per share are
expected after 3 months, 6 months, and 9 months. The present value of the
dividends, I, is

I ¼ 0:75e�0:08�3=12 þ 0:75e�0:08�6=12 þ 0:75e�0:08�9=12 ¼ 2:162

The variable T is 10 months, so that the forward price, F0, from equation (5.2), is
given by

F0 ¼ ð50� 2:162Þe0:08�10=12 ¼ $51:14

Table 5.3 Arbitrage opportunities when 9-month forward price is out of line with
spot price for asset providing known cash income. (Asset price ¼ $900; income of
$40 occurs at 4 months; 4-month and 9-month rates are, respectively, 3% and 4%
per annum.)

Forward price ¼ $910 Forward price ¼ $870

Action now : Action now :
Borrow $900: $39.60 for 4 months Short 1 unit of asset to realize $900

and $860.40 for 9 months Invest $39.60 for 4 months
Buy 1 unit of asset and $860.40 for 9 months
Enter into forward contract to sell Enter into a forward contract to buy

asset in 9 months for $910 asset in 9 months for $870

Action in 4 months : Action in 4 months :
Receive $40 of income on asset Receive $40 from 4-month investment
Use $40 to repay first loan Pay income of $40 on asset

with interest

Action in 9 months : Action in 9 months :
Sell asset for $910 Receive $886.60 from 9-month investment
Use $886.60 to repay second loan Buy asset for $870

with interest Close out short position

Profit realized ¼ $23.40 Profit realized ¼ $16.60

4 For another way of seeing that equation (5.2) is correct, consider the following strategy: buy one unit of the

asset and enter into a short forward contract to sell it for F0 at time T . This costs S0 and is certain to lead to a

cash inflow of F0 at time T and an income with a present value of I. The initial outflow is S0. The present

value of the inflows is I þ F0e
�rT . Hence, S0 ¼ I þ F0e

�rT , or equivalently F0 ¼ ðS0 � IÞerT .
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If the forward price were less than this, an arbitrageur would short the stock and
buy forward contracts. If the forward price were greater than this, an arbitrageur
would short forward contracts and buy the stock in the spot market.

5.6 KNOWN YIELD

We now consider the situation where the asset underlying a forward contract provides a
known yield rather than a known cash income. This means that the income is known
when expressed as a percentage of the asset’s price at the time the income is paid.
Suppose that an asset is expected to provide a yield of 5% per annum. This could mean
that income is paid once a year and is equal to 5% of the asset price at the time it is paid,
in which case the yield would be 5% with annual compounding. Alternatively, it could
mean that income is paid twice a year and is equal to 2.5% of the asset price at the time
it is paid, in which case the yield would be 5% per annum with semiannual compound-
ing. In Section 4.2 we explained that we will normally measure interest rates with
continuous compounding. Similarly, we will normally measure yields with continuous
compounding. Formulas for translating a yield measured with one compounding
frequency to a yield measured with another compounding frequency are the same as
those given for interest rates in Section 4.2.

Define q as the average yield per annum on an asset during the life of a forward
contract with continuous compounding. It can be shown (see Problem 5.20) that

F0 ¼ S0e
ðr�qÞT ð5:3Þ

Example 5.3

Consider a 6-month forward contract on an asset that is expected to provide
income equal to 2% of the asset price once during a 6-month period. The risk-
free rate of interest (with continuous compounding) is 10% per annum. The asset
price is $25. In this case, S0 ¼ 25, r ¼ 0:10, and T ¼ 0:5. The yield is 4% per
annum with semiannual compounding. From equation (4.3), this is 3.96% per
annum with continuous compounding. It follows that q ¼ 0:0396, so that from
equation (5.3) the forward price, F0, is given by

F0 ¼ 25eð0:10�0:0396Þ�0:5 ¼ $25:77

5.7 VALUING FORWARD CONTRACTS

The value of a forward contract at the time it is first entered into is close to zero. At a
later stage, it may prove to have a positive or negative value. It is important for banks
and other financial institutions to value the contract each day. (This is referred to as
marking to market the contract.) Using the notation introduced earlier, we suppose K is
the delivery price for a contract that was negotiated some time ago, the delivery date is
T years from today, and r is the T -year risk-free interest rate. The variable F0 is the
forward price that would be applicable if we negotiated the contract today. In addition,
we define f to be the value of forward contract today.

It is important to be clear about the meaning of the variables F0, K, and f . At the
beginning of the life of the forward contract, the delivery price, K, is set equal to the
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forward price at that time and the value of the contract, f , is 0. As time passes, K stays

the same (because it is part of the definition of the contract), but the forward price

changes and the value of the contract becomes either positive or negative.

A general result, applicable to all long forward contracts (both those on investment

assets and those on consumption assets), is

f ¼ ðF0 �KÞe�rT ð5:4Þ

To see why equation (5.4) is correct, we use an argument analogous to the one we used

for forward rate agreements in Section 4.7. We form a portfolio today consisting of

(a) a forward contract to buy the underlying asset for K at time T and (b) a forward

contract to sell the asset for F0 at time T . The payoff from the portfolio at time T is

ST �K from the first contract and F0 � ST from the second contract. The total payoff is

F0 �K and is known for certain today. The portfolio is therefore a risk-free investment

and its value today is the payoff at time T discounted at the risk-free rate or

ðF0 �KÞe�rT . The value of the forward contract to sell the asset for F0 is worth zero

because F0 is the forward price that applies to a forward contract entered into today. It

follows that the value of a (long) forward contract to buy an asset for K at time T must

be ðF0 �KÞe�rT . Similarly, the value of a (short) forward contract to sell the asset for K

at time T is ðK� F0Þe�rT .

Example 5.4

A long forward contract on a non-dividend-paying stock was entered into some

time ago. It currently has 6 months to maturity. The risk-free rate of interest (with

continuous compounding) is 10% per annum, the stock price is $25, and the

delivery price is $24. In this case, S0 ¼ 25, r ¼ 0:10, T ¼ 0:5, and K ¼ 24. From

equation (5.1), the 6-month forward price, F0, is given by

F0 ¼ 25e0:1�0:5 ¼ $26:28

From equation (5.4), the value of the forward contract is

f ¼ ð26:28� 24Þe�0:1�0:5 ¼ $2:17

Equation (5.4) shows that we can value a long forward contract on an asset by making

the assumption that the price of the asset at the maturity of the forward contract equals

the forward price F0. To see this, note that when we make that assumption, a long

forward contract provides a payoff at time T of F0 �K. This has a present value of

ðF0 �KÞe�rT , which is the value of f in equation (5.4). Similarly, we can value a short

forward contract on the asset by assuming that the current forward price of the asset is

realized. These results are analogous to the result in Section 4.7 that we can value a

forward rate agreement on the assumption that forward rates are realized.

Using equation (5.4) in conjunction with equation (5.1) gives the following expression

for the value of a forward contract on an investment asset that provides no income

f ¼ S0 �Ke
�rT ð5:5Þ

Similarly, using equation (5.4) in conjunction with equation (5.2) gives the following
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expression for the value of a long forward contract on an investment asset that provides

a known income with present value I :

f ¼ S0 � I �Ke
�rT ð5:6Þ

Finally, using equation (5.4) in conjunction with equation (5.3) gives the following

expression for the value of a long forward contract on an investment asset that provides

a known yield at rate q:

f ¼ S0e
�qT �Ke

�rT ð5:7Þ

When a futures price changes, the gain or loss on a futures contract is calculated as the

change in the futures price multiplied by the size of the position. This gain is realized

almost immediately because futures contracts are settled daily. Equation (5.4) shows

that, when a forward price changes, the gain or loss is the present value of the change in

the forward price multiplied by the size of the position. The difference between the gain/
loss on forward and futures contracts can cause confusion on a foreign exchange trading

desk (see Business Snapshot 5.2).

5.8 ARE FORWARD PRICES AND FUTURES PRICES EQUAL?

Technical Note 24 at www.rotman.utoronto.ca/�hull/TechnicalNotes provides an

arbitrage argument to show that, when the short-term risk-free interest rate is constant,

Business Snapshot 5.2 A Systems Error?

A foreign exchange trader working for a bank enters into a long forward contract to
buy 1 million pounds sterling at an exchange rate of 1.5000 in 3 months. At the same
time, another trader on the next desk takes a long position in 16 contracts for
3-month futures on sterling. The futures price is 1.5000 and each contract is on
62,500 pounds. The positions taken by the forward and futures traders are therefore
the same. Within minutes of the positions being taken, the forward and the futures
prices both increase to 1.5040. The bank’s systems show that the futures trader has
made a profit of $4,000, while the forward trader has made a profit of only $3,900.
The forward trader immediately calls the bank’s systems department to complain.
Does the forward trader have a valid complaint?

The answer is no! The daily settlement of futures contracts ensures that the futures
trader realizes an almost immediate profit corresponding to the increase in the futures
price. If the forward trader closed out the position by entering into a short contract
at 1.5040, the forward trader would have contracted to buy 1 million pounds
at 1.5000 in 3 months and sell 1 million pounds at 1.5040 in 3 months. This would
lead to a $4,000 profit—but in 3 months, not today. The forward trader’s profit is the
present value of $4,000. This is consistent with equation (5.4).

The forward trader can gain some consolation from the fact that gains and losses
are treated symmetrically. If the forward/futures prices dropped to 1.4960 instead of
rising to 1.5040, then the futures trader would take a loss of $4,000 while the forward
trader would take a loss of only $3,900.
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the forward price for a contract with a certain delivery date is in theory the same as the
futures price for a contract with that delivery date. The argument can be extended to
cover situations where the interest rate is a known function of time.

When interest rates vary unpredictably (as they do in the real world), forward and
futures prices are in theory no longer the same. We can get a sense of the nature of the
relationship by considering the situation where the price of the underlying asset, S, is
strongly positively correlated with interest rates. When S increases, an investor who
holds a long futures position makes an immediate gain because of the daily settlement
procedure. The positive correlation indicates that it is likely that interest rates have also
increased. The gain will therefore tend to be invested at a higher than average rate of
interest. Similarly, when S decreases, the investor will incur an immediate loss. This loss
will tend to be financed at a lower than average rate of interest. An investor holding a
forward contract rather than a futures contract is not affected in this way by interest rate
movements. It follows that a long futures contract will be slightly more attractive than a
similar long forward contract. Hence, when S is strongly positively correlated with
interest rates, futures prices will tend to be slightly higher than forward prices. When S

is strongly negatively correlated with interest rates, a similar argument shows that
forward prices will tend to be slightly higher than futures prices.

The theoretical differences between forward and futures prices for contracts that last
only a few months are in most circumstances sufficiently small to be ignored. In
practice, there are a number of factors not reflected in theoretical models that may
cause forward and futures prices to be different. These include taxes, transactions costs,
and margin requirements. The risk that the counterparty will default may be less in the
case of a futures contract because of the role of the exchange clearing house. Also, in
some instances, futures contracts are more liquid and easier to trade than forward
contracts. Despite all these points, for most purposes it is reasonable to assume that
forward and futures prices are the same. This is the assumption we will usually make in
this book. We will use the symbol F0 to represent both the futures price and the forward
price of an asset today.

One exception to the rule that futures and forward contracts can be assumed to be
the same concerns Eurodollar futures. This will be discussed in Section 6.3.

5.9 FUTURES PRICES OF STOCK INDICES

We introduced futures on stock indices in Section 3.5 and showed how a stock index
futures contract is a useful tool in managing equity portfolios. Table 3.3 shows futures
prices for a number of different indices. We are now in a position to consider how index
futures prices are determined.

A stock index can usually be regarded as the price of an investment asset that pays
dividends.5 The investment asset is the portfolio of stocks underlying the index, and the
dividends paid by the investment asset are the dividends that would be received by the
holder of this portfolio. It is usually assumed that the dividends provide a known yield
rather than a known cash income. If q is the dividend yield rate, equation (5.3) gives the
futures price, F0, as

F0 ¼ S0e
ðr�qÞT ð5:8Þ

5 Occasionally this is not the case: see Business Snapshot 5.3.
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This shows that the futures price increases at rate r� q with the maturity of the futures

contract. In Table 3.3, the December futures settlement price of the S&P 500 is about

0.75% less than the June settlement price. This indicates that, on May 14, 2013, the

short-term risk-free rate r was less than the dividend yield q by about 1.5% per year.

Example 5.5

Consider a 3-month futures contract on an index. Suppose that the stocks under-

lying the index provide a dividend yield of 1% per annum, that the current value

of the index is 1,300, and that the continuously compounded risk-free interest rate

is 5% per annum. In this case, r ¼ 0:05, S0 ¼ 1,300, T ¼ 0:25, and q ¼ 0:01.
Hence, the futures price, F0, is given by

F0 ¼ 1,300eð0:05�0:01Þ�0:25 ¼ $1,313:07

In practice, the dividend yield on the portfolio underlying an index varies week by week

throughout the year. For example, a large proportion of the dividends on the NYSE

stocks are paid in the first week of February, May, August, and November each year.

The chosen value of q should represent the average annualized dividend yield during the

life of the contract. The dividends used for estimating q should be those for which the

ex-dividend date is during the life of the futures contract.

Index Arbitrage

If F0 > S0e
ðr�qÞT , profits can be made by buying the stocks underlying the index at the

spot price (i.e., for immediate delivery) and shorting futures contracts. If F0 < S0e
ðr�qÞT ,

profits can be made by doing the reverse—that is, shorting or selling the stocks

underlying the index and taking a long position in futures contracts. These strategies

are known as index arbitrage. When F0 < S0e
ðr�qÞT , index arbitrage is often done by a

pension fund that owns an indexed portfolio of stocks. When F0 > S0e
ðr�qÞT , it might be

Business Snapshot 5.3 The CME Nikkei 225 Futures Contract

The arguments in this chapter on how index futures prices are determined require that
the index be the value of an investment asset. This means that it must be the value of a
portfolio of assets that can be traded. The asset underlying the Chicago Mercantile
Exchange’s futures contract on the Nikkei 225 Index does not qualify, and the reason
why is quite subtle. Suppose S is the value of the Nikkei 225 Index. This is the value of
a portfolio of 225 Japanese stocks measured in yen. The variable underlying the CME
futures contract on the Nikkei 225 has a dollar value of 5S. In other words, the futures
contract takes a variable that is measured in yen and treats it as though it is dollars.

We cannot invest in a portfolio whose value will always be 5S dollars. The best we
can do is to invest in one that is always worth 5S yen or in one that is always worth
5QS dollars, where Q is the dollar value of 1 yen. The variable 5S dollars is not,
therefore, the price of an investment asset and equation (5.8) does not apply.

CME’s Nikkei 225 futures contract is an example of a quanto. A quanto is a
derivative where the underlying asset is measured in one currency and the payoff is in
another currency. Quantos will be discussed further in Chapter 30.
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done by a bank or a corporation holding short-term money market investments. For
indices involving many stocks, index arbitrage is sometimes accomplished by trading a
relatively small representative sample of stocks whose movements closely mirror those
of the index. Usually index arbitrage is implemented through program trading. This
involves using a computer system to generate the trades.

Most of the time the activities of arbitrageurs ensure that equation (5.8) holds, but
occasionally arbitrage is impossible and the futures price does get out of line with the
spot price (see Business Snapshot 5.4).

5.10 FORWARD AND FUTURES CONTRACTS ON CURRENCIES

We now move on to consider forward and futures foreign currency contracts from the
perspective of a US investor. The underlying asset is one unit of the foreign currency.
We will therefore define the variable S0 as the current spot price in US dollars of one
unit of the foreign currency and F0 as the forward or futures price in US dollars of one
unit of the foreign currency. This is consistent with the way we have defined S0 and F0

for other assets underlying forward and futures contracts. However, as mentioned in
Section 2.11, it does not necessarily correspond to the way spot and forward exchange
rates are quoted. For major exchange rates other than the British pound, euro,
Australian dollar, and New Zealand dollar, a spot or forward exchange rate is normally
quoted as the number of units of the currency that are equivalent to one US dollar.

Business Snapshot 5.4 Index Arbitrage in October 1987

To do index arbitrage, a trader must be able to trade both the index futures contract
and the portfolio of stocks underlying the index very quickly at the prices quoted in
the market. In normal market conditions this is possible using program trading, and
the relationship in equation (5.8) holds well. Examples of days when the market was
anything but normal are October 19 and 20 of 1987. On what is termed ‘‘Black
Monday,’’ October 19, 1987, the market fell by more than 20%, and the 604 million
shares traded on the New York Stock Exchange easily exceeded all previous records.
The exchange’s systems were overloaded, and orders placed to buy or sell shares on
that day could be delayed by up to two hours before being executed.

For most of October 19, 1987, futures prices were at a significant discount to the
underlying index. For example, at the close of trading the S&P 500 Index was at
225.06 (down 57.88 on the day), whereas the futures price for December delivery on
the S&P 500 was 201.50 (down 80.75 on the day). This was largely because the delays
in processing orders made index arbitrage impossible. On the next day, Tuesday,
October 20, 1987, the New York Stock Exchange placed temporary restrictions on
the way in which program trading could be done. This also made index arbitrage very
difficult and the breakdown of the traditional linkage between stock indices and stock
index futures continued. At one point the futures price for the December contract was
18% less than the S&P 500 Index. However, after a few days the market returned to
normal, and the activities of arbitrageurs ensured that equation (5.8) governed the
relationship between futures and spot prices of indices.
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A foreign currency has the property that the holder of the currency can earn interest
at the risk-free interest rate prevailing in the foreign country. For example, the holder

can invest the currency in a foreign-denominated bond. We define rf as the value of the
foreign risk-free interest rate when money is invested for time T . The variable r is the

risk-free rate when money is invested for this period of time in US dollars.

The relationship between F0 and S0 is

F0 ¼ S0e
ðr�rf ÞT ð5:9Þ

This is the well-known interest rate parity relationship from international finance. The

reason it is true is illustrated in Figure 5.1. Suppose that an individual starts with
1,000 units of the foreign currency. There are two ways it can be converted to dollars at
time T . One is by investing it for T years at rf and entering into a forward contract to

sell the proceeds for dollars at time T . This generates 1,000erf TF0 dollars. The other is
by exchanging the foreign currency for dollars in the spot market and investing the

proceeds for T years at rate r. This generates 1,000S0e
rT dollars. In the absence of

arbitrage opportunities, the two strategies must give the same result. Hence,

1,000erf TF0 ¼ 1,000S0e
rT

so that

F0 ¼ S0e
ðr�rf ÞT

Example 5.6

Suppose that the 2-year interest rates in Australia and the United States are 3%
and 1%, respectively, and the spot exchange rate is 0.9800 USD per AUD. From

equation (5.9), the 2-year forward exchange rate should be

0:9800eð0:01�0:03Þ�2 ¼ 0:9416

1000 units of 
foreign currency 

at time zero

1000S0 
dollars 

at time zero

1000erfT units of 
foreign currency 

at time T

1000S0e
rT 

dollars 
at time T

1000erfTF0 
dollars 

at time T

Figure 5.1 Two ways of converting 1,000 units of a foreign currency to dollars at
time T . Here, S0 is spot exchange rate, F0 is forward exchange rate, and r and rf are the
dollar and foreign risk-free rates.
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Suppose first that the 2-year forward exchange rate is less than this, say 0.9300.

An arbitrageur can:

1. Borrow 1,000 AUD at 3% per annum for 2 years, convert to 980 USD and

invest the USD at 1% (both rates are continuously compounded).

2. Enter into a forward contract to buy 1,061.84 AUD for 1,061:84� 0:93 ¼
987:51 USD.

The 980 USD that are invested at 1% grow to 980e0:01�2 ¼ 999:80 USD in

2 years. Of this, 987.51 USD are used to purchase 1,061.84 AUD under the terms

of the forward contract. This is exactly enough to repay principal and interest on

the 1,000 AUD that are borrowed (1,000e0:03�2 ¼ 1; 061:84). The strategy there-

fore gives rise to a riskless profit of 999:80� 987:51 ¼ 12:29 USD. (If this does

not sound very exciting, consider following a similar strategy where you borrow

100 million AUD!)

Suppose next that the 2-year forward rate is 0.9600 (greater than the 0.9416

value given by equation (5.9)). An arbitrageur can:

1. Borrow 1,000 USD at 1% per annum for 2 years, convert to 1,000=0:9800 ¼
1,020:41 AUD, and invest the AUD at 3%.

2. Enter into a forward contract to sell 1,083.51 AUD for 1,083:51� 0:96 ¼
1,040:17 USD.

The 1,020.41 AUD that are invested at 3% grow to 1,020:41e0:03�2 ¼
1,083:51 AUD in 2 years. The forward contract has the effect of converting this

to 1,040.17 USD. The amount needed to payoff the USD borrowings is

1,000e0:01�2 ¼ 1,020:20 USD. The strategy therefore gives rise to a riskless profit

of 1,040:17� 1,020:20 ¼ 19:97 USD.

Table 5.4 shows currency futures quotes on May 14, 2013. The quotes are US dollars

per unit of the foreign currency. (In the case of the Japanese yen, the quote is

US dollars per 100 yen.) This is the usual quotation convention for futures contracts.

Equation (5.9) applies with r equal to the US risk-free rate and rf equal to the foreign

risk-free rate.

On May 14, 2013, short-term interest rates on the Japanese yen, Swiss franc, and euro

were lower than the short-term interest rate on the US dollar. This corresponds to the

r > rf situation and explains why futures prices for these currencies increase with

maturity in Table 5.4. For the Australian dollar, British pound, and Canadian dollar,

short-term interest rates were higher than in the United States. This corresponds to the

rf > r situation and explains why the futures settlement prices of these currencies

decrease with maturity.

Example 5.7

In Table 5.4, the September settlement price for the Australian dollar is about

0.6% lower than the June settlement price. This indicates that the futures prices

are decreasing at about 2.4% per year with maturity. From equation (5.9) this is

an estimate of the amount by which short-term Australian interest rates exceeded

short-term US interest rates on May 14, 2013.
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A Foreign Currency as an Asset Providing a Known Yield

Equation (5.9) is identical to equation (5.3) with q replaced by rf . This is not a
coincidence. A foreign currency can be regarded as an investment asset paying a known
yield. The yield is the risk-free rate of interest in the foreign currency.

To understand this, we note that the value of interest paid in a foreign currency
depends on the value of the foreign currency. Suppose that the interest rate on British
pounds is 5% per annum. To a US investor the British pound provides an income equal
to 5% of the value of the British pound per annum. In other words it is an asset that
provides a yield of 5% per annum.

5.11 FUTURES ON COMMODITIES

We now move on to consider futures contracts on commodities. First we look at the
futures prices of commodities that are investment assets such as gold and silver.6 We
then go on to examine the futures prices of consumption assets.

Table 5.4 Futures quotes for a selection of CME Group contracts on foreign
currencies on May 14, 2013.

Open High Low Prior
settlement

Last
trade

Change Volume

Australian Dollar, USD per AUD, 100,000 AUD

June 2013 0.9930 0.9980 0.9862 0.9930 0.9870 �0.0060 118,000
Sept. 2013 0.9873 0.9918 0.9801 0.9869 0.9808 �0.0061 535

British Pound, USD per GBP, 62,500 GBP

June 2013 1.5300 1.5327 1.5222 1.5287 1.5234 �0.0053 112,406
Sept. 2013 1.5285 1.5318 1.5217 1.5279 1.5224 �0.0055 214

Canadian Dollar, USD per CAD, 100,000 CAD

June 2013 0.9888 0.9903 0.9826 0.9886 0.9839 �0.0047 63,452
Sept. 2013 0.9867 0.9881 0.9805 0.9865 0.9819 �0.0046 564
Dec. 2013 0.9844 0.9859 0.9785 0.9844 0.9797 �0.0047 101

Euro, USD per EUR, 125,000 EUR

June 2013 1.2983 1.3032 1.2932 1.2973 1.2943 �0.0030 257,103
Sept. 2013 1.2990 1.3039 1.2941 1.2981 1.2950 �0.0031 621
Dec. 2013 1.3032 1.3045 1.2953 1.2989 1.2957 �0.0032 81

Japanese Yen, USD per 100 yen, 12.5 million yen

June 2013 0.9826 0.9877 0.9770 0.9811 0.9771 �0.0040 160,395
Sept. 2013 0.9832 0.9882 0.9777 0.9816 0.9777 �0.0039 341

Swiss Franc, USD per CHF, 125,000 CHF

June 2013 1.0449 1.0507 1.0358 1.0437 1.0368 �0.0069 41,463
Sept. 2013 1.0467 1.0512 1.0370 1.0446 1.0376 �0.0070 16

6 Recall that, for an asset to be an investment asset, it need not be held solely for investment purposes. What

is required is that some individuals hold it for investment purposes and that these individuals be prepared to

sell their holdings and go long forward contracts, if the latter look more attractive. This explains why silver,

although it has industrial uses, is an investment asset.
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Income and Storage Costs

As explained in Business Snapshot 3.1, the hedging strategies of gold producers leads to

a requirement on the part of investment banks to borrow gold. Gold owners such as

central banks charge interest in the form of what is known as the gold lease rate when

they lend gold. The same is true of silver. Gold and silver can therefore provide income

to the holder. Like other commodities they also have storage costs.

Equation (5.1) shows that, in the absence of storage costs and income, the forward

price of a commodity that is an investment asset is given by

F0 ¼ S0e
rT ð5:10Þ

Storage costs can be treated as negative income. If U is the present value of all the

storage costs, net of income, during the life of a forward contract, it follows from

equation (5.2) that

F0 ¼ ðS0 þ UÞerT ð5:11Þ
Example 5.8

Consider a 1-year futures contract on an investment asset that provides no income.

It costs $2 per unit to store the asset, with the payment being made at the end of

the year. Assume that the spot price is $450 per unit and the risk-free rate is 7%

per annum for all maturities. This corresponds to r ¼ 0:07, S0 ¼ 450, T ¼ 1, and

U ¼ 2e�0:07�1 ¼ 1:865

From equation (5.11), the theoretical futures price, F0, is given by

F0 ¼ ð450þ 1:865Þe0:07�1 ¼ $484:63

If the actual futures price is greater than 484.63, an arbitrageur can buy the asset

and short 1-year futures contracts to lock in a profit. If the actual futures price is

less than 484.63, an investor who already owns the asset can improve the return by

selling the asset and buying futures contracts.

If the storage costs (net of income) incurred at any time are proportional to the price of

the commodity, they can be treated as negative yield. In this case, from equation (5.3),

F0 ¼ S0e
ðrþuÞT ð5:12Þ

where u denotes the storage costs per annum as a proportion of the spot price net of

any yield earned on the asset.

Consumption Commodities

Commodities that are consumption assets rather than investment assets usually

provide no income, but can be subject to significant storage costs. We now review

the arbitrage strategies used to determine futures prices from spot prices carefully.7

7 For some commodities the spot price depends on the delivery location. We assume that the delivery

location for spot and futures are the same.
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Suppose that, instead of equation (5.11), we have

F0 > ðS0 þ UÞerT ð5:13Þ
To take advantage of this opportunity, an arbitrageur can implement the following
strategy:

1. Borrow an amount S0 þ U at the risk-free rate and use it to purchase one unit of
the commodity and to pay storage costs.

2. Short a futures contract on one unit of the commodity.

If we regard the futures contract as a forward contract, so that there is no daily
settlement, this strategy leads to a profit of F0 � ðS0 þ UÞerT at time T . There is no
problem in implementing the strategy for any commodity. However, as arbitrageurs do
so, there will be a tendency for S0 to increase and F0 to decrease until equation (5.13) is
no longer true. We conclude that equation (5.13) cannot hold for any significant length
of time.

Suppose next that

F0 < ðS0 þ UÞerT ð5:14Þ
When the commodity is an investment asset, we can argue that many investors hold the
commodity solely for investment. When they observe the inequality in equation (5.14),
they will find it profitable to do the following:

1. Sell the commodity, save the storage costs, and invest the proceeds at the risk-free
interest rate.

2. Take a long position in a futures contract.

The result is a riskless profit at maturity of ðS0 þ UÞerT � F0 relative to the position
the investors would have been in if they had held the commodity. It follows that
equation (5.14) cannot hold for long. Because neither equation (5.13) nor (5.14) can
hold for long, we must have F0 ¼ ðS0 þ UÞerT .

This argument cannot be used for a commodity that is a consumption asset rather
than an investment asset. Individuals and companies who own a consumption
commodity usually plan to use it in some way. They are reluctant to sell the
commodity in the spot market and buy forward or futures contracts, because forward
and futures contracts cannot be used in a manufacturing process or consumed in some
other way. There is therefore nothing to stop equation (5.14) from holding, and all we
can assert for a consumption commodity is

F0 6 ðS0 þ UÞerT ð5:15Þ
If storage costs are expressed as a proportion u of the spot price, the equivalent result is

F0 6 S0e
ðrþuÞT ð5:16Þ

Convenience Yields

We do not necessarily have equality in equations (5.15) and (5.16) because users of a
consumption commodity may feel that ownership of the physical commodity provides
benefits that are not obtained by holders of futures contracts. For example, an oil
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refiner is unlikely to regard a futures contract on crude oil in the same way as crude oil

held in inventory. The crude oil in inventory can be an input to the refining process,

whereas a futures contract cannot be used for this purpose. In general, ownership of the

physical asset enables a manufacturer to keep a production process running and

perhaps profit from temporary local shortages. A futures contract does not do the

same. The benefits from holding the physical asset are sometimes referred to as the

convenience yield provided by the commodity. If the dollar amount of storage costs is

known and has a present value U, then the convenience yield y is defined such that

F0e
yT ¼ ðS0 þ UÞerT

If the storage costs per unit are a constant proportion, u, of the spot price, then y is

defined so that

F0e
yT ¼ S0e

ðrþuÞT

or

F0 ¼ S0e
ðrþu�yÞT ð5:17Þ

The convenience yield simply measures the extent to which the left-hand side is less than

the right-hand side in equation (5.15) or (5.16). For investment assets the convenience

yield must be zero; otherwise, there are arbitrage opportunities. Table 2.2 in Chapter 2

shows that, on May 14, 2013, the futures price of soybeans decreased as the maturity of

the contract increased from July 2013 to November 2013. This pattern suggests that the

convenience yield, y, is greater than rþ u during this period.

The convenience yield reflects the market’s expectations concerning the future avail-

ability of the commodity. The greater the possibility that shortages will occur, the

higher the convenience yield. If users of the commodity have high inventories, there is

very little chance of shortages in the near future and the convenience yield tends to be

low. If inventories are low, shortages are more likely and the convenience yield is usually

higher.

5.12 THE COST OF CARRY

The relationship between futures prices and spot prices can be summarized in terms of

the cost of carry. This measures the storage cost plus the interest that is paid to finance

the asset less the income earned on the asset. For a non-dividend-paying stock, the

cost of carry is r, because there are no storage costs and no income is earned; for a

stock index, it is r� q, because income is earned at rate q on the asset. For a currency,

it is r� rf ; for a commodity that provides income at rate q and requires storage costs

at rate u, it is r� qþ u; and so on.

Define the cost of carry as c. For an investment asset, the futures price is

F0 ¼ S0e
cT ð5:18Þ

For a consumption asset, it is

F0 ¼ S0e
ðc�yÞT ð5:19Þ

where y is the convenience yield.
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5.13 DELIVERY OPTIONS

Whereas a forward contract normally specifies that delivery is to take place on a
particular day, a futures contract often allows the party with the short position to
choose to deliver at any time during a certain period. (Typically the party has to give a
few days’ notice of its intention to deliver.) The choice introduces a complication into
the determination of futures prices. Should the maturity of the futures contract be
assumed to be the beginning, middle, or end of the delivery period? Even though most
futures contracts are closed out prior to maturity, it is important to know when delivery
would have taken place in order to calculate the theoretical futures price.

If the futures price is an increasing function of the time to maturity, it can be seen
from equation (5.19) that c > y, so that the benefits from holding the asset (including
convenience yield and net of storage costs) are less than the risk-free rate. It is usually
optimal in such a case for the party with the short position to deliver as early as
possible, because the interest earned on the cash received outweighs the benefits of
holding the asset. As a rule, futures prices in these circumstances should be calculated
on the basis that delivery will take place at the beginning of the delivery period. If
futures prices are decreasing as time to maturity increases (c < y), the reverse is true. It
is then usually optimal for the party with the short position to deliver as late as
possible, and futures prices should, as a rule, be calculated on this assumption.

5.14 FUTURES PRICES AND EXPECTED FUTURE SPOT PRICES

We refer to the market’s average opinion about what the spot price of an asset will be at
a certain future time as the expected spot price of the asset at that time. Suppose that it
is now June and the September futures price of corn is 350 cents. It is interesting to ask
what the expected spot price of corn in September is. Is it less than 350 cents, greater
than 350 cents, or exactly equal to 350 cents? As illustrated in Figure 2.1, the futures
price converges to the spot price at maturity. If the expected spot price is less than
350 cents, the market must be expecting the September futures price to decline, so that
traders with short positions gain and traders with long positions lose. If the expected
spot price is greater than 350 cents, the reverse must be true. The market must be
expecting the September futures price to increase, so that traders with long positions
gain while those with short positions lose.

Keynes and Hicks

Economists John Maynard Keynes and John Hicks argued that, if hedgers tend to hold
short positions and speculators tend to hold long positions, the futures price of an asset
will be below the expected spot price.8 This is because speculators require compensation
for the risks they are bearing. They will trade only if they can expect to make money on
average. Hedgers will lose money on average, but they are likely to be prepared to
accept this because the futures contract reduces their risks. If hedgers tend to hold long
positions while speculators hold short positions, Keynes and Hicks argued that the
futures price will be above the expected spot price for a similar reason.

8 See: J.M. Keynes, A Treatise on Money. London: Macmillan, 1930; and J.R. Hicks, Value and Capital.

Oxford: Clarendon Press, 1939.

146 CHAPTER 5



Risk and Return

The modern approach to explaining the relationship between futures prices and

expected spot prices is based on the relationship between risk and expected return in
the economy. In general, the higher the risk of an investment, the higher the expected

return demanded by an investor. The capital asset pricing model, which is explained in

the appendix to Chapter 3, shows that there are two types of risk in the economy:
systematic and nonsystematic. Nonsystematic risk should not be important to an

investor. It can be almost completely eliminated by holding a well-diversified portfolio.

An investor should not therefore require a higher expected return for bearing non-
systematic risk. Systematic risk, in contrast, cannot be diversified away. It arises from a

correlation between returns from the investment and returns from the whole stock

market. An investor generally requires a higher expected return than the risk-free
interest rate for bearing positive amounts of systematic risk. Also, an investor is

prepared to accept a lower expected return than the risk-free interest rate when the

systematic risk in an investment is negative.

The Risk in a Futures Position

Let us consider a speculator who takes a long position in a futures contract that lasts for

T years in the hope that the spot price of the asset will be above the futures price at the

end of the life of the futures contract. We ignore daily settlement and assume that the
futures contract can be treated as a forward contract. We suppose that the speculator

puts the present value of the futures price into a risk-free investment while simul-
taneously taking a long futures position. The proceeds of the risk-free investment are

used to buy the asset on the delivery date. The asset is then immediately sold for its

market price. The cash flows to the speculator are as follows:

Today: �F0e
�rT

End of futures contract: þST

where F0 is the futures price today, ST is the price of the asset at time T at the end of the
futures contract, and r is the risk-free return on funds invested for time T .

How do we value this investment? The discount rate we should use for the expected
cash flow at time T equals an investor’s required return on the investment. Suppose that

k is an investor’s required return for this investment. The present value of this

investment is

�F0e
�rT þ EðST Þe�kT

where E denotes expected value. We can assume that all investments in securities

markets are priced so that they have zero net present value. This means that

�F0e
�rT þ EðST Þe�kT ¼ 0

or

F0 ¼ EðST Þeðr�kÞT ð5:20Þ

As we have just discussed, the returns investors require on an investment depend on its

systematic risk. The investment we have been considering is in essence an investment in

the asset underlying the futures contract. If the returns from this asset are uncorrelated
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with the stock market, the correct discount rate to use is the risk-free rate r, so we
should set k ¼ r. Equation (5.20) then gives

F0 ¼ EðST Þ
This shows that the futures price is an unbiased estimate of the expected future spot
price when the return from the underlying asset is uncorrelated with the stock
market.

If the return from the asset is positively correlated with the stock market, k > r and
equation (5.20) leads to F0 < EðST Þ. This shows that, when the asset underlying the
futures contract has positive systematic risk, we should expect the futures price to
understate the expected future spot price. An example of an asset that has positive
systematic risk is a stock index. The expected return of investors on the stocks underlying
an index is generally more than the risk-free rate, r. The dividends provide a return of q.
The expected increase in the index must therefore be more than r� q. Equation (5.8) is
therefore consistent with the prediction that the futures price understates the expected
future stock price for a stock index.

If the return from the asset is negatively correlated with the stock market, k < r and
equation (5.20) gives F0 > EðST Þ. This shows that, when the asset underlying the futures
contract has negative systematic risk, we should expect the futures price to overstate the
expected future spot price.

These results are summarized in Table 5.5.

Normal Backwardation and Contango

When the futures price is below the expected future spot price, the situation is known as
normal backwardation; and when the futures price is above the expected future spot
price, the situation is known as contango. However, it should be noted that sometimes
these terms are used to refer to whether the futures price is below or above the current
spot price, rather than the expected future spot price.

SUMMARY

For most purposes, the futures price of a contract with a certain delivery date can be
considered to be the same as the forward price for a contract with the same delivery
date. It can be shown that in theory the two should be exactly the same when interest
rates are perfectly predictable.

Table 5.5 Relationship between futures price and expected future spot price.

Underlying asset Relationship of expected
return k from asset
to risk-free rate r

Relationship of futures
price F to expected

future spot price EðST Þ
No systematic risk k ¼ r F0 ¼ EðST Þ
Positive systematic risk k > r F0 < EðST Þ
Negative systematic risk k < r F0 > EðST Þ
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For the purposes of understanding futures (or forward) prices, it is convenient to

divide futures contracts into two categories: those in which the underlying asset is held

for investment by at least some traders and those in which the underlying asset is held

primarily for consumption purposes.

In the case of investment assets, we have considered three different situations:

1. The asset provides no income.

2. The asset provides a known dollar income.

3. The asset provides a known yield.

The results are summarized in Table 5.6. They enable futures prices to be obtained for

contracts on stock indices, currencies, gold, and silver. Storage costs can be treated as

negative income.

In the case of consumption assets, it is not possible to obtain the futures price as a

function of the spot price and other observable variables. Here the parameter known as

the asset’s convenience yield becomes important. It measures the extent to which users

of the commodity feel that ownership of the physical asset provides benefits that are not

obtained by the holders of the futures contract. These benefits may include the ability

to profit from temporary local shortages or the ability to keep a production process

running. We can obtain an upper bound for the futures price of consumption assets

using arbitrage arguments, but we cannot nail down an equality relationship between

futures and spot prices.

The concept of cost of carry is sometimes useful. The cost of carry is the storage cost

of the underlying asset plus the cost of financing it minus the income received from it.

In the case of investment assets, the futures price is greater than the spot price by an

amount reflecting the cost of carry. In the case of consumption assets, the futures price

is greater than the spot price by an amount reflecting the cost of carry net of the

convenience yield.

If we assume the capital asset pricing model is true, the relationship between the

futures price and the expected future spot price depends on whether the return on the

asset is positively or negatively correlated with the return on the stock market. Positive

correlation will tend to lead to a futures price lower than the expected future spot price,

whereas negative correlation will tend to lead to a futures price higher than the expected

future spot price. Only when the correlation is zero will the theoretical futures price be

equal to the expected future spot price.

Table 5.6 Summary of results for a contract with time to maturity T on an investment
asset with price S0 when the risk-free interest rate for a T -year period is r.

Asset Forward/futures
price

Value of long forward contract
with delivery price K

Provides no income: S0e
rT S0 �Ke�rT

Provides known income
with present value I : ðS0 � IÞerT S0 � I �Ke�rT

Provides known yield q : S0e
ðr�qÞT S0e

�qT �Ke�rT
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Practice Questions (Answers in Solutions Manual)

5.1. Explain what happens when an investor shorts a certain share.

5.2. What is the difference between the forward price and the value of a forward contract?

5.3. Suppose that you enter into a 6-month forward contract on a non-dividend-paying stock
when the stock price is $30 and the risk-free interest rate (with continuous compounding)
is 12% per annum. What is the forward price?

5.4. A stock index currently stands at 350. The risk-free interest rate is 8% per annum (with
continuous compounding) and the dividend yield on the index is 4% per annum. What
should the futures price for a 4-month contract be?

5.5. Explain carefully why the futures price of gold can be calculated from its spot price and
other observable variables whereas the futures price of copper cannot.

5.6. Explain carefully the meaning of the terms convenience yield and cost of carry. What is the
relationship between futures price, spot price, convenience yield, and cost of carry?

5.7. Explain why a foreign currency can be treated as an asset providing a known yield.

5.8. Is the futures price of a stock index greater than or less than the expected future value of
the index? Explain your answer.

5.9. A 1-year long forward contract on a non-dividend-paying stock is entered into when the
stock price is $40 and the risk-free rate of interest is 10% per annum with continuous
compounding.
(a) What are the forward price and the initial value of the forward contract?
(b) Six months later, the price of the stock is $45 and the risk-free interest rate is

still 10%. What are the forward price and the value of the forward contract?

5.10. The risk-free rate of interest is 7% per annum with continuous compounding, and the
dividend yield on a stock index is 3.2% per annum. The current value of the index is 150.
What is the 6-month futures price?

5.11. Assume that the risk-free interest rate is 9% per annum with continuous compounding
and that the dividend yield on a stock index varies throughout the year. In February,
May, August, and November, dividends are paid at a rate of 5% per annum. In other
months, dividends are paid at a rate of 2% per annum. Suppose that the value of the index
on July 31 is 1,300. What is the futures price for a contract deliverable in December 31 of
the same year?
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5.12. Suppose that the risk-free interest rate is 10% per annum with continuous compounding
and that the dividend yield on a stock index is 4% per annum. The index is standing at
400, and the futures price for a contract deliverable in four months is 405. What arbitrage
opportunities does this create?

5.13. Estimate the difference between short-term interest rates in Canada and the United States
on May 14, 2013, from the information in Table 5.4.

5.14. The 2-month interest rates in Switzerland and the United States are, respectively, 1% and
2% per annum with continuous compounding. The spot price of the Swiss franc is
$1.0500. The futures price for a contract deliverable in 2 months is also $1.0500. What
arbitrage opportunities does this create?

5.15. The spot price of silver is $25 per ounce. The storage costs are $0.24 per ounce per year
payable quarterly in advance. Assuming that interest rates are 5% per annum for all
maturities, calculate the futures price of silver for delivery in 9 months.

5.16. Suppose that F1 and F2 are two futures contracts on the same commodity with times to
maturity, t1 and t2, where t2 > t1. Prove that

F2 6 F1e
rðt2�t1Þ

where r is the interest rate (assumed constant) and there are no storage costs. For the
purposes of this problem, assume that a futures contract is the same as a forward
contract.

5.17. When a known future cash outflow in a foreign currency is hedged by a company using a
forward contract, there is no foreign exchange risk. When it is hedged using futures
contracts, the daily settlement process does leave the company exposed to some risk.
Explain the nature of this risk. In particular, consider whether the company is better off
using a futures contract or a forward contract when:
(a) The value of the foreign currency falls rapidly during the life of the contract.
(b) The value of the foreign currency rises rapidly during the life of the contract.
(c) The value of the foreign currency first rises and then falls back to its initial value.
(d) The value of the foreign currency first falls and then rises back to its initial value.
Assume that the forward price equals the futures price.

5.18. It is sometimes argued that a forward exchange rate is an unbiased predictor of future
exchange rates. Under what circumstances is this so?

5.19. Show that the growth rate in an index futures price equals the excess return on the
portfolio underlying the index over the risk-free rate. Assume that the risk-free interest
rate and the dividend yield are constant.

5.20. Show that equation (5.3) is true by considering an investment in the asset combined with a
short position in a futures contract. Assume that all income from the asset is reinvested in
the asset. Use an argument similar to that in footnotes 2 and 4 of this chapter and explain
in detail what an arbitrageur would do if equation (5.3) did not hold.

5.21. Explain carefully what is meant by the expected price of a commodity on a particular
future date. Suppose that the futures price for crude oil declines with the maturity of the
contract at the rate of 2% per year. Assume that speculators tend to be short crude oil
futures and hedgers tend to be long. What does the Keynes and Hicks argument imply
about the expected future price of oil?
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5.22. The Value Line Index is designed to reflect changes in the value of a portfolio of over
1,600 equally weighted stocks. Prior to March 9, 1988, the change in the index from one
day to the next was calculated as the geometric average of the changes in the prices of the
stocks underlying the index. In these circumstances, does equation (5.8) correctly relate
the futures price of the index to its cash price? If not, does the equation overstate or
understate the futures price?

5.23. A US company is interested in using the futures contracts traded by the CME Group to
hedge its Australian dollar exposure. Define r as the interest rate (all maturities) on the
US dollar and rf as the interest rate (all maturities) on the Australian dollar. Assume that
r and rf are constant and that the company uses a contract expiring at time T to hedge an
exposure at time t (T > t).
(a) Show that the optimal hedge ratio is eðrf�rÞðT�tÞ.
(b) Show that, when t is 1 day, the optimal hedge ratio is almost exactly S0=F0, where S0 is

the current spot price of the currency and F0 is the current futures price of the
currency for the contract maturing at time T .

(c) Show that the company can take account of the daily settlement of futures contracts
for a hedge that lasts longer than 1 day by adjusting the hedge ratio so that it always
equals the spot price of the currency divided by the futures price of the currency.

5.24. What is meant by (a) an investment asset and (b) a consumption asset. Why is the
distinction between investment and consumption assets important in the determination of
forward and futures prices?

5.25. What is the cost of carry for:
(a) a non-dividend-paying stock
(b) a stock index
(c) a commodity with storage costs
(d) a foreign currency.

Further Questions

5.26. In early 2012, the spot exchange rate between the Swiss Franc and US dollar was 1.0404
($ per franc). Interest rates in the United States and Switzerland were 0.25% and 0% per
annum, respectively, with continuous compounding. The 3-month forward exchange rate
was 1.0300 ($ per franc). What arbitrage strategy was possible? How does your answer
change if the exchange rate is 1.0500 ($ per franc).

5.27. An index is 1,200. The three-month risk-free rate is 3% per annum and the dividend yield
over the next three months is 1.2% per annum. The six-month risk-free rate is 3.5% per
annum and the dividend yield over the next six months is 1% per annum. Estimate the
futures price of the index for three-month and six-month contracts. All interest rates and
dividend yields are continuously compounded.

5.28. The current USD/euro exchange rate is 1.4000 dollar per euro. The six-month forward
exchange rate is 1.3950. The six-month USD interest rate is 1% per annum continuously
compounded. Estimate the six-month euro interest rate.

5.29. The spot price of oil is $80 per barrel and the cost of storing a barrel of oil for one year is
$3, payable at the end of the year. The risk-free interest rate is 5% per annum
continuously compounded. What is an upper bound for the one-year futures price of oil?
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5.30. A stock is expected to pay a dividend of $1 per share in 2 months and in 5 months. The
stock price is $50, and the risk-free rate of interest is 8% per annum with continuous
compounding for all maturities. An investor has just taken a short position in a 6-month
forward contract on the stock.
(a) What are the forward price and the initial value of the forward contract?
(b) Three months later, the price of the stock is $48 and the risk-free rate of interest is

still 8% per annum. What are the forward price and the value of the short position in
the forward contract?

5.31. A bank offers a corporate client a choice between borrowing cash at 11% per annum and
borrowing gold at 2% per annum. (If gold is borrowed, interest must be repaid in gold.
Thus, 100 ounces borrowed today would require 102 ounces to be repaid in 1 year.) The
risk-free interest rate is 9.25% per annum, and storage costs are 0.5% per annum. Discuss
whether the rate of interest on the gold loan is too high or too low in relation to the rate
of interest on the cash loan. The interest rates on the two loans are expressed with annual
compounding. The risk-free interest rate and storage costs are expressed with continuous
compounding.

5.32. A company that is uncertain about the exact date when it will pay or receive a foreign
currency may try to negotiate with its bank a forward contract that specifies a period
during which delivery can be made. The company wants to reserve the right to choose the
exact delivery date to fit in with its own cash flows. Put yourself in the position of the
bank. How would you price the product that the company wants?

5.33. A trader owns a commodity that provides no income and has no storage costs as part of a
long-term investment portfolio. The trader can buy the commodity for $1,250 per ounce
and sell it for $1,249 per ounce. The trader can borrow funds at 6% per year and invest
funds at 5.5% per year (both interest rates are expressed with annual compounding). For
what range of 1-year forward prices does the trader have no arbitrage opportunities?
Assume there is no bid–offer spread for forward prices.

5.34. A company enters into a forward contract with a bank to sell a foreign currency for K1 at
time T1. The exchange rate at time T1 proves to be S1 (> K1). The company asks the bank
if it can roll the contract forward until time T2 (> T1) rather than settle at time T1. The
bank agrees to a new delivery price, K2. Explain how K2 should be calculated.
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Interest Rate
Futures

So far we have covered futures contracts on commodities, stock indices, and foreign
currencies. We have seen how they work, how they are used for hedging, and how futures

prices are determined. We now move on to consider interest rate futures.

This chapter explains the popular Treasury bond and Eurodollar futures contracts that

trade in the United States. Many of the other interest rate futures contracts throughout
the world have been modeled on these contracts. The chapter also shows how interest rate
futures contracts, when used in conjunction with the duration measure introduced in
Chapter 4, can be used to hedge a company’s exposure to interest rate movements.

6.1 DAY COUNT AND QUOTATION CONVENTIONS

As a preliminary to the material in this chapter, we consider the day count and quotation

conventions that apply to bonds and other instruments dependent on the interest rate.

Day Counts

The day count defines theway in which interest accrues over time. Generally, we know the
interest earned over some reference period (e.g., the time between coupon payments on a
bond), and we are interested in calculating the interest earned over some other period.

The day count convention is usually expressed as X=Y. When we are calculating the
interest earned between two dates, X defines the way in which the number of days

between the two dates is calculated, and Y defines the way in which the total number of
days in the reference period is measured. The interest earned between the two dates is

Number of days between dates

Number of days in reference period
� Interest earned in reference period

Three day count conventions that are commonly used in the United States are:

1. Actual/actual (in period)

2. 30/360

3. Actual/360
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The actual/actual (in period) day count is used for Treasury bonds in the United

States. This means that the interest earned between two dates is based on the ratio of the

actual days elapsed to the actual number of days in the period between coupon
payments. Assume that the bond principal is $100, coupon payment dates are March 1

and September 1, and the coupon rate is 8% per annum. (This means that $4 of interest

is paid on each of March 1 and September 1.) Suppose that we wish to calculate the

interest earned between March 1 and July 3. The reference period is from March 1 to

September 1. There are 184 (actual) days in the reference period, and interest of $4 is

earned during the period. There are 124 (actual) days between March 1 and July 3. The

interest earned between March 1 and July 3 is therefore

124

184
� 4 ¼ 2:6957

The 30/360 day count is used for corporate and municipal bonds in the United States.
This means that we assume 30 days per month and 360 days per year when carrying out

calculations. With the 30/360 day count, the total number of days between March 1 and

September 1 is 180. The total number of days between March 1 and July 3 is

ð4� 30Þ þ 2 ¼ 122. In a corporate bond with the same terms as the Treasury bond

just considered, the interest earned between March 1 and July 3 would therefore be

122

180
� 4 ¼ 2:7111

As shown in Business Snapshot 6.1, sometimes the 30/360 day count convention has

surprising consequences.

The actual/360 day count is used for money market instruments in the United States.
This indicates that the reference period is 360 days. The interest earned during part of a

year is calculated by dividing the actual number of elapsed days by 360 and multiplying

by the rate. The interest earned in 90 days is therefore exactly one-fourth of the quoted

rate, and the interest earned in a whole year of 365 days is 365/360 times the quoted rate.

Conventions vary from country to country and from instrument to instrument. For

example, money market instruments are quoted on an actual/365 basis in Australia,

Canada, and New Zealand. LIBOR is quoted on an actual/360 for all currencies except

sterling, for which it is quoted on an actual/365 basis. Euro-denominated and sterling

bonds are usually quoted on an actual/actual basis.

Business Snapshot 6.1 Day Counts Can Be Deceptive

Between February 28 and March 1, 2015, you have a choice between owning a US
government bond and a US corporate bond. They pay the same coupon and have the
same quoted price. Assuming no risk of default, which would you prefer?

It sounds as though you should be indifferent, but in fact you should have a
marked preference for the corporate bond. Under the 30/360 day count convention
used for corporate bonds, there are 3 days between February 28, 2015, and March 1,
2015. Under the actual/actual (in period) day count convention used for government
bonds, there is only 1 day. You would earn approximately three times as much
interest by holding the corporate bond!
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Price Quotations of US Treasury Bills

The prices of money market instruments are sometimes quoted using a discount rate.

This is the interest earned as a percentage of the final face value rather than as a

percentage of the initial price paid for the instrument. An example is Treasury bills in

the United States. If the price of a 91-day Treasury bill is quoted as 8, this means that

the rate of interest earned is 8% of the face value per 360 days. Suppose that the face

value is $100. Interest of $2.0222 (¼ $100� 0:08� 91=360) is earned over the 91-day

life. This corresponds to a true rate of interest of 2:0222=ð100� 2:0222Þ ¼ 2:064% for

the 91-day period. In general, the relationship between the cash price per $100 of face

value and the quoted price of a Treasury bill in the United States is

P ¼ 360

n
ð100� YÞ

where P is the quoted price, Y is the cash price, and n is the remaining life of the

Treasury bill measured in calendar days. For example, when the cash price of a 90-day

Treasury bill is 99, the quoted price is 4.

Price Quotations of US Treasury Bonds

Treasury bond prices in the United States are quoted in dollars and thirty-seconds of

a dollar. The quoted price is for a bond with a face value of $100. Thus, a quote of

90-05 or 90 5
32 indicates that the quoted price for a bond with a face value of $100,000

is $90,156.25.

The quoted price, which traders refer to as the clean price, is not the same as the

cash price paid by the purchaser of the bond, which is referred to by traders as the

dirty price. In general,

Cash price ¼ Quoted priceþAccrued interest since last coupon date

To illustrate this formula, suppose that it is March 5, 2015, and the bond under

consideration is an 11% coupon bond maturing on July 10, 2038, with a quoted price

of 95-16 or $95.50. Because coupons are paid semiannually on government bonds (and

the final coupon is at maturity), the most recent coupon date is January 10, 2015, and the

next coupon date is July 10, 2015. The (actual) number of days between January 10, 2015,

and March 5, 2015, is 54, whereas the (actual) number of days between January 10, 2015,

and July 10, 2015, is 181. On a bond with $100 face value, the coupon payment is $5.50

on January 10 and July 10. The accrued interest on March 5, 2015, is the share of the

July 10 coupon accruing to the bondholder on March 5, 2015. Because actual/actual in

period is used for Treasury bonds in the United States, this is

54

181
� $5:50 ¼ $1:64

The cash price per $100 face value for the bond is therefore

$95:50þ $1:64 ¼ $97:14

Thus, the cash price of a $100,000 bond is $97,140.
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6.2 TREASURY BOND FUTURES

Table 6.1 shows interest rate futures quotes on May 14, 2013. One of the most popular
long-term interest rate futures contracts is the Treasury bond futures contract traded by
the CME Group. In this contract, any government bond that has between 15 and
25 years to maturity on the first day of the delivery month can be delivered. A contract
which the CME Group started trading 2010 is the ultra T-bond contract, where any
bond with maturity over 25 years can be delivered.

The 10-year, 5-year, and 2-year Treasury note futures contract in the United States are
also very popular. In the 10-year Treasury note futures contract, any government bond
(or note) with a maturity between 6 1

2
and 10 years can be delivered. In the 5-year and

2-year Treasury note futures contracts, the note delivered has a remaining life of about
5 years and 2 years, respectively (and the original life must be less than 5.25 years).

As will be explained later in this section, the exchange has developed a procedure for
adjusting the price received by the party with the short position according to the
particular bond or note it chooses to deliver. The remaining discussion in this section

Table 6.1 Futures quotes for a selection of CME Group contracts on interest
rates on May 14, 2013.

Open High Low Prior
settlement

Last
trade

Change Volume

Ultra T-Bond, $100,000

June 2013 158-08 158-31 156-31 158-08 157-00 �1-08 45,040
Sept. 2013 157-12 157-15 155-16 156-24 155-18 �1-06 176
Treasury Bonds, $100,000

June 2013 144-22 145-04 143-26 144-20 143-28 �0-24 346,878
Sept. 2013 143-28 144-08 142-30 143-24 142-31 �0-25 2,455
10-Year Treasury Notes, $100,000

June 2013 131-315 132-050 131-205 131-310 131-210 �0-100 1,151,825
Sept. 2013 131-040 131-080 130-240 131-025 130-240 �0-105 20,564
5-Year Treasury Notes, $100,000

June 2013 123-310 124-015 123-267 123-307 123-267 �0-040 478,993
Sept. 2013 123-177 123-192 123-122 123-165 123-122 �0-042 4,808
2-Year Treasury Notes, $200,000

June 2013 110-080 110-085 110-075 110-080 110-075 �0-005 98,142
Sept. 2013 110-067 110-072 110-067 110-070 110-067 �0-002 13,103
30-Day Fed Funds Rate, $5,000,000

Sept. 2013 99.875 99.880 99.875 99.875 99.875 0.000 956
July 2014 99.830 99.835 99.830 99.830 99.830 0.000 1,030
Eurodollar, $1,000,000

June 2013 99.720 99.725 99.720 99.725 99.720 �0.005 107,167
Sept. 2013 99.700 99.710 99.700 99.705 99.700 �0.005 114,055
Dec. 2013 99.675 99.685 99.670 99.675 99.670 �0.005 144,213
Dec. 2015 99.105 99.125 99.080 99.100 99.080 �0.020 96,933
Dec. 2017 97.745 97.770 97.675 97.730 97.680 �0.050 14,040
Dec. 2019 96.710 96.775 96.690 96.760 96.690 �0.070 23
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focuses on the Treasury bond futures. Many other contracts traded in the United States
and the rest of the world are designed in a similar way to the Treasury bond futures, so
that many of the points we will make are applicable to these contracts as well.

Quotes

Ultra T-bond futures and Treasury bond futures contracts are quoted in dollars and
thirty-seconds of a dollar per $100 face value. This is similar to the way the bonds are
quoted in the spot market. In Table 6.1, the settlement price of the June 2013 Treasury
bond futures contract is specified as 144-20. This means 144 20

32, or 144.625. The
settlement price of the 10-year Treasury note futures contract is quoted to the nearest
half of a thirty-second. Thus the settlement price of 131-025 for the September 2013
contract should be interpreted as 131 2:5

32
, or 131.078125. The 5-year and 2-year Treasury

note contracts are quoted even more precisely, to the nearest quarter of a thirty-second.
Thus the settlement price of 123-307 for the June 5-year Treasury note contract should
be interpreted as 123 30:75

32
, or 123.9609375. Similarly, the trade price of 123-122 for the

September contract should be interpreted as 123 12:25
32

, or 123.3828125.

Conversion Factors

As mentioned, the Treasury bond futures contract allows the party with the short
position to choose to deliver any bond that has a maturity between 15 and 25 years.
When a particular bond is delivered, a parameter known as its conversion factor defines
the price received for the bond by the party with the short position. The applicable
quoted price for the bond delivered is the product of the conversion factor and the most
recent settlement price for the futures contract. Taking accrued interest into account (see
Section 6.1), the cash received for each $100 face value of the bond delivered is

ðMost recent settlement price� Conversion factor)þAccrued interest

Each contract is for the delivery of $100,000 face value of bonds. Suppose that the
most recent settlement price is 90-00, the conversion factor for the bond delivered is
1.3800, and the accrued interest on this bond at the time of delivery is $3 per $100 face
value. The cash received by the party with the short position (and paid by the party
with the long position) is then

ð1:3800� 90:00Þ þ 3:00 ¼ $127:20

per $100 face value. A party with the short position in one contract would deliver bonds
with a face value of $100,000 and receive $127,200.

The conversion factor for a bond is set equal to the quoted price the bond would have
per dollar of principal on the first day of the delivery month on the assumption that the
interest rate for all maturities equals 6% per annum (with semiannual compounding).
The bond maturity and the times to the coupon payment dates are rounded down to the
nearest 3 months for the purposes of the calculation. The practice enables the exchange
to produce comprehensive tables. If, after rounding, the bond lasts for an exact number
of 6-month periods, the first coupon is assumed to be paid in 6 months. If, after
rounding, the bond does not last for an exact number of 6-month periods (i.e., there
are an extra 3 months), the first coupon is assumed to be paid after 3 months and
accrued interest is subtracted.
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As a first example of these rules, consider a 10% coupon bond with 20 years and

2 months to maturity. For the purposes of calculating the conversion factor, the bond is
assumed to have exactly 20 years to maturity. The first coupon payment is assumed to

be made after 6 months. Coupon payments are then assumed to be made at 6-month
intervals until the end of the 20 years when the principal payment is made. Assume that

the face value is $100. When the discount rate is 6% per annum with semiannual
compounding (or 3% per 6 months), the value of the bond is

X40
i¼1

5

1:03i
þ 100

1:0340
¼ $146:23

Dividing by the face value gives a conversion factor of 1.4623.

As a second example of the rules, consider an 8% coupon bond with 18 years and

4 months to maturity. For the purposes of calculating the conversion factor, the bond is
assumed to have exactly 18 years and 3 months to maturity. Discounting all the payments

back to a point in time 3 months from today at 6% per annum (compounded semi-
annually) gives a value of

4þ
X36
i¼1

4

1:03i
þ 100

1:0336
¼ $125:83

The interest rate for a 3-month period is
ffiffiffiffiffiffiffiffiffi
1:03

p � 1, or 1.4889%. Hence, discounting
back to the present gives the bond’s value as 125:83=1:014889 ¼ $123:99. Subtracting
the accrued interest of 2.0, this becomes $121.99. The conversion factor is therefore
1.2199.

Cheapest-to-Deliver Bond

At any given time during the delivery month, there are many bonds that can be delivered

in the Treasury bond futures contract. These vary widely as far as coupon and maturity
are concerned. The party with the short position can choose which of the available bonds

is ‘‘cheapest’’ to deliver. Because the party with the short position receives

ðMost recent settlement price� Conversion factor)þAccrued interest

and the cost of purchasing a bond is

Quoted bond priceþAccrued interest

the cheapest-to-deliver bond is the one for which

Quoted bond price� ðMost recent settlement price� Conversion factorÞ

is least. Once the party with the short position has decided to deliver, it can determine
the cheapest-to-deliver bond by examining each of the deliverable bonds in turn.

Example 6.1

The party with the short position has decided to deliver and is trying to choose
between the three bonds in the table below. Assume the most recent settlement

price is 93-08, or 93.25.
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The cost of delivering each of the bonds is as follows:

Bond 1: 99:50� ð93:25� 1:0382Þ ¼ $2:69

Bond 2: 143:50� ð93:25� 1:5188Þ ¼ $1:87

Bond 3: 119:75� ð93:25� 1:2615Þ ¼ $2:12

The cheapest-to-deliver bond is Bond 2.

A number of factors determine the cheapest-to-deliver bond. When bond yields are in
excess of 6%, the conversion factor system tends to favor the delivery of low-coupon

long-maturity bonds. When yields are less than 6%, the system tends to favor the
delivery of high-coupon short-maturity bonds. Also, when the yield curve is upward-
sloping, there is a tendency for bonds with a long time to maturity to be favored,

whereas when it is downward-sloping, there is a tendency for bonds with a short time to
maturity to be delivered.

In addition to the cheapest-to-deliver bond option, the party with a short position
has an option known as the wild card play. This is described in Business Snapshot 6.2.

Determining the Futures Price

An exact theoretical futures price for the Treasury bond contract is difficult to

determine because the short party’s options concerned with the timing of delivery
and choice of the bond that is delivered cannot easily be valued. However, if we assume
that both the cheapest-to-deliver bond and the delivery date are known, the Treasury

bond futures contract is a futures contract on a traded security (the bond) that provides
the holder with known income.1 Equation (5.2) then shows that the futures price, F0, is
related to the spot price, S0, by

F0 ¼ ðS0 � IÞerT ð6:1Þ
where I is the present value of the coupons during the life of the futures contract, T is
the time until the futures contract matures, and r is the risk-free interest rate applicable

to a time period of length T .

Example 6.2

Suppose that, in a Treasury bond futures contract, it is known that the cheapest-
to-deliver bond will be a 12% coupon bond with a conversion factor of 1.6000.
Suppose also that it is known that delivery will take place in 270 days. Coupons

are payable semiannually on the bond. As illustrated in Figure 6.1, the last coupon
date was 60 days ago, the next coupon date is in 122 days, and the coupon date
thereafter is in 305 days. The term structure is flat, and the rate of interest (with

Bond Quoted bond
price ($)

Conversion
factor

1 99.50 1.0382
2 143.50 1.5188
3 119.75 1.2615

1 In practice, for the purposes of estimating the cheapest-to-deliver bond, analysts usually assume that zero

rates at the maturity of the futures contract will equal today’s forward rates.
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continuous compounding) is 10% per annum. Assume that the current quoted

bond price is $115. The cash price of the bond is obtained by adding to this
quoted price the proportion of the next coupon payment that accrues to the

holder. The cash price is therefore

115þ 60

60þ 122
� 6 ¼ 116:978

A coupon of $6 will be received after 122 days (¼ 0:3342 years). The present value
of this is

6e�0:1�0:3342 ¼ 5:803

The futures contract lasts for 270 days (¼ 0:7397 years). The cash futures price, if

the contract were written on the 12% bond, would therefore be

ð116:978� 5:803Þe0:1�0:7397 ¼ 119:711

At delivery, there are 148 days of accrued interest. The quoted futures price, if the

contract were written on the 12% bond, is calculated by subtracting the accrued

60
days

122
days

148
days

35
days

Current
time

Coupon
payment

Coupon
payment

Maturity
of

futures
contract

Coupon
payment

Figure 6.1 Time chart for Example 6.2.

Business Snapshot 6.2 The Wild Card Play

The settlement price in the CME Group’s Treasury bond futures contract is the price
at 2:00 p.m. Chicago time. However, Treasury bonds continue trading in the spot
market beyond this time and a trader with a short position can issue to the clearing
house a notice of intention to deliver later in the day. If the notice is issued, the
invoice price is calculated on the basis of the settlement price that day, that is, the
price at 2:00 p.m.

This practice gives rise to an option known as the wild card play. If bond prices
decline after 2:00 p.m. on the first day of the delivery month, the party with the
short position can issue a notice of intention to deliver at, say, 3:45 p.m. and
proceed to buy bonds in the spot market for delivery at a price calculated from the
2:00 p.m. futures price. If the bond price does not decline, the party with the short
position keeps the position open and waits until the next day when the same
strategy can be used.

As with the other options open to the party with the short position, the wild card
play is not free. Its value is reflected in the futures price, which is lower than it would
be without the option.
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interest

119:711� 6� 148

148þ 35
¼ 114:859

From the definition of the conversion factor, 1.6000 standard bonds are considered
equivalent to each 12% bond. The quoted futures price should therefore be

114:859

1:6000
¼ 71:79

6.3 EURODOLLAR FUTURES

The most popular interest rate futures contract in the United States is the three-month

Eurodollar futures contract traded by the CME Group. A Eurodollar is a dollar

deposited in a US or foreign bank outside the United States. The Eurodollar interest
rate is the rate of interest earned on Eurodollars deposited by one bank with another

bank. It is essentially the same as the London Interbank Offered Rate (LIBOR)

introduced in Chapter 4.

A three-month Eurodollar futures contract is a futures contract on the interest that will

be paid (by someone who borrows at the Eurodollar interest rate) on $1 million for a
future three-month period. It allows a trader to speculate on a future three-month interest

rate or to hedge an exposure to a future three-month interest rate. Eurodollar futures

contracts have maturities in March, June, September, and December for up to 10 years
into the future. This means that in 2014 a trader can use Eurodollar futures to take a

position on what interest rates will be as far into the future as 2024. Short-maturity

contracts trade for months other than March, June, September, and December.

To understand how Eurodollar futures contracts work, consider the June 2013

contract in Table 6.1. The settlement price on May 13, 2013, is 99.725. The last trading
day is two days before the third Wednesday of the delivery month, which in the case of

this contract is June 17, 2013. The contract is settled daily in the usual way until the last

trading day. At 11 a.m. on the last trading day, there is a final settlement equal to
100� R, where R is the three-month LIBOR fixing on that day, expressed with quarterly

compounding and an actual/360 day count convention. Thus, if the three-month

Eurodollar interest rate on June 17, 2013, turned out to be 0.75% (actual/360 with
quarterly compounding), the final settlement price would be 99.250. Once a final

settlement has taken place, all contracts are declared closed.

The contract is designed so that a one-basis-point (¼ 0:01) move in the futures quote

corresponds to a gain or loss of $25 per contract. When a Eurodollar futures quote

increases by one basis point, a trader who is long one contract gains $25 and a trader
who is short one contract loses $25. Similarly, when the quote decreases by one basis

point a trader who is long one contract loses $25 and a trader who is short one contract

gains $25. Suppose, for example, a settlement price changes from 99.725 to 99.685.
Traders with long positions lose 4� 25 ¼ $100 per contract; traders with short posi-

tions gain $100 per contract. A one-basis-point change in the futures quote corresponds

to a 0.01% change in the underlying interest rate. This in turn leads to a

1,000,000� 0:0001� 0:25 ¼ 25
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or $25 change in the interest that will be earned on $1 million in three months. The $25
per basis point rule is therefore consistent with the point made earlier that the contract
locks in an interest rate on $1 million for three months.

The futures quote is 100 minus the futures interest rate. An investor who is long gains
when interest rates fall and one who is short gains when interest rates rise. Table 6.2
shows a possible set of outcomes for the June 2013 contract in Table 6.1 for a trader who
takes a long position at the May 13, 2013, settlement price.

The contract price is defined as

10,000� ½100� 0:25� ð100�QÞ� ð6:2Þ
where Q is the quote. Thus, the settlement price of 99.725 for the June 2013 contract in
Table 6.1 corresponds to a contract price of

10,000� ½100� 0:25� ð100� 99:725Þ� ¼ $999,312:5

In Table 6.2, the final contract price is

10;000� ½100� 0:25� ð100� 99:615Þ� ¼ $999,037:5

and the difference between the initial and final contract price is $275, This is consistent
with the loss calculated in Table 6.2 using the ‘‘$25 per one-basis-point move’’ rule.

Example 6.3

An investor wants to lock in the interest rate for a three-month period beginning
two days before the third Wednesday of September, on a principal of $100
million. We suppose that the September Eurodollar futures quote is 96.50, in-
dicating that the investor can lock in an interest rate of 100� 96:5 or 3.5% per
annum. The investor hedges by buying 100 contracts. Suppose that, two days
before the third Wednesday of September, the three-month Eurodollar rate turns
out to be 2.6%. The final settlement in the contract is then at a price of 97.40. The
investor gains

100� 25� ð9,740� 9,650Þ ¼ 225,000

or $225,000 on the Eurodollar futures contracts. The interest earned on the three-
month investment is

100,000,000� 0:25� 0:026 ¼ 650,000

Table 6.2 Possible sequence of prices for June 2013
Eurodollar futures contract.

Date Settlement
futures price

Change Gain per
contract ($)

May 13, 2013 99.725
May 14, 2013 99.720 �0.005 �12.50
May 15, 2013 99.670 �0.050 �125.00

..

. ..
. ..

. ..
.

June 17, 2013 99.615 þ0.010 þ25.00

Total �0.110 �275.00
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or $650,000. The gain on the Eurodollar futures brings this up to $875,000,
which is what the interest would be at 3.5% (100,000,000� 0:25� 0:035 ¼
875,000).

It appears that the futures trade has the effect of exactly locking an interest rate
of 3.5% in all circumstances. In fact, the hedge is less than perfect because

(a) futures contracts are settled daily (not all at the end) and (b) the final settle-
ment in the futures contract happens at contract maturity, whereas the interest
payment on the investment is three months later. One approximate adjustment for
the second point is to reduce the size of the hedge to reflect the difference between

funds received in September, and funds received three months later. In this case,
we would assume an interest rate of 3.5% for the three-month period and multiply
the number of contracts by 1=ð1þ 0:035� 0:25Þ ¼ 0:9913. This would lead to 99
rather than 100 contracts being purchased.

Table 6.1 shows that the interest rate term structure in the US was upward sloping in
May 2013. Using the ‘‘Prior Settlement’’ column, the futures rates for three-month

periods beginning June 17, 2013, September 16, 2013, December 16, 2013, December 14,
2015, December 18, 2017, and December 16, 2019, were 0.275%, 0.295%, 0.325%,
0.900%, 2.270%, and 3.324%, respectively.

Example 6.3 shows how Eurodollar futures contracts can be used by an investor who
wants to hedge the interest that will be earned during a future three-month period.
Note that the timing of the cash flows from the hedge does not line up exactly with the

timing of the interest cash flows. This is because the futures contract is settled daily.
Also, the final settlement is in September, whereas interest payments on the investment
are received three months later in December. As indicated in the example, a small
adjustment can be made to the hedge position to approximately allow for this second
point.

Other contracts similar to the CME Group’s Eurodollar futures contracts trade on
interest rates in other countries. The CMEGroup trades Euroyen contracts. The London

International Financial Futures and Options Exchange (part of Euronext) trades three-
month Euribor contracts (i.e., contracts on the three-month rate for euro deposits
between euro zone banks) and three-month Euroswiss futures.

Forward vs. Futures Interest Rates

The Eurodollar futures contract is similar to a forward rate agreement (FRA: see

Section 4.7) in that it locks in an interest rate for a future period. For short maturities
(up to a year or so), the Eurodollar futures interest rate can be assumed to be the same
as the corresponding forward interest rate. For longer-dated contracts, differences
between the contracts become important. Compare a Eurodollar futures contract on

an interest rate for the period between times T1 and T2 with an FRA for the same
period. The Eurodollar futures contract is settled daily. The final settlement is at time T1
and reflects the realized interest rate for the period between times T1 and T2. By contrast
the FRA is not settled daily and the final settlement reflecting the realized interest rate

between times T1 and T2 is made at time T2.
2

There are therefore two differences between a Eurodollar futures contract and an

2 As mentioned in Section 4.7, settlement may occur at time T1, but it is then equal to the present value of

what the forward contract payoff would be at time T2.
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FRA. These are:

1. The difference between a Eurodollar futures contract and a similar contract where
there is no daily settlement. The latter is a hypothetical forward contract where a
payoff equal to the difference between the forward interest rate and the realized
interest rate is paid at time T1.

2. The difference between the hypothetical forward contract where there is settlement
at time T1 and a true forward contract where there is settlement at time T2 equal to
the difference between the forward interest rate and the realized interest rate.

These two components to the difference between the contracts cause some confusion in
practice. Both decrease the forward rate relative to the futures rate, but for long-dated
contracts the reduction caused by the second difference is much smaller than that caused
by the first. The reason why the first difference (daily settlement) decreases the forward
rate follows from the arguments in Section 5.8. Suppose you have a contract where the
payoff is RM � RF at time T1, where RF is a predetermined rate for the period between T1
and T2 and RM is the realized rate for this period, and you have the option to switch to
daily settlement. In this case daily settlement tends to lead to cash inflows when rates are
high and cash outflows when rates are low. You would therefore find switching to daily
settlement to be attractive because you tend to have more money in your margin account
when rates are high. As a result the market would therefore set RF higher for the daily
settlement alternative (reducing your cumulative expected payoff). To put this the other
way round, switching from daily settlement to settlement at time T1 reduces RF .

To understand the reason why the second difference reduces the forward rate,
suppose that the payoff of RM � RF is at time T2 instead of T1 (as it is for a regular
FRA). If RM is high, the payoff is positive. Because rates are high, the cost to you of
having the payoff that you receive at time T2 rather than time T1 is relatively high. If RM

is low, the payoff is negative. Because rates are low, the benefit to you of having the
payoff you make at time T2 rather than time T1 is relatively low. Overall you would
rather have the payoff at time T1. If it is at time T2 rather than T1, you must be
compensated by a reduction in RF .

3

Convexity Adjustment

Analysts make what is known as a convexity adjustment to account for the total
difference between the two rates. One popular adjustment is4

Forward rate ¼ Futures rate� 1
2
�2
T1T2 ð6:3Þ

where, as above, T1 is the time to maturity of the futures contract and T2 is the time to
the maturity of the rate underlying the futures contract. The variable � is the standard
deviation of the change in the short-term interest rate in 1 year. Both rates are expressed
with continuous compounding.5

3 Quantifying the effect of this type of timing difference on the value of a derivative is discussed further in

Chapter 30.
4 See Technical Note 1 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of this.
5 This formula is based on the Ho–Lee interest rate model, which will be discussed in Chapter 31. See

T. S.Y. Ho and S.-B. Lee, ‘‘Term structure movements and pricing interest rate contingent claims,’’ Journal

of Finance, 41 (December 1986), 1011–29.
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Example 6.4

Consider the situation where � ¼ 0:012 and we wish to calculate the forward rate

when the 8-year Eurodollar futures price quote is 94. In this case T1 ¼ 8,

T2 ¼ 8:25, and the convexity adjustment is

1
2
� 0:0122 � 8� 8:25 ¼ 0:00475

or 0.475% (47.5 basis points). The futures rate is 6% per annum on an actual/360

basis with quarterly compounding. This corresponds to 1.5% per 90 days or an

annual rate of ð365=90Þ ln 1:015 ¼ 6:038% with continuous compounding and an

actual/365 day count. The estimate of the forward rate given by equation (6.3),

therefore, is 6:038� 0:475 ¼ 5:563% per annum with continuous compounding.

The table below shows how the size of the adjustment increases with the time to

maturity.

We can see from this table that the size of the adjustment is roughly pro-

portional to the square of the time to maturity of the futures contract. For

example, when the maturity doubles from 2 to 4 years, the size of the convexity

approximately quadruples.

Using Eurodollar Futures to Extend the LIBOR Zero Curve

The LIBOR zero curve out to 1 year is determined by the 1-month, 3-month, 6-month,

and 12-month LIBOR rates. Once the convexity adjustment just described has been

made, Eurodollar futures are often used to extend the zero curve. Suppose that the ith

Eurodollar futures contract matures at time Ti (i ¼ 1; 2; . . . ). It is usually assumed that

the forward interest rate calculated from the ith futures contract applies to the period Ti
to Tiþ1. (In practice this is close to true.) This enables a bootstrap procedure to be used to

determine zero rates. Suppose that Fi is the forward rate calculated from the ith

Eurodollar futures contract and Ri is the zero rate for a maturity Ti. From equation (4.5),

Fi ¼
Riþ1Tiþ1 � RiTi

Tiþ1 � Ti

so that

Riþ1 ¼
FiðTiþ1 � TiÞ þ RiTi

Tiþ1

ð6:4Þ

Other Euro rates such as Euroswiss, Euroyen, and Euribor are used in a similar way.

Maturity of futures
(years)

Convexity adjustments
(basis points)

2 3.2

4 12.2

6 27.0

8 47.5

10 73.8
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Example 6.5

The 400-day LIBOR zero rate has been calculated as 4.80% with continuous
compounding and, from Eurodollar futures quotes, it has been calculated that
(a) the forward rate for a 90-day period beginning in 400 days is 5.30% with

continuous compounding, (b) the forward rate for a 90-day period beginning in
491 days is 5.50% with continuous compounding, and (c) the forward rate for a
90-day period beginning in 589 days is 5.60% with continuous compounding. We
can use equation (6.4) to obtain the 491-day rate as

0:053� 91þ 0:048� 400

491
¼ 0:04893

or 4.893%. Similarly we can use the second forward rate to obtain the 589-day
rate as

0:055� 98þ 0:04893� 491

589
¼ 0:04994

or 4.994%. The next forward rate of 5.60% would be used to determine the zero
curve out to the maturity of the next Eurodollar futures contract. (Note that, even

though the rate underlying the Eurodollar futures contract is a 90-day rate, it is
assumed to apply to the 91 or 98 days elapsing between Eurodollar contract
maturities.)

6.4 DURATION-BASED HEDGING STRATEGIES USING FUTURES

We discussed duration in Section 4.8. Consider the situation where a position in an
asset that is interest rate dependent, such as a bond portfolio or a money market

security, is being hedged using an interest rate futures contract. Define:

VF : Contract price for one interest rate futures contract

DF : Duration of the asset underlying the futures contract at the maturity of the
futures contract

P : Forward value of the portfolio being hedged at the maturity of the hedge (in
practice, this is usually assumed to be the same as the value of the portfolio
today)

DP : Duration of the portfolio at the maturity of the hedge

If we assume that the change in the yield, �y, is the same for all maturities, which
means that only parallel shifts in the yield curve can occur, it is approximately true that

�P ¼ �PDP �y

It is also approximately true that
�VF ¼ �VFDF �y

The number of contracts required to hedge against an uncertain �y, therefore, is

N
� ¼ PDP

VFDF

ð6:5Þ
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This is the duration-based hedge ratio. It is sometimes also called the price sensitivity
hedge ratio.6 Using it has the effect of making the duration of the entire position
zero.

When the hedging instrument is a Treasury bond futures contract, the hedger must
base DF on an assumption that one particular bond will be delivered. This means that
the hedger must estimate which of the available bonds is likely to be cheapest to deliver

at the time the hedge is put in place. If, subsequently, the interest rate environment
changes so that it looks as though a different bond will be cheapest to deliver, then the
hedge has to be adjusted and as a result its performance may be worse than
anticipated.

When hedges are constructed using interest rate futures, it is important to bear in
mind that interest rates and futures prices move in opposite directions. When interest
rates go up, an interest rate futures price goes down. When interest rates go down, the
reverse happens, and the interest rate futures price goes up. Thus, a company in a
position to lose money if interest rates drop should hedge by taking a long futures
position. Similarly, a company in a position to lose money if interest rates rise should

hedge by taking a short futures position.

The hedger tries to choose the futures contract so that the duration of the underlying
asset is as close as possible to the duration of the asset being hedged. Eurodollar futures
tend to be used for exposures to short-term interest rates, whereas ultra T-bond,

Treasury bond, and Treasury note futures contracts are used for exposures to longer-
term rates.

Example 6.6

It is August 2 and a fund manager with $10 million invested in government bonds is
concerned that interest rates are expected to be highly volatile over the next
3 months. The fund manager decides to use the December T-bond futures contract

to hedge the value of the portfolio. The current futures price is 93-02, or 93.0625.
Because each contract is for the delivery of $100,000 face value of bonds, the futures
contract price is $93,062.50.

Suppose that the duration of the bond portfolio in 3 months will be

6.80 years. The cheapest-to-deliver bond in the T-bond contract is expected to
be a 20-year 12% per annum coupon bond. The yield on this bond is currently
8.80% per annum, and the duration will be 9.20 years at maturity of the futures
contract.

The fund manager requires a short position in T-bond futures to hedge the
bond portfolio. If interest rates go up, a gain will be made on the short futures
position, but a loss will be made on the bond portfolio. If interest rates decrease, a
loss will be made on the short position, but there will be a gain on the bond
portfolio. The number of bond futures contracts that should be shorted can be
calculated from equation (6.5) as

10,000,000

93,062:50
� 6:80

9:20
¼ 79:42

To the nearest whole number, the portfolio manager should short 79 contracts.

6 For a more detailed discussion of equation (6.5), see R. J. Rendleman, ‘‘Duration-Based Hedging with

Treasury Bond Futures,’’ Journal of Fixed Income 9, 1 (June 1999): 84–91.
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6.5 HEDGING PORTFOLIOS OF ASSETS AND LIABILITIES

Financial institutions sometimes attempt to hedge themselves against interest rate risk

by ensuring that the average duration of their assets equals the average duration of their
liabilities. (The liabilities can be regarded as short positions in bonds.) This strategy is

known as duration matching or portfolio immunization. When implemented, it ensures

that a small parallel shift in interest rates will have little effect on the value of the
portfolio of assets and liabilities. The gain (loss) on the assets should offset the loss

(gain) on the liabilities.

Duration matching does not immunize a portfolio against nonparallel shifts in the
zero curve. This is a weakness of the approach. In practice, short-term rates are usually

more volatile than, and are not perfectly correlated with, long-term rates. Sometimes it

even happens that short- and long-term rates move in opposite directions to each

other. Duration matching is therefore only a first step and financial institutions have
developed other tools to help them manage their interest rate exposure. See Business

Snapshot 6.3.

SUMMARY

Two very popular interest rate contracts are the Treasury bond and Eurodollar futures

contracts that trade in the United States. In the Treasury bond futures contracts, the

party with the short position has a number of interesting delivery options:

1. Delivery can be made on any day during the delivery month.

2. There are a number of alternative bonds that can be delivered.

3. On any day during the delivery month, the notice of intention to deliver at the
2:00 p.m. settlement price can be made later in the day.

These options all tend to reduce the futures price.

Business Snapshot 6.3 Asset–Liability Management by Banks

The asset–liability management (ALM) committees of banks now monitor their
exposure to interest rates very carefully. Matching the durations of assets and
liabilities is sometimes a first step, but this does not protect a bank against non-
parallel shifts in the yield curve. A popular approach is known as GAP management.
This involves dividing the zero-coupon yield curve into segments, known as buckets.
The first bucket might be 0 to 1 month, the second 1 to 3 months, and so on. The
ALM committee then investigates the effect on the value of the bank’s portfolio of
the zero rates corresponding to one bucket changing while those corresponding to all
other buckets stay the same.

If there is a mismatch, corrective action is usually taken. This can involve changing
deposit and lending rates in the way described in Section 4.10. Alternatively, tools
such as swaps, FRAs, bond futures, Eurodollar futures, and other interest rate
derivatives can be used.
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The Eurodollar futures contract is a contract on the 3-month Eurodollar interest rate
two days before the third Wednesday of the delivery month. Eurodollar futures are

frequently used to estimate LIBOR forward rates for the purpose of constructing a
LIBOR zero curve. When long-dated contracts are used in this way, it is important to
make what is termed a convexity adjustment to allow for the difference between
Eurodollar futures and FRAs.

The concept of duration is important in hedging interest rate risk. It enables a
hedger to assess the sensitivity of a bond portfolio to small parallel shifts in the yield
curve. It also enables the hedger to assess the sensitivity of an interest rate futures price
to small changes in the yield curve. The number of futures contracts necessary to
protect the bond portfolio against small parallel shifts in the yield curve can therefore
be calculated.

The key assumption underlying duration-based hedging is that all interest rates
change by the same amount. This means that only parallel shifts in the term structure
are allowed for. In practice, short-term interest rates are generally more volatile than are

long-term interest rates, and hedge performance is liable to be poor if the duration of
the bond underlying the futures contract differs markedly from the duration of the asset
being hedged.

FURTHER READING

Burghardt, G., and W. Hoskins. ‘‘The Convexity Bias in Eurodollar Futures,’’ Risk, 8, 3 (1995):
63–70.

Grinblatt, M., and N. Jegadeesh. ‘‘The Relative Price of Eurodollar Futures and Forward
Contracts,’’ Journal of Finance, 51, 4 (September 1996): 1499–1522.

Practice Questions (Answers in Solutions Manual)

6.1. A US Treasury bond pays a 7% coupon on January 7 and July 7. How much interest
accrues per $100 of principal to the bondholder between July 7, 2014, and August 8, 2014?
How would your answer be different if it were a corporate bond?

6.2. It is January 9, 2015. The price of a Treasury bond with a 12% coupon that matures on
October 12, 2030, is quoted as 102-07. What is the cash price?

6.3. How is the conversion factor of a bond calculated by the CME Group? How is it used?

6.4. A Eurodollar futures price changes from 96.76 to 96.82. What is the gain or loss to an
investor who is long two contracts?

6.5. What is the purpose of the convexity adjustment made to Eurodollar futures rates? Why is
the convexity adjustment necessary?

6.6. The 350-day LIBOR rate is 3% with continuous compounding and the forward rate
calculated from a Eurodollar futures contract that matures in 350 days is 3.2% with
continuous compounding. Estimate the 440-day zero rate.

6.7. It is January 30. You are managing a bond portfolio worth $6 million. The duration of the
portfolio in 6 months will be 8.2 years. The September Treasury bond futures price is
currently 108-15, and the cheapest-to-deliver bond will have a duration of 7.6 years in
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September. How should you hedge against changes in interest rates over the next
6 months?

6.8. The price of a 90-day Treasury bill is quoted as 10.00. What continuously compounded
return (on an actual/365 basis) does an investor earn on the Treasury bill for the 90-day
period?

6.9. It is May 5, 2014. The quoted price of a government bond with a 12% coupon that
matures on July 27, 2024, is 110-17. What is the cash price?

6.10. Suppose that the Treasury bond futures price is 101-12. Which of the following four
bonds is cheapest to deliver?

Bond Price Conversion factor

1 125-05 1.2131

2 142-15 1.3792

3 115-31 1.1149

4 144-02 1.4026

6.11. It is July 30, 2015. The cheapest-to-deliver bond in a September 2015 Treasury bond futures
contract is a 13% coupon bond, and delivery is expected to be made on September 30, 2015.
Coupon payments on the bond are made on February 4 and August 4 each year. The term
structure is flat, and the rate of interest with semiannual compounding is 12% per annum.
The conversion factor for the bond is 1.5. The current quoted bond price is $110. Calculate
the quoted futures price for the contract.

6.12. An investor is looking for arbitrage opportunities in the Treasury bond futures market.
What complications are created by the fact that the party with a short position can choose
to deliver any bond with a maturity of over 15 years?

6.13. Suppose that the 9-month LIBOR interest rate is 8% per annum and the 6-month LIBOR
interest rate is 7.5% per annum (both with actual/365 and continuous compounding).
Estimate the 3-month Eurodollar futures price quote for a contract maturing in 6 months.

6.14. Suppose that the 300-day LIBOR zero rate is 4% and Eurodollar quotes for contracts
maturing in 300, 398, and 489 days are 95.83, 95.62, and 95.48. Calculate 398-day and
489-day LIBOR zero rates. Assume no difference between forward and futures rates for
the purposes of your calculations.

6.15. Suppose that a bond portfolio with a duration of 12 years is hedged using a futures
contract in which the underlying asset has a duration of 4 years. What is likely to be the
impact on the hedge of the fact that the 12-year rate is less volatile than the 4-year rate?

6.16. Suppose that it is February 20 and a treasurer realizes that on July 17 the company will
have to issue $5 million of commercial paper with a maturity of 180 days. If the paper
were issued today, the company would realize $4,820,000. (In other words, the company
would receive $4,820,000 for its paper and have to redeem it at $5,000,000 in 180 days’
time.) The September Eurodollar futures price is quoted as 92.00. How should the
treasurer hedge the company’s exposure?

6.17. On August 1, a portfolio manager has a bond portfolio worth $10 million. The duration
of the portfolio in October will be 7.1 years. The December Treasury bond futures price is
currently 91-12 and the cheapest-to-deliver bond will have a duration of 8.8 years at
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maturity. How should the portfolio manager immunize the portfolio against changes in
interest rates over the next 2 months?

6.18. How can the portfolio manager change the duration of the portfolio to 3.0 years in
Problem 6.17?

6.19. Between October 30, 2015, and November 1, 2015, you have a choice between owning a
US government bond paying a 12% coupon and a US corporate bond paying a 12%
coupon. Consider carefully the day count conventions discussed in this chapter and decide
which of the two bonds you would prefer to own. Ignore the risk of default.

6.20. Suppose that a Eurodollar futures quote is 88 for a contract maturing in 60 days. What is
the LIBOR forward rate for the 60- to 150-day period? Ignore the difference between
futures and forwards for the purposes of this question.

6.21. The 3-month Eurodollar futures price for a contract maturing in 6 years is quoted as
95.20. The standard deviation of the change in the short-term interest rate in 1 year is
1.1%. Estimate the forward LIBOR interest rate for the period between 6.00 and 6.25 years
in the future.

6.22. Explain why the forward interest rate is less than the corresponding futures interest rate
calculated from a Eurodollar futures contract.

Further Questions

6.23. It is April 7, 2014. The quoted price of a US government bond with a 6% per annum
coupon (paid semiannually) is 120-00. The bond matures on July 27, 2023. What is the
cash price? How does your answer change if it is a corporate bond?

6.24. A Treasury bond futures price is 103-12. The prices of three deliverable bonds are 115-06,
135-12, and 155-28. Their conversion factors are 1.0679, 1.2264, and 1.4169, respectively.
Which bond is cheapest to deliver?

6.25. The December Eurodollar futures contract is quoted as 98.40 and a company plans to
borrow $8 million for three months starting in December at LIBOR plus 0.5%.

(a) What rate can the company lock in by using the Eurodollar futures contract?
(b) What position should the company take in the contracts?
(c) If the actual three-month rate turns out to be 1.3%, what is the final settlement price

on the futures contracts.

Explain why timing mismatches reduce the effectiveness of the hedge.

6.26. A Eurodollar futures quote for the period between 5.1 and 5.35 years in the future is 97.1.
The standard deviation of the change in the short-term interest rate in one year is 1.4%.
Estimate the forward interest rate in an FRA.

6.27. It is March 10, 2014. The cheapest-to-deliver bond in a December 2014 Treasury bond
futures contract is an 8% coupon bond, and delivery is expected to be made on
December 31, 2014. Coupon payments on the bond are made on March 1 and
September 1 each year. The rate of interest with continuous compounding is 5% per
annum for all maturities. The conversion factor for the bond is 1.2191. The current
quoted bond price is $137. Calculate the quoted futures price for the contract.

6.28. Assume that a bank can borrow or lend money at the same interest rate in the LIBOR
market. The 90-day rate is 10% per annum, and the 180-day rate is 10.2% per annum,
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both expressed with continuous compounding and actual/actual day count. The Euro-
dollar futures price for a contract maturing in 91 days is quoted as 89.5. What arbitrage
opportunities are open to the bank?

6.29. A Canadian company wishes to create a Canadian LIBOR futures contract from a US
Eurodollar futures contract and forward contracts on foreign exchange. Using an
example, explain how the company should proceed. For the purposes of this problem,
assume that a futures contract is the same as a forward contract.

6.30. On June 25, 2014, the futures price for the June 2014 bond futures contract is 118-23.
(a) Calculate the conversion factor for a bond maturing on January 1, 2030, paying a

coupon of 10%.
(b) Calculate the conversion factor for a bond maturing on October 1, 2035, paying a

coupon of 7%.
(c) Suppose that the quoted prices of the bonds in (a) and (b) are 169.00 and 136.00,

respectively. Which bond is cheaper to deliver?
(d) Assuming that the cheapest-to-deliver bond is actually delivered on June 25, 2014,

what is the cash price received for the bond?

6.31. A portfolio manager plans to use a Treasury bond futures contract to hedge a bond
portfolio over the next 3 months. The portfolio is worth $100 million and will have a
duration of 4.0 years in 3 months. The futures price is 122, and each futures contract is on
$100,000 of bonds. The bond that is expected to be cheapest to deliver will have a
duration of 9.0 years at the maturity of the futures contract. What position in futures
contracts is required?
(a) What adjustments to the hedge are necessary if after 1 month the bond that is

expected to be cheapest to deliver changes to one with a duration of 7 years?
(b) Suppose that all rates increase over the next 3 months, but long-term rates increase

less than short-term and medium-term rates. What is the effect of this on the
performance of the hedge?
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Swaps

The birth of the over-the-counter swap market can be traced to a currency swap
negotiated between IBM and the World Bank in 1981. The World Bank had borrow-

ings denominated in US dollars while IBM had borrowings denominated in German
deutsche marks and Swiss francs. The World Bank (which was restricted in the deutsche

mark and Swiss franc borrowing it could do directly) agreed to make interest payments
on IBM’s borrowings while IBM in return agreed to make interest payments on the
World Bank’s borrowings.

Since that first transaction in 1981, the swap market has seen phenomenal growth.
Swaps now occupy a position of central importance in over-the-counter derivatives

market. The statistics produced by the Bank for International Settlements show that
about 58.5% of all over-the-counter derivatives are interest rate swaps and a further 4%
are currency swaps. Most of this chapter is devoted to discussing these two types of

swap. Other swaps are briefly reviewed at the end of the chapter and discussed in more
detail in later chapters (in particular, Chapters 25 and 33).

A swap is an over-the-counter agreement between two companies to exchange cash
flows in the future. The agreement defines the dates when the cash flows are to be paid

and the way in which they are to be calculated. Usually the calculation of the cash flows
involves the future value of an interest rate, an exchange rate, or other market variable.

A forward contract can be viewed as a simple example of a swap. Suppose it is
March 1, 2016, and a company enters into a forward contract to buy 100 ounces of gold

for $1,500 per ounce in 1 year. The company can sell the gold in 1 year as soon as it is
received. The forward contract is therefore equivalent to a swap where the company
agrees that it will pay $150,000 and receive 100S on March 1, 2017, where S is the

market price of 1 ounce of gold on that date. However, whereas a forward contract is
equivalent to the exchange of cash flows on just one future date, swaps typically lead to
cash flow exchanges on several future dates.

The most popular (plain vanilla) interest rate swap is one where LIBOR is exchanged

for a fixed rate of interest. When valuing swaps, we require a ‘‘risk-free’’ discount rate
for cash flows. As mentioned in Section 4.1, LIBOR has traditionally been used as a
proxy for the ‘‘risk-free’’ discount rate. As it happens, this greatly simplifies valuation of

plain vanilla interest rate swaps because the discount rate is then the same as the
reference interest rate in the swap. Since the 2008 credit crisis, other risk-free discount
rates have been used, particularly for collateralized transactions. In this chapter, we

assume that LIBOR is used as the risk-free discount rate. In Chapter 9, we will revisit
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this assumption and discuss both the choice of the risk-free rate and its impact on the
valuation of interest rate swaps.

7.1 MECHANICS OF INTEREST RATE SWAPS

In an interest rate swap, one company agrees to pay to another company cash flows
equal to interest at a predetermined fixed rate on a notional principal for a predeter-
mined number of years. In return, it receives interest at a floating rate on the same
notional principal for the same period of time from the other company.

LIBOR

The floating rate in most interest rate swap agreements is the London Interbank Offered
Rate (LIBOR). We introduced this in Chapter 4. It is the rate of interest at which a bank
with a AA credit rating is able to borrow from other banks.

Just as prime is often the reference rate of interest for floating-rate loans in the
domestic financial market, LIBOR is a reference rate of interest for loans in inter-
national financial markets. To understand how it is used, consider a 5-year bond with a
rate of interest specified as 6-month LIBOR plus 0.5% per annum. The life of the bond
is divided into 10 periods, each 6 months in length. For each period, the rate of interest
is set at 0.5% per annum above the 6-month LIBOR rate at the beginning of the period.
Interest is paid at the end of the period.

We will refer to a swap where LIBOR is exchanged for a fixed rate of interest as a
‘‘LIBOR-for-fixed’’ swap.

Illustration

Consider a hypothetical 3-year swap initiated on March 5, 2014, between Microsoft and
Intel. We suppose Microsoft agrees to pay Intel an interest rate of 5% per annum on a
principal of $100 million, and in return Intel agrees to pay Microsoft the 6-month
LIBOR rate on the same principal. Microsoft is the fixed-rate payer; Intel is the floating-
rate payer. We assume the agreement specifies that payments are to be exchanged every
6 months and that the 5% interest rate is quoted with semiannual compounding. This
swap is represented diagrammatically in Figure 7.1.

The first exchange of payments would take place on September 5, 2014, 6 months
after the initiation of the agreement. Microsoft would pay Intel $2.5 million. This is the
interest on the $100 million principal for 6 months at 5%. Intel would pay Microsoft
interest on the $100 million principal at the 6-month LIBOR rate prevailing 6 months
prior to September 5, 2014—that is, on March 5, 2014. Suppose that the 6-month

Intel Microsoft

5.0%

LIBOR

Figure 7.1 Interest rate swap between Microsoft and Intel.
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LIBOR rate on March 5, 2014, is 4.2%. Intel pays Microsoft 0:5� 0:042� $100 ¼
$2:1 million.1 Note that there is no uncertainty about this first exchange of payments

because it is determined by the LIBOR rate at the time the swap begins.

The second exchange of payments would take place on March 5, 2015, a year after

the initiation of the agreement. Microsoft would pay $2.5 million to Intel. Intel would

pay interest on the $100 million principal to Microsoft at the 6-month LIBOR rate

prevailing 6 months prior to March 5, 2015—that is, on September 5, 2014. Suppose

that the 6-month LIBOR rate on September 5, 2014, proves to be 4.8%. Intel pays

0:5� 0:048� $100 ¼ $2:4 million to Microsoft.

In total, there are six exchanges of payment on the swap. The fixed payments are

always $2.5 million. The floating-rate payments on a payment date are calculated

using the 6-month LIBOR rate prevailing 6 months before the payment date. An

interest rate swap is generally structured so that one side remits the difference between

the two payments to the other side. In our example, Microsoft would pay Intel

$0.4 million (¼ $2:5 million� $2:1 million) on September 5, 2014, and $0.1 million

(¼ $2:5 million� $2:4 million) on March 5, 2015.

Table 7.1 provides a complete example of the payments made under the swap for one

particular set of 6-month LIBOR rates. The table shows the swap cash flows from the

perspective of Microsoft. Note that the $100 million principal is used only for the

calculation of interest payments. The principal itself is not exchanged. For this reason it

is termed the notional principal, or just the notional.

If the notional principal were exchanged at the end of the life of the swap, the nature

of the deal would not be changed in any way. The notional principal is the same for

both the fixed and floating payments. Exchanging $100 million for $100 million at the

end of the life of the swap is a transaction that would have no financial value to either

Microsoft or Intel. Table 7.2 shows the cash flows in Table 7.1 with a final exchange of

principal added in. This provides an interesting way of viewing the swap. The cash flows

in the third column of this table are the cash flows from a long position in a floating-

rate bond. The cash flows in the fourth column of the table are the cash flows from a

short position in a fixed-rate bond. The table shows that the swap can be regarded as

Table 7.1 Cash flows (millions of dollars) to Microsoft in a $100 million 3-year
interest rate swap when a fixed rate of 5% is paid and LIBOR is received.

Date Six-month LIBOR
rate (%)

Floating cash flow
received

Fixed cash flow
paid

Net cash flow

Mar. 5, 2014 4.20
Sept. 5, 2014 4.80 þ2.10 �2.50 �0.40
Mar. 5, 2015 5.30 þ2.40 �2.50 �0.10
Sept. 5, 2015 5.50 þ2.65 �2.50 þ0.15
Mar. 5, 2016 5.60 þ2.75 �2.50 þ0.25
Sept. 5, 2016 5.90 þ2.80 �2.50 þ0.30
Mar. 5, 2017 þ2.95 �2.50 þ0.45

1 The calculations here are simplified in that they ignore day count conventions. This point is discussed in

more detail later in the chapter.
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the exchange of a fixed-rate bond for a floating-rate bond. Microsoft, whose position is

described by Table 7.2, is long a floating-rate bond and short a fixed-rate bond. Intel is

long a fixed-rate bond and short a floating-rate bond.

This characterization of the cash flows in the swap helps to explain why the floating
rate in the swap is set 6 months before it is paid. On a floating-rate bond, interest is

generally set at the beginning of the period to which it will apply and is paid at the end

of the period. The calculation of the floating-rate payments in a ‘‘plain vanilla’’ interest

rate swap, such as the one in Table 7.2, reflects this.

Using the Swap to Transform a Liability

For Microsoft, the swap could be used to transform a floating-rate loan into a fixed-rate

loan. Suppose that Microsoft has arranged to borrow $100 million at LIBOR plus

10 basis points. (One basis point is one-hundredth of 1%, so the rate is LIBOR

plus 0.1%.) After Microsoft has entered into the swap, it has the following three sets

of cash flows:

1. It pays LIBOR plus 0.1% to its outside lenders.

2. It receives LIBOR under the terms of the swap.

3. It pays 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate payment of 5.1%. Thus, for

Microsoft, the swap could have the effect of transforming borrowings at a floating rate

of LIBOR plus 10 basis points into borrowings at a fixed rate of 5.1%.

For Intel, the swap could have the effect of transforming a fixed-rate loan into a

floating-rate loan. Suppose that Intel has a 3-year $100 million loan outstanding on

Intel Microsoft

5%5.2%

LIBOR LIBOR + 0.1%

Figure 7.2 Microsoft and Intel use the swap to transform a liability.

Table 7.2 Cash flows (millions of dollars) from Table 7.1 when there is a final
exchange of principal.

Date Six-month LIBOR
rate (%)

Floating cash flow
received

Fixed cash flow
paid

Net cash flow

Mar. 5, 2014 4.20
Sept. 5, 2014 4.80 þ2.10 �2.50 �0.40
Mar. 5, 2015 5.30 þ2.40 �2.50 �0.10
Sept. 5, 2015 5.50 þ2.65 �2.50 þ0.15
Mar. 5, 2016 5.60 þ2.75 �2.50 þ0.25
Sept. 5, 2016 5.90 þ2.80 �2.50 þ0.30
Mar. 5, 2017 þ102.95 �102.50 þ0.45
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which it pays 5.2%. After it has entered into the swap, it has the following three sets of

cash flows:

1. It pays 5.2% to its outside lenders.

2. It pays LIBOR under the terms of the swap.

3. It receives 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate payment of LIBOR plus 0.2%

(or LIBOR plus 20 basis points). Thus, for Intel, the swap could have the effect of

transforming borrowings at a fixed rate of 5.2% into borrowings at a floating rate of

LIBOR plus 20 basis points. These potential uses of the swap by Intel and Microsoft

are illustrated in Figure 7.2.

Using the Swap to Transform an Asset

Swaps can also be used to transform the nature of an asset. Consider Microsoft in our

example. The swap could have the effect of transforming an asset earning a fixed rate of

interest into an asset earning a floating rate of interest. Suppose that Microsoft owns

$100 million in bonds that will provide interest at 4.7% per annum over the next 3 years.

After Microsoft has entered into the swap, it has the following three sets of cash flows:

1. It receives 4.7% on the bonds.

2. It receives LIBOR under the terms of the swap.

3. It pays 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate inflow of LIBOR minus 30 basis

points. Thus, one possible use of the swap for Microsoft is to transform an asset

earning 4.7% into an asset earning LIBOR minus 30 basis points.

Next, consider Intel. The swap could have the effect of transforming an asset earning

a floating rate of interest into an asset earning a fixed rate of interest. Suppose that Intel

has an investment of $100 million that yields LIBOR minus 20 basis points. After it has

entered into the swap, it has the following three sets of cash flows:

1. It receives LIBOR minus 20 basis points on its investment.

2. It pays LIBOR under the terms of the swap.

3. It receives 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate inflow of 4.8%. Thus, one

possible use of the swap for Intel is to transform an asset earning LIBOR minus

20 basis points into an asset earning 4.8%. These potential uses of the swap by Intel

and Microsoft are illustrated in Figure 7.3.

Intel Microsoft

5% 4.7%

LIBORLIBOR − 0.2%

Figure 7.3 Microsoft and Intel use the swap to transform an asset.
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Role of Financial Intermediary

Usually two nonfinancial companies such as Intel and Microsoft do not get in touch

directly to arrange a swap in the way indicated in Figures 7.2 and 7.3. They each deal

with a bank or other financial institution. ‘‘Plain vanilla’’ LIBOR-for-fixed swaps on

US interest rates are usually structured so that the financial institution earns about 3 or

4 basis points (0.03% or 0.04%) on a pair of offsetting transactions.

Figure 7.4 shows what the role of the financial institution might be in the situation in

Figure 7.2. The financial institution enters into two offsetting swap transactions with

Intel and Microsoft. Assuming that both companies honor their obligations, the

financial institution is certain to make a profit of 0.03% (3 basis points) per year

multiplied by the notional principal of $100 million. This amounts to $30,000 per year

for the 3-year period. Microsoft ends up borrowing at 5.115% (instead of 5.1%, as in

Figure 7.2), and Intel ends up borrowing at LIBOR plus 21.5 basis points (instead of at

LIBOR plus 20 basis points, as in Figure 7.2).

Figure 7.5 illustrates the role of the financial institution in the situation in Figure 7.3.

The swap is the same as before and the financial institution is certain to make a profit

of 3 basis points if neither company defaults. Microsoft ends up earning LIBOR minus

31.5 basis points (instead of LIBOR minus 30 basis points, as in Figure 7.3), and Intel

ends up earning 4.785% (instead of 4.8%, as in Figure 7.3).

Note that in each case the financial institution has entered into two separate trans-

actions: one with Intel and the other with Microsoft. In most instances, Intel will not

even know that the financial institution has entered into an offsetting swap with

Microsoft, and vice versa. If one of the companies defaults, the financial institution

still has to honor its agreement with the other company. The 3-basis-point spread

earned by the financial institution is partly to compensate it for the risk that one of the

two companies will default on the swap payments.

Market Makers

In practice, it is unlikely that two companies will contact a financial institution at the

same time and want to take opposite positions in exactly the same swap. For this

Intel
Financial
institution Microsoft

4.985%
5.2%

LIBOR

5.015%

LIBOR LIBOR + 0.1%

Figure 7.4 Interest rate swap from Figure 7.2 when financial institution is involved.

Intel
Financial
institution Microsoft

4.985%
4.7%

LIBOR

5.015%

LIBORLIBOR − 0.2%

Figure 7.5 Interest rate swap from Figure 7.3 when financial institution is involved.
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reason, many large financial institutions act as market makers for swaps. This means
that they are prepared to enter into a swap without having an offsetting swap with
another counterparty.2 Market makers must carefully quantify and hedge the risks they
are taking. Bonds, forward rate agreements, and interest rate futures are examples of the
instruments that can be used for hedging by swap market makers. Table 7.3 shows
quotes for plain vanilla US dollar swaps that might be posted by a market maker.3 As
mentioned earlier, the bid–offer spread is 3 to 4 basis points. The average of the bid and
offer fixed rates is known as the swap rate. This is shown in the final column of
Table 7.3.

Consider a new swap where the fixed rate equals the current swap rate. We can
reasonably assume that the value of this swap is zero. (Why else would a market maker
choose bid–offer quotes centered on the swap rate?) In Table 7.2 we saw that a swap can
be characterized as the difference between a fixed-rate bond and a floating-rate bond.
Define:

Bfix : Value of fixed-rate bond underlying the swap we are considering

Bfl : Value of floating-rate bond underlying the swap we are considering

Since the swap is worth zero, it follows that

Bfix ¼ Bfl ð7:1Þ
We will use this result later in the chapter when discussing the determination of the
LIBOR/swap zero curve.

7.2 DAY COUNT ISSUES

We discussed day count conventions in Section 6.1. The day count conventions affect
payments on a swap, and some of the numbers calculated in the examples we have given
do not exactly reflect these day count conventions. Consider, for example, the 6-month
LIBOR payments in Table 7.1. Because it is a US money market rate, 6-month LIBOR

Table 7.3 Bid and offer fixed rates in the swap market and swap
rates (percent per annum).

Maturity (years) Bid Offer Swap rate

2 6.03 6.06 6.045
3 6.21 6.24 6.225
4 6.35 6.39 6.370
5 6.47 6.51 6.490
7 6.65 6.68 6.665
10 6.83 6.87 6.850

2 This is sometimes referred to as warehousing swaps.
3 The standard swap in the United States is one where fixed payments made every 6 months are exchanged

for floating LIBOR payments made every 3 months. In Table 7.1 we assumed that fixed and floating

payments are exchanged every 6 months.
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is quoted on an actual/360 basis. The first floating payment in Table 7.1, based on the
LIBOR rate of 4.2%, is shown as $2.10 million. Because there are 184 days between
March 5, 2014, and September 5, 2014, it should be

100� 0:042� 184

360
¼ $2:1467 million

In general, a LIBOR-based floating-rate cash flow on a swap payment date is calculated
as LRn=360, where L is the principal, R is the relevant LIBOR rate, and n is the number
of days since the last payment date.

The fixed rate that is paid in a swap transaction is similarly quoted with a particular
day count basis being specified. As a result, the fixed payments may not be exactly equal
on each payment date. The fixed rate is usually quoted as actual/365 or 30/360. It is not
therefore directly comparable with LIBOR because it applies to a full year. To make the
rates approximately comparable, either the 6-month LIBOR rate must be multiplied by
365/360 or the fixed rate must be multiplied by 360/365.

For clarity of exposition, we will ignore day count issues in the calculations in the rest
of this chapter.

7.3 CONFIRMATIONS

A confirmation is the legal agreement underlying a swap and is signed by representatives
of the two parties. The drafting of confirmations has been facilitated by the work of the
International Swaps and Derivatives Association (ISDA; www.isda.org) in New York.
This organization has produced a number of Master Agreements that consist of clauses
defining in some detail the terminology used in swap agreements, what happens in the
event of default by either side, and so on. Master Agreements cover all outstanding
transactions between two parties. In Business Snapshot 7.1, we show a possible extract
from the confirmation for the swap shown in Figure 7.4 between Microsoft and a
financial institution (assumed here to be Goldman Sachs). The full confirmation might
state that the provisions of an ISDA Master Agreement apply.

The confirmation specifies that the following business day convention is to be used and
that the US calendar determines which days are business days and which days are
holidays. This means that, if a payment date falls on a weekend or a US holiday, the
payment is made on the next business day.4 March 5, 2016, is a Saturday. The payment
scheduled for that day will therefore take place on March 7, 2016.

7.4 THE COMPARATIVE-ADVANTAGE ARGUMENT

An explanation commonly put forward to explain the popularity of swaps concerns
comparative advantage. Consider the use of an interest rate swap to transform a
liability. Some companies, it is argued, have a comparative advantage when borrowing

4 Another business day convention that is sometimes specified is the modified following business day

convention, which is the same as the following business day convention except that, when the next business

day falls in a different month from the specified day, the payment is made on the immediately preceding

business day. Preceding and modified preceding business day conventions are defined analogously.
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in fixed-rate markets, whereas other companies have a comparative advantage when

borrowing in floating-rate markets. To obtain a new loan, it makes sense for a company

to go to the market where it has a comparative advantage. As a result, the company

may borrow fixed when it wants floating, or borrow floating when it wants fixed. The

swap is used to transform a fixed-rate loan into a floating-rate loan, and vice versa.

Suppose that two companies, AAACorp and BBBCorp, both wish to borrow

$10 million for 5 years and have been offered the rates shown in Table 7.4. AAACorp

has a AAA credit rating; BBBCorp has a BBB credit rating.5 We assume that BBBCorp

Business Snapshot 7.1 Extract from Hypothetical Swap Confirmation

Trade date: 27-February-2014

Effective date: 5-March-2014

Business day convention (all dates): Following business day

Holiday calendar: US

Termination date: 5-March-2017

Fixed amounts

Fixed-rate payer: Microsoft

Fixed-rate notional principal: USD 100 million

Fixed rate: 5.015% per annum

Fixed-rate day count convention: Actual/365

Fixed-rate payment dates: Each 5-March and 5-September,
commencing 5-September-2014,
up to and including 5-March-2017

Floating amounts

Floating-rate payer: Goldman Sachs

Floating-rate notional principal: USD 100 million

Floating rate: USD 6-month LIBOR

Floating-rate day count convention: Actual/360

Floating-rate payment dates: Each 5-March and 5-September,
commencing 5-September-2014,
up to and including 5-March-2017

Table 7.4 Borrowing rates that provide a basis for the
comparative-advantage argument.

Fixed Floating

AAACorp 4.0% 6-month LIBOR � 0.1%

BBBCorp 5.2% 6-month LIBOR þ 0.6%

5 The credit ratings assigned to companies by S&P and Fitch (in order of decreasing creditworthiness) are

AAA, AA, A, BBB, BB, B, CCC, CC, and C. The corresponding ratings assigned by Moody’s are Aaa, Aa,

A, Baa, Ba, B, Caa, Ca, and C, respectively.
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wants to borrow at a fixed rate of interest, whereas AAACorp wants to borrow at a
floating rate of interest linked to 6-month LIBOR. Because it has a worse credit rating
than AAACorp, BBBCorp pays a higher rate of interest than AAACorp in both fixed

and floating markets.

A key feature of the rates offered to AAACorp and BBBCorp is that the difference
between the two fixed rates is greater than the difference between the two floating rates.
BBBCorp pays 1.2% more than AAACorp in fixed-rate markets and only 0.7% more
than AAACorp in floating-rate markets. BBBCorp appears to have a comparative

advantage in floating-rate markets, whereas AAACorp appears to have a comparative
advantage in fixed-rate markets.6 It is this apparent anomaly that can lead to a swap
being negotiated. AAACorp borrows fixed-rate funds at 4% per annum. BBBCorp
borrows floating-rate funds at LIBOR plus 0.6% per annum. They then enter into a
swap agreement to ensure that AAACorp ends up with floating-rate funds and
BBBCorp ends up with fixed-rate funds.

To understand how this swap might work, we first assume that AAACorp and
BBBCorp get in touch with each other directly. The sort of swap they might negotiate
is shown in Figure 7.6. This is similar to our example in Figure 7.2. AAACorp agrees to
pay BBBCorp interest at 6-month LIBOR on $10 million. In return, BBBCorp agrees to
pay AAACorp interest at a fixed rate of 4.35% per annum on $10 million.

AAACorp has three sets of interest rate cash flows:

1. It pays 4% per annum to outside lenders.

2. It receives 4.35% per annum from BBBCorp.

3. It pays LIBOR to BBBCorp.

The net effect of the three cash flows is that AAACorp pays LIBOR minus 0.35% per
annum. This is 0.25% per annum less than it would pay if it went directly to floating-
rate markets. BBBCorp also has three sets of interest rate cash flows:

1. It pays LIBOR þ 0.6% per annum to outside lenders.

2. It receives LIBOR from AAACorp.

3. It pays 4.35% per annum to AAACorp.

The net effect of the three cash flows is that BBBCorp pays 4.95% per annum. This is
0.25% per annum less than it would pay if it went directly to fixed-rate markets.

AAACorp BBBCorp

4.35%

4% LIBOR
LIBOR + 0.6%

Figure 7.6 Swap agreement between AAACorp and BBBCorp when rates in Table 7.4
apply.

6 Note that BBBCorp’s comparative advantage in floating-rate markets does not imply that BBBCorp pays

less than AAACorp in this market. It means that the extra amount that BBBCorp pays over the amount paid

by AAACorp is less in this market. One of my students summarized the situation as follows: ‘‘AAACorp pays

more less in fixed-rate markets; BBBCorp pays less more in floating-rate markets.’’

Swaps 183



In this example, the swap has been structured so that the net gain to both sides is the
same, 0:25%. This need not be the case. However, the total apparent gain from this
type of interest rate swap arrangement is always a� b, where a is the difference between

the interest rates facing the two companies in fixed-rate markets, and b is the difference
between the interest rates facing the two companies in floating-rate markets. In this
case, a ¼ 1:2% and b ¼ 0:7%, so that the total gain is 0:5%.

If AAACorp and BBBCorp did not deal directly with each other and used a financial

institution, an arrangement such as that shown in Figure 7.7 might result. (This is
similar to the example in Figure 7.4.) In this case, AAACorp ends up borrowing at
LIBOR minus 0.33%, BBBCorp ends up borrowing at 4.97%, and the financial
institution earns a spread of 4 basis points per year. The gain to AAACorp is 0.23%;
the gain to BBBCorp is 0.23%; and the gain to the financial institution is 0.04%. The

total gain to all three parties is 0.50% as before.

Criticism of the Argument

The comparative-advantage argument we have just outlined for explaining the attrac-
tiveness of interest rate swaps is open to question. Why in Table 7.4 should the spreads
between the rates offered to AAACorp and BBBCorp be different in fixed and floating

markets? Now that the interest rate swap market has been in existence for a long time,
we might reasonably expect these types of differences to have been arbitraged away.

The reason that spread differentials appear to exist is due to the nature of the

contracts available to companies in fixed and floating markets. The 4.0% and 5.2%
rates available to AAACorp and BBBCorp in fixed-rate markets are 5-year rates (e.g.,
the rates at which the companies can issue 5-year fixed-rate bonds). The LIBOR � 0.1%
and LIBOR þ 0.6% rates available to AAACorp and BBBCorp in floating-rate markets
are 6-month rates. In the floating-rate market, the lender usually has the opportunity to
review the floating rates every 6 months. If the creditworthiness of AAACorp or

BBBCorp has declined, the lender has the option of increasing the spread over LIBOR
that is charged. In extreme circumstances, the lender can refuse to roll over the loan at
all. The providers of fixed-rate financing do not have the option to change the terms of
the loan in this way.7

The spreads between the rates offered to AAACorp and BBBCorp are a reflection of
the extent to which BBBCorp is more likely than AAACorp to default. During the next
6 months, there is very little chance that either AAACorp or BBBCorp will default. As
we look further ahead, the probability of a default by a company with a relatively low

AAACorp Financial
institution

BBBCorp

4.33%4%

LIBOR

4.37%

LIBOR LIBOR + 0.6%

Figure 7.7 Swap agreement between AAACorp and BBBCorp when rates in Table 7.4
apply and a financial intermediary is involved.

7 If the floating-rate loans are structured so that the spread over LIBOR is guaranteed in advance regardless

of changes in credit rating, the spread differentials disappear.
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credit rating (such as BBBCorp) is liable to increase faster than the probability of a

default by a company with a relatively high credit rating (such as AAACorp). This is why

the spread between the 5-year rates is greater than the spread between the 6-month rates.

After negotiating a floating-rate loan at LIBOR þ 0.6% and entering into the swap

shown in Figure 7.7, BBBCorp appears to obtain a fixed-rate loan at 4.97%. The

arguments just presented show that this is not really the case. In practice, the rate paid

is 4.97% only if BBBCorp can continue to borrow floating-rate funds at a spread of

0.6% over LIBOR. If, for example, the creditworthiness of BBBCorp declines so that

the floating-rate loan is rolled over at LIBOR þ 1.6%, the rate paid by BBBCorp

increases to 5.97%. The market expects that BBBCorp’s spread over 6-month LIBOR

will on average rise during the swap’s life. BBBCorp’s expected average borrowing rate

when it enters into the swap is therefore greater than 4.97%.

The swap in Figure 7.7 locks in LIBOR � 0.33% for AAACorp for the next 5 years,

not just for the next 6 months. This appears to be a good deal for AAACorp. The

downside is that it is bearing the risk of a default on the swap by the financial institution.

If it borrowed floating-rate funds in the usual way, it would not be bearing this risk.

7.5 THE NATURE OF SWAP RATES

At this stage it is appropriate to examine the nature of swap rates and the relationship

between swap and LIBORmarkets. We explained in Section 4.1 that LIBOR is the rate of

interest at which AA-rated banks borrow for periods up to 12 months from other banks.

Also, as indicated in Table 7.3, a swap rate is the average of (a) the fixed rate that a swap

market maker is prepared to pay in exchange for receiving LIBOR (its bid rate) and

(b) the fixed rate that it is prepared to receive in return for paying LIBOR (its offer rate).

Like LIBOR rates, swap rates are not risk-free lending rates. However, they are

reasonably close to risk-free in normal market conditions. A financial institution can

earn the 5-year swap rate on a certain principal by doing the following:

1. Lend the principal for the first 6 months to a AA borrower and then relend it for
successive 6-month periods to other AA borrowers; and

2. Enter into a swap to exchange the LIBOR income for the 5-year swap rate.

This shows that the 5-year swap rate is an interest rate with a credit risk corresponding

to the situation where 10 consecutive 6-month LIBOR loans to AA companies are

made. Similarly the 7-year swap rate is an interest rate with a credit risk corresponding

to the situation where 14 consecutive 6-month LIBOR loans to AA companies are

made. Swap rates of other maturities can be interpreted analogously.

Note that 5-year swap rates are less than 5-year AA borrowing rates. It is much more

attractive to lend money for successive 6-month periods to borrowers who are always

AA at the beginning of the periods than to lend it to one borrower for the whole 5 years

when all we can be sure of is that the borrower is AA at the beginning of the 5 years.

In discussing the above points, Collin-Dufesne and Solnik refer to swap rates as

‘‘continually refreshed’’ LIBOR rates.8

8 See P. Collin-Dufesne and B. Solnik, ‘‘On the Term Structure of Default Premia in the Swap and Libor

Market,’’ Journal of Finance, 56, 3 (June 2001).
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7.6 DETERMINING LIBOR/SWAP ZERO RATES

One problem with LIBOR rates is that direct observations are possible only for

maturities out to 12 months. As described in Section 6.3, one way of extending the
LIBOR zero curve beyond 12 months is to use Eurodollar futures. Typically Eurodollar

futures are used to produce a LIBOR zero curve out to 2 years—and sometimes out to

as far as 5 years. Traders then use swap rates to extend the LIBOR zero curve further.
The resulting zero curve is sometimes referred to as the LIBOR zero curve and some-

times as the swap zero curve. To avoid any confusion, we will refer to it as the LIBOR/
swap zero curve. We will now describe how swap rates are used in the determination of

the LIBOR/swap zero curve.

The first point to note is that the value of a newly issued floating-rate bond that pays
6-month LIBOR is always equal to its principal value (or par value) when the LIBOR/

swap zero curve is used for discounting.9 The reason is that the bond provides a rate of
interest of LIBOR, and LIBOR is the discount rate. The interest on the bond exactly

matches the discount rate, and as a result the bond is fairly priced at par.

In equation (7.1), we showed that for a newly issued swap where the fixed rate equals
the swap rate, Bfix ¼ Bfl. We have just argued that Bfl equals the notional principal. It

follows thatBfix also equals the swap’s notional principal. Swap rates therefore define a set
of par yield bonds. For example, from Table 7.3, we can deduce that the 2-year LIBOR/

swap par yield is 6.045%, the 3-year LIBOR/swap par yield is 6.225%, and so on.10

Section 4.5 showed how the bootstrap method can be used to determine the Treasury

zero curve from Treasury bond prices. It can be used with swap rates in a similar way to
extend the LIBOR/swap zero curve.

Example 7.1

Suppose that the 6-month, 12-month, and 18-month LIBOR/swap zero rates have
been determined as 4%, 4.5%, and 4.8% with continuous compounding and that

the 2-year swap rate (for a swap where payments are made semiannually) is 5%.

This 5% swap rate means that a bond with a principal of $100 and a semiannual
coupon of 5% per annum sells for par. It follows that, if R is the 2-year zero rate,

then

2:5e�0:04�0:5 þ 2:5e�0:045�1:0 þ 2:5e�0:048�1:5 þ 102:5e�2R ¼ 100

Solving this, we obtain R ¼ 4:953%. (Note that this calculation does not take
day count conventions and holiday calendars into account. See Section 7.2.)

7.7 VALUATION OF INTEREST RATE SWAPS

We now move on to discuss the valuation of interest rate swaps. An interest rate swap is

worth close to zero when it is first initiated. After it has been in existence for some time,
its value may be positive or negative. There are two valuation approaches when

9 The same is of course true of a newly issued bond that pays 1-month, 3-month, or 12-month LIBOR.
10 Analysts frequently interpolate between swap rates before calculating the zero curve, so that they have

swap rates for maturities at 6-month intervals. For example, for the data in Table 7.3 the 2.5-year swap rate

would be assumed to be 6.135%; the 7.5-year swap rate would be assumed to be 6.696%; and so on.
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LIBOR/swap rates are used as discount rates. The first regards the swap as the
difference between two bonds; the second regards it as a portfolio of FRAs. Deriva-
Gem 3.00 can be used to value the swap with either LIBOR or OIS discounting.

Valuation in Terms of Bond Prices

Principal payments are not exchanged in an interest rate swap. However, as illustrated
in Table 7.2, we can assume that principal payments are both received and paid at the
end of the swap without changing its value. By doing this, we find that, from the point
of view of the floating-rate payer, a swap can be regarded as a long position in a fixed-
rate bond and a short position in a floating-rate bond, so that

Vswap ¼ Bfix � Bfl

where Vswap is the value of the swap, Bfl is the value of the floating-rate bond (corres-
ponding to payments that are made), and Bfix is the value of the fixed-rate bond
(corresponding to payments that are received). Similarly, from the point of view of
the fixed-rate payer, a swap is a long position in a floating-rate bond and a short
position in a fixed-rate bond, so that the value of the swap is

Vswap ¼ Bfl � Bfix

The value of the fixed rate bond, Bfix, can be determined as described in Section 4.4. To
value the floating-rate bond, we note that the bond is worth the notional principal
immediately after a payment. This is because at this time the bond is a ‘‘fair deal’’ where
the borrower pays LIBOR for each subsequent accrual period.

Suppose that the notional principal is L, the next exchange of payments is at time t�,
and the floating payment that will be made at time t� (which was determined at the last
payment date) is k�. Immediately after the payment Bfl ¼ L as just explained. It follows
that immediately before the payment Bfl ¼ Lþ k�. The floating-rate bond can therefore
be regarded as an instrument providing a single cash flow of Lþ k� at time t�. Discount-
ing this, the value of the floating-rate bond today is ðLþ k�Þe�r�t� , where r� is the
LIBOR/swap zero rate for a maturity of t�. This argument is illustrated in Figure 7.8.

0
Time

Valuation
date 

First payment
date

Second payment
date

Maturity
date

Value = L 

Value = PV of
L + k* received at t* 

Value = L + k* 

t*

Floating
payment = k*

Figure 7.8 Valuation of floating-rate bond when bond principal is L and next
payment is k� at t�
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Example 7.2

Suppose that some time ago a financial institution agreed to receive 6-month
LIBOR and pay 3% per annum (with semiannual compounding) on a notional
principal of $100 million. The swap has a remaining life of 1.25 years. The
LIBOR rates with continuous compounding for 3-month, 9-month, and 15-
month maturities are 2.8%, 3.2%, and 3.4%, respectively. The 6-month LIBOR
rate at the last payment date was 2.9% (with semiannual compounding).

The calculations for valuing the swap in terms of bonds are summarized in
Table 7.5. The fixed-rate bond has cash flows of 1.5, 1.5, and 101.5 on the three
payment dates. The discount factors for these cash flows are, respectively,
e�0:028�0:25, e�0:032�0:75, and e�0:034�1:25 and are shown in the fourth column
of Table 7.5. The table shows that the value of the fixed-rate bond (in millions of
dollars) is 100.2306.

In this example, L ¼ $100 million, k
� ¼ 0:5� 0:029� 100 ¼ $1:4500 million,

and t
� ¼ 0:25, so that the floating-rate bond can be valued as though it produces

a cash flow of $101.4500 million in 3 months. The table shows that the value of

the floating bond (in millions of dollars) is 101:4500� 0:9930 ¼ 100:7423.
The value of the swap is the difference between the two bond prices:

Vswap ¼ 100:7423� 100:2306 ¼ 0:5117

or þ0:5117 million dollars.

If the financial institution had been in the opposite position of paying fixed

and receiving floating, the value of the swap would be �$0:5117 million. Note

that these calculations do not take account of day count conventions and holi-

day calendars.

Valuation in Terms of FRAs

A swap can be characterized as a portfolio of forward rate agreements. Consider the

swap between Microsoft and Intel in Figure 7.1. The swap is a 3-year deal entered into

on March 5, 2014, with semiannual payments. The first exchange of payments is known

at the time the swap is negotiated. The other five exchanges can be regarded as FRAs.

The exchange on March 5, 2015, is an FRA where interest at 5% is exchanged for

interest at the 6-month rate observed in the market on September 5, 2014; the exchange

Table 7.5 Valuing a swap in terms of bonds ($ millions). Here, Bfix is fixed-rate
bond underlying the swap, and Bfl is floating-rate bond underlying the swap.

Time Bfix

cash flow
Bfl

cash flow
Discount
factor

Present value
Bfix cash flow

Present value
Bfl cash flow

0.25 1.5 101.4500 0.9930 1.4895 100.7423

0.75 1.5 0.9763 1.4644

1.25 101.5 0.9584 97.2766

Total : 100.2306 100.7423
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on September 5, 2015, is an FRA where interest at 5% is exchanged for interest at the

6-month rate observed in the market on March 5, 2015; and so on.

As shown at the end of Section 4.7, an FRA can be valued by assuming that forward

interest rates are realized. Because it is nothing more than a portfolio of forward rate

agreements, a plain vanilla interest rate swap can also be valued by making the

assumption that forward interest rates are realized. The procedure is as follows:

1. Use the LIBOR/swap zero curve to calculate forward rates for each of the LIBOR
rates that will determine swap cash flows.

2. Calculate swap cash flows on the assumption that the LIBOR rates will equal the
forward rates.

3. Discount these swap cash flows (using the LIBOR/swap zero curve) to obtain the
swap value.

Example 7.3

Consider again the situation in Example 7.2. Under the terms of the swap, a

financial institution has agreed to receive 6-month LIBOR and pay 3% per annum

(with semiannual compounding) on a notional principal of $100 million. The swap

has a remaining life of 1.25 years. The LIBOR rates with continuous compound-

ing for 3-month, 9-month, and 15-month maturities are 2.8%, 3.2%, and 3.4%,

respectively. The 6-month LIBOR rate at the last payment date was 2.9% (with

semiannual compounding).

The calculations are summarized in Table 7.6. The first row of the table shows the

cash flows that will be exchanged in 3 months. These have already been determined.

The fixed rate of 1.5% will lead to a cash outflow of 100� 0:030� 0:5 ¼
$1:5 million. The floating rate of 2.9% (which was set 3 months ago) will lead to

a cash inflow of 100� 0:029� 0:5 ¼ $1:45 million. The second row of the table

shows the cash flows that will be exchanged in 9 months assuming that forward

rates are realized. The cash outflow is $1.5 million as before. To calculate the cash

inflow, we must first calculate the forward rate corresponding to the period between

3 and 9 months. From equation (4.5), this is

0:032� 0:75� 0:028� 0:25

0:5
¼ 0:034

or 3.4% with continuous compounding. From equation (4.4), the forward rate

Table 7.6 Valuing swap in terms of FRAs ($ millions). Floating cash flows are
calculated by assuming that forward rates will be realized.

Time Fixed
cash flow

Floating
cash flow

Net
cash flow

Discount
factor

Present value
of net cash flow

0.25 �1.5000 þ1.4500 �0.0050 0.9930 �0.0497

0.75 �1.5000 þ1.7145 þ0.2145 0.9763 þ0.2094

1.25 �1.5000 þ1.8672 þ0.3672 0.9584 þ0.3519

Total : þ0.5117
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becomes 3.429% with semiannual compounding. The cash inflow is therefore
100� 0:03429� 0:5 ¼ $1:7145 million. The third row similarly shows the cash

flows that will be exchanged in 15 months assuming that forward rates are realized.
The discount factors for the three payment dates are, respectively,

e
�0:028�0:25; e

�0:032�0:75; e
�0:034�1:25

The present value of the exchange in three months is �$0:0497 million. The values
of the FRAs corresponding to the exchanges in 9 months and 15 months are
þ$0:2094 and þ$0:3519 million, respectively. The total value of the swap is
þ$0:5117 million. This is in agreement with the value we calculated in Example 7.2

by decomposing the swap into bonds.

7.8 TERM STRUCTURE EFFECTS

A swap is worth close to zero initially. This means that at the outset of a swap the sum

of the values of the FRAs underlying the swap is close to zero. It does not mean that
the value of each individual FRA is close to zero. In general, some FRAs will have
positive values whereas others have negative values.

Consider the FRAs underlying the swap between Microsoft and Intel in Figure 7.1:

Value of FRA to Microsoft > 0 when forward interest rate > 5.0%

Value of FRA to Microsoft ¼ 0 when forward interest rate ¼ 5.0%

Value of FRA to Microsoft < 0 when forward interest rate < 5.0%.

Suppose that the term structure of interest rates is upward-sloping at the time the swap
is negotiated. This means that the forward interest rates increase as the maturity of the
FRA increases. Since the sum of the values of the FRAs is close to zero, the forward

interest rate must be less than 5.0% for the early payment dates and greater than 5.0%
for the later payment dates. The value to Microsoft of the FRAs corresponding to early
payment dates is therefore negative, whereas the value of the FRAs corresponding to
later payment dates is positive. If the term structure of interest rates is downward-
sloping at the time the swap is negotiated, the reverse is true. The impact of the shape of

the term structure of interest rates on the values of the forward contracts underlying a
swap is illustrated in Figure 7.9.

7.9 FIXED-FOR-FIXED CURRENCY SWAPS

Another popular type of swap is known as a fixed-for-fixed currency swap. This involves
exchanging principal and interest payments at a fixed rate in one currency for principal
and interest payments at a fixed rate in another currency.

A currency swap agreement requires the principal to be specified in each of the two
currencies. The principal amounts are usually exchanged at the beginning and at the end
of the life of the swap. Usually the principal amounts are chosen to be approximately
equivalent using the exchange rate at the swap’s initiation. When they are exchanged at
the end of the life of the swap, their values may be quite different.
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Illustration

Consider a hypothetical 5-year currency swap agreement between IBM and British

Petroleum entered into on February 1, 2014. We suppose that IBM pays a fixed rate of

interest of 5% in sterling and receives a fixed rate of interest of 6% in dollars from British

Petroleum. Interest rate payments are made once a year and the principal amounts are

$15 million and £10 million. This is termed a fixed-for-fixed currency swap because the

interest rate in each currency is at a fixed rate. The swap is shown in Figure 7.10. Initially,

Value of forward
contract

Maturity

(a)

Value of forward
contract

Maturity

(b)

Figure 7.9 Valuing of forward rate agreements underlying a swap as a function of
maturity. In (a) the term structure of interest rates is upward-sloping and we receive
fixed, or it is downward-sloping and we receive floating; in (b) the term structure of
interest rates is upward-sloping and we receive floating, or it is downward-sloping and
we receive fixed.

IBM
British

Petroleum

Dollars 6%

Sterling 5%

Figure 7.10 A currency swap.
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the principal amounts flow in the opposite direction to the arrows in Figure 7.10. The
interest payments during the life of the swap and the final principal payment flow in the
same direction as the arrows. Thus, at the outset of the swap, IBM pays $15 million and
receives £10 million. Each year during the life of the swap contract, IBM receives
$0.90 million (¼ 6% of $15 million) and pays £0.50 million (¼ 5% of £10 million). At the
end of the life of the swap, it pays a principal of £10 million and receives a principal of
$15 million. These cash flows are shown in Table 7.7.

Use of a Currency Swap to Transform Liabilities and Assets

A swap such as the one just considered can be used to transform borrowings in one
currency to borrowings in another. Suppose that IBM can issue $15 million of US-
dollar-denominated bonds at 6% interest. The swap has the effect of transforming this
transaction into one where IBM has borrowed £10 million at 5% interest. The initial
exchange of principal converts the proceeds of the bond issue from US dollars to
sterling. The subsequent exchanges in the swap have the effect of swapping the interest
and principal payments from dollars to sterling.

The swap can also be used to transform the nature of assets. Suppose that IBM can
invest £10 million in the UK to yield 5% per annum for the next 5 years, but feels that
the US dollar will strengthen against sterling and prefers a US-dollar-denominated
investment. The swap has the effect of transforming the UK investment into a
$15 million investment in the US yielding 6%.

Comparative Advantage

Currency swaps can be motivated by comparative advantage. To illustrate this, we
consider another hypothetical example. Suppose the 5-year fixed-rate borrowing costs
to General Electric and Qantas Airways in US dollars (USD) and Australian dollars
(AUD) are as shown in Table 7.8. The data in the table suggest that Australian rates are
higher than USD interest rates, and also that General Electric is more creditworthy than
Qantas Airways, because it is offered a more favorable rate of interest in both currencies.
From the viewpoint of a swap trader, the interesting aspect of Table 7.8 is that the
spreads between the rates paid by General Electric and Qantas Airways in the two
markets are not the same. Qantas Airways pays 2% more than General Electric in the
US dollar market and only 0.4% more than General Electric in the AUD market.

Table 7.7 Cash flows to IBM in currency swap.

Date Dollar
cash flow
(millions)

Sterling
cash flow
(millions)

February 1, 2014 �15.00 þ10.00

February 1, 2015 þ0.90 �0.50

February 1, 2016 þ0.90 �0.50

February 1, 2017 þ0.90 �0.50

February 1, 2018 þ0.90 �0.50

February 1, 2019 þ15.90 �10.50
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This situation is analogous to that in Table 7.4. General Electric has a comparative

advantage in the USD market, whereas Qantas Airways has a comparative advantage

in the AUD market. In Table 7.4, where a plain vanilla interest rate swap was

considered, we argued that comparative advantages are largely illusory. Here we are

comparing the rates offered in two different currencies, and it is more likely that the

comparative advantages are genuine. One possible source of comparative advantage is

tax. General Electric’s position might be such that USD borrowings lead to lower taxes

on its worldwide income than AUD borrowings. Qantas Airways’ position might be the

reverse. (Note that we assume that the interest rates shown in Table 7.8 have been

adjusted to reflect these types of tax advantages.)

We suppose that General Electric wants to borrow 20 million AUD and Qantas

Airways wants to borrow 18 million USD and that the current exchange rate (USD per

AUD) is 0.9000. This creates a perfect situation for a currency swap. General Electric

and Qantas Airways each borrow in the market where they have a comparative

advantage; that is, General Electric borrows USD whereas Qantas Airways borrows

AUD. They then use a currency swap to transform General Electric’s loan into an

AUD loan and Qantas Airways’ loan into a USD loan.

As already mentioned, the difference between the USD interest rates is 2%, whereas

the difference between the AUD interest rates is 0.4%. By analogy with the interest rate

swap case, we expect the total gain to all parties to be 2:0� 0:4 ¼ 1:6% per annum.

There are several ways in which the swap can be arranged. Figure 7.11 shows one way

swaps might be entered into with a financial institution. General Electric borrows USD

and Qantas Airways borrows AUD. The effect of the swap is to transform the USD

interest rate of 5% per annum to an AUD interest rate of 6.9% per annum for General

Electric. As a result, General Electric is 0.7% per annum better off than it would be if it

went directly to AUD markets. Similarly, Qantas exchanges an AUD loan at 8% per

annum for a USD loan at 6.3% per annum and ends up 0.7% per annum better off

than it would be if it went directly to USD markets. The financial institution gains

1.3% per annum on its USD cash flows and loses 1.1% per annum on its AUD flows. If

we ignore the difference between the two currencies, the financial institution makes a

Table 7.8 Borrowing rates providing basis for currency swap.

USD� AUD�

General Electric 5.0% 7.6%

Qantas Airways 7.0% 8.0%

� Quoted rates have been adjusted to reflect the differential impact of taxes.

Financial
institution

General
Electric

Qantas
Airways

USD 5.0%

AUD 6.9%

USD 6.3%

AUD 8.0% AUD 8.0%USD 5.0%

Figure 7.11 A currency swap motivated by comparative advantage.
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net gain of 0.2% per annum. As predicted, the total gain to all parties is 1.6% per
annum.

Each year the financial institution makes a gain of USD 234,000 (¼ 1:3% of
18 million) and incurs a loss of AUD 220,000 (¼ 1:1% of 20 million). The financial
institution can avoid any foreign exchange risk by buying AUD 220,000 per annum in
the forward market for each year of the life of the swap, thus locking in a net gain
in USD.

It is possible to redesign the swap so that the financial institution makes a 0.2%
spread in USD. Figures 7.12 and 7.13 present two alternatives. These alternatives are
unlikely to be used in practice because they do not lead to General Electric and Qantas
being free of foreign exchange risk.11 In Figure 7.12, Qantas bears some foreign
exchange risk because it pays 1.1% per annum in AUD and pays 5.2% per annum
in USD. In Figure 7.13, General Electric bears some foreign exchange risk because it
receives 1.1% per annum in USD and pays 8% per annum in AUD.

7.10 VALUATION OF FIXED-FOR-FIXED CURRENCY SWAPS

Like interest rate swaps, fixed-for-fixed currency swaps can be decomposed into either
the difference between two bonds or a portfolio of forward contracts.

Valuation in Terms of Bond Prices

If we define Vswap as the value in US dollars of an outstanding swap where dollars are
received and a foreign currency is paid, then

Vswap ¼ BD � S0BF

where BF is the value, measured in the foreign currency, of the bond defined by the

Financial
institution

General
Electric

Qantas
Airways

USD 5.0%

AUD 6.9%

USD 5.2%

AUD 6.9% AUD 8.0%USD 5.0%

Figure 7.12 Alternative arrangement for currency swap: Qantas Airways bears some
foreign exchange risk.

Financial
institution

General
Electric

Qantas
Airways

USD 6.1%

AUD 8.0%

USD 6.3%

AUD 8.0% AUD 8.0%USD 5.0%

Figure 7.13 Alternative arrangement for currency swap: General Electric bears some
foreign exchange risk.

11 Usually it makes sense for the financial institution to bear the foreign exchange risk, because it is in the

best position to hedge the risk.
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foreign cash flows on the swap and BD is the value of the bond defined by the domestic

cash flows on the swap, and S0 is the spot exchange rate (expressed as number of dollars

per unit of foreign currency). The value of a swap can therefore be determined from

interest rates in the two currencies and the spot exchange rate.

Similarly, the value of a swap where the foreign currency is received and dollars are

paid is

Vswap ¼ S0BF � BD

Example 7.4

Suppose that the term structure of interest rates is flat in both Japan and the

United States. The Japanese rate is 4% per annum and the US rate is 9% per

annum (both with continuous compounding). Some time ago a financial institu-

tion has entered into a currency swap in which it receives 5% per annum in yen

and pays 8% per annum in dollars once a year. The principals in the two cur-

rencies are $10 million and 1,200 million yen. The swap will last for another

3 years, and the current exchange rate is 110 yen ¼ $1.

The calculations are summarized in Table 7.9. In this case, the cash flows from

the dollar bond underlying the swap are as shown in the second column. The

present value of the cash flows using the dollar discount rate of 9% are shown in

the third column. The cash flows from the yen bond underlying the swap are

shown in the fourth column of the table. The present value of the cash flows using

the yen discount rate of 4% are shown in the final column of the table.

The value of the dollar bond, BD, is 9.6439 million dollars. The value of the yen

bond is 1230.55 million yen. The value of the swap in dollars is therefore

1,230:55

110
� 9:6439 ¼ 1:5430 million

Valuation as Portfolio of Forward Contracts

Each exchange of payments in a fixed-for-fixed currency swap is a forward foreign

exchange contract. In Section 5.7, forward foreign exchange contracts were valued by

assuming that forward exchange rates are realized. The same assumption can therefore

be made for a currency swap.

Table 7.9 Valuation of currency swap in terms of bonds. (All amounts in
millions.)

Time Cash flows
on dollar bond ($)

Present value
($)

Cash flows
on yen bond (yen)

Present value
(yen)

1 0.8 0.7311 60 57.65

2 0.8 0.6682 60 55.39

3 0.8 0.6107 60 53.22

3 10.0 7.6338 1,200 1,064.30

Total : 9.6439 1,230.55
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Example 7.5

Consider again the situation in Example 7.4. The term structure of interest rates is
flat in both Japan and the United States. The Japanese rate is 4% per annum and
the US rate is 9% per annum (both with continuous compounding). Some time ago
a financial institution has entered into a currency swap in which it receives 5% per
annum in yen and pays 8% per annum in dollars once a year. The principals in the
two currencies are $10 million and 1,200 million yen. The swap will last for another
3 years, and the current exchange rate is 110 yen ¼ $1.

The calculations are summarized in Table 7.10. The financial institution pays
0:08� 10 ¼ $0:8 million dollars and receives 1,200� 0:05 ¼ 60 million yen each
year. In addition, the dollar principal of $10 million is paid and the yen principal
of 1,200 is received at the end of year 3. The current spot rate is 0.009091 dollar
per yen. In this case r ¼ 9% and rf ¼ 4%, so that, from equation (5.9), the 1-year
forward rate is

0:009091 eð0:09�0:04Þ�1 ¼ 0:009557

The 2- and 3-year forward rates in Table 7.10 are calculated similarly. The for-

ward contracts underlying the swap can be valued by assuming that the forward

rates are realized. If the 1-year forward rate is realized, the yen cash flow in year 1

is worth 60� 0:009557 ¼ 0:5734 million dollars and the net cash flow at the end

of year 1 is 0:5734� 0:8 ¼ �0:2266 million dollars. This has a present value of

�0:2266 e�0:09�1 ¼ �0:2071

million dollars. This is the value of forward contract corresponding to the exchange

of cash flows at the end of year 1. The value of the other forward contracts are

calculated similarly. As shown in Table 7.10, the total value of the forward con-

tracts is $1.5430 million. This agrees with the value calculated for the swap in

Example 7.4 by decomposing it into bonds.

The value of a currency swap is normally close to zero initially. If the two principals

are worth the same at the start of the swap, the value of the swap is also close to zero

immediately after the initial exchange of principal. However, as in the case of interest

rate swaps, this does not mean that each of the individual forward contracts underlying

the swap has a value close to zero. It can be shown that, when interest rates in two

currencies are significantly different, the payer of the currency with the high interest

Table 7.10 Valuation of currency swap as a portfolio of forward contracts.
(All amounts in millions.)

Time Dollar
cash flow

Yen
cash flow

Forward
exchange rate

Dollar value of
yen cash flow

Net cash flow
($)

Present
value

1 �0.8 60 0.009557 0.5734 �0.2266 �0.2071
2 �0.8 60 0.010047 0.6028 �0.1972 �0.1647
3 �0.8 60 0.010562 0.6337 �0.1663 �0.1269
3 �10.0 1200 0.010562 12.6746 þ2.6746 2.0417

Total : 1.5430
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rate is in the position where the forward contracts corresponding to the early exchanges

of cash flows have negative values, and the forward contract corresponding to final

exchange of principals has a positive value. The payer of the currency with the low

interest rate is in the opposite position; that is, the forward contracts corresponding to

the early exchanges of cash flows have positive values, while that corresponding to the

final exchange has a negative value. These results are important when the credit risk in

the swap is being evaluated.

7.11 OTHER CURRENCY SWAPS

Two other popular currency swaps are:

1. Fixed-for-floating where a floating interest rate in one currency is exchanged for a
fixed interest rate in another currency

2. Floating-for-floating where a floating interest rate in one currency is exchanged
for a floating interest rate in another currency.

An example of the first type of swap would be an exchange where sterling LIBOR on a

principal of £7 million is paid and 3% on a principal of $10 million is received with

payments being made semiannually for 10 years. Similarly to a fixed-for-fixed currency

swap, this would involve an initial exchange of principal in the opposite direction to the

interest payments and a final exchange of principal in the same direction as the interest

payments at the end of the swap’s life. A fixed-for-floating swap can be regarded as a

portfolio consisting of a fixed-for-fixed currency swap and a fixed-for-floating interest

rate swap. For instance, the swap in our example can be regarded as (a) a swap where

3% on a principal of $10 million is received and (say) 4% on a principal of £7 million is

paid plus (b) an interest rate swap where 4% is received and LIBOR is paid on a

notional principal of £7 million.

To value the swap we are considering, we can calculate the value of the dollar payments

in dollars by discounting them at the dollar risk-free rate. We can calculate the value of

the sterling payments by assuming that sterling LIBOR forward rates will be realized and

discounting the cash flows at the sterling risk-free rate. The value of the swap is the

difference between the values of the two sets of payments using current exchange rates.

An example of the second type of swap would be the exchange where sterling LIBOR

on a principal of £7 million is paid and dollar LIBOR on a principal of $10 million is

received. As in the other cases we have considered, this would involve an initial

exchange of principal in the opposite direction to the interest payments and a final

exchange of principal in the same direction as the interest payments at the end of the

swap’s life. A floating-for-floating swap can be regarded as a portfolio consisting of a

fixed-for-fixed currency swap and two interest rate swaps, one in each currency. For

instance, the swap in our example can be regarded as (a) a swap where (say) 3% on a

principal of $10 million is received and (say) 4% on a principal of £7 million is paid

plus (b) an interest rate swap where 4% is received and LIBOR is paid on a notional

principal of £7 million plus (c) an interest rate swap where 3% is paid and LIBOR is

received on a notional principal of $10 million.

A floating-for-floating swap can be valued by assuming that forward interest rates in

each currency will be realized and discounting the cash flows at risk-free rates. The
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value of the swap is the difference between the values of the two sets of payments using
current exchange rates.

7.12 CREDIT RISK

Transactions such as swaps that are private arrangements between two companies entail
credit risks. Consider a financial institution that has entered into offsetting transactions
with two companies (see Figure 7.4, 7.5, or 7.7). If neither party defaults, the financial
institution remains fully hedged. A decline in the value of one transaction will always be
offset by an increase in the value of the other transaction. However, there is a chance
that one party will get into financial difficulties and default. The financial institution
then still has to honor the contract it has with the other party.

Suppose that, some time after the initiation of the transactions in Figure 7.4, the
transaction with Microsoft has a positive value to the financial institution, whereas the
transaction with Intel has a negative value. Suppose further that the financial institution
has no other derivatives transactions with these companies and that no collateral is
posted. (The impact of netting in portfolios and collateral agreements will be discussed
in Chapter 24.) If Microsoft defaults, the financial institution is liable to lose the whole
of the positive value it has in this transaction. To maintain a hedged position, it would
have to find a third party willing to take Microsoft’s position. To induce the third party
to take the position, the financial institution would have to pay the third party an
amount roughly equal to the value of its contract with Microsoft prior to the default.

A financial institution clearly has credit-risk exposure from a swap when the value of
the swap to the financial institution is positive. What happens when this value is
negative and the counterparty gets into financial difficulties? In theory, the financial
institution could realize a windfall gain, because a default would lead to it getting rid of
a liability. In practice, it is likely that the counterparty would choose to sell the
transaction to a third party or rearrange its affairs in some way so that its positive
value in the transaction is not lost. The most realistic assumption for the financial
institution is therefore as follows. If the counterparty goes bankrupt, there will be a loss
if the value of the swap to the financial institution is positive, and there will be no effect
on the financial institution’s position if the value of the swap to the financial institution
is negative. This situation is summarized in Figure 7.14.

Exposure

Swap value

Figure 7.14 The credit exposure on a portfolio consisting of a single uncollateralized
swap.
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In swaps, it is sometimes the case that the early exchanges of cash flows have positive

values and the later exchanges have negative values. (This would be true in Figure 7.9a

and in a currency swap where the currency with the lower interest rate is paid.) These

swaps are likely to have negative values for most of their lives and therefore entail less

credit risk than swaps where the reverse is true.

Potential losses from defaults on a swap are much less than the potential losses from

defaults on a loan with the same principal. This is because the value of the swap is

usually only a small fraction of the value of the loan. Potential losses from defaults on a

currency swap are greater than on an interest rate swap. The reason is that, because

principal amounts in two different currencies are exchanged at the end of the life of a

currency swap, a currency swap is liable to have a greater value at the time of a default

than an interest rate swap.

It is important to distinguish between the credit risk and market risk to a financial

institution in any contract. As discussed earlier, the credit risk arises from the

possibility of a default by the counterparty when the value of the contract to the

financial institution is positive. The market risk arises from the possibility that market

variables such as interest rates and exchange rates will move in such a way that the value

of a contract to the financial institution becomes negative. Market risks can be hedged

relatively easily by entering into offsetting contracts; credit risks are less easy to hedge.

One of the more bizarre stories in swap markets is outlined in Business Snapshot 7.2. It

concerns the British Local Authority Hammersmith and Fulham and shows that, in

addition to bearing market risk and credit risk, banks trading swaps also sometimes bear

legal risk.

Business Snapshot 7.2 The Hammersmith and Fulham Story

Between 1987 to 1989 the London Borough of Hammersmith and Fulham in the UK
entered into about 600 interest rate swaps and related instruments with a total notional
principal of about 6 billion pounds. The transactions appear to have been entered into
for speculative rather than hedging purposes. The two employees of Hammersmith
and Fulham responsible for the trades had only a sketchy understanding of the risks
they were taking and how the products they were trading worked.

By 1989, because of movements in sterling interest rates, Hammersmith and
Fulham had lost several hundred million pounds on the swaps. To the banks on
the other side of the transactions, the swaps were worth several hundred million
pounds. The banks were concerned about credit risk. They had entered into off-
setting swaps to hedge their interest rate risks. If Hammersmith and Fulham
defaulted, the banks would still have to honor their obligations on the offsetting
swaps and would take a huge loss.

What happened was something a little different from a default. Hammersmith and
Fulham’s auditor asked to have the transactions declared void because Hammersmith
and Fulham did not have the authority to enter into the transactions. The British
courts agreed. The case was appealed and went all the way to the House of Lords,
Britain’s highest court. The final decision was that Hammersmith and Fulham did
not have the authority to enter into the swaps, but that they ought to have the
authority to do so in the future for risk-management purposes. Needless to say,
banks were furious that their contracts were overturned in this way by the courts.
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Central Clearing

As explained in Chapter 2, in an attempt to reduce credit risk in over-the-counter
markets, regulators require standardized over-the-counter derivatives to be cleared
through central counterparties (CCPs). The CCP acts as an intermediary between the
two sides in a transaction. It requires initial margin and variation margin from both
sides in the same way that these are required by futures clearing houses. LCH.Clearnet
(formed by a merger of the London Clearing House and Paris-based Clearnet) is the
largest CCP for interest rate swaps. It was clearing swaps with over $350 trillion of
notional principal in 2013.

Credit Default Swaps

A swap which has grown in importance since the year 2000 is a credit default swap
(CDS). This is a swap that allows companies to hedge credit risks in the same way that
they have hedged market risks for many years. A CDS is like an insurance contract that
pays off if a particular company or country defaults. The company or country is known
as the reference entity. The buyer of credit protection pays an insurance premium,
known as the CDS spread, to the seller of protection for the life of the contract or until
the reference entity defaults. Suppose that the notional principal of the CDS is
$100 million and the CDS spread for a 5-year deal is 120 basis points. The insurance
premium would be 120 basis points applied to $100 million or $1.2 million per year. If
the reference entity does not default during the 5 years, nothing is received in return for
the insurance premiums. If reference entity does default and bonds issued by the
reference entity are worth 40 cents per dollar of principal immediately after default,
the seller of protection has to make a payment to the buyer of protection equal to
$60 million. The idea here is that, if the buyer of protection owned a portfolio of bonds
issued by the reference entity with a principal of $100 million, the payoff would be
sufficient to bring the value of the portfolio back up to $100 million.

Credit default swaps are discussed in more detail in Chapter 25.

7.13 OTHER TYPES OF SWAPS

In this chapter, we have covered interest rate swaps where LIBOR is exchanged for a fixed
rate of interest and currency swaps where interest in one currency is exchanged for interest
in another currency. Many other types of swaps are traded. We will discuss some of them
in detail in Chapters 25, 30, and 33. At this stage, we will provide an overview.

Variations on the Standard Interest Rate Swap

In fixed-for-floating interest rate swaps, LIBOR is the most common reference floating
interest rate. In the examples in this chapter, the tenor (i.e., payment frequency) of
LIBOR has been 6 months, but swaps where the tenor of LIBOR is 1 month, 3 months,
and 12 months trade regularly. The tenor on the floating side does not have to match
the tenor on the fixed side. (Indeed, as pointed out in footnote 3, the standard interest
rate swap in the United States is one where there are quarterly LIBOR payments and
semiannual fixed payments.) LIBOR is the most common floating rate, but others such
as the commercial paper (CP) rate are occasionally used. Sometimes what are known as
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basis swaps are negotiated. For example, the 3-month CP rate plus 10 basis points might
be exchanged for 3-month LIBOR with both being applied to the same principal. (This
deal would allow a company to hedge its exposure when assets and liabilities are subject
to different floating rates.)

The principal in a swap agreement can be varied throughout the term of the swap to
meet the needs of a counterparty. In an amortizing swap, the principal reduces in a
predetermined way. (This might be designed to correspond to the amortization schedule
on a loan.) In a step-up swap, the principal increases in a predetermined way. (This
might be designed to correspond to drawdowns on a loan agreement.) Deferred swaps
or forward swaps, where the parties do not begin to exchange interest payments until
some future date, can also be arranged. Sometimes swaps are negotiated where the
principal to which the fixed payments are applied is different from the principal to
which the floating payments are applied.

A constant maturity swap (CMS swap) is an agreement to exchange a LIBOR rate for
a swap rate. An example would be an agreement to exchange 6-month LIBOR applied
to a certain principal for the 10-year swap rate applied to the same principal every
6 months for the next 5 years. A constant maturity Treasury swap (CMT swap) is a
similar agreement to exchange a LIBOR rate for a particular Treasury rate (e.g., the
10-year Treasury rate).

In a compounding swap, interest on one or both sides is compounded forward to the
end of the life of the swap according to preagreed rules and there is only one payment
date at the end of the life of the swap. In a LIBOR-in arrears swap, the LIBOR rate
observed on a payment date is used to calculate the payment on that date. (As
explained in Section 7.1, in a standard deal the LIBOR rate observed on one payment
date is used to determine the payment on the next payment date.) In an accrual swap,
the interest on one side of the swap accrues only when the floating reference rate is in a
certain range.

Diff Swaps

Sometimes a rate observed in one currency is applied to a principal amount in another
currency. One such deal might be where 3-month LIBOR observed in the United States
is exchanged for 3-month LIBOR in Britain, with both rates being applied to a
principal of 10 million British pounds. This type of swap is referred to as a diff swap
or a quanto and will be discussed in Chapter 30.

Equity Swaps

An equity swap is an agreement to exchange the total return (dividends and capital gains)
realized on an equity index for either a fixed or a floating rate of interest. For example, the
total return on the S&P 500 in successive 6-month periods might be exchanged for
LIBOR, with both being applied to the same principal. Equity swaps can be used by
portfolio managers to convert returns from a fixed or floating investment to the returns
from investing in an equity index, and vice versa. They are discussed in Chapter 33.

Options

Sometimes there are options embedded in a swap agreement. For example, in an
extendable swap, one party has the option to extend the life of the swap beyond the
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specified period. In a puttable swap, one party has the option to terminate the swap

early. Options on swaps, or swaptions, are also available. These provide one party with

the right at a future time to enter into a swap where a predetermined fixed rate is

exchanged for floating and are discussed in Chapter 29.

Commodity Swaps, Volatility Swaps, and Other Exotic Instruments

Commodity swaps are in essence a series of forward contracts on a commodity with

different maturity dates and the same delivery prices. In a volatility swap there are a

series of time periods. At the end of each period, one side pays a preagreed volatility,

while the other side pays the historical volatility realized during the period. Both

volatilities are multiplied by the same notional principal in calculating payments.

Volatility swaps are discussed in Chapter 26.

Swaps are limited only by the imagination of financial engineers and the desire of

corporate treasurers and fund managers for exotic structures. In Chapter 33, we will

describe the famous 5/30 swap entered into between Procter and Gamble and Bankers
Trust, where payments depended in a complex way on the 30-day commercial paper

rate, a 30-year Treasury bond price, and the yield on a 5-year Treasury bond.

SUMMARY

The two most common types of swaps are interest rate swaps and currency swaps. In an

interest rate swap, one party agrees to pay the other party interest at a fixed rate on a

notional principal for a number of years. In return, it receives interest at a floating rate

on the same notional principal for the same period of time. In a currency swap, one

party agrees to pay interest on a principal amount in one currency. In return, it receives

interest on a principal amount in another currency.

Principal amounts are not usually exchanged in an interest rate swap. In a currency
swap, principal amounts are usually exchanged at both the beginning and the end of the

life of the swap. For a party paying interest in the foreign currency, the foreign principal

is received, and the domestic principal is paid at the beginning of the swap’s life. At the

end of the swap’s life, the foreign principal is paid and the domestic principal is

received.

An interest rate swap can be used to transform a floating-rate loan into a fixed-rate

loan, or vice versa. It can also be used to transform a floating-rate investment to a fixed-

rate investment, or vice versa. A currency swap can be used to transform a loan in one

currency into a loan in another currency. It can also be used to transform an investment

denominated in one currency into an investment denominated in another currency.

There are two ways of valuing interest rate and currency swaps. In the first, the swap

is decomposed into a long position in one bond and a short position in another bond.

In the second it is regarded as a portfolio of forward contracts.

When a financial institution enters into a pair of offsetting swaps with different

counterparties, it is exposed to credit risk. If one of the counterparties defaults when

the financial institution has positive value in its swap with that counterparty, the

financial institution is liable to lose money because it still has to honor its swap

agreement with the other counterparty. Counterparty risk, collateral, and the impact

of netting are discussed in Chapter 24.
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Practice Questions (Answers in Solutions Manual)

7.1. Companies A and B have been offered the following rates per annum on a $20 million
5-year loan:

Fixed rate Floating rate

Company A : 5.0% LIBOR þ 0.1%
Company B : 6.4% LIBOR þ 0.6%

Company A requires a floating-rate loan; company B requires a fixed-rate loan. Design a
swap that will net a bank, acting as intermediary, 0.1% per annum and that will appear
equally attractive to both companies.

7.2. Company X wishes to borrow US dollars at a fixed rate of interest. Company Y wishes to
borrow Japanese yen at a fixed rate of interest. The amounts required by the two
companies are roughly the same at the current exchange rate. The companies are subject
to the following interest rates, which have been adjusted to reflect the impact of taxes:

Yen Dollars

Company X : 5.0% 9.6%
Company Y : 6.5% 10.0%

Design a swap that will net a bank, acting as intermediary, 50 basis points per annum.
Make the swap equally attractive to the two companies and ensure that all foreign
exchange risk is assumed by the bank.

7.3. A $100 million interest rate swap has a remaining life of 10 months. Under the terms of the
swap, 6-month LIBOR is exchanged for 7% per annum (compounded semiannually). The
average of the bid–offer rate being exchanged for 6-month LIBOR in swaps of all
maturities is currently 5% per annumwith continuous compounding. The 6-month LIBOR
rate was 4.6% per annum 2 months ago. What is the current value of the swap to the party
paying floating? What is its value to the party paying fixed?

7.4. Explain what a swap rate is. What is the relationship between swap rates and par
yields?
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7.5. A currency swap has a remaining life of 15 months. It involves exchanging interest
at 10% on £20 million for interest at 6% on $30 million once a year. The term structure
of interest rates in both the United Kingdom and the United States is currently flat,
and if the swap were negotiated today the interest rates exchanged would be 4% in
dollars and 7% in sterling. All interest rates are quoted with annual compounding. The
current exchange rate (dollars per pound sterling) is 1.5500. What is the value of the
swap to the party paying sterling? What is the value of the swap to the party paying
dollars?

7.6. Explain the difference between the credit risk and the market risk in a financial contract.

7.7. A corporate treasurer tells you that he has just negotiated a 5-year loan at a competitive
fixed rate of interest of 5.2%. The treasurer explains that he achieved the 5.2% rate by
borrowing at 6-month LIBOR plus 150 basis points and swapping LIBOR for 3.7%. He
goes on to say that this was possible because his company has a comparative advantage in
the floating-rate market. What has the treasurer overlooked?

7.8. Explain why a bank is subject to credit risk when it enters into two offsetting swap
contracts.

7.9. Companies X and Y have been offered the following rates per annum on a $5 million
10-year investment:

Fixed rate Floating rate

Company X : 8.0% LIBOR
Company Y : 8.8% LIBOR

Company X requires a fixed-rate investment; company Y requires a floating-rate invest-
ment. Design a swap that will net a bank, acting as intermediary, 0.2% per annum and
will appear equally attractive to X and Y.

7.10. A financial institution has entered into an interest rate swap with company X. Under the
terms of the swap, it receives 10% per annum and pays 6-month LIBOR on a principal of
$10 million for 5 years. Payments are made every 6 months. Suppose that company X
defaults on the sixth payment date (at the end of year 3) when the LIBOR/swap interest rate
(with semiannual compounding) is 8% per annum for all maturities. What is the loss to the
financial institution? Assume that 6-month LIBOR was 9% per annum halfway through
year 3.

7.11. Companies A and B face the following interest rates (adjusted for the differential impact
of taxes):

Company A Company B

US dollars (floating rate) : LIBOR þ 0.5% LIBOR þ 1.0%
Canadian dollars (fixed rate) : 5.0% 6.5%

Assume that A wants to borrow US dollars at a floating rate of interest and B wants to
borrow Canadian dollars at a fixed rate of interest. A financial institution is planning to
arrange a swap and requires a 50-basis-point spread. If the swap is to appear equally
attractive to A and B, what rates of interest will A and B end up paying?

7.12. A financial institution has entered into a 10-year currency swap with company Y. Under
the terms of the swap, the financial institution receives interest at 3% per annum in Swiss
francs and pays interest at 8% per annum in US dollars. Interest payments are exchanged
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once a year. The principal amounts are 7 million dollars and 10 million francs. Suppose
that company Y declares bankruptcy at the end of year 6, when the exchange rate is $0.80
per franc. What is the cost to the financial institution? Assume that, at the end of year 6,
the interest rate is 3% per annum in Swiss francs and 8% per annum in US dollars for all
maturities. All interest rates are quoted with annual compounding.

7.13. After it hedges its foreign exchange risk using forward contracts, is the financial
institution’s average spread in Figure 7.11 likely to be greater than or less than 20 basis
points? Explain your answer.

7.14. ‘‘Companies with high credit risks are the ones that cannot access fixed-rate markets
directly. They are the companies that are most likely to be paying fixed and receiving
floating in an interest rate swap.’’ Assume that this statement is true. Do you think it
increases or decreases the risk of a financial institution’s swap portfolio? Assume that
companies are most likely to default when interest rates are high.

7.15. Why is the expected loss from a default on a swap less than the expected loss from the
default on a loan to the same counterparty with the same principal?

7.16. A bank finds that its assets are not matched with its liabilities. It is taking floating-rate
deposits and making fixed-rate loans. How can swaps be used to offset the risk?

7.17. Explain how you would value a swap that is the exchange of a floating rate in one
currency for a fixed rate in another currency.

7.18. The LIBOR zero curve is flat at 5% (continuously compounded) out to 1.5 years. Swap
rates for 2- and 3-year semiannual pay swaps are 5.4% and 5.6%, respectively. Estimate
the LIBOR zero rates for maturities of 2.0, 2.5, and 3.0 years. (Assume that the 2.5-year
swap rate is the average of the 2- and 3-year swap rates.)

7.19. How would you measure the dollar duration of a swap?

Further Questions

7.20. (a) Company A has been offered the rates shown in Table 7.3. It can borrow for 3 years at
6.45%. What floating rate can it swap this fixed rate into?
(b) Company B has been offered the rates shown in Table 7.3. It can borrow for 5 years at
LIBOR plus 75 basis points. What fixed rate can it swap this floating rate into?

7.21. (a) Company X has been offered the rates shown in Table 7.3. It can invest for 4 years at
5.5%. What floating rate can it swap this fixed rate into?
(b) Company Y has been offered the rates shown in Table 7.3. It can invest for 10 years at
LIBOR minus 50 basis points. What fixed rate can it swap this floating rate into?

7.22. The 1-year LIBOR rate is 10% with annual compounding. A bank trades swaps where a
fixed rate of interest is exchanged for 12-month LIBOR with payments being exchanged
annually. The 2- and 3-year swap rates (expressed with annual compounding) are 11%
and 12% per annum. Estimate the 2- and 3-year LIBOR zero rates.

7.23. Under the terms of an interest rate swap, a financial institution has agreed to pay 10% per
annum and to receive 3-month LIBOR in return on a notional principal of $100 million
with payments being exchanged every 3 months. The swap has a remaining life of
14 months. The average of the bid and offer fixed rates currently being swapped for
3-month LIBOR is 12% per annum for all maturities. The 3-month LIBOR rate 1 month
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ago was 11.8% per annum. All rates are compounded quarterly. What is the value of
the swap?

7.24. Company A, a British manufacturer, wishes to borrow US dollars at a fixed rate of
interest. Company B, a US multinational, wishes to borrow sterling at a fixed rate of
interest. They have been quoted the following rates per annum (adjusted for differential
tax effects):

Sterling US dollars

Company A 11.0% 7.0%
Company B 10.6% 6.2%

Design a swap that will net a bank, acting as intermediary, 10 basis points per annum and
that will produce a gain of 15 basis points per annum for each of the two companies.

7.25. Suppose that the term structure of interest rates is flat in the United States and Australia.
The USD interest rate is 7% per annum and the AUD rate is 9% per annum. The current
value of the AUD is 0.62 USD. Under the terms of a swap agreement, a financial
institution pays 8% per annum in AUD and receives 4% per annum in USD. The
principals in the two currencies are $12 million USD and 20 million AUD. Payments
are exchanged every year, with one exchange having just taken place. The swap will last
2 more years. What is the value of the swap to the financial institution? Assume all
interest rates are continuously compounded.

7.26. Company X is based in the United Kingdom and would like to borrow $50 million at a
fixed rate of interest for 5 years in US funds. Because the company is not well known in
the United States, this has proved to be impossible. However, the company has been
quoted 12% per annum on fixed-rate 5-year sterling funds. Company Y is based in the
United States and would like to borrow the equivalent of $50 million in sterling funds for
5 years at a fixed rate of interest. It has been unable to get a quote but has been offered
US dollar funds at 10.5% per annum. Five-year government bonds currently yield
9.5% per annum in the United States and 10.5% in the United Kingdom. Suggest an
appropriate currency swap that will net the financial intermediary 0.5% per annum.
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Securitization
and the Credit
Crisis of 2007

Derivatives such as forwards, futures, swaps, and options are concerned with transfer-

ring risk from one entity in the economy to another. The first seven chapters of this

book have focused on forwards, futures, and swaps. Before moving on to discuss

options, we consider another important way of transferring risk in the economy:

securitization.

Securitization is of particular interest because of its role in the credit crisis (sometimes

referred to as the ‘‘credit crunch’’) that started in 2007. The crisis had its origins in

financial products created from mortgages in the United States, but rapidly spread from

the United States to other countries and from financial markets to the real economy.

Some financial institutions failed; others had to be rescued by national governments.

There can be no question that the first decade of the twenty-first century was disastrous

for the financial sector.

In this chapter, we examine the nature of securitization and its role in the crisis. In

the course of the chapter, we will learn about the US mortgage market, asset-backed

securities, collateralized debt obligations, waterfalls, and the importance of incentives in

financial markets.

8.1 SECURITIZATION

Traditionally, banks have funded their loans primarily from deposits. In the 1960s, US

banks found that they could not keep pace with the demand for residential mortgages

with this type of funding. This led to the development of the mortgage-backed security

(MBS) market. Portfolios of mortgages were created and the cash flows (interest and

principal payments) generated by the portfolios were packaged as securities (i.e., securi-

tized) and sold to investors. The US government created the Government National

Mortgage Association (GNMA, also known as Ginnie Mae) in 1968. This organization

guaranteed (for a fee) interest and principal payments on qualifying mortgages and

created the securities that were sold to investors.

Thus, although banks originated the mortgages, they did not keep them on their

balance sheets. Securitization allowed them to increase their lending faster than their
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deposits were growing. GNMA’s guarantee protected MBS investors against defaults
by borrowers.1

In the 1980s, the securitization techniques developed for the mortgage market were
applied to asset classes such as automobile loans and credit card receivables in the
United States. Securitization also become popular in other parts of the world. As the
securitization market developed, investors became comfortable with situations where
they did not have a guarantee against defaults by borrowers.

ABSs

A securitization arrangement of the type used during the 2000 to 2007 period is shown
in Figure 8.1. This is known as an asset-backed security or ABS. A portfolio of income-
producing assets such as loans is sold by the originating banks to a special purpose
vehicle (SPV) and the cash flows from the assets are then allocated to tranches.
Figure 8.1 is simpler than the structures that were typically created because it has only
three tranches (in practice, many more tranches were used). These are the senior
tranche, the mezzanine tranche, and the equity tranche. The portfolio has a principal
of $100 million. This is divided as follows: $80 million to the senior tranche, $15 million
to the mezzanine tranche, and $5 million to the equity tranche. The senior tranche is
promised a return of LIBOR plus 60 basis points, the mezzanine tranche is promised a
return of LIBOR plus 250 basis points, and the equity tranche is promised a return of
LIBOR plus 2,000 basis points.

Asset 1

Asset 2

Asset 3

...

...

...

...

...

Asset n

Principal:

$100 million

SPV

Senior tranche
Principal: $80 million

LIBOR + 60 bp

Mezzanine tranche
Principal: $15 million

LIBOR + 250 bp

Equity tranche
Principal: $5 million
LIBOR + 2,000 bp 

...

Figure 8.1 An asset-backed security (simplified); bp ¼ basis points (1bp ¼ 0.01%).

1 However, MBS investors do face uncertainty about mortgage prepayments. Prepayments tend to be

greatest when interest rates are low and the reinvestment opportunities open to investors are not particularly

attractive. In the early days of MBSs, many MBS investors realized lower returns than they expected because

they did not take this into account.
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It sounds as though the equity tranche has the best deal, but this is not necessarily the

case. The payments of interest and principal are not guaranteed. The equity tranche is

more likely to lose part of its principal, and less likely to receive the promised interest

payments on its outstanding principal, than the other tranches. Cash flows are allocated

to tranches by specifying what is known as a waterfall. The general way a waterfall works

is illustrated in Figure 8.2. A separate waterfall is applied to principal and interest

payments. Principal payments are allocated to the senior tranche until its principal

has been fully repaid. They are then allocated to mezzanine tranche until its principal has

been fully repaid. Only after this has happened do principal repayments go to the equity

tranche. Interest payments are allocated to the senior tranche until the senior tranche has

received its promised return on its outstanding principal. Assuming that this promised

return can be made, interest payments are then allocated to the mezzanine tranche. If the

promised return to the mezzanine tranche can be made and cash flows are left over, they

are allocated to the equity tranche.

The extent to which the tranches get their principal back depends on losses on the

underlying assets. The effect of the waterfall is roughly as follows. The first 5% of losses

are borne by the equity tranche. If losses exceed 5%, the equity tranche loses all its

principal and some losses are borne by the principal of the mezzanine tranche. If losses

exceed 20%, the mezzanine tranche loses all its principal and some losses are borne by

the principal of the senior tranche.

There are therefore two ways of looking at an ABS. One is with reference to the

waterfall in Figure 8.2. Cash flows go first to the senior tranche, then to the mezzanine

tranche, and then to the equity tranche. The other is in terms of losses. Losses of principal

are first borne by the equity tranche, then by the mezzanine tranche, and then by the

senior tranche. Rating agencies such as Moody’s, S&P, and Fitch played a key role in

securitization. The ABS in Figure 8.1 is likely to be designed so that the senior tranche is

given the highest possible rating, AAA. The mezzanine tranche is typically rated BBB

(well below AAA, but still investment grade). The equity tranche is typically unrated.

The description of ABSs that we have given so far is somewhat simplified. Typically,

more than three tranches with a wide range of ratings were created. In the waterfall

Senior tranche

Mezzanine tranche

Asset
cash
flows  

Equity tranche

Figure 8.2 The waterfall in an asset-backed security.
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rules, as we have described them, the allocation of cash flows to tranches is sequential in
that they always flow first to the most senior tranche, then to the next most senior
tranche, and so on. In practice, the rules are somewhat more complicated than this and
are described in a legal document that is several hundred pages long. Another

complication is that there was often some overcollateralization where the total principal
of the tranches was less than the total principal of the underlying assets. Also, the
weighted average return promised to the tranches was less than the weighted average
return payable on the assets.2

ABS CDOs

Finding investors to buy the senior AAA-rated tranches of ABSs was usually not

difficult, because the tranches promised returns that were very attractive when compared
with the return on AAA-rated bonds. Equity tranches were typically retained by the
originator of the assets or sold to a hedge fund.

Finding investors for mezzanine tranches was more difficult. This led to the creation of
ABSs of ABSs. The way this was done is shown in Figure 8.3. Many different mezzanine
tranches, created in the way indicated in Figure 8.1, are put in a portfolio and the risks
associated with the cash flows from the portfolio are tranched out in the same way as the

risks associated with cash flows from the assets are tranched out in Figure 8.1. The
resulting structure is known as an ABS CDO or Mezz ABS CDO. In the example in
Figure 8.3, the senior tranche of the ABS CDO accounts for 65% of the principal of the
ABS mezzanine tranches, the mezzanine tranche of the ABS CDO accounts for 25% of
the principal, and the equity tranche accounts for the remaining 10% of the principal.
The structure is designed so that the senior tranche of the ABS CDO is given the highest
credit rating of AAA. This means that the total of the AAA-rated instruments created in
the example that is considered here is about 90% (80% plus 65% of 15%) of the

principal of the underlying portfolios. This seems high but, if the securitization were
carried further with an ABS being created from tranches of ABS CDOs (and this did
happen), the percentage would be pushed even higher.

In the example in Figure 8.3, the AAA-rated tranche of the ABS can expect to receive
its promised return and get its principal back if losses on the underlying portfolio of

Assets Senior tranche (80%)
AAA

Mezzanine tranche (15%)
BBB

Equity tranche (5%)
Not rated

Senior tranche (65%)
AAA

Mezzanine tranche (25%) 
BBB

Equity tranche (10%)

ABSs

ABS CDO

Figure 8.3 Creation of ABSs and an ABS CDO from portfoloios of assets (simplified).

2 Both this feature and overcollateralization had the potential to increase the profitability of the structure for

its creator.
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assets is less than 20% because all losses of principal would then be absorbed by the
more junior tranches. The AAA-rated tranche of the ABS CDO in Figure 8.3 is more
risky. It will receive the promised return and get its principal back if losses on the
underlying assets are 10.25% or less. This is because a loss of 10.25% means that
mezzanine tranches of ABSs have to absorb losses equal to 5.25% of the ABS principal.
As these tranches have a total principal equal to 15% of the ABS principal, they lose
5.25/15 or 35% of their principal. The equity and mezzanine tranches of the ABS CDO
are then wiped out, but the senior tranche just manages to survive intact.

The senior tranche of the ABS CDO suffers losses if losses on the underlying
portfolios are more than 10.25%. Consider, for example, the situation where losses
are 17% on the underlying portfolios. Of the 17%, 5% is borne by the equity tranche
of the ABS and 12% by the mezzanine tranche of the ABS. Losses on the mezzanine
tranches are therefore 12/15 or 80% of their principal. The first 35% is absorbed by the
equity and mezzanine tranches of the ABS CDO. The senior tranche of the ABS CDO
therefore loses 45/65 or 69.2% of its value. These and other results are summarized in
Table 8.1. Our calculations assume that all ABS portfolios have the same default rate.

8.2 THE US HOUSING MARKET

Figure 8.4 gives the S&P/Case–Shiller composite-10 index for house prices in the US
between January 1987 and February 2013. This tracks house prices for ten metropolitan
areas of the US. It shows that, in about the year 2000, house prices started to rise much
faster than they had in the previous decade. The very low level of interest rates between
2002 and 2005 was an important contributory factor, but the bubble in house prices
was largely fueled by mortgage-lending practices.

The 2000 to 2006 period was characterized by a huge increase in what is termed
subprime mortgage lending. Subprime mortgages are mortgages that are considered to
be significantly more risky than average. Before 2000, most mortgages classified as
subprime were second mortgages. After 2000, this changed as financial institutions
became more comfortable with the notion of a subprime first mortgage.

The Relaxation of Lending Standards

The relaxation of lending standards and the growth of subprime mortgages made house
purchase possible for many families that had previously been considered to be not
sufficiently creditworthy to qualify for a mortgage. These families increased the demand

Table 8.1 Estimated losses to AAA-rated tranches of ABS CDO in Figure 8.3

Losses on
underlying
assets

Losses to
mezzanine tranche

of ABS

Losses to
equity tranche
of ABS CDO

Losses to
mezzanine tranche
of ABS CDO

Losses to
senior tranche
of ABS CDO

10% 33.3% 100.0% 93.3% 0.0%

13% 53.3% 100.0% 100.0% 28.2%

17% 80.0% 100.0% 100.0% 69.2%

20% 100.0% 100.0% 100.0% 100.0%
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for real estate and prices rose. To mortgage brokers and mortgage lenders, it was

attractive to make more loans, particularly when higher house prices resulted. More

lending meant bigger profits. Higher house prices meant that the lending was well

covered by the underlying collateral. If the borrower defaulted, it was less likely that the

resulting foreclosure would lead to a loss.

Mortgage brokers and mortgage lenders naturally wanted to keep increasing their

profits. Their problem was that, as house prices rose, it was more difficult for first-time

buyers to afford a house. In order to continue to attract new entrants to the housing

market, they had to find ways to relax their lending standards even more—and this is

exactly what they did. The amount lent as a percentage of the house price increased.

Adjustable-rate mortgages (ARMS) were developed where there was a low ‘‘teaser’’

rate of interest that would last for two or three years and be followed by a rate that

was much higher.3 A typical teaser rate was about 6% and the interest rate after the

end of the teaser rate period was typically six-month LIBOR plus 6%.4 However,

teaser rates as low as 1% or 2% have been reported. Lenders also became more

cavalier in the way they reviewed mortgage applications. Indeed, the applicant’s

income and other information reported on the application form were frequently not

checked.

Subprime Mortgage Securitization

Subprime mortgages were frequently securitized in the way indicated in Figures 8.1

to 8.3. The investors in tranches created from subprime mortgages usually had no

guarantees that interest and principal would be paid. Securitization played a part in the

50

100

150

200

250

Jan-11Jan-08Jan-05Jan-02Jan-99Jan-96Jan-93Jan-90Jan-87

Figure 8.4 The S&P/Case–Shiller Composite-10 index of US real estate
prices, 1987–2013.

3 If real estate prices increased, lenders expected the borrowers to prepay and take out a new mortgage at the

end of the teaser rate period. However, prepayment penalties, often zero on prime mortgages, were quite high

on subprime mortgages.
4 A ‘‘2/28’’ ARM, for example, is an ARM where the rate is fixed for two years and then floats for the

remaining 28 years.
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crisis. The behavior of mortgage originators was influenced by their knowledge that
mortgages would be securitized.5 When considering new mortgage applications, the
question was not ‘‘Is this a credit risk we want to assume?’’ Instead it was ‘‘Is this a
mortgage we can make money on by selling it to someone else?’’

When a portfolio of mortgages was securitized, the buyers of the products that were
created felt they had enough information if they knew, for each mortgage in the
portfolio, the loan-to-value ratio (i.e., the ratio of the size of the loan to the assessed
value of the house) and the borrower’s FICO score.6 Other information on the
mortgage application forms was considered irrelevant and, as already mentioned, was
often not even checked by lenders. The most important thing for the lender was
whether the mortgage could be sold to others—and this depended largely on the
loan-to-value ratio and the applicant’s FICO score.

It is interesting to note in passing that both the loan-to-value ratio and the FICO
score were of doubtful quality. The property assessors who determined the value of a
house at the time of a mortgage application sometimes succumbed to pressure from the
lenders to come up with high values. Potential borrowers were sometimes counseled to
take certain actions that would improve their FICO scores.7

Why was the government not regulating the behavior of mortgage lenders? The
answer is that the US government had since the 1990s been trying to expand home
ownership and had been applying pressure to mortgage lenders to increase loans to low-
and moderate-income people. Some state legislators, such as those in Ohio and
Georgia, were concerned about what was going on and wanted to curtail predatory
lending.8 However, the courts decided that national standards should prevail.

A number of terms have been used to describe mortgage lending during the period
leading up to the credit crunch. One is ‘‘liar loans’’ because individuals applying for a
mortgage, knowing that no checks would be carried out, sometimes chose to lie on the
application form. Another term used to describe some borrowers is ‘‘NINJA’’ (no
income, no job, no assets).

The Bubble Bursts

All bubbles burst eventually and this one was no exception. In 2007, many mortgage
holders found that they could no longer afford their mortgages when the teaser rates
ended. This led to foreclosures and large numbers of houses coming on the market,
which in turn led to a decline in house prices. Other mortgage holders, who had
borrowed 100%, or close to 100%, of the cost of a house found that they had negative
equity.

One of the features of the US housing market is that mortgages are nonrecourse in
many states. This means that, when there is a default, the lender is able to take
possession of the house, but other assets of the borrower are off-limits. Consequently,
the borrower has a free American-style put option. He or she can at any time sell the

5 See B. J. Keys, T. Mukherjee, A. Seru, and V. Vig, ‘‘Did Securitization Lead to Lax Screening? Evidence

from Subprime Loans,’’ Quarterly Journal of Economics, 125, 1 (February 2010): 307–62
6 FICO is a credit score developed by the Fair Isaac Corporation and is widely used in the US. It ranges from

300 to 850.
7 One such action might be to make regular payments on a new credit card for a few months.
8 Predatory lending describes the situation where a lender deceptively convinces borrowers to agree to unfair

and abusive loan terms.
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house to the lender for the principal outstanding on the mortgage. This feature

encouraged speculative activity and played a part in the cause of the bubble. Market

participants realized belatedly how costly and destabilizing the put option could be. If
the borrower had negative equity, the optimal decision was to exchange the house for

the outstanding principal on the mortgage. The house was then sold by the lender,

adding to the downward pressure on house prices.

It would be a mistake to assume that all mortgage defaulters were in the same

position. Some were unable to meet mortgage payments and suffered greatly when they
had to give up their homes. But many of the defaulters were speculators who bought

multiple homes as rental properties and chose to exercise their put options. It was their

tenants who suffered. There are also reports that some house owners (who were not
speculators) were quite creative in extracting value from their put options. After

handing the keys to their houses to the lender, they turned around and bought (some-

times at a bargain price) other houses that were in foreclosure. Imagine two people

owning identical houses next to each other. Both have mortgages of $250,000. Both
houses are worth $200,000 and in foreclosure can be expected to sell for $170,000. What

is the owners’ optimal strategy? The answer is that each person should exercise the put

option and buy the neighbor’s house.

The United States was not alone in having declining real estate prices. Prices declined

in many other countries as well. Real estate prices in the United Kingdom were
particularly badly affected.

The Losses

As foreclosures increased, the losses on mortgages also increased. It might be thought

that a 35% reduction in house prices would lead to at most a 35% loss of principal on

defaulting mortgages. In fact, the losses were far greater than that. Houses in fore-

closure were often in poor condition and sold for a small fraction of what their value
was prior to the credit crisis. In 2008 and 2009, losses as high 75% of the mortgage

principal were reported for mortgages on houses in foreclosure in some cases.

Investors in tranches that were formed from the mortgages incurred big losses. The

value of the ABS tranches created from subprime mortgages was monitored by a series

of indices known as ABX. These indices indicated that the tranches originally rated
BBB had lost about 80% of their value by the end of 2007 and about 97% of their

value by mid-2009. The value of the ABS CDO tranches created from BBB tranches

was monitored by a series of indices known as TABX. These indices indicated that the
tranches originally rated AAA lost about 80% of their value by the end of 2007 and

were essentially worthless by mid-2009.

Financial institutions such as UBS, Merrill Lynch, and Citigroup had big posi-
tions in some of the tranches and incurred huge losses, as did the insurance giant

AIG, which provided protection against losses on ABS CDO tranches that had

originally been rated AAA. Many financial institutions had to be rescued with
government funds. There have been few worse years in financial history than 2008.

Bear Stearns was taken over by JP Morgan Chase; Merrill Lynch was taken over by

Bank of America; Goldman Sachs and Morgan Stanley, which had formerly been
investment banks, became bank holding companies with both commercial and

investment banking interests; and Lehman Brothers was allowed to fail (see Business

Snapshot 1.1).
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The Credit Crisis

The losses on securities backed by residential mortgages led to a severe credit crisis. In
2006, banks were reasonably well capitalized, loans were relatively easy to obtain, and
credit spreads were low. (The credit spread is the excess of the interest rate on a loan
over the risk-free interest rate.) By 2008, the situation was totally different. The capital
of banks had been badly eroded by their losses. They had become much more risk-
averse and were reluctant to lend. Creditworthy individuals and corporations found
borrowing difficult. Credit spreads had increased dramatically. The world experienced
its worst recession in several generations. One measure of the stress in financial markets
is the TED spread. This is the excess of the three-month Eurodollar deposit rate over
the three-month Treasury interest. In normal market conditions, it is 30 to 50 basis
points. It reached over 450 basis points in October 2008.

8.3 WHAT WENT WRONG?

‘‘Irrational exuberance’’ is a phrase coined by Alan Greenspan, Chairman of the Federal
Reserve Board, to describe the behavior of investors during the bull market of the 1990s.
It can also be applied to the period leading up the the credit crisis. Mortgage lenders, the
investors in tranches of ABSs and ABS CDOs that were created from residential
mortgages, and the companies that sold protection on the tranches assumed that the
good times would last for ever. They thought that US house prices would continue to
increase. There might be declines in one or two areas, but the possibility of the
widespread decline shown in Figure 8.4 was a scenario not considered by most people.

Many factors contributed to the crisis that started in 2007. Mortgage originators
used lax lending standards. Products were developed to enable mortgage originators to
profitably transfer credit risk to investors. Rating agencies moved from their traditional
business of rating bonds, where they had a great deal of experience, to rating structured
products, which were relatively new and for which there were relatively little historical
data. The products bought by investors were complex and in many instances investors
and rating agencies had inaccurate or incomplete information about the quality of the
underlying assets. Investors in the structured products that were created thought they
had found a money machine and chose to rely on rating agencies rather than forming
their own opinions about the underlying risks. The return offered by the products rated
AAA was high compared with the returns on bonds rated AAA.

Structured products such as those in Figures 8.1 and 8.3 are highly dependent on the
default correlation between the underlying assets. Default correlation measures the
tendency for different borrowers to default at about the same time. If the default
correlation between the underlying assets in Figure 8.1 is low, the AAA-rated tranches
are very unlikely to experience losses. As this default correlation increases, they become
more vulnerable. The tranches of ABS CDOs in Figure 8.3 are even more heavily
dependent on default correlation.

If mortgages exhibit moderate default correlation (as they do in normal times), there
is very little chance of a high overall default rate and the AAA-rated tranches of both
ABSs and ABS CDOs that are created from mortgages are fairly safe. However, as
many investors found to their cost, default correlations tend to increase in stressed
market conditions. This makes very high default rates possible.
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There was a tendency to assume that a tranche with a particular rating could be

equated to a bond with the that rating. The rating agencies published the criteria they

used for rating tranches. S&P and Fitch rated a tranche so as to ensure that the

probability of the tranche experiencing a loss was the same as the probability of a
similarly rated bond experiencing a loss. Moody’s rated a tranche so that the expected

loss from the tranche was the the same as the expected loss from a similarly rated bond.9

The procedures used by rating agencies were therefore designed to ensure that one

aspect of the loss distributions of tranches and bonds were matched. However, other

aspects of the distributions were liable to be quite different.

The differences between tranches and bonds were accentuated by the fact tranches

were often quite thin. The AAA tranches often accounted for about 80% of the

principal as in Figure 8.1, but it was not unusual for there to be 15 to 20 other

tranches. Each of these tranches would be 1% or 2% wide. Such thin tranches are

likely to either incur no losses or be totally wiped out. The chance of investors
recovering part of their principal (as bondholders usually do) is small. Consider, for

example, a BBB tranche that is responsible for losses in the range 5% to 6%, If losses

on the underlying portfolio are less than 5%, the tranche is safe. If losses are greater

than 6%, the tranche is wiped out. Only in the case where losses are between 5% and

6% is a partial recovery made by investors.

The difference between a thin BBB-rated tranche and a BBB-rated bond was over-

looked by many investors. The difference makes the tranches of ABS CDOs created

from the BBB-rated tranches of ABSs much riskier than tranches created in a similar

way from BBB bonds. Losses on a portfolio of BBB bonds can reasonably be assumed

to be unlikely to exceed 25% in even the most severe market conditions. Table 8.1

shows that 100% losses on a portfolio of BBB tranches can occur relatively easily—and
this is even more true when the tranches are only 1% or 2% wide.

Regulatory Arbitrage

Many of the mortgages were originated by banks and it was banks that were the main
investors in the tranches that were created from the mortgages. Why would banks

choose to securitize mortgages and then buy the securitized products that were

created? The answer concerns what is termed regulatory arbitrage. The regulatory

capital banks were required to keep for the tranches created from a portfolio of

mortgages was much less than the regulatory capital that would be required for the
mortgages themselves.

Incentives

One of the lessons from the crisis is the importance of incentives. Economists use the
term ‘‘agency costs’’ to describe the situation where incentives are such that the interests

of two parties in a business relationship are not perfectly aligned. The process by which

mortgages were originated, securitized, and sold to investors was unfortunately riddled

with agency costs.

9 For a discussion of the criteria used by rating agencies and the reasonableness of the ratings given the

criteria used, see J. Hull and A. White, ‘‘Ratings Arbitrage and Structured Products,’’ Journal of Derivatives,

20, 1 (Fall 2012): 80–86, and ‘‘The Risk of Tranches Created from Mortgages,’’ Financial Analysts Journal,

66, 5 (September/October 2010): 54–67.
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The incentive of the originators of mortgages was to make loans that would be
acceptable to the creators of the ABS and ABS CDO tranches. The incentive of the
individuals who valued the houses on which the mortgages were written was to please
the lender by providing as high a valuation as possible so that the loan-to-value ratio
was as low as possible. (Pleasing the lender was likely to lead to more business from that
lender.) The main concern of the creators of tranches was how the tranches would be
rated. They wanted the volume of AAA-rated tranches that they created to be as high as
possible and found ways of using the published criteria of rating agencies to achieve
this. The rating agencies were paid by the issuers of the securities they rated and about
half their income came from structured products.

Another source of agency costs concerns the incentives of the employees of financial
institutions. Employee compensation falls into three categories: regular salary, the end-
of-year bonus, and stock or stock options. Many employees at all levels of seniority in
financial institutions, particularly traders, receive much of their compensation in the
form of end-of-year bonuses. This form of compensation is focused on short-term
performance. If an employee generates huge profits one year and is responsible for
severe losses the next, the employee will often receive a big bonus the first year and will
not have to return it the following year. (The employee might lose his or her job as a
result of the second year losses, but even that is not a disaster. Financial institutions
seem to be surprisingly willing to recruit individuals with losses on their résumés.)

Imagine you are an employee of a financial institution in 2006 responsible for
investing in ABS CDOs created from mortgages. Almost certainly you would have
recognized that there was a bubble in the US housing market and would expect that
bubble to burst sooner or later. However, it is possible that you would decide to
continue with your ABS CDO investments. If the bubble did not burst until after the
end of 2006, you would still get a nice bonus at the end of 2006.

8.4 THE AFTERMATH

Prior to the crisis, over-the-counter derivatives markets were largely unregulated. This
has changed. As mentioned in earlier chapters, there is now a requirement that most
standardized over-the-counter derivatives be cleared through central counterparties
(CCPs). This means that they are treated similarly to derivatives such as futures that
trade on exchanges. Banks will usually be members of one or more CCPs. When
trading standardized derivatives, they will be required to post initial margin and
variation margin with the CCP and will also be required to contribute to a default
fund. For transactions that continue to be cleared bilaterally, collateral arrangements
will be legislated rather than left to the judgement of the parties involved.

The bonuses paid by banks have come under more scrutiny and it is possible that in
some jurisdictions there will be limits on the sizes of the bonuses that can be paid. The
way bonuses are paid is changing. Before the crisis it was common for a trader’s bonus
for a year to be paid in full at the end of the year with no possibility of the bonus having
to be returned. It is now more common for this bonus to be spread over several years
and for it to be forfeited if subsequent results are poor.

The Dodd–Frank Act in the US and similar legislation in the UK and European
Union provide for more oversight of financial institutions and include much new
legislation affecting financial institutions. For example, proprietary trading and other
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similar activities of deposit-taking institutions are being made more difficult. (This is
known as the ‘‘Volcker rule’’ in the US because it was proposed by former Federal
Reserve chairman Paul Volcker. An independent committee in the UK chaired by Sir
John Vickers has similarly proposed that the retail operations of banks be ring fenced.
The Likanen committee in the European Union wants trading and other high-risk
trading to be separated from other banking activities.) Another rule requires every
financial institution that is designated as systemically important to prepare what is
known as a ‘‘living will’’ mapping out how it can be safely wound up in the event of
failure. A further rule requires issuers of securitized products (with some exceptions) to
keep 5% of each product created.

Banks throughout the world are regulated by the Basel Committee on Banking
Supervision.10 Prior to the crisis, the committee implemented regulations known as
Basel I and Basel II. These are summarized in Business Snapshot 8.1. Following the
crisis, it has implemented what is known as ‘‘Basel II.5.’’ This increases the capital
requirements for market risk. Basel III was published in 2010 and will be implemented
over a period lasting until 2019. It increases the amount of capital and quality of capital
that banks are required to keep. It also requires banks to satisfy certain liquidity
requirements. As discussed in Business Snapshot 4.2, one cause of problems during
the crisis was the tendency of banks to place too much reliance on the use of short-term
liabilities for long-term funding needs. The liquidity requirements are designed to make
it more difficult for them to do this.

SUMMARY

Securitization is a process used by banks to create securities from loans and other
income-producing assets. The securities are sold to investors. This removes the loans

Business Snapshot 8.1 The Basel Committee

As the activities of banks became more global in the 1980s, it became necessary for
regulators in different countries to work together to determine an international
regulatory framework. As a result the Basel Committee on Banking Supervision
was formed. In 1988, it published a set of rules for the capital banks were required to
keep for credit risk. These capital requirements have become known as Basel I. They
were modified to accommodate the netting of transactions in 1995. In 1996 a new
capital requirement for market risk was published. This capital requirement was
implemented in 1998. In 1999 significant changes were proposed for the calculation
of the capital requirements for credit risk and a capital requirement for operational
risk was introduced. These rules are referred to as Basel II. Basel II is considerably
more complicated than Basel I and its implementation was delayed until 2007 (later
in some countries). During the credit crisis and afterwards the Basel committee
introduced new regulatory requirements known as Basel II.5, which increased capital
for market risk. After that came Basel III, which tightened capital requirements and
introduced liquidity requirements.

10 For more details on the work of the Basel Committee and bank regulatory requirements, see J. Hull, Risk

Management and Financial Institutions, 3rd edition, Wiley, 2012.
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from the banks’ balance sheets and enables the banks to expand their lending faster than
they would otherwise be able to. The first loans to be securitized were mortgages in the
US in the 1960s and 1970s. Investors who bought the mortgage-backed securities were
not exposed to the risk of borrowers defaulting because the loans were backed by the
Government National Mortgage Association. Later automobile loans, corporate loans,
credit card receivables, and subprime mortgages were securitized. In many cases,
investors in the securities created from these instruments did not have a guarantee against
defaults.

Securitization played a part in the credit crisis that started in 2007. Tranches were
created from subprime mortgages and new tranches were then created from these
tranches. The origins of the crisis can be found in the US housing market. The US
government was keen to encourage home ownership. Interest rates were low. Mortgage
brokers and mortgage lenders found it attractive to do more business by relaxing their
lending standards. Securitization meant that the investors bearing the credit risk were
not usually the same as the original lenders. Rating agencies gave AAA ratings to the
senior tranches that were created. There was no shortage of buyers for these AAA-rated
tranches because their yields were higher than the yields on other AAA-rated securities.
Banks thought the ‘‘good times’’ would continue and, because compensation plans
focused their attention on short-term profits, chose to ignore the housing bubble and its
potential impact on some very complicated products they were trading.

House prices rose as both first-time buyers and speculators entered the market. Some
mortgages had included a low ‘‘teaser rate’’ for two or three years. After the teaser rate
ended, there was a significant increase in the interest rate for some borrowers. Unable to
meet the higher interest rate they had no choice but to default. This led to foreclosures
and an increase in the supply of houses be sold. The price increases between 2000 and
2006 began to be reversed. Speculators and others who found that the amount owing
on their mortgages was greater than the value of their houses (i.e., they had negative
equity) defaulted. This accentuated the price decline.

Banks are paying a price for the crisis. New legislation and regulation will reduce their
profitability. For example, capital requirements are being increased, liquidity regulations
are being introduced, and OTC derivatives are being much more tightly regulated.
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Practice Questions (Answers in Solutions Manual)

8.1. What was the role of GNMA (Ginnie Mae) in the mortgage-backed securities market of
the 1970s?

8.2. Explain what is meant by (a) an ABS and (b) an ABS CDO.

8.3. What is a mezzanine tranche?

8.4. What is the waterfall in a securitization?

8.5. What are the numbers in Table 8.1 for a loss rate of (a) 12% and (b) 15%?

8.6. What is a subprime mortgage?

8.7. Why do you think the increase in house prices during the 2000 to 2007 period is referred
to as a bubble?

8.8. Why did mortgage lenders frequently not check on information provided by potential
borrowers on mortgage application forms during the 2000 to 2007 period?

8.9. How were the risks in ABS CDOs misjudged by the market?

8.10. What is meant by the term ‘‘agency costs’’? How did agency costs play a role in the credit

crisis?

8.11. How is an ABS CDO created? What was the motivation to create ABS CDOs?

8.12. Explain the impact of an increase in default correlation on the risks of the senior tranche
of an ABS. What is its impact on the risks of the equity tranche?

8.13. Explain why the AAA-rated tranche of an ABS CDO is more risky than the AAA-rated
tranche of an ABS.

8.14. Explain why the end-of-year bonus is sometimes referred to as ‘‘short-term compensation.’’

8.15. Add rows in Table 8.1 corresponding to losses on the underlying assets of (a) 2%, (b) 6%,
(c) 14%, and (d) 18%.

Further Questions

8.16. Suppose that the principal assigned to the senior, mezzanine, and equity tranches is 70%,
20%, and 10% for both the ABS and the ABS CDO in Figure 8.3. What difference does
this make to Table 8.1?

8.17. ‘‘Resecuritization was a badly flawed idea. AAA tranches created from the mezzanine
tranches of ABSs are bound to have a higher probability of default than the AAA-rated

tranches of ABSs.’’ Discuss this point of view.

8.18. Suppose that mezzanine tranches of the ABS CDOs, similar to those in Figure 8.3, are
resecuritized to form what is referred to as a ‘‘CDO squared.’’ As in the case of tranches
created from ABSs in Figure 8.3, 65% of the principal is allocated to a AAA tranche,
25% to a BBB tranche, and 10% to the equity tranche. How high does the loss percentage
have to be on the underlying assets for losses to be experienced by a AAA-rated tranche

that is created in this way. (Assume that every portfolio of assets that is used to create
ABSs experiences the same loss rate.)
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8.19. Investigate what happens as the width of the mezzanine tranche of the ABS in Figure 8.3
is decreased with the reduction of mezzanine tranche principal being divided equally
between the equity and senior tranches. In particular, what is the effect on Table 8.1?

8.20. Suppose that the structure in Figure 8.1 is created in 2000 and lasts 10 years. There are no
defaults on the underlying assets until the end of the eighth year when 17% of the
principal is lost because of defaults during the credit crisis. No principal is lost in the final
two years. There are no repayments of principal until the end. Evaluate the relative
performance of the tranches. Assume a constant LIBOR rate of 3%. Consider both
interest and principal payments.
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OIS Discounting,
Credit Issues, and

Funding Costs

This chapter discusses a number of issues that have become important in derivatives

markets since the credit crisis of 2007. The first of these concerns the choice of a risk-

free discount rate. This is important because, as we will see in later chapters, the

valuation of almost any derivative involves discounting expected cash flows at a risk-

free rate. Prior to the credit crisis, market participants usually used LIBOR/swap rates

as proxies for risk-free rates. They constructed a zero curve from LIBOR rates and

LIBOR-for-fixed swap rates as described in Section 7.6 and used this to provide risk-

free zero rates. Since the crisis, they have started to use other proxies in some

circumstances.

The second part of the chapter discusses credit risk. This has become a progressively

more important issue for derivatives markets. Exchanges have traditionally handled the

credit risk in derivatives very well. (Chapter 2, for example, explains the way in which

the trading of futures is designed to minimize credit risk.) Over-the-counter derivatives,

as explained in Section 2.5, are either cleared bilaterally or centrally. Central clearing

operates similarly to exchange clearing and, if managed prudently, should be equally

effective in reducing credit risk. Bilateral clearing tends to involve more credit risk than

central clearing and a key issue for derivatives market participants is how credit risk

should be taken into account when bilaterally cleared derivatives are valued. This

chapter takes a first look at this issue. More details are in Chapter 24.

The final topic considered in this chapter is funding costs. Should funding costs

influence how derivatives are valued? This has become a controversial issue. Some

analysts support making what is termed a ‘‘funding value adjustment’’ (FVA) when

they price derivatives. Others argue that an FVA cannot be justified and leads to

arbitrage opportunities.

9.1 THE RISK-FREE RATE

The standard procedure for valuing a derivative involves setting up a risk-free portfolio

and arguing that in a no-arbitrage world it should earn the risk-free rate. Our valuation

of FRAs in Section 4.7 and forward contracts in Section 5.7 provide a simple
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application of this idea. Swaps are portfolios of FRAs or forward contracts and so their

valuations also rely on risk-free discounting. Indeed, as our understanding of deriva-

tives develops, we will see that the valuation of almost any derivative requires risk-free

discounting. This makes the choice of the risk-free rate important.

In the United States, the rates on Treasury bills, Treasury notes, and Treasury bonds

might be thought to be natural candidates for risk-free rates. These instruments are

issued by the US government and denominated in US dollars. Most analysts consider it

extremely unlikely that the US government will ever default on the instruments as it

always has the opportunity of increasing the money supply (which can be thought of as

‘‘printing more money’’) in order to repay lenders. Similar arguments can be made for

instruments issued by other governments in their own currencies.1

In fact, derivatives market participants do not use treasury rates as risk-free rates.

This is because treasury rates are generally considered to be artificially low. Some of the

reasons for this are listed in Business Snapshot 9.1. Pre-2008, market participants used

LIBOR rates and LIBOR-for-fixed swap rates as risk-free rates. LIBOR is, as described

in Section 4.1, the short-term (1 year or less) rate of interest at which creditworthy

banks (typically those rated AA or better) can borrow from other banks. Prior to the

credit crisis that started in 2007, LIBOR was thought to be close to risk-free. The

chance of a bank defaulting on a loan lasting 1 year or less, when the bank is rated AA

at the time the loan is granted, was thought to very small.

During the credit crisis, LIBOR rates soared because banks were reluctant to lend to

each other. As mentioned in Chapter 8, the TED spread, which is the excess of 3-month

Eurodollar deposit rate (which like 3-month LIBOR is an interbank borrowing rate)

Business Snapshot 9.1 What Is the Risk-Free Rate?

Derivatives dealers argue that the interest rates implied by Treasury bills and
Treasury bonds are artificially low because:

1. Treasury bills and Treasury bonds must be purchased by financial institutions
to fulfill a variety of regulatory requirements. This increases demand for these
Treasury instruments driving the price up and the yield down.

2. The amount of capital a bank is required to hold to support an investment in
Treasury bills and bonds is substantially smaller than the capital required to
support a similar investment in other instruments with very low risk.

3. In the United States, Treasury instruments are given a favorable tax treatment
compared with most other fixed-income investments because they are not taxed
at the state level.

Traditionally derivatives dealers have assumed that LIBOR rates are risk-free and
this is what we did when valuing swaps in Chapter 7. But LIBOR rates are not totally
risk-free. Following the credit crisis that started in 2007, many dealers switched to
using overnight indexed swap (OIS) rates as risk-free rates, at least for collateralized
transactions. These rates and the ways they are used are explained in this chapter.

1 Note that the argument does not apply to eurozone countries, that is, countries which use the euro as their

currency. This is because any one eurozone country, such as Italy or Spain, does not have control over the

European Central Bank.
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over the 3-month US Treasury bill rate, is less than 50 basis points in normal market
conditions. Between October 2007 and May 2009, it was rarely lower than 100 basis
points and peaked at over 450 basis points in October 2008. Clearly banks did not
regard loans to other banks as close to risk-free during this period!

It might be thought that their experience during the credit crisis would lead to
practitioners looking for a better proxy for the risk-free rate when valuing derivatives.
However, this is not exactly what has happened. Following the credit crisis, most banks
have changed their risk-free discount rates for collateralized transactions from LIBOR
to what are known as overnight indexed swap (OIS) rates (see next section). But for
non-collateralized transactions they continue to use LIBOR, or an even higher discount
rate. (See Section 2.5 for a discussion of collateralization.) This reflects a belief that the
discount rate used by a bank for a derivative should represent its average funding costs,
not a true risk-free rate. The average funding costs for a non-collateralized derivative is
considered to be at least as high as LIBOR. Collateralized derivatives are funded by the
collateral, and OIS rates, as we shall see, provide an estimate of the funding cost for
these transactions.

9.2 THE OIS RATE

As explained in Section 4.1, the fed funds rate is an overnight unsecured borrowing rate
of interest between financial institutions in the US. A broker usually matches borrowers
and lenders. The weighted average of the rates in brokered transactions (with weights
proportional to transaction size) is termed the effective federal funds rate. Other
countries have similar systems to the US. For example, in the UK the average of
brokered overnight rates is termed the sterling overnight index average (SONIA) and, in
the eurozone, it is termed the euro overnight index average (EONIA). The overnight
rate in a country is monitored by the central bank, which may intervene with its own
transactions in an attempt to raise or lower it.

An overnight indexed swap (OIS) is a swap where a fixed rate for a period (e.g.,
1 month or 3 months) is exchanged for the geometric average of the overnight rates
during the period. (The overnight rates are the average of the rates in brokered
transactions as just described.) If, during a certain period, a bank borrows funds at
the overnight rate (rolling the interest and principal forward each day), the interest rate
it pays for the period is the geometric average of the overnight interest rates. Similarly,
if it lends money at the overnight interest rate every day (rolling the interest and
principal forward each day), the interest it earns for the period is also the geometric
average of the overnight interest rates. An OIS therefore allows overnight borrowing
or lending for a period to be swapped for borrowing or lending at a fixed rate for the
period. The fixed rate in an OIS is referred to as the OIS rate. If the geometric average
of daily rates for the period proves to be less than the fixed rate, there is a payment
from the fixed-rate payer to the floating-rate payer at the end of the period; otherwise,
there is a payment from the floating-rate payer to the fixed-rate payer at the end of the
period.

Example 9.1

Suppose that in a US 3-month OIS the notional principal is $100 million and the
fixed rate (i.e., the OIS rate) is 3% per annum. If the geometric average of overnight
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effective federal funds rates during the 3 months proves to be 2.8% per annum, the

fixed-rate payer has to pay 0:25� ð0:030� 0:028Þ � $100,000,000 or $50,000 to the

floating-rate payer. (This calculation does not take account of the impact of day

count conventions.)

Overnight indexed swaps tend to have relatively short lives (often 3 months or less).

However, transactions that last as long as 5 to 10 years are becoming more common. An

OIS lasting longer than 1 year is typically divided into 3-month subperiods. At the end

of each subperiod the geometric average of the overnight rates during the subperiod is

exchanged for the OIS rate. In Section 7.5, we explained that the swap rate in a plain

vanilla LIBOR-for-fixed swap is a continually refreshed LIBOR rate (i.e., the rate that

can be earned on a series of short-term loans to AA-rated financial institutions).

Similarly, the OIS rate is a continually refreshed overnight rate (i.e., it is the rate that

can be earned by a financial institution from a series of overnight loans to other

financial institutions).

Suppose that Bank A engages in the following transactions:

1. Borrow $100 million in the overnight market for 3 months, rolling the interest and
principal on the loan forward each night.

2. Lend the $100 million for 3 months at LIBOR to another bank, Bank B.

3. Use an OIS to exchange the overnight borrowings for borrowings at the 3-month

OIS rate.

This will lead to Bank A receiving the 3-month LIBOR rate and (assuming its

creditworthiness remains acceptable to the overnight market) paying the 3-month

overnight indexed swap rate. We might therefore expect the 3-month overnight

indexed swap rate to equal the 3-month LIBOR rate. However, it is generally lower.

This is because Bank A requires some compensation for the risk it is taking that Bank

B will default on the 3-month LIBOR loan. The overnight lenders to Bank A bear

much less risk than Bank A does when it lends to Bank B for 3 months. This is

because they have the option of ceasing to lend to Bank A if Bank A’s credit quality

declines.

The excess of the 3-month LIBOR rate over the 3-month overnight indexed swap rate

is known as the 3-month LIBOR-OIS spread. It is often used as a measure of stress in

financial markets. Its values between 2002 and 2013 are shown in Figure 9.1. In normal

market conditions, it is about 10 basis points. However, it rose sharply during the 2007–

2009 credit crisis because banks became less willing to lend to each other for 3-month

periods. In October 2008, the spread spiked to an all time high of 364 basis points. By a

year later it had returned to more normal levels. But it has since increased in response to

stresses and uncertainties in financial markets. For example, it rose to about 50 basis

points at the end of December 2011 as a result of concerns about the economies of

European countries such as Greece.

The OIS rate is a good proxy for the risk-free rate. The OIS rate is not totally risk-

free, but it is very close to risk-free. Two sources of risk can be identified, both very

small. The first is that there might be a default on an overnight loan between two

financial institutions. The chance of this is very small because any hint of an imminent

credit problem is likely to lead to a financial institution being excluded from the

overnight market. The second is that there might be a default on the OIS swap itself.
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However, the adjustment to an OIS swap rate to reflect default possibilities is generally

very small (particularly if the OIS is collateralized).

Determining the OIS Zero Curve

In Section 7.6, we described how the bootstrap method can be used to calculate the

LIBOR/swap zero curve. We saw that LIBOR-for-fixed swap rates define a series of par

yield bonds. A key point here is that, for the swap rates to define a series of par yield

bonds, it is necessary for the rates being bootstrapped to be the same as the rates being

used for discounting.

The procedure for constructing the OIS zero curve when OIS rates are used for

discounting is similar to that used to construct the LIBOR zero curve when LIBOR

rates are used for discounting. The 1-month OIS rate defines the 1-month zero rate, the

3-month OIS rate defines the 3-month zero rate, and so on. When there are periodic

settlements in the OIS contract, the OIS rate defines a par yield bond. Suppose, for

example, that the 5-year OIS rate is 3.5% with quarterly settlements. (This means that

at the end of each quarter 0:25� 3:5% ¼ 0:875% is exchanged for the geometric

average of the overnight rates during the quarter.) A 5-year bond paying a quarterly

coupon at a rate of 3.5% per annum would be assumed to sell for par.

Although OIS swaps are becoming more liquid, they do not trade for maturities that

are as long as the more common LIBOR-for-fixed interest rate swaps. If the OIS zero

curve is required for long maturities, a natural approach is to assume that the spread

between an OIS rate and the corresponding LIBOR/swap rates is the same at the long

end as it is for the longest OIS maturity for which there is reliable data. Suppose, for

example, that there are no reliable data on OIS swaps for maturities longer than

5 years. If the 5-year OIS rate is 4.7% and the 5-year LIBOR-for-fixed swap rate is

4.9%, OIS rates could be assumed to be 20 basis points less than the corresponding

LIBOR/swap rates for all maturities beyond 5 years. An alternative approach for

extending the OIS zero curve is to use basis swaps where 3-month LIBOR is exchanged
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Figure 9.1 The LIBOR–OIS Spread from January 2002 to May 2013.
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for the average federal funds rate. These swaps have maturities as long as 30 years in
the US.2

9.3 VALUING SWAPS AND FRAS WITH OIS DISCOUNTING

Once the OIS zero curve has been determined, many types of derivatives can be valued
using OIS rates as the risk-free discount rates. For example, the value of a forward
contract on an asset can be calculated using equation (5.4) with r equal to the OIS zero
rate for a maturity of T years.3 To value swaps and FRAs we have a little more work to

do. It is first necessary to calculate forward LIBOR in a way that is consistent with OIS
discounting.

Determining Forward LIBOR Rates with OIS Discounting

LIBOR-for-fixed swaps can be valued assuming that forward LIBOR rates are realized.
LIBOR-for-fixed swaps, if transacted at today’s mid-market swap rates, are worth zero.
This provides a way of determining LIBOR forward rates. The LIBOR forward rates
given by OIS discounting are different from those given by LIBOR discounting. We will

illustrate this for a simple situation. Example 9.2 calculates a forward LIBOR rate
assuming that LIBOR rates are used for discounting. Example 9.3 calculates the same
forward LIBOR rate assuming that OIS rates are used for discounting.

Example 9.2

Suppose that the 1-year LIBOR rate is 5% and the 2-year LIBOR-for-fixed swap
rate with annual payments is 6%. Both rates are annually compounded. A bank
uses LIBOR rates for discounting. Suppose that R is the 2-year LIBOR/swap zero
rate. Because a bond providing a coupon of 6% is a par yield bond (see Section 7.6)
we must have

6

1:05
þ 106

ð1þ RÞ2 ¼ 100

Solving this gives R ¼ 6:030%. Suppose that F is the forward LIBOR rate for the
1-year period beginning in 1 year. We can calculate it from the zero rates:

F ¼ 1:060302

1:05
� 1 ¼ 7:0707%

As a check of this result, we can calculate F so that it makes the value of the swap
zero. The exchange in 1 year to the party receiving fixed is worth þ1 per 100 of

2 If the swap rate for a 30-year LIBOR interest rate swap is 5% and LIBOR is swapped for the average

federal funds rate plus 20 basis points, it might be assumed that the 30-year OIS rate is 4.8% (assuming

appropriate adjustments have been made for day counts). Unfortunately, this would involve an

approximation as a swap of fed funds for LIBOR involves the arithmetic average (not geometric average)

of overnight rates during a period being swapped for the LIBOR rate applicable to the period. A ‘‘convexity

adjustment’’ is in theory necessary. See, for example, K. Takada, ‘‘Valuation of Arithmetic Average of Fed

Funds Rates and Construction of the US Dollar Swap Yield Curve,’’ 2011, SSRN-id981668.
3 To apply equation (5.4), the forward price F0 for maturity T is required. Typically, this is obtained by

interpolating between forward prices observed in the market.

OIS Discounting, Credit Issues, and Funding Costs 227



principal. (This is because the party receives 6 and pays 5.) Assuming forward
rates are realized, the exchange in 2 years is 6� 100F per 100 of principal. The
value of the swap is

1

1:05
þ 6� 100F

1:060302

per 100 of principal. Setting this equal to zero and solving for F , we see that
F ¼ 7:0707% as before.

Example 9.3

As in Example 9.2, suppose that the 1-year LIBOR rate is 5% and the 2-year
swap rate with annual payments is 6%. (Both rates are annually compounded.)
A bank uses OIS rates for discounting. Assume that the OIS zero curve has been
calculated as described in Section 9.2 and the 1- and 2-year OIS zero rates are
4.5% and 5.5% with annual compounding. (In this situation, OIS zero rates are
therefore about 50 basis points lower than LIBOR zero rates.) Suppose that F is
the forward LIBOR rate for the 1-year period beginning in 1 year. Swaps can be
valued assuming that forward LIBOR rates are realized. Because a swap where
6% is received and LIBOR is paid is worth zero, we must have

1

1:045
þ 6� 100F

1:0552
¼ 0

Solving this gives F ¼ 7:0651%.

In Examples 9.2 and 9.3, when we switch from LIBOR discounting to OIS discounting,
the forward LIBOR changes from 7.0707% to 7.0651%. The change is a little more
than half a basis point. It is small, but is something that traders would not want to

ignore. In practice, the impact of the switch depends on the steepness of the zero curve
and the maturity of the forward rate (see DerivaGem 3.00).

Calculations of the sort we have given in Example 9.3 enable a forward LIBOR curve
to be constructed when OIS rates are used as risk-free discount rates. Using a series of
swaps where exchanges are made every 3 months enables the 3-month forward rates as a
function of maturity (i.e., as a function of the start of the 3-month period) to be
constructed; using swaps where exchanges are made every 6 months enables the 6-month
forward rate as a function of maturity to be constructed; and so on.4 (Interpolation
between calculated forward rates is used to determine complete forward LIBOR curves.)

When a swap is valued using OIS discounting, the forward rates corresponding to the
swap’s cash flows are obtained from the appropriate forward LIBOR curves. Cash flows
on the swap are then calculated assuming these forward rates will occur and the cash
flows are discounted at the appropriate OIS zero rates.

9.4 OIS vs. LIBOR: WHICH IS CORRECT?

As already mentioned, most derivatives dealers now use discount rates based on OIS

rates when valuing collateralized derivatives (i.e., derivatives where there is a collateral

4 Basis swaps where, for example, 1-month LIBOR is exchanged for 6-month LIBOR, provide extra

information to assist in the compilation of a complete set of LIBOR forward curves corresponding to

different accrual periods.
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agreement similar to that outlined in Section 2.5) and discount rates based on LIBOR

when valuing non-collateralized derivatives.5 The reason most commonly given for this

concerns funding costs. Collateralized derivatives are funded by the collateral and the

federal funds rate (which, as we have explained, is linked to the OIS rate) is the overnight

interest rate most commonly paid on collateral. In the case of non-collateralized

transactions, it is argued that funding costs are higher and the discount rate should

reflect this.

As explained later, arguments based on funding costs are questionable because it is a

long-established principle in finance that the evaluation of an investment should not

depend on the way it is funded. It is the risk of the investment and its expected cash

flows that are important. Finance theory leads to the conclusion that we should always

use the best proxy available for the risk-free rate when discounting in situations where

riskless portfolios have been set up. Arguably the OIS zero curve is as close to risk-free

as we can get. It should therefore be used for discounting regardless of whether the

transaction is collateralized.6

9.5 CREDIT RISK: CVA AND DVA

It should be emphasized that the discount rate is not used as a way of allowing for credit

risk when a derivative is valued. The purpose of the valuations we have described so far

(whether OIS or LIBOR is used for discounting) is to calculate the value of the

derivative assuming that neither side will default. (We refer to this as the ‘‘no-default

value’’ of the derivative.) Credit risk is generally taken into account by a separate

calculation. We now describe the nature of that calculation. More details are in

Chapter 24.

Suppose that a bank and a counterparty have entered into a portfolio of derivatives

transactions which are cleared bilaterally. The first point to note is that the agreement

between the bank and the counterparty will almost certainly state that netting applies.

This means that all outstanding derivatives are considered as a single derivative in the

event of a default. When one party declares bankruptcy, fails to post collateral as

required, or fails to perform as promised in some other way, the other party will declare

an event of default. This will lead to an early termination of the portfolio of out-

standing derivatives transactions.

Suppose first that no collateral posted. If the early termination happens when the

derivatives portfolio has a positive value to the bank and a negative value to the

counterparty, the bank will be an unsecured creditor for an amount equal to the value

of the portfolio and is likely to incur a loss because it will fail to recover the full value of

the derivatives portfolio. In the opposite situation, where the portfolio has a negative

value to the bank and a positive value to the counterparty, the bank makes a settlement

payment to the counterparty (or to the counterparty’s liquidators) and there is no loss.

The credit value adjustment (CVA) is the bank’s estimate of the present value of the

5 LCH.Clearnet is a large CCP that was clearing interest rate swap transactions with a total notional

principal of over $350 trillion in 2013. Its transactions are collateralized with initial margin and variation

margin. Following the practice of dealers, it now uses OIS discounting rather than LIBOR discounting.
6 For further discussion of this, see J. Hull and A. White, ‘‘LIBOR vs. OIS: The Derivatives Discounting

Dilemma,’’ Journal of Investment Management, 11, 3 (2013), 14–27.
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expected cost to the bank of a counterparty default. Suppose that the life of the longest
outstanding derivatives transaction between the bank and the counterparty is T years.
To calculate CVA, the bank divides the next T years into a number of intervals. For
each interval, it calculates

1. The probability of an early termination during the interval arising from a
counterparty default, qi

2. The present value of the expected loss of the derivatives portfolio if there is an
early termination at the midpoint of the interval, vi.

CVA is calculated as

CVA ¼
XN
i¼1

qivi

when N is the number of intervals. This formula is deceptively simple but the
calculation procedures, particularly those for determining the vi, are actually quite
complicated. They will be explained in Chapter 24.

Define fnd as the no-default value of the derivatives portfolio to the bank. This is the
value of the portfolio assuming that neither side will default. (Most of the formulas that
have been developed for valuing derivatives, including those in this book, are concerned
with calculating no-default values.) When the possibility of a counterparty default is
taken into account, the value of the portfolio becomes

fnd � CVA

But this is not the end of the story. The bank itself might default. This is liable to lead
to a loss to the counterparty together with an equal and opposite gain to the bank. The
debit (or debt) value adjustment (DVA) is the present value of the expected gain to the
bank from its own default. It is calculated similarly to CVA:

DVA ¼
XN
i¼1

q
�
i v

�
i

where q�i is the probability of a default by the bank during the ith interval and v
�
i is the

present value of the bank’s gain (and the counterparty’s loss) if the bank defaults at the
midpoint of the interval. Taking both CVA and DVA into account, the value of the
portfolio to the bank is

fnd � CVAþDVA

Collateral

When the agreement between the two parties requires collateral to be posted, calcula-
tions are more complicated for two reasons. First, the collateral affects the calculation
of CVA and DVA. Second, the interest rate paid on cash collateral may influence
valuations.

To calculate vi and v
�
i it is necessary for the bank to calculate the collateral that

would be provided by the bank or by the counterparty at the time of an early
termination. This calculation is usually quite complicated because it is typically
assumed that the defaulting party will stop posting collateral, and will stop returning
excess collateral, several days before an early termination.
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Collateral can usually consist of cash or marketable securities. (The type of market-
able securities that are acceptable and the applicable haircuts are specified in the

collateral agreement.) Interest is normally paid on cash collateral. If this interest is
the risk-free rate, no adjustment to the valuation needs to be made. If the interest is
different from the risk-free rate, the present value of the expected excess of actual net

interest paid on cash collateral over the net interest that would be paid if the interest rate
equaled the risk-free rate must be estimated. This can be positive or negative and
constitutes an adjustment which we will refer to as the collateral rate adjustment (CRA).

Taking it into account, the value of the portfolio becomes

fnd � CVAþDVA� CRA

As already mentioned, banks tend to assume that the OIS rate is the risk-free rate for
collateralized transactions. If the effective federal funds rate (which as explained earlier
underlies the OIS rate) is paid on overnight cash collateral balances (and this is often

the case), no CRA adjustment is necessary.

9.6 FUNDING COSTS

Suppose the risk-free rate is 5% and a bank’s average funding cost is 7%. If a project

comes along that is risk-free and provides a return of 6%, should the bank undertake it?
The answer is that the project should be undertaken. The appropriate discount rate for
the project’s cash flows is 5% and the project has a positive present value when this

discount rate is used. It is not correct to argue that the bank is funding itself at 7% and
should therefore only undertake projects earning more than 7%. On average, the
projects undertaken by a bank should earn more than 7%; otherwise the bank would

be operating at a loss. But this does not mean that each individual project undertaken
by the bank should do so.

To understand why the 7% funding cost is not relevant to the valuation of a project,
consider what happens as the bank enters into projects that are risk-free. Its funding
costs will come down in such a way that the incremental costs of funding a risk-free

project is 5%, not 7%. We can illustrate how this happens by taking an extreme
example. Suppose that the bank we are considering were to double in size by under-
taking entirely risk-free projects. The bank’s funding cost will change to 6% (an average

of 7% for the old projects and 5% for the new projects). The incremental funding cost
for the new projects is then 5%.

In general, if a company uses its average funding cost as a hurdle rate for all projects,
low-risk project will tend to seem unattractive and high-risk projects will tend to seem
attractive. There will therefore be a tendency for the company to gravitate to higher-risk

projects.

Not all derivatives practitioners would agree with these arguments. Indeed, as

indicated earlier, current practice in many banks is to use OIS discounting for
collateralized derivatives, while a higher discount rate is used for non-collateralized
derivatives. The rationale usually given for this concerns funding costs (which we have

argued should not be relevant). Collateralized derivatives are funded at the rate of
interest paid on the collateral (often the federal funds rate). Non-collateralized deriva-
tives are assumed to be funded at the bank’s overall average funding cost.
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Those banks that consider funding costs to be relevant in derivatives valuation some-
times make what is termed a funding value adjustment (FVA) for non-collateralized
derivatives. The purpose of an FVA is to change the value of a derivative to what it would
be if the bank’s average funding cost were used as the ‘‘risk-free’’ discount rate. If the
bank’s average funding cost is, say, 3.8% and the risk-free discount rate used by the bank
is 3%, FVA captures the impact of increasing the discount rate by 80 basis points.7

FVA adjustments are controversial. Whether they withstand the test of time remains
to be seen. We have already made the point that funding costs should not influence how
an investment is valued. It is the riskiness of the investment that is important. CVA and
DVA adjustments should be made, but much of the debate surrounding FVA seems to
arise from a confusion between FVA and DVA. High-funding-cost banks that make
FVA adjustments will tend to provide competitive pricing for derivatives that generate
funding (e.g., the sale of options); low-funding-cost banks that make FVA adjustments
will tend to provide competitive pricing for derivatives that require funding. FVA can
create arbitrage opportunities for end-users. They can buy options from high-funding-
cost dealers and sell the same options to low-funding-cost dealers.8

The traders working for banks should of course be free to use any procedures they
like for determining the prices at which they are prepared to trade. However, transac-
tions have to be valued daily for accounting and other purposes. (This is referred to as
marking-to-market the transactions.) Accountants working for a bank aim to value a
transaction at the ‘‘exit price.’’ This is the current market price at which the bank could
enter into an offsetting transaction. At any given time the exit price should be a price
that clears the market (i.e., balances supply and demand). It should not depend on the
funding cost of the bank holding the derivative.

SUMMARY

We saw in earlier chapters that the credit crisis that started in 2007 has led to the over-
the-counter derivatives markets being regulated much more heavily than before. In this
chapter, we have seen that it has also caused derivatives market participants to carefully
review their practices. Prior to the credit crisis, LIBOR was assumed to be a reasonable
proxy for the risk-free rate. (This was convenient. As indicated in Chapter 7, it made the
valuation of an interest rate swap where LIBOR is exchanged for a fixed rate of interest
relatively easy.) Since the credit crisis, practitioners have switched their risk-free proxy
from the LIBOR rate to the OIS rate—at least for collateralized derivatives transactions.

The OIS rate is a rate swapped for the geometric average of the overnight federal
funds rate. It is not perfectly risk-free because a default on an overnight loan or the
swap is always possible. However, it is much closer to risk-free than LIBOR.

Using OIS rates rather than LIBOR rates for discounting changes estimates of
forward LIBOR rates. When OIS discounting is used, forward LIBOR rates must be

7 As we shall see in later chapters, interest rates play two roles in the valuation of derivatives. They define the

discount rate and they define the growth rate of the underlying asset in a risk-neutral world. We increase the

interest rate when it is used for the first purpose but not the second. This is because the positions in the

underlying asset that are used to hedge the derivative can be repoed and therefore funded at very close to the

risk-free rate. Positions in derivatives cannot be repoed.
8 For further discussion of all these points, see J. Hull and A. White, ‘‘Valuing Derivatives: Funding Value

Adjustments and Fair Value,’’ Financial Analysts Journal, forthcoming.

232 CHAPTER 9



estimated so that all LIBOR-for-fixed swaps if entered into today at the mid-market
swap rate have zero value.

Banks and other derivatives dealers have for many years been concerned about
counterparty credit risk. Two adjustments are currently made for bilaterally cleared
transactions. The credit value adjustment (CVA) is an adjustment for the possibility
that the counterparty will default and reduces the value of a derivatives portfolio. The
debit (or debt) value adjustment (DVA) is an adjustment for the possibility that the
bank will default and increases the value of a derivatives portfolio. In addition, for
collateralized portfolios, a further adjustment can be necessary if the interest paid on
cash collateral is different from the risk-free rate.

Finance theory shows that the way a project is funded should not influence its
valuation. In spite of this, some banks do make what is termed a funding value
adjustment (FVA) so that a derivatives portfolio which requires (generates) funding is
charged with (given credit for) an amount reflecting the bank’s average funding cost.
FVAs are controversial and have the potential to lead to disagreements between
accountants, analysts, and traders.
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Practice Questions (Answers in Solutions Manual)

9.1. Explain what is meant by (a) the 3-month LIBOR rate and (b) the 3-month OIS rate.
Which is higher? Why?

9.2. ‘‘When banks become reluctant to lend to each other the 3-month LIBOR–OIS spread
increases.’’ Explain this statement.

9.3. Suppose that in Example 9.2 where LIBOR discounting is used the 3-year LIBOR-for-
fixed swap rate is 7% instead of 6%. What is the 3-year LIBOR/swap zero rate? What is
the LIBOR forward rate for the period between 2 and 3 years?

9.4. Suppose that in Example 9.3 where OIS discounting is used the 3-year LIBOR-for-fixed
swap rate is 7% instead of 6%. The 3-year OIS zero rate is 6.5% (annually compounded).
What is the LIBOR forward rate for the period between 2 and 3 years?

9.5. Why do derivatives traders sometimes use more than one risk-free zero curve for
discounting?
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9.6. Explain what CVA and DVA measure?

9.7. If the market considers that the default probability for a bank has increased, what
happens to its DVA? What happens to the income it reports?

9.8. Explain the collateral rate adjustment. Under what circumstances is it nonzero?

9.9. The average funding cost for a company is 5% per annum when the risk-free rate is 3%.
The company is currently undertaking projects worth $9 million. It plans to increase its
size by undertaking $1 million of risk-free projects. What would you expect to happen to
its average funding cost.

9.10. OIS rates have been estimated as 3.4% per annum for all maturities. The 3-month LIBOR
rate is 3.5% per annum. For a 6-month swap where payments are exchanged every 3
months the swap rate is 3.6% per annum. All rates are expressed with quarterly
compounding. What is the LIBOR forward rate for the 3- to 6-month period if OIS
discounting is used?

9.11. Explain why CVA and DVA are calculated for the whole portfolio of transactions a bank
has with a counterparty, not on a transaction-by-transaction basis.

Further Questions

9.12. Suppose that the 1-year LIBOR rate is 4% and 2-year, 3-year, and 4-year LIBOR-for-
fixed swap rates with annual payments are 4.2%, 4.4%, and 4.5%. All rates are annually
compounded.

(a) If LIBOR is used for discounting, what are the LIBOR/swap zero rates for maturities
of 2, 3, and 4 years?

(b) If LIBOR is used for discounting, what are the LIBOR forward rates for the second,
third, and fourth years?

(c) If OIS zero rates for maturities of 1, 2, 3, and 4 years are 3.6%, 3.8%, 4%, and 4.1%
per annum with annual compounding and OIS discounting is used, what are the
LIBOR forward rates for the second, third, and fourth years?

9.13. The 1-year LIBOR zero rate is 3% per annum and the LIBOR forward rate for the 1- to
2-year period is 3.2%. The 3-year swap rate for a swap with annual payments is 3.2%. All
rates are annually compounded. What is the LIBOR forward rate for the 2- to 3-year
period if OIS discounting is used and the OIS zero rates for maturities of 1, 2, and 3 years
are 2.5%, 2.7%, and 2.9%, respectively. What is the value of a 3-year swap where 4% is
received and LIBOR is paid on a principal of $100 million?

9.14. Suppose the 1-year and 10-year LIBOR-for-fixed swap rates are 3% and X% (with
annual payments). The 1-year and 10-year OIS swap rates are 50 basis points lower than
the corresponding LIBOR-for-fixed swap rates. Use the zero curve worksheet in Deriva-
Gem to investigate the difference between the 10-year LIBOR zero rate with OIS
discounting and the 10-year LIBOR zero rate with LIBOR discounting. In particular,
consider what happens as X increases from 3 to 10.

9.15. Repeat Problem 7.27 assuming OIS discounting is used. Assume that the rates for
determining the OIS zero curve are 40 basis points below the corresponding rates used
to determine the LIBOR zero curve.
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Mechanics of
Options Markets

We introduced options in Chapter 1. This chapter explains how options markets are
organized, what terminology is used, how the contracts are traded, how margin
requirements are set, and so on. Later chapters will examine such topics as trading
strategies involving options, the determination of option prices, and the ways in which
portfolios of options can be hedged. This chapter is concerned primarily with stock
options. It also presents some introductory material on currency options, index options,
and futures options. More details concerning these instruments can be found in
Chapters 17 and 18.

Options are fundamentally different from forward and futures contracts. An option
gives the holder of the option the right to do something, but the holder does not have to
exercise this right. By contrast, in a forward or futures contract, the two parties have
committed themselves to some action. It costs a trader nothing (except for the margin/
collateral requirements) to enter into a forward or futures contract, whereas the
purchase of an option requires an up-front payment.

When charts showing the gain or loss from options trading are produced, the usual
practice is to ignore the time value of money, so that the profit is the final payoff minus
the initial cost. This chapter follows this practice.

10.1 TYPES OF OPTIONS

As mentioned in Chapter 1, there are two types of options. A call option gives the
holder of the option the right to buy an asset by a certain date for a certain price. A put
option gives the holder the right to sell an asset by a certain date for a certain price. The
date specified in the contract is known as the expiration date or the maturity date.
The price specified in the contract is known as the exercise price or the strike price.

Options can be either American or European, a distinction that has nothing to do
with geographical location. American options can be exercised at any time up to the
expiration date, whereas European options can be exercised only on the expiration date
itself. Most of the options that are traded on exchanges are American. However,
European options are generally easier to analyze than American options, and some
of the properties of an American option are frequently deduced from those of its
European counterpart.
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Call Options

Consider the situation of an investor who buys a European call option with a strike
price of $100 to purchase 100 shares of a certain stock. Suppose that the current stock
price is $98, the expiration date of the option is in 4 months, and the price of an option
to purchase one share is $5. The initial investment is $500. Because the option is
European, the investor can exercise only on the expiration date. If the stock price on this
date is less than $100, the investor will clearly choose not to exercise. (There is no point
in buying for $100 a share that has a market value of less than $100.) In these
circumstances, the investor loses the whole of the initial investment of $500. If the
stock price is above $100 on the expiration date, the option will be exercised. Suppose,
for example, that the stock price is $115. By exercising the option, the investor is able to
buy 100 shares for $100 per share. If the shares are sold immediately, the investor makes
a gain of $15 per share, or $1,500, ignoring transaction costs. When the initial cost of
the option is taken into account, the net profit to the investor is $1,000.

Figure 10.1 shows how the investor’s net profit or loss on an option to purchase one
share varies with the final stock price in the example. For example, when the final stock
price is $120, the profit from an option to purchase one share is $15. It is important to
realize that an investor sometimes exercises an option and makes a loss overall. Suppose
that, in the example, the stock price is $102 at the expiration of the option. The investor
would exercise for a gain of $102� $100 ¼ $2 and realize a loss overall of $3 when the
initial cost of the option is taken into account. It is tempting to argue that the investor
should not exercise the option in these circumstances. However, not exercising would
lead to a loss of $5, which is worse than the $3 loss when the investor exercises. In
general, call options should always be exercised at the expiration date if the stock price
is above the strike price.

Put Options

Whereas the purchaser of a call option is hoping that the stock price will increase, the
purchaser of a put option is hoping that it will decrease. Consider an investor who

Profit ($)
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stock price ($)
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Figure 10.1 Profit from buying a European call option on one share of a stock. Option
price ¼ $5; strike price ¼ $100.
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buys a European put option with a strike price of $70 to sell 100 shares of a certain

stock. Suppose that the current stock price is $65, the expiration date of the option is

in 3 months, and the price of an option to sell one share is $7. The initial investment is
$700. Because the option is European, it will be exercised only if the stock price is

below $70 on the expiration date. Suppose that the stock price is $55 on this date. The

investor can buy 100 shares for $55 per share and, under the terms of the put option,
sell the same shares for $70 to realize a gain of $15 per share, or $1,500. (Again,

transaction costs are ignored.) When the $700 initial cost of the option is taken into

account, the investor’s net profit is $800. There is no guarantee that the investor will

make a gain. If the final stock price is above $70, the put option expires worthless, and
the investor loses $700. Figure 10.2 shows the way in which the investor’s profit or loss

on an option to sell one share varies with the terminal stock price in this example.

Early Exercise

As mentioned earlier, exchange-traded stock options are usually American rather than

European. This means that the investor in the foregoing examples would not have to wait
until the expiration date before exercising the option. Wewill see later that there are some

circumstances when it is optimal to exercise American options before the expiration date.

10.2 OPTION POSITIONS

There are two sides to every option contract. On one side is the investor who has taken

the long position (i.e., has bought the option). On the other side is the investor who has

taken a short position (i.e., has sold or written the option). The writer of an option

receives cash up front, but has potential liabilities later. The writer’s profit or loss is the
reverse of that for the purchaser of the option. Figures 10.3 and 10.4 show the variation

of the profit or loss with the final stock price for writers of the options considered in

Figures 10.1 and 10.2.

Profit ($)

Terminal
stock price ($)

100908070605040

−7

0

10

20

30

Figure 10.2 Profit from buying a European put option on one share of a stock. Option
price ¼ $7; strike price = $70.
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There are four types of option positions:

1. A long position in a call option

2. A long position in a put option

3. A short position in a call option

4. A short position in a put option.

It is often useful to characterize a European option in terms of its payoff to the
purchaser of the option. The initial cost of the option is then not included in the

calculation. If K is the strike price and ST is the final price of the underlying asset, the
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Figure 10.3 Profit from writing a European call option on one share of a stock.
Option price ¼ $5; strike price ¼ $100.
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Figure 10.4 Profit from writing a European put option on one share of a stock.
Option price ¼ $7; strike price ¼ $70.
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payoff from a long position in a European call option is

maxðST �K; 0Þ

This reflects the fact that the option will be exercised if ST > K and will not be exercised
if ST 6 K. The payoff to the holder of a short position in the European call option is

�maxðST �K; 0Þ ¼ minðK� ST ; 0Þ

The payoff to the holder of a long position in a European put option is

maxðK� ST ; 0Þ

and the payoff from a short position in a European put option is

�maxðK� ST ; 0Þ ¼ minðST �K; 0Þ

Figure 10.5 illustrates these payoffs.

10.3 UNDERLYING ASSETS

This section provides a first look at how options on stocks, currencies, stock indices,
and futures are traded on exchanges.

Payoff
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Figure 10.5 Payoffs from positions in European options: (a) long call; (b) short call;
(c) long put; (d) short put. Strike price ¼ K; price of asset at maturity ¼ ST .
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Stock Options

Most trading in stock options is on exchanges. In the United States, the exchanges
include the Chicago Board Options Exchange (www.cboe.com), NYSE Euronext
(www.euronext.com), which acquired the American Stock Exchange in 2008, the
International Securities Exchange (www.iseoptions.com), and the Boston Options
Exchange (www.bostonoptions.com). Options trade on several thousand different
stocks. One contract gives the holder the right to buy or sell 100 shares at the specified
strike price. This contract size is convenient because the shares themselves are normally
traded in lots of 100.

Foreign Currency Options

Most currency options trading is now in the over-the-counter market, but there is some
exchange trading. Exchanges trading foreign currency options in the United States
include NASDAQ OMX (www.nasdaqtrader.com), which acquired the Philadelphia
Stock Exchange in 2008. This exchange offers European-style contracts on a variety of
different currencies. One contract is to buy or sell 10,000 units of a foreign currency
(1,000,000 units in the case of the Japanese yen) for US dollars. Foreign currency
options contracts are discussed further in Chapter 17.

Index Options

Many different index options currently trade throughout the world in both the over-the-
counter market and the exchange-traded market. The most popular exchange-traded
contracts in the United States are those on the S&P 500 Index (SPX), the S&P 100 Index
(OEX), the Nasdaq-100 Index (NDX), and the Dow Jones Industrial Index (DJX). All
of these trade on the Chicago Board Options Exchange. Most of the contracts are
European. An exception is the OEX contract on the S&P 100, which is American. One
contract is usually to buy or sell 100 times the index at the specified strike price.
Settlement is always in cash, rather than by delivering the portfolio underlying the
index. Consider, for example, one call contract on an index with a strike price of 980. If
it is exercised when the value of the index is 992, the writer of the contract pays the
holder ð992� 980Þ � 100 ¼ $1,200. Index options are discussed further in Chapter 17.

Futures Options

When an exchange trades a particular futures contract, it often also trades American
options on that contract. The life of a futures option normally ends a short period of time
before the expiration of trading in the underlying futures contract. When a call option is
exercised, the holder’s gain equals the excess of the futures price over the strike price.
When a put option is exercised, the holder’s gain equals the excess of the strike price over
the futures price. Futures options contracts are discussed further in Chapter 18.

10.4 SPECIFICATION OF STOCK OPTIONS

In the rest of this chapter, we will focus on stock options. As already mentioned, a
standard exchange-traded stock option in the United States is an American-style option
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contract to buy or sell 100 shares of the stock. Details of the contract (the expiration

date, the strike price, what happens when dividends are declared, how large a position

investors can hold, and so on) are specified by the exchange.

Expiration Dates

One of the items used to describe a stock option is the month in which the expiration

date occurs. Thus, a January call trading on IBM is a call option on IBM with an

expiration date in January. The precise expiration date is the Saturday immediately

following the third Friday of the expiration month. The last day on which options trade

is the third Friday of the expiration month. An investor with a long position in an

option normally has until 4:30 p.m. Central Time on that Friday to instruct a broker to

exercise the option. The broker then has until 10:59 p.m. the next day to complete the

paperwork notifying the exchange that exercise is to take place.

Stock options in the United States are on a January, February, or March cycle. The

January cycle consists of the months of January, April, July, and October. The

February cycle consists of the months of February, May, August, and November.

The March cycle consists of the months of March, June, September, and December.

If the expiration date for the current month has not yet been reached, options trade with

expiration dates in the current month, the following month, and the next two months in

the cycle. If the expiration date of the current month has passed, options trade with

expiration dates in the next month, the next-but-one month, and the next two months

of the expiration cycle. For example, IBM is on a January cycle. At the beginning of

January, options are traded with expiration dates in January, February, April, and July;

at the end of January, they are traded with expiration dates in February, March, April,

and July; at the beginning of May, they are traded with expiration dates in May, June,

July, and October; and so on. When one option reaches expiration, trading in another is

started. Longer-term options, known as LEAPS (long-term equity anticipation secu-

rities), also trade on many stocks in the United States. These have expiration dates up to

39 months into the future. The expiration dates for LEAPS on stocks are always in

January.

Strike Prices

The exchange normally chooses the strike prices at which options can be written so that

they are spaced $2.50, $5, or $10 apart. Typically the spacing is $2.50 when the stock

price is between $5 and $25, $5 when the stock price is between $25 and $200, and

$10 for stock prices above $200. As will be explained shortly, stock splits and stock

dividends can lead to nonstandard strike prices.

When a new expiration date is introduced, the two or three strike prices closest to the

current stock price are usually selected by the exchange. If the stock price moves outside

the range defined by the highest and lowest strike price, trading is usually introduced in

an option with a new strike price. To illustrate these rules, suppose that the stock price

is $84 when trading begins in the October options. Call and put options would

probably first be offered with strike prices of $80, $85, and $90. If the stock price rose

above $90, it is likely that a strike price of $95 would be offered; if it fell below $80, it is

likely that a strike price of $75 would be offered; and so on.

Mechanics of Options Markets 241



Terminology

For any given asset at any given time, many different option contracts may be trading.

Suppose there are four expiration dates and five strike prices for options on a particular

stock. If call and put options trade with every expiration date and every strike price, there

are a total of 40 different contracts. All options of the same type (calls or puts) on a stock

are referred to as an option class. For example, IBM calls are one class, whereas IBM puts

are another class. An option series consists of all the options of a given class with the same

expiration date and strike price. In other words, it refers to a particular contract that is

traded. For example, IBM 200 October 2014 calls would constitute an option series.

Options are referred to as in the money, at the money, or out of the money. If S is the

stock price and K is the strike price, a call option is in the money when S > K, at the

money when S ¼ K, and out of the money when S < K. A put option is in the money

when S < K, at the money when S ¼ K, and out of the money when S > K. Clearly, an

option will be exercised only when it is in the money. In the absence of transaction

costs, an in-the-money option will always be exercised on the expiration date if it has

not been exercised previously.1

The intrinsic value of an option is defined as the value it would have if there were no

time to maturity, so that the exercise decision had to be made immediately. For a call

option, the intrinsic value is therefore maxðS �K; 0Þ. For a put option, it is

maxðK� S; 0Þ. An in-the-money American option must be worth at least as much as

its intrinsic value because the holder has the right to exercise it immediately. Often it is

optimal for the holder of an in-the-money American option to wait rather than exercise

immediately. The option is then said to have time value. The total value of an option

can be thought of as the sum of its intrinsic value and its time value.

FLEX Options

The Chicago Board Options Exchange offers FLEX (short for flexible) options on

equities and equity indices. These are options where the traders agree to nonstandard

terms. These nonstandard terms can involve a strike price or an expiration date that is

different from what is usually offered by the exchange. They can also involve the option

being European rather than American. FLEX options are an attempt by option

exchanges to regain business from the over-the-counter markets. The exchange specifies

a minimum size (e.g., 100 contracts) for FLEX option trades.

Other Nonstandard Products

In addition to flex options, the CBOE trades a number of other nonstandard products.

Examples are:

1. Options on exchange-traded funds.2

2. Weeklys. These are options that are created on a Thursday and expire on Friday
of the following week.

1 Section 20.4 provides alternative definitions, often used by traders, for in the money, out of the money, and

at the money.
2 Exchange-traded funds (ETFs) have become a popular alternative to mutual funds for investors. They are

traded like stocks and are designed so that their prices reflect the value of the assets of the fund closely.
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3. Binary options. These are options that provide a fixed payoff of $100 if the strike
price is reached. For example, a binary call with a strike price of $50 provides a
payoff of $100 if the price of the underlying stock exceeds $50 on the expiry date;
a binary put with a strike price of $50 provides a payoff of $100 if the price of the
stock is below $50 on the expiry date. Binary options are discussed further in
Chapter 26.

4. Credit event binary options (CEBOs). These are options that provide a fixed payoff
if a particular company (known as the reference entity) suffers a ‘‘credit event’’ by
the maturity date. Credit events are defined as bankruptcy, failure to pay interest
or principal on debt, and a restructuring of debt. Maturity dates are in December
of a particular year and payoffs, if any, are made on the maturity date. A CEBO is
a type of credit default swap (see Section 7.12 for an introduction to credit default
swaps and Chapter 25 for more details).

5. DOOM options. These are deep-out-of-the-money put options. Because they have
a low strike price, they cost very little. They provide a payoff only if the price of
the underlying asset plunges. DOOM options provide the same sort of protection
as credit default swaps.

Dividends and Stock Splits

The early over-the-counter options were dividend protected. If a company declared a

cash dividend, the strike price for options on the company’s stock was reduced on the

ex-dividend day by the amount of the dividend. Exchange-traded options are not

usually adjusted for cash dividends. In other words, when a cash dividend occurs,

there are no adjustments to the terms of the option contract. An exception is sometimes

made for large cash dividends (see Business Snapshot 10.1).

Exchange-traded options are adjusted for stock splits. A stock split occurs when the

existing shares are ‘‘split’’ into more shares. For example, in a 3-for-1 stock split, three

new shares are issued to replace each existing share. Because a stock split does not

change the assets or the earning ability of a company, we should not expect it to have

any effect on the wealth of the company’s shareholders. All else being equal, the 3-for-1

stock split should cause the stock price to go down to one-third of its previous value. In

general, an n-for-m stock split should cause the stock price to go down to m=n of its

previous value. The terms of option contracts are adjusted to reflect expected changes in

a stock price arising from a stock split. After an n-for-m stock split, the strike price is

reduced to m=n of its previous value, and the number of shares covered by one contract

is increased to n=m of its previous value. If the stock price declines in the way expected,

the positions of both the writer and the purchaser of a contract remain unchanged.

Example 10.1

Consider a call option to buy 100 shares of a company for $30 per share. Suppose

the company makes a 2-for-1 stock split. The terms of the option contract are then

changed so that it gives the holder the right to purchase 200 shares for $15 per share.

Stock options are adjusted for stock dividends. A stock dividend involves a company

issuing more shares to its existing shareholders. For example, a 20% stock dividend

means that investors receive one new share for each five already owned. A stock

dividend, like a stock split, has no effect on either the assets or the earning power of
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a company. The stock price can be expected to go down as a result of a stock dividend.
The 20% stock dividend referred to is essentially the same as a 6-for-5 stock split. All
else being equal, it should cause the stock price to decline to 5/6 of its previous value.
The terms of an option are adjusted to reflect the expected price decline arising from a
stock dividend in the same way as they are for that arising from a stock split.

Example 10.2

Consider a put option to sell 100 shares of a company for $15 per share. Suppose
the company declares a 25% stock dividend. This is equivalent to a 5-for-4 stock
split. The terms of the option contract are changed so that it gives the holder the
right to sell 125 shares for $12.

Adjustments are also made for rights issues. The basic procedure is to calculate the
theoretical price of the rights and then to reduce the strike price by this amount.

Position Limits and Exercise Limits

The Chicago Board Options Exchange often specifies a position limit for option con-
tracts. This defines the maximum number of option contracts that an investor can hold on
one side of the market. For this purpose, long calls and short puts are considered to be on
the same side of the market. Also considered to be on the same side are short calls and
long puts. The exercise limit usually equals the position limit. It defines the maximum
number of contracts that can be exercised by any individual (or group of individuals
acting together) in any period of five consecutive business days. Options on the largest
and most frequently traded stocks have positions limits of 250,000 contracts. Smaller
capitalization stocks have position limits of 200,000, 75,000, 50,000, or 25,000 contracts.

Position limits and exercise limits are designed to prevent the market from being
unduly influenced by the activities of an individual investor or group of investors.
However, whether the limits are really necessary is a controversial issue.

Business Snapshot 10.1 Gucci Group’s Large Dividend

When there is a large cash dividend (typically one that is more than 10% of the stock
price), a committee of the Options Clearing Corporation (OCC) at the Chicago Board
Options Exchange can decide to adjust the terms of options traded on the exchange.

On May 28, 2003, Gucci Group NV (GUC) declared a cash dividend of 13.50 euros
(approximately $15.88) per common share and this was approved at the annual
shareholders’ meeting on July 16, 2003. The dividend was about 16% of the share
price at the time it was declared. In this case, the OCC committee decided to adjust the
terms of options. The result was that the holder of a call contract paid 100 times the
strike price on exercise and received $1,588 of cash in addition to 100 shares; the holder
of a put contract received 100 times the strike price on exercise and delivered $1,588 of
cash in addition to 100 shares. These adjustments had the effect of reducing the strike
price by $15.88.

Adjustments for large dividends are not always made. For example, Deutsche
Terminbo«rse chose not to adjust the terms of options traded on that exchange when
Daimler-Benz surprised the market onMarch 10, 1998, with a dividend equal to about
12% of its stock price.
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10.5 TRADING

Traditionally, exchanges have had to provide a large open area for individuals to meet
and trade options. This has changed. Most derivatives exchanges are fully electronic,
so traders do not have to physically meet. The International Securities Exchange
(www.iseoptions.com) launched the first all-electronic options market for equities in
the United States in May 2000. Over 95% of the orders at the Chicago Board Options
Exchange are handled electronically. The remainder are mostly large or complex
institutional orders that require the skills of traders.

Market Makers

Most options exchanges use market makers to facilitate trading. A market maker for a
certain option is an individual who, when asked to do so, will quote both a bid and
an offer price on the option. The bid is the price at which the market maker is
prepared to buy, and the offer or asked is the price at which the market maker is
prepared to sell. At the time the bid and offer prices are quoted, the market maker
does not know whether the trader who asked for the quotes wants to buy or sell the
option. The offer is always higher than the bid, and the amount by which the offer
exceeds the bid is referred to as the bid–offer spread. The exchange sets upper limits
for the bid–offer spread. For example, it might specify that the spread be no more
than $0.25 for options priced at less than $0.50, $0.50 for options priced between
$0.50 and $10, $0.75 for options priced between $10 and $20, and $1 for options
priced over $20.

The existence of the market maker ensures that buy and sell orders can always be
executed at some price without any delays. Market makers therefore add liquidity to the
market. The market makers themselves make their profits from the bid–offer spread.
They use methods such as those that will be discussed in Chapter 19 to hedge their risks.

Offsetting Orders

An investor who has purchased options can close out the position by issuing an
offsetting order to sell the same number of options. Similarly, an investor who has
written options can close out the position by issuing an offsetting order to buy the same
number of options. (In this respect options markets are similar to futures markets.) If,
when an option contract is traded, neither investor is closing an existing position, the
open interest increases by one contract. If one investor is closing an existing position
and the other is not, the open interest stays the same. If both investors are closing
existing positions, the open interest goes down by one contract.

10.6 COMMISSIONS

The types of orders that can be placed with a broker for options trading are similar to
those for futures trading (see Section 2.8). Amarket order is executed immediately, a limit
order specifies the least favorable price at which the order can be executed, and so on.

For a retail investor, commissions vary significantly from broker to broker. Discount
brokers generally charge lower commissions than full-service brokers. The actual
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amount charged is often calculated as a fixed cost plus a proportion of the dollar
amount of the trade. Table 10.1 shows the sort of schedule that might be offered by a
discount broker. Using this schedule, the purchase of eight contracts when the option
price is $3 would cost $20þ ð0:02� $2,400Þ ¼ $68 in commissions.

If an option position is closed out by entering into an offsetting trade, the commis-
sion must be paid again. If the option is exercised, the commission is the same as it
would be if the investor placed an order to buy or sell the underlying stock.

Consider an investor who buys one call contract with a strike price of $50 when the
stock price is $49. We suppose the option price is $4.50, so that the cost of the contract
is $450. Under the schedule in Table 10.1, the purchase or sale of one contract always
costs $30 (both the maximum and minimum commission is $30 for the first contract).
Suppose that the stock price rises and the option is exercised when the stock reaches
$60. Assuming that the investor pays 0.75% commission to exercise the option and a
further 0.75% commission to sell the stock, there is an additional cost of

2� 0:0075� $60� 100 ¼ $90

The total commission paid is therefore $120, and the net profit to the investor is

$1,000� $450� $120 ¼ $430

Note that selling the option for $10 instead of exercising it would save the investor $60
in commissions. (The commission payable when an option is sold is only $30 in our
example.) As this example indicates, the commission system can push retail investors in
the direction of selling options rather than exercising them.

A hidden cost in option trading (and in stock trading) is the market maker’s bid–offer
spread. Suppose that, in the example just considered, the bid price was $4.00 and the
offer price was $4.50 at the time the option was purchased. We can reasonably assume
that a ‘‘fair’’ price for the option is halfway between the bid and the offer price, or $4.25.
The cost to the buyer and to the seller of the market maker system is the difference
between the fair price and the price paid. This is $0.25 per option, or $25 per contract.

10.7 MARGIN REQUIREMENTS

When shares are purchased in the United States, an investor can borrow up to 50% of
the price from the broker. This is known as buying on margin. If the share price declines

Table 10.1 Sample commission schedule for a discount broker.

Dollar amount of trade Commission�

< $2,500 $20 þ 2% of dollar amount
$2,500 to $10,000 $45 þ 1% of dollar amount
> $10,000 $120 þ 0.25% of dollar amount

� Maximum commission is $30 per contract for the first five contracts plus
$20 per contract for each additional contract. Minimum commission is $30
per contract for the first contract plus $2 per contract for each additional
contract.
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so that the loan is substantially more than 50% of the stock’s current value, there is a

‘‘margin call’’, where the broker requests that cash be deposited by the investor. If the
margin call is not met, the broker sells the stock.

When call and put options with maturities less than 9 months are purchased, the

option price must be paid in full. Investors are not allowed to buy these options on

margin because options already contain substantial leverage and buying on margin
would raise this leverage to an unacceptable level. For options with maturities greater

than 9 months investors can buy on margin, borrowing up to 25% of the option value.

A trader who writes options is required to maintain funds in a margin account. Both
the trader’s broker and the exchange want to be satisfied that the trader will not default

if the option is exercised. The amount of margin required depends on the trader’s

position.

Writing Naked Options

A naked option is an option that is not combined with an offsetting position in the

underlying stock. The initial and maintenance margin required by the CBOE for a
written naked call option is the greater of the following two calculations:

1. A total of 100% of the proceeds of the sale plus 20% of the underlying share
price less the amount, if any, by which the option is out of the money

2. A total of 100% of the option proceeds plus 10% of the underlying share price.

For a written naked put option, it is the greater of

1. A total of 100% of the proceeds of the sale plus 20% of the underlying share
price less the amount, if any, by which the option is out of the money

2. A total of 100% of the option proceeds plus 10% of the exercise price.

The 20% in the preceding calculations is replaced by 15% for options on a broadly

based stock index because a stock index is usually less volatile than the price of an

individual stock.

Example 10.3

An investor writes four naked call option contracts on a stock. The option price is
$5, the strike price is $40, and the stock price is $38. Because the option is $2 out

of the money, the first calculation gives

400� ð5þ 0:2� 38� 2Þ ¼ $4,240

The second calculation gives

400� ð5þ 0:1� 38Þ ¼ $3,520

The initial margin requirement is therefore $4,240. Note that, if the option had

been a put, it would be $2 in the money and the margin requirement would be

400� ð5þ 0:2� 38Þ ¼ $5,040

In both cases, the proceeds of the sale can be used to form part of the margin

account.
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A calculation similar to the initial margin calculation (but with the current market price
of the contract replacing the proceeds of sale) is repeated every day. Funds can be
withdrawn from the margin account when the calculation indicates that the margin
required is less than the current balance in the margin account. When the calculation
indicates that a greater margin is required, a margin call will be made.

Other Rules

In Chapter 12, we will examine option trading strategies such as covered calls, protective
puts, spreads, combinations, straddles, and strangles. The CBOE has special rules for
determining the margin requirements when these trading strategies are used. These are
described in the CBOE Margin Manual, which is available on the CBOE website
(www.cboe. com).

As an example of the rules, consider an investor who writes a covered call. This is a
written call option when the shares that might have to be delivered are already owned.
Covered calls are far less risky than naked calls, because the worst that can happen is
that the investor is required to sell shares already owned at below their market value.
No margin is required on the written option. However, the investor can borrow an
amount equal to 0:5minðS;KÞ, rather than the usual 0:5S, on the stock position.

10.8 THE OPTIONS CLEARING CORPORATION

The Options Clearing Corporation (OCC) performs much the same function for options
markets as the clearing house does for futures markets (see Chapter 2). It guarantees
that options writers will fulfill their obligations under the terms of options contracts and
keeps a record of all long and short positions. The OCC has a number of members, and
all option trades must be cleared through a member. If a broker is not itself a member of
an exchange’s OCC, it must arrange to clear its trades with a member. Members are
required to have a certain minimum amount of capital and to contribute to a special
fund that can be used if any member defaults on an option obligation.

The funds used to purchase an option must be deposited with the OCC by the
morning of the business day following the trade. The writer of the option maintains a
margin account with a broker, as described earlier.3 The broker maintains a margin
account with the OCC member that clears its trades. The OCC member in turn
maintains a margin account with the OCC.

Exercising an Option

When an investor instructs a broker to exercise an option, the broker notifies the OCC
member that clears its trades. This member then places an exercise order with the OCC.
The OCC randomly selects a member with an outstanding short position in the same
option. The member, using a procedure established in advance, selects a particular
investor who has written the option. If the option is a call, this investor is required to
sell stock at the strike price. If it is a put, the investor is required to buy stock at the

3 The margin requirements described in the previous section are the minimum requirements specified by the

OCC. A broker may require a higher margin from its clients. However, it cannot require a lower margin.

Some brokers do not allow their retail clients to write uncovered options at all.
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strike price. The investor is said to be assigned. The buy/sell transaction takes place on
the third business day following the exercise order. When an option is exercised, the
open interest goes down by one.

At the expiration of the option, all in-the-money options should be exercised unless
the transaction costs are so high as to wipe out the payoff from the option. Some
brokers will automatically exercise options for a client at expiration when it is in their
client’s interest to do so. Many exchanges also have rules for exercising options that are
in the money at expiration.

10.9 REGULATION

Options markets are regulated in a number of different ways. Both the exchange and
Options Clearing Corporations have rules governing the behavior of traders. In addi-
tion, there are both federal and state regulatory authorities. In general, options markets
have demonstrated a willingness to regulate themselves. There have been no major
scandals or defaults by OCC members. Investors can have a high level of confidence in
the way the market is run.

The Securities and Exchange Commission is responsible for regulating options
markets in stocks, stock indices, currencies, and bonds at the federal level. The Com-
modity Futures Trading Commission is responsible for regulating markets for options on
futures. The major options markets are in the states of Illinois and New York. These
states actively enforce their own laws on unacceptable trading practices.

10.10 TAXATION

Determining the tax implications of option trading strategies can be tricky, and an
investor who is in doubt about this should consult a tax specialist. In the United States,
the general rule is that (unless the taxpayer is a professional trader) gains and losses
from the trading of stock options are taxed as capital gains or losses. The way that
capital gains and losses are taxed in the United States was discussed in Section 2.10.
For both the holder and the writer of a stock option, a gain or loss is recognized when
(a) the option expires unexercised or (b) the option position is closed out. If the option
is exercised, the gain or loss from the option is rolled into the position taken in the
stock and recognized when the stock position is closed out. For example, when a call
option is exercised, the party with a long position is deemed to have purchased the
stock at the strike price plus the call price. This is then used as a basis for calculating
this party’s gain or loss when the stock is eventually sold. Similarly, the party with the
short call position is deemed to have sold the stock at the strike price plus the call price.
When a put option is exercised, the seller of the option is deemed to have bought the
stock for the strike price less the original put price and the purchaser of the option is
deemed to have sold the stock for the strike price less the original put price.

Wash Sale Rule

One tax consideration in option trading in the United States is the wash sale rule. To
understand this rule, imagine an investor who buys a stock when the price is $60 and
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plans to keep it for the long term. If the stock price drops to $40, the investor might be
tempted to sell the stock and then immediately repurchase it, so that the $20 loss is
realized for tax purposes. To prevent this practice, the tax authorities have ruled that

when the repurchase is within 30 days of the sale (i.e., between 30 days before the sale
and 30 days after the sale), any loss on the sale is not deductible. The disallowance also
applies where, within the 61-day period, the taxpayer enters into an option or similar
contract to acquire the stock. Thus, selling a stock at a loss and buying a call option
within a 30-day period will lead to the loss being disallowed.

Constructive Sales

Prior to 1997, if a United States taxpayer shorted a security while holding a long
position in a substantially identical security, no gain or loss was recognized until the
short position was closed out. This means that short positions could be used to defer
recognition of a gain for tax purposes. The situation was changed by the Tax Relief Act

of 1997. An appreciated property is now treated as ‘‘constructively sold’’ when the
owner does one of the following:

1. Enters into a short sale of the same or substantially identical property

2. Enters into a futures or forward contract to deliver the same or substantially
identical property

3. Enters into one or more positions that eliminate substantially all of the loss and
opportunity for gain.

It should be noted that transactions reducing only the risk of loss or only the opportun-
ity for gain should not result in constructive sales. Therefore an investor holding a long
position in a stock can buy in-the-money put options on the stock without triggering a

constructive sale.

Tax practitioners sometimes use options to minimize tax costs or maximize tax
benefits (see Business Snapshot 10.2). Tax authorities in many jurisdictions have

proposed legislation designed to combat the use of derivatives for tax purposes. Before

Business Snapshot 10.2 Tax Planning Using Options

As a simple example of a possible tax planning strategy using options, suppose that
Country A has a tax regime where the tax is low on interest and dividends and high on
capital gains, while Country B has a tax regime where tax is high on interest and
dividends and low on capital gains. It is advantageous for a company to receive the
income from a security in Country A and the capital gain, if there is one, in Country B.
The company would like to keep capital losses in Country A, where they can be used to
offset capital gains on other items. All of this can be accomplished by arranging for a
subsidiary company in Country A to have legal ownership of the security and for a
subsidiary company in Country B to buy a call option on the security from the
company in Country A, with the strike price of the option equal to the current value
of the security. During the life of the option, income from the security is earned in
Country A. If the security price rises sharply, the option will be exercised and the
capital gain will be realized in Country B. If it falls sharply, the option will not be
exercised and the capital loss will be realized in Country A.
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entering into any tax-motivated transaction, a corporate treasurer or private individual

should explore in detail how the structure could be unwound in the event of legislative

change and how costly this process could be.

10.11 WARRANTS, EMPLOYEE STOCK OPTIONS, AND CONVERTIBLES

Warrants are options issued by a financial institution or nonfinancial corporation. For

example, a financial institution might issue put warrants on one million ounces of gold

and then proceed to create a market for the warrants. To exercise the warrant, the

holder would contact the financial institution. A common use of warrants by a

nonfinancial corporation is at the time of a bond issue. The corporation issues call

warrants on its own stock and then attaches them to the bond issue to make it more

attractive to investors.

Employee stock options are call options issued to employees by their company to

motivate them to act in the best interests of the company’s shareholders (see Chap-

ter 16). They are usually at the money at the time of issue. They are now a cost on the

income statement of the company in most countries.

Convertible bonds, often referred to as convertibles, are bonds issued by a company

that can be converted into equity at certain times using a predetermined exchange ratio.

They are therefore bonds with an embedded call option on the company’s stock.

One feature of warrants, employee stock options, and convertibles is that a predeter-

mined number of options are issued. By contrast, the number of options on a particular

stock that trade on the CBOE or another exchange is not predetermined. As people take

positions in a particular option series, the number of options outstanding increases; as

people close out positions, it declines. Warrants issued by a company on its own stock,

employee stock options, and convertibles are different from exchange-traded options in

another important way. When these instruments are exercised, the company issues more

shares of its own stock and sells them to the option holder for the strike price. The

exercise of the instruments therefore leads to an increase in the number of shares of the

company’s stock that are outstanding. By contrast, when an exchange-traded call option

is exercised, the party with the short position buys in the market shares that have already

been issued and sells them to the party with the long position for the strike price. The

company whose stock underlies the option is not involved in any way.

10.12 OVER-THE-COUNTER OPTIONS MARKETS

Most of this chapter has focused on exchange-traded options markets. The over-the-

counter market for options has become increasingly important since the early 1980s

and is now larger than the exchange-traded market. As explained in Chapter 1, the

main participants in over-the-counter markets are financial institutions, corporate

treasurers, and fund managers. There is a wide range of assets underlying the options.

Over-the-counter options on foreign exchange and interest rates are particularly

popular. The chief potential disadvantage of the over-the-counter market is that the

option writer may default. This means that the purchaser is subject to some credit risk.

In an attempt to overcome this disadvantage, market participants (and regulators) often

require counterparties to post collateral. This was discussed in Section 2.5.
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The instruments traded in the over-the-counter market are often structured by

financial institutions to meet the precise needs of their clients. Sometimes this involves

choosing exercise dates, strike prices, and contract sizes that are different from those

offered by an exchange. In other cases the structure of the option is different from

standard calls and puts. The option is then referred to as an exotic option. Chapter 26

describes a number of different types of exotic options.

SUMMARY

There are two types of options: calls and puts. A call option gives the holder the right to

buy the underlying asset for a certain price by a certain date. A put option gives the

holder the right to sell the underlying asset by a certain date for a certain price. There

are four possible positions in options markets: a long position in a call, a short position

in a call, a long position in a put, and a short position in a put. Taking a short position

in an option is known as writing it. Options are currently traded on stocks, stock

indices, foreign currencies, futures contracts, and other assets.

An exchange must specify the terms of the option contracts it trades. In particular, it

must specify the size of the contract, the precise expiration time, and the strike price. In

the United States one stock option contract gives the holder the right to buy or sell 100

shares. The expiration of a stock option contract is 10:59 p.m. Central Time on the

Saturday immediately following the third Friday of the expiration month. Options with

several different expiration months trade at any given time. Strike prices are at $2 1
2, $5,

or $10 intervals, depending on the stock price. The strike price is generally fairly close

to the stock price when trading in an option begins.

The terms of a stock option are not normally adjusted for cash dividends. However,

they are adjusted for stock dividends, stock splits, and rights issues. The aim of the

adjustment is to keep the positions of both the writer and the buyer of a contract

unchanged.

Most option exchanges use market makers. A market maker is an individual who is

prepared to quote both a bid price (at which he or she is prepared to buy) and an offer

price (at which he or she is prepared to sell). Market makers improve the liquidity of the

market and ensure that there is never any delay in executing market orders. They

themselves make a profit from the difference between their bid and offer prices (known as

their bid–offer spread). The exchange has rules specifying upper limits for the bid–offer

spread.

Writers of options have potential liabilities and are required to maintain a margin

account with their brokers. If it is not a member of the Options Clearing Corporation,

the broker will maintain a margin account with a firm that is a member. This firm will

in turn maintain a margin account with the Options Clearing Corporation. The

Options Clearing Corporation is responsible for keeping a record of all outstanding

contracts, handling exercise orders, and so on.

Not all options are traded on exchanges. Many options are traded in the over-the-

counter (OTC) market. An advantage of over-the-counter options is that they can be

tailored by a financial institution to meet the particular needs of a corporate treasurer or

fund manager.
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FURTHER READING

Chicago Board Options Exchange. Characteristics and Risks of Standardized Options. Available
online at www.optionsclearing.com/about/publications/character-risks.jsp. First published
1994; last updated 2012.

Chicago Board Options Exchange. Margin Manual. Available online at www.cboe.com/
LearnCenter/workbench/pdfs/MarginManual2000.pdf. 2000.

Practice Questions (Answers in Solutions Manual)

10.1. An investor buys a European put on a share for $3. The stock price is $42 and the strike
price is $40. Under what circumstances does the investor make a profit? Under what
circumstances will the option be exercised? Draw a diagram showing the variation of the
investor’s profit with the stock price at the maturity of the option.

10.2. An investor sells a European call on a share for $4. The stock price is $47 and the strike
price is $50. Under what circumstances does the investor make a profit? Under what
circumstances will the option be exercised? Draw a diagram showing the variation of the
investor’s profit with the stock price at the maturity of the option.

10.3. An investor sells a European call option with strike price of K and maturity T and buys a
put with the same strike price and maturity. Describe the investor’s position.

10.4. Explain why margin accounts are required when clients write options but not when they
buy options.

10.5. A stock option is on a February, May, August, and November cycle. What options trade
on (a) April 1 and (b) May 30?

10.6. A company declares a 2-for-1 stock split. Explain how the terms change for a call option
with a strike price of $60.

10.7. ‘‘Employee stock options issued by a company are different from regular exchange-
traded call options on the company’s stock because they can affect the capital structure
of the company.’’ Explain this statement.

10.8. A corporate treasurer is designing a hedging program involving foreign currency
options. What are the pros and cons of using (a) NASDAQ OMX and (b) the over-the-
counter market for trading?

10.9. Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held
until maturity. Under what circumstances will the holder of the option make a profit?
Under what circumstances will the option be exercised? Draw a diagram illustrating how
the profit from a long position in the option depends on the stock price at maturity of the
option.

10.10. Suppose that a European put option to sell a share for $60 costs $8 and is held until
maturity. Under what circumstances will the seller of the option (the party with the short
position) make a profit? Under what circumstances will the option be exercised? Draw a
diagram illustrating how the profit from a short position in the option depends on the
stock price at maturity of the option.
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10.11. Describe the terminal value of the following portfolio: a newly entered-into long forward
contract on an asset and a long position in a European put option on the asset with the
same maturity as the forward contract and a strike price that is equal to the forward
price of the asset at the time the portfolio is set up. Show that the European put option
has the same value as a European call option with the same strike price and maturity.

10.12. A trader buys a call option with a strike price of $45 and a put option with a strike price
of $40. Both options have the same maturity. The call costs $3 and the put costs $4.
Draw a diagram showing the variation of the trader’s profit with the asset price.

10.13. Explain why an American option is always worth at least as much as a European option
on the same asset with the same strike price and exercise date.

10.14. Explain why an American option is always worth at least as much as its intrinsic value.

10.15. Explain carefully the difference between writing a put option and buying a call option.

10.16. The treasurer of a corporation is trying to choose between options and forward contracts
to hedge the corporation’s foreign exchange risk. Discuss the advantages and disadvan-
tages of each.

10.17. Consider an exchange-traded call option contract to buy 500 shares with a strike price of
$40 and maturity in 4 months. Explain how the terms of the option contract change
when there is: (a) a 10% stock dividend; (b) a 10% cash dividend; and (c) a 4-for-1 stock
split.

10.18. ‘‘If most of the call options on a stock are in the money, it is likely that the stock price
has risen rapidly in the last few months.’’ Discuss this statement.

10.19. What is the effect of an unexpected cash dividend on (a) a call option price and (b) a put
option price?

10.20. Options on General Motors stock are on a March, June, September, and December
cycle. What options trade on (a) March 1, (b) June 30, and (c) August 5?

10.21. Explain why the market maker’s bid–offer spread represents a real cost to options
investors.

10.22. A United States investor writes five naked call option contracts. The option price is
$3.50, the strike price is $60.00, and the stock price is $57.00. What is the initial margin
requirement?

Further Questions

10.23. Calculate the intrinsic value and time value from the mid market (average of bid and
offer) prices the September 2013 call options in Table 1.2. Do the same for the
September 2013 put options in Table 1.3. Assume in each case that the current mid
market stock price is $871.30.

10.24. A trader has a put option contract to sell 100 shares of a stock for a strike price of $60.
What is the effect on the terms of the contract of
(a) A $2 dividend being declared
(b) A $2 dividend being paid
(c) A 5-for-2 stock split
(d) A 5% stock dividend being paid.
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10.25. A trader writes 5 naked put option contracts with each contract being on 100 shares. The
option price is $10, the time to maturity is 6 months, and the strike price is $64.
(a) What is the margin requirement if the stock price is $58?
(b) How would the answer to (a) change if the rules for index options applied?
(c) How would the answer to (a) change if the stock price were $70?
(d) How would the answer to (a) change if the trader is buying instead of selling the

options?

10.26. The price of a stock is $40. The price of a 1-year European put option on the stock with a
strike price of $30 is quoted as $7 and the price of a 1-year European call option on the
stock with a strike price of $50 is quoted as $5. Suppose that an investor buys 100 shares,
shorts 100 call options, and buys 100 put options. Draw a diagram illustrating how the
investor’s profit or loss varies with the stock price over the next year. How does your
answer change if the investor buys 100 shares, shorts 200 call options, and buys 200 put
options?

10.27. ‘‘If a company does not do better than its competitors but the stock market goes up,
executives do very well from their stock options. This makes no sense.’’ Discuss this
viewpoint. Can you think of alternatives to the usual employee stock option plan that
take the viewpoint into account.

10.28. Use DerivaGem to calculate the value of an American put option on a non-dividend-
paying stock when the stock price is $30, the strike price is $32, the risk-free rate is 5%,
the volatility is 30%, and the time to maturity is 1.5 years. (Choose ‘‘Binomial
American’’ for the ‘‘option type’’ and 50 time steps.)
(a) What is the option’s intrinsic value?
(b) What is the option’s time value?
(c) What would a time value of zero indicate? What is the value of an option with zero

time value?
(d) Using a trial and error approach, calculate how low the stock price would have to be

for the time value of the option to be zero.

10.29. On July 20, 2004, Microsoft surprised the market by announcing a $3 dividend. The ex-
dividend date was November 17, 2004, and the payment date was December 2, 2004. Its
stock price at the time was about $28. It also changed the terms of its employee stock
options so that each exercise price was adjusted downward to

Predividend exercise price� Closing price� $3:00

Closing price

The number of shares covered by each stock option outstanding was adjusted upward to

Number of shares predividend� Closing price

Closing price� $3:00

‘‘Closing Price’’ means the official NASDAQ closing price of a share of Microsoft
common stock on the last trading day before the ex-dividend date. Evaluate this adjust-
ment. Compare it with the system used by exchanges to adjust for extraordinary dividends
(see Business Snapshot 10.1).
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Properties of
Stock Options

In this chapter, we look at the factors affecting stock option prices. We use a number

of different arbitrage arguments to explore the relationships between European option

prices, American option prices, and the underlying stock price. The most important of

these relationships is put–call parity, which is a relationship between the price of a

European call option, the price of a European put option, and the underlying stock

price.

The chapter examines whether American options should be exercised early. It shows

that it is never optimal to exercise an American call option on a non-dividend-paying

stock prior to the option’s expiration, but that under some circumstances the early

exercise of an American put option on such a stock is optimal. When there are

dividends, it can be optimal to exercise either calls or puts early.

11.1 FACTORS AFFECTING OPTION PRICES

There are six factors affecting the price of a stock option:

1. The current stock price, S0

2. The strike price, K

3. The time to expiration, T

4. The volatility of the stock price, �

5. The risk-free interest rate, r

6. The dividends that are expected to be paid.

In this section, we consider what happens to option prices when there is a change to one

of these factors, with all the other factors remaining fixed. The results are summarized

in Table 11.1.

Figures 11.1 and 11.2 show how European call and put prices depend on the first five

factors in the situation where S0 ¼ 50, K ¼ 50, r ¼ 5% per annum, � ¼ 30% per

annum, T ¼ 1 year, and there are no dividends. In this case the call price is 7:116
and the put price is 4:677.
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Stock Price and Strike Price

If a call option is exercised at some future time, the payoff will be the amount by which
the stock price exceeds the strike price. Call options therefore become more valuable as
the stock price increases and less valuable as the strike price increases. For a put option,
the payoff on exercise is the amount by which the strike price exceeds the stock price.
Put options therefore behave in the opposite way from call options: they become less
valuable as the stock price increases and more valuable as the strike price increases.
Figure 11.1a–d illustrate the way in which put and call prices depend on the stock price
and strike price.

Time to Expiration

Now consider the effect of the expiration date. Both put and call American options
become more valuable (or at least do not decrease in value) as the time to expiration
increases. Consider two American options that differ only as far as the expiration date is
concerned. The owner of the long-life option has all the exercise opportunities open to
the owner of the short-life option—and more. The long-life option must therefore
always be worth at least as much as the short-life option.

Although European put and call options usually become more valuable as the time
to expiration increases (see Figure 11.1e, f), this is not always the case. Consider two
European call options on a stock: one with an expiration date in 1 month, the other
with an expiration date in 2 months. Suppose that a very large dividend is expected in
6 weeks. The dividend will cause the stock price to decline, so that the short-life option
could be worth more than the long-life option.1

Volatility

The precise way in which volatility is defined is discussed in Chapter 15. Roughly
speaking, the volatility of a stock price is a measure of how uncertain we are about

Table 11.1 Summary of the effect on the price of a stock option of
increasing one variable while keeping all others fixed.

Variable European
call

European
put

American
call

American
put

Current stock price þ � þ �
Strike price � þ � þ
Time to expiration ? ? þ þ
Volatility þ þ þ þ
Risk-free rate þ � þ �
Amount of future dividends � þ � þ
þ indicates that an increase in the variable causes the option price to increase or stay the same;
� indicates that an increase in the variable causes the option price to decrease or stay the same;
? indicates that the relationship is uncertain.

1 We assume that, when the life of the option is changed, the dividends on the stock and their timing remain

unchanged.
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future stock price movements. As volatility increases, the chance that the stock will do

very well or very poorly increases. For the owner of a stock, these two outcomes tend to

offset each other. However, this is not so for the owner of a call or put. The owner of a

call benefits from price increases but has limited downside risk in the event of price

decreases because the most the owner can lose is the price of the option. Similarly, the

owner of a put benefits from price decreases, but has limited downside risk in the event

of price increases. The values of both calls and puts therefore increase as volatility

increases (see Figure 11.2a, b).
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Figure 11.1 Effect of changes in stock price, strike price, and expiration date on
option prices when S0 ¼ 50, K ¼ 50, r ¼ 5%, � ¼ 30%, and T ¼ 1.
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Risk-Free Interest Rate

The risk-free interest rate affects the price of an option in a less clear-cut way. As interest
rates in the economy increase, the expected return required by investors from the stock
tends to increase. In addition, the present value of any future cash flow received by the
holder of the option decreases. The combined impact of these two effects is to increase the
value of call options and decrease the value of put options (see Figure 11.2c, d).

It is important to emphasize that we are assuming that interest rates change while all
other variables stay the same. In particular we are assuming in Table 11.1 that interest
rates change while the stock price remains the same. In practice, when interest rates rise
(fall), stock prices tend to fall (rise). The combined effect of an interest rate increase and
the accompanying stock price decrease can be to decrease the value of a call option and
increase the value of a put option. Similarly, the combined effect of an interest rate
decrease and the accompanying stock price increase can be to increase the value of a
call option and decrease the value of a put option.

Amount of Future Dividends

Dividends have the effect of reducing the stock price on the ex-dividend date. This is
bad news for the value of call options and good news for the value of put options.
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Figure 11.2 Effect of changes in volatility and risk-free interest rate on option prices
when S0 ¼ 50, K ¼ 50, r ¼ 5%, � ¼ 30%, and T ¼ 1.
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Consider a dividend whose ex-dividend date is during the life of an option. The value of
the option is negatively related to the size of the dividend if the option is a call and
positively related to the size of the dividend if the option is a put.

11.2 ASSUMPTIONS AND NOTATION

In this chapter, we will make assumptions similar to those made when deriving forward
and futures prices in Chapter 5. We assume that there are some market participants,
such as large investment banks, for which the following statements are true:

1. There are no transaction costs.

2. All trading profits (net of trading losses) are subject to the same tax rate.

3. Borrowing and lending are possible at the risk-free interest rate.

We assume that these market participants are prepared to take advantage of arbitrage
opportunities as they arise. As discussed in Chapters 1 and 5, this means that any
available arbitrage opportunities disappear very quickly. For the purposes of our
analysis, it is therefore reasonable to assume that there are no arbitrage opportunities.

We will use the following notation:

S0 : Current stock price

K : Strike price of option

T : Time to expiration of option

ST : Stock price on the expiration date

r : Continuously compounded risk-free rate of interest for an investment maturing
in time T

C : Value of American call option to buy one share

P : Value of American put option to sell one share

c : Value of European call option to buy one share

p : Value of European put option to sell one share

It should be noted that r is the nominal rate of interest, not the real rate of interest. We
can assume that r > 0. Otherwise, a risk-free investment would provide no advantages
over cash. (Indeed, if r < 0, cash would be preferable to a risk-free investment.)

11.3 UPPER AND LOWER BOUNDS FOR OPTION PRICES

In this section, we derive upper and lower bounds for option prices. These bounds do
not depend on any particular assumptions about the factors mentioned in Section 11.1
(except r > 0). If an option price is above the upper bound or below the lower bound,
then there are profitable opportunities for arbitrageurs.

Upper Bounds

An American or European call option gives the holder the right to buy one share of a
stock for a certain price. No matter what happens, the option can never be worth more

260 CHAPTER 11



than the stock. Hence, the stock price is an upper bound to the option price:

c 6 S0 and C 6 S0 ð11:1Þ

If these relationships were not true, an arbitrageur could easily make a riskless profit by

buying the stock and selling the call option.

An American put option gives the holder the right to sell one share of a stock for K.

No matter how low the stock price becomes, the option can never be worth more

than K. Hence,

P 6 K ð11:2Þ

For European options, we know that at maturity the option cannot be worth more

than K. It follows that it cannot be worth more than the present value of K today:

p 6 Ke
�rT ð11:3Þ

If this were not true, an arbitrageur could make a riskless profit by writing the option

and investing the proceeds of the sale at the risk-free interest rate.

Lower Bound for Calls on Non-Dividend-Paying Stocks

A lower bound for the price of a European call option on a non-dividend-paying stock is

S0 �Ke
�rT

We first look at a numerical example and then consider a more formal argument.

Suppose that S0 ¼ $20, K ¼ $18, r ¼ 10% per annum, and T ¼ 1 year. In this case,

S0 �Ke
�rT ¼ 20� 18e�0:1 ¼ 3:71

or $3.71. Consider the situation where the European call price is $3.00, which is less

than the theoretical minimum of $3.71. An arbitrageur can short the stock and buy the

call to provide a cash inflow of $20:00� $3:00 ¼ $17:00. If invested for 1 year at 10%

per annum, the $17.00 grows to 17e0:1 ¼ $18:79. At the end of the year, the option

expires. If the stock price is greater than $18.00, the arbitrageur exercises the option for

$18.00, closes out the short position, and makes a profit of

$18:79� $18:00 ¼ $0:79

If the stock price is less than $18.00, the stock is bought in the market and the short

position is closed out. The arbitrageur then makes an even greater profit. For example,

if the stock price is $17.00, the arbitrageur’s profit is

$18:79� $17:00 ¼ $1:79

For a more formal argument, we consider the following two portfolios:

Portfolio A : one European call option plus a zero-coupon bond that provides a
payoff of K at time T

Portfolio B : one share of the stock.
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In portfolio A, the zero-coupon bond will be worth K at time T . If ST > K, the call
option is exercised at maturity and portfolio A is worth ST . If ST < K, the call option
expires worthless and the portfolio is worth K. Hence, at time T , portfolio A is worth

maxðST ; KÞ
Portfolio B is worth ST at time T . Hence, portfolio A is always worth as much as, and
can be worth more than, portfolio B at the option’s maturity. It follows that in the
absence of arbitrage opportunities this must also be true today. The zero-coupon bond
is worth Ke

�rT today. Hence,

cþKe
�rT > S0

or

c > S0 �Ke
�rT

Because the worst that can happen to a call option is that it expires worthless, its value
cannot be negative. This means that c > 0 and therefore

c > maxðS0 �Ke
�rT ; 0Þ ð11:4Þ

Example 11.1

Consider a European call option on a non-dividend-paying stock when the stock
price is $51, the strike price is $50, the time to maturity is 6 months, and the risk-free
interest rate is 12%per annum. In this case, S0 ¼ 51,K ¼ 50, T ¼ 0:5, and r ¼ 0:12.
From equation (11.4), a lower bound for the option price is S0 �Ke

�rT , or

51� 50e�0:12�0:5 ¼ $3:91

Lower Bound for European Puts on Non-Dividend-Paying Stocks

For a European put option on a non-dividend-paying stock, a lower bound for the
price is

Ke
�rT � S0

Again, we first consider a numerical example and then look at a more formal argument.

Suppose that S0 ¼ $37, K ¼ $40, r ¼ 5% per annum, and T ¼ 0:5 years. In this case,

Ke
�rT � S0 ¼ 40e�0:05�0:5 � 37 ¼ $2:01

Consider the situation where the European put price is $1.00, which is less than the
theoretical minimum of $2.01. An arbitrageur can borrow $38.00 for 6 months to buy
both the put and the stock. At the end of the 6 months, the arbitrageur will be required
to repay 38e0:05�0:5 ¼ $38:96. If the stock price is below $40.00, the arbitrageur exercises
the option to sell the stock for $40.00, repays the loan, and makes a profit of

$40:00� $38:96 ¼ $1:04

If the stock price is greater than $40.00, the arbitrageur discards the option, sells the
stock, and repays the loan for an even greater profit. For example, if the stock price is
$42.00, the arbitrageur’s profit is

$42:00� $38:96 ¼ $3:04
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For a more formal argument, we consider the following two portfolios:

Portfolio C : one European put option plus one share

Portfolio D : a zero-coupon bond paying off K at time T .

If ST < K, then the option in portfolio C is exercised at option maturity and the
portfolio becomes worth K. If ST > K, then the put option expires worthless and the
portfolio is worth ST at this time. Hence, portfolio C is worth

maxðST ; KÞ
in time T . Portfolio D is worth K in time T . Hence, portfolio C is always worth as much
as, and can sometimes be worth more than, portfolio D in time T . It follows that in the
absence of arbitrage opportunities portfolio C must be worth at least as much as
portfolio D today. Hence,

pþ S0 > Ke
�rT

or

p > Ke
�rT � S0

Because the worst that can happen to a put option is that it expires worthless, its value
cannot be negative. This means that

p > maxðKe
�rT � S0; 0Þ ð11:5Þ

Example 11.2

Consider a European put option on a non-dividend-paying stock when the stock
price is $38, the strike price is $40, the time to maturity is 3 months, and the
risk-free rate of interest is 10% per annum. In this case S0 ¼ 38, K ¼ 40,
T ¼ 0:25, and r ¼ 0:10. From equation (11.5), a lower bound for the option
price is Ke

�rT � S0, or

40e�0:1�0:25 � 38 ¼ $1:01

11.4 PUT–CALL PARITY

We now derive an important relationship between the prices of European put and call
options that have the same strike price and time to maturity. Consider the following two
portfolios that were used in the previous section:

Portfolio A : one European call option plus a zero-coupon bond that provides a
payoff of K at time T

Portfolio C : one European put option plus one share of the stock.

We continue to assume that the stock pays no dividends. The call and put options have
the same strike price K and the same time to maturity T .

As discussed in the previous section, the zero-coupon bond in portfolio A will be
worth K at time T . If the stock price ST at time T proves to be above K, then the call
option in portfolio A will be exercised. This means that portfolio A is worth
ðST �KÞ þK ¼ ST at time T in these circumstances. If ST proves to be less than K,
then the call option in portfolio A will expire worthless and the portfolio will be
worth K at time T .
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In portfolio C, the share will be worth ST at time T . If ST proves to be below K, then
the put option in portfolio C will be exercised. This means that portfolio C is worth
ðK� ST Þ þ ST ¼ K at time T in these circumstances. If ST proves to be greater than K,

then the put option in portfolio C will expire worthless and the portfolio will be worth
ST at time T .

The situation is summarized in Table 11.2. If ST > K, both portfolios are worth ST at
time T ; if ST < K, both portfolios are worth K at time T . In other words, both are worth

maxðST ;KÞ

when the options expire at time T . Because they are European, the options cannot be

exercised prior to time T . Since the portfolios have identical values at time T , they must
have identical values today. If this were not the case, an arbitrageur could buy the less
expensive portfolio and sell the more expensive one. Because the portfolios are

guaranteed to cancel each other out at time T , this trading strategy would lock in an
arbitrage profit equal to the difference in the values of the two portfolios.

The components of portfolio A are worth c and Ke
�rT today, and the components of

portfolio C are worth p and S0 today. Hence,

cþKe
�rT ¼ pþ S0 ð11:6Þ

This relationship is known as put–call parity. It shows that the value of a European call
with a certain exercise price and exercise date can be deduced from the value of a
European put with the same exercise price and exercise date, and vice versa.

To illustrate the arbitrage opportunities when equation (11.6) does not hold, suppose
that the stock price is $31, the exercise price is $30, the risk-free interest rate is 10% per

annum, the price of a three-month European call option is $3, and the price of a
3-month European put option is $2.25. In this case,

cþKe
�rT ¼ 3þ 30e�0:1�3=12 ¼ $32:26

pþ S0 ¼ 2:25þ 31 ¼ $33:25

Portfolio C is overpriced relative to portfolio A. An arbitrageur can buy the securities
in portfolio A and short the securities in portfolio C. The strategy involves buying the

call and shorting both the put and the stock, generating a positive cash flow of

�3þ 2:25þ 31 ¼ $30:25

Table 11.2 Values of Portfolio A and Portfolio C at time T .

ST > K ST < K

Portfolio A Call option ST �K 0
Zero-coupon bond K K

Total ST K

Portfolio C Put Option 0 K� ST
Share ST ST

Total ST K
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up front. When invested at the risk-free interest rate, this amount grows to

30:25e0:1�0:25 ¼ $31:02

in three months. If the stock price at expiration of the option is greater than $30, the
call will be exercised. If it is less than $30, the put will be exercised. In either case, the
arbitrageur ends up buying one share for $30. This share can be used to close out the
short position. The net profit is therefore

$31:02� $30:00 ¼ $1:02

For an alternative situation, suppose that the call price is $3 and the put price is $1.
In this case,

cþKe
�rT ¼ 3þ 30e�0:1�3=12 ¼ $32:26

pþ S0 ¼ 1þ 31 ¼ $32:00

Portfolio A is overpriced relative to portfolio C. An arbitrageur can short the securities in
portfolio A and buy the securities in portfolio C to lock in a profit. The strategy involves
shorting the call and buying both the put and the stock with an initial investment of

$31þ $1� $3 ¼ $29

When the investment is financed at the risk-free interest rate, a repayment of
29e0:1�0:25 ¼ $29:73 is required at the end of the three months. As in the previous case,
either the call or the put will be exercised. The short call and long put option position
therefore leads to the stock being sold for $30.00. The net profit is therefore

$30:00� $29:73 ¼ $0:27

These examples are illustrated in Table 11.3. Business Snapshot 11.1 shows how options

Table 11.3 Arbitrage opportunities when put–call parity does not hold.
Stock price ¼ $31; interest rate ¼ 10%; call price ¼ $3. Both put and call
have strike price of $30 and three months to maturity.

Three-month put price ¼ $2.25 Three-month put price ¼ $1

Action now: Action now:
Buy call for $3 Borrow $29 for 3 months
Short put to realize $2.25 Short call to realize $3
Short the stock to realize $31 Buy put for $1
Invest $30.25 for 3 months Buy the stock for $31

Action in 3 months if ST > 30: Action in 3 months if ST > 30:
Receive $31.02 from investment Call exercised: sell stock for $30
Exercise call to buy stock for $30 Use $29.73 to repay loan
Net profit ¼ $1.02 Net profit ¼ $0.27

Action in 3 months if ST < 30: Action in 3 months if ST < 30:
Receive $31.02 from investment Exercise put to sell stock for $30
Put exercised: buy stock for $30 Use $29.73 to repay loan
Net profit ¼ $1.02 Net profit ¼ $0.27

Properties of Stock Options 265



and put–call parity can help us understand the positions of the debt holders and equity

holders in a company.

American Options

Put–call parity holds only for European options. However, it is possible to derive some

results for American option prices. It can be shown (see Problem 11.18) that, when
there are no dividends,

S0 �K 6 C� P 6 S0 �Ke
�rT ð11:7Þ

Example 11.3

An American call option on a non-dividend-paying stock with strike price $20.00

and maturity in 5 months is worth $1.50. Suppose that the current stock price is

Business Snapshot 11.1 Put–Call Parity and Capital Structure

Fischer Black, Myron Scholes, and Robert Merton were the pioneers of option
pricing. In the early 1970s, they also showed that options can be used to characterize
the capital structure of a company. Today this analysis is widely used by financial
institutions to assess a company’s credit risk.

To illustrate the analysis, consider a company that has assets that are financed with
zero-coupon bonds and equity. Suppose that the bonds mature in five years at which
time a principal payment of K is required. The company pays no dividends. If the
assets are worth more than K in five years, the equity holders choose to repay the
bond holders. If the assets are worth less than K, the equity holders choose to declare
bankruptcy and the bond holders end up owning the company.

The value of the equity in five years is therefore maxðAT �K; 0Þ; where AT is the
value of the company’s assets at that time. This shows that the equity holders have a
five-year European call option on the assets of the company with a strike price of K.
What about the bondholders? They get minðAT ; KÞ in five years. This is the same as
K�maxðK� AT ; 0Þ. This shows that today the bonds are worth the present value
of K minus the value of a five-year European put option on the assets with a strike
price of K.

To summarize, if c and p are the values, respectively, of the call and put options
on the company’s assets, then

Value of company’s equity ¼ c

Value of company’s debt ¼ PV ðKÞ � p

Denote the value of the assets of the company today by A0. The value of the assets
must equal the total value of the instruments used to finance the assets. This means
that it must equal the sum of the value of the equity and the value of the debt, so that

A0 ¼ cþ ½PV ðKÞ � p�
Rearranging this equation, we have

cþ PV ðKÞ ¼ pþ A0

This is the put–call parity result in equation (11.6) for call and put options on the
assets of the company.
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$19.00 and the risk-free interest rate is 10% per annum. From equation (11.7), we
have

19� 20 6 C� P 6 19� 20e�0:1�5=12

or
1 > P � C > 0:18

showing that P � C lies between $1.00 and $0.18. With C at $1.50, P must lie
between $1.68 and $2.50. In other words, upper and lower bounds for the price of
an American put with the same strike price and expiration date as the American
call are $2.50 and $1.68.

11.5 CALLS ON A NON-DIVIDEND-PAYING STOCK

In this section, we first show that it is never optimal to exercise an American call option
on a non-dividend-paying stock before the expiration date.

To illustrate the general nature of the argument, consider an American call option on
a non-dividend-paying stock with one month to expiration when the stock price is $70
and the strike price is $40. The option is deep in the money, and the investor who owns
the option might well be tempted to exercise it immediately. However, if the investor
plans to hold the stock obtained by exercising the option for more than one month, this
is not the best strategy. A better course of action is to keep the option and exercise it at
the end of the month. The $40 strike price is then paid out one month later than it
would be if the option were exercised immediately, so that interest is earned on the $40
for one month. Because the stock pays no dividends, no income from the stock is
sacrificed. A further advantage of waiting rather than exercising immediately is that
there is some chance (however remote) that the stock price will fall below $40 in one
month. In this case the investor will not exercise in one month and will be glad that the
decision to exercise early was not taken!

This argument shows that there are no advantages to exercising early if the investor
plans to keep the stock for the remaining life of the option (one month, in this case).
What if the investor thinks the stock is currently overpriced and is wondering whether
to exercise the option and sell the stock? In this case, the investor is better off selling the
option than exercising it.2 The option will be bought by another investor who does
want to hold the stock. Such investors must exist. Otherwise the current stock price
would not be $70. The price obtained for the option will be greater than its intrinsic
value of $30, for the reasons mentioned earlier.

For a more formal argument, we can use equation (11.4):

c > S0 �Ke
�rT

Because the owner of an American call has all the exercise opportunities open to the
owner of the corresponding European call, we must have C > c. Hence,

C > S0 �Ke
�rT

Given r > 0, it follows that C > S0 �K when T > 0. This means that C is always greater

2 As an alternative strategy, the investor can keep the option and short the stock to lock in a better profit

than $10.
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than the option’s intrinsic value prior to maturity. If it were optimal to exercise at a
particular time prior to maturity, C would equal the option’s intrinsic value at that
time. It follows that it can never be optimal to exercise early.

To summarize, there are two reasons an American call on a non-dividend-paying
stock should not be exercised early. One relates to the insurance that it provides. A call
option, when held instead of the stock itself, in effect insures the holder against the
stock price falling below the strike price. Once the option has been exercised and the
strike price has been exchanged for the stock price, this insurance vanishes. The other
reason concerns the time value of money. From the perspective of the option holder,
the later the strike price is paid out the better.

Bounds

Because American call options are never exercised early when there are no dividends,
they are equivalent to European call options, so that C ¼ c. From equations (11.1)
and (11.4), it follows that lower and upper bounds are given by

maxðS0 �Ke
�rT ; 0Þ and S0

respectively. These bounds are illustrated in Figure 11.3.
The general way in which the call price varies with the stock price, S0, is shown in

Figure 11.4. As r or T or the stock price volatility increases, the line relating the call
price to the stock price moves in the direction indicated by the arrows.

11.6 PUTS ON A NON-DIVIDEND-PAYING STOCK

It can be optimal to exercise an American put option on a non-dividend-paying stock
early. Indeed, at any given time during its life, the put option should always be exercised
early if it is sufficiently deep in the money.

To illustrate, consider an extreme situation. Suppose that the strike price is $10 and
the stock price is virtually zero. By exercising immediately, an investor makes an
immediate gain of $10. If the investor waits, the gain from exercise might be less than
$10, but it cannot be more than $10, because negative stock prices are impossible.
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Figure 11.3 Bounds for European and American call options when there are no
dividends.
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Furthermore, receiving $10 now is preferable to receiving $10 in the future. It follows
that the option should be exercised immediately.

Like a call option, a put option can be viewed as providing insurance. A put option,
when held in conjunction with the stock, insures the holder against the stock price
falling below a certain level. However, a put option is different from a call option in that
it may be optimal for an investor to forgo this insurance and exercise early in order to
realize the strike price immediately. In general, the early exercise of a put option
becomes more attractive as S0 decreases, as r increases, and as the volatility decreases.

Bounds

From equations (11.3) and (11.5), lower and upper bounds for a European put option
when there are no dividends are given by

maxðKe
�rT � S0; 0Þ 6 p 6 Ke

�rT

For an American put option on a non-dividend-paying stock, the condition

P > maxðK� S0; 0Þ
must apply because the option can be exercised at any time. This is a stronger
condition than the one for a European put option in equation (11.5). Using the result
in equation (11.2), bounds for an American put option on a non-dividend-paying
stock are

maxðK� S0; 0Þ 6 P 6 K

Figure 11.5 illustrates the bounds.
Figure 11.6 shows the general way in which the price of an American put option

varies with S0. As we argued earlier, provided that r > 0, it is always optimal to exercise
an American put immediately when the stock price is sufficiently low. When early
exercise is optimal, the value of the option is K� S0. The curve representing the value

Call option
price

Stock price, S0Ke–rT

Figure 11.4 Variation of price of an American or European call option on a non-
dividend-paying stock with the stock price. Curve moves in the direction of the arrows
when there is an increase in the interest rate, time to maturity, or stock price volatility.

Properties of Stock Options 269



of the put therefore merges into the put’s intrinsic value, K� S0, for a sufficiently small
value of S0. In Figure 11.6, this value of S0 is shown as point A. The line relating the put
price to the stock price moves in the direction indicated by the arrows when r decreases,
when the volatility increases, and when T increases.

Because there are some circumstances when it is desirable to exercise an American
put option early, it follows that an American put option is always worth more than the
corresponding European put option. Furthermore, because an American put is some-
times worth its intrinsic value (see Figure 11.6), it follows that a European put option
must sometimes be worth less than its intrinsic value. This means that the curve
representing the relationship between the put price and the stock price for a European
option must be below the corresponding curve for an American option.

Figure 11.7 shows the variation of the European put price with the stock price. Note
that point B in Figure 11.7, at which the price of the option is equal to its intrinsic
value, must represent a higher value of the stock price than point A in Figure 11.6
because the curve in Figure 11.7 is below that in Figure 11.6. Point E in Figure 11.7 is
where S0 ¼ 0 and the European put price is Ke

�rT .
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Figure 11.5 Bounds for European and American put options when there are no
dividends.

American
put price

Stock price, S0KA

Figure 11.6 Variation of price of an American put option with stock price. Curve
moves in the direction of the arrows when the time to maturity or stock price volatility
increases or when the interest rate decreases.
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11.7 EFFECT OF DIVIDENDS

The results produced so far in this chapter have assumed that we are dealing with

options on a non-dividend-paying stock. In this section, we examine the impact of

dividends. We assume that the dividends that will be paid during the life of the option

are known. Most exchange-traded stock options have a life of less than one year, so this

assumption is often not too unreasonable. We will use D to denote the present value of

the dividends during the life of the option. In the calculation of D, a dividend is

assumed to occur at the time of its ex-dividend date.

Lower Bound for Calls and Puts

We can redefine portfolios A and B as follows:

Portfolio A : one European call option plus an amount of cash equal to DþKe
�rT

Portfolio B : one share

A similar argument to the one used to derive equation (11.4) shows that

c > maxðS0 �D�Ke
�rT ; 0Þ ð11:8Þ

We can also redefine portfolios C and D as follows:

Portfolio C : one European put option plus one share

Portfolio D : an amount of cash equal to DþKe
�rT

A similar argument to the one used to derive equation (11.5) shows that

p > maxðDþKe
�rT � S0; 0Þ ð11:9Þ

European
put price

Stock price, S0KB

E

Ke–rT

Figure 11.7 Variation of price of a European put option with the stock price.
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Early Exercise

When dividends are expected, we can no longer assert that an American call option will
not be exercised early. Sometimes it is optimal to exercise an American call immediately
prior to an ex-dividend date. It is never optimal to exercise a call at other times. This
point is discussed further in Section 15.12.

Put–Call Parity

Comparing the value at option maturity of the redefined portfolios A and C shows that,
with dividends, the put–call parity result in equation (11.6) becomes

cþDþKe
�rT ¼ pþ S0 ð11:10Þ

Dividends cause equation (11.7) to be modified (see Problem 11.19) to

S0 �D�K 6 C� P 6 S0 �Ke
�rT ð11:11Þ

SUMMARY

There are six factors affecting the value of a stock option: the current stock price, the
strike price, the expiration date, the stock price volatility, the risk-free interest rate, and
the dividends expected during the life of the option. The value of a call usually increases
as the current stock price, the time to expiration, the volatility, and the risk-free interest
rate increase. The value of a call decreases as the strike price and expected dividends
increase. The value of a put usually increases as the strike price, the time to expiration,
the volatility, and the expected dividends increase. The value of a put decreases as the
current stock price and the risk-free interest rate increase.

It is possible to reach some conclusions about the value of stock options without
making any assumptions about the volatility of stock prices. For example, the price of a
call option on a stock must always be worth less than the price of the stock itself.
Similarly, the price of a put option on a stock must always be worth less than the
option’s strike price.

A European call option on a non-dividend-paying stock must be worth more than

maxðS0 �Ke
�rT ; 0Þ

where S0 is the stock price, K is the strike price, r is the risk-free interest rate, and T is
the time to expiration. A European put option on a non-dividend-paying stock must be
worth more than

maxðKe
�rT � S0; 0Þ

When dividends with present value D will be paid, the lower bound for a European call
option becomes

maxðS0 �D�Ke
�rT ; 0Þ

and the lower bound for a European put option becomes

maxðKe
�rT þD� S0; 0Þ
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Put–call parity is a relationship between the price, c, of a European call option on a

stock and the price, p, of a European put option on a stock. For a non-dividend-paying
stock, it is

cþKe
�rT ¼ pþ S0

For a dividend-paying stock, the put–call parity relationship is

cþDþKe
�rT ¼ pþ S0

Put–call parity does not hold for American options. However, it is possible to use

arbitrage arguments to obtain upper and lower bounds for the difference between the
price of an American call and the price of an American put.

In Chapter 15, we will carry the analyses in this chapter further by making specific

assumptions about the probabilistic behavior of stock prices. The analysis will enable us
to derive exact pricing formulas for European stock options. In Chapters 13 and 21, we

will see how numerical procedures can be used to price American options.
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Practice Questions (Answers in Solutions Manual)

11.1. List the six factors that affect stock option prices.

11.2. What is a lower bound for the price of a 4-month call option on a non-dividend-paying
stock when the stock price is $28, the strike price is $25, and the risk-free interest rate is
8% per annum?

11.3. What is a lower bound for the price of a 1-month European put option on a non-
dividend-paying stock when the stock price is $12, the strike price is $15, and the risk-
free interest rate is 6% per annum?

11.4. Give two reasons why the early exercise of an American call option on a non-dividend-
paying stock is not optimal. The first reason should involve the time value of money. The
second should apply even if interest rates are zero.

11.5. ‘‘The early exercise of an American put is a trade-off between the time value of money
and the insurance value of a put.’’ Explain this statement.

11.6. Why is an American call option on a dividend-paying stock always worth at least as much
as its intrinsic value. Is the same true of a European call option? Explain your answer.
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11.7. The price of a non-dividend-paying stock is $19 and the price of a 3-month European
call option on the stock with a strike price of $20 is $1. The risk-free rate is 4% per
annum. What is the price of a 3-month European put option with a strike price of $20?

11.8. Explain why the arguments leading to put–call parity for European options cannot be
used to give a similar result for American options.

11.9. What is a lower bound for the price of a 6-month call option on a non-dividend-paying
stock when the stock price is $80, the strike price is $75, and the risk-free interest rate is
10% per annum?

11.10. What is a lower bound for the price of a 2-month European put option on a non-

dividend-paying stock when the stock price is $58, the strike price is $65, and the risk-

free interest rate is 5% per annum?

11.11. A 4-month European call option on a dividend-paying stock is currently selling for $5.

The stock price is $64, the strike price is $60, and a dividend of $0.80 is expected in
1 month. The risk-free interest rate is 12% per annum for all maturities. What opportun-

ities are there for an arbitrageur?

11.12. A 1-month European put option on a non-dividend-paying stock is currently selling

for $2:50. The stock price is $47, the strike price is $50, and the risk-free interest rate is
6% per annum. What opportunities are there for an arbitrageur?

11.13. Give an intuitive explanation of why the early exercise of an American put becomes
more attractive as the risk-free rate increases and volatility decreases.

11.14. The price of a European call that expires in 6 months and has a strike price of $30 is $2.
The underlying stock price is $29, and a dividend of $0.50 is expected in 2 months and

again in 5 months. Interest rates (all maturities) are 10%. What is the price of a European
put option that expires in 6 months and has a strike price of $30?

11.15. Explain the arbitrage opportunities in Problem 11.14 if the European put price is $3.

11.16. The price of an American call on a non-dividend-paying stock is $4. The stock price is

$31, the strike price is $30, and the expiration date is in 3 months. The risk-free interest
rate is 8%. Derive upper and lower bounds for the price of an American put on the same

stock with the same strike price and expiration date.

11.17. Explain carefully the arbitrage opportunities in Problem 11.16 if the American put price

is greater than the calculated upper bound.

11.18. Prove the result in equation (11.7). (Hint : For the first part of the relationship,

consider (a) a portfolio consisting of a European call plus an amount of cash equal
to K, and (b) a portfolio consisting of an American put option plus one share.)

11.19. Prove the result in equation (11.11). (Hint : For the first part of the relationship,

consider (a) a portfolio consisting of a European call plus an amount of cash equal

to DþK, and (b) a portfolio consisting of an American put option plus one share.)

11.20. Consider a 5-year call option on a non-dividend-paying stock granted to employees. The

option can be exercised at any time after the end of the first year. Unlike a regular
exchange-traded call option, the employee stock option cannot be sold. What is the

likely impact of this restriction on the early-exercise decision?

11.21. Use the software DerivaGem to verify that Figures 11.1 and 11.2 are correct.
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Further Questions

11.22. Calls were traded on exchanges before puts. During the period of time when calls were
traded but puts were not traded, how would you create a European put option on a non-
dividend-paying stock synthetically.

11.23. The prices of European call and put options on a non-dividend-paying stock with an
expiration date in 12 months and a strike price of $120 are $20 and $5, respectively. The
current stock price is $130. What is the implied risk-free rate?

11.24. A European call option and put option on a stock both have a strike price of $20 and an
expiration date in 3 months. Both sell for $3. The risk-free interest rate is 10% per
annum, the current stock price is $19, and a $1 dividend is expected in 1 month. Identify
the arbitrage opportunity open to a trader.

11.25. Suppose that c1, c2, and c3 are the prices of European call options with strike prices K1,
K2, and K3, respectively, where K3 > K2 > K1 and K3 �K2 ¼ K2 �K1. All options have
the same maturity. Show that

c2 6 0:5ðc1 þ c3Þ
(Hint : Consider a portfolio that is long one option with strike price K1, long one option
with strike price K3, and short two options with strike price K2.)

11.26. What is the result corresponding to that in Problem 11.25 for European put options?

11.27. You are the manager and sole owner of a highly leveraged company. All the debt will
mature in 1 year. If at that time the value of the company is greater than the face value of
the debt, you will pay off the debt. If the value of the company is less than the face value
of the debt, you will declare bankruptcy and the debt holders will own the company.
(a) Express your position as an option on the value of the company.
(b) Express the position of the debt holders in terms of options on the value of the

company.
(c) What can you do to increase the value of your position?

11.28. Consider an option on a stock when the stock price is $41, the strike price is $40, the
risk-free rate is 6%, the volatility is 35%, and the time to maturity is 1 year. Assume that
a dividend of $0.50 is expected after 6 months.
(a) Use DerivaGem to value the option assuming it is a European call.
(b) Use DerivaGem to value the option assuming it is a European put.
(c) Verify that put–call parity holds.
(d) Explore using DerivaGem what happens to the price of the options as the time to

maturity becomes very large and there are no dividends. Explain your results.

11.29. Consider a put option on a non-dividend-paying stock when the stock price is $40, the
strike price is $42, the risk-free interest rate is 2%, the volatility is 25% per annum, and
the time to maturity is three months. Use DerivaGem to determine the following:
(a) The price of the option if it is European (use Black–Scholes: European)
(b) The price of the option if it is American (use Binomial: American with 100 tree steps)
(c) Point B in Figure 11.7.

11.30. Section 11.1 gives an example of a situation where the value of a European call option
decreases as the time to maturity is increased. Give an example of a situation where the
same thing happens for a European put option.
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Trading Strategies
Involving Options

We discussed the profit pattern from an investment in a single option in Chapter 10. In
this chapter we look at what can be achieved when an option is traded in conjunction
with other assets. In particular, we examine the properties of portfolios consisting of
(a) an option and a zero-coupon bond, (b) an option and the asset underlying the
option, and (c) two or more options on the same asset.

A natural question is why a trader would want the profit patterns discussed here. The
answer is that the choices a trader makes depend on the trader’s judgment about how
prices will move and the trader’s willingness to take risks. Principal-protected notes,
discussed in Section 12.1 appeal to individuals who are risk-averse. They do not want to
risk losing their principal, but have an opinion about whether a particular asset will
increase or decrease in value and are prepared to let the return on principal depend on
whether they are right. If a trader is willing to take rather more risk than this, he or she
could choose a bull or bear spread, discussed in Section 12.3. Yet more risk would be
taken with a straightforward long position in a call or put option.

Suppose that a trader feels there will be a big move in price of an asset, but does not
know whether this will be up or down. There are a number of alternative trading
strategies. A risk-averse trader might choose a reverse butterfly spread, discussed in
Section 12.3, where there will be a small gain if the trader’s hunch is correct and a small
loss if it is not. A more aggressive investor might choose a straddle or strangle,
discussed in Section 12.4, where potential gains and losses are larger.

Further trading strategies involving options are considered in later chapters. For
example, Chapter 17 shows how options on stock indices can be used to manage the
risks in a stock portfolio and explains how range forward contracts can be used to
hedge a foreign exchange exposure; Chapter 19 covers the way in which Greek letters
are used to manage the risks when derivatives are traded; Chapter 26 covers exotic
options and what is known as static options replication.

12.1 PRINCIPAL-PROTECTED NOTES

Options are often used to create what are termed principal-protected notes for the retail
market. These are products that appeal to conservative investors. The return earned by
the investor depends on the performance of a stock, a stock index, or other risky asset,
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but the initial principal amount invested is not at risk. An example will illustrate how a

simple principal-protected note can be created.

Example 12.1

Suppose that the 3-year interest rate is 6% with continuous compounding. This

means that 1,000e�0:06�3 ¼ $835:27 will grow to $1,000 in 3 years. The difference
between $1,000 and $835.27 is $164.73. Suppose that a stock portfolio is worth

$1,000 and provides a dividend yield of 1.5% per annum. Suppose further that a
3-year at-the-money European call option on the stock portfolio can be purchased

for less than $164.73. (From DerivaGem, it can be verified that this will be the
case if the volatility of the value of the portfolio is less than about 15%.) A bank

can offer clients a $1,000 investment opportunity consisting of:

1. A 3-year zero-coupon bond with a principal of $1,000

2. A 3-year at-the-money European call option on the stock portfolio.

If the value of the porfolio increases the investor gets whatever $1,000 invested in

the portfolio would have grown to. (This is because the zero-coupon bond pays

off $1,000 and this equals the strike price of the option.) If the value of the
portfolio goes down, the option has no value, but payoff from the zero-coupon

bond ensures that the investor receives the original $1,000 principal invested.

The attraction of a principal-protected note is that an investor is able to take a risky

position without risking any principal. The worst that can happen is that the investor

loses the chance to earn interest, or other income such as dividends, on the initial
investment for the life of the note.

There are many variations on the product we have described. An investor who thinks

that the price of an asset will decline can buy a principal-protected note consisting of a
zero-coupon bond plus a put option. The investor’s payoff in 3 years is then $1,000 plus

the payoff (if any) from the put option.

Is a principal-protected note a good deal from the retail investor’s perspective? A

bank will always build in a profit for itself when it creates a principal-protected note.
This means that, in Example 12.1, the zero-coupon bond plus the call option will always

cost the bank less than $1,000. In addition, investors are taking the risk that the bank
will not be in a position to make the payoff on the principal-protected note at maturity.

(Some retail investors lost money on principal-protected notes created by Lehman
Brothers when it failed in 2008.) In some situations, therefore, an investor will be

better off if he or she buys the underlying option in the usual way and invests the

remaining principal in a risk-free investment. However, this is not always the case. The
investor is likely to face wider bid–offer spreads on the option than the bank and is

likely to earn lower interest rates than the bank. It is therefore possible that the bank
can add value for the investor while making a profit itself.

Now let us look at the principal-protected notes from the perspective of the bank. The

economic viability of the structure in Example 12.1 depends critically on the level of
interest rates and the volatility of the portfolio. If the interest rate is 3% instead of 6%,

the bank has only 1,000� 1,000e�0:03�3 ¼ $86:07 with which to buy the call option. If

interest rates are 6%, but the volatility is 25% instead of 15%, the price of the option
would be about $221. In either of these circumstances, the product described in

Example 12.1 cannot be profitably created by the bank. However, there are a number
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of ways the bank can still create a viable 3-year product. For example, the strike price of

the option can be increased so that the value of the portfolio has to rise by, say, 15%

before the investor makes a gain; the investor’s return could be capped; the return of the

investor could depend on the average price of the asset instead of the final price; a

knockout barrier could be specified. The derivatives involved in some of these alter-

natives will be discussed later in the book. (Capping the option corresponds to the

creation of a bull spread for the investor and will be discussed later in this chapter.)

One way in which a bank can sometimes create a profitable principal-protected note

when interest rates are low or volatilities are high is by increasing its life. Consider the

situation in Example 12.1 when (a) the interest rate is 3% rather than 6% and (b) the

stock portfolio has a volatility of 15% and provides a dividend yield of 1.5%.

DerivaGem shows that a 3-year at-the-money European option costs about $119. This

is more than the funds available to purchase it (1,000� 1,000e�0:03�3 ¼ $86:07). A

10-year at-the-money option costs about $217. This is less than the funds available to

purchase it (1,000� 1,000e�0:03�10 ¼ $259:18), making the structure profitable. When

the life is increased to 20 years, the option cost is about $281, which is much less than

the funds available to purchase it (1,000� 1,000e�0:03�20 ¼ $451:19), so that the struc-

ture is even more profitable.

A critical variable for the bank in our example is the dividend yield. The higher it is,

the more profitable the product is for the bank. If the dividend yield were zero, the

principal-protected note in Example 12.1 cannot be profitable for the bank no matter

how long it lasts. (This follows from equation (11.4).)

12.2 TRADING AN OPTION AND THE UNDERLYING ASSET

For convenience, we will assume that the asset underlying the options considered in the

rest of the chapter is a stock. (Similar trading strategies can be developed for other

underlying assets.) We will also follow the usual practice of calculating the profit from a

trading strategy as the final payoff minus the initial cost without any discounting.

There are a number of different trading strategies involving a single option on a stock

and the stock itself. The profits from these are illustrated in Figure 12.1. In this figure

and in other figures throughout this chapter, the dashed line shows the relationship

between profit and the stock price for the individual securities constituting the

portfolio, whereas the solid line shows the relationship between profit and the stock

price for the whole portfolio.

In Figure 12.1a, the portfolio consists of a long position in a stock plus a short

position in a European call option. This is known as writing a covered call. The long

stock position ‘‘covers’’ or protects the investor from the payoff on the short call that

becomes necessary if there is a sharp rise in the stock price. In Figure 12.1b, a short

position in a stock is combined with a long position in a call option. This is the reverse

of writing a covered call. In Figure 12.1c, the investment strategy involves buying a

European put option on a stock and the stock itself. This is referred to as a protective

put strategy. In Figure 12.1d, a short position in a put option is combined with a short

position in the stock. This is the reverse of a protective put.

The profit patterns in Figures 12.1a, b, c, d have the same general shape as the profit

patterns discussed in Chapter 10 for short put, long put, long call, and short call,
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respectively. Put–call parity provides a way of understanding why this is so. From
Chapter 11, the put–call parity relationship is

pþ S0 ¼ cþKe
�rT þD ð12:1Þ

where p is the price of a European put, S0 is the stock price, c is the price of a European
call, K is the strike price of both call and put, r is the risk-free interest rate, T is the time
to maturity of both call and put, and D is the present value of the dividends anticipated
during the life of the options.

Profit

(a)

ST
K

Profit

(b)

ST

K

Profit

(c)

ST

K

Profit

(d)

ST
K

Long
Stock

Short
Call

Long
StockLong

Put

Long
Call

Short
Stock

Short
Put

Short
Stock

Figure 12 .1 Profit patterns (a) long position in a stock combined with short position
in a call; (b) short position in a stock combined with long position in a call; (c) long
position in a put combined with long position in a stock; (d) short position in a put
combined with short position in a stock.
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Equation (12.1) shows that a long position in a European put combined with a long
position in the stock is equivalent to a long European call position plus a certain
amount (¼ Ke

�rT þD) of cash. This explains why the profit pattern in Figure 12.1c is
similar to the profit pattern from a long call position. The position in Figure 12.1d is the
reverse of that in Figure 12.1c and therefore leads to a profit pattern similar to that from
a short call position.

Equation (12.1) can be rearranged to become

S0 � c ¼ Ke
�rT þD� p

This shows that a long position in a stock combined with a short position in a
European call is equivalent to a short European put position plus a certain amount
(¼ Ke

�rT þD) of cash. This equality explains why the profit pattern in Figure 12.1a is
similar to the profit pattern from a short put position. The position in Figure 12.1b is
the reverse of that in Figure 12.1a and therefore leads to a profit pattern similar to that
from a long put position.

12.3 SPREADS

A spread trading strategy involves taking a position in two or more options of the same
type (i.e., two or more calls or two or more puts).

Bull Spreads

One of the most popular types of spreads is a bull spread. This can be created by buying
a European call option on a stock with a certain strike price and selling a European call
option on the same stock with a higher strike price. Both options have the same
expiration date. The strategy is illustrated in Figure 12.2. The profits from the two
option positions taken separately are shown by the dashed lines. The profit from the
whole strategy is the sum of the profits given by the dashed lines and is indicated by the
solid line. Because a call price always decreases as the strike price increases, the value of
the option sold is always less than the value of the option bought. A bull spread, when
created from calls, therefore requires an initial investment.

Suppose that K1 is the strike price of the call option bought, K2 is the strike price of

Profit

Short Call, Strike K2 

Long Call, Strike K1 

ST
K1 K2

Figure 12.2 Profit from bull spread created using call options.
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the call option sold, and ST is the stock price on the expiration date of the options.
Table 12.1 shows the total payoff that will be realized from a bull spread in different
circumstances. If the stock price does well and is greater than the higher strike price, the
payoff is the difference between the two strike prices, or K2 �K1. If the stock price on
the expiration date lies between the two strike prices, the payoff is ST �K1. If the stock
price on the expiration date is below the lower strike price, the payoff is zero. The profit
in Figure 12.2 is calculated by subtracting the initial investment from the payoff.

A bull spread strategy limits the investor’s upside as well as downside risk. The strategy
can be described by saying that the investor has a call option with a strike price equal to
K1 and has chosen to give up some upside potential by selling a call option with strike
price K2 ðK2 > K1Þ. In return for giving up the upside potential, the investor gets the
price of the option with strike price K2. Three types of bull spreads can be distinguished:

1. Both calls are initially out of the money.

2. One call is initially in the money; the other call is initially out of the money.

3. Both calls are initially in the money.

The most aggressive bull spreads are those of type 1. They cost very little to set up and
have a small probability of giving a relatively high payoff (¼ K2 �K1). As we move
from type 1 to type 2 and from type 2 to type 3, the spreads become more conservative.

Example 12.2

An investor buys for $3 a 3-month European call with a strike price of $30 and
sells for $1 a 3-month European call with a strike price of $35. The payoff from
this bull spread strategy is $5 if the stock price is above $35, and zero if it is
below $30. If the stock price is between $30 and $35, the payoff is the amount by
which the stock price exceeds $30. The cost of the strategy is $3� $1 ¼ $2. So the
profit is:

Stock price range Profit

ST 6 30 �2
30 < ST < 35 ST � 32

ST > 35 3

Bull spreads can also be created by buying a European put with a low strike price and
selling a European put with a high strike price, as illustrated in Figure 12.3. Unlike bull
spreads created from calls, those created from puts involve a positive up-front cash
flow to the investor (ignoring margin requirements) and a payoff that is either negative
or zero.

Table 12.1 Payoff from a bull spread created using calls.

Stock price
range

Payoff from
long call option

Payoff from
short call option

Total
payoff

ST 6 K1 0 0 0

K1 < ST < K2 ST �K1 0 ST �K1

ST > K2 ST �K1 �ðST �K2Þ K2 �K1
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Bear Spreads

An investor who enters into a bull spread is hoping that the stock price will increase. By

contrast, an investor who enters into a bear spread is hoping that the stock price will

decline. Bear spreads can be created by buying a European put with one strike price and

selling a European put with another strike price. The strike price of the option

purchased is greater than the strike price of the option sold. (This is in contrast to a

bull spread, where the strike price of the option purchased is always less than the strike

price of the option sold.) In Figure 12.4, the profit from the spread is shown by the solid

line. A bear spread created from puts involves an initial cash outflow because the price

of the put sold is less than the price of the put purchased. In essence, the investor has

bought a put with a certain strike price and chosen to give up some of the profit

potential by selling a put with a lower strike price. In return for the profit given up, the

investor gets the price of the option sold.

Assume that the strike prices are K1 and K2, with K1 < K2. Table 12.2 shows the

payoff that will be realized from a bear spread in different circumstances. If the stock

Profit

ST
K1 K2

Short Put, Strike K1 

Long Put, Strike K2 

Figure 12.4 Profit from bear spread created using put options.

Profit

ST
K1 K2

Short Put, Strike K2 

Long Put, Strike K1 

Figure 12.3 Profit from bull spread created using put options.
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price is greater than K2, the payoff is zero. If the stock price is less than K1, the payoff is

K2 �K1. If the stock price is between K1 and K2, the payoff is K2 � ST . The profit is

calculated by subtracting the initial cost from the payoff.

Example 12.3

An investor buys for $3 a 3-month European put with a strike price of $35 and sells

for $1 a 3-month European put with a strike price of $30. The payoff from this bear

spread strategy is zero if the stock price is above $35, and $5 if it is below $30. If the

stock price is between $30 and $35, the payoff is 35� ST . The options cost

$3� $1 ¼ $2 up front. So the profit is:

Stock price range Profit

ST 6 30 þ3

30 < ST < 35 33� ST

ST > 35 �2

Like bull spreads, bear spreads limit both the upside profit potential and the downside

risk. Bear spreads can be created using calls instead of puts. The investor buys a call

with a high strike price and sells a call with a low strike price, as illustrated in

Figure 12.5. Bear spreads created with calls involve an initial cash inflow (ignoring

margin requirements).

Profit

ST
K1 K2

Short Call, Strike K1 

Long Call, Strike K2 

Figure 12.5 Profit from bear spread created using call options.

Table 12.2 Payoff from a bear spread created with put options.

Stock price
range

Payoff from
long put option

Payoff from
short put option

Total
payoff

ST 6 K1 K2 � ST �ðK1 � ST Þ K2 �K1

K1 < ST < K2 K2 � ST 0 K2 � ST

ST > K2 0 0 0
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Box Spreads

A box spread is a combination of a bull call spread with strike prices K1 and K2 and a

bear put spread with the same two strike prices. As shown in Table 12.3, the payoff

from a box spread is always K2 �K1. The value of a box spread is therefore always the

present value of this payoff or ðK2 �K1Þe�rT . If it has a different value there is an

arbitrage opportunity. If the market price of the box spread is too low, it is profitable to

buy the box. This involves buying a call with strike price K1, buying a put with strike

price K2, selling a call with strike price K2, and selling a put with strike price K1. If the

market price of the box spread is too high, it is profitable to sell the box. This involves

buying a call with strike price K2, buying a put with strike price K1, selling a call with

strike price K1, and selling a put with strike price K2.

It is important to realize that a box-spread arbitrage only works with European

options. Many of the options that trade on exchanges are American. As shown in

Business Snapshot 12.1, inexperienced traders who treat American options as European

are liable to lose money.

Butterfly Spreads

A butterfly spread involves positions in options with three different strike prices. It can

be created by buying a European call option with a relatively low strike price K1,

Table 12.3 Payoff from a box spread.

Stock price
range

Payoff from
bull call spread

Payoff from
bear put spread

Total
payoff

ST 6 K1 0 K2 �K1 K2 �K1

K1 < ST < K2 ST �K1 K2 � ST K2 �K1

ST > K2 K2 �K1 0 K2 �K1

Profit

ST
K1 K2 K3

Short 2 Calls, Strike K2 

Long Call, Strike K1 

Long Call, Strike K3 

Figure 12.6 Profit from butterfly spread using call options.
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Business Snapshot 12.1 Losing Money with Box Spreads

Suppose that a stock has a price of $50 and a volatility of 30%. No dividends are
expected and the risk-free rate is 8%. A trader offers you the chance to sell on the
CBOE a 2-month box spread where the strike prices are $55 and $60 for $5.10.
Should you do the trade?

The trade certainly sounds attractive. In this case K1 ¼ 55, K2 ¼ 60, and the payoff
is certain to be $5 in 2 months. By selling the box spread for $5.10 and investing the
funds for 2 months you would have more than enough funds to meet the $5 payoff in
2 months. The theoretical value of the box spread today is 5� e�0:08�2=12 ¼ $4:93.

Unfortunately there is a snag. CBOE stock options are American and the $5 payoff
from the box spread is calculated on the assumption that the options comprising the
box are European. Option prices for this example (calculated using DerivaGem) are
shown in the table below. A bull call spread where the strike prices are $55 and $60
costs 0:96� 0:26 ¼ $0:70. (This is the same for both European and American options
because, as we saw in Chapter 11, the price of a European call is the same as the price of
an American call when there are no dividends.) A bear put spread with the same strike
prices costs 9:46� 5:23 ¼ $4:23 if the options are European and 10:00� 5:44 ¼ $4:56
if they are American. The combined value of both spreads if they are created with
European options is 0:70þ 4:23 ¼ $4:93. This is the theoretical box spread price
calculated above. The combined value of buying both spreads if they are American is
0:70þ 4:56 ¼ $5:26. Selling a box spread created with American options for $5.10
would not be a good trade. You would realize this almost immediately as the trade
involves selling a $60 strike put and this would be exercised against you almost as soon
as you sold it!

Option
type

Strike
price

European
option price

American
option price

Call 60 0.26 0.26

Call 55 0.96 0.96

Put 60 9.46 10.00

Put 55 5.23 5.44

Table 12.4 Payoff from a butterfly spread.

Stock price
range

Payoff from
first long call

Payoff from
second long call

Payoff from
short calls

Total
payoff �

ST 6 K1 0 0 0 0

K1 < ST 6 K2 ST �K1 0 0 ST �K1

K2 < ST < K3 ST �K1 0 �2ðST �K2Þ K3 � ST

ST > K3 ST �K1 ST �K3 �2ðST �K2Þ 0

� These payoffs are calculated using the relationship K2 ¼ 0:5ðK1 þK3Þ.
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buying a European call option with a relatively high strike price K3, and selling two
European call options with a strike price K2 that is halfway between K1 and K3.

Generally, K2 is close to the current stock price. The pattern of profits from the strategy
is shown in Figure 12.6. A butterfly spread leads to a profit if the stock price stays close
to K2, but gives rise to a small loss if there is a significant stock price move in either
direction. It is therefore an appropriate strategy for an investor who feels that large
stock price moves are unlikely. The strategy requires a small investment initially. The

payoff from a butterfly spread is shown in Table 12.4.

Suppose that a certain stock is currently worth $61. Consider an investor who feels
that a significant price move in the next 6 months is unlikely. Suppose that the market

prices of 6-month European calls are as follows:

Strike price ($ ) Call price ($)

55 10

60 7

65 5

The investor could create a butterfly spread by buying one call with a $55 strike price,
buying one call with a $65 strike price, and selling two calls with a $60 strike price. It
costs $10þ $5� ð2� $7Þ ¼ $1 to create the spread. If the stock price in 6 months is
greater than $65 or less than $55, the total payoff is zero, and the investor incurs a net

loss of $1. If the stock price is between $56 and $64, a profit is made. The maximum
profit, $4, occurs when the stock price in 6 months is $60.

Butterfly spreads can be created using put options. The investor buys two European

puts, one with a low strike price and one with a high strike price, and sells two
European puts with an intermediate strike price, as illustrated in Figure 12.7. The
butterfly spread in the example considered above would be created by buying one put
with a strike price of $55, another with a strike price of $65, and selling two puts with a
strike price of $60. The use of put options results in exactly the same spread as the use

of call options. Put–call parity can be used to show that the initial investment is the
same in both cases.

Profit

ST
K1 K2 K3

Short 2 Puts, Strike K2 

Long Put, Strike K1 

Long Put, Strike K3 

Figure 12.7 Profit from butterfly spread using put options.
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A butterfly spread can be sold or shorted by following the reverse strategy. Options

are sold with strike prices of K1 and K3, and two options with the middle strike price K2

are purchased. This strategy produces a modest profit if there is a significant movement

in the stock price.

Calendar Spreads

Up to now we have assumed that the options used to create a spread all expire at the

same time. We now move on to calendar spreads in which the options have the same

strike price and different expiration dates.

A calendar spread can be created by selling a European call option with a certain

strike price and buying a longer-maturity Eurpean call option with the same strike price.

The longer the maturity of an option, the more expensive it usually is. A calendar spread

therefore usually requires an initial investment. Profit diagrams for calendar spreads are

usually produced so that they show the profit when the short-maturity option expires on

the assumption that the long-maturity option is closed out at that time. The profit

pattern for a calendar spread produced from call options is shown in Figure 12.8. The

pattern is similar to the profit from the butterfly spread in Figure 12.6. The investor

makes a profit if the stock price at the expiration of the short-maturity option is close to

the strike price of the short-maturity option. However, a loss is incurred when the stock

price is significantly above or significantly below this strike price.

To understand the profit pattern from a calendar spread, first consider what happens

if the stock price is very low when the short-maturity option expires. The short-maturity

option is worthless and the value of the long-maturity option is close to zero. The

investor therefore incurs a loss that is close to the cost of setting up the spread initially.

Consider next what happens if the stock price, ST , is very high when the short-maturity

option expires. The short-maturity option costs the investor ST �K, and the long-

maturity option is worth close to ST �K, where K is the strike price of the options.

Again, the investor makes a net loss that is close to the cost of setting up the spread

Profit

ST

K

Short Call, Maturity T1 

Long Call, Maturity T2 

Figure 12.8 Profit from calendar spread created using two call options, calculated at
the time when the short-maturity call option expires.

Trading Strategies Involving Options 287



initially. If ST is close to K, the short-maturity option costs the investor either a small

amount or nothing at all. However, the long-maturity option is still quite valuable. In

this case a significant net profit is made.

In a neutral calendar spread, a strike price close to the current stock price is chosen.

A bullish calendar spread involves a higher strike price, whereas a bearish calendar

spread involves a lower strike price.

Calendar spreads can be created with put options as well as call options. The investor

buys a long-maturity put option and sells a short-maturity put option. As shown in

Figure 12.9, the profit pattern is similar to that obtained from using calls.

A reverse calendar spread is the opposite to that in Figures 12.8 and 12.9. The investor

buys a short-maturity option and sells a long-maturity option. A small profit arises if

the stock price at the expiration of the short-maturity option is well above or well below

the strike price of the short-maturity option. However, a loss results if it is close to the

strike price.

Diagonal Spreads

Bull, bear, and calendar spreads can all be created from a long position in one call and

a short position in another call. In the case of bull and bear spreads, the calls have

different strike prices and the same expiration date. In the case of calendar spreads, the

calls have the same strike price and different expiration dates.

In a diagonal spread both the expiration date and the strike price of the calls are

different. This increases the range of profit patterns that are possible.

12.4 COMBINATIONS

A combination is an option trading strategy that involves taking a position in both

calls and puts on the same stock. We will consider straddles, strips, straps, and

strangles.

Profit

ST

K

Short Put, Maturity T1 

Long Put, Maturity T2 

Figure 12.9 Profit from calendar spread created using two put options, calculated at
the time when the short-maturity put option expires.
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Straddle

One popular combination is a straddle, which involves buying a European call and put

with the same strike price and expiration date. The profit pattern is shown in Figure 12.10.

The strike price is denoted byK. If the stock price is close to this strike price at expiration

of the options, the straddle leads to a loss. However, if there is a sufficiently large move in

either direction, a significant profit will result. The payoff from a straddle is calculated in

Table 12.5.

A straddle is appropriate when an investor is expecting a large move in a stock price

but does not know in which direction the move will be. Consider an investor who feels

that the price of a certain stock, currently valued at $69 by the market, will move

significantly in the next 3 months. The investor could create a straddle by buying both a

put and a call with a strike price of $70 and an expiration date in 3 months. Suppose

that the call costs $4 and the put costs $3. If the stock price stays at $69, it is easy to see

that the strategy costs the investor $6. (An up-front investment of $7 is required, the call

expires worthless, and the put expires worth $1.) If the stock price moves to $70, a loss

of $7 is experienced. (This is the worst that can happen.) However, if the stock price

jumps up to $90, a profit of $13 is made; if the stock moves down to $55, a profit of $8

is made; and so on. As discussed in Business Snapshot 12.2 an investor should carefully

consider whether the jump that he or she anticipates is already reflected in option prices

before putting on a straddle trade.

The straddle in Figure 12.10 is sometimes referred to as a bottom straddle or straddle

purchase. A top straddle or straddle write is the reverse position. It is created by selling a

call and a put with the same exercise price and expiration date. It is a highly risky strategy.

Table 12.5 Payoff from a straddle.

Range of
stock price

Payoff
from call

Payoff
from put

Total
payoff

ST 6 K 0 K� ST K� ST

ST > K ST �K 0 ST �K

Profit

STK

Long Call, Strike K 
Long Put, Strike K 

Figure 12.10 Profit from a straddle.
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If the stock price on the expiration date is close to the strike price, a profit results.
However, the loss arising from a large move is unlimited.

Strips and Straps

A strip consists of a long position in one European call and two European puts with the

same strike price and expiration date. A strap consists of a long position in two

European calls and one European put with the same strike price and expiration date.
The profit patterns from strips and straps are shown in Figure 12.11. In a strip the

investor is betting that there will be a big stock price move and considers a decrease in

the stock price to be more likely than an increase. In a strap the investor is also betting
that there will be a big stock price move. However, in this case, an increase in the stock

price is considered to be more likely than a decrease.

Business Snapshot 12.2 How to Make Money from Trading Straddles

Suppose that a big move is expected in a company’s stock price because there is a
takeover bid for the company or the outcome of a major lawsuit involving the
company is about to be announced. Should you trade a straddle?

A straddle seems a natural trading strategy in this case. However, if your view of the
company’s situation is much the same as that of other market participants, this view
will be reflected in the prices of options. Options on the stock will be significantly more
expensive than options on a similar stock for which no jump is expected. The V-shaped
profit pattern from the straddle in Figure 12.10 will have moved downward, so that a
bigger move in the stock price is necessary for you to make a profit.

For a straddle to be an effective strategy, you must believe that there are likely to be
big movements in the stock price and these beliefs must be different from those of
most other investors. Market prices incorporate the beliefs of market participants. To
make money from any investment strategy, you must take a view that is different from
most of the rest of the market—and you must be right!

Profit

Strip (one call + two puts) Strap (two calls + one put)

ST
K

Profit

ST
K

Figure 12.11 Profit from a strip and a strap.
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Strangles

In a strangle, sometimes called a bottom vertical combination, an investor buys a
European put and a European call with the same expiration date and different strike
prices. The profit pattern is shown in Figure 12.12. The call strike price,K2, is higher than
the put strike price, K1. The payoff function for a strangle is calculated in Table 12.6.

A strangle is a similar strategy to a straddle. The investor is betting that there will be a
large price move, but is uncertain whether it will be an increase or a decrease.
Comparing Figures 12.12 and 12.10, we see that the stock price has to move farther
in a strangle than in a straddle for the investor to make a profit. However, the downside
risk if the stock price ends up at a central value is less with a strangle.

The profit pattern obtained with a strangle depends on how close together the strike
prices are. The farther they are apart, the less the downside risk and the farther the
stock price has to move for a profit to be realized.

The sale of a strangle is sometimes referred to as a top vertical combination. It can be
appropriate for an investor who feels that large stock price moves are unlikely. However,
as with sale of a straddle, it is a risky strategy involving unlimited potential loss to the
investor.

12.5 OTHER PAYOFFS

This chapter has demonstrated just a few of the ways in which options can be used to
produce an interesting relationship between profit and stock price. If European options

Table 12.6 Payoff from a strangle.

Range of
stock price

Payoff
from call

Payoff from
put

Total
payoff

ST 6 K1 0 K1 � ST K1 � ST
K1 < ST < K2 0 0 0

ST > K2 ST �K2 0 ST �K2

Profit

ST

K1 K2

Long Call, 
Strike K2 

Long Put, 
Strike K1 

Figure 12.12 Profit from a strangle.
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expiring at time T were available with every single possible strike price, any payoff
function at time T could in theory be obtained. The easiest illustration of this involves
butterfly spreads. Recall that a butterfly spread is created by buying options with strike
prices K1 and K3 and selling two options with strike price K2, where K1 < K2 < K3 and
K3 �K2 ¼ K2 �K1. Figure 12.13 shows the payoff from a butterfly spread. The pattern
could be described as a spike. As K1 and K3 move closer together, the spike becomes
smaller. Through the judicious combination of a large number of very small spikes, any
payoff function can be approximated as accurately as desired.

SUMMARY

Principal-protected notes can be created from a zero-coupon bond and a European call
option. They are attractive to some investors because the issuer of the product
guarantees that the purchaser will receive his or her principal back regardless of the
performance of the asset underlying the option.

A number of common trading strategies involve a single option and the underlying
stock. For example, writing a covered call involves buying the stock and selling a call
option on the stock; a protective put involves buying a put option and buying the stock.
The former is similar to selling a put option; the latter is similar to buying a call option.

Spreads involve either taking a position in two or more calls or taking a position in
two or more puts. A bull spread can be created by buying a call (put) with a low strike
price and selling a call (put) with a high strike price. A bear spread can be created by
buying a put (call) with a high strike price and selling a put (call) with a low strike price.
A butterfly spread involves buying calls (puts) with a low and high strike price and
selling two calls (puts) with some intermediate strike price. A calendar spread involves
selling a call (put) with a short time to expiration and buying a call (put) with a longer
time to expiration. A diagonal spread involves a long position in one option and a short
position in another option such that both the strike price and the expiration date are
different.

Combinations involve taking a position in both calls and puts on the same stock. A
straddle combination involves taking a long position in a call and a long position in a
put with the same strike price and expiration date. A strip consists of a long position in
one call and two puts with the same strike price and expiration date. A strap consists of
a long position in two calls and one put with the same strike price and expiration date.
A strangle consists of a long position in a call and a put with different strike prices and
the same expiration date. There are many other ways in which options can be used to

Payoff

ST
K1 K2 K3

Figure 12.13 ‘‘Spike payoff’’ from a butterfly spread that can be used as a building
block to create other payoffs.
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produce interesting payoffs. It is not surprising that option trading has steadily
increased in popularity and continues to fascinate investors.
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Practice Questions (Answers in Solutions Manual)

12.1. What is meant by a protective put? What position in call options is equivalent to a
protective put?

12.2. Explain two ways in which a bear spread can be created.

12.3. When is it appropriate for an investor to purchase a butterfly spread?

12.4. Call options on a stock are available with strike prices of $15, $171
2
, and $20, and

expiration dates in 3 months. Their prices are $4, $2, and $1
2
, respectively. Explain how

the options can be used to create a butterfly spread. Construct a table showing how
profit varies with stock price for the butterfly spread.

12.5. What trading strategy creates a reverse calendar spread?

12.6. What is the difference between a strangle and a straddle?

12.7. A call option with a strike price of $50 costs $2. A put option with a strike price of $45
costs $3. Explain how a strangle can be created from these two options. What is the
pattern of profits from the strangle?

12.8. Use put–call parity to relate the initial investment for a bull spread created using calls to
the initial investment for a bull spread created using puts.

12.9. Explain how an aggressive bear spread can be created using put options.

12.10. Suppose that put options on a stock with strike prices $30 and $35 cost $4 and $7,
respectively. How can the options be used to create (a) a bull spread and (b) a bear
spread? Construct a table that shows the profit and payoff for both spreads.

12.11. Use put–call parity to show that the cost of a butterfly spread created from European
puts is identical to the cost of a butterfly spread created from European calls.

12.12. A call with a strike price of $60 costs $6. A put with the same strike price and expiration
date costs $4. Construct a table that shows the profit from a straddle. For what range of
stock prices would the straddle lead to a loss?

12.13. Construct a table showing the payoff from a bull spread when puts with strike prices K1

and K2, with K2 > K1, are used.
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12.14. An investor believes that there will be a big jump in a stock price, but is uncertain as to
the direction. Identify six different strategies the investor can follow and explain the
differences among them.

12.15. How can a forward contract on a stock with a particular delivery price and delivery date
be created from options?

12.16. ‘‘A box spread comprises four options. Two can be combined to create a long forward
position and two can be combined to create a short forward position.’’ Explain this
statement.

12.17. What is the result if the strike price of the put is higher than the strike price of the call in
a strangle?

12.18. A foreign currency is currently worth $0.64. A 1-year butterfly spread is set up using
European call options with strike prices of $0.60, $0.65, and $0.70. The risk-free interest
rates in the United States and the foreign country are 5% and 4% respectively, and the
volatility of the exchange rate is 15%. Use the DerivaGem software to calculate the cost
of setting up the butterfly spread position. Show that the cost is the same if European
put options are used instead of European call options.

12.19. An index provides a dividend yield of 1% and has a volatility of 20%. The risk-free
interest rate is 4%. How long does a principal-protected note, created as in Example 12.1,
have to last for it to be profitable for the bank issuing it? Use DerivaGem.

Further Questions

12.20. A trader creates a bear spread by selling a 6-month put option with a $25 strike price for
$2.15 and buying a 6-month put option with a $29 strike price for $4.75. What is the
initial investment? What is the total payoff (excluding the initial investment) when the
stock price in 6 months is (a) $23, (b) $28, and (c) $33.

12.21. A trader sells a strangle by selling a 6-month European call option with a strike price of
$50 for $3 and selling a 6-month European put option with a strike price of $40 for $4. For
what range of prices of the underlying asset in 6 months does the trader make a profit?

12.22. Three put options on a stock have the same expiration date and strike prices of $55, $60,
and $65. The market prices are $3, $5, and $8, respectively. Explain how a butterfly
spread can be created. Construct a table showing the profit from the strategy. For what
range of stock prices would the butterfly spread lead to a loss?

12.23. A diagonal spread is created by buying a call with strike price K2 and exercise date T2
and selling a call with strike price K1 and exercise date T1, where T2 > T1. Draw a
diagram showing the profit at time T1 when (a) K2 > K1 and (b) K2 < K1.

12.24. Draw a diagram showing the variation of an investor’s profit and loss with the terminal
stock price for a portfolio consisting of :
(a) One share and a short position in one call option
(b) Two shares and a short position in one call option
(c) One share and a short position in two call options
(d) One share and a short position in four call options.
In each case, assume that the call option has an exercise price equal to the current
stock price.
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12.25. Suppose that the price of a non-dividend-paying stock is $32, its volatility is 30%, and
the risk-free rate for all maturities is 5% per annum. Use DerivaGem to calculate the
cost of setting up the following positions:
(a) A bull spread using European call options with strike prices of $25 and $30 and a

maturity of 6 months
(b) A bear spread using European put options with strike prices of $25 and $30 and a

maturity of 6 months
(c) A butterfly spread using European call options with strike prices of $25, $30, and

$35 and a maturity of 1 year
(d) A butterfly spread using European put options with strike prices of $25, $30, and

$35 and a maturity of 1 year
(e) A straddle using options with a strike price of $30 and a 6-month maturity
(f ) A strangle using options with strike prices of $25 and $35 and a 6-month maturity.

In each case provide a table showing the relationship between profit and final stock price.
Ignore the impact of discounting.

12.26. What trading position is created from a long strangle and a short straddle when both
have the same time to maturity? Assume that the strike price in the straddle is halfway
between the two strike prices of the strangle.

12.27. Describe the trading position created in which a call option is bought with strike
price K2 and a put option is sold with strike price K1 when both have the same time
to maturity and K2 > K1. What does the position become when K1 ¼ K2?

12.28. A bank decides to create a five-year principal-protected note on a non-dividend-paying
stock by offering investors a zero-coupon bond plus a bull spread created from calls. The
risk-free rate is 4% and the stock price volatility is 25%. The low-strike-price option in
the bull spread is at the money. What is the maximum ratio of the high strike price to the
low strike price in the bull spread. Use DerivaGem.

Trading Strategies Involving Options 295



Binomial Trees

A useful and very popular technique for pricing an option involves constructing a

binomial tree. This is a diagram representing different possible paths that might be

followed by the stock price over the life of an option. The underlying assumption is that

the stock price follows a random walk. In each time step, it has a certain probability of

moving up by a certain percentage amount and a certain probability of moving down by

a certain percentage amount. In the limit, as the time step becomes smaller, this model

is the same as the Black–Scholes–Merton model we will be discussing in Chapter 15.

Indeed, in the appendix to this chapter, we show that the European option price given

by the binomial tree converges to the Black–Scholes–Merton price as the time step

becomes smaller.

The material in this chapter is important for a number of reasons. First, it explains the

nature of the no-arbitrage arguments that are used for valuing options. Second, it

explains the binomial tree numerical procedure that is widely used for valuing American

options and other derivatives. Third, it introduces a very important principle known as

risk-neutral valuation.

The general approach to constructing trees in this chapter is the one used in an

important paper published by Cox, Ross, and Rubinstein in 1979. More details on

numerical procedures using binomial trees are given in Chapter 21.

13.1 A ONE-STEP BINOMIAL MODEL AND A NO-ARBITRAGE
ARGUMENT

We start by considering a very simple situation. A stock price is currently $20, and it is

known that at the end of 3 months it will be either $22 or $18. We are interested in

valuing a European call option to buy the stock for $21 in 3 months. This option will

have one of two values at the end of the 3 months. If the stock price turns out to be $22,

the value of the option will be $1; if the stock price turns out to be $18, the value of the

option will be zero. The situation is illustrated in Figure 13.1.

It turns out that a relatively simple argument can be used to price the option in this

example. The only assumption needed is that arbitrage opportunities do not exist. We

set up a portfolio of the stock and the option in such a way that there is no uncertainty
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about the value of the portfolio at the end of the 3 months. We then argue that, because
the portfolio has no risk, the return it earns must equal the risk-free interest rate. This
enables us to work out the cost of setting up the portfolio and therefore the option’s
price. Because there are two securities (the stock and the stock option) and only two
possible outcomes, it is always possible to set up the riskless portfolio.

Consider a portfolio consisting of a long position in � shares of the stock and a short
position in one call option (� is the Greek capital letter ‘‘delta’’). We calculate the value
of � that makes the portfolio riskless. If the stock price moves up from $20 to $22, the
value of the shares is 22� and the value of the option is 1, so that the total value of the
portfolio is 22�� 1. If the stock price moves down from $20 to $18, the value of the
shares is 18� and the value of the option is zero, so that the total value of the portfolio
is 18�. The portfolio is riskless if the value of � is chosen so that the final value of the
portfolio is the same for both alternatives. This means that

22�� 1 ¼ 18�
or

� ¼ 0:25
A riskless portfolio is therefore

Long: 0.25 shares

Short: 1 option.

If the stock price moves up to $22, the value of the portfolio is

22� 0:25� 1 ¼ 4:5

If the stock price moves down to $18, the value of the portfolio is

18� 0:25 ¼ 4:5

Regardless of whether the stock price moves up or down, the value of the portfolio is
always 4.5 at the end of the life of the option.

Riskless portfolios must, in the absence of arbitrage opportunities, earn the risk-free
rate of interest. Suppose that, in this case, the risk-free rate is 12% per annum. It
follows that the value of the portfolio today must be the present value of 4.5, or

4:5e�0:12�3=12 ¼ 4:367

Stock price = $22
Option price = $1

Stock price = $18
Option price = $0

Stock price = $20

Figure 13.1 Stock price movements for numerical example in Section 13.1.
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The value of the stock price today is known to be $20. Suppose the option price is
denoted by f . The value of the portfolio today is

20� 0:25� f ¼ 5� f

It follows that
5� f ¼ 4:367

or
f ¼ 0:633

This shows that, in the absence of arbitrage opportunities, the current value of the
option must be 0.633. If the value of the option were more than 0.633, the portfolio
would cost less than 4.367 to set up and would earn more than the risk-free rate. If the
value of the option were less than 0.633, shorting the portfolio would provide a way of
borrowing money at less than the risk-free rate.

Trading 0.25 shares is, of course, not possible. However, the argument is the same if
we imagine selling 400 options and buying 100 shares. In general, it is necessary to buy
� shares for each option sold to form a riskless portfolio. The parameter � (delta) is
important in the hedging of options. It is discussed further later in this chapter and in
Chapter 19.

A Generalization

We can generalize the no-arbitrage argument just presented by considering a stock
whose price is S0 and an option on the stock (or any derivative dependent on the stock)
whose current price is f . We suppose that the option lasts for time T and that during
the life of the option the stock price can either move up from S0 to a new level, S0u,
where u > 1, or down from S0 to a new level, S0d, where d < 1. The percentage increase
in the stock price when there is an up movement is u� 1; the percentage decrease when
there is a down movement is 1� d. If the stock price moves up to S0u, we suppose that
the payoff from the option is fu; if the stock price moves down to S0d, we suppose the
payoff from the option is fd. The situation is illustrated in Figure 13.2.

As before, we imagine a portfolio consisting of a long position in � shares and a
short position in one option. We calculate the value of � that makes the portfolio
riskless. If there is an up movement in the stock price, the value of the portfolio at the
end of the life of the option is

S0u�� fu

f
S0

fd
S0d

fu
S0u

Figure 13.2 Stock and option prices in a general one-step tree.

298 CHAPTER 13



If there is a down movement in the stock price, the value becomes

S0d�� fd
The two are equal when

S0u�� fu ¼ S0d�� fd
or

� ¼ fu � fd

S0u� S0d
ð13:1Þ

In this case, the portfolio is riskless and, for there to be no arbitrage opportunities, it
must earn the risk-free interest rate. Equation (13.1) shows that � is the ratio of the
change in the option price to the change in the stock price as we move between the
nodes at time T .

If we denote the risk-free interest rate by r, the present value of the portfolio is

ðS0u�� fuÞe�rT

The cost of setting up the portfolio is
S0�� f

It follows that

S0�� f ¼ ðS0u�� fuÞe�rT

or

f ¼ S0�ð1� ue
�rT Þ þ fue

�rT

Substituting from equation (13.1) for �, we obtain

f ¼ S0

�
fu � fd

S0u� S0d

�
ð1� ue

�rT Þ þ fue
�rT

or

f ¼ fuð1� de
�rT Þ þ fdðue�rT � 1Þ

u� d
or

f ¼ e
�rT ½pfu þ ð1� pÞfd� ð13:2Þ

where

p ¼ e
rT � d

u� d
ð13:3Þ

Equations (13.2) and (13.3) enable an option to be priced when stock price movements
are given by a one-step binomial tree. The only assumption needed for the equation is
that there are no arbitrage opportunities in the market.

In the numerical example considered previously (see Figure 13.1), u ¼ 1:1, d ¼ 0:9,
r ¼ 0:12, T ¼ 0:25, fu ¼ 1, and fd ¼ 0. From equation (13.3), we have

p ¼ e
0:12�3=12 � 0:9

1:1� 0:9
¼ 0:6523

and, from equation (13.2), we have

f ¼ e
�0:12�0:25ð0:6523� 1þ 0:3477� 0Þ ¼ 0:633

The result agrees with the answer obtained earlier in this section.
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Irrelevance of the Stock’s Expected Return

The option pricing formula in equation (13.2) does not involve the probabilities of the

stock price moving up or down. For example, we get the same option price when the

probability of an upward movement is 0.5 as we do when it is 0.9. This is surprising and

seems counterintuitive. It is natural to assume that, as the probability of an upward

movement in the stock price increases, the value of a call option on the stock increases

and the value of a put option on the stock decreases. This is not the case.

The key reason is that we are not valuing the option in absolute terms. We are

calculating its value in terms of the price of the underlying stock. The probabilities of

future up or down movements are already incorporated into the stock price: we do not

need to take them into account again when valuing the option in terms of the stock price.

13.2 RISK-NEUTRAL VALUATION

We are now in a position to introduce a very important principle in the pricing of

derivatives known as risk-neutral valuation. This states that, when valuing a derivative,

we can make the assumption that investors are risk-neutral. This assumption means

investors do not increase the expected return they require from an investment to

compensate for increased risk. A world where investors are risk-neutral is referred to

as a risk-neutral world. The world we live in is, of course, not a risk-neutral world. The

higher the risks investors take, the higher the expected returns they require. However, it

turns out that assuming a risk-neutral world gives us the right option price for the

world we live in, as well as for a risk-neutral world. Almost miraculously, it finesses the

problem that we know hardly anything about the risk aversion of the buyers and sellers

of options.

Risk-neutral valuation seems a surprising result when it is first encountered. Options

are risky investments. Should not a person’s risk preferences affect how they are priced?

The answer is that, when we are pricing an option in terms of the price of the

underlying stock, risk preferences are unimportant. As investors become more risk-

averse, stock prices decline, but the formulas relating option prices to stock prices

remain the same.

A risk-neutral world has two features that simplify the pricing of derivatives:

1. The expected return on a stock (or any other investment) is the risk-free rate.

2. The discount rate used for the expected payoff on an option (or any other
instrument) is the risk-free rate.

Returning to equation (13.2), the parameter p should be interpreted as the probability

of an up movement in a risk-neutral world, so that 1� p is the probability of a down

movement in this world. We assume u > e
rT , so that 0 < p < 1. The expression

pfu þ ð1� pÞfd
is the expected future payoff from the option in a risk-neutral world and equation (13.2)

states that the value of the option today is its expected future payoff in a risk-neutral

world discounted at the risk-free rate. This is an application of risk-neutral valuation.
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To prove the validity of our interpretation of p, we note that, when p is the
probability of an up movement, the expected stock price EðST Þ at time T is given by

EðST Þ ¼ pS0uþ ð1� pÞS0d
or

EðST Þ ¼ pS0ðu� dÞ þ S0d

Substituting from equation (13.3) for p gives

EðST Þ ¼ S0e
rT ð13:4Þ

This shows that the stock price grows, on average, at the risk-free rate when p is the
probability of an up movement. In other words, the stock price behaves exactly as we
would expect it to behave in a risk-neutral world when p is the probability of an up
movement.

Risk-neutral valuation is a very important general result in the pricing of derivatives.
It states that, when we assume the world is risk-neutral, we get the right price for a
derivative in all worlds, not just in a risk-neutral one. We have shown that risk-neutral
valuation is correct when a simple binomial model is assumed for how the price of the
the stock evolves. It can be shown that the result is true regardless of the assumptions
we make about the evolution of the stock price.

To apply risk-neutral valuation to the pricing of a derivative, we first calculate what
the probabilities of different outcomes would be if the world were risk-neutral. We then
calculate the expected payoff from the derivative and discount that expected payoff at
the risk-free rate of interest.

The One-Step Binomial Example Revisited

We now return to the example in Figure 13.1 and illustrate that risk-neutral valuation
gives the same answer as no-arbitrage arguments. In Figure 13.1, the stock price is
currently $20 and will move either up to $22 or down to $18 at the end of 3 months.
The option considered is a European call option with a strike price of $21 and an
expiration date in 3 months. The risk-free interest rate is 12% per annum.

We define p as the probability of an upward movement in the stock price in a risk-
neutral world. We can calculate p from equation (13.3). Alternatively, we can argue that
the expected return on the stock in a risk-neutral world must be the risk-free rate
of 12%. This means that p must satisfy

22pþ 18ð1� pÞ ¼ 20e0:12�3=12

or

4p ¼ 20e0:12�3=12 � 18
That is, p must be 0.6523.

At the end of the 3 months, the call option has a 0.6523 probability of being worth 1
and a 0.3477 probability of being worth zero. Its expected value is therefore

0:6523� 1þ 0:3477� 0 ¼ 0:6523

In a risk-neutral world this should be discounted at the risk-free rate. The value of the
option today is therefore

0:6523e�0:12�3=12
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or $0.633. This is the same as the value obtained earlier, demonstrating that no-
arbitrage arguments and risk-neutral valuation give the same answer.

Real World vs. Risk-Neutral World

It should be emphasized that p is the probability of an up movement in a risk-neutral
world. In general, this is not the same as the probability of an up movement in the real
world. In our example p ¼ 0:6523. When the probability of an up movement is 0.6523,
the expected return on both the stock and the option is the risk-free rate of 12%.
Suppose that, in the real world, the expected return on the stock is 16% and p

� is the
probability of an up movement in this world. It follows that

22p� þ 18ð1� p
�Þ ¼ 20e0:16�3=12

so that p� ¼ 0:7041.
The expected payoff from the option in the real world is then given by

p
� � 1þ ð1� p

�Þ � 0

or 0.7041. Unfortunately, it is not easy to know the correct discount rate to apply to the
expected payoff in the real world. The return the market requires on the stock is 16%
and this is the discount rate that would be used for the expected cash flows from an
investment in the stock. A position in a call option is riskier than a position in the
stock. As a result the discount rate to be applied to the payoff from a call option is
greater than 16%, but we do not know how much greater than 16% it should be.1

Using risk-neutral valuation solves this problem because we know that in a risk-neutral
world the expected return on all assets (and therefore the discount rate to use for all
expected payoffs) is the risk-free rate.

13.3 TWO-STEP BINOMIAL TREES

We can extend the analysis to a two-step binomial tree such as that shown in Figure 13.3.
Here the stock price starts at $20 and in each of two time steps may go up by 10% or
down by 10%. Each time step is 3 months long and the risk-free interest rate is 12% per
annum. We consider a 6-month option with a strike price of $21.

The objective of the analysis is to calculate the option price at the initial node of the
tree. This can be done by repeatedly applying the principles established earlier in the
chapter. Figure 13.4 shows the same tree as Figure 13.3, but with both the stock price
and the option price at each node. (The stock price is the upper number and the option
price is the lower number.) The option prices at the final nodes of the tree are easily
calculated. They are the payoffs from the option. At node D the stock price is 24.2 and
the option price is 24:2� 21 ¼ 3:2; at nodes E and F the option is out of the money and
its value is zero.

At node C the option price is zero, because node C leads to either node E or node F
and at both of those nodes the option price is zero. We calculate the option price at
node B by focusing our attention on the part of the tree shown in Figure 13.5. Using the

1 Since we know the correct value of the option is 0.633, we can deduce that the correct real-world discount

rate is 42.58%. This is because 0:633 ¼ 0:7041e�0:4258�3=12.
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notation introduced earlier in the chapter, u ¼ 1:1, d ¼ 0:9, r ¼ 0:12, and T ¼ 0:25, so
that p ¼ 0:6523, and equation (13.2) gives the value of the option at node B as

e
�0:12�3=12ð0:6523� 3:2þ 0:3477� 0Þ ¼ 2:0257

It remains for us to calculate the option price at the initial node A. We do so by focusing

on the first step of the tree. We know that the value of the option at node B is 2.0257 and

20

16.2

18

22

19.8

24.2Figure 13.3 Stock prices in a two-step tree.

20
1.2823

16.2
0.0

0.0

18

22

2.0257

19.8
0.0

24.2
3.2

D

E

F

C

B

A

Figure 13.4 Stock and option prices in a two-step tree. The upper number at each
node is the stock price and the lower number is the option price.
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that at node C it is zero. Equation (13.2) therefore gives the value at node A as

e
�0:12�3=12ð0:6523� 2:0257þ 0:3477� 0Þ ¼ 1:2823

The value of the option is $1.2823.
Note that this example was constructed so that u and d (the proportional up and down

movements) were the same at each node of the tree and so that the time steps were of the
same length. As a result, the risk-neutral probability, p, as calculated by equation (13.3)
is the same at each node.

A Generalization

We can generalize the case of two time steps by considering the situation in Figure 13.6.
The stock price is initially S0. During each time step, it either moves up to u times its
initial value or moves down to d times its initial value. The notation for the value of the
option is shown on the tree. (For example, after two up movements the value of the
option is fuu.) We suppose that the risk-free interest rate is r and the length of the time
step is �t years.

Because the length of a time step is now �t rather than T , equations (13.2) and (13.3)
become

f ¼ e
�r�t½pfu þ ð1� pÞfd� ð13:5Þ

p ¼ e
r�t � d

u� d
ð13:6Þ

Repeated application of equation (13.5) gives

fu ¼ e
�r�t½pfuu þ ð1� pÞfud� ð13:7Þ

fd ¼ e
�r�t½pfud þ ð1� pÞfdd� ð13:8Þ

f ¼ e
�r�t½pfu þ ð1� pÞfd� ð13:9Þ

Substituting from equations (13.7) and (13.8) into (13.9), we get

f ¼ e
�2r�t½p2

fuu þ 2pð1� pÞfud þ ð1� pÞ2fdd� ð13:10Þ
This is consistent with the principle of risk-neutral valuation mentioned earlier. The

22

2.0257

19.8
0.0

24.2
3.2

E

D

B

Figure 13.5 Evaluation of option price at node B of Figure 13.4.
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variables p2, 2pð1� pÞ, and ð1� pÞ2 are the probabilities that the upper, middle, and

lower final nodes will be reached. The option price is equal to its expected payoff in a

risk-neutral world discounted at the risk-free interest rate.

As we add more steps to the binomial tree, the risk-neutral valuation principle

continues to hold. The option price is always equal to its expected payoff in a risk-

neutral world discounted at the risk-free interest rate.

13.4 A PUT EXAMPLE

The procedures described in this chapter can be used to price puts as well as calls.

Consider a 2-year European put with a strike price of $52 on a stock whose current

price is $50. We suppose that there are two time steps of 1 year, and in each time step

the stock price either moves up by 20% or moves down by 20%. We also suppose that

the risk-free interest rate is 5%.

The tree is shown in Figure 13.7. In this case u ¼ 1:2, d ¼ 0:8 , �t ¼ 1, and r ¼ 0:05.
From equation (13.6) the value of the risk-neutral probability, p, is given by

p ¼ e
0:05�1 � 0:8

1:2� 0:8
¼ 0:6282

The possible final stock prices are: $72, $48, and $32. In this case, fuu ¼ 0, fud ¼ 4,

and fdd ¼ 20. From equation (13.10),

f ¼ e
�2�0:05�1ð0:62822 � 0þ 2� 0:6282� 0:3718� 4þ 0:37182 � 20Þ ¼ 4:1923

The value of the put is $4.1923. This result can also be obtained using equation (13.5)

fd

S0d

fu

S0u

fud

S0ud

fdd

S0d2

fuu

S0u2

f
S0

Figure 13.6 Stock and option prices in general two-step tree.
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and working back through the tree one step at a time. Figure 13.7 shows the inter-
mediate option prices that are calculated.

13.5 AMERICAN OPTIONS

Up to now all the options we have considered have been European. We now move on to
consider how American options can be valued using a binomial tree such as that in
Figure 13.4 or 13.7. The procedure is to work back through the tree from the end to the
beginning, testing at each node to see whether early exercise is optimal. The value of the
option at the final nodes is the same as for the European option. At earlier nodes the
value of the option is the greater of

1. The value given by equation (13.5)

2. The payoff from early exercise.

Figure 13.8 shows how Figure 13.7 is affected if the option under consideration is
American rather than European. The stock prices and their probabilities are
unchanged. The values for the option at the final nodes are also unchanged. At
node B, equation (13.5) gives the value of the option as 1.4147, whereas the payoff
from early exercise is negative (¼ �8). Clearly early exercise is not optimal at node B,
and the value of the option at this node is 1.4147. At node C, equation (13.5) gives the
value of the option as 9.4636, whereas the payoff from early exercise is 12. In this case,
early exercise is optimal and the value of the option at the node is 12. At the initial node
A, the value given by equation (13.5) is

e
�0:05�1ð0:6282� 1:4147þ 0:3718� 12:0Þ ¼ 5:0894

50
4.1923

32
20

9.4636

40

60

1.4147

48
4

72
0

Figure 13.7 Using a two-step tree to value a European put option. At each node, the
upper number is the stock price and the lower number is the option price.
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and the payoff from early exercise is 2. In this case early exercise is not optimal. The
value of the option is therefore $5.0894.

13.6 DELTA

At this stage, it is appropriate to introduce delta, an important parameter (sometimes
referred to as a ‘‘Greek letter’’ or simply a ‘‘Greek’’) in the pricing and hedging of
options.

The delta (�) of a stock option is the ratio of the change in the price of the stock
option to the change in the price of the underlying stock. It is the number of units of the
stock we should hold for each option shorted in order to create a riskless portfolio. It is
the same as the � introduced earlier in this chapter. The construction of a riskless
portfolio is sometimes referred to as delta hedging. The delta of a call option is positive,
whereas the delta of a put option is negative.

From Figure 13.1, we can calculate the value of the delta of the call option being
considered as

1� 0

22� 18
¼ 0:25

This is because when the stock price changes from $18 to $22, the option price changes
from $0 to $1. (This is also the value of � calculated in Section 13.1.)

In Figure 13.4 the delta corresponding to stock price movements over the first time
step is

2:0257� 0

22� 18
¼ 0:5064

50
5.0894

A

B

C

32
20

12.0

40

60

1.4147

48
4

72
0

Figure 13.8 Using a two-step tree to value an American put option. At each node, the
upper number is the stock price and the lower number is the option price.
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The delta for stock price movements over the second time step is

3:2� 0

24:2� 19:8
¼ 0:7273

if there is an upward movement over the first time step, and

0� 0

19:8� 16:2
¼ 0

if there is a downward movement over the first time step.

From Figure 13.7, delta is

1:4147� 9:4636

60� 40
¼ �0:4024

at the end of the first time step, and either

0� 4

72� 48
¼ �0:1667 or

4� 20

48� 32
¼ �1:0000

at the end of the second time step.

The two-step examples show that delta changes over time. (In Figure 13.4, delta
changes from 0.5064 to either 0.7273 or 0; and, in Figure 13.7, it changes from�0:4024 to
either �0:1667 or �1:0000.) Thus, in order to maintain a riskless hedge using an option
and the underlying stock, we need to adjust our holdings in the stock periodically. We
will return to this feature of options in Chapter 19.

13.7 MATCHING VOLATILITY WITH u AND d

The three parameters necessary to construct a binomial tree with time step �t are u, d,
and p. Once u and d have been specified, p must be chosen so that the expected return is
the risk-free rate r. We have already shown that

p ¼ e
r�t � d

u� d
ð13:11Þ

The parameters u and d should be chosen to match volatility. The volatility of stock (or
any other asset), �, is defined so that the standard deviation of its return in a short
period of time �t is �

ffiffiffiffiffiffi
�t

p
(see Chapter 15 for a further discussion of this). Equivalently

the variance of the return in time �t is �2�t. The variance of a variable X is defined as
EðX2Þ � ½EðXÞ�2, where E denotes expected value. During a time step of length �t,
there is a probability p that the stock will provide a return of u� 1 and a probability
1� p that it will provide a return of d � 1. It follows that volatility is matched if

pðu� 1Þ2 þ ð1� pÞðd � 1Þ2 � ½pðu� 1Þ þ ð1� pÞðd � 1Þ�2 ¼ �2�t ð13:12Þ
Substituting for p from equation (13.11), this simplifies to

e
r�tðuþ dÞ � ud � e

2r�t ¼ �2�t ð13:13Þ
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When terms in�t
2 and higher powers of�t are ignored, a solution to equation (13.13) is2

u ¼ e
�
ffiffiffiffi
�t

p
and d ¼ e

��
ffiffiffiffi
�t

p

These are the values of u and d used by Cox, Ross, and Rubinstein (1979).
In the analysis just given we chose u and d to match volatility in the risk-neutral

world. What happens if instead we match volatility in the real world? As we will now
show, the formulas for u and d are the same.

Suppose that p� is the probability of an up-movement in the real world while p is
as before the probability of an up-movement in a risk-neutral world. This is illustrated
in Figure 13.9. Define � as the expected return in the real world. We must have

p
�
uþ ð1� p

�Þd ¼ e
��t

or

p
� ¼ e

��t � d

u� d
ð13:14Þ

Suppose that � is the volatility in the real world. The equation matching the variance is
the same as equation (13.12) except that p is replaced by p

�. When this equation is
combined with equation (13.14), we obtain

e
��tðuþ dÞ � ud � e

2��t ¼ �2�t

This is the same as equation (13.13) except the r is replaced by �. When terms in �t
2

and higher powers of �t are ignored, it has the same solution as equation (13.13):

u ¼ e
�
ffiffiffiffi
�t

p
and d ¼ e

��
ffiffiffiffi
�t

p

Girsanov’s Theorem

The results we have just produced are closely related to an important result known as
Girsanov’s theorem. When we move from the risk-neutral world to the real world, the
expected return from the stock price changes, but its volatility remains the same. More

SS

p*

1 – p*

p

1 – p

(b)(a)

0

S  d0 S  d0

S  u0 S  u0

0

Figure 13.9 Change in stock price in time �t in (a) the real world and (b) the risk-
neutral world.

2 We are here using the series expansion

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � �
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generally, when we move from a world with one set of risk preferences to a world with

another set of risk preferences, the expected growth rates in variables change, but their
volatilities remain the same. We will examine the impact of risk preferences on the
behavior of market variables in more detail in Chapter 28. Moving from one set of risk

preferences to another is sometimes referred to as changing the measure. The real-world
measure is sometimes referred to as the P-measure, while the risk-neutral world measure

is referred to as the Q-measure.3

13.8 THE BINOMIAL TREE FORMULAS

The analysis in the previous section shows that, when the length of the time step on a
binomial tree is �t, we should match volatility by setting

u ¼ e
�
ffiffiffiffi
�t

p
ð13:15Þ

and

d ¼ e
��

ffiffiffiffi
�t

p
ð13:16Þ

Also, from equation (13.6),

p ¼ a� d

u� d
ð13:17Þ

where

a ¼ e
r�t ð13:18Þ

Equations (13.15) to (13.18) define the tree.

Consider again the American put option in Figure 13.8, where the stock price is $50,
the strike price is $52, the risk-free rate is 5%, the life of the option is 2 years, and there

are two time steps. In this case, �t ¼ 1. Suppose that the volatility � is 30%. Then,
from equations (13.15) to (13.18), we have

u ¼ e
0:3�1 ¼ 1:3499; d ¼ 1

1:3499
¼ 0:7408; a ¼ e

0:05�1 ¼ 1:0513

and

p ¼ 1:053� 0:7408

1:3499� 0:7408
¼ 0:5097

The tree is shown in Figure 13.10. The value of the put option is 7.43. (This is

different from the value obtained in Figure 13.8 by assuming u ¼ 1:2 and d ¼ 0:8.)
Note that the option is exercised at the end of the first time step if the lower node is
reached.

13.9 INCREASING THE NUMBER OF STEPS

The binomial model presented above is unrealistically simple. Clearly, an analyst can
expect to obtain only a very rough approximation to an option price by assuming that

3 With the notation we have been using, p is the probability under the Q-measure, while p� is the probability
under the P-measure.
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stock price movements during the life of the option consist of one or two binomial

steps.

When binomial trees are used in practice, the life of the option is typically divided

into 30 or more time steps. In each time step there is a binomial stock price movement.

With 30 time steps there are 31 terminal stock prices and 230, or about 1 billion, possible

stock price paths are implicitly considered.

The equations defining the tree are equations (13.15) to (13.18), regardless of the

number of time steps. Suppose, for example, that there are five steps instead of two in

the example we considered in Figure 13.10. The parameters would be �t ¼ 2=5 ¼ 0:4,
r ¼ 0:05, and � ¼ 0:3. These values give u ¼ e0:3�

ffiffiffiffiffi
0:4

p
¼ 1:2089, d ¼ 1=1:2089 ¼ 0:8272,

a ¼ e0:05�0:4 ¼ 1:0202, and p ¼ ð1:0202 � 0:8272Þ=ð1:2089� 0:8272Þ ¼ 0:5056.
As the number of time steps is increased (so that �t becomes smaller), the binomial

tree model makes the same assumptions about stock price behavior as the Black–

Scholes–Merton model, which will be presented in Chapter 15. When the binomial tree

is used to price a European option, the price converges to the Black–Scholes–Merton

price, as expected, as the number of time steps is increased. This is proved in the

appendix to this chapter.

13.10 USING DerivaGem

The software accompanying this book, DerivaGem 3.00, is a useful tool for becoming

comfortable with binomial trees. After loading the software in the way described at the

end of this book, go to the Equity_FX_Indx_Fut_Opts_Calc worksheet. Choose

Equity as the Underlying Type and select Binomial American as the Option Type.

50
7.43

27.44

14.96

37.04

67.49

0.93

50
2

91.11
0

24.56

Figure 13.10 Two-step tree to value a 2-year American put option when the stock
price is 50, strike price is 52, risk-free rate is 5%, and volatility is 30%.
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Enter the stock price, volatility, risk-free rate, time to expiration, exercise price, and tree

steps, as 50, 30%, 5%, 2, 52, and 2, respectively. Click on the Put button and then on

Calculate. The price of the option is shown as 7.428 in the box labeled Price. Now click

on Display Tree and you will see the equivalent of Figure 13.10. (The red numbers in

the software indicate the nodes where the option is exercised.)

Return to the Equity_FX_Indx_Fut_Opts_Calc worksheet and change the number

of time steps to 5. Hit Enter and click on Calculate. You will find that the value of the

option changes to 7.671. By clicking on Display Tree the five-step tree is displayed,

together with the values of u, d, a, and p calculated above.

DerivaGem can display trees that have up to 10 steps, but the calculations can be

done for up to 500 steps. In our example, 500 steps gives the option price (to two

decimal places) as 7.47. This is an accurate answer. By changing the Option Type to

Binomial European, we can use the tree to value a European option. Using 500 time

steps, the value of a European option with the same parameters as the American option

is 6.76. (By changing the Option Type to Black–Scholes European, we can display the

value of the option using the Black–Scholes–Merton formula that will be presented in

Chapter 15. This is also 6.76.)

By changing the Underlying Type, we can consider options on assets other than

stocks. These will now be discussed.

13.11 OPTIONS ON OTHER ASSETS

We introduced options on indices, currencies, and futures contracts in Chapter 10 and

will cover them in more detail in Chapters 17 and 18. It turns out that we can construct

and use binomial trees for these options in exactly the same way as for options on

stocks except that the equations for p change. As in the case of options on stocks,

equation (13.2) applies so that the value at a node (before the possibility of early

exercise is considered) is p times the value if there is an up movement plus 1� p times

the value if there is a down movement, discounted at the risk-free rate.

Options on Stocks Paying a Continuous Dividend Yield

Consider a stock paying a known dividend yield at rate q. The total return from

dividends and capital gains in a risk-neutral world is r. The dividends provide a return

of q. Capital gains must therefore provide a return of r� q. If the stock starts at S0, its

expected value after one time step of length �t must be S0e
ðr�qÞ�t. This means that

pS0uþ ð1� pÞS0d ¼ S0e
ðr�qÞ�t

so that

p ¼ e
ðr�qÞ�t � d

u� d

As in the case of options on non-dividend-paying stocks, we match volatility by setting

u ¼ e�
ffiffiffiffi
�t

p
and d ¼ 1=u. This means that we can use equations (13.15) to (13.18), except

that we set a ¼ eðr�qÞ�t instead of a ¼ er�t.
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Options on Stock Indices

When calculating a futures price for a stock index in Chapter 5 we assumed that the
stocks underlying the index provided a dividend yield at rate q. We make a similar
assumption here. The valuation of an option on a stock index is therefore very similar
to the valuation of an option on a stock paying a known dividend yield.

Example 13.1

A stock index is currently 810 and has a volatility of 20% and a dividend yield of
2%. The risk-free rate is 5%. Figure 13.11 shows the output from DerivaGem for
valuing a European 6-month call option with a strike price of 800 using a two-step
tree. In this case,

�t ¼ 0:25; u ¼ e
0:20� ffiffiffiffiffiffi

0:25
p

¼ 1:1052;

d ¼ 1=u ¼ 0:9048; a ¼ e
ð0:05�0:02Þ�0:25 ¼ 1:0075

p ¼ ð1:0075� 0:9048Þ=ð1:1052� 0:9048Þ ¼ 0:5126

The value of the option is 53.39.

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 800
Discount factor per step = 0.9876
Time step, dt = 0.2500 years, 91.25 days
Growth factor per step, a = 1.0075
Probability of up move, p = 0.5126
Up step size, u = 1.1052
Down step size, d = 0.9048

989.34
189.34

895.19
100.66

810.00 810.00
53.39 10.00

732.92
5.06

663.17
0.00

Node Time: 
0.0000 0.2500 0.5000

Figure 13.11 Two-step tree to value a European 6-month call option on an
index when the index level is 810, strike price is 800, risk-free rate is 5%,
volatility is 20%, and dividend yield is 2% (DerivaGem output).
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Options on Currencies

As pointed out in Section 5.10, a foreign currency can be regarded as an asset providing
a yield at the foreign risk-free rate of interest, rf . By analogy with the stock index case
we can construct a tree for options on a currency by using equations (13.15) to (13.18)
and setting a ¼ eðr�rf Þ�t.

Example 13.2

The Australian dollar is currently worth 0.6100 US dollars and this exchange rate
has a volatility of 12%. The Australian risk-free rate is 7% and the US risk-free rate
is 5%. Figure 13.12 shows the output from DerivaGem for valuing a 3-month
American call option with a strike price of 0.6000 using a three-step tree. In this
case,

�t ¼ 0:08333; u ¼ e
0:12� ffiffiffiffiffiffiffiffiffiffiffi

0:08333
p

¼ 1:0352

d ¼ 1=u ¼ 0:9660; a ¼ e
ð0:05�0:07Þ�0:08333 ¼ 0:9983

p ¼ ð0:9983� 0:9660Þ=ð1:0352� 0:9660Þ ¼ 0:4673

The value of the option is 0.019.

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 0.6
Discount factor per step = 0.9958
Time step, dt = 0.0833 years, 30.42 days
Growth factor per step, a = 0.9983
Probability of up move, p = 0.4673
Up step size, u = 1.0352
Down step size, d = 0.9660

0.677
0.077

0.654
0.054

0.632 0.632
0.033 0.032

0.610 0.610
0.019 0.015

0.589 0.589
0.007 0.000

0.569
0.000

0.550
0.000

Node Time: 
0.0000 0.0833 0.1667 0.2500

Figure 13.12 Three-step tree to value an American 3-month call option on a
currency when the value of the currency is 0.6100, strike price is 0.6000, risk-free
rate is 5%, volatility is 12%, and foreign risk-free rate is 7% (DerivaGemoutput).
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Options on Futures

It costs nothing to take a long or a short position in a futures contract. It follows that in
a risk-neutral world a futures price should have an expected growth rate of zero. (We
discuss this point in more detail in Section 18.7.) As above, we define p as the
probability of an up movement in the futures price, u as the percentage up movement,
and d as the percentage down movement. If F0 is the initial futures price, the expected
futures price at the end of one time step of length �t should also be F0. This means that

pF0uþ ð1� pÞF0d ¼ F0

so that

p ¼ 1� d

u� d

and we can use equations (13.15) to (13.18) with a ¼ 1.

Example 13.3

A futures price is currently 31 and has a volatility of 30%. The risk-free rate is 5%.
Figure 13.13 shows the output from DerivaGem for valuing a 9-month American
put option with a strike price of 30 using a three-step tree. In this case,

�t ¼ 0:25; u ¼ e
0:3

ffiffiffiffiffiffi
0:25

p
¼ 1:1618

d ¼ 1=u ¼ 1=1:1618 ¼ 0:8607; a ¼ 1;

p ¼ ð1� 0:8607Þ=ð1:1618� 0:8607Þ ¼ 0:4626

The value of the option is 2.84.

SUMMARY

This chapter has provided a first look at the valuation of options on stocks and other
assets using trees. In the simple situation where movements in the price of a stock
during the life of an option are governed by a one-step binomial tree, it is possible to set
up a riskless portfolio consisting of a position in the stock option and a position in the
stock. In a world with no arbitrage opportunities, riskless portfolios must earn the risk-
free interest. This enables the stock option to be priced in terms of the stock. It is
interesting to note that no assumptions are required about the probabilities of up and
down movements in the stock price at each node of the tree.

When stock price movements are governed by a multistep binomial tree, we can treat
each binomial step separately and work back from the end of the life of the option to
the beginning to obtain the current value of the option. Again only no-arbitrage
arguments are used, and no assumptions are required about the probabilities of up
and down movements in the stock price at each node.

A very important principle states that we can assume the world is risk-neutral when
valuing an option. This chapter has shown, through both numerical examples and
algebra, that no-arbitrage arguments and risk-neutral valuation are equivalent and lead
to the same option prices.

The delta of a stock option,�, considers the effect of a small change in the underlying
stock price on the change in the option price. It is the ratio of the change in the option
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price to the change in the stock price. For a riskless position, an investor should buy �
shares for each option sold. An inspection of a typical binomial tree shows that delta
changes during the life of an option. This means that to hedge a particular option
position, we must change our holding in the underlying stock periodically.

Constructing binomial trees for valuing options on stock indices, currencies, and
futures contracts is very similar to doing so for valuing options on stocks. In
Chapter 21, we will return to binomial trees and provide more details on how they
are used in practice.
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At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 30
Discount factor per step = 0.9876
Time step, dt = 0.2500 years, 91.25 days
Growth factor per step, a = 1.000
Probability of up move, p = 0.4626
Up step size, u = 1.1618
Down step size, d = 0.8607

48.62
0.00

41.85
0.00

36.02 36.02
0.93 0.00

31.00 31.00
2.84 1.76

26.68 26.68
4.54 3.32

22.97
7.03

19.77
10.23

Node Time: 
0.0000 0.2500 0.5000 0.7500

Figure 13.13 Three-step tree to value an American 9-month put option on a
futures contract when the futures price is 31, strike price is 30, risk-free rate is 5%,
and volatility is 30% (DerivaGem output).
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Practice Questions (Answers in Solutions Manual)

13.1. A stock price is currently $40. It is known that at the end of 1 month it will be either $42
or $38. The risk-free interest rate is 8% per annum with continuous compounding. What
is the value of a 1-month European call option with a strike price of $39?

13.2. Explain the no-arbitrage and risk-neutral valuation approaches to valuing a European
option using a one-step binomial tree.

13.3. What is meant by the ‘‘delta’’ of a stock option?

13.4. A stock price is currently $50. It is known that at the end of 6 months it will be either $45
or $55. The risk-free interest rate is 10% per annum with continuous compounding.
What is the value of a 6-month European put option with a strike price of $50?

13.5. A stock price is currently $100. Over each of the next two 6-month periods it is expected
to go up by 10% or down by 10%. The risk-free interest rate is 8% per annum with
continuous compounding. What is the value of a 1-year European call option with a
strike price of $100?

13.6. For the situation considered in Problem 13.5, what is the value of a 1-year European put
option with a strike price of $100? Verify that the European call and European put prices
satisfy put–call parity.

13.7. What are the formulas for u and d in terms of volatility?

13.8. Consider the situation in which stock price movements during the life of a European
option are governed by a two-step binomial tree. Explain why it is not possible to set up
a position in the stock and the option that remains riskless for the whole of the life of the
option.

13.9. A stock price is currently $50. It is known that at the end of 2 months it will be either $53
or $48. The risk-free interest rate is 10% per annum with continuous compounding.
What is the value of a 2-month European call option with a strike price of $49? Use no-
arbitrage arguments.

13.10. A stock price is currently $80. It is known that at the end of 4 months it will be either $75
or $85. The risk-free interest rate is 5% per annum with continuous compounding. What
is the value of a 4-month European put option with a strike price of $80? Use no-
arbitrage arguments.

13.11. A stock price is currently $40. It is known that at the end of 3 months it will be either $45
or $35. The risk-free rate of interest with quarterly compounding is 8% per annum.
Calculate the value of a 3-month European put option on the stock with an exercise
price of $40. Verify that no-arbitrage arguments and risk-neutral valuation arguments
give the same answers.

13.12. A stock price is currently $50. Over each of the next two 3-month periods it is expected
to go up by 6% or down by 5%. The risk-free interest rate is 5% per annum with
continuous compounding. What is the value of a 6-month European call option with a
strike price of $51?

13.13. For the situation considered in Problem 13.12, what is the value of a 6-month European
put option with a strike price of $51? Verify that the European call and European put
prices satisfy put–call parity. If the put option were American, would it ever be optimal
to exercise it early at any of the nodes on the tree?
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13.14. A stock price is currently $25. It is known that at the end of 2 months it will be either $23
or $27. The risk-free interest rate is 10% per annum with continuous compounding.
Suppose ST is the stock price at the end of 2 months. What is the value of a derivative
that pays off S

2
T at this time?

13.15. Calculate u, d, and p when a binomial tree is constructed to value an option on a foreign
currency. The tree step size is 1 month, the domestic interest rate is 5% per annum, the
foreign interest rate is 8% per annum, and the volatility is 12% per annum.

13.16. The volatility of a non-dividend-paying stock whose price is $78, is 30%. The risk-free
rate is 3% per annum (continuously compounded) for all maturities. Calculate values for
u, d, and p when a 2-month time step is used. What is the value a 4-month European call
option with a strike price of $80 given by a two-step binomial tree. Suppose a trader sells
1,000 options (10 contracts). What position in the stock is necessary to hedge the trader’s
position at the time of the trade?

13.17. A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum
(continuously compounded) for all maturities and the dividend yield on the index is
2.5%. Calculate values for u, d, and p when a 6-month time step is used. What is the
value a 12-month American put option with a strike price of 1,480 given by a two-step
binomial tree.

13.18. The futures price of a commodity is $90. Use a three-step tree to value (a) a 9-month
American call option with strike price $93 and (b) a 9-month American put option with
strike price $93. The volatility is 28% and the risk-free rate (all maturities) is 3% with
continuous compounding.

Further Questions

13.19. The current price of a non-dividend-paying biotech stock is $140 with a volatility of 25%.
The risk-free rate is 4%. For a 3-month time step:
(a) What is the percentage up movement?
(b) What is the percentage down movement?
(c) What is the probability of an up movement in a risk-neutral world?
(d) What is the probability of a down movement in a risk-neutral world?
Use a two-step tree to value a 6-month European call option and a 6-month European put
option. In both cases the strike price is $150.

13.20. In Problem 13.19, suppose a trader sells 10,000 European call options and the two-step
tree describes the behavior of the stock. How many shares of the stock are needed to
hedge the 6-month European call for the first and second 3-month period? For the
second time period, consider both the case where the stock price moves up during the
first period and the case where it moves down during the first period.

13.21. A stock price is currently $50. It is known that at the end of 6 months it will be either $60
or $42. The risk-free rate of interest with continuous compounding is 12% per annum.
Calculate the value of a 6-month European call option on the stock with an exercise
price of $48. Verify that no-arbitrage arguments and risk-neutral valuation arguments
give the same answers.

13.22. A stock price is currently $40. Over each of the next two 3-month periods it is expected
to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with
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continuous compounding. (a) What is the value of a 6-month European put option with
a strike price of $42? (b) What is the value of a 6-month American put option with a
strike price of $42?

13.23. Using a ‘‘trial-and-error’’ approach, estimate how high the strike price has to be in
Problem 13.22 for it to be optimal to exercise the option immediately.

13.24. A stock price is currently $30. During each 2-month period for the next 4 months it will
increase by 8% or reduce by 10%. The risk-free interest rate is 5%. Use a two-step tree
to calculate the value of a derivative that pays off ½maxð30� ST ; 0Þ�2, where ST is the
stock price in 4 months. If the derivative is American-style, should it be exercised early?

13.25. Consider a European call option on a non-dividend-paying stock where the stock price is
$40, the strike price is $40, the risk-free rate is 4% per annum, the volatility is 30% per
annum, and the time to maturity is 6 months.
(a) Calculate u, d, and p for a two-step tree.
(b) Value the option using a two-step tree.
(c) Verify that DerivaGem gives the same answer.
(d) Use DerivaGem to value the option with 5, 50, 100, and 500 time steps.

13.26. Repeat Problem 13.25 for an American put option on a futures contract. The strike price
and the futures price are $50, the risk-free rate is 10%, the time to maturity is 6 months,
and the volatility is 40% per annum.

13.27. Footnote 1 shows that the correct discount rate to use for the real-world expected payoff
in the case of the call option considered in Figure 13.1 is 42.6%. Show that if the option
is a put rather than a call the discount rate is �52:5%. Explain why the two real-world
discount rates are so different.

13.28. A stock index is currently 990, the risk-free rate is 5%, and the dividend yield on the
index is 2%. Use a three-step tree to value an 18-month American put option with a
strike price of 1,000 when the volatility is 20% per annum. How much does the option
holder gain by being able to exercise early? When is the gain made?

13.29. Calculate the value of 9-month American call option to buy 1 million units of a foreign
currency using a three-step binomial tree. The current exchange rate is 0.79 and the
strike price is 0.80 (both expressed as dollars per unit of the foreign currency). The
volatility of the exchange rate is 12% per annum. The domestic and foreign risk-free
rates are 2% and 5%, respectively. What position in the foreign currency is initially
necessary to hedge the risk?
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APPENDIX

DERIVATION OF THE BLACK–SCHOLES–MERTON
OPTION-PRICING FORMULA FROM A BINOMIAL TREE

One way of deriving the famous Black–Scholes–Merton result for valuing a European
option on a non-dividend-paying stock is by allowing the number of time steps in a
binomial tree to approach infinity.

Suppose that a tree with n time steps is used to value a European call option with
strike price K and life T . Each step is of length T=n. If there have been j upward
movements and n� j downward movements on the tree, the final stock price is
S0u

jd n�j, where u is the proportional up movement, d is the proportional down
movement, and S0 is the initial stock price. The payoff from a European call option
is then

maxðS0ujd n�j �K; 0Þ
From the properties of the binomial distribution, the probability of exactly j upward
and n� j downward movements is given by

n!

ðn� jÞ! j!p
jð1� pÞn�j

It follows that the expected payoff from the call option is

Xn
j¼0

n!

ðn� jÞ! j!p
jð1� pÞn�j maxðS0ujd n�j �K; 0Þ

As the tree represents movements in a risk-neutral world, we can discount this at the
risk-free rate r to obtain the option price:

c ¼ e
�rT

Xn
j¼0

n!

ðn� jÞ! j!p
jð1� pÞn�j maxðS0ujd n�j �K; 0Þ ð13A:1Þ

The terms in equation (13A.1) are nonzero when the final stock price is greater than the
strike price, that is, when

S0u
j
d
n�j > K

or
lnðS0=KÞ > �j lnðuÞ � ðn� jÞ lnðdÞ

Since u ¼ e
�

ffiffiffiffiffiffi
T=n

p
and d ¼ e

��
ffiffiffiffiffiffi
T=n

p
, this condition becomes

lnðS0=KÞ > n�
ffiffiffiffiffiffiffiffiffi
T=n

p
� 2j�

ffiffiffiffiffiffiffiffiffi
T=n

p
or

j >
n

2
� lnðS0=KÞ

2�
ffiffiffiffiffiffiffiffiffi
T=n

p

Equation (13A.1) can therefore be written

c ¼ e
�rT

X
j>�

n!

ðn� jÞ! j!p
jð1� pÞn�jðS0ujd n�j �KÞ
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where

� ¼ n

2
� lnðS0=KÞ

2�
ffiffiffiffiffiffiffiffiffi
T=n

p
For convenience, we define

U1 ¼
X
j>�

n!

ðn� jÞ! j!p
jð1� pÞn�j

u
j
d
n�j ð13A:2Þ

and

U2 ¼
X
j>�

n!

ðn� jÞ! j!p
jð1� pÞn�j ð13A:3Þ

so that

c ¼ e
�rT ðS0U1 �KU2Þ ð13A:4Þ

Consider first U2. As is well known, the binomial distribution approaches a normal

distribution as the number of trials approaches infinity. Specifically, when there are n

trials and p is the probability of success, the probability distribution of the number of

successes is approximately normal with mean np and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

.

The variable U2 in equation (13A.3) is the probability of the number of successes being

more than �. From the properties of the normal distribution, it follows that, for large n,

U2 ¼ N

�
np� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

�
ð13A:5Þ

where N is the cumulative probability distribution function for a standard normal

variable. Substituting for �, we obtain

U2 ¼ N

�
lnðS0=KÞ

2�
ffiffiffiffi
T

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp þ

ffiffiffi
n

p ðp� 1
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞp
�

ð13A:6Þ

From equations (13.15) to (13.18), we have

p ¼ e
rT=n � e

��
ffiffiffiffiffiffi
T=n

p

e�
ffiffiffiffiffiffi
T=n

p
� e��

ffiffiffiffiffiffi
T=n

p

By expanding the exponential functions in a series, we see that, as n tends to infinity,

pð1� pÞ tends to 1
4
and

ffiffiffi
n

p ðp� 1
2
Þ tends to

ðr� �2=2Þ ffiffiffiffi
T

p

2�

so that in the limit, as n tends to infinity, equation (13A.6) becomes

U2 ¼ N

�
lnðS0=KÞ þ ðr� �2=2ÞT

�
ffiffiffiffi
T

p
�

ð13A:7Þ
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We now move on to evaluate U1. From equation (13A.2), we have

U1 ¼
X
j>�

n!

ðn� jÞ! j! ðpuÞ
j½ð1� pÞd�n�j ð13A:8Þ

Define

p
� ¼ pu

puþ ð1� pÞd ð13A:9Þ
It then follows that

1� p
� ¼ ð1� pÞd

puþ ð1� pÞd

and we can write equation (13A.8) as

U1 ¼ ½puþ ð1� pÞd �n
X
j>�

n!

ðn� jÞ! j! ðp
�Þjð1� p

�Þn�j

Since the expected rate of return in the risk-neutral world is the risk-free rate r, it

follows that puþ ð1� pÞd ¼ e
rT=n and

U1 ¼ e
rT
X
j>�

n!

ðn� jÞ! j! ðp
�Þjð1� p

�Þn�j

This shows that U1 involves a binomial distribution where the probability of an up

movement is p� rather than p. Approximating the binomial distribution with a normal

distribution, we obtain, similarly to equation (13A.5),

U1 ¼ e
rT
N

�
np

� � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np�ð1� p�Þp

�

and substituting for � gives, as with equation (13A.6),

U1 ¼ e
rT
N

�
lnðS0=KÞ

2�
ffiffiffiffi
T

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ð1� p�Þp þ

ffiffiffi
n

p ðp� � 1
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�ð1� p�Þp
�

Substituting for u and d in equation (13A.9) gives

p
� ¼

�
e
rT=n � e

��
ffiffiffiffiffiffi
T=n

p

e�
ffiffiffiffiffiffi
T=n

p
� e��

ffiffiffiffiffiffi
T=n

p
��

e
�

ffiffiffiffiffiffi
T=n

p

erT=n

�

By expanding the exponential functions in a series we see that, as n tends to infinity,

p
�ð1� p

�Þ tends to 1
4
and

ffiffiffi
n

p ðp� � 1
2
Þ tends to

ðrþ �2=2Þ ffiffiffiffi
T

p

2�
with the result that

U1 ¼ e
rT
N

�
lnðS0=KÞ þ ðrþ �2=2ÞT

�
ffiffiffiffi
T

p
�

ð13A:10Þ
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From equations (13A.4), (13A.7), and (13A.10), we have

c ¼ S0Nðd1Þ �Ke
�rT

Nðd2Þ
where

d1 ¼
lnðS0=KÞ þ ðrþ �2=2ÞT

�
ffiffiffiffi
T

p
and

d2 ¼
lnðS0=KÞ þ ðr� �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

This is the Black–Scholes–Merton formula for the valuation of a European call option.
It will be discussed in Chapter 15. An alternative derivation is given in the appendix to
that chapter.
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Wiener Processes
and Itô’s Lemma

Any variable whose value changes over time in an uncertain way is said to follow a

stochastic process. Stochastic processes can be classified as discrete time or continuous

time. A discrete-time stochastic process is one where the value of the variable can

change only at certain fixed points in time, whereas a continuous-time stochastic

process is one where changes can take place at any time. Stochastic processes can also

be classified as continuous variable or discrete variable. In a continuous-variable process,

the underlying variable can take any value within a certain range, whereas in a discrete-

variable process, only certain discrete values are possible.

This chapter develops a continuous-variable, continuous-time stochastic process for

stock prices. Learning about this process is the first step to understanding the pricing

of options and other more complicated derivatives. It should be noted that, in

practice, we do not observe stock prices following continuous-variable, continuous-

time processes. Stock prices are restricted to discrete values (e.g., multiples of a cent)

and changes can be observed only when the exchange is open for trading. Never-

theless, the continuous-variable, continuous-time process proves to be a useful model

for many purposes.

Many people feel that continuous-time stochastic processes are so complicated that

they should be left entirely to ‘‘rocket scientists.’’ This is not so. The biggest hurdle to

understanding these processes is the notation. Here we present a step-by-step approach

aimed at getting the reader over this hurdle. We also explain an important result known

as Itô’s lemma that is central to the pricing of derivatives.

14.1 THE MARKOV PROPERTY

A Markov process is a particular type of stochastic process where only the current value

of a variable is relevant for predicting the future. The past history of the variable and

the way that the present has emerged from the past are irrelevant.

Stock prices are usually assumed to follow a Markov process. Suppose that the

price of a stock is $100 now. If the stock price follows a Markov process, our

predictions for the future should be unaffected by the price one week ago, one month
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ago, or one year ago. The only relevant piece of information is that the price is now

$100.1 Predictions for the future are uncertain and must be expressed in terms of

probability distributions. The Markov property implies that the probability distribu-

tion of the price at any particular future time is not dependent on the particular path

followed by the price in the past.

The Markov property of stock prices is consistent with the weak form of market

efficiency. This states that the present price of a stock impounds all the information

contained in a record of past prices. If the weak form of market efficiency were not true,

technical analysts could make above-average returns by interpreting charts of the past

history of stock prices. There is very little evidence that they are in fact able to do this.

It is competition in the marketplace that tends to ensure that weak-form market

efficiency and the Markov property hold. There are many investors watching the stock

market closely. This leads to a situation where a stock price, at any given time, reflects the

information in past prices. Suppose that it was discovered that a particular pattern in a

stock price always gave a 65% chance of subsequent steep price rises. Investors would

attempt to buy a stock as soon as the pattern was observed, and demand for the stock

would immediately rise. This would lead to an immediate rise in its price and the

observed effect would be eliminated, as would any profitable trading opportunities.

14.2 CONTINUOUS-TIME STOCHASTIC PROCESSES

Consider a variable that follows a Markov stochastic process. Suppose that its current

value is 10 and that the change in its value during a year is �ð0; 1Þ, where �ðm; vÞ
denotes a probability distribution that is normally distributed with mean m and

variance v.2 What is the probability distribution of the change in the value of the

variable during 2 years?

The change in 2 years is the sum of two normal distributions, each of which has a

mean of zero and variance of 1.0. Because the variable is Markov, the two probability

distributions are independent. When we add two independent normal distributions, the

result is a normal distribution where the mean is the sum of the means and the variance

is the sum of the variances. The mean of the change during 2 years in the variable we

are considering is, therefore, zero and the variance of this change is 2.0. Hence, the

change in the variable over 2 years has the distribution �ð0; 2Þ. The standard deviation

of the change is
ffiffiffi
2

p
.

Consider next the change in the variable during 6 months. The variance of the

change in the value of the variable during 1 year equals the variance of the change

during the first 6 months plus the variance of the change during the second 6 months.

We assume these are the same. It follows that the variance of the change during a

6-month period must be 0.5. Equivalently, the standard deviation of the change is
ffiffiffiffiffiffiffi
0:5

p
.

The probability distribution for the change in the value of the variable during 6 months

is �ð0; 0:5Þ.
1 Statistical properties of the stock price history may be useful in determining the characteristics of the

stochastic process followed by the stock price (e.g., its volatility). The point being made here is that the

particular path followed by the stock in the past is irrelevant.
2 Variance is the square of standard deviation. The standard deviation of a 1-year change in the value of the

variable we are considering is therefore 1.0.
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A similar argument shows that the probability distribution for the change in the
value of the variable during 3 months is �ð0; 0:25Þ. More generally, the change during
any time period of length T is �ð0; T Þ. In particular, the change during a very short time
period of length �t is �ð0;�tÞ.

Note that, when Markov processes are considered, the variances of the changes in
successive time periods are additive. The standard deviations of the changes in
successive time periods are not additive. The variance of the change in the variable
in our example is 1.0 per year, so that the variance of the change in 2 years is 2.0 and
the variance of the change in 3 years is 3.0. The standard deviations of the changes in
2 and 3 years are

ffiffiffi
2

p
and

ffiffiffi
3

p
, respectively. (Strictly speaking, we should not refer to the

standard deviation of the variable as 1.0 per year.) The results explain why uncertainty
is sometimes referred to as being proportional to the square root of time.

Wiener Process

The process followed by the variable we have been considering is known as a Wiener
process. It is a particular type of Markov stochastic process with a mean change of zero
and a variance rate of 1.0 per year. It has been used in physics to describe the motion of
a particle that is subject to a large number of small molecular shocks and is sometimes
referred to as Brownian motion.

Expressed formally, a variable z follows a Wiener process if it has the following two
properties:

Property 1. The change �z during a small period of time �t is

�z ¼ �
ffiffiffiffiffi
�t

p
ð14:1Þ

where � has a standard normal distribution �ð0; 1Þ.
Property 2. The values of �z for any two different short intervals of time, �t, are

independent.

It follows from the first property that �z itself has a normal distribution with

mean of �z ¼ 0

standard deviation of �z ¼
ffiffiffiffiffi
�t

p

variance of �z ¼ �t

The second property implies that z follows a Markov process.
Consider the change in the value of z during a relatively long period of time, T . This

can be denoted by zðT Þ � zð0Þ. It can be regarded as the sum of the changes in z in
N small time intervals of length �t, where

N ¼ T

�t
Thus,

zðT Þ � zð0Þ ¼
XN
i¼1

�i
ffiffiffiffiffi
�t

p
ð14:2Þ

where the �i (i ¼ 1; 2; . . . ;N) are distributed �ð0; 1Þ. We know from the second
property of Wiener processes that the �i are independent of each other. It follows
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from equation (14.2) that zðT Þ � zð0Þ is normally distributed, with

mean of ½zðT Þ � zð0Þ� ¼ 0

variance of ½zðT Þ � zð0Þ� ¼ N�t ¼ T

standard deviation of ½zðT Þ � zð0Þ� ¼
ffiffiffiffi
T

p

This is consistent with the discussion earlier in this section.

Example 14.1

Suppose that the value, z, of a variable that follows a Wiener process is initially 25
and that time is measured in years. At the end of 1 year, the value of the variable

is normally distributed with a mean of 25 and a standard deviation of 1.0. At the
end of 5 years, it is normally distributed with a mean of 25 and a standard

deviation of
ffiffiffi
5

p
, or 2.236. Our uncertainty about the value of the variable at a

certain time in the future, as measured by its standard deviation, increases as the

square root of how far we are looking ahead.

In ordinary calculus, it is usual to proceed from small changes to the limit as the small
changes become closer to zero. Thus, dx ¼ a dt is the notation used to indicate that

�x ¼ a�t in the limit as �t ! 0. We use similar notational conventions in stochastic
calculus. So, when we refer to dz as a Wiener process, we mean that it has the properties

for �z given above in the limit as �t ! 0.

Figure 14.1 illustrates what happens to the path followed by z as the limit �t ! 0 is
approached. Note that the path is quite ‘‘jagged.’’ This is because the standard

deviation of the movement in z in time �t equals
ffiffiffiffiffi
�t

p
and, when �t is small,

ffiffiffiffiffi
�t

p
is

much bigger than �t. Two intriguing properties of Wiener processes, related to thisffiffiffiffiffi
�t

p
property, are as follows:

1. The expected length of the path followed by z in any time interval is infinite.

2. The expected number of times z equals any particular value in any time interval is
infinite.3

Generalized Wiener Process

The mean change per unit time for a stochastic process is known as the drift rate and

the variance per unit time is known as the variance rate. The basic Wiener process, dz,
that has been developed so far has a drift rate of zero and a variance rate of 1.0. The

drift rate of zero means that the expected value of z at any future time is equal to its
current value. The variance rate of 1.0 means that the variance of the change in z in a
time interval of length T equals T . A generalized Wiener process for a variable x can be

defined in terms of dz as
dx ¼ a dtþ b dz ð14:3Þ

where a and b are constants.

To understand equation (14.3), it is useful to consider the two components on the

right-hand side separately. The a dt term implies that x has an expected drift rate of
a per unit of time. Without the b dz term, the equation is dx ¼ a dt, which implies that

3 This is because z has some nonzero probability of equaling any value v in the time interval. If it equals v in

time t, the expected number of times it equals v in the immediate vicinity of t is infinite.
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Relatively large value of Δt

Smaller value of Δt

The true process obtained as Δt → 0

Figure 14.1 How a Wiener process is obtained when �t ! 0 in equation (14.1).
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dx=dt ¼ a. Integrating with respect to time, we get

x ¼ x0 þ at

where x0 is the value of x at time 0. In a period of time of length T , the variable x

increases by an amount aT . The b dz term on the right-hand side of equation (14.3) can
be regarded as adding noise or variability to the path followed by x. The amount of this
noise or variability is b times a Wiener process. AWiener process has a variance rate per
unit time of 1.0. It follows that b times a Wiener process has a variance rate per unit
time of b2. In a small time interval �t, the change �x in the value of x is given by
equations (14.1) and (14.3) as

�x ¼ a�tþ b�
ffiffiffiffiffi
�t

p

where, as before, � has a standard normal distribution �ð0; 1Þ. Thus �x has a normal
distribution with

mean of �x ¼ a�t

standard deviation of �x ¼ b
ffiffiffiffiffi
�t

p

variance of �x ¼ b
2�t

Similar arguments to those given for a Wiener process show that the change in the value
of x in any time interval T is normally distributed with

mean of change in x ¼ aT

standard deviation of change in x ¼ b
ffiffiffiffi
T

p

variance of change in x ¼ b
2
T

To summarize, the generalized Wiener process given in equation (14.3) has an expected
drift rate (i.e., average drift per unit of time) of a and a variance rate (i.e., variance per
unit of time) of b2. It is illustrated in Figure 14.2.

Value of
variable, x Generalized

Wiener processprocess
dx = a dt + b dz

dx = a dt

Wiener process, dz

Time

Figure 14.2 Generalized Wiener process with a ¼ 0:3 and b ¼ 1:5.
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Example 14.2

Consider the situation where the cash position of a company, measured in thou-
sands of dollars, follows a generalized Wiener process with a drift of 20 per year
and a variance rate of 900 per year. Initially, the cash position is 50. At the end of
1 year the cash position will have a normal distribution with a mean of 70 and a
standard deviation of

ffiffiffiffiffiffiffiffi
900

p
, or 30. At the end of 6 months it will have a normal

distribution with a mean of 60 and a standard deviation of 30
ffiffiffiffiffiffiffi
0:5

p ¼ 21:21. Our
uncertainty about the cash position at some time in the future, as measured by its
standard deviation, increases as the square root of how far ahead we are looking.
(Note that the cash position can become negative. We can interpret this as a
situation where the company is borrowing funds.)

Itô Process

A further type of stochastic process, known as an Itô process, can be defined. This is a
generalized Wiener process in which the parameters a and b are functions of the value of
the underlying variable x and time t. An Itô process can therefore be written as

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14:4Þ
Both the expected drift rate and variance rate of an Itô process are liable to change over
time. In a small time interval between t and tþ�t, the variable changes from x to
xþ�x, where

�x ¼ aðx; tÞ�tþ bðx; tÞ�
ffiffiffiffiffi
�t

p

This equation involves a small approximation. It assumes that the drift and variance rate
of x remain constant, equal to their values at time t, during the time interval between t

and tþ�t.
Note that the process in equation (14.4) is Markov because the change in x at time t

depends only on the value of x at time t, not on its history. A non-Markov process could
be defined by letting a and b in equation (14.4) depend on values of x prior to time t.

14.3 THE PROCESS FOR A STOCK PRICE

In this section we discuss the stochastic process usually assumed for the price of a non-
dividend-paying stock.

It is tempting to suggest that a stock price follows a generalizedWiener process; that is,
that it has a constant expected drift rate and a constant variance rate. However, this
model fails to capture a key aspect of stock prices. This is that the expected percentage
return required by investors from a stock is independent of the stock’s price. If investors
require a 14% per annum expected return when the stock price is $10, then, ceteris
paribus, they will also require a 14% per annum expected return when it is $50.

Clearly, the assumption of constant expected drift rate is inappropriate and needs to
be replaced by the assumption that the expected return (i.e., expected drift divided by
the stock price) is constant. If S is the stock price at time t, then the expected drift rate
in S should be assumed to be �S for some constant parameter �. This means that in a
short interval of time, �t, the expected increase in S is �S�t. The parameter � is the
expected rate of return on the stock.
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If the coefficient of dz is zero, so that there is no uncertainty, then this model implies
that

�S ¼ �S�t

In the limit, as �t ! 0,
dS ¼ �S dt

or
dS

S
¼ � dt

Integrating between time 0 and time T , we get

ST ¼ S0e
�T ð14:5Þ

where S0 and ST are the stock price at time 0 and time T . Equation (14.5) shows that,
when there is no uncertainty, the stock price grows at a continuously compounded rate
of � per unit of time.

In practice, of course, there is uncertainty. A reasonable assumption is that the
variability of the return in a short period of time, �t, is the same regardless of the
stock price. In other words, an investor is just as uncertain of the return when the stock
price is $50 as when it is $10. This suggests that the standard deviation of the change in
a short period of time �t should be proportional to the stock price and leads to the
model

dS ¼ �S dtþ �S dz
or

dS

S
¼ � dtþ � dz ð14:6Þ

Equation (14.6) is the most widely used model of stock price behavior. The variable � is
the stock’s expected rate of return. The variable � is the volatility of the stock price. The
variable �2 is referred to as its variance rate. The model in equation (14.6) represents
the stock price process in the real world. In a risk-neutral world, � equals the risk-free
rate r.

Discrete-Time Model

The model of stock price behavior we have developed is known as geometric Brownian
motion. The discrete-time version of the model is

�S

S
¼ ��tþ ��

ffiffiffiffiffi
�t

p
ð14:7Þ

or

�S ¼ �S�tþ �S�
ffiffiffiffiffi
�t

p
ð14:8Þ

The variable �S is the change in the stock price S in a small time interval �t, and as
before � has a standard normal distribution (i.e., a normal distribution with a mean of
zero and standard deviation of 1.0). The parameter � is the expected rate of return per
unit of time from the stock. The parameter � is the volatility of the stock price. In this
chapter we will assume these parameters are constant.

The left-hand side of equation (14.7) is the discrete approximation to the return
provided by the stock in a short period of time, �t. The term ��t is the expected value
of this return, and the term ��

ffiffiffiffiffi
�t

p
is the stochastic component of the return. The
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variance of the stochastic component (and, therefore, of the whole return) is �2�t. This
is consistent with the definition of the volatility � given in Section 13.7; that is, � is such
that �

ffiffiffiffiffi
�t

p
is the standard deviation of the return in a short time period �t.

Equation (14.7) shows that �S=S is approximately normally distributed with mean
��t and standard deviation �

ffiffiffiffiffi
�t

p
. In other words,

�S

S
� �ð��t; �2�tÞ ð14:9Þ

Example 14.3

Consider a stock that pays no dividends, has a volatility of 30% per annum, and
provides an expected return of 15% per annum with continuous compounding. In
this case, � ¼ 0:15 and � ¼ 0:30. The process for the stock price is

dS

S
¼ 0:15 dtþ 0:30 dz

If S is the stock price at a particular time and �S is the increase in the stock price
in the next small interval of time, the discrete approximation to the process is

�S

S
¼ 0:15�tþ 0:30�

ffiffiffiffiffi
�t

p

where � has a standard normal distribution. Consider a time interval of 1 week,
or 0.0192 year, so that �t ¼ 0:0192. Then the approximation gives

�S

S
¼ 0:15� 0:0192þ 0:30�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0192

p
�

or
�S ¼ 0:00288S þ 0:0416S�

Monte Carlo Simulation

A Monte Carlo simulation of a stochastic process is a procedure for sampling random
outcomes for the process. We will use it as a way of developing some understanding of
the nature of the stock price process in equation (14.6).

Consider the situation in Example 14.3 where the expected return from a stock is
15% per annum and the volatility is 30% per annum. The stock price change over
1 week was shown to be approximately

�S ¼ 0:00288S þ 0:0416S� ð14:10Þ
A path for the stock price over 10 weeks can be simulated by sampling repeatedly for �
from �ð0; 1Þ and substituting into equation (14.10). The expression ¼RANDð Þ in Excel
produces a random sample between 0 and 1. The inverse cumulative normal distribution
is NORMSINV. The instruction to produce a random sample from a standard normal
distribution in Excel is therefore ¼NORMSINVðRANDð ÞÞ. Table 14.1 shows one path
for a stock price that was sampled in this way. The initial stock price is assumed to be
$100. For the first period, � is sampled as 0.52. From equation (14.10), the change during
the first time period is

�S ¼ 0:00288� 100þ 0:0416� 100� 0:52 ¼ 2:45

Therefore, at the beginning of the second time period, the stock price is $102.45. The
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value of � sampled for the next period is 1.44. From equation (14.10), the change during
the second time period is

�S ¼ 0:00288� 102:45þ 0:0416� 102:45� 1:44 ¼ 6:43

So, at the beginning of the next period, the stock price is $108.88, and so on.4 Note

that, because the process we are simulating is Markov, the samples for � should be

independent of each other.

Table 14.1 assumes that stock prices are measured to the nearest cent. It is important

to realize that the table shows only one possible pattern of stock price movements.
Different random samples would lead to different price movements. Any small time

interval �t can be used in the simulation. In the limit as �t ! 0, a perfect description

of the stochastic process is obtained. The final stock price of 111.54 in Table 14.1 can be
regarded as a random sample from the distribution of stock prices at the end of

10 weeks. By repeatedly simulating movements in the stock price, a complete prob-
ability distribution of the stock price at the end of this time is obtained. Monte Carlo

simulation is discussed in more detail in Chapter 21.

14.4 THE PARAMETERS

The process for a stock price developed in this chapter involves two parameters, � and �.
The parameter � is the expected return (annualized) earned by an investor in a short

period of time. Most investors require higher expected returns to induce them to take
higher risks. It follows that the value of � should depend on the risk of the return from

the stock.5 It should also depend on the level of interest rates in the economy. The higher

the level of interest rates, the higher the expected return required on any given stock.

Table 14.1 Simulation of stock price when � ¼ 0:15 and
� ¼ 0:30 during 1-week periods.

Stock price
at start of period

Random sample
for �

Change in stock price
during period

100.00 0.52 2.45
102.45 1.44 6.43
108.88 �0.86 �3.58
105.30 1.46 6.70
112.00 �0.69 �2.89
109.11 �0.74 �3.04
106.06 0.21 1.23
107.30 �1.10 �4.60
102.69 0.73 3.41
106.11 1.16 5.43
111.54 2.56 12.20

4 In practice, it is more efficient to sample ln S rather than S, as will be discussed in Section 21.6.
5 More precisely, � depends on that part of the risk that cannot be diversified away by the investor.
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Fortunately, we do not have to concern ourselves with the determinants of � in any

detail because the value of a derivative dependent on a stock is, in general, independent

of �. The parameter �, the stock price volatility, is, by contrast, critically important to

the determination of the value of many derivatives. We will discuss procedures for

estimating � in Chapter 15. Typical values of � for a stock are in the range 0.15 to 0.60

(i.e., 15% to 60%).

The standard deviation of the proportional change in the stock price in a small

interval of time �t is �
ffiffiffiffiffi
�t

p
. As a rough approximation, the standard deviation of the

proportional change in the stock price over a relatively long period of time T is �
ffiffiffiffi
T

p
.

This means that, as an approximation, volatility can be interpreted as the standard
deviation of the change in the stock price in 1 year. In Chapter 15, we will show that the

volatility of a stock price is exactly equal to the standard deviation of the continuously

compounded return provided by the stock in 1 year.

14.5 CORRELATED PROCESSES

So far we have considered how the stochastic process for a single variable can be
represented. We now extend the analysis to the situation where there are two or more

variables following correlated stochastic processes. Suppose that the processes followed

by two variables x1 and x2 are

dx1 ¼ a1 dtþ b1 dz1 and dx2 ¼ a2 dtþ b2 dz2

where dz1 and dz2 are Wiener processes.

As has been explained, the discrete-time approximations for these processes are

�x1 ¼ a1 �tþ b1 �1
ffiffiffiffiffiffi
�t

p
and �x2 ¼ a2 �tþ b2 �2

ffiffiffiffiffiffi
�t

p

where �1 and �2 are samples from a standard normal distribution �ð0; 1Þ.
The variables x1 and x2 can be simulated in the way described in Section 14.3. If they

are uncorrelated with each other, the random samples �1 and �2 that are used to obtain

movements in a particular period of time �t should be independent of each other.

If x1 and x2 have a nonzero correlation �, then the �1 and �2 that are used to obtain

movements in a particular period of time should be sampled from a bivariate normal

distribution. Each variable in the bivariate normal distribution has a standard normal

distribution and the correlation between the variables is �. In this situation, we would

refer to the Wiener processes dz1 and dz2 as having a correlation �.
Obtaining samples for uncorrelated standard normal variables in cells in Excel

involves putting the instruction ‘‘=NORMSINV(RAND))’’ in each of the cells. To

sample standard normal variables �1 and �2 with correlation �, we can set

�1 ¼ u and �2 ¼ �uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
v

where u and v are sampled as uncorrelated variables with standard normal distributions.

Note that, in the processes we have assumed for x1 and x2, the parameters a1, a2, b1,

and b2 can be functions of x1, x2, and t. In particular, a1 and b1 can be functions of x2
as well as x1 and t ; and a2 and b2 can be functions of x1 as well as x2 and t.
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The results here can be generalized. When there are three different variables following
correlated stochastic processes, we have to sample three different �’s. These have a
trivariate normal distribution. When there are n correlated variables, we have n different
�’s and these must be sampled from an appropriate multivariate normal distribution.
The way this is done is explained in Chapter 21.

14.6 ITÔ’S LEMMA

The price of a stock option is a function of the underlying stock’s price and time. More
generally, we can say that the price of any derivative is a function of the stochastic
variables underlying the derivative and time. A serious student of derivatives must,
therefore, acquire some understanding of the behavior of functions of stochastic
variables. An important result in this area was discovered by the mathematician
K. Itô in 1951,6 and is known as Itô’s lemma.

Suppose that the value of a variable x follows the Itô process

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14:11Þ
where dz is a Wiener process and a and b are functions of x and t. The variable x has a
drift rate of a and a variance rate of b2. Itô’s lemma shows that a function G of x and t

follows the process

dG ¼
�
@G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b
2

�
dtþ @G

@x
b dz ð14:12Þ

where the dz is the same Wiener process as in equation (14.11). Thus, G also follows an
Itô process, with a drift rate of

@G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b
2

and a variance rate of �
@G

@x

�2
b
2

A completely rigorous proof of Itô’s lemma is beyond the scope of this book. In the
appendix to this chapter, we show that the lemma can be viewed as an extension of well-
known results in differential calculus.

Earlier, we argued that
dS ¼ �S dtþ �S dz ð14:13Þ

with � and � constant, is a reasonable model of stock price movements. From Itô’s
lemma, it follows that the process followed by a function G of S and t is

dG ¼
�
@G

@S
�S þ @G

@t
þ 1

2

@2G

@S2
�2
S
2

�
dtþ @G

@S
�S dz ð14:14Þ

Note that both S and G are affected by the same underlying source of uncertainty, dz.
This proves to be very important in the derivation of the Black–Scholes–Merton results.

6 See K. Itô, ‘‘On Stochastic Differential Equations,’’ Memoirs of the American Mathematical Society,

4 (1951): 1–51.
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Application to Forward Contracts

To illustrate Itô’s lemma, consider a forward contract on a non-dividend-paying stock.
Assume that the risk-free rate of interest is constant and equal to r for all maturities.
From equation (5.1),

F0 ¼ S0e
rT

where F0 is the forward price at time zero, S0 is the spot price at time zero, and T is the
time to maturity of the forward contract.

We are interested in what happens to the forward price as time passes. We define F as
the forward price at a general time t, and S as the stock price at time t, with t < T . The
relationship between F and S is given by

F ¼ Se
rðT�tÞ ð14:15Þ

Assuming that the process for S is given by equation (14.13), we can use Itô’s lemma to
determine the process for F . From equation (14.15),

@F

@S
¼ e

rðT�tÞ;
@2F

@S 2
¼ 0;

@F

@t
¼ �rSe

rðT�tÞ

From equation (14.14), the process for F is given by

dF ¼ �
e
rðT�tÞ�S � rSe

rðT�tÞ�
dtþ e

rðT�tÞ�S dz

Substituting F for SerðT�tÞ gives

dF ¼ ð�� rÞF dtþ �F dz ð14:16Þ

Like S, the forward price F follows geometric Brownian motion. It has an expected
growth rate of �� r rather than �. The growth rate in F is the excess return of S over
the risk-free rate.

14.7 THE LOGNORMAL PROPERTY

We now use Itô’s lemma to derive the process followed by ln S when S follows the process
in equation (14.13). We define

G ¼ ln S

Since

@G

@S
¼ 1

S
;

@2G

@S 2
¼ � 1

S 2
;

@G

@t
¼ 0

it follows from equation (14.14) that the process followed by G is

dG ¼
�
�� �2

2

�
dtþ � dz ð14:17Þ

Since � and � are constant, this equation indicates that G ¼ ln S follows a generalized
Wiener process. It has constant drift rate �� �2=2 and constant variance rate �2. The

336 CHAPTER 14



change in ln S between time 0 and some future time T is therefore normally distributed,
with mean ð�� �2=2ÞT and variance �2

T . This means that

ln ST � ln S0 � �

��
�� �2

2

�
T ; �2

T

�
ð14:18Þ

or

ln ST � �

�
ln S0 þ

�
�� �2

2

�
T ; �2

T

�
ð14:19Þ

where ST is the stock price at time T , S0 is the stock price at time 0, and as before �ðm; vÞ
denotes a normal distribution with mean m and variance v.
Equation (14.19) shows that ln ST is normally distributed. A variable has a lognormal

distribution if the natural logarithm of the variable is normally distributed. The model
of stock price behavior we have developed in this chapter therefore implies that a stock’s
price at time T , given its price today, is lognormally distributed. The standard deviation
of the logarithm of the stock price is �

ffiffiffiffi
T

p
. It is proportional to the square root of how

far ahead we are looking.

SUMMARY

Stochastic processes describe the probabilistic evolution of the value of a variable
through time. A Markov process is one where only the present value of the variable
is relevant for predicting the future. The past history of the variable and the way in
which the present has emerged from the past is irrelevant.

A Wiener process dz is a Markov process describing the evolution of a normally
distributed variable. The drift of the process is zero and the variance rate is 1.0 per unit
time. This means that, if the value of the variable is x0 at time 0, then at time T it is
normally distributed with mean x0 and standard deviation

ffiffiffiffi
T

p
.

A generalized Wiener process describes the evolution of a normally distributed
variable with a drift of a per unit time and a variance rate of b2 per unit time, where
a and b are constants. This means that if, as before, the value of the variable is x0 at
time 0, it is normally distributed with a mean of x0 þ aT and a standard deviation of
b

ffiffiffiffi
T

p
at time T .

An Itô process is a process where the drift and variance rate of x can be a function of
both x itself and time. The change in x in a very short period of time is, to a good
approximation, normally distributed, but its change over longer periods of time is liable
to be nonnormal.

One way of gaining an intuitive understanding of a stochastic process for a variable is
to simulate the behavior of the variable. This involves dividing a time interval into
many small time steps and randomly sampling possible paths for the variable. The
future probability distribution for the variable can then be calculated. Monte Carlo
simulation is discussed further in Chapter 21.

Itô’s lemma is a way of calculating the stochastic process followed by a function of a
variable from the stochastic process followed by the variable itself. As we shall see in
Chapter 15, Itô’s lemma plays a very important part in the pricing of derivatives. A key
point is that the Wiener process dz underlying the stochastic process for the variable is
exactly the same as the Wiener process underlying the stochastic process for the function
of the variable. Both are subject to the same underlying source of uncertainty.
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The stochastic process usually assumed for a stock price is geometric Brownian

motion. Under this process the return to the holder of the stock in a small period of

time is normally distributed and the returns in two nonoverlapping periods are

independent. The value of the stock price at a future time has a lognormal distribution.

The Black–Scholes–Merton model, which we cover in the next chapter, is based on the

geometric Brownian motion assumption.
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Practice Questions (Answers in Solutions Manual)

14.1. What would it mean to assert that the temperature at a certain place follows a Markov
process? Do you think that temperatures do, in fact, follow a Markov process?

14.2. Can a trading rule based on the past history of a stock’s price ever produce returns that
are consistently above average? Discuss.

14.3. A company’s cash position, measured in millions of dollars, follows a generalized
Wiener process with a drift rate of 0.5 per quarter and a variance rate of 4.0 per quarter.
How high does the company’s initial cash position have to be for the company to have a
less than 5% chance of a negative cash position by the end of 1 year?

14.4. Variables X1 and X2 follow generalized Wiener processes, with drift rates �1 and �2 and
variances �2

1 and �2
2 . What process does X1 þX2 follow if:

(a) The changes in X1 and X2 in any short interval of time are uncorrelated?
(b) There is a correlation � between the changes in X1 and X2 in any short time interval?

14.5. Consider a variable S that follows the process

dS ¼ � dtþ � dz

For the first three years, � ¼ 2 and � ¼ 3; for the next three years, � ¼ 3 and � ¼ 4. If
the initial value of the variable is 5, what is the probability distribution of the value of
the variable at the end of year 6?
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14.6. Suppose that G is a function of a stock price S and time. Suppose that �S and �G are the
volatilities of S and G. Show that, when the expected return of S increases by ��S, the
growth rate of G increases by ��G, where � is a constant.

14.7. Stock A and stock B both follow geometric Brownian motion. Changes in any short
interval of time are uncorrelated with each other. Does the value of a portfolio consisting
of one of stock A and one of stock B follow geometric Brownian motion? Explain your
answer.

14.8. The process for the stock price in equation (14.8) is

�S ¼ �S�tþ �S�
ffiffiffiffiffi
�t

p

where � and � are constant. Explain carefully the difference between this model and each
of the following:

�S ¼ ��tþ ��
ffiffiffiffiffi
�t

p

�S ¼ �S�tþ ��
ffiffiffiffiffi
�t

p

�S ¼ ��tþ �S�
ffiffiffiffiffi
�t

p

Why is the model in equation (14.8) a more appropriate model of stock price behavior
than any of these three alternatives?

14.9. It has been suggested that the short-term interest rate r follows the stochastic process

dr ¼ aðb� rÞ dtþ rc dz

where a, b, c are positive constants and dz is a Wiener process. Describe the nature of
this process.

14.10. Suppose that a stock price S follows geometric Brownian motion with expected return �
and volatility � :

dS ¼ �S dtþ �S dz

What is the process followed by the variable S
n? Show that Sn also follows geometric

Brownian motion.

14.11. Suppose that x is the yield to maturity with continuous compounding on a zero-coupon
bond that pays off $1 at time T . Assume that x follows the process

dx ¼ aðx0 � xÞ dtþ sx dz

where a, x0, and s are positive constants and dz is a Wiener process. What is the process
followed by the bond price?

14.12. A stock whose price is $30 has an expected return of 9% and a volatility of 20%. In
Excel, simulate the stock price path over 5 years using monthly time steps and random
samples from a normal distribution. Chart the simulated stock price path. By hitting F9,
observe how the path changes as the random samples change.

Further Questions

14.13. Suppose that a stock price has an expected return of 16% per annum and a volatility of
30% per annum. When the stock price at the end of a certain day is $50, calculate the
following:
(a) The expected stock price at the end of the next day
(b) The standard deviation of the stock price at the end of the next day
(c) The 95% confidence limits for the stock price at the end of the next day.
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14.14. A company’s cash position, measured in millions of dollars, follows a generalized
Wiener process with a drift rate of 0.1 per month and a variance rate of 0.16 per month.
The initial cash position is 2.0.
(a) What are the probability distributions of the cash position after 1 month, 6 months,

and 1 year?
(b) What are the probabilities of a negative cash position at the end of 6 months and

1 year?
(c) At what time in the future is the probability of a negative cash position greatest?

14.15. Suppose that x is the yield on a perpetual government bond that pays interest at the rate
of $1 per annum. Assume that x is expressed with continuous compounding, that interest
is paid continuously on the bond, and that x follows the process

dx ¼ aðx0 � xÞ dtþ sx dz

where a, x0, and s are positive constants, and dz is a Wiener process. What is the process
followed by the bond price? What is the expected instantaneous return (including interest
and capital gains) to the holder of the bond?

14.16. If S follows the geometric Brownian motion process in equation (14.6), what is the
process followed by
(a) y ¼ 2S
(b) y ¼ S

2

(c) y ¼ e
S

(d) y ¼ e
rðT�tÞ=S.

In each case express the coefficients of dt and dz in terms of y rather than S.

14.17. A stock price is currently 50. Its expected return and volatility are 12% and 30%,
respectively. What is the probability that the stock price will be greater than 80 in
2 years? (Hint : ST > 80 when ln ST > ln 80.)

14.18. Stock A, whose price is $30, has an expected return of 11% and a volatility of 25%.
Stock B, whose price is $40, has an expected return of 15% and a volatility of 30%. The
processes driving the returns are correlated with correlation parameter �. In Excel,
simulate the two stock price paths over 3 months using daily time steps and random
samples from normal distributions. Chart the results and by hitting F9 observe how the
paths change as the random samples change. Consider values for � equal to 0.25, 0.75,
and 0.95.
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APPENDIX

DERIVATION OF ITÔ’S LEMMA

In this appendix, we show how Itô’s lemma can be regarded as a natural extension of
other, simpler results. Consider a continuous and differentiable function G of a
variable x. If �x is a small change in x and �G is the resulting small change in G, a
well-known result from ordinary calculus is

�G � dG

dx
�x ð14A:1Þ

In other words, �G is approximately equal to the rate of change of G with respect to x

multiplied by �x. The error involves terms of order �x
2. If more precision is required, a

Taylor series expansion of �G can be used:

�G ¼ dG

dx
�xþ 1

2

d
2
G

dx2
�x

2 þ 1
6

d
3
G

dx3
�x

3 þ � � �

For a continuous and differentiable function G of two variables x and y, the result
analogous to equation (14A.1) is

�G � @G

@x
�xþ @G

@y
�y ð14A:2Þ

and the Taylor series expansion of �G is

�G ¼ @G

@x
�xþ @G

@y
�yþ 1

2

@2G

@x2
�x

2 þ @2G

@x @y
�x�yþ 1

2

@2G

@y2
�y

2 þ � � � ð14A:3Þ

In the limit, as �x and �y tend to zero, equation (14A.3) becomes

dG ¼ @G

@x
dxþ @G

@y
dy ð14A:4Þ

We now extend equation (14A.4) to cover functions of variables following Itô processes.
Suppose that a variable x follows the Itô process

dx ¼ aðx; tÞ dtþ bðx; tÞ dz ð14A:5Þ
and that G is some function of x and of time t. By analogy with equation (14A.3), we
can write

�G ¼ @G

@x
�xþ @G

@t
�tþ 1

2

@2G

@x2
�x

2 þ @2G

@x @t
�x�tþ 1

2

@2G

@t2
�t

2 þ � � � ð14A:6Þ

Equation (14A.5) can be discretized to

�x ¼ aðx; tÞ�tþ bðx; tÞ�
ffiffiffiffiffi
�t

p

or, if arguments are dropped,

�x ¼ a�tþ b�
ffiffiffiffiffi
�t

p
ð14A:7Þ
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This equation reveals an important difference between the situation in equation (14A.6)
and the situation in equation (14A.3). When limiting arguments were used to move
from equation (14A.3) to equation (14A.4), terms in �x2 were ignored because they
were second-order terms. From equation (14A.7), we have

�x
2 ¼ b

2�2�tþ terms of higher order in �t ð14A:8Þ
This shows that the term involving �x

2 in equation (14A.6) has a component that is of
order �t and cannot be ignored.

The variance of a standard normal distribution is 1.0. This means that

Eð�2Þ � ½Eð�Þ�2 ¼ 1

where E denotes expected value. Since Eð�Þ ¼ 0, it follows that Eð�2Þ ¼ 1. The expected
value of �2�t, therefore, is �t. The variance of �2�t is, from the properties of the
standard normal distribution, 2�t2. We know that the variance of the change in a
stochastic variable in time �t is proportional to �t, not �t2. The variance of �2�t is
therefore too small for it to have a stochastic component. As a result, we can treat �2�t

as nonstochastic and equal to its expected value, �t, as �t tends to zero. It follows from
equation (14A.8) that �x2 becomes nonstochastic and equal to b2dt as �t tends to zero.
Taking limits as �x and �t tend to zero in equation (14A.6), and using this last result,
we obtain

dG ¼ @G

@x
dxþ @G

@t
dtþ 1

2

@2G

@x2
b
2
dt ð14A:9Þ

This is Itô’s lemma. If we substitute for dx from equation (14A.5), equation (14A.9)
becomes

dG ¼
�
@G

@x
aþ @G

@t
þ 1

2

@2G

@x2
b
2

�
dtþ @G

@x
b dz:

Technical Note 29 atwww.rotman.utoronto.ca/�hull/TechnicalNotes provides proofs
of extensions to Itô’s lemma. When G is a function of variables x1, x2, . . . , xn and

dxi ¼ ai dtþ bi dzi
we have

dG ¼
�Xn

i¼1

@G

@xi
ai þ

@G

@t
þ 1

2

Xn
i¼1

Xn
j¼1

@2G

@xi @xj
bibj�ij

�
dtþ

Xn
i¼1

@G

@xi
bi dzi ð14A:10Þ

Also, when G is a function of a variable x with several sources of uncertainty so that

dx ¼ a dtþ
Xm
i¼1

bi dzi

we have

dG ¼
�
@G

@x
aþ @G

@t
þ 1

2

@2G

@x2

Xm
i¼1

Xm
j¼1

bibj�ij

�
dtþ @G

@x

Xm
i¼1

bi dzi ð14A:11Þ

In these equations, �ij is the correlation between dzi and dzj (see Section 14.5).
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The Black–
Scholes–Merton

Model

In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton achieved a major

breakthrough in the pricing of European stock options.1 This was the development of

what has become known as the Black–Scholes–Merton (or Black–Scholes) model. The

model has had a huge influence on the way that traders price and hedge derivatives. In

1997, the importance of the model was recognized when Robert Merton and Myron

Scholes were awarded the Nobel prize for economics. Sadly, Fischer Black died in 1995;

otherwise he too would undoubtedly have been one of the recipients of this prize.

How did Black, Scholes, and Merton make their breakthrough? Previous researchers

had made the similar assumptions and had correctly calculated the expected payoff from

a European option. However, as explained in Section 13.2, it is difficult to know the

correct discount rate to use for this payoff. Black and Scholes used the capital asset

pricing model (see the appendix to Chapter 3) to determine a relationship between the

market’s required return on the option and the required return on the stock. This was

not easy because the relationship depends on both the stock price and time. Merton’s

approach was different from that of Black and Scholes. It involved setting up a riskless

portfolio consisting of the option and the underlying stock and arguing that the return

on the portfolio over a short period of time must be the risk-free return. This is similar

to what we did in Section 13.1—but more complicated because the portfolio changes

continuously through time. Merton’s approach was more general than that of Black and

Scholes because it did not rely on the assumptions of the capital asset pricing model.

This chapter covers Merton’s approach to deriving the Black–Scholes–Merton

model. It explains how volatility can be either estimated from historical data or implied

from option prices using the model. It shows how the risk-neutral valuation argument

introduced in Chapter 13 can be used. It also shows how the Black–Scholes–Merton

model can be extended to deal with European call and put options on dividend-paying

stocks and presents some results on the pricing of American call options on dividend-

paying stocks.

1 See F. Black and M. Scholes, ‘‘The Pricing of Options and Corporate Liabilities,’’ Journal of Political

Economy, 81 (May/June 1973): 637–59; R.C. Merton, ‘‘Theory of Rational Option Pricing,’’ Bell Journal of

Economics and Management Science, 4 (Spring 1973): 141–83.
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15.1 LOGNORMAL PROPERTY OF STOCK PRICES

The model of stock price behavior used by Black, Scholes, and Merton is the model we
developed in Chapter 14. It assumes that percentage changes in the stock price in a very
short period of time are normally distributed. Define

� : Expected return on stock per year

� : Volatility of the stock price per year.

The mean and standard deviation of the return in time �t are approximately ��t and
�

ffiffiffiffiffi
�t

p
, so that

�S

S
� �ð��t; �2�tÞ ð15:1Þ

where �S is the change in the stock price S in time �t, and �ðm; vÞ denotes a normal
distribution with mean m and variance v. (This is equation (14.9).)

As shown in Section 14.7, the model implies that

ln ST � ln S0 � �

��
�� �2

2

�
T ; �2

T

�
so that

ln
ST

S0
� �

��
�� �2

2

�
T ; �2

T

�
ð15:2Þ

and

ln ST � �

�
ln S0 þ

�
�� �2

2

�
T ; �2

T

�
ð15:3Þ

where ST is the stock price at a future time T and S0 is the stock price at time 0. There is
no approximation here. The variable ln ST is normally distributed, so that ST has a
lognormal distribution. The mean of ln ST is ln S0 þ ð�� �2=2ÞT and the standard
deviation of ln ST is �

ffiffiffiffi
T

p
.

Example 15.1

Consider a stock with an initial price of $40, an expected return of 16% per
annum, and a volatility of 20% per annum. From equation (15.3), the probability
distribution of the stock price ST in 6 months’ time is given by

ln ST � �½ln 40þ ð0:16� 0:22=2Þ � 0:5; 0:22 � 0:5�
ln ST � �ð3:759; 0:02Þ

There is a 95% probability that a normally distributed variable has a value within
1.96 standard deviations of its mean. In this case, the standard deviation isffiffiffiffiffiffiffiffiffi
0:02

p ¼ 0:141. Hence, with 95% confidence,

3:759� 1:96� 0:141 < ln ST < 3:759þ 1:96� 0:141

This can be written

e
3:759�1:96�0:141 < ST < e

3:759þ1:96�0:141

or
32:55 < ST < 56:56

Thus, there is a 95% probability that the stock price in 6 months will lie between
32.55 and 56.56.
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A variable that has a lognormal distribution can take any value between zero and

infinity. Figure 15.1 illustrates the shape of a lognormal distribution. Unlike the normal

distribution, it is skewed so that the mean, median, and mode are all different. From

equation (15.3) and the properties of the lognormal distribution, it can be shown that

the expected value EðST Þ of ST is given by

EðST Þ ¼ S0e
�T ð15:4Þ

This fits in with the definition of � as the expected rate of return. The variance varðST Þ
of ST , can be shown to be given by2

varðST Þ ¼ S
2
0 e

2�T ðe�2T � 1Þ ð15:5Þ

Example 15.2

Consider a stock where the current price is $20, the expected return is 20% per

annum, and the volatility is 40% per annum. The expected stock price, EðST Þ, and
the variance of the stock price, varðST Þ, in 1 year are given by

EðST Þ ¼ 20e0:2�1 ¼ 24:43 and varðST Þ ¼ 400e2�0:2�1ðe0:42�1 � 1Þ ¼ 103:54

The standard deviation of the stock price in 1 year is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
103:54

p
, or 10.18.

15.2 THE DISTRIBUTION OF THE RATE OF RETURN

The lognormal property of stock prices can be used to provide information on the

probability distribution of the continuously compounded rate of return earned on a

stock between times 0 and T . If we define the continuously compounded rate of return

0

Figure 15.1 Lognormal distribution.

2 See Technical Note 2 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of the results in

equations (15.4) and (15.5). For a more extensive discussion of the properties of the lognormal distribution,

see J. Aitchison and J.A.C. Brown, The Lognormal Distribution. Cambridge University Press, 1966.
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per annum realized between times 0 and T as x, then

ST ¼ S0e
xT

so that

x ¼ 1

T
ln
ST

S0
ð15:6Þ

From equation (15.2), it follows that

x � �

�
�� �2

2
;
�2

T

�
ð15:7Þ

Thus, the continuously compounded rate of return per annum is normally distributed
with mean �� �2=2 and standard deviation �=

ffiffiffiffi
T

p
. As T increases, the standard

deviation of x declines. To understand the reason for this, consider two cases: T ¼ 1
and T ¼ 20. We are more certain about the average return per year over 20 years than
we are about the return in any one year.

Example 15.3

Consider a stock with an expected return of 17% per annum and a volatility of
20% per annum. The probability distribution for the average rate of return (con-
tinuously compounded) realized over 3 years is normal, with mean

0:17� 0:22

2
¼ 0:15

or 15% per annum, and standard deviationffiffiffiffiffiffiffiffiffi
0:22

3

s
¼ 0:1155

or 11.55% per annum. Because there is a 95% chance that a normally distrib-
uted variable will lie within 1.96 standard deviations of its mean, we can be
95% confident that the average return realized over 3 years will be between
15� 1:96� 11:55 ¼ �7:6% and 15þ 1:96� 11:55 ¼ þ37:6% per annum.

15.3 THE EXPECTED RETURN

The expected return, �, required by investors from a stock depends on the riskiness of
the stock. The higher the risk, the higher the expected return. It also depends on the
level of interest rates in the economy. The higher the level of interest rates, the higher
the expected return required on any given stock. Fortunately, we do not have to concern
ourselves with the determinants of � in any detail. It turns out that the value of a stock
option, when expressed in terms of the value of the underlying stock, does not depend
on � at all. Nevertheless, there is one aspect of the expected return from a stock that
frequently causes confusion and needs to be explained.

Our model of stock price behavior implies that, in a very short period of time, the
mean return is ��t. It is natural to assume from this that � is the expected
continuously compounded return on the stock. However, this is not the case. The
continuously compounded return, x, actually realized over a period of time of length T
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is given by equation (15.6) as

x ¼ 1

T
ln
ST

S0

and, as indicated in equation (15.7), the expected value EðxÞ of x is �� �2=2.
The reason why the expected continuously compounded return is different from � is

subtle, but important. Suppose we consider a very large number of very short periods of
time of length �t. Define Si as the stock price at the end of the ith interval and �Si as
Siþ1 � Si. Under the assumptions we are making for stock price behavior, the average
of the returns on the stock in each interval is close to �. In other words, ��t is close to
the arithmetic mean of the �Si=Si. However, the expected return over the whole period
covered by the data, expressed with a compounding interval of �t, is close to �� �2=2,
not �.3 Business Snapshot 15.1 provides a numerical example concerning the mutual
fund industry to illustrate why this is so.

For another explanation of what is going on, we start with equation (15.4):

EðST Þ ¼ S0e
�T

Taking logarithms, we get
ln½EðST Þ� ¼ lnðS0Þ þ �T

It is now tempting to set ln½EðST Þ� ¼ E½lnðST Þ�, so that E½lnðST Þ� � lnðS0Þ ¼ �T , or
E½lnðST=S0Þ� ¼ �T , which leads to EðxÞ ¼ �. However, we cannot do this because ln
is a nonlinear function. In fact, ln½EðST Þ� > E½lnðST Þ�, so that E½lnðST=S0Þ� < �T , which
leads to EðxÞ < �. (As pointed out above, EðxÞ ¼ �� �2=2.)

15.4 VOLATILITY

The volatility, �, of a stock is a measure of our uncertainty about the returns provided
by the stock. Stocks typically have a volatility between 15% and 60%.

From equation (15.7), the volatility of a stock price can be defined as the standard
deviation of the return provided by the stock in 1 year when the return is expressed
using continuous compounding.

When �t is small, equation (15.1) shows that �2�t is approximately equal to the
variance of the percentage change in the stock price in time �t. This means that �

ffiffiffiffiffi
�t

p
is

approximately equal to the standard deviation of the percentage change in the stock
price in time �t. Suppose that � ¼ 0:3, or 30%, per annum and the current stock price
is $50. The standard deviation of the percentage change in the stock price in 1 week is
approximately

30�
ffiffiffiffiffi
1

52

r
¼ 4:16%

A 1-standard-deviation move in the stock price in 1 week is therefore 50� 0:0416 ¼ 2:08.
Uncertainty about a future stock price, as measured by its standard deviation,

increases—at least approximately—with the square root of how far ahead we are
looking. For example, the standard deviation of the stock price in 4 weeks is approxi-
mately twice the standard deviation in 1 week.

3 The arguments in this section show that the term ‘‘expected return’’ is ambiguous. It can refer either to � or

to �� �2=2. Unless otherwise stated, it will be used to refer to � throughout this book.
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Estimating Volatility from Historical Data

To estimate the volatility of a stock price empirically, the stock price is usually observed
at fixed intervals of time (e.g., every day, week, or month). Define:

nþ 1: Number of observations

Si : Stock price at end of ith interval, with i ¼ 0; 1; . . . ; n

� : Length of time interval in years

and let
ui ¼ ln

�
Si

Si�1

�
for i ¼ 1; 2; . . . ; n

The usual estimate, s, of the standard deviation of the ui is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
ðui � �u Þ2

r

Business Snapshot 15.1 Mutual Fund Returns Can Be Misleading

The difference between � and �� �2=2 is closely related to an issue in the reporting of
mutual fund returns. Suppose that the following is a sequence of returns per annum
reported by a mutual fund manager over the last five years (measured using annual
compounding): 15%, 20%, 30%, �20%, 25%.

The arithmetic mean of the returns, calculated by taking the sum of the returns
and dividing by 5, is 14%. However, an investor would actually earn less than 14%
per annum by leaving the money invested in the fund for 5 years. The dollar value of
$100 at the end of the 5 years would be

100� 1:15� 1:20� 1:30� 0:80� 1:25 ¼ $179:40

By contrast, a 14% return with annual compounding would give

100� 1:145 ¼ $192:54

The return that gives $179.40 at the end of five years is 12.4%. This is because

100� ð1:124Þ5 ¼ 179:40

What average return should the fund manager report? It is tempting for the manager
to make a statement such as: ‘‘The average of the returns per year that we have
realized in the last 5 years is 14%.’’ Although true, this is misleading. It is much less
misleading to say: ‘‘The average return realized by someone who invested with us for
the last 5 years is 12.4% per year.’’ In some jurisdictions, regulations require fund
managers to report returns the second way.

This phenomenon is an example of a result that is well known in mathematics. The
geometric mean of a set of numbers is always less than the arithmetic mean. In our
example, the return multipliers each year are 1.15, 1.20, 1.30, 0.80, and 1.25. The
arithmetic mean of these numbers is 1.140, but the geometric mean is only 1.124 and
it is the geometric mean that equals 1 plus the return realized over the 5 years.
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or

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
u2i �

1

nðn� 1Þ
�Xn

i¼1
ui

�2s

where �u is the mean of the ui.
4

From equation (15.2), the standard deviation of the ui is �
ffiffiffi
�

p
. The variable s is

therefore an estimate of �
ffiffiffi
�

p
. It follows that � itself can be estimated as �̂, where

�̂ ¼ sffiffiffi
�

p

The standard error of this estimate can be shown to be approximately �̂=
ffiffiffiffiffiffi
2n

p
.

Choosing an appropriate value for n is not easy. More data generally lead to more
accuracy, but � does change over time and data that are too old may not be relevant for
predicting the future volatility. A compromise that seems to work reasonably well is to
use closing prices from daily data over the most recent 90 to 180 days. Alternatively, as
a rule of thumb, n can be set equal to the number of days to which the volatility is to be
applied. Thus, if the volatility estimate is to be used to value a 2-year option, daily data
for the last 2 years are used. More sophisticated approaches to estimating volatility
involving GARCH models are discussed in Chapter 23.

Example 15.4

Table 15.1 shows a possible sequence of stock prices during 21 consecutive trading
days. In this case, n ¼ 20, so thatXn

i¼1
ui ¼ 0:09531 and

Xn

i¼1
u
2
i ¼ 0:00326

and the estimate of the standard deviation of the daily return isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00326

19
� 0:095312

20� 19

s
¼ 0:01216

or 1.216%. Assuming that there are 252 trading days per year, � ¼ 1=252 and the
data give an estimate for the volatility per annum of 0:01216

ffiffiffiffiffiffiffiffi
252

p ¼ 0:193; or
19.3%. The standard error of this estimate is

0:193ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 20

p ¼ 0:031

or 3.1% per annum.

The foregoing analysis assumes that the stock pays no dividends, but it can be adapted
to accommodate dividend-paying stocks. The return, ui, during a time interval that
includes an ex-dividend day is given by

ui ¼ ln
Si þD

Si�1

where D is the amount of the dividend. The return in other time intervals is still

ui ¼ ln
Si

Si�1

4 The mean �u is often assumed to be zero when estimates of historical volatilities are made.
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However, as tax factors play a part in determining returns around an ex-dividend date,

it is probably best to discard altogether data for intervals that include an ex-dividend

date.

Trading Days vs. Calendar Days

An important issue is whether time should be measured in calendar days or trading

days when volatility parameters are being estimated and used. As shown in Business

Snapshot 15.2, research shows that volatility is much higher when the exchange is open

for trading than when it is closed. As a result, practitioners tend to ignore days when the

exchange is closed when estimating volatility from historical data and when calculating

the life of an option. The volatility per annum is calculated from the volatility per

trading day using the formula

Volatility
per annum

¼ Volatility
per trading day

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Number of trading days

per annum

r

This is what we did in Example 15.4 when calculating volatility from the data in

Table 15.1. The number of trading days in a year is usually assumed to be 252 for stocks.

Table 15.1 Computation of volatility.

Day
i

Closing stock price
(dollars), Si

Price relative
Si=Si�1

Daily return
ui ¼ lnðSi=Si�1Þ

0 20.00

1 20.10 1.00500 0.00499

2 19.90 0.99005 �0.01000

3 20.00 1.00503 0.00501

4 20.50 1.02500 0.02469

5 20.25 0.98780 �0.01227

6 20.90 1.03210 0.03159

7 20.90 1.00000 0.00000

8 20.90 1.00000 0.00000

9 20.75 0.99282 �0.00720

10 20.75 1.00000 0.00000

11 21.00 1.01205 0.01198

12 21.10 1.00476 0.00475

13 20.90 0.99052 �0.00952

14 20.90 1.00000 0.00000

15 21.25 1.01675 0.01661

16 21.40 1.00706 0.00703

17 21.40 1.00000 0.00000

18 21.25 0.99299 �0.00703

19 21.75 1.02353 0.02326

20 22.00 1.01149 0.01143
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The life of an option is also usually measured using trading days rather than calendar
days. It is calculated as T years, where

T ¼ Number of trading days until option maturity

252

15.5 THE IDEA UNDERLYING THE BLACK–SCHOLES–MERTON
DIFFERENTIAL EQUATION

The Black–Scholes–Merton differential equation is an equation that must be satisfied
by the price of any derivative dependent on a non-dividend-paying stock. The equation
is derived in the next section. Here we consider the nature of the arguments we will use.

These are similar to the no-arbitrage arguments we used to value stock options in
Chapter 13 for the situation where stock price movements were assumed to be binomial.
They involve setting up a riskless portfolio consisting of a position in the derivative and
a position in the stock. In the absence of arbitrage opportunities, the return from the
portfolio must be the risk-free interest rate, r. This leads to the Black-Scholes-Merton
differential equation.

Business Snapshot 15.2 What Causes Volatility?

It is natural to assume that the volatility of a stock is caused by new information
reaching the market. This new information causes people to revise their opinions
about the value of the stock. The price of the stock changes and volatility results.
This view of what causes volatility is not supported by research. With several years of
daily stock price data, researchers can calculate:

1. The variance of stock price returns between the close of trading on one day
and the close of trading on the next day when there are no intervening
nontrading days

2. The variance of the stock price returns between the close of trading on Friday
and the close of trading on Monday

The second of these is the variance of returns over a 3-day period. The first is a variance
over a 1-day period. We might reasonably expect the second variance to be three times
as great as the first variance. Fama (1965), French (1980), and French and Roll (1986)
show that this is not the case. These three research studies estimate the second variance
to be, respectively, 22%, 19%, and 10.7% higher than the first variance.

At this stage one might be tempted to argue that these results are explained by more
news reaching the market when the market is open for trading. But research by Roll
(1984) does not support this explanation. Roll looked at the prices of orange juice
futures. By far the most important news for orange juice futures prices is news about
the weather and this is equally likely to arrive at any time. When Roll did a similar
analysis to that just described for stocks, he found that the second (Friday-to-Monday)
variance for orange juice futures is only 1.54 times the first variance.

The only reasonable conclusion from all this is that volatility is to a large extent
caused by trading itself. (Traders usually have no difficulty accepting this conclusion!)
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The reason a riskless portfolio can be set up is that the stock price and the derivative

price are both affected by the same underlying source of uncertainty: stock price

movements. In any short period of time, the price of the derivative is perfectly
correlated with the price of the underlying stock. When an appropriate portfolio of

the stock and the derivative is established, the gain or loss from the stock position

always offsets the gain or loss from the derivative position so that the overall value of

the portfolio at the end of the short period of time is known with certainty.

Suppose, for example, that at a particular point in time the relationship between a

small change �S in the stock price and the resultant small change �c in the price of a

European call option is given by

�c ¼ 0:4�S

This means that the slope of the line representing the relationship between c and S

is 0.4, as indicated in Figure 15.2. A riskless portfolio would consist of:

1. A long position in 40 shares

2. A short position in 100 call options.

Suppose, for example, that the stock price increases by 10 cents. The option price will

increase by 4 cents and the 40� 0:1 ¼ $4 gain on the shares is equal to the 100� 0:04 ¼
$4 loss on the short option position.

There is one important difference between the Black–Scholes–Merton analysis and

our analysis using a binomial model in Chapter 13. In Black–Scholes–Merton, the

position in the stock and the derivative is riskless for only a very short period of time.

(Theoretically, it remains riskless only for an instantaneously short period of time.) To

remain riskless, it must be adjusted, or rebalanced, frequently.5 For example, the

relationship between �c and �S in our example might change from �c ¼ 0:4�S today

to �c ¼ 0:5�S tomorrow. This would mean that, in order to maintain the riskless
position, an extra 10 shares would have to be purchased for each 100 call options sold.

It is nevertheless true that the return from the riskless portfolio in any very short period

of time must be the risk-free interest rate. This is the key element in the Black–Scholes–

Merton analysis and leads to their pricing formulas.

Stock price

Slope = 0.4

Call
price

S0

Figure 15.2 Relationship between call price and stock price. Current stock price is S0.

5 We discuss the rebalancing of portfolios in more detail in Chapter 19.
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Assumptions

The assumptions we use to derive the Black–Scholes–Merton differential equation are
as follows:

1. The stock price follows the process developed in Chapter 14 with � and � constant.

2. The short selling of securities with full use of proceeds is permitted.

3. There are no transaction costs or taxes. All securities are perfectly divisible.

4. There are no dividends during the life of the derivative.

5. There are no riskless arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate of interest, r, is constant and the same for all maturities.

As we discuss in later chapters, some of these assumptions can be relaxed. For example,
� and r can be known functions of t. We can even allow interest rates to be stochastic
provided that the stock price distribution at maturity of the option is still lognormal.

15.6 DERIVATION OF THE BLACK–SCHOLES–MERTON
DIFFERENTIAL EQUATION

In this section, the notation is different from elsewhere in the book. We consider a
derivative’s price at a general time t (not at time zero). If T is the maturity date, the time
to maturity is T � t.

The stock price process we are assuming is the one we developed in Section 14.3:

dS ¼ �S dtþ �S dz ð15:8Þ
Suppose that f is the price of a call option or other derivative contingent on S. The
variable f must be some function of S and t. Hence, from equation (14.14),

df ¼
�
@f

@S
�S þ @f

@t
þ 1

2

@2f

@S 2
�2
S
2

�
dtþ @f

@S
�S dz ð15:9Þ

The discrete versions of equations (15.8) and (15.9) are

�S ¼ �S�tþ �S�z ð15:10Þ
and

�f ¼
�
@f

@S
�S þ @f

@t
þ 1

2

@2f

@S 2
�2
S
2

�
�tþ @f

@S
�S�z ð15:11Þ

where �f and �S are the changes in f and S in a small time interval �t. Recall from
the discussion of Itô’s lemma in Section 14.6 that the Wiener processes underlying f

and S are the same. In other words, the �z (¼ �
ffiffiffiffiffi
�t

p Þ in equations (15.10) and (15.11)
are the same. It follows that a portfolio of the stock and the derivative can be
constructed so that the Wiener process is eliminated. The portfolio is

�1: derivative

þ@f=@S : shares.
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The holder of this portfolio is short one derivative and long an amount @f=@S of

shares. Define � as the value of the portfolio. By definition

� ¼ �f þ @f

@S
S ð15:12Þ

The change �� in the value of the portfolio in the time interval �t is given by

�� ¼ ��f þ @f

@S
�S ð15:13Þ

Substituting equations (15.10) and (15.11) into equation (15.13) yields

�� ¼
�
� @f

@t
� 1

2

@2f

@S 2
�2
S
2

�
�t ð15:14Þ

Because this equation does not involve�z, the portfolio must be riskless during time�t.

The assumptions listed in the preceding section imply that the portfolio must instant-
aneously earn the same rate of return as other short-term risk-free securities. If it earned

more than this return, arbitrageurs could make a riskless profit by borrowing money to

buy the portfolio; if it earned less, they could make a riskless profit by shorting the
portfolio and buying risk-free securities. It follows that

�� ¼ r��t ð15:15Þ

where r is the risk-free interest rate. Substituting from equations (15.12) and (15.14) into
(15.15), we obtain �

@f

@t
þ 1

2

@2f

@S 2
�2
S
2

�
�t ¼ r

�
f � @f

@S
S

�
�t

so that

@f

@t
þ rS

@f

@S
þ 1

2
�2
S
2 @

2
f

@S 2
¼ rf ð15:16Þ

Equation (15.16) is the Black–Scholes–Merton differential equation. It has many
solutions, corresponding to all the different derivatives that can be defined with S as

the underlying variable. The particular derivative that is obtained when the equation is
solved depends on the boundary conditions that are used. These specify the values of the

derivative at the boundaries of possible values of S and t. In the case of a European call

option, the key boundary condition is

f ¼ maxðS �K; 0Þ when t ¼ T

In the case of a European put option, it is

f ¼ maxðK� S; 0Þ when t ¼ T

Example 15.5

A forward contract on a non-dividend-paying stock is a derivative dependent on

the stock. As such, it should satisfy equation (15.16). From equation (5.5), we

know that the value of the forward contract, f , at a general time t is given in terms

354 CHAPTER 15



of the stock price S at this time by

f ¼ S �Ke
�rðT�tÞ

where K is the delivery price. This means that

@f

@t
¼ �rKe

�rðT�tÞ;
@f

@S
¼ 1;

@2f

@S 2
¼ 0

When these are substituted into the left-hand side of equation (15.16), we obtain

�rKe
�rðT�tÞ þ rS

This equals rf , showing that equation (15.16) is indeed satisfied.

A Perpetual Derivative

Consider a perpetual derivative that pays off a fixed amount Q when the stock price

equals H for the first time. In this case, the value of the derivative for a particular S

has no dependence on t, so the @f=@t term vanishes and the partial differential
equation (15.16) becomes an ordinary differential equation.

Suppose first that S < H. The boundary conditions for the derivatives are f ¼ 0

when S ¼ 0 and f ¼ Q when S ¼ H. The simple solution f ¼ QS=H satisfies both the
boundary conditions and the differential equation. It must therefore be the value of the
derivative.

Suppose next that S > H. The boundary conditions are now f ¼ 0 as S tends to

infinity and f ¼ Q when S ¼ H. The derivative price

f ¼ Q

�
S

H

���

where � is positive, satisfies the boundary conditions. It also satisfies the differential

equation when

�r�þ 1
2
�2�ð�þ 1Þ � r ¼ 0

or � ¼ 2r=�2. The value of the derivative is therefore

f ¼ Q

�
S

H

��2r=�2

ð15:17Þ

Problem 15.23 shows how equation (15.17) can be used to price a perpetual American
put option. Section 26.2 extends the analysis to show how perpetual American call and

put options can be priced when the underlying asset provides a yield at rate q.

The Prices of Tradeable Derivatives

Any function f ðS; tÞ that is a solution of the differential equation (15.16) is the
theoretical price of a derivative that could be traded. If a derivative with that price
existed, it would not create any arbitrage opportunities. Conversely, if a function f ðS; tÞ
does not satisfy the differential equation (15.16), it cannot be the price of a derivative
without creating arbitrage opportunities for traders.
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To illustrate this point, consider first the function eS. This does not satisfy the
differential equation (15.16). It is therefore not a candidate for being the price of a
derivative dependent on the stock price. If an instrument whose price was always eS

existed, there would be an arbitrage opportunity. As a second example, consider the

function

e
ð�2�2rÞðT�tÞ

S

This does satisfy the differential equation, and so is, in theory, the price of a tradeable
security. (It is the price of a derivative that pays off 1=ST at time T .) For other examples
of tradeable derivatives, see Problems 15.11, 15.12, 15.23, and 15.28.

15.7 RISK-NEUTRAL VALUATION

We introduced risk-neutral valuation in connection with the binomial model in
Chapter 13. It is without doubt the single most important tool for the analysis of
derivatives. It arises from one key property of the Black–Scholes–Merton differential

equation (15.16). This property is that the equation does not involve any variables that
are affected by the risk preferences of investors. The variables that do appear in the
equation are the current stock price, time, stock price volatility, and the risk-free rate of
interest. All are independent of risk preferences.

The Black–Scholes–Merton differential equation would not be independent of risk
preferences if it involved the expected return, �, on the stock. This is because the value
of � does depend on risk preferences. The higher the level of risk aversion by investors,

the higher � will be for any given stock. It is fortunate that � happens to drop out in
the derivation of the differential equation.

Because the Black–Scholes–Merton differential equation is independent of risk
preferences, an ingenious argument can be used. If risk preferences do not enter the
equation, they cannot affect its solution. Any set of risk preferences can, therefore, be
used when evaluating f . In particular, the very simple assumption that all investors are
risk neutral can be made.

In a world where investors are risk neutral, the expected return on all investment
assets is the risk-free rate of interest, r. The reason is that risk-neutral investors do not
require a premium to induce them to take risks. It is also true that the present value of
any cash flow in a risk-neutral world can be obtained by discounting its expected value
at the risk-free rate. The assumption that the world is risk neutral does, therefore,
considerably simplify the analysis of derivatives.

Consider a derivative that provides a payoff at one particular time. It can be valued
using risk-neutral valuation by using the following procedure:

1. Assume that the expected return from the underlying asset is the risk-free interest
rate, r (i.e., assume � ¼ r).

2. Calculate the expected payoff from the derivative.

3. Discount the expected payoff at the risk-free interest rate.

It is important to appreciate that risk-neutral valuation (or the assumption that all
investors are risk neutral) is merely an artificial device for obtaining solutions to the
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Black–Scholes–Merton differential equation. The solutions that are obtained are valid

in all worlds, not just those where investors are risk neutral. When we move from a risk-

neutral world to a risk-averse world, two things happen. The expected growth rate in

the stock price changes and the discount rate that must be used for any payoffs from the

derivative changes. It happens that these two changes always offset each other exactly.

Application to Forward Contracts on a Stock

We valued forward contracts on a non-dividend-paying stock in Section 5.7. In

Example 15.5, we verified that the pricing formula satisfies the Black–Scholes–Merton

differential equation. In this section we derive the pricing formula from risk-neutral

valuation. We make the assumption that interest rates are constant and equal to r. This

is somewhat more restrictive than the assumption in Chapter 5.

Consider a long forward contract that matures at time T with delivery price, K. As

indicated in Figure 1.2, the value of the contract at maturity is

ST �K

where ST is the stock price at time T . From the risk-neutral valuation argument, the

value of the forward contract at time 0 is its expected value at time T in a risk-neutral

world discounted at the risk-free rate of interest. Denoting the value of the forward

contract at time zero by f , this means that

f ¼ e
�rT

ÊðST �KÞ

where Ê denotes the expected value in a risk-neutral world. Since K is a constant, this

equation becomes

f ¼ e
�rT

ÊðST Þ �Ke
�rT ð15:18Þ

The expected return � on the stock becomes r in a risk-neutral world. Hence, from

equation (15.4), we have

ÊðST Þ ¼ S0e
rT ð15:19Þ

Substituting equation (15.19) into equation (15.18) gives

f ¼ S0 �Ke
�rT

This is in agreement with equation (5.5).

15.8 BLACK–SCHOLES–MERTON PRICING FORMULAS

The most famous solutions to the differential equation (15.16) are the Black–Scholes–

Merton formulas for the prices of European call and put options. These formulas are:

c ¼ S0Nðd1Þ �Ke
�rT

Nðd2Þ ð15:20Þ
and

p ¼ Ke
�rT

Nð�d2Þ � S0Nð�d1Þ ð15:21Þ
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where

d1 ¼
ln ðS0=KÞ þ ðrþ �2=2ÞT

�
ffiffiffiffi
T

p

d2 ¼
ln ðS0=KÞ þ ðr� �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

The function NðxÞ is the cumulative probability distribution function for a variable with
a standard normal distribution. In other words, it is the probability that a variable with
a standard normal distribution will be less than x. It is illustrated in Figure 15.3. The
remaining variables should be familiar. The variables c and p are the European call and
European put price, S0 is the stock price at time zero, K is the strike price, r is the
continuously compounded risk-free rate, � is the stock price volatility, and T is the time
to maturity of the option.

One way of deriving the Black–Scholes–Merton formulas is by solving the differ-
ential equation (15.16) subject to the boundary condition mentioned in Section 15.6.6

(See Problem 15.17 to prove that the call price in equation (15.20) satisfies the
differential equation.) Another approach is to use risk-neutral valuation. Consider a
European call option. The expected value of the option at maturity in a risk-neutral
world is

Ê½maxðST �K; 0Þ�
where, as before, Ê denotes the expected value in a risk-neutral world. From the risk-
neutral valuation argument, the European call option price c is this expected value
discounted at the risk-free rate of interest, that is,

c ¼ e
�rT

Ê½maxðST �K; 0Þ� ð15:22Þ

x0

Figure 15.3 Shaded area represents NðxÞ.

6 The differential equation gives the call and put prices at a general time t. For example, the call price that

satisfies the differential equation is c ¼ SNðd1Þ �Ke�rðT�tÞNðd2Þ, where

d1 ¼ lnðS=KÞ þ ðrþ �2=2ÞðT � tÞ
�

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
and d2 ¼ d1 � �

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
.
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The appendix at the end of this chapter shows that this equation leads to the result in
equation (15.20).

Since it is never optimal to exercise early an American call option on a non-dividend-
paying stock (see Section 11.5), equation (15.20) is the value of an American call option
on a non-dividend-paying stock. Unfortunately, no exact analytic formula for the value
of an American put option on a non-dividend-paying stock has been produced.
Numerical procedures for calculating American put values are discussed in Chapter 21.

When the Black–Scholes–Merton formula is used in practice the interest rate r is set
equal to the zero-coupon risk-free interest rate for a maturity T . As we show in later
chapters, this is theoretically correct when r is a known function of time. It is also
theoretically correct when the interest rate is stochastic provided that the stock price at
time T is lognormal and the volatility parameter is chosen appropriately. As mentioned
earlier, time is normally measured as the number of trading days left in the life of the
option divided by the number of trading days in 1 year.

Understanding Nðd1Þ and Nðd2Þ
The term Nðd2Þ in equation (15.20) has a fairly simple interpretation. It is the prob-
ability that a call option will be exercised in a risk-neutral world. The Nðd1Þ term is not
quite so easy to interpret. The expression S0Nðd1ÞerT is the expected stock price at
time T in a risk-neutral world when stock prices less than the strike price are counted as
zero. The strike price is only paid if the stock price is greater than K and as just
mentioned this has a probability of Nðd2Þ. The expected payoff in a risk-neutral world is
therefore

S0Nðd1ÞerT �KNðd2Þ
Present-valuing this from time T to time zero gives the Black–Scholes–Merton equation
for a European call option:

c ¼ S0Nðd1Þ �Ke
�rT

Nðd2Þ
For another interpretation, note that the Black–Scholes–Merton equation for the value
of a European call option can be written as

c ¼ e
�rT

Nðd2Þ½S0erTNðd1Þ=Nðd2Þ �K�
The terms here have the following interpretation:

e
�rT : Present value factor

Nðd2Þ: Probability of exercise

e
rT
Nðd1Þ=Nðd2Þ: Expected percentage increase in stock price in a risk-neutral world

if option is exercised

K: Strike price paid if option is exercised.

Properties of the Black–Scholes–Merton Formulas

We now show that the Black–Scholes–Merton formulas have the right general proper-
ties by considering what happens when some of the parameters take extreme values.

When the stock price, S0, becomes very large, a call option is almost certain to be
exercised. It then becomes very similar to a forward contract with delivery price K.
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From equation (5.5), we expect the call price to be

S0 �Ke
�rT

This is, in fact, the call price given by equation (15.20) because, when S0 becomes very
large, both d1 and d2 become very large, and Nðd1Þ and Nðd2Þ become close to 1.0.
When the stock price becomes very large, the price of a European put option, p,
approaches zero. This is consistent with equation (15.21) because Nð�d1Þ and Nð�d2Þ
are both close to zero in this case.

Consider next what happens when the volatility � approaches zero. Because the stock
is virtually riskless, its price will grow at rate r to S0e

rT at time T and the payoff from a
call option is

maxðS0erT �K; 0Þ
Discounting at rate r, the value of the call today is

e
�rT maxðS0erT �K; 0Þ ¼ maxðS0 �Ke

�rT ; 0Þ
To show that this is consistent with equation (15.20), consider first the case where
S0 > Ke�rT . This implies that ln ðS0=KÞ þ rT > 0. As � tends to zero, d1 and d2 tend to
þ1, so that Nðd1Þ and Nðd2Þ tend to 1.0 and equation (15.20) becomes

c ¼ S0 �Ke
�rT

When S0 < Ke�rT , it follows that lnðS0=KÞ þ rT < 0. As � tends to zero, d1 and d2
tend to �1, so that Nðd1Þ and Nðd2Þ tend to zero and equation (15.20) gives a call
price of zero. The call price is therefore always maxðS0 �Ke�rT ; 0Þ as � tends to zero.
Similarly, it can be shown that the put price is always maxðKe�rT � S0; 0Þ as � tends
to zero.

15.9 CUMULATIVE NORMAL DISTRIBUTION FUNCTION

When implementing equations (15.20) and (15.21), it is necessary to evaluate the
cumulative normal distribution function NðxÞ. Tables for NðxÞ are provided at the
end of this book. The NORMSDIST function in Excel also provides a convenient
way of calculating NðxÞ.
Example 15.6

The stock price 6 months from the expiration of an option is $42, the exercise price
of the option is $40, the risk-free interest rate is 10% per annum, and the volatility
is 20% per annum. This means that S0 ¼ 42, K ¼ 40, r ¼ 0:1, � ¼ 0:2, T ¼ 0:5,

d1 ¼
lnð42=40Þ þ ð0:1þ 0:22=2Þ � 0:5

0:2
ffiffiffiffiffiffiffi
0:5

p ¼ 0:7693

d2 ¼
lnð42=40Þ þ ð0:1� 0:22=2Þ � 0:5

0:2
ffiffiffiffiffiffiffi
0:5

p ¼ 0:6278

and

Ke
�rT ¼ 40e�0:05 ¼ 38:049
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Hence, if the option is a European call, its value c is given by

c ¼ 42Nð0:7693Þ � 38:049Nð0:6278Þ
If the option is a European put, its value p is given by

p ¼ 38:049Nð�0:6278Þ � 42Nð�0:7693Þ
Using the NORMSDIST function in Excel gives

Nð0:7693Þ ¼ 0:7791;

Nð0:6278Þ ¼ 0:7349;

Nð�0:7693Þ ¼ 0:2209

Nð�0:6278Þ ¼ 0:2651

so that
c ¼ 4:76; p ¼ 0:81

Ignoring the time value of money, the stock price has to rise by $2.76 for the

purchaser of the call to break even. Similarly, the stock price has to fall by $2.81

for the purchaser of the put to break even.

15.10 WARRANTS AND EMPLOYEE STOCK OPTIONS

The exercise of a regular call option on a company has no effect on the number of the

company’s shares outstanding. If the writer of the option does not own the company’s

shares, he or she must buy them in the market in the usual way and then sell them to the

option holder for the strike price. As explained in Chapter 10, warrants and employee

stock options are different from regular call options in that exercise leads to the

company issuing more shares and then selling them to the option holder for the strike

price. As the strike price is less than the market price, this dilutes the interest of the

existing shareholders.

How should potential dilution affect the way we value outstanding warrants and

employee stock options? The answer is that it should not! Assuming markets are

efficient the stock price will reflect potential dilution from all outstanding warrants

and employee stock options. This is explained in Business Snapshot 15.3.7

Consider next the situation a company is in when it is contemplating a new issue of

warrants (or employee stock options). We suppose that the company is interested in

calculating the cost of the issue assuming that there are no compensating benefits. We

assume that the company has N shares worth S0 each and the number of new options

contemplated is M, with each option giving the holder the right to buy one share for K.

The value of the company today is NS0. This value does not change as a result of the

warrant issue. Suppose that without the warrant issue the share price will be ST at the

warrant’s maturity. This means that (with or without the warrant issue) the total value

of the equity and the warrants at time T will NST . If the warrants are exercised, there is a

cash inflow from the strike price increasing this to NST þMK. This value is distributed

7 Analysts sometimes assume that the sum of the values of the warrants and the equity (rather than just the

value of the equity) is lognormal. The result is a Black–Scholes type of equation for the value of the warrant in

terms of the value of the warrant. See Technical Note 3 at www.rotman.utoronto.ca/�hull/TechnicalNotes

for an explanation of this model.
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among N þM shares, so that the share price immediately after exercise becomes

NST þMK

N þM

Therefore the payoff to an option holder if the option is exercised is

NST þMK

N þM
�K

or
N

N þM
ðST �KÞ

This shows that the value of each option is the value of

N

N þM

regular call options on the company’s stock. Therefore the total cost of the options is

M times this. Since we are assuming that there are no benefits to the company from the

warrant issue, the total value of the company’s equity will decline by the total cost of

the options as soon as the decision to issue the warrants becomes generally known. This

means that the reduction in the stock price is

M

N þM

times the value of a regular call option with strike price K and maturity T .

Business Snapshot 15.3 Warrants, Employee Stock Options, and Dilution

Consider a company with 100,000 shares each worth $50. It surprises the market with
an announcement that it is granting 100,000 stock options to its employees with a
strike price of $50. If the market sees little benefit to the shareholders from the
employee stock options in the form of reduced salaries and more highly motivated
managers, the stock price will decline immediately after the announcement of the
employee stock options. If the stock price declines to $45, the dilution cost to the
current shareholders is $5 per share or $500,000 in total.

Suppose that the company does well so that by the end of three years the share
price is $100. Suppose further that all the options are exercised at this point. The
payoff to the employees is $50 per option. It is tempting to argue that there will be
further dilution in that 100,000 shares worth $100 per share are now merged with
100,000 shares for which only $50 is paid, so that (a) the share price reduces to $75
and (b) the payoff to the option holders is only $25 per option. However, this
argument is flawed. The exercise of the options is anticipated by the market and
already reflected in the share price. The payoff from each option exercised is $50.

This example illustrates the general point that when markets are efficient the
impact of dilution from executive stock options or warrants is reflected in the stock
price as soon as they are announced and does not need to be taken into account
again when the options are valued.
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Example 15.7

A company with 1 million shares worth $40 each is considering issuing 200,000

warrants each giving the holder the right to buy one share with a strike price of

$60 in 5 years. It wants to know the cost of this. The interest rate is 3% per

annum, and the volatility is 30% per annum. The company pays no dividends.

From equation (15.20), the value of a 5-year European call option on the stock is

$7.04. In this case, N ¼ 1,000,000 and M ¼ 200,000, so that the value of each

warrant is

1,000,000

1,000,000þ 200,000
� 7:04 ¼ 5:87

or $5.87. The total cost of the warrant issue is 200,000� 5:87 ¼ $1:17 million.

Assuming the market perceives no benefits from the warrant issue, we expect the

stock price to decline by $1.17 to $38.83.

15.11 IMPLIED VOLATILITIES

The one parameter in the Black–Scholes–Merton pricing formulas that cannot be

directly observed is the volatility of the stock price. In Section 15.4, we discussed

how this can be estimated from a history of the stock price. In practice, traders usually

work with what are known as implied volatilities. These are the volatilities implied by

option prices observed in the market.8

To illustrate how implied volatilities are calculated, suppose that the value of a

European call option on a non-dividend-paying stock is 1.875 when S0 ¼ 21; K ¼ 20,

r ¼ 0:1, and T ¼ 0:25. The implied volatility is the value of � that, when substituted

into equation (15.20), gives c ¼ 1:875. Unfortunately, it is not possible to invert equa-

tion (15.20) so that � is expressed as a function of S0, K, r, T , and c. However, an

iterative search procedure can be used to find the implied �. For example, we can start

by trying � ¼ 0:20. This gives a value of c equal to 1.76, which is too low. Because c is

an increasing function of �, a higher value of � is required. We can next try a value of

0.30 for �. This gives a value of c equal to 2.10, which is too high and means that �
must lie between 0.20 and 0.30. Next, a value of 0.25 can be tried for �. This also proves

to be too high, showing that � lies between 0.20 and 0.25. Proceeding in this way, we

can halve the range for � at each iteration and the correct value of � can be calculated

to any required accuracy.9 In this example, the implied volatility is 0.235, or 23.5%, per

annum. A similar procedure can be used in conjunction with binomial trees to find

implied volatilities for American options.

Implied volatilities are used to monitor the market’s opinion about the volatility of a

particular stock. Whereas historical volatilities (see Section 15.4) are backward looking,

implied volatilities are forward looking. Traders often quote the implied volatility of an

option rather than its price. This is convenient because the implied volatility tends to be

less variable than the option price. As will be explained in Chapter 20, the implied

8 Implied volatilities for European and American options can be calculated using DerivaGem.
9 This method is presented for illustration. Other more powerful methods, such as the Newton–Raphson

method, are often used in practice (see footnote 3 of Chapter 4).
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volatilities of actively traded options are used by traders to estimate appropriate implied

volatilities for other options.

The VIX Index

The CBOE publishes indices of implied volatility. The most popular index, the SPX

VIX, is an index of the implied volatility of 30-day options on the S&P 500 calculated

from a wide range of calls and puts.10 It is sometimes referred to as the ‘‘fear factor.’’

An index value of 15 indicates that the implied volatility of 30-day options on the

S&P 500 is estimated as 15%. Information on the way the index is calculated is in

Section 26.15. Trading in futures on the VIX started in 2004 and trading in options on

the VIX started in 2006. One contract is on 1,000 times the index.

Example 15.8

Suppose that a trader buys an April futures contract on the VIX when the futures

price is 18.5 (corresponding to a 30-day S&P 500 volatility of 18.5%) and closes

out the contract when the futures price is 19.3 (corresponding to an S&P 500

volatility of 19.3%). The trader makes a gain of $800.

A trade involving futures or options on the S&P 500 is a bet on both the future level of

the S&P 500 and the volatility of the S&P 500. By contrast, a futures or options contract

on the VIX is a bet only on volatility. Figure 15.4 shows the VIX index between January

2004 and June 2013. Between 2004 and mid-2007 it tended to stay between 10 and 20. It

reached 30 during the second half of 2007 and a record 80 in October and November

2008 after Lehman’s bankruptcy. By early 2010, it had declined to a more normal

levels, but it spiked again in May 2010 and the second half of 2011 because of stresses

and uncertainties in financial markets.
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Figure 15.4 The VIX index, January 2004 to June 2013.

10 Similarly, the VXN is an index of the volatility of the NASDAQ 100 index and the VXD is an index of the

volatility of the Dow Jones Industrial Average.
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15.12 DIVIDENDS

Up to now, we have assumed that the stock on which the option is written pays no

dividends. In this section, we modify the Black–Scholes–Merton model to take account

of dividends. We assume that the amount and timing of the dividends during the life of

an option can be predicted with certainty. When options last for relatively short periods

of time, this assumption is not too unreasonable. (For long-life options it is usual to

assume that the dividend yield rather the dollar dividend payments are known. Options

can then be valued as will be described in the Chapter 17.) The date on which the

dividend is paid should be assumed to be the ex-dividend date. On this date the stock

price declines by the amount of the dividend.11

European Options

European options can be analyzed by assuming that the stock price is the sum of two

components: a riskless component that corresponds to the known dividends during

the life of the option and a risky component. The riskless component, at any given

time, is the present value of all the dividends during the life of the option discounted

from the ex-dividend dates to the present at the risk-free rate. By the time the option

matures, the dividends will have been paid and the riskless component will no longer

exist. The Black–Scholes–Merton formula is therefore correct if S0 is equal to the

risky component of the stock price and � is the volatility of the process followed by

the risky component.12

Operationally, this means that the Black–Scholes–Merton formulas can be used

provided that the stock price is reduced by the present value of all the dividends during

the life of the option, the discounting being done from the ex-dividend dates at the risk-

free rate. As already mentioned, a dividend is counted as being during the life of the

option only if its ex-dividend date occurs during the life of the option.

Example 15.9

Consider a European call option on a stock when there are ex-dividend dates in

two months and five months. The dividend on each ex-dividend date is expected

to be $0.50. The current share price is $40, the exercise price is $40, the stock price

volatility is 30% per annum, the risk-free rate of interest is 9% per annum, and

the time to maturity is six months. The present value of the dividends is

0:5e�0:09�2=12 þ 0:5e�0:09�5=12 ¼ 0:9742

The option price can therefore be calculated from the Black–Scholes–Merton

11 For tax reasons the stock price may go down by somewhat less than the cash amount of the dividend. To

take account of this phenomenon, we need to interpret the word ‘dividend’ in the context of option pricing as

the reduction in the stock price on the ex-dividend date caused by the dividend. Thus, if a dividend of $1 per

share is anticipated and the share price normally goes down by 80% of the dividend on the ex-dividend date,

the dividend should be assumed to be $0.80 for the purpose of the analysis.
12 This is not quite the same as the volatility of the whole stock price. (In theory, they cannot both follow

geometric Brownian motion.) At time zero, the volatility of the risky component is approximately equal to

the volatility of the whole stock price multiplied by S0=ðS0 �DÞ, where D is the present value of the

dividends.
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formula, with S0 ¼ 40� 0:9742 ¼ 39:0258, K ¼ 40, r ¼ 0:09, � ¼ 0:3, and
T ¼ 0:5:

d1 ¼
lnð39:0258=40Þ þ ð0:09þ 0:32=2Þ � 0:5

0:3
ffiffiffiffiffiffiffi
0:5

p ¼ 0:2020

d2 ¼
lnð39:0258=40Þ þ ð0:09� 0:32=2Þ � 0:5

0:3
ffiffiffiffiffiffiffi
0:5

p ¼ �0:0102

Using the NORMSDIST function in Excel gives

Nðd1Þ ¼ 0:5800; Nðd2Þ ¼ 0:4959

and, from equation (15.20), the call price is

39:0258� 0:5800� 40e�0:09�0:5 � 0:4959 ¼ 3:67
or $3.67.

Some researchers have criticized the approach just described for calculating the value
of a European option on a dividend-paying stock. They argue that volatility should be
applied to the stock price, not to the stock price less the present value of dividends.
A number of different numerical procedures have been suggested for doing this.13 When
volatility is calculated from historical data, it might make sense to use one of these
procedures. However, in practice the volatility used to price an option is nearly always
implied from the prices of other options using procedures we will outline in Chapter 20.
If an analyst uses the same model for both implying and applying volatilities, the
resulting prices should be accurate and not highly model dependent. Another important
point is that in practice, as will be explained in Chapter 18, practitioners usually value a
European option in terms of the forward price of the underlying asset. This avoids the
need to estimate explicitly the income that is expected from the asset. The volatility of
the forward stock price is the same as the volatility of the stock price minus the present
value of dividends.

The model we have proposed where the stock price is divided into two components is
internally consistent and widely used in practice. We will use the same model when
valuing American options in Chapter 21.

American Call Options

Consider next American call options. Chapter 11 showed that in the absence of
dividends American options should never be exercised early. An extension to the
argument shows that, when there are dividends, it can only be optimal to exercise at
a time immediately before the stock goes ex-dividend. We assume that n ex-dividend
dates are anticipated and that they are at times t1, t2, . . . , tn, with t1 < t2 < � � � < tn.
The dividends corresponding to these times will be denoted by D1, D2, . . . , Dn,
respectively.

We start by considering the possibility of early exercise just prior to the final
ex-dividend date (i.e., at time tn). If the option is exercised at time tn, the investor
receives

SðtnÞ �K

13 See, for example, N. Areal and A. Rodrigues, ‘‘Fast Trees for Options with Discrete Dividends,’’ Journal

of Derivatives, 21, 1 (Fall 2013), 49–63.
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where SðtÞ denotes the stock price at time t. If the option is not exercised, the stock

price drops to SðtnÞ �Dn. As shown by equation (11.4), the value of the option is then

greater than

SðtnÞ �Dn �Ke
�rðT�tnÞ

It follows that, if

SðtnÞ �Dn �Ke
�rðT�tnÞ > SðtnÞ �K

that is,

Dn 6 K
�
1� e

�rðT�tnÞ� ð15:24Þ

it cannot be optimal to exercise at time tn. On the other hand, if

Dn > K
�
1� e

�rðT�tnÞ� ð15:25Þ

for any reasonable assumption about the stochastic process followed by the stock price,

it can be shown that it is always optimal to exercise at time tn for a sufficiently high

value of SðtnÞ. The inequality in (15.25) will tend to be satisfied when the final ex-

dividend date is fairly close to the maturity of the option (i.e., T � tn is small) and the

dividend is large.

Consider next time tn�1, the penultimate ex-dividend date. If the option is exercised

immediately prior to time tn�1, the investor receives Sðtn�1Þ �K. If the option is not

exercised at time tn�1, the stock price drops to Sðtn�1Þ �Dn�1 and the earliest

subsequent time at which exercise could take place is tn. Hence, from equation (11.4),

a lower bound to the option price if it is not exercised at time tn�1 is

Sðtn�1Þ �Dn�1 �Ke
�rðtn�tn�1Þ

It follows that if

Sðtn�1Þ �Dn�1 �Ke
�rðtn�tn�1Þ > Sðtn�1Þ �K

or

Dn�1 6 K
�
1� e

�rðtn�tn�1Þ�

it is not optimal to exercise immediately prior to time tn�1. Similarly, for any i < n, if

Di 6 K
�
1� e

�rðtiþ1�tiÞ� ð15:26Þ

it is not optimal to exercise immediately prior to time ti.

The inequality in (15.26) is approximately equivalent to

Di 6 Krðtiþ1 � tiÞ

Assuming that K is fairly close to the current stock price, this inequality is satisfied

when the dividend yield on the stock is less than the risk-free rate of interest. This is

often the case.

We can conclude from this analysis that, in many circumstances, the most likely

time for the early exercise of an American call is immediately before the final ex-

dividend date, tn. Furthermore, if inequality (15.26) holds for i ¼ 1, 2, . . . , n� 1 and

inequality (15.24) holds, we can be certain that early exercise is never optimal, and the

American option can be treated as a European option.
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Black’s Approximation

Black suggests an approximate procedure for taking account of early exercise in call
options.14 This involves calculating, as described earlier in this section, the prices of
European options that mature at times T and tn, and then setting the American price
equal to the greater of the two.15 This is an approximation because it in effect assumes
the option holder has to decide at time zero whether the option will be exercised at
time T or tn.

SUMMARY

We started this chapter by examining the properties of the process for stock prices
introduced in Chapter 14. The process implies that the price of a stock at some future
time, given its price today, is lognormal. It also implies that the continuously com-
pounded return from the stock in a period of time is normally distributed. Our
uncertainty about future stock prices increases as we look further ahead. The standard
deviation of the logarithm of the stock price is proportional to the square root of how
far ahead we are looking.

To estimate the volatility � of a stock price empirically, the stock price is observed at
fixed intervals of time (e.g., every day, every week, or every month). For each time
period, the natural logarithm of the ratio of the stock price at the end of the time period
to the stock price at the beginning of the time period is calculated. The volatility is
estimated as the standard deviation of these numbers divided by the square root of the
length of the time period in years. Usually, days when the exchanges are closed are
ignored in measuring time for the purposes of volatility calculations.

The differential equation for the price of any derivative dependent on a stock can be
obtained by creating a riskless portfolio of the derivative and the stock. Because the
derivative’s price and the stock price both depend on the same underlying source of
uncertainty, this can always be done. The portfolio that is created remains riskless for
only a very short period of time. However, the return on a riskless porfolio must always
be the risk-free interest rate if there are to be no arbitrage opportunities.

The expected return on the stock does not enter into the Black–Scholes–Merton
differential equation. This leads to an extremely useful result known as risk-neutral
valuation. This result states that when valuing a derivative dependent on a stock price,
we can assume that the world is risk neutral. This means that we can assume that the
expected return from the stock is the risk-free interest rate, and then discount expected
payoffs at the risk-free interest rate. The Black–Scholes–Merton equations for Eur-
opean call and put options can be derived by either solving their differential equation or
by using risk-neutral valuation.

An implied volatility is the volatility that, when used in conjunction with the Black–

14 See F. Black, ‘‘Fact and Fantasy in the Use of Options,’’ Financial Analysts Journal, 31 (July/August

1975): 36–41, 61–72.
15 For an exact formula, suggested by Roll, Geske, and Whaley, for valuing American calls when there is

only one ex-dividend date, see Technical Note 4 at www.rotman.utoronto.ca/�hull/TechnicalNotes. This

involves the cumulative bivariate normal distribution function. A procedure for calculating this function is

given in Technical Note 5 and a worksheet for calculating the cumulative bivariate normal distribution can be

found on the author’s website.
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Scholes–Merton option pricing formula, gives the market price of the option. Traders
monitor implied volatilities. They often quote the implied volatility of an option rather
than its price. They have developed procedures for using the volatilities implied by the
prices of actively traded options to estimate volatilities for other options.

The Black–Scholes–Merton results can be extended to cover European call and put
options on dividend-paying stocks. The procedure is to use the Black–Scholes–Merton
formula with the stock price reduced by the present value of the dividends anticipated
during the life of the option, and the volatility equal to the volatility of the stock price
net of the present value of these dividends.

In theory, it can be optimal to exercise American call options immediately before any
ex-dividend date. In practice, it is often only necessary to consider the final ex-dividend
date. Fischer Black has suggested an approximation. This involves setting the American
call option price equal to the greater of two European call option prices. The first
European call option expires at the same time as the American call option; the second
expires immediately prior to the final ex-dividend date.
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Practice Questions (Answers in Solutions Manual)

15.1. What does the Black–Scholes–Merton stock option pricing model assume about the
probability distribution of the stock price in one year? What does it assume about the
probability distribution of the continuously compounded rate of return on the stock
during the year?

15.2. The volatility of a stock price is 30% per annum. What is the standard deviation of the
percentage price change in one trading day?

15.3. Explain the principle of risk-neutral valuation.

15.4. Calculate the price of a 3-month European put option on a non-dividend-paying stock
with a strike price of $50 when the current stock price is $50, the risk-free interest rate is
10% per annum, and the volatility is 30% per annum.

15.5. What difference does it make to your calculations in Problem 15.4 if a dividend of $1.50
is expected in 2 months?

15.6. What is implied volatility ? How can it be calculated?

15.7. A stock price is currently $40. Assume that the expected return from the stock is 15%
and that its volatility is 25%. What is the probability distribution for the rate of return
(with continuous compounding) earned over a 2-year period?

15.8. A stock price follows geometric Brownian motion with an expected return of 16% and a
volatility of 35%. The current price is $38.
(a) What is the probability that a European call option on the stock with an exercise

price of $40 and a maturity date in 6 months will be exercised?
(b) What is the probability that a European put option on the stock with the same

exercise price and maturity will be exercised?

15.9. Using the notation in this chapter, prove that a 95% confidence interval for ST is
between S0e

ð���2=2ÞT�1:96�
ffiffiffi
T

p
and S0e

ð���2=2ÞTþ1:96�
ffiffiffi
T

p
.

15.10. A portfolio manager announces that the average of the returns realized in each year of

the last 10 years is 20% per annum. In what respect is this statement misleading?

15.11. Assume that a non-dividend-paying stock has an expected return of � and a volatility
of �. An innovative financial institution has just announced that it will trade a security

that pays off a dollar amount equal to ln ST at time T , where ST denotes the value of the
stock price at time T .

(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price, S, at time t.
(b) Confirm that your price satisfies the differential equation (15.16).

15.12. Consider a derivative that pays off S
n
T at time T , where ST is the stock price at that time.

When the stock pays no dividends and its price follows geometric Brownian motion, it
can be shown that its price at time t (t 6 T ) has the form hðt; T ÞSn, where S is the stock

price at time t and h is a function only of t and T .

(a) By substituting into the Black–Scholes–Merton partial differential equation, derive
an ordinary differential equation satisfied by hðt; T Þ.

(b) What is the boundary condition for the differential equation for hðt; T Þ?
(c) Show that hðt; T Þ ¼ e½0:5�2nðn�1Þþrðn�1Þ�ðT�tÞ, where r is the risk-free interest rate and �

is the stock price volatility.
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15.13. What is the price of a European call option on a non-dividend-paying stock when the
stock price is $52, the strike price is $50, the risk-free interest rate is 12% per annum, the
volatility is 30% per annum, and the time to maturity is 3 months?

15.14. What is the price of a European put option on a non-dividend-paying stock when the
stock price is $69, the strike price is $70, the risk-free interest rate is 5% per annum, the
volatility is 35% per annum, and the time to maturity is 6 months?

15.15. Consider an American call option on a stock. The stock price is $70, the time to maturity
is 8 months, the risk-free rate of interest is 10% per annum, the exercise price is $65, and
the volatility is 32%. A dividend of $1 is expected after 3 months and again after
6 months. Show that it can never be optimal to exercise the option on either of the two
dividend dates. Use DerivaGem to calculate the price of the option.

15.16. A call option on a non-dividend-paying stock has a market price of $21
2
. The stock price

is $15, the exercise price is $13, the time to maturity is 3 months, and the risk-free
interest rate is 5% per annum. What is the implied volatility?

15.17. With the notation used in this chapter:
(a) What is N 0ðxÞ?
(b) Show that SN 0ðd1Þ ¼ Ke

�rðT�tÞ
N

0ðd2Þ, where S is the stock price at time t and

d1 ¼
lnðS=KÞ þ ðrþ �2=2ÞðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ; d2 ¼
lnðS=KÞ þ ðr� �2=2ÞðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

(c) Calculate @d1=@S and @d2=@S.
(d) Show that when c ¼ SNðd1Þ �Ke

�rðT�tÞ
Nðd2Þ, it follows that

@c

@t
¼ �rKe

�rðT�tÞ
Nðd2Þ � SN

0ðd1Þ
�

2
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

where c is the price of a call option on a non-dividend-paying stock.
(e) Show that @c=@S ¼ Nðd1Þ.
(f ) Show that c satisfies the Black–Scholes–Merton differential equation.
(g) Show that c satisfies the boundary condition for a European call option, i.e., that

c ¼ maxðS �K; 0Þ as t ! T .

15.18. Show that the Black–Scholes–Merton formulas for call and put options satisfy put–call
parity.

15.19. A stock price is currently $50 and the risk-free interest rate is 5%. Use the DerivaGem
software to translate the following table of European call options on the stock into a
table of implied volatilities, assuming no dividends. Are the option prices consistent with
the assumptions underlying Black–Scholes–Merton?

Maturity (months)

Strike price ($) 3 6 12

45 7.0 8.3 10.5
50 3.7 5.2 7.5
55 1.6 2.9 5.1

15.20. Explain carefully why Black’s approach to evaluating an American call option on a
dividend-paying stock may give an approximate answer even when only one dividend is
anticipated. Does the answer given by Black’s approach understate or overstate the true
option value? Explain your answer.
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15.21. Consider an American call option on a stock. The stock price is $50, the time to maturity
is 15 months, the risk-free rate of interest is 8% per annum, the exercise price is $55, and
the volatility is 25%. Dividends of $1.50 are expected in 4 months and 10 months. Show
that it can never be optimal to exercise the option on either of the two dividend dates.
Calculate the price of the option.

15.22. Show that the probability that a European call option will be exercised in a risk-neutral
world is, with the notation introduced in this chapter,Nðd2Þ. What is an expression for the
value of a derivative that pays off $100 if the price of a stock at time T is greater than K ?

15.23. Use the result in equation (15.17) to determine the value of a perpetual American put
option on a non-dividend-paying stock with strike price K if it is exercised when the
stock price equals H where H < K. Assume that the current stock price S is greater than
H. What is the value of H that maximizes the option value? Deduce the value of a
perpetual American put with strike price K.

15.24. A company has an issue of executive stock options outstanding. Should dilution be
taken into account when the options are valued? Explain your answer.

15.25. A company’s stock price is $50 and 10 million shares are outstanding. The company is
considering giving its employees 3 million at-the-money 5-year call options. Option
exercises will be handled by issuing more shares. The stock price volatility is 25%, the
5-year risk-free rate is 5%, and the company does not pay dividends. Estimate the cost to
the company of the employee stock option issue.

Further Questions

15.26. If the volatility of a stock is 18% per annum, estimate the standard deviation of the
percentage price change in (a) 1 day, (b) 1 week, and (c) 1 month.

15.27. A stock price is currently $50. Assume that the expected return from the stock is 18%
and its volatility is 30%. What is the probability distribution for the stock price in
2 years? Calculate the mean and standard deviation of the distribution. Determine the
95% confidence interval.

15.28. Suppose that observations on a stock price (in dollars) at the end of each of 15 consecutive
weeks are as follows:

30:2; 32:0; 31:1; 30:1; 30:2; 30:3; 30:6; 33:0; 32:9; 33:0; 33:5; 33:5; 33:7; 33:5; 33:2

Estimate the stock price volatility. What is the standard error of your estimate?

15.29. A financial institution plans to offer a security that pays off a dollar amount equal to S
2
T

at time T , where ST is the price at time T of a stock that pays no dividends.
(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price S at time t. (Hint : The expected value of S 2
T can be calculated from

the mean and variance of ST given in Section 15.1.)
(b) Confirm that your price satisfies the differential equation (15.16).

15.30. Consider an option on a non-dividend-paying stock when the stock price is $30, the
exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per annum,
and the time to maturity is 4 months.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is an American call?

372 CHAPTER 15



(c) What is the price of the option if it is a European put?
(d) Verify that put–call parity holds.

15.31. Assume that the stock in Problem 15.30 is due to go ex-dividend in 11
2
months. The

expected dividend is 50 cents.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is a European put?
(c) If the option is an American call, are there any circumstances under which it will be

exercised early?

15.32. Consider an American call option when the stock price is $18, the exercise price is $20,
the time to maturity is 6 months, the volatility is 30% per annum, and the risk-free
interest rate is 10% per annum. Two equal dividends are expected during the life of the
option with ex-dividend dates at the end of 2 months and 5 months. Assume the
dividends are 40 cents. Use Black’s approximation and the DerivaGem software to
value the option. How high can the dividends be without the American option being
worth more than the corresponding European option?
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APPENDIX

PROOF OF THE BLACK–SCHOLES–MERTON FORMULA USING
RISK-NEUTRAL VALUATION

We will prove the Black–Scholes result by first proving another key result that will also
be useful in future chapters.

Key Result

If V is lognormally distributed and the standard deviation of lnV is w, then

E½maxðV �K; 0Þ� ¼ EðV ÞNðd1Þ �KNðd2Þ ð15A:1Þ
where

d1 ¼
ln½EðV Þ=K� þ w

2=2

w

d2 ¼
ln½EðV Þ=K� � w

2=2

w

and E denotes the expected value.

Proof of Key Result

Define gðV Þ as the probability density function of V . It follows that

E½maxðV �K; 0Þ� ¼
ð1
K

ðV �KÞgðV Þ dV ð15A:2Þ

The variable lnV is normally distributed with standard deviation w. From the proper-
ties of the lognormal distribution, the mean of lnV is m, where16

m ¼ ln½EðV Þ� � w
2=2 ð15A:3Þ

Define a new variable

Q ¼ lnV �m

w
ð15A:4Þ

This variable is normally distributed with a mean of zero and a standard deviation
of 1.0. Denote the density function for Q by hðQÞ so that

hðQÞ ¼ 1ffiffiffiffiffiffi
2�

p e
�Q

2=2

Using equation (15A.4) to convert the expression on the right-hand side of equa-
tion (15A.2) from an integral over V to an integral over Q, we get

E½maxðV �K; 0Þ� ¼
ð1
ðlnK�mÞ=w

ðeQwþm �KÞ hðQÞ dQ
or

E½maxðV �K; 0Þ� ¼
ð1
ðlnK�mÞ=w

e
Qwþm

hðQÞdQ�K

ð1
ðlnK�mÞ=w

hðQÞdQ ð15A:5Þ

16 For a proof of this, see Technical Note 2 at www.rotman.utoronto.ca/�hull/TechnicalNotes.
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Now

e
Qwþm

hðQÞ ¼ 1ffiffiffiffiffiffi
2�

p e
ð�Q

2þ2Qwþ2mÞ=2 ¼ 1ffiffiffiffiffiffi
2�

p e
½�ðQ�wÞ2þ2mþw

2�=2

¼ e
mþw

2=2ffiffiffiffiffiffi
2�

p e
½�ðQ�wÞ2�=2 ¼ e

mþw
2=2

hðQ� wÞ

This means that equation (15A.5) becomes

E½maxðV �K; 0Þ� ¼ e
mþw

2=2

ð1
ðlnK�mÞ=w

hðQ� wÞdQ�K

ð1
ðlnK�mÞ=w

hðQÞdQ ð15A:6Þ

If we define NðxÞ as the probability that a variable with a mean of zero and a standard
deviation of 1.0 is less than x, the first integral in equation (15A.6) is

1� N½ðlnK�mÞ=w� w� ¼ N½ð� lnKþmÞ=wþ w�
Substituting for m from equation (15A.3) leads to

N

�
ln½EðV Þ=K� þ w

2=2

w

�
¼ Nðd1Þ

Similarly the second integral in equation (15A.6) is Nðd2Þ. Equation (15A.6), therefore,
becomes

E½maxðV �K; 0Þ� ¼ e
mþw

2=2
Nðd1Þ �KNðd2Þ

Substituting for m from equation (15A.3) gives the key result.

The Black–Scholes–Merton Result

We now consider a call option on a non-dividend-paying stock maturing at time T . The
strike price is K, the risk-free rate is r, the current stock price is S0, and the volatility
is �. As shown in equation (15.22), the call price c is given by

c ¼ e
�rT

Ê½maxðST �K; 0Þ� ð15A:7Þ
where ST is the stock price at time T and Ê denotes the expectation in a risk-neutral
world. Under the stochastic process assumed by Black–Scholes–Merton, ST is log-
normal. Also, from equations (15.3) and (15.4), ÊðST Þ ¼ S0e

rT and the standard
deviation of ln ST is �

ffiffiffiffi
T

p
.

From the key result just proved, equation (15A.7) implies

c ¼ e
�rT ½S0erTNðd1Þ �KNðd2Þ� ¼ S0Nðd1Þ �Ke

�rT
Nðd2Þ

where

d1 ¼
ln½ÊðST Þ=K� þ �2

T=2

�
ffiffiffiffi
T

p ¼ lnðS0=KÞ þ ðrþ �2=2ÞT
�

ffiffiffiffi
T

p

d2 ¼
ln½ÊðST Þ=K� � �2

T=2

�
ffiffiffiffi
T

p ¼ lnðS0=KÞ þ ðr� �2=2ÞT
�

ffiffiffiffi
T

p

This is the Black–Scholes–Merton result.
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Employee
Stock Options

Employee stock options are call options on a company’s stock granted by the company
to its employees. The options give the employees a stake in the fortunes of the
company. If the company does well so that the company’s stock price moves above
the strike price, employees gain by exercising the options and then selling the stock they
acquire at the market price.

Many companies, particularly technology companies, feel that the only way they can
attract and keep the best employees is to offer them attractive stock option packages.
Some companies grant options only to senior management; others grant them to people
at all levels in the organization. Microsoft was one of the first companies to use employee
stock options. All Microsoft employees were granted options and, as the company’s
stock price rose, it is estimated that over 10,000 of them became millionaires. Employee
stock options have become less popular in recent years for reasons we will explain in this
chapter. (Microsoft, for example, announced in 2003 that it would discontinue the use of
options and award shares of Microsoft to employees instead.) But many companies
throughout the world continue to be enthusiastic users of employee stock options.

Employee stock options are popular with start-up companies. Often these companies
do not have the resources to pay key employees as much as they could earn with an
established company and they solve this problem by supplementing the salaries of the
employees with stock options. If the company does well and shares are sold to the
public in an IPO, the options are likely to prove to be very valuable. Some newly
formed companies have even granted options to students who worked for just a few
months during their summer break—and in some cases this has led to windfalls of
hundreds of thousands of dollars for the students.

This chapter explains how stock option plans work and how their popularity has been
influenced by their accounting treatment. It discusses whether employee stock options
help to align the interests of shareholders with those of top executives running a com-
pany. It also describes how these options are valued and looks at backdating scandals.

16.1 CONTRACTUAL ARRANGEMENTS

Employee stock options often last as long as 10 to 15 years. Very often the strike price is
set equal to the stock price on the grant date so that the option is initially at the money.
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The following are usually features employee stock option plans:

1. There is a vesting period during which the options cannot be exercised. This
vesting period can be as long as four years.

2. When employees leave their jobs (voluntarily or involuntarily) during the vesting
period, they forfeit their options.

3. When employees leave (voluntarily or involuntarily) after the vesting period, they
forfeit options that are out of the money and they have to exercise vested options
that are in the money almost immediately.

4. Employees are not permitted to sell the options.

5. When an employee exercises options, the company issues new shares and sells
them to the employee for the strike price.

The Early Exercise Decision

The fourth feature of employee stock option plans noted above has important implica-
tions. If employees, for whatever reason, want to realize a cash benefit from options that
have vested, they must exercise the options and sell the underlying shares. They cannot
sell the options to someone else. This leads to a tendency for employee stock options to
be exercised earlier than similar exchange-traded or over-the-counter call options.

Consider a call option on a stock paying no dividends. In Section 11.5 we showed that,
if it is a regular call option, it should never be exercised early. The holder of the option

will always do better by selling the option rather than exercising it before the end of its
life. However, the arguments we used in Section 11.5 are not applicable to employee
stock options because they cannot be sold. The only way employees can realize a cash
benefit from the options (or diversify their holdings) is by exercising the options and
selling the stock. It is therefore not unusual for an employee stock option to be exercised

well before it would be optimal to exercise the option if it were a regular exchange-traded
or over-the-counter option.

Should an employee ever exercise his or her options before maturity and then keep
the stock rather than selling it? Assume that the option’s strike price is constant during
the life of the option and the option can be exercised at any time. To answer the
question we consider two options: the employee stock option and an otherwise identical

regular option that can be sold in the market. We refer to the first option as option A
and the second as option B. If the stock pays no dividends, we know that option B
should never be exercised early. It follows that it is not optimal to exercise option A and
keep the stock. If the employee wants to maintain a stake in his or her company, a
better strategy is to keep the option. This delays paying the strike price and maintains

the insurance value of the option, as described in Section 11.5. Only when it is optimal
to exercise option B can it be a rational strategy for an employee to exercise option A
before maturity and keep the stock.1 As discussed in Section 15.12, it is optimal to
exercise option B only when a relatively high dividend is imminent.

In practice the early exercise behavior of employees varies widely from company to
company. In some companies, there is a culture of not exercising early; in others,
employees tend to exercise options and sell the stock soon after the end of the vesting

period, even if the options are only slightly in the money.

1 The only exception to this could be when an executive wants to own the stock for its voting rights.
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16.2 DO OPTIONS ALIGN THE INTERESTS OF SHAREHOLDERS
AND MANAGERS?

For investors to have confidence in capital markets, it is important that the interests of

shareholders and managers are reasonably well aligned. This means that managers

should be motivated to make decisions that are in the best interests of shareholders.

Managers are the agents of the shareholders and, as mentioned in Chapter 8, economists

use the term agency costs to describe the losses experienced when the interests of agents

and principals are not aligned.

Do employee stock options help align the interests of employees and shareholders?

The answer to this question is not straightforward. There can be little doubt that they

serve a useful purpose for a start-up company. The options are an excellent way for the

main shareholders, who are usually also senior executives, to motivate employees to

work long hours. If the company is successful and there is an IPO, the employees will

do very well; but if the company is unsuccessful, the options will be worthless.

It is the options granted to the senior executives of publicly traded companies that are

most controversial. It has been estimated that employee stock options account for about

50% of the remuneration of top executives in the United States. Executive stock options

are sometimes referred to as an executive’s ‘‘pay for performance.’’ If the company’s

stock price goes up, so that shareholders make gains, the executive is rewarded.

However, this overlooks the asymmetric payoffs of options. If the company does badly

then the shareholders lose money, but all that happens to the executives is that they fail

to make a gain. Unlike the shareholders, they do not experience a loss.2 Many people

think that a better type of pay for performance is a restricted stock unit. This entitles the

executive to own a share of the company’s stock at a particular future time (the vesting

date). The gains and losses of the executives then mirror those of other shareholders. It

is sometimes argued that the asymmetric payoffs of options can lead to senior

executives taking risks they would not otherwise take. This may or may not be in the

interests of the company’s shareholders.

What temptations do stock options create for a senior executive? Suppose an

executive plans to exercise a large number of stock options in three months and sell

the stock. He or she might be tempted to time announcements of good news—or even

move earnings from one quarter to another—so that the stock price increases just

before the options are exercised. Alternatively, if at-the-money options are due to be

granted to the executive in three months, the executive might be tempted to take actions

that reduce the stock price just before the grant date. The type of behavior we are

talking about here is of course totally unacceptable—and may well be illegal. But the

backdating scandals, which are discussed later in this chapter, show that the way some

executives have handled issues related to stock options leaves much to be desired.

Even when there is no impropriety of the type we have just mentioned, executive

stock options are liable to have the effect of motivating executives to focus on short-

term profits at the expense of longer-term performance. Managers of large funds worry

that, because stock options are such a huge component of an executive’s compensation,

they are liable to be a big source of distraction. Senior management may spend too

2 When options have moved out of the money, companies have sometimes replaced them with new at-the-

money options. This practice known as ‘‘repricing’’ leads to the executive’s gains and losses being even less

closely tied to those of the shareholders.
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much time thinking about all the different aspects of their compensation and not

enough time running the company.

A manager’s inside knowledge and ability to affect outcomes and announcements is
always liable to interact with his or her trading in a way that is to the disadvantage of

other shareholders. One radical suggestion for mitigating this problem is to require

executives to give notice to the market—perhaps one week’s notice—of an intention to
buy or sell their company’s stock.3 (Once the notice of an intention to trade had been

given, it would be binding on the executive.) This allows the market to form its own
conclusions about why the executive is trading. As a result, the price may increase

before the executive buys and decrease before the executive sells.

16.3 ACCOUNTING ISSUES

An employee stock option represents a cost to the company and a benefit to the employee
just like any other form of compensation. This point, which for many is self-evident, is

actually quite controversial. Many corporate executives appear to believe that an option
has no value unless it is in the money. As a result, they argue that an at-the-money option

issued by the company is not a cost to the company. The reality is that, if options are
valuable to employees, they must represent a cost to the company’s shareholders—and

therefore to the company. There is no free lunch. The cost to the company of the options

arises from the fact that the company has agreed that, if its stock does well, it will sell
shares to employees at a price less than that which would apply in the open market.

Prior to 1995 the cost charged to the income statement of a company when it issued

stock options was the intrinsic value. Most options were at the money when they were
first issued, so that this cost was zero. In 1995, accounting standard FAS 123 was

issued. Many people expected it to require the expensing of options at their fair value.

However, as a result of intense lobbying, the 1995 version of FAS 123 only encouraged
companies to expense the fair value of the options they granted on the income

statement. It did not require them to do so. If fair value was not expensed on the
income statement, it had to be reported in a footnote to the company’s accounts.

Accounting standards have now changed to require the expensing of all stock-based

compensation at its fair value on the income statement. In February 2004 the Inter-
national Accounting Standards Board issued IAS 2 requiring companies to start

expensing stock options in 2005. In December 2004 FAS 123 was revised to require

the expensing of employee stock options in the United States starting in 2005.

The effect of the new accounting standards is to require options to be valued on the
grant date and the amount to be recorded as an expense in the income statement for the

year in which the grant is made. Valuation at a time later than the grant date is not
required. It can be argued that options should be revalued at financial year ends (or

every quarter) until they are exercised or reach the end of their lives.4 This would treat
them in the same way as other derivative transactions entered into by the company. If

the option became more valuable from one year to the next, there would then be an

3 This would apply to the exercise of options because, if an executive wants to exercise options and sell the

stock that is acquired, then he or she would have to give notice of intention to sell.
4 See J. Hull and A. White, ‘‘Accounting for Employee Stock Options: A Practical Approach to Handling the

Valuation Issues,’’ Journal of Derivatives Accounting, 1, 1 (2004): 3–9.
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additional amount to be expensed. However, if it declined in value, there would be a

positive impact on income.

This approach would have a number of advantages. The cumulative charge to the

company would reflect the actual cost of the options (either zero if the options are not
exercised or the option payoff if they are exercised). Although the charge in any year

would depend on the option pricing model used, the cumulative charge over the life of

the option would not.5 Arguably there would be much less incentive for the company to
engage in the backdating practices described later in the chapter. The disadvantage

usually cited for accounting in this way is that it is undesirable because it introduces
volatility into the income statement.6

Alternatives to Stock Options

The accounting rules which came into effect in 2005 have led companies to consider

alternatives to traditional compensation plans where at-the-money stock options are

granted. We have already mentioned restricted stock units (RSUs), which are shares
that will be owned by the employee at a future time (the vesting date). Many companies

have replaced stock options by RSUs. A variation on an RSU is a market-leveraged
stock unit (MSU), in which the number of shares that will be owned on the vesting date

is equal to ST=S0, where S0 is the stock price on the grant date and ST is the stock price

on the vesting date.7

If the stock market as a whole goes up, employees with stock options tend to do well,

even if their own company’s stock price does less well than the market. One way of
overcoming this problem is to tie the strike price of the options to the performance of

the S&P 500. Suppose that on the option grant date the stock price is $30 and the

S&P 500 is 1,500. The strike price would initially be set at $30. If the S&P 500 increased
by 10% to 1,650, then the strike price would also increase by 10% to $33. If the

S&P 500 moved down by 15% to 1,275, then the strike price would also move down by
15% to $25.50. The effect of this is that the company’s stock price performance has to

beat the performance of the S&P 500 to become in the money. As an alternative to

using the S&P 500 as the reference index, the company could use an index of the prices
of stocks in the same industrial sector as the company.

16.4 VALUATION

Accounting standards give companies quite a bit of latitude in choosing a method for
valuing employee stock options. In this section we review some of the alternatives.

5 Interestingly, if an option is settled in cash rather than by the company issuing new shares, it is subject to

the accounting treatment proposed here. (However, there is no economic difference between an option that is

settled in cash and one that is settled by selling new shares to the employee.)
6 In fact the income statement is likely be less volatile if stock options are revalued. When the company does

well, income is reduced by revaluing the executive stock options. When the company does badly, it is

increased.
7 Sometimes there is an upper and lower bound to the number of shares which will vest and sometimes S0
and ST are defined as average stock prices over a number of days preceding the grant data and vesting date,

respectively. For an analysis of MSUs, see J. Hull and A. White, ‘‘The Valuation of Market-Leveraged Stock

Units,’’ Working Paper, University of Toronto, 2013.
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The ‘‘Quick and Dirty’’ Approach

A frequently used approach is based on what is known as the option’s expected life. This

is the average time for which employees hold the option before it is exercised or expires.

The expected life can be approximately estimated from historical data on the early

exercise behavior of employees and reflects the vesting period, the impact of employees

leaving the company, and the tendency we mentioned in Section 16.1 for employee stock

options to be exercised earlier than regular options. The Black–Scholes–Merton model is

used with the life of the option, T , set equal to the expected life. The volatility is usually

estimated from several years of historical data as described in Section 15.4.

It should be emphasized that using the Black–Scholes–Merton formula in this way

has no theoretical validity. There is no reason why the value of a European stock option

with the time to maturity, T , set equal to the expected life should be approximately the

same as the value of the American-style employee stock option that we are interested in.

However, the results given by the model are not unreasonable. Companies, when

reporting their employee stock option expense, will frequently mention the volatility

and expected life used in their Black–Scholes–Merton computations.

Example 16.1

A company grants 1,000,000 options to its executives on November 1, 2014. The

stock price on that date is $30 and the strike price of the options is also $30. The

options last for 10 years and vest after three years. The company has issued

similar at-the-money options for the last 10 years. The average time to exercise

or expiry of these options is 4.5 years. The company therefore decides to use an

‘‘expected life’’ of 4.5 years. It estimates the long-term volatility of the stock

price, using 5 years of historical data, to be 25%. The present value of dividends

during the next 4.5 years is estimated to be $4. The 4.5-year zero-coupon risk-free

interest rate is 5%. The option is therefore valued using the Black–Scholes–

Merton model (adjusted for dividends in the way described in Section 15.12)

with S0 ¼ 30� 4 ¼ 26, K ¼ 30, r ¼ 5%, � ¼ 25%, and T ¼ 4:5. The Black–

Scholes–Merton formula gives the value of one option as $6.31. Hence, the

income statement expense is 1,000,000� 6:31, or $6,310,000.

Binomial Tree Approach

A more sophisticated approach to valuing employee stock options involves building a

binomial tree as outlined in Chapter 13 and adjusting the rules used when rolling back

through the tree to reflect (a) whether the option has vested, (b) the probability of the

employee leaving the company, and (c) the probability of the employee choosing to

exercise the option. The terms of the option define whether the option has vested at

different nodes of the tree. Historical data on turnover rates for employees can be used

to estimate the probability of the option being either prematurely exercised or forfeited

at a node because the employee leaves the company. The probability of an employee

choosing to exercise the option at different nodes of the tree is more difficult to

quantify. Clearly this probability increases as the ratio of the stock price to the strike

price increases and as the time to the option’s maturity declines. If enough historical

data is available, the probability of exercise as a function of these two variables can be

estimated—at least approximately.
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Example 16.2

Suppose a company grants stock options that last 8 years and vest after 3 years.
The stock price and strike price are both $40. The stock price volatility is 30%, the
risk-free rate is 5%, and the company pays no dividends. Figure 16.1 shows how a
four-step tree could be used to value the option. (This is for illustration; in practice
more time steps would be used.) In this case, � ¼ 0:3, �t ¼ 2, and r ¼ 0:05, so
that, with the notation of Chapter 13, a ¼ e0:05�2 ¼ 1:1052, u ¼ e0:3

ffiffi
2

p
¼ 1:5285,

d ¼ 1=u ¼ 0:6543, and p ¼ ða� dÞ=ðu� dÞ ¼ 0:5158. The probability on the ‘‘up
branches’’ is 0.5158 and the probability on the ‘‘down branches’’ is 0.4842. There
are three nodes where early exercise could be desirable: D, G, and H. (The option
has not vested at node B and is not in the money at the other nodes prior to
maturity.) We assume that the probabilities that the holder will choose to exercise
at nodes D, G, and H (conditional on no earlier exercise) have been estimated as
40%, 80%, and 30%, respectively. We suppose that the probability of an employee
leaving the company during each time step is 5%. (This corresponds to an em-
ployee turnover rate of approximately 2.5% per year.) For the purposes of the
calculation, it is assumed that employees always leave at the end of a time period.
If an employee leaves the company before an option has vested or when the option
is out of the money, the option is forfeited. In other cases the option must be
exercised immediately.

At each node:
 Upper value = Underlying asset price
 Lower value = Option price
Values in bold are a result of early exercise.

Strike price = 40
Discount factor per step = 0.9048
Time step, dt = 2.0000 years, 730.00 days
Growth factor per step, a = 1.1052 218.31

Probability of up move, p = 0.5158 G 178.31

Up step size, u = 1.5285 142.83

Down step size, d = 0.6543 D 103.56
93.45 93.45

B 56.44 H 53.45
61.14 61.14

A 29.39 E 23.67
40.00 40.00 40.00
14.97 C 10.49 I 0.00

26.17 26.17
4.65 F 0.00

17.12 17.12
0.00 J 0.00

11.20
0.00

7.33
0.00

Node time: 
0.0000 2.0000 4.0000 6.0000 8.0000

Figure 16.1 Valuation of employee stock option in Example 16.2.
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The value of the option at the final nodes is its intrinsic value. Consider the
nodes at time 6 years. Nodes I and J are easy. Since these nodes are certain to lead
to nodes where the option is worth nothing, the value of the option is zero at
these nodes. At node H there is a 30% chance that the employee will choose to
exercise the option. In cases where the employee does not choose to exercise, there
is a 5% chance that the employee leaves the company and has to exercise. The
total probability of exercise is therefore 0:3þ 0:7� 0:05 ¼ 0:335. If the option is
exercised, its value is 61:14� 40 ¼ 21:14. If it is not exercised, its value is

e
�0:05�2ð0:5158� 53:45þ 0:4842� 0Þ ¼ 24:95

The value of the option at node H is therefore

0:335� 21:14þ 0:665� 24:95 ¼ 23:67

The value at node G is similarly

0:81� 102:83þ 0:19� 106:64 ¼ 103:56

We now move on to the nodes at time 4 years. At node F the option is clearly
worth zero. At node E there is a 5% chance that the employee will forfeit the
option because he or she leaves the company and a 95% chance that the option
will be retained. In the latter case the option is worth

e
�0:05�2ð0:5158� 23:67þ 0:4842� 0Þ ¼ 11:05

The option is therefore worth 0:95� 11:05 ¼ 10:49. At node D there is a 0.43
probability that the option will be exercised and a 0.57 chance that it will be
retained. The value of the option is 56.44.

Consider next the initial node and the nodes at time 2 years. The option has not
vested at these nodes. There is a 5% chance that the option will be forfeited and a
95% chance that it will be retained for a further 2 years. This leads to the
valuations shown in Figure 16.1. The valuation of the option at the initial node
is 14.97. (This compares with a valuation of 17.98 for a regular option using the
same tree.)

The Exercise Multiple Approach

Hull and White suggest a simple model where an employee exercises as soon as the
option has vested and the ratio of the stock price to the strike price is above a certain
level.8 They refer to the ratio of stock price to strike price that triggers exercise as the
‘‘exercise multiple’’. The option can be valued using a binomial or trinomial tree. As
outlined in Section 27.6, it is important to construct a binomial or trinomial tree where
nodes lie on the stock prices that will lead to exercise. For example, if the strike price is
$30 and the assumption is that employees exercise when the ratio of the stock price to
the strike price is 1.5, the tree should be constructed so that there are nodes at a stock
price level of $45. The tree calculations are similar to those for Example 16.2 and take
account of the probability of an employee leaving the company.9 To estimate the
exercise multiple, it is necessary to calculate from historical data the average ratio of

8 See J. Hull and A. White, ‘‘How to value employee stock options,’’ Financial Analysts Journal, 60, 1

(January/February 2004): 3–9.
9 Software implementing this approach is on www.rotman.utoronto.ca/�hull.
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stock price to strike price at the time of exercise. (Exercises at maturity and those arising

from the termination of the employee’s job are not included in the calculation of the

average.) This may be easier to estimate from historical data than the expected life

because the latter is quite heavily dependent on the particular path that has been

followed by the stock’s price.

A Market-Based Approach

One way of valuing an employee stock option is to see what the market would pay for

it. Cisco was the first to try this in 2006. It proposed selling options with the exact terms

of its employee stock options to institutional investors. This approach was rejected by

the SEC on the grounds that the range of investors bidding for the options was not

wide enough.

Zions Bancorp has suggested an alternative approach. It proposed that securities

providing payoffs mirroring those actually realized by its employees be sold. Suppose

that the strike price for a particular grant to employees is $40 and it turns out that 1%

of employees exercise after exactly 5 years when the stock price is $60, 2% exercise after

exactly 6 years when the stock price is $65, and so on. Then 1% of the securities owned

by an investor will provide a $20 payoff after 5 years, 2% will provide a payoff of $25

after 6 years, and so on.

Zions Bancorp tested the idea using its own stock option grant to its employees. It

sold the securities using a Dutch auction process. In this individuals or companies can

submit a bid indicating the price they are prepared to pay and the number of options

they are prepared to buy. The clearing price is the highest bid such that the aggregate

number of options sought at that price or a higher price equals or exceeds the number

of options for sale. Buyers who have bid more than the clearing price get their orders

filled at the clearing price and the buyer who bid the clearing price gets the remainder.

Zions Bancorp announced that it had received SEC approval for its market-based

approach in October 2007, but the approach has not been used to any great extent.

Dilution

The fact that a company issues new stock when an employee stock option is exercised

leads to some dilution for existing stock holders because new shares are being sold to

employees at below the current stock price. It is natural to assume that this dilution

takes place at the time the option is exercised. However, this is not the case. As

explained in Section 15.10, stock prices are diluted when the market first hears about

a stock option grant. The possible exercise of options is anticipated and immediately

reflected in the stock price. This point is emphasized by the example in Business

Snapshot 15.3.

The stock price immediately after a grant is announced to the public reflects any

dilution. Provided that this stock price is used in the valuation of the option, it is not

necessary to adjust the option price for dilution. In many instances the market expects a

company to make regular stock option grants and so the market price of the stock

anticipates dilution even before the announcement is made.

If a company is contemplating a stock option grant that will surprise the market, the

cost can be calculated as described in Example 15.7. This cost can be compared with

benefits such as lower regular employee remuneration and less employee turnover.
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16.5 BACKDATING SCANDALS

No discussion of employee stock options would be complete without mentioning

backdating scandals. Backdating is the practice of marking a document with a date

that precedes the current date.

Suppose that a company decides to grant at-the-money options to its executives on

April 30 when the stock price is $50. If the stock price was $42 on April 3, it is tempting to

behave as if those the options were granted on April 3 and use a strike price of $42. This is

legal provided that the company reports the options as $8 in the money on the date when

the decision to grant the options is made, April 30. But it is illegal for the company to

report the options as at-the-money and granted on April 3. The value on April 3 of an

option with a strike price of $42 is much less than its value on April 30. Shareholders are

misled about the true cost of the decision to grant options if the company reports the

options as granted on April 3.

How prevalent is backdating? To answer this question, researchers have investigated

whether a company’s stock price has, on average, a tendency to be low at the time of

the grant date that the company reports. Early research by Yermack shows that stock

prices tend to increase after reported grant dates.10 Lie extended Yermack’s work,

showing that stock prices also tended to decrease before reported grant dates.11

Furthermore he showed that the pre- and post-grant stock price patterns had become

more pronounced over time. His results are summarized in Figure 16.2, which shows

average abnormal returns around the grant date for the 1993–94, 1995–98, and 1999–

2002 periods. (Abnormal returns are the returns after adjustments for returns on the

market portfolio and the beta of the stock.) Standard statistical tests show that it is

almost impossible for the patterns shown in Figure 16.2 to be observed by chance.

This led both academics and regulators to conclude in 2002 that backdating had

become a common practice. In August 2002 the SEC required option grants by public

companies to be reported within two business days. Heron and Lie showed that this

led to a dramatic reduction in the abnormal returns around the grant dates—

particularly for those companies that complied with this requirement.12 It might be

argued that the patterns in Figure 16.2 are explained by managers simply choosing

grant dates after bad news or before good news, but the Heron and Lie study provides

compelling evidence that this is not the case.

Estimates of the number of companies that illegally backdated stock option grants in

the United States vary widely. Tens and maybe hundreds of companies seem to have

engaged in the practice. Many companies seem to have adopted the view that it was

acceptable to backdate up to one month. Some CEOs resigned when their backdating

practices came to light. In August 2007, Gregory Reyes of Brocade Communications

Systems, Inc., became the first CEO to be tried for backdating stock option grants.

Allegedly, Mr. Reyes said to a human resources employee: ‘‘It is not illegal if you do

not get caught.’’ In June 2010, he was sentenced to 18 months in prison and fined

$15 million.

10 See D. Yermack, ‘‘Good timing: CEO stock option awards and company news announcements,’’ Journal

of Finance, 52 (1997), 449–476.
11 See E. Lie, ‘‘On the timing of CEO stock option awards,’’ Management Science, 51, 5 (May 2005), 802–12.
12 See R. Heron and E. Lie, ‘‘Does backdating explain the stock price pattern around executive stock option

grants,’’ Journal of Financial Economics, 83, 2 (February 2007), 271–95.
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Companies involved in backdating have had to restate past financial statements and

have been defendants in class action suits brought by shareholders who claim to have

lost money as a result of backdating. For example, McAfee announced in December

2007 that it would restate earnings between 1995 and 2005 by $137.4 million. In 2006, it

set aside $13.8 million to cover lawsuits.

SUMMARY

Executive compensation has increased very fast in the last 20 years and much of the

increase has come from the exercise of stock options granted to the executives. Until

2005 at-the-money stock option grants were a very attractive form of compensation.

They had no impact on the income statement and were very valuable to employees.

Accounting standards now require options to be expensed.

There are a number of different approaches to valuing employee stock options. A

common approach is to use the Black–Scholes–Merton model with the life of the

option set equal to the expected time to exercise or expiry of the option. Another

approach is to assume that options are exercised as soon as the ratio of the stock price

to the strike price reaches a certain barrier. A third approach is to try and estimate the

relationship between the probability of exercise, the ratio of the stock price to the

strike price, and the time to option maturity. A fourth approach is to create a market

for securities that replicate the payoffs on the options.

Academic research has shown beyond doubt that many companies have engaged in

the illegal practice of backdating stock option grants in order to reduce the strike price,

while still contending that the options were at the money. The first prosecutions for this

illegal practice were in 2007.
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Figure 16.2 Erik Lie’s results providing evidence of backdating. (Reproduced with
permission, from www.biz.uiowa.edu/faculty/elie/backdating.htm.)
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Practice Questions (Answers in Solutions Manual)

16.1. Why was it attractive for companies to grant at-the-money stock options prior to 2005?
What changed in 2005?

16.2. What are the main differences between a typical employee stock option and an American
call option traded on an exchange or in the over-the-counter market?

16.3. Explain why employee stock options on a non-dividend-paying stock are frequently
exercised before the end of their lives, whereas an exchange-traded call option on such a
stock is never exercised early.

16.4. ‘‘Stock option grants are good because they motivate executives to act in the best
interests of shareholders.’’ Discuss this viewpoint.

16.5. ‘‘Granting stock options to executives is like allowing a professional footballer to bet on
the outcome of games.’’ Discuss this viewpoint.

16.6. Why did some companies backdate stock option grants in the US prior to 2002? What
changed in 2002?

16.7. In what way would the benefits of backdating be reduced if a stock option grant had to
be revalued at the end of each quarter?

16.8. Explain how you would do the analysis to produce a chart such as the one in
Figure 16.2.

16.9. On May 31 a company’s stock price is $70. One million shares are outstanding. An
executive exercises 100,000 stock options with a strike price of $50. What is the impact of
this on the stock price?

16.10. The notes accompanying a company’s financial statements say: ‘‘Our executive stock
options last 10 years and vest after 4 years. We valued the options granted this year using
the Black–Scholes–Merton model with an expected life of 5 years and a volatility of
20%.’’ What does this mean? Discuss the modeling approach used by the company.
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16.11. In a Dutch auction of 10,000 options, bids are as follows: A bids $30 for 3,000; B bids
$33 for 2,500; C bids $29 for 5,000; D bids $40 for 1,000; E bids $22 for 8,000; and
F bids $35 for 6,000. What is the result of the auction? Who buys how many at what
price?

16.12. A company has granted 500,000 options to its executives. The stock price and strike
price are both $40. The options last for 12 years and vest after 4 years. The company
decides to value the options using an expected life of 5 years and a volatility of 30% per
annum. The company pays no dividends and the risk-free rate is 4%. What will the
company report as an expense for the options on its income statement?

16.13. A company’s CFO says: ‘‘The accounting treatment of stock options is crazy. We
granted 10,000,000 at-the-money stock options to our employees last year when the
stock price was $30. We estimated the value of each option on the grant date to be $5. At
our year-end the stock price had fallen to $4, but we were still stuck with a $50 million
charge to the P&L.’’ Discuss.

Further Questions

16.14. What is the (risk-neutral) expected life for the employee stock option in Example 16.2?
What is the value of the option obtained by using this expected life in Black–Scholes–
Merton?

16.15. A company has granted 2,000,000 options to its employees. The stock price and strike
price are both $60. The options last for 8 years and vest after 2 years. The company
decides to value the options using an expected life of 6 years and a volatility of 22% per
annum. Dividends on the stock are $1 per year, payable halfway through each year, and
the risk-free rate is 5%. What will the company report as an expense for the options on
its income statement?

16.16. A company has granted 1,000,000 options to its employees. The stock price and strike
price are both $20. The options last 10 years and vest after 3 years. The stock price
volatility is 30%, the risk-free rate is 5%, and the company pays no dividends. Use a
four-step tree to value the options. Assume that there is a probability of 4% that an
employee leaves the company at the end of each of the time steps on your tree. Assume
also that the probability of voluntary early exercise at a node, conditional on no prior
exercise, when (a) the option has vested and (b) the option is in the money, is

1� exp½�aðS=K� 1Þ=T �
where S is the stock price, K is the strike price, T is the time to maturity, and a ¼ 2.

16.17. (a) Hedge funds earn a management fee plus an incentive fee that is a percentage of the
profits, if any, that they generate (see Business Snapshot 1.3). How is a fund manager
motivated to behave with this type of compensation package?

(b) ‘‘Granting options to an executive gives the executive the same type of compensation
package as a hedge fund manager and motivates him or her to behave in the same
way as a hedge fund manager.’’ Discuss this statement.
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Options on
Stock Indices and

Currencies

Options on stock indices and currencies were introduced in Chapter 10. This chapter
discusses them in more detail. It explains how they work and reviews some of the ways
they can be used. In the second half of the chapter, the valuation results in Chapter 15
are extended to cover European options on a stock paying a known dividend yield. It is
then argued that both stock indices and currencies are analogous to stocks paying
dividend yields. This enables the results for options on a stock paying a dividend yield
to be applied to these types of options as well.

17.1 OPTIONS ON STOCK INDICES

Several exchanges trade options on stock indices. Some of the indices track the move-
ment of the market as a whole. Others are based on the performance of a particular
sector (e.g., computer technology, oil and gas, transportation, or telecoms). Among the
index options traded on the Chicago Board Options Exchange (CBOE) are American
and European options on the S&P 100 (OEX and XEO), European options on the S&P
500 (SPX), European options on the Dow Jones Industrial Average (DJX), and Euro-
pean options on the Nasdaq 100 (NDX). In Chapter 10, we explained that the CBOE
trades LEAPS and flex options on individual stocks. It also offers these option products
on indices.

One index option contract is on 100 times the index. (Note that the Dow Jones index
used for index options is 0.01 times the usually quoted Dow Jones index.) Index options
are settled in cash. This means that, on exercise of the option, the holder of a call option
contract receives ðS �KÞ � 100 in cash and the writer of the option pays this amount in
cash, where S is the value of the index at the close of trading on the day of the exercise
and K is the strike price. Similarly, the holder of a put option contract receives
ðK� SÞ � 100 in cash and the writer of the option pays this amount in cash.

Portfolio Insurance

Portfolio managers can use index options to limit their downside risk. Suppose that the
value of an index today is S0. Consider a manager in charge of a well-diversified portfolio
whose beta is 1.0. A beta of 1.0 implies that the returns from the portfolio mirror those
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from the index. Assuming the dividend yield from the portfolio is the same as the
dividend yield from the index, the percentage changes in the value of the portfolio can
be expected to be approximately the same as the percentage changes in the value of the
index. Since each contract is on 100 times the index, it follows that the value of the
portfolio is protected against the possibility of the index falling belowK if, for each 100S0
dollars in the portfolio, the manager buys one put option contract with strike price K.
Suppose that the manager’s portfolio is worth $500,000 and the value of the index is
1,000. The portfolio is worth 500 times the index. The manager can obtain insurance
against the value of the portfolio dropping below $450,000 in the next three months by
buying five three-month put option contracts on the index with a strike price of 900.

To illustrate how the insurance works, consider the situation where the index drops
to 880 in three months. The portfolio will be worth about $440,000. The payoff from
the options will be 5� ð900� 880Þ � 100 ¼ $10,000, bringing the total value of the
portfolio up to the insured value of $450,000.

When the Portfolio’s Beta Is Not 1.0

If the portfolio’s beta (�) is not 1.0, � put options must be purchased for each 100S0
dollars in the portfolio, where S0 is the current value of the index. Suppose that the
$500,000 portfolio just considered has a beta of 2.0 instead of 1.0. We continue to
assume that the index is 1,000. The number of put options required is

2:0� 500,000

1,000� 100
¼ 10

rather than 5 as before.
To calculate the appropriate strike price, the capital asset pricing model can be used

(see the appendix to Chapter 3). Suppose that the risk free rate is 12%, the dividend
yield on both the index and the portfolio is 4%, and protection is required against the
value of the portfolio dropping below $450,000 in the next three months. Under the
capital asset pricing model, the expected excess return of a portfolio over the risk-free

Table 17.1 Calculation of expected value of portfolio when the index is 1,040 in
three months and � ¼ 2:0:

Value of index in three months: 1,040
Return from change in index: 40/1,000, or 4% per three months
Dividends from index: 0:25� 4 ¼ 1% per three months
Total return from index: 4þ 1 ¼ 5% per three months
Risk-free interest rate: 0:25� 12 ¼ 3% per three months
Excess return from index

over risk-free interest rate: 5� 3 ¼ 2% per three months
Expected excess return from portfolio

over risk-free interest rate: 2� 2 ¼ 4% per three months
Expected return from portfolio: 3þ 4 ¼ 7% per three months
Dividends from portfolio: 0:25� 4 ¼ 1% per three months
Expected increase in value of portfolio: 7� 1 ¼ 6% per three months
Expected value of portfolio: $500,000� 1:06 ¼ $530,000
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rate is assumed to equal beta times the excess return of the index portfolio over the risk-
free rate. The model enables the expected value of the portfolio to be calculated for
different values of the index at the end of three months. Table 17.1 shows the calcula-
tions for the case where the index is 1,040. In this case, the expected value of the
portfolio at the end of the three months is $530,000. Similar calculations can be carried
out for other values of the index at the end of the three months. The results are shown in
Table 17.2. The strike price for the options that are purchased should be the index level

corresponding to the protection level required on the portfolio. In this case, the
protection level is $450,000 and so the correct strike price for the 10 put option contracts
that are purchased is 960.1

To illustrate how the insurance works, consider what happens if the value of the
index falls to 880. As shown in Table 17.2, the value of the portfolio is then about
$370,000. The put options pay off ð960� 880Þ � 10� 100 ¼ $80,000, and this is exactly

what is necessary to move the total value of the portfolio manager’s position up from
$370,000 to the required level of $450,000.

The examples in this section show that there are two reasons why the cost of hedging
increases as the beta of a portfolio increases. More put options are required and they
have a higher strike price.

17.2 CURRENCY OPTIONS

Currency options are primarily traded in the over-the-counter market. The advantage
of this market is that large trades are possible, with strike prices, expiration dates, and

other features tailored to meet the needs of corporate treasurers. Although currency
options do trade on NASDAQ OMX in the United States, the exchange-traded market
for these options is much smaller than the over-the-counter market.

An example of a European call option is a contract that gives the holder the right to
buy one million euros with US dollars at an exchange rate of 1.3000 US dollars per

euro. If the actual exchange rate at the maturity of the option is 1.3500, the payoff is

Table 17.2 Relationship between value of index
and value of portfolio for � ¼ 2:0.

Value of index
in three months

Value of portfolio
in three months ($)

1,080 570,000

1,040 530,000

1,000 490,000

960 450,000

920 410,000

880 370,000

1 Approximately 1% of $500,000, or $5,000, will be earned in dividends over the next three months. If we

want the insured level of $450,000 to include dividends, we can choose a strike price corresponding to

$445,000 rather than $450,000. This is 955.
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1,000,000� ð1:3500� 1:3000Þ ¼ $50,000. Similarly, an example of a European put
option is a contract that gives the holder the right to sell ten million Australian
dollars for US dollars at an exchange rate of 0.9000 US dollars per Australian dollar.
If the actual exchange rate at the maturity of the option is 0.8700, the payoff is
10,000,000� ð0:9000� 0:8700Þ ¼ $300,000.

For a corporation wishing to hedge a foreign exchange exposure, foreign currency
options are an alternative to forward contracts. AUS company due to receive sterling at a
known time in the future can hedge its risk by buying put options on sterling that mature
at that time. The hedging strategy guarantees that the exchange rate applicable to the
sterling will not be less than the strike price, while allowing the company to benefit from
any favorable exchange-rate movements. Similarly, a US company due to pay sterling at
a known time in the future can hedge by buying calls on sterling that mature at that time.
This hedging strategy guarantees that the cost of the sterling will not be greater than a
certain amount while allowing the company to benefit from favorable exchange-rate
movements. Whereas a forward contract locks in the exchange rate for a future trans-
action, an option provides a type of insurance. This is not free. It costs nothing to enter
into a forward transaction, but options require a premium to be paid up front.

Range Forwards

A range forward contract is a variation on a standard forward contract for hedging
foreign exchange risk. Consider a US company that knows it will receive one million
pounds sterling in three months. Suppose that the three-month forward exchange rate is
1.5200 dollars per pound. The company could lock in this exchange rate for the dollars
it receives by entering into a short forward contract to sell one million pounds sterling
in three months. This would ensure that the amount received for the one million
pounds is $1,520,000.

An alternative is to buy a European put option with a strike price of K1 and sell a
European call option with a strike priceK2, whereK1 < 1:5200 < K2. This is known as a
short position in a range forward contract. The payoff is shown in Figure 17.1a. In both
cases, the options are on one million pounds. If the exchange rate in three months proves
to be less than K1, the put option is exercised and as a result the company is able to sell

Payoff

K1 K2

(a)

Asset
price

Payoff

K1 K2

(b)

Asset
price

Figure 17.1 Payoffs from (a) short and (b) long range forward contract.
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the one million pounds at an exchange rate of K1. If the exchange rate is between K1 and

K2, neither option is exercised and the company gets the current exchange rate for the

one million pounds. If the exchange rate is greater than K2, the call option is exercised

against the company and the one million pounds is sold at an exchange rate of K2. The

exchange rate realized for the one million pounds is shown in Figure 17.2.

If the company knew it was due to pay rather than receive one million pounds in three

months, it could sell a European put option with strike price K1 and buy a European

call option with strike price K2. This is a long position in a range forward contract and

the payoff is shown in Figure 17.1b. If the exchange rate in three months proves to be less

than K1, the put option is exercised against the company and as a result the company

buys the one million pounds it needs at an exchange rate of K1. If the exchange rate is

between K1 and K2, neither option is exercised and the company buys the one million

pounds at the current exchange rate. If the exchange rate is greater than K2, the call

option is exercised and the company is able to buy the one million pounds at an

exchange rate of K2. The exchange rate paid for the one million pounds is the same

as that received for the one million pounds in the earlier example and is shown in

Figure 17.2.

In practice, a range forward contract is set up so that the price of the put option

equals the price of the call option. This means that it costs nothing to set up the range

forward contract, just as it costs nothing to set up a regular forward contract. Suppose

that the US and British interest rates are both 5%, so that the spot exchange rate is

1.5200 (the same as the forward exchange rate). Suppose further that the exchange rate

volatility is 14%. We can use DerivaGem to show that a European put with strike price

1.5000 to sell one pound has the same price as a European call option with a strike price

of 1.5413 to buy one pound. (Both are worth 0.03250.) Setting K1 ¼ 1:5000 and

K2 ¼ 1:5413 therefore leads to a contract with zero cost in our example.

K1

K1

K2

K2

Exchange rate
in market 

Exchange rate realized
when range-forward 
contract is used 

 
 

Figure 17.2 Exchange rate realized when a range forward contract is used
to hedge either a future foreign currency inflow or a future foreign currency
outflow.
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As the strike prices of the call and put options in a range forward contract are moved

together, the range forward contract becomes a regular forward contract. The (short)
range forward contract in Figure 17.1a becomes a short forward contract and the (long)

range forward contract in Figure 17.1b becomes a long forward contract.

17.3 OPTIONS ON STOCKS PAYING KNOWN DIVIDEND YIELDS

In this section we produce a simple rule that enables valuation results for European

options on a non-dividend-paying stock to be extended so that they apply to European

options on a stock paying a known dividend yield. Later we show how this enables us to
value options on stock indices and currencies.

Dividends cause stock prices to reduce on the ex-dividend date by the amount of
the dividend payment. The payment of a dividend yield at rate q therefore causes the

growth rate in the stock price to be less than it would otherwise be by an amount q. If,

with a dividend yield of q, the stock price grows from S0 today to ST at time T , then
in the absence of dividends it would grow from S0 today to ST e

qT at time T .

Alternatively, in the absence of dividends it would grow from S0e
�qT today to ST at

time T .

This argument shows that we get the same probability distribution for the stock price

at time T in each of the following two cases:

1. The stock starts at price S0 and provides a dividend yield at rate q.

2. The stock starts at price S0e
�qT and pays no dividends.

This leads to a simple rule. When valuing a European option lasting for time T on a

stock paying a known dividend yield at rate q, we reduce the current stock price from S0
to S0e

�qT and then value the option as though the stock pays no dividends.2

Lower Bounds for Option Prices

As a first application of this rule, consider the problem of determining bounds for the
price of a European option on a stock paying a dividend yield at rate q. Substituting

S0e
�qT for S0 in equation (11.4), we see that a lower bound for the European call option

price, c, is given by

c > max
�
S0e

�qT �Ke
�rT ; 0

� ð17:1Þ

We can also prove this directly by considering the following two portfolios:

Portfolio A : one European call option plus an amount of cash equal to Ke
�rT

Portfolio B : e
�qT shares with dividends being reinvested in additional shares.

To obtain a lower bound for a European put option, we can similarly replace S0 by

S0e
�qT in equation (11.5) to get

p > max
�
Ke

�rT � S0e
�qT ; 0

� ð17:2Þ
2 This rule is analogous to the one developed in Section 15.12 for valuing a European option on a stock

paying known cash dividends. (In that case we concluded that it is correct to reduce the stock price by the

present value of the dividends; in this case we discount the stock price at the dividend yield rate.)
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This result can also be proved directly by considering the following portfolios:

Portfolio C : one European put option plus e�qT shares with dividends on the shares
being reinvested in additional shares

Portfolio D : an amount of cash equal to Ke
�rT .

Put–Call Parity

Replacing S0 by S0e
�qT in equation (11.6) we obtain put–call parity for an option on a

stock paying a dividend yield at rate q:

cþKe
�rT ¼ pþ S0e

�qT ð17:3Þ
This result can also be proved directly by considering the following two portfolios:

Portfolio A : one European call option plus an amount of cash equal to Ke
�rT

Portfolio C : one European put option plus e�qT shares with dividends on the shares
being reinvested in additional shares.

Both portfolios are both worth maxðST ; KÞ at time T . They must therefore be worth the
same today, and the put–call parity result in equation (17.3) follows. For American
options, the put–call parity relationship is (see Problem 17.12)

S0e
�qT �K 6 C� P 6 S0 �Ke

�rT

Pricing Formulas

By replacing S0 by S0e
�qT in the Black–Scholes–Merton formulas, equations (15.20)

and (15.21), we obtain the price, c, of a European call and the price, p, of a European
put on a stock paying a dividend yield at rate q as

c ¼ S0e
�qT

Nðd1Þ �Ke
�rT

Nðd2Þ ð17:4Þ
p ¼ Ke

�rT
Nð�d2Þ � S0e

�qT
Nð�d1Þ ð17:5Þ

Since

ln
S0e

�qT

K
¼ ln

S0

K
� qT

it follows that d1 and d2 are given by

d1 ¼
lnðS0=KÞ þ ðr� qþ �2=2ÞT

�
ffiffiffiffi
T

p

d2 ¼
lnðS0=KÞ þ ðr� q� �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

These results were first derived by Merton.3 As discussed in Chapter 15, the word
dividend should, for the purposes of option valuation, be defined as the reduction in the
stock price on the ex-dividend date arising from any dividends declared. If the dividend
yield rate is known but not constant during the life of the option, equations (17.4)

3 See R.C. Merton, ‘‘Theory of Rational Option Pricing,’’ Bell Journal of Economics and Management

Science, 4 (Spring 1973): 141–83.
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and (17.5) are still true, with q equal to the average annualized dividend yield during the
option’s life.

Differential Equation and Risk-Neutral Valuation

To prove the results in equations (17.4) and (17.5) more formally, we can either solve
the differential equation that the option price must satisfy or use risk-neutral valuation.

When we include a dividend yield of q in the analysis in Section 15.6, the differential
equation (15.16) becomes4

@f

@t
þ ðr� qÞS @f

@S
þ 1

2
�2
S
2 @

2
f

@S2
¼ rf ð17:6Þ

Like equation (15.16), this does not involve any variable affected by risk preferences.
Therefore the risk-neutral valuation procedure described in Section 15.7 can be used.

In a risk-neutral world, the total return from the stock must be r. The dividends
provide a return of q. The expected growth rate in the stock price must therefore be
r� q. It follows that the risk-neutral process for the stock price is

dS ¼ ðr� qÞS dtþ �S dz ð17:7Þ
To value a derivative dependent on a stock that provides a dividend yield equal to q, we
set the expected growth rate of the stock equal to r� q and discount the expected payoff
at rate r. When the expected growth rate in the stock price is r� q, the expected stock
price at time T is S0e

ðr�qÞT . A similar analysis to that in the appendix to Chapter 15 gives
the expected payoff for a call option in a risk-neutral world as

e
ðr�qÞT

S0Nðd1Þ �KNðd2Þ
where d1 and d2 are defined as above. Discounting at rate r for time T leads to
equation (17.4).

17.4 VALUATION OF EUROPEAN STOCK INDEX OPTIONS

In valuing index futures in Chapter 5, we assumed that the index could be treated as an
asset paying a known yield. In valuing index options, we make similar assumptions.
This means that equations (17.1) and (17.2) provide a lower bound for European index
options; equation (17.3) is the put–call parity result for European index options;
equations (17.4) and (17.5) can be used to value European options on an index; and
the binomial tree approach can be used for American options. In all cases, S0 is equal to
the value of the index, � is equal to the volatility of the index, and q is equal to the
average annualized dividend yield on the index during the life of the option.

Example 17.1

Consider a European call option on the S&P 500 that is two months from maturity.
The current value of the index is 930, the exercise price is 900, the risk-free interest
rate is 8% per annum, and the volatility of the index is 20% per annum. Dividend

4 See Technical Note 6 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of this.
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yields of 0.2% and 0.3% are expected in the first month and the second month,
respectively. In this case S0 ¼ 930, K ¼ 900, r ¼ 0:08, � ¼ 0:2, and T ¼ 2=12. The
total dividend yield during the option’s life is 0:2%þ 0:3% ¼ 0:5%. This corres-
ponds to 3% per annum. Hence, q ¼ 0:03 and

d1 ¼
lnð930=900Þ þ ð0:08� 0:03þ 0:22=2Þ � 2=12

0:2
ffiffiffiffiffiffiffiffiffiffi
2=12

p ¼ 0:5444

d2 ¼
lnð930=900Þ þ ð0:08� 0:03� 0:22=2Þ � 2=12

0:2
ffiffiffiffiffiffiffiffiffiffi
2=12

p ¼ 0:4628

Nðd1Þ ¼ 0:7069; Nðd2Þ ¼ 0:6782

so that the call price, c, is given by equation (17.4) as

c ¼ 930� 0:7069e�0:03�2=12 � 900� 0:6782e�0:08�2=12 ¼ 51:83

One contract would cost $5,183.

The calculation of q should include only dividends for which the ex-dividend dates
occur during the life of the option. In the United States ex-dividend dates tend to occur
during the first week of February, May, August, and November. At any given time the
correct value of q is therefore likely to depend on the life of the option. This is even
more true for indices in other countries. In Japan, for example, all companies tend to
use the same ex-dividend dates.

If the absolute amount of the dividend that will be paid on the stocks underlying the
index (rather than the dividend yield) is assumed to be known, the basic Black–
Scholes–Merton formulas can be used with the initial stock price being reduced by
the present value of the dividends. This is the approach recommended in Chapter 15 for
a stock paying known dividends. However, it may be difficult to implement for a
broadly based stock index because it requires a knowledge of the dividends expected
on every stock underlying the index.

It is sometimes argued that, in the long run, the return from investing a certain
amount of money in a well-diversified stock portfolio is almost certain to beat the
return from investing the same amount of money in a bond portfolio. If this were so, a
long-dated put option allowing the stock portfolio to be sold for the value of the bond
portfolio should not cost very much. In fact, as indicated by Business Snapshot 17.1, it
is quite expensive.

Forward Prices

Define F0 as the forward price of the index for a contract with maturity T . As shown by
equation (5.3), F0 ¼ S0e

ðr�qÞT . This means that the equations for the European call price
c and the European put price p in equations (17.4) and (17.5) can be written

c ¼ F0e
�rT

Nðd1Þ �Ke
�rT

Nðd2Þ ð17:8Þ
p ¼ Ke

�rT
Nð�d2Þ � F0e

�rT
Nð�d1Þ ð17:9Þ

where

d1 ¼
lnðF0=KÞ þ �2

T=2

�
ffiffiffiffi
T

p and d2 ¼
lnðF0=KÞ � �2

T=2

�
ffiffiffiffi
T

p
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The put–call parity relationship in equation (17.3) can be written

cþKe
�rT ¼ pþ F0e

�rT

or

F0 ¼ Kþ ðc� pÞerT ð17:10Þ

If, as is not uncommon in the exchange-traded markets, pairs of puts and calls with the
same strike price are traded actively for a particular maturity date, this equation can be

used to estimate the forward price of the index for that maturity date. Once the forward

prices of the index for a number of different maturity dates have been obtained, the

term structure of forward prices can be estimated, and other options can be valued

using equations (17.8) and (17.9). The advantage of this approach is that the dividend

yield on the index does not have to be estimated explicitly.

Implied Dividend Yields

If estimates of the dividend yield are required (e.g., because an American option is

being valued), calls and puts with the same strike price and time to maturity can again

be used. From equation (17.3),

q ¼ � 1

T
ln
c� pþKe

�rT

S0

Business Snapshot 17.1 Can We Guarantee that Stocks Will Beat Bonds in
the Long Run?

It is often said that if you are a long-term investor you should buy stocks rather
than bonds. Consider a US fund manager who is trying to persuade investors to
buy, as a long-term investment, an equity fund that is expected to mirror the
S&P 500. The manager might be tempted to offer purchasers of the fund a
guarantee that their return will be at least as good as the return on risk-free bonds
over the next 10 years. Historically stocks have outperformed bonds in the United
States over almost any 10-year period. It appears that the fund manager would not
be giving much away.

In fact, this type of guarantee is surprisingly expensive. Suppose that an equity
index is 1,000 today, the dividend yield on the index is 1% per annum, the volatility
of the index is 15% per annum, and the 10-year risk-free rate is 5% per annum. To
outperform bonds, the stocks underlying the index must earn more than 5% per
annum. The dividend yield will provide 1% per annum. The capital gains on the
stocks must therefore provide 4% per annum. This means that we require the index
level to be at least 1,000e0:04�10 ¼ 1,492 in 10 years.

A guarantee that the return on $1,000 invested in the index will be greater than the
return on $1,000 invested in bonds over the next 10 years is therefore equivalent to
the right to sell the index for 1,492 in 10 years. This is a European put option on the
index and can be valued from equation (17.5) with S0 ¼ 1,000, K ¼ 1,492, r ¼ 5%,
� ¼ 15%, T ¼ 10, and q ¼ 1%. The value of the put option is 169.7. This shows that
the guarantee contemplated by the fund manager is worth about 17% of the fund—
hardly something that should be given away!
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For a particular strike price and time to maturity, the estimates of q calculated from this
equation are liable to be unreliable. But when the results from many matched pairs of
calls and puts are combined, a clearer picture of the term structure of dividend yields
being assumed by the market emerges.

17.5 VALUATION OF EUROPEAN CURRENCY OPTIONS

To value currency options, we define S0 as the spot exchange rate. To be precise, S0 is
the value of one unit of the foreign currency in US dollars. As explained in Section 5.10,
a foreign currency is analogous to a stock paying a known dividend yield. The owner of
foreign currency receives a yield equal to the risk-free interest rate, rf , in the foreign
currency. Equations (17.1) and (17.2), with q replaced by rf , provide bounds for the
European call price, c, and the European put price, p :

c > max
�
S0e

�rf T �Ke
�rT ; 0

�
p > max

�
Ke

�rT � S0e
�rf T ; 0

�

Equation (17.3), with q replaced by rf , provides the put–call parity result for European
currency options:

cþKe
�rT ¼ pþ S0e

�rf T

Finally, equations (17.4) and (17.5) provide the pricing formulas for European currency
options when q is replaced by rf :

c ¼ S0e
�rf TNðd1Þ �Ke

�rT
Nðd2Þ ð17:11Þ

p ¼ Ke
�rT

Nð�d2Þ � S0e
�rf TNð�d1Þ ð17:12Þ

where

d1 ¼
lnðS0=KÞ þ ðr� rf þ �2=2ÞT

�
ffiffiffiffi
T

p

d2 ¼
lnðS0=KÞ þ ðr� rf � �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

Both the domestic interest rate, r, and the foreign interest rate, rf , are the rates for a
maturity T .

Example 17.2

Consider a 4-month European call option on the British pound. Suppose that the
current exchange rate is 1.6000, the exercise price is 1.6000, the risk-free interest rate
in the United States is 8% per annum, the risk-free interest rate in Britain is 11% per
annum, and the option price is 4.3 cents. In this case, S0 ¼ 1:6, K ¼ 1:6, r ¼ 0:08,
rf ¼ 0:11, T ¼ 0:3333, and c ¼ 0:043. The implied volatility can be calculated by
trial and error. A volatility of 20% gives an option price of 0.0639; a volatility of
10% gives an option price of 0.0285; and so on. The implied volatility is 14.1%.

Put and call options on a currency are symmetrical in that a put option to sell one unit
of currency A for currency B at strike price K is the same as a call option to buy K units
of B with currency A at strike price 1=K (see Problem 17.8).
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Using Forward Exchange Rates

Because banks and other financial institutions trade forward contracts on foreign
exchange rates actively, forward exchange rates are often used for valuing options.

From equation (5.9), the forward rate, F0, for a maturity T is given by

F0 ¼ S0e
ðr�rf ÞT

This relationship allows equations (17.11) and (17.12) to be simplified to

c ¼ e
�rT ½F0Nðd1Þ �KNðd2Þ� ð17:13Þ

p ¼ e
�rT ½KNð�d2Þ � F0Nð�d1Þ� ð17:14Þ

where

d1 ¼
lnðF0=KÞ þ �2

T=2

�
ffiffiffiffi
T

p

d2 ¼
lnðF0=KÞ � �2

T=2

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

Equations (17.13) and (17.14) are the same as equations (17.8) and (17.9). As we shall
see in Chapter 18, a European option on the spot price of any asset can be valued in
terms of the price of a forward or futures contract on the asset using equations (17.13)
and (17.14). The maturity of the forward or futures contract must be the same as the
maturity of the European option.

17.6 AMERICAN OPTIONS

As described in Chapter 13, binomial trees can be used to value American options on
indices and currencies. As in the case of American options on a non-dividend-paying
stock, the parameter determining the size of up movements, u, is set equal to e�

ffiffiffiffi
�t

p
,

where � is the volatility and �t is the length of time steps. The parameter determining
the size of down movements, d, is set equal to 1=u, or e��

ffiffiffiffi
�t

p
. For a non-dividend-

paying stock, the probability of an up movement is

p ¼ a� d

u� d

where a ¼ e
r�t. For options on indices and currencies, the formula for p is the same,

but a is defined differently. In the case of options on an index,

a ¼ e
ðr�qÞ�t ð17:15Þ

where q is the dividend yield on the index. In the case of options on a currency,

a ¼ e
ðr�rf Þ�t ð17:16Þ

where rf is the foreign risk-free rate. Example 13.1 in Section 13.11 shows how a two-step
tree can be constructed to value an option on an index. Example 13.2 shows how a three-
step tree can be constructed to value an option on a currency. Further examples of the use
of binomial trees to value options on indices and currencies are given in Chapter 21.
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In some circumstances, it is optimal to exercise American currency and index options

prior to maturity. Thus, American currency and index options are worth more than
their European counterparts. In general, call options on high-interest currencies and

put options on low-interest currencies are the most likely to be exercised prior to

maturity. The reason is that a high-interest currency is expected to depreciate and a
low-interest currency is expected to appreciate. Similarly, call options on indices with

high-dividend yields and put options on indices with low-dividend yields are most likely

to be exercised early.

SUMMARY

The index options that trade on exchanges are settled in cash. On exercise of an index

call option, the holder receives 100 times the amount by which the index exceeds the
strike price. Similarly, on exercise of an index put option contract, the holder receives

100 times the amount by which the strike price exceeds the index. Index options can be
used for portfolio insurance. If the value of the portfolio mirrors the index, it is

appropriate to buy one put option contract for each 100S0 dollars in the portfolio,

where S0 is the value of the index. If the portfolio does not mirror the index, � put
option contracts should be purchased for each 100S0 dollars in the portfolio, where � is

the beta of the portfolio calculated using the capital asset pricing model. The strike

price of the put options purchased should reflect the level of insurance required.

Most currency options are traded in the over-the-counter market. They can be used

by corporate treasurers to hedge a foreign exchange exposure. For example, a US
corporate treasurer who knows that the company will be receiving sterling at a certain

time in the future can hedge by buying put options that mature at that time. Similarly, a

US corporate treasurer who knows that the company will be paying sterling at a certain
time in the future can hedge by buying call options that mature at that time. Currency

options can also be used to create a range forward contract. This is a zero-cost contract

that can be used to provide downside protection while giving up some of the upside for
a company with a known foreign exchange exposure.

The Black–Scholes–Merton formula for valuing European options on a non-dividend-
paying stock can be extended to cover European options on a stock paying a known

dividend yield. The extension can be used to value European options on stock indices and

currencies because:

1. A stock index is analogous to a stock paying a dividend yield. The dividend yield
is the dividend yield on the stocks that make up the index.

2. A foreign currency is analogous to a stock paying a dividend yield. The foreign
risk-free interest rate plays the role of the dividend yield.

Binomial trees can be used to value American options on stock indices and currencies.
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Practice Questions (Answers in Solutions Manual)

17.1. A portfolio is currently worth $10 million and has a beta of 1.0. An index is currently
standing at 800. Explain how a put option on the index with a strike price of 700 can be
used to provide portfolio insurance.

17.2. ‘‘Once we know how to value options on a stock paying a dividend yield, we know how
to value options on stock indices and currencies.’’ Explain this statement.

17.3. A stock index is currently 300, the dividend yield on the index is 3% per annum, and the
risk-free interest rate is 8% per annum. What is a lower bound for the price of a six-
month European call option on the index when the strike price is 290?

17.4. A currency is currently worth $0.80 and has a volatility of 12%. The domestic and
foreign risk-free interest rates are 6% and 8%, respectively. Use a two-step binomial tree
to value (a) a European four-month call option with a strike price of 0.79 and (b) an
American four-month call option with the same strike price.

17.5. Explain how corporations can use range forward contracts to hedge their foreign
exchange risk when they are due to receive a certain amount of a foreign currency in the
future.

17.6. Calculate the value of a three-month at-the-money European call option on a stock
index when the index is at 250, the risk-free interest rate is 10% per annum, the volatility
of the index is 18% per annum, and the dividend yield on the index is 3% per annum.

17.7. Calculate the value of an eight-month European put option on a currency with a strike
price of 0.50. The current exchange rate is 0.52, the volatility of the exchange rate
is 12%, the domestic risk-free interest rate is 4% per annum, and the foreign risk-free
interest rate is 8% per annum.

17.8. Show that the formula in equation (17.12) for a put option to sell one unit of currency A
for currency B at strike price K gives the same value as equation (17.11) for a call option
to buy K units of currency B for currency A at strike price 1=K.

17.9. A foreign currency is currently worth $1.50. The domestic and foreign risk-free interest
rates are 5% and 9%, respectively. Calculate a lower bound for the value of a six-month
call option on the currency with a strike price of $1.40 if it is (a) European and
(b) American.

17.10. Consider a stock index currently standing at 250. The dividend yield on the index is
4% per annum, and the risk-free rate is 6% per annum. A three-month European call
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option on the index with a strike price of 245 is currently worth $10. What is the value of
a three-month put option on the index with a strike price of 245?

17.11. An index currently stands at 696 and has a volatility of 30% per annum. The risk-free
rate of interest is 7% per annum and the index provides a dividend yield of 4% per
annum. Calculate the value of a three-month European put with an exercise price of 700.

17.12. Show that, if C is the price of an American call with exercise price K and maturity T on a
stock paying a dividend yield of q, and P is the price of an American put on the same
stock with the same strike price and exercise date, then

S0e
�qT �K < C� P < S0 �Ke

�rT ;

where S0 is the stock price, r is the risk-free rate, and r > 0. (Hint: To obtain the first half
of the inequality, consider possible values of:

Portfolio A : a European call option plus an amount K invested at the risk-free rate
Portfolio B : an American put option plus e

�qT of stock with dividends being re-
invested in the stock.

To obtain the second half of the inequality, consider possible values of:

Portfolio C : an American call option plus an amount Ke
�rT invested at the risk-

free rate
Portfolio D : a European put option plus one stock with dividends being reinvested in

the stock.)

17.13. Show that a European call option on a currency has the same price as the corresponding
European put option on the currency when the forward price equals the strike price.

17.14. Would you expect the volatility of a stock index to be greater or less than the volatility of
a typical stock? Explain your answer.

17.15. Does the cost of portfolio insurance increase or decrease as the beta of a portfolio
increases? Explain your answer.

17.16. Suppose that a portfolio is worth $60 million and the S&P 500 is at 1,200. If the value of
the portfolio mirrors the value of the index, what options should be purchased to
provide protection against the value of the portfolio falling below $54 million in one
year’s time?

17.17. Consider again the situation in Problem 17.16. Suppose that the portfolio has a beta
of 2.0, the risk-free interest rate is 5% per annum, and the dividend yield on both the
portfolio and the index is 3% per annum. What options should be purchased to provide
protection against the value of the portfolio falling below $54 million in one year’s time?

17.18. An index currently stands at 1,500. European call and put options with a strike price
of 1,400 and time to maturity of six months have market prices of 154.00 and 34.25,
respectively. The six-month risk-free rate is 5%. What is the implied dividend yield?

17.19. A total return index tracks the return, including dividends, on a certain portfolio. Explain
how you would value (a) forward contracts and (b) European options on the index.

17.20. What is the put–call parity relationship for European currency options?

17.21. Prove the results in equations (17.1), (17.2), and (17.3) using the portfolios indicated.

17.22. Can an option on the yen/euro exchange rate be created from two options, one on the
dollar/euro exchange rate, and the other on the dollar/yen exchange rate? Explain your
answer.
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Further Questions

17.23. The Dow Jones Industrial Average on January 12, 2007, was 12,556 and the price of the
March 126 call was $2.25. Use the DerivaGem software to calculate the implied volatility
of this option. Assume the risk-free rate was 5.3% and the dividend yield was 3%. The
option expires on March 20, 2007. Estimate the price of a March 126 put. What is the
volatility implied by the price you estimate for this option? (Note that options are on the
Dow Jones index divided by 100.)

17.24. A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest
rate is 8% and the dividend yield on the index is 3%. Use a three-step binomial tree to
value a six-month put option on the index with a strike price of 300 if it is (a) European
and (b) American?

17.25. Suppose that the spot price of the Canadian dollar is US $0.95 and that the Canadian
dollar/US dollar exchange rate has a volatility of 8% per annum. The risk-free rates of
interest in Canada and the United States are 4% and 5% per annum, respectively.
Calculate the value of a European call option to buy one Canadian dollar for US $0.95
in nine months. Use put–call parity to calculate the price of a European put option to
sell one Canadian dollar for US $0.95 in nine months. What is the price of a call option
to buy US $0.95 with one Canadian dollar in nine months?

17.26. The spot price of an index is 1,000 and the risk-free rate is 4%. The prices of 3-month
European call and put options when the strike price is 950 are 78 and 26. Estimate
(a) the dividend yield and (b) the implied volatility.

17.27. Assume that the price of currency A expressed in terms of the price of currency B follows
the process dS ¼ ðrB � rAÞS dtþ �S dz, where rA is the risk-free interest rate in currency
A and rB is the risk-free interest rate in currency B. What is the process followed by the
price of currency B expressed in terms of currency A?

17.28. The USD/euro exchange rate is 1.3000. The exchange rate volatility is 15%. A US
company will receive 1 million euros in three months. The euro and USD risk-free rates
are 5% and 4%, respectively. The company decides to use a range forward contract with
the lower strike price equal to 1.2500.
(a) What should the higher strike price be to create a zero-cost contract?
(b) What position in calls and puts should the company take?
(c) Show that your answer to (a) does not depend on interest rates provided that the

interest rate differential between the two currencies, r� rf , remains the same.

17.29. In Business Snapshot 17.1, what is the cost of a guarantee that the return on the fund
will not be negative over the next 10 years?

17.30. The one-year forward price of the Mexican peso is $0.0750 pe MXN. The US risk-free
rate is 1.25% and the Mexican risk-free rate is 4.5%. The exchange rate volatility is 13%.
What are the values of one-year European and American put options with a strike price
of 0.0800.
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Futures Options

The options we have considered so far provide the holder with the right to buy or sell a
certain asset by a certain date for a certain price. They are sometimes termed options on
spot or spot options because, when the options are exercised, the sale or purchase of the
asset at the agreed-on price takes place immediately. In this chapter we move on to
consider options on futures, also known as futures options. In these contracts, exercise of
the option gives the holder a position in a futures contract.

The Commodity Futures Trading Commission in the US authorized the trading of
options on futures on an experimental basis in 1982. Permanent trading was approved
in 1987, and since then the popularity of the contract with investors has grown very fast.

In this chapter we consider how futures options work and the differences between
these options and spot options. We examine how futures options can be priced using
either binomial trees or formulas similar to those produced by Black, Scholes, and
Merton for stock options. We also explore the relative pricing of futures options and
spot options and examine what are known as futures-style options.

18.1 NATURE OF FUTURES OPTIONS

A futures option is the right, but not the obligation, to enter into a futures contract at a
certain futures price by a certain date. Specifically, a call futures option is the right to
enter into a long futures contract at a certain price; a put futures option is the right to
enter into a short futures contract at a certain price. Futures options are generally
American; that is, they can be exercised any time during the life of the contract.

If a call futures option is exercised, the holder acquires a long position in the
underlying futures contract plus a cash amount equal to the most recent settlement
futures price minus the strike price. If a put futures option is exercised, the holder
acquires a short position in the underlying futures contract plus a cash amount equal to
the strike price minus the most recent settlement futures price. As the following
examples show, the effective payoff from a call futures option is maxðF �K; 0Þ and
the effective payoff from a put futures option is maxðK� F; 0Þ, where F is the futures
price at the time of exercise and K is the strike price.

Example 18.1

Suppose it is August 15 and an investor has one September futures call option
contract on copper with a strike price of 320 cents per pound. One futures
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contract is on 25,000 pounds of copper. Suppose that the futures price of copper

for delivery in September is currently 331 cents, and at the close of trading on

August 14 (the last settlement) it was 330 cents. If the option is exercised, the

investor receives a cash amount of

25,000� ð330� 320Þ cents ¼ $2,500

plus a long position in a futures contract to buy 25,000 pounds of copper in

September. If desired, the position in the futures contract can be closed out

immediately. This would leave the investor with the $2,500 cash payoff plus an

amount

25,000� ð331� 330Þ cents ¼ $250

reflecting the change in the futures price since the last settlement. The total payoff

from exercising the option on August 15 is $2,750, which equals 25,000ðF �KÞ,
where F is the futures price at the time of exercise and K is the strike price.

Example 18.2

An investor has one December futures put option on corn with a strike price of

600 cents per bushel. One futures contract is on 5,000 bushels of corn. Suppose

that the current futures price of corn for delivery in December is 580, and the

most recent settlement price is 579 cents. If the option is exercised, the investor

receives a cash amount of

5,000� ð600� 579Þ cents ¼ $1,050

plus a short position in a futures contract to sell 5,000 bushels of corn in December.

If desired, the position in the futures contract can be closed out. This would leave

the investor with the $1,050 cash payoff minus an amount

5,000� ð580� 579Þ cents ¼ $50

reflecting the change in the futures price since the last settlement. The net payoff

from exercise is $1,000, which equals 5,000ðK� FÞ, where F is the futures price at

the time of exercise and K is the strike price.

Expiration Months

Futures options are referred to by the delivery month of the underlying futures contract

—not by the expiration month of the option. As mentioned earlier, most futures

options are American. The expiration date of a futures option contract is usually a

short period of time before the last trading day of the underlying futures contract. (For

example, the CME Group Treasury bond futures option expires on the latest Friday

that precedes by at least two business days the end of the month before the futures

delivery month.) An exception is the CME Group mid-curve Eurodollar contract where

the futures contract expires either one or two years after the options contract.

Popular contracts trading in the United States are those on corn, soybeans, cotton,

sugar-world, crude oil, natural gas, gold, Treasury bonds, Treasury notes, five-year

Treasury notes, 30-day federal funds, Eurodollars, one-year and two-year mid-curve

Eurodollars, Euribor, Eurobunds, and the S&P 500.
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Options on Interest Rate Futures

The most actively traded interest rate options offered by exchanges in the United
States are those on Treasury bond futures, Treasury note futures, and Eurodollar
futures.

A Treasury bond futures option, which is traded by the CME Group, is an option to
enter a Treasury bond futures contract. As mentioned in Chapter 6, one Treasury bond
futures contract is for the delivery of $100,000 of Treasury bonds. The price of a
Treasury bond futures option is quoted as a percentage of the face value of the
underlying Treasury bonds to the nearest sixty-fourth of 1%.

An option on Eurodollar futures, which is traded by the CME Group, is an option to
enter into a Eurodollar futures contract. As explained in Chapter 6, when the Euro-
dollar futures quote changes by 1 basis point, or 0.01%, there is a gain or loss on a
Eurodollar futures contract of $25. Similarly, in the pricing of options on Eurodollar
futures, 1 basis point represents $25.

Interest rate futures option contracts work in the same way as the other futures
options contracts discussed in this chapter. For example, in addition to the cash
payoff, the holder of a call option obtains a long position in the futures contract when
the option is exercised and the option writer obtains a corresponding short position.
The total payoff from the call, including the value of the futures position, is
maxðF �K; 0Þ, where F is the futures price at the time of exercise and K is the strike
price.

Interest rate futures prices increase when bond prices increase (i.e., when interest rates
fall). They decrease when bond prices decrease (i.e., when interest rates rise). An
investor who thinks that short-term interest rates will rise can speculate by buying
put options on Eurodollar futures, whereas an investor who thinks the rates will fall can
speculate by buying call options on Eurodollar futures. An investor who thinks that
long-term interest rates will rise can speculate by buying put options on Treasury note
futures or Treasury bond futures, whereas an investor who thinks the rates will fall can
speculate by buying call options on these instruments.

Example 18.3

It is February and the futures price for the June Eurodollar contract is 93.82
(corresponding to a 3-month Eurodollar interest rate of 6.18% per annum).
The price of a call option on the contract with a strike price of 94.00 is quoted
as 0.1, or 10 basis points. This option could be attractive to an investor who feels
that interest rates are likely to come down. Suppose that short-term interest rates
do drop by about 100 basis points and the investor exercises the call when the
Eurodollar futures price is 94.78 (corresponding to a 3-month Eurodollar interest
rate of 5.22% per annum). The payoff is 25� ð94:78� 94:00Þ � 100 ¼ $1,950.
The cost of the contract is 10� 25 ¼ $250. The investor’s profit is therefore
$1,700.

Example 18.4

It is August and the futures price for the December Treasury bond contract is
96-09 (or 96 9

32 ¼ 96:28125). The yield on long-term government bonds is about
6.4% per annum. An investor who feels that this yield will fall by December
might choose to buy December calls with a strike price of 98. Assume that the
price of these calls is 1-04 (or 1 4

64 ¼ 1:0625% of the principal). If long-term rates
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fall to 6% per annum and the Treasury bond futures price rises to 100-00, the
investor will make a net profit per $100 of bond futures of

100:00� 98:00� 1:0625 ¼ 0:9375

Since one option contract is for the purchase or sale of instruments with a face
value of $100,000, the investor’s profit is $937.50 per option contract bought.

18.2 REASONS FOR THE POPULARITY OF FUTURES OPTIONS

It is natural to ask why people choose to trade options on futures rather than options on
the underlying asset. The main reason appears to be that a futures contract is, in many
circumstances, more liquid and easier to trade than the underlying asset. Furthermore, a
futures price is known immediately from trading on the futures exchange, whereas the
spot price of the underlying asset may not be so readily available.

Consider Treasury bonds. The market for Treasury bond futures is much more active
than the market for any particular Treasury bond. Also, a Treasury bond futures price
is known immediately from exchange trading. By contrast, the current market price of a
bond can be obtained only by contacting one or more dealers. It is not surprising that
investors would rather take delivery of a Treasury bond futures contract than Treasury
bonds.

Futures on commodities are also often easier to trade than the commodities
themselves. For example, it is much easier and more convenient to make or take
delivery of a live-cattle futures contract than it is to make or take delivery of the cattle
themselves.

An important point about a futures option is that exercising it does not usually lead
to delivery of the underlying asset, as in most circumstances the underlying futures
contract is closed out prior to delivery. Futures options are therefore normally even-
tually settled in cash. This is appealing to many investors, particularly those with
limited capital who may find it difficult to come up with the funds to buy the underlying
asset when an option on spot is exercised. Another advantage sometimes cited for
futures options is that futures and futures options are traded side by side in the same
exchange. This facilitates hedging, arbitrage, and speculation. It also tends to make the
markets more efficient. A final point is that futures options entail lower transaction
costs than spot options in many situations.

18.3 EUROPEAN SPOT AND FUTURES OPTIONS

The payoff from a European call option with strike price K on the spot price of an
asset is

maxðST �K; 0Þ
where ST is the spot price at the option’s maturity. The payoff from a European call
option with the same strike price on the futures price of the asset is

maxðFT �K; 0Þ
where FT is the futures price at the option’s maturity. If the futures contract matures at
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the same time as the option, then FT ¼ ST and the two options are equivalent.
Similarly, a European futures put option is worth the same as its spot put option
counterpart when the futures contract matures at the same time as the option.

Most of the futures options that trade are American-style. However, as we shall see, it
is useful to study European futures options because the results that are obtained can be
used to value the corresponding European spot options.

18.4 PUT–CALL PARITY

In Chapter 11, we derived a put–call parity relationship for European stock options.
We now consider a similar argument to derive a put–call parity relationship for
European futures options. Consider European call and put futures options, both with
strike price K and time to expiration T . We can form two portfolios:

Portfolio A : a European call futures option plus an amount of cash equal to Ke
�rT

Portfolio B : a European put futures option plus a long futures contract plus an
amount of cash equal to F0e

�rT , where F0 is the futures price

In portfolio A, the cash can be invested at the risk-free rate, r, and grows to K at time T .
Let FT be the futures price at maturity of the option. If FT > K, the call option in
portfolio A is exercised and portfolio A is worth FT . If FT 6 K, the call is not exercised
and portfolio A is worth K. The value of portfolio A at time T is therefore

maxðFT ; KÞ
In portfolio B, the cash can be invested at the risk-free rate to grow to F0 at time T . The
put option provides a payoff of maxðK� FT ; 0Þ. The futures contract provides a payoff
of FT � F0.

1 The value of portfolio B at time T is therefore

F0 þ ðFT � F0Þ þmaxðK� FT ; 0Þ ¼ maxðFT ; KÞ
Because the two portfolios have the same value at time T and European options cannot
be exercised early, it follows that they are worth the same today. The value of portfolio A
today is

cþKe
�rT

where c is the price of the call futures option. The daily settlement process ensures that the
futures contract in portfolio B is worth zero today. Portfolio B is therefore worth

pþ F0e
�rT

where p is the price of the put futures option. Hence

cþKe
�rT ¼ pþ F0e

�rT ð18:1Þ
The difference between this put–call parity relationship and the one for a non-
dividend-paying stock in equation (11.6) is that the stock price, S0, is replaced by
the discounted futures price, F0e

�rT .

1 This analysis assumes that a futures contract is like a forward contract and settled at the end of its life

rather than on a day-to-day basis.
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As shown in Section 18.3, when the underlying futures contract matures at the same
time as the option, European futures and spot options are the same. Equation (18.1)
therefore gives a relationship between the price of a call option on the spot price, the
price of a put option on the spot price, and the futures price when both options mature
at the same time as the futures contract.

Example 18.5

Suppose that the price of a European call option on spot silver for delivery in six
months is $0.56 per ounce when the exercise price is $8.50. Assume that the silver
futures price for delivery in six months is currently $8.00, and the risk-free interest
rate for an investment that matures in six months is 10% per annum. From a
rearrangement of equation (18.1), the price of a European put option on spot
silver with the same maturity and exercise date as the call option is

0:56þ 8:50e�0:1�6=12 � 8:00e�0:1�6=12 ¼ 1:04

For American futures options, the put–call relationship is (see Problem 18.19)

F0e
�rT �K < C� P < F0 �Ke

�rT ð18:2Þ

18.5 BOUNDS FOR FUTURES OPTIONS

The put–call parity relationship in equation (18.1) provides bounds for European call
and put options. Because the price of a put, p, cannot be negative, it follows from
equation (18.1) that

cþKe
�rT > F0e

�rT

so that

c > max
�ðF0 �KÞe�rT ; 0

� ð18:3Þ

Similarly, because the price of a call option cannot be negative, it follows from equa-
tion (18.1) that

Ke
�rT 6 F0e

�rT þ p

so that

p > max
�ðK� F0Þe�rT ; 0

� ð18:4Þ

These bounds are similar to the ones derived for European stock options in Chapter 11.
The prices of European call and put options are very close to their lower bounds when
the options are deep in the money. To see why this is so, we return to the put–call parity
relationship in equation (18.1). When a call option is deep in the money, the corres-
ponding put option is deep out of the money. This means that p is very close to zero. The
difference between c and its lower bound equals p, so that the price of the call option
must be very close to its lower bound. A similar argument applies to put options.

Because American futures options can be exercised at any time, we must have

C > maxðF0 �K; 0Þ
and

P > maxðK� F0; 0Þ
Thus, assuming interest rates are positive, the lower bound for an American option

410 CHAPTER 18



price is always higher than the lower bound for the corresponding European option

price. There is always some chance that an American futures option will be exercised

early.

18.6 VALUATION OF FUTURES OPTIONS USING BINOMIAL TREES

This section examines, more formally than in Chapter 13, how binomial trees can be

used to price futures options. A key difference between futures options and stock

options is that there are no up-front costs when a futures contract is entered into.

Suppose that the current futures price is 30 and that it will move either up to 33 or

down to 28 over the next month. We consider a one-month call option on the futures

with a strike price of 29 and ignore daily settlement. The situation is as indicated in

Figure 18.1. If the futures price proves to be 33, the payoff from the option is 4 and the

value of the futures contract is 3. If the futures price proves to be 28, the payoff from the

option is zero and the value of the futures contract is �2.2

To set up a riskless hedge, we consider a portfolio consisting of a short position in

one options contract and a long position in � futures contracts. If the futures price

moves up to 33, the value of the portfolio is 3�� 4; if it moves down to 28, the value

of the portfolio is �2�. The portfolio is riskless when these are the same, that is,

when

3�� 4 ¼ �2�

or � ¼ 0:8.
For this value of �, we know the portfolio will be worth 3� 0:8� 4 ¼ �1:6 in one

month. Assume a risk-free interest rate of 6%. The value of the portfolio today

must be

�1:6e�0:06�1=12 ¼ �1:592

The portfolio consists of one short option and � futures contracts. Because the value of

the futures contract today is zero, the value of the option today must be 1.592.

30

28

33

Figure 18.1 Futures price movements in numerical example.

2 There is an approximation here in that the gain or loss on the futures contract is not realized at time T . It is

realized day by day between time 0 and time T . However, as the length of the time step in a multistep

binomial tree becomes shorter, the approximation becomes better.
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A Generalization

We can generalize this analysis by considering a futures price that starts at F0 and is
anticipated to rise to F0u or move down to F0d over the time period T . We consider an
option maturing at time T and suppose that its payoff is fu if the futures price moves up
and fd if it moves down. The situation is summarized in Figure 18.2.

The riskless portfolio in this case consists of a short position in one option combined
with a long position in � futures contracts, where

� ¼ fu � fd

F0u� F0d

The value of the portfolio at time T is then always

ðF0u� F0Þ�� fu

Denoting the risk-free interest rate by r, we obtain the value of the portfolio today as

½ðF0u� F0Þ�� fu�e�rT

Another expression for the present value of the portfolio is �f , where f is the value of
the option today. It follows that

�f ¼ ½ðF0u� F0Þ�� fu�e�rT

Substituting for � and simplifying reduces this equation to

f ¼ e
�rT ½pfu þ ð1� pÞfd� ð18:5Þ

where

p ¼ 1� d

u� d
ð18:6Þ

This agrees with the result in Section 13.9. Equation (18.6) gives the risk-neutral
probability of an up movement.

In the numerical example considered previously (see Figure 18.1), u ¼ 1:1,
d ¼ 0:9333, r ¼ 0:06, T ¼ 1=12, fu ¼ 4, and fd ¼ 0. From equation (18.6),

p ¼ 1� 0:9333

1:1� 0:9333
¼ 0:4

fd

F0d

fu

F0u

f
F0

Figure 18.2 Futures price and option price in a general situation.
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and, from equation (18.5),

f ¼ e
�0:06�1=12½0:4� 4þ 0:6� 0� ¼ 1:592

This result agrees with the answer obtained for this example earlier.

Multistep Trees

Multistep binomial trees are used to value American-style futures options in much the
same way that they are used to value options on stocks. This is explained in Section 13.9.
The parameter u defining up movements in the futures price is e�

ffiffiffiffi
�t

p
, where � is the

volatility of the futures price and �t is the length of one time step. The probability of an
up movement in the future price is that in equation (18.6):

p ¼ 1� d

u� d

Example 13.3 illustrates the use of multistep binomial trees for valuing a futures option.
Example 21.3 in Chapter 21 provides a further illustration.

18.7 DRIFT OF A FUTURES PRICE IN A RISK-NEUTRAL WORLD

There is a general result that allows us to use the analysis in Section 17.3 for futures
options. This result is that in a risk-neutral world a futures price behaves in the same
way as a stock paying a dividend yield at the domestic risk-free interest rate r.

One clue that this might be so is given by noting that the equation for the probability p
in a binomial tree for a futures price is the same as that for a stock paying a dividend yield
equal to q when q ¼ r (compare equation (18.6) with equations (17.15) and (17.16)).
Another clue is that the put–call parity relationship for futures options prices is the same
as that for options on a stock paying a dividend yield at rate q when the stock price is
replaced by the futures price and q ¼ r (compare equations (18.1) and (17.3)).

To prove the result formally, we calculate the drift of a futures price in a risk-neutral
world. We define Ft as the futures price at time t and suppose the settlement dates to be
at times 0, �t, 2�t, . . . If we enter into a long futures contract at time 0, its value is
zero. At time �t, it provides a payoff of F�t � F0. If r is the very-short-term (�t-period)
interest rate at time 0, risk-neutral valuation gives the value of the contract at time 0 as

e
�r�t

Ê½F�t � F0�
where Ê denotes expectations in a risk-neutral world. We must therefore have

e
�r�t

ÊðF�t � F0Þ ¼ 0
showing that

ÊðF�tÞ ¼ F0

Similarly, ÊðF2�tÞ ¼ F�t, ÊðF3�tÞ ¼ F2�t, and so on. Putting many results like this
together, we see that

ÊðFT Þ ¼ F0

for any time T .

Futures Options 413



The drift of the futures price in a risk-neutral world is therefore zero. From equa-
tion (17.7), the futures price behaves like a stock providing a dividend yield q equal to r.
This result is a very general one. It is true for all futures prices and does not depend on
any assumptions about interest rates, volatilities, etc.3

The usual assumption made for the process followed by a futures price F in the risk-
neutral world is

dF ¼ �F dz ð18:7Þ
where � is a constant.

Differential Equation

For another way of seeing that a futures price behaves like a stock paying a dividend
yield at rate q, we can derive the differential equation satisfied by a derivative dependent
on a futures price in the same way as we derived the differential equation for a derivative
dependent on a non-dividend-paying stock in Section 15.6. This is4

@f

@t
þ 1

2

@2f

@F 2
�2
F

2 ¼ rf ð18:8Þ

It has the same form as equation (17.6) with q set equal to r. This confirms that, for the
purpose of valuing derivatives, a futures price can be treated in the same way as a stock
providing a dividend yield at rate r.

18.8 BLACK’S MODEL FOR VALUING FUTURES OPTIONS

European futures options can be valued by extending the results we have produced.
Fischer Black was the first to show this in a paper published in 1976.5 Assuming that
the futures price follows the (lognormal) process in equation (18.7), the European call
price c and the European put price p for a futures option are given by equations (17.4)
and (17.5) with S0 replaced by F0 and q ¼ r :

c ¼ e
�rT ½F0Nðd1Þ �KNðd2Þ� ð18:9Þ

p ¼ e
�rT ½KNð�d2Þ � F0Nð�d1Þ� ð18:10Þ

where

d1 ¼
lnðF0=KÞ þ �2

T=2

�
ffiffiffiffi
T

p

d2 ¼
lnðF0=KÞ � �2

T=2

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

and � is the volatility of the futures price. When the cost of carry and the convenience

3 As we will discover in Chapter 28, a more precise statement of the result is: ‘‘A futures price has zero drift in

the traditional risk-neutral world where the numeraire is the money market account.’’ A zero-drift stochastic

process is known as a martingale. A forward price is a martingale in a different risk-neutral world. This is one

where the numeraire is a zero-coupon bond maturing at time T .
4 See Technical Note 7 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of this.
5 See F. Black, ‘‘The Pricing of Commodity Contracts,’’ Journal of Financial Economics, 3 (March 1976):

167–79.
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yield are functions only of time, it can be shown that the volatility of the futures price is
the same as the volatility of the underlying asset.

Example 18.6

Consider a European put futures option on a commodity. The time to the option’s
maturity is 4 months, the current futures price is $20, the exercise price is $20, the
risk-free interest rate is 9% per annum, and the volatility of the futures price is 25%
per annum. In this case, F0 ¼ 20, K ¼ 20, r ¼ 0:09, T ¼ 4=12, � ¼ 0:25, and
lnðF0=KÞ ¼ 0, so that

d1 ¼
�

ffiffiffiffi
T

p

2
¼ 0:07216

d2 ¼ � �
ffiffiffiffi
T

p

2
¼ �0:07216

Nð�d1Þ ¼ 0:4712; Nð�d2Þ ¼ 0:5288

and the put price p is given by

p ¼ e
�0:09�4=12ð20� 0:5288� 20� 0:4712Þ ¼ 1:12

or $1.12.

Using Black’s Model Instead of Black–Scholes–Merton

The results in Section 18.3 show that European futures options and European spot
options are equivalent when the option contract matures at the same time as the futures
contract. Equations (18.9) and (18.10) therefore provide a way of calculating the value
of European options on the spot price of a asset.

Example 18.7

Consider a six-month European call option on the spot price of gold, that is, an
option to buy one ounce of gold in the spot market in six months. The strike price
is $1,200, the six-month futures price of gold is $1,240, the risk-free rate of interest
is 5% per annum, and the volatility of the futures price is 20%. The option is the
same as a six-month European option on the six-month futures price. The value
of the option is therefore given by equation (18.9) as

e
�0:05�0:5½1,240Nðd1Þ � 1,200Nðd2Þ�

where

d1 ¼
lnð1,240=1,200Þ þ 0:22 � 0:5=2

0:2� ffiffiffiffiffiffiffi
0:5

p ¼ 0:3026

d2 ¼
lnð1,240=1,200Þ � 0:22 � 0:5=2

0:2� ffiffiffiffiffiffiffi
0:5

p ¼ 0:1611

It is $88.37.

Traders like to use Black’s model rather than Black–Scholes–Merton to value Euro-
pean spot options. It has a fairly general applicability. The underlying asset can be a
consumption or investment asset and it can provide income to the holder. The variable
F0 in equations (18.9) and (18.10) is set equal to either the futures or the forward price
of the underlying asset for a contract maturing at the same time as the option.
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Equations (17.13) and (17.14) show Black’s model being used to value European
options on the spot value of a currency. Equations (17.8) and (17.9) show Black’s model
being used to value European options on the spot value of an index. The big advantage
of Black’s model is that it avoids the need to estimate the income (or convenience yield)
on the underlying asset. The futures or forward price that is used in the model
incorporate the market’s estimate of this income.

When considering stock indices in Section 17.4, we explained that put–call parity is
used to imply the forward prices for maturities for which there are actively traded
options. Interpolation is then used to estimate forward prices for other maturities. The
same approach can be used for a wide range of other underlying assets.

18.9 AMERICAN FUTURES OPTIONS vs. AMERICAN SPOT OPTIONS

Traded futures options are in practice usually American. Assuming that the risk-free
rate of interest, r, is positive, there is always some chance that it will be optimal to
exercise an American futures option early. American futures options are therefore
worth more than their European counterparts.

It is not generally true that an American futures option is worth the same as the
corresponding American spot option when the futures and options contracts have the
same maturity.6 Suppose, for example, that there is a normal market with futures prices
consistently higher than spot prices prior to maturity. An American call futures option
must be worth more than the corresponding American spot call option. The reason is
that in some situations the futures option will be exercised early, in which case it will
provide a greater profit to the holder. Similarly, an American put futures option must
be worth less than the corresponding American spot put option. If there is an inverted
market with futures prices consistently lower than spot prices, the reverse must be true.
American call futures options are worth less than the corresponding American spot call
option, whereas American put futures options are worth more than the corresponding
American spot put option.

The differences just described between American futures options and American spot
options hold true when the futures contract expires later than the options contract as
well as when the two expire at the same time. In fact, the later the futures contract
expires the greater the differences tend to be.

18.10 FUTURES-STYLE OPTIONS

Some exchanges, particularly those in Europe, trade what are termed futures-style
options. These are futures contracts on the payoff from an option. Normally a trader
who buys (sells) an option, whether on the spot price of an asset or on the futures price
of an asset, pays (receives) cash up front. By contrast, traders who buy or sell a futures-
style option post margin in the same way that they do on a regular futures contract (see
Chapter 2). The contract is settled daily as with any other futures contract and the final
settlement price is the payoff from the option. Just as a futures contract is a bet on what

6 The spot option ‘‘corresponding’’ to a futures option is defined here as one with the same strike price and

the same expiration date.
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the future price of an asset will be, a futures-style option is a bet on what the payoff
from an option will be.7 If interest rates are constant, the futures price in a futures-style
option is the same as the forward price in a forward contract on the option payoff. This
shows that the futures price for a futures-style option is the price that would be paid for
the option if payment were made in arrears. It is therefore the value of a regular option
compounded forward at the risk-free rate.

Black’s model in equations (18.9) and (18.10) gives the price of a regular European
option on an asset in terms of the futures (or forward) price F0 for a contract maturing
at the same time as the option. The futures price in a call futures-style option is
therefore

F0Nðd1Þ �KNðd2Þ
and the futures price in a put futures-style option is

KNð�d2Þ � F0Nð�d1Þ
where d1 and d2 are as defined in equations (18.9) and (18.10). These formulas do not
depend on the level of interest rates. They are correct for a futures-style option on a
futures contract and a futures-style option on the spot value of an asset. In the first
case, F0 is the current futures price for the contract underlying the option; in the second
case, it is the current futures price for a futures contract on the underlying asset
maturing at the same time as the option.

The put–call parity relationship for a futures-style options is

pþ F0 ¼ cþK

An American futures-style option can be exercised early, in which case there is an
immediate final settlement at the option’s intrinsic value. As it turns out, it is never
optimal to exercise an American futures-style options on a futures contract early
because the futures price of the option is always greater than the intrinsic value. This
type of American futures-style option can therefore be treated as though it were the
corresponding European futures-style option.

SUMMARY

Futures options require delivery of the underlying futures contract on exercise. When a
call is exercised, the holder acquires a long futures position plus a cash amount equal to
the excess of the futures price over the strike price. Similarly, when a put is exercised the
holder acquires a short position plus a cash amount equal to the excess of the strike
price over the futures price. The futures contract that is delivered usually expires slightly
later than the option.

A futures price behaves in the same way as a stock that provides a dividend yield
equal to the risk-free rate, r. This means that the results produced in Chapter 17 for
options on a stock paying a dividend yield apply to futures options if we replace the
stock price by the futures price and set the dividend yield equal to the risk-free interest

7 For a more detailed discussion of futures-style options, see D. Lieu, ‘‘Option Pricing with Futures-Style

Margining,’’ Journal of Futures Markets, 10, 4 (1990), 327–38. For pricing when interest rates are stochastic,

see R.-R. Chen and L. Scott, ‘‘Pricing Interest Rate Futures Options with Futures-Style Margining.’’ Journal

of Futures Markets, 13, 1 (1993) 15–22).
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rate. Pricing formulas for European futures options were first produced by Fischer
Black in 1976. They assume that the futures price is lognormally distributed at the
option’s expiration.

If the expiration dates for the option and futures contracts are the same, a European
futures option is worth exactly the same as the corresponding European spot option.
This result is often used to value European spot options. The result is not true for
American options. If the futures market is normal, an American call futures is worth
more than the corresponding American spot call option, while an American put futures
is worth less than the corresponding American spot put option. If the futures market is
inverted, the reverse is true.

FURTHER READING

Black, F. ‘‘The Pricing of Commodity Contracts,’’ Journal of Financial Economics, 3 (1976):
167–79.

Practice Questions (Answers in Solutions Manual)

18.1. Explain the difference between a call option on yen and a call option on yen futures.

18.2. Why are options on bond futures more actively traded than options on bonds?

18.3. ‘‘A futures price is like a stock paying a dividend yield.’’ What is the dividend yield?

18.4. A futures price is currently 50. At the end of six months it will be either 56 or 46. The
risk-free interest rate is 6% per annum. What is the value of a six-month European call
option on the futures with a strike price of 50?

18.5. How does the put–call parity formula for a futures option differ from put–call parity for
an option on a non-dividend-paying stock?

18.6. Consider an American futures call option where the futures contract and the option
contract expire at the same time. Under what circumstances is the futures option worth
more than the corresponding American option on the underlying asset?

18.7. Calculate the value of a five-month European put futures option when the futures price
is $19, the strike price is $20, the risk-free interest rate is 12% per annum, and the
volatility of the futures price is 20% per annum.

18.8. Suppose you buy a put option contract on October gold futures with a strike price of
$1,400 per ounce. Each contract is for the delivery of 100 ounces. What happens if you
exercise when the October futures price is $1,380?

18.9. Suppose you sell a call option contract on April live cattle futures with a strike price of
130 cents per pound. Each contract is for the delivery of 40,000 pounds. What happens if
the contract is exercised when the futures price is 135 cents?

18.10. Consider a two-month call futures option with a strike price of 40 when the risk-free
interest rate is 10% per annum. The current futures price is 47. What is a lower bound
for the value of the futures option if it is (a) European and (b) American?

18.11. Consider a four-month put futures option with a strike price of 50 when the risk-free
interest rate is 10% per annum. The current futures price is 47. What is a lower bound
for the value of the futures option if it is (a) European and (b) American?
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18.12. A futures price is currently 60 and its volatility is 30%. The risk-free interest rate is 8%
per annum. Use a two-step binomial tree to calculate the value of a six-month European
call option on the futures with a strike price of 60. If the call were American, would it
ever be worth exercising it early?

18.13. In Problem 18.12, what does the binomial tree give for the value of a six-month
European put option on futures with a strike price of 60? If the put were American,
would it ever be worth exercising it early? Verify that the call prices calculated in
Problem 18.12 and the put prices calculated here satisfy put–call parity relationships.

18.14. A futures price is currently 25, its volatility is 30% per annum, and the risk-free interest
rate is 10% per annum. What is the value of a nine-month European call on the futures
with a strike price of 26?

18.15. A futures price is currently 70, its volatility is 20% per annum, and the risk-free interest
rate is 6% per annum. What is the value of a five-month European put on the futures
with a strike price of 65?

18.16. Suppose that a one-year futures price is currently 35. A one-year European call option
and a one-year European put option on the futures with a strike price of 34 are both
priced at 2 in the market. The risk-free interest rate is 10% per annum. Identify an
arbitrage opportunity.

18.17. ‘‘The price of an at-the-money European call futures option always equals the price of a
similar at-the-money European put futures option.’’ Explain why this statement is true.

18.18. Suppose that a futures price is currently 30. The risk-free interest rate is 5% per annum.
A three-month American call futures option with a strike price of 28 is worth 4.
Calculate bounds for the price of a three-month American put futures option with a
strike price of 28.

18.19. Show that, if C is the price of an American call option on a futures contract when the
strike price is K and the maturity is T , and P is the price of an American put on the same
futures contract with the same strike price and exercise date, then

F0e
�rT �K < C� P < F0 �Ke

�rT

where F0 is the futures price and r is the risk-free rate. Assume that r > 0 and that there
is no difference between forward and futures contracts. (Hint: Use an analogous
approach to that indicated for Problem 17.12.)

18.20. Calculate the price of a three-month European call option on the spot value of silver.
The three-month futures price is $12, the strike price is $13, the risk-free rate is 4% and
the volatility of the price of silver is 25%.

18.21. A corporation knows that in three months it will have $5 million to invest for 90 days at
LIBOR minus 50 basis points and wishes to ensure that the rate obtained will be at least
6.5%. What position in exchange-traded options should it take to hedge?

Further Questions

18.22. A futures price is currently 40. It is known that at the end of three months the price will
be either 35 or 45. What is the value of a three-month European call option on the
futures with a strike price of 42 if the risk-free interest rate is 7% per annum?
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18.23. The futures price of an asset is currently 78 and the risk-free rate is 3%. A six-month put
on the futures with a strike price of 80 is currently worth 6.5. What is the value of a six-
month call on the futures with a strike price of 80 if both the put and call are European?
What is the range of possible values of the six-month call with a strike price of 80 if both
put and call are American?

18.24. Use a three-step tree to value an American put futures option when the futures price is
50, the life of the option is 9 months, the strike price is 50, the risk-free rate is 3%, and
the volatility is 25%.

18.25. It is February 4. July call options on corn futures with strike prices of 260, 270, 280, 290,
and 300 cost 26.75, 21.25, 17.25, 14.00, and 11.375, respectively. July put options with
these strike prices cost 8.50, 13.50, 19.00, 25.625, and 32.625, respectively. The options
mature on June 19, the current July corn futures price is 278.25, and the risk-free interest
rate is 1.1%. Calculate implied volatilities for the options using DerivaGem. Comment
on the results you get.

18.26. Calculate the implied volatility of soybean futures prices from the following information
concerning a European put on soybean futures:

Current futures price 525

Exercise price 525

Risk-free rate 6% per annum

Time to maturity 5 months

Put price 20

18.27. Calculate the price of a six-month European put option on the spot value of the S&P 500.
The six-month forward price of the index is 1,400, the strike price is 1,450, the risk-free
rate is 5%, and the volatility of the index is 15%.

18.28. The strike price of a futures option is 550 cents, the risk-free interest rate is 3%, the
volatility of the futures price is 20%, and the time to maturity of the option is 9 months.
The futures price is 500 cents.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is a European put?
(c) Verify that put–call parity holds.
(d) What is the futures price for a futures-style option if it is a call?
(e) What is the futures price for a futures-style option if it is a put?
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The Greek Letters

A financial institution that sells an option to a client in the over-the-counter markets is
faced with the problem of managing its risk. If the option happens to be the same as
one that is traded on an exchange, the financial institution can neutralize its exposure by
buying on the exchange the same option as it has sold. But when the option has been
tailored to the needs of a client and does not correspond to the standardized products
traded by exchanges, hedging the exposure is far more difficult.

In this chapter we discuss some of the alternative approaches to this problem. We
cover what are commonly referred to as the ‘‘Greek letters’’, or simply the ‘‘Greeks’’.
Each Greek letter measures a different dimension to the risk in an option position and
the aim of a trader is to manage the Greeks so that all risks are acceptable. The analysis
presented in this chapter is applicable to market makers in options on an exchange as
well as to traders working in the over-the-counter market for financial institutions.

Toward the end of the chapter, we will consider the creation of options synthetically.
This turns out to be very closely related to the hedging of options. Creating an option
position synthetically is essentially the same task as hedging the opposite option
position. For example, creating a long call option synthetically is the same as hedging
a short position in the call option.

19.1 ILLUSTRATION

In the next few sections we use as an example the position of a financial institution that
has sold for $300,000 a European call option on 100,000 shares of a non-dividend-
paying stock. We assume that the stock price is $49, the strike price is $50, the risk-free
interest rate is 5% per annum, the stock price volatility is 20% per annum, the time to
maturity is 20 weeks (0.3846 years), and the expected return from the stock is 13% per
annum.1 With our usual notation, this means that

S0 ¼ 49; K ¼ 50; r ¼ 0:05; � ¼ 0:20; T ¼ 0:3846; � ¼ 0:13

The Black–Scholes–Merton price of the option is about $240,000. (This is because the

1 As shown in Chapters 13 and 15, the expected return is irrelevant to the pricing of an option. It is given here

because it can have some bearing on the effectiveness of a hedging scheme.
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value of an option to buy one share is $2.40.) The financial institution has therefore
sold a product for $60,000 more than its theoretical value. But it is faced with the
problem of hedging the risks.2

19.2 NAKED AND COVERED POSITIONS

One strategy open to the financial institution is to do nothing. This is sometimes referred
to as a naked position. It is a strategy that works well if the stock price is below $50 at the
end of the 20 weeks. The option then costs the financial institution nothing and it makes
a profit of $300,000. A naked position works less well if the call is exercised because the
financial institution then has to buy 100,000 shares at the market price prevailing in 20
weeks to cover the call. The cost to the financial institution is 100,000 times the amount
by which the stock price exceeds the strike price. For example, if after 20 weeks the stock
price is $60, the option costs the financial institution $1,000,000. This is considerably
greater than the $300,000 charged for the option.

As an alternative to a naked position, the financial institution can adopt a covered
position. This involves buying 100,000 shares as soon as the option has been sold. If the
option is exercised, this strategy works well, but in other circumstances it could lead to a
significant loss. For example, if the stock price drops to $40, the financial institution
loses $900,000 on its stock position. This is considerably greater than the $300,000
charged for the option.3

Neither a naked position nor a covered position provides a good hedge. If the
assumptions underlying the Black–Scholes–Merton formula hold, the cost to the
financial institution should always be $240,000 on average for both approaches.4 But
on any one occasion the cost is liable to range from zero to over $1,000,000. A good
hedge would ensure that the cost is always close to $240,000.

19.3 A STOP-LOSS STRATEGY

One interesting hedging procedure that is sometimes proposed involves a stop-loss
strategy. To illustrate the basic idea, consider an institution that has written a call option
with strike priceK to buy one unit of a stock. The hedging procedure involves buying one
unit of the stock as soon as its price rises above K and selling it as soon as its price falls
belowK. The objective is to hold a naked position whenever the stock price is less thanK

and a covered position whenever the stock price is greater than K. The procedure is
designed to ensure that at time T the institution owns the stock if the option closes in the
money and does not own it if the option closes out of the money. In the situation
illustrated in Figure 19.1, it involves buying the stock at time t1, selling it at time t2,
buying it at time t3, selling it at time t4, buying it at time t5, and delivering it at time T .

2 A call option on a non-dividend-paying stock is a convenient example with which to develop our ideas. The

points that will be made apply to other types of options and to other derivatives.
3 Put–call parity shows that the exposure from writing a covered call is the same as the exposure from writing

a naked put.
4 More precisely, the present value of the expected cost is $240,000 for both approaches assuming that

appropriate risk-adjusted discount rates are used.
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As usual, we denote the initial stock price by S0. The cost of setting up the hedge
initially is S0 if S0 > K and zero otherwise. It seems as though the total cost, Q, of
writing and hedging the option is the option’s initial intrinsic value:

Q ¼ maxðS0 �K; 0Þ ð19:1Þ
This is because all purchases and sales subsequent to time 0 are made at price K. If this
were in fact correct, the hedging procedure would work perfectly in the absence of
transaction costs. Furthermore, the cost of hedging the option would always be less
than its Black–Scholes–Merton price. Thus, an investor could earn riskless profits by
writing options and hedging them.

There are two key reasons why equation (19.1) is incorrect. The first is that the cash
flows to the hedger occur at different times and must be discounted. The second is that
purchases and sales cannot be made at exactly the same price K. This second point is
critical. If we assume a risk-neutral world with zero interest rates, we can justify
ignoring the time value of money. But we cannot legitimately assume that both
purchases and sales are made at the same price. If markets are efficient, the hedger
cannot know whether, when the stock price equals K, it will continue above or below K.

As a practical matter, purchases must be made at a price Kþ � and sales must be
made at a price K� �, for some small positive number �. Thus, every purchase and
subsequent sale involves a cost (apart from transaction costs) of 2�. A natural response
on the part of the hedger is to monitor price movements more closely, so that � is
reduced. Assuming that stock prices change continuously, � can be made arbitrarily
small by monitoring the stock prices closely. But as � is made smaller, trades tend to
occur more frequently. Thus, the lower cost per trade is offset by the increased
frequency of trading. As � ! 0, the expected number of trades tends to infinity.5

Stock
price, S(t)

Time, t

t1

K

t2 t3 t4 t5 T

Buy Sell DeliverBuy BuySell

Figure 19.1 A stop-loss strategy.

5 As mentioned in Section 14.2, the expected number of times a Wiener process equals any particular value in

a given time interval is infinite.
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A stop-loss strategy, although superficially attractive, does not work particularly well
as a hedging procedure. Consider its use for an out-of-the-money option. If the stock
price never reaches the strike price K, the hedging procedure costs nothing. If the path of
the stock price crosses the strike price level many times, the procedure is quite expensive.
Monte Carlo simulation can be used to assess the overall performance of stop-loss
hedging. This involves randomly sampling paths for the stock price and observing the
results of using the procedure. Table 19.1 shows the results for the option considered in
Section 19.1. It assumes that the stock price is observed at the end of time intervals of
length �t.6 The hedge performance measure in Table 19.1 is the ratio of the standard
deviation of the cost of hedging the option to the Black–Scholes–Merton price. (The
cost of hedging was calculated as the cumulative cost excluding the impact of interest
payments and discounting.) Each result is based on one million sample paths for the
stock price. An effective hedging scheme should have a hedge performance measure
close to zero. In this case, it seems to stay above 0.7 regardless of how small �t is. This
emphasizes that the stop-loss strategy is not a good hedging procedure.

19.4 DELTA HEDGING

Most traders use more sophisticated hedging procedures than those mentioned so far.
These involve calculating measures such as delta, gamma, and vega. In this section we
consider the role played by delta.

The delta (�) of an option was introduced in Chapter 13. It is defined as the rate of
change of the option price with respect to the price of the underlying asset. It is the
slope of the curve that relates the option price to the underlying asset price. Suppose
that the delta of a call option on a stock is 0.6. This means that when the stock price
changes by a small amount, the option price changes by about 60% of that amount.
Figure 19.2 shows the relationship between a call price and the underlying stock price.
When the stock price corresponds to point A, the option price corresponds to point B,
and � is the slope of the line indicated. In general,

� ¼ @c

@S

where c is the price of the call option and S is the stock price.
Suppose that, in Figure 19.2, the stock price is $100 and the option price is $10.

Imagine an investor who has sold call options to buy 2,000 shares of a stock (i.e., he or

Table 19.1 Performance of stop-loss strategy. The performance measure is the
ratio of the standard deviation of the cost of writing the option and hedging
it to the theoretical price of the option.

�t (weeks) 5 4 2 1 0.5 0.25

Hedge performance 0.98 0.93 0.83 0.79 0.77 0.76

6 The precise hedging rule used was as follows. If the stock price moves from below K to above K in a time

interval of length �t, it is bought at the end of the interval. If it moves from above K to below K in the time

interval, it is sold at the end of the interval; otherwise, no action is taken.
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she has sold 20 call option contracts). The investor’s position could be hedged by

buying 0:6� 2,000 ¼ 1,200 shares. The gain (loss) on the stock position would then

tend to offset the loss (gain) on the option position. For example, if the stock price

goes up by $1 (producing a gain of $1,200 on the shares purchased), the option price

will tend to go up by 0:6� $1 ¼ $0:60 (producing a loss of $1,200 on the options

written); if the stock price goes down by $1 (producing a loss of $1,200 on the shares

purchased), the option price will tend to go down by $0.60 (producing a gain of $1,200

on the options written).

In this example, the delta of the trader’s short position in 2,000 options is

0:6� ð�2,000Þ ¼ �1,200

This means that the trader loses 1,200�S on the option position when the stock price

increases by �S. The delta of one share of the stock is 1.0, so that the long position in

1,200 shares has a delta of þ1,200. The delta of the trader’s overall position is,

therefore, zero. The delta of the stock position offsets the delta of the option position.

A position with a delta of zero is referred to as delta neutral.

It is important to realize that, since the delta of an option does not remain constant,

the trader’s position remains delta hedged (or delta neutral) for only a relatively short

period of time. The hedge has to be adjusted periodically. This is known as rebalancing.

In our example, by the end of 1 day the stock price might have increased to $110. As

indicated by Figure 19.2, an increase in the stock price leads to an increase in delta.

Suppose that delta rises from 0.60 to 0.65. An extra 0:05� 2,000 ¼ 100 shares would

then have to be purchased to maintain the hedge. A procedure such as this, where the

hedge is adjusted on a regular basis, is referred to as dynamic hedging. It can be

contrasted with static hedging, where a hedge is set up initially and never adjusted.

Static hedging is sometimes also referred to as ‘‘hedge-and-forget.’’

Delta is closely related to the Black–Scholes–Merton analysis. As explained in

Chapter 15, the Black–Scholes–Merton differential equation can be derived by setting

up a riskless portfolio consisting of a position in an option on a stock and a position in

Option
price

Stock
price

Slope = Δ = 0.6

A

B

Figure 19.2 Calculation of delta.
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the stock. Expressed in terms of �, the portfolio is

�1: option

þ� : shares of the stock.

Using our new terminology, we can say that options can be valued by setting up a delta-
neutral position and arguing that the return on the position should (instantaneously) be
the risk-free interest rate.

Delta of European Stock Options

For a European call option on a non-dividend-paying stock, it can be shown (see
Problem 15.17) that

�ðcallÞ ¼ Nðd1Þ
where d1 is defined as in equation (15.20) and NðxÞ is the cumulative distribution
function for a standard normal distribution. The formula gives the delta of a long
position in one call option. The delta of a short position in one call option is �Nðd1Þ.
Using delta hedging for a short position in a European call option involves maintaining
a long position of Nðd1Þ for each option sold. Similarly, using delta hedging for a long
position in a European call option involves maintaining a short position of Nðd1Þ shares
for each option purchased.

For a European put option on a non-dividend-paying stock, delta is given by

�ðputÞ ¼ Nðd1Þ � 1

Delta is negative, which means that a long position in a put option should be hedged
with a long position in the underlying stock, and a short position in a put option
should be hedged with a short position in the underlying stock. Figure 19.3 shows the
variation of the delta of a call option and a put option with the stock price. Figure 19.4
shows the variation of delta with the time to maturity for in-the-money, at-the-money,
and out-of-the-money call options.

Delta of
call

Stock price

K
0.0

1.0

Delta of
put Stock price

K
0.0

−1.0

(a) (b)

Figure 19.3 Variation of delta with stock price for (a) a call option and (b) a put
option on a non-dividend-paying stock.
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Example 19.1

Consider again the call option on a non-dividend-paying stock in Section 19.1
where the stock price is $49, the strike price is $50, the risk-free rate is 5%, the
time to maturity is 20 weeks (¼ 0:3846 years), and the volatility is 20%. In this case,

d1 ¼
lnð49=50Þ þ ð0:05þ 0:22=2Þ � 0:3846

0:2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3846

p ¼ 0:0542

Delta is Nðd1Þ, or 0.522. When the stock price changes by �S, the option price
changes by 0:522�S.

Dynamic Aspects of Delta Hedging

Tables 19.2 and 19.3 provide two examples of the operation of delta hedging for the
example in Section 19.1, where 100,000 call options are sold. The hedge is assumed to
be adjusted or rebalanced weekly. The initial value of delta for a single option is
calculated in Example 19.1 as 0.522. This means that the delta of the option position
is initially �100,000� 0:522, or �52,200. As soon as the option is written, $2,557,800
must be borrowed to buy 52,200 shares at a price of $49 to create a delta-neutral
position. The rate of interest is 5%. An interest cost of approximately $2,500 is therefore
incurred in the first week.

In Table 19.2, the stock price falls by the end of the first week to $48.12. The delta of
the option declines to 0.458, so that the new delta of the option position is �45,800.
This means that 6,400 of the shares initially purchased are sold to maintain the delta-
neutral hedge. The strategy realizes $308,000 in cash, and the cumulative borrowings at
the end of Week 1 are reduced to $2,252,300. During the second week, the stock price

Delta

Time to expiration

Out of the money

In the money

At the money

Figure 19.4 Typical patterns for variation of delta with time to maturity for a call
option.
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reduces to $47.37, delta declines again, and so on. Toward the end of the life of the

option, it becomes apparent that the option will be exercised and the delta of the option

approaches 1.0. By Week 20, therefore, the hedger has a fully covered position. The

hedger receives $5 million for the stock held, so that the total cost of writing the option

and hedging it is $263,300.

Table 19.3 illustrates an alternative sequence of events such that the option closes out

of the money. As it becomes clear that the option will not be exercised, delta

approaches zero. By Week 20 the hedger has a naked position and has incurred costs

totaling $256,600.

In Tables 19.2 and 19.3, the costs of hedging the option, when discounted to the

beginning of the period, are close to but not exactly the same as the Black–Scholes–

Merton price of $240,000. If the hedging worked perfectly, the cost of hedging would,

after discounting, be exactly equal to the Black–Scholes–Merton price for every

simulated stock price path. The reason for the variation in the cost of hedging is that

the hedge is rebalanced only once a week. As rebalancing takes place more frequently,

the variation in the cost of hedging is reduced. Of course, the examples in Tables 19.2

and 19.3 are idealized in that they assume that the volatility is constant and there are no

transaction costs.

Table 19.2 Simulation of delta hedging. Option closes in the money and cost of
hedging is $263,300.

Week Stock
price

Delta Shares
purchased

Cost of shares
purchased
($000)

Cumulative cost
including interest

($000)

Interest
cost

($000)

0 49.00 0.522 52,200 2,557.8 2,557.8 2.5
1 48.12 0.458 (6,400) (308.0) 2,252.3 2.2
2 47.37 0.400 (5,800) (274.7) 1,979.8 1.9
3 50.25 0.596 19,600 984.9 2,966.6 2.9
4 51.75 0.693 9,700 502.0 3,471.5 3.3
5 53.12 0.774 8,100 430.3 3,905.1 3.8
6 53.00 0.771 (300) (15.9) 3,893.0 3.7
7 51.87 0.706 (6,500) (337.2) 3,559.5 3.4
8 51.38 0.674 (3,200) (164.4) 3,398.5 3.3
9 53.00 0.787 11,300 598.9 4,000.7 3.8

10 49.88 0.550 (23,700) (1,182.2) 2,822.3 2.7
11 48.50 0.413 (13,700) (664.4) 2,160.6 2.1
12 49.88 0.542 12,900 643.5 2,806.2 2.7
13 50.37 0.591 4,900 246.8 3,055.7 2.9
14 52.13 0.768 17,700 922.7 3,981.3 3.8
15 51.88 0.759 (900) (46.7) 3,938.4 3.8
16 52.87 0.865 10,600 560.4 4,502.6 4.3
17 54.87 0.978 11,300 620.0 5,126.9 4.9
18 54.62 0.990 1,200 65.5 5,197.3 5.0
19 55.87 1.000 1,000 55.9 5,258.2 5.1
20 57.25 1.000 0 0.0 5,263.3
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Table 19.4 shows statistics on the performance of delta hedging obtained from one

million random stock price paths in our example. The performance measure is calculated

similarly to Table 19.1 as the ratio of the standard deviation of the cost of hedging the

option to the Black–Scholes–Merton price of the option. It is clear that delta hedging is a

great improvement over a stop-loss strategy. Unlike a stop-loss strategy, the performance

of a delta-hedging strategy gets steadily better as the hedge is monitored more frequently.

Table 19.3 Simulation of delta hedging. Option closes out of the money and cost of
hedging is $256,600.

Week Stock
price

Delta Shares
purchased

Cost of shares
purchased
($000)

Cumulative cost
including interest

($000)

Interest
cost

($000)

0 49.00 0.522 52,200 2,557.8 2,557.8 2.5

1 49.75 0.568 4,600 228.9 2,789.2 2.7

2 52.00 0.705 13,700 712.4 3,504.3 3.4

3 50.00 0.579 (12,600) (630.0) 2,877.7 2.8

4 48.38 0.459 (12,000) (580.6) 2,299.9 2.2

5 48.25 0.443 (1,600) (77.2) 2,224.9 2.1

6 48.75 0.475 3,200 156.0 2,383.0 2.3

7 49.63 0.540 6,500 322.6 2,707.9 2.6

8 48.25 0.420 (12,000) (579.0) 2,131.5 2.1

9 48.25 0.410 (1,000) (48.2) 2,085.4 2.0

10 51.12 0.658 24,800 1,267.8 3,355.2 3.2

11 51.50 0.692 3,400 175.1 3,533.5 3.4

12 49.88 0.542 (15,000) (748.2) 2,788.7 2.7

13 49.88 0.538 (400) (20.0) 2,771.4 2.7

14 48.75 0.400 (13,800) (672.7) 2,101.4 2.0

15 47.50 0.236 (16,400) (779.0) 1,324.4 1.3

16 48.00 0.261 2,500 120.0 1,445.7 1.4

17 46.25 0.062 (19,900) (920.4) 526.7 0.5

18 48.13 0.183 12,100 582.4 1,109.6 1.1

19 46.63 0.007 (17,600) (820.7) 290.0 0.3

20 48.12 0.000 (700) (33.7) 256.6

Table 19.4 Performance of delta hedging. The performance measure is the ratio
of the standard deviation of the cost of writing the option and hedging it to the
theoretical price of the option.

Time between hedge
rebalancing (weeks): 5 4 2 1 0.5 0.25

Performance measure: 0.42 0.38 0.28 0.21 0.16 0.13
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Delta hedging aims to keep the value of the financial institution’s position as close to
unchanged as possible. Initially, the value of the written option is $240,000. In the
situation depicted in Table 19.2, the value of the option can be calculated as $414,500 in
Week 9. Thus, the financial institution has lost $174,500 on its short option position. Its
cash position, as measured by the cumulative cost, is $1,442,900 worse in Week 9 than
in Week 0. The value of the shares held has increased from $2,557,800 to $4,171,100.
The net effect of all this is that the value of the financial institution’s position has
changed by only $4,100 between Week 0 and Week 9.

Where the Cost Comes From

The delta-hedging procedure in Tables 19.2 and 19.3 creates the equivalent of a long
position in the option. This neutralizes the short position the financial institution
created by writing the option. As the tables illustrate, delta hedging a short position
generally involves selling stock just after the price has gone down and buying stock just
after the price has gone up. It might be termed a buy-high, sell-low trading strategy!
The average cost of $240,000 comes from the present value of the difference between the
price at which stock is purchased and the price at which it is sold.

Delta of a Portfolio

The delta of a portfolio of options or other derivatives dependent on a single asset
whose price is S is

@�

@S
where � is the value of the portfolio.

The delta of the portfolio can be calculated from the deltas of the individual options
in the portfolio. If a portfolio consists of a quantity wi of option i (1 6 i 6 n), the delta
of the portfolio is given by

� ¼
Xn
i¼1

wi �i

where �i is the delta of the ith option. The formula can be used to calculate the
position in the underlying asset necessary to make the delta of the portfolio zero. When
this position has been taken, the portfolio is referred to as being delta neutral.

Suppose a financial institution has the following three positions in options on a
stock:

1. A long position in 100,000 call options with strike price $55 and an expiration date
in 3 months. The delta of each option is 0.533.

2. A short position in 200,000 call options with strike price $56 and an expiration
date in 5 months. The delta of each option is 0.468.

3. A short position in 50,000 put options with strike price $56 and an expiration date
in 2 months. The delta of each option is �0:508.

The delta of the whole portfolio is

100,000� 0:533� 200,000� 0:468� 50,000� ð�0:508Þ ¼ �14,900

This means that the portfolio can be made delta neutral by buying 14,900 shares.
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Transaction Costs

Derivatives dealers usually rebalance their positions once a day to maintain delta
neutrality. When the dealer has a small number of options on a particular asset, this is
liable to be prohibitively expensive because of the bid–offer spreads the dealer is subject
to on trades. For a large portfolio of options, it is more feasible. Only one trade in the
underlying asset is necessary to zero out delta for the whole portfolio. The bid–offer
spread transaction costs are absorbed by the profits on many different trades.

19.5 THETA

The theta (�) of a portfolio of options is the rate of change of the value of the portfolio
with respect to the passage of time with all else remaining the same. Theta is sometimes
referred to as the time decay of the portfolio. For a European call option on a non-
dividend-paying stock, it can be shown from the Black–Scholes–Merton formula (see
Problem 15.17) that

�ðcallÞ ¼ � S0N
0ðd1Þ�

2
ffiffiffiffi
T

p � rKe
�rT

Nðd2Þ

where d1 and d2 are defined as in equation (15.20) and

N
0ðxÞ ¼ 1ffiffiffiffiffiffi

2�
p e

�x
2=2 ð19:2Þ

is the probability density function for a standard normal distribution.
For a European put option on the stock,

�ðputÞ ¼ � S0N
0ðd1Þ�

2
ffiffiffiffi
T

p þ rKe
�rT

Nð�d2Þ

Because Nð�d2Þ ¼ 1� Nðd2Þ, the theta of a put exceeds the theta of the corresponding
call by rKe

�rT .
In these formulas, time is measured in years. Usually, when theta is quoted, time is

measured in days, so that theta is the change in the portfolio value when 1 day passes
with all else remaining the same. We can measure theta either ‘‘per calendar day’’ or
‘‘per trading day’’. To obtain the theta per calendar day, the formula for theta must be
divided by 365; to obtain theta per trading day, it must be divided by 252. (DerivaGem
measures theta per calendar day.)

Example 19.2

As in Example 19.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to
maturity is 20 weeks (¼ 0:3846 years), and the volatility is 20%. In this case,
S0 ¼ 49, K ¼ 50, r ¼ 0:05, � ¼ 0:2, and T ¼ 0:3846.

The option’s theta is

� S0N
0ðd1Þ�

2
ffiffiffiffi
T

p � rKe
�rT

Nðd2Þ ¼ �4:31

The theta is �4:31=365 ¼ �0:0118 per calendar day, or �4:31=252 ¼ �0:0171 per
trading day.
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Theta is usually negative for an option.7 This is because, as time passes with all else
remaining the same, the option tends to become less valuable. The variation of � with
stock price for a call option on a stock is shown in Figure 19.5. When the stock price is
very low, theta is close to zero. For an at-the-money call option, theta is large and
negative. As the stock price becomes larger, theta tends to �rKe

�rT . Figure 19.6 shows
typical patterns for the variation of � with the time to maturity for in-the-money, at-
the-money, and out-of-the-money call options.

Theta

Stock price

K
0

Figure 19.5 Variation of theta of a European call option with stock price.

Theta

Out of the money

In the money

At the money

Time to maturity
0

Figure 19.6 Typical patterns for variation of theta of a European call option with time
to maturity.

7 An exception to this could be an in-the-money European put option on a non-dividend-paying stock or an

in-the-money European call option on a currency with a very high interest rate.
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Theta is not the same type of hedge parameter as delta. There is uncertainty about
the future stock price, but there is no uncertainty about the passage of time. It makes
sense to hedge against changes in the price of the underlying asset, but it does not make
any sense to hedge against the passage of time. In spite of this, many traders regard
theta as a useful descriptive statistic for a portfolio. This is because, as we shall see later,
in a delta-neutral portfolio theta is a proxy for gamma.

19.6 GAMMA

The gamma (�) of a portfolio of options on an underlying asset is the rate of change of
the portfolio’s delta with respect to the price of the underlying asset. It is the second
partial derivative of the portfolio with respect to asset price:

� ¼ @2�

@S 2

If gamma is small, delta changes slowly, and adjustments to keep a portfolio delta
neutral need to be made only relatively infrequently. However, if gamma is highly
negative or highly positive, delta is very sensitive to the price of the underlying asset. It
is then quite risky to leave a delta-neutral portfolio unchanged for any length of time.
Figure 19.7 illustrates this point. When the stock price moves from S to S

0, delta
hedging assumes that the option price moves from C to C

0, when in fact it moves from
C to C

00. The difference between C
0 and C

00 leads to a hedging error. The size of the
error depends on the curvature of the relationship between the option price and the
stock price. Gamma measures this curvature.

Suppose that �S is the price change of an underlying asset during a small interval of
time, �t, and �� is the corresponding price change in the portfolio. The appendix at
the end of this chapter shows that, if terms of order higher than �t are ignored,

�� ¼ ��tþ 1
2
��S

2 ð19:3Þ

for a delta-neutral portfolio, where � is the theta of the portfolio. Figure 19.8 shows the

Call
price

Stock price

S S ′

C

C′
C″

Figure 19.7 Hedging error introduced by nonlinearity.
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nature of this relationship between �� and �S. When gamma is positive, theta tends to
be negative. The portfolio declines in value if there is no change in S, but increases in
value if there is a large positive or negative change in S. When gamma is negative, theta
tends to be positive and the reverse is true: the portfolio increases in value if there is no
change in S but decreases in value if there is a large positive or negative change in S. As
the absolute value of gamma increases, the sensitivity of the value of the portfolio to S

increases.

Example 19.3

Suppose that the gamma of a delta-neutral portfolio of options on an asset is
�10,000. Equation (19.3) shows that, if a change of þ2 or �2 in the price of the
asset occurs over a short period of time, there is an unexpected decrease in the
value of the portfolio of approximately 0:5� 10,000� 22 ¼ $20,000.

Making a Portfolio Gamma Neutral

A position in the underlying asset has zero gamma and cannot be used to change the
gamma of a portfolio. What is required is a position in an instrument such as an option
that is not linearly dependent on the underlying asset.

(a)

ΔS

ΔΠ

(b)

ΔS

ΔΠ

(c)

ΔS

ΔΠ

(d)

ΔS

ΔΠ

Figure 19.8 Relationship between�� and�S in time�t for a delta-neutral portfolio
with (a) slightly positive gamma, (b) large positive gamma, (c) slightly negative
gamma, and (d) large negative gamma.
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Suppose that a delta-neutral portfolio has a gamma equal to �, and a traded option
has a gamma equal to �T . If the number of traded options added to the portfolio is wT ,
the gamma of the portfolio is

wT �T þ �

Hence, the position in the traded option necessary to make the portfolio gamma neutral
is ��=�T . Including the traded option is likely to change the delta of the portfolio, so
the position in the underlying asset then has to be changed to maintain delta neutrality.
Note that the portfolio is gamma neutral only for a short period of time. As time
passes, gamma neutrality can be maintained only if the position in the traded option is
adjusted so that it is always equal to ��=�T .

Making a portfolio gamma neutral as well as delta-neutral can be regarded as a
correction for the hedging error illustrated in Figure 19.7. Delta neutrality provides
protection against relatively small stock price moves between rebalancing. Gamma
neutrality provides protection against larger movements in this stock price between
hedge rebalancing. Suppose that a portfolio is delta neutral and has a gamma of
�3,000. The delta and gamma of a particular traded call option are 0.62 and 1.50,
respectively. The portfolio can be made gamma neutral by including in the portfolio a
long position of

3,000

1:5
¼ 2,000

in the call option. However, the delta of the portfolio will then change from zero to
2,000� 0:62 ¼ 1,240. Therefore 1,240 units of the underlying asset must be sold from
the portfolio to keep it delta neutral.

Calculation of Gamma

For a European call or put option on a non-dividend-paying stock, the gamma is
given by

� ¼ N
0ðd1Þ

S0�
ffiffiffiffi
T

p

Gamma

K Stock price

Figure 19.9 Variation of gamma with stock price for an option.
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where d1 is defined as in equation (15.20) and N
0ðxÞ is as given by equation (19.2). The

gamma of a long position is always positive and varies with S0 in the way indicated in

Figure 19.9. The variation of gamma with time to maturity for out-of-the-money,

at-the-money, and in-the-money options is shown in Figure 19.10. For an at-the-money

option, gamma increases as the time to maturity decreases. Short-life at-the-money

options have very high gammas, which means that the value of the option holder’s

position is highly sensitive to jumps in the stock price.

Example 19.4

As in Example 19.1, consider a call option on a non-dividend-paying stock where

the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to

maturity is 20 weeks (¼ 0:3846 years), and the volatility is 20%. In this case,

S0 ¼ 49, K ¼ 50, r ¼ 0:05, � ¼ 0:2, and T ¼ 0:3846.
The option’s gamma is

N
0ðd1Þ

S0�
ffiffiffiffi
T

p ¼ 0:066

When the stock price changes by �S, the delta of the option changes by 0:066�S.

19.7 RELATIONSHIP BETWEEN DELTA, THETA, AND GAMMA

The price of a single derivative dependent on a non-dividend-paying stock must satisfy

the differential equation (15.16). It follows that the value of � of a portfolio of such

Gamma

Out of the money

In the money

At the money

Time to maturity

0

Figure 19.10 Variation of gamma with time to maturity for a stock option.
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derivatives also satisfies the differential equation

@�

@t
þ rS

@�

@S
þ 1

2
�2
S
2 @

2�

@S 2
¼ r�

Since

� ¼ @�

@t
; � ¼ @�

@S
; � ¼ @2�

@S 2

it follows that

�þ rS�þ 1
2�

2
S
2� ¼ r� ð19:4Þ

Similar results can be produced for other underlying assets (see Problem 19.19).
For a delta-neutral portfolio, � ¼ 0 and

�þ 1
2
�2
S
2� ¼ r�

This shows that, when � is large and positive, gamma of a portfolio tends to be large
and negative, and vice versa. This is consistent with the way in which Figure 19.8 has
been drawn and explains why theta can to some extent be regarded as a proxy for
gamma in a delta-neutral portfolio.

19.8 VEGA

Up to now we have implicitly assumed that the volatility of the asset underlying a
derivative is constant. In practice, volatilities change over time. This means that the
value of a derivative is liable to change because of movements in volatility as well as
because of changes in the asset price and the passage of time.

The vega of a portfolio of derivatives, V, is the rate of change of the value of the
portfolio with respect to the volatility of the underlying asset.8

V ¼ @�

@�

If vega is highly positive or highly negative, the portfolio’s value is very sensitive to
small changes in volatility. If it is close to zero, volatility changes have relatively little
impact on the value of the portfolio.

A position in the underlying asset has zero vega. However, the vega of a portfolio can
be changed, similarly to the way gamma can be changed, by adding a position in a traded
option. If V is the vega of the portfolio and VT is the vega of a traded option, a position
of �V=VT in the traded option makes the portfolio instantaneously vega neutral.
Unfortunately, a portfolio that is gamma neutral will not in general be vega neutral,
and vice versa. If a hedger requires a portfolio to be both gamma and vega neutral, at
least two traded derivatives dependent on the underlying asset must usually be used.

Example 19.5

Consider a portfolio that is delta neutral, with a gamma of �5,000 and a vega of
�8,000. The options shown in the following table can be traded. The portfolio can

8 Vega is the name given to one of the ‘‘Greek letters’’ in option pricing, but it is not one of the letters in the

Greek alphabet.
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be made vega neutral by including a long position in 4,000 of Option 1. This would

increase delta to 2,400 and require that 2,400 units of the asset be sold to maintain

delta neutrality. The gamma of the portfolio would change from�5,000 to�3,000.

To make the portfolio gamma and vega neutral, both Option 1 and Option 2
can be used. If w1 and w2 are the quantities of Option 1 and Option 2 that are
added to the portfolio, we require that

�5,000þ 0:5w1 þ 0:8w2 ¼ 0
and

�8,000þ 2:0w1 þ 1:2w2 ¼ 0

The solution to these equations is w1 ¼ 400, w2 ¼ 6,000. The portfolio can there-
fore be made gamma and vega neutral by including 400 of Option 1 and 6,000 of
Option 2. The delta of the portfolio, after the addition of the positions in the two
traded options, is 400� 0:6þ 6,000� 0:5 ¼ 3,240. Hence, 3,240 units of the asset
would have to be sold to maintain delta neutrality.

For a European call or put option on a non-dividend-paying stock, vega is given by

V ¼ S0
ffiffiffiffi
T

p
N

0ðd1Þ
where d1 is defined as in equation (15.20). The formula for N

0ðxÞ is given in equa-
tion (19.2). The vega of a long position in a European or American option is always
positive. The general way in which vega varies with S0 is shown in Figure 19.11.

Example 19.6

As in Example 19.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to
maturity is 20 weeks (¼ 0:3846 years), and the volatility is 20%. In this case,
S0 ¼ 49, K ¼ 50, r ¼ 0:05, � ¼ 0:2, and T ¼ 0:3846.

The option’s vega is
S0

ffiffiffiffi
T

p
N

0ðd1Þ ¼ 12:1

Thus a 1% (0.01) increase in the volatility from (20% to 21%) increases the value
of the option by approximately 0:01� 12:1 ¼ 0:121.

Calculating vega from the Black–Scholes–Merton model and its extensions may seem
strange because one of the assumptions underlying the model is that volatility is constant.
It would be theoretically more correct to calculate vega from amodel in which volatility is
assumed to be stochastic. However, it turns out that the vega calculated from a stochastic
volatility model is very similar to the Black–Scholes–Merton vega, so the practice of
calculating vega from a model in which volatility is constant works reasonably well.9

Delta Gamma Vega

Portfolio 0 �5000 �8000
Option 1 0.6 0.5 2.0
Option 2 0.5 0.8 1.2

9 See J. C. Hull and A. White, ‘‘The Pricing of Options on Assets with Stochastic Volatilities,’’ Journal of

Finance 42 (June 1987): 281–300; J. C. Hull and A. White, ‘‘An Analysis of the Bias in Option Pricing Caused

by a Stochastic Volatility,’’ Advances in Futures and Options Research 3 (1988): 27–61.
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Gamma neutrality protects against large changes in the price of the underlying asset
between hedge rebalancing. Vega neutrality protects against a variable �. As might be
expected, whether it is best to use an available traded option for vega or gamma
hedging depends on the time between hedge rebalancing and the volatility of the
volatility.10

When volatilities change, the implied volatilities of short-dated options tend to change
by more than the implied volatilities of long-dated options. The vega of a portfolio is
therefore often calculated by changing the volatilities of long-dated options by less than
that of short-dated options. One way of doing this is discussed in Section 23.6.

19.9 RHO

The rho of a portfolio of options is the rate of change of the value of the portfolio with
respect to the interest rate:

@�

@r

It measures the sensitivity of the value of a portfolio to a change in the interest rate when
all else remains the same. For a European call option on a non-dividend-paying stock,

rho (call) ¼ KTe
�rT

Nðd2Þ
where d2 is defined as in equation (15.20). For a European put option,

rho (put) ¼ �KTe
�rT

Nð�d2Þ
Example 19.7

As in Example 19.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to
maturity is 20 weeks (¼ 0:3846 years), and the volatility is 20%. In this case,
S0 ¼ 49, K ¼ 50, r ¼ 0:05, � ¼ 0:2, and T ¼ 0:3846.

Vega

K

Stock price

Figure 19.11 Variation of vega with stock price for an option.

10 For a discussion of this issue, see J. C. Hull and A. White, ‘‘Hedging the Risks from Writing Foreign

Currency Options,’’ Journal of International Money and Finance 6 (June 1987): 131–52.
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The option’s rho is

KTe
�rT

Nðd2Þ ¼ 8:91

This means that a 1% (0.01) increase in the risk-free rate (from 5% to 6%)

increases the value of the option by approximately 0:01� 8:91 ¼ 0:0891.

19.10 THE REALITIES OF HEDGING

In an ideal world, traders working for financial institutions would be able to rebalance
their portfolios very frequently in order to maintain all Greeks equal to zero. In

practice, this is not possible. When managing a large portfolio dependent on a single
underlying asset, traders usually make delta zero, or close to zero, at least once a day by
trading the underlying asset. Unfortunately, a zero gamma and a zero vega are less easy
to achieve because it is difficult to find options or other nonlinear derivatives that can be

traded in the volume required at competitive prices. Business Snapshot 19.1 provides a
discussion of how dynamic hedging is organized at financial institutions.

As already mentioned, there are big economies of scale in trading derivatives.

Maintaining delta neutrality for a small number of options on an asset by trading

Business Snapshot 19.1 Dynamic Hedging in Practice

In a typical arrangement at a financial institution, the responsibility for a portfolio of
derivatives dependent on a particular underlying asset is assigned to one trader or to
a group of traders working together. For example, one trader at Goldman Sachs
might be assigned responsibility for all derivatives dependent on the value of the
Australian dollar. A computer system calculates the value of the portfolio and Greek
letters for the portfolio. Limits are defined for each Greek letter and special
permission is required if a trader wants to exceed a limit at the end of a trading day.

The delta limit is often expressed as the equivalent maximum position in the
underlying asset. For example, the delta limit of Goldman Sachs for a stock might
be $1 million. If the stock price is $50, this means that the absolute value of delta as
we have calculated it can be no more than 20,000. The vega limit is usually expressed
as a maximum dollar exposure per 1% change in the volatility.

As a matter of course, options traders make themselves delta neutral—or close to
delta neutral—at the end of each day. Gamma and vega are monitored, but are not
usually managed on a daily basis. Financial institutions often find that their business
with clients involves writing options and that as a result they accumulate negative
gamma and vega. They are then always looking out for opportunities to manage their
gamma and vega risks by buying options at competitive prices.

There is one aspect of an options portfolio that mitigates problems of managing
gamma and vega somewhat. Options are often close to the money when they are first
sold, so that they have relatively high gammas and vegas. But after some time has
elapsed, the underlying asset price has often changed enough for them to become
deep out of the money or deep in the money. Their gammas and vegas are then very
small and of little consequence. A nightmare scenario for an options trader is where
written options remain very close to the money as the maturity date is approached.
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daily is usually not economically feasible because of trading costs.11 But when a
derivatives dealer maintains delta neutrality for a large portfolio of options on an
asset, the trading costs per option hedged are likely to be much more reasonable.

19.11 SCENARIO ANALYSIS

In addition to monitoring risks such as delta, gamma, and vega, option traders often
also carry out a scenario analysis. The analysis involves calculating the gain or loss on
their portfolio over a specified period under a variety of different scenarios. The time
period chosen is likely to depend on the liquidity of the instruments. The scenarios can
be either chosen by management or generated by a model.

Consider a bank with a portfolio of options on a foreign currency. There are two
main variables on which the value of the portfolio depends. These are the exchange rate
and the exchange-rate volatility. Suppose that the exchange rate is currently 1.0000 and
its volatility is 10% per annum. The bank could calculate a table such as Table 19.5
showing the profit or loss experienced during a 2-week period under different scenarios.
This table considers seven different exchange rates and three different volatilities.
Because a one-standard-deviation move in the exchange rate during a 2-week period
is about 0.02, the exchange rate moves considered are approximately zero, one, two,
and three standard deviations.

In Table 19.5, the greatest loss is in the lower right corner of the table. The loss
corresponds to the volatility increasing to 12% and the exchange rate moving up to
1.06. Usually the greatest loss in a table such as Table 19.5 occurs at one of the corners,
but this is not always so. Consider, for example, the situation where a bank’s portfolio
consists of a short position in a butterfly spread (see Section 12.3). The greatest loss will
be experienced if the exchange rate stays where it is.

19.12 EXTENSION OF FORMULAS

The formulas produced so far for delta, theta, gamma, vega, and rho have been for a
European option on a non-dividend-paying stock. Table 19.6 shows how they change

Table 19.5 Profit or loss realized in 2 weeks under different scenarios
($ million).

Volatility Exchange rate

0.94 0.96 0.98 1.00 1.02 1.04 1.06

8% þ102 þ55 þ25 þ6 �10 �34 �80

10% þ80 þ40 þ17 þ2 �14 �38 �85

12% þ60 þ25 þ9 �2 �18 �42 �90

11 The trading costs arise from the fact that each day the hedger buys some of the underlying asset at the offer

price or sells some of the underlying asset at the bid price.
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when the stock pays a continuous dividend yield at rate q. The expressions for d1 and d2
are as for equations (17.4) and (17.5). By setting q equal to the dividend yield on an index,

we obtain the Greek letters for European options on indices. By setting q equal to the

foreign risk-free rate, we obtain the Greek letters for European options on a currency. By

setting q ¼ r, we obtain delta, gamma, theta, and vega for European options on a futures

contract. The rho for a call futures option is �cT and the rho for a European put futures

option is �pT .

In the case of currency options, there are two rhos corresponding to the two interest

rates. The rho corresponding to the domestic interest rate is given by the formula in

Table 19.6 (with d2 as in equation (17.11)). The rho corresponding to the foreign

interest rate for a European call on a currency is

rhoðcall; foreign rateÞ ¼ �Te
�rf T S0Nðd1Þ

For a European put, it is

rhoðput; foreign rateÞ ¼ Te
�rf T S0Nð�d1Þ

with d1 as in equation (17.11).

The calculation of Greek letters for American options is discussed in Chapter 21.

Delta of Forward Contracts

The concept of delta can be applied to financial instruments other than options. Consider

a forward contract on a non-dividend-paying stock. Equation (5.5) shows that the value

of a forward contract is S0 �Ke
�rT , where K is the delivery price and T is the forward

contract’s time to maturity. When the price of the stock changes by �S, with all else

remaining the same, the value of a forward contract on the stock also changes by�S. The

delta of a long forward contract on one share of the stock is therefore always 1.0. This

Table 19.6 Greek letters for European options on an asset that provides a yield at
rate q.

Greek letter Call option Put option

Delta e�qTNðd1Þ e�qT ½Nðd1Þ � 1�

Gamma
N 0ðd1Þe�qT

S0�
ffiffiffiffi
T

p N 0ðd1Þe�qT

S0�
ffiffiffiffi
T

p

Theta � S0N
0ðd1Þ�e�qT

�ð2 ffiffiffiffi
T

p Þ
þ qS0Nðd1Þe�qT � rKe�rTNðd2Þ

� S0N
0ðd1Þ�e�qT

�ð2 ffiffiffiffi
T

p Þ
� qS0Nð�d1Þe�qT þ rKe�rTNð�d2Þ

Vega S0
ffiffiffiffi
T

p
N 0ðd1Þe�qT S0

ffiffiffiffi
T

p
N 0ðd1Þe�qT

Rho KTe�rTNðd2Þ �KTe�rTNð�d2Þ
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means that a long forward contract on one share can be hedged by shorting one share; a
short forward contract on one share can be hedged by purchasing one share.12

For an asset providing a dividend yield at rate q, equation (5.7) shows that the
forward contract’s delta is e�qT . For the delta of a forward contract on a stock index, q
is set equal to the dividend yield on the index in this expression. For the delta of a
forward foreign exchange contract, it is set equal to the foreign risk-free rate, rf .

Delta of a Futures Contract

From equation (5.1), the futures price for a contract on a non-dividend-paying stock is
S0e

rT , where T is the time to maturity of the futures contract. This shows that when the
price of the stock changes by �S, with all else remaining the same, the futures price
changes by �S e

rT . Since futures contracts are settled daily, the holder of a long futures
position makes an almost immediate gain of this amount. The delta of a futures
contract is therefore e

rT . For a futures position on an asset providing a dividend yield
at rate q, equation (5.3) shows similarly that delta is eðr�qÞT .

It is interesting that daily settlement makes the deltas of futures and forward contracts
slightly different. This is true even when interest rates are constant and the forward price
equals the futures price. (A related point is made in Business Snapshot 5.2.)

Sometimes a futures contract is used to achieve a delta-neutral position. Define:

T : Maturity of futures contract

HA : Required position in asset for delta hedging

HF : Alternative required position in futures contracts for delta hedging

If the underlying asset is a non-dividend-paying stock, the analysis we have just given
shows that

HF ¼ e
�rT

HA ð19:5Þ
When the underlying asset pays a dividend yield q,

HF ¼ e
�ðr�qÞT

HA ð19:6Þ
For a stock index, we set q equal to the dividend yield on the index; for a currency, we
set it equal to the foreign risk-free rate, rf , so that

HF ¼ e
�ðr�rf ÞTHA ð19:7Þ

Example 19.8

Suppose that a portfolio of currency options held by a US bank can be made
delta neutral with a short position of 458,000 pounds sterling. Risk-free rates are
4% in the US and 7% in the UK. From equation (19.7), hedging using 9-month
currency futures requires a short futures position

e
�ð0:04�0:07Þ�9=12 � 458,000

or £468,442. Since each futures contract is for the purchase or sale of £62,500, seven
contracts would be shorted. (Seven is the nearest whole number to 468,442/62,500.)

12 These are hedge-and-forget schemes. Since delta is always 1.0, no changes need to be made to the position

in the stock during the life of the contract.
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19.13 PORTFOLIO INSURANCE

A portfolio manager is often interested in acquiring a put option on his or her portfolio.

This provides protection against market declines while preserving the potential for a
gain if the market does well. One approach (discussed in Section 17.1) is to buy put

options on a market index such as the S&P 500. An alternative is to create the options
synthetically.

Creating an option synthetically involves maintaining a position in the underlying
asset (or futures on the underlying asset) so that the delta of the position is equal to the

delta of the required option. The position necessary to create an option synthetically is
the reverse of that necessary to hedge it. This is because the procedure for hedging an
option involves the creation of an equal and opposite option synthetically.

There are two reasons why it may be more attractive for the portfolio manager to

create the required put option synthetically than to buy it in the market. First, option
markets do not always have the liquidity to absorb the trades required by managers of
large funds. Second, fund managers often require strike prices and exercise dates that are

different from those available in exchange-traded options markets.

The synthetic option can be created from trading the portfolio or from trading in
index futures contracts. We first examine the creation of a put option by trading the

portfolio. From Table 19.6, the delta of a European put on the portfolio is

� ¼ e
�qT ½Nðd1Þ � 1� ð19:8Þ

where, with our usual notation,

d1 ¼
lnðS0=KÞ þ ðr� qþ �2=2ÞT

�
ffiffiffiffi
T

p

The other variables are defined as usual: S0 is the value of the portfolio, K is the strike

price, r is the risk-free rate, q is the dividend yield on the portfolio, � is the volatility of
the portfolio, and T is the life of the option. The volatility of the portfolio can usually
be assumed to be its beta times the volatility of a well-diversified market index.

To create the put option synthetically, the fund manager should ensure that at any

given time a proportion

e
�qT ½1�Nðd1Þ�

of the stocks in the original portfolio has been sold and the proceeds invested in riskless
assets. As the value of the original portfolio declines, the delta of the put given by

equation (19.8) becomes more negative and the proportion of the original portfolio sold
must be increased. As the value of the original portfolio increases, the delta of the put
becomes less negative and the proportion of the original portfolio sold must be

decreased (i.e., some of the original portfolio must be repurchased).

Using this strategy to create portfolio insurance means that at any given time funds
are divided between the stock portfolio on which insurance is required and riskless
assets. As the value of the stock portfolio increases, riskless assets are sold and the

position in the stock portfolio is increased. As the value of the stock portfolio declines,
the position in the stock portfolio is decreased and riskless assets are purchased. The

cost of the insurance arises from the fact that the portfolio manager is always selling
after a decline in the market and buying after a rise in the market.
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Example 19.9

A portfolio is worth $90 million. To protect against market downturns the man-
agers of the portfolio require a 6-month European put option on the portfolio
with a strike price of $87 million. The risk-free rate is 9% per annum, the dividend
yield is 3% per annum, and the volatility of the portfolio is 25% per annum. The
S&P 500 index stands at 900. As the portfolio is considered to mimic the S&P 500
fairly closely, one alternative, discussed in Section 17.1, is to buy 1,000 put option
contracts on the S&P 500 with a strike price of 870. Another alternative is to create
the required option synthetically. In this case, S0 ¼ 90 million, K ¼ 87 million,
r ¼ 0:09, q ¼ 0:03, � ¼ 0:25, and T ¼ 0:5, so that

d1 ¼
lnð90=87Þ þ ð0:09� 0:03þ 0:252=2Þ0:5

0:25
ffiffiffiffiffiffiffi
0:5

p ¼ 0:4499

and the delta of the required option is

e
�qT ½Nðd1Þ � 1� ¼ �0:3215

This shows that 32.15% of the portfolio should be sold initially and invested in
risk-free assets to match the delta of the required option. The amount of the
portfolio sold must be monitored frequently. For example, if the value of the
portfolio reduces to $88 million after 1 day, the delta of the required option
changes to 0:3679 and a further 4.64% of the original portfolio should be sold
and invested in risk-free assets. If the value of the portfolio increases
to $92 million, the delta of the required option changes to �0:2787 and 4.28%
of the original portfolio should be repurchased.

Use of Index Futures

Using index futures to create options synthetically can be preferable to using the
underlying stocks because the transaction costs associated with trades in index futures
are generally lower than those associated with the corresponding trades in the under-
lying stocks. The dollar amount of the futures contracts shorted as a proportion of the
value of the portfolio should from equations (19.6) and (19.8) be

e
�qT

e
�ðr�qÞT � ½1� Nðd1Þ� ¼ e

qðT ��T Þ
e
�rT

� ½1� Nðd1Þ�
where T

� is the maturity of the futures contract. If the portfolio is worth A1 times the
index and each index futures contract is on A2 times the index, the number of futures
contracts shorted at any given time should be

e
qðT ��T Þ

e
�rT

� ½1� Nðd1Þ�A1=A2

Example 19.10

Suppose that in the previous example futures contracts on the S&P 500 maturing in
9 months are used to create the option synthetically. In this case initially T ¼ 0:5,
T
� ¼ 0:75, A1 ¼ 100,000, and d1 ¼ 0:4499. Each index futures contract is on 250

times the index, so that A2 ¼ 250. The number of futures contracts shorted
should be

e
qðT ��T Þ

e
�rT

� ½1� Nðd1Þ�A1=A2 ¼ 122:96
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or 123, rounding to the nearest whole number. As time passes and the index
changes, the position in futures contracts must be adjusted.

This analysis assumes that the portfolio mirrors the index. When this is not the case, it
is necessary to (a) calculate the portfolio’s beta, (b) find the position in options on the
index that gives the required protection, and (c) choose a position in index futures to
create the options synthetically. As discussed in Section 17.1, the strike price for the
options should be the expected level of the market index when the portfolio reaches its
insured value. The number of options required is beta times the number that would be
required if the portfolio had a beta of 1.0.

19.14 STOCK MARKET VOLATILITY

We discussed in Chapter 15 the issue of whether volatility is caused solely by the arrival
of new information or whether trading itself generates volatility. Portfolio insurance
strategies such as those just described have the potential to increase volatility. When the
market declines, they cause portfolio managers either to sell stock or to sell index
futures contracts. Either action may accentuate the decline (see Business Snapshot 19.2).
The sale of stock is liable to drive down the market index further in a direct way. The
sale of index futures contracts is liable to drive down futures prices. This creates selling
pressure on stocks via the mechanism of index arbitrage (see Chapter 5), so that the
market index is liable to be driven down in this case as well. Similarly, when the market
rises, the portfolio insurance strategies cause portfolio managers either to buy stock or
to buy futures contracts. This may accentuate the rise.

In addition to formal portfolio trading strategies, we can speculate that many investors
consciously or subconsciously follow portfolio insurance rules of their own. For example,
an investor may choose to sell when the market is falling to limit the downside risk.

Whether portfolio insurance trading strategies (formal or informal) affect volatility
depends on how easily the market can absorb the trades that are generated by portfolio
insurance. If portfolio insurance trades are a very small fraction of all trades, there is
likely to be no effect. But if portfolio insurance becomes very popular, it is liable to
have a destabilizing effect on the market, as it did in 1987.

SUMMARY

Financial institutions offer a variety of option products to their clients. Often the
options do not correspond to the standardized products traded by exchanges. The
financial institutions are then faced with the problem of hedging their exposure. Naked
and covered positions leave them subject to an unacceptable level of risk. One course of
action that is sometimes proposed is a stop-loss strategy. This involves holding a naked
position when an option is out of the money and converting it to a covered position as
soon as the option moves into the money. Although superficially attractive, the strategy
does not provide a good hedge.

The delta (�) of an option is the rate of change of its price with respect to the price of
the underlying asset. Delta hedging involves creating a position with zero delta (some-
times referred to as a delta-neutral position). Because the delta of the underlying asset
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is 1.0, one way of hedging is to take a position of �� in the underlying asset for each

long option being hedged. The delta of an option changes over time. This means that

the position in the underlying asset has to be frequently adjusted.

Once an option position has been made delta neutral, the next stage is often to look

at its gamma (�). The gamma of an option is the rate of change of its delta with respect

to the price of the underlying asset. It is a measure of the curvature of the relationship

between the option price and the asset price. The impact of this curvature on the

performance of delta hedging can be reduced by making an option position gamma

neutral. If � is the gamma of the position being hedged, this reduction is usually

achieved by taking a position in a traded option that has a gamma of ��.

Delta and gamma hedging are both based on the assumption that the volatility of the

underlying asset is constant. In practice, volatilities do change over time. The vega of an

option or an option portfolio measures the rate of change of its value with respect to

volatility. A trader who wishes to hedge an option position against volatility changes can

make the position vega neutral. As with the procedure for creating gamma neutrality, this

usually involves taking an offsetting position in a traded option. If the trader wishes to

achieve both gamma and vega neutrality, two traded options are usually required.

Two other measures of the risk of an option position are theta and rho. Theta

measures the rate of change of the value of the position with respect to the passage of

time, with all else remaining constant. Rho measures the rate of change of the value of

the position with respect to the interest rate, with all else remaining constant.

Business Snapshot 19.2 Was Portfolio Insurance to Blame for the Crash
of 1987?

On Monday, October 19, 1987, the Dow Jones Industrial Average dropped by more
than 20%. Many people feel that portfolio insurance played a major role in this crash.
In October 1987 between $60 billion and $90 billion of equity assets were subject to
portfolio insurance trading rules where put options were created synthetically in the
way discussed in Section 19.13. During the period Wednesday, October 14, 1987, to
Friday, October 16, 1987, the market declined by about 10%, with much of this
decline taking place on Friday afternoon. The portfolio trading rules should have
generated at least $12 billion of equity or index futures sales as a result of this decline.
In fact, portfolio insurers had time to sell only $4 billion and they approached the
following week with huge amounts of selling already dictated by their models. It is
estimated that on Monday, October 19, sell programs by three portfolio insurers
accounted for almost 10% of the sales on the New York Stock Exchange, and that
portfolio insurance sales amounted to 21.3% of all sales in index futures markets. It is
likely that the decline in equity prices was exacerbated by investors other than portfolio
insurers selling heavily because they anticipated the actions of portfolio insurers.

Because the market declined so fast and the stock exchange systems were over-
loaded, many portfolio insurers were unable to execute the trades generated by their
models and failed to obtain the protection they required. Needless to say, the
popularity of portfolio insurance schemes has declined significantly since 1987.
One of the morals of this story is that it is dangerous to follow a particular trading
strategy—even a hedging strategy—when many other market participants are doing
the same thing.
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In practice, option traders usually rebalance their portfolios at least once a day to

maintain delta neutrality. It is usually not feasible to maintain gamma and vega

neutrality on a regular basis. Typically a trader monitors these measures. If they get

too large, either corrective action is taken or trading is curtailed.

Portfolio managers are sometimes interested in creating put options synthetically for

the purposes of insuring an equity portfolio. They can do so either by trading the

portfolio or by trading index futures on the portfolio. Trading the portfolio involves

splitting the portfolio between equities and risk-free securities. As the market declines,

more is invested in risk-free securities. As the market increases, more is invested in

equities. Trading index futures involves keeping the equity portfolio intact and selling

index futures. As the market declines, more index futures are sold; as it rises, fewer are

sold. This type of portfolio insurance works well in normal market conditions. On

Monday, October 19, 1987, when the Dow Jones Industrial Average dropped very

sharply, it worked badly. Portfolio insurers were unable to sell either stocks or index

futures fast enough to protect their positions.
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Practice Questions (Answers in Solutions Manual)

19.1. Explain how a stop-loss trading rule can be implemented for the writer of an out-of-the-
money call option. Why does it provide a relatively poor hedge?

19.2. What does it mean to assert that the delta of a call option is 0.7? How can a short
position in 1,000 options be made delta neutral when the delta of each option is 0.7?

19.3. Calculate the delta of an at-the-money six-month European call option on a non-
dividend-paying stock when the risk-free interest rate is 10% per annum and the stock
price volatility is 25% per annum.

19.4. What does it mean to assert that the theta of an option position is �0:1 when time is
measured in years? If a trader feels that neither a stock price nor its implied volatility will
change, what type of option position is appropriate?

19.5. What is meant by the gamma of an option position? What are the risks in the situation
where the gamma of a position is highly negative and the delta is zero?

19.6. ‘‘The procedure for creating an option position synthetically is the reverse of the
procedure for hedging the option position.’’ Explain this statement.

19.7. Why did portfolio insurance not work well on October 19, 1987?

19.8. The Black–Scholes–Merton price of an out-of-the-money call option with an exercise
price of $40 is $4. A trader who has written the option plans to use a stop-loss strategy.
The trader’s plan is to buy at $40.10 and to sell at $39.90. Estimate the expected number
of times the stock will be bought or sold.
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19.9. Suppose that a stock price is currently $20 and that a call option with an exercise price
of $25 is created synthetically using a continually changing position in the stock.
Consider the following two scenarios: (a) Stock price increases steadily from $20 to $35
during the life of the option; (b) Stock price oscillates wildly, ending up at $35. Which
scenario would make the synthetically created option more expensive? Explain your
answer.

19.10. What is the delta of a short position in 1,000 European call options on silver futures?
The options mature in 8 months, and the futures contract underlying the option matures

in 9 months. The current 9-month futures price is $8 per ounce, the exercise price of the
options is $8, the risk-free interest rate is 12% per annum, and the volatility of silver
futures prices is 18% per annum.

19.11. In Problem 19.10, what initial position in 9-month silver futures is necessary for delta
hedging? If silver itself is used, what is the initial position? If 1-year silver futures are

used, what is the initial position? Assume no storage costs for silver.

19.12. A company uses delta hedging to hedge a portfolio of long positions in put and call

options on a currency. Which of the following would give the most favorable result?
(a) A virtually constant spot rate
(b) Wild movements in the spot rate
Explain your answer.

19.13. Repeat Problem 19.12 for a financial institution with a portfolio of short positions in put

and call options on a currency.

19.14. A financial institution has just sold 1,000 7-month European call options on the
Japanese yen. Suppose that the spot exchange rate is 0.80 cent per yen, the exercise
price is 0.81 cent per yen, the risk-free interest rate in the United States is 8% per annum,
the risk-free interest rate in Japan is 5% per annum, and the volatility of the yen is 15%

per annum. Calculate the delta, gamma, vega, theta, and rho of the financial institution’s
position. Interpret each number.

19.15. Under what circumstances is it possible to make a European option on a stock index both
gamma neutral and vega neutral by adding a position in one other European option?

19.16. A fund manager has a well-diversified portfolio that mirrors the performance of the
S&P 500 and is worth $360 million. The value of the S&P 500 is 1,200, and the portfolio
manager would like to buy insurance against a reduction of more than 5% in the value

of the portfolio over the next 6 months. The risk-free interest rate is 6% per annum. The
dividend yield on both the portfolio and the S&P 500 is 3%, and the volatility of the
index is 30% per annum.

(a) If the fund manager buys traded European put options, how much would the
insurance cost?

(b) Explain carefully alternative strategies open to the fund manager involving traded
European call options, and show that they lead to the same result.

(c) If the fund manager decides to provide insurance by keeping part of the portfolio in
risk-free securities, what should the initial position be?

(d) If the fund manager decides to provide insurance by using 9-month index futures,
what should the initial position be?

19.17. Repeat Problem 19.16 on the assumption that the portfolio has a beta of 1.5. Assume
that the dividend yield on the portfolio is 4% per annum.
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19.18. Show by substituting for the various terms in equation (19.4) that the equation is true for:
(a) A single European call option on a non-dividend-paying stock
(b) A single European put option on a non-dividend-paying stock
(c) Any portfolio of European put and call options on a non-dividend-paying stock.

19.19. What is the equation corresponding to equation (19.4) for (a) a portfolio of derivatives
on a currency and (b) a portfolio of derivatives on a futures price?

19.20. Suppose that $70 billion of equity assets are the subject of portfolio insurance schemes.
Assume that the schemes are designed to provide insurance against the value of the
assets declining by more than 5% within 1 year. Making whatever estimates you find
necessary, use the DerivaGem software to calculate the value of the stock or futures
contracts that the administrators of the portfolio insurance schemes will attempt to sell if
the market falls by 23% in a single day.

19.21. Does a forward contract on a stock index have the same delta as the corresponding
futures contract? Explain your answer.

19.22. A bank’s position in options on the dollar/euro exchange rate has a delta of 30,000 and a
gamma of �80,000. Explain how these numbers can be interpreted. The exchange rate
(dollars per euro) is 0.90. What position would you take to make the position delta
neutral? After a short period of time, the exchange rate moves to 0.93. Estimate the new
delta. What additional trade is necessary to keep the position delta neutral? Assuming
the bank did set up a delta-neutral position originally, has it gained or lost money from
the exchange-rate movement?

19.23. Use the put–call parity relationship to derive, for a non-dividend-paying stock, the
relationship between:
(a) The delta of a European call and the delta of a European put
(b) The gamma of a European call and the gamma of a European put
(c) The vega of a European call and the vega of a European put
(d) The theta of a European call and the theta of a European put.

Further Questions

19.24. A financial institution has the following portfolio of over-the-counter options on sterling:

Type Position Delta
of option

Gamma
of option

Vega
of option

Call �1,000 0.50 2.2 1.8
Call �500 0.80 0.6 0.2
Put �2,000 �0.40 1.3 0.7
Call �500 0.70 1.8 1.4

A traded option is available with a delta of 0.6, a gamma of 1.5, and a vega of 0.8.

(a) What position in the traded option and in sterling would make the portfolio both

gamma neutral and delta neutral?

(b) What position in the traded option and in sterling would make the portfolio both

vega neutral and delta neutral?
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19.25. Consider again the situation in Problem 19.24. Suppose that a second traded option with
a delta of 0.1, a gamma of 0.5, and a vega of 0.6 is available. How could the portfolio be
made delta, gamma, and vega neutral?

19.26. Consider a 1-year European call option on a stock when the stock price is $30, the strike
price is $30, the risk-free rate is 5%, and the volatility is 25% per annum. Use the
DerivaGem software to calculate the price, delta, gamma, vega, theta, and rho of the
option. Verify that delta is correct by changing the stock price to $30.1 and recomputing
the option price. Verify that gamma is correct by recomputing the delta for the situation
where the stock price is $30.1. Carry out similar calculations to verify that vega, theta, and
rho are correct. Use the DerivaGem Applications Builder functions to plot the option
price, delta, gamma, vega, theta, and rho against the stock price for the stock option.

19.27. A deposit instrument offered by a bank guarantees that investors will receive a return
during a 6-month period that is the greater of (a) zero and (b) 40% of the return
provided by a market index. An investor is planning to put $100,000 in the instrument.
Describe the payoff as an option on the index. Assuming that the risk-free rate of interest
is 8% per annum, the dividend yield on the index is 3% per annum, and the volatility of
the index is 25% per annum, is the product a good deal for the investor?

19.28. The formula for the price c of a European call futures option in terms of the futures
price F0 is given in Chapter 18 as

c ¼ e
�rT ½F0Nðd1Þ �KNðd2Þ�

where

d1 ¼
lnðF0=KÞ þ �2

T=2

�
ffiffiffiffi
T

p and d2 ¼ d1 � �
ffiffiffiffi
T

p

and K, r, T , and � are the strike price, interest rate, time to maturity, and volatility,
respectively.
(a) Prove that F0N

0ðd1Þ ¼ KN
0ðd2Þ.

(b) Prove that the delta of the call price with respect to the futures price is e�rT
Nðd1Þ.

(c) Prove that the vega of the call price is F0

ffiffiffiffi
T

p
N

0ðd1Þe�rT .
(d) Prove the formula for the rho of a call futures option given in Section 19.12.
The delta, gamma, theta, and vega of a call futures option are the same as those for a call
option on a stock paying dividends at rate q, with q replaced by r and S0 replaced by F0.
Explain why the same is not true of the rho of a call futures option.

19.29. Use DerivaGem to check that equation (19.4) is satisfied for the option considered in
Section 19.1. (Note : DerivaGem produces a value of theta ‘‘per calendar day.’’ The theta
in equation (19.4) is ‘‘per year.’’)

19.30. Use the DerivaGemApplication Builder functions to reproduce Table 19.2. (In Table 19.2
the stock position is rounded to the nearest 100 shares.) Calculate the gamma and theta of
the position each week. Calculate the change in the value of the portfolio each week and
check whether equation (19.3) is approximately satisfied. (Note: DerivaGem produces a
value of theta ‘‘per calendar day.’’ The theta in equation (19.3) is ‘‘per year.’’)
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APPENDIX

TAYLOR SERIES EXPANSIONS AND HEDGE PARAMETERS

A Taylor series expansion of the change in the portfolio value in a short period of time
shows the role played by different Greek letters. If the volatility of the underlying asset
is assumed to be constant, the value � of the portfolio is a function of the asset price S,
and time t. The Taylor series expansion gives

�� ¼ @�

@S
�S þ @�

@t
�tþ 1

2

@2�

@S 2
�S

2 þ 1
2

@2�

@t2
�t

2 þ @2�

@S @t
�S�tþ � � � ð19A:1Þ

where �� and �S are the change in � and S in a small time interval �t. Delta hedging
eliminates the first term on the right-hand side. The second term is nonstochastic. The
third term (which is of order �t) can be made zero by ensuring that the portfolio is
gamma neutral as well as delta neutral. Other terms are of order higher than �t.

For a delta-neutral portfolio, the first term on the right-hand side of equation (19A.1)
is zero, so that

�� ¼ ��tþ 1
2
��S

2

when terms of order higher than �t are ignored. This is equation (19.3).
When the volatility of the underlying asset is uncertain, � is a function of �, S, and t.

Equation (19A.1) then becomes

�� ¼ @�

@S
�S þ @�

@�
�� þ @�

@t
�tþ 1

2

@2�

@S 2
�S

2 þ 1
2

@2�

@�2
��2 þ � � �

where �� is the change in � in time �t. In this case, delta hedging eliminates the first
term on the right-hand side. The second term is eliminated by making the portfolio
vega neutral. The third term is nonstochastic. The fourth term is eliminated by making
the portfolio gamma neutral. Traders sometimes define other Greek letters to corres-
pond to later terms in the expansion.
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Volatility Smiles

How close are the market prices of options to those predicted by the Black–Scholes–
Merton model? Do traders really use the Black–Scholes–Merton model when determin-

ing a price for an option? Are the probability distributions of asset prices really log-
normal? This chapter answers these questions. It explains that traders do use the Black–
Scholes–Merton model—but not in exactly the way that Black, Scholes, and Merton

originally intended. This is because they allow the volatility used to price an option to
depend on its strike price and time to maturity.

A plot of the implied volatility of an option with a certain life as a function of its strike
price is known as a volatility smile. This chapter describes the volatility smiles that traders

use in equity and foreign currency markets. It explains the relationship between a
volatility smile and the risk-neutral probability distribution being assumed for the future
asset price. It also discusses how option traders use volatility surfaces as pricing tools.

20.1 WHY THE VOLATILITY SMILE IS THE SAME FOR CALLS AND PUTS

This section shows that the implied volatility of a European call option is the same as

that of a European put option when they have the same strike price and time to
maturity. This means that the volatility smile for European calls with a certain maturity
is the same as that for European puts with the same maturity. This is a particularly

convenient result. It shows that when talking about a volatility smile we do not have to
worry about whether the options are calls or puts.

As explained in earlier chapters, put–call parity provides a relationship between the
prices of European call and put options when they have the same strike price and time

to maturity. With a dividend yield on the underlying asset of q, the relationship is

pþ S0e
�qT ¼ cþKe

�rT ð20:1Þ

As usual, c and p are the European call and put price. They have the same strike
price, K, and time to maturity, T . The variable S0 is the price of the underlying asset
today, and r is the risk-free interest rate for maturity T .

A key feature of the put–call parity relationship is that it is based on a relatively

simple no-arbitrage argument. It does not require any assumption about the probability
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distribution of the asset price in the future. It is true both when the asset price
distribution is lognormal and when it is not lognormal.

Suppose that, for a particular value of the volatility, pBS and cBS are the values of

European put and call options calculated using the Black–Scholes–Merton model.
Suppose further that pmkt and cmkt are the market values of these options. Because
put–call parity holds for the Black–Scholes–Merton model, we must have

pBS þ S0e
�qT ¼ cBS þKe

�rT

In the absence of arbitrage opportunities, put–call parity also holds for the market

prices, so that

pmkt þ S0e
�qT ¼ cmkt þKe

�rT

Subtracting these two equations, we get

pBS � pmkt ¼ cBS � cmkt ð20:2Þ

This shows that the dollar pricing error when the Black–Scholes–Merton model is used

to price a European put option should be exactly the same as the dollar pricing error
when it is used to price a European call option with the same strike price and time to
maturity.

Suppose that the implied volatility of the put option is 22%. This means that

pBS ¼ pmkt when a volatility of 22% is used in the Black–Scholes–Merton model. From
equation (20.2), it follows that cBS ¼ cmkt when this volatility is used. The implied
volatility of the call is, therefore, also 22%. This argument shows that the implied

volatility of a European call option is always the same as the implied volatility of a
European put option when the two have the same strike price and maturity date. To put
this another way, for a given strike price and maturity, the correct volatility to use in

conjunction with the Black–Scholes–Merton model to price a European call should
always be the same as that used to price a European put. This means that the volatility
smile (i.e., the relationship between implied volatility and strike price for a particular

maturity) is the same for European calls and European puts. More generally, it means
that the volatility surface (i.e., the implied volatility as a function of strike price and time
to maturity) is the same for European calls and European puts. These results are also true

to a good approximation for American options.

Example 20.1

The value of a foreign currency is $0.60. The risk-free interest rate is 5% per annum

in the United States and 10% per annum in the foreign country. The market price
of a European call option on the foreign currency with a maturity of 1 year and a
strike price of $0.59 is 0.0236. DerivaGem shows that the implied volatility of the

call is 14.5%. For there to be no arbitrage, the put–call parity relationship in
equation (20.1) must apply with q equal to the foreign risk-free rate. The price p

of a European put option with a strike price of $0.59 and maturity of 1 year

therefore satisfies

pþ 0:60e�0:10�1 ¼ 0:0236þ 0:59e�0:05�1

so that p ¼ 0:0419. DerivaGem shows that, when the put has this price, its implied
volatility is also 14.5%. This is what we expect from the analysis just given.
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20.2 FOREIGN CURRENCY OPTIONS

The volatility smile used by traders to price foreign currency options has the general

form shown in Figure 20.1. The implied volatility is relatively low for at-the-money

options. It becomes progressively higher as an option moves either into the money or

out of the money.

In the appendix at the end of this chapter, we show how to determine the risk-

neutral probability distribution for an asset price at a future time from the volatility

smile given by options maturing at that time. We refer to this as the implied

distribution. The volatility smile in Figure 20.1 corresponds to the implied distribution

shown by the solid line in Figure 20.2. A lognormal distribution with the same mean

and standard deviation as the implied distribution is shown by the dashed line in

Figure 20.2. It can be seen that the implied distribution has heavier tails than the

lognormal distribution.1

To see that Figures 20.1 and 20.2 are consistent with each other, consider first a deep-

out-of-the-money call option with a high strike price of K2. This option pays off only if

the exchange rate proves to be above K2. Figure 20.2 shows that the probability of this

is higher for the implied probability distribution than for the lognormal distribution.

We therefore expect the implied distribution to give a relatively high price for the

option. A relatively high price leads to a relatively high implied volatility—and this is

exactly what we observe in Figure 20.1 for the option. The two figures are therefore

consistent with each other for high strike prices. Consider next a deep-out-of-the-

money put option with a low strike price of K1. This option pays off only if the

exchange rate proves to be below K1. Figure 20.2 shows that the probability of this is

also higher for the implied probability distribution than for the lognormal distribution.

We therefore expect the implied distribution to give a relatively high price, and a

relatively high implied volatility, for this option as well. Again, this is exactly what we

observe in Figure 20.1.

Strike price

Implied
volatility

Figure 20.1 Volatility smile for foreign currency options.

1 This is known as kurtosis. Note that, in addition to having a heavier tail, the implied distribution is more

‘‘peaked.’’ Both small and large movements in the exchange rate are more likely than with the lognormal

distribution. Intermediate movements are less likely.
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Empirical Results

We have just shown that the volatility smile used by traders for foreign currency options

implies that they consider that the lognormal distribution understates the probability of
extreme movements in exchange rates. To test whether they are right, Table 20.1

examines the daily movements in 12 different exchange rates over a 10-year period.2

The first step in the production of the table is to calculate the standard deviation of

daily percentage change in each exchange rate. The next stage is to note how often the

actual percentage change exceeded 1 standard deviation, 2 standard deviations, and so

on. The final stage is to calculate how often this would have happened if the percentage

changes had been normally distributed. (The lognormal model implies that percentage

changes are almost exactly normally distributed over a one-day time period.)

Table 20.1 Percentage of days when daily exchange rate
moves are greater than 1, 2, . . . , 6 standard deviations
(SD ¼ standard deviation of daily change).

Real world Lognormal model

>1 SD 25.04 31.73
>2 SD 5.27 4.55
>3 SD 1.34 0.27
>4 SD 0.29 0.01
>5 SD 0.08 0.00
>6 SD 0.03 0.00

K1

Lognormal

Implied

K2

Figure 20.2 Implied and lognormal distribution for foreign currency options.

2 The results in this table are taken from J.C. Hull and A. White, ‘‘Value at Risk When Daily Changes in

Market Variables Are Not Normally Distributed.’’ Journal of Derivatives, 5, No. 3 (Spring 1998): 9–19.
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Daily changes exceed 3 standard deviations on 1.34% of days. The lognormal model

predicts that this should happen on only 0.27% of days. Daily changes exceed 4, 5, and

6 standard deviations on 0.29%, 0.08%, and 0.03% of days, respectively. The log-

normal model predicts that we should hardly ever observe this happening. The table

therefore provides evidence to support the existence of heavy tails (Figure 20.2) and the

volatility smile used by traders (Figure 20.1). Business Snapshot 20.1 shows how you

could have made money if you had done the analysis in Table 20.1 ahead of the rest of

the market.

Reasons for the Smile in Foreign Currency Options

Why are exchange rates not lognormally distributed? Two of the conditions for an asset

price to have a lognormal distribution are:

1. The volatility of the asset is constant.

2. The price of the asset changes smoothly with no jumps.

In practice, neither of these conditions is satisfied for an exchange rate. The volatility of

an exchange rate is far from constant, and exchange rates frequently exhibit jumps.3 It

turns out that the effect of both a nonconstant volatility and jumps is that extreme

outcomes become more likely.

The impact of jumps and nonconstant volatility depends on the option maturity. As

the maturity of the option is increased, the percentage impact of a nonconstant

volatility on prices becomes more pronounced, but its percentage impact on implied

volatility usually becomes less pronounced. The percentage impact of jumps on both

Business Snapshot 20.1 Making Money from Foreign Currency Options

Black, Scholes, andMerton in their option pricing model assume that the underlying’s
asset price has a lognormal distribution at future times. This is equivalent to the
assumption that asset price changes over a short period of time, such as one day, are
normally distributed. Suppose that most market participants are comfortable with the
Black–Scholes–Merton assumptions for exchange rates. You have just done the
analysis in Table 20.1 and know that the lognormal assumption is not a good one
for exchange rates. What should you do?

The answer is that you should buy deep-out-of-the-money call and put options on
a variety of different currencies and wait. These options will be relatively inexpensive
and more of them will close in the money than the lognormal model predicts. The
present value of your payoffs will on average be much greater than the cost of the
options.

In the mid-1980s, a few traders knew about the heavy tails of foreign exchange
probability distributions. Everyone else thought that the lognormal assumption of
Black–Scholes–Merton was reasonable. The few traders who were well informed
followed the strategy we have described—and made lots of money. By the late 1980s
everyone realized that foreign currency options should be priced with a volatility
smile and the trading opportunity disappeared.

3 Sometimes the jumps are in response to the actions of central banks.
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prices and the implied volatility becomes less pronounced as the maturity of the option

is increased.4 The result of all this is that the volatility smile becomes less pronounced as

option maturity increases.

20.3 EQUITY OPTIONS

Prior to the crash of 1987, there was no marked volatility smile for equity options. Since

1987, the volatility smile used by traders to price equity options (both on individual

stocks and on stock indices) has had the general form shown in Figure 20.3. This is

sometimes referred to as a volatility skew. The volatility decreases as the strike price

increases. The volatility used to price a low-strike-price option (i.e., a deep-out-of-the-

money put or a deep-in-the-money call) is significantly higher than that used to price a

high-strike-price option (i.e., a deep-in-the-money put or a deep-out-of-the-money call).

The volatility smile for equity options corresponds to the implied probability dis-

tribution given by the solid line in Figure 20.4. A lognormal distribution with the same

mean and standard deviation as the implied distribution is shown by the dotted line. It

can be seen that the implied distribution has a heavier left tail and a less heavy right tail

than the lognormal distribution.

To see that Figures 20.3 and 20.4 are consistent with each other, we proceed as for

Figures 20.1 and 20.2 and consider options that are deep out of the money. From

Figure 20.4, a deep-out-of-the-money call with a strike price of K2 has a lower price

Strike price

Implied
volatility

Figure 20.3 Volatility smile for equities.

4 When we look at sufficiently long-dated options, jumps tend to get ‘‘averaged out,’’ so that the exchange

rate distribution when there are jumps is almost indistinguishable from the one obtained when the exchange

rate changes smoothly.
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when the implied distribution is used than when the lognormal distribution is used.

This is because the option pays off only if the stock price proves to be above K2, and the

probability of this is lower for the implied probability distribution than for the log-

normal distribution. Therefore, we expect the implied distribution to give a relatively

low price for the option. A relatively low price leads to a relatively low implied

volatility—and this is exactly what we observe in Figure 20.3 for the option. Consider

next a deep-out-of-the-money put option with a strike price of K1. This option pays off

only if the stock price proves to be below K1. Figure 20.4 shows that the probability of

this is higher for the implied probability distribution than for the lognormal distribu-

tion. We therefore expect the implied distribution to give a relatively high price, and a

relatively high implied volatility, for this option. Again, this is exactly what we observe

in Figure 20.3.

The Reason for the Smile in Equity Options

One possible explanation for the smile in equity options concerns leverage. As a

company’s equity declines in value, the company’s leverage increases. This means that

the equity becomes more risky and its volatility increases. As a company’s equity

increases in value, leverage decreases. The equity then becomes less risky and its volatility

decreases. This argument suggests that we can expect the volatility of a stock to be a

decreasing function of the stock price and is consistent with Figures 20.3 and 20.4.

Another explanation is ‘‘crashophobia’’ (see Business Snapshot 20.2).

20.4 ALTERNATIVE WAYS OF CHARACTERIZING THE
VOLATILITY SMILE

So far we have defined the volatility smile as the relationship between implied volatility

and strike price. The relationship depends on the current price of the asset. For

example, the lowest point of the volatility smile in Figure 20.1 is usually close to the

K1

Lognormal

Implied

K2

Figure 20.4 Implied distribution and lognormal distribution for equity options.
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current exchange rate. If the exchange rate increases, the volatility smile tends to move

to the right; if the exchange rate decreases, the volatility smile tends to move to the left.
Similarly, in Figure 20.3, when the equity price increases, the volatility skew tends to

move to the right, and when the equity price decreases, it tends to move to the left.5 For

this reason the volatility smile is often calculated as the relationship between the implied

volatility and K=S0 rather than as the relationship between the implied volatility and K.
The smile is then much more stable.

A refinement of this is to calculate the volatility smile as the relationship between the
implied volatility and K=F0, where F0 is the forward price of the asset for a contract

maturing at the same time as the options that are considered. Traders also often define

an ‘‘at-the-money’’ option as an option where K ¼ F0, not as an option where K ¼ S0.
The argument for this is that F0, not S0, is the expected stock price on the option’s

maturity date in a risk-neutral world.

Yet another approach to defining the volatility smile is as the relationship between the
implied volatility and the delta of the option (where delta is defined as in Chapter 19).

This approach sometimes makes it possible to apply volatility smiles to options other

than European and American calls and puts. When the approach is used, an at-the-
money option is then defined as a call option with a delta of 0.5 or a put option with a

delta of �0.5. These are referred to as ‘‘50-delta options.’’

20.5 THE VOLATILITY TERM STRUCTURE AND VOLATILITY
SURFACES

Traders allow the implied volatility to depend on time to maturity as well as strike price.
Implied volatility tends to be an increasing function of maturity when short-dated

volatilities are historically low. This is because there is then an expectation that

volatilities will increase. Similarly, volatility tends to be a decreasing function of
maturity when short-dated volatilities are historically high. This is because there is

then an expectation that volatilities will decrease.

Volatility surfaces combine volatility smiles with the volatility term structure to
tabulate the volatilities appropriate for pricing an option with any strike price and

Business Snapshot 20.2 Crashophobia

It is interesting that the pattern in Figure 20.3 for equities has existed only since the
stock market crash of October 1987. Prior to October 1987, implied volatilities were
much less dependent on strike price. This has led Mark Rubinstein to suggest that
one reason for the equity volatility smile may be ‘‘crashophobia.’’ Traders are
concerned about the possibility of another crash similar to October 1987, and they
price options accordingly.

There is some empirical support for this explanation. Declines in the S&P 500 tend
to be accompanied by a steepening of the volatility skew. When the S&P increases,
the skew tends to become less steep.

5 Research by Derman suggests that this adjustment is sometimes ‘‘sticky’’ in the case of exchange-traded

options. See E. Derman, ‘‘Regimes of Volatility,’’ Risk, April 1999: 55–59.
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any maturity. An example of a volatility surface that might be used for foreign currency
options is given in Table 20.2.

One dimension of Table 20.2 is K=S0; the other is time to maturity. The main body of
the table shows implied volatilities calculated from the Black–Scholes–Merton model. At
any given time, some of the entries in the table are likely to correspond to options for
which reliable market data are available. The implied volatilities for these options are
calculated directly from their market prices and entered into the table. The rest of the
table is typically determined using interpolation. The table shows that the volatility smile
becomes less pronounced as the option maturity increases. As mentioned earlier, this is
what is observed for currency options. (It is also what is observed for options on most
other assets.)

When a new option has to be valued, financial engineers look up the appropriate
volatility in the table. For example, when valuing a 9-month option with a K=S0 ratio of
1.05, a financial engineer would interpolate between 13.4 and 14.0 in Table 20.2 to
obtain a volatility of 13.7%. This is the volatility that would be used in the Black–
Scholes–Merton formula or a binomial tree. When valuing a 1.5-year option with a
K=S0 ratio of 0.925, a two-dimensional (bilinear) interpolation would be used to give an
implied volatility of 14.525%.

The shape of the volatility smile depends on the option maturity. As illustrated in
Table 20.2, the smile tends to become less pronounced as the option maturity increases.
Define T as the time to maturity and F0 as the forward price of the asset for a contract
maturing at the same time as the option. Some financial engineers choose to define the
volatility smile as the relationship between implied volatility and

1ffiffiffiffi
T

p ln

�
K

F0

�

rather than as the relationship between the implied volatility and K. The smile is then
usually much less dependent on the time to maturity.

20.6 GREEK LETTERS

The volatility smile complicates the calculation of Greek letters. Assume that the
relationship between the implied volatility and K=S for an option with a certain time

Table 20.2 Volatility surface.

K=S0

0.90 0.95 1.00 1.05 1.10

1 month 14.2 13.0 12.0 13.1 14.5

3 month 14.0 13.0 12.0 13.1 14.2

6 month 14.1 13.3 12.5 13.4 14.3

1 year 14.7 14.0 13.5 14.0 14.8

2 year 15.0 14.4 14.0 14.5 15.1

5 year 14.8 14.6 14.4 14.7 15.0
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to maturity remains the same.6 As the price of the underlying asset changes, the implied
volatility of the option changes to reflect the option’s ‘‘moneyness’’ (i.e., the extent to
which it is in or out of the money). The formulas for Greek letters given in Chapter 19
are no longer correct. For example, the delta of a call option is given by

@cBS
@S

þ @cBS
@�imp

@�imp

@S

where cBS is the Black–Scholes price of the option expressed as a function of the asset
price S and the implied volatility �imp. Consider the impact of this formula on the delta of
an equity call option. Volatility is a decreasing function of K=S. This means that the
implied volatility increases as the asset price increases, so that

@�imp

@S
> 0

As a result, delta is higher than that given by the Black–Scholes–Merton assumptions.

In practice, banks try to ensure that their exposure to the most commonly observed
changes in the volatility surface is reasonably small. One technique for identifying these
changes is principal components analysis, which we discuss in Chapter 22.

20.7 THE ROLE OF THE MODEL

How important is the option-pricing model if traders are prepared to use a different
volatility for every option? It can be argued that the Black–Scholes–Merton model is no
more than a sophisticated interpolation tool used by traders for ensuring that an option
is priced consistently with the market prices of other actively traded options. If traders
stopped using Black–Scholes–Merton and switched to another plausible model, then the
volatility surface and the shape of the smile would change, but arguably the dollar prices
quoted in the market would not change appreciably. Even delta, if calculated as outlined
in the previous section, does not change too much as the model is changed.

Models have most effect on the pricing of derivatives when similar derivatives do not
trade actively in the market. For example, the pricing of many of the nonstandard
exotic derivatives we will discuss in later chapters is model-dependent.

20.8 WHEN A SINGLE LARGE JUMP IS ANTICIPATED

Let us now consider an example of how an unusual volatility smile might arise in equity
markets. Suppose that a stock price is currently $50 and an important news announce-
ment due in a few days is expected either to increase the stock price by $8 or to reduce it
by $8. (This announcement could concern the outcome of a takeover attempt or the
verdict in an important lawsuit.) The probability distribution of the stock price in, say,
1 month might then consist of a mixture of two lognormal distributions, the first

6 It is interesting that this natural model is internally consistent only when the volatility smile is flat for all

maturities. See, for example, T. Daglish, J. Hull, and W. Suo, ‘‘Volatility Surfaces: Theory, Rules of Thumb,

and Empirical Evidence,’’ Quantitative Finance, 7, 5 (October 2007): 507–24.
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corresponding to favorable news, the second to unfavorable news. The situation is

illustrated in Figure 20.5. The solid line shows the mixture-of-lognormals distribution

for the stock price in 1 month; the dashed line shows a lognormal distribution with the

same mean and standard deviation as this distribution.

The true probability distribution is bimodal (certainly not lognormal). One easy way

to investigate the general effect of a bimodal stock price distribution is to consider the

extreme case where there are only two possible future stock prices. This is what we will

now do.

Suppose that the stock price is currently $50 and that it is known that in 1 month it

will be either $42 or $58. Suppose further that the risk-free rate is 12% per annum. The

situation is illustrated in Figure 20.6. Options can be valued using the binomial model

from Chapter 13. In this case u ¼ 1:16, d ¼ 0:84, a ¼ 1:0101, and p ¼ 0:5314. The
results from valuing a range of different options are shown in Table 20.3. The first

column shows alternative strike prices; the second column shows prices of 1-month

European call options; the third column shows the prices of one-month European put

option prices; the fourth column shows implied volatilities. (As shown in Section 20.1,

the implied volatility of a European put option is the same as that of a European call

option when they have the same strike price and maturity.) Figure 20.7 displays the

volatility smile from Table 20.3. It is actually a ‘‘frown’’ (the opposite of that observed

50

42

58

Figure 20.6 Change in stock price in 1 month.

Stock price

Figure 20.5 Effect of a single large jump. The solid line is the true distribution; the
dashed line is the lognormal distribution.
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for currencies) with volatilities declining as we move out of or into the money. The

volatility implied from an option with a strike price of 50 will overprice an option with

a strike price of 44 or 56.

SUMMARY

The Black–Scholes–Merton model and its extensions assume that the probability
distribution of the underlying asset at any given future time is lognormal. This

assumption is not the one made by traders. They assume the probability distribution

of an equity price has a heavier left tail and a less heavy right tail than the lognormal

44 46 48 50 52 54 56
0

10

20

30

40

50

60

70

80

90 Implied
volatility (%)

Strike price

Figure 20.7 Volatility smile for situation in Table 20.3.

Table 20.3 Implied volatilities in situation where it is known that the stock price
will move from $50 to either $42 or $58.

Strike price
($)

Call price
($)

Put price
($)

Implied volatility
(%)

42 8.42 0.00 0.0
44 7.37 0.93 58.8
46 6.31 1.86 66.6
48 5.26 2.78 69.5
50 4.21 3.71 69.2
52 3.16 4.64 66.1
54 2.10 5.57 60.0
56 1.05 6.50 49.0
58 0.00 7.42 0.0
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distribution. They also assume that the probability distribution of an exchange rate has
a heavier right tail and a heavier left tail than the lognormal distribution.

Traders use volatility smiles to allow for nonlognormality. The volatility smile defines
the relationship between the implied volatility of an option and its strike price. For
equity options, the volatility smile tends to be downward sloping. This means that out-
of-the-money puts and in-the-money calls tend to have high implied volatilities whereas
out-of-the-money calls and in-the-money puts tend to have low implied volatilities. For
foreign currency options, the volatility smile is U-shaped. Both out-of-the-money and
in-the-money options have higher implied volatilities than at-the-money options.

Often traders also use a volatility term structure. The implied volatility of an option
then depends on its life. When volatility smiles and volatility term structures are
combined, they produce a volatility surface. This defines implied volatility as a function
of both the strike price and the time to maturity.
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Practice Questions (Answers in Solutions Manual)

20.1. What volatility smile is likely to be observed when:
(a) Both tails of the stock price distribution are less heavy than those of the lognormal

distribution?
(b) The right tail is heavier, and the left tail is less heavy, than that of a lognormal

distribution?

20.2. What volatility smile is observed for equities?

20.3. What volatility smile is likely to be caused by jumps in the underlying asset price? Is the
pattern likely to be more pronounced for a 2-year option than for a 3-month option?
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20.4. A European call and put option have the same strike price and time to maturity. The call
has an implied volatility of 30% and the put has an implied volatility of 25%. What
trades would you do?

20.5. Explain carefully why a distribution with a heavier left tail and less heavy right tail than
the lognormal distribution gives rise to a downward sloping volatility smile.

20.6. The market price of a European call is $3.00 and its price given by Black–Scholes–
Merton model with a volatility of 30% is $3.50. The price given by this Black–Scholes–
Merton model for a European put option with the same strike price and time to maturity
is $1.00. What should the market price of the put option be? Explain the reasons for
your answer.

20.7. Explain what is meant by ‘‘crashophobia.’’

20.8. A stock price is currently $20. Tomorrow, news is expected to be announced that will
either increase the price by $5 or decrease the price by $5. What are the problems in
using Black–Scholes–Merton to value 1-month options on the stock?

20.9. What volatility smile is likely to be observed for 6-month options when the volatility is
uncertain and positively correlated to the stock price?

20.10. What problems do you think would be encountered in testing a stock option pricing
model empirically?

20.11. Suppose that a central bank’s policy is to allow an exchange rate to fluctuate between

0.97 and 1.03. What pattern of implied volatilities for options on the exchange rate
would you expect to see?

20.12. Option traders sometimes refer to deep-out-of-the-money options as being options on

volatility. Why do you think they do this?

20.13. A European call option on a certain stock has a strike price of $30, a time to maturity of

1 year, and an implied volatility of 30%. A European put option on the same stock has a
strike price of $30, a time to maturity of 1 year, and an implied volatility of 33%. What

is the arbitrage opportunity open to a trader? Does the arbitrage work only when the

lognormal assumption underlying Black–Scholes–Merton holds? Explain carefully the
reasons for your answer.

20.14. Suppose that the result of a major lawsuit affecting a company is due to be announced

tomorrow. The company’s stock price is currently $60. If the ruling is favorable to the
company, the stock price is expected to jump to $75. If it is unfavorable, the stock is

expected to jump to $50. What is the risk-neutral probability of a favorable ruling?

Assume that the volatility of the company’s stock will be 25% for 6 months after the
ruling if the ruling is favorable and 40% if it is unfavorable. Use DerivaGem to calculate

the relationship between implied volatility and strike price for 6-month European
options on the company today. The company does not pay dividends. Assume that

the 6-month risk-free rate is 6%. Consider call options with strike prices of $30, $40, $50,

$60, $70, and $80.

20.15. An exchange rate is currently 0.8000. The volatility of the exchange rate is quoted as

12% and interest rates in the two countries are the same. Using the lognormal

assumption, estimate the probability that the exchange rate in 3 months will be (a) less
than 0.7000, (b) between 0.7000 and 0.7500, (c) between 0.7500 and 0.8000, (d) between

0.8000 and 0.8500, (e) between 0.8500 and 0.9000, and (f) greater than 0.9000. Based on
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the volatility smile usually observed in the market for exchange rates, which of these
estimates would you expect to be too low and which would you expect to be too high?

20.16. A stock price is $40. A 6-month European call option on the stock with a strike price of
$30 has an implied volatility of 35%. A 6-month European call option on the stock with
a strike price of $50 has an implied volatility of 28%. The 6-month risk-free rate is 5%
and no dividends are expected. Explain why the two implied volatilities are different. Use
DerivaGem to calculate the prices of the two options. Use put–call parity to calculate
the prices of 6-month European put options with strike prices of $30 and $50. Use
DerivaGem to calculate the implied volatilities of these two put options.

20.17. ‘‘The Black–Scholes–Merton model is used by traders as an interpolation tool.’’ Discuss
this view.

20.18. Using Table 20.2, calculate the implied volatility a trader would use for an 8-month
option with K=S0 ¼ 1:04.

Further Questions

20.19. A company’s stock is selling for $4. The company has no outstanding debt. Analysts
consider the liquidation value of the company to be at least $300,000 and there are
100,000 shares outstanding. What volatility smile would you expect to see?

20.20. A company is currently awaiting the outcome of a major lawsuit. This is expected to be
known within 1 month. The stock price is currently $20. If the outcome is positive, the
stock price is expected to be $24 at the end of 1 month. If the outcome is negative, it is
expected to be $18 at this time. The 1-month risk-free interest rate is 8% per annum.
(a) What is the risk-neutral probability of a positive outcome?
(b) What are the values of 1-month call options with strike prices of $19, $20, $21, $22,

and $23?
(c) Use DerivaGem to calculate a volatility smile for 1-month call options.
(d) Verify that the same volatility smile is obtained for 1-month put options.

20.21. A futures price is currently $40. The risk-free interest rate is 5%. Some news is expected
tomorrow that will cause the volatility over the next 3 months to be either 10% or 30%.
There is a 60% chance of the first outcome and a 40% chance of the second outcome.
Use DerivaGem to calculate a volatility smile for 3-month options.

20.22. Data for a number of foreign currencies are provided on the author’s website:

http://www.rotman.utoronto.ca/�hull/data

Choose a currency and use the data to produce a table similar to Table 20.1.

20.23. Data for a number of stock indices are provided on the author’s website:

http://www.rotman.utoronto.ca/�hull/data

Choose an index and test whether a three-standard-deviation down movement happens

more often than a three-standard-deviation up movement.

20.24. Consider a European call and a European put with the same strike price and time to
maturity. Show that they change in value by the same amount when the volatility
increases from a level �1 to a new level �2 within a short period of time. (Hint : Use
put–call parity.)
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20.25. An exchange rate is currently 1.0 and the implied volatilities of 6-month European options
with strike prices 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 are 13%, 12%, 11%, 10%, 11%, 12%,
13%. The domestic and foreign risk-free rates are both 2.5%. Calculate the implied
probability distribution using an approach similar to that used for Example 20A.1 in
the appendix to this chapter. Compare it with the implied distribution where all the
implied volatilities are 11.5%.

20.26. Using Table 20.2, calculate the implied volatility a trader would use for an 11-month
option with K=S0 ¼ 0:98.
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APPENDIX

DETERMINING IMPLIED RISK-NEUTRAL DISTRIBUTIONS
FROM VOLATILITY SMILES

The price of a European call option on an asset with strike price K and maturity T is

given by

c ¼ e
�rT

ð1
ST¼K

ðST �KÞ gðST Þ dST

where r is the interest rate (assumed constant), ST is the asset price at time T , and g is

the risk-neutral probability density function of ST . Differentiating once with respect
to K gives

@c

@K
¼ �e

�rT

ð1
ST¼K

gðST Þ dST

Differentiating again with respect to K gives

@2c

@K2
¼ e

�rT
gðKÞ

This shows that the probability density function g is given by

gðKÞ ¼ e
rT @2c

@K2
ð20A:1Þ

This result, which is from Breeden and Litzenberger (1978), allows risk-neutral prob-

ability distributions to be estimated from volatility smiles.7 Suppose that c1, c2, and c3
are the prices of T -year European call options with strike prices of K� �, K, and Kþ �,
respectively. Assuming � is small, an estimate of gðKÞ, obtained by approximating the
partial derivative in equation (20A.1), is

e
rT c1 þ c3 � 2c2

�2

For another way of understanding this formula, suppose you set up a butterfly spread

with strike prices K� �, K, and Kþ �, and maturity T . This means that you buy a call
with strike price K� �, buy a call with strike price Kþ �, and sell two calls with strike

priceK. The value of your position is c1 þ c3 � 2c2. The value of the position can also be

calculated by integrating the payoff over the risk-neutral probability distribution, gðST Þ,
and discounting at the risk-free rate. The payoff is shown in Figure 20A.1. Since � is small,

we can assume that gðST Þ ¼ gðKÞ in the whole of the range K� � < ST < Kþ �, where
the payoff is nonzero. The area under the ‘‘spike’’ in Figure 20A.1 is 0:5� 2�� � ¼ �2.
The value of the payoff (when � is small) is therefore e�rT gðKÞ�2. It follows that

e
�rT

gðKÞ�2 ¼ c1 þ c3 � 2c2

7 See D.T. Breeden and R.H. Litzenberger, ‘‘Prices of State-Contingent Claims Implicit in Option Prices,’’

Jounal of Business, 51 (1978), 621–51.
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which leads directly to

gðKÞ ¼ e
rT c1 þ c3 � 2c2

�2
ð20A:2Þ

Example 20A.1

Suppose that the price of a non-dividend-paying stock is $10, the risk-free interest
rate is 3%, and the implied volatilities of 3-month European options with strike
prices of $6, $7, $8, $9, $10, $11, $12, $13, $14 are 30%, 29%, 28%, 27%, 26%,
25%, 24%, 23%, 22%, respectively. One way of applying the above results is as
follows. Assume that gðST Þ is constant between ST ¼ 6 and ST ¼ 7, constant
between ST ¼ 7 and ST ¼ 8, and so on. Define:

gðST Þ ¼ g1 for 6 6 ST < 7

gðST Þ ¼ g2 for 7 6 ST < 8

gðST Þ ¼ g3 for 8 6 ST < 9

gðST Þ ¼ g4 for 9 6 ST < 10

gðST Þ ¼ g5 for 10 6 ST < 11

gðST Þ ¼ g6 for 11 6 ST < 12

gðST Þ ¼ g7 for 12 6 ST < 13

gðST Þ ¼ g8 for 13 6 ST < 14

The value of g1 can be calculated by interpolating to get the implied volatility for
a 3-month option with a strike price of $6.5 as 29.5%. This means that options
with strike prices of $6, $6.5, and $7 have implied volatilities of 30%, 29.5%, and
29%, respectively. From DerivaGem their prices are $4.045, $3.549, and $3.055,
respectively. Using equation (20A.2), with K ¼ 6:5 and � ¼ 0:5, gives

g1 ¼
e
0:03�0:25ð4:045þ 3:055� 2� 3:549Þ

0:52
¼ 0:0057

Similar calculations show that

g2 ¼ 0:0444; g3 ¼ 0:1545; g4 ¼ 0:2781

g5 ¼ 0:2813; g6 ¼ 0:1659; g7 ¼ 0:0573; g8 ¼ 0:0113

K K+δK–δ

2

Payoff

ST

δ

δ

Figure 20A.1 Payoff from butterfly spread.
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Figure 20A.2 displays the implied distribution. (Note that the area under the
probability distribution is 0.9985. The probability that ST < 6 or ST > 14 is there-
fore 0.0015.) Although not obvious from Figure 20A.2, the implied distribution
does have a heavier left tail and less heavy right tail than a lognormal distribu-
tion. For the lognormal distribution based on a single volatility of 26%, the
probability of a stock price between $6 and $7 is 0.0031 (compared with 0.0057
in Figure 20A.2) and the probability of a stock price between $13 and $14 is
0.0167 (compared with 0.0113 in Figure 20A.2).

Probability
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Stock price

Figure 20A.2 Implied probability distribution for Example 20A.1.
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Basic Numerical
Procedures

This chapter discusses three numerical procedures for valuing derivatives when analytic

results such as the Black–Scholes–Merton formulas do not exist. The first represents the

asset price movements in the form of a tree and was introduced in Chapter 13. The
second is Monte Carlo simulation, which we encountered briefly in Chapter 14 when

stochastic processes were explained. The third involves finite difference methods.

Monte Carlo simulation is usually used for derivatives where the payoff is dependent
on the history of the underlying variable or where there are several underlying variables.

Trees and finite difference methods are usually used for American options and other

derivatives where the holder has decisions to make prior to maturity. In addition to
valuing a derivative, all the procedures can be used to calculate Greek letters such as

delta, gamma, and vega.

The basic procedures discussed in this chapter can be used to handle most of the
derivatives valuation problems encountered in practice. However, sometimes they have to

be adapted to cope with particular situations, as will be explained in Chapter 27.

21.1 BINOMIAL TREES

Binomial trees were introduced in Chapter 13. They can be used to value either
European or American options. The Black–Scholes–Merton formulas and their exten-

sions that were presented in Chapters 15, 17, and 18 provide analytic valuations for
European options.1 There are no analytic valuations for American options. Binomial

trees are therefore most useful for valuing these types of options.2

As explained in Chapter 13, the binomial tree valuation approach involves dividing

the life of the option into a large number of small time intervals of length �t. It assumes
that in each time interval the price of the underlying asset moves from its initial value of

S to one of two new values, Su and Sd. The approach is illustrated in Figure 21.1. In

1 The Black–Scholes–Merton formulas are based on the same set of assumptions as binomial trees. As shown

in the appendix to Chapter 13, in the limit as the number of time steps is increased, the price given by a

binomial tree for a European option converges to the Black–Scholes–Merton price.
2 Some analytic approximations for valuing American options have been suggested. See, for example,

Technical Note 8 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a description of the quadratic

approximation approach.
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general, u > 1 and d < 1. The movement from S to Su, therefore, is an ‘‘up’’ movement
and the movement from S to Sd is a ‘‘down’’ movement. The probability of an up
movement will be denoted by p. The probability of a down movement is 1� p.

Risk-Neutral Valuation

The risk-neutral valuation principle, explained in Chapters 13 and 15, states that an
option (or other derivative) can be valued on the assumption that the world is risk
neutral. This means that for valuation purposes we can use the following procedure:

1. Assume that the expected return from all traded assets is the risk-free interest rate.

2. Value payoffs from the derivative by calculating their expected values and
discounting at the risk-free interest rate.

This principle underlies the way trees are used.

Determination of p, u, and d

The parameters p, u, and d must give correct values for the mean and variance of asset
price changes during a time interval of length �t. Because we are working in a risk-
neutral world, the expected return from the asset is the risk-free interest rate, r. Suppose
that the asset provides a yield of q. The expected return in the form of capital gains must
be r� q. This means that the expected value of the asset price at the end of a time interval
of length �t must be Se

ðr�qÞ�t, where S is the asset price at the beginning of the time
interval. To match the mean return with the tree, we therefore need

Se
ðr�qÞ�t ¼ pSuþ ð1� pÞSd

or

e
ðr�qÞ�t ¼ puþ ð1� pÞd ð21:1Þ

The variance of a variable Q is defined as EðQ2Þ � ½EðQÞ�2. Defining R as the
percentage change in the asset price in time �t, there is a probability p that 1þ R is
u and a probability 1� p that it is d. Using equation (21.1), it follows that the variance
of 1þ R is

pu
2 þ ð1� pÞd 2 � e

2ðr�qÞ�t

Since adding a constant to a variable makes no difference to its variance, the variance
of 1þ R is the same as the variance of R. As explained in Section 15.4, this is �2 �t.

p

S

1 − p

Sd

Su

Figure 21.1 Asset price movements in time �t under the binomial model.
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Hence,
pu

2 þ ð1� pÞd 2 � e
2ðr�qÞ�t ¼ �2�t

From equation (21.1), eðr�qÞ�tðuþ dÞ ¼ pu
2 þ ð1� pÞd 2 þ ud, so that

e
ðr�qÞ�tðuþ dÞ � ud � e

2ðr�qÞ�t ¼ �2�t ð21:2Þ
Equations (21.1) and (21.2) impose two conditions on p, u, and d. A third condition
used by Cox, Ross, and Rubinstein (1979) is3

u ¼ 1=d ð21:3Þ
A solution to equations (21.1) to (21.3), when terms of higher order than �t are
ignored, is4

p ¼ a� d

u� d
ð21:4Þ

u ¼ e
�
ffiffiffiffi
�t

p
ð21:5Þ

d ¼ e
��

ffiffiffiffi
�t

p
ð21:6Þ

where
a ¼ e

ðr�qÞ�t ð21:7Þ
The variable a is sometimes referred to as the growth factor. Equations (21.4) to (21.7)
are consistent with the formulas in Sections 13.8 and 13.11.

Tree of Asset Prices

Figure 21.2 shows the complete tree of asset prices that is considered when the binomial
model is used with four time steps. At time zero, the asset price, S0, is known. At time
�t, there are two possible asset prices, S0u and S0d; at time 2�t, there are three possible
asset prices, S0u

2, S0, and S0d
2; and so on. In general, at time i�t, we consider iþ 1

asset prices. These are

S0u
j
d
i�j; j ¼ 0; 1; . . . ; i

Note that the relationship u ¼ 1=d is used in computing the asset price at each node of
the tree in Figure 21.2. For example, the asset price when j ¼ 2 and i ¼ 3 is
S0u

2
d ¼ S0u. Note also that the tree recombines in the sense that an up movement

followed by a down movement leads to the same asset price as a down movement
followed by an up movement.

Working Backward through the Tree

Options are evaluated by starting at the end of the tree (time T ) and working backward.
The value of the option is known at time T . For example, a put option is worth
maxðK� ST ; 0Þ and a call option is worth maxðST �K; 0Þ, where ST is the asset price at

3 See J.C. Cox, S.A. Ross, and M. Rubinstein, ‘‘Option Pricing: A Simplified Approach,’’ Journal of

Financial Economics, 7 (October 1979), 229–63.
4 To see this, we note that equations (21.4) and (21.7) satisfy the conditions in equations (21.1) and (21.3)

exactly. The exponential function ex can be expanded as 1þ xþ x2=2þ � � � . When terms of higher order than

�t are ignored, equation (21.5) implies that u ¼ 1þ �
ffiffiffiffiffi
�t

p þ 1
2
�2�t and equation (21.6) implies that

d ¼ 1� �
ffiffiffiffiffi
�t

p þ 1
2
�2�t. Also, eðr�qÞ�t ¼ 1þ ðr� qÞ�t and e2ðr�qÞ�t ¼ 1þ 2ðr� qÞ�t. By substitution, we see

that equation (21.2) is satisfied when terms of higher order than �t are ignored.
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time T and K is the strike price. Because a risk-neutral world is being assumed, the
value at each node at time T ��t can be calculated as the expected value at time T

discounted at rate r for a time period �t. Similarly, the value at each node at time
T � 2�t can be calculated as the expected value at time T ��t discounted for a time
period �t at rate r, and so on. If the option is American, it is necessary to check at each
node to see whether early exercise is preferable to holding the option for a further time
period �t. Eventually, by working back through all the nodes, we are able to obtain the
value of the option at time zero.

Example 21.1

Consider a 5-month American put option on a non-dividend-paying stock when
the stock price is $50, the strike price is $50, the risk-free interest rate is 10% per
annum, and the volatility is 40% per annum. With our usual notation, this means
that S0 ¼ 50, K ¼ 50, r ¼ 0:10, � ¼ 0:40, T ¼ 0:4167, and q ¼ 0. Suppose that we
divide the life of the option into five intervals of length 1 month (¼ 0:0833 year)
for the purposes of constructing a binomial tree. Then �t ¼ 0:0833 and using
equations (21.4) to (21.7) gives

u ¼ e
�
ffiffiffiffi
�t

p
¼ 1:1224; d ¼ e

��
ffiffiffiffi
�t

p
¼ 0:8909; a ¼ e

r�t ¼ 1:0084

p ¼ a� d

u� d
¼ 0:5073; 1� p ¼ 0:4927

Figure 21.3 shows the binomial tree produced by DerivaGem. At each node there
are two numbers. The top one shows the stock price at the node; the lower one
shows the value of the option at the node. The probability of an up movement is
always 0.5073; the probability of a down movement is always 0.4927.

S0

S0d

S0u

S0u2

S0u3

S0u4

S0u2

S0
S0

S0d2

S0d2

S0d4

S0u

S0d

S0d3

Figure 21.2 Tree used to value an option.
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The stock price at the jth node (j ¼ 0; 1; . . . ; i) at time i�t (i ¼ 0; 1; . . . ; 5) is
calculated as S0u

j
d
i�j. For example, the stock price at node A (i ¼ 4; j ¼ 1) (i.e.,

the second node up at the end of the fourth time step) is 50� 1:1224� 0:89093 ¼
$39:69. The option prices at the final nodes are calculated as maxðK� ST ; 0Þ. For
example, the option price at node G is 50:00� 35:36 ¼ 14:64. The option prices at
the penultimate nodes are calculated from the option prices at the final nodes.
First, we assume no exercise of the option at the nodes. This means that the
option price is calculated as the present value of the expected option price one
time step later. For example, at node E, the option price is calculated as

ð0:5073� 0þ 0:4927� 5:45Þe�0:10�0:0833 ¼ 2:66

whereas at node A it is calculated as

ð0:5073� 5:45þ 0:4927� 14:64Þe�0:10�0:0833 ¼ 9:90

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917 89.07
Time step, dt = 0.0833 years, 30.42 days 0.00
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073 0.00
Up step size, u = 1.1224 70.70 70.70
Down step size, d = 0.8909         F 0.00 0.00

62.99 62.99
0.64 0.00

56.12 56.12 56.12
          D 2.16         C 1.30         E 0.00

50.00 50.00 50.00
4.49 3.77 2.66

44.55 44.55 44.55
6.96         B 6.38        A 5.45

39.69 39.69
10.36 10.31          G

35.36 35.36
14.64 14.64

31.50
18.50

28.07
21.93

Node Time: 
0.0000 0.0833 0.1667 0.2500 0.3333 0.4167

Figure 21.3 Binomial tree from DerivaGem for American put on non-dividend-
paying stock (Example 21.1).
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We then check to see if early exercise is preferable to waiting. At node E, early
exercise would give a value for the option of zero because both the stock price and
strike price are $50. Clearly it is best to wait. The correct value for the option at
node E is therefore $2.66. At node A, it is a different story. If the option is
exercised, it is worth $50:00� $39:69, or $10.31. This is more than $9.90. If node
A is reached, then the option should be exercised and the correct value for the
option at node A is $10.31.

Option prices at earlier nodes are calculated in a similar way. Note that it is not
always best to exercise an option early when it is in the money. Consider node B.
If the option is exercised, it is worth $50:00� $39:69, or $10.31. However, if it is
not exercised, it is worth

ð0:5073� 6:38þ 0:4927� 14:64Þe�0:10�0:0833 ¼ 10:36

The option should, therefore, not be exercised at this node, and the correct option
value at the node is $10.36.

Working back through the tree, the value of the option at the initial node is
$4.49. This is our numerical estimate for the option’s current value. In practice, a
smaller value of �t, and many more nodes, would be used. DerivaGem shows
that with 30, 50, 100, and 500 time steps we get values for the option of 4.263,
4.272, 4.278, and 4.283.

Expressing the Approach Algebraically

Suppose that the life of an American option is divided into N subintervals of length �t.
We will refer to the jth node at time i�t as the ði; jÞ node, where 0 6 i 6 N and
0 6 j 6 iÞ. This means that the lowest node at time i�t is ði; 0Þ, the next lowest is ði; 1Þ,
and so on. Define fi;j as the value of the option at the ði; jÞ node. The price of the
underlying asset at the ði; jÞ node is S0u

jd i�j. If the option is a call, its value at time T

(the expiration date) is maxðST �K; 0Þ, so that

fN;j ¼ maxðS0ujdN�j �K; 0Þ; j ¼ 0; 1; . . . ;N

If the option is a put, its value at time T is maxðK� ST ; 0Þ, so that

fN;j ¼ maxðK� S0u
j
d
N�j; 0Þ; j ¼ 0; 1; . . . ;N

There is a probability p of moving from the ði; jÞ node at time i�t to the ðiþ 1; j þ 1Þ
node at time ðiþ 1Þ�t, and a probability 1� p of moving from the ði; jÞ node at time
i�t to the ðiþ 1; jÞ node at time ðiþ 1Þ�t. Assuming no early exercise, risk-neutral
valuation gives

fi;j ¼ e
�r�t½pfiþ1;jþ1 þ ð1� pÞfiþ1;j�

for 0 6 i 6 N � 1 and 0 6 j 6 i. When early exercise is possible, this value for fi;j must
be compared with the option’s intrinsic value, so that for a call

fi;j ¼ maxfS0ujd i�j �K; e�r�t½pfiþ1;jþ1 þ ð1� pÞfiþ1;j�g
and for a put

fi;j ¼ maxfK� S0u
j
d
i�j; e�r�t½pfiþ1;jþ1 þ ð1� pÞfiþ1;j�g

Note that, because the calculations start at time T and work backward, the value at
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time i�t captures not only the effect of early exercise possibilities at time i�t, but also
the effect of early exercise at subsequent times.

In the limit as �t tends to zero, an exact value for the American put is obtained. In
practice, N ¼ 30 usually gives reasonable results. Figure 21.4 shows the convergence of
the option price in Example 21.1. This figure was calculated using the Application
Builder functions provided with the DerivaGem software (see Sample Application A).

Estimating Delta and Other Greek Letters

It will be recalled that the delta (�) of an option is the rate of change of its price with
respect to the underlying stock price. It can be calculated as

�f

�S

where �S is a small change in the asset price and �f is the corresponding small change
in the option price. At time �t, we have an estimate f1;1 for the option price when the
asset price is S0u and an estimate f1;0 for the option price when the asset price is S0d.
This means that, when �S ¼ S0u� S0d;�f ¼ f1;1 � f1;0. Therefore an estimate of
delta at time �t is

� ¼ f1;1 � f1;0

S0u� S0d
ð21:8Þ

To determine gamma (�), note that we have two estimates of � at time 2�t.
When S ¼ ðS0u2 þ S0Þ=2 (halfway between the second and third node), delta is
ðf2;2 � f2;1Þ=ðS0u2 � S0Þ; when S ¼ ðS0 þ S0d

2Þ=2 (halfway between the first and second
node), delta is ðf2;1 � f2;0Þ=ðS0 � S0d

2Þ. The difference between the two values of S is h,
where

h ¼ 0:5ðS0u2 � S0d
2Þ

3.60

3.80

4.00

4.20

4.40

4.60

4.80

5.00

0 5 10 15 20 25 30 35 40 45 50

No. of steps

Option
value

Figure 21.4 Convergence of the price of the option in Example 21.1 calculated from
the DerivaGem Application Builder functions.
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Gamma is the change in delta divided by h:

� ¼ ½ðf2;2 � f2;1Þ=ðS0u2 � S0Þ� � ½ðf2;1 � f2;0Þ=ðS0 � S0d
2Þ�

h
ð21:9Þ

These procedures provide estimates of delta at time �t and of gamma at time 2�t. In

practice, they are usually used as estimates of delta and gamma at time zero as well.5

A further hedge parameter that can be obtained directly from the tree is theta (�).

This is the rate of change of the option price with time when all else is kept constant.

The value of the option at time zero is f0;0 and at time 2�t it is f2;1. An estimate of

theta is therefore

� ¼ f2;1 � f0;0

2�t
ð21:10Þ

Vega can be calculated by making a small change, ��, in the volatility and constructing

a new tree to obtain a new value of the option. (The number of time steps should be

kept the same.) The estimate of vega is

V ¼ f
� � f

��

where f and f
� are the estimates of the option price from the original and the new tree,

respectively. Rho can be calculated similarly.

Example 21.2

Consider again Example 21.1. From Figure 21.3, f1;0 ¼ 6:96 and f1;1 ¼ 2:16.
Equation (21.8) gives an estimate for delta of

2:16� 6:96

56:12� 44:55
¼ �0:41

From equation (21.9), an estimate of the gamma of the option can be obtained

from the values at nodes B, C, and F as

½ð0:64� 3:77Þ=ð62:99� 50:00Þ� � ½ð3:77� 10:36Þ=ð50:00� 39:69Þ�
11:65

¼ 0:03

From equation (21.10), an estimate of the theta of the option can be obtained

from the values at nodes D and C as

3:77� 4:49

0:1667
¼ �4:3 per year

or �0:012 per calendar day. These are only rough estimates. They become pro-

gressively better as the number of time steps on the tree is increased. Using 50 time

steps, DerivaGem provides estimates of –0.415, 0.034, and �0:0117 for delta,

gamma, and theta, respectively. By making small changes to parameters and

recomputing values, vega and rho are estimated as 0.123 and �0:072, respectively.

5 If slightly more accuracy is required for delta and gamma, we can start the binomial tree at time �2�t and

assume that the stock price is S0 at this time. This leads to the option price being calculated for three different

stock prices at time zero.
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21.2 USING THE BINOMIAL TREE FOR OPTIONS ON INDICES,
CURRENCIES, AND FUTURES CONTRACTS

As explained in Chapters 13, 17 and 18, stock indices, currencies, and futures contracts

can, for the purposes of option valuation, be considered as assets providing known

yields. For a stock index, the relevant yield is the dividend yield on the stock portfolio
underlying the index; in the case of a currency, it is the foreign risk-free interest rate; in the

case of a futures contract, it is the domestic risk-free interest rate. The binomial tree

approach can therefore be used to value options on stock indices, currencies, and futures

contracts provided that q in equation (21.7) is interpreted appropriately.

Example 21.3

Consider a 4-month American call option on index futures where the current

futures price is 300, the exercise price is 300, the risk-free interest rate is 8% per

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 300
Discount factor per step = 0.9934
Time step, dt = 0.0833 years, 30.42 days
Growth factor per step, a = 1.0000 424.19
Probability of up move, p = 0.4784 124.19
Up step size, u = 1.0905 389.00
Down step size, d = 0.9170 89.00

356.73 356.73
56.73 56.73

327.14 327.14
33.64 27.14

300.00 300.00 300.00
19.16 12.90 0.00

275.11 275.11
6.13 0.00

252.29 252.29
0.00 0.00

231.36
0.00

212.17
0.00

Node Time: 
0.0000 0.0833 0.1667 0.2500 0.3333

Figure 21.5 Binomial tree produced by DerivaGem for American call option on
an index futures contract (Example 21.3).
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annum, and the volatility of the index is 30% per annum. The life of the option is

divided into four 1-month periods for the purposes of constructing the tree. In this

case, F0 ¼ 300, K ¼ 300, r ¼ 0:08, � ¼ 0:3, T ¼ 0:3333, and�t ¼ 0:0833. Because
a futures contract is analogous to a stock paying dividends at a rate r, q should be

set equal to r in equation (21.7). This gives a ¼ 1. The other parameters necessary

to construct the tree are

u ¼ e
�
ffiffiffiffi
�t

p
¼ 1:0905; d ¼ 1=u ¼ 0:9170

p ¼ a� d

u� d
¼ 0:4784; 1� p ¼ 0:5216

The tree, as produced by DerivaGem, is shown in Figure 21.5. (The upper number

is the futures price; the lower number is the option price.) The estimated value of

the option is 19.16. More accuracy is obtained using more steps. With 50 time

steps, DerivaGem gives a value of 20.18; with 100 time steps it gives 20.22.

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 1.6
Discount factor per step = 0.9802
Time step, dt = 0.2500 years, 91.25 days
Growth factor per step, a = 0.9975 2.0467
Probability of up move, p = 0.4642 0.0000
Up step size, u = 1.0618 1.9275
Down step size, d = 0.9418 0.0000

1.8153 1.8153
0.0000 0.0000

1.7096 1.7096
0.0249 0.0000

1.6100 1.6100 1.6100
0.0710 0.0475 0.0000

1.5162 1.5162
0.1136 0.0904

1.4279 1.4279
0.1752 0.1721

1.3448
0.2552

1.2665
0.3335

Node Time: 
0.0000 0.2500 0.5000 0.7500 1.0000

Figure 21.6 Binomial tree produced by DerivaGem for American put option on
a currency (Example 21.4).
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Example 21.4

Consider a 1-year American put option on the British pound (GBP). The current
exchange rate (USD per GBP) is 1.6100, the strike price is 1.6000, the US risk-free
interest rate is 8% per annum, the sterling risk-free interest rate is 9% per annum,
and the volatility of the sterling exchange rate is 12% per annum. In this case,
S0 ¼ 1:61, K ¼ 1:60, r ¼ 0:08, rf ¼ 0:09, � ¼ 0:12, and T ¼ 1:0. The life of the
option is divided into four 3-month periods for the purposes of constructing the
tree, so that �t ¼ 0:25. In this case, q ¼ rf and equation (21.7) gives

a ¼ e
ð0:08�0:09Þ�0:25 ¼ 0:9975

The other parameters necessary to construct the tree are

u ¼ e
�
ffiffiffiffi
�t

p
¼ 1:0618; d ¼ 1=u ¼ 0:9418 p ¼ a� d

u� d
¼ 0:4642; 1� p ¼ 0:5358

The tree, as produced by DerivaGem, is shown in Figure 21.6. (The upper number
is the exchange rate; the lower number is the option price.) The estimated value of
the option is $0.0710. (Using 50 time steps, DerivaGem gives the value of the
option as 0.0738; with 100 time steps it also gives 0.0738.)

21.3 BINOMIAL MODEL FOR A DIVIDEND-PAYING STOCK

We now move on to the more tricky issue of how the binomial model can be used for a
dividend-paying stock. As in Chapter 15, the word ‘‘dividend’’ will, for the purposes of
our discussion, be used to refer to the reduction in the stock price on the ex-dividend
date as a result of the dividend.

Known Dividend Yield

For long-life stock options, it is sometimes assumed for convenience that there is a
known continuous dividend yield of q on the stock. The options can then be valued in
the same way as options on a stock index.

For more accuracy, known dividend yields can be assumed to be paid discretely.
Suppose that there is a single dividend, and the dividend yield (i.e., the dividend as a
percentage of the stock price) is known. The parameters u, d, and p can be calculated as
though no dividends are expected. If the time i�t is prior to the stock going ex-
dividend, the nodes on the tree correspond to stock prices

S0u
j
d
i�j; j ¼ 0; 1; . . . ; i

If the time i�t is after the stock goes ex-dividend, the nodes correspond to stock prices

S0ð1� �Þujd i�j; j ¼ 0; 1; . . . ; i

where � is the dividend yield. The tree has the form shown in Figure 21.7. Several known
dividend yields during the life of an option can be dealt with similarly. If �i is the total
dividend yield associated with all ex-dividend dates between time zero and time i�t, the
nodes at time i�t correspond to stock prices

S0ð1� �iÞujd i�j
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Known Dollar Dividend

In some situations, particularly when the life of the option is short, the most realistic
assumption is that the dollar amount of the dividend rather than the dividend yield is
known in advance. If the volatility of the stock, �, is assumed constant, the tree then
takes the form shown in Figure 21.8. It does not recombine, which means that the
number of nodes that have to be evaluated is liable to become very large. Suppose that
there is only one dividend, that the ex-dividend date, �, is between k�t and ðkþ 1Þ�t,
and that the dollar amount of the dividend is D. When i 6 k, the nodes on the tree at
time i�t correspond to stock prices

S0u
j
d
i�j; j ¼ 0; 1; 2; . . . ; i

as before. When i ¼ kþ 1, the nodes on the tree correspond to stock prices

S0u
j
d
i�j �D; j ¼ 0; 1; 2; . . . ; i

When i ¼ kþ 2, the nodes on the tree correspond to stock prices

ðS0ujd i�1�j �DÞu and ðS0ujd i�1�j �DÞd
for j ¼ 0; 1; 2; . . . ; i� 1, so that there are 2i rather than iþ 1 nodes. When i ¼ kþm,
there are mðkþ 2Þ rather than kþmþ 1 nodes. The number of nodes expands even
faster when there are several ex-dividend dates during the option’s life.

S0

S0u

S0d

S0u2(1 − δ)

S0d2(1 − δ)

S0d3(1 − δ)

S0u3(1 − δ)

S0u4(1 − δ)

S0u2(1 − δ)

S0d2(1 − δ)

S0d4(1 − δ)

S0(1 − δ)

S0d(1 − δ)

S0u(1 − δ)

Ex-dividend date

S0(1 − δ)

Figure 21.7 Tree when stock pays a known dividend yield at one particular time.
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Section 15.12 explained that European options on dividend-paying stocks are valued
by assuming that the stock price has two components: a part that is uncertain and a part
that is the present value of dividends paid during the life of the option. It outlined a
number of reasons why practitioners find this a sensible assumption. American options
clearly have to be valued using the same model as European options. (Otherwise the
prices of American options that should never be exercised early will not be the same as
the prices of European options.) American options on stocks paying known dividends
are therefore in practice valued using the approach in Section 15.12. As it happens, this
solves the node-proliferation problem in Figure 21.8.

Suppose that there is only one ex-dividend date, �, during the life of the option and that
k�t 6 � 6 ðkþ 1Þ�t. The value S � of the uncertain component (i.e., the component not
used to pay dividends) at time i�t is given by

S
� ¼ S when i�t > �

and

S
� ¼ S �De

�rð��i�tÞ when i�t 6 �

where D is the dividend. Define �� as the volatility of S �. The parameters p, u, and d

can be calculated from equations (21.4) to (21.7) with � replaced by �� and a tree can be
constructed in the usual way to model S �.6 By adding to the stock price at each node,
the present value of future dividends (if any), the tree can be converted into another tree

S0

S0u

S0d

S0 − D

S0d2 − D

S0u2 − D

Ex-dividend date

Figure 21.8 Tree when dollar amount of dividend is assumed known and volatility is
assumed constant.

6 As discussed in Section 15.12, the difference between � and �� does not usually have to be considered

explicitly because in practice analysts normally work with volatilities implied from market prices using their

models and these are ��-volatilities.
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that models S. Suppose that S �
0 is the value of S � at time zero. At time i�t, the nodes

on this tree correspond to the stock prices

S
�
0 u

j
d
i�j þDe

�rð��i�tÞ; j ¼ 0; 1; . . . ; i

when i�t < � and

S
�
0 u

j
d
i�j; j ¼ 0; 1; . . . ; i

when i�t > �. This approach, which leads to a situation where the tree recombines so

that there are iþ 1 nodes at time i�t, can be generalized in a straightforward way to

deal with the situation where there are several dividends.

Example 21.5

Consider a 5-month American put option on a stock that is expected to pay a

single dividend of $2.06 during the life of the option. The initial stock price is $52,

the strike price is $50, the risk-free interest rate is 10% per annum, the volatility is

40% per annum, and the ex-dividend date is in 312 months.

We first construct a tree to model S �, the stock price less the present value of

future dividends during the life of the option. At time zero, the present value of

the dividend is
2:06� e

�0:2917�0:1 ¼ 2:00

The initial value of S � is therefore 50.00. If we assume that the 40% per annum

volatility refers to S
�, then Figure 21.3 provides a binomial tree for S �. (This is

because S
� has the same initial value and volatility as the stock price that

Figure 21.3 was based upon.) Adding the present value of the dividend at each

node leads to Figure 21.9, which is a binomial model for S. The probabilities at

each node are, as in Figure 21.3, 0.5073 for an up movement and 0.4927 for a

down movement. Working back through the tree in the usual way gives the

option price as $4.44. (Using 50 time steps, DerivaGem gives a value for the

option of 4.202; using 100 steps it gives 4.212.)

Control Variate Technique

A technique known as the control variate technique can improve the accuracy of the

pricing of an American option.7 This involves using the same tree to calculate the value

of both the American option, fA, and the corresponding European option, fE. The

Black–Scholes–Merton price of the European option, fBSM, is also calculated. The

error when the tree is used to price the European option, fBSM � fE, is assumed equal

to the error when the tree is used to price the American option. This gives the estimate

of the price of the American option as

fA þ ðfBSM � fEÞ

To illustrate this approach, Figure 21.10 values the option in Figure 21.3 on the

assumption that it is European. The price obtained, fE, is $4.32. From the Black–

Scholes–Merton formula, the true European price of the option, fBSM, is $4.08. The

7 See J. Hull and A. White, ‘‘The Use of the Control Variate Technique in Option Pricing,’’ Journal of

Financial and Quantitative Analysis, 23 (September 1988): 237–51.
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estimate of the American price in Figure 21.3, fA, is $4.49. The control variate estimate

of the American price, therefore, is

4:49þ ð4:08� 4:32Þ ¼ 4:25

A good estimate of the American price, calculated using 100 steps, is 4.278. The control

variate approach does, therefore, produce a considerable improvement over the basic

tree estimate of 4.49 in this case.

The control variate technique in effect involves using the tree to calculate the

difference between the European and the American price rather than the American

price itself. We give a further application of the control variate technique when we

discuss Monte Carlo simulation later in the chapter.

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917 89.06
Time step, dt = 0.0833 years, 30.42 days 0.00
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073 0.00
Up step size, u = 1.1224 72.75 70.70
Down step size, d = 0.8909 0.00 0.00

65.02 62.99
0.64 0.00

58.14 58.17 56.12
2.16 1.30 0.00

52.00 52.03 50.00
4.44 3.77 2.66

46.56 46.60 44.55
6.86 6.38 5.45

41.72 39.69
10.16 10.31

37.41 35.36
14.22 14.64

31.50
18.50

28.07
21.93

Node Time: 
0.0000 0.0833 0.1667 0.2500 0.3333 0.4167

Figure 21.9 Tree produced by DerivaGem for Example 21.5.
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21.4 ALTERNATIVE PROCEDURES FOR CONSTRUCTING TREES

The Cox, Ross, and Rubinstein approach described so far is not the only way of
building a binomial tree. The change in ln S in time �t in a risk-neutral world has mean
ðr� q� �2=2Þ�t and standard deviation �

ffiffiffiffiffiffi
�t

p
. These can be matched by setting

p ¼ 0:5 and

u ¼ e
ðr�q��2=2Þ�tþ�

ffiffiffiffi
�t

p
; d ¼ e

ðr�q��2=2Þ�t��
ffiffiffiffi
�t

p

This alternative tree-building procedure has the advantage over the Cox, Ross, and

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917 89.07
Time step, dt = 0.0833 years, 30.42 days 0.00
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073 0.00
Up step size, u = 1.1224 70.70 70.70
Down step size, d = 0.8909 0.00 0.00

62.99 62.99
0.64 0.00

56.12 56.12 56.12
2.11 1.30 0.00

50.00 50.00 50.00
4.32 3.67 2.66

44.55 44.55 44.55
6.66 6.18 5.45

39.69 39.69
9.86 9.90

35.36 35.36
13.81 14.64

31.50
18.08

28.07
21.93

Node Time: 
0.0000 0.0833 0.1667 0.2500 0.3333 0.4167

Figure 21.10 Tree, as produced by DerivaGem, for European version of option in
Figure 21.3. At each node, the upper number is the stock price, and the lower number
is the option price.
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Rubinstein approach that the probabilities are always 0.5 regardless of the value of � or

the number of time steps.8 Its disadvantage is that it is not quite as straightforward to

calculate delta, gamma, and theta from the tree because the tree is no longer centered at

the initial stock price.

Example 21.6

Consider a 9-month American call option on a foreign currency. The foreign

currency is worth 0.7900 when measured in the domestic currency, the strike price

is 0.7950, the domestic risk-free interest rate is 6% per annum, the foreign risk-free

interest rate is 10% per annum, and the volatility of the exchange rate is 4% per

annum. In this case, S0 ¼ 0:79, K ¼ 0:795, r ¼ 0:06, rf ¼ 0:10, � ¼ 0:04, and

At each node:
 Upper value = Underlying Asset Price
 Lower value = Option Price
Shading indicates where option is exercised

Strike price = 0.795
Discount factor per step = 0.9851
Time step, dt = 0.2500 years, 91.25 days

Probability of up move, p = 0.5000
0.8136
0.0186

0.8056
0.0106

0.7978 0.7817
0.0052 0.0000

0.7900 0.7740
0.0026 0.0000

0.7665 0.7510
0.0000 0.0000

0.7437
0.0000

0.7216
0.0000

Node Time: 
0.0000 0.2500 0.5000 0.7500

Figure 21.11 Binomial tree for American call option on a foreign currency. At
each node, upper number is spot exchange rate and lower number is option
price. All probabilities are 0.5.

8 When time steps are so large that � <
��ðr� qÞ ffiffiffiffiffi

�t
p ��, the Cox, Ross, and Rubinstein tree gives negative

probabilities. The alternative procedure described here does not have that drawback.
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T ¼ 0:75. Using the alternative tree-building procedure, we set �t ¼ 0:25 (3 steps)

and the probabilities on each branch to 0.5, so that

u ¼ e
ð0:06�0:10�0:0016=2Þ0:25þ0:04

ffiffiffiffiffiffi
0:25

p
¼ 1:0098

d ¼ e
ð0:06�0:10�0:0016=2Þ0:25�0:04

ffiffiffiffiffiffi
0:25

p
¼ 0:9703

The tree for the exchange rate is shown in Figure 21.11. The tree gives the value of

the option as $0.0026.

Trinomial Trees

Trinomial trees can be used as an alternative to binomial trees. The general form of the

tree is as shown in Figure 21.12. Suppose that pu, pm, and pd are the probabilities of

up, middle, and down movements at each node and �t is the length of the time step.

For an asset paying dividends at a rate q, parameter values that match the mean and

standard deviation of changes in ln S are

u ¼ e
�
ffiffiffiffiffiffi
3�t

p
; d ¼ 1=u

pd ¼ �
ffiffiffiffiffiffiffiffiffiffi
�t

12�2

r �
r� q� �2

2

�
þ 1

6
; pm ¼ 2

3
; pu ¼

ffiffiffiffiffiffiffiffiffiffi
�t

12�2

r �
r� q� �2

2

�
þ 1

6

Calculations for a trinomial tree are analogous to those for a binomial tree. We work

from the end of the tree to the beginning. At each node we calculate the value of

Figure 21.12 Trinomial stock price tree.
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exercising and the value of continuing. The value of continuing is

e
�r�tðpufu þ pmfm þ pdfdÞ

where fu, fm, and fd are the values of the option at the subsequent up, middle, and
down nodes, respectively. The trinomial tree approach proves to be equivalent to the
explicit finite difference method, which will be described in Section 21.8.

Figlewski and Gao have proposed an enhancement of the trinomial tree method,
which they call the adaptive mesh model. In this, a high-resolution (small-�t) tree is
grafted onto a low-resolution (large-�t) tree.9 When valuing a regular American
option, high resolution is most useful for the parts of the tree close to the strike price
at the end of the life of the option.

21.5 TIME-DEPENDENT PARAMETERS

Up to now we have assumed that r, q, rf , and � are constants. In practice, they are
usually assumed to be time dependent. The values of these variables between times t

and tþ�t are assumed to be equal to their forward values.10

To make r and q (or rf ) a function of time in a Cox–Ross–Rubinstein binomial tree,
we set

a ¼ e
½f ðtÞ�gðtÞ��t ð21:11Þ

for nodes at time t, where f ðtÞ is the forward interest rate between times t and tþ�t

and gðtÞ is the forward value of q (or rf ) between these times. This does not change the
geometry of the tree because u and d do not depend on a. The probabilities on the
branches emanating from nodes at time t are:11

p ¼ e
½f ðtÞ�gðtÞ��t � d

u� d
ð21:12Þ

1� p ¼ u� e
½f ðtÞ�gðtÞ��t

u� d

The rest of the way that we use the tree is the same as before, except that when
discounting between times t and tþ�t we use f ðtÞ.

Making the volatility, �, a function of time in a binomial tree is more difficult. Suppose
�ðtÞ is the volatility used to price an option with maturity t. One approach is to make the
length of each time step inversely proportional to the average variance rate during the
time step. The values of u and d are then the same everywhere and the tree recombines.
Define the V ¼ �ðT Þ2T , where T is the life of the tree, and define ti as the end of the ith
time step. For N time steps, we choose ti to satisfy �ðtiÞ2ti ¼ iV=N and set u ¼ e

ffiffiffiffiffiffiffi
V=N

p

with d ¼ 1=u. The parameter p is defined in terms of u, d, r, and q as for a constant
volatility. This procedure can be combined with the procedure just mentioned for dealing

9 See S. Figlewski and B. Gao, ‘‘The Adaptive Mesh Model: A New Approach to Efficient Option Pricing,’’

Journal of Financial Economics, 53 (1999): 313–51.
10 The forward dividend yield and forward variance rate are calculated in the same way as the forward

interest rate. (The variance rate is the square of the volatility.)
11 For a sufficiently large number of time steps, these probabilities are always positive.
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with nonconstant interest rates so that both interest rates and volatilities are time-

dependent.

21.6 MONTE CARLO SIMULATION

We now explain Monte Carlo simulation, a quite different approach for valuing

derivatives from binomial trees. Business Snapshot 21.1 illustrates the random sampling

idea underlying Monte Carlo simulation by showing how a simple Excel program can

be constructed to estimate �.
When used to value an option, Monte Carlo simulation uses the risk-neutral

valuation result. We sample paths to obtain the expected payoff in a risk-neutral world

Business Snapshot 21.1 Calculating Pi with Monte Carlo Simulation

Suppose the sides of the square in Figure 21.13 are one unit in length. Imagine that
you fire darts randomly at the square and calculate the percentage that lie in the
circle. What should you find? The square has an area of 1.0 and the circle has a radius
of 0.5 The area of the circle is � times the radius squared or �=4. It follows that the
proportion of darts that lie in the circle should be �=4. We can estimate � by
multiplying the proportion that lie in the circle by 4.

We can use an Excel spreadsheet to simulate the dart throwing as illustrated in
Table 21.1. We define both cell A1 and cell B1 as ¼RAND( ). A1 and B1 are random
numbers between 0 and 1 and define how far to the right and how high up the dart
lands in the square in Figure 21.13. We then define cell C1 as

¼IF((A1�0.5)^2þ(B1�0.5)^2<0.5^2,4,0)

This has the effect of setting C1 equal to 4 if the dart lies in the circle and 0 otherwise.
Define the next 99 rows of the spreadsheet similarly to the first one. (This is a

‘‘select and drag’’ operation in Excel.) Define C102 as ¼AVERAGE(C1:C100) and
C103 as ¼STDEV(C1:C100). C102 (which is 3.04 in Table 21.1) is an estimate of �
calculated from 100 random trials. C103 is the standard deviation of our results and
as we will see in Example 21.7 can be used to assess the accuracy of the estimate.
Increasing the number of trials improves accuracy—but convergence to the correct
value of 3.14159 is slow.

Figure 21.13 Calculation of � by throwing darts.
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and then discount this payoff at the risk-free rate. Consider a derivative dependent on a
single market variable S that provides a payoff at time T . Assuming that interest rates
are constant, we can value the derivative as follows:

1. Sample a random path for S in a risk-neutral world.

2. Calculate the payoff from the derivative.

3. Repeat steps 1 and 2 to get many sample values of the payoff from the derivative
in a risk-neutral world.

4. Calculate the mean of the sample payoffs to get an estimate of the expected payoff
in a risk-neutral world.

5. Discount this expected payoff at the risk-free rate to get an estimate of the value of
the derivative.

This is illustrated by the Monte Carlo worksheet in DerivaGem 3.00.

Suppose that the process followed by the underlying market variable in a risk-neutral
world is

dS ¼ �̂S dtþ �S dz ð21:13Þ

where dz is a Wiener process, �̂ is the expected return in a risk-neutral world, and � is

the volatility.12 To simulate the path followed by S, we can divide the life of the
derivative into N short intervals of length �t and approximate equation (21.13) as

Sðtþ�tÞ � SðtÞ ¼ �̂SðtÞ�tþ �SðtÞ�
ffiffiffiffiffi
�t

p
ð21:14Þ

where SðtÞ denotes the value of S at time t, � is a random sample from a normal

distribution with mean zero and standard deviation of 1.0. This enables the value of S
at time �t to be calculated from the initial value of S, the value at time 2�t to be
calculated from the value at time �t, and so on. An illustration of the procedure is in
Section 14.3. One simulation trial involves constructing a complete path for S using N

random samples from a normal distribution.

Table 21.1 Sample spreadsheet calculations in
Business Snapshot 21.1.

A B C

1 0.207 0.690 4

2 0.271 0.520 4

3 0.007 0.221 0
..
. ..

. ..
. ..

.

100 0.198 0.403 4

101

102 Mean: 3.04

103 SD: 1.69

12 If S is the price of a non-dividend-paying stock then �̂ ¼ r, if it is an exchange rate then �̂ ¼ r� rf , and

so on. Note that the volatility is the same in a risk-neutral world as in the real world, as explained in

Section 13.7.
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In practice, it is usually more accurate to simulate ln S rather than S. From Itô’s
lemma the process followed by ln S is

d ln S ¼
�
�̂� �2

2

�
dtþ � dz ð21:15Þ

so that

ln Sðtþ�tÞ � ln SðtÞ ¼
�
�̂� �2

2

�
�tþ ��

ffiffiffiffiffi
�t

p

or equivalently

Sðtþ�tÞ ¼ SðtÞ exp
��

�̂� �2

2

�
�tþ ��

ffiffiffiffiffi
�t

p �
ð21:16Þ

This equation is used to construct a path for S.
Working with ln S rather than S gives more accuracy. Also, if �̂ and � are constant,

then

ln SðT Þ � ln Sð0Þ ¼
�
�̂� �2

2

�
T þ ��

ffiffiffiffi
T

p

is true for all T .13 It follows that

SðT Þ ¼ Sð0Þ exp
��

�̂� �2

2

�
T þ ��

ffiffiffiffi
T

p �
ð21:17Þ

This equation can be used to value derivatives that provide a nonstandard payoff at
time T . As shown in Business Snapshot 21.2, it can also be used to check the Black–
Scholes–Merton formulas.

The key advantage of Monte Carlo simulation is that it can be used when the
payoff depends on the path followed by the underlying variable S as well as when it
depends only on the final value of S. (For example, it can be used when payoffs
depend on the average value of S between time 0 and time T .) Payoffs can occur at
several times during the life of the derivative rather than all at the end. Any stochastic
process for S can be accommodated. As will be shown shortly, the procedure can also
be extended to accommodate situations where the payoff from the derivative depends
on several underlying market variables. The drawbacks of Monte Carlo simulation are
that it is computationally very time consuming and cannot easily handle situations
where there are early exercise opportunities.14

Derivatives Dependent on More than One Market Variable

We discussed correlated stochastic processes in Section 14.5. Consider the situation
where the payoff from a derivative depends on n variables �i (1 6 i 6 n). Define si as the
volatility of �i, m̂i as the expected growth rate of �i in a risk-neutral world, and 	ik as the
correlation between the Wiener processes driving �i and �k.

15 As in the single-variable
case, the life of the derivative must be divided into N subintervals of length �t. The

13 By contrast, equation (21.14) is exactly true only in the limit as �t tends to zero.
14 As discussed in Chapter 27, a number of researchers have suggested ways Monte Carlo simulation can be

extended to value American options.
15 Note that si, m̂i, and 	ik are not necessarily constant; they may depend on the �i.
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discrete version of the process for �i is then

�iðtþ�tÞ � �iðtÞ ¼ m̂i�iðtÞ�tþ si�iðtÞ�i
ffiffiffiffiffi
�t

p
ð21:18Þ

where �i is a random sample from a standard normal distribution. The coefficient of
correlation between �i and �k is 	ik (1 6 i; k 6 n). One simulation trial involves obtain-
ing N samples of the �i (1 6 i 6 n) from a multivariate standardized normal distribu-
tion. These are substituted into equation (21.18) to produce simulated paths for each �i,
thereby enabling a sample value for the derivative to be calculated.

Table 21.2 Monte Carlo simulation to check Black–Scholes–Merton.

A B C D E F G

1 45.95 0 S0 K r � T

2 54.49 4.38 50 50 0.05 0.3 0.5
3 50.09 0.09 d1 d2 BSM price
4 47.46 0 0.2239 0.0118 4.817
5 44.93 0
..
. ..

. ..
.

1000 68.27 17.82
1001
1002 Mean: 4.98
1003 SD: 7.68

Business Snapshot 21.2 Checking Black–Scholes–Merton in Excel

The Black–Scholes–Merton formula for a European call option can be checked by
using a binomial tree with a very large number of time steps. An alternative way of
checking it is to use Monte Carlo simulation. Table 21.2 shows a spreadsheet that can
be constructed. The cells C2,D2, E2, F2, andG2 contain S0,K, r, �, and T , respectively.
Cells D4, E4, and F4 calculate d1, d2, and the Black–Scholes–Merton price, respec-
tively. (The Black–Scholes–Merton price is 4.817 in the sample spreadsheet.)

NORMSINV is the inverse cumulative function for the standard normal distribu-
tion. It follows that NORMSINV(RAND())gives a random sample from a standard
normal distribution. We set cell A1 as

¼$C$2*EXP(($E$2�$F$2*$F$2/2)*$G$2þ$F$2*NORMSINV(RAND( ))*SQRT($G$2))

This corresponds to equation (21.17) and is a random sample from the set of all stock
prices at time T . We set cell B1 as

¼EXP(�$E$2*$G$2)*MAX(A1�$D$2,0)

This is the present value of the payoff from a call option. We define the next 999 rows
of the spreadsheet similarly to the first one. (This is a ‘‘select and drag’’ operation in
Excel.) Define B1002 as AVERAGE(B1:B1000), which is 4.98 in the sample spread-
sheet. This is an estimate of the value of the option and should be not too far from
the Black–Scholes–Merton price. B1003 is defined as STDEV(B1:B1000). As we shall
see in Example 21.8, it can be used to assess the accuracy of the estimate.
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Generating the Random Samples from Normal Distributions

The instruction ¼NORMSINV(RAND( )) in Excel can be used to generate a random
sample from a standard normal distribution, as in Business Snapshot 21.2. When two
correlated samples �1 and �2 from standard normal distributions are required, an
appropriate procedure is as follows. Independent samples x1 and x2 from a univariate
standardized normal distribution are obtained as just described. The required samples
�1 and �2 are then calculated as follows:

�1 ¼ x1

�2 ¼ 	x1 þ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p

where 	 is the coefficient of correlation.

More generally, consider the situation where we require n correlated samples from
normal distributions with the correlation between sample i and sample j being 	ij. We
first sample n independent variables xi (1 6 i 6 n), from univariate standardized
normal distributions. The required samples, �i (1 6 i 6 n), are then defined as follows:

�1 ¼ 
11x1

�2 ¼ 
21x1 þ 
22x2

�3 ¼ 
31x1 þ 
32x2 þ 
33x3

9>=
>; ð21:19Þ

and so on. We choose the coefficients 
ij so that the correlations and variances are
correct. This can be done step by step as follows. Set 
11 ¼ 1; choose 
21 so that

21
11 ¼ 	21; choose 
22 so that 
2

21 þ 
2
22 ¼ 1; choose 
31 so that 
31
11 ¼ 	31; choose


32 so that 
31
21 þ 
32
22 ¼ 	32; choose 
33 so that 
2
31 þ 
2

32 þ 
2
33 ¼ 1; and so on.16

This procedure is known as the Cholesky decomposition.

Number of Trials

The accuracy of the result given by Monte Carlo simulation depends on the number of
trials. It is usual to calculate the standard deviation as well as the mean of the
discounted payoffs given by the simulation trials. Denote the mean by � and the
standard deviation by !. The variable � is the simulation’s estimate of the value of

the derivative. The standard error of the estimate is

!ffiffiffiffiffi
M

p

where M is the number of trials. A 95% confidence interval for the price f of the

derivative is therefore given by

�� 1:96!ffiffiffiffiffi
M

p < f < �þ 1:96!ffiffiffiffiffi
M

p

This shows that uncertainty about the value of the derivative is inversely proportional
to the square root of the number of trials. To double the accuracy of a simulation, we

16 If the equations for the 
’s do not have real solutions, the assumed correlation structure is internally

inconsistent This will be discussed further in Section 23.7.
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must quadruple the number of trials; to increase the accuracy by a factor of 10, the
number of trials must increase by a factor of 100; and so on.

Example 21.7

In Table 21.1, � is calculated as the average of 100 numbers. The standard
deviation of the numbers is 1.69. In this case, ! ¼ 1:69 and M ¼ 100, so that
the standard error of the estimate is 1:69=

ffiffiffiffiffiffiffiffi
100

p ¼ 0:169. The spreadsheet
therefore gives a 95% confidence interval for � as ð3:04� 1:96� 0:169Þ to
ð3:04þ 1:96� 0:169Þ or 2.71 to 3.37. (The correct value of 3.14159 lies within
this confidence interval.)

Example 21.8

In Table 21.2, the value of the option is calculated as the average of 1000
numbers. The standard deviation of the numbers is 7.68. In this case, ! ¼ 7:68
and M ¼ 1000. The standard error of the estimate is 7:68=

ffiffiffiffiffiffiffiffiffiffi
1000

p ¼ 0:24. The
spreadsheet therefore gives a 95% confidence interval for the option value as
ð4:98� 1:96� 0:24Þ to ð4:98þ 1:96� 0:24Þ, or 4.51 to 5.45. (The Black–Scholes–
Merton price, 4.817, lies within this confidence interval.)

Sampling through a Tree

Instead of implementing Monte Carlo simulation by randomly sampling from the
stochastic process for an underlying variable, we can use an N-step binomial tree and
sample from the 2N paths that are possible. Suppose we have a binomial tree where the
probability of an ‘‘up’’ movement is 0.6. The procedure for sampling a random path
through the tree is as follows. At each node, we sample a random number between 0
and 1. If the number is less than 0.4, we take the down branch. If it is greater than 0.4,
we take the up branch. Once we have a complete path from the initial node to the end of
the tree, we can calculate a payoff. This completes the first trial. A similar procedure is
used to complete more trials. The mean of the payoffs is discounted at the risk-free rate
to get an estimate of the value of the derivative.17

Example 21.9

Suppose that the tree in Figure 21.3 is used to value an option that pays off
maxðSave � 50; 0Þ, where Save is the average stock price during the 5 months (with
the first and last stock price being included in the average). This is known as an
Asian option. When ten simulation trials are used one possible result is shown in
Table 21.3. The value of the option is calculated as the average payoff discounted at
the risk-free rate. In this case, the average payoff is $7.08 and the risk-free rate is
10% and so the calculated value is 7:08e�0:1�5=12 ¼ 6:79. (This illustrates the
methodology. In practice, we would have to use more time steps on the tree and
many more simulation trials to get an accurate answer.)

Calculating the Greek Letters

The Greek letters discussed in Chapter 19 can be calculated using Monte Carlo
simulation. Suppose that we are interested in the partial derivative of f with respect

17 See D. Mintz, ‘‘Less is More,’’ Risk, July 1997: 42–45, for a discussion of how sampling through a tree can

be made efficient.
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to x, where f is the value of the derivative and x is the value of an underlying variable
or a parameter. First, Monte Carlo simulation is used in the usual way to calculate an
estimate f̂ for the value of the derivative. A small increase �x is then made in the value
of x, and a new value for the derivative, f̂ �, is calculated in the same way as f̂ . An
estimate for the hedge parameter is given by

f̂ � � f̂

�x

In order to minimize the standard error of the estimate, the number of time intervals, N,
the random samples that are used, and the number of trials, M, should be the same for
calculating both f̂ and f̂ �.

Applications

Monte Carlo simulation tends to be numerically more efficient than other procedures
when there are three or more stochastic variables. This is because the time taken to
carry out a Monte Carlo simulation increases approximately linearly with the number
of variables, whereas the time taken for most other procedures increases exponentially
with the number of variables. One advantage of Monte Carlo simulation is that it can
provide a standard error for the estimates that it makes. Another is that it is an
approach that can accommodate complex payoffs and complex stochastic processes.
Also, it can be used when the payoff depends on some function of the whole path
followed by a variable, not just its terminal value.

21.7 VARIANCE REDUCTION PROCEDURES

If the stochastic processes for the variables underlying a derivative are simulated as
indicated in equations (21.13) to (21.18), a very large number of trials is usually

Table 21.3 Monte Carlo simulation to value Asian option from
the tree in Figure 21.3. Payoff is amount by which average stock
price exceeds $50. U ¼ up movement; D ¼ down movement.

Trial Path Average stock price Option payoff

1 UUUUD 64.98 14.98
2 UUUDD 59.82 9.82
3 DDDUU 42.31 0.00
4 UUUUU 68.04 18.04
5 UUDDU 55.22 5.22
6 UDUUD 55.22 5.22
7 DDUDD 42.31 0.00
8 UUDDU 55.22 5.22
9 UUUDU 62.25 12.25

10 DDUUD 45.56 0.00

Average 7.08
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necessary to estimate the value of the derivative with reasonable accuracy. This is very
expensive in terms of computation time. In this section, we examine a number of
variance reduction procedures that can lead to dramatic savings in computation time.

Antithetic Variable Technique

In the antithetic variable technique, a simulation trial involves calculating two values of
the derivative. The first value f1 is calculated in the usual way; the second value f2 is
calculated by changing the sign of all the random samples from standard normal
distributions. (If � is a sample used to calculate f1, then �� is the corresponding sample
used to calculate f2.) The sample value of the derivative calculated from a simulation
trial is the average of f1 and f2. This works well because when one value is above the
true value, the other tends to be below, and vice versa.

Denote �f as the average of f1 and f2 :

�f ¼ f1 þ f2

2

The final estimate of the value of the derivative is the average of the �f ’s. If �! is the
standard deviation of the �f ’s, and M is the number of simulation trials (i.e., the number
of pairs of values calculated), then the standard error of the estimate is

�!=
ffiffiffiffiffi
M

p

This is usually much less than the standard error calculated using 2M random trials.

Control Variate Technique

We have already given one example of the control variate technique in connection with
the use of trees to value American options (see Section 21.3). The control variate
technique is applicable when there are two similar derivatives, A and B. Derivative A is
the one being valued; derivative B is similar to derivative A and has an analytic solution
available. Two simulations using the same random number streams and the same �t are
carried out in parallel. The first is used to obtain an estimate f

�
A of the value of A; the

second is used to obtain an estimate f
�
B , of the value of B. A better estimate fA of the

value of A is then obtained using the formula

fA ¼ f
�
A � f

�
B þ fB ð21:20Þ

where fB is the known true value of B calculated analytically. Hull and White provide
an example of the use of the control variate technique when evaluating the effect of
stochastic volatility on the price of a European call option.18 In this case, A is the
option assuming stochastic volatility and B is the option assuming constant volatility.

Importance Sampling

Importance sampling is best explained with an example. Suppose that we wish to
calculate the price of a deep-out-of-the-money European call option with strike

18 See J. Hull and A. White, ‘‘The Pricing of Options on Assets with Stochastic Volatilities,’’ Journal of

Finance, 42 (June 1987): 281–300.
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priceK and maturity T . If we sample values for the underlying asset price at time T in the

usual way, most of the paths will lead to zero payoff. This is a waste of computation time

because the zero-payoff paths contribute very little to the determination of the value of

the option. We therefore try to choose only important paths, that is, paths where the

stock price is above K at maturity.

Suppose F is the unconditional probability distribution function for the stock price

at time T and q, the probability of the stock price being greater than K at maturity, is

known analytically. Then G ¼ F=q is the probability distribution of the stock price

conditional on the stock price being greater than K. To implement importance

sampling, we sample from G rather than F . The estimate of the value of the option

is the average discounted payoff multiplied by q.

Stratified Sampling

Sampling representative values rather than random values from a probability distribu-

tion usually gives more accuracy. Stratified sampling is a way of doing this. Suppose we

wish to take 1000 samples from a probability distribution. We would divide the

distribution into 1000 equally likely intervals and choose a representative value

(typically the mean or median) for each interval.

In the case of a standard normal distribution when there are n intervals, we can

calculate the representative value for the ith interval as

N
�1

�
i� 0:5

n

�

where N
�1 is the inverse cumulative normal distribution. For example, when n ¼ 4 the

representative values corresponding to the four intervals are N
�1ð0:125Þ, N�1ð0:375Þ,

N
�1ð0:625Þ, N�1ð0:875Þ. The function N

�1 can be calculated using the NORMSINV

function in Excel.

Moment Matching

Moment matching involves adjusting the samples taken from a standardized normal

distribution so that the first, second, and possibly higher moments are matched.

Suppose that we sample from a normal distribution with mean 0 and standard

deviation 1 to calculate the change in the value of a particular variable over a particular

time period. Suppose that the samples are �i (1 6 i 6 n). To match the first two

moments, we calculate the mean of the samples, m, and the standard deviation of

the samples, s. We then define adjusted samples ��i (1 6 i 6 n) as

��i ¼
�i �m

s

These adjusted samples have the correct mean of 0 and the correct standard deviation

of 1.0. We use the adjusted samples for all calculations.

Moment matching saves computation time, but can lead to memory problems

because every number sampled must be stored until the end of the simulation. Moment

matching is sometimes termed quadratic resampling. It is often used in conjunction with

the antithetic variable technique. Because the latter automatically matches all odd
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moments, the goal of moment matching then becomes that of matching the second
moment and, possibly, the fourth moment.

Using Quasi-Random Sequences

A quasi-random sequence (also called a low-discrepancy sequence) is a sequence of
representative samples from a probability distribution.19 Descriptions of the use of
quasi-random sequences appear in Brotherton-Ratcliffe, and Press et al.20 Quasi-random
sequences can have the desirable property that they lead to the standard error of an
estimate being proportional to 1=M rather than 1=

ffiffiffiffiffi
M

p
, where M is the sample size.

Quasi-random sampling is similar to stratified sampling. The objective is to sample
representative values for the underlying variables. In stratified sampling, it is assumed
that we know in advance how many samples will be taken. A quasi-random sampling
procedure is more flexible. The samples are taken in such a way that we are always
‘‘filling in’’ gaps between existing samples. At each stage of the simulation, the sampled
points are roughly evenly spaced throughout the probability space.

Figure 21.14 shows points generated in two dimensions using a procedure by Sobol’.21

It can be seen that successive points do tend to fill in the gaps left by previous points.

21.8 FINITE DIFFERENCE METHODS

Finite difference methods value a derivative by solving the differential equation that the
derivative satisfies. The differential equation is converted into a set of difference
equations, and the difference equations are solved iteratively.

To illustrate the approach, we consider how it might be used to value an American
put option on a stock paying a dividend yield of q. The differential equation that the
option must satisfy is, from equation (17.6),

@f

@t
þ ðr� qÞS @f

@S
þ 1

2
�2
S
2 @

2
f

@S 2
¼ rf ð21:21Þ

Suppose that the life of the option is T . We divide this into N equally spaced intervals
of length �t ¼ T=N. A total of N þ 1 times are therefore considered

0; �t; 2�t; . . . ; T

Suppose that Smax is a stock price sufficiently high that, when it is reached, the put has
virtually no value. We define �S ¼ Smax=M and consider a total of M þ 1 equally
spaced stock prices:

0; �S; 2�S; . . . ; Smax

The level Smax is chosen so that one of these is the current stock price.

19 The term quasi-random is a misnomer. A quasi-random sequence is totally deterministic.
20 See R. Brotherton-Ratcliffe, ‘‘Monte Carlo Motoring,’’ Risk, December 1994: 53–58; W.H. Press, S.A.

Teukolsky, W.T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing,

2nd edn. Cambridge University Press, 1992.
21 See I.M. Sobol’, USSR Computational Mathematics and Mathematical Physics, 7, 4 (1967): 86–112. A

description of Sobol’s procedure is in W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B. P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, 1992.
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The time points and stock price points define a grid consisting of a total of

ðM þ 1ÞðN þ 1Þ points, as shown in Figure 21.15. We define the ði; jÞ point on the grid

as the point that corresponds to time i�t and stock price j�S. We will use the variable

fi;j to denote the value of the option at the ði; jÞ point.

Implicit Finite Difference Method

For an interior point ði; jÞ on the grid, @f=@S can be approximated as

@f

@S
¼ fi;jþ1 � fi;j

�S
ð21:22Þ

or as

@f

@S
¼ fi;j � fi;j�1

�S
ð21:23Þ

Equation (21.22) is known as the forward difference approximation; equation (21.23)

is known as the backward difference approximation. We use a more symmetrical
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Figure 21.14 First 1,024 points of a Sobol’ sequence.
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approximation by averaging the two:

@f

@S
¼ fi;jþ1 � fi;j�1

2�S
ð21:24Þ

For @f=@t, we will use a forward difference approximation so that the value at time i�t

is related to the value at time ðiþ 1Þ�t :

@f

@t
¼ fiþ1;j � fi;j

�t
ð21:25Þ

Consider next @2f=dS 2. The backward difference approximation for @f=@S at the ði; jÞ
point is given by equation (21.23). The backward difference at the ði; j þ 1Þ point is

fi;jþ1 � fi;j

�S

Hence a finite difference approximation for @2f=@S 2 at the ði; jÞ point is
@2f

@S 2
¼

�
fi;jþ1 � fi;j

�S
� fi;j � fi;j�1

�S

��
�S

or

@2f

@S 2
¼ fi;jþ1 þ fi;j�1 � 2fi;j

�S 2
ð21:26Þ

Stock price, S

Time, t

S

2ΔS

ΔS

Δt T
0

max

0

Figure 21.15 Grid for finite difference approach.
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Substituting equations (21.24), (21.25), and (21.26) into the differential equation (21.21)
and noting that S ¼ j�S gives

fiþ1;j � fi;j

�t
þ ðr� qÞj�S

fi;jþ1 � fi;j�1

2�S
þ 1

2
�2
j
2�S

2 fi;jþ1 þ fi;j�1 � 2fi;j

�S 2
¼ rfi;j

for j ¼ 1; 2; . . . ;M � 1 and i ¼ 0; 1; . . . ;N � 1. Rearranging terms, we obtain

ajfi;j�1 þ bjfi;j þ cjfi;jþ1 ¼ fiþ1;j ð21:27Þ
where

aj ¼ 1
2
ðr� qÞj�t� 1

2
�2
j
2�t

bj ¼ 1þ �2
j
2�tþ r�t

cj ¼ �1
2ðr� qÞj�t� 1

2�
2
j
2�t

The value of the put at time T is maxðK� ST ; 0Þ, where ST is the stock price at time T .
Hence,

fN;j ¼ maxðK� j�S; 0Þ; j ¼ 0; 1; . . . ;M ð21:28Þ

The value of the put option when the stock price is zero is K. Hence,

fi;0 ¼ K; i ¼ 0; 1; . . . ;N ð21:29Þ

We assume that the put option is worth zero when S ¼ Smax, so that

fi;M ¼ 0; i ¼ 0; 1; . . . ;N ð21:30Þ

Equations (21.28), (21.29), and (21.30) define the value of the put option along the
three edges of the grid in Figure 21.15, where S ¼ 0, S ¼ Smax, and t ¼ T . It remains to
use equation (21.27) to arrive at the value of f at all other points. First the points
corresponding to time T ��t are tackled. Equation (21.27) with i ¼ N � 1 gives

aj fN�1;j�1 þ bj fN�1;j þ cj fN�1;jþ1 ¼ fN;j ð21:31Þ

for j ¼ 1; 2; . . . ;M � 1. The right-hand sides of these equations are known from
equation (21.28). Furthermore, from equations (21.29) and (21.30),

fN�1;0 ¼ K ð21:32Þ
fN�1;M ¼ 0 ð21:33Þ

Equations (21.31) are therefore M � 1 simultaneous equations that can be solved for the
M � 1 unknowns: fN�1;1, fN�1;2, . . . , fN�1;M�1.

22 After this has been done, each value

22 This does not involve inverting a matrix. The j ¼ 1 equation in (21.31) can be used to express fN�1;2 in

terms of fN�1;1; the j ¼ 2 equation, when combined with the j ¼ 1 equation, can be used to express fN�1;3 in

terms of fN�1;1; and so on. The j ¼ M � 2 equation, together with earlier equations, enables fN�1;M�1 to be

expressed in terms of fN�1;1. The final j ¼ M � 1 equation can then be solved for fN�1;1, which can then be

used to determine the other fN�1;j.
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of fN�1;j is compared with K� j�S. If fN�1;j < K� j�S, early exercise at time

T ��t is optimal and fN�1;j is set equal to K� j�S. The nodes corresponding to

time T � 2�t are handled in a similar way, and so on. Eventually, f0;1, f0;2, f0;3, . . . ,

f0;M�1 are obtained. One of these is the option price of interest.

The control variate technique can be used in conjunction with finite difference

methods. The same grid is used to value an option similar to the one under

consideration but for which an analytic valuation is available. Equation (21.20) is

then used.

Example 21.10

Table 21.4 shows the result of using the implicit finite difference method as just

described for pricing the American put option in Example 21.1. Values of 20, 10,

and 5 were chosen for M, N, and �S, respectively. Thus, the option price is

evaluated at $5 stock price intervals between $0 and $100 and at half-month time

intervals throughout the life of the option. The option price given by the grid is

$4.07. The same grid gives the price of the corresponding European option as

$3.91. The true European price given by the Black–Scholes–Merton formula is

$4.08. The control variate estimate of the American price is therefore

4:07þ ð4:08� 3:91Þ ¼ $4:24

Explicit Finite Difference Method

The implicit finite difference method has the advantage of being very robust. It always

converges to the solution of the differential equation as�S and�t approach zero.23 One

of the disadvantages of the implicit finite difference method is that M � 1 simultaneous

equations have to be solved in order to calculate the fi;j from the fiþ1;j. The method can

be simplified if the values of @f=@S and @2f=@S 2 at point ði; jÞ on the grid are assumed to

be the same as at point ðiþ 1; jÞ. Equations (21.24) and (21.26) then become

@f

@S
¼ fiþ1;jþ1 � fiþ1;j�1

2�S

@2f

@S 2
¼ fiþ1;jþ1 þ fiþ1;j�1 � 2fiþ1;j

�S 2

The difference equation is

fiþ1;j � fi;j

�t
þ ðr� qÞj�S

fiþ1;jþ1 � fiþ1;j�1

2�S

þ 1
2
�2
j
2�S

2 fiþ1;jþ1 þ fiþ1;j�1 � 2fiþ1;j

�S 2
¼ rfi;j

or

fi;j ¼ a
�
j fiþ1;j�1 þ b

�
j fiþ1;j þ c

�
j fiþ1;jþ1 ð21:34Þ

23 A general rule in finite difference methods is that �S should be kept proportional to
ffiffiffiffiffi
�t

p
as they approach

zero.
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where

a
�
j ¼

1

1þ r�t
ð�1

2
ðr� qÞj�tþ 1

2
�2
j
2�tÞ

b
�
j ¼

1

1þ r�t
ð1� �2

j
2�tÞ

c
�
j ¼

1

1þ r�t
ð1
2
ðr� qÞj�tþ 1

2
�2
j
2�tÞ

This creates what is known as the explicit finite difference method.24 Figure 21.16 shows

the difference between the implicit and explicit methods. The implicit method leads to

equation (21.27), which gives a relationship between three different values of the option

at time i�t (i.e., fi;j�1, fi;j, and fi;jþ1) and one value of the option at time ðiþ 1Þ�t

(i.e., fiþ1;j). The explicit method leads to equation (21.34), which gives a relationship

Table 21.4 Grid to value American option in Example 21.1 using implicit finite
difference methods.

Stock
price

(dollars)

Time to maturity (months)

5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90 0.05 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00

85 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00

80 0.16 0.12 0.09 0.07 0.04 0.03 0.02 0.01 0.00 0.00 0.00

75 0.27 0.22 0.17 0.13 0.09 0.06 0.03 0.02 0.01 0.00 0.00

70 0.47 0.39 0.32 0.25 0.18 0.13 0.08 0.04 0.02 0.00 0.00

65 0.82 0.71 0.60 0.49 0.38 0.28 0.19 0.11 0.05 0.02 0.00

60 1.42 1.27 1.11 0.95 0.78 0.62 0.45 0.30 0.16 0.05 0.00

55 2.43 2.24 2.05 1.83 1.61 1.36 1.09 0.81 0.51 0.22 0.00

50 4.07 3.88 3.67 3.45 3.19 2.91 2.57 2.17 1.66 0.99 0.00

45 6.58 6.44 6.29 6.13 5.96 5.77 5.57 5.36 5.17 5.02 5.00

40 10.15 10.10 10.05 10.01 10.00 10.00 10.00 10.00 10.00 10.00 10.00

35 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

30 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

25 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

20 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

15 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00

10 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

5 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00

0 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

24 We also obtain the explicit finite difference method if we use the backward difference approximation

instead of the forward difference approximation for @f=@t.
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between one value of the option at time i�t (i.e., fi;j) and three different values of the

option at time ðiþ 1Þ�t (i.e., fiþ1;j�1, fiþ1;j, fiþ1;jþ1).

Example 21.11

Table 21.5 shows the result of using the explicit version of the finite difference

method for pricing the American put option described in Example 21.1. As in

Example 21.10, values of 20, 10, and 5 were chosen for M, N, and �S, respec-

tively. The option price given by the grid is $4.26.25

Change of Variable

When geometric Brownian motion is used for the underlying asset price, it is compu-

tationally more efficient to use finite difference methods with ln S rather than S as the

underlying variable. Define Z ¼ ln S. Equation (21.21) becomes

@f

@t
þ
�
r� q� �2

2

�
@f

@Z
þ 1

2
�2 @2f

@Z 2
¼ rf

The grid then evaluates the derivative for equally spaced values of Z rather than for

equally spaced values of S. The difference equation for the implicit method becomes

fiþ1;j � fi;j

�t
þ ðr� q� �2=2Þ fi;jþ1 � fi;j�1

2�Z
þ 1

2
�2 fi;jþ1 þ fi;j�1 � 2fi;j

�Z2
¼ rfi;j

or


j fi;j�1 þ �j fi;j þ �j fi;jþ1 ¼ fiþ1;j ð21:35Þ

Figure 21.16 Difference between implicit and explicit finite difference methods.

25 The negative numbers and other inconsistencies in the top left-hand part of the grid will be explained later.
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where


j ¼
�t

2�Z
ðr� q� �2=2Þ � �t

2�Z 2
�2

�j ¼ 1þ �t

�Z 2
�2 þ r�t

�j ¼ � �t

2�Z
ðr� q� �2=2Þ � �t

2�Z 2
�2

The difference equation for the explicit method becomes

fiþ1;j � fi;j

�t
þ ðr� q� �2=2Þ fiþ1;jþ1 � fiþ1;j�1

2�Z
þ 1

2
�2 fiþ1;jþ1 þ fiþ1;j�1 � 2fiþ1;j

�Z2
¼ rfi;j

or


�
j fiþ1;j�1 þ ��

j fiþ1;j þ ��
j fiþ1;jþ1 ¼ fi;j ð21:36Þ

Table 21.5 Grid to value American option in Example 21.1 using explicit finite
difference methods.

Stock
price

(dollars)

Time to maturity (months)

5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90 �0.11 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

85 0.28 �0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

80 �0.13 0.20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

75 0.46 0.06 0.20 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00

70 0.32 0.46 0.23 0.25 0.10 0.09 0.00 0.00 0.00 0.00 0.00

65 0.91 0.68 0.63 0.44 0.37 0.21 0.14 0.00 0.00 0.00 0.00

60 1.48 1.37 1.17 1.02 0.81 0.65 0.42 0.27 0.00 0.00 0.00

55 2.59 2.39 2.21 1.99 1.77 1.50 1.24 0.90 0.59 0.00 0.00

50 4.26 4.08 3.89 3.68 3.44 3.18 2.87 2.53 2.07 1.56 0.00

45 6.76 6.61 6.47 6.31 6.15 5.96 5.75 5.50 5.24 5.00 5.00

40 10.28 10.20 10.13 10.06 10.01 10.00 10.00 10.00 10.00 10.00 10.00

35 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

30 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

25 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

20 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

15 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00

10 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

5 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00

0 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
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where


�
j ¼

1

1þ r�t

�
� �t

2�Z
ðr� q� �2=2Þ þ �t

2�Z2
�2

�
ð21:37Þ

��
j ¼

1

1þ r�t

�
1� �t

�Z2
�2

�
ð21:38Þ

��
j ¼ 1

1þ r�t

�
�t

2�Z
ðr� q� �2=2Þ þ �t

2�Z2
�2

�
ð21:39Þ

The change of variable approach has the property that 
j, �j, and �j as well as 

�
j , �

�
j ,

and ��
j are independent of j. In most cases, a good choice for �Z is �

ffiffiffiffiffiffiffiffi
3�t

p
.

Relation to Trinomial Tree Approaches

The explicit finite difference method is equivalent to the trinomial tree approach.26 In
the expressions for a�j , b

�
j , and c

�
j in equation (21.34), we can interpret terms as follows:

�1
2
ðr� qÞj�tþ 1

2
�2
j
2�t: Probability of stock price decreasing from

j�S to ðj � 1Þ�S in time �t.

1� �2
j
2�t : Probability of stock price remaining unchanged at

j�S in time �t.

1
2
ðr� qÞj�tþ 1

2
�2
j
2�t : Probability of stock price increasing from

j�S to ðj þ 1Þ�S in time �t.

This interpretation is illustrated in Figure 21.17. The three probabilities sum to unity.
They give the expected increase in the stock price in time �t as ðr� qÞj�S�t ¼
ðr� qÞS�t. This is the expected increase in a risk-neutral world. For small values

σ  j   Δt2 21 –

f i + 1, j + 1

f i + 1, j

f i + 1, j – 1

f i j

1–
2
(r – q) j Δt + 1–

2
σ2j2 Δt

–1–
2
(r – q) j Δt + 1–

2
σ2j2 Δt

Figure 21.17 Interpretation of explicit finite difference method as a trinomial tree.

26 It can also be shown that the implicit finite difference method is equivalent to a multinomial tree approach

where there are M þ 1 branches emanating from each node.
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of �t, they also give the variance of the change in the stock price in time �t as

�2
j
2�S

2�t ¼ �2
S
2�t. This corresponds to the stochastic process followed by S. The

value of f at time i�t is calculated as the expected value of f at time ðiþ 1Þ�t in a

risk-neutral world discounted at the risk-free rate.

For the explicit version of the finite difference method to work well, the three

‘‘probabilities’’

�1
2
ðr� qÞj�tþ 1

2
�2
j
2�t;

1� �2
j
2�t

1
2
ðr� qÞj�tþ 1

2
�2
j
2�t

should all be positive. In Example 21.11, 1� �2
j
2�t is negative when j > 13 (i.e., when

S > 65). This explains the negative option prices and other inconsistencies in the top

left-hand part of Table 21.5. This example illustrates the main problem associated with

the explicit finite difference method. Because the probabilities in the associated tree may

be negative, it does not necessarily produce results that converge to the solution of the

differential equation.27

When the change-of-variable approach is used (see equations (21.36) to (21.39)), the

probability that Z ¼ ln S will decrease by �Z, stay the same, and increase by �Z are

� �t

2�Z
ðr� q� �2=2Þ þ �t

2�Z 2
�2

1� �t

�z2
�2

�t

2�Z
ðr� q� �2=2Þ þ �t

2�Z2
�2

respectively. These movements in Z correspond to the stock price changing from S to

Se
��Z, S, and Se

�Z, respectively. If we set �Z ¼ �
ffiffiffiffiffiffiffiffi
3�t

p
, then the tree and the

probabilities are identical to those for the trinomial tree approach discussed in

Section 21.4.

Other Finite Difference Methods

Researchers have proposed other finite difference methods which are in many circum-

stances more computationally efficient than either the pure explicit or pure implicit

method.

In what is known as the hopscotch method, we alternate between the explicit and

implicit calculations as we move from node to node. This is illustrated in Figure 21.18.

At each time, we first do all the calculations at the ‘‘explicit nodes’’ (E) in the usual way.

The ‘‘implicit nodes’’ (I) can then be handled without solving a set of simultaneous

equations because the values at the adjacent nodes have already been calculated.

27 J. Hull and A. White, ‘‘Valuing Derivative Securities Using the Explicit Finite Difference Method,’’

Journal of Financial and Quantitative Analysis, 25 (March 1990): 87–100, show how this problem can be

overcome. In the situation considered here it is sufficient to construct the grid in ln S rather than S to ensure

convergence.
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In the Crank–Nicolson method, the estimate of

fiþ1;j � fi;j

�t

is set equal to an average of that given by the implicit and the explicit methods.

Applications of Finite Difference Methods

Finite difference methods can be used for the same types of derivative pricing problems

as tree approaches. They can handle American-style as well as European-style deriva-

tives but cannot easily be used in situations where the payoff from a derivative depends

on the past history of the underlying variable. Finite difference methods can, at the

expense of a considerable increase in computer time, be used when there are several
state variables. The grid in Figure 21.15 then becomes multidimensional.

The method for calculating Greek letters is similar to that used for trees. Delta,

gamma, and theta can be calculated directly from the fi;j values on the grid. For vega,

it is necessary to make a small change to volatility and recalculate the value of the

derivative using the same grid.

SUMMARY

We have presented three different numerical procedures for valuing derivatives when no

analytic solution is available. These involve the use of trees, Monte Carlo simulation,

and finite difference methods.

Binomial trees assume that, in each short interval of time�t, a stock price either moves

up by a multiplicative amount u or down by a multiplicative amount d. The sizes of u

Figure 21.18 The hopscotch method. I indicates node at which implicit calculations
are done; E indicates node at which explicit calculations are done.
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and d and their associated probabilities are chosen so that the change in the stock price
has the correct mean and standard deviation in a risk-neutral world. Derivative prices are
calculated by starting at the end of the tree and working backwards. For an American
option, the value at a node is the greater of (a) the value if it is exercised immediately
and (b) the discounted expected value if it is held for a further period of time �t.

Monte Carlo simulation involves using random numbers to sample many different
paths that the variables underlying the derivative could follow in a risk-neutral world.
For each path, the payoff is calculated and discounted at the risk-free interest rate. The
arithmetic average of the discounted payoffs is the estimated value of the derivative.

Finite difference methods solve the underlying differential equation by converting it
to a difference equation. They are similar to tree approaches in that the computations
work back from the end of the life of the derivative to the beginning. The explicit finite
difference method is functionally the same as using a trinomial tree. The implicit finite
difference method is more complicated but has the advantage that the user does not
have to take any special precautions to ensure convergence.

In practice, the method that is chosen is likely to depend on the characteristics of the
derivative being evaluated and the accuracy required. Monte Carlo simulation works
forward from the beginning to the end of the life of a derivative. It can be used for
European-style derivatives and can cope with a great deal of complexity as far as the
payoffs are concerned. It becomes relatively more efficient as the number of underlying
variables increases. Tree approaches and finite difference methods work from the end of
the life of a security to the beginning and can accommodate American-style as well as
European-style derivatives. However, they are difficult to apply when the payoffs
depend on the past history of the state variables as well as on their current values.
Also, they are liable to become computationally very time consuming when three or
more variables are involved.
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Practice Questions (Answers in Solutions Manual)

21.1. Which of the following can be estimated for an American option by constructing a single
binomial tree: delta, gamma, vega, theta, rho?

21.2. Calculate the price of a 3-month American put option on a non-dividend-paying stock
when the stock price is $60, the strike price is $60, the risk-free interest rate is 10% per
annum, and the volatility is 45% per annum. Use a binomial tree with a time interval of
1 month.

21.3. Explain how the control variate technique is implemented when a tree is used to value
American options.

21.4. Calculate the price of a 9-month American call option on corn futures when the current
futures price is 198 cents, the strike price is 200 cents, the risk-free interest rate is 8% per
annum, and the volatility is 30% per annum. Use a binomial tree with a time interval of
3 months.

21.5. Consider an option that pays off the amount by which the final stock price exceeds the
average stock price achieved during the life of the option. Can this be valued using the
binomial tree approach? Explain your answer.

21.6. ‘‘For a dividend-paying stock, the tree for the stock price does not recombine; but the
tree for the stock price less the present value of future dividends does recombine.’’
Explain this statement.

21.7. Show that the probabilities in a Cox, Ross, and Rubinstein binomial tree are negative
when the condition in footnote 9 holds.

21.8. Use stratified sampling with 100 trials to improve the estimate of � in Business Snap-
shot 21.1 and Table 21.1.

21.9. Explain why the Monte Carlo simulation approach cannot easily be used for American-
style derivatives.

21.10. A 9-month American put option on a non-dividend-paying stock has a strike price of
$49. The stock price is $50, the risk-free rate is 5% per annum, and the volatility is 30%
per annum. Use a three-step binomial tree to calculate the option price.

21.11. Use a three-time-step tree to value a 9-month American call option on wheat futures. The
current futures price is 400 cents, the strike price is 420 cents, the risk-free rate is 6%, and
the volatility is 35% per annum. Estimate the delta of the option from your tree.

21.12. A 3-month American call option on a stock has a strike price of $20. The stock price is $20,
the risk-free rate is 3% per annum, and the volatility is 25% per annum. A dividend of $2 is
expected in 1.5 months. Use a three-step binomial tree to calculate the option price.
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21.13. A 1-year American put option on a non-dividend-paying stock has an exercise price of
$18. The current stock price is $20, the risk-free interest rate is 15% per annum, and the
volatility of the stock price is 40% per annum. Use the DerivaGem software with four
3-month time steps to estimate the value of the option. Display the tree and verify that
the option prices at the final and penultimate nodes are correct. Use DerivaGem to value
the European version of the option. Use the control variate technique to improve your
estimate of the price of the American option.

21.14. A 2-month American put option on a stock index has an exercise price of 480. The
current level of the index is 484, the risk-free interest rate is 10% per annum, the
dividend yield on the index is 3% per annum, and the volatility of the index is 25%
per annum. Divide the life of the option into four half-month periods and use the tree
approach to estimate the value of the option.

21.15. How can the control variate approach improve the estimate of the delta of an American
option when the tree approach is used?

21.16. Suppose that Monte Carlo simulation is being used to evaluate a European call option
on a non-dividend-paying stock when the volatility is stochastic. How could the control
variate and antithetic variable technique be used to improve numerical efficiency?
Explain why it is necessary to calculate six values of the option in each simulation trial
when both the control variate and the antithetic variable technique are used.

21.17. Explain how equations (21.27) to (21.30) change when the implicit finite difference
method is being used to evaluate an American call option on a currency.

21.18. An American put option on a non-dividend-paying stock has 4 months to maturity. The
exercise price is $21, the stock price is $20, the risk-free rate of interest is 10% per
annum, and the volatility is 30% per annum. Use the explicit version of the finite
difference approach to value the option. Use stock price intervals of $4 and time
intervals of 1 month.

21.19. The spot price of copper is $0.60 per pound. Suppose that the futures prices (dollars per
pound) are as follows:

3 months 0.59

6 months 0.57

9 months 0.54

12 months 0.50

The volatility of the price of copper is 40% per annum and the risk-free rate is 6% per
annum. Use a binomial tree to value an American call option on copper with an
exercise price of $0.60 and a time to maturity of 1 year. Divide the life of the option
into four 3-month periods for the purposes of constructing the tree. (Hint : As explained
in Section 18.7, the futures price of a variable is its expected future price in a risk-
neutral world.)

21.20. Use the binomial tree in Problem 21.19 to value a security that pays off x
2 in 1 year

where x is the price of copper.

21.21. When do the boundary conditions for S ¼ 0 and S ! 1 affect the estimates of
derivative prices in the explicit finite difference method?

21.22. How would you use the antithetic variable method to improve the estimate of the
European option in Business Snapshot 21.2 and Table 21.2?
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21.23. A company has issued a 3-year convertible bond that has a face value of $25 and can be
exchanged for two of the company’s shares at any time. The company can call the issue,
forcing conversion, when the share price is greater than or equal to $18. Assuming that
the company will force conversion at the earliest opportunity, what are the boundary
conditions for the price of the convertible? Describe how you would use finite difference
methods to value the convertible assuming constant interest rates. Assume there is no
risk of the company defaulting.

21.24. Provide formulas that can be used for obtaining three random samples from standard
normal distributions when the correlation between sample i and sample j is 	i;j.

Further Questions

21.25. An American put option to sell a Swiss franc for dollars has a strike price of $0.80 and a
time to maturity of 1 year. The Swiss franc’s volatility is 10%, the dollar interest rate is
6%, the Swiss franc interest rate is 3%, and the current exchange rate is 0.81. Use a three-
step binomial tree to value the option. Estimate the delta of the option from your tree.

21.26. A 1-year American call option on silver futures has an exercise price of $9.00. The
current futures price is $8.50, the risk-free rate of interest is 12% per annum, and the
volatility of the futures price is 25% per annum. Use the DerivaGem software with four
3-month time steps to estimate the value of the option. Display the tree and verify that
the option prices at the final and penultimate nodes are correct. Use DerivaGem to value
the European version of the option. Use the control variate technique to improve your
estimate of the price of the American option.

21.27. A 6-month American call option on a stock is expected to pay dividends of $1 per share
at the end of the second month and the fifth month. The current stock price is $30, the
exercise price is $34, the risk-free interest rate is 10% per annum, and the volatility of the
part of the stock price that will not be used to pay the dividends is 30% per annum. Use
the DerivaGem software with the life of the option divided into six time steps to estimate
the value of the option. Compare your answer with that given by Black’s approximation
(see Section 15.12).

21.28. The current value of the British pound is $1.60 and the volatility of the pound/dollar
exchange rate is 15% per annum. An American call option has an exercise price of $1.62
and a time to maturity of 1 year. The risk-free rates of interest in the United States and
the United Kingdom are 6% per annum and 9% per annum, respectively. Use the
explicit finite difference method to value the option. Consider exchange rates at intervals
of 0.20 between 0.80 and 2.40 and time intervals of 3 months.

21.29. Answer the following questions concerned with the alternative procedures for construct-
ing trees in Section 21.4:
(a) Show that the binomial model in Section 21.4 is exactly consistent with the mean

and variance of the change in the logarithm of the stock price in time �t.
(b) Show that the trinomial model in Section 21.4 is consistent with the mean and

variance of the change in the logarithm of the stock price in time �t when terms of
order ð�tÞ2 and higher are ignored.

(c) Construct an alternative to the trinomial model in Section 21.4 so that the prob-
abilities are 1/6, 2/3, and 1/6 on the upper, middle, and lower branches emanating
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from each node. Assume that the branching is from S to Su, Sm, or Sd with m
2 ¼ ud.

Match the mean and variance of the change in the logarithm of the stock price
exactly.

21.30. The DerivaGem Application Builder functions enable you to investigate how the prices
of options calculated from a binomial tree converge to the correct value as the number of
time steps increases. (See Figure 21.4 and Sample Application A in DerivaGem.)
Consider a put option on a stock index where the index level is 900, the strike price is
900, the risk-free rate is 5%, the dividend yield is 2%, and the time to maturity is 2 years.
(a) Produce results similar to Sample Application A on convergence for the situation

where the option is European and the volatility of the index is 20%.
(b) Produce results similar to Sample Application A on convergence for the situation

where the option is American and the volatility of the index is 20%.
(c) Produce a chart showing the pricing of the American option when the volatility is

20% as a function of the number of time steps when the control variate technique is
used.

(d) Suppose that the price of the American option in the market is 85.0. Produce a chart
showing the implied volatility estimate as a function of the number of time steps.

21.31. Estimate delta, gamma, and theta from the tree in Example 21.3. Explain how each can
be interpreted.

21.32. How much is gained from exercising early at the lowest node at the 9-month point in
Example 21.4?

21.33. A four-step Cox–Ross–Rubinstein binomial tree is used to price a one-year American
put option on an index when the index level is 500, the strike price is 500, the dividend
yield is 2%, the risk-free rate is 5%, and the volatility is 25% per annum. What is the
option price, delta, gamma, and theta? Explain how you would calculate vega and rho.
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Value at Risk

Chapter 19 examined measures such as delta, gamma, and vega for describing different
aspects of the risk in a portfolio of derivatives. A financial institution usually calculates
each of these measures each day for every market variable to which it is exposed. Often
there are hundreds, or even thousands, of these market variables. A delta–gamma–vega
analysis, therefore, leads to a very large number of different risk measures being
produced each day. These risk measures provide valuable information for the financial
institution’s traders. However, they do not provide a way of measuring the total risk to
which the financial institution is exposed.

Value at Risk (VaR) is an attempt to provide a single number summarizing the total
risk in a portfolio of financial assets. It has become widely used by corporate treasurers
and fund managers as well as by financial institutions. Bank regulators have tradition-
ally used VaR in determining the capital a bank is required to keep for the risks it is
bearing.

This chapter explains the VaR measure and describes the two main approaches for
calculating it. These are known as the historical simulation approach and the model-
building approach.

22.1 THE VaR MEASURE

When using the value-at-risk measure, an analyst is interested in making a statement of
the following form:

I am X percent certain there will not be a loss of more than V dollars in the next N days.

The variable V is the VaR of the portfolio. It is a function of two parameters: the time
horizon (N days) and the confidence level (X%). It is the loss level over N days that has
a probability of only ð100�XÞ% of being exceeded. Bank regulators require banks to
calculate VaR for market risk with N ¼ 10 and X ¼ 99 (see the discussion in Business
Snapshot 22.1).

When N days is the time horizon and X% is the confidence level, VaR is the loss
corresponding to the ð100�XÞth percentile of the distribution of the gain in the value of
the portfolio over the next N days. (Note that, when we look at the probability
distribution of the gain, a loss is a negative gain and VaR is concerned with the left
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tail of the distribution. When we look at the probability distribution of the loss, a gain is

a negative loss and VaR is concerned with the right tail of the distribution.) For

example, when N ¼ 5 and X ¼ 97, VaR is the third percentile of the distribution of

gain in the value of the portfolio over the next 5 days. VaR is illustrated in Figures 22.1

and 22.2.

VaR is an attractive measure because it is easy to understand. In essence, it asks the

simple question ‘‘How bad can things get?’’ This is the question all senior managers

want answered. They are very comfortable with the idea of compressing all the Greek

letters for all the market variables underlying a portfolio into a single number.

If we accept that it is useful to have a single number to describe the risk of a portfolio,

an interesting question is whether VaR is the best alternative. Some researchers have

argued that VaR may tempt traders to choose a portfolio with a return distribution

similar to that in Figure 22.2. The portfolios in Figures 22.1 and 22.2 have the same

VaR, but the portfolio in Figure 22.2 is much riskier because potential losses are much

larger.

Business Snapshot 22.1 How Bank Regulators Use VaR

The Basel Committee on Bank Supervision is a committee of the world’s bank
regulators that meets regularly in Basel, Switzerland. In 1988 it published what has
become known as Basel I. This is an agreement between the regulators on how the
capital a bank is required to hold for credit risk should be calculated. Later the Basel
Committee published The 1996 Amendment which was implemented in 1998 and
required banks to hold capital for market risk as well as credit risk. The Amendment
distinguishes between a bank’s trading book and its banking book. The banking
book consists primarily of loans and is not usually revalued on a regular basis for
managerial and accounting purposes. The trading book consists of the myriad of
different instruments that are traded by the bank (stocks, bonds, swaps, forward
contracts, options, etc.) and is normally revalued daily.

The 1996 Amendment calculates capital for the trading book using the VaR
measure with N ¼ 10 and X ¼ 99. This means that it focuses on the revaluation loss
over a 10-day period that is expected to be exceeded only 1% of the time. The capital
the bank is required to hold is k times this VaR measure (with an adjustment for what
are termed specific risks). The multiplier k is chosen on a bank-by-bank basis by the
regulators and must be at least 3.0. For a bank with excellent well-tested VaR
estimation procedures, it is likely that k will be set equal to the minimum value
of 3.0. For other banks it may be higher.

Basel I has been followed by Basel II, Basel II.5, and Basel III. Basel II (which was
implemented in most parts of the world in about 2007) uses VaR with a one-year
time horizon and a 99.9% confidence level for calculating capital for credit risk and
operational risk. Basel II.5 (which was implemented in 2012) revised the way market
risk capital is calculated. One of the changes involves what is known as stressed VaR.
This is a VaR measure based on how market variables have moved during a
particularly adverse time period. Basel III is increasing the amount of capital that
banks are required to hold and the proportion of that capital that must be equity.

Interestingly, in May 2012, the Basel committee issued a discussion paper indicat-
ing that it is considering switching from VaR to expected shortfall for market risk.
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A measure that deals with the problem we have just mentioned is expected shortfall.1

Whereas VaR asks the question ‘‘How bad can things get?’’, expected shortfall asks ‘‘If

things do get bad, how much can the company expect to lose?’’ Expected shortfall is the

expected loss during an N-day period conditional on the loss being worse than the VaR

loss. For example, with X ¼ 99 and N ¼ 10, the expected shortfall is the average amount

the company loses over a 10-day period when the loss is worse than the 10-day 99%VaR.

The Time Horizon

VaR has two parameters: the time horizon N, measured in days, and the confidence level

X. In practice, analysts almost invariably set N ¼ 1 in the first instance when VaR is

estimated for market risk. This is because there is not usually enough data available to

estimate directly the behavior of market variables over periods of time longer than 1 day.

The usual assumption is

N-day VaR ¼ 1-day VaR�
ffiffiffiffi
N

p

(100 – X)%

VaR loss Gain (loss) over N days

Figure 22.2 Alternative situation to Figure 22.1. VaR is the same, but the potential
loss is larger.

(100 – X)%

VaR loss Gain (loss) over N days

Figure 22.1 Calculation of VaR from the probability distribution of the change in the
portfolio value; confidence level is X%. Gains in portfolio value are positive; losses
are negative.

1 This measure, which is also known as C-VaR or tail loss, was suggested by P. Artzner, F. Delbaen,

J.-M. Eber, and D. Heath, ‘‘Coherent Measures of Risk,’’ Mathematical Finance, 9 (1999): 203–28. These

authors define certain properties that a good risk measure should have and show that the standard VaR

measure does not have all of them. For more details, see J. Hull, Risk Management and Financial Institutions,

3rd edn. Hoboken, NJ: Wiley, 2012.
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This formula is exactly true when the changes in the value of the portfolio on successive
days have independent identical normal distributions with mean zero. In other cases it
is an approximation.

22.2 HISTORICAL SIMULATION

Historical simulation is one popular way of estimating VaR. It involves using past data
as a guide to what will happen in the future. Suppose that we want to calculate VaR for
a portfolio using a one-day time horizon, a 99% confidence level, and 501 days of data.
(The time horizon and confidence level are those typically used for a market risk VaR
calculation; 501 is a popular choice for the number of days of data used because, as we
shall see, it leads to 500 scenarios being created.) The first step is to identify the market
variables affecting the portfolio. These will typically be interest rates, equity prices,
commodity prices, and so on. All prices are measured in the domestic currency. For
example, one market variable for a German bank is likely to be the S&P 500 measured
in euros.

Data are collected on movements in the market variables over the most recent
501 days. This provides 500 alternative scenarios for what can happen between today
and tomorrow. Denote the first day for which we have data as Day 0, the second day as
Day 1, and so on. Scenario 1 is where the percentage changes in the values of all
variables are the same as they were between Day 0 and Day 1, Scenario 2 is where they
are the same as between Day 1 and Day 2, and so on. For each scenario, the dollar
change in the value of the portfolio between today and tomorrow is calculated. This
defines a probability distribution for daily loss (gains are negative losses) in the value of
our portfolio. The 99th percentile of the distribution can be estimated as the fifth-
highest loss.2 The estimate of VaR is the loss when we are at this 99th percentile point.
We are 99% certain that we will not take a loss greater than the VaR estimate if the
changes in market variables in the last 501 days are representative of what will happen
between today and tomorrow.

To express the approach algebraically, define vi as the value of a market variable on
Day i and suppose that today is Day n. The ith scenario in the historical simulation
approach assumes that the value of the market variable tomorrow will be

Value under ith scenario ¼ vn
vi

vi�1

Illustration: Investment in Four Stock Indices

To illustrate the calculations underlying the approach, suppose that an investor in the
United States owns, on September 25, 2008, a portfolio worth $10 million consisting of
investments in four stock indices: the Dow Jones Industrial Average (DJIA) in the US,
the FTSE 100 in the UK, the CAC 40 in France, and the Nikkei 225 in Japan. The
value of the investment in each index on September 25, 2008, is shown in Table 22.1.
An Excel spreadsheet containing 501 days of historical data on the closing prices of the

2 There are alternatives here. A case can be made for using the fifth-highest loss, the sixth-highest loss, or an

average of the two. In Excel’s PERCENTILE function, when there are n observations and k is an integer, the

k=ðn� 1Þ percentile is the observation ranked kþ 1. Other percentiles are calculated using linear interpolation.
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four indices, together with exchange rates and a complete set of VaR calculations are on

the author’s website:3

www.rotman.utoronto.ca/�hull/OFOD/VaRExample

Because we are considering a US investor, the value of the FTSE 100, CAC 40, and

Nikkei 225 must be measured in US dollars. For example, the FTSE 100 was 5,823.40

on August 10, 2008, when the exchange rate was 1.8918 USD per GBP. This means

that, measured in US dollars, it was 5,823:40� 1:8910 ¼ 11,016:71. An extract from the

data with all indices measured in US dollars is in Table 22.2.

September 25, 2008, is an interesting date to choose in evaluating an equity invest-

ment. The turmoil in credit markets, which started in August 2007, was over a year old.

Equity prices had been declining for several months. Volatilities were increasing.

Lehman Brothers had filed for bankruptcy ten days earlier. The Treasury Secretary’s

$700 billion Troubled Asset Relief Program (TARP) had not yet been passed by the

United States Congress.

Table 22.3 shows the values of the indices (measured in US dollars) on September 26,

2008, for the scenarios considered. Scenario 1 (the first row in Table 22.3) shows the

values of indices on September 26, 2008, assuming that their percentage changes

between September 25 and September 26, 2008, are the same as they were between

August 7 and August 8, 2006; Scenario 2 (the second row in Table 22.3) shows the

values of market variables on September 26, 2008, assuming these percentage changes

Table 22.1 Investment portfolio used for VaR calculations.

Index Portfolio value ($000s)

DJIA 4,000
FTSE 100 3,000
CAC 40 1,000
Nikkei 225 2,000

Total 10,000

Table 22.2 US dollar equivalent of stock indices for historical simulation
(equals index value multiplied by exchange rate).

Day Date DJIA FTSE 100 CAC 40 Nikkei 225

0 Aug. 7, 2006 11,219.38 11,131.84 6,373.89 131.77
1 Aug. 8, 2006 11,173.59 11,096.28 6,378.16 134.38
2 Aug. 9, 2006 11,076.18 11,185.35 6,474.04 135.94
3 Aug. 10, 2006 11,124.37 11,016.71 6,357.49 135.44
..
. ..

. ..
. ..

. ..
. ..

.

499 Sept. 24, 2008 10,825.17 9,438.58 6,033.93 114.26
500 Sept. 25, 2008 11,022.06 9,599.90 6,200.40 112.82

3 To keep the example as straightforward as possible, only days when all four indices traded were included in

the compilation of the data and dividends are not considered.
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are the same as those between August 8 and August 9, 2006; and so on. In general,
Scenario i assumes that the percentage changes in the indices between September 25
and September 26 are the same as they were between Day i� 1 and Day i for
1 6 i 6 500. The 500 rows in Table 22.3 are the 500 scenarios considered.

The DJIAwas 11,022.06 on September 25, 2008. On August 8, 2006, it was 11,173.59,
down from 11,219.38 on August 7, 2006. Therefore the value of the DJIA under
Scenario 1 is

11,022:06� 11,173:59

11,219:38
¼ 10,977:08

Similarly, the values of the FTSE 100, the CAC 40, and the Nikkei 225 are 9,569.23,
6,204.55, and 115.05, respectively. Therefore the value of the portfolio under Scenario 1
is (in $000s)

4,000� 10,977:08

11,022:06
þ 3,000� 9,569:23

9,599:90

þ 1,000� 6,204:55

6,200:40
þ 2,000� 115:05

112:82
¼ 10,014:334

The portfolio therefore has a gain of $14,334 under Scenario 1. A similar calculation is
carried out for the other scenarios. A histogram for the losses is shown in Figure 22.3
(with gains being recorded as negative losses). The bars on the histogram represent
losses ($000s) in the ranges 450 to 550, 350 to 450, 250 to 350, and so on.

The losses for the 500 different scenarios are then ranked. An extract from the results
of doing this is shown in Table 22.4. The worst scenario is number 494 (where indices
are assumed to change in the same way that they did at the time of the bankruptcy of
Lehman Brothers). The one-day 99% value at risk can be estimated as the fifth-worst
loss. This is $253,385.

As explained in Section 22.1, the ten-day 99% VaR is usually calculated as
ffiffiffiffiffi
10

p
times

the one-day 99% VaR. In this case the ten-day VaR would therefore be

ffiffiffiffiffi
10

p
� 253,385 ¼ 801,274

or $801,274.

Each day the VaR estimate in our example would be updated using the most recent
501 days of data. Consider, for example, what happens on September 26, 2008
(Day 501). We find out new values for all the market variables and are able to calculate
a new value for our portfolio. We then go through the procedure we have outlined to

Table 22.3 Scenarios generated for September 26, 2008, using data in Table 22.2.

Scenario
number

DJIA FTSE 100 CAC 40 Nikkei 225 Portfolio value
($000s)

Loss
($000s)

1 10,977.08 9,569.23 6,204.55 115.05 10,014.334 �14.334
2 10,925.97 9,676.96 6,293.60 114.13 10,027.481 �27.481
3 11,070.01 9,455.16 6,088.77 112.40 9,946.736 53.264
..
. ..

. ..
. ..

. ..
. ..

.

499 10,831.43 9,383.49 6,051.94 113.85 9,857.465 142.535
500 11,222.53 9,763.97 6,371.45 111.40 10,126.439 �126.439
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Table 22.4 Losses ranked from highest to
lowest for 500 scenarios.

Scenario number Loss ($000s)

494 477.841
339 345.435
349 282.204
329 277.041
487 253.385
227 217.974
131 202.256
238 201.389
473 191.269
306 191.050
477 185.127
495 184.450
376 182.707
237 180.105
365 172.224
..
. ..

.

0
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Figure 22.3 Histogram of losses for the scenarios considered between September 25
and September 26, 2008.
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calculate a new VaR. Data on the market variables from August 8, 2006, to September
26, 2008 (Day 1 to Day 501) are used in the calculation. (This gives us the required 500
observations on the percentage changes in market variables; the August 7, 2006, Day 0,
values of the market variables are no longer used.) Similarly, on the next trading day
September 29, 2008 (Day 502), data from August 9, 2006, to September 29, 2008 (Day 2
to Day 502) are used to determine VaR, and so on.

In practice, a financial institution’s portfolio is, of course, considerably more
complicated than the one we have considered here. It is likely to consist of thousands
or tens of thousands of positions. Some of the bank’s positions are typically in forward
contracts, options, and other derivatives. Also, the portfolio itself is likely to change
from day to day. If a bank’s trading leads to a riskier porfolio, VaR typically increases;
if it leads to a less risky porfolio, VaR typically decreases. The VaR is calculated on any
given day on the assumption that the portfolio will remain unchanged over the next
business day.

It is often necessary to consider hundreds or even thousands of market variables in a
VaR calculation. In the case of interest rates, a bank typically needs several term
structures of zero-coupon interest rates in a number of different currencies in order
to value its portfolio. The market variables that are considered are the ones from which
these term structures are calculated (see Chapter 4 for the calculation of the term
structure of zero rates). There might be as many as ten market variables for each zero
curve to which the bank is exposed.

22.3 MODEL-BUILDING APPROACH

The main alternative to historical simulation is the model-building approach. Before
getting into the details of the approach, it is appropriate to mention one issue
concerned with the units for measuring volatility.

Daily Volatilities

In option pricing, time is usually measured in years, and the volatility of an asset is
usually quoted as a ‘‘volatility per year’’. When using the model-building approach to
calculate VaR for market risk, time is usually measured in days and the volatility of an
asset is usually quoted as a ‘‘volatility per day.’’

What is the relationship between the volatility per year used in option pricing and the
volatility per day used in VaR calculations? Let us define �year as the volatility per year
of a certain asset and �day as the equivalent volatility per day of the asset. Assuming 252
trading days in a year, equation (15.2) gives the standard deviation of the continuously
compounded return on the asset in 1 year as either �year or �day

ffiffiffiffiffiffiffiffi
252

p
. It follows that

�year ¼ �day
ffiffiffiffiffiffiffiffi
252

p

or

�day ¼
�yearffiffiffiffiffiffiffiffi
252

p

so that daily volatility is about 6% of annual volatility.

As pointed out in Section 15.4, �day is approximately equal to the standard deviation
of the percentage change in the asset price in one day. For the purposes of calculating
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VaR we assume exact equality. The daily volatility of an asset price (or any other

variable) is therefore defined as equal to the standard deviation of the percentage change

in one day.

Our discussion in the next few sections assumes that estimates of daily volatilities and

correlations are available. Chapter 23 discusses how the estimates can be produced.

Single-Asset Case

Consider how VaR is calculated using the model-building approach in a very simple

situation where the portfolio consists of a position in a single stock: $10 million in shares

of Microsoft. We suppose that N ¼ 10 and X ¼ 99, so that we are interested in the loss

level over 10 days that we are 99% confident will not be exceeded. Initially, we consider a

1-day time horizon.

Assume that the volatility of Microsoft is 2% per day (corresponding to about 32%

per year). Because the size of the position is $10 million, the standard deviation of daily

changes in the value of the position is 2% of $10 million, or $200,000.

It is customary in the model-building approach to assume that the expected change in

a market variable over the time period considered is zero. This is not strictly true, but it

is a reasonable assumption. The expected change in the price of a market variable over

a short time period is generally small when compared with the standard deviation of the

change. Suppose, for example, that Microsoft has an expected return of 20% per

annum. Over a 1-day period, the expected return is 0:20=252, or about 0.08%, whereas

the standard deviation of the return is 2%. Over a 10-day period, the expected return is

0:08� 10, or about 0.8%, whereas the standard deviation of the return is 2
ffiffiffiffiffi
10

p
, or

about 6.3%.

So far, we have established that the change in the value of the portfolio of Microsoft

shares over a 1-day period has a standard deviation of $200,000 and (at least approxi-

mately) a mean of zero. We assume that the change is normally distributed.4 From the

Excel NORMSINV function, N�1ð0:01Þ ¼ 2:326. This means that there is a 1% prob-

ability that a normally distributed variable will decrease in value by more than 2.326

standard deviations. Equivalently, it means that we are 99% certain that a normally

distributed variable will not decrease in value by more than 2.326 standard deviations.

The 1-day 99% VaR for our portfolio consisting of a $10 million position in Microsoft

is therefore

2:326� 200,000 ¼ $465,300

As discussed earlier, the N-day VaR is calculated as
ffiffiffiffi
N

p
times the 1-day VaR. The

10-day 99% VaR for Microsoft is therefore

465,300�
ffiffiffiffiffi
10

p
¼ $1,471,300

Consider next a portfolio consisting of a $5 million position in AT&T, and suppose

the daily volatility of AT&T is 1% (approximately 16% per year). A similar calculation

4 To be consistent with the option pricing assumption in Chapter 15, we could assume that the price of

Microsoft is lognormal tomorrow. Because 1 day is such a short period of time, this is almost

indistinguishable from the assumption we do make—that the change in the stock price between today and

tomorrow is normal.
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to that for Microsoft shows that the standard deviation of the change in the value of the

portfolio in 1 day is

5,000,000� 0:01 ¼ 50,000

Assuming the change is normally distributed, the 1-day 99% VaR is

50,000� 2:326 ¼ $116,300

and the 10-day 99% VaR is

116,300�
ffiffiffiffiffi
10

p
¼ $367,800

Two-Asset Case

Now consider a portfolio consisting of both $10 million of Microsoft shares and

$5 million of AT&T shares. We suppose that the returns on the two shares have a

bivariate normal distribution with a correlation of 0.3. A standard result in statistics

tells us that, if two variables X and Y have standard deviations equal to �X and �Y with

the coefficient of correlation between them equal to �, the standard deviation of Xþ Y

is given by

�XþY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
X
þ �2

Y
þ 2��X�Y

q

To apply this result, we set X equal to the change in the value of the position in

Microsoft over a 1-day period and Y equal to the change in the value of the position in

AT&T over a 1-day period, so that

�X ¼ 200,000 and �Y ¼ 50,000

The standard deviation of the change in the value of the portfolio consisting of both

stocks over a 1-day period is therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200,0002 þ 50; 0002 þ 2� 0:3� 200,000� 50,000

p
¼ 220,200

The mean change is assumed to be zero and the change is normally distributed. So the

1-day 99% VaR is therefore

220,200� 2:326 ¼ $512,300

The 10-day 99% VaR is
ffiffiffiffiffi
10

p
times this, or $1,620,100.

The Benefits of Diversification

In the example we have just considered:

1. The 10-day 99% VaR for the portfolio of Microsoft shares is $1,471,300.

2. The 10-day 99% VaR for the portfolio of AT&T shares is $367,800.

3. The 10-day 99% VaR for the portfolio of both Microsoft and AT&T shares is
$1,620,100.

The amount

ð1,471,300 þ 367,800Þ � 1,620,100 ¼ $219,000
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represents the benefits of diversification. If Microsoft and AT&T were perfectly

correlated, the VaR for the portfolio of both Microsoft and AT&T would equal the

VaR for the Microsoft portfolio plus the VaR for the AT&T portfolio. Less than

perfect correlation leads to some of the risk being ‘‘diversified away.’’5

22.4 THE LINEAR MODEL

The examples we have just considered are simple illustrations of the use of the linear

model for calculating VaR. Suppose that we have a portfolio worth P consisting of n

assets with an amount �i being invested in asset i (1 6 i 6 n). Define �xi as the return

on asset i in one day. The dollar change in the value of our investment in asset i in one

day is �i �xi and

�P ¼
Xn
i¼1

�i �xi ð22:1Þ

where �P is the dollar change in the value of the whole portfolio in one day.

In the example considered in the previous section, $10 million was invested in the first

asset (Microsoft) and $5 million was invested in the second asset (AT&T), so that (in

millions of dollars) �1 ¼ 10, �2 ¼ 5, and

�P ¼ 10�x1 þ 5�x2

If we assume that the �xi in equation (22.1) are multivariate normal, then �P is

normally distributed. To calculate VaR, we therefore need to calculate only the

mean and standard deviation of �P. We assume, as discussed in the previous

section, that the expected value of each �xi is zero. This implies that the mean

of �P is zero.

To calculate the standard deviation of �P, we define �i as the daily volatility of the

ith asset and �ij as the coefficient of correlation between returns on asset i and asset j.

This means that �i is the standard deviation of �xi, and �ij is the coefficient of

correlation between �xi and �xj. The variance of �P, which we will denote by �2
P,

is given by

�2
P ¼

Xn
i¼1

Xn
j¼1

�ij �i �j �i �j ð22:2Þ

This equation can also be written as

�2
P ¼

Xn
i¼1

�2
i �

2
i þ 2

Xn
i¼1

X
j<i

�ij �i �j �i �j

The standard deviation of the change over N days is �P
ffiffiffiffi
N

p
, and the 99% VaR for an

N-day time horizon is 2:326�P
ffiffiffiffi
N

p
.

5 Harry Markowitz was one of the first researchers to study the benefits of diversification to a portfolio

manager. He was awarded a Nobel prize for this research in 1990. See H. Markowitz, ‘‘Portfolio Selection,’’

Journal of Finance, 7, 1 (March 1952): 77–91.
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The portfolio return in one day is �P=P. From equation (22.2), the variance of this is

Xn
i¼1

Xn
j¼1

�ij wi wj �i �j

where wi ¼ �i=P is the weight of the ith investment in the portfolio. This version of
equation (22.2) is the one usually used by portfolio managers.

In the example considered in the previous section, �1 ¼ 0:02, �2 ¼ 0:01, and
�12 ¼ 0:3. As already noted, �1 ¼ 10 and �2 ¼ 5, so that

�2
P ¼ 102 � 0:022 þ 52 � 0:012 þ 2� 10� 5� 0:3� 0:02� 0:01 ¼ 0:0485

and �P ¼ 0:2202. This is the standard deviation of the change in the portfolio value per
day (in millions of dollars). The ten-day 99% VaR is 2:326� 0:2202� ffiffiffiffiffi

10
p ¼

$1:62 million. This agrees with the calculation in the previous section.

Correlation and Covariance Matrices

A correlation matrix is a matrix where the entry in the ith row and jth column is the
correlation �ij between variable i and j. It is shown in Table 22.5. Since a variable is
always perfectly correlated with itself, the diagonal elements of the correlation matrix
are 1. Furthermore, because �ij ¼ �j i, the correlation matrix is symmetric. The correla-
tion matrix, together with the daily standard deviations of the variables, enables the
portfolio variance to be calculated using equation (22.2).

Instead of working with correlations and volatilities, analysts often use variances and
covariances. The daily variance vari of variable i is the square of its daily volatility:

vari ¼ �2
i

The covariance covij between variable i and variable j is the product of the daily
volatility of variable i, the daily volatility of variable j, and the correlation between i

and j:
covij ¼ �i �j �ij

The equation for the variance of the portfolio in equation (22.2) can be written

�2
P ¼

Xn
i¼1

Xn
j¼1

covij �i �j ð22:3Þ

Table 22.5 A correlation matrix: �ij is the correlation between variable i and
variable j.

1 �12 �13 � � � �1n

�21 1 �23 � � � �2n

�31 �32 1 � � � �3n

..

. ..
. ..

. ..
. ..

.

�n1 �n2 �n3 � � � 1

2
66666664

3
77777775
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In a covariance matrix, the entry in the ith row and jth column is the covariance
between variable i and variable j. As just mentioned, the covariance between a

variable and itself is its variance. The diagonal entries in the matrix are therefore

variances (see Table 22.6). For this reason, the covariance matrix is sometimes called
the variance–covariance matrix. (Like the correlation matrix, it is symmetric.) Using

matrix notation, the equation for the variance of the portfolio just given becomes

�2
P ¼ aTCa

where a is the (column) vector whose ith element is �i, C is the variance–covariance
matrix, and aT is the transpose of a.

The variances and covariances are generally calculated from historical data. We will

illustrate this in Section 23.8 for the four-index example introduced in Section 22.2.

Handling Interest Rates

It is out of the question in the model-building approach to define a separate market

variable for every single bond price or interest rate to which a company is exposed.
Some simplifications are necessary when the model-building approach is used. One

possibility is to assume that only parallel shifts in the yield curve occur. It is then

necessary to define only one market variable: the size of the parallel shift. The changes
in the value of a bond portfolio can then be calculated using the duration relationship

�P ¼ �DP�y

where P is the value of the portfolio, �P is the change in P in one day, D is the
modified duration of the portfolio, and �y is the parallel shift in 1 day.

This approach does not usually give enough accuracy. The procedure usually

followed is to choose as market variables the prices of zero-coupon bonds with

standard maturities: 1 month, 3 months, 6 months, 1 year, 2 years, 5 years, 7 years,
10 years, and 30 years. For the purposes of calculating VaR, the cash flows from

instruments in the portfolio are mapped into cash flows occurring on the standard
maturity dates. Consider a $1 million position in a Treasury bond lasting 1.2 years that

pays a coupon of 6% semiannually. Coupons are paid in 0.2, 0.7, and 1.2 years, and

the principal is paid in 1.2 years. This bond is, therefore, in the first instance regarded
as a $30,000 position in 0.2-year zero-coupon bond plus a $30,000 position in a 0.7-

year zero-coupon bond plus a $1.03 million position in a 1.2-year zero-coupon bond.

Table 22.6 A variance–covariance matrix: covij is the covariance between variable i

and variable j. Diagonal entries are variance: covii ¼ vari

var1 cov12 cov13 . . . cov1n

cov21 var2 cov23 � � � cov2n

cov31 cov32 var3 � � � cov3n

..

. ..
. ..

. ..
. ..

.

covn1 covn2 covn3 � � � varn

2
66666664

3
77777775
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The position in the 0.2-year bond is then replaced by an approximately equivalent

position in 1-month and 3-month zero-coupon bonds; the position in the 0.7-year

bond is replaced by an approximately equivalent position in 6-month and 1-year zero-

coupon bonds; and the position in the 1.2-year bond is replaced by an approximately

equivalent position in 1-year and 2-year zero-coupon bonds. The result is that the

position in the 1.2-year coupon-bearing bond is for VaR purposes regarded as a

position in zero-coupon bonds having maturities of 1 month, 3 months, 6 months,

1 year, and 2 years.

This procedure is known as cash-flow mapping. One way of doing it is explained in

Technical Note 25 at www.rotman.utoronto.ca/�hull/TechnicalNotes. Note that

cash-flow mapping is not necessary when the historical simulation approach is used.

This is because the complete term structure of interest rates can be calculated from the

variables that are considered for each of the scenarios generated.

Applications of the Linear Model

The simplest application of the linear model is to a portfolio with no derivatives

consisting of positions in stocks and bonds. Cash-flow mapping converts the bonds

to zero-coupon bonds with standard maturities. The change in the value of the

portfolio is linearly dependent on the returns on the stocks and these zero-coupon

bonds.

An example of a derivative that can be handled by the linear model is a forward

contract to buy a foreign currency. Suppose the contract matures at time T . It can be

regarded as the exchange of a foreign zero-coupon bond maturing at time T for a

domestic zero-coupon bond maturing at time T . For the purposes of calculating VaR,

the forward contract is therefore treated as a long position in the foreign bond

combined with a short position in the domestic bond. Each bond can be handled using

a cash-flow mapping procedure.

Consider next an interest rate swap. As explained in Chapter 7, this can be regarded

as the exchange of a floating-rate bond for a fixed-rate bond. The fixed-rate bond is a

regular coupon-bearing bond. The floating-rate bond is worth par just after the next

payment date. It can be regarded as a zero-coupon bond with a maturity date equal to

the next payment date. The interest rate swap therefore reduces to a portfolio of long

and short positions in bonds and can be handled using a cash-flow mapping

procedure.

The Linear Model and Options

We now consider how we might try to use the linear model when there are options.

Consider first a portfolio consisting of options on a single stock whose current price

is S. Suppose that the delta of the position (calculated in the way described in Chapter

19) is �.6 Since � is the rate of change of the value of the portfolio with S, it is

approximately true that

� ¼ �P

�S

6 Normally we denote the delta and gamma of a portfolio by � and �. In this section and the next, we use the

lower case Greek letters � and � to avoid overworking �.
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or

�P ¼ ��S ð22:4Þ

where �S is the dollar change in the stock price in 1 day and �P is, as usual, the dollar

change in the portfolio in 1 day. Define �x as the percentage change in the stock price

in 1 day, so that

�x ¼ �S

S

It follows that an approximate relationship between �P and �x is

�P ¼ S��x

When we have a position in several underlying market variables that includes options,

we can derive an approximate linear relationship between �P and the �xi similarly.

This relationship is

�P ¼
Xn
i¼1

Si�i �xi ð22:5Þ

where Si is the value of the ith market variable and �i is the delta of the portfolio with

respect to the ith market variable. This corresponds to equation (22.1):

�P ¼
Xn
i¼1

�i �xi

with �i ¼ Si�i. Equation (22.2) or (22.3) can therefore be used to calculate the standard

deviation of �P.

Example 22.1

A portfolio consists of options on Microsoft and AT&T. The options on Microsoft

have a delta of 1,000, and the options on AT&T have a delta of 20,000. The

Microsoft share price is $120, and the AT&T share price is $30. From equa-

tion (22.5), it is approximately true that

�P ¼ 120� 1,000��x1 þ 30� 20,000��x2

or

�P ¼ 120,000�x1 þ 600,000�x2

where �x1 and �x2 are the returns from Microsoft and AT&T in 1 day and �P is

the resultant change in the value of the portfolio. (The portfolio is assumed to be

equivalent to an investment of $120,000 in Microsoft and $600,000 in AT&T.)

Assuming that the daily volatility of Microsoft is 2% and the daily volatility of

AT&T is 1% and the correlation between the daily changes is 0.3, the standard

deviation of �P (in thousands of dollars) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð120� 0:02Þ2 þ ð600� 0:01Þ2 þ 2� 120� 0:02� 600� 0:01� 0:3

q
¼ 7:099

Since Nð�1:645Þ ¼ 0:05, the 5-day 95% VaR is 1:645� ffiffiffi
5

p � 7,099 ¼ $26,110.
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22.5 THE QUADRATIC MODEL

When a portfolio includes options, the linear model is an approximation. It does not

take account of the gamma of the portfolio. As discussed in Chapter 19, delta is defined
as the rate of change of the portfolio value with respect to an underlying market

variable and gamma is defined as the rate of change of the delta with respect to the
market variable. Gamma measures the curvature of the relationship between the
portfolio value and an underlying market variable.

Figure 22.4 shows the impact of a nonzero gamma on the probability distribution of

the value of the portfolio. When gamma is positive, the probability distribution tends to
be positively skewed; when gamma is negative, it tends to be negatively skewed.
Figures 22.5 and 22.6 illustrate the reason for this result. Figure 22.5 shows the relation-

ship between the value of a long call option and the price of the underlying asset. A long
call is an example of an option position with positive gamma. The figure shows that,

when the probability distribution for the price of the underlying asset at the end of 1 day
is normal, the probability distribution for the option price is positively skewed.7

Figure 22.6 shows the relationship between the value of a short call position and the

price of the underlying asset. A short call position has a negative gamma. In this case, we
see that a normal distribution for the price of the underlying asset at the end of 1 day gets

mapped into a negatively skewed distribution for the value of the option position.

The VaR for a portfolio is critically dependent on the left tail of the probability
distribution of the portfolio value. For example, when the confidence level used is 99%,
the VaR is the value in the left tail below which there is only 1% of the distribution. As

indicated in Figures 22.4a and 22.5, a positive gamma portfolio tends to have a less
heavy left tail than the normal distribution. If the distribution of �P is normal, the

calculated VaR tends to be too high. Similarly, as indicated in Figures 22.4b and 22.6, a
negative gamma portfolio tends to have a heavier left tail than the normal distribution.
If the distribution of �P is normal, the calculated VaR tends to be too low.

For a more accurate estimate of VaR than that given by the linear model, both delta

and gamma measures can be used to relate �P to the �xi. Consider a portfolio
dependent on a single asset whose price is S. Suppose � and � are the delta and gamma

(a) (b)

Figure 22.4 Probability distribution for value of portfolio: (a) positive gamma;
(b) negative gamma.

7 As mentioned in footnote 4, we can use the normal distribution as an approximation to the lognormal

distribution in VaR calculations.
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Value of
long call

Underlying asset

Figure 22.5 Translation of normal probability distribution for asset into probability
distribution for value of a long call on asset.

Value of
short call

Underlying asset

Figure 22.6 Translation of normal probability distribution for asset into probability
distribution for value of a short call on asset.
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of the portfolio. From the appendix to Chapter 19, the equation

�P ¼ ��S þ 1
2
�ð�SÞ2

is an improvement over the approximation in equation (22.4).8 Setting

�x ¼ �S

S
reduces this to

�P ¼ S��xþ 1
2
S
2�ð�xÞ2 ð22:6Þ

More generally for a portfolio with n underlying market variables, with each instrument
in the portfolio being dependent on only one of the market variables, equation (22.6)
becomes

�P ¼
Xn
i¼1

Si�i �xi þ
Xn
i¼1

1
2
S
2
i �i ð�xiÞ2

where Si is the value of the ith market variable, and �i and �i are the delta and gamma
of the portfolio with respect to the ith market variable. When individual instruments in
the portfolio may be dependent on more than one market variable, this equation takes
the more general form

�P ¼
Xn
i¼1

Si�i �xi þ
Xn
i¼1

Xn
j¼1

1

2
SiSj�ij �xi �xj ð22:7Þ

where �ij is a ‘‘cross gamma’’ defined as

�ij ¼
@2P

@Si @Sj

Equation (22.7) is not as easy to work with as equation (22.1), but it can be used to
calculate moments for �P. A result in statistics known as the Cornish–Fisher expansion
can be used to estimate percentiles of the probability distribution from the moments.9

22.6 MONTE CARLO SIMULATION

As an alternative to the procedure described so far, the model-building approach can be
implemented using Monte Carlo simulation to generate the probability distribution

8 The Taylor series expansion in the appendix to Chapter 19 suggests the approximation

�P ¼ ��tþ ��S þ 1
2
�ð�SÞ2

when terms of higher order than �t are ignored. In practice, the ��t term is so small that it is usually

ignored.
9 See Technical Note 10 at www.rotman.utoronto.ca/�hull/TechnicalNotes for details of the calculation of

moments and the use of Cornish–Fisher expansions. When there is a single underlying variable, Eð�PÞ ¼
0:5S 2��2, Eð�P 2Þ ¼ S 2�2�2 þ 0:75S 4�2�4, and Eð�P 3Þ ¼ 4:5S 4�2��4 þ 1:875S 6�3�6, where S is the value of

the variable and � is its daily volatility. Sample Application E in the DerivaGem Applications implements the

Cornish–Fisher expansion method for this case.
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for �P. Suppose we wish to calculate a 1-day VaR for a portfolio. The procedure is
as follows:

1. Value the portfolio today in the usual way using the current values of market
variables.

2. Sample once from the multivariate normal probability distribution of the �xi.
10

3. Use the values of the �xi that are sampled to determine the value of each market
variable at the end of one day.

4. Revalue the portfolio at the end of the day in the usual way.

5. Subtract the value calculated in Step 1 from the value in Step 4 to determine a
sample �P.

6. Repeat Steps 2 to 5 many times to build up a probability distribution for �P.

The VaR is calculated as the appropriate percentile of the probability distribution of
�P. Suppose, for example, that we calculate 5,000 different sample values of �P in the
way just described. The 1-day 99% VaR is the value of �P for the 50th worst outcome;
the 1-day VaR 95% is the value of �P for the 250th worst outcome; and so on.11 The
N-day VaR is usually assumed to be the 1-day VaR multiplied by

ffiffiffiffi
N

p
.12

The drawback of Monte Carlo simulation is that it tends to be slow because a
company’s complete portfolio (which might consist of hundreds of thousands of
different instruments) has to be revalued many times.13 One way of speeding things up
is to assume that equation (22.7) describes the relationship between �P and the �xi. We
can then jump straight from Step 2 to Step 5 in theMonte Carlo simulation and avoid the
need for a complete revaluation of the portfolio. This is sometimes referred to as the
partial simulation approach. A similar approach is sometimes used when implementing
historical simulation.

22.7 COMPARISON OF APPROACHES

We have discussed two methods for estimating VaR: the historical simulation approach
and the model-building approach. The advantages of the model-building approach are
that results can be produced very quickly and it can easily be used in conjunction with
volatility updating schemes such as those we will describe in the next chapter. The main
disadvantage of the model-building approach is that it assumes that the market variables
have a multivariate normal distribution. In practice, daily changes in market variables
often have distributions with tails that are quite different from the normal distribution.
This is illustrated in Table 20.1.

The historical simulation approach has the advantage that historical data determine
the joint probability distribution of the market variables. It also avoids the need for

10 One way of doing so is given in Section 21.6.
11 As in the case of historical simulation, extreme value theory can be used to ‘‘smooth the tails’’ so that

better estimates of extreme percentiles are obtained.
12 This is only approximately true when the portfolio includes options, but it is the assumption that is made

in practice for most VaR calculation methods.
13 An approach for limiting the number of portfolio revaluations is proposed in F. Jamshidian and Y. Zhu

‘‘Scenario simulation model: theory and methodology,’’ Finance and Stochastics, 1 (1997), 43–67.
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cash-flow mapping. The main disadvantages of historical simulation are that it is
computationally slow and does not easily allow volatility updating schemes to be used.14

One disadvantage of the model-building approach is that it tends to give poor results
for low-delta portfolios (see Problem 22.21).

22.8 STRESS TESTING AND BACK TESTING

In addition to calculating VaR, many companies carry out what is known as stress
testing. This involves estimating how a company’s portfolio would have performed
under some of the most extreme market moves seen in the last 10 to 20 years.

For example, to test the impact of an extreme movement in US equity prices, a
company might set the percentage changes in all market variables equal to those on
October 19, 1987 (when the S&P 500 moved by 22.3 standard deviations). If this is
considered to be too extreme, the company might choose January 8, 1988 (when the S&P
500 moved by 6.8 standard deviations). To test the effect of extreme movements in UK
interest rates, the company might set the percentage changes in all market variables equal
to those on April 10, 1992 (when 10-year bond yields moved by 7.7 standard deviations).

The scenarios used in stress testing are also sometimes generated by senior manage-
ment. One technique sometimes used is to ask senior management to meet periodically
and ‘‘brainstorm’’ to develop extreme scenarios that might occur given the current
economic environment and global uncertainties.

Stress testing can be considered as a way of taking into account extreme events that
do occur from time to time but are virtually impossible according to the probability
distributions assumed for market variables. A 5-standard-deviation daily move in a
market variable is one such extreme event. Under the assumption of a normal
distribution, it happens about once every 7,000 years, but, in practice, it is not
uncommon to see a 5-standard-deviation daily move once or twice every 10 years.

Following the credit crisis of 2007 and 2008, regulators have proposed the calculation
of stressed VaR. This is VaR based on a historical simulation of how market variables
moved during a period of stressed market conditions (such as those in 2008).

Whatever the method used for calculating VaR, an important reality check is back
testing. It involves testing how well the VaR estimates would have performed in the past.
Suppose that we are calculating a 1-day 99% VaR. Back testing would involve looking
at how often the loss in a day exceeded the 1-day 99% VaR that would have been
calculated for that day. If this happened on about 1% of the days, we can feel
reasonably comfortable with the methodology for calculating VaR. If it happened
on, say, 7% of days, the methodology is suspect.

22.9 PRINCIPAL COMPONENTS ANALYSIS

One approach to handling the risk arising from groups of highly correlated market
variables is principal components analysis. This is a standard statistical tool with many

14 For a way of adapting the historical simulation approach to incorporate volatility updating, see J. Hull

and A. White. ‘‘Incorporating volatility updating into the historical simulation method for value-at-risk,’’

Journal of Risk 1, No. 1 (1998): 5–19.
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applications in risk management. It takes historical data on movements in the market

variables and attempts to define a set of components or factors that explain the

movements.

The approach is best illustrated with an example. The market variables we will

consider are swap rates with maturities 1 year, 2 years 3 years, 4 years, 5 years, 7 years,

10 years, and 30 years. Tables 22.7 and 22.8 show results produced for these market

variables using 2,780 daily observations between 2000 and 2011. The first column in

Table 22.7 shows the maturities of the rates that were considered. The remaining eight

columns in the table show the eight factors (or principal components) describing the

rate moves. The first factor, shown in the column labeled PC1, corresponds to a roughly

parallel shift in the yield curve. When we have one unit of that factor, the 1-year rate

increases by 0.216 basis points, the 2-year rate increases by 0.331 basis points, and so

on. The second factor is shown in the column labeled PC2. It corresponds to a ‘‘twist’’

or change of slope of the yield curve. Rates between 1 year and 4 years move in one

direction; rates between 5 years and 30 years move in the other direction. The third

factor corresponds to a ‘‘bowing’’ of the yield curve. Relatively short rates (1 year and

2 year) and relatively long rates (10 year and 30 year) move in one direction; the

intermediate rates move in the other direction. The interest rate move for a particular

factor is known as factor loading. In our example, the first factor’s loading for the

1-year rate is 0.216.15

Because there are eight rates and eight factors, the interest rate changes observed on

any given day can always be expressed as a linear sum of the factors by solving a set of

eight simultaneous equations. The quantity of a particular factor in the interest rate

changes on a particular day is known as the factor score for that day.

The importance of a factor is measured by the standard deviation of its factor score.

The standard deviations of the factor scores in our example are shown in Table 22.8 and

the factors are listed in order of their importance. The numbers in Table 22.8 are

measured in basis points. A quantity of the first factor equal to 1 standard deviation,

therefore, corresponds to the 1-year rate moving by 0:216� 17:55 ¼ 3:78 basis points,

the 2-year rate moving by 0:331� 17:55 ¼ 5:81 basis points, and so on.

Software for carrying out the calculations underlying Tables 22.7 and 22.8 is on the

Table 22.7 Factor loadings for swap data.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

1y 0.216 �0.501 0.627 �0.487 0.122 0.237 0.011 �0.034

2y 0.331 �0.429 0.129 0.354 �0.212 �0.674 �0.100 0.236

3y 0.372 �0.267 �0.157 0.414 �0.096 0.311 0.413 �0.564

4y 0.392 �0.110 �0.256 0.174 �0.019 0.551 �0.416 0.512

5y 0.404 0.019 �0.355 �0.269 0.595 �0.278 �0.316 �0.327

7y 0.394 0.194 �0.195 �0.336 0.007 �0.100 0.685 0.422

10y 0.376 0.371 0.068 �0.305 �0.684 �0.039 �0.278 �0.279

30y 0.305 0.554 0.575 0.398 0.331 0.022 0.007 0.032

15 The factor loadings have the property that the sum of their squares for each factor is 1.0. Also, note that a

factor is not changed if the signs of all its factor loadings are reversed.
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author’s website. The factors have the property that the factor scores are uncorrelated
across the data. For instance, in our example, the first factor score (amount of parallel
shift) is uncorrelated with the second factor score (amount of twist) across the 2,780
days. The variances of the factor scores have the property that they add up to the total

variance of the data. From Table 22.8, the total variance of the original data (that is,
sum of the variance of the observations on the 1-year rate, the variance of the
observations on the 2-year rate, and so on) is

17:552 þ 4:772 þ 2:082 þ � � � þ 0:532 ¼ 338:8

From this it can be seen that the first factor accounts for 17:552=338:8 ¼ 90:9% of the

variance in the original data; the first two factors account for

ð17:552 þ 4:772Þ=338:8 ¼ 97:7%

of the variance in the data; the third factor accounts for a further 1.3% of the variance.
This shows that most of the risk in interest rate moves is accounted for by the first two
or three factors. It suggests that we can relate the risks in a portfolio of interest rate
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Figure 22.7 The three most important factors driving movements in swap rates.

Table 22.8 Standard deviation of factor scores (basis points).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

17.55 4.77 2.08 1.29 0.91 0.73 0.56 0.53
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dependent instruments to movements in these factors instead of considering all eight
interest rates.

The three most important factors from Table 22.7 are plotted in Figure 22.7.16

Using Principal Components Analysis to Calculate VaR

To illustrate how a principal components analysis can be used to calculate VaR, consider
a portfolio with the exposures to interest rate moves shown in Table 22.9. A 1-basis-point
change in the 3-year rate causes the portfolio value to increase by $10 million, a 1-basis-
point change in the 4-year rate causes it to increase by $4 million, and so on. Suppose the
first two factors are used to model rate moves. (As mentioned above, this captures 97.7%
of the variance in rate moves.) Using the data in Table 22.7, the exposure to the first
factor (measured in millions of dollars per factor score basis point) is

10� 0:372þ 4� 0:392� 8� 0:404� 7� 0:394þ 2� 0:376 ¼ �0:05

and the exposure to the second factor is

10� ð�0:267Þ þ 4� ð�0:110Þ � 8� 0:019� 7� 0:194þ 2� 0:371 ¼ �3:87

Suppose that f1 and f2 are the factor scores (measured in basis points). The change in
the portfolio value is, to a good approximation, given by

�P ¼ �0:05f1 � 3:87f2

The factor scores are uncorrelated and have the standard deviations given in Table 22.8.
The standard deviation of �P is therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 � 17:552 þ 3:872 � 4:772

p
¼ 18:48

Hence, the 1-day 99% VaR is 18:48� 2:326 ¼ 42:99. Note that the data in Table 22.9
are such that there is very little exposure to the first factor and significant exposure to
the second factor. Using only one factor would significantly understate VaR (see
Problem 22.11). The duration-based method for handling interest rates, mentioned in
Section 22.4, would also significantly understate VaR as it considers only parallel shifts
in the yield curve.

A principal components analysis can in theory be used for market variables other
than interest rates. Suppose that a financial institution has exposures to a number of

Table 22.9 Change in portfolio value for a 1-basis-point
rate move ($ millions).

3-year
rate

4-year
rate

5-year
rate

7-year
rate

10-year
rate

þ10 þ4 �8 �7 þ2

16 Results similar to those described here, concerning the nature of the factors and the amount of the total

risk they account for, are obtained when a principal components analysis is used to explain the movements in

almost any yield curve in any country.
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different stock indices. A principal components analysis can be used to identify factors
describing movements in the indices and the most important of these can be used to
replace the market indices in a VaR analysis. How effective a principal components
analysis is for a group of market variables depends on how closely correlated they are.

As explained earlier in the chapter, VaR is usually calculated by relating the actual
changes in a portfolio to percentage changes in market variables (the �xi). For a VaR
calculation, it may therefore be most appropriate to carry out a principal components
analysis on percentage changes in market variables rather than actual changes.

SUMMARY

A value at risk (VaR) calculation is aimed at making a statement of the form: ‘‘We
are X percent certain that we will not lose more than V dollars in the next N days.’’
The variable V is the VaR, X% is the confidence level, and N days is the time
horizon.

One approach to calculating VaR is historical simulation. This involves creating a
database consisting of the daily movements in all market variables over a period of
time. The first simulation trial assumes that the percentage changes in each market
variable are the same as those on the first day covered by the database; the second
simulation trial assumes that the percentage changes are the same as those on the
second day; and so on. The change in the portfolio value, �P, is calculated for each
simulation trial, and the VaR is calculated as the appropriate percentile of the
probability distribution of �P.

An alternative is the model-building approach. This is relatively straightforward if
two assumptions can be made:

1. The change in the value of the portfolio (�P) is linearly dependent on percentage
changes in market variables.

2. The percentage changes in market variables are multivariate normally distributed.

The probability distribution of �P is then normal, and there are analytic formulas for
relating the standard deviation of �P to the volatilities and correlations of the under-
lying market variables. The VaR can be calculated from well-known properties of the
normal distribution.

When a portfolio includes options, �P is not linearly related to the percentage
changes in market variables. From knowledge of the gamma of the portfolio, we can
derive an approximate quadratic relationship between �P and percentage changes in
market variables. Monte Carlo simulation can then be used to estimate VaR.

In the next chapter we discuss how volatilities and correlations can be estimated and
monitored.
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Practice Questions (Answers in Solutions Manual)

22.1. Consider a position consisting of a $100,000 investment in asset A and a $100,000
investment in asset B. Assume that the daily volatilities of both assets are 1% and that
the coefficient of correlation between their returns is 0.3. What is the 5-day 99% VaR for
the portfolio?

22.2. Describe three ways of handling instruments that are dependent on interest rates when
the model-building approach is used to calculate VaR. How would you handle these
instruments when historical simulation is used to calculate VaR?

22.3. A financial institution owns a portfolio of options on the US dollar–sterling exchange
rate. The delta of the portfolio is 56.0. The current exchange rate is 1.5000. Derive an
approximate linear relationship between the change in the portfolio value and the
percentage change in the exchange rate. If the daily volatility of the exchange rate is
0.7%, estimate the 10-day 99% VaR.

22.4. Suppose you know that the gamma of the portfolio in the previous question is 16.2. How
does this change your estimate of the relationship between the change in the portfolio
value and the percentage change in the exchange rate?

22.5. Suppose that the daily change in the value of a portfolio is, to a good approximation,
linearly dependent on two factors, calculated from a principal components analysis. The
delta of a portfolio with respect to the first factor is 6 and the delta with respect to the
second factor is �4. The standard deviations of the factors are 20 and 8, respectively.
What is the 5-day 90% VaR?
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22.6. Suppose that a company has a portfolio consisting of positions in stocks and bonds.
Assume that there are no derivatives. Explain the assumptions underlying (a) the linear
model and (b) the historical simulation model for calculating VaR.

22.7. Explain how an interest rate swap is mapped into a portfolio of zero-coupon bonds with
standard maturities for the purposes of a VaR calculation.

22.8. Explain the difference between value at risk and expected shortfall.

22.9. Explain why the linear model can provide only approximate estimates of VaR for a
portfolio containing options.

22.10. Some time ago a company entered into a forward contract to buy £1 million for
$1.5 million. The contract now has 6 months to maturity. The daily volatility of a
6-month zero-coupon sterling bond (when its price is translated to dollars) is 0.06% and
the daily volatility of a 6-month zero-coupon dollar bond is 0.05%. The correlation
between returns from the two bonds is 0.8. The current exchange rate is 1.53. Calculate
the standard deviation of the change in the dollar value of the forward contract in 1 day.
What is the 10-day 99% VaR? Assume that the 6-month interest rate in both sterling and
dollars is 5% per annum with continuous compounding.

22.11. The text calculates a VaR estimate for the example in Table 22.9 assuming two factors.
How does the estimate change if you assume (a) one factor and (b) three factors.

22.12. A bank has a portfolio of options on an asset. The delta of the options is –30 and the
gamma is �5. Explain how these numbers can be interpreted. The asset price is 20 and
its volatility is 1% per day. Adapt Sample Application E in the DerivaGem Application
Builder software to calculate VaR.

22.13. Suppose that in Problem 22.12 the vega of the portfolio is �2 per 1% change in the
annual volatility. Derive a model relating the change in the portfolio value in 1 day to
delta, gamma, and vega. Explain without doing detailed calculations how you would use
the model to calculate a VaR estimate.

22.14. The one-day 99% VaR is calculated for the four-index example in Section 22.2 as
$253,385. Look at the underlying spreadsheets on the author’s website and calculate:
(a) the one-day 95% VaR and (b) the one-day 97% VaR.

22.15. Use the spreadsheets on the author’s website to calculate the one-day 99% VaR, using the
basic methodology in Section 22.2, if the four-index portfolio considered in Section 22.2 is
equally divided between the four indices.

Further Questions

22.16. A company has a position in bonds worth $6 million. The modified duration of the
portfolio is 5.2 years. Assume that only parallel shifts in the yield curve can take place
and that the standard deviation of the daily yield change (when yield is measured in
percent) is 0.09. Use the duration model to estimate the 20-day 90% VaR for the
portfolio. Explain carefully the weaknesses of this approach to calculating VaR. Explain
two alternatives that give more accuracy.

22.17. Consider a position consisting of a $300,000 investment in gold and a $500,000
investment in silver. Suppose that the daily volatilities of these two assets are 1.8%
and 1.2%, respectively, and that the coefficient of correlation between their returns is 0.6.
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What is the 10-day 97.5% VaR for the portfolio? By how much does diversification
reduce the VaR?

22.18. Consider a portfolio of options on a single asset. Suppose that the delta of the portfolio
is 12, the value of the asset is $10, and the daily volatility of the asset is 2%. Estimate the
1-day 95% VaR for the portfolio from the delta. Suppose next that the gamma of the
portfolio is �2:6. Derive a quadratic relationship between the change in the portfolio
value and the percentage change in the underlying asset price in one day. How would
you use this in a Monte Carlo simulation?

22.19. A company has a long position in a 2-year bond and a 3-year bond, as well as a short
position in a 5-year bond. Each bond has a principal of $100 and pays a 5% coupon
annually. Calculate the company’s exposure to the 1-year, 2-year, 3-year, 4-year, and
5-year rates. Use the data in Tables 22.7 and 22.8 to calculate a 20-day 95% VaR on the
assumption that rate changes are explained by (a) one factor, (b) two factors,
and (c) three factors. Assume that the zero-coupon yield curve is flat at 5%.

22.20. A bank has written a call option on one stock and a put option on another stock. For
the first option the stock price is 50, the strike price is 51, the volatility is 28% per
annum, and the time to maturity is 9 months. For the second option the stock price is
20, the strike price is 19, the volatility is 25% per annum, and the time to maturity is
1 year. Neither stock pays a dividend, the risk-free rate is 6% per annum, and the
correlation between stock price returns is 0.4. Calculate a 10-day 99% VaR:
(a) Using only deltas
(b) Using the partial simulation approach
(c) Using the full simulation approach.

22.21. A common complaint of risk managers is that the model-building approach (either linear
or quadratic) does not work well when delta is close to zero. Test what happens when delta
is close to zero by using Sample Application E in the DerivaGem Applications. (You can
do this by experimenting with different option positions and adjusting the position in the
underlying to give a delta of zero.) Explain the results you get.

22.22. Suppose that the portfolio considered in Section 22.2 has (in $000s) 3,000 in DJIA, 3,000
in FTSE, 1,000 in CAC 40 and 3,000 in Nikkei 225. Use the spreadsheet on the author’s
website to calculate what difference this makes to the one-day 99% VaR that is
calculated in Section 22.2.
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Estimating
Volatilities and

Correlations

In this chapter we explain how historical data can be used to produce estimates of the

current and future levels of volatilities and correlations. The chapter is relevant both to

the calculation of value at risk using the model-building approach and to the valuation

of derivatives. When calculating value at risk, we are most interested in the current

levels of volatilities and correlations because we are assessing possible changes in the

value of a portfolio over a very short period of time. When valuing derivatives, forecasts

of volatilities and correlations over the whole life of the derivative are usually required.

The chapter considers models with imposing names such as exponentially weighted

moving average (EWMA), autoregressive conditional heteroscedasticity (ARCH), and

generalized autoregressive conditional heteroscedasticity (GARCH). The distinctive

feature of the models is that they recognize that volatilities and correlations are not

constant. During some periods, a particular volatility or correlation may be relatively

low, whereas during other periods it may be relatively high. The models attempt to keep

track of the variations in the volatility or correlation through time.

23.1 ESTIMATING VOLATILITY

Define �n as the volatility of a market variable on day n, as estimated at the end of

day n� 1. The square of the volatility, �2
n, on day n is the variance rate. We described

the standard approach to estimating �n from historical data in Section 15.4. Suppose

that the value of the market variable at the end of day i is Si. The variable ui is defined

as the continuously compounded return during day i (between the end of day i� 1 and

the end of day i):

ui ¼ ln
Si

Si�1

An unbiased estimate of the variance rate per day, �2
n, using the most recent m

observations on the ui is

�2
n ¼ 1

m� 1

Xm
i¼1

ðun�i � �uÞ2 ð23:1Þ
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where �u is the mean of the uis:

�u ¼ 1

m

Xm
i¼1

un�i

For the purposes of monitoring daily volatility, the formula in equation (23.1) is
usually changed in a number of ways:

1. ui is defined as the percentage change in the market variable between the end of
day i� 1 and the end of day i, so that:1

ui ¼
Si � Si�1

Si�1

ð23:2Þ
2. �u is assumed to be zero.2

3. m� 1 is replaced by m.3

These three changes make very little difference to the estimates that are calculated, but
they allow us to simplify the formula for the variance rate to

�2
n ¼ 1

m

Xm
i¼1

u
2
n�i ð23:3Þ

where ui is given by equation (23.2).4

Weighting Schemes

Equation (23.3) gives equal weight to u
2
n�1; u

2
n�2; . . . ; u

2
n�m. Our objective is to estimate

the current level of volatility, �n. It therefore makes sense to give more weight to recent
data. A model that does this is

�2
n ¼

Xm
i¼1

�i u
2
n�i ð23:4Þ

The variable �i is the amount of weight given to the observation i days ago. The �’s are
positive. If we choose them so that �i < �j when i > j, less weight is given to older
observations. The weights must sum to unity, so that

Xm
i¼1

�i ¼ 1

1 This is consistent with the point made in Section 22.3 about the way that volatility is defined for the

purposes of VaR calculations.
2 As explained in Section 22.3, this assumption usually has very little effect on estimates of the variance

because the expected change in a variable in one day is very small when compared with the standard deviation

of changes.
3 Replacing m� 1 by m moves us from an unbiased estimate of the variance to a maximum likelihood

estimate. Maximum likelihood estimates are discussed later in the chapter.
4 Note that the u’s in this chapter play the same role as the �x’s in Chapter 22. Both are daily percentage

changes in market variables. In the case of the u’s, the subscripts count observations made on different days

on the same market variable. In the case of the �x’s, they count observations made on the same day on

different market variables. The use of subscripts for � is similarly different between the two chapters. In this

chapter, the subscripts refer to days; in Chapter 22 they referred to market variables.
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An extension of the idea in equation (23.4) is to assume that there is a long-run average
variance rate and that this should be given some weight. This leads to the model that
takes the form

�2
n ¼ �VL þ

Xm
i¼1

�i u
2
n�i ð23:5Þ

where VL is the long-run variance rate and � is the weight assigned to VL. Since the
weights must sum to unity, we have

� þ
Xm
i¼1

�i ¼ 1

This is known as an ARCH(m) model. It was first suggested by Engle.5 The estimate of
the variance is based on a long-run average variance and m observations. The older an
observation, the less weight it is given. Defining ! ¼ �VL, the model in equation (23.5)
can be written

�2
n ¼ !þ

Xm
i¼1

�i u
2
n�i ð23:6Þ

In the next two sections we discuss two important approaches to monitoring volatility
using the ideas in equations (23.4) and (23.5).

23.2 THE EXPONENTIALLY WEIGHTED MOVING AVERAGE MODEL

The exponentially weighted moving average (EWMA) model is a particular case of the
model in equation (23.4) where the weights �i decrease exponentially as we move back
through time. Specifically, �iþ1 ¼ ��i, where � is a constant between 0 and 1.

It turns out that this weighting scheme leads to a particularly simple formula for
updating volatility estimates. The formula is

�2
n ¼ ��2

n�1 þ ð1� �Þu2n�1 ð23:7Þ
The estimate, �n, of the volatility of a variable for day n (made at the end of day n� 1) is
calculated from �n�1 (the estimate that was made at the end of day n� 2 of the volatility
for day n� 1) and un�1 (the most recent daily percentage change in the variable).

To understand why equation (23.7) corresponds to weights that decrease exponen-
tially, we substitute for �2

n�1 to get

�2
n ¼ �½��2

n�2 þ ð1� �Þu2n�2� þ ð1� �Þu2n�1

or

�2
n ¼ ð1� �Þðu2n�1 þ �u2n�2Þ þ �2�2

n�2

Substituting in a similar way for �2
n�2 gives

�2
n ¼ ð1� �Þðu2n�1 þ �u2n�2 þ �2u2n�3Þ þ �3�2

n�3

5 See R. Engle ‘‘Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK

Inflation,’’ Econometrica, 50 (1982): 987–1008.
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Continuing in this way gives

�2
n ¼ ð1� �Þ

Xm
i¼1

�i�1
u
2
n�i þ �m�2

n�m

For large m, the term �m�2
n�m is sufficiently small to be ignored, so that equation (23.7)

is the same as equation (23.4) with �i ¼ ð1� �Þ�i�1. The weights for the ui decline at

rate � as we move back through time. Each weight is � times the previous weight.

Example 23.1

Suppose that � is 0.90, the volatility estimated for a market variable for day n� 1

is 1% per day, and during day n� 1 the market variable increased by 2%. This

means that �2n�1 ¼ 0:012 ¼ 0:0001 and u
2
n�1 ¼ 0:022 ¼ 0:0004. Equation (23.7)

gives

�2
n ¼ 0:9� 0:0001þ 0:1� 0:0004 ¼ 0:00013

The estimate of the volatility, �n, for day n is therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00013

p
, or 1.14%, per

day. Note that the expected value of u2n�1 is �2n�1, or 0.0001. In this example, the

realized value of u
2
n�1 is greater than the expected value, and as a result our

volatility estimate increases. If the realized value of u2n�1 had been less than its

expected value, our estimate of the volatility would have decreased.

The EWMA approach has the attractive feature that relatively little data need be

stored. At any given time, only the current estimate of the variance rate and the most

recent observation on the value of the market variable need be remembered. When a

new observation on the market variable is obtained, a new daily percentage change is

calculated and equation (23.7) is used to update the estimate of the variance rate. The

old estimate of the variance rate and the old value of the market variable can then be

discarded.

The EWMA approach is designed to track changes in the volatility. Suppose there

is a big move in the market variable on day n� 1, so that u
2
n�1 is large. From

equation (23.7) this causes the estimate of the current volatility to move upward.

The value of � governs how responsive the estimate of the daily volatility is to the

most recent daily percentage change. A low value of � leads to a great deal of weight

being given to the u
2
n�1 when �n is calculated. In this case, the estimates produced for

the volatility on successive days are themselves highly volatile. A high value of � (i.e.,

a value close to 1.0) produces estimates of the daily volatility that respond relatively

slowly to new information provided by the daily percentage change.

The RiskMetrics database, which was originally created by JPMorgan and made

publicly available in 1994, used the EWMA model with � ¼ 0:94 for updating daily

volatility estimates. This is because the company found that, across a range of different

market variables, this value of � gives forecasts of the variance rate that come closest to

the realized variance rate.6 The realized variance rate on a particular day was calculated

as an equally weighted average of the u2i on the subsequent 25 days (see Problem 23.19).

6 See JPMorgan, RiskMetrics Monitor, Fourth Quarter, 1995. We will explain an alternative (maximum

likelihood) approach to estimating parameters later in the chapter.
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23.3 THE GARCH(1,1) MODEL

We now move on to discuss what is known as the GARCH(1,1) model, proposed by
Bollerslev in 1986.7 The difference between the GARCH(1,1) model and the EWMA
model is analogous to the difference between equation (23.4) and equation (23.5). In
GARCH(1,1), �2

n is calculated from a long-run average variance rate, VL, as well as
from �n�1 and un�1. The equation for GARCH(1,1) is

�2
n ¼ �VL þ �u2n�1 þ ��2

n�1 ð23:8Þ
where � is the weight assigned to VL, � is the weight assigned to u

2
n�1, and � is the weight

assigned to �2
n�1. Since the weights must sum to unity, it follows that

� þ �þ � ¼ 1

The EWMA model is a particular case of GARCH(1,1) where � ¼ 0, � ¼ 1� �,
and � ¼ �.

The ‘‘(1,1)’’ in GARCH(1,1) indicates that �2
n is based on the most recent observa-

tion of u
2 and the most recent estimate of the variance rate. The more general

GARCH(p, q) model calculates �2
n from the most recent p observations on u

2 and
the most recent q estimates of the variance rate.8 GARCH(1,1) is by far the most
popular of the GARCH models.

Setting ! ¼ �VL, the GARCH(1,1) model can also be written

�2
n ¼ !þ �u2n�1 þ ��2

n�1 ð23:9Þ
This is the form of the model that is usually used for the purposes of estimating the
parameters. Once !, �, and � have been estimated, we can calculate � as 1� �� �. The
long-term variance VL can then be calculated as !=�. For a stable GARCH(1,1) process
we require �þ � < 1. Otherwise the weight applied to the long-term variance is
negative.

Example 23.2

Suppose that a GARCH(1,1) model is estimated from daily data as

�2
n ¼ 0:000002þ 0:13u2n�1 þ 0:86�2

n�1

This corresponds to � ¼ 0:13, � ¼ 0:86, and ! ¼ 0:000002. Because
� ¼ 1� �� �, it follows that � ¼ 0:01. Because ! ¼ �VL, it follows that
VL ¼ 0:0002. In other words, the long-run average variance per day implied by
the model is 0.0002. This corresponds to a volatility of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0002

p ¼ 0:014, or 1.4%,
per day.

7 See T. Bollerslev, ‘‘Generalized Autoregressive Conditional Heteroscedasticity,’’ Journal of Econometrics,

31 (1986): 307–27.
8 Other GARCH models have been proposed that incorporate asymmetric news. These models are designed

so that �n depends on the sign of un�1. Arguably, the models are more appropriate for equities than

GARCH(1,1). As mentioned in Chapter 20, the volatility of an equity’s price tends to be inversely related to

the price so that a negative un�1 should have a bigger effect on �n than the same positive un�1. For a

discussion of models for handling asymmetric news, see D. Nelson, ‘‘Conditional Heteroscedasticity and

Asset Returns: A New Approach,’’ Econometrica, 59 (1990): 347–70; R. F. Engle and V. Ng, ‘‘Measuring and

Testing the Impact of News on Volatility,’’ Journal of Finance, 48 (1993): 1749–78.
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Suppose that the estimate of the volatility on day n� 1 is 1.6% per day, so that
�2n�1 ¼ 0:0162 ¼ 0:000256, and that on day n� 1 the market variable decreased
by 1%, so that u2n�1 ¼ 0:012 ¼ 0:0001. Then

�2
n ¼ 0:000002þ 0:13� 0:0001þ 0:86� 0:000256 ¼ 0:00023516

The new estimate of the volatility is therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00023516

p ¼ 0:0153, or 1.53%,
per day.

The Weights

Substituting for �2
n�1 in equation (23.9) gives

�2
n ¼ !þ �u2n�1 þ �ð!þ �u2n�2 þ ��2

n�2Þ
or

�2
n ¼ !þ �!þ �u2n�1 þ ��u2n�2 þ �2�2

n�2

Substituting for �2
n�2 gives

�2
n ¼ !þ �!þ �2!þ �u2n�1 þ ��u2n�2 þ ��2

u
2
n�3 þ �3�2

n�3

Continuing in this way, we see that the weight applied to u
2
n�i is �� i�1. The weights

decline exponentially at rate �. The parameter � can be interpreted as a ‘‘decay rate’’. It
is similar to � in the EWMA model. It defines the relative importance of the observa-
tions on the u’s in determining the current variance rate. For example, if � ¼ 0:9, then
u
2
n�2 is only 90% as important as u2n�1; u

2
n�3 is 81% as important as u2n�1; and so on.

The GARCH(1,1) model is similar to the EWMA model except that, in addition to
assigning weights that decline exponentially to past u2, it also assigns some weight to
the long-run average volatility.

Mean Reversion

The GARCH (1,1) model recognizes that over time the variance tends to get pulled
back to a long-run average level of VL. The amount of weight assigned to VL is � ¼
1� �� �. The GARCH(1,1) is equivalent to a model where the variance V follows the
stochastic process

dV ¼ aðVL � V Þ dtþ �V dz

where time is measured in days, a ¼ 1� �� �, and � ¼ �
ffiffiffi
2

p
(see Problem 23.14). This

is a mean-reverting model. The variance has a drift that pulls it back to VL at rate a.
When V > VL, the variance has a negative drift; when V < VL, it has a positive drift.
Superimposed on the drift is a volatility �. Chapter 27 discusses this type of model
further.

23.4 CHOOSING BETWEEN THE MODELS

In practice, variance rates do tend to be mean reverting. The GARCH(1,1) model
incorporates mean reversion, whereas the EWMA model does not. GARCH (1,1) is
therefore theoretically more appealing than the EWMA model.
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In the next section, we will discuss how best-fit parameters !, �, and � in GARCH(1,1)
can be estimated. When the parameter ! is zero, the GARCH(1,1) reduces to EWMA. In
circumstances where the best-fit value of ! turns out to be negative, the GARCH(1,1)
model is not stable and it makes sense to switch to the EWMA model.

23.5 MAXIMUM LIKELIHOOD METHODS

It is now appropriate to discuss how the parameters in the models we have been
considering are estimated from historical data. The approach used is known as the
maximum likelihood method. It involves choosing values for the parameters that
maximize the chance (or likelihood) of the data occurring.

To illustrate the method, we start with a very simple example. Suppose that we
sample 10 stocks at random on a certain day and find that the price of one of them
declined on that day and the prices of the other nine either remained the same or
increased. What is the best estimate of the probability of a stock’s price declining on the
day? The natural answer is 0.1. Let us see if this is what the maximum likelihood
method gives.

Suppose that the probability of a price decline is p. The probability that one
particular stock declines in price and the other nine do not is pð1� pÞ9. Using the
maximum likelihood approach, the best estimate of p is the one that maximizes
pð1� pÞ9. Differentiating this expression with respect to p and setting the result equal
to zero, we find that p ¼ 0:1 maximizes the expression. This shows that the maximum
likelihood estimate of p is 0.1, as expected.

Estimating a Constant Variance

Our next example of maximum likelihood methods considers the problem of estimating
the variance of a variable X from m observations on X when the underlying distribution
is normal with zero mean. Assume that the observations are u1, u2, . . . , um. Denote the
variance by v. The likelihood of ui being observed is defined as the probability density
function for X when X ¼ ui. This is

1ffiffiffiffiffiffiffiffi
2�v

p exp

��u
2
i

2v

�

The likelihood of m observations occurring in the order in which they are observed is

Ym
i¼1

�
1ffiffiffiffiffiffiffiffi
2�v

p exp

��u
2
i

2v

��
ð23:10Þ

Using the maximum likelihood method, the best estimate of v is the value that
maximizes this expression.

Maximizing an expression is equivalent to maximizing the logarithm of the expres-
sion. Taking logarithms of the expression in equation (23.10) and ignoring constant
multiplicative factors, it can be seen that we wish to maximize

Xm
i¼1

�
� lnðvÞ � u

2
i

v

�
ð23:11Þ
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or

�m lnðvÞ �
Xm
i¼1

u
2
i

v

Differentiating this expression with respect to v and setting the resulting equation to

zero, we see that the maximum likelihood estimator of v is9

1

m

Xm
i¼1

u
2
i

Estimating EWMA or GARCH (1,1) Parameters

We now consider how the maximum likelihood method can be used to estimate the

parameters when EWMA, GARCH (1,1), or some other volatility updating scheme is

used. Define vi ¼ �2
i as the variance estimated for day i. Assume that the probability

distribution of ui conditional on the variance is normal. A similar analysis to the one

just given shows the best parameters are the ones that maximize

Ym
i¼1

�
1ffiffiffiffiffiffiffiffiffi
2�vi

p exp

��u
2
i

2vi

��

Taking logarithms, we see that this is equivalent to maximizing

Xm
i¼1

�
� lnðviÞ �

u
2
i

vi

�
ð23:12Þ

This is the same as the expression in equation (23.11), except that v is replaced by vi. It is

necessary to search iteratively to find the parameters in the model that maximize the

expression in equation (23.12).

The spreadsheet in Table 23.1 indicates how the calculations could be organized for

the GARCH(1,1) model. The table analyzes data on the S&P 500 between July 18, 2005,
and August 13, 2010.10 The first column in the table records the date. The second column

counts the days. The third column shows the S&P 500, Si, at the end of day i. The fourth

column shows the proportional change in the S&P 500 between the end of day i� 1 and

the end of day i. This is ui ¼ ðSi � Si�1Þ=Si�1. The fifth column shows the estimate of the

variance rate, vi ¼ �2
i , for day imade at the end of day i� 1. On day 3, we start things off

by setting the variance equal to u22. On subsequent days, equation (23.9) is used. The

sixth column tabulates the likelihood measure, � lnðviÞ � u2i =vi. The values in the fifth

and sixth columns are based on the current trial estimates of !, �, and �. We are

interested in choosing !, �, and � to maximize the sum of the numbers in the sixth

column. This involves an iterative search procedure.11

9 This confirms the point made in footnote 3.
10 The data and calculations can be found at www.rotman.utoronto.ca/�hull/OFOD/GarchExample.
11 As discussed later, a general purpose algorithm such as Solver in Microsoft’s Excel can be used.

Alternatively, a special purpose algorithm, such as Levenberg–Marquardt, can be used. See, e.g., W.H. Press,

B. P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C: The Art of Scientific

Computing, Cambridge University Press, 1988.
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In our example, the optimal values of the parameters turn out to be

! ¼ 0:0000013465; � ¼ 0:083394; � ¼ 0:910116

and the maximum value of the function in equation (23.12) is 10,228.2349. The

numbers shown in Table 23.1 were calculated on the final iteration of the search for

the optimal !, �, and �.
The long-term variance rate, VL, in our example is

!

1� �� �
¼ 0:0000013465

0:006490
¼ 0:0002075

The long-term volatility is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0002075

p
, or 1.4404%, per day.

Figures 23.1 and 23.2 show the S&P 500 index and its GARCH(1,1) volatility during

the 5-year period covered by the data. Most of the time, the volatility was less than 2%

per day, but volatilities as high as 5% per day were experienced during the credit crisis.

(Very high volatilities are also indicated by the VIX index—see Section 15.11.)

An alternative approach to estimating parameters inGARCH(1,1), which is sometimes

more robust, is known as variance targeting.12 This involves setting the long-run average

variance rate, VL, equal to the sample variance calculated from the data (or to some other

value that is believed to be reasonable). The value of! then equalsVLð1� �� �Þ and only
two parameters have to be estimated. For the data in Table 23.1, the sample variance is

0.0002412, which gives a daily volatility of 1.5531%. Setting VL equal to the sample

variance, the values of � and � that maximize the objective function in equation (23.12)

are 0.08445 and 0.9101, respectively. The value of the objective function is 10,228.1941,

only marginally below the value of 10,228.2349 obtained using the earlier procedure.

Table 23.1 Estimation of Parameters in GARCH(1,1) Model for S&P 500 between
July 18, 2005, and August 13, 2010.

Date Day i Si ui vi ¼ �2
i � lnðviÞ � u2i =vi

18-Jul-2005 1 1221.13
19-Jul-2005 2 1229.35 0.006731
20-Jul-2005 3 1235.20 0.004759 0.00004531 9.5022
21-Jul-2005 4 1227.04 �0.006606 0.00004447 9.0393
22-Jul-2005 5 1233.68 0.005411 0.00004546 9.3545
25-Jul-2005 6 1229.03 �0.003769 0.00004517 9.6906

..

. ..
. ..

. ..
. ..

. ..
.

11-Aug-2010 1277 1089.47 �0.028179 0.00011834 2.3322
12-Aug-2010 1278 1083.61 �0.005379 0.00017527 8.4841
13-Aug-2010 1279 1079.25 �0.004024 0.00016327 8.6209

10,228.2349

Trial estimates of GARCH parameters

! ¼ 0:0000013465 � ¼ 0:083394 � ¼ 0:910116

12 See R. Engle and J. Mezrich, ‘‘GARCH for Groups,’’ Risk, August 1996: 36–40.
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When the EWMA model is used, the estimation procedure is relatively simple. We set

! ¼ 0, � ¼ 1� �, and � ¼ �, and only one parameter has to be estimated. In the data in

Table 23.1, the value of � that maximizes the objective function in equation (23.12) is

0.9374 and the value of the objective function is 10,192.5104.

For both GARCH (1,1) and EWMA, we can use the Solver routine in Excel to search

for the values of the parameters that maximize the likelihood function. The routine

works well provided that the spreadsheet is structured so that the parameters being

searched for have roughly equal values. For example, in GARCH (1,1) we could let cells
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Figure 23.1 S&P 500 index: July 18, 2005, to August 13, 2010.
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Figure 23.2 Daily volatility of S&P 500 index: July 18, 2005, to August 13, 2010.
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A1, A2, and A3 contain !� 105, 10�, and �. We could then set B1=A1/100,000,
B2=A2/10, and B3=A3. We would use B1, B2, and B3 to calculate the likelihood
function. We would ask Solver to calculate the values of A1, A2, and A3 that maximize
the likelihood function. Occasionally Solver gives a local maximum, so testing a number
of different starting values for parameters is a good idea.

How Good Is the Model?

The assumption underlying a GARCH model is that volatility changes with the passage
of time. During some periods volatility is relatively high; during other periods it is
relatively low. To put this another way, when u

2
i is high, there is a tendency for u

2
iþ1,

u
2
iþ2, . . . to be high; when u

2
i is low, there is a tendency for u2iþ1, u

2
iþ2, . . . to be low. We

can test how true this is by examining the autocorrelation structure of the u
2
i .

Let us assume the u2i do exhibit autocorrelation. If a GARCHmodel is working well, it
should remove the autocorrelation. We can test whether it has done so by considering the
autocorrelation structure for the variables u2i =�

2
i . If these show very little autocorrelation,

our model for �i has succeeded in explaining autocorrelations in the u2i .

Table 23.2 shows results for the S&P 500 data used above. The first column shows the
lags considered when the autocorrelation is calculated. The second shows autocorrela-
tions for u

2
i ; the third shows autocorrelations for u

2
i =�

2
i .
13 The table shows that the

autocorrelations are positive for u2i for all lags between 1 and 15. In the case of u2i =�
2
i ,

some of the autocorrelations are positive and some are negative. They are all much
smaller in magnitude than the autocorrelations for u2i .

Table 23.2 Autocorrelations before and after the use of
a GARCH model for S&P 500 data.

Time lag Autocorrelation
for u2i

Autocorrelation
for u2i =�

2
i

1 0.183 �0.063

2 0.385 �0.004

3 0.160 �0.007

4 0.301 0.022

5 0.339 0.014

6 0.308 �0.011

7 0.329 0.026

8 0.207 0.038

9 0.324 0.041

10 0.269 0.083

11 0.431 �0.007

12 0.286 0.006

13 0.224 0.001

14 0.121 0.017

15 0.222 �0.031

13 For a series xi, the autocorrelation with a lag of k is the coefficient of correlation between xi and xiþk.
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The GARCH model appears to have done a good job in explaining the data. For a
more scientific test, we can use what is known as the Ljung–Box statistic.14 If a certain
series has m observations the Ljung–Box statistic is

m
XK
k¼1

wk 	
2
k

where 	k is the autocorrelation for a lag of k, K is the number of lags considered, and

wk ¼
mþ 2

m� k

For K ¼ 15, zero autocorrelation can be rejected with 95% confidence when the Ljung–
Box statistic is greater than 25.

From Table 23.2, the Ljung–Box statistic for the u
2
i series is about 1,566. This is

strong evidence of autocorrelation. For the u2i =�
2
i series, the Ljung–Box statistic is 21.7,

suggesting that the autocorrelation has been largely removed by the GARCH model.

23.6 USING GARCH(1,1) TO FORECAST FUTURE VOLATILITY

The variance rate estimated at the end of day n� 1 for day n, when GARCH(1,1) is
used, is

�2
n ¼ ð1� �� �ÞVL þ �u2n�1 þ ��2

n�1

so that

�2
n � VL ¼ �ðu2n�1 � VLÞ þ �ð�2

n�1 � VLÞ
On day nþ t in the future,

�2
nþt � VL ¼ �ðu2nþt�1 � VLÞ þ �ð�2

nþt�1 � VLÞ
The expected value of u2nþt�1 is �2

nþt�1. Hence,

E½�2
nþt � VL� ¼ ð�þ �ÞE½�2

nþt�1 � VL�
where E denotes expected value. Using this equation repeatedly yields

E½�2
nþt � VL� ¼ ð�þ �Þtð�2

n � VLÞ
or

E½�2
nþt� ¼ VL þ ð�þ �Þtð�2

n � VLÞ ð23:13Þ
This equation forecasts the volatility on day nþ t using the information available at the
end of day n� 1. In the EWMA model, �þ � ¼ 1 and equation (23.13) shows that the
expected future variance rate equals the current variance rate. When �þ � < 1, the final
term in the equation becomes progressively smaller as t increases. Figure 23.3 shows the
expected path followed by the variance rate for situations where the current variance
rate is different from VL. As mentioned earlier, the variance rate exhibits mean reversion
with a reversion level of VL and a reversion rate of 1� �� �. Our forecast of the future

14 See G.M. Ljung and G.E. P. Box, ‘‘On a Measure of Lack of Fit in Time Series Models,’’ Biometrica, 65

(1978): 297–303.
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variance rate tends towards VL as we look further and further ahead. This analysis
emphasizes the point that we must have �þ � < 1 for a stable GARCH(1,1) process.
When �þ � > 1, the weight given to the long-term average variance is negative and the
process is ‘‘mean fleeing’’ rather than ‘‘mean reverting’’.

For the S&P 500 data considered earlier, �þ � ¼ 0:9935 and VL ¼ 0:0002075.
Suppose that the estimate of the current variance rate per day is 0.0003. (This
corresponds to a volatility of 1.732% per day.) In 10 days, the expected variance rate is

0:0002075þ 0:993510ð0:0003� 0:0002075Þ ¼ 0:0002942

The expected volatility per day is 1.72%, still well above the long-term volatility of
1.44% per day. However, the expected variance rate in 500 days is

0:0002075þ 0:9935500ð0:0003� 0:0002075Þ ¼ 0:0002110

and the expected volatility per day is 1.45%, very close to the long-term volatility.

Volatility Term Structures

Suppose it is day n. Define:

V ðtÞ ¼ Eð�2
nþtÞ

and

a ¼ ln
1

�þ �
so that equation (23.13) becomes

V ðtÞ ¼ VL þ e
�at½V ð0Þ � VL�

Here, V ðtÞ is an estimate of the instantaneous variance rate in t days. The average

Figure 23.3 Expected path for the variance rate when (a) current variance rate is
above long-term variance rate and (b) current variance rate is below long-term
variance rate.
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variance rate per day between today and time T is given by

1

T

ðT
0

V ðtÞ dt ¼ VL þ 1� e
�aT

aT
½V ð0Þ � VL�

The larger T is, the closer this is to VL. Define �ðT Þ as the volatility per annum that
should be used to price a T -day option under GARCH(1,1). Assuming 252 days per
year, �ðT Þ2 is 252 times the average variance rate per day, so that

�ðT Þ2 ¼ 252

�
VL þ 1� e

�aT

aT
½V ð0Þ � VL�

�
ð23:14Þ

As discussed in Chapter 20, the market prices of different options on the same asset are
often used to calculate a volatility term structure. This is the relationship between the
implied volatilities of the options and their maturities. Equation (23.14) can be used to
estimate a volatility term structure based on the GARCH(1,1) model. The estimated
volatility term structure is not usually the same as the implied volatility term structure.
However, as we will show, it is often used to predict the way that the implied volatility
term structure will respond to volatility changes.

When the current volatility is above the long-term volatility, the GARCH(1,1)
model estimates a downward-sloping volatility term structure. When the current
volatility is below the long-term volatility, it estimates an upward-sloping volatility
term structure. In the case of the S&P 500 data, a ¼ lnð1=0:99351Þ ¼ 0:006511 and
VL ¼ 0:0002075. Suppose that the current variance rate per day, V ð0Þ, is estimated as
0.0003 per day. It follows from equation (23.14) that

�ðT Þ2 ¼ 252

�
0:0002075þ 1� e

�0:006511T

0:006511T
ð0:0003� 0:0002075Þ

�

where T is measured in days. Table 23.3 shows the volatility per year for different values
of T .

Impact of Volatility Changes

Equation (23.14) can be written

�ðT Þ2 ¼ 252

�
VL þ 1� e

�aT

aT

�
�ð0Þ2
252

� VL

��

When �ð0Þ changes by ��ð0Þ, �ðT Þ changes by approximately

1� e
�aT

aT

�ð0Þ
�ðT Þ ��ð0Þ ð23:15Þ

Table 23.3 S&P 500 volatility term structure predicted from GARCH(1,1).

Option life (days) 10 30 50 100 500

Option volatility (% per annum) 27.36 27.10 26.87 26.35 24.32
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Table 23.4 shows the effect of a volatility change on options of varying maturities for

the S&P 500 data considered above. We assume as before that V ð0Þ ¼ 0:0003, so that
�ð0Þ ¼ ffiffiffiffiffiffiffiffi

252
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0003
p ¼ 27:50%. The table considers a 100-basis-point change in the

instantaneous volatility from 27.50% per year to 28.50% per year. This means that

��ð0Þ ¼ 0:01, or 1%.

Many financial institutions use analyses such as this when determining the exposure
of their books to volatility changes. Rather than consider an across-the-board increase

of 1% in implied volatilities when calculating vega, they relate the size of the volatility

increase that is considered to the maturity of the option. Based on Table 23.4, a 0.97%

volatility increase would be considered for a 10-day option, a 0.92% increase for a

30-day option, a 0.87% increase for a 50-day option, and so on.

23.7 CORRELATIONS

The discussion so far has centered on the estimation and forecasting of volatility. As

explained in Chapter 22, correlations also play a key role in the calculation of VaR. In
this section, we show how correlation estimates can be updated in a similar way to

volatility estimates.

The correlation between two variables X and Y can be defined as

covðX; YÞ
�X�Y

where �X and �Y are the standard deviations of X and Y and covðX; YÞ is the covariance
between X and Y . The covariance between X and Y is defined as

E½ðX� 
XÞðY � 
Y Þ�

where 
X and 
Y are the means of X and Y , and E denotes the expected value.

Although it is easier to develop intuition about the meaning of a correlation than it
is for a covariance, it is covariances that are the fundamental variables of our analysis.15

Define xi and yi as the percentage changes in X and Y between the end of day i� 1

and the end of day i:

xi ¼
Xi �Xi�1

Xi�1

; yi ¼
Yi � Yi�1

Yi�1

where Xi and Yi are the values of X and Y at the end of day i. We also define the

Table 23.4 Impact of 1% change in the instantaneous volatility predicted
from GARCH(1,1).

Option life (days) 10 30 50 100 500

Increase in volatility (%) 0.97 0.92 0.87 0.77 0.33

15 An analogy here is that variance rates were the fundamental variables for the EWMA and GARCH

procedures in the first part of this chapter, even though volatilities are easier to understand.
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following:

�x;n : Daily volatility of variable X, estimated for day n

�y;n : Daily volatility of variable Y , estimated for day n

covn : Estimate of covariance between daily changes in X and Y , calculated on day n.

The estimate of the correlation between X and Y on day n is

covn
�x;n �y;n

Using equal weighting and assuming that the means of xi and yi are zero, equation (23.3)
shows that the variance rates of X and Y can be estimated from the most recent m

observations as

�2
x;n ¼

1

m

Xm
i¼1

x
2
n�i; �2

y;n ¼
1

m

Xm
i¼1

y
2
n�i

A similar estimate for the covariance between X and Y is

covn ¼
1

m

Xm
i¼1

xn�i yn�i ð23:16Þ

One alternative for updating covariances is an EWMA model similar to equation (23.7).
The formula for updating the covariance estimate is then

covn ¼ � covn�1 þð1� �Þxn�1 yn�1

A similar analysis to that presented for the EWMA volatility model shows that the
weights given to observations on the xi yi decline as we move back through time. The
lower the value of �, the greater the weight that is given to recent observations.

Example 23.3

Suppose that � ¼ 0:95 and that the estimate of the correlation between two
variables X and Y on day n� 1 is 0.6. Suppose further that the estimate of the
volatilities for the X and Y on day n� 1 are 1% and 2%, respectively. From the
relationship between correlation and covariance, the estimate of the covariance
between the X and Y on day n� 1 is

0:6� 0:01� 0:02 ¼ 0:00012

Suppose that the percentage changes in X and Y on day n� 1 are 0.5% and 2.5%,
respectively. The variance and covariance for day n would be updated as follows:

�2
x;n ¼ 0:95� 0:012 þ 0:05� 0:0052 ¼ 0:00009625

�2
y;n ¼ 0:95� 0:022 þ 0:05� 0:0252 ¼ 0:00041125

covn ¼ 0:95� 0:00012þ 0:05� 0:005� 0:025 ¼ 0:00012025

The new volatility of X is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00009625

p ¼ 0:981% and the new volatility of Y isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00041125

p ¼ 2:028%. The new coefficient of correlation between X and Y is

0:00012025

0:00981� 0:02028
¼ 0:6044
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GARCH models can also be used for updating covariance estimates and forecasting the

future level of covariances. For example, the GARCH(1,1) model for updating a

covariance is

covn ¼ !þ �xn�1 yn�1 þ � covn�1

and the long-term average covariance is !=ð1� �� �Þ. Formulas similar to those in

equations (23.13) and (23.14) can be developed for forecasting future covariances and

calculating the average covariance during the life of an option.16

Consistency Condition for Covariances

Once all the variances and covariances have been calculated, a variance–covariance

matrix can be constructed. As explained in Section 22.4, when i 6 ¼ j, the ði; jÞth element

of this matrix shows the covariance between variable i and variable j. When i ¼ j, it

shows the variance of variable i.

Not all variance–covariance matrices are internally consistent. The condition for an

N �N variance–covariance matrix � to be internally consistent is

wT�w > 0 ð23:17Þ

for all N � 1 vectors w, where wT is the transpose of w. A matrix that satisfies this

property is known as positive-semidefinite.

To understand why the condition in equation (23.17) must hold, suppose that wT is

½w1;w2; . . . ;wn�. The expression wT�w is the variance of w1x1 þw2x2 þ � � � þ wnxn,

where xi is the value of variable i. As such, it cannot be negative.

To ensure that a positive-semidefinite matrix is produced, variances and covariances

should be calculated consistently. For example, if variances are calculated by giving equal

weight to the lastm data items, the same should be done for covariances. If variances are

updated using an EWMAmodel with � ¼ 0:94, the same should be done for covariances.

An example of a variance–covariance matrix that is not internally consistent is

1 0 0:9
0 1 0:9
0:9 0:9 1

2
4

3
5

The variance of each variable is 1.0, and so the covariances are also coefficients of

correlation. The first variable is highly correlated with the third variable and the second

variable is highly correlated with the third variable. However, there is no correlation at

all between the first and second variables. This seems strange. When w is set equal to

ð1; 1;�1Þ, the condition in equation (23.17) is not satisfied, proving that the matrix is

not positive-semidefinite.17

16 The ideas in this chapter can be extended to multivariate GARCH models, where an entire variance–

covariance matrix is updated in a consistent way. For a discussion of alternative approaches, see R. Engle and

J. Mezrich, ‘‘GARCH for Groups,’’ Risk, August 1996: 36–40.
17 It can be shown that the condition for a 3� 3 matrix of correlations to be internally consistent is

�212 þ �213 þ �223 � 2�12 �13 �23 6 1

where �ij is the coefficient of correlation between variables i and j.

Estimating Volatilities and Correlations 559



23.8 APPLICATION OF EWMA TO FOUR-INDEX EXAMPLE

We now return to the example considered in Section 22.2. This involved a portfolio on

September 25, 2008, consisting of a $4 million investment in the Dow Jones Industrial

Average, a $3 million investment in the FTSE 100, a $1 million investment in the
CAC 40, and a $2 million investment in the Nikkei 225. Daily returns were collected

over 500 days ending on September 25, 2008. Data and all calculations presented here
can be found at: www.rotman.utoronto.ca/�hull/OFOD/VaRExample.

The correlation matrix that would be calculated on September 25, 2008, by giving

equal weight to the last 500 returns is shown in Table 23.5. The FTSE 100 and CAC 40
are very highly correlated. The Dow Jones Industrial Average is moderately highly

correlated with both the FTSE 100 and the CAC 40. The correlation of the Nikkei 225
with other indices is less high.

The covariance matrix for the equal-weight case is shown in Table 23.6. From
equation (22.3), this matrix gives the variance of the portfolio losses ($000s) as

8,761.833. The standard deviation is the square root of this, or 93.60. The one-day
99% VaR in $000s is therefore 2:33� 93:60 ¼ 217:757. This is $217,757, which

compares with $253,385, calculated using the historical simulation approach in
Section 22.2.

Instead of calculating variances and covariances by giving equal weight to all observed

returns, we now use the exponentially weighted moving average method with � ¼ 0:94.
This gives the variance–covariance matrix in Table 23.7.18 From equation (22.3), the

Table 23.5 Correlation matrix on September 25, 2008, calculated by giving equal
weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;
variable 3 is CAC 40; variable 4 is Nikkei 225.

1 0:489 0:496 �0:062

0:489 1 0:918 0:201

0:496 0:918 1 0:211

�0:062 0:201 0:211 1

2
6664

3
7775

Table 23.6 Covariance matrix on September 25, 2008, calculated by giving equal
weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;
variable 3 is CAC 40; variable 4 is Nikkei 225.

0:0001227 0:0000768 0:0000767 �0:0000095

0:0000768 0:0002010 0:0001817 0:0000394

0:0000767 0:0001817 0:0001950 0:0000407

�0:0000095 0:0000394 0:0000407 0:0001909

2
6664

3
7775

18 In the EWMA calculations, the variance was initially set equal to the population variance. This is an

alternative to setting it equal to the first squared return as in Table 23.1. The two approaches give similar final

variances, and the final variance is all we are interested in.
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variance of portfolio losses ($000s) is 40,995.765. The standard deviation is the square

root of this, or 202.474. The one-day 99% VaR is therefore

2:33� 202:474 ¼ 471:025

This is $471,025, over twice as high as the value given when returns are equally

weighted. Tables 23.8 and 23.9 show the reasons. The standard deviation of a portfolio

consisting of long positions in securities increases with the standard deviations of

security returns and also with the correlations between security returns. Table 23.8

shows that the estimated daily standard deviations are much higher when EWMA is

used than when data are equally weighted. This is because volatilities were much higher

during the period immediately preceding September 25, 2008, than during the rest of

the 500 days covered by the data. Comparing Table 23.9 with Table 23.5, we see that

correlations had also increased.19

Table 23.7 Covariance matrix on September 25, 2008, calculated using the EWMA
method with � ¼ 0:94: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is
CAC 40; variable 4 is Nikkei 225.

0:0004801 0:0004303 0:0004257 �0:0000396

0:0004303 0:0010314 0:0009630 0:0002095

0:0004257 0:0009630 0:0009535 0:0001681

�0:0000396 0:0002095 0:0001681 0:0002541

2
666664

3
777775

Table 23.8 Volatilities (% per day) using equal weighting and EWMA.

DJIA FTSE 100 CAC 40 Nikkei 225

Equal weighting: 1.11 1.42 1.40 1.38

EWMA: 2.19 3.21 3.09 1.59

Table 23.9 Correlation matrix on September 25, 2008, calculated using the EWMA
method: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is CAC 40; variable 4
is Nikkei 225.

1 0:611 0:629 �0:113

0:611 1 0:971 0:409

0:629 0:971 1 0:342

�0:113 0:409 0:342 1

2
666664

3
777775

19 This is an example of the phenomenon that correlations tend to increase in adverse market conditions.

Estimating Volatilities and Correlations 561



SUMMARY

Most popular option pricing models, such as Black–Scholes–Merton, assume that the
volatility of the underlying asset is constant. This assumption is far from perfect. In
practice, the volatility of an asset, like the asset’s price, is a stochastic variable. Unlike
the asset price, it is not directly observable. This chapter has discussed procedures for
attempting to keep track of the current level of volatility.

We define ui as the percentage change in a market variable between the end of
day i� 1 and the end of day i. The variance rate of the market variable (that is, the
square of its volatility) is calculated as a weighted average of the u

2
i . The key feature of

the procedures that have been discussed here is that they do not give equal weight to
the observations on the u

2
i . The more recent an observation, the greater the weight

assigned to it. In the EWMA and the GARCH(1,1) models, the weights assigned to
observations decrease exponentially as the observations become older. The
GARCH(1,1) model differs from the EWMA model in that some weight is also
assigned to the long-run average variance rate. It has a structure that enables forecasts
of the future level of variance rate to be produced relatively easily.

Maximum likelihood methods are usually used to estimate parameters from historical
data in the EWMA, GARCH(1,1), and similar models. These methods involve using an
iterative procedure to determine the parameter values that maximize the chance or
likelihood that the historical data will occur. Once its parameters have been determined,
a GARCH(1,1) model can be judged by how well it removes autocorrelation from the u2i .

For every model that is developed to track variances, there is a corresponding model
that can be developed to track covariances. The procedures described here can therefore
be used to update the complete variance–covariance matrix used in value at risk
calculations.
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Practice Questions (Answers in Solutions Manual)

23.1. Explain the exponentially weighted moving average (EWMA) model for estimating
volatility from historical data.
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23.2. What is the difference between the exponentially weighted moving average model and
the GARCH(1,1) model for updating volatilities?

23.3. The most recent estimate of the daily volatility of an asset is 1.5% and the price of the
asset at the close of trading yesterday was $30.00. The parameter � in the EWMA model
is 0.94. Suppose that the price of the asset at the close of trading today is $30.50. How
will this cause the volatility to be updated by the EWMA model?

23.4. A company uses an EWMA model for forecasting volatility. It decides to change the
parameter � from 0.95 to 0.85. Explain the likely impact on the forecasts.

23.5. The volatility of a certain market variable is 30% per annum. Calculate a 99%
confidence interval for the size of the percentage daily change in the variable.

23.6. A company uses the GARCH(1,1) model for updating volatility. The three parameters
are !, �, and �. Describe the impact of making a small increase in each of the parameters
while keeping the others fixed.

23.7. The most recent estimate of the daily volatility of the US dollar/sterling exchange rate is
0.6% and the exchange rate at 4 p.m. yesterday was 1.5000. The parameter � in the
EWMA model is 0.9. Suppose that the exchange rate at 4 p.m. today proves to be 1.4950.
How would the estimate of the daily volatility be updated?

23.8. Assume that S&P 500 at close of trading yesterday was 1,040 and the daily volatility of
the index was estimated as 1% per day at that time. The parameters in a GARCH(1,1)
model are ! ¼ 0:000002, � ¼ 0:06, and � ¼ 0:92. If the level of the index at close of
trading today is 1,060, what is the new volatility estimate?

23.9. Suppose that the daily volatilities of asset A and asset B, calculated at the close of trading
yesterday, are 1.6% and 2.5%, respectively. The prices of the assets at close of trading
yesterday were $20 and $40 and the estimate of the coefficient of correlation between the
returns on the two assets was 0.25. The parameter � used in the EWMA model is 0.95.
(a) Calculate the current estimate of the covariance between the assets.
(b) On the assumption that the prices of the assets at close of trading today are $20.5

and $40.5, update the correlation estimate.

23.10. The parameters of a GARCH(1,1) model are estimated as ! ¼ 0:000004, � ¼ 0:05, and
� ¼ 0:92. What is the long-run average volatility and what is the equation describing the
way that the variance rate reverts to its long-run average? If the current volatility is 20%
per year, what is the expected volatility in 20 days?

23.11. Suppose that the current daily volatilities of asset X and asset Y are 1.0% and 1.2%,
respectively. The prices of the assets at close of trading yesterday were $30 and $50 and
the estimate of the coefficient of correlation between the returns on the two assets made
at this time was 0.50. Correlations and volatilities are updated using a GARCH(1,1)
model. The estimates of the model’s parameters are � ¼ 0:04 and � ¼ 0:94. For the
correlation ! ¼ 0:000001, and for the volatilities ! ¼ 0:000003. If the prices of the two
assets at close of trading today are $31 and $51, how is the correlation estimate
updated?

23.12. Suppose that the daily volatility of the FTSE 100 stock index (measured in pounds
sterling) is 1.8% and the daily volatility of the dollar/sterling exchange rate is 0.9%.
Suppose further that the correlation between the FTSE 100 and the dollar/sterling
exchange rate is 0.4. What is the volatility of the FTSE 100 when it is translated to
US dollars? Assume that the dollar/sterling exchange rate is expressed as the number of
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US dollars per pound sterling. (Hint : When Z ¼ XY , the percentage daily change in Z is
approximately equal to the percentage daily change in X plus the percentage daily
change in Y .)

23.13. Suppose that in Problem 23.12 the correlation between the S&P 500 Index (measured in
dollars) and the FTSE 100 Index (measured in sterling) is 0.7, the correlation between
the S&P 500 Index (measured in dollars) and the dollar/sterling exchange rate is 0.3, and
the daily volatility of the S&P 500 index is 1.6%. What is the correlation between the
S&P 500 index (measured in dollars) and the FTSE 100 index when it is translated to
dollars? (Hint : For three variables X, Y, and Z, the covariance between Xþ Y and Z

equals the covariance between X and Z plus the covariance between Y and Z.)

23.14. Show that the GARCH (1,1) model �2
n ¼ !þ �u2n�1 þ ��2

n�1 in equation (23.9) is
equivalent to the stochastic volatility model dV ¼ aðVL � V Þ dtþ �V dz, where time is
measured in days, V is the square of the volatility of the asset price, and

a ¼ 1� �� �; VL ¼ !

1� �� �
; � ¼ �

ffiffiffi
2

p

What is the stochastic volatility model when time is measured in years? (Hint : The
variable un�1 is the return on the asset price in time �t. It can be assumed to be normally
distributed with mean zero and standard deviation �n�1. It follows from the moments of
the normal distribution that the mean and variance of u

2
n�1 are �2

n�1 and 2�4
n�1,

respectively.)

23.15. At the end of Section 23.8, the VaR for the four-index example was calculated using the
model-building approach. How does the VaR calculated change if the investment is
$2.5 million in each index? Carry out calculations when (a) volatilities and correlations
are estimated using the equally weighted model and (b) when they are estimated using
the EWMA model with � ¼ 0:94. Use the spreadsheets on the author’s website.

23.16. What is the effect of changing � from 0.94 to 0.97 in the EWMA calculations in the four-
index example at the end of Section 23.8. Use the spreadsheets on the author’s website.

Further Questions

23.17. Suppose that the price of gold at close of trading yesterday was $600 and its volatility
was estimated as 1.3% per day. The price at the close of trading today is $596. Update
the volatility estimate using
(a) The EWMA model with � ¼ 0:94
(b) The GARCH(1,1) model with ! ¼ 0:000002, � ¼ 0:04, and � ¼ 0:94.

23.18. Suppose that in Problem 23.17 the price of silver at the close of trading yesterday was $16,
its volatility was estimated as 1.5% per day, and its correlation with gold was estimated as
0.8. The price of silver at the close of trading today is unchanged at $16. Update the
volatility of silver and the correlation between silver and gold using the two models in
Problem 23.17. In practice, is the ! parameter likely to be the same for gold and silver?

23.19. An Excel spreadsheet containing over 900 days of daily data on a number of different
exchange rates and stock indices can be downloaded from the author’s website:

www.rotman.utoronto.ca/�hull/data.

Choose one exchange rate and one stock index. Estimate the value of � in the EWMA
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model that minimizes the value of
P

iðvi � �iÞ2, where vi is the variance forecast made at
the end of day i� 1 and �i is the variance calculated from data between day i and day
iþ 25. Use the Solver tool in Excel. Set the variance forecast at the end of the first day
equal to the square of the return on that day to start the EWMA calculations.

23.20. Suppose that the parameters in a GARCH (1,1) model are � ¼ 0:03, � ¼ 0:95, and
! ¼ 0:000002.
(a) What is the long-run average volatility?
(b) If the current volatility is 1.5% per day, what is your estimate of the volatility in 20,

40, and 60 days?
(c) What volatility should be used to price 20-, 40-, and 60-day options?
(d) Suppose that there is an event that increases the current volatility by 0.5% to 2% per

day. Estimate the effect on the volatility in 20, 40, and 60 days.
(e) Estimate by how much the event increases the volatilities used to price 20-, 40-, and

60-day options?

23.21. The calculations for the four-index example at the end of Section 23.8 assume that the
investments in the DJIA, FTSE 100, CAC 40, and Nikkei 225 are $4 million, $3 million,
$1 million, and $2 million, respectively. How does the VaR calculated change if the
investments are $3 million, $3 million, $1 million, and $3 million, respectively? Carry out
calculations when (a) volatilities and correlations are estimated using the equally
weighted model and (b) when they are estimated using the EWMA model. What is
the effect of changing � from 0.94 to 0.90 in the EWMA calculations? Use the
spreadsheets on the author’s website.

23.22. Estimate parameters for EWMA and GARCH(1, 1) from data on the euro–USD
exchange rate between July 27, 2005, and July 27, 2010. This data can be found on
the author’s website:

www.rotman.utoronto.ca/�hull/data.

Estimating Volatilities and Correlations 565

http://www.rotman.utoronto.ca/~hull/data


Credit Risk

Most of the derivatives considered so far in this book have been concerned with market

risk. In this chapter we consider another important risk for financial institutions: credit

risk. Most financial institutions devote considerable resources to the measurement and

management of credit risk. Regulators have for many years required banks to keep

capital to reflect the credit risks they are bearing.

Credit risk arises from the possibility that borrowers and counterparties in derivatives

transactions may default. This chapter discusses a number of different approaches to

estimating the probability that a company will default and explains the key difference

between risk-neutral and real-world probabilities of default. It examines the nature of

the credit risk in over-the-counter derivatives transactions and discusses the clauses

derivatives dealers write into their contracts to reduce credit risk. It also covers

default correlation, Gaussian copula models, and the estimation of credit value at

risk.

Chapter 25 will discuss credit derivatives and show how ideas introduced in this

chapter can be used to value these instruments.

24.1 CREDIT RATINGS

Rating agencies, such as Moody’s, S&P, and Fitch, are in the business of providing

ratings describing the creditworthiness of corporate bonds. The best rating assigned by

Moody’s is Aaa. Bonds with this rating are considered to have almost no chance of

defaulting. The next best rating is Aa. Following that comes A, Baa, Ba, B, Caa, Ca,

and C. Only bonds with ratings of Baa or above are considered to be investment grade.

The S&P and Fitch ratings corresponding to Moody’s Aaa, Aa, A, Baa, Ba, B, Caa,

Ca, and C are AAA, AA, A, BBB, BB, B, CCC, CC, and C, respectively. To create finer

rating measures, Moody’s divides its Aa rating category into Aa1, Aa2, and Aa3, its A

category into A1, A2, and A3, and so on. Similarly, S&P and Fitch divide their AA

rating category into AAþ, AA, and AA�, their A rating category into Aþ, A, and A�,

and so on. Moody’s Aaa category and the S&P/Fitch AAA category are not sub-

divided, nor usually are the two lowest rating categories.
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24.2 HISTORICAL DEFAULT PROBABILITIES

Table 24.1 is typical of the data produced by rating agencies. It shows the default
experience during a 20-year period of bonds that had a particular rating at the
beginning of the period. For example, a bond with a credit rating of Baa has a
0.177% chance of defaulting by the end of the first year, a 0.495% chance of defaulting
by the end of the second year, and so on. The probability of a bond defaulting during a
particular year can be calculated from the table. For example, the probability that a
bond initially rated Baa will default during the second year is 0:495� 0:177 ¼ 0:318%.

Table 24.1 shows that, for investment-grade bonds, the probability of default in a
year tends to be an increasing function of time (e.g., the probabilities of an A-rated
bond defaulting during years 0–5, 5–10, 10–15, and 15–20 are 0.870%, 1.610%,
1.775%, and 2.586%, respectively). This is because the bond issuer is initially con-
sidered to be creditworthy, and the more time that elapses, the greater the possibility
that its financial health will decline. For bonds with a poor credit rating, the probability
of default is often a decreasing function of time (e.g., the probabilities that a B-rated
bond will default during years 0–5, 5–10, 10–15, and 15–20 are 24.613%, 17.334%,
10.270%, and 5.867%, respectively). The reason here is that, for a bond with a poor
credit rating, the next year or two may be critical. The longer the issuer survives, the
greater the chance that its financial health improves.

Hazard Rates

From Table 24.1 we can calculate the probability of a bond rated Caa or below
defaulting during the third year as 36:908� 27:867 ¼ 9:041%. We will refer to this as
the unconditional default probability. It is the probability of default during the third year
as seen today. The probability that the bond will survive until the end of year 2 is
100� 27:867 ¼ 72:133%. The probability that it will default during the third year
conditional on no earlier default is therefore 0:09041=0:72133, or 12.53%.

The 12.53% we have just calculated is a conditional probability for a 1-year time
period. Suppose instead that we consider a short time period of length �t. The hazard
rate �ðtÞ at time t is defined so that �ðtÞ�t is the probability of default between time t

and tþ�t conditional on no earlier default.
If V ðtÞ is the cumulative probability of the company surviving to time t (i.e., no

default by time t), the conditional probability of default between time t and tþ�t is

Table 24.1 Average cumulative default rates (%), 1970–2012, from Moody’s.

Term (years): 1 2 3 4 5 7 10 15 20

Aaa 0.000 0.013 0.013 0.037 0.106 0.247 0.503 0.935 1.104

Aa 0.022 0.069 0.139 0.256 0.383 0.621 0.922 1.756 3.135

A 0.063 0.203 0.414 0.625 0.870 1.441 2.480 4.255 6.841

Baa 0.177 0.495 0.894 1.369 1.877 2.927 4.740 8.628 12.483

Ba 1.112 3.083 5.424 7.934 10.189 14.117 19.708 29.172 36.321

B 4.051 9.608 15.216 20.134 24.613 32.747 41.947 52.217 58.084

Caa–C 16.448 27.867 36.908 44.128 50.366 58.302 69.483 79.178 81.248

Credit Risk 567



½V ðtÞ � V ðtþ�tÞ�=V ðtÞ. Since this equals �ðtÞ�t, it follows that

V ðtþ�tÞ � V ðtÞ ¼ ��ðtÞV ðtÞ�t

Taking limits
dV ðtÞ
dt

¼ ��ðtÞV ðtÞ
from which

V ðtÞ ¼ e
�
Ð t

0
�ð�Þd�

Defining QðtÞ as the probability of default by time t, so that QðtÞ ¼ 1� V ðtÞ, gives

QðtÞ ¼ 1� e
�
Ð t

0
�ð�Þd�

or

QðtÞ ¼ 1� e
���ðtÞt ð24:1Þ

where ��ðtÞ is the average hazard rate between time 0 and time t. Another term used for
the hazard rate is default intensity.

24.3 RECOVERY RATES

When a company goes bankrupt, those that are owed money by the company file claims
against the assets of the company.1 Sometimes there is a reorganization in which these

creditors agree to a partial payment of their claims. In other cases the assets are sold by
the liquidator and the proceeds are used to meet the claims as far as possible. Some

claims typically have priority over other claims and are met more fully.

The recovery rate for a bond is normally defined as the bond’s market value a few
days after a default, as a percent of its face value. Table 24.2 provides historical data on
average recovery rates for different categories of bonds. The average recovery rate ranges

from 51.6% for bonds that are both senior to other lenders and secured to 24.7% for
bonds that rank after other lenders with a security interest that is subordinate to other

lenders.

Table 24.2 Recovery rates on corporate bonds as a percentage
of face value, 1982–2012, from Moody’s.

Class Average
recovery rate (%)

Senior secured bond 51.6

Senior unsecured bond 37.0

Senior subordinated bond 30.9

Subordinated bond 31.5

Junior subordinated bond 24.7

1 In the United States, the claim made by a bond holder is the bond’s face value plus accrued interest.
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The Dependence of Recovery Rates on Default Rates

In Chapter 8, we saw that one of the lessons from the credit crisis of 2007 is that the
average recovery rate on mortgages is negatively related to the mortgage default rate. As
the mortgage default rate increases, foreclosures lead to more houses being offered for
sale and a decline in house prices. This in turn results in a decline in recovery rates.

The average recovery rate on corporate bonds exhibits a similar negative dependence
on default rates.2 In a year when the number of bonds defaulting is low, economic
conditions are usually good and the average recovery rate on those bonds that do default
might be as high as 60%; in a year when the default rate on corporate bonds is high,
economic conditions are usually poor and the average recovery rate on the defaulting
bonds might be as low as 30%. The result of the negative dependence is that a bad year
for defaults is doubly bad for a lender because it is usually accompanied by a low
recovery rate.

24.4 ESTIMATING DEFAULT PROBABILITIES FROM BOND
YIELD SPREADS

Tables such as Table 24.1 provide one way of estimating default probabilities. Another
approach is to look at bond yield spreads. A bond’s yield spread is the excess of the
promised yield on the bond over the risk-free rate. The usual assumption is that the
excess yield is compensation for the possibility of default.3

Suppose that the bond yield spread for a T -year bond is sðT Þ per annum. This means
that the average loss rate on the bond between time 0 and time T should be approxi-
mately sðT Þ per annum. Suppose that the average hazard rate during this time is ��ðT Þ.
Another expression for the average loss rate is ��ðT Þð1� RÞ, where R is the estimated
recovery rate. This means that it is approximately true that

��ðT Þð1� RÞ ¼ sðT Þ
or

��ðT Þ ¼ sðT Þ
1� R

ð24:2Þ

The approximation works very well in a wide range of situations.

Example 24.1

Suppose that 1-year, 2-year, and 3-year bonds issued by a corporation yield 150,
180, and 195 basis points more than the risk-free rate, respectively. If the recovery
rate is estimated at 40%, the average hazard rate for year 1 given by equa-
tion (24.2) is 0:0150=ð1� 0:4Þ ¼ 0:025 or 2.5% per annum. Similarly, the average
hazard rate for years 1 and 2 is 0:0180=ð1� 0:4Þ ¼ 0:030 or 3.0% per annum, and
the average hazard rate for all three years is 0:0195=ð1� 0:4Þ ¼ 0:0325 or 3.25%.
These results imply that the average hazard rate for the second year is

2 See E. I. Altman, B. Brady, A. Resti, and A. Sironi, ‘‘The Link between Default and Recovery Rates:

Theory, Empirical Evidence, and Implications,’’ Journal of Business, 78, 6 (2005): 2203–28.
3 This assumption is not perfect, as we discuss later. For example, the price of a corporate bond is affected by

its liquidity. The lower the liquidity, the lower its price.
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2� 0:03� 1� 0:025 ¼ 0:035 or 3.5% and that the average hazard rate for the

third year is 3� 0:0325� 2� 0:03 ¼ 0:0375 or 3.75%.

Matching Bond Prices

For a more precise calculation we can choose hazard rates so that they match bond

prices. The approach is similar to the bootstrap method for calculating a zero-coupon

yield curve described in Section 4.5. Suppose that bonds with maturities ti are used,

where t1 < t2 < t3 � � � . The shortest maturity bond is used to calculate the hazard rate

out to time t1. The next shortest maturity bond is used to calculate the hazard between

times t1 and t2, and so on.

Example 24.2

Suppose that the risk-free rate is 5% per annum (continuously compounded) for

all maturities and 1-year, 2-year, and 3-year bonds have yields of 6.5%, 6.8%,

and 6.95%, respectively (also continuously compounded). (This is consistent with

the data in Example 24.1.) We suppose that each bond has a face value of $100

and provides semiannual coupons at the rate of 8% per year (with a coupon

having just been paid). The values of the bonds can be calculated from their

yields as $101.33, $101.99, and $102.47. If the bonds were risk-free the bond

values (obtained by discounting cash flows at 5%) would be $102.83, $105.52,

and $108.08, respectively. This means that the present value of expected default

losses on the 1-year bond must be $102:83� $101:33 ¼ $1:50. Similarly, the

present value of expected default losses on the 2-year and 3-year bonds must
be $3.53 and $5.61. Suppose that the hazard rate in year i is �i (1 6 i 6 3) and

the recovery rate is 40%.

Consider the 1-year bond. The probability of a default in the first 6 months is

1� e�0:5�1 and the probability of a default during the following 6 months is

e�0:5�1 � e��1 . We assume that defaults can happen only at the midpoints of

these 6-month intervals. The possible default times are therefore in 3 months

and 9 months. The (forward) risk-free value of the bond at the 3-month point is

4e�0:05�0:25 þ 104e�0:05�0:75 ¼ $104:12

Given the definition of recovery rate in the previous section, if there is a default

the bond will be worth $40. The present value of the loss if there is a default at the
3-month point is therefore

ð104:12� 40Þe�0:05�0:25 ¼ $63:33

The risk-free value of the bond at the 9-month point is 104e�0:05�0:25 ¼ $102:71.
If there is a default, the bond will be worth $40. The present value of a loss if there

is a default at the 9-month point is therefore

ð102:71� 40Þe�0:05�0:75 ¼ $60:40

The hazard rate �1 must therefore satisfy

ð1� e
�0:5�1 Þ � 63:33þ ðe�0:5�1 � e

��1 Þ � 60:40 ¼ 1:50

The solution to this (e.g., by using Solver in Excel) is �1 ¼ 2:46%.
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The 2-year bond is considered next. Its default probabilities at times 3 months

and 9 months are known from the analysis of the 1-year bond. The hazard rate for

the second year is calculated so that the present value of the expected loss on the

bond is $3.53. The 3-year bond is treated similarly. The hazard rate for the second

and third years prove to be 3.48% and 3.74%. (Note that the three estimated

hazard rates are very similar to those calculated in Example 24.1 using equa-

tion (24.2)) A worksheet showing the calculations is on the author’s website.

The Risk-Free Rate

The methods we have just presented for calculating default probabilities are critically

dependent on the choice of a risk-free rate. The spreads in Example 24.1 are differences

between bond yields and risk-free rates. The calculation of the expected losses from

default implied by bond prices in Example 24.2 depends on calculating the prices of

risk-free bonds. The benchmark risk-free rate used by bond traders is usually a

Treasury rate. For example, a bond trader might quote the yield on a bond as being

a spread of 250 basis points over Treasuries. However, as discussed in Section 9.1,

Treasury rates are too low to be useful proxies for risk-free rates.

Credit default swap (CDS) spreads, which were briefly explained in Section 7.11 and

will be discussed in more detail in Chapter 25, provide a credit spread estimate that does

not depend on the risk-free rate. A number of researchers have attempted to imply risk-

free rates by comparing bond yields to CDS spreads. The evidence is that the implied

risk-free rate is close to the corresponding LIBOR/swap rate. For example, one estimate

puts implied risk-free rates at about 10 basis points below LIBOR/swap rates.4

Asset Swap Spreads

In practice, the LIBOR/swap rate is often used as the risk-free benchmark when credit

calculations are carried out. Asset swap spreads provide a useful direct estimate of the

spread of bond yields over the LIBOR/swap curve.

To explain how asset swaps work, consider the situation where an asset swap spread

for a particular bond is quoted as 150 basis points. There are three possible situations:

1. The bond sells for its par value of 100. The swap then involves one side
(company A) paying the coupon on the bond and the other side (company B)
paying LIBOR plus 150 basis points. Note that it is the promised coupons that are
exchanged. The exchanges take place regardless of whether the bond defaults.

2. The bond sells below its par value, say, for 95. The swap is then structured so that,
in addition to the coupons, company A pays $5 per $100 of notional principal at
the outset. Company B pays LIBOR plus 150 basis points.

3. The underlying bond sells above par, say, for 108. The swap is then structured so
that, in addition to LIBOR plus 150 basis points, company B makes a payment
of $8 per $100 of principal at the outset. Company A pays the coupons.

The effect of all this is that the present value of the asset swap spread is the amount by

which the price of the corporate bond is exceeded by the price of a similar risk-free

4 See J. Hull, M. Predescu, and A. White, ‘‘The Relationship between Credit Default Swap Spreads, Bond

Yields, and Credit Rating Announcements,’’ Journal of Banking and Finance, 28 (November 2004): 2789–2811.
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bond where the risk-free rate is assumed to be given by the LIBOR/swap curve (see
Problem 24.20). This result is useful for calculations such as those in Example 24.2.

24.5 COMPARISON OF DEFAULT PROBABILITY ESTIMATES

The default probabilities estimated from historical data are usually much less than those
derived from bond yield spreads. The difference between the two was particularly large
during the credit crisis which started in mid-2007. This is because there was what is
termed a ‘‘flight to quality’’ during the crisis, where all investors wanted to hold safe
securities such as Treasury bonds. The prices of corporate bonds declined, thereby
increasing their yields. The credit spread on these bonds increased and calculations such
as the one in equation (24.2) gave very high default probability estimates.

Table 24.3 shows the difference between default probability estimates calculated from
historical data and those implied from credit spreads. To avoid results being heavily
influenced by the crisis period, it uses only pre-crisis data in calculating estimates from
bond yield spreads.

The second column of Table 24.3 is based on the 7-year column of Table 24.1. (We
use the 7-year column because the bonds we will look at later have a life of about
7 years.) To explain the calculations, note that equation (24.1) gives

��ð7Þ ¼ � 1
7
ln½1�Qð7Þ�

where ��ðtÞ is the average hazard rate by time t and QðtÞ is the cumulative probability of
default by time t. The values of Qð7Þ for different rating categories are in Table 24.1.
For example, for an A-rated company, Qð7Þ is 0.01441. The average 7-year hazard rate
is therefore

��ð7Þ ¼ � 1
7
lnð1� 0:01441Þ ¼ 0:0021

or 0.21%.
To calculate average hazard rates from bond yields in the third column of Table 24.3,

we use equation (24.2) and bond yields published by Merrill Lynch. The results shown
are averages between December 1996 and June 2007. The recovery rate is assumed to be
40%. The Merrill Lynch bonds have a life of about seven years. (This explains why we
focused on the 7-year column in Table 24.1 when calculating historical default

Table 24.3 Seven-year average hazard rates (% per annum).

Rating Historical
hazard rate

Hazard rate
from bonds

Ratio Difference

Aaa 0.04 0.60 17.0 0.56

Aa 0.09 0.73 8.2 0.64

A 0.21 1.15 5.5 0.94

Baa 0.42 2.13 5.0 1.71

Ba 2.27 4.67 2.1 2.50

B 5.67 8.02 1.4 2.35

Caa and lower 12.50 18.39 1.5 5.89
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probabilities.) To calculate the bond yield spread, we assume, as discussed in the

previous section, that the risk-free interest rate is the 7-year swap rate minus 10 basis

points. For example, for A-rated bonds, the average Merrill Lynch yield was 5.995%.

The average 7-year swap rate was 5.408%, so that the average risk-free rate was

5.308%. This gives the average 7-year hazard rate as

0:05995� 0:05308

1� 0:4
¼ 0:0115

or 1.15%.

Table 24.3 shows that the ratio of the hazard rate backed out from bond prices to the

hazard rate calculated from historical data is very high for investment-grade companies

and tends to decline as a company’s credit rating declines.5 The difference between the

two hazard rates tends to increase as the credit rating declines.

Table 24.4 provides another way of looking at these results. It shows the excess return

over the risk-free rate (still assumed to be the 7-year swap rate minus 10 basis points)

earned by investors in bonds with different credit rating. Consider again an A-rated

bond. The average spread over 7-year Treasuries is 111 basis points. Of this, 42 basis

points are accounted for by the average spread between 7-year Treasuries and our proxy

for the risk-free rate. A spread of 12 basis points is necessary to cover expected defaults.

(This equals the historical hazard rate from Table 24.3 multiplied by 0.6 to allow for

recoveries.) This leaves an excess return (after expected defaults have been taken into

account) of 57 basis points.

Tables 24.3 and 24.4 show that a large percentage difference between default

probability estimates translates into a small (but significant) excess return on the bond.

For Aaa-rated bonds, the ratio of the two hazard rates is 17.0, but the expected excess

return is only 34 basis points. The excess return tends to increase as credit quality

declines.6

The excess return in Table 24.4 does not remain constant through time. Credit

spreads, and therefore excess returns, were high in 2001, 2002, and the first half of

2003. After that they were fairly low until the credit crisis.

Table 24.4 Expected excess return on bonds (basis points).

Rating Bond yield spread
over Treasuries

Spread of risk-free rate
over Treasuries

Spread for
historical defaults

Excess
return

Aaa 78 42 2 34
Aa 86 42 5 39
A 111 42 12 57
Baa 169 42 25 102
Ba 322 42 130 150
B 523 42 340 141
Caa 1146 42 750 354

5 The results in Tables 24.3 and 24.4 are updates of the results in J. Hull, M. Predescu, and A. White, ‘‘Bond

Prices, Default Probabilities, and Risk Premiums,’’ Journal of Credit Risk, 1, 2 (Spring 2005): 53–60.
6 The results for B-rated bonds in Tables 24.3 and 24.4 run counter to the overall pattern.
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Real-World vs. Risk-Neutral Probabilities

The default probabilities or hazard rates implied from credit spreads are risk-neutral
estimates. They can be used to calculate expected cash flows in a risk-neutral world
when there is credit risk. The value of the cash flows is obtained using risk-neutral
valuation by discounting the expected cash flows at a risk-free rate. Example 24.2 shows
an application of this to the calculation of the cost of defaults. We will see more
applications in the next chapter.

Default probabilities or hazard rates calculated from historical data are real-world
(sometimes termed physical) default probabilities. Table 24.3 shows that risk-neutral
default probabilities are much higher than real world default probabilities. The expected
excess return in Table 24.4 arises directly from the difference between real-world and

risk-neutral default probabilities. If there were no expected excess return, then the real-
world and risk-neutral default probabilities would be the same, and vice versa.

Why do we see such big differences between real-world and risk-neutral default
probabilities? As we have just argued, this is the same as asking why corporate bond

traders earn more than the risk-free rate on average.

One reason often advanced for the results is that corporate bonds are relatively
illiquid and the returns on bonds are higher than they would otherwise be to
compensate for this. This is true, but research shows that it does not fully explain the

results in Table 24.4.7 Another possible reason for the results is that the subjective
default probabilities of bond traders may be much higher than the those given in
Table 24.1. Bond traders may be allowing for depression scenarios much worse than
anything seen during the period covered by historical data. However, it is difficult to see
how this can explain a large part of the excess return that is observed.

By far the most important reason for the results in Tables 24.3 and 24.4 is that bonds
do not default independently of each other. There are periods of time when default
rates are very low and periods of time when they are very high. Evidence for this can be
obtained by looking at the default rates in different years. Moody’s statistics show that
since 1970 the default rate per year has ranged from a low of 0.09% in 1979 to highs of
3.97% and 5.35% in 2001 and 2009, respectively. The year-to-year variation in default

rates gives rise to systematic risk (i.e., risk that cannot be diversified away) and bond
traders earn an excess expected return for bearing the risk. (This is similar to the excess
expected return earned by equity holders that is calculated by the capital asset pricing
model—see the appendix to Chapter 3.) The variation in default rates from year to year
may be because of overall economic conditions and it may be because a default by one
company has a ripple effect resulting in defaults by other companies. (The latter is

referred to by researchers as credit contagion.)

In addition to the systematic risk we have just talked about, there is nonsystematic (or
idiosyncratic) risk associated with each bond. If we were talking about stocks, we would
argue that investors can to a large extent diversify away the nonsystematic risk by

choosing a portfolio of, say, 30 stocks. They should not therefore demand a risk premium
for bearing nonsystematic risk. For bonds, the arguments are not so clear-cut. Bond
returns are highly skewed with limited upside. (For example, on an individual bond, there

7 For example, J. Dick-Nielsen, P. Feldhütter, and D. Lando, ‘‘Corporate Bond Liquidity before and after the

Onset of the Subprime Crisis,’’ Journal of Financial Economics, 103, 3 (2012), 471–92, uses a number of different

liquidity measures and a large database of bond trades. It shows that the liquidity component of credit spreads

is relatively small.
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might be a 99.75% chance of a 7% return in a year, and a 0.25% chance of a �60%
return in the year, the first outcome corresponding to no default and the second to
default.) This type of risk is difficult to ‘‘diversify away’’.8 It would require tens of
thousands of different bonds. In practice, many bond portfolios are far from fully
diversified. As a result, bond traders may earn an extra return for bearing nonsystematic
risk as well as for bearing the systematic risk mentioned in the previous paragraph.

Which Default Probability Estimate Should Be Used?

At this stage it is natural to ask whether we should use real-world or risk-neutral default
probabilities in the analysis of credit risk. The answer depends on the purpose of the
analysis. When valuing credit derivatives or estimating the impact of default risk on the
pricing of instruments, risk-neutral default probabilities should be used. This is because
the analysis calculates the present value of expected future cash flows and almost
invariably (implicitly or explicitly) involves using risk-neutral valuation. When carrying
out scenario analyses to calculate potential future losses from defaults, real-world
default probabilities should be used.

24.6 USING EQUITY PRICES TO ESTIMATE DEFAULT PROBABILITIES

When we use a table such as Table 24.1 to estimate a company’s real-world probability
of default, we are relying on the company’s credit rating. Unfortunately, credit ratings
are revised relatively infrequently. This has led some analysts to argue that equity prices
can provide more up-to-date information for estimating default probabilities.

In 1974, Merton proposed a model where a company’s equity is an option on the
assets of the company.9 Suppose, for simplicity, that a firm has one zero-coupon bond
outstanding and that the bond matures at time T . Define:

V0 : Value of company’s assets today

VT : Value of company’s assets at time T

E0 : Value of company’s equity today

ET : Value of company’s equity at time T

D : Debt repayment due at time T

�V : Volatility of assets (assumed constant)

�E : Instantaneous volatility of equity.

If VT < D, it is (at least in theory) rational for the company to default on the debt at
time T . The value of the equity is then zero. If VT > D, the company should make the
debt repayment at time T and the value of the equity at this time is VT �D. Merton’s
model, therefore, gives the value of the firm’s equity at time T as

ET ¼ maxðVT �D; 0Þ
This shows that the equity is a call option on the value of the assets with a strike price

8 SeeJ.D.AmatoandE.M.Remolona, ‘‘TheCreditSpreadPuzzle,’’BISQuarterlyReview, 5 (Dec.2003):51–63.
9 See R. Merton ‘‘On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,’’ Journal of

Finance, 29 (1974): 449–70.
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equal to the repayment required on the debt. The Black–Scholes–Merton formula gives
the value of the equity today as

E0 ¼ V0Nðd1Þ �De
�rT

Nðd2Þ ð24:3Þ
where

d1 ¼
lnðV0=DÞ þ ðrþ �2

V=2ÞT
�V

ffiffiffiffi
T

p and d2 ¼ d1 � �V
ffiffiffiffi
T

p

The value of the debt today is V0 � E0.

The risk-neutral probability that the company will default on the debt is Nð�d2Þ. To
calculate this, we require V0 and �V . Neither of these are directly observable. However,
if the company is publicly traded, we can observe E0. This means that equation (24.3)
provides one condition that must be satisfied by V0 and �V . We can also estimate �E
from historical data or options. From Itô’s lemma,

�EE0 ¼
@E

@V
�VV0 ¼ Nðd1Þ�VV0 ð24:4Þ

This provides another equation that must be satisfied by V0 and �V . Equations (24.3)
and (24.4) provide a pair of simultaneous equations that can be solved for V0 and �V .

10

Example 24.3

The value of a company’s equity is $3 million and the volatility of the equity is
80%. The debt that will have to be paid in 1 year is $10 million. The risk-free rate
is 5% per annum. In this case E0 ¼ 3, �E ¼ 0:80, r ¼ 0:05, T ¼ 1, and D ¼ 10.
Solving equations (24.3) and (24.4) yields V0 ¼ 12:40 and �V ¼ 0:2123. The par-
ameter d2 is 1.1408, so that the probability of default is Nð�d2Þ ¼ 0:127, or 12.7%.
The market value of the debt is V0 � E0, or 9.40. The present value of the
promised payment on the debt is 10e�0:05�1 ¼ 9:51. The expected loss on the debt
is therefore ð9:51� 9:40Þ=9:51, or about 1.2% of its no-default value. The expected
loss (EL) equals the probability of default (PD) times one minus the recovery rate.
It follows that the recovery rate equals one minus EL/PD. In this case, the recovery
rate is 1� 1:2=12:7, or about 91%, of the debt’s no-default value.

The basic Merton model we have just presented has been extended in a number of ways.
For example, one version of the model assumes that a default occurs whenever the
value of the assets falls below a barrier level. Another allows payments on debt
instruments to be required at more than one time.

How well do the default probabilities produced by Merton’s model and its extensions
correspond to actual default experience? The answer is that Merton’s model and its
extensions produce a good ranking of default probabilities (risk-neutral or real-world).
This means that a monotonic transformation can be used to convert the probability of
default output from Merton’s model into a good estimate of either the real-world or
risk-neutral default probability.11 It may seem strange to take a default probability

10 To solve two nonlinear equations of the form Fðx; yÞ ¼ 0 and Gðx; yÞ ¼ 0, the Solver routine in Excel can

be asked to find the values of x and y that minimize ½Fðx; yÞ�2 þ ½Gðx; yÞ�2.
11 Moody’s KMV provides a service that transforms a default probability produced by Merton’s model into a

real-world default probability (which it refers to as an expected default frequency, or EDF). CreditGrades use

Merton’s model to estimate credit spreads, which are closely linked to risk-neutral default probabilities.
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Nð�d2Þ that is in theory a risk-neutral default probability (because it is calculated from

an option-pricing model) and use it to estimate a real-world default probability. Given

the nature of the calibration process we have just described, the underlying assumption

is that the ranking of the risk-neutral default probabilities of different companies is the

same as the ranking of their real-world default probabilities.

24.7 CREDIT RISK IN DERIVATIVES TRANSACTIONS

In this section we consider how credit risk is quantified for bilaterally cleared derivatives

transactions. Typically, bilaterally cleared derivatives between two companies are

governed by an International Swaps and Derivatives Association (ISDA) Master

Agreement. One important provision of this agreement is netting. This states that all

outstanding transactions are treated as a single transaction for the purposes of

(a) calculating claims in the event of a default and (b) calculating the collateral which

must be posted.

The Master Agreement defines the circumstances when an event of default occurs. For

example, when one side fails to make payments on outstanding derivatives transactions

as required or fails to post collateral as required or declares bankruptcy, there is an

event of default. The other side then has the right to terminate all outstanding trans-

actions. There are two circumstances when this is likely to lead to a loss for the

nondefaulting party:

1. The total value of the transactions to the nondefaulting party is positive and
greater than the collateral (if any) posted by the defaulting party. The nondefault-
ing party is then an unsecured creditor for the uncollateralized value of the
transactions.

2. The total value of the transactions is positive to the defaulting party and the
collateral posted by the nondefaulting party is greater than this value. The
nondefaulting party is then an unsecured creditor for the return of the excess
collateral it has posted.

For the purposes of our discussion, we ignore the bid–offer spread costs incurred by the

nondefaulting party when it replaces the transactions it had with the defaulting party.

CVA and DVA

CVA and DVA were introduced in Chapter 9. A bank’s credit value adjustment (CVA)

for a counterparty is the present value of the expected cost to the bank of a default by

the counterparty. Its debit (or debt) value adjustment (DVA) is the present value of the

cost to the counterparty of a default by the bank. The possibility of the bank defaulting

is a benefit to the bank because it means that there is some possibility that the bank will

not have to make payments as required on its derivatives. DVA, a cost to the counter-

party, is therefore a benefit to the bank.

The no-default value of outstanding transactions is their value assuming neither side

will default. (Derivatives pricing models such as Black–Scholes–Merton provide no-

default values.) If fnd is the no-default value to the bank of its outstanding derivatives

transactions with the counterparty, the value the outstanding transactions when
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possible defaults are taken into account is

fnd � CVAþDVA

Suppose that the life of the longest outstanding derivative between the bank and the
counterparty is T years. As explained in Chapter 9, the interval between time 0 and
time T is divided into N subintervals and CVA and DVA are estimated as

CVA ¼
XN
i¼1

qivi; DVA ¼
XN
i¼1

q
�
i v

�
i

Here qi is the risk-neutral probability of the counterparty defaulting during the ith
interval, vi is the present value of the expected loss to the bank if the counterparty
defaults at the midpoint of the ith interval, q�i is the risk-neutral probability of the bank
defaulting during the ith interval, and v

�
i is the present value of the expected loss to the

counterparty (gain to the bank) if the bank defaults at the midpoint of the ith interval.
Consider first the calculation of qi. Note that qi should be a risk-neutral default

probability because we are valuing future cash flows and (implicitly) using risk-neutral
valuation (see Section 24.5). Suppose that ti is the end point of the ith interval, so that
qi is the risk-neutral probability of a counterparty default between times ti�1 and ti. We
first estimate credit spreads for the counterparty for a number of different maturities.
Using interpolation, we then obtain an estimate, sðtiÞ, of the counterparty’s credit
spread for maturity ti ð1 6 i 6 NÞ. From equation (24.2), an estimate of the counter-
party’s average hazard rate between times 0 and ti is sðtiÞ=ð1� RÞ, where R is the
recovery rate expected in the event of a counterparty default. From equation (24.1), the
probability that the counterparty will not default by time ti is

exp

�
� sðtiÞti
1� R

�

This means that

qi ¼ exp

�
� sðti�1Þti�1

1� R

�
� exp

�
� sðtiÞti
1� R

�

is the probability of the counterparty defaulting during the ith interval. The probability
q
�
i is similarly calculated from the bank’s credit spreads.
Consider next the calculation of the vi assuming that no collateral is posted. This

usually requires a computationally very time consuming Monte Carlo simulation. The
market variables determining the no-default value of the outstanding transactions
between the dealer and the counterparty are simulated in a risk-neutral world between
time 0 and time T . On each simulation trial, the exposure of the bank to the counterparty
at the midpoint of each interval is calculated. The exposure is equal to maxðV ; 0Þ, where
V is the total value of the transactions to the bank. (If the transactions in total have a
negative value to the bank, there is no exposure; if they have a positive value, the exposure
is equal to this positive value.) The variable vi is set equal to the present value of the
average exposure across all simulation trials multiplied by one minus the recovery rate.
The variable v�i is calculated similarly from the counterparty’s exposure to the bank.

When there is a collateral agreement between the bank and the counterparty, the
calculation of vi is more complicated. It is necessary to estimate on each simulation trial
the amount of collateral held by each side at the midpoint of the ith interval in the event
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of a default. In this calculation, it is usually assumed that the counterparty stops
posting collateral and stops returning any excess collateral held c days before a default.
The parameter c, which is typically 10 or 20 days, is referred to as the cure period or
margin period of risk. In order to know what collateral is held at the midpoint of an
interval in the event of a default, it is necessary to calculate the value of transactions c
days earlier. The way exposure is calculated is illustrated with the following example.
The present value of the expected loss vi is calculated from the average exposure across
all simulation trials as in the no-collateral case. A similar analysis of the average
exposure of the counterparty to the bank leads to v

�
i .

Example 24.4

There is a two-way zero-threshold collateral agreement between a bank and its
counterparty. This means that each side is required to post collateral worth
maxðV ; 0Þ with the other side, where V is the value of the outstanding transactions
to the other side. The cure period is 20 days. Suppose that time � is the midpoint
of one of the intervals used in the bank’s CVA calculation.

1. On a particular simulation trial, the value of outstanding transactions to the
bank at time � is 50 and their value 20 days earlier is 45. In this case, the
calculation assumes that the bank has collateral worth 45 in the event of a
default at time �. The bank’s exposure is the uncollateralized value it has in
the derivatives transactions, or 5.

2. On a particular simulation trial the value of outstanding transactions to the
bank at time � is 50 and their value 20 days earlier is 55. In this case, it is
assumed that the bank will have adequate collateral and its exposure is
zero.

3. On a particular simulation trial the value of outstanding transactions to the
bank at time � is �50 and the value 20 days earlier is �45. In this case, the
bank is assumed to have posted less than 50 of collateral in the event of a
default at time � and its exposure is zero.

4. On a particular simulation trial the value of outstanding transactions to the
bank at time � is �50 and the value 20 days earlier is �55. In this case, it is
assumed that 55 of collateral is held by the counterparty 20 days before time
� and, in the event of a default at time �, none of it is returned. The bank’s
exposure is therefore 5, the excess collateral it has posted.

In addition to calculating CVA, banks usually calculate peak exposure at the midpoint
of each interval. This is a high percentile of the exposures given by the Monte Carlo
simulation trials. For example, if the percentile is 97.5% and there are 10,000 Monte
Carlo trials, the peak exposure at a particular midpoint is the 250th highest exposure at
that point. The maximum peak exposure is the maximum of the peak exposures at all
midpoints.12

Banks usually store all the paths sampled for all market variables and all the
valuations calculated on each path. This enables the impact of a new transaction on
CVA and DVA to be calculated relatively quickly. Only the value of the new transaction
for each sample path needs to be calculated in order to determine its incremental effect

12 There is a theoretical issue here (which is usually ignored). The peak exposure is a scenario analysis

measure and should be calculated using real-world default estimates rather than risk-neutral estimates.
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on CVA and DVA. If the value of the new transaction is positively correlated to existing

transactions, it is likely to increase CVA and DVA. If it is negatively correlated to

existing transactions (e.g., because it is wholly or partially unwinding those trans-

actions), it is likely to decrease CVA and DVA.

The method for calculating CVA that we have presented assumes that the probability

of default by the counterparty is independent of the bank’s exposure. This is a reason-

able assumption in many situations. Traders use the term wrong-way risk to describe the

situation where the probability of default is positively correlated with exposure and the

term right-way risk to describe the situation where the probability of default is

negatively correlated with exposure. More complicated models than those we describe

have been developed to describe dependence between default probability and exposure.

A bank has one CVA and one DVA for each of its counterparties. The CVAs and

DVAs can be regarded as derivatives which change in value as market variables change,

counterparty credit spreads change, and bank credit spreads change. Often the risks in

CVA and DVA are managed in the same way as the risks in other derivatives using

Greek letter calculations, scenario analyses, etc.

Credit Risk Mitigation

There are a number of ways banks try to reduce credit risk in bilaterally cleared trans-

actions. One, which we have already mentioned, is netting. Suppose a bank has three

uncollateralized transactions with a counterparty worthþ$10 million,þ$30 million, and

�$25 million. If they are regarded as independent transactions, the bank’s exposure on

the transactions is $10 million, $30 million, and $0 for a total exposure of $40 million.

With netting, the transactions are regarded as a single transaction worth $15 million and

the exposure is reduced from $40 million to $15 million.

Collateral agreements are an important way of reducing credit risk. Collateral can be

either cash (which earns interest) or marketable securities. The market value of the

latter may be reduced by a certain percentage to calculate their cash-equivalent for

collateral purposes. The reduction is referred to as a haircut. Derivatives transactions

receive favorable treatment in the event of a default. The nondefaulting party is entitled

to keep any collateral posted by the other side. Expensive and time-consuming legal

proceedings are not usually necessary.

Another credit risk mitigation technique used by financial institutions is known as a

downgrade trigger. This is a clause in the Master Agreement stating that if the credit

rating of the counterparty falls below a certain level, say BBB, the bank has the option to

close out all outstanding derivatives transactions at market value. Downgrade triggers do

not provide protection against a relatively big jump in a counterparty’s credit rating

(e.g., from A to default). Moreover, they work well only if relatively little use is made of

them. If a company has many downgrade triggers with its counterparties, they are likely

to provide little protection to those counterparties (see Business Snapshot 24.1).

Special Cases

In this section we consider two special cases where CVA can be calculated without

Monte Carlo simulation.

The first special case is where the portfolio between the bank and the counterparty

consists of a single uncollateralized derivative that provides a payoff to the bank at

580 CHAPTER 24



time T . (The bank could for instance have bought a European option with remaining

life T from the counterparty.) The bank’s exposure at a future time is the no-default

value of the derivative at that time. The present value of the exposure is therefore the

present value of the derivative’s future value. This is the no-default value of the

derivative today. Hence

vi ¼ fndð1� RÞ

for all i, where fnd is the no-default value of the derivative today and R is the recovery

rate. This implies

CVA ¼ ð1� RÞfnd
Xn
i¼1

qi

In this case DVA ¼ 0, so that the value f of the derivative today after allowing for

credit risk is

f ¼ fnd � ð1� RÞfnd
Xn
i¼1

qi ð24:5Þ

Business Snapshot 24.1 Downgrade Triggers and Enron’s Bankruptcy

In December 2001, Enron, one of the largest companies in the United States, went
bankrupt. Right up to the last few days, it had an investment-grade credit rating. The
Moody’s rating immediately prior to default was Baa3 and the S&P rating was BBB�.
The default was, however, anticipated to some extent by the stock market because
Enron’s stock price fell sharply in the period leading up to the bankruptcy. The
probability of default estimated by models such as the one described in Section 24.6
increased sharply during this period.

Enron had entered into a huge number of derivatives transactions with downgrade
triggers. The downgrade triggers stated that, if its credit rating fell below investment
grade (i.e., below Baa3/BBB�), its counterparties would have the option of closing
out the transactions. Suppose that Enron had been downgraded to below investment
grade in, say, October 2001. The transactions that counterparties would choose to
close out would be those with negative values to Enron (and positive values to the
counterparties). So, Enron would have been required to make huge cash payments to
its counterparties. It would not have been able to do this and immediate bankruptcy
would have resulted.

This example illustrates that downgrade triggers provide protection only when
relatively little use is made of them. When a company enters into a large number of
contracts with downgrade triggers, they may actually cause a company to go bank-
rupt prematurely. In Enron’s case, we could argue that it was going to go bankrupt
anyway and accelerating the event by two months would not have done any harm. In
fact, Enron did have a chance of survival in October 2001. Attempts were being made
to work out a deal with another energy company, Dynergy, and so forcing bank-
ruptcy in October 2001 was not in the interests of either creditors or shareholders.

The credit rating companies found themselves in a difficult position. If they
downgraded Enron to recognize its deteriorating financial position, they were signing
its death warrant. If they did not do so, there was a chance of Enron surviving.
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One particular derivative of the type we are considering is a T -year zero-coupon bond
issued by the counterparty. Assuming recoveries on the bond and the derivative are the

same, the value of the bond, B, is

B ¼ Bnd � ð1� RÞBnd

Xn
i¼1

qi ð24:6Þ

where Bnd is the no-default value of the bond. From equations (24.5) and (24.6),

f

fnd
¼ B

Bnd

If y is the yield on the T -year bond issued by the counterparty and ynd is the yield on a
similar riskless bond, B ¼ e�yT and Bnd ¼ e�yndT , so that this equation gives

f ¼ fnde
�ðy�yndÞT

This shows that the derivative can be valued by increasing the discount rate that is

applied to the expected payoff in a risk-neutral world by the counterparty’s T -year
credit spread.

Example 24.5

The Black–Scholes–Merton price of a 2-year uncollateralized option is $3. Two-

year zero-coupon bonds issued by the company selling the option have a yield
1.5% greater than the risk-free rate. The value of the option after default risk is
considered is 3e�0:015�2 ¼ $2:91. (This assumes that the option stands alone and

is not netted with other derivatives in the event of default.)

For the second special case, we consider a bank that has entered into an uncollateral-
ized forward transaction with a counterparty where it has agreed to buy an asset for
price K at time T . Define Ft as the forward price at time t for delivery of the asset at

time T . The value of the transaction at time t is, from Section 5.7,

ðFt �KÞe�rðT�tÞ

where r is the risk-free interest rate (assumed constant).

The bank’s exposure at time t is therefore

max½ðFt �KÞe�rðT�tÞ; 0� ¼ e
�rðT�tÞ max½Ft �K; 0�

The expected value of Ft in a risk-neutral world is F0. The standard deviation of lnFt is
�

ffiffi
t

p
, where � is the volatility of Ft. From equation (15A.1) the expected exposure at

time t is therefore

wðtÞ ¼ e
�rðT�tÞ�

F0N
�
d1ðtÞ

��KN
�
d2ðtÞ

��
where

d1ðtÞ ¼
lnðF0=KÞ þ �2

t=2Þ
�

ffiffi
t

p ; d2ðtÞ ¼ d1ðtÞ � �
ffiffi
t

p

It follows that

vi ¼ wðtiÞe�rti ð1� RÞ
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Example 24.6

A bank has entered into a forward contract to buy 1 million ounces of gold from a
mining company in 2 years for $1,500 per ounce. The current 2-year forward price
is $1,600 per ounce. We suppose that only two intervals each 1-year long are

considered in the calculation of CVA. The probability of the company defaulting
during the first year is 2% and the probability that it will default during the
second year is 3%. The risk-free rate is 5% per annum. A 30% recovery in the
event of default is anticipated. The volatility of the forward price of gold is 20%.

In this case, q1 ¼ 0:02, q2 ¼ 0:03, F0 ¼ 1,600, K ¼ 1,500, � ¼ 0:2, r ¼ 0:05,
R ¼ 0:3, t1 ¼ 0:5, and t2 ¼ 1:5.

d1ðt1Þ ¼
lnð1600=1500Þ þ 0:22 � 0:5

0:2
ffiffiffiffiffiffiffi
0:5

p ¼ 0:5271

d2ðt1Þ ¼ d1 � 0:2
ffiffiffiffiffiffiffi
0:5

p
¼ 0:3856

so that

wðt1Þ ¼ e
�0:05�1:5½1600Nð0:5271Þ � 1500Nð0:3856Þ� ¼ 135:73

and

v1 ¼ wðt1Þe�0:05�0:5 � ð1� 0:3Þ ¼ 92:67

Similarly wðt2Þ ¼ 201:18 and v2 ¼ 130:65.
The expected cost of defaults is

q1v1 þ q2v2 ¼ 0:02� 92:67þ 0:03� 130:65 ¼ 5:77

The no-default value of the forward contract is ð1,600� 1,500Þe�0:05�2 ¼ 90:48.
When counterparty defaults are considered, the value drops to 90:48� 5:77 ¼
84:71. The calculation can be extended to allow the times when the mining
company can default to be more frequent (see Problem 24.29). DVA, which
increases the value of the derivative, can be calculated in a similar way to CVA

(see Problem 24.30).

24.8 DEFAULT CORRELATION

The term default correlation is used to describe the tendency for two companies to

default at about the same time. There are a number of reasons why default correlation
exists. Companies in the same industry or the same geographic region tend to be
affected similarly by external events and as a result may experience financial difficulties
at the same time. Economic conditions generally cause average default rates to be
higher in some years than in other years. A default by one company may cause a default
by another—the credit contagion effect. Default correlation means that credit risk

cannot be completely diversified away and is the major reason why risk-neutral default
probabilities are greater than real-world default probabilities (see Section 24.5).

Default correlation is important in the determination of probability distributions for
default losses from a portfolio of exposures to different counterparties.13 Two types of

13 A binomial correlation measure that has been used by rating agencies is described in Technical Note 26 at

www.rotman.utoronto.ca/�hull/TechnicalNotes.
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default correlation models that have been suggested by researchers are referred to as
reduced form models and structural models.

Reduced form models assume that the hazard rates for different companies follow
stochastic processes and are correlated with macroeconomic variables. When the hazard
rate for company A is high there is a tendency for the hazard rate for company B to be
high. This induces a default correlation between the two companies.

Reduced form models are mathematically attractive and reflect the tendency for
economic cycles to generate default correlations. Their main disadvantage is that the
range of default correlations that can be achieved is limited. Even when there is a perfect
correlation between the hazard rates of the two companies, the probability that they will
both default during the same short period of time is usually very low. This is liable to be a
problem in some circumstances. For example, when two companies operate in the same
industry and the same country or when the financial health of one company is for some
reason heavily dependent on the financial health of another company, a relatively high
default correlation may be warranted. One approach to solving this problem is by
extending the model so that the hazard rate exhibits large jumps.

Structural models are based on a model similar to Merton’s model (see Section 24.6).
A company defaults if the value of its assets is below a certain level. Default correlation
between companies A and B is introduced into the model by assuming that the
stochastic process followed by the assets of company A is correlated with the stochastic
process followed by the assets of company B. Structural models have the advantage
over reduced form models that the correlation can be made as high as desired. Their
main disadvantage is that they are liable to be computationally quite slow.

The Gaussian Copula Model for Time to Default

A model that has become a popular practical tool is the Gaussian copula model for the
time to default. It can be shown to be similar toMerton’s structural model. It assumes that
all companies will default eventually and attempts to quantify the correlation between the
probability distributions of the times to default for two or more different companies.

The model can be used in conjunction with either real-world or risk-neutral default
probabilities. The left tail of the real-world probability distribution for the time to
default of a company can be estimated from data produced by rating agencies such as
that in Table 24.1. The left tail of the risk-neutral probability distribution of the time to
default can be estimated from bond prices using the approach in Section 24.4.

Define t1 as the time to default of company 1 and t2 as the time to default of
company 2. If the probability distributions of t1 and t2 were normal, we could assume
that the joint probability distribution of t1 and t2 is bivariate normal. As it happens, the
probability distribution of a company’s time to default is not even approximately
normal. This is where a Gaussian copula model comes in. We transform t1 and t2 into
new variables x1 and x2 using

x1 ¼ N
�1½Q1ðt1Þ�; x2 ¼ N

�1½Q2ðt2Þ�
whereQ1 andQ2 are the cumulative probability distributions for t1 and t2, andN�1 is the
inverse of the cumulative normal distribution (u ¼ N�1ðvÞ when v ¼ NðuÞ). These are
‘‘percentile-to-percentile’’ transformations. The 5-percentile point in the probability
distribution for t1 is transformed to x1 ¼ �1:645, which is the 5-percentile point in the
standard normal distribution; the 10-percentile point in the probability distribution for t1
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is transformed to x1 ¼ �1:282, which is the 10-percentile point in the standard normal

distribution; and so on. The t2-to-x2 transformation is similar.

By construction, x1 and x2 have normal distributions with mean zero and unit

standard deviation. The model assumes that the joint distribution of x1 and x2 is

bivariate normal. This assumption is referred to as using a Gaussian copula. The

assumption is convenient because it means that the joint probability distribution of

t1 and t2 is fully defined by the cumulative default probability distributions Q1 and Q2

for t1 and t2, together with a single correlation parameter.

The attraction of the Gaussian copula model is that it can be extended to many

companies. Suppose that we are considering n companies and that ti is the time to default

of the ith company. We transform each ti into a new variable, xi, that has a standard

normal distribution. The transformation is the percentile-to-percentile transformation

xi ¼ N
�1½QiðtiÞ�

where Qi is the cumulative probability distribution for ti. It is then assumed that the xi
are multivariate normal. The default correlation between ti and tj is measured as the

correlation between xi and xj. This is referred to as the copula correlation.14

The Gaussian copula is a useful way of representing the correlation structure

between variables that are not normally distributed. It allows the correlation structure

of the variables to be estimated separately from their marginal (unconditional)

distributions. Although the variables themselves are not multivariate normal, the

approach assumes that after a transformation is applied to each variable they are

multivariate normal.

Example 24.6

Suppose that we wish to simulate defaults during the next 5 years in 10 com-

panies. The copula default correlations between each pair of companies is 0.2. For

each company the cumulative probability of a default during the next 1, 2, 3, 4,

5 years is 1%, 3%, 6%, 10%, 15%, respectively. When a Gaussian copula is used

we sample from a multivariate normal distribution to obtain the xi ð1 6 i 6 10Þ
with the pairwise correlation between the xi being 0.2. We then convert the xi
to ti, a time to default. When the sample from the normal distribution is less than

N
�1ð0:01Þ ¼ �2:33, a default takes place within the first year; when the sample is

between �2:33 and N
�1ð0:03Þ ¼ �1:88, a default takes place during the second

year; when the sample is between –1.88 and N
�1ð0:06Þ ¼ �1:55, a default takes

place during the third year; when the sample is between �1:55 and N
�1ð0:10Þ ¼

�1:28, a default takes place during the fourth year; when the sample is between

�1:28 and N
�1ð0:15Þ ¼ �1:04, a default takes place during the fifth year. When

the sample is greater than �1:04, there is no default during the 5 years.

A Factor-Based Correlation Structure

To avoid defining a different correlation between xi and xj for each pair of companies i

and j in the Gaussian copula model, a one-factor model is often used. The assumption

14 As an approximation, the copula correlation between ti and tj is often assumed to be the correlation

between the equity returns for companies i and j.
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is that

xi ¼ aiF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2i

p
Zi ð24:7Þ

In this equation, F is a common factor affecting defaults for all companies and Zi is a

factor affecting only company i. The variable F and the variables Zi have independent

standard normal distributions. The ai are constant parameters between �1 and þ1. The

correlation between xi and xj is ai aj.
15

Suppose that the probability that company i will default by a particular time T

is QiðT Þ. Under the Gaussian copula model, a default happens by time T when

NðxiÞ < QiðT Þ or xi < N
�1½QiðT Þ�. From equation (24.7), this condition is

aiF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2i

p
Zi < N

�1½QiðT Þ�
or

Zi <
N

�1½QiðT Þ� � aiFffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2i

p

Conditional on the value of the factor F , the probability of default is therefore

QiðT j FÞ ¼ N

�
N

�1½QiðT Þ� � aiFffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2i

p
�

ð24:8Þ

A particular case of the one-factor Gaussian copula model is where the probability

distributions of default are the same for all i and the correlation between xi and xj is the

same for all i and j. Suppose that QiðT Þ ¼ QðT Þ for all i and that the common

correlation is �, so that ai ¼ ffiffiffi
�

p
for all i. Equation (24.8) becomes

QðT j FÞ ¼ N

�
N

�1½QðT Þ� � ffiffiffi
�

p
Fffiffiffiffiffiffiffiffiffiffiffi

1� �
p

�
ð24:9Þ

24.9 CREDIT VaR

Credit value at risk can be defined analogously to the way value at risk is defined for

market risks (see Chapter 22). For example, a credit VaR with a confidence level of

99.9% and a 1-year time horizon is the credit loss that we are 99.9% confident will not

be exceeded over 1 year.

Consider a bank with a very large portfolio of similar loans. As an approximation,

assume that the probability of default is the same for each loan and the correlation

between each pair of loans is the same. When the Gaussian copula model for time to

default is used, the right-hand side of equation (24.9) is to a good approximation

equal to the percentage of defaults by time T as a function of F . The factor F has a

standard normal distribution. We are X% certain that its value will be greater than

15 The parameter ai is sometimes approximated as the correlation of company i’s equity returns with a well-

diversified market index.
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N
�1ð1�XÞ ¼ �N

�1ðXÞ. We are therefore X% certain that the percentage of losses

over T years on a large portfolio will be less than V ðX; T Þ, where

V ðX; T Þ ¼ N

�
N

�1½QðT Þ� þ ffiffiffi
�

p
N

�1ðXÞffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�

ð24:10Þ

This result was first produced by Vasicek.16 As in equation (24.9),QðT Þ is the probability
of default by time T and � is the copula correlation between any pair of loans.

A rough estimate of the credit VaR when an X% confidence level is used and the time

horizon is T is therefore Lð1� RÞV ðX; T Þ, where L is the size of the loan portfolio and

R is the recovery rate. The contribution of a particular loan of size Li to the credit VaR

is Lið1� RÞV ðX; T Þ. This model underlies some of the formulas that regulators use for

credit risk capital.17

Example 24.7

Suppose that a bank has a total of $100 million of retail exposures. The 1-year

probability of default averages 2% and the recovery rate averages 60%. The

copula correlation parameter is estimated as 0.1. In this case,

V ð0:999; 1Þ ¼ N

�
N

�1ð0:02Þ þ ffiffiffiffiffiffiffi
0:1

p
N

�1ð0:999Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:1

p
�
¼ 0:128

showing that the 99.9% worst case default rate is 12.8%. The 1-year 99.9% credit

VaR is therefore 100� 0:128� ð1� 0:6Þ or $5.13 million.

CreditMetrics

Many banks have developed other procedures for calculating credit VaR. One popular

approach is known as CreditMetrics. This involves estimating a probability distribution

of credit losses by carrying out a Monte Carlo simulation of the credit rating changes of

all counterparties. Suppose we are interested in determining the probability distribution

of losses over a 1-year period. On each simulation trial, we sample to determine the credit

rating changes and defaults of all counterparties during the year. We then revalue our

outstanding contracts to determine the total of credit losses for the year. After a large

number of simulation trials, a probability distribution for credit losses is obtained. This

can be used to calculate credit VaR.

This approach is liable to be computationally quite time intensive. However, it has

the advantage that credit losses are defined as those arising from credit downgrades as

well as defaults. Also the impact of credit mitigation clauses such as those described in

Section 24.7 can be approximately incorporated into the analysis.

Table 24.5 is typical of the historical data provided by rating agencies on credit

rating changes and could be used as a basis for a CreditMetrics Monte Carlo

simulation. It shows the percentage probability of a bond moving from one rating

16 See O. Vasicek, ‘‘Probability of Loss on a Loan Portfolio,’’ Working Paper, KMV, 1987. Vasicek’s results

were published in Risk magazine in December 2002 under the title ‘‘Loan Portfolio Value’’.
17 For further details, see J. Hull, Risk Management and Financial Institutions, 3rd edn. Hoboken, NJ: Wiley,

2012.
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category to another during a 1-year period. For example, a bond that starts with an A

credit rating has a 90.91% chance of still having an A rating at the end of 1 year. It

has a 0.05% chance of defaulting during the year, a 0.09% chance of dropping to B,

and so on.18

In sampling to determine credit losses, the credit rating changes for different counter-

parties should not be assumed to be independent. A Gaussian copula model is typically

used to construct a joint probability distribution of rating changes similarly to the way

it is used in the model in the previous section to describe the joint probability

distribution of times to default. The copula correlation between the rating transitions

for two companies is usually set equal to the correlation between their equity returns

using a factor model similar to that in Section 24.8.

As an illustration of the CreditMetrics approach suppose that we are simulating the

rating change of a Aaa and a Baa company over a 1-year period using the transition

matrix in Table 24.5. Suppose that the correlation between the equities of the two

companies is 0.2. On each simulation trial, we would sample two variables xA and xB
from normal distributions so that their correlation is 0.2. The variable xA determines

the new rating of the Aaa company and variable xB determines the new rating

of the Baa company. Since N�1ð0:9059Þ ¼ 1:3159, the Aaa company stays Aaa if

xA < 1:3159; since N�1ð0:9059þ 0:0831Þ ¼ 2:2904, it becomes Aa if 1:3159 6 xA <
2:2904; since N�1ð0:9059þ 0:0831þ 0:0089Þ ¼ 2:8627, it becomes A if 2:2904 6 xA <
2:8627; and so on. Consider next the Baa company. Since N�1ð0:0004Þ ¼ �3:3528, the
Baa company becomes Aaa if xB < �3:3528; since N�1ð0:0004þ 0:0030Þ ¼ �2:7065, it
becomes Aa if �3:3528 6 xB < �2:7065; since

N
�1ð0:0004þ 0:0030þ 0:0458Þ ¼ �1:6527

it becomes A if �2:7065 6 xB < �1:6527; and so on. The Aaa never defaults during the

year. The Baa defaults when xB > N
�1ð0:9970Þ, that is when xB > 2:7478.

Table 24.5 One-year ratings transition matrix, 1970–2012, with probabilities
expressed as percentages and adjustments for transitions to the WR (without
rating) category, calculated from Moody’s data.

Initial rating Rating at year-end

Aaa Aa A Baa Ba B Caa Ca–C Default

Aaa 90.59 8.31 0.89 0.17 0.03 0.00 0.00 0.00 0.00
Aa 1.25 89.48 8.05 0.90 0.20 0.04 0.01 0.01 0.08
A 0.08 2.97 89.80 6.08 0.79 0.13 0.03 0.01 0.10
Baa 0.04 0.30 4.58 88.43 5.35 0.84 0.14 0.02 0.30
Ba 0.01 0.09 0.52 6.61 82.88 7.72 0.67 0.07 1.43
B 0.01 0.05 0.16 0.65 6.39 81.69 6.40 0.57 4.08
Caa 0.00 0.02 0.03 0.19 0.81 9.49 72.06 4.11 13.29
Ca–C 0.00 0.03 0.12 0.07 0.57 3.48 9.12 57.93 28.69
Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

18 Technical Note 11 at www.rotman.utoronto.ca/�hull/TechnicalNotes explains how a table such as

Table 24.5 can be used to calculate transition matrices for periods other than 1 year.
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SUMMARY

The probability that a company will default during a particular period of time in the

future can be estimated from historical data, bond prices, or equity prices. The default

probabilities calculated from bond prices are risk-neutral probabilities, whereas those

calculated from historical data are real-world probabilities. Real-world probabilities

should be used for scenario analysis and the calculation of credit VaR. Risk-neutral

probabilities should be used for valuing credit-sensitive instruments. Risk-neutral

default probabilities are often significantly higher than real-world default probabilities.

The credit value adjustment (CVA) is the amount by which a bank reduces the value

of a derivatives portfolio with a counterparty because of the possibility of the counter-

party defaulting. The debt (or debit) value adjustment is the amount by which it

increases the value of a portfolio because it might itself default. The calculation of

CVA and DVA involves a time-consuming Monte Carlo simulation to determine the

expected future exposures of the two sides of the portfolio.

Credit VaR can be defined similarly to the way VaR is defined for market risk. One

approach to calculating it is the Gaussian copula model of time to default. This is used

by regulators in the calculation of capital for credit risk. Another popular approach for

calculating credit VaR is CreditMetrics. This uses a Gaussian copula model for credit

rating changes.
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Practice Questions (Answers in the Solutions Manual)

24.1. The spread between the yield on a 3-year corporate bond and the yield on a similar risk-
free bond is 50 basis points. The recovery rate is 30%. Estimate the average hazard rate
per year over the 3-year period.

24.2. Suppose that in Problem 24.1 the spread between the yield on a 5-year bond issued by the
same company and the yield on a similar risk-free bond is 60 basis points. Assume the
same recovery rate of 30%. Estimate the average hazard rate per year over the 5-year
period. What do your results indicate about the average hazard rate in years 4 and 5?

24.3. Should researchers use real-world or risk-neutral default probabilities for (a) calculating
credit value at risk and (b) adjusting the price of a derivative for defaults?

24.4. How are recovery rates usually defined?

24.5. Explain the difference between an unconditional default probability density and a
hazard rate.

24.6. Verify (a) that the numbers in the second column of Table 24.3 are consistent with the
numbers in Table 24.1 and (b) that the numbers in the fourth column of Table 24.4 are
consistent with the numbers in Table 24.3 and a recovery rate of 40%.

24.7. Describe how netting works. A bank already has one transaction with a counterparty on
its books. Explain why a new transaction by a bank with a counterparty can have the
effect of increasing or reducing the bank’s credit exposure to the counterparty.

24.8. ‘‘DVA can improve the bottom line when a bank is experiencing financial difficulties.’’
Explain why this statement is true.

24.9. Explain the difference between the Gaussian copula model for the time to default and
CreditMetrics as far as the following are concerned: (a) the definition of a credit loss and
(b) the way in which default correlation is modeled.

24.10. Suppose that the LIBOR/swap curve is flat at 6% with continuous compounding and a
5-year bond with a coupon of 5% (paid semiannually) sells for 90.00. How would an
asset swap on the bond be structured? What is the asset swap spread that would be
calculated in this situation?

24.11. Show that the value of a coupon-bearing corporate bond is the sum of the values of its
constituent zero-coupon bonds when the amount claimed in the event of default is the
no-default value of the bond, but that this is not so when the claim amount is the face
value of the bond plus accrued interest.

24.12. A 4-year corporate bond provides a coupon of 4% per year payable semiannually and
has a yield of 5% expressed with continuous compounding. The risk-free yield curve is
flat at 3% with continuous compounding. Assume that defaults can take place at the end
of each year (immediately before a coupon or principal payment) and that the recovery
rate is 30%. Estimate the risk-neutral default probability on the assumption that it is the
same each year.

24.13. A company has issued 3- and 5-year bonds with a coupon of 4% per annum payable
annually. The yields on the bonds (expressed with continuous compounding) are 4.5%
and 4.75%, respectively. Risk-free rates are 3.5% with continuous compounding for all
maturities. The recovery rate is 40%. Defaults can take place halfway through each year.
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The risk-neutral default rates per year are Q1 for years 1 to 3 and Q2 for years 4 and 5.
Estimate Q1 and Q2.

24.14. Suppose that a financial institution has entered into a swap dependent on the sterling
interest rate with counterparty X and an exactly offsetting swap with counterparty Y.
Which of the following statements are true and which are false?

(a) The total present value of the cost of defaults is the sum of the present value of the

cost of defaults on the contract with X plus the present value of the cost of defaults
on the contract with Y.

(b) The expected exposure in 1 year on both contracts is the sum of the expected
exposure on the contract with X and the expected exposure on the contract

with Y.
(c) The 95% upper confidence limit for the exposure in 1 year on both contracts is

the sum of the 95% upper confidence limit for the exposure in 1 year on the

contract with X and the 95% upper confidence limit for the exposure in 1 year on
the contract with Y.

Explain your answers.

24.15. ‘‘A long forward contract subject to credit risk is a combination of a short position in a
no-default put and a long position in a call subject to credit risk.’’ Explain this
statement.

24.16. Explain why the credit exposure on a matched pair of forward contracts resembles a
straddle.

24.17. Explain why the impact of credit risk on a matched pair of interest rate swaps tends to be
less than that on a matched pair of currency swaps.

24.18. ‘‘When a bank is negotiating currency swaps, it should try to ensure that it is receiving
the lower interest rate currency from a company with a low credit risk.’’ Explain why.

24.19. Does put–call parity hold when there is default risk? Explain your answer.

24.20. Suppose that in an asset swap B is the market price of the bond per dollar of principal,
B

� is the default-free value of the bond per dollar of principal, and V is the present value
of the asset swap spread per dollar of principal. Show that V ¼ B

� � B.

24.21. Show that under Merton’s model in Section 24.6 the credit spread on a T -year zero-
coupon bond is � ln½Nðd2Þ þ Nð�d1Þ=L�=T , where L ¼ De

�rT =V0.

24.22. Suppose that the spread between the yield on a 3-year zero-coupon riskless bond and a
3-year zero-coupon bond issued by a corporation is 1%. By how much does Black–
Scholes–Merton overstate the value of a 3-year European option sold by the corporation.

24.23. Give an example of (a) right-way risk and (b) wrong-way risk.

Further Questions

24.24. Suppose a 3-year corporate bond provides a coupon of 7% per year payable semi-
annually and has a yield of 5% (expressed with semiannual compounding). The yields
for all maturities on risk-free bonds is 4% per annum (expressed with semiannual
compounding). Assume that defaults can take place every 6 months (immediately before
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a coupon payment) and the recovery rate is 45%. Estimate the hazard rate (assumed
constant) for the three years.

24.25. A company has 1- and 2-year bonds outstanding, each providing a coupon of 8% per year
payable annually. The yields on the bonds (expressed with continuous compounding) are
6.0% and 6.6%, respectively. Risk-free rates are 4.5% for all maturities. The recovery rate
is 35%. Defaults can take place halfway through each year. Estimate the risk-neutral
default rate each year.

24.26. Explain carefully the distinction between real-world and risk-neutral default probabil-
ities. Which is higher? A bank enters into a credit derivative where it agrees to pay $100
at the end of 1 year if a certain company’s credit rating falls from A to Baa or lower
during the year. The 1-year risk-free rate is 5%. Using Table 24.5, estimate a value for
the derivative. What assumptions are you making? Do they tend to overstate or under-
state the value of the derivative.

24.27. The value of a company’s equity is $4 million and the volatility of its equity is 60%. The
debt that will have to be repaid in 2 years is $15 million. The risk-free interest rate is 6%
per annum. Use Merton’s model to estimate the expected loss from default, the
probability of default, and the recovery rate in the event of default. (Hint : The Solver
function in Excel can be used for this question, as indicated in footnote 10.)

24.28. Suppose that a bank has a total of $10 million of exposures of a certain type. The 1-year
probability of default averages 1% and the recovery rate averages 40%. The copula
correlation parameter is 0.2. Estimate the 99.5% 1-year credit VaR.

24.29. Extend Example 24.5 to calculate CVA when default can happen in the middle of each
month. Assume that the default probability per month during the first year is 0.001667
and the default probability per month during the second year is 0.0025.

24.30. Calculate DVA in Example 24.5. Assume that default can happen in the middle of each
month. The default probability of the bank is 0.001 per month for the two years.

592 CHAPTER 24



Credit Derivatives

An important development in derivatives markets since the late 1990s has been the
growth of credit derivatives. In 2000, the total notional principal for outstanding

credit derivatives contracts was about $800 billion. By the credit crisis of 2007, this
had become $50 trillion. After the crisis, the size of the market declined. The total

notional principal was about $25 trillion in December 2012. Credit derivatives are
contracts where the payoff depends on the creditworthiness of one or more companies
or countries. This chapter explains how credit derivatives work and how they are

valued.

Credit derivatives allow companies to trade credit risks in much the same way that
they trade market risks. Banks and other financial institutions used to be in the position
where they could do little once they had assumed a credit risk except wait (and hope for

the best). Now they can actively manage their portfolios of credit risks, keeping some
and entering into credit derivative contracts to protect themselves from others. Banks

have historically been the biggest buyers of credit protection and insurance companies
have been the biggest sellers.

Credit derivatives can be categorized as ‘‘single-name’’ or ‘‘multi-name.’’ The most
popular single-name credit derivative is a credit default swap. The payoff from this

instrument depends on the creditworthiness of one company or country. There are two
sides to the contract: the buyer and seller of protection. There is a payoff from the seller

of protection to the buyer of protection if the specified entity (company or country)
defaults on its obligations. A popular multi-name credit derivative is a collateralized
debt obligation. In this, a portfolio of debt instruments is specified and a complex

structure is created where the cash flows from the portfolio are channelled to different
categories of investors. Chapter 8 describes how multi-name credit derivatives were

created from residential mortgages during the period leading up to the credit crisis. This
chapter focuses on the situation where the underlying credit risks are those of corpora-
tions or countries.

This chapter starts by explaining how credit default swaps work and how they are

valued. It then explains credit indices and the way in which traders can use them to buy
protection on a portfolio. After that it moves on to cover basket credit default swaps,
asset-backed securities, and collateralized debt obligations. It expands on the material

in Chapter 24 to show how the Gaussian copula model of default correlation can be
used to value tranches of collateralized debt obligations.
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25.1 CREDIT DEFAULT SWAPS

The most popular credit derivative is a credit default swap (CDS). This was introduced

in Section 7.12. It is a contract that provides insurance against the risk of a default by

particular company. The company is known as the reference entity and a default by the

company is known as a credit event. The buyer of the insurance obtains the right to sell

bonds issued by the company for their face value when a credit event occurs and the

seller of the insurance agrees to buy the bonds for their face value when a credit event

occurs.1 The total face value of the bonds that can be sold is known as the credit default

swap’s notional principal.

The buyer of the CDS makes periodic payments to the seller until the end of the life

of the CDS or until a credit event occurs. These payments are typically made in arrears

every quarter, but deals where payments are made every month, 6 months, or 12 months

also occur and sometimes payments are made in advance. The settlement in the event of

a default involves either physical delivery of the bonds or a cash payment.

An example will help to illustrate how a typical deal is structured. Suppose that two

parties enter into a 5-year credit default swap on March 20, 2015. Assume that the

notional principal is $100 million and the buyer agrees to pay 90 basis points per annum

for protection against default by the reference entity, with payments being made

quarterly in arrears.

The CDS is shown in Figure 25.1. If the reference entity does not default (i.e., there is

no credit event), the buyer receives no payoff and pays 22.5 basis points (a quarter of

90 basis points) on $100 million on June 20, 2015, and every quarter thereafter until

March 20, 2020. The amount paid each quarter is 0:00225� 100,000,000, or $225,000.2

If there is a credit event, a substantial payoff is likely. Suppose that the buyer notifies the

seller of a credit event on May 20, 2018 (2 months into the fourth year). If the contract

Business Snapshot 25.1 Who Bears the Credit Risk?

Traditionally banks have been in the business of making loans and then bearing the
credit risk that the borrower will default. However, banks have for some time been
reluctant to keep loans on their balance sheets. This is because, after the capital
required by regulators has been accounted for, the average return earned on loans is
often less attractive than that on other assets. As discussed in Section 8.1, banks
created asset-backed securities to pass loans (and their credit risk) on to investors. In
the late 1990s and early 2000s, banks also made extensive use of credit derivatives to
shift the credit risk in their loans to other parts of the financial system.

The result of all this is that the financial institution bearing the credit risk of a loan
is often different from the financial institution that did the original credit checks. As
the credit crisis starting in 2007 has shown, this is not always good for the overall
health of the financial system.

1 The face value (or par value) of a coupon-bearing bond is the principal amount that the issuer repays at

maturity if it does not default.
2 The quarterly payments are liable to be slightly different from $225,000 because of the application of the

day count conventions described in Chapter 6.
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specifies physical settlement, the buyer has the right to sell bonds issued by the reference

entity with a face value of $100 million for $100 million. If, as is now usual, there is cash

settlement, an ISDA-organized auction process is used to determine the mid-market

value of the cheapest deliverable bond several days after the credit event. Suppose the

auction indicates that the bond is worth $35 per $100 of face value. The cash payoff

would be $65 million.

The regular quarterly, semiannual, or annual payments from the buyer of protection

to the seller of protection cease when there is a credit event. However, because these

payments are made in arrears, a final accrual payment by the buyer is usually required.

In our example, where there is a default on May 20, 2018, the buyer would be required

to pay to the seller the amount of the annual payment accrued between March 20, 2018,

and May 20, 2018 (approximately $150,000), but no further payments would be

required.

The total amount paid per year, as a percent of the notional principal, to buy

protection (90 basis points in our example) is known as the CDS spread. Several large

banks are market makers in the credit default swap market. When quoting on a new

5-year credit default swap on a company, a market maker might bid 250 basis points

and offer 260 basis points. This means that the market maker is prepared to buy

protection by paying 250 basis points per year (i.e., 2.5% of the principal per year) and

to sell protection for 260 basis points per year (i.e., 2.6% of the principal per year).

Many different companies and countries are reference entities for the CDS contracts

that trade. As mentioned, payments are usually made quarterly in arrears. Contracts

with maturities of 5 years are most popular, but other maturities such as 1, 2, 3, 7, and

10 years are not uncommon. Usually contracts mature on one of the following standard

dates: March 20, June 20, September 20, and December 20. The effect of this is that the

actual time to maturity of a contract when it is initiated is close to, but not necessarily

the same as, the number of years to maturity that is specified. Suppose you call a dealer

on November 15, 2015, to buy 5-year protection on a company. The contract would

probably last until December 20, 2020. Your first payment would be due on Decem-

ber 20, 2015, and would equal an amount covering the November 15, 2015, to

December 20, 2015, period.3 A key aspect of a CDS contract is the definition of a

credit event (i.e., a default). Usually a credit event is defined as a failure to make a

payment as it becomes due, a restructuring of debt, or a bankruptcy. Restructuring is

sometimes excluded in North American contracts, particularly in situations where the

yield on the company’s debt is high. More information on the CDS market is given in

Business Snapshot 25.2.

Default
protection

buyer

Default
protection

seller

90 basis points per year

Payment if default by
reference entity

Figure 25.1 Credit default swap.

3 If the time to the first standard date is less than 1 month, then the first payment is typically made on the

second standard payment date; otherwise it is made on the first standard payment date.
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Credit Default Swaps and Bond Yields

A CDS can be used to hedge a position in a corporate bond. Suppose that an investor

buys a 5-year corporate bond yielding 7% per year for its face value and at the same

Business Snapshot 25.2 The CDS Market

In 1998 and 1999, the International Swaps and Derivatives Association (ISDA)
developed a standard contract for trading credit default swaps in the over-the-
counter market. Since then the market has grown in popularity. A CDS contract is
like an insurance contract in many ways, but there is one key difference. An insurance
contract provides protection against losses on an asset that is owned by the protec-
tion buyer. In the case of a CDS, the underlying asset does not have to be owned.

During the credit turmoil that started in August 2007, regulators became very
concerned about systemic risk (see Business Snapshot 1.2). They felt that credit default
swaps were a source of vulnerability for financial markets. The danger is that a default
by one financial institution might lead to big losses by its counterparties in CDS
transactions and further defaults by other financial institutions. Regulatory concerns
were fueled by troubles at insurance giant AIG. This was a big seller of protection on
the AAA-rated tranches created from mortgages (see Chapter 8). The protection
proved very costly to AIG and the company was bailed out by the U.S. government.

During 2007 and 2008, trading ceased in many types of credit derivatives, but CDSs
continued to trade actively (although the cost of protection increased dramatically).
The advantage of CDSs over some other credit derivatives is that the way they work is
straightforward. Other credit derivatives, such as those created from the securitization
of household mortgages (see Chapter 8), lack this transparency.

It is not uncommon for the volume of CDSs on a company to be greater than its
debt. Cash settlement of contracts is then clearly necessary. When Lehman defaulted
in September 2008, there was about $400 billion of CDS contracts and $155 billion of
Lehman debt outstanding. The cash payout to the buyers of protection (determined by
an ISDA auction process) was 91.375% of principal.

There is one important difference between credit default swaps and the other over-
the-counter derivatives that we have considered in this book. The other over-the-
counter derivatives depend on interest rates, exchange rates, equity indices, commodity
prices, and so on. There is no reason to assume that any one market participant has
better information than any other market participant about these variables.

Credit default swaps spreads depend on the probability that a particular company
will default during a particular period of time. Arguably some market participants
have more information to estimate this probability than others. A financial institu-
tion that works closely with a particular company by providing advice, making
loans, and handling new issues of securities is likely to have more information about
the creditworthiness of the company than another financial institution that has no
dealings with the company. Economists refer to this as an asymmetric information
problem. Financial institutions emphasize that the decision to buy protection against
the risk of default by a company is normally made by a risk manager and is not
based on any special information that may exist elsewhere in the financial institution
about the company.
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time enters into a 5-year CDS to buy protection against the issuer of the bond

defaulting. Suppose that the CDS spread is 200 basis points, or 2%, per annum. The
effect of the CDS is to convert the corporate bond to a risk-free bond (at least
approximately). If the bond issuer does not default, the investor earns 5% per year

when the CDS spread is netted against the corporate bond yield. If the bond does
default, the investor earns 5% up to the time of the default. Under the terms of the
CDS, the investor is then able to exchange the bond for its face value. This face value

can be invested at the risk-free rate for the remainder of the 5 years.

This shows that the spread of the yield on an n-year bond issued by a company over the
risk-free rate should approximately equal the company’s n-year CDS spread. If it is
markedly more than this, an investor can earn more than the risk-free rate by buying the

corporate bond and buying protection. If it is markedly less than this, an investor can
borrow at less than the risk-free rate by shorting the bond and selling CDS protection.

The CDS–bond basis is defined as

CDS–bond basis ¼ CDS spread� Bond yield spread

The bond yield spread is calculated using the LIBOR/swap rate as the risk-free rate.

Usually the bond yield spread is set equal to the asset swap spread.

The arbitrage argument given above suggests that the CDS–bond basis should be

close to zero. In fact it tends to be positive during some periods (e.g., pre-2007) and
negative during other periods (e.g., 2007–2009). The sign of the CDS–bond basis at any

given time can depend on the underlying reference entity.

The Cheapest-to-Deliver Bond

As explained in Section 24.3, the recovery rate on a bond is defined as the value of the

bond immediately after default as a percent of face value. This means that the payoff
from a CDS is Lð1� RÞ, where L is the notional principal and R is the recovery rate.

Usually a CDS specifies that a number of different bonds can be delivered in the event
of a default. The bonds typically have the same seniority, but they may not sell for the

same percentage of face value immediately after a default.4 This gives the holder of a CDS
a cheapest-to-deliver bond option. As already mentioned, an auction process, organized

by ISDA, is usually used to determine the value of the cheapest-to-deliver bond and,
therefore, the payoff to the buyer of protection.

25.2 VALUATION OF CREDIT DEFAULT SWAPS

The CDS spread for a particular reference entity can be calculated from default
probability estimates. We will illustrate how this is done for a 5-year CDS.

Suppose that the hazard rate of the reference entity is 2% per annum for the whole of
the 5-year life of the CDS. Table 25.1 shows survival probabilities and unconditional

probabilities of default. From equation (24.1), the probability of survival to time t

4 There are a number of reasons for this. The claim that is made in the event of a default is typically equal to

the bond’s face value plus accrued interest. Bonds with high accrued interest at the time of default therefore

tend to have higher prices immediately after default. Also the market may judge that in the event of a

reorganization of the company some bond holders will fare better than others.
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is e�0:02t. The probability of default during a year is the probability of survival to the

beginning of the year minus the probability of survival to the end of the year. For
example, the probability of survival to time 2 years is e�0:02�2 ¼ 0:9608 and the

probability of survival to time 3 years is e�0:02�3 ¼ 0:9418. The probability of default

during the third year is 0:9608� 0:9418 ¼ 0:0190.
We will assume that defaults always happen halfway through a year and that payments

on the credit default swap are made once a year, at the end of each year. We also assume

that the risk-free interest rate is 5% per annum with continuous compounding and the
recovery rate is 40%. There are three parts to the calculation. These are shown in

Tables 25.2, 25.3, and 25.4.

Table 25.2 shows the calculation of the present value of the expected payments made

on the CDS assuming that payments are made at the rate of s per year and the notional

principal is $1. For example, there is a 0.9418 probability that the third payment of s is

made. The expected payment is therefore 0:9418s and its present value is
0:9418se�0:05�3 ¼ 0:8106s. The total present value of the expected payments is 4:0728s.

Table 25.3 shows the calculation of the present value of the expected payoff assuming

a notional principal of $1. As mentioned earlier, we are assuming that defaults always

happen halfway through a year. For example, there is a 0.0190 probability of a payoff

halfway through the third year. Given that the recovery rate is 40%, the expected payoff

at this time is 0:0190� 0:6� 1 ¼ 0:0114. The present value of the expected payoff is
0:0114e�0:05�2:5 ¼ 0:0101. The total present value of the expected payoffs is $0.0506.

Table 25.1 Unconditional default probabilities
and survival probabilities.

Year Probability of
surviving to year end

Probability of
default during year

1 0.9802 0.0198
2 0.9608 0.0194
3 0.9418 0.0190
4 0.9231 0.0186
5 0.9048 0.0183

Table 25.2 Calculation of the present value of expected payments.
Payment ¼ s per annum.

Time
(years)

Probability
of survival

Expected
payment

Discount
factor

PV of expected
payment

1 0.9802 0.9802s 0.9512 0.9324s

2 0.9608 0.9608s 0.9048 0.8694s

3 0.9418 0.9418s 0.8607 0.8106s

4 0.9231 0.9231s 0.8187 0.7558s

5 0.9048 0.9048s 0.7788 0.7047s

Total 4.0728s
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As a final step, Table 25.4 considers the accrual payment made in the event of a default.
For example, there is a 0.0190 probability that there will be a final accrual payment

halfway through the third year. The accrual payment is 0:5s. The expected accrual

payment at this time is therefore 0:0190� 0:5s ¼ 0:0095s. Its present value is
0:0095se�0:05�2:5 ¼ 0:0084s. The total present value of the expected accrual payments

is 0:0422s.
From Tables 25.2 and 25.4, the present value of the expected payments is

4:0728sþ 0:0422s ¼ 4:1150s

From Table 25.3, the present value of the expected payoff is 0.0506. Equating the two

gives
4:1150s ¼ 0:0506

or s ¼ 0:0123. The mid-market CDS spread for the 5-year deal we have considered

should be 0.0123 times the principal or 123 basis points per year. This result can also be
produced using the DerivaGem CDS worksheet.

The calculations assume that defaults happen only at points midway between

payment dates. This simple assumption usually gives good results, but can easily be

relaxed so that more default times are considered.

Table 25.3 Calculation of the present value of expected payoff.
Notional principal ¼ $1.

Time
(years)

Probability
of default

Recovery
rate

Expected
payoff ($)

Discount
factor

PV of expected
payoff ($)

0.5 0.0198 0.4 0.0119 0.9753 0.0116

1.5 0.0194 0.4 0.0116 0.9277 0.0108

2.5 0.0190 0.4 0.0114 0.8825 0.0101

3.5 0.0186 0.4 0.0112 0.8395 0.0094

4.5 0.0183 0.4 0.0110 0.7985 0.0088

Total 0.0506

Table 25.4 Calculation of the present value of accrual payment.

Time
(years)

Probability
of default

Expected
accrual payment

Discount
factor

PV of expected
accrual payment

0.5 0.0198 0.0099s 0.9753 0.0097s

1.5 0.0194 0.0097s 0.9277 0.0090s

2.5 0.0190 0.0095s 0.8825 0.0084s

3.5 0.0186 0.0093s 0.8395 0.0078s

4.5 0.0183 0.0091s 0.7985 0.0073s

Total 0.0422s
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Marking to Market a CDS

A CDS, like most other swaps, is marked to market daily. It may have a positive or
negative value. Suppose, for example the credit default swap in our example had been
negotiated some time ago for a spread of 150 basis points, the present value of the
payments by the buyer would be 4:1150� 0:0150 ¼ 0:0617 and the present value of the
payoff would be 0.0506 as above. The value of swap to the seller would therefore be
0:0617� 0:0506, or 0.0111 times the principal. Similarly the mark-to-market value of
the swap to the buyer of protection would be �0:0111 times the principal.

Estimating Default Probabilities

The default probabilities used to value a CDS should be risk-neutral default prob-
abilities, not real-world default probabilities (see Section 24.5 for a discussion of the
difference between the two). Risk-neutral default probabilities can be estimated from
bond prices or asset swaps as explained in Chapter 24. An alternative is to imply them
from CDS quotes. The latter approach is similar to the practice in options markets of
implying volatilities from the prices of actively traded options and using them to value
other options.

Suppose we change the example in Tables 25.2, 25.3, and 25.4 so that we do not know
the default probabilities. Instead we know that the mid-market CDS spread for a newly
issued 5-year CDS is 100 basis points per year. We can reverse-engineer our calculations
(using Excel in conjunction with Solver) to conclude that the implied hazard rate is
1.63% per year. DerivaGem can be used to calculate a term structure of hazard rates
from a term structure of credit spreads.

Binary Credit Default Swaps

A binary credit default swap is structured similarly to a regular credit default swap
except that the payoff is a fixed dollar amount. Suppose that, in the example we
considered in Tables 25.1 to 25.4, the payoff is $1 instead of 1� R dollars and the
swap spread is s. Tables 25.1, 25.2 and 25.4 are the same, but Table 25.3 is replaced by
Table 25.5. The CDS spread for a new binary CDS is given by 4:1150s ¼ 0:0844, so that
the CDS spread s is 0.0205, or 205 basis points.

Table 25.5 Calculation of the present value of expected payoff
from a binary credit default swap. Principal ¼ $1.

Time
(years)

Probability
of default

Expected
payoff ($)

Discount
factor

PV of expected
payoff ($)

0.5 0.0198 0.0198 0.9753 0.0193

1.5 0.0194 0.0194 0.9277 0.0180

2.5 0.0190 0.0190 0.8825 0.0168

3.5 0.0186 0.0186 0.8395 0.0157

4.5 0.0183 0.0183 0.7985 0.0146

Total 0.0844
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How Important Is the Recovery Rate?

Whether we use CDS spreads or bond prices to estimate default probabilities we need

an estimate of the recovery rate. However, provided that we use the same recovery rate
for (a) estimating risk-neutral default probabilities and (b) valuing a CDS, the value of

the CDS (or the estimate of the CDS spread) is not very sensitive to the recovery rate.
This is because the implied probabilities of default are approximately proportional to

1=ð1� RÞ and the payoffs from a CDS are proportional to 1� R.

This argument does not apply to the valuation of binary CDS. Implied probabilities of
default are still approximately proportional to 1=ð1� RÞ. However, for a binary CDS, the

payoffs from the CDS are independent of R. If we have a CDS spread for both a plain
vanilla CDS and a binary CDS, we can estimate both the recovery rate and the default

probability (see Problem 25.25).

25.3 CREDIT INDICES

Participants in credit markets have developed indices to track credit default swap spreads.
In 2004 there were agreements between different producers of indices that led to some

consolidation. Two important standard portfolios used by index providers are:

1. CDX NA IG, a portfolio of 125 investment grade companies in North America

2. iTraxx Europe, a portfolio of 125 investment grade names in Europe

These portfolios are updated on March 20 and September 20 each year. Companies that
are no longer investment grade are dropped from the portfolios and new investment

grade companies are added.5

Suppose that the 5-year CDX NA IG index is quoted by a market maker as bid

65 basis points, offer 66 basis points. (This is referred to as the index spread.) Roughly
speaking, this means that a trader can buy CDS protection on all 125 companies in the

index for 66 basis points per company. Suppose a trader wants $800,000 of protection
on each company. The total cost is 0:0066� 800,000� 125, or $660,000 per year. The

trader can similarly sell $800,000 of protection on each of the 125 companies for a total
of $650,000 per annum. When a company defaults, the protection buyer receives the

usual CDS payoff and the annual payment is reduced by 660,000=125 ¼ $5,280. There is
an active market in buying and selling CDS index protection for maturities of 3, 5, 7,

and 10 years. The maturities for these types of contracts on the index are usually
December 20 and June 20. (This means that a ‘‘5-year’’ contract actually lasts between

4 3
4
and 5 1

4
years.) Roughly speaking, the index is the average of the CDS spreads on the

companies in the underlying portfolio.6

5 On September 20, 2013, the Series 20 iTraxx Europe portfolio and the Series 21 CDX NA IG portfolio were

defined. The series numbers indicate that, by the end of September 2013, the iTraxx Europe portfolio had

been updated 19 times and the CDX NA IG portfolio had been updated 20 times.
6 More precisely, the index is slightly lower than the average of the credit default swap spreads for the

companies in the portfolio. To understand the reason for this consider a portfolio consisting of two companies,

one with a spread of 1,000 basis points and the other with a spread of 10 basis points. To buy protection on the

companies would cost slightly less than 505 basis points per company. This is because the 1,000 basis points is

not expected to be paid for as long as the 10 basis points and should therefore carry less weight. Another

complication for CDX NA IG, but not iTraxx Europe, is that the definition of default applicable to the index

includes restructuring, whereas the definition for CDS contracts on the underlying companies may not.
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25.4 THE USE OF FIXED COUPONS

The precise way in which CDS and CDS index transactions work is a little more

complicated than has been described up to now. For each underlying and each

maturity, a coupon and a recovery rate are specified. A price is calculated from the

quoted spread using the following procedure:

1. Assume four payments per year, made in arrears.

2. Imply a hazard rate from the quoted spread. This involves calculations similar to
those in Section 25.2. An iterative search is used to determine the hazard rate that
leads to the quoted spread.

3. Calculate a ‘‘duration’’ D for the CDS payments. This is the number that the
spread is multiplied by to get the present value of the spread payments. (In the
example in Section 25.2, it is 4.1130.)7

4. The price P is given by P ¼ 100� 100�D� ðs� cÞ, where s is the spread and c is
the coupon expressed in decimal form.

When a trader buys protection the trader pays 100� P per $100 of the total remaining

notional and the seller of protection receives this amount. (If 100� P is negative, the

buyer of protection receives money and the seller of protection pays money.) The buyer of

protection then pays the coupon times the remaining notional on each payment date. (On

a CDS, the remaining notional is the original notional until default and zero thereafter.

For a CDS index, the remaining notional is the number of names in the index that have

not yet defaulted multiplied by the principal per name.) The payoff when there is a

default is calculated in the usual way. This arrangement facilitates trading because the

instruments trade like bonds. The regular quarterly payments made by the buyer of

protection are independent of the spread at the time the buyer enters into the contract.

Example 25.1

Suppose that the iTraxx Europe index quote is 34 basis points and the coupon is

40 basis points for a contract lasting exactly 5 years, with both quotes being

expressed using an actual/360 day count. (This is the usual day count convention

in CDS and CDS index markets.) The equivalent actual/actual quotes are 0.345%

for the index and 0.406% for the coupon. Suppose that the yield curve is flat at

4% per year (actual/actual, continuously compounded). The specified recovery

rate is 40%. With four payments per year in arrears, the implied hazard rate is

0.5717%. The duration is 4.447 years. The price is therefore

100� 100� 4:447� ð0:00345� 0:00406Þ ¼ 100:27

Consider a contract where protection is $1 million per name. Initially, the seller of

protection would pay the buyer $1,000,000� 125� 0:0027. Thereafter, the buyer

of protection would make quarterly payments in arrears at an annual rate of

$1,000,000� 0:00406� n, where n is the number of companies that have not

defaulted. When a company defaults, the payoff is calculated in the usual way

and there is an accrual payment from the buyer to the seller calculated at the rate

of 0.406% per year on $1 million.

7 This use of the term ‘‘duration’’ is different from that in Chapter 4.
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25.5 CDS FORWARDS AND OPTIONS

Once the CDS market was well established, it was natural for derivatives dealers to
trade forwards and options on credit default swap spreads.8

A forward credit default swap is the obligation to buy or sell a particular credit
default swap on a particular reference entity at a particular future time T . If the
reference entity defaults before time T , the forward contract ceases to exist. Thus a
bank could enter into a forward contract to sell 5-year protection on a company for
280 basis points starting in 1 year. If the company defaulted before the 1-year point, the
forward contract would cease to exist.

A credit default swap option is an option to buy or sell a particular credit default
swap on a particular reference entity at a particular future time T . For example, a trader
could negotiate the right to buy 5-year protection on a company starting in 1 year for
280 basis points. This is a call option. If the 5-year CDS spread for the company in
1 year turns out to be more than 280 basis points, the option will be exercised;
otherwise it will not be exercised. The cost of the option would be paid up front.
Similarly an investor might negotiate the right to sell 5-year protection on a company
for 280 basis points starting in 1 year. This is a put option. If the 5-year CDS spread for
the company in 1 year turns out to be less than 280 basis points, the option will be
exercised; otherwise it will not be exercised. Again the cost of the option would be paid
up front. Like CDS forwards, CDS options are usually structured so that they cease to
exist if the reference entity defaults before option maturity.

25.6 BASKET CREDIT DEFAULT SWAPS

In what is referred to as a basket credit default swap there are a number of reference
entities. An add-up basket CDS provides a payoff when any of the reference entities
default. A first-to-default CDS provides a payoff only when the first default occurs. A
second-to-default CDS provides a payoff only when the second default occurs. More
generally, a kth-to-default CDS provides a payoff only when the kth default occurs.
Payoffs are calculated in the same way as for a regular CDS. After the relevant default
has occurred, there is a settlement. The swap then terminates and there are no further
payments by either party.

25.7 TOTAL RETURN SWAPS

A total return swap is a type of credit derivative. It is an agreement to exchange the
total return on a bond (or any portfolio of assets) for LIBOR plus a spread. The total
return includes coupons, interest, and the gain or loss on the asset over the life of the
swap.

An example of a total return swap is a 5-year agreement with a notional principal of
$100 million to exchange the total return on a corporate bond for LIBOR plus 25 basis
points. This is illustrated in Figure 25.2. On coupon payment dates the payer pays the

8 The valuation of these instruments is discussed in J. C. Hull and A. White, ‘‘The Valuation of Credit

Default Swap Options,’’ Journal of Derivatives, 10, 5 (Spring 2003): 40–50.

Credit Derivatives 603



coupons earned on an investment of $100 million in the bond. The receiver pays interest

at a rate of LIBOR plus 25 basis points on a principal of $100 million. (LIBOR is set on

one coupon date and paid on the next as in a plain vanilla interest rate swap.) At the

end of the life of the swap there is a payment reflecting the change in value of the bond.

For example, if the bond increases in value by 10% over the life of the swap, the payer

is required to pay $10 million (¼ 10% of $100 million) at the end of the 5 years.

Similarly, if the bond decreases in value by 15%, the receiver is required to pay

$15 million at the end of the 5 years. If there is a default on the bond, the swap is

usually terminated and the receiver makes a final payment equal to the excess of $100

million over the market value of the bond.

If the notional principal is added to both sides at the end of the life of the swap, the

total return swap can be characterized as follows. The payer pays the cash flows on an

investment of $100 million in the corporate bond. The receiver pays the cash flows on a

$100 million bond paying LIBOR plus 25 basis points. If the payer owns the corporate

bond, the total return swap allows it to pass the credit risk on the bond to the receiver.

If it does not own the bond, the total return swap allows it to take a short position in

the bond.

Total return swaps are often used as a financing tool. One scenario that could lead to

the swap in Figure 25.2 is as follows. The receiver wants financing to invest $100 million

in the reference bond. It approaches the payer (which is likely to be a financial

institution) and agrees to the swap. The payer then invests $100 million in the bond.

This leaves the receiver in the same position as it would have been if it had borrowed

money at LIBOR plus 25 basis points to buy the bond. The payer retains ownership of

the bond for the life of the swap and faces less credit risk than it would have done if it

had lent money to the receiver to finance the purchase of the bond, with the bond being

used as collateral for the loan. If the receiver defaults the payer does not have the legal

problem of trying to realize on the collateral. Total return swaps are similar to repos

(see Section 4.1) in that they are structured to minimize credit risk when securities are

being financed.

The spread over LIBOR received by the payer is compensation for bearing the risk

that the receiver will default. The payer will lose money if the receiver defaults at a time

when the reference bond’s price has declined. The spread therefore depends on the

credit quality of the receiver, the credit quality of the bond issuer, and the correlation

between the two.

There are a number of variations on the standard deal we have described. Sometimes,

instead of there being a cash payment for the change in value of the bond, there is

physical settlement where the payer exchanges the underlying asset for the notional

principal at the end of the life of the swap. Sometimes the change-in-value payments are

made periodically rather than all at the end.

Total
return
payer

Total
return

receiver

Total return on bond

LIBOR + 25 basis points

Figure 25.2 Total return swap.
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25.8 COLLATERALIZED DEBT OBLIGATIONS

We discussed asset-backed securities (ABSs) in Chapter 8. Figure 8.1 shows a simple

structure. An ABS where the underlying assets are bonds is known as a collateralized

debt obligation, or CDO. A waterfall similar to that indicated in Figure 8.2 is defined for

the interest and principal payments on the bonds. The precise rules underlying the

waterfall are complicated, but they are designed to ensure that, if one tranche is more

senior than another, it is more likely to receive promised interest payments and

repayments of principal.

Synthetic CDOs

When a CDO is created from a bond portfolio, as just described, the resulting structure

is known as a cash CDO. In an important market development, it was recognized that a

long position in a corporate bond has a similar risk to a short position in a CDS when

the reference entity in the CDS is the company issuing the bond. This led an alternative

structure known as a synthetic CDO, which has become very popular.

The originator of a synthetic CDO chooses a portfolio of companies and a maturity

(e.g., 5 years) for the structure. It sells CDS protection on each company in the

portfolio with the CDS maturities equaling the maturity of the structure. The synthetic

CDO principal is the total of the notional principals underlying the CDSs. The

originator has cash inflows equal to the the CDS spreads and cash outflows when

companies in the portfolio default. Tranches are formed and the cash inflows and

outflows are distributed to tranches. The rules for determining the cash inflows and

outflows of tranches are more straightforward for a synthetic CDO than for a cash

CDO. Suppose that there are only three tranches: equity, mezzanine, and senior. The

rules might be as follows:

1. The equity tranche is responsible for the payouts on the CDSs until they reach 5%
of the synthetic CDO principal. It earns a spread of 1,000 basis points per year on
the outstanding tranche principal.

2. The mezzanine tranche is responsible for payouts in excess of 5% up to a
maximum of 20% of the synthetic CDO principal. It earns a spread of 100 basis
points per year on the outstanding tranche principal.

3. The senior tranche is responsible for payouts in excess of 20%. It earns a spread of
10 basis points per year on the outstanding tranche principal.

To understand how the synthetic CDO would work, suppose that its principal is

$100 million. The equity, mezzanine, and senior tranche principals are $5 million,

$15 million, and $80 million, respectively. The tranches initially earn the specified

spreads on these notional principals. Suppose that after 1 year defaults by companies

in the portfolio lead to payouts of $2 million on the CDSs. The equity tranche holders

are responsible for these payouts. The equity tranche principal reduces to $3 million

and its spread (1,000 basis points) is then earned on $3 million instead of $5 million. If,

later during the life of the CDO, there are further payouts of $4 million on the CDSs,

the cumulative of the payments required by the equity tranche is $5 million, so that its

outstanding principal becomes zero. The mezzanine tranche holders have to pay

$1 million. This reduces their outstanding principal to $14 million.
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Cash CDOs require an initial investment by the tranche holders (to finance the

underlying bonds). By contrast, the holders of synthetic CDOs do not have to make

an initial investment. They just have to agree to the way cash inflows and outflows will
be calculated. In practice, they are almost invariably required to post the initial tranche

principal as collateral. When the tranche becomes responsible for a payoff on a CDS,

the money is taken out of the collateral. The balance in the collateral account earns

interest at LIBOR.

Standard Portfolios and Single-Tranche Trading

In the synthetic CDO we have described, the tranche holders sell protection to the
originator of the CDO, who in turn sells protection on CDSs to other market

participants. An innovation in the market was the trading of a tranche without the

underlying portfolio of short CDS positions being created. This is sometimes referred

to as single-tranche trading. There are two parties to a trade: the buyer of protection on
a tranche and the seller of protection on the tranche. The portfolio of short CDS

positions is used as a reference point to define the cash flows between the two sides, but

it is not created. The buyer of protection pays the tranche spread to the seller of
protection, and the seller of protection pays amounts to the buyer that correspond to

those losses on the reference portfolio of CDSs that the tranche is responsible for.

In Section 25.3, we discussed CDS indices such as CDX NA IG and iTraxx Europe.

The market has used the portfolios underlying these indices to define standard synthetic
CDO tranches. These trade very actively. The six standard tranches of iTraxx Europe

cover losses in the ranges 0–3%, 3–6%, 6–9%, 9–12%, 12–22%, and 22–100%. The

six standard tranches of CDX NA IG cover losses in the ranges 0–3%, 3–7%, 7–10%,

10–15%, 15–30%, and 30–100%.

Table 25.6 shows the quotes for 5-year iTraxx tranches at the end of January of three

successive years. The index spread is the cost in basis points of buying protection on all

the companies in the index, as described in Section 25.3. The quotes for all tranches
except the 0–3% tranche is the cost in basis point per year of buying tranche protection.

(As explained earlier, this is paid on a principal that declines as the tranche experiences

losses.) In the case of the 0–3% (equity) tranche, the protection buyer makes an initial

payment and then pays 500 basis points per year on the outstanding tranche principal.
The quote is for the initial payment as a percentage of the initial tranche principal.

What a difference two years makes in the credit markets! Table 25.6 shows that the

credit crisis led to a huge increase in credit spreads. The iTraxx index rose from 23 basis

Table 25.6 Mid-market quotes, from the Creditex Group, for 5-year tranches of
iTraxx Europe. Quotes are in basis points except for the 0–3% tranche where the
quote equals the percent of the tranche principal that must be paid up front in
addition to 500 basis points per year.

Tranche iTraxx
indexDate 0–3% 3–6% 6–9% 9–12% 12–22%

January 31, 2007 10.34% 41.59 11.95 5.60 2.00 23
January 31, 2008 30.98% 316.90 212.40 140.00 73.60 77
January 30, 2009 64.28% 1185.63 606.69 315.63 97.13 165
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points in January 2007 to 165 basis points in January 2009. The individual tranche

quotes have also shown huge increases. One reason for the changes is that the default

probabilities assessed by the market for investment-grade corporations increased.

However, it is also the case that protection sellers were in many cases experiencing

liquidity problems. They became more averse to risk and increased the risk premiums

they required.

25.9 ROLE OF CORRELATION IN A BASKET CDS AND CDO

The cost of protection in a kth-to-default CDS or a tranche of a CDO is critically

dependent on default correlation. Suppose that a basket of 100 reference entities is used

to define a 5-year kth-to-default CDS and that each reference entity has a risk-neutral

probability of 2% of defaulting during the 5 years. When the default correlation

between the reference entities is zero the binomial distribution shows that the prob-

ability of one or more defaults during the 5 years is 86.74% and the probability of 10 or

more defaults is 0.0034%. A first-to-default CDS is therefore quite valuable whereas a

tenth-to-default CDS is worth almost nothing.

As the default correlation increases the probability of one or more defaults declines

and the probability of 10 or more defaults increases. In the limit where the default

correlation between the reference entities is perfect the probability of one or more

defaults equals the probability of ten or more defaults and is 2%. This is because in this

extreme situation the reference entities are essentially the same. Either they all default

(with probability 2%) or none of them default (with probability 98%).

The valuation of a tranche of a synthetic CDO is similarly dependent on default

correlation. If the correlation is low, the junior equity tranche is very risky and the

senior tranches are very safe. As the default correlation increases, the junior tranches

become less risky and the senior tranches become more risky. In the limit where the

default correlation is perfect and the recovery rate is zero, the tranches are equally

risky.

25.10 VALUATION OF A SYNTHETIC CDO

Synthetic CDOs can be valued using the DerivaGem software. To explain the calcula-

tions, suppose that the payment dates on a synthetic CDO tranche are at times

�1; �2; . . . ; �m and �0 ¼ 0. Define Ej as the expected tranche principal at time �j and

vð�Þ as the present value of $1 received at time �. Suppose that the spread on a

particular tranche (i.e., the number of basis points paid for protection) is s per year.

This spread is paid on the remaining tranche principal. The present value of the

expected regular spread payments on the CDO is therefore given by sA, where

A ¼
Xm
j¼1

ð�j � �j�1ÞEjvð�jÞ ð25:1Þ

The expected loss between times �j�1 and �j is Ej�1 � Ej. Assume that the loss occurs at
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the midpoint of the time interval (i.e., at time 0:5�j�1 þ 0:5�j). The present value of the
expected payoffs on the CDO tranche is

C ¼
Xm
j¼1

ðEj�1 � EjÞvð0:5�j�1 þ 0:5�jÞ ð25:2Þ

The accrual payment due on the losses is given by sB, where

B ¼
Xm
j¼1

0:5ð�j � �j�1ÞðEj�1 � EjÞvð0:5�j�1 þ 0:5�jÞ ð25:3Þ

The value of the tranche to the protection buyer is C� sA� sB. The breakeven spread
on the tranche occurs when the present value of the payments equals the present value
of the payoffs or

C ¼ sAþ sB

The breakeven spread is therefore

s ¼ C

Aþ B
ð25:4Þ

Equations (25.1) to (25.3) show the key role played by the expected tranche principal in
calculating the breakeven spread for a tranche. If we know the expected principal for a
tranche on all payment dates and we also know the zero-coupon yield curve, the
breakeven tranche spread can be calculated from equation (25.4).

Using the Gaussian Copula Model of Time to Default

The one-factor Gaussian copula model of time to default was introduced in Section 24.8.
This is the standard market model for valuing synthetic CDOs. All companies are
assumed to have the same probability QðtÞ of defaulting by time t. Equation (24.9)
converts this unconditional probability of default by time t to the probability of default
by time t conditional on the factor F :

Qðt j FÞ ¼ N

�
N

�1½QðtÞ� � ffiffiffi
�

p
Fffiffiffiffiffiffiffiffiffiffiffi

1� �
p

�
ð25:5Þ

Here � is the copula correlation, assumed to be the same for any pair of companies.
In the calculation of QðtÞ, it is usually assumed that the hazard rate for a company is

constant and consistent with the index spread. The hazard rate that is assumed can be
calculated by using the CDS valuation approach in Section 25.2 and searching for the
hazard rate that gives the index spread. Suppose that this hazard rate is �. Then, from
equation (24.1),

QðtÞ ¼ 1� e
��t ð25:6Þ

From the properties of the binomial distribution, the standard market model gives the
probability of exactly k defaults by time t, conditional on F , as

Pðk; t j FÞ ¼ n!

ðn� kÞ! k!Qðt j FÞk½1�Qðt j FÞ�n�k ð25:7Þ

where n is the number of reference entities in the portfolio. Suppose that the tranche
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under consideration covers losses on the portfolio between �L and �H . The parameter
�L is known as the attachment point and the parameter �H is known as the detachment

point. Define

nL ¼ �Ln

1� R
and nH ¼ �Hn

1� R

where R is the recovery rate. Also, define mðxÞ as the smallest integer greater than x.
Without loss of generality, we assume that the initial tranche principal is 1. The tranche
principal stays 1 while the number of defaults, k, is less than mðnLÞ. It is zero when the

number of defaults is greater than or equal to mðnH Þ. Otherwise, the tranche principal is

�H � kð1� RÞ=n
�H � �L

Define EjðFÞ as the expected tranche principal at time �j conditional on the value of the
factor F . It follows that

EjðFÞ ¼
XmðnLÞ�1

k¼0

Pðk; �j j FÞ þ
XmðnH Þ�1

k¼mðnLÞ
Pðk; �j j FÞ

�H � kð1� RÞ=n
�H � �L

ð25:8Þ

Define AðFÞ, BðFÞ, and CðFÞ as the values of A, B, and C conditional on F . Similarly to

equations (25.1) to (25.3),

AðFÞ ¼
Xm
j¼1

ð�j � �j�1ÞEjðFÞvð�jÞ ð25:9Þ

BðFÞ ¼
Xm
j¼1

0:5ð�j � �j�1ÞðEj�1ðFÞ � EjðFÞÞvð0:5�j�1 þ 0:5�jÞ ð25:10Þ

CðFÞ ¼
Xm
j¼1

ðEj�1ðFÞ � EjðFÞÞvð0:5�j�1 þ 0:5�jÞ ð25:11Þ

The variable F has a standard normal distribution. To calculate the unconditional
values of A, B, and C, it is necessary to integrate AðFÞ, BðFÞ, and CðFÞ over a standard
normal distribution. Once the unconditional values have been calculated, the breakeven

spread on the tranche can be calculated as C=ðAþ BÞ.9
The integration is best accomplished with a procedure known as Gaussian quadrature.

It involves the following approximation:

ð1
�1

1ffiffiffiffiffiffi
2�

p e
�F

2=2
gðF Þ dF �

XM
k¼1

wkgðFkÞ ð25:12Þ

As M increases, accuracy increases. The values of wk and Fk for different values of M
are given on the author’s website.10 The value of M is twice the ‘‘number of integration

9 In the case of the equity tranche, the quote is the upfront payment that must be made in addition to

500 basis points per year. The breakeven upfront payment is C� 0:05ðAþ BÞ.
10 The parameters wk and Fk are calculated from the roots of Hermite polynomials. For more information on

Gaussian quadrature, see Technical Note 21 at www.rotman.utoronto.ca/�hull/TechnicalNotes.
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points’’ variable in DerivaGem. Setting the number of integration points equal to 20
usually gives good results.

Example 25.2

Consider the mezzanine tranche of iTraxx Europe (5-year maturity) when the

copula correlation is 0.15 and the recovery rate is 40%. In this case, �L ¼ 0:03,
�H ¼ 0:06, n ¼ 125, nL ¼ 6:25, and nH ¼ 12:5. We suppose that the term structure
of interest rates is flat at 3.5%, payments are made quarterly, and the CDS spread
on the index is 50 basis points. A calculation similar to that in Section 25.2 shows
that the constant hazard rate corresponding to the CDS spread is 0.83% (with
continuous compounding). An extract from the remaining calculations is shown
in Table 25.7. A value ofM ¼ 60 is used in equation (25.12). The factor values, Fk,
and their weights, wk, are shown in first segment of the table. The expected tranche

Table 25.7 Valuation of CDO in Example 25.2: principal¼ 1;
payments are per unit of spread.

Weights and values for factors

wk � � � 0.1579 0.1579 0.1342 0.0969 � � �
Fk � � � 0.2020 �0.2020 �0.6060 �1.0104 � � �

Expected principal, EjðFkÞ
Time

j ¼ 1 � � � 1.0000 1.0000 1.0000 1.0000 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
.

j ¼ 19 � � � 0.9953 0.9687 0.8636 0.6134 � � �
j ¼ 20 � � � 0.9936 0.9600 0.8364 0.5648 � � �

PV expected payment, AðFkÞ
j ¼ 1 � � � 0.2478 0.2478 0.2478 0.2478 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

.

j ¼ 19 � � � 0.2107 0.2051 0.1828 0.1299 � � �
j ¼ 20 � � � 0.2085 0.2015 0.1755 0.1185 � � �
Total � � � 4.5624 4.5345 4.4080 4.0361 � � �

PV expected accrual payment, BðFkÞ
j ¼ 1 � � � 0.0000 0.0000 0.0000 0.0000 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

.

j ¼ 19 � � � 0.0001 0.0008 0.0026 0.0051 � � �
j ¼ 20 � � � 0.0002 0.0009 0.0029 0.0051 � � �
Total � � � 0.0007 0.0043 0.0178 0.0478 � � �

PV expected payoff, CðFkÞ
j ¼ 1 � � � 0.0000 0.0000 0.0000 0.0000 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

.

j ¼ 19 � � � 0.0011 0.0062 0.0211 0.0412 � � �
j ¼ 20 � � � 0.0014 0.0074 0.0230 0.0410 � � �
Total � � � 0.0055 0.0346 0.1423 0.3823 � � �

610 CHAPTER 25



principals on payment dates conditional on the factor values are calculated from
equations (25.5) to (25.8) and shown in the second segment of the table. The values
of A, B, and C conditional on the factor values are calculated in the last three
segments of the table using equations (25.9) to (25.11). The unconditional values of
A, B, and C are calculated by integrating AðFÞ, BðFÞ, and CðFÞ over the probability
distribution of F . This is done by setting gðFÞ equal in turn toAðFÞ, BðFÞ, and CðFÞ
in equation (25.12). The result is

A ¼ 4:2846; B ¼ 0:0187; C ¼ 0:1496

The breakeven tranche spread is 0:1496=ð4:2846þ 0:0187Þ ¼ 0:0348, or 348 basis
points.

This result can be obtained from DerivaGem. The CDS worksheet is used to
convert the 50-basis-point spread to a hazard rate of 0.83%. The CDO worksheet
is then used with this hazard rate and 30 integration points.

Valuation of kth-to-Default CDS

A kth-to-default CDS (see Section 25.6) can also be valued using the standard market
model by conditioning on the factor F . The conditional probability that the kth default
happens between times �j�1 and �j is the conditional probability that there are k or
more defaults by time �j minus the conditional probability that there are k or more
defaults by time �j�1. This can be calculated from equations (25.5) to (25.7) as

Xn
q¼k

Pðq; �j j FÞ �
Xn
q¼k

Pðq; �j�1 j FÞ

Defaults between time �j�1 and �j can be assumed to happen at time 0:5�j�1 þ 0:5�j. This
allows the present value of payments and of payoffs, conditional on F , to be calculated in
the same way as for regular CDS payoffs (see Section 25.2). By integrating over F , the
unconditional present values of payments and payoffs can be calculated.

Example 25.3

Consider a portfolio consisting of 10 bonds each with a hazard rate of 2% per
annum. Suppose we are interested in valuing a third-to-default CDS where pay-
ments are made annually in arrears. Assume that the copula correlation is 0.3,
the recovery rate is 40%, and all risk-free rates are 5%. As in Table 25.7, we
consider M ¼ 60 different factor values. The unconditional cumulative probabil-
ity of each bond defaulting by years 1, 2, 3, 4, 5 is 0.0198, 0.0392, 0.0582, 0.0769,
0.0952, respectively. Equation (25.5) shows that, conditional on F ¼ �1:0104,
these default probabilities are 0.0361, 0.0746, 0.1122, 0.1484, 0.1830, respectively.
From the binomial distribution, the conditional probability of three or more
defaults by times 1, 2, 3, 4, 5 years is 0.0047, 0.0335, 0.0928, 0.1757, 0.2717,
respectively. The conditional probability of the third default happening during
years 1, 2, 3, 4, 5 is therefore 0.0047, 0.0289, 0.0593, 0.0829, 0.0960, respectively.
An analysis similar to that in Section 25.2 shows that the present values of
payoffs, regular payments, and accrual payments conditional on F ¼ �1:0104
are 0:1379; 3:8443s, and 0:1149s, where s is the spread. Similar calculations are
carried out for the other 59 factor values and equation (25.12) is used to integrate
over F . The unconditional present values of payoffs, regular payments, and
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accrual payments are 0:0629, 4:0580s, and 0:0524s. The breakeven CDS spread is
therefore 0:0629=ð4:0580þ 0:0524Þ ¼ 0:0153, or 153 basis points.

Implied Correlation

In the standard market model, the recovery rate R is usually assumed to be 40%. This
leaves the copula correlation � as the only unknown parameter. This makes the model
similar to Black–Scholes–Merton, where there is only one unknown parameter, the
volatility. Market participants like to imply a correlation from the market quotes for
tranches in the same way that they imply a volatility from the market prices of options.

Suppose that the values of f�L; �Hg for successively more senior tranches are
f�0; �1g, f�1; �2g, f�2; �3g, . . . , with �0 ¼ 0. (For example, in the case of iTraxx Europe,
�0 ¼ 0, �1 ¼ 0:03, �2 ¼ 0:06, �3 ¼ 0:09, �4 ¼ 0:12, �5 ¼ 0:22, �6 ¼ 1:00.) There are
two alternative implied correlation measures. One is compound correlation or tranche
correlation. For a tranche f�q�1; �qg, this is the value of the correlation, �, that leads to
the spread calculated from the model being the same as the spread in the market. It is
found using an iterative search. The other is base correlation. For a particular value of
�q ðq > 1Þ, this is the value of � that leads to the f0; �qg tranche being priced
consistently with the market. It is obtained using the following steps:

1. Calculate the compound correlation for each tranche.

2. Use the compound correlation to calculate the present value of the expected loss
on each tranche during the life of the CDO as a percent of the initial tranche
principal. This is the variable we have defined as C above. Suppose that the value
of C for the f�q�1; �qg tranche is Cq.

3. Calculate the present value of the expected loss on the f0; �qg tranche as a percent
of the total principal of the underlying portfolio. This is

Pq

p¼1 Cpð�p � �p�1Þ.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

X

Figure 25.3 Vertical axis gives present value of expected loss on 0 to X% tranche
as a percent of total underlying principal for iTraxx Europe on January 31, 2007.

612 CHAPTER 25



4. The C-value for the f0; �qg tranche is the value calculated in Step 3 divided by �q.
The base correlation is the value of the correlation parameter, �, that is consistent
with this C-value. It is found using an iterative search.

The present value of the loss as a percent of underlying portfolio that would be calculated
in Step 3 for the iTraxx Europe quotes for January 31, 2007, given in Table 25.6 are
shown in Figure 25.3. The implied correlations for these quotes are shown in Table 25.8.
The calculations were carried out using DerivaGem assuming that the term structure of
interest rates is flat at 3% and the recovery rate is 40%. The CDSs worksheet shows that
the 23-basis-point spread implies a hazard rate of 0.382%. The implied correlations are
calculated using the CDOs worksheet. The values underlying Figure 25.3 can also be
calculated with this worksheet using the expression in Step 3 above.

The correlation patterns in Table 25.8 are typical of those usually observed. The
compound correlations exhibit a ‘‘correlation smile’’. As the tranche becomes more
senior, the implied correlation first decreases and then increases. The base correlations
exhibit a correlation skew where the implied correlation is an increasing function of the
tranche detachment point.

If market prices were consistent with the one-factor Gaussian copula model, then the
implied correlations (both compound and base) would be the same for all tranches.
From the pronounced smiles and skews that are observed in practice, we can infer that
market prices are not consistent with this model.

Valuing Nonstandard Tranches

We do not need a model to value the standard tranches of a standard portfolio such as
iTraxx Europe because the spreads for these tranches can be observed in the market.
Sometimes quotes need to be produced for nonstandard tranches of a standard
portfolio. Suppose that you need a quote for the 4–8% iTraxx Europe tranche. One
approach is to interpolate base correlations so as to estimate the base correlation for the
0–4% tranche and the 0–8% tranche. These two base correlations allow the present
value of expected loss (as a percent of the underlying portfolio principal) to be
estimated for these tranches. The present value of the expected loss for the 4–8%
tranche (as a percent of the underlying principal) can be estimated as the difference
between the present value of expected losses for the 0–8% and 0–4% tranches. This can
be used to imply a compound correlation and a breakeven spread for the tranche.

It is now recognized that this is not the best way to proceed. A better approach is to
calculate expected losses for each of the standard tranches and produce a chart such as

Table 25.8 Implied correlations for 5-year iTraxx Europe tranches on
January 31, 2007.

Compound correlations

Tranche 0–3% 3–6% 6–9% 9–12% 12–22%

Implied correlation 17.7% 7.8% 14.0% 18.2% 23.3%

Base correlations

Tranche 0–3% 0–6% 0–9% 0–12% 0–22%

Implied correlation 17.7% 28.4% 36.5% 43.2% 60.5%
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Figure 25.3 showing the variation of expected loss for the 0–X% tranche with X. Values

on this chart can be interpolated to give the expected loss for the 0–4% and the 0–8%

tranches. The difference between these expected losses is a better estimate of the

expected loss on the 4–8% tranche than that obtained from the base correlation

approach.

It can be shown that for no arbitrage the expected losses when calculated as in

Figure 25.3 must increase withX at a decreasing rate. If base correlations are interpolated

and then used to calculate expected losses, this no-arbitrage condition is often not

satisfied. (The problem here is that the base correlation for the 0–X% tranche is a

nonlinear function of the expected loss on the 0–X% tranche.) The direct approach of

interpolating expected losses is therefore much better than the indirect approach of

interpolating base correlations. What is more, it can be done so as to ensure that the

no-arbitrage condition just mentioned is satisfied.

25.11 ALTERNATIVES TO THE STANDARD MARKET MODEL

This section outlines a number of alternatives to the one-factor Gaussian copula model

that has become the market standard.

Heterogeneous Model

The standard market model is a homogeneous model in the sense that the time-to-

default probability distributions are assumed to be the same for all companies and the

copula correlations for any pair of companies are the same. The homogeneity assump-

tion can be relaxed so that a more general model is used. However, this model is more

complicated to implement because each company has a different probability of default-

ing by any given time and Pðk; t j FÞ can no longer be calculated using the binomial

formula in equation (25.7). It is necessary to use a numerical procedure such as that

described in Andersen et al. (2003) and Hull and White (2004).11

Other Copulas

The one-factor Gaussian copula model is a particular model of the correlation between

times to default. Many other one-factor copula models have been proposed. These

include the Student t copula, the Clayton copula, Archimedean copula, and Marshall–

Olkin copula. We can also create new one-factor copulas by assuming that F and the Zi

in equation (24.10) have nonnormal distributions with mean 0 and standard deviation 1.

Hull and White show that a good fit to the market is obtained when F and the Zi have

Student t distributions with four degrees of freedom.12 They call this the double t copula.

Another approach is to increase the number of factors in the model. Unfortunately,

the model is then much slower to run because it is necessary to integrate over several

normal distributions instead of just one.

11 See L. Andersen, J. Sidenius, and S. Basu, ‘‘All Your Hedges in One Basket,’’ Risk, November 2003; and

J.C. Hull and A. White, ‘‘Valuation of a CDO and nth-to-Default Swap without Monte Carlo Simulation,’’

Journal of Derivatives, 12, 2 (Winter 2004), 8–23.
12 See J. C. Hull and A. White, ‘‘Valuation of a CDO and nth-to-Default Swap without Monte Carlo

Simulation,’’ Journal of Derivatives, 12, 2 (Winter 2004), 8–23.
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Random Factor Loadings

Andersen and Sidenius have suggested a model where the copula correlation � in

equation (25.5) is a function of F .13

In general, � increases as F decreases. This means that in states of the world where the

default rate is high (i.e., states of the world where F is low) the default correlation is also

high. There is empirical evidence suggesting that this is the case.14 Andersen and Sidenius

find that this model fits market quotes much better than the standard market model.

The Implied Copula Model

Hull and White show how a copula can be implied from market quotes.15 The simplest

version of the model assumes that a certain average hazard rate applies to all companies

in a portfolio over the life of a CDO. That average hazard rate has a probability

distribution that can be implied from the pricing of tranches. The calculation of the

implied copula is similar in concept to the idea, discussed in Chapter 20, of calculating

an implied probability distribution for a stock price from option prices.

Dynamic Models

The models discussed so far can be characterized as static models. In essence they

model the average default environment over the life of the CDO. The model con-

structed for a 5-year CDO is different from the model constructed for a 7-year CDO,

which is in turn different from the model constructed for a 10-year CDO. Dynamic

models are different from static models in that they attempt to model the evolution of

the loss on a portfolio through time. There are three different types of dynamic

models:

1. Structural Models : These are similar to the models described in Section 24.6

except that the stochastic processes for the asset prices of many companies are
modeled simultaneously. When the asset price for a company reaches a barrier,

there is a default. The processes followed by the assets are correlated. The problem

with these types of models is that they have to be implemented with Monte Carlo
simulation and calibration is therefore difficult.

2. Reduced FormModels : In these models the hazard rates of companies are modeled.

In order to build in a realistic amount of correlation, it is necessary to assume that

there are jumps in the hazard rates.

13 See L. Andersen and J. Sidenius, ‘‘Extension of the Gaussian Copula Model: Random Recovery and

Random Factor Loadings,’’ Journal of Credit Risk, 1, 1 (Winter 2004), 29–70.
14 See, for example, A. Sevigny and O. Renault, ‘‘Default Correlation: Empirical Evidence,’’ Working Paper,

Standard and Poors, 2002; S.R. Das, L. Freed, G. Geng, and N. Kapadia, ‘‘Correlated Default Risk,’’

Journal of Fixed Income, 16 (2006), 2, 7–32, J. C. Hull, M. Predescu, and A. White, ‘‘The Valuation of

Correlation-Dependent Credit Derivatives Using a Structural Model,’’ Journal of Credit Risk, 6 (2010),

99–132; and A. Ang and J. Chen, ‘‘Asymmetric Correlation of Equity Portfolios,’’ Journal of Financial

Economics, 63 (2002), 443–494.
15 See J. C. Hull and A. White, ‘‘Valuing Credit Derivatives Using an Implied Copula Approach,’’ Journal of

Derivatives, 14 (2006), 8–28; and J. C. Hull and A. White, ‘‘An Improved Implied Copula Model and its

Application to the Valuation of Bespoke CDO Tranches,’’ Journal of Investment Management, 8, 3 (2010),

11–31.
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3. Top Down Models : These are models where the total loss on a portfolio is
modeled directly. The models do not consider what happens to individual
companies.

SUMMARY

Credit derivatives enable banks and other financial institutions to actively manage their

credit risks. They can be used to transfer credit risk from one company to another and

to diversify credit risk by swapping one type of exposure for another.

The most common credit derivative is a credit default swap. This is a contract where

one company buys insurance from another company against a third company (the

reference entity) defaulting on its obligations. The payoff is usually the difference

between the face value of a bond issued by the reference entity and its value immedi-

ately after a default. Credit default swaps can be analyzed by calculating the present

value of the expected payments and the present value of the expected payoff in a risk-

neutral world.

A forward credit default swap is an obligation to enter into a particular credit default

swap on a particular date. A credit default swap option is the right to enter into a

particular credit default swap on a particular date. Both instruments cease to exist if the

reference entity defaults before the date. A kth-to-default CDS is defined as a CDS that

pays off when the kth default occurs in a portfolio of companies.

A total return swap is an instrument where the total return on a portfolio of credit-

sensitive assets is exchanged for LIBOR plus a spread. Total return swaps are often used

as financing vehicles. A company wanting to purchase a portfolio of assets will approach

a financial institution to buy the assets on its behalf. The financial institution then enters

into a total return swap with the company where it pays the return on the assets to the

company and receives LIBOR plus a spread. The advantage of this type of arrangement

is that the financial institution reduces its exposure to a default by the company.

In a collateralized debt obligation a number of different securities are created from a

portfolio of corporate bonds or commercial loans. There are rules for determining how

credit losses are allocated. The result of the rules is that securities with both very high

and very low credit ratings are created from the portfolio. A synthetic collateralized

debt obligation creates a similar set of securities from credit default swaps. The

standard market model for pricing both a kth-to-default CDS and tranches of a

synthetic CDO is the one-factor Gaussian copula model for time to default.
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Practice Questions (Answers in Solutions Manual)

25.1. Explain the difference between a regular credit default swap and a binary credit default
swap.

25.2. A credit default swap requires a semiannual payment at the rate of 60 basis points per
year. The principal is $300 million and the credit default swap is settled in cash.
A default occurs after 4 years and 2 months, and the calculation agent estimates that the
price of the cheapest deliverable bond is 40% of its face value shortly after the default.
List the cash flows and their timing for the seller of the credit default swap.

25.3. Explain the two ways a credit default swap can be settled.

25.4. Explain how a cash CDO and a synthetic CDO are created.

25.5. Explain what a first-to-default credit default swap is. Does its value increase or decrease
as the default correlation between the companies in the basket increases? Explain.

25.6. Explain the difference between risk-neutral and real-world default probabilities.

25.7. Explain why a total return swap can be useful as a financing tool.

25.8. Suppose that the risk-free zero curve is flat at 7% per annum with continuous
compounding and that defaults can occur halfway through each year in a new 5-year
credit default swap. Suppose that the recovery rate is 30% and the hazard rate is 3%.
Estimate the credit default swap spread. Assume payments are made annually.

25.9. What is the value of the swap in Problem 25.8 per dollar of notional principal to the
protection buyer if the credit default swap spread is 150 basis points?

25.10. What is the credit default swap spread in Problem 25.8 if it is a binary CDS?

25.11. How does a 5-year nth-to-default credit default swap work? Consider a basket of 100
reference entities where each reference entity has a probability of defaulting in each year
of 1%. As the default correlation between the reference entities increases what would
you expect to happen to the value of the swap when (a) n ¼ 1 and (b) n ¼ 25. Explain
your answer.

25.12. What is the formula relating the payoff on a CDS to the notional principal and the
recovery rate?

25.13. Show that the spread for a new plain vanilla CDS should be ð1� RÞ times the spread for
a similar new binary CDS, where R is the recovery rate.

Credit Derivatives 617



25.14. Verify that, if the CDS spread for the example in Tables 25.1 to 25.4 is 100 basis points,
the hazard rate must be 1.63% per year. How does the hazard rate change when the
recovery rate is 20% instead of 40%? Verify that your answer is consistent with the
implied hazard rate being approximately proportional to 1=ð1� RÞ, where R is the
recovery rate.

25.15. A company enters into a total return swap where it receives the return on a corporate
bond paying a coupon of 5% and pays LIBOR. Explain the difference between this and
a regular swap where 5% is exchanged for LIBOR.

25.16. Explain how forward contracts and options on credit default swaps are structured.

25.17. ‘‘The position of a buyer of a credit default swap is similar to the position of someone
who is long a risk-free bond and short a corporate bond.’’ Explain this statement.

25.18. Why is there a potential asymmetric information problem in credit default swaps?

25.19. Does valuing a CDS using real-world default probabilities rather than risk-neutral
default probabilities overstate or understate its value? Explain your answer.

25.20. What is the difference between a total return swap and an asset swap?

25.21. Suppose that in a one-factor Gaussian copula model the 5-year probability of default for
each of 125 names is 3% and the pairwise copula correlation is 0.2. Calculate, for factor
values of �2, �1, 0, 1, and 2: (a) the default probability conditional on the factor value
and (b) the probability of more than 10 defaults conditional on the factor value.

25.22. Explain the difference between base correlation and compound correlation.

25.23. In Example 25.2, what is the tranche spread for the 9% to 12% tranche assuming a
tranche correlation of 0.15?

Further Questions

25.24. Suppose that the risk-free zero curve is flat at 6% per annum with continuous
compounding and that defaults can occur at times 0.25 years, 0.75 years, 1.25 years,
and 1.75 years in a 2-year plain vanilla credit default swap with semiannual payments.
Suppose that the recovery rate is 20% and the unconditional probabilities of default (as
seen at time zero) are 1% at times 0.25 years and 0.75 years, and 1.5% at times 1.25
years and 1.75 years. What is the credit default swap spread? What would the credit
default spread be if the instrument were a binary credit default swap?

25.25. Assume that the hazard rate for a company is � and the recovery rate is R. The risk-free
interest rate is 5% per annum. Default always occurs halfway through a year. The spread
for a 5-year plain vanilla CDS where payments are made annually is 120 basis points and
the spread for a 5-year binary CDS where payments are made annually is 160 basis
points. Estimate R and �.

25.26. Explain how you would expect the returns offered on the various tranches in a synthetic
CDO to change when the correlation between the bonds in the portfolio increases.

25.27. Suppose that:
(a) The yield on a 5-year risk-free bond is 7%.
(b) The yield on a 5-year corporate bond issued by company X is 9.5%.
(c) A 5-year credit default swap providing insurance against company X defaulting

costs 150 basis points per year.
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What arbitrage opportunity is there in this situation? What arbitrage opportunity would
there be if the credit default spread were 300 basis points instead of 150 basis points?

25.28. In Example 25.3, what is the spread for (a) a first-to-default CDS and (b) a second-to-
default CDS?

25.29. In Example 25.2, what is the tranche spread for the 6% to 9% tranche assuming a
tranche correlation of 0.15?

25.30. The 1-, 2-, 3-, 4-, and 5-year CDS spreads are 100, 120, 135, 145, and 152 basis points,
respectively. The risk-free rate is 3% for all maturities, the recovery rate is 35%, and
payments are quarterly. Use DerivaGem to calculate the hazard rate each year. What is
the probability of default in year 1? What is the probability of default in year 2?

25.31. Table 25.6 shows the 5-year iTraxx index was 77 basis points on January 31, 2008.
Assume the risk-free rate is 5% for all maturities, the recovery rate is 40%, and
payments are quarterly. Assume also that the spread of 77 basis points applies to all
maturities. Use the DerivaGem CDS worksheet to calculate a hazard rate consistent
with the spread. Use this in the CDO worksheet with 10 integration points to imply base
correlations for each tranche from the quotes for January 31, 2008.
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Exotic Options

Derivatives such as European and American call and put options are what are termed

plain vanilla products. They have standard well-defined properties and trade actively.

Their prices or implied volatilities are quoted by exchanges or by interdealer brokers

on a regular basis. One of the exciting aspects of the over-the-counter derivatives

market is the number of nonstandard products that have been created by financial

engineers. These products are termed exotic options, or simply exotics. Although they

usually constitute a relatively small part of its portfolio, these exotics are important to

a derivatives dealer because they are generally much more profitable than plain

vanilla products.

Exotic products are developed for a number of reasons. Sometimes they meet a

genuine hedging need in the market; sometimes there are tax, accounting, legal, or

regulatory reasons why corporate treasurers, fund managers, and financial institutions

find exotic products attractive; sometimes the products are designed to reflect a view on

potential future movements in particular market variables; occasionally an exotic

product is designed by a derivatives dealer to appear more attractive than it is to an

unwary corporate treasurer or fund manager.

In this chapter, we describe some of the more commonly occurring exotic options

and discuss their valuation. We assume that the underlying asset provides a yield at rate

q. As discussed in Chapters 17 and 18, for an option on a stock index q should be set

equal to the dividend yield on the index, for an option on a currency it should be set

equal to the foreign risk-free rate, and for an option on a futures contract it should be

set equal to the domestic risk-free rate. Many of the options discussed in this chapter

can be valued using the DerivaGem software.

26.1 PACKAGES

A package is a portfolio consisting of standard European calls, standard European

puts, forward contracts, cash, and the underlying asset itself. We discussed a number of

different types of packages in Chapter 12: bull spreads, bear spreads, butterfly spreads,

calendar spreads, straddles, strangles, and so on.
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Often a package is structured by traders so that it has zero cost initially. An example

is a range forward contract.1 This was discussed in Section 17.2. It consists of a long call

and a short put or a short call and a long put. The call strike price is greater than the

put strike price and the strike prices are chosen so that the value of the call equals the

value of the put.

It is worth noting that any derivative can be converted into a zero-cost product by

deferring payment until maturity. Consider a European call option. If c is the cost of

the option when payment is made at time zero, then A ¼ ce
rT is the cost when payment

is made at time T , the maturity of the option. The payoff is then maxðST �K; 0Þ � A or

maxðST �K� A; �AÞ. When the strike price, K, equals the forward price, other names

for a deferred payment option are break forward, Boston option, forward with optional

exit, and cancelable forward.

26.2 PERPETUAL AMERICAN CALL AND PUT OPTIONS

The differential equation that must be satisfied by the price of a derivative when there is

a dividend at rate q is equation (17.6):
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Consider a derivative that pays off a fixed amount Q when S ¼ H for the first time. If

S < H, the boundary conditions for the differential equation are that f ¼ Q when

S ¼ H and f ¼ 0 when S ¼ 0. The solution f ¼ QðS=HÞ� satisfies the boundary

conditions when � > 0. Furthermore, it satisfies the differential equation when

ðr� qÞ�þ 1
2�ð�� 1Þ�2 ¼ r

The positive solution to this equation is � ¼ �1, where
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and w ¼ r� q� �2=2. It follows that the value of the derivative must be QðS=HÞ�1
because this satisfies the boundary conditions and the differential equation.

Consider next a perpetual American call option with strike price K. If the option is

exercised when S ¼ H, the payoff is H �K and from the result just proved the value of

the option is ðH �KÞðS=HÞ�1 . The holder of the call option can choose the asset price,

H, at which the option is exercised. The optimal H is the one that maximizes the value

we have just calculated. Using standard calculus methods, it is H ¼ H1, where

H1 ¼ K
�1

�1 � 1

1 Other names used for a range forward contract are zero-cost collar, flexible forward, cylinder option,

option fence, min–max, and forward band.
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The price of a perpetual call if S < H1 is therefore

K

�1 � 1

�
�1 � 1

�

S

K

��1

If S > H1, the call should be exercised immediately and is worth S �K.

To value an American put, we consider a derivative that pays off Q when S ¼ H in

the situation where S > H (so that the barrier H is reached from above). In this case,
the boundary conditions for the differential equation are that f ¼ Q when S ¼ H and

f ¼ 0 as S tends to infinity. In this case, the solution f ¼ QðS=HÞ�� satisfies the
boundary conditions when � > 0. As above, we can show that it also satisfies the

differential equation when � ¼ �2, where

�2 ¼
wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2�2r

p
�2

If the holder of the American put chooses to exercise when S ¼ H, the value of the put

is ðK�HÞðS=HÞ��2 . The holder of the put will choose the exercise level H ¼ H2 to

maximize this. This is

H2 ¼ K
�2

�2 þ 1

The price of a perpetual put if S > H2 is therefore

K

�2 þ 1

�
�2 þ 1

�2

S

K

���2

If S < H2, the put should be exercised immediately and is worth K� S.

Section 15.6 and Problem 15.23 give particular cases of the results here for q ¼ 0.

26.3 NONSTANDARD AMERICAN OPTIONS

In a standard American option, exercise can take place at any time during the life of the

option and the exercise price is always the same. The American options that are traded
in the over-the-counter market sometimes have nonstandard features. For example:

1. Early exercise may be restricted to certain dates. The instrument is then known as
a Bermudan option. (Bermuda is between Europe and America!)

2. Early exercise may be allowed during only part of the life of the option. For
example, there may be an initial ‘‘lock out’’ period with no early exercise.

3. The strike price may change during the life of the option.

The warrants issued by corporations on their own stock often have some or all of these
features. For example, in a 7-year warrant, exercise might be possible on particular dates

during years 3 to 7, with the strike price being $30 during years 3 and 4, $32 during the
next 2 years, and $33 during the final year.

Nonstandard American options can usually be valued using a binomial tree. At each

node, the test (if any) for early exercise is adjusted to reflect the terms of the option.
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26.4 GAP OPTIONS

A gap call option is a European call options that pays off ST �K1 when ST > K2. The
difference between a gap call option and a regular call option with a strike price of K2 is

that the payoff when ST > K2 is increased by K2 �K1. (This increase is positive or
negative depending on whether K2 > K1 or K1 > K2.)

A gap call option can be valued by a small modification to the Black–Scholes–
Merton formula. With our usual notation, the value is

S0e
�qT

Nðd1Þ �K1e
�rT

Nðd2Þ ð26:1Þ
where

d1 ¼
lnðS0=K2Þ þ ðr� qþ �2=2ÞT

�
ffiffiffiffi
T

p

d2 ¼ d1 � �
ffiffiffiffi
T

p

The price in this formula is greater than the price given by the Black–Scholes–Merton
formula for a regular call option with strike price K2 by

ðK2 �K1Þe�rT
Nðd2Þ

To understand this difference, note that the probability that the option will be exercised
is Nðd2Þ and, when it is exercised, the payoff to the holder of the gap option is greater

than that to the holder of the regular option by K2 �K1.

For a gap put option, the payoff is K1 � ST when ST < K2. The value of the option is

K1e
�rT

Nð�d2Þ � S0e
�qT

Nð�d1Þ ð26:2Þ

where d1 and d2 are defined as for equation (26.1).

Example 26.1

An asset is currently worth $500,000. Over the next year, it is expected to have a
volatility of 20%. The risk-free rate is 5%, and no income is expected. Suppose
that an insurance company agrees to buy the asset for $400,000 if its value has
fallen below $400,000 at the end of one year. The payout will be 400,000� ST
whenever the value of the asset is less than $400,000. The insurance company has

provided a regular put option where the policyholder has the right to sell the asset
to the insurance company for $400,000 in one year. This can be valued using
equation (15.21), with S0 ¼ 500,000, K ¼ 400,000, r ¼ 0:05, � ¼ 0:2, T ¼ 1. The
value is $3,436.

Suppose next that the cost of transferring the asset is $50,000 and this cost is
borne by the policyholder. The option is then exercised only if the value of the
asset is less than $350,000. In this case, the cost to the insurance company is
K1 � ST when ST < K2, where K2 ¼ 350,000, K1 ¼ 400,000, and ST is the price

of the asset in one year. This is a gap put option. The value is given by equa-
tion (26.2), with S0 ¼ 500,000, K1 ¼ 400,000, K2 ¼ 350,000, r ¼ 0:05, q ¼ 0,
� ¼ 0:2, T ¼ 1. It is $1,896. Recognizing the costs to the policyholder of making
a claim reduces the cost of the policy to the insurance company by about 45% in
this case.
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26.5 FORWARD START OPTIONS

Forward start options are options that will start at some time in the future. Sometimes
employee stock options, which were discussed in Chapter 16, can be viewed as forward
start options. This is because the company commits (implicitly or explicitly) to granting
at-the-money options to employees in the future.

Consider a forward start at-the-money European call option that will start at time T1
and mature at time T2. Suppose that the asset price is S0 at time zero and S1 at time T1.
To value the option, we note from the European option pricing formulas in Chapters 15
and 17 that the value of an at-the-money call option on an asset is proportional to the
asset price. The value of the forward start option at time T1 is therefore cS1=S0, where c
is the value at time zero of an at-the-money option that lasts for T2 � T1. Using risk-
neutral valuation, the value of the forward start option at time zero is

e
�rT1Ê

�
c
S1

S0

�

where Ê denotes the expected value in a risk-neutral world. Since c and S0 are known and
Ê½S1� ¼ S0e

ðr�qÞT1 , the value of the forward start option is ce�qT1 . For a non-dividend-
paying stock, q ¼ 0 and the value of the forward start option is exactly the same as the
value of a regular at-the-money option with the same life as the forward start option.

26.6 CLIQUET OPTIONS

A cliquet option (which is also called a ratchet or strike reset option) is a series of call or
put options with rules for determining the strike price. Suppose that the reset dates are
at times �, 2�, . . . , ðn� 1Þ�, with n� being the end of the cliquet’s life. A simple structure
would be as follows. The first option has a strike price K (which might equal the initial
asset price) and lasts between times 0 and �; the second option provides a payoff at time
2� with a strike price equal to the value of the asset at time �; the third option provides
a payoff at time 3� with a strike price equal to the value of the asset at time 2�; and so
on. This is a regular option plus n� 1 forward start options. The latter can be valued as
described in Section 26.5.

Some cliquet options are much more complicated than the one described here. For
example, sometimes there are upper and lower limits on the total payoff over the whole
period; sometimes cliquets terminate at the end of a period if the asset price is in a
certain range. When analytic results are not available, Monte Carlo simulation is often
the best approach for valuation.

26.7 COMPOUND OPTIONS

Compound options are options on options. There are four main types of compound
options: a call on a call, a put on a call, a call on a put, and a put on a put. Compound
options have two strike prices and two exercise dates. Consider, for example, a call on a
call. On the first exercise date, T1, the holder of the compound option is entitled to pay
the first strike price, K1, and receive a call option. The call option gives the holder the
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right to buy the underlying asset for the second strike price, K2, on the second exercise
date, T2. The compound option will be exercised on the first exercise date only if the
value of the option on that date is greater than the first strike price.

When the usual geometric Brownian motion assumption is made, European-style
compound options can be valued analytically in terms of integrals of the bivariate
normal distribution.2 With our usual notation, the value at time zero of a European call
option on a call option is

S0e
�qT2Mða1; b1;

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ �K2e

�rT2Mða2; b2;
ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ � e

�rT1K1Nða2Þ
where

a1 ¼
lnðS0=S �Þ þ ðr� qþ �2=2ÞT1

�
ffiffiffiffiffi
T1

p ; a2 ¼ a1 � �
ffiffiffiffiffi
T1

p

b1 ¼
lnðS0=K2Þ þ ðr� qþ �2=2ÞT2

�
ffiffiffiffiffi
T2

p ; b2 ¼ b1 � �
ffiffiffiffiffi
T2

p

The function Mða; b : �Þ is the cumulative bivariate normal distribution function that
the first variable will be less than a and the second will be less than b when the coefficient
of correlation between the two is �.3 The variable S

� is the asset price at time T1 for
which the option price at time T1 equals K1. If the actual asset price is above S

� at time
T1, the first option will be exercised; if it is not above S

�, the option expires worthless.
With similar notation, the value of a European put on a call is

K2e
�rT2Mð�a2; b2;�

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ � S0e

�qT2Mð�a1; b1;�
ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ þ e

�rT1K1Nð�a2Þ
The value of a European call on a put is

K2e
�rT2Mð�a2;�b2;

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ � S0e

�qT2Mð�a1;�b1;
ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ � e

�rT1K1Nð�a2Þ
The value of a European put on a put is

S0e
�qT2Mða1;�b1;�

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ �K2e

�rT2Mða2;�b2;�
ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
Þ þ e

�rT1K1Nða2Þ

26.8 CHOOSER OPTIONS

A chooser option (sometimes referred to as an as you like it option) has the feature that,
after a specified period of time, the holder can choose whether the option is a call or a
put. Suppose that the time when the choice is made is T1. The value of the chooser
option at this time is

maxðc;pÞ
where c is the value of the call underlying the option and p is the value of the put
underlying the option.

If the options underlying the chooser option are both European and have the same
strike price, put–call parity can be used to provide a valuation formula. Suppose that S1

2 See R. Geske, ‘‘The Valuation of Compound Options,’’ Journal of Financial Economics, 7 (1979): 63–81;

M. Rubinstein, ‘‘Double Trouble,’’ Risk, December 1991/January 1992: 53–56.
3 See Technical Note 5 at www.rotman.utoronto.ca/~hull/TechnicalNotes for a numerical procedure for

calculating M. A function for calculating M is also on the website.
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is the asset price at time T1, K is the strike price, T2 is the maturity of the options, and r

is the risk-free interest rate. Put–call parity implies that

maxðc;pÞ ¼ maxðc; cþKe
�rðT2�T1Þ � S1e

�qðT2�T1ÞÞ
¼ cþ e

�qðT2�T1Þ maxð0; Ke
�ðr�qÞðT2�T1Þ � S1Þ

This shows that the chooser option is a package consisting of:

1. A call option with strike price K and maturity T2

2. e�qðT2�T1Þ put options with strike price Ke�ðr�qÞðT2�T1Þ and maturity T1

As such, it can readily be valued.

More complex chooser options can be defined where the call and the put do not have

the same strike price and time to maturity. They are then not packages and have

features that are somewhat similar to compound options.

26.9 BARRIER OPTIONS

Barrier options are options where the payoff depends on whether the underlying asset’s

price reaches a certain level during a certain period of time.

A number of different types of barrier options regularly trade in the over-the-counter

market. They are attractive to some market participants because they are less expensive

than the corresponding regular options. These barrier options can be classified as either

knock-out options or knock-in options. A knock-out option ceases to exist when the

underlying asset price reaches a certain barrier; a knock-in option comes into existence

only when the underlying asset price reaches a barrier.

Equations (17.4) and (17.5) show that the values at time zero of a regular call and put

option are

c ¼ S0e
�qT

Nðd1Þ �Ke
�rT

Nðd2Þ
p ¼ Ke

�rT
Nð�d2Þ � S0e

�qT
Nð�d1Þ

where

d1 ¼
lnðS0=KÞ þ ðr� qþ �2=2ÞT

�
ffiffiffiffi
T

p

d2 ¼
lnðS0=KÞ þ ðr� q� �2=2ÞT

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

A down-and-out call is one type of knock-out option. It is a regular call option that

ceases to exist if the asset price reaches a certain barrier level H. The barrier level is

below the initial asset price. The corresponding knock-in option is a down-and-in call.

This is a regular call that comes into existence only if the asset price reaches the barrier

level.

If H is less than or equal to the strike price, K, the value of a down-and-in call at time

zero is

cdi ¼ S0e
�qT ðH=S0Þ2�NðyÞ �Ke

�rT ðH=S0Þ2��2
Nðy� �

ffiffiffiffi
T

p
Þ
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where

� ¼ r� qþ �2=2

�2

y ¼ ln½H2=ðS0KÞ�
�

ffiffiffiffi
T

p þ ��
ffiffiffiffi
T

p

Because the value of a regular call equals the value of a down-and-in call plus the value
of a down-and-out call, the value of a down-and-out call is given by

cdo ¼ c� cdi
If H > K, then

cdo ¼ S0Nðx1Þe�qT �Ke
�rT

Nðx1 � �
ffiffiffiffi
T

p
Þ

� S0e
�qT ðH=S0Þ2�Nðy1Þ þKe

�rT ðH=S0Þ2��2
Nðy1 � �

ffiffiffiffi
T

p
Þ

and
cdi ¼ c� cdo

where

x1 ¼
lnðS0=HÞ
�

ffiffiffiffi
T

p þ ��
ffiffiffiffi
T

p
; y1 ¼

lnðH=S0Þ
�

ffiffiffiffi
T

p þ ��
ffiffiffiffi
T

p

An up-and-out call is a regular call option that ceases to exist if the asset price reaches a
barrier level, H, that is higher than the current asset price. An up-and-in call is a regular
call option that comes into existence only if the barrier is reached. When H is less than
or equal to K, the value of the up-and-out call, cuo, is zero and the value of the up-and-
in call, cui, is c. When H is greater than K,

cui ¼ S0Nðx1Þe�qT �Ke
�rT

Nðx1 � �
ffiffiffiffi
T

p
Þ � S0e

�qT ðH=S0Þ2�½Nð�yÞ � Nð�y1Þ�
þKe

�rT ðH=S0Þ2��2½Nð�yþ �
ffiffiffiffi
T

p
Þ � Nð�y1 þ �

ffiffiffiffi
T

p
Þ�

and
cuo ¼ c� cui

Put barrier options are defined similarly to call barrier options. An up-and-out put is a
put option that ceases to exist when a barrier, H, that is greater than the current asset
price is reached. An up-and-in put is a put that comes into existence only if the barrier
is reached. When the barrier, H, is greater than or equal to the strike price, K, their
prices are

pui ¼ �S0e
�qT ðH=S0Þ2�Nð�yÞ þKe

�rT ðH=S0Þ2��2
Nð�yþ �

ffiffiffiffi
T

p
Þ

and
puo ¼ p� pui

When H is less than or equal to K,

puo ¼ �S0Nð�x1Þe�qT þKe
�rT

Nð�x1 þ �
ffiffiffiffi
T

p
Þ

þ S0e
�qT ðH=S0Þ2�Nð�y1Þ �Ke

�rT ðH=S0Þ2��2
Nð�y1 þ �

ffiffiffiffi
T

p
Þ

and
pui ¼ p� puo

A down-and-out put is a put option that ceases to exist when a barrier less than the
current asset price is reached. A down-and-in put is a put option that comes into
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existence only when the barrier is reached. When the barrier is greater than the strike
price, pdo ¼ 0 and pdi ¼ p. When the barrier is less than the strike price,

pdi ¼ �S0Nð�x1Þe�qT þKe
�rT

Nð�x1 þ �
ffiffiffiffi
T

p
Þ þ S0e

�qT ðH=S0Þ2�½NðyÞ � Nðy1Þ�
�Ke

�rT ðH=S0Þ2��2½Nðy� �
ffiffiffiffi
T

p
Þ � Nðy1 � �

ffiffiffiffi
T

p
Þ�

and
pdo ¼ p� pdi

All of these valuations make the usual assumption that the probability distribution for
the asset price at a future time is lognormal. An important issue for barrier options is the

frequency with which the asset price, S, is observed for purposes of determining whether
the barrier has been reached. The analytic formulas given in this section assume that S is
observed continuously and sometimes this is the case.4 Often, the terms of a contract

state that S is observed periodically; for example, once a day at 3 p.m. Broadie, Glasser-
man, and Kou provide a way of adjusting the formulas we have just given for the
situation where the price of the underlying is observed discretely.5 The barrier level H is
replaced by He0:5826�

ffiffiffiffiffiffiffi
T=m

p
for an up-and-in or up-and-out option and by He�0:5826�

ffiffiffiffiffiffiffi
T=m

p

for a down-and-in or down-and-out option, where m is the number of times the asset
price is observed (so that T=m is the time interval between observations).

Barrier options often have quite different properties from regular options. For
example, sometimes vega is negative. Consider an up-and-out call option when the
asset price is close to the barrier level. As volatility increases, the probability that the

barrier will be hit increases. As a result, a volatility increase can cause the price of the
barrier option to decrease in these circumstances.

One disadvantage of the barrier options we have considered so far is that a ‘‘spike’’ in
the asset price can cause the option to be knocked in or out. An alternative structure is

a Parisian option, where the asset price has to be above or below the barrier for a period
of time for the option to be knocked in or out. For example, a down-and-out Parisian
put option with a strike price equal to 90% of the initial asset price and a barrier at
75% of the initial asset price might specify that the option is knocked out if the asset

price is below the barrier for 50 days. The confirmation might specify that the 50 days
are a ‘‘continuous period of 50 days’’ or ‘‘any 50 days during the option’s life.’’ Parisian
options are more difficult to value than regular barrier options.6 Monte Carlo simula-

tion and binomial trees can be used with the enhancements discussed in Sections 27.5
and 27.6.

26.10 BINARY OPTIONS

Binary options are options with discontinuous payoffs. A simple example of a binary
option is a cash-or-nothing call. This pays off nothing if the asset price ends up below

4 One way to track whether a barrier has been reached from below (above) is to send a limit order to the

exchange to sell (buy) the asset at the barrier price and see whether the order is filled.
5 M. Broadie, P. Glasserman, and S. G. Kou, ‘‘A Continuity Correction for Discrete Barrier Options,’’

Mathematical Finance 7, 4 (October 1997): 325–49.
6 See, for example, M. Chesney, J. Cornwall, M. Jeanblanc-Picqué, G. Kentwell, and M. Yor, ‘‘Parisian

pricing,’’ Risk, 10, 1 (1997), 77–79.
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the strike price at time T and pays a fixed amount, Q, if it ends up above the strike

price. In a risk-neutral world, the probability of the asset price being above the strike
price at the maturity of an option is, with our usual notation, Nðd2Þ. The value of a

cash-or-nothing call is therefore Qe
�rT

Nðd2Þ. A cash-or-nothing put is defined analo-

gously to a cash-or-nothing call. It pays off Q if the asset price is below the strike price
and nothing if it is above the strike price. The value of a cash-or-nothing put is

Qe
�rT

Nð�d2Þ.
Another type of binary option is an asset-or-nothing call. This pays off nothing if the

underlying asset price ends up below the strike price and pays the asset price if it ends

up above the strike price. With our usual notation, the value of an asset-or-nothing call
is S0e

�qTNðd1Þ. An asset-or-nothing put pays off nothing if the underlying asset price

ends up above the strike price and the asset price if it ends up below the strike price. The

value of an asset-or-nothing put is S0e
�qTNð�d1Þ.

A regular European call option is equivalent to a long position in an asset-or-nothing

call and a short position in a cash-or-nothing call where the cash payoff in the cash-or-
nothing call equals the strike price. Similarly, a regular European put option is equivalent

to a long position in a cash-or-nothing put and a short position in an asset-or-nothing
put where the cash payoff on the cash-or-nothing put equals the strike price.

26.11 LOOKBACK OPTIONS

The payoffs from lookback options depend on the maximum or minimum asset price
reached during the life of the option. The payoff from a floating lookback call is the

amount that the final asset price exceeds the minimum asset price achieved during the

life of the option. The payoff from a floating lookback put is the amount by which the
maximum asset price achieved during the life of the option exceeds the final asset price.

Valuation formulas have been produced for floating lookbacks.7 The value of a
floating lookback call at time zero is

cfl ¼ S0e
�qT

Nða1Þ � S0e
�qT �2

2ðr� qÞNð�a1Þ � Smine
�rT

�
Nða2Þ �

�2

2ðr� qÞ e
Y1Nð�a3Þ

�

where

a1 ¼
lnðS0=SminÞ þ ðr� qþ �2=2ÞT

�
ffiffiffiffi
T

p

a2 ¼ a1 � �
ffiffiffiffi
T

p
;

a3 ¼
lnðS0=SminÞ þ ð�rþ qþ �2=2ÞT

�
ffiffiffiffi
T

p

Y1 ¼ � 2ðr� q� �2=2Þ lnðS0=SminÞ
�2

and Smin is the minimum asset price achieved to date. (If the lookback has just been

originated, Smin ¼ S0.) See Problem 26.23 for the r ¼ q case.

7 See B. Goldman, H. Sosin, and M.A. Gatto, ‘‘Path-Dependent Options: Buy at the Low, Sell at the High,’’

Journal of Finance, 34 (December 1979): 1111–27.; M. Garman, ‘‘Recollection in Tranquility,’’ Risk, March

(1989): 16–19.
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The value of a floating lookback put is

pfl ¼ Smaxe
�rT

�
Nðb1Þ �

�2

2ðr� qÞ e
Y2Nð�b3Þ

�
þ S0e

�qT �2

2ðr� qÞNð�b2Þ � S0e
�qT

Nðb2Þ

where

b1 ¼
lnðSmax=S0Þ þ ð�rþ qþ �2=2ÞT

�
ffiffiffiffi
T

p

b2 ¼ b1 � �
ffiffiffiffi
T

p

b3 ¼
lnðSmax=S0Þ þ ðr� q� �2=2ÞT

�
ffiffiffiffi
T

p

Y2 ¼
2ðr� q� �2=2Þ lnðSmax=S0Þ

�2

and Smax is the maximum asset price achieved to date. (If the lookback has just been
originated, then Smax ¼ S0.)

A floating lookback call is a way that the holder can buy the underlying asset at the
lowest price achieved during the life of the option. Similarly, a floating lookback put is a
way that the holder can sell the underlying asset at the highest price achieved during the

life of the option.

Example 26.2

Consider a newly issued floating lookback put on a non-dividend-paying stock

where the stock price is 50, the stock price volatility is 40% per annum, the
risk-free rate is 10% per annum, and the time to maturity is 3 months. In this
case, Smax ¼ 50, S0 ¼ 50, r ¼ 0:1, q ¼ 0, � ¼ 0:4, and T ¼ 0:25, b1 ¼ �0:025,
b2 ¼ �0:225, b3 ¼ 0:025, and Y2 ¼ 0, so that the value of the lookback put
is 7.79. A newly issued floating lookback call on the same stock is worth 8.04.

In a fixed lookback option, a strike price is specified. For a fixed lookback call option,

the payoff is the same as a regular European call option except that the final asset price
is replaced by the maximum asset price achieved during the life of the option. For a
fixed lookback put option, the payoff is the same as a regular European put option
except that the the final asset price is replaced by the minimum asset price achieved

during the life of the option. Define S
�
max ¼ maxðSmax; KÞ, where as before Smax is the

maximum asset price achieved to date and K is the strike price. Also, define p
�
fl as the

value of a floating lookback put which lasts for the same period as the fixed lookback
call when the actual maximum asset price so far, Smax, is replaced by S

�
max. A put–call

parity type of argument shows that the value of the fixed lookback call option, cfix is
given by8

cfix ¼ p
�
fl þ S0e

�qT �Ke
�rT

Similarly, if S �
min ¼ minðSmin; KÞ, then the value of a fixed lookback put option, pfix, is

given by

pfix ¼ c
�
fl þKe

�rT � S0e
�qT

8 The argument was proposed by H.Y. Wong and Y.K. Kwok, ‘‘Sub-replication and Replenishing Premium:

Efficient Pricing of Multi-state Lookbacks,’’ Review of Derivatives Research, 6 (2003), 83–106.
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where c
�
fl is the value of a floating lookback call that lasts for the same period as the

fixed lookback put when the actual minimum asset price so far, Smin, is replaced by
S
�
min. This shows that the equations given above for floating lookbacks can be modified

to price fixed lookbacks.

Lookbacks are appealing to investors, but very expensive when compared with
regular options. As with barrier options, the value of a lookback option is liable to

be sensitive to the frequency with which the asset price is observed for the purposes of
computing the maximum or minimum. The formulas above assume that the asset price

is observed continuously. Broadie, Glasserman, and Kou provide a way of adjusting the
formulas we have just given for the situation where the asset price is observed

discretely.9

26.12 SHOUT OPTIONS

A shout option is a European option where the holder can ‘‘shout’’ to the writer at one

time during its life. At the end of the life of the option, the option holder receives either
the usual payoff from a European option or the intrinsic value at the time of the shout,

whichever is greater. Suppose the strike price is $50 and the holder of a call shouts when
the price of the underlying asset is $60. If the final asset price is less than $60, the holder

receives a payoff of $10. If it is greater than $60, the holder receives the excess of the
asset price over $50.

A shout option has some of the same features as a lookback option, but is

considerably less expensive. It can be valued by noting that if the holder shouts at a
time � when the asset price is S� the payoff from the option is

maxð0; ST � S�Þ þ ðS� �KÞ

where, as usual, K is the strike price and ST is the asset price at time T . The value at

time � if the holder shouts is therefore the present value of S� �K (received at time T )
plus the value of a European option with strike price S�. The latter can be calculated

using Black–Scholes–Merton formulas.

A shout option is valued by constructing a binomial or trinomial tree for the under-

lying asset in the usual way. Working back through the tree, the value of the option if the
holder shouts and the value if the holder does not shout can be calculated at each node.

The option’s price at the node is the greater of the two. The procedure for valuing a shout
option is therefore similar to the procedure for valuing a regular American option.

26.13 ASIAN OPTIONS

Asian options are options where the payoff depends on the arithmetic average of the
price of the underlying asset during the life of the option. The payoff from an average

price call is maxð0; Save �KÞ and that from an average price put is maxð0; K� SaveÞ,
where Save is the average price of the underlying asset. Average price options are less

9 M. Broadie, P. Glasserman, and S.G. Kou, ‘‘Connecting Discrete and Continuous Path-Dependent

Options,’’ Finance and Stochastics, 2 (1998): 1–28.
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expensive than regular options and are arguably more appropriate than regular options
for meeting some of the needs of corporate treasurers. Suppose that a US corporate
treasurer expects to receive a cash flow of 100 million Australian dollars spread evenly
over the next year from the company’s Australian subsidiary. The treasurer is likely to
be interested in an option that guarantees that the average exchange rate realized during
the year is above some level. An average price put option can achieve this more
effectively than regular put options.

Average price options can be valued using similar formulas to those used for regular
options if it is assumed that Save is lognomal. As it happens, when the usual assumption
is made for the process followed by the asset price, this is a reasonable assumption.10

A popular approach is to fit a lognormal distribution to the first two moments of Save
and use Black’s model.11 Suppose that M1 and M2 are the first two moments of Save.
The value of average price calls and puts are given by equations (18.9) and (18.10), with

F0 ¼ M1 ð26:3Þ
and

�2 ¼ 1

T
ln

�
M2

M2
1

�
ð26:4Þ

When the average is calculated continuously, and r, q, and � are constant (as in
DerivaGem):

M1 ¼
e
ðr�qÞT � 1

ðr� qÞT S0

and

M2 ¼
2e½2ðr�qÞþ�2�T

S
2
0

ðr� qþ �2Þð2r� 2qþ �2ÞT 2
þ 2S2

0

ðr� qÞT 2

�
1

2ðr� qÞ þ �2
� e

ðr�qÞT

r� qþ �2

�

More generally, when the average is calculated from observations at times Ti ð1 6 i 6 mÞ,

M1 ¼
1

m

Xm
i¼1

Fi and M2 ¼
1

m2

�Xm
i¼1

F
2
i e

�2i Ti þ 2
Xm
j¼1

Xj�1

i¼1

FiFje
�2i Ti

�

where Fi and �i are the forward price and implied volatility for maturity Ti. See Technical
Note 27 on www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of this.

Example 26.3

Consider a newly issued average price call option on a non-dividend-paying stock
where the stock price is 50, the strike price is 50, the stock price volatility is 40%
per annum, the risk-free rate is 10% per annum, and the time to maturity is 1 year.
In this case, S0 ¼ 50, K ¼ 50, r ¼ 0:1, q ¼ 0, � ¼ 0:4, and T ¼ 1. If the average is
calculated continuously, M1 ¼ 52:59 and M2 ¼ 2,922:76. From equations (26.3)
and (26.4), F0 ¼ 52:59 and � ¼ 23:54%. Equation (18.9), with K ¼ 50, T ¼ 1, and
r ¼ 0:1, gives the value of the option as 5.62. When 12, 52, and 250 observations
are used for the average, the price is 6.00, 5.70, and 5.63, respectively.

10 When the asset price follows geometric Brownian motion, the geometric average of the price is exactly

lognormal and the arithmetic average is approximately lognormal.
11 See S.M. Turnbull and L.M. Wakeman, ‘‘A Quick Algorithm for Pricing European Average Options,’’

Journal of Financial and Quantitative Analysis, 26 (September 1991): 377–89.
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We can modify the analysis to accommodate the situation where the option is not newly
issued and some prices used to determine the average have already been observed.
Suppose that the averaging period is composed of a period of length t1 over which
prices have already been observed and a future period of length t2 (the remaining life of
the option). Suppose that the average asset price during the first time period is �S. The
payoff from an average price call is

max

�
�St1 þ Savet2

t1 þ t2
�K; 0

�

where Save is the average asset price during the remaining part of the averaging period.
This is the same as

t2

t1 þ t2
maxðSave �K

�; 0Þ
where

K
� ¼ t1 þ t2

t2
K� t1

t2

�S

When K
� > 0, the option can be valued in the same way as a newly issued Asian option

provided that we change the strike price from K to K
� and multiply the result by

t2=ðt1 þ t2Þ. When K
� < 0 the option is certain to be exercised and can be valued as a

forward contract. The value is

t2

t1 þ t2
½M1e

�rt2 �K
�
e
�rt2 �

Another type of Asian option is an average strike option. An average strike call pays off
maxð0; ST � SaveÞ and an average strike put pays off maxð0; Save � ST Þ. Average strike
options can guarantee that the average price paid for an asset in frequent trading over a
period of time is not greater than the final price. Alternatively, it can guarantee that the
average price received for an asset in frequent trading over a period of time is not less
than the final price. It can be valued as an option to exchange one asset for another
when Save is assumed to be lognormal.

26.14 OPTIONS TO EXCHANGE ONE ASSET FOR ANOTHER

Options to exchange one asset for another (sometimes referred to as exchange options)
arise in various contexts. An option to buy yen with Australian dollars is, from the
point of view of a US investor, an option to exchange one foreign currency asset for
another foreign currency asset. A stock tender offer is an option to exchange shares in
one stock for shares in another stock.

Consider a European option to give up an asset worth UT at time T and receive in
return an asset worth VT . The payoff from the option is

maxðVT � UT ; 0Þ
A formula for valuing this option was first produced by Margrabe.12 Suppose that the

12 See W. Margrabe, ‘‘The Value of an Option to Exchange One Asset for Another,’’ Journal of Finance, 33

(March 1978): 177–86.
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asset prices, U and V , both follow geometric Brownian motion with volatilities �U and

�V . Suppose further that the instantaneous correlation between U and V is �, and the

yields provided by U and V are qU and qV , respectively. The value of the option at time

zero is

V0e
�qV TNðd1Þ � U0e

�qUTNðd2Þ ð26:5Þ
where

d1 ¼
lnðV0=U0Þ þ ðqU � qV þ �̂2=2ÞT

�̂
ffiffiffiffi
T

p ; d2 ¼ d1 � �̂
ffiffiffiffi
T

p

and

�̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
U þ �2

V � 2��U�V

q

and U0 and V0 are the values of U and V at times zero.

This result will be proved in Chapter 28. It is interesting to note that equation (26.5)

is independent of the risk-free rate r. This is because, as r increases, the growth rate of

both asset prices in a risk-neutral world increases, but this is exactly offset by an

increase in the discount rate. The variable �̂ is the volatility of V=U. Comparisons with

equation (17.4) show that the option price is the same as the price of U0 European call

options on an asset worth V=U when the strike price is 1.0, the risk-free interest rate is

qU , and the dividend yield on the asset is qV . Mark Rubinstein shows that the American

version of this option can be characterized similarly for valuation purposes.13 It can be

regarded as U0 American options to buy an asset worth V=U for 1.0 when the risk-free

interest rate is qU and the dividend yield on the asset is qV . The option can therefore be

valued as described in Chapter 21 using a binomial tree.

An option to obtain the better or worse of two assets can be regarded as a position in

one of the assets combined with an option to exchange it for the other asset:

minðUT ;VT Þ ¼ VT �maxðVT � UT ; 0Þ
maxðUT ;VT Þ ¼ UT þmaxðVT � UT ; 0Þ

26.15 OPTIONS INVOLVING SEVERAL ASSETS

Options involving two or more risky assets are sometimes referred to as rainbow options.

One example is the bond futures contract traded on the CBOT described in Chapter 6.

The party with the short position is allowed to choose between a large number of

different bonds when making delivery.

Probably the most popular option involving several assets is a European basket

option. This is an option where the payoff is dependent on the value of a portfolio

(or basket) of assets. The assets are usually either individual stocks or stock indices or

currencies. A European basket option can be valued with Monte Carlo simulation, by

assuming that the assets follow correlated geometric Brownian motion processes. A

much faster approach is to calculate the first two moments of the basket at the maturity

of the option in a risk-neutral world, and then assume that value of the basket is

13 See M. Rubinstein, ‘‘One for Another,’’ Risk, July/August 1991: 30–32
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lognormally distributed at that time. The option can then be valued using Black’s
model with the parameters shown in equations (26.3) and (26.4). In this case,

M1 ¼
Xn
i¼1

Fi and M2 ¼
Xn
i¼1

Xn
j¼1

FiFje
�ij�i�jT

where n is the number of assets, T is the option maturity, Fi and �i are the forward price
and volatility of the ith asset, and �ij is the correlation between the ith and jth asset.
See Technical Note 28 at www.rotman.utoronto.ca/�hull/TechnicalNotes.

26.16 VOLATILITY AND VARIANCE SWAPS

A volatility swap is an agreement to exchange the realized volatility of an asset between
time 0 and time T for a prespecifed fixed volatility. The realized volatility is usually
calculated as described in Section 15.4 but with the assumption that the mean daily
return is zero. Suppose that there are n daily observations on the asset price during the
period between time 0 and time T . The realized volatility is

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
252

n� 2

Xn�1

i¼1

�
ln

�
Siþ1

Si

��2vuut

where Si is the ith observation on the asset price. (Sometimes n� 1 might replace n� 2
in this formula.)

The payoff from the volatility swap at time T to the payer of the fixed volatility is
Lvolð �� � �KÞ, where Lvol is the notional principal and �K is the fixed volatility. Whereas
an option provides a complex exposure to the asset price and volatility, a volatility swap
is simpler in that it has exposure only to volatility.

A variance swap is an agreement to exchange the realized variance rate �V between
time 0 and time T for a prespecified variance rate. The variance rate is the square of
the volatility ( �V ¼ ��2). Variance swaps are easier to value than volatility swaps. This is
because the variance rate between time 0 and time T can be replicated using a
portfolio of put and call options. The payoff from a variance swap at time T to
the payer of the fixed variance rate is Lvarð �V � VKÞ, where Lvar is the notional
principal and VK is the fixed variance rate. Often the notional principal for a variance
swap is expressed in terms of the corresponding notional principal for a volatility swap
using Lvar ¼ Lvol=ð2�KÞ.

Valuation of Variance Swap

Technical Note 22 at www.rotman.utoronto.ca/�hull/TechnicalNotes shows that,
for any value S

� of the asset price, the expected average variance between times 0 and
T is

Êð �V Þ ¼ 2

T
ln

F0

S � �
2

T

�
F0

S � � 1

�
þ 2

T

�ðS �

K¼0

1

K2
e
rT
pðKÞ dKþ

ð1
K¼S �

1

K2
e
rT
cðKÞ dK

�
ð26:6Þ

where F0 is the forward price of the asset for a contract maturing at time T , cðKÞ is
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the price of a European call option with strike price K and time to maturity T , and

pðKÞ is the price of a European put option with strike price K and time to

maturity T .

This provides a way of valuing a variance swap.14 The value of an agreement to

receive the realized variance between time 0 and time T and pay a variance rate of VK,

with both being applied to a principal of Lvar, is

Lvar½Êð �V Þ � VK�e�rT ð26:7Þ

Suppose that the prices of European options with strike prices Ki (1 6 i 6 n) are known,

where K1 < K2 < � � � < Kn. A standard approach for implementing equation (26.6) is to

set S � equal to the first strike price below F0 and then approximate the integrals as

ðS�
K¼0

1

K2
e
rT
pðKÞdKþ

ð1
K¼S�

1

K2
e
rT
cðKÞdK ¼

Xn
i¼1

�Ki

K2
i

e
rT
QðKiÞ ð26:8Þ

where �Ki ¼ 0:5ðKiþ1 �Ki�1Þ for 2 6 i 6 n� 1, �K1 ¼ K2 �K1, �Kn ¼ Kn �Kn�1.

The function QðKiÞ is the price of a European put option with strike price Ki if Ki < S
�

and the price of a European call option with strike price Ki if Ki > S
�. When Ki ¼ S

�,
the function QðKiÞ is equal to the average of the prices of a European call and a

European put with strike price Ki.

Example 26.4

Consider a 3-month contract to receive the realized variance rate of an index over

the 3 months and pay a variance rate of 0.045 on a principal of $100 million. The

risk-free rate is 4% and the dividend yield on the index is 1%. The current level of

the index is 1020. Suppose that, for strike prices of 800, 850, 900, 950, 1,000,

1,050, 1,100, 1,150, 1,200, the 3-month implied volatilities of the index are 29%,

28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, respectively. In this case, n ¼ 9,

K1 ¼ 800, K2 ¼ 850, . . . , K9 ¼ 1,200, F0 ¼ 1,020eð0:04�0:01Þ�0:25 ¼ 1,027:68, and
S � ¼ 1,000. DerivaGem shows that QðK1Þ ¼ 2:22, QðK2Þ ¼ 5:22, QðK3Þ ¼ 11:05,
QðK4Þ ¼ 21:27, QðK5Þ ¼ 51:21, QðK6Þ ¼ 38:94, QðK7Þ ¼ 20:69, QðK8Þ ¼ 9:44,
QðK9Þ ¼ 3:57. Also, �Ki ¼ 50 for all i. Hence,

Xn
i

�Ki

K2
i

e
rT
QðKiÞ ¼ 0:008139

From equations (26.6) and (26.8), it follows that

Êð �V Þ ¼ 2

0:25
ln

�
1027:68

1,000

�
� 2

0:25

�
1027:68

1,000
� 1

�
þ 2

0:25
� 0:008139 ¼ 0:0621

From equation (26.7), the value of the variance swap (in millions of dollars) is

100� ð0:0621� 0:045Þe�0:04�0:25 ¼ 1:69.

14 See also K. Demeterfi, E. Derman, M. Kamal, and J. Zou, ‘‘A Guide to Volatility and Variance Swaps,’’

The Journal of Derivatives, 6, 4 (Summer 1999), 9–32. For options on variance and volatility, see P. Carr and

R. Lee, ‘‘Realized Volatility and Variance: Options via Swaps,’’ Risk, May 2007, 76–83.
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Valuation of a Volatility Swap

To value a volatility swap, we require Êð ��Þ, where �� is the average value of volatility
between time 0 and time T . We can write

�� ¼
ffiffiffiffiffiffiffiffiffiffiffi
Êð �V Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�V � Êð �V Þ
Êð �V Þ

s

Expanding the second term on the right-hand side in a series gives

�� ¼
ffiffiffiffiffiffiffiffiffiffiffi
Êð �V Þ

q �
1þ

�V � Êð �V Þ
2Êð �V Þ � 1

8

�
�V � Êð �V Þ
Êð �V Þ

�2�

Taking expectations,

Êð ��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Êð �V Þ

q �
1� 1

8

�
varð �V Þ
Êð �V Þ2

��
ð26:9Þ

where varð �V Þ is the variance of �V . The valuation of a volatility swap therefore requires
an estimate of the variance of the average variance rate during the life of the contract.
The value of an agreement to receive the realized volatility between time 0 and time T

and pay a volatility of �K, with both being applied to a principal of Lvol, is

Lvol½Êð ��Þ � �K�e�rT

Example 26.5

For the situation in Example 26.4, consider a volatility swap where the realized
volatility is received and a volatility of 23% is paid on a principal of $100 million.
In this case Êð �V Þ ¼ 0:0621. Suppose that the standard deviation of the average
variance over 3 months has been estimated as 0.01. This means that
varð �V Þ ¼ 0:0001. Equation (26.9) gives

Êð ��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0621

p �
1� 1

8
� 0:0001

0:06212

�
¼ 0:2484

The value of the swap in (millions of dollars) is

100� ð0:2484 � 0:23Þe�0:04�0:25 ¼ 1:82

The VIX Index

In equation (26.6), the ln function can be approximated by the first two terms in a series
expansion:

ln

�
F0

S �

�
¼

�
F0

S � � 1

�
� 1

2

�
F0

S � � 1

�2

This means that the risk-neutral expected cumulative variance is calculated as

Êð �V ÞT ¼ �
�
F0

S � � 1

�2
þ 2

Xn
i¼1

�Ki

K2
i

e
rT
QðKiÞ ð26:10Þ

Since 2004 the VIX volatility index (see Section 15.11) has been based on equa-
tion (26.10). The procedure used on any given day is to calculate Êð �V ÞT for options that
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trade in the market and have maturities immediately above and below 30 days. The
30-day risk-neutral expected cumulative variance is calculated from these two numbers
using interpolation. This is then multiplied by 365/30 and the index is set equal to the
square root of the result. More details on the calculation can be found on:

www.cboe.com/micro/vix/vixwhite.pdf

26.17 STATIC OPTIONS REPLICATION

If the procedures described in Chapter 19 are used for hedging exotic options, some are
easy to handle, but others are very difficult because of discontinuities (see Business
Snapshot 26.1). For the difficult cases, a technique known as static options replication is
sometimes useful.15 This involves searching for a portfolio of actively traded options that
approximately replicates the exotic option. Shorting this position provides the hedge.16

The basic principle underlying static options replication is as follows. If two portfolios
are worth the same on a certain boundary, they are also worth the same at all interior
points of the boundary. Consider as an example a 9-month up-and-out call option on a
non-dividend-paying stock where the stock price is 50, the strike price is 50, the barrier is
60, the risk-free interest rate is 10% per annum, and the volatility is 30% per annum.
Suppose that f ðS; tÞ is the value of the option at time t for a stock price of S. Any
boundary in ðS; tÞ space can be used for the purposes of producing the replicating
portfolio. A convenient one to choose is shown in Figure 26.1. It is defined by S ¼ 60
and t ¼ 0:75. The values of the up-and-out option on the boundary are given by

f ðS; 0:75Þ ¼ maxðS � 50; 0Þ when S < 60

f ð60; tÞ ¼ 0 when 0 6 t 6 0:75

There are many ways that these boundary values can be approximately matched
using regular options. The natural option to match the first boundary is a 9-month
European call with a strike price of 50. The first component of the replicating portfolio
is therefore one unit of this option. (We refer to this option as option A.)

One way of matching the f ð60; tÞ boundary is to proceed as follows:

1. Divide the life of the option into N steps of length �t

2. Choose a European call option with a strike price of 60 and maturity at time N�t

(¼ 9 months) to match the boundary at the f60; ðN � 1Þ�tg point
3. Choose a European call option with a strike price of 60 and maturity at

time ðN � 1Þ�t to match the boundary at the f60; ðN � 2Þ�tg point
and so on. Note that the options are chosen in sequence so that they have zero value on
the parts of the boundary matched by earlier options.17 The option with a strike price

15 See E. Derman, D. Ergener, and I. Kani, ‘‘Static Options Replication,’’ Journal of Derivatives 2, 4

(Summer 1995): 78–95.
16 Technical Note 22 at www.rotman.utoronto.ca/�hull/TechnicalNotes provides an example of static

replication. It shows that the variance rate of an asset can be replicated by a position in the asset and out-of-the-

money options on the asset. This result, which leads to equation (26.6), can be used to hedge variance swaps.
17 This is not a requirement. If K points on the boundary are to be matched, we can choose K options and

solve a set of K linear equations to determine required positions in the options.
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of 60 that matures in 9 months has zero value on the vertical boundary that is matched

by option A. The option maturing at time i�t has zero value at the point f60; i�tg that
is matched by the option maturing at time ðiþ 1Þ�t for 1 6 i 6 N � 1.

Suppose that �t ¼ 0:25. In addition to option A, the replicating portfolio consists of

positions in European options with strike price 60 that mature in 9, 6, and 3 months.

We will refer to these as options B, C, and D, respectively. Given our assumptions

Business Snapshot 26.1 Is Delta Hedging Easier or More Difficult
for Exotics?

As described in Chapter 19, we can approach the hedging of exotic options by
creating a delta neutral position and rebalancing frequently to maintain delta
neutrality. When we do this we find some exotic options are easier to hedge than
plain vanilla options and some are more difficult.

An example of an exotic option that is relatively easy to hedge is an average price
option where the averaging period is the whole life of the option. As time passes, we
observe more of the asset prices that will be used in calculating the final average. This
means that our uncertainty about the payoff decreases with the passage of time. As a
result, the option becomes progressively easier to hedge. In the final few days, the
delta of the option always approaches zero because price movements during this time
have very little impact on the payoff.

By contrast barrier options are relatively difficult to hedge. Consider a down-and-
out call option on a currency when the exchange rate is 0:0005 above the barrier. If
the barrier is hit, the option is worth nothing. If the barrier is not hit, the option may
prove to be quite valuable. The delta of the option is discontinuous at the barrier
making conventional hedging very difficult.

Figure 26.1 Boundary points used for static options replication example.
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about volatility and interest rates, option B is worth 4.33 at the f60; 0:5g point.
Option A is worth 11.54 at this point. The position in option B necessary to match
the boundary at the f60; 0:5g point is therefore �11:54=4:33 ¼ �2:66. Option C is worth
4.33 at the f60; 0:25g point. The position taken in options A and B is worth �4:21 at
this point. The position in option C necessary to match the boundary at the f60; 0:25g
point is therefore 4:21=4:33 ¼ 0:97. Similar calculations show that the position in
option D necessary to match the boundary at the f60; 0g point is 0.28.

The portfolio chosen is summarized in Table 26.1. (See also Sample Application F of
the DerivaGem Applications.) It is worth 0.73 initially (i.e., at time zero when the stock
price is 50). This compares with 0.31 given by the analytic formula for the up-and-out
call earlier in this chapter. The replicating portfolio is not exactly the same as the up-
and-out option because it matches the latter at only three points on the second
boundary. If we use the same procedure, but match at 18 points on the second
boundary (using options that mature every half month), the value of the replicating
portfolio reduces to 0.38. If 100 points are matched, the value reduces further to 0.32.

To hedge a derivative, the portfolio that replicates its boundary conditions must be
shorted. The portfolio must be unwound when any part of the boundary is reached.

Static options replication has the advantage over delta hedging that it does not
require frequent rebalancing. It can be used for a wide range of derivatives. The user
has a great deal of flexibility in choosing the boundary that is to be matched and the
options that are to be used.

SUMMARY

Exotic options are options with rules governing the payoff that are more complicated
than standard options. We have discussed 15 different types of exotic options: packages,
perpetual American options, nonstandard American options, gap options, forward start
options, cliquet options, compound options, chooser options, barrier options, binary
options, lookback options, shout options, Asian options, options to exchange one asset
for another, and options involving several assets. We have discussed how these can be
valued using the same assumptions as those used to derive the Black–Scholes–Merton
model in Chapter 15. Some can be valued analytically, but using much more complicated
formulas than those for regular European calls and puts, some can be handled using
analytic approximations, and some can be valued using extensions of the numerical
procedures in Chapter 21. We will present more numerical procedures for valuing exotic
options in Chapter 27.

Table 26.1 The portfolio of European call options used to
replicate an up-and-out option.

Option Strike
price

Maturity
(years)

Position Initial
value

A 50 0.75 1.00 þ6.99
B 60 0.75 �2.66 �8.21
C 60 0.50 0.97 þ1.78
D 60 0.25 0.28 þ0.17
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Some exotic options are easier to hedge than the corresponding regular options;
others are more difficult. In general, Asian options are easier to hedge because the
payoff becomes progressively more certain as we approach maturity. Barrier options can
be more difficult to hedge because delta is discontinuous at the barrier. One approach
to hedging an exotic option, known as static options replication, is to find a portfolio of
regular options whose value matches the value of the exotic option on some boundary.
The exotic option is hedged by shorting this portfolio.
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Practice Questions (Answers in Solutions Manual)

26.1. Explain the difference between a forward start option and a chooser option.

26.2. Describe the payoff from a portfolio consisting of a floating lookback call and a floating
lookback put with the same maturity.

26.3. Consider a chooser option where the holder has the right to choose between a European
call and a European put at any time during a 2-year period. The maturity dates and
strike prices for the calls and puts are the same regardless of when the choice is made. Is
it ever optimal to make the choice before the end of the 2-year period? Explain your
answer.
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26.4. Suppose that c1 and p1 are the prices of a European average price call and a European
average price put with strike price K and maturity T , c2 and p2 are the prices of a
European average strike call and European average strike put with maturity T , and c3
and p3 are the prices of a regular European call and a regular European put with strike
price K and maturity T . Show that c1 þ c2 � c3 ¼ p1 þ p2 � p3.

26.5. The text derives a decomposition of a particular type of chooser option into a call
maturing at time T2 and a put maturing at time T1. Derive an alternative decomposition
into a call maturing at time T1 and a put maturing at time T2.

26.6. Section 26.9 gives two formulas for a down-and-out call. The first applies to the situation
where the barrier, H, is less than or equal to the strike price, K. The second applies to the
situation where H > K. Show that the two formulas are the same when H ¼ K.

26.7. Explain why a down-and-out put is worth zero when the barrier is greater than the strike
price.

26.8. Suppose that the strike price of an American call option on a non-dividend-paying stock
grows at rate g. Show that if g is less than the risk-free rate, r, it is never optimal to
exercise the call early.

26.9. How can the value of a forward start put option on a non-dividend-paying stock be
calculated if it is agreed that the strike price will be 10% greater than the stock price at
the time the option starts?

26.10. If a stock price follows geometric Brownian motion, what process does AðtÞ follow where
AðtÞ is the arithmetic average stock price between time zero and time t?

26.11. Explain why delta hedging is easier for Asian options than for regular options.

26.12. Calculate the price of a 1-year European option to give up 100 ounces of silver in
exchange for 1 ounce of gold. The current prices of gold and silver are $1,520 and $16,
respectively; the risk-free interest rate is 10% per annum; the volatility of each
commodity price is 20%; and the correlation between the two prices is 0.7. Ignore
storage costs.

26.13. Is a European down-and-out option on an asset worth the same as a European down-
and-out option on the asset’s futures price for a futures contract maturing at the same
time as the option?

26.14. Answer the following questions about compound options:
(a) What put–call parity relationship exists between the price of a European call on a

call and a European put on a call? Show that the formulas given in the text satisfy
the relationship.

(b) What put–call parity relationship exists between the price of a European call on a
put and a European put on a put? Show that the formulas given in the text satisfy
the relationship.

26.15. Does a floating lookback call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in calculating the minimum?

26.16. Does a down-and-out call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in determining whether the barrier has
been crossed? What is the answer to the same question for a down-and-in call?

26.17. Explain why a regular European call option is the sum of a down-and-out European call
and a down-and-in European call. Is the same true for American call options?

642 CHAPTER 26



26.18. What is the value of a derivative that pays off $100 in 6 months if the S&P 500 index is
greater than 1,000 and zero otherwise? Assume that the current level of the index is 960,
the risk-free rate is 8% per annum, the dividend yield on the index is 3% per annum, and
the volatility of the index is 20%.

26.19. In a 3-month down-and-out call option on silver futures the strike price is $20 per ounce
and the barrier is $18. The current futures price is $19, the risk-free interest rate is 5%,
and the volatility of silver futures is 40% per annum. Explain how the option works and
calculate its value. What is the value of a regular call option on silver futures with the
same terms? What is the value of a down-and-in call option on silver futures with the
same terms?

26.20. A new European-style floating lookback call option on a stock index has a maturity of
9 months. The current level of the index is 400, the risk-free rate is 6% per annum, the
dividend yield on the index is 4% per annum, and the volatility of the index is 20%. Use
DerivaGem to value the option.

26.21. Estimate the value of a new 6-month European-style average price call option on a non-
dividend-paying stock. The initial stock price is $30, the strike price is $30, the risk-free
interest rate is 5%, and the stock price volatility is 30%.

26.22. Use DerivaGem to calculate the value of:
(a) A regular European call option on a non-dividend-paying stock where the stock

price is $50, the strike price is $50, the risk-free rate is 5% per annum, the volatility is
30%, and the time to maturity is one year

(b) A down-and-out European call which is as in (a) with the barrier at $45
(c) A down-and-in European call which is as in (a) with the barrier at $45.

Show that the option in (a) is worth the sum of the values of the options in (b) and (c).

26.23. Explain adjustments that have to be made when r ¼ q for (a) the valuation formulas for
floating lookback call options in Section 26.11 and (b) the formulas for M1 and M2 in
Section 26.13.

26.24. Value the variance swap in Example 26.4 of Section 26.16 assuming that the implied
volatilities for options with strike prices 800, 850, 900, 950, 1,000, 1,050, 1,100, 1,150,
1,200 are 20%, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, respectively.

26.25. Verify that the results in Section 26.2 for the value of a derivative that pays Q when
S ¼ H are consistent with those in Section 15.6.

Further Questions

26.26. What is the value in dollars of a derivative that pays off £10,000 in 1 year provided that
the dollar/sterling exchange rate is greater than 1.5000 at that time? The current
exchange rate is 1.4800. The dollar and sterling interest rates are 4% and 8% per
annum, respectively. The volatility of the exchange rate is 12% per annum.

26.27. Consider an up-and-out barrier call option on a non-dividend-paying stock when the
stock price is 50, the strike price is 50, the volatility is 30%, the risk-free rate is 5%, the
time to maturity is 1 year, and the barrier at $80. Use the DerivaGem software to value
the option and graph the relationship between (a) the option price and the stock price,
(b) the delta and the stock price, (c) the option price and the time to maturity, and
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(d) the option price and the volatility. Provide an intuitive explanation for the results you
get. Show that the delta, gamma, theta, and vega for an up-and-out barrier call option
can be either positive or negative.

26.28. Sample Application F in the DerivaGem Application Builder Software considers the
static options replication example in Section 26.17. It shows the way a hedge can be
constructed using four options (as in Section 26.17) and two ways a hedge can be
constructed using 16 options.
(a) Explain the difference between the two ways a hedge can be constructed using

16 options. Explain intuitively why the second method works better.
(b) Improve on the four-option hedge by changing Tmat for the third and fourth options.
(c) Check how well the 16-option portfolios match the delta, gamma, and vega of the

barrier option.

26.29. Consider a down-and-out call option on a foreign currency. The initial exchange rate is
0.90, the time to maturity is 2 years, the strike price is 1.00, the barrier is 0.80, the
domestic risk-free interest rate is 5%, the foreign risk-free interest rate is 6%, and the
volatility is 25% per annum. Use DerivaGem to develop a static option replication
strategy involving five options.

26.30. Suppose that a stock index is currently 900. The dividend yield is 2%, the risk-free rate is
5%, and the volatility is 40%. Use the results in Technical Note 27 on the author’s
website to calculate the value of a 1-year average price call where the strike price is 900
and the index level is observed at the end of each quarter for the purposes of the
averaging. Compare this with the price calculated by DerivaGem for a 1-year average
price option where the price is observed continuously. Provide an intuitive explanation
for any differences between the prices.

26.31. Use the DerivaGem Application Builder software to compare the effectiveness of daily
delta hedging for (a) the option considered in Tables 19.2 and 19.3 and (b) an average
price call with the same parameters. Use Sample Application C. For the average price
option you will find it necessary to change the calculation of the option price in cell C16,
the payoffs in cells H15 and H16, and the deltas (cells G46 to G186 and N46 to N186).
Carry out 20 Monte Carlo simulation runs for each option by repeatedly pressing F9.
On each run record the cost of writing and hedging the option, the volume of trading
over the whole 20 weeks and the volume of trading between weeks 11 and 20. Comment
on the results.

26.32. In the DerivaGem Application Builder Software modify Sample Application D to test
the effectiveness of delta and gamma hedging for a call on call compound option on a
100,000 units of a foreign currency where the exchange rate is 0.67, the domestic risk-free
rate is 5%, the foreign risk-free rate is 6%, the volatility is 12%. The time to maturity of
the first option is 20 weeks, and the strike price of the first option is 0.015. The second
option matures 40 weeks from today and has a strike price of 0.68. Explain how you
modified the cells. Comment on hedge effectiveness.

26.33. Outperformance certificates (also called ‘‘sprint certificates,’’ ‘‘accelerator certificates,’’
or ‘‘speeders’’) are offered to investors by many European banks as a way of investing in
a company’s stock. The initial investment equals the stock price, S0. If the stock price
goes up between time 0 and time T , the investor gains k times the increase at time T ,
where k is a constant greater than 1.0. However, the stock price used to calculate the gain
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at time T is capped at some maximum level M. If the stock price goes down, the
investor’s loss is equal to the decrease. The investor does not receive dividends.
(a) Show that an outperformance certificate is a package.
(b) Calculate using DerivaGem the value of a one-year outperformance certificate when

the stock price is 50 euros, k ¼ 1:5, M ¼ 70 euros, the risk-free rate is 5%, and the
stock price volatility is 25%. Dividends equal to 0.5 euros are expected in 2 months,
5 months, 8 months, and 11 months.

26.34. Carry out the analysis in Example 26.4 of Section 26.16 to value the variance swap on
the assumption that the life of the swap is 1 month rather than 3 months.

26.35. What is the relationship between a regular call option, a binary call option, and a gap
call option?

26.36. Produce a formula for valuing a cliquet option where an amount Q is invested to
produce a payoff at the end of n periods. The return earned each period is the greater
of the return on an index (excluding dividends) and zero.
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More on Models
and Numerical

Procedures

Up to now the models we have used to value options have been based on the geometric

Brownian motion model of asset price behavior that underlies the Black–Scholes–

Merton formulas and the numerical procedures we have used have been relatively

straightforward. In this chapter we introduce a number of new models and explain

how the numerical procedures can be adapted to cope with particular situations.

Chapter 20 explained how traders overcome the weaknesses in the geometric Brown-

ian motion model by using volatility surfaces. A volatility surface determines an

appropriate volatility to substitute into Black–Scholes–Merton when pricing plain

vanilla options. Unfortunately it says little about the volatility that should be used

for exotic options when the pricing formulas of Chapter 26 are used. Suppose the

volatility surface shows that the correct volatility to use when pricing a one-year plain

vanilla option with a strike price of $40 is 27%. This is liable to be totally inappropriate

for pricing a barrier option (or some other exotic option) that has a strike price of $40

and a life of one year.

The first part of this chapter discusses a number of alternatives to geometric

Brownian motion that are designed to deal with the problem of pricing exotic options

consistently with plain vanilla options. These alternative asset price processes fit the

market prices of plain vanilla options better than geometric Brownian motion. As a

result, we can have more confidence in using them to value exotic options.

The second part of the chapter extends the discussion of numerical procedures. It

explains how convertible bonds and some types of path-dependent derivatives can be

valued using trees. It discusses the special problems associated with valuing barrier

options numerically and how these problems can be handled. Finally, it outlines

alternative ways of constructing trees for two correlated variables and shows how

Monte Carlo simulation can be used to value derivatives when there are early exercise

opportunities.

As in earlier chapters, results are presented for derivatives dependent on an asset

providing a yield at rate q. For an option on a stock index, q should be set equal to the

dividend yield on the index; for an option on a currency, it should be set equal to the

foreign risk-free rate; for an option on a futures contract, it should be set equal to the

domestic risk-free rate.
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27.1 ALTERNATIVES TO BLACK–SCHOLES–MERTON

The Black–Scholes–Merton model assumes that an asset’s price changes continously in

a way that produces a lognormal distribution for the price at any future time. There are

many alternative processes that can be assumed. One possibility is to retain the property

that the asset price changes continuously, but assume a process other than geometric

Brownian motion. Another alternative is to overlay continuous asset price changes with

jumps. Yet another alternative is to assume a process where all the asset price changes

that take place are jumps. We will consider examples of all three types of processes in

this section. In particular, we will consider the constant elasticity of variance model,

Merton’s mixed jump–diffusion model, and the variance-gamma model. All three

models are implemented in DerivaGem version 3.00. The types of processes we consider

in this section are known collectively as Levy processes.1

The Constant Elasticity of Variance Model

One alternative to Black–Scholes–Merton is the constant elasticity of variance (CEV)

model. This is a diffusion model where the risk-neutral process for a stock price S is

dS ¼ ðr� qÞS dtþ �S �
dz

where r is the risk-free rate, q is the dividend yield, dz is a Wiener process, � is a

volatility parameter, and � is a positive constant.2

When � ¼ 1, the CEV model is the geometric Brownian motion model we have been

using up to now. When � < 1, the volatility increases as the stock price decreases. This

creates a probability distribution similar to that observed for equities with a heavy left

tail and less heavy right tail (see Figure 20.4).3 When � > 1, the volatility increases as

the stock price increases. This creates a probability distribution with a heavy right tail

and a less heavy left tail. This corresponds to a volatility smile where the implied

volatility is an increasing function of the strike price. This type of volatility smile is

sometimes observed for options on futures.

The valuation formulas for European call and put options under the CEV model are

c ¼ S0e
�qT ½1� �2ða; bþ 2; cÞ� �Ke

�rT�2ðc; b; aÞ
p ¼ Ke

�rT ½1� �2ðc; b; aÞ� � S0e
�qT�2ða; bþ 2; cÞ

when 0 < � < 1, and

c ¼ S0e
�qT ½1� �2ðc;�b; aÞ� �Ke

�rT�2ða; 2� b; cÞ
p ¼ Ke

�rT ½1� �2ða; 2� b; cÞ� � S0e
�qT�2ðc;�b; aÞ

1 Roughly speaking, a Levy process is a continuous-time stochastic process with stationary independent

increments.
2 See J. C. Cox and S.A. Ross, ‘‘The Valuation of Options for Alternative Stochastic Processes,’’ Journal of

Financial Economics, 3 (March 1976): 145–66.
3 The reason is as follows. As the stock price decreases, the volatility increases making even lower stock price

more likely; when the stock price increases, the volatility decreases making higher stock prices less likely.
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when � > 1, with

a ¼ ½Ke
�ðr�qÞT �2ð1��Þ

ð1� �Þ2v ; b ¼ 1

1� �
; c ¼ S

2ð1��Þ

ð1� �Þ2v
where

v ¼ �2

2ðr� qÞð�� 1Þ ½e
2ðr�qÞð��1ÞT � 1�

and �2ðz; k; vÞ is the cumulative probability that a variable with a noncentral �2

distribution with noncentrality parameter v and k degrees of freedom is less than z.
A procedure for computing �2ðz; k; vÞ is provided in Technical Note 12 on the author’s
website: www.rotman.utoronto.ca/�hull/TechnicalNotes.

The CEV model is useful for valuing exotic equity options. The parameters of the
model can be chosen to fit the prices of plain vanilla options as closely as possible by
minimizing the sum of the squared differences between model prices and market
prices.

Merton’s Mixed Jump–Diffusion Model

Merton has suggested a model where jumps are combined with continuous changes.4

Define:

� : Average number of jumps per year

k : Average jump size, measured as a percentage of the asset price

The percentage jump size is assumed to be drawn from a probability distribution in the
model.

The probability of a jump in time �t is ��t. The average growth rate in the asset
price from the jumps is therefore �k. The risk-neutral process for the asset price is

dS

S
¼ ðr� q� �kÞ dtþ � dzþ dp

where dz is a Wiener process, dp is the Poisson process generating the jumps, and � is
the volatility of the geometric Brownian motion. The processes dz and dp are assumed
to be independent.

An important particular case of Merton’s model is where the logarithm of one plus
the size of the percentage jump is normal. Assume that the standard deviation of the
normal distribution is s. Merton shows that a European option price can then be written

X1
n¼0

e
��0T ð�0T Þn

n!
fn

where �0 ¼ �ð1þ kÞ. The variable fn is the Black–Scholes–Merton option price when the
dividend yield is q, the variance rate is

�2 þ ns
2

T

4 See R.C. Merton, ‘‘Option Pricing When Underlying Stock Returns Are Discontinuous,’’ Journal of

Financial Economics, 3 (March 1976): 125–44.
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and the risk-free rate is

r� �kþ n�

T
where � ¼ lnð1þ kÞ.

This model gives rise to heavier left and heavier right tails than Black–Scholes–
Merton. It can be used for pricing currency options. As in the case of the CEV model,
the model parameters are chosen by minimizing the sum of the squared differences
between model prices and market prices.

Models such as Merton’s that involve jumps can be implemented with Monte Carlo
simulation. When jumps are generated by a Poisson process, the probability of exactly
m jumps in time t is

e
��tð�tÞm
m!

where � is the average number of jumps per year. Equivalently, �t is the average number
of jumps in time t.

Suppose that on average 0.5 jumps happen per year. The probability of m jumps in
2 years is

e
�0:5�2ð0:5� 2Þm

m!

Table 27.1 gives the probability and cumulative probability of 0, 1, 2, 3, 4, 5, 6, 7, and 8
jumps in 2 years. (The numbers in a table such as this can be calculated using the
POISSON function in Excel.)

To simulate a process following jumps over 2 years, it is necessary to determine on
each simulation trial:

1. The number of jumps

2. The size of each jump.

To determine the number of jumps, on each simulation trial we sample a random
number between 0 and 1 and use Table 27.1 as a look-up table. If the random number
is between 0 and 0.3679, no jumps occur; if the random number is between 0.3679 and
0.7358, one jump occurs; if the random number is between 0.7358 and 0.9197, two jumps

Table 27.1 Probabilities for number of jumps in 2 years.

Number of
jumps, m

Probability of
exactly m jumps

Probability of
m jumps or less

0 0.3679 0.3679

1 0.3679 0.7358

2 0.1839 0.9197

3 0.0613 0.9810

4 0.0153 0.9963

5 0.0031 0.9994

6 0.0005 0.9999

7 0.0001 1.0000

8 0.0000 1.0000
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occur; and so on. To determine the size of each jump, it is necessary on each simulation
trial to sample from the probability distribution for the jump size once for each jump
that occurs. Once the number of jumps and the jump sizes have been determined, the
final value of the variable being simulated is known for the simulation trial.

In Merton’s mixed jump–diffusion model, jumps are superimposed upon the usual
lognormal diffusion process that is assumed for stock prices. The process then has two
components (the usual diffusion component and the jump component) and each must
be sampled separately. The diffusion component is sampled as described in Sections 21.6
and 21.7 while the jump component is sampled as just described. When derivatives are
valued, it is important to ensure that the overall expected return from the asset (from
both components) is the risk-free rate. This means that the drift for the diffusion
component in Merton’s model is r� q� �k.

The Variance-Gamma Model

An example of a pure jump model that is proving quite popular is the variance-gamma
model.5 Define a variable g as the change over time T in a variable that follows a
gamma process with mean rate of 1 and variance rate of v. A gamma process is a pure
jump process where small jumps occur very frequently and large jumps occur only
occasionally. The probability density for g is

g
T=v�1

e
�g=v

vT=v�ðT=vÞ
where �ð � Þ denotes the gamma function. This probability density can be computed in
Excel using the GAMMADISTð �; �; �; � Þ function. The first argument of the function is
g, the second is T=v, the third is v, and the fourth is TRUE or FALSE, where TRUE
returns the cumulative probability distribution function and FALSE returns the prob-
ability density function we have just given.

As usual, we define ST as the asset price at time T , S0 as the asset price today, r as the
risk-free interest rate, and q as the dividend yield. In a risk-neutral world ln ST , under
the variance-gamma model, has a probability distribution that, conditional on g, is
normal. The conditional mean is

ln S0 þ ðr� qÞT þ !þ �g

and the conditional standard deviation is

�
ffiffiffi
g

p
where

! ¼ ðT=vÞ lnð1� �v� �2
v=2Þ

The variance-gamma model has three parameters: v, �, and �.6 The parameter v is the
variance rate of the gamma process, � is the volatility, and � is a parameter defining
skewness. When � ¼ 0, ln ST is symmetric; when � < 0, it is negatively skewed (as for
equities); and when � > 0, it is positively skewed.

5 See D.B. Madan, P. P. Carr, and E.C. Chang, ‘‘The Variance-Gamma Process and Option Pricing,’’

European Finance Review, 2 (1998): 79–105.
6 Note that all these parameters are liable to change when we move from the real world to the risk-neutral

world. This is in contrast to pure diffusion models where the volatility remains the same.
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Suppose that we are interested in using Excel to obtain 10,000 random samples of the
change in an asset price between time 0 and time T using the variance-gamma model.
As a preliminary, we could set cells E1, E2, E3, E4, E5, E6, and E7 equal to T , v, �, �, r,
q, and S0, respectively. We could also set E8 equal to ! by defining it as

¼ $E$1 � LNð1� $E$3 � $E$2� $E$4 � $E$4 � $E$2=2Þ=$E$2
We could then proceed as follows:

1. Sample values for g using the GAMMAINV function. Set the contents of cells
A1, A2, . . . , A10000 as

¼ GAMMAINVðRANDðÞ; $E$1=$E$2; $E$2Þ
2. For each value of g we sample a value z for a variable that is normally distributed

with mean �g and standard deviation �
ffiffiffi
g

p
. This can be done by defining cell B1 as

¼ A1 � $E$3þ SQRTðA1Þ � $E$4 �NORMSINVðRANDðÞÞ
and cells B2, B3, . . ., B10000 similarly.

3. The stock price ST is given by

ST ¼ S0 exp½ðr� qÞT þ !þ z�
By defining C1 as

¼ $E$7 � EXPðð$E$5� $E$6Þ � $E$1þ B1þ $E$8Þ
and C2, C3, . . . , C10000 similarly, random samples from the distribution of ST are
created in these cells.

40 60 80 100 120 140 160 180 200

Variance Gamma

Geometric Brownian Motion

Figure 27.1 Distributions obtained with variance-gamma process and geometric
Brownian motion.
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Figure 27.1 shows the probability distribution that is obtained using the variance-

gamma model for ST when S0 ¼ 100, T ¼ 0:5, v ¼ 0:5, � ¼ 0:1, � ¼ 0:2, and

r ¼ q ¼ 0. For comparison it also shows the distribution given by geometric Brownian

motion when the volatility, � is 0.2 (or 20%). Although not clear in Figure 27.1, the
variance-gamma distribution has heavier tails than the lognormal distribution given by

geometric Brownian motion.

One way of characterizing the variance-gamma distribution is that g defines the rate

at which information arrives during time T . If g is large, a great deal of information

arrives and the sample we take from a normal distribution in step 2 above has a
relatively large mean and variance. If g is small, relatively little information arrives

and the sample we take has a relatively small mean and variance. The parameter T is the

usual time measure, and g is sometimes referred to as measuring economic time or time

adjusted for the flow of information.

Semi-analytic European option valuation formulas are provided by Madan et al.
(1998). The variance-gamma model tends to produce a U-shaped volatility smile. The

smile is not necessarily symmetrical. It is very pronounced for short maturities and ‘‘dies

away’’ for long maturities. The model can be fitted to either equity or foreign currency

plain vanilla option prices.

27.2 STOCHASTIC VOLATILITY MODELS

The Black–Scholes–Merton model assumes that volatility is constant. In practice, as

discussed in Chapter 23, volatility varies through time. The variance-gamma model

reflects this with its g variable. Low values of g correspond to a low arrival rate for

information and a low volatility; high values of g correspond to a high arrival rate for

information and a high volatility.

An alternative to the variance-gamma model is a model where the process followed

by the volatility variable is specified explicitly. Suppose first that the volatility parameter

in the geometric Brownian motion is a known function of time. The risk-neutral process

followed by the asset price is then

dS ¼ ðr� qÞS dtþ �ðtÞS dz ð27:1Þ

The Black–Scholes–Merton formulas are then correct provided that the variance rate is
set equal to the average variance rate during the life of the option (see Problem 27.6).

The variance rate is the square of the volatility. Suppose that during a 1-year period the

volatility of a stock will be 20% during the first 6 months and 30% during the second

6 months. The average variance rate is

0:5� 0:202 þ 0:5� 0:302 ¼ 0:065

It is correct to use Black–Scholes–Merton with a variance rate of 0.065. This corre-
sponds to a volatility of

ffiffiffiffiffiffiffiffiffiffiffi
0:065

p ¼ 0:255, or 25.5%.

Equation (27.1) assumes that the instantaneous volatility of an asset is perfectly

predictable. In practice, volatility varies stochastically. This has led to the develop-

ment of more complex models with two stochastic variables: the stock price and its

volatility.
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One model that has been used by researchers is

dS

S
¼ ðr� qÞ dtþ

ffiffiffiffi
V

p
dzS ð27:2Þ

dV ¼ aðVL � V Þ dtþ �V�
dzV ð27:3Þ

where a, VL, �, and � are constants, and dzS and dzV are Wiener processes. The variable V
in this model is the asset’s variance rate. The variance rate has a drift that pulls it back to
a level VL at rate a.

Hull and White show that, when volatility is stochastic but uncorrelated with the asset
price, the price of a European option is the Black–Scholes–Merton price integrated over
the probability distribution of the average variance rate during the life of the option.7

Thus, a European call price is ð1
0

cð �V Þgð �V Þ d �V

where �V is the average value of the variance rate, c is the Black–Scholes–Merton price
expressed as a function of �V , and g is the probability density function of �V in a risk-
neutral world. This result can be used to show that Black–Scholes–Merton overprices

options that are at the money or close to the money, and underprices options that are
deep-in- or deep-out-of-the-money. The model is consistent with the pattern of implied
volatilities observed for currency options (see Section 20.2).

The case where the asset price and volatility are correlated is more complicated.
Option prices can be obtained using Monte Carlo simulation. In the particular case
where � ¼ 0:5, Hull and White provide a series expansion and Heston provides an

analytic result.8 The pattern of implied volatilities obtained when the volatility is
negatively correlated with the asset price is similar to that observed for equities (see
Section 20.3).9

Chapter 23 discusses exponentially weighted moving average (EWMA) and
GARCH(1,1) models. These are alternative approaches to characterizing a stochastic
volatility model. Duan shows that it is possible to use GARCH(1,1) as the basis for an

internally consistent option pricing model.10 (See Problem 23.14 for the equivalence of
GARCH(1,1) and stochastic volatility models.)

Stochastic volatility models can be fitted to the prices of plain vanilla options and then
used to price exotic options.11 For options that last less than a year, the impact of a
stochastic volatility on pricing is fairly small in absolute terms (although in percentage

7 See J. C. Hull and A. White, ‘‘The Pricing of Options on Assets with Stochastic Volatilities,’’ Journal of

Finance, 42 (June 1987): 281–300. This result is independent of the process followed by the variance rate.
8 See J. C. Hull and A. White, ‘‘An Analysis of the Bias in Option Pricing Caused by a Stochastic Volatility,’’

Advances in Futures and Options Research, 3 (1988): 27–61; S. L. Heston, ‘‘A Closed Form Solution for

Options with Stochastic Volatility with Applications to Bonds and Currency Options,’’ Review of Financial

Studies, 6, 2 (1993): 327–43.
9 The reason is given in footnote 3.
10 See J.-C. Duan, ‘‘The GARCH Option Pricing Model,’’ Mathematical Finance, vol. 5 (1995), 13–32; and

J.-C. Duan, ‘‘Cracking the Smile’’ RISK, vol. 9 (December 1996), 55-59.
11 For an example of this, see J. C. Hull and W. Suo, ‘‘A Methodology for the Assessment of Model Risk and

its Application to the Implied Volatility Function Model,’’ Journal of Financial and Quantitative Analysis, 37,

2 (June 2002): 297–318.
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terms it can be quite large for deep-out-of-the-money options). It becomes progressively
larger as the life of the option increases. The impact of a stochastic volatility on the

performance of delta hedging is generally quite large. Traders recognize this and, as
described in Chapter 19, monitor their exposure to volatility changes by calculating vega.

27.3 THE IVF MODEL

The parameters of the models we have discussed so far can be chosen so that they
provide an approximate fit to the prices of plain vanilla options on any given day.
Financial institutions sometimes want to go one stage further and use a model that

provides an exact fit to the prices of these options.12 In 1994 Derman and Kani, Dupire,
and Rubinstein developed a model that is designed to do this. It has become known as
the implied volatility function (IVF) model or the implied tree model.13 It provides an
exact fit to the European option prices observed on any given day, regardless of the
shape of the volatility surface.

The risk-neutral process for the asset price in the model has the form

dS ¼ ½rðtÞ � qðtÞ�S dtþ �ðS; tÞS dz

where rðtÞ is the instantaneous forward interest rate for a contract maturing at time t

and qðtÞ is the dividend yield as a function of time. The volatility �ðS; tÞ is a function of
both S and t and is chosen so that the model prices all European options consistently

with the market. It is shown both by Dupire and by Andersen and Brotherton-Ratcliffe
that �ðS; tÞ can be calculated analytically:14

½�ðK; T Þ�2 ¼ 2
@cmkt=@T þ qðT Þcmkt þK½rðT Þ � qðT Þ�@cmkt=@K

K2ð@2cmkt=@K
2Þ ð27:4Þ

where cmktðK; T Þ is the market price of a European call option with strike price K and
maturity T . If a sufficiently large number of European call prices are available in the
market, this equation can be used to estimate the �ðS; tÞ function.15

Andersen and Brotherton-Ratcliffe implement the model by using equation (27.4)
together with the implicit finite difference method. An alternative approach, the implied
tree methodology suggested by Derman and Kani and Rubinstein, involves constructing
a tree for the asset price that is consistent with option prices in the market.

When it is used in practice the IVF model is recalibrated daily to the prices of plain
vanilla options. It is a tool to price exotic options consistently with plain vanilla
options. As discussed in Chapter 20 plain vanilla options define the risk-neutral

12 There is a practical reason for this. If the bank does not use a model with this property, there is a danger

that traders working for the bank will spend their time arbitraging the bank’s internal models.
13 See B. Dupire, ‘‘Pricing with a Smile,’’ Risk, February (1994): 18–20; E. Derman and I. Kani, ‘‘Riding on a

Smile,’’ Risk, February (1994): 32–39; M. Rubinstein, ‘‘Implied Binomial Trees’’ Journal of Finance, 49, 3

(July 1994), 771–818.
14 See B. Dupire, ‘‘Pricing with a Smile,’’ Risk, February (1994), 18–20; L. B.G. Andersen and R.

Brotherton-Ratcliffe ‘‘The Equity Option Volatility Smile: An Implicit Finite Difference Approach,’’ Journal

of Computation Finance 1, No. 2 (Winter 1997/98): 5–37. Dupire considers the case where r and q are zero;

Andersen and Brotherton-Ratcliffe consider the more general situation.
15 Some smoothing of the observed volatility surface is typically necessary.
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probability distribution of the asset price at all future times. It follows that the IVF

model gets the risk-neutral probability distribution of the asset price at all future times

correct. This means that options providing payoffs at just one time (e.g., all-or-nothing

and asset-or-nothing options) are priced correctly by the IVF model. However, the

model does not necessarily get the joint distribution of the asset price at two or more

times correct. This means that exotic options such as compound options and barrier

options may be priced incorrectly.16

27.4 CONVERTIBLE BONDS

We now move on to discuss how the numerical procedures presented in Chapter 21 can

be modified to handle particular valuation problems. We start by considering con-

vertible bonds.

Convertible bonds are bonds issued by a company where the holder has the option to

exchange the bonds for the company’s stock at certain times in the future. The conversion

ratio is the number of shares of stock obtained for one bond (this can be a function of

time). The bonds are almost always callable (i.e., the issuer has the right to buy them back

at certain times at a predetermined prices). The holder always has the right to convert the

bond once it has been called. The call feature is therefore usually a way of forcing

conversion earlier than the holder would otherwise choose. Sometimes the holder’s call

option is conditional on the price of the company’s stock being above a certain level.

Credit risk plays an important role in the valuation of convertibles. If credit risk is

ignored, poor prices are obtained because the coupons and principal payments on the

bond are overvalued. Ingersoll provides a way of valuing convertibles using a model

similar to Merton’s (1974) model discussed in Section 24.6.17 He assumes geometric

Brownian motion for the issuer’s total assets and models the company’s equity, its

convertible debt, and its other debt as claims contingent on the value of the assets.

Credit risk is taken into account because the debt holders get repaid in full only if the

value of the assets exceeds the amount owing to them.

A simpler model that is widely used in practice involves modeling the issuer’s stock

price. It is assumed that the stock follows geometric Brownian motion except that there

is a probability ��t that there will be a default in each short period of time �t. In the

event of a default the stock price falls to zero and there is a recovery on the bond. The

variable � is the risk-neutral hazard rate defined in Section 24.2.

The stock price process can be represented by varying the usual binomial tree so that

at each node there is:

1. A probability pu of a percentage up movement of size u over the next time period
of length �t

16 Hull and Suo test the IVF model by assuming that all derivative prices are determined by a stochastic

volatility model. They found that the model works reasonably well for compound options, but sometimes

gives serious errors for barrier options. See J. C. Hull and W. Suo, ‘‘A Methodology for the Assessment of

Model Risk and its Application to the Implied Volatility Function Model,’’ Journal of Financial and

Quantitative Analysis, 37, 2 (June 2002): 297–318
17 See J. E. Ingersoll, ‘‘A Contingent Claims Valuation of Convertible Securities,’’ Journal of Financial

Economics, 4, (May 1977), 289–322.
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2. A probability pd of a percentage down movement of size d over the next time
period of length �t

3. A probability ��t, or more accurately 1� e���t, that there will be a default with
the stock price moving to zero over the next time period of length �t

Parameter values, chosen to match the first two moments of the stock price distribu-
tion, are:

pu ¼ a� de
���t

u� d
; pd ¼

ue
���t � a

u� d
; u ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2��Þ�t

p
; d ¼ 1

u

where a ¼ e
ðr�qÞ�t, r is the risk-free rate, and q is the dividend yield on the stock.

The life of the tree is set equal to the life of the convertible bond. The value of the
convertible at the final nodes of the tree is calculated based on any conversion options
that the holder has at that time. We then roll back through the tree. At nodes where the
terms of the instrument allow conversion we test whether conversion is optimal. We
also test whether the position of the issuer can be improved by calling the bonds. If so,
we assume that the bonds are called and retest whether conversion is optimal. This is
equivalent to setting the value at a node equal to

max½minðQ1;Q2Þ;Q3�
where Q1 is the value given by the rollback (assuming that the bond is neither converted
nor called at the node), Q2 is the call price, and Q3 is the value if conversion takes place.

Example 27.1

Consider a 9-month zero-coupon bond issued by company XYZ with a face value
of $100. Suppose that it can be exchanged for two shares of company XYZ’s
stock at any time during the 9 months. Assume also that it is callable for $113 at
any time. The initial stock price is $50, its volatility is 30% per annum, and there
are no dividends. The hazard rate � is 1% per year, and all risk-free rates for all
maturities are 5%. Suppose that in the event of a default the bond is worth $40
(i.e., the recovery rate, as it is usually defined, is 40%).

Figure 27.2 shows the stock price tree that can be used to value the convertible
when there are three time steps (�t ¼ 0:25). The upper number at each node is the
stock price; the lower number is the price of the convertible bond. The tree par-
ameters are:

u ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:09�0:01Þ�0:25

p
¼ 1:1519; d ¼ 1=u ¼ 0:8681

a ¼ e
0:05�0:25 ¼ 1:0126; pu ¼ 0:5167; pd ¼ 0:4808

The probability of a default (i.e., of moving to the lowest nodes on the tree is
1� e�0:01�0:25 ¼ 0:002497. At the three default nodes the stock price is zero and
the bond price is 40.

Consider first the final nodes. At nodes G and H the bond should be converted
and is worth twice the stock price. At nodes I and J the bond should not be
converted and is worth 100.

Moving back through the tree enables the value to be calculated at earlier
nodes. Consider, for example, node E. The value, if the bond is converted, is
2� 50 ¼ $100. If it is not converted, then there is (a) a probability 0.5167 that it
will move to node H, where the bond is worth 115.19, (b) a 0.4808 probability
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that it will move down to node I, where the bond is worth 100, and (c) a 0.002497
probability that it will default and be worth 40. The value of the bond if it is not

converted is therefore

ð0:5167� 115:19þ 0:4808� 100þ 0:002497� 40Þ � e
�0:05�0:25 ¼ 106:36

This is more than the value of 100 that it would have if converted. We deduce that
it is not worth converting the bond at node E. Finally, we note that the bond
issuer would not call the bond at node E because this would be offering 113 for a

bond worth 106.36.

As another example consider node B. The value of the bond if it is converted is
2� 57:596 ¼ 115:19. If it is not converted a similar calculation to that just given
for node E gives its value as 118.31. The convertible bond holder will therefore

choose not to convert. However, at this stage the bond issuer will call the bond for
113 and the bond holder will then decide that converting is better than being
called. The value of the bond at node B is therefore 115.19. A similar argument is

used to arrive at the value at node D. With no conversion the value is 132.79.
However, the bond is called, forcing conversion and reducing the value at the
node to 132.69.

The value of the convertible is its value at the initial node A, or 106.93.

When interest is paid on the debt, it must be taken into account. At each node, when
valuing the bond on the assumption that it is not converted, the present value of any
interest payable on the bond in the next time step should be included. The risk-neutral

hazard rate � can be estimated from either bond prices or credit default swap spreads.
In a more general implementation, �, �, and r are functions of time. This can be
handled using a trinomial rather than a binomial tree (see Section 21.4).

G
76.42

D 152.85
66.34

B 132.69 H
57.60 57.60

A 115.19 E 115.19
50.00 50.00

106.93 C 106.36 I
43.41 43.41

101.20 F 100.00
37.68
98.61 J

32.71
100.00

Default Default Default
0.00 0.00 0.00

40.00 40.00 40.00

Figure 27.2 Tree for valuing convertible. Upper number at each node is
stock price; lower number is convertible bond price.
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One disadvantage of the model we have presented is that the probability of default is
independent of the stock price. This has led some researchers to suggest an implicit
finite difference method implementation of the model where the hazard rate � is a
function of the stock price as well as time.18

27.5 PATH-DEPENDENT DERIVATIVES

A path-dependent derivative (or history-dependent derivative) is a derivative where the
payoff depends on the path followed by the price of the underlying asset, not just its
final value. Asian options and lookback options are examples of path-dependent
derivatives. As explained in Chapter 26, the payoff from an Asian option depends on
the average price of the underlying asset; the payoff from a lookback option depends on
its maximum or minimum price. One approach to valuing path-dependent options
when analytic results are not available is Monte Carlo simulation, as discussed in
Chapter 21. A sample value of the derivative can be calculated by sampling a random
path for the underlying asset in a risk-neutral world, calculating the payoff, and
discounting the payoff at the risk-free interest rate. An estimate of the value of the
derivative is found by obtaining many sample values of the derivative in this way and
calculating their mean.

The main problem with Monte Carlo simulation is that the computation time
necessary to achieve the required level of accuracy can be unacceptably high. Also,
American-style path-dependent derivatives (i.e., path-dependent derivatives where one
side has exercise opportunities or other decisions to make) cannot easily be handled. In
this section, we show how the binomial tree methods presented in Chapter 21 can be
extended to cope with some path-dependent derivatives.19 The procedure can handle
American-style path-dependent derivatives and is computationally more efficient than
Monte Carlo simulation for European-style path-dependent derivatives.

For the procedure to work, two conditions must be satisfied:

1. The payoff from the derivative must depend on a single function, F , of the path
followed by the underlying asset.

2. It must be possible to calculate the value of F at time 	 þ�t from the value of F
at time 	 and the value of the underlying asset at time 	 þ�t.

Illustration Using Lookback Options

As a first illustration of the procedure, consider an American floating lookback put
option on a non-dividend-paying stock.20 If exercised at time 	, this pays off the amount
by which the maximum stock price between time 0 and time 	 exceeds the current stock

18 See, e.g., L. Andersen and D. Buffum, ‘‘Calibration and Implementation of Convertible Bond Models,’’

Journal of Computational Finance, 7, 1 (Winter 2003/04), 1–34. These authors suggest assuming that the

hazard rate is inversely proportional to S �, where S is the stock price and � is a positive constant.
19 This approach was suggested in J. Hull and A. White, ‘‘Efficient Procedures for Valuing European and

American Path-Dependent Options,’’ Journal of Derivatives, 1, 1 (Fall 1993): 21–31.
20 This example is used as a first illustration of the general procedure for handling path dependence. For a

more efficient approach to valuing American-style lookback options, see Technical Note 13 at:

www.rotman.utoronto.ca/�hull/TechnicalNotes.

658 CHAPTER 27

http://www.rotman.utoronto.ca/~hull/TechnicalNotes


price. Suppose that the initial stock price is $50, the stock price volatility is 40% per

annum, the risk-free interest rate is 10% per annum, the total life of the option is three

months, and that stock price movements are represented by a three-step binomial tree.

With our usual notation this means that S0 ¼ 50, � ¼ 0:4, r ¼ 0:10, �t ¼ 0:08333,
u ¼ 1:1224, d ¼ 0:8909, a ¼ 1:0084, and p ¼ 0:5073.

The tree is shown in Figure 27.3. In this case, the path function F is the maximum

stock price so far. The top number at each node is the stock price. The next level of

numbers at each node shows the possible maximum stock prices achievable on paths

leading to the node. The final level of numbers shows the values of the derivative

corresponding to each of the possible maximum stock prices.

The values of the derivative at the final nodes of the tree are calculated as the

maximum stock price minus the actual stock price. To illustrate the rollback procedure,

suppose that we are at node A, where the stock price is $50. The maximum stock price

achieved thus far is either 56.12 or 50. Consider first the situation where it is equal to

50. If there is an up movement, the maximum stock price becomes 56.12 and the value

of the derivative is zero. If there is a down movement, the maximum stock price stays at

50 and the value of the derivative is 5.45. Assuming no early exercise, the value of the

derivative at A when the maximum achieved so far is 50 is, therefore,

ð0� 0:5073þ 5:45� 0:4927Þe�0:1�0:08333 ¼ 2:66

Clearly, it is not worth exercising at node A in these circumstances because the payoff

Figure 27.3 Tree for valuing an American lookback option.
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from doing so is zero. A similar calculation for the situation where the maximum value at

node A is 56.12 gives the value of the derivative at node A, without early exercise, to be

ð0� 0:5073þ 11:57� 0:4927Þe�0:1�0:08333 ¼ 5:65

In this case, early exercise gives a value of 6.12 and is the optimal strategy. Rolling

back through the tree in the way we have indicated gives the value of the American

lookback as $5.47.

Generalization

The approach just described is computationally feasible when the number of alternative

values of the path function, F , at each node does not grow too fast as the number of

time steps is increased. The example we used, a lookback option, presents no problems

because the number of alternative values for the maximum asset price at a node in a

binomial tree with n time steps is never greater than n.

Luckily, the approach can be extended to cope with situations where there are a very

large number of different possible values of the path function at each node. The basic

idea is as follows. Calculations are carried out at each node for a small number of

representative values of F . When the value of the derivative is required for other values

of the path function, it is calculated from the known values using interpolation.

The first stage is to work forward through the tree establishing the maximum and

minimum values of the path function at each node. Assuming the value of the path

function at time 	 þ�t depends only on the value of the path function at time 	 and the

value of the underlying variable at time 	 þ�t, the maximum and minimum values of

the path function for the nodes at time 	 þ�t can be calculated in a straightforward

way from those for the nodes at time 	. The second stage is to choose representative

values of the path function at each node. There are a number of approaches. A simple

rule is to choose the representative values as the maximum value, the minimum value,

and a number of other values that are equally spaced between the maximum and the

minimum. As we roll back through the tree, we value the derivative for each of the

representative values of the path function.

To illustrate the nature of the calculation, consider the problem of valuing the

average price call option in Example 26.3 of Section 26.13 when the payoff depends

on the arithmetic average stock price. The initial stock price is 50, the strike price is 50,

the risk-free interest rate is 10%, the stock price volatility is 40%, and the time to

maturity is 1 year. For 20 time steps, the binomial tree parameters are �t ¼ 0:05,
u ¼ 1:0936, d ¼ 0:9144, p ¼ 0:5056, and 1� p ¼ 0:4944. The path function is the

arithmetic average of the stock price.

Figure 27.4 shows the calculations that are carried out in one small part of the tree.

Node X is the central node at time 0.2 year (at the end of the fourth time step). Nodes Y

and Z are the two nodes at time 0.25 year that are reachable from node X. The stock

price at node X is 50. Forward induction shows that the maximum average stock price

that is achievable in reaching node X is 53.83. The minimum is 46.65. (The initial and

final stock prices are included when calculating the average.) From node X, the tree

branches to one of the two nodes Y and Z. At node Y, the stock price is 54.68 and the

bounds for the average are 47.99 and 57.39. At node Z, the stock price is 45.72 and the

bounds for the average stock price are 43.88 and 52.48.
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Suppose that the representative values of the average are chosen to be four equally
spaced values at each node. This means that, at node X, averages of 46.65, 49.04, 51.44,
and 53.83 are considered. At node Y, the averages 47.99, 51.12, 54.26, and 57.39 are
considered. At node Z, the averages 43.88, 46.75, 49.61, and 52.48 are considered.
Assume that backward induction has already been used to calculate the value of the
option for each of the alternative values of the average at nodes Y and Z. Values are
shown in Figure 27.4 (e.g., at node Y when the average is 51.12, the value of the option
is 8.101).

Consider the calculations at node X for the case where the average is 51.44. If the
stock price moves up to node Y, the new average will be

5� 51:44þ 54:68

6
¼ 51:98

The value of the derivative at node Y for this average can be found by interpolating
between the values when the average is 51.12 and when it is 54.26. It is

ð51:98� 51:12Þ � 8:635þ ð54:26� 51:98Þ � 8:101

54:26� 51:12
¼ 8:247

Similarly, if the stock price moves down to node Z, the new average will be

5� 51:44þ 45:72

6
¼ 50:49

and by interpolation the value of the derivative is 4.182.
The value of the derivative at node X when the average is 51.44 is, therefore,

ð0:5056� 8:247þ 0:4944� 4:182Þe�0:1�0:05 ¼ 6:206

The other values at node X are calculated similarly. Once the values at all nodes at
time 0.2 year have been calculated, the nodes at time 0.15 year can be considered.

X

Figure 27.4 Part of tree for valuing option on the arithmetic average.
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The value given by the full tree for the option at time zero is 7.17. As the number of

time steps and the number of averages considered at each node is increased, the value of

the option converges to the correct answer. With 60 time steps and 100 averages at each

node, the value of the option is 5.58. The analytic approximation for the value of the

option, as calculated in Example 26.3, with continuous averaging is 5.62.

A key advantage of the method described here is that it can handle American

options. The calculations are as we have described them except that we test for early

exercise at each node for each of the alternative values of the path function at the

node. (In practice, the early exercise decision is liable to depend on both the value of

the path function and the value of the underlying asset.) Consider the American

version of the average price call considered here. The value calculated using the 20-step

tree and four averages at each node is 7.77; with 60 time steps and 100 averages, the

value is 6.17.

The approach just described can be used in a wide range of different situations. The

two conditions that must be satisfied were listed at the beginning of this section.

Efficiency is improved somewhat if quadratic rather than linear interpolation is used

at each node.

27.6 BARRIER OPTIONS

Chapter 26 presented analytic results for standard barrier options. This section con-

siders numerical procedures that can be used for barrier options when there are no

analytic results.

In principle, many barrier options can be valued using the binomial and trinomial

trees discussed in Chapter 21. Consider an up-and-out option. A simple approach is to

value this in the same way as a regular option except that, when a node above the

barrier is encountered, the value of the option is set equal to zero.

Trinomial trees work better than binomial trees, but even for them convergence is

very slow when the simple approach is used. A large number of time steps are required

to obtain a reasonably accurate result. The reason for this is that the barrier being

assumed by the tree is different from the true barrier.21 Define the inner barrier as the

barrier formed by nodes just on the inside of the true barrier (i.e., closer to the center of

the tree) and the outer barrier as the barrier formed by nodes just outside the true

barrier (i.e., farther away from the center of the tree). Figure 27.5 shows the inner and

outer barrier for a trinomial tree on the assumption that the true barrier is horizontal.

The usual tree calculations implicitly assume that the outer barrier is the true barrier

because the barrier conditions are first used at nodes on this barrier. When the time step

is �t, the vertical spacing between the nodes is of order
ffiffiffiffiffi
�t

p
. This means that errors

created by the difference between the true barrier and the outer barrier also tend to be

of order
ffiffiffiffiffi
�t

p
.

One approach to overcoming this problem is to:

1. Calculate the price of the derivative on the assumption that the inner barrier is the
true barrier.

21 For a discussion of this, see P. P. Boyle and S.H. Lau, ‘‘Bumping Up Against the Barrier with the

Binomial Method,’’ Journal of Derivatives, 1, 4 (Summer 1994): 6–14.
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2. Calculate the value of the derivative on the assumption that the outer barrier is the
true barrier.

3. Interpolate between the two prices.

Another approach is to ensure that nodes lie on the barrier. Suppose that the initial

stock price is S0 and that the barrier is at H. In a trinomial tree, there are three possible

movements in the asset’s price at each node: up by a proportional amount u; stay the

same; and down by a proportional amount d, where d ¼ 1=u. We can always choose u

so that nodes lie on the barrier. The condition that must be satisfied by u is

H ¼ S0u
N

or

lnH ¼ ln S0 þ N ln u

for some positive or negative N.

When discussing trinomial trees in Section 21.4, the value suggested for u was e�
ffiffiffiffiffiffi
3�t

p
,

so that ln u ¼ �
ffiffiffiffiffiffiffiffi
3�t

p
. In the situation considered here, a good rule is to choose ln u as

close as possible to this value, consistent with the condition given above. This means

that

ln u ¼ lnH � ln S0
N

Figure 27.5 Barriers assumed by trinomial trees.
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where

N ¼ int

�
lnH � ln S0

�
ffiffiffiffiffiffiffiffi
3�t

p þ 0:5

�

and intðxÞ is the integral part of x.

This leads to a tree of the form shown in Figure 27.6. The probabilities pu, pm, and

pd on the upper, middle, and lower branches of the tree are chosen to match the first

two moments of the return, so that

pd ¼ � ðr� q� �2=2Þ�t

2 ln u
þ �2�t

2ðln uÞ2 ; pm ¼ 1� �2�t

ðln uÞ2 ; pu ¼ ðr� q� �2=2Þ�t

2 ln u
þ �2�t

2ðln uÞ2

The Adaptive Mesh Model

The methods presented so far work reasonably well when the initial asset price is not

close to the barrier. When the initial asset price is close to a barrier, the adaptive mesh

model, which was introduced in Section 21.4, can be used.22 The idea behind the model

is that computational efficiency can be improved by grafting a fine tree onto a coarse

tree to achieve a more detailed modeling of the asset price in the regions of the tree

where it is needed most.

Figure 27.6 Tree with nodes lying on barrier.

22 See S. Figlewski and B. Gao, ‘‘The Adaptive Mesh Model: A New Approach to Efficient Option Pricing,’’

Journal of Financial Economics, 53 (1999): 313–51.
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To value a barrier option, it is useful to have a fine tree close to barriers. Figure 27.7

illustrates the design of the tree. The geometry of the tree is arranged so that nodes lie

on the barriers. The probabilities on branches are chosen, as usual, to match the first

two moments of the process followed by the underlying asset. The heavy lines in

Figure 27.7 are the branches of the coarse tree. The light solid line are the fine tree.

We first roll back through the coarse tree in the usual way. We then calculate the value

at additional nodes using the branches indicated by the dotted lines. Finally we roll

back through the fine tree.

27.7 OPTIONS ON TWO CORRELATED ASSETS

Another tricky numerical problem is that of valuing American options dependent on

two assets whose prices are correlated. A number of alternative approaches have been

suggested. This section will explain three of these.

Transforming Variables

It is relatively easy to construct a tree in three dimensions to represent the movements

of two uncorrelated variables. The procedure is as follows. First, construct a two-

dimensional tree for each variable, and then combine these trees into a single three-

Figure 27.7 The adaptive mesh model used to value barrier options.
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dimensional tree. The probabilities on the branches of the three-dimensional tree are

the product of the corresponding probabilities on the two-dimensional trees. Suppose,

for example, that the variables are stock prices, S1 and S2. Each can be represented in

two dimensions by a Cox, Ross, and Rubinstein binomial tree. Assume that S1 has a

probability p1 of moving up by a proportional amount u1 and a probability 1� p1 of

moving down by a proportional amount d1. Suppose further that S2 has a

probability p2 of moving up by a proportional amount u2 and a probability 1� p2

of moving down by a proportional amount d2. In the three-dimensional tree there are

four branches emanating from each node. The probabilities are:

p1p2 : S1 increases; S2 increases

p1ð1� p2Þ : S1 increases; S2 decreases

ð1� p1Þp2 : S1 decreases; S2 increases

ð1� p1Þð1� p2Þ : S1 decreases; S2 decreases

Consider next the situation where S1 and S2 are correlated. Suppose that the risk-

neutral processes are:

dS1 ¼ ðr� q1ÞS1 dtþ �1S1 dz1

dS2 ¼ ðr� q2ÞS2 dtþ �2S2 dz2

and the instantaneous correlation between the Wiener processes, dz1 and dz2, is 
. This
means that

d ln S1 ¼ ðr� q1 � �2
1=2Þ dtþ �1 dz1

d ln S2 ¼ ðr� q2 � �2
2=2Þ dtþ �2 dz2

Two new uncorrelated variables can be defined:23

x1 ¼ �2 ln S1 þ �1 ln S2

x2 ¼ �2 ln S1 � �1 ln S2

These variables follow the processes

dx1 ¼ ½�2ðr� q1 � �2
1=2Þ þ �1ðr� q2 � �2

2=2Þ� dtþ �1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 
Þ

p
dzA

dx2 ¼ ½�2ðr� q1 � �2
1=2Þ � �1ðr� q2 � �2

2=2Þ� dtþ �1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 
Þ

p
dzB

where dzA and dzB are uncorrelated Wiener processes.

The variables x1 and x2 can be modeled using two separate binomial trees. In time �t,

xi has a probability pi of increasing by hi and a probability 1� pi of decreasing by hi.

The variables hi and pi are chosen so that the tree gives correct values for the first two

moments of the distribution of x1 and x2. Because they are uncorrelated, the two trees

can be combined into a single three-dimensional tree, as already described. At each

node of the tree, S1 and S2 can be calculated from x1 and x2 using the inverse

23 This idea was suggested in J. Hull and A. White, ‘‘Valuing Derivative Securities Using the Explicit Finite

Difference Method,’’ Journal of Financial and Quantitative Analysis, 25 (1990): 87–100.
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relationships

S1 ¼ exp

�
x1 þ x2

2�2

�
and S2 ¼ exp

�
x1 � x2

2�1

�

The procedure for rolling back through a three-dimensional tree to value a derivative is
analogous to that for a two-dimensional tree.

Using a Nonrectangular Tree

Rubinstein has suggested a way of building a three-dimensional tree for two correlated
stock prices by using a nonrectangular arrangement of the nodes.24 From a
node ðS1; S2Þ, where the first stock price is S1 and the second stock price is S2, there
is a 0.25 chance of moving to each of the following:

ðS1u1; S2AÞ; ðS1u1; S2BÞ; ðS1d1; S2CÞ; ðS2d1; S2DÞ
where

u1 ¼ exp½ðr� q1 � �2
1=2Þ�tþ �1

ffiffiffiffiffi
�t

p
�

d1 ¼ exp½ðr� q1 � �2
1=2Þ�t� �1

ffiffiffiffiffi
�t

p
�

and

A ¼ exp½ðr� q2 � �2
2=2Þ�tþ �2

ffiffiffiffiffi
�t

p
ð
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
Þ�

B ¼ exp½ðr� q2 � �2
2=2Þ�tþ �2

ffiffiffiffiffi
�t

p
ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
Þ�

C ¼ exp½ðr� q2 � �2
2=2Þ�t� �2

ffiffiffiffiffi
�t

p
ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
Þ�

D ¼ exp½ðr� q2 � �2
2=2Þ�t� �2

ffiffiffiffiffi
�t

p
ð
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
Þ�

When the correlation is zero, this method is equivalent to constructing separate trees for
S1 and S2 using the alternative binomial tree construction method in Section 21.4.

Adjusting the Probabilities

A third approach to building a three-dimensional tree for S1 and S2 involves first
assuming no correlation and then adjusting the probabilities at each node to reflect the
correlation.25 The alternative binomial tree construction method for each of S1 and S2 in
Section 21.4 is used. This method has the property that all probabilities are 0.5. When the

Table 27.2 Combination of binomials assuming
no correlation.

S2-move S1-move

Down Up

Up 0.25 0.25
Down 0.25 0.25

24 See M. Rubinstein, ‘‘Return to Oz,’’ Risk, November (1994): 67–70.
25 This approach was suggested in the context of interest rate trees in J. Hull and A. White, ‘‘Numerical

Procedures for Implementing Term Structure Models II: Two-Factor Models,’’ Journal of Derivatives, Winter

(1994): 37–48.
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two binomial trees are combined on the assumption that there is no correlation, the
probabilities are as shown in Table 27.2. When the probabilities are adjusted to reflect the
correlation, they become those shown in Table 27.3.

27.8 MONTE CARLO SIMULATION AND AMERICAN OPTIONS

Monte Carlo simulation is well suited to valuing path-dependent options and options
where there are many stochastic variables. Trees and finite difference methods are well
suited to valuing American-style options. What happens if an option is both path
dependent and American? What happens if an American option depends on several
stochastic variables? Section 27.5 explained a way in which the binomial tree approach
can be modified to value path-dependent options in some situations. A number of
researchers have adopted a different approach by searching for a way in which Monte
Carlo simulation can be used to value American-style options.26 This section explains
two alternative ways of proceeding.

The Least-Squares Approach

In order to value an American-style option it is necessary to choose between exercising
and continuing at each early exercise point. The value of exercising is normally easy to
determine. A number of researchers including Longstaff and Schwartz provide a way of
determining the value of continuing when Monte Carlo simulation is used.27 Their
approach involves using a least-squares analysis to determine the best-fit relationship
between the value of continuing and the values of relevant variables at each time an
early exercise decision has to be made. The approach is best illustrated with a numerical
example. We use the one in the Longstaff–Schwartz paper.

Consider a 3-year American put option on a non-dividend-paying stock that can be
exercised at the end of year 1, the end of year 2, and the end of year 3. The risk-free rate
is 6% per annum (continuously compounded). The current stock price is 1.00 and the
strike price is 1.10. Assume that the eight paths shown in Table 27.4 are sampled for the
stock price. (This example is for illustration only; in practice many more paths would be
sampled.) If the option can be exercised only at the 3-year point, it provides a cash flow
equal to its intrinsic value at that point. This is shown in the last column of Table 27.5.

Table 27.3 Combination of binomials assuming
correlation of 
.

S2-move S1-move

Down Up

Up 0.25ð1� 
Þ 0.25ð1þ 
Þ
Down 0.25ð1þ 
Þ 0.25ð1� 
Þ

26 Tilley was the first researcher to publish a solution to the problem. See J. A. Tilley, ‘‘Valuing American

Options in a Path Simulation Model,’’ Transactions of the Society of Actuaries, 45 (1993): 83–104.
27 See F.A. Longstaff and E. S. Schwartz, ‘‘Valuing American Options by Simulation: A Simple Least-

Squares Approach,’’ Review of Financial Studies, 14, 1 (Spring 2001): 113–47.
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If the put option is in the money at the 2-year point, the option holder must decide
whether to exercise. Table 27.4 shows that the option is in the money at the 2-year point
for paths 1, 3, 4, 6, and 7. For these paths, we assume an approximate relationship:

V ¼ aþ bS þ cS
2

where S is the stock price at the 2-year point and V is the value of continuing,
discounted back to the 2-year point. Our five observations on S are: 1.08, 1.07, 0.97,
0.77, and 0.84. From Table 27.5 the corresponding values for V are: 0:00, 0:07e�0:06�1,
0:18e�0:06�1, 0:20e�0:06�1, and 0:09e�0:06�1. The values of a, b, and c that minimize

X5
i¼1

ðVi � a� bSi � cS
2
i Þ2

where Si and Vi are the ith observation on S and V , respectively, are a ¼ �1:070,
b ¼ 2:983 and c ¼ �1:813, so that the best-fit relationship is

V ¼ �1:070þ 2:983S � 1:813S 2

This gives the value at the 2-year point of continuing for paths 1, 3, 4, 6, and 7 of 0.0369,
0.0461, 0.1176, 0.1520, and 0.1565, respectively. From Table 27.4 the value of exercising

Table 27.4 Sample paths for put option example.

Path t ¼ 0 t ¼ 1 t ¼ 2 t ¼ 3

1 1.00 1.09 1.08 1.34

2 1.00 1.16 1.26 1.54

3 1.00 1.22 1.07 1.03

4 1.00 0.93 0.97 0.92

5 1.00 1.11 1.56 1.52

6 1.00 0.76 0.77 0.90

7 1.00 0.92 0.84 1.01

8 1.00 0.88 1.22 1.34

Table 27.5 Cash flows if exercise only possible at 3-year point.

Path t ¼ 1 t ¼ 2 t ¼ 3

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.07

4 0.00 0.00 0.18

5 0.00 0.00 0.00

6 0.00 0.00 0.20

7 0.00 0.00 0.09

8 0.00 0.00 0.00
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is 0.02, 0.03, 0.13, 0.33, and 0.26. This means that we should exercise at the 2-year point
for paths 4, 6, and 7. Table 27.6 summarizes the cash flows assuming exercise at either
the 2-year point or the 3-year point for the eight paths.

Consider next the paths that are in the money at the 1-year point. These are paths 1,
4, 6, 7, and 8. From Table 27.4 the values of S for the paths are 1.09, 0.93, 0.76, 0.92,
and 0.88, respectively. From Table 27.6, the corresponding continuation values
discounted back to t ¼ 1 are 0:00, 0:13e�0:06�1, 0:33e�0:06�1, 0:26e�0:06�1, and 0:00,
respectively. The least-squares relationship is

V ¼ 2:038� 3:335S þ 1:356S 2

This gives the value of continuing at the 1-year point for paths 1, 4, 6, 7, 8 as 0.0139,
0.1092, 0.2866, 0.1175, and 0.1533, respectively. From Table 27.4 the value of exercising
is 0.01, 0.17, 0.34, 0.18, and 0.22, respectively. This means that we should exercise at the
1-year point for paths 4, 6, 7, and 8. Table 27.7 summarizes the cash flows assuming
that early exercise is possible at all three times. The value of the option is determined by
discounting each cash flow back to time zero at the risk-free rate and calculating the
mean of the results. It is

1
8
ð0:07e�0:06�3 þ 0:17e�0:06�1 þ 0:34e�0:06�1 þ 0:18e�0:06�1 þ 0:22e�0:06�1Þ ¼ 0:1144

Since this is greater than 0.10, it is not optimal to exercise the option immediately.

Table 27.6 Cash flows if exercise only possible at 2- and 3-year point.

Path t ¼ 1 t ¼ 2 t ¼ 3

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.07
4 0.00 0.13 0.00
5 0.00 0.00 0.00
6 0.00 0.33 0.00
7 0.00 0.26 0.00
8 0.00 0.00 0.00

Table 27.7 Cash flows from option.

Path t ¼ 1 t ¼ 2 t ¼ 3

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.07
4 0.17 0.00 0.00
5 0.00 0.00 0.00
6 0.34 0.00 0.00
7 0.18 0.00 0.00
8 0.22 0.00 0.00
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This method can be extended in a number of ways. If the option can be exercised at
any time we can approximate its value by considering a large number of exercise points
(just as a binomial tree does). The relationship between V and S can be assumed to be
more complicated. For example we could assume that V is a cubic rather than a
quadratic function of S. The method can be used where the early exercise decision
depends on several state variables. A functional form for the relationship between V

and the variables is assumed and the parameters are estimated using the least-squares
approach, as in the example just considered.

The Exercise Boundary Parameterization Approach

A number of researchers, such as Andersen, have proposed an alternative approach
where the early exercise boundary is parameterized and the optimal values of the
parameters are determined iteratively by starting at the end of the life of the option
and working backward.28 To illustrate the approach, we continue with the put option
example and assume that the eight paths shown in Table 27.4 have been sampled. In
this case, the early exercise boundary at time t can be parameterized by a critical value
of S, S �ðtÞ. If the asset price at time t is below S

�ðtÞ we exercise at time t; if it is above
S
�ðtÞ we do not exercise at time t. The value of S �ð3Þ is 1.10. If the stock price is above

1.10 when t ¼ 3 (the end of the option’s life) we do not exercise; if it is below 1.10 we
exercise. We now consider the determination of S �ð2Þ.

Suppose that we choose a value of S �ð2Þ less than 0.77. The option is not exercised at
the 2-year point for any of the paths. The value of the option at the 2-year point for the
eight paths is then 0.00, 0.00, 0:07e�0:06�1, 0:18e�0:06�1, 0.00, 0:20e�0:06�1, 0:09e�0:06�1,
and 0.00, respectively. The average of these is 0.0636. Suppose next that S �ð2Þ ¼ 0:77.
The value of the option at the 2-year point for the eight paths is then 0.00, 0.00,
0:07e�0:06�1, 0:18e�0:06�1, 0.00, 0.33, 0:09e�0:06�1, and 0.00, respectively. The average
of these is 0.0813. Similarly when S �ð2Þ equals 0.84, 0.97, 1.07, and 1.08, the average
value of the option at the 2-year point is 0.1032, 0.0982, 0.0938, and 0.0963, respectively.
This analysis shows that the optimal value of S �ð2Þ (i.e., the one that maximizes the
average value of the option) is 0.84. (More precisely, it is optimal to choose
0:84 6 S �ð2Þ < 0:97.) When we choose this optimal value for S �ð2Þ, the value of the
option at the 2-year point for the eight paths is 0.00, 0.00, 0.0659, 0.1695, 0.00, 0.33, 0.26,
and 0.00, respectively. The average value is 0.1032.

We now move on to calculate S �ð1Þ. If S �ð1Þ < 0:76 the option is not exercised at the
1-year point for any of the paths and the value at the option at the 1-year point is
0:1032e�0:06�1 ¼ 0:0972. If S �ð1Þ ¼ 0:76, the value of the option for each of the eight
paths at the 1-year point is 0.00, 0.00, 0:0659e�0:06�1, 0:1695e�0:06�1, 0.0, 0.34,
0:26e�0:06�1, and 0.00, respectively. The average value of the option is 0.1008. Similarly
when S �ð1Þ equals 0.88, 0.92, 0.93, and 1.09 the average value of the option is 0.1283,
0.1202, 0.1215, and 0.1228, respectively. The analysis therefore shows that the optimal
value of S �ð1Þ is 0.88. (More precisely, it is optimal to choose 0:88 6 S �ð1Þ < 0:92.) The
value of the option at time zero with no early exercise is 0:1283e�0:06�1 ¼ 0:1208. This is
greater than the value of 0.10 obtained by exercising at time zero.

In practice, tens of thousands of simulations are carried out to determine the early
exercise boundary in the way we have described. Once the early exercise boundary has

28 See L. Andersen, ‘‘A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR

Market Model,’’ Journal of Computational Finance, 3, 2 (Winter 2000): 1–32.
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been obtained, the paths for the variables are discarded and a new Monte Carlo

simulation using the early exercise boundary is carried out to value the option. Our

American put option example is simple in that we know that the early exercise

boundary at a time can be defined entirely in terms of the value of the stock price at

that time. In more complicated situations it is necessary to make assumptions about
how the early exercise boundary should be parameterized.

Upper Bounds

The two approaches we have outlined tend to underprice American-style options

because they assume a suboptimal early exercise boundary. This has led Andersen

and Broadie to propose a procedure that provides an upper bound to the price.29 This

procedure can be used in conjunction with any algorithm that generates a lower bound

and pinpoints the true value of an American-style option more precisely than the

algorithm does by itself.

SUMMARY

A number of models have been developed to fit the volatility smiles that are observed in

practice. The constant elasticity of variance model leads to a volatility smile similar to that

observed for equity options. The jump–diffusion model leads to a volatility smile similar
to that observed for currency options. Variance-gamma and stochastic volatility models

are more flexible in that they can lead to either the type of volatility smile observed for

equity options or the type of volatility smile observed for currency options. The implied

volatility function model provides even more flexibility than this. It is designed to provide

an exact fit to any pattern of European option prices observed in the market.

The natural technique to use for valuing path-dependent options is Monte Carlo

simulation. This has the disadvantage that it is fairly slow and unable to handle
American-style derivatives easily. Luckily, trees can be used to value many types of

path-dependent derivatives. The approach is to choose representative values for the

underlying path function at each node of the tree and calculate the value of the derivative

for each of these values as we roll back through the tree.

The binomial tree methodology can be extended to value convertible bonds. Extra

branches corresponding to a default by the company are added to the tree. The roll-back

calculations then reflect the holder’s option to convert and the issuer’s option to call.

Trees can be used to value many types of barrier options, but the convergence of the

option value to the correct value as the number of time steps is increased tends to be

slow. One approach for improving convergence is to arrange the geometry of the tree so

that nodes always lie on the barriers. Another is to use an interpolation scheme to

adjust for the fact that the barrier being assumed by the tree is different from the true

barrier. A third is to design the tree so that it provides a finer representation of

movements in the underlying asset price near the barrier.

One way of valuing options dependent on the prices of two correlated assets is to

apply a transformation to the asset price to create two new uncorrelated variables.

29 See L. Andersen and M. Broadie, ‘‘A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional

American Options,’’ Management Science, 50, 9 (2004), 1222–34.
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These two variables are each modeled with trees and the trees are then combined to
form a single three-dimensional tree. At each node of the tree, the inverse of the
transformation gives the asset prices. A second approach is to arrange the positions
of nodes on the three-dimensional tree to reflect the correlation. A third approach is to
start with a tree that assumes no correlation between the variables and then adjust the
probabilities on the tree to reflect the correlation.

Monte Carlo simulation is not naturally suited to valuing American-style options, but
there are twoways it can be adapted to handle them. The first uses a least-squares analysis
to relate the value of continuing (i.e, not exercising) to the values of relevant variables.
The second involves parameterizing the early exercise boundary and determining it
iteratively by working back from the end of the life of the option to the beginning.
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Practice Questions (Answers in Solutions Manual)

27.1. Confirm that the CEV model formulas satisfy put–call parity.

27.2. What is Merton’s mixed jump–diffusion model price for a European call option when
r ¼ 0:05, q ¼ 0, � ¼ 0:3, k ¼ 0:5, � ¼ 0:25, S0 ¼ 30, K ¼ 30, s ¼ 0:5, and T ¼ 1. Use
DerivaGem to check your price.

27.3. Confirm that Merton’s jump–diffusion model satisfies put–call parity when the jump size
is lognormal.

27.4. Suppose that the volatility of an asset will be 20% from month 0 to month 6, 22% from
month 6 to month 12, and 24% from month 12 to month 24. What volatility should be
used in Black–Scholes–Merton to value a 2-year option?

27.5. Consider the case of Merton’s jump–diffusion model where jumps always reduce the
asset price to zero. Assume that the average number of jumps per year is �. Show
that the price of a European call option is the same as in a world with no jumps
except that the risk-free rate is rþ � rather than r. Does the possibility of jumps
increase or reduce the value of the call option in this case? (Hint : Value the option
assuming no jumps and assuming one or more jumps. The probability of no jumps in
time T is e

��T ).

27.6. At time 0 the price of a non-dividend-paying stock is S0. Suppose that the time interval
between 0 and T is divided into two subintervals of length t1 and t2. During the first
subinterval, the risk-free interest rate and volatility are r1 and �1, respectively. During the
second subinterval, they are r2 and �2, respectively. Assume that the world is risk neutral.
(a) Use the results in Chapter 15 to determine the stock price distribution at time T in

terms of r1, r2, �1, �2, t1, t2, and S0.
(b) Suppose that �r is the average interest rate between time zero and T and that �V is the

average variance rate between times zero and T . What is the stock price distribution as
a function of T in terms of �r, �V , T , and S0?

(c) What are the results corresponding to (a) and (b) when there are three subintervals
with different interest rates and volatilities?

(d) Show that if the risk-free rate, r, and the volatility, �, are known functions of time, the
stock price distribution at time T in a risk-neutral world is

ln ST � �½ ln S0 þ ð�r� 1
2
�V ÞT ; VT �

where �r is the average value of r, �V is equal to the average value of �2, and S0 is the
stock price today and �ðm; vÞ is a normal distribution with mean m and variance v.

27.7. Write down the equations for simulating the path followed by the asset price in the
stochastic volatility model in equations (27.2) and (27.3).
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27.8. ‘‘The IVF model does not necessarily get the evolution of the volatility surface correct.’’
Explain this statement.

27.9. ‘‘When interest rates are constant the IVF model correctly values any derivative whose
payoff depends on the value of the underlying asset at only one time.’’ Explain why.

27.10. Use a three-time-step tree to value an American floating lookback call option on a
currency when the initial exchange rate is 1.6, the domestic risk-free rate is 5% per
annum, the foreign risk-free interest rate is 8% per annum, the exchange rate volatility is
15%, and the time to maturity is 18 months. Use the approach in Section 27.5.

27.11. What happens to the variance-gamma model as the parameter v tends to zero?

27.12. Use a three-time-step tree to value an American put option on the geometric average of
the price of a non-dividend-paying stock when the stock price is $40, the strike price is
$40, the risk-free interest rate is 10% per annum, the volatility is 35% per annum, and
the time to maturity is three months. The geometric average is measured from today
until the option matures.

27.13. Can the approach for valuing path-dependent options in Section 27.5 be used for a 2-year
American-style option that provides a payoff equal to maxðSave �K; 0Þ, where Save is the
average asset price over the three months preceding exercise? Explain your answer.

27.14. Verify that the 6.492 number in Figure 27.4 is correct.

27.15. Examine the early exercise policy for the eight paths considered in the example in
Section 27.8. What is the difference between the early exercise policy given by the least
squares approach and the exercise boundary parameterization approach? Which gives a
higher option price for the paths sampled?

27.16. Consider a European put option on a non-dividend paying stock when the stock price is
$100, the strike price is $110, the risk-free rate is 5% per annum, and the time to
maturity is one year. Suppose that the average variance rate during the life of an option
has a 0.20 probability of being 0.06, a 0.5 probability of being 0.09, and a 0.3 probability
of being 0.12. The volatility is uncorrelated with the stock price. Estimate the value of
the option. Use DerivaGem.

27.17. When there are two barriers how can a tree be designed so that nodes lie on both barriers?

27.18. Consider an 18-month zero-coupon bond with a face value of $100 that can be converted
into five shares of the company’s stock at any time during its life. Suppose that the
current share price is $20, no dividends are paid on the stock, the risk-free rate for all
maturities is 6% per annum with continuous compounding, and the share price volatility
is 25% per annum. Assume that the hazard rate is 3% per year and the recovery rate is
35%. The bond is callable at $110. Use a three-time-step tree to calculate the value of the
bond. What is the value of the conversion option (net of the issuer’s call option)?

Further Questions

27.19. A new European-style floating lookback call option on a stock index has a maturity of 9
months. The current level of the index is 400, the risk-free rate is 6% per annum, the
dividend yield on the index is 4% per annum, and the volatility of the index is 20%. Use
the approach in Section 27.5 to value the option and compare your answer to the result
given by DerivaGem using the analytic valuation formula.
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27.20. Suppose that the volatilities used to price a 6-month currency option are as in Table 20.2.
Assume that the domestic and foreign risk-free rates are 5% per annum and the current
exchange rate is 1.00. Consider a bull spread that consists of a long position in a
6-month call option with strike price 1.05 and a short position in a 6-month call option
with a strike price 1.10.
(a) What is the value of the spread?
(b) What single volatility if used for both options gives the correct value of the bull

spread? (Use the DerivaGem Application Builder in conjunction with Goal Seek or
Solver.)

(c) Does your answer support the assertion at the beginning of the chapter that the
correct volatility to use when pricing exotic options can be counterintuitive?

(d) Does the IVF model give the correct price for the bull spread?

27.21. Repeat the analysis in Section 27.8 for the put option example on the assumption that
the strike price is 1.13. Use both the least squares approach and the exercise boundary
parameterization approach.

27.22. A European call option on a non-dividend-paying stock has a time to maturity of
6 months and a strike price of $100. The stock price is $100 and the risk-free rate is 5%.
Use DerivaGem to answer the following questions:
(a) What is the Black–Scholes–Merton price of the option if the volatility is 30%?
(b) What is the CEV volatility parameter that gives the same price for the option as you

calculated in (a) when � ¼ 0:5?
(c) In Merton’s mixed jump–diffusion model, the average frequency of jumps is 1 per

year, the average percentage jump size is 2%, and the standard deviation of the
logarithm of 1 plus the percentage jump size is 20%. What is the volatility of the
diffusion part of the process that gives the same price for the option as you
calculated in (a)?

(d) In the variance-gamma model, � ¼ 0 and v ¼ 40%. What value of the volatility gives
the same price for the option as you calculated in (a)?

(e) For the models you have developed in (b), (c), and (d), calculate the volatility smile
by considering European call options with strike prices between 80 and 120.
Describe the nature of the probability distributions implied by the smiles.

27.23. A 3-year convertible bond with a face value of $100 has been issued by company ABC. It
pays a coupon of $5 at the end of each year. It can be converted into ABC’s equity at the
end of the first year or at the end of the second year. At the end of the first year, it can be
exchanged for 3.6 shares immediately after the coupon date. At the end of the second
year, it can be exchanged for 3.5 shares immediately after the coupon date. The current
stock price is $25 and the stock price volatility is 25%. No dividends are paid on the
stock. The risk-free interest rate is 5% with continuous compounding. The yield on
bonds issued by ABC is 7% with continuous compounding and the recovery rate is 30%.
(a) Use a three-step tree to calculate the value of the bond.
(b) How much is the conversion option worth?
(c) What difference does it make to the value of the bond and the value of the

conversion option if the bond is callable any time within the first 2 years for $115?
(d) Explain how your analysis would change if there were a dividend payment of $1 on

the equity at the 6-month, 18-month, and 30-month points. Detailed calculations are
not required.

(Hint : Use equation (24.2) to estimate the average hazard rate.)
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Martingales and
Measures

Up to now interest rates have been assumed to be constant when valuing options. In
this chapter, this assumption is relaxed in preparation for valuing interest rate deriva-

tives in Chapters 29 to 33.

The risk-neutral valuation principle states that a derivative can be valued by (a) cal-
culating the expected payoff on the assumption that the expected return from the

underlying asset equals the risk-free interest rate and (b) discounting the expected payoff
at the risk-free interest rate. When interest rates are constant, risk-neutral valuation
provides a well-defined and unambiguous valuation tool. When interest rates are

stochastic, it is less clear-cut. What does it mean to assume that the expected return
on the underlying asset equals to the risk-free rate? Does it mean (a) that each day the
expected return is the one-day risk-free rate, or (b) that each year the expected return is

the 1-year risk-free rate, or (c) that over a 5-year period the expected return is the 5-year
rate at the beginning of the period? What does it mean to discount expected payoffs at

the risk-free rate? Can we, for example, discount an expected payoff realized in year 5 at
today’s 5-year risk-free rate?

In this chapter we explain the theoretical underpinnings of risk-neutral valuation
when interest rates are stochastic and show that there are many different risk-neutral

worlds that can be assumed in any given situation. We first define a parameter known as
the market price of risk and show that the excess return over the risk-free interest rate

earned by any derivative in a short period of time is linearly related to the market prices
of risk of the underlying stochastic variables. What we will refer to as the traditional
risk-neutral world assumes that all market prices of risk are zero, but we will find that

other assumptions about the market price of risk are useful in some situations.

Martingales and measures are critical to a full understanding of risk neutral valua-
tion. A martingale is a zero-drift stochastic process. A measure is the unit in which we
value security prices. A key result in this chapter will be the equivalent martingale

measure result. This states that if we use the price of a traded security as the unit of
measurement then there is a market price of risk for which all security prices follow

martingales.

This chapter illustrates the power of the equivalent martingale measure result by using
it to extend Black’s model (see Section 18.8) to the situation where interest rates are
stochastic and to value options to exchange one asset for another. Chapter 29 uses the

result to understand the standard market models for valuing interest rate derivatives,
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Chapter 30 uses it to value some nonstandard derivatives, and Chapter 32 uses it to
develop the LIBOR market model.

28.1 THE MARKET PRICE OF RISK

We start by considering the properties of derivatives dependent on the value of a single
variable �. Assume that the process followed by � is

d�

�
¼ mdtþ s dz ð28:1Þ

where dz is a Wiener process. The parameters m and s are the expected growth rate in �
and the volatility of �, respectively. We assume that they depend only on � and time t.
The variable � need not be the price of an investment asset. It could be something as far
removed from financial markets as the temperature in the center of New Orleans.

Suppose that f1 and f2 are the prices of two derivatives dependent only on � and t.
These can be options or other instruments that provide a payoff equal to some function
of � at some future time. Assume that during the time period under consideration f1
and f2 provide no income.1

Suppose that the processes followed by f1 and f2 are

df1

f1
¼ �1 dtþ �1 dz

and
df2

f2
¼ �2 dtþ �2 dz

where �1, �2, �1, and �2 are functions of � and t. The ‘‘dz’’ in these processes must be
the same dz as in equation (28.1) because it is the only source of the uncertainty in the
prices of f1 and f2.
The prices f1 and f2 can be related using an analysis similar to the Black–Scholes

analysis described in Section 15.6. The discrete versions of the processes for f1 and f2 are

�f1 ¼ �1f1 �tþ �1f1 �z ð28:2Þ
�f2 ¼ �2f2 �tþ �2f2 �z ð28:3Þ

We can eliminate the �z by forming an instantaneously riskless portfolio consisting of
�2f2 of the first derivative and ��1f1 of the second derivative. If � is the value of the
portfolio, then

� ¼ ð�2f2Þf1 � ð�1f1Þf2 ð28:4Þ
and

�� ¼ �2f2 �f1 � �1f1 �f2

Substituting from equations (28.2) and (28.3), this becomes

�� ¼ ð�1�2f1f2 � �2�1f1f2Þ�t ð28:5Þ
1 The analysis can be extended to derivatives that provide income (see Problem 28.7).
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Because the portfolio is instantaneously riskless, it must earn the risk-free rate. Hence,

�� ¼ r��t

Substituting into this equation from equations (28.4) and (28.5) gives

�1�2 � �2�1 ¼ r�2 � r�1
or

�1 � r

�1
¼ �2 � r

�2
ð28:6Þ

Note that the left-hand side of equation (28.6) depends only on the parameters of the
process followed by f1 and the right-hand side depends only on the parameters of the
process followed by f2. Define � as the value of each side in equation (28.6), so that

�1 � r

�1
¼ �2 � r

�2
¼ �

Dropping subscripts, equation (28.6) shows that if f is the price of a derivative dependent
only on � and t with

df

f
¼ � dtþ � dz ð28:7Þ

then
�� r

�
¼ � ð28:8Þ

The parameter � is known as the market price of risk of �. (In the context of portfolio
performance measurement, it is known as the Sharpe ratio.) It can be dependent on
both � and t, but it is not dependent on the nature of the derivative f . Our analysis
shows that, for no arbitrage, ð�� rÞ=� must at any given time be the same for all
derivatives that are dependent only on � and t.

The market price of risk of � measures the trade-offs between risk and return that are
made for securities dependent on �. Equation (28.8) can be written

�� r ¼ �� ð28:9Þ
The variable � can be loosely interpreted as the quantity of �-risk present in f . On the
right-hand side of the equation, the quantity of �-risk is multiplied by the price of
�-risk. The left-hand side is the expected return, in excess of the risk-free interest rate,
that is required to compensate for this risk. Equation (28.9) is analogous to the capital
asset pricing model, which relates the expected excess return on a stock to its risk. This
chapter will not be concerned with the measurement of the market price of risk. This
will be discussed in Chapter 35 when the evaluation of real options is considered.

It is natural to assume that �, the coefficient of dz, in equation (28.7) is the volatility
of f . In fact, � can be negative. This will be the case when f is negatively related to �
(so that @f=@� is negative). It is the absolute value j�j of � that is the volatility of f . One
way of understanding this is to note that the process for f has the same statistical
properties when we replace dz by �dz.

Chapter 5 distinguished between investment assets and consumption assets. An
investment asset is an asset that is bought or sold purely for investment purposes by
some investors. Consumption assets are held primarily for consumption. Equation (28.8)
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is true for all investment assets that provide no income and depend only on �. If the
variable � itself happens to be such an asset, then

m� r

s
¼ �

But, in other circumstances, this relationship is not necessarily true.

Example 28.1

Consider a derivative whose price is positively related to the price of oil and
depends on no other stochastic variables. Suppose that it provides an expected
return of 12% per annum and has a volatility of 20% per annum. Assume that the
risk-free interest rate is 8% per annum. It follows that the market price of risk of
oil is

0:12� 0:08

0:2
¼ 0:2

Note that oil is a consumption asset rather than an investment asset, so its market
price of risk cannot be calculated from equation (28.8) by setting � equal to the
expected return from an investment in oil and � equal to the volatility of oil prices.

Example 28.2

Consider two securities, both of which are positively dependent on the 90-day
interest rate. Suppose that the first one has an expected return of 3% per annum
and a volatility of 20% per annum, and the second one has a volatility of 30% per
annum. Assume that the instantaneous risk-free rate of interest is 6% per annum.
The market price of interest rate risk is, using the expected return and volatility
for the first security,

0:03� 0:06

0:2
¼ �0:15

From a rearrangement of equation (28.9), the expected return from the second
security is, therefore,

0:06� 0:15� 0:3 ¼ 0:015
or 1.5% per annum.

Alternative Worlds

The process followed by derivative price f is

df ¼ �f dtþ �f dz

The value of � depends on the risk preferences of investors. In a world where the
market price of risk is zero, � equals zero. From equation (28.9) � ¼ r, so that the
process followed by f is

df ¼ rf dtþ �f dz

We will refer to this as the traditional risk-neutral world.

Other assumptions about the market price of risk, �, enable other worlds that are
internally consistent to be defined. From equation (28.9),

� ¼ rþ ��
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so that
df ¼ ðrþ ��Þf dtþ �f dz ð28:10Þ

The market price of risk of a variable determines the growth rates of all securities
dependent on the variable. As we move from one market price of risk to another, the
expected growth rates of security prices change, but their volatilities remain the same.
This is Girsanov’s theorem, which we illustrated for the binomial model in Section 13.7.
Choosing a particular market price of risk is also referred to as defining the probability
measure. Some value of the market price of risk corresponds to the ‘‘real world’’ and
the growth rates of security prices that are observed in practice.

28.2 SEVERAL STATE VARIABLES

Suppose that n variables, �1, �2, . . . , �n, follow stochastic processes of the form

d�i
�i

¼ mi dtþ si dzi ð28:11Þ

for i ¼ 1; 2; . . . ; n, where the dzi are Wiener processes. The parameters mi and si are
expected growth rates and volatilities and may be functions of the �i and time.
Equation (14A.10) in the appendix to Chapter 14 provides a version of Itô’s lemma
that covers functions of several variables. It shows that the process for the price f of a
security that is dependent on the �i has n stochastic components. It can be written

df

f
¼ � dtþ

Xn
i¼1

�i dzi ð28:12Þ

In this equation, � is the expected return from the security and �i dzi is the component
of the risk of this return attributable to �i. Both � and the �i are potentially dependent
on the �i and time.

Technical Note 30 at www.rotman.utoronto.ca/~hull/TechnicalNotes shows that

�� r ¼
Xn
i¼1

�i�i ð28:13Þ

where �i is the market price of risk for �i. This equation relates the expected excess return
that investors require on the security to the �i and �i. Equation (28.9) is the particular
case of this equation when n ¼ 1. The term �i�i on the right-hand side measures the
extent that the excess return required by investors on a security is affected by the
dependence of the security on �i. If �i�i ¼ 0, there is no effect; if �i�i > 0, investors
require a higher return to compensate them for the risk arising from �i; if �i�i < 0, the
dependence of the security on �i causes investors to require a lower return than would
otherwise be the case. The �i�i < 0 situation occurs when the variable has the effect of
reducing rather than increasing the risks in the portfolio of a typical investor.

Example 28.3

A stock price depends on three underlying variables: the price of oil, the price of
gold, and the performance of a stock index. Suppose that the market prices of risk
for these variables are 0.2, �0:1, and 0.4, respectively. Suppose also that the �i in
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equation (28.12) corresponding to the three variables have been estimated as 0.05,
0.1, and 0.15, respectively. The excess return on the stock over the risk-free rate is

0:2� 0:05� 0:1� 0:1þ 0:4� 0:15 ¼ 0:06

or 6.0% per annum. If variables other than those considered affect the stock
price, this result is still true provided that the market price of risk for each of
these other variables is zero.

Equation (28.13) is closely related to arbitrage pricing theory, developed by Stephen
Ross in 1976.2 The continuous-time version of the capital asset pricing model (CAPM)
can be regarded as a particular case of the equation. CAPM (see appendix to Chapter 3)
argues that an investor requires excess returns to compensate for any risk that is
correlated to the risk in the return from the stock market, but requires no excess return
for other risks. Risks that are correlated with the return from the stock market are
referred to as systematic; other risks are referred to as nonsystematic. If CAPM is true,
then �i is proportional to the correlation between changes in �i and the return from the
market. When �i is uncorrelated with the return from the market, �i is zero.

28.3 MARTINGALES

A martingale is a zero-drift stochastic process.3 A variable � follows a martingale if its
process has the form

d� ¼ � dz

where dz is a Wiener process. The variable � may itself be stochastic. It can depend on �
and other stochastic variables. A martingale has the convenient property that its
expected value at any future time is equal to its value today. This means that

Eð�T Þ ¼ �0

where �0 and �T denote the values of � at times zero and T , respectively. To understand
this result, note that over a very small time interval the change in � is normally
distributed with zero mean. The expected change in � over any very small time interval
is therefore zero. The change in � between time 0 and time T is the sum of its changes
over many small time intervals. It follows that the expected change in � between time 0
and time T must also be zero.

The Equivalent Martingale Measure Result

Suppose that f and g are the prices of traded securities dependent on a single source of
uncertainty. Assume that the securities provide no income during the time period under
consideration and define � ¼ f=g.4 The variable � is the relative price of f with respect
to g. It can be thought of as measuring the price of f in units of g rather than dollars.
The security price g is referred to as the numeraire.

2 See S.A. Ross, ‘‘The Arbitrage Theory of Capital Asset Pricing,’’ Journal of Economic Theory, 13

(December 1976): 343–62.
3 More formally, a sequence of random variables X0;X1; . . . is a martingale if EðXi j Xi�1;Xi�2; ;X0Þ ¼ Xi�1,

for all i > 0, where E denotes expectation.
4 Problem 28.8 extends the analysis to situations where the securities provide income.
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The equivalent martingale measure result shows that, when there are no arbitrage
opportunities, � is a martingale for some choice of the market price of risk. What is
more, for a given numeraire security g, the same choice of the market price of risk
makes � a martingale for all securities f . This choice of the market price of risk is the
volatility of g. In other words, when the market price of risk is set equal to the volatility
of g, the ratio f=g is a martingale for all security prices f . (Note that the market price
of risk has the same dimension as volatility. Both are ‘‘per square root of time.’’ Setting
the market price of risk equal to a volatility is therefore dimensionally valid.)

To prove this result, suppose that the volatilities of f and g are �f and �g. From
equation (28.10), in a world where the market price of risk is �g,

df ¼ ðrþ �g�f Þf dtþ �ff dz

dg ¼ ðrþ �2
gÞg dtþ �gg dz

Using Itô’s lemma gives

d ln f ¼ ðrþ �g�f � �2
f=2Þ dtþ �f dz

d ln g ¼ ðrþ �2
g=2Þ dtþ �g dz

so that

dðln f � ln gÞ ¼ ð�g�f � �2
f=2� �2

g=2Þ dtþ ð�f � �gÞ dz
or

d

�
ln
f

g

�
¼ � ð�f � �gÞ2

2
dtþ ð�f � �gÞ dz

Itô’s lemma can be used to determine the process for f=g from the process for lnðf=gÞ :

d

�
f

g

�
¼ ð�f � �gÞ

f

g
dz ð28:14Þ

This shows that f=g is a martingale and proves the equivalent martingale measure
result. We will refer to a world where the market price of risk is the volatility �g of g as a
world that is forward risk neutral with respect to g.

Because f=g is a martingale in a world that is forward risk neutral with respect to g,
it follows from the result at the beginning of this section that

f0

g0
¼ Eg

�
fT

gT

�

or

f0 ¼ g0Eg

�
fT

gT

�
ð28:15Þ

where Eg denotes the expected value in a world that is forward risk neutral with respect
to g.

28.4 ALTERNATIVE CHOICES FOR THE NUMERAIRE

We now present a number of examples of the equivalent martingale measure result. The
first example shows that it is consistent with the traditional risk-neutral valuation result
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used in earlier chapters. The other examples prepare the way for the valuation of bond
options, interest rate caps, and swap options in Chapter 29.

Money Market Account as the Numeraire

The dollar money market account is a security that is worth $1 at time zero and earns
the instantaneous risk-free rate r at any given time.5 The variable r may be stochastic. If
we set g equal to the money market account, it grows at rate r so that

dg ¼ rg dt ð28:16Þ
The drift of g is stochastic, but the volatility of g is zero. It follows from the results in
Section 28.3 that f=g is a martingale in a world where the market price of risk is zero.
This is the world we defined earlier as the traditional risk-neutral world. From equa-
tion (28.15),

f0 ¼ g0Ê
fT

gT

� �
ð28:17Þ

where Ê denotes expectations in the traditional risk-neutral world.
In this case, g0 ¼ 1 and

gT ¼ e

Ð T

0
r dt

so that equation (28.17) reduces to

f0 ¼ Ê
�
e
�
Ð T

0
r dt

fT
� ð28:18Þ

or
f0 ¼ Ê

�
e
��r T

fT
� ð28:19Þ

where �r is the average value of r between time 0 and time T . This equation shows that
one way of valuing an interest rate derivative is to simulate the short-term interest rate r
in the traditional risk-neutral world. On each trial the payoff is calculated and
discounted at the average value of the short rate on the sampled path.

When the short-term interest rate r is assumed to be constant, equation (28.19)
reduces to

f0 ¼ e
�rT

ÊðfT Þ
or the risk-neutral valuation relationship used in earlier chapters.

Zero-Coupon Bond Price as the Numeraire

Define Pðt; T Þ as the price at time t of a risk-free zero-coupon bond that pays off $1 at
time T . We now explore the implications of setting g equal to Pðt; T Þ. Let ET denote
expectations in a world that is forward risk neutral with respect to Pðt; T Þ. Because
gT ¼ PðT ; T Þ ¼ 1 and g0 ¼ Pð0; T Þ, equation (28.15) gives

f0 ¼ Pð0; T ÞET ðfT Þ ð28:20Þ
5 The money account is the limit as �t approaches zero of the following security. For the first short period of

time of length �t, it is invested at the initial �t period rate; at time �t, it is reinvested for a further period of

time �t at the new �t period rate; at time 2�t, it is again reinvested for a further period of time �t at the new

�t period rate; and so on. The money market accounts in other currencies are defined analogously to the

dollar money market account.
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Notice the difference between equations (28.20) and (28.19). In equation (28.19), the
discounting is inside the expectations operator. In equation (28.20) the discounting, as
represented by the Pð0; T Þ term, is outside the expectations operator. The use of Pðt; T Þ
as the numeraire therefore considerably simplifies things for a security that provides a
payoff solely at time T .

Consider any variable � that is not an interest rate.6 A forward contract on � with
maturity T is defined as a contract that pays off �T �K at time T , where �T is the value �
at time T . Define f as the value of this forward contract. From equation (28.20),

f0 ¼ Pð0; T Þ½ET ð�T Þ �K�
The forward price, F , of � is the value of K for which f0 equals zero. It therefore
follows that

Pð0; T Þ½ET ð�T Þ � F � ¼ 0

or
F ¼ ET ð�T Þ ð28:21Þ

Equation (28.21) shows that the forward price of any variable (except an interest rate) is
its expected future spot price in a world that is forward risk neutral with respect to
Pðt; T Þ. Note the difference here between forward prices and futures prices. The
argument in Section 18.7 shows that the futures price of a variable is the expected
future spot price in the traditional risk-neutral world.

Equation (28.20) shows that any security that provides a payoff at time T can be
valued by calculating its expected payoff in a world that is forward risk neutral with
respect to a bond maturing at time T and discounting at the risk-free rate for maturity
T . Equation (28.21) shows that it is correct to assume that the expected value of the
underlying variables equal their forward values when computing the expected payoff.

Interest Rates When Zero-Coupon Bond Price is the Numeraire

For the next result, define Rðt; T ; T �Þ as the forward interest rate as seen at time t for the
period between T and T

� expressed with a compounding period of T
� � T . (For

example, if T � � T ¼ 0:5, the interest rate is expressed with semiannual compounding;
if T � � T ¼ 0:25, it is expressed with quarterly compounding; and so on.) The forward
price, as seen at time t, of a zero-coupon bond lasting between times T and T

� is

Pðt; T �Þ
Pðt; T Þ

A forward interest rate is defined differently from the forward value of most variables.
A forward risk-free interest rate is the interest rate implied by the prices of risk-free zero-
coupon bonds. The relationship is

1

½1þ ðT � � T ÞRðt; T ; T �Þ� ¼
Pðt; T �Þ
Pðt; T Þ

so that

Rðt; T ; T �Þ ¼ 1

T � � T

�
Pðt; T Þ
Pðt; T �Þ � 1

�

6 The analysis given here does not apply to interest rates because forward contracts for interest rates are

defined differently from forward contracts for other variables. A forward interest rate is the interest rate

implied by the corresponding forward bond price.
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or

Rðt; T ; T �Þ ¼ 1

T � � T

�
Pðt; T Þ � Pðt; T �Þ

Pðt; T �Þ
�

Setting

f ¼ 1

T � � T
½Pðt; T Þ � Pðt; T �Þ�

and g ¼ Pðt; T �Þ, the equivalent martingale measure result shows that Rðt; T ; T �Þ is a
martingale in a world that is forward risk neutral with respect to Pðt; T �Þ. This means
that

Rð0; T ; T �Þ ¼ ET � ½RðT ; T ; T �Þ� ð28:22Þ
where ET � denotes expectations in a world that is forward risk neutral with respect
to Pðt; T �Þ.

The variable Rð0; T ; T �Þ is the forward interest rate between times T and T
� as seen

at time 0, whereas RðT ; T ; T �Þ is the realized interest rate between times T and T
�.

Equation (28.22) therefore shows that the forward interest rate between times T and T
�

equals the expected future interest rate in a world that is forward risk neutral with
respect to a zero-coupon bond maturing at time T

�. This result, when combined with
that in equation (28.20), will be critical to an understanding of the standard market
model for interest rate caps in the next chapter.

Annuity Factor as the Numeraire

For the next application of equivalent martingale measure arguments, consider a
LIBOR-for-fixed swap starting at a future time T with payment dates at times T1,
T2, . . . , TN . In the swap, a fixed rate of interest is exchanged for the LIBOR floating
rate. Define T0 ¼ T . Assume that the notional principal is $1. Suppose that the forward
swap rate (i.e., the interest rate on the fixed side that makes the swap have a value of
zero) is sðtÞ at time t (t 6 T ). The value of the fixed side of the swap is

sðtÞAðtÞ
where

AðtÞ ¼
XN�1

i¼0

ðTiþ1 � TiÞPðt; Tiþ1Þ

Assume that we are using LIBOR discounting. When the principal is added to the
payment on the last payment date of a swap, the value of the floating side of the swap
on the initiation date equals the underlying principal. (This is because the floating side
is then a LIBOR floating rate note and discounting is at LIBOR. It will be recalled that
this type of argument leads to the procedure in Section 7.7 for valuing a swap in terms
of bonds.) It follows that if $1 is added at time TN , the floating side is worth $1 at time
T0. The value of $1 received at time TN is Pðt; TNÞ. The value of $1 at time T0 is Pðt; T0Þ.
The value of the floating side at time t is, therefore,

Pðt; T0Þ � Pðt; TNÞ
Equating the values of the fixed and floating sides gives

sðtÞAðtÞ ¼ Pðt; T0Þ � Pðt; TNÞ
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or

sðtÞ ¼ Pðt; T0Þ � Pðt; TNÞ
AðtÞ ð28:23Þ

The equivalent martingale measure result can be applied by setting f equal to
Pðt; T0Þ � Pðt; TNÞ and g equal to AðtÞ. This leads to

sðtÞ ¼ EA½sðT Þ� ð28:24Þ
whereEA denotes expectations in aworld that is forward risk neutral with respect toAðtÞ.
Therefore, in a world that is forward risk neutral with respect to AðtÞ, the expected future
swap rate is the current swap rate.

For any security, f , the result in equation (28.15) shows that

f0 ¼ Að0ÞEA

�
fT

AðT Þ
�

ð28:25Þ

This result, when combined with the result in equation (28.24), will be critical to an
understanding of the standard market model for European swap options in the next
chapter. As we shall see, it can be extended to cover OIS discounting.

28.5 EXTENSION TO SEVERAL FACTORS

The results presented in Sections 28.3 and 28.4 can be extended to cover the situation
when there are many independent factors.7 Assume that there are n independent factors
and that the processes for f and g in the traditional risk-neutral world are

df ¼ rf dtþ
Xn
i¼1

�f ;if dzi

and

dg ¼ rg dtþ
Xn
i¼1

�g;ig dzi

It follows from Section 28.2 that other internally consistent worlds can be defined by
setting

df ¼
�
rþ

Xn
i¼1

�i�f ;i

�
f dtþ

Xn
i¼1

�f ;if dzi

and

dg ¼
�
rþ

Xn
i¼1

�i�g;i

�
g dtþ

Xn
i¼1

�g;ig dzi

where the �i ð1 6 i 6 nÞ are the n market prices of risk. One of these other worlds is the
real world.

The definition of forward risk neutrality can be extended so that a world is forward
risk neutral with respect to g, where �i ¼ �g;i for all i. It can be shown from Itô’s
lemma, using the fact that the dzi are uncorrelated, that the process followed by f=g in

7 The independence condition is not critical. If factors are not independent they can be orthogonalized.
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this world has zero drift (see Problem 28.12). The rest of the results in the last two
sections (from equation (28.15) onward) are therefore still true.

28.6 BLACK’S MODEL REVISITED

Section 18.8 explained that Black’s model is a popular tool for pricing European
options in terms of the forward or futures price of the underlying asset when interest
rates are constant. We are now in a position to relax the constant interest rate
assumption and show that Black’s model can be used to price European options in
terms of the forward price of the underlying asset when interest rates are stochastic.

Consider a European call option on an asset with strike price K that lasts until time T .
From equation (28.20), the option’s price is given by

c ¼ Pð0; T ÞET ½maxðST �K; 0Þ� ð28:26Þ
where ST is the asset price at time T and ET denotes expectations in a world that is
forward risk neutral with respect to Pðt; T Þ. Define F0 and FT as the forward price of
the asset at time 0 and time T for a contract maturing at time T . Because ST ¼ FT ,

c ¼ Pð0; T ÞET ½maxðFT �K; 0Þ�
Assume that FT is lognormal in the world being considered, with the standard deviation
of lnðFT Þ equal to �F

ffiffiffiffi
T

p
. This could be because the forward price follows a stochastic

process with volatility �F. Equation(15A.1) shows that

ET ½maxðFT �K; 0Þ� ¼ ET ðFT ÞNðd1Þ �KNðd2Þ ð28:27Þ
where

d1 ¼
ln½ET ðFT Þ=K� þ �2

FT=2

�F
ffiffiffiffi
T

p

d2 ¼
ln½ET ðFT Þ=K� � �2

FT=2

�F
ffiffiffiffi
T

p

From equation (28.21), ET ðFT Þ ¼ ET ðST Þ ¼ F0. Hence,

c ¼ Pð0; T Þ½F0Nðd1Þ �KNðd2Þ� ð28:28Þ
where

d1 ¼
ln½F0=K� þ �2

FT=2

�F
ffiffiffiffi
T

p

d2 ¼
ln½F0=K� � �2

FT=2

�F
ffiffiffiffi
T

p
Similarly,

p ¼ Pð0; T Þ½KNð�d2Þ � F0Nð�d1Þ� ð28:29Þ
where p is the price of a European put option on the asset with strike price K and time
to maturity T . This is Black’s model. It applies to both investment and consumption
assets and, as we have just shown, is true when interest rates are stochastic provided that
F0 is the forward asset price. The variable �F can be interpreted as the volatility of the
forward asset price.

688 CHAPTER 28



28.7 OPTION TO EXCHANGE ONE ASSET FOR ANOTHER

Consider next an option to exchange an investment asset worth U for an investment

asset worth V . This has already been discussed in Section 26.14. Suppose that the

volatilities of U and V are �U and �V and the coefficient of correlation between them is �.
Assume first that the assets provide no income and choose the numeraire security g to

be U. Setting f ¼ V in equation (28.15) gives

V0 ¼ U0EU

�
VT

UT

�
ð28:30Þ

where EU denotes expectations in a world that is forward risk neutral with respect to U.

The variable f in equation (28.15) can be set equal to the value of the option under

consideration, so that fT ¼ maxðVT � UT ; 0Þ. It follows that

f0 ¼ U0 EU

�
maxðVT � UT ; 0Þ

UT

�

or

f0 ¼ U0 EU max
VT

UT

� 1; 0

� �� �
ð28:31Þ

The volatility of V=U is �̂ (see Problem 28.13), where

�̂2 ¼ �2
U þ �2

V � 2��U�V

From equation(15A.1), equation (28.31) becomes

f0 ¼ U0

�
EU

�
VT

UT

�
Nðd1Þ � Nðd2Þ

�

where

d1 ¼
lnðV0=U0Þ þ �̂2

T=2

�̂
ffiffiffiffi
T

p and d2 ¼ d1 � �̂
ffiffiffiffi
T

p

Substituting from equation (28.30) gives

f0 ¼ V0Nðd1Þ � U0Nðd2Þ ð28:32Þ

This is the value of an option to exchange one asset for another when the assets provide

no income.

Problem 28.8 shows that, when f and g provide income at rate qf and qg, equa-

tion (28.15) becomes

f0 ¼ g0e
ðqf�qgÞTEg

�
fT

gT

�

This means that equations (28.30) and (28.31) become

EU

�
VT

UT

�
¼ e

ðqU�qV ÞT V0

U0
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and

f0 ¼ e
�qUTU0EU

�
max

�
VT

UT

� 1; 0

��

and equation (28.32) becomes

f0 ¼ e
�qV TV0Nðd1Þ � e

�qUTU0Nðd2Þ

with d1 and d2 being redefined as

d1 ¼
lnðV0=U0Þ þ ðqU � qV þ �̂2=2ÞT

�̂
ffiffiffiffi
T

p and d2 ¼ d1 � �̂
ffiffiffiffi
T

p

This is the result given in equation (26.5) for the value of an option to exchange one

asset for another.

28.8 CHANGE OF NUMERAIRE

In this section, we consider the impact of a change in numeraire on the process followed

by a market variable. Suppose first that the variable is the price of a traded security, f .

In a world where the market price of dzi risk is �i,

df ¼
�
rþ

Xn
i¼1

�i�f ;i

�
f dtþ

Xn
i¼1

�f ;if dzi

Similarly, when it is ��i ,

df ¼
�
rþ

Xn
i¼1

��i �f ;i

�
f dtþ

Xn
i¼1

�f ;if dzi

The effect of moving from the first world to the second is therefore to increase the

expected growth rate of the price of any traded security f by

Xn
i¼1

ð��i � �iÞ�f ;i

Consider next a variable v that is not the price of a traded security. As shown in

Technical Note 20 at www.rotman.utoronto.ca/�hull/TechnicalNotes, the expected

growth rate of v responds to a change in the market price of risk in the same way as the

expected growth rate of the prices of traded securities. It increases by

�v ¼
Xn
i¼1

ð��i � �iÞ�v;i ð28:33Þ

where �v;i is the ith component of the volatility of v.
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When we move from a numeraire of g to a numeraire of h, �i ¼ �g;i and ��i ¼ �h;i.
Define w ¼ h=g and �w;i as the ith component of the volatility of w. From Itô’s
lemma (see Problem 28.13),

�w;i ¼ �h;i � �g;i

so that equation (28.33) becomes

�v ¼
Xn
i¼1

�w;i �v;i ð28:34Þ

We will refer to w as the numeraire ratio. Equation (28.34) is equivalent to

�v ¼ ��v�w ð28:35Þ
where �v is the total volatility of v, �w is the total volatility of w, and � is the
instantaneous correlation between changes in v and w.8

This is a surprisingly simple result. The adjustment to the expected growth rate of a
variable v when we change from one numeraire to another is the instantaneous
covariance between the percentage change in v and the percentage change in the
numeraire ratio. This result will be used when timing and quanto adjustments are
considered in Chapter 30.

A particular case of the results in this section is when we move from the real world to
the traditional risk-neutral world (where all the market prices of risk are zero). From
equation (28.33), the growth rate of v changes by �Pn

i¼1 �i�v;i. This corresponds to the
result in equation (28.13) when v is the price of a traded security. We have shown that it
is also true when v is not the price of a traded security. In general, the way that we move
from one world to another for variables that are not the prices of traded securities is the
same as for those that are.

SUMMARY

The market price of risk of a variable defines the trade-offs between risk and return for
traded securities dependent on the variable. When there is one underlying variable, a
derivative’s excess return over the risk-free rate equals the market price of risk multiplied
by the derivative’s volatility. When there are many underlying variables, the excess return
is the sum of the market price of risk multiplied by the volatility for each variable.

A powerful tool in the valuation of derivatives is risk-neutral valuation. This was
introduced in Chapters 13 and 15. The principle of risk-neutral valuation shows that, if
we assume that the world is risk neutral when valuing derivatives, we get the right
answer—not just in a risk-neutral world, but in all other worlds as well. In the

8 To see this, note that the changes �v and �w in v and w in a short period of time �t are given by

�v ¼ � � � þ
X

�v;i v	i
ffiffiffiffiffi
�t

p

�w ¼ � � � þ
X

�w;i w	i
ffiffiffiffiffi
�t

p

Since the dzi are uncorrelated, it follows that Eð	i	jÞ ¼ 0 when i 6 ¼ j. Also, from the definition of �, we have

�v�vw�w ¼ Eð�v�wÞ � Eð�vÞEð�wÞ
When terms of higher order than �t are ignored this leads to

��v�w ¼
X

�w;i �v;i
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traditional risk-neutral world, the market price of risk of all variables is zero. This
chapter has extended the principle of risk-neutral valuation. It has shown that, when
interest rates are stochastic, there are many interesting and useful alternatives to the
traditional risk-neutral world.

A martingale is a zero drift stochastic process. Any variable following a martingale
has the simplifying property that its expected value at any future time equals its value
today. The equivalent martingale measure result shows that, if g is a security price, there
is a world in which the ratio f=g is a martingale for all security prices f . It turns out
that, by appropriately choosing the numeraire security g, the valuation of many interest
rate dependent derivatives can be simplified.

This chapter has used the equivalent martingale measure result to extend Black’s
model to the situation where interest rates are stochastic and to value an option to
exchange one asset for another. In Chapters 29 to 33, it will be useful in valuing interest

rate derivatives.
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Practice Questions (Answers in the Solutions Manual)

28.1. How is the market price of risk defined for a variable that is not the price of an
investment asset?

28.2. Suppose that the market price of risk for gold is zero. If the storage costs are 1% per
annum and the risk-free rate of interest is 6% per annum, what is the expected growth
rate in the price of gold? Assume that gold provides no income.

28.3. Consider two securities both of which are dependent on the same market variable. The
expected returns from the securities are 8% and 12%. The volatility of the first security is
15%. The instantaneous risk-free rate is 4%. What is the volatility of the second
security?

28.4. An oil company is set up solely for the purpose of exploring for oil in a certain small
area of Texas. Its value depends primarily on two stochastic variables: the price of oil
and the quantity of proven oil reserves. Discuss whether the market price of risk for the
second of these two variables is likely to be positive, negative, or zero.

28.5. Deduce the differential equation for a derivative dependent on the prices of two non-
dividend-paying traded securities by forming a riskless portfolio consisting of the
derivative and the two traded securities.
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28.6. Suppose that an interest rate x follows the process

dx ¼ aðx0 � xÞ dtþ c
ffiffiffi
x

p
dz

where a, x0, and c are positive constants. Suppose further that the market price of risk
for x is �. What is the process for x in the traditional risk-neutral world?

28.7. Prove that, when the security f provides income at rate q, equation (28.9) becomes
�þ q� r ¼ ��. (Hint : Form a new security f

� that provides no income by assuming
that all the income from f is reinvested in f .)

28.8. Show that when f and g provide income at rates qf and qg, respectively, equation (28.15)
becomes

f0 ¼ g0e
ðqf�qgÞTEg

�
fT

gT

�

(Hint : Form new securities f � and g
� that provide no income by assuming that all the

income from f is reinvested in f and all the income in g is reinvested in g.)

28.9. ‘‘The expected future value of an interest rate in a risk-neutral world is greater than it is
in the real world.’’ What does this statement imply about the market price of risk for
(a) an interest rate and (b) a bond price. Do you think the statement is likely to be true?
Give reasons.

28.10. The variable S is an investment asset providing income at rate q measured in currency A.
It follows the process

dS ¼ �SS dtþ �SS dz

in the real world. Defining new variables as necessary, give the process followed by S,
and the corresponding market price of risk, in:
(a) A world that is the traditional risk-neutral world for currency A
(b) A world that is the traditional risk-neutral world for currency B
(c) A world that is forward risk neutral with respect to a zero-coupon currency A bond

maturing at time T

(d) A world that is forward risk neutral with respect to a zero coupon currency B bond
maturing at time T .

28.11. Explain the difference between the way a forward interest rate is defined and the way the
forward values of other variables such as stock prices, commodity prices, and exchange
rates are defined.

28.12. Prove the result in Section 28.5 that when

df ¼
�
rþ

Xn
i¼1

�i�f ;i

�
f dtþ

Xn
i¼1

�f ;if dzi

and

dg ¼
�
rþ

Xn
i¼1

�i�g;i

�
g dtþ

Xn
i¼1

�g;ig dzi

with the dzi uncorrelated, f=g is a martingale for �i ¼ �g;i. (Hint : Start by using
equation (14A.11) to get the processes for ln f and ln g.)

28.13. Show that when w ¼ h=g and h and g are each dependent on n Wiener processes, the ith
component of the volatility of w is the ith component of the volatility of h minus the ith
component of the volatility of g. (Hint : Start by using equation (14A.11) to get the
processes for ln g and ln h.)

28.14. ‘‘If X is the expected value of a variable, X follows a martingale.’’ Explain this statement.
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Further Questions

28.15. A security’s price is positively dependent on two variables: the price of copper and the
yen/dollar exchange rate. Suppose that the market price of risk for these variables is 0.5
and 0.1, respectively. If the price of copper were held fixed, the volatility of the security
would be 8% per annum; if the yen/dollar exchange rate were held fixed, the volatility of
the security would be 12% per annum. The risk-free interest rate is 7% per annum. What
is the expected rate of return from the security? If the two variables are uncorrelated with
each other, what is the volatility of the security?

28.16. Suppose that the price of a zero-coupon bond maturing at time T follows the process

dPðt; T Þ ¼ �PPðt; T Þ dtþ �PPðt; T Þ dz
and the price of a derivative dependent on the bond follows the process

df ¼ �ff dtþ �ff dz

Assume only one source of uncertainty and that f provides no income.
(a) What is the forward price F of f for a contract maturing at time T ?
(b) What is the process followed by F in a world that is forward risk neutral with respect

to Pðt; T Þ?
(c) What is the process followed by F in the traditional risk-neutral world?
(d) What is the process followed by f in a world that is forward risk neutral with respect

to a bond maturing at time T
�, where T

� 6 ¼ T ? Assume that ��
P is the volatility of

this bond.

28.17. Consider a variable that is not an interest rate:
(a) In what world is the futures price of the variable a martingale?
(b) In what world is the forward price of the variable a martingale?
(c) Defining variables as necessary, derive an expression for the difference between the

drift of the futures price and the drift of the forward price in the traditional risk-
neutral world.

(d) Show that your result is consistent with the points made in Section 5.8 about the
circumstances when the futures price is above the forward price.
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Interest Rate
Derivatives:

The Standard
Market Models

Interest rate derivatives are instruments whose payoffs are dependent in some way on the
level of interest rates. In the 1980s and 1990s, the volume of trading in interest rate
derivatives in both the over-the-counter and exchange-traded markets increased rapidly.
Many new products were developed to meet particular needs of end users. A key
challenge for derivatives traders was to find good, robust procedures for pricing and
hedging these products. Interest rate derivatives are more difficult to value than equity
and foreign exchange derivatives for the following reasons:

1. The behavior of an individual interest rate is more complicated than that of a
stock price or an exchange rate.

2. For the valuation of many products it is necessary to develop a model describing
the behavior of the entire zero-coupon yield curve.

3. The volatilities of different points on the yield curve are different.

4. Interest rates are used for discounting the derivative as well as defining its payoff.

This chapter considers the three most popular over-the-counter interest rate option
products: bond options, interest rate caps/floors, and swap options. It explains how
the products work and the standard market models used to value them.

29.1 BOND OPTIONS

A bond option is an option to buy or sell a particular bond by a particular date for a
particular price. In addition to trading in the over-the-counter market, bond options
are frequently embedded in bonds when they are issued to make them more attractive to
either the issuer or potential purchasers.

Embedded Bond Options

One example of a bond with an embedded bond option is a callable bond. This is a
bond that contains provisions allowing the issuing firm to buy back the bond at a
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predetermined price at certain times in the future. The holder of such a bond has sold
a call option to the issuer. The strike price or call price in the option is the
predetermined price that must be paid by the issuer to the holder. Callable bonds
cannot usually be called for the first few years of their life. (This is known as the lock-
out period.) After that, the call price is usually a decreasing function of time. For
example, in a 10-year callable bond, there might be no call privileges for the first
2 years. After that, the issuer might have the right to buy the bond back at a price of
110 in years 3 and 4 of its life, at a price of 107.5 in years 5 and 6, at a price of 106 in
years 7 and 8, and at a price of 103 in years 9 and 10. The value of the call option is
reflected in the quoted yields on bonds. Bonds with call features generally offer higher
yields than bonds with no call features.

Another type of bond with an embedded option is a puttable bond. This contains
provisions that allow the holder to demand early redemption at a predetermined price
at certain times in the future. The holder of such a bond has purchased a put option on
the bond as well as the bond itself. Because the put option increases the value of the
bond to the holder, bonds with put features provide lower yields than bonds with no
put features. A simple example of a puttable bond is a 10-year bond where the holder
has the right to be repaid at the end of 5 years. (This is sometimes referred to as a
retractable bond.)

Loan and deposit instruments also often contain embedded bond options. For
example, a 5-year fixed-rate deposit with a financial institution that can be redeemed
without penalty at any time contains an American put option on a bond. (The deposit
instrument is a bond that the investor has the right to put back to the financial
institution at its face value at any time.) Prepayment privileges on loans and mortgages
are similarly call options on bonds.

Finally, a loan commitment made by a bank or other financial institution is a put
option on a bond. Consider, for example, the situation where a bank quotes a 5-year
interest rate of 5% per annum to a potential borrower and states that the rate is good
for the next 2 months. The client has, in effect, obtained the right to sell a 5-year bond
with a 5% coupon to the financial institution for its face value any time within the next
2 months. The option will be exercised if rates increase.

European Bond Options

Many over-the-counter bond options and some embedded bond options are European.
The assumption made in the standard market model for valuing European bond
options is that the forward bond price has a volatility �B. This allows Black’s model
in Section 28.6 to be used. In equations (28.28) and (28.29), �F is set equal to �B and F0

is set equal to the forward bond price FB, so that

c ¼ Pð0; T Þ½FBNðd1Þ �KNðd2Þ� ð29:1Þ
p ¼ Pð0; T Þ½KNð�d2Þ � FBNð�d1Þ� ð29:2Þ

where

d1 ¼
lnðFB=KÞ þ �2

BT=2

�B
ffiffiffiffi
T

p and d2 ¼ d1 � �B
ffiffiffiffi
T

p

In these equations, K is the strike price of the bond option, T is its time to maturity, and
Pð0; T Þ is the (risk-free) discount factor for maturity T .
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From Section 5.5, FB can be calculated using the formula

FB ¼ B0 � I

Pð0; T Þ ð29:3Þ

where B0 is the bond price at time zero and I is the present value of the coupons that
will be paid during the life of the option. In this formula, both the spot bond price and
the forward bond price are cash prices rather than quoted prices. The relationship
between cash and quoted bond prices is explained in Section 6.1.

The strike price K in equations (29.1) and (29.2) should be the cash strike price. In

choosing the correct value for K, the precise terms of the option are therefore
important. If the strike price is defined as the cash amount that is exchanged for the
bond when the option is exercised, K should be set equal to this strike price. If, as is
more common, the strike price is the quoted price applicable when the option is
exercised, K should be set equal to the strike price plus accrued interest at the expiration
date of the option. Traders refer to the quoted price of a bond as the clean price and the

cash price as the dirty price.

Example 29.1

Consider a 10-month European call option on a 9.75-year bond with a face
value of $1,000. (When the option matures, the bond will have 8 years and

11 months remaining.) Suppose that the current cash bond price is $960, the
strike price is $l,000, the 10-month risk-free interest rate is 10% per annum, and
the volatility of the forward bond price for a contract maturing in 10 months is
9% per annum. The bond pays a coupon of 10% per year (with payments made
semiannually). Coupon payments of $50 are expected in 3 months and 9 months.
(This means that the accrued interest is $25 and the quoted bond price is $935.)
We suppose that the 3-month and 9-month risk-free interest rates are 9.0% and

9.5% per annum, respectively. The present value of the coupon payments is,
therefore,

50e�0:25�0:09 þ 50e�0:75�0:095 ¼ 95:45

or $95.45. The bond forward price is from equation (29.3) given by

FB ¼ ð960� 95:45Þe0:1�0:8333 ¼ 939:68

(a) If the strike price is the cash price that would be paid for the bond on exercise,
the parameters for equation (29.1) are FB ¼ 939:68, K ¼ 1000, Pð0; T Þ ¼
e�0:1�ð10=12Þ ¼ 0:9200, �B ¼ 0:09, and T ¼ 10=12. The price of the call option
is $9.49.

(b) If the strike price is the quoted price that would be paid for the bond on
exercise, 1 month’s accrued interest must be added to K because the maturity
of the option is 1 month after a coupon date. This produces a value for K of

1,000þ 100� 0:08333 ¼ 1,008:33

The values for the other parameters in equation (29.1) are unchanged (i.e.,
FB ¼ 939:68, Pð0; T Þ ¼ 0:9200, �B ¼ 0:09, and T ¼ 0:8333). The price of the
option is $7.97.

Figure 29.1 shows how the standard deviation of the logarithm of a bond’s price
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changes as we look further ahead. The standard deviation is zero today because there is

no uncertainty about the bond’s price today. It is also zero at the bond’s maturity

because we know that the bond’s price will equal its face value at maturity. Between

today and the maturity of the bond, the standard deviation first increases and then

decreases.

The volatility �B that should be used when a European option on the bond is valued is

Standard deviation of logarithm of bond price at maturity of optionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Time to maturity of option

p

What happens when, for a particular underlying bond, the life of the option is increased?

Figure 29.2 shows a typical pattern for �B as a function of the life of the option, with �B
declining as the life of the option increases.

Standard deviation of
logarithm of bond price

TimeBond
maturity

Figure 29.1 Standard deviation of logarithm of bond price at future times.

σB

Life of
option

Bond
maturity

Figure 29.2 Variation of forward bond price volatility �B with life of option when
bond is kept fixed.
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Yield Volatilities

The volatilities that are quoted for bond options are often yield volatilities rather than

price volatilities. The duration concept, introduced in Chapter 4, is used by the market

to convert a quoted yield volatility into a price volatility. Suppose that D is the modified

duration of the bond underlying the option at the option maturity, as defined in
Chapter 4. The relationship between the change �FB in the forward bond price FB

and the change �yF in the forward yield yF is

�FB

FB

� �D�yF

or
�FB

FB

� �DyF
�yF

yF

Volatility is a measure of the standard deviation of percentage changes in the value of a
variable. This equation therefore suggests that the volatility of the forward bond price

�B used in Black’s model can be approximately related to the volatility of the forward

bond yield �y by

�B ¼ Dy0�y ð29:4Þ

where y0 is the initial value of yF . When a yield volatility is quoted for a European bond
option, the implicit assumption is usually that it will be converted to a price volatility

using equation (29.4), and that this volatility will then be used in conjunction with

equation (29.1) or (29.2) to obtain the option’s price. Suppose that the bond underlying a

call option will have a modified duration of 5 years at option maturity, the forward yield
is 8%, and the forward yield volatility quoted by a broker is 20%. This means that the

market price of the option corresponding to the broker quote is the price given by

equation (29.1) when the volatility variable �B is

5� 0:08� 0:2 ¼ 0:08

or 8% per annum. Figure 29.2 shows that forward bond volatilities depend on the

option considered. Forward yield volatilities as we have just defined them are more

constant. This is why traders prefer them.

The Bond_Options worksheet of the software DerivaGem accompanying this book

can be used to price European bond options using Black’s model by selecting Black-

European as the Pricing Model. The user inputs a yield volatility, which is handled in
the way just described. The strike price can be the cash or quoted strike price.

Example 29.2

Consider a European put option on a 10-year bond with a principal of 100. The

coupon is 8% per year payable semiannually. The life of the option is 2.25 years

and the strike price of the option is 115. The forward yield volatility is 20%. The

zero curve is flat at 5% with continuous compounding. The DerivaGem software
accompanying this book shows that the quoted price of the bond is 122.82. The

price of the option when the strike price is a quoted price is $2.36. When the strike

price is a cash price, the price of the option is $1.74. (See Problem 29.16 for the

manual calculation.)

Interest Rate Derivatives: The Standard Market Models 699



29.2 INTEREST RATE CAPS AND FLOORS

A popular interest rate option offered by financial institutions in the over-the-counter
market is an interest rate cap. Interest rate caps can best be understood by first
considering a floating-rate note where the interest rate is reset periodically equal to
LIBOR. The time between resets is known as the tenor. Suppose the tenor is 3 months.
The interest rate on the note for the first 3 months is the initial 3-month LIBOR rate;
the interest rate for the next 3 months is set equal to the 3-month LIBOR rate prevailing
in the market at the 3-month point; and so on.

An interest rate cap is designed to provide insurance against the rate of interest on the
floating-rate note rising above a certain level. This level is known as the cap rate.
Suppose that the principal amount is $10 million, the tenor is 3 months, the life of the
cap is 5 years, and the cap rate is 4%. (Because the payments are made quarterly, this
cap rate is expressed with quarterly compounding.) The cap provides insurance against
the interest on the floating rate note rising above 4%.

For the moment we ignore day count issues and assume that there is exactly 0.25 year
between each payment date. (We will cover day count issues at the end of this section.)
Suppose that on a particular reset date the 3-month LIBOR interest rate is 5%. The
floating rate note would require

0:25� 0:05� $10,000,000 ¼ $125,000

of interest to be paid 3 months later. With a 3-month LIBOR rate of 4% the interest
payment would be

0:25� 0:04� $10,000,000 ¼ $100,000

The cap therefore provides a payoff of $25,000. The payoff does not occur on the reset
date when the 5% is observed: it occurs 3 months later. This reflects the usual time lag
between an interest rate being observed and the corresponding payment being required.

At each reset date during the life of the cap, LIBOR is observed. If LIBOR is less than
4%, there is no payoff from the cap three months later. If LIBOR is greater than 4%, the
payoff is one quarter of the excess applied to the principal of $10 million. Note that caps
are usually defined so that the initial LIBOR rate, even if it is greater than the cap rate,
does not lead to a payoff on the first reset date. In our example, the cap lasts for 5 years.
There are, therefore, a total of 19 reset dates (at times 0.25, 0.50, 0.75, . . . , 4.75 years)
and 19 potential payoffs from the caps (at times 0.50, 0.75, 1.00, . . . , 5.00 years).

The Cap as a Portfolio of Interest Rate Options

Consider a cap with a total life of T , a principal of L, and a cap rate of RK. Suppose that
the reset dates are t1, t2, . . . , tn and define tnþ1 ¼ T . Define Rk as the LIBOR interest rate
for the period between time tk and tkþ1 observed at time tk (1 6 k 6 n). The cap leads to a
payoff at time tkþ1 (k ¼ 1; 2; . . . ; n) of

L�k maxðRk � RK; 0Þ ð29:5Þ
where �k ¼ tkþ1 � tk.

1 Both Rk and RK are expressed with a compounding frequency
equal to the frequency of resets.

1 Day count issues are discussed at the end of this section.
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Expression (29.5) is the payoff from a call option on the LIBOR rate observed at time tk
with the payoff occurring at time tkþ1. The cap is a portfolio of n such options. LIBOR
rates are observed at times t1; t2; t3; . . . ; tn and the corresponding payoffs occur at
times t2; t3; t4; . . . ; tnþ1. The n call options underlying the cap are known as caplets.

A Cap as a Portfolio of Bond Options

An interest rate cap can also be characterized as a portfolio of put options on zero-
coupon bonds with payoffs on the puts occurring at the time they are calculated. The
payoff in expression (29.5) at time tkþ1 is equivalent to

L�k
1þ Rk�k

maxðRk � RK; 0Þ

at time tk. A few lines of algebra show that this reduces to

max

�
L� Lð1þ RK�kÞ

1þ Rk�k
; 0

�
ð29:6Þ

The expression
Lð1þ RK�kÞ
1þ Rk�k

is the value at time tk of a zero-coupon bond that pays off Lð1þ RK�kÞ at time tkþ1. The
expression in (29.6) is therefore the payoff from a put option with maturity tk on a zero-
coupon bond with maturity tkþ1 when the face value of the bond is Lð1þ RK�kÞ and the
strike price is L. It follows that an interest rate cap can be regarded as a portfolio of
European put options on zero-coupon bonds.

Floors and Collars

Interest rate floors and interest rate collars (sometimes called floor–ceiling agreements)
are defined analogously to caps. A floor provides a payoff when the interest rate on the
underlying floating-rate note falls below a certain rate. With the notation already
introduced, a floor provides a payoff at time tkþ1 (k ¼ 1; 2; . . . ; n) of

L�k maxðRK � Rk; 0Þ
Analogously to an interest rate cap, an interest rate floor is a portfolio of put options on
interest rates or a portfolio of call options on zero-coupon bonds. Each of the
individual options comprising a floor is known as a floorlet. A collar is an instrument
designed to guarantee that the interest rate on the underlying LIBOR floating-rate note
always lies between two levels. A collar is a combination of a long position in a cap and
a short position in a floor. It is usually constructed so that the price of the cap is
initially equal to the price of the floor. The cost of entering into the collar is then zero.

Business Snapshot 29.1 gives the put–call parity relationship between caps and floors.

Valuation of Caps and Floors

As shown in equation (29.5), the caplet corresponding to the rate observed at time tk
provides a payoff at time tkþ1 of

L�k maxðRk � RK; 0Þ
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Under the standard market model, the value of the caplet is

L�kPð0; tkþ1Þ½FkNðd1Þ � RKNðd2Þ� ð29:7Þ
where

d1 ¼
lnðFk=RKÞ þ �2

k tk=2

�k
ffiffiffiffi
tk

p

d2 ¼
lnðFk=RKÞ � �2

k tk=2

�k
ffiffiffiffi
tk

p ¼ d1 � �k
ffiffiffiffi
tk

p

Here, Fk is the forward interest rate at time 0 for the period between time tk and tkþ1, and

�k is the volatility of this forward interest rate. This is a natural extension of Black’s
model. The volatility �k is multiplied by

ffiffiffiffi
tk

p
because the interest rate Rk is observed at

time tk, but the risk-free discount factor Pð0; tkþ1Þ refects the fact that the payoff is at time
tkþ1, not time tk. The value of the corresponding floorlet is

L�kPð0; tkþ1Þ½RKNð�d2Þ � FkNð�d1Þ� ð29:8Þ
Example 29.3

Consider a contract that caps the LIBOR interest rate on $10 million at 8% per
annum (with quarterly compounding) for 3 months starting in 1 year. This is a

caplet and could be one element of a cap. Assume that LIBOR/swap rates are
used as risk-free discount rates and the LIBOR/swap zero curve is flat at 7% per

annum with quarterly compounding, with the volatility of the 3-month forward

rate underlying the caplet being 20% per annum. The continuously compounded
zero rate for all maturities is 6.9395%. In equation (29.7), Fk ¼ 0:07, �k ¼ 0:25,
L ¼ 10, RK ¼ 0:08, tk ¼ 1:0, tkþ1 ¼ 1:25, Pð0; tkþ1Þ ¼ e�0:069395�1:25 ¼ 0:9169,

Business Snapshot 29.1 Put–Call Parity for Caps and Floors

There is a put–call parity relationship between the prices of caps and floors. This is

Value of cap ¼ Value of floorþ Value of swap

In this relationship, the cap and floor have the same strike price, RK. The swap is an
agreement to receive LIBOR and pay a fixed rate of RK with no exchange of
payments on the first reset date. All three instruments have the same life and the
same frequency of payments.

To see that the result is true, consider a long position in the cap combined with a
short position in the floor. The cap provides a cash flow of LIBOR � RK for
periods when LIBOR is greater than RK. The short floor provides a cash flow of
�ðRK � LIBORÞ ¼ LIBOR� RK for periods when LIBOR is less than RK. There is
therefore a cash flow of LIBOR � RK in all circumstances. This is the cash flow on
the swap. It follows that the value of the cap minus the value of the floor must
equal the value of the swap.

Note that swaps are usually structured so that LIBOR at time zero determines a
payment on the first reset date. Caps and floors are usually structured so that there is
no payoff on the first reset date. This is why put–call parity involves a nonstandard
swap where there is no payment on the first reset date.
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and �k ¼ 0:20. Also,

d1 ¼
lnð0:07=0:08Þ þ 0:22 � 1=2

0:20� 1
¼ �0:5677

d2 ¼ d1 � 0:20 ¼ �0:7677

so that the caplet price (in $ millions) is

0:25� 10� 0:9169½0:07Nð�0:5677Þ � 0:08Nð�0:7677Þ� ¼ $0:005162

It is $5,162. This result can also be obtained using the DerivaGem software
accompanying this book.

Each caplet of a cap must be valued separately using equation (29.7). Similarly, each
floorlet of a floor must be valued separately using equation (29.8). One approach is to use
a different volatility for each caplet (or floorlet). The volatilities are then referred to as
spot volatilities. An alternative approach is to use the same volatility for all the caplets
(floorlets) comprising any particular cap (floor) but to vary this volatility according to
the life of the cap (floor). The volatilities used are then referred to as flat volatilities.2 The
volatilities quoted in the market are usually flat volatilities. However, many traders like to
estimate spot volatilities because this allows them to identify underpriced and overpriced
caplets (floorlets). The put (call) options on Eurodollar futures are very similar to caplets
(floorlets) and the spot volatilities used for caplets and floorlets on 3-month LIBOR are
frequently compared with those calculated from the prices of Eurodollar futures options.

Spot Volatilities vs. Flat Volatilities

Figure 29.3 shows a typical pattern for spot volatilities and flat volatilities as a function of
maturity. (In the case of a spot volatility, the maturity is the maturity of a caplet or
floorlet; in the case of a flat volatility, it is the maturity of a cap or floor.) The flat

Cap or floor
implied volatility

Spot vols

Flat vols

Maturity

Figure 29.3 The volatility hump.

2 Flat volatilities can be calculated from spot volatilities and vice versa (see Problem 29.20).
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volatilities are akin to cumulative averages of the spot volatilities and therefore exhibit

less variability. As indicated by Figure 29.3, a ‘‘hump’’ in the volatilities is usually
observed. The peak of the hump is at about the 2- to 3-year point. This hump is observed

both when the volatilities are implied from option prices and when they are calculated

from historical data. There is no general agreement on the reason for the existence of the

hump. One possible explanation is as follows. Rates at the short end of the zero curve are

controlled by central banks. By contrast, 2- and 3-year interest rates are determined to a

large extent by the activities of traders. These traders may be overreacting to the changes
observed in the short rate and causing the volatility of these rates to be higher than the

volatlity of short rates. For maturities beyond 2 to 3 years, the mean reversion of interest

rates, which is discussed in Chapter 31, causes volatilities to decline.

Interdealer brokers provide tables of implied flat volatilities for caps and floors. The

instruments underlying the quotes are usually ‘‘at the money’’. This is defined as the

situation where the cap/floor rate equals the swap rate for a swap that has the same
payment dates as the cap. Table 29.1 shows typical broker quotes for the US dollar

market. The tenor of the cap is 3 months and the cap life varies from 1 to 10 years. The

data exhibits the type of ‘‘hump’’ shown in Figure 29.3.

Theoretical Justification for the Model

The extension of Black’s model used to value a caplet can be shown to be internally

consistent by considering a world that is forward risk neutral with respect to a risk-free
zero-coupon bond maturing at time tkþ1. Section 28.4 shows that:

1. The current value of any security is its expected value at time tkþ1 in this world
multiplied by the price of a zero-coupon bond maturing at time tkþ1 (see
equation (28.20)).

2. The expected value of a risk-free interest rate lasting between times tk and tkþ1

equals the forward interest rate in this world (see equation (28.22)).

The first of these results shows that, with the notation introduced earlier, the price of a
caplet that provides a payoff at time tkþ1 is

L�kPð0; tkþ1ÞEkþ1½maxðRk � RK; 0Þ� ð29:9Þ

Table 29.1 Typical broker implied flat volatility quotes for
US dollar caps and floors (% per annum).

Life Cap
bid

Cap
offer

Floor
bid

Floor
offer

1 year 18.00 20.00 18.00 20.00

2 years 23.25 24.25 23.75 24.75

3 years 24.00 25.00 24.50 25.50

4 years 23.75 24.75 24.25 25.25

5 years 23.50 24.50 24.00 25.00

7 years 21.75 22.75 22.00 23.00

10 years 20.00 21.00 20.25 21.25
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where Ekþ1 denotes expected value in a world that is forward risk neutral with respect to

a zero-coupon bond maturing at time tkþ1. When the forward interest rate underlying the

cap (initially Fk) is assumed to have a constant volatility �k, Rk is lognormal in the world

we are considering, with the standard deviation of lnðRkÞ equal to �k
ffiffiffiffi
tk

p
. From

equation (15A.1), equation (29.9) becomes

L�kPð0; tkþ1Þ½Ekþ1ðRkÞNðd1Þ � RKNðd2Þ�
where

d1 ¼
ln½Ekþ1ðRkÞ=RK� þ �2

k tk=2

�k
ffiffiffiffi
tk

p

d2 ¼
ln½Ekþ1ðRkÞ=RK� � �2

k tk=2

�k
ffiffiffiffi
tk

p ¼ d1 � �
ffiffiffiffi
tk

p

The second result implies that

Ekþ1ðRkÞ ¼ Fk

This result is true if LIBOR is used as the risk-free discount rate from equation (28.22).

In Section 29.4, we show that it is true for OIS discounting provided that forward

LIBOR rates are determined in a way consistent with OIS discounting. Together the

results lead to the cap pricing model in equation (29.7). They show that we can discount

at the tkþ1-maturity interest rate observed in the market today providing we set the

expected interest rate equal to the forward interest rate.

Use of DerivaGem

The software DerivaGem accompanying this book can be used to price interest rate

caps and floors using Black’s model. In the Cap_and_Swap_Option worksheet select

Cap/Floor as the Underlying Type and Black-European as the Pricing Model. The

LIBOR/swap zero curve is input using continuously compounded rates. (For OIS

discounting, the OIS zero curve must also be input.) The inputs include the start and

end date of the period covered by the cap, the flat volatility, and the cap settlement

frequency (i.e., the tenor). The software calculates the payment dates by working back

from the end of period covered by the cap to the beginning. The initial caplet/floorlet is

assumed to cover a period of length between 0.5 and 1.5 times a regular period.

Suppose, for example, that the period covered by the cap is 1.22 years to 2.80 years

and the settlement frequency is quarterly. There are six caplets covering the periods 2.55

to 2.80 years, 2.30 to 2.55 years, 2.05 to 2.30 years, 1.80 to 2.05 years, 1.55 to 1.80 years,

and 1.22 to 1.55 years.

The Impact of Day Count Conventions

The formulas we have presented so far in this section do not reflect day count

conventions (see Section 6.1 for an explanation of day count conventions). Suppose

that the cap rate RK is expressed with an actual/360 day count (as would be normal in

the United States). This means that the time interval �k in the formulas should be

replaced by ak, the accrual fraction for the time period between tk and tkþ1. Suppose,

for example, that tk is May 1 and tkþ1 is August 1. Under actual/360 there are 92 days
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between these payment dates so that ak ¼ 92=360 ¼ 0:2556. The forward rate Fk must
be expressed with an actual/360 day count. This means that we must set it by solving

1þ akFk ¼
Pð0; tkÞ
Pð0; tkþ1Þ

The impact of all this is much the same as calculating �k on an actual/actual basis
converting RK from actual/360 to actual/actual, and calculating Fk on an actual/actual
basis by solving

1þ �kFk ¼
Pð0; tkÞ
Pð0; tkþ1Þ

29.3 EUROPEAN SWAP OPTIONS

Swap options, or swaptions, are options on interest rate swaps and are another popular
type of interest rate option. They give the holder the right to enter into a certain interest
rate swap at a certain time in the future. (The holder does not, of course, have to exercise
this right.) Many large financial institutions that offer interest rate swap contracts to their
corporate clients are also prepared to sell them swaptions or buy swaptions from them.
As shown in Business Snapshot 29.2, a swaption can be viewed as a type of bond option.

To give an example of how a swaption might be used, consider a company that knows
that in 6 months it will enter into a 5-year floating-rate loan agreement and knows that
it will wish to swap the floating interest payments for fixed interest payments to convert
the loan into a fixed-rate loan (see Chapter 7 for a discussion of how swaps can be used
in this way). At a cost, the company could enter into a swaption giving it the right to
receive 6-month LIBOR and pay a certain fixed rate of interest, say 3% per annum, for
a 5-year period starting in 6 months. If the fixed rate exchanged for floating on a regular
5-year swap in 6 months turns out to be less than 3% per annum, the company will
choose not to exercise the swaption and will enter into a swap agreement in the usual
way. However, if it turns out to be greater than 3% per annum, the company will
choose to exercise the swaption and will obtain a swap at more favorable terms than
those available in the market.

Swaptions, when used in the way just described, provide companies with a guarantee
that the fixed rate of interest they will pay on a loan at some future time will not exceed
some level. They are an alternative to forward swaps (sometimes called deferred swaps).
Forward swaps involve no up-front cost but have the disadvantage of obligating the
company to enter into a swap agreement. With a swaption, the company is able to benefit
from favorable interest rate movements while acquiring protection from unfavorable
interest rate movements. The difference between a swaption and a forward swap is
analogous to the difference between an option on a foreign currency and a forward
contract on the currency.

Valuation of European Swaptions

As explained in Chapter 7 the swap rate for a particular maturity at a particular time is
the (mid-market) fixed rate that would be exchanged for LIBOR in a newly issued swap
with that maturity. The model usually used to value a European option on a swap
assumes that the underlying swap rate at the maturity of the option is lognormal.
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Consider a swaption where the holder has the right to pay a rate sK and receive LIBOR

on a swap that will last n years starting in T years. We suppose that there are m

payments per year under the swap and that the notional principal is L.

Chapter 7 showed that day count conventions may lead to the fixed payments under a

swap being slightly different on each payment date. For now we will ignore the effect of

day count conventions and assume that each fixed payment on the swap is the fixed rate

times L=m. The impact of day count conventions is considered at the end of this section.

Suppose that the swap rate for an n-year swap starting at time T proves to be sT . By

comparing the cash flows on a swap where the fixed rate is sT to the cash flows on a swap

where the fixed rate is sK, it can be seen that the payoff from the swaption consists of a

series of cash flows equal to

L

m
maxðsT � sK; 0Þ

The cash flows are received m times per year for the n years of the life of the swap.

Suppose that the swap payment dates are T1, T2, . . . , Tmn, measured in years from today.

(It is approximately true that Ti ¼ T þ i=m.) Each cash flow is the payoff from a call

option on sT with strike price sK.

Whereas a cap is a portfolio of options on interest rates, a swaption is a single option

on the swap rate with repeated payoffs. The standard market model gives the value of a

swaption where the holder has the right to pay sK as

Xmn

i¼1

L

m
Pð0; TiÞ½s0Nðd1Þ � sKNðd2Þ�

where

d1 ¼
lnðs0=sKÞ þ �2

T=2

�
ffiffiffiffi
T

p

d2 ¼
lnðs0=sKÞ � �2

T=2

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

s0 is the forward swap rate at time zero calculated as indicated in equation (28.23), and �
is the volatility of the forward swap rate (so that �

ffiffiffiffi
T

p
is the standard deviation of ln sT Þ.

This is a natural extension of Black’s model. The volatility � is multiplied by
ffiffiffiffi
T

p
.

The
Pmn

i¼1 Pð0; TiÞ term is the discount factor for the mn payoffs. Defining A as the value

Business Snapshot 29.2 Swaptions and Bond Options

As explained in Chapter 7, an interest rate swap can be regarded as an agreement to
exchange a fixed-rate bond for a floating-rate bond. At the start of a swap, the value
of the floating-rate bond always equals the principal amount of the swap. A swaption
can therefore be regarded as an option to exchange a fixed-rate bond for the principal
amount of the swap—that is, a type of bond option.

If a swaption gives the holder the right to pay fixed and receive floating, it is a put
option on the fixed-rate bond with strike price equal to the principal. If a swaption
gives the holder the right to pay floating and receive fixed, it is a call option on the
fixed-rate bond with a strike price equal to the principal.
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of a contract that pays 1=m at times Ti (1 6 i 6 mn), the value of the swaption becomes

LA½s0Nðd1Þ � sKNðd2Þ� ð29:10Þ
where

A ¼ 1

m

Xmn

i¼1

Pð0; TiÞ

If the swaption gives the holder the right to receive a fixed rate of sK instead of paying it,

the payoff from the swaption is
L

m
maxðsK � sT ; 0Þ

This is a put option on sT . As before, the payoffs are received at times Ti ð1 6 i 6 mnÞ.
The standard market model gives the value of the swaption as

LA½sKNð�d2Þ � s0Nð�d1Þ� ð29:11Þ

DerivaGem can be used to value swaptions using Black’s model. In the Cap_and_

Swap_Options worksheet, select Swap Options as the Underlying Type and Black-

European as the pricing model. The LIBOR/swap zero curve and, where necessary,

the OIS zero curve are input using continuously compounded rates.

Example 29.4

Suppose that the LIBOR yield curve (which we assume is used for discounting) is

flat at 6% per annum with continuous compounding. Consider a swaption that

gives the holder the right to pay 6.2% in a 3-year swap starting in 5 years. The

volatility of the forward swap rate is 20%. Payments are made semiannually and

the principal is $100 million. In this case,

A ¼ 1
2
ðe�0:06�5:5 þ e

�0:06�6 þ e
�0:06�6:5 þ e

�0:06�7 þ e
�0:06�7:5 þ e

�0:06�8Þ ¼ 2:0035

A rate of 6% per annum with continuous compounding translates into 6.09%

with semiannual compounding. It follows that, in this example, s0 ¼ 0:0609,

Table 29.2 Typical broker quotes for US European swaptions
(mid-market volatilities percent per annum).

Expiration Swap length (years)

1 2 3 4 5 7 10

1 month 17.75 17.75 17.75 17.50 17.00 17.00 16.00
3 months 19.50 19.00 19.00 18.00 17.50 17.00 16.00
6 months 20.00 20.00 19.25 18.50 18.75 17.75 16.75
1 year 22.50 21.75 20.50 20.00 19.50 18.25 16.75
2 years 22.00 22.00 20.75 19.50 19.75 18.25 16.75
3 years 21.50 21.00 20.00 19.25 19.00 17.75 16.50
4 years 20.75 20.25 19.25 18.50 18.25 17.50 16.00
5 years 20.00 19.50 18.50 17.75 17.50 17.00 15.50
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sK ¼ 0:062, T ¼ 5, and � ¼ 0:2, so that

d1 ¼
lnð0:0609=0:062Þ þ 0:22 � 5=2

0:2
ffiffiffi
5

p ¼ 0:1836 and d2 ¼ d1 � 0:2
ffiffiffi
5

p
¼ �0:2636

From equation (29.10), the value of the swaption (in $ millions) is

100� 2:0035� ½0:0609� Nð0:1836Þ � 0:062�Nð�0:2636Þ� ¼ 2:07

or $2.07. (This is in agreement with the price given by DerivaGem.)

Broker Quotes

Interdealer brokers provide tables of implied volatilities for European swaptions (i.e.,
values of � implied by market prices when equations (29.10) and (29.11) are used). The
instruments underlying the quotes are usually ‘‘at the money’’ in the sense that the
strike swap rate equals the forward swap rate. Table 29.2 shows typical broker quotes
provided for the US dollar market. The life of the option is shown on the vertical scale.
This varies from 1 month to 5 years. The life of the underlying swap at the maturity of
the option is shown on the horizontal scale. This varies from 1 to 10 years. The
volatilities in the 1-year column of the table exhibit a hump similar to that discussed
for caps earlier. As we move to the columns corresponding to options on longer-lived
swaps, the hump persists but it becomes less pronounced.

Theoretical Justification for the Swaption Model

The extension of Black’s model used for swaptions can be shown to be internally
consistent by considering a world that is forward risk neutral with respect to the
annuity A. The analysis in Section 28.4 shows that:

1. The current value of any security is the current value of the annuity multiplied by
the expected value of

Security price at time T

Value of the annuity at time T

in this world (see equation (28.25)).

2. The expected value of the swap rate at time T in this world equals the forward
swap rate (see equation (28.24)).

The first result shows that the value of the swaption is

LAEA½maxðsT � sK; 0Þ�
From equation (15A.1), this is

LA½EAðsT ÞNðd1Þ � sKNðd2Þ�
where

d1 ¼
ln½EAðsT Þ=sK� þ �2

T=2

�
ffiffiffiffi
T

p

d2 ¼
ln½EAðsT Þ=sK� � �2

T=2

�
ffiffiffiffi
T

p ¼ d1 � �
ffiffiffiffi
T

p

The second result shows that EAðsT Þ equals s0. (This is true if LIBOR is used as the
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risk-free discount rate from equation (28.24). In Section 29.4, we show that it is true for

OIS discounting provided that forward swap rates are determined in a way consistent

with OIS discounting.) Taken together, the results lead to the swap option pricing

formula in equation (29.10). They show that interest rates can be treated as constant

for the purposes of discounting provided that the expected swap rate is set equal to the

forward swap rate.

The Impact of Day Count Conventions

The above formulas can be made more precise by considering day count conventions.

The fixed rate for the swap underlying the swap option is expressed with a day count

convention such as actual/365 or 30/360. Suppose that T0 ¼ T and that, for the

applicable day count convention, the accrual fraction corresponding to the time period

between Ti�1 and Ti is ai. (For example, if Ti�1 corresponds to March 1 and Ti
corresponds to September 1 and the day count is actual/365, ai ¼ 184=365 ¼ 0:5041.)
The formulas that have been presented are then correct with the annuity factor A being

defined as

A ¼
Xmn

i¼1

aiPð0; TiÞ

For LIBOR discounting, forward swap rates can be calculated using equation (28.23).

29.4 OIS DISCOUNTING

The cap/floor and swaption arguments we have made so far in this chapter have

assumed that LIBOR is used not only to determine cash flows but also to determine

risk-free discount rates. When OIS discounting is used, the approach outlined in

Section 9.3 can be used to determine forward LIBOR rates. The forward LIBOR rate

for the period between tk and tkþ1 is then Ekþ1ðRkÞ, where Rk is the realized LIBOR rate

for this period and Ekþ1 denotes expectations in a world that is forward risk-neutral

with respect to a risk-free (OIS) zero-coupon bond maturing at time tkþ1.

For the valuation of caps, equation (29.9) is still correct. It leads to equation (29.7) if Fk

is defined as Ekþ1ðRkÞ and Pð0; tkþ1Þ is calculated from the OIS zero curve.

Arguments concerning the valuation of swaptions are similar. When OIS discounting

is used, equations (29.10) and (29.11) are correct. The annuity factor A is calculated

from the OIS zero curve. The forward swap rate s0 is calculated from the forward

LIBOR rates so that the forward swap is worth zero when OIS discounting is used.

These points are discussed further in Section 32.3.

29.5 HEDGING INTEREST RATE DERIVATIVES

This section discusses how the material on Greek letters in Chapter 19 can be extended

to cover interest rate derivatives.

In the context of interest rate derivatives, delta risk is the risk associated with a shift
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in the zero curve. Because there are many ways in which the zero curve can shift, many

deltas can be calculated. Some alternatives are:

1. Calculate the impact of a 1-basis-point parallel shift in the zero curve. This is
sometimes termed a DV01.

2. Calculate the impact of small changes in the quotes for each of the instruments
used to construct the zero curve.

3. Divide the zero curve (or the forward curve) into a number of sections (or
buckets). Calculate the impact of shifting the rates in one bucket by 1 basis point,
keeping the rest of the initial term structure unchanged. (This is described in
Business Snapshot 6.3.)

4. Carry out a principal components analysis as outlined in Section 22.9. Calculate a
delta with respect to the changes in each of the first few factors. The first delta then
measures the impact of a small, approximately parallel, shift in the zero curve; the
second delta measures the impact of a small twist in the zero curve; and so on.

In practice, traders tend to prefer the second approach. They argue that the only way

the zero curve can change is if the quote for one of the instruments used to compute the

zero curve changes. They therefore feel that it makes sense to focus on the exposures

arising from changes in the prices of these instruments.

When several delta measures are calculated, there are many possible gamma measures.

Suppose that 10 instruments are used to compute the zero curve and that deltas are

calculated by considering the impact of changes in the quotes for each of these. Gamma

is a second partial derivative of the form @2�=@xi @xj, where � is the portfolio value.

There are 10 choices for xi and 10 choices for xj and a total of 55 different gamma

measures. This may be ‘‘information overload’’. One approach is ignore cross-gammas

and focus on the 10 partial derivatives where i ¼ j. Another is to calculate a single

gamma measure as the second partial derivative of the value of the portfolio with respect

to a parallel shift in the zero curve. A further possibility is to calculate gammas with

respect to the first two factors in a principal components analysis.

The vega of a portfolio of interest rate derivatives measures its exposure to volatility

changes. One approach is to calculate the impact on the portfolio of making the same

small change to the Black volatilities of all caps and European swap options. However,

this assumes that one factor drives all volatilities and may be too simplistic. A better

idea is to carry out a principal components analysis on the volatilities of caps and swap

options and calculate vega measures corresponding to the first 2 or 3 factors.

SUMMARY

Black’s model and its extensions provide a popular approach for valuing European-

style interest rate options. The essence of Black’s model is that the value of the variable

underlying the option is assumed to be lognormal at the maturity of the option. In the

case of a European bond option, Black’s model assumes that the underlying bond price

is lognormal at the option’s maturity. For a cap, the model assumes that the interest

rates underlying each of the constituent caplets are lognormally distributed. In the case

of a swap option, the model assumes that the underlying swap rate is lognormally

distributed.
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Each of the models we have presented in this chapter is internally consistent, but the

models are not consistent with each other. For example, when future bond prices are

lognormal, future interest rates and swap rates are not lognormal; when future interest

rates are lognormal, future bond prices and swap rates are not lognormal. The models

cannot easily be extended to value instruments such as American swap options.

Chapters 31 and 32 present more general interest rate models, which, although more

complex, can be used for a much wider range of products.

Black’s model involves calculating the expected payoff based on the assumption that

the expected value of a variable equals its forward value and then discounting the

expected payoff at the zero rate observed in the market today. This is the correct

procedure for the ‘‘plain vanilla’’ instruments we have considered in this chapter.

However, as we shall see in the next chapter, it is not correct in all situations.

FURTHER READING

Black, F. ‘‘The Pricing of Commodity Contracts,’’ Journal of Financial Economics, 3 (March
1976): 167–79.

Hull, J., and A. White. ‘‘OIS Discounting and the Pricing of Interest Rate Derivatives,’’ Working
Paper, University of Toronto, 2013.

Practice Questions (Answers in Solutions Manual)

29.1. A company caps 3-month LIBOR at 10% per annum. The principal amount is
$20 million. On a reset date, 3-month LIBOR is 12% per annum. What payment would
this lead to under the cap? When would the payment be made?

29.2. Explain why a swap option can be regarded as a type of bond option.

29.3. Use the Black’s model to value a 1-year European put option on a 10-year bond. Assume
that the current cash price of the bond is $125, the strike price is $110, the 1-year risk-free
interest rate is 10% per annum, the bond’s forward price volatility is 8% per annum, and
the present value of the coupons to be paid during the life of the option is $10.

29.4. Explain carefully how you would use (a) spot volatilities and (b) flat volatilities to value
a 5-year cap.

29.5. Calculate the price of an option that caps the 3-month rate, starting in 15 months’ time,
at 13% (quoted with quarterly compounding) on a principal amount of $1,000. The
forward interest rate for the period in question is 12% per annum (quoted with quarterly
compounding), the 18-month risk-free interest rate (continuously compounded) is 11.5%
per annum, and the volatility of the forward rate is 12% per annum.

29.6. A bank uses Black’s model to price European bond options. Suppose that an implied price
volatility for a 5-year option on a bond maturing in 10 years is used to price a 9-year
option on the bond. Would you expect the resultant price to be too high or too low?
Explain.

29.7. Calculate the value of a 4-year European call option on bond that will mature 5 years
from today using Black’s model. The 5-year cash bond price is $105, the cash price of a
4-year bond with the same coupon is $102, the strike price is $100, the 4-year risk-free
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interest rate is 10% per annum with continuous compounding, and the volatility for the
bond price in 4 years is 2% per annum.

29.8. If the yield volatility for a 5-year put option on a bond maturing in 10 years time is
specified as 22%, how should the option be valued? Assume that, based on today’s
interest rates the modified duration of the bond at the maturity of the option will be
4.2 years and the forward yield on the bond is 7%.

29.9. What other instrument is the same as a 5-year zero-cost collar where the strike price of
the cap equals the strike price of the floor? What does the common strike price equal?

29.10. Derive a put–call parity relationship for European bond options.

29.11. Derive a put–call parity relationship for European swap options.

29.12. Explain why there is an arbitrage opportunity if the implied Black (flat) volatility of a
cap is different from that of a floor. Do the broker quotes in Table 29.1 present an
arbitrage opportunity?

29.13. When a bond’s price is lognormal can the bond’s yield be negative? Explain your answer.

29.14. What is the value of a European swap option that gives the holder the right to enter into
a 3-year annual-pay swap in 4 years where a fixed rate of 5% is paid and LIBOR is
received? The swap principal is $10 million. Assume that the LIBOR/swap yield curve is

used for discounting and is flat at 5% per annum with annual compounding and that the
volatility of the swap rate is 20%. Compare your answer with that given by DerivaGem.
Now suppose that all swap rates are are 5% and all OIS rates are 4.7%. Use DerivaGem

to calculate the LIBOR zero curve and the swap option value.

29.15. Suppose that the yield R on a zero-coupon bond follows the process

dR ¼ � dtþ � dz

where � and � are functions of R and t, and dz is a Wiener process. Use Itô’s lemma to

show that the volatility of the zero-coupon bond price declines to zero as it approaches
maturity.

29.16. Carry out a manual calculation to verify the option prices in Example 29.2.

29.17. Suppose that the 1-year, 2-year, 3-year, 4-year, and 5-year LIBOR-for-fixed swap rates
for swaps with semiannual payments are 6%, 6.4%, 6.7%, 6.9%, and 7%. The price of a

5-year semiannual cap with a principal of $100 and a cap rate of 8% is $3. Use
DerivaGem to determine:

(a) The 5-year flat volatility for caps and floors with LIBOR discounting
(b) The floor rate in a zero-cost 5-year collar when the cap rate is 8% and LIBOR

discounting is used.

(c) Answer (a) and (b) if OIS discounting is used and OIS swap rates are 100 basis
points below LIBOR swap rates.

29.18. Show that V1 þ f ¼ V2, where V1 is the value of a swaption to pay a fixed rate of sK and
receive LIBOR between times T1 and T2, f is the value of a forward swap to receive a

fixed rate of sK and pay LIBOR between times T1 and T2, and V2 is the value of a
swaption to receive a fixed rate of sK between times T1 and T2. Deduce that V1 ¼ V2 when
sK equals the current forward swap rate.

29.19. Suppose that LIBOR zero rates are as in Problem 29.17. Use DerivaGem to determine
the value of an option to pay a fixed rate of 6% and receive LIBOR on a 5-year swap
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starting in 1 year. Assume that the principal is $100 million, payments are exchanged
semiannually, and the swap rate volatility is 21%. Use LIBOR discounting.

29.20. Describe how you would (a) calculate cap flat volatilities from cap spot volatilities and
(b) calculate cap spot volatilities from cap flat volatilities.

Further Questions

29.21. Consider an 8-month European put option on a Treasury bond that currently has 14.25
years to maturity. The current cash bond price is $910, the exercise price is $900, and the
volatility for the bond price is 10% per annum. A coupon of $35 will be paid by the
bond in 3 months. The risk-free interest rate is 8% for all maturities up to 1 year. Use
Black’s model to determine the price of the option. Consider both the case where the
strike price corresponds to the cash price of the bond and the case where it corresponds
to the quoted price.

29.22. Calculate the price of a cap on the 90-day LIBOR rate in 9 months’ time when the
principal amount is $1,000. Use Black’s model with LIBOR discounting and the
following information:
(a) The quoted 9-month Eurodollar futures price ¼ 92. (Ignore differences between

futures and forward rates.)
(b) The interest rate volatility implied by a 9-month Eurodollar option ¼ 15% per

annum.
(c) The current 12-month risk-free interest rate with continuous compounding ¼ 7.5%

per annum.
(d) The cap rate ¼ 8% per annum. (Assume an actual/360 day count.)

29.23. Suppose that the LIBOR yield curve is flat at 8% with annual compounding. A swaption
gives the holder the right to receive 7.6% in a 5-year swap starting in 4 years. Payments
are made annually. The volatility of the forward swap rate is 25% per annum and the
principal is $1 million. Use Black’s model to price the swaption with LIBOR discount-
ing. Compare your answer with that given by DerivaGem.

29.24. Use the DerivaGem software to value a 5-year collar that guarantees that the maximum
and minimum interest rates on a LIBOR-based loan (with quarterly resets) are 7% and
5%, respectively. The LIBOR and OIS zero curves are currently flat at 6% and 5.8%,
respectively (with continuous compounding). Use a flat volatility of 20%. Assume that
the principal is $100. Use OIS discounting.

29.25. Use the DerivaGem software to value a European swaption that gives you the right in
2 years to enter into a 5-year swap in which you pay a fixed rate of 6% and receive
floating. Cash flows are exchanged semiannually on the swap. The 1-year, 2-year, 5-year,
and 10-year zero-coupon LIBOR-for-fixed swap rates where payments are exchanged
semiannually are 5%, 6%, 6.5%, and 7%, respectively. Assume a principal of $100 and a
volatility of 15% per annum.
(a) Use LIBOR discounting.
(b) Use OIS discounting assuming that OIS swap rates are 80 basis points below LIBOR

swap rates.
(c) Use the incorrect approach where OIS discounting is applied to swap rates calculated

with LIBOR discounting. What is the error from using this incorrect approach?
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Convexity,
Timing, and

Quanto
Adjustments

A popular two-step procedure for valuing a European-style derivative is:

1. Calculate the expected payoff by assuming that the expected value of each
underlying variable equals its forward value

2. Discount the expected payoff at the risk-free rate applicable for the time period
between the valuation date and the payoff date.

We first used this procedure when valuing FRAs and swaps. Chapter 4 shows that an
FRA can be valued by calculating the payoff on the assumption that the forward
interest rate will be realized and then discounting the payoff at the risk-free rate.
Similarly, Chapter 7 extends this, showing that swaps can be valued by calculating
cash flows on the assumption that forward rates will be realized and discounting the
cash flows at risk-free rates. Chapters 18 and 28 show that Black’s model provides a
general approach to valuing a wide range of European options—and Black’s model is
an application of the two-step procedure. The models presented in Chapter 29 for bond
options, caps/floors, and swap options are all examples of the two-step procedure.

This raises the issue of whether it is always correct to value European-style interest
rate derivatives by using the two-step procedure. The answer is no! For nonstandard
interest rate derivatives, it is sometimes necessary to modify the two-step procedure so
that an adjustment is made to the forward value of the variable in the first step. This
chapter considers three types of adjustments: convexity adjustments, timing adjust-
ments, and quanto adjustments.

30.1 CONVEXITY ADJUSTMENTS

Consider first an instrument that provides a payoff dependent on a bond yield observed
at the time of the payoff.

Usually the forward value of a variable S is calculated with reference to a forward
contract that pays off ST �K at time T . It is the value of K that causes the contract to
have zero value. As discussed in Section 28.4, forward interest rates and forward yields
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are defined differently. A forward interest rate is the rate implied by a forward zero-

coupon bond. More generally, a forward bond yield is the yield implied by the forward

bond price.

Suppose that BT is the price of a bond at time T , yT is its yield, and the (bond pricing)

relationship between BT and yT is

BT ¼ GðyT Þ

Define F0 as the forward bond price at time zero for a transaction maturing at time T

and y0 as the forward bond yield at time zero. The definition of a forward bond yield

means that

F0 ¼ Gðy0Þ

The function G is nonlinear. This means that, when the expected future bond price
equals the forward bond price (so that we are in a world that is forward risk neutral

with respect to a zero-coupon bond maturing at time T ), the expected future bond yield

does not equal the forward bond yield.

This is illustrated in Figure 30.1, which shows the relationship between bond prices

and bond yields at time T . For simplicity, suppose that there are only three possible

bond prices, B1, B2, and B3 and that they are equally likely in a world that is forward

risk neutral with respect to Pðt; T Þ. Assume that the bond prices are equally spaced, so

that B2 � B1 ¼ B3 � B2. The forward bond price is the expected bond price B2. The
bond prices translate into three equally likely bond yields: y1, y2, and y3. These are not

equally spaced. The variable y2 is the forward bond yield because it is the yield

corresponding to the forward bond price. The expected bond yield is the average of

y1, y2, and y3 and is clearly greater than y2.

Consider a derivative that provides a payoff dependent on the bond yield at time T .

From equation (28.20), it can be valued by (a) calculating the expected payoff in a world

that is forward risk neutral with respect to a zero-coupon bond maturing at time T and

(b) discounting at the current risk-free rate for maturity T . We know that the expected
bond price equals the forward price in the world being considered. We therefore need to

Bond
price

Yield

B

B

B

y y y3 2 1

3

2

1

Figure 30.1 Relationship between bond prices and bond yields at time T .
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know the value of the expected bond yield when the expected bond price equals the

forward bond price. The analysis in the appendix at the end of this chapter shows that
an approximate expression for the required expected bond yield is

ET ðyT Þ ¼ y0 � 1
2
y
2
0�

2
yT

G
00ðy0Þ

G0ðy0Þ
ð30:1Þ

where G
0 and G

00 denote the first and second partial derivatives of G, ET denotes

expectations in a world that is forward risk neutral with respect to Pðt; T Þ, and �y is the
forward yield volatility. It follows that the expected payoff can be discounted at the

current risk-free rate for maturity T provided the expected bond yield is assumed to be

y0 � 1
2
y
2
0�

2
yT

G
00ðy0Þ

G0ðy0Þ

rather than y0. The difference between the expected bond yield and the forward bond
yield

�1
2
y
2
0�

2
yT

G
00ðy0Þ

G0ðy0Þ

is known as a convexity adjustment. It corresponds to the difference between y2 and the
expected yield in Figure 30.1. (The convexity adjustment is positive because G

0ðy0Þ < 0
and G

00ðy0Þ > 0.)

Application 1: Interest Rates

For a first application of equation (30.1), consider an instrument that provides a cash flow
at time T equal to the interest rate between times T and T

� applied to a principal of L.

(This example will be useful when we consider LIBOR-in-arrears swaps in Chapter 33.)
Note that the interest rate applicable to the time period between times T and T

� is

normally paid at time T �; here it is assumed that it is paid early, at time T .

The cash flow at time T is LRT �, where � ¼ T
� � T and RT is the zero-coupon interest

rate applicable to the period between T and T
� (expressed with a compounding period

of �).1 The variable RT can be viewed as the yield at time T on a zero-coupon bond

maturing at time T
�. The relationship between the price of this bond and its yield is

GðyÞ ¼ 1

1þ y�
From equation (30.1),

ET ðRT Þ ¼ R0 � 1
2
R
2
0�

2
RT

G
00ðR0Þ

G0ðR0Þ
or

ET ðRT Þ ¼ R0 þ
R
2
0�

2
R�T

1þ R0�
ð30:2Þ

where R0 is the forward rate applicable to the period between T and T
� and �R is the

volatility of the forward rate.

1 As usual, for ease of exposition we assume actual/actual day counts in our examples.
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The value of the instrument is therefore

Pð0; T ÞL�
�
R0 þ

R
2
0�

2
R�T

1þ R0�

�

Example 30.1

Consider a derivative that provides a payoff in 3 years equal to the 1-year risk-

free zero-coupon rate (annually compounded) at that time multiplied by $1000.

Suppose that the risk-free zero rate for all maturities is 10% per annum with

annual compounding and the volatility of the forward rate applicable to the time

period between year 3 and year 4 is 20%. In this case, R0 ¼ 0:10, �R ¼ 0:20,
T ¼ 3, � ¼ 1, and Pð0; 3Þ ¼ 1=1:103 ¼ 0:7513. The value of the derivative is

0:7513� 1000� 1�
�
0:10þ 0:102 � 0:202 � 1� 3

1þ 0:10� 1

�

or $75.95. (This compares with a price of $75.13 when no convexity adjustment

is made.)

Application 2: Swap Rates

Consider next a derivative providing a payoff at time T equal to a swap rate observed at

that time. A swap rate is a par yield when LIBOR discounting is used. For the purposes

of calculating a convexity adjustment we can make an approximation and assume that

the N-year swap rate at time T equals the yield at that time on an N-year bond with a

coupon equal to today’s forward swap rate. This enables equation (30.1) to be used.

Example 30.2

Consider an instrument that provides a payoff in 3 years equal to the 3-year swap

rate at that time multiplied by $100. Suppose that payments are made annually

on the swap, the swap rate for all maturities is 12% per annum with annual

compounding, the volatility for the 3-year forward swap rate in 3 years (implied

from swap option prices) is 22%, and the LIBOR/swap zero curve is used for

discounting. When the swap rate is approximated as the yield on a 12% bond,

the relevant function GðyÞ is

GðyÞ ¼ 0:12

1þ y
þ 0:12

ð1þ yÞ2 þ
1:12

ð1þ yÞ3

G
0ðyÞ ¼ � 0:12

ð1þ yÞ2 �
0:24

ð1þ yÞ3 �
3:36

ð1þ yÞ4

G
00ðyÞ ¼ 0:24

ð1þ yÞ3 þ
0:72

ð1þ yÞ4 þ
13:44

ð1þ yÞ5

In this case the forward yield y0 is 0.12, so that G
0ðy0Þ ¼ �2:4018 and

G
00ðy0Þ ¼ 8:2546. From equation (30.1),

ET ðyT Þ ¼ 0:12þ 1
2
� 0:122 � 0:222 � 3� 8:2546

2:4018
¼ 0:1236
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A forward swap rate of 0.1236 (=12.36%) rather than 0.12 should therefore be
assumed when valuing the instrument. The instrument is worth

100� 0:1236

1:123
¼ 8:80

or $8.80. (This compares with a price of 8.54 obtained without any convexity
adjustment.)

30.2 TIMING ADJUSTMENTS

In this section consider the situation where a market variable V is observed at time T

and its value is used to calculate a payoff that occurs at a later time T
�. Define:

VT : Value of V at time T

ET ðVT Þ : Expected value of VT in a world that is forward risk-neutral with respect to
Pðt; T Þ

ET � ðVT Þ : Expected value of VT in a world that is forward risk-neutral with respect to
Pðt; T �Þ.

The numeraire ratio when we move from the Pðt; T Þ numeraire to the Pðt; T �Þ numeraire
(see Section 28.8) is

W ¼ Pðt; T �Þ
Pðt; T Þ

This is the forward price of a zero-coupon bond lasting between times T and T
�. Define:

�V : Volatility of V

�W : Volatility of W

�VW : Correlation between V and W.

From equation (28.35), the change of numeraire increases the growth rate of V by �V ,
where

�V ¼ �VW�V�W ð30:3Þ
This result can be expressed in terms of the forward interest rate between times T and T

�.
Define:

R : Forward interest rate for period between T and T
�, expressed with a compound-

ing frequency of m

�R : Volatility of R.

The relationship between W and R is

W ¼ 1

ð1þ R=mÞmðT ��T Þ

The relationship between the volatility of W and the volatility of R can be calculated
from Itô’s lemma as

�WW ¼ �RR
@W

@R
¼ � �RRðT � � T Þ

ð1þ R=mÞmðT ��T Þþ1
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so that

�W ¼ � �RRðT � � T Þ
1þ R=m

Hence equation (30.3) becomes2

�V ¼ � �VR�V�RRðT � � T Þ
1þ R=m

where �VR ¼ ��VW is the instantaneous correlation between V and R. As an approxi-

mation, it can be assumed that R remains constant at its initial value, R0, and that the
volatilities and correlation in this expression are constant to get, at time zero,

ET � ðVT Þ ¼ ET ðVT Þ exp
�
� �VR�V�RR0ðT � � T Þ

1þ R0=m
T

�
ð30:4Þ

Example 30.3

Consider a derivative that provides a payoff in 6 years equal to the value of a stock

index observed in 5 years. Suppose that 1,200 is the forward value of the stock
index for a contract maturing in 5 years. Suppose that the volatility of the index is
20%, the volatility of the forward interest rate between years 5 and 6 is 18%, and

the correlation between the two is �0:4. Suppose further that the risk-free zero
curve is flat at 8% with annual compounding. The results just produced can be
used with V defined as the value of the index, T ¼ 5, T � ¼ 6, m ¼ 1, R0 ¼ 0:08,
�VR ¼ �0:4, �V ¼ 0:20, and �R ¼ 0:18, so that

ET � ðVT Þ ¼ ET ðVT Þ exp
�
��0:4� 0:20� 0:18� 0:08� 1

1þ 0:08
� 5

�

or ET �ðVT Þ ¼ 1:00535ET ðVT Þ. From the arguments in Chapter 28, ET ðVT Þ is the
forward price of the index, or 1,200. It follows that ET �ðVT Þ ¼ 1,200� 1:00535 ¼
1,206:42. Using again the arguments in Chapter 28, it follows from equation (28.20)
that the value of the derivative is 1,206:42� Pð0; 6Þ. In this case, Pð0; 6Þ ¼
1=1:086 ¼ 0:6302, so that the value of the derivative is 760.25.

Application 1 Revisited

The analysis just given provides a different way of producing the result in Application 1
of Section 30.1. Using the notation from that application, RT is the interest rate between

T and T
� and R0 as the forward rate for the period between time T and T

�. From
equation (28.22),

ET � ðRT Þ ¼ R0

Applying equation (30.4) with V equal to R gives

ET � ðRT Þ ¼ ET ðRT Þ exp
�
� �2

RR0�

1þ R0�
T

�

2 Variables R and W are negatively correlated. We can reflect this by setting �W ¼ ��RRðT � � T Þ=ð1þ R=mÞ,
which is a negative number, and setting �VW ¼ �VR. Alternatively we can change the sign of �W so that it is

positive and set �VW ¼ ��VR. In either case, we end up with the same formula for �V .
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where � ¼ T
� � T (note that m ¼ 1=�). It follows that

R0 ¼ ET ðRT Þ exp
�
� �2

RR0T�

1þ R0�

�
or

ET ðRT Þ ¼ R0 exp

�
�2
RR0T�

1þ R0�

�

Approximating the exponential function gives

ET ðRT Þ ¼ R0 þ
R
2
0�

2
R�T

1þ R0�

This is the same result as equation (30.2).

30.3 QUANTOS

A quanto or cross-currency derivative is an instrument where two currencies are
involved. The payoff is defined in terms of a variable that is measured in one of the
currencies and the payoff is made in the other currency. One example of a quanto is the
CME futures contract on the Nikkei discussed in Business Snapshot 5.3. The market
variable underlying this contract is the Nikkei 225 index (which is measured in yen), but
the contract is settled in US dollars.

Consider a quanto that provides a payoff in currency X at time T . Assume that the
payoff depends on the value V of a variable that is observed in currency Y at time T .
Define:

PXðt; T Þ : Value at time t in currency X of a zero-coupon bond paying off 1 unit of
currency X at time T

PY ðt; T Þ : Value at time t in currency Y of a zero-coupon bond paying off 1 unit of
currency Y at time T

VT : Value of V at time T

EXðVT Þ : Expected value of VT in a world that is forward risk neutral with respect
to PXðt; T Þ

EY ðVT Þ : Expected value of VT in a world that is forward risk neutral with respect
to PY ðt; T Þ.

The numeraire ratio when we move from the PY ðt; T Þ numeraire to the PXðt; T Þ
numeraire is

WðtÞ ¼ PXðt; T Þ
PY ðt; T Þ

SðtÞ

where SðtÞ is the spot exchange rate (units of Y per unit of X) at time t. It follows from
this that the numeraire ratio WðtÞ is the forward exchange rate (units of Y per unit of X)
for a contract maturing at time T . Define:

�W Volatility of W

�V : Volatility of V

�VW : Instantaneous correlation between V and W.
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From equation (28.35), the change of numeraire increases the growth rate of V by �V ,
where

�V ¼ �VW�V�W ð30:5Þ
If it is assumed that the volatilities and correlation are constant, this means that

EXðVT Þ ¼ EY ðVT Þe�VW�V�WT

or as an approximation
EXðVT Þ ¼ EY ðVT Þð1þ �VW�V�WT Þ ð30:6Þ

This equation will be used for the valuation of what are known as diff swaps in
Chapter 33.

Example 30.4

Suppose that the current value of the Nikkei stock index is 15,000 yen, the 1-year
dollar risk-free rate is 5%, the 1-year yen risk-free rate is 2%, and the Nikkei
dividend yield is 1%. The forward price of the Nikkei for a 1-year contract
denominated in yen can be calculated in the usual way from equation (5.8) as

15,000eð0:02�0:01Þ�1 ¼ 15,150:75

Suppose that the volatility of the index is 20%, the volatility of the 1-year forward
yen per dollar exchange rate is 12%, and the correlation between the two is 0.3. In
this case EY ðVT Þ ¼ 15,150:75, �V ¼ 0:20, �W ¼ 0:12 and � ¼ 0:3. From equa-
tion (30.6), the expected value of the Nikkei in a world that is forward risk neutral
with respect to a dollar bond maturing in 1 year is

15,150:75e0:3�0:2�0:12�1 ¼ 15,260:23

This is the forward price of the Nikkei for a contract that provides a payoff in
dollars rather than yen. (As an approximation, it is also the futures price of such a
contract.)

Using Traditional Risk-Neutral Measures

The forward risk-neutral measure works well when payoffs occur at only one time. In
other situations, it is often more appropriate to use the traditional risk-neutral measure.
Suppose the process followed by a variable V in the traditional currency-Y risk-neutral
world is known and we wish to estimate its process in the traditional currency-X risk-
neutral world. Define:

S : Spot exchange rate (units of Y per unit of X)

�S : Volatility of S

�V : Volatility of V

� : Instantaneous correlation between S and V .

In this case, the change of numeraire is from the money market account in currency Y

to the money market account in currency X (with both money market accounts being
denominated in currency X). Define gX as the value of the money market account in
currency X and gY as the value of the money market account in currency Y. The
numeraire ratio is

gXS=gY
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The variables gXðtÞ and gY ðtÞ have a stochastic drift but zero volatility as explained in

Section 28.4. From Itô’s lemma it follows that the volatility of the numeraire ratio is �S.
The change of numeraire therefore involves increasing the expected growth rate of V by

��V�S ð30:7Þ

The market price of risk changes from zero to ��S. This result enables what is known as

Siegel’s paradox to be understood (see Business Snapshot 30.1).

Example 30.5

A 2-year American option provides a payoff of S �K pounds sterling where S is

the level of the S&P 500 at the time of exercise and K is the strike price. The

current level of the S&P 500 is 1,200. The risk-free interest rates in sterling and

dollars are both constant at 5% and 3%, respectively, the correlation between the

dollars/sterling exchange rate and the S&P 500 is 0.2, the volatility of the S&P 500

is 25%, and the volatility of the exchange rate is 12%. The dividend yield on the

S&P 500 is 1.5%.

Business Snapshot 30.1 Siegel’s Paradox

Consider two currencies,X and Y. Suppose that the interest rates in the two currencies,
rX and rY , are constant. Define S as the number of units of currency Y per unit of
currencyX. As explained in Chapter 5, a currency is an asset that provides a yield at the
foreign risk-free rate. The traditional risk-neutral process for S is therefore

dS ¼ ðrY � rXÞS dtþ �SS dz

From Itô’s lemma, this implies that the process for 1=S is

dð1=SÞ ¼ ðrX � rY þ �2
SÞð1=SÞ dt� �Sð1=SÞ dz

This leads to what is known as Siegel’s paradox. Since the expected growth rate of S
is rY � rX in a risk-neutral world, symmetry suggests that the expected growth rate
of 1=S should be rX � rY rather than rX � rY þ �2

S.
To understand Siegel’s paradox it is necessary to appreciate that the process we

have given for S is the risk-neutral process for S in a world where the numeraire is the
money market account in currency Y. The process for 1=S, because it is deduced from
the process for S, therefore also assumes that this is the numeraire. Because 1=S is the
number of units of X per unit of Y , to be symmetrical we should measure the process
for 1=S in a world where the numeraire is the money market account in currency X.
Equation (30.7) shows that when we change the numeraire, from the money market
account in currency Y to the money market account in currency X, the growth rate of
a variable V increases by ��V�S, where � is the correlation between S and V . In this
case, V ¼ 1=S, so that � ¼ �1 and �V ¼ �S. It follows that the change of numeraire
causes the growth rate of 1=S to increase by ��2

S. This neutralizes the þ�2
S in the

process given above for 1=S. The process for 1=S in a world where the numeraire is
the money market account in currency X is therefore

dð1=SÞ ¼ ðrX � rY Þð1=SÞ dt� �Sð1=SÞ dz
This is symmetrical with the process we started with for S. The paradox is resolved!
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This option can be valued by constructing a binomial tree for the S&P 500
using as the numeraire the money market account in the UK (i.e., using the
traditional risk-neutral world as seen from the perspective of a UK investor).
From equation (30.7), the change in numeraire from the US to UK money market
account leads to an increase in the expected growth rate in the S&P 500 of

0:2� 0:25� 0:12 ¼ 0:006

or 0.6%. The growth rate of the S&P 500 using a US dollar numeraire is
3%� 1:5% ¼ 1:5%. The growth rate using the sterling numeraire is therefore
2.1%. The risk-free interest rate in sterling is 5%. The S&P 500 therefore behaves
like an asset providing a dividend yield of 5%� 2:1% ¼ 2:9% under the sterling
numeraire. Using the parameter values of S ¼ 1,200, K ¼ 1,200, r ¼ 0:05,
q ¼ 0:029, � ¼ 0:25, and T ¼ 2 with 100 time steps, DerivaGem estimates the
value of the option as £179.83.

SUMMARY

When valuing a derivative providing a payoff at a particular future time it is natural to
assume that the variables underlying the derivative equal their forward values and
discount at the rate of interest applicable from the valuation date to the payoff date.
This chapter has shown that this is not always the correct procedure.

When a payoff depends on a bond yield y observed at time T the expected yield
should be assumed to be higher than the forward yield as indicated by equation (30.1).
This result can be adapted for situations where a payoff depends on a swap rate. When
a variable is observed at time T but the payoff occurs at a later time T

� the forward
value of the variable should be adjusted as indicated by equation (30.4). When a
variable is observed in one currency but leads to a payoff in another currency the
forward value of the variable should also be adjusted. In this case the adjustment is
shown in equation (30.6).

These results will be used when nonstandard swaps are considered in Chapter 33.
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Practice Questions (Answers in Solutions Manual)

30.1. Explain how you would value a derivative that pays off 100R in 5 years, where R is the
1-year interest rate (annually compounded) observed in 4 years. What difference would it
make if the payoff were in (a) 4 years and (b) 6 years?
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30.2. Explain whether any convexity or timing adjustments are necessary when:
(a) We wish to value a spread option that pays off every quarter the excess (if any) of the

5-year swap rate over the 3-month LIBOR rate applied to a principal of $100. The
payoff occurs 90 days after the rates are observed.

(b) We wish to value a derivative that pays off every quarter the 3-month LIBOR rate
minus the 3-month Treasury bill rate. The payoff occurs 90 days after the rates are
observed.

30.3. Suppose that in Example 29.3 of Section 29.2 the payoff occurs after 1 year (i.e., when
the interest rate is observed) rather than in 15 months. What difference does this make to
the inputs to Black’s model?

30.4. The LIBOR/swap yield curve (used for discounting) is flat at 10% per annum with annual
compounding. Calculate the value of an instrument where, in 5 years’ time, the 2-year
swap rate (with annual compounding) is received and a fixed rate of 10% is paid. Both are
applied to a notional principal of $100. Assume that the volatility of the swap rate is 20%
per annum. Explain why the value of the instrument is different from zero.

30.5. What difference does it make in Problem 30.4 if the swap rate is observed in 5 years, but
the exchange of payments takes place in (a) 6 years, and (b) 7 years? Assume that the
volatilities of all forward rates are 20%. Assume also that the forward swap rate for the
period between years 5 and 7 has a correlation of 0.8 with the forward interest rate
between years 5 and 6 and a correlation of 0.95 with the forward interest rate between
years 5 and 7.

30.6. The price of a bond at time T , measured in terms of its yield, is GðyT Þ. Assume geometric
Brownian motion for the forward bond yield y in a world that is forward risk neutral
with respect to a bond maturing at time T . Suppose that the growth rate of the forward
bond yield is � and its volatility �y.
(a) Use Itô’s lemma to calculate the process for the forward bond price in terms of �,

�y, y, and GðyÞ.
(b) The forward bond price should follow a martingale in the world considered. Use

this fact to calculate an expression for �.
(c) Show that the expression for � is, to a first approximation, consistent with

equation (30.1).

30.7. The variable S is an investment asset providing income at rate q measured in currency A.
It follows the process

dS ¼ �SS dtþ �SS dz

in the real world. Defining new variables as necessary, give the process followed by S,
and the corresponding market price of risk, in:
(a) A world that is the traditional risk-neutral world for currency A
(b) A world that is the traditional risk-neutral world for currency B
(c) A world that is forward risk neutral with respect to a zero-coupon currency A bond

maturing at time T

(d) A world that is forward risk neutral with respect to a zero-coupon currency B bond
maturing at time T .

30.8. A call option provides a payoff at time T of maxðST �K; 0Þ yen, where ST is the dollar
price of gold at time T and K is the strike price. Assuming that the storage costs of gold
are zero and defining other variables as necessary, calculate the value of the contract.
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30.9. A Canadian equity index is 400. The Canadian dollar is currently worth 0.70 US dollars.
The risk-free interest rates in Canada and the US are constant at 6% and 4%,
respectively. The dividend yield on the index is 3%. Define Q as the number of Canadian
dollars per U.S dollar and S as the value of the index. The volatility of S is 20%, the
volatility of Q is 6%, and the correlation between S and Q is 0.4. Use DerivaGem to
determine the value of a 2-year American-style call option on the index if:
(a) It pays off in Canadian dollars the amount by which the index exceeds 400.
(b) It pays off in US dollars the amount by which the index exceeds 400.

Further Questions

30.10. Consider an instrument that will pay off S dollars in 2 years, where S is the value of the
Nikkei index. The index is currently 20,000. The yen/dollar exchange rate is 100 (yen per
dollar). The correlation between the exchange rate and the index is 0.3 and the dividend
yield on the index is 1% per annum. The volatility of the Nikkei index is 20% and the
volatility of the yen/dollar exchange rate is 12%. The interest rates (assumed constant) in
the US and Japan are 4% and 2%, respectively.
(a) What is the value of the instrument?
(b) Suppose that the exchange rate at some point during the life of the instrument is Q

and the level of the index is S. Show that a US investor can create a portfolio that
changes in value by approximately �S dollar when the index changes in value by
�S yen by investing S dollars in the Nikkei and shorting SQ yen.

(c) Confirm that this is correct by supposing that the index changes from 20,000
to 20,050 and the exchange rate changes from 100 to 99.7.

(d) How would you delta hedge the instrument under consideration?

30.11. Suppose that the LIBOR yield curve is flat at 8% (with continuous compounding). The
payoff from a derivative occurs in 4 years. It is equal to the 5-year rate minus the 2-year
rate at this time, applied to a principal of $100 with both rates being continuously
compounded. (The payoff can be positive or negative.) Calculate the value of the
derivative. Assume that the volatility for all rates is 25%. What difference does it make
if the payoff occurs in 5 years instead of 4 years? Assume all rates are perfectly
correlated. Use LIBOR discounting.

30.12. Suppose that the payoff from a derivative will occur in 10 years and will equal the 3-year
US dollar swap rate for a semiannual-pay swap observed at that time applied to a certain
principal. Assume that the swap yield curve (used for discounting) is flat at 8%
(semiannually compounded) per annum in dollars and 3% (semiannually compounded)
in yen. The forward swap rate volatility is 18%, the volatility of the 10-year ‘‘yen per
dollar’’ forward exchange rate is 12%, and the correlation between this exchange rate
and US dollar interest rates is 0.25. What is the value of the derivative if (a) the swap rate
is applied to a principal of $100 with a dollar payoff and (b) it is applied to 100 million
yen with a yen payoff?”

30.13. The payoff from a derivative will occur in 8 years. It will equal the average of the 1-year
risk-free interest rates observed at times 5, 6, 7, and 8 years applied to a principal of
$1,000. The risk-free yield curve is flat at 6% with annual compounding and the
volatilities of all rates are 16%. Assume perfect correlation between all rates. What is
the value of the derivative?
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APPENDIX

PROOF OF THE CONVEXITY ADJUSTMENT FORMULA

This appendix calculates a convexity adjustment for forward bond yields. Suppose
that the payoff from a derivative at time T depends on a bond yield observed at that
time. Define:

y0 : Forward bond yield observed today for a forward contract with maturity T

yT : Bond yield at time T

BT : Price of the bond at time T

�y : Volatility of the forward bond yield.

Suppose that
BT ¼ GðyT Þ

Expanding GðyT Þ in a Taylor series about yT ¼ y0 yields the following approximation:

BT ¼ Gðy0Þ þ ðyT � y0ÞG0ðy0Þ þ 0:5ðyT � y0Þ2G00ðy0Þ
where G

0 and G
00 are the first and second partial derivatives of G. Taking expectations

in a world that is forward risk neutral with respect to a zero-coupon bond maturing at
time T gives

ET ðBT Þ ¼ Gðy0Þ þ ET ðyT � y0ÞG0ðy0Þ þ 1
2
ET ½ðyT � y0Þ2�G00ðy0Þ

where ET denotes expectations in this world. The expression Gðy0Þ is by definition the
forward bond price. Also, because of the particular world we are working in, ET ðBT Þ
equals the forward bond price. Hence ET ðBT Þ ¼ Gðy0Þ, so that

ET ðyT � y0ÞG0ðy0Þ þ 1
2
ET ½ðyT � y0Þ2�G00ðy0Þ ¼ 0

The expression ET ½ðyT � y0Þ2� is approximately �2
yy

2
0T . Hence it is approximately true

that

ET ðyT Þ ¼ y0 � 1
2y

2
0�

2
yT

G
00ðy0Þ

G0ðy0Þ
This shows that, to obtain the expected bond yield in a world that is forward risk
neutral with respect to a zero-coupon bond maturing at time T , the term

�1
2
y
2
0�

2
yT

G
00ðy0Þ

G0ðy0Þ
should be added to the forward bond yield. This is the result in equation (30.1). For an
alternative proof, see Problem 30.6.
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Interest Rate
Derivatives:

Models of the
Short Rate

The models for pricing interest rate options that we have presented so far make the
assumption that the probability distribution of an interest rate, a bond price, or some
other variable at a future point in time is lognormal. They are widely used for valuing
instruments such as caps, European bond options, and European swap options.
However, they have limitations. They do not provide a description of how interest rates
evolve through time. Consequently, they cannot be used for valuing interest rate
derivatives that are American-style or structured notes.

This chapter and the next discuss alternative approaches for overcoming these limita-
tions. These involve building what is known as a term structure model. This is a model
describing the evolution of all zero-coupon interest rates.1 This chapter focuses on term
structure models constructed by specifying the behavior of the short-term interest rate, r.

This chapter is concerned with modeling a single risk-free zero curve. The trend
toward OIS discounting, discussed in Chapter 9, means that it is often necessary to
model two zero curves simultaneously. The models in this chapter are then applied to
the OIS rate and a separate model of the spread between OIS and LIBOR rates is
developed. Section 32.3 discusses how this can be done.

31.1 BACKGROUND

The risk-free short rate, r, at time t is the rate that applies to an infinitesimally short
period of time at time t. It is sometimes referred to as the instantaneous short rate. Bond
prices, option prices, and other derivative prices depend only on the process followed by r
in a risk-neutral world. The process for r in the real world is not used. As explained in
Chapter 28, the traditional risk-neutral world is a world where, in a very short time
period between t and tþ�t, investors earn on average rðtÞ�t. All processes for r that will
be considered in this chapter, except where otherwise stated, are processes in this risk-
neutral world.

1 An advantage of term structure models is that the convexity and timing adjustments discussed in the

previous chapter are not required.
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From equation (28.19), the value at time t of an interest rate derivative that provides a
payoff of fT at time T is

Ê½e��rðT�tÞ
fT � ð31:1Þ

where �r is the average value of r in the time interval between t and T , and Ê denotes
expected value in the traditional risk-neutral world.

As usual, define Pðt; T Þ as the price at time t of a risk-free zero-coupon bond that pays
off $1 at time T . From equation (31.1),

Pðt; T Þ ¼ Ê½e��rðT�tÞ� ð31:2Þ
If Rðt; T Þ is the continuously compounded risk-free interest rate at time t for a term of
T � t, then

Pðt; T Þ ¼ e
�Rðt;T ÞðT�tÞ

so that

Rðt; T Þ ¼ � 1

T � t
lnPðt; T Þ ð31:3Þ

and, from equation (31.2),

Rðt; T Þ ¼ � 1

T � t
ln Ê½e��rðT�tÞ� ð31:4Þ

This equation enables the term structure of interest rates at any given time to be
obtained from the value of r at that time and the risk-neutral process for r. It shows
that, once the process for r has been defined, everything about the initial zero curve and
its evolution through time can be determined.

Suppose r follows the general process

dr ¼ mðr; tÞ dtþ sðr; tÞ dz
From Itô’s lemma, any derivative dependent on r follows the process

df ¼
�
@f

@t
þm

@f

@r
þ 1

2
s
2 @f

@r2

�
dtþ s

@f

@r
dz

Because we are working in the traditional risk-neutral world, if the derivative provides
no income, this process must have the form

df ¼ rf dtþ � � �
so that

@f

@t
þm

@f

@r
þ 1

2
s
2 @f

@r2
¼ rf ð31:5Þ

This is the equivalent of the Black–Scholes–Merton differential equation for interest
rate derivatives. One particular solution to the equation must be the zero-coupon bond
price Pðt; T Þ.

31.2 EQUILIBRIUM MODELS

Equilibrium models usually start with assumptions about economic variables and
derive a process for the short rate, r. They then explore what the process for r implies
about bond prices and option prices.
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In a one-factor equilibrium model, the process for r involves only one source of
uncertainty. Usually the risk-neutral process for the short rate is described by an Itô

process of the form
dr ¼ mðrÞ dtþ sðrÞ dz

The instantaneous drift, m, and instantaneous standard deviation, s, are assumed to
be functions of r, but are independent of time. The assumption of a single factor is
not as restrictive as it might appear. A one-factor model implies that all rates move in
the same direction over any short time interval, but not that they all move by the same

amount. The shape of the zero curve can therefore change with the passage of time.

This section considers three one-factor equilibrium models:

mðrÞ ¼ �r ; sðrÞ ¼ �r (Rendleman and Bartter model)

mðrÞ ¼ aðb� rÞ ; sðrÞ ¼ � (Vasicek model)

mðrÞ ¼ aðb� rÞ ; sðrÞ ¼ �
ffiffi
r

p
(Cox, Ingersoll, and Ross model)

The Rendleman and Bartter Model

In Rendleman and Bartter’s model, the risk-neutral process for r is2

dr ¼ �r dtþ �r dz

where � and � are constants. This means that r follows geometric Brownian motion. The

process for r is of the same type as that assumed for a stock price in Chapter 15. It can be
represented using a binomial tree similar to the one used for stocks in Chapter 13.3

The assumption that the short-term interest rate behaves like a stock price is a natural

starting point but is less than ideal. One important difference between interest rates and
stock prices is that interest rates appear to be pulled back to some long-run average level
over time. This phenomenon is known as mean reversion. When r is high, mean
reversion tends to cause it to have a negative drift; when r is low, mean reversion tends

to cause it to have a positive drift. Mean reversion is illustrated in Figure 31.1. The
Rendleman and Bartter model does not incorporate mean reversion.

There are compelling economic arguments in favor of mean reversion. When rates are

high, the economy tends to slow down and there is low demand for funds from
borrowers. As a result, rates decline. When rates are low, there tends to be a high demand
for funds on the part of borrowers and rates tend to rise.

The Vasicek Model

In Vasicek’s model, the risk-neutral process for r is

dr ¼ aðb� rÞ dtþ � dz

where a, b, and � are nonnegative constants.4 This model incorporates mean reversion.

2 See R. Rendleman and B. Bartter, ‘‘The Pricing of Options on Debt Securities,’’ Journal of Financial and

Quantitative Analysis, 15 (March 1980): 11–24.
3 The way that the interest rate tree is used is explained later in the chapter.
4 See O.A. Vasicek, ‘‘An Equilibrium Characterization of the Term Structure,’’ Journal of Financial

Economics, 5 (1977): 177–88.
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The short rate is pulled to a level b at rate a. Superimposed upon this ‘‘pull’’ is a

normally distributed stochastic term � dz.
Zero-coupon bond prices in Vasicek’s model are given by

Pðt; T Þ ¼ Aðt; T Þe�Bðt;T ÞrðtÞ ð31:6Þ
where

Bðt; T Þ ¼ 1� e
�aðT�tÞ

a
ð31:7Þ

and

Aðt; T Þ ¼ exp

�ðBðt; T Þ � T þ tÞða2b� �2=2Þ
a2

� �2
Bðt; T Þ2
4a

�
ð31:8Þ

When a ¼ 0, Bðt; T Þ ¼ T � t and Aðt; T Þ ¼ exp½�2ðT � tÞ3=6�.
To see this, note that m ¼ aðb� rÞ and s ¼ � in differential equation (31.5), so that

@f

@t
þ aðb� rÞ @f

@r
þ 1

2
�2 @f

@r2
¼ rf

By substitution, we see that f ¼ Aðt; T Þ exp�Bðt;T Þr satisfies this differential equation when

Bt � aBþ 1 ¼ 0

and

At � abABþ 1
2
�2
AB

2 ¼ 0

where subscripts denote derivatives. The expressions for Aðt; T Þ and Bðt; T Þ in equa-

tions (31.7) and (31.8) are solutions to these equations. What is more, because

AðT ; T Þ ¼ 1 and BðT ; T Þ ¼ 0, the boundary condition PðT ; T Þ ¼ 1 is satisfied.

Interest
rate

High interest rate
has negative trend

Low interest rate
has positive trend

Reversion
level

Time

Figure 31.1 Mean reversion.
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The Cox, Ingersoll, and Ross Model

Cox, Ingersoll, and Ross (CIR) have proposed the following alternative model:5

dr ¼ aðb� rÞ dtþ �
ffiffi
r

p
dz

where a, b, and � are nonnegative constants. This has the same mean-reverting drift as
Vasicek, but the standard deviation of the change in the short rate in a short period of
time is proportional to

ffiffi
r

p
. This means that, as the short-term interest rate increases, the

standard deviation increases.
Bond prices in the CIR model have the same general form as those in Vasicek’s

model,

Pðt; T Þ ¼ Aðt; T Þe�Bðt;T ÞrðtÞ

but the functions Bðt; T Þ and Aðt; T Þ are different:

Bðt; T Þ ¼ 2ðe�ðT�tÞ � 1Þ
ð� þ aÞðe�ðT�tÞ � 1Þ þ 2�

and

Aðt; T Þ ¼
�

2�eðaþ�ÞðT�tÞ=2

ð� þ aÞðe�ðT�tÞ � 1Þ þ 2�

�2ab=�2

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2�2

p
.

To see this result, we substitute m ¼ aðb� rÞ and s ¼ �
ffiffi
r

p
into differential equa-

tion (31.5) to get
@f

@t
þ aðb� rÞ @f

@r
þ 1

2
�2
r
@f

@r2
¼ rf

As in the case of Vasicek’s model, we can prove the bond-pricing result by substituting
f ¼ Aðt; T Þe�Bðt;T Þr into the differential equation. In this case, Aðt; T Þ and Bðt; T Þ are
solutions of

Bt � aB� 1
2
�2
B
2 þ 1 ¼ 0; At � abAB ¼ 0

Furthermore, the boundary condition PðT ; T Þ ¼ 1 is satisfied.

Properties of Vasicek and CIR

The Aðt; T Þ and Bðt; T Þ functions are different for Vasicek and CIR, but for both
models

Pðt; T Þ ¼ Aðt; T Þe�Bðt;T ÞrðtÞ

so that
@Pðt; T Þ
@rðtÞ ¼ �Bðt; T ÞPðt; T Þ ð31:9Þ

From equation (31.3), the zero rate at time t for a period of T � t is

Rðt; T Þ ¼ � 1

T � t
lnAðt; T Þ þ 1

T � t
Bðt; T ÞrðtÞ

5 See J. C. Cox, J. E. Ingersoll, and S.A. Ross, ‘‘A Theory of the Term Structure of Interest Rates,’’

Econometrica, 53 (1985): 385–407.
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This shows that the entire term structure at time t can be determined as a function of

rðtÞ once a, b, and � have been chosen. The rate Rðt; T Þ is linearly dependent on rðtÞ.6
This means that the value of rðtÞ determines the level of the term structure at time t. The

shape of the term structure at time t is independent of rðtÞ, but does depend on t. As

shown in Figure 31.2, the shape at a particular time can be upward sloping, downward

sloping, or slightly ‘‘humped.’’

In Chapter 4, we saw that the modified duration D of a bond or other instrument

dependent on interest rates, which has a price of Q, is defined by

�Q

Q
¼ �D�y

where y denotes the size of a parallel shift in the yield curve. An alternative duration

measure D̂, which can be used in conjunction with Vasicek or CIR, is defined as

Figure 31.2 Possible shapes of term structure in the Vasicek and CIR models.

6 Some researchers have developed two-factor equilibrium models that give a richer set of possible

movements in the term structure than either Vasicek or CIR. See, for example, F.A. Longstaff and E. S.

Schwartz, ‘‘Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model,’’

Journal of Finance, 47, 4 (September 1992): 1259–82.
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follows:

D̂ ¼ � 1

Q

@Q

@r

When Q is the zero-coupon bond, Pðt; T Þ, equation (31.9) shows that D̂ ¼ Bðt; T Þ.
Example 31.1

Consider a zero-coupon bond lasting 4 years. In this case,D ¼ 4, so that a 10-basis-

point (0.1%) parallel shift in the term structure leads to a decrease of approximately

0:4% in the bond price. If Vasicek’s model is used with a ¼ 0:1,

D̂ ¼ Bð0; 4Þ ¼ ð1� e
�0:1�4Þ

0:1
¼ 3:30

This means that a 10-basis-point increase in the short rate leads to a decrease in

the bond price that is approximately 0.33%. The sensitivity of the bond price to

movements in the short rate is less than to parallel shifts in the zero curve because

of the impact of mean reversion.

When Q is a portfolio of n zero-coupon bonds, Pðt; TiÞ ð1 6 i 6 nÞ, and ci is the

principal of the ith bond, we have

D̂ ¼ � 1

Q

@Q

@r
¼ � 1

Q

Xn
i¼1

ci
@Pðt; TiÞ

@r
¼

Xn
i¼1

ciPðt; TiÞ
Q

D̂i

where D̂i is the D̂ for Pðt; TiÞ. This shows that the D̂ for a coupon-bearing bond can be

calculated as a weighted average of the D̂’s for the underlying zero-coupon bonds,

similarly to the way the usual duration measure D is calculated (see Table 4.6).

A convexity measure for Vasicek and CIR can be defined similarly to the duration

measure (see Problem 31.21).

The expected growth rate of Pðt; T Þ in the traditional risk-neutral world at time t is

rðtÞ because Pðt; T Þ is the price of a traded security. Since Pðt; T Þ is a function of rðtÞ,
the coefficient of dzðtÞ in the process for Pðt; T Þ can be calculated from Itô’s lemma as

� @Pðt; T Þ=@rðtÞ for Vasicek and �
ffiffiffiffiffiffiffi
rðtÞp

@Pðt; T Þ=@rðtÞ for CIR. Substituting from

equation (31.9), the processes for Pðt; T Þ in a risk-neutral world are therefore

Vasicek : dPðt; T Þ ¼ rðtÞPðt; T Þ dt� �Bðt; T ÞPðt; T Þ dzðtÞ
CIR : dPðt; T Þ ¼ rðtÞPðt; T Þ dt� �

ffiffiffiffiffiffiffi
rðtÞ

p
Bðt; T ÞPðt; T Þ dzðtÞ

To compare the term structure of interest rates given by Vasicek and CIR for a

particular value of r, it makes sense to use the same a and b. However, the Vasicek �,
�vas, should be chosen to be approximately equal to the CIR �, �cir, times

ffiffiffiffiffiffiffi
rðtÞp

. For

example, if r is 4% and �vas ¼ 0:01, an appropriate value for the �cir would be

0:01=
ffiffiffiffiffiffiffiffiffi
0:04

p ¼ 0:05. Software for experimenting with the models can be found at

www.rotman.utoronto.ca/�hull/VasicekCIR. Under Vasicek, r can become negative.

This is not possible under CIR.7

7 In CIR, when interest rates get close to zero, the variability of interest rates becomes very small. In all

circumstances, negative interest rates are not possible. Zero interest rates are not possible when 2ab > �2.

734 CHAPTER 31

http://www.rotman.utoronto.ca/~hull/VasicekCIR


Applications of Equilibrium Models

As will be discussed in the next section, when derivatives are being valued it is
important that the model used provides an exact fit to the current term structure of
interest rates. However, when a Monte Carlo simulation is being carried out over a
long period of time for the purposes of scenario analysis, the equilibrium models
discussed in this section can be useful tools. A pension fund or insurance company
that is interested in the value of its portfolio in 20 years is likely to feel that the precise
shape of the current term structure of interest rates has relatively little bearing on its
risks.

Once one of the models we have discussed has been chosen, one approach is to
determine the parameters from past movements in the short-term interest rate. (The
1-month or 3-month rate can be used as a proxy for the short-term rate.) Data can be
collected on daily, weekly, or monthly changes in the short rate and parameters can be
estimated either by regressing �r against r (see Example 31.2) or by using maximum-
likelihood methods (see Problem 31.13). Another approach is to collect data on the
prices of bonds and use an application such as Solver in Excel to determine the values
of a, b, and � that minimize the sums of squares of the difference between the market
prices of bonds and their model prices.

There is an important difference between the two approaches. The first approach
(fitting historical data) provides parameter estimates in the real world. The second
approach (fitting bond prices) provides parameter estimates in the risk-neutral world.
When carrying out a scenario analysis, we are interested in modeling the behavior of the
short rate in the real world. However, we are also likely to be interested in knowing the
complete term structure of interest rates at different times during the life of the Monte
Carlo simulation. For this we need risk-neutral parameter estimates.

When we move from the real world to the risk-neutral world, the volatility of the
short rate does not change, but the drift does. To determine the change in the drift, it is
necessary to make an estimate of the market price of interest rate risk. Ahmad and
Wilmott do this by comparing the slope of the zero-coupon yield curve with the real-
world drift of the short-term interest rate.8 Their estimate of the long-term average
market price of interest rate risk for US interest rates is about �1.2. There is a
considerable variation in their estimate of the market price of interest rate risk through
time. During stressed market conditions, when the ‘‘fear factor’’ is high (for example,
during the 2007–2009 credit crisis), the market price of interest rate risk was found to be
a much larger negative number than �1.2.

Example 31.2

Suppose that the discrete version of Vasicek’s model

�r ¼ aðb� rÞ�tþ ��
ffiffiffiffiffi
�t

p

is used to fit weekly data on a short-term interest rate over a period of 10 years for
the purposes of a Monte Carlo simulation. Assume that when �r (the change in
the short rate in 1 week) is regressed against r, the slope is �0:004, the intercept is
0.00016, and the standard error of the estimate is 0.001. In this case, �t ¼ 1=52,
so that a=52 ¼ 0:004, ab=52 ¼ 0:00016, and �=

ffiffiffiffiffi
52

p ¼ 0:001. This means that

8 See R. Ahmad and P. Wilmott, ‘‘The Market Price of Interest-Rate Risk: Measuring and Modeling Fear

and Greed in the Fixed-Income Markets,’’ Wilmott, January 2007, 64–70.
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a ¼ 0:21, b ¼ 0:04, and � ¼ 0:0072. (These parameters indicate that the short rate
reverts to 4.0% with a reversion rate of 21%. The volatility of the short rate at any
given time is 0.72% divided by the short rate.) The short rate can then be
simulated in the real world.

To determine the risk-neutral process for r, we note that the proportional drift
of r is aðb� rÞ=r and its volatility is �=r. From the results in Chapter 28, the
proportional drift reduces by ��=r when we move from the real world to the risk-
neutral world where � is the market price of interest rate risk. The process for r in
the risk-neutral world is therefore

dr ¼ ½aðb� rÞ � ��� dtþ � dz
or

dr ¼ ½aðb� � rÞ� dtþ � dz
where

b
� ¼ b� ��=a

Given the Ahmad and Wilmott results, we might choose to set � ¼ �1:2, so that
b
� ¼ 0:04þ 1:2� 0:01=0:2 ¼ 0:1. Equations (31.6) to (31.8) (with b ¼ b

�) can
then be used to determine the complete term structure of interest rates at any
point during the Monte Carlo simulation.

Example 31.3

The Cox–Ingersoll–Ross model

dr ¼ aðb� rÞ dtþ �
ffiffi
r

p
dz

can be used to value bonds of any maturity using the model’s analytic results.
Suppose that the values of a, b, and � that minimize the sum of the squared
differences between the market prices of a set of bonds and the prices given by the
model are a ¼ 0:15, b ¼ 0:06, and � ¼ 0:05. These values of the parameters give a
best-fit risk-neutral process for the short-term interest rate. In this case, the pro-
portional drift in the short rate is aðb� rÞ=r and the volatility of the short rate
�=

ffiffi
r

p
. From the results in Chapter 28, the proportional drift increases by ��=

ffiffi
r

p
when we move from the risk-neutral world to the real world where � is the market
price of interest rate risk. The real-world process for r is therefore

dr ¼ ½aðb� rÞ þ ��
ffiffi
r

p � dtþ �
ffiffi
r

p
dz

This can be used to simulate the process for the short rate in the real world.9 At
any given time longer rates can be determined using the risk-neutral process and
analytic results. As before, we might choose to set � ¼ �1:2.

31.3 NO-ARBITRAGE MODELS

The disadvantage of the equilibrium models we have presented is that they do not
automatically fit today’s term structure of interest rates. By choosing the parameters
judiciously, they can be made to provide an approximate fit to many of the term
structures that are encountered in practice. But the fit is not an exact one. Most traders

9 In moving between the real world and the risk-neutral world for the Cox–Ingersoll–Ross model, it can be

convenient to assume that � is proportional to
ffiffi
r

p
or 1=

ffiffi
r

p
, so as to preserve the functional form for the drift.
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find this unsatisfactory. Not unreasonably, they argue that they can have very little

confidence in the price of a bond option when the model used does not price the

underlying bond correctly. A 1% error in the price of the underlying bond may lead to

a 25% error in an option price.

A no-arbitrage model is a model designed to be exactly consistent with today’s term

structure of interest rates. The essential difference between an equilibrium and a no-

arbitrage model is therefore as follows. In an equilibrium model, today’s term structure

of interest rates is an output. In a no-arbitrage model, today’s term structure of interest

rates is an input.

In an equilibrium model, the drift of the short rate (i.e., the coefficient of dt) is not

usually a function of time. In a no-arbitrage model, the drift is, in general, dependent

on time. This is because the shape of the initial zero curve governs the average path

taken by the short rate in the future in a no-arbitrage model. If the zero curve is steeply

upward-sloping for maturities between t1 and t2, then r has a positive drift between

these times; if it is steeply downward-sloping for these maturities, then r has a negative

drift between these times.

It turns out that some equilibrium models can be converted to no-arbitrage models

by including a function of time in the drift of the short rate. We now consider the Ho–

Lee, Hull–White (one- and two-factor), Black–Derman–Toy, and Black–Karasinski

models.

The Ho–Lee Model

Ho and Lee proposed the first no-arbitrage model of the term structure in a paper in

1986.10 They presented the model in the form of a binomial tree of bond prices with

two parameters: the short-rate standard deviation and the market price of risk of the

short rate. It has since been shown that the continuous-time limit of the model in the

traditional risk-neutral world is

dr ¼ �ðtÞ dtþ � dz ð31:10Þ

where �, the instantaneous standard deviation of the short rate, is constant and �ðtÞ is a
function of time chosen to ensure that the model fits the initial term structure. The

variable �ðtÞ defines the average direction that r moves at time t. This is independent of

the level of r. Ho and Lee’s parameter that concerns the market price of risk is

irrelevant when the model is used to price interest rate derivatives.

Technical Note 31 at www.rotman.utoronto.ca/�hull/TechnicalNotes shows that

�ðtÞ ¼ Ftð0; tÞ þ �2
t ð31:11Þ

where Fð0; tÞ is the instantaneous forward rate for a maturity t as seen at time zero and

the subscript t denotes a partial derivative with respect to t. As an approximation, �ðtÞ
equals Ftð0; tÞ. This means that the average direction that the short rate will be moving in

the future is approximately equal to the slope of the instantaneous forward curve. The

Ho–Lee model is illustrated in Figure 31.3. Superimposed on the average movement in

the short rate is the normally distributed random outcome.

10 See T. S.Y. Ho and S.-B. Lee, ‘‘Term Structure Movements and Pricing Interest Rate Contingent Claims,’’

Journal of Finance, 41 (December 1986): 1011–29.
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Technical Note 31 also shows that

Pðt; T Þ ¼ Aðt; T Þe�rðtÞðT�tÞ ð31:12Þ
where

lnAðt; T Þ ¼ ln
Pð0; T Þ
Pð0; tÞ þ ðT � tÞFð0; tÞ � 1

2
�2
tðT � tÞ2

From Section 4.6, Fð0; tÞ ¼ �@ lnPð0; tÞ=@t. The zero-coupon bond prices, Pð0; tÞ, are
known for all t from today’s term structure of interest rates. Equation (31.12) therefore
gives the price of a zero-coupon bond at a future time t in terms of the short rate at

time t and the prices of bonds today.

The Hull–White (One-Factor) Model

In a paper published in 1990, Hull and White explored extensions of the Vasicek model

that provide an exact fit to the initial term structure.11 One version of the extended
Vasicek model that they consider is

dr ¼ ½�ðtÞ � ar� dtþ � dz ð31:13Þ
or

dr ¼ a

�
�ðtÞ
a

� r

�
dtþ � dz

where a and � are constants. This is known as the Hull–White model. It can be
characterized as the Ho–Lee model with mean reversion at rate a. Alternatively, it

r

r

r

r

Short 
rate

Time

Initial forward curve

Figure 31.3 The Ho–Lee model.

11 See J. Hull and A. White, ‘‘Pricing Interest Rate Derivative Securities,’’ Review of Financial Studies, 3,

4 (1990): 573–92.
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can be characterized as the Vasicek model with a time-dependent reversion level. At

time t, the short rate reverts to �ðtÞ=a at rate a. The Ho–Lee model is a particular case of
the Hull–White model with a ¼ 0.

The model has the same amount of analytic tractability as Ho–Lee. Technical Note 31

shows that

�ðtÞ ¼ Ftð0; tÞ þ aFð0; tÞ þ �2

2a
ð1� e

�2atÞ ð31:14Þ

The last term in this equation is usually fairly small. If we ignore it, the equation implies
that the drift of the process for r at time t is Ftð0; tÞ þ a½Fð0; tÞ � r�. This shows that, on
average, r follows the slope of the initial instantaneous forward rate curve. When it

deviates from that curve, it reverts back to it at rate a. The model is illustrated in
Figure 31.4.

Technical Note 31 shows that bond prices at time t in the Hull–White model are

given by

Pðt; T Þ ¼ Aðt; T Þe�Bðt;T ÞrðtÞ ð31:15Þ
where

Bðt; T Þ ¼ 1� e
�aðT�tÞ

a
ð31:16Þ

and

lnAðt; T Þ ¼ ln
Pð0; T Þ
Pð0; tÞ þ Bðt; T ÞFð0; tÞ � 1

4a3
�2ðe�aT � e

�atÞ2ðe2at � 1Þ ð31:17Þ

As we show in the next section, European bond options can be valued analytically

using the Ho–Lee and Hull–White models. A method for representing the models in the

r

r

r

r

Short 
rate

Time

Initial forward curve

Figure 31.4 The Hull–White model.
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form of a trinomial tree is given later in this chapter. This is useful when American

options and other derivatives that cannot be valued analytically are considered.

The Black–Derman–Toy Model

In 1990, Black, Derman, and Toy proposed a binomial-tree model for a lognormal

short-rate process.12 Their procedure for building the binomial tree is explained in
Technical Note 23 at www.rotman.utoronto.ca/�hull/TechnicalNotes. It can be

shown that the stochastic process corresponding to the model is

d ln r ¼ ½�ðtÞ � aðtÞ ln r� dtþ �ðtÞ dz
with

aðtÞ ¼ � �0ðtÞ
�ðtÞ

where �0ðtÞ is the derivative of � with respect to t. This model has the advantage over

Ho–Lee and Hull–White that the interest rate cannot become negative. The Wiener

process dz can cause lnðrÞ to be negative, but r itself is always positive. One disadvan-
tage of the model is that there are no analytic properties. A more serious disadvantage

is that the way the tree is constructed imposes a relationship between the volatility

parameter �ðtÞ and the reversion rate parameter aðtÞ. The reversion rate is positive only

if the volatility of the short rate is a decreasing function of time.

In practice, the most useful version of the model is when �ðtÞ is constant. The

parameter a is then zero, so that there is no mean reversion and the model reduces to

d ln r ¼ �ðtÞ dtþ � dz

This can be characterized as a lognormal version of the Ho–Lee model.

The Black–Karasinski Model

In 1991, Black and Karasinski developed an extension of the Black–Derman–Toy

model where the reversion rate and volatility are determined independently of each

other.13 The most general version of the model is

d ln r ¼ ½�ðtÞ � aðtÞ ln r� dtþ �ðtÞ dz

The model is the same as Black–Derman–Toy model except that there is no relation

between aðtÞ and �ðtÞ. In practice, aðtÞ and �ðtÞ are often assumed to be constant, so that

the model becomes

d ln r ¼ ½�ðtÞ � a ln r� dtþ � dz ð31:18Þ

As in the case of all the models we are considering, the �ðtÞ function is determined to
provide an exact fit to the initial term structure of interest rates. The model has no

analytic tractability, but later in this chapter we will describe a convenient way of

12 See F. Black, E. Derman, and W. Toy, ‘‘A One-Factor Model of Interest Rates and Its Application to

Treasury Bond Prices,’’ Financial Analysts Journal, January/February (1990): 33–39.
13 See F. Black and P. Karasinski, ‘‘Bond and Option Pricing When Short Rates are Lognormal,’’ Financial

Analysts Journal, July/August (1991): 52–59.
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simultaneously determining �ðtÞ and representing the process for r in the form of a

trinomial tree.

The Hull–White Two-Factor Model

Hull and White have developed a two-factor model:14

df ðrÞ ¼ ½�ðtÞ þ u� af ðrÞ� dtþ �1 dz1 ð31:19Þ

where f ðrÞ is a function of r and u has an initial value of zero and follows the process

du ¼ �bu dtþ �2 dz2

As in the one-factor models just considered, the parameter �ðtÞ is chosen to make the

model consistent with the initial term structure. The stochastic variable u is a com-

ponent of the reversion level of f ðrÞ and itself reverts to a level of zero at rate b. The

parameters a, b, �1, and �2 are constants and dz1 and dz2 are Wiener processes with

instantaneous correlation �.
This model provides a richer pattern of term structure movements and a richer

pattern of volatilities than one-factor models of r. For more information on the

analytical properties of the model and the way a tree can be constructed for it, see

Technical Note 14 at www.rotman.utoronto.ca/�hull/TechnicalNotes.

31.4 OPTIONS ON BONDS

Some of the models just presented allow options on zero-coupon bonds to be valued

analytically. For the Vasicek, Ho–Lee, and Hull–White one-factor models, the price at

time zero of a call option that matures at time T on a zero-coupon bond maturing at

time s is

LPð0; sÞNðhÞ �KPð0; T ÞNðh� �PÞ ð31:20Þ

where L is the principal of the bond, K is its strike price, and

h ¼ 1

�P
ln

LPð0; sÞ
Pð0; T ÞKþ �P

2

The price of a put option on the bond is

KPð0; T ÞNð�hþ �PÞ � LPð0; sÞNð�hÞ

Technical Note 31 shows that, in the case of the Vasicek and Hull–White models,

�P ¼ �

a
½1� e

�aðs�T Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2aT

2a

s

14 See J. Hull and A. White, ‘‘Numerical Procedures for Implementing Term Structure Models II: Two-

Factor Models,’’ Journal of Derivatives, 2, 2 (Winter 1994): 37–48.
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and, in the case of the Ho–Lee model,

�P ¼ �ðs� T Þ
ffiffiffiffi
T

p

Equation (31.20) is essentially the same as Black’s model for pricing bond options in

Section 29.1 with the forward bond price volatility equaling �P=
ffiffiffiffi
T

p
. As explained in

Section 29.2, an interest rate cap or floor can be expressed as a portfolio of options on

zero-coupon bonds. It can, therefore, be valued analytically using the equations just

presented.

There are also formulas for valuing options on zero-coupon bonds in the Cox,

Ingersoll, and Ross model, which we presented in Section 31.2. These involve integrals

of the noncentral chi-square distribution.

Options on Coupon-Bearing Bonds

In a one-factor model of r, all zero-coupon bonds move up in price when r decreases

and all zero-coupon bonds move down in price when r increases. As a result, a one-

factor model allows a European option on a coupon-bearing bond to be expressed as

the sum of European options on zero-coupon bonds. The procedure is as follows:

1. Calculate r�, the critical value of r for which the price of the coupon-bearing bond
equals the strike price of the option on the bond at the option maturity T .

2. Calculate prices of European options with maturity T on the zero-coupon bonds
that comprise the coupon-bearing bond. The strike prices of the options equal the
values the zero-coupon bonds will have at time T when r ¼ r�.

3. Set the price of the European option on the coupon-bearing bond equal to the
sum of the prices on the options on zero-coupon bonds calculated in Step 2.

This allows options on coupon-bearing bonds to be valued for the Vasicek, Cox,

Ingersoll, and Ross, Ho–Lee, and Hull–White models. As explained in Business Snap-

shot 29.2, a European swap option can be viewed as an option on a coupon-bearing

bond. It can, therefore, be valued using this procedure. For more details on the procedure

and a numerical example, see Technical Note 15 at www.rotman.utoronto.ca/�hull/

TechnicalNotes.

31.5 VOLATILITY STRUCTURES

The models we have looked at give rise to different volatility environments. Figure 31.5

shows the volatility of the 3-month forward rate as a function of maturity for Ho–Lee,

Hull–White one-factor and Hull–White two-factor models. The term structure of

interest rates is assumed to be flat.

For Ho–Lee the volatility of the 3-month forward rate is the same for all maturities.

In the one-factor Hull–White model the effect of mean reversion is to cause the

volatility of the 3-month forward rate to be a declining function of maturity. In the

Hull–White two-factor model when parameters are chosen appropriately, the volatility

of the 3-month forward rate has a ‘‘humped’’ look. The latter is consistent with

empirical evidence and implied cap volatilities discussed in Section 29.2.
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31.6 INTEREST RATE TREES

An interest rate tree is a discrete-time representation of the stochastic process for the

short rate in much the same way as a stock price tree is a discrete-time representation of

the process followed by a stock price. If the time step on the tree is �t, the rates on the

tree are the continuously compounded �t-period rates. The usual assumption when a

tree is constructed is that the �t-period rate, R, follows the same stochastic process as

the instantaneous rate, r, in the corresponding continuous-time model. The main

difference between interest rate trees and stock price trees is in the way that discounting

is done. In a stock price tree, the discount rate is usually assumed to be the same at each

node or a function of time. In an interest rate tree, the discount rate varies from node to

node.

It often proves to be convenient to use a trinomial rather than a binomial tree for

interest rates. The main advantage of a trinomial tree is that it provides an extra degree

of freedom, making it easier for the tree to represent features of the interest rate process

such as mean reversion. As mentioned in Section 21.8, using a trinomial tree is

equivalent to using the explicit finite difference method.

Illustration of Use of Trinomial Trees

To illustrate how trinomial interest rate trees are used to value derivatives, consider the

simple example shown in Figure 31.6. This is a two-step tree with each time step equal

to 1 year in length so that �t ¼ 1 year. Assume that the up, middle, and down

Volatility
Volatility

Volatility

Maturity Maturity

Maturity

(a) (b)

(c)

Figure 31.5 Volatility of 3-month forward rate as a function of maturity for (a) the
Ho–Lee model, (b) the Hull–White one-factor model, and (c) the Hull–White two-
factor model (when parameters are chosen appropriately).
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probabilities are 0.25, 0.50, and 0.25, respectively, at each node. The assumed �t-period
rate is shown as the upper number at each node.15

The tree is used to value a derivative that provides a payoff at the end of the second
time step of

max½100ðR� 0:11Þ; 0�
where R is the �t-period rate. The calculated value of this derivative is the lower
number at each node. At the final nodes, the value of the derivative equals the payoff.
For example, at node E, the value is 100� ð0:14� 0:11Þ ¼ 3. At earlier nodes, the value
of the derivative is calculated using the rollback procedure explained in Chapters 13
and 21. At node B, the 1-year interest rate is 12%. This is used for discounting to obtain
the value of the derivative at node B from its values at nodes E, F, and G as

½0:25� 3þ 0:5� 1þ 0:25� 0�e�0:12�1 ¼ 1:11

At node C, the 1-year interest rate is 10%. This is used for discounting to obtain the
value of the derivative at node C as

ð0:25� 1þ 0:5� 0þ 0:25� 0Þe�0:1�1 ¼ 0:23

At the initial node, A, the interest rate is also 10% and the value of the derivative is

ð0:25� 1:11þ 0:5� 0:23þ 0:25� 0Þe�0:1�1 ¼ 0:35

Nonstandard Branching

It sometimes proves convenient to modify the standard trinomial branching pattern that
is used at all nodes in Figure 31.6. Three alternative branching possibilities are shown in

Figure 31.6 Example of the use of trinomial interest rate trees. Upper number at each
node is rate; lower number is value of instrument.

15 We explain later how the probabilities and rates on an interest rate tree are determined.
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Figure 31.7. The usual branching is shown in Figure 31.7a. It is ‘‘up one/straight along/

down one’’. One alternative to this is ‘‘up two/up one/straight along’’, as shown in

Figure 31.7b. This proves useful for incorporating mean reversion when interest rates are

very low. A third branching pattern shown in Figure 31.7c is ‘‘straight along/down one/

down two’’. This is useful for incorporating mean reversion when interest rates are very

high. The use of different branching patterns is illustrated in the following section.

31.7 A GENERAL TREE-BUILDING PROCEDURE

Hull and White have proposed a robust two-stage procedure for constructing trinomial

trees to represent a wide range of one-factor models.16 This section first explains how

the procedure can be used for the Hull–White model in equation (31.13) and then

shows how it can be extended to represent other models, such as Black–Karasinski.

First Stage

The Hull–White model for the instantaneous short rate r is

dr ¼ ½�ðtÞ � ar� dtþ � dz

We suppose that the time step on the tree is constant and equal to �t.17

Assume that the �t rate, R, follows the same process as r.

dR ¼ ½�ðtÞ � aR� dtþ � dz

Clearly, this is reasonable in the limit as �t tends to zero. The first stage in building a

tree for this model is to construct a tree for a variable R
� that is initially zero and

follows the process

dR
� ¼ �aR

�
dtþ � dz

Figure 31.7 Alternative branching methods in a trinomial tree.

16 See J. Hull and A. White, ‘‘Numerical Procedures for Implementing Term Structure Models I: Single-

Factor Models,’’Journal of Derivatives, 2, 1 (1994): 7–16; and J. Hull and A. White, ‘‘Using Hull–White

Interest Rate Trees,’’ Journal of Derivatives, (Spring 1996): 26–36.
17 See Technical Note 16 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a discussion of how

nonconstant time steps can be used.
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This process is symmetrical about R� ¼ 0. The variable R
�ðtþ�tÞ � R

�ðtÞ is normally

distributed. If terms of higher order than �t are ignored, the expected value of

R
�ðtþ�tÞ � R

�ðtÞ is �aR
�ðtÞ�t and the variance of R�ðtþ�tÞ � R

�ðtÞ is �2�t.

The spacing between interest rates on the tree, �R, is set as

�R ¼ �
ffiffiffiffiffiffiffiffi
3�t

p

This proves to be a good choice of �R from the viewpoint of error minimization.

The objective of the first stage of the procedure is to build a tree similar to that shown

in Figure 31.8 for R
�. To do this, it is first necessary to resolve which of the three

branching methods shown in Figure 31.7 will apply at each node. This will determine

the overall geometry of the tree. Once this is done, the branching probabilities must also

be calculated.

Define ði; j Þ as the node where t ¼ i�t and R
� ¼ j�R. (The variable i is a positive

integer and j is a positive or negative integer.) The branching method used at a node must

lead to the probabilities on all three branches being positive. Most of the time, the

branching shown in Figure 31.7a is appropriate. When a > 0, it is necessary to switch

from the branching in Figure 31.7a to the branching in Figure 31.7c for a sufficiently large

j. Similarly, it is necessary to switch from the branching in Figure 31.7a to the branching

in Figure 31.7b when j is sufficiently negative. Define jmax as the value of j where we

switch from the Figure 31.7a branching to the Figure 31.7c branching and jmin as the

value of j where we switch from the Figure 31.7a branching to the Figure 31.7b

branching. Hull and White show that probabilities are always positive if jmax is set equal

A

B

C

D H

I

G

F

E

Figure 31.8 Tree for R� in Hull–White model (first stage).

Node : A B C D E F G H I

R� ð%Þ 0.000 1.732 0.000 �1.732 3.464 1.732 0.000 �1.732 �3.464

pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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to the smallest integer greater than 0:184=ða�tÞ and jmin is set equal to �jmax.
18 Define

pu, pm, and pd as the probabilities of the highest, middle, and lowest branches emanating

from the node. The probabilities are chosen to match the expected change and variance

of the change in R
� over the next time interval �t. The probabilities must also sum to

unity. This leads to three equations in the three probabilities.

As already mentioned, the mean change in R
� in time �t is �aR

��t and the variance

of the change is �2�t. At node ði; j Þ, R� ¼ j�R. If the branching has the form shown

in Figure 31.7a, the pu, pm, and pd at node ði; j Þ must satisfy the following three

equations to match the mean and standard deviation:

pu�R� pd�R ¼ �aj�R�t

pu�R
2 þ pd�R

2 ¼ �2�tþ a
2
j
2�R

2�t
2

pu þ pm þ pd ¼ 1

Using �R ¼ �
ffiffiffiffiffiffiffiffi
3�t

p
, the solution to these equations is

pu ¼ 1
6
þ 1

2
ða2j2�t

2 � aj�tÞ
pm ¼ 2

3
� a

2
j
2�t

2

pd ¼ 1
6
þ 1

2
ða2j2�t

2 þ aj�tÞ

Similarly, if the branching has the form shown in Figure 31.7b, the probabilities are

pu ¼ 1
6
þ 1

2
ða2j2�t

2 þ aj�tÞ
pm ¼ � 1

3
� a

2
j
2�t

2 � 2aj�t

pd ¼ 7
6
þ 1

2
ða2j2�t

2 þ 3aj�tÞ

Finally, if the branching has the form shown in Figure 31.7c, the probabilities are

pu ¼ 7
6
þ 1

2
ða2j2�t

2 � 3aj�tÞ
pm ¼ � 1

3
� a

2
j
2�t

2 þ 2aj�t

pd ¼ 1
6
þ 1

2
ða2j2�t

2 � aj�tÞ

To illustrate the first stage of the tree construction, suppose that � ¼ 0:01, a ¼ 0:1,
and �t ¼ 1 year. In this case, �R ¼ 0:01

ffiffiffi
3

p ¼ 0:0173, jmax is set equal to the smallest

integer greater than 0.184/0.1, and jmin ¼ �jmax. This means that jmax ¼ 2 and

jmin ¼ �2 and the tree is as shown in Figure 31.8. The probabilities on the branches

emanating from each node are shown below the tree and are calculated using the

equations above for pu, pm, and pd.

Note that the probabilities at each node in Figure 31.8 depend only on j. For

example, the probabilities at node B are the same as the probabilities at node F.

Furthermore, the tree is symmetrical. The probabilities at node D are the mirror image

of the probabilities at node B.

18 The probabilities are positive for any value of jmax between 0:184=ða�tÞ and 0:816=ða�tÞ and for any

value of jmin between �0:184=ða�tÞ and �0:816=ða�tÞ. Changing the branching at the first possible node

proves to be computationally most efficient.

Interest Rate Derivatives: Models of the Short Rate 747



Second Stage

The second stage in the tree construction is to convert the tree for R� into a tree for R.

This is accomplished by displacing the nodes on the R
�-tree so that the initial term

structure of interest rates is exactly matched. Define

	ðtÞ ¼ RðtÞ � R
�ðtÞ

The 	ðtÞ’s that apply as the time step �t on the tree becomes infinitesimally small can be

calculated analytically from equation (31.14).19 However, we want a tree with a finite �t

to match the term structure exactly. We therefore use an iterative procedure to

determine the 	’s.
Define 	i as 	ði�tÞ, the value of R at time i�t on the R-tree minus the corresponding

value of R� at time i�t on the R�-tree. Define Qi;j as the present value of a security that

pays off $1 if node ði; jÞ is reached and zero otherwise. The 	i and Qi;j can be calculated

using forward induction in such a way that the initial term structure is matched exactly.

Illustration of Second Stage

Suppose that the continuously compounded zero rates in the example in Figure 31.8 are

as shown in Table 31.1. The value of Q0;0 is 1.0. The value of 	0 is chosen to give the

right price for a zero-coupon bond maturing at time �t. That is, 	0 is set equal to the

initial �t-period interest rate. Because �t ¼ 1 in this example, 	0 ¼ 0:03824. This

defines the position of the initial node on the R-tree in Figure 31.9. The next step is

to calculate the values of Q1;1, Q1;0, and Q1;�1. There is a probability of 0.1667 that the

ð1; 1Þ node is reached and the discount rate for the first time step is 3.82%. The value of

Q1;1 is therefore 0:1667e�0:0382 ¼ 0:1604. Similarly, Q1;0 ¼ 0:6417 and Q1;�1 ¼ 0:1604.
Once Q1;1,Q1;0, and Q1;�1 have been calculated, 	1 can be determined. It is chosen to

give the right price for a zero-coupon bond maturing at time 2�t. Because�R ¼ 0:01732
and�t ¼ 1, the price of this bond as seen at node B is e�ð	1þ0:01732Þ. Similarly, the price as

Table 31.1 Zero rates for example in
Figures 31.8 and 31.9.

Maturity Rate (%)

0.5 3.430
1.0 3.824
1.5 4.183
2.0 4.512
2.5 4.812
3.0 5.086

19 To estimate the instantaneous 	ðtÞ analytically, we note that

dR ¼ ½�ðtÞ � aR� dtþ � dz and dR� ¼ �aR� dtþ � dz

so that d	 ¼ ½�ðtÞ � a	ðtÞ� dt. Using equation (31.14), it can be seen that the solution to this is

	ðtÞ ¼ Fð0; tÞ þ �2

2a2
ð1� e�atÞ2:
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seen at node C is e�	1 and the price as seen at node D is e�ð	1�0:01732Þ. The price as seen at
the initial node A is therefore

Q1;1e
�ð	1þ0:01732Þ þQ1;0e

�	1 þQ1;�1e
�ð	1�0:01732Þ ð31:21Þ

From the initial term structure, this bond price should be e
�0:04512�2 ¼ 0:9137. Sub-

stituting for the Q’s in equation (31.21),

0:1604e�ð	1þ0:01732Þ þ 0:6417e�	1 þ 0:1604e�ð	1�0:01732Þ ¼ 0:9137
or

e
�	1 ð0:1604e�0:01732 þ 0:6417 þ 0:1604e0:01732Þ ¼ 0:9137

or

	1 ¼ ln

�
0:1604e�0:01732 þ 0:6417 þ 0:1604e0:01732

0:9137

�
¼ 0:05205

This means that the central node at time �t in the tree for R corresponds to an interest
rate of 5.205% (see Figure 31.9).

The next step is to calculate Q2;2, Q2;1, Q2;0, Q2;�1, and Q2;�2. The calculations can
be shortened by using previously determined Q values. Consider Q2;1 as an example.
This is the value of a security that pays off $1 if node F is reached and zero otherwise.
Node F can be reached only from nodes B and C. The interest rates at these nodes are
6.937% and 5.205%, respectively. The probabilities associated with the B–F and C–F

Figure 31.9 Tree for R in Hull–White model (the second stage).

Node : A B C D E F G H I

R ð%Þ 3.824 6.937 5.205 3.473 9.716 7.984 6.252 4.520 2.788

pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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branches are 0.6566 and 0.1667. The value at node B of a security that pays $1 at

node F is therefore 0:6566e�0:06937. The value at node C is 0:1667e�0:05205. The variable

Q2;1 is 0:6566e�0:06937 times the present value of $1 received at node B plus

0:1667e�0:05205 times the present value of $1 received at node C; that is,

Q2;1 ¼ 0:6566e�0:06937 � 0:1604þ 0:1667e�0:05205 � 0:6417 ¼ 0:1998

Similarly, Q2;2 ¼ 0:0182, Q2;0 ¼ 0:4736, Q2;�1 ¼ 0:2033, and Q2;�2 ¼ 0:0189.
The next step in producing the R-tree in Figure 31.9 is to calculate 	2. After that, the

Q3;j’s can then be computed. The variable 	3 can then be calculated, and so on.

Formulas for 	’s and Q’s

To express the approach more formally, suppose that the Qi;j have been determined for

i 6 m (m > 0). The next step is to determine 	m so that the tree correctly prices a zero-

coupon bond maturing at ðmþ 1Þ�t. The interest rate at node ðm; jÞ is 	m þ j�R, so

that the price of a zero-coupon bond maturing at time ðmþ 1Þ�t is given by

Pmþ1 ¼
Xnm

j¼�nm

Qm;j exp½�ð	m þ j�RÞ�t� ð31:22Þ

where nm is the number of nodes on each side of the central node at time m�t. The

solution to this equation is

	m ¼ ln
Pnm

j¼�nm
Qm;je

�j�R�t � lnPmþ1

�t

Once 	m has been determined, the Qi;j for i ¼ mþ 1 can be calculated using

Qmþ1;j ¼
X
k

Qm;kqðk; jÞ exp½�ð	m þ k�RÞ�t�

where qðk; jÞ is the probability of moving from node ðm; kÞ to node ðmþ 1; jÞ and the

summation is taken over all values of k for which this is nonzero.

Extension to Other Models

The procedure that has just been outlined can be extended to more general models of

the form

df ðrÞ ¼ ½�ðtÞ � af ðrÞ� dtþ � dz ð31:23Þ

where f is a montonic function of r. This family of models has the property that they

can fit any term structure.20

20 Not all no-arbitrage models have this property. For example, the extended-CIR model, considered by Cox,

Ingersoll, and Ross (1985) and Hull and White (1990), which has the form

dr ¼ ½�ðtÞ � ar� dtþ �
ffiffi
r

p
dz

cannot fit yield curves where the forward rate declines sharply. This is because the process is not well defined

when �ðtÞ is negative.
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As before, we assume that the �t period rate, R, follows the same process as r :

df ðRÞ ¼ ½�ðtÞ � af ðRÞ� dtþ � dz

We start by setting x ¼ f ðRÞ, so that

dx ¼ ½�ðtÞ � ax� dtþ � dz

The first stage is to build a tree for a variable x
� that follows the same process as x

except that �ðtÞ ¼ 0 and the initial value is zero. The procedure here is identical to the
procedure already outlined for building a tree such as that in Figure 31.8.

As in Figure 31.9, the nodes at time i�t are then displaced by an amount 	i to provide
an exact fit to the initial term structure. The equations for determining 	i and Qi;j

inductively are slightly different from those for the f ðRÞ ¼ R case. The value of Q at the
first node, Q0;0, is set equal to 1. Suppose that the Qi;j have been determined for i 6 m

(m > 0). The next step is to determine 	m so that the tree correctly prices an ðmþ 1Þ�t

zero-coupon bond. Define g as the inverse function of f so that the �t-period interest
rate at the jth node at time m�t is

gð	m þ j�xÞ
The price of a zero-coupon bond maturing at time ðmþ 1Þ�t is given by

Pmþ1 ¼
Xnm

j¼�nm

Qm;j exp½�gð	m þ j�xÞ�t� ð31:24Þ

Figure 31.10 Tree for lognormal model.

Node: A B C D E F G H I

x �3.373 �2.875 �3.181 �3.487 �2.430 �2.736 �3.042 �3.349 �3.655
R ð%Þ 3.430 5.642 4.154 3.058 8.803 6.481 4.772 3.513 2.587
pu 0.1667 0.1177 0.1667 0.2277 0.8609 0.1177 0.1667 0.2277 0.0809
pm 0.6666 0.6546 0.6666 0.6546 0.0582 0.6546 0.6666 0.6546 0.0582
pd 0.1667 0.2277 0.1667 0.1177 0.0809 0.2277 0.1667 0.1177 0.8609
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This equation can be solved using a numerical procedure such as Newton–Raphson.

The value 	0 of 	 when m ¼ 0, is f
�
Rð0Þ�.

Once 	m has been determined, the Qi;j for i ¼ mþ 1 can be calculated using

Qmþ1;j ¼
X
k

Qm;kqðk; jÞ exp½�gð	m þ k�xÞ�t�

where qðk; j Þ is the probability of moving from node ðm; kÞ to node ðmþ 1; j Þ and the

summation is taken over all values of k where this is nonzero.

Figure 31.10 shows the results of applying the procedure to the Black–Karasinski

model in equation (31.18):

d lnðrÞ ¼ ½�ðtÞ � a lnðrÞ� dtþ � dz

when a ¼ 0:22, � ¼ 0:25, �t ¼ 0:5, and the zero rates are as in Table 31.1.

Setting f ðrÞ ¼ r leads to the Hull–White model in equation (31.13); setting

f ðrÞ ¼ lnðrÞ leads to the Black–Karasinksi model in equation (31.18). The main

advantage of the f ðrÞ ¼ r model is its analytic tractability. Its main disadvantage is

that negative interest rates are possible. In many circumstances, the probability of

negative interest rates occurring under the model is very small, but some analysts are

reluctant to use a model where there is any chance at all of negative interest rates. The

f ðrÞ ¼ ln r model has no analytic tractability, but has the advantage that interest rates

are always positive.

Handling Low Interest Rate Environments

When interest rates are very low, it is not easy to choose a satisfactory model. The

probability of negative interest rates in the Hull–White model is no longer negligible.

Also, the Black–Karasinski model does not work well because the same volatility is

not appropriate for both low and high rates. One idea to avoid negative rates is to

choose f ðrÞ as proportional to ln r when r is low and proportional to r when it is

higher.21 Another idea is to choose the short rate as the absolute value of the rate given

by a Vasicek-type model. A better idea, suggested by Alexander Sokol, may be to

construct a model where both the reversion rate and the volatility of r are functions

of r. The variable r can then be transformed to a new variable x that has a constant dz

coefficient and the tree-building approach with more general trinomial branching than

in Figure 31.7 can be used to implement the model.

Using Analytic Results in Conjunction with Trees

When a tree is constructed for the f ðrÞ ¼ r version of the Hull–White model, the

analytic results in Section 31.3 can be used to provide the complete term structure

and European option prices at each node. It is important to recognize that the interest

rate on the tree is the �t-period rate R. It is not the instantaneous short rate r.

From equations (31.15), (31.16), and (31.17) it can be shown (see Problem 31.20) that

Pðt; T Þ ¼ Âðt; T Þe�B̂ðt;T ÞR ð31:25Þ
21 See J. Hull and A. White, ‘‘Taking Rates to the Limit,’’Risk, December (1997): 168–69.
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where

ln Âðt; T Þ ¼ ln
Pð0; T Þ
Pð0; tÞ �

Bðt; T Þ
Bðt; tþ�tÞ ln

Pð0; tþ�tÞ
Pð0; tÞ

� �2

4a
ð1� e

�2atÞBðt; T Þ½Bðt; T Þ � Bðt; tþ�tÞ� ð31:26Þ
and

B̂ðt; T Þ ¼ Bðt; T Þ
Bðt; tþ�tÞ �t ð31:27Þ

(In the case of the Ho–Lee model, we set B̂ðt; T Þ ¼ T � t in these equations.)
Bond prices should therefore be calculated with equation (31.25), and not with

equation (31.15).

Example 31.1

Suppose zero rates are as in Table 31.2. The rates for maturities between those
indicated are generated using linear interpolation.

Consider a 3-year (¼ 3� 365 days) European put option on a zero-coupon
bond that will pay 100 in 9 years (¼ 9� 365 days). Interest rates are assumed
to follow the Hull–White (f ðrÞ ¼ r) model. The strike price is 63, a ¼ 0:1, and
� ¼ 0:01. A 3-year tree is constructed and zero-coupon bond prices are calculated
analytically at the final nodes as just described. As shown in Table 31.3, the results
from the tree are consistent with the analytic price of the option.

This example provides a good test of the implementation of the model because
the gradient of the zero curve changes sharply immediately after the expiration of
the option. Small errors in the construction and use of the tree are liable to have a
big effect on the option values obtained. (The example is used in Sample Applica-
tion G of the DerivaGem Applications software.)

Table 31.2 Zero curve with all rates continuously compounded, actual/365.

Maturity Days Rate (%)

3 days 3 5.01772
1 month 31 4.98284
2 months 62 4.97234
3 months 94 4.96157
6 months 185 4.99058
1 year 367 5.09389
2 years 731 5.79733
3 years 1,096 6.30595
4 years 1,461 6.73464
5 years 1,826 6.94816
6 years 2,194 7.08807
7 years 2,558 7.27527
8 years 2,922 7.30852
9 years 3,287 7.39790

10 years 3,653 7.49015
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Tree for American Bond Options

The DerivaGem software accompanying this book implements the normal and
the lognormal model for valuing European and American bond options, caps/floors,
and European swap options. Figure 31.11 shows the tree produced by the software
when it is used to value a 1.5-year American call option on a 10-year bond using four
time steps and the lognormal (Black–Karasinski) model. The parameters used in the
lognormal model are a ¼ 5% and � ¼ 20%. The underlying bond lasts 10 years, has a
principal of 100, and pays a coupon of 5% per annum semiannually. The yield curve is
flat at 5% per annum. The strike price is 105. As explained in Section 29.1 the strike
price can be a cash strike price or a quoted strike price. In this case it is a quoted strike
price. The bond price shown on the tree is the cash bond price. The accrued interest at
each node is shown below the tree. The cash strike price is calculated as the quoted
strike price plus accrued interest. The quoted bond price is the cash bond price minus
accrued interest. The payoff from the option is the cash bond price minus the cash strike
price. Equivalently it is the quoted bond price minus the quoted strike price.

The tree gives the price of the option as 0.672. A much larger tree with 100 time steps
gives the price of the option as 0.703. Note that the price of the 10-year bond cannot be
computed analytically when the lognormal model is assumed. It is computed numerically
by rolling back through a much larger tree than that shown.

31.8 CALIBRATION

Up to now, we have assumed that the volatility parameters a and � are known. We now
discuss how they are determined. This is known as calibrating the model.

The volatility parameters are determined from market data on actively traded options
(e.g., broker quotes on caps and swap options such as those in Tables 29.1 and 29.2).
These will be referred to as the calibrating instruments. The first stage is to choose a
‘‘goodness-of-fit’’ measure. Suppose there are n calibrating instruments. A popular
goodness-of-fit measure is Xn

i¼1

ðUi � ViÞ2

where Ui is the market price of the ith calibrating instrument and Vi is the price given by

Table 31.3 Value of a three-year put option on a
nine-year zero-coupon bond with a strike price of 63:
a ¼ 0:1 and � ¼ 0:01; zero curve as in Table 31.2.

Steps Tree Analytic

10 1.8468 1.8093
30 1.8172 1.8093
50 1.8057 1.8093

100 1.8128 1.8093
200 1.8090 1.8093
500 1.8091 1.8093
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the model for this instrument. The objective of calibration is to choose the model
parameters so that this goodness-of-fit measure is minimized.

The number of volatility parameters should not be greater than the number of
calibrating instruments. If a and � are constant, there are only two volatility parameters.
The models can be extended so that a or �, or both, are functions of time. Step functions
can be used. Suppose, for example, that a is constant and � is a function of time. We
might choose times t1, t2, . . . , tn and assume �ðtÞ ¼ �0 for t 6 t1, �ðtÞ ¼ �i for
ti < t 6 tiþ1 (1 6 i 6 n� 1), and �ðtÞ ¼ �n for t > tn. There would then be a total of
nþ 2 volatility parameters: a, �0, �1, . . . , and �n.

The minimization of the goodness-of-fit measure can be accomplished using the
Levenberg–Marquardt procedure.22 When a or �, or both, are functions of time, a
penalty function is often added to the goodness-of-fit measure so that the functions are

At each node:
 Upper value = Cash Bond Price
 Middle value = Option Price
 Lower value = dt-period Rate
Shaded values are as a result of early exercise

Strike price = 105
Time step, dt = 0.3750 years, 136.88 days

71.13165
0

11.3744%

79.19393 79.13643 Pu: 14.0124%
0 0 Pm: 66.3503%

9.2572% 9.2003% Pd: 19.6374%

87.0692 86.85737 86.65577 Pu: 14.8620%
0 0 0 Pm: 66.5260%

7.5348% 7.4877% 7.4417% Pd: 18.6120%

94.69 94.32588 93.96242 93.60053 Pu: 15.7467%
0.058227 0.017063 0 0 Pm: 66.6315%
6.1362% 6.0946% 6.0565% 6.0193% Pd: 17.6217%

99.51021 101.4979 100.9787 100.4532 99.92196 Pu: 16.6667%
0.671933 0.471654 0.273599 0.09907 0 Pm: 66.6667%
5.0000% 4.9633% 4.9297% 4.8989% 4.8687% Pd: 16.6667%

107.6802 107.0004 106.3087 105.6054 Pu: 17.6217%
2.16306 1.771632 1.275943 0.605443 Pm: 66.6315%

4.0146% 3.9874% 3.9625% 3.9381% Pd: 15.7467%

112.3922 111.5353 110.6623 Pu: 18.6120%
6.142178 5.910323 5.662307 Pm: 66.5260%
3.2253% 3.2051% 3.1854% Pd: 14.8620%

116.1587 115.1222 Pu: 19.6374%
10.53372 10.12224 Pm: 66.3503%
2.5925% 2.5765% Pd: 14.0124%

119.0263
14.02632
2.0840%

Node Time: 
0.0000 0.3750 0.7500 1.1250 1.5000

Accrual: 
0.0000 1.8750 1.2500 0.6250 0.0000

Figure 31.11 Tree, produced by DerivaGem, for valuing an American bond option.

22 For a good description of this procedure, see W.H. Press, B. P. Flannery, S.A. Teukolsky, and W.T.

Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, 2007.
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‘‘well behaved’’. In the example just mentioned, where � is a step function, an
appropriate objective function is

Xn
i¼1

ðUi � ViÞ2 þ
Xn
i¼1

w1;ið�i � �i�1Þ2 þ
Xn�1

i¼1

w2;ið�i�1 þ �iþ1 � 2�iÞ2

The second term provides a penalty for large changes in � between one step and the
next. The third term provides a penalty for high curvature in �. Appropriate values for
w1;i and w2;i are based on experimentation and are chosen to provide a reasonable level
of smoothness in the � function.

The calibrating instruments chosen should be as similar as possible to the instrument
being valued. Suppose, for example, that the model is to be used to value a Bermudan-
style swap option that lasts 10 years and can be exercised on any payment date between
year 5 and year 9 into a swap maturing 10 years from today. The most relevant
calibrating instruments are 5� 5, 6� 4, 7� 3, 8� 2, and 9� 1 European swap options.
(An n�m European swap option is an n-year option to enter into a swap lasting for
m years beyond the maturity of the option.)

The advantage of making a or �, or both, functions of time is that the models can be
fitted more precisely to the prices of instruments that trade actively in the market. The
disadvantage is that the volatility structure becomes nonstationary. The volatility term
structure given by the model in the future is liable to be quite different from that existing
in the market today.23

A somewhat different approach to calibration is to use all available calibrating
instruments to calculate ‘‘global-best-fit’’ a and � parameters. The parameter a is held
fixed at its best-fit value. The model can then be used in the same way as Black–
Scholes–Merton. There is a one-to-one relationship between options prices and the �
parameter. The model can be used to convert tables such as Tables 29.1 and 29.2 into
tables of implied �’s.24 These tables can be used to assess the � most appropriate for
pricing the instrument under consideration.

31.9 HEDGING USING A ONE-FACTOR MODEL

Section 29.5 outlined some general approaches to hedging a portfolio of interest rate
derivatives. These approaches can be used with the term structure models in this
chapter. The calculation of deltas, gammas, and vegas involves making small changes
to either the zero curve or the volatility environment and recomputing the value of the
portfolio.

Note that, although one factor is often assumed when pricing interest rate derivatives,
it is not appropriate to assume only one factor when hedging. For example, the deltas
calculated should allow for many different movements in the yield curve, not just those
that are possible under the model chosen. The practice of taking account of changes that

23 For a discussion of the implementation of a model where a and � are functions of time, see Technical

Note 16 at www.rotman.utoronto.ca/�hull/TechnicalNotes.
24 Note that in a term structure model the implied �’s are not the same as the implied volatilities calculated

from Black’s model in Tables 29.1 and 29.2. The procedure for computing implied �’s is as follows. The Black

volatilities are converted to prices using Black’s model. An iterative procedure is then used to imply the �

parameter in the term structure model from the price.
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cannot happen under the model considered, as well as those that can, is known as
outside model hedging and is standard practice for traders.25 The reality is that relatively
simple one-factor models if used carefully usually give reasonable prices for instruments,
but good hedging procedures must explicitly or implicitly assume many factors.

SUMMARY

The traditional models of the term structure used in finance are known as equilibrium
models. These are useful for understanding potential relationships between variables in
the economy, but have the disadvantage that the initial term structure is an output from
the model rather than an input to it. When valuing derivatives, it is important that the
model used be consistent with the initial term structure observed in the market.
No-arbitrage models are designed to have this property. They take the initial term
structure as given and define how it can evolve.

This chapter has provided a description of a number of one-factor no-arbitrage
models of the short rate. These are robust and can be used in conjunction with any set
of initial zero rates. The simplest model is the Ho–Lee model. This has the advantage
that it is analytically tractable. Its chief disadvantage is that it implies that all rates are
equally variable at all times. The Hull–White model is a version of the Ho–Lee model
that includes mean reversion. It allows a richer description of the volatility environment
while preserving its analytic tractability. Lognormal one-factor models avoid the
possibility of negative interest rates, but have no analytic tractability.
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Practice Questions (Answers in Solutions Manual)

31.1. What is the difference between an equilibrium model and a no-arbitrage model?

31.2. Suppose that the short rate is currently 4% and its standard deviation is 1% per annum.
What happens to the standard deviation when the short rate increases to 8% in
(a) Vasicek’s model; (b) Rendleman and Bartter’s model; and (c) the Cox, Ingersoll, and
Ross model?

31.3. If a stock price were mean reverting or followed a path-dependent process there would
be market inefficiency. Why is there not a market inefficiency when the short-term
interest rate does so?

31.4. Explain the difference between a one-factor and a two-factor interest rate model.

31.5. Can the approach described in Section 31.4 for decomposing an option on a coupon-
bearing bond into a portfolio of options on zero-coupon bonds be used in conjunction
with a two-factor model? Explain your answer.

31.6. Suppose that a ¼ 0:1 and b ¼ 0:1 in both the Vasicek and the Cox, Ingersoll, Ross
model. In both models, the initial short rate is 10% and the initial standard deviation of
the short-rate change in a short time �t is 0:02

ffiffiffiffiffi
�t

p
. Compare the prices given by the

models for a zero-coupon bond that matures in year 10.

31.7. Suppose that a ¼ 0:1, b ¼ 0:08, and � ¼ 0:015 in Vasicek’s model, with the initial value
of the short rate being 5%. Calculate the price of a 1-year European call option on a
zero-coupon bond with a principal of $100 that matures in 3 years when the strike price
is $87.

31.8. Repeat Problem 31.7 valuing a European put option with a strike of $87. What is the
put–call parity relationship between the prices of European call and put options? Show
that the put and call option prices satisfy put–call parity in this case.

31.9. Suppose that a ¼ 0:05, b ¼ 0:08, and � ¼ 0:015 in Vasicek’s model with the initial short-
term interest rate being 6%. Calculate the price of a 2.1-year European call option on a
bond that will mature in 3 years. Suppose that the bond pays a coupon of 5%
semiannually. The principal of the bond is 100 and the strike price of the option is 99.
The strike price is the cash price (not the quoted price) that will be paid for the bond.

31.10. Use the answer to Problem 31.9 and put–call parity arguments to calculate the price of a
put option that has the same terms as the call option in Problem 31.9.

31.11. In the Hull–White model, a ¼ 0:08 and � ¼ 0:01. Calculate the price of a 1-year
European call option on a zero-coupon bond that will mature in 5 years when the
term structure is flat at 10%, the principal of the bond is $100, and the strike price
is $68.
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31.12. Suppose that a ¼ 0:05 and � ¼ 0:015 in the Hull–White model with the initial term
structure being flat at 6% with semiannual compounding. Calculate the price of a

2.1-year European call option on a bond that will mature in 3 years. Suppose that the
bond pays a coupon of 5% per annum semiannually. The principal of the bond is 100
and the strike price of the option is 99. The strike price is the cash price (not the quoted
price) that will be paid for the bond.

31.13. Observations spaced at intervals �t are taken on the short rate. The ith observation is ri
(0 6 i 6 m). Show that the maximum likelihood estimates of a, b, and � in Vasicek’s
model are given by maximizing

Xm
i¼1

�
� lnð�2�tÞ � ½ri � ri�1 � aðb� ri�1Þ�t�2

�2�t

�

What is the corresponding result for the CIR model?

31.14. Suppose a ¼ 0:05, � ¼ 0:015, and the term structure is flat at 10%. Construct a

trinomial tree for the Hull–White model where there are two time steps, each 1 year
in length.

31.15. Calculate the price of a 2-year zero-coupon bond from the tree in Figure 31.6.

31.16. Calculate the price of a 2-year zero-coupon bond from the tree in Figure 31.9 and verify

that it agrees with the initial term structure.

31.17. Calculate the price of an 18-month zero-coupon bond from the tree in Figure 31.10 and

verify that it agrees with the initial term structure.

31.18. What does the calibration of a one-factor term structure model involve?

31.19. Use the DerivaGem software to value 1� 4, 2� 3, 3� 2, and 4� 1 European swap
options to receive fixed and pay floating. Assume that the 1-, 2-, 3-, 4-, and 5-year

interest rates are 6%, 5.5%, 6%, 6.5%, and 7%, respectively. The payment frequency on
the swap is semiannual and the fixed rate is 6% per annum with semiannual compound-
ing. Use the Hull–White model with a ¼ 3% and � ¼ 1%. Calculate the volatility
implied by Black’s model for each option.

31.20. Prove equations (31.25), (31.26), and (31.27).

31.21. (a) What is the second partial derivative of Pðt; T Þ with respect to r in the Vasicek and
CIR models.

(b) In Section 31.2, D̂ is presented as an alternative to the standard duration measure D.
What is a similar alternative Ĉ to the convexity measure in Section 4.9?

(c) What is Ĉ for Pðt; T Þ? How would you calculate Ĉ for a coupon-bearing bond?

(d) Give a Taylor series expansion for �Pðt; T Þ in terms of �r and ð�rÞ2 for Vasicek
and CIR.

31.22. Suppose that short rate r is 4% and its real-world process is dr ¼ 0:1½0:05� r� dtþ 0:01 dz,
while the risk-neutral process is dr ¼ 0:1½0:11� r� dtþ 0:01 dz.

(a) What is the market price of interest rate risk?

(b) What is the expected return and volatility for a 5-year zero-coupon bond in the risk-

neutral world?

(c) What is the expected return and volatility for the 5-year zero-coupon bond in the real

world?
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Further Questions

31.23. Construct a trinomial tree for the Ho–Lee model where � ¼ 0:02. Suppose that the the
initial zero-coupon interest rate for a maturities of 0.5, 1.0, and 1.5 years are 7.5%, 8%,

and 8.5%. Use two time steps, each 6 months long. Calculate the value of a zero-coupon
bond with a face value of $100 and a remaining life of 6 months at the ends of the final

nodes of the tree. Use the tree to value a 1-year European put option with a strike price

of 95 on the bond. Compare the price given by your tree with the analytic price given by
DerivaGem.

31.24. A trader wishes to compute the price of a 1-year American call option on a 5-year bond

with a face value of 100. The bond pays a coupon of 6% semiannually and the (quoted)
strike price of the option is $100. The continuously compounded zero rates for

maturities of 6 months, 1 year, 2 years, 3 years, 4 years, and 5 years are 4.5%, 5%,

5.5%, 5.8%, 6.1%, and 6.3%. The best-fit reversion rate for either the normal or the
lognormal model has been estimated as 5%.

A 1-year European call option with a (quoted) strike price of 100 on the bond is actively
traded. Its market price is $0.50. The trader decides to use this option for calibration. Use

the DerivaGem software with 10 time steps to answer the following questions:

(a) Assuming a normal model, imply the � parameter from the price of the European
option.

(b) Use the � parameter to calculate the price of the option when it is American.

(c) Repeat (a) and (b) for the lognormal model. Show that the model used does not
significantly affect the price obtained providing it is calibrated to the known European

price.
(d) Display the tree for the normal model and calculate the probability of a negative

interest rate occurring.

(e) Display the tree for the lognormal model and verify that the option price is correctly
calculated at the node where, with the notation of Section 31.7, i ¼ 9 and j ¼ �1.

31.25. Use the DerivaGem software to value 1� 4, 2� 3, 3� 2, and 4� 1 European swap

options to receive floating and pay fixed. Assume that the 1-, 2-, 3-, 3-, and 5-year
interest rates are 3%, 3.5%, 3.8%, 4.0%, and 4.1%, respectively. The payment frequency

on the swap is semiannual and the fixed rate is 4% per annum with semiannual

compounding. Use the lognormal model with a ¼ 5%, � ¼ 15%, and 50 time steps.
Calculate the volatility implied by Black’s model for each option.

31.26. Verify that the DerivaGem software gives Figure 31.11 for the example considered. Use

the software to calculate the price of the American bond option for the lognormal and
normal models when the strike price is 95, 100, and 105. In the case of the normal model,

assume that a ¼ 5% and � ¼ 1%. Discuss the results in the context of the heavy-tails
arguments of Chapter 20.

31.27. Modify Sample Application G in the DerivaGem Application Builder software to test

the convergence of the price of the trinomial tree when it is used to price a 2-year call
option on a 5-year bond with a face value of 100. Suppose that the strike price (quoted)

is 100, the coupon rate is 7% with coupons being paid twice a year. Assume that the zero

curve is as in Table 31.2. Compare results for the following cases:
(a) Option is European; normal model with � ¼ 0:01 and a ¼ 0:05
(b) Option is European; lognormal model with � ¼ 0:15 and a ¼ 0:05

760 CHAPTER 31



(c) Option is American; normal model with � ¼ 0:01 and a ¼ 0:05
(d) Option is American; lognormal model with � ¼ 0:15 and a ¼ 0:05:

31.28. Suppose that the (CIR) process for short-rate movement in the (traditional) risk-neutral
world is

dr ¼ aðb� rÞ dtþ �
ffiffi
r

p
dz

and the market price of interest rate risk is �.

(a) What is the real world process for r?
(b) What is the expected return and volatility for a 10-year bond in the risk-neutral world?
(c) What is the expected return and volatility from a 10-year bond in the real world?
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HJM, LMM,
and Multiple
Zero Curves

The interest rate models discussed in Chapter 31 are widely used for pricing instruments

when the simpler models in Chapter 29 are inappropriate. They are easy to implement
and, if used carefully, can ensure that most nonstandard interest rate derivatives are
priced consistently with actively traded instruments such as interest rate caps, European

swap options, and European bond options. Two limitations of the models are:

1. Most involve only one factor (i.e., one source of uncertainty).

2. They do not give the user complete freedom in choosing the volatility structure.

By making the parameters a and � functions of time, an analyst can use the models so
that they fit the volatilities observed in the market today, but as mentioned in Section 31.8
the volatility term structure is then nonstationary. The volatility structure in the future is

liable to be quite different from that observed in the market today.

This chapter discusses some general approaches to building term structure models
that give the user more flexibility in specifying the volatility environment and allow
several factors to be used. When OIS discounting is used, it is often necessary to develop

a model describing the evolution of two (or more) yield curves (e.g., the LIBOR zero
curve and the OIS zero curve). This chapter discusses how this can be done.

This chapter also covers the agency mortgage-backed security market in the United

States and describes how some of the ideas presented in the chapter can be used to price
instruments in that market.

32.1 THE HEATH, JARROW, AND MORTON MODEL

In 1990 David Heath, Bob Jarrow, and Andy Morton (HJM) published an important
paper describing the no-arbitrage conditions that must be satisfied by a model of the

yield curve.1 To describe their model, we will use the following notation:

Pðt; T Þ : Price at time t of a risk-free zero-coupon bond with principal $1
maturing at time T

1 See D. Heath, R.A. Jarrow, and A. Morton, ‘‘Bond Pricing and the Term Structure of Interest Rates:

A New Methodology,’’ Econometrica, 60, 1 (1992): 77–105.
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�t : Vector of past and present values of interest rates and bond prices at
time t that are relevant for determining bond price volatilities at that time

vðt; T ;�tÞ : Volatility of Pðt; T Þ
f ðt; T1; T2Þ : Forward rate as seen at time t for the period between time T1 and

time T2

Fðt; T Þ : Instantaneous forward rate as seen at time t for a contract maturing at
time T

rðtÞ : Short-term risk-free interest rate at time t

dzðtÞ : Wiener process driving term structure movements.

Processes for Zero-Coupon Bond Prices and Forward Rates

We start by assuming there is just one factor and will use the traditional risk-neutral
world. A zero-coupon bond is a traded security providing no income. Its return in the
traditional risk-neutral world must therefore be r. This means that its stochastic process
has the form

dPðt; T Þ ¼ rðtÞPðt; T Þ dtþ vðt; T ;�tÞPðt; T Þ dzðtÞ ð32:1Þ
As the argument �t indicates, the zero-coupon bond’s volatility v can be, in the most
general form of the model, any well-behaved function of past and present interest rates
and bond prices. Because a bond’s price volatility declines to zero at maturity, we must
have2

vðt; t;�tÞ ¼ 0

From equation (4.5), the forward rate f ðt; T1; T2Þ can be related to zero-coupon bond
prices as follows:

f ðt; T1; T2Þ ¼
ln½Pðt; T1Þ� � ln½Pðt; T2Þ�

T2 � T1
ð32:2Þ

From equation (32.1) and Itô’s lemma,

d ln½Pðt; T1Þ� ¼
�
rðtÞ � vðt; T1;�tÞ2

2

�
dtþ vðt; T1;�tÞ dzðtÞ

and

d ln½Pðt; T2Þ� ¼
�
rðtÞ � vðt; T2;�tÞ2

2

�
dtþ vðt; T2;�tÞ dzðtÞ

so that from equation (32.2)

df ðt; T1; T2Þ ¼
vðt; T2;�tÞ2 � vðt; T1;�tÞ2

2ðT2 � T1Þ
dtþ vðt; T1;�tÞ � vðt; T2;�tÞ

T2 � T1
dzðtÞ ð32:3Þ

Equation (32.3) shows that the risk-neutral process for f depends solely on the v’s. It
depends on r and the P ’s only to the extent that the v’s themselves depend on these
variables.

2 The vðt; t;�tÞ ¼ 0 condition is equivalent to the assumption that all discount bonds have finite drifts at all

times. If the volatility of the bond does not decline to zero at maturity, an infinite drift may be necessary to

ensure that the bond’s price equals its face value at maturity.
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When we put T1 ¼ T and T2 ¼ T þ�T in equation (32.3) and then take limits as �T

tends to zero, f ðt; T1; T2Þ becomes Fðt; T Þ, the coefficient of dzðtÞ becomes �vT ðt; T ;�tÞ,
and the coefficient of dt becomes

1
2

@½vðt; T ;�tÞ2�
@T

¼ vðt; T ;�tÞ vT ðt; T ;�tÞ

where the subscript to v denotes a partial derivative. It follows that

dFðt; T Þ ¼ vðt; T ;�tÞ vT ðt; T ;�tÞ dt� vT ðt; T ;�tÞ dzðtÞ ð32:4Þ

Once the function vðt; T ;�tÞ has been specified, the risk-neutral processes for the
Fðt; T Þ’s are known.

Equation (32.4) shows that there is a link between the drift and standard deviation of
an instantaneous forward rate. This is the key HJM result. Integrating v�ðt; �;�tÞ
between � ¼ t and � ¼ T leads to

vðt; T ;�tÞ � vðt; t;�tÞ ¼
ðT
t

v�ðt; �;�tÞ d�

Because vðt; t;�tÞ ¼ 0, this becomes

vðt; T ;�tÞ ¼
ðT
t

v�ðt; �;�tÞ d�

If mðt; T ;�tÞ and sðt; T ;�tÞ are the instantaneous drift and standard deviation of
Fðt; T Þ, so that

dFðt; T Þ ¼ mðt; T ;�tÞ dtþ sðt; T ;�tÞ dz

then it follows from equation (32.4) that

mðt; T ;�tÞ ¼ sðt; T ;�tÞ
ðT
t

sðt; �;�tÞ d� ð32:5Þ
This is the HJM result.

The process for the short rate r in the general HJM model is non-Markov. This means
that the process for r at a future time t depends on the path followed by r between now
and time t as well as on the the value of r at time t.3 This is the key problem in

implementing a general HJM model. Monte Carlo simulation has to be used. It is
difficult to use a tree to represent term structure movements because the tree is usually
nonrecombining. Assuming the model has one factor and the tree is binomial as in
Figure 32.1, there are 2n nodes after n time steps (when n ¼ 30, 2n is about 1 billion).

The HJM model in equation (32.4) is deceptively complex. A particular forward rate
Fðt; T Þ is Markov in most applications of the model and can be represented by a
recombining tree. However, the same tree cannot be used for all forward rates. Setting
sðt; T ;�tÞ equal to a constant, �, leads to the Ho–Lee model (see Problem 32.3); setting
sðt; T ;�tÞ ¼ �e�aðT�tÞ leads to the Hull–White model (see Problem 32.4). These are

particular Markov cases of HJM where the same recombining tree can be used to
represent the short rate, r, and all forward rates.

3 For more details, see Technical Note 17 at www.rotman.utoronto.ca/�hull/TechnicalNotes.
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Extension to Several Factors

The HJM result can be extended to the situation where there are several independent
factors. Suppose

dFðt; T Þ ¼ mðt; T ;�tÞ dtþ
X
k

skðt; T ;�tÞ dzk

A similar analysis to that just given (see Problem 32.2) shows that

mðt; T ;�tÞ ¼
X
k

skðt; T ;�tÞ
ðT
t

skðt; �;�tÞ d� ð32:6Þ

32.2 THE LIBOR MARKET MODEL

One drawback of the HJM model is that it is expressed in terms of instantaneous
forward rates and these are not directly observable in the market. Another related
drawback is that it is difficult to calibrate the model to prices of actively traded
instruments. This has led Brace, Gatarek, and Musiela (BGM), Jamshidian, and
Miltersen, Sandmann, and Sondermann to propose an alternative.4 It is known as
the LIBOR market model (LMM) or the BGM model and it is expressed in terms of the
forward rates that traders use in conjunction with LIBOR discounting.

Figure 32.1 A nonrecombining tree such as that arising from the general HJMmodel.

4 See A. Brace, D. Gatarek, and M. Musiela ‘‘The Market Model of Interest Rate Dynamics,’’ Mathematical

Finance 7, 2 (1997): 127–55; F. Jamshidian, ‘‘LIBOR and Swap Market Models and Measures,’’ Finance and

Stochastics, 1 (1997): 293–330; and K. Miltersen, K. Sandmann, and D. Sondermann, ‘‘Closed Form

Solutions for Term Structure Derivatives with LogNormal Interest Rate,’’ Journal of Finance, 52, 1 (March

1997): 409–30.
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The Model

Define t0 ¼ 0 and let t1, t2, . . . be the reset times for caps that trade in the market today. In
the United States, the most popular caps have quarterly resets, so that it is approximately
true that t1 ¼ 0:25, t2 ¼ 0:5, t3 ¼ 0:75, and so on. Define �k ¼ tkþ1 � tk, and

FkðtÞ : Forward rate between times tk and tkþ1 as seen at time t, expressed with a
compounding period of �k and an actual/actual day count

mðtÞ : Index for the next reset date at time t ; this means that mðtÞ is the smallest
integer such that t 6 tmðtÞ

�kðtÞ : Volatility of FkðtÞ at time t.

Initially, we will assume that there is only one factor.
As shown in Section 28.4, in a world that is forward risk neutral with respect to

Pðt; tkþ1Þ, FkðtÞ is a martingale and follows the process

dFkðtÞ ¼ �kðtÞFkðtÞ dz ð32:7Þ
where dz is a Wiener process.

The process for Pðt; tkÞ has the form

dPðt; tkÞ
Pðt; tkÞ

¼ � � � þ vkðtÞ dz

where vkðtÞ is negative because bond prices and interest rates are negatively related.
In practice, it is often most convenient to value interest rate derivatives by working

in a world that is always forward risk neutral with respect to a bond maturing at the
next reset date. We refer to this as a rolling forward risk-neutral world.5 In this world
we can discount from time tkþ1 to time tk using the zero rate observed at time tk for a
maturity tkþ1. We do not have to worry about what happens to interest rates between
times tk and tkþ1.

At time t the rolling forward risk-neutral world is a world that is forward risk neutral
with respect to the bond price, Pðt; tmðtÞÞ. Equation (32.7) gives the process followed by
FkðtÞ in a world that is forward risk neutral with respect to Pðt; tkþ1Þ. From Section 28.8,
it follows that the process followed by FkðtÞ in the rolling forward risk-neutral world is

dFkðtÞ ¼ �kðtÞ½vmðtÞðtÞ � vkþ1ðtÞ�FkðtÞ dtþ �kðtÞFkðtÞ dz ð32:8Þ

The relationship between forward rates and bond prices is

Pðt; tiÞ
Pðt; tiþ1Þ

¼ 1þ �iFiðtÞ
or

lnPðt; tiÞ � lnPðt; tiþ1Þ ¼ ln½1þ �iFiðtÞ�
Itô’s lemma can be used to calculate the process followed by both the left-hand side and

5 In the terminology of Section 28.4, this world corresponds to using a ‘‘rolling CD’’ as the numeraire. A

rolling CD (certificate of deposit) is one where we start with $1, buy a bond maturing at time t1, reinvest the

proceeds at time t1 in a bond maturing at time t2, reinvest the proceeds at time t2 in a bond maturing at time

t3, and so on. (Strictly speaking, the interest rate trees we constructed in Chapter 31 are in a rolling forward

risk-neutral world rather than the traditional risk-neutral world.) The numeraire is a CD rolled over at the

end of each time step.
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the right-hand side of this equation. Equating the coefficients of dz gives6

viðtÞ � viþ1ðtÞ ¼
�iFiðtÞ�iðtÞ
1þ �iFiðtÞ

ð32:9Þ

so that from equation (32.8) the process followed by FkðtÞ in the rolling forward risk-

neutral world is

dFkðtÞ
FkðtÞ

¼
Xk
i¼mðtÞ

�iFiðtÞ�iðtÞ�kðtÞ
1þ �iFiðtÞ

dtþ �kðtÞ dz ð32:10Þ

The HJM result in equation (32.4) is the limiting case of this as the �i tend to zero (see

Problem 32.7).

Forward Rate Volatilities

The model can be simplified by assuming that �kðtÞ is a function only of the number of

whole accrual periods between the next reset date and time tk. Define �i as the value

of �kðtÞ when there are i such accrual periods. This means that �kðtÞ ¼ �k�mðtÞ is a step

function.

The�i can (at least in theory) be estimated from the volatilities used to value caplets in

Black’s model (i.e., from the spot volatilities in Figure 29.3).7 Suppose that �k is the Black
volatility for the caplet that corresponds to the period between times tk and tkþ1.

Equating variances, we must have

�2
k tk ¼

Xk
i¼1

�2
k�i �i�1 ð32:11Þ

This equation can be used to obtain the �’s iteratively.

Example 32.1

Assume that the �i are all equal and the Black caplet spot volatilities for the first

three caplets are 24%, 22%, and 20%. This means that �0 ¼ 24%. Since

�2
0 þ�2

1 ¼ 2� 0:222

�1 is 19.80%. Also, since

�2
0 þ�2

1 þ�2
2 ¼ 3� 0:202

�2 is 15.23%.

Example 32.2

Consider the data in Table 32.1 on caplet volatilities �k. These exhibit the hump

discussed in Section 29.2. The �’s are shown in the second row. Notice that the

hump in the �’s is more pronounced than the hump in the �’s.

6 Since the v’s and �’s have opposite signs, the bond price volatility becomes larger (in absolute terms) as the

time to maturity increases. This is as expected.
7 In practice the �’s are determined using a least-squares calibration, as we will discuss later.
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Implementation of the Model

The LIBOR market model can be implemented using Monte Carlo simulation.

Expressed in terms of the �i’s, equation (32.10) is

dFkðtÞ
FkðtÞ

¼
Xk
i¼mðtÞ

�iFiðtÞ�i�mðtÞ�k�mðtÞ
1þ �iFiðtÞ

dtþ�k�mðtÞ dz ð32:12Þ

so that from Itô’s lemma

d lnFkðtÞ ¼
� Xk
i¼mðtÞ

�iFiðtÞ�i�mðtÞ�k�mðtÞ
1þ �iFiðtÞ

� ð�k�mðtÞÞ2
2

�
dtþ�k�mðtÞ dz ð32:13Þ

If, as an approximation, we assume in the calculation of the drift of lnFkðtÞ that

FiðtÞ ¼ FiðtjÞ for tj < t < tjþ1, then

Fkðtjþ1Þ ¼ FkðtjÞ exp
�� Xk

i¼jþ1

�iFiðtjÞ�i�j�1�k�j�1

1þ �iFiðtjÞ
��2

k�j�1

2

�
�j þ�k�j�1�

ffiffiffiffi
�j

p �

ð32:14Þ

where � is a random sample from a normal distribution with mean equal to zero and

standard deviation equal to one. In the Monte Carlo simulation, this equation is used

to calculate forward rates at time t1 from those at time zero; it is then used to calculate

forward rates at time t2 from those at time t1; and so on.

Extension to Several Factors

The LIBOR market model can be extended to incorporate several independent factors.

Suppose that there are p factors and �k;q is the component of the volatility of FkðtÞ
attributable to the qth factor. Equation (32.10) becomes (see Problem 32.11)

dFkðtÞ
FkðtÞ

¼
Xk
i¼mðtÞ

�iFiðtÞ
Pp

q¼1 �i;qðtÞ�k;qðtÞ
1þ �iFiðtÞ

dtþ
Xp
q¼1

�k;qðtÞ dzq ð32:15Þ

Define �i;q as the qth component of the volatility when there are i accrual periods

between the next reset date and the maturity of the forward contract. Equation (32.14)

Table 32.1 Volatility data; accrual period ¼ 1 year.

Year, k : 1 2 3 4 5 6 7 8 9 10

�k (%): 15.50 18.25 17.91 17.74 17.27 16.79 16.30 16.01 15.76 15.54

�k�1 (%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40

768 CHAPTER 32



then becomes

Fkðtjþ1Þ ¼ FkðtjÞ

� exp

�� Xk
i¼jþ1

�iFiðtjÞ
Pp

q¼1 �i�j�1;q�k�j�1;q

1þ �iFiðtjÞ
�
Pp

q¼1 �
2
k�j�1;q

2

�
�j þ

Xp
q¼1

�k�j�1;q �q
ffiffiffiffi
�j

p �

ð32:16Þ
where the �q are random samples from a normal distribution with mean equal to zero
and standard deviation equal to one.

The approximation that the drift of a forward rate remains constant within each
accrual period allows us to jump from one reset date to the next in the simulation. This
is convenient because as already mentioned the rolling forward risk-neutral world
allows us to discount from one reset date to the next. Suppose that we wish to simulate
a zero curve for N accrual periods. On each trial we start with the forward rates at time
zero. These are F0ð0Þ, F1ð0Þ, . . . , FN�1ð0Þ and are calculated from the initial zero curve.
Equation (32.16) is used to calculate F1ðt1Þ, F2ðt1Þ, . . . , FN�1ðt1Þ. Equation (32.16) is
then used again to calculate F2ðt2Þ, F3ðt2Þ, . . . , FN�1ðt2Þ, and so on, until FN�1ðtN�1Þ is
obtained. Note that as we move through time the zero curve gets shorter and shorter.
For example, suppose each accrual period is 3 months and N ¼ 40. We start with a
10-year zero curve. At the 6-year point (at time t24), the simulation gives us information
on a 4-year zero curve.

The drift approximation that we have used (i.e., FiðtÞ ¼ FiðtjÞ for tj < t < tjþ1) can
be tested by valuing caplets using equation (32.16) and comparing the prices to those
given by Black’s model. The value of FkðtkÞ is the realized rate for the time period
between tk and tkþ1 and enables the caplet payoff at time tkþ1 to be calculated. This
payoff is discounted back to time zero, one accrual period at a time. The caplet value is
the average of the discounted payoffs. The results of this type of analysis show that the
cap values from Monte Carlo simulation are not significantly different from those given
by Black’s model. This is true even when the accrual periods are 1 year in length and a
very large number of trials is used.8 This suggests that the drift approximation is
innocuous in most situations.

Ratchet Caps, Sticky Caps, and Flexi Caps

The LIBOR market model can be used to value some types of nonstandard caps.
Consider ratchet caps and sticky caps. These incorporate rules for determining how the
cap rate for each caplet is set. In a ratchet cap it equals the LIBOR rate at the previous
reset date plus a spread. In a sticky cap it equals the previous capped rate plus a spread.
Suppose that the cap rate at time tj is Kj, the LIBOR rate at time tj is Rj, and the
spread is s. In a ratchet cap, Kjþ1 ¼ Rj þ s. In a sticky cap, Kjþ1 ¼ minðRj;KjÞ þ s.

Tables 32.2 and 32.3 provide valuations of a ratchet cap and sticky cap using the
LIBOR market model with one, two, and three factors, and LIBOR discounting. The
principal is $100. The term structure is assumed to be flat at 5% per annum con-
tinuously compounded, or 5.127% annually compounded, and the caplet volatilities are

8 See J.C. Hull and A. White, ‘‘Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of

the LIBOR Market Model,’’ Journal of Fixed Income, 10, 2 (September 2000): 46–62. The only exception is

when the cap volatilities are very high.
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as in Table 32.1. The interest rate is reset annually. The spread is 25 basis points applied

to the annually compounded rate. Tables 32.4 and 32.5 show how the volatility was

split into components when two- and three-factor models were used. The results are

based on 100,000 Monte Carlo simulations incorporating the antithetic variable

technique described in Section 21.7. The standard error of each price is about 0.001.

A third type of nonstandard cap is a flexi cap. This is like a regular cap except that

there is a limit on the total number of caplets that can be exercised. Consider an annual-

pay flexi cap when the principal is $100, the term structure is flat at 5%, and the cap

volatilities are as in Tables 32.1, 32.4, and 32.5. Suppose that all in-the-money caplets

are exercised up to a maximum of five. With one, two, and three factors, the LIBOR

market model gives the price of the instrument as 3.43, 3.58, and 3.61, respectively (see

Problem 32.15 for other types of flexi caps).

Table 32.3 Valuation of sticky caplets.

Caplet start
time ( years)

One
factor

Two
factors

Three
factors

1 0.196 0.194 0.195

2 0.336 0.334 0.336

3 0.412 0.413 0.418

4 0.458 0.462 0.472

5 0.484 0.492 0.506

6 0.498 0.512 0.524

7 0.502 0.520 0.533

8 0.501 0.523 0.537

9 0.497 0.523 0.537

10 0.488 0.519 0.534

Table 32.2 Valuation of ratchet caplets.

Caplet start
time ( years)

One
factor

Two
factors

Three
factors

1 0.196 0.194 0.195

2 0.207 0.207 0.209

3 0.201 0.205 0.210

4 0.194 0.198 0.205

5 0.187 0.193 0.201

6 0.180 0.189 0.193

7 0.172 0.180 0.188

8 0.167 0.174 0.182

9 0.160 0.168 0.175

10 0.153 0.162 0.169
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The pricing of a plain vanilla cap depends only on the total volatility and is
independent of the number of factors. This is because the price of a plain vanilla caplet
depends on the behavior of only one forward rate. The prices of caplets in the
nonstandard instruments we have looked at are different in that they depend on the
joint probability distribution of several different forward rates. As a result they do
depend on the number of factors.

Valuing European Swap Options

There is an analytic approximation for valuing European swap options in the LIBOR
market model.9 Assume that LIBOR discounting is used. Let T0 be the maturity of the
swap option and assume that the payment dates for the swap are T1, T2, . . . , TN . Define
�i ¼ Tiþ1 � Ti. From equation (28.23), the swap rate at time t is given by

sðtÞ ¼ Pðt; T0Þ � Pðt; TNÞPN�1
i¼0 �iPðt; Tiþ1Þ

It is also true that

Pðt; TiÞ
Pðt; T0Þ

¼
Yi�1

j¼0

1

1þ �jGjðtÞ

Table 32.5 Volatility components in a three-factor model.

Year, k : 1 2 3 4 5 6 7 8 9 10

�k�1;1 (%): 13.65 19.28 16.72 16.98 14.85 13.95 12.61 12.90 11.97 10.97

�k�1;2 (%): �6.62 �7.02 �4.06 �2.06 0.00 1.69 3.06 4.70 5.81 6.66

�k�1;3 (%): 3.19 2.25 0.00 �1.98 �3.47 �1.63 0.00 1.51 2.80 3.84

Total
volatility (%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40

Table 32.4 Volatility components in two-factor model.

Year, k : 1 2 3 4 5 6 7 8 9 10

�k�1;1 (%): 14.10 19.52 16.78 17.11 15.25 14.06 12.65 13.06 12.36 11.63

�k�1;2 (%): �6.45 �6.70 �3.84 �1.96 0.00 1.61 2.89 4.48 5.65 6.65

Total
volatility (%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40

9 See J.C. Hull and A. White, ‘‘Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of

the LIBOR Market Model,’’ Journal of Fixed Income, 10, 2 (September 2000): 46–62. Other analytic

approximations have been suggested by A. Brace, D. Gatarek, and M. Musiela ‘‘The Market Model of

Interest Rate Dynamics,’’ Mathematical Finance, 7, 2 (1997): 127–55 and L. Andersen and J. Andreasen,

‘‘Volatility Skews and Extensions of the LIBOR Market Model,’’ Applied Mathematical Finance, 7, 1 (March

2000), 1–32.
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for 1 6 i 6 N, where GjðtÞ is the forward rate at time t for the period between Tj
and Tjþ1. These two equations together define a relationship between sðtÞ and the GjðtÞ.
Applying Itô’s lemma (see Problem 32.12), the variance V ðtÞ of the swap rate sðtÞ is
given by

V ðtÞ ¼
Xp
q¼1

�XN�1

k¼0

�k�k;qðtÞGkðtÞ	kðtÞ
1þ �kGkðtÞ

�2
ð32:17Þ

where

	kðtÞ ¼
QN�1

j¼0 ½1þ �jGjðtÞ�QN�1
j¼0 ½1þ �jGjðtÞ� � 1

�
Pk�1

i¼0 �i
QN�1

j¼iþ1½1þ �jGjðtÞ�PN�1
i¼0 �i

QN
j¼iþ1½1þ �jGjðtÞ�

and �j;qðtÞ is the qth component of the volatility of GjðtÞ. We approximate V ðtÞ by

setting GjðtÞ ¼ Gjð0Þ for all j and t. The swap volatility that is substituted into the

standard market model for valuing a swaption is then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0

ðT0
t¼0

V ðtÞ dt
s

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0

ðT0
t¼0

Xp
q¼1

�XN�1

k¼0

�k�k;qðtÞGkð0Þ	kð0Þ
1þ �kGkð0Þ

�2
dt

vuut ð32:18Þ

In the situation where the length of the accrual period for the swap underlying the

swaption is the same as the length of the accrual period for a cap, �k;qðtÞ is the qth

component of volatility of a cap forward rate when the time to maturity is Tk � t. This

can be looked up in a table such as Table 32.5

The accrual periods for the swaps underlying broker quotes for European swap

options do not always match the accrual periods for the caps and floors underlying

broker quotes. For example, in the United States, the benchmark caps and floors have

quarterly resets, while the swaps underlying the benchmark European swap options

have semiannual resets. Fortunately, the valuation result for European swap options

can be extended to the situation where each swap accrual period includes M subperiods

that could be accrual periods in a typical cap. Define �j;m as the length of the mth

subperiod in the jth accrual period so that

�j ¼
XM
m¼1

�j;m

Define Gj;mðtÞ as the forward rate observed at time t for the �j;m accrual period. Because

1þ �jGjðtÞ ¼
YM
m¼1

½1þ �j;mGj;mðtÞ�

the analysis leading to equation (32.18) can be modified so that the volatility of sðtÞ is
obtained in terms of the volatilities of the Gj;mðtÞ rather than the volatilities of the GjðtÞ.
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The swap volatility to be substituted into the standard market model for valuing a swap
option proves to be (see Problem 32.13)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0

ðT0
t¼0

Xp
q¼1

�XN�1

k¼n

XM
m¼1

�k;m�k;m;qðtÞGk;mð0Þ	kð0Þ
1þ �k;mGk;mð0Þ

�2
dt

vuut ð32:19Þ

Here �j;m;qðtÞ is the qth component of the volatility of Gj;mðtÞ. It is the qth component
of the volatility of a cap forward rate when the time to maturity is from t to the
beginning of the mth subperiod in the ðTj; Tjþ1Þ swap accrual period.

The expressions (32.18) and (32.19) for the swap volatility do involve the approxima-
tions that GjðtÞ ¼ Gjð0Þ and Gj;mðtÞ ¼ Gj;mð0Þ. Hull and White compared the prices of
European swap options calculated using equations (32.18) and (32.19) with the prices
calculated from a Monte Carlo simulation and found the two to be very close. Once the
LIBOR market model has been calibrated, equations (32.18) and (32.19) therefore
provide a quick way of valuing European swap options. Analysts can determine
whether European swap options are overpriced or underpriced relative to caps. As
we shall see shortly, they can also use the results to calibrate the model to the market
prices of swap options. The analysis can be extended to cover OIS discounting.

Calibrating the Model

The variable �j is the volatility at time t of the forward rate Fj for the period between tk
and tkþ1 when there are j whole accrual periods between t and tk. To calibrate the
LIBOR market model, it is necessary to determine the �j and how they are split into
�j;q. The �’s are usually determined from current market data, whereas the split into �’s
is determined from historical data.

Consider first the determination of the �’s from the �’s. A principal components
analysis (see Section 22.9) on forward rate data can be used. The model is

�Fj ¼
XM
q¼1


j;qxq

where M is the total number of factors (which equals the number of different forward
rates), �Fj is the change in the j th forward rate Fj, 
j;q is the factor loading for the jth
forward rate and the qth factor, xq is the factor score for the qth factor. Define sq as the

standard deviation of the qth factor score. If the number of factors used in the LIBOR
market model, p, is equal to the total number of factors, M, it is correct to set

�j;q ¼ 
j;q sq

for 1 6 j;q 6 M. When, as is usual, p < M, the �j;q must be scaled so that

�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

q¼1
�2j;q

r

This involves setting

�j;q ¼
�j sq 
j;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

q¼1 s
2
q 


2
j;q

q ð32:20Þ
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Consider next the estimation of the �’s. Equation (32.11) provides one way that they
can be theoretically determined so that they are consistent with caplet prices. In
practice, this is not usually used because it often leads to wild swings in the �’s and
sometimes there is no set of �’s exactly consistent with cap quotes. A commonly used
calibration procedure is similar to that described in Section 31.8. Suppose that Ui is the
market price of the ith calibrating instrument (typically a cap or European swaption)
and Vi is the model price. The �’s are chosen to minimize

X
i

ðUi � ViÞ2 þ P

where P is a penalty function chosen to ensure that the �’s are ‘‘well behaved.’’
Similarly to Section 31.8, P might have the form

P ¼
X
i

w1;ið�iþ1 ��iÞ2 þ
X
i

w2;ið�iþ1 þ�i�1 � 2�iÞ2

When the calibrating instrument is a European swaption, formulas (32.18) and (32.19)
make the minimization feasible using the Levenberg–Marquardt procedure. Equa-
tion (32.20) is used to determine the �’s from the �’s.

Volatility Skews

Brokers provide quotes on caps that are not at the money as well as on caps that are at
the money. In some markets a volatility skew is observed, that is, the quoted (Black)
volatility for a cap or a floor is a declining function of the strike price. This can be
handled using the CEV model. (See Section 27.1 for the application of the CEV model
to equities.) The model is

dFiðtÞ ¼ � � � þ
Xp
q¼1

�i;qðtÞFiðtÞ
 dzq ð32:21Þ

where 
 is a constant ð0 < 
 < 1Þ. It turns out that this model can be handled very
similarly to the lognormal model. Caps and floors can be valued analytically using the
cumulative noncentral �2 distribution. There are similar analytic approximations to
those given above for the prices of European swap options.10

Bermudan Swap Options

A popular interest rate derivative is a Bermudan swap option. This is a swap option
that can be exercised on some or all of the payment dates of the underlying swap.
Bermudan swap options are difficult to value using the LIBOR market model because
the LIBOR market model relies on Monte Carlo simulation and it is difficult to
evaluate early exercise decisions when Monte Carlo simulation is used. Fortunately,
the procedures described in Section 27.8 can be used. Longstaff and Schwartz apply the
least-squares approach when there are a large number of factors. The value of not
exercising on a particular payment date is assumed to be a polynomial function of the

10 For details, see L. Andersen and J. Andreasen, ‘‘Volatility Skews and Extensions of the LIBOR Market

Model,’’ Applied Mathematical Finance, 7, 1 (2000): 1–32; J. C. Hull and A. White, ‘‘Forward Rate

Volatilities, Swap Rate Volatilities, and the Implementation of the LIBOR Market Model,’’ Journal of Fixed

Income, 10, 2 (September 2000): 46–62.
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values of the factors.11 Andersen shows that the optimal early exercise boundary
approach can be used. He experiments with a number of ways of parameterizing the
early exercise boundary and finds that good results are obtained when the early exercise
decision is assumed to depend only on the intrinsic value of the option.12. Most traders
value Bermudan options using one of the one-factor no-arbitrage models discussed in
Chapter 31. However, the accuracy of one-factor models for pricing Bermudan swap
options has been a controversial issue.13

32.3 HANDLING MULTIPLE ZERO CURVES

The models in Chapters 29 to 31 and those considered so far in this chapter assume that
only one yield curve is required to value an interest rate derivative. Prior to the credit
crisis that started in 2007, this was often the case. For many derivatives, both the payoffs
and the discount factors were calculated from the LIBOR/swap zero curve. As explained
in Chapter 9, it is now usual to use the OIS zero curve as the risk-free zero curve for
discounting—at least when collateralized transactions are being valued. This means that
more than one zero curve must be modeled for derivatives such as swaps, interest rate
caps, and swaptions whose payoffs depend on LIBOR. A LIBOR zero curve is necessary
to calculate the payoffs; the OIS zero curve is necessary for discounting.

If we model both the OIS zero curve and the LIBOR/swap zero curve, and assume
that banks can risklessly borrow or lend at the rates given by either curve, it is not
possible to assume, as we have done up to now, that there is no arbitrage in financial
markets. Banks can borrow at the OIS rate and lend at LIBOR to lock in a profit. The
alternative is to model credit risk and liquidity risk so that the spread between LIBOR
and OIS is explained. Unfortunately, this adds a huge layer of complexity and makes
models very difficult to use. Practitioners have therefore decided to model LIBOR and
OIS separately, without explicitly considering default risk and liquidity risk, and
ignoring the arbitrage opportunities created by the use of more than one zero curve.

It might be thought that there is a single LIBOR curve. If we knew what the process
for the instantaneous LIBOR short rate was, we would, as explained in Chapter 31,
know the complete LIBOR zero curve. Prior to the credit crisis, this was a reasonable
assumption. Since the crisis, as mentioned in Section 9.3, practitioners calculate
separate zero curves from instruments dependent on 1-month, 3-month, 6-month,
and 12-month LIBOR rates. These zero curves are not the same.14 This means that
in practice at least five different zero curves are used by derivatives desks for LIBOR-
based products.

11 See F.A. Longstaff and E. S. Schwartz, ‘‘Valuing American Options by Simulation: A Simple Least

Squares Approach,’’ Review of Financial Studies, 14, 1 (2001): 113–47.
12 L. Andersen, ‘‘A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR

Market Model,’’ Journal of Computational Finance, 3, 2 (Winter 2000): 5–32.
13 For opposing viewpoints, see ‘‘Factor Dependence of Bermudan Swaptions: Fact or Fiction,’’ by L.

Andersen and J. Andreasen, and ‘‘Throwing Away a Billion Dollars: The Cost of Suboptimal Exercise

Strategies in the Swaption Market,’’ by F.A. Longstaff, P. Santa-Clara, and E. S. Schwartz. Both articles are

in Journal of Financial Economics, 62, 1 (October 2001).
14 For a discussion of this and illustration of the differences, see, for example, M. Bianchetti, ‘‘Two Curves,

One Price,’’ Risk, 23, 8 (August 2010): 66–72. The use of multiple LIBOR zero curves reflects credit risk. A

12-month LIBOR loan has more risk than 12 continually refreshed 1-month LIBOR loans.
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Modeling the OIS zero curve is in principle straightforward. Either the model-of-

short-rate approach in Chapter 31 or the HJM/LMM framework discussed in this

chapter can be used. (The ‘‘LIBOR market model’’ then becomes the ‘‘OIS market

model.’’) In Section 9.3, we explained that forward LIBOR rates calculated when OIS

discounting is used are not the same as forward LIBOR rates when LIBOR discounting

is used. This is an important point, sometimes overlooked by practitioners. Define

FLDðt; t1; t2Þ as the forward LIBOR at time t for the period between t1 and t2 when

LIBOR discounting is used and FODðt; t1; t2Þ as the same when OIS discounting is used.

Examples 9.2 and 9.3 indicate how the FLDðt; t1; t2Þ and FODðt; t1; t2Þ can be boot-

strapped from LIBOR-for-fixed swap quotes.15 Define PLDðt; T Þ as the price at time t of

a zero-coupon bond maturing at time T when LIBOR discounting is used and PODðt; T Þ
as the same when OIS discounting is used. From Section 28.4, FLDðt; t1; t2Þ is a

martingale in a world that is forward risk-neutral with respect to PLDðt; t2Þ, so that it

equals the expected LIBOR rate between t1 and t2 in this world. We have used this

result to value caplets under LIBOR discounting (see Section 29.2). However,

FLDðt; t1; t2Þ is not in general a martingale in a world that is forward risk-neutral with

respect to PODðt; t2Þ. When using OIS discounting it is necessary to work with

FODðt; t1; t2Þ, not FLDðt; t1; t2Þ. This is because FODðt; t1; t2Þ is a martingale in a world

that is forward risk-neutral with respect to PODðt; t2Þ, so that it equals the expected

LIBOR rate between t1 and t2 in this world.

As explained in Chapter 9, to value a swap under OIS discounting we assume that

the forward rates, FODðt; t1; t2Þ, are realized and discount at OIS rates. To value

caplets and floorlets, we can use equations (29.7) and (29.8), but, as explained in

Section 29.4, we have to be careful to define variables appropriately. The variable Fk

in these equations is FODð0; tk; tkþ1Þ and the variable Pð0; tkþ1Þ in the equations is

PODð0; tkþ1Þ. The volatility �k, which is usually implied from market prices, may

depend on whether LIBOR or OIS discounting is used.

Similar arguments can be used to value swaptions under OIS discounting. Equa-

tions (29.10) and (29.11) can be used provided that we set

A ¼ 1

m

Xmn

i¼1

PODð0; TiÞ

and calculate the forward swap rate from the FOD’s rather than the FLD’s. Again

implied volatilities may depend on whether LIBOR or OIS discounting is used.

DerivaGem 3.00 values swaps, caps/floors, and swaptions with either LIBOR or OIS

discounting.

To value more complex products, it is often necessary to model the LIBOR and OIS

zero curves simultaneously. A number of researchers have suggested ways this can be

done. One approach is to model the evolution of the two curves separately, e.g., by

assuming that LIBOR and OIS short rates follow correlated stochastic processes. This

has the disadvantage that OIS rates can exceed the corresponding LIBOR rates. A better

idea is to use either the model-of-short-rate approach in Chapter 31 or the HJM/LMM

framework discussed in this chapter to model OIS rates. The term structure of the spread

of LIBOR over OIS can then be modeled separately as a nonnegative variable. The

15 As already explained, several LIBOR zero curves are now used in practice. In what follows, we assume

that the LIBOR curve used corresponds to the tenor of the LIBOR rate being considered.
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simplest approach is to assume that the spread equals the forward spread. For a
stochastic spread model, we know that the forward LIBOR, FODðt; ti; tiþ1Þ, is a martin-
gale in a world that is forward risk-neutral with respect to PODðt; tiþ1Þ. The forward OIS
between ti and tiþ1 is also a martingale in this world. The spread (i.e., difference between
the two) is therefore a martingale in the world.

The model for forward spreads can be based on one or more factors similarly to the
models in equations (32.10) and (32.15) for forward interest rates, so that16

dFkðtÞ
FkðtÞ

¼ � � � þ
Xp
q¼1

�k;qðtÞdzq

where, for the purposes of this equation, we define FkðtÞ as the forward spread between
times tk and tkþ1 as seen at time t and �k;q as the qth component of the volatility of this
forward spread. All the results given in Section 32.2 for calculating the process followed
by interest rates under the rolling forward risk-neutral measure then apply to spreads.

32.4 AGENCY MORTGAGE-BACKED SECURITIES

One application of the models presented in this chapter is to the agency mortgage-
backed security (agency MBS) market in the United States.

An agency MBS is similar to the ABS considered in Chapter 8 except that payments
are guaranteed by a government-related agency such as the Government National
Mortgage Association (GNMA) or the Federal National Mortgage Association
(FNMA) so that investors are protected against defaults. This makes an agency MBS
sound like a regular fixed-income security issued by the government. In fact, there is a
critical difference between an agency MBS and a regular fixed-income investment. This
difference is that the mortgages in an agency MBS pool have prepayment privileges.
These prepayment privileges can be quite valuable to the householder. In the United
States, mortgages typically last for 30 years and can be prepaid at any time. This means
that the householder has a 30-year American-style option to put the mortgage back to
the lender at its face value.

Prepayments on mortgages occur for a variety of reasons. Sometimes interest rates fall
and the owner of the house decides to refinance at a lower rate. On other occasions, a
mortgage is prepaid simply because the house is being sold. A critical element in valuing
an agency MBS is the determination of what is known as the prepayment function. This is
a function describing expected prepayments on the underlying pool of mortgages at a
time t in terms of the yield curve at time t and other relevant variables.

A prepayment function is very unreliable as a predictor of actual prepayment
experience for an individual mortgage. When many similar mortgage loans are com-
bined in the same pool, there is a ‘‘law of large numbers’’ effect at work and
prepayments can be predicted more accurately from an analysis of historical data. As
mentioned, prepayments are not always motivated by pure interest rate considerations.
Nevertheless, there is a tendency for prepayments to be more likely when interest rates
are low than when they are high. This means that investors require a higher rate of
interest on an agency MBS than on other fixed-income securities to compensate for the
prepayment options they have written.

16 See, for example, F.Mercurio and Z. Xie, ‘‘The BasisGoes Stochastic,’’Risk, 25, 12 (December 2012): 78–83.
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Collateralized Mortgage Obligations

The simplest type of agency MBS is referred to as a pass-through. All investors receive

the same return and bear the same prepayment risk. Not all mortgage-backed

securities work in this way. In a collateralized mortgage obligation (CMO) the investors

are divided into a number of classes and rules are developed for determining how

principal repayments are channeled to different classes. A CMO creates classes of

securities that bear different amounts of prepayment risk in the same way that the

ABS considered in Chapter 8 creates classes of securities bearing different amounts of

credit risk.

As an example of a CMO, consider an agency MBS where investors are divided into

three classes: class A, class B, and class C. All the principal repayments (both those that

are scheduled and those that are prepayments) are channeled to class A investors until

investors in this class have been completely paid off. Principal repayments are then

channeled to class B investors until these investors have been completely paid off.

Finally, principal repayments are channeled to class C investors. In this situation,

class A investors bear the most prepayment risk. The class A securities can be expected

to last for a shorter time than the class B securities, and these, in turn, can be expected

to last less long than the class C securities.

The objective of this type of structure is to create classes of securities that are more

attractive to institutional investors than those created by a simpler pass-through MBS.

The prepayment risks assumed by the different classes depend on the par value in each

class. For example, class C bears very little prepayment risk if the par values in classes

A, B, and C are 400, 300, and 100, respectively. Class C bears rather more prepayment

risk in the situation where the par values in the classes are 100, 200, and 500.

The creators of mortgage-backed securities have created many more exotic structures

than the one we have just described. Business Snapshot 32.1 gives an example.

Valuing Agency Mortgage-Backed Securities

Agency MBSs are usually valued by modeling the behavior of Treasury rates using

Monte Carlo simulation. The HJM/LMM approach can be used. Consider what

happens on one simulation trial. Each month, expected prepayments are calculated

from the current yield curve and the history of yield curve movements. These prepay-

ments determine the expected cash flows to the holder of the agency MBS and the cash

flows are discounted at the Treasury rate plus a spread to time zero to obtain a sample

value for the agency MBS. An estimate of the value of the agency MBS is the average of

the sample values over many simulation trials.

Option-Adjusted Spread

In addition to calculating theoretical prices for mortgage-backed securities and other

bonds with embedded options, traders also like to compute what is known as the

option-adjusted spread (OAS). This is a measure of the spread over the yields on

government Treasury bonds provided by the instrument when all options have been

taken into account.

To calculate an OAS for an instrument, it is priced as described above using Treasury

rates plus a spread for discounting. The price of the instrument given by the model is
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compared to the price in the market. A series of iterations is then used to determine the

value of the spread that causes the model price to be equal to the market price. This

spread is the OAS.

SUMMARY

The HJM and LMM models provide approaches to valuing interest rate derivatives that

give the user complete freedom in choosing the volatility term structure. The LMM

model has two key advantages over the HJM model. First, it is developed in terms of the

forward rates that determine the pricing of caps, rather than in terms of instantaneous

forward rates. Second, it is relatively easy to calibrate to the price of caps or European

swap options. The HJM and LMMmodels both have the disadvantage that they cannot

be represented as recombining trees. In practice, this means that they must usually be

implemented using Monte Carlo simulation and require much more computation time

than the models in Chapter 31.

Since the credit crisis that started in 2007, the OIS rate has been used as the risk-free

discount rate for collateralized derivatives. This means that the valuation procedures

for interest rates swaps, caps/floors, and swaptions must be adjusted so that OIS rates

are used as discount rates and forward interest rates and swap rates are calculated

using the appropriate forward risk-neutral measures. For more complicated instru-

ments, it is necessary to model the joint evolution of the OIS zero curve and the

LIBOR zero curve.

The agency mortgage-backed security market in the United States has given birth to

many exotic interest rate derivatives: CMOs, IOs, POs, and so on. These instruments

provide cash flows to the holder that depend on the prepayments on a pool of

mortgages. These prepayments depend on, among other things, the level of interest

rates. Because they are heavily path dependent, agency mortgage-backed securities

usually have to be valued using Monte Carlo simulation. These are, therefore, ideal

candidates for applications of the HJM and LMM models.

Business Snapshot 32.1 IOs and POs

In what is known as a stripped MBS, principal payments are separated from interest
payments. All principal payments are channeled to one class of security, known as a
principal only (PO). All interest payments are channeled to another class of security
known as an interest only (IO). Both IOs and POs are risky investments. As
prepayment rates increase, a PO becomes more valuable and an IO becomes less
valuable. As prepayment rates decrease, the reverse happens. In a PO, a fixed amount
of principal is returned to the investor, but the timing is uncertain. A high rate of
prepayments on the underlying pool leads to the principal being received early (which
is, of course, good news for the holder of the PO). A low rate of prepayments on the
underlying pool delays the return of the principal and reduces the yield provided by
the PO. In the case of an IO, the total of the cash flows received by the investor is
uncertain. The higher the rate of prepayments, the lower the total cash flows received
by the investor, and vice versa.
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Practice Questions (Answers in Solutions Manual)

32.1. Explain the difference between a Markov and a non-Markov model of the short rate.

32.2. Prove the relationship between the drift and volatility of the forward rate for the
multifactor version of HJM in equation (32.6).

32.3. ‘‘When the forward rate volatility sðt; T Þ in HJM is constant, the Ho–Lee model results.’’
Verify that this is true by showing that HJM gives a process for bond prices that is
consistent with the Ho–Lee model in Chapter 31.

32.4. ‘‘When the forward rate volatility, sðt; T Þ, in HJM is �e�aðT�tÞ, the Hull–White model
results.’’ Verify that this is true by showing that HJM gives a process for bond prices that
is consistent with the Hull–White model in Chapter 31.

32.5. What is the advantage of LMM over HJM?

32.6. Provide an intuitive explanation of why a ratchet cap increases in value as the number of
factors increase.

32.7. Show that equation (32.10) reduces to (32.4) as the �i tend to zero.

32.8. Explain why a sticky cap is more expensive than a similar ratchet cap.
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32.9. Explain why IOs and POs have opposite sensitivities to the rate of prepayments.

32.10. ‘‘An option adjusted spread is analogous to the yield on a bond.’’ Explain this statement.

32.11. Prove equation (32.15).

32.12. Prove the formula for the variance V ðT Þ of the swap rate in equation (32.17).

32.13. Prove equation (32.19).

Further Questions

32.14. In an annual-pay cap, the Black volatilities for at-the-money caplets which start in 1, 2,
3, and 5 years and end 1 year later are 18%, 20%, 22%, and 20%, respectively.
Estimate the volatility of a 1-year forward rate in the LIBOR Market Model when the
time to maturity is (a) 0 to 1 year, (b) 1 to 2 years, (c) 2 to 3 years, and (d) 3 to 5 years.
Assume that the zero curve is flat at 5% per annum (annually compounded). Use
DerivaGem with LIBOR discounting to estimate flat volatilities for 2-, 3-, 4-, 5-, and
6-year at-the-money caps.

32.15. In the flexi cap considered in Section 32.2 the holder is obligated to exercise the first
N in-the-money caplets. After that no further caplets can be exercised. (In the example,
N ¼ 5.) Two other ways that flexi caps are sometimes defined are:
(a) The holder can choose whether any caplet is exercised, but there is a limit of N on

the total number of caplets that can be exercised.
(b) Once the holder chooses to exercise a caplet all subsequent in-the-money caplets

must be exercised up to a maximum of N.
Discuss the problems in valuing these types of flexi caps. Of the three types of flexi
caps, which would you expect to be most expensive? Which would you expect to be
least expensive?
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Swaps Revisited

Swaps have been central to the success of over-the-counter derivatives markets. They

have proved to be very flexible instruments for managing risk. Based on the range of

different contracts that now trade and the total volume of business transacted each year,

swaps are arguably one of the most successful innovations in financial markets ever.

Chapters 7 and 9 discussed how plain vanilla LIBOR-for-fixed interest rate swaps can

be valued. The standard approach can be summarized as: ‘‘Assume forward rates will

be realized.’’ The steps are as follows:

1. Calculate the swap’s net cash flows on the assumption that LIBOR rates in the
future equal the forward rates calculated from instruments trading in the market
today. (As explained in Section 9.3, the forward rates when OIS discounting is
used are different from those when LIBOR discounting is used.)

2. Set the value of the swap equal to the present value of the net cash flows.

This chapter describes a number of nonstandard swaps. Some can be valued using the

‘‘assume forward rates will be realized’’ approach; some require the application of the

convexity, timing, and quanto adjustments we encountered in Chapter 30; some

contain embedded options that must be valued using the procedures described in

Chapters 29, 31, and 32.

33.1 VARIATIONS ON THE VANILLA DEAL

Many interest rate swaps involve relatively minor variations to the plain vanilla

structure discussed in Chapter 7. In some swaps the notional principal changes with

time in a predetermined way. Swaps where the notional principal is an increasing

function of time are known as step-up swaps. Swaps where the notional principal is a

decreasing function of time are known as amortizing swaps. Step-up swaps could be

useful for a construction company that intends to borrow increasing amounts of

money at floating rates to finance a particular project and wants to swap to fixed-rate

funding. An amortizing swap could be used by a company that has fixed-rate

borrowings with a certain prepayment schedule and wants to swap to borrowings at

a floating rate.
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The principal can be different on the two sides of a swap. Also the frequency of

payments can be different. Business Snapshot 33.1 illustrates this by showing a hypo-

thetical swap between Microsoft and Goldman Sachs where the notional principal is

$120 million on the floating side and $100 million on fixed side. Payments are made

every month on the floating side and every 6 months on the fixed side. These type of

variations to the basic plain vanilla structure do not affect the valuation methodology.

The ‘‘assume forward rates are realized’’ approach can still be used.

The floating reference rate for a swap is not always LIBOR. For instance, in some

swaps it is the commercial paper (CP) rate or the OIS rate. A basis swap involves

exchanging cash flows calculated using one floating reference rate for cash flows

calculated using another floating reference rate. An example would be a swap where

the 3-month OIS rate plus 10 basis points is exchanged for 3-month LIBOR with both

being applied to a principal of $100 million. A basis swap could be used for risk

management by a financial institution whose assets and liabilities are dependent on

different floating reference rates.

Swaps where the floating reference rate is not LIBOR can usually be valued using the

‘‘assume forward rates are realized’’ approach. The forward rate is calculated so that

swaps involving the reference rate have zero value. (This is similar to the way forward

LIBOR is calculated when OIS discounting is used.)

Business Snapshot 33.1 Hypothetical Confirmation for Nonstandard Swap

Trade date: 4-January, 2013

Effective date: 11-January, 2013

Business day convention (all dates): Following business day

Holiday calendar: US

Termination date: 11-January, 2018

Fixed amounts

Fixed-rate payer: Microsoft

Fixed-rate notional principal: USD 100 million

Fixed rate: 6% per annum

Fixed-rate day count convention: Actual/365

Fixed-rate payment dates Each 11-July and 11-January
commencing 11-July, 2013, up to
and including 11-January, 2018

Floating amounts

Floating-rate payer Goldman Sachs

Floating-rate notional principal USD 120 million

Floating rate USD 1-month LIBOR

Floating-rate day count convention Actual/360

Floating-rate payment dates 11-July, 2013, and the 11th of each
month thereafter up to and including
11-January, 2018
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33.2 COMPOUNDING SWAPS

Another variation on the plain vanilla swap is a compounding swap. A hypothetical

confirmation for a compounding swap is in Business Snapshot 33.2. In this example

there is only one payment date for both the floating-rate payments and the fixed-rate

payments. This is at the end of the life of the swap. The floating rate of interest is

LIBOR plus 20 basis points. Instead of being paid, the interest is compounded forward

until the end of the life of the swap at a rate of LIBOR plus 10 basis points. The fixed

rate of interest is 6%. Instead of being paid this interest is compounded forward at a

fixed rate of interest of 6.3% until the end of the swap.

The ‘‘assume forward rates are realized’’ approach can be used at least approximately

for valuing a compounding swap such as that in Business Snapshot 33.2. It is straight-

forward to deal with the fixed side of the swap because the payment that will be made at

maturity is known with certainty. The ‘‘assume forward rates are realized’’ approach for

the floating side is justifiable because there exist a series of forward rate agreements

Business Snapshot 33.2 Hypothetical Confirmation for Compounding Swap

Trade date: 4-January, 2013

Effective date: 11-January, 2013

Holiday calendar: US

Business day convention (all dates): Following business day

Termination date: 11-January, 2018

Fixed amounts

Fixed-rate payer: Microsoft

Fixed-rate notional principal: USD 100 million

Fixed rate: 6% per annum

Fixed-rate day count convention: Actual/365

Fixed-rate payment date: 11-January, 2018

Fixed-rate compounding: Applicable at 6.3%

Fixed-rate compounding dates Each 11-July and 11-January
commencing 11-July, 2013, up to
and including 11-July, 2017

Floating amounts

Floating-rate payer: Goldman Sachs

Floating-rate notional principal: USD 100 million

Floating rate: USD 6-month LIBOR
plus 20 basis points

Floating-rate day count convention: Actual/360

Floating-rate payment date: 11-January, 2018

Floating-rate compounding: Applicable at LIBOR
plus 10 basis points

Floating-rate compounding dates: Each 11-July and 11-January
commencing 11-July, 2013, up to
and including 11-July, 2017
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(FRAs) where the floating-rate cash flows are exchanged for the values they would have
if each floating rate equaled the corresponding forward rate.1

Example 33.1

A compounding swap with annual resets has a life of 3 years. A fixed rate is paid
and a floating rate is received. The fixed interest rate is 4% and the floating interest
rate is 12-month LIBOR. The fixed side compounds at 3.9% and the floating side
compounds at 12-month LIBOR minus 20 basis points. The LIBOR/swap zero
curve is used for discounting. It is flat at 5% with annual compounding and the
notional principal is $100 million.

On the fixed side, interest of $4 million is earned at the end of the first year.
This compounds to 4� 1:039 ¼ $4:156 million at the end of the second year.
A second interest amount of $4 million is added at the end of the second year
bringing the total compounded forward amount to $8.156 million. This com-
pounds to 8:156� 1:039 ¼ $8:474 million by the end of the third year when there
is the third interest amount of $4 million. The cash flow at the end of the third
year on the fixed side of the swap is therefore $12.474 million.

On the floating side we assume all future interest rates equal the corresponding
forward LIBOR rates. Because we are assuming LIBOR discounting, this means
that all future interest rates are assumed to be 5% with annual compounding. The
interest calculated at the end of the first year is $5 million. Compounding this
forward at 4.8% (forward LIBOR minus 20 basis points) gives 5� 1:048 ¼
$5:24 million at the end of the second year. Adding in the interest, the compounded
forward amount is $10.24 million. Compounding forward to the end of the third
year, we get 10:24� 1:048 ¼ $10:731 million. Adding in the final interest gives
$15.731 million.

The swap can be valued by assuming that it leads to an inflow of $15.731 million
and an outflow of $12.474 million at the end of year 3. The value of the swap is
therefore

15:731� 12:474

1:053
¼ 2:814

or $2.814 million. (This analysis ignores day count issues and makes the approx-
imation indicated in footnote 1.)

33.3 CURRENCY SWAPS

Currency swaps were introduced in Chapter 7. They enable an interest rate exposure in
one currency to be swapped for an interest rate exposure in another currency. Usually
two principals are specified, one in each currency. The principals are exchanged at both
the beginning and the end of the life of the swap as described in Section 7.9.

Suppose that the currencies involved in a currency swap are US dollars (USD) and
British pounds (GBP). In a fixed-for-fixed currency swap, a fixed rate of interest is

1 See Technical Note 18 at www.rotman.utoronto.ca/�hull/TechnicalNotes for the details. The ‘‘assume

forward rates are realized’’ approach works exactly if the spread used for compounding, sc, is zero or if it is

applied so that Q at time t compounds to Qð1þ R�Þð1þ sc�Þ at time tþ �, where R is LIBOR. If, as is more

usual, it compounds to Q½1þ ðRþ scÞ��, then there is a small approximation.
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specified in each currency. The payments on one side are determined by applying the

fixed rate of interest in USD to the USD principal; the payments on the other side are

determined by applying the fixed rate of interest in GBP to the GBP principal.

Section 7.10 discussed the valuation of this type of swap.

Other currency swaps are discussed in Section 7.11. In a floating-for-floating currency
swap, the payments on one side are determined by applying USD LIBOR (possibly

with a spread added) to the USD principal; similarly the payments on the other side are

determined by applying GBP LIBOR (possibly with a spread added) to the GBP

principal. In a cross-currency interest rate swap, a floating rate in one currency is

exchanged for a fixed rate in another currency.

Floating-for-floating and cross-currency interest rate swaps can be valued using the

‘‘assume forward rates are realized’’ rule. Future LIBOR rates in each currency are
assumed to equal today’s forward rates. This enables the cash flows in the currencies to

be determined. The USD cash flows are discounted at the USD zero rate. The GBP

cash flows are discounted at the GBP zero rate. The current exchange rate is then used

to translate the two present values to a common currency.

An adjustment to this procedure is sometimes made to reflect the realities of the

market. In theory, a new floating-for-floating swap should involve exchanging LIBOR

in one currency for LIBOR in another currency (with no spreads added). In practice,
macroeconomic effects give rise to spreads. Financial institutions often adjust the

discount rates they use to allow for this. As an example, suppose that market conditions

are such that USD LIBOR is exchanged for Japanese yen (JPY) LIBOR minus 20 basis

points in new floating-for-floating swaps of all maturities. In its currency swap valua-

tions, a US financial institution might discount USD cash flows at USD LIBOR and

discount JPY cash flows at JPY LIBOR minus 20 basis points.2 It would do this in all

swaps that involved both JPY and USD cash flows.

33.4 MORE COMPLEX SWAPS

We now move on to consider some examples of swaps where the simple rule ‘‘assume

forward rates will be realized’’ does not work. In each case, it must be assumed that an
adjusted forward rate, rather than the actual forward rate, is realized. This section

builds on the discussion in Chapter 30.

LIBOR-in-Arrears Swap

A plain vanilla interest rate swap is designed so that the floating rate of interest

observed on one payment date is paid on the next payment date. An alternative

instrument that is sometimes traded is a LIBOR-in-arrears swap. In this, the floating

rate paid on a payment date equals the rate observed on the payment date itself.

Suppose that the reset dates in the swap are ti for i ¼ 0; 1; . . . ; n, with �i ¼ tiþ1 � ti.

Define Ri as the LIBOR rate for the period between ti and tiþ1, Fi as the forward value
of Ri, and �i as the volatility of this forward rate. (The value of �i is typically implied

from caplet prices.) In a LIBOR-in-arrears swap, the payment on the floating side at

2 This adjustment is ad hoc, but, if it is not made, traders make an immediate profit or loss every time they

trade a new JPY/USD floating-for-floating swap.
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time ti is based on Ri rather than Ri�1. As explained in Section 30.1, it is necessary to
make a convexity adjustment to the forward rate when the payment is valued. The
valuation should be based on the assumption that the floating rate paid is

Fi þ
F

2
i �

2
i �iti

1þ Fi�i
ð33:1Þ

and not Fi.

Example 33.2

In a LIBOR-in-arrears swap, the principal is $100 million. A fixed rate of 5% is
received annually and LIBOR is paid. Payments are exchanged at the ends of
years 1, 2, 3, 4, and 5. The LIBOR/swap zero curve is used for discounting and is
flat at 5% per annum (measured with annual compounding). All caplet volatilities
are 22% per annum.

The forward rate for each floating payment is 5%. If this were a regular swap
rather than an in-arrears swap, its value would (ignoring day count conventions,
etc.) be exactly zero. Because it is an in-arrears swap, convexity adjustments must
be made. In equation (33.1), Fi ¼ 0:05, �i ¼ 0:22, and �i ¼ 1 for all i. The con-
vexity adjustment changes the rate assumed at time ti from 0.05 to

0:05þ 0:052 � 0:222 � 1� ti

1þ 0:05� 1
¼ 0:05þ 0:000115ti

The floating rates for the payments at the ends of years 1, 2, 3, 4, and 5 should
therefore be assumed to be 5.0115%, 5.0230%, 5.0345%, 5.0460%, and 5.0575%,
respectively. The net exchange on the first payment date is equivalent to a cash
outflow of 0.0115% of $100 million or $11,500. Equivalent net cash flows for
other exchanges are calculated similarly. The value of the swap is

� 11,500

1:05
� 23,000

1:052
� 34,500

1:053
� 46,000

1:054
� 57,500

1:055
or �$144,514.

CMS and CMT Swaps

A constant maturity swap (CMS) is an interest rate swap where the floating rate equals
the swap rate for a swap with a certain life. For example, the floating payments on a CMS
swap might be made every 6 months at a rate equal to the 5-year swap rate. Usually there
is a lag so that the payment on a particular payment date is equal to the swap rate
observed on the previous payment date. Suppose that rates are set at times t0, t1, t2, . . . ,
payments are made at times t1, t2, t3, . . . , and L is the notional principal. The floating
payment at time tiþ1 is

�iLSi

where �i ¼ tiþ1 � ti and Si is the swap rate at time ti.
Suppose that yi is the forward value of the swap rate Si. To value the payment at

time tiþ1, it turns out to be correct to make an adjustment to the forward swap rate, so
that the realized swap rate is assumed to be

yi � 1
2
y
2
i �

2
y;iti

G
00
i ðyiÞ

G0
iðyiÞ

� yi�iFi�i�y;i�F;i ti
1þ Fi�i

ð33:2Þ
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rather that yi. In this equation, �y;i is the volatility of the forward swap rate, Fi is the
current forward interest rate between times ti and tiþ1, �F;i is the volatility of this forward
rate, and �i is the correlation between the forward swap rate and the forward interest rate.
GiðxÞ is the price at time ti of a bond as a function of its yield x. The bond pays coupons at
rate yi and has the same life and payment frequency as the swap from which the CMS rate
is calculated. G0

iðxÞ and G
00
i ðxÞ are the first and second partial derivatives of Gi with

respect to x. The volatilities �y;i can be implied from swaptions; the volatilities �F;i can be
implied from caplet prices; the correlation �i can be estimated from historical data.

Equation (33.2) involves a convexity and a timing adjustment. The term

�1
2
y
2
i �

2
y;iti

G
00
i ðyiÞ

G0
iðyiÞ

is an adjustment similar the one in Example 30.2 of Section 30.1. It is based on the
assumption that the swap rate Si leads to only one payment at time ti rather than to an
annuity of payments. The term

� yi�iFi�i�y;i�F;i ti
1þ Fi�i

is similar to the one in Section 30.2 and is an adjustment for the fact that the payment
calculated from Si is made at time tiþ1 rather than ti.

Example 33.3

In a 6-year CMS swap, the 5-year swap rate is received and a fixed rate of 5% is
paid on a notional principal of $100 million. The exchange of payments is semi-
annual (both on the underlying 5-year swap and on the CMS swap itself ). The
exchange on a payment date is determined from the swap rate on the previous
payment date. The LIBOR/swap zero curve is used for discounting and is flat at
5% per annum with semiannual compounding. All options on five-year swaps
have a 15% implied volatility and all caplets with a 6-month tenor have a 20%
implied volatility. The correlation between each cap rate and each swap rate is 0.7.

In this case, yi ¼ 0:05, �y;i ¼ 0:15, �i ¼ 0:5, Fi ¼ 0:05, �F;i ¼ 0:20, and �i ¼ 0:7
for all i. Also,

GiðxÞ ¼
X10
i¼1

2:5

ð1þ x=2Þi þ
100

ð1þ x=2Þ10

so that G0
iðyiÞ ¼ �437:603 and G

00
i ðyiÞ ¼ 2261:23. Equation (33.2) gives the total

convexity/timing adjustment as 0:0001197ti, or 1.197 basis points per year until
the swap rate is observed. For example, for the purposes of valuing the CMS
swap, the 5-year swap rate in 4 years’ time should be assumed to be 5.0479%
rather than 5% and the net cash flow received at the 4.5-year point should be
assumed to be 0:5� 0:000479� 100,000,000 ¼ $23,940. Other net cash flows are
calculated similarly. Taking their present value, we find the value of the swap to
be $159,811.

A constant maturity Treasury swap (CMT swap) works similarly to a CMS swap except
that the floating rate is the yield on a Treasury bond with a specified life. The analysis of
a CMT swap is essentially the same as that for a CMS swap with Si defined as the par
yield on a Treasury bond with the specified life.
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Differential Swaps

A differential swap, sometimes referred to as a diff swap, is an interest rate swap where a
floating interest rate is observed in one currency and applied to a principal in another
currency. Suppose that the LIBOR rate for the period between ti and tiþ1 in currency Y
is applied to a principal in currency X with the payment taking place at time tiþ1. Define
Vi as the forward interest rate between ti and tiþ1 in currency Y and Wi as the forward
exchange rate for a contract with maturity tiþ1 (expressed as the number of units of
currency Y that equal one unit of currency X). If the LIBOR rate in currency Y were
applied to a principal in currency Y, the cash flow at time tiþ1 would be valued on the
assumption that the LIBOR rate at time ti equals Vi. From the analysis in Section 30.3,
a quanto adjustment is necessary when it is applied to a principal in currency X. It is
correct to value the cash flow on the assumption that the LIBOR rate equals

Vi þ Vi�i�W;i�V ;iti ð33:3Þ

where �V ;i is the volatility of Vi, �W;i is the volatility of Wi, and �i is the correlation
between Vi and Wi.

Example 33.4

In a 3-year diff swap agreement with annual payments, USD 12-month LIBOR is
received and sterling 12-month LIBOR is paid with both being applied to a
principal of 10 million pounds sterling. LIBOR/swap zero rates are used for
discounting and are 5% per annum (with semiannual compounding) for all
maturities. The volatility of all 1-year forward rates in the US is estimated to
be 20%, the volatility of the forward USD/sterling exchange rate (dollars per
pound) is 12% for all maturities, and the correlation between the two is 0.4.

In this case, Vi ¼ 0:05, �i ¼ 0:4, �W;i ¼ 0:12, �V ;i ¼ 0:2. The floating-rate cash
flows dependent on the 1-year USD rate observed at time ti should therefore be
calculated on the assumption that the rate will be

0:05þ 0:05� 0:4� 0:12� 0:2� ti ¼ 0:05þ 0:00048ti

This means that the net cash flows from the swap at times 1, 2, and 3 years should
be assumed to be 0, 4,800, and 9,600 pounds sterling for the purposes of valua-
tion. The value of the swap is therefore

0

1:05
þ 4; 800

1:052
þ 9; 600

1:053
¼ 12,647

or 12,647 pounds sterling.

33.5 EQUITY SWAPS

In an equity swap, one party promises to pay the return on an equity index on a
notional principal, while the other promises to pay a fixed or floating return on a
notional principal. Equity swaps enable a fund managers to increase or reduce their
exposure to an index without buying and selling stock. An equity swap is a convenient
way of packaging a series of forward contracts on an index to meet the needs of the
market.
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The equity index is usually a total return index where dividends are reinvested in the

stocks comprising the index. An example of an equity swap is in Business Snapshot 33.3.

In this, the 6-month return on the S&P 500 is exchanged for LIBOR. The principal on

either side of the swap is $100 million and payments are made every 6 months.

For an equity-for-floating swap such as that in Business Snapshot 33.3, the value at

the start of its life is zero, assuming LIBOR discounting. This is because a financial

institution can arrange to costlessly replicate the cash flows to one side by borrowing

the principal on each payment date at LIBOR and investing it in the index until the next

payment date with any dividends being reinvested. A similar argument shows that the

swap is always worth zero immediately after a payment date.

Between payment dates the equity cash flow and the LIBOR cash flow at the next

payment date must be valued. The LIBOR cash flow was fixed at the last reset date and so

can be valued easily. The value of the equity cash flow is LE=E0, where L is the principal,

E is the current value of the equity index, and E0 is its value at the last payment date.3

Business Snapshot 33.3 Hypothetical Confirmation for an Equity Swap

Trade date: 4-January, 2013

Effective date: 11-January, 2013

Business day convention (all dates): Following business day

Holiday calendar: US

Termination date: 11-January, 2018

Equity amounts

Equity payer: Microsoft

Equity principal USD 100 million

Equity index: Total Return S&P 500 index

Equity payment: 100ðI1 � I0Þ=I0, where I1 is the index
level on the payment date and I0 is the
index level on the immediately preceding
payment date. In the case of the first
payment date, I0 is the index level on
11-January, 2013

Equity payment dates: Each 11-July and 11-January
commencing 11-July, 2013,
up to and including 11-January, 2018

Floating amounts

Floating-rate payer: Goldman Sachs

Floating-rate notional principal: USD 100 million

Floating rate: USD 6-month LIBOR

Floating-rate day count convention: Actual/360

Floating-rate payment dates: Each 11-July and 11-January
commencing 11-July, 2013, up to
and including 11-January, 2018

3 See Technical Note 19 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a more detailed discussion.
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33.6 SWAPS WITH EMBEDDED OPTIONS

Some swaps contain embedded options. In this section we consider some commonly

encountered examples.

Accrual Swaps

Accrual swaps are swaps where the interest on one side accrues only when the floating

reference rate is within a certain range. Sometimes the range remains fixed during the

entire life of the swap; sometimes it is reset periodically.

As a simple example of an accrual swap, consider a deal where a fixed rate Q is

exchanged for 3-month LIBOR every quarter and the fixed rate accrues only on days

when 3-month LIBOR is below 8% per annum. Suppose that the principal is L. In a

normal swap the fixed-rate payer would pay QLn1=n2 on each payment date where n1 is

the number of days in the preceding quarter and n2 is the number of days in the year.

(This assumes that the day count is actual/actual.) In an accrual swap, this is changed to

QLn3=n2, where n3 is the number of days in the preceding quarter that the 3-month

LIBOR was below 8%. The fixed-rate payer saves QL=n2 on each day when 3-month

LIBOR is above 8%.4 The fixed-rate payer’s position can therefore be considered

equivalent to a regular swap plus a series of binary options, one for each day of the

life of the swap. The binary options pay off QL=n2 when the 3-month LIBOR is

above 8%.

To generalize, suppose that the LIBOR cutoff rate (8% in the case just considered) is

RK and that payments are exchanged every � years. Consider day i during the life of the

swap and suppose that ti is the time until day i. Suppose that the �-year LIBOR rate on

day i is Ri so that interest accrues when Ri < RK. Define Fi as the forward value of Ri

and �i as the volatility of Fi. (The latter is estimated from spot caplet volatilities.) Using

the usual lognormal assumption, the probability that LIBOR is greater than RK in a

world that is forward risk neutral with respect to a zero-coupon bond maturing at time

ti þ � is Nðd2Þ, where

d2 ¼
lnðFi=RKÞ � �2

i ti=2

�i
ffiffiffi
ti

p

The payoff from the binary option is realized at the swap payment date following

day i. Suppose that this is at time si. The probability that LIBOR is greater than RK

in a world that is forward risk neutral with respect to a zero-coupon bond maturing at

time si is given by Nðd �
2 Þ, where d

�
2 is calculated using the same formula as d2, but

with a small timing adjustment to Fi reflecting the difference between time ti þ � and

time si.

The value of the binary option corresponding to day i is

QL

n2
Pð0; siÞNðd �

2 Þ

The total value of the binary options is obtained by summing this expression for every

4 The usual convention is that, if a day is a holiday, the applicable rate is assumed to be the rate on the

immediately preceding business day.
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day in the life of the swap. The timing adjustment (causing d2 to be replaced by d
�
2 ) is so

small that, in practice, it is frequently ignored.

Cancelable Swap

A cancelable swap is a plain vanilla interest rate swap where one side has the option to
terminate on one or more payment dates. Terminating a swap is the same as entering
into the offsetting (opposite) swap. Consider a swap between Microsoft and Goldman
Sachs. If Microsoft has the option to cancel, it can regard the swap as a regular swap
plus a long position in an option to enter into the offsetting swap. If Goldman Sachs
has the cancelation option, Microsoft has a regular swap plus a short position in an
option to enter into the swap.

If there is only one termination date, a cancelable swap is the same as a regular swap
plus a position in a European swaption. Consider, for example, a 10-year swap where
Microsoft will receive 6% and pay LIBOR. Suppose that Microsoft has the option to
terminate at the end of 6 years. The swap is a regular 10-year swap to receive 6% and
pay LIBOR plus long position in a 6-year European option to enter into a 4-year swap
where 6% is paid and LIBOR is received. (The latter is referred to as a 6� 4 European
swaption.) The standard market model for valuing European swaptions is described in
Chapter 29.

When the swap can be terminated on a number of different payment dates, it is a
regular swap plus a Bermudan-style swaption. Consider, for example, the situation
where Microsoft has entered into a 5-year swap with semiannual payments where 6% is
received and LIBOR is paid. Suppose that the counterparty has the option to terminate
the swap on payment dates between year 2 and year 5. The swap is a regular swap plus a
short position in a Bermudan-style swaption, where the Bermudan-style swaption is an
option to enter into a swap that matures in 5 years and involves a fixed payment at 6%
being received and a floating payment at LIBOR being paid. The swaption can be
exercised on any payment date between year 2 and year 5. Methods for valuing
Bermudan swaptions are discussed in Chapters 31 and 32.

Cancelable Compounding Swaps

Sometimes compounding swaps can be terminated on specified payment dates. On
termination, the floating-rate payer pays the compounded value of the floating amounts
up to the time of termination and the fixed-rate payer pays the compounded value of
the fixed payments up to the time of termination.

Some tricks can be used to value cancelable compounding swaps. Suppose first that
the floating rate is LIBOR, it is compounded at LIBOR, and LIBOR discounting is
used. Assume that the principal amount of the swap is paid on both the fixed and
floating sides of the swap at the end of its life. This is similar to moving from Table 7.1
to Table 7.2 for a vanilla swap. It does not change the value of the swap and has the
effect of ensuring that the value of the floating side is always equals the notional
principal on a payment date. To make the cancelation decision, we need only look at
the fixed side. We construct an interest rate tree as outlined in Chapter 31. We roll back
through the tree in the usual way valuing the fixed side. At each node where the swap
can be canceled, we test whether it is optimal to keep the swap or cancel it. Canceling
the swap in effect sets the fixed side equal to par. If we are paying fixed and receiving
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floating, our objective is to minimize the value of the fixed side; if we are receiving fixed

and paying floating, our objective is to maximize the value of the fixed side.

When the floating side is LIBOR plus a spread compounded at LIBOR, the cash

flows corresponding to the spread rate of interest can be subtracted from the fixed side

instead of adding them to the floating side. The option can then be valued as in the case

where there is no spread.

When the compounding is at LIBOR plus a spread, an approximate approach is as

follows:5

1. Calculate the value of the floating side of the swap at each cancelation date

assuming forward rates are realized.

2. Calculate the value of the floating side of the swap at each cancelation date

assuming that the floating rate is LIBOR and it is compounded at LIBOR.

3. Define the excess of step 1 over step 2 as the ‘‘value of spreads’’ on a cancelation date.

4. Treat the option in the way described above. In deciding whether to exercise the

cancelation option, subtract the value of the spreads from the values calculated for
the fixed side.

A similar approach can be used for OIS discounting if the spread between OIS and

LIBOR is assumed to be equal to the forward spread.

33.7 OTHER SWAPS

This chapter has discussed just a few of the swap structures in the market. In practice, the

range of different contracts that trade is limited only by the imagination of financial

engineers and the appetite of corporate treasurers for innovative risk management tools.

A swap that was very popular in the United States in the mid-1990s is an index

amortizing rate swap (also called an indexed principal swap). In this, the principal reduces

in away dependent on the level of interest rates. The lower the interest rate, the greater the

reduction in the principal. The fixed side of an indexed amortizing swap was originally

designed to mirror approximately the return obtained by an investor on an agency

mortgage-backed security after prepayment options are taken into account. The swap

therefore exchanged the return on the mortgage-backed security for a floating-rate return.

Commodity swaps are now becoming increasingly popular. A company that consumes

100,000 barrels of oil per year could agree to pay $8 million each year for the next 10 years

and to receive in return 100,000S, where S is the market price of oil per barrel. The

agreement would in effect lock in the company’s oil cost at $80 per barrel. An oil

producer might agree to the opposite exchange, thereby locking in the price it realized

for its oil at $80 per barrel. Energy derivatives such as this will be discussed in Chapter 34.

A number of other types of swaps are discussed elsewhere in this book. For example,

asset swaps are discussed in Chapter 24, total return swaps and various types of credit

default swaps are covered in Chapter 25, and volatility and variance swaps are analyzed

in Chapter 26.

5 This approach is not perfectly accurate in that it assumes that the decision to exercise the cancelation

option is not influenced by future payments being compounded at a rate different from LIBOR.
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Bizarre Deals

Some swaps have payoffs that are calculated in quite bizarre ways. An example is a deal

entered into between Procter and Gamble and Bankers Trust in 1993 (see Business

Snapshot 33.4). The details of this transaction are in the public domain because it later

became the subject of litigation.6

SUMMARY

Swaps have proved to be very versatile financial instruments. Many swaps can be valued

by (a) assuming that LIBOR (or some other floating reference rate) will equal its

forward value and (b) discounting the resulting cash flows. These include plain vanilla

interest swaps, most types of currency swaps, swaps where the principal changes in a

predetermined way, swaps where the payment dates are different on each side, and

compounding swaps.

Business Snapshot 33.4 Procter and Gamble’s Bizarre Deal

A particularly bizarre swap is the so-called ‘‘5/30’’ swap entered into between Bankers
Trust (BT) and Procter and Gamble (P&G) on November 2, 1993. This was a 5-year
swap with semiannual payments. The notional principal was $200 million. BT paid
P&G 5.30% per annum. P&G paid BT the average 30-day CP (commercial paper)
rate minus 75 basis points plus a spread. The average commercial paper rate was
calculated by taking observations on the 30-day commercial paper rate each day
during the preceding accrual period and averaging them.

The spread was zero for the first payment date (May 2, 1994). For the remaining
nine payment dates, it was

max 0;

98:5

�
5-year CMT%

5:78%

�
� ð30-year TSY priceÞ

100

2
664

3
775

In this, 5-year CMT is the constant maturity Treasury yield (i.e., the yield on a 5-year
Treasury note, as reported by the US Federal Reserve). The 30-year TSY price is the
midpoint of the bid and offer cash bond prices for the 6.25% Treasury bond
maturing on August 2023. Note that the spread calculated from the formula is a
decimal interest rate. It is not measured in basis points. If the formula gives 0.1 and
the CP rate is 6%, the rate paid by P&G is 15.25%.

P&G were hoping that the spread would be zero and the deal would enable it to
exchange fixed-rate funding at 5.30% for funding at 75 basis points less than the
commercial paper rate. In fact, interest rates rose sharply in early 1994, bond prices
fell, and the swap proved very, very expensive (see Problem 33.10).

6 See D. J. Smith, ‘‘Aggressive Corporate Finance: A Close Look at the Procter and Gamble–Bankers Trust

Leveraged Swap,’’ Journal of Derivatives 4, 4 (Summer 1997): 67–79.
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Some swaps require adjustments to the forward rates when they are valued. These
adjustments are termed convexity, timing, or quanto adjustments. Among the swaps that
require adjustments are LIBOR-in-arrears, CMS/CMT, and differential swaps.

Equity swaps involve the return on an equity index being exchanged for a fixed or
floating rate of interest. They are usually designed so that they areworth zero immediately
after a payment date, but they may have nonzero values between payment dates.

Some swaps involve embedded options. An accrual swap is a regular swap plus a
large portfolio of binary options (one for each day of the life of the swap). A cancelable
swap is a regular swap plus a Bermudan swaption.

FURTHER READING

Chance, D., and Rich, D., ‘‘The Pricing of Equity Swap and Swaptions,’’ Journal of Derivatives
5, 4 (Summer 1998): 19–31.

Smith D. J., ‘‘Aggressive Corporate Finance: A Close Look at the Procter and Gamble–Bankers
Trust Leveraged Swap,’’ Journal of Derivatives, 4, 4 (Summer 1997): 67–79.

Practice Questions (Answers in Solutions Manual)

33.1. Calculate all the fixed cash flows and their exact timing for the swap in Business
Snapshot 33.1. Assume that the day count conventions are applied using target payment
dates rather than actual payment dates.

33.2. Suppose that a swap specifies that a fixed rate is exchanged for twice the LIBOR rate.
Can the swap be valued using the ‘‘assume forward rates are realized’’ rule?

33.3. What is the value of a 2-year fixed-for-floating compounding swap where the principal is
$100 million and payments are made semiannually? Fixed interest is received and
floating is paid. The fixed rate is 8% and it is compounded at 8.3% (both semiannually
compounded). The floating rate is LIBOR plus 10 basis points and it is compounded at
LIBOR plus 20 basis points. The LIBOR zero curve is flat at 8% with semiannual
compounding (and is used for discounting).

33.4. What is the value of a 5-year swap where LIBOR is paid in the usual way and in return
LIBOR compounded at LIBOR is received on the other side? The principal on both
sides is $100 million. Payment dates on the pay side and compounding dates on the
receive side are every 6 months. The LIBOR zero curve is flat at 5% with semiannual
compounding (and is used for discounting).

33.5. Explain carefully why a bank might choose to discount cash flows on a currency swap at
a rate slightly different from LIBOR.

33.6. Calculate the total convexity/timing adjustment in Example 33.3 of Section 33.4 if all
cap volatilities are 18% instead of 20% and volatilities for all options on 5-year swaps
are 13% instead of 15%. What should the 5-year swap rate in 3 years’ time be assumed
for the purpose of valuing the swap? What is the value of the swap?

33.7. Explain why a plain vanilla interest rate swap and the compounding swap in Section 33.2
can be valued using the ‘‘assume forward rates are realized’’ rule, but a LIBOR-in-
arrears swap in Section 33.4 cannot.
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33.8. In the accrual swap discussed in the text, the fixed side accrues only when the floating
reference rate lies below a certain level. Discuss how the analysis can be extended to cope
with a situation where the fixed side accrues only when the floating reference rate is
above one level and below another.

Further Questions

33.9. LIBOR zero rates are flat at 5% in the United States and flat at 10% in Australia (both
annually compounded). In a 4-year diff swap Australian LIBOR is received and 9% is
paid with both being applied to a USD principal of $10 million. Payments are exchanged
annually. The volatility of all 1-year forward rates in Australia is estimated to be 25%,
the volatility of the forward USD/AUD exchange rate (AUD per USD) is 15% for all
maturities, and the correlation between the two is 0.3. What is the value of the swap?

33.10. Estimate the interest rate paid by P&G on the 5/30 swap in Section 33.7 if (a) the CP rate
is 6.5% and the Treasury yield curve is flat at 6% and (b) the CP rate is 7.5% and the
Treasury yield curve is flat at 7% with semiannual compounding.

33.11. Suppose that you are trading a LIBOR-in-arrears swap with an unsophisticated counter-
party who does not make convexity adjustments. To take advantage of the situation,
should you be paying fixed or receiving fixed? How should you try to structure the swap
as far as its life and payment frequencies?

Consider the situation where the yield curve is flat at 10% per annum with annual
compounding. All cap volatilities are 18%. Estimate the difference between the way a
sophisticated trader and an unsophisticated trader would value a LIBOR-in-arrears swap
where payments are made annually and the life of the swap is (a) 5 years, (b) 10 years,
and (c) 20 years. Assume a notional principal of $1 million.

33.12. Suppose that the LIBOR zero rate is flat at 5% with annual compounding and is used
for discounting. In a 5-year swap, company X pays a fixed rate of 6% and receives
LIBOR. The volatility of the 2-year swap rate in 3 years is 20%.
(a) What is the value of the swap?
(b) Use DerivaGem to calculate the value of the swap if company X has the option to

cancel after 3 years.
(c) Use DerivaGem to calculate the value of the swap if the counterparty has the option

to cancel after 3 years.
(d) What is the value of the swap if either side can cancel at the end of 3 years?

33.13. How would you calculate the initial value of the equity swap in Business Snapshot 33.3 if
OIS discounting were used?
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Energy and
Commodity
Derivatives

The variable underlying a derivative is sometimes simply referred to as the underlying.

Earlier parts of this book have focused on situations where the underlying is a stock

price, a stock index, an exchange rate, a bond price, an interest rate, or the loss from a

credit event. In this chapter, we consider a variety of other underlyings.

The first part of the chapter is concerned with situations where the underlying is a

commodity. Chapter 2 discussed futures contracts on commodities and Chapter 18

discussed how European and American options on commodity futures contracts can

be valued. As a European futures option has the same payoff as a European spot

option when the futures contract matures at the same time as the option, the model

used to value European futures options (Black’s model) can also be used to value

European spot options. However, American spot options and other more complicated

derivatives dependent on the spot price of a commodity require more sophisticated

models. A feature of commodity prices is that they often exhibit mean reversion

(similarly to interest rates) and are also sometimes subject to jumps. Some of the

models developed for interest rates can be adapted to apply to commodities.

The second part of the chapter considers weather and insurance derivatives. A

distinctive feature of these derivatives is that they depend on variables with no systematic

risk. For example, the expected value of the temperature at a certain location or the

losses experienced due to hurricanes can reasonably be assumed to be the same in a risk-

neutral world and the real world. This means that historical data is potentially more

useful for valuing these types of derivatives than for some others.

34.1 AGRICULTURAL COMMODITIES

Agricultural commodities include products that are grown (or created from products

that are grown) such as corn, wheat, soybeans, cocoa, coffee, sugar, cotton, and frozen

orange juice. They also include products related to livestock such as cattle, hogs, and

pork bellies. The prices of agricultural commodities, like all commodities, is determined

by supply and demand. The United States Department of Agriculture publishes reports

on inventories and production. One statistic that is watched for commodities such as
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corn and wheat is the stocks-to-use ratio. This is the ratio of the year-end inventory to
the year’s usage. Typically it is between 20% and 40%. It has an impact on price
volatility. As the ratio for a commodity becomes lower, the commodity’s price becomes
more sensitive to supply changes, so that the volatility increases.

There are reasons for supposing some level of mean reversion in agricultural prices.
As prices decline, farmers find it less attractive to produce the commodity and supply
decreases creating upward pressure on the price. Similarly, as the price of an agricul-
tural commodity increases, farmers are more likely to devote resources to producing the
commodity creating downward pressure on the price.

Prices of agricultural commodities tend to be seasonal, as storage is expensive and
there is a limit to the length of time for which a product can be stored. Weather plays a
key role in determining the price of many agricultural products. Frosts can decimate the
Brazilian coffee crop, a hurricane in Florida is likely to have a big effect on the price of
frozen orange juice, and so on. The volatility of the price of a commodity that is grown
tends to be highest at pre-harvest times and then declines when the size of the crop is
known. During the growing season, the price process for an agricultural commodity is
liable to exhibit jumps because of the weather.

Many of the commodities that are grown and traded are used to feed livestock. (For
example, the corn futures contract that is traded by the CME Group refers to the corn
that is used to feed animals.) The price of livestock, and when slaughtering takes place,
is liable to be dependent on the price of these commodities, which are in turn influenced
by the weather.

34.2 METALS

Another important commodity category is metals. This includes gold, silver, platinum,
palladium, copper, tin, lead, zinc, nickel, and aluminum. Metals have quite different
characteristics from agricultural commodities. Their prices are unaffected by the
weather and are not seasonal. They are extracted from the ground. They are divisible
and are relatively easy to store. Some metals, such as copper, are used almost entirely in
the manufacture of goods and should be classified as consumption assets. As explained
in Section 5.1, others, such as gold and silver, are held purely for investment as well as
for consumption and should be classified as investment assets.

As in the case of agricultural commodities, analysts monitor inventory levels to
determine short-term price volatility. Exchange rate volatility may also contribute to
volatility as the country where the metal is extracted is often different from the country
in whose currency the price is quoted. In the long term, the price of a metal is
determined by trends in the extent to which a metal is used in different production
processes and new sources of the metal that are found. Changes in exploration and
extraction methods, geopolitics, cartels, and environmental regulation also have an
impact.

One potential source of supply for a metal is recycling. A metal might be used to
create a product and, over the following 20 years, 10% of the metal might come back on
the market as a result of a recycling process.

Metals that are investment assets are not usually assumed to follow mean-reverting
processes because a mean-reverting process would give rise to an arbitrage opportunity
for the investor. For metals that are consumption assets, there may be some mean
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reversion. As the price of a metal increases, it is likely to become less attractive to use
the metal in some production processes and more economically viable to extract the

metal from difficult locations. As a result there will be downward pressure on the price.
Similarly, as the price decreases, it is likely to become more attractive to use the metal in

some production processes and less economically viable to extract the metal from
difficult locations. As a result, there will be upward pressure on the price.

34.3 ENERGY PRODUCTS

Energy products are among the most important and actively traded commodities.

A wide range of energy derivatives trade in both the over-the-counter market and on
exchanges. Here we consider oil, natural gas, and electricity. There are reasons for
supposing that all three follow mean reverting processes. As the price of a source of

energy rises, it is likely to be consumed less and and produced more. This creates a
downward pressure on prices. As the price of a source of energy declines, it is likely to
be consumed more, but production is likely to be less economically viable. This creates

upward pressure on the price.

Crude Oil

The crude oil market is the largest commodity market in the world, with global demand
amounting to about 80 million barrels daily. Ten-year fixed-price supply contracts have

been commonplace in the over-the-counter market for many years. These are swaps
where oil at a fixed price is exchanged for oil at a floating price.

There are many grades of crude oil, reflecting variations in the gravity and the sulfur
content. Two important benchmarks for pricing are Brent crude oil (which is sourced

from the North Sea) and West Texas Intermediate (WTI) crude oil. Crude oil is refined
into products such as gasoline, heating oil, fuel oil, and kerosene.

In the over-the-counter market, virtually any derivative that is available on common
stocks or stock indices is now available with oil as the underlying asset. Swaps, forward
contracts, and options are popular. Contracts sometimes require settlement in cash and

sometimes require settlement by physical delivery (i.e., by delivery of oil).

Exchange-traded contracts are also popular. The CME Group and Intercontinental-
Exchange (ICE) trade a number of oil futures and oil futures options contracts. Some of
the futures contracts are settled in cash; others are settled by physical delivery. For

example, the Brent crude oil futures traded on ICE have a cash settlement option; the
light sweet crude oil futures traded on CME Group require physical delivery. In both
cases, the amount of oil underlying one contract is 1,000 barrels. The CME Group also

trades popular contracts on two refined products: heating oil and gasoline. In both
cases, one contract is for the delivery of 42,000 gallons.

Natural Gas

The natural gas industry throughout the world went through a period of deregulation

and the elimination of government monopolies in the 1980s and 1990s. The supplier of
natural gas is now not necessarily the same company as the producer of the gas.
Suppliers are faced with the problem of meeting daily demand.
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A typical over-the-counter contract is for the delivery of a specified amount of

natural gas at a roughly uniform rate over a 1-month period. Forward contracts,

options, and swaps are available in the over-the-counter market. The seller of natural

gas is usually responsible for moving the gas through pipelines to the specified

location.

The CME Group trades a contract for the delivery of 10,000 million British thermal

units of natural gas. The contract, if not closed out, requires physical delivery to be

made during the delivery month at a roughly uniform rate to a particular hub in

Louisiana. ICE trades a similar contract in London.

Natural gas is a popular source of energy for heating buildings. It is also used to

produce electricity, which in turn is used for air-conditioning. As a result, demand for

natural gas is seasonal and dependent on the weather.

Electricity

Electricity is an unusual commodity because it cannot easily be stored.1 The maximum

supply of electricity in a region at any moment is determined by the maximum capacity

of all the electricity-producing plants in the region. In the United States there are

140 regions known as control areas. Demand and supply are first matched within a

control area, and any excess power is sold to other control areas. It is this excess power

that constitutes the wholesale market for electricity. The ability of one control area to

sell power to another control area depends on the transmission capacity of the lines

between the two areas. Transmission from one area to another involves a transmission

cost, charged by the owner of the line, and there are generally some transmission or

energy losses.

A major use of electricity is for air-conditioning systems. As a result the demand for

electricity, and therefore its price, is much greater in the summer months than in the

winter months. The nonstorability of electricity causes occasional very large movements

in the spot price. Heat waves have been known to increase the spot price by as much as

1,000% for short periods of time.

Like natural gas, electricity has been through a period of deregulation and the

elimination of government monopolies. This has been accompanied by the development

of an electricity derivatives market. The CME Group now trades a futures contract on

the price of electricity, and there is an active over-the-counter market in forward

contracts, options, and swaps. A typical contract (exchange-traded or over-the-counter)

allows one side to receive a specified number of megawatt hours for a specified price at a

specified location during a particular month. In a 5� 8 contract, power is received for

five days a week (Monday to Friday) during the off-peak period (11 p.m. to 7 a.m.) for

the specified month. In a 5� 16 contract, power is received five days a week during the

on-peak period (7 a.m. to 11 p.m.) for the specified month. In a 7� 24 contract, it is

received around the clock every day during the month. Option contracts have either

daily exercise or monthly exercise. In the case of daily exercise, the option holder can

choose on each day of the month (by giving one day’s notice) whether to receive the

specified amount of power at the specified strike price. When there is monthly exercise a

1 Electricity producers with spare capacity sometimes use it to pump water to the top of their hydroelectric

plants so that it can be used to produce electricity at a later time. This is the closest they can get to storing this

commodity.
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single decision on whether to receive power for the whole month at the specified strike
price is made at the beginning of the month.

An interesting contract in electricity and natural gas markets is what is known as a
swing option or take-and-pay option. In this contract, a minimum and maximum for the
amount of power that must be purchased at a certain price by the option holder is
specified for each day during a month and for the month in total. The option holder
can change (or swing) the rate at which the power is purchased during the month, but
usually there is a limit on the total number of changes that can be made.

34.4 MODELING COMMODITY PRICES

To value derivatives, we are often interested in modeling the spot price of a commodity
in the traditional risk-neutral world. From Section 18.7, the expected future price of the
commodity in this world is the futures price.

A Simple Process

A simple process for a commodity price can be constructed by assuming that the expected
growth rate in the commodity price is dependent solely on time and the volatility of the
commodity price is constant. The risk-neutral process for the commodity price S then
has the form

dS

S
¼ �ðtÞ dtþ � dz ð34:1Þ

and

FðtÞ ¼ Ê½SðtÞ� ¼ Sð0Þe
Ð t

0
�ð�Þd�

where FðtÞ is the futures price for a contract with maturity t and Ê denotes expected
value in a risk-neutral world. It follows that

lnFðtÞ ¼ ln Sð0Þ þ
ðt
0

�ð�Þd�

Differentiating both sides with respect to time gives

�ðtÞ ¼ @

@t
½lnFðtÞ�

Example 34.1

Suppose that the futures prices of live cattle at the end of July 2014 are (in cents
per pound) as follows:

August 2014 62.20
October 2014 60.60
December 2014 62.70
February 2015 63.37
April 2015 64.42
June 2015 64.40

These can be used to estimate the expected growth rate in live cattle prices in a
risk-neutral world. For example, when the model in equation (34.1) is used, the
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expected growth rate in live cattle prices between October and December 2014, in
a risk-neutral world is

ln

�
62:70

60:60

�
¼ 0:034

or 3.4% per 2 months with continuous compounding. On an annualized basis,
this is 20.4% per annum.

Example 34.2

Suppose that the futures prices of live cattle are as in Example 34.1. A certain
breeding decision would involve an investment of $100,000 now and expenditures
of $20,000 in 3 months, 6 months, and 9 months. The result is expected to be that
an extra cattle will be available for sale at the end of the year. There are two major
uncertainties: the number of pounds of extra cattle that will be available for sale
and the price per pound. The expected number of pounds is 300,000. The expected
price of cattle in 1 year in a risk-neutral world is, from Example 34.1, 64.40 cents
per pound. Assuming that the risk-free rate of interest is 10% per annum, the value
of the investment (in thousands of dollars) is

�100� 20e�0:1�0:25 � 20e�0:1�0:50 � 20e�0:1�0:75 þ 300� 0:644e�0:1�1 ¼ 17:729

This assumes that any uncertainty about the extra amount of cattle that will be
available for sale has zero systematic risk and that there is no correlation between
the amount of cattle that will be available for sale and the price.

Mean Reversion

As already discussed, most commodity prices follow mean-reverting processes. They
tend to get pulled back to a central value. A more realistic process than equation (34.1)
for the risk-neutral process followed by the commodity price S is

d ln S ¼ ½�ðtÞ � a ln S � dtþ � dz ð34:2Þ
This incorporates mean reversion and is analogous to the lognormal process assumed for
the short-term interest rate in Chapter 31. Note that this process is sometimes written

dS

S
¼ ½��ðtÞ � a ln S � dtþ � dz

From Itô’s lemma, this is equivalent to the process in equation (34.2) when ��ðtÞ ¼
�ðtÞ þ 1

2
�2.

The trinomial tree methodology in Section 31.7 can be adapted to construct a tree for
S and determine the value of �ðtÞ in equation (34.2) such that FðtÞ ¼ Ê½SðtÞ�. We will
illustrate the procedure by building a three-step tree for the situation where the current
spot price is $20 and the 1-year, 2-year, and 3-year futures prices are $22, $23, and $24,
respectively. Suppose that a ¼ 0:1 and � ¼ 0:2 in equation (34.2). We first define a
variable X that is initially zero and follows the process

dX ¼ �aXdtþ � dz ð34:3Þ
Using the procedure in Section 31.7, a trinomial tree can be constructed for X. This is
shown in Figure 34.1.
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The variable ln S follows the same process as X except for a time-dependent drift.

Analogously to Section 31.7, the tree for X can be converted to a tree for ln S by

displacing the positions of nodes. This tree is shown in Figure 34.2. The initial node

corresponds to a price of 20, so the displacement for that node is ln 20. Suppose that the

displacement of the nodes at 1 year is �1. The values of the X at the three nodes at the

1-year point are þ0:3464, 0, and �0:3464. The corresponding values of ln S are

0:3464þ �1, �1, and �0:3464þ �1. The values of S are therefore e0:3464þ�1 , e�1 , and

e�0:3464þ�1 , respectively. We require the expected value of S to equal the futures price.

This means that

0:1667e0:3464þ�1 þ 0:6666e�1 þ 0:1667e�0:3464þ�1 ¼ 22

The solution to this is �1 ¼ 3:071. The values of S at the 1-year point are therefore

30.49, 21.56, and 15.25.

At the 2-year point, we first calculate the probabilities of nodes E, F, G, H, and I being

reached from the probabilities of nodes B, C, and D being reached. The probability of

reaching node F is the probability of reaching node B times the probability of moving

from B to F plus the probability of reaching node C times the probability of moving from

C to F. This is

0:1667� 0:6566þ 0:6666� 0:1667 ¼ 0:2206

Similarly the probabilities of reaching nodes E, G, H, and I are 0.0203, 0.5183, 0.2206,

and 0.0203, respectively. The amount �2 by which the nodes at time 2 years are

E J
0.6928 0.6928

B F K
0.3464 0.3464 0.3464

A C G L
0.0000 0.0000 0.0000 0.0000

D H M
−0.3464 −0.3464 −0.3464

I N
−0.6928 −0.6928

Figure 34.1 Tree forX. Constructing this tree is the first stage in constructing a tree for
the spot price of a commodity, S. Here pu, pm, and pd are the probabilities of ‘‘up’’,
‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Energy and Commodity Derivatives 803



displaced must satisfy

0:0203e0:6928þ�2 þ 0:2206e0:3464þ�2 þ 0:5183e�2

þ 0:2206e�0:3464þ�2 þ 0:0203e�0:6928þ�2 ¼ 23

The solution to this is �2 ¼ 3:099. This means that the values of S at the 2-year point
are 44.35, 31.37, 22.18, 15.69, and 11.10, respectively.

A similar calculation can be carried out at time 3 years. Figure 34.2 shows the
resulting tree for S.

Example 34.3

Suppose that the tree in Figure 34.2 is used to price a 3-year American put option
on the spot price of the commodity with a strike price of 20 when the interest rate
(continuously compounded) is 3% per year. Rolling back through the tree in the
usual way, we obtain Figure 34.3 showing that the value of the option is $1.48.
The option is exercised early at nodes D, H, and I. To obtain a more accurate
value, a tree with many more time steps would be used. The futures prices would
be interpolated to obtain futures prices for maturities corresponding to the end of
every time step on this more detailed tree.

Interpolation and Seasonality

When a large number of time steps are used, it is necessary to interpolate between
futures prices to obtain a futures price at the end of each time step. When there is
seasonality, the interpolation procedure should reflect this. Suppose there are monthly

E J
44.35 45.68

B F K
30.49 31.37 32.30

A C G L
20.00 21.56 22.18 22.85

D H M
15.25 15.69 16.16

I N
11.10 11.43

Figure 34.2 Tree for spot price of a commodity: pu, pm, and pd are the probabilities of
‘‘up’’, ‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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time steps. One simple way of incorporating seasonality is to collect monthly historical

data on the spot price and calculate the 12-month moving average of the price.

A percentage seasonal factor can then be estimated as the average of the ratio of the

spot price for the month to the 12-month moving average of spot prices that is centered

(approximately) on the month.

The percentage seasonal factors are then used to deseasonalize the futures prices

that are known. Monthly deseasonalized futures are then calculated using interpola-

tion. These futures prices are then seasonalized using the percentage seasonal factors

and the tree is built. Suppose, for example, that the futures prices are observed in the

market for September and December as 40 and 44, respectively, and we want to

calculate a futures prices for October and November. Suppose further that the

percentage seasonality factors for September, October, November, and December

are calculated from historical data as 0.95, 0.85, 0.8 and 1.1, respectively. The

deseasonalized futures prices are 40=0:95 ¼ 42:1 for September and 44=1:1 ¼ 40 for

December. The interpolated deseasonalized futures prices are 41.4 and 40.7 for

October and November, respectively. The seasonalized futures prices that would be

used in tree construction for October and November are 41:4� 0:85 ¼ 35:2 and

40:7� 0:8 ¼ 32:6, respectively.
As has been mentioned, the volatility of a commodity sometimes shows seasonality.

For example, the prices of some agricultural commodities are more volatile during the

growing season because of weather uncertainty. Volatility can be monitored using the

methods discussed in Chapter 23, and a percentage seasonal factor for volatility can

be estimated. The parameter � can then be replaced by �ðtÞ in equations (34.2)

and (34.3). A procedure that can be used to construct a trinomial tree for the situation

E J
 0.00  0.00

B F K
 0.13  0.00  0.00

A C G L
1.48  1.10  0.62  0.00

D H M
 4.75  4.31  3.84

I N
 8.90  8.57

Figure 34.3 Valuation of an American put option with a strike price of $20 using the
tree in Figure 34.2.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Energy and Commodity Derivatives 805



where the volatility is a function of time is discussed in Technical Notes 9 and 16 at

www.rotman.utoronto.ca/�hull/TechnicalNotes.

Jumps

Some commmodities, such as electricity and natural gas, exhibit price jumps because of
weather-related demand shocks. Other commodities, particularly those that are agri-

cultural, are liable to exhibit price jumps because of weather-related supply shocks.

Jumps can be incorporated into equation (34.2) so that the process for the spot price

becomes

d ln S ¼ ½�ðtÞ � a ln S� dtþ � dzþ dp

where dp is the Poisson process generating the percentage jumps. This is similar to
Merton’s mixed jump–diffusion model for stock prices, which is described in Sec-

tion 27.1. Once the jump frequency and jump size probability distribution have been

chosen, the average increase in the commodity price at a future time t that is as a result

of jumps can be calculated. To determine �ðtÞ, the trinomial tree method can be used

with the futures prices for maturity t reduced by this increase. Monte Carlo simulation
can be used to implement the model, as explained in Sections 21.6 and 27.1.

Other Models

More-sophisticated models are sometimes used for oil prices. If y is the convenience

yield, then the proportional drift of the spot price is r� y, where r is the short-term

risk-free rate and a natural process to assume for the spot price is

dS

S
¼ ðr� yÞ dtþ �1 dz1

Gibson and Schwartz suggest that the convenience yield y be modeled as a mean-

reverting process:2

dy ¼ kð�� yÞdtþ �2 dz2

where k and � are constants and dz2 is a Wiener process, which is correlated with the

Wiener process dz1. To provide an exact fit to futures prices, � can be made a function

of time.

Eydeland and Geman propose a stochastic volatility for gas and electricity prices.3

This is
dS

S
¼ aðb� ln SÞ dtþ

ffiffiffiffi
V

p
dz1

dV ¼ cðd � V Þdtþ e
ffiffiffiffi
V

p
dz2

where a, b, c, d, and e are constants, and dz1 and dz2 are correlated Wiener processes.
Later Geman proposed a model for oil where the reversion level b is also stochastic.4

2 See R. Gibson and E. S. Schwartz, ‘‘Stochastic Convenience Yield and the Pricing of Oil Contingent

Claims,’’ Journal of Finance, 45 (1990): 959–76.
3 A. Eydeland and H. Geman, ‘‘Pricing Power Derivatives,’’ Risk, September 1998.
4 H. Geman, ‘‘Scarcity and Price Volatility in Oil Markets,’’ EDF Trading Technical Report, 2000.

806 CHAPTER 34

http://www.rotman.utoronto.ca/~hull/TechnicalNotes


34.5 WEATHER DERIVATIVES

Many companies are in the position where their performance is liable to be adversely
affected by the weather.5 It makes sense for these companies to consider hedging their

weather risk in much the same way as they hedge foreign exchange or interest rate risks.

The first over-the-counter weather derivatives were introduced in 1997. To under-

stand how they work, we explain two variables:

HDD: Heating degree days

CDD: Cooling degree days

A day’s HDD is defined as
HDD ¼ maxð0; 65� AÞ

and a day’s CDD is defined as

CDD ¼ maxð0; A� 65Þ

where A is the average of the highest and lowest temperature during the day at a

specified weather station, measured in degrees Fahrenheit. For example, if the max-
imum temperature during a day (midnight to midnight) is 68� Fahrenheit and the

minimum temperature is 44� Fahrenheit, A ¼ 56. The daily HDD is then 9 and the

daily CDD is 0.

A typical over-the-counter product is a forward or option contract providing a payoff

dependent on the cumulative HDD or CDD during a month. For example, a deriva-
tives dealer could in January 2014 sell a client a call option on the cumulative HDD

during February 2015 at the Chicago O’Hare Airport weather station with a strike price

of 700 and a payment rate of $10,000 per degree day. If the actual cumulative HDD is
820, the payoff is $1.2 million. Often contracts include a payment cap. If the payment

cap in our example is $1.5 million, the contract is the equivalent of a bull spread (see
Chapter 12). The client has a long call option on cumulative HDD with a strike price of

700 and a short call option with a strike price of 850.

A day’s HDD is a measure of the volume of energy required for heating during the

day. A day’s CDD is a measure of the volume of energy required for cooling during the

day. Most weather derivative contracts are entered into by energy producers and energy
consumers. But retailers, supermarket chains, food and drink manufacturers, health

service companies, agriculture companies, and companies in the leisure industry are

also potential users of weather derivatives. The Weather Risk Management Association
(www.wrma.org) has been formed to serve the interests of the weather risk manage-

ment industry.

In September 1999 the Chicago Mercantile Exchange (CME) began trading weather

futures and European options on weather futures. The contracts are on the cumulative

HDD and CDD for a month observed at a weather station. The contracts are settled in
cash just after the end of the month once the HDD and CDD are known. One futures

contract is on $20 times the cumulative HDD or CDD for the month. The CME now

offers weather futures and options for many cities throughout the world. It also offers
futures and options on hurricanes, frost, and snowfall.

5 The US Department of Energy has estimated that one-seventh of the US economy is subject to weather risk.
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34.6 INSURANCE DERIVATIVES

When derivative contracts are used for hedging purposes, they have many of the same
characteristics as insurance contracts. Both types of contracts are designed to provide
protection against adverse events. It is not surprising that many insurance companies
have subsidiaries that trade derivatives and that many of the activities of insurance
companies are becoming very similar to those of investment banks.

Traditionally the insurance industry has hedged its exposure to catastrophic (CAT)
risks such as hurricanes and earthquakes using a practice known as reinsurance.
Reinsurance contracts can take a number of forms. Suppose that an insurance company
has an exposure of $100 million to earthquakes in California and wants to limit this to
$30 million. One alternative is to enter into annual reinsurance contracts that cover on a
pro rata basis 70% of its exposure. If California earthquake claims in a particular year
total $50 million, the costs to the company would then be only $15 million. Another
more popular alternative, involving lower reinsurance premiums, is to buy a series of
reinsurance contracts covering what are known as excess cost layers. The first layer might
provide indemnification for losses between $30 million and $40 million; the next might
cover losses between $40 million and $50 million; and so on. Each reinsurance contract is
known as an excess-of-loss reinsurance contract. The reinsurer has written a bull spread
on the total losses. It is long a call option with a strike price equal to the lower end of the
layer and short a call option with a strike price equal to the upper end of the layer.6

Some payouts on CAT risks have been very high. Hurricane Andrew in 1992 caused
about $15 billion of insurance costs in Florida. This exceeded the total of relevant
insurance premiums received in Florida during the previous seven years. If Hurricane
Andrew had hit Miami, it is estimated that insured losses would have exceeded
$40 billion. Hurricane Andrew and other catastrophes have led to increases in insur-
ance/reinsurance premiums.

The over-the-counter market has come up with a number of products that are
alternatives to traditional reinsurance. The most popular is a CAT bond. This is a bond
issued by a subsidiary of an insurance company that pays a higher-than-normal interest
rate. In exchange for the extra interest the holder of the bond agrees to provide an excess-
of-loss reinsurance contract. Depending on the terms of the CAT bond, the interest or
principal (or both) can be used to meet claims. In the example considered above where
an insurance company wants protection for California earthquake losses between
$30 million and $40 million, the insurance company could issue CAT bonds with a
total principal of $10 million. In the event that the insurance company’s California
earthquake losses exceeded $30 million, bondholders would lose some or all of their
principal. As an alternative the insurance company could cover this excess cost layer by
making a much bigger bond issue where only the bondholders’ interest is at risk.

34.7 PRICING WEATHER AND INSURANCE DERIVATIVES

One distinctive feature of weather and insurance derivatives is that there is no systematic
risk (i.e., risk that is priced by the market) in their payoffs. This means that estimates

6 Reinsurance is also sometimes offered in the form of a lump sum if a certain loss level is reached. The

reinsurer is then writing a cash-or-nothing binary call option on the losses.
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made from historical data (real-world estimates) can also be assumed to apply to the
risk-neutral world. Weather and insurance derivatives can therefore be priced by

1. Using historical data to estimate the expected payoff

2. Discounting the estimated expected payoff at the risk-free rate.

Another key feature of weather and insurance derivatives is the way uncertainty about
the underlying variables grows with time. For a stock price, uncertainty grows roughly
as the square root of time. Our uncertainty about a stock price in 4 years (as measured
by the standard deviation of the logarithm of the price) is approximately twice that in 1
year. For a commodity price, mean reversion kicks in, but our uncertainty about a
commodity’s price in 4 years is still considerably greater than our uncertainty in 1 year.
For weather, the growth of uncertainty with time is much less marked. Our uncertainty
about the February HDD at a certain location in 4 years is usually only a little greater
than our uncertainty about the February HDD at the same location in 1 year.
Similarly, our uncertainty about earthquake losses for a period starting in 4 years is
usually only a little greater than our uncertainty about earthquake losses for a similar
period starting in 1 year.

Consider the valuation of an option on the cumulative HDD. We could collect
50 years of historical data and estimate a probability distribution for the HDD. This
could be fitted to a lognormal or other probability distribution and the expected payoff
on the option calculated. This would then be discounted at the risk-free rate to give the
value of the option. The analysis could be refined by analyzing trends in the historical
data and incorporating weather forecasts produced by meteorologists.

Example 34.4

Consider a call option on the cumulative HDD in February 2016 at the Chicago
O’Hare Airport weather station with a strike price of 700 and a payment rate of
$10,000 per degree day. Suppose that the HDD is estimated from 50 years of
historical data to have a lognormal distribution with the mean HDD equal to
710 and the standard deviation of the natural logarithm of HDD equal to 0.07.
From equation (15A.1), the expected payoff is

10,000� ½710Nðd1Þ � 700Nðd2Þ�
where

d1 ¼
lnð710=700Þ þ 0:072=2

0:07
¼ 0:2376

d2 ¼
lnð710=700Þ � 0:072=2

0:07
¼ 0:1676

or $250,900. If the risk-free interest rate is 3% and the option is being valued in
February 2015 (one year from maturity) the value of the option is

250,900� e
�0:03�1 ¼ 243,400

or $243,400.
We might want to adjust the mean of the probability distribution of HDD for
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temperature trends. Suppose that a linear regression shows that the cumulative
HDD for February is decreasing at the rate of 0.5 per year (perhaps because of
global warming), so that the estimate of the mean HDD in February 2016 is
only 697.7 Keeping the estimate of the standard deviation of the natural logarithm
of the payoff the same, this would reduce the value of the expected payoff to
$180,400 and the value of the option to $175,100.

Finally, suppose that long-range weather forecasters consider it likely that
February 2013 will be particularly mild. The estimate of the expected HDD might
then be reduced even further making the option even less valuable.

In the insurance area, Litzenberger et al. have shown that there is (as one would expect)
no statistically significant correlation between the returns from CAT bonds and stock
market returns.8 This confirms that there is no systematic risk and that valuations can
be based on the actuarial data collected by insurance companies.

CAT bonds typically give a high probability of an above-normal rate of interest and a
low probability of a big loss. Why would investors be interested in such instruments?
The answer is that the expected return (taking account of possible losses) is higher than
the return that can be earned on risk-free investments. However, the risk in CAT bonds
can (at least in theory) be completely diversified away in a large portfolio. CAT bonds
therefore have the potential to improve risk–return trade-offs.

34.8 HOW AN ENERGY PRODUCER CAN HEDGE RISKS

There are two components to the risks facing an energy producer. One is the risk
associated with the market price for the energy (the price risk); the other is risk
associated with the amount of energy that will be bought (the volume risk). Although
prices do adjust to reflect volumes, there is a less-than-perfect relationship between the
two, and energy producers have to take both into account when developing a hedging
strategy. The price risk can be hedged using the energy derivative contracts. The volume
risks can be hedged using the weather derivatives. Define:

Y : Profit for a month

P : Average energy prices for the month

T : Relevant temperature variable (HDD or CDD) for the month.

An energy producer can use historical data to obtain a best-fit linear regression
relationship of the form

Y ¼ aþ bP þ cT þ �

where � is the error term. The energy producer can then hedge risks for the month by
taking a position of �b in energy forwards or futures and a position of �c in weather
forwards or futures. The relationship can also be used to analyze the effectiveness of
alternative option strategies.

7 The mean decreased at 0.5 per year over the last 50 years and was 710 on average. This suggests that the

mean was about 722.5 at the beginning of the 50 years and 697.5 at the end of the 50 years. A reasonable

estimate for next year is 697.
8 R.H. Litzenberger, D.R. Beaglehole, and C.E. Reynolds, ‘‘Assessing Catastrophe Reinsurance-Linked

Securities as a New Asset Class,’’ Journal of Portfolio Management, Winter 1996: 76–86.
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SUMMARY

When there are risks to be managed, derivatives markets have been very innovative in

developing products to meet the needs of the market.

There are a number of different types of commodity derivatives. The underlyings

include agricultural products that are grown, livestock, metals, and energy products.

The models used to value them usually incorporate mean reversion. Sometimes

seasonality is modeled explicitly and jumps are incorporated. Energy derivatives with

oil, natural gas, and electricity as the underlying are particularly important and have

been the subject of models that are as sophisticated as the most sophisticated models

used for stock prices, exchange rates, and interest rates.

In the weather derivatives market, two measures, HDD and CDD, have been

developed to describe temperature during a month. These are used to define payoffs

on both exchange-traded and over-the-counter derivatives. As the weather derivatives

market develops, contracts on rainfall, snow, and other weather-related variables may

become more widely used.

Insurance derivatives are an alternative to traditional reinsurance as a way for

insurance companies to manage the risk of a catastrophic event such as a hurricane

or an earthquake. We may see other sorts of insurance, such as life and automobile

insurance, being traded in a similar way in the future.

Weather and insurance derivatives have the property that the underlying variables

have no systematic risk. This means that the derivatives can be valued by estimating

expected payoffs using historical data and discounting the expected payoff at the risk-

free rate.
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Practice Questions (Answers in Solutions Manual)

34.1. What is meant by HDD and CDD?

34.2. How is a typical natural gas forward contract structured?

34.3. Distinguish between the historical data and the risk-neutral approach to valuing a
derivative. Under what circumstance do they give the same answer?

34.4. Suppose that each day during July the minimum temperature is 68� Fahrenheit and the
maximum temperature is 82� Fahrenheit. What is the payoff from a call option on the
cumulative CDD during July with a strike of 250 and a payment rate of $5,000 per
degree-day?

34.5. Why is the price of electricity more volatile than that of other energy sources?

34.6. Why is the historical data approach appropriate for pricing a weather derivatives
contract and a CAT bond?

34.7. ‘‘HDD and CDD can be regarded as payoffs from options on temperature.’’ Explain this
statement.

34.8. Suppose that you have 50 years of temperature data at your disposal. Explain carefully
the analyses you would carry out to value a forward contract on the cumulative CDD
for a particular month.

34.9. Would you expect the volatility of the 1-year forward price of oil to be greater than or
less than the volatility of the spot price? Explain your answer.

34.10. What are the characteristics of an energy source where the price has a very high volatility
and a very high rate of mean reversion? Give an example of such an energy source.

34.11. How can an energy producer use derivatives markets to hedge risks?

34.12. Explain how a 5� 8 option contract for May 2009 on electricity with daily exercise
works. Explain how a 5� 8 option contract for May 2009 on electricity with monthly
exercise works. Which is worth more?

34.13. Explain how CAT bonds work.

34.14. Consider two bonds that have the same coupon, time to maturity, and price. One is a
B-rated corporate bond. The other is a CAT bond. An analysis based on historical data
shows that the expected losses on the two bonds in each year of their life is the same.
Which bond would you advise a portfolio manager to buy and why?

34.15. Consider a commodity with constant volatility � and an expected growth rate that is a
function solely of time. Show that, in the traditional risk-neutral world,

ln ST � �½ðlnFðT Þ � 1
2
�2
T ; �2

T �
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where ST is the value of the commodity at time T , FðtÞ is the futures price at time 0 for a
contract maturing at time t, and �ðm; vÞ is a normal distribution with mean m and
variance v.

Further Questions

34.16. An insurance company’s losses of a particular type are to a reasonable approximation
normally distributed with a mean of $150 million and a standard deviation of $50 million.
(Assume no difference between losses in a risk-neutral world and losses in the real world.)
The 1-year risk-free rate is 5%. Estimate the cost of the following:
(a) A contract that will pay in 1 year’s time 60% of the insurance company’s losses on a

pro rata basis
(b) A contract that pays $100 million in 1 year’s time if losses exceed $200 million.

34.17. How is the tree in Figure 34.2 modified if the 1- and 2-year futures prices are $21 and $22
instead of $22 and $23, respectively. How does this affect the value of the American
option in Example 34.3.

Energy and Commodity Derivatives 813



Real Options

Up to now we have been almost entirely concerned with the valuation of financial
assets. In this chapter we explore how the ideas we have developed can be extended to

assess capital investment opportunities in real assets such as land, buildings, plant, and
equipment. Often there are options embedded in these investment opportunities (the
option to expand the investment, the option to abandon the investment, the option to
defer the investment, and so on.) These options are very difficult to value using

traditional capital investment appraisal techniques. The approach known as real options
attempts to deal with this problem using option pricing theory.

The chapter starts by explaining the traditional approach to evaluating investments in
real assets and shows how difficult it is to correctly value embedded options when this
approach is used. It then explains how the risk-neutral valuation approach can be

extended to handle the valuation of real assets and presents a number of examples
illustrating the application of the approach in different situations.

35.1 CAPITAL INVESTMENT APPRAISAL

The traditional approach to valuing a potential capital investment project is the ‘‘net
present value’’ (NPV) approach. The NPV of a project is the present value of its

expected future incremental cash flows. The discount rate used to calculate the present
value is a ‘‘risk-adjusted’’ discount rate, chosen to reflect the risk of the project. As the
riskiness of the project increases, the discount rate also increases.

As an example, consider an investment that costs $100 million and will last 5 years.
The expected cash inflow in each year (in the real world) is estimated to be $25 million.

If the risk-adjusted discount rate is 12% (with continuous compounding), the net
present value of the investment is (in millions of dollars)

�100þ 25e�0:12�1 þ 25e�0:12�2 þ 25e�0:12�3 þ 25e�0:12�4 þ 25e�0:12�5 ¼ �11:53

A negative NPV, such as the one we have just calculated, indicates that the project will

reduce the value of the company to its shareholders and should not be undertaken.
A positive NPV would indicate that the project should be undertaken because it will
increase shareholder wealth.
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The risk-adjusted discount rate should be the return required by the company, or the
company’s shareholders, on the investment. This can be calculated in a number of ways.
One approach often recommended involves the capital asset pricing model (see the
appendix to Chapter 3). The steps are as follows:

1. Take a sample of companies whose main line of business is the same as that of the
project being contemplated.

2. Calculate the betas of the companies and average them to obtain a proxy beta for
the project.

3. Set the required rate of return equal to the risk-free rate plus the proxy beta times
the excess return of the market portfolio over the risk-free rate.

One problem with the traditional NPV approach is that many projects contain
embedded options. Consider, for example, a company that is considering building a
plant to manufacture a new product. Often the company has the option to abandon the
project if things do not work out well. It may also have the option to expand the plant if
demand for the output exceeds expectations. These options usually have quite different
risk characteristics from the base project and require different discount rates.

To understand the problem here, return to the example at the beginning of Chapter 13.
This involved a stock whose current price is $20. In three months the price will be either
$22 or $18. Risk-neutral valuation shows that the value of a three-month call option on
the stock with a strike price of 21 is 0.633. Footnote 1 of Chapter 13 shows that if the
expected return required by investors on the stock in the real world is 16% then the
expected return required on the call option is 42.6%. A similar analysis shows that if the
option is a put rather than a call the expected return required on the option is �52:5%.
These analyses mean that if the traditional NPV approach were used to value the call
option the correct discount rate would be 42.6%, and if it were used to value a put option
the correct discount rate would be �52:5%. There is no easy way of estimating these
discount rates. (We know them only because we are able to value the options another
way.) Similarly, there is no easy way of estimating the risk-adjusted discount rates
appropriate for cash flows when they arise from abandonment, expansion, and other
options. This is the motivation for exploring whether the risk-neutral valuation principle
can be applied to options on real assets as well as to options on financial assets.

Another problem with the traditional NPV approach lies in the estimation of the
appropriate risk-adjusted discount rate for the base project (i.e., the project without
embedded options). The companies that are used to estimate a proxy beta for the
project in the three-step procedure above have expansion options and abandonment
options of their own. Their betas reflect these options and may not therefore be
appropriate for estimating a beta for the base project.

35.2 EXTENSION OF THE RISK-NEUTRAL VALUATION FRAMEWORK

In Section 28.1 the market price of risk for a variable � was defined as

� ¼ �� r

�
ð35:1Þ

where r is the risk-free rate, � is the return on a traded security dependent only on �,
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and � is its volatility. As shown in Section 28.1, the market price of risk, �, does not
depend on the particular traded security chosen.

Suppose that a real asset depends on several variables �i (i ¼ 1; 2; . . . ). Let mi and si
be the expected growth rate and volatility of �i so that

d�i=�i ¼ mi dtþ si dzi

where zi is a Wiener process. Define �i as the market price of risk of �i. Risk-neutral
valuation can be extended to show that any asset dependent on the �i can be valued by1

1. Reducing the expected growth rate of each �i from mi to mi � �isi

2. Discounting cash flows at the risk-free rate.

Example 35.1

The cost of renting commercial real estate in a certain city is quoted as the
amount that would be paid per square foot per year in a new 5-year rental
agreement. The current cost is $30 per square foot. The expected growth rate
of the cost is 12% per annum, the volatility of the cost is 20% per annum, and its
market price of risk is 0.3. A company has the opportunity to pay $1 million now
for the option to rent 100,000 square feet at $35 per square foot for a 5-year
period starting in 2 years. The risk-free rate is 5% per annum (assumed constant).
Define V as the quoted cost per square foot of office space in 2 years. Assume that
rent is paid annually in advance. The payoff from the option is

100,000AmaxðV � 35; 0Þ
where A is an annuity factor given by

A ¼ 1þ 1� e
�0:05�1 þ 1� e

�0:05�2 þ 1� e
�0:05�3 þ 1� e

�0:05�4 ¼ 4:5355

The expected payoff in a risk-neutral world is therefore

100,000� 4:5355� Ê½maxðV � 35; 0Þ� ¼ 453,550� Ê½maxðV � 35; 0Þ�
where Ê denotes expectations in a risk-neutral world. Using the result in equa-
tion (15A.1), this is

453,550½ÊðV ÞNðd1Þ � 35Nðd2Þ�
where

d1 ¼
ln½ÊðV Þ=35� þ 0:22 � 2=2

0:2
ffiffiffi
2

p and d2 ¼
ln½ÊðV Þ=35� � 0:22 � 2=2

0:2
ffiffiffi
2

p

The expected growth rate in the cost of commercial real estate in a risk-neutral
world is m� �s, where m is the real-world growth rate, s is the volatility, and � is
the market price of risk. In this case, m ¼ 0:12, s ¼ 0:2, and � ¼ 0:3, so that the
expected risk-neutral growth rate is 0.06, or 6%, per year. It follows that
ÊðV Þ ¼ 30e0:06�2 ¼ 33:82. Substituting this in the expression above gives the
expected payoff in a risk-neutral world as $1.5015 million. Discounting at the

1 To see that this is consistent with risk-neutral valuation for an investment asset, suppose that �i is the price

of a non-dividend-paying stock. Since this is the price of a traded security, equation (35.1) implies that

ðmi � rÞ=si ¼ �i, or mi � �isi ¼ r. The expected growth-rate adjustment is therefore the same as setting the

return on the stock equal to the risk-free rate. For a proof of the more general result, see Technical Note 20

at: www.rotman.utoronto.ca/�hull/TechnicalNotes.
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risk-free rate the value of the option is 1:5015e�0:05�2 ¼ $1:3586 million. This
shows that it is worth paying $1 million for the option.

35.3 ESTIMATING THE MARKET PRICE OF RISK

The real-options approach to evaluating an investment avoids the need to estimate risk-
adjusted discount rates in the way described in Section 35.1, but it does require market
price of risk parameters for all stochastic variables. When historical data are available
for a particular variable, its market price of risk can be estimated using the capital asset
pricing model. To show how this is done, we consider an investment asset dependent
solely on the variable and define:

� : Expected return of the investment asset

� : Volatility of the return of the investment asset

� : Market price of risk of the variable

� : Instantaneous correlation between the percentage changes in the variable and
returns on a broad index of stock market prices

�m : Expected return on broad index of stock market prices

�m : Volatility of return on the broad index of stock market prices

r : Short-term risk-free rate

Because the investment asset is dependent solely on the market variable, the instant-
aneous correlation between its return and the broad index of stock market prices is
also �. From a continuous-time version of the capital asset pricing model, which is
presented in the appendix to Chapter 3,2

�� r ¼ ��

�m
ð�m � rÞ

From equation (35.1), another expression for �� r is

�� r ¼ ��
It follows that

� ¼ �

�m
ð�m � rÞ ð35:2Þ

This equation can be used to estimate �.

Example 35.2

A historical analysis of company’s sales, quarter by quarter, show that percentage
changes in sales have a correlation of 0.3 with returns on the S&P 500 index. The
volatility of the S&P 500 is 20% per annum and based on historical data the
expected excess return of the S&P 500 over the risk-free rate is 5%. Equation (35.2)
estimates the market price of risk for the company’s sales as

0:3

0:2
� 0:05 ¼ 0:075

2 When the excess return on the asset is regressed against the excess on the market index, the slope of the

regression, beta, is ��=�m.
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When no historical data are available for the particular variable under consideration,
other similar variables can sometimes be used as proxies. For example, if a plant is
being constructed to manufacture a new product, data can be collected on the sales of
other similar products. The correlation of the new product with the market index can
then be assumed to be the same as that of these other products. In some cases, the
estimate of � in equation (35.2) must be based on subjective judgment. If an analyst is
convinced that a particular variable is unrelated to the performance of a market index,
its market price of risk should be set to zero.

For some variables, it is not necessary to estimate the market price of risk because
the process followed by a variable in a risk-neutral world can be estimated directly. For
example, if the variable is the price of an investment asset, its total return in a risk-
neutral world is the risk-free rate. If the variable is the short-term interest rate r,
Chapter 31 shows how a risk-neutral process can be estimated from the initial term
structure of interest rates.

For commodities, futures prices can be used to estimate the risk-neutral process, as
discussed in Chapter 34. Example 34.2 provides a simple application of the real options
approach by using futures prices to evaluate an investment involving the breeding of
cattle.

35.4 APPLICATION TO THE VALUATION OF A BUSINESS

Traditional methods of business valuation, such as applying a price/earnings multiplier
to current earnings, do not work well for new businesses. Typically a company’s
earnings are negative during its early years as it attempts to gain market share and
establish relationships with customers. The company must be valued by estimating
future earnings and cash flows under different scenarios.

The real options approach can be useful in this situation. A model relating the
company’s future cash flows to variables such as the sales growth rates, variable costs as
a percent of sales, fixed costs, and so on, is developed. For key variables, a risk-neutral
stochastic process is estimated as outlined in the previous two sections. A Monte Carlo
simulation is then carried out to generate alternative scenarios for the net cash flows per
year in a risk-neutral world. It is likely that under some of these scenarios the company
does very well and under others it becomes bankrupt and ceases operations. (The
simulation must have a built in rule for determining when bankruptcy happens.) The
value of the company is the present value of the expected cash flow in each year using
the risk-free rate for discounting. Business Snapshot 35.1 gives an example of the
application of the approach to Amazon.com.

35.5 EVALUATING OPTIONS IN AN INVESTMENT OPPORTUNITY

As already mentioned, most investment projects involve options. These options can add
considerable value to the project and are often either ignored or valued incorrectly.
Examples of the options embedded in projects are:

1. Abandonment options. This is an option to sell or close down a project. It is an
American put option on the project’s value. The strike price of the option is the
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liquidation (or resale) value of the project less any closing-down costs. When the
liquidation value is low, the strike price can be negative. Abandonment options
mitigate the impact of very poor investment outcomes and increase the initial
valuation of a project.

2. Expansion options. This is the option to make further investments and increase the
output if conditions are favorable. It is an American call option on the value of
additional capacity. The strike price of the call option is the cost of creating this
additional capacity discounted to the time of option exercise. The strike price often
depends on the initial investment. If management initially choose to build capacity
in excess of the expected level of output, the strike price can be relatively small.

Business Snapshot 35.1 Valuing Amazon.com

One of the earliest published attempts to value a company using the real options
approach was Schwartz and Moon (2000), who considered Amazon.com at the end
of 1999. They assumed the following stochastic processes for the company’s sales
revenue R and its revenue growth rate �:

dR

R
¼ � dtþ �ðtÞ dz1

d� ¼ �ð ��� �Þ dtþ �ðtÞ dz2
They assumed that the two Wiener processes dz1 and dz2 were uncorrelated and made
reasonable assumptions about �ðtÞ, �ðtÞ, �, and �� based on available data.

They assumed the cost of goods sold would be 75% of sales, other variable
expenses would be 19% of sales, and fixed expenses would be $75 million per
quarter. The initial sales level was $356 million, the initial tax loss carry forward
was $559 million, and the tax rate was assumed to be 35%. The market price of risk
for R was estimated from historical data using the approach described in the previous
section. The market price of risk for � was assumed to be zero.

The time horizon for the analysis was 25 years and the terminal value of the
company was assumed to be ten times pretax operating profit. The initial cash
position was $906 million and the company was assumed to go bankrupt if the cash
balance became negative.

Different future scenarios were generated in a risk-neutral world using Monte Carlo
simulation. The evaluation of the scenarios involved taking account of the possible
exercise of convertible bonds and the possible exercise of employee stock options. The
value of the company to the share holders was calculated as the present value of the net
cash flows discounted at the risk-free rate.

Using these assumptions, Schwartz and Moon provided an estimate of the value
of Amazon. com’s shares at the end of 1999 equal to $12.42. The market price at the
time was $76.125 (although it declined sharply in 2000). One of the key advantages
of the real-options approach is that it identifies the key assumptions. Schwartz and
Moon found that the estimated share value was very sensitive to �ðtÞ, the volatility of
the growth rate. This was an important source of optionality. A small increase
in �ðtÞ leads to more optionality and a big increase in the value of Amazon.com
shares.
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3. Contraction options. This is the option to reduce the scale of a project’s operation.
It is an American put option on the value of the lost capacity. The strike price is
the present value of the future expenditures saved as seen at the time of exercise of
the option.

4. Options to defer. One of the most important options open to a manager is the
option to defer a project. This is an American call option on the value of the
project.

5. Options to extend life. Sometimes it is possible to extend the life of an asset by
paying a fixed amount. This is a European call option on the asset’s future value.

Illustration

As an example of the evaluation of an investment with embedded options, consider a
company that has to decide whether to invest $15 million to extract 6 million units of a
commodity from a certain source at the rate of 2 million units per year for 3 years. The
fixed costs of operating the equipment are $6 million per year and the variable costs are
$17 per unit of the commodity extracted. We assume that the risk-free interest rate is
10% per annum for all maturities, that the spot price of the commodity is $20, and that
the 1-, 2-, and 3-year futures prices are $22, $23, and $24, respectively.

Evaluation with No Embedded Options

First consider the case where the project has no embedded options. The expected prices
of the commodity in 1, 2, and 3 years’ time in a risk-neutral world are $22, $23, and $24,
respectively. The expected payoff from the project (in millions of dollars) in a risk-neutral
world can be calculated from the cost data as 4.0, 6.0, and 8.0 in years 1, 2, and 3,
respectively. The value of the project is therefore

�15:0þ 4:0e�0:1�1 þ 6:0e�0:1�2 þ 8:0e�0:1�3 ¼ �0:54

This analysis indicates that the project should not be undertaken because it would
reduce shareholder wealth by 0.54 million.

Use of a Tree

We now assume that the spot price of the commodity follows the process

d ln S ¼ ½�ðtÞ � a ln S� dtþ � dz ð35:3Þ
where a ¼ 0:1 and � ¼ 0:2. In Section 34.4, we showed how a tree can be constructed
for commodity prices using the same example as the one considered here. The tree is
shown in Figure 35.1 (which is the same as Figure 34.2). The process represented by the
tree is consistent with the process assumed for S, the assumed values of a and �, and the
assumed 1-, 2-, and 3-year futures prices.

We do not need to use a tree to value the project when there are no embedded
options. (We have already shown that the base value of the project without options is
�0:54.) However, before we move on to consider options, it will be instructive, as well
as useful for future calculations, for us to use the tree to value the project in the absence
of embedded options and verify that we get the same answer as that obtained earlier.
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Figure 35.2 shows the value of the project at each node of Figure 35.1. Consider, for
example, node H. There is a 0.2217 probability that the commodity price at the end of
the third year is 22.85, so that the third-year profit is 2� 22:85� 2� 17� 6 ¼ 5:70.
Similarly, there is a 0.6566 probability that the commodity price at the end of the third
year is 16.16, so that the profit is �7:68 and there is a 0.1217 probability that the
commodity price at the end of the third year is 11.43, so that the profit is �17:14. The
value of the project at node H in Figure 35.2 is therefore

½0:2217� 5:70þ 0:6566� ð�7:68Þ þ 0:1217� ð�17:14Þ�e�0:1�1 ¼ �5:31

As another example, consider node C. There is a 0.1667 chance of moving to node F
where the commodity price is 31.37. The second year cash flow is then

2� 31:37� 2� 17� 6 ¼ 22:74

The value of subsequent cash flows at node F is 21.42. The total value of the project if
we move to node F is therefore 21:42þ 22:74 ¼ 44:16. Similarly the total value of the
project if we move to nodes G and H are 10.35 and �13:93, respectively. The value of
the project at node C is therefore

½0:1667� 44:16þ 0:6666� 10:35þ 0:1667� ð�13:93Þ�e�0:1�1 ¼ 10:80

Figure 35.2 shows that the value of the project at the initial node A is 14.46. When the
initial investment is taken into account the value of the project is therefore �0:54. This
is in agreement with our earlier calculations.

E J
44.35 45.68

B F K
30.49 31.37 32.30

A C G L
20.00 21.56 22.18 22.85

D H M
15.25 15.69 16.16

I N
11.10 11.43

Figure 35.1 Tree for spot price of a commodity: pu, pm, and pd are the probabilities of
‘‘up’’, ‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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Option to Abandon

Suppose now that the company has the option to abandon the project at any time. We
suppose that there is no salvage value and no further payments are required once the
project has been abandoned. Abandonment is an American put option with a strike
price of zero and is valued in Figure 35.3. The put option should not be exercised at
nodes E, F, and G because the value of the project is positive at these nodes. It should
be exercised at nodes H and I. The value of the put option is 5.31 and 13.49 at nodes H
and I, respectively. Rolling back through the tree, the value of the abandonment put
option at node D if it is not exercised is

ð0:1217� 13:49þ 0:6566� 5:31þ 0:2217� 0Þe�0:1�1 ¼ 4:64

The value of exercising the put option at node D is 9.65. This is greater than 4.64, and
so the put should be exercised at node D. The value of the put option at node C is

½0:1667� 0þ 0:6666� 0þ 0:1667� ð5:31Þ�e�0:1�1 ¼ 0:80

and the value at node A is

ð0:1667� 0þ 0:6666� 0:80þ 0:1667� 9:65Þe�0:1�1 ¼ 1:94

The abandonment option is therefore worth $1.94 million. It increases the value of the
project from�$0:54 million toþ$1:40 million. A project that was previously unattractive
now has a positive value to shareholders.

E J
42.24 0.00

B F K
38.32 21.42 0.00

A C G L
14.46 10.80 5.99 0.00

D H M
−9.65 −5.31 0.00

I N
−13.49 0.00

Figure 35.2 Valuation of base project with no embedded options: pu, pm, and pd are
the probabilities of ‘‘up’’, ‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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Option to Expand

Suppose next that the company has no abandonment option. Instead it has the option at

any time to increase the scale of the project by 20%. The cost of doing this is $2 million.

Production increases from 2.0 to 2.4 million units per year. Variable costs remain $17 per

unit and fixed costs increase by 20% from $6.0 million to $7.2 million. This is an

American call option to buy 20% of the base project in Figure 35.2 for $2 million.

The option is valued in Figure 35.4. At node E, the option should be exercised. The

payoff is 0:2� 42:24� 2 ¼ 6:45. At node F, it should also be exercised for a payoff of
0:2� 21:42� 2 ¼ 2:28. At nodes G, H, and I, the option should not be exercised. At

node B, exercising is worth more than waiting and the option is worth 0:2� 38:32� 2 ¼
5:66. At node C, if the option is not exercised, it is worth

ð0:1667� 2:28þ 0:6666� 0:00þ 0:1667� 0:00Þe�0:1�1 ¼ 0:34

If the option is exercised, it is worth 0:2� 10:80� 2 ¼ 0:16. The option should there-

fore not be exercised at node C. At node A, if not exercised, the option is worth

ð0:1667� 5:66þ 0:6666� 0:34þ 0:1667� 0:00Þe�0:1�1 ¼ 1:06

If the option is exercised it is worth 0:2� 14:46� 2 ¼ 0:89. Early exercise is therefore

not optimal at node A. In this case, the option increases the value of the project from

�0:54 to þ0:52. Again we find that a project that previously had a negative value now

has a positive value.

E J
0.00 0.00

B F K
0.00 0.00 0.00

A C G L
1.94 0.80 0.00 0.00

D H M
9.65 5.31 0.00

I N
13.49 0.00

Figure 35.3 Valuation of option to abandon the project: pu, pm, and pd are the
probabilities of ‘‘up’’, ‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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The expansion option in Figure 35.4 is relatively easy to value because, once the
option has been exercised, all subsequent cash inflows and outflows increase by 20%. In
the case where fixed costs remain the same or increase by less than 20%, it is necessary
to keep track of more information at the nodes of Figure 35.4. Specifically, we need to
record the following in order to calculate the payoff from exercising the option:

1. The present value of subsequent fixed costs

2. The present value of subsequent revenues net of variable costs.

Multiple Options

When a project has two or more options, they are typically not independent. The value of
having both option A and option B, for example, is generally not the sum of the values of
the two options. To illustrate this, suppose that the company we have been considering
has both abandonment and expansion options. The project cannot be expanded if it has
already been abandoned. Moreover, the value of the put option to abandon depends on
whether the project has been expanded.3

These interactions between the options in our example can be handled by defining
four states at each node:

1. Not already abandoned; not already expanded

2. Not already abandoned; already expanded

E J
6.45 0.00

B F K
5.66 2.28 0.00

A C G L
1.06 0.34 0.00 0.00

D H M
0.00 0.00 0.00

I N
0.00 0.00

Figure 35.4 Valuation of option to expand the project: pu, pm, and pd are the
probabilities of ‘‘up’’, ‘‘middle’’, and ‘‘down’’ movements from a node.

Node : A B C D E F G H I

pu : 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867

pm : 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266

pd : 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

3 As it happens, the two options do not interact in Figures 35.3 and 35.4. However, the interactions between

the options would become an issue if a larger tree with smaller time steps were built.
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3. Already abandoned; not already expanded

4. Already abandoned; already expanded.

When we roll back through the tree we calculate the combined value of the options at
each node for all four alternatives. This approach to valuing path-dependent options is
discussed in more detail in Section 27.5.

Several Stochastic Variables

When there are several stochastic variables, the value of the base project is usually
determined by Monte Carlo simulation. The valuation of the project’s embedded
options is then more difficult because a Monte Carlo simulation works from the
beginning to the end of a project. When we reach a certain point, we do not have
information on the present value of the project’s future cash flows. However, the
techniques mentioned in Section 27.8 for valuing American options using Monte Carlo
simulation can sometimes be used.

As an illustration of this point, Schwartz and Moon (2000) explain how their
Amazon.com analysis outlined in Business Snapshot 35.1 could be extended to take
account of the option to abandon (i.e. the option to declare bankruptcy) when the value
of future cash flows is negative.4 At each time step, a polynomial relationship between the
value of not abandoning and variables such as the current revenue, revenue growth rate,
volatilities, cash balances, and loss carry forwards is assumed. Each simulation trial
provides an observation for obtaining a least-squares estimate of the relationship at each
time. This is the Longstaff and Schwartz approach of Section 27.8.5

SUMMARY

This chapter has investigated how the ideas developed earlier in the book can be
applied to the valuation of real assets and options on real assets. It has shown how
the risk-neutral valuation principle can be used to value a project dependent on any set
of variables. The expected growth rate of each variable is adjusted to reflect its market
price of risk. The value of the asset is then the present value of its expected cash flows
discounted at the risk-free rate.

Risk-neutral valuation provides an internally consistent approach to capital invest-
ment appraisal. It also makes it possible to value the options that are embedded in
many of the projects that are encountered in practice. This chapter has illustrated the
approach by applying it to the valuation of Amazon.com at the end of 1999 and the
valuation of a project involving the extraction of a commodity.
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Practice Questions (Answers in Solutions Manual)

35.1. Explain the difference between the net present value approach and the risk-neutral
valuation approach for valuing a new capital investment opportunity. What are the
advantages of the risk-neutral valuation approach for valuing real options?

35.2. The market price of risk for copper is 0.5, the volatility of copper prices is 20% per
annum, the spot price is 80 cents per pound, and the 6-month futures price is 75 cents per
pound. What is the expected percentage growth rate in copper prices over the next
6 months?

35.3. Show that if y is a commodity’s convenience yield and u is its storage cost, the
commodity’s growth rate in the traditional risk-neutral world is r� yþ u, where r is
the risk-free rate. Deduce the relationship between the market price of risk of the
commodity, its real-world growth rate, its volatility, y, and u.

35.4. The correlation between a company’s gross revenue and the market index is 0.2. The
excess return of the market over the risk-free rate is 6% and the volatility of the market
index is 18%. What is the market price of risk for the company’s revenue?

35.5. A company can buy an option for the delivery of 1 million units of a commodity in 3 years
at $25 per unit. The 3-year futures price is $24. The risk-free interest rate is 5% per annum
with continuous compounding and the volatility of the futures price is 20% per annum.
How much is the option worth?

35.6. A driver entering into a car lease agreement can obtain the right to buy the car in 4 years
for $10,000. The current value of the car is $30,000. The value of the car, S, is expected to
follow the process dS ¼ �S dtþ �S dz, where � ¼ �0:25, � ¼ 0:15, and dz is a Wiener
process. The market price of risk for the car price is estimated to be �0:1. What is the
value of the option? Assume that the risk-free rate for all maturities is 6%.

Further Questions

35.7. Suppose that the spot price, 6-month futures price, and 12-month futures price for wheat
are 250, 260, and 270 cents per bushel, respectively. Suppose that the price of wheat
follows the process in equation (35.3) with a ¼ 0:05 and � ¼ 0:15. Construct a two-time-
step tree for the price of wheat in a risk-neutral world.

A farmer has a project that involves an expenditure of $10,000 and a further
expenditure of $90,000 in 6 months. It will increase wheat that is harvested and sold by
40,000 bushels in 1 year. What is the value of the project? Suppose that the farmer can
abandon the project in 6 months and avoid paying the $90,000 cost at that time. What is
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the value of the abandonment option? Assume a risk-free rate of 5% with continuous
compounding.

35.8. In the example considered in Section 35.5:
(a) What is the value of the abandonment option if it costs $3 million rather than zero?
(b) What is the value of the expansion option if it costs $5 million rather than $2 million?
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Derivatives
Mishaps and What

We Can Learn
from Them

Since the mid-1980s there have been some spectacular losses in derivatives markets. The

biggest losses have come from the trading of products created from residential mort-

gages in the US and were discussed in Chapter 8. Some of the other losses made by

financial institutions are listed in Business Snapshot 36.1, and some of those made by

nonfinancial organizations in Business Snapshot 36.2. What is remarkable about these

lists is the number of situations where huge losses arose from the activities of a single

employee. In 1995, Nick Leeson’s trading brought a 200-year-old British bank, Barings,

to its knees; in 1994, Robert Citron’s trading led to Orange County, a municipality in

California, losing about $2 billion. Joseph Jett’s trading for Kidder Peabody lost

$350 million. John Rusnak’s losses of $700 million for Allied Irish Bank came to light

in 2002. In 2006 the hedge fund Amaranth lost $6 billion because of trading risks taken

by Brian Hunter. In 2008, Jérôme Kerviel lost over $7 billion trading equity index

futures for Société Générale. The huge losses at UBS, Shell, and Sumitomo were also

each the result of the activities of a single individual.

The losses should not be viewed as an indictment of the whole derivatives industry.

The derivatives market is a vast multitrillion dollar market that by most measures has

been outstandingly successful and has served the needs of its users well. The events

listed in Business Snapshots 36.1 and 36.2 represent a tiny proportion of the total trades

(both in number and value). Nevertheless, it is worth considering carefully the lessons

that can be learned from them.

36.1 LESSONS FOR ALL USERS OF DERIVATIVES

First, we consider the lessons appropriate to all users of derivatives, whether they are

financial or nonfinancial companies.

36C H A P T E R
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Business Snapshot 36.1 Big losses by financial institutions

Allied Irish Bank

This bank lost about $700 million from speculative activities of one of its foreign
exchange traders, John Rusnak, that lasted a number of years. Rusnak managed to
cover up his losses by creating fictitious option trades.

Amaranth

This hedge fund lost $6 billion in 2006 betting on the future direction of natural gas
prices.

Barings

This 200-year-old British bank was destroyed in 1995 by the activities of one trader,
Nick Leeson, in Singapore, whomade big bets on the future direction of the Nikkei 225
using futures and options. The total loss was close to $1 billion.

Enron’s counterparties

Enron managed to conceal its true situation from its shareholders with some creative
contracts. Several financial institutions that allegedly helped Enron do this have
settled shareholder lawsuits for over $1 billion.

Kidder Peabody (see page 131)

The activities of a single trader, Joseph Jett, led to this New York investment dealer
losing $350 million trading US government securities. The loss arose because of a
mistake in the way the company’s computer system calculated profits.

Long-Term Capital Management (see page 56)

This hedge fund lost about $4 billion in 1998 as a result of Russia’s default on its debt
and the resultant flight to quality. The New York Federal Reserve organized an
orderly liquidation of the fund by arranging for 14 banks to invest in the fund.

Midland Bank

This British bank lost $500 million in the early 1990s largely because of a wrong bet
on the direction of interest rates. It was later taken over by the Hong Kong and
Shanghai Banking Corporation (HSBC).

Société Générale (see page 40)

Jérôme Kerviel lost over $7 billion speculating on the future direction of equity
indices in January 2008.

Subprime Mortgage Losses (see Chapter 8)

In 2007 investors lost confidence in the structured products created from US
subprime mortgages. This led to a ‘‘credit crunch’’ and losses of tens of billions of
dollars by financial institutions such as UBS, Merrill Lynch, and Citigroup.

UBS

In 2011, Kweku Adoboli lost $2.3 billion by taking unauthorized speculative positions
in stock market indices.
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Define Risk Limits

It is essential that all companies define in a clear and unambiguous way limits to the

financial risks that can be taken. They should then set up procedures for ensuring that

the limits are obeyed. Ideally, overall risk limits should be set at board level. These

should then be converted to limits applicable to the individuals responsible for

managing particular risks. Daily reports should indicate the gain or loss that will be

experienced for particular movements in market variables. These should be checked

against the actual gains and losses that are experienced to ensure that the valuation

procedures underlying the reports are accurate.

It is particularly important that companies monitor risks carefully when derivatives

are used. This is because, as we saw in Chapter 1, derivatives can be used for hedging,

Business Snapshot 36.2 Big losses by nonfinancial organizations

Allied Lyons
The treasury department of this drinks and food company lost $150 million in 1991
selling call options on the US dollar–sterling exchange rate.

Gibson Greetings
The treasury department of this greeting card manufacturer lost about $20 million in
1994 trading highly exotic interest rate derivatives contracts with Bankers Trust. It
later sued Bankers Trust and settled out of court.

Hammersmith and Fulham (see page 199)
This British Local Authority lost about $600 million on sterling interest rate swaps
and options in 1988. All its contracts were later declared null and void by the British
courts, much to the annoyance of the banks on the other side of the transactions.

Metallgesellschaft (see page 91)
This German company entered into long-term contracts to supply oil and gasoline
and hedged them by rolling over short-term futures contracts. It lost $1.3 billion
when it was forced to discontinue this activity.

Orange County (see page 111)
The activities of the treasurer, Robert Citron, led to this California municipality
losing about $2 billion in 1994. The treasurer was using derivatives to speculate that
interest rates would not rise.

Procter & Gamble (see page 794)
The treasury department of this large US company lost about $90 million in 1994
trading highly exotic interest rate derivatives contracts with Bankers Trust. It later
sued Bankers Trust and settled out of court.

Shell
A single employee working in the Japanese subsidiary of this company lost $1 billion
dollars in unauthorized trading of currency futures.

Sumitomo
A single trader working for this Japanese company lost about $2 billion in the copper
spot, futures, and options market in the 1990s.
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speculation, and arbitrage. Without close monitoring, it is impossible to know whether

a derivatives trader has switched from being a hedger to a speculator or switched from
being an arbitrageur to being a speculator. The Barings, Société Générale, and UBS

losses are classic examples of what can go wrong. In each case, the trader’s mandate was

to carry out low-risk arbitrage or hedging. Unknown to their supervisors, the traders
switched from being arbitrageurs or hedgers to taking huge bets on the future direction

of market variables. Systems at their banks were so inadequate that nobody knew the
full extent of what they were doing.

The argument here is not that no risks should be taken. A trader in a financial
institution or a fund manager should be allowed to take positions on the future

direction of relevant market variables. But the sizes of the positions that can be taken

should be limited and the systems in place should accurately report the risks being
taken.

Take the Risk Limits Seriously

What happens if an individual exceeds risk limits and makes a profit? This is a tricky

issue for senior management. It is tempting to ignore violations of risk limits when
profits result. However, this is shortsighted. It leads to a culture where risk limits are

not taken seriously, and it paves the way for a disaster. In some of the situations listed
in Business Snapshots 36.1 and 36.2, the companies had become complacent about

the risks they were taking because they had taken similar risks in previous years and

made profits.

A classic example here is Orange County. Robert Citron’s activities in 1991–93 had

been very profitable for Orange County, and the municipality had come to rely on his
trading for additional funding. People chose to ignore the risks he was taking because

he had produced profits. Unfortunately, the losses made in 1994 far exceeded the profits
from previous years.

The penalties for exceeding risk limits should be just as great when profits result as
when losses result. Otherwise, traders who make losses are liable to keep increasing

their bets in the hope that eventually a profit will result and all will be forgiven.

Do Not Assume You Can Outguess the Market

Some traders are quite possibly better than others. But no trader gets it right all the

time. A trader who correctly predicts the direction in which market variables will move

60% of the time is doing well. If a trader has an outstanding track record (as Robert
Citron did in the early 1990s), it is likely to be a result of luck rather than superior

trading skill.

Suppose that a financial institution employs 16 traders and one of those traders

makes profits in every quarter of a year. Should the trader receive a good bonus?
Should the trader’s risk limits be increased? The answer to the first question is that

inevitably the trader will receive a good bonus. The answer to the second question

should be no. The chance of making a profit in four consecutive quarters from
random trading is 0:54 or 1 in 16. This means that just by chance one of the

16 traders will ‘‘get it right’’ every single quarter of the year. It should not be
assumed that the trader’s luck will continue and the trader’s risk limits should not

be increased.
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Do Not Underestimate the Benefits of Diversification

When a trader appears good at predicting a particular market variable, there is a
tendency to increase the trader’s limits. We have just argued that this is a bad idea
because it is quite likely that the trader has been lucky rather than clever. However, let
us suppose that a fund is really convinced that the trader has special talents. How
undiversified should it allow itself to become in order to take advantage of the trader’s
special skills? The answer is that the benefits from diversification are huge, and it may
not be the best strategy to forego these benefits to speculate heavily on just one market
variable.

An example will illustrate the point here. Suppose that there are 20 stocks, each of
which have an expected return of 10% per annum and a standard deviation of returns
of 30%. The correlation between the returns from any two of the stocks is 0.2. By
dividing an investment equally among the 20 stocks, an investor has an expected return
of 10% per annum and standard deviation of returns of 14.7%. Diversification enables
the investor to reduce risks by over half. Another way of expressing this is that
diversification enables an investor to double the expected return per unit of risk taken.
The investor would have to be very good at stock picking to consistently get a better risk–
return tradeoff by investing in just one stock.

Carry out Scenario Analyses and Stress Tests

The calculation of risk measures such as VaR should always be accompanied by
scenario analyses and stress testing to obtain an understanding of what can go wrong.
These were mentioned in Chapter 22. They are very important. Human beings have an
unfortunate tendency to anchor on one or two scenarios when evaluating decisions. In
1993 and 1994, for example, Procter & Gamble and Gibson Greetings may have been so
convinced that interest rates would remain low that they ignored the possibility of a
100-basis-point increase in their decision making.

It is important to be creative in the way scenarios are generated and to use the
judgment of experienced managers. One approach is to look at 10 or 20 years of data
and choose the most extreme events as scenarios. Sometimes there is a shortage of
data on a key variable. It is then sensible to choose a similar variable for which much
more data is available and use historical daily percentage changes in that variable as a
proxy for possible daily percentage changes in the key variable. For example, if there
is little data on the prices of bonds issued by a particular country, historical data on
prices of bonds issued by other similar countries can be used to develop possible
scenarios.

36.2 LESSONS FOR FINANCIAL INSTITUTIONS

We now move on to consider lessons that are primarily relevant to financial institutions.

Monitor Traders Carefully

In trading rooms there is a tendency to regard high-performing traders as ‘‘untouch-
able’’ and to not subject their activities to the same scrutiny as other traders.
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Apparently Joseph Jett, Kidder Peabody’s star trader of Treasury instruments, was

often ‘‘too busy’’ to answer questions and discuss his positions with the company’s risk
managers.

All traders—particularly those making high profits—should be fully accountable. It
is important for the financial institution to know whether the high profits are being

made by taking unreasonably high risks. It is also important to check that the financial
institution’s computer systems and pricing models are correct and are not being

manipulated in some way.

Separate the Front, Middle, and Back Office

The front office in a financial institution consists of the traders who are executing trades,
taking positions, and so forth. The middle office consists of risk managers who are

monitoring the risks being taken. The back office is where the record keeping and
accounting takes place. Some of the worst derivatives disasters have occurred because

these functions were not kept separate. Nick Leeson controlled both the front and back
office for Barings in Singapore and was, as a result, able to conceal the disastrous

nature of his trades from his superiors in London for some time. Jérôme Kerviel had

worked in Société Générale’s back office before becoming a trader and took advantage
of his knowledge of its systems to hide his positions.

Do Not Blindly Trust Models

Some of the large losses incurred by financial institutions arose because of the models

and computer systems being used. We discussed how Kidder Peabody was misled by
its own systems on page 131.

If large profits are reported when relatively simple trading strategies are followed,
there is a good chance that the models underlying the calculation of the profits are

wrong. Similarly, if a financial institution appears to be particularly competitive on its
quotes for a particular type of deal, there is a good chance that it is using a different

model from other market participants, and it should analyze what is going on carefully.

To the head of a trading room, getting too much business of a certain type can be just
as worrisome as getting too little business of that type.

Be Conservative in Recognizing Inception Profits

When a financial institution sells a highly exotic instrument to a nonfinancial corpora-
tion, the valuation can be highly dependent on the underlying model. For example,

instruments with long-dated embedded interest rate options can be highly dependent on

the interest rate model used. In these circumstances, a phrase used to describe the daily
marking to market of the deal is marking to model. This is because there are no market

prices for similar deals that can be used as a benchmark.

Suppose that a financial institution manages to sell an instrument to a client for

$10 million more than it is worth—or at least $10 million more than its model says it is
worth. The $10 million is known as an inception profit. When should it be recognized?

There appears to be quite a variation in what different financial institutions do. Some
recognize the $10 million immediately, whereas others are much more conservative and

recognize it slowly over the life of the deal.
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Recognizing inception profits immediately is very dangerous. It encourages traders to
use aggressive models, take their bonuses, and leave before the model and the value of
the deal come under close scrutiny. It is much better to recognize inception profits
slowly, so that traders have the motivation to investigate the impact of several different
models and several different sets of assumptions before committing themselves to

a deal.

Do Not Sell Clients Inappropriate Products

It is tempting to sell corporate clients inappropriate products, particularly when they
appear to have an appetite for the underlying risks. But this is shortsighted. The most
dramatic example of this is the activities of Bankers Trust (BT) in the period leading up
to the spring of 1994. Many of BT’s clients were persuaded to buy high-risk and totally

inappropriate products. A typical product (e.g., the 5/30 swap discussed on page 794)
would give the client a good chance of saving a few basis points on its borrowings and a
small chance of costing a large amount of money. The products worked well for BT’s
clients in 1992 and 1993, but blew up in 1994 when interest rates rose sharply. The bad
publicity that followed hurt BT greatly. The years it had spent building up trust among
corporate clients and developing an enviable reputation for innovation in derivatives
were largely lost as a result of the activities of a few overly aggressive salesmen. BT was
forced to pay large amounts of money to its clients to settle lawsuits out of court. It was
taken over by Deutsche Bank in 1999.

Beware of Easy Profits

Enron provides an example of how overly aggressive deal makers can cost the banks they
work for billions of dollars. Doing business with Enron seemed very profitable and
banks competed with each other for this business. But the fact that many banks push
hard to get a certain type of business should not be taken as an indication that the
business will ultimately be profitable. The business that Enron did with banks resulted in
shareholder lawsuits that were very expensive for the banks. In general, transactions
where high profits seem easy to achieve should be looked at closely for hidden risks.

Investing in the AAA-rated tranches of the ABS CDOs that were created from
subprime mortgages (see Chapter 8) seemed like a fantastic opportunity. The promised
returns were much higher than the returns normally earned on AAA-rated instruments.
Many investors did not stop to ask whether the extra returns reflected risks not taken
into account by the rating agencies.

Do Not Ignore Liquidity Risk

Financial engineers usually base the pricing of exotic instruments and other instru-
ments that trade relatively infrequently on the prices of actively traded instruments. For
example:

1. A financial engineer often calculates a zero curve from actively traded government
bonds (known as on-the-run bonds) and uses it to price government bonds that
trade less frequently (off-the-run bonds).

2. A financial engineer often implies the volatility of an asset from actively traded
options and uses it to price less actively traded options.
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3. A financial engineer often implies information about the behavior of interest rates
from actively traded interest rate caps and swap options and uses it to price
nonstandard interest rate derivatives that are less actively traded.

These practices are not unreasonable. However, it is dangerous to assume that less

actively traded instruments can always be traded at close to their theoretical price.

When financial markets experience a shock of one sort or another there is often a

‘‘flight to quality.’’ Liquidity becomes very important to investors, and illiquid instru-

ments often sell at a big discount to their theoretical values. This happened in 2007–9

following the jolt to credit markets caused by lack of confidence in securities backed by

subprime mortgages.

Another example of losses arising from liquidity risk is provided by Long-Term

Capital Management (LTCM), which was discussed in Business Snapshot 2.2. This

hedge fund followed a strategy known as convergence arbitrage. It attempted to identify

two securities (or portfolios of securities) that should in theory sell for the same price. If

the market price of one security was less that of the other, it would buy that security

and sell the other. The strategy is based on the idea that if two securities have the same

theoretical price their market prices should eventually be the same.

In the summer of 1998 LTCM made a huge loss. This was largely because a default

by Russia on its debt caused a flight to quality. LTCM tended to be long illiquid

instruments and short the corresponding liquid instruments (for example, it was long

off-the-run bonds and short on-the-run bonds). The spreads between the prices of

illiquid instruments and the corresponding liquid instruments widened sharply after

the Russian default. LTCM was highly leveraged. It experienced huge losses and there

were margin calls on its positions that it found difficult to meet.

The LTCM story reinforces the importance of carrying out scenario analyses and

stress testing to look at what can happen in the worst of all worlds. LTCM could have

tried to examine other times in history when there had been extreme flights to quality to

quantify the liquidity risks it was facing.

Beware When Everyone Is Following the Same
Trading Strategy

It sometimes happens that many market participants are following essentially the same

trading strategy. This creates a dangerous environment where there are liable to be big

market moves, unstable markets, and large losses for the market participants.

We gave one example of this in Chapter 19 when discussing portfolio insurance and

the market crash of October 1987. In the months leading up to the crash, increasing

numbers of portfolio managers were attempting to insure their portfolios by creating

synthetic put options. They bought stocks or stock index futures after a rise in the

market and sold them after a fall. This created an unstable market. A relatively small

decline in stock prices could lead to a wave of selling by portfolio insurers. The latter

would lead to a further decline in the market, which could give rise to another wave of

selling, and so on. There is little doubt that without portfolio insurance the crash of

October 1987 would have been much less severe.

Another example is provided by LTCM in 1998. Its position was made more difficult

by the fact that many other hedge funds were following similar convergence arbitrage

strategies to its own. After the Russian default and the flight to quality, LTCM tried to
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liquidate part of its portfolio to meet margin calls. Unfortunately, other hedge funds

were facing similar problems to LTCM and trying to do similar trades. This exacerbated

the situation, causing liquidity spreads to be even higher than they would otherwise have
been and reinforcing the flight to quality. Consider, for example, LTCM’s position in US

Treasury bonds. It was long the illiquid off-the-run bonds and short the liquid on-the-run

bonds. When a flight to quality caused spreads between yields on the two types of bonds

to widen, LTCM had to liquidate its positions by selling off-the-run bonds and buying

on-the-run bonds. Other large hedge funds were doing the same. As a result, the price of
on-the-run bonds rose relative to off-the-run bonds and the spread between the two

yields widened even more than it had done already.

A further example is provided by the activities of British insurance companies in the
late 1990s. These insurance companies had entered into many contracts promising that

the rate of interest applicable to annuities would be the greater of the market rate and a

guaranteed rate. The insurance companies stood to lose money if long-term interest

rates fell below the guaranteed rate. For various reasons, they all entered into deriva-

tives transactions to partially hedge their risks at about the same time. The financial
institutions on the other side of the derivatives transactions hedged their risks by buying

huge numbers of long-dated sterling bonds. As a result, bond prices rose and sterling

long-term interest rates declined. More bonds had to be bought to maintain the

dynamic hedge, sterling long-term interest rates declined further, and so on. The
financial institutions lost money and insurance companies found themselves in a worse

position on the risks that they had chosen not to hedge.

The key lesson to be learned from these stories is that there can be big risks in

situations where many market participants are following the same trading strategy.

Do Not Make Excessive Use of Short-Term Funding for
Long-Term Needs

All financial institutions finance long-term needs with short-term sources of funds to

some extent. But a financial institution that relies too heavily on short-term funds is
likely to expose itself to unacceptable liquidity risks.

Suppose that a financial institution funds long-term needs by rolling over commercial

paper every month. Commercial paper issued on April 1 would be redeemed with the

proceeds of a new commercial paper issue on May 1; this new commercial paper issue
would be redeemed with the proceeds of a commercial paper issue on June 1; and so on.

Provided that the financial institution is perceived as healthy, there should be no

problem. But if investors lose confidence in the financial institution (rightly or wrongly),

it becomes impossible to roll over commercial paper and the financial institution
experiences severe liquidity problems.

Many of the failures of financial institutions during the credit crisis (e.g., Lehman

Brothers and Northern Rock) were largely caused by excessive reliance on short-term

funding. It is not surprising that the Basel Committee, which is responsible for
regulating banks internationally, is introducing liquidity ratios which banks must satisfy.

Market Transparency Is Important

One of the lessons from the credit crunch of 2007 is that market transparency is

important. During the period leading up to 2007, investors traded highly structured
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products without any real knowledge of the underlying assets. All they knew was the
credit rating of the security being traded.With hindsight, we can say that investors should
have demanded more information about the underlying assets and should have more
carefully assessed the risks they were taking—but it is easy to be wise after the event!

The subprime meltdown of August 2007 caused investors to lose confidence in all
structured products and withdraw from that market. This led to a market breakdown
where tranches of structured products could only be sold at prices well below their
theoretical values. There was a flight to quality and credit spreads increased. If there
had been market transparency so that investors understood the asset-backed securities
they were buying, there would still have been subprime losses, but the flight to quality
and disruptions to the market would have been less pronounced.

Manage Incentives

A key lesson from the credit crisis of 2007 and 2008 is the importance of incentives. The
bonus systems in banks tend to emphasize short-term performance. Some financial
institutions have switched to systems where bonuses are based on performance over a
longer window than one year (for example, five years). This has obvious advantages. It
discourages traders from doing trades that will look good in the short run, but may
‘‘blow up’’ in a few years.

When loans are securitized, it is important to align the interests of the party
originating the loan with the party who bears the ultimate risk so that the originator
does not have an incentive to misrepresent the loan. One way of doing this is for
regulators to require the originator of a loan portfolio to keep a stake in all the tranches
and other instruments that are created from the portfolio.

Never Ignore Risk Management

When times are good (or appear to be good), there is a tendency to assume that nothing
can go wrong and ignore the output from stress tests and other analyses carried out by
the risk management group. There are many stories of risk managers not being listened
to in the period leading up to the credit crisis of 2007. The comment of Chuck Prince,
CEO of Citigroup, in July 2007 (just before the credit crisis) provides an example of
exactly the wrong attitude to risk management:

When the music stops, in terms of liquidity, things will be complicated. But as long as the
music is playing, you’ve got to get up and dance. We’re still dancing.

Mr. Prince lost his job later in the year and Citigroup’s losses from the credit crisis were
over $50 billion.

36.3 LESSONS FOR NONFINANCIAL CORPORATIONS

We now consider lessons primarily applicable to nonfinancial corporations.

Make Sure You Fully Understand the Trades You Are Doing

Corporations should never undertake a trade or a trading strategy that they do not
fully understand. This is a somewhat obvious point, but it is surprising how often a
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trader working for a nonfinancial corporation will, after a big loss, admit to not

knowing what was really going on and claim to have been misled by investment

bankers. Robert Citron, the treasurer of Orange County did this. So did the traders

working for Hammersmith and Fulham, who in spite of their huge positions were
surprisingly uninformed about how the swaps and other interest rate derivatives they

traded really worked.

If a senior manager in a corporation does not understand a trade proposed by a

subordinate, the trade should not be approved. A simple rule of thumb is that if a trade
and the rationale for entering into it are so complicated that they cannot be understood

by the manager, it is almost certainly inappropriate for the corporation. The trades

undertaken by Procter & Gamble and Gibson Greetings would have been vetoed using

this criterion.

One way of ensuring that you fully understand a financial instrument is to value it. If a
corporation does not have the in-house capability to value an instrument, it should not

trade it. In practice, corporations often rely on their derivatives dealers for valuation

advice. This is dangerous, as Procter & Gamble and Gibson Greetings found out. When

they wanted to unwind their deals, they found they were facing prices produced by
Bankers Trust’s proprietary models, which they had no way of checking.

Make Sure a Hedger Does Not Become a Speculator

One of the unfortunate facts of life is that hedging is relatively dull, whereas speculation

is exciting. When a company hires a trader to manage the risks in exchange rates,

commodity prices, or interest rates, there is a danger that the following might happen.

At first, the trader does the job diligently and earns the confidence of top management.

The trader assesses the company’s exposures and hedges them. As time goes by, the
trader becomes convinced that he or she can outguess the market. Slowly the trader

becomes a speculator. At first things go well, but then a loss is made. To recover the

loss, the trader doubles up the bets. Further losses are made—and so on. The result is

likely to be a disaster.

As mentioned earlier, clear limits to the risks that can be taken should be set by

senior management. Controls should be put in place to ensure that the limits are

obeyed. The trading strategy for a corporation should start with an analysis of the

risks facing the corporation in foreign exchange, interest rate, commodity markets, etc.

A decision should then be taken on how the risks are to be reduced to acceptable levels.
It is a clear sign that something is wrong within a corporation if the trading strategy is

not derived in a very direct way from the company’s exposures.

Be Cautious about Making the Treasury Department a
Profit Center

In the last 20 years there has been a tendency to make the treasury department within a

corporation a profit center. This appears to have much to recommend it. The treasurer is
motivated to reduce financing costs and manage risks as profitably as possible. The

problem is that the potential for the treasurer to make profits is limited. When raising

funds and investing surplus cash, the treasurer is facing an efficient market. The

treasurer can usually improve the bottom line only by taking additional risks. The

company’s hedging program gives the treasurer some scope for making shrewd decisions
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that increase profits. But it should be remembered that the goal of a hedging program is
to reduce risks, not to increase expected profits. As pointed out in Chapter 3, the
decision to hedge will lead to a worse outcome than the decision not to hedge roughly
50% of the time. The danger of making the treasury department a profit center is that
the treasurer is motivated to become a speculator. This is liable to lead to the type of
outcome experienced by Orange County, Procter & Gamble, or Gibson Greetings.

SUMMARY

The huge losses experienced from the use of derivatives have made many treasurers very
wary. Following some of the losses, some nonfinancial corporations have announced
plans to reduce or even eliminate their use of derivatives. This is unfortunate because
derivatives provide treasurers with very efficient ways to manage risks.

The stories behind the losses emphasize the point, made as early as Chapter 1, that
derivatives can be used for either hedging or speculation; that is, they can be used either
to reduce risks or to take risks. Most losses occurred because derivatives were used
inappropriately. Employees who had an implicit or explicit mandate to hedge their
company’s risks decided instead to speculate.

The key lesson to be learned from the losses is the importance of internal controls.
Senior management within a company should issue a clear and unambiguous policy
statement about how derivatives are to be used and the extent to which it is permissible
for employees to take positions on movements in market variables. Management should
then institute controls to ensure that the policy is carried out. It is a recipe for disaster
to give individuals authority to trade derivatives without a close monitoring of the risks
being taken.
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Glossary of Terms

ABS See Asset-Backed Security.

ABS CDO Instrument where tranches are created from the tranches of ABSs.

Accrual Swap An interest rate swap where interest on one side accrues only when a

certain condition is met.

Accrued Interest The interest earned on a bond since the last coupon payment date.

Adaptive Mesh Model A model developed by Figlewski and Gao that grafts a high-
resolution tree on to a low-resolution tree so that there is more detailed modeling of

the asset price in critical regions.

Agency Costs Costs arising from a situation where the agent (e.g., manager) is not
motivated to act in the best interests of the principal (e.g., shareholder).

American Option An option that can be exercised at any time during its life.

Amortizing Swap A swap where the notional principal decreases in a predetermined

way as time passes.

Analytic Result Result where answer is in the form of an equation.

Arbitrage A trading strategy that takes advantage of two or more securities being

mispriced relative to each other.

Arbitrageur An individual engaging in arbitrage.

Asian Option An option with a payoff dependent on the average price of the under-
lying asset during a specified period.

Ask Price The price that a dealer is offering to sell an asset.

Asked Price See Ask Price.

Asset-Backed Security Security created from a portfolio of loans, bonds, credit card

receivables, or other assets.

Asset-or-Nothing Call Option An option that provides a payoff equal to the asset
price if the asset price is above the strike price and zero otherwise.

Asset-or-Nothing Put Option An option that provides a payoff equal to the asset

price if the asset price is below the strike price and zero otherwise.

Asset Swap Exchanges the coupon on a bond for LIBOR plus a spread.
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As-You-Like-It Option See Chooser Option.

At-the-Money Option An option in which the strike price equals the price of the
underlying asset.

Average Price Call Option An option giving a payoff equal to the greater of zero and
the amount by which the average price of the asset exceeds the strike price.

Average Price Put Option An option giving a payoff equal to the greater of zero and
the amount by which the strike price exceeds the average price of the asset.

Average Strike Option An option that provides a payoff dependent on the difference
between the final asset price and the average asset price.

Backdating Practice (often illegal) of marking a document with a date that precedes
the current date.

Back Testing Testing a value-at-risk or other model using historical data.

Backwards Induction A procedure for working from the end of a tree to its beginning
in order to value an option.

Barrier Option An option whose payoff depends on whether the path of the under-
lying asset has reached a barrier (i.e., a certain predetermined level).

Base Correlation Correlation that leads to the price of a 0% to X% CDO tranche
being consistent with the market for a particular value of X.

Basel Committee Committee responsible for regulation of banks internationally.
Basis The difference between the spot price and the futures price of a commodity.

Basis Point When used to describe an interest rate, a basis point is one hundredth of
one percent (¼ 0:01%)

Basis Risk The risk to a hedger arising from uncertainty about the basis at a future
time.

Basis Swap A swap where cash flows determined by one floating reference rate are
exchanged for cash flows determined by another floating reference rate.

Basket Credit Default Swap Credit default swap where there are several reference
entities.

Basket Option An option that provides a payoff dependent on the value of a portfolio
of assets.

Bear Spread A short position in a put option with strike price K1 combined with a
long position in a put option with strike price K2 where K2 > K1. (A bear spread can
also be created with call options.)

Bermudan Option An option that can be exercised on specified dates during its life.

Beta A measure of the systematic risk of an asset.

Bid–Ask Spread The amount by which the ask price exceeds the bid price.

Bid–Offer Spread See Bid–Ask Spread.

Bid Price The price that a dealer is prepared to pay for an asset.

Bilateral Clearing Arrangement between two parties to handle transactions in the
OTC market, often involving an ISDA Master Agreement.

Binary Credit Default Swap Instrument where there is a fixed dollar payoff in the
event of a default by a particular company.
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Binary Option Option with a discontinuous payoff, e.g., a cash-or-nothing option or
an asset-or-nothing option.

Binomial Model A model where the price of an asset is monitored over successive
short periods of time. In each short period it is assumed that only two price
movements are possible.

Binomial Tree A tree that represents how an asset price can evolve under the binomial
model.

Bivariate Normal Distribution A distribution for two correlated variables, each of
which is normal.

Black’s Approximation An approximate procedure developed by Fischer Black for
valuing a call option on a dividend-paying stock.

Black’s Model An extension of the Black–Scholes model for valuing European
options on futures contracts. As described in Chapter 26, it is used extensively in
practice to value European options when the distribution of the asset price at
maturity is assumed to be lognormal.

Black–Scholes–Merton Model A model for pricing European options on stocks,
developed by Fischer Black, Myron Scholes, and Robert Merton.

Bond Option An option where a bond is the underlying asset.

Bond Yield Discount rate which, when applied to all the cash flows of a bond, causes
the present value of the cash flows to equal the bond’s market price.

Bootstrap Method A procedure for calculating the zero-coupon yield curve from
market data. It involves using progressively longer maturity instruments.

Boston Option See Deferred Payment Option.

Box Spread A combination of a bull spread created from calls and a bear spread
created from puts.

Break Forward See Deferred Payment Option.

Brownian Motion See Wiener Process.

Bull Spread A long position in a call with strike price K1 combined with a short
position in a call with strike price K2, where K2 > K1. (A bull spread can also be
created with put options.)

Butterfly Spread A position that is created by taking a long position in a call with
strike price K1, a long position in a call with strike price K3, and a short position in
two calls with strike price K2, where K3 > K2 > K1 and K2 ¼ 0:5ðK1 þK3Þ.
(A butterfly spread can also be created with put options.)

Calendar Spread A position that is created by taking a long position in a call option
that matures at one time and a short position in a similar call option that matures at a
different time. (A calendar spread can also be created using put options.)

Calibration Method for implying a model’s parameters from the prices of actively
traded options.

Callable Bond A bond containing provisions that allow the issuer to buy it back at a
predetermined price at certain times during its life.

Call Option An option to buy an asset at a certain price by a certain date.

Cancelable Swap Swap that can be canceled by one side on prespecified dates.
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Cap See Interest Rate Cap.

Cap Rate The rate determining payoffs in an interest rate cap.

Capital Asset Pricing Model A model relating the expected return on an asset to its
beta.

Caplet One component of an interest rate cap.

Case–Shiller Index Index of house prices in the United States.

Cash Flow Mapping A procedure for representing an instrument as a portfolio of
zero-coupon bonds for the purpose of calculating value at risk.

Cash-or-Nothing Call Option An option that provides a fixed predetermined payoff if
the final asset price is above the strike price and zero otherwise.

Cash-or-Nothing Put Option An option that provides a fixed predetermined payoff if
the final asset price is below the strike price and zero otherwise.

Cash Settlement Procedure for settling a futures contract in cash rather than by
delivering the underlying asset.

CAT Bond Bond where the interest and, possibly, the principal paid are reduced if a
particular category of ‘‘catastrophic’’ insurance claims exceed a certain amount.

CCP See Central Clearing Party.

CDD Cooling degree days. The maximum of zero and the amount by which the daily
average temperature is greater than 65� Fahrenheit. The average temperature is the
average of the highest and lowest temperatures (midnight to midnight).

CDO See Collateralized Debt Obligation.

CDO Squared An instrument in which the default risks in a portfolio of CDO
tranches are allocated to new securities.

CDS See Credit Default Swap.

CDS Spread Basis points that must be paid each year for protection in a CDS.

CDX NA IG Portfolio of 125 North American companies.

CEBO See Credit Event Binary Option.

Central Clearing The use of a clearing house for over-the-counter derivatives.

Central Counterparty A clearing house for over-the-counter derivatives.

Cheapest-to-Deliver Bond The bond that is cheapest to deliver in the CME Group
bond futures contract.

Cholesky Decomposition A method of sampling from a multivariate normal dis-
tribution.

Chooser Option An option where the holder has the right to choose whether it is a
call or a put at some point during its life.

Class of Options See Option Class.

Clean Price of Bond The quoted price of a bond. The cash price paid for the bond
(or dirty price) is calculated by adding the accrued interest to the clean price.

Clearing House A firm that guarantees the performance of the parties in a derivatives
transaction (also referred to as a clearing corporation).

Clearing Margin A margin posted by a member of a clearinghouse.
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Cliquet Option A series of call or put options with rules for determining strike prices.

Typically, one option starts when the previous one terminates.

CMO Collateralized Mortgage Obligation.

Collar See Interest Rate Collar.

Collateralization A system for posting collateral by one or both parties in a derivatives

transaction.

Collateralized Debt Obligation A way of packaging credit risk. Several classes of

securities (known as tranches) are created from a portfolio of bonds and there are

rules for determining how the cost of defaults are allocated to classes.

Collateralized Mortgage Obligation (CMO) A mortgage-backed security where in-

vestors are divided into classes and there are rules for determining how principal

repayments are channeled to the classes.

Combination A position involving both calls and puts on the same underlying asset.

Commodity Futures Trading Commission A body that regulates trading in futures

contracts in the United States.

Commodity Swap A swap where cash flows depend on the price of a commodity.

Compound Correlation Correlation implied from the market price of a CDO tranche.

Compound Option An option on an option.

Compounding Frequency This defines how an interest rate is measured.

Compounding Swap Swap where interest compounds instead of being paid.

Conditional Value at Risk (C-VaR) Expected loss during N days conditional on being

in the ð100�XÞ% tail of the distribution of profits/losses. The variable N is the time

horizon and X% is the confidence level.

Confirmation Contract confirming verbal agreement between two parties to a trade in

the over-the-counter market.

Constant Elasticity of Variance (CEV) Model Model where the variance of the change

in a variable in a short period of time is proportional to the value of the variable.

Constant Maturity Swap (CMS) A swap where a swap rate is exchanged for either a

fixed rate or a floating rate on each payment date.

Constant Maturity Treasury Swap A swap where the yield on a Treasury bond is

exchanged for either a fixed rate or a floating rate on each payment date.

Consumption Asset An asset held for consumption rather than investment.

Contango A situation where the futures price is above the expected future spot price

(also often used to refer to the situation where the futures price is above the current

spot price).

Continuous Compounding A way of quoting interest rates. It is the limit as the

assumed compounding interval is made smaller and smaller.

Control Variate Technique A technique that can sometimes be used for improving the

accuracy of a numerical procedure.

Convenience Yield A measure of the benefits from ownership of an asset that are not

obtained by the holder of a long futures contract on the asset.
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Conversion Factor A factor used to determine the number of bonds that must be

delivered in the CME Group bond futures contract.

Convertible Bond A corporate bond that can be converted into a predetermined

amount of the company’s equity at certain times during its life.

Convexity A measure of the curvature in the relationship between bond prices and

bond yields.

Convexity Adjustment An overworked term. For example, it can refer to the adjust-

ment necessary to convert a futures interest rate to a forward interest rate. It can also

refer to the adjustment to a forward rate that is sometimes necessary when Black’s

model is used.

Copula A way of defining the correlation between variables with known distributions.

Cornish–Fisher Expansion An approximate relationship between the fractiles of a

probability distribution and its moments.

Cost of Carry The storage costs plus the cost of financing an asset minus the income

earned on the asset.

Counterparty The opposite side in a financial transaction.

Coupon Interest payment made on a bond.

Covariance Measure of the linear relationship between two variables (equals the

correlation between the variables times the product of their standard deviations).

Covariance Matrix See Variance–Covariance Matrix.

Covered Call A short position in a call option on an asset combined with a long

position in the asset.

Crashophobia Fear of a stock market crash that some people claim causes the market

to increase the price of deep-out-of-the-money put options.

Credit Contagion The tendency of a default by one company to lead to defaults by

other companies.

Credit Default Swap An instrument that gives the holder the right to sell a bond for

its face value in the event of a default by the issuer.

Credit Derivative A derivative whose payoff depends on the creditworthiness of one

or more companies or countries.

Credit Event Event, such as a default or reorganization, triggering a payout on a

credit derivative.

Credit Event Binary Option Exchange-traded option that provides a fixed payoff if a

reference entity suffers a credit event.

Credit Index Index that tracks the cost of buying protection for each company in a

portfolio (e.g., CDX NA IG and iTraxx Europe).

Credit Rating A measure of the creditworthiness of a bond issue.

Credit Ratings Transition Matrix A table showing the probability that a company will

move from one credit rating to another during a certain period of time.

Credit Risk The risk that a loss will be experienced because of a default by the

counterparty in a derivatives transaction.
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Credit Spread Option Option whose payoff depends on the spread between the yields
earned on two assets.

Credit Support Annex (CSA) Part of ISDA Master Agreement dealing with collateral
requirements.

Credit Value Adjustment Adjustment to value of derivatives outstanding with a
counterparty to reflect the counterparty’s default risk.

Credit Value at Risk The credit loss that will not be exceeded at some specified
confidence level.

CreditMetrics A procedure for calculating credit value at risk.

Cross Hedging Hedging an exposure to the price of one asset with a contract on
another asset.

Cumulative Distribution Function The probability that a variable will be less than x

as a function of x.

Currency Swap A swap where interest and principal in one currency are exchanged
for interest and principal in another currency.

CVA See Credit Value Adjustment.

Day Count A convention for quoting interest rates.

Day Trade A trade that is entered into and closed out on the same day.

Debt (or Debit) Value Adjustment Value to a company of the fact that it might
default on outstanding derivatives transactions.

Default Correlation Measures the tendency of two companies to default at about the
same time.

Default Intensity See Hazard Rate.

Default Probability Density Measures the unconditional probability of default in a
future short period of time.

Deferred Payment Option An option where the price paid is deferred until the end of
the option’s life.

Deferred Swap An agreement to enter into a swap at some time in the future (also
called a forward swap).

Delivery Price Price agreed to (possibly some time in the past) in a forward contract.

Delta The rate of change of the price of a derivative with the price of the underlying
asset.

Delta Hedging A hedging scheme that is designed to make the price of a portfolio of
derivatives insensitive to small changes in the price of the underlying asset.

Delta-Neutral Portfolio A portfolio with a delta of zero so that there is no sensitivity
to small changes in the price of the underlying asset.

DerivaGem The software accompanying this book.

Derivative An instrument whose price depends on, or is derived from, the price of
another asset.

Deterministic Variable A variable whose future value is known.

Diagonal Spread A position in two calls where both the strike prices and times to
maturity are different. (A diagonal spread can also be created with put options.)
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Differential Swap A swap where a floating rate in one currency is exchanged for a

floating rate in another currency and both rates are applied to the same principal.

Diffusion Process Model where value of asset changes continuously (no jumps).

Dirty Price of Bond Cash price of bond.

Discount Bond See Zero-Coupon Bond.

Discount Instrument An instrument, such as a Treasury bill, that provides no

coupons.

Diversification Reducing risk by dividing a portfolio between many different assets.

Dividend A cash payment made to the owner of a stock.

Dividend Yield The dividend as a percentage of the stock price.

Dodd–Frank Act An act introduced in the United States in 2010 designed to protect

consumers and investors, avoid future bailouts, and monitor the functioning of the

financial system more carefully.

Dollar Duration The product of a bond’s modified duration and the bond price.

DOOM Option Deep-out-of-the-money put option.

Down-and-In Option An option that comes into existence when the price of the

underlying asset declines to a prespecified level.

Down-and-Out Option An option that ceases to exist when the price of the under-

lying asset declines to a prespecified level.

Downgrade Trigger A clause in a contract that states that the contract will be

terminated with a cash settlement if the credit rating of one side falls below a certain

level.

Drift Rate The average increase per unit of time in a stochastic variable.

Duration A measure of the average life a bond. It is also an approximation to the ratio

of the proportional change in the bond price to the absolute change in its yield.

Duration Matching A procedure for matching the durations of assets and liabilities in

a financial institution.

DV01 The dollar value of a 1-basis-point increase in all interest rates.

DVA See Debt (or Debit) Value Adjustment.

Dynamic Hedging A procedure for hedging an option position by periodically

changing the position held in the underlying asset. The objective is usually to

maintain a delta-neutral position.

Early Exercise Exercise prior to the maturity date.

Effective Federal Funds Rate Weighted average federal funds rate for brokered

transactions.

Efficient Market Hypothesis A hypothesis that asset prices reflect relevant information.

Electronic Trading System of trading where a computer is used to match buyers and

sellers.

Embedded Option An option that is an inseparable part of another instrument.

Empirical Research Research based on historical market data.
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Employee Stock Option A stock option issued by company on its own stock and

given to its employees as part of their remuneration.

Equilibrium Model A model for the behavior of interest rates derived from a model of

the economy.

Equity Swap A swap where the return on an equity portfolio is exchanged for either a

fixed or a floating rate of interest.

Equity Tranche The tranche that first absorbs losses.

Equivalent Annual Interest Rate Interest rate with annual compounding.

Euribor Rate in the interbank market between banks in the Eurozone.

Eurocurrency A currency that is outside the formal control of the issuing country’s

monetary authorities.

Eurodollar A dollar held in a bank outside the United States.

Eurodollar Futures Contract A futures contract written on a Eurodollar deposit.

Eurodollar Interest Rate The interest rate on a Eurodollar deposit.

Euro LIBOR London interbank offered rate for euros.

European Option An option that can be exercised only at the end of its life.

EWMA Exponentially weighted moving average.

Exchange Option An option to exchange one asset for another.

Ex-dividend Date When a dividend is declared, an ex-dividend date is specified.

Investors who own shares of the stock just before the ex-dividend date receive the

dividend.

Exercise Limit Maximum number of option contracts that can be exercised within a

five-day period.

Exercise Multiple Ratio of stock price to strike price at time of exercise for employee

stock option.

Exercise Price The price at which the underlying asset may be bought or sold in an

option contract (also called the strike price).

Exotic Option A nonstandard option.

Expectations Theory The theory that forward interest rates equal expected future spot

interest rates.

Expected Shortfall See Conditional Value at Risk.

Expected Value of a Variable The average value of the variable obtained by weighting

the alternative values by their probabilities.

Expiration Date The end of life of a contract.

Explicit Finite Difference Method A method for valuing a derivative by solving the

underlying differential equation. The value of the derivative at time t is related to

three values at time tþ�t. It is essentially the same as the trinomial tree method.

Exponentially Weighted Moving Average Model A model where exponential weight-

ing is used to provide forecasts for a variable from historical data. It is sometimes

applied to variances and covariances in value at risk calculations.
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Exponential Weighting A weighting scheme where the weight given to an observation

depends on how recent it is. The weight given to an observation i time periods ago is

� times the weight given to an observation i� 1 time periods ago where � < 1.

Exposure The maximum loss from default by a counterparty.

Extendable Bond A bond whose life can be extended at the option of the holder.

Extendable Swap A swap whose life can be extended at the option of one side to the

contract.

Factor Source of uncertainty.

Factor analysis An analysis aimed at finding a small number of factors that describe

most of the variation in a large number of correlated variables (similar to a principal

components analysis).

FAS 123 Accounting standard in United States relating to employee stock options.

FAS 133 Accounting standard in United States relating to instruments used for

hedging.

FASB Financial Accounting Standards Board.

Federal Funds Rate Overnight interbank borrowing rate.

FICO A credit score developed by Fair Isaac Corporation.

Financial Intermediary A bank or other financial institution that facilitates the flow of

funds between different entities in the economy.

Finite Difference Method A method for solving a differential equation.

Flat Volatility The name given to volatility used to price a cap when the same volatility

is used for each caplet.

Flex Option An option traded on an exchange with terms that are different from the

standard options traded by the exchange.

Flexi Cap Interest rate cap where there is a limit on the total number of caplets that

can be exercised.

Floor See Interest Rate Floor.

Floor–Ceiling Agreement See Collar.

Floorlet One component of a floor.

Floor Rate The rate in an interest rate floor agreement.

Foreign Currency Option An option on a foreign exchange rate.

Forward Contract A contract that obligates the holder to buy or sell an asset for a

predetermined delivery price at a predetermined future time.

Forward Exchange Rate The forward price of one unit of a foreign currency.

Forward Interest Rate The interest rate for a future period of time implied by the rates

prevailing in the market today.

Forward Price The delivery price in a forward contract that causes the contract to be

worth zero.

Forward Rate Rate of interest for a period of time in the future implied by today’s

zero rates.
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Forward Rate Agreement (FRA) Agreement that a certain interest rate will apply to a
certain principal amount for a certain time period in the future.

Forward Risk-Neutral World A world is forward risk-neutral with respect to a certain
asset when the market price of risk equals the volatility of that asset.

Forward Start Option An option designed so that it will be at-the-money at some
time in the future.

Forward Swap See Deferred Swap.

Funding Value Adjustment (FVA) Adjustment made to the price of a derivative for
funding costs.

Futures Commission Merchants Futures traders who are following instructions from
clients.

Futures Contract A contract that obligates the holder to buy or sell an asset at a
predetermined delivery price during a specified future time period. The contract is
settled daily.

Futures Option An option on a futures contract.

Futures Price The delivery price currently applicable to a futures contract.

Futures-Style Option Futures contract on the payoff from an option.

Gamma The rate of change of delta with respect to the asset price.

Gamma-Neutral Portfolio A portfolio with a gamma of zero.

GAP Management Procedure for matching the maturities of assets and liabilities.

Gap Option European call or put option where there are two strike prices. One
determines whether the option is exercised. The other determines the payoff.

GARCH Model A model for forecasting volatility where the variance rate follows a
mean-reverting process.

Gaussian Copula Model A model for defining a correlation structure between two or
more variables. In some credit derivatives models, it is used to define a correlation
structure for times to default.

Gaussian Quadrature Procedure for integrating over a normal distribution.

Generalized Wiener Process A stochastic process where the change in a variable in
time t has a normal distribution with mean and variance both proportional to t.

Geometric Average The nth root of the product of n numbers.

Geometric Brownian Motion A stochastic process often assumed for asset prices
where the logarithm of the underlying variable follows a generalized Wiener process.

Girsanov’s Theorem Result showing that when we change the measure (e.g., move
from real world to risk-neutral world) the expected return of a variable changes but
the volatility remains the same.

Greeks Hedge parameters such as delta, gamma, vega, theta, and rho.

Guaranty Fund Fund to which members of an exchange or CCP contribute. It may be
used to cover losses in the event of a default.

Haircut Discount applied to the value of an asset for collateral purposes.

Hazard Rate Measures probability of default in a short period of time conditional on
no earlier default.
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HDD Heating degree days. The maximum of zero and the amount by which the daily
average temperature is less than 65� Fahrenheit. The average temperature is the
average of the highest and lowest temperatures (midnight to midnight).

Hedge A trade designed to reduce risk.

Hedge Funds Funds that are subject to less regulation and fewer restrictions than
mutual funds. They can take short positions and use derivatives, but they cannot
publicly offer their securities.

Hedger An individual who enters into hedging trades.

Hedge Ratio The ratio of the size of a position in a hedging instrument to the size of
the position being hedged.

Historical Simulation A simulation based on historical data.

Historical Volatility A volatility estimated from historical data.

Holiday Calendar Calendar defining which days are holidays for the purposes of
determining payment dates in a swap.

IMM Dates Third Wednesday in March, June, September, and December.

Implicit Finite Difference Method A method for valuing a derivative by solving the
underlying differential equation. The value of the derivative at time tþ�t is related
to three values at time t.

Implied Correlation Correlation number implied from the price of a credit derivative
using the Gaussian copula or similar model.

Implied Distribution A distribution for a future asset price implied from option
prices.

Implied Dividend Yield Dividend yield estimated using put–call parity from the prices
of calls and puts with the same strike price and time to maturity.

Implied Tree A tree describing the movements of an asset price that is constructed to
be consistent with observed option prices.

Implied Volatility Volatility implied from an option price using the Black–Scholes or
a similar model.

Implied Volatility Function (IVF) Model Model designed so that it matches the market
prices of all European options.

Inception Profit Profit created by selling a derivative for more than its theoretical
value.

Index Amortizing Swap See indexed principal swap.

Index Arbitrage An arbitrage involving a position in the stocks comprising a stock
index and a position in a futures contract on the stock index.

Index Futures A futures contract on a stock index or other index.

Index Option An option contract on a stock index or other index.

Indexed Principal Swap A swap where the principal declines over time. The reduction
in the principal on a payment date depends on the level of interest rates.

Initial Margin The cash required from a futures trader at the time of the trade.

Instantaneous Forward Rate Forward rate for a very short period of time in the
future.
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Interest Rate Cap An option that provides a payoff when a specified interest rate is
above a certain level. The interest rate is a floating rate that is reset periodically.

Interest Rate Collar A combination of an interest-rate cap and an interest rate floor.

Interest Rate Derivative A derivative whose payoffs are dependent on future interest
rates.

Interest Rate Floor An option that provides a payoff when an interest rate is below a
certain level. The interest rate is a floating rate that is reset periodically.

Interest Rate Option An option where the payoff is dependent on the level of interest
rates.

Interest Rate Swap An exchange of a fixed rate of interest on a certain notional
principal for a floating rate of interest on the same notional principal.

International Swaps and Derivatives Association Trade Association for over-the-
counter derivatives and developer of master agreements used in over-the-counter
contracts.

In-the-Money Option Either (a) a call option where the asset price is greater than the
strike price or (b) a put option where the asset price is less than the strike price.

Intrinsic Value For a call option, this is the greater of the excess of the asset price over
the strike price and zero. For a put option, it is the greater of the excess of the strike
price over the asset price and zero.

Inverted Market A market where futures prices decrease with maturity.

Investment Asset An asset held by at least some individuals for investment purposes.

IO Interest Only. A mortgage-backed security where the holder receives only interest
cash flows on the underlying mortgage pool.

ISDA See International Swaps and Derivatives Association.

Itô Process A stochastic process where the change in a variable during each short
period of time of length �t has a normal distribution. The mean and variance of the
distribution are proportional to �t and are not necessarily constant.

Itô’s Lemma A result that enables the stochastic process for a function of a variable to
be calculated from the stochastic process for the variable itself.

ITraxx Europe Portfolio of 125 investment-grade European companies.

Jump–Diffusion Model Model where asset price has jumps superimposed on to a
diffusion process such as geometric Brownian motion.

Jump Process Stochastic process for a variable involving jumps in the value of the
variable.

Kurtosis A measure of the fatness of the tails of a distribution.

LEAPS Long-term equity anticipation securities. These are relatively long-term options
on individual stocks or stock indices.

LIBID London interbank bid rate. The rate bid by banks on Eurocurrency deposits
(i.e., the rate at which a bank is willing to borrow from other banks).

LIBOR London interbank offered rate. The rate offered by banks on Eurocurrency
deposits (i.e., the rate at which a bank is willing to lend to other banks).

LIBOR Curve LIBOR zero-coupon interest rates as a function of maturity.
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LIBOR-in-Arrears Swap Swap where the interest paid on a date is determined by the
interest rate observed on that date (not by the interest rate observed on the previous
payment date).

LIBOR–OIS Spread Difference between LIBOR rate and OIS rate for a certain

maturity.

Limit Move The maximum price move permitted by the exchange in a single trading
session.

Limit Order An order that can be executed only at a specified price or one more
favorable to the investor.

Liquidity Preference Theory A theory leading to the conclusion that forward interest
rates are above expected future spot interest rates.

Liquidity Premium The amount that forward interest rates exceed expected future

spot interest rates.

Liquidity Risk Risk that it will not be possible to sell a holding of a particular
instrument at its theoretical price. Also, the risk that a company will not be able
to borrow money to fund its assets.

Locals Individuals on the floor of an exchange who trade for their own account rather
than for someone else.

Lognormal Distribution A variable has a lognormal distribution when the logarithm
of the variable has a normal distribution.

Long Hedge A hedge involving a long futures position.

Long Position A position involving the purchase of an asset.

Lookback Option An option whose payoff is dependent on the maximum or min-
imum of the asset price achieved during a certain period.

Low Discrepancy Sequence See Quasi-random Sequence.

Maintenance Margin When the balance in a trader’s margin account falls below the
maintenance margin level, the trader receives a margin call requiring the account to
be topped up to the initial margin level.

Margin The cash balance (or security deposit) required from a futures or options
trader.

Margin Call A request for extra margin when the balance in the margin account falls
below the maintenance margin level.

Market-Leveraged Stock Unit (MSU) A unit entitling the holder to receive shares of a
stock at a future time. The number of shares received depends on the stock price.

Market Maker A trader who is willing to quote both bid and offer prices for an asset.

Market Model A model most commonly used by traders.

Market Price of Risk A measure of the trade-offs investors make between risk and
return.

Market Segmentation Theory A theory that short interest rates are determined
independently of long interest rates by the market.

Marking to Market The practice of revaluing an instrument to reflect the current
values of the relevant market variables.
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Markov Process A stochastic process where the behavior of the variable over a short
period of time depends solely on the value of the variable at the beginning of the
period, not on its past history.

Martingale A zero drift stochastic process.

Maturity Date The end of the life of a contract.

Maximum Likelihood Method A method for choosing the values of parameters by
maximizing the probability of a set of observations occurring.

Mean Reversion The tendency of a market variable (such as an interest rate) to revert
back to some long-run average level.

Measure Sometimes also called a probability measure, it defines the market price
of risk.

Mezzanine Tranche Tranche which experiences losses after equity tranche but before
senior tranches.

Modified Duration A modification to the standard duration measure so that it more
accurately describes the relationship between proportional changes in a bond price
and actual changes in its yield. The modification takes account of the compounding
frequency with which the yield is quoted.

Money Market Account An investment that is initially equal to $1 and, at time t,
increases at the very short-term risk-free interest rate prevailing at that time.

Monte Carlo Simulation A procedure for randomly sampling changes in market
variables in order to value a derivative.

Mortgage-Backed Security A security that entitles the owner to a share in the cash
flows realized from a pool of mortgages.

Naked Position A short position in a call option that is not combined with a long
position in the underlying asset.

Netting The ability to offset contracts with positive and negative values in the event of
a default by a counterparty or for the purpose of determining collateral requirements.

Newton–Raphson Method An iterative procedure for solving nonlinear equations.

NINJA Term used to describe a person with a poor credit risk: no income, no job, no
assets.

No-Arbitrage Assumption The assumption that there are no arbitrage opportunities
in market prices.

No-Arbitrage Interest Rate Model A model for the behavior of interest rates that is
exactly consistent with the initial term structure of interest rates.

Nonstationary Model A model where the volatility parameters are a function of time.

Nonsystematic Risk Risk that can be diversified away.

Normal Backwardation A situation where the futures price is below the expected
future spot price.

Normal Distribution The standard bell-shaped distribution of statistics.

Normal Market A market where futures prices increase with maturity.

Notional Principal The principal used to calculate payments in an interest rate swap.
The principal is ‘‘notional’’ because it is neither paid nor received.
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Numeraire Defines the units in which security prices are measured. For example, if

the price of IBM is the numeraire, all security prices are measured relative to IBM. If

IBM is $80 and a particular security price is $50, the security price is 0.625 when

IBM is the numeraire.

Numerical Procedure A method of valuing an option when no formula is available.

OCC Options Clearing Corporation. See Clearinghouse.

Offer Price See Ask Price.

OIS See Overnight Indexed Swap.

Open Interest The total number of long positions outstanding in a futures contract

(equals the total number of short positions).

Open Outcry System of trading where traders meet on the floor of the exchange

Option The right to buy or sell an asset.

Option-Adjusted Spread The spread over the Treasury curve that makes the theoret-

ical price of an interest rate derivative equal to the market price.

Option Class All options of the same type (call or put) on a particular stock.

Option Series All options of a certain class with the same strike price and expiration

date.

Out-of-the-Money Option Either (a) a call option where the asset price is less than

the strike price or (b) a put option where the asset price is greater than the strike

price.

Overnight Indexed Swap Swap where a fixed rate for a period (e.g., 1 month) is

exchanged for the geometric average of the overnight rates during the period.

Over-the-Counter Market A market where traders deal by phone. The traders are

usually financial institutions, corporations, and fund managers.

Package A derivative that is a portfolio of standard calls and puts, possibly combined

with a position in forward contracts and the asset itself.

Par Value The principal amount of a bond.

Par Yield The coupon on a bond that makes its price equal the principal.

Parallel Shift A movement in the yield curve where each point on the curve changes by

the same amount.

Parisian Option Barrier option where the asset has to be above or below the barrier

for a period of time for the option to be knocked in or out.

Path-Dependent Option An option whose payoff depends on the whole path followed

by the underlying variable—not just its final value.

Payoff The cash realized by the holder of an option or other derivative at the end of its

life.

PD Probability of default.

Perpetual Derivative A derivative that lasts forever.

Plain Vanilla A term used to describe a standard deal.

P-Measure Real-world measure.
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PO Principal Only. A mortgage-backed security where the holder receives only

principal cash flows on the underlying mortgage pool.

Poisson Process A process describing a situation where events happen at random. The

probability of an event in time �t is ��t, where � is the intensity of the process.

Portfolio Immunization Making a portfolio relatively insensitive to interest rates.

Portfolio Insurance Entering into trades to ensure that the value of a portfolio will

not fall below a certain level.

Position Limit The maximum position a trader (or group of traders acting together) is

allowed to hold.

Premium The price of an option.

Prepayment function A function estimating the prepayment of principal on a port-

folio of mortgages in terms of other variables.

Principal The par or face value of a debt instrument.

Principal Components Analysis An analysis aimed at finding a small number of

factors that describe most of the variation in a large number of correlated variables

(similar to a factor analysis).

Principal Protected Note A product where the return earned depends on the perfor-

mance of a risky asset but is guaranteed to be nonnegative, so that the investor’s

principal is preserved.

Program Trading A procedure where trades are automatically generated by a com-

puter and transmitted to the trading floor of an exchange.

Protective Put A put option combined with a long position in the underlying asset.

Pull-to-Par The reversion of a bond’s price to its par value at maturity.

Put–Call Parity The relationship between the price of a European call option and the

price of a European put option when they have the same strike price and maturity

date.

Put Option An option to sell an asset for a certain price by a certain date.

Puttable Bond A bond where the holder has the right to sell it back to the issuer at

certain predetermined times for a predetermined price.

Puttable Swap A swap where one side has the right to terminate early.

Q-Measure Risk-neutral measure.

Quanto A derivative where the payoff is defined by variables associated with one

currency but is paid in another currency.

Quasi-random Sequences A sequences of numbers used in a Monte Carlo simulation

that are representative of alternative outcomes rather than random.

Rainbow Option An option whose payoff is dependent on two or more underlying

variables.

Range Forward Contract The combination of a long call and short put or the

combination of a short call and long put.

Ratchet Cap Interest rate cap where the cap rate applicable to an accrual period

equals the rate for the previous accrual period plus a spread.

856 Glossary of Terms



Real Option Option involving real (as opposed to financial) assets. Real assets include

land, plant, and machinery.

Rebalancing The process of adjusting a trading position periodically. Usually the

purpose is to maintain delta neutrality.

Recovery Rate Amount recovered in the event of a default as a percent of the face
value.

Reference Entity Company for which default protection is bought in a credit default

swap.

Repo Repurchase agreement. A procedure for borrowing money by selling securities

to a counterparty and agreeing to buy them back later at a slightly higher price.

Repo Rate The rate of interest in a repo transaction.

Reset Date The date in a swap or cap or floor when the floating rate for the next

period is set.

Restricted Stock Unit (RSU) A unit entitling the holder to receive one share of a stock

at a future time.

Reversion Level The level to which the value of a market variable (e.g., an interest

rate) tends to revert.

Rho Rate of change of the price of a derivative with the interest rate.

Rights Issue An issue to existing shareholders of a security giving them the right to

buy new shares at a certain price.

Risk-Free Rate The rate of interest that can be earned without assuming any risks.

Risk-Neutral Valuation The valuation of an option or other derivative assuming the

world is risk neutral. Risk-neutral valuation gives the correct price for a derivative in

all worlds, not just in a risk-neutral world.

Risk-Neutral World A world where investors are assumed to require no extra return

on average for bearing risks.

Roll Back See Backwards Induction.

Scalper A trader who holds positions for a very short period of time.

Scenario Analysis An analysis of the effects of possible alternative future movements

in market variables on the value of a portfolio.

SEC Securities and Exchange Commission.

Securitization Procedure for distributing the risks in a portfolio of assets.

SEF See Swap Execution Facility.

Settlement Price The average of the prices that a contract trades for immediately

before the bell signaling the close of trading for a day. It is used in mark-to-market
calculations.

Sharpe Ratio Ratio of excess return over risk-free rate to standard deviation of the

excess return.

Short Hedge A hedge where a short futures position is taken.

Short Position A position assumed when traders sell shares they do not own.

Short Rate The interest rate applying for a very short period of time.
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Short Selling Selling in the market shares that have been borrowed from another
investor.

Short-Term Risk-Free Rate See Short Rate.

Shout Option An option where the holder has the right to lock in a minimum value
for the payoff at one time during its life.

Simulation See Monte Carlo Simulation.

Specialist An individual responsible for managing limit orders on some exchanges.
The specialist does not make the information on outstanding limit orders available to
other traders.

Speculator An individual who is taking a position in the market. Usually the
individual is betting that the price of an asset will go up or that the price of an
asset will go down.

Spot Interest Rate See Zero-Coupon Interest Rate.

Spot Price The price for immediate delivery.

Spot Volatilities The volatilities used to price a cap when a different volatility is used
for each caplet.

Spread Option An option where the payoff is dependent on the difference between
two market variables.

Spread Transaction A position in two or more options of the same type.

Stack and Roll Procedure where short-term futures contracts are rolled forward to
create long-term hedges.

Static Hedge A hedge that does not have to be changed once it is initiated.

Static Options Replication A procedure for hedging a portfolio that involves finding
another portfolio of approximately equal value on some boundary.

Step-up Swap A swap where the principal increases over time in a predetermined way.

Sticky Cap Interest rate cap where the cap rate applicable to an accrual period equals
the capped rate for the previous accrual period plus a spread.

Stochastic Process An equation describing the probabilistic behavior of a stochastic
variable.

Stochastic Variable A variable whose future value is uncertain.

Stock Dividend A dividend paid in the form of additional shares.

Stock Index An index monitoring the value of a portfolio of stocks.

Stock Index Futures Futures on a stock index.

Stock Index Option An option on a stock index.

Stock Option Option on a stock.

Stock Split The conversion of each existing share into more than one new share.

Storage Costs The costs of storing a commodity.

Straddle A long position in a call and a put with the same strike price.

Strangle A long position in a call and a put with different strike prices.

Strap A long position in two call options and one put option with the same strike
price.
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Stressed VaR Value at risk calculated using historical simulation from a period of
stressed market conditions.

Stress Testing Testing of the impact of extreme market moves on the value of a
portfolio.

Strike Price The price at which the asset may be bought or sold in an option contract

(also called the exercise price).

Strip A long position in one call option and two put options with the same strike
price.

Strip Bonds Zero-coupon bonds created by selling the coupons on Treasury bonds
separately from the principal.

Subprime Mortgage Mortgage granted to borrower with a poor credit history or no

credit history.

Swap An agreement to exchange cash flows in the future according to a prearranged
formula.

Swap Execution Facility Electronic platform for trading over-the-counter derivatives.

Swap Rate The fixed rate in an interest rate swap that causes the swap to have a value
of zero.

Swaption An option to enter into an interest rate swap where a specified fixed rate is
exchanged for floating.

Swing Option Energy option in which the rate of consumption must be between a
minimum and maximum level. There is usually a limit on the number of times the

option holder can change the rate at which the energy is consumed.

Synthetic CDO A CDO created by selling credit default swaps.

Synthetic Option An option created by trading the underlying asset.

Systematic Risk Risk that cannot be diversified away.

Systemic Risk Risk that a default by one financial institution will lead to defaults by
other financial instutions.

Tailing the Hedge A procedure for adjusting the number of futures contracts used for
hedging to reflect daily settlement.

Tail Loss See Conditional Value at Risk.

Take-and-Pay Option See Swing Option.

TED Spread The difference between 3-month LIBOR and the 3-month T-Bill rate.

Tenor Frequency of payments.

Term Structure of Interest Rates The relationship between interest rates and their
maturities.

Terminal Value The value at maturity.

Theta The rate of change of the price of an option or other derivative with the passage
of time.

Time Decay See Theta.

Time Value The value of an option arising from the time left to maturity (equals an
option’s price minus its intrinsic value).
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Timing Adjustment Adjustment made to the forward value of a variable to allow for

the timing of a payoff from a derivative.

Total Return Swap A swap where the return on an asset such as a bond is exchanged

for LIBOR plus a spread. The return on the asset includes income such as coupons

and the change in value of the asset.

Tranche One of several securities that have different risk attributes. Examples are the

tranches of a CDO or CMO.

Transaction Costs The cost of carrying out a trade (commissions plus the difference

between the price obtained and the midpoint of the bid–offer spread).

Treasury Bill A short-term non-coupon-bearing instrument issued by the government

to finance its debt.

Treasury Bond A long-term coupon-bearing instrument issued by the government to
finance it debt.

Treasury Bond Futures A futures contract on Treasury bonds.

Treasury Note See Treasury Bond. (Treasury notes have maturities of less than

10 years.)

Treasury Note Futures A futures contract on Treasury notes.

Tree Representation of the evolution of the value of a market variable for the

purposes of valuing an option or other derivative.

Trinomial Tree A tree where there are three branches emanating from each node. It is

used in the same way as a binomial tree for valuing derivatives.

Triple Witching Hour A term given to the time when stock index futures, stock index

options, and options on stock index futures all expire together.

Underlying Variable A variable on which the price of an option or other derivative
depends.

Unsystematic Risk See Nonsystematic Risk.

Up-and-In Option An option that comes into existence when the price of the under-

lying asset increases to a prespecified level.

Up-and-Out Option An option that ceases to exist when the price of the underlying

asset increases to a prespecified level.

Uptick An increase in price.

Value at Risk A loss that will not be exceeded at some specified confidence level.

Variance–Covariance Matrix A matrix showing variances of, and covariances be-

tween, a number of different market variables.

Variance-Gamma Model A pure jump model where small jumps occur often and

large jumps occur infrequently.

Variance Rate The square of volatility.

Variance Reduction Procedures Procedures for reducing the error in a Monte Carlo

simulation.

Variance Swap Swap where the realized variance rate during a period is exchanged

for a fixed variance rate. Both are applied to a notional principal.
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Variation Margin An extra margin required to bring the balance in a margin account
up to the initial margin when there is a margin call.

Vega The rate of change in the price of an option or other derivative with volatility.

Vega-Neutral Portfolio A portfolio with a vega of zero.

Vesting Period Period during which an option cannot be exercised.

VIX Index Index of the volatility of the S&P 500.

Volatility A measure of the uncertainty of the return realized on an asset.

Volatility Skew A term used to describe the volatility smile when it is nonsymmetrical.

Volatility Smile The variation of implied volatility with strike price.

Volatility Surface A table showing the variation of implied volatilities with strike price
and time to maturity.

Volatility Swap Swap where the realized volatility during a period is exchanged for a
fixed volatility. Both percentage volatilities are applied to a notional principal.

Volatility Term Structure The variation of implied volatility with time to maturity.

Volcker Rule A rule in the Dodd–Frank Act restricting the speculative activities of
banks, proposed by former Federal Reserve Chairman, Paul Volcker.

Warrant An option issued by a company or a financial institution. Call warrants are
frequently issued by companies on their own stock.

Waterfall Rules determining how cash flows from the underlying portfolio are dis-
tributed to tranches.

Weather Derivative Derivative where the payoff depends on the weather.

Weeklys Option created on a Thursday that expires on Friday of the following week.

Wiener Process A stochastic process where the change in a variable during each short
period of time of length �t has a normal distribution with a mean equal to zero and
a variance equal to �t.

Wild Card Play The right to deliver on a futures contract at the closing price for a
period of time after the close of trading.

Writing an Option Selling an option.

Yield A return provided by an instrument.

Yield Curve See Term Structure.

Zero-Coupon Bond A bond that provides no coupons.

Zero-Coupon Interest Rate The interest rate that would be earned on a bond that
provides no coupons.

Zero-Coupon Yield Curve A plot of the zero-coupon interest rate against time to
maturity.

Zero Curve See Zero-Coupon Yield Curve.

Zero Rate See Zero-Coupon Interest Rate.

Glossary of Terms 861



DerivaGem Software

DerivaGem 3.00 incorporates a number of new features for readers of Options, Futures,

and Other Derivatives, 9th edition. European options can be valued using the CEV,

Merton mixed jump–diffusion, and variance-gamma models, which are discussed in

Chapter 27. Monte Carlo experiments can be run. LIBOR and OIS zero curves can be

calculated from market data. Swaps and bonds can be valued. When swaps, caps, and

swaptions are valued, either OIS or LIBOR discounting can be used.

Getting Started

The most difficult part of using any software is getting started. Here is a step-by-step

guide to getting started with DerivaGem 3.00.

1. Use the access card that comes with this book to load DG300.xls, DG300
functions.xls, and DG300 applications.xls on to your computer. Open Excel file

DG300.xls.

2. You will need to make sure that macros are enabled. If Enable Editing and Enable

Macros appear at the top of the worksheet click on them. For some versions of
Windows and Office, you may need to make sure that security for macros is set at

medium or low.

3. Click on the Equity_FX_Indx_Fut_Opts_Calc worksheet at the bottom of the page.

4. Choose Currency as the Underlying Type and Binomial American as the Option

Type. Click on the Put button. Leave Imply Volatility unchecked.

5. You are now all set to value an American put option on a currency. There are

seven inputs: exchange rate, volatility, domestic risk-free rate, foreign risk-free rate
rate, time to expiration (years), exercise price, and time steps. Input these in cells

D5, D6, D7, D8, D13, D14, and D15 as 1.61, 12%, 8%, 9%, 1.0, 1.60, and 4,
respectively.

6. Hit Enter on your keyboard and click on Calculate. You will see the price of the
option in cell D20 as 0.07099 and the Greek letters in cells D21 to D25. The screen

you should have produced is shown on the following page.

7. Click on Display Tree. You will see the binomial tree used to calculate the option.

This is Figure 21.6 in Chapter 21.
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Next Steps

You should now have no difficulty valuing other types of option on other underlyings

with this worksheet. To imply a volatility, check the Imply Volatility box and input the

option price in cell D20. Hit Enter and click on Calculate. The implied volatility is

displayed in cell D6.

Many different charts can be displayed in the next worksheet. To display a chart, you

must first choose the variable you require on the vertical axis, the variable you require

on the horizontal axis, and the range of values to be considered on the horizontal axis.

Following that, you should hit Enter on your keyboard and click on Draw Graph.

Other points to note about the Equity_FX_Indx_Fut_Opts_Calc worksheet are:

1. For European and American equity options, up to 7 dividends on the underlying
stock can be input in a table that pops up. Enter the time of each dividend
(measured in years from today) in the first column and the amount of the
dividend in the second column.

2. Up to 500 time steps can be used for the valuation of American options, but only
a maximum of 10 time steps can be displayed.

3. Greek letters for all options other than standard calls and puts are calculated by
perturbing the inputs, not by using analytic formulas.

4. For an Asian option the Current Average is the average price since inception. For
a new deal (with zero time to inception), the current average is irrelevant.
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5. In the case of a lookback option, Minimum to Date is used when a call is valued
and Maximum to Date is used when a put is valued. For a new deal, these should
be set equal to the current price of the underlying asset.

6. Interest rates are continuously compounded with an Actual/Actual day count.

The Alternative Models worksheet operates like the Equity_FX_Indx_Fut_Opts_Calc

worksheet. Options can be valued using CEV, Merton mixed jump–diffusion model,
and the variance-gamma model. Charts are shown on the same worksheet. Implied

volatility can be chosen for the y-axis and strike price for the x-axis, so that volatility

smiles are displayed.

Monte Carlo Simulation

In the Monte Carlo worksheet, users can see how a number of different types of options
are valued using the lognormal, Merton mixed jump–diffusion, and variance-gamma

models. Full results from ten simulation trials are displayed. When the Do AntiThetic
box is checked, these are averaged in pairs to produce five sample values. When it is not

checked, there are ten sample values. Standard errors from both the full simulation and
the ten displayed trials are shown.

Zero Curve

The LIBOR zero curve is calculated from LIBOR deposit rates and LIBOR-for-fixed

swap rates. The OIS zero curve is calculated from OIS rates. For pedagogical reasons, a

simplified version of the real world is assumed where accrual periods are exact fractions
of a year (e.g., 1.0 years, 0.5 years, 0.25 year, etc.) and daycounts are Actual/Actual.

The LIBOR zero curve can be calculated with LIBOR discounting or with OIS
discounting, as described in Chapter 9. The worksheet can therefore be used to examine

the impact on the LIBOR zero curve of switching from LIBOR discounting to OIS
discounting.

Bonds and Swaps

The Bond_and_Swap_Price worksheet works similarly to earlier worksheets. Swaps can

be valued using either LIBOR or OIS discounting. For OIS discounting, it is necessary
to input an OIS zero curve as well as a LIBOR zero curve. The LIBOR zero curve will

usually be determined from the Zero Curve worksheet.

Bond Options

The general operation of the Bond_Options worksheet is similar to that of earlier

worksheets. The alternative models are Black’s model (see Section 29.1), the normal
model of the short rate (see equation (31.13)), and the lognormal model of the short

rate (see equation (31.18)). The first model can be applied only to European options.
The other two can be applied to European or American options. The coupon is the rate

paid per year and the frequency of payments can be selected as Quarterly, Semi-Annual
or Annual. The zero-coupon yield curve is entered in the table labeled Term Structure.

Enter maturities (measured in years) in the first column and the corresponding

continuously compounded rates in the second column. DerivaGem assumes a piecewise
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linear zero curve similar to that in Figure 4.1. The strike price can be quoted (clean) or

cash (dirty) (see Section 29.1). The quoted bond price, which is calculated by the
software, and the strike price, which is input, are per $100 of principal.

Caps and Swaptions

The general operation of the Caps_and Swap_Options worksheet is similar to that of
other worksheets. The worksheet is used to value interest rate caps/floors and swap

options. Black’s model for caps and floors is explained in Section 29.2 and Black’s
model for European swap options is explained in Section 29.3. The normal and

lognormal short-rate models are in equations (31.13) and (31.18), respectively. The
term structure of interest rates is entered in the same way as for bond options. The

frequency of payments can be selected as Monthly, Quarterly, Semi-Annual, or
Annual. The software calculates payment dates by working backward from the end

of the life of the instrument. The initial accrual period for a cap/floor may be a
nonstandard length between 0.5 and 1.5 times a normal accrual period. Either LIBOR

discounting or OIS discounting can be used.

CDSs

The CDS worksheet is used to calculate hazard rates from CDS spreads and vice versa.
Users must input a term structure of interest rates (continuously compounded) and

either a term structure of CDS spreads or a term structure of hazard rates. The initial
hazard rate applies from time zero to the time specified; the second hazard rate applies

from the time corresponding to the first hazard rate to the time corresponding to the
second hazard rate; and so on. The calculations are carried out assuming that default

can occur only at points midway between payment dates. This corresponds to the
calculations for the example in Section 25.2.

CDOs

The CDO worksheet calculates quotes for the tranches of CDOs from tranche correla-
tions input by the user. The attachment points and detachment points for tranches are

input by the user. The quotes can be in basis points or involve an upfront payment. In
the latter case, the spread in basis points is fixed and the upfront payment, as a percent

of the tranche principal, is either input or implied. (For example, the fixed spread for
the equity tranche of iTraxx Europe or CDX NA IG is 500 basis points.) The number

of integration points (see equation (25.12)) defines the accuracy of calculations and can
be left as 10 for most purposes (the maximum is 30). The software displays the expected

loss as a percent of the tranche principal (ExpLoss) and the present value of expected
payments (PVPmts) at the rate of 10,000 basis points per year. The spread and upfront

payment are

ExpLoss � 10,000=PVPmts and ExpLoss� ðSpread � PVPmts=10,000Þ

respectively. The worksheet can be used to imply either tranche (compound) correla-
tions or base correlations from quotes input by the user. For base correlations to be

calculated, it is necessary for the first attachment point to be 0% and the detachment
point for one tranche to be the attachment point for the next tranche.
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How Greek Letters Are Defined

In the Equity_FX_Index_Futures worksheet, the Greek letters are defined as follows:

Delta: Change in option price per dollar increase in underlying asset

Gamma: Change in delta per dollar increase in underlying asset

Vega: Change in option price per 1% increase in volatility (e.g., volatility increases
from 20% to 21%)

Rho: Change in option price per 1% increase in interest rate (e.g., interest
increases from 5% to 6%)

Theta: Change in option price per calendar day passing.

For instruments dependent on interest rates, the Greek letters are defined as follows:

DV01: Change in option price per 1-basis-point upward parallel shift in the zero
curve

Gamma: Change in DV01 for an upward parallel shift in the zero curve (Gamma is
per % per %)

Vega: Change in option price when volatility parameter increases by 1% (e.g.,
volatility increases from 20% to 21%).

The Applications Builder

Once you are familiar with the Options calculator (DG300.xls), you may want to start
using the Application Builder (DG300 applications.xls). You can also develop your own
applications with DG300 functions.xls. This contains the functions underlying Deriva-
Gem with VBA source code. The applications included with the software are:

A. Binomial Convergence. This investigates the convergence of the binomial model
in Chapters 13 and 21.

B. Greek Letters. This provides charts showing the Greek letters in Chapter 19.

C. Delta Hedge. This investigates the performance of delta hedging as in Tables 19.2
and 19.3.

D. Delta and Gamma Hedge. This investigates the performance of delta plus gamma
hedging for a position in a binary option.

E. Value and Risk. This calculates Value at Risk for a portfolio using three different
approaches.

F. Barrier Replication. This carries out calculations for static options replication (see
Section 26.16).

G. Trinomial Convergence. This investigates the convergence of a trinomial tree
model.
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Major Exchanges Trading
Futures and Options

Australian Securities Exchange (ASX) www.asx.com.au
BM&FBOVESPA (BMF) www.bmfbovespa.com.br
Bombay Stock Exchange (BSE) www.bseindia.com
Boston Options Exchange (BOX) www.bostonoptions.com
Bursa Malaysia (BM) www.bursamalaysia.com
Chicago Board Options Exchange (CBOE) www.cboe.com
China Financial Futures Exchange (CFFEX) www.cffex.com.cn
CME Group www.cmegroup.com
Dalian Commodity Exchange (DCE) www.dce.com.cn
Eurex www.eurexchange.com
Hong Kong Futures Exchange (HKFE) www.hkex.com.hk
IntercontinentalExchange (ICE) www.theice.com
International Securities Exchange (ISE) www.iseoptions.com
Kansas City Board of Trade (KCBT) www.kcbt.com
London Metal Exchange (LME) www.lme.co.uk
MEFF Renta Fija and Variable, Spain www.meff.es
Mexican Derivatives Exchange (MEXDER) www.mexder.com
Minneapolis Grain Exchange (MGE) www.mgex.com
Montreal Exchange (ME) www.m-x.ca
NASDAQ OMX www.nasdaqomx.com
National Stock Exchange, Mumbai (NSE) www.nseindia.com
NYSE Euronext www.nyse.com
Osaka Securities Exchange (OSE) www.ose.or.jp
Shanghai Futures Exchange (SHFE) www.shfe.com.cn
Singapore Exchange (SGX) www.sgx.com
Tokyo Grain Exchange (TGE) www.tge.or.jp
Tokyo Financial Exchange (TFX) www.tfx.co.jp
Zhengzhou Commodity Exchange (ZCE) www.zce.cn

There has been a great deal of consolidation of derivatives exchanges, nationally and inter-

nationally, in the last few years. The Chicago Board of Trade and the Chicago Mercantile
Exchange have merged to form the CME Group, which also includes the New York Mercantile
Exchange (NYMEX). Euronext and the NYSE have merged to form NYSE Euronext, which

now owns the American Stock Exchange (AMEX), the Pacific Exchange (PXS), the London
International Financial Futures Exchange (LIFFE), and two French exchanges. The Australian
Stock Exchange and the Sydney Futures Exchange (SFE) have merged to form the Australian
Securities Exchange (ASX). The IntercontinentalExchange (ICE) has acquired the New York

Board of Trade (NYBOT), the International Petroleum Exchange (IPE), and the Winnipeg
Commodity Exchange (WCE), and is merging with NYSE Euronext. Eurex, which is jointly
operated by Deutsche Borse AG and SIX Swiss Exchange, has acquired the International

Securities Exchange (ISE). No doubt the consolidation has been largely driven by economies
of scale that lead to lower trading costs.
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Table for NðxÞ When x 6 0
This table shows values of NðxÞ for x 6 0. The table should be used with interpolation. For example,

Nð�0:1234Þ ¼ Nð�0:12Þ � 0:34½Nð�0:12Þ �Nð�0:13Þ�
¼ 0:4522� 0:34� ð0:4522� 0:4483Þ
¼ 0:4509

x .00 .01 .02 .03 .04 .05 .06 .07 .08 . 09

�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

�3.0 0.0014 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
�3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
�3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
�3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
�3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

�3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
�3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
�4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table for NðxÞ When x > 0
This table shows values of NðxÞ for x > 0. The table should be used with interpolation. For example,

Nð0:6278Þ ¼ Nð0:62Þ þ 0:78½Nð0:63Þ �Nð0:62Þ�
¼ 0:7324þ 0:78� ð0:7357� 0:7324Þ
¼ 0:7350

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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